
VMS

digital VMS Convert and Convert/Reclaim Utility Manual

Order Number AA-LASOA-TE

VMS Convert and
Convert/Reclaim Utility
Manual

Order Number: AA-LA80A-TE

April 1988

This document describes the VMS Convert Utility and the
VMS Convert/Reclaim Utility.

Revision/Update Information: This manual supersedes the VAX/VMS
Convert and Convert/Reclaim Utility
Reference Manual, Version 4.0.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS Edu System VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DEC US RSTS

t:Jornuo~u TM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO* CANADA INTERNATIONAL

ZK4537

Digital Equipment Corporation Digital Equipment
P.O. Box CS2008 of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire 100 Herzberg Road
03061 Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

c/o Digital~ local subsidiary
or approved distributor

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and Postscript®>
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

c'fMl
'-= PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE

NEW AND CHANGED FEATURES

CONVERT Description

1 OUTPUT FILES

2 CONVERTING CARRIAGE CONTROL FORMATS

3 USING CONVERT WITH DECNET-VAX

4 EXCEPTION CONDITIONS

5 USING THE CONVERT/RECLAIM UTILITY

CONVERT Usage Summary

CONVERT Qualifiers
/APPEND
/CREATE
/EXCEPTIONS_FILE
/EXIT
/FAST_LOAD
/FOL
/FILL-BUCKETS
/FIXED-CONTROL
/KEY
/MERGE
/PAD
/PRO LOG
/READ_CHECK
/SHARE
/SORT
/STATISTICS
/TRUNCATE
/WORK_FILES
/WRITE_CHECK

vii

ix

CONV-1

CONV-1

CONV-2

CONV-3

CONV-3

CONV-3

CONV-5

CONV-6
CONV-7
CONV-8
CONV-9

CONV-10
CONV-11
CONV-13
CONV-14
CONV-15
CONV-16
CONV-17
CONV-18
CONV-19
CONV-20
CONV-21
CONV-22
CONV-24
CONV-26
CONV-27
CONV-28

v

Contents

CONVERT Examples CONV-29

INDEX

vi

Preface

Intended Audience
This manual is intended for all programmers who use VMS RMS data files,
including high-level language programmers who use only their language's
input/ output statements.

Document Structure
This document consists of the following four sections:

• Description-Provides a full description of the Convert Utility
(CONVERT) and the Convert/Reclaim Utility (CONVERT /RECLAIM).

• Usage Summary-Outlines the following CONVERT and CONVERT
/RECLAIM information:

-Invoking the utility
-Exiting from the utility
-Directing output
-Restrictions or privileges required

• Qualifiers-Describes the CONVERT and CONVERT /RECLAIM
qualifiers, including format, parameters, and examples.

• Examples-Provides additional CONVERT and CONVERT /RECLAIM
examples.

Associated Documents
To use CONVERT and CONVERT/RECLAIM, you should be familiar with
the following manuals:

• Guide to VMS File Applications

• VMS Analyze /RMSJile Utility Manual

• VMS File Definition Language Facility Manual

vii

Preface

Conventions

viii

Convention

CTRL/C

$SHOW TIME
05-JUN-1988 11 :55:22

$ TYPE MYFILE.DAT

input-file, ...

[logical-name]

quotation marks
apostrophes

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (') is used to refer to a single
quotation mark.

New and Changed Features

No enhancements have been made to the Convert Utility (CONVERT) or to
the Convert/Reclaim Utility (CONVERT/RECLAIM) for VMS Version 5.0.
However, support has been added for VMS Record Management Services
(RMS) indexed files with collated keys. For more information about collated
keys, see the VMS Record Management Services Manual.

You do not have to take explicit action to use the CONVERT support for
collated keys because CONVERT recognizes indexed files with collated keys
and processes them transparently. However, you should be aware of a
situation that may develop when you use CONVERT with indexed files that
have collated keys.

Collating sequences are identified by a character string that is processed
as part of the named collating sequence. Both the National Character Set
Utility (NCS) and VMS RMS use the name string for identifying the collating
sequence. For more information about NCS, see the VMS National Character
Set Utility Manual.

Because the collating sequences are physically stored in indexed files that use
collated keys, the name is also in the indexed file. When you use CONVERT
as shown in the following command line, and the input index file has one
or more collated keys, the collating sequences from the input file are passed
to the output file, and the records used to populate the output file are sorted
accordingly:

$ CONVERT input-index-file output-index-file

But, if you use a File Definition Language (FOL) file containing the name of a
collating sequence as input to a CONVERT process, CONVERT invokes NCS
to fetch the collating sequence named in the FOL file from the local system's
NCS library. For example:

$ CONVERT/FDL=filename input-index-file output-index-file

If the collating sequence named in the input indexed file and the collating
sequence found in the NCS library have the same name but are different, the
output file may be sorted improperly. Typically, this might happen when the
input indexed file is created on one system and is later transported to another
system that already has a collating sequence with the same name.

You can avoid this by renaming collating sequences that have conflicting
names.

ix

1

CONVERT Description

Output Files

The Convert Utility (CONVERT) copies records from one or more source data
files to a second output data file, which can differ in file organization and
format from the first.

You can also use CONVERT to reformat an indexed file in which you have
deleted or inserted many records. The file specification of the indexed file
is used as both the input and the output file specification. In this case, the
output file has a version number one greater than the highest existing version
of the input file. During such reorganizations, CONVERT establishes new
record file addresses (RFAs) for the records.

On the other hand, the Convert/Reclaim Utility (CONVERT/RECLAIM) finds
empty buckets in a Prolog 3 indexed file and makes them usable again by
reclaiming them. As opposed to CONVERT, CONVERT /RECLAIM preserves
existing RFAs for the file. In general, CONVERT, rather than
CONVERT /RECLAIM, produces the most efficient indexed file
reorganizations.

A set of library routines can also perform the functions of both the Convert
and Convert/Reclaim Utilities from within a program. For more information,
refer to the CONVERT routines in the VMS Utility Routines Manual.

Sections 1 through 5 cover the following topics. Section 1 explains how
to produce output files with CONVERT. Section 2 describes converting
between carriage control formats. Section 3 discusses using CONVERT
with DECnet-VAX. Section 4 explains how to handle CONVERT exception
conditions. Section 5 explains how to use the Convert/Reclaim Utility.

There are two ways to generate a reformatted and reorganized output file.
CONVERT can either create an output file or load an existing one.

If you want to create an output file with characteristics different from the
input file, you specify a File Definition Language (FOL) file specification in
the command line. To create an output file with the same characteristics as
the first input file, you omit the /FOL qualifier.

If the output file exists, it can either be empty or it can contain records. If the
output file is sequential, then specifying the /APPEND qualifier causes new
records from the input file to be added sequentially to the end of the output
file.

However, if the existing output file is indexed and contains records, then
specifying the /MERGE qualifier causes new records from the input file to be
merged in their proper order.

In addition, sorting the records from an input indexed file can be costly in
terms of processing time and disk space. If the records in the input file are
already sequentially ordered by the primary key (KEY=O), then specify the
/NOSORT qualifier with the CONVERT command. For more information
about sorting indexed files, see bath the /FAST_LOAD and the /SORT
qualifiers in the CONVERT Qualifiers section.

CONV-'

CONVERT Description

2 Converting Carriage Control Formats

CONV-2

A file can have one of four carriage control formats:

• CARRIAGE_RETURN

• FORTRAN

• PRINT

• NONE

These formats are all represented differently, so when you are converting
a file from one carriage control format to another, the carriage control
information has to be translated.

This translation is especially important when you are converting to or from a
file with the FORTRAN format. Records with the FORTRAN format contain
one byte of carriage control information at the beginning of each record.

For most conversions, the FORTRAN carriage control information is preserved
as the first data byte of the record, and the printing characteristics are lost.
However, certain conversions can preserve the printing characteristics of the
FORTRAN carriage control information. When FORTRAN carriage control is
converted to the equivalent PRINT carriage control, the information preceding
each FORTRAN record is changed but not lost.

When PRINT carriage control is converted to FORTRAN carriage control,
certain characters that supply carriage control information to the printer
cannot be translated exactly. These untranslatable characters are represented
as a single-spaced FORTRAN record.

When FORTRAN carriage control is converted to STREAM, control characters
affecting carriage returns (<CR>), line feeds (<LF>), and form feeds
(<FF>) are prefixed and appended to each FORTRAN record. These
characters may affect the STREAM output because they are considered record
delimiters for stream files. As a result, you may have a different number of
records in the STREAM output file, and some of the records may be null.

The following chart shows how FORTRAN carriage control information
translates to STREAM.

STREAM Format Equivalent

FORTRAN Hex Code Characters
Format Equivalent Characters Prefixed Appended

31 <FF> <CR>
0 30 <LF> <LF> <CR>
space 20 <LF> <CR>
$ 24 <LF> Nothing appended

+ 28 Nothing prefixed <CR>
null 00 Nothing prefixed Nothing appended

CONVERT Description

All other conversions from FORTRAN preserve the carriage control
information as data. All other conversions to FORTRAN prefix the converted
records with the ASCII space character to obtain single spacing.

For more information about carriage control, see the description of the FOL
Facility in the VMS File Definition Language Facility Manual.

3 Using CONVERT with DECnet-VAX
You can use the CONVERT command to transfer files to and from a remote
node, either with or without modifying file attributes. If the output file exists,
the Convert Utility changes the organization and format of the input data file
to that of the output file. If the output file does not exist, CONVERT creates
it from the file attributes specified in an FOL file.

You can also use the Convert Utility to copy files to or from a remote node
without modifying file attributes. CONVERT transfers the file record by
record, just as it does on a single node. However, you must have NETMBX
privilege to execute CONVERT over a network.

Similarly, you can use CONVERT/RECLAIM to reclaim empty buckets in
Prolog 3 indexed files from a remote node.

4 Exception Conditions
Certain conversions cause exception conditions. An exception condition
occurs when a record from the input file cannot be placed in the output file
because of some format incompatibility. CONVERT sends a warning error
message to SYS$ERROR upon encountering a record that causes an exception
condition.

For example, an exception condition occurs when the length of the input
records exceeds the length you specified for fixed-length output records.
You can avoid this exception condition by specifying the /TRUNCATE
qualifier. Converting short fixed-length records into longer fixed-length
records also causes an exception. To avoid this exception condition, use the
/PAD qualifier to fill in the output records. The /PAD qualifier allows you to
specify your choice of pad character.

To keep a copy of the exception records, you create an exceptions file with the
/EXCEPTIONSJILE qualifier. The exceptions file is a sequential file with
variable-length records; it receives a copy of any record that cannot be placed
in the output data file. Exceptions files have the file type EXC, by default.

5 Using the Convert/Reclaim Utility
Unlike CONVERT, which changes the organization and record format of a
file, CONVERT /RECLAIM reclaims empty buckets in an existing Prolog 3
indexed file. The organization and record format of the file are not changed.

When you delete all the records in a bucket, the bucket still retains its
position within the database because it has a certain range of primary key
values associated with it. When you write new records to the file, those
records whose primary key falls within that range are written· to that bucket.

CONV-~

CONVERT Description

CONV-4

If your application has buckets with records that do not use a primary key
left over from a deleted record, empty buckets cannot be reused unless you
reclaim them. To reclaim a bucket, CONVERT/RECLAIM deletes the old
pointers to it and puts it on a list of free buckets. When an application adds
records and needs a bucket, VMS RMS goes to the free bucket list and sets up
pointers to a bucket from the list. By reclaiming buckets, you can often avoid
extending the file, which causes inefficient processing.

In addition, CONVERT/RECLAIM preserves RFA (record file address) access
to the file.

You cannot use CONVERT/RECLAIM on Prolog 1 or Prolog 2 indexed files.
To reclaim empty buckets in a Prolog 1 or Prolog 2 indexed file, you must
first reorganize the file by using the Convert Utility. This reorganization
creates a new version of the file. However, unlike CONVERT/RECLAIM,
CONVERT establishes new RFAs for the records.

To invoke the CONVERT/RECLAIM functions from within a program, use
the CONV$RECLAIM routine. For more information, refer to the VMS Utility
Routines Manual.

CONVERT Usage Summary

FORMAT

The Convert Utility (CONVERT) copies records from one or more files to
an output file, changing the record format and file organization to those of
the output file.

The Convert/Reclaim Utility (CONVERT /RECLAIM) reclaims empty buckets
in Prolog 3 indexed files so that new records can be written in those
buckets. It does not change the record format and file organization of
these files.

CONVERT input-filespec[, ...] output-filespec

PARAMETERS input-filespec [, ...]

FORMAT

Specifies the file or files to be converted. The specifications cannot contain
wildcard characters. Multiple input files are concatenated to form a single
output file. You may specify up to 10 input files.

output-filespec
Specifies the file into which the converted records are to be written. If the file
specification does not include a file type, CONVERT assigns the output file
the file type of the first input file.

CONVERT/RECLAIM filespec

PARAMETER filespec
Specifies the Prolog 3 indexed file in which you want to reclaim buckets.
When you use the CONVERT/RECLAIM command, the file cannot be
opened for shared access.

usage summary Invoke the Convert Utility by typing the CONVERT command at the DCL
level.

Likewise, invoke the Convert/Reclaim Utility by typing the
CONVERT/RECLAIM command at the DCL level. Exit both the Convert
and the Convert/Reclaim Utilities by letting the utility run to successful
completion.

Output from the Convert Utility is directed to the file you indicate with the
output-filespec parameter. For more information, see Section 1.

The Convert/Reclaim Utility, however, produces no output unless you
specify the /STATISTICS command qualifier. If you want to execute either
CONVERT or CONVERT/RECLAIM over a network, you need NETMBX
privilege.

CONV-!

CONVERT
CONVERT Qualifiers

CONVERT
QUALIFIERS

CONV-6

This section describes the CONVERT qualifiers that you use to select the
organization and format of your output file.

/APPEND

CONVERT
/APPEND

Controls whether records are to be appended to the end of an existing
sequential file.

FORMAT /APPEND
/NOAPPEND

PARAMETERS None.

DESCRIPTION The/ APPEND qualifier is useful when you want to attach one file to the end
of another. When the file's organization is relative or indexed, this qualifier is
ignored.

EXAMPLE

The default is /NOAPPEND. You should use this option when you are
loading records into a sequential file that already contains records, or when
you are creating a new sequential file.

If you specify both/ APPEND and /CREATE, /APPEND overrides the
/CREATE qualifier.

$ CONVERT/APPEND N_Z_FILE.DAT A_M_FILE.DAT

This command causes the sequential input file N_ZJILE.DAT to be attached
to the end of the sequential file A_MJILE.DAT.

CONV-7

CONVERT
/CREATE

/CREATE

Determines whether CONVERT creates a file or uses an existing file for
output.

FORMAT /CREATE
/NOCREATE

PARAMETERS None.

DESCRIPTION The /CREATE qualifier causes CONVERT to create an output file instead of
using an existing file for output.

EXAMPLES

If the output file is to have different characteristics from the input file, you
must also specify the /FDL qualifier. To create an output file with the same
characteristics as the input file, omit the /FDL qualifier.

The /NOCREATE qualifier causes CONVERT to use an existing file for
output. You would use this option, for instance, to load records into a data
file that you created previously with the Create/FDL Utility.

The default is /CREATE.

iJ $ CONVERT/CREATE OLDFILE.DAT NEWFILE.DAT

This command creates the new output file NEWFILE.DAT and loads it with
the records from OLDFILE.DAT.

~ $ CONVERT/CREATE/FDL=UPDATE.FDL OLDFILE.DAT NEWFILE.DAT

CONV-8

This command creates the new output file NEWFILE.DAT and loads it with
the OLDFILE.DAT records that have been reformatted according to the
characteristics in the FDL file UPDATE.

CONVERT
/EXCEPTIONS_flLE

/EXCEPTIONS_FILE

FORMAT

QUALIFIER
VALUE

EXAMPLE

Specifies whether an exceptions file is to be generated during the
conversion.

/EXCEPTIONS_FILE [=filespec}
/NOEXCEPTIONS_FILE

files pee
Specifies the output file into which you want the exception records to
be returned. If you specify /EXCEPTIONS_FILE and omit the filespec
parameter, the exception records are displayed to SYS$0UTPUT.

The default file type for the exceptions file is EXC. The default is
/NOEXCEPTIONS.

$ CONVERT/EXCEPTIONS_FILE=EXFILE.EXC/FDL=NEWFILE.FDL OLDFILE.DAT NEWFILE.DAT

This command loads the records from OLDFILE.DAT into NEWFILE.DAT and
writes any records that cause exceptions into the file EXFILE.EXC.

CONV-S

CONVERT
/EXIT

/EXIT

Controls whether CONVERT is to exit when it encounters an exception
record. The default operation is to continue processing records.

FORMAT /EXIT
/NO EXIT

PARAMETERS None.

EXAMPLE

$ CONVERT/FDL=NEWFILE.FDL/EXIT OLDFILE.DAT NEWFILE

CONV-10

This command loads the records from OLDFILE.DAT into NEWFILE.DAT
and causes CONVERT to exit if an exception record is processed. Because no
output file type is specified, CONVERT assigns the output file the same file
type as the input file.

/FAST_LOAD

CONVERT
/FAST_LOAD

Specifies whether a fast loading algorithm is to be used for indexed files.

FORMAT /FAST_LOAD
/NOFAST_LOAD

PARAMETERS None.

DESCRIPTION The /FAST_LOAD qualifier is one of the most useful features of the Convert
Utility. The /FAST_LOAD qualifier and the /NOFAST_LOAD qualifier both
sort primary keys, and both qualifiers require multiple scratch disk files.

Essentially, the difference between the /NOFAST_LOAD option and the
/FAST_LOAD option is the way records are inserted into an indexed file.
The /NOFAST_LOAD qualifier uses the normal VMS RMS Put service to
load each record; VMS RMS updates the indexes of both the primary and
secondary (alternate) keys as each record is inserted.

The main disadvantage of using the /NOFAST_LOAD option is the slower
system performance that results from bucket splits and updates to the index.
As each primary key is inserted, any secondary keys for that record are
inserted in the order of the primary key. In other words, the secondary keys
are not inserted in order of their own keys. These unsorted secondary keys
may eventually cause· bucket splits; as a result, the index structure for the
secondary keys may be less efficient.

The advantage of the /NOFAST_LOAD option is that CONVERT does not
attempt to sort secondary keys. Conversely, if you specify the /FAST_LOAD
option, CONVERT sorts the primary and the secondary keys.

CONVERT processes a file as follows:

1 The primary keys are sorted. If the input file is on magnetic tape or if you
specify multiple input files, the sort work file contains the sorted records.
If the input file is on a disk, however, the sort work file contains only
pointers to the sorted records.

Note: If your input records are already ordered by the primary key or if the
primary key of the input and output indexed files is the same, you
should specify /NOSORT. This qualifier ensures that the primary
keys ar~ not sorted again. For more information about sorting, see the
description of the /SORT qualifier.

2 CONVERT builds the primary data record level from the sorted output
file. CONVERT completely fills a bucket with data before it creates the
lowest primary index level (the level 1 index). When an index bucket is
filled, CONVERT creates an index record in the next highest index level.

CONV-11

CONVERT
/FAST_LQAD

EXAMPLES

3 When CONVERT is finished with the primary key, it updates the
associated KEY DESCRIPTOR in the file's prolog, closes any input
files, deletes any temporary files, and closes the output file. At this point,
CONVERT has created a valid output file with records ordered by the
primary key. If you specified no alternate keys, CONVERT is finished
processing.

4 CONVERT reopens the input file so the first alternate key (if one has
been specified) can be sorted. Again, CONVERT creates a temporary file
containing pointers back to the primary data records. These pointers,
however, have been sorted according to the first alternate key.

5 CONVERT loads these sorted pointers into the secondary index data
record (SIDR) level and adjusts them to point to the records in the
primary data level. Again, CONVERT completely fills a bucket with data
before it creates the lowest secondary index level. When an index bucket
is filled, CONVERT creates an index record in the next highest secondary
index level.

6 When CONVERT is finished with this secondary key, it updates the
associated KEY DESCRIPTOR in the file's prolog, closes any input files,
deletes any temporary files, and closes the output file. At this point,
CONVERT has created a valid output file, containing sorted primary keys
and secondary keys. If you specified no more alternate keys, CONVERT
is finished processing. However, if you specified additional alternate keys,
they are processed in the same way.

The primary advantage of using the /FAST_LOAD option is that it is
considerably faster than the VMS RMS method used by the
/NOFAST_LOAD option. In most cases, you can increase processing speed
by a factor of 10. Even greater speed results when you load large files with
many keys.

In addition, the index structure can be very efficient because each key is
sorted before it is loaded. The only disadvantage is the large amount of disk
space needed for the work files. However, you can control the amount of disk
space by using the /WORK_FILES qualifier and by reassigning the work files
to different devices. See the /WORK-FILES qualifier for more information.

The default is /FAST_LOAD.

D $ CONVERT/FAST_LOAD UPDATE.DAT MASTER.DAT

This command loads the records from the file UPDATE.DAT into the output
file MASTER.DAT using the /FAST_LOAD option. CONVERT attains the
added speed by building the indexes direct! y and then using VMS RMS for
block 1/0 only.

~ $ CONVERT/NOFAST_LOAD UPDATE.DAT MASTER.DAT

CONV-12

This command loads the records from the file UPDATE.DAT into the output
file MASTER.DAT. In this case, the operation takes longer because CONVERT
uses VMS RMS Put services to output each individual record.

/FOL

FORMAT

QUALIFIER
VALUE

DESCRIPTION

EXAMPLE

CONVERT
/FOL

Indicates that an FOL file is to be used in creating the output file.

/FDL=fdl-filespec

fdl-filespec
Specifies the FDL file to be used in creating the output file.

The newly created output file will have the name specified by the
output-filespec command parameter; this name overrides any file name
specified in the FDL file.

The default file type for the FDL file is FDL.

$ CONVERT/FDL=INDEXFILE CUSTSEQ.DAT CUSTIND.DAT

This command creates the new file CUSTIND.DAT according to the
specifications in the FDL file INDEXFILE.FDL. Records are then loaded
from CUSTSEQ.DAT into CUSTIND.DAT.

CONV-13

CONVERT
/FILL_BUCKETS

/FILL_BUCKETS

Controls whether to override the bucket fill percentage parameter
associated with the output file.

FORMAT /FILL_BUCKETS
/NOFILL_BUCKETS

PARAMETERS None.

DESCRIPTION If you specify /FILL-BUCKETS, CONVERT fills the buckets of the output
file with as many records as possible. This behavior is advantageous if you
do not plan to do random file processing, because using fewer buckets saves
disk space and processing time.

EXAMPLE

With /NOFILL_BUCKETS, however, CONVERT does not fill the buckets
completely. Therefore, you can add records at a later date without splitting
buckets or extending the file.

This option is valid only for indexed output files. The default is
/NOFILL _BUCKETS.

$ CONVERT/FILL_BUCKETS SALES_DATA.DAT CUST_DATA.DAT

CONV-14

This command loads the records from the indexed file SALES_DATA.DAT
into the indexed file CUST_DATA.DAT, filling the buckets of the output file
with as many records as possible.

CONVERT
/FIXED_CQNTROL

/FIXED_CONTROL

Controls the behavior of CONVERT in conversions between variable with
fixed-length control (VFC) records and records of other formats.

FORMAT /FIXED_CONTROL
/NOFIXED_CONTROL

PARAMETERS None.

DESCRIPTION If you specify /FIXED_CONTROL for VFC input records, then the fixed
control portion of the record is attached to the front of the output record.

EXAMPLE

If you specify /FIXED_CONTROL for VFC output records, then the fixed
control portion of the output record is taken from the front of the input
record. If the input record is not long enough to fill the control portion of the
output record, an exception record is generated.

If you specify /NOFIXED_CONTROL with VFC input records, then the
fixed-portion of the input record is not copied to the output record.

If you specify /NOFIXED_CONTROL for VFC output records, then the
fixed-portion of the output record is set to 0.

This option is not applicable to indexed files. The default is
/NOFIXED_CONTROL.

When you use this qualifier, you must account for the size of the fixed-control
area when you calculate the maximum size of the output record.

$ CONVERT/FIXED_CONTROL VFC_FILE.DAT OUTFILE.DAT

This command loads the VFC records in the input file VFC_FILE.DAT into
the output file OUTFILE.DAT.

CONV-15

CONVERT
/KEY

/KEY

FORMAT

QUALIFIER
VALUE

DESCRIPTION

EXAMPLE

Directs CONVERT to read records from an indexed file using a specified
key of reference, such as the primary key, the first alternate key, or the
second alternate key.

/KEY=n

n
A numeric value that specifies the key of reference CONVERT uses for
reading records from the input indexed file. For example, you can specify the
primary key as the key of reference by using the value 0 (/KEY=O), which is
the default, or you can specify the first alternate key as the key of reference
by using the value 1 (/KEY=l).

The /KEY qualifier is valid for indexed input files only. If you use the /KEY
qualifier, you must specify a key value (/KEY=O, /KEY=l, and so on). If you
do not specify the /KEY qualifier, the default is the primary key (/KEY=O).

$ CONVERT/NOCREATE/KEY=1 CUST_INX.DAT CUST_SEQ.DAT

CONV-16

This command loads the records from the indexed input file CUST_JNX.DAT
into the sequential output file CUST_SEQ.DAT. The records in the output file
are ordered by the first alternate key in the input file.

/MERGE

CONVERT
/MERGE

Specifies that records are to be inserted into their proper position in an
existing indexed file.

FORMAT /MERGE

PARAMETERS None.

DESCRIPTION The /MERGE qualifier is useful when your input records are not sorted, and
you do not want them to be sorted as they are loaded into an output file.

EXAMPLE

If you specify both /MERGE and /CREATE, /MERGE overrides the
/CREATE qualifier.

$CONVERT/MERGE ACCOUNTS.DAT MASTER_INX.DAT

This command loads the records from the input file ACCOUNTS.DAT into
the existing indexed output file MASTER_INX.DAT according to primary key
values.

CONV-17

CONVERT
/PAD

/PAD

Determines whether short records are to be padded.

FORMAT /PAD [=[%b}x]
/NOPAD

PARAMETERS %b

DESCRIPTION

EXAMPLES

Represents the base of the numeric value specified by x. Values for b are as
follows:

D Indicates that xis a decimal value.

0 Indicates that xis an octal value.

X Indicates that xis a hexadecimal value.

If you specify x as a numeric value, it is interpreted in the base indicated by
%b.

x
Specifies that the short records are to be padded with either ASCII characters
(A through Z, a through z) or numeric values (0 through 9).

If you specify x as an ASCII character, you do not need to specify %b.
However, if you specify x as a numeric value, you must specify the optional
base with %b.

The /PAD qualifier indicates that short records are to be padded with ASCII
characters. A record is too short when it does not contain as many bytes as
the record length for fixed-length record format.

If you specify /PAD, the default pad character is the ASCII null character
(binary value 0). The /PAD option is valid only for fixed-output record
formats.

The default is /NOPAD, which generates an exception record when a short
record is encountered.

D $ CONVERT/NOCREATE/PAD=%X20 INFILE.DAT OUTFILE

This command specifies that any short records in the input file INFILE.DAT
are to be padded with an ASCII space character before being loaded into the
fixed-length output file OUTFILE.DAT.

~ $ CONVERT/FDL=FIXED/PAD=X INFILE.VAR OUTFILE.FIX

CONV-18

This command creates the fixed format file OUTFILE.FIX and then loads it
with records from the variable input file INFILE.VAR. Any short records from
the input file are padded with an ASCII X before they are loaded.

/PRO LOG

FORMAT

QUALIFIER
VALUE

DESCRIPTION

EXAMPLE

CONVERT
/PRO LOG

Specifies the prolog version number of the output indexed file.

/PROLOG=n

n
Specifies the prolog number 1, 2, or 3.

If you specify 2 for n, the output file will be either a Prolog 1 or Prolog 2 file.

If you specify 3, CONVERT creates a Prolog 3 file for output. Prolog 3
files accept multiple keys (or alternate keys), all data types, and segmented
keys. The only restriction on using a Prolog 3 file applies to files containing
overlapping key segments for the primary key. In this case, you would have
to use a Prolog 2 file.

If you do not specify the /PROLOG qualifier, CONVERT uses the prolog
version of the first input file. If the input file is not indexed, CONVERT uses
the VMS RMS default. To see what this default is on your system, enter the
DCL command SHOW RMS_DEFAULT.

The /PROLOG qualifier overrides the value given with the FDL attribute KEY
PRO LOG.

$ CONVERT/PROLOG=3 INFILE_2 OUTFILE_3

This command loads the records from the Prolog 2 input file INFILE_2 into
the Prolog 3 output file OUTFILE_3. Both the input and output file are
indexed files.

CONV-19

CONVERT
/READ_CHECK

/READ_CHECK

Specifies whether each input record is to be read from the file a second
time and compared to the record originally read.

The default is /NOREAD_CHECK.

FORMAT /READ_CHECK
/NOREAD_CH ECK

PARAMETERS None.

EXAMPLE

$ CONVERT/READ_CHECK Q3_SALES.DAT YTD_SALES.DAT

CONV-20

This command specifies that the records from the input file Q3_SALES.DAT
are to be read and checked by the file processor, and then loaded into the
output file YTD_SALES.DAT.

/SHARE

CONVERT
/SHARE

Specifies whether the input file is to be opened for sharing with other
processes.

FORMAT /SHARE
/NOSHARE

PARAMETERS None.

DESCRIPTION You can use the /SHARE option to generate a rough backup of a file that is
always opened for sharing by some applications. However, another process
can alter the records at the same time CONVERT is operating. As a result,
the consistency of the output file cannot be guaranteed.

EXAMPLE
$CONVERT/SHARE SYSUAF.DAT BACKUP.DAT

This command indicates that the input file SYSUAF.DAT is open for sharing
with other processes at the same time its records are being loaded into the
output file BACKUP.DAT.

CONV-21

CONVERT
/SORT

/SORT

Specifies whether the input file is to be sorted before being loaded into an
indexed file. The sort is done according to the primary key of the output
file.

FORMAT /SORT
/NOSORT

PARAMETERS None.

DESCRIPTION Two procedures can improve the sort performance:

CONV-22

• Increasing the size of the working set for the duration of the sort. The
general rule is to use as large a working set as allowed by your working
set quota. To set this value, use the DCL command SET
WORKING_SET. To see what your authorized quota is, enter the SHOW
WORKING_SET command.

• Placing the input file, the output file, and the temporary work files on
separate disk devices. The default operation is to place the work files
on your default device, which could cause CONVERT to run out of disk
space. To specify the location of the work files, enter a command in the
following form:

$ ASSIGN device-name: SORTWORKn

The n represents the number of the work file, from 0 to 9. The colon is
required after the device name. For example, the following two ASSIGN
commands would place the work files on disks named TMPD and DEVD:

$ ASSIGN TMPD: SORTWORKO

$ ASSIGN DEVD: SORTWORK1

Using more than two work files (the default) is not particularly
advantageous unless you have to use many smaller ones in order to
fit on crowded disks. You can control the number of work files with the
/WORK_FILES qualifier.

Also, when CONVERT uses SORT32, it may open up to 13 files. If your
process open-file limit is reached or if VMS RMS runs out of dynamic
memory, SORT32 may fail to open a necessary temporary file.

The default is /SORT. Also, this option is ignored if the output file is not
indexed.

For more information about using SORT32 with CONVERT, see the
/FAST_LOAD qualifier.

EXAMPLES

CONVERT
/SORT

iJ $CONVERT/SORT IN_INX.DAT OUT_INX.DAT

This command causes the records in the input indexed file IN _INX.DAT to
be sorted according to the primary key values before being loaded into the
output indexed file OUT_INX.DAT.

~ $ CONVERT/NOSORT/FDL=REORG INX.DAT INX.DAT

This command reorganizes the file INX.DAT according to the attributes
specified in the FDL file REORG.FDL. The primary keys are not sorted
because INX.DAT is already ordered by the primary key, and the primary key
definition did not change.

CONV-23

CONVERT
/STATISTICS

/STATISTICS

Determines whether a set of statistics about the completed conversion is
to be displayed. You can use this qualifier with both the CONVERT and
the CONVERT /RECLAIM commands.

FORMAT /STATISTICS
/NOSTATISTICS

PARAMETERS None.

DESCRIPTION Both CONVERT and CONVERT/RECLAIM have a /STATISTICS command
qualifier. The statistics produced by the Convert Utility are as follows:

• Number of files processed

• Total records processed

• Total exception records

• Total valid records

• Elapsed time

• Buffered I/O count

• Direct I/O count

• Page faults

• CPU time

The statistics produced by the Convert/Reclaim Utility are as follows:

• Total buckets scanned

• Data buckets reclaimed

• Index buckets reclaimed

• Total buckets reclaimed

• Elapsed time

• CPU time

CONVERT /RECLAIM produces no output unless you specify this qualifier.

CONV-24

EXAMPLES

CONVERT
/STATISTICS

iJ $ CONVERT/STATISTICS Q3_SALES.DAT YTD_SALES.DAT

This command causes CONVERT to load the records from the input file
Q3_SALES.DAT into the output file YTD_SALES.DAT and then to display a
set of statistics about the conversion.

~ $CONVERT/RECLAIM/STATISTICS CUSTDATA.IDX

This command causes CONVERT /RECLAIM to reclaim buckets in the
indexed file CUSTDATA.IDX and then to display statistics about the
reclamation.

CONV-25

CONVERT
/TRUNCATE

/TRUNCATE

Specifies whether long records are to be truncated.

FORMAT /TRUNCATE
/NOTRUNCATE

PARAMETERS None.

DESCRIPTION A record is too long when it exceeds the maximum record length of the file or
the record length for fixed-length record format.

EXAMPLES

If you specify /NOTRUNCATE and a long record is encountered, the record
is not written to the output file. If you specify the /EXCEPTIONS_FILE
qualifier, the entire record is written to the exceptions file.

iJ $ CONVERT/TRUNCATE INFILE.DAT OUTFILE.DAT

This command causes CONVERT to truncate any records from the input
file INFILE.DAT that are too long for the specifications of the output file
OUTFILE.DAT.

~ $ CONVERT/NOTRUNCATE/EXCEPTIONS_FILE=EXFILE INFILE OUTFILE

CONV-26

This command causes CONVERT to write any records from the input file
INFILE that are too long for the specifications of the output file OUTFILE to
the exceptions file EXFILE.

CONVERT
/WORK_FILES

/WORK_FILES

FORMAT

QUALIFIER
VALUE

DESCRIPTION

EXAMPLE

Specifies the number of temporary work files to be used during the sort
process.

/WORK_FILES=n

n
Specifies the number of work files you want. You can specify 0 or any value
from 1 through 10. A value of 0 indicates that no work files are necessary
because the data will fit into the working set of your process.

The default number of work files used during a sort is 2.

This qualifier is valid when you are fast-loading a file with multiple keys or
when you specify the /SORT qualifier. For more information about sorting,
see both the /SORT and the /FAST_LOAD qualifiers.

$ CONVERT/WORK_FILES=O UPDATE.DAT MASTER.DAT

This command loads the records from the input file UPDATE.DAT into the
output file MASTER.DAT without using any work files.

CONV-27

CONVERT
/WRITE_CHECK

/WRITE_CHECK

Specifies whether all writes are to be checked by reading the new records
from the disk and comparing the new records with the original records in
memory.

FORMAT /WRITE_CHECK
/NOWRITE_CHECK

PARAMETERS None.

EXAMPLE

$ CONVERT/WRITE_CHECK UPDATE.DAT MASTER.DAT

CONV-28

This command causes CONVERT to load the records from the input file
UPDATE.DAT into the output file MASTER.DAT and then to compare the
written records with the original records for accuracy.

CONVERT
EXAMPLES

CONVERT
CONVERT Examples

iJ $ CONVERT/NOCREATE/TRUNCATE/EXCEPTIONS_FILE=EXFILE VARFILE.DAT FIXFILE.DAT

This command causes CONVERT to copy records from a file with
variable-length records (VARFILE.DAT) to a file with fixed-length records
(FIXFILE.DAT). Records longer than the fixed length are truncated, and short
records are copied to the exceptions file EXFILE.EXC.

~ $ CONVERT FILE.IDX FILE.IDX

This command creates the output file FILE.IDX with a version number one
higher than that of the input file. The output file is a copy of the input file,
but it is a clean copy without bucket splits, RRVs (record reference vectors),
or pointers to deleted records. The performance of the output file is also
improved.

Note that CONVERT establishes new RFAs during such reorganizations.

E] $ CONVERT/RECLAIM/STATISTICS FILE.IDX

This command reclaims empty buckets in the file FILE.IDX. The RFA values
are preserved.

~ $ CONVERT/FDL=TEST.FDL TRNTO: :DBA1: [EXP] SUB.DAT OUT.DAT

This command creates a new sequential file OUT.DAT with stream record
format at the local node, according to the specification in the previously
created FDL file TEST.FDL. The input file SUB.DAT at remote node TRNTO
is sequential with variable-length record format. The Convert Utility copies
records from SUB.DAT to OUT.DAT, changing the format of the records.

The contents of the FDL file TEST.FDL are as follows:

SYSTEM
SOURCE VAX/VMS

FILE
ORGANIZATION SEQUENTIAL

RECORD
BLOCK_SPAN YES
CARRIAGE_CONTROL CARRIAGE_RETURN
FORMAT STREAM
SIZE 0

~ $CONVERT MASTER.DAT DENVER: :DB1: [PROD]MASTER.SAV

This command creates a new file called MASTER.SAY at remote node
DENVER from the file MASTER.DAT at the local node. Because the /FDL
qualifier is not used, the new file has the same file organization and record
format as the original file. The action of this CONVERT command is similar
to the function performed by the COPY command. However, CONVERT
transfers the file record by record and thus does not use block 1/0.

CONV-29

CONVERT
CONVERT Examples

~ $CONVERT/APPEND SALES.TMP KANSAS:: [200,2]SALES.CMD

This command causes records from the file SALES.TMP at the local node to
be added sequentially to the end of the output file SALES.CMD at remote
node KANSAS. The file SALES.TMP is sequential with variable-length record
format, and the file SALES.CMD is sequential with stream record format.
When the Convert Utility loads records from the input file to the output file,
it changes the record format.

~ $ CONVERT/FDL=FIXED/PAD=O/TRUNCATE INFILE.VAR OUTFILE.FIX

This command creates the fixed format file OUTFILE.FIX and then loads it
with records from the variable input file INFILE.VAR. Before they are loaded,
any short records from the input file are padded with an ASCII 0 character,
and any long records are truncated.

f:J $ CONVERT/FDL=SYS$INPUT FORT.DAT STREAM.DAT
FILE

ORGANIZATION SEQUENTIAL

RECORD
CARRIAGE_ CONTROL

.-----.. FORMAT
JcTRL/ZJ

CARRIAGE_RETURN
STREAM

This command converts the FORTRAN carriage control file FORT.DAT to a
stream file that prints or types identically. The number of records may differ,
and the FORTRAN carriage control information is removed from the records.

~ $ CONVERT/FDL=SYS$INPUT FORT.DAT VAR.DAT
FILE

ORGANIZATION SEQUENTIAL

RECORD
CARRIAGE_ CONTROL

.-----.. FORMAT
jCTRL/ZJ

CARRIAGE_RETURN
VARIABLE

CONV-30

This command converts the FORTRAN carriage control file FORT.DAT to
a variable-length record file. The FORTRAN carriage control information is
preserved as the first data byte, and the number of records in the output and
input files is the same.

Index

A
/APPEND qualifier• CONV-1, CONV-7
ASCII pad character• CONV-18
ASCII space character

conversion function • CONV-3

B
Bucket

fill percentage • CONV-14
list of free• CONV-4
reclaiming• CONV-1

Buffered 1/0 count• CONV-24

c
Carriage control• CONV-2

converting formats• CONV-2
formats listed• CONV-2

Character
pad• CONV-18

Concatenating input files• CONV-5
CONV$RECLAIM routine• CONV-4
Conversion• CONV-3

of VFC records• CONV-15
Convert/Reclaim• CONV-3
Convert/Reclaim Utility (CONVERT /RECLAIM) •

CONV-1
directing output• CONV-5
exiting• CONV-5
invoking• CONV-5
restrictions • CONV-5
with DECnet-VAX• CONV-3

Convert Utility (CONVERT) • CONV-1
DCL qualifiers• CONV-5 to CONV-28
directing output• CONV-5
establishing RF As• CONV-4
examples• CONV-28 to CONV-30
restrictions • CONV-5
with DECnet-VAX• CONV-3

CPU time• CONV-24

/CREATE qualifier• CONV-8, CONV-17

D
Data bucket

reclaiming• CONV-24
Data files

creating• CONV-1
DECnet-VAX

using the Convert/Reclaim Utility with• CONV-3
using the Convert Utility with• CONV-3

Direct 1/0 count• CONV-24
Directing output of CONVERT• CONV-5
Directing output of CONVERT /RECLAIM• CONV-5

E
Elapsed time• CONV-24
Error message

warning• CONV-3
Examples

appending a remote file• CONV-30
converting a carriage control file to stream•

CONV-30
converting a carriage control file to variable

length • CONV-30
converting a remote file• CONV-29
converting fixed format to variable-length•

CONV-30
converting record formats• CONV-29
improving a file's performance• CONV-29
reclaiming buckets• CONV-29
reorganizing a remote file• CONV-29

Exception condition• CONV-3
Exception record • CONV-3
Exceptions file • CONV-3
/EXCEPTIONS_FILE qualifier•CONV-9, CONV-26
EXC file type• CONV-3
Exiting CONVERT• CONV-5
Exiting CONVERT /RECLAIM• CONV-5
/EXIT qualifier• CONV-10

lndex-1

Index

F
/FAST _LOAD option

compared with /NOFAST_LOAD option•
CONV-11

/FAST_LOAD qualifier•CONV-11
FOL file

with CONVERT• CONV-1
/FOL qualifier

with CONVERT• CONV-1, CONV-13
File

exceptions • CONV-3
how CONVERT processes• CONV-11
organization• CONV-1
reorganization • CONV-4
temporary• CONV-27
transferring to and from remote node• CONV-3

File Definition Language

See FOL file
File specification• CONV-5
File type• CONV-5

EXC•CONV-3
/FILL_BUCKETS qualifier• CONV-14
Fixed-length record• CONV-18, CONV-26
/FIXED_CONTROL qualifier• CONV-15
Format

of fixed-length record • CONV-1 8
FORTRAN carriage control• CONV-2
Free bucket list• CONV-4

I
1/0 counts• CONV-24
Index bucket

reclaiming• CONV-24
Indexed file

loading• CONV-11
Prolog 3 • CONV-1
reformatting• CONV-1

Input file
concatentating • CONV-5

Invoking CONVERT• CONV-5
Invoking CONVERT /RECLAIM• CONV-5

lndex-2

K
KEY DESCRIPTOR

how updated by CONVERT• CONV-11
Key of reference • CONV-1 6
KEY PROLOG attribute• CONV-19
/KEY qualifier• CONV-16

L
Library routine• CONV-1

M
/MERGE qualifier• CONV-1, CONV-17
Multiple input files• CONV-5
Multiple keys• CONV-27

N
/NOAPPEND qualifier• CONV-7
/NOCREA TE qualifier• CONV-8
/NOEXCEPTIONS_FILE qualifier• CONV-9
/NOEXIT qualifier• CONV-10
/NOFAST_LOAD option

compared with /FAST_LOAD option•
CONV-11

/NOFAST_LOAD qualifier• CONV-11
/NOFILL _BUCKETS qualifier• CONV-14
/NOFIXED_CONTROL qualifier• CONV-15
/NOP AD qualifier• CONV-18
/NOREAD_CHECK qualifier• CONV-20
/NOSHARE qualifier• CONV-2 1
/NOSORT qualifier• CONV-22

for avoiding unnecessary sort• CONV-11
/NOST A TISTICS qualifier

with CONVERT• CONV-24
with CONVERT /RECLAIM• CONV-5,

CONV-24
/NOTRUNCA TE qualifier• CONV-26
/NOWRITE_CHECK qualifier• CONV-28
NULL pad character• CONV-18
Number of files processed• CONV-24

0
Organizing a file• CONV-1
Output file

creating • CONV-1
how effected by CONVERT• CONV-3
loading• CONV-1

p
Pad character• CONV-18

how to select• CONV-3
Padding records• CONV-3
/PAD qualifier• CONV-3, CONV-18
Page fault•CONV-24
Primary key• CONV-16
PRINT carriage control• CONV-2
Prolog 3 file• CONV-1
PROLOG attribute • CONV-19
/PROLOG qualifier• CONV-19

Q
Qualifier• CONV-5 to CONV-28

R
/READ_CHECK qualifier• CONV-20
Reclaiming buckets• CONV-1
Reclamation statistics• CONV-24
Record

fixed-length format• CONV-1 8
format• CONV-1
maximum length• CONV-26

Record file address
See RFA

Reorganizing a file• CONV-4
Restrictions of CONVERT• CONV-5
Restrictions of CONVERT /RECLAIM• CONV-5
RFA (record file address)• CONV-1, CONV-4

access • CONV-4
Routine

calling from a program• CONV-1

s
Scratch file• CONV-11
Secondary index data record

See SIDR
/SHARE qualifier• CONV-21

Index

SHOW RMS_DEFAUL T command• CONV-19
SIDR (secondary index data record)

for storing sorted pointers • CONV-12
Sort

suggestions for improving performance•
CONV-22

SORT32
open file limitation• CONV-22

/SORT qualifier• CONV-22, CONV-27
Statistics

produced by CONVERT• CONV-24
produced by CONVERT /RECLAIM• CONV-24

/ST A TISTICS qualifier
with CONVERT /RECLAIM• CONV-5,

CONV-24
STREAM carriage control• CONV-2
SYS$ERROR warning message• CONV-3
SYS$0UTPUT

with CONVERT• CONV-9

T
Temporary file• CONV-27
Total buckets reclaimed• CONV-24
Total buckets scanned• CONV-24
Total exception records• CONV-24
Total records processed• CONV-24
Total valid records• CONV-24
/TRUNCATE qualifier• CONV-3, CONV-26
Truncation of records• CONV-3

v
VFC record

converting • CONV-1 5
VMS RMS

default• CONV-19
Put service • CONV-11
role in reclaiming buckets• CONV-4

lndex-3

Index

w
Warning message• CONV-3
Wildcard character• CONV-5
Working set

adjusting for optimal sort performance•
CONV-22

Working set quota
how to determine• CONV-22

/WORK_FILES qualifier• CONV-12, CONV-27
/WRITE_CHECK qualifier• CONV-28

lndex-4

Reader's Comments VMS Convert and
Convert/Reclaim Utility

Manual
AA-LA80A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

-- Do Not Tear - Fold Here and Tape -------------------[lllr--------------
No Postage

~nmnamn™ ~;~=~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ... 1.11 .. 1

in the
United States

- Do Not Tear - Fold Here --

I

I
I
I
I
I
I

