
VMS

digital VMS RTL Library (LIB$) Manual

OrderNumberAA-LA76A-TE

VMS RTL Library
(LIB$) Manual

Order Number: AA-LA 76A-TE

April 1988

This manual documents the library routines contained in the LIB$ facility of
the VMS Run-Time Library.

Revision/Update Information: This document supersedes the LIB$
section of the VAX/VMS Run-Time
Library Routines Reference Manual,
Version 4.4.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS Edu System VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DEC US RSTS

~urnuo~u™ DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO Rico* CANADA INTERNATIONAL

ZK4609

Digital Equipment Corporation Digital Equipment
P.O. Box CS2008 of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire 100 Herzberg Road
03061 Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

c/o Digital's local subsidiary
or approved distributor

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC). Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE xvii

NEW AND CHANGED FEATURES xxi

CHAPTER 1 OVERVIEW OF THE LIB$ FACILITY 1-1

CHAPTER 2 ACCESS TO VMS SYSTEM COMPONENTS 2-1

2.1 SYSTEM SERVICE ACCESS ROUTINES 2-1

2.2 ACCESS TO THE COMMAND LANGUAGE INTERPRETER 2-2
2.2.1 Obtaining the Command Line 2-3
2.2.2 Chaining from One Program to Another 2-5
2.2.3 Executing a CU Command 2-6
2.2.4 Using Symbols and Logical Names 2-8
2.2.5 Disabling and Enabling Control Characters 2-8
2.2.6 Creating and Connecting to a Subprocess 2-9

2.3 ACCESS TO VAX MACHINE INSTRUCTIONS 2-9
2.3.1 Variable-Length Bit Field Instruction Routines 2-10
2.3.2 Integer and Floating-Point Routines 2-12
2.3.3 Queue Access Routines 2-12
2.3.4 Character String Routines 2-14
2.3.5 Miscellaneous Instruction Routines 2-16

2.4 PROCESSWIDE RESOURCE ALLOCATION ROUTINES 2-16
2.4.1 Allocating Logical Unit Numbers 2-17
2.4.2 Allocating Event Flag Numbers 2-17

2.5 PERFORMANCE MEASUREMENT ROUTINES 2-18

2.6 OUTPUT FORMATTING CONTROL ROUTINES 2-20

2.7 MISCELLANEOUS INTERFACE ROUTINES 2-22
2.7.1 Indicating Asynchronous System Trap in Progress 2-22

v

Contents

2.7.2
2.7.3
2.7.4
2.7.5
2.7.6

Assigning an 1/0 Channel Along with a Mailbox
Create a Directory or Subdirectory
File Searching Routines
Insert Entry in a Balanced Binary Tree
Common 1/0 Routines

2-23
2-24
2-24
2-31
2-35

CHAPTER 3 DATE/TIME MANIPULATION 3-1

3.1

3.2

3.3
3.3.1
3.3.2
3.3.2.1
3.3.2.2

3.3.2.3

3.3.3
3.3.4
3.3.5

CHAPTER 4

4.1

4.1.1
4.1.2
4.1.3
4.1.3.1
4.1.3.2
4.1.4
4.1.4.1
4.1.4.2
4.1.4.3

4.1.5
4.1.6

vi

DATE/TIME UTILITY ROUTINES

DATE/TIME MANIPULATION ROUTINES

DATE/TIME FORMATTING ROUTINES
Date/Time Logical Initialization
Selecting a Format

Run-Time Format Mnemonics • 3-5
Specifying Formats at Run Time • 3-6

3.3.2.2.1 Specifying Input Formats at Run Time• 3-7
3.3.2.2.2 Specifying Output Formats at Run Time • 3-9

Specifying Formats at Compile Time • 3-11

3-2

3-2

3-3
3-3
3-4

3.3.2.3.1 Specifying Input Format Mnemonics at Compile Time• 3-12
3.3.2.3.2 Specifying Output Formats at Compile Time• 3-13

The LIB$CONVERT_DATE_STRING Routine
The LIB$GET_DATE_FORMAT Routine
User-Defined Output Formats

CONDITION HANDLING ROUTINES

AN OVERVIEW OF THE VAX CONDITION HANDLING
FACILITY
Exception Conditions
The Condition Value
Signaling

Signal Argument Vector • 4-9
Mechanism Argument Vector• 4-11

Condition Handlers
Default Condition Handlers • 4-13
Possible Condition Handler Actions • 4-14
Interaction Between Default and User-Supplied
Handlers • 4-1 5

Displaying Messages
Multiple Active Signals

3-13
3-14
3-14

4-1

4-1
4-4
4-5
4-7

4-13

4-16
4-18

Contents

4.2 USING THE VAX CONDITION HANDLING FACILITY 4-20
4.2.1 Establishing a Condition Handler 4-20
4.2.2 Writing a Condition Handler 4-20
4.2.2.1 Continuing Execution • 4-21
4.2.2.2 Resignaling • 4-22
4.2.2.3 Unwinding the Call Stack • 4-22
4.2.3 Generating Signals 4-24
4.2.4 Signaling User-Defined Messages 4-26
4.2.5 Logging Error Messages to a File 4-27

4.3 RUN-TIME LIBRARY CONDITION HANDLING ROUTINES 4-29
4.3.1 Convert a Floating-Point Fault to a Floating-Point Trap 4-29
4.3.2 Change a Signal to a Return Status 4-29
4.3.3 Change a Signal to a Stop 4-30
4.3.4 Match Condition Values 4-30
4.3.5 Correct a Reserved Operand Condition 4-30
4.3.6 Decode the Instruction That Generated a Fault 4-30

4.4 HOW RUN-TIME LIBRARY ROUTINES HANDLE
EXCEPTIONS 4-30

4.4.1 Exception Conditions Signaled from Mathematics Routines - 4-31
4.4.1.1 Integer Overflow and Floating-Point Overflow• 4-31
4.4.1.2 Floating-Point Underflow • 4-31
4.4.2 Overflow/Underflow Detection Enabling Routines 4-32

CHAPTER 5 MEMORY ALLOCATION ROUTINES 5-1

5.1 OVERVIEW 5-1
5.1.1 Virtual Address Space 5-1
5.1.2 Memory Allocation Routines 5-2

5.2 ALLOCATING AND FREEING PAGES 5-4

5.3 ZONES 5-6
5.3.1 Zone Attributes 5-8
5.3.2 The Default Zone 5-12
5.3.3 Zone Identification 5-12
5.3.4 Creating a Zone 5-13
5.3.5 Deleting a Zone 5-13
5.3.6 Resetting a Zone 5-14

vii

Contents

5.4 ALLOCATING AND FREEING BLOCKS 5-14

5.5 ALLOCATION ALGORITHMS 5-15
5.5.1 The First Fit Algorithm 5-16
5.5.2 The Quick Fit Algorithm 5-16
5.5.3 The Frequent Sizes Algorithm 5-16
5.5.4 The Fixed Size Algorithm 5-16

5.6 USER-DEFINED ZONES 5-16

5.7 INTERACTIONS WITH OTHER RUN-TIME LIBRARY
ROUTINES 5-19

5.8 INTERACTIONS WITH VMS SYSTEM SERVICES 5-20

CHAPTER 6 DEBUGGING PROGRAMS THAT USE VIRTUAL MEMORY
ZONES 6-1

CHAPTER 7 IMAGE INITIALIZATION AND TERMINATION 7-1

7.1 IMAGE INITIALIZATION 7-1

7.2 INITIALIZATION ARGUMENT LIST 7-3

7.3 DECLARING INITIALIZATION ROUTINES 7-4

7.4 DISPATCHING TO INITIALIZATION ROUTINES 7-5

7.5 INITIALIZATION ROUTINE OPTIONS 7-5

7.6 AN EXAMPLE 7-5

7.7 IMAGE TERMINATION 7-6

viii

Contents

CHAPTER 8 CROSS-REFERENCE ROUTINES 8-1

8.1 USING THE CROSS-REFERENCE ROUTINES 8-1

8.2 $CRFCTLTABLE MACRO 8-2

8.3 $CRFFIELD MACRO 8-3

8.4 $CRFFIELDEND MACRO 8-4

8.5 CROSS-REFERENCE OUTPUT 8-5

8.6 EXAMPLE 8-7
8.6.1 Defining Control Tables 8-7
8.6.2 Inserting Table Information 8-8
8.6.3 Formatting Information for Output 8-10

8.7 HOW TO LINK TO THE CROSS-REFERENCE SHAREABLE
IMAGE

LIB$ REFERENCE SECTION
LIB$ADAWI

LIB$ADD_ TIMES

LIB$ADDX

LIB$ANALYZE_SDESC
LIB$ASN_WTH_MBX

LIB$AST_IN_PROG

LIB$ATTACH

LIB$BBCCI

LIB$BBSSI

LIB$CALLG

LIB$CHAR

LIB$CONVERT_DATE_STRING

LIB$CRC
LI B$CRC_ TABLE

LIB$CREATE_DIR
LIB$CREATE_USER._VM_ZONE

LIB$CREATE_VM_ZONE

8-11

LIB-3

LIB-5

LIB-7

LIB-10
LIB-12

LIB-15

LIB-17

LIB-19
LIB-21

LIB-23

LIB-25

LIB-27

LIB-31

LIB-33

LIB-36

LIB-40

LIB-44

ix

Contents

LIB$CRF_INS_KEY LIB-50
LI B$CRF _I NS_REF LIB-52
LIB$CRF _QUTPUT LIB-55
LIB$CURRENCY LIB-59
LIB$CVT_ox_ox LIB-61
LIB$CVT_FROM_INTERNAL_ TIME LIB-67
LIB$CVTF _FROM_INTERNAL_ TIME LIB-70
LIB$CVT_ TQ_INTERNAL_ TIME LIB-72
LI B$CVTF _ TQ_I NTE R NAL _Tl ME LIB-74
LIB$CVT_)(TB LIB-76

LIB$CVT_VECTIM LIB-78
LIB$DATE_TIME LIB-80

LIB$DAY LIB-82
LIB$DAV_Qf _WEEK LIB-84
LIB$DECODE_FAUL T LIB-86
LI B$DEC_QVER LIB-104
LIB$DELETE_FILE LIB-106
LI B$DELETE_LQGICAL LIB-114
LIB$DELETE_SVMBOL LIB-116
LI B$DELETE_ VM_ZQN E LIB-118
LI B$DIGIT_SEP LIB-120
LIB$DISABLE_CTRL LIB-122
LIB$DQ_CQMMAND LIB-124

LIB$EDIV LIB-126

LIB$EMODD LIB-128

LIB$EMODF LIB-130
LIB$EMODG LIB-132

LIB$EMODH LIB-134

LIB$EMUL LIB-136
LIB$ENABLE_CTRL LIB-138

LI B$ESTABLISH LIB-140

LIB$EXTV LIB-142

LIB$EXTZV LIB-145
LIB$FFX LIB-147
LIB$FID_TQ_NAME LIB-149
LIB$FILE_SCAN LIB-151
LIB$FILE_SCAN_END LIB-153
LIB$FIND_FILE LIB-155
LIB$FIND_FILE_END LIB-159

LIB$FIND_IMAGE_SVMBOL LIB-160
LIB$FIND_VM_ZONE LIB-163
LIB$FIXUP_FLT LIB-165

x

Contents

LIB$FLT_UNDER LIB-167
LIB$FORMAT_DATE_TIME LIB-169
LIB$FREE_DATE_TIME_CQNTEXT LIB-172
LI B$FREE_Ef LIB-174

LIB$FREE_LUN LIB-175

LIB$FREE_ TIMER LIB-176
LIB$FREE_VM LIB-177

LIB$FREE_VM_PAGE LIB-179

LIB$GETDVI LIB-181

LIB$GETJPI LIB-186
LIB$GETQUI LIB-191

LIB$GETSYI LIB-196

LIB$GET_COMMAND LIB-199

LIB$GET_COMMON LIB-202
LI B$GET_DATE_fQRMAT LIB-204
LIB$GET_Ef LIB-206

LI B$GET_fQREIGN LIB-208

LIB$GET_INPUT LIB-212
LIB$GET_LUN LIB-215
LIB$GET_MAXIMUM_DATE_LENGTH LIB-216

LIB$GET_SVMBOL LIB-219

LIB$GET_USERS_LANGUAGE LIB-222
LIB$GET_VM LIB-223
LIB$GET_VM_PAGE LIB-225

LIB$1CHAR LIB-227

LIB$1NDEX LIB-229
LIB$1NIT_DATE_TIME_CONTEXT LIB-231
LIB$1NIT_ TIMER LIB-235
LIB$1NSERT_ TREE LIB-237
LIB$1NSQHI LIB-248

LIB$1NSQTI LIB-251

LIB$1NSV LIB-253
LIB$1NT_QVER LIB-255
LIB$LEN LIB-257

LIB$LOCC LIB-258

LI B$LOOKUP _KEY LIB-261

LI B$LOOKUP _TREE LIB-265
LIB$LP_LINES LIB-267

LIB$MATCHC LIB-270

LIB$MATCH_COND LIB-272

LIB$MOVC3 LIB-275

LIB$MOVC5 LIB-276

xi

Contents

LIB$MOVTC LIB-278

LIB$MOVTUC LIB-295
LIB$MUL T_DEL TA_ TIME LIB-297
LIB$MUL TF _DEL TA_ TIME LIB-298

LIB$PAUSE LIB-299
LIB$POLYD LIB-300
LIB$POLYF LIB-302
LIB$POLYG LIB-305
LIB$POLYH LIB-307
LIB$PUT_CQMMON LIB-309
LIB$PUT_OUTPUT LIB-311
LIB$RADIX_PQINT LIB-313
LIB$REMQHI LIB-315
LIB$REMQTI LIB-317
LIB$RENAME_FILE LIB-319
LIB$RESERVE_EF LIB-327
LIB$RESET_VM_ZQNE LIB-329
LIB$REVERT LIB-331
LIB$RUN_PROGRAM LIB-332

LIB$SCANC LIB-334
LIB$SCOPY_DXDX LIB-336
LIB$SCOPY_R_ox LIB-338
LI B$SET_LQGICAL LIB-340
LIB$SET_SYMBOL LIB-343
LIB$SFREE1 _00 LIB-347
LIB$SFREEN_oo LIB-348
LIB$SGET1_00 LIB-350
LIB$SHQW_ TIMER LIB-352
LIB$SHQW_VM LIB-356
LIB$SHQW_VM_ZQNE LIB-359
LIB$SIGNAL LIB-365
LIB$SIG_ TQ_RET LIB-369
LI B$SIG_ TQ_STOP LIB-372
LIB$SIM_TRAP LIB-374

LIB$SKPC LIB-376
LIB$SPANC LIB-378
LIB$SPAWN LIB-382
LIB$STAT_TIMER LIB-388
LIB$STAT_VM LIB-392
LIB$STOP LIB-394
LIB$SUB_ TIMES LIB-397
LIB$SUBX LIB-399

xii

INDEX

EXAMPLES
5-1

FIGURES
2-1

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

5-1

5-2

5-3

5-4

7-1

8-1

Contents

LI B$SYS_ASCTI M LIB-401

LIB$SVS_FAO LIB-404

LIB$SVS_FAOL LIB-406
LIB$SVS_GETMSG LIB-408

LIB$TPARSE LIB-411

LIB$TRA_ASC_EBC LIB-453
LIB$TRA_EBC_ASC LIB-457
LIB$TRAVERSE_ TREE LIB-459

LIB$TRIM_FILESPEC LIB-461

LIB$VERIFV_VM_ZONE LIB-464

LIB$WAIT LIB-465

Monitoring Heap Operations with a User-Defined Zone _

Variable-Length Bit Field

Format of the Condition Value

Sample Stack Scan for Condition Handlers

Format of the Signal Argument Vector

Signal Argument Vector for the Reserved Operand Error
Conditions

Signal Argument Vector for RTL Mathematics Routine
Errors

Format of a Mechanism Argument Vector

Formats of Message Sequences

Stack After Second Exception Condition Is Signaled ·

Arguments Passed to Condition Handler During Unwind _

Using a Condition Handler to Log an Error Message

Virtual Address Overview

Hierarchy of Memory Management Routines

Memory Fragmentation

Boundary Tags

Sequence of Events During Image Initialization

Using Cross-Reference Routines

5-17

2-11

4-6

4-9

4-10

4-11

4-11

4-12

4-17

4-19

4-24

4-28

5-2

5-4

5-6

5-9

7-3

8-2

xiii

Contents

8-2 Summary of Symbol Names and Values 8-5

8-3 Summary of Symbol Names, Values, and Name of
Referring Modules 8-5

8-4 Summary Indicating Defining Module 8-6

LIB-1 Structure of a Protection Mask LIB-37

LIB-2 Summary of Symbol Names and Values LIB-57

LIB-3 Summary of Symbol Names, Values, and Name of
Referring Modules LIB-57

LIB-4 Summary Indicating Defining Module LIB-58

LIB-5 Keyword Table LIB-263

LIB-6 LIB$TPARSE Argument Block LIB-412

LIB-7 Transition Diagram for the Mythical Utility LIB-425

LIB-8 Diagram of the Mythical Utility LIB-426

TABLES
1-1 LI 8$ Routines 1-1

2-1 System Service Access Routines 2-2

2-2 CU Access Routines 2-2

2-3 Variable-Length Bit Field Routines 2-10

2-4 Integer and Floating-Point Routines 2-12

2-5 Queue Access Routines 2-13

2-6 Character String Routines 2-15

2-7 Miscellaneous Instruction Routines 2-16

2-8 Processwide Resource Allocation Routines 2-17

2-9 Performance Measurement Routines 2-18

2-10 The Code Argument in LIB$SHOW_TIMER and
LIB$STAT_TIMER 2-19

2-11 Routines for Customizing Output 2-21

2-12 Miscellaneous Interface Routines 2-22

3-1 Date/Time Formatting Routines 3-1

3-2 Input S~ring Punctuation and Defaults 3-9

3-3 Predefined Output Date Formats 3-10

3-4 Predefined Output Time Formats 3-11

3-5 Legible Format Mnemonics 3-12

4-1 Condition Handling and Signaling Routines 4-1

4-2 Interaction Between Handlers and Default Handlers 4-15

5-1 Overhead for Area Control Blocks 5-10

5-2 Possible Values for the Block Size Attribute 5-11

5-3 Attribute Values for the Default Zone 5-12

xiv

Contents

5-4 Allocation Algorithms 5-15

8-1 Cross-Reference Routines 8-1

LIB-1 Acceptable Subset of VAX Standard Data Types LIB-63

LIB-2 Data Types Accepted by LIB$CVT_DX_DX LIB-64

LIB-3 Destination NBDS Formats LIB-65

LIB-4 Formats Used for LI B$GETDVI Strings LIB-184

LIB-5 Item Code Formats for LIB$GET JPI LIB-188

LIB-6 Item Code Formats for LIB$GETQUI LIB-194

LIB-7 LIB$AB_ASC_EBC LIB-280

LIB-8 LIB$AB_ASC_EBC_REV LIB-281

LIB-9 LIB$AB_EBC_ASC LIB-282

LIB-10 LIB$AB_EBC_ASC_REV LIB-283

LIB-11 LIB$AB_CVTPT_Q LIB-284

LIB-12 LIB$AB_CVTPT_U LIB-285

LIB-13 LIB$AB_CVTTP_Q LIB-286

LIB-14 LIB$AB_CVTTP_U LIB-287

LIB-15 LIB$AB_CVT_Q_U LIB-288

LIB-16 LIB$AB_CVT_u_o LIB-288

LIB-17 LIB$AB_CVTPT_Z LIB-289

LIB-18 LIB$AB_CVTTP_Z LIB-290

LIB-19 LI B$AB_UPCASE LIB-291

LIB-20 LIB$AB_LOWERCASE LIB-292

LIB-21 The Alphabet of LIB$TPARSE LIB-414

LIB-22 Argument Block Fields LIB-418

LIB-23 LIB$AB_ASC_EBC LIB-454

LIB-24 LIB$AB_EBC_ASC LIB-458

xv

Preface

This manual provides users of the VMS operating system with detailed usage
and reference information on library routines supplied in the LIB$ facility of
the Run-Time Library.

Run-Time Library routines can only be used in programs written in languages
that produce native code for the VAX hardware. At present, these languages
include VAX MACRO and the following compiled high-level languages:

VAX Ada
VAX BASIC
VAX BLISS-32
VAXC
VAX COBOL
VAX COBOL-74
VAX CORAL
VAX DIBOL
VAX FORTRAN
VAX Pascal
VAX PL/I
VAX RPG
VAX SCAN

Interpreted languages that can also access Run-Time Library routines include
VAX DSM and DATATRIEVE.

Intended Audience
This manual is intended for system and application programmers who want
to call Run-Time Library routines.

Document Structure
This manual is organized into two parts as follows:

• The introductory chapters provide guidelines and reference material on
specific types of library routines. The material is covered as follows:

Chapter 1 provides a brief overview of the LIB$ facility and lists the LIB$
routines and their functions.

Chapter 2 provides an overview and reference guide for routines that are
used to access VMS system components.

Chapter 3 describes the international date/time input and output routines.

Chapter 4 provides detailed information on the condition handling
routines.

Chapter 5 explains process-wide resource allocation routines, specifically
the allocation and deallocation of virtual memory and the use of virtual
memory zones.

Chapter 6 explains some methods and aids for debugging programs that
use virtual memory zones.

xvii

Preface

Chapter 7 discusses image initialization and termination, with special
emphasis on the use of LIB$INITIALIZE.

Chapter 8 discusses use of the cross-reference routines.

• The LIB$ Reference Section describes each library routine contained in
the LIB$ facility of the Run-Time Library. This information is presented
using the documentation format described in the Introduction to the VMS
Run-Time Library. Routine descriptions appear in alphabetical order by
routine name.

Associated Documents

xviii

The Run-Time Library routines are documented in a series of reference
manuals. A general overview of the Run-Time Library and a description
of how the Run-Time Library routines are accessed are presented in the
Introduction to the VMS Run-Time Library. Descriptions of the other RTL
facilities and their corresponding routines and usages are discussed in the
following books:

• The VMS RTL DECtalk (DTK$) Manual

• The VMS RTL Mathematics (MTH$) Manual

• The VMS RTL General Purpose (0TS$) Manual

• The VMS RTL Parallel Processing (PPL$) Manual

• The VMS RTL Screen Management (SMG$) Manual

• The VMS RTL String Manipulation (STR$) Manual

The VAX Procedure Calling and Condition Handling Standard, which is
documented in the Introduction to VMS System Routines, contains useful
information for anyone who wants to call Run-Time Library routines.

Application programmers in any language can refer to the Guide to Creating
VMS Modular Procedures for the Modular Programming Standard and other
guidelines.

High-level language programmers will find additional information on calling
Run-Time Library routines in their language reference manual. Additional
information may also be found in the language user's guide provided with
your VAX language software.

The Guide to Using VMS Command Procedures may also be useful.

For a complete list and description of the manuals in the VMS documentation
set, see the Overview of VMS Documentation.

Conventions
Convention

CTRL/C

$SHOW TIME
05-JUN-1988 11 :55:22

$TYPE MYFILE.DAT

input-file, ...

[logical-name]

quotation marks
apostrophes

Preface

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either th_at not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (') is used to refer to a single
quotation mark.

Other conventions used in the documentation of Run-Time Library routines
are described in the Introduction to the VMS Run-Time Library.

xix

New and Changed Features

The following LIB$ routines have been added to the VMS Run-Time Library
for Version 5.0:

New LIBS Routines for Version 5.0

LIB$ADAWI

LIB$ADD_ TIMES

LIB$CONVERT_DATE_STRING

LIB$CVT _FROM _INTERNAL_ TIME

LIB$CVTF _FROM _INTERNAL_ TIME

LIB$CVT_ TQ_INTERNAL_ TIME

LIB$CVTF _ TO_INTERNAL _TIME

LIB$CVT_ VECTIM

LIB$FID_ TO_NAME

LIB$FIND_ VM _ZONE

LIB$FORMA T _DATE_ TIME

LIB$FREE_DATE_ TIME_CONTEXT

LIB$GETOUI

LIB$GET_DATE_FORMAT

LIB$GET_MAXIMUM_DATE_LENGTH

LIB$GET _USERS_LANGUAGE

LIB$1NIT_DATE_ TIME_CONTEXT

LIB$MUL T_DEL TA_ TIME

LIB$MUL TF _DEL TA_ TIME

LIB$SHOW_ VM_ZONE

LIB$SUB_ TIMES

LIB$VERIFY _ VM _ZONE

xxi

1 Overview of the LIB$ Facility

This manual discusses the Run-Time Library LIB$ routines that perform
general purpose (library) functions. One of the functions of the LIB$ facility
is to provide a callable interface to components of VMS that are difficult to
use in a high-level language. LIB$ routines allow access to the following:

• System Services

• The Command Language Interpreter (CLI)

• Some VAX machine instructions

In addition, LIB$ routines allow you to perform the following operations:

• Allocate the resources that your process needs, such as virtual memory
and event flags

• Convert data types for I/O

• Enable detection of hardware exceptions

• Establish condition handlers

• Generate and display timing statistics while your program is running

• Get and put strings in the process common storage area

• Obtain records from devices

• Obtain the system date and time in various formats

• Process cross-reference data

• Search for specified files

• Set up and use binary trees

• Signal exceptions

The following table contains all of the LIB$ routines and their functions.

Table 1-1 LIB$ Routines

Routine Name Function

LIB$ADAWI

LIB$ADD_ TIMES

LIB$ADDX

Add adjacent word with interlock

Add two quadword times

LIB$ANAL YZE_SDESC

LIB$ASN_WTH_MBX

LIB$AST_IN_PROG

LIB$ATTACH

Add two multiple-precision binary
numbers

Analyze a string descriptor

Assign a channel to a mailbox

AST in progress

Attach a terminal to a process

1-1

Overview of the LI 8$ Facility

1-2

Table 1-1 (Cont.)

Routine Name

LIB$BBCCI

LIB$BBSSI

LIB$CALLG

LIB$CHAR

LI 8$ Routines

LIB$CONVERT_DATE_STRING

LIB$CRC

LIB$CRC_ TABLE

LIB$CREATE_DIR

LIB$CREATE_USER_ VM_ZONE

LIB$CREATE_ VM_ZQNE

LIB$CRF _INS_KEY

LIB$CRF _INS_REF

LIB$CRF _OUTPUT

LIB$CURRENCY

LIB$CVT_DX_DX

LIB$CVT_FROM_INTERNAL_ TIME

LIB$CVTF _FROM_INTERNAL_ TIME

LIB$CVT _ TO_INTERNAL _TIME

LIB$CVTF _ TO_INTERNAL_ TIME

LIB$CVT_xTB

LIB$CVT _ VECTIM

LIB$DA TE_ TIME

LIB$DAY

LIB$DA Y _OF _WEEK

LIB$DECODE_FAUL T

LIB$DEC_OVER

LIB$DELETE_FILE

LIB$DELETE _LOGICAL

LIB$DELETE_SYMBOL

Function

Test and clear a bit with interlock

Test and set a bit with interlock

Call a procedure with a general
argument list

Transform a byte to the first
character of a string

Convert a date string to a quadword

Calculate a Cyclic Redundancy Check
(CRC)

Construct a Cyclic Redundancy
Check (CRC) table

Create a directory

Create a user-defined storage zone

Create a new storage zone

Insert a key in the cross-reference
table

Insert a reference to a key in the
cross-reference table

Output some cross-reference table
information

Get the system currency symbol

Convert the specified data type

Convert internal time to external time

Convert internal time to external time
(F-floating value)

Convert external time to internal time

Convert external time to internal time
(F-floating value)

Convert numeric text to binary

Convert 7-word vector to internal
time

Return the date and time as a string

Return the day number as a
longword integer

Return the numeric day of the week

Decode instruction stream during a
fault

Enable or disable decimal overflow
detection

Delete one or more files

Delete a logical name

Delete a CU symbol

Overview of the LI 8$ Facility

Table 1-1 (Cont.) LIB$ Routines

Routine Name Function

LIB$DELETE_ VM_ZONE

LIB$DIGIT _SEP

LIB$DISABLE_CTRL

LIB$DO_COMMAND

LIB$EDIV

LIB$EMODD

LIB$EMODF

LIB$EMODG

LIB$EMODH

LIB$EMUL

LIB$ENABLE_CTRL

LIB$EST ABLISH

LIB$EXTV

LIB$EXTZV

LIB$FFx

LIB$FID_ TO_NAME

LIB$FILE_SCAN

LIB$FILE_SCAN_END

LIB$FIND_FILE

LIB$FIND_FILE_END

LIB$FI ND_IMAGE _SYMBOL

LIB$FIND_VM_ZONE

LIB$FIXUP _FLT

LIB$FL T _UNDER

LIB$FORMAT_DATE_ TIME

UB$FREE_DATE_ TIME_CQNTEXT

LIB$FREE_EF

LIB$FREE_LUN

LIB$FREE_ TIMER

LIB$FREE_ VM

LIB$FREE_VM_PAGE

Delete a virtual memory zone

Get the digit separator symbol

Disable CU interception of control
characters

Execute the specified command

Perform an extended-precision divide

Perform extended multiply and
integerize for D-floating values

Perform extended multiply and
integerize for F-floating values

Perform extended multiply and
integerize for G-floating values

Perform extended multiply and
integerize for H-floating values

Perform an extended-precision
multiply

Enable CU interception of control
characters

Establish a condition handler

Extract a field and sign-extend

Extract a zero-extended field

Find the first clear or set bit

Convert a device and file ID to a file
specification

Perform a file scan

End of file scan

Find a file

End of find file

Merge activate an image symbol

Find the next valid zone

Fix floating reserved operand

Floating-point underflow detection

Format a date and/or time

Free the context used to format a
date or time

Free an event flag

Free a logical unit number

Free timer storage

Free virtual memory from the
program region

Free a virtual memory page

1-3

Overview of the LIB$ Facility

1-4

Table 1-1 (Cont.) LIB$ Routines

Routine Name

LIB$GETDVI

LIB$GET JPI

LIB$GETQUI

LIB$GETSYI

LIB$GET_COMMAND

LIB$GET _COMMON

LIB$GET_DATE_FORMAT

LIB$GET_EF

LIB$GET_FOREIGN

LIB$GET_INPUT

LIB$GET_LUN

LIB$GET_MAXIMUM_DATE_LENGTH

LIB$GET_SYMBOL

LIB$GET _USERS_LANGUAGE

LIB$GET_VM

LIB$GET_VM_PAGE

LIB$1CHAR

LIB$1NDEX

LIB$1NIT_DATE_ TIME_CONTEXT

LIB$1NIT_ TIMER

LIB$1NSERT_ TREE

LIB$1NSQHI

LIB$1NSQTI

LIB$1NSV

LIB$1NT_OVER

LIB$LEN

LIB$LOCC

LIB$LOOKUP _KEY

LIB$LOOKUP _TREE

LIB$LP_LINES

LIB$MATCHC

LIB$MA TCH_COND

LIB$MOVC3

Function

Get device/volume information

Get job/process information

Get queue information

Get systemwide information

Get line from SYS$COMMAND

Get string from common area

Return the user's date input format

Get an event flag

Get foreign command line

Get line from SYS$1NPUT

Get logical unit number

Get the maximum possible date/time
string length

Get the value of a CU symbol

Return the user's language choice

Allocate virtual memory

Get a virtual memory page

Convert first character of string to
integer

Index to relative position of substring

Initialize the context used in
formatting date/time strings

Initialize times and counts

Insert entry in a balanced binary tree

Insert entry at the head of a queue

Insert entry at the tail of a queue

Insert a variable bit field

Integer overflow detection

Return the length of a string as a
longword

Locate a character

Look up keyword in table

Look up an entry in a balanced binary
tree

Specify the number of lines on each
printer page

Match characters, return relative
position

Match condition values

Move characters

Overview of the LI 8$ Facility

Table 1-1 (Cont.) LIB$ Routines

Routine Name Function

LIB$MOVC5 Move characters with fill

LIB$MOVTC Move translated characters

LIB$MOVTUC Move translated until character

LIB$MUL T_DEL TA_ TIME

LIB$MUL TF _DELTA_ TIME

LIB$PAUSE

LIB$POLYD

LIB$POLYF

LIB$POLYG

LIB$POLYH

LIB$PUT _COMMON

LIB$PUT_OUTPUT

LIB$RADIX _POINT

LIB$REMOHI

LIB$REMOTI

LIB$RENAME_FILE

LIB$RESERVE_EF

LIB$RESET_ VM_ZQNE

LIB$REVERT

LIB$RUN_PROGRAM

UB$SCANC

LIB$SCOPY _DXDX

LIB$SCOPY_R_DX

LIB$SET _LOGICAL

LIB$SET _SYMBOL

LIB$SFREE 1 _DD

LIB$SFREEN _DD

LIB$SGET1_DD

LIB$SHOW_ TIMER

LIB$SHOW _ VM

LIB$SHQW _ VM_ZQNE

Multiply delta time by scalar

Multiply delta time by F-floating
scalar

Pause program execution

Evaluate polynomials for D-floating
values

Evaluate polynomials for F-floating
values

Evaluate polynomials for G-floating
values

Evaluate polynomials for H-floating
values

Put string into common area

Put line to SYS$0UTPUT

Radix point symbol

Remove entry from head of queue

Remove entry from tail of queue

Rename one or more files

Reserve an event flag

Reset virtual memory zone

Revert to the handler of the
procedure activator

Run new program

Scan for characters and return
relative position

Copy source string by descriptor to
destination

Copy source string by reference to
destination

Set logical name

Set value of a CLI symbol

Free one or more dynamic strings

Free n dynamic strings

Get one dynamic string

Show accumulated times and counts

Show virtual memory statistics

Display information about a virtual
memory zone

1-5

Overview of the LI 8$ Facility

1-6

Table 1-1 (Cont.)

Routine Name

LIB$SIGNAL

LIB$SIG_ TO_RET

LIB$SIG_ TO_STOP

LIB$SIM_ TRAP

LIB$SKPC

LIB$SPANC

LIB$SPAWN

LIB$ST AT_ TIMER

LIB$ST AT_ VM

LIB$STOP

LIB$SUB_ TIMES

LIB$SUBX

LIB$SYS_ASCTIM

LIB$SYS_FAO

LIB$SYS_FAOL

LIB$SYS_GETMSG

LIB$TPARSE

LIB$TRA_ASC_EBC

LIB$TRA _EBC_ASC

LIB$TRA VERSE_ TREE

LIB$TRIM_FILESPEC

LI 8$ Routines

LIB$VERIFY _ VM_ZONE

LIB$WAIT

Function

Signal exception condition

Convert signaled message to a return
status

Convert a signaled condition to a
signaled stop

Simulate floating trap

Skip equal characters

Skip selected characters

Spawn a subprocess

Return accumulated time and count
statistics

Return virtual memory statistics

Stop execution and signal the
condition

Subtract two quadword times

Perform multiple-precision binary
subtraction

Invoke $ASCTIM to convert binary
time to ASCII

Invoke $FAQ system service to
format output

Invoke $FAOL system service to
format output

Invoke $GETMSG system service to
get message text

Implement a table-driven, finite-state
parser

Translate ASCII to EBCDIC

Translate EBCDIC to ASCII

Traverse a balanced binary tree

Fit long file specification into fixed
field

Verify a virtual memory zone

Wait a specified period of time

2 Access to VMS System Components

Run-Time Library LIB$ routines allow access to the following VMS system
components:

• System services

• The Command Language Interpreter

• Some VAX machine instructions

This chapter discusses in detail how you can access VMS system components
using LIB$ routines.

2.1 System Service Access Routines
You can usually call VMS system services directly from your program.
However, system services return only fixed-length strings. In some
applications, you may want the result of a system service to be returned
as a character array, dynamic string, or variable-length string. For this reason,
the Run-Time Library provides jacket routines for the system services that
return strings.

You call these routines exactly as you would the corresponding system
service, but you can pass an output argument of any valid string class.
The routines write the output string using the semantics (fixed, varying, or
dynamic) associated with the string's descriptor.

The jacket routines follow the conventions established for all Run-Time
Library routines, except that the arguments are listed in the order of the
arguments for the corresponding system service. Thus, they may not be listed
in the standard Run-Time Library order (read, modify, write).

For example, LIB$SYS_ASCTIM calls the system service $ASCTIM to convert
a binary date and time value to ASCII text. It returns the resulting string
using the semantics that the calling program specifies in the destination string
argument.

For further information about the operations of the system services, see the
VMS System Services Reference Manual.

The Run-Time Library routines provide access only to the system services
that produce output strings, listed in Table 2-1. The corresponding Run-Time
Library routines recognize all VAX string classes.

The Run-Time Library does not provide jacket routines for all system services
that accept strings as input. Your program should pass only fixed-length or
dynamic input strings to all system services and Run-Time Library jacket
routines.

2-1

Access to VMS System Components
2.1 System Service Access Routines

Table 2-1 System Service Access Routines

Entry Point System Service

LIB$SYS_ASCTIM $ASCTIM

LIB$SYS_FAO $FAO

LIB$SYS_FAOL $FAOL

LIB$SYS_GETMSG $GETMSG

LIB$SYS_ TRNLOG $TRNL.OG

Function

Converts system time in binary form
to ASCII text

Converts a binary value to ASCII text

Converts a binary value to ASCII
text, using a list argument

Obtains a system or user-defined
message text

Returns the translation of the
specified logical name

2.2 Access to the Command Language Interpreter

2-2

Two Command Language Interpreters (CUs) are available under VMS: DCL
and MCR. The Run-Time Library provides several routines that provide
access to the VMS CU callback facility. These routines allow your program
to call the current CU. In most cases, these routines are called from programs
that execute as part of a command procedure. They allow the command
procedure and the CU to exchange information.

These routines call the CU associated with the current process to perform
the specified function. In some cases, however, there is no CU present.
For example, the program may be running directly as a subprocess or as a
detached process. If no CU is present, these routines return the status
LIB$_NOCLI. Therefore, you should be sure that these routines are called
when a CU is active. Table 2-2 lists the Run-Time Library routines that
access the Command Language Intepreter.

Table 2-2 CLI Access Routines

Entry Point

UB$GET _FOREIGN

UB$DQ_COMMAND

LIB$RUN_PROGRAM

UB$GET_SYMBOL

LIB$DELETE_SYMBOL

LIB$SET_SYMBOL

LIB$DELETE _LQGICAL

LIB$SET _LOGICAL

LIB$DISABLE_CTRL

Function

Gets a command line

Executes a command line after exiting the current
program

Runs another program after exiting the current
program (chain)

Returns the value of a CU symbol as a string

Deletes a CU symbol

Defines or redefines a CU symbol

Deletes a supervisor-mode process logical name

Defines or redefines a supervisor-mode process
logical name

Disables CU interception of control characters

2.2.1

Access to VMS System Components
2.2 Access to the Command Language Interpreter

Table 2-2 (Cont.) CLI Access Routines

Entry Point

LIB$ENABLE_CTRL

LIB$ATTACH

LIB$SPAWN

Function

Enables CU interception of control characters

Attaches a terminal to another process

Creates a subprocess of the current process

The following routines execute only when the current Command Language
Interpreter is DCL:

LIB$GET_SYMBOL
LIB$SET_SYMBOL
LIB$DELETE_SYMBOL
LIB$DISABLE_CTRL
LIB$ENABLE_CTRL
LIB$SPAWN
LIB$ATTACH

Obtaining the Command Line
LIB$GET_FOREIGN returns the contents of the command line that you use to
activate an image. It can be used to give your program access to the qualifiers
of a foreign command or to prompt for further command line text.

A foreign command is a command that you can define and then use as if it
were a DCL or MCR command in order to run a program. When you use
the foreign command at command level, the Command Language Interpreter
parses the foreign command only and activates the image. It ignores any
options or qualifiers that you have defined for the foreign command. Once
the CLI has activated the image, the program can call LIB$GET_FOREIGN
to obtain and parse the remainder of the command line (after the command
itself) for whatever options it may contain.

The VMS DCL Dictionary shows how to define a foreign command.

The action of LIB$GET_FOREIGN depends on the environment in which the
image is activated:

• If you use a foreign command to invoke the image, you can call
LIB$GET_FOREIGN to obtain the command qualifiers following the
foreign command. You can also use LIB$GETJOREIGN to prompt
repeatedly for more qualifiers after the command. This technique is
illustrated in the example following this list.

• If the image is in the SYS$SYSTEM: directory, the image can be invoked
by the DCL MCR command or by the MCR Command Language
Interpreter. In this case, LIB$GETJOREIGN returns the command
line text following the image name.

• If the image is invoked by a DCL RUN command, LIB$GET_FQREIGN
can be used to prompt for additional text.

• If the image is not invoked by a foreign command or MCR, or if there is
no information remaining on the command line, and the user-supplied
prompt is present, LIB$GET_INPUT is called to prompt for a command
line. If the prompt is not present, LIB$GET_FOREIGN returns a zero
length string.

2-3

Access to VMS System Components
2.2 Access to the Command Language Interpreter

2-4

Example

The following PL/I example illustrates the use of the optional force-prompt
argument to permit repeated calls to LIB$GET_FOREIGN. The command
line text will be retrieved on the first pass only; after this, the program will
prompt from SYS$INPUT.

EXAMPLE: ROUTINE OPTIONS (MAIN);

%INCLUDE $STSDEF; /* Status-testing definitions */

DECLARE COMMAND_LINE CHARACTER(80) VARYING,
PROMPT_FLAG FIXED BINARY(31) INIT(O),
LIB$GET_FOREIGN ENTRY (CHARACTER(*) VARYING,

CHARACTER(*) VARYING,
FIXED BINARY(15),
FIXED BINARY(31))

OPTIONS(VARIABLE) RETURNS (FIXED BINARY(31)),
RMS$_EOF GLOBALREF FIXED BINARY(31) VALUE;

/* Call LIB$GET_FOREIGN repeatedly to obtain and print
subcommand text. Exit when end-of-file is found. */

DO WHILE ('1'B); /* Do while TRUE */
STS$VALUE = LIB$GET_FOREIGN

(COMMAND_LINE,'Input: ',,
PROMPT_FLAG);

IF STS$SUCCESS THEN
PUT LIST(' Command was ',COMMAND_LINE);

ELSE DO;
IF STS$VALUE A= RMS$_EOF THEN

PUT LIST ('Error encountered');
RETURN;
END;

PUT SKIP;
END;

I* Skip to next line */
/* End of DO WHILE loop */

END;

Assuming that this program is present as SYS$SYSTEM:EXAMPLE.EXE, you
can define the foreign command EXAMPLE to invoke it.

$ EXAM*PLE :== $EXAMPLE

Note the optional use of the asterisk in the symbol name to denote an
abbreviated command name. This permits the command name to be
abbreviated as EXAM, EXAMP, EXAMPL, or fully specified as EXAMPLE.
See the VMS DCL Dictionary for information on abbreviated command names.

Note also the use of the dollar sign before the image name. This is necessary
in foreign commands.

Now assume that a user runs the image by typing the foreign command and
giving "subcommands," which the program displays. Text typed by the user
is in red.

$ EXAMP Subcommand 1
Command was SUBCOMMAND 1

Input: Subcommand 2
Command was SUBCOMMAND 2

Input: AZ
$

2.2.2

Access to VMS System Components
2.2 Access to the Command Language Interpreter

Subcommand 1 was obtained from the command line; the program prompts
the user for the second subcommand. The program terminated when the user
pressed CTRL/Z (echoed as "Z) to indicate end-of-file.

Chaining from One Program to Another
LIB$RUN _PROGRAM causes the current image to exit at the point of the
call and directs the Command Language Interpreter, if one is present, to start
running another program. If LIB$RUN _pROGRAM executes successfully,
control passes to the second program; if not, control passes to the Command
Language Interpreter. The calling program cannot regain control. This
technique is called chaining.

This routine is provided primarily for compatibility with PDP-11 systems,
where chaining is used to extend the address space of a system. It may also
be useful in a VMS environment where address space is severely limited
and large images are not possible. For example, you might use chaining
to perform system generation (SYSGEN) on a small virtual address space,
because of a lack of disk space.

With LIB$RUN _PROGRAM, the calling program can pass arguments to the
next program in the chain only by using the common storage area. One way
to do this is to direct the calling program to call LIB$PUT_COMMON to
pass the information into the common area. Then the called program calls
LIB$GET_COMMON to retrieve the data.

In general, this practice is not recommended. There is no convenient way
to specify the order and type of arguments passed into the common area, so
programs that pass arguments in this way must know about the format of the
data before it is passed. FORTRAN COMMON or BASIC MAP /COMMON
areas are global OWN storage. When you use this type of storage, it is
very difficult to keep your program modular and AST-reentrant. Further,
LIB$RUN _PROGRAM cannot be used if no Command Language Interpreter
is present, as in the case of image subprocesses and detached subprocesses.

Examples

The following PL/I example illustrates the use of LIB$RUN _PROGRAM. It
prompts the user for the name of a program to run and calls the Run-Time
Library routine to execute the specified program.

CHAIN: ROUTINE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));
DECLARE LIB$RUN_PROGRAM ENTRY (CHARACTER (*)) /* Address of string

/* descriptor */
RETURNS (FIXED BINARY (31)); /*Return status */

%INCLUDE $STSDEF; /* Include definition of return status values */
DECLARE COMMAND CHARACTER (80) ;

GET LIST (COMMAND) OPTIONS (PROMPT('Program to run: '));
STS$VALUE = LIB$RUN_PROGRAM (COMMAND);

If the function call is successful, the program will terminate
here. Otherwise, return the error status to command level.

RETURN (STS$VALUE);
END CHAIN;

2-5

2.2.3

Access to VMS System Components
2.2 Access to the Command Language Interpreter

The following COBOL program also demonstrates LIB$RUN _PROGRAM.
When you compile and link these two programs, the first calls
LIB$RUN _PROGRAM, which activates the executable image of the second.
This call results in the following screen display:

THIS MESSAGE DISPLAYED BY PROGRAM PROG2
I

WHICH WAS RUN BY PROGRAM PROG1

USING LIB$RUN_PROGRAM

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG1.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 PROG-NAME PIC X(9)
01 STAT PIC 9(9)

88 SUCCESSFUL

ROUTINE DIVISION.

001-MAIN.
CALL "LIB$RUN_PROGRAM"

VALUE "PROG2.EXE".
COMP.
VALUE 1.

USING BY DESCRIPTOR PROG-NAME
GIVING STAT.

IF NOT SUCCESSFUL
DISPLAY "ATTEMPT TO CHAIN UNSUCCESSFUL"
STOP RUN.

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG2.

ENVIRONMENT DIVISION.

DATA DIVISION.

ROUTINE DIVISION.

001-MAIN.
DISPLAY " "
DISPLAY "THIS MESSAGE DISPLAYED BY PROGRAM PROG2".
DISPLAY" "·
DISPLAY "WHICH WAS RUN BY PROGRAM PROG1".
DISPLAY" "·
DISPLAY "USING LIB$RUN_PROGRAM".
STOP RUN.

Executing a CLI Command

2-6

LIB$DO_COMMAND stops program execution and directs the Command
Language Interpreter (CLI) to execute a command. The routine's argument is
the text of the command line that you want to execute.

This routine is especially useful when you want to execute a CLI command
after your program has finished executing. For example, you could set up a
series of conditions, each associated with a different command. You could
also use the routine to execute a SUBMIT or PRINT command to handle a file
that your program creates.

Access to VMS System Components
2.2 Access to the Command Language Interpreter

Because of the following restrictions on LIB$DO_COMMAND, you should be
careful when you incorporate it in your program.

• After the call to LIB$DQ_CQMMAND, the current image exits, and
control cannot return to it.

• The text of the command is passed to the current Command Language
Interpreter. Because you can define your own CLI in addition to DCL
and MCR, you must make sure that the command will be handled by the
intended CLI.

• If the routine is called from a subprocess and no CLI is associated with
that subprocess, it will not execute correctly.

You can also use LIB$DO_COMMAND to execute a DCL command file. To
do this, include the at sign (@) along with a command file specification as
the input argument to the routine.

There are also DCL CLI$ routines that perform the functions of
LIB$DO_COMMAND. See the VMS DCL Dictionary for more information.

Example

The following PL/I example prompts the user for a DCL command to execute
after the program exits:

EXECUTE: ROUTINE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));

DECLARE LIB$DO_COMMAND ENTRY (CHARACTER (*)) /* Pass DCL command */
/* by descriptor */

RETURNS (FIXED BINARY (31)); /*Return status */
%INCLUDE $STSDEF; /* Include definition of return status values */

DECLARE COMMAND CHARACTER (80);

GET LIST (COMMAND) OPTIONS (PROMPT('DCL command to execute: '));
STS$VALUE =LIB$DO_COMMAND (COMMAND);

If the call to LIB$DO_COMMAND is successful, the program will terminate
here. Otherwise, it will return the error status to command level.

RETURN (STS$VALUE) ;

END EXECUTE;

This example displays the following prompt:

DCL command to execute:

What you type after this prompt determines the action of
LIB$DQ_COMMAND. LIB$DQ_COMMAND will execute any command that
is entered as a valid string according to the syntax of PL/I. If the command
you enter is incomplete, you will be prompted for the rest of the command.
For example, if you enter the SHOW command, you will receive the following
prompt:

$_Show what?:

2-7

2.2.4

2.2.5

Access to VMS System Components
2.2 Access to the Command Language Interpreter

Using Symbols and Logical Names
The Run-Time Library provides five routines that give you access to the
CU callback facility. These routines allow a program to "call back" to the
Command Language Interpreter to perform functions normally performed by
CLI commands. These routines perform the following functions:

UB$GET _SYMBOL

LIB$SET_SYMBOL

UB$DELETE_SYMBOL

UB$SET _LOGICAL

UB$DELETE_LOGICAL

Returns the value of a CU symbol as a string.

Optionally, this routine also returns the length of the
returned value and a value indicating whether the
symbol was found in the local or global symbol table.
This routine executes only when the current CU is
DCL.

Causes the CU to define or redefine a CU symbol.

The optional argument specifies whether the symbol
is to be defined in the local or global symbol table;
the default is local. This routine executes only when
the current CU is DCL.

Causes the CU to delete a symbol.

An optional argument specifies the local or global
symbol table. If this argument is omitted, the symbol
is deleted from the local symbol table. This routine
executes only when the current CU is DCL.

Defines or redefines a supervisor-mode process
logical name.

Supervisor-mode logical names are not deleted when
an image exits. This routine is equivalent to the DCL
DEFINE command. UB$SET_LOGICAL allows the
calling program to define a supervisor-mode process
logical name without itself executing in supervisor
mode.

Deletes a supervisor-mode process logical name.

This routine is equivalent to the DCL DEASSIGN
command. UB$DELETE_LQGICAL does not require
the calling program to be executing in supervisor
mode to delete a supervisor-mode logical name.

Disabling and Enabling Control Characters

2-8

Two Run-Time Library routines, LIB$ENABLE_CTRL and
LIB$DISABLE_CTRL, allow you to call the Command Language Interpreter
(CLI) to enable or disable control characters. These routines take a longword
bit-mask argument that specifies the control character or characters to be
disabled or enabled. Acceptable values for this argument are
LIB$M_CLl_CTRLY and LIB$M_CLl_CTRLT.

2.2.6

Access to VMS System Components
2.2 Access to the Command Language Interpreter

LIB$DISABLE _CTRL

LIB$ENABLE _CTRL

Disables CLI interception of control characters.

This routine performs the same function as the DCL
command

SET NOCONTROL = n
where n is equal to T or Y.

It prevents the currently active CLI from intercepting
the control character specified during an interactive
session.

For example, you might use LIB$DISABLE_CTRL
to disable CLI interception of CTRL/Y. Normally,
CTRL/Y interrupts the current command, command
procedure, or image. If LIB$DISABLE_CTRL is called
with LIB$M_CLl_CTRL Y specified as the control
character to be disabled, CTRL/Y is treated like
CTRL/U followed by a carriage return.

Enables CLI interception of control characters.

This routine performs the same function as the DCL
command

SET CONTROL= n, where n is equal to T or Y.
LIB$ENABLE_CTRL restores the normal operation of
CTRL/Y or CTRL/T.

Creating and Connecting to a Subprocess
You can use LIB$SPAWN and LIB$ATTACH together to spawn a subprocess
and attach the terminal to that subprocess. These routines will execute
correctly only if the current CLI is DCL. For more information on the SP AWN
and ATTACH commands, see the VMS DCL Dictionary.

LIB$SPAWN Spawns a subprocess.

This routine is equivalent to the DCL SPAWN command. It
requests the CLI to spawn a subprocess for executing CLI
commands.

LIB$ATTACH Attaches the terminal to another process.

This routine is equivalent to the DCL ATTACH command. It
requests the CLI to detach the terminal from the current process
and reattach it to a different process.

2.3 Access to VAX Machine Instructions
The VAX instruction set was designed for efficient use by high-level
languages, and therefore contains many functions that are directly useful
in your programs. However, some of these functions cannot be used directly
by high-level languages.

The Run-Time Library provides routines that allow your high-level
language program to use most VAX machine instructions that are otherwise
unavailable. In most cases, these routines simply execute the instruction,
using the arguments you provide. Some routines that accept string

2-9

2.3.1

Access to VMS System Components
2.3 Access to VAX Machine Instructions

arguments, however, provide some additional functions that make them
easier to use.

These routines fall into the following categories:

• Variable-length bit field instruction routines (Section 2.3.1)

• Integer and floating-point instructions (Section 2.3.2)

• Queue instructions (Section 2.3.3)

• Character string instructions (Section 2.3.4)

• Routine call instructions (Section 2.3.5)

• Cyclic redundancy check instruction (Section 2.3.5)

The VAX Architecture Reference Manual describes the VAX instruction set in
detail.

Variable-Length Bit Field Instruction Routines

2-10

The variable-length bit field is a VAX data type used to store small integers
packed together in a larger data structure. It is often used to store single flag
bits.

The Run-Time Library contains five routines for performing operations on
variable-length bit fields. These routines give higher-level languages that
do not have the inherent ability to manipulate bit fields direct access to the
bit field instructions in the VAX instruction set. Furthermore, if a program
calls a routine written in a different language to perform some function that
also involves bit manipulation, the called routine can include a call to the
Run-Time Library to perform the bit manipulation.

Table 2-3 lists the Run-Time Library variable-length bit field routines.

Table 2-3 Variable-Length Bit Field Routines

Entry Point

LIB$EXTV

LIB$EXTZV

LIB$FFC

LIB$FFS

LIB$1NSV

Function

Extracts a field from the specified variable-length bit field and
returns it in sign-extended longword form.

Extracts a field from the specified variable-length bit field and
returns it in zero-extended longword form.

Searches the specified field for the first clear bit. If it finds one,
it returns SS$_NQRMAL and the bit position (find-pos) of the
clear bit. If not, it returns a failure status and sets the find-pos
argument to the start position plus the size.

Searches the specified field for the first set bit. If it finds one,
it returns SS$_NORMAL and the bit position (find-pos) of the
set bit. If not, it returns a failure status and sets the find-pos
argument to the start position plus the size.

Replaces the specified field with bits zero through [size- 1] of
the source argument (src). If the size argument is zero, nothing
is inserted.

Access to VMS System Components
2.3 Access to VAX Machine Instructions

Three scalar attributes define a variable bit field:

• Base address-the address of the byte in memory that serves as a reference
point for locating the bit field.

• Bit position-the signed longword containing the displacement of the least
significant bit of the field with respect to the bit zero of the base address.

• Size-a byte integer indicating the size of the bit field in bits (in the range
0 <=size <= 32). That is, a bit field can be no more than one longword
in length.

Figure 2-1 shows the format of a variable-length bit field. The shaded area
indicates the field.

Figure 2-1 Variable-Length Bit Field

P+S-1 p 8 7 0

~-'~1•1~11_a1_1 __..___I A

S =Size of field in bits---------~
P =Bit displacement of field-------------------'

from bit zero of address A

ZK-1981-84

Bit fields are zero-origin, which means that the routine regards the first bit in
the field as being the zero position. For more detailed information about VAX
bit numbering and data formats, see the VAX Architecture Reference Manual.

The attributes of the bit field are passed to a Run-Time Library routine in the
form of three arguments in the order given in the following list:

pos

VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Bit position relative to the base address. The pos argument is the address of a
signed longword integer that contains this bit position.

size

VMS Usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field. The size argument is the address of an unsigned byte
which contains this size.

base

VMS Usage: longword_unsigned
type: longword (unsigned)
·access: read only
mechanism: by reference

2-11

2.3.2

2.3.3

Access to VMS System Components
2.3 Access to VAX Machine Instructions

Base address. The base argument contains the address of the base address.

Example

The following BASIC example illustrates three Run-Time Library routines. It
opens the terminal as a file and specifies "HEX> " as the prompt. This allows
you to get input from the terminal without the question mark that VAX
BASIC normally adds to the prompt in an INPUT statement. The program
calls OTS$CVT_TZ_L to convert the character string input to a longword. It
then calls LIB$EXTZV once for each position in the longword to extract the
bit in that position. Because LIB$EXTVZ is called with a function reference
within the PRINT statement, the bits are displayed.

10

20

EXTERNAL LONG FUNCTION
OTS$CVT_TZ_L,
LIB$EXTZV

Convert hex text to LONG
Extract zero-ended bit field

OPEN "TT:" FOR INPUT AS FILE #1%
INPUT #1%, "HEX>"; HEXIN$
STAT%=0TS$CVT_TZ_L(HEXIN$, BINARY%)
IF (STAT% AND 1%) <> 1%
THEN

! Open terminal as a file
! Prompt for input

! Convert to longword
! Failed?

PRINT "Conversion failed, decimal status ";STAT%

ELSE
GO TO 20 ! Try again

PRINT HEXIN$,
PRINT STR$(LIB$EXTZV(N%, 1%, BINARY%));

FOR N%=31% to 0% STEP -1%

Integer and Floating-Point Routines
Integer and floating-point routines give a high-level language program access
to the corresponding machine instructions. For a complete description of
these instructions, see the VAX Architecture Reference Manual. Table 2-4 lists
the integer and floating-point routines.

Table 2-4 Integer and Floating-Point Routines

Entry Point

LIB$EMUL

LIB$EDIV

Function

Multiplies integers with extended precision

Divides integers with extended precision

Queue Access Routines

2-12

A queue is a doubly linked list. A Run-Time Library routine specifies a queue
entry by its address. Two longwords, a forward link and a backward link,
define the location of the entry in relation to the preceding and succeeding
entries. A self-relative queue is a queue in which the links between entries
are displacements; the two longwords represent the displacements of the
current entry's predecessor and successor. The VAX instructions INSQHI,
INSQTI, REMQHI, and REMQTI allow you to insert and remove an entry
at the head or tail of a self-relative queue. Each queue instruction has a
corresponding Run-Time Library routine.

Access to VMS System Components
2.3 Access to VAX Machine Instructions

The self-relative queue instructions are interlocked and cannot be interrupted,
so that other processes cannot insert or remove queue entries while the
current program is doing so. Since the operation requires changing two
pointers at the same time, a high-level language cannot perform this operation
without calling the Run-Time Library queue access routines.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on
a single processor or in a multiprocessor environment. The queue Access
routines are also useful in an AST environment; they allow you to add or
remove an entry from a queue without being interrupted by an asynchronous
system trap.

The remove queue instructions (REMQHI or REMQTI) return the address
of the removed entry. Some languages, such as BASIC, COBOL, and
FORTRAN, do not provide a mechanism for accessing an address returned
from a routine. Furthermore, BASIC and COBOL do not allow routines to be
arguments.

Table 2-5 lists the Queue Access Routines.

Table 2-5 Queue Access Routines

Entry Point

LIB$1NSQHI

LIB$1NSQTI

LIB$REMQHI

LIB$REMQTI

Examples

LIB$1NSQHI

Function

Inserts queue entry at head

Inserts queue entry at tail

Removes queue entry at head

Removes queue entry at tail

In BASIC and FORTRAN, queues can be quadword aligned in a named
COMMON block by using a linker option file to specify PSECT alignment.
The Run-Time Library routine LIB$GET_ VM returns memory that is
quadword aligned. Therefore, you should use LIB$GET_ VM to allocate
the virtual memory for a queue. For instance, to create a COMMON block
called QUEUES, use the LINK command with the FILE/OPTIONS qualifier,
where FILE.OPT is a linker option file containing the line:

PSECT = QUEUES, QUAD

A FORTRAN application using processor-shared memory follows:

INTEGER*4 FUNCTION INSERT_Q (QENTRY)
COMMON/QUEUES/QHEADER
INTEGER*4 QENTRY(10), QHEADER(2)
INSERT_Q = LIB$INSQHI (QENTRY, QHEADER)
RETURN
END

2-13

2.3.4

Access to VMS System Components
2.3 Access to VAX Machine Instructions

A BASIC application using processor-shared memory follows:

COM (QUEUES) QENTRY%(9), QHEADER%(1)
EXTERNAL INTEGER FUNCTION LIB$INSQHI
IF LIB$INSQHI (QENTRY%() BY REF, QHEADER%() BY REF) AND 1%

THEN GOTO 1000

1000 REM INSERTED OK

LIB$REMQHI

In FORTRAN, the address of the removed queue entry can be passed to
another routine as an array using the % VAL built-in function. In the
following example, queue entries are ten longwords including the two
longword pointers at the beginning of each entry.

COMMON/QUEUES/QHEADER
INTEGER*4 QHEADER(2), ISTAT
!STAT = LIB$REMQHI (QHEADER, ADDR)
IF (!STAT) THEN

CALL PROC (%VAL (ADDR)) ! Process removed entry
GO TO ...

ELSE IF (!STAT .EQ. %LOC(LIB$_QUEWASEMP)) THEN
GO TO . . . Queue was empty
ELSE IF

END IF

END
SUBROUTINE PROC (QENTRY)
INTEGER*4 QENTRY(10)

RETURN
END

! Secondary interlock failed

Character String Routines

2-14

The character string routines give a high-level language program access to
the corresponding VAX machine instructions. For a complete description
of these instructions, see the VAX Architecture Reference Manual. For each
instruction, the VAX Architecture Reference Manual specifies the contents of
all the registers after the instruction executes. The corresponding Run-Time
Library routines do not make the contents of all the registers available to the
calling program.

Access to VMS System Components
2.3 Access to VAX Machine Instructions

Table 2""'.'6 Character String Routines

Entry Point Function

Locates a character in a string

Returns the relative position of a substring

Scans characters

Skips characters

Spans characters

Moves characters

Moves characters and fills

Moves translated characters

LIB$LOCC

LIB$MATCHC

LIB$SCANC

LIB$SKPC

LIB$SPANC

LIB$MOVC3

LIB$MOVC5

LIB$MOVTC

LIB$MOVTUC Move translated characters until specified character is found

The VMS RTL String Manipulation (STR$) Manual describes STR$ string
manipulation routines.

Example

This COBOL program uses LIB$LOCC to return the position of a given letter
of the alphabet.

IDENTIFICATION DIVISION.
PROGRAM-ID. LIBLOC.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 SEARCH-STRING PIC X(26)

01
01
01

SEARCH-CHAR
IND-POS
DISP-IND

VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
PIC X.
PIC 9(9) USAGE IS COMP.
PIC 9(9).

ROUTINE DIVISION.

001-MAIN.
MOVE SPACE TO SEARCH-CHAR.
DISPLAY" "·
DISPLAY "ENTER SEARCH CHARACTER: " WITH NO ADVANCING.
ACCEPT SEARCH-CHAR.
CALL "LIB$LOCC"

USING BY DESCRIPTOR SEARCH-CHAR, SEARCH-STRING
GIVING IND-POS.

IF IND-POS = ZERO
DISPLAY

"CHAR ENTERED (" SEARCH-CHAR ") NOT A VALID SEARCH CHAR"
STOP RUN.

MOVE IND-POS TO DISP-IND.
DISPLAY

"SEARCH CHAR (" SEARCH-CHAR ") WAS FOUND IN POSITION "
DISP-IND.

GO TO 001-MAIN.

2-15

2.3.5

Access to VMS System Components
2.3 Access to VAX Machine Instructions

Miscellaneous Instruction Routines
Additional routines you may use are listed in Table 2-7.

Table 2-7 Miscellaneous Instruction Routines

Entry Point

LIB$CALLG

LIB$CRC

LIB$CRC_ TABLE

LIB$CALLG

Function

Calls a routine using an array argument list

Computes a Cyclic Redundancy Check

Constructs a table for a Cyclic Redundancy Check

LIB$CALLG allows your program access to the CALLG instruction. This
instruction calls a routine using an argument list stored as an array in
memory, as opposed to the CALLS instruction, in which the argument
list is pushed on the stack.

LIB$CRC

LIB$CRC allows your high-level language program to use the CRC
instruction, which calculates the Cyclic Redundancy Check. This instruction
is used to check the integrity of a data stream by comparing its state at the
sending point and the receiving point. Each character in the data stream
is used to generate a value based on a polynomial. The values for each
character are then added together. This operation is performed at both ends
of the data transmission, and the two result values compared. If the results
disagree, then an error occurred during the transmission.

LIB$CRC_ TABLE

LIB$CRC_TABLE takes a polynomial as its input and builds the table that
LIB$CRC uses to calculate the CRC. You must specify the polynomial to be
used.

For further details, see the VAX Architecture Reference Manual.

2.4 Processwide Resource Allocation Routines

2-16

This section discusses routines that allocate processwide resources to a single
VMS process. The processwide resources discussed here are 1) VMS local
event flags, and 2) BASIC and FORTRAN logical unit numbers (LUNs). The
resource-Allocation Routines are provided so that user routines can use the
processwide resources without conflicting with one another.

In general, you must use Run-Time Library resource Allocation Routines
when your program needs processwide resources. This allows Run-Time
Library routines, DIGITAL-supplied routines, and user routines that you write
to perform together within a process.

If your called routine includes a call to any Run-Time Library routine that
frees a processwide resource, and that called routine fails to execute normally,
the resource will not be freed. Thus, your routine should establish a condition
handler that frees the allocated resource before resignaling or unwinding.
Chapter 4 describes condition handling.

2.4.1

2.4.2

Access to VMS System Components
2.4 Processwide Resource Allocation Routines

Table 2-8 lists the processwide resource allocation routines.

Table 2-8 Processwide Resource Allocation Routines

Entry Point

LIB$FREE_LUN

LIB$GET_LUN

LIB$FREE_EF

LIB$GET_EF

LIB$RESERVE_EF

Allocating Logical Unit Numbers

Function

Deallocates a specific logical unit number

Allocates next arbitrary logical unit number

Frees a local event flag

Allocates a local event flag

Reserves a local event flag

BASIC and FORTRAN use a logical unit number (LUN) to define the file
or device a program uses to perform input and output. For a routine to be
modular, it does not need to know the unit numbers being used by other
routines running at the same time. For this reason, logical units are allocated
and deallocated at run time. You can use LIB$GET_LUN and
LIB$FREE_LUN to obtain the next available number. This ensures that your
BASIC or FORTRAN routine will not use a logical unit that is already being
used by a calling program. Therefore, you should use this routine whenever
your program calls or is called by another program which may also allocate
LUNs. Logical unit numbers 100 to 119 are available to modular routines
through these entry points.

To allocate a LUN, call LIB$GET_LUN and use the value returned as the
LUN for your 1/0 statements. If no LUNs are available, an error status is
returned and the logical unit is set to -1. When the program unit exits, it
should use LIB$FREE_LUN to free any LUNs that have been allocated by
LIB$GET_LUN. If it does not free any LUNs, the available pool of numbers
is available for use.

If your called routine contains a call to LIB$FREE_LUN to free the LUNs
upon exit, and your routine fails to execute normally, the LUNs will not be
freed. For this reason, you should make sure to establish a condition handler
to call LIB$FREE_LUN before resignaling or unwinding. Otherwise, the
allocated LUN is lost until the image exits.

Allocating Event Flag Numbers
LIB$GET_EF and LIB$FREE_EF operate in a similar way to
LIB$GET_LUN and LIB$FREE_LUN. They cause local event flags to
be allocated and deallocated at run time, so that your routine remains
independent of other routines executing in the same process.

Local event flags numbered 32 to 63 are available to your program. These
event flags allow routines to communicate and synchronize their operations.
If you use a specific event flag in your routine, another routine may attempt to
use the same flag, and the flag will no longer function as expected. Therefore,
you should call LIB$GET_EF to obtain the next arbitrary event flag and
LIB$FREE_EF to return it to the storage pool. You can obtain a specific event
flag number by calling LIB$RESERVE_EF. This routine takes as its argument
the event flag number to be allocated.

2-17

Access to VMS System Components
2.5 Performance Measurement Routines

2.5 Performance Measurement Routines

2-18

The Run-Time Library timing facility consists of four routines to store count
and timing information, display the requested information, and deallocate the
storage. Table 2-9 lists these routines and their functions.

Table 2-9 Performance Measurement Routines

Entry Point Function

LIB$1NIT _TIMER Stores the values of the specified times and counts in units
of static or heap storage, depending on the value of the
routine's argument

LIB$SHQW_ TIMER Gets and formats for output the specified times and counts
that are accumulated since the last call to LIB$1NIT_ TIMER

LIB$STAT_ TIMER Gets one of the times and counts since the last call to
LIB$1NIT_ TIMER and returns it as an unsigned quadword or
longword

LIB$FREE_ TIMER Frees the storage allocated by LIB$1NIT_ TIMER

Using these routines, you can access the following statistics:

• Elapsed time

• CPU time

• Buffered 1/0 count

• Direct I/ 0 count

• Page faults

LIB$SHOW_TIMER and LIB$STAT_TIMER are relatively simple tools for
testing the performance of a new application. To obtain more detailed
information, use the VMS system services SYS$GETTIM (Get Time) and
SYS$GETJPI (Get Job /Process Information).

The simplest way to use the Run-Time Library routines is to call
LIB$INIT_TIMER with no arguments at the beginning of the portion of code
to be monitored. This will cause the statistics to be placed in OWN storage.
To get the statistics from OWN storage, call LIB$SHOW_TIMER (with no
arguments) at the end of the portion of code to be monitored.

If you want a particular statistic, you must include a code argument with a
call to LIB$SHOW_TIMER or LIB$STAT_TIMER, as shown in Table 2-10.
LIB$SHOW_TIMER returns the specified statistics in formatted form and
sends them to SYS$0UTPUT. On each call, LIB$STAT_TIMER returns one
statistic to the calling program as an unsigned longword or quadword value.

Access to VMS System Components
2.5 Performance Measurement Routines

Table 2-10 The Code Argument in LIB$SHQW_ TIMER and
LIB$STAT_TIMER

Value of Meaning Format Format

Elapsed real time hhhh:mm:ss.cc Quadword, in
system time
format

2 Elapsed CPU time hhhh:mm:ss.cc Longword, in
10-millisecond
increments

3 Count of buffered 1/0 nnnn Longword
operations

4 Count of direct 1/0 nnnn Longword
operations

5 Count of page faults nnnn Longword

When you call LIB$INIT_ TIMER, you must use the optional handler
argument only if you want to keep several sets of statistics simultaneously.
This argument points to a block in heap storage where the statistics are to
be stored. You only need to call LIB$FREE_TIMER if you have specified
handler in LIB$INIT_;_TIMER and you want to deallocate all heap storage
resources. In most cases, the implicit deallocation when the image exits will
be sufficient.

LIB$STAT_TIMER returns only one of the five statistics for each call, and
returns that statistic in the form of an unsigned quadword or longword.
LIB$SHOW_TIMER returns the virtual address of the stored information,
which BASIC cannot directly access. Therefore, a BASIC program must call
LIB$STAT_TIMER and format the returned statistics, as the following example
demonstrates.

Example

The following BASIC example uses the Run-Time Library performance
analysis routines to obtain timing statistics. It then calls the $ASCTIM system
service to translate the 64-bit binary value returned by LIB$STAT_TIMER into
an ASCII text string.

100 EXTERNAL INTEGER FUNCTION LIB$INIT_TIMER
EXTERNAL INTEGER FUNCTION LIB$STAT_TIMER
EXTERNAL INTEGER FUNCTION LIB$FREE_TIMER
EXTERNAL INTEGER CONSTANT SS$_NORMAL

200 DECLARE LONG COND_VALUE, RANDOM_SLEEP
DECLARE LONG CODE, HANDLE
DECLARE STRING TIME_BUFFER
HANDLE = 0
TIME_BUFFER = SPACE$(50%)

300 MAP (TIMER) LONG ELAPSED_TIME, FILL
MAP (TIMER) LONG CPU_TIME
MAP (TIMER) LONG BUFIO
MAP (TIMER) LONG DIRIO
MAP (TIMER) LONG PAGE_FAULTS

2-19

Access to VMS System Components
2.5 Performance Measurement Routines

400 PRINT "This program returns information about:"
PRINT "Elapsed time (1)"
PRINT "CPU time (2)"
PRINT "Buffered I/O (3)"
PRINT "Direct I/0 (4)"
PRINT "Page faults (5)"
PRINT "Enter zero to exit program"
PRINT "Enter a number from one to"
PRINT "five for performance information"
INPUT "One, two, three, four, or five"; CODE
PRINT

450 GOTO 32766 IF CODE = 0

500 COND_VALUE = LIB$INIT_TIMER(HANDLE)

550 IF (COND_VALUE <> SS$_NORMAL) THEN PRINT ©
"Error in initialization"

GOTO 32767

650 A = 0
FOR I = 1 to 100000
A = A + 1
NEXT I

This code merely uses some CPU time

700 COND_VALUE = LIB$STAT_TIMER(CODE, ELAPSED_TIME, HANDLE)

750 IF (COND_VALUE <> SS$_NORMAL) THEN PRINT ©
"Error in statistics routine"

GOTO 32767

800 GOTO 810 IF CODE <> 1%
CALL SYS$ASCTIM (, TIME_BUFFER, ELAPSED_TIME, 1% BY VALUE)
PRINT "Elapsed time: "; TIME_BUFFER

810 PRINT "CPU time in seconds: "; .01 * CPU_TIME IF CODE= 2%
PRINT "Buffered I/0: ";BUFIO IF CODE= 3%
PRINT "Direct I/O: ";DIRIO IF CODE= 4%
PRINT "Page faults: ";PAGE_FAULTS IF CODE= 5%
PRINT

900 GOTO 400

32765 COND_VALUE = LIB$FREE_TIMER(HANDLE)
32766 IF (COND_VALUE <> SS$_NORMAL) THEN PRINT ©

"Error in LIB$FREE_TIMER"
GOTO 32767

32767 END

2.6 Output Formatting Control Routines
Table 2-11 lists the Run-Time Library routines that customize output.

2-20

Access to VMS System Components

Table 2-11 Routines for Customizing Output

Entry Point Function

LIB$CURRENCY Defines the default currency symbol for process

LIB$DIGIT_SEP Defines the default digit separator for process

LIB$LP _LINES Defines the process default size for a printed page

LIB$RADIX _POINT Defines the process default radix point character

LIB$CURRENCY, LIB$DIGIT_SEP, LIB$LP_LINES, and LIB$RADIX_POJNT
allow you to customize output. Using them, you can define the logical names
SYS$CURRENCY, SYS$DIGIT_SEP, SYS$LP_LINES, and
SYS$RADIX_pOJNT to specify your own currency symbol, digit separator,
radix point, or number of lines per printed page. Each of these routines works
by attempting to translate the associated logical name as a process, group, or
system logical name. If you have redefined a logical name for a specific local
application, then the translation succeeds, and the routine returns the value
that corresponds to the option you have chosen. If the translation fails, the
routine returns a default value provided by the Run-Time Library, as follows:

$ SYS$CURRENCY

SYS$DIGIT _SEP

SYS$RADIX_POINT

66 SYS$LP _LINES

For example, if you want to use the British pound sign as the currency
symbol within your process, but you want to leave the dollar sign as the
system's default, define SYS$CURRENCY to be in your process logical name
table. After this, any call to LIB$CURRENCY within your process returns"£",
while any call outside your process returns "$".

You can use LIB$LP_LINES to monitor the current default length of the line
printer page. You can also supply your own default length for the current
process. United States standard paper stock permits 66 lines on each physical
page.

If you are writing programs for a utility that formats a listing file to be
printed on a line printer, you can use LIB$LP_LINES to make your utility
independent of the default page length. Your program can use
LIB$LP_LINES to obtain the current length of the page. It can then calculate
the number of lines of text per page by subtracting the lines used for margins
and headings.

The following is one suggested format:

1 Three lines for the top margin

2 Three lines for the bottom margin

3 Three lines for listing heading information, consisting of the following:

a. Language-processor identification line

b. Source-program identification line

c. One blank line

2-21

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

2. 7 Miscellaneous Interface Routines

2.7.1

There are several other Run-Time Library routines that permit high-level
access to components of VMS. Table 2-12 lists these routines and their
functions. The sections that follow give further details about some of these
routines.

Table 2-12 Miscellaneous Interface Routines

Entry Point

LIB$AST_IN_PROG

LIB$ASN_WTH_MBX

LIB$CREATE_OIR

LIB$FIND_IMAGE _SYMBOL

LIB$ADDX

LIB$SUBX

LIB$FILE_SCAN

LIB$FILE_SCAN_END

LIB$FIND_FILE

LIB$FIND_FILE_END

LIB$1NSERT_ TREE

LIB$LOOKUP _TREE

LIB$TRA VERSE_ TREE

LIB$GET _COMMON

LIB$PUT_COMMON

Function

Indicates whether an asynchronous system trap
is in progress

Assigns an 1/0 channel and associates it with a
mailbox

Creates a directory or subdirectory

Reads a global symbol from the shareable image
file and dynamically activates a shareable image
into the PO address space of a process

Performs addition on signed two's complement
integers of arbitrary length (multiple-precision
addition)

Performs subtraction on signed two's
complement integers of arbitrary length (multiple
precision subtraction)

Finds file names given RMS FAB

End of file scan

Finds file names given string

End of find file

Inserts an element in a binary tree

Finds an element in a binary tree

Traverses a binary tree

Gets a record from the process's COMMON
storage area

Puts a record to the process's COMMON storage
area

Indicating Asynchronous System Trap in Progress

2-22

An asynchronous system trap (AST) is a VMS mechanism for providing a
software interrupt when an external event occurs, such as the user typing
CTRL/C. When an external event occurs, VMS interrupts the execution of
the current process and calls a routine that you supply. While that routine
is active, the AST is said to be in progress, and the process is said to be
executing at AST level. When your AST routine returns control to the original
process, the AST is ~o longer active and execution continues where it left off.

LIB$AST_IN _PROG indicates to the calling program whether an AST
is currently in progress. Your program can call LIB$AST_IN _PROG to
determine whether it is executing at AST level, and then take appropriate
action. This routine is useful if you are writing AST-reentrant code.

2.7.2

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

Assigning an 1/0 Channel Along with a Mailbox
A mailbox is a virtual device used for communication between processes.
A channel is the communication path that a process uses to perform 1/0
operations to a particular device. LIB$ASN_WTH_MBX assigns a channel to
a device and associates a mailbox with the device.

Normally, a process calls the $CREMBX system service to create a mailbox
and assign a channel and logical name to it. In the case of a temporary
mailbox, this service places the logical name corresponding to the mailbox in
the group logical name table. This implies that any process running in the
same group and using the same logical name uses the same mailbox.

Sometimes it is not desirable to have more than one process use the same
mailbox. For example, when a program connects explicitly with another
process across a network, the program uses a mailbox to obtain the data
confirming the connection and to store the asynchronous messages from the
other process. If that mailbox is shared with other processes in the same
group, there is no way to determine which messages are intended for which
processes; the processes read each other's messages, and the original program
does not receive the correct information from the cooperating process across
the network link.

LIB$ASN_WTH_MBX avoids this situation by associating the physical
mailbox name with the channel assigned to the device. To create a temporary
mailbox for itself and other processes cooperating with it, your program calls
LIB$ASN_WTH_MBX. The Run-Time Library routine assigns the channel
and creates the temporary mailbox by using the system services $GETCHN,
$ASSIGN, and $CREMBX. Instead of a logical name, the mailbox is identified
by a physical device name of the form MBcu. The elements which make up
this device name are as follows:

MB indicates that the device is a mailbox

c is the controller

u is the unit number

The routine returns this device name to the calling program, which then must
pass the mailbox channel to the other programs with which it cooperates. In
this way, the cooperating processes access the mailbox by its physical name,
instead of by its group-wide logical name.

The calling program passes the routine a device name, which specifies the
device to which the channel is to be assigned. For this argument (called
dev-nam), you may use a logical name. If you do so, the routine attempts
one level of logical name translation.

The privilege restrictions and process quotas required for using this routine
are those required by the $GETCHN, $CREMBX, and $ASSIGN system
services.

2-23

2.7.3

2.7.4

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

Create a Directory or Subdirectory
LIB$CREATE_DIR creates a directory or a subdirectory. The calling program
must specify the directory specification in standard RMS format. This
directory specification may also contain a disk specification.

In addition to the required directory specification argument,
LIB$CREATE_DIR takes the following five optional arguments:

• The User Identification Code (UIC) of the owner of the created directory
or subdirectory

• The protection enable mask

• The protection value mask

• The maximum number of versions allowed for files created in this
directory or subdirectory

• The relative volume number within the volume set on which the directory
or subdirectory is created

See the reference section of this manual for a complete description of
LIB$CREATE _DIR.

File Searching Routines

2-24

The Run-Time Library provides two routines that your program can call to
search for a file and two routines that your program can call to end a search
sequence.

• When you call LIB$FILE _SCAN with a wildcard file specification and an
action routine, the routine calls the action routine for each file or error, or
both, found in the wildcard sequence. LIB$FILE_SCAN allows the search
sequence to continue even though certain errors are present.

• When you call LIB$FIND_FILE with a wildcard file specification, it finds
the next file specification that matches the wildcard specification.

In addition to the wildcard file specification, which is a required argument,
LIB$FIND_FILE takes the following four optional arguments:

• The default specification.

• The related specification.

• The RMS secondary status value from a failing RMS operation.

• A longword containing two flag bits. If bit 1 is set, LIB$FIND_FILE
performs temporary defaulting for multiple input files and the related
specification argument is ignored. See the reference section of this
manual for a complete description of LIB$FIND_FILE in template format.

LIB$FIND_FILE_END is called once after each call to LIB$FIND_FILE in
interactive use. LIB$FIND_FILE_END prevents the temporary default values
retained by the previous call to LIB$FIND_FILE from affecting the next file
specification.

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

LIB$FILE_SCAN uses an optional context argument to perform temporary
defaulting for multiple input files. For example, a command such as the
following would specify A, B, and C in successive calls, retaining context, so
that portions of one file specification would affect the next file specification:

$ COPY [smith]A,B,C *
LIB$FILE_SCAN-END is called once after each sequence of calls to
LIB$FILE_SCAN. LIB$FILE_SCAN_END performs a parse of the null
string to deallocate saved RMS context and to prevent the temporary default
values retained by the previous call to LIB$FILE_SCAN from affecting the
next file specification. For instance, in the previous example,
LIB$FILE_SCAN_END should be called after the C file specification
is parsed, so that specifications from the $COPY files do not affect file
specifications in subsequent commands.

The following BLISS example illustrates the use of LIB$FIND_FILE. It
prompts for a file specification and default specification. The default
specification indicates the default information for the file for which you
are searching. Once the routine has searched for one file, the resulting file
specification determines the related file specification and the default file
specification for the next search. LIB$FIND_FJLE_END is called at the end
of this BLISS program to deallocate the virtual memory used by
LIB$FINDJILE.

%TITLE 'FILE_EXAMPLE1 - Sample program using LIB$FIND_FILE'
MODULE FILE_EXAMPLE1(! Sample program using LIB$FIND_FILE

!DENT = '1-001 ' ,
MAIN = EXAMPLE_START
) =

BEGIN

%SBTTL 'Declarations'
!+
! SWITCHES:
!-

SWITCHES ADDRESSING_MODE (EXTERNAL= GENERAL, NONEXTERNAL = WORD_RELATIVE);

!+
! TABLE OF CONTENTS:
!-

FORWARD ROUTINE
EXAMPLE_START;

!+
! INCLUDE FILES:
!-

LIBRARY 'SYS$LIBRARY:STARLET.L32';

!+

Main program

! System symbols

! Define facility-specific messages from shared system messages.
!-
$SHR_MSGDEF(CLI,3,LOCAL,

(PARSEFAIL,WARNING));
!+
! EXTERNAL REFERENCES:
!-

2-25

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

Read from SYS$INPUT
Wildcard scanning routine

EXTERNAL ROUTINE
LIB$GET_INPUT,
LIB$FIND_FILE,
LIB$FIND_FILE_END,
LIB$PUT_OUTPUT,
STR$COPY_DX;

End find file

LITERAL
TRUE = 1,
FALSE = 0;

Write to SYS$0UTPUT
String copier

Success
Failure

%SBTTL 'EXAMPLE_START - Sample program main routine';
ROUTINE EXAMPLE_START =
BEGIN

+
This program reads a file specification and default file
specification from SYS$INPUT. It then prints all the files that
match that specification and prompts for another file specification.
After the first file specification no default specification is requested,
and the previous resulting file specification becomes the related
file specification.

LOCAL

!+

LINEDESC : $BBLOCK[DSC$C_S_BLN],
RESULT_DESC : $BBLOCK[DSC$C_S_BLN],
CONTEXT,
DEFAULT_DESC : $BBLOCK[DSC$C_S_BLN],
RELATED_DESC : $BBLOCK[DSC$C_S_BLN],
HAVE_DEFAULT,
STATUS;

! Make all string descriptors dynamic.
!-
CH$FILL(O,DSC$C_S_BLN,LINEDESC);
LINEDESC[DSC$B_CLASS] = DSC$K_CLASS_D;
CH$MOVE(DSC$C_S_BLN,LINEDESC,RESULT_DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,DEFAULT_DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,RELATED_DESC);
HAVE_DEFAULT = FALSE;
CONTEXT = 0;
!+

String desc. for input line
String desc. for result file
LIB$FIND_FILE context pointer
String desc. for default spec
String desc. for related spec

! Read file specification, default file specification, and
! related file specification.
!-

2-26

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

WHILE (STATUS = LIB$GET_INPUT(LINEDESC,
$DESCRIPTOR('FILE SPECIFICATION: '))) NEQ RMS$_EOF

DO BEGIN

I+

IF NOT .STATUS
THEN SIGNAL_STOP(.STATUS);

!+
! If default file specification was not obtained, do so now.
!-
IF NOT .HAVE_DEFAULT
THEN BEGIN

!+

STATUS = LIB$GET_INPUT(DEFAULT_DESC,
$DESCRIPTOR('DEFAULT FILE SPECIFICATION: '));

IF NOT .STATUS
THEN SIGNAL_STOP(.STATUS);

HAVE_DEFAULT = TRUE;
END;

! CALL LIB$FIND_FILE until RMS$_NMF (no more files) is returned.
! If an error other than RMS$_NMF is returned, it is signaled.
! Print out the file specification if the call is successful.
!-
WHILE (STATUS = LIB$FIND_FILE(LINEDESC,RESULT_DESC,CONTEXT,

DEFAULT_DESC,RELATED_DESC)) NEQ RMS$_NMF
DO IF NOT .STATUS

THEN SIGNAL(CLI$_PARSEFAIL,1,RESULT_DESC, .STATUS)
ELSE LIB$PUT_OUTPUT(RESULT_DESC);

!+
! Make this resultant file specification the related file
! specification for next file.
!-
STR$COPY_DX(RELATED_DESC,LINEDESC);
END; End of loop

reading file specification

Call LIB$FIND_FILE_END to deallocate the virtual memory used by LIB$FIND_FILE.
Note that we do this outside of the loop. Since the MULTIPLE bit of the
optional user flags argument to LIB$FIND_FILE wasn't used, it is not
necessary to call LIB$FIND_FILE_END after each call to LIB$FIND_FILE.
(The MULTIPLE bit would have caused temporary defaulting for multiple input
files.)

STATUS= LIB$FIND_FILE_END (CONTEXT);

IF NOT .STATUS
THEN SIGNAL_STOP (.STATUS);

RETURN TRUE
END;
END

ELUDOM

End of main program
End of module

This BLISS example illustrates LIB$FILE_SCAN and LIB$FILE_SCAN_END.

%TITLE 'FILE_EXAMPLE2 - Sample program using LIB$FILE_SCAN'
MODULE FILE_EXAMPLE1(! Sample program using LIB$FILE_SCAN

!DENT = '1-001 ' ,
MAIN = EXAMPLE_START
) =

BEGIN

2-27

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

%SBTTL 'Declarations'
!+
! SWITCHES:
!-

SWITCHES ADDRESSING_MODE (EXTERNAL = GENERAL,
NONEXTERNAL = WORD_RELATIVE);

!+
! TABLE OF CONTENTS:
!-

Main program
FORWARD ROUTINE

EXAMPLE_START,
SUCCESS_RTN,
ERROR_RTN;

Success action routine
Error action routine

!+
! INCLUDE FILES:
!-

LIBRARY 'SYS$LIBRARY:STARLET.L32'; ! System symbols

!+
! Define VMS block structures (BLOCK[,BYTEJ).
!-
STRUCTURE

!+

BBLOCK [O, P, S, E; NJ =
[NJ
(BBLOCK + 0) <P, S, E>;

! EXTERNAL REFERENCES:
!-

EXTERNAL ROUTINE
LIB$GET_INPUT,
LIB$FILE_SCAN,
LIB$FILE_SCAN_END,
LIB$PUT_OUTPUT;

Read from SYS$INPUT
Wildcard scanning routine
End of file scan
Write to SYS$0UTPUT

%SBTTL 'EXAMPLE_START - Sample program main routine';
ROUTINE EXAMPLE_START =
BEGIN
!+
! This program reads the file specification, default file specification,
! and related file specification from SYS$INPUT and then displays on
! SYS$0UTPUT all files which match the specification.
!-
LOCAL

RESULT_BUFFER VECTOR[NAM$C_MAXRSS,BYTEJ, !Buffer for resultant

EXPAND_BUFFER VECTOR[NAM$C_MAXRSS,BYTEJ,

LINEDESC : BBLOCK[DSC$C_S_BLNJ,

RESULT_DESC : BBLOCK[DSC$C_S_BLNJ,

DEFAULT_DESC BBLOCK[DSC$C_S_BLNJ,

RELATED_DESC BBLOCK[DSC$C_S_BLNJ,

IFAB : $FAB_DECL,
!NAM : $NAM_DECL,
RELNAM : $NAM_DECL,
STATUS;

2-28

name string
!Buffer for expanded
! name string
!String descriptor
! for input line
!String descriptor
! for result file
!String descriptor
! for default specification
!String descriptor
! for related specification
!FAB for file_scan

and a NAM block
and a related NAM block

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

!+
! Make all descriptors dynamic.
!-
CH$FILL(O,DSC$C_S_BLN,LINEDESC);
LINEDESC[DSC$B_CLASS] = DSC$K_CLASS_D;
CH$MOVE(DSC$C_S_BLN,LINEDESC,RESULT_DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,DEFAULT_DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,RELATED_DESC);
!+
! Read file specification, default file specification, and related
! file specification
!-
STATUS = LIB$GET_INPUT(LINEDESC,

$DESCRIPTOR('File specification: '));
IF NOT .STATUS

THEN SIGNAL_STOP(.STATUS);
STATUS = LIB$GET_INPUT(DEFAULT_DESC,

$DESCRIPTOR('Default file specification: '));
IF NOT .STATUS

THEN SIGNAL_STOP(.STATUS);
STATUS = LIB$GET_INPUT(RELATED_DESC,

$DESCRIPTOR('Related file specification: '));
IF NOT .STATUS

THEN SIGNAL_STOP(.STATUS);
!+
! Initialize the FAB, NAM, and related NAM blocks.
!-
$FAB_INIT(FAB=IFAB,

FNS=.LINEDESC[DSC$W_LENGTH],
FNA=.LINEDESC[DSC$A_POINTER],
DNS=.DEFAULT_DESC[DSC$W_LENGTH],
DNA=.DEFAULT_DESC[DSC$A_POINTER],
NAM=INAM);

$NAM_INIT(NAM=INAM,
RSS=NAM$C_MAXRSS,
RSA=RESULT_BUFFER,
ESS=NAM$C_MAXRSS,
ESA=EXPAND_BUFFER,
RLF=RELNAM) ;

$NAM_INIT(NAM=RELNAM);
RELNAM[NAM$B_RSL] = .RELATED_DESC[DSC$W_LENGTH];
RELNAM[NAM$L_RSA] = .RELATED_DESC[DSC$A_POINTER];
!+
! Call LIB$FILE_SCAN. Note that errors need not be checked
! here because LIB$FILE_SCAN calls error_rtn for all errors.
!-
LIB$FILE_SCAN(IFAB,SUCCESS_RTN,ERROR_RTN);

!+
! Call LIB$FILE_SCAN_END to deallocate virtual memory used for
! file scan structures.
!-
STATUS= LIB$FILE_SCAN_END (IFAB);

IF NOT .STATUS
THEN SIGNAL_STOP (.STATUS);

RETURN 1
END; End of main program

2-29

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

ROUTINE SUCCESS_RTN (IFAB : REF BBLOCK) =
BEGIN
!+
! This routine is called by LIB$FILE_SCAN for each file that it

successfully finds in the search sequence.

Inputs:

IFAB Address of a fab

Outputs:

file specification printed on SYS$0UTPUT
!-
LOCAL

DESC : BBLOCK[DSC$C_S_BLN]; ! A local string descriptor
BIND

!NAM= .IFAB[FAB$L_NAM] : BBLOCK; Find NAM block

CH$FILL(O,DSC$C_S_BLN,DESC);

DESC[DSC$W_LENGTH] = .INAM[NAM$B_RSL];

DESC[DSC$A_POINTER] = .INAM[NAM$L_RSA];
RETURN LIB$PUT_OUTPUT(DESC)

END;

ROUTINE ERROR_RTN (IFAB : REF BBLOCK) =
BEGIN
I+

from pointer in FAB
Make static

string descriptor
Get string length

from NAM block
Get pointer to the string
Print name on SYS$0UTPUT

and return

This routine is called by LIB$FILE_SCAN for each file specification that
produces an error.

Inputs:

if ab Address of a f ab

Outputs:

Error message is signaled
!-
LOCAL

DESC : BBLOCK[DSC$C_S_BLN];

BIND
!NAM= .IFAB[FAB$L_NAM] : BBLOCK;

CH$FILL(O,DSC$C_S_BLN,DESC);

DESC[DSC$W_LENGTH] = .INAM[NAM$B_RSL];
DESC[DSC$A_POINTER] = .INAM[NAM$L_RSA];
!+

A local string descriptor

Get NAM block pointer
from FAB

Create static
string descriptor

! Signal the error using the shared message PARSEFAIL
! and the CL! facility code. The second part of the SIGNAL
! is the RMS STS and STV error codes.
!-
RETURN SIGNAL((SHR$_PARSEFAIL+3A16),1,DESC,

.IFAB[FAB$L_STS], .IFAB[FAB$L_STV])

END;
END

ELUDOM

2-30

! End of module

2.7.5

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

Insert Entry in a Balanced Binary Tree
Three routines allow you to manipulate the contents of a balanced binary
tree:

• LIB$1NSERT_TREE adds an entry to a balanced binary tree.

• LIB$LOOKUP_TREE looks up an entry in a balanced binary tree.

• LIB$TRAVERSE_TREE calls an action routine for each node in the tree.

Example

The following BLISS e~ample illustrates all three of these routines. The
program prompts for input from SYS$INPUT and stores each data line
as an entry in a binary tree. When the user enters end-of-file character
(CTRL/Z}, the tree will be printed in sorted order. The program includes
three subroutines:

• The first subroutine allocates virtual memory for a node.

• The second subroutine routine compares a key with a node.

• The third subroutine is called during the tree traversal. It prints out the
left and right subtree pointers, the current node balance, and the name of
the node.

%TITLE 'TREE_EXAMPLE - Sample program using binary tree routines'
MODULE TREE_EXAMPLE(! Sample program using trees

!DENT = '1-001',
MAIN = TREE_START
) =

BEGIN

%SBTTL 'Declarations'
!+
! SWITCHES:
!-
SWITCHES ADDRESSING_MODE (EXTERNAL= GENERAL, NONEXTERNAL = WORD_RELATIVE);

+
LINKAGES:

NONE

TABLE OF CONTENTS:

FORWARD ROUTINE
TREE_START,
ALLOC_NODE,
COMPARE_NODE,
PRINT_NODE;

!+
! INCLUDE FILES:
!-

LIBRARY 'SYS$LIBRARY:STARLET.L32';

Main program
Allocate memory for a node
Compare two nodes
Print a node (action routine
for LIB$TRAVERSE_TREE)

System symbols

2-31

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

2-32

!+
! Define VMS block structures (BLOCK[,BYTE]).
!-
STRUCTURE

BBLOCK [O, P, S, E; N] =
[N]
(BBLOCK + 0) <P, S, E>;

!+
! MACROS:
!-
MACRO

NODE$L_LEFT = 0,0,32,0%,
NODE$L_RIGHT = 4,0,32,0%,
NODE$W_BAL = 8,0,16,0%,
NODE$B_NAMLNG = 10,0,8,0%,
NODE$T_NAME = 11,0,0,0%;

LITERAL
NODE$C_LENGTH = 11;

!+
! EXTERNAL REFERENCES:
!-

EXTERNAL ROUTINE
LIB$GET_INPUT,
LIB$GET_VM,
LIB$INSERT_TREE,
LIB$LOOKUP_TREE,
LIB$PUT_OUTPUT,
LIB$TRAVERSE_TREE,
STR$UPCASE,
SYS$FAO;

Left subtree pointer in node
Right subtree pointer
Balance this node
Length of name in this node
Start of name (variable length)

Length of fixed part of node

Read from SYS$INPUT
Allocate virtual memory
Insert into binary tree
Lookup in binary tree
Write to SYS$0UTPUT
Traverse a binary tree
Convert string to all uppercase
Formatted ASCII output routine

%SBTTL 'TREE_START - Sample program main routine';
ROUTINE TREE_START =
BEGIN
!+
! This program reads from SYS$INPUT and stores each data· line
! as an entry in a binary tree. When end-of-file character (CTRL/Z)
! is entered, the tree will be printed in sorted order.
!-
LOCAL

NODE : REF BBLOCK,
TREEHEAD,
LINEDESC : BBLOCK[DSC$C_S_BLN],
STATUS;

Address of allocated node
List head of binary tree
String descriptor for input line

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

TREEHEAD = O;
CH$FILL(O,DSC$C_S_BLN,LINEDESC);
LINEDESC[DSC$B_CLASS] = DSC$K_CLASS_D;
!+
! Read input lines until end of file seen.
!-

Zero binary tree head
Make a dynamic descriptor

Read input line WHILE (STATUS = LIB$GET_INPUT(LINEDESC,
$DESCRIPTOR('Text: '))) with this prompt

NEQ RMS$_EOF
DO IF NOT .STATUS ! Report any errors found

THEN SIGNAL(.STATUS)
ELSE BEGIN

STR$UPCASE(LINEDESC,LINEDESC);

IF NOT (STATUS = LIB$INSERT_TREE(

Convert string
to uppercase

TREEHEAD, Insert good data into the tree
LINEDESC, Data to insert
%REF(1), Insert duplicate entries
COMPARE_NODE, Addr. of compare routine
ALLOC_NODE, Addr. of node allocation routine
NODE. Return addr . of
0)) allocated node here

THEN SIGNAL(.STATUS);
END;

!+
! End of file character encountered. Print the whole tree and exit.
!-

Listh.ead of tree
IF NOT (STATUS = LIB$TRAVERSE_TREE(

TREEHEAD,
PRINT_NODE,
0))

Action routine to print a node

THEN SIGNAL(.STATUS);

RETURN SS$_NORMAL
END; ! End of routine tree_start

ROUTINE ALLOC_NODE (KEYDESC,RETDESC,CONTEXT) =
BEGIN

+

!-

This routine allocates virtual memory for a node.

INPUTS:

KEYDESC

RETDESC

CONTEXT

OUTPUTS:

Address of string descriptor for key
(this is the linedesc argument passed
to LIB$INSERT_TREE)

Address of location to return address of
allocated memory

Address of user context argument passed
to LIB$INSERT_TREE (not used in this
example)

Memory address returned in longword pointed to by retdesc

MAP
KEYDESC
RETDESC

LOCAL

REF BBLOCK,
REF VECTOR[.LONG];

NODE REF BBLOCK.
STATUS;

2-33

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

2-34

STATUS= LIB$GET_VM(%REF(NODE$C_LENGTH+.KEYDESC[DSC$W_LENGTH]),NODE);
IF NOT .STATUS

THEN RETURN .STATUS
ELSE BEGIN

NODE[NODE$B_NAMLNG] = .KEYDESC[DSC$W_LENGTH];
CH$MOVE(.KEYDESC[DSC$W_LENGTH],

.KEYDESC[DSC$A_POINTER],

Set name length
Copy in the name

NODE[NODE$T_NAME]);
RETDESC[O] = .NODE; Return address to caller
END;

RETURN .STATUS

END;

ROUTINE COMPARE_NODE (KEYDESC,NODE,CONTEXT)
BEGIN

+
This routine compares a key with a node.

INPUTS:

KEYDESC Address of string descriptor for new key
(This is the linedesc argument passed to
LIB$INSERT_TREE)

Address of current node
!
!-

NODE
CONTEXT User context data (Not used in this example)

MAP
KEYDESC : REF BBLOCK,
NODE : REF BBLOCK;

RETURN CH$COMPARE(.KEYDESC[DSC$W_LENGTH],

END;

.KEYDESC[DSC$A_POINTER],

.NODE[NODE$B_NAMLNG],
NODE[NODE$T_NAME])

ROUTINE PRINT_NODE (NODE.CONTEXT) =
BEGIN
!+

Compare key with
current node

! This routine is called during the tree traversal. It
! prints out the left and right subtree pointers, the
! current node balance, and the name of the node.
!-
MAP

NODE : REF BBLOCK;

2.7.6

Access to VMS System Components
2. 7 Miscellaneous Interface Routines

LOCAL
OUTBUF : BBLOCK[512], FAD output buffer
OUTDESC : BBLOCK[DSC$C_S_BLN], Output buffer descriptor
STATUS;

CH$FILL(O,DSC$C_S_BLN,OUTDESC); Zero descriptor
OUTDESC[DSC$W_LENGTH] = 512;
OUTDESC[DSC$A_POINTER] = OUTBUF;
IF NOT (STATUS = SYS$FAO($DESCRIPTOR(' !XL !XL !XL !XW !AC') I

OUTDESC,OUTDESC,

THEN SIGNAL(.STATUS)
ELSE BEGIN

.NODE, .NODE[NODE$L_LEFT] I

.NODE[NODE$L_RIGHT] I

.NODE[NODE$W_BAL] I

NODE[NODE$B_NAMLNG]))

STATUS= LIB$PUT_OUTPUT(OUTDESC); Output the line
IF NOT .STATUS

THEN SIGNAL(.STATUS);
END;

RETURN SS$_NORMAL

END;
END End of module TREE_EXAMPLE

ELUDOM

Common 1/0 Routines
LIB$PUT_COMMON allows a program to copy a string into the process's
common storage area. This area remains defined during multiple image
activations. LIB$GET_COMMON allows a program to copy a string from the
common area into a destination string. The programs reading and writing
the data in the common area must agree upon its amount and format. The
maximum length of the destination string is defined as follows:

[min(256, the length of the data in the common storage area) - 4]

This maximum length is normally 252.

In BASIC and FORTRAN, you can use these routines to allow a USEROPEN
routine to pass information back to the routine that called it. A USEROPEN
routine cannot write arguments. However, it can call LIB$PUT_COMMON
to put information into the common area. The calling program can then use
LIB$GET_COMMON to retrieve it.

You can also use these routines to pass information between images run
successively, such as chained images run by LIB$RUN_PROGRAM.

2-35

3 Date/Time Manipulation

This chapter describes the routines provided by the Run-Time Library
to perform date/time manipulation. These date/time routines return
information about a date or time, perform various arithmetic functions on
dates and times, and format dates and times in formats other than the
standard VMS format.

The following table lists all the LIB$ routines that perform date/time
manipulation.

Table 3-1 Date/Time Formatting Routines

Routine Function

Adds two quadword times LIB$ADD_ TIMES

LIB$CONVERT_DATE_STRING Converts an input date /time string to a
VMS internal time

LIB$CVT _FROM _INTERNAL_ TIME

LIB$CVTF _FROM_INTERNAL_ TIME

Converts a VMS standard internal
binary time value to an external integer
value

Converts a VMS standard internal
binary time to an external F-floating
point value

LIB$CVT_ TQ_INTERNAL_ TIME Converts an external integer time value
to a VMS standard internal binary time
value

LIB$CVTF _ TQ_INTERNAL_ TIME Converts an F-floating point time value
to an internal binary time value

LIB$CVT_VECTIM Converts a seven-word array to a VMS
standard format internal time

LIB$DA TE_ TIME Returns the system date and time in the
semantics of the user's string

LIB$DA Y Returns the number of days since
November 17, 1858

LIB$DAY_QF _WEEK Returns the numeric day of the week
for either an input time value or the
current day

LIB$FORMAT_DATE_ TIME Formats a date and/or time for output

LIB$FREE_DATE_ TIME_CQNTEXT Frees the date/time context

LIB$GET_DATE_FORMAT Returns the user's specified date/time
input format

LIB$GET_MAXIMUM_DATE_LENGTH Returns the maximum possible length
of an output date/time string

LIB$GET_USERS_LANGUAGE Returns the user's selected language

3-1

Date/Time Manipulation

Table 3-1 (Cont.) Date/Time Formatting Routines

Routine

LIB$1NIT_DATE_ TIME_CONTEXT

LIB$MUL T_DEL TA_ TIME

LIB$MUL TF _DELTA_ TIME

LIB$SUB_ TIMES

Function

Initializes the date/time context with a
user-specified format

Multiplies a delta time value by an
integer scalar value

Multiplies a delta time value by an
F-floating point scalar value

Subtracts two quadword times

3 .1 Date/Time Utility Routines
The LIB$ facility provides date/time utility routines for languages that do
not have built-in time and date functions. These routines return information
about the current date and time or a date/time specified by the user. The
date/time utility routines are as follows:

• Using a string descriptor, LIB$DATE_TIME returns the VMS system date
and time in the semantics of a string that you provide.

• LIB$DAY returns the number of days since the system zero date of
November 17, 1858. This routine takes one required argument and two
optional arguments:

The address of a longword to contain the number of days since the
system zero date (required).

A quadword passed by reference containing a time in system time
format to be used instead of the current system time (optional).

A longword integer to contain the number of 10-millisecond units
since midnight (optional).

• LIB$DAY_QF_WEEK returns the numeric day of the week for an input
time value. If the input time value is zero, the current day of the week
is returned. The days are numbered 1 through 7: Monday is Day 1, and
Sunday is Day 7.

The Run-Time Library also provides a routine, LIB$SYS-ASCTIM, that
provides a simplified interface between higher-level languages and the
$ASCTIM system service.

3.2 Date/Time Manipulation Routines

3-2

The LIB$ facility provides several date/time manipulation routines. These
routines let you convert an internal time (VMS system time) to an external
time, such as "four days," and vice versa. They also enable you to add,
subtract, and multiply dates and times.

The LIB$ date/time manipulation routines are as follows:

• LIB$ADD_ TIMES adds two quadword times.

Date/Time Manipulation
3.2 Date/Time Manipulation Routines

• LIB$CVT_FROM_INTERNAL_TIME converts a VMS standard internal
binary time value to an external integer value. The value is converted
according to a selected unit of time operation.

• LIB$CVTF_FROM_INTERNAL_TIME converts a VMS standard internal
binary time to an external F-floating point value. The time is converted
according to a selected unit of time operation.

• LIB$CVT_TO_INTERNAL_TIME converts an external integer time value
to a VMS standard internal binary time value. The value is converted
according to a selected unit of time operation.

• LIB$CVTF_TO_INTERNAL_TIME converts an external F-floating point
time value to an internal binary time value.

• LIB$CVT_ VECTIM converts a seven-word array (as returned by the
$NUMTIM system service) to a standard VMS format internal time.

• LIB$MUL T_DEL TA_ TIME multiplies a delta time value by an integer
scalar value.

• LIB$MUL TF_DEL TA_ TIME multiplies a delta time value by an F-floating
point scalar value.

• LIB$SUB_ TIMES subtracts two quadword times.

3.3 Date/Time Formatting Routines

3.3.1

The date/time formatting routines allow the user or application programmer
to specify input and output formats other than the standard VMS format
for dates and times. These include international formats with appropriate
language spellings for days and months.

If the desired language is English (the default language) and the desired
format is the standard VMS format, then no initialization of logical names is
required in order to use the date/time input and output routines. However, if
the desired language and format are not the defaults, the system manager (or
any user having CMEXEC, SYSNAM and SYSPRV privileges) must initialize
the required logicals.

Date/Time Logical Initialization
Note: The initialization steps outlined in this section must be completed

before any of the date/time input and output routines can be used with
languages and formats other than the defaults.

As an alternative to the standard VMS format, the command procedure
SYS$MANAGER:LIB$DT_STARTUP.COM defines several output formats for
dates and times. This command procedure must be executed by the system
manager prior to the use of any of the Run-Time Library date/time routines
for input or output formats other than the default. Ideally, this command
procedure should be executed from SYSTARTUP.COM.

In addition to defining the date/time formats, the LIB$DT_STARTUP.COM
command procedure also defines spellings for date and time elements in
languages other than English. If different language spellings are required,
the system manager must define the logical name SYS$LANGUAGES before

3-3

3.3.2

Date/Time Manipulation
3.3 Date/Time Formatting Routines

invoking LIB$DT_STARTUP.COM. The translation of SYS$LANGUAGES is
then used to select which languages are defined.

The available languages and their logical names are as follows:

Language Logical Name

Austrian AUSTRIAN

Danish DANISH

Dutch DUTCH

Finnish FINNISH

French FRENCH

French Canadian CANADIAN

German GERMAN

Hebrew HEBREW

Italian ITALIAN

Norwegian NORWEGIAN

Portuguese PORTUGUESE

Spanish SPANISH

Swedish SWEDISH

Swiss French SWISS_FRENCH

Swiss German SWISS_GERMAN

For example, if the system manager wants the spellings for French, German,
and Italian languages to be defined, he or she must define SYS$LANGUAGES
as shown, prior to invoking LIB$DT_STARTUP.COM.

$ DEFINE SYS$LANGUAGES FRENCH, GERMAN, ITALIAN

If the user requires an additional language, for example FINNISH, then the
system manager must add FINNISH to the definition of SYS$LANGUAGES
and reexecute the command procedure.

Selecting a Format

3-4

There are two methods by which date/time input and output formats can be
selected:

• The language and format are determined at run time through the
translation of the logical names SYS$LANGUAGE, LIB$DT_FORMAT,
and LIB$DT_INPUT_FORMAT.

• The language and format are programmable at compile time through the
use of the LIB$INIT_DATE_ TIME_CQNTEXT routine.

In general, if an application accepts text from a user or formats text for
presentation to a user, the logical name method of specifying language and
format should be used. In this method, the user assigns equivalence names to
the logical names SYS$LANGUAGE, LIB$DT_FORMAT, and
LIB$DT_INPUT_FQRMAT, thereby selecting the language and input or
output format of the date and time at run time.

3.3.2.1

Date/Time Manipulation
3.3 Date/Time Formatting Routines

If an application reads text from internal storage or formats text for internal
storage or transmission, the language and format should be specified at
compile time. If this is the case, the routine
LIB$INIT_DATE_TIME_CONTEXT is used to specify the language and
format of choice.

Run-Time Format Mnemonics
The format mnemonics listed below are used to define both input and output
formats at run time. When defining a format, each mnemonic must be
preceded by an exclamation mark (!). This exclamation mark signifies that
the string represents a format mnemonic; it is not interpreted as part of the
format string itself.

Date

DO

DD

DB

WU

WAU

WC

WAC

WL

WAL

MAU

MAAU

MAC

MAAC

MAL

MAAL

MNO

MNM

MNB

Y4

Y3

Y2

Y1

Time

H04

HH4

HB4

H02

HH2

HB2

MO

Day, Zero-filled

Day, No Fill

Day, Blank-filled

Weekday, Uppercase

Weekday, Abbreviated, Uppercase

Weekday, Capitalized

Weekday, Abbreviated, Capitalized

Weekday, Lowercase

Weekday, Abbreviated, Lowercase

Month, Alphabetic, Uppercase

Month, Alphabetic, Abbreviated, Uppercase

Month, Alphabetic, Capitalized

Month, Alphabetic, Abbreviated, Capitalized

Month, Alphabetic, Lowercase

Month, Alphabetic, Abbreviated, Lowercase

Month, Numeric, Zero-filled

Month, Numeric, No Fill

Month, Numeric, Blank-filled

Year, 4 Digits

Year, 3 Digits

Year, 2 Digits

Year, 1 Digit

Hours, Zero-filled, 24-Hour Clock

Hours, No Fill, 24-Hour Clock

Hours, Blank-filled, 24-Hour Clock

Hours, Zero-filled, 12-Hour Clock

Hours, No Fill, 12-Hour Clock

Hours, Blank-filled, 12-Hour Clock

Minutes, Zero-filled

3-5

Date/Time Manipulation
3.3 Date/Time Formatting Routines

3.3.2.2

3-6

MM

MB

so
SS

SB

C7

C6
C5

C4
C3
C2
C1

MIU

MIC

MIL

Minutes, No Fill

Minutes, Blank-filled

Seconds, Zero-filled

Seconds, No Fill

Seconds, Blank-filled

Fractional Seconds, 7 Digits

Fractional Seconds, 6 Digits

Fractional Seconds, 5 Digits

Fractional Seconds, 4 Digits

Fractional Seconds, 3 Digits

Fractional Seconds, 2 Digits

Fractional Seconds, 1 Digit

Meridian Indicator, Uppercase

Meridian Indicator, Capitalized (mixed case)

Meridian Indicator, Lowercase

Specifying Formats at Run Time
If an application accepts text from a user or formats text for
presentation to a user, the logical name method of specifying language
and format should be used. In this method, the user assigns equivalence
names to the logical names SYS$LANGUAGE, LIB$DT_FORMAT, and
LIB$DT_INPUT_FQRMAT, thereby selecting the language and format
of the date and time at run time. LIB$DT_INPUT_FORMAT must be
defined using the mnemonics listed in Section 3.3.2.1. The possible
choices for SYS$LANGUAGE and LIB$DT_FORMAT are defined in the
SYS$MANAGER:LIB$DT_STARTUP.COM command procedure that is
executed by the system manager prior to using these routines.

The following actions occur when any translation of a logical name fails:

• If the translation of SYS$LANGUAGE or any logical name relating to text
fails, then English is used and a status of LIB$_ENGLUSED is returned.

• If the translation of LIBDT_FORMAT, LIBDT_INPUT_FORMAT, or
any logical name relating to format fails, the VMS standard ($ASCTIM)
representation of the date and time is used, that is, dd-mmm-yyyy
hh:mm:ss.cc, and a status of LIB$_DEFFORUSE is returned.

Since English is the default language and must therefore always be available,
English spellings are not taken from logical name translations, but rather are
looked up in an internal table.

3.3.2.2.1

Date/Time Manipulation
3.3 Date/Time Formatting Routines

Specifying Input Formats at Run Time
Using the logical name LIB$DT_JNPUT_FORMAT, the user can define his or
her own input format at run time using the mnemonics listed in
Section 3.3.2.1. Once an input format is defined, any dates or times that are
input to the application are parsed against this format. For example:

$ DEFINE LIB$DT_INPUT_FORMAT -
_$ II !MAU !DD, !Y4 !H02: !MO: !SO: !C2 !MIU"

A valid input date string would be as follows:

JUNE 15, 1988 08:45:06:50 PM

If the user has selected a language other than English, then the translation of
SYS$LANGUAGE is used by the parser to recognize alphabetic months and
meridian indicators in the selected language.

The Input Format String

The input format string used to define the input date/time format must
contain at least the first seven of the following eight fields:

• Month (either alphabetic or numeric)

• Day of the month (numeric)

• Year (from 1 to 4 digits)

• Hour (12- or 24-hour clock)

• Minute of the hour

• Second of the minute

• Fractional seconds

• Meridian indicator (required for 12-hour clock; illegal for 24-hour clock)

If the input format string specifies a 24-hour clock, the string will contain
only the first seven fields in the above list. If a 12-hour clock is specified, the
eighth field (the meridian indicator) is required.

The format string fields must appear in two groups: one for date and one for
time (date and time fields cannot be intermixed within a group). For the input
format, alphabetic case distinctions and abbreviation-specific codes have no
significance. For example, the following format string specifies that the month
name will be uppercase and spelled out in full.

!MAU !DD, !Y4 !H02: !MO: !SO: !C2 !MIU

If the input string corresponding to this format string contains a month name
that is abbreviated and lowercased, the parse of the input string still works
correctly. For example:

feb 25, 1988 04:39:02:55 am

If this input string is entered, the parse still recognizes "feb" as the month
name and "am" as the meridian indicator, despite the fact that the format
string specified both of these fields as uppercased, and the month name as
unabbreviated.

3-7

Date/Time Manipulation
3.3 Date/Time Formatting Routines

3-8

Punctuation in the Format and Input Strings

One important aspect to consider when formatting date/time input strings is
punctuation. The punctuation referred to here is the characters that separate
the various date/time fields or the date and time groups. Punctuation in these
strings is important because it is used as an outline for the parser, allowing
the parser to synchronize the input fields to the format fields.

There are three distinct classes of punctuation.

• None

Although it is common to have no punctuation at the beginning or
end of an input format string, you may specify a date/time format that
additionally has no punctuation between the fields or groups of the
format string. If this is the case, the corresponding input string must not
have any punctuation between the respective fields or groups, although
whitespace (see the next item in this list) may appear at the beginning or
end of the input string.

• Whitespace

Whitespace includes any combination of spaces and/ or tabs. In the
interpretation of the format string, any whitespace is condensed to a
single space. When parsing an input string, whitespace is generally noted
as synchronizing punctuation and is skipped; however, whitespace is
significant in some situations, such as blank-filled numbers.

• Explicit

Explicit punctuation refers to any string of one or more characters that
is used as punctuation and is not solely composed of whitespace. Any
whitespace appearing within an explicit punctuation string is interpreted
literally; in other words, it is not compressed. In the format string, you
can use explicit punctuation to denote a particular format and to guide
the parser in parsing the input string. In the input string, you can use
explicit punctuation to synchronize the parse of the input string against
the format string. The explicit punctuation used should not be a subset of
the valid input of any field that it precedes or follows.

Punctuation is especially important in providing guidelines for the parser to
properly translate the input date/time string.

Default Date/Time Fields

Punctuation in a date/time string is also useful for specifying which fields
you want to omit in order to accept the default values. That is, you can
control the parsing of the input string by supplying punctuation without the
appropriate field values. If only the punctuation is supplied and no user
supplied default is specified, the value of the omitted field defaults according
to the following rules:

• For the date group, the default is the current date.

• For the time group, the default is 00:00:00.00.

Table 3-2 illustrates some examples of input strings (using punctuation to
indicate defaulted fields) and their full translations (assuming a current date
of 25-FEB-1988 and using the default input format).

3.3.2.2.2

Date/Time Manipulation
3.3 Date/Time Formatting Routines

Table 3-2 Input String Punctuation and Defaults

Input

31

-MAR

-SEPTEMBER

-1988

23:

:45:

::23

.01

Full Date/Time Input String

31-FEB-1988 00:00:00.00

25-MAR-1988 00:00:00.00

25-SEP-1988 00:00:00.00

25-FEB-1988 00:00:00.00

25-FEB-1988 23:00:00.00

25-FEB-1988 00:45:00.00

25-FEB-1988 00:00:23.00

25-FEB-1988 00:00:00.01

Specifying Output Formats at Run Time
If the logical name method is used to specify an output format at run time,
the translations of the logical names SYS$LANGUAGE and
LIB$DT_FORMAT specify one or more executive mode logicals which in turn
must be translated to determine the actual format string. These additional
logicals supply such things as the names of the days of the week and the
months in the selected language (as determined by SYS$LANGUAGE). All
of these logicals are predefined, so that a nonprivileged user can select any
one of these languages and formats. In addition, a user can create his or her
own languages and formats; however, the CMEXEC, SYSNAM, and SYSPRV
privileges are required.

To select a particular format for a date or time, or both, you must define the
LIB$DT_FORMAT logical name using the following logicals:

• LIB$DATE_FORMAT_nnn, where nnn ranges from 001 to 040

• LIB$TIME_FORMAT_nnn, where nnn ranges from 001 to 020

The order in which these logical names appear in the definition of
LIB$DT_FORMAT determines the order in which they are output. A single
space is inserted into the output string between the two elements, if the
definition specifies that both are output. For example:

$DEFINE LIB$DT_FORMAT LIB$DATE_FORMAT_006, LIB$TIME_FORMAT_012

The above definition causes the date to be output in the specified format,
followed by a space and the time in the specified format, as shown below.

13 JAN 88 9:13 AM

Table 3-3 lists all predefined date format logical names, their formats, and
examples of the output generated using those formats. (The mnemonics used
to specify the formats are listed in Section 3.3.2.1.)

3-9

Date/Time Manipulation
3.3 Date/Time Formatting Routines

Table 3-3 Predefined Output Date Formats

Date Format Logical Format Example

LIB$DATE_FORMAT_001 !DB-!MAAU-!Y 4 13-JAN-1988

LIB$DATE_FORMAT_002 !DB !MAU !Y4 13 JANUARY 1988

LIB$DATE_FQRMAT_003 !DB.!MAU !Y4 13.JANUARY 1988

LIB$DATE_FORMAT_004 !DB.!MAU.!Y4 13.JANUARY. 1988

LIB$DATE_FQRMAT_005 !DB !MAU !Y2 13 JANUARY 88

LIB$DATE_FQRMAT_006 !DB !MAAU !Y2 13 JAN 88

LIB$DATE_FQRMAT_007 !DB.!MAAU !Y2 13.JAN 88

LIB$DATE_FORMAT_008 !DB.!MAAU.!Y2 13.JAN.88

LIB$DATE_FORMAT_009 !DB !MAAU !Y4 13 JAN 1988

LIB$DATE_FORMAT_O 10 !DB.!MAAU !Y4 13.JAN 1988

LIB$DATE_FORMAT_011 !DB.!MAAU.!Y4 13.JAN.1988

LIB$DATE_FORMAT_012 !MAU !DD, !Y4 JANUARY 13, 1988

LIB$DATE_FORMAT_O 13 !MNO/!DO/!Y2 01/13/88

LIB$DATE_FORMAT_014 !MNO-!DO-!Y2 01-13-88

LIB$DATE_FORMAT_015 !MNO.!DO.!Y2 01.13.88

LIB$DATE_FORMAT_O 16 !MNO !DO !Y2 01 13 88

LIB$DATE_FORMAT_O 17 !DO/!MNO/!Y2 13/01/88

LIB$DATE_FORMAT_O 18 !DO/!MNO-!Y2 13/01-88

LIB$DATE_FORMAT_019 !DO-!MNO-!Y2 13-01-88

LIB$DATE_FQRMAT_020 !DO.!MNO.!Y2 13.01.88

LIB$DATE_FORMAT_021 !DO !MNO !Y2 13 01 88

LIB$DATE_FORMAT_022 !Y2/!MNO/!DO 88/01/13

LIB$DATE_FQRMAT_023 !Y2-!MNO-!DO 88-01-13

LIB$DATE_FQRMAT_024 !Y2.!MNO.!DO 88.01.13

LIB$DATE_FORMAT_025 !Y2 !MNO !DO 88 01 13

LIB$DATE_FORMAT_026 !Y2!MNO!DO 880113

LIB$DATE_FORMAT_027 /!Y2.!MNO.!DO /88.01.13

LIB$DATE_FQRMAT_028 !MNO/!DO/!Y4 01/13/ 1988

LIB$DATE_FQRMAT_029 !MNO-!DO-!Y 4 01-13-1988

LIB$DATE_FQRMAT_030 !MNO.!DO.!Y4 01.13.1988

LIB$DATE_FQRMAT_031 !MNO !DO!Y4 01 13 1988

LIB$DATE_FQRMAT_032 !DO/!MNO/!Y4 13/01/1988

LIB$DATE_FQRMAT_033 !DO-!MNO-!Y4 13-01-1988

LIB$DATE_FQRMAT_034 !DO.!MNO.!Y4 13.01.1988

LIB$DATE_FQRMAT_035 !DO !MNO !Y4 13 01 1988

LIB$DATE_FORMAT_036 !Y 4/!MNO/!DO 1988/01/13

LIB$DATE_FORMAT_037 !Y 4-!MNO-!DO 1988-01-13

LIB$DATE_FQRMAT_038 !Y4.!MNO.!DO 1988.01.13

3-10

3.3.2.3

Date/Time Manipulation
3.3 Date/Time Formatting Routines

Table 3-3 (Cont.) Predefined Output Date Formats

Date Format Logical

LIB$DATE_FQRMAT_039

LIB$DATE_FORMAT_040

Format

!Y4 !MNO !DO

!Y4!MNO!DO

Example

1988 01 13

19880113

Table 3-4 lists all predefined time format logical names, their formats, and
examples of the output generated using those formats.

Table 3-4 Predefined Output Time Formats

Time Format Logical Format Example

LIB$TIME_FORMAT _OO 1 !H04:!MO:!SO.!C2 09: 13:25. 14

LIB$TIME_FORMAT_002 !H04:!MO:!SO 09: 13:25

LIB$TIME_FORMAT_003 !H04.!MO.!SO 09.13.25

LIB$TIME_FORMAT_004 !H04 !MO !SO 09 13 25

LIB$TIME _FORMAT _005 !H04:!MO 09:13

LIB$TIME _FORMAT _006 !H04.!MO 09.13

LIB$TIME_FORMAT_007 !H04 !MO 09 13

LIB$TIME_FORMAT_008 !HH4:!MO 9: 13

LIB$TIME_FORMAT_009 !HH4.!MO 9.13

LIB$TIME_FORMAT_O 10 !HH4 !MO 9 13

LIB$TIME_FORMAT_011 !H02:!MO !MIU 09: 13 AM

LIB$TIME_FORMA T _O 12 !HH2:!MO !MIU 9:13 AM

LIB$TIME_FORMAT_O 13 !H04!MO 0913

LIB$TIME_FORMAT_O 14 !H04H!MOm 09H13m

LIB$TIME_FORMA T _O 15 kl !H04.!MO kl 09.13

LIB$TIME_FORMA T _O 16 !H04H!MO' 09H13'

LIB$TIME_FORMAT_O 17 !H04.!MO h 09.13 h

LIB$TIME_FORMA T_O 18 h !H04.!MO h 09.13

LIB$TIME_FORMAT_O 19 !HH4 h !MM 9 h 13

LIB$TIME_FORMAT_020 !HH4 h !MM min !SS s 9 h 13 min 25 s

Specifying Formats at Compile Time
If an application reads text from internal storage or formats text for internal
storage or transmission, the language and format should be specified at
compile time. The routine LIB$INIT_DATE_TIME_CONTEXT allows the
user to specify the language and format at compile time by initializing
the context area used by LIB$FORMAT_DATE_TIME for output or
LIB$CONVERT_DATE_STRING for input with specific strings, instead of
through logical name translations. Note that when an application initializes
the context area using LIB$INIT_DATE_TIME_CONTEXT, it expects all
required context information to be provided in this way. In other words, it is
not expected that some items are preinitialized and other items are gathered
through logical name translation.

3-11

Date/Time Manipulation
3.3 Date/Time Formatting Routines

3.3.2.3.1

3-12

Only one context component can be initialized per call to
LIB$INIT_DATE_TIME_CONTEXT. The available components and their
number of elements are listed below. (_ABB indicates abbreviated versions of
the month and weekday names.)

LIB$K_MONTH_NAME 12

LIB$K_MONTH_NAME_ABB 12

LIB$K_FQRMAT_MNEMONICS 9

LIB$K_ WEEKDAY _NAME

LIB$K_ WEEKDAY _NAME_ABB

LIB$K_RELATIVE_DA Y _NAME

LIB$K_MERIDIAN_INDICATOR

LIB$K_OUTPUT_FQRMA T

LIB$K_INPUT_FORMAT

7

7

3

2

2

To specify the actual values for these elements, you must use an initialization
string of the following format:

"[delim] [string-1] [delim] [string-2] [delim] ... [delim] [string-n] [delim]"

In this format, [delim] is a delimiting character that is not in any of the
strings, and [string-n] is the spelling of the nth instance of the component.

For example, a string passed to this routine to specify the English spellings of
the abbreviated month names might be as follows:

"IJANIFEBIMARIAPRIMAYIJUNIJULIAUGISEPIOCTINOVIDECI"

The string must contain the exact number of elements for the associated
component, otherwise the error LIB$_NUMELEMENTS is returned. Note
that the string begins and ends with a delimiter. Thus, there is one more
delimiter than the number of string elements in the initialization string.

Specifying Input Format Mnemonics at Compile Time
To specify the input format mnemonics at compile time, the user must
initialize the component LIB$K_FORMAT_MNEMONICS with the
appropriate values. Table 3-5 lists the nine fields that must be initialized,
in the appropriate order, along with their default (English) values.

Table 3-5 Legible Format Mnemonics

Order Format Field Legible Mnemonic (Defaults)

1 Year yyyy

2 Numeric month MM

3 Numeric day DD

4 Hours (12- or 24-hour) HH

5 Minutes MM

6 Seconds SS

7 Fractional seconds cc
8 Meridian indicator AM/PM

9 Alphabetic month MONTH

3.3.3

3.3.2.3.2

Date/Time Manipulation
3.3 Date/Time Formatting Routines

For example, the following would be a valid definition of the component
LIB$K_FORMAT_MNEMONICS, using English as the natural language:

IYYYYIMMIDDIHHIMMISSICCIAM/PMIMONTHI

If the user were entering the same string using Austrian as the natural
language, the definition of the component LIB$K_FORMAT_MNEMONICS
would be as follows:

IJJJJIMMITTISSIMMISSIHHI IMONATI

Specifying Output Formats at Compile Time
To specify an output format at compile time, the user must preinitialize the
component LIB$K_QUTPUT_FORMAT. Two elements are associated with
this output format string. One describes the date format fields, the other the
time format fields. The order in which they appear in the string determines
the order in which they are output. A single space is inserted into the output
stream between the two elements, if the call to LIB$FORMAT_DATE_TIME
specifies that both be output. For example:

II I !DB-!MAAU-!Y 41 !H04:!MO:!SO.!C2 I"

(These mnemonics are discussed in Section 3.3.2.1.) This format string
represents the format used by the $ASCTIM system service for outputting
times. Note that the middle delimiter is replaced by a space in the resultant
output.

13-JAN-1988 14:54:09:24

The LIB$CONVERT_DATE_STRING Routine
LIB$CONVERT_DATE_STRING converts an absolute date/time string into a
VMS internal format date-time quadword. You can optionally specify which
fields of the input string can be defaulted (using the input-flags argument),
and what the default values should be (using the defaults argument). By
default, the time fields may be defaulted but the date fields may not.
Table 3-2 illustrates some examples of these default values.

The optional defaulted-fields argument to LIB$CONVERT_DATE_STRING
can be used to determine which input fields were defaulted. That is, the
defaulted-fields argument is a bit mask in which each set bit indicates that
the corresponding field was defaulted in the input date/time string.

If you want to use LIB$CONVERT_DATE_STRING to return the current
time as well as the current date, you can call the $NUMTIM system service
and pass the timbuf argument, which contains the current date and time,
to LIB$CONVERT_DATE_STRING as the defaults argument. This tells the
LIB$CONVERT_DATE_STRING routine to take the default values for the
date and time fields from the 7-word array returned by $NUMTIM.

3-13

3.3.4

3.3.5

Date/Time Manipulation
3.3 Date/Time Formatting Routines

The LIB$GET_DATE_FORMAT Routine

Format String

The LIB$GET_DATE_FORMAT routine enables you to retrieve information
about the currently selected input format. The string returned by
LIB$GET_DATE_FORMAT parallels the currently defined input format string,
consisting of the format punctuation (with most whitespace compressed) and
"legible" mnemonics representing the various format fields.

Based on the currently defined input date/time format,
LIB$GET_DATE_FORMAT returns a string, comprised of the mnemonics
that represent the current format. These mnemonics are listed in Table 3-5 in
Section 3.3.2.3. The following table illustrates some examples of input format
strings and their resultant mnemonic strings (using English as the default
language).

LIB$GET_DATE_FQRMAT Value

!MAU !DD, !Y4 !H04:!MO:!SO:!C2

!MNO-!DO-!Y2 !H04:!MO:!SO.!C2

!MNO/!DO/!Y2 !H02:!MO:!SO.!C2 !MIU

MONTH DD, YYYY4 HH:MM:SS:CC2

MM-DD-YYYY2 HH:MM:SS.CC2

MM/DD/YYYY2 HH:MM:SS.CC2 AM/PM

User-Defined Output Formats

3-14

In addition to the 40 date output formats and 20 time output formats
provided, users can define their own date or time, or both, output formats
using the logical names LIB$DATE_FORMAT_nnn and
LIB$TIME_FORMAT_nnn, where nnn ranges from 501 to 999. (That is,
values of nnn from 001 to 500 are reserved for use by DIGITAL.) The
mnemonics used to define output formats are listed in Section 3.3.2.1.

User-defined output formats must be defined as executive mode logicals, and
they must be defined in the table LNM$DT_FORMAT_TABLE. These formats
are normally defined from the command procedure SYSTARTUP.COM. The
following example illustrates the steps required of the system manager to
create a particular output format using French as the language:

$ DEFINE/EXEC/TABLE=LNM$DT_FORMAT_TABLE LIB$DATE_FORMAT_501 -
_$ "!WL, le !DD !MAL !Y4"
$ DEFINE/EXEC/TABLE=LNM$DT_FORMAT_TABLE LIB$TIME_FORMAT_501 -
_$ "!H04 heures et !MO minutes"

After the system manager defines the desired formats, the user can access
them by using the following commands:

$ DEFINE SYS$LANGUAGE FRENCH
$ DEFINE LIB$DT_FORMAT LIB$DATE_FORMAT_501, LIB$TIME_FORMAT_501

After completing these steps, a program outputting the date and time provides
the following results:

mardi, le 20 janvier 1988 13 heures et 50 minutes

In addition to creating their own date and time formats, users can also define
their own language tables (provided they have SYSNAM, SYSPRV, and
CMEXEC privileges). To create a language table, a user must define all the
logical names required.

Date/Time Manipulation
3.3 Date/Time Formatting Routines

For purposes of illustration, the following example defines a portion of the
Dutch language table. This table is included in its entirety in the set of
predefined languages provided with the international date/time formatting
routines.

$ CREATE/NAME/PARENT=LNM$SYSTEM_DIRECTORY/EXEC/PROT=(S:RWED,G:R,W:R) -
_$ LNM$LANGUAGE_DUTCH
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$WEEKDAYS_L -
_$ "maandag". "dinsdag". "woensdag". "donderdag". "vrij dag", -
_$ "zaterdag", "zondag"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$WEEKDAY_ABBREVIATIONS_L -
_$ "maa". "din". "woe". "don", "vri". "zat". "zon"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$MONTHS_L "januari", -
_$ "februari", "maart". "april". "mei", "juni", "juli", "augustus". -
_$ "september", "oktober", "november". "december"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$MONTH_ABBREVIATIONS_L -
_$ "jan". "feb", "mrt". "apr". "mei", "jun". "jul", "aug", "sep". -
_$ "okt". "nov". "dee"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$RELATIVE_DAYS_L -
_$ "gisteren", "vandaag", "morgen"

All logicals that are used to build a language are as follows:

LIB$WEEKDAVS_[U ILIC]
These logicals supply the names of the weekdays, spelled out in full (either
uppercase, lowercase, or mixed case). Weekdays must be defined in order,
starting with Monday.

LI B$WEEKDA Y _ABBREVIATIONS_[U ILIC]
These logicals supply the abbreviated names of the weekdays (either
uppercase, lowercase, or mixed case). Weekday abbreviations must be defined
in order, starting with Monday.

LI B$MONTHS_[U ILIC]
These logicals supply the names of the months, spelled out in full (either
uppercase, lowercase, or mixed case). Months must be defined in order,
starting with January.

LI B$MONTH _ABBREVIATIONS_[U ILIC]
These logicals supply the abbreviated names of the months (either uppercase,
lowercase, or mixed case). Month abbreviations must be defined in order,
starting with January.

LIB$Ml_[UILIC]
These logicals supply the spellings for the meridian indicators (either
uppercase, lowercase, or mixed case). Meridian indicators must be defined in
order; the first indicator represents the hoµrs 0:00:0.0 to 11:59:59.99, and the
second indicator represents the hours 12:00:00.00 to 23:59:59.99.

LI B$RELA TIVE_DAVS_[U ILIC]
These logicals supply the spellings for the relative days (either uppercase,
lowercase, or mixed case). Relative days must be defined in order: yesterday,
today, and tomorrow, respectively.

LIB$FORMAT_MNEMONICS
This logical supplies the abbreviations for the appropriate format mnemonics.
That is, the information supplied in this logical is used to specify a desired
input format in the user-defined language. The format mnemonics, along

3-15

Date/Time Manipulation
3.3 Date/Time Formatting Routines

3-16

with their English values, are listed in the order in which they must be
defined.

1 Year (YYYY)

2 Numeric month (MM)

3 Day of the month (DD)

4 Hour of the day (HH)

5 Minutes of the hour (MM)

6 Seconds of the minute (SS)

7 Parts of the second (CC)

8 Meridian indicator (AM/PM)

9 Alphabetic month (MONTH)

The English definition of LIB$FORMAT_MNEMONIC is therefore as follows:

$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_ENGLISH LIB$FORMAT_MNEMONICS -
_$ "YYYY", "MM", "DD", "HH", "MM", "SS", "CC", "AM/PM ", "MONTH"

4 Condition Handling Routines

This chapter describes the VAX Condition Handling Facility. It is divided into
four subsections:

Section 4.1 gives background information on the VAX Condition Handling
Facility. It discusses exception conditions, the condition value, and signaling.

Section 4.2 shows you how to use the VAX Condition Handling Facility
to write and set up your own condition handlers, initiate the signaling
mechanism, and signal application-specific messages.

Section 4.3 shows how to use Run-Time Library condition handling routines.
It also shows how to use the Run-Time Library routines that enable and
disable the signaling of certain hardware exceptions.

Section 4.4 explains how Run-Time Library routines handle exceptions.

Table 4-1 is a list of Run-Time Library condition handling and signaling
routines.

Table 4-1 Condition Handling and Signaling Routines

Routine Function

LIB$EST ABLISH

LIB$REVERT

LIB$DEC_OVER

LIB$FL T _UNDER

LIB$1NT _OVER

LIB$SIGNAL

LIB$STOP

LIB$DECODE_FAULT

LIB$FIXUP _FLT

LIB$MATCH_COND

LIB$SIG_ TO_STOP

LIB$SIG_ TO__:_RET

LIB$SIM_ TRAP

Establishes a condition handler

Deletes a condition handler

Enables or disables signaling of decimal overflow

Enables or disables signaling of floating-point
underflow

Enables or disables signaling of integer overflow

Signals an exception condition

Stops execution by using signaling

Analyzes the instruction context for fault

Changes floating-point reserved operand to a
specified value

Matches condition value

Converts a signaled condition to a condition that
cannot be continued

Converts any signal to return status

Simulates a floating-point trap

4.1 An Overview of the VAX Condition Handling Facility
VMS provides a set of signaling and condition handling routines and related
system services to handle exception conditions. This set of services is called
the VAX Condition Handling Facility. The VAX Condition Handling Facility

4-1

Condition Handling_ Routines
4.1 An Overview of the VAX Condition Handling Facility

4-2

is a part of the common run-time environment of VMS, which includes
Run-Time Library routines and other components of VMS.

The VAX Condition Handling Facility provides a single, unified method to
enable condition handlers, signal conditions, print error messages, change the
error behavior from the system default, and enable or disable detection of
certain hardware errors. The RTL and all layered products of VMS use the
VAX Condition Handling Facility for condition handling.

See the Introduction to VMS System Routines for the functional specification of
the VAX Condition Handling Facility.

The following terminology is important in the understanding of the VAX
Condition Handling Facility.

Condition Handling Terminology

Exception
An event detected by the hardware or software that changes the normal
flow of instruction execution. An exception is a synchronous event caused
by the execution of an instruction. When an exception occurs, the processor
transfers control by forcing a change in the flow of control from that explicitly
indicated in the currently executing process.

Some exceptions are relevant primarily to the current process and normally
invoke software in the context of the current process. An integer overflow
exception detected by the hardware is an example of an event that is reported
to the process. Other exceptions, such as page faults, are handled by the
operating system and are transparent to the user.

An exception may also be signaled by a routine (software signaling) by calling
the RTL routines LIB$SIGNAL or LIB$STOP.

Condition
An informational error state which exists when an exception occurs. The term
condition is preferred since the term exception implies an error. The term
exception condition is used interchangeably with the term condition.

Condition Handling
When a condition is detected during the execution of a routine, a signal can
be raised by the routine. (See "Signal a condition" under the list of functions
below.) The routine is then permitted to respond to the condition. The
routine's response is called "handling the condition."

The condition handlers are themselves routines; they have their own call
frame. Since they are routines, condition handlers can have condition
handlers of their own. This allows condition handlers to field exceptions
that might occur in themselves in a modular fashion. A routine may enable a
condition handler by placing the address of the condition handler in the first
longword of its stack frame.

Parallel mechanisms exist for uniform dispatching of hardware and software
exception conditions. Exceptions that are detected and signaled by hardware
transfer control to an exception service routine in the executive. Software
detected exception conditions are generated by calling the Run-Time
Library routines LIB$SIGNAL or LIB$STOP. Hardware and software
detected exceptions eventually execute the same exception dispatching code.
Therefore, a condition handler may handle an exception condition generated
by hardware or by software identically.

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

The VAX Condition Handling Facility and the related Run-Time Library
routines and System Services perform the following functions:

• Establish and call condition handler routines.

You can associate a condition handler for the currently executing routine
by specifying an address pointing to the handler, either in the routine's
stack frame or in one of the exception vectors. Then, when the routine
signals an exception, the VAX Condition Handling Facility calls the
condition handler associated with the routine. See Section 4.1.3 for more
information about exception vectors. See the VAX Architecture Reference
Manual for a description of the stack frame and exception vectors. See
Figure 4-2 for a sample stack scan for a condition handler.

Most high-level languages provide condition handling statements.
BASIC's ON ERROR GOTO and PL/I's ON statements may be used
to define condition handlers. If the language does not provide its own
condition handling, the RTL routine LIB$ESTABLISH may be used to
enable condition handling.

• Remove an established condition handler routine.

•

•

Using LIB$REVERT, you can remove a condition handler from a routine's
stack frame by setting the frame's handler address to zero. If yemr high
level language provides condition handling statements, you should use
them rather than LIB$REVERT.

Enable or disable the detection of arithmetic hardware exceptions .

Using Run-Time Library routines, you can enable or disable the signaling
of floating-point underflow, integer overflow, and decimal overflow,
which are detected by the VAX hardware.

Signal a condition .

When the hardware detects an exception, such as an integer overflow,
a signal is raised at that instruction. A routine may also raise a signal
by calling LIB$SIGNAL or LIB$STOP. Signals raised by LIB$SIGNAL
allow the condition handler to either terminate or resume the normal
flow of the routine. Signals raised by LIB$STOP require termination of
the operation raising the condition. The condition handler will not be
allowed to continue from the point of call to LIB$STOP.

• Display an informational message.

The system establishes default condition handlers before it calls the main
program. Because these default condition handlers provide access to the
system's standard error messages, the standard method for displaying a
message is by signaling if the condition has a severity of informational,
warning, or error. See Section 4.1.2 for the definition of the severity
field of a condition vector. The system default condition handlers resume
execution of the instruction after displaying the messages associated with
the signal. If the condition value indicates a severe condition, then the
image is exited after the display of the message. ·

• Display a stack traceback on errors.

The default operations of the LINK and RUN commands provide a
system-supplied handler (the traceback handler) to print a symbolic stack
traceback. The traceback shows the state of the routine stack at the point
where the condition occurred. The traceback information is displayed
along with the messages associated with the condition signaled.

4-3

4.1.1

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

• Compile customer-defined messages.

The VMS Message Utility allows you to define your own exception
conditions and the associated messages. Message source files contain the
condition values and their associated messages. See Section 4.2.4 for a
complete description of how to define your own messages.

• Unwind the stack.

A condition handler can cause a signal to be dismissed and the stack
to be unwound to the establisher or caller of the establisher of the
condition handler when it returns control to the VAX Condition Handling
Facility. During the unwinding.operation, the VAX Condition Handling
Facility scans the stack. If a condition handler is associated with a
frame, the system calls that handler before removing the frame. Calling
the condition handlers during the unwind allows a routine to perform
cleanup operations specific to a particular application, such as recovering
from noncontinuable errors or deallocating resources that were allocated
by the routine (such as virtual memory, event flags, and so forth). See
Section 4.2.2.3 for a description of the $UNWIND system service.

• Log error messages to a file.

The Put Message system service ($PUTMSG) permits any user-written
handler to include a message in a listing file. Such message logging can
be separate from the default messages the user receives. See Section 4.1.5
for a detailed description of the $PUTMSG system service.

Exception Conditions

4-4

An exception condition is an event, detected either by hardware or software,
that changes the normal flow of instruction execution. Some examples of
exception conditions are as follows:

• Arithmetic exception condition in a user-written program detected and
signaled by hardware (for example, floating-point overflow)

• · Error in a user argument to a Run-Time Library routine detected by
software and signaled by calling LIB$STOP (for example, a negative
square root)

• Error in Run-Time Library language-support routine, such as an I/O error
or an error in a data type conversion

• RMS success condition, record already locked

• RMS success condition, created file superseded an existing version

There are two standard methods for a DIGITAL- or user-written routine to
indicate that an exception condition has occurred:

1 Return a completion code to the calling program using the function value
mechanism

Most general-purpose Run-Time Library routines indicate exception
conditions by returning a condition value in RO. The calling program
then tests bit 0 of RO for success or failure. This method allows better
programming structure, because the flow of control can be changed
explicitly after the return from each call.

4.1.2

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

2 Signal the exception condition

The Condition Value

A condition may be signaled by calling the RTL routines LIB$SIGNAL
or LIB$STOP. Any condition handlers that may have been enabled are
then called by the VAX Condition Handling Facility. See Section 4.1.4.2
for actions that a condition handler may take. See also Figure 4-2 for
the order in which condition handlers are invoked by the VAX Condition
Handling Facility.

Exception conditions raised by hardware or software are signaled to the
routine identically.

For more details, see Sections 4.1.3 and 4.2.3.

Each exception condition has associated with it a unique 32-bit condition
value that identifies the exception condition. Each condition value has a
unique system-wide symbol and an associated message. The condition value
is used in both methods of indicating exception conditions, returning a status,
and signaling.

A condition value includes the following fields:

Field Bits

FAC_NO 27 through 16

MSG_NO 15 through 3

SEVERITY 2 through 0

Meaning

Indicates the system facility in which the
condition occurred. (See Table 2-1 for a list
of library facilities and the numbers associated
with them.)

Indicates the particular condition that occurred.

Indicates whether the condition is a success
(bit 0 = 1) or a failure (bit 0 = 0) as well as the
severity of the error, if any.

Figure 4-1 shows the format of the condition value.

4-5

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

4-6

Figure 4-1 Format of the Condition Value

31 28 27 3 2

cntrl condition identification

27 16 15 3

facility number I message number

Condition Value Fields

severity

0

severity

ZK-1795-84

The severity code. Bit 0 is set for success (logical true) and clear for failure
(logical false); bits 1 and 2 distinguish degrees of success or failure. Bits 0
through 2 represent an unsigned integer, which is interpreted as follows:

Name Code Meaning

STS$K_ WARNING 0 Warning

STS$K_SUCCESS 1 Success

STS$K_ERROR 2 Error

STS$K_INFO 3 Information

STS$K_SEVERE 4 Severe error

5,6,7 Reserved to DIGIT AL

condition identification
Identifies the condition uniquely on a systemwide basis.

message number
A status identification, that is, a description of the hardware exception
condition that occurred or a software-defined value. Message numbers
with bit 15 set are specific to a single facility. Message numbers with bit 15
clear are systemwide status codes.

facility number
Identifies the software component generating the condition value. Bit 27 is
set for customer facilities and clear for DIGITAL facilities.

cntrl
Four control bits. Bit 28 inhibits the message associated with the condition
value from being printed by the $EXIT system service. After using the
$PUTMSG system service to display an error message, the system default
handler sets this bit. It is also set in the condition value returned by a routine

4.1.3 Signaling

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

as a function value, if the routine has also signaled the condition, so that the
condition has been either printed or suppressed. Bits 29 through 31 must be
zero; they are reserved for DIGITAL.

When a software component completes execution, it returns a condition value
in this format. When a severity code of WARNING, ERROR, or SEVERE has
been generated, the status code returned describes the nature of the problem.
Your program can test this value to change the flow of control or to generate
a message. Your program can also generate condition values to be examined
by other routines and by the command language interpreter. Condition
values defined by customers must set bits 27 and 15 so that these values will
not conflict with values defined by DIGITAL.

Signaling can be initiated when hardware or software detects an exception
condition. In either case, the exception condition is said to be signaled by the
routine in which it occurred. If hardware detects the error, it passes control to
a condition dispatcher. If software detects the error, it calls one of the Run
Time Library signal-generating routines: LIB$SIGNAL or LIB$STOP. The
RTL signal-generating routines pass control to the same condition dispatcher.
When LIB$STOP is called, the severity code is forced to SEVERE, and control
cannot return to the routine that signaled the condition. See Section 4.2.2.1
for a description of how a signal may be dismissed and how normal execution
from the point of the exception condition may be continued.

When a routine signals, it passes to the VAX Condition Handling Facility the
condition value associated with the exception condition, as well as optional
arguments that can be passed to a condition handler. The VAX Condition
Handling Facility uses these arguments to build two data structures on the
stack: the signal argument vector and the mechanism argument vector. These
two vectors become the arguments that the VAX Condition Handling Facility
passes to condition handlers.

• The signal argument vector contains the information describing the nature
of the exception condition.

• The mechanism argument vector describes the state of the process at the
time the exception condition occurred.

These argument vectors are described in detail in Sections 4.1.3.1 and 4.1.3.2.

After the signal and mechanism argument vectors are set up, the VAX
Condition Handling Facility searches for enabled condition handlers. A
condition handler is a separate routine that has been associated with a routine
in order to take a specific action when an exception condition occurs. The
VAX Condition Handling Facility searches for condition handlers to handle
the exception condition, beginning with the primary exception vector of the
access mode in which the exception condition occurred. If this vector contains
the address of a handler, it is called. If the address is zero, or if the handler
resignals, then the VAX Condition Handling Facility repeats the process with
the secondary exception vector. Enabling vectored handlers is discussed in
detail in the Introduction to VMS System Routines. Because the exception
vectors are allocated in static storage, they are not generally used by modular
routines.

4-7

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

4-8

If neither the primary nor secondary vectored handlers handle the exception
condition by continuing program execution, then the VAX Condition
Handling Facility looks for stack frame condition handlers. It looks for
the address of a condition handler in the first longword of the routine stack
frame where the exception condition occurred. At this point, several actions
are possible, depending on the contents of the first longword:

• If the address is zero, then this routine has not set up a condition handler.
In this case, the VAX Condition Handling Facility continues the stack scan
by moving to the previous stack frame (that is, the stack frame of the
calling routine).

• If the address is not zero, then a condition handler is present. The VAX
Condition Handling Facility then calls this handler, which may resignal,
continue, or unwind (see Section 4.1.4.2).

The VAX Condition Handling Facility searches for and calls condition
handlers from each frame on the stack until the frame pointer is zero
(indicating the end of the call sequence). In that case, the VAX Condition
Handling Facility calls the vectored catch-all handler, which displays an
error message and causes the program to exit. Note that normally the frame
containing the stack catch-all handler is the end of the calling sequence or the
bottom of the stack. Section 4.1.4 explains the possible actions of default and
user condition handlers in more detail.

Figure 4-2 illustrates a stack scan for condition handlers in which the main
program calls routine A, which then calls routine B. A stack scan is initiated
when a hardware exception condition occurs or a call is made to LIB$SIGNAL
or LIB$STOP.

4.1.3.1

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

Figure 4-2 Sample Stack Scan for Condition Handlers

PROCESS STATICALLY - - STACK SCAN

ALLOCATED STORAGE I

~------~r:'
PRIMARY EXCEPTION VECTOR I

I
I

1 r:,

/

SECONDARY EXCEPTION VECTOR\

\

LAST CHANCE VECTOR

Signal Argument Vector

\
I ,
I
\
\

\

> I
I

I
I

• I
\

I
I • \

\

I
I

\
\

/

' ,,.1
I

I
I
I ,
\

\

I
I

I
I
I ,

\

' /

'

TOP OF STACK

PROCEDURE B
STACK FRAME

PROCEDURE A

STACK FRAME

MAIN
PROGRAM

STACK FRAME

:SP

0 :FP

0

USER

HANDLER

TRACEBACK
HANDLER

' CATCH-ALL VECTOR

/ / ,.,,,,. '"---------~
BOTTOM OF STACK

LAST CHANCE

HANDLER

ZK-1935-84

The signal argument vector contains information describing the nature
of the hardware or software condition. Figure 4-3 illustrates the open
ended structure of the signal argument vector, which can be from 3 to 257
longwords in length.

4-9

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

4-10

Figure 4-3 Format of the Signal Argument Vector

n = additional longwords

Condition value

Optional additional

arguments making up one

or more message sequences

PC

PSL

MACRO and BLISS

CHF$L-SIG-ARGS

CHF$L-SIG-NAME

Fields of the Signal Argument Vector

SIGARGS(1)

High-Level Languages

SIGARGS(1)

SIGARGS(2)

SIGARGS(n)

SIGARGS(n + 1)

ZK-1963-84

An unsigned integer (n) designating the number of longwords that follow in
the vector, including PC and PSL. For example, the first entry of a 4-longword
vector would contain a 3.

SIGARGS(2)
A condition value indicating the condition being signaled. Handlers should
always check to see if the condition is the one that they expect by examining
the STS$V_COND_ID field of the condition value (bits 27:3). Bits 2:0 are
the severity field. Bits 31:28 are control bits; they may have been changed
by an intervening handler and so should not be included in the comparison.
You can use the Run-Time Library routine LIB$MATCH_COND to match the
correct fields. If the condition is not expected, the handler should resignal by
returning FALSE (bit 0 = 0).

SIGARGS(3 to n-1)
Optional arguments that provide additional information about the condition.
These arguments consist of one or more message sequences. The format of a
message sequence is described in Section 4.1.5.

SIGARGS(n)
The Program Counter (PC) of the next instruction to be executed if any
handler (including the system-supplied handlers) returns with the status
SS$_CONTINUE. For hardware faults, the PC is that of the instruction
that caused the fault. For hardware traps, the PC is that of the instruction
following the one that caused the trap. For conditions signaled by calling
LIB$SIGNAL or LIB$STOP, the PC is the location following the CALLS or
CALLG instruction. See the VAX Architecture Reference Manual for a detailed
description of faults and traps.

SIGARGS(n+ 1)
The Processor Status Longword (PSL) of the program at the time that the
condition was signaled. See the VAX Architecture Reference Manual for more
about the Processor Status Longword.

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

Note: LIB$SIGNAL and LIB$STOP copy the variable-length argument list
passed by the caller. Then, before calling a condition handler, they
append the PC and PSL entries to the end of the list.

4.1.3.2

The formats for some conditions signaled by the operating system and the
Run-Time Library are shown in Figures 4-4 and 4-5.

Figure 4-4 Signal Argument Vector for the Reserved Operand Error
Conditions

3

SS$_ROPRAN D

PC

PSL

Additional longwords

Condition value

PC of instruction causing fault

ZK-1964-84

Figure 4-5 Signal Argument Vector for RTL Mathematics Routine
Errors

5

MTH$_abcmnoxyz

1

Caller's PC

PC

PSL

Additional longwords

Math condition value

Number of FAQ args

PC following JSB or CALL

PC following call to LIB$SIGNAL

ZK-1965-84

The caller's PC is the PC following the calling program's JSB or CALL to the
mathematics routine that detected the error. The PC is that following the call
to LIB$SIGNAL.

Mechanism Argument Vector
The mechanism argument vector contains all of the information describing
the state of the process at the time of the hardware or software signaled
condition. Figure 4-6 illustrates a mechanism argument vector, which is a
5-longword vector.

4-11

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

4-12

Figure 4-6 Format of a Mechanism Argument Vector

MACRO and BLISS

4 = additional longwords CHF$L-MCH-ARGS

Frame CHF$L-MCH-FRAME

Depth CHF$L-MCH-DEPTH

Saved RO CHF$L-MCH-SAVRO

Saved R1 CHF$L-MCH-SAVR1

Fields of the Mechanism Argument Vector

MCHARGS(1)

High-Level Languages

MCHARGS(1)

MCHARGS(2)

MCHARGS(3)

MCHARGS(4)

MCHARGS(5)

ZK-1966-84

An unsigned integer indicating the number of longwords that follow in the
vector. Currently, this number is always four.

MCHARGS(2)
The address of the stack frame of the routine that established the handler
being called. This address can be used as a base from which to reference the
local stack-allocated storage of the establisher, as long as the restrictions on
the handler's use of storage are observed (see Section 4.2.2).

MCHARGS(3)
The stack depth, which is the number of stack frames between the establisher
of the condition handler and the frame in which the condition was signaled.
To ensure that calls to LIB$SIGNAL and LIB$STOP appear as similar as
possible to hardware exception conditions, the call to LIB$SIGNAL or
LIB$STOP is not included in the depth.

If the routine that contained the hardware exception condition or called
LIB$SIGNAL or LIB$STOP also handled the exception condition, then the
depth is zero; if the exception condition occurred in a called routine and its
caller handled the exception condition, then the depth is 1; and so on. If a
system service signals an exception condition, a handler established by the
immediate caller is entered with a depth of 1.

The depth is -2 for a handler established using the primary exception vector,
-1 for the secondary vector, and -3 for the last-chance vector.

MCHARGS(4) and MCHARGS(5)
Copies of the contents of registers RO and Rl at the time of the exception
condition or the call to LIB$SIGNAL or LIB$STOP. When execution continues
or a stack unwind occurs, these values are restored to RO and R 1. Thus a
handler can modify these values to change the function value returned to a
caller.

4.1.4

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

Condition Handlers

4.1.4.1

When a routine is activated, the first longword in its stack frame is set to
zero. This longword is reserved to contain an address pointing to another
routine called the condition handler. If an exception condition is signaled
during the execution of the routine, the VAX Condition Handling Facility uses
the address in the first longword of the frame to call the associated condition
handler. The arguments passed to the condition handling routine are the
signal and mechanism argument vectors described in Sections 4.1.3.1 and
4.1.3.2.

There are various types of condition handlers that can be called for a given
routine:

• User-supplied condition handlers

You can write your own condition handler and set up its address in
the stack frame of your routine using the Run-Time Library routine
LIB$ESTABLISH or the mechanism supplied by your language.

• Language-supplied condition handlers

Many high-level languages provide a means for setting up handlers
that are global to a single routine. For example, BASIC's ON ERROR
GOTO and PL/I's ON statement provide language-specific condition
handlers. If your language provides a condition handling mechanism,
you should always use it. If you also try to establish a condition handler
using LIB$ESTABLISH, the two methods of handling exception conditions
conflict, and the results are unpredictable.

• System default condition handlers

VMS provides a set of default condition handlers. These take over if
there are no other condition handler addresses on the stack, or if all the
previous condition handlers have passed on (resignaled) the indication of
the exception condition.

Note: Do not use LIB$EST ABLISH to set up a condition handler in a language
that defines its own condition handling, such as BASIC, COBOL, and
PL/I.

Default Condition Handlers
VMS establishes the following default condition handlers each time a new
image is started. The default handlers are shown in the order they are
encountered when VMS processes a signal. These three handlers are the only
handlers that output error messages.

• Traceback handler

The traceback handler is established on the stack after the catch-all
handler. This enables the traceback handler to get control first. This
handler performs three functions in the order shown:

1 Outputs an error message using the Put Message ($PUTMSG) system
service. $PUTMSG formats the message using the Formatted ASCII
Output ($FAO) system service and sends the message to the devices
SYS$ERROR and SYS$0UTPUT (if it differs from SYS$ERROR).

2 Issues a symbolic traceback, which shows the state of the routine
stack at the time of the exception condition.

4-13

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

4.1.4.2

4-14

3 Decides whether to continue executing the image or to force an exit
based on the severity field of the condition value.

Severity Error Type Action

1 SUCCESS Continue

3 INFO Continue

0 WARNING Continue

2 ERROR Continue

4 SEVERE Exit

You can eliminate the traceback handler at link time by using the
/NOTRACEBACK qualifier in the link command.

• Catch-all handler

VMS establishes the catch-all handler in the first stack frame and thus
calls it last. This handler performs the same functions as the traceback
handler, except for the stack traceback. That is, it issues an error message
and decides whether to continue execution. It is called only if you link
with the /NOTRACEBACK qualifier.

• Last-chance handler

VMS establishes the last-chance handler with a system exception vector.
In most cases, this vector contains the address of the catch-all handler, so
that these two handlers are actually the same. The last-chance handler
is called only if the stack is invalid or all the handlers on the stack have
resignaled. If the debugger is present, the debugger's own last-chance
handler will replace the system last-chance handler.

Possible Condition Handler Actions
When a condition handler returns control to the VAX Condition Handling
Facility, the VAX Condition Handling Facility takes one of the following three
actions, depending on the value returned by the condition handler.

• Resignal the cc;mdition (RO = SS$_RESIGNAL or RO < 0 > = 0).

When a condition handler resignals, it passes control back to the VAX
Condition Handling Facility with a status code of SS$_RESIGNAL. This
indicates that the handler was unable to deal with the particular exception
condition, and it is passing the indication on to other handlers. A handler
can alter the severity of the signal before resignaling.

Section 4.2.2.2 contains more information about resignaling.

• Continue from the point of the signal (RO = SS$_CONTINUE or
RO <O> = 1).

When a condition handler returns the status SS$_CONTINUE, the VAX
Condition Handling Facility returns control to the routine that signaled
the exception condition, beginning at the instruction that initiated
signaling (in the case of faults) or at the instruction following the one
that initiated signaling (in the case of traps). A condition handler cannot
continue if the exception condition was signaled by calling LIB$STOP.

Section 4.2.2.1 contains more information about continuing.

• Unwind the call stack and dismiss the signal.

4.1.4.3

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

When a condition handler has already called $UNWIND, any return
status from the condition handler is ignored by the VAX Condition
Handling Facility. The VAX Condition Handling Facility now unwinds
the stack.

Unwinding the routine call stack removes call frames, starting with the
frame in which the condition occurred, and returns control to an earlier
routine in the calling sequence. You can unwind the stack whether the
condition was detected by hardware or signaled using LIB$SIGNAL or
LIB$STOP. Unwinding is the only way to continue execution after a
call to LIB$STOP. A condition handler unwinds by calling the Unwind
($UNWIND) system service.

Section 4.2.2.3 shows how to write a condition handler that unwinds the
call stack.

Interaction Between Default and User-Supplied Handlers
Several results are possible after a routine signals, depending on several
factors, such as the severity of the error, the method of generating the
signal, and the action of the condition handlers you have defined and
the default handlers. Given the severity of the condition and the method
of signaling, Table 4-2 lists all combinations of interaction between user
condition handlers and default condition handlers.

Table 4-2 Interaction Between Handlers and Default Handlers

User User Default
Severity handler handler handler No handler

of specifies specifies gets found
condition CONTINUE UNWIND control (bad stack)

Exception condition is signaled by a call to LIB$SIGNAL or
detected by hardware

Issue Call last-
WARNING, condition chance
INFO, or RETURN UNWIND message handler
ERROR

RETURN EXIT

Issue Call last-
condition chance

SEVERE RETURN UNWIND message handler

EXIT EXIT

Exception condition is signaled by a call to LI B$STOP

LIB$STOP Message: Issue Call last-
forces "Attempt to condition chance
severity continue UNWIND message handler
to from stop"
SEVERE EXIT EXIT EXIT

ZK-4257-85

4-15

4.1.5

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

Displaying Messages

4-16

The standard format for a VMS message is as follows:

%FACILITY-L-IDENT, message-text

FACILITY

L

IDENT

message-text

Abbreviated name of the software component that issued the
message.

Indicator showing the severity level of the exception condition
that caused the message.

Symbol of up to nine characters representing the message.

Brief definition of the cause of the message.

The message can also include up to 255 formatted-ASCII-output (FAO)
arguments. These arguments can be used to display variable information
about the condition that caused the message. In the following examples, the
file specification is an FAO argument:

%TYPE-W-OPENIN, error opening _DBO: [FOSTER]AUTHOR.DAT; as input

Signaling provides a consistent and unified method for displaying messages.
This section describes how the VAX Condition Handling Facility translates the
original signal into a human-readable message.

When any software detects an exception condition, it signals the exception
condition to the user by calling LIB$SIGNAL or LIB$STOP. The signaling
routine passes a signal argument list to these Run-Time Library routines. This
signal argument list is made up of the condition value and a set of optional
arguments that provide information to condition handlers. Signaling is used
to signal exception conditions generated by DIGITAL-supplied software.

You can use the signaling mechanism to signal messages specific to your
application. Further, you can chain your own message onto a system
message. For more information, see Section 4.2.4.

LIB$SIGNAL and LIB$STOP copy the signal argument list and use it to create
the signal argument vector. The signal argument vector serves as part of the
input to the user-established handlers and the system default handlers.

If all intervening handlers have resignaled, the system default handlers take
control. The system-supplied default handlers are the only handlers that
should actually issue messages, whether the exception conditions are signaled
by DIGITAL-supplied software or your own programs. That is, a routine
should signal exception conditions, rather than issuing its own messages. In
this way, other applications can call the routine and override its signal in
order to change the messages. Further, this technique makes the choice of
formatting details and wording centralized and consistent.

The system default handlers pass the signal argument vector to the Put
Message ($PUTMSG) system service. $PUTMSG formats and displays the
information in the signal argument vector.

$PUTMSG performs the following steps:

1 Interprets the signal argument vector as a series of one or more message
sequences. Each message sequence starts with a 32-bit, systemwide
condition value that identifies a message in the system message file.

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

2 Obtains the text of the message using the Get Message ($GETMSG)
system service. The message text definition is actually a SYS$FAO
control string. It may contain embedded FAO (formatted ASCII output)
directives. These directives determine how the FAO arguments in the
signal argument vector are formatted. (See the $FAQ system service in
the VMS System Services Reference Manual.)

3 Calls $FAQ to format the message, substituting the values from the signal
argument list.

4 Issues the message on device SYS$0UTPUT. If SYS$ERROR is different
from SYS$0UTPUT, and the severity field in the condition value is not
SUCCESS, $PUTMSG also issues the message on device SYS$ERROR.

The VMS System Services Reference Manual describes $PUTMSG in detail.

Each message sequence in the signal argument list produces one line of
output. Figure 4-7 illustrates the three possible message sequence formats.

Figure 4-7 Formats of Message Sequences

No FAO (Formatted ASCII Output) arguments

Condition value

Variable number of FAO arguments

Condition value

FAO_count

FAO arg 1

FAO arg 2

FAO arg n

VAX-11 RMS error with STV (Status Value)

VAX-11 RMS Condition Value (STS)

Associated status value (STV)

Note that a condition value of
zero results in no message.

Condition value

Number of FAQ arguments

Condition value

One FAQ argument or
SS$... condition value

ZK-1967-84

4-17

4.1.6

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

RMS system services return two related completion values, the completion
code and the associated status value. The completion code is returned in
RO, using the function value mechanism. The same value is also placed in
Completion Status Code field of the RMS File Access Block or Record Access
Block associated with the file (FAB$L_STS or RAB$L_STS). The status value
is returned in the Status Value field of the same FAB or RAB
(FAB$L_STV or RAB$L_STV). The meaning of this secondary value is based
on the corresponding STS (Completion Status Code) value. Its meaning could
be any of the following:

• An operating system condition value of the form SS$_ ...

• An RMS value, such as the size of a record which exceeds the buffer

• Zero

Rather than have each calling program determine the meaning of the STV
value, $PUTMSG performs the necessary processing. Therefore, this STV
value must always be passed in place of the FAO argument count. In other
words, a RMS message sequence always consists of two arguments (passed
by immediate value): an STS value and an STV value.

Multiple Active Signals

4-18

A signal is said to be active until the routine that signaled regains control or
until the stack is unwound or the image exits. A second signal can occur
while a condition handler or a routine it has called is executing. This
situation is called multiple active signals. When this situation occurs, the
stack scan is not performed in the usual way. Instead, the frames that were
searched while processing all of the previous exception conditions are skipped
when the current exception condition is processed. This is done in order to
avoid recursively reentering a routine which is not reentrant. For example,
FORTRAN code is typically not recursively reentrant. If a FORTRAN handler
were called while another activation of that handler was still going, the results
would be unpredictable.

The modified search routine is best illustrated with an example. Assume the
following calling sequence:

1 Routine A calls routine B, which calls routine C.

2 Routine C signals an exception condition (signal S), and the handler for
routine C (CH) resignals.

3 Control passes to BH, the handler for routine B. The call frame for
handler BH is located on top of the signal and mechanism arrays for
signal S. The saved frame pointer in the call frame for BH points to the
frame for routine C.

4 BH calls routine X; routine X calls routine Y.

5 Routine Y signals a second exception condition (signal T). Figure 4-8
illustrates the stack contents after the second exception condition is
signaled.

Condition Handling Routines
4.1 An Overview of the VAX Condition Handling Facility

Figure 4-8 Stack After Second Exception Condition Is Signaled

<Signal T >

b§
<Signal S >

ffi
ZK-1968-84

Normally, the VAX Condition Handling Facility searches all currently
active frames for condition handlers, including B and C. If this happens,
however, BH is called again. At this point, you skip the condition
handlers that have already been called. Thus, the search for condition
handlers should proceed in the following order:

YH
XH
BHH (the handler for routine B's handler)
AH

6 The search now continues in its usual fashion. The VAX Condition
Handling Facility examines the primary and secondary exception vectors,
then frames Y, X, and BH. Thus handlers YH, XH, and BHH are called.
Assume that these handlers resignal.

7 The VAX Condition Handling Facility now skips the frames that have
already been searched and resumes the search for condition handlers in
routine A's frame. The depths that are passed to handlers as a result of
this modified search are 0 for YH, 1 for XH, 2 for BHH, and 3 for AH.

Because of the possibility of multiple active signals, you should be careful
if you use an exception vector to establish a condition handler. Vectored
handlers are called, not skipped, each time an exception occurs.

4-19

Condition Handling Routines
4.2 Using the VAX Condition Handling Facility

4.2 Using the VAX Condition Handling Facility

4.2.1

4.2.2

This section shows you how to build condition handling into your program.
This process involves one or more of the following steps:

• Establishing the handler in the stack frame of your routine

• Writing a condition handling routine or choosing one of the Run-Time
Library routines that handles exception conditions

• Including a call to a Run-Time Library signal generating routine

• Using the message utility to define your own exception conditions

• Including a call to the $PUTMSG system service to modify or log the
system error message

Establishing a Condition Handler
A condition handler is established when its address has been placed in
the first longword of the stack frame of the routine with which it is to be
associated. To establish a condition handler, call the Run-Time Library
routine LIB$ESTABLISH, using the name of the handler as an argument.
LIB$ESTABLISH returns as a function value the address of the former handler
established for the routine or zero if no handler existed. Some languages
provide a mechanism for setting up a condition handler. If so, use the
language mechanism rather than LIB$ESTABLISH.

The new condition handler remains in effect for your routine until you call
LIB$REVERT or control returns to the caller of the caller of LIB$ESTABLISH.
Once this happens, you must call LIB$ESTABLISH again if the same (or a
new) condition handler is to be associated with the caller of LIB$ESTABLISH.

The Run-Time Library provides several condition handlers and routines that
a condition handler can call. These routines take care of several common
exception conditions. Section 4.3 describes these routines.

Writing a Condition Handler

4-20

You can write a condition handler to take action when an exception condition
is signaled. When the exception condition occurs, the VAX Condition
Handling Facility sets up the signal argument vector and mechanism
argument vector and begins the search for a condition handler. Therefore,
your condition handling routine must declare variables to contain the two
argument vectors. Further, the handler must indicate the action to be taken
when it returns to the VAX Condition Handling Facility. The handler uses
its function value to do this. Thus, the calling sequence for your condition
handler has the following format:

handler signal-args ,mechanism-args

signal-args
The address of a vector of longwords indicating the nature of the condition.
See Section 4.1.3.1, Signal Argument Vector, for a detailed description.

4.2.2.1

Condition Handling Routines
4.2 Using the VAX Condition Handling Facility

mechanism-args
The address of a vector of longwords that indicate the state of the process at
the time of the signal. See Section 4.1.3.2, Mechanism Argument Vector, for
more details.

result
A condition value. Success (bit 0 = 1) causes execution to continue at the
PC and failure (bit 0 = 0) causes the condition to be resignaled. That is, the
system resumes the search for other handlers. If the handler calls the Unwind
($UNWIND) system service, the return value is ignored and the stack is
unwound. See Section 4.2.2.3.

Handlers can modify the contents of either the signal-args vector or the
mechanism-args vector.

In order to protect compiler optimization, a condition handler and any
routines that it calls can only reference arguments explicitly passed to
handlers. They cannot reference COMMON or other external storage, nor
can they reference local storage in the routine that established the handler,
unless the compiler considers the storage to be volatile. Compilers that do not
adhere to this rule must ensure that any variables referenced by the handler
are always kept in memory, not in a register.

As mentioned previously, a condition handler can take one of three actions:

• Continue execution

• Resignal the exception condition and resume the stack scanning operation

• Call $UNWIND to unwind the call stack to an earlier frame

The sections that follow show how to write condition handlers to perform
these three operations.

Continuing Execution
To continue execution from the instruction following the signal, with no
error messages or traceback, the handler returns with the function value
SS$_CONTINUE (bit 0 = 1). If, however, the condition was signaled with a
call to LIB$STOP, the SS$_CONTINUE return status causes an error message
(ATTEMPT TO CONTINUE FROM STOP) and the image exits. The only way
to continue from a call to LIB$STOP is for the condition handler to request a
stack unwind.

If execution is to continue after a hardware fault (such as a reserved operand
fault), the condition handler must correct the cause of the condition before
returning the function value SS$_CONTINUE or requesting a stack unwind.
Otherwise, the instruction that caused the fault will be executed again.

Note: On most VAX machines, hardware floating-point traps have been changed
to hardware faults. If you still want floating-point exception conditions
to be treated as traps, use LIB$SIM_ TRAP to simulate the action of
floating-point traps.

4-21

Condition Handling Routines
4.2 Using the VAX Condition Handling Facility

4.2.2.2

4.2.2.3

4-22

Resignaling
Condition handlers check for specific errors. If the signaled condition is not
one of the expected errors, the handler resignals. That is, it returns control to
the VAX Condition Handling Facility with the function value SS$_RESIGNAL
(with bit 0 clear). To alter the severity of the signal, the handler modifies the
low three bits of the condition value and resignals.

For an example of resignaling, see Section 4.1.6.

Unwinding the Call Stack
A condition handler can dismiss the signal by calling the system service
$UNWIND. The stack unwind is initiated when a condition handler that has
called $UNWIND returns to VAX Condition Handling Facility. Unwinding
the routine call stack removes call frames and returns control to the routine
specified in the depth argument of $UNWIND. You can unwind the stack
whether the condition was detected by hardware or signaled by LIB$SIGNAL
or LIB$STOP. Unwinding the stack is the only way to continue execution
after a call to LIB$STOP.

Normally, when a condition handler dismisses the signal, control is returned
to the establisher or caller of the establisher of the condition handler and
normal execution resumes.

Your condition handler unwinds by calling the Unwind ($UNWIND) system
service. The VMS System Services Reference Manual describes $UNWIND in
detail. The Program Counter (PC) of the continuation point may also be
specified to the $UNWIND service.

When a condition handler calls $UNWIND and returns to the VAX Condition
Handling Facility, the return status is ignored and the following actions occur:

1 The VAX Condition Handling Facility scans each call frame in the call
stack, beginning with the one in which the condition occurred, to see if a
condition handler has been established.

2 If a handler has been established, the VAX Condition Handling Facility
calls it, placing the value SS$_UNWIND in the condition value field
of the signal argument vector. This indicates that the stack is being
unwound.

3 The handler performs the cleanup operations required by the routine
that established it. For example, the handler should deallocate any
processwide resources that have been allocated. Then, the handler
returns control to the VAX Condition Handling Facility.

4 After control returns to VAX Condition Handling Facility or if there is no
handler established for the routine, the routine's stack frame is removed
from the stack.

5 When a condition handler is called during the unwinding operation, the
condition handler must not generate a new signal. A new signal would
result in unpredictable behavior.

Condition Handling Routines
4.2 Using the VAX Condition Handling Facility

The number of frames removed depends on the arguments passed to
$UNWIND.

• If both arguments are omitted, the stack is unwound to the caller of the
routine that established the handler.

1 Routine A calls routine B.

2 Routine B establishes handler C.

3 An exception condition occurs during the execution of routine B.

4 The VAX Condition Handling Facility calls handler C.

5 Handler C calls $UNWIND with no arguments and returns.

A call to $UNWIND which contains no depth argument is a request
by the handler to unwind to the caller of its establisher once the
handler returns. Therefore, when handler C returns, handler C is
called again with an SS$_UNWIND condition code. When handler
C returns, the call frame for routine B is removed and control is
resumed at the point of call to routine B at routine A.

• If the first argument depth is specified, this argument specifies the
number of frames to be removed.

• If the second argument new-PC is specified, it indicates the address of
the instruction to which control will return after the unwind.

An unwind to the caller of the establisher of the condition handler causes the
frame of the routine that established the handler to be unwound. In this case,
the handler will be called twice: once when the VAX Condition Handling
Facility calls it to handle the raised condition, and again when the frame in
which the handler is established is removed. In the example above, handler
C is called twice.

Handlers established by the primary, secondary, or last-chance vectors are
not called, since they are not removed during an unwind operation.

While it is unwinding the stack, the VAX Condition Handling Facility ignores
any function value returned by a condition handler. For this reason, a handler
cannot both resignal and unwind. Thus, the only way for a handler to both
issue a message and perform an unwind is to call LIB$SIGNAL and then call
$UNWIND. If your program calls $UNWIND before calling LIB$SIGNAL, the
result is unpredictable.

When the VAX Condition Handling Facility calls the condition handler
established for each frame during unwind, the call is of the standard form,
described in Section 4.2.1. The arguments passed to the condition handler
(the signal and mechanism argument vectors) are shown in Figure 4-9.

If the handler is to specify the function value of the last function to be
unwound, it should modify the saved copies of RO and Rl
(CHF$L_MCH_SAVRO and CHF$L_MCH_SAVR1) in the mechanism
argument vector. RO and Rl are restored from the mechanism argument
vector at the end of the unwind.

4-23

4.2.3

Condition Handling Routines
4.2 Using the VAX Condition Handling Facility

Figure 4-9 Arguments Passed to Condition Handler During Unwind

signal-args

SS$_UNWIND

mechanism-args

4

Establisher's F P

0

RO

Rl

Number of following longwords

Condition value

Number of following longwords

Frame Pointer of the frame that established the handler

Always zero

RO that unwind will restore

R1 that unwind will restore

ZK-1969-84

Generating Signals

4-24

When software detects an exception condition, it normally calls one of the
Run-Time Library signal-generating routines, LIB$SIGNAL or LIB$STOP, to
initiate the signaling mechanism. This call indicates to the calling program
that the exception condition has occurred. Your program can also call one
of these routines explicitly to indicate an exception condition. Furthermore,
some languages have built-in methods for signaling errors specific to the
language.

When your program wants to issue a message and allow execution to continue
after handling the condition, it calls the standard routine, LIB$SIGNAL. The
calling sequence for LIB$SIGNAL is the following:

LIB$SIGNAL condition-value! [,number!] [,FAO-arg1 ... ,FAO-argn1]
[,condition-value2] [,number2] [,FAO-arg2 ... ,FAO-argn2]

Only the condition-valuel argument must be specified; other arguments are
optional. The numberl argument, if specified, contains the number of FAO
arguments that will be associated with condition-valuel. The condition
value2 argument is optional; it may be specified with or without the number2
or F AO-arg2 arguments. The number2 argument, if specified, contains the
number of FAO arguments that will be associated with condition-value2.
You may specify condition-value3, condition-value4, condition-values, and
so on, along with their corresponding number and FAO arguments.

For further information about the arguments to LIB$SIGNAL, refer to the
description of LIB$SIGNAL in the reference section of this manual.

Condition Handling Routines
4.2 Using the VAX Condition Handling Facility

condition-value

VMS Usage:

type:

access:

mechanism:

cond_value

longword (unsigned)

read only

by value

VAX 32-bit condition value. The condition-value argument is an unsigned
longword that contains this condition value. Section 4.1.2 explains the format
of a VAX condition value.

number

VMS Usage:

type:

access:

mechanism:

longword_signed

longword integer (signed)

read only

by value

Number of FAO arguments associated with the condition value. The number
argument is a signed longword integer that contains this number. If omitted
or specified as zero, no FAO arguments follow.

The maximum number of FAO arguments specified must not exceed 253. See
Sections 4.1.5 and 4.2.4 for more information about FAQ arguments.

FAO-arg

VMS Usage:

type:

access:

mechanism:

varying_arg

unspecified

read only

by value

Additional FAO (formatted ASCII output) arguments that are associated with
the specified condition value. The FAO-arg argument is the address of a
signed longword integer or a character string that contains these additional
FAO arguments. Section 4.1.5 explains the message format.

When your program wants to issue a message and stop execution
unconditionally, it calls LIB$STOP. The calling sequence for LIB$STOP is
as follows:

LIB$STOP condition-value! [,number1] [,FAO-arg1 ... ,FAO-argn1]
[,condition-value2] [,number2] [,FAO-arg2 ... ,FAO-argn2]

Only the condition-valuel argument must be specified; other arguments are
optional. The numberl argument, if specified, contains the number of FAO
arguments that will be associated with condition-valuel. The condition
value2 argument is optional; it may be specified with or without the number2
or F AO-arg2 arguments. The number2 argument, if specified, contains the
number of FAO arguments that will be associated with condition-value2.
You may specify condition-value3, condition-value4, condition-values, and
so on, along with their corresponding number and F AO arguments.

For further information about the arguments to LIB$STOP, refer to the
description of LIB$STOP in the LIB$ Reference Section of this manual.

4-25

4.2.4

Condition Handling Routines
4.2 Using the VAX Condition Handling Facility

In both cases, condition-value indicates the condition that is being signaled.
However, LIB$STOP always sets the severity of condition-value to SEVERE
before proceeding with the stack-scanning operation.

The FAO arguments describes the details of the exception condition. These
are the same arguments that are passed to the VAX Condition Handling
Facility as part of the signal argument vector. The system default condition
handlers pass them to $PUTMSG, which uses them to issue a system
message.

Unlike most routines, LIB$SIGNAL and LIB$STOP preserve RO and Rl as
well as the other registers. Therefore, a call to LIB$SIGNAL allows the
debugger to display the entire state of the process at the time of the exception
condition. This is useful for debugging checks and gathering statistics.

The behavior of LIB$SIGNAL is the same as that of the exception dispatcher
that performs the stack scan after hardware detects an exception condition.
That is, the system scans the stack in the same way and the same arguments
are passed to each condition handler. This allows a user to write a single
condition handler to detect both hardware and software conditions.

Signaling User-Defined Messages

4-26

Section 4.1.5 explains how the VAX Condition Handling Facility displays
messages. The signal argument list passed to LIB$SIGNAL or LIB$STOP
can be seen as one or more message sequences. Each message sequence
consists of a condition value, an FAO count, which specifies the number of
FAO arguments to come, and the FAO arguments themselves. (The FAO
count is omitted in the case of SYSTEM and RMS messages.) The message
text definition itself is actually a SYS$FAO control string, which may contain
embedded $FAO directives. The VMS System Services Reference Manual
describes the Formatted ASCII Output ($FAO) system service in detail.

The VMS Message Utility is provided for compiling message sequences
specific to your application. When you have defined an exception condition
and used the VMS Message Utility to associate a message with that exception
condition, your program can call LIB$SIGNAL or LIB$STOP to signal the
exception condition. Then the system default condition handlers will display
your error message in the standard VMS format.

To use the Message Utility, follow these steps:

1 Create a source file that specifies the information used in messages,
message codes, and message symbols.

2 Use the MESSAGE command to compile this source file.

3 Link the resulting object module, either by itself or with another object
module containing a program.

4 Run your program so that the messages are accessed, either directly or
through the use of pointers.

See the description of the VMS Message Utility in the VMS Message Utility
Manual.

You signal a message that is defined in a message source file by calling
LIB$SIGNAL or LIB$STOP, as for any software-detected exception condition.

4.2.5

Condition Handling Routines
4.2 Using the VAX Condition Handling Facility

A signal argument list may contain one or more condition values and FAO
arguments. Each condition value and its FAO arguments is "chained" to the
next condition value and its FAO arguments. You can use chained messages
to provide more specific information about the exception condition being
signaled, along with a general message.

The following message source file defines an exception condition
PROG __ FAIGETMEM:

.FACILITY PROG,1 /PREFIX=PROG __

.SEVERITY FATAL

. BASE 100

FAIGETMEM <failed to get !UL bytes of memory>/FAO_COUNT=1

.END

This source file sets up the exception message as follows:

• The .FACILITY directive specifies the facility, PROG, and its number, 1.
It also adds the /PREFIX qualifier to determine the prefix to be used in
the message.

• The .SEVERITY directive specifies that PROG __ FAIGETMEM is a fatal
exception condition. That is, the SEVERITY field in the condition value
for PRQG __ FAIGETMEM is set to SEVERE (bits 0:3 = 4).

• The BASE directive specifies that the condition identification numbers in
the PROG facility will begin with 100.

• FAIGETMEM is the symbol name. This name is combined with the
prefix defined in the facility definition to make the message symbol. The
message symbol becomes the symbolic name for the condition value.

• The text in angle brackets is the message text. This is actually a SYS$FAO
control string. When $PUTMSG calls the $FAO system service to fortnat
the message, $FAO includes the FAO argument from the signal argument
vector and formats the argument according to the embedded FAO
directive (!UL).

• The .END statement terminates the list of messages for the PROG facility.

Logging Error Messages to a File

You can write a condition handler to obtain a copy of a system error message
text and write the message into an auxiliary file, such as a listing file. In this
way, you can receive identical messages at the terminal (or batch log file) and
in the auxiliary file.

To log messages, you must write a condition handler and an action
subroutine. Your handler calls the Put Message ($PUTMSG) system service
explicitly. The operation of $PUTMSG is described in Section 4.1.5. The
handler passes to $PUTMSG the signal argument vector and the address of
the action subroutine. $PUTMSG passes to the action subroutine the address
of a string descriptor which contains the length and address of the formattnd
message. The action subroutine can scan the message, copy it into a log file,
or both.

4-27

Condition Handling Routines
4.2 Using the VAX Condition Handling Facility

It is important to keep the display messages centralized and consistent. Thus,
you should use only $PUTMSG to display or log system error messages.
Further, because the system default handlers call $PUTMSG to display error
messages, your handlers should avoid displaying the error messages. There
are two ways to do this:

1 Your handler should not call $PUTMSG directly to display an error
message. Instead, your handler should resignal the error. This allows
other calling routines to change or suppress the message, or recover from
the error. The system default condition handlers will display the message.

2 If the action subroutine that you supply to $PUTMSG returns a success
code, $PUTMSG displays the error message on SYS$0UTPUT or
SYS$ERROR, or both. Thus, your action routine should process the
message and then return a failure code, so that $PUTMSG will not
display the message at this point.

Figure 4-10 shows the sequence of events involved in calling $PUTMSG to
log an error message to a file.

Figure 4-10 Using a Condition Handler to Log an Error Message

CALL

Procedure A calls Procedure B.

An exception occurs during Procedure B. CHF calls
Handler B.

Handler B calls $PUTMSG and passes signal argument
vector and address of action subroutine.

$PUTMSG obtains error message text and passes one
line at a time to action subroutine.

Action subroutine logs the line of message text to a
file.

4-28

Handler A

Procedure A

Handler B

Procedure B

$PUTMSG

User's
Action

Subroutine

RETURN

Handler B resignals the error. The CHF continues the
stack scan by calling the handler established for Pro
cedure A. The error messages are displayed by the
default handlers.

$PUTMSG returns to Handler B.

Action subroutine returns FAILURE status to
$PUTMSG. No error message is displayed.

ZK· 1934-84

Condition Handling Routines
4.3 Run-Time Library Condition Handling Routines

4.3 Run-Time Library Condition Handling Routines

4.3.1

4.3.2

The Run-Time Library provides several routines that can be established as
condition handlers or called from a condition handler to handle signaled
exception conditions. This section shows how to use these routines.

Convert a Floating-Point Fault to a Floating-Point Trap
A trap is an exception condition that is signaled after the instruction that
caused it has finished executing. A fault is an exception condition that is
signaled during the execution of the instruction. When a trap is signaled,
the PC (Program Counter) in the signal argument vector points to the next
instruction after the one that caused the exception condition. When a fault is
signaled, the PC in the signal argument vector points to the instruction that
caused the exception condition. See the VAX Architecture Reference Manual
for more information about faults and traps.

LIB$SIM_TRAP can be established as a condition handler, or called from a
condition handler, to convert a floating-point fault to a floating-point trap.
After LIB$SIM_ TRAP is called, the PC points to the instruction after the
one that caused the exception condition. Thus your program can continue
execution without fixing up the original condition. LIB$SIM_TRAP intercepts
only floating overflow, underflow, and divide-by-zero faults.

Change a Signal to a Return Status
When it is preferable to detect errors by signaling, but the calling routine
expects a returned status, LIB$SIG_TQ_RET may be used by the routine that
signals. LIB$SIG_TQ_RET is a condition handler that converts any signaled
condition to a return status. The status is returned to the caller of the routine
that established LIB$SIG_TQ_RET. You may establish LIB$SIG_TQ_RET as
a condition handler by specifying it in a call to LIB$ESTABLISH.

LIB$SIG_TQ_RET may also be called from another condition handler.
LIB$SIG_ TQ_RET is called from a condition handler, the signaled condition
is returned as a function value to the caller of the establisher of that handler
when the handler returns to the VAX Condition Handling Facility. When
a signaled exception condition occurs, LIB$SIG_TQ_RET routine does the
following:

• Places the signaled condition value in the image of RO that is saved as
part of the mechanism argument vector.

• Calls the Unwind ($UNWIND) system service with the default arguments.
After returning from LIB$SIG_TO_RET (when it is established as a
condition handler) or after returning from the condition handler that
called LIB$SIG_TQ_RET (when LIB$SIG_TQ_RET is called from a
condition handler), the stack unwinds to the caller of the routine that
established the handler.

Your calling routine can now test RO, as if the called routine had returned a
status, and specify an error recovery action.

4-29

4.3.3

4.3.4

4.3.5

4.3.6

Condition Handling Routines
4.3 Run-Time Library Condition Handling Routines

Change a Signal to a Stop
LIB$SIG_TQ_STOP causes a signal to appear as though it had been signaled
by a call to LIB$STOP.

LIB$SIG_TO_STOP may be enabled as a condition handler for a routine
or it may be called from a condition handler. When a signal is generated by
LIB$STOP, the severity code is forced to SEVERE and control cannot return to
the routine that signaled the condition. See Section 4.2.2.1 for a description
of continuing normal execution after a signal.

Match Condition Values
LIB$MATCH_COND checks for a match between two condition values to
allow a program to branch according to the condition found. If no match
is found, the routine returns zero. The routine only matches the condition
identification field (STS$V_COND_ID) of the condition value; it ignores the
control bits and the severity field. If the facility-specific bit
(STS$V_FAC_SP = bit 15) is clear in cond-val (meaning that the condition
value is systemwide}, LIB$MATCH_CQND ignores the facility code field
(STS$V_FAC_NO =bits 27:17) and compares only the STS$V_MSG_ID
fields (bits 15:3).

Correct a Reserved Operand Condition
After a signal of SS$_ROPRAND during a floating-point instruction,
LIB$FIXUP_FLT finds the operand and changes it from -0.0 to a new value
or to +0.0.

Decode the Instruction That Generated a Fault
LIB$DECODE_FAULT locates the operands for an instruction that caused
a fault and passes the information to a user action routine. When called
from a condition handler, LIB$DECODE_FAULT locates all the operands
and calls an action routine that you supply. Your action routine performs
the steps necessary to handle the exception condition and returns control to
LIB$DECODE_FAULT. LIB$DECODE_FAULT then restores the operands
and the environment, as modified by the action routine, and continues
execution of the instruction.

4.4 How Run-Time Library Routines Handle Exceptions

4-30

Most general-purpose Run-Time Library routines handle errors by returning
a status in RO. In some cases, however, exceptions that occur during the
execution of a Run-Time Library routine are signaled. This section tells how
Run-Time Library routines signal exception conditions.

Some calls to the Run-Time Library do not or cannot specify an action to be
taken. In this case, the Run-Time Library will signal the proper exception
condition using the VAX signaling mechanism.

4.4.1

Condition Handling Routines
4.4 How Run-Time Library Routines Handle Exceptions

In order to maintain modularity, the Run-Time Library does not use exception
vectors, which are processwide data locations. Thus the Run-Time Library
itself does not establish handlers using the primary, secondary, or last-chance
exception vectors.

Exception Conditions Signaled from Mathematics Routines

4.4.1.1

4.4.1.2

Mathematics routines return function values in register RO or registers RO /Rl,
unless the return values are larger than 64 bits. For this reason, mathematics
routines cannot use RO to return a completion status and must signal all
errors. In addition, all mathematics routines signal an error specific to the
MTH$ facility, rather than a general hardware error.

Integer Overflow and Floating-Point Overflow
Although the hardware normally detects integer overflow and floating-point
overflow errors, Run-Time Library mathematics routines are programmed
with a software check to trap these conditions before the hardware signaling
process can occur. This means that they call LIB$SIGNAL, instead of allowing
the hardware to initiate signaling.

The software check is needed because JSB routines cannot set up condition
handlers. The check permits the JSB mathematics routines to add an extra
stack frame so that the error message and stack traceback will appear as if a
CALL instruction had been performed. Because of the software check, JSB
routines will not cause a hardware exception condition even when the calling
program has enabled the detection of integer overflow. On the other hand,
floating-point overflow detection is always enabled and cannot be disabled.

If an integer or floating-point overflow occurs during a CALL or a JSB routine,
the routine signals a mathematics-specific error such as MTH$_FLOOVEMAT
(Floating Overflow in Math Library) by calling LIB$SIGNAL explicitly.

Floating-Point Underflow
All mathematics routines are programmed to avoid floating-point underflow
conditions. Software checks are made to determine if a floating-point
underflow condition would occur; If so, the software makes an additional
check:

• If the immediate calling program (CALL or JSB) has enabled floating-point
underflow traps, a mathematics-specific error condition is signaled.

• Otherwise, the result is corrected to zero and execution continues with no
error condition.

The user can enable or disable floating-point underflow detection at run time
by calling the routine LIB$FL T_UNDER.

4-31

4.4.2

Condition Handling Routines
4.4 How Run-Time Library Routines Handle Exceptions

Overflow/Underflow Detection Enabling Routines

4-32

You can use the following Run-Time Library routines to enable or disable the
signaling of decimal overflow, floating-point underflow, and integer overflow:

• LIB$DEC_OVER enables or disables the reporting of decimal overflow.

• LIB$FL T_UNDER enables or disables the reporting of floating-point
underflow.

• LIB$INT_OVER enables or disables the reporting of integer overflow.

You cannot disable the signaling of integer divide-by-zero, floating-point
overflow, and floating-point or decimal divide-by-zero.

When the signaling of a hardware condition is enabled, the occurrence of
the exception condition causes VMS to signal the condition as a severe error.
When the signaling of a hardware condition is disabled, the occurrence of
the condition is ignored and the processor executes the next instruction in the
sequence.

The signaling of overflow and underflow detection is enabled independently
for each routine activation, since the call instruction saves the state of the
calling program's hardware enable operations in the stack and then initializes
the enable operations for the called routine. A return instruction restores the
calling program's enable operations.

These Run-Time Library routines are intended primarily for higher-level
languages, since you can achieve the same effect in MACRO with the single
Bit Set PSW (BISPSW) or Bit Clear PSW (BICPSW) instructions.

These routines allow you to enable and disable detection of decimal overflow,
floating-point underflow, and integer overflow for a portion of your routine's
execution. Note that the BASIC and FORTRAN compilers provide a compile
time qualifier that permits you to enable or disable integer overflow for your
entire routine.

5 Memory Allocation Routines

5.1 Overview

This chapter discusses the Run-Time Library routines that perform dynamic
memory allocation functions.

The topics covered in this chapter include the following:

• Section 5.1 provides an overview of dynamic memory allocation.

• Section 5.2 describes routines for allocating and freeing pages of memory.

• Section 5.3 introduces the concept of zones and describes the routines
used to create, delete, find, show, reset, and verify zones.

• Section 5.4 describes the routines used to allocate and free variable-sized
blocks of memory.

• Section 5.5 discusses the algorithms that can be used to allocate memory
within a zone.

• Section 5.6 introduces user-defined zones that can be used to implement
additional allocation algorithms or to monitor the behavior of other zones.

• Section 5.7 describes interactions between the Run-Time Library memory
allocation routines and high-level language memory allocation facilities,
as well as interactions with other Run-Time Library routines.

• Section 5.8 discusses interactions between the Run-Time Library memory
allocation routines and VMS memory management system services.

Sophisticated software systems must often create and manage complex data
structures. In these systems, the size and number of elements are not always
known in advance. You can tailor the memory allocation for these elements
by using dynamic memory allocation. By managing the memory allocation, you
can avoid allocating fixed tables that may be too large or too small for your
program. To help you manage memory, the Run-Time Library and the VMS
operating system provide a hierarchy of routines and services for memory
management.

5.1.1 Virtual Address Space
The virtual address space of an executing program consists of the following
three regions:

1 A process program region

The process program region is also referred to as PO space. PO space
contains the instructions and data for the current image.

Your program can dynamically allocate storage in the process program
region by calling Run-Time Library dynamic memory allocation routines
or VMS system services.

5-1

5.1.2

Memory Allocation Routines
5.1 Overview

2 A process control region

The process control region is also referred to as Pl space. Pl space
contains system control information and the user-mode process stack.
The user mode stack expands as necessary toward the lower-addressed
end of Pl space.

3 A common system region

The common system region is also referred to as SO space. SO space
contains the VMS operating system. Your program cannot allocate or free
memory within the common system region from the user access mode.

A summary of these regions appears in Figure 5-1.

Figure 5-1 Virtual Address Overview

PO

- instructions
- data

P1

- User-mode
process stack

- System control
information

so
- VAX/VMS

Process
Program
Region

Process
Control
Region

Common
System
Region

ZK-4145-85

Memory Allocation Routines

5-2

Memory allocation routines allow you to allocate and free storage within the
virtual address space available to your process.

Memory Allocation Routines
5.1 Overview

This section describes three levels of memory allocation routines. These levels
are as follows:

1 Memory management system services

The memory management system services comprise the lowest level of
memory allocation routines. These services include, but are not limited
to, the following:

$EXPREG (Expand Region)
$CRETVA (Create Virtual Address Space)
$DELTVA (Delete Virtual Address Space)
$CRMPSC (Create and Map Section)
$MGBLSC (Map Global Section)
$DGBLSC (Delete Global Section)

For most cases in which a system service is used for memory allocation,
the Expand Region system service ($EXPREG) is used to create 512-byte
pages of virtual memory.

2 Run-Time Library page management routines

The Run-Time Library page management routines
LIB$GET_ VM_P AGE and LIB$FREE_ VM_P AGE provide a convenient
mechanism for allocating and freeing pages of memory.

These routines maintain a processwide pool of free pages. If no
unallocated pages are available when LIB$GET_ VM_P AGE is called,
it calls $EXPREG to create the required pages in the program region
(PO space).

3 Run-Time Library heap management routines

The Run-Time Library heap management routines LIB$GET_ VM and
LIB$FREE_ VM provide a mechanism for allocating and freeing blocks of
memory of arbitrary size.

LIB$CREATE_ vM_zoNE, LIB$CREATE_USER_ vM_zoNE,
LIB$DELETE_ vM_zONE, LIB$FIND_ vM_zoNE,
LIB$RESET_ VM_ZONE, LIB$SHOW_ VM_zONE and
LIB$VERIFY_ VM_zoNE are heap management routines based on the
concept of zones. A zone is a. logically independent memory pool or
subheap. Refer to Section 5.3 for more information about zones.

If no unallocated block is available to satisfy a call to LIB$GET_ VM, it
calls LIB$GET_ VM_p AGE to allocate additional pages.

Modular application programs can call routines in any or all levels of the
hierarchy, depending on the kinds of services the application program needs.
The basic rule that must be observed when using multiple levels of the
hierarchy is as follows:

• Memory that is allocated by an allocation routine at one level of the
hierarchy must be freed by calling a deallocation routine at the same
level of the hierarchy. For example, if you allocated a page of memory by
calling LIB$GET_vM_pAGE, you can free it only by calling
LIB$FREE_ VM_P AGE.

5-3

Memory Allocation Routines
5.1 Overview

Figure 5-2 shows the three levels of memory allocation routines.

Figure 5-2 Hierarchy of Memory Management Routines

RTL Heap Management Routines

LIB$CREATE_USER_ VM_ZONE LIB$GET_VM
LIB$CREATE_ VM_ZONE LIB$RESET _ VM _ZONE
LIB$DELETE _ VM _ZONE LIB$SHOW _ VM _ZONE
LIB$FIND_ VM_ZQNE LIB$VERIFY _ VM_ZQNE
LIB$FREE_ VM

r-1

RTL Page Management Routines

LIB$FREE_VM_PAGE LIB$GET_VM_PAGE

,.....

Memory Management System Services

$CRETVA $DEL TVA $EXPREG
$CRMPSC $DGBLSC $MGBLSC

ZK-4146-85

5.2 Allocating and Freeing Pages

5-4

The Run-Time Library page management routines LIB$GET_ VM_P AGE
and LIB$FREE_ VM_P AGE provide a flexible mechanism for allocating and
freeing pages of memory. In general, modular routines should use these
routines rather than direct system service calls to manage pages of memory.
The page management routines maintain a processwide pool of free pages
and automatically reuse free pages. If your program calls system services
directly, it must do the bookkeeping to keep track of free pages.

LIB$GET_ VM_P AGE and LIB$FREE_ VM_P AGE are fully reentrant. They
can be called by code running at AST level or in an Ada multitasking
environment.

All pages allocated by LIB$GET_ VM_P AGE are created with user-mode
read-write access, even if the call to LIB$GET_ VM_P AGE is made from a
more privileged ~ccess mode.

Memory Allocation Routines
5.2 Allocating and Freeing Pages

LIB$GET_ VM_P AGE and LIB$FREE_ VM_P AGE are designed for request
sizes ranging from one page to a few hundred pages. If you are using very
large request sizes (over 1000 contiguous pages in a single request), the
bitmap allocation method that is used may cause fragmentation of your
virtual address space. For very large request sizes, you should use direct calls
to $EXPREG.

The rules for using LIB$GET_VM_PAGE and LIB$FREE_VM_pAGE are as
follows:

• Any memory you free by calling LIB$FREE_ VM_P AGE must have
been allocated by a previous call to LIB$GET_ VM_P AGE. You cannot
allocate memory by calling $EXPREG or $CRETVA and then free it using
LIB$FREE_ VM_P AGE.

• All memory allocated by LIB$GET_ VM_P AGE is page aligned; that is,
the low-order 9 bits of the address are all zero. All memory freed by
LIB$FREE_ VM_P AGE must also be page aligned; an error status will
be returned if you attempt to free a block of memory that is not page
aligned.

• You can free a smaller group of pages than you allocated. That is,
if you allocated a group of four contiguous pages by a single call to
LIB$GET_ VM_P AGE, you can free the memory by using several calls to
LIB$FREE_VM_PAGE; for example, free one page, two pages, and one
page.

• You can combine contiguous groups of pages that were allocated by
several calls to LIB$GET_ VM_P AGE into one group of pages that
are freed by a single call to LIB$FREE_ VM_P AGE. Before doing this,
however, you must compare the addressses to ensure that the pages you
are combining are indeed contiguous. Of course, you must ensure that a
routine only frees pages that it has previously allocated and that it still
owns.

• Be especially careful that you do not attempt to free a set of pages
twice. It is possible that you may free a set of pages in one routine and
reallocate those same pages from another routine. If the first routine
then deallocates those pages a second time, any informaiton that was
stored in them by the second routine is lost. Because the pages are still
allocated to your program (even though to a different routine), this type
of programming mistake will not generate an error.

• The contents of memory allocated by LIB$GET_VM_PAGE are
unpredictable. Your program must assign values to all locations that
it uses.

• You should try to minimize the number of request sizes your program
uses to avoid fragmentation of the free page pool. This concept is shown
in Figure 5-3.

5-5

Memory Allocation Routines
5.2 Allocating and Freeing Pages

Figure 5-3 Memory Fragmentation

~ 5 -+-- 3 --+---- 25 ----+---- 15 ------- 40 ------ 2 -t- 2-l

5.3 Zones

5-6

______ I EJ ...
ZK-4150-85

The straight line running across Figure 5-3 represents the memory
allocated to your program. The blocks represent memory that has already
been allocated. At this point, if you request 16 pages, memory will have
to be allocated at the far right end of the memory line shown in this
figure, even though there are 20 free pages before that point. You cannot
use 16 of these 20 pages because the 20 free pages are "fragmented" into
groups of 15, 3, and 2 pages.

Fragmentation is discussed further in Section 5.3.1.

The Run-Time Library heap management routines LIB$GET_ VM and
LIB$FREE_ VM are based on the concept of zones. A zone is a logically
independent memory pool or subheap; a program may use several zones to
structure its heap memory management.

You create a zone with specified attributes by calling the routine
LIB$CREATE_ VM_ZONE. LIB$CREATE_ VM_ZQNE returns a zone-id
value that you can use in subsequent calls to the routines LIB$GET_ VM and
LIB$FREE_VM. When you no longer need the zone, you can delete the zone
and free all the memory it controls by a single call to
LIB$DELETE_ VM_ZQNE.

If you want a program to deal with each VM zone created during the
invocation, including those created outside of the program, you can call
LIB$FIND_ VM_ZONE. At each call, LIB$FIND_ VM-20NE scans the heap
management database and returns the zone identifier of the next valid zone.

LIB$SHOW_ VM-20NE returns formatted information about a specified
zone, detailing such information as the zone's name, characteristics, and
areas, and then passes the information to the specified or default action
routine. LIB$VERIFY_ VM_ZQNE verifies the zone header and scans all of
the queues and lists maintained in the zone header.

If you call LIB$GET_ VM to allocate memory from a zone and the zone has
no free memory to satisfy the request, LIB$GET_ VM calls
LIB$GET_ VM_P AGE to allocate a block of contiguous pages for the zone.
Each such block of contiguous pages is called an area. You control the
number of pages in an area by specifying the area extension size attribute
when you create the zone.

Memory Allocation Routines
5.3 Zones

The systematic use of zones provides the following benefits:

• Structuring heap memory management

Data structures in your program may have different lifetimes or dynamic
scopes. Some structures may continue to grow during the entire execution
of your program, while others exist for a very short time and are then
discarded by the program. You can create a separate zone in which you
allocate a particular type of short-lived structure. When the program
no longer needs any of those structures, you can delete all of them in a
single operation by calling LIB$DELETE_ VM-20NE.

• Program locality

Program locality is a characteristic of a program that indicates the distance
between the references and virtual memory over a period of time. A
program with a high degree of program locality does not refer to many
widely scattered virtual addressses in a short period of time. Maintaining
a high degree of program locality reduces the number of page faults and
improves program performance.

It is important to minimize the number of page faults to obtain best
performance in a virtual memory system like VMS. For example, if your
program creates and searches a symbol table, you can reduce the number
of page faults incurred by the search operation by using as few pages as
possible to hold all the symbol table entries. If you allocate symbol table
entries and other items unrelated to the symbol table in the same zone,
each page of the symbol table will contain both symbol table entries
and other items. Because of the extra unrelated entries, the symbol table
will take up more pages than it actually needs. A search of the symbol
table will then access more pages and performance will be lower as a
result. You may be able to reduce the number of page faults by creating
a separate symbol table zone, so that pages that contain symbol table
entries do not contain any unrelated items.

• Specialized allocation algorithms

No single memory allocation algorithm is ideal for all applications.
Section 5.5 describes the Run-Time Library memory allocation algorithms
and their performance characteristics so that you can select an appropriate
algorithm for each zone that you create.

• Performance tuning

You can specify a number of attributes that affect performance when you
create a zone. The allocation algorithm you select can have a significant
effect on performance. By specifying the allocation block size, you can
improve performance and reduce fragmentation within the zone at the
cost of some extra memory. Boundary tags can also be used to improve
the speed of LIB$FREE_VM at the cost of some extra memory. Boundary
tags are further discussed in Section 5.3.1.

5-7

5.3.1

Memory Allocation Routines
5.3 Zones

Zone Attributes

5-8

You can specify a number of zone attributes when you call
LIB$CREATE_VM-20NE to create the zone. The attributes that you specify
are permanent; that is, you cannot change the attribute values. They remain
constant until you delete the zone. Each zone that you create can have a
different set of attribute values. Thus you can tailor each zone to optimize
program locality, execution time, and memory usage.

This section describes each of the zone attributes, suggested values for the
attribute, and the effects of the attribute on execution time and memory
usage. If you do not specify a complete set of attribute values,
LIB$CREATE_ VM_ZONE will provide defaults for many of the attributes.
More detailed information about argument names and the encoding of
arguments is given in the description of LIB$CREATE_VM-20NE (see the
reference section of this manual).

The zone attributes are as follows:

• Allocation algorithms

The Run-Time Library heap management routines provide four algorithms
to allocate and free memory, and to manage blocks of free memory. The
algorithms are listed here. (See Section 5.5 for more details.)

1 The First Fit algorithm (LIB$K_ VM_FIRST_FIT) maintains a linked
list of free blocks, sorted in order of increasing memory address.

2 The Quick Fit algorithm (LIB$K_ VM_QUICK_FIT) maintains a set of
lookaside lists indexed by request size for request sizes in a specified
range. For request sizes that are not in the specified range, a First Fit
list of free blocks is maintained by the heap management routines.

3 The Frequent Sizes algorithm (LIB$K_ VM_FREQ _SIZES) is similar
to Quick Fit in that it maintains a set of lookaside lists for some block
sizes. You specify the number of lists when you create the zone; the
sizes associated with those lists are determined by the actual sizes of
blocks that are freed.

4 The Fixed Size algorithm (LIB$K_ VM_FIXED) maintains a single
queue of free blocks.

• Boundary-tagged blocks

You can specify the use of boundary tags
(LIB$M_ VM_BOUNDARY_ TAGS) with any of the algorithms that
handle variable-sized blocks. The algorithms that handle variable-sized
blocks are First Fit, Quick Fit, and Frequent Sizes.

If you specify boundary tags, LIB$GET_ VM appends two additional
longwords to each block that you allocate. LIB$FREE_ VM uses these tags
to speed up the process of merging adjacent free blocks on the First Fit
free list. Using the standard First Fit insertion and merge, the execution
time and number of page faults to free a block are proportional to the
number of items on the list; freeing N blocks takes time proportional
to N squared. When boundary tags are used, LIB$FREE_VM does not
have to keep the free list in sorted order. This reduces the time and the
number of page faults for freeing one block to a constant value that is
independent of the number of free blocks. By using boundary tags you
can improve execution time at the cost of some additional memory for the
tags.

Memory Allocation Routines
5.3 Zones

The use of boundary tags can have a significant effect on execution time
if all of the following three conditions are present.

1 You are using the First Fit algorithm.

2 There are many calls to LIB$FREE_VM.

3 The free list is long.

Boundary tags will not improve execution time if you are using Quick
Fit or Frequent Sizes and if all the blocks being freed use one of the
lookaside lists. No merging or searching is done for free blocks on a
lookaside list.

The boundary tags specify the length of each block that is allocated,
so you do not need to specify the length of a tagged block when you
free it. This reduces the bookkeeping that your program must perform.
Figure 5-4 shows the placement of boundary tags.

Figure 5-4 Boundary Tags

Boundary tag

Boundary tag

:A Address of first
usable byte.
This address is
returned by
LIB$GET _VM.

T
Block of memory
marked off by
boundary tags

1
ZK-4149-85

Boundary tags are not visible to the calling program. The request size you
specify when calling LIB$GET_ VM is the number of usable bytes your
program needs. The address returned by LIB$GET_ VM is the address of
the first usable byte of the block, and this same address is used when you
call LIB$FREE_VM.

• Area extension size

Pages of memory are allocated to a zone in contiguous groups called
areas. By specifying area extension parameters for the zone, you can
tailor the zone to achieve a satisfactory balance between locality, memory
usage, and execution time for allocating pages. If you specify a large area
size, you will improve locality for blocks in the zone, but you may waste
a large amount of virtual memory. Pages may be allocated to an area of
a zone, but the memory might never be used to satisfy a LIB$GET_ VM
allocation request. If you specify a small area extension size, you will
reduce the number of pages used, but you may reduce locality and you
will increase the amount of overhead for area control blocks.

5-9

Memory Allocation Routines
5.3 Zones

5-10

You can specify two area extension size values: an initial size and an
extend size. If you specify an initial area size, that number of pages will
be allocated to the zone when you create the zone. If you do not specify
an initial size, no pages are allocated until the first call to LIB$GET_ VM
that references the zone. When an allocation request cannot be satisfied
by blocks from the free list or from memory in any of the areas owned
by the zone, a new area is added to the zone. The size of this area is
the maximum of the area extend size and the current request size. The
extend size does not limit the size of blocks you can allocate. If you do
not specify extend size when you create the zone, a default of 16 pages is
used.

You should choose a few area extension sizes and use them throughout
your program. It is also desirable to choose extension sizes that are
multiples of each other. Memory for areas is allocated by calling
LIB$GET_ VM_P AGE. You should choose the area extension sizes in
order to minimize fragmentation. DIGITAL-supplied software generally
uses extension sizes that are a power of 2.

You should also consider the overhead for area control blocks when
choosing the area extension parameters. Each area control block is
64 bytes long. Table 5-1 shows the overhead for various extension
sizes.

Table 5-1 Overhead for Area Control Blocks

Area Size (in pages) Overhead Percentage

1

2

4

16

128

12.5 %

6.3 %

3.1 %

0.8 %

0.1 %

You can also control the way in which zones are extended by using
the LIB$M_ VM_EXTEND__AREA attribute. This attribute specifies that
when new pages are allocated for a zone, they should be appended to an
existing area if the pages are adjacent to an existing area.

• Block size

The block size attribute specifies the number of bytes in the basic
allocation quantum for the zone.

All allocation requests are rounded up to a multiple of the block size.

The block size must be a power of 2 in the range 8 to 512. Table 5-2 lists
the possible block sizes that may be used.

Memory Allocation Routines
5.3 Zones

Table 5-2 Possible Values for the Block Size Attribute

Power of 2 Actual Block Size

8

16

32

64
128

256

512

By adjusting the block size, you can control the effects of internal
fragmentation and external fragmentation. Internal fragmentation occurs
when the request size is rounded up and more bytes are allocated than
are required to satisfy the request. External fragmentation occurs when
there are many small blocks on the free list, but none of them is large
enough to satisfy an allocation request.

If you do not specify a value for block size, a default of eight bytes is
used.

• Alignment

The alignment attribute specifies the required address boundary alignment
for each block allocated. The alignment value must be a power of 2 in
the range 4 to 512.

The block size and alignment values are closely related. If you are
not using boundary-tagged blocks, the larger value of block size and
alignment controls both the block size and alignment. If you are using
boundary-tagged blocks, you can minimize the overhead for the boundary
tags by specifying a block size of 8 and an alignment of 4 (longword
alignment). Note that the VAX interlocked queue instructions require
quadword alignment, so you should not specify longword alignment for
blocks that will be inserted on an interlocked queue.

If you do not specify an alignment value, a default of 8 is used (alignment
on a quadword boundary).

• Page limit

You can specify the maximum number of 512-byte pages that can be
allocated to the zone. If you do not specify a page limit, the only limit
is the total process virtual address limit imposed by VMS process quotas
and system parameters.

• Fill on allocate

If you do not specify the allocation-fill attribute, LIB$GET_ VM does
not initialize the contents of the blocks of memory that it supplies. The
contents of the memory are unpredictable, and you must assign a value
to each location your program uses.

In many applications, it is convenient to initialize every byte of
dynamically allocated memory to the value 0. You can request that
LIB$GET_ VM do this initialization by specifying the allocation-fill
attribute LIB$M_ VM_GET_FILLO when you create the zone.

5-11

5.3.2

5.3.3

Memory Allocation Routines
5.3 Zones

The Default Zone

If your program does not use the allocation-fill attribute, it may be very
difficult to locate bugs where the program does not properly initialize
dynamically allocated memory. As a debugging aid, you can request that
LIB$GET_ VM initialize every byte to FF (hexadecimal) by specifying the
allocation-fill attribute LIB$M_ VM_GET_FILL1 when you create the
zone.

• Fill on free

In complex programs using heap storage, it can be very difficult to locate
bugs where the program frees a block of memory but continues to make
references to that block of memory. As a debugging aid, you can request
that LIB$FREE_ VM write bytes containing 0 or FF (hexadecimal) into
each block of memory when it is freed; specify one of the attributes
LIB$M_ VM_FREE_FILLO or LIB$M_ VM_FREE_FILL1.

The Run-Time Library provides a default zone that is used if you do not
specify a zone-id argument when you call LIB$GET_VM or LIB$FREE_VM.
The default zone provides compatibility with earlier versions of LIB$GET_ VM
and LIB$FREE_ VM, which did not support multiple zones.

Programs that do not place heavy demands on heap storage can simply use
the default zone for all heap storage allocation. They do not need to call
LIB$CREATE_ VM_ZQNE and LIB$DELETE_ VM_ZONE, and they can omit
the zone-id argument when calling LIB$GET_ VM and LIB$FREE_ VM. The
zone-id for the default zone has the value zero.

The default zone has the values shown in Table 5-3.

Table 5-3 Attribute Values for the Default Zone

Attribute Value

Algorithm First Fit

Area extension size 128 pages

Block size 8 bytes

Alignment Quadword boundary

Boundary tags No boundary tags

Page limit No page limit

Fill on allocate No fill on allocate

Fill on free No fill on free

Zone Identification

5-12

A zone is a logically independent memory pool or subheap. You can create
zones by calling LIB$CREATE_VM-20NE or
LIB$CREATE_USER_ VM_ZONE. These routines return as an output
argument a unique 32-bit zone identifier (zone-id) which is used in
subsequent routine calls where a zone identification is needed.

5.3.4 Creating a Zone

5.3.5 Deleting a Zone

Memory Allocation Routines
5.3 Zones

You can specify zone-id as an optional argument when you call
LIB$GET_ VM to allocate a block of memory. If you do specify zone-id when
you allocate memory, you must specify the same zone-id value when you
call LIB$FREE_ VM to free the memory. LIB$FREE_ VM will return an error
status if you do not provide the correct zone-id.

Modular routines that allocate and free heap storage must use zone
identifications in a consistent fashion. There are several approaches you
can use in designing a set of modular routines to ensure consistency in using
zone identifications:

• Each routine that allocates or frees heap storage has a zone-id argument
so the caller can specify the zone to be used.

• The modular routine package provides ALLOCATE and FREE routines
for each type of dynamically allocated object. These routines keep track
of zone identifications in an implicit argument, in static storage, or in the
dynamically allocated objects. The caller need not be concerned with the
details of zone identifications.

• By convention, the set of modular routines could do all allocate and free
operations in the default zone.

The zone identifier for the default zone has the value 0 (see Section 5.3.2
for more information on the default zone). You can allocate and free blocks
of memory in the default zone by specifying a zone-id of 0 or by omitting
the zone-id argument when you call LIB$GET_VM and LIB$FREE_VM. You
cannot use LIB$DELETE_ VM_ZONE or LIB$RESET_ VM_ZONE on the
default zone; these routines return an error status if the zone-id is 0.

LIB$CREATE_VM_ZONE creates a new zone and sets zone attributes
according to arguments that you supply. LIB$CREATE_ VM-20NE returns a
zone-id value for the new zone that you use in subsequent calls to
LIB$GET_ VM, LIB$FREE_ VM, and LIB$DELETE_ VM-20NE.

LIB$DELETE_ VM-20NE deletes a zone and returns all pages owned by
the zone to the processwide page pool managed by LIB$GET_ VM_P AGE.
Your program must not do any further operations on the zone after you call
LIB$DELETE_ VM-20NE.

It takes less execution time to free memory in a single operation by calling
LIB$DELETE_ VM-20NE than to individually account for and free every
block of memory that was allocated by calling LIB$GET_ VM. Of course, you
must be sure that your program is no longer using the zone or any of the
memory in the zone before you call LIB$DELETE_ VM-20NE.

If you have specified deallocation filling, LIB$DELETE_ VM_ZONE will fill
all of the allocated blocks that are freed.

5-13

5.3.6

Memory Allocation Routines
5.3 Zones

Resetting a Zone
LIB$RESET_ VM_ZONE frees all the blocks of memory that were previously
allocated from the zone. The memory becomes available to satisfy further
allocation requests for the zone; the memory is not returned to the
processwide page pool managed by LIB$GET_VM_PAGE. Your program
can continue to use the zone after you call LIB$RESET_ VM_ZONE.

It takes less execution time to free memory in a single operation by calling
LIB$RESET_ VM_ZONE than to individually account for and free every block
of memory that was allocated by calling LIB$GET_ VM. Of course, you must
be sure that your program is no longer using any of the memory in the zone
before you call LIB$RESET_ VM_ZONE.

If you have specified deallocation filling, LIB$RESET_ VM_ZONE will fill all
of the allocated blocks that are freed.

Since LIB$RESET_ VM-20NE does not return any pages to the processwide
page pool, you should reset a zone only if you expect to reallocate almost
all of the memory that is currently owned by the zone. If the next cycle
of reallocation might use much less memory, it is better to delete the zone
(LIB$DELETE_ VM_ZONE) and create it (LIB$CREATE_ VM-20NE) again.

5.4 Allocating and Freeing Blocks

5-14

The Run-Time Library heap management routines LIB$GET_ VM and
LIB$FREE_ VM provide the mechanism for allocating and freeing blocks
of memory.

LIB$GET_VM and LIB$FREE_VM are fully reentrant, so they can be called
by code running at AST level or in an Ada multitasking environment. Several
threads of execution may be simultaneously allocating or freeing memory in
the same zone or in different zones.

All memory allocated by LIB$GET_ VM has user-mode read-write access,
even if the call to LIB$GET_ VM is made from a more privileged access mode.

The rules for using LIB$GET_ VM and LIB$FREE_ VM are as follows:

• Any memory you free by calling LIB$FREE_VM must have been
allocated by a previous call to LIB$GET_ VM. You cannot allocate memory
by calling $EXPREG or $CRETVA and then free it using LIB$FREE_VM.

• When you free a block of memory by calling LIB$FREE_ VM, you must
use the same zone-id value as when you called LIB$GET_ VM to allocate
the block. If the block was allocated from the default zone, you must
either specify a zone-id of zero or omit the zone-id argument when you
call LIB$FREE_ VM.

• You cannot free part of a block that was allocated by a call to
LIB$GET_ VM; the whole block must be freed by a single call to
LIB$FREE_ VM.

• You cannot combine contiguous blocks of memory that were allocated
by several calls to LIB$GET_ VM into one larger block that is freed by a
single call to LIB$FREE_ VM.

Memory Allocation Routines
5.4 Allocating and Freeing Blocks

• All memory allocated by LIB$GET_ VM is aligned according to the
alignment attribute for the zone; all memory freed by LIB$FREE_ VM
must have the correct alignment for the zone. An error status is returned
if you attempt to free a block that is not aligned properly.

5.5 Allocation Algorithms
The Run-Time Library heap management routines provide four algorithms
that are used to allocate and free memory and that are used to manage blocks
of free memory.

Table 5-4 Allocation Algorithms

Code Symbol Description

1

2

3

4

LIB$K_ VM_FIRST_FIT

LIB$K_ VM_QUICK_FIT

LIB$K_ VM_FREQ_SIZES

LIB$K_ VM_FIXED

First Fit

Quick Fit (maintains lookaside list)

Frequent Sizes (maintains lookaside list)

Fixed Size Blocks

The Quick Fit and Frequent Sizes algorithms use lookaside lists to speed up
allocation and freeing for certain request sizes. A lookaside list is the software
analog of a hardware cache. It takes less time to allocate or free a block on a
lookaside list.

For each of the algorithms, LIB$GET_ VM performs one or more of the
following operations:

• Tries to allocate a block from an appropriate lookaside list.

• Scans the list of areas owned by the zone. For each area, tries to allocate
a block from the free list; then tries to allocate a block from the block of
unallocated memory at the end of the area.

• Adds a new area to the zone and allocates the block from that area.

For each of the algorithms, LIB$FREE_VM performs one or more of the
following operations:

• Places the block on a lookaside list associated with the zone if there is an
appropriate list.

• Locates the area that contains the block. If the zone has boundary tags,
the tags encode the area; otherwise, it scans the list of areas owned by
the zone to find the correct area.

• Inserts the block on the area free list and checks for merges with adjacent
free blocks.

If the zone has boundary tags, LIB$FREE_ VM checks the tags of adjacent
blocks; if no merge occurs, it inserts the block at the tail of the free list.

If the zone does not have boundary tags, LIB$FREE_ VM scans the sorted
free list to find the correct insertion point. It also checks the preceding
and following blocks for merges.

5-15

5.5.1

5.5.2

5.5.3

5.5.4

Memory Allocation Routines
5. 5 Allocation Algorithms

The First Fit Algorithm
The First Fit algorithm (LIB$K_ VM_FJRST_FIT) maintains a linked list of free
blocks. If the zone does not have boundary tags, the free list is kept sorted
in order of increasing memory address. An allocation request is satisfied by
the first block on the free list that is large enough; if the first free block is
larger than the request size, it is split and the fragment is kept on the free list.
When a block is freed, it is inserted in the free list at the appropriate point;
adjacent free blocks are merged to form larger free blocks.

The Quick Fit Algorithm
The Quick Fit algorithm (LIB$K_ VM_QUICK_FJT) maintains a set of
lookaside lists indexed by request size for request sizes in a specified range.
For request sizes that are not in the specified range, a First Fit list of free
blocks is maintained. An allocation request is satisfied by removing a block
from the appropriate lookaside list; if the lookaside list is empty, a First Fit
allocation is done. When a block is freed, it is placed on a lookaside list or
the First Fit list according to its size.

Free blocks that are placed on a lookaside list are neither merged with
adjacent free blocks nor split to satisfy a request for a smaller block.

The Frequent Sizes Algorithm
The Frequent Sizes algorithm (LIB$K_ VM_FREQ _SJZES) is similar to the
Quick Fit algorithm in that it maintains a set of lookaside lists for some block
sizes. You specify the number of lookaside lists when you create the zone; the
sizes associated with those lists are determined by the actual sizes of blocks
that are freed. An allocation request is satisfied by searching the lookaside
lists for a matching size; if no match is found, a First Fit allocation is done.
When a block is freed, the block is placed on a lookaside list with matching
size, on an empty lookaside list, or on the First Fit list if no lookaside list is
available. Comparable to the Quick Fit algorithm, free blocks on lookaside
lists are not merged or split.

The Fixed Size Algorithm
The Fixed Size algorithm (LIB$K_ VM_FIXED) maintains a single queue of
free blocks. There is no First Fit free list, and no splitting or merging of blocks
occurs.

5.6 User-Defined Zones

5-16

When you create a zone by calling LIB$CREATE_ VM_ZQNE, you must
select an allocation algorithm from the fixed set provided by the Run-Time
Library. You can tailor the characteristics of the zone by specifying various
zone attributes. User-defined zones provide additional flexibility and control
by letting you supply routines for the allocation and deallocation algorithms.

Memory Allocation Routines
5.6 User-Defined Zones

You create a user-defined zone by calling LIB$CREATE_USER_ VM_ZONE.
Instead of supplying values for a fixed set of zone attributes, you provide
routines that perform the following operations for the zone:

• Allocate a block of memory

• Free a block of memory

• Reset the zone

• Delete the zone

Each time that one of the Run-Time Library heap management routines
(LIB$GET_ VM, LIB$FREE_ VM, LIB$RESET_ VM-20NE,
LIB$DELETE_VM-20NE) is called to perform an operation on a user
defined zone, the corresponding routine that you specified is called to perform
the actual operation. It is not necessary to make any changes in the calling
program to use user-defined zones; their use is transparent.

You do not need to provide routines for all four of the operations listed above
if you know that your program will not perform certain operations. If you
omit some of the operations and your program attempts to use them, an error
status will be returned.

Applications of user-defined zones include the following:

• You can provide your own specialized allocation algorithms. These
algorithms can in turn invoke LIB$GET_ VM, LIB$GET_ VM_P AGE,
$EXPREG, or other VMS system services.

• You can use a user-defined zone to monitor memory allocation
operations. Example 5-1 shows a monitoring program that prints a
record of each call to allocate or free memory in a zone.

Example 5-1 Monitoring Heap Operations with a User-Defined Zone

C+
C This is the main program that creates a zone and exercises it.
c
C Note that the main program simply calls LIB$GET_VM and LIB$FREE_VM.
C It contains no special coding for user-defined zones.
c-

C+

PROGRAM MAIN
IMPLICIT INTEGER(A-Z)

CALL MAKE_ZONE(ZONE)

CALL LIB$GET_VM(10, I1, ZONE)
CALL LIB$GET_VM(20, I2, ZONE)
CALL LIB$FREE_VM(10, I1, ZONE)
CALL LIB$RESET_VM_ZONE(ZONE)
CALL LIB$DELETE_VM_ZONE(ZONE)
END

C This is the subroutine that creates a user-defined zone for monitoring.
C Each GET, FREE, or RESET prints a line of output on the terminal.
C Errors are signaled.
c-

Example 5-1 Cont'd. on next page

5-17

Memory Allocation Routines
5.6 User-Defined Zones

5-18

Example 5-1 (Cont.) Monitoring Heap Operations with a User
Defined Zone

C+

SUBROUTINE MAKE_ZONE(ZONE)
IMPLICIT INTEGER (A-Z)
EXTERNAL GET_RTN, FREE_RTN, RESET_RTN, LIB$DELETE_VM_ZONE

C Create the primary zone. The primary zone supports
C the actual allocation and freeing of memory.
c-

STATUS = LIB$CREATE_VM_ZONE(REAL_ZONE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

C+
C Create a user-defined zone that monitors operations on REAL_ZONE.
c-

STATUS = LIB$CREATE_USER_VM_ZONE(USER_ZONE, REAL_ZONE,
1 GET_RTN,
1 FREE_RTN,
1 RESET_RTN,
1 LIB$DELETE_VM_ZONE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

C+
C Return the zone-id of the user-defined zone to the caller to use.
c-

C+

ZONE = USER_ZONE
END

C GET routine for user-defined zone.
c-

10

FUNCTION GET_RTN(SIZE, ADDR, ZONE)
IMPLICIT INTEGER(A-Z)

STATUS = LIB$GET_VM(SIZE, ADDR, ZONE)

IF (.NOT. STATUS) THEN
CALL LIB$SIGNAL(%VAL(STATUS))

ELSE
TYPE 10, SIZE, ADDR
FORMAT(' Allocated ',I4,' bytes at ',Z8)

ENDIF
GET_RTN = STATUS
END

Example 5-1 Cont'd. on next page

Memory Allocation Routines
5.6 User-Defined Zones

Example 5-1 (Cont.) Monitoring Heap Operations with a User
Defined Zone

C+
C FREE routine for user-defined zone.
c-

20

C+

FUNCTION FREE_RTN(SIZE, ADDR, ZONE)
IMPLICIT INTEGER(A-Z)

STATUS = LIB$FREE_VM(SIZE, ADDR, ZONE)

IF (.NOT. STATUS) THEN
CALL LIB$SIGNAL(%VAL(STATUS))

ELSE
TYPE 20, SIZE, ADDR
FORMAT(' Freed ', I4, ' bytes at ', Z8)

ENDIF
FREE_RTN = STATUS
END

C RESET routine for user-defined zone.
c-

30

FUNCTION RESET_RTN(ZONE)
IMPLICIT INTEGER(A-Z)

STATUS = LIB$RESET_VM_ZONE(ZONE)
IF (.NOT. STATUS) THEN

CALL LIB$SIGNAL(%VAL(STATUS))
ELSE

TYPE 30, ZONE
FORMAT(' Reset zone at ', Z8)

ENDIF

RESET_RTN = STATUS
END

5.7 Interactions with Other Run-Time Library Routines
Section 5.1 describes a three-level hierarchy of memory allocation routines
consisting of the following:

1 VMS memory management system services

2 Run-Time Library page management routines LIB$GET_ VM_P AGE and
LIB$FREE_ VM_PAGE

3 Run-Time Library heap management routines LIB$GET_ VM and
LIB$FREE _ VM

The Run-Time Library and various VAX programming languages provide
another level of more specialized allocation routines.

• The Run-Time Library dynamic string package provides a set of routines
for allocating and freeing dynamic strings. The set of routines includes
the following:

LIB$SGET1_DD, LIB$SFREEl_DD
LIB$SFREEN _DD
STR$GETl_DX,STR$FREEl_DX

5-19

Memory Allocation Routines
5. 7 Interactions with Other Run-Time Library Routines

• VAX Ada provides allocators and the UNCHECKED_DEALLOCATION
package for allocating and freeing memory.

• VAX PASCAL provides the NEW and DISPOSE routines for allocating
and freeing memory.

• VAX PL/I provides ALLOCATE and FREE statements for allocating and
freeing memory.

A program containing routines written in several VAX languages may use a
number of these facilities at the same time. This does not cause any problems
or impose any restrictions on the user since all of these are layered on the
Run-Time Library heap management routines.

Note: To ensure correct operation, memory that is allocated by one of the
higher-level allocators in the preceding list can only be freed by using
the corresponding deallocation routine. That is, memory allocated by
PASCAL NEW must be freed by calling PAS CAL DISPOSE, and a
dynamic string can be freed only by calling one of the string package
deallocation routines.

5.8 Interactions with VMS System Services

5-20

The Run-Time Library page management and heap management routines
are implemented as layers built on the VMS memory management system
services. In general, modular routines should use the Run-Time Library
routines rather than directly call VMS memory management system services.
However, there are some situations where you must use both. This section
describes relationships between the Run-Time Library and VMS memory
management. See the VMS System Services Reference Manual for descriptions
of the memory management system services.

You can use the Expand Region system service ($EXPREG) to create pages
of virtual memory in the program region (PO space) for your process. VMS
keeps track of the first free page address at the end of PO space, and it
updates this free page address whenever you call $EXPREG or $CRETVA.
The LIB$GET_ VM_P AGE routine calls $EXPREG to create pages, so there
will be no conflicting address assignments when you call $EXPREG directly.

You should avoid using the Create Virtual Address Space system service
($CRETVA), because you must specify the range of virtual addresses when it
is called. If the address range you specify contains pages that already exist,
$CRETVA deletes those pages and re-creates them as demand-zero pages. It
may be difficult to avoid conflicting address assignments if you use Run-Time
Library routines and $CRETVA.

You must not use the Contract Region system service ($CNTREG) because
other routines or the VAX Record Management Services (RMS) may have
allocated pages at the end of the program region.

You can change the protection on pages your program has allocated by
calling the Set Protection system service ($SETPRT). All pages allocated
by LIB$GET_ VM_P AGE have user-mode read-write access. If you change
protection on pages allocated by LIB$GET_VM_PAGE, you must reset the
protection to user-mode read-write before calling LIB$FREE_ VM_P AGE to
free the pages.

Memory Allocation Routines
5.8 Interactions with VMS System Services

You can use the Create and Map Section system service ($CRMPSC) _to
map a file into your virtual address space. To map a file, you provide a
range of virtual addresses for the file. One way to do this is to specify the
Expand Region option (SEC$M_EXPREG) when you call $CRMPSC. This
method assigns addresses at the end of PO space, similar to the $EXPREG
system service. Alternatively, you can provide a specific range of virtual
addresses when you call $CRMPSC; this is similar to allocating pages by
calling $CRETV A. If you assign a specific range of addresses, you must avoid
conflicts with other routines. One way to do this is to allocate memory by
calling LIB$GET_ VM_P AGE, then use that memory to map the file. The
complete sequence of steps is as follows:

1 Call LIB$GET_ VM_P AGE to allocate a contiguous group of (n+ 1) pages.
The first n pages will be used to map the file; the last page serves as a
guard page.

2 Call $CRMPSC using the first n pages to map the file into your process
address space.

3 Process the file.

4 Call $DEL TVA to delete the first n pages and unmap the file.

5 Call $CRETVA to recreate then pages of virtual address space as demand
zero pages.

6 Call LIB$FREE_ VM_PAGE to free (n+l) pages of memory and return
them to the processwide page pool.

The sequence is satisfactory when mapping small files of a few hundred
pages, but it has severe limitations when mapping very large files. As
discussed in Section 5.2, you should not use LIB$GET_ VM_P AGE to allocate
very large groups of contiguous pages (over 1000 contiguous pages in a single
request). Also, when you allocate memory by calling LIB$GET_ VM_P AGE
(and thus $EXPREG), the pages are charged against your process page file
quota. Your page file quota is not charged if you call $CRMPSC with the
SEC$M_EXPREG option.

You can process very large files using $CRMPSC by first providing a pool
of pages that is sufficient for your program and then using $CRMPSC and
$DELTVA to map and unmap the file. Use LIB$SHOW_VM to obtain an
estimate of how much dynamically allocated memory your program requires;
round this number up and allow for increased memory usage in the future.
You can then use the memory estimate as follows:

1 At the beginning of your program, include code to call
LIB$GET_ VM_P AGE and allocate the estimated number of pages. You
should not request a large number of pages in one call to LIB$GET_ VM_
PAGE, because this would require contiguous allocation of the pages.

2 Call LIB$FREE_ VM_P AGE to free all the pages allocated in Step 1; this
establishes a pool of free pages for your program.

3 Open files that your program needs; note that RMS may allocate buffers
in PO space.

5-21

Memory Allocation Routines
5.8 Interactions with VMS System Services

5-22

4 Call $CRMPSC specifying SEC$M_EXPREG to map the file into your
process address space at the end of PO space.

5 Process the file.

6 Call $DELTVA specifying the address range to release the file. If no
additional pages were created after you mapped the file, $DELTVA will
contract your address space. Your program can repeat the process of
mapping a file without continually expanding its address space.

6 Debugging Programs That Use Virtual Memory Zones

This chapter discusses some methods and aids for debugging programs that
use virtual memory zones. It is important to note that this information is
implementation-dependent and may change at any time.

The following list offers some suggestions for discovering and tracking down
problems with memory zone usage.

• Run the program with both free-fill-zero and free-fill-one set. The results
from both executions of the program should be the same. If the results
differ, this could mean that you are referencing a zone that is already
deallocated. It could also mean that after deallocating a zone, you created
a new zone at the same location, so that you now have two pointers
.pointing to the same zone.

• Call LIB$FIND_VM_ZQNE at image termination. If a virtual memory
zone is not deleted, LIB$FIND_ VM_ZONE will return its zone identifier.

• Use LIB$SHOW_ VM_ZONE and LIB$VERIFY_ VM-20NE to print
zone information and check for errors in the internal data structures.
LIB$SHOW_ VM-20NE allows you to determine whether any linkage
pointers for the virtual memory zones are corrupted. LIB$VERIFY_
VM-20NE allows you to request verification of the contents of the free
blocks, so that if you call LIB$VERIFY_ VM_ZONE with free-fill set, you
can determine whether you are writing to any deallocated zones.

• For zones created with either the Fixed Size, Quick Fit, or Frequent Size
algorithms, some types of errors cannot be detected. For example, in a
zone implementing the fixed size algorithm (or in a Quick Fit or Frequent
Size algorithm when the block is cached on a lookaside list), freeing
a block more than once returns SS$_NORMAL but the internal data
structures are invalid. In this case, you should change the algorithm to
First Fit. The First Fit algorithm checks to see if you are freeing a block
that is already on the free list, and if so, returns the error
LIB$_BADBLOADR.

6-1

7 Image Initialization and Termination

This chapter describes the system declaration mechanism, including
LIB$INITIALIZE, which performs calls to any initialization routine declared
by the user. This mechanism is available to the Run-Time Library so that
user routines that require special initialization can be added to the library.
However, use of LIB$INITIALIZE is discouraged and should be used only
when no other method is suitable.

In most cases, both user and library routines are self-initializing. This means
that they can process information with no special action required by the
calling program. Initialization is automatic because 1) the routine's statically
allocated data storage is initialized at compile or link time, or 2) a statically
allocated flag is tested and set on each call so initialization occurs only on the
first call.

Any special initialization-such as a call to other routines or to system
services-can be performed on the first call before the main program is
initialized. For example, you can establish a new environment to alter the
way errors are handled or the way messages are printed.

Such special initialization is required only rarely; however, you do not
need to require the caller of the routine to make an explicit initialization
call. The Run-Time Library provides a system declaration mechanism that
performs all such initialization calls before the main program is called. Special
initialization is thus invisible to later callers of the routine.

7 .1 Image Initialization
Before the main program or main routine is called, a number of system
initialization routines are called as specified by a 1-, 2"'., or 3-longword
initializaton list set up by the linker. This initialization list consists of
the addresses of the debugger (if present), the LIB$INITIALIZE routine (if
present), and the entry point of the main program or main routine, in that
order. The following initialization steps take place:

1 The image activator maps the user program into the address space of the
process and sets up useful information such as the program name. Then
it starts up the command interpreter.

2 The command interpreter sets up an argument list and calls the next
routine in the initialization list (debugger, LIB$INITIALIZE, main
program, or main routine).

3 The debugger, if present, initializes itself and calls the next routine in the
initialization list (LIB$INITIALIZE, main program, or mair~ routine).

4 LIB$INITIALIZE, if present, is a library routine that calls each library
and user initialization routine declared using the system LIB$INITIALIZE
mechanism. Then it calls the main program or main routine.

7-1

Image Initialization and Termination
7 .1 Image Initialization

7-2

5 The main program or main routine executes and, at the user's discretion,
accesses its argument list to scan the command or to obtain information
about the image. The main program or main routine can then call other
routines.

6 Eventually, the main program or main routine terminates by executing
a return instruction (RET) with RO set to a standard completion code to
indicate success or failure, where bit 0 equals 1 for success or 0 for failure.

7 The completion code is returned to LIB$INITIALIZE (if present), the
debugger (if present), and finally to the command interpreter, which
issues a $EXIT system service with the completion status as an argument.
Any declared exit handlers are called at this point.

Note: Main programs should not call the $EXIT system service directly. If they
do, other programs cannot call them as routines.

Figure 7-1 illustrates the sequence of calls and returns in a typical image
initialization. Each box is a routine activation as represented on the image
stack. The top of the stack is at the top of the figure. Each upward arrow
represents the result of a CALLS or CALLG instruction that creates a routine
activation on the stack to which control is being transferred. Each downward
arrow represents the result of a RET (return) instruction. A RET instruction
removes the routine activation from the stack and causes control to be
transferred downward to the next box.

A user program can alter the image initalization sequence by making a
PSECT contribution to PSECT LIB$INITIALIZE and declaring EXTERNAL
LIB$INITIALIZE. This adds the optional initialization steps shown in
Figure 7-1 labeled "PSECT contribution to LIB$1NITIALIZE." (A PSECT is a
portion of a program with a given protection and set of storage management
attributes. Program sections that have the same attributes are gathered
together by the linker to form an image section.) If the initialization routine
also performs a coroutine call back to LIB$INITIALIZE, the optional steps
labeled "Coroutine call back to LIB$INITIALIZE" shown in Figure 7-1 are
added to the image initialization sequence.

Image Initialization and Termination
7 .1 Image Initialization

Figure 7-1 Sequence of Events During Image Initialization

LIBRARY
PROCEDURE

USER
PROCEDURE*

LIBRARY
PROCEDURE USER PROCEDURE*

,--------,

I INITIALIZATION :
I PROCEDURE* I

MAIN PROGRAM*

: L ----,
I
I
I

LIB$1NITIALIZE
I
~

I
Co-routine Call Back to
LIB$1NITIALIZE
(optional)

,--- ---,' I , ___ J

I 1
1

INITIALIZATION
PROCEDURE*

I
I

_J : l_L ----
----- ----..,

I I

I LIB$1NITIALIZE t__
I I L _________________ J

DEBUGGER
(if present)

COMMAND
INTERPRETER

IMAGE
ACTIVATOR

PSECT contribution to
LIB$1NITIALIZE
(optional)

*These procedures are (or can be) user supplied

7 .2 Initialization Argument List

ZK-1977-84

The following argument list is passed from the command interpreter, the
debugger, or LIB$INITIALIZE to the main program. This argument list is the
same for each routine activation.

(start ,di-coroutine [,image-info])

The start argument is the address of the entry in the initialization vector that
is used to perform the call.

7-3

Image Initialization and Termination
7 .2 Initialization Argument List

The di-routine argument is the address of a command interpreter coroutine
to obtain command arguments.

The image-info argument is useful image information such as the program
name.

The debugger or LIB$INITIALIZE, or both, can call the next routine in the
initialization chain using the following coding sequence:

ADDL
MOVL
CAL LG

#4, 4(AP)
©4(AP), RO
(AP) , (RO)

Step to next initialization list entry
RO = next address to call
Call next initialization routine

This coding sequence modifies the contents of an argument list entry. Thus,
the sequence does not follow the VAX Procedure Calling and Condition
Handling Standard. However, the argument list can be expanded in
the future without requiring any change either to the debugger or to
LIB$INITIALIZE.

7 .3 Declaring Initialization Routines

.EXTRN LIB$INITIALIZE

Any library or user program module can declare an initialization routine. This
routine will be called when the image is started. The declaration is made by
making a contribution to PSECT LIB$INITIALIZE, which contains a list of
routine entry point addresses to be called before the main program or main
routine is called.

The following MACRO example declares an initialization routine by placing
the routine entry address INIT_PROC in the list:

; cause library initialization
; dispatcher to be loaded

.PSECT LIB$INITIALIZE, NOPIC, USR, CON, REL, GBL, NOSHR, NOEXE, RD, NOWRT, LONG

.LONG INIT_PROC

. PSECT ...

7-4

contribute entry point address of
; initialization routine .

The .EXTRN declaration links the initialization routine dispatcher,
LIB$INITIALIZE, into your program's image. The reference contains a
definition of the special global symbol LIB$INITIALIZE, which is the routine
entry point address of the dispatcher. The linker stores the value of this
special global symbol in the initialization list along with the starting address
of the debugger and the main program. The GBL specification ensures that
the PSECT LIB$INITIALIZE contribution is not affected by any clustering
performed by the linker.

Image Initialization and Termination
7 .4 Dispatching to Initialization Routines

7 .4 Dispatching to Initialization Routines
The LIB$1NITIALIZE dispatcher calls each initialization routine in the list
with the following argument list.

CALL init-proc (in it-coroutine ,cli-coroutine [, image-info])

The init-coroutine argument is the address of a library coroutine to be called
to effect a coroutine linkage with LIB$INITIALIZE.

The di-coroutine is the address of a command interpreter coroutine used to
obtain command arguments.

The image-info argument is useful image information such as the program
name.

7 .5 Initialization Routine Options

7. 6 An Example

An initialization routine has a number of options. It can be used to do the
following:

• Set up an exit handler by calling the Declare Exit Handler ($DCLEXH)
system service, although exit handlers are generally set up by using a
statically allocated first-time flag.

• Initialize statically allocated storage, although this is preferably done at
image activation time using compile-time and link-time data initialization
declarations or using a first-time call flag in its statically allocated storage.

• Call the initialization dispatcher (instead of returning to it) by calling
the init-coroutine argument. This achieves a coroutine link. Control
will return to the initialization routine when the main program returns
control. Then, the initialization routine should also return control to pass
back the completion code returned by the main program (to the debugger
or command interpreter, or both).

• Establish a condition handler in the current frame before performing
the previous step. This will leave the initialization routine condition
handler on the image stack for the duration of the image execution. This
occurs after the command interpreter sets up the catch-all stack frame
handler, and after the debugger sets up its stack frame handler. Thus, the
initalization routine handler can override either of these handlers since it
will receive signals before they do.

The following MACRO code fragment shows how an initialization routine
does the following:

• Establishes a handler

• Calls the init-coroutine routine, so that the coroutine calls the
initialization dispatcher

• Gains control after the main program returns

• Returns to the normal exit processing

7-5

Image Initialization and Termination
7.6 An Example

INIT_PROC:
.WORD AM<>

MOVAL HANDLER, (FP)
no registers used
establish handler
perform any other initialization

CALLG (AP), ©INIT_CO_ROUTINE(AP)

10$:

RET

HANDLER:
. WORD AM< ... >

MOVL # ... , RO

RET

continue initialization which
then calls main program or
routine.
Return here when main program
returns with RO = completion
status return to normal exit
processing with RO = completion
status

condition handler
register mask
handle condition
could unwind to 10$
Set completion status with a
condition value
resignal or continue depending
on RO being SS$_RESIGNAL or
SS$_ CONTINUE.

7. 7 Image Termination

7-6

Main programs and main routines terminate by executing a return
instruction (RET). This returns control to the caller, which may have been
LIB$INITIALIZE, the debugger, or the command interpreter. The completion
code, SS$_NORMAL, which has the value 1, should be used to indicate
normal successful completion.

Any other condition value can be used to indicate success or failure. The
condition value is used as the parameter to the exit ($EXIT) system service by
the command interpreter. If the severity field (STS$V_SEVERITY) is SEVERE
or ERROR, the continuation of a batch job or command procedure is affected.

You should not call the $EXIT system service directly from a main program.
This allows the main programs to be more like ordinary modular routines and
hence usable by other programmers as callable routines.

8 Cross-Reference Routines

The cross-reference routines are contained in a separate, shareable image
capable of creating a cross-reference analysis of symbols. They accept cross
reference data, summarize it, and format it for output. Two facilities that use
the cross-reference routines are the VMS Linker and the MACRO assembler.
They are sufficiently general, however, to be used by any native-mode utility.

Table 8-1 lists the entry points and functions of the cross-reference routines.

Table 8-1 Cross-Reference Routines

Entry Point Function

LIB$CRF _INS_KEY Insert key information

LIB$CRF _INS_REF Insert reference information

LIB$CRF _OUTPUT Summarize and format cross-reference information

ZK-4259-85

The interface to the cross-reference routines is by way of a set of control
blocks, format definition tables, and a set of callable entry points. Macros are
provided for assembly language and BLISS initialization of the control blocks
and format definition tables.

8.1 Using the Cross-Reference Routines
Using the cross-reference routines involves the following steps:

1 Define a table of control information, using the $CRFCTL TABLE macro.

2 Define each field of the output line, using the $CRFFIELD macro.

3 Specify the end of each set of macros that define a field in the output line,
using the $CRFFIELDEND macro.

4 Provide data by calling one of the two following cross-reference entry
points:

• LIB$CRF_INS_KEY inserts an entry for the specified key in the
specified symbol table.

• LIB$CRF_INS_REF inserts a reference to a key in the specified
symbol table.

5 Call LIB$CRF_OUTPUT, the cross-reference output routine, to summarize
and format the data.

8-1

Cross-Reference Routines
8.1 Using the Cross-Reference Routines

6 Supply a routine that the output routine calls to print each line in the
output file. Because you supply this routine, you can control the number
of lines per page and the header lines.

Figure 8-1 illustrates the steps required in using the cross-reference routines.

Figure 8-1 Using Cross-Reference Routines

Step 1:

Step 2:

Step 3:

Build the control blocks and the format
definition tables used for output.

Call the cross-reference procedures
LIB$CRF-1NS-KEY and LIB$CRF-1NS-REF
to enter cross-reference data in the tables.

Call the cross-reference procedure
LIB$CRF _QUTPUT when all data is accumulated
to summarize cross-reference output and
format the output lines. LIB$CRF _QUTPUT calls
the user-supplied print routine once for each line
of output.

ZK-1970-84

The Run-Time Library provides three macros to initialize the data structures
used by the cross-reference routines:

1 $CRFCTL TABLE defines a table of control information.

2 $CRFFIELD defines each field of the output format definition table.
Multiple $CRFFIELD macro instructions can be issued in defining one
particular field.

3 $CRFFIELDEND ends a set of $CRFFIELD macro instructions (a format
table).

8.2 $CRFCTLTABLE Macro

8-2

$CRFCTLTABLE initializes a cross-reference control table. Your program
must issue one $CRFCTL TABLE macro for each cross-reference table you
build. You can accumulate information for more than one cross-reference
table at a time. For this reason, you must define a table for each set of
cross-references, and include the address of that table each time you call a
cross-reference routine to insert data.

Cross-Reference Routines
8.2 $CRFCTLTABLE Macro

The $CRFCTL TABLE macro instruction has the following format:

label: $CRFCTL TABLE keytype, output, error, memexp, key 1 table,
key2table, val 1 table, val2table,
ref 1 table, ref2table

label
The address of the control table. You must specify a control table address in
all calls to the cross-reference routines.

keytype
The type of key to enter into the table. The following key types are defined:

ASCIC

BIN_U32

output

Keys are counted ASCII strings, with a maximum of 31 characters
(symbol name).

Keys are 32-bit unsigned binary values. The binary-to-ASCII
conversion is done by $FAQ using the format string for the KEY 1
field.

The address of the routine that you supply to print a formatted output line.
The output line is passed to the output routine by descriptor.

error
The address of an error routine to execute if the called cross-reference routine
encounters an error. The error code (longword) is passed to the error routine
by value. In other words, it is a copy of the constant on the stack. A value of
zero indicates that no error routine is supplied.

memexp
The number of pages by which to expand region when needed. The default
is 50.

key1table
The address of the field descriptor table for the KEYl field. A value of zero
indicates that the field is not to be included in the output line.

The remaining arguments provide the address of the field descriptor tables
for the KEY2, VALl, VAL2, REFl, and REF2 fields, respectively, of the
output line. You can use these argument names as keywords in the
macros. For example, you can use KEYTYPE as a keyword when issuing
the $CRFCTLTABLE macro.

8.3 $CRFFIELD Macro
For each field in the output line, you must issue a $CRFFIELD instruction to
identify the field, supply an $FAO command string to control the printing
of the field, and provide flag information. See the program example and the
description of $FAO (formatted ASCII output) in the VMS System Services
Ref ere nee Manual. The $CRFFIELD macro has the following format:

label: $CRFFIELD biLmask, fao_string, field_width,
set_clear

8-3

Cross-Reference Routines
8.3 $CRFFIELD Macro

label
The address of the field descriptor table generated as a result of this set of
$CRFFIELD macro instructions. The label field can be omitted after the first
macro of the set. These addresses correspond to the field descriptor table
addresses in the $CRFCTL TABLE macro.

bit_mask
A 16-bit mask. When the user enters a key or reference, the cross-reference
routine stores flag information with the entry. When preparing the output
line, LIB$CRF_OUTPUT performs an AND operation on the 16-bit mask in
the field descriptor table with the flag stored with the entry. Any number of
bit masks can be defined for a field. $CRFFIELD macro instructions are used
to define multiple bit patterns for a flag field. The high-order bit is reserved
to the cross-reference routines.

fao_string
The $FAO command string. LIB$CRF_OUTPUT uses this string to determine
the $FAO format when formatting this field for output.

field_width
The maximum width of the output field.

set_clear
The indicator used to determine whether the bit mask is to be tested as set or
clear when determining which flag to use. SET indicates test for set; CLEAR
indicates test for clear.

You can use the argument names shown here as keywords in your program.

In the following example, one bit pattern is defined twice; once indicating a
string that is to be printed if the pattern is set, and once indicating that spaces
are to appear if the pattern is clear.

$CRFFIELD

$CRFFIELD

BIT_MASK=SYM$M_REL, FAO_STRING=3_\##_\,
SET_CLEAR=CLEAR, FIELD_WIDTH=2
BIT_MASK=SYM$M_REL, FAO_STRING=_\-R_\,
SET_CLEAR=SET, FIELD_WIDTH=2

If more than one set of flags is defined for a field, each FAO string must
print the same number of characters; otherwise, the output is not aligned in
columns.

The fields for the symbol name, symbol value, and references are always
formatted using the first descriptor in the corresponding table.

8.4 $CRFFIELDEND Macro

8-4

The $CRFFIELDEND macro instruction marks the end of a set of macros that
describe one field of the output line. It is used once to end each set of field
descriptors. It has the following format:

$CRFFIELDEND

Cross-Reference Routines
8. 5 Cross-Reference Output

8.5 Cross-Reference Output
LIB$CRF_OUTPUT can format output lines for three types of cross-reference
listings:

1 A summary of symbol names and their values, as illustrated in Figure 8-2.

2 A summary of symbol names, their values, and the names of modules
that refer to the symbol, as illustrated in Figure 8-3.

3 A summary of symbol names, their values, the name of the defining
module, and the names of those modules that refer to the symbol, as
illustrated in Figure 8-4.

Figure 8-2 Summary of Symbol Names and Values

5>'1Tlb0l

BAS$INSTR
BAS$IN_O_R
BAS$IN_F_R
BAS$IN_L_R
BAS$ IN_ T _0}-{
BAS$IN_W_R
BAS$IO_ENO
BAS$LINKAGE
BAS$LINPUT
BAS$MAT_INPUT

+-----------------+
! SYMbols BY NaMe !
+-----------------+

1.1a 1 ue

000020BO-RU
000021FO-RU
OOOOZ1E8-RU
000021EO-RU
000021F8-RU
00002108-RU
00002100-RU
00001674-R
000021A8-RU
00002268-RU

S>•rribol

BAS$SCRATCH
BAS$STATUS
BAS$STR_O
BAS$STR_F
BAS$STR_L
BAS$UNLOCK
BAS$UPDATE
BAS$UPOATE_COUN
BAS$l,1AL_D
BAS$1JAL_F

lJa 1 ue

00002308-RU
00002338-RU
000020CO-RU
000020B8-RU
000020C8-RU
00002310-RU
000022E8-RU
000022FO-RU
00002110-RU
00002108-RU

ZK-1973-84

Figure 8-3 Summary of Symbol Names, Values, and Name of Referring Modules

SYrrtbol

BAS$K-D I lJBY _ZER

BAS$K_DUPKEYOET
BAS$K-ENDF I LDEt.J

BAS$K_ENDQF_STA

00000030

00000086
OOOOOOOB

0000006C

Referenced BY •••

ALLGBL
BAS$POWDJ
BAS$POWRJ
ALLGBL
ALLGBL
BAS$$UDF_RL
ALLGBL

BAS$ERROR
BAS$POWII
BAS$POWRR
BASUSIGNAL_IO
BASUREC_PROC

ZK-1974-84

8-5

Cross-Reference Routines
8.5 Cross-Reference Output

Figure 8-4 Summary Indicating Defining Module

SYMbol

LIB$GET_CQMMAND
LIB$GET_COMMON

8-6

0001E185-R

0001E2BO-R
0001El!DG-R

Defined B}'

LI B$VM

LIB$GET _INPUT
LIB$COMMON

Referenced BY •••

ALLGBL
BAS$MARGIN
BAS$}<LATE
FOR$1.JM
STR$APPEND
STR$DUPL_CHAR
STR$REPLACE
ALLGBL
ALLGBL

ZK-1971-84

Regardless of the format of the output, LIB$CRF_OUTPUT considers the
output line to consist of the following six different field types:

1 KEYl is the first field in the line. It contains a symbol name.

2 KEY2 is the second field in the line. It contains a set of flags (for
example,-R) providing information about the symbol.

3 VALl is the third field in the line. It contains the value of the symbol.

4 VAL2 is the fourth field in the line. It contains a set of flags describing
VALL

5 REFl and REF2 fields. Within each REFl and REF2 pair, REFl provides a
set of flags and REF2 provides the name of a module that references the
symbol.

Any of these fields can be omitted from the output as shown in the following
figure.

SY1t1bol t,Ja 1 ue 8Yftlbol 1.,Ja 1 ue
------ ------
BAS$INSTR 000020BO-RU BAS$SCRATCH 00002308-RU

t t t t t t
KEY1 VAL1 VAL2 KEY1 VAL1 VAL2

SYrtlbol Va 1 ue Defined B}· Referenced BY ...
------ ---------- -----------------
LI B$FREE _I.JM 0001E185-R LI B$1,JM ALLGBL

t t t t t
KEY1 VAL1 VAL2 REF2 REF2

(CRF$K_DEF) (CRF$K_REF)

ZK-1972-84

8.6 Example

Cross-Reference Routines
8.6 Example

The VAX Linker uses the cross-reference routines to generate cross-reference
listings. This section uses the linker's code as an example of using the
cross-reference routines in a MACRO program.

8.6.1 Defining Control Tables
Cross-reference routines use two control tables:

• The symbol-by-name table

• The symbol-by-value table

First, the linker uses the $CRFCTL TABLE macro to set up the characteristics
and fields of the symbol-by-name table. This table will list symbols by name
and provide a cross-reference synopsis. The table is set up as follows:

LNK$NAMTAB:
$CRFCTLTABLE KEYTYPE=ASCIC,ERROR=LNK$ERR_RTN,_

OUTPUT=LNK$MAPOUT,KEY1TABLE=LNK$KEY1,_
KEY2TABLE=LNK$KEY2,VAL1TABLE=LNK$VAL1,_
VAL2TABLE=LNK$VAL2,REF1TABLE=LNK$REF1,_
REF2TABLE=LNK$REF2

LNK$NAMT AB Names the address of the control table

KEYTYPE=ASCIC Specifies that the keys are counted ASCII strings (that
is, symbol names)

ERROR=LNK$ERR_RTN Indicates that LNK$ERR_RTN is the address of the
routine to be executed in case of error

OUTPUT=LNK$MAPOUT Names LNK$MAPOUT as the address of the user
supplied routine that prints the formatted table

The remaining arguments provide the addresses of the field descriptor tables.

After setting up the control tables, the linker defines each field of the
cross-reference output line, using the $CRFFIELD macro. After each set
of definitions for a field, it calls $CRFFIELDEND to mark the end of the field.

Note particularly the following two features of this set of definitions.

• The definition of LNK$VAL2 describes a flag to be associated with
VALL The definition contains alternative bit patterns, depending on the
bit mask. When an entry is made to the table, the entry contains flag
information. Then, when LIB$CRF_QUTPUT is called to format the data,
the routine checks each entry, matching the flags argument against the
bit masks specified in the control table. When LIB$CRF_OUTPUT finds a
match, it uses that definition to determine the format of the entry in the
output table. For example, BIT__MASK=SYM$M_DEF marks an entry as
the defining reference. The corresponding VALl entry is placed in the
output table with an asterisk in its flags field.

• The FAO control strings are defined to produce an output of the
maximum character size for each field. This ensures that the columns
will line up correctly in the output. For example, !15AC produces the
variable symbol name left-aligned and right-filled with spaces. Another
example is the three sets of characters to be printed for field VAL2. Each

8-7

8.6.2

Cross-Reference Routines
8.6 Example

FAO control string produces two characters, which is the maximum size
of the field.

LNK$KEY1:
$CRFFIELD BIT_MASK=O, FAO_STRING=\!15AC\,-

SET_CLEAR=SET,FIELD_WIDTH=15
$CRFFIELDEND

LNK$KEY2:
$CRFFIELD BIT_MASK=O,FAO_STRING=\ \,-

SET_CLEAR=SET, FIELD_WIDTH=1
$CRFFIELDEND

LNK$VAL1:
$CRFFIELD BIT_MASK=O,FAO_STRING=\!XL\,-

SET_CLEAR=SET,FIELD_WIDTH=8
$CRFFIELDEND

LNK$VAL2:
$CRFFIELD BIT_MASK=O, FAO_STRING=\!2* \,-

SET_CLEAR=SET,FIELD_WIDTH=2
$CRFFIELD BIT_MASK=SYM$M_REL,FAO_STRING=\-R\,-

SET_CLEAR=SET,FIELD_WIDTH=2
$CRFFIELD BIT_MASK=SYM$M_DEF, FAO_STRING=\-*\,-

SET_CLEAR=CLEAR,FIELD_WIDTH=2
$CRFFIELDEND

LNK$REF1:
$CRFFIELD BIT_MASK=O,FAO_STRING=\!6* \,-

SET_CLEAR=SET,FIELD_WIDTH=6
$CRFFIELD BIT_MASK=SYM$M_WEAK,FAO_STRING=\!3* WK-\,-

SET_CLEAR=SET,FIELD_WIDTH=6
$CRFFIELDEND

LNK$REF2:
$CRFFIELD BIT_MASK=O,FAO_STRING=\!16AC\,-

SET_CLEAR=SET,FIELD_WIDTH=16
$CRFFIELDEND

After initializing the symbol-by-name table, the linker sets up a second
control table. This table defines the output for a symbol-by-value synopsis.
For this output, the value fields are eliminated. The symbols having this
value are entered as reference indicators. None is specified as the defining
reference. The control table uses the field descriptors set up previously. The
following macro instructions are used:

LNK$VALTAB:
$CRFCTLTABLE KEYTYPE=BIN_U32, ERROR=LNK$ERR_RTN,

OUTPUT=LNK$MAPOUT,KEY1TABLE=LNK$VAL1,
KEY2TABLE=LNK$VAL2,VAL1TABLE=O,
VAL2TABLE=O,REF1TABLE=LNK$REF1,
REF2TABLE=LNK$REF2

Inserting Table Information

8-8

After initializing the format data for the symbol tables, the linker enters data
into the cross-reference tables by calling LIB$CRF_INS_KEY.

Cross-Reference Routines
8.6 Example

As the linker processes the first object module, MAPINITIAL, it encounters
a symbol definition for $MAPFLG. The following is an example of a call to
enter the symbol MAPINITIAL as a key in the cross-reference symbol table:

PUSHAB
PUSHAB
PUSHAB
PUSHAB
CALLS

VALUE_FLAGS
VALUE_ADDR
SYMBOL_ADDR
LNK$NAMTAB
#4,GALIB$CRF_INS_KEY

Is the address of the control table

Is the address of the counted ASCII string $MAPFLG

Is the address of the symbol value

LNK$NAMTAB

SYMBOL _ADDR

VALUE_ADDR

VALUE_FLAGS Is the address of a word whose bits are used to select special
characters to print beside the value

The linker then calls LIB$CRLINS_REF to process the defining reference
indicator:

DEF: .LONG
PUSHAB
PUSHAB
PUSHAB
PUSHAB
PUSHAB
CALLS

CRF$K_DEF
DEF
REF_FLAGS
REF_ADDR
SYMBOL_ADDR
LNK$NAMTAB
#5,GALIB$CRF_INS_REF

LNK$NAMT AB Is the address of the control table

SYMBOL_ADDR Is the address of the counted string $MAPFLG

REF _ADDR Is the address of the referrer's counted ASCII string

REF _FLAGS Is the address of a word whose bits are used to select special
characters to print beside the reference

Further on in the input module, the linker encounters a global symbol
reference to CS$GBL. The call to store data for this reference is as follows:

REF: .LONG
PUSHAB
PUSHAB
PUSHAB
PUSHAB
PUSHAB
CALLS

CRF$K_REF
REF
REF_FLAGS
REF_ADDR
SYMBOL_ADDR
LNK$NAMTAB
#5,GALIB$CRF_INS_REF

The arguments are similar to the previous example, except for CRF$K_REF,
which indicates that this is not the defining reference.

After it has performed symbol relocation for the module being linked, the
linker calls LIB$CRF_INS_REF to build a table ordered by value.

8-9

8.6.3

Cross-Reference Routines
8.6 Example

PUSHAB
PUSHAB
PUSHAB
PUSHAB
PUSHAB
CALLS

LNK$VALTAB

VAL_ADDR

REF_ADDR

REF_FLAGS

CRF$K_REF

REF
REF_FLAGS
REF_ADDR
VAL_ADDR
LNK$VALTAB
#5,GALIB$CRF_INS_REF

Is the address of the control table for the symbol synopsis by
value

Is the address of the value (binary longword key)

Is the address of the symbol name having the value contained
in VAL_ADDR

Is the address of a word whose bits are used to select special
characters to print beside the value

Is the indicator that this is not a defining reference

Formatting Information for Output

8-10

After all input modules are processed, the linker requests the information
for the map. It calls LIB$CRF_OUTPUT once for each type of output. The
following MACRO example illustrates a call to list the symbols and their
values. Three calls are illustrated here .

LNWID:
LNSP1:
LNSOP:
SAVE:
VAL:

. LONG

.LONG

.LONG

.LONG

.LONG
PUSHAB
PUSHAB
PUSHAB
PUSHAB
PUSHAB
PUSHAB
CALLS

132
LINES_PAGE1
LINES_OTHR_PAGE
CRF$K_SAVE
CRF$K_VALUES
VAL
SAVE
LNSOP
LNSP1
LNWID
LNK$NAMTAB
#6,GALIB$CRF_OUTPUT

In this example, CRF$K_ VALUES means that no reference indicators are to
be printed, while CRF$K_SAVE means that the cross-reference table is to be
saved. It is also possible to list all cross-reference data. The type of output
produced by this call is shown in Section 8.5, Figure 8-2.

The following call produces such a summary and releases the storage at the
same time:

LNWID:
LNSP1:
LNSOP:
DELETE:
DEFREF:

.LONG

.LONG

.LONG

.LONG

.LONG
PUSHAB
PUSHAB
PUSHAB
PUSHAB
PUSHAB
PUSHAB
CALLS

132
LINES_PAGE1
LINES_OTHR_PAGE
CRF$K_DELETE
CRF$K_DEF_REF
DELETE
DEF REF
LNSOP
LNSP1
LNWID
LNK$NAMTAB
#6,GALIB$CRF_OUTPUT

The type of output produced by this call is shown in Section 8.5, Figure 8-4.

Cross-Reference Routines
8.6 Example

CRF$K_DEFS_REFS indicates that the first two reference fields are used
for the defining references, and CRF$K_DELETE indicates that the table is
deleted.

Another call is made to list the symbol by value synopsis, as follows:

LNWID:
LNSP1:
LNSOP:
VALREF:
DELETE:

.LONG

.LONG

.LONG

.LONG

.LONG
PUSHAB
PUSHAB
PUSHAB
PUSHAB
PUSHAB
PUSHAB
CALLS

132
LINES_PAGE1
LINES_OTHR_PAGE
CRF$K_VALS_REF
CRF$K_DELETE
DELETE
VALREF
LNSOP
LNSP1
LNWID
LNK$VALTAB
#6,GALIB$CRF_OUTPUT

This is similar to the previous call in that it produces a complete cross
reference output by value, but it does not have the defining reference fields.

8.7 How to Link to the Cross-Reference Shareable Image
The cross-reference routines are located in a shareable image CRFSHR.EXE.
This shareable image is part of the default system shareable image library,
SYS$LIBRARY:IMAGELIB.OLB. For this reason, the cross-reference routines
are automatically included in your image, unless you specify /NOSYSHR
in the LINK command. If you have specified /NOSYSHR and you want to
include CRFSHR.EXE, your LINK command must include the following:

SYS$LIBRARY:IMAGELIB/INCLUDE=CRFSHR

8-11

LI 8$ Reference Section
This section provides detailed discussions of the routines provided by the
VMS RTL Library (LIB$) Facility.

LIB$ADAWI

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB$ADAWI

Add Adjacent Word with Interlock

The Add Adjacent Word with Interlock routine allows the user to perform
an interlocked add operation using an aligned word.

LIB$ADAWI add ,sum ,result

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

add
VMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

The addend operand to be added to the value of sum. The add argument is
the address of a signed word that contains the addend operand.

sum
VMS usage: word_signed
type: word integer (signed)
access: modify
mechanism: by reference

The word to which add is added. The sum argument is the address of a
signed word integer containing this value.

result
VMS usage: word_signed
type: word integer (signed)
access: modify
mechanism: by reference

The result of adding add and sum. The result argument is the address of a
signed word integer containing the result.

LIB$ADAWI allows the user to perform an interlocked add operation using an
aligned word, and makes the VAX ADAWI instruction available as a callable
routine. This routine also enables the user to implement synchronization
primitives for multiprocessing.

The add operation is interlocked against similar operations on other
processors in a multiprocessor environment. The destination must be aligned
on a word boundary; that is, bit 0 of the address of the sum operand must be
0.

LIB-3

LIB$ADAWI

CONDITION
VALUES
RETURNED

LIB-4

If the addend and the sum operand overlap, the result of the addition,
the value of the result parameter, and the associated condition codes are
unpredictable.

SS$_NQRMAL

LIB$_1NTOVF

Routine successfully completed.

Integer overflow error.

LIB$ADD_ TIMES

LIB$ADD_TIMES Add Two Quadword Times

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Add Two Quadword Times routine adds two VMS internal time
format times.

LIB$ADD_ TIMES time 1 ,time2 ,resultant-time

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

time1
VMS usage: date_ time
type: quadword (unsigned)
access: read only
mechanism: by reference

First time that LIB$ADD_TIMES adds to the second time. The timel
argument is the address of an unsigned quadword containing the first time to
be added. Timel may be either a delta time or an absolute time; however, at
least one of the arguments, timel or time2, must be a delta time.

time2
VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Second time that LIB$ADD_TIMES adds to the first time. The time2
argument is the address of an unsigned quadword containing the second
time to be added. Time2 may be either a delta time or an absolute time;
however, at least one of the arguments, timel or time2, must be a delta time.

resultant-time
VMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The result of adding timel and time2. The resultant-time argument is
the address of an unsigned quadword containing the result. If both timel
and time2 are delta times, then resultant-time is a delta time. Otherwise,
resultant-time is an absolute time.

LIB$ADD_ TIMES adds two VMS internal times. It can add two delta times
or a delta time and an absolute time. LIB$ADD_TIMES cannot add two
absolute times. Delta times must be less than 10,000 days.

LIB-5

LIB$ADD_ TIMES

CONDITION
VALUES
RETURNED

LIB-6

LIB$_NORMAL

LIB$_1VTIME

LIB$_0NEDEL TIM

LIB$_ WRONUMARG

Routine successfully completed.

Invalid time.

At least one delta time is required.

Incorrect number of arguments.

LIB$ADDX

LIB$ADDX Add Two Multiple-Precision Binary
Numbers

FORMAT

RETURNS

ARGUMENTS

The Add Two Multiple-Precision Binary Numbers routine adds two signed
two's complement integers of arbitrary length.

LIB$ADDX addend-array ,augend-array ,resultant-array
[,array-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

addend-array
VMS usage: vector_longword_signed
type: unspecified
access: read only
mechanism: by reference, array reference

First multiple-precision, signed two's complement integer which LIB$ADDX
adds to the second two's complement integer. The addend-array argument
is the address of the array containing the two's complement number to be
added.

augend-array
VMS usage: vector_longword_signed
type: unspecified
access: read only
mechanism: by reference, array reference

Second multiple-precision, signed two's complement integer, which
LIB$ADDX adds to the first two's complement integer. The augend-array
argument is the address of the array containing the two's complement
number.

resultant-array
VMS usage: vector_longword_signed
type: unspecified
access: write only
mechanism: by reference, array reference

Multiple-precision, signed two's complement integer result of the addition.
The resultant-array argument is the address of the array into which
LIB$ADDX writes the result of the addition.

LIB-7

LIB$ADDX

array-length
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Length in longwords of the arrays to be operated on; each array is of length
len. Thelen argument is the address of a signed longword integer containing
the length. Len must not be negative. This is an optional argument. If
omitted, the default is 2.

DESCRIPTION LIB$ADDX adds two signed two's complement integers of arbitrary length.
The integers are located in arrays of longwords. The higher addresses of these
longwords contain the higher-precision parts of the values. The highest
addressed longword contains the sign and 31 bits of precision. The remaining
longwords contain 32 bits of precision in each. The number of longwords in
each array is specified in the optional argument, len. The default length is
two, which corresponds to the VAX quadword data type.

Any two or all three of the first three arguments can be the same.

CONDITION
VALUES
RETURNED

EXAMPLE

C+

SS$_NORMAL

SS$_1NTOVF

C This FORTRAN example program illustrates the use
C of LIB$ADDX.
c-

C+

INTEGER A(2),B(2),C(2) ,RETURN
DATA A/'00000001'x, '7FFF407F'x/
DATA B/'FFFFFFFF'x, '8000BF80'x/

C The highest addressed longword of 11 A11 is A(2).

Routine successfully completed.

Integer overflow. The result is correct, except that
the sign bit is lost.

C So, 11 A11 represents the integer value ('7FFF407F'x) * 16**7 + 1.
C That is, A(2) is 576447592255193089.
C 11 B11 is the twos complement representation of 11 -A 11 •

c-
RETURN = LIB$ADDX(A,B,C)
TYPE *,'Let A= 576447592255193089.'
TYPE *·'Then A+ B is 0.'
TYPE 1 , C (2) , C (1)

1 FORMAT (• II A II - II A II is , . 1H •. I1 , I1 . 3H , x .)
TYPE *,'Note that C is C(2) concatenated with C(1).'

C+
C Let 11 A11 have the value 72057594037927937 = '1000000000000001'x.
C Let 11 B11 have the value 4294967295 'OOOOOOOOFFFFFFFF'x.
c-

LIB-8

LIB$ADDX

C+

A(1) '00000001'x
A(2) '10000000'x
B(1) 'FFFFFFFF'x
B(2) 'OOOOOOOO'x

C Then "A" + "B" is 72057598332895232.
c-

RETURN = LIB$ADDX(A,B,C)
TYPE *·' '
TYPE *,'LET A= 72057594037927937 and B = 4294967295'
TYPE *,'Then A+ Bis ',C
TYPE 2,C(2),C(1)

2 FORMAT(' 72057598332895232 is represented as' ,1H',Z8,Z8,3H'x.)
TYPE*· 'Recall that 72057598332895232 is C(2) concatenated

1 with C (1) . '
END

This FORTRAN example demonstrates how to call LIB$ADDX. The output
generated by this program is as follows:

Let A = 576447592255193089.
Then A + B is 0.
"A" - "A" is ' 00 'x .
Note that C is C(2) concatenated with C(1).
LET A = 72057594037927937 and B = 4294967295
Then A + B is 0 268435457
72057598332895232 is represented as '10000001 O'x.
Recall that 72057598332895232 is C(2) concatenated with C(1).

LIB-9

LIB$ANALYZE_SDESC

LIB$ANALYZE_SDESC Analyze String
Descriptors

FORMAT

The Analyze String Descriptors routine extracts the length and the address
at which the data starts for a variety of string descriptor classes.

LIB$ANALYZE_SDESC input-descriptor ,data-length
, data-address

corresponding jsb LIB$ANALYZE_SDESC_R2
entry point

RETURNS

ARGUMENTS

LIB-10

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

input-descriptor
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input descriptor from which LIB$ANALYZE_DESC extracts the data's length
and starting address. The input-descriptor argument is the address of a
descriptor pointing to this descriptor.

data-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the data; LIB$ANALYZE_DESC extracts this length value from the
input descriptor. The data-length argument is the address of an unsigned
word integer into which LIB$ANALYZE_SDESC writes the length.

data-address
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Starting address of the data; LIB$ANALYZE_DESC extracts this address
from the input descriptor. The data-address argument is the address of an
unsigned longword into which LIB$ANALYZE_DESC writes the starting
address of the data.

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$ANALYZE_SDESC I

LIB$ANALYZE_SDESC extracts the length and the address at which the data
starts for a variety of string descriptor classes. Following is a description of
the classes of string descriptors.

Class Description Restrictions/Notes

A Array DSC$L_ARSIZE must be less than 65536
bytes.

D Decimal string Treated as Class S.

NCA Noncontiguous array Same as Class A.

s Scalar, string None.

SD Decimal scalar Treated as Class S.

vs Varying string Length returned is CURLEN.

z Unspecified Treated as Class S.

See STR$ANAL YZE_SDESC for a similar routine that signals an error rather
than returning a status.

SS$_NORMAL

LIB$_1NVSTRDES

Routine successfully completed.

Invalid string descriptor. An array descriptor has
an ARSIZE greater than 65,535 bytes, or the class
is unsupported.

LIB-11

LIB$ASN_WTH_MBX

LIB$ASN_WTH_MBX Assign Channel with
Mailbox

FORMAT

RETURNS

ARGUMENTS

LIB-12

The Assign Channel with Mailbox routine assigns a channel to a specified
device and associates a mailbox with the device. It returns both the device
channel and the mailbox channel.

LIB$ASN_WTH_MBX device-name

VMS usage: cond_value

,maximum-message-size
,buffer-quota , device-channel
,mailbox-channel

type: longword (unsigned)
access: write only
mechanism: by value

device-name
VMS usage: device_name
type: character string
access: read only
mechanism: by descriptor

Device name which LIB$ASN_WTH_MBX passes to the $ASSIGN service.
The device-name argument is the address of a descriptor pointing to the
device name.

maximum-message-size
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Maximum message size that can be sent to the mailbox;
LIB$ASN_WTH_MBX passes this argument to the $CREMBX service. The
maximum-message-size argument is the address of a signed longword
integer containing this maximum message size.

buffer-quota
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of system dynamic memory bytes that can be used to buffer
messages sent to the mailbox; LIB$ASN_WTH_MBX passes this argument to
the $CREMBX service. The buffer-quota argument is the address of a signed
longword integer containing this buffer quota.

DESCRIPTION

LI B$ASN _ WTH _M BX

device-channel
VMS usage: word_unsigned
type: word integer (unsigned)
access: write only
mechanism: by reference

Device channel which LIB$ASN _ WTH_MBX receives from the $ASSIGN
service. The device-channel argument is the address of an unsigned word
integer into which $ASSIGN writes the device channel.

mailbox-channel
VMS usage: channel
type: word integer (unsigned)
access: write only
mechanism: by reference

Mailbox channel which LIB$ASN_WTH_MBX receives from the $CREMBX
service. The mailbox-channel argument is the address of an unsigned word
integer into which $CREMBX writes the mailbox channel.

A mailbox is a virtual device used for communication between processes.
A channel is the communication path that a process uses to perform 1/0
operations to a particular device. LIB$ASN_WTH_MBX assigns a channel to
a device and associates a mailbox with the device. It returns both the device
channel and the mailbox channel to the mailbox.

Normally, a process calls the $CREMBX system service to create a mailbox
and assign a channel and logical name to it. Any process running in the same
job and using the same logical name uses the same mailbox.

LIB$ASN _ WTH_MBX associates the physical mailbox name with the
channel assigned to the device. To create a temporary mailbox for itself
and other processes cooperating with it, your program calls
LIB$ASN_WTH_MBX. The Run-Time Library routine assigns the channel
and creates the temporary mailbox by using the system services $GETDVIW,
$ASSIGN, and $CREMBX. Instead of a logical name, the mailbox is identified
by a physical device name of the form MBcu. The physical device name
MBcu is made up of the following elements:

MB Indicates that the device is a mailbox

c Is the controller

u Is the unit number

The routine returns this device name to the calling program, which then must
pass the mailbox channel to the other program(s) with which it cooperates. In
this way, the cooperating processes access the mailbox by its physical name,
instead of by a logical name.

The calling program passes the routine a device name, which specifies
the device to which the channel is to be assigned. For this argument (called
device-name), you may use a logical name. If you do so, the routine attempts
one level of logical name translation.

The privilege restrictions and process quotas required for using this routine
are those required by the $GETDVIW, $CREMBX, and $ASSIGN system
services.

LIB-13

LIB$ASN_WTH_MBX

CONDITION
VALUES
RETURNED

LIB-14

SS$_NORMAL Routine successfully completed.

Any condition value returned by the called system services $ASSIGN, $CREMBX,
$GETDVI, or the RTL routines LIB$GET_EF and LIB$FREE_EF.

LI B$AST _IN _PROG

LI B$AST_I N _PROG AST in Progress

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

The AST in Progress routine indicates whether an AST is currently in
progress.

LIB$AST_IN_PROG

VMS usage: boolean
type: boolean
access: write only
mechanism: by value

Truth value that indicates whether an AST is currently in progress (value=l)
or not (value=O).

None.

An asynchronous system trap (AST) is a VMS mechanism for providing a
software interrupt when an external event occurs, such as the user typing
CTRL/C. When an external event occurs, VMS interrupts the execution of
the current process and calls a routine that you supply. While that routine
is active, the AST is said to be in progress, and the process is said to be
executing at AST level. When your AST routine returns control to the original
process, the AST is no longer active and execution continues where it left off.

LIB$AST_IN JROG indicates to the calling program whether an AST
is currently in progress. Your program can call LIB$AST-1NJROG to
determine whether it is executing at AST level, and then take appropriate
action. This routine is useful if you are writing AST-reentrant code, which
takes different actions depending on whether an AST is in progress. For
example, the routine might have two separate statically allocated storage
areas, one for AST level and one for non-AST level.

Any condition values returned by LIB$FREE_EF, LIB$GET_EF, or
SYS$GETJPI.

LIB-15

LI B$AST _IN _PROG

EXAMPLE

PROGRAM AST_IN_PROGRESS(INPUT, OUTPUT);

FUNCTION LIB$AST_IN_PROG : INTEGER; EXTERN;

VAR
ASTVALUE : INTEGER;

BEGIN
ASTVALUE := LIB$AST_IN_PROG;
CASE ASTVALUE OF

0 : WRITELN('AN AST IS NOT IN PROGRESS');
1 : WRITELN('AN AST IS IN PROGRESS');

END { of the case statement }
END.

This Pascal program determines whether or not an AST is in progress.

LIB-16

LIB$ATTACH

LIB$ATTACH Attach Terminal to Process

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

The Attach Terminal to Process routine requests the calling process's
Command Language Interpreter (CU) to detach the terminal of the calling
process and to reattach it to a different process.

LIB$ATTACH process-id

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

process-id
VMS usage: process_id
type: longword integer (unsigned)
access: read only
mechanism: by reference

Identification of the process to which LIB$ATTACH requests the calling
process to attach its terminal. The process-id argument is the address of
an unsigned longword integer containing the process identification. The
specified process must be currently detached (by means of a SP AWN or
ATTACH command, or by a call to LIB$SPAWN or LIB$ATTACH) and must
be part of the caller's job.

LIB$ATTACH requests the calling process's Command Language Interpreter
(CLI) to detach the terminal of the calling process and to reattach it to a
different process. The calling process then hibernates. LIB$ATTACH provides
the same function as the DCL command ATTACH. For more information, see
the VMS DCL Dictionary.

LIB$ATTACH is supported for use with the DCL CLI. If used with the
Monitor Control Routine (MCR) CLI, the error status LIB$_NOCLI will be
returned. If an image is run directly as a subprocess or as a detached process,
there is no CLI present to perform this function. In such cases the error status
LIB$_NOCLI is returned.

LIB-17

LIB$ATTACH

CONDITION
VALUES
RETURNED

LIB-18

SS$_NORMAL

SS$_NONEXPR

U8$_A TTREQREF

U8$_NQCU

U8$_UNECUERR

Routine successfully completed.

Nonexistent process. The process specified by
process-id does not exist.

Attach request refused. The specified process
could not be attached to. Either it was not
detached or did not belong to the caller's job.

No CU present to perform function. The calling
process did not have a CU to perform the function,
or the CU did not support the request type. Note
that an image run as a subprocess or detached
process does not have a CU.

Unexpected CU error. The CU returned an error
status which was not recognized. This error may
be caused by use of a nonstandard CU. If this
error occurs while using the DCL CU, please report
the problem to DIGIT AL by means of a Software
Performance Report (SPR).

LIB$BBCCI

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB$BBCCI

Test and Clear Bit with Interlock

The Test and Clear Bit with Interlock routine tests and clears a selected
bit under memory interlock. LIB$BBCCI makes the VAX BBCCI instruction
available as a callable routine.

LI B$BBCCI position ,bit-zero-address

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

State of the bit before it was cleared by LIB$BBCCI; 1 if the bit was previously
set and 0 if the bit was previously clear.

position
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Bit position, relative to bit-zero-address, of the bit which LIB$BBCCI tests
and clears. The position argument is the address of a signed longword
integer containing the bit position. A position of zero denotes the low-order
bit of the byte base. The bit position is equal to the offset of the bit chosen
from the base position. This offset may span the entire range of a signed
longword integer; negative offsets access bits in lower-addressed bytes.

bit-zero-address
VMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference

Address of the byte containing bit zero of the field that LIB$BBCCI references.
The bit-zero-address argument is the location of the base position. The bit
that LIB$BBCCI tests and clears is position bits offset from the low bit of
bit-zero-address.

The single bit specified by position and bit-zero-address is tested, the
previous state of the bit remembered, and the bit cleared. The reading of the
state of the bit and its clearing are interlocked against similar operations by
other processors or devices in the system. The remembered previous state of
the bit is then returned as the function value of LIB$BBCCI.

For more information, see the VAX Architecture Reference Manual.

LIB-19

LIB$BBCCI

CONDITION
VALUES
RETURNED

None.

EXAMPLE

C+
C This FORTRAN program demonstrates the use of
C LIB$BBCCI .
c-

LIB-20

INTEGER*4 STATES(4)
COMMON /STATES/ STATES
LOGICAL*4 LIB$BBCCI

128 shared state bits
Could be shared memory

IF (LIB$BBCCI (42, STATES)) THEN
TYPE *,'State bit 42 was set'

ELSE
TYPE *,'State bit 42 was clear'

END IF
END

This FORTRAN example tests and clears bit 42 of array STATES, which is in
a COMMON area (possibly shared between two processors).

The output generated by this program is as follows:

$ RUN STATE
State bit 42 was clear.

LIB$BBSSI

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB$BBSSI

Test and Set Bit with Interlock

The Test and Set Bit with Interlock routine tests and sets a selected bit
under memory interlock. LIB$BBSSI makes the VAX BBSSI instruction
available as a callable routine.

LI B$BBSSI position ,bit-zero-address

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The state of the bit before it was set by LIB$BBSSI; 1 if it was previously set,
0 if it was previously clear.

position
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Bit position, relative to bit-zero-address, of the bit which LIB$BBSSI tests
and sets. The position argument is the address of a signed longword integer
containing the bit position. A position of zero denotes the low-order bit of
the byte base. The bit position is equal to the offset of the bit chosen from
the base position. This offset may span the entire range of a signed longword
integer; negative offsets access bits in lower-addressed bytes.

bit-zero-address
VMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference

Address of the byte containing bit zero of the field that LIB$BBSSI references.
The bit-zero-address argument is the location of the base position. The
bit that LIB$BBSSI tests and sets is position bits offset from the low bit of
bit-zero-address.

The single bit specified by position and bit-zero-address arguments is tested,
the previous state of the bit remembered, and the bit set. The reading of the
state of the bit and its setting are interlocked against similar operations by
other processors or devices in the system. The remembered previous state of
the bit is then returned as the function value of LIB$BBSSI.

·For more information, see the VAX Architecture Reference Manual.

LIB-21

LIB$BBSSI

CONDITION
VALUES
RETURNED

None.

EXAMPLE

C+
C This FORTRAN example program demonstrates
C the use of LIB$BBSSI.
c-

INTEGER*4 STATES(4)
COMMON /STATES/ STATES
LOGICAL*4 LIB$BBSSI

128 shared state bits
Could be shared memory

IF (LIB$BBSSI (104, STATES)) THEN
TYPE *,'State bit 104 was set'

ELSE
TYPE *·'State bit 104 was clear'

END IF
END

This FORTRAN example tests and sets bit 104 of array STATES, which is in a
COMMON storage area (possibly shared between two processors).

The output generated by this program is as follows:

$ RUN STATEB
State bit 104 was clear.

LIB-22

LIB$CALLG

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB$CALLG

Call Routine with General Argument
List

The Call Routine with General Argument List routine calls a routine with
an argument list specified as an array of longwords, the first of which is a
count of the remaining longwords. LIB$CALLG is a callable version of the
VAX CALLG instruction.

LIB$CALLG argument-list ,user-procedure

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Return value, if any, of the called routine. This value is not changed by
LIB$CALLG.

argument-list
VMS usage: arg_list
type: unspecified
access: read only
mechanism: by reference, array reference

Argument list which LIB$CALLG uses to call the specified routine. The
argument-list argument is the address of an array of longwords containing
the argument list. The first longword must contain the count of the remaining
longwords. The maximum value of the count is 255.

user-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

routine which LIB$CALLG calls with the specified argument list. The user
procedure argument is the address of the routine entry mask for this routine.

LIB$CALLG is useful for calling routines which accept variable-length
argument lists when the number of arguments to be passed is not known
until execution time. LIB$CALLG can also be used to call such routines from
strongly typed languages which require routines to be declared as having a
fixed number of arguments.

For more information, see the VAX Architecture Reference Manual.

LIB-23

LIB$CALLG

CONDITION None.

VALUES
RETURNED

LIB-24

LIB$CHAR

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB$CHAR

Transform Byte to First Character of
String

The Transform Byte to First Character of String routine transforms a single
8-bit ASCII character to an ASCII string consisting of a single character
followed by trailing spaces, if needed, to fill out the string. The range of
the input byte is 0 through 255.

LI B$CHAR one-character-string ,ascii-code

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

one-character-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

ASCII character string consisting of a single character followed by trailing
spaces, if needed, that LIB$CHAR creates when it transforms the ASCII
character code. The one-character-string argument is the address of a
descriptor pointing to the character string that LIB$CHAR writes.

ascii-code
VMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Single 8-bit ASCII character code that LIB$CHAR transforms to an ASCII
string. The ascii-code argument is the address of an unsigned byte containing
the ASCII character code.

LIB$CHAR is the inverse of LIB$ICHAR. (See the description of LIB$ICHAR.)
LIB$CHAR is not a binary-to-ASCII conversion routine. LIB$CHAR merely
interprets ascii-code as an ASCII character code and converts it to a string.

LIB-25

LIB$CHAR

CONDITION
VALUES
RETURNED

LIB-26

SS$_NORMAL

LIB$_STRTRU

LIB$_FA TERRLIB

LIB$_1NSVIRMEM

LIB$_1NVSTRDES

Routine successfully completed.

Routine successfully completed, but the string was
truncated. The fixed-length destination string could
not contain all of the characters.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Insufficient virtual memory. A call to LIB$GET _ VM
has failed because your program has exceeded the
image quota for virtual memory.

Invalid string descriptor. A string descriptor has an
invalid value in its DSC$B_CLASS field.

LI B$CONVERT_DATE_STRI NG

LI B$CONVERT_DATE_STRI NG Convert Date
String to
Quadword

FORMAT

RETURNS

ARGUMENTS

The Convert Date String to Quadword routine converts an absolute date
string into a VMS internal format date-time quadword. That is, given an
input date/time string of a specified format,
LIB$CONVERT_DATE_STRING converts this string to a VMS internal
format time.

LIB$CONVERT_DATE_STRING date-string ,date-time
{,user-context]
{,flags]{, defaults]
{,defaulted-fields]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

date-string
VMS usage: time_name
type: character-coded text string
access: read only
mechanism: by descriptor

Date string that specifies the absolute time to be converted to an internal
system time. The date-string argument is the address of a descriptor pointing
to this date string. This string must have a format corresponding to the
currently defined input format, or it must be one of the relative day strings
YESTERDAY, TODAY, or TOMORROW, or their equivalents in the currently
selected language.

date-time
VMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

Receives the converted time. The date-time argument is the address of an
unsigned quadword that contains this VMS internal format converted time.

user-context
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

LIB-27

LIB$CONVERT_DATE_STRING

LIB-28

Context variable that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword
that contains this context. The initial value of the context variable must be
zero. Thereafter, the user program must not write to the cell.

The user-context parameter is optional. However, if a context cell is not
passed, the routine LIB$CONVERT_DATE_STRING may abort if two threads
of execution attempt to manipulate the context area concurrently. Therefore,
when calling this routine in situations where reentrancy might occur, such as
from AST level, DIGITAL recommends that users specify a different context
cell for each calling thread.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Specifies which date or time fields of the date-string argument might be
omitted so that default values are applied. The flags argument is the address
of a longword bit mask that contains these flags. A set bit indicates that the
field may be omitted. The bit definitions for the mask correspond to the fields
in a $NUMTIM "timbuf" structure as follows:

Field Bit Number Mask

Year 0 1

Month 1 2

Day of month 2 4

Hours 3 8

Minutes 4 16

Seconds 5 32
Fractional seconds 6 64

Bits 7 through 31 must be zero and are reserved for use by DIGITAL. If this
parameter is omitted, a default value of 120 (78H) is used, indicating that the
time fields may be defaulted, but the date fields may not.

defaults
VMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference, array reference

Supplies the defaults to be used for omitted fields. The defaults argument is
the address of an array of unsigned words containing these default values.
This array corresponds to a 7-word $NUMTIM "timbuf" structure. If the
defaults argument is omitted, the following defaults are applied:

• For the date group, the default is the current date.

• For the time group, the default is 00:00:00.00.

DESCRIPTION

LI B$CONVERT_DATE_STRI NG

defaulted-fields
VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Indicates which date or time fields have been defaulted. The defaulted-fields
argument is the address of a longword bit mask that specifies these fields.
The bit definitions are identical to those of the flags bit mask. A set bit
indicates that the field was defaulted. Bits 7 through 31, which are reserved
for use by DIGITAL, are zeroed.

LIB$CONVERT_DATE_STRING converts an absolute date string into a
VMS internal format date-time quadword. The input date string can either
correspond to the format specified, or it can be the language equivalent of
one of the relative date strings YESTERDAY, TODAY, or TOMORROW. The
language to be used and the format in which to interpret the information are
programmable using either of the following methods.

• The language and format are programmable at compile time through the
use of the routine LIB$INIT_DATE_TIME_CONTEXT.

• The language and format can be determined at run time through the
translation of the logical names SYS$LANGUAGE and
LIB$DT_INPUT_FORMAT.

In general, if an application is reading text from internal storage, the language
and input format should be specified at compile time. If this is the case, use
the routine LIB$INIT_DATE_TIME_CONTEXT to specify the language and
input format of your choice.

If an application is accepting text from a user, the logical name method of
specifying language and format should be used. In this method, the user
assigns equivalence names to the logical names SYS$LANGUAGE and
LIB$DT_INPUT_FORMAT, thereby selecting the language and input format
of the date and time at run time.

The calling program can choose to apply defaults for omitted fields in the
date string. To do this, the flags argument is used to indicate which fields
are to be defaulted, and the defaults argument is used to supply the default
values. If the defaults argument is not supplied, the following default values
are applied:

• For the date group, the default is the current date.

• For the time group, the default is 00:00:00.00.

Optionally, you can use the defaulted-fields argument to receive information
on which input fields were omitted and thus accepted default values.

LIB-29

LIB$CONVERT_DATE_STRING

CONDITION
VALUES
RETURNED

LIB-30

SS$_NORMAL

LIB$_DEFFORUSE

LIB$_ENGLUSED

LIB$_AMBDA TTIM

LIB$_1NCDA TTIM

LIB$_1LLFORMA T

LIB$_1NV ARG

LIB$_1NVSTRDES

LIB$_1VTIME

LIB$_REENTRANCY

LIB$_UNRFORCOD

LIB$_ WRONUMARG

Normal successful completion.

Default format used; unable to determine desired
format.

English used by default; unable to translate
SYS$LANGUAGE.

Ambiguous date/time.

Incomplete date/time; missing fields with no
defaults.

Illegal format string; too many or not enough fields.

Invalid argument; a required argument was not
specified.

Invalid input string descriptor.

Invalid date/time.

Reentrancy detected.

Unrecognized format code.

Wrong number of arguments.

Any condition value returned by LIB$GET_ VM, LIB$FREE_ VM,
LIB$FREEl_DD, LIB$SCOPY_R_DX, SYS$NUMTIM, and SYS$GETTIM.

LIB$CRC

FORMAT

RETURNS

ARGUMENTS

LIB$CRC

Calculate a Cyclic Redundancy Check
(CRC)

The Calculate a Cyclic Redundancy Check routine calculates the cyclic
redundancy check (CRC) for a data stream. LIB$CRC makes the VAX CRC
instruction available as a callable routine.

LI B$CRC ere-table ,initial-ere ,stream

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The computed cyclic redundancy check.

ere-table
VMS usage: vector_longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference, array reference

The 16-longword cyclic redundancy check table, created by a call to
LIB$CRC_ TABLE. The ere-table argument is the address of a signed
longword integer containing this table. Because this table is created by
LIB$CRC_ TABLE and then used as input in LIB$CRC, your program must
call LIB$CRC_TABLE before it calls LIB$CRC.

initial-ere
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Initial cyclic redundancy check. The initial-ere argument is the address of a
signed longword integer containing the initial cyclic redundancy check.

stream
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Data stream for which LIB$CRC is calculating the CRC. The stream argument
is the address of a descriptor pointing to the data stream.

LIB-31

LIB$CRC

DESCRIPTION

CONDITION
VALUES
RETURNED

EXAMPLE

LIB-32

Before your program can call LIB$CRC, it must call LIB$CRC_ TABLE.
LIB$CRC_TABLE takes a polynomial as its input and builds the table that
LIB$CRC uses to calculate the CRC.

LIB$CRC allows your high-level language program to use the CRC
instruction, which calculates the Cyclic Redundancy Check. This instruction
checks the integrity of a data stream by comparing its state at the sending
point and the receiving point. Each character in the data stream is used to
generate a value based on a polynomial. The values for each character are
then added together. This operation is performed at both ends of the data
transmission, and the two result values compared. If the results disagree,
then an error occurred during the transmission.

See the VAX Architecture Reference Manual for a description of the algorithms
used in computing the CRC.

None.

For an example of using LIB$CRC, refer to the BASIC example at the end of
the description of LIB$CRC_TABLE.

LIB$CRC_ TABLE

LIB$CRC_TABLE Construct a Cyclic Redundancy
Check (CRC) Table

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

The Construct a Cyclic Redundancy Check Table routine constructs
a 16-longword table that uses a cyclic redundancy check polynomial
specification as a bit mask.

LIB$CRC_ TABLE polynomial-coefficient ,ere-table

None.

polynomial-coefficient
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

A bit mask indicating which polynomial coefficients are to be generated by
LIB$CRC_TABLE. The polynomial-coefficient argument is the address of an
unsigned longword integer containing this bit mask.

ere-table
VMS usage: vector_longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference, array reference

The 16-longword table that LIB$CRC_TABLE produces. The ere-table
argument is the address of a signed longword integer containing the table.

The table created by LIB$CRC_ TABLE can be passed to the LIB$CRC routine
for generating the cyclic redundancy check value for a stream of characters.

For a description of how LIB$CRC_TABLE actually generates the table, see
the VAX Architecture Reference Manual.

None.

LIB-33

LIB$CRC_ TABLE

EXAMPLE

1 %TITLE "Demonstrate LIB$CRC and LIB$CRC_TABLE"
%SBTTL "Declarations"
%IDENT "1-001"

!+
! FACILITY:

VMS Run-time library

FUNCTIONAL DESCRIPTION:

This program demonstrates the use of LIB$CRC and LIB$CRC_TABLE.

IMPLICIT INPUTS:

The user is requested to enter two strings.

IMPLICIT OUTPUTS:

Output is printed to the controlling terminal.

SIDE EFFECTS:

None

AUTHOR:

Ken Cowan

CREATION DATE: 22-Feb-1985

MODIFICATION HISTORY:

OPTION TYPE = EXPLICIT

DECLARE LONG
LONG
LONG
STRING
STRING

CRC_TABLE(15),
CRC_vAL_1,
CRC_VAL_2,
DATA_1,
DATA_2

EXTERNAL LONG FUNCTION LIB$CRC

EXTERNAL SUB LIB$CRC_TABLE

OPEN "SYS$INPUT:" FOR INPUT AS FILE 1%

!+

CRC table array &
CRC for first stream &
CRC for second stream &
First data stream &
Second data stream

Rtn to calculate CRC

Rtn to set up table for CRC

! Initialize the CRC table. Use the CRC-16 polynomial (refer to
! "VAX Architecture Handbook"). This is the polynomial used by
! DDCMP and Bisync.
!-

CALL LIB$CRC_TABLE(0'120001'L, CRC_TALLE() BY REF)

!+
! Get data from user.
!-

LINPUT #1%, 'Enter string: ';DATA_1

LIB-34

LI B$CRC_ TABLE

!+
! Cale the CRC for the user's input. This CRC polynomial needs

an initial CRC of 0 (refer to "VAX Architecture Handbook").
LIB$CRC returns a longword, but only the low order word is valid
for this polynomial.

!-

CRC_VAL_1 = LIB$CRC(CRC_TABLE() BY REF, 0%, DATA_1
CRC_VAL_1 = CRC_VAL_1 AND 32767%

!+
! Get more data from user.
!-

LINPUT #1%, 'Enter a second string: ';DATA_2

CRC_VAL_2 = LIB$CRC(CRC_TABLE() BY REF, 0%, DATA_2
CRC_VAL_2 = CRC_VAL_2 AND 32767%

!+
! Tell the user the results of the CRC comparison.
!-

IF CRC_VAL_1 = CRC_VAL_2
THEN

PRINT "The two CRCs";CRC_VAL_1;" and ";CRC_VAL_2;" were the same"
ELSE

PRINT "The two CRCs";CRC_VAL_1;" and ";CRC_VAL_2;" were the different"
END IF

IF DATA_1 = DATA_2
THEN

PRINT "The two strings were the same"
ELSE

PRINT "The two strings were different"
END IF

END

This BASIC example program shows the use of LIB$CRC and
LIB$CRC_ TABLE. One example of the output generated by this program is as
follows:

$ RUN CRC
Enter string: DOVE
Enter a second string: HOSE
The two CRCs 29915 and 29915 were the same
The two strings were different

LIB-35

LIB$CREATE_DIR

LIB$CREATE_DIR Create a Directory

FORMAT

RETURNS

ARGUMENTS

LIB-36

The Create a Directory routine creates a directory or subdirectory.

LI B$CREATE_DI R device-directory-spec
[,owner-UIC] [,protection-enable}
[,protection-value]
[,maximum-versions}
[,relative-volume-number}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

device-directory-spec
VMS usage: device_name
type: character string
access: read only
mechanism: by descriptor

Directory specification of the directory or subdirectory that LIB$CREATE_DIR
will create. The device-directory-spec argument is the address of a descriptor
pointing to this directory specification.

The format of the device-directory-spec string conforms to standard Record
Management Services (RMS) format. This specification must contain a
directory or subdirectory specification. It may contain a disk specification.
SMD$:[THIS.IS.IT] is an example of a standard RMS file specification,
where SMD$ is the disk specification and [THIS.IS.IT] is the subdirectory
specification.

This specification cannot contain a node name, file name, file type, file
version, or wildcard characters. The maximum size of this string is 255
characters.

owner-UIC
VMS usage: uic
type: longword (unsigned)
access: read only
mechanism: · by reference

User Identification Code (UIC) identifying the owner of the created directory
or subdirectory. The owner-UIC argument is the address of an unsigned
longword that contains the UIC. If owner-UIC is zero, the owner UIC is that
of the parent directory.

This is an optional argument. The default is the UIC of the parent directory
except when the directory is in UIC format. For a directory in UIC format, for
example [123,321], the UIC of the created directory is used.

protection-enable
VMS usage: mask_word
type: word (unsigned)
access: read only
mechanism: by reference

LIB$CREATE_DIR

Mask specifying the bits of protection-value to be set. The protection-enable
argument is the address of an unsigned word containing this protection mask.

Figure LIB-1 shows the structure of a protection mask. Access is allowed for
bits set to zero.

Figure LIB-1 Structure of a Protection Mask

WORLD GROUP OWNER SYSTEM

D E w R D E w R D E w R D E w R
E x R E E x R E E x R E E x R E
L E I A L E I A L E I A L E I A
E c T D E c T D E c T D E c T D
T u E T u E T u E T u E
E T E T E T E T

E E E E

15 0

ZK-1979-84

Set bits in the protection-enable mask cause corresponding bits of
protection-value to be set. Clear bits in the protection-enable mask cause
corresponding bits of protection-value to take the value of the corresponding
bit in the parent directory's file protection. Bits in the parent directory's file
protection which indicate delete access will not cause corresponding bits of
protection-value to be set, however.

Following is an example of how the protection-value protection mask is
defined.

Mask Name

Protection enable

Parent directory

Protection value

Hex Number

%XDBFF

%X13FF

%X37FF

Value

S:NONE, O:NONE, G:E, W:W

S:RWED, O:RWED, G:RW, W:R

S:RWE, O:RWE, G:RWE, W:RW

Protection-enable is an optional argument. It should be used only when
you wish to change protection values from the parent directory's default
file protection. The default for protection-enable is a mask of all zero bits,
which results in the propagation of the parent directory's file protection. If
the protection-enable mask contains zeros, protection-value is ignored.

LIB-37

LIB$CREATE_DIR

DESCRIPTION

LIB-38

protection-value
VMS usage: file_protection
type: word (unsigned)
access: read only
mechanism: by reference

System/Owner/Group/World protection value of the directory you are
creating. The protection-value argument is the address of an unsigned word
which contains this protection mask.

The bits of protection-value are set or cleared in the method described in the
definition of protection-enable above.

Protection-value is an optional argument. The default is a word of all
zero bits, which specifies full access for all access categories. Typically,
protection-value is not omitted unless protection-enable is also omitted. If
protection-enable is omitted, protection-value will be ignored.

maximum-versions
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Maximum number of versions allowed for files created in the newly created
directories. The maximum-versions argument is the address of an unsigned
word containing the value of the maximum number of versions.

Maximum-versions is an optional argument. The default is the parent
directory's default version limit. If specified as zero, the maximum number of
versions is not limited.

relative-volume-number
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Relative volume number within a volume set on which the directory or
subdirectory is created. The relative-volume-number argument is the
address of an unsigned word containing the relative volume number. The
relative-volume-number argument is optional. The default is arbitrary
placement within the volume set.

LIB$CREATE_DIR allows the caller to indicate the owner and protection
of the created directory or subdirectory. The caller can also indicate the
maximum number of versions of a file which will be maintained and the
relative volume number in which the directory or subdirectory will be created.

CONDITION
VALUES
RETURNED

SS$_CREATED

SS$_NORMAL

LIB$_1NV ARG

LIB$_1NVFILSPE

LIB$CREATE_DIR

Routine successfully completed; one or more
directories created.

Routine successfully completed; all specified
directories already exist.

Invalid argument to Run_ Time Library. Either
the required argument was omitted, or device
directory-spec is longer than 255 characters.

Invalid file specification. Either the file specification
did not contain an explicit directory and device
name, or it contained a node name, file name, file
type, file version, or wildcard. This error is also
produced if the device specified was not a disk.

Any condition values returned by $ASSIGN.

Any condition values returned by $DASSGN.

Any condition values returned by $PARSE.

Any condition values returned by $QIO.

Any condition values returned by LIB$ANALYZE_SDESC.

Any condition values returned by LIB$GET__EF.

LIB-39

LI B$CREATE_USER_ VM _ZQN E

LIB$CREATE_USER_VM_ZONE Create
User-Defined
Storage Zone

FORMAT

RETURNS

ARGUMENTS

LIB-40

The Create User-Defined Storage Zone routine creates a new user-defined
storage zone.

LIB$CREATE_USER_VM_ZONE
zone-id [,user-argument]
[,user-allocation-procedure]
[,user-deallocation-procedure]
[,user-reset-procedure]
[,user-delete-procedure] [,zone-name]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

zone-id
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a longword that
receives the identifier of the newly created zone.

user-argument
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by reference

User argument. The user-argument argument is the address of
an unsigned longword containing the user argument.
LIB$CREATE_USER_ VM_ZONE copies the value of user-argument and
supplies the value to all user-procedures invoked.

user-allocation-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User allocation routine. The user-allocation-procedure argument is the
address of the procedure entry mask for the optional user routine that is
invoked each time LIB$GET_ VM is called for the zone.

DESCRIPTION

LIB$CREATE_USER_VM_ZONE

user-deallocation-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User deallocation routine. The user-deallocation-procedure argument is
the address of the procedure entry mask for the optional user routine that is
invoked each time LIB$FREE_ VM is called for the zone.

user-reset-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User routine to reset the zone. The user-reset-procedure argument is an
optional user routine that is invoked each time LIB$RESET_ VM--20NE is
called for the zone.

user-delete-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User routine to delete the zone. The user-delete-procedure argument is
the address of the procedure entry mask for the optional user routine that is
invoked when LIB$DELETE_ VM_ZONE is called for the zone.

zone-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone
name argument is the address of a descriptor pointing to the zone name. If
zone-name is not specified, the zone will not have an associated name.

LIB$CREATE_USER_ VM_ZONE creates a user-defined zone. If an error
status is returned, the zone is not created.

Each time that one of the heap Management Routines (LIB$GET_ VM,
LIB$FREE_ VM, LIB$RESET_ VM--20NE, or LIB$DELETE_ VM--20NE)
is called to perform an operation on a user-defined zone, the corresponding
user routine that you supplied is used.

You may omit any·of the optional user routines. However, if you omit a
routine and later call the corresponding heap management routine, the error
status LIB$_INVOPEZON will be returned.

LIB-41

LIB$CREATE_USER_VM_ZONE

LIB-42

Call Format for User Routines

The user routines are called with arguments similar to those passed to
LIB$GET_ VM, LIB$FREE_ VM, LIB$RESET_ VM_ZONE, or
LIB$DELETE_VM_ZONE. In each case, the user-argument argument from
LIB$CREATE_USER_VM_ZONE is passed to the user routine rather than a
zone-id argument.

The call format for a user get or free routine is as follows:

user-rtn num-bytes ,base-adr ,user-argument

num-bytes
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes to allocate or free. The num-bytes argument is
the address of a longword integer containing the number of bytes. The value
of num-bytes must be greater than zero.

base-adr
VMS usage: address
type: longword (unsigned)
access: modify
mechanism: by reference

Virtual address of the first contiguous block of bytes allocated or freed. The
base-adr argument is the address of an unsigned longword containing this
base address. (This argument is write-only for a get routine, and read-only
for a free routine.)

user-argument
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by reference

User argument. LIB$CREATE_USER_ VM-20NE copies user-argument as
it is supplied to all user routines invoked.

The status value returned by your routine is returned as the status value for
the corresponding call to LIB$GET_VM or LIB$FREE_VM.

The zone-id value that is returned can be used in calls to
LIB$SHQW_ VM_ZQNE and LIB$VERIFY_ VM-20NE.

The call format for a user reset or delete routine is as follows:

user-rtn user-argument

user-argument
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by reference

User argument. LIB$CREATE_USER_VM_ZONE copies user-argument as
it is supplied to all user routines invoked.

CONDITION
VALUES
RETURNED

LI B$CREATE_USER_ VM _ZONE

The status value returned by your routine is returned as the status value for
the corresponding call to LIB$RESET_ VM--20NE or
LIB$DELETE_VM_ZONE.

SS$_NORMAL

LIB$_1NSVIRMEM

LIB$_1NVSTRDES

Normal successful completion.

Insufficient virtual memory.

Invalid string descriptor for zone-name.

LIB-43

LIB$CREATE_VM_ZQNE

LIB$CREATE_VM_ZONE Create a New Zone

FORMAT

RETURNS

ARGUMENTS

LIB-44

The Create a New Zone routine creates a new storage zone according to
specified arguments.

LIB$CREATE_VM_ZQNE zone-id {,algorithm}
[,algorithm-argument]
{,flags] {,extend-size]
{,initial-size} {,block-size}
{,alignment} {,page-limit]
{,smallest-block-size]
[,zone-name}
{,number-of-areas]
{,get-page]{, free-page]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

zone-id
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a longword that is
set to the zone identifier of the newly created zone.

algorithm
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Algorithm. The algorithm argument is the address of a longword integer that
represents the code for one of the LIB$VM algorithms:

1 LIB$K_VM_FIRST_FIT First fit

2 LIB$K_ VM_QUICK_FIT Quick fit, lookaside list

3 LIB$K_VM_FREQ_SIZES Frequent sizes, lookaside list

4 LIB$K_VM_FIXED Fixed size blocks

If algorithm is not specified, a default of 1 (first fit) is used.

LI B$CREATE_ VM _ZONE

algorithm-argument
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Algorithm argument. The algorithm-argument argument is the address of
a longword integer that contains a value specific to the particular allocation
algorithm.

Algorithm Value

First fit

Quick fit

Not used, may be omitted.

The number of lookaside lists used. The number of
lists must be between 1 and 128.

Frequent sizes The number of lookaside lists used. The number of
lists must be between 1 and 16.

Fixed size blocks The fixed request size (in bytes) for each get or free
request. The request size must be greater than 0.

The algorithm-argument argument must be specified if you are using
the quick-fit, frequent-sizes or fixed-size-blocks algorithms. However, this
argument is optional if you are using the first-fit algorithm.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags. The flags argument is the address of a longword integer that contains
flag bits that control various options.

Bit

0

1

2

3

4

5

Value

LIB$M_ VM_BOUNDARY _TAGS

LIB$M _ VM _GET _FILLO

LIB$M_ VM_GET_FILL 1

LIB$M_ VM_FREE_FILLO

LIB$M_ VM_FREE_FILL 1

LIB$M _ VM _EXTEND_AREA

Description

Boundary tags for faster freeing

Adds a minimum of eight bytes to
each block

LIB$GET_VM; fill with bytes of 0

LIB$GET _ VM; fill with bytes of FF
(hexadecimal)

LIB$FREE_ VM; fill with bytes of 0

LIB$FREE_ VM; fill with bytes of FF
(hexadecimal)

Add extents to existing areas if
possible

Bits 6 through 31 are reserved and must be 0.

This is an optional argument. If flags is omitted, the default of 0 (no fill and
no boundary tags) is used.

LIB-45

LIB$CREATE_VM_ZONE

LIB-46

extend-size
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Zone extend size. The extend-size argument is the address of a longword
integer that contains the number of {512-byte) pages to be added to the zone
each time it is extended.

The value of extend-size must be between 1 and 1024.

This is an optional argument. If extend-size is not specified, a default of 16
pages is used.

Note: Extend-size does not limit the number of blocks that can be allocated from
the zone. The actual extension size is the greater of extend-size and the
number of pages needed to satisfy the LIB$GET_ VM call that caused the
extension.

initial-size
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Initial size for the zone. The initial-size argument is the address of a
longword integer that contains the number of (512-byte) pages to be allocated
for the zone as the zone is created.

This is an optional argument. If initial-size is not specified or is specified as
0, no pages are allocated when the zone is created. The first call to
LIB$GET_ VM for the zone allocates extend-size pages.

block-size
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Block size of the zone. The block-size argument is the address of a longword
integer specifying the allocation quantum (in bytes) for the zone. All blocks
allocated are rounded up to a multiple of block-size.

The value of block-size must be a power of 2 between 8 and 512. This is an
optional argument. If block-size is not specified, a default of 8 is used.

alignment
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Block alignment. The alignment argument is the address of a longword
integer that specifies the required address alignment (in bytes) for each block
allocated.

The value of alignment must be ·a power of 2 between 4 and 512. This is an
optional argument. If alignment is not specified, a default of 8 (quadword
alignment) is used.

LIB$CREATE_VM_ZQNE

page-limit
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Maximum page limit. The page-limit argument is the address of a longword
integer that specifies the maximum number of (512-byte) pages that can
be allocated for the zone. The value of page-limit must be between 0 and
32,767. Note that part of the zone is used for header information.

This is an optional argument. If page-limit is not specified or is specified as
0, the only limit is the total process virtual address space limit imposed by
VMS. If page-limit is specified, then initial-size must also be specified.

smallest-block-size
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Smallest block size. The smallest-block-size argument is the address of a
longword integer that specifies the smallest block size (in bytes) that has a
lookaside list for the quick fit algorithm.

If smallest-block-size is not specified, the default of block-size is used. That
is, lookaside lists are provided for the first n multiples of block-size.

zone-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone
name argument is the address of a descriptor pointing to the zone name. If
zone-name is not specified, the zone will not have an associated name.

number-of-areas
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of areas into which the memory should be subdivided. The number
of-areas argument is the address of a longword integer containing the number
of subdivided memory areas.

get-page
VMS usage: procedure
type: procedure entry mask
access: read only
mechanism: by value

Routine that allocates pages of memory. The get-page argument is the
address of a procedure entry mask used to allocate pages of memory.

LIB-47

LIB$CREATE_VM_ZONE

DESCRIPTION

LIB-48

free-page
VMS usage: procedure
type: procedure entry mask
access: read only
mechanism: by value

Routine that deallocates pages of memory. The free-page argument is the
address of a procedure entry mask used to deallocate pages of memory.

LIB$CREATE_ VM_ZONE creates a new storage zone. The zone identifier
value that is returned can be used in calls to LIB$GET_ VM,
LIB$FREE_ VM, LIB$RESET_ VM_ZONE, LIB$DELETE_ VM_ZONE,
LIB$SHOW_ VM_ZONE, LIB$VERIFY_ VM_ZQNE, and
LIB$CREATE_USER_ VM_ZONE.

The following restrictions apply when you are creating a zone.

•

•

•

If you want the zone to be accessible from another process or processes,
you must map the global section into the same virtual addresses in all
processes. Yuu can use PPL$CREATE_SHARED_MEM to map to a
global section, after you have first called PPL$INITIALIZE.

The zone cannot expand; in other words, additional areas cannot be
added to the zone.

The restrictions for LIB$RESET_ VM_ZONE also apply to shared zones .
That is, it is the caller's responsibility to ensure that the caller has
exclusive access to the zone while the reset operation is being performed.

If an error status is returned, the zone is not created.

CONDITION
VALUES
RETURNED

SS$_NORMAL

LIB$_1NSVIRMEM

LIB$_1NV ARG

LIB$_1NVSTRDES

LIB$CREATE_VM_ZQNE

Normal successful completion.

Insufficient virtual memory.

Invalid argument.

Invalid string descriptor for zone-name.

LIB-49

LIB$CRF _INS_KEY

LIB$CRF_INS_KEY Insert Key in Cross-Reference
Table

FORMAT

RETURNS

ARGUMENTS

LIB-50

The Insert Key in Cross-Reference Table routine inserts information about
a key into a cross-reference table.

LI B$CRF _I NS_KEY control-table ,key-string
,symbol-value , flags

None.

control-table
VMS usage: vector_longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Cross-reference table into which LIB$CRF_INS_KEY inserts information
about the key. The control-table argument is the address of a signed
longword integer pointing to the cross-reference table. You must name this
table each time you call a cross-reference routine because you can accumulate
information for more than one cross-reference table at a time.

key-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

A counted ASCII string that contains a symbol name or an unsigned binary
longword. The key-string argument is the address of a descriptor pointing to
the key.

symbol-value
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Symbol value, the address of which LIB$CRF_INS_KEY inserts in the cross
reference table. The symbol-value argument is the address of a signed
longword integer containing this value. Both the key and value addresses
must be permanent addresses in the user's symbol table.

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$CRF _INS_KEY

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Value used in selecting the contents of the KEY2 and VAL2 fields; flags is
stored with the entry. The flags argument is the address of an unsigned
longword containing the flags. When preparing the output line,
LIB$CRF_OUTPUT uses flags and the 16-bit mask in the field descriptor table
to extract the data. The high-order bit of the word is reserved for
LIB$CRE-1NS_KEY.

LIB$CRF-1NS_KEY stores information to be printed in the KEYl, KEY2,
VALl, and VAL2 fields. When you call this routine, an entry for the key is
made in the cross-reference table if the key is not present in the table. If the
key is present, only the value address and value flag fields are updated.

Using LIB$CRF_INS-KEY involves the following steps:

• Define a table of control information, using the $CRFCTL TABLE macro.

• Define each field of the output line, using the $CRFFIELD macro.

• Specify the end of each set of macros that define a field in the output line,
using the $CRFFIELDEND macro.

• Provide data by calling LIB$CRF_INS_KEY to insert an entry for the
specify key in the specified symbol table. This data is used to build tables
in virtual memory.

• Call LIB$CRF_OUTPUT, the cross-reference output routine, to summarize
and format the data. Supply a routine that LIB$CRF_OUTPUT calls to
print each line in the output file. Because you supply this routine, you
can control the number of lines per page and the header lines.

None.

LIB-51

LIB$CRF _INS_REF

LIB$CRF_INS_REF Insert Reference to a Key in
the Cross-Reference Table

FORMAT

RETURNS

ARGUMENTS

LIB-52

The Insert Reference to a Key in the Cross-Reference Table routine inserts
a reference to a key in a cross-reference symbol table.

LI B$CRF _I NS_REF control-table ,longword-integer-key
, reference-string
,longword-integer-reference
, ref-definition-indicator

None.

control-table
VMS usage: vector_longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Control table associated with this cross-reference. The control-table
argument is the address of an array containing the control table.

longword-integer-key
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Key referred to by LIB$CRF_INS_REF. The longword-integer-key argument
is the address of a signed longword integer containing the key. The key is
a counted ASCII string that contains a symbol name or an unsigned binary
longword. It must be a permanent address in the user's symbol table.

reference-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Counted ASCII string with a maximum of 31 characters, not including the
byte count. The reference-string argument is the address of a descriptor
pointing to the counted ASCII string.

DESCRIPTION

longword-integer-reference
VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

LIB$CRF _INS_REF

The 16-bit value used in selecting the contents of the REFl field. The
longword-integer-reference argument is the address of a signed longword
integer containing this value. When preparing the output line,
LIB$CRF_OUTPUT uses longword-integer-reference and the bit mask in the
field descriptor table to extract the data. The high-order bit of the word is
reserved for LIB$CRF_JNS_REF.

ref-definition-indicator
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Reference/definition indicator that LIB$CRF_INS_REF uses to distinguish
between a reference to a symbol and the definition of the symbol. The ref
definition-indicator argument is the address of a signed longword integer
containing this indicator. The only difference between processing a symbol
reference and a symbol definition is where LIB$CRF_INS_REF stores the
information.

The reference/ definition indicator can have either of the following values:

Symbolic Name Description

CRF$K_REF Reference to a symbol

CRF$K_DEF Definition of a symbol

LIB$CRF-1NS_REF inserts a reference to a key in the cross-reference symbol
table. If you attempt to insert reference information for a key that was not
specified in a call to LIBCRF_INS_KEY, LIBCRF_INS_REF uses the address
of the key to locate the symbol name and set the KEYl field. Once set, either
as a result of LIB$CRF_INS_KEY or LIB$CRF-1NS_REF, the KEYl field is
never changed. A KEYl field set by LIB$CRF-1NS_REF has a space-filled
VALl field associated with it unless it is overridden by a subsequent call to
LIB$CRF-1NS_KEY.

Using LIB$CRF_INS-REF involves the following steps:

1 Define a table of control information, using the $CRFCTLTABLE macro.

2 Define each field of the output line, using the $CRFFIELD macro.

3 Specify the end of each set of macros that define a field in the output line,
using the $CRFFIELDEND macro.

4 Provide data by calling LIB$CRF_INS_REF to insert a reference to a key
in the specified symbol table. This data is used to build tables in virtual
memory.

LIB-53

LIB$CRF _INS_REF

5 Call LIB$CRF_OUTPUT, the cross-reference output routine, to summarize
and format the data. Supply a routine that LIB$CRF_OUTPUT calls to
print each line in the output file. Because you supply this routine, you
can control the number of lines per page and the header lines.

CONDITION None.

VALUES
RETURNED

LIB-54

LIB$CRF _QUTPUT

LIB$CRF_OUTPUT Output Cross-Reference Table
Information

FORMAT

RETURNS

ARGUMENTS

The Output Cross-Reference Table Information routine extracts the
information from the cross-reference tables and formats the output pages.

LIB$CRF _QUTPUT control-table ,output-line-width
,page 1 ,page2 ,mode-indicator
, delete-save-indicator

None.

control-table
VMS usage: vector_longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Control table associated with the cross-reference. The control-table argument
is the address of an array containing the control table. The table contains
the address of the user-supplied routine that prints the lines formatted by
LIB$CRF_OUTPUT. ,

output-line-width
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Width of the output line. The output-line-width argument is the address of
a signed longword integer containing the width.

page1
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of lines on the first page of the output. The pagel argument is the
address of a signed longword integer containing this number. This allows
the user to reserve space to print header information on the first page of the
cross-reference.

page2
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

LIB-55

LIB$CRF _OUTPUT

DESCRIPTION

LIB-56

Number of lines per page for the other pages. The page2 argument is the
address of a signed longword integer containing this number.

mode-indicator
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Output mode indicator. The mode-indicator argument is the address of a
signed longword integer containing the mode indicator.

This indicator allows the user to select which of three output modes is
desired.

Output Mode

CRF$K_ VALUES

CRF$K_ V ALS_REFS

CRF$K_DEFS_REFS

Description

Only the value and key fields are to be printed.
LIB$CRF _OUTPUT creates multiple columns across
the page. Each column consists of the KEY 1, KEY2,
VAL 1, and V AL2 fields. A minimum of one space
between each column is guaranteed.

Requests a cross-reference summary that has no column
space saved for a defining reference. If the user inserted
a reference with the CRF$K_DEF indicator, the entry is
ignored.

Requests a cross-reference summary with the first REF 1
and REF2 fields used only for definition references. If
no definition reference is provided, the fields are space
filled.

delete-save-indicator
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Delete/save indicator which LIB$CRF_QUTPUT uses to determine whether
the table's built-in accumulating symbol information is to be saved or deleted
once the cross-reference is produced. The delete-save-indicator argument is
the address of a signed longword integer containing the delete/save indicator.

The indicator can be either of the following:

CRF$K_SAVE

CRF$K_DELETE

To preserve the tables for subsequent processing

To delete the tables

LIB$CRF_OUTPUT can format output lines for three types of cross-reference
listings.

1 A summary of symbol names and their values, as illustrated in
Figure LIB-2.

2 A summary of symbol names, their values, and the names of modules
that refer to the symbol, as illustrated in Figure LIB-3.

LIB$CRF _QUTPUT

3 A summary of symbol names, their values, the name of the defining
module, and the names of those modules that refer to the symbol, as
Figure LIB-4 shows.

Figure LI B-2 Summary of Symbol Names and Values

SYltlb 01

BAS$INSTR
BAS$IN_O_R
BAS$IN_F_R
BAS$IN_L_R
BAS$ IN_ T _0}<
BAS$IN_W_R
BAS$IO_ENO
BAS$LINKAGE
BAS$LINPUT
BAS$MAT_INPUT

+-----------------+
! SYMbols BY NaMe !
+-----------------+

1.1a 1 ue

000020BO-RU
000021FO-RU
000021E8-RU
000021EO-RU
000021F8-RU
00002108-RU
00002100-RU
0000167ll-R
000021A8-RU
00002268-RU

BAS$SCRATCH
BAS$STATUS
BAS$STR_O
BAS$STR_F
BAS$STR_L
BAS$UNLDCK
BAS$UPOATE
BAS$UPOATE_COUN
BAS$l,IAL_O
BAS$l.IAL_F

1.1a 1 ue

00002308-RU
00002338-RU
000020CO-RU
000020B8-RU
000020C8-RU
00002310-RU
000022E8-RU
000022FO-RU
00002110-RU
00002108-RU

ZK-1973-84

Figure LI B-3 Summary of Symbol Names, Values, and Name of Referring Modules

SYltlb 01

BAS$K _O I t,IBY _ZER

BAS$K_OUPKEYOET
BAS$K_ENOF I LDEI..'

BAS$K_ENDOF_STA

00000030

00000086
OOOOOOOB

0000006C

Referenced BY +••

ALLGBL
BAS$POWDJ
BAS$POWRJ
ALLGBL
ALLGBL
BAS$$UDF-RL
ALLGBL

BAS$ERROR
BAS$POWII
BAS$POWRR
BAS$$SIGNAL_IO
BAS$$REC_PROC

ZK-1974-84

LIB-57

LIB$CRF _OUTPUT

Figure LIB-4 Summary Indicating Defining Module

8Y1tlbOl

LI B$FREE_l.JM

LIB$GET_COMMAND
LIB$GET_COMMON

CONDITION
VALUES
RETURNED

LIB-58

Value Defined B)• Referenced BY ...
---------- -----------------

0001E185-R LI B$1JM ALLGBL
BAS$MARGIN
BAS$XLATE
FOR$t.JM
STR$APPEND
STR$DUPL_CHAR
STR$REPLACE

0001E2BO-R LIB$GET _INPUT ALLGBL
0001EllDG-R LIB$COMMON ALLGBL

ZK-1971-84

Regardless of the format of the output, LIB$CRF_OUTPUT considers the
output line as consisting of six different field types.

KEY1

KEY2

VAL 1

VAL2

REF 1 and REF2 fields

Is the first field in the line. It contains a symbol
name.

Is the second field in the line. It contains a set
of flags (for example, -R) that provide information
about the symbol.

Is the third field in the line. It contains the value of
the symbol.

Is the fourth field in the line. It contains a set of
flags describing VAL 1 .

Within each REF1 and REF2 pair, REF1 provides
a set of flags and REF2 provides the name of a
module that references the symbol.

Any of these fields can be omitted from the output.

For example:

Symbol Value Symbol Value

BAS$INSTR 000020BO-RU BAS$SCRATCH 00002308-RU

KEY1 VAL1 VAL2 KEY1 VAL1 VAL2

Symbol Value Defined By Referenced By
---------- -----------------

LIB$FREE_VM 0001E185-R LIB$VM ALLGBL

KEY1 VAL1 VAL2 REF2 REF2
(CRF$K_DEF) (CRF$K_REF)

None.

LIB$CURRENCY

LIB$CURRENCY Get System Currency Symbol

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Get System Currency Symbol routine returns the system's currency
symbol.

LIB$CURRENCY currency-string {,resultant-length}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

currency-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Currency symbol. The currency-string argument is the address of a
descriptor pointing to the currency symbol.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters that LIB$CURRENCY has written into the currency
string argument, not counting padding in the case of a fixed-length string.
The resultant-length argument is the address of an unsigned word containing
the length of the currency symbol. If the input string is truncated to the size
specified in the currency-string argument, resultant-length is set to this size.
Therefore, resultant-length can always be used by the calling program to
access a valid substring of currency-string.

LIB$CURRENCY attempts to translate the logical name SYS$CURRENCY as
a process, group, or system logical name, in that order. If the translation fails,
the routine returns the United States currency symbol ($). If the translation
succeeds, the text produced is returned. Thus, a system manager can define
SYS$CURRENCY as a system-wide logical name to provide a default for all
users, and an individual user with a special need can define SYS$CURRENCY
as a process logical name to override the system default.

For example, if you wish to use the British pound sign as the currency symbol
within your process, but wish to leave the dollar sign as the system's default,
define SYS$CURRENCY to be the pound sign (#) in your process logical
name table. After this, any call to LIB$CURRENCY within your process
returns the pound sign (#), while any call outside your process returns the
dollar sign ($).

LIB-59

LIB$CURRENCY

LIB$CURRENCY is implicitly used by BASIC.

CONDITION
VALUES
RETURNED

EXAMPLE

10 !+

SS$_NORMAL

LIB$_STRTRU

LIB$_FA TERRLIB

LIB$_1NSVIRMEM

LIB$_1NVSTRDES

! This BASIC program uses LIB$CURRENCY to
! return the default system currency symbol.
!-

OUTLEN = 1
CALL LIB$CURRENCY (CURR$, OUTLEN)
PRINT CURR$

99 END

Routine successfully completed.

Successfully completed, but the currency string
was truncated.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGITAL in a Software Performance Report (SPR).

Insufficient virtual memory. A call to LIB$GET_VM
has failed because your program has exceeded the
image quota for virtual memory.

Invalid string descriptor. A string descriptor has an
invalid value in its DSC$B_CLASS field.

The BASIC program listed above uses LIB$CURRENCY to display the system
currency symbol default. The output generated by the program is a dollar
sign ($).

LIB-60

LI B$CVT_ox_ox

LIB$CVT_DX_DX General Data Type Conversion
Routine

FORMAT

RETURNS

ARGUMENTS

The General Data Type Conversion routine converts a VAX standard
atomic or string datum described by a source descriptor to another VAX
standard atomic or string datum described by a destination descriptor.
This conversion is supported over a subset of the VAX standard data
types.

LIB$CVT_DX_DX source-item ,destination-item
[,word-integer-de st-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

source-item
VMS usage: unspecified
type: unspecified
access: read only
mechanism: by descriptor

Source item to be converted by LIBCVT_DX_DX. The source-item argument
is the address of a descriptor pointing to the source item to be converted. The
type of the item to be converted is contained in the descriptor.

The combinations of class and data type of the source descriptor are restricted
as described in Tables LIB-1, LIB-2, and LIB-3.

destination-item
VMS usage: unspecified
type: unspecified
access: write only
mechanism: by descriptor

Destination of the conversion. The destination-item argument is the address
of a descriptor pointing to the destination item. The destination descriptor
specifies the data type to which the source item is converted.

The combinations of class and data type of the destination descriptor are
restricted as described in Tables LIB-1, LIB-2, and LIB-3.

word-integer-dest-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the destination item (when that item is a string) that has
been converted by LIB$CVT_DX_DX, not including any space filling. The

LIB-61

LIB$CVT_ox_ox

DESCRIPTION

LIB-62

word-integer-dest-length argument contains the address of an unsigned
word containing this length.

If the destination string is truncated, the returned length reflects the
truncation. This word can be used by the calling program to determine if
truncation has occurred or to extract the exact length of the string when the
string contains space filling.

LIB$CVT_DX_DX is a universal conversion utility routine. Although some
of the functions of this routine may be found in other Run-Time Library
routines, LIB$CVT_DX_DX packages the conversion functions with a general
interface. Because of this general interface, the calling. program does not have
to specify what conversion should be done for which data type.

The description of this routine has been divided into the following parts:

• Guidelines for Using LIB$CVT_DX_DX

• Use of Numeric Byte Data Strings

Guidelines for Using LIB$CVT_ox_ox

The data type and descriptor class of the source and destination arguments
determine how LIB$CVT_DX_DX performs the conversion, according to the
rules listed below.

• Conversion is defined over three sets of data types: atomic, string,
and numeric byte data strings (NBDS). (For more information about
numeric byte data strings, see the next section "Use of Numeric Byte Data
Strings.") Although the set of data types in NBDS is actually a subset of
the atomic and string data types, the three sets are mutually exclusive in
this routine.

• Scale is applied when indicated in the descriptor (DSC$K_CLASS_SD
only) and scaling is defined for the data type.

• No language-specific semantics are applied, such as BASIC scale for
DSC$K_DTYPE_D.

• Some conversions must use intermediate values to arrive at the
destination requested. Although some loss of speed is inevitable,
intermediate values will not cause a loss of precision.

• Results are always rounded instead of truncated, except for the case
described below. Note that loss of precision or range may be inherent in
the destination data type or in the NBDS destination size. No errors are
reported if there is a loss of precision or range as a result of destination
data type.

• When the destination is an NBDS, and has fixed-string semantics, then
if the source does not fill the destination, the destination is padded with
blanks.

• When the source and destination are both NBDS, and no scaling is
requested, then a straight copy is done without translation or conversion,
and truncation is possible. If scaling is requested, then a conversion takes
place as defined in Table LIB-'-3.

• When the source is an NBDS and the destination is non-NBDS, if there is
an invalid character in the source, or the value is outside the range that
can be represented by the destination, then LIB$~_JNVNBDS is returned.

LIB$CVT_ox_ox

• Attempts to convert a negative value to an unsigned data type cause the
LIB$_INVCVT error to be returned.

• If the destination is an NBDS of class DSC$K_CLASS_D, then a new
string of appropriate size will be allocated for it if necessary.

• Invalid conversions resulting in an error produce an unpredictable result.

Use of Numeric Byte Data Strings

For simplicity, and to define a generic numeric string that LIB$CVT_DX_DX
understands to be a numeric string, the set Numeric Byte Data String (NBDS)
is defined to be the set of descriptors given in Table LIB-1.

Table LIB-1 Acceptable Subset of VAX Standard Data Types

DSC$K_CLASS_xxx
DSC$K_DTYPE_yyy

A D NCA s SD vs
B
BU x x
T x x x x x x
VT x

l
Note: An array will have the semantics of a fixed string. NBDS must have the format defined later.

ZK-4260-85

The combination of data type and descriptor class determines whether an
argument is an NBDS. Table LIB-2 shows the combinations of descriptor
class and data type (as specified in the fields of the descriptor) that
LIB$CVT_DX_DX recognizes. The combinations marked NBDS are
considered NBDS' s.

LIB-63

LI B$CVT_ox_ox

LIB-64

Table LIB-2 Data Types Accepted by LIB$CVT_DX_DX

From: To:

Text (decimal) Longword

Text (hexadecimal) Longword

Text (octal) Longword

Text (binary) Longword

Text (signed integer) Longword

Text (logical) Longword

Text (octal) Longword

Text (hexadecimal) Longword

Text D_floating

Text F _floating

Text G~_floating

Text H_floating

Longword Text (binary)

Longword Text (signed integer)

Longword Text (logical)

Longword Text (octal)

Longword Text (hexadecimal)

ZK-1942-84

For example, LIB$CVT_DX_DX treats the combination
DSCK_DTYPE_B/DSCK_CLASS_S (unsigned byte scalar) as an atomic
data type. However, the routine considers
DSCK_DTYPE_BU /DSCK_CLASS_NCA (noncontiguous array of
unsigned bytes) to be an NBDS.

A destination NBDS is always left-justified.

If a destination NBDS requires more than 50 digits for its format (including
the sign, if any), then it is expressed in exponential format.

LI B$CVT_DX_DX

For a conversion of NBDS to NBDS, this format is used if scaling is requested.
Otherwise, a straight copy is done. The format of a source NBDS is the
same as the format defined for the input argument inp in OTS$_CVT_T_z,
with bits 0, 2, and 4 set in the flags argument. That is, blanks are ignored,
underflow causes an error and tabs are ignored.

Table LIB-3 defines the format of a destination NBDS.

Table LI B-3 Destination N BOS Formats

Source Data Type

Byte integer (signed)

Byte (unsigned)

Word integer (signed)

Word (unsigned)

Longword integer (signed)

Longword (unsigned)

Quadword integer (signed)

D_floating

F _floating

G_floating

H_floating

NBDS

Destination NBDS Format1

sdigits

sdigits

sdigits

digits

sdigits

digits

sdigits

s0.min(16,w-7)E(+ or -)nn

sO.min(7,w-7)E(+ or -)nn

s0.min(15,w-8)E(+ or -)nnn

s0.min(33,w-9)E(+ or -)nnnn

s0.min(33,w-9)E(+ or -)nnnn

Decimal string sdigits (as defined by VAX architecture)

1 digits-Digits 0 through 9, and a decimal point only if source descriptor specifies
DSC$B_SCALE less than 0.

w-Width of destination in bytes.
s-Sign. For positive numbers the sign is implied.
min-Minimum of two values.

Two array descriptors, DSC$K_CLASS_A and DSC$K_CLASS_NCA, are
supported for specific languages that describe strings using these mechanisms.

• DSC$B_DIMCT = 1-0nly one-dimensional arrays are recognized.

• DSC$W_LENGTH = 1-The length of each array element must be a byte.

• DSC$L_ARSIZE less than or equal to 65,535-The total size of the array
must be less than 65 ,535 bytes.

• If DSC$L_ARSIZE = 0, the array has a length of zero.

• DSC$L_Sl = 1-The stride of an array passed by a noncontiguous array
descriptor must be 1. That is, even if the class of the array's descriptor is
noncontiguous array (NCA), the array itself must be contiguous.

• An array is written with the semantics of a fixed string.

For more information about the semantics of writing output strings, see VMS
RTL String Manipulation (STR$) Manual.

LIB-65

LI B$CVT_DX_DX

CONDITION
VALUES
RETURNED

LIB-66

If the calling program passes a descriptor to LIB$CVT_DX_DX that does not
comply with Table LIB-2, one of the following error messages is returned:

LIB$_INVDTYDSC
LIB$_INVCLADSC
LIB$_INVCLADTY
LIB$_INVNBDS

SS$_NORMAL

Ll8$_DECOVF

Ll8$_FL TOVF

Ll8$_FL TUND

Ll8$_1NVCLADSC

Ll8$_1NVCLADTY

Ll8$_1NVCVT

Ll8$_1NVDTYDSC

Ll8$_1NTOVF

Ll8$_1NVNBDS

Ll8$_0UTSTRTRU

LIB$_ROPRAND

Routine successfully completed.

Packed decimal overflow error. Severe error.

Floating overflow error. Severe error.

Floating underflow error. Severe error.

Invalid class in descriptor. This class of descriptor
is not supported. Severe error.

Invalid class and data type in descriptor. This
class and data type combination is not supported.
Severe error.

If the source value is negative and the destination
data type is unsigned, this error is returned.

Invalid data type in descriptor. This data type is
not supported. Severe error.

Integer overflow error. Severe error.

Invalid NBDS. There is an invalid character in the
input, or the value is outside the range that can
be represented by the destination, or the NMDS
descriptor is invalid. This error is also signaled
when the array size of an NBDS is larger than
65,535 bytes or the array is multi-dimensional.

Output string truncated. This is returned only
when NBDS is both source and destination and no
scaling is requested. The result is truncated.

Reserved operand error. Severe Error.

LIB$CVT_FROM_INTERNAL_ TIME

LIB$CVT_FRQM_INTERNAL_TIME Convert

FORMAT

RETURNS

ARGUMENTS

Internal Time
to External
Time

The Convert Internal Time to External Time routine converts an internal
VMS system time (either absolute or delta) into an external time.

LIB$CVT_FROM_INTERNAL_TIME operation

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

operation
VMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

,resultant-time
[,input-time]

The conversion to be performed. The operation argument is the address of
an unsigned longword containing the operation. The following table shows
valid values for operation.

LIB-67

LIB$CVT_FROM_INTERNAL_ TIME

LIB-68

Operation Return Range

LIB$K_MONTH_OF _YEAR 1 to 12

LIB$K_DA Y _OF_ YEAR 1 to 366

LIB$K_HOUR_OF _YEAR 1 to 8784

LIB$K_MINUTE_OF _YEAR 1 to 527,040

LIB$K_SECOND_OF _YEAR 1 to 31,622,400

LIB$K_DA Y _OF _MONTH 1 to 31

LIB$K_HOUR_OF _MONTH 1 to 744

LIB$K_MINUTE_OF _MONTH 1 to 44,640

LIB$K_SECOND_OF _MONTH 1 to 2,678,400

LIB$K_DAY_OF _WEEK 1 to 7

LIB$K_HOUR_OF _WEEK 1 to 168

LIB$K_MINUTE_OF _WEEK 1 to 10,080

LIB$K_SECOND_OF _WEEK 1 to 604,800

LIB$K_HOUR_QF _DAY 1 to 24

LIB$K_MINUTE_OF _DAY 1 to 1440

LIB$K_SECOND_OF _DAY 1 to 86,400

LIB$K_MINUTE_OF _HOUR 1 to 60

LIB$K_SECOND_OF _HOUR 1 to 3600

LIB$K_SECOND_OF _MINUTE 1 to 60

LIB$K_JULIAN_DATE Julian date

LIB$K_DEL TA_ WEEKS

LIB$K_DEL T A_DA YS

LIB$K_DEL T A_HOURS

LIB$K_DEL T A_MINUTES

LIB$K_DEL T A_SECONDS

1 Day 1 is Monday

2Hours since midnight on previous Monday

3 Minutes since midnight on previous Monday

4 Seconds since midnight on previous Monday

5Number of days since system zero time (17-Nov-1858)

swhole weeks
7Whole days

8 Whole hours
9 Whole minutes
10Whole seconds

Type

Absolute

Absolute

Absolute

Absolute

Absolute

Absolute

Absolute

Absolute

Absolute

Absolute 1

Absolute 2

Absolute 3

Absolute 4

Absolute

Absolute

Absolute

Absolute

Absolute

Absolute

Absolute 5

Delta 6

Delta 7

Delta 8

Delta 9

Delta 10

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$CVT_FROM_INTERNAL_ TIME

resultant-time
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The external time that results from the conversion. The resultant-time
argument is the address of an unsigned longword containing the result.

input-time
VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Optional absolute or delta time to be converted. The input-time argument
is the address of an unsigned quadword containing the time. If you do not
supply a value for input-time, the current system time is used.

LIB$CVT_FROM_INTERNAL_TIME converts an internal VMS system time
(either absolute or delta) into an external time. The operation argument
specifies the conversion. LIB$CVTJROM_INTERNAL _TIME converts
the value of input-time (or the current system time if input-time is not
supplied) into one of the external formats listed in the operation argument
description. LIB$CVT_FROM_INTERNAL_TIME then places the result into
resultant-time.

LIB$_NORMAL

LIB$_1VTIME

LIB$_ WRONUMARG

LIB$_1NVOPER

LIB$_ABSTIMREQ

LIB$_DEL TIMREQ

Normal successful completion.

Invalid time.

Incorrect number of arguments.

Invalid operation.

Absolute time required but delta time supplied.

Delta time required but absolute time supplied.

LIB-69

LIB$CVTF _FROM_INTERNAL_ TIME

LIB$CVTF_FROM_INTERNAL_TIME Convert

FORMAT

RETURNS

ARGUMENTS

LIB-70

Internal
Time to
External
Time
(F-Floating
Point Value)

The Convert Internal Time to External Time (F-Floating Point Value) routine
converts a delta internal VMS system time into an external F-floating time.

LI B$CVTF _FROM _INTERNAL_ Tl ME operation
,resultant-time
,input-time

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

operation
VMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of
an unsigned longword specifying the operation. Valid values for operation
are the following:

Operation

LIB$K_DEL T A_WEEKS_F

LIB$K_DEL T A_DA YS_F

LIB$K_DEL T A_HOURS_F

LIB$K_DEL T A_MINUTES_F

LIB$K_DEL T A_SECONDS_F

Interpretation

Fractional weeks

Fractional days

Fractional hours

Fractional minutes

Fractional seconds

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$CVTF _FROM_INTERNAL_ TIME

resultant-time
VMS usage: floating_point
type: F-floating
access: write only
mechanism: by reference

The external time that results from the conversion. The resultant-time
argument is the address of an F-floating point value containing the result.

input-time
VMS usage: date_time
type: quadword {unsigned)
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of an
unsigned quadword containing the time.

LIB$CVTF_FROM_INTERNAL_TIME converts a delta internal VMS system
time into an external F-floating point time. The operation argument specifies
the conversion. LIB$_CVTF_FRQM_INTERNAL_TIME converts the value
of input-time into one of the external formats listed in the operation
argument description.
LIB$_CVTF_FROM_INTERNAL_TIME then places the result into resultant
time.

LIB$_NQRMAL

LIB$_DEL TIMREQ

LIB$_1VTIME

LIB$_ WRONUMARG

LIB$_1NVOPER

Normal successful completion.

Delta time required but absolute time supplied.

Invalid time.

Incorrect number of arguments.

Invalid operation.

LIB-71

LIB$CVT_ TQ_INTERNAL_ TIME

LIB$CVT_TQ_INTERNAL_TIME Convert External
Time to Internal
Time

FORMAT

RETURNS

ARGUMENTS

LIB-72

The Convert External Time to Internal Time routine converts an external
time interval into a VMS internal format delta time.

LIB$CVT_ TQ_INTERNAL_ TIME operation ,input-time
,resultant-time

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

operation
VMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of
an unsigned longword specifying the operation. Valid values for operation
are the following:

Operation

LIB$K_DEL TA_ WEEKS

LIB$K_DEL TA_DA VS

LIB$K_DEL TA_HOURS

LIB$K_DEL T A_MINUTES

LIB$K_DEL T A_SECONDS

input-time
VMS usage: varying_arg
type: longword (signed)
access: read only
mechanism: by reference

Interpretation

Whole weeks in delta time

Whole days in delta time

Whole hours in delta time

Whole minutes in delta time

Whole seconds in delta time

Delta time to be converted. The input-time argument is the address of this
input time. The value you supply for input-time must neither be negative
nor greater than 10,000 days.

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$CVT_ TQ_INTERNAL_ TIME

resultant-time
VMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The VMS internal format delta time that results from the conversion. The
resultant-time argument is the address of an unsigned quadword containing
the result.

LIB$CVT_TQ_INTERNAL_TIME converts an external time interval, such as
three weeks, into a VMS internal format delta time. The operation argument
specifies the conversion. LIB$_CVT_TQ_INTERNAL_TIME converts the
value of input-time into one of the internal format delta times listed in the
operation argument description. LIB$_CVT_ TQ_INTERNAL _TIME then
places the result into resultant-time.

LIB$_NORMAL

LIB$_1VTIME

LIB$_ WRONUMARG

LIB$_1NVOPER

Normal successful completion.

Invalid time.

Incorrect number of arguments.

Invalid operation.

LIB-73

LIB$CVTF _ TQ_INTERNAL_ TIME

LIB$CVTF_TQ_INTERNAL_TIME Convert
External
Time to
Internal Time
(F-Floating
Point Value)

FORMAT

RETURNS

ARGUMENTS

LIB-74

The Convert External Time to Internal Time (F-Floating Point Value) routine
converts an external time interval into a VMS internal format F-fioating
delta time.

LIB$CVTF _ TQ_INTERNAL_ TIME operation
,input-time
,resultant-time

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

operation
VMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of
an unsigned longword specifying the operation. Valid values for operation
are the following:

Operation

LIB$K_DEL TA_WEEKS_F

LIB$K_DEL T A_DA YS_F

LIB$K_DEL T A_HQURS_F

LIB$K_DEL TA_MINUTES_F

LIB$K_DEL T A_SECONDS_F

Interpretation

Fractional weeks

Fractional days

Fractional hours

Fractional minutes

Fractional seconds

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$CVTF _ TQ_INTERNAL_ TIME

input-time
VMS usage: varying_arg
type: F-floating
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of this
input time. The value you supply for input-time must neither be negative
nor greater than 10 ,000 days.

resultant-time
VMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The VMS internal format delta time that results from the conversion. The
resultant-time argument is the address of an unsigned quadword containing
the result.

LIB$CVTF_TQ_INTERNAL_TIME converts an external time interval, such
as 3.5 weeks, into a VMS internal format F-floating delta time. The operation
argument specifies the conversion. LIB$_CVTF_T0-1NTERNAL_TIME
converts the value of input-time into one of the internal format delta times
listed in the operation argument description.
LIB$_CVTF_TQ_INTERNAL_TIME then places the result into resultant
time.

LIB$_NQRMAL

LIB$_1VTIME

LIB$_ WRONUMARG

LIB$_1NVOPER

Normal successful completion.

Invalid time.

Incorrect number of arguments.

Invalid operation.

LIB-75

LIB$CVT_xTB

LI B$CVT _xTB Convert Numeric Text to Binary

FORMAT

RETURNS

ARGUMENTS

LIB-76

The Convert Numeric Text to Binary routines return a binary representation
of the ASCII text string representation of a decimal, hexadecimal, or octal
number.

LIB$CVT_DTB
LIB$CVT_HTB
LIB$CVT_OTB

byte-count ,numeric-string ,result
byte-count ,numeric-string ,result
byte-count ,numeric-string ,result

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

byte-count
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Byte count of the input ASCII text string. The byte-count argument is a
signed longword integer containing the byte count of the input string.

numeric-string
VMS usage: char_string
type: character string
access: read only
mechanism: by reference

ASCII text string representation of a decimal, hexadecimal, or octal number
which LIB$CVTxTB converts to binary representation. The numeric-string
argument is the address of a character string containing this input string to be
converted.

result
VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Binary representation of the input string. The result argument is the address
of a signed longword integer containing the converted string.

LIB$CVT_xTB

DESCRIPTION LIB$CVT_DTB converts the ASCII text string representation of a decimal
number into binary representation. LIB$CVT_HTB converts the ASCII text
string representation of a hexadecimal number into binary representation.
LIB$CVT_OTB converts the ASCII text string representation of an octal
number into binary representation.

CONDITION
VALUES
RETURNED

Note: LIBCVT_DTB, LIBCVT_HTB, and LIB$CVT_OTB are intended to be
called primarily from BLISS and MACRO programs. Therefore, the
routines expect input scalar arguments to be passed by value and strings
by reference. Blanks are invalid characters.

1

0

Routine successfully completed.

Nonradix character in the input string or a sign in
any position other than the first character. Blanks
and tabs are invalid characters. An overflow from
32 bits (unsigned) will cause an error.

LIB-77

LI B$CVT _ VECTI M

LI B$CVT_VECTI M Convert Seven-Word Vector to
Internal Time

FORMAT

RETURNS

ARGUMENTS

LIB-78

The Convert Seven-Word Vector to Internal Time routine converts a
seven-word vector into a VMS internal format delta or absolute time.

LIB$CVT_VECTIM input-time ,resultant-time

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

input-time
VMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference, array reference

Time to be converted. The input-time argument is the address of a seven
word structure containing this time. This vector directly corresponds to a
$NUMTIM timbuf structure. The following diagram depicts the fields in this
structure.
31 15 0

I month of year I year since 0 I

1 ________________________________ 1 _______________________________ 1

I hour of day I day of month I
1 ________________________________ 1 _______________________________ 1

I second of minute I minute of hour I

1 ________________________________ 1 _______________________________ 1

I hundredths of second I
1 _______________________________ 1

Input-time can represent an absolute or a delta time. In order for input-time
to represent a delta time, the year since 0 and month of year fields must
equal zero. If those fields do not equal zero, an absolute time is returned.

resultant-time
VMS usage: date-time
type: quadword (unsigned)
access: write only
mechanism: by reference

The VMS internal format delta or absolute time that results from the
conversion. The resultant-time argument is the address of an unsigned
quadword containing the result.

DESCRIPTION

CONDITION
VALUES
RETURNED

LI B$CVT_ VECTI M

LIB$CVT_VECTIM converts a seven-word vector (in the format output by the
system service SYS$NUMTIM) into a VMS internal format delta or absolute
time. LIB$CVT_ VECTIM then places the result into resultant-time.

See the VMS System Services Reference Manual for more information about
SYS$NUMTIM.

LIB$_NQRMAL

LIB$_1VTIME

LIB$_ WRONUMARG

Normal successful completion.

Invalid time.

Incorrect number of arguments.

LIB-79

LIB$DATE_ TIME

LIB$DATE_TIME Date and Time Returned as a
String

FORMAT

RETURNS

ARGUMENT

CONDITION
VALUES
RETURNED

LIB-80

The Date and Time Returned as a String routine returns the VMS system
date and time in the semantics of a user-provided string.

LIB$DATE_ TIME date-time-string

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

date-time-string
VMS usage: time_name
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$DATE_TIME writes the system date and
time. The date-time-string argument is the address of a descriptor pointing
to the destination string.

This string is 23 characters long; its format is as follows:

dd-mmm-yyyy hh:mm:ss.hh

SS$_NORMAL

LIB$_STRTRU

LIB$_1NSVIRMEM

LIB$_1NVSTRDES

Routine successfully completed.

Success, but destination string was truncated.

Insufficient virtual memory. A call to LIB$GET _ VM
has failed because your program has exceeded the
image quota for virtual memory.

Invalid string descriptor. A string descriptor has an
invalid value in its DSC$B_CLASS field.

EXAMPLE

10 !+
! This BASIC program demonstrates the
! use of LIB$DATE_TIME.
!-

CALL LIB$DATE_TIME(DSTSTR$)
PRINT DSTSTR$

99 END

LIB$DATE_ TIME

This BASIC program uses LIB$DATE_TIME to display the current system
date and time. The output generated by one run of this program was as
follows:

26-JUL-1988 13:41:22.67

LIB-81

LIB$DAY

LIB$DAY

FORMAT

RETURNS

ARGUMENTS

LIB-82

Day Number Returned as a Longword
Integer

The Day Number Returned as a Longword Integer routine returns the
number of days since the system zero date of November 17, 1858, or the
number of days from November 17, 1858, to a user-supplied date.

LIB$DAY number-of-days [,user-time] [,day-time}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

number-of-days
VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Number of days since the system zero date. The number-of-days argument
is the address of a signed longword integer containing the day number.

user-time
VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

User-supplied time, in 100-nanosecond units. The user-time argument is the
address of a signed quadword integer containing the user time. A positive
value indicates an absolute time, while a negative value indicates a delta
time. This is an optional argument. If omitted, the default is the current
system time. This quadword time value is obtained by calling the system
service SYS$BINTIM.

If time is passed as zero by value, the numeric value for the current day
is returned. If time is passed as a zero by reference, the number returned
represents the day of November 17th, 1858, rather than the current day.

day-time
VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Number of IO-millisecond units since midnight of the user-time argument.
The day-time argument is the address of a signed longword integer into
which LIB$DAY writes this number of units.

DESCRIPTION

LIB$DAY

LIB$DAY returns the number of days since the system zero date of November
17, 1858. Optionally, the caller can supply a time in system time format to
be used instead of the current system time. In this case, LIB$DAY returns the
number of days from November 17, 1858, to the user-supplied date.

The number of 10-millisecond units since midnight is an optional return
argument.

Note: If the caller supplies a quadword time, it is not verified. If it is negative
(bit 63 on), the number-of-days value returned is negative.

The Run-Time Library provides the date/time utility routines for languages
that do not have built-in time and date functions, and for particular
applications that require the time or date in a different format from the
one that the language supplies. In general, it is simpler to call the Run-Time
Library routines for the system date and time than to call a system service.

CONDITION
VALUES
RETURNED

EXAMPLE

SS$_NORMAL

SS$_1NTOVF

PROGRAM DAY(INPUT, OUTPUT);

{+}
{ This is a VAX PASCAL example program showing
{the use of LIB$DAY.
{-}

VAR
DAYNUMBER : INTEGER;

routine LIB$DAY(VAR DAYNUM INTEGER);
EXTERN;

BEGIN
LIB$DAY(DAYNUMBER);
WRITELN('The daynumber is ', DAYNUMBER);

END.

Routine successfully completed.

The optional argument user-time is present and
represents a date past the year 8600.

A sample of the output generated by this program is shown below.

The daynumber is 46738

LIB-83

LI B$DA V _OF_ WEEK

LIB$DAY_Qf_WEEK Show Numeric Day of Week

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

LIB-84

The Show Numeric Day of Week routine returns the numeric day of the
week for an input time value. If 0 is the input time value, the current day of
the week is returned. The days are numbered 1 through 7, with Monday
as day 1 and Sunday as day 7.

LIB$DAV_OF_WEEK user-time ,day-number

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

user-time
VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Time to be translated to a day of the week, or zero. The user-time argument
is the address of an unsigned quadword containing the ve.lue of time. Time
must be supplied as an absolute system time. To obtain this time value in
proper quadword format call the system service SYS$ BINTIM.

If time is passed as zero by value, the numeric value for the current day
is returned. If time is passed as a zero by reference, the number returned
represents the day of November 17th, 1858, rather than the current day. If
the user-time argument is omitted, it is equivalent to passing a zero by value.

day-number
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Numeric day of week. The day-number argument is the address of
a longword into which LIB$DAY_QF_WEEK writes the integer value
representing the day of the week.

SS$_NORMAL Routine successfully completed.

LI B$DA V_Qf _WEEK

EXAMPLE

PROGRAM DAYOFWEEK(INPUT, OUTPUT);

{+}
{ This is an example showing
{ the use of LIB$DAY_OF_WEEK.
{-}

VAR
OUTDAT : INTEGER;

routine LIB$DAY_OF_WEEK(TIM : INTEGER; %REF OUTDA INTEGER); EXTERN;

BEGIN

LIB$DAY_OF_WEEK(%IMMED 0, OUTDAT);
WRITELN(OUTDAT);

END.

This Pascal program shows the use of LIB$DAY_QF_WEEK. This example
was tested on a Monday, and the output generated was "l".

LIB-85

LIB$DECODE_FAUL T

LIB$DECODE_FAUL T Decode Instruction Stream
During Fault

FORMAT

RETURNS

ARGUMENTS

LIB-86

The Decode Instruction Stream During Fault routine is a tool for building
condition handlers that process instruction fault exceptions. It is called
from a condition handler.

LIB$DECODE_FAUL T signal-arguments
,mechanism-arguments

VMS usage: cond_value

, user-procedure
[,unspecified-user-argument]
[,instruction-definitions]

type: longword (unsigned)
access: write only
mechanism: by value

signal-arguments
VMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Signal arguments array that was passed from VMS to your condition handler.
The signal-arguments argument is the address of the signal arguments array.

mechanism-arguments
VMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism arguments array that was passed from VMS to your condition
handler. The mechanism-arguments argument is the address of the
mechanism arguments array.

user-procedure
VMS usage: procedure
type: bound procedure value or procedure entry mask
access: call after stack unwind
mechanism: by descriptor, procedure descriptor

User-supplied action routine that LIB$DECODE_FAULT calls to handle
the exception. The user-procedure argument is the address of a descriptor
pointing to your user action routine. user-procedure may be of type "bound
procedcre value" when called by languages with up-level addressing. If
user-procedure is not of type "bound routine value," it is assumed to be the
address of an entry mask.

DESCRIPTION

LIB$DECODE_FAUL T

For further information on the user action routine, see "Call Format for a User
Action Routine" in the Description section.

unspecified-user-argument
VMS usage: user_arg
type: unspecified
access: read only
mechanism: by value

Additional information passed from your handler without interpretation to
your user action routine. The unspecified-user-argument argument contains
the value of this additional information. This is an optional argument; if
omitted, zero is used.

instruction-definitions
VMS usage: vector_byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Array of bytes specifying instruction opcodes and operand definitions which
are to replace or supplement the standard instruction definitions. The
instruction-definitions argument is the address of this array.

If omitted, only the standard instruction definitions are used. If supplied,
instruction-definitions is searched first, followed by the standard definitions.

Each instruction definition consists of a series of bytes, the first one or two
of which is the instruction opcode. If the instruction is a 2-byte opcode, the
escape byte, which must be hex FD, FE, or FF, is placed in the first of the two
bytes. Following the opcode may be from 0 to 16 operand definition bytes.
These bytes indicate the operand's access type and data type.

The end of each instruction definition is denoted by a byte containing the
value LIB$K_DCFOPR_END (zero). The list of instruction definitions is
terminated by two bytes, each of which contains the value -1, (hexadecimal
FF). For further information, see "Instruction Operand Definition Codes" in
the Description section.

The Description section of the LIB$DECODE_FAULT routine is divided into
five parts.

• Guidelines for Using LIB$DECODE_FAULT

• Exceptions Recognized by LIB$DECODE_FAULT

• Instruction Operand Definition Codes

• Call Format for a User Action Routine

• Call Format for a Signal Routine

LIB-87

LIB$DECODE_FAUL T

LIB-88

Guidelines for Using LIB$DECODE_fAULT

LIB$DECODE_FAULT is a tool for building condition handlers that process
instruction fault exceptions. Called from a condition handler,
LIB$DECODE_FAULT performs the following actions.

1 Unwinds intermediate stack frames back to that of the exception

2 Decodes the instruction stream to determine the operation and its
operands

3 Calls a user-supplied action routine and passes it a consistent and easy
to-access description of the instruction's context

Your user action routine performs whatever tasks are necessary to handle
the fault and returns to LIB$DECODE_FAULT. LIB$DECODEJAULT then
restores the context as modified by your user action routine and continues
execution.

Your condition handler must first decide whether or not it wishes to handle
the exception. The signal arguments list contains the exception code and
the address of the PC that is usually sufficient for this determination. Once
LIB$DECODE_FAULT is called, if the exception is a fault
LIB$DECODE_FAULT can analyze, control does not return to the condition
handler. Therefore, your handler must not depend on regaining control by
a routine return once it has called LIB$DECODEJAULT. With your user
action routine, LIB$DECODE_FAULT makes the original fault disappear.

Note: Your user action routine is capable of generating a new exception,
including one that looks identical to the original exception. Your user
action routine may also resignal, but if the decision to resignal is made
inside the user action routine, all post-signal stack frames. are lost.

Once your condition handler has decided that it wants to handle the
exception, it calls LIB$DECODE_FAULT, passing as arguments the addresses
of the signal and mechanism argument lists and a descriptor for your user
action routine entry point. LIB$DECODEJAULT will then perform the
following actions:

1 Determine if the exception is a fault it understands. If not, it returns
SS$-RESIGNAL.

2 Determine the context in which the exception occurred, including register
and PSL contents, and save it.

3 Unwind all stack frames back to that frame in which the exception
occurred.

4 Evaluate each operand's addressing mode, computing the resulting
location for the operand. Immediate mode operands are expanded into
their full form. If an invalid addressing mode is found, an
SS$-RADRMOD exception is generated.

5 Unless the original exception was SS$_ACCVIO, test each operand
for accessibility. If necessary, an access violation is signaled as if the
instruction had tried to execute normally. See the paragraph following
this list for more information.

6 Unless the original exception was SS$-ROPRAND, test each floating
point operand that is to be read for a reserved floating operand. If
necessary, a reserved operand fault is signaled. See the paragraph
following this list for more information.

LIB$DECODE_FAUL T

7 Determine the address of the next sequential instruction.

8 Call your user action routine with arguments as described below.

9 Upon return from your user action routine, reflect changes to the registers
and PSL, and continue execution at the instruction address specified
by your user action routine. Optionally, your user action routine may
resignal the original exception.

Some instructions can generate more than one fault if evaluation of one
operand causes a fault that occurs before a later operand (which would also
cause a fault). An example of this is the possibility that a floating-point divide
instruction might report a divide-by-zero fault upon seeing a zero divisor
before noticing that the dividend was a reserved operand, or was inaccessible.

In these cases, operand-specific faults will be signaled immediately by
LIB$DECODEJAULT in the expectation that another condition handler
(or the same one) can repair the situation. This may reorder the sequence of
exceptions as seen by a program. If the operand exception is corrected, the
original exception will reoccur, and the proper action will be taken.

If at all possible, you should attempt to determine if a resignal is necessary
inside the condition handler that calls LIB$DECODE_FAULT, rather than
inside your user action routine. The reason for this is that
LIB$DECODE_FAULT removes all post-signal stack frames before calling
your user action routine.

Your user action routine may fetch and store the operands, registers and
PSL as is necessary for handling the exception. You should follow the
VAX architecture rule of reading all input operands in left-to-right order,
then writing all output operands in left-to-right order, to avoid inconsistent
results with overlapping operands. This is especially necessary with register
operands.

PSL may be modified in a manner consistent with the VAX architecture. If
the T-bit in the PSL was set at the beginning of the instruction,
LIB$DECODEJAULT sets the TP bit. To initiate tracing, you must set only
the T bit. To disable tracing, you must clear both the T and TP bits. See the
VAX Architecture Reference Manual for more information.

If the first-part-done (FPO) bit in the PSL was set when the instruction
faulted, LIB$DECODE_FAULT only advances the PC over the instruction;
it does not reevaluate the operands and it sets operand-count to zero. It is
assumed that if FPO is set, the operands are in known locations (typically the
registers).

For the CASEB, CASEW, and CASEL instructions, only the selector, base,
and limit operands are represented in operand-count and read-operand
locations. The element of registers that corresponds to the PC, described in
the following text as Rl5, points to the first of the word-length displacements.
Your user action routine must modify R15 to reflect the location of the next
instruction to execute.

The standard instruction definitions used by LIB$DECODEJAULT specify
the X:FC instruction (which causes an SS$_0PCCUS fault) as having zero
operands. You may redefine XFC if needed using the instruction-definitions
argument to LIB$DECODE_FAULT.

LIB-89

LIB$DECODE_FAULT

LIB-90

If you do not want instruction execution to resume with the next sequential
instruction, you must modify RlS appropriately. Your user action routine
then returns to LIB$DECODE_FAULT which restores the registers and PSL,
and resumes instruction execution. See also LIB$-RESTART below.

Exceptions Recognized by LIB$DECODE_fAULT

LIB$DECODEJAULT recognizes the following VAX faults:

• SS$_ACCVIO, access violation.

• SS$_BREAK, breakpoint fault.

• SS$_FL TDIV_F, floating divide by zero.

• SS$_FLTOVF_F, floating overflow.

• SS$_FLTUND_F, floating underflow.

• SS$_0PCCUS, opcode reserved to customers and CSS.

• SS$_0PCDEC, opcode reserved to DIGITAL.

• SS$_ROPRAND, reserved operand.

• SS$_TBIT, T-bit pending trap. This is actually a fault caused by the TP
bit being set at the beginning of instruction execution. It allows you
to interpret all instructions by setting the PSL T-bit and allowing each
instruction to trace-fault.

All other exceptions, including SS$_COMPAT and 55$-RADRMOD, cause
LIB$DECODE_FAULT to return immediately with the return status
SS$_RESIGNAL.

SS$_COMPAT is generated by compatibility-mode instructions.
LIB$DECODEJAULT does not handle compatibility-mode instructions.

55$-RADRMOD is generated by a reserved addressing-mode fault.
LIB$DECODE_FAULT assumes that all instructions follow VAX addressing
mode specifications.

Instruction Operand Definition Codes

Each instruction operand has an access type (read, write, ...) and a data type
(byte, word, ...) associated with it. The operand definition codes used in
both the instruction-definitions argument passed to LIB$DECODEJAULT
and in the operand-types argument passed to the user action routine encode
the access and data types in a byte. The fields and values for operand access
and data types are described using the following symbols. These symbols are
defined in DIGITAL-supplied symbol definition libraries as macro or module
name $LIBDCFDEF.

LIB$V_DCFACC The field of the operand description code that describes the
operand access type (bits 0:2).

LIB$S_DCFACC The size of the access type field (3 bits).

LIB$DECODE_FAUL T

LIB$M_DCFACC The mask for the access type field. This is a 3-bit field that
can contain any binary value from 000 through 111. The
integer value of these bit settings defines the operand access
type code for the LIB$M_DCFACC field. Currently, six codes
are defined. These codes have symbolic names and are
explained below. It is important to remember that
LIB$M_DCFACC is NOT a bit mask. The values 0 through 6
do not refer to bits 0 through 6. They represent the binary
values 001 through 110 as contained in the 3-bit field.

The operand access type codes defined for the
LIB$M_DCFACC field are:
LIB$K_DCFACC_R = 1 Operand is read-only

LIB$K_DCFACC_W = 2

LIB$K_DCFACC_M = 3

LIB$K_DCFACC_A = 4

LIB$K_DCFACC_V = 5

LIB$K_DCFACC_B = 6

Operand is write-only

Operand is to be modified

Operand is an address (must not
be a register)

Operand is the base of a bit field
(same as address except that it
may be a register)

Operand is a branch address

LIB$V_DCFTYP The field of the operand descriptor code that describes the
operand data type (bits 3:7).

LIB$S_DCFTYP The size of the operand data type field (5 bits).

LIB$M_DCFTYP The mask for the operand data type field. This is a 5-bit
field (bits 3:7) that can contain any binary value from 00000
through 11111 . The integer value of these bit settings defines
the operand access type code for the LIB$M_DCFACC field.
Currently, nine codes are defined. These codes have symbolic
names and are explained below. It is important to remember
that LIB$M_DCFTYP is NOT a bit mask. The values 0 through
9 do not refer to bits 0 through 9. They represent the binary
values 00001 through 01001 as contained in the 5-bit field.
The operand access type codes defined for the
LIB$V_DCFTYP field are:
LIB$K_DCFTYP _B = 1 Operand is a byte

LIB$K_DCFTYP _ W = 2

LIB$K_DCFTYP _L = 3

LIB$K_DCFTYP_Q = 4

LIB$K_DCFTYP_O = 5

LIB$K_DCFTYP _F = 6

LIB$K_DCFTYP _D = 7

LIB$K_DCFTYP _G = 8

LIB$K_DCFTYP _H = 9

Operand is a word

Operand is a longword

Operand is a quadword

Operand is an octaword

Operand is an F _floating

Operand is a D_floating

Operand is a G_floating

Operand is an H_floating

Symbols of the form LIB$K_DCFOPR_xy, where x is the access type and y
is the data type, are also defined. These combine the notions of access and
data type. For example, LIB$K_DCFOPR_MF has the following value:

51 (3+(6*8))

LIB-91

LIB$DECODE_FAUL T

LIB-92

It denotes modify access of an F_floating item. For the branch access type,
only the types BB, BW, and BL are defined; otherwise, all combinations are
available.

Call Format for a User Action Routine

LIB$DECODE_FAULT calls the user action routine when it finds an exception
to be handled. Your user action routine handles the exception in any manner
that you specify and then returns to LIB$DECODE_FAULT.

action-routine opcode ,instr-PC ,PSL ,registers ,operand-count
,operand-types ,read-operand-locations

opcode
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

, write-operand-locations ,signal-arguments
,signal-procedure ,context
,unspecified-user-argument ,original-registers

Opcode of the instruction that caused the fault. The opcode argument is
the address of a longword that contains this opcode. LIB$DECODE_FAULT
supplies this opcode when it calls the user action routine.

For 2-byte opcodes, the escape code (for example, hex FD) is in the low-order
byte. You must use this argument to examine the opcode instead of reading
the bytes pointed to by instr-PC. This is because if a debugger breakpoint
has been set on the instruction, only opcode contains the original instruction.

instr-PC
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Value of the PC for the instruction that caused the fault. The instr-PC
argument is the address of a longword that contains the PC value.

Note the difference between this value and the contents of the registers
array element that corresponds to the PC. R15 of the registers array element
contains the address of the byte after the instruction that caused the fault.

PSL
VMS usage: longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference

Processor status longword (PSL) at the time of the fault. The PSL argument
is the address of a longword that contains this PSL. Your user action routine
may modify this PSL within the restrictions of the VAX architecture.

registers
VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference, array reference

LIB$DECODE_FAULT

Contents of registers RO through R15 (PC) at the time of the fault, but after
operand addressing-mode processing. This includes any autoincrements
and/or autodecrements. The registers argument is the address of this 16-
longword array. Each longword of the registers array contains the contents of
one register.

Your user action routine may modify these values. If it does, the new values
will be reflected when instruction execution continues.

R15 denotes the 16th longword in the registers array, which corresponds
to the PC. R15 contains the address of the next byte after the current
instruction. Unless this value is modified by your user action routine,
instruction execution will resume at that address. An exception is for the
CASEB, CASEW, and CASEL instructions; R15 contains the address of the
first displacement word. For these instructions, your user action routine must
modify R15 to point to the next instruction to execute.

Upon instruction completion, registers RO-R15 are restored from this array.
However, if signal-procedure is used to cause a fault or if instruction restart
is specified by returning LIB$_RESTART, original-registers is used instead.

operand-count
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of operands in the instruction currently being decoded. The
operand-count is the address of a longword that contains this number.

operand-types
VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, which contain the type
codes for the associated operand. The operand-types argument is the address
of this array.

The operand type codes are further defined under "Instruction Operand
Definition Codes," which appeared above in this Description section.

read-operand-locations
VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, which contains the
addresses of the operands to be read. The read-operand-locations argument
is the address of this array.

The address given in the array may not be the actual address of the operand if
the operand is not a memory location. If the operand is a register, the address
indicates a copy of the register value(s) at the time of operand evaluation. If
the operand access type is ADDRESS or FIELD, and the operand is not a
register, the address is the address of the item. If the operand access type
is FIELD and the operand is a register, the address refers to the appropriate
element in the registers array. If the operand access type is BRANCH, the

LIB-93

LIB$DECODE_FAUL T

LIB-94

address is the destination PC of the branch. For WRITE access operands, the
address value is zero.

write-operand-locations
VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, which contains the
addresses of operands that are to be written. The write-operand-locations
argument is the address of this array. If the operand access type is not
MODIFY, WRITE, ADDRESS, or FIELD, the pointer value is zero.

signal-arguments
VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Signal arguments list of the original exception, as passed from VMS to your
condition handler and then to LIB$DECODE_FAULT. The signal-arguments
argument is the address of an array of longwords that contains these signal
arguments.

signal-procedure
VMS usage: procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

Entry mask of a routine that your user action routine must call if it wishes
to report an exception for the instruction that faulted. The signal-procedure
argument is the address of this entry mask.

For further information, see "Call Format for a Signal Routine" in the
Description section.

context
VMS usage: context
type: unspecified
access: read only
mechanism: by value

Context in which the exception occurs, including the register and PSL
contents, to be used when calling the signal-procedure. The context argument
contains the value of this context.

unspecified-user-argument
VMS usage: user_arg
type: unspecified
access: read only
mechanism: by value

Optional argument passed to LIB$DECODE_FAULT. If the argument was
not specified, the value zero is substituted. The unspecified-user-argument
argument contains the value of this optional argument.

LIB$DECODE_FAULT

original-registers
VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference, array reference

Array containing the values of registers RO through RlS (PC) at the time of
the fault, before operand processing. The original-registers argument is the
address of this 16-longword array.

If the action routine specifies that the instruction should restart or that a fault
should be generated, the registers are restored from original-registers. See
also the description of registers above.

Condition Values Returned from the User Action Routine

The user action routine can return the following condition values to
LIB$DECODE_FAUL T.

Condition Value

SS$_CONTINUE

SS$_RESIGNAL

LIB$_REST ART

Description

If the user action routine returns a value of
SS$_CONTINUE, instruction execution will continue as
specified by the current contents of the registers element
fonhe PC.

If it returns SS$_RESIGNAL, the original exception is
resignaled, with the only changes reflected being those
specified by registers elements for RO and R 1 (which are
stored in the mechanism arguments vector), PC, and PSL.
All other registers are restored from original registers.

If the user action routine returns LIB$_REST ART, the
current instruction is restarted with registers restored
from original-registers and a PSL from PSL. This feature
is useful for writing trace handlers.

Call Format for a Signal Routine

Your action routine calls the signal routine using this format:

signal-procedure fault-flag ,context ,signal-arguments

fault-flag
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Longword flag whose low-order bit determines whether or not the exception
is to be signaled as a fault or as a trap. The fault-flag argument contains the
address of this longword.

If the low-order bit of fault-flag is set to l, the exception is signaled as a
fault. If the low-order bit of fault-flag is set to 0, the exception is signaled as
a trap; the current contents of the registers array are used. In either case, the
current contents of PSL are used to set the exception PSL.

LIB-95

LIB$DECODE_FAUL T

CONDITION
VALUES
RETURNED

CONDITION
VALUE
SIGNALED

LIB-96

context
VMS usage: context
type: unspecified
access: read only
mechanism: by reference

Context in which the new exception is to occur, as passed to your user action
routine by LIB$DECODE_FAULT. The context argument is the address of
this context value.

signal-arguments
VMS usage: arg_list
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Signal arguments to be used. The signal-arguments argument is the address
of an array of longwords that contains these signal arguments.

The first longword contains the number of following longwords; the
remainder of the list contains signal names and arguments. Unlike the
signal argument list passed to a condition handler, no PC or PSL is present.

Before the exception is signaled, the stack frames are unwound back to the
original exception. You should be careful when causing a new signal that
a loop of faults is not inadvertently generated. For example, the condition
handler that called LIB$DECODE_FAULT will usually be called for the
second signal. If the handler does not analyze the second signal as such, it
may cycle through the identical path as for the first signal.

To resignal the current exception, have the user action routine return a value
of SS$_RESIGNAL instead of calling the signal routine (unless you wish
previously called condition handlers to be called again).

SS$_RESIGNAL

LIB$_1NV ARG

Resignal condition to next handler. The exception
described by signal-arguments was not an
instruction fault handled. by LIB$DECODE_FAULT.
If LIB$DECODE_FAUL T can process the fault, it
does not return to its caller.

Invalid argument to Run-Time Library. The
instruction definition contained more than 16
operands or an operand definition contained an
invalid data type or access code. This message is
signaled after the stack frames have been unwound
so that it appears to have been signaled from a
routine that was called by the instruction that
faulted.

LIB$DECODE_FAUL T

EXAMPLE

C+
C Example condition handler and user-action routine using
C LIB$DECODE_FAULT. This example demonstrates the use of
C most of the features of LIB$DECODE_FAULT. Its purpose
C is to handle floating underflow and overflow faults,
C replacing the result of the instruction with the correctly
C signed smallest possible value for underflows, or greatest
C possible value for overflows.
c
C For simplicity, faults involving the POLYx instructions are
C not handled.
c
C***
C FIXUP_RESULT is the condition handler enabled by the program
C desiring the fixup of overflows and underflows.
C***
c-

C+

INTEGER*4 FUNCTION FIXUP_RESULT(SIGARGS, MECHARGS)

IMPLICIT NONE
INCLUDE '($SSDEF)'
INCLUDE '($LIBDCFDEF)'
INTEGER*4 SIGARGS(1:*)
INTEGER*4 MECHARGS(1:*)

SS$_ symbols
LIB$DECODE_FAULT symbols
Signal arguments list
Mechanism arguments list

C This is a sample redefinition of MULH3 instruction.
c-

C+

BYTE OPTABLE(8)
1
2
3
4
5

I 'FD' X, '65 'X,
LIB$K_DCFOPR_RH,
LIB$K_DCFOPR_RH,
LIB$K_DCFOPR_WH,
LIB$K_DCFOPR_END,
'FF'X, 'FF'X/

MULH3 opcode
Read H_floating
Read H_floating
Write H_floating
End of operands
End of instructions

INTEGER*4 LIB$DECODE_FAULT ! External function
EXTERNAL FIXUP_ACTION ! Action routine to do the fixup

C Determine if the exception is one we wish to handle.
c-

C+

IF ((SIGARGS(2) .EQ. SS$_FLTOVF_F) .OR.
1 (SIGARGS(2) .EQ. SS$_FLTUND_F)) THEN

C We think we can handle the fault. Call
C LIB$DECODE_FAULT and pass it the signal arguments and
C the address of our action routine and opcode table.
c-

FIXUP_RESULT = LIB$DECODE_FAULT (SIGARGS,
1 MECHARGS, %DESCR(FIXUP_ACTION),, OPTABLE)

RETURN
END IF

C+
C We can only get here if we couldn't handle the fault.
C Resignal the exception.
c-

LIB-97

LIB$DECODE_FAUL T

C+

FIXUP_RESULT = SS$_RESIGNAL
RETURN
END

C User action routine to handle the fault.
c-

C+

INTEGER*4 FUNCTION FIXUP_ACTION
1
2
3
4
5

IMPLICIT NONE
INCLUDE '($SSDEF)'
INCLUDE '($PSLDEF)'
INCLUDE '($LIBDCFDEF)'

INTEGER*4 OPCODE
INTEGER*4 INSTR_PC
INTEGER*4 PSL

INTEGER*4 REGISTERS(0:15)
INTEGER*4 OP_COUNT
INTEGER*4 OP_TYPES(1:*)
INTEGER*4 READ_OPS(1:*)
INTEGER*4 WRITE_OPS(1:*)
INTEGER*4 SIGARGS(1:*)
INTEGER*4 SIGNAL_ROUT
INTEGER*4 CONTEXT
INTEGER*4 USER_ARG
INTEGER*4 ORIG_REGS(0:15)

(OPCODE,INSTR_PC,PSL,
REGISTERS,OP_COUNT,
OP_TYPES,READ_OPS,
WRITE_OPS,SIGARGS,
SIGNAL_ROUT,CONTEXT,
USER_ARG,ORIG_REGS)

SS$_ definitions
PSL$ definitions
LIB$DECODE_FAULT
definitions

Instruction opcode
PC of this instruction
Processor status
longword
RO-R15 contents
Number of operands
Types of operands
Addresses of read operands
Addresses of write operands
Signal argument list
Signal routine address
Signal routine context
User argument value
Original registers

C Declare and initialize table of class codes for each of the
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c-

"real" opcodes. We'll index into this by the first byte of
one-byte opcodes, the second byte of two-byte opcodes. The
class codes will be used in a computed GOTO (CASE) . The
codes are:

0 - Unsupported
1 - ADD
2 - SUB
3 - MUL,DIV
4 - ACB
5 - CVT
6 - EMOD

The class mainly determines how we compute the sign of the
result, except for ACB.

BYTE INST_CLASS_TABLE(0:255)
DATA INST_CLASS_TABLE /
1 48*0,
2 0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,
3 1,1,2,2,3,3,3,3,0,0,0,0,0,0,0,4,
4 0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,
5 1,1,2,2,3,3,3,3,0,0,0,0,0,0,0,4,
6 0,0,0,0,6,0,5,0,0,0,0,0,0,0,0,0,
7 112*0,
8 0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,0/

00-2F
30-3F
40-4F
50-5F
60-6F
70-7F
80-EF
FO-FF

LIB-98

LIB$DECODE_FAUL T

C+
C Table of operand sizes in 8-bit bytes, indexed by the
C datatype code contained in the OP_TYPES array. Only floating
C types matter.
c-

C+
c
c
c
c
c
c
c
c
c
c
c

BYTE OP_SIZES(9) /0,0,0,0,0,4,8,8,16/

INTEGER*4 LIB$EXTV
INTEGER*4 RESULT_NEGATIVE

INTEGER*4 SIGN1,SIGN2,SIGN3
INTEGER*4 INST_BYTE
INTEGER*4 INST_CLASS

INTEGER*4 OP_DTYPE
INTEGER*4 OP_SIZE

INTEGER*4 RESULT_OP

LOGICAL*4 OVERFLOW
LOGICAL*4 SMALLER

PARAMETER ESCD = 'OFD'X

External function
-1 if result negative,
0 if positive
Signs of operands
Current opcode byte
Class of instruction
from table
Datatype of operand
Size of operand in
8-bit bytes
Position of result
in WRITE_OPS array
TRUE if SS$_FLTOVF_F
Function which
compares operands
First byte of G,H instructions

INTEGER*2 SMALL_F(2) Smallest F_floating
DATA SMALL_F /'0080'X,0/
INTEGER*2 SMALL_D(4) Smallest D_floating
DATA SMALL_D /'0080'X,0,0,0/
INTEGER*2 SMALL_G(4) Smallest G_floating
DATA SMALL_G /'0010'X,0,0,0/
INTEGER*2 SMALL_H(8) Smallest H_floating
DATA SMALL_H /'0001'X.o.o.o,O,O,O,O/
INTEGER*2 BIGGEST(8) Biggest value (all datatypes)
DATA BIGGEST /'7FFF'X,7*'FFFF'X/

INTEGER*4 SIGNAL_ARRAY(2) Array for signalling new
exception

NOTE: Because the operands arrays contain the locations of
the operands, rather than the operands themselves,
we must call a routine using the %VAL function to
"fool" the called routine into considering the
contents of an operands array element as the address
of an item. This would not be necessary in a
language that understood the concept of pointer
variables, such as PASCAL.

C If FPD is set in the PSL, signal SS$_ROPRAND (reserved operand). In
C reality this shouldn't happen since none of the instructions we
C handle can set FPD, but do it as an example.
c-

IF (BTEST(PSL,PSL$V_FPD)) THEN

1
2
3

SIGNAL_ARRAY(1) = 1 Count of signal arguments
SIGNAL_ARRAY(2) = SS$_ROPRAND Error status value
CALL SIGNAL_ROUT (

END IF

1,
SIGNAL_ARRAY,
CONTEXT)

Fault flag - signal as fault
Signal arguments array
Context as passed to us
Call will never return

LIB-99

LIB$DECODE_FAUL T

C+
C Set OVERFLOW according to the exception type. We assume that
C the only alternatives are SS$_FLTOVF_F and SS$_FLTUND_F.
c-

OVERFLOW = (SIGARGS(2) .EQ. SS$_FLTOVF_F)

C+
C Determine the datatype of the instruction by that of its
C second operand, since that is always the type of the
C destination.
c-

OP_DTYPE = IBITS(OP_TYPES(2),LIBV_DCFTYP,LIBS_DCFTYP)

C+
C Get the size of the datatype in words.
c-

OP_SIZE = OP_SIZES (OP_DTYPE)

C+
C Determine the class of instruction and dispatch to the
C appropriate routine.
c-

C+

INST_BYTE = IBITS(OPCODE,0,8) ! Get first byte
IF (INST_BYTE .EQ. ESCD) INST_BYTE = IBITS(OPCODE,8,8)
INST_CLASS = INST_CLASS_TABLE(INST_BYTE)
GO TO (1000,2000,3000,4000,5000,6000),INST_CLASS

C If we get here, the instruction's entry in the
C INST_CLASS_TABLE is zero. This might happen if the instruction was
C a POLYx, or was some other unsupported instruction. Resignal the
C original exception.
c-

C+

FIXUP_ACTION SS$_RESIGNAL
RETURN

Resignal condition to next handler
Return to LIB$DECODE_FAULT

C 1000 - ADDF2, ADDF3, ADDD2, ADDD3, ADDG2, ADDG3, ADDH2, ADDH3
c
C Result's sign is the same as that of the first operand,
C unless this is an underflow, in which case the magnitudes of
C the values may change the sign.
c-
1000 RESULT_NEGATIVE = LIB$EXTV (15,1,%VAL(READ_OPS(1)))

IF (.NOT. OVERFLOW) THEN

C+

IF (SMALLER(OP_SIZE,%VAL(READ_OPS(1)),
1 %VAL(READ_OPS(2))))
2 RESULT_NEGATIVE = .NOT. RESULT_NEGATIVE

END IF
GO TO 9000

C 2000 - SUBF2, SUBF3, SUBD2, SUBD3, SUBG2, SUBG3, SUBH2, SUBH3
c
C Result's sign is the opposite of that of the first operand,
C unless this is an underflow, in which case the magnitudes of
C the values may change the sign.
c-

LIB-100

LIB$DECODE_FAUL T

2000 RESULT_NEGATIVE = .NOT. LIB$EXTV (15,1,%VAL(READ_OPS(1)))
IF (.NOT. OVERFLOW) THEN

C+

IF (SMALLER(OP_SIZE,%VAL(READ_OPS(1)),
1 %VAL(READ_OPS(2))))
2 RESULT_NEGATIVE = .NOT. RESULT_NEGATIVE

END IF
GO TO 9000

C 3000 - MULF2, MULF3, MULD2, MULD3, MULG2, MULG3, MULH2, MULH3,
C DIVF2, DIVF3, DIVD2, DIVD3, DIVG2, DIVG3, DIVH2, DIVH3,
c
C If the signs of the first two operands are the same, then the
C result's sign is positive, if they are not it is negative.
c-
3000 SIGN1 = LIB$EXTV (15,1,%VAL(READ_OPS(1)))

SIGN2 = LIB$EXTV (15,1,%VAL(READ_OPS(2)))
RESULT_NEGATIVE = SIGN1 .XOR. SIGN2
GOTO 9000

C+
C 4000 - ACBF, ACBD, ACBG, ACBH
c
C The result's sign is the same as that of the second operand
C (addend), unless this is underflow, in which case the
C magnitudes of the addend and index may change the sign. '
C We must also determine if the branch is to be taken.
c-

4000 SIGN2 = LIB$EXTV (15,1,%VAL(READ_OPS(2)))
RESULT_NEGATIVE = SIGN2

C+

IF (.NOT. OVERFLOW) THEN
IF (SMALLER(OP_SIZE,%VAL(READ_OPS(2)),

1 %VAL(READ_OPS(3))))
2 RESULT_NEGATIVE = .NOT. RESULT_NEGATIVE

END IF

C If this is overflow, then the branch is not taken, since the
C result is always going to be greater or equal in magnitude
C to the limit, and will be the correct sign. If underflow,
C the branch is ALMOST always taken. The only case where the
C branch might not be taken is when the result is exactly
C equal to the limit. For this example, we are going to ignore
C this exceptional case.
c-

C+

IF (.NOT. OVERFLOW)
1 REGISTERS(15) = READ_OPS(4)
GO TO 9000

Branch destination

C 5000 - CVTDF, CVTGF, CVTHF, CVTHD, CVTHG
c
C Result's sign is the same as that of the first operand.
c-
5000 RESULT_NEGATIVE = LIB$EXTV (15,1,%VAL(READ_OPS(1)))

GO TO 9000

C+
C 6000 - EMODF, EMODD, EMODG, EMODH
c
C If the signs of the first and third operands are the same, then the
C result's sign is positive, else it is negative.
c-

LIB-101

LIB$DECODE_FAUL T

6000 SIGN!= LIB$EXTV (15,1,%VAL(READ_OPS(1)))
SIGN2 = LIB$EXTV (15,1,%VAL(READ_OPS(3)))
RESULT_NEGATIVE = SIGN! .XOR. SIGN2
GOTO 9000

C+
C All code paths merge here to store the result value. We also
C set the PSL appropriately. First, determine which operand is
C the result.
c-
9000

C+

RESULT_OP = OP_COUNT
IF (INST_CLASS .EQ. 4)
1 RESULT_OP = RESULT_OP - 1 ! ACBx

C Select result based on datatype and exception type.
c-

C+

IF (OVERFLOW) THEN
CALL LIB$MOVC3 (OP_SIZE,BIGGEST,%VAL(WRITE_OPS(RESULT_OP)))

ELSE
GO TO (9100,9200,9300,9400), OP_DTYPE-(LIB$K_DCFTYP_F-1)

C Should never get here. Resignal original exception.
c-

C+

FIXUP_ACTION = SS$_RESIGNAL
RETURN

C 9100 - F_floating result
c-
9100 CALL LIB$MOVC3 (OP_SIZE,SMALL_F,%VAL(WRITE_OPS(RESULT_OP)))

GOTO 9500

C+
C 9200 - D_floating result
c-
9200 CALL LIB$MOVC3 (OP_SIZE,SMALL_D,%VAL(WRITE_OPS(RESULT_OP)))

GOTO 9500

C+
C 9300 - G_floating result
c-
9300 CALL LIB$MOVC3 (OP_SIZE,SMALL_G,%VAL(WRITE_OPS(RESULT_OP)))

GOTO 9500

C+
C 9400 - H_floating result
c-
9400 CALL LIB$MOVC3 (OP_SIZE,SMALL_H,%VAL(WRITE_OPS(RESULT_OP)))

GOTO 9500

9500 END IF

C+
C Modify the PSL to reflect the stored result. If the result was
C negative, set the N bit. Clear the V (overflow) and Z (zero) bits.
C If the instruction was an ACBx, leave the C (carry) bit unchanged,
C otherwise clear it.
c-

LIB-102

LIB$DECODE_FAUL T

C+

IF (RESULT_NEGATIVE) THEN
PSL = IBSET (PSL,PSL$V_N)

ELSE
PSL = IBCLR (PSL,PSL$V_N)

END IF
PSL = IBCLR (PSL,PSL$V_V)
PSL = IBCLR (PSL,PSL$V_Z)
IF (INST_CLASS .NE. 4)
1 PSL = IBCLR (PSL,PSL$V_C)

Set N bit

Clear N bit

Clear V bit
Clear Z bit

Clear C bit if not ACBx

C Set the sign of result.
c-

IF (RESULT_NEGATIVE)
1 CALL LIB$INSV (1,15,1,%VAL(WRITE_OPS(RESULT_OP)))

C+
C Fixup is complete. Return to LIB$DECODE_FAULT.
c-

C+

FIXUP_ACTION = SS$_CONTINUE
RETURN
END

C Function which compares two floating values. It returns .TRUE. if
C the first argument is smaller in magnitude than the second.
c-

C+

LOGICAL*4 FUNCTION SMALLER(NBYTES,VAL1,VAL2)

INTEGER*4 NBYTES
INTEGER*2 VAL1(*),VAL2(*)
INTEGER*4 WORDA,WORDB

SMALLER= .TRUE.

Number of bytes in values
Floating values to compare

Initially return true

C Zero extend to a longword for unsigned compares.
C Compare first word without sign bit.
c-

WORDA = IBCLR(ZEXT(VAL1(1)),15)
WORDB = IBCLR(ZEXT(VAL2(1)),15)
IF (WORDA .LT. WORDB) RETURN

DO I=2,NBYTES/2
WORDA = ZEXT(VAL1(I))
WORDB = ZEXT(VAL2(I))
IF (WORDA .LT. WORDB) RETURN
END DO

SMALLER = .FALSE. ! VAL1 not smaller than VAL2
RETURN
END

This FORTRAN example implements a simple recovery scheme for floating
underflow and overflow faults, replacing the result of the instruction with
the correctly signed smallest possible value for underflows or largest possible
value for overflows.

LIB-103

LIB$DEC_QVER

LI B$DEC_OVER Enable or Disable Decimal
Overflow Detection

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

EXAMPLE

The Enable or Disable Decimal Overflow Detection routine enables or
disables decimal overflow detection for the calling routine activation. The
previous decimal overflow setting is returned.

LIB$DEC_OVER new-setting

VMS usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The old decimal overflow enable setting (the previous contents of
SF$W_PSW[PSW$V_DV] in the caller's frame).

new-setting
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New decimal overflow enable setting. The new-setting argument is the
address of an unsigned longword that contains the new decimal overflow
enable setting. Bit 0 set to 1 means enable; bit 0 set to 0 means disable.

The caller's stack frame will be modified by this routine.

A call to LIB$DEC_OVER affects only the current routine activation and does
not affect any of its callers or any routines that it may call. However, the
setting does remain in effect for any routines which are subsequently entered
through a JSB entry point.

DECOVF: ROUTINE OPTIONS (MAIN);

DECLARE LIB$DEC_OVER ENTRY (FIXED BINARY (7)) /* Address of byte for
/* enable/disable
/* setting */

RETURNS (FIXED BINARY (31)); /*Old setting */

DECLARE DISABLE FIXED BINARY (7) INITIAL (0) STATIC READONLY;
DECLARE RESULT FIXED BINARY (31);
DECLARE (A,B) FIXED DECIMAL (4,2);

ON FIXEDOVERFLOW PUT SKIP LIST ('Overflow');

LIB-104

RESULT= LIB$DEC_OVER (DISABLE);

A = 99.99;
B = A + 2;
PUT SKIP LIST ('In MAIN');

BEGIN;
B = A + 2;
PUT LIST ('In BEGIN block');
CALL Q;

Q: ROUTINE;
B = A + 2;
PUT LIST ('In Q');
END Q;

END I* Begin */;
END DECOVF;

LIB$DEC_OVER

/* Disable recognition of decimal
/* overflow in this block */

This PL/I program shows how to use LIB$DEC_QVER to enable or disable
the detection of decimal overflow. Note that in PL/I, disabling decimal
overflow using this routine only causes the condition to be disabled in the
current block; descendent blocks will enable the condition, unless this routine
is called in each block.

LIB-105

LIB$DELETE_FILE

LI B$DELETE_FI LE Delete One or More Files

FORMAT

RETURNS

ARGUMENTS

LIB-106

The Delete One or More Files routine deletes one or more files. The
specification of the file(s) to be deleted may include wildcards.

LIB$DELETE_FILE is similar in function to the DCL command DELETE.

LIB$DELETE_FILE filespec [,defau/t-filespec}

VMS usage: cond_value

[, related-filespec]
[,user-success-procedure]
[,user-error-procedure]
[,user-confirm-procedure]
[,user-specified-argument]
[,resultant-name][, file-scan-context}

type: longword (unsigned)
access: write only
mechanism: by value

filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String containing the VMS Record Management Services (RMS) file
specification of the file(s) to be deleted. The filespec argument is the address
of a descriptor pointing to the file specification. If the specification includes
wildcards, each file that matches the specification is deleted. The string must
not contain more than 255 characters. Any string class is supported.

default-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification of the file(s) to be deleted. The default-filespec
argument is the address of a descriptor pointing to the default file
specification. This is an optional argument; if omitted, the default is the
null string. Any string class is supported.

See the VMS Record Management Services Manual for information about
default file specifications.

related-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

LI B$DELETE_FI LE

Related file specification of the file(s) to be deleted. The related-filespec
argument is the address of a descriptor pointing to the related file
specification. Any string class is supported. This is an optional argument;
if omitted, the default is the null string.

Input file parsing is used. See the VMS Record Management Services Manual
for information on related file specifications and input file parsing.

The related file specification is useful when you are processing lists of file
specifications. Unspecified portions of the file specification are inherited from
the last file processed.

user-success-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User-supplied success routine that LIB$DELETEJILE calls after it
successfully deletes a file. The user-success-procedure argument is the
address of the entry mask of the success routine.

The success routine can be used to display a log of the files that were deleted.
For more information on the success routine, look under "Call Format for a
Success Routine" in the Description section.

user-error-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User-supplied error routine that LIB$DELETE_FILE calls when it detects an
error. The user-error-procedure argument is the address of the entry mask
of this routine.

The error routine returns a success/fail value which LIB$DELETEJILE uses
to determine if more files should be processed. For more information on
the error routine, see "Call Format for an Error Routine" in the Description
section.

user-confirm-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User-supplied confirm routine that LIB$DELETEJILE calls before each file
is deleted. The user-confirm-procedure argument is the address of the entry
mask of this routine. The value returned by the confirm routine determines
whether or not the file will be deleted. The confirm routine can be used to
select specific files for deletion based on criteria such as expiration date, size,
and so on.

LIB-107

LIB$DELETE_FILE

LIB-108

For more information about the confirm routine, see "Call Format for a
Confirm Routine" in the Description section.

user-specified-argument
VMS usage: user_arg
type: unspecified
access: read only
mechanism: by value

User-supplied argument that LIB$DELETE_FILE passes to the error, success
and confirm routines each time they are called. Whatever mechanism is also
used to pass user-specified-argument to LIB$DELETEJILE is used to pass
it to the routines. This is an optional argument; if omitted, zero is passed by
value.

resultant-name
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String into which LIB$DELETE_FILE writes the RMS resultant file
specification of the last file processed. The resultant-name argument is
the address of a descriptor pointing to the resultant name.

If present, resultant-name is used to store the file specification passed to the
user-supplied routines, instead of a default class S, type T string. Therefore,
this argument should be specified when the user-supplied routines are used
and those routines require a descriptor type other than class S, type T. Any
string class is supported.

If you are specifying one or more of the action routine arguments, be sure that
the descriptor class used to pass resultant-name is the same as the descriptor
class required by the action routine. For example, VAX Ada requires a class
SB descriptor for string arguments to Ada routines, but will use a class A
descriptor by default when calling external routines. Refer to your language
manual to determine the proper descriptor class to use.

file-scan-context
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context for deleting a list of file specifications. The file-scan-context
argument is the address of a longword containing the context value.

You must initialize the file scan context to zero before the first of a series of
calls to LIB$DELETE_FILE. LIB$FILE_SCAN uses this context to retain the
file context for multiple input files. You must specify this context only when
you are dealing with multiple input files, as the DCL command DELETE
does. You may deallocate the context allocated by LIB$FILE_SCAN by
calling LIB$FILE_SCAN_END after all calls to LIB$DELETE_FILE have
been completed.

DESCRIPTION

LI B$DELETE_f I LE

This Description section is divided into three parts.

• Call Format for a Success Routine

• Call Format for an Error Routine

• Call Format for a Confirm Routine

Call Format for a Success Routine

The success routine is called only if the user-success-procedure argument
was specified in the LIB$DELETEJILE argument list.

The calling format of a success routine is as follows:

user-success-procedure filespec (,user-specified-argument]

filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Record Management Services (RMS) resultant file specification of the file
being deleted. The filespec argument is the address of a descriptor pointing
to the file specification. If the resultant-name argument was specified, it is
used to pass the string to the success routine. Otherwise, a class S, type T
string is passed. Any string class is supported.

user-specified-argument
VMS usage: user_arg
type: unspecified
access: read only
mechanism: unspecified

Value of user-specified-argument passed by LIB$DELETE_FILE to the
success routine. The same passing mechanism that was used to pass user
specified-argument to LIB$DELETEJILE is used by LIB$DELETEJILE
to pass user-specified-argument to the success routine. This is an optional
argument.

Call Format for an Error Routine

The error routine is called only if the user-error-procedure argument was
specified in the LIB$DELETEJILE argument list.

The calling format of an error routine is as follows:

user-error-procedure filespec ,rms-sts ,rms-stv ,error-source
(,user-specified-argument]

filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String containing the RMS resultant file specification of the file being deleted.
If resultant-name was specified, it is used to pass the string to the error
routine. Otherwise, a class S, type T string is passed. Any string class is
supported.

LIB-109

LI B$DELETE_FI LE

LIB-110

rms-sts
VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

Primary condition code (FAB$L_STS) which describes the error that occurred.
The rms-sts argument is the address of an unsigned longword that contains
the primary condition code.

rms-stv
VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

Secondary condition code (FAB$L_STV) which describes the error that
occurred. The rms-stv argument is the address of an unsigned longword that
contains the secondary condition code.

error-source
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Integer code that indicates the point at which the error was found. The error
source argument is the address of a longword integer containing the code of
the error source.

Possible values for the error code are as follows:

0 Error searching for file specification

Error deleting file

user-specified-argument
VMS usage: user_arg
type: unspecified
access: read only
mechanism: unspecified

Value passed to LIB$DELETE_FILE that is then passed to user-error
procedure using the same passing mechanism that was used to pass it to
LIB$DELETE_FILE. This is an optional argument.

If the error routine returns a success status (bit 0 set), then LIB$DELETEJILE
will continue processing files. If a failure status (bit 0 clear) is returned, then
processing will cease immediately and LIB$DELETE_FILE will return with
the error status.

If the user-error-procedure argument is not specified, LIB$DELETEJILE
will return to its caller the most severe error status encountered while deleting
the files. If the error routine is called for an error, the success status
LIB$_ERRROUCAL is returned.

The error routine is not called for errors related to string copying.

LI B$DELETE_f I LE

Call Format for a Confirm Routine

The confirm routine is called only if the user-confirm-procedure argument
was specified in the call to LIB$DELETE_FILE.

The calling format of the confirm routine is as follows:

user-confirm-procedure filespec ,fab [,user-specified-argument]

filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file to be deleted. The filespec
argument is the address of a descriptor pointing to the file specification.

If resultant-name was specified, it is used to pass the string to the confirm
routine. Otherwise, a class S, type T string is passed. Any string class is
supported.

fab
VMS usage: fab
type: unspecified
access: read only
mechanism: by reference

RMS file access block (FAB) that describes the file being deleted. Your
program may perform an RMS $OPEN on the FAB to obtain file attributes to
determine whether the file should be deleted, but it must close the file with
$CLOSE before returning to LIB$DELETE_FILE.

user-specified-argument
VMS usage: user_arg
type: unspecified
access: read only
mechanism: unspecified

The value of the user-specified-argument argument that LIB$DELETEJILE
passes to the confirm routine using the same passing mechanism that was
used to pass it to LIB$DELETE_FILE. This is an optional argument.

If confirm routine returns a success status (bit 0 set), the file is then deleted;
otherwise, the file is not deleted.

LIB-111

LI B$DELETE_FI LE

CONDITION
VALUES
RETURNED

SS$_NORMAL

LIB$_ERRROUCAL

Routine successfully completed.

Success, but an error routine was called. A file
error was encountered but the error routine was
called to handle the condition.

LIB$_1NVFILSPE

LIB$_1NVSTRDES

LIB$_WRONUMARG

Invalid file specification. Filespec or default
filespec is longer than 255 characters.

Invalid string descriptor. The descriptor for a string
argument was not a valid string descriptor.

Wrong number of arguments. An incorrect number
of arguments was passed to LIB$DELETE_FILE.

Any condition value returned by LIB$SCOPY_xxx except those condition
values specifying truncation errors.

Any condition value returned by RMS. If user-error-procedure is not
specified, this is the most severe of the RMS errors encountered while deleting
the files.

EXAMPLE

PROGRAM DELETE_EXAMPLE(INPUT, OUTPUT);

{+}
{ Declare external function LIB$DELETE_FILE. Throughout this
{ example, the user-arg argument is not used.
{-}

FUNCTION LIB$DELETE_FILE(

{+}

FILESPEC: VARYING [A] OF CHAR;
DEFAULT_FILESPEC: VARYING [B] OF CHAR;
REL_FILESPEC : VARYING [D] OF CHAR;
%IMMED [UNBOUND] ROUTINE SUCCESS_ROUTINE

(FILESPEC : VARYING [A] OF CHAR) := %IMMED O;
%IMMED [UNBOUND] FUNCTION ERROR_ROUTINE

(FILESPEC : VARYING [A] OF CHAR; RMS_STS, RMS_STV : INTEGER)
: BOOLEAN := %IMMED O;

%IMMED [UNBOUND] FUNCTION CONFIRM_ROUTINE
(FILESPEC: VARYING [A] OF CHAR): BOOLEAN := %IMMED 0;

VAR USER_ARG : [UNSAFE] INTEGER := %IMMED O;
VAR RESULT_NAME : VARYING [C] OF CHAR := %IMMED 0
INTEGER; EXTERN;

{ Declare a routine which will display the names of the files
{ as they are deleted.
{-}

ROUTINE LOG_ROUTINE(FILESPEC : VARYING [A] OF CHAR);
BEGIN

{+}

WRITELN('File ', FILESPEC, ' successfully deleted');
END;

{ Declare a routine which will notify the user that an error
{ occurred.
{-}

LIB-112

FUNCTION ERR_ROUTINE(FILESPEC: VARYING [A] OF CHAR;
RMS_STS, RMS_STV: INTEGER): BOOLEAN;

{+}

BEGIN

END;

WRITELN('Delete of ', FILESPEC, 'failed ' HEX(RMS_STS));
ERR_ROUTINE := TRUE;

{ Declare a routine which checks to see if the file should be
{deleted. If the filename contains the string 'XYZ', then it is
{ deleted.
{-}

FUNCTION CONFIRM_ROUTINE(FILESPEC: VARYING [A] OF CHAR): BOOLEAN;
BEGIN

IF INDEX(FILESPEC, 'XYZ') <> 0
THEN

CONFIRM_ROUTINE := TRUE
ELSE

CONFIRM_ROUTINE := FALSE;
END;

{+}
{ The main program begins here.
{-}

VAR
FILES_TO_DELETE, RESULTANT NAME VARYING [255] OF CHAR;
RET_STATUS : INTEGER;

BEGIN

END.

WRITE ('Files to delete: ');
READLN(FILES_TO_DELETE);
RET_STATUS := LIB$DELETE_FILE(

FILES_TO_DELETE, '*;', '', LOG_ROUTINE, ERR_ROUTINE,
CONFIRM_ROUTINE, ,RESULTANT_NAME);

IF NOT ODD(RET_STATUS)
THEN

WRITELN('Delete failed. The error was', HEX(RET_STATUS));

LI B$DELETE_f I LE

This Pascal program prompts the user for file specifications of files to be
deleted. Of those, it deletes only files which contain the string 'XYZ'
somewhere in their resultant file specification. The names of deleted files
are displayed.

LIB-113

LIB$DELETE_LQGICAL

LI B$DELETE_LQGICAL Delete Logical Name

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB-114

The Delete Logical Name routine requests the calling process's Command
Language Interpreter (CU) to delete a supervisor-mode process logical
name. LIB$DELETE_LOGICAL provides the same function as the DCL
command DEASSIGN.

LIB$DELETE_LOGICAL logical-name [,table-name]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

logical-name
VMS usage: logicaLname
type: character string
access: read only
mechanism: by descriptor

Logical name to be deleted. The logical-name argument is the address of
a descriptor pointing to this logical name string. The maximum length of a
logical name is 255 characters.

table-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the table from which the logical name is to be deleted. The table
name argument is the address of a descriptor pointing to this name string.
This is an optional argument. If omitted, the LNM$PROCESS table is used.

LIB$DELETE_LOGICAL requests the calling process's Command Language
Interpreter (CLI) to delete a supervisor-mode process logical name. If the
optional table-name argument is defined, the logical name is deleted from
that table. Otherwise, the logical name is deleted from the LNM$PROCESS
table.

Unlike the system service $DELLOG and $DELLNM,
LIB$DELETE_LOGICAL does not require the caller to be executing in
supervisor mode to delete a supervisor-mode logical name.

This routine is supported for use with the DCL and MCR Command
Language Interpreters.

If an image is run directly as a subprocess or as a detached process, there is
no CLI present to perform this function. In that case, the error status
LIB$_NOCLI is returned.

CONDITION
VALUES
RETURNED

LIB$DELETE_LQGICAL

See the VMS DCL Dictionary for a description of the DCL command
DEASSIGN.

SS$_ACCVIO

SS$_1VLOGNAM

SS$_1VLOGT AB

SS$_NOLOGNAM

SS$_NOPRIV

SS$_NORMAL

SS$_ TOOMANYLNAM

LIB$_1NVSTRDES

LIB$_NOCLI

LIB$_UNECLIERR

Access violation. The logical name could not be
read.

Invalid logical name. The logical name contained
illegal characters or more than 255 characters.

Invalid logical name table

No logical name match. The logical name was
not defined as a supervisor-mode process logical
name.

No privilege for attempted operation.

Routine successfully completed.

Logical name translation exceeded allowed depth.

Invalid string descriptor. A string descriptor has an
in,valid value in its DSC$B_CLASS field.

No CLI present to perform function. The calling
process did not have a CLI to perform the function,
or the CLI did not support the request type. Note
that an image run as a subprocess or detached
process does not have a CLI.

Unexpected CLI error. The CLI returned an error
status which was not recognized. This error may
be caused by use of a nonstandard CLI. If this error
occurs while using the DCL Command Language
Interpreter, please report the problem to DIGIT AL
by means of a Software Performance Report (SPR).

LIB-115

LIB$DELETE_SVMBOL

LIB$DELETE_SVMBOL Delete CLI Symbol

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB-116

The Delete CU Symbol routine requests the calling process's Command
Language Interpreter (CU) to delete an existing CU symbol.

LIB$DELETE_SVMBOL symbol [,table-type-indicator]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

symbol
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the symbol to be deleted by LIB$DELETE_SYMBOL. The symbol
argument is the address of a descriptor pointing to this symbol string. The
symbol name is converted to uppercase and trailing blanks are removed
before use.

Symbol must begin with a letter, a dollar sign ($), or an underscore (-)·
The maximum length of symbol is 255 characters.

table-type-indicator
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Indicator of the table which contains the symbol to be deleted. The table
type-indicator argument is the address of a signed longword integer that is
this table indicator.

If omitted, the local symbol table is used. The following are possible values
for the table-type-indicator argument.

Symbolic Name

LIB$K_CLl _LOCAL _SYM

LIB$K_CLl _GLOBAL _SYM

Value Table Used

1 Local symbol table

2 Global symbol table

LIB$DELETE_SYMBOL is supported for use with the DCL CU. The error
status LIB$_NOCLI will be returned if LIB$DELETE_SYMBOL is used with
the MCR CLI or called from an image run directly as a subprocess or as a
detached process.

CONDITION
VALUES
RETURNED

LIB$DELETE_SVMBOL

LIB$K_CLl_LOCAL _SYM and LIB$K_CLl_GLOBAL _SYM are defined in
DIGITAL-supplied symbol libraries (macro or module name $LIBCLIDEF) and
as global symbols.

SS$_NQRMAL

UB$_FA TERRUB

LIB$_1NSVIRMEM

LIB$_INV ARG

U8$_1NVSTRDES

UB$_1NVSYMNAM

UB$_NOCU

UB$_NOSUCHSYM

UB$_UNECUERR

Routine successfully completed.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGITAL.

Insufficient virtual memory. A call to UB$GET_VM
has failed because your program has exceeded the
image quota for virtual memory.

Invalid argument. The value of table-type
indicator was invalid.

Invalid string descriptor. A string descriptor has an
invalid value in its DSC$B_CLASS field.

Invalid symbol name. The symbol name contained
more than 255 characters or did not begin with a
letter, a dollar sign, or an underscore.

No CU present to perform the function. The calling
process did not have a CU to perform the function,
or the CU did not support the request type. Note
that an image run as a subprocess or detached
process does not have a CU.

No such symbol. The symbol was not defined.

Unexpected CU error. The CU returned an error
status which was not recognized. This error may
be caused by use of a nonstandard CU. If this error
occurs while using the DCL Command Language
Interpreter, please report the problem to DIGITAL
by means of a Software Performance Report (SPR).

LIB-117

LIB$DELETE_VM_ZQNE

LIB$DELETE_VM_ZQNE Delete Virtual Memory
Zone

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB-118

The Delete Virtual Memory Zone routine deletes a zone and returns all
pages owned by the zone to the processwide page pool.

LIB$DELETE_VM_ZONE zone-id

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

zone-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id is the address of a longword that contains the
identifier of a zone created by a previous call to LIB$CREATE_ VM-20NE or
LIB$CREATE_USER_ VM_ZONE.

LIB$DELETE_ VM-20NE deletes a zone and returns all pages owned by the
zone to the processwide page pool managed by LIB$GET_ VM_p AGE. The
pages are then available for reallocation by later calls to LIB$GET_ VM or
LIB$GET_ VM_P AGE.

It takes less time to free memory in a single operation by calling
LIB$DELETE_ VM-20NE than to individually account for and free every
block of memory that was allocated by calling LIB$GET_ VM.

You must ensure that your program is no longer using any of the memory in
the zone before you call LIB$DELETE_ VM-20NE. Your program must not
do any further operations on the zone after you call
LIB$DELETE_ VM-20NE.

If you specified deallocation filling when you created the zone,
LIB$DELETE_ VM_ZQNE will fill all of the allocated blocks that are freed.

If the zone you are deleting was created using the
LIB$CREATE_USER_ VM_ZONE routine, then you must have an
appropriate action routine for the delete operation. That is, in your call
to LIB$CREATE_USER_VM-20NE, you must have specified a user-delete
procedure.

CONDITION
VALUES
RETURNED

SS$_NORMAL

LIB$_BADBLOADR

LIB$DELETE_VM_ZONE

Normal successful completion.

An invalid zone-id argument.

LIB-119

LI B$DIGIT_SEP

LIB$DIGIT_SEP Get Digit Separator Symbol

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB-120

The Get Digit Separator Symbol routine returns the system's digit
separator symbol.

LIB$DIGIT_SEP digit-separator-string {,resultant-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

digit-separator-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Digit separator symbol returned by LIB$DIGIT_SEP. The digit-separator
string argument is the address of a descriptor pointing to the digit separator.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters written into digit-separator-string, not counting
padding in the case of a fixed-length string. The resultant-length argument is
the address of an unsigned word containing the length of the digit separator
symbol. If the input string is truncated to the size specified in the digit
separator-string descriptor, resultant-length is set to this size. Therefore,
resultant-length can always be used by the calling program to access a valid
substring of digit-separator-string.

LIB$DIGIT_SEP returns the symbol that is used to separate groups of three
digits in the integer part of a number, for readability. A common digit
separator is a comma (,) as in 3,006,854.

LIB$DIGIT_SEP attempts to translate the logical name SYS$DIGIT_SEP as a
process, group, or system logical name. If the translation fails,
LIB$DIGIT_SEP returns a comma (,), the United States digit separator. If the
translation succeeds, the text produced is returned. Thus, a system manager
can define SYS$DIGIT_SEP as a system-wide logical name to provide a
default for all users, and an individual user with a special need can define
SYS$DIGIT_SEP as a process logical name to override the default symbol.
For example, you may wish to use the French digit separator, the period (.).

BASIC implicitly uses LIB$DIGIT_SEP.

CONDITION
VALUES
RETURNED

EXAMPLE

SS$_NORMAL

LIB$_STRTRU

LIB$_FA TERRLIB

LIB$_1NSVIRMEM

LIB$_1NVSTRDES

PROGRAM DIGIT_SEP(INPUT, OUTPUT);

{+}
{ This program uses LIB$DIGIT_SEP to return current
{ value of SYS$DIGIT_SEP.
{-}

LIB$DIGIT_SEP

Routine successfully completed.

Successfully completed, but the digit separator
string was truncated.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGITAL.

Insufficient virtual memory. A call to LIB$GET_VM
has failed because your program has exceeded the
image quota for virtual memory.

Invalid string descriptor. A string descriptor has an
invalid value in its DSC$B_CLASS field.

routine LIB$DIGIT_SEP(%DESCR DIGIT_SEPSTR : VARYING [A]
OF CHAR; %REF OUT_LEN : INTEGER); EXTERN;

VAR
SEPARATOR : VARYING [256] OF CHAR;
LENGTH : INTEGER;

BEGIN
LIB$DIGIT_SEP(SEPARATOR, LENGTH);
WRITELN('104' ,SEPARATOR, '567' ,SEPARATOR, '934');

END.

This Pascal example demonstrates how to use LIB$DIGIT_SEP. The output
generated by this program is as follows:

104,567,934

LIB-121

LI B$DISABLE_CTRL

LIB$DISABLE_CTRL Disable CLI Interception of
Control Characters

FORMAT

RETURNS

ARGUMENTS

LIB-122

The Disable CU Interception of Control Characters routine requests the
calling process's Command Language Interpreter (CU) to not intercept
the selected control characters when they are typed during an interactive
terminal session. UB$DISABLE_CTRL provides the same function as the
DCL command SET NOCONTROL.

LIB$DISABLE_CTRL disable-mask [,old-mask}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

disable-mask
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask indicating which control characters are not to be intercepted. The
disable-mask argument is the address of an unsigned longword containing
this bit mask.

Each of the 32 bits corresponds to one of the 32 possible control characters. If
a bit is set, the corresponding control character is no longer intercepted by the
CLI. Currently, only bits 20 and 25, corresponding to CTRL/T and CTRL/Y,
are recognized.

The following mask is defined in DIGITAL-supplied symbol libraries to
specify the value of disable-mask.

Symbol Hex Value

LIB$M_CLl_CTRLT %X'00100000'

LIB$M_CLLCTRL Y %X'02000000'

Function

Disables CTRL/T

Disables CTRL/Y

If a set bit does not correspond to a character which the CLI can intercept,
LIB$DISABLE_CTRL returns an error.

old-mask
VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

DESCRIPTION

CONDITION
VALUES
RETURNED

LI B$DISABLE_CTRL

Previous bit mask. The old-mask argument is the address of an unsigned
longword into which LIB$DISABLE_CTRL writes the old bit mask. The old
bit mask is of the same form as disable-mask.

The DCL and MCR CLis can intercept the CTRL/Y control character. The
DCL CLI can intercept the CTRL/T character. See the VMS DCL Dictionary
for information on how the DCL CLI processes control characters, and see the
VAX-11 RSX Compatibility Mode Reference Manual for information on how the
MCR CLI processes control characters.

LIB$DISABLE_CTRL is supported for use with the DCL and MCR CLis. If
an image is run directly as a subprocess or as a detached process, there is no
CLI present to perform this function. In those cases, LIB$DISABLE_CTRL
returns the error status LIB$_NOCLI.

SS$_NORMAL

LIB$_1NV ARG

LIB$_NOCLI

LIB$_UNECLIERR

Routine successfully completed.

Invalid argument. A bit in disable-mask was set
which did not correspond to a control character
supported by the CLI.

No CU present. Either the calling process did not
have a CLI to perform the function, or the CLI did
not support the request type. Note that an image
run as a subprocess or detached process does not
have a CLI.

Unexpected CLI error. The CLI returned an error
status which was not recognized. This error may
be caused by use of a nonstandard CLI. If this
error occurs while using the DCL or MCR Clls,
please report the problem to DIGIT AL by means of
a Software Performance Report (SPR).

LIB-123

LIB$DQ_CQMMAND

LIB$DQ_COMMAND Execute Command

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

LIB-124

The Execute Command routine stops program execution and directs
the Command Language Interpreter to execute a command which you
supply as the argument. If successful, LIB$DQ_COMMAND does not
return control to the calling program. Instead, LIB$0Q_COMMAND begins
execution of the specified command.

If you want control to return to the caller, use LIB$SPAWN instead.

LIB$DO_COMMAND command-string

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

command-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Text of the command which LIB$DO_CQMMAND executes. The command
string argument is the address of a descriptor pointing to the command text.
The maximum length of the command is 255 characters.

LIB$DQ_CQMMAND terminates your current image and then executes the
contents of command-string as a command. The command is parsed using
normal DCL rules.

LIB$DO_COMMAND is especially useful when you wish to execute a CLI
command after your program has finished executing. For example, you could
use the routine to execute a SUBMIT or PRINT command to handle a file that
your program has created.

Because of the following restrictions on LIB$DQ_COMMAND, you should be
careful when you incorporate it in your program.

• During the call to LIB$DO_CQMMAND, the current image exits and
control cannot return to it.

• The text of the command is passed to the current Command Language
Interpreter. Because you can define your own CLI in addition to DCL
and MCR, you must make sure that the command will be handled by the
intended CLI.

• If LIB$DO_COMMAND is called from an image run directly as a
subprocess or detached process, it will not execute correctly, since no
CLI is associated with a subprocess.

CONDITION
VALUES
RETURNED

EXAMPLE

LIB$DO_COMMAND

LIB$DQ_CQMMAND is supported for use with the DCL and MCR CLis.
If an image is run directly as a subprocess or as a detached process, there
is no CLI present to perform this function. In those cases, the error status
LIB$__NOCLI is returned. Note that the command can execute an indirect file
using the at-sign (@) feature of DCL.

UB$_1NV ARG

UB$_NOCU

UB$_UNECUERR

Invalid argument. Cmd-txt was more than 255
characters.

No CU present. The calling process did not have
a CU to perform the function, or the CU did not
support the request type. Note that an image run
as a subprocess or detached process does not
have a CU.

Unexpected CU error. The CU returned an error
status which was not recognized. This error may
be caused by use of a nonstandard CU. If this
error occurs while using the DCL or MCR CUs,
please report the problem to DIGIT AL by means of
a Software Performance Report (SPR).

PROGRAM DO_COMMAND(INPUT, OUTPUT);

{+}
{ This example uses LIB$DO_COMMAND to execute
{ any DCL command that is entered by the user
{ at the prompt.
{-}

ROUTINE LIB$DO_COMMAND(CMDTXT VARYING [A] OF CHAR);
EXTERN;

VAR
COMMAND : VARYING [256] OF CHAR;

BEGIN
WRITELN('ENTER THE COMMAND YOU WANT TO EXECUTE: ');
READLN(COMMAND);
LIB$DO_COMMAND(COMMAND);

END.

This Pascal program shows how to call LIB$DO_COMMAND. One example
of the output of this program is as follows:

$ RUN DO_COMMAND
ENTER THE COMMAND YOU WANT TO EXECUTE: SHOW TIME

30-MAY-1988 14:07:28

LIB-125

LIB$EDIV

LIB$EDIV

FORMAT

RETURNS

ARGUMENTS

LIB-126

Extended-Precision Divide

The Extended-Precision Divide routine performs extended-precision
division. LIB$EDIV makes the VAX EDIV instruction available as a callable
routine.

LIB$EDIV longword-integer-divisor
,quadword-integer-dividend
,longword-integer-quotient , remainder

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

longword-integer-divisor
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Divisor. The longword-integer-divisor argument is the address of a signed
longword integer containing the divisor.

quadword-integer-dividend
VMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Dividend. The quadword-integer-dividend argument is the address of a
signed quadword integer containing the dividend.

longword-integer-quotient
VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Quotient. The longword-integer-quotient argument is the address of a
signed longword integer containing the quotient.

remainder
VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Remainder. The remainder argument is the address of a signed longword
integer containing the remainder.

LIB$EDIV

Normal successful operation.
CONDITION
VALUES
RETURNED

SS$_NORMAL

SS$_1NTOVF Integer overflow. The quotient is replaced by bits
31 :0 of the dividend, and the remainder is replaced
by zero.

SS$_1NTDIV Integer divide by zero. The quotient is replaced
by bits 31 :0 of the dividend, and the remainder is
replaced by zero.

EXAMPLE

C+
C This FORTRAN program demonstrates how to use LIB$EDIV.
c-

INTEGER DIVISOR,DIVIDEND(2),QUOTIENT,REMAINDER

C+
C Find the quotient and remainder of 4600387192 divided by 4096.
C Since 4600387192 is too large to store as a longword, use LIB$EDIV.
c-

DIVISOR = 4096

C+
C The dividend must be represented as a quadword. To do this use a vector
C of length 2. The first element is the low order longword, and the second
C element is the high order longword.
C Now, 4600387192 = '00000000112345678'x. So,
c-

C+

DIV ID END (1)
DIVIDEND(2)

'12345678'X
'00000001'X

C Compute the quotient and remainder of 4600387192 divided by 4096.
c-

RETURN = LIB$EDIV(DIVISOR,DIVIDEND,QUOTIENT,REMAINDER)
TYPE *,'The longword integer quotient of 4600387192/4096 is:'
TYPE * • ' ' I QUOTIENT
TYPE *,'The longword integer remainder of 4600387192/4096 is:'
TYPE*·' ',REMAINDER
END

This FORTRAN example demonstrates how to call LIB$EDIV. The output
generated by this program is as follows:

The longword integer quotient of 4600387192/4096 is:
1123141

The longword integer remainder of 4600387192/4096 is:
1656

LIB-127

LIB$EMODD

LIB$EMODD Extended Multiply and lntegerize
Routines for D-Floating Point Values

FORMAT

RETURNS

ARGUMENTS

LIB-128

The Extended Multiply and lntegerize routine (D-Floating Point Values)
allows higher-level language users to perform accurate range reduction of
D-floating arguments.

LI B$EMODD floating-point-multiplier
, multiplier-extension
, floating-point-multiplicand
, integer-portion , fractional-portion

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

floating-point-multiplier
VMS usage: floating_point
type: o_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is a D-floating
number.

multiplier-extension
VMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension
argument is an unsigned byte.

floating-point-multiplicand
VMS usage: floating_point
type: D_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is a D-floating
number.

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$EMODD

integer-portion
VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the
address of a signed longword integer containing the integer portion of the
result.

fractional-portion
VMS usage: floating_point
type: D_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is a
D-floating number.

The floating-point multiplier extension operand (second operand) is
concatenated with the floating-point multiplier (first operand) to gain x
additional low-order fraction bits. The multiplicand is multiplied by the
extended multiplier. After multiplication, the integer portion is extracted and
a y-bit floating-point number is formed from the fractional part of the product
by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated
to a fraction field of y bits. With respect to the result as the sum of an
integer and fraction of the same sign, the integer operand is replaced by the
integer part of the result and the fraction operand is replaced by the rounded
fractional part of the result.

The values of x and y are listed below.

Routine x

LIB$EMODD 8

SS$_NORMAL

SS$_1NTOVF

SS$_FLTUND

SS$_RQPRAND

Bits

7:0

y

64

Routine successfully completed.

Integer overflow. The integer operand is replaced
by the low-order bits of the true result. Floating
overflow is indicated by SS$_1NTOVF also.

Floating underflow. The integer and fraction
operands are replaced by zero.

Reserved operand. The integer and fraction
operands are unaffected.

LIB-129

LIB$EMODF

LIB$EMODF Extended Multiply and lntegerize
Routines for F-Floating Point Values

FORMAT

RETURNS

ARGUMENTS

LIB-130

The Extended Multiply and lntegerize routine (F-Floating Point Values)
allows higher-level language users to perform accurate range reduction of
F-floating arguments.

LI B$EMODF floating-point-multiplier
, multiplier-extension
, floating-point-multiplicand ,integer-portion
, fractional-portion

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

floating-point-multiplier
VMS usage: floating_point
type: F _floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is the address of an
F-floating number containing the number.

multiplier-extension
VMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension
argument is the address of an unsigned byte containing these multiplier
extension bits.

floating-point-multiplicand
VMS usage: floating_point
type: f _floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an F-floating
number.

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$EMODF

integer-portion
VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the
address of a signed longword integer containing the integer portion of the
result.

fractional-portion
VMS usage: floating_point
type: F _floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is the
address of an F-floating number containing the fractional portion of the result.

LIB$EMODF allows higher-level language users to perform accurate range
reduction of F-floating arguments.

The .floating-point multiplier-extension operand (second operand) is
concatenated with the floating-point-multiplier (first operand) to gain x
additional low-order fraction bits. The multiplicand is multiplied by the
extended multiplier. After multiplication, the integer portion is extracted and
a y-bit floating-point number is formed from the fractional part of the product
by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated
to a fraction field of y bits. With respect to the result as the sum of an
integer and fraction of the same sign, the integer operand is replaced by the
integer part of the result and the fraction operand is replaced by the rounded
fractional part of the result.

The values of x and y are listed below.

Routine x

LIB$EMODF 8

SS$_NORMAL

SS$_1NTOVF

SS$_FLTUND

SS$_RQPRAND

Bits

7:0

y

32

Normal successful completion.

Integer overflow. The integer operand is replaced
by the low-order bits of the true result. Floating
overflow is indicated by SS$_1NTOVF also.

Floating underflow. The integer and fraction
operands are replaced by zero.

Reserved operand. The integer and fraction
operands are unaffected.

LIB-131

LIB$EMODG

LIB$EMODG Extended Multiply and lntegerize
Routines for G-Floating Point Values

FORMAT

RETURNS

ARGUMENTS

LIB-132

The Extended Multiply and lntegerize routine (G-Floating Point Values)
allows higher-level language users to perform accurate range reduction of
G-floating arguments.

LIB$EMODG floating-point-multiplier
, multiplier-extension
, floating-point-multiplicand
,integer-portion , fractional-portion

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

floating-point-multiplier
VMS usage: floating_point
type: G_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is a G-floating
number.

multiplier-extension
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension
argument is an unsigned word.

floating-point-multiplicand
VMS usage: floating~point
type: G_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is a G-floating
number.

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$EMODG

integer-portion
VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the
address of a signed longword integer containing the integer portion of the
result.

fractional-portion
VMS usage: floating_point
type: G_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is a
G-floating number.

The floating-point multiplier extension operand (second operand) is
concatenated with the floating-point multiplier (first operand) to gain x
additional low-order fraction bits. The multiplicand is multiplied by the
extended multiplier. After multiplication, the integer portion is extracted and
a y-bit floating-point number is formed from the fractional part of the product
by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated
to a fraction field of y bits. With respect to the result as the sum of an
integer and fraction of the same sign, the integer operand is replaced by the
integer part of the result and the fraction operand is replaced by the rounded
fractional part of the result.

The values of x and y are listed below.

Routine x Bits y

LIB$EMODG 11 15:5 64

SS$_NORMAL

SS$_1NTOVF

SS$_FLTUND

SS$_ROPRAND

Routine successfully completed.

Integer overflow. The integer operand is replaced
by the low-order bits of the true result. Floating
overflow is indicated by SS$_1NTOVF also.

Floating underflow. The integer and fraction
operands are replaced by zero.

Reserved operand. The integer and fraction
operands are unaffected.

LIB-133

LIB$EMODH

LIB$EMODH Extended Multiply and lntegerize
Routines for H-Floating Point Values

FORMAT

RETURNS

ARGUMENTS

LIB-134

The Extended Multiply and lntegerize routine (H-Floating Point Values)
allows higher-level language users to perform accurate range reduction of
H-floating arguments.

LI BSEMODH floating-point-multiplier
,multiplier-extension
, floating-point-multiplicand
,integer-portion , fractional-portion

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

floating-point-multiplier
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is an H-floating
number.

multiplier-extension
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension
argument is an unsigned word.

floating-point-multiplicand
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an H-floating
number.

integer-portion
VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$EMODH

The integer portion of the result. The integer-portion argument is the
address of a signed longword integer containing the integer portion of the
result.

fractional-portion
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is an
H-floating number.

The floating-point multiplier extension operand (second operand) is
concatenated with the floating-point multiplier (first operand) to gain x
additional low-order fraction bits. The multiplicand is multiplied by the
extended multiplier. After multiplication, the integer portion is extracted and
a y-bit floating-point number is formed from the fractional part of the product
by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated
to a fraction field of y bits. With respect to the result as the sum of an
integer and fraction of the same sign, the integer operand is replaced by the
integer part of the result and the fraction operand is replaced by the rounded
fractional part of the result.

The values of x and y are listed below.

Routine x Bits y

LIB$EMODH 15 15: 1 128

SS$_NQRMAL

SS$_1NTOVF

SS$_FLTUND

SS$_RQPRAND

Routine successfully completed.

Integer overflow. The integer operand is replaced
by the low-order bits of the true result. Floating
overflow is indicated by SS$_1NTOVF also.

Floating underflow. The integer and fraction
operands are replaced by zero.

Reserved operand. The integer and fraction
operands are unaffected.

LIB-135

LIB$EMUL

LIB$EMUL Extended-Precision Multiply

FORMAT

RETURNS

ARGUMENTS

LIB-136

The Extended-Precision Multiply routine performs extended-precision
multiplication. LIB$EMUL makes the VAX EMUL instruction available as a
callable routine.

LI B$EMUL longword-integer-multiplier
,longword-integer-multiplicand
,addend ,product

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

longword-integer-multiplier
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Multiplier used by LIB$EMUL in the extended-precision multiplication. The
longword-integer-multiplier argument is the address of a signed longword
integer containing the multiplier.

longword-integer-multiplicand
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Multiplicand used by LIB$EMUL in the extended-precision multiplication.
The longword-integer-multiplicand argument is the address of a signed
longword integer containing the multiplicand.

addend
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Addend used by LIB$EMUL in the extended-precision multiplication. The
addend argument is the address of a signed longword integer containing the
addend.

LIB$EMUL

product
VMS usage: quadword_signed
type: quadword integer (signed)
access: write only
mechanism: by reference

Product of the extended-precision multiplication. The product argument is
the address of a signed quadword integer into which LIB$EMUL writes the
product.

DESCRIPTION The multiplicand argument is multiplied by the multiplier argument giving a
double-length result. The addend argument is sign-extended to double-length
and added to the result. LIB$EMUL then writes the result into the product
argument.

For more information, see the VAX Architecture Reference Manual.

CONDITION
VALUES
RETURNED

EXAMPLE

SS$_NQRMAL

INTEGER MULT1,MULT2,ADDEND,PRODUCT(2)
C+

Normal successful completion.

C Find the extended precision multiplication of 268435456 times 4096.
C That is, find the extended precision product of 2**28 times 2**12.
C Since 268435456 times 4096 is 2**40, a quadword value is needed for
C the calculation: use LIB$EMUL.
c-

MULT1 = 4096
MULT2 = 268435456
APPEND = 0

C+
C Compute 268435456*4096.
C Note that product will be stored as a quadword. This value will be stored
C in the 2 dimensional vector PRODUCT. The first element of PRODUCT will
C contain the low order bits, while the second element will contain the high
C order bits.
c-

RETURN = LIB$EMUL(MULT1,MULT2,APPEND,PRODUCT)
TYPE *,'PRODUCT(2) =' ,PRODUCT(2),, and PRODUCT(!)= ',PRODUCT(!)
TYPE *·, ,
TYPE *,'Note that 256 and 0 represent the hexadecimal value'
type *,14H'10000000000'x, ',which in turn, represents 2**40.,
END

This FORTRAN program demonstrates how to use LIB$EMUL. The output
generated by this program is as follows:

PRODUCT(2) = 256 and PRODUCT(1) = 0

Note that 256 and 0 represent the hexadecimal value 'lOOOOOOOOOO'x, which
in turn represents 240.

LIB-137

LI B$ENABLE_CTRL

LIB$ENABLE_CTRL Enable CLI Interception of
Control Characters

FORMAT

RETURNS

ARGUMENTS

LIB-138

The Enable CU Interception of Control Characters routine requests
the calling process's Command Language Interpreter (CU) to resume
interception of the selected control characters when they are typed during
an interactive terminal session. LIB$ENABLE_CTRL provides the same
function as the DCL command SET CONTROL.

UB$ENABLE_CTRL enable-mask {,old-mask]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

enable-mask
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask indicating for which control characters LIB$ENABLE_CTRL is
to enable interception. The enable-mask argument is the address of an
unsigned longword containing this bit mask. Each of the 32 bits corresponds
to one of the 32 possible control characters. If a bit is set, the corresponding
control character is intercepted by the CLI. Currently, only bits 20 and 25,
corresponding to CTRL/T and CTRL/Y, are recognized.

The following mask is defined in DIGITAL-supplied symbol libraries to
specify the value of enable-mask.

Symbol

UB$M_CU_CTRL T

UB$M_CU_CTRL Y

Hex Value

%X'00100000'

%X'02000000'

Function

Enables CTRL/T

Enables CTRL/Y

If a set bit does not correspond to a character which the CLI can intercept, an
error is returned.

old-mask
VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Previous bit mask. The old-mask argument is the address of an unsigned
longword containing the old bit mask. The old bit mask is of the same form
as enable-mask.

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$ENABLE_CTRL

LIB$ENABLE_CTRL provides the functions of the DCL SET CONTROL
command. Normally, CTRL/Y interrupts the current command, command
procedure, or image. After a call to LIB$DISABLE_CTRL, CTRL/Y is treated
like CTRL/U followed by a carriage return. LIB$ENABLE_CTRL restores the
normal operation of CTRL/Y or CTRL/T.

Both the DCL and MCR CLis can intercept control characters. See the VMS
DCL Dictionary for information on how the CLI processes control characters,
and see the VAX-11 RSX Compatibility Mode Reference Manual for information
on how the MCR CLI processes control characters.

LIB$ENABLE_CTRL is supported for use with the DCL or MCR CLis.

If an image is run directly as a subprocess or as a detached process, there
is no CLI present to perform this function. In those cases, the error status
LIB$_NOCLI is returned.

SS$_NORMAL

U8$_1NV ARG

U8$_NQCU

U8$_UNECUERR

Routine successfully completed.

Invalid argument. A bit in enable-mask was set
which did not correspond to a control character
supported by the CU.

No CU present. The calling process did not have
a CU to perform the function, or the CU did not
support the request type. Note that an image run
as a subprocess or detached process does not
have a CU.

Unexpected CU error. The CU returned an error
status which was not recognized. This error may
be caused by use of a nonstandard CU. If this
error occurs while using the DCL or MCR CUs,
please report the problem to DIGIT AL by means of
a Software Performance Report (SPR).

LIB-139

LI B$ESTABLISH

LIB$ESTABLISH Establish a Condition Handler

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

LIB-140

The Establish a Condition Handler routine moves the address of a
condition handling routine (which can be a user-written or a library routine)
to longword 0 of the stack frame of the caller of LIB$ESTABLISH.

LIB$ESTABLISH new-handler

VMS usage: Routine
type: procedure entry mask
access: write only
mechanism: by reference

Previous contents of SF$A_HANDLER (longword 0) of the caller's stack
frame; zero if no handler existed.

new-handler
VMS usage: procedure
type: procedure entry mask
access: read only
mechanism: by value

Routine to be set up as the condition handler. The new-handler argument is
the address of the procedure entry mask to this routine.

LIB$ESTABLISH moves the address of a condition-handling routine to
longword 0 of the stack frame of the caller of LIB$ESTABLISH. This
condition-handling routine then becomes the caller's condition handler.
LIB$ESTABLISH returns the previous contents of longword 0. This can either
be the address of the caller's previous condition handler or zero if no handler
existed.

The new condition handler remains in effect for your routine until you call
LIB$REVERT or until control returns to the caller of the routine that called
LIB$ESTABLISH. Once this happens, you must call LIB$ESTABLISH again
if the same (or a new) condition handler is to be associated with the routine
that called LIB$ESTABLISH.

LIB$ESTABLISH modifies the caller's stack frame.

LIB$ESTABLISH is provided primarily for use with languages without built-in
error handling facilities. Do not use LIB$ESTABLISH with languages that
provide error handling, such as BASIC, COBOL, Pascal, and PL/I. Use of
this routine with these languages may adversely affect the behavior of your
program. The language-support library for these languages depends on
predefined language-specific handlers. Also, the handler address is used
to identify the stack frames of routines written in these languages. See the
documentation for the language you are using for more informatibn about
how that language handles errors.

LI B$ESTABLISH

In MACRO, you merely use the following instruction instead of calling
LIB$ESTABLISH:

CONDITION
VALUES
RETURNED

EXAMPLE

C+

MOVAB HANDLER, (FP)

None.

C This FORTRAN program demonstrates the
C use of LIB$ESTABLISH.
c
C This is the main program.
c-

EXTERNAL LOG_HANDL
CHARACTER TIMBUF

set handler address
in current stack frame

OPEN (UNIT=99, FILE= 'ERRLOG', STATUS= 'NEW')
CALL LIB$ESTABLISH (LOG_HANDL)

CALL SYS$BINTIM (TIMBUF, TIMADR)

C+
C The rest of the main program would go here.
c-

C+

END

INTEGER*4 FUNCTION LOG_HANDL (SIGARGS, MECHARGS)
INTEGER*4 SIGARGS (*), MECHARGS (5)

C This is the handler to journal any signaled error messages.
c-

C+

INCLUDE '($SSDEF)'
EXTERNAL PUT_LINE
LOG_HANDL = SS$_RESIGNAL
CALL SYS$PUTMSG (SIGARGS, PUT_LINE,)
RETURN
END

C This is the action subroutine.
c-

LOGICAL*4 FUNCTION PUT_LINE (LINE)
CHARACTER*(*)LINE
PUT_LINE = .FALSE.

100 WRITE (99,200)LINE
200 FORMAT (A)

RETURN
END

In this FORTRAN example, the function log_handl is the condition handler
for the program, and thus receives control when an error occurs.

LIB-141

LIB$EXTV

LIB$EXTV

FORMAT

RETURNS

ARGUMENTS

LIB-142

Extract a Field and Sign-Extend

The Extract a Field and Sign-Extend routine returns a sign-extended
longword field that has been extracted from the specified variable bit
field. LIB$EXTV makes the VAX EXTV instruction available as a callable
routine.

LIB$EXTV position ,size ,base-address

VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

Field extracted by LIB$EXTV, sign-extended to a longword.

position
VMS usage:
type:
access:
mechanism:

longword_signed
longword integer (signed) ·
read only
by reference

Position (relative to the base address) of the first bit in the field that
LIB$EXTV extracts. The position argument is the address of a signed
longword integer containing the position.

size
VMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field LIB$EXTV extracts. The size argument is the address of
an unsigned byte containing the size. The maximum size is 32 bits.

base-address
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Base address of the bit field LIB$EXTV extracts from the specified variable bit
field. The base-address argument is an unsigned longword containing this
base address.

DESCRIPTION

CONDITION
VALUE
SIGNALED

LIB$EXTV

The variable-length bit field is a VAX data type used to store small integers
packed together in a larger data structure. It is often used to store single flag
bits.

Three scalar attributes define a variable bit field.

• The base address is the address of a byte in memory that serves as a
reference point for locating the bit field.

• The bit position is a signed longword containing the displacement of the
least significant bit of the field with respect to the bit zero of the base
address.

• The size is a byte integer indicating the size of the bit field in bits (in
the range 0 ~ size ~ 32). That is, a bit field can be no more than one
longword in length.

A variable-length bit field has the following format. The shaded area
indicates the field.

P+S-1 p 0

I :A LIB$EXTV
--~~~~~~~.._.--~--~----...,_~~--~--;;~__-...v-,,,,. -~

S ~ Size of field in bits ___J
P = Bit displacement of field ---------

from bit zero of address A
ZK-1940-84

Bit fields are zero-origin, which means that the routine regards the first bit in
the field as being the zero position. For more detailed information on VAX bit
number and data formats, see the VAX Architecture Reference Manual.

The Run-Time Library routines for performing operations on variable-length
bit fields give higher-level languages direct access to the bit field instructions
in the VAX instruction set.

SS$_RQPRAND A reserved operand fault occurs if a size greater
than 32 is specified.

LIB-143

LIB$EXTV

EXAMPLE

SIGN_EXTEND: ROUTINE OPTIONS (MAIN);

DECLARE LIB$EXTV ENTRY
(FIXED BINARY (31), /*Address of longword containing

I* beginning bit position */
FIXED BINARY (7), /*Address of byte containing size

I* of field */
FIXED BINARY (31)) /* Address of field */
RETURNS (FIXED BINARY (31)); /*Return value */

DECLARE (VALUE, SMALL_INT) FIXED BINARY (31);

ON ENDFILE (SYSIN) STOP;

DO WHILE ('1'B); I* Loop continuously, until end of file*/
PUT SKIP(2);
GET LIST (VALUE) OPTIONS (PROMPT ('Value: '));
SMALL_INT = LIB$EXTV (0, 4, VALUE); /*Extract and sign-extend

/* first 4 bits */
PUT SKIP LIST (VALUE, SMALL_INT);
END;

END SIGN_EXTEND;

LIB-144

This PL/I program extracts a field and returns it sign-extended into a
longword.

LIB$EXTZV

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB$EXTZV

Extract a Zero-Extended Field

The Extract a Zero-Extended Field routine returns a longword zero
extended field that has been extracted from the specified variable bit field.
LIB$EXTZV makes the VAX EXTZV instruction available as a callable
routine.

LIB$EXTZV position ,size ,base-address

VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

Field extracted by LIB$EXTZV, zero-extended to a longword.

position
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Position (relative to the base address) of the first bit in the field LIB$EXTZV
extracts. The position argument is the address of a signed longword integer
containing the position.

size
VMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field LIB$EXTZV extracts. The size argument is the address of
an unsigned byte containing the size. The maximum size is 32 bits.

base-address
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Base address of the bit field LIB$EXTZV extracts. The base-address argument
is an unsigned longword containing this base address.

The variable-length bit field is a VAX data type used to store small integers
packed together in a larger data structure. It is often used to store single flag
bits.

LIB-145

LIB$EXTZV

CONDITION
VALUE
SIGNALED

LIB-146

Three scalar attributes define a variable bit field.

• The base address is the address of the byte in memory that serves as a
reference point for locating the bit field.

• The bit position is a signed longword containing the displacement of the
least significant bit of the field with respect to the bit zero of the base
address.

• The size is a byte integer indicating the size of the bit field in bits (in
the range 0 ~ size ~ 32). That is, a bit field can be no more than one
longword in length.

A variable-length bit field has the following format. The shaded area
indicates the field.

P+S-1 p 0

I **************** I I :A LIB$EXTZV
'"-'---------~c----V------?,...,,_C~----.-.---.::v--;.-;_-..-_-_-;....-?~

S = Size of field in bits __J
P = Bit displacement of field-----------'

from bit zero of address A
ZK-1941-84

Bit fields are zero-origin fields, which means that the routine regards the
first bit in the field as being the zero position. For more detailed information
on VAX bit numbering and data formats, see the VAX Architecture Reference
Manual.

The Run-Time Library routines for performing operations on variable-length
bit fields give higher-level languages direct access to the bit field instructions
in the VAX instruction set.

SS$_ROPRAND A reserved operand fault occurs if a size greater
than 32 is specified.

LIB$FFx

LI B$FFx Find First Clear or Set Bit

FORMAT

RETURNS

ARGUMENTS

The Find First Clear or Set Bit routines search the field specified by the
start position, size, and base for the first clear or set bit. LIB$FFC and
LIB$FFS make the VAX FFC and FFS instructions available as callable
routines.

LIB$FFC
LIB$FFS

position ,size ,base ,find-position
position , size , base , find-position

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

position
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Starting position, relative to the base address, of the bit field to be searched
by LIB$FFx. The position argument is the address of a signed longword
integer containing the starting position.

size
VMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Number of bits to be searched by LIB$FFx. The size argument is the address
of an unsigned byte containing the size of the bit field to be searched. The
maximum size is 32 bits.

base
VMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Base address of the bit field which LIB$FFx searches. The base argument is
the address of an unsigned longword containing the base address.

LIB-147

LIB$FFx

DESCRIPTION

CONDITION
VALUES
RETURNED

CONDITION
VALUE
SIGNALED

LIB-148

find-position
VMS usage: longword_signed
type: longword integer {signed)
access: write only
mechanism: by reference

Bit position of the first bit in the specified state (clear or set), relative to
the base address. The find-position argument is the address of a signed
longword integer into which LIB$FFC writes the position of the first clear bit
and into which LIB$FFS writes the position of the first set bit.

LIB$FFC searches the field specified by the start position, size, and base for
the first clear bit. LIB$FFS searches the field for the first set bit.

If a bit in the specified state is found, LIB$FFx writes the position (relative to
the base) of that bit into find-position and returns a success status. If no bits
are in the specified state or if size is zero, LIB$FFx returns LIB$_NOTFOU
and sets find-position to the starting position plus the size.

LIB$FFx regards the first bit in the field as being the zero position. For more
detailed information on VAX bit numbering and data formats, see the VAX
Architecture Reference Manual.

SS$_NQRMAL

LIB$_NQTFOU

SS$_ROPRAND

Routine successfully completed. A bit in the
specified state was found.

A bit in the specified state was not found.

Reserved operand fault. A size greater than 32
was specified.

LIB$FID_ TQ_NAME

LIB$FID_TQ_NAME Convert Device and File ID
to File Specification

FORMAT

RETURNS

ARGUMENTS

The Convert Device and File ID to File Specification routine converts a disk
device name and file identifier to a file specification.

LIB$FID_ TQ_NAME device-name ,file-id ,filespec

VMS usage: cond_value

[, filespec-/ength] [,directory-id]
[,acp-status]

type: longword (unsigned)
access: write only
mechanism: by value

device-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Device name to be converted. The device-name argument is the address of a
descriptor pointing to the device name. Device-name must reference a disk
device, and must contain 64 characters or less. LIB$FID_ TQ__NAME obtains
device-name from the NAM$T_DVI field of a RMS name block.

file-id
VMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Specifies the file identifier. The file-id argument is the address of an array of
three words containing the file identification. LIB$FID_ TO__NAME obtains
file-id from the NAM$W_FID field of a RMS name block. The $FIDDEF
macro defines the structure of file-id.

filespec
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the file specification. The filespec argument is the address of a
descriptor pointing to the file specification string.

LIB-149

LIB$FID_ TQ_NAME

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-150

fi/espec-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Receives the number of characters written into filespec, excluding padding in
the case of a fixed-length string. The optional filespec-length argument is the
address of an unsigned word containing the number of characters.

If the output string is truncated to the number of characters specified in
filespec, then filespec-length is set to that truncated size. Therefore, you can
always use filespec-length to access a valid substring of filespec.

directory-id
VMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference, array reference

Specifies a directory file identifier. The directory-id argument is the address
of an array of three words containing the directory file identifier.
LIB$FID_TQ_NAME obtains this array from the NAM$W_DID field of a
RMS name block. The $FIDDEF macro defines the structure of directory-id.

acp-status
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The status resulting from traversing the backward links. The optional acp
status argument is the address of an unsigned longword containing the
status.

LIB$FID_TQ_NAME converts a disk device name and file identifier to a
file specification by requesting the ACP file specification attribute. If you
use the LIB$FID_TQ_NAME routine on a structure level 1 disk, specify the
directory-id argument to ensure proper operation of the routine.

LIB$FID_TQ_NAME stores the output arguments (filespec, filespec-length,
and acp-status) only if the routine successfully finishes.

LIB$_NORMAL

LIB$STRTRU

LIB$_1NV ARG

LIB$_1NVFILSPE

Normal successful completion.

Output string truncated (qualified success).

Required argument omitted, or device-name is
longer than 64 characters.

Device-name does not reference a disk.

Any condition value returned by LIB$ANALYZE_SDESC, SYS$ASSIGN,
SYS$QIO, or SYS$DASSGN.

LIB$FILE_SCAN

LIB$FILE_SCAN File Scan

FORMAT

RETURNS

ARGUMENTS

The File Scan routine searches an area, such as a directory, for all files
matching the file specification given and transfers program execution to
the specified user-written routine. Wildcards are acceptable. An action
routine is called for each file and/or error found. LIB$FILE_SCAN allows
the search sequence to continue even if an error occurs while processing
a particular file.

LIB$FILE_SCAN tab ,user-success-procedure
,user-error-procedure [,context]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

fab
VMS usage: fab
type: unspecified
access: read only
mechanism: by reference

File Access Block (FAB) referencing a valid NAM block. The fab argument
is the address of the F AB which contains the address and length of the file
specification being searched for by LIB$FILE_SCAN.

user-success-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User-supplied success routine that LIB$FILE_SCAN calls when a file is
found. The user-success-procedure argument is the address of the procedure
entry mask to the success routine. The success routine is invoked with the
FAB address that was passed to LIB$FILE_SCAN. The user context may be
pased to this routine using the FAB$L_CTX field in the FAB.

user-error-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User-supplied error routine that LIB$FILE_SCAN calls when it encounters an
error. The user-error-procedure argument is the address of the routine entry
mask to the error routine. The error routine is called with the FAB argument
that was passed to LIB$FILE_SCAN.

LIB-151

LIB$FILE_SCAN

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-152

context
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Default file context used in processing file specifications for multiple input
files. The context argument is the address of a longword, which must be
initialized to zero by your program before the first call to LIB$FILE_SCAN.
After the first call, LIB$FILE_SCAN maintains this longword. You must not
change the value of context in subsequent calls to LIB$FILE_SCAN.

Name blocks and file specification strings are allocated by LIB$FILE_SCAN,
and context is used to retain their addresses so they may be deallocated
later. If the context argument is not passed, unspecified portions of the file
specification will be inherited from the previous file specification processed,
rather than from multiple input file specifications.

LIB$FILE_SCAN is called with the address of a File Access Block (FAB) and
calls an action routine for each file found and/or error returned.
LIB$FILE_SCAN allows the search sequence to continue even if an error
occurs while processing a particular file.

If this routine is called once for each file specification argument in a command
line, portions of the file specifications which are not specified by the user are
inherited from the last files processed.

You must call LIB$FILE_SCAN_END before initiating a new sequence of
calls to LIB$FILE_SCAN.

Any condition value returned by the Record Management Service (RMS),
Parse.

LIB$FILE_SCAN_END

LIB$FILE_SCAN_END End-of-File Scan

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The End-of-File Scan routine is called after each sequence of calls to
LIB$FILE_SCAN. LIB$FILE_SCAN_END deallocates any saved Record
Management Service (RMS) context and/or deallocates the virtual
memory that had been allocated for holding the related file specification
information.

LIB$FILE_SCAN_END {tab] {,context]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

fab
VMS usage: fab
type: unspecified
access: modify
mechanism: by reference

File access block (FAB) used with LIB$FILE_SCAN. The optional fab
argument is the address of the FAB that contains the address and length
of the file specification.

context
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Temporary default context used in LIB$FILE_SCAN. The optional context
argument is the address of a longword containing this temporary default
context.

Your program should call LIB$FILE_SCAN_END after each sequence of
calls to LIB$FILE_SCAN. The function that LIB$FILE_SCAN_END performs
depends upon the arguments you specify. If you specify fab,
LIB$FILE_SCAN_END parses the null string to deallocate any saved RMS
context. If you specify context, LIB$FILE_SCAN-END deallocates any
virtual memory that was allocated for holding the related file specification
information. If you specify both fab and context, LIB$FILE_SCAN_END
performs both functions. However, if you do not specify either argument,
LIB$FILE_SCAN_END does nothing.

If LIB$FILE_SCAN is directed to process the specifications for multiple
input files, LIB$FILE_SCAN-END is used to deallocate those saved file
specifications. If LIB$FILE_SCAN_END is called by your program after each
sequence of calls to LIB$FILE_SCAN, it will prevent the defaults from the
previous call from affecting context value in the next call to LIB$FILE_SCAN.

LIB-153

LIB$FILE_SCAN_END

CONDITION
VALUES
RETURNED

LIB-154

LIB$FILE_SCAN_END does this by replacing the context value passed to it
with a temporary context value that your program passes to LIB$FILE_SCAN
the next time it is called.

RMS$_NORMAL

RMS$_FAB

Normal successful completion.

The fab argument is not the address of a valid
FAB.

LIB$FIND_FILE

LIB$FIND_FILE Find File

FORMAT

RETURNS

ARGUMENTS

The Find File routine is called with a wildcard file specification for which
it searches. LIB$FIND_FILE returns all file specifications that satisfy that
wildcard file specification.

LIB$FIND_FILE filespec ,resultant-filespec ,context
{, default-filespec] [, related-filespec]
{,status-value}{, flags]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification, which may contain wildcards, that LIB$FIND_FILE uses
to search for the desired file. The filespec argument is the address of a
descriptor pointing to the file specification. The maximum length of a file
specification is 255 bytes.

The file specification used may also contain a search list logical name. If
present, the search list logical name elements can be used as accumulative to
related file specifications, so that portions of file specifications not specified by
the user will be inherited from previous file specifications.

resultant-fi/espec
VMS usage: char_string
type: character string
access: modify
mechanism: by descriptor

Resultant file specification that LIB$FINDJILE returns when it finds a file
that matches the specification in the filespec argument. The resultant
filespec argument is the address of a descriptor pointing to the resultant file
specification.

context
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Zero or an address of an internal FAB/NAM buffer from a previous call to
LIB$FINDJILE. The context argument is an unsigned longword integer
containing the address of the context. LIB$FIND_FJLE uses this argument

LIB-155

LIB$FIND_FILE

LIB-156

to retain the context when processing multiple input files. Portions of file
specifications that the user does not specify are inherited from the last files
processed because the file contexts are retained in this argument.

default-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification. The default-filespec argument is the address of a
descriptor pointing to the default file specification.

related-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Related file specification containing the context of the last file processed. The
related-filespec argument is the address of a descriptor pointing to the related
file specification.

status-value
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Record Management Service (RMS) secondary status value from a failing RMS
operation. The status-value argument is an unsigned longword containing
the address of a longword-length buffer to receive the RMS secondary status
value (usually returned in the file access block field, FAB$L_STV).

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

User flags. The flags argument is the address of an unsigned longword
containing the user flags.

DESCRIPTION

LIB$FIND_FILE

The flag bits and their corresponding symbols are described in the following
table.

Bit

0

Symbol Description

NOWILD If set, LIB$FIND_FILE returns an error if a wildcard character
is input.

MULTIPLE If set, this performs temporary defaulting for multiple input
files and the related-filespec argument is ignored. See
description of context in LIB$FILE_SCAN. Each time
LIB$FINO_FILE is called with a different file specification,
the specification from the previous call is automatically
used as a related file specification. This allows parsing
of the elements of a search-list logical name such as
DISK2:[SMITH] FIL 1.TYP,FIL*2.TYP, and so on. Use of
this feature is required to get the desired defaulting with
search list logical name. LIB$FIND_FILE_END must be called
between each command line in interactive use or the defaults
from the previous command line will affect the current file
specification.

LIB$FIND_FILE searches for a certain wildcard file specification and returns
all file specifications that satisfy that wildcard file specification.

If you make multiple calls to LIB$FIND_FILE, be aware of the following
behavior:

• If, when making the multiple calls, the NOWILD bit is not set and the file
specification does not contain any wildcard characters, LIB$FIND_FILE
returns the appropriate file name on the first call and the condition value
RMS$_NMF on the next call.

• If you make the multiple calls with the NOWILD bit set and the same
nonwildcard file specification, LIB$FIND_FILE returns the file name on
the first call as well as each subsequent call.

You must call LIB$FIND_FILE_END before initiating a new sequence of calls
to LIB$FIND_FILE.

If the error RMS$_CHN is returned, RMS has no more channels to assign.
There are two possible reasons for this:

1 You did not call LIB$FIND_FILE_END before initiating a new call with a
context variable to LIB$FIND_FILE. (This is the most common reason.)

2 The SYSGEN parameter CHANNELCNT is too low.

LIB-157

LIB$FIND_FILE

CONDITION
VALUES
RETURNED

LIB-158

SS$_NORMAL

LIB$_NOWILD

RMS$_CHN

RMS$_NMF

Normal successful completion.

A wildcard character was present in the file
specification parsed and the wildcard flag bit was
set to no wildcard. (This is actually the
SHR$_NOWILD error message after application of
the LIB$ facility code.)

No more channels.

No more files.

Any condition value returned by RMS Parse and Search services,
LIB$GET_ VM, LIB$FREE_ VM, or LIB$SCOPY_R_DX.

LIB$FIND_FILE_END

LIB$FIND_FILE_END End of Find File

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

The End of Find File routine is called once after each sequence of calls
to LIB$FIND_FILE. LIB$FIND_FILE_END deallocates any saved Record
Management Service (RMS) context and deallocates the virtual memory
used to hold the allocated context block.

LIB$FIND_FILE_END context

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

context
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference

Zero or the address of a FAB/NAM buffer from a previous call to
LIB$FINDJILE. The context argument is the address of a longword that
contains this con text.

LIB$FINDJILE-END should be called by your program after each sequence
of calls to LIB$FIND_FILE. This will prevent the default values from the
previous call from affecting the next file specification.

LIB$FINDJILE_END deallocates the context used in the last call to
LIB$FINDJILE so that the context retained will not be used in subsequent
calls to LIB$FIND_FILE. If LIB$FIND_FILE was directed to process file
specifications for multiple input files, the saved file specifications are also
deallocated.

RMS$_NORMAL

RMS$_FAB

Routine successfully completed.

File access block argument is not the address of a
valid FAB.

LIB-159

LIB$FIND_IMAGE_SVMBOL

LIB$FIND_IMAGE_SVMBOL Find Universal
Symbol in Shareable
Image File

FORMAT

RETURNS

ARGUMENTS

LIB-160

The Find Universal Symbol in Shareable Image File routine reads universal
symbols from the shareable image file. This routine then dynamically
activates a shareable image into the PO address space of a process.

LIB$FIND_IMAGE_SVMBOL filename ,symbol
,symbol-value
{,image-name]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

filename
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the file for which LIB$FIND_IMAGE_SYMBOL is searching. The
filename argument is the address of a descriptor pointing to this file name
string. This argument may contain only the file name. File type cannot
be indicated. If any file specification punctuation characters (:, [, <, .) are
present, the error SS$_IVLOGNAM is returned.

You can specify a file specification for the image name with the optional
image-name argument. If you do not specify image-name, a default file
specification of SYS$SHARE:.EXE is applied to the file name. If the file is not
in SYS$SHARE:.EXE, a logical name must be used to direct this routine to
locate the correct file. Only logical names defined in the system logical name
table with the /EXEC attribute will be considered while the image activator is
processing a request from an image that was installed with privileges. If the
calling image was installed with privileges, the image being activated must
also be installed with privileges.

symbol
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Symbol for which LIB$FIND_IMAGE_SYMBOL is searching in the filename
file. The symbol argument is the address of a descriptor pointing to the
symbol name string. The symbol name string must be input in uppercase
letters; this routine does not perform uppercase conversion.

DESCRIPTION

LIB$FIND_IMAGE_SVMBOL

symbol-value
VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Symbol value that LIB$FIND_IMAGE_SYMBOL has located. The symbol
value argument is the address of a signed longword integer into which
LIB$FIND-1MAGE_SYMBOL returns the symbol value. If the symbol is
relocatable, the starting virtual address of the shareable image in memory will
be added to the symbol value.

image-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification applied to the image name. The optional image
name argument is the address of a descriptor pointing to the image name
string. If image-name is not supplied, then a default file specification of
SYS$SHARE:.EXE is applied to the image name.

The shareable image that LIB$FIND_IMAGE_SYMBOL activates must have
been already linked and must be position independent. You must have read
access to the shareable image file to use this routine.

LIB$FIND-1MAGE _SYMBOL locates the universal symbol in its database
without first processing the filename argument. Due to this fact, a reference
to a lexically different file name causes a new copy of the same shareable
image to be loaded and searched. To avoid this situation, always specify the
desired file name in the same form.

LIB$FIND-1MAGE_SYMBOL writes the symbol value that it has located into
the symbol-value argument.

After the first call to LIB$FIND-1MAGE_SYMBOL for a particular image,
successive calls for that image will be processed quickly. The image is
activated only once and an in-memory database is maintained. There is no
way to deallocate this database, nor is there any supported method to remove
an activated image from the address space. All images are activated into PO
space.

LIB$FIND_IMAGE_SYMBOL disables AST recognition while it is executing.
AST recognition is reenabled before returning to the caller only if AST
recognition was previously enabled.

LIB$FIND_IMAGE_SYMBOL signals all errors and returns the status in RO.

LIB-161

LIB$FIND_IMAGE_SVMBOL

CONDITION
VALUES
RETURNED

LIB-162

LIB$_BADCCC

LIB$_EOMERROR

LIB$_EOMFA T AL

LIB$_EQMWARN

LIB$_GSDTYP

LIB$_ILLFMLCNT

LIB$_1LLMODNAM

LIB$_1LLPSCLEN

LIB$_1LLRECLEN

LIB$_1LLRECLN2

LIB$_1LLRECTYP

LIB$_1LLRECTY2

LIB$_1LLSYMLEN

LIB$_NOEOM

LIB$_RECTOOSML

LIB$_SEOUENCE

LIB$_SEOUENCE2

LIB$_STRVL

Note that all of the above
error messages indicate
a format error in the
shareable image.

LIB$_INSVIRMEM

SS$_1VLOGNAM

Illegal compilation code.

Compilation errors.

Fatal compilation errors.

Compilation warnings.

Illegal universal symbol directory record type.

Maximum argument count exceeds maximum for
routine.

Illegal module name length.

Illegal program section length.

Illegal record length in module.

Illegal record length.

Illegal record type in module.

Illegal record type.

Illegal symbol length.

No end of module record contained in the module.

Record too small; data overflows object record in
module.

Illegal record sequence in module.

Illegal record sequence.

Illegal object language structure level in module.

lnsufficent virtual memory.

The filename argument contained more than just
a file name; a device or directory specification was
found in the string.

Any condition values returned by LIB$INSERT_TREE.

Any condition values returned by RMS.

LIB$FIND_VM_ZONE

LIB$FIND_VM_ZONE Return the Next Valid
Zone Identifier

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Return the Next Valid Zone Identifier routine returns the zone identifier
of the next valid zone in the heap management database.

LIB$FIND_VM_ZONE context ,zone-id

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

context
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context specifier. The context argument is the address of an unsigned
longword used to keep the scan context for finding the next valid zone.
Context must be 0 to initialize the scan and to start with the first returnable
zone identifier.

zone-id
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of an unsigned
longword that receives the zone identifier for the next zone.

At each call, LIB$FIND_ VM-20NE scans the heap management zone
database and returns the zone-id of the next valid zone. (The first and
second calls to LIB$FIND_ VM-20NE return the zone-id of the default zone
and string zone, respectively.) This capability allows a program to deal with
each VM zone created during the invocation, including those created outside
of the program.

The context argument controls the state of the scan. It determines what zone
to return (the first, the next, and so forth). On the initial call, specified by
context=O, LIB$VERIFY_VM-20NE is called to verify the heap management
zone database. If the database is corrupt, further calls to this routine will
produce no additional useful output.

When no more zones can be found, the routine returns the condition value
LIB$_NOTFOU.

LIB-163

LIB$FIND_VM_ZONE

CONDITION
VALUES
RETURNED

EXAMPLE

IMPLICIT NONE

If a zone has been corrupted in some major way (for example, if the validity
code has been changed), then this routine may not be able to locate it in the
zone database.

Note that ASTs may be disabled while LIB$FIND_ VM_ZONE is executing
code that depends on the stability of the heap management zone database. In
general it is the caller's responsibility to ensure that the calling program has
exclusive access to the zone database while scanning for multiple zones with
this routine. Results are unpredictable if another thread of control modifies
the zone database or the associated areas during the scanning.

SS$_NORMAL

LIB$_BADZONE

LIB$_NQTFOU

LIB$_ WRONUMARG

Normal successful completion.

Invalid zone.

Zone identifier not found (alternate success status).

Wrong number of arguments.

INTEGER*4 status,context,zone_id
INTEGER*4 lib$find_vm_zone,lib$show_vm_zone

context = 0
status = lib$find_vm_zone (context, zone_id)
DO WHILE (status)

print *
status = lib$show_vm_zone (zone_id, 0)
status = lib$find_vm_zone (context, zone_id)

END DO
END

LIB-164

Sample output for this FORTRAN program is illustrated below.

ZONE_ID = 0001B858, ZONE_NAME = "DEFAULT_ZONE"

LIB$FIXUP_FLT

LIB$FIXUP._FL T Fix Floating Reserved Operand

FORMAT

RETURNS

ARGUMENTS

The Fix Floating Reserved Operand routine finds the reserved operand
of any F-floating, D-floating, G-floating, or H-floating instruction (with
some exceptions) after a reserved operand fault has been signaled.
LIB$FIXUP _FLT changes the reserved operand from -0.0 to the value
of the new-operand argument, if present; or to +0.0 if new-operand is
absent.

LIB$FIXUP _FLT signal-arguments
,mechanism-arguments
[,new-operand]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

signal-arguments
VMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument is the address of an
array of unsigned longwords containing the signal argument vector.

mechanism-arguments
VMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism argument vector. The mechanism-arguments argument is
the address of an array of unsigned longwords containing the mechanism
argument vector.

new-operand
VMS usage: floating-point
type: F _floating
access: read only
mechanism: by reference

An F-floating value to replace the reserved operand. The new-operand
argument is the address of an F-floating number containing the new operand.
This is an optional argument. If omitted, the default value is +0.0.

LIB-165

LIB$FIXUP_FLT

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-166

LIB$FIXUP_FL T finds the reserved operand of any F-floating, D-floating,
G-floating, or H-floating instruction (with some exceptions) after a reserved
operand fault has been signaled. LIB$FIXUP_FLT changes the reserved
operand from -0.0 to the value of the new-operand argument, if present;
or to +0.0 if new-operand is absent. LIB$FIXUP_FLT cannot handle the
following cases and will return a status of SS$_RESIGNAL if any of them
occur:

• The currently active signaled condition is not SS$_ROPRAND.

• The reserved operand's data type is not F-floating, D-floating, G-floating,
or H-floating.

• The reserved operand is an element in a POL Yx coefficient table.

If the status value returned from LIB$FIXUP_FLT is seen by the condition
handling facility (as would be the case if LIB$FIXUP_FLT was the handler),
any success value is equivalent to SS$_CQNTINUE, which causes the
instruction to be restarted. Any failure value is equivalent to
SS$_RESIGNAL, which causes the condition to be resignaled to the next
handler. This resignal status is because the condition handler
(LIB$FIXUP_FLT) was unable to handle the condition correctly.

LIB$FIXUP_FLT can be enabled directly as a condition handler. The
signal-arguments and mechanism-arguments arguments are passed to
the condition handler by VMS exception dispatching.

SS$_NQRMAL

SS$_ACCVIO

SS$_RESIGNAL

SS$_ROPRAND

LIB$_8ADST A

Routine successfully completed. The reserved
operand was found and has been fixed.

Access violation. An argument to LIB$FIXUP _FLT
or an operand of the faulting instruction could not
be read or written.

The signaled condition was not SS$_ROPRAND,
or the reserved operand was not a floating-point
value or was an element in a POL Yx table.

Reserved operand fault. The optional argument
new-operand was supplied but was itself an
F-floating reserved operand.

Bad stack. The stack frame linkage has been
corrupted since the time of the reserved operand
exception.

LIB$FLT_UNDER

LIB$FL T_UNDER Floating-Point Underflow
Detection

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

The Floating-Point Underflow Detection routine enables or disables
floating-point underflow detection for the calling routine activation. The
previous setting is returned as a function value.

LIB$FL T_UNDER new-setting

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The old floating-point underflow enable setting (the previous contents of the
SF$W_PSW[PSW$V_FU] in the caller's frame).

new-setting
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New floating-point underflow enable setting. The new-setting argument is
the address of an unsigned byte containing the new setting. Bit 0 set to 1
means enable; bit 0 set to 0 means disable.

LIB$FL T_UNDER affects only the current routine activation and does not
affect any of its callers or any routines that it may call. However, the setting
does remain in effect for any routines entered through a JSB entry point.

The caller's stack frame will be modified by this routine.

None.

LIB-167

LIB$FL T_UNDER

EXAMPLE

C+
C This FORTRAN example program illustrates
C the use of LIB$FLT_UNDER.
c-

INTEGER*4 NEW_SETTING
REAL*4 X , Y , Z

NEW_SETTING = 0
X = 1E-20
Y = 1E20

CALL LIB$FLT_UNDER(NEW_SETTING)

TYPE *,'First Case: This should not have an underflow exception'

z = x I Y

TYPE *· 'If this lines prints then the underflow exception
1 was disabled.'

TYPE *

NEW_SETTING = 1
X = 1E-20
Y = 1E20

CALL LIB$FLT_UNDER(NEW_SETTING)

TYPE * , 'Second Case: This should have an underflow exception
1 and then stop.'

z = x I Y

TYPE * , 'If this line prints, then the underflow exception
1 was disabled.'

c CALL EXIT

END

LIB-168

In this FORTRAN example, floating-point underflow detection is disabled the
first time Xis divided by Y. The second time, underflow detection is enabled,
and the program stops because of the error generated.

LIB$FORMAT_DATE_ TIME

LIB$FORMAT_DATE_TIME Format Date and/or
Time

FORMAT

RETURNS

ARGUMENTS

The Format Date and/or Time routine allows the user to select at run time
a specific output language and format for a date or time, or both.

LIB$FORMAT_DATE_TIME date-string [,date]
[,user-context]
[,date-length][, flags]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

date-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the requested date or time, or both, that has been formatted for
output according to the currently selected format and language. The date
string argument is the address of a descriptor pointing to this string.

date
VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

The date or time, or both, to be formatted for output. The date argument is
the address of an unsigned quadword that contains the absolute date or time,
or both to be formatted. If you omit this argument, or if you supply a zero
passed by value, then the current system time is used. Note that the date
argument must represent an absolute time, not a delta time.

user-context
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword
that contains this context. The initial value of the context variable must be
zero. Thereafter, the user program must not write to the cell.

LIB-169

LIB$FORMAT_DATE_ TIME

DESCRIPTION

LIB-170

The user-context parameter is optional. However, if a context cell is not
passed, the routine LIB$FORMAT_DATE_TIME may abort if two threads of
execution attempt to manipulate the context area concurrently. Therefore,
when calling this routine in situations where reentrancy might occur, such as
from AST level, DIGITAL recommends that users specify a different context
cell for each calling thread.

date-length
VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Number of bytes of text written to the date-string argument. The date
length argument is the address of a signed longword that receives this string
length. Note that date-length specifies the number of bytes of text, not the
number of characters, written to date-string.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask that allows the user to specify whether the date, time, or both are
output. The flags argument is the address of an unsigned bit mask containing
the specified values. Valid values are LIB$M_DATE_FIELDS and
LIB$M_TIME_FIELDS.

Default values are determined as follows:

• If the flags argument is omitted, LIB$FORMAT_DATE_TIME determines
which fields to format according to the current definition of
LIB$DT_FQRMAT.

• If the flags argument is specified, LIB$FORMAT_DATE_TIME uses
the flags value to determine which fields to format. That is, the flags
argument can be used to override the definition of LIB$DT_FORMAT
when specifying which fields should be formatted for output. If the field
specified by flags was not assigned a format through the definition of
LIB$DT_FQRMAT, the standard VMS format is used.

The LIB$FORMAT_DATE_TIME routine formats a VMS internal format
date-time quadword into a textual string of some predefined format. The
language to be used and the format in which to output the information are
programmable using either of the following methods.

• The language and format are programmable at compile time through the
use of the routine LIB$INIT_DATE_TIME_CONTEXT.

• The language and format are determined at run time through the
translation of the logical names SYS$LANGUAGE and LIB$DT_FORMAT.

In general, if an application is formatting text for internal storage or
transmission, the language and format should be specified at compile time. If
this is the case, use the routine LIB$INIT_DATE_TIME_CONTEXT to specify
the language and format of your choice.

CONDITION
VALUES
RETURNED

LIB$FORMAT_DATE_ TIME

If an application is formatting text for presentation to a user, the logical name
method of specifying language and format should be used. In this method,
the user assigns equivalence names to the logical names SYS$LANGUAGE
and LIB$DT_FORMAT, thereby selecting the language and format of the date
and time at run time.

If the logical name method is used, the translations of the logical names
SYS$LANGUAGE and LIB$DT_FORMAT specify one or more executive
mode logicals, which in turn must be translated to determine the actual
format string. These additional logicals supply such things as the names of
the days of the week and the months in the selected language (determined
by SYS$LANGUAGE). All of these logicals are predefined, so that a non
privileged user can select any one of these languages and formats. A user
can create his or her own languages and formats; however, the CMEXEC,
SYSNAME, and SYSPRV privileges are required.

With the exception of SYS$LANGUAGE and LIB$DT_FORMAT, all logical
names used by this routine must be defined from the executive mode.

SS$_NORMAL

LIB$_ENGLUSED

LIB$_DEFFORUSE

LIB$_UNRFORCOD

LIB$_STRTRU

LIB$_ABSTIMREQ

LIB$_REENTRANCY

Normal successful completion.

English used; unable to determine or use the
specified language.

Default format used; unable to determine the
desired format.

Unrecognized format code.

Output string truncated.

Absolute time required.

Reentrant invocation with same context variable.

Any condition values returned by SYS$NUMTIM, LIB$GET_ VM, and
LIB$ANALYZE_SDESC.

LIB-171

LIB$FREE_DATE_ TIME_CQNTEXT

LIB$FREE_DATE_TIME_CONTEXT Free the
Context Area
Used When
Formatting
Dates and
Times for
Input or
Output

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB-172

The Free the Context Area Used When Formatting Dates and Times
for Input or Output routine frees the virtual memory associated with the
context area used by the date/time input and output Formatting Routines.

LIB$FREE_DATE_ TIME_CONTEXT {user-context]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

user-context
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context that retains the translation context over multiple calls to the
date/time input and output Formatting Routines. The user-context argument
is the address of an unsigned longword that contains this context. If the
user-context argument was not specified in the call to
LIB$FORMAT_DATE_TIME, LIB$CONVERT_DATE_STRING, or
LIB$GET_MAXIMUM_DATE_LENGTH, then no argument should be
supplied when calling this routine.

The LIB$FREE_DATE_TIME_CONTEXT routine frees the virtual memory
associated with the context area used by the date/time input and output
formatting routines. A call to this routine is optional, since the same functions
will be performed at image exit.

CONDITION
VALUES
RETURNED

LIB$FREE_DATE_ TIME_CQNTEXT

SS$_NQRMAL Normal successful completion.

Any condition value returned by LIB$FREE_ VM. If one of these condition
values is returned, it indicates either an internal coding error or memory that
was corrupted by the user's program.

LIB-173

LIB$FREE_EF

LIB$FREE_EF Free Event Flag

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

EXAMPLE

LIB-174

The Free Event Flag routine frees a local event flag previously allocated by
LIB$GET_EF. LIB$FREE_EF is the complement of LIB$GET_EF.

LI B$FREE_Ef event-flag-number

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

event-flag-number
VMS usage: eLnumber
type: longword integer (unsigned)
access: read only
mechanism: by reference

Event flag number to be deallocated by LIB$FREE_EF. The event-flag
number argument is the address of a signed longword integer that contains
the event flag number, which is the value returned to the user by
LIB$GET_EF.

When a local event flag allocated by calling LIB$GET_EF is no longer needed,
LIB$FREE_EF should be called to free the event flag for use by other routines.

SS$_NQRMAL

LIB$_EF _ALRFRE

LIB$_EF _RESSYS

Routine successfully completed.

Event flag already free.

Event flag reserved to system. This error occurs if
the event flag number is outside the ranges of 1 to
23 and 32 to 63.

For an example of using LIB$FREE_EF, see the example under LIB$GET_EF.

LIB$FREE_LUN

LIB$FREE_LUN Free Logical Unit Number

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

The Free Logical Unit Number routine releases a logical unit number
allocated by LIB$GET_LUN to the pool of available numbers.
LIB$FREE_LUN is the complement of LIB$GET_LUN.

LI 8$ FREE _LU N logical-unit-number

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

logical-unit-number
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Logical unit number to be deallocated. The logical-unit-number argument
is the address of a signed longword integer that contains this logical unit
number, which is the value previously returned by LIB$GET_LUN.

When a logical unit number allocated by calling LIB$GET_LUN is no longer
needed, it should be released for use by other routines.

This routine is useful only in BASIC or FORTRAN programs.

SS$_NQRMAL

LIB$_LUNALRFRE

LIB$_LUNRESSYS

Routine successfully completed.

Logical unit number is already free.

Logical unit number reserved to system. This
occurs if the specified logical unit number is
outside the range of 100 to 119.

LIB-175

LIB$FREE_ TIMER

LIB$FREE_TIMER Free Timer Storage

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-176

The Free Timer Storage routine frees the storage allocated by
LIB$1NIT_ TIMER.

LIB$FREE_ TIMER handle-address

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

handle-address
VMS usage: address
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to a block of storage containing the value returned by a previous call
to LIB$INIT_TIMER; this is the storage that LIB$FREE_TIMER deallocates.
The handle-address argument is the address of an unsigned longword
containing that value.

LIB$FREE_TIMER frees a block of storage previously allocated by
LIB$INIT_TIMER. LIB$FREE_TIMER assumes that handle-address was
returned by a previous call to LIB$INIT_ TIMER. If the block referred to by
handle-address was not allocated by LIB$INIT_TIMER, LIB$FREE_TIMER
returns an error. If the routine completes successfully, LIB$FREE_TIMER sets
handle-address to zero.

SS$_NORMAL

LIB$_1NV ARG

LIB$_BADBLOADR

Routine successfully completed.

Invalid argument; handle-address was not
supplied or did not point to a timer block.

Bad block address; LIB$FREE_ VM could not
deallocate the block to which handle-address
points.

LIB$FREE_VM

LIB$FREE_VM Free Virtual Memory from
Program Region

FORMAT

RETURNS

The Free Virtual Memory from Program Region routine deallocates an
entire block of contiguous bytes that were allocated by a previous call to
LIB$GET_VM. The arguments passed are the same as for LIB$GET_VM.

LIB$FREE_VM number-of-bytes ,base-address
[,zone-id]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

ARGUMENTS number-of-bytes
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes to be deallocated by LIB$FREE_VM. The
number-of-bytes argument is the address of a signed longword integer that
contains this number. The value of number-of-bytes must be greater than
zero.

Byte counts are rounded in the same manner as in LIB$GET_ VM.

Note: You may omit the number-of-bytes argument if you are using boundary
tags (LIB$M_VM_BOUNDARY_TAGS).

base-address
VMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of the first byte to be deallocated by LIB$FREE_ VM. The base
address argument contains the address of an unsigned longword that is
this address. The value of base-address must be the address of a block of
memory that was allocated by a previous call to LIB$GET_ VM.

zone-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

The zone-id argument is the address of a longword that contains a zone
identifier created by a previous call to LIB$CREATE_VM-20NE or
LIB$CREATE_USER_ VM_zONE.

LIB-177

LIB$FREE_VM

You must specify the same zone-id value as when you called
LIB$GET_ VM to allocate the block. An error status will be returned if you
specify an incorrect zone-id. The zone-id argument is optional. If zone-id is
omitted or if the longword contains the value zero, LIB$VM's default zone is
used.

DESCRIPTION LIB$FREE_VM returns the block of memory to a free list associated with the
zone, so the block is available on a subsequent call to LIB$GET_ VM for the
zone.

CONDITION
VALUES
RETURNED

LIB-178

The base-address argument must contain the address of the first byte of
memory that was allocated by a previous call to LIB$GET_ VM.
LIB$FREE_VM rounds up the value of number-of-bytes to a multiple of the
block size for the zone.

Note: You cannot free part of a block that was allocated by a call to
LIB$GET_ VM. The whole block must be freed by a single call to
LIB$FREE _ VM.

Neither can you combine contiguous blocks of memory that were
allocated by several calls to LIB$GET_ VM into one larger block that
is freed by a single call to LIB$FREE _ VM.

If you specified deallocation filling when you created the zone,
LIB$FREE_VM will fill each byte freed. Note that part of a free block is used
to store control information, so some bytes will not contain the fill value.

LIB$FREE_ VM is fully reentrant, so it can be called by routines executing at
AST-level or in an Ada multitasking environment.

If the zone you are freeing was created using the
LIB$CREATE_USER_VM-20NE routine, then you must have an
appropriate action routine for the free operation. That is, in your call to
LIB$CREATE_USER_ VM-20NE, you must have specified a user
deallocation procedure.

SS$_NORMAL

LIB$_BADBLOADR

LIB$_BADBLOSIZ

Routine successfully completed.

Base-address contained a bad block address.
An address was outside of the area allocated by
LIB$GET_VM, or the contents of base-address
were not properly aligned, or part of the space
being deallocated was previously deallocated.

Number-of-bytes is less than or equal to 0, or the
number-of-bytes argument is incorrect for a zone
containing fixed size blocks.

LIB$FREE_VM_PAGE

LIB$FREE_VM_PAGE Free Virtual Memory Page

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Free Virtual Memory Page routine deallocates a block of contiguous
pages that were allocated by previous calls to LIB$GET_VM_PAGE.

LIB$FREE_VM_PAGE number-of-pages ,base-address

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

number-of-pages
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of pages. The number-of-pages argument is the address of a .
longword integer which specifies the number of contiguous pages to be
deallocated. The value of number-of-pages must be greater than zero.

base-address
VMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Block address. The base-address argument is the address of a longword
which contains the address of the first byte of the first page to be deallocated.

LIB$FREE_ VM_P AGE deallocates a block of contiguous pages starting at
base-address. Each of the pages specified by number-of-pages and base
address must have been allocated by previous calls to LIB$GET_ VM_p AGE.
The pages are returned to the processwide page pool and are available to
satisfy subsequent calls to LIB$GET_ VM_p AGE.

You can free a smaller group of pages than you allocated. That is, if you
allocated a group of contiguous pages by a single call to
LIB$GET_ VM_P AGE, you can deallocate those pages in several calls to
LIB$FREE_VM_PAGE. You can also combine contiguous groups of pages
that were allocated in several calls to LIB$GET_ VM_p AGE into one large
group that is freed by a single call to LIB$FREE_VM_pAGE.

LIB$FREE_ VM_PAGE is fully reentrant, so it may be called by routines
executing at AST level or in an Ada multitasking environment.

LIB-179

LIB$FREE_VM_PAGE

CONDITION
VALUES
RETURNED

LIB-180

SS$_NQRMAL

LIB$_BADBLOADR

LIB$_BADBLOSIZ

Normal successful completion.

Pages not allocated by LIB$GET_ VM_PAGE, the
value of base-address is not a page boundary, or
the pages were previously freed.

Number-of-pages is less than or equal to zero.

LIB$GETDVI

FORMAT

RETURNS

ARGUMENTS

LIB$GETDVI

Get Device/Volume Information

The Get Device/Volume Information routine provides a simplified interface
to the $GETDVI system service. It returns information about the primary
and secondary device characteristics of an 1/0 device. The calling process
need not have a channel assigned to the device about which it wants
information.

LIB$GETDVI item-code {,channel] [,device-name]
[,longword-integer-value] [,resultant-string]
[,resultant-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

item-code
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Code specifying the item of information you are requesting. The item-code
argument is the address of a signed longword containing the item code. All
valid $GETDVI item codes whose names begin with DVI$_ are accepted.

See the Description section for more information on item codes.

channel
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by reference

VMS IjO channel assigned to the device for which LIB$GETDVI returns
information. The channel argument is the address of an unsigned word
containing the channel specification. If channel is not specified, device-name
is used instead. You must specify either channel or device-name, but not
both. If neither is specified, the error status SS$-1VDEVNAM is returned.

device-name
VMS usage: device_name
type: character string
access: read only
mechanism: by descriptor

Name of the device for which LIB$GETDVI returns information. The device
name argument is the address of a descriptor pointing to the device name
string. If this string contains a colon, the colon and the characters that follow
it are ignored.

LIB-181

LIB$GETDVI

DESCRIPTION

LIB-182

The device-name may be either a physical device name or a logical name.
If the first character in the string is an underscore character (-), the name
is considered a physical device name. Otherwise, the name is considered a
logical name, and logical name translation is performed until either a physical
device name is found or the system default number of translations has been
performed.

If device-name is not specified, channel is used instead. You must specify
either channel or device-name, but not both. If neither is specified, the error
status SS$_IVDEVNAM is returned. The device name must not be longer
than 255 characters.

longword-integer-value
VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Numeric value of the information requested. The longword-integer-value
argument is the address of a signed longword containing the numeric value.
If an item is listed as only returning a string value, this argument is ignored.

resultant-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String representation of the information requested. The resultant-string
argument is the address of a descriptor pointing to this information. If
resultant-string is not specified and if the value returned has only a string
representation, the error status LIB$_JNVARG is returned.

Refer to Table LIB-4 for a description of the string representation used for
each item.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIB$GETDVI.
The resultant-length argument is the address of an unsigned word containing
this length.

LIB$GETDVI returns two categories of information.

• Primary device characteristics

• Secondary device characteristics

LIB$GETDVI does not allow you to get more than one item of information in
a single call.

LIB$GETDVI

LIB$GETDVI provides the following features in addition to those provided by
the $GETDVI system service.

• Instead of a list of item descriptors, which may be difficult to construct in
high-level languages, the single item desired is specified as an integer
code which is passed by reference. Results are written to separate
arguments.

• For items which return numeric values, LIB$GETDVI can optionally
provide a formatted string interpretation of the value. For example, if
the device owner VIC is requested, LIB$GETDVI can return the UIC
formatted as [identifier].

• For string arguments, LIB$GETDVI understands all string classes
supported by the Run-Time Library.

• Calls to LIB$GETDVI are synchronous; LIB$GETDVI calls LIB$GET_EF
to allocate a local event flag number for synchronization.

See the description of the $GETDVI system service in the VMS System Services
Reference Manual for more detailed information.

Item Codes

All item codes that can be used with the $GETDVI system service may be
used as the item-code argument to LIB$GETDVI. These codes have symbolic
names beginning with DVI$_.

The use of a DVI$_ code by itself will return the primary device characteristic
associated with that code. To obtain the secondary device characteristics, add
1 to the code. See the description of the $GETDVI system service for a list of
the defined item codes. The symbolic names for these items are defined in
DIGITAL-supplied symbol libraries in module $DVIDEF (where appropriate).

Value Formats

By using the longword-integer-value and resultant-string arguments to
LIB$GETDVI, the information requested can be returned in two different
fashions.

• For those items described as "string" in the table of Item Identifier Codes
for the $GETDVI service, the value is returned in resultant-string.

• For all other items-those that have numeric values-the numeric
representation is returned in longword-integer-value (if specified), and a
formatted string interpretation of the value is returned in resultant-string.

Each formatted item is written left-justified; resultant-length, if specified,
gives the number of characters used. Table LIB-4 lists the formats used for
the string interpretations.

LIB-183

LIB$GETDVI

LIB-184

Table LIB-4 Formats Used for LIB$GETDVI Strings

Item or Format

DVl$_ACPPID

DVl$_PID

DVl$_ACPTYPE

DVl$_0WNUIC

DVl$_VPROT

Boolean

All others

Description

The string value is returned as an 8-digit hexadecimal
number.

The string value is returned as an 8-digit hexadecimal
number.

The ACP type string is one of the following:
NONE No ACP

F11V1 Files-11 Level 1

F11V2 Files-11 Level 2

MTA Magnetic Tape

NET Networks

REM Remote 1/0

JNL Journal

The standard UIC format [group,member] is used. If the
format of a UIC includes identifiers from the access rights
database in place of the octal group and member numbers,
the UIC string returned will have these identifiers, if available.

The volume protection string is in the following form:

SYSTEM=RWLP ,OWNER=RWLP ,GROUP=RWLP I WORLD=RWLP

If a category has no access, the equal sign is omitted. The
string will not contain any embedded spaces.

The value string returned is TRUE if the low bit of the value
is set, or FALSE if the low bit is clear.

The value string is returned in the form of an unsigned
decimal integer.

CONDITION
VALUES
RETURNED

SS$_NQRMAL

LIB$_STRTRU

SS$_BADPARAM

SS$_1VDEVNAM

LIB$_1NSEF

LIB$_1NV ARG

LIB$_INVSTRDES

LIB$_ WRONUMARG

LIB$GETDVI

Normal successful completion.

String truncated. This is an alternate success
return status. The fixed-length resultant-string
argument could not contain all the characters of
the returned item.

Unrecognized item code. Item-code was not
recognized as valid by $GETSYI.

The device name string contains invalid characters,
or neither the channel nor device-name
arguments were specified.

Insufficient event flags. A local event flag number
could not be allocated by a call to LIB$GET _EF.

Invalid arguments. The $GETSYI Item Identifier
code describes the item as "string", and no
resultant-string argument was specified.

Invalid string descriptor. The descriptor of the
resultant-string argument is not a valid descriptor.

Wrong number of arguments. An incorrect number
of arguments was passed to LIB$GETDVI.

Any condition values returned by LIB$SCOPY_xxx.

Any condition values returned by SYS$GETDVI.

LIB-185

LIB$GETJPI

LIB$GETJPI

FORMAT

RETURNS

ARGUMENTS

LIB-186

Get Job/Process Information

The Get Job/Process Information routine provides a simplified interface
to the $GET JPI system service. It provides accounting, status, and
identification information about a specified process.

Ll8$GET JPI obtains only one item of information in a single call.

LIB$GET JPI item-code {,process-id] {,process-name}
[,resultant-value] {,resultant-string]
[,resultant-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

item-code
VMS usage: longword-signed
type: longword (signed)
access: read only
mechanism'. by reference

Item identifier code specifying the item of information you are requesting.
The item-code argument is the address of a signed longword containing the
item code. You may request only one item in each call to LIB$GETJPI.

LIB$GETJPI accepts all $GETJPI item codes. These names begin with
JPI$_ and are defined in DIGITAL-supplied symbol libraries in module
$JPIDEF.

process-id
VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identifier of the process for which you are requesting information.
The process-id argument is the address of an unsigned longword containing
the process identifier. If you do not specify process-id, process-name is used.

The process-id is updated to contain the process identifier actually used,
which may be different from what you originally requested if you specified
process-name or used wildcard process searching.

process-name
VMS usage: process_name
type: character string
access: read only
mechanism: by descriptor

DESCRIPTION

LIB$GETJPI

A 1- to 15-character string specifying the name of the process for which you
are requesting information. The process-name argument is the address of a
descriptor pointing to the process name string. The name must correspond
exactly to the name of the process for which you are requesting information;
LIB$GETJPI does not allow trailing blanks or abbreviations.

If you do not specify process-name, process-id is used. If you specify neither
process-name or process-id, the caller's process is used.

resultant-value
VMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Numeric value of the information you request. The resultant-value argument
is the address of a longword or quadword into which LIB$GETJPI writes the
numeric value of this information. Refer to Table LIB-5 for information on
which items return longword values and which return quadword values. If
the item you request returns only a string value, this argument is ignored.

resultant-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String representation of the information you request. The resultant-string
argument is the address of a character string into which LIB$GETJPI writes
the string representation. Table LIB-5 describes the string representation used
for each item.

If you do not include resultant-string, but the item you request has only a
string representation, the error status LIB$-1NVARG is returned.

resultant-length
VMS usage: word_unsigned
type: word {unsigned)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIB$GETJPI.
The resultant-length argument is the address of an unsigned word integer
into which LIB$GETJPI writes the number of characters.

LIB$GETJPI provides the following features in addition to those provided by
the $GETJPI system service.

• Instead of a list of item descriptors, which may be difficult to construct in
high-level languages, the single item desired is specified as an integer
code which is passed by reference. Results are written to separate
arguments.

• For items which return numeric values, LIB$GETJPI can optionally
provide a formatted string interpretation of the value. For example, if the
process UIC is requested, LIB$GETJPI can return the UIC formatted as
[g,m].

LIB-187

LIB$GETJPI

LIB-188

• For string arguments, all string classes supported by the Run-Time Library
are understood.

• Calls to LIB$GETJPI are synchronous. LIB$GETJPI calls LIB$GET_EF to
allocate a local event flag number for synchronization.

See the description of the $GETJPI system service in the VMS System Services
Reference Manual for more information.

By using the resultant-value and resultant-string arguments to LIB$GETJPI,
you can request that the information be returned in two ways. For those
items described as "string" in the table of Item Identifier Codes for the
$GETJPI service, the value is returned in resultant-string. For all other
items-those which have numeric values-the numeric representation is
returned in resultant-value (if specified), and a formatted string interpretation
of the value is returned in resultant-string.

Each formatted item is written left-justified; resultant-length, if specified,
gives the number of characters used. For the items that return blank-padded
strings (for example, JPI$_USERNAME) trailing blanks are removed.

Table LIB-5 lists the formats used for the string interpretations.

Table LIB-5 Item Code Formats for LIB$GET JPI

Item or Format

JPl$_AUTHPRIV

JPl$_CURPRIV

JPl$_IMAGPRIV

JPl$_PROCPRIV

JPl$_LOGINTIM

JPl$_PID

Description

The string representation of these quadword privilege
masks is a list of each privilege that is enabled. The
privilege names are in uppercase, and are separated by
commas.

Same as for JPl$AUTHPRIV.

Same as for JPl$AUTHPRIV.

Same as for JPl$AUTHPRIV.

The string representation of the quadword time is a
standard absolute date-time string.

The process identification string is an 8-digit hexadecimal
number.

LIB$GETJPI

Table LIB-5 (Cont.} Item Code Formats for LIB$GETJPI

Item or Format Description

JPl$_STATE The process state string is one of the following:

JPl$_UIC

JPl$_MODE

All others

CEF Common event flag wait

COM Computable

COMO

CUR

CO LPG

FPG

HIB

HIBO

LEF

LEFO

Computable, outswapped

Current process

Collided page wait

Free page wait

Hibernate wait

Hibernate wait, outswapped

Local event flag wait

Local event flag wait, outswapped

MWAIT Mutex and miscellaneous resource wait

PFW Page fault wait

SUSP Suspended

SUSPO Suspended, outswapped

The standard UIC format [group,member] is used.
If the format of a UIC includes identifiers from the
access rights database in place of the octal group and
member numbers, the UIC string returned will have these
identifiers, if available.

The current mode string is one of the following: BATCH,
INTERACTIVE or NETWORK.

The string value is returned as an unsigned decimal
integer.

LIB-189

LIB$GETJPI

CONDITION
VALUES
RETURNED

LIB-190

SS$_NORMAL

LIB$_STRTRU

SS$_BADPARAM

LIB$_1NSEF

LIB$_1NV ARG

LIB$_1NVSTRDES

LIB$_ WRONUMARG

Normal successful completion.

String truncated. This is an alternate success
return status. The fixed-length resultant-string
argument could not contain all the characters of
the returned item.

Unrecognized item code. Item-code was not
recognized as valid by $GET JPI.

Insufficient event flags. A local event flag number
could not be allocated by a call to LIB$GET_EF.

Invalid arguments. The $GETSYI Item Identifier
code describes the item as "string", and no
resultant-string argument was specified.

Invalid string descriptor. The descriptor for a string
argument was not a valid string descriptor.

Wrong number of arguments. An incorrect number
of arguments was passed to LIB$GET JPI.

Any condition value returned by LIB$SCOPY_xxx.

Any condition value returned by SYS$GETJPI.

LIB$GETQUI

FORMAT

RETURNS

ARGUMENTS

LIB$GETQUI

Get Queue Information

The Get Queue Information routine provides a simplified interface to the
$GETQUI system service. It provides queue, job, file, characteristic, and
form information about a specified process.

LIB$GETQUI obtains only one item of information in a single call.

LI BSG ETQU I function-code [,item-code]
{,search-number} [,search-name]
{,search-flags} {,resultant-value}
{,resultant-string} {,resultant-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

function-code
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Function code specifying the function that LIB$GETQUI is to perform. The
function-code argument is the address of a signed longword containing the
function code.

LIB$GETQUI accepts all $GETQUI function codes. These names begin with
QUI$_ and are defined in DIGITAL-supplied symbol libraries in module
$QUIDEF.

item-code
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Item identifier code specifying the item of information you are requesting.
The item-code argument is the address of a signed longword containing the
item code. You may request only one item in each call to LIB$GETQUI.

LIB$GETQUI accepts all $GETQUI item codes. These names begin with
QUI$_ and are defined in DIGITAL-supplied symbol libraries in module
$QUIDEF.

LIB-191

LIB$GETQUI

LIB-192

search-number
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Numeric value used to process your request. The search-number argument
is the address of a signed longword integer containing the number needed to
process your request. Search-number directly corresponds to
QUI$_SEARCH_NUMBER as described by the $GETQUI system service.

search-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character string used to process your request. The search-name argument is
the address of a string descriptor that provides the name needed to process
your request. Search-name directly corresponds to QUI$_SEARCH_NAME
as described by the $GETQUI system service.

search-flags
VMS usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by reference

Optional bit mask indicating request to be performed. The search-flags
argument is the address of an unsigned longword integer containing the
bit mask. Search-flags directly corresponds to $QUI_SEARCH_FLAGS as
described by the $GETQUI system service.

resultant-value
VMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Numeric value of the information you requested. The resultant-value
argument is the address of a longword, quadword or octaword into which
LIB$GETQUI writes the numeric value of this information. Refer to
Table LIB-6 for information on which items return values other than
longwords. If the item you requested returns only a string value, this
argument is ignored.

resultant-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String representation of the information you requested. The resultant-string
argument is the address of a character string into which LIB$GETQUI writes
the string representation. Table LIB-6 describes the string representation used
for each item.

DESCRIPTION

LIB$GETQUI

If you do not include resultant-string, but the item you request has only a
string representation, the error status LIB$_INVARG is returned.

resultant-length
VMS usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIB$GETQUI.
The resultant-length argument is the address of a signed word integer into
which LIB$GETQUI writes the number of characters.

LIB$GETQUI provides a simplified interface to the $GETQUI system service.
It provides queue, job, file, characteristic, and form information about a
specified process. This routine obtains only one item of information in a
single call.

LIB$GETQUI provides the following features in addition to those provided by
the $GETQUI system service.

• Instead of a list of item descriptors that may be difficult to construct in
high-level languages, the single item desired is specified as an integer
code which is passed by reference. Results are written to separate
arguments.

• For items that return numeric values, LIB$GETQUI optionally can provide
a formatted string interpretation of the value. For example, if you
request the characteristics of a queue, LIB$GETQUI can return the list
of characteristics as "23,42,76,98,125".

• For string arguments, all string classes supported by the Run-Time Library
are understood.

• Calls to LIB$GETQUI are synchronous. LIB$GETQUI calls $GETQUIW to
force the synchronization.

LIB$GETQUI retains context. This means that previous calls to LIB$GETQUI
affect current calls to LIB$GETQUI.

See the description of the $GETQUI system service in the VMS System Services
Reference Manual for more information.

By using the resultant-value and resultant-string arguments to
LIB$GETQUI, you can request that the information be returned in two ways.
For items that have numeric values, the numeric representation is returned
in resultant-value (if specified), and a formatted string interpretation of the
value is returned in resultant-string. For those items described as "string"
in the table of Item Identifier Codes for the $GETQUI service, the value is
returned in resultant-string.

Each formatted item is written left-justified; resultant-length, if specified,
gives the number of characters used. For the items that return blank-padded
strings, trailing blanks are removed.

The $GETQUI system service requires some item codes. LIB$GETQUI
provides those item codes for you by corresponding your input to
LIB$GETQUI directly to the required input codes.

LIB-193

LIB$GETQUI

LIB-194

The following table describes all of the required and optional input needed to
perform your task with LIB$GETQUI.

Function

QUl$_CANCEL

QUl$_DISPLA Y _CHARACTERISTIC

OUl$_DISPLA Y_ENTRY

QUl$_DISPLA Y _FILE

QUl$_DISPLA Y _FORM

OUl$_DISPLA Y _JOB

OUl$_DISPLA Y _QUEUE

QUI$_ TRANSLA TE_QUEUE

Input Description

Accepts no input.

A characteristic name or number, or
both. Optionally, a search flags number.

Optionally, an entry number, user name,
and search flags number. The default
user name is that of the calling process.

Optionally, a search flags number.

A form name or number, or both.
Optionally, a search flags number.

Optionally, a search flags number.

A queue name. Optionally, a search flags
number.

A queue name.

Table LIB-6 lists the formats used for the string interpretations.

Table LIB-6 Item Code Formats for LIB$GETQUI

Item or Format

QUl$_AFTER_ TIME

QUl$_CHARACTERISTICS

OUl$_SUBMISSION_ TIME

OUl$_UIC

Description

Returns a quadword resultant-value as
well as a resultant-string.

Returns an octaword resultant-value as
well as a comma-separated list that lists
all the characteristic numbers, output as a
resultant-string.

Returns a quadword resultant-value as
well as a resultant-string.

Returns a formatted resultant-string as
well as a longword.

CONDITION
VALUES
RETURNED

SS$_NORMAL

LIB$_STRTRU

SS$_BADPARAM

LIB$_1NSEF

LIB$_1NV ARG

LIB$_1NVSTRDES

LIB$_ WRONUMARG

LIB$GETQUI

Routine successfully completed.

String truncated. This is an alternate success
return status. The fixed-length resultant-string
argument could not contain all the characters of
the returned item.

Unrecognized item code. Item-code was not
recognized as valid by $GETOUI.

Insufficient event flags. A local event flag number
could not be allocated by a call to LIB$GET_EF.

Invalid arguments. The $GETSYI Item Identifier
code describes the item as "string", and no
resultant-string argument was specified.

Invalid string descriptor. The descriptor for a string
argument was not a valid string descriptor.

Wrong number of arguments. An incorrect number
of arguments was passed to LIB$GETQUI.

Any condition value returned by LIB$SCOPY_xxx.

Any condition value returned by SYS$GETQUI.

LIB-195

LIB$GETSYI

LIB$GETSYI

FORMAT

RETURNS

ARGUMENTS

LIB-196

Get Systemwide Information

The Get Systemwide Information routine provides a simplified interface to
the $GETSYI system service. The $GETSYI system service obtains status
and identification information about the system. LIB$GETSYI returns only
one item of information in a single call.

LI B$G ETSYI item-code [,resultant-value]
[,resultant-string} [,resultant-length]
[,cluster-system-id} [,node-name}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

item-code
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Item code specifying the desired item of information. The item-code
argument is the address of a signed longword containing this item code.
All valid $GETSYI item codes are accepted.

resultant-value
VMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Numeric value returned by LIB$GETSYI. The resultant-value argument is
the address of a longword or quadword containing this value. If an item is
listed as returning only a string value, this argument is ignored.

resultant-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Information returned by LIB$GETSYI. The resultant-string argument is the
address of a descriptor pointing to the character string that will receive this
information.

See the Description section for more information about value formats. If
resultant-string is not specified and if the returned value has only a string
representation, the error status LIB$_INVARG is returned.

DESCRIPTION

LIB$GETSYI

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string, not including
blank padding or truncated characters. The resultant-length argument is the
address of an unsigned word into which LIB$GETSYI returns this number.

cluster-system-id
VMS usage: identifier
type: longword (unsigned)
access: modify
mechanism: by reference

Cluster system identification (CSID) of the node for which information is to
be returned. The cluster-system-id argument is the address of this CSID.
If cluster-system-id is specified and is nonzero, node-name is not used. If
cluster-system-id is specified as zero, LIB$GETSYI uses node-name and
writes into the cluster-system-id argument the CSID corresponding to the
node identified by node-name.

The cluster-system-id of a VAX node is assigned by the cluster-connection
software and may be obtained by the DCL command SHOW CLUSTER. The
value of the cluster-system-id for a VAX node is not permanent; a new value
is assigned to a VAX node whenever it joins or rejoins the VAXcluster.

If cluster-system-id is specified as -1, LIB$GETSYI assumes a wildcard
operation and returns the requested information for each VAX node in the
cluster, one node per call.

If cluster-system-id is not specified, node-name is used.

node-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the node for which information is to be returned. The node-name
argument is the address of a descriptor pointing to the node name string. If
cluster-system-id is not specified or is specified as zero, node-name is used.
If neither node-name nor cluster-system-id is specified, the caller's node is
used. See the cluster-system-id argument for more information.

The node name string must contain from 1 to 15 characters and must
correspond exactly to the VAX node name; no trailing blanks nor
abbreviations are permitted.

LIB$GETSYI provides the following features in addition to those provided by
the $GETSYI system service:

• Instead of a list of item descriptors, which may be difficult to construct in
high-level languages, the single item desired is specified as an integer
code which is passed by reference. Results are written to separate
arguments.

LIB-197

LIB$GETSYI

CONDITION
VALUES
RETURNED

LIB-198

• For items which return numeric values, LIB$GETSYI can optionally
provide a formatted string interpretation of the value.

• For string arguments, all string classes supported by the Run-Time Library
are understood.

• Calls to LIB$GETSYI are synchronous. LIB$GETSYI calls LIB$GET_EF to
allocate a local event flag number for synchronization.

All item codes that can be used with the $GETSYI system service may be
used as the item-code argument to LIB$GETSYI. See the description of the
$GETSYI system service for a list of the defined item codes. Note that the
symbolic names for these items are defined in DIGITAL-supplied symbol
libraries in module $SYIDEF (where appropriate).

Value Formats

By using the resultant-value and resultant-string arguments to LIB$GETSYI,
you can request that the information be returned in two ways. For those
items described as "string" in the table of Item Identifier Codes for the
$GETSYI service, the value is returned in resultant-string. For all other
items-those which have numeric values-the numeric representation is
returned in resultant-value (if specified), and an unsigned decimal integer
representation is stored in resultant-string.

Each formatted item is written left-justified; resultant-length, if specified,
gives the number of characters used. For those items which return blank
padded strings, such as SYl$_ VERSION, trailing blanks are removed.

See the VMS System Services Reference Manual for a description of the
$GETSYI system service.

SS$_NORMAL

LIB$_STRTRU

SS$_BADPARAM

LIB$_1NSEF

LIB$_1NV ARG

LIB$_1NVSTRDES

LIB$_ WRONUMARG

Normal successful completion.

String truncated. This is an alternate success
return status. The fixed-length resultant-string
argument could not contain all the characters of
the returned item.

Unrecognized item code. Item-code was not
recognized as valid by $GETSYI.

Insufficient event flags. A local event flag number
could not be allocated by a call to LIB$GET_EF.

Invalid arguments. The $GETSYI item identifier
code describes the item as "string", and no
resultant-string argument was specified.

Invalid string descriptor. The descriptor of the
resultant-string argument is not a valid descriptor.

Wrong number of arguments. An incorrect number
of arguments was passed to LIB$GETSYI.

Any condition values returned by LIB$SCOPY_xxx.

Any condition values returned by the $GETSYI system service.

LIB$GET_CQMMAND

LIB$GET_COMMAND Get Line from
SYS$COMMAND

FORMAT

RETURNS

ARGUMENTS

The Get Line from SYS$COMMAND routine gets one record of ASCII text
from the current controlling input device, specified by the logical name
SYS$COMMAND.

LIB$GET_CQMMAND resultant-string {,prompt-string}
[,resultant-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

resultant-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String that LIB$GET_COMMAND gets from SYS$COMMAND. The
resultant-string argument is the address of a descriptor pointing to this
string.

prompt-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Prompt message that LIB$GET_CQMMAND displays on the controlling
terminal. The prompt-string argument is the address of a descriptor pointing
to the prompt. A valid prompt consists of text followed by no carriage-return
/line-feed combination. A colon(:) and one space are optional.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into resultant-string by LIB$GET_CQMMAND, not
counting padding in the case of a fixed string. The resultant-length argument
is the address of an unsigned word containing this length. If the input string
is truncated to the size specified in the resultant-string descriptor, resultant
length is set to this size. Therefore, resultant-length can always be used by
the calling program to access a valid substring of resultant-string.

LIB-199

LIB$GET_CQMMAND

DESCRIPTION

LIB-200

LIB$GET_COMMAND uses the RMS $GET service (see the VMS Record
Management Services Manual) to get one record of ASCII text from the current
controlling input device, specified by SYS$COMMAND.

When you log in, VMS creates three files as default 1/0 control streams for
your process.

• SYS$INPUT, your default input device

• SYS$0UTPUT, your default output device

• SYS$COMMAND, the device that supplies the commands to your process

These files remain open until you log out. They are the interface between
your interactive input and output or your batch commands and the VMS
software. Initially, all three files are equated with the terminal. However,
with the DCL ASSIGN command, you can change these assignments to
obtain information from a file or put information into a file. SYS$INPUT and
SYS$COMMAND are usually identical, but the input and command streams
can be different. For example, during th~ execution of an indirect command
file from an interactive terminal, SYS$COMMAND refers to the terminal and
SYS$INPUT refers to the command file.

LIB$GET_COMMAND opens file SYS$COMMAND on the first call. The
RMS internal stream identifier (ISi) is stored in the routine's static storage for
subsequent calls.

If prompt-string is provided and if the SYS$COMMAND device is a terminal,
LIB$GET_CQMMAND displays the prompt message. If the device is not a
terminal, the prompt-string is ignored.

LIB$GET_COMMAND is used when a program needs input from some
source other than the current input stream. Usually, it is used to input
from the terminal rather than from an indirect command file. For example,
a program may ask a question which cannot be answered by an indirect
command file entry. In this case the program would call
LIB$GET_CQMMAND to get one record of ASCII text from
SYS$COMMAND, the terminal.

CONDITION
VALUES
RETURNED

SS$_NORMAL

LIB$_FATERRLIB

LIB$_1NPSTRTRU

LIB$_1NSVIRMEM

LIB$_1NV ARG

Any valid RMS status code.

LIB$GET_CQMMAND

Routine successfully completed. RMS completion
status.

An internal consistency check on Run-Time Library
data structures has failed. This may indicate a
programming error in the Run-Time Library, or that
your program may have overwritten those data
structures.

The input string has been truncated to the size
specified in the resultant-string descriptor (fixed
length strings only). Resultant-length is also
set to this size. This is an error (as opposed to
LIB$_STRTRU which is a success) because the
truncation is not under program control.

Insufficient virtual memory to allocate the dynamic
string.

Invalid arguments. The descriptor class field is not
a recognized code or is zero.

Any code returned by LIB$GET_ VM or LIB$SCOPY_R_DX.

LIB-201

LIB$GET_CQMMON

LIB$GET_COMMON Get String from Common

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB-202

The Get String from Common routine copies a string in the common area
to the destination string. (The common area is an area of storage which
remains defined across multiple image activations in a process.) The string
length is taken from the first longword of the common area.

LIB$GET_COMMON resultant-string [,resultant-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

resultant-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$GET_COMMON writes the string copied
from the common area. The resultant-string argument is the address of a
descriptor pointing to the destination string.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters written into resultant-string by LIB$GET_COMMON,
not counting padding in the case of a fixed-length string. The resultant
length argument is the address of an unsigned word integer containing
the number of characters copied. If the input string is truncated to the size
specified in the resultant-string descriptor, resultant-length is set to this
size. Therefore, resultant-length can always be used by the calling program
to access a valid substring of resultant-string.

LIB$PUT_COMMON allows a program to copy a string into the process's
common storage area. This area remains defined during multiple image
activations. LIB$GET_COMMON allows a program to copy a string from the
common area into a destination string. The programs reading and writing the
data in the common area must agree upon its amount and format.

The maximum number of characters that can be copied is 252. The actual
number of characters copied is returned by the optional argument, resultant
length (if given).

CONDITION
VALUES
RETURNED

LIB$GET_COMMON

You can use LIB$PUT_COMMON and LIB$GET_COMMON to pass
information between images run successively, such as chained images run by
LIB$RUN _PROGRAM. Since the common area is unique to each process, do
not use LIB$GET_COMMON and LIB$PUT_CQMMON to share information
across processes.

SS$_NORMAL

LIB$_STRTRU

LIB$_FA TERRLIB

LIB$_1NSVIRMEM

LIB$_1NVSTRDES

Routine successfully completed.

Successfully completed. The string was longer
than the buffer and was truncated.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGITAL.

Insufficient virtual memory. A call to LIB$GET_VM
has failed because your program has exceeded the
image quota for virtual memory.

Invalid string descriptor. A string descriptor has an
invalid value in its DSC$B_CLASS field.

LIB-203

LI B$GET_DATE_FORMAT

LIB$GET_DATE_FORMAT Get the User's Date
Input Format

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB-204

The Get The User's Date Input Format routine returns information about
the user's choice of a date/time input format.

LIB$GET_DATE_FORMAT format-string
[,user-context]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

format-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the translation of LIB$DT_INPUT_FORMAT. The format-string
argument is the address of a descriptor pointing to this format string.

user-context
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword
that contains this context. The initial value of the context variable must be
zero. Thereafter, the user program must not write to the cell.

The user-context argument is optional. However, if a context cell is not
passed, the routine LIB$GET_DATE_FORMAT may abort if two threads of
execution attempt to manipulate the context area concurrently. Therefore,
when calling this routine in situations where reentrancy might occur, such as
from AST level, DIGITAL recommends that users specify a different context
cell for each calling thread.

Depending on which method was used to specify the input formats,
LIB$GET_DATE_FORMAT either translates the logicals
LIB$DT-1NPUTJORMAT and LIB$FORMAT_MNEMONICS, or uses the
preinitialized context components LIB$K_FORMAT_MNEMONICS and
LIB$K-1NPUT_FORMAT to return the user's specified date/time input
format in a "legible" form. This format-string can then be used as a guideline
for entering date/time strings.

CONDITION
VALUES
RETURNED

LIB$GET_DATE_FORMAT

The string returned by LIB$GET_DATEJORMAT parallels the currently
defined input format string, consisting of the format punctuation (with most
whitespace compressed) and "legible" mnemonics representing the various
format fields. The English (default) versions of these mnemonics are as
follows:

Format Field

Year

Numeric month

Alphabetic month

Numeric day

Hours (12- or 24-hour)

Minutes

Seconds

Fractional seconds

Meridian indicator

Legible Mnemonic (Default)

yyyy1

MM

MONTH

DD

HH

MM

SS

cc 1

AM/PM

1 This variable-length field mnemonic has a numeric suffix representing the number of digits
allowed/required in the field. For instance, YYYY4 indicates a four-digit year field.

For example, consider the following input format string:

$ DEFINE LIB$DT __ INPUT_FORMAT -
_$ II !MAAU !DO, !Y2 !H02: !MO: !SO. !C4 !MIU"

If LIB$GET_DATE_FORMAT were called for this format string, the format
string returned would be as follows:

MONTH DD, YYYY2 HH:MM:SS.CC4 AM/PM

SS$_NORMAL

LIB$_DEFFORUSE

LIB$_ENGLUSED

LIB$_1LLFORMA T

LIB$_INV ARG

LIB$_1NVSTRDES

LIB$_REENTRANCY

LIB$_STRTRU

LIB$_UNRFORCOD

LIB$_ WRONUMARG

Normal successful completion.

Default format used; unable to determine desired
format.

English used; unable to determine or use desired
language.

Illegal format string.

Invalid argument; a required argument was not
specified.

Invalid input string descriptor.

Reentrancy detected.

String truncated.

Unrecognized format code.

Wrong number of arguments.

Any condition value returned by LIB$GET_ VM, LIB$SCOPY_R_DX, and
LIB$SFREEl_DD.

LIB-205

LIB$GET_EF

LIB$GET_Ef

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

LIB-206

Get Event Flag

The Get Event Flag routine allocates one local event flag from a process
wide pool and returns the number of the allocated flag to the caller. If no
flags are available, LIB$GET_EF returns an error as its function value.

LIB$GET_EF event-flag-number

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

event-flag-number
VMS usage: eLnumber
type: longword (unsigned)
access: write only
mechanism: by reference

Number of the local event flag that LIB$GET_EF allocated, or -1 if no local
event flag was available. The event-flag-number argument is the address of
a signed longword integer into which LIB$GET_EF writes the number of the
local event flag that it allocates.

LIB$GET-EF and LIB$FREE_EF cause local event flags to be allocated and
deallocated at run time, so that your routine remains independent of other
routines executing in the same process.

The following table lists status of local event flags.

Number Status

0 Never used by this routine and always available

1 to 23 Initially reserved; available after being freed by LIB$FREE_EF

24 to Reserved to VMS
31

32 to Initially free
63

Local event flags numbered 32 to 63 are available to your program. These
event flags allow routines to communicate and synchronize their operations.

Using LIB$GET_EF provides your program with an arbitrary event
flag number. You can obtain a specific event flag number by calling
LIB$RESERVE_EF. and passing as an argument the number of the specific
event flag that you wish to reserve. However, reserving a specific local event
flag number is not recommended. If you use a specific event flag in your
routine, another routine may attempt to use the same flag, and the flag will

CONDITION
VALUES
RETURNED

LIB$GET_Ef

no longer function as expected. Therefore, you should call LIB$GET_EF to
obtain the next arbitrary event flag and LIB$FREE_EF to return it to the
storage pool.

SS$_NQRMAL

LIB$_1NSEF

Routine successfully completed.

Insufficient event flags. There were no more event
flags available for allocation.

LIB-207

LIB$GET_FQREIGN

LIB$GET_FQREIGN Get Foreign Command Line

FORMAT

RETURNS

ARGUMENTS

LIB-208

The Get Foreign Command Line routine requests the calling image's
Command Language Interpreter (CU) to return the contents of the "foreign
command" line that activated the current image.

LIB$GET_FOREIGN resultant-string [,prompt-string]
[,resultant-length} [,flags]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

resultant-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String which LIB$GETJOREIGN uses to receive the foreign command line.
The resultant-string argument is the address of a descriptor pointing to this
string. If the foreign command text returned was obtained by prompting to
SYS$1NPUT (see the description of flags), the text is translated to uppercase
so as to be more consistent with text returned from the CLI.

prompt-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Optional user-supplied prompt for text which LIB$GET_FOREIGN uses if no
command-line text is available. The prompt-string argument is the address
of a descriptor pointing to the user prompt. If omitted, no prompting is
performed. It is recommended that prompt-string be specified. If prompt
string is omitted and if no command-line text is available, a zero-length string
will be returned.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into resultant-string by LIB$GET_FOREIGN,
not counting padding in the case of a fixed-length resultant-string. The
resultant-length argument is the address of an unsigned word into which
LIB$GET_FOREIGN writes the number of bytes.

DESCRIPTION

LIB$GET_FQREIGN

flags
VMS usage: mask_longword
type: longword (unsigned)
access: modify
mechanism: by reference

Value which LIB$GETJOREIGN uses to control whether or not prompting
is to be performed. The flags argument is the address of a signed longword
integer containing this value. If the low bit of flags is zero, or if flags is
omitted, prompting is done only if the CLI does not return a command line.
If the low bit is 1, prompting is done unconditionally. If specified, flags is set
to 1 before returning to the caller.

The primary use of flags is to allow a utility program to be invoked once
with subcommand text on the command line, and then to repeatedly prompt
for further subcommands from SYS$INPUT. This is accomplished by calling
LIB$GETJOREIGN repeatedly, specifying in the call a prompt-string
string and a flags variable which is initialized to zero at the beginning of
the program. The first call gets the subcommand text from the command
line, after which flags will be set to 1, causing further subcommands to be
requested through prompts to SYS$INPUT.

LIB$GETJOREIGN returns the contents of the command line that you use to
activate an image. It can be used to give your program access to the qualifiers
of a foreign command or to prompt for further command line text.

A foreign command is a command that you can define and then use as if
it were a DCL or MCR command in order to run a program. When you
use the foreign command at command level, the CLI parses the foreign
command only and activates the image. It ignores any options or qualifiers
that you have defined for the foreign command. Once the CLI has activated
the image, the program can call LIB$GETJOREIGN to obtain and parse
the remainder of the command line (after the command itself) for whatever
options it may contain. See the VMS DCL Dictionary for information on how
to define a foreign command.

If no command line is available, LIB$GETJOREIGN can optionally call
LIB$GET-1NPUT to prompt the user for command text. If desired,
LIB$GETJOREIGN can be called repetitively, returning the command line
on the first call, but prompting for further text on subsequent calls.

LIB$GETJOREIGN can also be used for images invoked by the RUN
command, for which further text must be obtained by prompting. Such
an image can also be invoked by the DCL command MCR or by the MCR
Command Language Interpreter. The text following the image name will be
returned to the executing image.

The action of LIB$GET_FOREIGN depends on the environment in which the
image is activated.

• If you use a foreign command to invoke the image, you can call
LIB$GETJOREIGN to obtain the command qualifiers following the
foreign command. You can also use LIB$GETJOREIGN to prompt
repeatedly for more qualifiers after the command. This technique is
illustrated in the example.

LIB-209

LIB$GET_FOREIGN

CONDITION
VALUES
RETURNED

EXAMPLE

• If the image is in the SYS$SYSTEM: directory, the image can be invoked
by the DCL MCR command or by the MCR Command Language
Interpreter. In this case, LIB$GET_FOREIGN returns the command
line text following the image name.

• If the image is invoked by a DCL RUN command, LIB$GET_FOREIGN
can be used to prompt for additional text.

• If the image is not invoked by a foreign command or MCR, or if there is
no information remaining on the command line, and the user-supplied
prompt is present, LIB$GET_INPUT is called to prompt for a command
line. If the prompt is not present, LIB$GETJOREIGN returns a zero
length string.

SS$_NORMAL

LIB$_FA TERRLIB

LIB$_1NPSTRTRU

LIB$_1NSVIRMEM

LIB$_1NVSTRDES

Routine successfully completed.

A fatal internal error was detected.

The input string was truncated. Resultant
stringing could not contain all of the characters.
Resultant-length reflects the truncated length.

Insufficient virtual memory.

Invalid string descriptor.

A condition value returned by RMS. SYS$INPUT was prompted for command
text and RMS returned an error. The most typical error will be RMS$_EOF,
end-of-file.

EXAMPLE: ROUTINE OPTIONS (MAIN);

%INCLUDE $STSDEF; I* Status-testing definitions */

DECLARE COMMAND_LINE CHARACTER(80) VARYING,
PROMPT_FLAG FIXED BINARY(31) INIT(O),
LIB$GET_FOREIGN ENTRY (CHARACTER(*) VARYING,

CHARACTER(*) VARYING,
FIXED BINARY(15),
FIXED BINARY(31))

OPTIONS(VARIABLE) RETURNS (FIXED BINARY(31)),
RMS$_EOF GLOBALREF FIXED BINARY(31) VALUE;

/* Repeat forever calling LIB$GET_FOREIGN to obtain
subcommand text and print the text. Exit when an
end-of-file is found. */

LIB-210

DO WHILE ('1'B); /*Do while TRUE*/
STS$VALUE = LIB$GET_FOREIGN

(COMMAND_LINE, 'Input: ,
PROMPT_FLAG);

IF STS$SUCCESS THEN
PUT LIST(' Command was ',COMMAND_LINE);

ELSE DO;
IF STS$VALUE -= RMS$_EOF THEN

PUT LIST ('Error encountered');
RETURN;
END;

PUT SKIP; /* Skip to next line */
END; /* End of DO WHILE loop */

END;

LIB$GET_FOREIGN

This PL/I example illustrates the use of the optional flags argument to permit
repeated calls to LIB$GET_FOREIGN. The command line text is retrieved on
the first pass only; after the first pass, the program prompts from SYS$INPUT.

LIB-211

LIB$GET_INPUT

LIB$GET_INPUT Get Line from SYS$1NPUT

FORMAT

RETURNS

ARGUMENTS

LIB-212

The Get Line from SYS$1NPUT routine gets one record of ASCII text from
the current controlling input device, specified by SYS$1NPUT.

LIB$GET_INPUT resultant-string [,prompt-string]
[,resultant-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

resultant-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String that LIB$GET_INPUT gets from the input device. The resultant
string argument is the address of a descriptor pointing to the character string
into which LIB$GET_INPUT writes the text received from the current input
device.

prompt-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Prompt message that is displayed on the controlling terminal. The prompt
string argument is the address of a descriptor containing the prompt. A valid
prompt consists of text followed by a colon (:), a space, and no carriage
return/line-feed combination. The maximum size of the prompt message is
255 characters. If the controlling input device is not a terminal, this argument
is ignored.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into resultant-string by LIB$GET-1NPUT, not
counting padding in the case of a fixed string. The resultant-length argument
is the address of an unsigned word containing this number. If the input string
is truncated to the size specified in the resultant-string descriptor, resultant
length is set to this size. Therefore, resultant-length can always be used by
the calling program to access a valid substring of resultant-string.

DESCRIPTION

LIB$GET_INPUT

LIB$GELJNPUT uses the RMS $GET service to get one record of ASCII text
from the current controlling input device, specified by SYS$INPUT. (For more
information about the RMS $GET service see the VMS Record Management
Services Manual.)

When you log in, VMS creates three files as default 1/0 control streams for
your process.

• SYS$INPUT, your default input device

• SYS$0UTPUT, your default output device

• SYS$COMMAND, the device that supplies the commands to your process

These files remain open until you log out. They are the interface between
your interactive input and output or your batch commands and the VMS
software. Initially, all three names are equated with the terminal. However,
with the DCL ASSIGN command, you can change these assignments to
obtain information from a file or put information into a file. SYS$INPUT and
SYS$COMMAND are usually identical, but the input and command streams
can be different. For example, during the execution of an indirect command
file from an interactive terminal, SYS$COMMAND refers to the terminal and
SYS$1NPUT refers to the command file.

LIB$GET_JNPUT opens file SYS$INPUT on the first call. The RMS internal
stream identifier (ISi) is stored in the routine's static storage for subsequent
calls. Hence, this routine is not AST reentrant.

If prompt-string is provided and the SYS$INPUT device is a terminal,
LIB$GET-1NPUT displays the prompt message. If the device is not a
terminal, the prompt-string argument is ignored.

If you wish to get input from some source other than the current input
stream, use LIB$GET_COMMAND.

LIB-213

LIB$GET_INPUT

CONDITION
VALUES
RETURNED

LIB-214

SS$_NORMAL

LIB$_FA TERRLIB

LIB$_1NPSTRTRU

LIB$_1NSVIRMEM

LIB$_1NV ARG

Routine successfully completed. RMS completion
status.

An internal consistency check on Run-Time Library
data structures has failed. This may indicate a
programming error in the Run-Time Library, or that
your program may have overwritten those data
structures.

The input string has been truncated to the size
specified in the resultant-string descriptor (fixed
length strings only). Resultant-length is also
set to this size. This is an error (as opposed to
LIB$_STRTRU which is a success) because the
truncation is not under program control.

Insufficient virtual memory to allocate the dynamic
string.

Invalid arguments. The descriptor class field is not
a recognized code or is zero.

Any RMS condition value returned by $GET.

Any condition value returned by LIB$GET_ VM or LIB$SCOPY_R_DX.

LIB$GET_LUN

LI B$G ET_LU N Get Logical Unit Number

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

The Get Logical Unit Number routine allocates one logical unit number from
a process-wide pool. If a unit is available, its number is returned to the
caller. Otherwise, an error is returned as the function value.

LIB$GET_LUN logical-unit-number

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

logical-unit-number
VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Allocated logical unit number or -1 if none was available. The logical-unit
number argument is the address of a longword into which LIB$GET_LUN
returns the value of the allocated logical unit. The logical unit numbers that
LIB$GET_LUN can allocate are in the range 100 through 119.

LIB$GET_LUN allocates one logical unit number from a process-wide pool.
If a unit is available, its number is returned to the caller. Otherwise, an error
is returned as the function value.

LIB$GET_LUN reserves the logical unit numbers 100 through 119. This
routine assumes that the logical unit numbers in the range 0 through 99
may be in use by your program, but it cannot determine which logical unit
numbers are actually in use by your program.

You should call LIB$GET_LUN only from FORTRAN or BASIC programs.
Those languages and LIB$GET_LUN share the concept of unit numbers and
a similar number space.

SS$_NORMAL

LIB$_1NSLUN

Routine successfully completed.

Insufficient logical unit numbers. No logical unit
numbers were available.

LIB-215

LIB$GET_MAXIMUM_DATE_LENGTH

LIB$GET_MAXIMUM_DATE_LENGTH Retrieve

FORMAT

RETURNS

ARGUMENTS

LIB-216

the
Maximum
Length
of a
Date/Time
String

Given an output format and language, the Retrieve the Maximum Length of
a Date/Time String routine determines the maximum possible length for
the date-string string returned by LIB$FORMAT_DATE_ TIME.

LIB$GET_MAXIMUM_DATE_LENGTH date-length

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

date-length
VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

[,user-context]
{,flags]

Receives the maximum possible length of the date-string argument returned
to LIB$FORMAT_DATE_TIME. The date-length argument is the address of
a signed longword that receives this maximum length. The length written to
date-length reflects the greatest possible length of an output date/time string
for the currently selected output format and natural language.

For example, if the selected output date/time format includes the alphabetic,
unabbreviated month name (assuming English as the natural language), the
longest month name (September) would have to be taken into consideration
when determining the maximum possible length of date-string.

user-context
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword

DESCRIPTION

LIB$GET_MAXIMUM_DATE_LENGTH

that contains this context. The initial value of the context variable must be
zero. Thereafter, the user program must not write to the cell.

The user-context parameter is optional. However, if a context cell is not
passed, the routine LIB$GET_MAXIMUM_DATE_LENGTH may abort if
two threads of execution attempt to manipulate the context area concurrently.
Therefore, when calling this routine in situations where reentrancy might
occur, such as from AST level, DIGITAL recommends that users specify a
different context cell for each calling thread.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask that allows the user to specify whether the date, time, or both are
to be included in the calculation of the maximum date length. The flags
argument is the address of an unsigned bit mask containing the specified
values. Valid values are LIB$M_DATEJIELDS and LIB$M_TIMEJIELDS.
The values specified for flags must correspond to the flags argument passed
to LIB$FORMAT_DATE_ TIME.

The LIB$GET_MAXIMUM_DATE_LENGTH routine determines the
maximum possible length for a formatted date/time string as returned by
LIB$FORMAT_DATE_TIME. The maximum length returned takes into
account the currently specified output format and natural language; date
length represents the maximum possible length of the string written to the
date-string argument of LIB$FORMAT_DATE_TIME.

Consider the following example, in which the output format is defined as
follows.

DEFINE LIB$DT_FORMAT LIB$DATE_FORMAT_012, LIB$TIME_FORMAT_012

This date/time format would appear as follows:

!MAU !DD, !Y4 !HH2: !MO !MIU

Given this format, the maximum possible length for this date/time string is
calculated using the longest possible date string followed by a space and the
longest possible time string. One example that meets these requirements is as
follows (assuming English as the selected language):

SEPTEMBER 21, 1988 11:24 PM

The maximum possible length of this date-string would then be 28.

LIB-217

LIB$GET_MAXIMUM_DATE_LENGTH

CONDITION
VALUES
RETURNED

LIB-218

SS$_NORMAL

LIB$_ENGLUSED

LIB$_DEFFORUSE

LIB$_UNRFORCOD

LIB$_STRTRU

LIB$_ABSTIMREQ

LIB$_REENTRANCY

Normal successful completion.

English used by default; unable to translate
SYS$LANGUAGE.

Default format used; unable to determine desired
format.

Unrecognized format code.

Output string truncated.

Absolute time required.

Reentrant invocation with same context variable.

Any condition value returned by LIB$GET_ VM.

LI B$GET_SVM BOL

LIB$GET_SVMBOL Get Value of CLI Symbol

FORMAT

RETURNS

ARGUMENTS

The Get Value of CU Symbol routine requests the calling process's
Command Language Interpreter (CU) to return the value of a CU symbol
as a string. UB$GET_SYMBOL then returns the string to the caller.
Optionally, UB$GET_SYMBOL can return the length of the returned value
and the table in which the symbol was found.

LIB$GET_SVMBOL symbol ,resultant-string
[,resultant-length]
[,table-type-indicator]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

symbol
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the symbol for which LIB$GET_SYMBOL searches. The symbol
argument is the address of a descriptor pointing to the name of the symbol.
LIB$GET_SYMBOL converts the symbol name to uppercase and removes
trailing blanks before the search. Symbol must begin with a letter or dollar
sign ($). The maximum length of symbol is 255 characters.

resultant-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Value of the returned symbol. The resultant-string argument is the address
of a descriptor pointing to a character string into which LIB$GET_SYMBOL
writes the value of the symbol.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the symbol value returned by LIB$GET_SYMBOL. The resultant
length argument is the address of an unsigned word integer into which
LIB$GET_SYMBOL writes the length.

LIB-219

LI B$GET_SVMBOL

DESCRIPTION

LIB-220

table-type-indicator
VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Indicator of which table contained the symbol. The table-type-indicator
argument is the address of a signed longword integer into which
LIB$GET_SYMBOL writes the table indicator.

Possible values of the table indicator are listed below.

Symbolic Name Value

LIB$K_CLl_LOCAL_SYM 1

LIB$K_CLl_GLOBAL_SYM 2

Table

Local symbol table

Global symbol table

LIB$K_CLl_LOCAL _SYM and LIB$K_CLl_GLOBAL _SYM are defined in
DIGITAL-supplied symbol libraries (macro or module name $LIBCLIDEF) and
as global symbols.

LIB$GET_SYMBOL first searches the local symbol table for the symbol name,
then searches the global symbol table. Numeric values are converted to an
ASCII representation of a signed decimal number before being returned.

LIB$GET_SYMBOL is supported for use with the DCL Command Language
Interpreter. If used with the MCR CLI, the error status LIB$_NOCLI will be
returned.

If an image is run directly as a subprocess or as a detached process, there is
no CLI present to get the symbol. In that case, LIB$GET_SYMBOL returns
the error status LIB$_NOCLI.

CONDITION
VALUES
RETURNED

SS$_NQRMAL

UB$_STRTRU

UB$_FA TERRUB

UB$_1NSCUMEM

UB$_1NSVIRMEM

UB$_1NVSTRDES

UB$_1NVSYMNAM

UB$_NQCLI

UB$_NQSUCHSYM

UB$_UNECLIERR

LIB$GET_SVMBOL

Routine successfully completed.

Routine successfully completed; string truncated.
The destination string could not contain all the
characters in the symbol value.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Insufficient CU memory. The CU could not obtain
enough virtual memory to perform the function.
This may be caused by having too many symbols
defined. Deleting some symbol definitions may
relieve the situation.

Insufficient virtual memory. A call to UB$GET _ VM
has failed because your program has exceeded the
image quota for virtual memory.

Invalid string descriptor. A string descriptor has an
invalid value in its DSC$B_CLASS field.

Invalid symbol name. The symbol name contained
more than 255 characters or did not begin with a
letter or dollar sign ($).

No CU present. The calling process did not have
a CU to perform the function or the CU did not
support the request type. Note that an image run
as a subprocess or detached process does not
have a CU.

No such symbol. The symbol was not defined in
either the local or global symbol table.

Unexpected CU error. The CU returned an error
status which was not recognized. This error may
be caused by use of a nonstandard CU. If this error
occurs while using the DCL Command Language
Interpreter, please report the problem to DIGITAL
in a Software Performance Report (SPR).

LIB-221

LIB$GET_USERS_LANGUAGE

LI B$G ET_USERS_LANG UAG E Return the User's
Language

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-222

The Return the User's Language routine determines the user's choice of
a natural language. The choice is determined by translating the logical
SYS$LANGUAGE.

LIB$GET_USERS_LANGUAGE language

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

language
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the translation of SYS$LANGUAGE. The language argument is the
address of a descriptor pointing to this language name.

The LIB$GET_USERS_LANGUAGE routine translates the logical
SYS$LANGUAGE and returns the user's choice of a natural language. If
the logical SYS$LANGUAGE does not translate for some reason, then the
language defaults to English and the status LIB$_ENGLUSED is returned.

If a failure or truncation occurs while copying the language name to the
language string argument, that error status overrides the LIB$_ENGLUSED
or SS$_NORMAL status.

SS$_NORMAL

LIB$_ENGLUSED

Normal successful completion.

English used by default; unable to translate
SYS$LANGUAGE.

Any condition value returned by LIB$SCOPY_R_DX.

LIB$GET_VM

LIB$GET_VM Allocate Virtual Memory

FORMAT

RETURNS

ARGUMENTS

The Allocate Virtual Memory routine allocates a specified number of
contiguous bytes in the program region and returns the virtual address of
the first byte allocated.

LIB$GET_VM number-of-bytes, base-address [,zone-id}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

number-of-bytes
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes that LIB$GET_ VM allocates. The number-of
bytes argument is the address of a longword integer containing the number
of bytes. LIB$GET_ VM allocates enough memory to satisfy the request.
Your program should not reference an address before the first byte address
allocated (base-address) or beyond the last byte allocated (base-address +
number-of-bytes - 1) since that space may be assigned to another routine.
The value of number-of-bytes must be greater than zero.

base-address
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

First virtual address of the contiguous block of bytes allocated by
LIB$GET_ VM. The base-address argument is the address of an unsigned
longword containing this base address.

zone-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

The zone-id argument is the address of a longword that contains a zone
identifier created by a previous call to LIB$CREATE_ VM-20NE or
LIB$CREATE_USER_ VM_ZONE. This argument is optional. If zone-id
is omitted or if the longword contains the value 0, LIB$VM's default zone is
used.

LIB-223

LIB$GET_VM

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-224

LIB$GET_ VM satisfies an allocation request by reusing free memory in the
zone, or by obtaining additional memory from the processwide page pool
managed by LIB$GET_ VM_P AGE.

LIB$GET_ VM rounds up the value of number-of-bytes to a multiple of the
block-size specified for the zone. The first byte allocated is aligned on the
boundary specified by the alignment value for the zone.

If you specified allocation filling when you created the zone, LIB$GET_ VM
will fill each byte allocated. Otherwise, LIB$GET_ VM does not initialize the
memory and its contents are unpredictable.

All memory allocated by LIB$GET_ VM has user mode read/write access,
even if the call to LIB$GET_ VM was made from a more privileged access
mode.

The space allocated by successive calls to LIB$GET_ VM may be
noncontiguous because another routine can call LIB$GET_ VM between
your calls. If AST interrupts occur, LIB$GET_ VM may allocate space to
another routine between execution of any two statements in your program.
Even if successive calls to LIB$GET_ VM return two contiguous blocks, you
must not combine them into one large block that is freed by a single call to
LIB$FREE_ VM.

LIB$GET_ VM is fully reentrant, so it may be called by routines executing at
AST level or in an Ada multitasking environment.

Your program must retain the address of the allocated area. This allows you
to access or deallocate the space later.

If the zone you are getting was created using the
LIB$CREATE_USER_ VM-20NE routine, then you must have an
appropriate action routine for the get operation. That is, in your call to
LIB$CREATE_USER_ VM_ZQNE, you must have specified a user-get
routine.

SS$_NORMAL

LIB$_1NSVIRMEM

LIB$_BADBLOSIZ

LIB$_BADBLOADR

LIB$_PAGLIMEXC

Routine successfully completed.

Insufficient virtual memory. The request required
more dynamic memory than was available from the
operating system. No partial allocation is made in
this case.

Bad block size. The value of number-of-bytes
was less than or equal to zero. For the fixed size
blocks algorithm, LIB$_BADBLOSIZ can also be
generated if the value of algorithm-argument
specified in the call to LIB$CREATE_VM_ZONE is
less than number-of-bytes.

Invalid zone-id.

Allocation exceeds the zone's page-limit.

LIB$GET_VM_PAGE

LIB$GET_VM_PAGE Get Virtual Memory Page

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Get Virtual Memory Page routine allocates a specified number of
contiguous pages of memory in the program region and returns the virtual
address of the first page allocated.

LIB$GET_VM_PAGE number-of-pages ,base-address

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

number-of-pages
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of pages. The number-of-pages argument is the address of a
longword integer which specifies the number of contiguous pages to be
allocated. The value of number-of-pages must be greater than zero.

base-address
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Block address. The base-address argument is the address of a longword
which is set to the address of the first byte of the newly allocated block of
pages.

LIB$GET_VMJAGE allocates blocks of contiguous (512 byte) pages in the
program region. LIB$GET_ VMJ AGE manages a processwide pool of free
pages. If there are not enough contiguous free pages to satisfy an allocation
request, additional pages are created by calling the system service $EXPREG.
All memory allocated by LIB$GET_VMJAGE is page aligned; that is, the
low-order nine bits of the base address are zero.

All memory allocated by LIB$GET_ VMJ AGE has user-mode read/write
access, even if the call to LIB$GET_ VM_P AGE is made from a more
priveleged access mode.

The contents of memory allocated by LIB$GET_ VMJ AGE are unpredictable.
Your program must assign values to all locations that it uses.

LIB$GET_ VM_P AGE is designed for request sizes ranging from one page
to a few hundred pages. For very large request sizes (over 1000 pages in a
single request), you should call the system service $EXPREG.

LIB-225

LIB$GET_VM_PAGE

CONDITION
VALUES
RETURNED

LIB-226

LIB$GET_ VM_P AGE is fully reentrant, so it can be called by routines
executing at AST level or in an Ada multitasking environment.

SS$_NORMAL

LIB$_BADBLOSIZ

LIB$_1NSVIRMEM

Normal successful completion.

The value of the argument num_pages is less
than or equal to 0.

Insufficient virtual memory. The request required
more dynamic memory than was available from the
operating system. No partial allocation is made in
this case.

LIB$1CHAR

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$1CHAR

Convert First Character of String to
Integer

The Convert First Character of String to Integer routine converts the
first character of a source string to an 8-bit ASCII integer extended to a
longword.

LIB$1CHAR source-string

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

First character of the source string. This character is returned by LIB$ICHAR
as an 8-bit ASCII value extended to a longword. If the source string has zero
length, LIB$1CHAR returns a zero.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string whose first character is converted to an integer by LIB$ICHAR.
The scr-str argument is the address of a descriptor pointing to this source
string.

Although FORTRAN users can call LIB$ICHAR, it is more efficient to use the
FORTRAN intrinsic function ICHAR, which generates equivalent code in line.

None.

LIB-227

LIB$1CHAR

EXAMPLE

PROGRAM ICHAR(INPUT, OUTPUT);

{+}
{ This program demonstrates how to call LIB$ICHAR
{ to convert the first character of string to an
{ integer value.
{-}

FUNCTION LIB$ICHAR(SRCSTR VARYING [A] OF CHAR) INTEGER;
EXTERN;

{+}
{ Declare the variables to be used.
{-}

VAR
CHARS TR
RET_STATUS

{+}

VARYING [256] OF CHAR;
INTEGER;

{ Begin the main program. Read the character string,
{ call LIBN$ICHAR, and print the result.
{-}

BEGIN
WRITELN('Enter string: ');
READLN(CHARSTR);
RET_STATUS := LIB$ICHAR(CHARSTR);
WRITELN(RET_STATUS);

END.

LIB-22·8

The output generated by this Pascal program is as follows:

$ RUN !CHAR
Enter string:
Pencil sharpener

80
$ RUN !CHAR
Enter string:
pencil sharpener

112

Notice that this routine changes any uppercase characters to lowercase.

LIB$1NDEX

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Index to Relative Position of
Substring

LIB$1NDEX

The Index to Relative Position of Substring routine returns an index, which
is the relative position of the first occurrence of a substring in the source
string.

LI 8$1 N DEX source-string , sub-string

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The relative position of the first character of the substring if found, or zero if
not found.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be searched by LIB$1NDEX. The source-string argument is
the address of a descriptor pointing to this source string.

sub-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Substring to be found. The sub-string argument is the address of a descriptor
pointing to this substring.

The relative character positions returned by LIB$INDEX are numbered 1, 2,
... , n. Thus, zero means that the substring was not found.

If the substring has a zero length, LIB$INDEX returns the value l, indicating
success, no matter how long the source string is. If the source string has
a zero length and the substring has a nonzero length, zero is returned,
indicating that the substring was not found.

FORTRAN users may use the built-in INDEX function rather than calling
LIB$INDEX directly. '

LIB-229

LIB$1NDEX

CONDITION None.

VALUES
RETURNED

LIB-230

LIB$1NIT_DATE_ TIME_CONTEXT

LIB$1NIT_DATE_TIME_CQNTEXT Initialize

FORMAT

RETURNS

ARGUMENTS

the Context
Area Used in
Formatting
Dates and
Times for
Input or
Output

The Initialize the Context Area Used in Formatting Dates and Times for
Input or Output routine allows the user to initialize the context area used
by LIB$FORMAT_DATE_ TIME or LIB$CONVERT_DATE_STRING with
specific strings, instead of through logical name translation.

LIB$1NIT_DATE_ TIME_CONTEXT user-context
,component
,init-string

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

user-context
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword
that contains this context. The initial value of the context variable must be
zero. Thereafter, the user program must not write to the cell.

component
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

The component of the context that is being initialized. The component
argument is the address of a signed longword that indicates this component.
Only one component can be initialized per call to LIB$INIT_DATE_TIME;
these component codes are shown in the following list.

LIB-231

LIB$1NIT_DATE_ TIME_CONTEXT

DESCRIPTION

LIB-232

• LIB$K_MQNTH_NAME

• LIB$K_MONTH_NAME_ABB

• LIB$KJORMAT_MNEMONICS

• LIB$K_WEEKDAY_NAME

• LIB$K_WEEKDAY_NAME_ABB

• LIB$K_RELATIVE_DAY_NAME

• LIB$K_MERIDIAN _INDICATOR

• LIB$K_OUTPUTJORMAT

• LIB$K-1NPUT_FORMAT

in it-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The characters which are to be used in formatting dates and times for input
or output. The init-string argument is the address of a descriptor pointing to
this string.

The LIB$INIT_DATE_TIME_CONTEXT routine allows the user to initialize
the context area used by either LIB$CONVERT_DATE_STRING or
LIB$FORMAT_DATE_TIME with specific strings instead of through logical
name translations. This routine is therefore useful when the application is
formatting either input or output strings that are used only by other computer
applications and are not intended for presentation to users.

When an application initializes the context area using this routine, it is
expected that all required context information will be provided in this way.
In other words, it is not expected that some items will be initialized and other
items will be gathered through logical name translation.

Therefore, the minimum effort required to initialize the necessary format
strings would be a call to LIB$INIT_DATE_TIME_CQNTEXT specifying the
input or output format strings to be used. If the specified format requires
spelled items, such as month names or day names, then additional calls to
LIB$INIT_DATE_TIME_CONTEXT are required to provide the spellings of
these items.

The format of the strings used by this routine is as follows:

"[delim][string-1][delim][string-2][delim] ... [delim][string-n][delim]"

In this format, [delim] is any character that is not in any of the strings, and
[string-x] is the spelling of that instance of the component.

For example, a string passed to this routine to specify the English spellings of
the month names might be as follows:

"IJANIFEBIMARIAPRIMAYIJUN IJULIAUGISEPIOCTINOVIDECI"

LIB$1NIT_DATE_ TIME_CONTEXT

Note that the string starts and ends with a delimiter. Thus, there is one
more delimiter than there are string elements. Each type of component has a
natural number of elements associated. The string must contain exactly that
number of elements.

Month names (full or abbreviated) 12

Format mnemonics 9

Day names (full or abbreviated) 7

Relative day names 3

Meridian indicators 2

Output format strings 2

Input format string

In order to specify the input format mnemonics using
LIB$INIT_DATE_TIME_CONTEXT, the user must initialize the component
LIB$KJORMAT_MNEMONICS with the appropriate values. The following
table lists in order the 9 fields that must be initialized, along with their default
(English) values.

Order Format Field Legible Mnemonic (Defaults)

Year yyyy

2 Numeric month MM

3 Numeric day DD

4 Hours (12- or 24-hour) HH

5 Minutes MM

6 Seconds SS

7 Fractional seconds cc
8 Meridian indicator AM/PM

9 Alphabetic month MONTH

For example, the following would be a valid definition of
LIB$K_FQRMAT_MNEMONICS using Austrian as the natural language:

IJJJJIMMITTISSIMMISSIHHI IMONATI

To specify an output format using LIB$INIT_DATE_TIME_CONTEXT, the
user must initialize the variable LIB$K_OUTPUTJORMAT. There are two
elements associated with this output format string. One describes the date
format fields, the other the time format fields. The order in which they
appear in the string determines the order in which they are output. A single
space is inserted into the output stream between the two elements, if the call
to LIB$FORMAT_DATE_TIME specifies that both be output. For example:

"I !DB-!MAAU-!Y 41 !H04:!MO:!SO.!C21"

This output format string represents the format used by the $ASCTIM system
service for outputting times. Note that the middle delimiter is replaced by a
space in the resultant output.

A more detailed description of the format mnemonics used in these routines
is given in the introductory section of this manual.

LIB-233

LIB$1NIT_DATE_ TIME_CONTEXT

CONDITION
VALUES
RETURNED

LIB-234

SS$_NQRMAL

LIB$_NUMELEMENTS

LIB$_1LLINISTR

LIB$_UNRFORCOD

LIB$_1LLCOMPONENT

Normal successful completion.

Incorrect number of elements for the component.

Illegally formed init-string.

Unrecognized format code.

Illegal value for the component.

Any condition value returned by LIB$GET_ VM.

Any condition value returned by LIB$ANALYZE_SDESC.

LIB$1NIT_ TIMER

LIB$1NIT_TIMER Initialize Times and Counts

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

The Initialize Times and Counts routine stores the current values of
specified times and counts for use by LIB$SHQW _TIMER or
LIB$ST AT_ TIMER.

LIB$1NIT_ TIMER {context]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

context
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that retains the values of the times and counts. The context
argument contains the address of an unsigned longword that is this context.
When you call LIB$INIT_ TIMER, you must use the optional context argument
only if you want to maintain several sets of statistics simultaneously.

• If context is omitted, the control block is allocated in static storage. This
method is not AST reentrant.

• If context is zero, a control block is allocated in dynamic heap storage.
The times and counts will be stored in that block and the address of the
block returned in context. This method is fully reentrant and modular.

• If context is nonzero, it is considered to be the address of a control block
previously allocated by a call to LIB$INIT_TIMER. If so, the control block
is reused, and fresh times and counts are stored in it.

When LIB$INIT_TIMER returns, the block of storage referred to by context
will contain the times and counts.

LIB$INIT_TIMER stores the current values of specified times and counts in
one of three places, depending on the value of the optional context argument.

You need to call LIB$FREE_TIMER only if you have specified context in
LIB$INIT_TIMER and you wish to deallocate all heap storage resources.

LIB-235

LIB$1NIT_ TIMER

CONDITION
VALUES
RETURNED

LIB-236

SS$_NORMAL

LIB$_1NV ARG

LIB$_1NSVIRMEM

Routine successfully completed.

Invalid argument; context is nonzero and the block
to which it refers was not initialized on a previous
call to LIB$1NIT _TIMER.

Context is zero, and there is insufficient virtual
memory to allocate a storage block.

LIB$1NSERT_ TREE

LIB$1NSERT_TREE Insert Entry in a Balanced
Binary Tree

FORMAT

RETURNS

ARGUMENTS

The Insert Entry in a Balanced Binary Tree routine inserts a node in a
balanced binary tree.

LIB$1NSERT_ TREE treehead ,symbol ,flags
, user-compare-routine

VMS usage: cond_value

, user-allocation-procedure
,new-node {,user-data]

type: longword (signed)
access: write only
mechanism: by value

treehead
VMS usage: address
type: address
access: modify
mechanism: by reference

Tree head for the binary tree. The treehead argument is the address of a
longword that is this tree head. The initial value of treehead is 0.

symbol
VMS usage: user_arg
type: unspecified
access: unspecified
mechanism: unspecified

Key to be inserted.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Control flags. The flags argument is the address of the control flags.
Currently only bit zero is used.

Bit Description

0 If clear, the address of the existing duplicate entry is returned. If set,
duplicate entries are inserted.

LIB-237

LIB$1NSERT_ TREE

DESCRIPTION

LIB-238

user-compare-routine
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User-supplied compare routine that LIB$INSERT_TREE calls to compare a
symbol with a node. The user-compare-routine argument is the address of
the entry mask to the compare routine. The user-compare-routine argument
is required; LIB$1NSERT_ TREE calls the compare routine for every node
except the first node in the tree. The value returned by the compare routine
indicates the relationship between the symbol key and the node.

For more information on the compare routine, see "Call Format for a Compare
Routine" in the Description section below.

user-allocation-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User-supplied allocate routine that LIB$INSERT_TREE calls to allocate virtual
memory for a node. The user-allocation-procedure argument is the address
of the entry mask to the allocate routine. The user-allocation-procedure
argument is required; LIB$1NSERT_TREE always calls the allocate routine.

For more information on the allocate routine, see "Call Format for an Allocate
Routine" in the Description section below.

new-node
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Location where the new key is inserted. The new-node argument is the
address of an unsigned longword that is the address of the new node.

user-data
VMS usage: user_arg
type: unspecified
access: unspecified
mechanism: by value

User data that LIB$INSERT_TREE passes to the compare and allocate
routines. User-data is an optional argument.

This Description section contains three parts.

• Guidelines for using LIB$INSERT_TREE

• Call format for a compare routine

• Call format for an allocate routine

LIB$1NSERT_ TREE

Guidelines for Using LIB$1NSERT_ TREE

LIB$INSERT_TREE inserts a node in a balanced binary tree. You supply two
routines: compare and allocate. The compare routine compares the symbol
key to the node, and the allocate routine allocates virtual memory for the
node to be inserted. LIB$INSERT_ TREE first calls the compare routine to find
the location at which the new node is inserted. Then LIB$INSERT_TREE calls
the allocate routine to allocate memory for the new node. Most programmers
insert data in the new node by initializing it within the allocate routine as
soon as memory has been allocated.

You may pass the data to be inserted into the tree using either the symbol
argument alone or both the symbol and user-data arguments. The symbol
argument is required. It may contain all of the data, just the name of the
node, or the address of the data. If you decide to use symbol to pass just the
name of the node, you must use the user-arg argument to pass the rest of the
data to be inserted in the new node.

Call Format for a Compare Routine

The call format of a compare routine is as follows:

user-compare-routine symbol ,comparison-node [,user-data]

LIB$INSERT_TREE passes both the symbol and comparison-node arguments
to the compare routine, using the same passing mechanism that was used to
pass them to LIB$INSERT_TREE. The user-data argument is passed in the
same way, but its use is optional.

The user-compare-routine argument in the call to LIB$INSERT_ TREE
specifies the compare routine. This argument is required. LIB$1NSERT_TREE
calls the compare routine for every node except the first node in the tree.

The value returned by the compare routine is the result of comparing the
symbol key with the current node. Listed below are the possible values
returned by the compare routine.

Value

Negative

Zero

Positive

Description

symbol is less than the current node

symbol is equal to the current node

symbol is greater than the current node

This is an example of a user-supplied compare routine written in BASIC.

FUNCTION LONG Compare_node (
STRING Key_string,
Node_type Node,
LONG Dummy)

!+
! This function compares the string described by Key_string with

the string contained in the data node Node, and returns 0
if the strings are equal, -1 if Key_string is < Node, and

! 1 if Key_string > Node.
!-

OPTION TYPE = EXPLICIT

&
&
&

LIB-239

LIB$1NSERT_ TREE

LIB-240

RECORD Node_type
BYTE. Header (9)
BYTE Length
STRING Text = 80

END RECORD Node_type

DECLARE STRING Node_string
!+
! Return the result of the comparison.
!-

Header
Length
String

Node_string = SEG$ (Node: :Text, 1, Node: :Length)

SELECT Key_string
CASE < Node_string

Compare_node = -1%
CASE > Node_string

Compare_node = 1%
CASE ELSE

Compare_node = 0%
END SELECT

END FUNCTION

Call Format for an Allocate Routine

LIB$INSERT_TREE calls the allocate routine to allocate virtual memory for a
node. The allocate routine then stores the value of user-data in the field of
the allocated node.

The format of the call is as follows:

user-allocation-procedure symbol ,new-node [,user-data]

LIB$INSERT_TREE passes the symbol, new-node, and user-data arguments
to your allocate routine, using the same passing mechanisms that were used
to pass them to LIB$INSERT_TREE. Use of user data is optional.

A node header appears at the beginning of each node. The following figure
illustrates the structure of a node header.

Left link (4 bytes)

Right link (4 bytes)

l reserved (2 bytes)

ZK-1926-84

Therefore, any node you declare that LIB$INSERT_TREE manipulates must
contain 10 bytes of reserved data at the beginning for the node header.

How a node is structured depends on how you allocate your user data. You
can allocate data in one of two ways:

1 Your data immediately follows the node header. In this case your
allocation routine must allocate a block equal in size to the sum of
your data plus 10 bytes for the node header.

LIB$1NSERT_ TREE

Left link (4 bytes)

Right link (4 bytes)

l reserved (2 bytes)

User data (variable)

ZK-1927-84

2 The node contains the 10 bytes of header information and a longword
pointer to the user data.

Left link (4 bytes)

Right link (4 bytes)

address of data reserved (4 bytes)

address of data (2 bytes)

ZK-1928-84

The user-allocation-procedure argument in the call to LIB$INSERT_TREE
specifies the allocate routine. This argument is required. LIB$INSERT_ TREE
always calls the allocate routine.

This is an example of a user-supplied allocate routine written in BASIC.

FUNCTION LONG Alloc_node (
STRING Key_string,
LONG Ret_addr,
LONG Dummy)

!+
! Allocate virtual memory for a new node. KEY_STRING

is a descriptor of the string to enter into the newly
allocated node. RET_ADDR will contain the address

!-

!+

of the allocated memory.

OPTION TYPE = EXPLICIT

DECLARE LONG Status_code

EXTERNAL LONG FUNCTION LIB$GET_VM

EXTERNAL SUB LIB$MOVC3

! Allocate node: 10 for header, 1 for length plus length of string
!-

Status_code = LIB$GET_VM (10% + LEN (Key_string) + 1%. Ret_addr)
CALL LIB$STOP (Status_code) IF (Status_code AND 1%) <> 1%

&
&
&

LIB-241

LIB$1NSERT_ TREE

!+
! Store key string length in byte 11 of node. Note that LIB$MOVC3
! accepts its arguments by reference.
!-

CALL LIB$MOVC3 (1%, LEN (Key_string), (Ret_addr + 10%) BY VALUE)
!+
! Store key string in bytes 12:n of node.
!-

CALL LIB$MOVC3 (LEN (Key_string), Key_string BY REF, &
(Ret_addr + 11%) BY VALUE)

Alloc_node = 1%

END FUNCTION

CONDITION
VALUES
RETURNED

LIB$_NORMAL

LIB$_KEY ALRINS

Routine successfully completed.

Routine successfully completed, but a key was
found in the tree. A new key was not inserted.

LIB$_1NSVIRMEM

EXAMPLE

1 %TITLE 'LIB$ Tree Example In BASIC V2'
%SBTTL 'Main Program'

I+

Insufficient virtual memory. A call to LIB$GET_VM
has failed because your program's virtual memory
requirements have exceeded either your process
quota (PGFLQUOT A) or the system parameter
VIRTUALPAGCNT.

This program will ask the user to enter a series of strings,
one per line. The user will them be permitted to query the
program to find strings that were previously entered. At the
end, the entire tree will be displayed, along with the sequence
number that indicates the order in which the element was entered.

This program should serve as an example of the use of LIB$INSERT_TREE,
LIB$LOOKUP_TREE and LIB$TRAVERSE_TREE.

!-

OPTION TYPE = EXPLICIT

DECLARE INTEGER CONSTANT True -1

COMMON STRING Text_line = 80

DECLARE LONG
Tree_head

,New_node
,Status_ code
,Counter

RECORD Tree_element
LONG Seq_num
LONG Text_len
STRING Text = 80

END RECORD Tree_element

LIB-242

Everything must be declared

Useful named constant

Allocate static line buff er

Some variables
Head for the tree
New node after insert
Return status code
Sequence number

&
&
&
&

Define the structure of our
record. This record could
contain many useful data items

LIB$1NSERT_ TREE

DECLARE Tree_element Rec ! Declare an instance of the record

Function to insert node

Routine to walk tree

Routine to find a node

EXTERNAL LONG FUNCTION LIB$INSERT_TREE

EXTERNAL SUB LIB$TRAVERSE_TREE

EXTERNAL LONG FUNCTION LIB$LOOKUP_TREE

EXTERNAL SUB LIB$STOP Routine to signal fatal error

EXTERNAL LONG
Compare_node_2

,Compare_node_3
,Alloc_node
,Print_node

EXTERNAL LONG CONSTANT LIB$_KEYNOTFOU

!+

Routine entry points
Compare entry (2 arg)
Compare entry (3 arg)
Allocation entry
Print entry for walk

Key not found

! Initialize the tree to null and open the terminal for I/0.
!-
Tree_head = 0%

OPEN 'SYS$INPUT' AS FILE #1

PRINT 'Enter one word per line, ~z to begin searching the tree'

ON ERROR GOTO Input_EOF ! Establish error handler

10 !+
! Loop, reading lines of text until the end of the file.
!-

Counter = 0
WHILE True

LINPUT #1, '> '; Text_line
Counter = Counter + 1
Rec: :Seq_Num =Counter
Rec: :Text_len = LEN(TRM$(Text_line))
Rec: :Text = TRM$(Text_line)

&
&
&
&

Status_code = LIB$INSERT_TREE (! Insert entry into the tree &
Tree_head, Rec, 1%, &
Compare_node_3, Alloc_node, New_node)

CALL LIB$STOP (Status_code BY VALUE) IF (Status_code AND 1%) <> 1%
NEXT

20 !+
! End of file encountered. Begin searching the tree.
!-

PRINT
PRINT "You will now be prompted for words to find. Enter one per line."
Rec: :Seq_num = -1%
WHILE True

NEXT

PRINT
LINPUT #1%, 'Word to find? '; Text_line
Rec: :Text_len = LEN(TRM$(Text_line))
Rec: :Text = TRM$(Text_line)
Status_code = LIB$LOOKUP_TREE (Tree_head, Rec, Compare_Node_2, New_node)
IF Status_code = LIB$_KEYNOTFOU
THEN

PRINT "The word you entered does not appear in the tree"
ELSE

CALL Display_Node (New_node BY VALUE)
END IF

LIB-243

LIB$1NSERT_ TREE

30
!+
! The user has finished searching the tree for specific items. It
! is now time to traverse the entire tree.
!-

PRINT
PRINT "The following is a dump of the tree. Notice that the words"
PRINT "are in alphabetical order"

CALL LIB$TRAVERSE_TREE (Tree_head, Print_node, 0% BY VALUE)

GOTO End_of _program

Input_EOF:

!+
! This is the handler for an exception from INPUT.
!-

IF ERR = 11
THEN

! End of file

ELSE

SELECT ERL
CASE 10

RESUME 20
CASE 20

RESUME 30
CASE ELSE

ON ERROR GO BACK
END SELECT

ON ERROR GO BACK
END IF

End_of_program:

!+
! This is the end of the program.
!-

END

No more input, begin searching tree

No more items to search for, traverse
tree

Resignal the error

Resignal the error

%TITLE 'LIB$ Tree Example in BASIC V2'
%SBTTL 'Function to print a node during tree traversal'

100 FUNCTION LONG Print_node (Node_type Node, LONG Dummy)

!+
! Print the string contained in the current node.
!-

OPTION TYPE = EXPLICIT

RECORD Node_type
BYTE Header (9)
LONG Seq_Num
LONG Length
STRING Text = 80

END RECORD Node_type

PRINT Node: :Seq_Num, SEG$

Print_node = 1%
END FUNC.TION

LIB-244

Header
Sequence number
Length
String

(Node: :Text, 1%, Node: :length)

LIB$1NSERT_ TREE

%TITLE 'LIB$ Tree Example in BASIC V2'
%SBTTL 'Function to allocate VM for a node'

200 FUNCTION LONG Alloc_node (

!+

Tree_ element
LONG
LONG

Rec,
Ret_addr,
Dummy)

! Allocate virtual memory for a new node. Rec is the
data record to be entered into the newly

!-

allocated node. RET_ADDR will contain the address
of the allocated memory.

OPTION TYPE = EXPLICIT

&
&
&

RECORD Tree_element
LONG Seq_num
LONG Text_len

Define the structure of our
record. This record could
contain many useful data items

!+

STRING Text = 80
END RECORD Tree_element

DECLARE LONG Status_code, Data_len

EXTERNAL LONG FUNCTION LIB$GET_VM

EXTERNAL SUB LIB$MOVC3

! Calculate the length of our data.
!-

Data_len = 8% + Rec: :Text_len

!+
! Allocate node: 10 for header, plus the length of our data.
!-

Status_code = LIB$GET_VM (10% + Data_len, Ret_addr)
CALL LIB$STOP (Status_code) IF (Status_code AND 1%) <> 1%

!+
! Store the data in the newly allocated virtual memory. Note
! that we pass the first field by reference, which is the same

as passing the address of the entire record. We add 10 to the
address of the VM and pass the result by value so LIB$MOVC3
receives the address that marks the beginning of our data in
the node.

!-

CALL LIB$MOVC3 (Data_Len, Rec: :Seq_Num, (Ret_addr + 10%) BY VALUE)

Alloc_node = 1%

END FUNCTION

%TITLE 'LIB$ Tree Example in BASIC V2'
%SBTTL 'Function to compare two nodes'

300 FUNCTION LONG Compare_node_3 (

OPTION TYPE = EXPLICIT

Tree_ element
Node_ type
LONG

Rec,
Node,
Dummy)

&
&
&

LIB-245

LIB$1NSERT_ TREE

RECORD Tree_element
LONG Seq_num
LONG Text_len
STRING Text = 80

END RECORD Tree_element

RECORD Node_type
BYTE Header (9)
LONG Seq_Num
LONG Length
STRING Text = 80

END RECORD Node_type

Define the structure of our
record. This record could
contain many useful data items

Header
Sequence number
Length
String

EXTERNAL LONG FUNCTION Compare_node_2

!+
! Call the 2 argument version of the compare routine.
!-

Compare_node_3 Compare_node_2 (Rec, Node)

END FUNCTION

310 FUNCTION LONG Compare_node_2

!+

Tree_ element
Node_ type

Rec,
Node)

! This function compares the string described by Key_string with
the string contained in the data node Node, and returns 0
if the strings are equal, -1 if Key_string is < Node, and
1 if Key_string > Node.

!-

OPTION TYPE = EXPLICIT

&
&

RECORD Tree_element
LONG Seq_num
LONG Text_len

Define the structure of our
record. This record could
contain many useful data items

STRING Text = 80
END RECORD Tree_element

RECORD Node_type
BYTE Header (9)
LONG Seq_Num
LONG Length
STRING Text = 80

END RECORD Node_type

DECLARE STRING Node_string, Key_string

!+
! Return the result of the comparison.
!-

Header
Sequence number
Length
String

Node_string = SEG$ (Node: :Text, 1, Node: :Length)
Key_string = SEG$ (Rec: :Text, 1, Rec: :Text_len)

SELECT Key_string
CASE < Node_string

Compare_node_2 -1%
CASE > Node_string

Compare_node_2 1%
CASE ELSE

Compare_node_2 = 0%
END SELECT

END FUNCTION

LIB-246

LIB$1NSERT_ TREE

%TITLE 'LIB$ Tree Example in BASIC V2'
%SBTTL 'Function to display node data'

400 SUB Display_node (&

!+

!-

Node_type Node)

This routines prints the data into the node of the tree
once LIB$LOOKUP_TREE has been called to find the node

RECORD Node_type
BYTE Header (9)
LONG Seq_Num
LONG Length
STRING Text = 80

END RECORD Node_type

Header
Sequence number
Length
String

DECLARE STRING Node_string

Node_string = SEG$ (Node: :Text, 1, Node: :Length)

PRINT "The sequence number for"; '"';Node_string; '"';"is ";Node: :Seq_num

END SUB

This BASIC example illustrates the use of LIB$INSERT_TREE,
LIB$LOOKUP_TREE, and LIB$TRAVERSE_TREE.

The output generated by this program is as follows:

$ run tree
Enter one word per line, ~z to begin searching the tree
> apple
> orange
> peach
> pear
> grapefruit
> lemon
> icTRL/ZI

You will now be prompted for words to find. Enter one per line.

Word to find? lime
The word you entered does not appear in the tree

Word to find? orange
The sequence number for "orange" is 2

Word to find? lcrnL/zl

The following is a dump of the tree. Notice that the words
are in alphabetical ·order

1 apple
5 grapefruit
6 lemon
2 orange
3 peach
4 pear

$

LIB-247

LIB$1NSQHI

LIB$1NSQHI

FORMAT

RETURNS

ARGUMENTS

LIB-248

Insert Entry at Head of Queue

The Insert Entry at Head of Queue routine inserts a queue entry at the
head of the specified self-relative interlocked queue. LIB$1NSQHI makes
the VMS INSOHI instruction available as a callable routine.

LIB$1NSQHI entry ,header {,retry-count]

VMS usage: cond_value
type: longword {unsigned)
access: write only
mechanism: by value

entry
VMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference, array reference

Entry to be inserted by LIB$INSQHI. The entry argument contains the
address of this signed quadword-aligned array that must be at least eight
bytes long. Bytes following the first eight bytes can be used for any purpose
by the calling program.

header
VMS usage: quadword_signed
type: quadword integer {signed)
access: modify
mechanism: by reference

Queue header specifying the queue into which entry is to be inserted. The
header argument contains the address of this signed aligned quadword
integer. Header must be initialized to zero before first use of the queue; zero
means an empty queue.

retry-count
VMS usage: longword_unsigned
type: longword {unsigned)
access: read only
mechanism: by reference

The number of times the insertion is to be retried in case of secondary
interlock failure of the queue instruction in a processor-shared memory
application. The retry-count argument is the address of an unsigned
longword that contains the retry count value. A value of 1 causes no retries.
The default value is 10.

DESCRIPTION

CONDITION
VALUES
RETURNED

EXAMPLES

LIB$1NSOHI

The queue into which LIB$INSQHI inserts an entry can be in process-private,
processor-private, or processor-shareable memory to implement per-process,
per-processor, or across-processor queues.

A queue is a doubly linked list. A Run-Time Library routine specifies a queue
entry by its address. Two longwords, a forward link and a backward link,
define the location of the entry in relation to the preceding and succeeding
entries.

A self-relative queue is a queue in which the links between entries are
displacements; the two longwords represent the displacements of the current
entry's predecessor and successor. The VMS instructions INSQHI, INSQTI,
REMQHI, and REMQTI allow you to insert and remove an entry at the head
or tail of a self-relative queue. Each queue instruction has a corresponding
Run-Time Library routine.

The self-relative queue instructions are interlocked and cannot be interrupted,
so that other processes cannot insert or remove queue entries while the
current program is doing so. Since the operation requires changing two
pointers at the same time, a high-level language cannot perform this operation
without calling the Run-Time Library queue Access Routines.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on
a single processor or in a multiprocessor environment. The queue Access
routines are also useful in an AST environment; they allow you to add or
remove an entry from a queue without being interrupted by an asynchronous
system trap.

SS$_NORMAL

Ll8$_0NEENTQUE

Ll8$_SECINTFAI

Routine successfully completed. The entry was
added to the front of the queue, and the resulting
queue contains more than one entry.

Routine successfully completed. The entry was
added to the front of the queue, and the resulting
queue contains one entry.

A secondary interlock failure occurred; the insertion
was attempted the number of times specified by
retry-count. This is a severe error. The queue is
not modified. This condition can occur only when
the queue is in memory being shared between two
or more process~rs.

iJ INTEGER*4 FUNCTION INSERT_Q (QENTRY)
COMMON/QUEUES/QHEADER
INTEGER*4 QENTRY(10), QHEADER(2)
INSERT_Q = LIB$INSQHI (QENTRY, QHEADER)
RETURN
END

This is a FORTRAN application using processor-shared memory.

LIB-249

LIB$1NSQHI

COM (QUEUES) QENTRY%(9), QHEADER%(1)
EXTERNAL INTEGER FUNCTION LIB$INSQHI
IF LIB$INSQHI (QENTRY%() BY REF, QHEADER%() BY REF) AND 1%

THEN GOTO 1000

1000 REM INSERTED OK

LIB-250

In BASIC and FORTRAN, queues can be quadword aligned in a named
COMMON block by using a linker option file to specify PSECT alignment.
The Run-Time Library routine LIB$GET_ VM returns memory that is
quadword aligned. Therefore, you should use LIB$GET_ VM to allocate
the virtual memory for a queue. For instance, to create a COMMON block
called QUEUES, use the LINK command with the FILE/OPTIONS qualifier,
where FILE.OPT is a linker option file containing the line:

PSECT = QUEUES, QUAD

LIB$1NSQTI

FORMAT

RETURNS

ARGUMENTS

LIB$1NSQTI

Insert Entry at Tail of Queue

The Insert Entry at Tail of Queue routine inserts a queue entry at the tail of
the specified self-relative interlocked queue. LIB$1NSOTI makes the VAX
INSQTI instruction available as a callable routine.

LIB$1NSQTI entry ,header {,retry-count}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

entry
VMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference, array reference

Entry to be inserted at the tail of the queue by LIB$INSQTI. The entry
argument contains the address of this signed quadword-aligned array that
must be at least eight bytes long. Bytes following the first eight bytes can be
used for any purpose by the calling program.

header
VMS usage: quadword_signed
type: quadword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue into which the queue entry is to be
inserted. The header argument contains the address of this signed aligned
quadword integer. Header must be initialized to zero before first use of the
queue; zero means an empty queue.

retry-count
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the insertion is to be retried in case of secondary
interlock failure of the queue instruction in a processor-shared memory
application. The retry-count argument is the address of a longword which
contains the retry count value. The default value is 10.

LIB-251

LIB$1NSQTI

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-252

The queue into which LIB$INSQTI inserts an entry can be in process-private,
processor-private, or processor-shareable memory to implement per-process,
per-processor, or across-processor queues.

A queue is a doubly linked list. A Run-Time Library routine specifies a queue
entry by its address. Two longwords, a forward link and a backward link,
define the location of the entry in relation to the preceding and succeeding
entries.

A self-relative queue is a queue in which the links between entries are
displacements; the two longwords represent the displacements of the current
entry's predecessor and successor. The VAX instructions INSQHI, INSQTI,
REMQHI, and REMQTI allow you to insert and remove an entry at the head
or tail of a self-relative queue. Each queue instruction has a corresponding
Run-Time Library routine.

The self-relative queue instructions are interlocked and cannot be interrupted,
so that other processes cannot insert or remove queue entries while the
current program is doing so. Since the operation requires changing two
pointers at the same time, a high-level language cannot perform this operation
without calling the Run-Time Library queue access routines.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on
a single processor or in a multiprocessor environment. The queue Access
routines are also useful in an AST environment; they allow you to add or
remove an entry from a queue without being interrupted by an asynchronous
system trap.

SS$_NORMAL

LIB$_0NEENTOUE

LIB$_SECINTFAI

Routine successfully completed. The entry was
added to the tail of the queue: the resulting queue
contains more than one entry.

Routine successfully completed. The entry was
added to the tail of the queue: the resulting queue
contains one entry.

A secondary interlock failure occurred; the insertion
was attempted the number of times specified by
retry-count. This is a severe error. The queue is
not modified. This condition can occur only when
the queue is in memory being shared between two
or more processors.

LIB$1NSV

FORMAT

RETURNS

ARGUMENTS

LIB$1NSV

Insert a Variable Bit Field

The Insert a Variable Bit Field routine replaces the variable bit field
specified by the base, position, and size arguments with bits 0 through
(size - 1) of the source field. If the size of the bit field is zero, nothing is
inserted. LIB$1NSV makes the VAX INSV instruction available as a callable
routine.

LI 8$1 NSV longword-integer-source ,position ,size
,base-address

None.

longword-integer-source
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Source field to be inserted by LIB$INSV. The longword-integer-source
argument is the address of a signed longword integer that contains this source
field.

position
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Bit position relative to the base address where insertion of longword-integer
source is to begin. The position argument is the address of a longword
integer that contains this relative bit position.

size
VMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field to be inserted by LIB$1NSV. The size argument is the
address of an unsigned byte which contains the size of this bit field. The
maximum size is 32 bits.

LIB-253

LIB$1NSV

CONDITION
VALUE
SIGNALED

EXAMPLES

base-address
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Field into which LIB$INSV writes the source field. The base-address
argument is an unsigned longword containing the base address of this aligned
bit string.

SS$_ROPRAND A reserved operand fault is signaled if a size
greater than 32 is specified.

D INTEGER*4 COND _VALUE
CALL LIB$INSV (4, 0, 3, COND_VALUE)

This example shows how to set bits 0 through 2 of longword COND_ VALUE
to the value 4 in FORTRAN.

DECLARE INTEGER COND_VALUE
CALL LIB$INSV (4%, 0%, 3%, COND_VALUE)

LIB-254

This example uses BASIC to set bits 0 through 2 of longword COND_VALUE
to the value 4.

LIB$1NT_QVER

LI 8$1 NT_QVER Integer Overflow Detection

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

The Integer Overflow Detection routine enables or disables integer
overflow detection for the calling routine activation. The previous integer
overflow enable setting is returned.

LIB$1NT_OVER new-setting

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Old integer overflow enable setting (the previous contents of
SF$W_pSW[PSW$V_IV] in the caller's frame).

new-setting
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New integer overflow enable setting. The new-setting argument is the
address of an unsigned longword which contains the new integer overflow
enable setting. Bit 0 set to 1 means enable, bit 0 set to 0 means disable.

The caller's stack frame will be modified by this routine.

LIB$INT_OVER affects only the current routine activation and does not
affect any of its callers or any routines that it may call. However, the setting
remains in effect for any routines which are subsequently entered through a
JSB entry point.

None.

LIB-255

LIB$1NT_OVER

EXAMPLE

INTOVF: ROUTINE OPTIONS (MAIN);

DECLARE LIB$INT_OVER ENTRY (FIXED BINARY (7)) /* Address of byte for
/* enable/disable
/* setting */

RETURNS (FIXED BINARY (31)); /*Old setting */

DECLARE DISABLE FIXED BINARY (7) INITIAL (0) STATIC READONLY;

DECLARE (A,B) FIXED BINARY (7);

ON FIXEDOVERFLOW PUT SKIP LIST ('Overflow');

A = 127;
B = A + 2;
PUT LIST ('In MAIN');

BEGIN;

DECLARE RESULT FIXED BINARY (31);

/* Disable recognition of integer overflow in this block

RESULT= LIB$INT_OVER (DISABLE);

B = A + 2;
PUT SKIP LIST ('In BEGIN block');

CALL Q;

Q: routine;
B = A + 2;
PUT LIST ('In Q');
END Q;

END /* Begin */;

END INTOVF;

LIB-256

This PL/I routine shows how to use LIB$INT_QVER to enable or disable the
detection of integer overflow. Note that in PL/I integer overflow is always
enabled unless explicitly overridden by a call to this routine. However,
disabling integer overflow is only effective for the block which calls this
routine; descendent blocks are unaffected. The output generated by this PL/I
program is as follows:

In MAIN
In BEGIN block
Overflow In Q

LIB$LEN

LI B$LEN Length of String Returned as Longword
Value

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

The Length of String Returned as Longword Value routine returns the
length of a string.

LIB$LEN source-string

VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by value

Length of the source string, extracted and zero-extended to 32 bits.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string whose length is returned by LIB$LEN. The source-string
argument contains the address of a descriptor pointing to this source string.

The maximum length of a VMS string is 65 ,535 characters.

The BASIC and FORTRAN intrinsic function LEN generates equivalent in-line
code at run time. Therefore, it is more efficient for BASIC and FORTRAN
users to use the intrinsic function LEN than to call LIB$LEN.

If you need both the length of the string and the address of its first byte, you
should use LIB$ANAL YZE_SDESC instead.

CONDITION None.

VALUES
RETURNED

LIB-257

LIB$LOCC

LIB$LOCC

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-258

Locate a Character

The Locate a Character routine locates a character in a string by comparing
successive bytes in the string with the character specified. The search
continues until the character is found or the string has no more characters.
LIB$LOCC makes the VAX LOCC instruction available as a callable routine.

LIB$LOCC character-string ,source-string

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The relative position from the start of source-string to the first equal character
or zero if no match is found.

character-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String whose initial character is used by LIB$LOCC in the search. The
character-string argument contains the address of a descriptor pointing to
this string. Only the first character of character-string is used, and its length
is not checked.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String to be searched by LIB$LOCC. The source-string argument is the
address of a descriptor pointing to this character string.

LIB$LOCC returns the position of the first equal character relative to the start
of the source string as an index. An index is the relative position of the first
occurrence of a substring in the source string. If no character matches, or if
the string has a length of zero, then a zero is returned, indicating that the
character was not found.

None.

LIB$LOCC

EXAMPLES

D IDENTIFICATION DIVISION.
PROGRAM-ID. LIBLOC.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01

01
01
01

SEARCH-STRING

SEARCH-CHAR
IND-POS
DISP-IND

PIC X(26)
VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
PIC X.
PIC 9(9) USAGE IS COMP.
PIC 9(9).

ROUTINE DIVISION.

001-MAIN.
MOVE SPACE TO SEARCH-CHAR.
DISPLAY II "·

DISPLAY "ENTER SEARCH CHARACTER: " WITH NO ADVANCING.
ACCEPT SEARCH-CHAR.
CALL "LIB$LOCC"

USING BY DESCRIPTOR SEARCH-CHAR, SEARCH-STRING
GIVING IND-POS.

IF IND-POS = ZERO
DISPLAY

"CHAR ENTERED (" SEARCH-CHAR ") NOT A VALID SEARCH CHAR"
STOP RUN.

MOVE IND-POS TO DISP-IND.
DISPLAY

"SEARCH CHAR (" SEARCH-CHAR ") WAS FOUND IN POSITION "
DISP-IND.

GO TO 001-MAIN.

This COBOL program accepts a character as input and returns as output the
character's position in a search string. The output generated by this COBOL
program is as follows:

$ RUN LIBLOC
ENTER SEARCH CHARACTER: X
SEARCH CHAR (X) WAS FOUND IN POSITION 000000024

ENTER SEARCH CHARACTER: Y
SEARCH CHAR (Y) WAS FOUND IN POSITION 000000025

ENTER SEARCH CHARACTER: B
SEARCH CHAR (B) WAS FOUND IN POSITION 000000002

ENTER SEARCH CHARACTER: b
CHAR ENTERED (b) NOT A VALID SEARCH CHAR
$

Notice that uppercase and lowercase letters are not considered equal.

LIB-259

LIB$LOCC

10 !+
! This is an BASIC program demonstrating the
! use of LIB$LOCC.
!-

EXTERNAL INTEGER FUNCTION LIB$LOCC
I% = 0
CHARSTR$ = 'DAY'
SRCSTR$ = 'ONE DAY AT A TIME'
I% = LIB$LOCC(CHARSTR$, SRCSTR$)
PRINT I%

90 END

LIB-260

This BASIC example also illustrates the use of LIB$LOCC. The output
generated by this BASIC program is "5".

LIB$LOOKUP_KEY

LIB$LOOKUP._KEY Look Up Keyword in Table

FORMAT

RETURNS

ARGUMENTS

The Look Up Keyword In Table routine scans a table of keywords to
find one that matches the keyword or keyword abbreviation specified by
search-string.

LIB$LOOKUP _KEY search-string ,key-table-array
[,key-value} [,keyword-string}
[,resultant-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

search-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String for which LIB$LOOKUPJEY will search in the keyword table. The
search-string argument is the address of a descriptor pointing to this string.

key-table-array
VMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference, array reference

Keyword table. The key-table-array argument contains the address of an
array that is this keyword table.

key-value
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Value of the keyword found by LIB$LOOKUP_KEY. The key-value argument
contains the address of an unsigned longword that is this keyword value.
LIB$LOOKUP_KEY writes the address of this unsigned longword into key
value.

LIB-261

LIB$LOOKUP_KEY

DESCRIPTION

LIB-262

keyword-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Full keyword match. The keyword-string argument contains the address of
a descriptor pointing to the keyword string. LIB$LOOKUP_KEY writes the
address of this descriptor into keyword~string if the full keyword is matched.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters in the keyword, independent of padding. The
resultant-length argument is the address of an unsigned word integer that
contains the number of characters in the keyword. LIB$LOOKUP_KEY writes
the address of this signed word integer into resultant-length.

LIB$LOOKUP_KEY is intended to help programmers to write utilities that
have command qualifiers with values.

LIB$LOOKUP_KEY locates a matching keyword or keyword abbreviation by
comparing the first n characters of each keyword in the keyword table with
the supplied string, where n is the length of the supplied string.

When a keyword match is found, the following information is optionally
returned to the caller.

• The longword value associated with the matched keyword

• The full keyword string (any descriptor type)

An exact match is found if the length of the keyword found is equal to the
length of the supplied string.

If an exact keyword match is found, no further processing is performed, and
a normal return status is returned to the caller. Otherwise, after a match has
been found, the rest of the keyword table is scanned. If an additional match
is found, a "not enough characters" return status is returned to the caller.
If the keyword table contains a keyword that is an abbreviation of another
keyword in the table, an exact match can occur for short abbreviations.

See Figure LIB-5 for the structure of the keyword table, which the calling
program creates for this routine.

CONDITION
VALUES
RETURNED

LIB$LOOKUP_KEY

Figure LIB-5 Keyword Table

vector

vector-count

address of keyword string

associated keyword value

'~
keyword string

~ cou nted-ASC 11-stri ng J
ZK-1976-84

Vector-count is the number of longwords that follow, and counted-ASCII
string starts with a byte that is the unsigned count of the number of ASCII
characters that follow.

Because of the format of the keyword table, this routine cannot be called
easily from high-level languages. The examples show how to use a macro,
$LIB-1<EY_ TABLE, to construct a keyword table from MACRO or BLISS. A
separate example shows how a table could be constructed in FORTRAN.

Use of the $LIB-1<EY_TABLE macro results in data that is not position
independent code (PIC). If your application requires PIC data, you must fill
in the address of the keyword strings at execution time. See the FORTRAN
example for a demonstration of this technique.

SS$_NORMAL

Ll8$_AMBKEY

Ll8$_1NV ARG

L18$_1NSVIRMEM

LIB$_STRTRU

LIB$_UNRKEY

Routine successfully completed. A unique keyword
match was found.

Multiple keyword match found. Not enough
characters were specified to allow a unique match.

Invalid arguments, not enough arguments, and/or
bad keyword table.

Insufficient virtual memory to return keyword
string. This is only possible if keyword-string is a
dynamic string.

String truncated.

The keyword you specified does not appear in the
keyword table you specified.

LIB-263

LIB$LOOKUP_KEY

EXAMPLES

D KEYTABLE:
$LIB_KEY_TABLE < -

<ADD, 1>, -
<DELETE, 2>, -
<EXIT, 3»

This MACRO fragment defines a keyword table named KEYTABLE containing
the three keywords ADD, DELETE, and EXIT with associated keyword values
of 1, 2, and 3, respectively.

The $LIB_KEY_TABLE macro is supplied in the default macro library
SYS$LIBRARY:STARLET.MLB. Because this library is automatically searched
by the assembler, you do not have to specify it in the DCL command
MACRO.

~ LIBRARY 'SYS$LIBRARY:STARLET.L32';

OWN
KEYTABLE: $LIB_KEY_TABLE

(ADD, 1),
(DELETE, 2),
(EXIT, 3));

This BLISS code fragment specifies that SYS$LIBRARY:STARLET.L32 is to be
searched to resolve references. It defines a keyword table named KEYTABLE
containing the three keywords ADD, DELETE, and EXIT with associated
keyword values of 1, 2, and 3, respectively.

The $LIB_KEY_TABLE macro is supplied in the BLISS library
SYS$LIBRARY:STARLET.L32 and in the BLISS require file
SYS$LIBRARY:STARLET.REQ. BLISS does not automatically search either
of these files so you must explicitly cause them to be searched by including
the appropriate LIBRARY or REQUIRE statement in your module. You should
use the precompiled library because it is more efficient for the compiler.

eJ PARAMETER (
1 MAXKEYSIZE = 6, ! Maximum keyword size
2 NKEYS = 3) ! Number of keywords

BYTE KEYWORDS (MAXKEYSIZE+1, NKEYS)
INTEGER*4 KEYTABLE (O:NKEYS*2) ·
DATA KEYWORDS I

1 3, 'A', 'D', 'D',' ',' ',' ', Counted ASCII 'ADD'
2 6, 'D', 'E', 'L', 'E', 'T', 'E', Counted ASCII 'DELETE'
3 4, 'E', 'X', 'I', 'T',' ',' '/ Counted ASCII 'EXIT'

KEYTABLE(O) = NKEYS*2
KEYTABLE(1) = %LOC(KEYWORDS(1,1))
KEYTABLE(2) = 1
KEYTABLE(3) = %LOC(KEYWORDS(1,2))
KEYTABLE(4) = 2
KEYTABLE(5) = %LOC(KEYWORDS(1,3))
KEYTABLE(6) = 3

Number of longwords to follow
Address of keyword string
Keyword value for 'ADD'
Address of keyword string
Keyword value for 'DELETE'
Address of keyword string
Keyword value for 'EXIT'

This FORTRAN code fragment constructs a keyword table named KEYTABLE
containing the three keywords ADD, DELETE, and EXIT with associated
keyword values of 1, 2, and 3, resp~ctively. This construction method results
in position-independent coded data, although the generated code for the
typical FORTRAN module contains other non-PIC values.

LIB-264

LIB$LOOKUP_ TREE

LIB$LOOKUP._TREE Look Up an Entry in a
Balanced Binary Tree

FORMAT

RETURNS

ARGUMENTS

The Look Up an Entry in a Balanced Binary Tree routine looks up an entry
in a balanced binary tree.

LIB$LOOKUP_TREE treehead ,symbol

VMS usage: cond_value

, user-compare-routine
,new-node

type: longword (unsigned)
access: write only
mechanism: by value

tree head
VMS usage: address
type: address
access: read only
mechanism: by reference

Tree head for the binary tree. The treehead argument is the address of an
unsigned longword that is this tree head.

symbol
VMS usage: user_arg
type: unspecified
access: unspecified
mechanism: unspecified

Key to be looked up in the binary tree.

user-compare-routine
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User-supplied compare routine that LIB$LOOKUP_ TREE calls to compare a
symbol with a node. The user-compare-routine argument is the address of
the entry mask to the compare routine. The value returned by the compare
routine indicates the relationship between the symbol key and the current
node.

The following list gives possible values of the user-compare-routine
argument and their meanings.

LIB-265

LIB$LOOKUP_ TREE

DESCRIPTION

CONDITION
VALUES
RETURNED

EXAMPLE

LIB-266

Value Description

Negative

Zero

Positive

symbol is less than the current node

symbol is equal to the current node

symbol is greater than the current node

For more information on the compare routine, see "Call Format for a Compare
Routine" in the Description section.

new-node
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Location where the new symbol was found. The new-node argument is the
address of an unsigned longword that is the new node location.

Call Format for a Compare Routine

The call format for a compare routine is as follows:

user-compare-routine symbol ,treehead

LIB$LOOKUP_TREE passes the symbol and treehead arguments to the
compare routine using the same passing mechanism that was used to pass
them to LIB$LOOKUP_TREE.

LIB$_NORMAL

LIB$_KEYNOTFOU

Success. The key was found.

Error. The key was not found.

The BASIC example provided in the description of LIB$INSERT_ TREE also
demonstrates how to use LIB$LOOKUP_ TREE. Please refer to that example
for assistance in using this routine.

LIB$LP_LINES

LI B$LP._LI N ES Lines on Each Printer Page

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Lines on Each Printer Page routine computes the default number of
lines on a printer page. This routine can be used by native-mode VMS
utilities that produce listing files and paginate files.

LIB$LP_LINES

VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The default number of lines on a physical printer page. If the logical name
translation or conversion to binary fails, a default value of 66 is returned.

None.

LIB$LP_LINES computes the default number of lines on a printer page. This
routine can be used by native-mode VMS utilities that produce listing files
and paginate files. The algorithm used by LIB$LP_LINES is:

1 Translate the logical name SYS$LP_LJNES.

2 Convert the ASCII value obtained to a binary integer.

3 Verify that the resulting value is in the range [30:255].

4 If any of the prior steps fail, return the default paper size of 66 lines.

You can use LIB$LP_LINES to monitor the current default length of the line
printer page. You can also supply your own default length for the current
process. United States standard paper stock permits 66 lines on each physical
page.

If you are writing programs for a utility that formats a listing file to be
printed on a line printer, you can use LIB$LP_LINES to make your utility
independent of the default page length. Your program can use
LIB$LP_LINES to obtain the current length of the page. It can then calculate
the number of lines of text on each page by subtracting the lines used for
margins and headings.

The following is one suggested format.

1 Three lines for the top margin

2 Three lines for the bottom margin

LIB-267

LIB$LP_LINES

3 Three lines for listing heading information, consisting of:

a. A language-processor identification line

b. A source-program identification line

c. One blank line

CONDITION
VALUES
RETURNED

None.

EXAMPLES

il

10

lplines = LIB$LP_LINES()
PRINT 10, lplines
Format (' Line printer page = ' , I5, ' lines. ')
end

This FORTRAN program displays the current default length of the line printer
page.

LINES: ROUTINE OPTIONS (MAIN);
DECLARE LIB$LP_LINES EXTERNAL ENTRY

RETURNS (FIXED BINARY (31));
PUT SKIP LIST ('Line printer page= ',LIB$LP_LINES(),' lines.');

END;

This PL/I program displays the current default length of the line printer page.

100 EXTERNAL INTEGER FUNCTION LIB$LP_LINES
200 DECLARE INTEGER LPLINES
300 LPLINES = LIB$LP_LINES
400 PRINT "Line printer page="; LPLINES
32767 END

This BASIC program displays the current default length of the line printer
page.

PROGRAM LINES(OUTPUT);

FUNCTION LIB$LP_LINES INTEGER;
EXTERN;

BEGIN
WRITELN('Line printer page=' ,LIB$LP_LINES,' lines.');

END.

This Pascal program displays the current default length of the line printer
page.

LIB-268

IDENTIFICATION DIVISION.
PROGRAM-ID. PAGELINES.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 LPLINES PIC 9(9) USAGE IS COMP

01 SHOWLPLINES PIC 9(9).

ROUTINE DIVISION.
PO.

VALUE IS 999999999.

CALL "LIB$LP_LINES"
GIVING LPLINES.

MOVE LPLINES TO SHOWLPLINES.
DISPLAY "Line printer page=", SHOWLPLINES, 11 lines.".
STOP RUN.

LIB$LP_LINES

This COBOL program displays the current default length of the line printer
page.

LIB-269

LIB$MATCHC

LIB$MATCHC Match Characters, Return Relative
Position

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB-270

The Match Characters and Return Relative Position routine searches a
source string for a specified substring and returns an index, which is
the relative position of the first occurrence of a substring in the source
string. The relative character positions returned by LIB$MATCHC are
numbered 1, 2, ... , n. Thus, zero means that the substring was not
found. LIB$MA TCHC makes the VAX MA TCHC instruction available as a
callable routine.

LIB$MATCHC sub-string ,source-string

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The relative position of the first character of the substring if found, or zero if
not found.

sub-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Substring to be found. The sub-string argument is the address of a descriptor
pointing to this substring.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be searched by LIB$MATCHC. The source-string argument
is the address of a descriptor pointing to this source string.

LIB$MATCHC searches a source string for a specified substring and returns
an index, which is the relative position of the first occurrence of a substring in
the source string.

The relative character positions returned by LIB$MATCHC are numbered 1,
2, ... , n. Thus, zero means that the substring was not found.

If the substring has a zero length, LIB$MATCHC returns the value 1,
indicating success, no matter how long the source string is. If the source
string has a zero length and the substring has a nonzero length, zero is
returned, indicating that the substring was not found.

LIB$MATCHC

The order of arguments for LIB$MATCHC parallels the VAX MATCHC
instruction.

CONDITION None.

VALUES
RETURNED

LIB-271

LIB$MATCH_CQND

LIB$MATCH_COND Match Condition Values

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB-272

The Match Condition Values routine checks to see if a given condition
value matches a list of condition values that you supply.

LI B$MA TCH _CON D match-condition-value
,compare-condition-value, ...

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

A zero, if the input condition value did not match any condition value in the
list, or i - 1, for a match between the first argument and the ith argument.

match-condition-value
VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

Condition value to be matched. The match-condition-value argument is the
address of an unsigned longword that contains this condition value.

compare-condition-value
VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

The condition values to be compared to match-condition-vaJue. The
compare-condition-value arguments are the addresses of the unsigned
longwords that contain these condition values.

LIB$MATCH_COND checks for a match between the condition value
addressed by match-condition-value and the condition values addressed
by the subsequent arguments. Each argument is the address of a longword
containing a condition value.

LIB$MATCH_COND is provided for programmers who want to match a
list of one or more condition values. It is designed to be used in multi-path
branch statements available in most higher-level languages.

LIB$MATCH_COND compares the portion (STS$V_COND-1D) of the
condition value referenced by the first argument to the same portion of the
condition value referenced by the second through Nth arguments. If the
facility-specific bit (STS$V_FAC_SP =bit 15) is clear in match-condition
value (meaning that the condition value is systemwide rather than facility

LIB$MATCH_CQND

specific), the facility code field (STS$V_FAC_NO =bits 27:17) is ignored and
only the STS$V_MSG_ID fields (bits 15:3) are compared.

The routine returns a zero if a match is not found, a 1 if the condition
value matches the first condition value in the list (the second argument), a
2 if it matches the second condition value (the third argument), and so on.
LIB$MATCH_CQND checks for null argument entries in the argument list.

When LIB$MATCH_CQND is called with only two arguments, the possible
values for the value returned are true (1) or false (zero).

Each condition handler must examine the signal argument vector to determine
which condition is being signaled. If the condition is not one that the handler
knows about, the handler should resignal. A handler should not assume that
only one kind of condition can occur in the routine which established it or in
any routines it calls. However, because a condition value may be modified
by an intervening handler, each handler should only compare that part of the
condition value that distinguishes it from another.

CONDITION
VALUES
RETURNED

None.

EXAMPLE

C+
C This FORTRAN progrm demonstrates the use of
C LIB$MATCH_COND.
c
C Declare handler routine as external.
c-

EXTERNAL HANDLER

C+
C Declare the handler that will be used.
c-

C+

TYPE * , 'Establishing handler ... '
CALL LIB$ESTABLISH(HANDLER)
OPEN (UNIT = 1 , NAME = 'MATCH.DAT' , STATUS = 'OLD')

C Revert to normal error processing.
c-

C+

CALL LIB$REVERT
CLOSE (UNIT = 1
CALL EXIT
END

C This is the handler routine.
c-

INTEGER*4 FUNCTION HANDLER(SIGARGS , MECHARGS)
INTEGER*4 MECHARGS(*) , SIGARGS(*) , STATUS
INCLUDE '($SSDEF)'
INCLUDE '($FORDEF)'
HANDLER = SS$_CONTINUE

LIB-273

LIB$MATCH_COND

C+
C This handler will type out an error message. In this case the
C message is regarding a file open status.
c-

TYPE * , 'Entering handler ... '
STATUS = LIB$MATCH_COND(SIGARGS(2) I FOR$_FILNOTFOU I

1 FOR$_NO_SUCDEV I FOR$_FILNAMSPE I FOR$_0PEFAI)
GOTO (100 I 200 I 300 I 400) STATUS
HANDLER = SS$_RESIGNAL
GOTO 1000

100 TYPE * , 'ERROR File not found'
GOTO 1000

200 TYPE * , 'ERROR No such Device'
GOTO 1000

300 TYPE * , 'ERROR File name specification'
GOTO 1000

400 TYPE * , 'ERROR Open Failure'
1000 CALL SYS$UNWIND(MECHARGS(3) I)

TYPE * , 'Returning from handler ... '
RETURN
END

LIB-274

This FORTRAN program uses a computed GOTO to alter the program
execution sequence on a condition value.

If the file called MATCH.DAT does not exist, the following output is returned:

Establishing handler ...
Entering handler ...
ERROR -- File not found
Returning from handler ...

If the file MATCH.DAT does exist, the output returned is as follows:

Establishing handler ...

LIB$MOVC3

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$MOVC3

Move Characters

The Move Characters routine makes the VAX MOVC3 instruction available
as a callable routine. The source item is moved to the destination item.
Overlap of the source and destination items does not affect the result.

LIB$MOVC3 word-integer-length ,source ,destination

None.

word-integer-length
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Number of bytes to be moved from source to destination by LIB$MOVC3.
The word-integer-length argument is the address of an unsigned word which
contains this number of bytes. The maximum transfer is 65,535 bytes.

source
VMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference

Item to be moved. The source argument is the address of this item.

destination
VMS usage: unspecified
type: unspecified
access: write only
mechanism: by reference

Item into which source will be moved. The destination argument is the
address of this item.

LIB$MOVC3 is useful for moving large blocks of data, such as arrays, when
such an operation would otherwise have to be performed by a programmed
loop.

For more information, see the VAX Architecture Reference Manual. See also
OTS$MOVE3.

None.

LIB-275

LIB$MOVC5

LIB$MOVC5

FORMAT

RETURNS

ARGUMENTS

LIB-276

Move Characters with Fill

The Move Characters with Fill routine makes the VAX MOVC5 instruction
available as a callable routine. The source item is moved to the destination
item. Overlap of the source and destination items does not affect the
result.

LIB$MOVC5 word-integer-source-length ,source
, fill , word-integer-destination-length
,destination

None.

word-integer-source-length
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Number of bytes in the source item. The word-integer-source-length
argument is the address of an unsigned word that contains this number of
bytes. The maximum length of source is 65 ,535 bytes.

source
VMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference

Item to be moved by LIB$MOVC5. The source argument is the address of
this item. If word-integer-source-length is zero, indicating that destination
is to be entirely filled by the fill character, then source is ignored by
LIB$MOVC5.

fill
VMS usage: byte_signed
type: byte integer (signed)
access: read only
mechanism: by reference

Character used to pad source to the length of destination. The fill argument
is the address of a signed byte integer that contains this fill character.

word-integer-destination-length
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of destination in bytes. The worQ-integer-destination-length
argument is the address of an unsigned word that contains this number

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$MOVC5

of bytes. The maximum value of word-integer-destination-length is 65,535
bytes.

destination
VMS usage: unspecified
type: unspecified
access: write only
mechanism: by reference

Item into which source will be moved. The destination argument is the
address of this item.

If the destination item is shorter than the source item, the highest-addressed
bytes of the source are not moved.

For more information, see the VAX Architecture Reference Manual. See also
OTS$MOVE5.

None.

LIB-277

LIB$MOVTC

LIB$MOVTC

FORMAT

RETURNS

ARGUMENTS

LIB-278

Move Translated Characters

The Move Translated Characters routine moves the source string,
character by character, to the destination string after translating each
character using the specified translation table. LIB$MOVTC makes the
VAX MOVTC instruction available as a callable routine.

LI B$MOVTC source-string , fill-character
, translation-table , destination-string

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be translated and moved by LIB$MOVTC. The source-string
argument is the address of a descriptor pointing to this source string.

fill-character
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Fill character used to pad source-string to the length of destination-string.
The fill-character argument is the address of a descriptor pointing to a string.
The first character of this string is used as the fill character. The length of this
string is not checked and fill-character is not translated.

translation-table
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Translation table used by LIB$MOVTC. The translation-table argument is the
address of a descriptor pointing to the translation table string. The translation
table string is assumed to be 256 characters long.

You can use any one of the translation tables included in the Description
section that follows, or you can create your own. When you use a translation
table supplied by DIGITAL, the names LIB$AB__xxx_yyy represent the
addresses of the 256-byte translation tables, and can be accessed as external
(string) variables. If a particular language cannot generate descriptors for
external strings, then you must create them manually. The example following

DESCRIPTION

LIB$MOVTC

the Description section illustrates the creation of a string descriptor for a
translation table using VAX BASIC.

destination-string
VMS usage: char-string
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$MOVTC writes the translated source
string. The destination-string argument is the address of a descriptor
pointing to this destination string.

Each character in. the source string is used as an index into the translation
table. The byte found is then placed into the destination string. The fill
character is used if the destination string is longer than the source string.
If the source string is longer than the destination string, the source string
is truncated. Overlap of the source and destination strings does not affect
execution.

The translation tables used by LIB$MOVTC and LIB$MOVTUC are described
below. Each table is preceded by explanatory text.

ASCII to EBCDIC Translation Table

• The number on the left represents the low-order bits of the ASCII
character in hexadecimal notation.

• The number across the top represents the high-order bits of the ASCII
character in hexadecimal notation.

• The number in the body of the table represents the equivalent EBCDIC
character in hexadecimal notation.

LIB-279

LIB$MOVTC

LIB-280

Table LIB-7 LIB$AB__ASC_EBC

Column bits 4 - 7

Row
bits 0 - 3 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 00 10 40 FO 7C D7 79 97 3F 3F 3F 3F 3F 3F 3F 3F
1 01 11 4F Fl Cl D8 81 98 3F 3F 3F 3F 3F 3F 3F 3F
2 02 12 7F F2 C2 D9 82 99 3F 3F 3F 3F 3F 3F 3F 3F
3 03 13 7B F3 C3 E2 83 A2 3F 3F 3F 3F 3F 3F 3F 3F
4 37 3C SB F4 C4 E3 84 A3 3F 3F 3F 3F 3F 3F 3F 3F
s 2D 3D 6C FS cs E4 8S A4 3F 3F 3F 3F 3F 3F 3F 3F
6 2E 32 so F6 C6 ES 86 AS 3F 3F 3F 3F 3F 3F 3F 3F
7 2F 26 7D F7 C7 E6 87 A6 3F 3F 3F 3F 3F 3F 3F 3F
8 16 18 4D F8 CB E7 BB Al 3F 3F 3F 3F 3F 3F 3F 3F
9 OS 19 SD F9 C9 E8 89 AB 3F 3F 3F 3F 3F 3F 3F 3F
A 2S 3F SC 7A Dl E9 91 A9 3F 3F 3F 3F 3F 3F 3F 3F
B OB 27 4E SE D2 4A 92 co 3F 3F 3F 3F 3F 3F 3F 3F
c oc 1C 6B 4C D3 EO 93 6A 3F 3F 3F 3F 3F 3F 3F 3F
D OD 1D 60 7E D4 SA 94 DO 3F 3F 3F 3F 3F 3F 3F 3F
E OE 1E 4B 6E DS SF 9S Al 3F 3F 3F 3F 3F 3F 3F 3F
F OF 1F 61 6F D6 6D 96 07 3F 3F 3F 3F 3F 3F 3F FF

ZK-4246-85

ASCII to EBCDIC Reversible Translation Table

• The number on the left represents the low-order bits of the ASCII
character in hexadecimal notation.

• The number across the top represents the high-order bits of the ASCII
character in hexadecimal notation.

• The number in the body of the table represents the equivalent EBCDIC
character in hexadecimal notation.

LIB$MOVTC

Table LIB-8 LIB$AB-ASC_EBC_REV

Column bits 4 - 7

Row
bits 0 - 3 0 1 2 3 4 5 6 7 8 9 A B c 0 E F

0 00 10 40 FO 7C 07 79 97 20 30 41 SB 76 9F BB DC
1 01 11 4F Fl Cl DB Bl 9B 21 31 42 S9 77 AO B9 DD
2 02 12 7F F2 C2 09 B2 99 22 1A 43 62 7B AA BA DE
3 03 13 7B F3 C3 E2 B3 A2 23 33 44 63 BO AB BB OF
4 37 3C SB F4 C4 E3 B4 A3 24 34 4S 64 BA AC BC EA
s 20 3D 6C FS cs E4 BS A4 1S 35 46 6S BB AD BO EB
6 2E 32 so F6 C6 ES B6 AS 06 36 47 66 BC AE BE EC
7 2F 26 70 F7 C7 E6 B7 A6 17 OB 4B 67 BD AF BF ED
B 16 1B 40 FB CB E7 BB A7 2B 3B 49 6B BE BO CA EE
9 OS 19 SD F9 C9 E8 B9 AB 29 39 Sl 69 BF Bl CB EF
A 25 3F SC 7A 01 E9 91 A9 2A 3A S2 70 90 B2 cc FA
B OB 27 4E SE 02 4A 92 co 2B 3B S3 71 9A B3 CD FB
c oc 1C 6B 4C 03 EO 93 6A 2C 04 S4 72 9B B4 CE FC
D OD 1D 60 7E 04 SA 94 DO 09 14 SS n 9C BS CF FD
E OE 1 E 4B 6E OS SF 9S Al OA 3E S6 74 90 B6 DA FE
F OF 1F 61 6F 06 60 96 07 1B El S7 7S 9E B7 DB FF

ZK-4248-85

EBCDIC to ASCII Translation Table

• The number on the left represents the low-order bits of the EBCDIC
character in hexadecimal notation.

• The number across the top represents the high-order bits of the EBCDIC
character in hexadecimal notation.

• The number in the body of the table represents the equivalent ASCII
character in hexadecimal notation.

LIB-281

LIB$MOVTC

LIB-282

Table LIB-9 LIB$AB_EBC-ASC

Column bits 4 - 7

Row
bits 0 - 3 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 00 10 SC SC 20 26 20 SC SC SC SC SC 7B 70 SC 30
1 01 11 SC SC SC SC 2F SC 61 6A 7E SC 41 4A SC 31
2 02 12 SC 16 SC SC SC SC 62 6B 73 SC 42 48 S3 32
3 03 13 SC SC SC SC SC SC 63 6C 74 SC 43 4C S4 33
4 SC SC SC SC SC SC SC SC 64 60 7S SC 44 40 SS 34
s 09 SC OA SC SC SC SC SC 6S 6E 76 SC 4S 4E S6 3S
6 SC 08 17 SC SC SC SC SC 66 6F 77 SC 46 4F S7 36
7 7F SC 1B 04 SC SC SC SC 67 70 78 SC 47 so S8 37
8 SC 18 SC SC SC SC SC SC 68 71 79 SC 48 Sl S9 38
9 SC 19 SC SC SC SC SC 60 69 72 7A SC 49 S2 SA 39
A SC SC SC SC S8 SD 7C 3A SC SC SC SC SC SC SC SC
B OB SC SC SC 2E 24 2C 23 SC SC SC SC SC SC SC SC
c oc 1C SC 14 3C 2A 2S 40 SC SC SC SC SC SC SC SC
D OD 10 OS 1S 28 29 SF 27 SC SC SC SC SC SC SC SC
E OE 1E 06 SC 2B 38 3E 30 SC SC SC SC SC SC SC SC
F OF 1F 07 1A 21 SE 3F 22 SC SC SC SC SC SC SC FF

ZK-4249-85

EBCDIC to ASCII Reversible Translation Table

• The number on the left represents the low-order bits of the EBCDIC
character in hexadecimal notation.

• The number across the top represents the high-order bits of the EBCDIC
character in hexadecimal notation.

• The number in the body of the table represents the equivalent ASCII
character in hexadecimal notation.

LIB$MOVTC

Table LI B-10 LI B$AB_EBC_ASC_REV

Column bits 4 - 7

Row
bits O - 3 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 00 10 BO 90 20 26 2D BA C3 CA Dl DB 7B 7D SC 30
1 01 11 Bl 91 AO A9 2F BB 61 6A 7E D9 41 4A 9F 31
2 02 12 B2 16 Al AA B2 BC 62 6B 73 DA 42 4B S3 32
3 03 13 B3 93 A2 AB B3 BD 63 6C 74 DB 43 4C S4 33
4 9C 9D B4 94 A3 AC B4 BE 64 6D 7S DC 44 4D SS 34
s 09 BS OA 9S A4 AD BS BF 6S 6E 76 DD 4S 4E S6 3S
6 B6 OB 17 96 AS AE B6 co 66 6F 77 DE 46 4F S7 36
7 7F B7 lB 04 A6 AF B7 Cl 67 70 7B DF 47 so SB 37
B 97 18 B8 98 A7 BO BB C2 6B 71 79 EO 48 Sl S9 3B
9 8D 19 B9 99 AB Bl B9 60 69 72 7A El 49 S2 SA 39
A BE 92 BA 9A SB SD 7C 3A C4 CB D2 E2 E8 EE F4 FA
B OB BF BB 9B 2E 24 2C 23 cs cc D3 E3 E9 EF FS FB
c oc lC BC 14 3C 2A 2S 40 C6 CD D4 E4 EA FO F6 FC
D OD 1D OS lS 2B 29 SF 27 C7 CE DS ES EB Fl F7 FD
E OE lE 06 9E 2B 3B 3E 3D C8 CF D6 E6 EC F2 F8 FE
F OF lF 07 lA 21 SE 3F 22 C9 DO D7 E7 ED F3 F9 FF

ZK-4250-85

Packed Decimal to Trailing Overpunch Numeric Value Translation
Table

• The number on the left represents the low-order bits of the packed
decimal value in hexadecimal notation.

• The number across the top represents the high-order bits of the packed
decimal value in hexadecimal notation.

• The number in the body of the table represents the equivalent trailing
overpunch numeric value in hexadecimal notation.

LIB-283

LIB$MOVTC

LIB-284

Table LIB-11 LIB$AB_CVTPT_Q

Column bits4-7

Row
bits O - 3 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 7B 7B 7B 7B 7B 7B 7B 7B 7B 7B 7B 7B 7B 78 78 78
1 7B 7B 7B 7B 7B 7B 78 78 78 78 78 78 78 78 78 78
2 7B 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78
3 7B 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78
4 7B 7B 78 78 78 78 78 78 78 78 78 78 78 78 78 78
5 7B 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78
6 7B 7B 78 78 78 7B 78 78 78 78 78 78 78 78 78 78
7 7B 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78
8 7B 7B 78 78 78 78 78 78 78 78 78 78 78 78 78 78
9 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78
A 78 41 42 43 44 45 46 47 48 49 78 78 78 78 78 78
8 70 4A 48 4C 40 4E 4F 50 51 52 78 7B 78 78 78 78
c 78 41 42 43 44 45 46 47 48 49 78 78 78 78 78 78
0 70 4A 4B 4C 40 4E 4F 50 51 52 78 78 78 78 78 78
E 78 41 42 43 44 45 46 47 48 49 78 78 78 78 78 78
F 78 41 42 43 44 45 46 47 48 49 78 78 78 78 78 78

ZK-4251-85

Packed Decimal to Unsigned Trailing Numeric Value Translation
Table

• The number on the left represents the low-order bits of the packed
decimal value in hexadecimal notation.

• The number across the top represents the high-order bits of the packed
decimal value in hexadecimal notation.

• The number in the body of the table represents the equivalent unsigned
trailing numeric value in hexadecimal notation.

LIB$MOVTC

Table LIB-12 LIB$AB_CVTPT_U

Column bits 4 - 7

Row
bits O - 3 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
7 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
A 30 31 32 33 34 35 36 37 38 39 00 00 00 00 00 00
B 30 31 32 33 34 35 36 37 38 39 00 00 00 00 00 00
c 30 31 32 33 34 35 36 37 38 39 00 00 00 00 00 00
D 30 31 32 33 34 35 36 37 38 39 00 00 00 00 00 00
E 30 31 32 33 34 35 36 37 38 39 00 00 00 00 00 00
F 30 31 32 33 34 35 36 37 38 39 00 00 00 00 00 00

ZK-4252-85

Trailing Overpunch Numeric to Packed Decimal Value Translation
Table

• The number on the left represents the low-order bits of the trailing
overpunch numeric value in hexadecimal notation.

• The number across the top represents the high-order bits of the trailing
overpunch numeric value in hexadecimal notation.

• The number in the body of the table represents the equivalent packed
decimal value in hexadecimal notation.

LIB-285

LIB$MOVTC

LIB-286

Table LIB-13 LIB$AB_CVTTP_Q

Column bits 4 - 7

Row
bits 0 - 3 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 00 00 00 oc 00 7D 00 00 00 00 00 00 00 00 00 00
1 00 00 OD 1C 1C 8D 00 00 00 00 00 00 00 00 00 00
2 00 00 00 2C 2C 9D 00 00 00 00 00 00 00 00 00 00
3 00 00 00 3C 3C 00 00 00 00 00 00 00 00 00 00 00
4 00 00 00 4C 4C 00 00 00 00 00 00 00 00 00 00 00
s 00 00 00 SC SC 00 00 00 00 00 00 00 00 00 00 00
6 00 00 00 6C 6C 00 00 00 00 00 00 00 00 00 00 00
7 00 00 00 7C 7C 00 00 00 00 00 00 00 00 00 00 00
B 00 00 00 BC BC 00 00 00 00 00 00 00 00 00 00 00
9 00 00 00 9C 9C 00 00 00 00 00 00 00 00 00 00 00
A 00 00 00 OD 1D 00 00 00 00 00 00 00 00 00 00 00
B 00 00 00 00 2D oc 00 oc 00 00 00 00 00 00 00 00
c 00 00 00 00 3D 00 00 00 00 00 00 00 00 00 00 00
D 00 00 00 00 4D OD 00 OD 00 00 00 00 00 00 00 00
E 00 00 00 00 SD 00 00 00 00 00 00 00 00 00 00 00
F 00 00 00 oc 6D 00 00 00 00 00 00 00 00 00 00 00

ZK-4253-85

Unsigned Numeric to Packed Decimal Value Translation Table

• The number on the left represents the low-order bits of the unsigned
numeric value in hexadecimal notation.

• The number across the top represents the high-order bits of the unsigned
numeric value in hexadecimal notation.

• The number in the body of the table represents the equivalent packed
decimal value in hexadecimal notation.

LIB$MOVTC

Table LIB-14 LIB$AB_CVTTP_U

Column bits 4 - 7

Row
bits O - 3 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 00 00 00 oc 00 00 00 00 00 00 00 00 00 00 00 00
1 00 00 00 1C 00 00 00 00 00 00 00 00 00 00 00 00
2 00 00 00 2C 00 00 00 00 00 00 00 00 00 00 00 00
3 00 00 00 3C 00 00 00 00 00 00 00 00 00 00 00 00
4 00 00 00 4C 00 00 00 00 00 00 00 00 00 00 00 00
5 00 00 00 SC 00 00 00 00 00 00 00 00 00 00 00 00
6 00 00 00 6C 00 00 00 00 00 00 00 00 00 00 00 00
7 00 00 00 7C 00 00 00 00 00 00 00 00 00 00 00 00
8 00 00 00 BC 00 00 00 00 00 00 00 00 00 00 00 00
9 00 00 00 9C 00 00 00 00 00 00 00 00 00 00 00 00
A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
B 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

ZK-4254-85

Trailing Overpunch Numeric to Unsigned Numeric Value Translation
Table

• The number on the left represents the low-order bits of the trailing
overpunch numeric value in hexadecimal notation.

• The number across the top represents the high-order bits of the trailing
overpunch numeric value in hexadecimal notation.

• The number in the body of the table represents the equivalent unsigned
numeric value in hexadecimal notation.

LIB-287

LIB$MOVTC

LIB-288

Table LIB-15 LIB$AB_CVT_Q_U

Column bits 4 - 7

Row
bits 0 - 3 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 00 10 20 30 40 37 60 70 80 90 AO BO co DO EO FO
1 01 11 30 31 31 38 61 71 81 91 A1 B1 C1 D1 E1 F1
2 02 12 22 32 32 39 62 72 82 92 A2 B2 C2 D2 E2 F2
3 03 13 23 33 33 S3 63 73 83 93 A3 B3 C3 D3 E3 F3
4 04 14 24 34 34 S4 64 74 84 94 A4 B4 C4 D4 E4 F4
s OS 1S 2S 3S 3S SS 6S 7S SS 9S AS BS cs DS ES FS
6 06 16 26 36 36 S6 66 76 86 96 A6 B6 C6 D6 E6 F6
7 07 17 27 37 37 S7 67 77 87 97 A7 B7 C7 D7 E7 F7
8 08 18 28 38 38 SS 68 78 88 98 AB BS CB D8 E8 F8
9 09 19 29 39 39 S9 69 79 89 99 A9 B9 C9 D9 E9 F9
A OA 1A 2A 30 31 SA 6A 7A BA 9A AA BA CA DA EA FA
B OB 1B 2B 3B 32 30 6B 30 SB 9B AB BB CB DB EB FB
c oc 1C 2C 3C 33 SC 6C 7C BC 9C AC BC CC DC EC FC
D OD 1D 20 30 34 30 60 30 80 90 AD BO CD DD ED FD
E OE 1E 2E 3E 3S SE 6E 7E SE 9E AE BE CE DE EE FE
F OF 1F 2F 30 36 SF 6F 7F SF 9F AF BF CF DF EF FF

ZK-4255-85

Unsigned Numeric to Trailing Overpunch Translation Table

Table LIB-16 is indexed by 0 through 9 for the positive overpunches and 10
through 19 for the negative overpunches.

The unsigned binary representation of the least significant digit is moved into
R2. Then, if you require a positive result, the following code results:

MOVC3 LIB$AB_CVT_U_O[R2] I #1,RO

If you require a negative result, the following code is generated:

MOVC3 LIB$AV_CVT_U_O + 10[R2] I #1,RO

The result is the overpunch representation for the last byte of the negative
number.

Table LIB-16 LIB$AB_CVT_U_O

0-9 10 - 19

7B 41 42 43 44 4S 46 47 48 49 70 4A 4B 4C 40 4E 4F so S1 S2

ZK-4256-85

LIB$MOVTC

Table LIB-17 LIB$AB_CVTPT_Z

Column bits 4 - 7

Row
bits 0 - 3 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
1 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
2 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
4 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
5 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
6 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
7 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
8 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
9 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
A 30 31 32 33 34 35 36 37 38 39 30 30 30 30 30 30
B 70 71 72 73 74 75 76 77 78 79 30 30 30 30 30 30
c 30 31 32 33 34 35 36 37 38 39 30 30 30 30 30 30
D 70 71 72 73 74 75 76 77 78 79 30 30 30 30 30 30
E 30 31 32 33 34 35 36 37 38 39 30 30 30 30 30 30
F 30 31 32 33 34 35 36 37 38 39 30 30 30 30 30 30

ZK-6414-HC

Packed Decimal to Zone Numeric Translation Table

•

•

•

The number on the left represents the low-order bits of the packed
decimal value in hexadecimal notation.

The number across the top represents the high-order bits of the packed
decimal value in hexadecimal notation.

The number in the body of the table represents the equivalent zoned
numeric value in hexadecimal notation.

UB-289

LIB$MOVTC

LIB-290

Table LIB-18 LIB$AB_CVTTP _Z

Column bits 4 - 7

Row
bits0-3 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 00 00 00 oc 00 00 00 OD 00 00 00 00 00 00 00 00
1 00 00 00 1C 00 00 00 1D 00 00 00 00 00 00 00 00
2 00 00 00 2C 00 00 00 2D 00 00 00 00 00 00 00 00
3 00 00 00 3C 00 00 00 3D 00 00 00 00 00 00 00 00
4 00 00 00 4C 00 00 00 40 00 00 00 00 00 00 00 00
5 00 00 00 5C 00 00 00 50 00 00 00 00 00 00 00 00
6 00 00 00 6C 00 00 00 60 00 00 00 00 00 00 00 00
7 00 00 00 7C 00 00 00 7D 00 00 00 00 00 00 00 00
8 00 00 00 BC 00 00 00 80 00 00 00 00 00 00 00 00
9 00 00 00 9C 00 00 00 90 00 00 00 00 00 00 00 00
A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
B 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

ZK-6415-HC

Zone to Packed Decimal Translation Table

• The number on the left represents the low-order bits of the zoned
numeric value in hexadecimal notation.

• The number across the top represents the high-order bits of the zoned
numeric value in hexadecimal notation.

• The number in the body of the table represents the equivalent packed
value decimal value in hexadecimal notation.

LIB$MOVTC

Table LIB-19 LIB$AB_UPCASE

Column bits 4 - 7

Row
bits 0 - 3 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 00 10 20 30 40 50 60 50 80 90 AO BO co DO co FO
1 01 11 21 31 41 51 41 51 81 91 A1 B1 C1 01 C1 F1
2 02 12 22 32 42 52 42 52 82 92 A2 B2 C2 02 C2 F2
3 03 13 23 33 43 53 43 53 83 93 A3 B3 C3 03 C3 F3
4 04 14 24 34 44 54 44 54 84 94 A4 B4 C4 04 C4 F4
5 05 15 25 35 45 55 45 55 85 95 A5 B5 C5 05 C5 F5
6 06 16 26 36 46 56 46 56 86 96 A6 B6 C6 06 C6 F6
7 07 17 27 37 47 57 47 57 87 97 A7 B7 C7 07 C7 F7
8 08 18 28 38 48 58 48 58 88 98 AS BS ca 08 ca F8
9 09 19 29 39 49 59 49 59 89 99 A9 B9 C9 09 C9 F9
A OA 1A 2A 3A 4A 5A 4A 5A SA 9A AA BA CA DA CA DA
B OB 1B 2B 3B 4B 5B 4B 7B SB 9B AB BB CB DB CB DB
c oc 1C 2C 3C 4C 5C 4C 7C BC 9C AC BC cc DC cc DC
D OD 10 20 30 40 50 40 70 80 90 AD BO CD DD CD DD
E OE 1E 2E 3E 4E 5E 4E 7E SE 9E AE BE CE DE CE FE
F OF 1F 2F 3F 4F 5F 4F 7F SF 9F AF BF CF OF CF FF

ZK-6416-HC

ASCII Uppercase Translation Table

• The number on the left represents the low-order bits of the ASCII
character in hexadecimal notation.

• The number across the top represents the high-order bits of the ASCII
character in hexadecimal notation.

• The number in the body of the table represents the equivalent uppercase
ASCII character in hexadecimal notation.

LIB-291

LIB$MOVTC

CONDITION
VALUES
RETURNED

LIB-292

Table LIB-20 LIB$AB_LOWERCASE

Column bits 4 - 7

Row
bits 0 - 3 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 00 10 20 30 40 70 60 70 80 90 AO BO EO DO EO FO
1 01 11 21 31 61 71 61 71 81 91 A1 B1 E1 F1 E1 F1
2 02 12 22 32 62 72 62 72 82 92 A2 B2 E2 F2 E2 F2
3 03 13 23 33 63 73 63 73 83 93 A3 B3 E3 F3 E3 F3
4 04 14 24 34 64 74 64 74 84 94 A4 B4 E4 F4 E4 F4
5 05 15 25 35 65 75 65 75 85 95 A5 B5 E5 F5 E5 F5
6 06 16 26 36 66 76 66 76 86 96 A6 B6 E6 F6 E6 F6
7 07 17 27 37 67 77 67 77 87 97 A7 B7 E7 F7 E7 F7
8 08 18 28 38 68 78 68 78 88 98 A8 B8 E8 F8 E8 F8
9 09 1.9 29 39 69 79 69 79 89 99 AS B9 E9 F9 E9 F9
A OA 1A 2A 3A 6A 7A 6A 7A 8A 9A AA BA EA FA EA FA
B OB 1B 28 3B 6B 7B 6B 7B 8B 9B AB BB EB FB EB FB
c oc 1C 2C 3C 6C 7C 6C 7C BC 9C AC BC EC FC EC FC
D OD 1D 2D 3D 6D 7D 6D 7D SD 9D AD BD ED FD ED FD
E OE 1E 2E 3E 6E 7E 6E 7E 8E 9E AE BE EE FE EE FE
F OF 1F 2F 3F 6F 7F 6F 7F BF 9F AF BF EF FF EF FF

ZK-6417-HC

ASCII Lowercase Translation Table

• The number on the left represents the low-order bits of the ASCII
character in hexadecimal notation.

• The number across the top represents the high-order bits of the ASCII
character in hexadecimal notation.

• The number in the body of the table represents the equivalent lowercase
ASCII character in hexadecimal notation.

SS$_NORMAL

LIB$_STRTRU

LIB$_FA TERRLIB

LIB$_INSVIRMEM

LIB$_1NVSTRDES

Routine successfully completed.

Routine successfully completed; string truncated.
The fixed-length destination string could not
contain all the characters.

Fatal internal error.

Insufficient virtual memory.

Invalid string descriptor.

EXAMPLE

1 !+
!This BASIC program illustrates the method
!of creating a descriptor for the appropriate
!translation table in order to call LIB$MOVTC.
!-

OPTION TYPE = EXPLICIT

!+
!Declare the translation table as an
!EXTERNAL LONG variable.
!-

EXTERNAL LONG LIB$AB_ASC_EBC
EXTERNAL LONG FUNCTION LIB$MOVTC
EXTERNAL SUB LIB$STOP
EXTERNAL LONG CONSTANT DSCK_CLASS_S, DSCK_DTYPE_T

!+
!Define a record which models the required
!translation table descriptor.
!-

RECORD STR_TYPE
BYTE DSC$B_CLASS
BYTE DSC$B_DTYPE
WORD DSC$W_LENGTH
LONG DSC$A_POINTER

END RECORD STR_TYPE

DECLARE LONG I, RET_STS
DECLARE STR_TYPE STR_VAR

MAP (FOO) STRING DST = 3%
MAP (FOO) BYTE DST_ARRAY(2)

!+
!Fill the translation table descriptor record.
!Note that the length of the translation table string
!is set to 256, and the pointer receives the address of
!the DIGITAL translation table LIB$AB_ASC_EBC.
!-

STR_VAR: :DSC$B_CLASS = DSC$K_CLASS_S
STR_VAR: :DSC$B_DTYPE = DSC$K_DTYPE_T
STR_VAR: :DSC$W_LENGTH = 256
STR_VAR::DSC$A_POINTER = LOC(LIB$AB_ASC_EBC)

RET_STS = LIB$MOVTC(11 ABC 11 ,
11 11

, STR_VAR BY REF, DST)
IF (RET_STS AND 1%) = 0%
THEN

CALL LIB$STOP(RET_STS BY VALUE)
END IF

!+
!Add 256 to the translated value in order to return
!an unsigned value.
!-

LIB$MOVTC

LIB-293

LIB$MOVTC

PRINT (256 + DST_ARRAY(I)) FOR I = 0% TO 2%

END

LIB-294

The output generated by this program is as follows:

193
194
195

LIB$MOVTUC

LIB$MOVTUC Move Translated Until Character

FORMAT

RETURNS

ARGUMENTS

The Move Translated Until Character routine moves the source string,
character by character, to the destination string after translating each
character using the specified translation table until the stop character
is encountered. LIB$MOVTUC makes the VAX MOVTUC instruction
available as a callable routine.

LIB$MOVTUC source-string ,stop-character
, translation-table , destination-string
[,fill-character]

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The relative position in the source string of the character that is translated to
the stop character. Zero is returned if the stop character is not found. This
value is set to -1 if destination-string cannot be allocated.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be translated and moved by LIB$MOVTUC. The source
string argument is the address of a descriptor pointing to this source string.

stop-character
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Stop character that causes LIB$MOVTUC to stop translating the source string.
The stop-character argument is the address of a descriptor pointing to a
string. The first character of this string is used as the stop character. The
length of this string is not checked and stop-character is not translated.

translation-table
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Translation table used by LIB$MOVTUC. The translation-table argument
is the address of a descriptor pointing to the translation table string. The
translation table string is assumed to be 256 characters long.

LIB-295

LIB$MOVTUC

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-296

You can use any of the translation tables included in the Description section
of LIB$MOVTC, or you can create your own. When using a translation table
supplied by DIGITAL, the names LIB$AB_xxx_yyy represent the addresses
of the 256 byte translation tables, and can be accessed as external (string)
variables. If a particular language cannot generate descriptors for external
strings, then they must be created manually. The example for the routine
LIB$MOVTC illustrates the creation of a string descriptor for a translation
table using VAX BASIC.

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$MOVTUC writes the translated source
string. The destination-string argument is the address of a descriptor
pointing to this destination string.

fill-character
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character used to pad source-string to the length of destination-string. The
fill-character argument is the address of a descriptor pointing to a string. The
first character of this string is used as the fill character. The length of this
string is not checked and fill-character is not translated.

If the fill character is included, the remainder of the destination string
(after the stop character) is filled with the specified fill character. If it is
not included, the remainder of the destination string remains unchanged.

During the translation, LIB$MOVTUC accesses each character in the source
string and uses it as an index into the translation table. If the table entry
contains the specified stop character, the routine is terminated and the relative
position of the source character is returned.

If the source string is longer than the destination string, then the source string
is truncated. If the optional fill character is present, any remaining positions
in the destination string are filled with the fill character. If the source or
destination string is exhausted (before the stop character is found), a zero
index is returned.

The results are unpredictable if the source and destination strings overlap and
have different starting addresses.

See the description of LIB$MOVTC for the translation tables used by
LIB$MOVTC and LIB$MOVTUC. Each translation table is preceded by
explanatory text.

None.

LIB$MULT_DELTA_ TIME

LIB$MULT_DELTA_TIME Multiply Delta Time by
Scalar

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

The Multiply Delta Time by Scalar routine multiplies a delta time by a
longword integer scalar.

LIB$MULT_DELTA_ TIME multiplier ,delta-time

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

multiplier
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

The value by which LIB$MUL T_DEL TA_ TIME multiplies the delta time.
The multiplier argument is the address of a signed longword containing the
integer scalar. If multiplier is negative, the absolute value of multiplier is
used.

delta-time
VMS usage: date_time
type: quadword (unsigned)
access: modify
mechanism: by reference

The delta time to be multiplied. The delta-time argument is the address of
an unsigned quadword containing the number to be multiplied. Delta-time
must be less than 10,000 days. After LIB$MULT_DELTA_TIME performs the
multiplication, the result is returned to delta-time. (The original delta-time
is overwritten.)

LIB$MUL T_DEL TA_ TIME multiplies a delta time by a longword integer
scalar. The result of the multiplication is returned to the delta-time argument.

LIB$_NORMAL

LIB$_1VTIME

LIB$_WRONUMARG

Normal successful completion.

Invalid time.

Incorrect number of arguments.

LIB-297

LIB$MULTF _DELTA_ TIME

LIB$MULTF_DELTA_TIME Multiply Delta Time
by an f_Floating
Scalar

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-298

The Multiply Delta Time by an F-Floating Scalar routine multiplies a delta
time by an F-floating scalar.

LIB$MULTF _DELTA_ TIME multiplier ,delta-time

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

multiplier
VMS usage: floating_point
type: f _floating
access: read only
mechanism: by reference

The value by which LIB$MULTF_DELTA_TIME multiplies the delta time.
The multiplier argument is the address of an F-floating value containing the
scalar. If multiplier is negative, the absolute value of multiplier is used.

delta-time
VMS usage: date_time
type: quadword (unsigned)
access: modify
mechanism: by reference

The delta time to be multiplied. The delta-time argument is the address
of an unsigned quadword containing the number to be multiplied. Delta
time must be less than 10,000 days. After LIB$MULTF_DELTA_TIME
performs the multiplication, the result is returned to delta-time. (The original
delta-time is overwritten.)

LIB$MULTF_DELTA_TIME multiplies a delta time by an F-floating scalar.
The result of the multiplication is returned to the delta-time argument.

LIB$_NORMAL

LIB$_1VTIME

LIB$_ WRONUMARG

Normal successful completion.

Invalid time.

Incorrect number of arguments.

LIB$PAUSE

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$PAUSE

Pause Program Execution

The Pause Program Execution routine suspends program execution and
returns control to the calling command level.

LIB$PAUSE

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

None.

LIB$PAUSE suspends program execution and returns control to the
calling command level. The suspended image may be continued with the
CONTINUE command, or it may be terminated with the EXIT or STOP
commands. In the latter case, the image will not return to this routine.

Note that this routine functions only for interactive jobs. If this routine is
invoked in batch mode, it has no effect.

SS$_NQRMAL

UB$_NQCU

Normal successful completion.

No CU present. The calling process does not have
a CU or the CU does not support the request.
Note that DCL only supports this function in
INTERACTIVE mode.

LIB-299

LIB$POLYD

LIB$POLYD

FORMAT

RETURNS

ARGUMENTS

LIB-300

Evaluate Polynomials

The Evaluate Polynomials routine (D-floating point values) allows higher
level language users to evaluate D-floating point value polynomials.

LIB$POLYD polynomial-argument ,degree ,coefficient
, floating-point-result

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

polynomial-argument
VMS usage: floating_point
type: D_floating
access: read only
mechanism: by reference

Argument for the polynomial. The polynomial-argument argument is
the address of a floating-point number that contains this argument. The
polynomial-argument argument is a D-floating number.

degree
VMS usage: word_signed
type: word integer (signed)
access: read only
mechanism: by reference

Highest numbered nonzero coefficient to participate in the evaluation. The
degree argument is the address of a signed word integer that contains this
highest-numbered coefficient.

If the degree is 0, the result equals C[O]. The range of the degree is 0 to 31.

coefficient
VMS usage: floating_point
type: D_floating
access: read only
mechanism: by reference, array reference

Floating-point coefficients. The coefficient argument is the address of an
array of floating-point coefficients. The coefficient of the highest-order
term of the polynomial is the lowest-addressed element in the array. The
coefficient argument is an array of D-floating numbers.

DESCRIPTION

CONDITION
VALUES
RETURNED

EXAMPLE

LIB$POLVD

floating-point-result
VMS usage: floating_point
type: D_floating
access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address
of a floating-point number that contains this result. LIB$POL YD writes the
address of floating-point-result into a D-floating number.

Intermediate multiplications are carried out using extended floating-point
fractions (63 bits for POLYD).

LIB$POLYD provides higher-level language users with the capability of
evaluating polynomials.

The evaluation is carried out by Homer's Method. The result is computed as
follows:

result= C[O]+X*(C[1]+X*(C[2]+ ... X*(C[D]) ...))

In the above result Dis the degree of the polynomial and Xis the argument.

See the VAX Architecture Reference Manual for the detailed description of
POLY.

SS$_NORMAL

SS$_FLTOVF

SS$_ROPRAND

Routine successfully completed.

Floating overflow.

Reserved operand.

The FORTRAN and Pascal examples provided in the description of
LIB$POLYF also demonstrate how to use LIB$POLYD. Please refer to those
examples for assistance in using this routine.

LIB-301

LIB$POLYF

LIB$POLYF

FORMAT

RETURNS

ARGUMENTS

LIB-302

Evaluate Polynomials

The Evaluate Polynomials routine (F-floating point values) allows higher
level language users to evaluate F-floating point polynomials.

LIB$POLVF polynomial-argument ,degree ,coefficient
, floating-point-result

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

polynomial-argument
VMS usage: floating_point
type: F _floating
access: read only
mechanism: by reference

Argument for the polynomial. The polynomial-argument argument is
the address of a floating-point number that contains this argument. The
polynomial-argument argument is an F-floating number.

degree
VMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

Highest numbered nonzero coefficient to participate in the evaluation. The
degree argument is the address of a signed word integer that contains this
highest-numbered coefficient.

If the degree is 0, the result equals C(O]. The range of the degree is 0 to 31.

coefficient
VMS usage: floating_point
type: f _floating
access: read only
mechanism: by reference, array reference

Floating-point coefficients. The coefficient argument is the address of an
array of floating-point coefficients. The coefficient of the highest-order
term of the polynomial is the lowest-addressed element in the array. The
coefficient argument is an array of F-floating numbers.

LIB$POLYF

floating-point-result
VMS usage: floating_point
type: f _floating
access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address
of a floating-point number that contains this result. LIB$POL YF writes the
address of floating-point-result into an F-floating number.

Intermediate multiplications are carried out using extended floating-point
fractions (31 bits for POL YF).

DESCRIPTION LIB$POL YF provides higher-level language users with the capability of
evaluating polynomials.

The evaluation is carried out by Horner' s Method. The result is computed as
follows:

result= C[O]+X*(C[1]+X*(C[2]+ ... X*(C[D]) ...))

In the above result D is the degree of the polynomial and X is the argument.

CONDITION
VALUES
RETURNED

EXAMPLES

iJ C+

SS$_NQRMAL

SS$_FLTOVF

SS$_RQPRAND

C This FORTRAN example demonstrates how to use
C LIB$POLYF.
c-

C+

REAL*4 X,COEFF(5) ,RESULT
INTEGER*2 DEG

C Compute x-4 + 2*X-3 -x-2 + X - 3 using POLYF.
C Let X = 2.
C The coefficients needed are as follows:
c-

C+

DATA COEFF/1.0,2.0,-1.0,1.0,-3.0/
x = 2.0
DEG = 4

C Calculate (2)-4 + 2*(2-3) -2-2 + 2 - 3.
C The result should be 27.
c-

RETURN= LIB$POLYF(X,DEG,COEFF,RESULT)

Normal successful completion.

Floating overflow.

Reserved operand.

DEG has word length.

TYPE *,'(2)-4 + 2*(2-3) -2-2 + 2 - 3 = ',RESULT
END

LIB-303

LIB$POLYF

This FORTRAN example demonstrates how to call LIB$POL YF. The output
generated by this program is as follows:

(2)-4 + 2*(2-3) -2-2 + 2 - 3 = 27.00000

PROGRAM POLYF(INPUT,OUTPUT);

{+}
{ This Pascal program demonstrates how to use
{ LIB$POLYF to evaluate a polynomial.
{-}

TYPE
WORD = [WORD] 0 .. 65535;

VAR
COEFF : ARRAY [O .. 2] OF REAL (1.0,2.0,2.0);
RESULT : REAL;
RETURNED_STATUS : INTEGER;

[EXTERNAL] FUNCTION LIB$POLYF(
ARG REAL;
DEGREE WORD;
COEFF [REFERENCE] ARRAY [L .. U:INTEGER] OF REAL;
VAR RESULT REAL
) : INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$STOP(

BEGIN

{+}

CONDITION_STATUS : [IMMEDIATE.UNSAFE] UNSIGNED;
FAO_ARGS : [IMMEDIATE,UNSAFE,LIST] UNSIGNED
) : INTEGER; EXTERNAL;

{Call LIB$POLYF to evaluate 2(X**2) + 2*X + 1.
{-}

RETURNED_STATUS := LIB$POLYF(1.0,2,COEFF,RESULT);
IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

WRITELN('F(1.0) = ',RESULT:5:2);

END.

LIB-304

This example program demonstrates how to call LIB$POL YF from Pascal.
The output generated by this Pascal program is as follows:

$ RUN POLYF
F (1. 0) = 5 . 00

LIB$POLYG

FORMAT

RETURNS

ARGUMENTS

LIB$POLYG

Evaluate Polynomials

The Evaluate Polynomials routine (G-floating point values) allows higher
level language users to evaluate G-floating point value polynomials.

LIB$POLVG polynomial-argument ,degree ,coefficient
, floating-point-result

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

polynomial-argument
VMS usage: floating_point
type: G_floating
access: read only
mechanism: by reference

Argument for the polynomial. The polynomial-argument argument is
the address of a floating-point number that contains this argument. The
polynomial-argument argument is a G-floating number.

degree
VMS usage: word_signed
type: word integer (signed)
access: read only
mechanism: by reference

Highest numbered nonzero coefficient to participate in the evaluation. The
degree argument is the address of a signed word integer that contains this
highest-numbered coefficient.

If the degree is 0, the result equals C[O]. The range of the degree is 0 to 31.

coefficient
VMS usage: floating_point
type: G_floating
access: read only
mechanism: by reference, array reference

Floating-point coefficients. The coefficient argument is the address of an
array of floating-point coefficients. The coefficient of the highest-order
term of the polynomial is the lowest-addressed element in the array. The
coefficient argument is an array of G-floating numbers.

LIB-305

LIB$POLYG

DESCRIPTION

CONDITION
VALUES
RETURNED

EXAMPLE

LIB-306

floating-point-result
VMS usage: floating_point
type: G_floating
access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address
of a floating-point number that contains this result. LIB$POL YG writes the
address of floating-point-result into a G-floating number.

Intermediate multiplications are carried out using extended floating-point
fractions (63 bits for POLYG).

LIB$POLYG provides higher-level language users with the capability of
evaluating polynomials.

The evaluation is carried out by Homer's Method. The result is computed as
follows:

result= C[O]+X*(C[1]+X*(C[2]+ ... X*(C[D]) ...))

In the above result Dis the degree of the polynomial and Xis the argument.

See the VAX Architecture Reference Manual for the detailed description of
POLY.

SS$_NORMAL

SS$_FLTOVF

SS$_ROPRAND

Routine successfully completed.

Floating overflow.

Reserved operand.

The FORTRAN and Pascal examples provided in the description of
LIB$POLYF also demonstrate how to use LIB$POL YG. Please refer to those
examples for assistance in using this routine.

LIB$POLYH

FORMAT

RETURNS

ARGUMENTS

LIB$POLYH

Evaluate Polynomials

The Evaluate Polynomials routine (H-floating point values) allows higher
level language users to evaluate H-floating point value polynomials.

LIB$POLVH polynomial-argument ,degree ,coefficient
, floating-point-result

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

polynomial-argument
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Argument for the polynomial. The polynomial-argument argument is
the address of a floating-point number that contains this argument. The
polynomial-argument argument is an H-floating number.

degree
VMS usage: word_signed
type: word integer (signed)
access: read only
mechanism: by reference

Highest numbered nonzero coefficient to participate in the evaluation. The
degree argument is the address of a signed word integer that contains this
highest-numbered coefficient.

If the degree is 0, the result equals C[O]. The range of the degree is 0 to 31.

coefficient
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference, array reference

Floating-point coefficients. The coefficient argument is the address of an
array of floating-point coefficients. The coefficient of the highest-order
term of the polynomial is the lowest-addressed element in the array. The
coefficient argument is an array of H-floating numbers.

LIB-307

LIB$POLYH

DESCRIPTION

CONDITION
VALUES
RETURNED

EXAMPLE

LIB-308

floating-point-result
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address
of a floating-point number that contains this result. LIB$POLYH writes the
address of floating-point-result into an H-floating number.

Intermediate multiplications are carried out using extended floating-point
fractions (127 bits for POLYH).

LIB$POL YH provides higher-level language users with the capability of
evaluating polynomials.

The evaluation is carried out by Homer's Method. The result is computed as
follows:

result = C[O]+X*(C[1]+X*(C[2]+ ... X*(C[D]) ...))

In the above result D is the degree of the polynomial and X is the argument.

See the VAX Architecture Reference Manual for the detailed description of
POLY.

SS$_NORMAL

SS$_FLTOVF

SS$_ROPRAND

Routine successfully completed.

Floating overflow.

Reserved operand.

The FORTRAN and Pascal examples provided in the description of
LIB$POL YF also demonstrate how to use LIB$POL YH. Please refer to those
examples for assistance in using this routine.

LI B$PUT_CQMMON

LIB$PUT_COMMON Put String to Common

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Put String to Common routine copies the contents of a string into the
common area. The common area is an area of storage which remains
defined across multiple image activations in a process. Optionally,
LIB$PUT_COMMON returns the actual number of characters copied.
The maximum number of characters that can be copied is 252.

LIB$PUT_COMMON source-string [,resultant-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be copied to the common area by LIB$PUT_COMMON. The
source-string argument is the address of a descriptor pointing to this source
string.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters copied by LIB$PUT_COMMON to the common area.
The resultant-length argument is the address of an unsigned word integer
that contains this number of characters. LIB$PUT_COMMON writes this
number into the resultant-length argument.

LIB$PUT_COMMON and LIB$GET_COMMON allow programs to copy
strings to and from the common area. The programs reading and writing
the data in the common area must agree upon its amount and format. The
maximum length of the destination string is defined as follows:

[min(256, the length of the data in the common storage area) - 4]

Thus, maximum length is 252.

In BASIC and FORTRAN, you can use these routines to allow a USEROPEN
routine to pass information back to the routine that called it. A USEROPEN
routine cannot write arguments. However, it can call LIB$PUT_COMMON
to put information into the common area. The calling program can then use
LIB$GET_COMMON to retrieve it.

LIB-309

LIB$PUT_CQMMON

CONDITION
VALUES
RETURNED

LIB-310

You can also use these routines to pass information between images run
successively, such as chained images run by LIB$RUN _pRQGRAM. Since the
common area is unique to each process, do not use LIB$GET_CQMMON and
LIB$PUT_CQMMON to share information across processes.

SS$_NORM~L

Ll8$_STRTRU

L18$_FATERRLIB

Ll8$_1NSVIRMEM

Ll8$_1NVSTRDES

Routine successfully completed.

Successfully completed, but the source string was
truncated.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal· error
in the Run-Time Library and should be reported to
DIGITAL in a Software Performance Report (SPA).

Insufficient virtual memory. A call to LIB$GET_VM
has failed because your program has exceeded the
image quota for virtual memory.

Invalid string descriptor. A string descriptor has an
invalid value in its DSC$B_CLASS field.

LI B$PUT_QUTPUT

LI B$PUT_OUTPUT Put Line to SYS$0UTPUT

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

The Put Line to SYS$0UTPUT routine writes a record to the current
controlling output device, specified by SYS$0UTPUT using the RMS $PUT
service.

LIB$PUT_OUTPUT message-string

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

message-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Message string written to the current controlling output device by
LIB$PUT_QUTPUT. The message-string argument is the address of a
descriptor pointing to this message string. RMS handles all formatting, so
the message does not need to include such ASCII formatting instructions as
carriage return (CR).

When you log in, VMS creates three files as default 1/0 control streams for
your process.

• SYS$INPUT, your default input device

• SYS$0UTPUT, your default output device

• SYS$COMMAND, the device that supplies the commands to your process

These files remain open until you log out. They are the interface between
your interactive input and output or batch commands and the VMS software.
Initially, all three are equated with the terminal. However, with the DCL
ASSIGN command, you can change these assignments to obtain information
from a file or put information into a file. SYS$INPUT and SYS$COMMAND
are usually identical, but the input and command streams can be different.
For example, during the execution of an indirect command file from an
interactive terminal, SYS$COMMAND refers to the terminal and SYS$INPUT
refers to the command file.

On the first call to LIB$PUT_QUTPUT, if the output file is not a process
permanent file, LIB$PUT_OUTPUT opens the output file and positions it at
the end-of-file mark. If no output file exits on the first call,
LIB$PUT_QUTPUT creates a file. The RMS internal stream identifier (ISi) is
stored in the routine's static storage for subsequent calls. Hence, this routine
is not AST reentrant.

LIB-311

LIB$PUT_QUTPUT

CONDITION
VALUES
RETURNED

EXAMPLE

10 !+

LIB$PUT_QUTPUT uses RMS to format records on output, and RMS records
have implied carriage control. That is, a record normally corresponds to a
line of text. Therefore, if you want explicit carriage control, instead of implied
carriage control, you must supply it yourself within the source string.

LIB$PUT_QUTPUT is the most convenient way for a MACRO or BLISS
program to write information to SYS$0UTPUT.

If you have several shareable images that call LIB$PUT_OUTPUT, and if each
shareable image includes its own copy of LIB$PUT_QUTPUT, your program
could produce multiple output streams and multiple versions of your output
file. A single application should reference one copy of LIB$PUT_OUTPUT.

SS$_NORMAL Routine successfully completed.

Any condition values returned by RMS.

! This BASIC program demonstrates how to use
! LIB$PUT_OUTPUT to output a simple message.
!-

MSGSTR$ = 'This is a sample message'
CALL LIB$PUT_OUTPUT(MSGSTR$)

!+
! In this example, the default value of
! SYS$0UTPUT is used. Therefore, the
! output is 'put' to the terminal screen.
!-

90 END

LIB-312

This BASIC program illustrates the use of LIB$PUT_OUTPUT. The output
generated by this BASIC example is as follows:

This is a sample message

LIB$RADIX_PQINT

LI B$RADIX_POI NT Radix Point Symbol

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Radix Point Symbol routine returns the system's radix point symbol.
This symbol is used inside a digit string to separate the integer part from
the fraction part. This routine works by attempting to translate the logical
name SYS$RADIX_POINT as a process, group, or system logical name.

LI B$RADIX_POI NT radix-point-string [,resultant-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

radix-point-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Radix point string. The radix-point-string argument is the address of a
descriptor pointing to this radix point string.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The number of characters written into radix-point-string, not counting
padding in the case of a fixed-length string. The resultant-length argument
is the address of an unsigned word that contains this number.

If the radix-point-string argument is the address of a fixed-length string
descriptor, there may not be enough characters in the fixed-length string to
contain the whole radix point string, and the radix point string is truncated. If
the radix point string is truncated to the size specified in a fixed-length string
descriptor, resultant-length is set to this size. Therefore, resultant-length
can always be used by the calling program to access a valid substring of
radix-point-string.

If unable to translate the logical name SYS$RADIXJOINT,
LIB$RADIXJOINT returns the United States radix point symbol (.). If the
translation succeeds, the text produced is returned. Thus, a system manager
can define SYS$RADIXJOINT as a system-wide logical name to provide a
default for all users, and an individual user with a special need can define
SYS$RADIXJOINT as a process logical name to override the default.

LIB$RADIXJOINT is used implicitly by BASIC.

LIB-313

LIB$RADIX_POINT

CONDITION
VALUES
RETURNED

LIB-314

SS$_NORMAL

LIB$_STRTRU

LIB$_FATERRLIB

LIB$_1NSVIRMEM

LIB$_1NVSTRDES

Normal successful completion.

Successfully completed, but the radix point string
was truncated.

Fatal internal error.

Insufficient virtual memory.

Invalid string descriptor.

LIB$REMQHI

LIB$REMQHI Remove Entry from Head of Queue

FORMAT

RETURNS

ARGUMENTS

The Remove Entry from Head of Queue routine removes an entry from the
head of the specified self-relative interlocked queue. LIB$REMQHI makes
the VAX REMQHI instruction available as a callable routine.

LIB$REMQHI header ,remque-address [,retry-count]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

header
VMS usage: quadword_signed
type: quadword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue from which entry will be removed.
The header argument contains the address of this signed aligned quadword
integer. Header must be initialized to zero before first use of the queue; zero
means an empty queue.

remque-address
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of the removed entry. The remque-address argument is the address
of an unsigned longword that contains this address. If the queue was empty,
remque-address is set to the address of the header.

retry-count
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the operation is to be retried in case of secondary
interlock failure of the queue instruction in a processor-shared memory
application. The retry-count argument is the address of a longword that
contains the retry count value. A value of 1 causes no retries. The default
value is 10.

LIB-315

LIB$REMQHI

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-316

The queue from which LIB$REMQHI removes an entry can be in process
private, processor-private, or processor-shareable memory to implement
per-process, per-processor, or across-processor queues.

A queue is a doubly linked list. A Run-Time Library routine specifies a queue
entry by its address. Two longwords, a forward link and a backward link,
define the location of the entry in relation to the preceding and succeeding
entries.

A self-relative queue is a queue in which the links between entries are
displacements; the two longwords represent the displacements of the
current entry's predecessor and successor. The VAX instructions INSQHI
and REMQHI allow you to insert and remove an entry at the head of
a self-relative queue. The corresponding Run-Time Library routines are
LIB$INSQHI and LIB$REMQHI.

The self-relative queue instructions are interlocked and cannot be interrupted,
so that other processes cannot insert or remove queue entries while the
current program is doing so. Since the operation requires changing two
pointers at the same time, a high-level language cannot perform this operation
without calling the Run-Time Library queue access routines.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on
a single processor or in a multiprocessor environment. The queue Access
routines are also useful in an AST environment; they allow you to add or
remove an entry from a queue without being interrupted by an asynchronous
system trap.

SS$_NQRMAL

LIB$_0NEENTQUE

LIB$_SECINTFAI

LIB$_QUEWASEMP

SS$_RQPRAND

Routine successfully completed. The entry was
removed from the head of the queue, and the
resulting queue contains one or more entries.

Routine successfully completed. The entry was
removed from the head of the queue, and the
resulting queue is empty.

A secondary interlock failure occurred; the insertion
was attempted the number of times specified by
retry-count. This is a severe error. The queue is
not modified. This condition can occur only when
the queue is in memory being shared between two
or more processors.

The queue was empty. The queue is not modified.

Reserved operand fault. Either the entry or the
header is at an address that is not quadword
aligned, or the header address equals the entry
address.

LIB$REMQTI

LIB$REMQTI Remove Entry from Tail of Queue

FORMAT

RETURNS

ARGUMENTS

The Remove Entry from Tail of Queue routine removes an entry from the
tail of the specified self-relative interlocked queue. LIB$REMQTI makes the
VAX REMQTI instruction available as a callable routine.

LIB$REMQTI header ,remque-address [,retry-count}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

header
VMS usage: quadword_signed
type: quadword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue from which the entry is to be deleted.
The header argument contains the address of this signed aligned quadword
integer. Header must be initialized to zero before first use of the queue; zero
means an empty queue.

remque-address
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of the removed entry. The remque-address argument is the address
of a longword that contains this address. If the queue was empty, remque
address is set to the address of the header.

retry-count
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the operation is to be retried in case of secondary ...
interlock failure of the queue instruction in a processor-shared memory
application. The retry-count argument is the address of a longword that is
this retry count value. A value of 1 causes no retries. The default value is 10.

LIB-317

LIB$REMQTI

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-318

The queue from which LIB$REMQTI removes an in process-private,
processor-private, or processor-shareable memory to implement per-process,
per-processor, or across-processor queues.

A queue is a doubly linked list. A Run-Time Library routine specifies a queue
entry by its address. Two longwords, a forward link and a backward link,
define the location of the entry in relation to the preceding and succeeding
entries.

A self-relative queue is a queue in which the links between entries are
displacements; the two longwords represent the displacements of the
current entry's predecessor and successor. The VAX instructions INSQTI and
REMQTI allow you to insert and remove an entry at the tail of a self-relative
queue. The corresponding Run-Time Library routines are LIB$INSQTI and
LIB$REMQTI.

The self-relative queue instructions are interlocked and cannot be interrupted,
so that other processes cannot insert or remove queue entries while the
current program is doing so. Since the operation requires changing two
pointers at the same time, a high-level language cannot perform this operation
without calling the Run-Time Library queue access routines.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on
a single processor or in a multiprocessor environment. The queue Access
routines are also useful in an AST environment; they allow you to add or
remove an entry from a queue without being interrupted by an asynchronous
system trap.

$$$_NORMAL

SS$_ROPRAND

LIB$_0NEENTQUE

LIB$_QUEWASEMP

LIB$_SECINTFAI

Routine successfully completed. The entry was
removed from the queue tail, and the resulting
queue contains one or more entries.

Reserved operand fault. Either the entry or the
header is at an address that is not quadword
aligned, or the header address equals the entry
address.

Routine successfully completed. The entry was
removed from the queue tail, and the resulting
queue is empty.

Queue was empty. The queue is not modified.

A secondary interlock failure occurred; the insertion
was attempted the number of times specified by
retry-count. This is a severe error. The queue is
not modified. This condition can occur only when
the queue is in memory being shared between two
or more processors.

LIB$RENAME_FILE

LIB$RENAME_FILE Rename One or More Files

FORMAT

RETURNS

ARGUMENTS

The Rename One or More Files routine changes the names of one or more
files. The specification of the files to be renamed may include wildcards.

LIB$RENAME_FILE is similar in function to the DCL command RENAME.

LIB$RENAME_FILE old-fi/espec ,new-filespec
[,default-filespec] [,related-filespec}
[,flags][, user-success-procedure]
[,user-error-procedure]
[,user-confirm-procedure]
[,user-specified-argument]
[,old-resultant-name]
[,new-resultant-name]
[,file-scan-context]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

old-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification of the files to be renamed. The old-filespec argument
is the address of a descriptor pointing to the old file specification. The
specification may include wildcards, in which case each file which matches
the specification will be renamed. The string must not contain more than
255 characters. Any string class is supported.

new-fi/espec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification for the new file names. The new-filespec argument is the
address of a descriptor pointing to the new file specification.

This specification need not be complete; fields omitted or specified by using
the wildcard character (*) will be filled in from the existing file's name using
the same rules as for the DCL command RENAME. The string must not
contain more than 255 characters. Any string class is supported.

LIB-319

LIB$RENAME_FILE

LIB-320

default-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification of the files to be renamed. The default-filespec
argument is the address of a descriptor pointing to the default file
specification.

This is an optional argument; if omitted, the default is the null string. See
the VMS Record Management Services Manual for information on default file
specifications. The string must not contain more than 255 characters. Any
string class is supported.

related-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Related file specification of the files to be renamed. The related-filespec
argument is the address of a descriptor pointing to the related file
specification. This is an optional argument; if omitted, the default is the
null string. Any string class is supported.

Input file parsing is used. (See the VMS Record Management Services Manual
for information on related file specifications and input file parsing.)

The related file specification is useful when you are processing lists of file
specifications. Unspecified portions of the file specification are inherited from
the last file processed. Any string class is supported. This is an optional
argument.

flags
VMS usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by reference

Longword of flag bits designating optional behavior. The flags argument
is the address of an unsigned longword containing the flag bits. This is an
optional argument; if omitted, the default is that all flags are clear.

The bit number, symbol, and its meaning is as follows:

Bit Description

0 If new-filespec does not specify a version number, this flag controls
whether a new version number for the output file is to be assigned. If
clear, the file is given a version number 1 higher than any previously
existing file of the same file name and file type. This is the default action.
If set, the current version number of the file is used. If a file already exists
with the same file name, type and version number, the error RMS$_FEX
is given. This flag is equivalent to the /NONEW_VERSION qualifier of the
DCL RENAME command.

LIB$RENAME_FILE

user-success-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User-supplied success routine that LIB$RENAMEJILE calls after each
successful rename. The user-success-procedure argument is the address of
the entry mask to the success routine.

For further information on the success routine, see "Call Format for a Success
Routine" in the Description section.

user-error-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User-supplied error routine that LIB$RENAMEJILE calls when it detects
an error. The user-error-procedure argument is the address of the entry
mask to the error routine. The value returned by the error routine determines
whether LIB$RENAMEJILE processes more files. For further information
on the error routine, see "Call Format for an Error Routine" in the Description
section.

user-confirm-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User-supplied confirm routine that LIB$RENAMEJILE calls before it
renames a file. The user-confirm-procedure argument is the address of
the entry mask to the confirm routine. The value returned by the confirm
routine determines whether or not LIB$RENAMEJILE renames the file.

The confirm routine can be used to select specific files for renaming based on
criteria such as expiration date, size, and so on.

For further information on the confirm routine, see "Call Format for a Confirm
Routine" in the Description section.

user-specified-argument
VMS usage: user_arg
type: unspecified
access: read only
mechanism: by value

Value that LIB$RENAMEJILE passes to the success, error, and confirm
routines each time they are called. Whatever mechanism is used to pass
user-specified-argument to LIB$RENAME_FILE is also used to pass it to
the user-supplied routines. This is an optional argument; if omitted, zero is
passed by value.

LIB-321

LIB$RENAME_FILE

LIB-322

old-resultant-name
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String into which LIB$RENAME_FILE copies the old resultant file
specification of the last file processed. This is an optional argument. If
present, it is used to store the file specification passed to the user-supplied
routines instead of a default class S, type T string. Any string class is
supported.

If you are specifying one or more of the action routine arguments, be sure that
the descriptor class used to pass resultant-name is the same as the descriptor
class required by the action routine. For example, VAX Ada requires a class
SB descriptor for string arguments to Ada routines, but will use a class A
descriptor by default when calling external routines. Refer to your language
manual to determine the proper descriptor class to use.

new-resultant-name
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String into which LIB$RENAME_FILE writes the new RMS resultant file
specification of the last file processed. The new-resultant-name argument
is the address of a descriptor pointing to the new name. This is an optional
argument. If present, it is used to store the file specification passed to the
user-supplied routines instead of a class S, type T string. Any string class is
supported.

If you are specifying one or more of the action routine arguments, be sure that
the descriptor class used to pass resultant-name is the same as the descriptor
class required by the action routine. For example, VAX Ada requires a class
SB descriptor for string arguments to Ada routines, but will use a class A
descriptor by default when calling external routines. Refer to your language
manual to determine the proper descriptor class to use.

file-scan-context
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context for renaming a list of file specifications. The file-scan-context is the
address of a longword which contains this context. You must initialize this
longword to zero before the first of a series of calls to LIB$RENAMEJILE.
LIB$RENAME_FILE uses the file scan context to retain the file context for
multiple input files.

LIB$FILE_SCAN uses this context to retain multiple input file related file
context. This is an optional argument; it need only be specified if you are
using multiple input files, as the DCL command RENAME does. You may
deallocate the context allocated by LIB$FILE_SCAN while processing the
LIB$RENAMEJILE requests by calling LIB$FILE_SCAN_END after all
calls to LIB$RENAME_FILE have been completed. See the description of
LIB$FILE_SCAN for a more detailed description of this argument.

DESCRIPTION

LIB$RENAME_FILE

This description is divided into three parts.

• Call Format for a Success Routine

• Call Format for an Error Routine

• Call Format for a Confirm Routine

Call Format for a Success Routine

The success routine is optional; it is called only if the user-success-procedure
argument is specified in the call to LIB$RENAMEJILE.

The calling format of a success routine is as follows:

user-success-procedure old-filespec ,new-filespec
(,user-specified-argument]

old-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: descriptor

RMS resultant file specification of the file before it was renamed. If old
resultant-name was specified, it is used to pass the string to the success
routine. Otherwise, a class S, type T string is passed. Any string class is
supported.

new-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the newly renamed file. If new-resultant
name was specified, it is used to pass the string to the success routine.
Otherwise, a class S, type T string is passed. Any string class is supported.

user-specified-argument
VMS usage: user_arg
type: unspecified
access: read only
mechanism: unspecified

Value of user-specified-argument passed by LIB$RENAMEJILE to the
success routine using the same passing mechanism that was used to pass it to
LIB$RENAME_FILE.

Call Format for an Error Routine

The error routine returns a success/fail value that LIB$RENAMEJILE
uses to determine whether or not more files will be processed if an error is
encountered. The error routine is called only if the user-error-procedure
argument was specified in the call to LIB$RENAMEJILE. If the user
error-procedure argument was not specified, the default is to continue
processing.

LIB-323

LIB$RENAME_FILE

LIB-324

The calling format of the error routine is as follows:

user-error-procedure old-filespec ,new-filespec
,rms-sts ,rms-stv ,error-source ,user-specified-argument

old-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file being renamed when the error
occurred. If old-resultant-name was specified, it is used to pass the string
to the error routine. Otherwise, a class S, type T string is passed. Any string
class is supported.

new-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the new file name being used when the
error occurred. If new-resultant-name was specified, it is used to pass the
string to the error routine. Otherwise, a class S, type T string is passed. Any
string class is supported.

rms-sts
VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

Primary condition code (FAB$L_STS) which describes the error that occurred.
The rms-sts argument is the address of an unsigned longword that contains
this primary condition code.

rms-stv
VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

Secondary condition code (FAB$L_STV) which describes the error that
occurred. The rms-stv argument is the address of an unsigned longword that
contains this secondary condition code.

error-source
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Integer code indicating where the error was found. The error-source
argument is the address of a longword containing the error source.

LIB$RENAME_FILE

The values of error-source and their meanings are as follows:

0 Error searching for old-filespec

Error parsing new-filespec

2 Error renaming file

user-specified-argument
VMS usage: user_arg
type: unspecified
access: read only
mechanism: unspecified

Value of user-specified-argument that LIB$RENAMEJILE passes to the
error routine using the same passing mechanism that was used to pass it to
LIB$RENAME_FILE.

If the error routine returns a success status (bit 0 set), then
LIB$RENAME_FILE will continue processing files. If the error routine
returns a failure status (bit 0 clear), processing ceases immediately and
LIB$RENAMEJILE returns with an error status.

If the user-error-procedure argument is not specified,
LIB$RENAMEJILE will return to its caller the most severe error status
encountered while renaming the files. If the error routine is called for an
error, the success status LIB$_ERRROUCAL is returned.

The error routine is not called for errors related to string copying.

Call Format for a Confirm Routine

The calling format of a confirm routine is as follows:

user-confirm-procedure old-filespec ,new-filespec
,old-fab [,user-specified-argument]

old-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file about to be renamed. If old
resultant-name was specified, it is used to pass the string to the confirm
routine. Otherwise, a class S, type T string is passed. Any string class is
supported.

new-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification which the file will be given. If new-resultant
name was specified, it is used to pass the string to the confirm routine.
Otherwise, a class S, type T string is passed. Any string class is supported.

LIB-325

LIB$RENAME_FILE

CONDITION
VALUES
RETURNED

LIB-326

old-fab
VMS usage: fab
type: unspecified
access: read only
mechanism: by reference

Address of the RMS FAB that describes the file being renamed. Your program
may perform an RMS $OPEN on the FAB to obtain file attributes it needs to
determine whether the file should be renamed, but must close the file with
$CLOSE before returning to LIB$RENAME_FILE.

user-specified-argument
VMS usage: user_arg
type: unspecified
access: read only
mechanism: unspecified

Value of user-specified-argument passed by LIB$RENAMEJILE to the
confirm routine using the same passing mechanism that was used to pass it to
LIB$RENAME_FILE. This is an optional argument.

If the confirm routine returns a success value (bit 0 set), the file is renamed;
otherwise, the file is not renamed.

SS$_NORMAL

LIB$_ERRROUCAL

LIB$_1NV ARG

LIB$_1NVFILSPE

LIB$_1NVSTRDES

LIB$_ WRONUMARG

Routine successfully completed.

Success-error routine called. A file error was
encountered but the error routine was called to
handle the condition.

Invalid argument. Flags has one or more undefined
bits set.

Invalid file specification. Old-filespec, new
filespec, or default-filespec contains more than
255 characters.

Invalid string descriptor. One of the string
argument descriptors was not a valid string
descriptor.

Wrong number of arguments. An incorrect number
of arguments was passed to LIB$RENAME_FILE.

Any condition value returned by LIB$SCOPY_xxx; truncation errors are
ignored.

Any condition value returned by RMS. If the user-error-procedure argument
was not specified, this is the most severe of the RMS errors which occurred
while renaming the files.

LI B$RESERVE_EF

LIB$RESERVE_Ef Reserve Event Flag

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

The Reserve Event Flag routine allocates a local event flag number
specified by event-flag-number.

LIB$RESERVE_EF event-flag-number

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

event-flag-number
VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by reference

Event flag number to be allocated by LIB$RESERVE_EF. The event-flag
number argument contains the address of a signed longword integer that is
this event flag number.

LIB$RESERVE_EF allocates a particular local event flag number. It differs
from LIB$GET_EF, which allocates an arbitrary event flag.

Use LIB$FREE_EF to deallocate an event flag reserved with
LIB$RESERVE_EF.

SS$_NORMAL

LIB$_EF _ALRRES

LIB$_EF _RESSYS

Routine successfully completed.

Event flag already reserved.

Event flag reserved to system. This occurs if the
event flag number is outside the ranges of 1 to 23
and 32 to 63.

LIB-327

LI B$RESERVE_EF

EXAMPLE

PROGRAM RESERVE_EF(INPUT, OUTPUT);

routine LIB$RESERVE_EF(%REF EVENT_FLAG_NUM: INTEGER); EXTERN;
routine LIB$FREE_EF(%REF EVENT_FLAG_NUM: INTEGER); EXTERN;

VAR
FLAG_NUM : INTEGER;

BEGIN
FLAG_NUM := 37;
LIB$RESERVE_EF(FLAG_NUM);
WRITELN(FLAG_NUM);
LIB$FREE_EF(FLAG_NUM);

END.

LIB-328

The output generated by this Pascal example program is as follows:

37

LIB$RESET_VM_ZONE

LIB$RESET_VM_ZONE Reset Virtual Memory
Zone

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Reset Virtual Memory Zone routine frees all blocks of memory that
were previously allocated from the zone.

LIB$RESET_VM_ZONE zone-id

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

zone-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id is the address of a longword that contains the
identifier of a zone created by a previous call to LIB$CREATE_ VM-20NE or
LIB$CREATE_USER_ VM_ZONE.

LIB$RESET_ VM-20NE frees all the blocks of memory that were previously
allocated from the zone. The memory becomes available to satisfy further
allocation requests for the zone; the memory is not returned to the
processwide page pool managed by LIB$GET_ VM_p AGE. Your program
can continue to use the zone after you call LIB$RESET_ VM-20NE.

Resetting a zone is a much more efficient way to reuse storage than
individually freeing each allocated object in the zone.

It is the caller's responsibility to ensure that he or she has "exclusive"
access to the zone while the reset operation is being performed. Results are
unpredictable if another thread of control attempts to perform any operation
on the zone while RESET_ VM-20NE is in progress.

If you specified deallocation filling when you created the zone,
LIB$RESET_ VM-20NE will fill all of the allocated blocks that are freed.

If the zone you are resetting was created using the
LIB$CREATE_USER_ VM-20NE routine, then you must have an
appropriate action routine for the reset operation. That is, in your call to
LIB$CREATE_USER_ VM-20NE, you must have specified a user-reset
procedure.

LIB-329

LI B$RESET_ VM _ZQN E

CONDITION
VALUES
RETURNED

LIB-330

SS$_NORMAL

Ll8$_BADBLOADR

Normal successful completion.

An invalid zone-id argument.

LIB$REVERT

LIB$REVERT Revert to the Handler of the
Routine Activator

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Revert to the Handler of the Routine Activator routine deletes the
condition handler established by LIB$EST ABLISH by clearing the address
pointing to the condition handler from the activated routine's stack frame.

LIB$REVERT

VMS usage: address
type: address
access: write only
mechanism: by value

Previous contents of SF$A.JIANDLER (longword 0) of the caller's stack
frame. This is the address of the condition handler previously in effect. If no
condition handler was in effect, zero is returned.

None.

LIB$REVERT returns the address that it clears from the calling routine's stack
frame. LIB$REVERT is used only if your routine is to establish and then
cancel a condition handler for a portion of its execution.

LIB$REVERT is provided primarily for use with languages without built-in
error handling facilities, such as FORTRAN. Do not use LIB$REVERT from
BASIC, COBOL, Pascal, or PL/I. See the documentation for the language you
are using for information about how that language handles errors.

In MACRO, you merely use the following instruction rather than calling
LIB$REVERT:

CLRL (FP) set handler address to 0
in current stack frame

CONDITION None.

VALUES
RETURNED

LIB-331

LIB$RUN_PROGRAM

LIB$RUN_PROGRAM Run New Program

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

LIB-332

The Run New Program routine causes the current program to stop running
and begins execution of another program.

LIB$RUN_PROGRAM program-name

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

program-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File name of the program to be run in place of the current program. The
program-name argument contains the address of a descriptor pointing to this
~le name string.

The maximum length of the file name is 255 characters. The default file type
is .EXE.

LIB$RUN _PROGRAM stops execution of the current program and begins
execution of another program.

• If successful, control does not return to the calling program. Instead, the
$EXIT system service is called, the new program image replaces the old
image in the user process, and the command interpreter gives control to
the new image.

• If unsuccessful, control returns to the command interpreter.

This routine is supported for use with the DCL and MCR CLis. If an image is
run directly as a subprocess or as a detached process, there is no CLI present
to perform this function. In those cases, the error status LIB$_NOCLI is
returned.

LIB$RUN _PROGRAM causes the current image to exit at the point of the
call and directs the Command Language Interpreter, if one is present, to start
running _another program. If LIB$RUN _pROGRAM executes successfully,
control passes to the second program; if not, control passes to the Command
Language Interpreter. The calling program cannot regain control. This
technique is called chaining.

This routine is provided primarily for compatibility with PDP-11 systems,
where chaining is used to extend the address space of a system.

CONDITION
VALUES
RETURNED

LI B$RUN _PROGRAM

This routine may also be useful in a VMS environment where address space
is severely limited and large images are not possible. For example, you might
use chaining to perform system generation (SYSGEN) on a small virtual
address space, for a large page file.

With LIB$RUN_pRQGRAM, the calling program can pass arguments to the
next program in the chain only by using the common storage area. One way
to do this is for the calling program to call LIB$PUT_COMMON to pass the
information into the common storage area. Then the called program calls
LIB$GET_COMMON to retrieve the data.

In general, this practice is not recommended. There is no convenient way to
specify the order and type of arguments passed into the common storage area;
so programs that pass arguments in this way must know about the format of
the data before it is passed. When you use common storage, it is very difficult
to keep your program modular and AST-reentrant; a method of arbitration
must be designated to define which program can modify common storage and
when.

Further, LIB$RUN_pRQGRAM cannot be used if no Command Language
Interpreter is present, as in the case of image subprocesses and detached
subprocesses.

If you want control to return to the caller, use LIB$SPAWN instead.

Ll8$_1NV ARG

Ll8$_NOCLI

Ll8$_UNECLIERR

Invalid argument.

No CLI present to perform function. The calling
process did not have a CLI to perform the function
or the CLI did not support the request type. Note
that an image run as a subprocess or detached
process does not have a CLI.

Unexpected CLI error. The CLI returned an error
status which was not recognized. This error may
be caused by use of a nonstandard CLI. If this error
occurs while using the DCL or MCR CLls, please
report the problem to DIGIT AL in a Software
Performance Report (SPR).

LIB-333

LIB$SCANC

LI B$SCANC Scan for Characters and Return
Relative Position

FORMAT

RETURNS

ARGUMENTS

LIB-334

The Scan for Characters and Return Relative Position routine is used to
find a specified set of characters in the source string. LIB$SCANC makes
the VAX SCANC instruction available as a callable routine.

LIB$SCANC source-string ,table-array
,byte-integer-mask

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Relative position in the source string of the character that terminated the
operation, or zero if the termim1tor character is not found. If the source string
has a zero length, then a zero is returned.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string used by LIB$SCANC to index into a table. The source-string
argument contains the address of a descriptor pointing to this source string.

table-array
VMS usage: vector_mask_byte
type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Table that LIB$SCANC indexes into and peforms a logical AND operation
with the byte-integer-mask byte. The table-array argument contains the
address of an unsigned byte array that is this table.

byte-integer-mask
VMS usage: mask_byte
type: byte (unsigned)
access: read only
mechanism: by reference

Mask on which a logical AND operation is performed with bytes in table
array. The byte-integer-mask argument contains the address of an unsigned
byte that is this mask.

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$SCANC

LIB$SCANC uses successive bytes of the string specified by source-string
to index into a table. The byte selected from the table is the byte on which
a logical ANO operation is performed with the mask byte. The operation is
terminated when the result of the AND operation is equal to 1.

None.

LIB-335

LI B$SCOPV _DXDX

LIB$SCOPY_DXDX Copy Source String Passed
by Descriptor to Destination

FORMAT

The Copy Source String Passed by Descriptor to Destination routine
copies a source string passed by descriptor to a destination string.

LIB$SCOPV_DXDX source-string ,destination-string

corresponding jsb LIB$SCOPV_DXDX6
entry point

RETURNS

ARGUMENTS

LIB-336

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be copied to the destination string by LIB$SCOPY_DXDX.
The source-string argument contains the address of a descriptor pointing
to this source string. The descriptor class can be unspecified, fixed-length,
decimal string, array, noncontiguous array, varying, or dynamic.

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string to which the source string is copied. The destination
string argument contains the address of a descriptor pointing to this
destination string.

The following actions occur depending on the class of the destination string's
descriptor.

DESCRIPTION

CONDITION
VALUES
RETURNED

LI B$SCOPV _DXDX

Class Field Action

DSC$K_CLASS_S,Z,SD,A,NCA Copy the source string. If needed, space-fill
or truncate on the right.

DSC$K_CLASS_D

DSC$K_CLASS_VS

If the area specified by the destination
descriptor is large enough to contain the
source string, copy the source string and set
the new length in the destination descriptor.
If the area specified is not large enough,
return the previous space allocation (if any)
and then dynamically allocate the amount
of space needed. Copy the source string
and set the new length and address in the
destination descriptor.

Copy source string to destination string up
to the limit of DSC$W _MAXSTRLEN with
no padding. Readjust current length field to
actual number of bytes copied.

LIB$SCOPY_DXDX returns all condition values as a status; truncation is a
qualified success condition value (bit 0 set to 1).

In addition, an equivalent JSB entry point is available, with RO containing the
first argument and Rl containing the second.

SS$_NORMAL

LIB$_STRTRU

LIB$_FA TERRLIB

LIB$_1NSVIRMEM

LIB$_1NVSTRDES

Routine successfully completed. All characters
in the input string were copied to the destination
string.

Routine successfully completed. String truncated.
The fixed-length destination string could not
contain all of the characters copied from the
source string.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Insufficient virtual memory. A call to LIB$GET_VM
has failed because your program has exceeded the
image quota for virtual memory.

Invalid string descriptor. A string descriptor has an
invalid value in its DSC$B_CLASS field.

LIB-337

LI B$SCOPV _R_DX

LIB$SCOPV_R_DX Copy Source String Passed
by Reference to Destination
String

FORMAT

The Copy Source String Passed by Reference to Destination String routine
copies a source string passed by reference to a destination string.

LI B$SCOPV _R_DX word-integer-source-length
, source-string-address
, destination-string

corresponding jsb LIB$SCOPV_R_DX6
entry point

RETURNS

ARGUMENTS

LIB-338

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

word-integer-source-length
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of the source string. The word-integer-source-length argument
contains the address of an unsigned word that is this length.

source-string-address
VMS usage: char_string
type: character string
access: read only
mechanism: by reference

Source string to be copied to the destination string by LIB$SCOPY_R_DX.
The source-string-address argument is the address of this source string.

destination-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Destination string to which the source string is copied. The destination
string argument contains the address of a descriptor pointing to this
destination string.

DESCRIPTION

CONDITION
VALUES.
RETURNED

LIB$SCOPV_R_DX

The following actions occur depending on the class of the destination string's
descriptor.

Class Field Action

DSC$K_CLASS_S,Z,SD,A,NCA Copy the source string. If needed, space fill
or truncate on the right.

DSC$K_CLASS_D

DSC$K_CLASS_VS

If the area specified by the destination
descriptor is large enough to contain the
source string, copy the source string and set
the new length in the destination descriptor.
If the area specified is not large enough,
return the previous space allocation (if any)
and then dynamically allocate the amount
of space needed. Copy the source string
and set the new length and address in the
destination descriptor.

Copy source string to destination string up
to the limit of DSC$W _MAXSTRLEN with
no padding. Readjust current length field to
actual number of bytes copied.

LIB$SCOPY_R_DX returns all condition values as a status; truncation is a
qualified success condition value (bit 0 set to 1).

In addition, an equivalent JSB entry is available, with RO being the first
argument, Rl the second, and R2 the third. The length argument is passed in
bits 15:0 of RO.

SS$_NORMAL

LIB$_STRTRU

LIB$_FATERRLIB

LIB$_1NSVIRMEM

LIB$_1NVSTRDES

Routine successfully completed. All characters
in the input string were copied to the destination
string.

Routine successfully completed. String truncated.
The fixed-length destination string could not
contain all of the characters copied from the
source string.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPA).

Insufficient virtual memory. A call to LIB$GET_VM
has failed because your program has exceeded the
image quota for virtual memory.

Invalid string descriptor. A string descriptor has an
invalid value in its DSC$B_CLASS field.

LIB-339

LIB$SET_LOGICAL

LIB$SET_LOGICAL Set Logical Name

FORMAT

RETURNS

ARGUMENTS

LIB-340

The Set Logical Name routine requests the calling process's Command
Language Interpreter (CLI) to define or redefine a supervisor-mode process
logical name. It provides the same function as the DCL DEFINE command.

LI B$SET_LOGICAL logical-name[, value-string][, table]
{,attributes} [,item-list]

Either the item-list or value-string argument must be specified. If both item
list and value-string are specified, the value-string argument is ignored.

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

logical-name
VMS usage: logicaLname
type: character string
access: read only
mechanism: by descriptor

Logical name to be defined or redefined. The logical-name argument
contains the address of a descriptor pointing to this logical name string.
The maximum length of a logical name is 255 characters.

value-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Value to be given to the logical name. The value-string argument contains
the address of a descriptor pointing to this value string. The maximum length
of a logical name value is 255 characters.

If omitted, an item list must be present to specify the values of the logical
name.

table
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the table in which to create the logical name. The table argument
contains the address of a descriptor pointing to the logical name table. If no
table is specified, LNM$PROCESS is used as the default.

DESCRIPTION

LI B$SET _LOGICAL

attributes
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Logical name or translation attributes. The attributes argument is the address
of a longword bit mask that contains the logical name or translation attributes.

LNM$M_CQNFINE and LNM$M_NO_ALIAS are currently available logical
name attributes. See the description of the $CRELNM system service in the
VMS System Services Reference Manual for definitions of LNM$M_CONFINE
and LNM$M_NO_ALIAS. If omitted, no special logical name attribute is
established.

If no item-list is specified, the translation attributes LNM$M_CONCEALED
and LNM$M_TERMINAL may be specified. See the description of the
ASSIGN command in the VMS DCL Dictionary for definitions of these
attributes. If an item-list is specified, it will contain the translation attributes
for each equivalence string in the attribute.

item-list
VMS usage: item_list_2
type: unspecified
access: read only
mechanism: by reference, array reference

Item list describing the equivalence names for this logical name. The item
list argument contains the address of an array that contains this item list.
If item-list is not specified, the logical name will have only one value, as
specified in the value-string argument.

Either value-string or item-list must be specified. If neither is specified,
the LIB$-1NVARG error is produced. If both value-string and item-list are
specified, the value-string argument is ignored.

If item-list is specified, only logical name attributes are permitted.
Translation attributes appear in the item list.

Item-list is only needed when you wish to create multiple equivalence strings
for a single logical name.

If the optional table argument is defined, the logical name will be placed
in the table specified by the table argument; otherwise, the logical name is
placed in the LNM$PROCESS table.

Unlike the system services $CRELOG and $CRELNM, LIB$SET_LQGICAL
does not require the caller to be executing in supervisor mode to define
a supervisor-mode logical name. Supervisor-mode logical names are not
deleted when an image exits. A program can obtain the current value of any
logical name by calling the system service $TRNLNM. For more information
on logical names see the VMS System Services Reference Manual.

This routine is supported for use with the DCL and MCR Command
Language Interpreters. If an image is run directly as a subprocess or as a
detached process, there is no CU present to perform this function. In that
case, the error status LIB$_NOCLI is returned.

See the VMS DCL Dictionary for a description of the DCL DEFINE command.

LIB-341

LI B$SET_LOGICAL

CONDITION
VALUES
RETURNED

EXAMPLE

SS$_NQRMAL

SS$_SUPERSEDE

SS$_BUFFEROVF

SS$_ACCVIO

SS$_BADPARAM

SS$_INSFMEM

SS$_IVLOGNAM

SS$_1VLOGT AB

SS$_NOPRIV

SS$_ TOOMANYLNAM

UB$_INV ARG

UB$_INVSTRDES

LIB$_NOCU

LIB$_UNECUERR

Routine successfully completed.

Routine successfully completed; the previous
definition of the logical name was replaced.

Routine successfully completed; however, a buffer
overflow occurred.

Access violation. The logical name or its value
could not be read.

Bad argument.

Insufficient dynamic memory.

Invalid logical name. The logical name or its value
contained more than 255 characters.

Invalid logical name table.

No privileges for attempted operation.

Logical name translation exceeded allowed depth.

Neither the value-string nor the item-list
argument was specified.

Invalid string descriptor.

No CU present to perform function. The calling
process did not have a CU to perform the function
or the CU did not support the request type. Note
that an image run as a subprocess or detached
process does not have a CU.

Unexpected CU error. The CU returned an error
status which was not recognized. This error may
be caused by use of a nonstandard CU. If this error
occurs while using the DCL Command Language
Interpreter, please report the problem to DIGIT AL
in a Software Performance Report (SPR).

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

C* Initialize name for logical
C MOVE 'RPG_LOG' LOGICL 7
C* Initialize value to which logical is to be set
C MOVE 'OFF' SETVAL 3
C SETLOG EXTRN'LIB$SET_LOGICAL'
C* Call RTL routine to set the logical
C CALL SETLOG
C PARMD LOG I CL
C PARMD SETVAL
C SETON LR

LIB-342

The RPG II program above sets the logical RPG_LOG to OFF. This value can
be displayed after the program is run with SHOW LOGICAL as follows:

$ SHOW LOGICAL RPG_LOG
"RPG_LOG" = "OFF" (LNM$PROCESS_TABLE)

LIB$SET_SVMBOL

LIB$SET_SVMBOL Set Value of CLI Symbol

FORMAT

RETURNS

ARGUMENTS

The Set Value of CU Symbol routine requests the calling process's
Command Language Interpreter (CU) to define or redefine a CU symbol.

LIB$SET_SVMBOL symbol ,value-string
[,table-type-indicator]

VMS usage: cond_value
type: longword (unsigned)
access: write only ·
mechanism: by value

symbol
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the symbol to be defined or modified by LIB$SET_SYMBOL. The
symbol argument is the address of a descriptor pointing to this symbol string.
If you redefine a previously defined CLI symbol, the symbol value is modified
to the new value that you provide.

The symbol name is converted to uppercase and trailing blanks are removed
before use. You must begin a symbol name with a letter (A through Z), an
underscore (-), or a dollar sign ($). The maximum length of symbol is
255 characters.

value-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Value to be given to the symbol. The value-string argument is the address of
a descriptor pointing to this value string.

Trailing blanks are not removed from the value string before use. The
maximum length of value-string is 255 characters. Integer values are not
allowed; LIB$SET_SYMBOL is intended to set string CLI symbols, not integer
CLI symbols.

LIB-343

LIB$SET_SVMBOL

DESCRIPTION

LIB-344

table-type-indicator
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Indicator of the table which will contain the defined symbol. The table-type
indicator argument is the address of a signed longword integer that is. this
table indicator.

If omitted, the local symbol table is used. The following are possible values
for table-type-indicator.

Symbolic Name Value

LIB$K_CLLLOCAL_SYM 1

LIB$K_CLl_GLOBAL_SYM 2

Table Used

Local symbol table

Global symbol table

UB$SET_SYMBOL requests the calling process's Command Language
Interpreter (CU) to define or redefine a CU symbol.

CU symbols created using UB$SET_SYMBOL may be inaccessible by other
CU commands. To avoid this situation, make sure that your symbol names
are alphanumeric and that the first character is alphabetic. UB$SET_SYMBOL
is intended to set string CU symbols, not integer CU symbols.

UB$K_CU_LOCAL _SYM and UB$K_CU_GLOBAL _SYM are defined as
global symbols and in DIGITAL-supplied symbol libraries (macro or module
name $UBCUDEF).

This routine is supported for use with the DCL Command Language
Interpreter. If used with the MCR CU, the error status UB$_NOCU will
be returned. If an image is run directly as a subprocess or as a detached
process, there is no CU present to perform this function. In this case, the
error status UB$_NOCU is returned.

CONDITION
VALUES
RETURNED

SS$_NORMAL

U8$_AMBSYMDEF

U8$_FA TERRUB

U8$_1NSCUMEM

U8$_1NSVIRMEM

U8$_1NV ARG

U8$_1NVSTRDES

U8$_1NVSYMNAM

U8$_NQCU

U8$_UNECUERR

LIB$SET_SYMBOL

Routine successfully completed.

Ambiguous symbol definition. The symbol name
you want to define is ambiguous when compared
with existing symbol names. This condition might
arise if abbreviated symbols have been defined
previously. See the VMS DCL Dictionary for more
information on abbreviated symbols.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Insufficient CU memory. The CU could not get
enough virtual memory to assign another symbol.
This condition may be caused by having too many
symbols defined; deleting some symbol definitions
may make enough room for the new symbol.

Insufficient virtual memory. A call to U8$GET_VM
has failed because your program has exceeded the
image quota for virtual memory.

Invalid argument. The value of table-type
indicator was invalid or the length of value-string
was greater than 255 characters.

Invalid string descriptor. A string descriptor has an
invalid value in its DSC$8_CLASS field.

Invalid symbol name. The length of symbol was
greater than 255 characters or symbol did not
begin with a letter.

No CU present to perform function. The calling
process did not have a CU to perform the function
or the CU did not support the request type. Note
that an image run as a subprocess or detached
process does not have a CU.

Unexpected CU error. The CU returned an error
status which was not recognized. This error may
be caused by use of a nonstandard CU. If this error
occurs while using the DCL Command Language
Interpreter, please report the problem to DIGITAL
in a Software Performance Report (SPR).

LIB-345

LIB$SET_SVMBOL

EXAMPLE

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

C* Initialize name for symbol
C MOVE 'RPG_SYM' SYfl''" ~ 7
C* Initialize value to which symbol is to be set
C MOVE 'ON' SETVAL 2
C SETSYM EXTRN'LIB$SET_SYMBOL'
C* Call RTL routine to set the symbol
C CALL SETSYM
C PARMD SYMBOL
C PARMD SETVAL
C SETON LR

LIB-346

The RPG II program above sets the symbol RPG_SYM to ON. This value can
be displayed after the program is run with SHOW SYMBOL as follows:

$ SHOW SYMBOL RPG_SYM
RPG_SYM = "ON"

LIB$SFREE1_DD

LIB$SFREE1_DD Free One Dynamic String

FORMAT

The Free One Dynamic String routine returns one dynamic string area to
free storage.

LIB$SFREE1 _DD descriptor-address

corresponding jsb LIB$SFREE1 _DD6
entry point

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

descriptor-address
VMS usage: quadword_unsigned
type: quadword (unsigned)
access: modify
mechanism: by reference

Dynamic descriptor specifying the area to be deallocated. The descriptor
address argument is the address of an unsigned quadword that is this
descriptor. The descriptor is assumed to be dynamic and its class field is
not checked.

Before a routine deallocates a dynamic descriptor, it must use
LIB$SFREEl_DD or LIB$SFREEn_DD to deallocate the string storage
space specified by the dynamic descriptor. Otherwise, string storage is
not deallocated and your program can run out of memory.

This routine deallocates the described string space and flags the descriptor as
describing no string at all
(DSC$A_pQINTER = 0 and DSC$W_LENGTH = 0).

SS$_NORMAL

LIB$_FA TERRLIB

Routine successfully completed.

Fatal internal error.

LIB-347

LI B$SFREEN _DD

LIB$SFREEN_DD Free One or More Dynamic
Strings

FORMAT

The Free One or More Dynamic Strings routine returns one or more
dynamic strings to free storage.

LIB$SFREEN_DD number-of-descriptors
, first-descriptor-array

corresponding jsb LIB$SFREEN_DD6
entry point

RETURNS

ARGUMENTS

DESCRIPTION

LIB-348

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

number-of-descriptors
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of adjacent descriptors to be flagged by LIB$FREEN _DD as having
no allocated area (DSC$A_POINTER = 0 and DSC$W_LENGTH = 0).
The number-of-descriptors argument contains the address of an unsigned
longword that is this number. The deallocated area is returned to free storage.

first-descriptor-array
VMS usage: vector_quadword_unsigned
type: quadword (unsigned)
access: modify
mechanism: by reference, array reference

First descriptor of an array of descriptors. The first-descriptor-array
argument contains the address of an unsigned quadword that is this first
descriptor. The descriptors are assumed to be dynamic, and their class fields
are not checked.

Before a routine that allocates space returns to its caller, it must use
LIB$SFREEl_DD or LIB$SFREEN_DD to deallocate the string storage space
specified by any descriptors located in the stack. Otherwise, space is not
deallocated and your program might run out of virtual memory.

This routine deallocates the described string space and flags each descriptor
as describing no string at all (DSC$AJOINTER = 0 and
DSC$W_LENGTH = 0).

CONDITION
VALUES
RETURNED

SS$_NORMAL

LIB$_FATERRLIB

LI B$SFREEN _DD

Routine successfully completed.

Fatal internal error.

LIB-349

LIB$SGET1 _DD

LIB$SGET1 _DD Get One Dynamic String

FORMAT

The· Get One Dynamic String routine allocates dynamic virtual memory to
the string descriptor you specify.

LIB$SGET1 _DD word-integer-length ,descriptor-part

corresponding jsb LIB$SGET1_DD_R6
entry point

RETURNS

ARGUMENTS

LIB-350

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

word-integer-length
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Number of bytes of dynamic virtual memory to be allocated by
LIB$SGET1_DD. The word-integer-length argument is the address of an
unsigned word that contains this number. The amount of storage allocated
may be rounded up automatically. If the number of bytes is zero, a small
amount of space is allocated.

descriptor-part
VMS usage: quadword_unsigned
type: quadword (unsigned)
access: write only
mechanism: by reference

Descriptor of the dynamic string to which LIB$SGET1_DD will allocate the
dynamic virtual memory. The descriptor-part argument contains the address
of an unsigned quadword that is this descriptor.

The descriptor-part argument must contain the address of a dynamic string
descriptor; LIB$GET1_DD returns an unpredictable result if any other type of
descriptor is specified by this argument.

The class field is not checked but is set to dynamic (DSC$B_CLASS = 2).
The length field (DSC$W_LENGTH) is set to word-integer-length, and the
address field (DSC$A_PQINTER) points to the string area allocated.

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$SGET1_DD

LIB$GET1_DD is similar to LIB$SCOPY_DXDX except that no source string
is copied. You can write anything you want in the allocated area.

If descriptor-part already has dynamic memory allocated to it, but the
amount allocated is less than word-integer-length, that space is deallocated
before LIB$SGET1_DD allocates new space.

SS$_NORMAL

LIB$_FATERRLIB

LIB$_1NSVIRMEM

Routine successfully completed.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Insufficient virtual memory. A call to LIB$GET_VM
has failed because your program has exceeded the
image quota for virtual memory.

LIB-351

LIB$SHOW_ TIMER

LIB$SHOW_TIMER Show Accumulated Times
and Counts

FORMAT

RETURNS

ARGUMENTS

LIB-352

The Show Accumulated Times and Counts routine returns times and
counts accumulated since the last call to LIB$1NIT_ TIMER and displays
them on SYS$0UTPUT. (LIB$1NIT _TIMER must be called prior to invoking
this routine.) A user-supplied action routine may change this default
behavior.

LIB$SHOW_ TIMER [handle-address] [,code]
[,user-action-procedure]
[,user-argument-value]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

handle-address
VMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Block of storage containing the value returned by a previous call to
LIB$INIT_ TIMER. The handle-address argument is the address of an
unsigned longword integer containing that value.

• If specified, the pointer must be the same value returned by a previous
call to LIB$INIT_ TIMER.

• If omitted, LIB$SHOW_ TIMER will use a block of memory allocated by
LIB$INIT_ TIMER.

• If handle-address is omitted and LIB$INIT_ TIMER has not been called
previously, the error LIB$_INVARG is returned. LIB$INIT_TIMER must
be called prior to a call to LIB$SHOW_TIMER.

LIB$SHOW_ TIMER assumes that LIB$INIT_ TIMER has been previously
called, and that the results of that call are stored either in a block pointed to
by handle-address, or in the memory allocated by LIB$INIT_ TIMER.

code
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Integer specifying the statistic you want; if it is omitted or zero, all five
statistics are returned on one line. The code argument is the address of a
signed longword integer containing the statistic code.

DESCRIPTION

LIB$SHOW_ TIMER

The following values are allowed for the code argument.

Value Description

1 Elapsed time

2 CPU time

3 Buffered 1/0

4 Direct 1/0

5 Page faults

user-action-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User-supplied action routine called by LIB$SHOW_TIMER. The user-action
procedure argument is the address of the entry mask to this routine. The
default action of LIB$SHOW_TIMER is to write the results to SYS$0UTPUT.
An action routine is useful if you want to write the results to a file, or in
general, anywhere other than SYS$0UTPUT.

The action routine returns either a success or failure condition value; this
status is returned to the calling program as the value of LIB$SHOW_ TIMER.

user-argument-value
VMS usage: user_arg
type: unspecified
access: read only
mechanism: by value

A 32-bit value to be passed to the action routine without interpretation. If
omitted, LIB$SHOW_TIMER passes a zero by value to the user routine.

LIB$SHQW_ TIMER returns the times and counts accumulated since the
last call to LIB$INIT_ TIMER. By default, when neither code nor user-action
procedure is specified in the call, LIB$SHQW_ TIMER writes to SYS$0UTPUT
a line giving the information listed below.

Shown on Line

ELAPSED= dddd hh:mm:ss.cc

CPU = hhhh:mm:ss.cc

BUFIO = nnnn

DIRIO = nnnn

P AGEFAUL TS = nnnn

Description

Elapsed real time

Elapsed CPU time

Count of buffered 1/0 operations

Count of direct 1/0 operations

Count of page faults

Any one or all five statistics can be written to SYS$0UTPUT or passed to
your user-supplied action routine for other processing.

LIB-353

LIB$SHQW_ TIMER

CONDITION
VALUES
RETURNED

EXAMPLE

Call Format for an Action Routine

Action routine is a user-supplied routine called by LIB$SHQW_ TIMER. The
action routine is used when you wish to write results to anywhere other
than SYS$0UTPUT. The action routine is called only when you specify the
user-action-procedure argument in the call to LIB$SHOW_TIMER.

LIB$SHOW_ TIMER calls the action routine using this format:

user-action-procedure out-str [,user-argument-value]

out-str
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Fixed-length string containing the statistics requested. The string is formatted
exactly as it would be if written to SYS$0UTPUT. The leading character is
blank.

user-argument-value
VMS usage: user_arg
type: unspecified
access: read only
mechanism: by value

A 32-bit value passed to LIB$SHOW_TIMER. The user argument is passed
without interpretation to the action routine.

$$$_NORMAL

LIB$_1NV ARG

Routine successfully completed.

Invalid argument. Either code or handle-address
was invalid.

Any condition values returned by LIB$PUT_OUTPUT or your action routine.

PROGRAM SHOW_TIMER(INPUT,OUTPUT);

{+}
{ This Pascal example demonstrates how to use LIB$SHOW_TIMER.
{-}

VAR
RETURNED_STATUS : INTEGER;

[EXTERNAL] FUNCTION LIB$INIT_TIMER(

LIB-354

HANDLE_ADR : [REFERENCE] UNSIGNED := %IMMED 0
) : INTEGER; EXTERNAL;

LIB$SHOW_ TIMER

[EXTERNAL] FUNCTION LIB$SHOW_TIMER(
HANDLE_ADR : [REFERENCE] UNSIGNED := %IMMED O;
CODE : INTEGER;
[IMMEDIATE.UNBOUND]

ROUTINE ACTION_RTN(OUT_STR : [CLASS_S] PACKED ARRAY [L .. U:INTEGER] OF CHAR;
USER_ARG : INTEGER) := %IMMED 0;

USER_ARG : INTEGER := %IMMED 0
) : INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$STOP(
CONDITION_STATUS : [IMMEDIATE.UNSAFE] UNSIGNED;
FAO_ARGS : [IMMEDIATE,UNSAFE,LIST] UNSIGNED
) : INTEGER; EXTERNAL;

ROUTINE USER_ACTION_RTN(
OUT_STR [CLASS_S] PACKED ARRAY [L .. U:INTEGER] OF CHAR;
USER_ARG : INTEGER);

BEGIN
WRITELN('User argument is ',USER_ARG:1);
WRITELN(OUT_STR);
END;

BEGIN

{+}
{ Call LIB$INIT_TIMER to initialize RTL internal counters.
{-}

RETURNED_STATUS := LIB$INIT_TIMER;
IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

{+}
{ Print a line of text to waste time.
{-}

WRITELN('Spend time to acquire elapsed real time and page faults');

{+}
{ Call LIB$SHOW_TIMER to display counters.
{-}

RETURNED_STATUS := LIB$SHOW_TIMER(,O,USER_ACTION_RTN,5);
END.

This Pascal program demonstrates how to call LIB$SHOW_ TIMER. The
output generated by this Pascal example is as follows:

$ RUN SHOW_TIMER
Spend time to acquire elapsed real time and page faults
User argument is 5

ELAPSED: 0 00:00:00.44 CPU: 0:00:00.04
BUFIO: 1 DIRIO: 0 FAULTS: 18

LIB-355

LIB$SHQW_VM

LIB$SHOW_VM Show Virtual Memory Statistics

FORMAT

RETURNS

ARGUMENTS

LIB-356

The Show Virtual Memory Statistics routine returns the statistics
accumulated from calls to LIB$GET_VM/Ll8$FREE_VM and
LIB$GET _ VM_PAGE/LIB$FREE_ VM_PAGE.

LIB$SHOW_VM [code] [,user-action-procedure]
[,user-specified-argument]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

code
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Code specifying any one of the statistics to be written to SYS$0UTPUT or
passed to an action routine for processing. The code argument is the address
of a signed longword integer containing the statistic code. This is an optional
argument. If the statistic code is omitted or is zero, statistics for values 1, 2,
and 3 are returned on one line.

The following values are allowed for the code argument.

Value Statistic

0 Statistics for values 1, 2, and 3 are returned

1 Number of successful calls to LIB$GET _ VM

2 Number of successful calls to LIB$FREE_ VM

3 Number of bytes allocated by LIB$GET_VM but not yet deallocated by
LIB$FREE_VM

4 Statistics for values 5, 6, and 7 are returned

5 Number of calls to LIB$GET_VM_PAGE

6 Number of calls to LIB$FREE_ VM_PAGE

7 Number of pages allocated by LIB$GET_VM_PAGE but not yet
deallocated by LIB$FREE_VM_PAGE

DESCRIPTION

user-action-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

LIB$SHOW_VM

User-supplied action routine called by LIB$SHOW_ VM. By default,
LIB$SHOW_ VM returns statistics to SYS$0UTPUT. An action routine is
useful when you want to return statistics to a file or, in general, to any
place other than SYS$0UTPUT. The user-action-procedure argument is the
address of the entry mask to the action routine. The routine returns either
a success or failure condition value, which will be returned as the value of
LIB$SHOW_ VM.

For more information on the action routine, see "Call Format for an Action
Routine" in the Description section.

user-specified-argument
VMS usage: user_arg
type: unspecified
access: read only
mechanism: by value

A 32-bit value to be passed directly to the action routine without
interpretation. That is, the contents of the argument list entry user-specified
argument are copied to the argument list entry for user-action-procedure.

LIB$SHQW_ VM returns the statistics accumulated from calls to
LIB$GET_ VM/LIB$FREE_ VM and
LIB$GET_ VM_p AGE/LIB$FREE_ VM_p AGE. By default, with neither code
nor user-action-procedure specified in the call, LIB$SHOW_ VM writes a line
giving the following information to SYS$0UTPUT:

mmm calls to LIB$GET_VM, nnn calls to LIB$FREE_VM, ppp bytes still allocated

Optionally, any one of six statistics can be output to SYS$0UTPUT and/or
the line of information can be passed to a user-specified "action routine" for
processing different from the default.

Call Format for an Action Routine

The action routine is a user-supplied routine that LIB$SHOW_ VM calls if you
specify the user-action-procedure argument in the call to LIB$SHOW_ VM.

The call format for an action routine is:

user-action-procedure resultant-string ,user-specified-argument

resultant-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Statistics supplied by LIB$SHOW_ VM. The resultant-string argument is the
address of.a descriptor pointing to an address into which UB$SHOW_VM
writes the statistics. The string is formatted exactly as it would be if written
to SYS$0UTPUT. The first character is a blank; carriage-return/line-feed
combinations are not included.

LIB-357

LIB$SHOW_VM

CONDITION
VALUES
RETURNED

LIB-358

user-specified-argument
VMS usage: user_arg
type: unspecified
access: read only
mechanism: by value

The 32-bit value passed to LIB$SHQW_ VM is passed to the action routine
without interpretation. If the user-specified-argument argument is omitted
in the call to LIB$SHOW_ VM, a zero is passed by value to the user routine.

SS$_NORMAL

LIB$_1NV ARG

Routine successfully completed.

Invalid arguments. This can be caused by an
invalid value for code.

Any condition values returned by LIB$PUT_OUTPUT or your action routine.

LIB$SHOW_VM_ZONE

LIB$SHOW_VM_ZONE Return Information About
a Zone

FORMAT

RETURNS

ARGUMENTS

The Return Information About a Zone routine returns formatted
information about the specified zone, detailing such information as the
zone's name, characteristics, and areas, and then passes the information
to the specified or default action routine.

LIB$SHQW_VM_ZONE zone-id {,detail-level}
{,user-action-procedure]
[,user-arg}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

zone-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id argument is the address of an unsigned
longword containing this identifier. Use zero to indicate the default zone.

detail-level
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

An identifier code specifying the level of detail required by the user. The
detail-level argument is the address of a signed longword containing this
code. The default is minimal information. The following are valid values for
detail-level:

0 zone-id and name

1 zone-id, name, algorithm, flags and size information

2 zone-id, name, algorithm, flags, size information, cache information and
area summary

3 zone-id, name, algorithm, flags, size information, cache information,
area summary and queue validation

LIB-359

LIB$SHQW_VM_ZQNE

DESCRIPTION

LIB-360

user-action-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

Optional user-supplied action routine called by LIB$SHOW_ VM-20NE.
The user-action-procedure argument is the address of the entry mask of
the action routine. By default, LIB$SHOW_ VM-20NE prints statistics to
SYS$0UTPUT via LIB$PUT_OUTPUT. An action routine is useful when
you want to return statistics to a file or, in general, to any location other
than SYS$0UTPUT. If user-action-procedure fails, LIB$SHOW_ VM-20NE
terminates and returns a failure code. Success codes are ignored.

For more information on the action routine, see the Description section.

user-arg
VMS usage: user_arg
type: unspecified
access: read only
mechanism: by value

Optional 32-bit value to be passed directly to the action routine without
interpretation. That is, the contents of the argument list entry user-arg are
copied to the argument list entry for user-action-procedure.

LIB$SHOW_ VM-20NE returns formatted information about the specified
zone and passes it to the action routine. The detail-level argument
determines the degree of detail of the zone information returned, and this
information is formatted into a readable display and passed to either a user
action routine or to LIB$PUT_OUTPUT.

The action routine is a user-supplied routine that LIB$SHOW_ VM-20NE
calls if you specify the action-routine argument in the call to
LIB$SHOW_ VM--20NE. If you do not specify action-routine, the
information is passed to LIB$PUT_OUTPUT for output to SYS$0UTPUT.
The call format for an action routine is as follows:

action-routine string, user-arg

Arguments

string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Information supplied by LIB$SHOW_ VM--20NE. The string argument is the
address of a descriptor pointing to an address into which
LIB$SHOW_ VM--20NE writes the requested information. The string is
formatted exactly as it would be if written to SYS$0UTPUT.

LIB$SHQW_VM_ZONE

user-arg
VMS usage: user_arg
type: unspecified
access: read only
mechanism: by value

The 32-bit value passed to LIB$SHOW_ VM-20NE is passed to the action
routine without interpretation. If the user-arg argument is omitted in the call
to LIB$SHOW_ VM-20NE, a zero is passed by value to the user routine.

If no zone-id is specified (0 is passed), the default zone is used.

You must ensure that you have exclusive access to the zone while information
is being displayed. Results are unpredictable and may be inconsistent if
another thread of control modifies the zone while this routine is displaying
data or scanning control blocks.

While scanning the queues and free lists, this routine may detect errors.

If the lookaside list summary discovers a block improperly linked into the list
so that the list appears disjointed, the count of the number of blocks of that
particular size will be displayed as asterisks.

In addition, the following errors and warnings may be displayed during the
lookaside list and area free list scans. The format is as follows:

**** ERROR -- error description ****
**** WARNING -- warning description ****

Error Message

Invalid block size

Block not owned by zone

Block extends past the end
of area; truncated

Block extends into
"unallocated" block,
truncated

Description

The size of the block is either not large enough
to contain the necessary queue links or is
unreasonably large. The size field has been
corrupted, therefore the size of the block is
reduced so the block to be dumped fits within the
area.

The current block is not within a section of the
virtual address space controlled by this zone. It is
possibly attempting to free a block not originally
allocated from this zone.

The end of the block is not in the area from which
the block has been allocated. The size field may
have been corrupted, therefore the size of the
block is reduced so the block to be dumped fits
within the area.

The end of the block extends past the allocated
section of the area. The size field may have
been corrupted, therefore the size of the block is
reduced so the block to be dumped fits within the
area.

LIB-361

LIB$SHOW_VM_ZONE

LIB-362

Error Message

Current block not
completely accessible

Back link does not return to
previous block

Forward link does not point
to valid address

Free-fill mismatch

Boundary tag mismatch

Warning

Forward link of current
block may not be valid

Block at nnnnnnnn is not
accessible

Block truncated to
nnnnnnnn bytes to prevent
ACCVIO

Description

The current block extends into a nonexistent part
of the virtual address space. The size field may
have been corrupted, therefore the size of the
block is reduced so the block to be dumped fits
within the area.

The back link in a doubly linked list does not point
to the previous block.

The forward link of current block points to a
location that is not in the virtual address space.

One of the locations filled when the block was
freed has been modified.

One of the boundary tags of the block is not valid.

Description

The back link of the block pointed to by the
forward link of the current block does not point to
the current block.

The block at location nnnnnnnn could not be
accessed and cannot be dumped.

The block to be dumped extends into the
unaccessible part of the address space. The
size of the block is reduced such that the block to
be dumped fits within the accessible addresses.

When a block forward link is suspected· of pointing to an invalid next block,
the information from the next block is replaced by asterisks. The following is
a sample error display.

**** ERROR -- forward link does not point to valid address ****

Link Analysis for Current Block:

Previous Current Next

Block adr 0014B270 0014C200 6B6E754A

Forw link (abs): 0014C200 6B6E754A ********

Block size = 32
Block contents:

00000000 00000000 6B6E754A 00000020 ... Junk 00000 0014C200
0014B270 00000008 00000000 00000000 p .. 00010 0014C210

CONDITION
VALUES
RETURNED

$$$_NORMAL

LIB$_NOTFOU

LIB$_BADZONE

LIB$_1NV ARG

LIB$_1NVOPEZON

LIB$_WRONUMARG

LIB$SHOW_VM_ZONE

Normal successful completion.

Could not find another VM zone (alternate success
status).

Invalid zone. Routine was called with a zone-id
that does not represent a valid VM zone.

Invalid argument.

Invalid operation for zone; invalid use of
unspecified user zone action routine.

Wrong number of arguments.

Any condition value returned by the user-formatted output action routine or
LIB$PUT_OUTPUT.

EXAMPLE

IMPLICIT NONE
INTEGER*4 zone_id
INTEGER*4 LIB$SHOW_VM_ZONE

zone_id = 0 ! request info for default zone

call LIB$SHOW_VM_ZONE (zone_id, 1)

END

An example of the output generated by this FORTRAN program using
detail-level 1 is as follows:

ZONE_ID = 00013058, ZONE_NAME = "DEFAULT_ZONE"

Algorithm = LIB$K_VM_FIRST_FIT

Flags = 00000020
LIB$M_VM_EXTEND_AREA

Initial size = 124 pages
Extend size = 128 pages

Current size =
Page limit

0 pages
0 pages

Requests are rounded up to a multiple of 8 bytes,
naturally aligned on 8-byte boundaries

0 bytes freed and not yet reallocated

IMPLICIT NONE
INTEGER*4 zone_id
INTEGER*4 LIB$SHOW_VM_ZONE

zone_id = 0 ! request info for default zone

call LIB$SHOW_VM_ZONE (zone_id, 3)

END

LIB-363

LIB$SHQW_VM_ZQNE

An example of the output generated by this FORTRAN program using
detail-level 3 is as follows:

Zone Id = 00044CF8, Zone name = "Mix of lookaside list and area blocks"

Algorithm = LIB$K_VM_QUICK_FIT with 16 Lookaside Lists ranging from
a minimum blocksize of 8, to a maximum blocksize of 128

Flags = 00000028
LIB$M_VM_FREE_FILLO
LIB$M_VM_EXTEND_AREA

Initial size
Extend size

16 pages
16 pages

Current size = 256 pages in 1 area
Page limit = None

Requests are rounded up to a multiple of 8 bytes,
naturally aligned on 8-byte boundaries

129896 bytes have been freed and not yet reallocated

312 bytes are used for zone and area control blocks, or 0.2% overhead

Quick Fit Lookaside List Summary:

List Block
number size

2 16
3 24
4 32
5 40
6 48
7 56
8 64
9 72

10 80
11 88
12 96
13 104
14 112
15 120
16 128

Area Summary:

First
address

Last
address

00065400 000853FF

Number of
blocks

7
9
8
6

12
6
7
7
5
4
8
3
5

12
6

Pages
assigned

256

Bytes not yet
allocated

1176

Scanning Lookaside Lists in Zone Control Block
Scanning Free List for Area at 00065400

Number of blocks = 84, Min blocksize = 160, Max blocksize 5768

LIB-364

LIB$SIGNAL

LIB$SIGNAL Signal Exception Condition

FORMAT

RETURNS

ARGUMENTS

The Signal Exception Condition routine generates a signal that indicates
that an exception condition has occurred in your program. If a condition\
handler does not take corrective action and the condition is severe, then
your program will exit.

LIB$SIGNAL condition-value 1[,number-of-arguments1]
[,FAD-argument 1 ... } {,condition-value2]
[, number-of-arguments2]
[,FAO-argument2 ...]

Only the condition-valuel argument must be specified; other arguments are
optional. The number-of-argumentsl argument, if specified, contains the
number of FAO arguments that will be associated with condition-valuel.
The condition-value2 argument is optional; it may be specified with or
without the number-of-arguments2 or F AO-argument2 arguments. The
number-of-arguments2 argument, if specified, contains the number of FAO
arguments that will be associated with condition-value2. You may specify
condition-value3, condition-value4, condition-values, and so on, along
with their corresponding number-of-arguments and F AO arguments.

None.

condition-value 1
VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

VAX 32-bit condition value. The condition-valuel argument is an unsigned
longword that contains this condition value.

Section 4.1.2 explains the format of a VAX condition value.

number-of-arguments 1
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Number of FAO arguments associated with the condition value. The optional
number-of-argumentsl argument is a signed longword integer that contains
this number. If omitted or specified as zero, no FAQ arguments follow.

LIB-365

LIB$SIGNAL

DESCRIPTION

LIB-366

FAO-argument1
VMS usage: varying_arg
type: unspecified
access: read only
mechanism: by value

Optional FAO (formatted ASCII output) argument that is associated with the
specified condition value.

Section 4.1.S explains the message format.

condition-value2
VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

VAX 32-bit condition value. The optional condition-value2 argument is an
unsigned longword that contains this condition value.

Section 4.1.2 explains the format of a VAX condition value.

number-of-arguments2
VMS usage: longword-signed
type: longword integer (signed)
access: read only
mechanism: by value

Number of FAO arguments associated with the condition value. The optional
number-of-arguments2 argument is a signed longword integer that contains
this number. If omitted or specified as zero, no FAO arguments follow.

FAO-argument2
VMS usage: varying_arg
type: unspecified
access: read only
mechanism: by value

Optional FAO (formatted ASCII output) argument that is associated with the
specified condition value.

Section 4.1.S explains the message format.

Your program calls LIB$SIGNAL whenever it needs to indicate an exception
condition or output a message rather than return a status code to its calling
program.

LIB$SIGNAL examines the primary and secondary exception vectors and then
scans the stack, frame by frame, starting at the top of the stack, and calls
each condition handler it finds. LIB$SIGNAL locates stack frames by using
each frame's saved frame pointer (FP) to chain back through the stack frames.
Section 4.1.3 provides additional information on this process.

If one of the handlers that LIB$SIGNAL calls returns a continue code (that is,
any success completion code with bit 0 set to 1), LIB$SIGNAL returns to its
caller, which should be prepared to continue execution.

CONDITION
VALUES
RETURNED

EXAMPLES

D C+

LIB$SIGNAL

If the handler that LIB$SIGNAL calls returns a resignal code (that is, any
completion code with bit 0 set to 0) LIB$SIGNAL continues to scan the stack.

If the handler called by LIB$SIGNAL calls SYS$UNWIND, control will not
return to LIB$SIGNAL's caller, thus changing the program flow. A handler
can also modify the saved copy of RO/Rl in the mechanism vector, changing
registers RO and Rl after the stack has been unwound. If a handler does
neither of these things, then all registers including RO/Rl and the hardware
condition codes are preserved.

LIB$SIGNAL will, if necessary, scan up to 65,536 previous stack frames and
then finally examine the last-chance exception vector.

The LIB$SIGNAL argument list, the Program Counter (PC) and Processor
Status Longword (PSL) of the caller are appended to build the signal
argument vector.

None.

C This FORTRAN example program demonstrates the use of
C LIB$SIGNAL.
c
C This program defines SS$... signals and then calls LIB$SIGNAL
C passing the access violation code as the argument.
c-

INCLUDE '($SSDEF)'
CALL LIB$SIGNAL (%VAL(SS$_ACCVIO)
END

In FORTRAN, this code fragment signals the standard system message
ACCESS VIOLATION.

The output generated by this FORTRAN program is as follows:

%SYSTEM-F-ACCVIO, access violation, reason mask=10, virtual address=03C00020,
PC=OOOOOOOO, PSL=08000000
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC
D2$MAIN D2$MAIN 683 00000010 00000410

LIB-367

LIB$SIGNAL

;+
; This MACRO example program demonstrates the use of LIB$SIGNAL
; by forcing an access violation to be signaled .

. EXTRN SS$_ACCVIO

.ENTRY START,O
PUSHL #SS$_ACCVIO

Declare external symbol

Condition value symbol
; for access violation

CALLS #1, GALIB$SIGNAL ; Signal the condition
RET
.END START

.EXTRN
PUSHL

CALLS

SS$_ACCVIO
#SS$_ACCVIO

#1, LIB$SIGNAL

Declare external symbol
Condition value symbol
for access violation
Signal the condition

This example shows the equivalent MACRO code. The output generated by
this program is as follows:

%SYSTEM-F-ACCVIO, access violation, reason mask=OF, virtual address=03COOOOO,
PC=OOOOOOOO, PSL=OOOOOOOO
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC
.MAIN. START OOOOOOOF 0000020F

LIB-368

LIB$SIG_ TQ_RET

LIB$SIG_TQ_RET Signal Converted to a Return
Status

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Signal Converted to a Return Status routine converts any signaled
condition value to a value returned as a function. The signaled condition is
returned to the caller of the user routine that established the handler that
is calling LIB$SIG_ TQ_RET. This routine may be established as or called
from a condition handler.

LIB$SIG_ TO_RET signal-arguments
,mechanism-arguments

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

signal-arguments
VMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument contains the
address of an array that is this signal argument vector stack.

See Section 4.1.3.1 for a description of the signal argument vector.

mechanism-arguments
VMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism arguments vector. The mechanism-arguments argument contains
the address of an array that is this mechanism arguments vector stack.

See Section 4.1.3.2 for a description of the mechanism argument vector.

LIB$SIG_TO_RET is called with the argument list that was passed to a
condition handler by the VAX Condition Handling Facility. The signaled
condition is converted to a value returned to the routine that called the
routine that established the handler. That action is performed by unwinding
the stack to the caller of the establisher of the condition handler. The
condition code is returned as the value in RO. See Chapter 4 for more
information on condition handling.

LIB$SIG_TO_RET causes the stack to be unwound to the caller of the routine
that established the handler which was called by the signal.

LIB-369

LIB$SIG_ TQ_RET

CONDITION
VALUES
RETURNED

EXAMPLE

C+

$$$_NORMAL Routine successfully completed; SS$_UNWIND
completed. Otherwise, the error code from
SS$_UNWIND is returned.

C This FORTRAN example demonstrates how to use LIB$SIG_TO_RET.
c
C This function subroutine inverts each entry in an array. That is,
C a(i,j) becomes 1/a(i,j). The subroutine has been declared as an integer
C function so that the status of the inversion may be returned. The status
C should be success, unless one of the a(i,j) entries is zero. If one of
C the a(i,j) = 0, then 1/a(i,j) is division by zero. This division by zero
C does not cause a division by zero error, rather, the routine will return
C signal a failure.
c-

C+

INTEGER*4 FUNCTION FLIP(A,N)
DIMENSION A(N,N)
EXTERNAL LIB$SIG_TO_RET
CALL LIB$ESTABLISH (LIB$SIG_TO_RET)
FLIP= .TRUE.

C Flip each entry.
c-

DO 1 I = 1, N
DO 1 J = 1, N

1 A(I,J) = 1.0/A(I,J)
RETURN
END

C+
C This is the main code.
c-

INTEGER STATUS, FLIP
REAL ARRAY_1(2,2) ,ARRAY_2(3,3)
DATA ARRAY_1/1,2,3,4/,ARRAY_2/1,2,3,5,0,5,6,7,2/
CHARACTER*32 TEXT(2),STRING
DATA TEXT(1)/' This array could be flipped. '/,

1 TEXT(2)/' This array could not be flipped.'/

STRING = TEXT(1)
STATUS= FLIP(ARRAY_1,2)
IF (.NOT. STATUS) STRING = TEXT(2)
TYPE '(a)', STRING

STRING = TEXT(1)
STATUS = FLIP(ARRAY_2,3)
IF (.NOT. STATUS) STRING= TEXT(2)
TYPE ' (a) ' , STRING

END

LIB-370

LIB$SIG_ TQ_RET

This FORTRAN example program inverts each entry in an array. The output
generated by this program is as follows:

This array could be flipped.
This array could not be flipped.

LIB-371

LIB$SIG_ TQ_STOP

LIB$SIG_TQ_STOP Convert a Signaled Condition
to a Signaled Stop

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB-372

The Convert a Signaled Condition to a Signaled Stop routine converts a
signaled condition to a signaled condition that cannot be continued.

LIB$SIG_ TO_STOP signal-arguments
,mechanism-arguments

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

signal-arguments
VMS usage: vector_longword_unsigned
type: unspecified
access: modify
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument contains the
address of an array of unsigned longwords that is this signal argument
vector stack.

See Section 4.1.3.1 for a description of the signal argument vector.

mechanism-arguments
VMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism argument vector. The mechanism-arguments argument contains
the address of an array of longwords that is this mechanism argument vector
stack.

See Section 4.1.3.2 for a description of the mechanism argument vector.

LIB$SIG_TQ_STOP causes a signal to appear as though it had been signaled
by a call to LIB$STOP. When a signal is generated by LIB$STOP, the severity
code is forced to SEVERE and control cannot return to the routine that
signaled the condition. LIB$SIG_TQ_STOP may be enabled as a condition
handler for a routine or it may be called from a condition handler.

If the condition value in signal-arguments is SS$_ UNWIND, then
LIB$SIG_TQ_STOP returns the error condition LIB$-1NVARG.

CONDITION
VALUES
RETURNED

SS$_NQRMAL

LIB$_1NV ARG

LIB$SIG_ TQ_STOP

Routine successfully completed; SS$_UNWIND
completed. Otherwise, the error code from
SS$_UNWIND is returned.

Invalid argument. The condition code in signal
arguments is SS$_UNWIND.

LIB-373

LIB$SIM_ TRAP

LIB$SIM_ TRAP Simulate Floating Trap

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB-374

The Simulate Floating Trap routine converts floating faults to floating
traps. It can be enabled as a condition handler or can be called by one.

LIB$SIM_ TRAP signal-arguments
,mechanism-arguments

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

signal-arguments
VMS usage: vector_longword_unsigned
type: unspecified
access: modify
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument contains the
address of an array that is this signal argument vector stack.

See Section 4.1.3.1 for a description of the signal argument vector.

mechanism-arguments
VMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism argument vector. The mechanism-arguments argument contains
the address of an array that is this mechanism argument vector stack.

See Section 4.1.3.2 for a description of the mechanism argument vector.

LIB$SIM_ TRAP converts floating faults to floating traps. It can be enabled as
a condition handler or can be called by one.

LIB$SIM_TRAP intercepts floating overflow, underflow, and divide-by-zero
faults. It simulates the instruction causing the condition up to the point where
a fault should be signaled, then signals the corresponding floating trap.

Since LIB$SIM_ TRAP nullifies the condition handling for the original fault
condition, the final condition signaled by the routine will be from the context
of the instruction itself, rather than from the condition handler. The signaling
path is identical to that of a hardware-generated trap. The signal argument
vector is placed so the last entry in the vector will be the user's stack pointer
at the completion of the instruction (for a trap), or at the beginning of the
instruction (for a fault).

CONDITION
VALUES
RETURNED

LIB$SIM_ TRAP

See the VAX Architecture Reference Manual for more information on faults and
traps.

SS$_RESIGNAL Resignal condition to next handler. The exception
was not one that LIB$SIM_ TRAP could handle.

LIB-375

LIB$SKPC

LIB$SKPC

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-376

Skip Equal Characters

The Skip Equal Characters routine compares each character of a ·given
string with a given character and returns the relative position of the
first nonequal character as an index. LIB$SKPC makes the VAX SKPC
instruction available as a callable routine.

LI B$SKPC character-string , source-string

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

The relative position in the source string of the first unequal character.
LIB$SKPC returns a zero if the source string was of zero length or if every
character in source-string was· equal to character-string.

character-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String whose initial character is to be used by LIB$SKPC in the comparison.
The character-string argument contains the address of a descriptor pointing
to this string. Only the first character of character-string is used, and the
length of character-string is not checked.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String to be searched by LIB$SKPC. The source-string argument contains the
address of a descriptor pointing to this string.

LIB$SKPC compares the initial character of character-s~ring with successive
characters of source-string until it finds an inequality or reaches the end of
the source-string. It returns the relative position of this unequal character as
an index, which is the relative position of the first occurrence of a substring in
the source string.

None.

EXAMPLE

C+
C This FORTRAN example program illustrates the use of LIB$SKPC.
C LIB$SKPC makes the VAX SKPC instruction available as a callable routine.
C LIB$SKPC compares each character of a given string with a given character.
C It returns the relative position of the first nonequal character as an index.
C-
I= LIB$SKPC (' ', 'ABC')
TYPE 1, I

1 FORMAT(' The blank character matches the',I2,'nd character in')
TYPE *,'the string" ABC"'
J = LIB$SKPC ('A' , 'AAA')
TYPE 2, J

2 FORMAT(' The character "A" matches the' ,I2, 'th character in')
TYPE *,'the string" AAA"'
END

This FORTRAN example generates the following output:

The blank character matches the 2nd character in
the string " ABC"
The character "A" matches the 0th character in
the string " AAA"

LIB$SKPC

LIB-377

LIB$SPANC

LIB$SPANC

FORMAT

RETURNS

ARGUMENTS

LIB-378

Skip Selected Characters

The Skip Selected Characters routine is used to skip a specified set of
characters in the source string. LIB$SPANC makes the VAX SPANC
instruction available as a callable routine.

LIB$SPANC source-string ,table-array
, byte-integer-mask

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

The relative position in the source string of the character that terminated the
operation is returned if such a character is found. Otherwise, zero is returned.
If the source string has a zero length, then a zero is returned.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string used by LIB$SP ANC to index into table-array. The source
string argument contains the address of a descriptor pointing to this source
string.

table-array
VMS usage: vector_mask_byte
type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Table that LIB$SPANC indexes into and performs an AND operation with
the byte-integer-mask byte. The table-array argument contains the address
of an unsigned byte array that is this table.

byte-integer-mask
VMS usage: mask_byte
type: byte (unsigned)
access: read only
mechanism: by reference

Mask that an AND operation is performed with bytes in table-array. The
byte-integer-mask argument contains the address of an unsigned byte that is
this mask.

LIB$SPANC

DESCRIPTION LIB$SP ANC uses successive bytes of the string specified by source-string to
index into a table. An AND operation is performed on the byte selected from
the table and the mask byte.

The operation is terminated when the result of the AND operation is zero.

CONDITION
VALUES
RETURNED

EXAMPLE

!+

None.

! This FORTRAN program demonstrates how to use
LIB$SCANC and STR$UPCASE.

! Declare the Run-Time Library routines to be used.
!-

!+

INTEGER*4 STR$UPCASE
INTEGER*4 LIB$SCANC
INTEGER*4 LIB$SPANC

Translate to upper case
Look for characters
Skip over characters

! Declare the alphabet from which "words" are constructed.
!- '

CHARACTER*(38) ALPHABET
DATA ALPHABET /'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$_'/

!+
! Local variable declarations
!-

!+

INTEGER*4 WORD_COUNT /0/
INTEGER*4 WORD_LENGTH /0/
INTEGER*4 TOTAL_LENGTH /0/
INTEGER*4 START_POS /0/
INTEGER*4 END_POS /0/
REAL*4 AVERAGE_LENGTH /0.0/
CHARACTER*80 LINE
BYTE MATCH_TABLE(0:255) /256*0/

Count of words found
Length of a word
Sum of word lengths
Position of start of word
Position of end of word
Average length of words
Line to examine for words
Match table for scanning

! The routines LIB$SCANC and LIB$SPANC require a table with an entry
! for each possible character. Create a match table from ALPHABET
! with an entry of 1 if the character is in ALPHABET, 0 otherwise.
! MATCH_TABLE has already been initialized to zeros.
!-

!+

DO I = 1, LEN(ALPHABET)
MATCH_TABLE(ICHAR(ALPHABET(I:I))) 1
END DO

! Loop forever finding words in LINE. When LINE is exhausted,
! indicated by a START_POS of zero, read another one. Upon
! end-of-file, leave the loop and print the statistics.
!-

LIB-379

LIB$SPANC

!+

OPEN(UNIT= 1, FILE= 'TEST.DAT',
DO WHILE (.TRUE.)

DO WHILE (START_POS .EQ. 0)
READ (1,'(A)',END=900) LINE !
CALL STR$UPCASE (LINE.LINE)

TYPE = 'OLD')

Get a new line
If EOF, skip to 900
Convert to upper

START_POS = LIB$SCANC
END DO

case for matching
(LINE,MATCH_TABLE,1) ! Find beginning

! of first word

! START_POS now points to the beginning of a word. Call LIB$SPANC to
! find the first character that is not part of the word. Set
! START_POS to beginning of next word. If LIB$SPANC does not
! find a non-word character, it returns zero.
!-

!+

END_POS =
1 START_POS + LIB$SPANC (LINE(START_POS:), MATCH_TABLE,1) - 1

IF (END_POS .LT. START_POS) THEN ! Word goes to end of line
WORD_LENGTH = (LEN(LINE) + 1) - START_POS
START_POS = 0 Indicate line exhausted

ELSE
WORD_LENGTH = END_POS - START_POS
START_POS =

1 END_POS + LIB$SCANC (LINE(END_POS:),MATCH_TABLE,1) - 1
IF (START_POS .LT. END_POS) START_POS = 0 ! No more words on line

END IF

! Update count and length statistics.
!-

WORD_COUNT = WORD_COUNT + 1
TOTAL_LENGTH = TOTAL_LENGTH + WORD_LENGTH
END DO

900 CONTINUE

!+
! Compute average word length and display statistics.
!-

IF (WORD_COUNT .NE. 0)
1 AVERAGE_LENGTH = FLOAT(TOTAL_LENGTH) / FLOAT(WORD_COUNT)

TYPE 901,WORD_COUNT,AVERAGE_LENGTH
901 FORMAT (1X,I10,' words found, average length was ',

1 F4.1,' letters.')

CLOSE (1)

END

LIB-380

This FORTRAN program reads text from the default input unit and looks for
words. A word is defined as a string containing only the characters A to Z
(uppercase or lowercase), 0 to 9, and the dollar sign($), and underscore(-)
symbols. The program reports the total number of words found and their
average length.

The program uses three Run-Time Library routines: STR$UPCASE,
LIB$SCANC, and LIB$SP ANC.

1 The string is converted to uppercase using STR$UPCASE so that the
search for words will ignore the case of letters.

2 LIB$SCANC searches through the string for one of a set of characters, the
set being specified as nonzero elements in a 256-byte table.

LIB$SPANC

3 Similarly, LIB$SP ANC uses the VAX SP ANC instruction to search
through a string for a character whose table entry is not zero.

The value returned by each routine is the index into the string where the
first matching (or nonmatching) character was found, or zero if no match was
found.

The output generated by this FORTRAN program is as follows:

12 words found, average length was 4.2 letters.

LIB-381

LIB$SPAWN

LIB$SPAWN Spawn Subprocess

FORMAT

RETURNS

ARGUMENTS

LIB-382

The Spawn Subprocess routine requests the command language
interpreter (CU) of the calling process to spawn a subprocess for executing
CU commands. UB$SPA WN provides the same function as the DCL
SPAWN command.

LIB$SPAWN [command-string} [,input-file]
[,output-file}[, flags] {,process-name}
[,process-id][, completion-status]
{,byte-integer-event-flag-num]
[,AST-address}[, varying-AST-argument]
{,prompt-string} [,c/i}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

command-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

CLI command to be executed by the spawned subprocess. The command
string argument is the address of a descriptor pointing to this CLI command
string. If omitted, commands are taken from the file specified by input-file.

input-file
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Equivalence name to be associated with the logical name SYS$INPUT in the
logical name table for the subprocess. The input-file argument is the address
of a descriptor pointing to this equivalence string. If omitted, the default is
the caller's SYS$INPUT.

output-file
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Equivalence name to be associated with the logical names SYS$0UTPUT and
SYS$ERROR in the logical name table for the subprocess. The output-file

LIB$SPAWN

argument is the address of a descriptor pointing to this equivalence string. If
omitted, the default is the caller's SYS$0UTPUT.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flag bits that designate optional behavior. The flags argument is the address
of an unsigned longword that contains these flag bits. By default, all flags are
clear.

These flags are defined as follows:

Bit Symbol Meaning

0 NOWAIT If set, the calling process continues executing in parallel
with the subprocess. If clear, the calling process hibernates
until the subprocess completes.

NOCUSYM If set, the spawned subprocess does not inherit CU
symbols from its caller. If clear, the subprocess inherits all
currently defined CU symbols. You may want to specify
NOCUSYM to help prevent commands redefined by symbol
assignments from affecting the spawned commands.

2 NOLOGNAM If set, the spawned subprocess does not inherit process
logical names from its caller. If clear, the subprocess
inherits all currently defined process logical names.
You may want to specify NOLOGNAM to help prevent
commands redefined by logical name assignments from
affecting the spawned commands.

3 NOKEYPAD If set, the keypad symbols and state are passed to the
subprocess. If not set, the keypad settings are not passed
to the subprocess.

4 NOTIFY If set, a message is broadcast to SYS$0UTPUT when the
subprocess completes or aborts. If not set, no message is
broadcast. This bit should not be set unless the NOWAIT
bit is also set.

5 NOCONTROL If set, no carriage-return/line-feed is prefixed to any prompt
string. If not set, a carriage-return/line-feed is prefixed to
any prompt string specified.

Bits 6 through 31 are reserved for future expansion and must be zero.
Symbolic flag names are defined in STARLET. They are CLI$M_NOWAIT,
CLl$M_NOCLISYM, CLI$M_NOLOGNAM, CLI$M_NOKEYPAD,
CLI$M_NOTIFY, and CLI$M_NOCONTROL.

process-name
VMS usage: process_name
type: character string
access: read only
mechanism: by descriptor

Name defined for the subprocess. The process-name argument is the address
of a descriptor pointing to this name string. If omitted, a unique process name

LIB-383

LIB$SPAWN

LIB-384

will be generated. If you supply a name and it is not unique, LIB$SP AWN
will return the condition value SS$_DUPLNAM.

process-id
VMS usage: process_id
type: longword (unsigned)
access: write only
mechanism: by reference

Process identification of the spawned subprocess. The process-id argument is
the address of an unsigned longword that contains this process identification
value.

This process identification value is meaningful only if the NOWAIT flags bit
is set.

completion-status
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The final completion status of the subprocess. The completion-status
argument is an unsigned longword containing the address of the status.
LIB$SP AWN writes the address of the final completion status of the
subprocess into completion-status. Note that completion-status is updated
asynchronously. Your program must ensure that the address is still valid
when the longword is written.

If the NOWAIT flags bit is set, this value is not stored until the subprocess
completes; use the byte-integer-event-flag-num or AST-address arguments
to determine when the subprocess has completed.

byte-integer-event-flag-num
VMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

The number of a local event flag to be set when the spawned subprocess
completes. The byte-integer-event-flag-num argument is the address of an
unsigned byte that contains this event flag number. If omitted, no event flag
is set.

Specifying byte-integer-event-flag-num is meaningful only if the NOWAIT
flags bit is set.

AST-address
VMS usage: procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by value

Entry mask of a routine to be called by means of an AST when the subprocess
completes. The AST-address argument is the address of this procedure entry
mask.

Specifying AST-address is meaningful only if the NOWAIT flags bit is set.

DESCRIPTION

varying-AST-argument
VMS usage: user_arg
type: unspecified
access: read only
mechanism: by value

LIB$SPAWN

A value to be passed to the AST routine. Typically, the varying-AST
argument argument is the address of a block of storage the AST routine will
use.

Specifying varying-AST-argument is meaningful only if the NOWAIT flags
bit is set and if AST-address has been specified.

prompt-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Prompt string to use in the subprocess. The prompt-string argument is
the address of a descriptor pointing to this prompt string. If omitted, the
subprocess will use the same prompt string that the parent process uses.

cli
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification for the command language interpreter (CLI) to be run in the
subprocess. The cli argument is the address of this file specification string's
descriptor. The CLI specified must reside in SYS$SYSTEM with a file type of
EXE, and it must be installed. No directory or file type may be specified.

If omitted, the subprocess will use the same CLI as the parent process. If
specified, no context will be copied to the subprocess.

The subprocess created by LIB$SP AWN inherits the following attributes from
the caller's environment:

• Process logical names

• Global and local CLI symbols

• Default device and directory

• Process privileges

• Process nondeductible quotas

• Current command verification setting

The subprocess does not inherit process-permanent files, nor routine or image
context.

If neither command-string nor input-file is present, command input will
be taken from the parent terminal. If both command-string and input-file
are present, the subprocess will first execute command-string and then read
from input-file. If only command-string is specifieq, the command will be
executed and the subprocess will be terminated. If input-file is specified,

LIB-385

LIB$SPAWN

CONDITION
VALUES
RETURNED

LIB-386

the subprocess will be terminated by either a LOGOUT command or an
end-of-file.

The subprocess does not inherit process-permanent files, nor routine or image
context. No LOGIN.COM file is executed.

Unless the NOWAIT flags bit is set, the caller's process is put into hibernation
until the subprocess completes. Because the caller's process hibernates in
supervisor mode, any user-mode ASTs queued for delivery to the caller
will not be delivered until the caller reawakes. Control can also be restored
to the caller by means of an ATTACH command or by a suitable call to
LIB$ATTACH from the subprocess.

This routine is supported for use only with the DCL command language
interpreter. If used when the current CLI is MCR, the error status
LIB$_NOCLI will be returned.

If an image is run directly as a subprocess or as a detached process, there
is no CLI present to perform this function. In such cases the error status
LIB$_NOCLI is returned.

Programs depending on embedded DCL commands may not function
properly when run under other command language interpreters that may
be supported by future versions of VMS.

See the VMS DCL Dictionary for a complete description of the SP AWN
command.

SS$_NORMAL

SS$_ACCVIO

SS$_DUPLNAM

fac$_xxx

LIB$_1NV ARG

LIB$_1NVSTRDES

LIB$_NOCLI

Routine successfully completed.

Access violation. One of the string arguments to
LIB$SPAWN could not be read, or completion
status could not be written.

Duplicate process name. If the argument process
name was specified, it duplicated an existing
process name. If process-name was omitted,
LIB$SPA WN was unable to create a unique name
for the subprocess.

Other error trying to create subprocess.

Invalid argument. The optional argument flags was
specified and a bit other than bits 0 through 5 was
set.

Invalid string descriptor. One of the string
arguments had an invalid descriptor.

No CU present to perform function. The calling
process did not have a CU to perform the function,
or the CLI did not support the request type. Note
that an image run as a subprocess or detached
process does not have a CLI.

If an error is encountered while trying to create the subprocess, the status
value for that error is returned by LIB$SPAWN.

LIB$SPAWN

EXAMPLE

ISTAT=LIB$SPAWN(,, ,CLI$M_NOKEYPAD '> ')
IF (.NOT. !STAT) CALL LIB$STOP(%VAL(ISTAT))

This FORTRAN fragment illustrates a call to LIB$SP AWN from within a
FORTRAN program. A subprocess is spawned taking input from SYS$INPUT
and giving output to SYS$0UTPUT. The keypad state is not passed to the
subprocess. A prompt string of"> "is specified for the subprocess.

LIB-387

LIB$STAT_ TIMER

LIB$STAT_TIMER Statistics, Return
Accumulated Times and
Counts

FORMAT

RETURNS

ARGUMENTS

LIB-388

The Statistics, Return Accumulated Times and Counts routine returns to
its caller one of five available statistics accumulated since the last call to
LIB$1NIT_ TIMER. Unlike LIB$SHOW_ TIMER, which formats the values for
output, LIB$ST AT_ TIMER returns the value as an unsigned longword or
quadword.

LI B$ST AT_ Tl MER code , value-argument
[,handle-address]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

code
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Code which specifies the statistic to be returned. The code argument contains
the address of a signed longword integer that is this code. It must be an
integer from 1 to 5.

The following values are allowed for code.

Value Statistic Returned

1 Elapsed time (quadword, in system time format)

2 CPU time (longword, in 10 millisecond increments)

3 Buffered 1/0 (longword)

4 Direct 1/0 (longword)

5 Page faults (longword)

value-argument
VMS usage: user_arg
type: unspecified
access: write only
mechanism: by reference

The statistic returned by LIB$STAT_TIMER. The value-argument argument
contains the address of a longword or quadword that is this statistic. All
statistics are longword integers except elapsed time, which is a quadword.

DESCRIPTION

LIB$STAT_ TIMER

See the VMS System Services Reference Manual for more details on the system
time format.

handle-address
VMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Pointer to a block of storage. The optional handle-address argument contains
the address of an unsigned longword that is this pointer.

If handle-address is specified, LIB$STAT_TIMER assumes that
LIB$INIT_TIMER has been called with the same value of handle-address.
Handle-address is an optional argument. If it is not specified,
LIB$STAT_TIMER uses internal storage.

Only one of the five statistics is returned by each call to LIB$STAT_ TIMER.
The elapsed time is returned in the system quadword format. Therefore
the receiving area should be eight bytes long. All other returned values are
longwords.

LIB$SHQW_TIMER and LIB$STAT_TIMER are relatively simple tools for
testing the performance of a new application. Note that LIB$INIT_TIMER
must be called prior to any calls to LIB$SHOW_TIMER or LIB$STAT_TIMER.

To obtain more detailed information, use LIB$GETJPI (Get Job /Process
Information) or the VMS system service SYS$GETTIM (Get Time).

The following summary illustrates the differences between
LIB$SHOW_TIMER and LIB$STAT_TIMER.

Format for Format for
Code Statistic LIB$SHQW_ TIMER LIB$STAT_ TIMER

Elapsed real time hhhh:mm:ss.cc Quadword in system
time format

2 Elapsed CPU time hhhh:mm:ss.cc Longword in 10-
millisecond increments

3 Count of buffered 1/0 nnnn Longword
operations

4 Count of direct 1/0 nnnn Longword
operations

5 Count of page faults nnnn Longword

When you call LIB$INIT_ TIMER, you must use the optional handle-address
argument only if you want to keep several sets of statistics simultaneously.
This argument points to a block in heap storage where the statistics are to be
stored.

You need to call LIB$FREE_TIMER only if you have specified handle
address in LIB$INIT_ TIMER and you wish to deallocate all heap storage
resources. In most cases, the implicit deallocation at program exit time will be
sufficient.

LIB-389

LIB$STAT_ TIMER

CONDITION
VALUES
RETURNED

EXAMPLE

SS$_NORMAL

LIB$_1NV ARG

PROGRAM STAT_TIMER(INPUT,OUTPUT);

{+}

Routine successfully completed.

Invalid argument. Either code or handle-address
is invalid.

{ This Pascal example program demonstrates the use of
{ LIB$STAT_TIMER.
{_}

TYPE

VAR

BYTE = [BYTE] 0 .. 255;
WORD = [WORD] 0 .. 65535;
QUADWORD_SYSTEM_TIME = [QUAD] RECORD

FIRST_LONGWORD UNSIGNED;
SECOND_LONGWORD : UNSIGNED;

END;

ELAPSED_REAL_TIME QUADWORD_SYSTEM_TIME;
ELAPSED_STRING VARYING [32] OF CHAR;
PAGE_FAULT_COUNT UNSIGNED;
RETURNED_STATUS UNSIGNED;

[EXTERNAL] FUNCTION LIB$INIT_TIMER(
HANDLE_ADR : [REFERENCE] UNSIGNED := %IMMED 0
) : INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$STAT_TIMER(
CODE INTEGER;
VALUE [UNSAFE,REFERENCE] PACKED ARRAY [L .. U:INTEGER] OF BYTE;
HANDLE_ADR : [REFERENCE] UNSIGNED := %IMMED 0
) : INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$STOP(
CONDITION_STATUS : [IMMEDIATE.UNSAFE] UNSIGNED;
FAO_ARGS : [IMMEDIATE,UNSAFE,LIST] UNSIGNED
) : INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$SYS_ASCTIM(
OUT_LEN [REFERENCE] WORD := %IMMED O;
VAR DST_STR : PACKED ARRAY [L .. U:INTEGER] OF CHAR;
USER_TIME : QUADWORD_SYSTEM_TIME := %IMMED O;
CNV _FLG : UNSIGNED : = %IMMED 0
) : INTEGER; EXTERNAL;

BEGIN

{+}
{ Call LIB$INIT_TIMER to initialize RTL internal counters.
{-}

RETURNED_STATUS := LIB$INIT_TIMER;
IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

LIB-390

LIB$STAT_ TIMER

{+}
{ Print a line of text to waste time.
{-}

WRITELN('Spend time to acquire elapsed real time and page faults');

{+}
{ Call LIB$STAT_TIMER to retrieve statistics values.
{-}

RETURNED_STATUS := LIB$STAT_TIMER(1,ELAPSED_REAL_TIME);
IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

RETURNED_STATUS := LIB$STAT_TIMER(5,PAGE_FAULT_COUNT);
IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

{+}
{ Print the statistics retrieved from LIB$STAT_TIMER.
{-}

WRITELN('Page fault count is ',PAGE_FAULT_COUNT:1);

RETURNED_STATUS := LIB$SYS_ASCTIM(
ELAPSED_STRING.LENGTH,
ELAPSED_STRING.BODY,
ELAPSED_REAL_TIME,
1);

IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

WRITELN('Elapsed real time is ',ELAPSED_STRING);

END.

This Pascal program demonstrates the use of LIB$STAT_TIMER. The output
generated by this program is as follows:

Spend time to acquire elapsed real time and page faults
Page fault count is 22
Elapsed real time is 00:00:00.61

LIB-391

LIB$STAT_VM

LI B$STAT_VM Return Virtual Memory Statistics

FORMAT

RETURNS

ARGUMENTS

LIB-392

The Return Virtual Memory Statistics routine returns to its caller one of
six statistics available from calls to LIBGET_VM/LIBFREE_VM and
LIBGET_VM_PAGE/LIBFREE_VM_PAGE. Unlike LIB$SHQW_VM,
which formats the values for output and displays them on SYS$0UTPUT,
LIB$ST AT_ VM returns the statistic in the value-argument argument.
Only one of the statistics is returned by each call to LIB$STAT_VM.

LIB$STAT_VM code ,value-argument

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

code
VMS usage:
type:
access:
mechanism:

longword_signed
longword integer (signed)
read only
by reference

Code specifying which statistic is to be returned. The code argument contains
the address of a signed longword integer that is this code.

Code Statistic

Number of successful calls to LIB$GET_VM

2 Number of successful calls to LIB$FREE_VM

3 Number of bytes allocated by LIB$GET_VM but not yet deallocated by
LIB$FREE_ VM

5 Number of calls to LIB$GET_VM_PAGE

6 Number of calls to LIB$FREE_VM_PAGE

7 Number of pages allocated by LIB$GET_VM_PAGE but not yet
deallocated by LIB$FREE_VM_PAGE

Note that it is invalid to omit code or to give a code of 0 or 4.

value-argument
VMS usage: user_arg
type: unspecified
access: write only
mechanism: by reference

Value of the statistic returned by LIB$STAT_VM. The value-argument
argument contains the address of a signed longword integer that is this value.

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$STAT_VM

LIB$STAT_ VM returns to its caller one of six available statistics. Unlike
LIB$SHOW_ VM, which formats the values for output, LIB$STAT_ VM returns
the value to a location specified as an argument.

Only one of the six statistics can be returned by one call to LIB$STAT_ VM.
Code must be one of six values described for LIB$SHOW_ VM. A code value
of 0 or 4 is invalid.

Unlike LIB$SHOW_ VM, which produces ASCII values for output,
LIB$STAT_ VM returns the value in binary form to a location specified as an
argument.

SS$_NORMAL

LIB$_1NV ARG

Routine successfully completed.

Invalid argument. The value of code was not one
of the values allowed by LIB$STAT_VM.

LIB-393

LIB$STOP

LI B$STOP Stop Execution and Signal the
Condition

FORMAT

RETURNS

ARGUMENTS

LIB-394

The Stop Execution and Signal the Condition routine generates a signal
that indicates that an exception condition has occurred in your program.
Exception conditions signaled by LIB$STOP cannot be continued from the
point of the signal.

LI B$STOP condition-value 1 [,number-of-arguments 1]
[,FA 0-argument 1 ...] [, condition-value2]
[,number-of-arguments2}
[,FA O-argument2 ...]

Only the condition-valuel argument must be specified; other arguments are
optional. The number-of-argumentsl argument, if specified, contains the
number of FAO arguments that will be associated with condition-valuel.
The condition-value2 argument is optional; it may be specified with or
without the number-of-arguments2 or F AO-argument2 arguments. The
number-of-arguments2 argument, if specified, contains the number of FAO
arguments that will be associated with condition-value2. You may specify
condition-value3, condition-value4, condition-values, and so on, along
with their corresponding number-of-arguments and FAO arguments.

LIB$STOP generates a signal and stops execution of the calling program. No
condition values are returned.

condition-value 1
VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

VAX 32-bit condition value. The condition-valuel argument is an unsigned
longword that contains this condition value.

Section 4.1.2 explains the format of a condition value.

number-of-arguments 1
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Number of FAO arguments associated with the condition value. The optional
number-of-argumentsl argument is a signed longword integer that contains
this number. If omitted or specified as zero, no FAO arguments follow.

DESCRIPTION

FAO-argument1
VMS usage: varying_arg
type: unspecified
access: read only
mechanism: unspecified

LIB$STOP

Optional FAO (formatted ASCII output) argument that is associated with the
specified condition value.

Section 4.1.5 explains the message format.

condition-value2
VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

VAX 32-bit condition value. The optional condition-value2 argument is an
unsigned longword that contains this condition value.

Section 4.1.2 explains the format of a condition value.

number-of-arguments2
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Optional FAO argument associated with the condition value. The number
of-arguments2 argument is a signed longword integer that contains this
number. If omitted or specified as zero, no FAO arguments follow.

FAO-argument2
VMS usage: varying_arg
type: unspecified
access: read only
mechanism: unspecified

FAO (formatted ASCII output) argument that is associated with the specified
condition value.

Section 4.1.5 explains the message format.

LIB$STOP is called whenever your program must indicate an exception
condition because it is impossible to continue execution or return a status
code to the calling program.

LIB$STOP scans the stack frame by frame, starting with the most recent
frame, calling each established handler (see Section 4.1.3). LIB$STOP
guarantees that control will not return to the caller.

The LIB$STOP argument list, the Program Counter (PC) and Processor Status
Longword (PSL) of the caller are appended to build the signal argument
vector.

The severity of condition-value is forced to SEVERE before each call to a
handler.

LIB-395

LIB$STOP

CONDITION
VALUES
RETURNED

EXAMPLE

If any handler attempts to continue by returning a success completion code,
the error message ATTEMPT TO CONTINUE FROM STOP is printed and
your program exits.

lf the handler called by LIB$STOP in turn calls SYS$UNWIND, control will
not return to LIB$STOP's caller, thus changing the program flow. A handler
can also modify the saved copy of RO/Rl in the mechanism vector, changing
registers RO and Rl after the stack has been unwound. If a handler does
neither of these things, then all registers including RO /Rl and the hardware
condition codes are preserved.

The only way a handler can prevent the image from exiting after a call to
LIB$STOP is to unwind the stack using the SYS$UNWIND system service.

None.

10 EXTERNAL LONG FUNCTION LIB$RESERVE_EF
DECLARE LONG RET_STATUS

RET_STATUS = LIB$RESERVE_EF(2%)
IF (RET_STATUS AND 1%) = 0% THEN

CALL LIB$STOP(RET_STATUS BY VALUE)
END IF

PRINT "Event flag 2 reserved successfully"

END

This BASIC example program uses LIB$STOP to stop executing if an error
is signaled. This BASIC program tries to reserve an event flag that is not
accessible to user programs, thus ensuring that an error will be signaled.

The output generated by this BASIC program is as follows:

%LIB-F-EF_ALRRES, event flag already reserved
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC
2822XBLST$MAIN 2822XBLST$MAIN 6 00000044 00000644

LIB-396

LIB$SUB_ TIMES

LIB$SUB_TIMES Subtract Two Quadword Times

FORMAT

RETURNS

ARGUMENTS

The Subtract Two Quadword Times routine subtracts two VMS internal
time-format times.

LIB$SUB_ TIMES time 1 ,time2 ,resultant-time

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

time1
VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

First time, from which LIB$SUB_ TIMES subtracts the second time. The
timel argument is the address of an unsigned quadword containing this
time. Timel must represent a later time or a longer time interval than time2.
Timel may be either absolute time or delta time as long as time2 is of the
same type. If timel and time2 are of different types, timel must be the
absolute time.

time2
VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Second time, which LIB$SUB_TIMES subtracts from the first time. The
time2 argument is the address of an unsigned quadword containing this time.
Time2 must represent an earlier time or a shorter time interval than timel.
Time2 may be either absolute time or delta time as long as timel is of the
same type. If time2 and timel are of different types, time2 must be the delta
time.

resultant-time
VMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The result of subtracting time2 from timel. The resultant-time argument
is the address of an unsigned quadword containing the result. If both timel
and time2 are delta times, then resultant-time is a delta time. If both timel
and time2 are absolute times, then resultant-time is a delta time. If timel is
an absolute time and time2 is a delta time, then resultant-time is an absolute
time.

LIB-397

LIB$SUB_ TIMES

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-398

LIB$SUB_ TIMES subtracts two VMS internal times. The second time,
specified by time2, is subtracted from timel. The following table shows
the only combinations of times you can subtract:

Time1

delta

absolute

absolute

Time2

delta

absolute

delta

Subtraction

time 1-time2

time 1-time2

time 1-time2

Resultant-Time

delta

delta

absolute

Delta times must be less than 10,000 days.

LIB$_NORMAL

LIB$_1VTIME

LIB$_NEGTIM

LIB$_WRONUMARG

LIB$_1NV ARGORD

Normal successful completion.

Invalid time.

Negative time computed.

Incorrect number of arguments.

Invalid ordering of arguments.

LIB$SUBX

FORMAT

RETURNS

ARGUMENTS

LIB$SUBX

Multiple-Precision Binary Subtraction

The Multiple-Precision Binary Subtraction routine performs subtraction on
signed two's complement integers of arbitrary length.

LIB$SUBX minuend-array ,subtrahend-array
, difference-array [,array-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

minuend-array
VMS usage: vector_longword_signed
type: unspecified
access: read only
mechanism: by reference, array reference

Minuend; a multiple-precision, signed two's complement integer. The
minuend-array argument is the address of an array of signed longword
integers that contains the minuend.

subtrahend-array
VMS usage: vector_longword_signed
type: unspecified
access: read only
mechanism: by reference, array reference

Subtrahend; a multiple-precision, signed two's complement integer. The
subtrahend-array argument is the address of an array of signed longword
integers that contains the subtrahend.

difference-array
VMS usage: vector_longword_signed
type: unspecified
access: write only
mechanism: by reference, array reference

Difference; a multiple-precision, signed two's complement integer result. The
difference-array argument is the address of an array of signed longword
integers that contains the difference.

array-length
VMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Length in longwords of the arrays to be operated on by LIB$SUBX. The
array-length argument contains the address of a signed longword integer that

LIB--399

LIB$SUBX

is this length. Array-length must not be negative. The default length is
2 units.

DESCRIPTION LIB$SUBX performs subtraction on signed two's complement integers of
arbitrary length. The integers are located in arrays of longwords. The higher
addresses contain the higher-precision parts of the values. The highest
addressed longword contains the sign and 31 bits of precision. The remaining
longwords contain 32 bits of precision in each. The number of longwords to
be operated on is given by the optional argument, array-length. The default
length is 2, which corresponds to the VAX quadword data type.

CONDITION
VALUES
RETURNED

SS$_NORMAL

SS$_1NTOVF

Routine successfully completed.

Integer overflow. The result is correct, except that
the sign bit is lost.

LIB$_INV ARG Invalid argument. Length is negative. The output
array is unchanged.

EXAMPLE

C+
C This FORTRAN example program demonstrates the use of LIB$SUBX.
c-

INTEGER A(2),B(2),C(2),RETURN
C+
C Let "A" have the value 72057594037927937 = '1000000000000001'x.
C Let "B" have the value 4294967295 'OOOOOOOOFFFFFFFF'x.
c-

A(1) '00000001'x
A(2) '10000000'x
B(1) 'FFFFFFFF'x
B(2) 'OOOOOOOO'x

C+
C Then "A" - "B" is 72057589742960642.
c-

RETURN = LIB$SUBX(A,B,C)
TYPE *·' '
TYPE *,'Let A= 72057594037927937 and B = 4294967295.'
TYPE *,'Then C =A - B = 72057589742960642.'
TYPE 2,C(2) ,C(1)

2 FORMAT(' 72057589742960642 is represented as ',1H',Z8,Z8,3H'x.)
TYPE *· 51HThat is, C(2) = 'OFFFFFFF'x and C(1) = '00000002'x.
END

LIB-400

This FORTRAN example demonstrates how to call LIB$SUBX. The output
generated by this program is as follows:

Let A = 72057594037927937 and B = 4294967295.
Then C = A - B = 72057589742960642.
72057589742960642 is represented as ' FFFFFFF 2'x.
That is, C(2) = 'OFFFFFFF'x and C(1) = '00000002'x.

LI B$SVS_ASCTIM

LI B$SVS_ASCTI M Invoke $ASCTIM to Convert
Binary Time to ASCII String

FORMAT

RETURNS

ARGUMENTS

The Invoke $ASCTIM to Convert Binary Time to ASCII String routine calls
the system service $ASCTIM to convert a binary date and time value,
returning the ASCII string using the semantics of the caller's string.

LIB$SYS-ASCTIM [resultant-length] ,time-string
[,user-time] [,flags}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into time-string, not counting padding in the case
of a fixed-length string. The resultant-length argument contains the address
of an unsigned word integer that is this number.

If the input string is truncated to the size specified in the time-string
descriptor, resultant-length is set to this size. Therefore, resultant-length
can always be used by the calling program to access a valid substring of
time-string.

time-string
VMS usage: time_name
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$SYS_ASCTIM writes the ASCII time string.
The time-string argument contains the address of a descriptor pointing to the
destination string.

user-time
VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Value that LIB$SYS-ASCTIM converts to ASCII string form. The user-time
argument contains the address of a signed quadword integer that is this value.

LIB-401

LI B$SVS_ASCTIM

If zero or no address is specified, the current system date and time are
returned. A positive value represents an absolute time. A negative value
represents a delta time. Delta times must be less than 10,000 days.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Conversion indicator specifying which date and time fields LIB$SYS_ASCTIM
should return. The flags argument is the address of an unsigned bit mask that
contains this conversion indicator.

A value of 1 causes only the hour, minute, second, and hundredths of a
second to be returned, depending on the length of the buffer. A value of zero
(the default) causes the full date and time to be returned, depending on the
length of the buffer.

The results of specifying some possible combinations for the values of the
flags and time-string arguments are shown below:

Time Value Time-string Length Flags Value Information Returned

Absolute 23

Absolute 12

Absolute 11

Delta 16

Delta 11

DESCRIPTION

LIB-402

0 Date and time

0 Date

1 Time

0 Days and time

Time

Argument flags is passed to LIB$SYS_ASCTIM by reference and is changed
to value for use by $ASCTIM.

See the VMS System Services Reference Manual for a complete description of
$ASCTIM.

CONDITION
VALUES
RETURNED

SS$_NORMAL

LIB$_STRTRU

LIB$_FA TERRLIB

LIB$_1NSVIRMEM

LIB$_1NVSTRDES

SS$_1VTIME

LI B$SVS_ASCTIM

Routine successfully completed.

Routine successfully completed, but the source
string was truncated.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Insufficient virtual memory. A call to LIB$GET_VM
has failed because your program has exceeded the
image quota for virtual memory.

Invalid string descriptor. A string descriptor has an
invalid value in its DSC$B_CLASS field.

The specified delta time is greater than or equal to
10,000 days.

LIB-403

LIB$SVS_FAO

LIB$SVS_FAO Invoke $FAQ System Service to
Format Output

FORMAT

RETURNS

ARGUMENTS

LIB-404

The Invoke $FAQ System Service to Format Output routine calls $FAQ,
returning a string in the semantics you provide. If called with other than a
fixed-length string for output, the length of the resultant string is limited to
256 bytes and truncation will occur.

LIB$SVS_FAO character-string {,resultant-length]
, resultant-string[, directive-argument, ...]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

character-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

ASCII control string, consisting of the fixed text of the output string and FAO
directives. The character-string argument contains the address of a descriptor
pointing to this control string.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output string. The resultant-length argument contains the
address of an unsigned word integer that is this length.

resultant-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Fully formatted output string returned by LIB$SYS_FAO. The resultant
string argument contains the address of a descriptor pointing to this output
string.

DESCRIPTION

CONDITION
VALUES
RETURNED

directive-argument
VMS usage: varying_arg
type: unspecified
access: read only
mechanism: unspecified

LIB$SVS_FAO

Directive argument contained in longwords. Depending on the directive, a
directive-argument argument can be a value to be converted, the address
of the string to be inserted, or a length or argument count. The passing
mechanism for each of these arguments should be the one expected by the
$FAO system service.

See the VMS System Services Reference Manual for a complete description of
$FAO.

SS$_NQRMAL

SS$_BUFFEROVF

LIB$_STRTRU

SS$_BADPARAM

LIB$_1NSVIRMEM

LIB$_1NVSTRDES

Routine successfully completed.

Successfully completed, but the formatted output
string overflowed the output buffer and was
truncated.

Success, but the source string was truncated on
copy.

An invalid directive was specified in the FAQ
control string.

Insufficient virtual memory to allocate dynamic
string;-

lnvalid string descriptor. A string descriptor has an
invalid value in its DSC$B_CLASS field.

LIB-405

LIB$SVS_FAOL

LIB$SVS_FAOL Invoke $FAOL System Service to
Format Output

FORMAT

RETURNS

ARGUMENTS

LIB-406

The Invoke $FAOL System Service to Format Output routine calls the
system service routine $FAOL, returning the string in the semantics you
provide. If called with other than a fixed-length string for output, the length
of the resultant string is limited to 256 bytes and truncation will occur.

LIB$SVS_FAOL character-string ,[resultant-length]
, resultant-string
, directive-argument-address
, ...

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

character-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

ASCII control string, consisting of the fixed text of the output string and FAO
directives. The character-string argument contains the address of a descriptor
pointing to this control string.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output string. The resultant-length argument contains the
address of an unsigned word integer that is this length.

resultant-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Fully formatted output string returned by LIB$SYS_F AOL. The resultant
string argument contains the address of a descriptor pointing to this output
string.

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$SVS_FAOL

directive-argument-address
VMS usage: address
type: longword (unsigned)
access: read only
mechanism: unspecified

Directive arguments. The directive-argument-address arguments are
contained in an array of unsigned longword directive arguments. Depending
on the directive, a directive-argument-address argument can be a value to
be converted, the address of the string to be inserted, or a length or argument
count. The passing mechanism for each of these arguments should be the
one expected by the $FAOL system service.

See the VMS System Services Reference Manual for a complete description of
$FAOL.

SS$_NORMAL

SS$_8UFFEROVF

Ll8$_STRTRU

SS$_8ADPARAM

LIB$_1NSVIRMEM

LIB$_1NVSTRDES

Routine successfully completed.

Successfully completed, but the formatted output
string overflowed the output buffer and was
truncated.

Success, but the source string was truncated on
copy.

An invalid directive was specified in the FAQ
control string.

Insufficient virtual memory to allocate dynamic
string.

Invalid string descriptor. A string descriptor has an
invalid value in its DSC$8_CLASS field.

LIB-407

LIB$SVS_GETMSG

LI B$SVS_GETMSG Invoke $GETMSG System
Service to Get Message Text

FORMAT

RETURNS

ARGUMENTS

LIB-408

The Invoke $GETMSG System Service to Get Message Text routine
calls the System Service $GETMSG and returns a message string into
destination-string using the semantics of the caller's string.

LIB$SVS_GETMSG message-id ,[message-length]
, destination-string [,flags]
[,unsigned-resultant-array]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

message-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Message identification to be retrieved by LIB$SYS_GETMSG. The message
id argument contains the address of an unsigned longword integer that is this
message identification.

message-length
VMS usage: word_unsigned
type: word integer (unsigned)
access: write only
mechanism: by reference

Number of characters written into destination-string, not counting padding
in the case of a fixed-length string. The message-length argument contains
the address of an unsigned word integer that is this number.

If the input string is truncated to the size specified in the destination-string
descriptor, message-length is set to this size. Therefore, message-length
can always be used by the calling program to access a valid substring of
destination-string.

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string. The destination-string argument contains the address of
a descriptor pointing to this destination string. LIB$SYS_GETMSG writes the
message that has been returned by $GETMSG into destination-string.

DESCRIPTION

LI B$SVS_GETMSG

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Four flag bits for message content. The flags argument is the address of
an unsigned longword that contains these flag bits. The default value is a
longword with bits zero through 3 set to 1. The flags argument is passed to
LIB$SYS_GETMSG by reference and changed to value for use by $GETMSG.

Bit numbers, their values, and corresponding descriptions are listed below.

Bit Value Description

0 1 Include text of message

0 Do not include text of message

1 Include message identifier

0 Do not include message identifier

2 1 Include severity indicator

0 Do not include severity indicator

3 1 Include facility name

0 Do not include facility name

unsigned-resultant-array
VMS usage: unspecified
type: unspecified
access: write only
mechanism: by reference, array reference

A 4-byte array to receive message-specific information. The unsigned
resultant-array argument contains the address of this array.

The contents of this 4-byte array are as follows:

Byte Contents

0 Reserved

1 Count of FAQ arguments

2 User value

3 Reserved

LIB$SYS_GETMSG calls the $GETMSG system service and returns a message
string using the semantics of the caller's string. Note that, in order to retrieve
a message string for a LIB$ facility message, you must include the file
$LIBDEF in your program.

See the VMS System Services Reference Manual for a more complete description
of $GETMSG.

LIB-409

LI B$SVS_GETMSG

CONDITION
VALUES
RETURNED

LIB-410

SS$_NQRMAL

SS$_BUFFEROVF

SS$_MSGNOTFND

LIB$_STRTRU

LIB$_FATERRLIB

LIB$_INSVIRMEM

LIB$_INVSTRDES

Routine successfully completed.

Successfully completed, but the resultant string
overflowed the buffer provided and was truncated.

Successfully completed, but the message code
does not have an associated message on file.

Successfully completed, but the source string was
truncated.

Fatal internal error.

Insufficient virtual memory.

Invalid string descriptor.

LIB$TPARSE

LIB$TPARSE Table-Driven Finite-State Parser

FORMAT

RETURNS

ARGUMENTS

The Table-Driven Finite State Parser routine is a general-purpose, table
driven parser implemented as a finite-state automaton, with extensions
that make it suitable for a wide range of applications. LIB$TPARSE parses
a string and returns a message indicating whether or not the input string is
valid.

LIB$TPARSE argument-block ,state-table ,key-table

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

argument-block
VMS usage: address
type: longword (unsigned)
access: modify
mechanism: by reference

LIB$TP ARSE argument block. The argument-block argument contains the
address of this argument block.

The LIB$TP ARSE argument block contains information about the state of the
parse operation. It becomes the argument list presented to all action routines.

Figure LIB-6 illustrates the format of the argument block.

LIB-411

LIB$TPARSE

LIB-412

Figure LIB-6 LIB$TPARSE Argument Block

TPA$L_COUNT: TPA$K_CQUNTO = 8

TPA$L_OPTIONS: Flag bits

TPA$L_STRINGCNT: Length of input string

TPA$L_STRINGPTR: Pointer to input string

TPA$L_ TOKENCNT: Length of current token

TPA$L_ TOKENPTR: Pointer to current token

TPA$B_CHAR: Character l Unused

TPA$L_NUMBER: Binary value of numeric token

TPA$L_PARAM: Argument supplied by user

ZK-1929-84

Note that the high byte of the longword field TPA$L_QPTIONS is
TPA$B_MCOUNT. The fields of the argument block are explained in detail
in the section entitled "The LIB$TP ARSE Argument Block."

state-table
VMS usage: address
type: unspecified
access: read only
mechanism: by reference

Starting state in the state table. The state-table argument is the address of
this starting state.

Usually, the name appearing as the first argument of the $INIT_STATE macro
is used.

key-table
VMS usage: address
type: unspecified
access: read only
mechanism: by reference

Keyword table. The key-table argument is the address of this keyword table.

This name must be the same as that which appeared as the second argument
of the $1NIT_STATE macro. It is called with the address of an argument
block, the address of a state table, and the address of a keyword table. The
input string is specified as part of the argument block.

DESCRIPTION

LIB$TPARSE

LIB$TPARSE analyzes an input string according to a set of states and
transitions presented in a state table to determine whether the input string is
valid according to the rules you have defined for the input language.

The following sections explain in detail how LIB$ TP ARSE works and how to
call it from both assembly and high-level languages.

1 "How LIB$TP ARSE Works" describes the data structures used by
LIB$TP ARSE and how LIB$TP ARSE operates on them.

2 "Coding and Using a Simple State Table" shows you how to construct
and use a simple state table.

3 "Using Advanced LIB$TPARSE Features" explains how to use
subexpressions, abbreviations, action routines, and other advanced
features.

4 "State Table Object Representation" includes information of interest
to the low-level language programmer, such as the state table object
representation.

How LIB$TPARSE Works

There are three parts to any parsing operation.

1 The string to be parsed. LIB$TPARSE accepts the input string as part of
an argument block that contains additional information about the state
of the parse-how much of the string has not been interpreted, what the
current token is, and so forth. See the section entitled "The LIB$TPARSE
Argument Block."

2 The set of characters from which the input string is chosen, called the
alphabet of your language. LIB$TP ARSE recognizes the ASCII character
set and provides symbolic names for the most common combinations
of ASCII characters-alphabetic and alphanumeric strings, VMS
symbols, numbers, and so on. See the section entitled "The Alphabet
of LIB$TP ARSE."

3 The rules which govern how the alphabet is used-in other words,
the language's syntax. You specify these rules in the state tables. (In a
LIB$TP ARSE state table, each state is simply a list of the transitions to
other states.) See the section entitled "The State Tables."

LIB$TP ARSE reads the input string from left to right, dividing it into a set of
tokens-substrings to be treated as logical entities. By default, LIB$TP ARSE
treats blanks as invisible separators; it takes all characters up to the next blank
as a single token. You can use the TP A$V_BLANKS flag in the argument
block to cause LIB$TPARSE to interpret the tokens differently; see the section
entitled "Blanks in the Input String."

LIB$TP ARSE evaluates the transitions in the order in which they appear in
the state, which corresponds to the order in which they were written in the
source program. Each token is then evaluated against each possible transition
in the current state. If it does not match, LIB$TP ARSE attempts to match the
next transition, until it runs out of transitions in the state.

Each transition specifies what constitutes a valid token, what state is to
be entered next, whether an action routine is to be called, and whether
information is to be stored in a mask or mask-adr argument. By default,
the next state is the state that follows the current state in the state table. No

LIB-413

LIB$TPARSE

LIB-414

action routines are called, and no information is stored. LIB$TP ARSE also
allows subexpression calls, which can change the order in which transitions
are accepted; see the section entitled "Using Subexpressions." Action routines
can also change the order in which transitions are accepted. The section
entitled "Action Routines" explains how LIB$TP ARSE processes action
routines.

LIB$TP ARSE reads the input string, interprets the transitions in the state
table, and calls the action routines (if any) until:

1 It executes a transition to TP A$_EXIT (the string is valid) at main level
(that is, while it is not processing a subexpression call). It returns with
the value SS$_NQRMAL.

2 A transition or action routine requests that LIB$TP ARSE consider the
string invalid by specifying a transition to TP A$_F AIL at main level.
LIB$TP ARSE returns with the value LIB$-SYNTAXERR or an alternate
failure status returned by an action routine.

3 An error occurs at main level. The error can be either:

• A syntax error. All transitions in the current state fail to match
the current token. LIB$TP ARSE returns LIB$_SYNTAXERR or an
alternate failure status returned by an action routine.

• A state table format error. One of your state table entries is invalid.
LIB$TP ARSE returns LIB$-1NVTYPE.

LIB$TP ARSE generates no signals and establishes no condition handler;
action routines can signal through LIB$TP ARSE back to the calling program.

The sections that follow describe each of these parts in more detail.

The Alphabet of LIB$TPARSE

LIB$TP ARSE recognizes strings made up of elements of the ASCII character
set. It provides all the basic building blocks needed for constructing a
grammar using the ASCII character set. There are also symbols that represent
the more complex constructions found in programming and command
language grammar.

Table LIB-21 illustrates the alphabet of LIB$TPARSE.

Table LIB-21 The Alphabet of LIB$TPARSE

Symbol Character Matched

'x' The particular ASCII character. In a state table, it is expressed
by enclosing the character in single quotation marks. The
character can be any member of the 8-bit ASCII code set.
LIB$TP ARSE does not consider uppercase and lowercase
alphabetic characters and codes with different values in bit 7
to be equivalent.

TP A$_ANY Any single character. (The actual matching character is placed
in the TPA$B_CHAR field of the argument block.)

TPA$_ALPHA Any alphabetic character, which includes the DEC multinational
character set.

TPA$_DIGIT Any numeric character, that is, 0 through 9.

LIB$TPARSE

Table LIB-21 (Cont.) The Alphabet of LIB$TPARSE

Symbol

TPA$_STRING

TPA$_SYMBOL

TPA$_BLANK

TPA$_0ECIMAL

TPA$_QCTAL

TPA$_HEX

TPA$_FILESPEC

TPA$_UIC

Character Matched

Any string of one or more alphanumeric characters, that
is, uppercase or lowercase A through Z, and the numeric
characters 0 through 9. The string can be any length. It is
bounded on the right by the first nonalphanumeric character or
by the end of the string. A descriptor of the matching string
is available in the argument block.

Any string of one or more characters of the standard VAX
symbol constituent set, that is, uppercase and lowercase A
through Z and all DEC multinational characters, in addition
to the dollar sign ($), and the underscore (_). The string is
bounded on the right by some character not in the symbol
constituent set (usually a blank), or by the end of the string.

Any string of one or more blanks and/or tabs.

Any decimal number (that is, any string of one or more digits
0 through 9) whose magnitude is less than 232

• The binary
value of the number, converted in decimal radix, is placed in
the argument block.

Any octal number (that is, any string of one or more digits
0 through 7) whos• magnitude is less than 2 3~ The binary
value of the number, converted in octal radix, is placed in the
argument block.

Any hexadecimal number (that is, any string of one or more
digits 0 through 9, A through F) whose magnitude is less than
232

• The binary value of the number, converted in hexadecimal
radix, is placed in the argument block.

Any string of one or more characters that constitutes a valid
VMS file specification. The string is bounded on the right
by the first character that either is not a file specification
constituent character or would cause the sring to violate the
syntax rules of a file specification.

Any string that constitutes a valid VMS numerical UIC
specification, bounded by square brackets or angle brackets.
The binary value of the UIC, converted in octal radix, is placed
in the argument block. The wildcard character (*) is permitted
in the group and/or member fields; its presence results in that
field being set to its largest possible value in the binary value.

LIB-415

LIB$TPARSE

LIB-416

Table LIB-21 (Cont.) The Alphabet of LIB$TPARSE

Symbol

TPA$_1DENT

Character Matched

Any string that constitutes a valid VMS identifier. Identifiers
may be given as numerical UICs according to the rules for
TP A$_UIC, or as alphabetic identifier names that appear
in the system's rights database. The binary value of the
identifier, converted in either octal or hexadecimal radix or
by lookup in the system rights database, is placed in the
argument block. Identifiers may be entered in any of the
following forms:

(n,m]
(name 1,name2]
[name]
name
%Xhex-value

<n,m>
<name1 ,name2>
<name>

(any above instance of number
or name may also be *)

'keyword' The string of characters enclosed in single quotation marks.
A keyword can consist of one or more characters of the VAX
symbol constituent set, that is, uppercase and lowercase A
through Z, the numerals 0 through 9, the dollar sign ($), and
the underscore (_). Uppercase and lowercase alphabetics
are treated as different characters. A state table can contain
up to 220 keywords. The keyword is bounded on the right
by a character not in the symbol constituent set, or by the
end of the string. Keywords that are one character in length
are expressed in the form 'x•' to distinguish them from the
single-character symbol ('x'). They must be differentiated
since they are not the same in operation.

For example, in the input string AB+C, the single character
'A' would match the first character of this string, whereas the
keyword 'A*' would not, since B in the string is in the symbol
constituent set.

TPA$_LAMBDA The empty string (always matches). As it executes the
transition, LIB$TPARSE does not remove any characters
from the input string. LAMBDA transitions are useful in
getting action routines called under otherwise awkward
circumstances, providing unconditional GOTOs to link portions
of a state table together, and providing default actions in
certain cases.

LIB$TPARSE

Table LIB-21 (Cont.) The Alphabet of LIB$TPARSE

Symbol Character Matched

The end of the input string. TPA$_EOS

label A subexpression. LIB$TPARSE enters the state table at
the indicated label and executes state transitions until a
final state is entered. If the subexpression fails (that is, if
it encounters a syntax error in the input string), the input
string is backed up to the point at which the subroutine
started, and the subexpression simply fails to match. The
subexpression facility permits complex syntactic constructs
that appear in many places in grammar to appear only once in
the state table. It also permits a degree of nondeterministic
or pushdown parsing with a parser that is otherwise
deterministic and finite-state. See the section entitled UUsing
Subexpressions."

A theoretical finite-state machine simultaneously compares the symbol types
given by all of the transitions out of a particular state with the current
token. The machine· then executes the one transition whose symbol type
matches. Since an ordinary sequential computer executes LIB$TPARSE, it
evaluates the transitions sequentially and executes the first transition whose
symbol type matches. Note also that the set of symbol types implemented by
LIB$TP ARSE matches overlapping sets of tokens. For example, the
token 123 could match TP A$-DECIMAL, TP A$_0CTAL, TP A$_STRING, or
one of several other symbol types.

Thus if there is more than one transition out of a state whose symbol types
match overlapping sets of tokens, you must order the symbol types carefully.
For example, the TP A$_SYMBOL symbol type matches all keyword strings.
In general, LIB$TP ARSE will never execute keyword transitions appearing in
a state following a TP A$_SYMBOL. It is best, therefore, to order transitions
of different types in order of increasing generality, as follows:

'keyword'
'x'
TPA$-EOS
TPA$-ALPHA
TPA$_DIGIT
TPA$_BLANK
TPA$_QCTAL
TP A$_DECIMAL
TPA$JfEX
TP A$_STRING
TP A$_SYMBOL
TPA$_UIC
TPA$_IDENT
TP A$JILESPEC
TPA$-ANY
TPA$_LAMBDA

Note that subexpressions are not in this list; their placement depends on the
symbol types recognized within the subexpression. If you use action routines
to reject certain transitions, you can change the order in which that symbol
type is placed in this order. In any case, however, LIB$TPARSE will execute

LIB-417

LIB$TPARSE

the first transition listed in a state that is permitted to match the leftmost
portion of the input string.

The LI B$TPARSE Argument Block

LIB$TP ARSE finds the input string through the argument block. This
argument block is the impure data base upon which LIB$TPARSE operates.
That is, it is a set of variable data that can be written as well as read.
It contains information about the string to be parsed, option flags for
LIB$TPARSE, and data about the current token. When LIB$TPARSE calls
an action routine, the argument block becomes the argument list of the action
routine, allowing efficient reference by the routine.

The fields in the argument block have symbolic names. Assembly language
programs can define these names by invoking the macro $TP ADEF
(automatically loaded from the system macro library). The field names define
the byte offset of the field from the start of the argument block, with the
exception of the bit fields ($V_names), which are defined as bit offsets from
the start of the containing field. In addition, bit mask values ($M_names) are
available for the bit fields.

The same field names are available to BLISS programs from the system macro
library SYS$LIBRARY:STARLET.L32. Each name (except for the $M_names)
is defined as a fixed-reference macro that operates on a byte-based block. The
$M_names are defined as literals.

Table LIB-22 contains the fields of the argument block.

Table LIB-22 Argument Block Fields

Symbol

TPA$L_COUNT

TPA$L_QPTIONS

TPA$B_MCOUNT

TPA$L_STRINGCNT

LIB-418

Meaning

A longword containing the number of longwords that make up the rest of the
argument block. This longword functions as the argument count when the
argument block becomes the argument list to an action routine. This field
must contain the value TPA$K_CQUNTO (whose numeric value is 8).

A longword containing various option and flag bits. The defined flags are as
follows:

TP A$V~BLANKS - Setting this bit causes LIB$TP ARSE to process
blanks and tabs explicitly, rather than treating them as invisible separators
(see the section entitled "Blanks in the Input String" on blank processing).
TPA$V_ABBRFM - Setting this bit allows keywords to be abbreviated
to any length. If an abbreviated keyword string is ambiguous, the first
eligible transition listed in the state matches it.
TP A$V_ABBREV - Setting this bit allows keywords to be abbreviated
to the shortest length that is unambiguous in that state. (See the section
entitled "Abbreviating Keywords" on keyword abbreviation.)
TPA$V_AMBIG - LIB$TPARSE sets this bit when it has detected an
ambiguous keyword string in the current state.

A byte containing the minimum number of characters in the abbreviation of a
keyword. If zero, abbreviations are not allowed. Preventing ambiguity is the
responsibility of the state table designer. If TP A$V_ABBRFM or
TPA$V_ABBREV is set, LIB$TPARSE ignores this value.

A longword containing the number of characters remaining in the input string.

LIB$TPARSE

Table LIB-22 (Cont.) Argument Block Fields

Symbol

TPA$L _STRINGPTR

TPA$L_TOKENCNT

TPA$L_TOKENPTR

TPA$B_CHAR

TPA$L_NUMBER

TPA$L_PARAM

TPA$K_LENGTHO

Meaning

A longword containing the address of the remainder of the string being
parsed. Taken together, TPA$L_STRINGPTR and TPA$L_STRINGCNT form
a descriptor for the input string. Your program initializes this descriptor with
the string to be parsed. When LIB$TPARSE calls an action routine, this
descriptor describes the remainder of the input string. When LIB$TPARSE
returns, this descriptor describes the portion of the input string that
LIB$TP ARSE did not process. (This occurs whether LIB$TPARSE returns
success or failure.)

A longword containing the number of characters in the current token.

A longword containing the address of the current token. Taken together,
TPA$L_ TOKENPTR and TPA$L_ TQKENCNT form a descriptor for the current
token. If LIB$TPARSE encounters a syntax error (fails to match a transition),
then this descriptor describes whatever portion of the current input string
would have been matched by a TPA$_SYMBOL symbol type. If none would
have matched, it describes the first remaining character in the input string. A
transition to TPA$_FAIL leaves the descriptor describing the token matched
by that transition-that is, the string that failed.

A byte containing the character matched by a single-character symbol type
('x', TPA$_ANY, TPA$_ALPHA, or TPA$_DIGIT). The remainder of the
longword is not used.

A longword containing the binary value of a numeric token (TPA$_DECIMAL,
TPA$_QCT AL, or TPA$_HEX), converted in the appropriate radix.

A longword containing the 32-bit argument supplied by the state transition.

LIB$TPARSE modifies. the three preceding fields (TPA$L_CHAR,
TPA$L_NUMBER, and TPA$L_PARAM) only when it is about to call an
action routine from a transition of the relevant type (or containing an explicit
argument). While LIB$TPARSE is executing transitions of unrelated types, it
does not modify the fields.

This symbol represents the number of bytes in the basic LIB$TPARSE
argument block. You must pass an argument block of at least this length
(containing a count field of TPA$K_COUNTO in TPA$L _COUNT) as the first
argument to LIB$TPARSE. You may pass a longer block if you wish to pass
extra context to action routines in a modular way.

The names TP A$M_BLANKS, TP A$M-ABBRFM, TP A$M-ABBREV, and
TPA$M-AMBIG define bitmasks that correspond to the location of the
corresponding $V_ fields in the options longword.

The State Tables

This section describes the set of macros used to construct state tables. The
section entitled "Coding and Using a Simple State Table" explains how to use
these macros to construct a state table.

The state table must be set up using either MACRO or BLISS. Everything else,
including the action routines, can be coded in the language of your choice.
Simply compile the state table separately, then link it with your program.

LIB-419

LIB$TPARSE

LIB-420

MACRO State Table Generation Macro Calls

The VMS system macro library contains a set of assembler macros that allow
convenient and readable coding of a LIB$TP ARSE state table. Macros exist to
initialize the LIB$TPARSE macro system, define the states in the state table,
and define the transitions to other states within each state. These macros
generate symbol definitions and tables. They do not produce any executable
code or routine calls.

$1NIT_STATE-lnitialize the LIB$TPARSE Macros

The $INIT_STATE macro declares the beginning of a state table. It initializes
the internals of the table generator macros and declares the locations of the
state table and the keyword table. The state table is the structure containing
the definitions of the states and the transitions between them. The keyword
table contains the text of the keywords used in the state table.

$1NIT _ST ATE

state-table

state-table ,key-table

The name assigned to the state table. LIB$TP ARSE equates this label to the
start of the first state in the state table.

key-table
The name assigned to the keyword table. LIB$TPARSE equates this label to
the start of the keyword table.

You must supply both the address of the state table and the address of the
keyword table in the call to LIB$TP ARSE to perform a parse. The
$INIT_STATE macro can appear more than once in a program. Each
occurrence defines a separate state table. No part of any state table can
refer to part of any other state table.

$ST ATE-Defining a State

The $STATE macro declares the beginning of a state.

$ST A TE [label]

label
An optional label for the state. LIB$TP ARSE equates the label, if present, to
the starting address of the state.

$TRAN-Defining State Transitions

The $TRAN macro defines a transition from the state in which it appears to
some other (or to the same) state. The arguments of the macro define, among
other things, the symbol type that causes the transition to be executed, the
state to which to transfer, and the action routine to call, if any.

$TRAN type [,label] [,action] [,mask] [,msk-adr] [,argument]

type
The symbol type recognized by this transition. The transition is taken if the
characters at the front of the input string match the symbol specified. The
symbol can be any of the constructs discussed in the section entitled "The
Alphabet of LIB$TP ARSE."

A subexpression symbol type has the syntax label.

LIB$TPARSE

label
The optional target state of this transition. If present, it must be the label
assigned to some state in the state table. If no label is present in the
transition, LIB$TP ARSE transfers control to the next state immediately
following in the state table. If the label is the expression TPA$_EXIT, the
parsing operation in progress is terminated with a success status. If the label
is the expression TP A$_FAIL, the parsing operation stops with a failure
status, as if a syntax error had occurred.

action
The optional address of a user-supplied action routine. If this argument is
present, LIB$TPARSE calls the named action routine before the transition is
taken. The section entitled "Action Routines" describes the calling sequence
of action routines and the information available to them.

Since the action routine address is self-relative, it cannot be in a shared image
separate from the state table.

mask
An optional 32-bit mask value used with the msk-adr argument. If the mask
is present, LIB$TPARSE performs an inclusive OR operation using this value
and the longword specified by msk-adr. Use of the mask argument allows
the state table to flag the fact that a certain transition was taken without the
expense and overhead of calling an action routine.

msk-adr
The optional address associated with the preceding mask argument.
LIB$TPARSE performs the inclusive OR operation on this address and the
mask argument, and stores the result at the address. If the mask argument is
present, the msk-adr argument must also be present.

The msk-adr argument can also be present without the preceding mask
argument. In this case, it specifies an address where the routine stores
information about the matching token. The information stored depends on
the nature of the symbol, as follows:

• If the symbol is a number (that is, if the type code in the transition is
TP A$_DECIMAL, TP A$_0CTAL, or TP A$-1fEX), the address contains
the 32-bit binary value of the number (an unsigned longword).

• If the symbol is a single character (that is, if the type code in the transition
is 'x', TPA$-ANY, TPA$-ALPHA, or TPA$_DIGIT), the address (an
unsigned byte) contains the 8-bit matching character.

• If the symbol is of any other type, the address contains the 64-bit string
descriptor of the matching token (an unsigned quadword; class and data
type fields in the descriptor are undefined).

Using msk-adr makes your program nonmodular.

The use of the msk-adr alone lets a parser program extract the most
commonly needed information from the input string without using action
routines. Note that LIB$TP ARSE stores the information, and does not
perform an OR operation as it does if mask is present.

Since the action routine address is self-relative, it cannot be in a shared image
separate from the state table.

LIB-421

LIB$TPARSE

LIB-422

argument
An optional 32-bit value that LIB$TP ARSE passes to the action routine
without interpretation. This argument can be an identifier number, an
address, or any other information your action routine needs. It allows a
single action routine to serve many transitions for which similar, but slightly
varying, actions must be performed.

Using argument as an address is nonmodular.

Note that the argument appears in the state table in its absolute form.
Normally, LIB$TPARSE stores addresses as self-relative pointers; however,
LIB$ TP ARSE does not know the form or meaning of argument, so it is
stored in its absolute form. If argument is used as an address, therefore, the
resulting parsing program containing this state table will not be position
independent code (PIC).

$END_STATE-End the State Table

The $END_STATE macro declares the end of the state table. It is mandatory,
in order to permit the orderly cleanup of the LIB$TP ARSE macro system. The
$END_STATE macro has no arguments. You code it as follows:

$END_STATE

BLISS State Table Generation Macro Calls

The file SYS$LIBRARY:TPAMAC.L32 contains a set of BLISS macros that
allow convenient and readable coding of LIB$TP ARSE state tables in
BLISS. To make the macros available to the program, include the following
declaration in the module containing the state tables:

LIBRARY 'SYS$LIBRARY:TPAMAC';

BLISS requires only two macros: $INIT_STATE to initialize the macros and
$STATE to define each state in its entirety. The syntax of the $INIT_STATE
and $STATE macros are defined below.

$1NIT_STATE-lnitialize the LIB$TPARSE Macros

The $INIT_STATE macro initializes the LIB$TPARSE macro system in the
same manner as it does for the assembler.

$1NIT_ST ATE (state-table, key-table);

state-table
The name assigned to the state table. LIB$TPARSE equates this label to the
start of the first state in the state table.

key-table
The name assigned to the keyword table. LIB$TPARSE equates this label to
the start of the keyword table.

Both names are declared as global vectors of length zero. As with the
assembler macros, you can invoke $INIT_STATE more than once to declare
several state tables within a single module.

LIB$TPARSE

$ST ATE-Declaring a State and Its Transitions

In BLISS, you use the $STATE macro to declare a state in its entirety.

$ST A TE ([label],

label

(transition),
(transition),
(transition)

);

Optional address of the start of the state. The compiler declares label as a
local vector of length zero. Note that the comma following the optional label
is mandatory.

transition
Each transition appears within the parentheses in the same form as the
transition argument list for the assembler $TRAN macro.

type [,label] [,action] [,mask] [,msk-adr] [,argument]

The arguments of each transition are expressed in exactly the same format
as in the assembler macros, with the exception of the subexpression type. In
BLISS, this type has the form (label).

Note that the transitions are not keyword macros. Therefore, you must use
commas to indicate arguments you have skipped.

The BLISS table generation macros contain no BEGIN or END statements.
This allows $STATE macros to refer to each other. They generate all
storage with OWN declarations. This means that the macros modify PSECT
declarations for OWN and GLOBAL storage. Thus if other data declarations
follow the state table declarations, they may not have the correct attributes.
You cannot simply surround the state table with BEGIN/END, because this
constitutes an expression. No declarations of any kind, including ROUTINE
declarations, can follow an expression.

There are four techniques for including LIB$TP ARSE state tables in BLISS
modules.

1 Follow the state table with explicit redeclarations of the OWN and
GLOBAL PSECTs. The BLISS example in the "Examples" section uses
this technique.

2 Place the state table in a separate module. The high-level language
examples in the next section use this technique.

3 Place the state table between BEGIN and END statements after the
declarations within a routine body.

4 Place the state table between BEGIN and END statements at the end of a
module.

In all cases, of course, you must define all action routines, masks, addresses,
and arguments with suitable declarations (which can be FORWARD or
EXTERNAL). The LIB$TPARSE macros handle the necessary FORWARD
declarations for forward references to labels within the state table.

LIB-423

LIB$TPARSE

LIB-424

Coding and Using a Simple State Table

LIB$TPARSE can be used to parse programming languages, command
languages, or any other grammar for which a deterministic parser is the
best choice. The following sections show how to use it to parse the command
language of a simple report management utility.

This hypothetical utility allows a user to perform the following activities:

1 Obtain a list of available reports (SHOW command).

2 Read reports on the terminal (READ command).

3 Print reports (PRINT command).

4 Store new reports (FILE command).

The examples use the BASIC programming language for everything except
the state and keyword tables, which are coded in BLISS.

Coding a parser program using LIB$TP ARSE involves three steps:

1 Set up state tables to implement your language's grammar.

2 Define the argument block and other common variables.

3 Code the main program, including the call to LIB$TP ARSE.

This simple state table program does not use any action routines or other
arguments. See the section entitled "Using Advanced LIB$TP ARSE Features"
for information about how to use these features of LIB$TPARSE.

Setting Up the State Tables

A state table associates the parser's alphabet with a set of possible transitions.
You begin the state table with an $INIT_STATE macro and define the states
and transitions using the $STATE and $TRAN macros.

One easy way to set up these tables is to start from a transition diagram of
the language you want to parse. (If you do not know how to construct a
transition diagram, you might find it helpful to read a good introductory text
about compiler design and construction before you start.) Each circle in the
diagram becomes a $STATE macro, and each arrow representing a transition
out of that state becomes a $TRAN macro.

Figure LIB-7 illustrates a transition diagram for the mythical utility described
in "Setting Up the State Tables".

LIB$TPARSE

Figure LIB-7 Transition Diagram for the Mythical Utility

Report name

Keyword

End of string

ZK-1933-84

The state table for this simple language looks like this:

;+

.TITLE simplelang

.ident 'v1'

; Define the TPARSE control symbols

$TPADEF

$INIT_STATE SIMPLE_LANGUAGE_TABLE, SIMPLE_KEYWORD_TABLE

$STATE START
$TRAN 'PRINT', NEED_REPORT
$TRAN 'READ', NEED_REPORT
$TRAN 'FILE', NEED_REPORT
$TRAN 'SHOW', NEED_REPORT

$STATE NEED_REPORT
$TRAN TPA$_SYMBOL, NEED_REPORT
$TRAN TPA$_EOS, TPA$_EXIT

$END_STATE

.END

Another technique for developing a state table starts with a tabular diagram
in which the first column is the starting state, the second column identifies
the input token, and the third gives the resultant state.

Figure LIB-8 is a diagram of the same mythical utility that appeared in
LIB-7.

LIB-425

LIB$TPARSE

LIB-426

Figure LIB-8 Diagram of the Mythical Utility

Starting state Input Resulting state

PRINT need-report-name -- - READ need-report-name -- --- - FILE need-report-name
SHOW need-report-name

need-report-name report name done
need-report-name end of string done
need-report-name other error

ZK-1980-84

In this case, each block of entries becomes a $STATE macro and each option
within that block is a possible transition to the next state. Using the BLISS
macros yields the following state table definition:

MODULE simple_statetable

BEGIN

!+
! These libraries contain the macros and other definitions
! needed to generate the state tables.
!-

LIBRARY 'SYS$LIBRARY:STARLET';
LIBRARY 'SYS$LIBRARY:TPAMAC';

!+
! UFD_STATE is the name you are giving the state table.
! UFD_KEY names the keyword table.
! Be sure to use the same name in the call to LIB$TPARSE.
!-

$INIT_STATE (UFD_STATE, UFD_KEY);
!+
! Read the command name (to the first blank in the command).
! Each string is a keyword; you are limited to 220 keywords
! per state table.
!-

$STATE (START,
('CREATE'),
('FILE'),

('PRINT'),
('READ')
) ;

$STATE (LOOP,

Be careful of your punctuation here.
Each transition is surrounded by
parentheses; each entry except the
last is followed by a comina.

(TPA$_STRING, LOOP), If there is more than one report name
specified, go back and process it.
Exit when done.

END

ELUDOM

(TPA$_EOS, TPA$_EXIT)
) ;

! End of module CREATE_TABLE

Assemble or compile this module as you would any other program module.

LIB$TPARSE

Defining the Argument Block

After you have set up the state tables, you need to declare the LIB$TP ARSE
argument block in such a way that both your program and LIB$TP ARSE can
use it. This means the data must be defined in an area common to the calling
program and the program module containing the state table definitions.

In most programming languages you will use a combination of EXTERNAL
statements and common data definitions to create and access a separate data
PSECT. If you do not know what mechanisms the language you are using
provides, consult the documentation for that language.

The following example shows the LIB$TP ARSE argument block defined for
use in a BASIC program.

!LIB$TPARSE requires that TPA$K_COUNTO be eight.

DECLARE INTEGER CONSTANT TPA$K_COUNTO = 8, &
BTPA$L_COUNT = 0, &
BTPA$L_OPTIONS=1, &
BTPA$L_STRINGCNT=2, &
BTPA$L_STRINGPTR=3, &
BTPA$L_TOKENCNT=4, &
BTPA$L_TOKENPTR=5, &
BTPA$B_CHAR=6, &
BTPA$L_NUMBER=7, &
BTPA$L_PARAM=8

!+
! The LIB$TPARSE argument block.
!-

MAP (TPARSE_BLOCK) LONG TPARSE_ARRAY (TPA$K_COUNTO)

!+
! Redefining the map allows you to use the standard
! LIB$TPARSE symbolic names. TPA$L_STRINGCNT,
! for example, references the same storage location
! as TPARSE_ARRAY(2) and TPARSE_ARRAY(BTPA$L_STRINGCNT).
!-
MAP (TPARSE_BLOCK) LONG &

TPA$L_COUNT , &
TPA$L_OPTIONS, &
TPA$L_STRINGCNT, &
TPA$L_STRINGPTR, &
TPA$L_TOKENCNT, &
TPA$L_TOKENPTR, &
TPA$B_CHAR, &
TPA$L_NUMBER, &
TPA$L_PARAM

Coding the Call to LIB$TPARSE

Before your program can call LIB$TPARSE, it must place the necessary
information in the argument block. Since this utility uses all the LIB$TPARSE
defaults for blanks processing, abbreviations, and so on, it does not need to
set any flags. It must, however, put the address and length of the string to be
parsed into the TPA$L_STRINGCNT and TPA$L_STRINGPTR fields.

This information is available in. the descriptor of the input string (called
COMMAND_LINE in this program). However, BASIC, like most high-level
languages, does not allow you to look at the descriptors of your strings.
Instead, you can use LIB$ANALYZE_SDESC to read the length and address
from the string descriptor and place them in the argument block. (See
line 75.)

LIB-427

LIB$TPARSE

Note that this program uses the BLISS state table described in the section
entitled "Setting Up the State Tables."

5 %TITLE "Program to demonstrate using LIB$TPARSE from a high-level language"

OPTION TYPE=EXPLICIT

!+
! COMMAND_LINE is the string to receive the input
! command from the terminal.

ERROR_MSG_TEXT is the system error message
returned from LIB$SYS_GETMSG

! (used in the error handling routine)
!-
DECLARE STRING COMMAND_LINE, ERROR_MSG_TEXT

!+
RET_STATUS receives the status from the system calls.
SAVE_STATUS is used when an error occurs

and the error handling routine calls
! LIB$SYS_GETMSG to obtain the error text.
!-
DECLARE LONG RET_STATUS, SAVE_STATUS

!+
! UFD_STATE is the address of the state table.
! UFD_KEY is the address of the key table.

!-

Both addresses are set up by the macros in module
SIMPLE_STATETABLE32.

EXTERNAL LONG UFD_STATE, UFD_KEY

!+
! To allow us to compare returned statuses more easily.
!-

EXTERNAL INTEGER CONSTANT SS$_NORMAL, &
LIB$_SYNTAXERR, &
LIB$_INVTYPE

!+
! This program calls the following Run-Time Library

routines:

!-

LIB$TPARSE to parse the input string

LIB$ANALYZE_SDESC to get the length and starting
address of the command string and place them
in the LIB$TPARSE argument block.

LIB$SYS_GETMSG to find the facility, severity, and text
of any system errors that occur
during program execution.

EXTERNAL LONG FUNCTION LIB$TPARSE, &

LIB-428

LIB$ANALYZE_SDESC, &
LIB$SYS_GETMSG

LIB$TPARSE

+
20 This file defines the argument block that is passed

to LIB$TPARSE. It also defines subscripts that
make it easier to access the array.

Keeping the argument block definitions in a separate
file makes them easier to modify and lets other
programs use the same definitions.

%INCLUDE 11 SIMPLE_TPARSE_BLOCK 11

50 ON ERROR GOTO ERROR_HANDLER

60 !+
! LIB$TPARSE requires that TPA$L_COUNT, the

first field in the argument block, have a value
! of TPA$K_COUNTO, whose value is 8.
!-

TPA$L_COUNT = TPA$K_COUNTO

75 !+
Prompt at the terminal for the user's action.

! A real utility should provide a friendlier,
! clearer interface.
!-

GET_INPUT: PRINT
PRINT
PRINT
PRINT
PRINT
INPUT

"Your options are: " , " READ report "
" FILE report "
" PRINT report "
" CREATE report "

"What would you like to do"; COMMAND_LINE
!+

Get the length and starting address of the command line
! and place them in the LIB$TPARSE argument block. Note
! that LIB$ANALYZE_SDESC stores the length as a word.
!-

RET_STATUS = LIB$ANALYZE_SDESC (COMMAND_LINE BY DESC, &
TPARSE_ARRAY (BTPA$L_STRINGCNT) BY REF, &
TPARSE_ARRAY (BTPA$L_STRINGPTR) BY REF)

IF RET_STATUS <> SS$_NORMAL THEN
GOTO ERROR_HANDLER

END IF

100 !+
! Call LIB$TPARSE to process the input string.

Note that LIB$TPARSE expects to receive its arguments
by reference, while BASIC's default for arrays and
strings is by descriptor. Therefore the BY REF
clauses are required. Without them, LIB$TPARSE
cannot find the input string

! and the parse will always fail.
!-

RET_STATUS = LIB$TPARSE (TPARSE_ARRAY () BY REF, &
UFD_STATE BY REF I &
UFD_KEY BY REF)

LIB-429

LIB$TPARSE

LIB-430

!+

!-

!+
! This simple program provides no information except that
! a valid command was entered. The next section discusses
! techniques for gathering more information.
!-

IF RET_STATUS = SS$_NORMAL

!+
! For now, exit on success.
!-

!+

THEN PRINT "Parse successful"
GOTO 9999

! If the parse failed, give the user a chance to try again.
!-

ELSE IF RET_STATUS = LIB$_SYNTAXERR THEN
PRINT "You did not enter a valid command."
PRINT "Please try again."
GOTO GET_INPUT

If a more serious error occurred, inform the user
and exit.

ELSE
Goto ERROR_HANDLER

END IF
END IF

500 ERROR_HANDLER: SAVE_STATUS = RET_STATUS

RET_STATUS = LIB$SYS_GETMSG (SAVE_STATUS, ,ERROR_MSG_TEXT)
PRINT "Something went wrong."
PRINT ERL, ERROR_MSG_TEXT
RESUME 9999

9999 END

Compile this program as you would any other BASIC program.

When both the state tables and the main program have been compiled, link
them together to form a single executable image, as follows:

$ LINK SIMPLANG,SIMPLANG_STATETABLE

Using Advanced LIB$TPARSE Features

The simple LIB$TP ARSE call in the previous program tells you that the
command the user entered was valid, but nothing else-not even which
command was entered. Most of the time your program will need more
information than this.

The following sections describe some of the more complicated techniques you
can use to gather extra information for your program.

LIB$TPARSE

Action Routines

When the transition being matched specifies an action routine to be called,
LIB$TPARSE stores the optional argument longword, if it is present, in the
argument block and calls the action routine. If the action routine returns
failure, LIB$TPARSE continues attempting to match successive transitions. If
the action routine returns success, LIB$TPARSE executes the transition as it
would if there was no action routine present. It stores the mask or other value
at the mask address, if specified, and passes control to the specified target
state. If no target state is given, control passes to the next state following in
the state table. In either case, LIB$TP ARSE does not evaluate the remaining
transitions in the state.

LIB$TP ARSE calls action routines with a CALLG instruction. When a state
transition specifies an action routine, LIB$TP ARSE calls the action routine
when the transition is found to be able to execute successfully (that is, when
its symbol type matches a leading portion of the input string). It calls the
action routine before processing the mask or msk-adr arguments of the state
transition.

The argument list for the action routine is the LIB$TP ARSE argument block.
Thus an action routine written in assembly language, for example, can
reference fields in the argument block by their symbolic offsets relative to the
AP (Argument Pointer) register.

The action routine returns a value to LIB$TPARSE in RO that controls
execution of the current state transition. If the action routine returns success
(low bit set in RO), then LIB$TP ARSE proceeds with the execution of the
state transition. If the action routine returns failure (low bit clear in RO),
LIB$TP ARSE rejects the transition that was being processed and acts as if the
symbol type of that transition had not matched. It proceeds to evaluate other
transitions in that state for eligibility.

If an action routine returns a nonzero failure status to LIB$TP ARSE and
no subsequent transitions in that state match, LIB$TP ARSE will return the
status of the action routine, rather than the status LIB$_SYNTAXERR. In
longword-valued functions in high-level languages, this value is returned in
RO.

Allowing action routines to reject a state transition allows you to implement
symbol types specific to particular applications. To recognize a specialized
symbol type, code a state transition using a LIB$TP ARSE symbol type that
describes a superset of the desired set of possible tokens. The associated
action routine then performs the additional discrimination necessary and
returns success or failure to LIB$TPARSE, which then accordingly executes or
fails to execute the transition.

A pure finite-state machine, for instance, has difficulty recognizing strings that
are shorter than some maximum length, or accepting numeric values confined
to some particular range.

Blanks in the Input String

The default mode of operation in LIB$TP ARSE is to treat blanks as invisible
separators. That is, they can appear between any two tokens in the string
being parsed without being called for by transitions in the state table. Since
blanks are significant in some situations, LIB$TP ARSE processes blanks if you
have set the bit TPA$V_BLANKS in the options longword of the argument
block. The following input string illustrates the difference in operation:

ABC DEF

LIB-431

LIB$TPARSE

LIB-432

LIB$TP ARSE recognizes the string by the following sequences of state
transitions, depending on the state of the blanks control flag.

TP A$V_BLANKS set:

$STATE
$TRAN TPA$_STRING

$STATE
$TRAN TPA$_BLANK

$STATE
$TRAN TPA$_STRING

TP A$V_BLANKS clear:

$STATE
$TRAN TPA$_STRING

$STATE
$TRAN TPA$_STRING

Your action routines can set or clear TP A$V_BLANKS as LIB$TP ARSE
enters or leaves sections of the state table in which blanks are significant.
LIB$TPARSE always checks the blanks control flag as it enters a state. If the
flag is clear, it removes any space or tab characters present at the front of
the input string before it proceeds to evaluate transitions. Note that when
the TP A$V_BLANKS flag is clear, the TP A$_BLANK symbol type will never
match. If TP A$V_BLANKS is set, you must explicitly process blanks.

Special Characters in the Input String

Not all members of the ASCII character set can be entered directly in the state
table definitions. Examples include the single quotation mark and all control
characters.

In MACRO state tables, such characters can be specified as the symbol type
with any assembler expression that is equivalent to the ASCII code of the
desired character, not including the single quotes. For example, you could
code a transition to match a backspace character as follows:

BACKSPACE = 8

$TRAN BACKSPACE,

MACRO places extra restrictions on the use of a comma in arguments to
macros; often they must be surrounded by one or more angle brackets. Using
a symbolic name for the comma will avoid such difficulties.

To build a transition matching such a single character in a BLISS state table,
you can use the %CHAR lexical function as follows:

LITERAL BACKSPACE = 8;

$STATE (label,
(%CHAR (BACKSPACE) I • • •)

) ;

LIB$TPARSE

Abbreviating Keywords

The default mode of LIB$TP ARSE is exact match. All keywords in the input
string must exactly match their spelling, length, and case in the state table.
However, many languages (command languages in particular) allow you to
abbreviate keywords. For this reason, LIB$TPARSE has three abbreviation
facilities to permit the recognition of abbreviated keywords when the state
table lists only the full spellings.

• By setting a value in TPA$B_MCOUNT in the LIB$TPARSE argument
block, the calling program or action routine specifies a minimum number
of characters from the abbreviated keyword that must be present for a
match to occur. For example, setting the byte to the value 4 would allow
the keyword DEASSIGN to appear in an input string as DEAS, DEASS,
DEASSI, DEASSIG, or DEASSIGN.

LIB$TP ARSE checks all the characters of the keyword string. Incorrect
spellings beyond the minimum abbreviation are not permitted.

• If TP A$V__ABBRFM is set in the options longword, LIB$TP ARSE will
recognize any leftmost substring of a keyword as a match for that
keyword. LIB$TPARSE does not check for ambiguity; it matches the
first keyword listed in the state table of which the input token is a subset.

• If TP A$V__ABBREV is set in the options longword, LIB$TP ARSE will
recognize any abbreviation of a keyword as long as it is unambiguous
among the keywords in that state. If LIB$TPARSE finds that the front
of the input string contains an ambiguous keyword string, it sets the
bit TPA$V__AMBIG in the options longword and refuses to recognize any
keyword transitions in that state. (It still accepts other symbol types.) The
TPA$V__AMBIG flag can be checked by an action routine that is called
when coming out of that state, or by the calling program if LIB$TP ARSE
returns with a syntax error status. LIB$TP ARSE clears the flag when it
enters the next state.

For proper recognition of ambiguous keywords, the keywords in each state
must be arranged in alphabetical order by the ASCII collating sequence,
which is as follows:

1 Dollar sign ($)

2 Numerics

3 Uppercase alphabetics

4 Underscore (-)

5 Lowercase alphabetics

Be careful when using these options, since permitting short abbreviations
restricts the extensibility of a language. Often, adding a new keyword can
make a formerly valid abbreviation ambiguous.

If both TP A$V__ABBRFM and TP A$V__ABBREV are set, TP A$V--ABBRFM
takes precedence.

LIB-433

LIB$TPARSE

LIB-434

Using Subexpressions

LIB$TPARSE subexpressions are analogous to subroutines within the state
table. A subexpression call, indicated with the MACRO expression !label or
the BLISS expression (label), causes LIB$TPARSE to call itself recursively,
using the same argument block and keyword table, and the specified label
as a starting state. LIB$TPARSE processes the state transitions, consuming
the portion of the input string called for. When LIB$TPARSE executes a
transition to TPA$_EXIT, it returns success to itself. LIB$TPARSE thus
considers the subexpression call a match, calls the action routine, and executes
the transition. If the parse of the subexpression fails, LIB$TPARSE returns
the portion that it consumed during the failed parse to the input string, and
evaluates the remaining transitions in the state.

You can use subexpressions as you would use subroutines in any program:
to avoid replication of complex expressions. Subexpressions can also be used
for a limited form of pushdown parsing, in which the state table contains
recursively nested subexpressions. Finally, you can use subexpressions for
nondeterministic parsing, that is, parsing in which you need some number of
states of look-ahead. To do this, place each path of look-ahead in a separate
subexpression and call the subexpressions in the transitions of the state that
needs the look-ahead. When a look-ahead path fails, the subexpression
failure mechanism causes LIB$TP ARSE to back out and try another path.

You should be careful when designing subexpressions that contain calls
to action routines or use the mask and msk-adr transition arguments.
As LIB$TPARSE processes state transitions of a subexpression, it calls
the specified action routines and stores the mask and msk-adr. If the
subexpression fails, LIB$TP ARSE will back up the input string and resume
processing in the calling state. However, any effects that the action routines
have had on the caller's data base cannot be undone. If subexpressions are
simply being used as state table subroutines, there is usually no harm done,
since when a subexpression fails in this mode, the parse will generally fail.
This is not true of pushdown or nondeterministic parsing. In applications
where you expect subexpressions to fail, design action routines to store results
in temporary storage. You can then make these results permanent at the main
level, where the flow of control is deterministic.

Using Subexpressions to Reject Transitions

The following example is an excerpt of a state table that parses a string quoted
by an arbitrary character. The table interprets the first character to appear as
a quote character. Many text editors and some programming languages
contain this sort of construction. Executing this set of state transitions leaves
a descriptor for the string in the two longwords at Q _DESCRIPTOR, and the
quoting character at location Q _CHAR.

LIB$TPARSE

;+
; Main level state table. The first transition accepts and
; stores the quoting character.

;+

$STATE
$TRAN

STRING
TPA$_ANY,,, ,Q_CHAR

Call the subexpression to accept the quoted string and store
; the string descriptor. Note that the descriptor spans all
; the characters accepted by the subexpression.

;+

$STATE
$TRAN !Q_STRING,, ,,Q_DESCRIPTOR

; Accept the trailing quote character, left behind by the
; subexpression

;+

$STATE
$TRAN TPA$_ANY,NEXT

; Subexpression to scan the quoted string. The first transition
; matches until it is rejected by the action routine.

;+

$STATE
$TRAN
$TRAN

Q_STRING
TPA$_ANY,Q_STRING,TEST_Q
TPA$_LAMBDA,TPA$_EXIT

; The following MACRO subroutine compares the current character
; with the quoting character and returns failure if it matches.

null entry mask
check the character

TEST_Q: .WORD
CMPB
BNEQ
CLRL

0
TPA$B_CHAR(AP),Q_CHAR
10$
RO

note RO is already 1
match - reject transition

10$: RET

Using Subexpressions to Parse Complex Grammars

The following example is an excerpt from a state table that shows how to
use subexpressions to parse complex grammars. The state table accepts a
number followed by a keyword qualifier. Depending on the keyword, the
table interprets the number as decimal, octal, or hexadecimal. The state table
will accept strings such as the following:

10/0CTAL
32768/DECIMAL
77AF/HEX

This sort of grammar is difficult to parse with a deterministic finite-state
machine. Using a subexpression look-ahead of two states permits a simpler
expression of the state tables.

;+
; Main state table entry. Accept a number of some type and store
; its value at the location NUMBER.

$STATE
$TRAN
$TRAN
$TRAN

!OCT_NUM,NEXT,, ,NUMBER
!DEC_NUM,NEXT,, ,NUMBER
!HEX_NUM,NEXT,, ,NUMBER

LIB-435

LIB$TPARSE

LIB-436

;+
; Subexpressions to accept an octal number followed by the OCTAL
; qualifier.

' $STATE OCT_NUM
$TRAN TPA$_0CTAL
$STATE
$TRAN , /'
$STATE
$TRAN 'OCTAL' ,TPA$_EXIT

;+
; Subexpression to accept a decimal number followed by the DECIMAL
; qualifier . .

$STATE DEC_NUM
$TRAN TPA$_DECIMAL
$STATE
$TRAN , /'
$STATE
$TRAN 'DECIMAL' ,TPA$_EXIT

;+
; Subexpression to accept a hex number followed by the HEX
; qualifier.

$STATE
$TRAN
$STATE
$TRAN
$STATE
$TRAN

HEX_NUM
TPA$_HEX

, /'

'HEX', TPA$_EXIT

Note that the transitions following the numeric token do not disturb the
TP A$_NUMBER longword, allowing the main level subexpression call to
retrieve it.

LIB$TPARSE and Modularity

To use LIB$TP ARSE in a modular and shareable fashion, make sure you
avoid using OWN storage. Instead, allocate the argument block on the stack
or the heap.

Do not use the mask-adr argument at all. Do not use the argument argument
as an address.

If additional context is needed, allocate it at the end of the argument block.

You will need to use action routines to control flags such as TP A$V_BLANKS.
The MACRO example in the Examples section illustrates such an action
routine, though the program itself is not modular.

State Table Object Representation

This section describes the binary representation of a LIB$TPARSE state table.

Each state consists of its transitions concatenated in memory. LIB$TPARSE
equates the state label to the address of the first byte of the first transition. A
marker in the last transition identifies the end of the state. The LIB$TP ARSE
table macros build the state table in the PSECT _LIB$STATE$.

LIB$TPARSE

Each transition in a state consists of 2 to 23 bytes containing the arguments
of the transition. The state table generation macros do not allocate storage
for arguments not specified in the transition macro. This allows simple
transitions to be represented efficiently. For example, the following transition,
which simply accepts the character '?' and falls through to the next state, is
represented in two bytes:

$TRAN'?'

In this section, pointers described as self-relative are signed displacements
from the address following the end of the pointer (this is identical to branch
displacements in the VAX instruction set).

A state transition consists of the following elements:

• Symbol Type-One Byte

The first byte of a transition contains the binary coding of the symbol
type accepted by this transition. It is always present. Flag bit 0 in the
flags byte controls the interpretation of the type byte. If the flag is clear,
then the type byte represents a single character (the 'x' construct). If the
flag bit is set, then the type byte is one of the other type codes (keyword,
number, and so forth). The symbol types accepted by LIB$TPARSE are
encoded as follows:

Symbol Type

'x'

'keyword'

TPA$_FILESPEC

TPA$_UIC

TPA$_1DENT

TPA$_ANY

TPA$_ALPHA

TPA$_DIGIT

TPA$_STRING

TPA$_SYMBOL

TPA$_BLANK

TPA$_DECIMAL

TPA$_0CTAL

TPA$_HEX

TPA$_LAMBDA

TPA$_EOS

TPA$_SUBEXPR

Binary Encoding

ASCII code of the character (8 bits)

The keyword index (0 up to 219)

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248 (subexpression call)

(Other codes are reserved for expansion)

Note: Use of the symbol types TPA$JILESPEC and TPAS-IDENT
will result in calls to the VMS system services $FILESCAN and
$ASCTOID, respectively. If your application of LIBSTPARSE runs
in an environment other than VMS user mode, you must carefully
evaluate whether use of these services is consistent with your
environment.

LIB-437

LIB$TPARSE

LIB-438

• First Flags Byte-One Byte

This byte contains the following bits, which specify the options of the
transition. It is always present.

Bit Description

0 Set if the type byte is not a single character

Set if the second flags byte is present

2 Set if this is the last transition in the state

3 Set if a subexpression pointer is present

4 Set if an explicit target state is present

5 Set if the mask longword is present

6 Set if the msk-adr longword is present

7 Set if an action routine address is present

• Second Flags Byte-One Byte

This byte is present if any of its flag bits is set. It contains an additional
flag describing the transition. It is used as follows:

Bit 0 Set if the action routine argument is present

• Subexpression Pointer-Two Bytes

This word is present in transitions that are subexpression calls. It is a 16-
bit signed self-relative pointer to the starting state of the subexpression.

• Argument Longword-Four Bytes

This longword contains the 32-bit action routine argument, when
specified.

• Action Routine Address-Four Bytes

This longword contains a self-relative pointer to the action routine, when
specified.

• Bit Mask-Four Bytes

This longword contains the mask argument, when specified.

• Mask Address-Four Bytes

This longword, when specified, contains a self-relative pointer through
which the mask, or data that depends on the symbol type, is to be stored.
Because the pointer is self-relative, when it points to an absolute location,
the state table is not PIC (position-independent code).

• Transition Target-Two Bytes

This word, when specified, contains the address of the target state of the
transition. The address is stored as a 16-bit signed self-relative poititer.
The final state TPA$_EXIT is coded as a word whose value is -1; the
failure state TPA$_FAIL is coded as a word whose value is -2.

CONDITION
VALUES
RETURNED

EXAMPLES

LIB$TPARSE

• Keyword Table

This table is the structure to which the $INIT_STATE macro equates its
second argument. The table is a vector of 16-bit signed pointers which
address locations in the keyword string area, relative to the start of
the keyword vector. As the state table source generates keywords, the
LIB$TP ARSE macros assign an index number to each keyword. The index
number is stored in the symbol type byte in the transition; it locates the
associated keyword vector entry. The keyword strings are stored in the
order encountered in the state table. Each keyword string is terminated
by a byte containing the value -1. Between the keywords of adjacent
states is an additional -1 byte to stop the ambiguous keyword scan.

To ensure that the keyword vector is adjacent to the keyword string area,
the keyword vector is located in PSECT _LIB$KEYO$ and the keyword
strings and stored in PSECT _LIB$KEY1$.

Your program should not use any of the three PSECTs used by
LIB$TPARSE (_LIB$STATE$, _LIB$KEYO$, and _LIB$KEY1$). The
PSECTs _LIB$KEYO$ and _LIB$KEY1$ refer to each other using 16-
bit displacements, so user PSECTs inserted between them can cause
truncation errors from the linker.

SS$_NORMAL

LIB$_SYNT AX ERR

LIB$_1NVTYPE

Other

Routine successfully completed. LIB$TPARSE has
executed a transition to TPA$_EXIT at main level,
not within a subexpression.

Parse completed with syntax error. LIB$TPARSE
has encountered a state at main level in which
none of the transitions match the input string, or in
which a transition to TPA$_FAIL was executed.

State table error. LIB$TP ARSE has encountered an
invalid entry in the state table.

If an action routine returns a failure status other
than zero, and the parse consequently fails,
LIB$TPARSE returns the status returned by the
action routine.

iJ MODULE CREATE_DIR (Create directory file

BEGIN

!DENT = 'XOOOO' ,
MAIN = CREATE_DIR)

LIB-439

LIB$TPARSE

!+
! This BLISS program accepts and parses the command line
! of a CREATE/DIRECTORY command. This program uses the

LIB$GET_FOREIGN call to acquire the command line from
the CLI and parse it with LIB$TPARSE, leaving the necessary
information in its global data base. The command line is of
the following format:

CREATE/DIR DEVICE: [MARANTZ.ACCOUNT.OLD]
/UIC=[2437,25]
/ENTRIES=100
/PROTECTION=(SYSTEM:R,OWNER:RWED,GROUP:R,WORLD:R)

The three qualifiers are optional. Alternatively, the command
may take the form

CREATE/DIR DEVICE: [202,31]

using any of the optional qualifiers.
!-

!+
! Global data, control blocks, etc.
!-

LIBRARY 'SYS$LIBRARY:STARLET';
LIBRARY 'SYS$LIBRARY:TPAMAC.L32';

!+
! Macro to make the TPARSE control block addressable as a block
! through the argument pointer.
!-

MACRO

!+

TPARSE_ARGS =
BUILTIN AP;
MAP AP : REF BLOCK [,BYTE];
%;

! Declare routines in this module.
!-

FORWARD ROUTINE
CREATE_DIR,
BLANKS_OFF,
CHECK_UIC,
STORE_NAME,
MAKE_UIC;

!+

Mail program
No explicit blank processing
Validate and assemble UIC
Store next directory name
Make UIC into directory name

! Define parser flag bits for flags longword.
!-

LITERAL

OWN
!+

UIC_FLAG
ENTRIES_FLAG
PROT_FLAG

0,
1,
2;

/UIC seen
/ENTRIES seen
/PROTECTION seen

! This is the LIB$GET_FOREIGN descriptor block to get the command line.
!-

LIB-440

COMMAND_DESC
COMMAND_BUFF

BLOCK [DSC$K_S_BLN, BYTE],
VECTOR [256, BYTE],

!+
! This is the TPARSE argument block.
!-

TPARSE_BLOCK : BLOCK [TPA$K_LENGTHO, BYTE]
INITIAL (TPA$K_COUNTO, Longword count

TPA$M_ABBREV Allow abbreviation
OR TPA$M_BLANKS), Process spaces explicitly

!+
! Parser global data:
! -

BITVECTOR [32] ,
VECTOR [2] ,

Keyword flags
Device string descriptor
Space to preallocate
Directory file protection
Temp for UIC group
Temp for UIC member
Actual file owner UIC
Number of directory names

PARSER_FLAGS
DEVICE_STRING
ENTRY_COUNT,
FILE_PROTECT,
UIC_GROUP,
UIC_MEMBER,
FILE_OWNER,
NAME_COUNT,
UIC_STRING
NAME_ VECTOR

: VECTOR [6, BYTE], ! Buffer for string
: BLOCKVECTOR [O, 2], ! Vector of descriptors

!+

DIRNAME1
DIRNAME2
DIRNAME3
DIRNAME4
DIRNAME5
DIRNAME6
DIRNAME7
DIRNAME8

VECTOR [2] ,
VECTOR [2] ,
VECTOR [2] ,
VECTOR [2] ,
VECTOR [2] ,
VECTOR [2] ,
VECTOR [2] ,
VECTOR [2] ;

Name descriptor 1
Name descriptor 2
Name descriptor 3
Name descriptor 4
Name descriptor 5
Name descriptor 6
Name descriptor 7
Name descriptor 8

! Structure macro to reference the descriptor fields in the vector of
! descriptors.
!-

MACRO

!+

STRING_ COUNT
STRING_ADDR

= 0, 0, 32, 0%,
= 1, 0, 32, 0%;

! TPARSE state table to parse the command line
!-

$INIT_STATE (UFD_STATE, UFD_KEY);

!+

Count field
Address field

! Read over the command name (to the first blank in the command).
!-

$STATE (START,

!+

(TPA$_BLANK, , BLANKS_OFF),
(TPA$_ANY, START)
) ;

! Read device name string and trailing colon.
!-

$STATE (,
(TPA$_SYMBOL,,,, DEVICE_STRING)
) ;

$STATE (,
e: ')
) ;

LIB$TPARSE

LIB-441

LIB$TPARSE

!+
! Read directory string, which is either a UIC string or a general
! directory string.
!-

$STATE (,

!+

((UIC),, MAKE_UIC),.
((NAME))
) ;

! Scan for options until end of line is reached.
!-

$STATE (OPTIONS,
C, I').
(TPA$_EOS, TPA$_EXIT)
) ;

$STATE (,

!+

('UIC', PARSE_UIC,, 1AUIC_FLAG, PARSER_FLAGS),
('ENTRIES', PARSE_ENTRIES,, 1AENTRIES_FLAG, PARSER_FLAGS),
('PROTECTION', PARSE_PROT,, 1APROT_FLAG, PARSER_FLAGS)
) ;

! Get file owner UIC.
!-

$STATE (PARSE_UIC,
(J: ').
('=')
) ;

$STATE (,

!+

((UIC) , OPTIONS)
) ; .

! Get number of directory entries.
!-

$STATE (PARSE_ENTRIES,
(,: ').
('=')
) ;

$STATE (,

!+

(TPA$_DECIMAL, OPTIONS,,, ENTRY_COUNT)
) ;

! Get directory file protection. Note that the bit masks generate the
! protection in complement form. It will be uncomplemented by the main
! program.
!-

$STATE (PARSE_PROT,
(,: ').
('=')
) ;

$STATE (,
(, (')

) ;

LIB-442

$STATE (NEXT_PRO,
('SYSTEM', SYPR),
('OWNER' , OWPR) ,
('GROUP' , GRPR) ,
('WORLD' , WOPR)
) ;

$STATE (SYPR,
(J : J) •
(J = J)

) ;

$STATE (SYPRO,
('R', SYPRO,, %X'0001', FILE_PROTECT),
('W', SYPRO,, %X'0002', FILE_PROTECT),
('E', SYPRO,, %X'0004', FILE_PROTECT),
('D' , SYPRO, , %X' 0008' , FILE_PROTECT) ,
(TPA$_LAMBDA, ENDPRO)
) ;

$STATE (OWPR,
(J : J) •

('=')
) ;

$STATE (OWPR.O,
('R' , OWPRO, , %X' 0010' , FILE_PROTECT) ,
('W' , OWPRO, , %X' 0020' , FILE_PROTECT) ,
('E', OWPRO,, %X'0040', FILE_PROTECT),
('D', OWPRO,, %X'0080', FILE_PROTECT),
(TPA$_LAMBDA, ENDPRO)
) ;

$STATE (GRPR,
(, : J) •
(J = J)

) ;

$STATE (GRPRO,
('R', GRPRO,, %X'0100', FILE_PROTECT),
('W', GRPRO,, %X'0200', FILE_PROTECT),
('E', GRPRO,, %X'0400', FILE_PROTECT),
('D', GRPRO,, %X'0800', FILE_PROTECT),
(TPA$_LAMBDA, ENDPRO)
) ;

$STATE (WOPR,
(J : ,) •

('=')
) ;

$STATE (WOPRO,
('R' , WOPRO, , %X' 1000' , FILE_pROTECT) ,
('W', WOPRO,, %X'2000', FILE_PROTECT),
('E', WOPRO,, %X'4000', FILE_PROTECT),
('D' , WOPRO, , %X' 8000' , FILE_PROTECT) ,
(TPA$_LAMBDA, ENDPRO)
) ;

$STATE (ENDPRO,

!+

(', ' NEXT_PRO),
(') ' , OPTIONS)
) ;

! Subexpression to parse a UIC string.
!-

LIB$TPARSE

LIB-443

LIB$TPARSE

$STATE (UIC,
(, [,)

) ;

$STATE (.
(TPA$_0CTAL, , , , UIC_GROUP)
) ;

$STATE (.
(, . ,)
) ;

$STATE (.
(TPA$_0CTAL, , , , UIC_MEMBER)
) ;

$STATE (.
(,] , . TPA$_EXIT, CHECK_UIC)
) ;

!+
! Subexpression to parse a general directory string
!-

$STATE

$STATE

$STATE

(NAME,
(, [,)

) ;

(NAMEO,
(TPA$_STRING, , STORE_NAME)
) ;

(.
(' ' NAMEO),
('] ' , TPA$_EXIT)
) ;

PSECT OWN = OWN;
PSECT GLOBAL = $GLOBAL$;

GLOBAL ROUTINE CREATE_DIR (START_ADDR, CLI_CALLBACK)

BEGIN

!+
! This program creates a directory. It gets the command
! line from the CLI and parses it with TPARSE.
!-

LOCAL
STATUS, Status from LIB$TPARSE
OUT_LEN : WORD;

EXTERNAL
length of returned command line

SS$_NORMAL;

EXTERNAL ROUTINE

LIB-444

LIB$GET_FOREIGN : ADDRESSING_MODE
LIB$TPARSE : ADDRESSING_MODE

COMMAND_DESC [DSC$W_LENGTH]
COMMAND_DESC [DSC$B_DTYPE]
COMMAND_DESC [DSC$B_CLASS]
COMMAND_DESC [DSC$A_POINTER]

(GENERAL) ,
(GENERAL);

= 256;
= DSC$K_DTYPE_T;
= DSC$K_CLASS_S;
= COMMAND_BUFF;

!+

STATUS = LIB$GET_FOREIGN (COMMAND_DESC,
%ASCID'COMMAND: '
OUT_LEN

IF NOT .STATUS
THEN
SIGNAL (STATUS);

) ;

! Copy the input string descriptor into the TPARSE control block
! and call TPARSE. Note that impure storage is assumed to be zero.
!-

TPARSE_BLOCK[TPA$L_STRINGCNT] = .OUT_LEN;
TPARSE_BLOCK[TPA$L_STRINGPTR] = .COMMAND_DESC[DSC$A_POINTER];

STATUS= LIB$TPARSE (TPARSE_BLOCK, .UFD_STATE, UFD_KEY);
IF NOT .STATUS
THEN

RETURN 0;

LIB$TPARSE

RETURN SS$_NORMAL
END; End of routine CREATE_DIR

!+
! Parser action routines
!-

!+
! Shut off explicit blank processing after passing the command name.
!-

ROUTINE BLANKS_OFF

!+

BEGIN
TPARSE_ARGS;

AP[TPA$V_BLANKS] = O;
1
END;

! Check the UIC for legal value range.
!-

ROUTINE CHECK_UIC =
BEGIN
TPARSE_ARGS;

!+

IF .UIC_GROUP<16,16> NEQ 0
OR .UIC_MEMBER<16,16> NEQ 0
THEN RETURN O;

FILE_OWNER<0,16> = .UIC_MEMBER;
FILE_OWNER<16,16> = .UIC_GROUP;
1
END;

! Store a directory name component.
!-

ROUTINE STORE_NAME =
BEGIN
TPARSE_ARGS;

LIB-445

LIB$TPARSE

IF .NAME_COUNT GEQU 8
OR .AP[TPA$L_TOKENCNT] GTRU 9
THEN RETURN 0;
NAME_COUNT = .NAME_COUNT + 1;
NAME_VECTOR [.NAME_COUNT, STRING_COUNT] = .AP[TPA$L_TOKENCNT];
NAME_VECTOR [.NAME_COUNT, STRING_ADDR] = .AP[TPA$L_TOKENPTR];
1
END;

!+
! Convert a UIC into its equivalent directory .file name.
!-

ROUTINE MAKE_UIC =
BEGIN
TPARSE_ARGS;

IF .UIC_GROUP<8,8> NEQ 0
OR .UIC_MEMBER<8,8> NEQ 0
THEN RETURN 0;
DIRNAME1[0] = O;
DIRNAME1[1] = UIC_STRING;
$FAOL (CTRSTR = UPLIT (6, UPLIT BYTE(' !OB!OB')),

OUTBUF = DIRNAME1,
PRMLST = UIC_GROUP
) ;

1
END;

END
ELUDOM ! End of module CREATE_DIR

;+

. TITLE

. IDENT

This BLISS program accepts and parses the command line of a
CREATE/DIRECTORY command.

CREATE_DIR - Create Directory File
"XOOOO"

This is a sample program that accepts and parses the command line
of the CREATE/DIRECTORY command. This program contains the VMS
call to acquire the command line from the command interpreter
and parse it with TPARSE, leaving the necessary information in
its global data base. The command line has the following format:

CREATE/DIR DEVICE: [MARANTZ.ACCOUNT.OLD]
/OWNER_UIC=[2437,25]
/ENTRIES=100
/PROTECTION=(SYSTEM:R,OWNER:RWED,GROUP:R,WORLD:R)

The three qualifiers are optional. Alternatively, the command
may take the form

CREATE/DIR DEVICE: [202,31]

using any of the optional qualifiers.

LIB-446

;+

; Global data, control blocks, etc .

. PSECT IMPURE,WRT,NOEXE
;+
; Define control block off sets

;+

$CLIDEF
$TPADEF

; Define parser flag bits for flags longword

UIC_FLAG
ENTRIES_FLAG
PROT_FLAG

= 1
= 2
= 4

/UIC seen
/ENTRIES seen
/PROTECTION seen

;+
; LIB$GET_FOREIGN string descriptors to get the line to be parsed

STRING_LEN = 256
STRING_DESC:

.WORD STRING_LEN

.BYTE DSC$K_DTYPE_T

.BYTE DSC$K_CLASS_S

.ADDRESS STRING_AREA
STRING_AREA:

.BLKB STRING_LEN
PROMPT_DESC:

.WORD PROMPT_LEN

.BYTE DSC$K_DTYPE_T

.BYTE DSC$K_CLASS_S

.ADDRESS PROMPT
PROMPT:

.ASCII /qualifiers: I
PROMPT_LEN = .-PROMPT

;+
; TPARSE argument block

TPARSE_BLOCK:
.LONG
.LONG

.BLKB
;+
; Parser global data

TPA$K_COUNTO
TPA$M_ABBREV!
TPA$M_BLANKS
TPA$K_LENGTH0-8

Longword count
Allow abbreviation
Process Spaces explicitly
Remainder set at run time

LIB$TPARSE

LIB-447

LIB$TPARSE

RET_LEN: .BLKW 1 LENGTH OF RETURNED COMMAND LINE
PARSER_FLAGS: .BLKL 1 Keyword flags
DEVICE_STRING: .BLKL 2 Device string descriptor
ENTRY_COUNT: .BLKL 1 Space to preallocate
FILE_PROTECT: .BLKL 1 Directory file protection
UIC_GROUP: .BLKL 1 Temp for UIC group
UIC_MEMBER: .BLKL 1 Temp for UIC member
UIC_STRING: .BLKB 6 String to receive converted UIC
FILE_OWNER: .BLKL 1 Actual file owner UIC
NAME_COUNT: .BLKL 1 Number of directory names
DIRNAME1: .BLKL 2 Name descriptor 1
DIRNAME2: .BLKL 2 Name descriptor 2
DIRNAME3: .BLKL 2 Name descriptor 3
DIRNAME4: .BLKL 2 Name descriptor 4
DIRNAME5: .BLKL 2 Name descriptor 5
DIRNAME6: .BLKL 2 Name descriptor 6
DIRNAME7: .BLKL 2 Name descriptor 7
DIRNAME8: .BLKL 2 Name descriptor 8

.SBTTL Main Program
;+
; This program gets the CREATE/DIRECTORY command line from
; the command interpreter and parses it .

. PSECT CODE,EXE,NOWRT
CREA TE_DIR: :

.WORD -M<R2,R3,R4,R5> ; Save registers
;+
; Call the command interpreter to obtain the command line.

;+

;+

PUSHAW
PUS HAQ
PUS HAQ
CALLS
BLBC

RET_LEN
PROMPT_DESC
STRING_DESC
#3,G-LIB$GET_FOREIGN
RO, SYNTAX_ERR

Call to get command line

Copy the input string descriptor into the TPARSE control block
-and call LIB$TPARSE. Note that impure storage is assumed to be zero.

MOVZWL
MOVAL
PUSHAL
PUS HAL
PUSH AL
CALLS
BLBC

Parsing is complete.

RET_LEN, TPARSE_BLOCK+TPA$L_STRINGCNT
STRING_AREA, TPARSE_BLOCK+TPA$L_STRINGPTR
UFD_KEY
UFD_STATE
TPARSE_BLOCK
#3,G-LIB$TPARSE
RO,SYNTAX_ERR

You can include here code to process the string just parsed, to call
another program to process the command, or to return control to
a calling program, if any.

SYNTAX_ERR:

;+
; Code to handle parsing errors.

LIB-448

RET

.SBTTL Parser State Table

;+
; Assign values for protection flags to be used when parsing protection
; string.

SYSTEM_READ_FLAG = AX0001
SYSTEM_WRITE_FLAG = AX0002
SYSTEM_EXECUTE_FLAG = AX0004
SYSTEM_DELETE_FLAG = AX0008
GROUP_READ_FLAG = AX0001
GROUP_WRITE_FLAG = AX0002
GROUP_EXECUTE_FLAG = AX0004
GROUP_DELETE_FLAG = AX0008
OWNER_READ_FLAG = AX0001
OWNER_WRITE_FLAG = AX0002
OWNER_EXECUTE_FLAG = AX0004
OWNER_DELETE_FLAG = AX0008
WORLD_READ_FLAG = AX0001
WORLD_WRITE_FLAG = AX0002
WORLD_EXECUTE_FLAG = AX0004
WORLD_DELETE_FLAG = AX0008

$INIT_STATE UFD_STATE,UFD_KEY

;+
; Read over the command name (to the first blank in the command).

;+

$STATE
$TRAN
$TRAN

START
TPA$_BLANK, ,BLANKS_OFF
TPA$_ANY,START

; Read device name string and trailing colon.

;+

$STATE
$TRAN

$STATE
$TRAN

TPA$_SYMBOL,,, ,DEVICE_STRING

; Read directory string, which is either a UIC string or a general
; directory string.

;+

$STATE
$TRAN
$TRAN

! UIC, , MAKE_UIC
!NAME

; Scan for options until end of line is reached

;+

$STATE
$TRAN
$TRAN

$STATE
$TRAN
$TRAN
$TRAN

; Get file owner UIC.

$STATE
$TRAN
$TRAN

OPTIONS
, /'
TPA$_EOS,TPA$_EXIT

'OWNER_UIC' ,PARSE_UIC, ,UIC_FLAG,PARSER_FLAGS
'ENTRIES' ,PARSE_ENTRIES,,ENTRIES_FLAG,PARSER_FLAGS
'PROTECTION' ,PARSE_PROT, ,PROT_FLAG,PARSER_FLAGS

PARSE_UIC

'='

LIB$TPARSE

LIB-449

LIB$TPARSE

;+

$STATE
$TRAN !UIC,OPTIONS

; Get number of directory entries.

;+

$STATE
$TRAN
$TRAN

$STATE
$TRAN

PARSE_ENTRIES

'='

TPA$_DECIMAL,OPTIONS,, ,ENTRY_COUNT

Get directory file protection. Note that the bit masks generate the
; protection in complement form. It will be uncomplemented by the main
; program.

$STATE
$TRAN
$TRAN

$STATE
$TRAN

$STATE
$TRAN
$TRAN
$TRAN
$TRAN

$STATE
$TRAN
$TRAN

$STATE
$TRAN
$TRAN
$TRAN
$TRAN
$TRAN

$STATE
$TRAN
$TRAN

$STATE
$TRAN
$TRAN
$TRAN
$TRAN
$TRAN

$STATE
$TRAN
$TRAN

$STATE
$TRAN
$TRAN
$TRAN
$TRAN
$TRAN

$STATE
$TRAN
$TRAN

LIB-450

PARSE_PROT , . ,
'='

, (,

NEXT_PRO
'SYSTEM' , SYPR
'OWNER' , OWPR
'GROUP' , GRPR
'WORLD' , WOPR

SYPR

'='

SYPRO
'R',SYPRO, ,SYSTEM_READ_FLAG,FILE_PROTECT
'W' ,SYPRO, ,SYSTEM_WRITE_FLAG,FILE_PROTECT
'E' ,SYPRO, ,SYSTEM_EXECUTE_FLAG,FILE_PROTECT
'D' ,SYPRO, ,SYSTEM_DELETE_FLAG,FILE_PROTECT
TPA$_LAMBDA,ENDPRO

OWPR , . ,
'='

OWPRO
'R' ,OWPRO, ,OWNER_READ_FLAG,FILE_PROTECT
'W' ,OWPRO, ,OWNER_WRITE_FLAG,FILE_PROTECT
'E' ,OWPRO, ,OWNER_EXECUTE_FLAG,FILE_PROTECT
'D' ,OWPRO, ,OWNER_DELETE_FLAG,FILE_PROTECT
TPA$_LAMBDA,ENDPRO

GRPR , . ,
'='

GRPRO
'R' ,GRPRO, ,GROUP_READ_FLAG,FILE_PROTECT
'W' ,GRPRO, ,GROUP_WRITE_FLAG,FILE_PROTECT
'E' ,GRPRO, ,GROUP_EXECUTE_FLAG,FILE_PROTECT
'D' ,GRPRO,,GROUP_DELETE_FLAG,FILE_PROTECT
TPA$_LAMBDA,ENDPRO

WOPR , . ,
'='

;+

$STATE
$TRAN
$TRAN
$TRAN
$TRAN
$TRAN

$STATE
$TRAN
$TRAN

WOP RO
'R',WOPRO, ,WORLD_READ_FLAG,FILE_PROTECT
'W',WOPRO, ,WORLD_WRITE_FLAG,FILE_PROTECT
'E',WOPRO, ,WORLD_EXECUTE_FLAG,FILE_PROTECT
'D',WOPRO, ,WORLD_DELETE_FLAG,FILE_PROTECT
TPA$_LAMBDA,ENDPRO

END PRO
<', '>,NEXT_PRO
I) , • OPTIONS

; Subexpression to parse a UIC string.

;+

$STATE
$TRAN

$STATE
$TRAN

$STATE
$TRAN

$STATE
$TRAN

$STATE
$TRAN

UIC
I [I

TPA$_0CTAL, ,, ,UIC_GROUP

<', '> The comma character must be
surrounded by angle brackets
because MACRO restricts the use
of commas in arguments to macros.

TPA$_0CTAL,,, ,UIC_MEMBER

'] ',TPA$_EXIT,CHECK_UIC

; Subexpression to parse a general directory string

;+

$STATE
$TRAN

$STATE
$TRAN

$STATE
$TRAN
$TRAN
$END_STATE

.SBTTL

.PSECT

NAME
, [,

NAMED
TPA$_STRING, ,STORE_NAME

I.' ,NAMED
'] ', TPA$_EXIT

Parser Action Routines
CODE,EXE,NOWRT

; Shut off explicit blank processing after passing the command name.

LIB$TPARSE

BLANKS_OFF:
.WORD
BBCC

0 ; No registers saved (or used)
#TPAV_BLANKS,TPAL_OPTIONS(AP),10$

10$: RET

;+
; Check the UIC for legal value range.

LIB-451

LIB$TPARSE

CHECK_UIC:
.WORD
TSTW
BNEQ
TSTW
BNEQ
MOVW
MOVW
RET

10$: CLRL
RET

;+

0
UIC_GROUP+2
10$
UIC_MEMBER+2
10$
UIC_GROUP,FILE_OWNER+2
UIC_MEMBER,FILE_OWNER

RO

No registers saved (or used)
UIC components are 16 bits

Store actual UIC
after checking

Value out of range - fail
the transition

; Store a directory name component.

STORE_NAME:
.WORD
MOVL
CMPL
BGEQU
INCL
MOVAQ
MOVQ
CMPL
BGTRU
RET

10$: CLRL
RET

;+

0
NAME_COUNT,R1
R1,#8
10$
NAME_ COUNT
DIRNAME1[R1],R1
TPA$L_TOKENCNT(AP),(R1)
(R1),#9
10$

RO

No registers saved (or used)
Get count of names so far
Maximum of 8 permitted

Count this name
Address of next descriptor
Store the descriptor
Check the length of the name
Maximum is 9

Error in directory name

; Convert a UIC into its equivalent directory file name.

MAKE_UIC:
.WORD
TSTB
BNEQ
TSTB
BNEQ
MOVL
MOVAL
$FAOL

RET
10$: CLRL

RET
FAO_STRING:
STRING_START:
STRING_END:

0
UIC_GROUP+1
10$
UIC_MEMBER+1
10$
#6,DIRNAME1
UIC_STRING,DIRNAME1+4
CTRSTR=FAO_STRING,
OUTBUF=DIRNAME1,
PRMLST=UIC_GROUP

No registers saved (or used)
Check UIC for byte values,
Since UIC type directories
Are restricted to this form

Directory name is 6 bytes
Point to string buff er
Convert UIC to octal string

RO ; Range error - fail it

.LONG STRING_END-STRING_START

.ASCII '!OB!OB'

.END CREATE_DIR

LIB-452

This MACRO program accepts and parses the command line of a
CREATE/DIRECTORY command.

LIB$TRA_ASC_EBC

LIB$TRA_ASC_EBC Translate ASCII to EBCDIC

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Translate ASCII to EBCDIC routine translates an ASCII string to an
EBCDIC string.

LI B$TRA_ASC_EBC source-string
,byte-integer-dest-string

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string (ASCII) to be translated by LIB$TRA-ASC__EBC . The source
string argument contains the address of a descriptor pointing to this source
string.

byte-integer-dest-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string (EBCDIC). The byte-integer-dest-string argument contains
the address of a descriptor pointing to this destination string.

LIB$TRA-ASC_EBC translates an ASCII string to an EBCDIC string. If the
destination string is a fixed-length string, its length must match the length of
the input string. No filling is done.

A similar operation can be accomplished by specifying the ASCII-to-EBCDIC
translation table LIB$AB_ASC--EBC in a routine using LIB$MOVTC, but no
testing for untranslatable characters is done under those circumstances.

This routine uses the ASCII-to-EBCDIC translation Table LIB-23.

LIB-453

LI B$TRA_ASC_EBC

CONDITION
VALUES
RETURNED

LIB-454

ASCII to EBCDIC Translation Table

• The number on the left represents the low-order bits of the ASCII
character in hexadecimal notation.

• The number across the top represents the high-order bits of the ASCII
character in hexadecimal notation.

• The number in the body of the table represents the equivalent EBCDIC
character in hexadecimal notation.

Table LIB-23 LIB$AB_ASC_EBC

Row
bits 0 - 3

0
1
2
3
4
s
6
7
B
9
A
B
c
D
E
F

SS$_NORMAL

Ll8$_1NVCHA

LIB$_1NV ARG

0 1

00 10
01 11
02 12
03 13
37 3C
2D 3D
2E 32
2F 26
16 1B
OS 19
2S 3F
OB 27
oc 1C
OD 1D
OE 1E
OF 1F

Column bits 4 - 7

2 3 4 5 6 7 8 9 A B c D E F

40 FO 7C D7 79 97 3F 3F 3F 3F 3F 3F 3F 3F
4F Fl Cl DB 81 98 3F 3F 3F 3F 3F 3F 3F 3F
7F F2 C2 D9 82 99 3F 3F 3F 3F 3F 3F 3F 3F
7B F3 C3 E2 83 A2 3F 3F 3F 3F 3F 3F 3F 3F
SB F4 C4 E3 84 A3 3F 3F 3F 3F 3F 3F 3F 3F
6C FS cs E4 BS A4 3F 3F 3F 3F 3F 3F 3F 3F
so F6 C6 ES 86 AS 3F 3F 3F 3F 3F 3F 3F 3F
7D F7 C7 E6 B7 A6 3F 3F 3F 3F 3F 3F 3F 3F
4D F8 CB E7 88 A7 3F 3F 3F 3F 3F 3F 3F 3F
SD F9 C9 E8 B9 AB 3F 3F 3F 3F 3F 3F 3F 3F
SC 7A Dl E9 91 A9 3F 3F 3F 3F 3F 3F 3F 3F
4E SE 02 4A 92 co 3F 3F 3F 3F 3F 3F 3F 3F
6B 4C D3 EO 93 6A 3F 3F 3F 3F 3F 3F 3F 3F
60 7E D4 SA 94 DO 3F 3F 3F 3F 3F 3F 3F 3F
4B 6E DS SF 9S Al 3F 3F 3F 3F 3F 3F 3F 3F
61 6F D6 6D 96 07 3F 3F 3F 3F 3F 3F 3F FF

ZK-4246-85

Routine successfully completed.

One or more occurrences of an untranslatable
character have been detected during the
translation.

If the destination string is a fixed-length string and
its length is not the same as the source string
length, no translation is attempted.

LI B$TRA_ASC_EBC

EXAMPLE

IDENTIFICATION DIVISION.
PROGRAM-ID. TRANS.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 INPUT-STRING PIC X(4).
01 EBCDIC-STRING PIC X(4).
01 OUT-STRING PIC X(4).
01 FILL-CHAR PIC X VALUE "©".
01 SS-STATUS PIC S9(9) COMP.
88 SS-NORMAL VALUE 01.

01 EBCDIC-TABLE.
05 FILLER PIC X(16) VALUE"©©©©©©©©©©©©©©©©".
05 FILLER PIC X(16) VALUE"©©©©©©©©©©©©©©©©".
05 FILLER PIC X(16) VALUE "©©©©©©©©©©©©©©©©".
05 FILLER PIC X(16) VALUE"©©©©©©©©©©©©©©©©".
05 FILLER PIC X(16) VALUE"©©©©©©©©©©.<(+!".
05 FILLER PIC X(16) VALUE"&©©©©©©©©©!$*);©".
05 FILLER PIC X(16) VALUE"-/©©©©©©©©©,%_>?".
05 FILLER PIC X(16) VALUE"©©©©©©©©©©:#©'="""·
05 FILLER PIC X(16) VALUE "©abcdefghi©©©©©©".
05 FILLER PIC X(16) VALUE "©jklmnopqr©©©©©©".
05 FILLER PIC X(16) VALUE "©©stuvwxyz©©©©©©".
05 FILLER PIC X(16) VALUE"©©©©©©©©©©©©©©©©".
05 FILLER PIC X(16) VALUE "©ABCDEFGHI©©©©©©".
05 FILLER PIC X(16) VALUE "!JKLMNOPQR©©©©©©".
05 FILLER PIC X(16) VALUE "©©STUVWXYZ©©©©©©".
05 FILLER PIC X(16) VALUE "0123456789©©©©©©".

ROUTINE DIVISION.

001-MAIN.
DISPLAY II 11 •

DISPLAY "ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: "
WITH NO ADVANCING

ACCEPT INPUT-STRING
AT END STOP RUN.

IF INPUT-STRING = "EXIT" OR "exit" OR "
STOP RUN.

CALL "LIB$TRA_ASC_EBC"
USING BY DESCRIPTOR INPUT-STRING, EBCDIC-STRING
GIVING SS-STATUS.

IF SS-NORMAL
CALL "LIB$MOVTC"

USING BY DESCRIPTOR EBCDIC-STRING,
FILL-CHAR,
EBCDIC-TABLE,
OUT-STRING,

GIVING SS-STATUS
IF SS-NORMAL

DISPLAY "ASCII ENTERED WAS: " INPUT-STRING
DISPLAY "EBCDIC TRANSLATED IS: " OUT-STRING

ELSE
DISPLAY "*** LIB$MOVTC TRANSLATION UNSUCCESSFUL ***"

ELSE
DISPLAY"*** LIB$TRA_ASC_EBC TRANSLATION UNSUCCESSFUL***"·

GO TO 001-MAIN.

LIB-455

LI B$TRA_ASC_EBC

LIB-456

This COBOL program uses LIB$TRA_ASC_EBC to translate an ASCII string
to EBCDIC. If successful, it then uses LIB$MOVTC to translate the EBCDIC
string back to ASCII.

To exit from this program, you must type CTRL/Z. The output generated by
this COBOL program is as follows:

$ RUN TRANS

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: abdc
ASCII ENTERED WAS: abdc
EBCDIC TRANSLATED IS: abdc

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: -=b&
ASCII ENTERED WAS: -=b&
EBCDIC TRANSLATED IS: ©=b&

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: 8A%$
ASCII ENTERED WAS: 8A%$
EBCDIC TRANSLATED IS: 8©%$

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC:
/x\}
ASCII ENTERED WAS: /x\}
EBCDIC TRANSLATED IS: /x©!

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: CTRL/Z

LI B$TRA_EBC_ASC

LIB$TRA_EBC_ASC Translate EBCDIC to ASCII

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Translate EBCDIC to ASCII routine translates an EBCDIC string to an
ASCII string.

LI B$TRA_EBC_ASC byte-integer-source-string
, destination-string

VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

byte-integer-source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String (EBCDIC) to be translated by LIB$TRA_EBC_ASC. The byte-integer
source-string argument contains the address of a descriptor pointing to this
source string.

destination-string
VMS usage: char_string
type: character string
access: write only
mectianism: by descriptor

Destination string (ASCII). The destination-string argument contains the
address of the descriptor of this destination string.

This routine uses the EBCDIC-to-ASCII translation table at
LIB$AB_EBC_ASC.

LIB$TRA_EBC-ASC translates an EBCDIC string to an ASCII string. If the
destination string is a fixed-length string, its length must match the length of
the input string. No filling is done.

A similar operation can be accomplished by specifying the EBCDIC-to-ASCII
translation table LIB$AB_EBC-ASC in a routine using LIB$MOVTC, but no
testing for untranslatable characters is done under these circumstances.

This routine uses the EBCDIC-to-ASCII translation Table LIB-24.

LIB-457

LI B$TRA_EBC_ASC

CONDITION
VALUES
RETURNED

LIB-458

Table LIB-24 LIB$AB_EBC_ASC

Column bits 4 - 7

Row
bits O - 3 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 00 10 SC SC 20 26 2D SC SC SC SC SC 7B 7D SC 30
1 01 11 SC SC SC SC 2F SC 61 6A 7£ SC 41 4A SC 31
2 02 12 SC 16 SC SC SC SC 62 6B 73 SC 42 4B S3 32
3 03 13 SC SC SC SC SC SC 63 6C 74 SC 43 4C S4 33
4 SC SC SC SC SC SC SC SC 64 6D 7S SC 44 4D SS 34
s 09 SC OA SC SC SC SC SC 6S 6E 76 SC 4S 4E S6 3S
6 SC 08 17 SC SC SC SC SC 66 6F 77 SC 46 4F S7 36
7 7F SC 1B 04 SC SC SC SC 67 70 78 SC 47 so S8 37
8 SC 18 SC SC SC SC SC SC 68 71 79 SC 48 S1 S9 38
9 SC 19 SC SC SC SC SC 60 69 72 7A SC 49 S2 SA 39
A SC SC SC SC SB SD 7C 3A SC SC SC SC SC SC SC SC
B OB SC SC SC 2E 24 2C 23 SC SC SC SC SC SC SC SC
c oc 1C SC 14 3C 2A 2S 40 SC SC SC SC SC SC SC SC
D OD 1D OS 1S 28 29 SF 27 SC SC SC SC SC SC SC SC
E OE 1E 06 SC 2B 3B 3E 3D SC SC SC SC SC SC SC SC
F OF 1 F 07 1A 21 SE 3F 22 SC SC SC SC SC SC SC FF

ZK-4249-85

EBCDIC to ASCII Translation Table

• The number on the left represents the low-order bits of the EBCDIC
character in hexadecimal notation.

• The number across the top represents the high-order bits of the EBCDIC
character in hexadecimal notation.

• The number in the body of the table represents the equivalent ASCII
character in hexadecimal notation.

SS$_NORMAL

LIB$_1NVCHA

LIB$_1NV ARG

Routine successfully completed.

One or more occurrences of an untranslatable
character have been detected during the
translation.

If the destination string is a fixed-length string and
its length is not the same as the source string
length, no translation is attempted.

LI B$TRAVERSE_ TREE

LI B$TRAVERSE_TREE Traverse a Balanced
Binary Tree

FORMAT

RETURNS

ARGUMENTS

The Traverse a Balanced Binary Tree routine calls an action routine for
each node in a binary tree.

LIB$TRAVERSE_ TREE treehead

VMS usage: cond_value

, user-action-procedure
{,user-data-address]

type: longword (unsigned)
access: write only
mechanism: by value

treehead
VMS usage: address
type: address
access: read only
mechanism: by reference

Tree head of the binary tree. The treehead argument is the address of an
unsigned longword that is the tree head in the binary tree traversal.

user-action-procedure
VMS usage: procedure
type: procedure entry mask
access: function call (before return)
mechanism: by value

User-supplied action routine called by LIB$TRAVERSE_TREE for each node
in the tree. The user-action-procedure argument is the address of the entry
mask to the action routine.

For more information, see "Call Format for an Action Routine" in the
Description section.

user-data-address
VMS usage: user_arg
type: unspecified
access: read only
mechanism: by reference

User data that LIB$TRAVERSE_TREE passes to your action routine. The
user-data-address argument contains the address of this user data. This is an
optional argument; the default value is zero.

LIB-459

LIB$TRAVERSE_ TREE

DESCRIPTION

CONDITION
VALUES
RETURNED

EXAMPLE

LIB-460

LIB$TRAVERSE_TREE calls a user-supplied action routine for each node to
traverse a balanced binary tree.

Call Format for an Action Routine

The format of the call is as follows:

user-action-procedure treehead ,user-data-address

LIB$TRAVERSE_ TREE passes the treehead and user-data-address
arguments to your action routine by reference.

This action routine is defined by you to fit your own purposes. A common
use of an action routine here is to print the contents of each node during the
tree traversal.

This is one example of a user-supplied action routine.

1 %TITLE 'LIB$ Tree Example in BASIC V2'
%SBTTL 'Function to display a node'

FUNCTION LONG PRINT_NODE (NODE_TYPE NODE, LONG DUMMY)

!+
! Print the string contained in the current node
!-

OPTION TYPE = EXPLICIT

RECORD NODE_TYPE
BYTE HEADER (9)
BYTE LENGTH
STRING TEXT = 80

END RECORD NODE_TYPE

PRINT SEG$ (NODE: :TEXT, 1%. NODE: :LENGTH)

PRINT_NODE = 1%
END FUNCTION

Header
Length
String

LIB$_NORMAL Success. Traversal complete.

Any condition value returned by your action routine.

The BASIC example provided in the description of LIB$INSERT_TREE also
demonstrates the use of LIB$TRAVERSE_TREE. Please refer to that example
for assistance in using this routine.

LIB$TRIM_FILESPEC

LIB$TRIM_FILESPEC Fit Long File Specification
into Fixed Field

FORMAT

RETURNS

ARGUMENTS

The Fit Long File Specification into Fixed Field routine takes a file
specification, such as an RMS resultant name string, and shortens it (if
necessary) so that it fits into a field of fixed width.

LIB$TRIM_FILESPEC old-filespec ,new-filespec
[,word-integer-width]
[,resultant-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

o/d-filespec
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification to be trimmed. The old-filespec argument contains the
address of a descriptor pointing to this file specification string.

The file specification should be an RMS resultant name string. The error
LIB$_1NVARG is returned if old-filespec contains more than 255 characters.

new-filespec
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Trimmed file specification. The new-filespec argument contains the address
of a descriptor pointing to this trimmed file specification string.
LIB$TRIM_FJLESPEC writes the trimmed file specification into new-filespec.

word-integer-width
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Maximum field width desired. The word-integer-width argument is the
address of an unsigned word that contains this maximum field width.

If omitted, the current length of new-filespec is used. If new-filespec is not a
fixed-length string, you should specify word-integer-width to ensure that the
desired width is used.

LIB-461

LIB$TRIM_FILESPEC

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-462

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the trimmed file specification, not including any blank padding or
truncated characters. The resultant-length argument is the address of an
unsigned word that contains this length. This is an optional argument.

This routine trims file specifications in a consistent, predictable manner to fit
in a fixed-length field using the same algorithm that DIGITAL software uses.

LIB$TRIM_FILESPEC allows compilers and other utilities which need to
display file specifications in fixed-length fields, such as listing headers, to
display file specifications in a consistent fashion.

If necessary to make the file specification fit into the specified field width,
LIB$TRIM_FILESPEC removes portions of the file specification in this order.

1 Node (including access control)

2 Device

3 Directory

4 Version

5 Type

If, after removing all these fields, the file name is still longer than the field
width, the file name is truncated and the alternate success status
LIB$_STRTRU is returned.

LIB$TRIM_FILESPEC supports any string class for the old-filespec and
new-filespec string arguments.

SS$_NORMAL

LIB$_STRTRU

LIB$_1NV ARG

LIB$_1NVSTRDES

LIB$_WRONUMARG

Routine successfully completed.

Success, but the output string was truncated.
Significant characters of the trimmed file
specification were truncated.

Invalid argument. Old-filespec contained more
than 255 characters.

Invalid string descriptor.

Wrong number of arguments.

Any condition values returned by LIB$SCOPY_R_DX.

Any condition values returned by the $FILESCAN system service.

LIB$TRIM_FILESPEC

EXAMPLE

PROGRAM TRIM_FILESPEC(INPUT,OUTPUT);

{+}
{ This Pascal example program demonstrates the
{ use of LIB$TRIM_FILESPEC.
{-}

TYPE

VAR

WORD = [WORD] 0 .. 65535;

INPUT_FILESPEC
OUTPUT_FILESPEC
RETURNED_STATUS

VARYING [255] OF CHAR;
VARYING [32] OF CHAR;
INTEGER;

[EXTERNAL] FUNCTION LIB$TRIM_FILESPEC(
IN_FILE VARYING [LEN1] OF CHAR;
VAR OUT_FILE : VARYING [LEN2] OF CHAR;
WIDTH : WORD : = %IMMED 0;
OUT_LEN : [REFERENCE] WORD := %IMMED 0
) : INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$STOP(
CONDITION_STATUS : [IMMEDIATE.UNSAFE] UNSIGNED;
FAO_ARGS : [IMMEDIATE,UNSAFE,LIST] UNSIGNED
) : INTEGER; EXTERNAL;

BEGIN

{+}
{ Start with a large INPUT_FILESPEC.
{-}

INPUT_FILESPEC := 'DISK$NAME: [DIRECTORY1.DIRECTORY2]FILENAME.EXTENSTION;1';

{+}
{ Use LIB$TRIM_FILESPEC to shorten it to fit a smaller variable.
{-}

RETURNED_STATUS := LIB$TRIM_FILESPEC(
INPUT_FILESPEC,
OUTPUT_FILESPEC,
SIZE(OUTPUT_FILESPEC.BODY));

IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

{+}
{ Print out the original file name along with the
{ shortened file name.
{-}

WRITELN('Original file specification ',INPUT_FILESPEC);
WRITELN('Shortened file specification' ,OUTPUT_FILESPEC);

END.

This Pascal example program demonstrates the use of
LIB$TRIM_FILESPEC. The output generated by this program is as follows·

Original file specification DISK$NAME: [DIRECTORY1.DIRECTORY2]FILENAME.EXTENSTION;1
Shortened file specification FILENAME.EXTENSTION;1

LIB-463

LIB$VERIFV_VM_ZONE

LIB$VERIFV_VM_ZONE Verify a Zone

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB-464

The Verify a Zone routine performs verification of a zone.

LIB$VERIFV_VM_ZONE zone-id

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

zone-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier of the zone to be verified. The zone-id argument is the
address of an unsigned longword that contains this zone identifier. A value
of zero indicates the default zone.

LIB$VERIFY_ VM-20NE verifies a zone. LIB$VERIFY_ VM-20NE performs
verification of the zone header and scans all of the queues and lists
maintained in the zone header; this includes the lookaside lists and the
free lists. If the zone was created with LIB$M_ VMJREE_FILLO or
LIB$M_VM_FREEJILL1, LIB$VERIFY_VM-20NE also checks the contents
of the free blocks.

As soon as an error is encountered, processing stops. If LIB$_BADZONE
is returned, use the routine LIB$SHQW_ VM-20NE to dump the zone
information.

You must have exclusive access to the zone while the verification is
proceeding. Results are unpredictable if another thread of control modifies
the zone while this routine is analyzing control data or scanning control
blocks.

SS$_NORMAL

LIB$_BADZONE

LIB$_1NV ARG

LIB$_ WRONUMARG

Normal successful completion.

Invalid zone. ·

Invalid or null argument.

Wrong number of arguments.

LIB$WAIT

LI B$WAIT Wait a Specified Period of Time

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

The Wait a Specified Period of Time routine places the current process
into hibernation for the number of seconds specified in its argument.

LIB$WAIT seconds

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

seconds
VMS usage: floating_point
type: f _floating
access: read only
mechanism: by reference

The number of seconds to wait. The seconds argument contains the address
of an F-floating number that is this number.

The value is rounded to the nearest hundredth-second before use. Seconds
must be between 0.0 and 100,000.0.

LIB$WAIT rounds the value specified by seconds to the nearest hundredth
second, uses the $SCHDWK system service to schedule a wakeup for that
interval, and then issues the $HIBER system service to hibernate until the
wakeup occurs.

Due to other system activity, the length of time that the process actually waits
may be somewhat longer than what was specified by seconds.

The process hibernates in the caller's access mode; therefore, asynchronous
system traps (ASTs) may be delivered while the process is hibernating.
However, if the process hibernates at AST level, further ASTs can not
be delivered. See the VMS System Services Reference Manual for more
information.

SS$_NORMAL

LIB$_1NV ARG

LIB$_WRONUMARG

Routine successfully completed.

Invalid argument. The value of seconds was less
than zero or was greater than 100,000.0

Wrong number of arguments. An incorrect number
of arguments was passed to LIB$WAIT.

Any condition values returned by the $SCHDWK system service.

LIB-465

LIB$WAIT

EXAMPLE

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DELAY COMP-1.
ROUTINE DIVISION.
START-SAMPLE.

MOVE 3.5 TO DELAY.
CALL "LIB$WAIT"
USING BY REFERENCE DELAY.
STOP RUN.

LIB-466

This COBOL program demonstrates the use of LIB$WAIT. When run, it waits
for 3.5 seconds and then exits.

Index

A
Addition

quadword times • UB-5
two· s complement• UB-7

Algorithm
for memory allocation• 5-7

Alignment attribute• 5-11
Area extension size• 5-9
$ASCTIM

RTL jacket routine• UB-401
AST (asynchronous system trap)• 2-22

B
Bit field

replace field• UB-253
return sign extended to longword• UB-142

Block size • 5-10
Boundary tag • 5-8

c
CALLG (Call Routine with General Argument List)

instruction
RTL routine to access• UB-23

Chaining• 2-5
Channel• 2-23
Character string routine• 2-14

UB$CHAR • UB-25
Character string translation routine• 2-14
CU (command language interpreter)• 2-2
CU access routine• 2-2
CU symbol• UB-343

deleting• UB-116
getting value of• UB-2 19
RTL routines•UB-116, UB-219

Command language interpreter

See CU
Condition handler• 4-12

See also Signal argument vector
catch-all• 4-14

Condition handler (cont'd.)

continuing execution of• 4-21
default• 4-13
establishment of• 4-20, UB-140
interaction between default and user-supplied

handlers• 4-1 5
last-chance• 4-14
resignaling • 4-21
software supplied• 4-13
traceback• 4-13
unwinding• 4-22
user-supplied• 4-13
writing of• 4-20

Condition handling• 4-2

See also Condition handler
See also Condition Handling Facility

See also Condition value
See also Exception

See also Exception condition

See also Message Utility (MESSAGE)
continuing• 4-14
displaying messages • 4-16
logging error messages • 4-4
logging error messages to a file• 4-27
resignaling • 4-14
stack traceback • 4-3
stack unwind• 4-4, 4-14
user-defined messages • 4-4

Condition Handling Facility• 4-19
defined• 4-1
function of• 4-2

Condition value•4-5 to 4-7, 4-24, UB-272
severity • 4-6

Conversion
numeric text to binary• UB-76

$CRFCTL TABLE macro• 8-1, 8-2
$CRFFIELDEND macro• 8-1, 8-4
$CRFFIELD macro • 8-1 , 8-3
Cross-Reference Routines• 8-1
Cyclic redundancy check table• UB-33

D
Date/Time routine

UB$DA TE_ TIME• UB-80

lndex-1

Index

Date/Time routine (cont'd.)

LIB$DA Y • LIB-82
LIB$DAY_QF _WEEK• LIB-84

Debugging programs that use VM zones• 6-1
Decimal overflow detection• LIB-104
Decimal text

converting to binary• LIB-76
Directory

creation of• LIB-36
Division

extended precision• LIB-126
Dynamic memory allocation• 5-1

E
EDIV (Extended Divide) instruction

RTL routine to access• LIB-126
EMODD instruction

RTL routine to access• LIB-128
EMODF instruction

RTL routine to access • LIB-130
EMODG instruction

RTL routine to access• LIB-132
EMODH instruction

RTL routine to access• LIB-134
EMUL (Extended Multiply) instruction

RTL routine to access• LIB-136
Error

signaling of• 4-3
Event flag

allocation of• 2-17
RTL routine to free• LIB-17 4

Exception
definition• 4-2
floating-point underflow• 4-31
how handled by Run-Time Library• 4-30

Exception condition• 4-2, 4-4
returning condition value• 4-4
signaling of•4-3, 4-5, 4-7, 4-16, 4-18,

4-23,4-31

F
$FA0•4-13, 4-16, 4-27

RTL jacket routine for• LIB-404
Fault

fix floating reserved operand• LIB-165

lndex-2

FFx instruction

RTL routine to access • LIB-14 7
Floating-point underflow• 4-3 1
Foreign command• 2-3
Foreign command name

use of dollar sign• 2-4

G
$GETMSG • 4-16

H
Hexadecimal text

converting to binary• LIB-76
Hibernation

LIB$W AIT • LIB-465

I
Integer and floating-point routine• 2-12
Integer Overflow• LIB-255

J
Jacket routine• 2-1

K
Keyword

in keyword table• LIB-261

L
LIB$ADA WI• LIB-3
LIB$ADDX •LIB-7
LIB$ADD_ TIMES• LIB-5
LIB$ANAL YZE_SDESC • LIB-10
LIB$ASN_WTH_MBX • 2-23, LIB-12
LIB$AST_IN_PROG • 2-22, LIB-15

LIB$ATTACH•2-9,LIB-17
LIB$BBCCI • LIB-19
LIB$BBSSI • LIB-21
LIB$CALLG•2-16, LIB-23
LIB$CHAR • LIB-25
LIB$CONVERT_DATE_STRING • LIB-27
LIB$CRC • 2-16, LIB-31
LIB$CRC_ TABLE• 2-16, LIB-33
LIB$CREA TE_DIR • 2-24, LIB-36
LIB$CREA TE_USER_ VM_ZQNE. 5-12, 5-17 I

LIB-40
LIB$CREATE_VM_ZQNE•5-6,5-16,LIB-44
LIB$CRF _INS_KEY • 8-1, LIB-50
LIB$CRF _INS_REF • 8-1 , LIB-52
LIB$CRF _OUTPUT• 8-1, LIB-55
LIB$CURRENCY • LIB-59
LIB$CVTF _FROM_INTERNAL_ TIME• LIB-70
LIB$CVTF _ TQ_INTERNAL_ TIME• LIB-74
LIB$CVT_DTB• LIB-76
LIB$CVT_ox_ox. LIB-61
LIB$CVT_FROM_INTERNAL_ TIME• LIB-67
LIB$CVT_HTB • LIB-76
LIB$CVT _OTB• LIB-76
LIB$CVT _ TQ_INTERNAL _TIME• LIB-72
LIB$CVT _ VECTIM •LIB-78
LIB$DA TE_ TIME• LIB-80
LIB$DA Y • LIB-82
LIB$DAY_QF _WEEK• LIB,.-84
LIB$DECODE_FAUL T. 4-30 I LIB-86
LIB$DEC_OVER • 4-32, LIB-104
LIB$DELETE_FILE • LIB-106
LIB$DELETE_LQGICAL • 2-8, LIB-114
LIB$DELETE_SYMBOL•2-8, LIB-116
LIB$DELETE_VM_ZQNE•5-6, LIB-118
LIB$DIGIT_SEP • LIB-120
LIB$DISABLE_CTRL•2-9, LIB-122
LIB$DQ_CQMMAND • 2-6, LIB-124
LIB$EDIV • LIB-126
LIB$EMODD • LIB-128
LIB$EMODF • LIB-130
LIB$EMODG • LIB-132
LIB$EMODH • LIB-134
LIB$EMUL • LIB-136
LIB$ENABLE=CTRL. 2-9 I LIB-138
LIB$EST ABLISH • 4-3, 4-13, 4-20, LIB-140
LIB$EXTV • LIB-142
LIB$EXTZV • LIB-145
LIB$FFC • LIB-14 7
LIB$FFS • LIB-14 7
LIB$FID_ TO_NAME • LIB-149
LIB$FILE_SCAN • LIB-151

LIB$FILE_SCAN_END • LIB-153
LIB$FIND_FILE • LIB-155
LIB$FIND_FILE_END • LIB-159
LIB$FIND_IMAGE_SYMBOL • LIB-160
LIB$FIND_ VM_ZONE • 5-6, LIB-163
LIB$FIXUP_FL T • 4-30, LIB-165

Index

LIB$FL T _UNDER• 4-32, LIB-167
LIB$FORMAT_DATE_ TIME• LIB-169
LIB$FREE_DA TE_ TIME_CONTEXT • LIB-172
LIB$FREE_EF•LIB-174
LIB$FREE_LUN • LIB-175
LIB$FREE_ TIMER• LIB-176
LIB$FREE_VM•5-3, LIB-177
LIB$FREE_VM_PAGE • 5-3, LIB-179
LIB$GETDVI • LIB-181
LIB$GET JPI • LIB-186
LIB$GETQUI • LIB-191
LIB$GETSYI • LIB-196
LIB$GET _CQMMAND • LIB-199
LIB$GET_CQMMON • 2-5, 2-35, LIB-202
LIB$GET_DATE_FORMAT • LIB-204
LIB$GET_EF • LIB-206
LIB$GET_FOREIGN • 2-3, UB-208
LIB$GET_INPUT • LIB-212
LIB$GET_LUN • UB-215
LIB$GET_MAXIMUM_DATE_LENGTH • LIB-216
LIB$GET_SYMBOL • 2-8, LIB-219
LIB$GET_USERS_LANGUAGE • UB-222
LIB$GET_ VM • 5-3, UB-223
LIB$GET_VM_PAGE • 5-3, LIB-225
LIB$1CHAR • LIB-227
LIB$1NDEX • UB-229
LIB$1NITIALIZE • 7-1
UB$1NIT_DATE_ TIME_CQNTEXT • LIB-231
LIB$1NIT_ TIMER• UB-235
LIB$1NSERT_ TREE• 2-31, LIB-237
UB$1NSQHI • LIB-248
LIB$1NSQTI • UB-251
LIB$1NSV • LIB-253
LIBS INT _OVER• 4-32, LIB-255
UB$LEN • LIB-257
LIB$LOCC • LIB-258
LIB$LOOKUP _KEY• UB-261
LIBS LOOKUP_ TREE• 2-31, LIB-265
LIB$LP _LINES• LIB-267
LIB$MA TCHC • LIB-270
UB$MATCH_CQND•4-10, 4-30, LIB-272
LIB$MOVC3 • LIB-275
LIB$MOVC5 • LIB-276
UB$MOVTC • LIB-278
LIB$MOVTUC • LIB-295

lndex-3

Index

LIB$MUL TF _DELTA_ TIME• LIB-298
LIB$MUL T_DEL TA_ TIME• LIB-297
LIB$P AUSE • LIB-299
LIB$POL YD• LIB-300
LIB$POL VF• LIB-302
LIB$POL VG• LIB-305
LIB$POL YH • LIB-307
LIB$PUT_COMMON • 2-5, 2-35, LIB-309
LIB$PUT _OUTPUT• LIB-311
LIB$RADIX_POINT • LIB-313
LIB$REMQHI • LIB-315
LIB$REMQTI • LIB-317
LIB$RENAME_FILE • LIB-319
LIB$RESERVE_EF • LIB-327
LIB$RESET_VM_ZONE•5-13, 5-14, LIB-329
LIB$REVERT • 4-3, 4-20, LIB-331
LIB$RUN_PROGRAM • 2-5, LIB-332
LIB$SCANC • LIB-334
LIB$SCOPY _DXDX • LIB-336
LIB$SCOPY _R_DX • LIB-338
LIB$SET_LOGICAL • 2-8, LIB-340
LIB$SET_SYMBOL • 2-8, LIB-343
LIB$SFREE 1 _DD• LIB-34 7
LIB$SFREEN_DD • LIB-348
LIB$SGET 1 _DD• LIB-350
LIB$SHOW _TIMER• LIB-352
LIB$SHOW _ VM • LIB-356
LIB$SHOW_VM_ZONE•5-6, LIB-359
LIB$SIGNAL•4-2, 4-3, 4-7, 4-10, 4-11,

4-12,4-14,4-16, 4-22,4-23to 4-26,
4-31, LIB-365

LIB$SIG_ TO_RET • 4-29, LIB-369
LIB$SIG_ TO_STOP • 4-29, LIB-372
LIB$SIM_ TRAP• 4-21, 4-29, LIB-374
LIB$SKPC • LIB-376
LIB$SPANC • LIB-378
LIB$SPAWN•2-9, LIB-382
LIB$ST AT_ TIMER• LIB-388
LIB$STAT_VM • LIB-392
LIB$STOP•4-2, 4-3, 4-4, 4-7, 4-10, 4-12,

4-14,4-16, 4-21,4-22,4-23to 4-26,
LIB-394

LIB$SUBX • LIB-399
LIB$SUB_ TIMES• LIB-397
LIB$SYS_ASCTIM • LIB-401
LIB$SYS_FAO • LIB-404
LIB$SYS_FAOL • LIB-406
LIB$SYS_GETMSG • LIB-408
LIB$TP ARSE • LIB-411
LIB$TRAVERSE_ TREE• 2-31, LIB-459
LIB$TRA_ASC_EBC • LIB-453

lndex-4

LIB$TRA_EBC_ASC • LIB-457
LIB$TRIM_FILESPEC • LIB-461
LIB$VERIFY_VM-2'.0NE • 5-6, LIB-464
LIB$W AIT • LIB-465
Logical name• LIB-340

RTL routines • LIB-114
Logical unit number

allocating• 2-17
RTL routine to free• LIB-175

M
Mailbox• 2-23, LIB-12
MA TCHC (Match Characters) instruction

RTL routine to access• LIB-270
Mechanism argument vector• 4-7, 4-11, 4-20
Memory

allocating and freeing blocks of• 5-4
allocating and freeing pages of• 5-4
allocation algorithms• 5-7

Memory fragmentation • 5-5
Memory management system services • 5-3
Message Utility (MESSAGE)• 4-26 to 4-28
MOVC3 (Move Character 3 Operand) instruction

RTL routine to access• LIB-275
MOVC5 (Move Character 5 Operand) instruction

RTL routine to access• LIB-276
Multiplication• LIB-128, LIB-130, LIB-132,

LIB-134
extended precision • LIB-136

0
Octal text

converting to binary• LIB-76
Output formatting control routine• 2-20

p
Performance measurement routine• 2-18
Polynomial

evaluating• LIB-300, LIB-302, LIB-305,
LIB-307

$PUTMSG•4-4,4-13, 4-16,4-27

a
Queue•2-12,UB-251

self-relative• 2-13
Queue access routine• 2-13
Queues

entry insertion• UB-248

R
Reserved operand

fix floating-point fault• UB-165
Routine

processwide resource allocation• 2-16, 2-17
variable-length bit field• 2-10

Run-Time Library
condition handling• 4-1
queue access• 2-12

Run-Time Library routine
integer and floating-point• 2-12
interaction with operating system• 2-1
jacket routine• 2-1
library• 1-1
output formatting control• 2-20
performance measurement• 2-18
system service access • 2-1
to access command language interpreter• 2-2
to access VAX instruction set• 2-9
to access VMS system components• 2-1
to manipulate character string• 2-14
variable-length bit field instruction• 2-10

s
SCANC (SCAN Characters) instruction

RTL routine to access• LIB-334
Shareable image

activating• LIB-160
Signal argument vector• 4-7, 4-9, 4-20
Sign-Extended longword field• LIB-142
String

copying by descriptor• LIB-336
copying by reference• LIB-338
skipping characters in• LIB-379

String descriptor• LIB-10

Subprocess

connecting to using LIB$A TT ACH • 2-9
creation of using LIB$SP AWN• 2-9

Subtraction
quadword times• LIB-397
two's complement• UB-400

System service access• 2-1, 2-2

u

Index

$UNWIND•4-14, 4-21, 4-22 to 4-23, 4-29

v
Variable-length bit field routine• 2-11
VAX instruction set

accessing through Run-Time Library• 2-9

z
Zone•5-6

allocation algorithm • 5-15
attribute• 5-8
creating• 5-6
deleting • 5-6
identifier• 5-12
resetting • 5-14
the default zone • 5-12
user-created• 5-6

lndex-5

Reader's Comments VMS RTL Library
(LI 8$) Manual

AA-LA 76A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

-- Do Not Tear - Fold Here and Tape ------------------~lllr--------------
No Postage

mnmnoma™ . ~;~=j~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

in the
United States

I
I
I
I
I
I
I

-- Do Not Tear - Fold Here --1
1

