

VMS Analyze/RMS__File Utility Manual

VMS Analyze/RMS_File Utility Manual

Order Number: AA-LA79A-TE

April 1988

This manual describes the VMS Analyze/RMS_File Utility.

Revision/Update Information:

This manual supersedes the VAX/VMS

Analyze/RMS_File Utility Reference

Manual, Version 4.4.

Software Version:

VMS Version 5.0

digital equipment corporation maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright @1988 by Digital Equipment Corporation

All Rights Reserved. Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC/CMS DEC/MMS DIBOL EduSystem UNIBUS VAX VAXcluster

DEC/MMS DECnet IAS MASSBUS

VAXclust VMS VT

DECsystem-10 DECSYSTEM-20 PDP PDT

DECUS DECwriter RSTS RSX

digital™

ZK4532

HOW TO ORDER ADDITIONAL DOCUMENTATION DIRECT MAIL ORDERS

USA & PUERTO RICO

Digital Equipment Corporation P.O. Box CS2008 Nashua, New Hampshire 03061

CANADA

Digital Equipment of Canada Ltd. 100 Herzberg Road Kanata, Ontario K2K 2A6 Attn: Direct Order Desk

INTERNATIONAL

Digital Equipment Corporation PSG Business Manager c/o Digitals local subsidiary or approved distributor

In Continental USA and Puerto Rico call 800-258-1710.

In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575). Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation, Westminster, Massachusetts 01473.

Production Note

This book was produced with the VAX DOCUMENT electronic publishing system, a software tool developed and sold by DIGITAL. In this system, writers use an ASCII text editor to create source files containing text and English-like code; this code labels the structural elements of the document, such as chapters, paragraphs, and tables. The VAX DOCUMENT software, which runs on the VMS operating system, interprets the code to format the text, generate a table of contents and index, and paginate the entire document. Writers can print the document on the terminal or line printer, or they can use DIGITAL-supported devices, such as the LN03 laser printer and PostScript printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality copy containing integrated graphics.

PostScript is a trademark of Adobe Systems, Inc.

Cor	ntents			
	PREFAC	CE		vii
	NEW A	ND CHANGED FEATURES		ix
ANA	LYZE/RN	/IS_FILE Description		ARMS-1
	1	ANALYZING VMS RMS FILE STRUCTUR	E INTERACTIVELY	ARMS-1
	2	USING ANALYZE/RMS_FILE WITH DECI	NET-VAX	ARMS-7
	3	HANDLING ERROR CONDITIONS		ARMS-7
	3.1	Nonjournaling Errors		
	3.2	Journaling Errors	and the second second	ARMS-8
ANA	LYZE/RN	/IS_FILE Usage Summary		ARMS-10
ANA	LYZE/RN	MS_FILE Qualifiers		ARMS-12
	,	/CHECK	ARMS-13	
		/FDL	ARMS-14	
		/INTERACTIVE	ARMS-15	
		/OUTPUT	ARMS-16	
		/RU_JOURNAL	ARMS-18	
		/STATISTICS	ARMS-19	
		/SUMMARY	ARMS-20	
ΔΝΔ	IVZF/RN	MS_FILE Commands		ARMS-21
AIIA	_ · / · · · ·	AGAIN	ARMS-22	111110 21
		BACK	ARMS-23	
		DOWN	ARMS-24	
		DUMP	ARMS-25	
		EXIT	ARMS-26	
		FIRST	ARMS-27	
		HELP	ARMS-28	
		NEXT	ARMS-29	
		POSITION/BUCKET	ARMS-30	
		POSITION/RECORD	ARMS-32	
		REST	ARMS-33	
		TOP	ARMS-34	
		UP	ARMS-35	

Contents

ANALYZE/RMS_FILE Examples					
INDEX					
FIGURES					
ARMS-1	Structure of Sequential Files	ARMS-2			
ARMS-2	Structure of Relative Files	ARMS-3			
ARMS-3	AREA DESCRIPTOR Path	ARMS-4			
ARMS-4	KEY DESCRIPTOR Path	ARMS-5			
ARMS-5	Structure of Primary Records	ARMS-6			
ARMS-6	Data Buckets in the Alternate Index Structures	ARMS-7			

Preface

Intended Audience

This manual is intended for all programmers who use VMS RMS data files, including high-level language programmers who use only their language's input/output statements.

Document Structure

This document consists of the following five sections:

- Description—Provides a full description of the Analyze/RMS_File Utility (ANALYZE/RMS_FILE).
- Usage Summary—Outlines the following ANALYZE/RMS_FILE information:
 - -Invoking the utility
 - -Exiting from the utility
 - -Directing output
 - -Restrictions or privileges required
- Qualifiers—Describes ANALYZE/RMS_FILE qualifiers, including format, parameters, and examples.
- Commands—Describes ANALYZE/RMS_FILE commands, including format, parameters, and examples.
- Examples—Provides additional ANALYZE/RMS_FILE examples.

Associated Documents

To use the Analyze/RMS_File Utility, you should be familiar with the following manuals:

- Guide to VMS File Applications
- VMS Convert and Convert/Reclaim Utility Manual
- VMS File Definition Language Facility Manual
- VAX RMS Journaling Manual

Preface

Conventions

Convention	Meaning
RET	In examples, a key name (usually abbreviated) shown within a box indicates that you press a key on the keyboard; in text, a key name is not enclosed in a box. In this example, the key is the RETURN key. (Note that the RETURN key is not usually shown in syntax statements or in all examples; however, assume that you must press the RETURN key after entering a command or responding to a prompt.)
CTRL/C	A key combination, shown in uppercase with a slash separating two key names, indicates that you hold down the first key while you press the second key. For example, the key combination CTRL/C indicates that you hold down the key labeled CTRL while you press the key labeled C. In examples, a key combination is enclosed in a box.
\$ SHOW TIME 05-JUN-1988 11:55:22	In examples, system output (what the system displays) is shown in black. User input (what you enter) is shown in red.
\$ TYPE MYFILE.DAT	In examples, a vertical series of periods, or ellipsis, means either that not all the data that the system would display in response to a command is shown or that not all the data a user would enter is shown.
input-file,	In examples, a horizontal ellipsis indicates that additional parameters, values, or other information can be entered, that preceding items can be repeated one or more times, or that optional arguments in a statement have been omitted.
[logical-name]	Brackets indicate that the enclosed item is optional. (Brackets are not, however, optional in the syntax of a directory name in a file specification or in the syntax of a substring specification in an assignment statement.)
quotation marks apostrophes	The term quotation marks is used to refer to double quotation marks ("). The term apostrophe (') is used to refer to a single quotation mark.

New and Changed Features

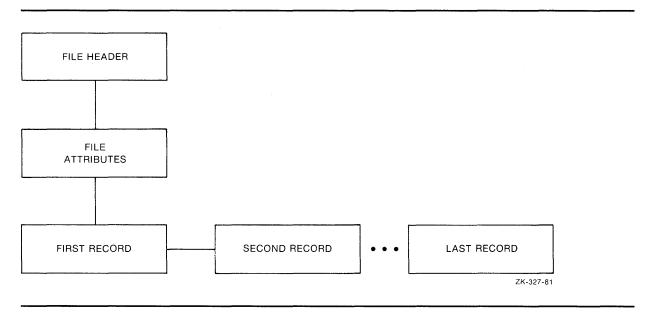
The Analyze/RMS_File Utility (ANALYZE/RMS_FILE) has been enhanced for VMS Version 5.0 to provide support for analyzing VAX RMS Journaling files. This document provides essential details about this support, but refer to the VAX RMS Journaling Manual for a complete description.

The Analyze/RMS_File Utility (ANALYZE/RMS_FILE) allows you to examine, either with or without an interactive terminal dialogue, the internal structure of a VMS Record Management Services (RMS) file. ANALYZE/RMS_FILE can check the structure of the file for errors, generate a statistical report on the structure and use of the file, or generate a File Definition Language (FDL) file from a data file.

The ANALYZE/RMS_FILE command provides information about VAX RMS Journaling files, including information about files marked for after-image journaling and before-image journaling. Where applicable, the ANALYZE/RMS_FILE command also provides information about the state of recovery units affecting VAX RMS Journaling files.

ANALYZE/RMS_FILE provides a set of commands that you may use to analyze a file interactively.

FDL files created with ANALYZE/RMS_FILE have special sections that contain statistics about the structure of the specified data file. You can use FDL files created with ANALYZE/RMS_FILE in conjunction with other VMS RMS utilities.


1 Analyzing VMS RMS File Structure Interactively

One of the most useful features of the Analyze/RMS_File Utility is its interactive mode. You enter the interactive mode by specifying the /INTERACTIVE qualifier to the ANALYZE/RMS_FILE command; you then begin an interactive session during which you can examine the structure of a VMS RMS file.

ANALYZE/RMS_FILE treats the internal VMS RMS file as a multilevel entity. All VMS RMS files are identical, relative to the first two levels. Level 1 contains the file header and level 2 contains the file attributes. For files marked for RMS Journaling, level 2 includes information relative to before-image journaling and after-image journaling, where applicable.

Some differentiation occurs at level 3. For sequential files, level 3 is the lowest level and it contains data records (see Figure ARMS-1) that ANALYZE/RMS_FILE can display individually. For relative files and indexed files, level 3 contains the file prolog.

Figure ARMS-1 Structure of Sequential Files

For relative files, level 4 contains data buckets that are accessible individually (see Figure ARMS-2). Using ANALYZE/RMS_FILE, you can view the contents of each individual data bucket.

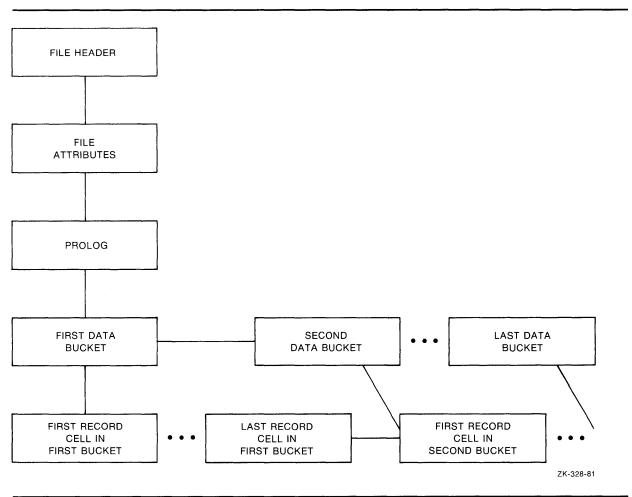


Figure ARMS-2 Structure of Relative Files

For indexed files, ANALYZE/RMS_FILE presents you with two options at level 4. You can proceed down the path that begins with a level of area descriptors (see Figure ARMS-3) or you can choose the path that begins with a level of key descriptors (see Figure ARMS-4).

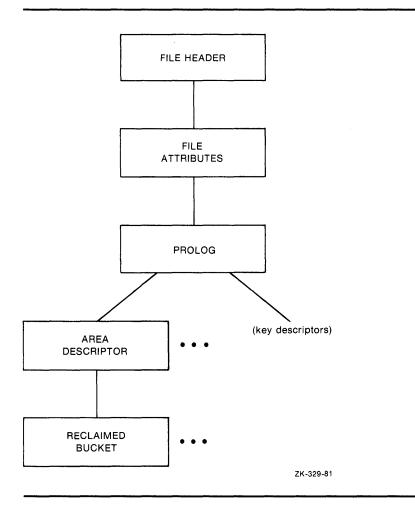
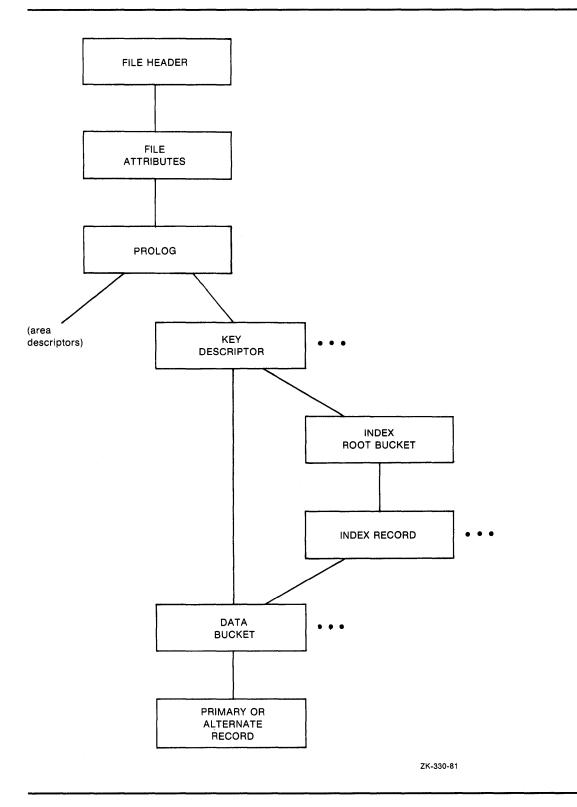
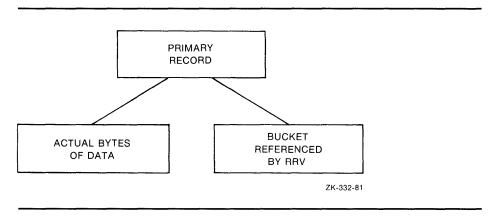



Figure ARMS-3 AREA DESCRIPTOR Path

Level 5 is the final level in a relative file. This level contains the record cells that are accessible individually. For indexed files, the contents of level 5 depend on whether you have chosen the area descriptor path or the key descriptor path:

- If you select the area descriptor path, level 5 is the lowest level and it contains reclaimed data records—that is, records that are effectively empty and are available for storing new data.
- If you select the key descriptor path, ANALYZE/RMS_FILE gives you the option of proceeding to view the index root bucket or the data bucket for the selected key, or you may choose to traverse the level laterally and view another key.

Figure ARMS-4 KEY DESCRIPTOR Path


When you choose to view the index root bucket, the next level down contains the index record for the selected key. After viewing the index record, ANALYZE/RMS_FILE provides you with direct access to the first data bucket for the selected key.

At the data bucket level, you may choose to view the data record or you may traverse the data level laterally and select another data bucket for the selected key.

The structure of an indexed file is more complicated than that of sequential and relative files. From the PROLOG level, the structure branches to the AREA DESCRIPTORs and the KEY DESCRIPTORs. Each AREA DESCRIPTOR describes the attributes and the virtual block numbers for the different file areas. The KEY DESCRIPTOR path contains the primary index structures (and data records) as well as the alternate index structures.

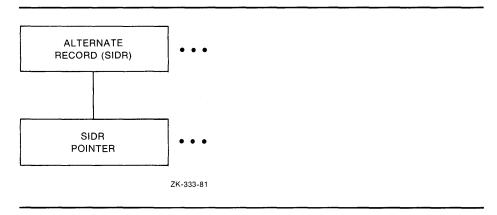

There are two types of record structures — primary records and alternate records. If you follow the primary index structure (key = 0), you find the primary record structures, which contain the actual data records (see Figure ARMS-5). You can examine the actual bytes of data in the record. If the record has been moved to another bucket as a result of a bucket split, you can examine the bucket to which the record reference vector (RRV) points. An RRV is a forwarding pointer that a record leaves behind in its former bucket location when it moves to a new bucket.

Figure ARMS-5 Structure of Primary Records

If you follow any of the alternate index structures, you find the alternate record structures, which contain the secondary index data records (SIDRs). A SIDR consists of an alternate key value and one or more pointers to the actual data records in the primary index structure (see Figure ARMS–6).

Figure ARMS-6 Data Buckets in the Alternate Index Structures

2 Using ANALYZE/RMS_FILE with DECnet-VAX

The ANALYZE/RMS_FILE command is supported only for the examination of files generated by VMS RMS or by RMS-11.

You use the ANALYZE/RMS_FILE command over a network to analyze the internal structure of a remote VMS RMS or RMS-11 file in exactly the same way that you use it to analyze the internal structure of a local VMS RMS or RMS-11 file. For example, you can specify the /FDL qualifier to generate an FDL file from the data file. Using other qualifiers, you can check the file structure for errors, generate a statistical report on the file's structure and use, or enter interactive mode to explore the structure of the file. However, you can specify only one of these qualifiers in each command.

Note that you need the NETMBX privilege to execute the ANALYZE/RMS_FILE command over a network.

3 Handling Error Conditions

This section describes the way you handle ANALYZE/RMS_FILE errors for two general error categories: nonjournaling errors and journaling errors. Even if you do not have VAX RMS Journaling software, you may find that you have imported files marked for VAX RMS Journaling from another system or from other nodes within the VAXcluster.

3.1 Nonjournaling Errors

If you receive any ANALYZE/RMS_FILE error messages while analyzing a file interactively, the file has been corrupted by a serious error. Note that ANALYZE/RMS_FILE errors are not listed in the *VMS Message Utility Manual* because in all cases the user response to errors signaled by ANALYZE/RMS_FILE is identical, as described in the following paragraphs.

If the application program encounters errors during noninteractive analysis, ANALYZE/RMS_FILE returns to the program, as *exit status*, the first occurrence of the most severe error it encounters. For example, if a warning (A) and two errors (B and C) are signaled, then the first error (B) is placed in the DCL symbol \$STATUS at image exit.

If you have had a hardware problem (for example, a power or disk head failure), then the hardware most likely caused the corruption.

If you have no hardware problems, then a software error may have been introduced through either the user software or the system software. First, verify the user software and computer operations. Possibly, data files may have been corrupted by a process being stopped abnormally, for example, if a STOP/ID or DELETE/ENTRY occurs in the midst of data processing.

One test of whether or not the problem is in the system software is to note the situations where errors occur. For example, if a particular application uses an unusual I/O sequence that seems to result in file corruption, it may be that the problem is in the system software. In a situation like this, you should attempt to reproduce the problem and note precisely the I/O sequence. This information, together with appropriate supporting information, should be submitted with a Software Performance Report (SPR).

In either case, try to fix the problem with the Convert Utility, using the same file specification for both the input file and the output file. If this procedure does not yield the result you want, use the Backup Utility to restore a backup copy of the file.

3.2 **Journaling Errors**

If VAX RMS Journaling software is not installed on your system, and you attempt to write to a file marked for journaling, the system issues the following error message:

%RMS-F-JNS, operation not supported by RMS Journaling

If VAX RMS Journaling software is installed and you receive this message, you attempted an operation that is not supported by VAX RMS Journaling. For more information on handling VAX RMS Journaling errors, see the VAX RMS Journaling Manual.

To turn off journaling in either case, use the following DCL command:

\$ SET FILE/NOAI_JOURNAL/NOBI_JOURNAL/NORU_JOURNAL

Note that the SET FILE commands for turning off journaling are available to users who do not have VAX RMS Journaling software as well as to users who do.

Another error condition may occur because if you import a file marked for recovery-unit journaling that has active recovery units. This can happen when a file is not recovered properly before the volume is moved to your system.

If you try to back up the file, VMS RMS issues the following error message:

%BACKUP-E-OPENIN, error opening DISK\$DATA:[USER]FILE.DAT;1 as input -SYSTEM-F-RUCONFLICT, another facility has active recovery units on file

To turn off the active recovery units, use the following DCL command:

\$ SET FILE/RU_FACILITY=RMS/NORU_ACTIVE

Note that this may leave the file in an inconsistent state with respect to recovery units because active recovery units are not rolled back (aborted).

ANALYZE/RMS_FILE Usage Summary

The Analyze/RMS_File Utility (ANALYZE/RMS_FILE) allows you to examine the internal structure of a VMS RMS file by performing the following functions:

- · Checking the structure of a file for errors.
- Generating a statistical report on the file's structure and use.
- Entering an interactive mode through which you can explore a file's structure. This analysis can determine whether or not the file is properly designed for its application and can point out improvements to make in the file's File Definition Language (FDL) specification.
- Generating an FDL file from a data file.
- Generating a summary report on the file's structure and use.
- Generating information related to the file's journaling status.

FORMAT

ANALYZE/RMS_FILE *filespec[,...]*

PARAMETER

filespec

Specifies the data file to be analyzed. The default file type is DAT. You can use multiple file specifications and wildcard characters with the /CHECK qualifier, the /RU_JOURNAL qualifier, the /STATISTICS qualifier, and the /SUMMARY qualifier, but not with the /FDL qualifier or the /INTERACTIVE qualifier.

usage summary

Invoke the utility by entering the ANALYZE/RMS_FILE command at the DCL command level. This command can perform only one of the utility functions at a time; in other words, you must enter a new ANALYZE/RMS_FILE command each time you choose a different function.

If you specify the /INTERACTIVE qualifier, exit ANALYZE/RMS_FILE by entering the EXIT command. Otherwise, let the utility run to successful completion.

If ANALYZE/RMS_FILE terminates with an error message, you should try converting the file and then running the utility again. If the error condition persists, verify the integrity of the hardware and software. If the hardware and software appear to be functioning properly, submit a Software Performance Report (SPR) about the condition.

You can control ANALYZE/RMS_FILE output by using the /OUTPUT qualifier. For a more detailed explanation of the /OUTPUT qualifier, refer to the ANALYZE/RMS_FILE Qualifiers section.

ANALYZE/RMS_FILE Usage Summary

During the time that you are using ANALYZE/RMS_FILE to examine the system authorization file (SYSUAF.DAT), you prevent other users from logging in to the system. Similarly, while you are analyzing your mail file, you cannot receive mail. So if you need to analyze these or other shared files, you may want to make a copy of the file and analyze the copy to avoid this problem.

Note: If you want to analyze files over a network, you need the NETMBX privilege. If you want to analyze journal files using the /RU_JOURNAL qualifier, you must have CMEXEC privilege and you must have access to the [SYSJNL] directory.

ANALYZE/RMS_FILE Qualifiers

ANALYZE/RMS_FILE QUALIFIERS

This section describes the ANALYZE/RMS_FILE qualifiers and how you use them to select the utility functions. An additional qualifier, /OUTPUT, permits you to specify an output file for storing the results of the specified function.

ANALYZE/RMS_FILE /CHECK

/CHECK

Checks the integrity of the file and generates a report of any errors in its structure.

FORMAT

/CHECK

PARAMETERS

None.

DESCRIPTION

The report produced by the /CHECK qualifier includes a list of any errors and a summary of the file's structure. If you do not specify an output file, the report is written to the current SYS\$OUTPUT device, which is generally your terminal. You can use wildcards and multiple file specifications. If you specify /NOOUTPUT, no report is generated; instead, only the message indicating whether the file has errors is displayed.

The check function is active by default when you use the ANALYZE/RMS_FILE command without any qualifiers. The /CHECK qualifier is not compatible with the /FDL qualifier, the /INTERACTIVE qualifier, the /STATISTICS qualifier, or the /SUMMARY qualifier.

EXAMPLE

\$ ANALYZE/RMS_FILE/CHECK CUSTFILE

This command checks the file CUSTFILE.DAT for errors and displays the report on the terminal.

ANALYZE/RMS_FILE

/FDL

/FDL

Generates an FDL file describing the VMS RMS data file being analyzed.

FORMAT

/FDL

PARAMETERS

None.

DESCRIPTION

By default, the /FDL qualifier creates a file with the file type FDL and the same file name as the input data file. To assign a different type or name to the FDL file, use the /OUTPUT qualifier. If the data file is corrupted, the FDL file contains ANALYZE/RMS_FILE error messages.

For indexed files, the FDL file contains special analysis sections you can use with the EDIT/FDL Optimize script to make better design decisions when you reorganize the file. For more information on these special analysis sections, refer to the descriptions of the ANALYSIS_OF_AREA and the ANALYSIS_OF_KEY sections of the VMS File Definition Language Facility Manual.

You cannot use wildcards or multiple file specifications with the /FDL qualifier. The /FDL qualifier is not compatible with the /CHECK qualifier, the /INTERACTIVE qualifier, the /STATISTICS qualifier, or the /SUMMARY qualifier.

EXAMPLE

\$ ANALYZE/RMS_FILE/FDL ADDRFILE

This command generates an FDL file named ADDRFILE.FDL from the data file ADDRFILE.DAT.

ANALYZE/RMS_FILE /INTERACTIVE

/INTERACTIVE

Begins an interactive examination of the file's structure. You cannot use wildcards or multiple file specifications. For a list of interactive commands, see the ANALYZE/RMS_FILE Commands section.

FORMAT /INTERACTIVE

PARAMETERS None.

EXAMPLE

\$ ANALYZE/RMS_FILE/INTERACTIVE SUPPLIERS.DAT

This command begins an interactive session during which you can examine the structure of the data file SUPPLIERS.DAT.

ANALYZE/RMS_FILE /OUTPUT

/OUTPUT

Identifies the destination file for the results of the analysis. The /NOOUTPUT qualifier specifies that no output file is to be created. In all cases, ANALYZE/RMS_FILE displays a message indicating whether the data file has errors.

FORMAT

/OUTPUT [=output-filespec] /NOOUTPUT

QUALIFIER VALUE

output-filespec

Identifies the output file for the results of the analysis. The use of the output file depends on which of the other qualifiers you specify.

/CHECK Places the integrity report in the output file. The default file

type is ANL, and the default file name is ANALYZE. If you omit the **output-filespec** parameter, output is written to the current SYS\$OUTPUT device, which is generally your terminal.

/FDL Places the resulting FDL specification in the output file. The

default file type is FDL, and the default file name is that of the

input file.

/INTERACTIVE Places a transcript of the interactive session in the output

file. The default file type is ANL, and the default file name is ANALYZE. If you omit the **output-filespec** parameter, no

transcript of your interactive session is produced.

/RU_JOURNAL Places the recovery-unit journal information in the output

file. The default file type is ANL, and the default file name is ANALYZE. If you omit the **output-filespec** parameter, output is written to the current SYS\$OUTPUT device, which

is generally your terminal.

/STATISTICS Places the statistics report in the output file. The default file

type is ANL, and the default file name is ANALYZE. If you omit the **output-filespec** parameter, output is written to the current SYS\$OUTPUT device, which is generally your terminal.

/SUMMARY Places the summary report in the output file. The default file

type is ANL, and the default file name is ANALYZE. If you omit the **output-filespec** parameter, output is written to the current SYS\$OUTPUT device, which is generally your terminal.

ANALYZE/RMS_FILE /OUTPUT

EXAMPLES

\$ ANALYZE/RMS_FILE/STATISTICS/OUTPUT=.TXT SEQ.ADD

This command generates a statistics report named ANALYZE.TXT from the data file SEQ.ADD.

\$ ANALYZE/RMS_FILE/NOOUTPUT/CHECK PARTS_INVENTORY.DAT

This command checks the structure of the data file PARTS_INVENTORY.DAT. No output is produced except the message telling whether the data file contains errors.

ANALYZE/RMS_FILE /RU_JOURNAL

/RU_JOURNAL

Provides information about recovery-unit journaling, where applicable.

FORMAT

/RU_JOURNAL

PARAMETERS

None.

DESCRIPTION

You can use the /RU_JOURNAL qualifier on any file, but it is inoperative on files not marked for recovery-unit journaling.

This qualifier provides the only way of accessing a file that would otherwise be inaccessible because of unresolved recovery units. This situation might be the result of an unavailable recovery-unit journal file or because of unavailable data files that were included in the recovery unit.

To use the /RU_JOURNAL qualifier, your process must have both CMEXEC privilege and access to the [SYSJNL] directory (either SYSPRV privilege, or access for UIC [1,4]).

This qualifier is compatible with all of the ANALYZE/RMS_FILE qualifiers, and you can use it with wildcards and multiple file specifications.

When you specify the /RU_JOURNAL qualifier, ANALYZE/RMS_FILE provides you with the following data for each active recovery unit:

- The journal file specification and the journal creation date
- The recovery-unit identification, recovery-unit start time, cluster system identification number (CSID), and process identification (PID)
- Information about the files involved in the recovery unit, including the file specification, the name of the volume where the file resides, the file identification, the date and time the file was created, and the current status of the file
- The state of the recovery unit active, none, started, committed, or not available (for more information, see the *VAX RMS Journaling Manual*)
- An error statement

EXAMPLE

\$ ANALYZE/RMS_FILE/RU_JOURNAL SAVINGS.DAT

This command generates information regarding the journaling status of the data file SAVINGS.DAT.

ANALYZE/RMS_FILE /STATISTICS

/STATISTICS

Specifies that a report is to be produced containing statistics about the file.

FORMAT

/STATISTICS

PARAMETERS

None.

DESCRIPTION

The /STATISTICS qualifier is used mainly on indexed files.

By default, if you do not specify an output file with the /OUTPUT qualifier, the statistics report is written to the current SYS\$OUTPUT device, which is generally your terminal.

The /STATISTICS qualifier is not compatible with the /CHECK qualifier, the /FDL qualifier, the /INTERACTIVE qualifier, or the /SUMMARY qualifier.

EXAMPLE

\$ ANALYZE/RMS_FILE/STATISTICS SEQ.DAT

This command generates a statistics report from the data file SEQ.DAT and displays the report on the current SYS\$OUTPUT device, which is generally your terminal.

ANALYZE/RMS_FILE /SUMMARY

/SUMMARY

Specifies that a summary report is to be produced containing information about the file's structure and use.

FORMAT

/SUMMARY

PARAMETERS

None.

DESCRIPTION

The /SUMMARY qualifier generates a summary report containing information about the file's structure and use.

If the file has no errors, the output generated from the /SUMMARY qualifier is identical to that produced by the /CHECK qualifier. Unlike the /CHECK qualifier, however, the /SUMMARY qualifier does not check the structure of your file, so output is generated more quickly.

Do not use this qualifier with the /CHECK qualifier, the /FDL qualifier, the /INTERACTIVE qualifier, or the /STATISTICS qualifier.

EXAMPLE

\$ ANALYZE/RMS_FILE/SUMMARY INVENTORY.DAT

This command generates a summary report from the data file INVENTORY.DAT and displays the report on the current SYS\$OUTPUT device, which is generally your terminal.

ANALYZE/RMS_FILE Commands

ANALYZE/RMS_FILE COMMANDS

This section describes the ANALYZE/RMS $_$ FILE commands and shows you how to use them in the interactive mode.

In the interactive mode, you use various commands to move through the file structure, examining its various components. Interactive sessions always begin at the FILE HEADER level.

ANALYZE/RMS_FILE AGAIN

AGAIN

Redisplays the structure you are currently viewing.

FORMAT

AGAIN

PARAMETERS

None.

QUALIFIERS

None.

EXAMPLE

FIXED PROLOG

Number of Areas: 8, VBN of First Descriptor: 3

Prolog Version : 3

ANALYZE> AGAIN

FIXED PROLOG

Number of Areas: 8, VBN of First Descriptor: 3

Prolog Version : 3

This command redisplays the FIXED PROLOG structure.

ANALYZE/RMS_FILE BACK

	Λ		ľ
D	Н	L	N

Displays a previous structure at the current level, if one exists.

FORMAT

BACK [n]

PARAMETER

n Specifies the number of times that the structure pointer moves back.

QUALIFIERS

None.

DESCRIPTION

You can use the optional parameter n instead of entering multiple BACK commands. For example, the command BACK 6 has the same effect as six BACK commands.

EXAMPLES

1 ANALYZE> BACK

This command displays the previous structure at the current level. For example, if you are currently viewing the second key descriptor of the primary key, this command displays the primary key descriptor.

2 ANALYZE> BACK 3

This command displays the third structure back at the current level.

ANALYZE/RMS_FILE

DOWN

DOWN

Moves the structure pointer down to the next level. From the FILE HEADER level, the first command you enter is the DOWN command, which moves the structure pointer to the FILE ATTRIBUTE level.

FORMAT

DOWN [branch]

PARAMETER

branch

Specifies the branch you want to follow when the current level has several branches. If there are several branches from the current level and you do not specify a value for the **branch** parameter, ANALYZE/RMS_FILE prompts you by displaying a list of possible branches.

You can also use a question mark after the DOWN command to obtain a list of the possible branches.

QUALIFIERS

None.

EXAMPLES

1 ANALYZE> DOWN ?

%ANLRMS-I-DOWNHELP, The following is a list of paths down from this structure:

%ANLRMS-I-DOWNPATH, AREAS

Area descriptors

%ANLRMS-I-DOWNPATH, KEYS

Key descriptors

This command displays the branches available to you from the current location in the file structure. In this case, you can specify the AREAS branch or the KEYS branch.

2 ANALYZE> DOWN AREAS

AREA DESCRIPTOR #0 (VBN 3, offset %X'0000')

Bucket Size: 1

Reclaimed Bucket VBN: 0

Current Extent Start: 1, Blocks: 9, Used: 4, Next: 5

Default Extend Quantity: 2

Total Allocation: 9

This command displays information about the descriptor structure for the first area in the file.

ANALYZE/RMS_FILE DUMP

DUMP

Displays a hexadecimal dump of the specified virtual block.

FORMAT

DUMP n

PARAMETER

n

Specifies the virtual block number from which you want a dump. The number can be decimal or hexadecimal. The format for a hexadecimal number is %Xn.

QUALIFIERS

None.

EXAMPLE

ANALYZE> DUMP 10

DUMP OF VIRTUAL BLOCK 10:

721111112 220011 201									
7	6	5	4	3	2	1	0		01234567
73	20	73	27	65	6C	69	66	0000	file's s
65	72	75	74	63	75	72	74	8000	tructure
20	75	6F	59	00	43	00	2E	0010	C.You
20	65	73	75	20	6E	61	63	0018	can use
66	20	4C	44	46	20	6E	61	0020	an FDL f
64	6F	72	70	20	65	6C	69	0028	ile prod
20	79	62	20	64	65	63	75	0030	luced by I
2F	45	5A	59	4C	41	4E	41	0038	ANALYZE/
45	4C	49	46	5F	53	4 D	52	0040	RMS_FILE
74	6F	20	68	74	69	77	20	0048	with ot
20	53	4D	56	20	72	65	681	0050	her VMS
6C	69	74	75	20	53	4 D	52	0058	RMS util
20	20	20	00	65	69	74	69	0060	ities.

This command shows the first part of a dump of virtual block number (VBN) 10. The left column shows the bytes of the block in hexadecimal, read from right to left. The middle column shows the byte offset in hexadecimal from the beginning of the blocks. In the right column, the character equivalents of each byte are displayed. Nonprintable characters are represented by a period (.).

EXIT

EXIT

Ends an interactive session.

FORMAT EXIT

PARAMETERS None.

QUALIFIERS None.

EXAMPLE

ANALYZE> EXIT

This command terminates the interactive session and returns you to the DCL command level.

ANALYZE/RMS_FILE FIRST

FIRST

Displays the first structure on the current level.

FORMAT FIRST

PARAMETERS None.

QUALIFIERS None.

EXAMPLE

ANALYZE> FIRST

If you are examining the primary and alternate key descriptors, this command displays the first key descriptor.

HELP

HELP

Displays help information about the interactive commands.

FORMAT

HELP [keyword...]

PARAMETER

keyword

Specifies the interactive command you want help with.

QUALIFIERS

None.

EXAMPLE

ANALYZE> HELP

Information available:

BACK HELP FIRST

DUMP New_features

EXIT

File_Structure

REST TOP

DOWN

POSITION Radix NEXT

This command shows the available help topics.

Topic? AGAIN

AGAIN

This command displays the current structure one more time.

Topic?

This command displays information about the AGAIN command.

ANALYZE/RMS_FILE NEXT

NEXT

Displays the next structure at the current level, if one exists. Because NEXT is the default command, pressing the RETURN key is equivalent to executing a NEXT command.

FORMAT

NEXT [n]

PARAMETER

n

Specifies the number of times the structure pointer moves forward.

QUALIFIERS

None.

DESCRIPTION

You can use the optional parameter n instead of entering multiple NEXT commands. For example, the command NEXT 6 has the same effect as six NEXT commands (or pressing the RETURN key six times).

EXAMPLES

1 ANALYZE> NEXT

This command displays the next structure at the current level. For example, if you are viewing key descriptors, this command displays the next key descriptor.

2 ANALYZE> NEXT 3

This command moves the location pointer forward three times. For example, if you are viewing the first structure at the current level, this command displays the fourth structure.

POSITION/BUCKET

POSITION/BUCKET

Positions the structure pointer to a specific bucket of an indexed file or a relative file.

FORMAT

POSITION/BUCKET bucket_vbn [/INDEX=n]

PARAMETER

bucket_vbn

The virtual block number (VBN) of the bucket at which the pointer is to be positioned. If the bucket has a length greater than one block, use the VBN of the beginning of the bucket.

QUALIFIER

[/INDEX=n]

Specifies the relative key for the bucket of an indexed file. The /INDEX qualifier is necessary only when the index number information is unavailable in the bucket header. For example, you use this qualifier to analyze a Prolog 1 or Prolog 2 file (no bucket header) or to analyze a Prolog 3 file with a corrupted bucket header. You can also use this qualifier to override the index number in a Prolog 3 file bucket header.

The number you use specifies the key. For example, /INDEX=0 specifies that the bucket is a primary index or primary data bucket, and /INDEX=1 specifies that the bucket is found in the first alternate index structure.

DESCRIPTION

The POSITION/BUCKET command lets you position the structure pointer to a specific bucket of your file. You can use this command to bypass step-by-step positioning. You can also use it to position the structure pointer at a bucket that is inaccessible because of structural errors in the file.

When the structure pointer is positioned at the beginning of the bucket, you can step forward or down through the index structure using the NEXT or DOWN command. If you enter an UP command when the structure pointer is positioned at the beginning of the bucket, ANALYZE/RMS_FILE positions the pointer to the bucket's key descriptor. If you enter a BACK command when the structure pointer is positioned at the beginning of the bucket, ANALYZE/RMS_FILE displays an appropriate error message and the pointer remains stationary.

Using the POSITION/BUCKET command allows you to specify a particular bucket header from which key descriptor information and valid path information are derived. ANALYZE/RMS_FILE does not verify that the specified VBN is at the beginning block of a bucket. If ANALYZE/RMS_FILE displays a series of error messages when you enter the POSITION/BUCKET command, it may be that the structure pointer is not positioned at the beginning of the bucket, or it may be that you specified an incorrect index number with the /INDEX qualifier.

ANALYZE/RMS_FILE POSITION/BUCKET

EXAMPLE

ANALYZE> POSITION/BUCKET 4
BUCKET HEADER (VBN 4)

This command displays the information for the bucket that begins at VBN4. Because this is a Prolog 3 file, you do not have to specify the key using the /INDEX=n qualifier. In a Prolog 3 file, the key information is available in the bucket header (Key of Reference: 0).

POSITION/RECORD

POSITION/RECORD

Positions the pointer at a specific record in an indexed or relative file.

FORMAT

POSITION/RECORD record-offset

PARAMETER

record-offset

The offset (in bytes) from the beginning of the bucket to the desired record. By default, the offset is a decimal number. If you want to use hexadecimal notation to specify the offset, use the format %Xn.

QUALIFIERS

None.

DESCRIPTION

Use this command to display a specific record in the bucket. When the structure pointer is positioned at the desired record, you can move it down and forward to display the various records in the bucket; you cannot display previous records.

The POSITION/RECORD command is valid only when you are positioned at a bucket header. The command positions the structure pointer at the specified byte offset, whether that position is or is not the beginning of a valid record. If the pointer is not positioned at the beginning of a valid record, a series of error messages is generated.

EXAMPLE

This command positions the pointer at byte offset %XE, which is the location of the beginning of a record. This command is valid because the pointer was positioned at a bucket header before the POSITION/RECORD %XE command was entered.

ANALYZE/RMS_FILE REST

REST

Sequentially displays structures at the current level.

FORMAT REST

PARAMETERS None.

QUALIFIERS None.

EXAMPLE

ANALYZE> REST

This command displays each structure at the current level. For example, if you are viewing the primary and alternate key descriptors, the REST command displays each key descriptor sequentially.

TOP

TOP

Displays the FILE HEADER level.

FORMAT

TOP

PARAMETERS

None.

QUALIFIERS

None.

EXAMPLE

ANALYZE> TOP FILE HEADER

File Spec: DISK\$: [JONES.PROGRAM] INVENTORY.DAT;6

File ID: (6367,16,1) Owner UIC: [DOC,DOE]

Protection: System: RWE, Owner: RWED, Group: R, World:

Creation Date: 13-NOV-1988 09:10:29.83
Revision Date: 16-DEC-1988 14:10:37:16, Number: 4

Expiration Date: none specified Backup Date: none posted Contiguity Options: none Performance Options: none Reliability Options: none Journaling Enabled: none

> This command displays the file header information for the file INVENTORY.DAT.

	_

Displays the data structures at the next higher level.

FORMAT

UP

PARAMETERS

None.

QUALIFIERS

None.

EXAMPLE

ANALYZE> UP

This command positions the pointer at the next higher level of the file's structure. For example, if you are currently examining the RMS FILE ATTRIBUTES level, entering the UP command positions you at the FILE HEADER level and displays that level.

ANALYZE/RMS_FILE Examples

ANALYZE/RMS_FILE EXAMPLES

\$ ANALYZE/RMS_FILE/INTERACTIVE/OUTPUT=INVENTORY INVENTORY.DAT

This command begins an interactive session during which you can examine the structure of the data file INVENTORY.DAT. A transcript of the session is placed in the output file INVENTORY.ANL.

\$ ANALYZE/RMS_FILE/NOOUTPUT *.*;*

This command verifies the structural integrity of all files in the current default directory.

\$ ANALYZE/RMS_FILE/FDL PARTS.DAT

This command produces the FDL file PARTS.FDL from the data file PARTS.DAT. Assuming that PARTS.DAT is an indexed file, the new FDL file contains two special sections that FDL files created with the Edit/FDL Utility do not have: ANALYSIS_OF_AREA and ANALYSIS_OF_KEY. You can use these sections with the EDIT/FDL Optimize script to tune your original data file PARTS.DAT. To complete the tuning cycle, enter the following DCL commands:

- \$ EDIT/FDL/ANALYSIS=PARTS/SCRIPT=OPTIMIZE PARTS
- \$ CONVERT/FDL=PARTS PARTS.DAT *
- \$ ANALYZE/RMS_FILE DENVER::DB1:[PROD]RUN.DAT

This command analyzes the structure of the file RUN.DAT residing at remote node DENVER.

\$ ANALYZE/RMS_FILE/FDL/OUTPUT=TEST.FDL \$_File(s): DENVER::DB1:[PROD]RUN.DAT

This command analyzes the structure of the file RUN.DAT at remote node DENVER and generates the FDL file TEST.FDL at the local node.

Index

AGAIN command • ARMS-22 Alternate index structure • ARMS-6 Alternate key • ARMS-7 Alternate record • ARMS-7 Analysis sections FDL • ARMS-14 ANALYZE/RMS_FILE See Analyze/RMS_File Utility output file default name • ARMS-16 user response to errors • ARMS-8 using to obtain information about VAX RMS Journaling ARMS-1 Analyze/RMS_File Utility (ANALYZE/RMS_FILE) analyzing file structure interactively • ARMS-1 creating FDL files • ARMS-1 directing output • ARMS-10 error conditions • ARMS-7 examples analyzing a file interactively • ARMS-36 analyzing a remote file • ARMS-36 creating an FDL file • ARMS-36 creating an FDL file from a remote file • ARMS-36 exiting from • ARMS-10 invoking • ARMS-10 list of functions • ARMS-10 restrictions • ARMS-11

В

BACK command • ARMS-23
Bucket • ARMS-2
examining • ARMS-6
split • ARMS-6

ANL file type • ARMS-16

with DECnet-VAX • ARMS-7

C

Cell • ARMS-2

```
/CHECK qualifier • ARMS-13
limitation • ARMS-14, ARMS-20
using with the /OUTPUT qualifier • ARMS-16
with wildcard characters • ARMS-10
CMEXEC privilege
for analyzing VAX RMS Journaling files •
ARMS-11
Command
interactive • ARMS-21
Corrupted file • ARMS-14
```

D

```
Data
corruption • ARMS-14
Data record • ARMS-6
Data structure • ARMS-1
DAT file type • ARMS-10
DECnet-VAX
using the Analyze/RMS_File Utility with •
ARMS-7
Default output file name
ANALYZE/RMS_FILE • ARMS-16
DOWN command • ARMS-24
Dump
hexadecimal • ARMS-25
DUMP command • ARMS-25
```

F

```
Error
in file structure • ARMS-13
Error conditions • ARMS-7
Example
analyzing a file interactively • ARMS-36
analyzing a remote file • ARMS-36
creating an FDL file • ARMS-36
creating an FDL file from a remote file •
ARMS-36
EXIT command • ARMS-26
Exiting from ANALYZE/RMS_FILE • ARMS-10
```

Index

F	Interactive mode • ARMS-1, ARMS-10, ARMS-15, ARMS-21 /INTERACTIVE qualifier • ARMS-1, ARMS-15
FDL (File Definition Language)	limitation ● ARMS-10, ARMS-13, ARMS-14, ARMS-20
file type • ARMS-16	using with the /OUTPUT qualifier • ARMS-16
FDL file	Internal structure
ANALYZE/RMS_FILE • ARMS-14	of file • ARMS–1
creating • ARMS-10, ARMS-14	Invoking ANALYZE/RMS_FILE • ARMS-10
/FDL qualifier	INVOKING ANALTZE/THVIO_FILE ATHVIO TO
limitation • ARMS-10, ARMS-13, ARMS-20	
overview ● ARMS-14	
using with the /OUTPUT qualifier • ARMS-16	J
File	
analysis • ARMS–10	Journaling not supported
corrupted • ARMS-14	error message • ARMS-8
creating FDL • ARMS-10	
integrity • ARMS-13	
internal structure • ARMS-1	N
organization • ARMS-1	IV
structure of • ARMS-1	
File Definition Language	NEXT command ● ARMS-29
See FDL	/NOOUTPUT qualifier • ARMS-16
File header • ARMS-1	
File structure • ARMS–1	
analyzing interactively • ARMS-1	O
examining • ARMS–15	
File type	Output
ANL • ARMS—16	directing • ARMS-10
DAT • ARMS-10	/OUTPUT qualifier • ARMS-16
FDL • ARMS – 16	, so it or quanter , that is
FIRST command • ARMS–27 Format	
of hexadecimal dump • ARMS-25	D
of Hexadecimal dump - Artivis - 25	Г
L	Pointer
П	structure • ARMS-21
	POSITION/BUCKET command • ARMS-30
HELP command ● ARMS-28	POSITION/RECORD command • ARMS-32
Hexadecimal dump ■ ARMS-25	Primary data record • ARMS-6
Hierarchical structure • ARMS-1	Primary index structure • ARMS-6
	Privilege
]	required to analyze VAX RMS Journaling files • ARMS-11
Indexed file	R
structure • ARMS-1	• •
Integrity of file • ARMS–13	D

Record • ARMS-6

Interactive commands • ARMS-21

```
Record reference vector
                                                    Summary report • ARMS-10
  See RRV
                                                    SYS$OUTPUT • ARMS-16
Record structure • ARMS-6
Relative file
  structure • ARMS-1, ARMS-2
REST command • ARMS-33
Restrictions of ANALYZE/RMS_FILE • ARMS-11
RRV (record reference vector) • ARMS-6
                                                    TOP command • ARMS-34
/RU_JOURNAL qualifier
  description • ARMS-18
  format • ARMS-18
  overview • ARMS-18
  using with the /OUTPUT qualifier • ARMS-16
                                                    UP command • ARMS-35
Secondary index data record
                                                    VAX RMS Journaling
  See SIDR
                                                      error caused by active recovery units • ARMS-9
Sequential file
                                                      how to turn off • ARMS-8
  structure • ARMS-1
                                                    VAX RMS Journaling errors
SIDR (secondary index data record) • ARMS-7
                                                      how to handle • ARMS-8
Special analysis sections • ARMS-14
                                                    VAX RMS Journaling recovery units
Statistical report • ARMS-10
                                                      how to turn off • ARMS-9
/STATISTICS qualifier
                                                    VBN (virtual block number) • ARMS-6
  description • ARMS-19
                                                    Virtual block
  example of • ARMS-16
                                                      dump • ARMS-25
  format • ARMS-19
                                                    Virtual block number
  limitation • ARMS-13, ARMS-14, ARMS-19,
                                                      See VBN
      ARMS-20
  overview • ARMS-19
  using with the /OUTPUT qualifier • ARMS-16
  with wildcard characters • ARMS-10
Structure
  error • ARMS-13
                                                    Wildcard character
  examining • ARMS-15
                                                      using with ANALYZE/RMS_FILE • ARMS-10
  of file • ARMS-1, ARMS-10
  of indexed file • ARMS-6
  of relative file • ARMS-2
  of sequential file • ARMS-1
  pointer • ARMS-21
/SUMMARY qualifier
                                                    %X format • ARMS-25
  compared with /CHECK qualifier • ARMS-20
  description • ARMS-20
  example of • ARMS-20
  format • ARMS-20
  limitation • ARMS-13, ARMS-14, ARMS-20
  overview • ARMS-20
  using with the /OUTPUT qualifier • ARMS-16
  with wildcard characters • ARMS-10
```

	•				
·					

Reader's Comments

VMS Analyze/RMS_File Utility Manual AA-LA79A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software problem and are eligible to receive one under Software Performance Report (SPR) service, submit your comments on an SPR form. Thank you for your assistance. I rate this manual's: Excellent Good Fair Poor Accuracy (software works as manual says) Completeness (enough information) Clarity (easy to understand) Organization (structure of subject matter) Figures (useful) Examples (useful) Index (ability to find topic) Page layout (easy to find information) I would like to see more/less What I like best about this manual is _____ What I like least about this manual is ______ I found the following errors in this manual: Page Description Additional comments or suggestions to improve this manual: I am using **Version** _____ of the software this manual describes. Name/Title ______ Dept. _____ Company _____ Date _____

______ Phone _____

Mailing Address

– Do Not Tear - Fold Hen	re and Tape ————————————————————————————————————	No Postage Necessary if Mailed in the United States
	BUSINESS REPLY MAIL FIRST CLASS PERMIT NO. 33 MAYNARD MASS. POSTAGE WILL BE PAID BY ADDRESSEE	
	DIGITAL EQUIPMENT CORPORATION Corporate User Publications—Spit Brook ZK01-3/J35 110 SPIT BROOK ROAD NASHUA, NH 03062-9987	
– Do Not Tear - Fold Her	- - re	