
VAX MACRO and
Instruction Set Reference
Manual

Order Number: AA-LA89A-TE

April 1988

This document describes the features of the VAX MACRO instruction set
and assembler. It includes a detailed description of MACRO directives and
instructions, as well as information about MACRO source program syntax.

Revision/Update Information: This manual supersedes the VAX
MACRO and Instruction Set Reference
Manual, Version 4.0.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

t:JD~DD5lD TM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA 8t PUERTO Rico* CANADA INTERNATIONAL

ZK4515

Digital Equipment Corporation
P.O. Box CS2008

Digital Equipment
of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire
03061

100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

c/o Digital's local subsidiary
or approved distributor

•Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE xix

NEW AND CHANGED FEATURES xxiii

VAX MACRO LANGUAGE

CHAPTER 1 INTRODUCTION 1-1

CHAPTER 2 MACRO SOURCE STATEMENT FORMAT 2-1

2.1 LABEL FIELD 2-2

2.2 OPERATOR FIELD 2-3

2.3 OPERAND FIELD 2-3

2.4 COMMENT FIELD 2-3

CHAPTER 3 COMPONENTS OF MACRO SOURCE STATEMENTS 3-1

3.1

3.2
3.2.1
3.2.2
3.2.3

3.3
3.3.1
3.3.2
3.3.3

CHARACTER SET

NUMBERS
Integers
Floating-Point Numbers
Packed Decimal Strings

SYMBOLS
Permanent Symbols
User-Defined Symbols and Macro Names
Determining Symbol Values

3-1

3-2
3-3
3-3
3-4

3-4
3-4
3-5
3-6

v

Contents

3.4 LOCAL LABELS 3-7

3.5 TERMS AND EXPRESSIONS 3-9

3.6 UNARY OPERATORS 3-10
3.6.1 Radix Control Operators 3-11
3.6.2 Textual Operators 3-12
3.6.2.1 ASCII Operator • 3-13
3.6.2.2 Register Mask Operator • 3-13
3.6.3 Numeric Control Operators 3-14
3.6.3.1 Floating-Point Operator • 3-14
3.6.3.2 Complement Operator • 3-15

3.7 BINARY OPERATORS 3-15
3.7.1 Arithmetic Shift Operator 3-16
3.7.2 Logical AND Operator 3-16
3.7.3 Logical Inclusive OR Operator 3-16
3.7.4 Logical Exclusive OR Operator 3-16

3.8 DIRECT ASSIGNMENT STATEMENTS 3-17

3.9 CURRENT LOCATION COUNTER 3-17

CHAPTER4 MACRO ARGUMENTS AND STRING OPERATORS 4-1

4.1 ARGUMENTS IN MACROS 4-1

4.2 DEFAULT VALUES 4-2

4.3 KEYWORD ARGUMENTS 4-3

4.4 STRING ARGUMENTS 4-3

4.5 ARGUMENT CONCATENATION 4-5

4.6 PASSING NUMERIC VALUES OF SYMBOLS 4-6

4.7 CREATED LOCAL LABELS 4-7

vi

4.8
4.8.1
4.8.2
4.8.3

CHAPTER 5

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8

5.2
5.2.1
5.2.2
5.2.3
'5.2.4
5.2.5

5.3

5.4

CHAPTER 6

MACRO STRING OPERATORS
%LENGTH Operator
%LOCATE Operator
%EXTRACT Operator

MACRO ADDRESSING MODES

GENERAL REGISTER MODES
Register Mode
Register Deferred Mode
Autoincrement Mode
Autoincrement Deferred Mode
Autodecrement Mode
Displacement Mode
Displacement Deferred Mode
Literal Mode

PROGRAM COUNTER MODES
Relative Mode
Relative Deferred Mode
Absolute Mode
Immediate Mode
General Mode

INDEX MODE

BRANCH MODE

MACRO ASSEMBLER DIRECTIVES
.ADDRESS
.ALIGN
.ASCIX
.ASCIC
.ASCID
.ASCII
.ASCIZ
.BLKX
.BYTE
.CROSS

Contents

6-4
6-5
6-7
6-8
6-9

6-10
6-11
6-12
6-14
6-16

4-8
4-8
4-9

4-10

5-1

5-1
5-4
5-5
5-5
5-6
5-7
5-8
5-9

5-10

5-12
5-12
5-13
5-14
5-14
5-15

5-16

5-18

6-1

vii

Contents

.DEBUG 6-18

.DEFAULT 6-19

.D_FLOATING 6-20

.DISABLE 6-21

.ENABLE 6-22

.END 6-25

.ENDC 6-26

.ENDM 6-27

.ENDR 6-28

.ENTRY 6-29

.ERROR 6-31

.EVEN 6-32

.EXTERNAL 6-33

.F_FLOATING 6-34

.G_FLOATING 6-35

.GLOBAL 6-36

.H_FLOATING 6-37

.IDENT 6-38

.IF 6-39

.1F_x 6-42

.llF 6-45

.IRP 6-46

.IRPC 6-48

.LIBRARY 6-50

.LINK 6-51

.LIST 6-54

.LONG 6-55

.MACRO 6-56

.MASK 6-58

.MCALL 6-59

.MDELETE 6-60

.MEXIT 6-61

.NARG 6-62

.NCHR 6-63

.NLIST 6-64

.NOCROSS 6-65

.NOSHOW 6-66

.NTYPE 6-67

.OCTA 6-69

.ODD 6-70

.OP DEF 6-71

.PACKED 6-73

viii

Contents

.PAGE 6-74

.PRINT 6-75

.PSECT 6-76

.QUAD 6-80

.REFN 6-81

.REPEAT 6-82

.RESTORE_PSECT 6-84

.SAVE_PSECT 6-85

.SHOW 6-87

.SIGNED_BYTE 6-89

.SIGNED_WORD 6-90

.SUBTITLE 6-92

.TITLE 6-93

.TRANSFER 6-94

.WARN 6-97

.WEAK 6-98

.WORD 6-99

VAX DATA TYPES AND INSTRUCTION SET

CHAPTER7 TERMINOLOGY AND CONVENTIONS 7-1

7.1 NUMBERING 7-1

7.2 UNPREDICTABLE AND UNDEFINED 7-1

7.3 RANGES AND EXTENTS 7-1

7.4 MBZ 7-1

7.5 RESERVED 7-2

7.6 FIGURE DRAWING CONVENTIONS 7-2

ix

Contents

CHAPTERS BASIC ARCHITECTURE 8-1

8.1 VAX ADDRESSING 8-1

8.2 DATA TYPES 8-1
8.2.1 Byte 8-1
8.2.2 Word 8-1
8.2.3 Longword 8-2
8.2.4 Quadword 8-2
8.2.5 Octa word 8-3
8.2.6 F_floating 8-3
8.2.7 D_floating 8-4
8.2.8 G_floating 8-4
8.2.9 H_floating 8-5
8.2.10 Variable-Length Bit Field 8-5
8.2.11 Character String 8-7
8.2.12 Trailing Numeric String 8-7
8.2.13 Leading Separate Numeric String 8-11
8.2.14 Packed Decimal String 8-12

8.3 PROCESSOR STATUS LONGWORD (PSL) 8-13
8.3.1 C Bit 8-14
8.3.2 V Bit 8-14
8.3.3 Z Bit 8-14
8.3.4 N Bit 8-14
8.3.5 T Bit 8-14
8.3.6 IV Bit 8-14
8.3.7 FU Bit 8-14
8.3.8 DV Bit 8-15

8.4 PERMANENT EXCEPTION ENABLES 8-15
8.4.1 Divide by Zero 8-15
8.4.2 Floating Overflow 8-15

8.5 INSTRUCTION AND ADDRESSING MODE FORMATS 8-15
8.5.1 Opcode Formats 8-15
8.5.2 Operand Specifiers 8-16

8.6 GENERAL ADDRESSING MODE FORMATS 8-17
8.6.1 Register Mode 8-17
8.6.2 Register Deferred Mode 8-18
8.6.3 Autoincrement Mode 8-18

x

Contents

8.6.4 Autoincrement Deferred Mode 8-19
8.6.5 Autodecrement Mode 8-19
8.6.6 Displacement Mode 8-20
8.6.7 Displacement Deferred Mode 8-20
8.6.8 Literal Mode 8-21
8.6.9 Index Mode 8-23

8.7 SUMMARY OF GENERAL MODE ADDRESSING 8-25

8.8 BRANCH MODE ADDRESSING FORMATS 8-26

CHAPTER9 VAX INSTRUCTION SET 9-1

9.1 INTRODUCTION 9-1

9.2 INSTRUCTION DESCRIPTIONS 9-1
9.2.1 Operand Specifier Notation 9-2
9.2.2 Operation Description Notation 9-3

9.3 INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS 9-5
ADAWI 9-7
ADD 9-8
ADWC 9-9
ASH 9-10
BIC 9-11
BIS 9-12
BIT 9-13
CLR 9-14
CMP 9-15
CVT 9-16
DEC 9-17
DIV 9-18
EDIV 9-19
EMUL 9-20
INC 9-21
MCOM 9-22
MNEG 9-23
MOV 9-24
MOVZ 9-25
MUL 9-26

xi

Contents

PUSHL 9-27
ROTL 9-28
SBWC 9-29
SUB 9-30
TST 9-31
XOR 9-32

9.4 ADDRESS INSTRUCTIONS 9-33
MOVA 9-34
PUS HA 9-35

9.5 VARIABLE-LENGTH BIT FIELD INSTRUCTIONS 9-36
CMP 9-38
EXT 9-39
FF 9-40
INSV 9-41

9.6 CONTROL INSTRUCTIONS 9-42
ACB 9-44
AOBLEQ 9-46
AOBLSS 9-47
B 9-48
BB 9-50
BB 9-51
BB 9-52
BLB 9-53
BR 9-54
BSB 9-55
CASE 9-56
JMP 9-58
JSB 9-59
RSB 9-60
SOBGEQ 9-61
SOBGTR 9-62

9.7 PROCEDURE CALL INSTRUCTIONS 9-63
CALLG 9-65
CALLS 9-67
RET 9-69

9.8 MISCELLANEOUS INSTRUCTIONS 9-70

xii

Contents

BICPSW 9-71
BISPSW 9-72
BPT 9-73
HALT 9-74
INDEX 9-75
MOVPSL 9-77
NOP 9-78
POPR 9-79
PUS HR 9-80
XFC 9-81

9.9 QUEUE INSTRUCTIONS 9-82
9.9.1 Absolute Queues 9-82
9.9.2 Self-Relative Queues 9-85
9.9.3 Instruction Descriptions 9-88

INSQHI 9-89
INSQTI 9-91
INSQUE 9-93
REMQHI 9-95
REMQTI 9-97
REM QUE 9-99

9.10 FLOATING POINT INSTRUCTIONS 9-101
9.10.1 Introduction 9-101
9.10.2 Overview of the Instruction Set 9-102
9.10.3 Accuracy 9-103
9.10.4 Instruction Descriptions 9-104

ADD 9-106
CLR 9-107
CMP 9-108
CVT 9-109
DIV 9-112
EMOD 9-114
MNEG 9-116
MOV 9-117
MUL 9-118
POLY 9-119
SUB 9-122
TST 9-123

9.11 CHARACTER STRING INSTRUCTIONS 9-124
CMPC 9-126

xiii

Contents

LOCC 9-128
MATCHC 9-129
MOVC 9-130
MOVTC 9-132
MOVTUC 9-133
SCANC 9-135
SKPC 9-136
SPANC 9-137

9.12 CYCLIC REDUNDANCY CHECK INSTRUCTION 9-138
CRC 9-139

9.13 DECIMAL STRING INSTRUCTIONS 9-141
9.13.1 Decimal Overflow 9-142
9.13.2 Zero Numbers 9-142
9.13.3 Reserved Operand Exception 9-142
9.13.4 UNPREDICTABLE Results 9-142
9.13.5 Packed Decimal Operations 9-143
9.13.6 Zero-Length Decimal Strings 9-143
9.13.7 Instruction Descriptions 9-143

ADDP 9-145
ASHP 9-147
CMPP 9-149
CVTLP 9-150
CVTPL 9-151
CVTPS 9-152
CVTPT 9-154
CVTSP 9-156
CVTTP 9-157
DIVP 9-159
MOVP 9-161
MULP 9-162
SUBP 9-163

9.14 THE EDITPC INSTRUCTION AND ITS PATTERN
OPERATORS 9-165

EDITPC 9-166
E0$ADJUST_INPUT 9-171
EO$BLANK_lERO 9-172
EO$END 9-173
EO$END_fLOAT 9-174
EO$FILL 9-175

xiv

Contents

EO$FLOAT 9-176
E0$1NSERT 9-177
EOSLOAD_ 9-178
EOSMOVE 9-179
EO$REPLACE_SIGN 9-180
EO$_SIGNIF 9-181
EO$STORE_SIGN 9-182

9.15 OTHER VAX INSTRUCTIONS 9-183
PRO BEX 9-184
CHM 9-186
REI 9-188
LDPCTX 9-189
SVPCTX 9-190
MTPR 9-191
MFPR 9-192
BUG 9-193

APPENDIX A ASCII CHARACTER SET A-1

APPENDIX B HEXADECIMAL/DECIMAL CONVERSION B-1

B.1 HEXADECIMAL TO DECIMAL B-1

B.2 DECIMAL TO HEXADECIMAL B-1

B.3 POWERS OF 2 AND 16 B-2

APPENDIX C VAX MACRO ASSEMBLER DIRECTIVES AND LANGUAGE

C.1

C.2

C.3
C.3.1

SUMMARY C-1

ASSEMBLER DIRECTIVES

SPECIAL CHARACTERS

OPERATORS
Unary Operators

C-1

C-6

C-7
C-7

xv

Contents

C.3.2
C.3.3

C.4

Binary Operators
Macro String Operators

ADDRESSING MODES

APPENDIX D PERMANENT SYMBOL TABLE

D.1 OPCODES (ALPHABETIC ORDER)

D.2 OPCODES (NUMERIC ORDER)

APPENDIX E EXCEPTIONS

E.1 ARITHMETIC TRAPS AND FAULTS
E.1.1 Integer Overflow Trap
E.1.2 Integer Divide-by-Zero Trap
E.1.3 Floating Overflow Trap
E.1.4 Divide-by-Zero Trap
E.1.5 Floating Underflow Trap
E.1.6 Decimal String Overflow Trap
E.1.7 Subscript-Range Trap
E.1.8 Floating Overflow Fault
E.1.9 Divide-by-Zero Floating Fault
E.1.10 Floating Underflow Fault

E.2 MEMORY MANAGEMENT EXCEPTIONS
E.2.1 Access Control Violation Fault
E.2.2 Translation Not Valid Fault

E.3 EXCEPTIONS DETECTED DURING OPERAND REFERENCE
E.3.1 Reserved Addressing Mode Fault
E.3.2 Reserved Operand Exception

E.4 EXCEPTIONS OCCURRING AS THE CONSEQUENCE OF AN
INSTRUCTION

E.4.1 Reserved or Privileged Instruction Fault
E.4.2 Operand Reserved to Customers Fault
E.4.3 Instruction Emulation Exceptions
E.4.4 Compatibility Mode Exception

xvi

C-8
C-8

C-9

D-1

D-1

D-10

E-1

E-1
E-2
E-2
E-2
E-2
E-2
E-3
E-3
E-3
E-3
E-3

E-3
E-4
E-4

E-4
E-4
E-4

E-5
E-5
E-6
E-6
E-6

E.4.5
E.4.6

E.5
E.5.1
E.5.2
E.5.3
E.5.4

E.6
E.6.1
E.6.2
E.6.3

INDEX

FIGURES
6-1

E-1

TABLES
3-1

3-2

3-3

3-4
5-1
5-2

5-3
5-4
6-1

6-2

6-3

6-4
6-5

6-6

6-7

6-8

Change Mode Trap
Breakpoint Fault

TRACE FAULT
Trace Operation When Entering a Change Mode Instruction
Trace Operation Upon Return From Interrupt
Trace Operation After a BISPSW Instruction
Trace Operation After a CALLS or CALLG Instruction

SERIOUS SYSTEM FAILURES
Kernel Stack Not Valid Abort
Interrupt Stack Not VaUd Halt
Machine Check Exception

Using Transfer Vectors

Compatibility Mode Exception Stack Frame

Special Characters Used in VAX MACRO Statements _

Separating Characters in VAX MACRO Statements

Unary Operators

Binary Operators

Addressing Modes

Floating-Point Literals Expressed as Decimal Numbers

Floating-Point Literals Expressed as Rational Numbers

Index Mode Addressing

Summary of General Assembler Directives

Summary of Macro Directives

. ENABLE and . DISABLE Symbolic Arguments

Condition Tests for Conditional Assembly Directives

Operand Descriptors

Program Section Attributes

Default Program Section Attributes

.SHOW and .NOSHOW Symbolic Arguments

Contents

E-7
E-7

E-8
E-9
E-9
E-9
E-9

E-9
E-10
E-10
E-10

6-95

E-6

3-1

3-2

3-11
3-15
5-2

5-11

5-11

5-18
6-1

6-3

6-22

6-40
6-71

6-76
6-78

6-87

xvii

Contents

8-1 Representation of Least-Significant Digit and Sign in
Zoned Numeric Format 8-9

8-2 Representation of Least-Significant Digit and Sign in
Overpunch Format 8-10

8-3 Floating-Point Literals Expressed as Decimal Numbers 8-23

8-4 Floating-Point Literals Expressed as Rational Numbers 8-23

8-5 General Register Addressing 8-25

8-6 Program Counter Addressing 8-26

9-1 Summary of EDITPC Pattern Operators 9-168

9-2 EDITPC Pattern Operator Encoding 9-169

A-1 Decimal, Hexadecimal, and ASCII Conversion A-1

B-1 Hexadecimal to Decimal Conversion B-2

C-1 Assembler Directives C-1

C-2 Special Characters Used in VAX MACRO Statements C-6

C-3 Unary Operators C-7

C-4 Binary Operators C-8

C-5 Macro String Operators C-8

C-6 Addressing Modes C-9

D-1 Opcodes and Functions D-1

D-2 One-Byte Opcodes D-10

D-3 Two-Byte Opcodes D-14

E-1 Arithmetic Exception Type Codes E-1

E-2 Compatibility Mode Exception Type Codes E-7

xviii

Preface

This manual describes the VAX MACRO language and the VAX instruction
set. It includes the format and function of each feature of the language. The
VAX Architecture Reference Manual describes the instruction set in greater
detail.

Intended Audience
This manual is intended for all programmers writing VAX MACRO programs.
You should be familiar with assembly language programming, the VAX
instruction set, and the VMS operating system before reading this manual.

Document Structure
This manual is divided into two parts, each of which is subdivided into
several chapters.

Part I describes the VAX MACRO language.

• Chapter 1 introduces the features of the VAX MACRO language.

• Chapter 2 describes the format used in VAX MACRO source statements.

• Chapter 3 describes the following components of VAX MACRO source
statements:

Character set

Numbers

Symbols

Local labels

Terms and expressions

Unary and binary operators

Direct assignment statements

Current location counter

• Chapter 4 describes the arguments and string operators used with macros.

• Chapter 5 summarizes and gives examples of using the VAX MACRO
addressing modes.

• Chapter 6 describes the VAX MACRO general assembler directives and
the directives used in defining and expanding macros.

Part II describes the VAX data types, the instruction and addressing mode
formats, and the instruction set.

• Chapter 7 summarizes the terminology and conventions used in the
descriptions in Part II.

xix

Preface

• Chapter 8 describes the basic VAX architecture, including the following:

Address space

Data types

Processor state

Processor status longword

Permanent exception enables

Instruction and addressing mode formats

• Chapter 9 describes the native-mode instruction set. The instructions
are divided into groups according to their function and are listed
alphabetically within each group.

VAX MACRO and Instruction Set Reference Manual also contains the following
five appendixes:

• Appendix A lists the ASCII character set used in VAX MACRO programs.

• Appendix B gives rules for hexadecimal/decimal conversion.

• Appendix C summarizes the general assembler and macro directives (in
alphabetical order), special characters, unary operators, binary operators,
and addressing modes.

• Appendix D lists the permanent symbols (instruction set) defined for use
with VAX MACRO.

• Appendix E describes the exceptions (traps and faults) that may occur
during instruction execution.

Associated Documents

xx

The following documents are relevant to VAX MACRO programming:

• VAX Architecture Reference Manual

• VMS DCL Dictionary

• The descriptions of the VMS Linker and Symbolic Debugger in:

VMS Linker Utility Manual

VMS Debugger Manual

• Introduction to VMS System Routines

• VMS Run-Time Library Routines Volume

Conventions
Convention

CTRL/C

UPPERCASE WORDS
AND LETTERS

lowercase words
and letters

$TYPE MYFILE.DAT

input-file, ...

[logical-name]

quotation marks
apostrophes

Preface

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

Uppercase words and letters used in format
examples indicate that you should type the
word or letter exactly as shown.

Lowercase words and letters used in format
examples indicate that you are to substitute a
word or value of your choice.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specif~cation or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (') is used to refer to a single
quotation mark.

xxi

New and Changed Features

The following technical changes have been made since Version 4.0:

• A list of instructions that manipulate self-relative queues was added to
the end of Section 9.9.2.

• The use of POPL was added to the description of the PUSHL instruction
in Section 9.3.

xx iii

VAX MACRO Language
Part I provides an overview of the features of the VAX MACRO language.
It includes an introduction to the structure and components of VAX
MACRO source statements. Part I also contains a detailed discussion of
the VAX MACRO addressing modes, general assembler directives, and
macro directives.

1 Introduction

VAX MACRO is an assembly language for programming VAX computers
using the VMS operating system. Source programs written in VAX MACRO
are translated into object (or binary) code by the VAX MACRO assembler,
which produces an object module and, optionally, a listing file. The features
of the language are introduced in this chapter.

VAX MACRO source programs consist of a sequence of source statements.
These source statements may be any of the following:

• VAX native-mode instructions

• Direct assignment statements

• Assembler directives

Instructions manipulate data. They perform such functions as addition, data
conversion, and transfer of control. Instructions are usually followed in the
source statement by operands, which can be any kind of data needed for
the operation of the instruction. The VAX instruction set is summarized in
Appendix D of this volume and is described in detail in Chapter 9.

Direct assignment statements equate symbols to values.

Assembler directives guide the assembly process and provide tools for using
the instructions. There are two classes of assembler directives: general
assembler directives and macro directives.

General assembler directives can be used to perform the following operations:

• Store data or reserve memory for data storage

• Control the alignment of parts of the program in memory

• Specify the methods of accessing the sections of memory in which the
program will be stored

• Specify the entry point of the program or a part of the program

• Specify the way in which symbols will be referenced

• Specify that a part of the program is to be assembled only under certain
conditions

• Control the format and content of the listing file

• Display informational messages

• Control the assembler options that are used to interpret the source
program

• Define new opcodes

Macro directives are used to define macros and repeat blocks. They allow you
to perform the following operations:

• Repeat identical or similar sequences of source statements throughout a
program without rewriting those sequences

1-1

Introduction

1-2

• Use string operators to manipulate and test the contents of source
statements

Use of macros and repeat blocks helps minimize programmer errors and
speeds the debugging process.

2 MACRO Source Statement Format

A source program consists of a sequence of source statements that the
assembler interprets and processes, one at a time, generating object code
or performing a specific assembly-time process. A source statement can
occupy one source line or can extend onto several source lines. Each source
line can be up to 132 characters long; however, to ensure that the source line
fits (with its binary expansion) on one line in the listing file, no line should
exceed 80 characters.

MACRO statements can consist of up to four fields, as follows:

• Label field-symbolically defines a location in a program.

• Operator field-specifies the action to be performed by the statement; can
be an instruction, an assembler directive, or a macro call.

• Operand field-contains the instruction operand(s) or the assembler
directive argument(s) or the macro argument(s).

• Comment field-contains a comment that explains the meaning of the
statement; does not affect program execution.

The label field and the comment field are optional. The label field ends
with a colon (:) and the comment field begins with a semicolon (;). The
operand field must conform to the format of the instruction, directive, or
macro specified in the operator field.

Although statement fields can be separated by either a space or a tab (see
Table 3-2), formatting statements with the tab character is recommended for
consistency and clarity and is a DIGITAL convention.

Field

Label

Operator

Operand

Comment

For example:

Begins in Column

1

9

17

41

.TITLE ROUT1

.ENTRY START,-M<>
CLRL RO

LABT: SUBL3 #10,4(AP),R2
LAB2: BRB CONT

Tab Characters to Reach Column

0

1

2

5

Beginning of routine
Clear register
Subtract 10
Branch to another routine

Continue a single statement on several lines by using a hyphen (-) as the
last nonblank character before the comment field, or at the end of line (when
there is no comment). For example:

LAB!: MOVAL w-BOO$AL_VECTOR,
RPB$L_IOVEC(R7)

; Save boot driver

2-1

MACRO Source Statement Format

2.1 Label Field

2-2

VAX MACRO treats the preceding statement as equivalent to the following
statement:

LAB1: MOVAL w-BOOAL_VECTOR,RPBL_IOVEC(R7) ; Save boot driver

A statement can be continued at any point. Do not continue permanent and
user-defined symbol names on two lines. If a symbol name is continued and
the first character on the second line is a tab or a blank, the symbol name is
terminated at that character. Section 3.3 describes symbols in detail.

Note that when a statement occurs in a macro definition (see Chapter 4 and
Chapter 6), the statement cannot contain more than 1000 characters.

Blank lines are legal, but they have no significance in the source program
except that they terminate a continued line.

The following sections describe each of the statement fields in detail.

A label is a user-defined symbol that identifies a location in the program.
The symbol is assigned a value equal to the location counter where the label
occurs. The user-defined symbol name can be up to 31 characters long and
can contain any alphanumeric character and the underscore (-), dollar sign
($), and period (.) characters. Section 3.3.2 describes the rules for forming
user-defined symbol names in more detail.

If a statement contains a label, the label must be in the first field on the line.

A label is terminated by a colon (:) or a double colon (::). A single colon
indicates that the label is defined only for the current module (an internal
symbol). A double colon indicates that the label is globally defined; that is,
the label can be referenced by other object modules.

Once a label is defined, it cannot be redefined during the source program. If
a label is defined more than once, VAX MACRO displays an error message
when the label is defined and again when it is referenced.

If a label extends past column 7, place it on a line by itself so that the
following operator field can start in column 9 of the next line.

The following example illustrates some of the ways you can define labels:

EXP: .BLKL 50 Table stores expected values
DATA:: .BLKW 25 Data table accessed by store

routine in another module
EVAL: CLRL RO Routine evaluates expressions
ERROR_IN_ARG: The arg-list contains an error

INCL RO increment error count
TEST:: MOVO EXP,R1 This tests routine

referenced externally
TEST1: BRW EXIT Go to exit routine

The label field is also used for the symbol in a direct assignment statement
(see Section 3.8).

2.2 Operator Field

2.3 Operand Field

2.4 Comment Field

MACRO Source Statement Format
2.2 Operator Field

The operator field specifies the action to be performed by the statement. This
field can contain an instruction, an assembler directive, or a macro call.

When the operator is an instruction, VAX MACRO generates the binary
code for that instruction in the object module. The binary codes are listed in
Appendix D; the instruction set is described in Chapter 9. When the operator
is a directive, VAX MACRO performs certain control actions or processing
operations during source program assembly. The assembler directives are
described in Chapter 6. When the operator is a macro call, VAX MACRO
expands the macro. Macro calls are described in Chapter 4 and in Chapter 6
(.MACRO directive).

Use either a space or a tab character to terminate the operator field; however,
the tab is the recommended termination character.

The operand field can contain operands for instructions or arguments for
either assembler directives or macro calls.

Operands for instructions identify the memory locations or the registers that
are used by the machine operation. These operands specify the addressing
mode for the instruction, as described in Chapter 5. The operand field for
a specific instruction must contain the number of operands required by that
instruction. See Chapter 9 for descriptions of the instructions and their
operands.

Arguments for a directive must meet the format requirements of that directive.
Chapter 6 describes the directives and the format of their arguments.

Operands for a macro must meet the requirements specified in the macro
definition. See the description of the .MACRO directive in Chapter 6.

If two or more operands are specified, they must be separated by commas.
VAX MACRO also allows a space or tab to be used as a separator for
arguments to any directive that does not accept expressions (see Section 3.5
for a discussion of expressions). However, a comma is required to separate
operands for instructions and for directives that accept expressions as
arguments.

The semicolon that starts the comment field terminates the operand field. If
a line does not have a comment field, the operand field is terminated by the
end of the line.

The comment field contains text that explains the function of the statement.
Every line of code should have a comment. Comments do not affect assembly
processing or program execution. You can cause user-written messages to be
displayed during assembly by the .ERROR, .PRINT, and .WARN directives
(see descriptions in Chapter 6).

The comment field must be preceded by a semicolon; it is terminated by the
end of the line. The comment field can contain any printable ASCII character
(see Appendix A).

2-3

MACRO Source Statement Format
2.4 Comment Field

2-4

To continue a lengthy comment to the next line, write the comment on the
next line and precede it with another semicolon. If a comment does not fit
on one line, it can be continued on the next, but the continuation must be
preceded by another semicolon. A comment can appear on a line by itself.

Write the text of a comment to convey the meaning rather than the action of
the statement. The instruction MOVAL BUF_pTR_l,R7, for example, should
have a comment such as "Get pointer to first buffer," not "Move address of
BUF_pTR_l to R7."

For example:

MOVAL STRING_DES_1,RO

MOVZWL (RO),R1
MOVL 4(RO),RO

Get address of string
descriptor

Get length of string
Get address of string

3 Components of MACRO Source Statements

3.1 Character Set

This chapter describes the following components of VAX MACRO source
statements:

• Character set

• Numbers

• Symbols

• Local labels

• Terms and expressions

• Unary and binary operators

• Direct assignment statements

• Current location counter

The following characters can be used in VAX MACRO source statements:

• The letters of the alphabet, A through Z, uppercase and lowercase. Note
that the assembler considers lowercase letters equivalent to uppercase
letters except when they appear in ASCII strings.

• The digits 0 through 9.

• The special characters listed in Table 3-1.

Table 3-1 Special Characters Used in VAX MACRO Statements

Character

$

@

Character Name

Underline

Dollar sign

Period

Colon

Equal sign

Tab

Space

Number sign

At sign

Function

Character in symbol names

Character in symbol names

Character in symbol names, current location
counter, and decimal point

Label terminator

Direct assignment operator and macro
keyword argument terminator

Field terminator

Field terminator

Immediate addressing mode indicator

Deferred addressing mode indicator and
arithmetic shift operator

3-1

Components of MACRO Source Statements
3.1 Character Set

3.2 Numbers

3-2

Table 3-1 (Cont.) Special Characters Used in VAX MACRO
Statements

Character

+

I
&

\

[]

()

<>
?

%

Character Name

Comma

Semicolon

Plus sign

Minus sign or
hyphen.

Asterisk

Slash

Ampersand

Exclamation

Backslash

Circumflex

Square brackets

Parentheses

Angle brackets

Question mark

Apostrophe

Percent sign

Function

Field, operand, and item separator

Comment field indicator

Autoincrement addressing mode indicator,
unary plus operator, and arithmetic addition
operator

Autodecrement addressing mode indicator,
unary minus operator, arithmetic subtraction
operator, and line continuation indicator

Arithmetic multiplication operator

Arithmetic division operator

Logical AND operator

Logical inclusive OR operator point

Logical exclusive OR and numeric
conversion indicator in macro arguments

Unary operators and macro argument
delimiter

Index addressing mode and repeat count
indicators

Register deferred addressing mode
indicators

Argument or expression grouping delimiters

Created local label indicator in macro
arguments

Macro argument concatenation indicator

Macro string operators

Table 3-2 defines the separating characters used in VAX MACRO.

Table 3-2 Separating Characters in VAX MACRO Statements

Character

(space)
(tab)

Character Name

Space or tab

Comma

Usage

Separator between statement fields.
Spaces within expressions are ignored.

Separator between symbolic arguments
within the operand field. Multiple
expressions in the operand field must
be separated by commas.

Numbers can be integers, floating-point numbers, or packed decimal strings.

3.2.1

3.2.2

Integers

Components of MACRO Source Statements
3.2 Numbers

Integers can be used in any expression including expressions in operands and
in direct assignment statements (Section 3.5 describes expressions).

Format

snn

s
An optional sign: plus sign (+)for positive numbers (the default) or minus
sign (-) for negative numbers.

nn
A string of numeric characters that is legal for the current radix.

VAX MACRO interprets all integers in the source program as decimal unless
the number is preceded by a radix control operator (see Section 3.6.1).

Integers must be in the range of -2,147,483,648 through +2,147,483,647 for
signed data or in the range of 0 through 4,294,967,295 for unsigned data.

Negative numbers must be preceded by a minus sign; VAX MACRO translates
such numbers into two's complement form. In positive numbers, the plus sign
is optional.

Floating-Point Numbers
A floating-point number can be used in the .FJLOATING (.FLOAT),
.DJLOATING (.DOUBLE), .GJLOATING, and .HJLOATING directives
(described in Chapter 6) or as an operand in a floating-point instruction. A
floating-point number cannot be used in an expression or with a unary or
binary operator except the unary plus, unary minus, and unary floating-point
operator, "F (FJLOATING). Sections 3.6 and 3.7 describe unary and binary
operators.

A floating-point number can be specified with or without an exponent.

Formats

Floating-point number without exponent:

snn
snn.nn
snn.

Floating-point number with exponent:

snnEsnn
snn.nnEsnn
snn.Esnn

s
An optional sign.

nn
A string of decimal digits in the range of 0 through 9.

3-3

3.2.3

Components of MACRO Source Statements
3.2 Numbers

The decimal point can appear anywhere to the right of the first digit. Note
that a floating-point number cannot start with a decimal point because VAX
MACRO will treat the number as a user-defined symbol (see Section 3.3.2).

Floating-point numbers can be single-precision (32-bit), double-precision
(64-bit), or extended-precision (128-bit) quantities. The degree of precision is
7 digits for single-precision numbers, 16 digits for double-precision numbers,
and 33 digits for extended-precision numbers.

The magnitude of a nonzero floating-point number cannot be smaller than
approximately 0.29E-38 or greater than approximately 1. 7E38.

Single-precision floating-point numbers can be rounded (by default) or
truncated. The .ENABLE and .DISABLE directives (described in Chapter 6)
control whether single-precision floating-point numbers are rounded or
truncated. Double-precision and extended-precision floating-point numbers
are always rounded.

Sections 8.2.6, 8.2.7, 8.2.8, and 8.2.9 describe the internal format of floating
point numbers.

Packed Decimal Strings
A packed decimal string can be used only in the .PACKED directive (described
in Chapter 6).

Format

snn

s
An optional sign.

nn
A string containing up to 31 decimal digits in the range of 0 through 9.

A packed decimal string cannot have a decimal point or an exponent.

Section 8.2.14 describes the internal format of packed decimal strings.

3.3 Symbols

3.3.1

Three types of symbols can be used in VAX MACRO source programs:
permanent symbols, user-defined symbols, and macro names.

Permanent Symbols

3-4

Permanent symbols consist of instruction mnemonics (see Appendix D), VAX
MACRO directives (see Chapter 6), and register names. You need not define
instruction mnemonics and directives before you use them in the operator
field of a VAX MACRO source statement. Also, you need not define register
names before using them in the addressing modes (see Chapter 5).

3.3.2

Components of MACRO Source Statements
3.3 Symbols

Register names cannot be redefined; that is, a symbol that you define cannot
be one of the register names contained in the following list. You can express
the 16 general registers of the VAX processor in a source program only as
follows:

Register
Name

RO

Rl

R2

Processor Register

General register 0

General register 1

General register 2

General register 11 R11

R12 or
AP

General register 12 or argument pointer. If you use R 12 as an
argument pointer, the name AP is recommended; if you use R 12
as a general register, the name R 1 2 is recommended.

FP

SP

PC

Frame pointer

Stack pointer

Program counter

Note that the symbols IV and DV are also permanent symbols and cannot
be redefined. These symbols are used in the register mask to set the
integer overflow trap (IV) and the decimal string overflow trap (DV). See
Section 3.6.2.2 for an explanation of their uses.

User-Defined Symbols and Macro Names
You can use symbols that you define as labels or you can equate them to
a specific value by a direct assignment statement (see Section 3.8). These
symbols can also be used in any expression (see Section 3.5).

The following rules govern the creation of user-defined symbols:

• User-defined symbols can be composed of alphanumeric characters,
underlines (-), dollar signs ($), and periods (.). Any other character
terminates the symbol.

• The first character of a symbol must not be a number.

• The symbol must be no more than 31 characters long and must be
unique.

In addition, by DIGITAL convention:

• The dollar sign ($) is reserved for names defined by DIGITAL. This
convention ensures that a user-defined name (which does not have a
dollar sign) will not conflict with a DIGITAL-defined name (which does
have a dollar sign).

3-5

3.3.3

Components of MACRO Source Statements
3.3 Symbols

• Do not use the period (.) in any global symbol name (see Section 3.3.3)
because languages, such as FORTRAN, do not allow periods in symbol
names.

Macro names follow the same rules and conventions as user-defined
symbols. (See the description of the .MACRO directive in Chapter 6 for
more information on macro names.) User-defined symbols and macro names
do not conflict; that is, the same name can be used for a user-defined symbol
and a macro. To avoid confusion, give the symbols and macros that you
define different names.

Determining Symbol Values

3-6

The value of a symbol depends on its use in the program. VAX MACRO uses
a different method to determine the values of symbols in the operator field
than it uses to determine the values of symbols in the operand field.

A symbol in the operator field can be either a permanent symbol or a macro
name. VAX MACRO searches for a symbol definition in the following order:

1 Previously defined macro names

2 User-defined opcode (see the .OPDEF description in Chapter 6)

3 Permanent symbols (instructions and directives)

4 Macro libraries

This search order allows permanent symbols to be redefined as macro names.
If a symbol in the operator field is not defined as a macro or a permanent
symbol, the assembler displays an error message.

A symbol in the operand field must be either a user-defined symbol or a
register name.

User-defined symbols can be either local (internal) symbols or global
(external) symbols. Whether symbols are local or global depends on their
use in the source program.

A local symbol can be referenced only in the module in which it is defined.
If local symbols with the same names are defined in different modules, the
symbols are completely independent. The definition of a global symbol,
however, can be referenced from any module in the program.

VAX MACRO treats all symbols that you define as local unless you explicitly
declared them to be global by doing any one of the following:

• Use the double colon (::)in defining a label (see Section 2.1).

• Use the double equal sign (==) in a direct assignment statement (see
Section 3.8).

• Use the .GLOBAL, .ENTRY, or .WEAK directive (see Chapter 6).

When your code references a symbol within the module in which it is defined,
VAX MACRO considers the reference internal. When your code references a
symbol within a module in which it is not defined, VAX MACRO considers
the reference external (that is, the symbol is defined externally in another
module). You can use the .DISABLE directive to make references to symbols
not defined in the current module illegal. In this case, you must use the

3.4 Local Labels

Components of MACRO Source Statements
3.3 Symbols

.EXTERNAL directive to specify that the reference is an external reference.
See Chapter 6 for descriptions of the .DISABLE and .EXTERNAL directives.

Use local labels to identify addresses within a block of source code.

Format

nn$

nn
A decimal integer in the range of 1 through 65535.

Use local labels in the same way as you use the symbol labels that you define,
with the following differences:

• Local labels cannot be referenced outside the block of source code in
which they appear.

• Local labels can be reused in another block of source code.

• Local labels do not appear in the symbol tables and thus cannot be
accessed by the VAX Symbolic Debugger.

• Local labels cannot be used in the .END directive (see Chapter 6).

By convention, local labels are positioned like statement labels: left-justified
in the source text. Although local labels can appear in the program in any
order, by convention, the local labels in any block of source code should be
in numeric order.

Local labels are useful as branch addresses when you use the address only
within the block. You can use local labels to distinguish between addresses
that are referenced only in a small block of code and addresses that are
referenced elsewhere in the module. A disadvantage of local labels is
that their numeric names cannot provide any indication of their purpose.
Consequently, you should not use local labels to label sequences of statements
that are logically unrelated; user-defined symbols should be used instead.

DIGITAL recommends that users create local labels only in the range of 1$ to
29999$ because the assembler automatically creates local labels in the range
of 30000$ to 65535$ for use in macros (see Section 4. 7).

The local label block in which a local label is valid is delimited by the
following statements:

• A user-defined label

• A .PSECT directive (see Chapter 6)

• The .ENABLE and .DISABLE directives (see Chapter 6), which can extend
a local label block beyond user-defined labels and .PSECT directives

A local label block is usually delimited by two user-defined labels. However,
the .ENABLE LOCAL _BLOCK directive starts a local block that is terminated
only by one of the following:

• A second .ENABLE LOCAL_BLOCK directive

3-7

Components of MACRO Source Statements
3.4 Local Labels

3-8

• A .DISABLE LOCAL_BLOCK directive followed by a user-defined label
or a .PSECT directive

Although local label blocks can extend from one program section to another,
DIGITAL recommends that local labels in one program section not be
referenced from another program section. User-defined symbols should
be used instead.

Local labels can be preserved for future reference with the context of the
program section in which they are defined; see the descriptions of the
.SAVEJSECT [LOCAL_BLOCK] directive and the .RESTOREJSECT
directive in Chapter 6.

An example showing the use of local labels follows:

RPSUB: MOVL
10$: SUBL2

BGTR

ADDL2
COMP: MOVL

CLRL
10$: CMPL

20$:

BGTR

SUBL
INCL
BRB

MOVL
BRW

AMOUNT.RO
DELTA.RO
10$

DELTA.RO
MAX,R1
R2
RO,R1
20$

!NCR.RO
R2
10$

R2,COUNT
TEST

.ENABLE LOCAL_BLOCK
ENTR1: POPR #-M<RO,R1,R2>

ADDL3 RO.R1,R3
BRB 10$

ENTR2: SUBL2 R2,R3

10$: SUBL2 R2,R3
BGTR 20$

INCL RO
BRB NEXT

20$: DECL RO
.DISABLE LOCAL_BLOCK

NEXT: CLRL R4

Start local label block
Define local label 10$
Conditional branch to

local label
Executed when RO not > 0
End previous local label

block and start new one
Define new local label 10$
Conditional branch to

local label
Executed when RO not > R1

Unconditional branch to
local label

Define local label
Unconditional branch to

user-defined label

Start local label block that
will not be terminated
by a user-defined label

Branch to local label that appears
after a user-defined label

Does not start a new
local label block

Define local label
Conditional branch to

local label
Executed when R2 not > R3
Unconditional branch to

user-defined label
Define local label
Directive followed by user

defined label terminates
local label block

Components of MACRO Source Statements
3.5 Terms and Expressions

3.5 Terms and Expressions
A term can be any of the following:

• A number

• A symbol

• The current location counter (see Section 3.9)

• A textual operator followed by text (see Section 3.6.2)

• Any of the previously noted items preceded by a unary operator (see
Section 3.6)

VAX MACRO evaluates terms as longword (4-byte) values. If you use an
undefined symbol as a term, the linker determines the value of the term. The
current location counter (.) has the value of the location counter at the start
of the current operand.

Expressions are combinations of terms joined by binary operators (see
Section 3.7) and evaluated as longword (4-byte) values. VAX MACRO
evaluates expressions from left to right with no operator precedence rules.
However, angle brackets (< >) can be used to change the order of
evaluation. Any part of an expression that is enclosed in angle brackets
is first evaluated to a single value, which is then used in evaluating the
complete expression. For example, the expressions A•B+C and A• <B+C>
are different. In the first case, A and B are multiplied and then C added to
the product. In the second case, B and C are added and the sum is multiplied
by A. Angle brackets can also be used to apply a unary operator to an entire
expression, such as - <A+B> .

If an arithmetic expression is continued on another line, the listing file will
not show the continued line. For example:

.WORD <DATA1'$-XFF©8+-
89>

You must use /LIST/SHOW=EXPANSION to show the continuation line.

VAX MACRO considers unary operators part of a term and thus, performs the
action indicated by a unary operator before it performs the action indicated
by any binary operator.

Expressions fall into three categories: relocatable, absolute, and external
(global), as follows:

• An expression is relocatable if its value is fixed relative to the start of
the program section in which it appears. The current location counter is
relocatable in a relocatable program section.

• An expression is absolute if its value is an assembly-time constant. An
expression whose terms are all numbers is absolute. An expression that
consists of a relocatable term minus another relocatable term from the
same program section is absolute, since such an expression reduces to an
assembly-time constant.

• An expression is external if it contains one or more symbols that are not
defined in the current module.

3-9

Components of MACRO Source Statements
3.5 Terms and Expressions

3.6 Unary Operators

3-10

Any type of expression can be used in most MACRO statements, but
restrictions are placed on expressions used in the following:

• .ALIGN alignment directives

• .BLKx storage allocation directives

• .IF and .IIF conditional assembly block directives

• .REPEAT repeat block directives

• .OPDEF opcode definition directives

• .ENTRY entry point directives

• .BYTE, .LONG1 .WORD, .SIGNED-BYTE, and .SIGNED_WORD directive
repetition factors

• Direct assignment statements (see Section 3.8)

See Chapter 6 for descriptions of the directives listed in the preceding list.

Expressions used in these directives and in direct assignment statements
can contain only symbols that have been previously defined in the current
module. They cannot contain either external symbols or symbols defined later
in the current module. In addition, the expressions in these directives must
be absolute. Expressions in direct assignment statements can be relocatable.

An example showing the use of expressions follows.

A = 2*100
.BLKB A+50

LAB: .BLKW A
HALF = LAB+<A/2>

2*100 is an absolute expression
A+50 is an absolute expression and

contains no undefined symbols
LAB is relocatable
LAB+<A/2> is a relocatable

expression and contains no
undefined symbols

LAB2: .BLKB LAB2-LAB LAB2-LAB is an absolute expression
and contains no undefined symbols
but contains the symbol LAB3
that is defined later in this module

LAB3: .WORD TST+LAB+2 TST+LAB+2 is an external expression
because TST is an external symbol

A unary operator modifies a term or an expression and indicates an action
to be performed on that term or expression. Expressions modified by unary
operators must be enclosed in angle brackets. You can use unary operators to
indicate whether a term or expression is positive or negative. If unary plus or
minus is not specified, the default value is assumed to be plus. In addition,
unary operators perform radix conversion, textual conversion (including ASCII
conversion), and numeric control operations, as described in the following
sections. Table 3-3 summarizes the unary operators.

3.6.1

Components of MACRO Source Statements
3.6 Unary Operators

Table 3-3 Unary Operators

Unary
Operator Operator Name Example Operation

+ Plus sign +A Results in the positive
value of A

Minus sign -A Results in the negative
(two· s complement)
value of A

AB Binary AB 11000111 Specifies that
11000111 is a binary
number

AD Decimal AD127 Specifies that 12 7 is a
decimal number

Ao Octal A034 Specifies that 34 is an
octal number

Ax Hexadecimal AXFCF9 Spec~esthatFCF9 ~

a hexadecimal number
AA ASCII AA/ABC/ Produces an ASCII

string; the characters
between the matching
delimiters are
converted to ASCII
representation

AM Register mask #AM <R3,R4,R5> Specifies the registers
R3, R4, and R5 in the
register mask

AF Floating-point AF3.0 Specifies that 3.0 is a
floating-point number

Ac Complement AC24 Produces the one· s
complement value of
24 (decimal)

More than one unary operator can be applied to a single term or to an
expression enclosed in angle brackets. For example:

-+-A

This construct is equivalent to:

-<+.f.-A»

Radix Control Operators
VAX MACRO accepts terms or expressions in four different radixes: binary,
decimal, octal, and hexadecimal. The default radix is decimal. Expressions
modified by radix control operators must be enclosed in angle brackets.

3-11

3.6.2

Components of MACRO Source Statements
3.6 Unary Operators

Formats

ABnn
ADnn
AOnn
AXnn

nn
A string of characters that is legal in the specified radix. The following are
the legal characters for each radix:

Format Radix Name Legal Characters

ABnn Binary 0 and 1

ADnn Decimal 0 through 9

AOnn Octal 0 through 7

AXnn Hexadecimal 0 through 9 and A through F

Radix control operators can be included in the source program anywhere
a numeric value is legal. A radix control operator affects only the term or
expression immediately following it, causing that term or expression to be
evaluated in the specified radix.

For example:

.WORD

.WORD

.WORD

.WORD

.LONG

-aoooo1101
-0123
-047
<A+-013>
-x<F1C3+FFFFF-20>

Binary radix
Decimal radix (default)
Octal radix
13 is in octal radix
All numbers in expression

are in hexadecimal radix

The circumflex cannot be separated from the B, D, 0, or X that follows it, but
the entire radix control operator can be separated by spaces and tabs from the
term or expression that is to be evaluated in that radix.

The default decimal operator is needed only within an expression that has
another radix control operator. In the following example, "16" is interpreted
as a decimal number because it is preceded by the decimal operator "D
even though the "16" is in an expression prefixed by the octal radix control
operator .

. LONG -0<10000 + 100 + -016>

Textual Operators

3-12

The textual operators are the ASCII operator ("A) and the register mask
operator ("M).

3.6.2.1

3.6.2.2

Components of MACRO Source Statements
3.6 Unary Operators

ASCII Operator
The ASCII operator converts a string of printable characters to their 8-bit
ASCII values and stores them one character to a byte. The string of characters
must be enclosed in a pair of matching delimiters.

The delimiters can be any printable character except the space, tab, or
semicolon (;). Use nonalphanumeric characters to avoid confusion.

Format

AAstring

string
A delimited ASCII string from 1 through 16 characters long.

The delimited ASCII string must not be larger than the data type of the
operand. For example, if the "A operator occurs in an operand in a MOVW
instruction (the data type is a word), the delimited string cannot be more than
two characters.

For example:

.QUAD "A%1234/678%
MOVL #"A/ABCD/,RO

CMPW #"A/XY/,RO

MOVL #"A/AB/,RO

Register Mask Operator

Generates 8 bytes of ASCII data
Moves characters ABCD

into RO right justified with
"A" in low-order byte and "D"
in high-order byte

Compares X and Y as ASCII
characters with contents of low
order 2 bytes of RO

Moves ASCII characters AB into
RO; "A" in low-order byte; "B" in
next; and zero the 2 high-order bytes

The register mask operator converts a register name or a list of register names
enclosed in angle brackets into a 1- or 2-byte register mask. The register
mask is used by the PUSHR and POPR instructions and the .ENTRY and
.MASK directives (see Chapter 6).

Formats

AM reg-name
AM <reg-name-list>

reg-name
One of the register names or the DV or IV arithmetic trap-enable specifiers.

reg-name-list
A list of register names and the DV and IV arithmetic trap-enable specifiers,
separated by commas.

The register mask operator sets a bit in the register mask for every register
name or arithmetic trap enable specified in the list. The bits corresponding to
each register name and arithmetic trap-enable specifier are listed below.

3-13

3.6.3

Components of MACRO Source Statements
3.6 Unary Operators

Register Name Arithmetic Trap Bits

RO through R 11

R12 or AP

FP

SP IV

DV

0 through 11

12

13

14

15

When the POPR or PUSHR instruction uses the register mask operator, RO
through Rll, R12 or AP, FP, and SP can be specified. You cannot specify the
PC register name and the IV and DV arithmetic trap-enable specifiers.

When the .ENTRY or .MASK directives use the register mask operator,
you can specify R2 through Rl 1 and the IV and DV arithmetic trap-enable
specifiers. However, you cannot specify RO, Rl, FP, SP, and PC. IV sets the
integer overflow trap, and DV sets the decimal string overflow trap.

The arithmetic trap-enable specifiers are described in Chapter 8.

For example:

ENTRY RT1,-M<R3,R4,R5,R6,IV>

PUSHR #-M<RO,R1,R2,R3>

POPR #-M<RO,R1,R2,R3>

Save registers R3, R4,
R5, and R6 and set the
integer overflow trap

Save registers RO, R1,
R2, and R3

Restore registers RO, R1,
R2, and R3

Numeric Control Operators

3.6.3.1

3-14

The numeric control operators are the floating-point operator ("F) and the
complement operator ("C). The use of the numeric control operators is
explained in the following two sections.

Floating-Point Operator
The floating-point operator accepts a floating-point number and converts
it to its internal representation (a 4-byte value). This value can be used in
any expression. VAX MACRO does not perform floating-point expression
evaluation.

Format

AFliteral

literal
A floating-point number (see Section 3.2.2).

The floating-point operator is useful because it allows a floating-point number
in an instruction that accepts integers.

For example:

MOVL #-F3.7,RO

MOVF #3.7,RO

NOTE: the recommended instruction
to move this floating-point
number is the MOVF instruction

3.6.3.2

3. 7 Binary Operators

Components of MACRO Source Statements
3.6 Unary Operators

Complement Operator
The complement operator produces the one's complement of the specified
value.

Format

~cterm

term
Any term or expression. If an expression is specified, it must be enclosed in
angle brackets.

VAX MACRO evaluates the term or expression as a 4-byte value before
complementing it.

For example:

.LONG

.LONG
Produces FFFFFFOO (hex)
Produces complement of

25 (dee) which is
FFFFFFE6 (hex)

In contrast to unary operators, binary operators specify actions to be
performed on two terms or expressions. Expressions must be enclosed in
angle brackets. Table 3-4 summarizes the binary operators.

Table 3-4 Binary Operators

Binary
Operator Operator Name Example Operation

+ Plus sign A+B Addition

Minus sign A-8 Subtraction

* Asterisk A•B Multiplication

I Slash A/B Division

@ At sign A@B Arithmetic shift

& Ampersand A&B Logical AND

Exclamation point A!B Logical inclusive OR

\ Backslash A\B Logical exclusive OR

All binary operators have equal priority. Terms or expressions can be grouped
for evaluation by enclosing them in angle brackets. The enclosed terms and
expressions are evaluated first, and remaining operations are performed from
left to right. For example:

.LONG

.LONG
; Equals 9
; Equals 7

Note that a 4-byte result is returned from all binary operations. If you use
a 1-byte or 2-byte operand, the result is the low-order byte(s) of the 4-byte
result. VAX MACRO displays an error message if the truncation causes a loss
of significance.

3-15

3.7.1

3.7.2

3.7.3

3.7.4

Components of MACRO Source Statements
3. 7 Binary Operators

The following sections describe the arithmetic shift, logical AND, logical
inclusive OR, and logical exclusive OR operators.

Arithmetic Shift Operator
You use the arithmetic shift operator (@)to perform left and right arithmetic
shifts of arithmetic quantities. The first argument is shifted left or right
by the number of bit positions that you specify in the second argument.
If the second argument is positive, the first argument is shifted left; if the
second argument is negative, the first argument is shifted right. When the
first argument is shifted left, the low-order bits are set to 0. When the first
argument is shifted right, the high-order bits are set to the value of the
original high-order bit (the sign bit).

For example:

A = 4

.LONG -B101©4

.LONG 1©2

.LONG

.LONG
MOVL

l©A
-x1234©-A
#<-Bll00000©-5>,RO

Yields 1010000 (binary)
Yields 100 (binary)

Yields 10000 (binary)
Yields 123(hex)
Yields 11 (binary)

Logical AND Operator
The logical AND operator (&) takes the logical AND of two operands.

For example:

A = -a1010
B = -B1100

.LONG A&B Yields 1000 (binary)

Logical Inclusive OR Operator
The logical inclusive OR operator (!) takes the logical inclusive OR of two
operands.

For example:

A = -a1010
B = -a1100

.LONG A!B Yields 1110 (binary)

Logical Exclusive OR Operator

3-16

The logical exclusive OR operator (\) takes the logical exclusive OR of two
arguments.

For example:

A = -a1010
B = -B1100

.LONG A\B Yields 0110 (binary)

Components of MACRO Source Statements
3.8 Direct Assignment Statements

3.8 Direct Assignment Statements
A direct assignment statement equates a symbol to a specific value. Unlike
a symbol that you use as a label, you can redefine a symbol defined with a
direct assignment statement as many times as you want.

Formats

symbol=expression
symbol=expression

symbol
A user-defined symbol.

expression
An expression that does not contain any undefined symbols (see Section 3.5).

The format with a single equal sign (=) defines a local symbol and the format
with a double equal sign (==) defines a global symbol. See Section 3.3.3 for
more information about local and global symbols.

The following three syntactic rules apply to direct assignment statements:

• An equal sign (=) or double equal sign (==) must separate the symbol
from the expression which defines its value. Spaces preceding or
following the direct assignment operators have no significance in the
resulting value.

• Only one symbol can be defined in a single direct assignment statement.

• A direct assignment statement can be followed only by a comment field.

By DIGITAL convention, the symbol in a direct assignment statement is
placed in the label field.

For example:

A == 1

B = A©5

c = 127*10

3.9 Current Location Counter

The symbol 'A' is globally
equated to the value 1

The symbol 'B' is equated
to 1©5 or 20(hex)

The symbol 'C' is equated
to 1270(dec)

The symbol 'D' is equated
to 10(hex)

The symbol for the current location counter, the period (.), always has the
value of the address of the current byte. VAX MACRO sets the current
location counter to 0 at the beginning of the assembly and at the beginning of
each new program section.

Every VAX MACRO source statement that allocates memory in the object
module increments the value of the current location counter by the number of
bytes allocated. For example, the directive .LONG 0 increments the current
location counter by 4. However, with the exception of the special form

3-17

Components of MACRO Source Statements
3.9 Current Location Counter

3-18

described below, a direct assignment statement does not increase the current
location counter because no memory is allocated.

The current location counter can be explicitly set by a special form of the
direct assignment statement. The location counter can be either incremented
or decremented. This method of setting the location counter is often useful
when defining data structures. Data storage areas should not be reserved by
explicitly setting the location counter; use the .BLI<x directives (see Chapter 6).

Format

.=expression

expression
An expression that does not contain any undefined symbols (see Section 3.5).

In a relocatable program section, the expression must be relocatable; that is,
the expression must be relative to an address in the current program section.
It may be relative to the current location counter.

For example:

. = .+40 ; Moves location counter forward

When a program section that you defined in the current module is continued,
the current location counter is set to the last value of the current location
counter in that program section.

When you use the current location counter in the operand field of an
instruction, the current location counter has the value of the address of
that operand; it does not have the value of the address of the beginning of
the instruction. For this reason, you would not normally use the current
location counter as a part of the operand specifier.

4 Macro Arguments and String Operators

By using macros, you can use a single line to insert a sequence of source lines
into a program.

A macro definition contains the source lines of the macro. The macro
definition can optionally have formal arguments. These formal arguments
can be used throughout the sequence of source lines. Later, the formal
arguments are replaced by the actual arguments in the macro call.

The macro call consists of the macro name optionally followed by actual
arguments. The assembler replaces the line containing the macro call with
the source lines in the macro definition. It replaces any occurrences of formal
arguments in the macro definition with the actual arguments specified in the
macro call. This process is called the macro expansion.

The macro directives (described in Chapter 6) provide facilities for performing
eight categories of functions. Table 6-2 lists these categories and the
directives that fall under them.

By default, macro expansions are not printed in the assembly listing. They
are printed only when the .SHOW directive (see description in Chapter 6)
or the /SHOW qualifier (described in the VMS DCL Dictionary) specifies
the EXPANSIONS argument. In the examples in this chapter, the macro
expansions are listed as they would appear if .SHOW EXPANSIONS was
specified in the source file or /SHOW=EXP ANSIONS was specified in the
MACRO command string.

The remainder of this chapter describes macro arguments, created local labels,
and the macro string operators.

4. 1 Arguments in Macros
Macros have two types of arguments: actual and formal. Actual arguments
are the strings given in the macro call after the name of the macro. Formal
arguments are specified by name in the macro definition; that is, after the
macro name in the .MACRO directive. Actual arguments in macro calls and
formal arguments in macro definitions can be separated by commas, tabs, or
spaces.

The number of actual arguments in the macro call can be less than or equal
to the number of formal arguments in the macro definition. If the number
of actual arguments is greater than the number of formal arguments, the
assembler displays an error message.

Formal and actual arguments normally maintain a strict positional
relationship. That is, the first actual argument in a macro call replaces all
occurrences of the first formal argument in the macro definition. This strict
positional relationship can be overridden by the use of keyword arguments
(see Section 4.3).

4-1

Macro Arguments and String Operators
4. 1 Arguments in Macros

4.2 Default Values

4-2

An example of a macro definition using formal arguments follows:

.MACRO

.LONG

.WORD

.BYTE

.ENDM

STORE
ARG1
ARG3
ARG2
STORE

ARG1,ARG2,ARG3
ARG1 is first argument
ARG3 is third argument
ARG2 is second argument

The following two examples show possible calls and expansions of the macro
defined previously:

STORE 3,2,1
.LONG 3
.WORD 1
.BYTE 2

STORE X,X-Y,Z
#.LONG x
#.WORD z
#.BYTE X-Y

Macro call
3 is first argument
1 is third argument
2 is second argument

Macro call
X is first argument
Z is third argument
X-Y is second argument

Default values are values that are defined in the macro definition. They are
used when no value for a formal argument is specified in the macro call.

Default values are specified in the .MACRO directive as follows:

formal-argument-name = default-value

An example of a macro definition specifying default values follows:

.MACRO

.LONG

.WORD

.BYTE

.ENDM

STORE
ARG1
ARG3
ARG2
STORE

ARG1=12,ARG2=0,ARG3=1000

The following three examples show possible calls and expansions of the
macro defined previously:

STORE ; No arguments supplied
.LONG 12
.WORD 1000
.BYTE 0

STORE ,5,X Last two arguments supplied
.LONG 12
.WORD x
.BYTE 5

STORE 1 First argument supplied
.LONG 1
.WORD 1000
.BYTE 0

Macro Arguments and String Operators
4.3 Keyword Arguments

4.3 Keyword Arguments
Keyword arguments allow a macro call to specify the arguments in any order.
The macro call must specify the same formal argument names that appear in
the macro definition. Keyword arguments are useful when a macro definition
has more formal arguments than need to be specified in the call.

In any one macro call, the arguments should be either all positional
arguments or all keyword arguments. When positional and keyword
arguments are combined in a macro, only the positional arguments
correspond by position to the formal arguments; the keyword arguments
are not used. If a formal argument corresponds to both a positional argument
and a keyword argument, the argument that appears last in the macro call
overrides any other argument definition for the same argument.

For example, the following macro definition specifies three arguments:

.MACRO

.LONG

.WORD

.BYTE

.ENDM

STORE
ARG1
ARG3
ARG2
STORE

ARG1,ARG2,ARG3

The following macro call specifies keyword arguments:

STORE
.LONG
.WORD
.BYTE

ARG3=27+5/4,ARG2=5,ARG1=SYMBL
SYMBL
27+5/4
5

Because the keywords are specified in the macro call, the arguments in the
macro call need not be given in the order they were listed in the macro
definition.

4.4 String Arguments
If an actual argument is a string containing characters that the assembler
interprets as separators (such as a tab, space, or comma), the string must be
enclosed by delimiters. String delimiters are usually paired angle
brackets (< >).
The assembler also interprets any character after an initial circumflex (") as
a delimiter. To pass an angle bracket as part of a string, you can use the
circumflex form of the delimiter.

The following are examples of delimited macro arguments:

<HAVE THE SUPPLIES RUN OUT?>
<LAST NAME, FIRST NAME>
<LAB: CLRL R4>
-r.ARGUMENT IS <LAST.FIRST> FOR CALL%
-?EXPRESSION IS <5+3>*<4+2>?

In the last two examples, the initial circumflex indicates that the percent sign
(%) and question mark (?) are the delimiters. Note that only the left hand
delimiter is preceded by a circumflex.

4-3

Macro Arguments and String Operators
4.4 String Arguments

4-4

The assembler interprets a string argument enclosed by delimiters as one
actual argument and associates it with one formal argument. If a string
argument that contains separator characters is not enclosed by delimiters, the
assembler interprets it as successive actual arguments and associates it with
successive formal arguments.

For example, the following macro call has one formal argument:

.MACRO REPEAT STRNG

.ASCII /STRNG/

.ASCII /STRNG/

.ENDM REPEAT

The following two macro calls demonstrate actual arguments with and
without delimiters:

REPEAT <A B C D E>
.ASCII /A B C D E/
.ASCII /A B C D E/

REPEAT A B C D E
%MACRO-E-TOOMNYARGS, Too many arguments in MACRO call

Note that the assembler interpreted the second macro call as having five
actual arguments instead of one actual argument with spaces.

When a macro is called, the assembler removes any delimiters around a string
before associating it with the formal arguments.

If a string contains a semicolon, the string must be enclosed by delimiters, or
the semicolon will mark the start of the comment field.

Strings enclosed by delimiters cannot be continued on a new line.

To pass a number containing a radix or unary operator (for example, "XF19),
the entire argument must be enclosed by delimiters, or the assembler will
interpret the radix operator as a delimiter.

The following are macro arguments that are enclosed in delimiters because
they contain radix operators:

<-XF19>
<-B01100011>
<-F1.5>

Macros can be nested; that is, a macro definition can contain a call to another
macro. If, within a macro definition, another macro is called and is passed a
string argument, you must delimit the argument so that the entire string is
passed to the second macro as one argument.

The following macro definition contains a call to the REPEAT macro defined
in an earlier example:

LAB!:

LAB2:

.MACRO

.BYTE
REPEAT

CNTRPT LAB1,LAB2,STR_ARG
LAB2-LAB1-1 Length of 2*string
<STR_ARG> Call REPEAT macro

.ENDµ CNTRPT

Note that the argument in the call to REPEAT is enclosed in angle brackets
even though it does not contain any separator characters. The argument is
thus delimited because it is a formal argument in the definition of the macro
CNTRPT and will be replaced with an actual argument that may contain
separator characters.

Macro Arguments and String Operators
4.4 String Arguments

The following example calls the macro CNTRPT, which in tum calls the
macro REPEAT:

CNTRPT ST,FIN,<LEARN YOUR ABC'S>
ST: .BYTE FIN-ST-1 Length of 2*string

REPEAT <LEARN YOUR ABC'S> ; Call REPEAT macro
.ASCII /LEARN YOUR ABC'S/
.ASCII /LEARN YOUR ABC'S/

FIN:

An alternative method to pass string arguments in nested macros is to enclose
the macro argument in nested delimiters. Do not use delimiters around
the macro calls in the macro definitions. Each time you use the delimited
argument in a macro call, the assembler removes the outermost pair of
delimiters before associating it with the formal argument. This method is
not recommended because it requires that you know how deeply a macro is
nested.

The following macro definition also contains a call to the REPEAT macro:

.MACRO CNTRPT2 LAB1,LAB2,STR_ARG
LAB1: .BYTE LAB2-LAB1-1 Length of 2*string

REPEAT STR_ARG ; Call REPEAT macro
LAB2:

.ENDM CNTRPT2

Note that the argument in the call to REPEAT is not enclosed in angle
brackets.

The following example calls the macro CNTRPT2:

CNTRPT2 BEG,TERM,<<MIND YOUR P'S AND Q'S>>
BEG: .BYTE TERM-BEG-1 Length of 2*string

TERM:

REPEAT <MIND YOUR P'S AND Q'S> ; Call REPEAT macro
.ASCII /MIND YOUR P'S AND Q'S/
.ASCII /MIND YOUR P'S AND Q'S/

Note that even though the call to REPEAT in the macro definition is not
enclosed in delimiters, the call in the expansion is enclosed because the call
to CNTRPT2 contains nested delimiters around the string argument.

4.5 Argument Concatenation
The argument concatenation operator, the apostrophe ('), concatenates a
macro argument with some constant text. Apostrophes can either precede or
follow a formal argument name in the macro source.

If an apostrophe precedes the argument name, the text before the apostrophe
is concatenated with the actual argument when the macro is expanded. For
example, if ARGl is a formal argument associated with the actual argument
TEST, ABCDE'ARGl is expanded to ABCDETEST.

If an apostrophe follows the formal argument name, the actual argument is
concatenated with the text that follows the apostrophe when the macro is
expanded. For example, if ARG2 is a formal argument associated with the
actual argument MOV, ARG2'L is expanded to MOVL.

Note that the apostrophe itself does not appear in the macro expansion.

4-5

Macro Arguments and String Operators
4.5 Argument Concatenation

To concatenate two arguments, separate the two formal arguments with
two successive apostrophes. Two apostrophes are needed because each
concatenation operation discards an apostrophe from the expansion.

An example of a macro definition that uses concatenation follows:

.MACRO CONCAT INST,SIZE,NUM
TEST'NUM':

INST''SIZE RO,R'NUM
TEST'NUM'X:

.ENDM CONCAT

Note that two successive apostrophes are used when concatenating the two
formal arguments INST and SIZE.

An example of a macro call and expansion follows:

CONCAT MOV,L,5
TESTS:

MOVL RO,R5
TEST5X:

4.6 Passing Numeric Values of Symbols

4-6

When a symbol is specified as an actual argument, the name of the symbol,
not the numeric value of the symbol, is passed to the macro. The value of
the symbol can be passed by inserting a backslash (\) before the symbol in
the macro call. The assembler passes the characters representing the decimal
value of the symbol to the macro. For example, if the symbol COUNT has
a value of 2 and the actual argument specified is \COUNT, the assembler
passes the string "2" to the macro; it does not pass the name of the symbol,
"COUNT".

Passing numeric values of symbols is especially useful with the apostrophe
(') concatenation operator for creating new symbols.

An example of a macro definition for passing numeric values of symbols
follows:

.MACRO TESTDEF,TESTNO,ENTRYMASK=-?-M<>?

.ENTRY TEST'TESTNO,ENTRYMASK ; Uses arg concatenation

.ENDM TESTDEF

The following example shows a possible call and expansion of the macro
defined previously:

COUNT = 2
TESTDEF \COUNT
.ENTRY TEST2,-M<> Uses arg concatenation

COUNT = COUNT + 1
TESTDEF \COUNT,-?-M<R3,R4>?
.ENTRY TEST3,-M<R3,R4> Uses arg concatenation

Macro Arguments and String Operators
4. 7 Created Local Labels

4. 7 Created Local Labels
Local labels are often very useful in macros. Although you can create a
macro definition that specifies local labels within it, these local labels might
be duplicated elsewhere in the local label block possibly causing errors.
However, the assembler can create local labels in the macro expansion which
will not conflict with other local labels. These labels are called created local
labels.

Created local labels range from 30000$ through 65535$. Each time the
assembler creates a new local label, it increments the numeric part of the
label name by 1. Consequently, no user-defined local labels should be in the
range of 30000$ through 65535$.

A created local label is specified by a question mark (?) in front of the formal
argument name. When the macro is expanded, the assembler creates a new
local label if the corresponding actual argument is blank. If the corresponding
actual argument is specified, the assembler substitutes the actual argument for
the formal argument. Created local symbols can be used only in the first 31
formal arguments specified in the .MACRO directive.

Created local labels can be associated only with positional actual arguments;
created local labels cannot be associated with keyword actual arguments.

The following example is a macro definition specifying a created local label:

L1:

.MACRO POSITIVE
TSTL ARG1
BGEQ L1
MNEGL ARG1,ARG1

.ENDM POSITIVE

ARG1,?L1

The following three calls and expansions of the macro defined previously
show both created local labels and a user-defined local label:

30000$:

30001$:

10$:

POSITIVE RO
TSTL RO
BGEQ 30000$
MNEGL RO.RO

POSITIVE COUNT
TSTL COUNT
BGEQ 30001$
MNEGL COUNT.COUNT

POSITIVE VALUE,10$
TSTL VALUE
BGEQ 10$
MNEGL VALUE.VALUE

4-7

Macro Arguments and String Operators
4.8 Macro String Operators

4.8 Macro String Operators

4.8.1

Following are the three macro string operators:

• %LENGTH

• %LOCATE

• %EXTRACT

These operators perform string manipulations on macro arguments and ASCII
strings. They can be used only in macros and repeat blocks. The following
sections describe these operators and give their formats and examples of their
use.

%LENGTH Operator
Format

% LENGTH(string)

string
A macro argument or a delimited string. The string can be delimited by angle
brackets or a character preceded by a circumflex (see Section 4.4).

DESCRIPTION The %LENGTH operator returns the length of a string. For example, the
value of %LENGTH(<ABCDE>) is 5.

EXAMPLES

ii

4-8

Macro definition:

.MACRO CHK_SIZE ARG1 Macro checks if ARG1

.IF GREATER_EQUAL %LENGTH(ARG1)-3 is between 3 and

.IF LESS_THAN 6-%LENGTH(ARG1) 6 characters long

.ERROR ; Argument ARG1 is greater than 6 characters

.ENDC ; If more than 6

.IF_FALSE ; If less than 3

.ERROR ; Argument ARG1 is less than 3 characters

.ENDC ; Otherwise do nothing

.ENDM CHK_SIZE

Macro calls and expansions of the macro defined previously:

CHK_SIZE A
.IF GREATER_EQUAL 1-3
. IF LESS_THAN 6-1

Macro checks if A
is between 3 and
6 characters long .
Should be too short .

. ERROR ; Argument A is greater than 6 characters

. ENDC ; If more than 6

.IF_FALSE ; If less than 3
%MACRO-E-GENERR, Generated ERROR: Argument A is less than 3 characters

.ENDC ; Otherwise do nothing

4.8.2

Macro Arguments and String Operators
4.8 Macro String Operators

CHK SIZE ABC Macro checks if ABC
is between 3 and
6 characters long.
Should be ok .

.IF GREATER_EQUAL 3-3

.IF LESS_THAN 6-3

. ERROR ; Argument ABC is greater than 6 characters

.ENDC ; If more than 6

.IF_FALSE ; If less than 3

.ERROR Argument ABC is less than 3 characters

.ENDC ; Otherwise do nothing

%LOCATE Operator
Format

DESCRIPTION

%LOCA TE(string 1,string2 [,symbol])

Parameters

string1
A substring. The substring can be written either as a macro argument or as
a delimited string. The delimiters can be either angle brackets or a character
preceded by a circumflex.

string2
The string to be searched for the substring. The string can be written either
as a macro argument or as a delimited string. The delimiters can be either
angle brackets or a character preceded by a circumflex.

symbol
An optional symbol or decimal number that specifies the position in string2
at which the assembler should start the search. If this argument is omitted,
the assembler starts the search at position 0 (the beginning of the string).
The symbol must be an absolute symbol that has been previously defined;
the number must be an unsigned decimal number. Expressions and radix
operators are not allowed.

The %LOCATE operator locates a substring within a string. If %LOCATE
finds a match of the substring, it returns the character position of the
first character of the match in the string. For example, the value of
%LOCATE(<D> , <ABCDEF>) is 3. Note that the first character
position of a string is 0. If %LOCATE does not find a match, it returns
a value equal to the length of the string. For example, the value of
%LOCATE(<Z> , <ABCDEF>) is 6.

The %LOCATE operator returns a numeric value that can be used in any
expression.

4-9

4.8.3

Macro Arguments and String Operators
4.8 Macro String Operators

EXAMPLES

D

Macro definition:

.MACRO BIT_NAME ARG1 ; Checks if ARG1 is in list
.IF EQUAL %LOCATE(ARG1,<DELDFWDLTDMOESC>)-15

; If it is not, print error
.ERROR ; ARG1 is an invalid bit name
.ENDC ; If it is, do nothing
.ENDM BIT_NAME

Macro calls and expansions of the macro defined previously:

BIT_NAME ESC ; Is ESC in list
.IF EQUAL 12-15 ; If it is not, print error
.ERROR ; ESC is an invalid bit name
.ENDC If it is, do nothing

BIT NAME FOO Not in list
.IF EQUAL 15-15

If it is not, print error
%MACRO-E-GENERR, Generated ERROR: FOO is an invalid bit name

.ENDC If it is, do nothing

Note: If the optional symbol is specified, the search begins at the character
position of string2 specified by the symbol. For example, the value of
%LOCATE(<ACE>, <SPACE-80LDER> ,5) is 12 because there is no
match after the 5th character position.

%EXTRACT Operator
Format

4-10

%EXTRACT(symbol 1,symbol2,string)

Parameters

symbol1
A symbol or decimal number that specifies the starting position of the
substring to be extracted. The symbol must be an absolute symbol that has
been previously defined; the number must be an unsigned decimal number.
Expressions and radix operators are not allowed.

symbol2
A symbol or decimal number that specifies the length of the substring to be
extracted. The symbol must be an absolute symbol that has been previously
defined; the number must be an unsigned decimal number. Expressions and
radix operators are not allowed.

string
A macro argument or a delimited string. The string can be delimited by angle
brackets or a character preceded by a circumflex.

Macro Arguments and String Operators
4.8 Macro String Operators

DESCRIPTION The %EXTRACT operator extracts a substring from a string. It returns the
substring that begins at the specified position and is of the specified length.
For example, the value of %EXTRACT(2,3, <ABCDEF>) is COE. Note that
the first character in a string is in position 0.

EXAMPLES

D
Macro definition:

.MACRO RESERVE ARG1
XX= %LOCATE(<=>,ARG1)

.IF EQUAL XX-%LENGTH(ARG1)

.WARN ; Incorrect format for macro call - ARG1

.MEXIT

.ENDC

%EXTRACT(O,XX,ARG1)::
XX = XX+1

xx = 6

.BLKB %EXTRACT(XX,3,ARG1)

.ENDM RESERVE

Macro calls and expansions of the macro defined previously:

RESERVE FOOBAR

.IF EQUAL XX-6
%MACRO-W-GENWRN, Generated WARNING: Incorrect format for macro call - FOOBAR

xx = 8

.MEXIT

RESERVE-LOCATION=12

.IF EQUAL XX-11

.WARN ; Incorrect format for macro call - LOCATION=12

.MEXIT

.ENDC

LOCATION::
XX = XX+1

.BLKB 12

Note: If the starting position specified is equal to or greater than the length of
the string, or if the length specified is 0, %EXTRACT returns a null string
(a string of 0 characters).

4-11

5 MACRO Addressing Modes

This section summarizes the VAX addressing modes and contains examples
of VAX MACRO statements that use these addressing modes. Table 5-1
summarizes the addressing modes. Chapter 8 describes the addressing mode
formats in detail.

The following are the four types of addressing modes:

• General Register

• Program Counter

• Index

• Branch

Although index mode is a general register mode, it is considered separate
because it can be used only in combination with another type of mode.

5.1 General Register Modes
The general register modes use registers RO through Rl2, AP (the same as
R12), FP, and SP.

The following are the eight general register modes:

• Register

• Register deferred

• Autoincrement

• Autoincrement deferred

• Autodecrement

• Displacement

• Displacement deferred

• Literal

5-1

MACRO Addressing Modes
5.1 General Register Modes

Table 5-1 Addressing Modes

Addressing Hex
Type Mode Format Value Description Indexable?

General Register Rn 5 Register contains the No
Register operand.

Register Deferred (Rn) 6 Register contains the Yes
address of the operand.

Autoincrement (Rn)+ 8 Register contains the Yes
address of the operand;
the processor increments
the register contents by the
size of the operand data
type.

Autoincrement @(Rn)+ 9 Register contains the Yes
Deferred address of the operand

address; the processor
increments the register
contents by 4.

Autodecrement -(Rn) 7 The processor decrements Yes
the register contents by
the size of the operand
data type; the register then
contains the address of the
operand.

Displacement dis(Rn) The sum of the contents Yes
BAdis(Rn) A of the register and the
WAdis(Rn) c displacement is the address
LAdis(Rn) E of the operand; BA, WA,

and LA respectively indicate
byte, word, and longword
displacement.

Displacement @dis(Rn) The sum of the contents Yes
Deferred @BAdis(Rn) B of the register and the

@WAdis(Rn) D displacement is the address
@L Adis(Rn) F of the operand address;

BA, WA, and LA respectively
indicate, byte, word, and
longword displacement.

Literal #literal The literal specified is the No
SA#literal 0-3 operand; the literal is stored

as a short literal.

Key:

Rn - Any general register RO through R 12. Note that the AP, FP, or SP register can be used in place of Rn.
Rx - Any general register RO through R12. Note that the AP, FP, or SP register can be used in place of Rx. Rx
cannot be the same as the Rn specified in the base-mode for certain base modes (see Section 5.3).
dis - An expression specifying a displacement.
address - An expression specifying an address.
literal - An expression, an integer constant, or a floating-point constant.

5-2

Table 5-1 (Cont.) Addressing Modes

Addressing
Type Mode Format

Program Relative address
Counter BA address

WA address
LAaddress

Relative @address
Deferred @BA address

@WA address
@LAaddress

Absolute @#address

Immediate #literal
r#literal

General ff address

Key:

MACRO Addressing Modes
5.1 General Register Modes

Hex
Value Description Indexable?

The address specified is Yes
A the address of the operand;
c the address is stored as a
E displacement from the PC;

BA, WA, and LA respectively
indicate byte, word, and
longword displacement.

The address specified is Yes
B the address of the operand
D address; the address
F specified is stored as a

displacement from the PC;
BA, WA, and LA indicate
byte, word, and longword
displacement respectively.

9 The address specified is Yes
the address of the operand;
the address specified is
stored as an absolute
virtual address, not as a
displacement.

The literal specified is the No
8 operand; the literal is stored

as a byte, word, longword,
or quadword.

The address specified is Yes
the address of the operand;
if the address is defined
as relocatable, the Linker
stores the address as a
displacement from the PC;
if the address is defined
as an absolute virtual
address, the Linker stores
the address as an absolute
value.

Rn - Any general register RO through R12. Note that the AP, FP, or SP register can be used in place of Rn.
Rx - Any general register RO through R12. Note that the AP, FP, or SP register can be used in place of Rx. Rx
cannot be the same as the Rn specified in the base-mode for certain base modes (see Section 5.3).
dis - An expression specifying a displacement.
address - An expression specifying an address.
literal - An expression, an integer constant, or a floating-point constant.

5-3

5.1.1

MACRO Addressing Modes
5. 1 General Register Modes

Table 5-1 (Cont.) Addressing Modes

Type

Index

Branch

Key:

Addressing
Mode

Index

Branch

Format

base-mode[Rx]

address

Hex
Value Description

4 The base-mode specifies
the base address and
the register specifies the
index; the sum of the base
address and the product of
the contents of Rx and the
size of the operand data
type is the address of the
operand; base mode can
be any addressing mode
except register, immediate,
literal, index, or branch.

Indexable?

No

The address specified is No
the operand; this address
is stored as a displacement
from the PC; branch mode
can only be used with the
branch instructions.

Rn - Any general register RO through R12. Note that the AP, FP, or SP register can be used in place of Rn.
Rx - Any general register RO through R12. Note that the AP, FP, or SP register can be used in place of Rx. Rx
cannot be the same as the Rn specified in the base-mode for certain base modes (see Section 5.3).
dis - An expression specifying a displacement.
address - An expression specifying an address.
literal - An expression, an integer constant, or a floating-point constant.

Register Mode

5-4

In register mode, the operand is the contents of the specified register, except
in the following cases:

• For quadword, D_floating, G_floating, or variable-bit field operands, the
operand is the contents of register n concatenated with the contents of
register n+l.

• For octaword and H_floating operands, the operand is the contents of
register n concatenated with the contents of registers n+l, n+2, and n+3.

In each of these cases, the least significant bytes of the operand are in register
n and the most significant bytes are in the highest register used, either n+ 1 or
n+3.

The results of the operation are unpredictable if you use the PC in register
mode or if you use a large data type that extends the operand into the PC.

5.1.2

5.1.3

EXAMPLE

Formats

Rn
AP
FP
SP

n

MACRO Addressing Modes
5.1 General Register Modes

A number in the range of 0 through 12.

CLRB
CLRQ
TSTW
INCL

RO
R1
R10
R4

Clear lowest byte of RO
Clear R1 and R2
Test lower word of R10
Add 1 to R4

Register Deferred Mode

EXAMPLE

In register deferred mode, the register contains the address of the operand.
Register deferred mode can be used with index mode (see Section 5.3).

Formats

(Rn)
(AP)
(FP)
(SP)

Parameters

n
A number in the range of 0 through 12.

10$:

MOVAL
CMPL
BEQL
CLRL
MOVL
MOVZBL

LDATA,R3
(R3) ,RO
10$
(R3)
(SP) ,R1
(AP),R4

Move address of LDATA to R3
Compare value at LDATA to RO
If they are the same, ignore
Clear longword at LDATA
Copy top item of stack into R1
Get number of arguments in call

Autoincrement Mode
In autoincrement mode, the register contains the address of the operand.
After evaluating the operand address contained in the register, the processor
increments that address by the size of the operand data type. The processor
increments the contents of the register by l, 2, 4, 8, or 16 for a byte, word,
longword, quadword, or octaword operand, respectively.

Autoincrement mode can be used with index mode (see Section 5.3), but the
index register cannot be the same as the register specified in autoincrement
mode.

5-5

5.1.4

MACRO Addressing Modes
5.1 General Register Modes

EXAMPLE

Formats

(Rn)+
(AP)+
(FP)+
(SP)+

Parameters

n
A number in the range of 0 through 12.

MOVAL
CLRQ
CLRL

MOVAB
INCB
INCB

XORL3

TABLE,R1
(R1)+
(R1)+

BYTARR,R2
(R2)+
(R2)+

(R3)+,(R4)+,(R5)+

Get address of TABLE.
Clear first and second longwords

and third longword in TABLE;
leave R1 pointing to TABLE+12.

Get address of BYTARR.
Increment first byte of BYTARR

and second.

Exclusive-OR the two longwords
whose addresses are stored in
R3 and R4 and store result in
address contained in R5; then
add 4 to R3, R4, and R5.

Autoincrement Deferred Mode

5-6

In autoincrement deferred mode, the register contains an address that is the
address of the operand address (a pointer to the operand). After evaluating
the operand address, the processor increments the contents of the register
by 4 (the size in bytes of an address).

Autoincrement deferred mode can be used with index mode (see Section 5.3),
but the index register cannot be the same as the register specified in
autoincrement deferred mode.

Formats

@(Rn)+
@(AP)+
@(FP)+
@(SP)+

Parameters

n
A number in the range of 0 through 12.

5.1.5

EXAMPLE
MOVAL PNTLIS,R2

CLRQ ©(R2)+

CLRB ©(R2)+

MOVL R10,©(RO)+

MACRO Addressing Modes
5.1 General Register Modes

Get address of pointer list.

Clear quadword pointed to by
first absolute address in PNTLIS;
then add 4 to R2.

Clear byte pointed to by second
absolute address in PNTLIS
then add 4 to R2.

Move R10 to location whose address
is pointed to by RO; then add 4
to RO.

Autodecrement Mode

EXAMPLE

In autodecrement mode, the processor decrements the contents of the register
by the size of the operand data type; the register contains the address of the
operand. The processor decrements the register by l, 2, 4, 8, or 16 for byte,
word, longword, quadword, or octaword operands, respectively.

Autodecrement mode can be used with index mode (see Section 5.3), but the
index register cannot be the same as the register specified in autodecrement
mode.

Formats

-(Rn)
-(AP)
-(FP)
-(SP)

Parameters

n
A number in the range of 0 through 12.

CLRO -(R1)

MOVZBL R3,-(SP)

CMPB R1,-(RO)

Subtract 8 from R1 and zero
the octaword whose address
is in R1.

Push the zero-extended low byte
of R3 onto the stack as a
longword.

Subtract 1 from RO and compare
low byte of R1 with byte whose
address is now in RO.

5-7

5.1.6

MACRO Addressing Modes
5.1 General Register Modes

Displacement Mode

EXAMPLE

5-8

In displacement mode, the contents of the register plus the displacement
(sign-extended to a longword) produce the address of the operand.

Displacement mode can be used with index mode (see Section 5.3). If used in
displacement mode, the index register can be the same as the base register.

Formats

dis(Rn)
dis(AP)\
dis(FP)
dis(SP)

Parameters

n
A number in the range of 0 through 12.

dis
An expression specifying a displacement; the expression can be preceded
by one of the following displacement length specifiers, which indicate the
number of bytes needed to store the displacement.

Displacement Length
Specifier Meaning

Displacement requires one byte.

Displacement requires one word (two bytes).

Displacement requires one longword

(four bytes).

If no displacement length specifier precedes the expression, and the value of
the expression is known, the assembler chooses the smallest number of bytes
(one, two, or four) needed to store the displacement. If no length specifier
precedes the expression, and the value of the expression is unknown, the
assembler reserves one word (two bytes) for the displacement. Note that if
the displacement is either relocatable or defined later in the source program,
the assembler considers it unknown. If the actual displacement does not fit in
the memory reserved, the linker displays an error message.

MOVAB KEYWORDS,R3

MOVB a-ro(R3) .R4

MOVB a-AcCOUNT(R3),R5

Get address of KEYWORDS.

Get byte whose address is IO
plus address of KEYWORDS;
the displacement is stored
as a byte.

Get byte whose address is
ACCOUNT plus address of
KEYWORDS; the displacement
is stored as a byte.

5.1.7

MACRO Addressing Modes
5. 1 General Register Modes

CLRW

MOVL RO, -2(R2)

TSTB EXTRN(R3)

MOVAB 2(R5),RO

Clear word whose address
is STA plus contents of R1;
the displacement is stored
as a longword.

Move RO to address that is -2
plus the contents of R2; the
displacement is stored as a byte.

Test the byte whose address
is EXTRN plus the address
of KEYWORDS; the displacement
is stored as a word, since
EXTRN is undefined.

Move <contents of R5> + 2
to RO.

Note: If the value of the displacement is 0, and no displacement length
is specified, the assembler uses register deferred mode rather than
displacement mode.

Displacement Deferred Mode
In displacement deferred mode, the contents of the register plus the
displacement (sign-extended to a longword) produce the address of the
operand address (a pointer to the operand).

Displacement deferred mode can be used with index mode (see Section 5.3).
If used in displacement deferred mode, the index register can be the same as
the base register.

Formats

@dis(Rn)
@dis(AP)
@dis(FP)
@dis(SP)

Parameters

n
A number in the range of 0 through 12.

dis
An expression specifying a displacement; the expression can be preceded
by one of the following displacement length specifiers, which indicate the
number of bytes needed to store the displacement.

Displacement Length
Specifier Meaning

Displacement requires one byte.

Displacement requires one word (two bytes).

Displacement requires one longword.

(four bytes)

5-9

5.1.8

MACRO Addressing Modes
5.1 General Register Modes

EXAMPLE

Literal Mode

5-10

If no displacement length specifier precedes the expression, and the value of
the expression is known, the assembler chooses the smallest number of bytes
(one, two, or four) needed to store the displacement. If no length specifier
precedes the expression, and the value of the expression is unknown, the
assembler reserves one word (two bytes) for the displacement. Note that if
the displacement is either relocatable or defined later in the source program,
the assembler considers it unknown. If the actual displacement does not fit in
the memory the assembler has reserved, the linker displays an error message.

MOVAL ARRPOINT,R6
CLRL ©16(R6)

MOVL cos-oFFS(R6),©RSOFF(R6)

CLRW ©84(R2)

Get address of array of pointers.
Clear longword pointed to by

longword whose address is
<16 + address of ARRPOINT>; the
displacement is stored as a byte.

Move the longword pointed to
by longword whose address is
<OFFS + address of ARRPOINT>
to the address pointed to by
longword whose address is
<RSOFFS + address of ARRPOINT>;
the first displacement is
stored as a byte; the second
displacement is stored as a word.

Clear word pointed to by
<longword at 84 + contents of R2>;
the assembler uses byte
displacement automatically.

In literal mode, the value of the literal is stored in the addressing mode byte.

Formats

#literal
SA#literal

Parameters

literal
An expression, an integer constant, or a floating-point constant. The literal
must fit in the short literal form. That is, integers must be in the range of 0
through 63 and floating-point constants must be one of the 64 values listed
in Table 5-2 and Table 5-3. Floating-point short literals are stored with a
3-bit exponent and a 3-bit fraction. Table 5-2 and Table 5-3 also show the
value of the exponent and the fraction for each literal. See Section 8.6.8 for
information on the format of short literals.

Table 5-2

Exponent

0

1

2

3

4

5

6

7

Table 5-3

Exponent

0

1

2

3

4

5

6

7

MACRO Addressing Modes
5.1 General Register Modes

Floating-Point Literals Expressed as Decimal Numbers

0 1 2 3 4 5 6 7

0.5 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375

1.0 1.125 1.25 1.37 1.5 1.625 1.75 1.875

2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0

32.0 36.0 40.0 44.0 48.0 52.0 56.0 60.0

64.0 72.0 80.0 88.0 96.0 104.0 112.0 120.0

Floating-Point Literals Expressed as Rational Numbers

0 1 2 3 4 5 6 7

1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16

1 1-1/8 1-1/4 1-3/8 1-1 /2 1-5/8 1-3/4 l-7 /8

2 2-1/4 2-1/2 2-3/4 3 3-1/4 3-1/2 3-3/4

4 4-1/2 5 5-1/2 6 6-1/2 7 7-1/2

8 9 10 11 12 13 14 15

16 18 20 22 24 26 28 30

32 36 40 44 48 52 56 60

64 72 80 88 96 104 112 120

EXAMPLE
MOVL #1,RO

MOVB

MOVF #0.625,R6

Notes

RO is set to 1; the 1 is stored
in the instruction as a short
literal.

The low byte of R1 is set
to the value CR.
CR is stored in the instruction
as a short literal.
If CR is not in range 0-63,
the linker produces a
truncation error.

R6 is set to the floating-point
value 0.625; it is stored
in the floating-point short
literal form.

1 When you use the #literal format, the assembler chooses whether to use
literal mode or immediate mode (see Section 5.2.4). The assembler uses
immediate mode if any of the following conditions is satisfied:

• The value of the literal does not fit in the short literal form.

• The literal is a relocatable or external expression (see Section 3.5).

5-11

MACRO Addressing Modes
5.1 General Register Modes

• The literal is an expression that contains undefined symbols.

The difference between immediate mode and literal mode is the amount
of storage that it takes to store the literal in the instruction.

2 The S"#literal format forces the assembler to use literal mode.

5.2 Program Counter Modes

5.2.1 Relative Mode

5-12

The program counter modes use the PC for a general register. Following are
the five program counter modes:

• Relative

• Relative Deferred

• Absolute

• Immediate

• General

In relative mode, the address specified is the address of the operand. The
assembler stores the address as a displacement from the PC.

Relative mode can be used with index mode (see Section 5.3).

Format

address

Parameters

address
An expression specifying an address; the expression can be preceded by one
of the following displacement length specifiers, which indicate the number of
bytes needed to store the displacement.

Displacement Length
Specifier Meaning

Displacement requires one byte.

Displacement requires one word (two bytes).

Displacement requires one longword.

(four bytes)

If no displacement length specifier precedes the address expression, and
the value of the expression is known, the assembler chooses the smallest
number of bytes (one, two, or four) needed to store the displacement. If
no length specifier precedes the address expression, and the value of the
expression is unknown, the assembler uses the default displacement length
(see the description of .DEFAULT in Chapter 6). If the address expression is
either defined later in the program or defined in another program section, the
assembler considers the value unknown.

5.2.2

EXAMPLE
MOVL LABEL,R1

CMPL w-<DATA+4>,R10

MACRO Addressing Modes
5.2 Program Counter Modes

Get longword at LABEL; the
assembler uses default
displacement unless LABEL was
previously defined in this
section

Compare R10 with longword at
address DATA+4; CMPL
uses a word displacement

Relative Deferred Mode

EXAMPLE

In relative deferred mode, the address specified is the address of the operand
address (a pointer to the operand). The assembler stores the address specified
as a displacement from the PC.

Relative deferred mode can be used with index mode (see Section 5.3).

Format

@address

Parameters

address
An expression specifying an address; the expression can be preceded by one
of the following displacement length specifiers, which indicate the number of
bytes needed to store the displacement:

Displacement Length
Specifier Meaning

Displacement requires one byte.

Displacement requires one word (two bytes).

Displacement requires one longword.

(four bytes)

If no displacement length specifier precedes the address expression, and
the value of the expression is known, the assembler chooses the smallest
number of bytes (one, two, or four) needed to store the displacement. If
no length specifier precedes the address expression, and the value of the
expression is unknown, the assembler uses the default displacement length
(see the description of .DEFAULT in Chapter 6). If the address expression is
either defined later in the program or defined in another program section, the
assembler considers the value unknown.

CLRL

INCB ©L-COUNTS+4

Clear longword pointed to by
longword at PNTR; the assembler
uses a word displacement

Increment byte pointed to by
longword at COUNTS+4; assembler
uses a longword displacement

5-13

5.2.3

5.2.4

MACRO Addressing Modes
5.2 Program Counter Modes

Absolute Mode

EXAMPLE

Immediate Mode

EXAMPLE

5-14

In absolute mode, the address specified is the address of the operand. The
address is stored as an absolute virtual address (compare relative mode,
where the address is stored as a displacement from the PC).

Absolute mode can be used with index mode (see Section 5.3).

Format

@#address

Parameters

address
An expression specifying an address.

CLRL ©#-X1100

CLRB ©#ACCOUNT

CALLS #3,©#SYS$FAO

Clear the contents of location 1100(hex)

Clear the contents of location
ACCOUNT; the address is stored
absolutely. not as a displacement

Call the procedure SYS$FAO with
three arguments on the stack

In immediate mode, the literal specified is the operand.

Formats

#literal
r#literal

Parameters

literal
An expression, an integer constant, or a floating-point constant.

MOVL #1000,RO

MOVB #BAR,R1

MOVF #0.1,R6

ADDL2

RO is set to 1000; the operand 1000
is stored in a longword

The low byte of R1 is set
to the value of BAR

R6 is set to the floating-point
value 0.1; it is stored
as a 4-byte floating-point
value (it cannot be
represented as a short literal)

The 5 is stored in a longword
because the r- forces the
assembler to use immediate mode

5.2.5 General Mode

MACRO Addressing Modes
5.2 Program Counter Modes

MOVG #0.2,R6

MOVG #PI,R6

Notes

The value 0.2 is converted
to its G_FLOATING representation

The value contained in PI is
moved to R6; no conversion is
performed

1 When you use the #literal format, the assembler chooses whether to use
literal mode (Section 5.1.8) or immediate mode. If the literal is an integer
from 0 through 63 or a floating-point constant that fits in the short literal
form, the assembler uses literal mode. If the literal is an expression, the
assembler uses literal mode if all the following conditions are met:

• The expression is absolute.

• The expression contains no undefined symbols.

• The value of the expression fits in the short literal form.

In all other cases, the assembler uses immediate mode.

The difference between immediate mode and literal mode is the amount
of storage required to store the literal in the instruction. The assembler
stores an immediate mode literal in a byte, word, or longword depending
on the operand data type.

2 The !"#literal format forces the assembler to use immediate mode.

3 You can specify floating-point numbers two ways: as a numeric value
or as a symbol name. The assembler handles these values in different
ways:

• Numeric values are converted to the appropriate internal floating
point representation.

• Symbols are not converted. The assembler assumes that the
values have already been converted to internal floating-point
representation.

Once the assembler obtains the value, it tries to convert the internal
representation of the value to a short floating literal. If conversion
fails, the assembler uses immediate mode; if conversion succeeds, the
assembler uses short floating literal mode.

In general mode, the address you specify is the address of the operand. The
linker converts the addressing mode to either relative or absolute mode. If
the address is relocatable, the linker converts general mode to relative mode.
If the address is absolute, the linker converts general mode to absolute mode.
You should use general mode to write position-independent code when
you do not know whether the address is relocatable or absolute. A general
addressing mode operand requires five bytes of storage.

You can use general mode with index mode (see Section 5.3).

Format

ff address

5-15

MACRO Addressing Modes
5.2 Program Counter Modes

EXAMPLE

5.3 Index Mode

5-16

Parameters

address
An expression specifying an address.

CLRL

CALLS #5,G-SYS$SERVICE

Clears the longword at LABEL_!
If LABEL_! is defined as
absolute then general mode is
converted to absolute
mode; if it is defined as
relocatable, then general mode is
converted to relative mode

Calls procedure SYS$SERVICE
with 5 arguments on stack

Index mode is a general register mode that can be used only in combination
with another mode (the base mode). The base mode can be any addressing
mode except register, immediate, literal, index, or branch. The assembler first
evaluates the base mode to get the base address. To get the operand address,
the assembler multiplies the contents of the index register by the number of
bytes of the operand data type, then adds the result to the base address.

Combining index mode with the other addressing modes produces the
following addressing modes:

• Register deferred index

• Autoincrement index

• Autoincrement deferred index

• Autodecrement index

• Displacement index

• Displacement deferred index

• Relative index

• Relative deferred index

• Absolute index

• General index

The process of first evaluating the base mode and then adding the index
register is the same for each of these modes.

Formats

base-mode[Rx]
base-mode[AP]
base-mode[FP]
base-mode[SP]

EXAMPLE

MACRO Addressing Modes
5.3 Index Mode

Parameters

base-mode
Any addressing mode except register, immediate, literal, index, or branch,
specifying the base address.

x
A number in the range 0 through 12, specifying the index register.

Table 5-4 lists the formats of index mode addressing.

Register def erred index mode

OFFS=20
MOVAB
MOVL
CLRB

CLRQ

CLRO

BLIST,R9
#OFFS,R1
(R9) [R1]

(R9) [R1]

(R9) [R1]

Autoincrement index mode

CLRW (R9)+ [R1]

Define OFFS
Get address of BLIST
Set up index register
Clear byte whose address

is the address of BLIST
plus 20*1

Clear quadword whose
address is the address
of BLIST plus 20*S

Clear octaword whose
address is the address
of BLIST plus 20*16

Clear word whose address
is address of BLIST plus
20*2; R9 now contains
address of BLIST+2

Autoincrement def erred index mode

MOVAL
MOVL
CLRW

POINT.RS
#30,R2
©(RS)+[R2]

Displacement def erred index mode

MOVAL
MOVL
TSTF

ADDARR,R9
#100,Rl
©40(R9) [R1]

Get address of POINT
Set up index register
Clear word whose address

is 30*2 plus the address
stored in POINT; RS now
contains 4 plus address of
POINT

Get address of address array
Set up index register
Test floating-point value

whose address is 100*4 plus
the address stored at
(ADDARR+40)

5-17

MACRO Addressing Modes
5.3 Index Mode

5.4 Branch Mode

5-18

Table 5-4 Index Mode Addressing

Mode Format

Register Deferred Index 12 (Rn)[Rx]

Autoincrement Index 12 (Rn)+[Rx]

Autoincrement Deferred
lndex12

@(Rn)+[Rx]

Autodecrement Index 1 2 -(Rn)[Rx]

Displacement Index 123 dis(Rn)[Rx)

Displacement Deferred
Index 123

@dis(Rn)[Rx)

Relative lndex2 address[Rx]

Relative Deferred lndex2 @address[Rx]

Absolute lndex2 @#address[Rx]

General lndex2 GAaddress[Rx]

1 Rn - Any general register RO through R12 or the AP, FP, or SP register.

2 Rx - Any general register RO through R12 or the AP, FP, or SP register. Rx cannot
be the same register as Rn in the autoincrement index, autoincrement deferred index, and
decrement index addressing modes.

3 dis - An expression specifying a displacement.

Notes

1 If the base mode alters the contents of its register (autoincrement,
autoincrement deferred, and autodecrement), the index mode cannot
specify the same register.

2 The index register is added to the address after the base mode is
completely evaluated. For example, in autoincrement deferred index
mode, the base register contains the address of the operand address. The
index register (times the length of the operand data type) is added to the
operand address rather than to the address stored in the base register.

In branch mode, the address is stored as an implied displacement from the
PC. This mode can be used only in branch instructions. The displacement for
conditional branch instructions and the BRB instruction is stored in a byte.
The displacement for the BRW instruction is stored in a word (two bytes).
A byte displacement allows a range of 127 bytes forward and 128 bytes
backward. A word displacement allows a range of 32767 bytes forward and
32768 bytes backward. The displacement is relative to the updated PC, the
byte past the byte or word where the displacement is stored. See Chapter 9
for more information on the branch instructions.

EXAMPLE

Format

address

Parameters

address

MACRO Addressing Modes
5.4 Branch Mode

An expression that represents an address.

ADDL3 (R1)+,RO,TOTAL

BLEQ LABEL1

BRW LABEL

Total values and set condition
codes

Branch to LABEL1 if result is
less than or equal to 0

Branch unconditionally to LABEL

5-19

6 MACRO Assembler Directives

The general assembler directives provide facilities for performing 11 types of
functions. Table 6-1 lists these types of functions and their directives.

The macro directives provide facilities for performing eight categories of
functions. Table 6-2 lists these categories and their associated directives.
Chapter 4 describes macro arguments and string operators.

The remainder of this chapter describes both the general assembler directives
and the macro directives, showing their formats and giving examples of their
use. For ease of reference, the directives are presented in alphabetical order.
Appendix C contains a summary of all assembler directives.

Table 6-1 Summary of General Assembler Directives

Category

Listing Control
Directives

Message Display
Directives

Assembler Option
Directives

Data Storage
Directives

Directives 1

.SHOW (.LIST)

.NOSHOW(.NLIST)

.TITLE

.SUBTITLE (.SBTTL)

.IDENT

.PAGE

.PRINT

.WARN

.ERROR

.ENABLE (.ENABL)

.DISABLE(.DSABL)

.DEFAULT

.BYTE

.WORD

.LONG

.ADDRESS

.QUAD

.OCTA

.PACKED

.ASCII

.ASCIC

.ASCID

.ASCIZ

.F _FLOATING (.FLOAT)

.D_FLOATING (.DOUBLE)

.G_FLOATING

.H_FLOATING

.SIGNED_BYTE

.SIGNED_ WORD

1The alternate form, if any, is given in parentheses.

6-1

MACRO Assembler Directives

6-2

Table 6-1 (Cont.) Summary of General Assembler Directives

Category

location Control
Directives

Program
Sectioning
Directives

Symbol Control
Directives

Routine Entry Point
Definition
Directives

Conditional
and Subconditional
Assembly
Block Directives

Cross-Reference
Directives

Instruction
Generation
Directives

linker Option
Record Directive

Directives 1

.ALIGN

.EVEN

.ODD

.BLKA

.BLKB

.BLKD

.BLKF

.BLKG

.BLKH

.BLKL

.BLKO

.BLKO

.BLKW

.END

.PSECT

.SA VE_PSECT (.SA VE)

.RESTORE_PSECT (.RESTORE)

.GLOBAL (.GLOBL)

.EXTERNAL (.EXTRN)

.DEBUG

.WEAK

.ENTRY

.TRANSFER

.MASK

.IF

.ENDC

.IF _FALSE (.IFF)

.IF_TRUE (.IFT)

.IF_ TRUE_FALSE (.IFTF)

.llF

.CROSS

.NOCROSS

.OPDEF

.REF1

.REF2

.REF4

.REFS

.REF16

.LINK

1 The alternate form, if any, is given in parentheses.

MACRO Assembler Directives

Table 6-2 Summary of Macro Directives

Category Directives 1

Macro Definition .MACRO
Directives .ENDM

Macro Library .LIBRARY
Directives .MCALL

Macro Deletion .MDELETE
Directive

Macro Exit .MEXIT
Directive

Argument Attribute .NARG
Directives .NCHR

.NTYPE

Indefinite Repeat .IRP
Block Directives .IRPC

Repeat Block .REPEAT (.REPT)
Directives

End Range .ENDR
Directive

1The alternate form, if any, is given in parentheses.

6-3

Assembler Directives
.ADDRESS

.ADDRESS

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE

Address storage directive

.ADDRESS address-list

address-list
A list of symbols or expressions, separated by commas, which VAX MACRO
interprets as addresses. Repetition factors are not allowed .

. ADDRESS stores successive longwords containing addresses in the object
module. DIGITAL recommends that you use .ADDRESS rather than .LONG
for storing address data to provide additional information to the linker.
In shareable images, addresses that you specify with .ADDRESS produce
position-independent code.

TABLE: .ADDRESS LAB_4, LAB_3, ROUTTERM Reference table

6-4

.ALIGN

FORMAT

Assembler Directives
.ALIGN

Location counter alignment directive

.ALIGN

.ALIGN
integer[, expression]
keyword[, expression]

PARAMETERS integer

DESCRIPTION

An integer in the range of 0 through 9. The location counter is aligned at an
address that is the value of 2 raised to the power of the integer.

keyword
One of five keywords that specify the alignment boundary. The location
counter is aligned to an address that is the next multiple of the values listed
below.

Keyword Size (in Bytes)

BYTE 2"0 = 1

WORD 2"1 = 2

LONG 2"2 = 4

QUAD 2"3 = 8

PAGE 2"9 = 512

expression
Specifies the fill value to be stored in each byte. The expression must not
contain any undefined symbols and must be an absolute expression (see
Section 3.5) .

. ALIGN aligns the location counter to the boundary specified by either an
integer or a keyword.

Notes

1 The alignment that you specify in .ALIGN cannot exceed the alignment
of the program section in which the alignment is attempted (see the
description of .PSECT). For example1 if you are using the default program
section alignment (BYTE) and you specify .ALIGN with a WORD or larger
alignment1 the assembler displays an error message.

2 If the optional expression is supplied1 the assembler fills the bytes
skipped by the location counter (if any) with the value of that expression.
Otherwise1 the assembler fills the bytes with zeros.

6-5

Assembler Directives
.ALIGN

EXAMPLE

.ALIGN BYTE,O

.ALIGN WORD

.ALIGN 3,-A/ I

.ALIGN PAGE

6-6

3 Although most instructions can use byte alignment of data, execution
speed is improved by the following alignments:

Data Length

Word

Longword

Quadword

Alignment

Word

Longword

Quadword

Byte alignment--fill with null
Word alignment
Quad alignment--fill with blanks
Page alignment

.ASClx

DESCRIPTION

Assembler Directives
.ASClx

ASCII character storage directives

VAX MACRO has four ASCII character storage directives:

Directive

ASCIC

ASCID

ASCII

ASCIZ

Function

Counted ASCII string storage

String-descriptor ASCII string storage

ASCII string storage

Zero-terminated ASCII string storage

Each directive is followed by a string of characters enclosed in a pair of
matching delimiters. The delimiters can be any printable character except
the space or tab character, equal sign (=), semicolon (;), or left angle bracket
(<). The character that you use as the delimiter cannot appear in the string
itself. Although you can use alphanumeric characters as delimiters, use
nonalphanumeric characters to avoid confusion.

Any character except the null, carriage return, and form feed characters
can appear within the string. The assembler does not convert lowercase
alphabetic characters to uppercase.

ASCII character storage directives convert the characters to their 8-bit ASCII
value (see Appendix A) and store them one character to a byte.

Any character, including the null, carriage return, and form feed characters,
can be represented by an expression enclosed in angle brackets outside of the
delimiters. You must define the ASCII values of null, carriage return, and
form feed with a direct assignment statement. The ASCII character storage
directives store the 8-bit binary value specified by the expression.

ASCII strings can be continued over several lines. Use the hyphen as the line
continuation character and delimit the string on each line at both ends. Note
that you can use a different pair of delimiters for each line. For example:

CR=13
LF=10

.ASCII

.ASCIZ

.ASCIC

.ASCII

.ASCII

.ASCII

.ASCII

/ABC DEFG/
©Any character can be a delimiter©
? lowercase is not converted to UPPER?
? this is a test!?<CR><KEY>(LF\TEXT)!Isn't it?!
\ Angle Brackets <are part <of> this> string \
I This string is continued I -
\ on the next line \
<CR><KEY>(LF\TEXT)! this string includes an expression!
<128+CR>? whose value is a 13 plus 128?

6-7

Assembler Directives
.ASCIC

.ASCIC

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE
CR=13

6-8

.ASCIC

.BYTE

.ASCII

Counted ASCII string storage directive

.ASCIC string

string
A delimited ASCII string.

.ASCIC performs the same function as .ASCII, except that .ASCIC inserts
a count byte before the string data. The count byte contains the length of
the string in bytes. The length given includes any bytes of nonprintable
characters outside the delimited string but excludes the count byte .

. ASCIC is useful in copying text because the count indicates the length of the
text to be copied.

#HELLO#<CR>

6
#HELLO#<CR>

Direct assignment statement
defines CR

This counted ASCII string
is equivalent to the
count followed by
the ASCII string

.ASCID

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE

Assembler Directives
.ASCID

String-descriptor ASCII string storage directive

.ASCID string

string
A delimited ASCII string.

.ASCID performs the same function as ASCII, except that .ASCID inserts
a string descriptor before the string data. The string descriptor has the
following format:

31

information

Parameters

length

pointer

0

length

ZK-370-81

The length of the string (two bytes).

information
Descriptor information (two bytes) is always set to OlOE.

pointer
Position independent pointer to the string (four bytes).

String descriptors are used in calling procedures (see the VMS RTL String
Manipulation (STR$) Manual).

DESCRl: .ASCID /ARGUMENT FOR CALL/
DESCR2: .ASCID /SECOND ARGUMENT/

String descriptor
Another string

descriptor

PUSHAL DESCRl
PUSHAL DESCR2
CALLS #2,STRNG_PROC

Put address of descriptors
on the stack

Call procedure

6-9

Assembler Directives
.ASCII

.ASCII

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE

CR=13
LF=10

ASCII string storage directive

. ASC 11 string

string
A delimited ASCII string.

.ASCII stores the ASCII value of each character in the ASCII string or the
value of each byte expression in the next available byte.

; Assignment statements
define CR and LF

.ASCII "DATE: 17-NOV-1988" ; Delimiter is "

.ASCII /EOF/<CR><LF> Delimiter is I

6-10

.ASCIZ

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE
FF=12

.ASCIZ /ABCDEF/

Assembler Directives
.ASCIZ

Zero-terminated ASCII string storage directive

.ASCIZ string

string
A delimited ASCII string .

. ASCIZ performs the same function as .ASCII, except that .ASCIZ appends
a null byte as the final character of the string. When a list or text string is
created with an .ASCIZ directive, you need only perform a search for the null
character in the last byte to determine the end of the string.

; Define FF

6 characters in string.
7 bytes of data

.ASCIZ /A/<KEY>(FF\TEXT)/B/ ; 3 characters in strings,
4 bytes of data

6-11

Assembler Directives
.BLKx

.BLKx

FORMAT

PARAMETER

DESCRIPTION

6-12

Block storage allocation directives

.BLKA expression

.BLKB expression

.BLKD expression

.BLKF expression

.BLKG expression

.BLKH expression

.BLKL expression

.BLKO expression

.BLKQ expression

.BLKW expression

expression
An expression specifying the amount of storage to be allocated. All the
symbols in the expression must be defined and the expression must be an
absolute expression (see Section 3.5). If the expression is omitted, a default
value of 1 is assumed.

VAX MACRO has 10 block storage directives.

Directive

.BLKA

.BLKB

.BLKD

.BLKF

.BLKG

.BLKH

.BLKL

.BLKO

.BLKQ

.BLKW

Function

Reserves storage for addresses (longwords)

Reserves storage for byte data

Reserves storage for double-precision floating-point data
(quadwords)

Reserves storage for single-precision floating-point data
(longwords)

Reserves storage for G_floating data (quadwords)

Reserves storage for H_floating data (octawords)

Reserves storage for longword data

Reserves storage for octaword data

Reserves storage for quadword data

Reserves storage for word data

Each directive reserves storage for a different data type. The value of the
expression determines the number of data items for which VAX MACRO
reserves storage. For example, . BLKL 4 reserves storage for four longwords of
data and .BLKB 2 reserves storage for two bytes of data.

EXAMPLE

.BLKB 15

.BLKO 3

.BLKL 1

.BLKF <3*4>

Assembler Directives
.BLKx

The total number of bytes reserved is equal to the length of the data type
times the value of the expression as follows:

Directive

.BLKB

.BLKW

.BLKA

.BLKF

.BLKL

.BLKD

.BLKG

.BLKO

.BLKH

.BLKO

Number of Bytes Allocated

Value of expression

2 * value of expression

4 * value of expression

8 * value of expression

16 * value of expression

Space for 15 bytes
Space for 3 octawords (48 bytes)
Space for 1 longword (4 bytes)
Space for 12 single-precision

floating-point values (48 bytes)

6-13

Assembler Directives
.BYTE

.BYTE

FORMAT

PARAMETER

DESCRIPTION

6-14

Byte storage directive

. BYTE expression-list

expression-list
One or more expressions separated by commas. Each expression is first
evaluated as a longword expression; then the value of the expression is
truncated to one byte. The value of each expression should be in the range
of 0 through 255 for unsigned data or in the range of -128 through +127 for
signed data.

Optionally, each expression can be followed by a repetition factor delimited
by square brackets. An expression followed by a repetition factor has the
format:

expression 1 [expression2]

expression 1
An expression that specifies the value to be stored.

[expression2]
An expression that specifies the number of times the value will be repeated.
The expression must not contain any undefined symbols and it must be
absolute (see Section 3.5). The square brackets are required.

.BYTE generates successive bytes of binary data in the object module.

Notes

1 The assembler displays an error message if the high-order three bytes of
the longword expression have a value other than 0 or "XFFFFFF.

2 At link time, a relocatable expression can result in a value that exceeds
one byte in length. In this case, the VAX linker issues a truncation
diagnostic message for the object module in question. For example:

A: .BYTE A Relocatable value 'A' will
cause VAX linker truncation
diagnostic if the statement
has a virtual address of 256
or above

3 The .SIGNED_BYTE directive is the same as .BYTE except that the
assembler displays a diagnostic message if a value in the range 128
through 255 is specified. See the description of .SIGNED_BYTE for more
information.

EXAMPLE
.BYTE <1024-1000>*2
.BYTE -XA,FIF,10,65-<21*3>
.BYTE 0
.BYTE X,X+3[5*4] ,Z

Stores a value of 48
Stores 4 bytes of data
Stores 1 byte of data
Stores 22 bytes of data

Assembler Directives
.BYTE

6-15

Assembler Directives
.CROSS

.CROSS

.NOCROSS

FORMAT

PARAMETER

DESCRIPTION

6-16

Cross-reference directives

.CROSS [symbol-list]

.NOCROSS [symbol-list]

symbol-list
A list of legal symbol names separated by commas.

When you specify the /CROSS-REFERENCE qualifier in the MACRO
command, VAX MACRO produces a cross-reference listing. The . CROSS
and .NOCROSS directives control which symbols are included in the cross
reference listing. The .CROSS and .NOCROSS directives have an effect only
if /CROSS-REFERENCE was specified in the MACRO command (see the
VMS DCL Dictionary).

By default, the cross-reference listing includes the definition and all the
references to every symbol in the module.

You can disable the cross-reference listing for all symbols or for a specified
list of symbols by using .NOCROSS. Using .NOCROSS without a symbol list
disables the cross-reference listing of all symbols. Any symbol definition or
reference that appears in the code after .NOCROSS used without a symbol
list and before the next .CROSS used without a symbol list is excluded from
the cross-reference listing. You reenable the cross-reference listing by using
.CROSS without a symbol list.

.NOCROSS with a symbol list disables the cross-reference listing for the
listed symbols only .. CROSS with a symbol list enables or reenables the
cross-reference listing of the listed symbols.

Notes

1 .CROSS without a symbol list will not reenable the cross-reference listing
of a symbol specified in .NOCROSS with a symbol list.

2 If the cross-reference listing of all symbols is disabled, .CROSS with a
symbol list will have no effect until the cross-reference listing is reenabled
by .CROSS without a symbol list.

EXAMPLES

D .NOCROSS

Assembler Directives
.CROSS

LAB1: MOVL LOC1, LOC2
Stop cross-reference
Copy data

.CROSS Reenable cross-reference

In this example, the definition of LABI and the references to LOCI and LOC2
are not included in the cross-reference listing.

~ .NOCROSS LOC1 Do not cross-reference LOC1
Copy data LAB2: MOVL LOC1,LOC2

.CROSS LOC1 Reenable cross-reference
of LOC1

In this example, the definition of LAB2 and the reference to LOC2 are
included in the cross-reference, but the reference to LOCI is not included in
the cross-reference.

6-17

Assembler Directives
.DEBUG

.DEBUG

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE
.DEBUG INPUT,OUTPUT,

LAB_30,LAB_40

6-18

Debug symbol attribute directive

. DEBUG symbol-list

symbol-list
A list of legal symbols separated by commas.

.DEBUG specifies that the symbols in the list are made known to the VAX
Symbolic Debugger. During an interactive debugging session, you can use
these symbols to refer to memory locations or to examine the values assigned
to the symbols.

Note

The assembler adds the symbols in the symbol list to the symbol table in the
object module. You need not specify global symbols in the .DEBUG directive
because global symbols are automatically put in the object module's symbol
table. (See the description of .ENABLE for a discussion of how to make
information about local symbols available to the debugger.)

Make these symbols known
to the debugger

.DEFAULT

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE

Default control directive

Assembler Directives
.DEFAULT

.DEFAULT DISPLACEMENT, keyword

keyword
One of three keywords-BYTE, WORD, or LONG-indicating the default
displacement length.

.DEFAULT determines the default displacement length for the relative and
relative deferred addressing modes (see Sections 5.2.1 and 5.2.2).

Notes

1 .DEFAULT has no effect on the default displacement for displacement
and displacement deferred addressing modes (see Sections 5.1.6
and 5.1.7).

2 If there is no .DEFAULT in a source module, the default displacement
length for the relative and relative deferred addressing modes is a
longword.

.DEFAULT DISPLACEMENT.WORD WORD is default
Assembler uses word

displacement unless
label has been defined

MOVL LABEL,R1

.DEFAULT DISPLACEMENT.LONG
INCB ©COUNTS+4

LONG is default
Assembler uses longword

displacement unless
COUNTS has been defined

6-19

Assembler Directives
.D_FLOATING

.D_FLOATING

.DOUBLE

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE

Floating-point storage directive

.D_FLOATING literal-list

. DOUBLE literal-list

literal-list
A list of floating-point constants (see Section 3.2.2). The constants cannot
contain any unary or binary operators except unary plus or unary minus.

.DJLOATING evaluates the specified floating-point constants and stores
the results in the object module. .DJLOATING generates 64-bit, double
precision, floating-point data (1 bit of sign, 8 bits of exponent, and 55 bits
of fraction). See the description of .F__FLOATING for information on storing
single-precision floating-point numbers and the descriptions of
.GJLOATING and .HJLOATING for descriptions of other floating-point
numbers.

Notes

1 Double-precision floating-point numbers are always rounded. They are
not affected by .ENABLE TRUNCATION.

2 The floating-point constants in the literal list must not be preceded by the
floating-point operator ("F).

.D_FLOATING 1000,1.0E3,1.0000000E-9 Constant

.DOUBLE 3.1415928, 1.107153423828 List

.D_FLOATING 5, 10, 15, 0, 0.5

6-20

.DISABLE

FORMAT

PARAMETER

DESCRIPTION

Function control directive

.DISABLE argument-list

argument-list

Assembler Directives
.DISABLE

One or more of the symboli~ arguments listed in Table 6-3 in the description
of .ENABLE. You can use either the long or the short form of the symbolic
arguments. If you specify multiple arguments, separate them by commas,
spaces, or tabs.

.DISABLE disables the specified assembler functions. See the description of

.ENABLE for more information.

Note

The alternate form of .DISABLE is .DSABL.

6-21

Assembler Directives
.ENABLE

.ENABLE

FORMAT

PARAMETER

6-22

Function control directive

.ENABLE argument-list

argument-list
One or more of the symbolic arguments listed in Table 6-3. You can use
either the long form or the short form of the symbolic arguments.

If you specify multiple arguments, separate them with commas, spaces, or
tabs.

Table 6-3 . ENABLE and . DISABLE Symbolic Arguments

Long Form

ABSOLUTE

DEBUG

GLOBAL

LOCAL_
BLOCK

Short Form

AMA

DBG

GBL

LSB

Default
Condition

Disabled

Disabled

Enabled

Disabled

Function

When ABSOLUTE is
enabled, all the PC relative
addressing modes are
assembled as absolute
addressing modes.

When DEBUG is enabled, all
local symbols are included
in the object module's
symbol table for use by the
debugger.

When GLOBAL is enabled,
all undefined symbols
are considered external
symbols. When GLOBAL
is disabled, any undefined
symbol that is not listed
in an .EXTERNAL directive
causes an assembly error.

When LOCAL _BLOCK is
enabled, the current local
label block is ended and a
new one is started. When
LOCAL_BLOCK is disabled,
the current local label block
is ended. See Section 3.4
for a complete description
of local label blocks.

DESCRIPTION

Assembler Directives
.ENABLE

Table 6-3 (Cont.) .ENABLE and .DISABLE Symbolic Arguments

Long Form Short Form

SUPPRESSION SUP

TRACEBACK TBK

TRUNCATION FPT

Default
Condition

Disabled

Enabled

Disabled

Function

When SUPPRESSION is
enabled, all symbols that are
defined but not referred to
are not listed in the symbol
table. When SUPPRESSION
is disabled, all symbols that
are defined are listed in the
symbol table.

When TRACEBACK is
enabled, the program
section names and lengths,
module names, and routine
names are included in the
object module for use
by the debugger. When
TRACEBACK is disabled,
VAX MACRO excludes this
information and, in addition,
does not make any local
symbol information available
to the debugger.

When TRUNCATION is
enabled, single-precision
floating-point numbers
are truncated. When
TRUNCATION is disabled,
single-precision floating
point numbers are rounded.
O_floating, G_floating, and
H_floating numbers are
not affected by .ENABLE
TRUNCATION; they are
always rounded .

. ENABLE enables the specified assembly function. .ENABLE and its negative
form, .DISABLE, control the following assembler functions:

• Creating local label blocks

• Making all local symbols available to the debugger and enabling the
traceback feature

• Specifying that undefined symbol references are external references

• Truncating or rounding single-precision floating-point numbers

• Suppressing the listing of symbols that are defined but not referenced

• Specifying that all the PC references are absolute, not relative

Note

The alternate form of .ENABLE is .ENABL.

6-23

Assembler Directives
.ENABLE

EXAMPLE

.ENABLE ABSOLUTE. GLOBAL

.DISABLE TRUNCATION.TRACEBACK

6-24

Assemble relative address mode
as absolute address mode, and consider
undefined references as global

Round floating-point numbers, and
omit debugging information from
the object module

.END

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE
.ENTRY START,O

.END START

Assembly termination directive

.END [symbol]

symbol

Assembler Directives
.END

The address (called the transfer address) at which program execution is to
begin.

.END terminates the source program. No additional text should occur beyond
this point in the current source file or in any additional source files specified
in the command line for this assembly. If any additional text does occur, the
assembler ignores it. The additional text does not appear in either the listing
file or the object file.

Notes

1 The transfer address must be in a program section that has the EXE
attribute (see the description of .PSECT).

2 When an executable image consisting of several object modules is linked,
only one object module should be terminated by an .END directive
that specifies a transfer address. All other object modules should be
terminated by .END directives that do not specify a transfer address. If
an executable image contains either no transfer address or more than one
transfer address, the VAX linker displays an error message.

3 If the source program contains an unterminated conditional code block
when the .END directive is specified, the assembler displays an error
message.

Entry mask

Main program

Transfer address

6-25

Assembler Directives
.ENDC

.ENDC

End conditional directive

FORMAT .ENDC

DESCRIPTION .ENDC terminates the conditional range started by the .IF directive. See the
description of .IF for more information and examples.

6-26

.ENDM

FORMAT

End definition directive

.ENDM [macro-name]

Assembler Directives
.ENDM

PARAMETERS macro-name
The name of the macro whose definition is to be terminated. The macro
name is optional; if specified, it must match the name defined in the matching
.MACRO directive. The macro name should be specified so that the assembler
can detect any improperly nested macro definitions.

DESCRIPTION .ENDM terminates the macro definition. See the description of .MACRO for
an example of the use of .ENDM.

Note

If .ENDM is encountered outside a macro definition, the assembler displays
an error message.

6-27

Assembler Directives
.ENDA

.ENDR

End range directive

FORMAT .ENDR

DESCRIPTION .ENDR indicates the end of a repeat range. It must be the final statement

6-28

of every indefinite repeat block directive (.IRP and .IRPC) and every repeat
block directive (.REPEAT). See the description of these directives for examples
of the use of .ENDR.

.ENTRY

FORMAT

PARAMETERS

DESCRIPTION

Assembler Directives
.ENTRY

Entry directive

.ENTRY symbol,expression

symbol
The symbolic name for the entry point.

expression
The register save mask for the entry point. The expression must be an
absolute expression and must not contain any undefined symbols.

.ENTRY defines a symbolic name for an entry point and stores a register
save mask (two bytes) at that location. The symbol is defined as a global
symbol with a value equal to the value of the location counter at the .ENTRY
directive. You can use the entry point as the transfer address of the program.
Use the register save mask to determine which registers are saved before the
procedure is called. These saved registers are automatically restored when the
procedure returns control to the calling program. See the description of the
procedure call instructions in Chapter 9.

Notes

1 The register mask operator CM) is convenient to use for setting the bits in
the register save mask (see Section 3.6.2.2).

2 An assembly error occurs if the expression has bits 0, l, 12, or 13 set.
These bits correspond to the registers RO, Rl, AP, and FP and are reserved
for the CALL interface.

3 DIGITAL recommends that you use .ENTRY to define all callable entry
points including the transfer address of the program. Although the
following construct also defines an entry point, DIGITAL discourages its
use:

symbol:: .WORD expression

Although your program can call a procedure starting with this construct,
the entry mask is not checked for any illegal registers, and the symbol
cannot be used in a .MASK directive.

4 You should use .ENTRY only for procedures that are called by the
CALLS or CALLG instruction. A routine that is entered by the BSB or
JSB instruction should not use .ENTRY because these instructions do not
expect a register save mask. Begin these routines using the following
format:

symbol:: first instruction

The first instruction of the routine immediately follows the symbol.

6-29

Assembler Directives
.ENTRY

EXAMPLE
.ENTRY CALC, -M<R2,R3,R7>

6-30

Procedure starts here.
Registers R2, R3, and R7

are preserved by CALL
and RET instructions

.ERROR

FORMAT

PARAMETERS

DESCRIPTION

EXAMPLE

Error directive

Assembler Directives
.ERROR

.ERROR [expression] ;comment

expression
An expression whose value is displayed when .ERROR is encountered during
assembly.

;comment
A comment that is displayed when .ERROR is encountered during assembly.
The comment must be preceded by a semicolon .

. ERROR causes the assembler to display an error message on the terminal or
batch log file and in the listing file (if there is one).

Notes

1 .ERROR, .WARN, and .PRINT are message display directives. Use them
to display information indicating that a macro call contains an error or an
illegal set of conditions.

2 When the assembly is finished, the assembler displays the total number
of errors, warnings, information messages, and the sequence numbers of
the lines causing the errors or warnings.

3 If .ERROR is included in a macro library, end the comment with a
semicolon. Otherwise, the librarian will strip the comment from the
directive and it will not be displayed when the macro is called.

4 The line containing the .ERROR directive is not included in the listing
file.

5 If the expression has a value of 0, it is not displayed in the error message.

.IF DEFINED

.IF GREATER

.ERROR 25

.ENDC

LONG_MESS
1000-WORK_AREA

.ENDC

Need larger WORK_AREA;

In this example, if the symbol LONG_MESS is defined and if the symbol
WORK-AREA has a value of 1000 or less, the following error message is
displayed:

Y.MACRO-E-GENERR, Generated ERROR: 25 Need larger WORK_AREA

6-31

Assembler Directives
.EVEN

.EVEN

Even location counter alignment directive

FORMAT . EVEN

DESCRIPTION .EVEN ensures that the current value of the location counter is even by
adding 1 if the current value is odd. If the current value is already even, no
action is taken.

6-32

.EXTERNAL

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE

External symbol attribute directive

.EXTERNAL symbol-list

symbol-list

Assembler Directives
.EXTERNAL

A list of legal symbols, separated by commas.

.EXTERNAL indicates that the specified symbols are external; that is, the
symbols are defined in another object module and cannot be defined until
link time (see Section 3.3.3 for a discussion of external references).

Notes

1 If the GLOBAL argument is enabled (see Table 6-3), all unresolved
references will be marked as global and external. If GLOBAL is enabled,
you need not specify .EXTERNAL. If GLOBAL is disabled, you must
explicitly specify .EXTERNAL to declare any symbols that are defined
externally but are referred to in the current module.

2 If GLOBAL is disabled and the assembler finds symbols that are neither
defined in the current module nor listed in a .EXTERNAL directive, the
assembler displays an error message.

3 Note that if your program does not reference, in a relocatable program
section, symbols that are declared in the absolute program section (ABS),
the unreferenced symbols are filtered out by the assembler and will not
be included in the object file. This filtering out will occur even if the
symbols are declared global or external.

If you want to be sure that a symbol will be included even if it is not
referenced, declare it in a relocatable program section. If you want to
make sure that a symbol you define in an absolute program section is
included, reference it in a relocatable program section.

4 The alternate form of .EXTERNAL is .EXTRN.

.EXTERNAL

.EXTERNAL
SIN.TAN.COS
SINH,COSH,TANH

These symbols are defined in
externally assembled modules

6-33

Assembler Directives
.f _FLOATING

.F_FLOATING

.FLOAT

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE

Floating-point storage directive

.F _FLOATING literal-list

. FLOAT literal-list

literal-list
A list of floating-point constants (see Section 3.2.2). The constants cannot
contain any unary or binary operators except unary plus and unary minus.

.FJLOATING evaluates the specified floating-point constants and stores
the results in the object module. .FJLOATING generates 32-bit, single
precision, floating-point data (1 bit of sign, 8 bits of exponent, and 23 bits of
fractional significance). See the description of .DJLOATING for information
on storing double-precision floating-point numbers and the descriptions of
.GJLOATING and .HJLOATING for descriptions of other floating-point
numbers.

Notes

1 See the description of .ENABLE for information on specifying floating
point rounding or truncation.

2 The floating-point constants in the literal list must not be preceded by the
floating-point unary operator ("F).

.F_FLOATING 134.5782,74218.34E20

.F_FLOATING 134.2,0.1342E3,1342E-1

.F_FLOATING -0.75,1E38,-1.0E-37

Constant list
These all generate 134.2
Constant list

.FLOAT 0,25,50

6-34

Assembler Directives
.G_FLOATING

.G_FLOATING

G_floating-point storage directive

FORMAT .G_FLOATING literal-list

PARAMETERS literal-list

DESCRIPTION

EXAMPLE

A list of floating-point constants (see Section 3.2.2). The constants cannot
contain any unary or binary operators except unary plus or unary minus.

.GJLOATING evaluates the specified floating-point constants and stores the
results in the object module .. GJLOATING generates 64-bit data (1 bit of
sign, 11 bits of exponent, and 52 bits of fraction).

Notes

1 G_floating-point numbers are always rounded. They are not affected by
the .ENABLE TRUNCATION directive.

2 The floating-point constants in the literal list must not be preceded by the
floating-point operator ("F).

.G_FLOATING 1000, 1.0E3, 1.0000000E-9 Constant list

6-35

Assembler Directives
.GLOBAL

.GLOBAL

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE
.GLOBAL LAB_40,LAB_30

.GLOBAL UKN_13

6-36

Global symbol attribute directive

.GLOBAL symbol-list

symbol-list
A list of legal symbol names, separated by commas .

. GLOBAL indicates that specified symbol names are either globally defined
in the current module or externally defined in another module (see
Section 3.3.3).

Notes

1 .GLOBAL is provided for MACR0-11 compatibility only. DIGITAL
recommends that global definitions be specified by a double colon or
double equals sign (see Sections 2.1 and 3.8) and that external references
be specified by .EXTERNAL when necessary.

2 The alternate form of .GLOBAL is .GLOBL.

Make these symbol names
globally known
to all linked modules

Assembler Directives
.H_FLOATING

.H_FLOATING

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE

H _floating-point storage directive

. H _FLOA Tl NG literal-list

literal-list
A list of floating-point constants (see Section 3.2.2). The constants cannot
contain any unary or binary operators except unary plus or unary minus .

. HJLOATING evaluates the specified floating-point constants and stores the
results in the object module. .HJLOATING generates 128-bit data (1 bit of
sign, 15 bits of exponent, and 112 bits of fraction).

Notes

1 H__floating-point numbers are always rounded. They are not affected by
the .ENABLE TRUNCATION directive.

2 The floating-point constants in the literal list must not be preceded by the
floating-point operator ("F).

.H_FLOATING 36912, 15.0E18, 1.0000000E-9 Constant list

6-37

Assembler Directives
.IDENT

.IDENT

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE

.!DENT /3-47/

6-38

Identification directive

.IDENT string

string
A 1- to 31-character string that identifies the module, such as a string that
specifies a version number. The string must be delimited. The delimiters can
be any paired printing characters other than the left angle bracket (<) or the
semicolon (;), as long as the delimiting character is not contained within the
text string .

.!DENT provides a means of identifying the object module. This identification
is in addition to the name assigned to the object module with . TITLE. A
character string can be specified in .!DENT to label the object module. This
string is printed in the header of the listing file and also appears in the object
module.

Notes

1 If a source module contains more than one .!DENT, the last directive
given establishes the character string that forms part of the object module
identification.

2 If the delimiting characters do not match, or if you use an illegal
delimiting character, the assembler displays an error message.

; Version and edit numbers

The character string "3-47" is included in the object module.

. IF

FORMAT

Conditional assembly block directives

. IF condition argument(s)

range

.ENDC

Assembler Directives
.IF

PARAMETERS condition
A specified condition that must be met if the block is to be included in
the assembly. The condition must be separated from the argument by a
comma, space, or tab. Table 6-4 lists the conditions that can be tested by the
conditional assembly directives.

argument(s)
One or more symbolic arguments or expressions of the specified conditional
test. If the argument is an expression, it cannot contain any undefined
symbols and must be an absolute expression (see Section 3.5).

range
The block of source code that is conditionally included in the assembly.

6-39

Assembler Directives
.IF

Table 6-4 Condition Tests for Conditional Assembly Directives

Condition Complement Argument Number of Condition that
Test Condition Test Type Arguments Assembles Block

Short Short
Long Form Form Long Form Form

EQUAL EO NOT_EQUAL NE Expression Expression is equal
to O/not equal to
0.

GREATER GT LESS_EQUAL LE Expression Expression is
greater than 0/
less than or equal
to 0.

LESS_ THAN LT GAEA TER_EQUAL GE Expression Expression is less
than 0 /greater
than or equal to 0.

DEFINED OF NQT_DEFINED NDF Symbolic Symbol is defined
/not defined.

BLANK1 B NOT_BLANK1 NB Macro Argument is blank
I nonblank.

IDENTICAL1 ION DIFFERENT1 DIF Macro 2 Arguments are
identical/ different.

1 The BLANK, NOT_BLANK, IDENTICAL, and DIFFERENT conditions are only useful in macro definitions.

DESCRIPTION

6-40

A conditional assembly block is a series of source statements that is assembled
only if a certain condition is met. .IF starts the conditional block and .ENDC
ends the conditional block; each .IF must have a corresponding .ENDC.
The .IF directive contains a condition test and one or two arguments. The
condition test specified is applied to the argument(s). If the test is met, all
VAX MACRO statements between .IF and .ENDC are assembled. If the test is
not met, the statements are not assembled. An exception to this rule occurs
when you use subconditional directives (see the description of the .IF_x
directive).

Conditional blocks can be nested; that is, a conditional block can be inside
another conditional block. In this case the statements in the inner conditional
block are assembled only if the condition is met for both the outer and inner
block.

EXAMPLES

Notes

Assembler Directives
.IF

1 If .ENDC occurs outside a conditional assembly block, the assembler
displays an error message.

2 VAX MACRO permits a nesting depth of 31 conditional assembly levels.
If a statement attempts to exceed this nesting level depth, the assembler
displays an error message.

3 Lowercase string arguments are converted to uppercase before being
compared, unless the string is surrounded by delimiters. For information
on string arguments and delimiters, see Chapter 4.

4 The assembler displays an error message if .IF specifies any of the
following: a condition test other than those in Table 6-4, an illegal
argument, or a null argument specified in an .IF directive.

5 The .SHOW and .NOSHOW directives control whether condition blocks
that are not assembled are included in the listing file.

iJ An example of a conditional assembly directive is:

.IF EQUAL ALPHA+!

.ENDC

Assemble block if ALPHA+1=0. Do
not assemble if ALPHA+! not=O

~ Nested conditional directives take the form:

.IF condition,argument(s)

.IF condition,argument(s)

.ENDC

.ENDC

~ The following conditional directives can govern whether assembly
is to occur:

.IF DEFINED SYM1

.IF DEFINED SYM2

.ENDC

.ENDC

In this example, if the outermost condition is not satisfied, no deeper level
of evaluation of nested conditional statements within the program occurs.
Therefore, both SYMl and SYM2 must be defined for the code to be
assembled.

6-41

Assembler Directives
.IF_x

.IF_x

FORMAT

DESCRIPTION

6-42

Subconditional assembly block directives

.If _FALSE

.If _TRUE

.If_ TRUE_FALSE

VAX MACRO has the following three subconditional assembly block
directives:

Directive

.IF_FALSE

.IF_TRUE

. IF_ TRUE_FALSE

Function

If the condition of the assembly block tests false, the
program includes the source code following the .ILFALSE
directive and continuing up to the next subconditional
directive or to the end of the conditional assembly block.

If the condition of the assembly block tests true, the
program includes the source code following the .IF_ TRUE
directive and continuing up to the next subconditional
directive or to the end of the conditional assembly block .

Regardless of whether the condition of the assembly
block tests true or false, the source code following the
.IF TRUE_FALSE directive (and continuing up to the next
subconditional directive or to the end of the assembly
block) is always included.

The implied argument of a subconditional directive is the condition test
specified when the conditional assembly block was entered. A conditional
or subconditional directive in a nested conditional assembly block is not
evaluated if the preceding (or outer) condition in the block is not satisfied (see
Examples 3 and 4).

A conditional block with a subconditional directive is different from a nested
conditional block. If the condition in the .IF is not met, the inner conditional
block(s) are not assembled, but a subconditional directive can cause a block to
be assembled.

Notes

1 If a subconditional directive appears outside a conditional assembly block,
the assembler displays an error message.

2 The alternate forms of .IFJALSE, JF_TRUE, and JF_TRUEJALSE are
.IFF, .IFT, and .IFTF.

EXAMPLES
iJ Assume that symbol SYM is defined:

. IF DEFINED SYM

.IF_FALSE

. IF_TRUE

.IF_TRUE_FALSE

. IF_TRUE

. ENDC

Assembler Directives
.IF--><

Tests TRUE since SYM is defined .
Assembles the following code.

Tests FALSE since previous
.IF was TRUE. Does not
assemble the following code.

Tests TRUE since SYM is defined .
Assembles the following code.

Assembles following code
unconditionally.

Tests TRUE since SYM is defined .
Assembles remainder of
conditional assembly block .

~ Assume that symbol X is defined and that symbol Y is not defined:

. IF DEFINED X

. IF DEFINED Y

. IF_FALSE

. IF_TRUE

. ENDC

.ENDC

Tests TRUE since X is defined .
Tests FALSE since Y is not defined .
Tests TRUE since Y is not defined .

Assembles the following code.

Tests FALSE since Y is not defined .
Does not assemble the following
code .

~ Assume that symbol A is defined and that symbol B is not defined:

. IF DEFINED A

. IF_FALSE

.IF NOT_DEFINED B

. ENDC

.ENDC

Tests TRUE since A is defined .
Assembles the following code.

Tests FALSE since A is defined .
Does not assemble the following
code.

Nested conditional directive
is not evaluated .

6-43

Assembler Directives
.lf_x

~ Assume that symbol X is not defined but symbol Y is defined:

6-44

.IF DEFINED X

. IF DEFINED Y

.IF_FALSE

.IF_TRUE

. ENDC

.ENDC

Tests FALSE since X is not defined.
Does not assemble the following
code .

Nested conditional directive
is not evaluated.

Nested subconditional
directive is not evaluated.

Nested subconditional
directive is not evaluated .

.llF

FORMAT

Assembler Directives
.llF

Immediate conditional assembly block directive

.llF condition {,jargument(s), statement

PARAMETERS condition

DESCRIPTION

EXAMPLE

One of the legal condition tests defined for conditional assembly blocks in
Table 6-4 (see the description of .IF). The condition must be separated from
the arguments by a comma, space, or tab. If the first argument can be a
blank, the condition must be separated from the arguments with a comma.

argument(s)
An expression or symbolic argument (described in Table 6-4) associated with
the immediate conditional assembly block directive. If the argument is an
expression, it cannot contain any undefined symbols and must be an absolute
expression (see Section 3.5). The arguments must be separated from the
statement by a comma.

statement
The statement to be assembled if the condition is satisfied.

.IIF provides a means of writing a one-line conditional assembly block. The
condition to be tested and the conditional assembly block are expressed
completely within the line containing the .IIF directive. No terminating
.ENDC statement is required.

Note

The assembler displays an error message if .IIF specifies a condition test other
than those listed in Table 6-4, an illegal argument, or a null argument.

.!IF DEFINED EXAM, BEQL ALPHA

This directive generates the following code if the symbol EXAM is defined
within the source program:

BEQL ALPHA

6-45

Assembler Directives
.IRP

.IRP

FORMAT

PARAMETERS

DESCRIPTION

6-46

•
Indefinite repeat argument directive

.IRP symbol, <argument list>

range

.ENDR

symbol
A formal argument that is successively replaced with the specified actual
arguments enclosed in angle brackets. If no formal argument is specified, the
assembler displays an error message.

<argument list>
A list of actual arguments enclosed in angle brackets and used in expanding
the indefinite repeat range. An actual argument can consist of one or more
characters. Multiple arguments must be separated by a legal separator
(comma, space, or tab). If no actual arguments are specified, no action is
taken.

range
The block of source text to be repeated once for each occurrence of an actual
argument in the list. The range can contain macro definitions and repeat
ranges .. MEXIT is legal within the range .

.IRP replaces a formal argument with successive actual arguments specified
in an argument list. This replacement process occurs during the expansion of
the indefinite repeat block range. The .ENDR directive specifies the end of
the range .

.IRP is analogous to a macro definition with only one formal argument. At
each expansion of the repeat block, this formal argument is replaced with
successive elements from the argument list. The directive and its range are
coded in line within the source program. This type of macro definition and its
range do not require calling the macro by name, as do other macros described
in this section.

Assembler Directives
.IRP

.IRP can appear either inside or outside another macro definition, indefinite
repeat block, or repeat block (see the description of .REPEAT). The rules
for specifying .IRP arguments are the same as those for specifying macro
arguments.

EXAMPLE

.MACRO

.NARG

.IRP

.IIF

.ENDR
CALLS
.ENDM

CALL_ SUB
.NARG
.IRP
.IIF
.ENDR
.IIF
.IIF
. IIF
.IIF
.IIF
.IIF
.IIF
.IIF
. IIF
.IIF
CALLS

Macro definition:

CALL_SUB SUBR,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10
COUNT
ARG,<A10,A9,A8,A7,A6,A5,A4,A3,A2,A1>
NOT _BLANK . ARG I PUSHL ARG

#<COUNT-1>,SUBR
CALL_ SUB

; Note SUBR is counted

Macro call and expansion of the macro defined previously:

TEST,INRES,INTES,UNLIS,OUTCON,#205
COUNT
ARG,<, ,,, ,#205,0UTCON,UNLIS,INTES,INRES>
NOT _BLANK , ARG, PUSHL ARG

NOT_BLANK I

NOT_BLANK ,
NOT_BLANK ,
NOT_BLANK ,
NOT_BLANK ,
NOT_BLANK , #205,
NOT_BLANK , OUTCON,
NOT_BLANK . UNLIS,
NOT_BLANK , INTES,
NOT_BLANK , INRES,
#<COUNT-1>,TEST

PUSHL
PUSHL
PUSHL
PUSHL
PUSHL
PUSHL #205
PUSHL OUTCON
PUSHL UNLIS
PUSHL INTES
PUSHL INRES
Note TEST is counted

This example uses the .NARG directive to count the arguments and the .IIF
NOT_BLANK directive (see descriptions of .IF and .IIF in this section) to
determine whether the actual argument is blank. If the argument is blank, no
binary code is generated.

6-47

Assembler Directives
.IRPC

.IRPC

Indefinite repeat character directive

FORMAT .IRPC symbol, <STRING>

range

.ENDR

PARAMETERS symbol

DESCRIPTION

6-48

A formal argument that is successively replaced with the specified characters
enclosed in angle brackets. If no formal argument is specified, the assembler
displays an error message.

<STRING>
A sequence of characters enclosed in angle brackets and used in the expansion
of the indefinite repeat range. Although the angle brackets are required only
when the string contains separating characters, their use is recommended for
legibility.

range
The block of source text to be repeated once for each occurrence of a character
in the list. The range can contain macro definitions and repeat ranges .
. MEXIT is legal within the range .

.IRPC is similar to .IRP except that .IRPC permits single-character substitution
rather than argument substitution. On each iteration of the indefinite repeat
range, the formal argument is replaced with each successive character in the
specified string. The .ENDR directive specifies the end of the range .

.IRPC is analogous to a macro definition with only one formal argument. At
each expansion of the repeat block, this formal argument is replaced with
successive characters from the actual argument string. The directive and its
range are coded in line within the source program and do not require calling
the macro by name .

.IRPC can appear either inside or outside another macro definition, indefinite
repeat block, or repeat block (see description of .REPEAT).

EXAMPLE
Macro Definition:

.MACRO HASH_SYM

.NCHR HV,<SYMBOL>

.IRPC CHR,<SYMBOL>
HV = HV+-A?CHR?

.ENDR

.ENDM HASH_SYM

SYMBOL

Assembler Directives
.IRPC

Macro call and expansion of the macro defined previously:

HASH_SYM <MOVC5>
.NCHR HV,<MOVC5>
.IRPC CHR,<MOVC5>

HV = HV+-A?CHR?
.ENDR

HV = HV+-A?M?
HV = HV+-A?O?
HV = HV+-A?V?
HV = HV+-A?C?
HV = HV+-A?5?

This example uses the .NCHR directive to count the number of characters in
an actual argument.

6-49

Assembler Directives
.LIBRARY

.LIBRARY

Macro library directive

FORMAT . LI BRA RY macro-library-name

PARAMETERS macro-library-name
A delimited string that is the file specification of a macro library.

DESCRIPTION .LIBRARY adds a name to the macro library list that is searched whenever a
.MCALL or an undefined opcode is encountered. The libraries are searched
in the reverse order in which they were specified to the assembler.

If you omit any information from the macro-library-name argument, default
values are assumed. The device defaults to your current default disk; the
directory defaults to your current default directory; the file type defaults to
MLB.

DIGITAL recommends that libraries be specified in the MACRO command
line with the /LIBRARY qualifier rather than with the .LIBRARY directive.
The .LIBRARY directive makes moving files cumbersome.

EXAMPLE

.LIBRARY

.LIBRARY

.LIBRARY

6-50

/DISK: [TEST]USERM/
?DISK:SYSDEF.MLB?
\CURRENT.MLB\

DISK: [TEST]USERM.MLB
DISK:SYSDEF.MLB
Uses default disk and directory

.LINK

FORMAT

PARAMETERS

FILE
QUALIFIERS

Assembler Directives
.LINK

Linker option record directive

. LINK "file-spec"[/ qualifier[=(module-name[, ...]) }, ...]

file-spec[, ...]
A delimited string that specifies one or more input files. The delimiters can
be any matching pair of printable characters except the space, tab, equal
sign (=), semicolon (;), or left angle bracket (<). The character that you
use as the delimiter cannot appear in the string itself. Although you can use
alphanumeric characters as delimiters, use nonalphanumeric characters to
avoid confusion.

The input files can be object modules to be linked, or shareable images to
be included in the output image. Input files can also be libraries containing
external references or specific modules for inclusion in the output image.
The linker will search the libraries for the external references. If you specify
multiple input files, separate the file specifications with commas (,).

If you do not specify a file type in an input file specification, the linker
supplies default file types, based on the nature of the file. All object modules
are assumed to have file types of OBJ.

Note that the input file specifications must be correct at link time. Make your
references explicit, so that if the object module created by VAX MACRO is
linked in a directory other than the one in which it was created, the linker
will still be able to find the files referenced in the .LINK directive.

No wildcard characters are allowed in the file specification.

/I NC LU DE=(module-name[, ...])
Indicates that the associated input file is an object library or shareable image
library, and that only the module names specified are to be unconditionally
included as input to the linker.

At least one module name must be specified. If you specify more than one
module name, separate the names with commas and enclose the list in
parentheses.

No wildcard characters are allowed in the module name specifications.
Module names may not be longer than 31 characters, the maximum length of
a VAX MACRO symbol.

/LIBRARY
Indicates that the associated input file is a library to be searched for modules
to resolve any undefined symbols in the input files.

If the associated input file specification does not include a file type, the linker
assumes the default file type of OLB. You can use both /INCLUDE and
/LIBRARY to qualify a file specification. If you specify both /INCLUDE and
/LIBRARY, the library is subsequently searched for unresolved references.

6-51

Assembler Directives
.LINK

DESCRIPTION

EXAMPLES

In this case, the explicit inclusion of modules occurs first; then the linker
searches the library for unresolved references.

/SELECTIVE_SEARCH
Directs the linker to add to its symbol table only those global symbols that are
defined in the specified file and are currently unresolved. If /SELECTIVE_
SEARCH is not specified, the linker includes all symbols from that file in its
global symbol table.

/SHAREABLE
Requests that the linker include a shareable image file. No wildcard
characters are allowed in the file specification.

The following table contains the abbreviations of the qualifiers for the .LINK
directive. Note that to ensure readability, as well as compatibility with future
releases, it is recommended that you use the full names of the qualifiers.

Abbreviation

/I
/L
/SE

/SH

Qualifier

/INCLUDE

/LIBRARY

/SELECTIVE_SEARCH

/SHAREABLE

The .LINK directive allows you to include linker option records in an object
module produced by VAX MACRO. The qualifiers for the .LINK directive
perform functions similar to the functions performed by the same qualifiers
for the DCL command LINK.

You should use the .LINK directive for references that are not linker defaults,
but that you always want to include in a particular image. Using the .LINK
directive enables you to avoid having to explicitly name these references in
the DCL command LINK.

For detailed information on the qualifiers to the DCL command LINK, see the
VMS DCL Dictionary. For a complete discussion of the operation of the linker
itself, see the VMS Linker Utility Manual.

II .LINK "SYS$LIBRARY:MYLIB" /INCLUDE=(MOD1, MOD2, MOD6)

This statement, when included in the file MYPROG.MAR, causes the
assembler to request that MYPROG.OBJ be linked with modules MODI,
MOD2, and MOD6 in the library SYS$LIBRARY:MYLIB.OLB (where
SYS$LIBRARY is a logical name for the disk and directory in which
MYLIB.OLB is listed). The library is not searched for other unresolved
references. The statement is equivalent to linking the file with the DCL
command:

~ $LINK MYPROG, SYS$LIBRARY:MYLIB /INCLUDE=(MOD1, MOD2, MOD6)

6-52

Assembler Directives
.LINK

.LINK \SYS$LIBRARY:MYOBJ\

.LINK 'SYS$LIBRARY:YOURLIB' /LIBRARY

Link with object module
SYS$LIBRARY:MYOBJ.OBJ

Search object library
SYS$LIBRARY:YOURLIB.OLB
for unresolved references

.LINK *SYS$LIBRARY:MYSTB.STB* /SELECTIVE_SEARCH Search symbol table
SYS$LIBRARY:MYSTB.STB

.LINK "SYS$LIBRARY:MYSHR.EXE" /SHAREABLE

for unresolved references

Link with shareable image
SYS$LIBRARY:MYSHR.EXE

To increase efficiency and performance, include several related input files in
a single .LINK directive. The following example shows how the five options
illustrated previously can be included in one statement:

~ . LINK 'SYS$LIBRARY: MYOBJ' , -
'SYS$LIBRARY:YOURLIB' /LIBRARY,
'SYS$LIBRARY:MYLIB' /INCLUDE=(MOD1, MOD2, MOD6),
'SYS$LIBRARY:MYSTB.STB' /SELECTIVE_SEARCH,
'SYS$LIBRARY:MYSHR.EXE' /SHAREABLE

6-53

Assembler Directives
.LIST

.LIST

Listing directive

FORMAT .LIST [argument-list]

PARAMETER argument-list
One or more of the symbolic arguments defined in Table 6-8 in the
description of .SHOW. You can use either the long form or the short form
of the arguments. If multiple arguments are specified, separate them with
commas, spaces, or tabs.

DESCRIPTION .LIST is equivalent to .SHOW. See the description of .SHOW for more
information.

6-54

.LONG

FORMAT

Longword storage directive

. LONG expression-list

Assembler Directives
.LONG

PARAMETERS expression-list
One or more expressions separated by commas. You have the option of
following each expression with a repetition factor delimited by square
brackets.

An expression followed by a repetition factor has the format:

expression 1 [expression2]

expression 1
An expression that specifies the value to be stored.

[expression2]
An expression that specifies the number of times the value is repeated. The
expression must not contain any undefined symbols and must be an absolute
expression (see Section 3.5). The square brackets are required.

DESCRIPTION .LONG generates successive longwords (four bytes) of data in the object
module.

EXAMPLE
LAB_3: . LONG

.LONG

.LONG

LAB_3,-X7FFFFFFF, -A'ABCD'
-XF©4
0[22]

Note

3 longwords of data
1 longword of data
22 longwords of data

Each expression in the list must have a value that can be represented in 32
bits.

6-55

Assembler Directives
.MACRO

.MACRO

Macro definition directive

FORMAT . MACRO macro-name [formal-argument-list]

range

.ENDM [macro name}

PARAMETERS macro-name

DESCRIPTION

6-56

The name of the macro to be defined; this name can be any legal symbol up
to 31 characters long.

formal-argument-list
The symbols, separated by commas, to be replaced by the actual arguments
in the macro call.

range
The source text to be included in the macro expansion.

.MACRO begins the definition of a macro. It gives the macro name and a list
of formal arguments (see Chapter 4). If the name specified is the same as the
name of a previously defined macro, the previous definition is deleted and
replaced with the new one. The .MACRO directive is followed by the source
text to be included in the macro expansion. The .ENDM directive specifies
the end of the range.

Macro names do not conflict with user-defined symbols. Both a macro and a
user-defined symbol can have the same name.

When the assembler encounters a .MACRO directive, it adds the macro name
to its macro name table and stores the source text of the macro (up to the
matching .ENDM directive). No other processing occurs until the macro is
expanded.

The symbols in the formal argument list are associated with the macro name
and are limited to the scope of the definition of that macro. For this reason,
the symbols that appear in the formal argument list can also appear elsewhere
in the program.

EXAMPLE

Notes

Assembler Directives
.MACRO

1 If a macro has the same name as a VAX opcode, the macro is used
instead of the instruction. This feature allows you to temporarily redefine
an opcode.

2 If a macro has the same name as a VAX opcode and is in a macro library,
you must use the .MCALL directive to define the macro. Otherwise,
because the symbol is already defined (as the opcode), the assembler will
not search the macro libraries.

3 You can redefine a macro with new source text during assembly by
specifying a second .MACRO directive with the same name. Including a
second .MACRO directive within the original macro definition causes
the first macro call to redefine the macro. This is useful when a
macro performs initialization or defines symbols, when an operation
is performed only once. The macro redefinition can eliminate unneeded
source text in a macro or it can delete the entire macro. The .MDELETE
directive provides another way to delete macros.

Macro definition:

.MACRO USERDEF

.PSECT DEFIES.ABS
MYSYM= 5
HIVAL= -xFFF123
LOWVAL= 0

.PSECT
TABLE: .BLKL
LIST: .BLKB

.MACRO

.ENDM

.ENDM

RWDATA,NOEXE,LONG
100
10
USERDEF
USERDEF
USERDEF

Redefine it to null

Macro calls and expansions of the macro defined previously:

USERDEF
.PSECT DEFIES.ABS

MYSYM= 5
HIVAL= -xFFF123
LOWVAL= 0

.PSECT
TABLE: .BLKL
LIST: .BLKB

.MACRO

.ENDM

USERDEF

RWDATA,NOEXE,LONG
100
10
USERDEF
USERDEF

; Should expand data

Redefine it to null

Should expand nothing

In this example, when the macro is called the first time, it defines some
symbols and data storage areas and then redefines itself. When the macro is
called a second time, the macro expansion contains no source text.

6-57

Assembler Directives
.MASK

.MASK

FORMAT

PARAMETERS

DESCRIPTION

6-58

Mask directive

.MASK symbol[,expression]

symbol
A symbol defined in an .ENTRY directive.

expression
A register save mask.

.MASK reserves a word for a register save mask for a transfer vector. See
the description of . TRANSFER for more information and for an example of
.MASK.

Notes

1 If .MASK does not contain an expression, the assembler directs the linker
to copy the register save mask specified in .ENTRY to the word reserved
by .MASK.

2 If .MASK contains an expression, the assembler directs the linker to
combine this expression with the register save mask specified in .ENTRY
and store the result in the word reserved by .MASK. The linker performs
an inclusive OR operation to combine the mask in the entry point and
the value of the expression. Consequently, a register specified in either
.ENTRY or .MASK will be included in the combined mask. See the
description of .ENTRY for more information on entry masks.

.MCALL

FORMAT

Macro call directive

. MCALL macro-name-list

Assembler Directives
.MCALL

PARAMETERS macro-name-list
A list of macros to be defined for this assembly. Separate the macro names
with commas.

DESCRIPTION .MCALL specifies the names of the system and user-defined macros that are
required to assemble the source program but are not defined in the source
file.

EXAMPLE

.MCALL INSQUE

If any named macro is not found upon completion of the search (that is, if the
macro is not defined in any of the macro libraries), the assembler displays an
error message.

Note: .MCALL is provided for compatibility with MACR0-11; with one
exception, DIGIT AL recommends that you not use it. When VAX
MACRO finds an unknown symbol in the opcode field, it automatically
searches all macro libraries. If it finds the symbol in a library, it uses the
macro definition and expands the macro reference. If VAX MACRO does
not find the symbol in the library, it displays an error message.

You must use .MCALL when a macro has the same name as an opcode
(see description of .MACRO).

Substitute macro in
library for INSQUE
instruction

6-59

Assembler Directives
.MDELETE

.MDELETE

Macro deletion directive

FORMAT .MDELETE macro-name-list

PARAMETERS macro-name-list

DESCRIPTION

EXAMPLE

A list of macros whose definitions are to be deleted. Separate the names with
commas .

. MDELETE deletes the definitions of specified macros. The number of macros
actually deleted is printed in the assembly listing on the same line as the
.MDELETE directive .

. MDELETE completely deletes the macro, freeing memory as necessary.
Macro redefinition with .MACRO merely redefines the macro.

.MDELETE USERDEF,$SSDEF,ALTR

6-60

.MEXIT

FORMAT

DESCRIPTION

EXAMPLE
.MACRO POLO N,A,B

.IF EQ N

.MEXIT

.ENDC

.ENDM POLO

Assembler Directives
.MEXIT

Macro exit directive

.MEXIT

.MEXIT terminates a macro expansion before the end of the macro.
Termination is the same as if .ENDM were encountered. You can use the
directive within repeat blocks. .MEXIT is useful in conditional expansion of
macros because it bypasses the complexities of nested conditional directives
and alternate assembly paths.

Notes

1 When .MEXIT occurs in a repeat block, the assembler terminates the
current repetition of the range and suppresses further expansion of the
repeat range.

2 When macros or repeat blocks are nested, .MEXIT exits to the next higher
level of expansion.

3 If .MEXIT occurs outside a macro definition or a repeat block, the
assembler displays an error message.

Start conditional assembly block

Terminate macro expansion
End conditional assembly block

; Normal end of macro

In this example, if the actual argument for the formal argument N equals 0,
the conditional block is assembled, and the macro expansion is terminated by
.MEXIT.

6-61

Assembler Directives
.NARG

.NARG

FORMAT

PARAMETERS

DESCRIPTION

EXAMPLE

Number of arguments directive

. NARG symbol

symbol
A symbol that is assigned a value equal to the number of arguments in the
macro call .

. NARG determines the number of arguments in the current macro call.

.NARG counts all the positional arguments specified in the macro call,
including null arguments (specified by adjacent commas). The value assigned
to the specified symbol does not include either any keyword arguments or
any formal arguments that have default values.

Note

If .NARG appears outside a macro, the assembler displays an error message.

Macro definition:

.MACRO CNT_ARG A1,A2,A3,A4,A5,A6,A7,A8,A9=DEF9,A10=DEF10

.NARG COUNTER COUNTER is set to no. of ARGS

.WORD COUNTER ; Store value of COUNTER

.ENDM CNT_ARG

CNT_ARG TEST.FIND.ANS
.NARG COUNTER
.WORD COUNTER

CNT_ARG
.NARG COUNTER
.WORD COUNTER

Macro calls and expansions of the macro defined previously:

COUNTER will = 3
COUNTER is set to no. of ARGS
Store value of COUNTER

COUNTER will = 0
COUNTER is set to no. of ARGS
Store value of COUNTER

CNT_ARG TEST,A2=SYMB2,A3=SY3 ; COUNTER will = 1
.NARG COUNTER COUNTER is set to no. of ARGS
.WORD COUNTER Store value of COUNTER

CNT _ARG , SYMBL, ,
.NARG COUNTER
.WORD COUNTER

6-62

Keyword arguments are not counted

COUNTER will = 3
COUNTER is set to no. of ARGS
Store value of COUNTER
Null arguments are counted

.NCHR

FORMAT

PARAMETERS

DESCRIPTION

EXAMPLE

CHAR MESS .MACRO
.NCHR
.WORD
.ASCII
.ENDM

CHRCNT,<MESS>
CHRCNT
/MESS/
CHAR

CHAR <HELLO>
.NCHR CHRCNT,<HELLO>
.WORD CHRCNT
.ASCII /HELLO/

CHAR <14, 75.39 4>

Assembler Directives
.NCHR

Number of characters directive

.NCHR symbol, <string>

symbol
A symbol that is assigned a value equal to the number of characters in the
specified character string.

<string>
A sequence of printable characters. Delimit the character string with angle
brackets (or a character preceded by a circumflex) only if the specified
character string contains a legal separator (comma, space, and/or tab) or
a semicolon.

.NCHR determines the number of characters in a specified character string. It
can appear anywhere in a VAX MACRO program and is useful in calculating
the length of macro arguments.

Macro definition:

Define MACRO
Assign value to CHRCNT
Store value
Store characters
Finish

Macro calls and expansions of the macro defined previously:

; CHRCNT will = 5
; Assign value to CHRCNT
; Store value
; Store characters

; CHRCNT will = 12(dec)
.NCHR CHRCNT,<14, 75.39 4> ; Assign value to CHRCNT
.WORD CHRCNT Store value
.ASCII /14, 75.39 4/ ; Store characters

6-63

Assembler Directives
.NLIST

.NLIST

Listing directive

FORMAT .NLIST [argument-list]

PARAMETER argument-list
One or more of the symbolic arguments listed in Table 6-8 in the description
of .SHOW. Use either the long form or the short form of the arguments. If
you specify multiple arguments, separate them with commas, spaces, or tabs.

DESCRIPTION .NLIST is equivalent to .NOSHOW. See the description of .SHOW for more
information.

6-64

.NOC ROSS

Cross-reference directive

FORMAT .NOCROSS [symbol-list]

PARAMETER symbol-list

Assembler Directives
.NOCROSS

A list of legal symbol names separated by commas.

DESCRIPTION VAX MACRO produces a cross-reference listing when the
/CROSS_REFERENCE qualifier is specified in the MACRO command. The
.CROSS and .NOCROSS directives control which symbols are included in the
cross-reference listing. The description of .NOCROSS is included with the
description of .CROSS.

6-65

Assembler Directives
.NOSHOW

.NOSHOW

Listing directive

FORMAT .NOSHOW [argument-list]

PARAMETER argument-list
One or more of the symbolic arguments listed in Table 6-8 in the description
of .SHOW. Use either the long form or the short form of the arguments. If
you specify multiple arguments, separate them with commas, spaces, or tabs.

DESCRIPTION .NOSHOW specifies listing control options. See the description of .SHOW for
more information.

6-66

.NTYPE

FORMAT

PARAMETERS

DESCRIPTION

Operand type directive

.NTYPE symbo/,operand

symbol

Assembler Directives
.NTYPE

Any legal VAX MACRO symbol. This symbol is assigned a value equal to the
8- or 16-bit addressing mode of the operand argument that follows.

operand
Any legal address expression, as you use it with an opcode. If no argument is
specified, 0 is assumed .

. NTYPE determines the addressing mode of the specified operand.

The value of the symbol is set to the specified addressing mode. In most
cases, an 8-bit (1-byte) value is returned. Bits 0 through 3 specify the register
associated with the mode, and bits 4 through 7 specify the addressing mode.
To provide concise addressing information, the mode bits 4 through 7 are not
exactly the same as the numeric value of the addressing mode described in
Table C-6. Literal mode is indicated by a 0 in bits 4 through 7, instead of the
values 0 through 3. Mode 1 indicates an immediate mode operand, mode 2
indicates an absolute mode operand, and mode 3 indicates a general mode
operand.

For indexed addressing mode, a 16-bit (2-byte) value is returned. The high
order byte contains the addressing mode of the base operand specifier and
the low-order byte contains the addressing mode of the primary operand (the
index register).

See Chapter 5 of this volume for more information on addressing modes.

6-67

Assembler Directives
.NTVPE

EXAMPLE

The following macro is used to push an address on the stack. It checks
the operand type (by using .NTYPE) to determine if the operand is an
address and, if not, the macro simply pushes the argument on the stack
and generates a warning message .

. MACRO PUSHADR #ADDR

.NTYPE A,ADDR
A = A©-4&-XF

Assign operand type to 'A'
Isolate addressing mode
Is argument exactly O?
Stack zero

ERR = 0

.IF IDENTICAL O,<ADDR>
PUSHL #0
.MEXIT
.ENDC

.IIF LESS_EQUAL A-1, ERR=1

.!IF EQUAL A-5, ERR=1

.IF EQUAL ERR
PUSHAL ADDR
.IFF
PUSHL ADDR
.WARN ; ADDR is not an address;
.ENDC
.ENDM PUSHADR

Exit from macro

ERR tells if mode is address
ERR = 0 if address, 1 if not
Is mode not literal or immediate?
Is mode not register?
Is mode address?
Yes, stack address
No
Then stack operand & warn

Macro calls and expansions of the macro defined previously:

PUSHADR (RO)
PUSHAL (RO)

PUSHADR (R1)[R4]
PUSHAL (R1)[R4]

PUSHADR 0
PUSHL #0

Valid argument
Yes, stack address

Valid argument
Yes, stack address

Is zero
Stack zero

PUSHADR #1 Not an address
PUSHL #1 Then stack operand & warn

%MACRO-W-GENWRN, Generated WARNING: #1 is not an address

PUSHADR RO ; Not an address
PUSHL RO ; Then stack operand & warn

%MACRO-W-GENWRN, Generated WARNING: RO is not an address

6-68

Note that to save space, this example is listed as it would appear if .SHOW
BINARY, not .SHOW EXPANSIONS, were specified in the source program.

.OCTA

FORMAT

Octaword storage directive

.OCTA

.OCTA
literal
symbol

Assembler Directives
.OCTA

PARAMETERS literal
Any constant value. This value can be preceded by "O, "B, "X, or "D to specify
the radix as octal, binary, hexadecimal, or decimal, respectively; or it can be
preceded by "A to specify ASCII text. Decimal is the default radix.

symbol
A symbol defined elsewhere in the program. This symbol results in a sign
extended, 32-bit value being stored in an octaword.

DESCRIPTION .OCTA generates 128 bits (16 bytes) of binary data.

Note

.OCTA is like .QUAD and unlike other data storage directives (.BYTE,

.WORD, and .LONG), in that it does not evaluate expressions and that it
accepts only one value. It does not accept a list.

EXAMPLE
.OCTA

.OCTA

.OCTA

.OCTA

-A"FEDCBA987654321"

0
-xo1234ABCD5678F9
VINTERVAL

Each ASCII character
is stored in a byte

OCTA 0
OCTA hex value specified
VINTERVAL has 32-bit value,

sign-extended

6-69

Assembler Directives
.ODD

.ODD

Odd location counter alignment directive

FORMAT .ODD

DESCRIPTION .ODD ensures that the current value of the location counter is odd by adding
1 if the current value is even. If the current value is already odd, no action is
taken.

6-70

.OPDEF

FORMAT

PARAMETERS

Opcode definition directive

Assembler Directives
.OPDEF

.OPDEF opcode value,operand-descriptor-list

opcode
An ASCII string specifying the name of the opcode. The string can be up
to 31 characters long and can contain the letters A through Z, the digits
0 through 9, and the special characters underline (-), dollar sign ($),
and period (.). The string should not start with a digit and should not be
surrounded by delimiters.

value
An expression that specifies the value of the opcode. The expression must be
absolute and must not contain any undefined values (see Section 3.5). The
value of the expression must be in the range of 0 through decimal 65 ,535
(hexadecimal FFFF), but you cannot use the values 252 through 255 because
the architecture specifies these as the start of a 2-byte opcode. The expression
is represented as follows:

if 0 < expression < 251

if expression > 255

operand-descriptor-list

expression is a 1-byte opcode.

expression bits 7 :0 are the first byte of the
opcode and expression bits 15:8 are the
second byte of the opcode.

A list of operand descriptors that specifies the number of operands and the
type of each. Up to 16 operand descriptors are allowed in the list. Table 6-5
lists the operand descriptors.

Table 6-5 Operand Descriptors

Access Data Type
Type

Double
Float- Float- G_ H_

Byte Word Long- ing ing Floating Floating Quad- Octa-
word Point Point Point Point word word

Address AB AW AL AF AD AG AH AO AO

Read- RB RW RL RF RD RG RH RO RO
only

Modify MB MW ML MF MD MG MH MO MO

Write- WB WW WL WF WO WG WH WO WO
only

Field VB vw VL VF VD VG VH VO VO

Branch BB BW

6-71

Assembler Directives
.OPDEF

DESCRIPTION

EXAMPLE

.OPDEF defines an opcode, which is inserted into a user-defined opcode
table. The assembler searches this table before it searches the permanent
symbol table. This directive can redefine an existing opcode name or create a
new one.

Notes

1 You can also use a macro to redefine an opcode (see the description of
.MACRO in this section). Note that the macro name table is searched
before the user-defined opcode table.

2 .OPDEF is useful in creating "custom" instructions that execute user
written microcode. This directive is supplied to allow you to execute your
microcode in a MACRO program.

3 The operand descriptors are specified in a format similar to the operand
specifier notation described in Chapter 8. The first character specifies the
operand access type, and the second character specifies the operand data
type.

.OPDEF MOVL3 -XA9FF.RL,ML,WL Defines an instruction
MOVL3, which uses

.OPDEF DIVF2 -x46,RF,MF

.OPDEF MOVC5 -x2C,RW,AB,AB,RW,AB

.OPDEF CALL -x10,BB

6-72

the reserved opcode FF
Redefines the DIVF2 and

MOVC5 instructions

Equivalent to a BSBB

.PACKED

FORMAT

Assembler Directives
.PACKED

Packed decimal string storage directive

.PACKED decimal-string{,symbol}

PARAMETERS decimal-string

DESCRIPTION

EXAMPLE
.PACKED -12,PACK_SIZE
.PACKED +500
.PACKED 0
.PACKED -0,SUM_SIZE

A decimal number from 0 through 31 digits long with an optional sign. Digits
can be in the range of 0 through 9 (see Section 8.2.14).

symbol
An optional symbol that is assigned a value equivalent to the number of
decimal digits in the string. The sign is not counted as a digit.

.PACKED generates packed decimal data, two digits per byte. Packed decimal
data is useful in calculations requiring exact accuracy. Packed decimal data is
operated on by the decimal string instructions. See Section 8.2.14 for more
information on the format of packed decimal data.

PACK_SIZE gets value of 2

SUM_SIZE gets value of 1

6-73

Assembler Directives
.PAGE

.PAGE

FORMAT

DESCRIPTION

6-74

Page ejection directive

.PAGE

.PAGE forces a new page in the listing. The directive itself is not printed in
the listing.

VAX MACRO ignores .PAGE in a macro definition. The paging operation is
performed only during macro expansion.

.PRINT

FORMAT

PARAMETERS

DESCRIPTION

EXAMPLE

Assembly message directive

Assembler Directives
.PRINT

.PRINT [expression] ;comment

expression
An expression whose value is displayed when .PRINT is encountered during
assembly.

;comment
A comment that is displayed when .PRINT is encountered during assembly.
The comment must be preceded by a semicolon.

.PRINT causes the assembler to display an informational message. The
message consists of the value of the expression and the comment specified in
the .PRINT directive. The message is displayed on the terminal for interactive
jobs and in the log file for batch jobs. The message produced by .PRINT is
not considered an error or warning message.

Notes

1 .PRINT, .ERROR, and .WARN are called the message display directives.
You can use these to display information indicating that a macro call
contains an error or an illegal set of conditions.

2 If .PRINT is included in a macro library, end the comment with an
additional semicolon. If you omit the semicolon, the comment will be
stripped from the directive and will not be displayed when the macro is
called.

3 If the expression has a value of 0, it is not displayed with the message.

.PRINT 2 The sine routine has been changed

6-75

Assembler Directives
.PSECT

.PSECT

FORMAT

PARAMETERS

6-76

Program sectioning directive

. PSECT [program-section-name[, argument-list]]

program-section-name
The name of the program section. This name can be up to 31 characters
long and can contain any alphanumeric character and the special characters
underline (_), dollar sign ($), and period (.). The first character must not be
a digit.

argument-list
A list containing the program section attributes and the program section
alignment. Table 6-6 lists the attributes and their functions. Table 6-7 lists
the default attributes and their opposites. Program sections are aligned when
you specify an integer in the range of 0 through 9 or one of the five keywords
listed below. If you specify an integer, the program section is linked to begin
at the next virtual address, which is a multiple of 2 raised to the power of the
integer. If you specify a keyword, the program section is linked to begin at
the next virtual address (a multiple of the values listed below):

Keyword Size (in Bytes)

BYTE 2AQ = 1

WORD 2A1 = 2

LONG 2A2 = 4

QUAD 2A3 = 8

PAGE 2A9 = 512

BYTE is the default.

Table 6-6 Program Section Attributes

Attribute

ABS

Function

Absolute-The linker assigns the program section an absolute
address. The contents of the program section can be only
symbol definitions (usually definitions of symbolic offsets to
data structures that are used by the routines being assembled).
No data allocations can be made. An absolute program section
contributes no binary code to the image, so its byte allocation
request to the linker is 0. The size of the data structure being
defined is the size of the absolute program section printed
in the "program section synopsis" at the end of the listing.
Compare this attribute with its opposite, REL.

Assembler Directives
.PSECT

Table 6-6 (Cont.) Program Section Attributes

Attribute

CON

EXE

GBL

LCL

LIB

NOE XE

NOPIC

NORD

NOS HR

NOW RT

OVR

PIC

RD

REL

SHR

Function

Concatenate-Program sections with the same name and
attributes (including CON) are merged into one program section.
Their contents are merged in the order in which the linker
acquires them. The allocated virtual address space is the sum
of the individual requested allocations.

Executable-The program section contains instructions. This
attribute provides the capability of separating instructions from
read-only and read/write data. The linker uses this attribute in
gathering program sections and in verifying that the transfer
address is in an executable program section.

Global-Program sections that have the same name and
attributes, including GBL and OVR, will have the same
relocatable address in memory even when the program sections
are in different clusters (see the VMS Linker Utility Manual for
more information on clusters). This attribute is specified for
FORTRAN COMMON block program sections (see the VAX
FORTRAN User's Guide). Compare this attribute with its
opposite, LCL.

Local-The program section is restricted to its cluster.
Compare this attribute with its opposite, GBL.

Library Segment-Reserved for future use.

Not Executable-The program section contains data only; it
does not contain instructions.

Non-Position-Independent Content-The program section is
assigned to a fixed location in virtual memory (when it is in a
shareable image).

Nonreadable-Reserved for future use.

No Share-The program section is reserved for private use at
execution time by the initiating process.

Nonwriteable-The contents of the program section cannot be
altered (written into) at execution time.

Overlay-Program sections with the same name and attributes,
including OVR, have the same relocatable base address in
memory. The allocated virtual address space is the requested
allocation of the largest overlaying program section. Compare
this attribute with its opposite, CON.

Position-Independent Content-The program section can be
relocated; that is, it can be assigned to any memory area (when
it is in a shareable image).

Readable-Reserved for future use.

Relocatable-The linker assigns the program section a
relocatable base address. The contents of the program section
can be code or data. Compare this attribute with its opposite,
ABS.

Share-The program section can be shared at execution time
by multiple processes. This attribute is assigned to a program
section that can be linked into a shareable image.

6-77

Assembler Directives
.PSECT

DESCRIPTION

6-78

Table 6-6 (Cont.) Program Section Attributes

Attribute

USA

VEC

WAT

Function

User Segment-Reserved for future use.

Vector-Containing-The program section contains a change
mode vector indicating a privileged shareable image. You must
use the SHR attribute with VEC.

Write-The contents of the program section can be altered
(written into) at execution time.

Table 6-7 Default Program Section Attributes

Default Opposite

CON OVA

EXE NOEXE

LCL GBL

NOPIC PIC

NOSHR SHR

RD NORD

REL ABS

WAT NOW RT

NOV EC VEC

.PSECT defines a program section and its attributes and refers to a program
section once it is defined. Use program sections to do the following:

• Develop modular programs

• Separate instructions from data

• Allow different modules to access the same data

• Protect read-only data and instructions from being modified

• Identify sections of the object module to the debugger

• Control the order in which program sections are stored in virtual memory

The assembler automatically defines two program sections: the absolute
program section and the unnamed (or blank) program section. Any symbol
definitions that appear before any instruction, data, or .PSECT directive are
placed in the absolute program section. Any instructions or data that appear
before the first named program section is defined are placed in the unnamed
program section. Any .PSECT directive that does not include a program
section name specifies the unnamed program section.

A maximum of 254 user-defined, named program sections can be defined.

When the assembler encounters a .PSECT directive that specifies a new
program section name, it creates a new program section and stores the name,
attributes, and alignment of the program section. The assembler includes all
data and instructions that follow the .PSECT directive in that program section

EXAMPLE

Assembler Directives
.PSECT

until it encounters another .PSECT directive. The assembler starts all program
sections at a location counter of 0, which is relocatable.

If the assembler encounters a .PSECT directive that specifies the name of a
previously defined program section, it stores the new data or instructions after
the last entry in the previously defined program section. The location counter
is set to the value of the location counter at the end of the previously defined
program section. You need not list the attributes when continuing a program
section but any attributes that are listed must be the same as those previously
in effect for the program section. A continuation of a program section cannot
contain attributes conflicting with those specified in the original .PSECT
directive.

The attributes listed in the .PSECT directive only describe the contents of the
program section. The assembler does not check to ensure that the contents
of the program section actually include the attributes listed. However, the
assembler and the linker do check that all program sections with the same
name have exactly the same attributes. The assembler and linker display an
error message if the program section attributes are not consistent.

Program section names are independent of local symbol, global symbol, and
macro names. You can use the same symbolic name for a program section
and for a local symbol, global symbol, or macro name.

Notes

1 The .ALIGN directive cannot specify an alignment greater than that of the
current program section; consequently, .PSECT should specify the largest
alignment needed in the program section. For efficiency of execution, an
alignment of longword or larger is recommended for all program sections
that have longword data.

2 The attributes of the default absolute and the default unnamed program
sections are listed below. Note that the program section names include
the periods and enclosed spaces.

Program Section
Name

ABS.

BLANK.

Attributes and Alignment

NOPIC,USR,CON,ABS,LCL,NOSHR,NOEXE,
NORD ,NOWRT ,NOVEC,BYTE

NOPIC,USR,CON,REL,LCL,NOSHR,EXE,
RD,WRT,NOVEC,BYTE

.PSECT CODE,NOWRT,EXE,LONG Program section to contain
executable code

.PSECT RWDATA,WRT,NOEXE,QUAD
Program section to contain

modifiable data

6-79

Assembler Directives
.QUAD

.QUAD

FORMAT

Quadword storage directive

.QUAD

.QUAD
literal
symbol

PARAMETERS literal
Any constant value. This value can be preceded by "O, "B, "X, or "D to specify
the radix as octal, binary, hexadecimal, or decimal, respectively; or it can be
preceded by "A to specify the ASCII text operator. Decimal is the default
radix.

symbol
A symbol defined elsewhere in the program. This symbol results in a sign
extended, 32-bit value being stored in a quadword.

DESCRIPTION .QUAD generates 64 bits (eight bytes) of binary data.

Note

.QUAD is like .OCTA and different from other data storage directives (.BYTE,

.WORD, and .LONG) in that it does not evaluate expressions and that it
accepts only one value. It does not accept a list.

EXAMPLE
.QUAD

.QUAD

.QUAD

.QUAD

.QUAD

6-80

-A• .. ASK? .. '

0
-xo123456789ABCDEF
-B1111000111001101
LABEL

Each ASCII character is stored
in a byte

QUAD 0
QUAD hex value specified
QUAD binary value specified
LABEL has a 32-bit,

zero-extended value.

.REFn

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE
.MACRO
.BYTE
.REF4
.REF4
.REF4
.ENDM

MOVL3 A,B,C
-xFF,-XA9
A
B
c
MOVL3

Assembler Directives
.REFn

Operand generation directives

.REF1

.REF2

.REF4

operand
operand
operand

.REFS operand

.REF16 operand

operand
An operand of byte, word, longword, quadword, or octaword context,
respectively.

VAX MACRO has the following five operand generation directives that you
can use in macros to define new opcodes:

Directive Function

.REF1

.REF2

.REF4

.REFS

.REF16

Generates a byte operand

Generates a word operand

Generates a longword operand

Generates a quadword operand

Generates an octaword operand

The .REFn directives are provided for compatibility with VAX MACRO Vl.O.
Because the .OPDEF directive provides greater functionality and is easier to
use than .REFn, you should use .OPDEF instead of .REFn.

This operand has longword context
This operand has longword context
This operand has longword context

MOVL3 RO,©LAB-1,(R7)+[R10]

This example uses .REF4 to create a new instruction, MOVL3, which uses the
reserved opcode FF. See the example in .OPDEF for a preferred method to
create a new instruction.

6-81

Assembler Directives
.REPEAT

.REPEAT

Repeat block directive

FORMAT .REPEAT expression

range

.ENDR

PARAMETERS expression

DESCRIPTION

6-82

An expression whose value controls the number of times the range is to be
assembled within the program. When the expression is less than or equal to
0, the repeat block is not assembled. The expression must be absolute and
must not contain any undefined symbols (see Section 3.5).

range
The source text to be repeated the number of times specified by the value
of the expression. The repeat block can contain macro definitions, indefinite
repeat blocks, or other repeat blocks. .MEXIT is legal within the range .

. REPEAT repeats a block of code a specified number of times, in line with
other source code. The .ENDR directive specifies the end of the range.

Note

The alternate form of .REPEAT is .REPT.

EXAMPLE
Macro definition:

.MACRO COPIES STRING,NUM

.REPEAT NUM

.ASCII /STRING/

.ENDR

.BYTE 0

.ENDM COPIES

Assembler Directives
.REPEAT

Macro calls and expansions of the macro defined previously:

COPIES <ABCDEF>,5
.REPEAT 5
.ASCII /ABCDEF/
.ENDR
.ASCII
.ASCII
.ASCII
.ASCII
.ASCII
.BYTE

VARB = 3

/ABCDEF/
/ABCDEF/
/ABCDEF/
/ABCDEF/
/ABCDEF/
0

COPIES <HOW MANY TIMES>,VARB
.REPEAT 3
.ASCII /HOW MANY TIMES/
.ENDR
.ASCII /HOW MANY TIMES/
.ASCII /HOW MANY TIMES/
.ASCII /HOW MANY TIMES/
.BYTE 0

6-83

Assembler Directives
.RESTORE_PSECT

.RESTORE_PSECT

FORMAT

DESCRIPTION

EXAMPLE

. MACRO INITD

.SAVE_PSECT

Restore previous program section context directive

. RESTORE_PSECT

.RESTOREJSECT retrieves the program section from the top of the program
section context stack, an internal stack in the assembler. If the stack is empty
when .RESTOREJSECT is issued, the assembler displays an error message.
When .RESTOREJSECT retrieves a program section, it restores the current
location counter to the value it had when the program section was saved.
The local label block is also restored if it was saved when the program section
was saved. See the description of .SA VEJSECT for more information.

Note

The alternate form of .RESTOREJSECT is .RESTORE.

.RESTOREJSECT and .SAVEJSECT are especially useful in macros
that define program sections. The macro definition below saves the current
program section context and defines new program sections. Then, it restores
the saved program section. If the macro did not save and restore the program
section context each time the macro was invoked, the program section would
change .

Initialize symbols
and data areas

.PSECT SYMBOLS.ABS
HELP_LEV=2

Save the current PSECT
Define new PSECT
Define symbol

MAXNUM=100
RATE1=16
RATE2=4

.PSECT DATA,NOEXE,LONG
TABL: .BLKL 100
TEMP: .BLKB 16

.RESTORE_PSECT

.ENDM

6-84

Define symbol
Define symbol
Define symbol
Define another PSECT
100 longwords in TABL
More storage
Restore the PSECT

in effect when
MACRO is invoked

Assembler Directives
.SAVE_PSECT

.SAVE_PSECT

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE
Macro definition:

Save current program section context directive

.SAVE_PSECT [LOCAL_BLOCK]

LOCAL_BLOCK
An optional keyword that specifies that the current local label is to be saved
with the program section context.

.SAVE_pSECT stores the current program section context on the top of
the program section context stack, an internal assembler stack. It leaves
the current program section context in effect. The program section context
stack can hold 31 entries. Each entry includes the value of the current
location counter and the maximum value assigned to the location counter
in the current program section. If the stack is full when .SAVE_pSECT is
encountered, an error occurs .

. SA V£_pSECT and .RESTORE_pSECT are especially useful in macros that
define program sections. See the description of .RESTORE_pSECT for
another example using .SAVE_pSECT.

Note

The alternate form of .SAVE_pSECT is .SAVE.

.MACRO ERR_MESSAGE,TEXT ; Set up lists of messages
and pointers

.!IF NOT_DEFINED

.SAVE_PSECT -
LOCAL_BLOCK

.PSECT MESSAGE_TEXT
MESSAGE::

.ASCIC /TEXT/

.PSECT MESSAGE_POINTERS

.ADDRESS -
MESSAGE

.RESTORE_PSECT
PUSHL #MESSAGE_INDEX
CALLS #1,PRINT_MESS

MESSAGE_INDEX=MESSAGE_INDEX+1
.ENDM ERR_MESSAGE

MESSAGE_INDEX, MESSAGE_INDEX=O

Keep local labels
List of error messages

Addresses of error
messages

Store one pointer
Get back local labels

Print message

6-85

Assembler Directives
.SAVE_PSECT

Macro call:

RESETS: CLRL R4
BLBC R0,30$
ERR_MESSAGE <STRING TOO SHORT> Add "STRING TOO SHORT"

30$: RSB
to list of error
messages

By using .SA VEJSECT LOCAL _BLOCK, the local label 30$ is defined
in the same local label block as the reference to 30$. If a local label is not
defined in the block in which it is referenced, the assembler produces the
following error message:

Y.MACRO-E-UNDEFSYM, Undefined Symbol

6-86

.SHOW

.NOSHOW

FORMAT

PARAMETER

DESCRIPTION

Assembler Directives
.SHOW

Listing directives

.SHOW [argument-list]

.NOSHOW [argument-list]

argument-list
One or more of the optional symbolic arguments defined in Table 6-8. You
can use either the long form or the short form of the arguments. You can use
each argument alone or in combination with other arguments. If you specify
multiple arguments, you must separate them by commas, tabs, or spaces. If
any argument is not specifically included in a listing control statement, the
assembler assumes its default value (show or noshow) throughout the source
program.

Table 6-8 .SHOW and .NOSHOW Symbolic Arguments

Long Form Short Form Default Function

BINARY MEB Noshow Lists macro and repeat block
expansions that generate
binary code. BINARY is a
subset of EXPANSIONS.

CALLS MC Show Lists macro calls and repeat
block specifiers.

CONDITIONALS CND Show Lists unsatisfied conditional
code associated with
the conditional assembly
directives.

DEFINITIONS MO Show Lists macro and repeat
range definitions that appear
in an input source file.

EXPANSIONS ME Nos how Lists macro and repeat
range expansions.

.SHOW and .NOSHOW specify listing control options in the source text of a
program. You can use .SHOW and .NOSHOW with or without an argument
list.

When you use them with an argument list, .SHOW includes and .NOSHOW
excludes the lines specified in Table 6-8. .SHOW and .NOSHOW control
the listing of the source lines that are in conditional assembly blocks (see the
description of .IF), macros, and repeat blocks.

6-87

Assembler Directives
.SHOW

EXAMPLE
.MACRO XX

.SHOW
X=.

.NOSHOW

.ENDM

When you use them without arguments, these directives alter the listing level
count. The listing level count is initialized to 0. Each time .SHOW appears
in a program, the listing level count is incremented; each time .NOSHOW
appears in a program, the listing level count is decremented.

When the listing level count is negative, the listing is suppressed (unless the
line contains an error). Conversely, when the listing level count is positive,
the listing is generated. When the count is 0, the line is either listed or
suppressed, depending on the value of the listing control symbolic arguments.

Notes

1 The listing level count allows macros to be listed selectively; a macro
definition can specify .NOSHOW at the beginning to decrement the
listing count and can specify .SHOW at the end to restore the listing
count to its original value.

2 The alternate forms of .SHOW and .NOSHOW are .LIST and .NLIST.

List next line

Do not list remainder
of macro expansion

.NOSHOW EXPANSIONS Do not list macro
expansions

xx
X=.

6-88

Assembler Directives
.SIGNED_BYTE

.SIGNED_BVTE

Signed byte data directive

FORMAT .SIGNED-BYTE expression-list

PARAMETERS expression-list

DESCRIPTION

EXAMPLE

An expression or list of expressions separated by commas. You have the
option of following each expression with a repetition factor delimited by
square brackets.

An expression followed by a repetition factor has the format:

expression 1 [expression2]

expression 1
An expression that specifies the value to be stored. The value must be in the
range -128 through +127.

[expression2]
An expression that specifies the number of times the value will be repeated.
The expression must not contain any undefined symbols and must be an
absolute expression (see Section 3.5). The square brackets are required.

.SIGNED_BYTE is equivalent to .BYTE, except that VAX MACRO indicates
that the data is signed in the object module. The linker uses this information
to test for overflow conditions.

Note

Specifying .SIGNED-BYTE allows the linker to detect overflow conditions
when the value of the expression is in the range of 128 through 255. Values
in this range can be stored as unsigned data but cannot be stored as signed
data in a byte.

.SIGNED_BYTE LABEL1-LABEL2

.SIGNED_BYTE ALPHA[20]
Data must fit

in byte

6-89

Assembler Directives
.SIGNED_ WORD

.SIGNED_WORD

Signed word storage directive

FORMAT .SIGNED_WORD expression-list

PARAMETERS expression-list

DESCRIPTION

6-90

An expression or list of expressions separated by commas. You have the
option of following each expression with a repetition factor delimited by
square brackets.

An expression followed by a repetition factor has the format:

expression 1 [expression2]

expression 1
An expression that specifies the value to be stored. The value must be in the
range -32,768 through +32,767.

[expression2]
An expression that specifies the number of times the value will be repeated.
The expression must not contain any undefined symbols and must be an
absolute expression (see Section 3.5). The square brackets are required.

.SIGNED_WORD is equivalent to .WORD except that the assembler indicates
that the data is signed in the object module. The linker uses this information
to test for overflow conditions .. SIGNED_WORD is useful after the case
instruction to ensure that the displacement fits in a word.

Note

Specifying .SIGNED_WORD allows the linker to detect overflow conditions
when the value of the expression is in the range of 32,768 through 65,535.
Values in this range can be stored as unsigned data but cannot be stored as
signed data in a word.

Assembler Directives
.SIGNED_ WORD

EXAMPLE

BASE:

MAX:

30000$:

30001$:

.MACRO CASE,SRC,DISPLIST,TYPE=W,LIMIT=#O,NMODE=S-#,?BASE,?MAX
MACRO to use CASE instruction,

SRC is selector, DISPLIST
is list of displacements, TYPE
is B (byte) W (word) L (long),

; LIMIT is base value of selector
CASE'TYPE SRC,LIMIT,NMODE'<<MAX-BASE>/2>-1

.!RP EP,<DISPLIST>

.SIGNED_WORD EP-BASE

.ENDR

.ENDM CASE

Case instruction
Local label specifying base

to set up off set list
Off set list

Local label used to count
args

CASE IVAR <ERR_PROC,SORT,REV_SORT> ; If IVAR=O, error
CASEW IVAR,#O,S-#<<30001-30000>/2>-1

.SIGNED_WORD

.SIGNED_WORD

.SIGNED_WORD

ERR_PROC-30000$
SORT-30000$
REV_SORT-30000$

Local label specifying base
Offset list
Off set list
Off set list
Local label used to count args
=1, forward sort; =2, backward

sort

CASE TEST <TEST1,TEST2,TEST3>,L,#1
CASEL TEST,#1,S-#<<30003-30002>/2>-1

30002$: Local label specifying base
.SIGNED_WORD TEST1-30002$ Offset list
.SIGNED_WORD TEST2-30002$ Offset list
.SIGNED_WORD TEST3-30002$ Offset list

30003$: Local label used to count args
Value of TEST can be 1, 2, or 3

In this example, the CASE macro uses .SIGNED_WORD to create a CASEB,
CASEW, or CASEL instruction.

6-91

Assembler Directives
.SUBTITLE

.SUBTITLE

FORMAT

PARAMETER

DESCRIPTION

EXAMPLES

Subtitle directive

.SUBTITLE comment-string

comment-string
An ASCII string from 1 to 40 characters long; excess characters are truncated.

.SUBTITLE causes the assembler to print the line of text, represented by
the comment-string, in the table of contents (which the assembler produces
immediately before the assembly listing). The assembler also prints the line
of text as the subtitle on the second line of each assembly listing page. This
subtitle text is printed on each page until altered by a subsequent .SUBTITLE
directive in the program.

Note

The alternate form of .SUBTITLE is .SBTTL.

iJ .SUBTITLE CONDITIONAL ASSEMBLY

~ TABLE OF CONTENTS

6-92

This directive causes the assembler to print the following text as the subtitle
of the assembly listing:

CONDITIONAL ASSEMBLY

It also causes the text to be printed out in the listing's table of contents, along
with the source page number and the line sequence number of the source
statement where .SUBTITLE was specified. The table of contents would have
the following format:

(1) 5000 ASSEMBLER DIRECTIVES

(2) 300 MACRO DEFINITIONS

(2) 2300 DAT A TABLES AND INITIALIZATION

(3) 4800 MAIN ROUTINES

(4) 2800 CALCULATIONS

(4) 5000 1/0 ROUTINES

(5) 1300 CONDITIONAL ASSEMBLY

.TITLE

FORMAT

Title directive

Assembler Directives
.TITLE

. TITLE module-name comment-string

PARAMETERS module-name

DESCRIPTION

EXAMPLE

An identifier from 1 to 31 characters long.

comment-string
An ASCII string from 1 to 40 characters long; excess characters are truncated.

. TITLE assigns a name to the object module. This name is the first 31 or
fewer nonblank characters following the directive.

Notes

1 The module name specified with . TITLE bears no relationship to the
file specification of the object module, as specified in the VAX MACRO
command line. The object module name appears in the linker load map
and is also the module name that the debugger and librarian recognize.

2 If .TITLE is not specified, VAX MACRO assigns the default name .MAIN
to the object module. If more than one . TITLE directive is specified in
the source program, the last .TITLE directive encountered establishes the
name for the entire object module.

·3 When evaluating the module name, VAX MACRO ignores all spaces
and/or tabs up to the first nonspace/nontab character after .TITLE.

.TITLE EVAL Evaluates Expressions

6-93

Assembler Directives
.TRANSFER

.TRANSFER

FORMAT

PARAMETER

DESCRIPTION

6-94

Transfer directive

. TRANSFER symbol

symbol
A global symbol that is an entry point in a procedure or routine.

. TRANSFER redefines a global symbol for use in a shareable image. The
linker redefines the symbol as the value of the location counter at the
. TRANSFER directive after a shareable image is linked.

To make program maintenance easier, programs should not need to be
relinked when the shareable images to which they are linked change.
To avoid relinking whole programs when their linked shareable images
change, keep the entry points in the changed shareable image at their original
addresses. To do this, create an object module that contains a transfer vector
for each entry point. Do not change the order of the transfer vectors. Link
this object module at the beginning of the shareable image. The addresses of
the entry points remain fixed even if the source code for a routine is changed.
After each . TRANSFER directive, create a register save mask (for procedures
only) and a branch to the first instruction of the routine.

The . TRANSFER directive does not cause any memory to be allocated and
does not generate any binary code. It merely generates instructions to the
linker to redefine the symbol when a shareable image is being created.

Use .TRANSFER with procedures entered by the CALLS or CALLG
instruction. In this case, use . TRANSFER with the .ENTRY and .MASK
directives. The branch to the actual routine must be a branch to the entry
point plus 2 to bypass the 2-byte register save mask.

Figure 6-1 illustrates the use of transfer vectors.

Figure 6-1 Using Transfer Vectors

Shareable
Image

Program

Calling
Procedure

Transfer

Vector
Module

Other
Object

Modules

Linked with Shareable Image

CALLS ROUTS---+-

.TRANSFER ROUTA

.MASK
BRW

ROUT A
ROUTA+2

.TRANSFER ROUTB ~....---+-....

.MASK ROUTB
BRW ROUTB+2 ---1-

. ENTRY ROUTB,0
; START OF ROUTINE..,.411--...........

RET

Assembler Directives
.TRANSFER

Program
Calling

Procedure

Object
Modules

Linked with Object Modules

CALLS ROUTB----+-

ENTRY ROUTB,O~

; START OF ROUTINE

RET

ZK-535-81

6-95

Assembler Directives
.TRANSFER

EXAMPLE

.TRANSFER ROUTINE_A

.MASK ROUTINE_A,-M<R4,R5> Copy entry mask
and add registers
R4 and R5

BRW

.ENTRY

RET

6-96

ROUTINE_A+2 Branch to routine
(past entry mask)

ROUTINE_A,-M<R2,R3> ENTRY point, save
registers R2 and R3

In this example, .MASK copies the entry mask of a routine to the new entry
address specified by . TRANSFER. If the routine is placed in a shareable image
and then called, registers R2, R3, R4, and RS will be saved.

.WARN

FORMAT

Warning directive

Assembler Directives
.WARN

.WARN [expression] ;comment

PARAMETERS expression

DESCRIPTION

EXAMPLE
.IF DEFINED FULL

An expression whose value is displayed when .WARN is encountered during
assembly.

;comment
A comment that is displayed when .WARN is encountered during assembly.
The comment must be preceded by a semicolon.

.WARN causes the assembler to display a warning message on the terminal or
in the batch log file, and in the listing file (if there is one).

Notes

1 .WARN, .ERROR, and .PRINT are called the message display directives.
Use them to display information indicating that a macro call contains an
error or an illegal set of conditions.

2 When the assembly is finished, the assembler displays on the terminal or
in the batch log file, the total number of errors, warnings, and information
messages, and the page numbers and line numbers of the lines causing
the errors or warnings.

3 If .WARN is included in a macro library, end the comment with an
additional semicolon. If you omit the semicolon, the comment will be
stripped from the directive and will not be displayed when the macro is
called.

4 The line containing the .WARN directive is not included in the listing file.

5 If the expression has a value of 0, it is not displayed in the warning
message.

.IF DEFINED DOUBLE_PREC

.WARN ; This combination not tested

.ENDC

.ENDC

If the symbols FULL and DOUBLEJREC are both defined, the following
warning message is displayed:

~.MACRO-W-GENWRN, Generated WARNING: This combination not tested

6-97

Assembler Directives
.WEAK

.WEAK

FORMAT

PARAMETER

DESCRIPTION

EXAMPLE
.WEAK IOCAR,LAB_3

6-98

Weak symbol attribute directive

. WEAK symbol-list

symbol-list
A list of legal symbols separated by commas.

. WEAK specifies symbols that are either defined externally in another module
or defined globally in the current module .. WEAK suppresses any object
library search for the symbol.

When .WEAK specifies a symbol that is not defined in the current module,
the symbol is externally defined. If the linker finds the symbol's definition in
another module, it uses that definition. If the linker does not find an external
definition, the symbol has a value of 0 and the linker does not report an error.
The linker does not search a library for the symbol, but if a module brought
in from a library for another reason contains the symbol definition, the linker
uses it.

When .WEAK specifies a symbol that is defined in the current module,
the symbol is considered to be globally defined. However, if this module is
inserted in an object library, this symbol is not inserted in the library's symbol
table. Consequently, searching the library at link time to resolve this symbol
does not cause the module to be included.

.WORD

FORMAT

Word storage directive

.WORD expression-list

Assembler Directives
.WORD

PARAMETERS expression-list

DESCRIPTION

EXAMPLE

.WORD -x3F,FIVE[3] ,32

One or more expressions separated by commas. You have the option of
following each expression by a repetition factor delimited with square
brackets.

An expression followed by a repetition factor has the format:

expression 1 [expression2]

expression 1
An expression that specifies the value to be stored.

[expression2]
An expression that specifies the number of times the value will be repeated.
The expression must not contain any undefined symbols and must be an
absolute expression (see Section 3.5). The square brackets are required.

.WORD generates successive words (two bytes) of data in the object module.

Notes

1 The expression is first evaluated as a longword, then truncated to a word.
The value of the expression should be in the range of -32,768 through
+32,767 for signed data or 0 through 65,535 for unsigned data. The
assembler displays an error if the high-order two bytes of the longword
expression have a value other than 0 or "XFFFF.

2 The .SIGNED_WQRD directive is the same as .WORD except that the
assembler displays a diagnostic message if a value is in the range from
32,768 to 65,535.

6-99

VAX Data Types and Instruction Set
Part II describes the VAX data types, addressing mode formats,
instruction formats, and the instructions themselves.

7 Terminology and Conventions

7. 1 Numbering

The following sections describe terminology and conventions used in Part II
of this volume.

All numbers, unless otherwise indicated, are decimal. Where there is
ambiguity, numbers other than decimal are indicated with the base in English
following the number in parentheses. For example:

FF (hex)

7 .2 UNPREDICTABLE and UNDEFINED
Results specified as UNPREDICTABLE may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as
UNPREDICTABLE. Operations specified as UNDEFINED may vary from
moment to moment, implementation to implementation, and instruction to
instruction within implementations. The operation might vary from causing
no effect to stopping system operation. UNDEFINED operations must not
cause the processor to hang-to reach an unhalted state from which there is
no transition to a normal state in which the machine executes instructions.
Note the distinction between result and operation. Nonprivileged software
cannot invoke UNDEFINED operations.

7 .3 Ranges and Extents

7.4 MBZ

Ranges are specified in English and are inclusive (for example, a range of
integers 0 through 4 includes the integers 0, 1, 2, 3, and 4). Extents are
specified by a pair of numbers separated by a colon and are inclusive (that is,
bits 7:3 specifies an extent of bits including bits 7, 6, 5, 4, and 3).

Fields specified as MBZ (Must Be Zero) must never be filled by software
with a nonzero value. If the processor encounters a nonzero value in a field
specified as MBZ, a reserved operand fault or abort occurs if that field is
accessible to nonprivileged software. MBZ fields that are accessible only to
privileged software (kernel mode) cannot be checked for nonzero value by
some or all VAX implementations. Nonzero values in MBZ fields accessible
only to privileged software may produce UNDEFINED operation.

7-1

Terminology and Conventions
7 .5 Reserved

7 .5 Reserved
Unassigned values of fields are reserved for future use. In many cases,
some values are indicated as reserved to CSS and customers. Only these
values should be used for nonstar.dard applications. The values indicated as
reserved to DIGITAL and all MBZ (Must Be Zero) fields are to be used only to
extend future standard architecture.

7 .6 Figure Drawing Conventions

7-2

Figures that depict registers or memory follow the convention that increasing
addresses extend from right to left and from top to bottom.

8 Basic Architecture

8. 1 VAX Addressing

8.2 Data Types

8.2.1 Byte

8.2.2 Word

The basic addressable unit in VAX MACRO is the 8-bit byte. Virtual
addresses are 32 bits long. Therefore, the virtual address space is 2••32
(approximately 4.3 billion) bytes. Virtual addresses as seen by the program
are translated into physical memory addresses by the memory management
mechanism.

The following sections describe the VAX data types.

A byte is eight contiguous bits starting on an addressable byte boundary. The
bits are numbered from right to left 0 through 7.

7 0
+---------------+

:A
+---------------+

A byte is specified by its address A. When interpreted arithmetically, a byte
is a two's complement integer with bits of increasing significance ranging
from bit 0 through bit 6, with bit 7 the sign bit. The value of the integer is in
the range -128 through +127. For the purposes of addition, subtraction, and
comparison, VAX instructions also provide direct support for the interpretation
of a byte as an unsigned integer with bits of increasing significance ranging
from bit 0 through bit 7. The value of the unsigned integer is in the range 0
through 255.

A word is two contiguous bytes starting on an arbitrary byte boundary. The
16 bits are numbered from right to left 0 through 15.

1
5 0

+-------------------------------+

+-------------------------------+
:A

A word is specified by its address, A, which is the address of the byte
containing bit 0. When interpreted arithmetically, a word is a two's
complement integer with bits of increasing significance ranging from bit
0 through bit 14, with bit 15 the sign bit. The value of the integer is in the
range -32,768 through +32,767. For the purposes of addition, subtraction, and
comparison, VAX instructions also provide direct support for the interpretation

8-1

8.2.3

8.2.4

Basic Architecture
8.2 Data Types

Longword

Quadword

8-2

of a word as an unsigned integer with bits of increasing significance ranging
from bit 0 through bit 15. The value of the unsigned integer is in the range 0
through 65 ,535.

A longword is four contiguous bytes starting on an arbitrary byte boundary.
The 32 bits are numbered from right to left 0 through 31.

3
1 0

+---+
:A

+---+
A longword is specified by its address, A, which is the address of the byte
containing bit 0. When interpreted arithmetically, a longword is a two's
complement integer with bits of increasing significance ranging from bit 0
through bit 30, with bit 31 the sign bit. The value of the integer is in the
range -2,147,483,648 through +2,147,483,647. For the purposes of addition,
subtraction, and comparison, VAX instructions also provide direct support for
the interpretation of a longword as an unsigned integer with bits of increasing
significance ranging from bit 0 through bit 31. The value of the unsigned
integer is in the range 0 through 4,294,967,295.

A quadword is eight contiguous bytes starting on an arbitrary byte boundary.
The 64 bits are numbered from right to left 0 through 63.

3
1 0

+---+

+---+

+---+
6
3

3
2

:A

:A+4

A quadword is specified by its address, A, which is the address of the byte
containing bit 0. When interpreted arithmetically, a quadword is a two's
complement integer with bits of increasing significance ranging from bit 0
through bit 62, with bit 63 the sign bit. The value of the integer is in the
range -2••63 to +2••63-1. The quadword data type is not fully supported by
VAX instructions.

8.2.5 Octa word

8.2.6 f _floating

Basic Architecture
8.2 Data Types

An octaword is 16 contiguous bytes starting on an arbitrary byte boundary.
The 128 bits are numbered from right to left 0 through 127.

3
1 0

+---+

+---+

+---+
+---+

+---+
1
2
7

9
6

:A

:A+4

:A+8

:A+12

An octaword is specified by its address, A, which is the address of the byte
containing bit 0. When interpreted arithmetically, an octaword is a two's
complement integer with bits of increasing significance ranging from bit 0
through bit 126, with bit 127 the sign bit. The value of the integer is in the
range -2••127 to +2**127-1. The octaword data type is not fully supported
by VAX instructions.

An F_floating datum is four contiguous bytes starting on an arbitrary byte
boundary. The 32 bits are labeled from right to left 0 through 31.

1 1
5 4 7 6 0

+-+---------------+-------------+
ISi exp I fraction :A
+-+-----------------------------+

fraction :A+2
+-------------------------------+

An F_floating datum is specified by its address, A, which is the address of
the byte containing bit 0. The form of an F_floating datum is sign magnitude
with bit 15 as the sign bit, bits 14:7 as an excess 128 binary exponent, and
bits 6:0 and 31:16 as a normalized 24-bit fraction with the redundant most
significant fraction bit not represented. Within the fraction, bits of increasing
significance range from bits 16 through 31 and 0 through 6. The 8-bit
exponent field encodes the values 0 through 255. An exponent value of 0,
together with a sign bit of 0, is taken to indicate that the F_floating datum
has a value of 0. Exponent values of 1 through 255 indicate true binary
exponents of -127 through +127. An exponent value of 0, together with a
sign bit of l, is taken as reserved. Floating-point instructions processing a
reserved operand take a reserved operand fault (see Appendix E). The value
of an F_floating datum is in the approximate range .29•10**-38 through
1.7•10**38. The precision of an F_floating datum is approximately one part
in 2**23; that is, typically seven decimal digits.

8-3

8.2.7

8.2.8

Basic Architecture
8.2 Data Types

D_floating

G_floating

8-4

A D_floating datum is eight contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left 0 through 63.

1 1
5 4 7 6 0

+-+---------------+-------------+
ISi exp I fraction :A
+-+---------------+-------------+

fraction :A+2
+-------------------------------+

fraction :A+4
+-------------------------------+

fraction :A+6
+-------------------------------+

A D_floating datum is specified by its address, A, which is the address of the
byte containing bit 0. The form of a D_floating datum is identical to an
F_floating datum except for additional 32 low-significance fraction bits.
Within the fraction, bits of increasing significance range from bits 48
through 63, 32 through 47, 16 through 31, and 0 through 6. The exponent
conventions and the approximate range of values are the same for
D_floating as they are for F_floating. The precision of a D_floating datum is
approximately one part in 2••55, typically, 16 decimal digits.

A G_floating datum is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left 0 through 63.

1 1
5 4 4 3 0

+-+---------------------+-------+
ISi exp I fract I :A
+-+---------------------+-------+

fraction :A+2
+-------------------------------+

fraction :A+4
+-------------------------------+

fraction :A+6
+-------------------------------+

A G_floating datum is specified by its address, A, which is the address of
the byte containing bit 0. The form of a G_floating datum is sign magnitude,
with bit 15 as the sign bit, bits 14:4 as an excess 1024 binary exponent, and
bits 3:0 and 63:16 as a normalized 53-bit fraction with the redundant most
significant fraction bit not represented. Within the fraction, bits of increasing
significance range from bits 48 through 63, 32 through 47, 16 through 31, and
0 through 3. The 11-bit exponent field encodes the values 0 through 2047.
An exponent value of 0, together with a sign bit of 0, is taken to indicate
that the G_floating datum has a value of 0. Exponent values of 1 through
2047 indicate true binary exponents of -1023 through +1023. An exponent
value of 0, together with a sign bit of 1, is taken as reserved. Floating-point
instructions processing a reserved operand take a reserved operand fault (see
Appendix E). The value of a G_floating datum is in the approximate range
.56•10••-308 through .9•10••308. The precision of a G_floating datum is
approximately one part in 2••52; that is, typically 15 decimal digits.

8.2.9 H_floating

Basic Architecture
8.2 Data Types

An H_floating datum is 16 contiguous bytes starting on an arbitrary byte
boundary. The 128 bits are labeled from right to left 0 through 127.

1 1
5 4 0

+-+-----------------------------+
ISi exponent :A
+-+-----------------------------+

fraction :A+2
+-------------------------------+

fraction :A+4
+-------------------------------+

fraction :A+6
+-------------------------------+

fraction :A+8
+-------------------------------+

fraction :A+10
+-------------------------------+

fraction :A+12
+-------------------------------+

fraction :A+14
+-------------------------------+

An H_floating datum is specified by its address, A, which is the address of
the byte containing bit 0. The form of an H_floating datum is sign magnitude
with bit 15 as the sign bit, bits 14:0 as an excess 16,384 binary exponent,
and bits 127:16 as a normalized 113-bit fraction with the redundant most
significant fraction bit not represented. Within the fraction, bits of increasing
significance range from bits 112 through 127, 96 through 111, 80 through 95,
64 through 79, 48 through 63, 32 through 47, and 16 through 31. The 15-bit
exponent field encodes the values 0 through 32,767. An exponent value of 0,
together with a sign bit of 0, is taken to indicate that the H_floating datum
has a value of 0. Exponent values of 1 through 32,767 indicate true binary
exponents of -16,383 through +16,383. An exponent value of 0, together with
a sign bit of l, is taken as reserved. Floating-point instructions processing a
reserved operand take a reserved operand fault (see Appendix E). The value
of an H_floating datum is in the approximate range .84•10**-4932 through
.59•10**4932. The precision of an H_floating datum is approximately one
part in 2**112, typically, 33 decimal digits.

8.2.10 Variable-Length Bit Field
A variable-length bit field is 0 to 32 contiguous bits located arbitrarily with
respect to byte boundaries. A variable-length bit field is specified by three
attributes:

• Address A of a byte

• Bit position P, which is the starting location of the field with respect to bit
0 of the byte at A

• Size S of the field

8-5

Basic Architecture
8.2 Data Types

8-6

The specification of a bit field is indicated by the following figure, where the
field is the shaded area.

P+S P+S-1 P P-1 0
+---------------+----------------------+------------------------+

1//////////////////////1 :A
+---------------+----------------------+------------------------+

S-1 0

For bit strings in memory, the position is in the range -2**31 through
2••31-1 and is conveniently viewed as a signed 29-bit byte offset and a
3-bit bit-within-byte field.

3
1 3 2 0

+---+-------+
byte off set I bwb

+---+-------+
The sign-extended 29-bit byte offset is added to the address A; the resulting
address specifies the byte in which the field begins. The 3-bit bit-within-byte
field encodes the starting position (0 through 7) of the field within that byte.
The VAX field instructions provide direct support for the interpretation of a
field as a signed or unsigned integer. When interpreted as a signed integer, it
is two's complement with bits of increasing significance ranging from bits 0
through S-2; bit S-1 is the sign bit. When interpreted as an unsigned integer,
bits of increasing significance range from bits 0 to S-1. A field of size 0 has a
value identically equal to 0.

A variable-length bit field may be contained in one to five bytes. From a
memory management point of view, only the minimum number of aligned
longwords necessary to contain the field may be actually referenced.

For bit fields in registers, the position is in the range 0 through 31. The
position operand specifies the starting position (0 through 31) of the field in
the register. A variable-length bit field may be contained in two registers if
the sum of position and size exceeds 32.

3
1 P P-1 0

+---------+---+
1/////////1 I Rn
+---+

1///////////1 R[n+1]
+---+-----------+

P+S P+S-1
For further details on the specification of variable-length bit fields, see the
descriptions of the variable-length bit field instructions in Section 9.5.

8.2.11 Character String

Basic Architecture
8.2 Data Types

A character string is a contiguous sequence of bytes in memory. A character
string is specified by two attributes: the address A of the first byte of the
string, and the length L of the string in bytes. Thus, the format of a character
string is represented as follows:

7 0
+---------------+

:A
+---------------+

+---------------+
:A+L-1

+---------------+
7 0

The address of a string specifies the first character of a string. Thus ux.yz" is
represented as follows:

+---------------+
"X" :A

+---------------+
"Y" :A+1

+---------------+
"Z" :A+2

+---------------+
The length L of a string is in the range 0 through 65,535.

8.2.12 Trailing Numeric String
A trailing numeric string is a contiguous sequence of bytes in memory.
The string is specified by two attributes: the address A of the first byte
(most-significant digit) of the string, and the length L of the string in bytes.

All bytes of a trailing numeric string, except the least-significant digit byte,
must contain an ASCII decimal digit character (0 through 9).

8-7

Basic Architecture
8.2 Data Types

8-8

The representation for the high-order digits is as follows:

ASCII

0 48 30 0

1 49 31 1

2 50 32 2

3 51 33 3

4 52 34 4

5 53 35 5

6 54 36 6

7 55 37 7

8 56 38 8

9 57 39 9

The highest-addressed byte of a trailing numeric string represents an encoding
of both the least-significant digit and the sign of the numeric string. The
VAX numeric string instructions support any encoding; however, DIGITAL
software uses three encodings. These are:

• Unsigned numeric encoding, in which there is no sign and the least
significant digit contains an ASCII decimal digit character

• Zoned numeric encoding

• Overpunched numeric encoding

Because compilers of many manufacturers over the years have used the
overpunch format and various card encodings, several variations in overpunch
format have evolved. Typically, these alternate forms are accepted on input;
the normal form is generated as the output for all operations. The valid
representations of the digit and sign in each of the latter two formats is
indicated in Table 8-1 and Table 8-2.

Table 8-1

Basic Architecture
8.2 Data Types

Representation of Least-Significant Digit and Sign in
Zoned Numeric Format

ASCII
Digit Decimal Hex Character

0 48 30 0

1 49 31 1

2 50 32 2

3 51 33 3

4 52 34 4

5 53 35 5

6 54 36 6

7 55 37 7

8 56 38 8

9 57 39 9

-0 112 70 p

-1 113 71 q

-2 114 72
-3 115 73 s

-4 116 74 t

-5 117 75 u

-6 118 76 v

-7 119 77 w
-8 120 78 x

-9 121 79 y

8-9

Basic Architecture
8.2 Data Types

8-10

Table 8-2 Representation of Least-Significant Digit and Sign in
Overpunch Format

ASCII Character

Digit Decimal Hex norm alt.

0 123 78 O[?

1 65 41 A 1

2 66 42 B 2

3 67 43 c 3

4 68 44 D 4

5 69 45 E 5

6 70 46 F 6

7 71 47 G 7

8 72 48 H 8

9 73 49 9

-0 125 70]:I

-1 74 4A J

-2 75 48 K

-3 76 4C L

-4 77 40 M

-5 78 4E N

-6 79 4F 0

-7 80 50 p

-8 81 51 a
-9 82 52 R

The length L of a trailing numeric string must be in the range 0 through 31 (0
through 31 digits). The value of a zero-length string is 0.

The address A of the string specifies the byte of the string containing the
most-significant digit. Digits of decreasing significance are assigned to
increasing addresses. Thus u123" is represented as follows:

Zoned Format or Unsigned Overpunch Format

7 4 3 0 7 4 3 0
+-------+-------+ +-------+-------+

3 1 A 3 1 :A
+-------+-------+ +-------+-------+

3 2 A+1 3 2 : A+1
+-------+-------+ +-------+-------+

3 3 A+2 4 3 : A+2
+-------+-~-----+ +-------+-------+

The trailing numeric string with a value of "-123" is represented as follows.

Basic Architecture
8.2 Data Types

Zoned Format Overpunch Format

7 4 3 0 7 4 3 0
+-------+-------+ +-------+-------+

3 1 A 3 1 A
+-------+-------+ +-------+-------+

3 2 A+1 3 2 A+1
+-------+-------+ +-------+-------+

7 3 A+2 4 c A+2
+-------+-------+ +-------+-------+

8.2.13 Leading Separate Numeric String
A leading separate numeric string is a contiguous sequence of bytes in
memory. A leading separate numeric string is specified by two attributes: the
address A of the first byte (containing the sign character), and a length L,
which is the length of the string in digits and not the length of the string in
bytes. The number of bytes in a leading separate numeric string is L + 1.

The sign of a separate leading numeric string is stored in a separate byte.
Valid sign bytes are indicated in the following table:

Sign Decimal Hex ASCII character

+ 43 28 +

+ 32 20 {blank}
45 20

The preferred representation for 11 +" is ASCII 11 +". All subsequent bytes
contain an ASCII digit character, as indicated in the following table:

Digit Decimal Hex ASCII character

0 48 30 0

1 49 31 1

2 50 32 2

3 51 33 3
4 52 34 4

5 53 35 5

6 54 36 6

7 55 37 7

8 56 38 8

9 57 39 9

The length L of a leading separate numeric string must be in the range 0
through 31 (0 through 31 digits). The value of a zero-length string is 0.

The address A of the string specifies the byte of the string containing the sign.
Digits of decreasing significance are assigned to bytes of increasing addresses.
Thus 11+123" is represented as follows.

8-11

Basic Architecture
8.2 Data Types

7 4 3 0
+-------+-------+
I 2 I B I A
1-------+-------I
I 3 I 1 I A+1
l-------+-------1
I 3 I 2 I A+2
1-------+-------I
I 3 I 3 I A+3
+-------+-------+

The leading separate numeric string with a value of 0 -123" is represented as
follows:

7 4 3 0
+-------+-------+
I 2 I D I A
l-------+-------1
I 3 I 1 I A+1
1-------+-------I
I 3 I 2 I A+2
1-------+-------I
I 3 I 3 I A+3
+-------+-------+

8.2.14 Packed Decimal String

8-12

A packed decimal string is a contiguous sequence of bytes in memory. A
packed decimal string is specified by two attributes: the address A of the
first byte of the string and a length L, which is the number of digits in the
string and not the length of the string in bytes. The bytes of a packed decimal
string are divided into two 4-bit fields (nibbles). Each nibble except the low
nibble (bits 3:0) of the last (highest-addressed) byte must contain a decimal
digit. The low nibble of the highest-addressed byte must contain a sign. The
representation for the digits and sign is indicated as follows:

Digit or Sign Decimal Hexadecimal

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

+ 10, 12, 14, or 15 A,C,E, or F

11 or 13 B or D

The preferred sign representation is 12 for 0 +" and 13 for 0

-". The length L
is the number of digits in the packed decimal string (not counting the sign);
L must be in the range 0 through 31. When the number of digits is odd, the

Basic Architecture
8.2 Data Types

digits and the sign fit into a string of bytes whose length is defined by the
following equation: L/2(integerpartonly) + 1. When the number of digits
is even, it is required that an extra uon digit appear in the high nibble (bits
7:4) of the first byte of the string. Again, the length in bytes of the string is
L/2+1.

The address A of the string specifies the byte of the string containing the
most-significant digit in its high nibble. Digits of decreasing significance are
assigned to increasing byte addresses and from high nibble to low nibble
within a byte. Thus, u + 123" has a length of 3 and is represented as follows:

7 4 3 0
+-------+-------+

1 2 A
+-------+-------+

3 I 12 A + 1
+-------+-------+

The packed decimal number "-12" has a length of 2 and is represented as
follows:

7 4 3 0
+-------+-------+

0 1 A
+-------+-------+

2 13 I A + 1
+-------+-------+

8.3 Processor Status Longword (PSL)
The processor status longword (PSL) consists of a set of processor state
variables associated with each process. Bits 31: 16 of the PSL have privileged
status. For information on this part of the PSL, refer to the VAX Architecture
Reference Manual. Bits 15:0 of the PSL are referred to separately as the
processor status word (PSW).

The format of the PSL is:

3 3 2 2 2 2 2 2 2 2 2 2 1 1
1 0 9 8 7 6 5 4 3 2 1 0 6 5 8 7 6 5 4 3 2 1 0

+-+-+---+-+-+---+---+-+-----+---------------+-+-+-+-+-+-+-+-+

ICITI IFIIICURIPRVIMI I
IMIPIMBZIPISIMODIMODIBI IPL I
I I I IDI I I IZI I

MBZ
IDIFIII I I I I I
IVIUIVITINIZIVICI
I I II I I I I I

+-+-+---+-+-+---+---+-+-----+---------------+-+-+-+-+-+-+-+-+

The processor status word (PSW), bits 0 to 15 of the processor status
longword, contains:

• The condition codes, which give information on the results produced by
previous instructions.

• The exception enables, which control the processor action on certain
exception conditions (see Appendix E).

The condition codes are UNPREDICTABLE when they are affected by
UNPREDICTABLE results. The VAX procedure call instructions conditionally
set the IV and DV enables, clear the FU enable, and leave the T enable
unchanged at procedure entry.

8-13

8.3.1

8.3.2

8.3.3

8.3.4

8.3.5

8.3.6

8.3.7

Basic Architecture
8.3 Processor Status Longword (PSL)

C Bit

V Bit

Z Bit

N Bit

T Bit

IV Bit

FU Bit

8-14

The C (carry) condition code bit, when set, indicates that the last instruction
that affected C had a carry out of the most-significant bit of the result, or
a borrow into the most-significant bit. When C is clear, no carry or borrow
occurred.

The V (overflow) condition code bit, when set, indicates that the last
instruction that affected V produced a result whose magnitude was too
large to be properly represented in the operand that received the result, or
that there was a conversion error. When Vis clear, no overflow or conversion
error occurred.

The Z (zero) condition code, when set, indicates that the last instruction that
affected Z produced a result that was 0. When Z is clear, the result was
nonzero.

The N (negative) condition code bit, when set, indicates that the last
instruction that affected N produced a negative result. When N is clear,
the result was positive (or zero).

The T (trace) bit, when set at the beginning of an instruction, causes the
TP bit in the Processor Status Longword to be set. When TP is set at the
end of an instruction, a trace fault is taken before the execution of the next
instruction. See Appendix E for additional information on the TP bit and the
trace fault.

The IV (integer overflow) bit, when set, forces an integer overflow trap after
execution of an instruction that produced an integer result that overflowed
or had a conversion error. When IV is clear, no integer overflow trap occurs.
(However, the condition code V bit is still set.)

The FU (floating underflow) bit, when set, forces a floating underflow fault
if the result of a floating-point instruction is too small in magnitude to be
represented in the result operand. When FU is clear, no underflow fault
occurs.

8.3.8 DV Bit

Basic Architecture
8.3 Processor Status Longword (PSL}

The DV (decimal overflow) bit, when set, forces a decimal overflow trap after
execution of an instruction that produced an overflowed decimal (numeric
string, or packed decimal) result or had a conversion error. When DV is dear,
no trap occurs. (However, the condition code V bit is still set.)

8.4 Permanent Exception Enables

8.4.1

8.4.2

Divide by Zero

The processor action on certain exception conditions is not controlled by bits
in the PSW. Traps or faults always result from these exception conditions.

A divide-by-zero trap is forced after the execution of an integer or decimal
division instruction that has a zero divisor. A fault occurs on a floating-point
division instruction that has a zero divisor.

Floating Overflow
A floating overflow fault is forced after the execution of a floating-point
instruction that produced a result too large to be represented in the result
operand.

8.5 Instruction and Addressing Mode Formats

8.5.1 Opcode Formats

The following sections describe the formats for instruction opcodes and for
the operand specifiers used with the various addressing modes.

An instruction is specified by the byte address A of its opcode.

7 0
+---------------+

opcode :A
+---------------+

The opcode may extend over two bytes; the length depends on the contents
of the byte at address A. If, and only if, the value of the byte is FC (hex)
through FF (hex), the opcode is two bytes long.

1
5 8 7 0

+---------------+---------------+
opcode FC - FF :A

+---------------+---------------+

8-15

8.5.2

Basic Architecture
8.5 Instruction and Addressing Mode Formats

Operand Specifiers

8-16

Each instruction takes a specific sequence of operand specifier types. An
operand specifier type conceptually has two attributes: the access type and
the data type.

The access types include the following:

1 Read-The specified operand is read only.

2 Write-The specified operand is written only.

3 Modify-The specified operand is read, potentially modified, and written.
This operation is not performed under a memory interlock.

4 Address-The address of the specified operand in the form of a longword
is the actual instruction operand. The specified operand is not accessed
directly, although the instruction may subsequently use the address to
access that operand.

5 Variable bit field base address-This access type is a special variant of the
address access type. Variable bit field base address type is the same as
address access type except for register mode. In register mode, the field
is contained in register n, designated by the operand specifier (or register
n+ 1 concatenated with register n).

6 Branch-No operand is accessed. The operand specifier itself is a branch
displacement.

Access types 1 through 5 are general mode addressing. Type 6 is branch
mode addressing.

The data types include the following:

• Byte

• Word

• Longword and F_floating (equivalent for addressing mode considerations)

• Quadword, D_floating, and G _floating (equivalent for addressing mode
considerations)

• Octaword and H_floating (equivalent for addressing mode
considerations)

For the address and branch access types, which do not directly reference
operands, the data type indicates:

• Address-the operand size to be used in the address calculation in
autoincrement, autodecrement, and index modes

• Branch-the size of the branch displacement

Basic Architecture
8.6 General Addressing Mode Formats

8.6 General Addressing Mode Formats

8.6.1

The following sections describe the operand specifier formats for the general
addressing modes. For descriptions and examples of the use of the general
addressing modes, see Chapter 5.

Notation for Describing Addressing Modes

The following notation describes the addressing modes:

+

<-

Rn or R[n)

PC or SP

(x)

t}
SEXT(x)

ZEXT(x)

OA

addition

subtraction

multiplication

is replaced by

is defined as

concatenation

the contents of register n

the contents of register 15 or 14, respectively

the contents of a location in memory whose address is x

arithmetic parentheses that indicate precedence

x is sign extended to size of operand needed

x is zero extended to size of operand needed

operand address

comment delimiter

Note: In the formal descriptions of the addressing modes, the symbol for a
register (for example, Rn or PC) always means the contents of the register
(for example, the contents of register n or the contents of register 15).
However, in text, when there is no ambiguity, the symbol for a register is
often used as the name of a register (for example, Rn may be used for the
name of register n, and PC may be used for the name of register 15).

Register Mode

Each general mode addressing description includes the definition of the
operand address and the specified operand. For operand specifiers of address
access type, the operand address is the actual instruction operand. For other
access types, the specified operand is the instruction operand. The branch
mode addressing description includes the definition of the branch address.

The operand specifier format is:

7 4 3 0
+-------+-------+

5 Rn I
+-------+-------+

No specifier extension follows.

In register mode addressing, the operand is the contents of either register
nor (for quadword, D_floating, and certain field operands) register n+l
concatenated with register n.

8-17

8.6.2

8.6.3

Basic Architecture
8.6 General Addressing Mode Formats

operand= Rn If one register

or

R[n+ 1]'Rn If two registers

or

R[n+3)'R[n+2]'R[n+ 1]'Rn If four registers

The assembler notation for register mode is Rn.

Register Deferred Mode
The operand specifier format is:

7 4 3 0
+-------+-------+

6 Rn I
+-------+-------+

No specifier extension follows.

In register deferred mode addressing, the address of the operand is the
contents of register n.

OA =Rn

operand = (OA)

The assembler notation for register deferred mode is (Rn).

Autoincrement Mode

8-18

The operand specifier format is:

7 4 3 0
+-------+-------+

a Rn I
+-------+-------+

No specifier extension follows. If Rn denotes the PC, immediate data follows,
and the mode is termed immediate mode.

In autoincrement mode addressing, the address of the operand is the contents
of register n. After the operand address is determined, the size of the
operand in bytes (1 for byte; 2 for word; 4 for longword and F_floating;
8 for quadword, G_floating, and D_floating; and 16 for octaword and
H_floating) is added to the contents of register n, and the contents of register
n are replaced by the result.

OA =Rn

Rn <- Rn + size

operand = (OA)

The assembler notation for autoincrement mode is (Rn)+. For immediate
mode, the notation is !"#constant, where constant is the immediate data that
follows.

8.6.4

8.6.5

Basic Architecture
8.6 General Addressing Mode Formats

Autoincrement Deferred Mode
The operand specifier format is:

7 4 3 0
+-------+-------+

9 Rn I
+-------+-------+

No specifier extension follows. If Rn denotes the PC, a longword address
follows and the mode is termed absolute mode.

In autoincrement deferred mode addressing, the address of the operand is the
contents of a longword whose address is the contents of register n. After the
operand address is determined, 4 (the size in bytes of a longword address) is
added to the contents of register n and the contents of register n are replaced
by the result.

QA = (Rn)

Rn <- Rn + 4

operand = (QA)

The assembler notation for autoincrement deferred mode is @(Rn)+. For
absolute mode, the notation is @#address, where address is the longword
that follows.

Autodecrement Mode
The operand specifier format is:

7 4 3 0
+-------+-------+

7 Rn I
+-------+-------+

No specifier extension follows.

In autodecrement mode addressing, the size of the operand in bytes (1 for
byte; 2 for word; 4 for longword and F_floating; 8 for quadword, G_floating,
and O_floating; and 16 for octaword and H_floating) is subtracted from the
contents of register n, and the contents of register n are replaced by the result.
The updated contents of register n are the address of the operand.

Rn <- Rn - size

QA= Rn

operand = (QA)

The assembler notation for autodecrement mode is -(Rn).

8-19

8.6.6

8.6.7

Basic Architecture
8.6 General Addressing Mode Formats

Displacement Mode
There are three operand specifier formats:

7 4 3 0
+-------+-------+

1. I 10 Rn I
+-------+-------+

The specifier extension is a signed byte displacement that follows the operand
specifier. This is the byte displacement mode.

7 4 3 0
+-------+-------+

2. I 12 Rn I
+-------+-------+

The specifier extension is a signed word displacement that follows the
operand specifier. This is the word displacement mode.

7 4 3 0
+-------+-------+

3. I 14 Rn I
+-------+-------+

The specifier extension is a longword displacement that follows the operand
specifier. This is the longword displacement mode.

In displacement mode addressing, the displacement (after it is sign extended
to 32 bits, if it is byte or word displacement) is added to the contents of
register n, and the result is the operand address.

OA = Rn + SEXT(displ)
or
Rn + displ

operand = (QA)

! If byte or word displacement

! If longword displacement

If Rn denotes PC, the updated contents of the PC are used. The address
in the PC (the updated contents) is the address of the first byte beyond the
specifier extension.

The assembler notation for byte, word, and long displacement mode is
B"D(Rn), W"D(Rn), and L "D(Rn), respectively, where D = displacement.

Displacement Deferred Mode

8-20

There are three operand specifier formats:

7 4 3 0
+-------+-------+

1. I 11 Rn I
+-------+-------+

The specifier extension is a signed byte displacement that follows the operand
specifier. This is the byte displacement deferred mode.

7 4 3 0
+-------+-------+

2. I 13 Rn I
+-------+-------+

8.6.8 Literal Mode

Basic Architecture
8.6 General Addressing Mode Formats

The specifier extension is a signed word displacement that follows the
operand specifier. This is the word displacement deferred mode.

7 4 3 0
+-------+-------+

3. I 15 Rn I
+-------+-------+

The specifier extension is a longword displacement that follows the operand
specifier. This is the longword displacement deferred mode.

In displacement deferred mode addressing, the displacement (after it is sign
extended to 32 bits, if it is byte or word displacement) is added to the contents
of register n, and the result is the address of a longword whose contents are
the operand address.

QA = (Rn + SEXT(displ))
or
(Rn + displ)

operand = (QA)

I If byte or word displacement

I If longword displacement

If Rn denotes PC, the updated contents of the PC are used. The address
in the PC (the updated contents) is the address of the first byte beyond the
specifier extension.

The assembler notation for byte, word, and longword displacement deferred
mode is @BAD(Rn), @WAD(Rn), and @eD(Rn), respectively, where D =
displacement.

The operand specifier format is:

7 6 5 0
+---+-----------+
I 0 I literal I
+---+-----------+

No specifier extension follows.

For operands of data type byte, word, longword, quadword, and octaword,
the operand is the zero extension of the 6-bit literal field.

operand = ZEXT(literal)

Thus, for these data types, you may use literal mode for values in the range 0
through 63.

For operands of data type F_floating, G_floating, D_floating, and
H_floating, the 6-bit literal field is composed of two 3-bit fields. These fields
are illustrated in the following diagram, where exp is exponent and fra is
fraction:

5 3 2 0
+-----+-----+
I exp I fra I
+-----+-----+

8-21

Basic Architecture
8.6 General Addressing Mode Formats

8-22

You use the exponent and fraction fields to form an F_floating or D_floating
operand as follows:

1 1
5 4 7 6 4 3 0

+-+---------------+-----+-------+
IOI 128 + exp I fra I o
+-+---------------+-------------+

0 :A+2
+-------------------------------+

0 :A+4
+-------------------------------+

0 :A+6
+-------------------------------+

Note that bits 63:32 are not present in an F_floating operand.

You use the exponent and fraction fields to form a G_floating operand as
follows:

1 1
5 4 4 3 1 0

+-+---------------------+-----+-+
IOI 1024 + exp I fra IOI
+-+---------------------+-----+-+

0
+-------------------------------+

0
+-------------------------------+

0
+-------------------------------+

:A+2

:A+4

:A+6

You use the exponent and fraction fields to form an H_floating operand as
follows:

1 1
5 4 0

+-+-----------------------------+
IOI 16,384 + exp
+-+---+-------------------------+
I f ra I 0
+-----+-------------------------+

0
+-------------------------------+

0
+-------------------------------+

0
+-------------------------------+

0
+-------------------------------+

0
+-------------------------------+

0
+-------------------------------+

:A+2

:A+4

:A+6

:A+8

:A+10

:A+12

:A+14

The range of values available is given in Table 8-3 and Table 8-4 in both
decimal and rational number notation.

8.6.9

Table 8-3

Exponent

0

1

2

3

4

5

6

7

Table 8-4

Exponent

0

1

2

3

4

5

6

7

Basic Architecture
8.6 General Addressing Mode Formats

Floating-Point Literals Expressed as Decimal Numbers

0 1 2 3 4 5 6 7

0.5 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375

1.0 1.125 1.25 1.37 1.5 1.625 1.75 1.875

2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0

32.0 36.0 40.0 44.0 48.0 52.0 56.0 60.0

64.0 72.0 80.0 88.0 96.0 104.0 112.0 120.0

Floating-Point Literals Expressed as Rational Numbers

0 1 2 3 4 5 6 7

1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16

1 1-1/8 1-1/4 1-3/8 1-1/2 1-5/8 1-3/4 1-7 /8

2 2-1/4 2-1/2 2-3/4 3 3-1/4 3-1/2 3-3/4

4 4-1/2 5 5-1/2 6 6-1/2 7 7-1/2

8 9 10 11 12 13 14 15

16 18 20 22 24 26 28 30

32 36 40 44 48 52 56 60

64 72 80 88 96 104 112 120

The assembler notation for literal mode is S"#literal.

Index Mode
The operand specifier format is:

1
5 8 7 4 3 0

+---------------+-------+-------+
4 Rx I

+-------------------------------+
Bits 15:8 contain a second operand specifier (termed the base operand
specifier) for any of the addressing modes except register, literal, or index.
The specification of register, literal, or index addressing mode results in an
illegal addressing mode fault (see Appendix E). If the base operand specifier
requires it, a specifier extension immediately follows. The base operand
specifier is subject to the same restrictions as would apply if it were used
alone. If the use of some particular specifier is illegal (that is, causes a fault
or UNPREDICTABLE behavior) under some circumstances, then that specifier
is similarly illegal as a base operand specifier in index mode under the same
circumstances.

8-23

Basic Architecture
8.6 General Addressing Mode Formats

8-24

The operand to be specified by index mode addressing is termed the primary
operand. You normally use the base operand specifier to determine an
operand address. This address is termed the base operand address (BOA).
The address of the primary operand specified is determined by multiplying
the contents of the index register x by the size of the primary operand in
bytes (1 for byte; 2 for word; 4 for longword and F_floating; 8 for quadword,
D_floating, and G_floating; and 16 for octaword and H_floating), adding
BOA, and taking the result.

OA = BOA + {size * (Rx)}

operand = (QA)

If the base operand specifier is for autoincrement or autodecrement mode, the
increment or decrement size is the size in bytes of the primary operand.

Certain restrictions are placed on the index register x. You cannot use the PC
as an index register. If you use it, a reserved addressing mode fault occurs
(see Appendix E). If the base operand specifier is for an addressing mode that
results in register modification (that is, autoincrement mode, autodecrement
mode, or autoincrement deferred mode), the same register cannot be the
index register. If it is, the primary operand address is UNPREDICTABLE.

The names of the addressing modes resulting from index mode addressing
are formed by adding the suffix 0 indexed" to the addressing mode of the base
operand specifier. The following list gives the names and assembler notation
(the index register is designated Rx to distinguish it from the register Rn in
the base operand specifier):

• Register deferred indexed- (Rn)[Rx]

• Autoincrement indexed- (Rn)+[Rx]

or

Immediate indexed- l"#constant[Rx] (Immediate indexed is recognized
by the assembler, but is not generally useful. Note that the operand
address is independent of the value of the constant.)

• Autoincrement deferred indexed- @(Rn)+[Rx]

or

Absolute indexed- @#address[Rx]

• Autodecrement indexed- -(Rn)[Rx]

• Byte, word, or longword displacement indexed
B"D(Rn)[Rx], W"D(Rn)[Rx], or L"D(Rn)[Rx]

• Byte, word, or longword displacement deferred indexed
@B"D(Rn)[Rx],@W"D(Rn)[Rx], or @L "D(Rn)[Rx]

8.7

Basic Architecture
8. 7 Summary of General Mode Addressing

Summary of General Mode Addressing
7 4 3 0

+-------+-------+
I mode reg I
+-------+-------+

Table 8-5 General Register Addressing

AP

Hex Dec Name Assembler r mw av PC SP FP Indexable

0-3 0-3 literal SA literal y f f f f f

4 4 indexed i[Rx] y y y y y f y y f

5 5 register Rn y y y f y u uq uo f

6 6 register deferred Rn y y y y y u y y y

7 7 autodecrement -(Rn) y y y y y u y y ux

8 8 autoincrement (Rn)+ y y y y y p y y ux

9 9 auto increment @(Rn)+ y y y y y p y y ux

deferred

A 10 byte displacement BAD(Rn) y y y y y p y y y

8 11 byte displacement @BAD(Rn) y y y y y p y y y

deferred

c 12 word displacement WAD(Rn) y y y y y p y y y

D 13 word displacement @WAD(Rn) y y y y y p y y y

deferred

E 14 longword displacement LAD(Rn) y y y y y p y y y

F 15 longword displacement @LAD(Rn) y y y y y p y y y

deferred

Key:

D - Displacement
i - Any indexable addressing mode
- - Logically impossible
f - Reserved addressing mode fault
p - Program Counter addressing
u - UNPREDICTABLE
uq - UNPREOICT ABLE for quadword, octaword, D_floating, H_floating, and G_floating, (and field if position and
size greater than 32)
uo - UNPREDICTABLE for octaword and H_floating
ux - UNPREDICTABLE for index register same as base register
y - Yes, always valid addressing mode
r - Read access
m - Modify access
w - Write access
a - Address access
v - Field access

8-25

Basic Architecture
8. 7 Summary of General Mode Addressing

7 4 3 2 1 0
+-------+-+-+-+-+
I mode 11 1 1 11
+-------+-+-+-+-+

Table 8-6 Program Counter Addressing

Hex Dec Name Assembler

8 8 immediate r constant

9 9 absolute @ address

A 10 byte relative BA address

B 11 byte relative @BA address

deferred

c 12 word relative WA address

D 13 word relative @WA address

deferred

E 14 long word LAaddress

relative

F 15 long word @LA address

relative deferred

Key:

u - UNPREDICTABLE
y - Yes. always valid addressing mode
r - Read access
m - Modify access
w - Write access
a - Address access
v - Field access

8.8 Branch Mode Addressing Formats

r mw av

y u u y y

y y y y y

y y y y y

y y y y y

y y y y y

y y y y y

y y y y y

y y y y y

There are two operand specifier formats:

7 0
+---------------+

1. displ
+---------------+

Indexable?

u

y

y

y

y

y

y

y

The operand specifier is a signed byte displacement.

1
5 0

+-------------------------------+
2. dis pl

+-------------------------------+
The operand specifier is a signed word displacement.

8-26

Basic Architecture
8.8 Branch Mode Addressing Formats

In branch displacement addressing, the byte or word displacement is sign
extended to 32 bits and added to the updated address in the PC. The updated
address in the PC is the location of the first byte beyond the operand specifier.
The result is the branch address A.

A = PC + SEXT(displ)

The assembler notation for byte and word branch displacement addressing
is A, where A is the branch address. Note that you must use the branch
address, and not the displacement.

8-27

9 VAX Instruction Set

9.1 Introduction
This section describes the instructions generally used by all software across
all implementations of the VAX architecture.

You can find a more complete description of the instruction set in the VAX
Architecture Reference Manual. The VAX Architecture Reference Manual also
contains information on instructions that are generally used by privileged
software and are specific to specialized portions of the VAX architecture, such
as memory management, interrupts and exceptions, process dispatching, and
processor registers.

A list of instructions and opcode assignments appears in Appendix D.

9.2 Instruction Descriptions
The instruction set is divided into the following 12 major sections:

• Integer arithmetic and logical

• Address

• Variable-length bit field

• Control

• Procedure call

• Miscellaneous

• Queue

• Floating point

• Character string

• Cyclic redundancy check

• Decimal string

• Edit

Within each major section, instructions that are closely related are combined
into groups and described together. The instruction group description is
composed of the following:

• The group name.

• The format of each instruction in the group, including the name and type
of each instruction operand specifier and the order in which it appears
in memory. Operand specifiers from left to right appear in increasing
memory addresses.

• The effect on condition codes.

9-1

9.2.1

VAX Instruction Set
9.2 Instruction Descriptions

• Exceptions specific to the instruction. Exceptions that are generally
possible for all instructions (for example, illegal or reserved addressing
mode, T-bit, and memory management violations) are not listed.

• The opcodes, mnemonics, and names of each instruction in the group.
The opcodes are given in hexadecimal.

• A description, in English, of the instruction.

• Optional notes on the instruction and programming examples.

Operand Specifier Notation

9-2

Operand specifiers are described as follows:

name . access-type data-type

name
A mnemonic name for the operand in the context of the instruction. The
name is often abbreviated.

access-type
A letter denoting the operand specifier access type:

a Calculate the effective address of the specified operand. Address is
returned in a longword that is the actual instruction operand. Context
of address calculation is given by data-type; that is, size to be used in
autoincrement, autodecrement, and indexing.

b No operand reference. Operand specifier is a branch displacement. Size
of branch displacement is given by data-type.

m Operand is read, potentially modified, and written. Note that this is not
an indivisible memory operation. Also note that if the operand is not
actually modified, it may not be written back. However, modify type
operands are always checked for both read and write accessibility.

Operand is read only.

v Calculate the effective address of the specified operand. If the effective
address is in memory, the address is returned in a longword that is
the actual instruction operand. Context of address calculation is given
by data-type. If the effective address is Rn, the operand is in Rn or
R[n+ 1]'Rn.

w Operand is written only.

data-type
A letter denoting the data type of the operand:

b byte

d D_floating

f F_floating

g G_floating

h H_floating

longword

0 octaword

9.2.2

q quadword

w word

VAX Instruction Set
9.2 Instruction Descriptions

x first data type specified by instruction

y second data type specified by instruction

Operation Description Notation
The operation of an instruction is given as a sequence of control and
assignment statements in an ALGOL-like syntax. No attempt is made to
formally define the syntax; it is assumed to be familiar to the reader. The
notation used is an extension of the notation introduced in Section 8.6.

+

...

I
......

<-

Rn or R[n]

PC, SP, FP, or AP

PSW

PSL

(x)

(x)+

-(x)

<x:y>

<x1 ,x2, ... ,xn>

{ l
AND

OR

XOR

NOT

LSS

LSSU

LEO

LEOU

addition

subtraction, unary minus

multiplication

division (quotient only)

exponentiation

concatenation

is replaced by

is defined as

contents of register Rn

the contents of register R15, R14, R13, or R12,
respectively

the contents of the processor status word

the contents of the processor status long word

contents of memory location whose address is x

contents of memory location whose address is x;
x incremented by the size of operand referenced
at x

x decremented by size of operand to be referenced
at x; contents of memory location whose address
is x

a modifier that delimits an extent from bit position
x to bit position y inclusive

a modifier that enumerates bits x1 ,x2, ... ,xn

arithmetic parentheses used to indicate precedence

logical AND

logical OR

logical XOR

logical (one's) complement

less than signed

less than unsigned

less than or equal signed

less than or equal unsigned

9-3

VAX Instruction Set
9.2 Instruction Descriptions

9-4

EQL

EOLU

NEQ

NEQU

GEO

GEOU

GTR

GTRU

SEXT(x)

ZEXT(x)

REM(x,y)

MINU(x,y)

MAXU(x,y)

equal signed

equal unsigned

not equal signed

not equal unsigned

greater than or equal signed

greater than or equal unsigned

greater than signed

greater than unsigned

x is sign extended to size of operand needed

x is zero extended to size of operand needed

remainder of x divided by y, such that x/y and
REM(x, y) have the same sign

minimum unsigned of x and y

maximum unsigned of x and y

Use the following conventions:

• Other than alterations caused by (x)+, or -(x), and the advancement of the
PC, only operands or portions of operands appearing on the left side of
assignment statements are affected.

• No operator precedence is assumed, except that replacement(<-) has the
lowest precedence. Precedence is indicated explicitly by { }.

• All arithmetic, logical, and relational operators are defined in the context
of their operands. For example, N +" applied to floating operands means
a floating add, while N+" applied to byte operands is an integer byte
add. Similarly, NLSS" is a floating comparison when applied to floating
operands, while NLSS" is an integer byte comparison when applied to
byte operands.

• Instruction operands are evaluated according to the operand specifier
conventions (see Chapter 8). The order in which operands appear in the
instruction description has no effect on the order of evaluation.

• Condition codes generally indicate the effect of an operation on the value
of actual stored results, not on Ntrue" results (which might be generated
internally to greater precision). For example, two positive integers can
be added together and the sum stored as a negative vah~e because of
overflow. The condition codes indicate a negative value even though the
"true" result is clearly positive.

9.3

VAX Instruction Set
9.3 Integer Arithmetic and Logical Instructions

Integer Arithmetic and Logical Instructions
The following instructions are described in this section:

Number of
Description and Opcode Instructions

1. Add Aligned Word
ADAWI add.rw, sum.mw

2. Add 2 Operand 3
ADD{B,W,L}2 add.rx, sum.mx

3. Add 3 Operand 3
ADD{B,W,L}3 add1 .rx, add2.rx, sum.wx

4. Add with Carry
ADWC add.rl, sum.ml

5. Arithmetic Shift 2
ASH{L,Q} cnt.rb, src.rx, dst.wx

6. Bit Clear 2 Operand 3
BIC{B,W,L}2 mask.rx, dst.mx

7. Bit Clear 3 Operand 3
BIC{B,W,L}3 mask.rx, src.rx, dst.wx

8. Bit Set 2 Operand 3
BIS{B,W,L}2 mask.rx, dst.mx

9. Bit Set 3 Operand 3
BIS{B,W,L}3 mask.rx, src.rx, dst.wx

10. Bit Test 3
BIT{B,W,L} mask.rx, src.rx

11. Clear 5
CLR{B,W,L,Q,O} dst.wx

12. Compare 3
CMP{B,W,L} src1.rx, src2.rx

13. Convert 6
CVT{B,W,L}{B,W,L} src.rx, dst.wy
All pairs except BB, WW ,LL

14. Decrement 3
DEC{B,W,L} dif.mx

15. Divide 2 Operand 3
DIV{B,W,L}2 divr.rx, quo.mx

16. Divide 3 Operand 3
DIV{B,W,L}3 divr.rx, divd.rx, quo.wx

17. Extended Divide
EDIV divr.rl, divd.rq, quo.wl, rem.wl

18. Extended Multiply
EMUL mulr.rl, muld.rl, add.rl, prod.wq

19. Increment 3
INC{B,W,L} sum.mx

20. Move Complemented 3
MCOM{B,W,L} src.rx, dst.wx

9-5

VAX Instruction Set
9.3 Integer Arithmetic and Logical Instructions

Number of
Description and Opcode Instructions

21. Move Negated 3
MNEG{B,W,L} src.rx, dst.wx

22. Move 4
OV{B,W,L,O} src.rx, dst.wx

23. Move Zero-Extended 3
MOVZ{BW,BL,WL} src.rx, dst.wy

24. Multiply 2 Operand 3
MUL{B,W,L}2 mulr.rx, prod.mx

25. Multiply 3 Operand 3
MUL{B,W,L}3 mulr.rx, muld.rx, prod.wx

26. Push Long
PUSHL src.rl, {-(SP).wl}

27. Rotate Long
ROTL cnt.rb, src.rl, dst.wl

28. Subtract with Carry
SBWC sub.rl, dif.ml

29. Subtract 2 Operand 3
SUB{B,W,L}2 sub.rx, dif.mx

30. Subtract 3 Operand 3
SUB{B,W,L}3 sub.rx, min.rx, dif.wx

31. Test 3
TST{B,W,L} src.rx

32. Exclusive OR 2 Operand 3
XOR{B,W,L}2 mask.rx, dst.mx

33. Exclusive OR 3 Operand 3
XOR{B,W,L}3 mask.rx, src.rx, dst.wx

9-6

ADAWI

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Add Aligned Word Interlocked

opcode add.rw, sum.mw

N

z
v
c

+-- sum LSS O;

+-- sum EQL O;

+-- {integer overflow};

+-- {carry from most-significant bit};

reserved operand fault
integer overflow

VAX Instruction Set
ADAWI

58 ADAWI Add Aligned Word Interlocked

The addend operand is added to the sum operand, and the sum operand is
replaced by the result. The operation is interlocked against similar operations
on other processors in a multiprocessor system. The destination must be
aligned on a word boundary; that is, bit 0 of the address of the sum operand
must be 0. If it is not, a reserved operand fault is taken.

Notes

1 Integer overflow occurs if the input operands to the add have the same
sign, and the result has the opposite sign. On overflow, the sum operand
is replaced by the low-order bits of the true result.

2 If the addend and the sum operands overlap, the result and the condition
codes are UNPREDICTABLE.

9-7

VAX Instruction Set
ADD

ADD

FORMAT

condition codes

Add

2operand:
3operand:

opcode
opcode

N +-sum LSS O;

Z +- sum EOL 0;

V +- {integer overflow};

add.rx, sum.mx
add 1. rx, add2. rx, sum. wx

C +- {carry from most-significant bit};

exceptions integer overflow

opcodes

DESCRIPTION

9-8

80 ADDB2 Add Byte 2 Operand

81 ADDB3 Add Byte 3 Operand

AO ADDW2 Add Word 2 Operand

A1 ADDW3 Add Word 3 Operand

co ADDL2 Add Long 2 Operand

C1 ADOL3 Add Long 3 Operand

In 2 operand format, the addend operand is added to the sum operand and
the sum operand is replaced by the result. In 3 operand format, the addend 1
operand is added to the addend 2 operand and the sum operand is replaced
by the result.

Note

Integer overflow occurs if the input operands to the add have the same
sign and the result has the opposite sign. On overflow, the sum operand is
replaced by the low-order bits of the true result.

ADWC

FORMAT

condition codes

Add with Carry

opcode add.rl, sum.ml

N +--sum LSS O;

Z +-- sum EOL O;

V +--{integer overflow};

C +-- {carry from most-significant bit};

VAX Instruction Set
ADWC

exceptions integer overflow

opcodes

DESCRIPTION

08 ADWC Add with Carry

The contents of the condition code C-bit and the addend operand are added
to the sum operand and the sum operand is replaced by the result.

Notes

1 On overflow, the sum operand is replaced by the low-order bits of the
true result.

2 The two additions in the operation are performed simultaneously.

9-9

VAX Instruction Set
ASH

ASH

Arithmetic Shift

FORMAT opcode cnt.rb, src.rx, dst. wx

condition codes
N +- dst LSS 0;

Z +- dst EOL 0;

V +- {integer overflow};

c +-0;

exceptions integer overflow

opcodes

DESCRIPTION

9-10

78

79

ASHL

ASHO

Arithmetic Shift Long

Arithmetic Shift Quad

The source operand is arithmetically shifted by the number of bits specified
by the count operand and the destination operand is replaced by the result.
The source operand is unaffected. A positive count operand shifts to the left,
bringing zeros into the least significant bit. A negative count operand shifts
to the right, bringing in copies of the most significant (sign) bit into the most
significant bit. A 0 count operand replaces the destination operand with the
unshifted source operand.

Notes

1 Integer overflow occurs on a left shift if any bit shifted into the sign bit
position differs from the sign bit of the source operand.

2 If cnt GTR 32 (ASHL) or cnt GTR 64 (ASHQ), the destination operand is
replaced by 0.

3 If cnt LEQ -31 (ASHL) or cnt LEQ -63 (ASHQ), all the bits of the
destination operand are copies of the sign bit of the source operand.

BIC

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Bit Clear

2operand: opcode
3operand: opcode

N +-- dst LSS 0;

z +-- dst EOL O;

v +-- O;

c +-- C;

None.

SA BICB2

SB BICB3

AA BICW2

AB BICW3

CA BICL2

CB BICL3

VAX Instruction Set
BIC

mask.rx, dst.mx
mask.rx, src.rx, dst.wx

Bit Clear Byte

Bit Clear Byte

Bit Clear Word

Bit Clear Word

Bit Clear Long

Bit Clear Long

In 2 operand format, the result of the logical AND on the destination operand
and the one's complement of the mask operand replaces the destination
operand. In 3 operand format, the result of the logical AND on the source
operand and the one's complement of the mask operand replaces the
destination operand.

9-11

VAX Instruction Set
BIS

BIS

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-12

Bit Set

2operand: opcode mask.rx, dst.mx
3operand: opcode mask.rx, src.rx, dst.wx

N +---- dst LSS 0;

z +---- dst EOL 0;

v +---- O;

c +---- C;

None.

88 BISB2 Bit Set Byte 2 Operand

89 BISB3 Bit Set Byte 3 Operand

AS BISW2 Bit Set Word 2 Operand

A9 BISW3 Bit Set Word 3 Operand

ca BISL2 Bit Set Long 2 Operand

C9 BISL3 Bit Set Long 3 Operand

In 2 operand format, the result of the logical OR on the mask operand and the
destination operand replaces the destination operand. In 3 operand format,
the result of the logical OR on the mask operand and the source operand
replaces the destination operand.

BIT

FORMAT

condition codes

exceptions

opcodes

Bit Test

VAX Instruction Set
BIT

opcode mask.rx, src.rx

N +--- tmp LSS 0;

z +--- tmp EOL 0;

v +--- O;

c +--- C;

None.

93 BITS Bit Test Byte

83 BITW Bit Test Word

03 BITL Bit Test Long

DESCRIPTION The logical AND is performed on the mask operand and the source operand.
Both operands are unaffected. The only action is to modify condition codes.

9-13

VAX Instruction Set
CLR

CLR

Clear

FORMAT opcode

condition codes
N +-- 0;

z +-- 1;

v +-- 0;

c +-- C;

exceptions None.

opcodes
94 CLRB

84 CLAW

04 CLRL

7C CLRO

7CFD CLRO

dst.wx

Clear Byte

Clear Word

Clear Long

Clear Quad

Clear Octa

DESCRIPTION The destination operand is replaced by 0.

Note

CLRx dst is equivalent to MOVx S"#O, dst, but is one byte shorter.

9-14

CMP

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Compare

VAX Instruction Set
CMP

opcode src 1. rx, src2. rx

N +-- src 1 LSS src2;

z +-- src 1 EOL src2;

v +-- 0;

c +-- src 1 LSSU src2;

None.

91 CMPB Compare Byte

81 CMPW Compare Word

01 CMPL Compare Long

The source 1 operand is compared with the source 2 operand. The only
action is to modify the condition codes.

9-15

VAX Instruction Set
CVT

CVT

Convert

FORMAT opcode src.rx, dst. wy

condition codes
N +-- dst LSS O;

Z +-- dst EQL O;

V +-- {integer overflow};

C +-- O;

exceptions integer overflow

opcodes

DESCRIPTION

9-16

99 CVTBW Convert Byte to Word

98 CVTBL Convert Byte to Long

33 CVTWB Convert Word to Byte

32 CVTWL Convert Word to Long

F6 CVTLB Convert Long to Byte

F7 CVTLW Convert Long to Word

The source operand is converted to the data type of the destination operand
and the destination operand is replaced by the result. Conversion of a shorter
data type to a longer one is done by sign extension; conversion of longer data
type to a shorter one is done by truncation of the higher-numbered (most
significant) bits.

Note

Integer overflow occurs if any truncated bits of the source operand are not
equal to the sign bit of the destination operand.

DEC

FORMAT

condition codes

Decrement

opcode dif.mx

N +- dif LSS 0;

Z +- dif EOL O;

V +-{integer overflow};

C +- {borrow into most significant bit};

VAX Instruction Set
DEC

exceptions integer overflow

opcodes

DESCRIPTION

97

87

D7

DECB
DECW
DECL

Decrement Byte

Decrement Word

Decrement Long

One is subtracted from the difference operand, and the difference operand is
replaced by the result.

Notes

1 Integer overflow occurs if the largest negative integer is decremented.
On overflow, the difference operand is replaced by the largest positive
integer.

2 DECx dif is equivalent to SUBx S"#l, dif, but is one byte shorter.

9-17

VAX Instruction Set
DIV

DIV

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-18

Divide

2operand:
3operand:

opcode
opcode

N +--quo LSS O;

Z +-- quo EQL 0;

divr.rx, quo.mx
divr.rx, divd.rx, quo. wx

V +--{integer overflow} OR {divr EOL 0};

c +-0;

integer overflow
divide by 0

86 DIVB2 Divide Byte 2 Operand

87 DIVB3 Divide Byte 3 Operand

A6 DIVW2 Divide Word 2 Operand

A7 DIVW3 Divide Word 3 Operand

C6 DIVL2 Divide Long 2 Operand

C7 DIVL3 Divide Long 3 Operand

In 2 operand format, the quotient operand is divided by the divisor operand,
and the quotient operand is replaced by the result. In 3 operand format, the
dividend operand is divided by the divisor operand, and the quotient operand
is replaced by the result.

Notes

1 Division is performed so that the remainder has the same sign as the
dividend; that is, the result is truncated toward 0. (Note that a remainder
of 0 is not saved.)

2 Integer overflow occurs only if the largest negative integer is divided by
-1. On overflow, operands are affected as in note 3 following.

3 If the divisor operand is 0, then in 2 operand format the quotient operand
is not affected; in 3 operand format the quotient operand is replaced by
the dividend operand.

EDIV

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

VAX Instruction Set
EDIV

Extended Divide

opcode divr.rl, divd.rq, quo. wl, rem. wl

N

z
v
c

78

+---quo LSS O;

+---quo EQL O;

+---{integer overflow} OR {divr EOL O};

+-0;

integer overflow
divide by 0

EDIV Extended Divide

The dividend operand is divided by the divisor operand, the quotient operand
is replaced by the quotient, and the remainder operand is replaced by the
remainde~.

Notes

1 The division is performed such that the remainder operand (unless it is 0)
has the same sign as the dividend operand.

2 On overflow, the operands are affected as in note 3, following.

3 If the divisor operand is 0, then the quotient operand is replaced by bits
31 :0 of the dividend operand, and the remainder operand is replaced by
0.

9-19

VAX Instruction Set
EMUL

EMUL

Extended Multiply

FORMAT opcode mulr. rl, muld. r/, add. r/, prod. wq

condition codes
N +--- prod LSS 0;

Z +--- prod EOL 0;

v +--- 0;

C +--- O;

exceptions None.

opcodes
7A EMUL Extended Multiply

DESCRIPTION The multiplicand operand is multiplied by the multiplier operand, giving a
double-length result. The addend operand is sign extended to double length
and added to the result. The product operand is replaced by the final result.

9-20

INC

FORMAT

condition codes

Increment

opcode sum.mx

N +--sum LSS O;

Z +-- sum EQL 0;

V +-- {integer overflow};

C +-- {carry from most significant bit};

VAX Instruction Set
INC

exceptions integer overflow

opcodes

DESCRIPTION

96

86

06

INCB

INCW

INCL

Increment Byte

Increment Word

Increment Long

One is added to the sum operand and the sum operand is replaced by the
result.

Notes

1 Arithmetic overflow occurs if the largest positive integer is incremented.
On overflow, the sum operand is replaced by the largest negative integer.

2 INCx sum is equivalent to ADDx S"#l, sum, but is one byte shorter.

9-21

VAX Instruction Set
MCOM

MCOM
Move Complemented

FORMAT opcode src.rx, dst. wx

condition codes
N +-- dst LSS O;

Z +-- dst EQL O;

v +-- 0;

C +-- C;

exceptions None.

opcodes
92

82

02

MCOMB

MCOMW

MCOML

Move Complemented Byte

Move Complemented Word

Move Complemented Long

DESCRIPTION The destination operand is replaced by the one's complement of the source
operand.

9-22

MNEG

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Move Negated

VAX Instruction Set
MNEG

opcode src. rx, dst. wx

N +- dst LSS 0;

z +- dst EOL 0;

v +-{integer overflow};

c +- dst NEO O;

integer overflow

SE MNEGB Move Negated Byte

AE MNEGW Move Negated Word

CE MN EGL Move Negated Long

The destination operand is replaced by the negative of the source operand.

Note

Integer overflow occurs if the source operand is the largest negative integer
(which has no positive counterpart). On overflow, the destination operand is
replaced by the source operand.

9-23

VAX Instruction Set
MOV

MOV

Move

FORMAT opcode src. rx, dst. wx

condition codes
N +- dst LSS O;

Z +- dst EQL O;

v +-0;

C +-C;

exceptions None.

opcodes
90 MOVB Move Byte

BO MOVW Move Word

DO MOVL Move Long

70 MOVQ Move Quad

7DFD MOVO Move Octa

DESCRIPTION The destination operand is replaced by the source operand.

9-24

MOVZ

FORMAT

condition codes

Move Zero-Extended

opcode src.rx, dst. wy

N +-0;

Z +-- dst EOL 0;

v +-0;

C +-- C;

VAX Instruction Set
MOVZ

exceptions None.

opcodes

DESCRIPTION

9B

9A

3C

MOVZBW

MOVZBL

MOVZWL

Move Zero-Extended Byte to Word

Move Zero-Extended Byte to Long

Move Zero-Extended Word to Long

For MOVZBW, bits 7:0 of the destination operand are replaced by the source
operand; bits 15:8 are replaced by 0. For MOVZBL, bits 7:0 of the destination
operand are replaced by the source operand; bits 31:8 are replaced by 0. For
MOVZWL, bits 15:0 of the destination operand are replaced by the source
operand; bits 31:16 are replaced by 0.

9-25

VAX Instruction Set
MUL

MUL

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-26

Multiply

2operand: opcode mulr.rx, prod.mx
3operand: opcode mulr.rx, muld.rx, prod. wx

N +- prod LSS 0;

z +-prod EOL O;

v +- {integer overflow};

c +-0;

integer overflow

84 MULB2 Multiply Byte 2 Operand

8S MULB3 Multiply Byte 3 Operand

A4 MULW2 Multiply Word 2 Operand

AS MULW3 Multiply Word 3 Operand

C4 MULL2 Multiply Long 2 Operand

cs MULL3 Multiply Long 3 Operand

In 2 operand format, the product operand is multiplied by the multiplier
operand, and the product operand is replaced by the low half of the double
length result. In 3 operand format, the multiplicand operand is multiplied by
the multiplier operand, and the product operand is replaced by the low half
of the double-length result.

Note

Integer overflow occurs if the high half of the double-length result is not
equal to the sign extension of the low half of the double-length result.

PUSHL

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Push Long

opcode src.rl

N +--- src LSS 0;

z +--- src EOL 0;

v +--- 0;

c +--- C;

None.

DD PUSHL Push Long

VAX Instruction Set
PUSHL

The longword source operand is pushed on the stack.

Notes

1 PUSHL is equivalent to MOVL src, -(SP), but is one byte shorter.

2 POPL is not a VAX instruction. However, the assembler recognizes the
inclusion of POPL destination in a program, for which it generates the
code for MOVL (SP)+,destination.

9-27

VAX Instruction Set
ROTL

ROTL

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-28

Rotate Long

opcode cnt.rb, src.r/, dst. wl

N ~ dst LSS O;

z ~ dst EQL O;

v ~o;

c ~c;

None.

9C ROTL Rotate Long

The source operand is rotated logically by the number of bits specified by the
count operand, and the destination operand is replaced by the result. The
source operand is unaffected. A positive count operand rotates to the left. A
negative count operand rotates to the right. A 0 count operand replaces the
destination operand with the source operand.

SBWC

FORMAT

condition codes

Subtract with Carry

opcode sub. rl, dif. ml

N +- dif LSS 0;

Z +- dif EOL O;

V +- linteger overflow};

C +- lborrow into most significant bit};

VAX Instruction Set
SBWC

exceptions integer overflow

opcodes

DESCRIPTION

09 SBWC Subtract With Carry

The subtrahend operand and the contents of the condition code C-bit are
subtracted from the difference operand, and the difference operand is replaced
by the result.

Notes

1 On overflow, the difference operand is replaced by the low-order bits of
the true result.

2 The two subtractions in the operation are performed simultaneously.

9-29

VAX Instruction Set
SUB

SUB

FORMAT

condition codes

Subtract

2operand:
3operand:

N ~ dif LSS O;

Z ~ dif EOL O;

opcode
opcode

V ~{integer overflow};

sub.rx, dif.mx
sub.rx, min.rx, dif.wx

C ~{borrow into most significant bit};

exceptions integer overflow

opcodes

DESCRIPTION

9-30

82 SUBB2 Subtract Byte 2 Operand

83 SUBB3 Subtract Byte 3 Operand

A2 SUBW2 Subtract Word 2 Operand

A3 SUBW3 Subtract Word 3 Operand

C2 SUBL2 Subtract Long 2 Operand

C3 SUBL3 Subtract Long 3 Operand

In 2 operand format, the subtrahend operand is subtracted from the difference
operand, and the difference operand is replaced by the result. In 3 operand
format, the subtrahend operand is subtracted from the minuend operand, and
the difference operand is replaced by the result.

Note

Integer overflow occurs if the input operands to the subtract are of different
signs and the sign of the result is the sign of the subtrahend. On overflow,
the difference operand is replaced by the low-order bits of the true result.

TST

FORMAT

condition codes

exceptions

opcodes

Test

opcode src.rx

N +-- src LSS 0;

z +-- src EQL 0;

v +-- 0;

c +-- O;

None.

95 TSTB

85 TSTW

05 TSTL

Test Byte

Test Word

Test Long

VAX Instruction Set
TST

DESCRIPTION The condition codes are modified according to the value of the source
operand.

Note

The operand src is equivalent to CMPx src, S"#O, but is one byte shorter.

9-31

VAX Instruction Set
XOR

XOR

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-32

Exclusive OR

2operand: opcode mask.rx, dst.mx
3operand: opcode mask.rx, src.rx, dst. wx

N - dst lSS O;

z - dst EOl O;

v -o;
c -c;

None.

SC XORB2 Exclusive OR Byte 2 Operand

SD XORB3 Exclusive OR Byte 3 Operand

AC XORW2 Exclusive OR Word 2 Operand

AD XORW3 Exclusive OR Word 3 Operand

cc XORl2 Exclusive OR long 2 Operand

CD XORl3 Exclusive OR long 3 Operand

In 2 operand format, the result of the logical XOR on the mask operand
and the destination operand replaces the destination operand. In 3 operand
format, the result of the logical XOR on the mask operand and the source
operand replaces the destination operand.

9.4 Address Instructions

VAX Instruction Set
9 .4 Address Instructions

The following instructions are described in this section.

1.

2.

Description and Opcode

Move Address
MOVA(B,W,L=F,Q=D=G,O=H} src.ax, dst.wl

Push Address
PUSHA(B,W,L=F,Q=D=G,O=H} src.ax, {-(SP).wl}

Number of
Instructions

5

5

9-33

VAX Instruction Set
MOVA

MOVA

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-34

Move Address

opcode src. ax, dst. wl

N +--- dst LSS O;

Z +--- dst EQL O;

v +-0;

c -c;

None.

9E MOVAB Move Address Byte

3E MOVAW Move Address Word

DE MOVAL Move Address Long

MOVAF Move Address F _floating

7E MOVAQ Move Address Quad

MOVAD Move Address O_floating

MOVAG Move Address G_floating

7EFD MOVAH Move Address H_floating

MOVAO Move Address Octa

The destination operand is replaced by the source operand. The context
in which the source operand is evaluated is given by the data type of the
instruction. The operand whose address replaces the destination operand is
not referenced.

Note

The access type of the source operand is address, which causes the address of
the specified operand to be moved.

PUSH A

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Push Address

opcode src.ax

N f- src LSS O;

Z f- src EQL O;

v f-0;

C f-C;

None.

9F PUSH AB

3F PUSHAW

OF PUSH AL

PUSHAF

7F PUSH AO

PUSH AD

PU SHAG

7FFD PU SHAH

PUSH AO

VAX Instruction Set
PUS HA

Push Address Byte

Push Address Word

Push Address Long,

Push Address Lfloating

Push Address Quad,

Push Address O_floating

Push Address G_floating

Push Address H_floating

Push Address Octa

The source operand is pushed on the stack. The context in which the source
operand is evaluated is given by the data type of the instruction. The operand
whose address is pushed is not referenced.

Notes

1 PUSHA.x src is equivalent to MOVA.x src, -(SP), but is one byte shorter.

2 The source operand is of address access type, which causes the address of
the specified operand to be pushed.

9-35

VAX Instruction Set
9.5 Variable-Length Bit Field Instructions

9.5 Variable-Length Bit Field Instructions

9-36

A variable-length bit field is specified by the following three operands:

1 A longword position operand.

2 A byte field size operand in the range 0 through 32; if out of this range, a
reserved operand fault occurs.

3 A base address. Use the position operand to locate the bit field relative
to this base address. The address is obtained from an operand of address
access type. However, unlike other instances of operand specifiers of
address access type, register mode can be designated in the operand
specifier. In this case, the field is contained in the register n designated
by the operand specifier (or register n+l concatenated with register n).
(See Chapter 8.) If the field is contained in a register and the size operand
is not 0, the position operand must have a value in the range 0 through
31, or a reserved operand fault occurs.

Zero bytes are referenced if the field size is 0.

The following instructions are described in this section.

Description and Opcode

1 . Compare Field
CMPV pos.rl, size.rb, base.vb, {field.rv},
src.rl

2. Compare Zero-Extended Field
CMPZV pos.rl, size.rb, base.vb, {field.rv},
src.rl

3. Extract Field
EXTV pos.rl, size.rb, base.vb, {field.rv},
dst.wl

4. Extract Zero-Extended Field

5.

EXTZV pos.rl, size.rb, base.vb, {field.rv},
dst.wl

Find First
FF{S,C} startpos.rl, size.rb, base.vb,
{field.rv}, findpos.wl

6. Insert Field
INSV src.rl, pos.rl, size.rb, base.vb,
{field.wv}

Number of
Instructions

2

VAX Instruction Set
9.5 Variable-Length Bit Field Instructions

The following variable-length bit field instructions are described in the section
on Control Instructions.

1. Branch on Bit 2
BB{S,C} pos.rl, base.vb, displ.bb,
{field.rv}

2. Branch on Bit (and modify without interlock) 4
BB{S,CHS,C} pos.rl, base.vb, displ.bb,
{field.mv}

3. Branch on Bit (and modify) Interlocked 2
BB{SS,CC}I pos.rl, base.vb, displ.bb,
{field.mv}

9-37

VAX Instruction Set
CMP

CMP

Compare Field

FORMAT opcode pos.rl, size.rb, base. vb, src.rl

condition codes
N ~ tmp LSS src;

Z ~ tmp EOL src;

v ~o;

C ~ tmp LSSU src;

exceptions reserved operand

opcodes

DESCRIPTION

9-38

EC

ED

CMPV

CMPZV

Compare Field

Compare Zero-Extended Field

The field specified by the position, size, and base operands is compared with
the source operand. For CMPV, the source operand is compared with the
sign-extended field. For CMPZV, the source operand is compared with the
zero-extended field. The only action is to affect the condition codes.

Notes

1 A reserved operand fault occurs if:

• size GTRU 32

• pos GTRU 31, size NEQ 0, and the field is contained in the registers

2 On a reserved operand fault, the condition codes are UNPREDICTABLE.

EXT

FORMAT

condition codes

Extract Field

VAX Instruction Set
EXT

opcode pos.rl, size.rb, base. vb, dst. wl

N +--- dst LSS 0;

Z +--- dst EOL O;

v +-0;

C +-C;

exceptions reserved operand

opcodes

DESCRIPTION

EE

EF

EXTV
EXTZV

Extract Field

Extract Zero-Extended Field

For EXTV, the destination operand is replaced by the sign-extended field
specified by the position, size, and base operands. For EXTZV, the destination
operand is replaced by the zero-extended field specified by the position, size,
and base operands. If the size operand is 0, the only action is to replace the
destination operand with 0 and to modify the condition codes.

Notes

1 A reserved operand fault occurs if:

• size GTRU 32

• pos GTRU 31, size NEQ 0, and the field is contained in the registers

2 On a reserved operand fault, the destination operand is unaffected, and
the condition codes are UNPREDICTABLE.

9-39

VAX Instruction Set
FF

FF

Find First

FORMAT opcode startpos.rl, size.rb, base. vb, findpos. wl

condition codes
N +-- O;

Z +-- {bit not found};

V +-- O;

c +-- 0;

exceptions reserved operand

opcodes
EB
EA

FFC

FFS

Find First Clear

Find First Set

DESCRIPTION A field specified by the start position, size, and base operands is extracted.

9-40

Starting at bit 0 and extending to the highest bit in the field, the field is tested
for a bit in the state indicated by the instruction. If a bit in the indicated state
is found, the find position operand is replaced by the position of the bit, and
the Z condition code bit is cleared. If no bit in the indicated state is found,
the find position operand is replaced by the position (relative to the base) of
a bit one position to the left of the specified field, and the Z condition code
,bit is set. If the size operand is 0, the find position operand is replaced by the
start position operand, and the Z condition code bit is set.

Notes

1 A reserved operand fault occurs if:

• size GTRU 32

• startpos GTRU 31, size NEQ 0, and the field is contained in the
registers

2 On a reserved operand fault, the find position operand is unaffected, and
the condition codes are UNPREDICTABLE.

INSV

FORMAT

condition codes

Insert Field

opcode

N +-- N;

Z +-- Z;
V +-- V;

C +-- C;

VAX Instruction Set
INSV

src.r/, pos.rl, size.rb, base. vb

exceptions reserved operand

opcodes

DESCRIPTION

FO INSV Insert Field

The field specified by the position, size, and base operands is replaced by bits
size - 1 :0 of the source operand. If the size operand is 0, the instruction has
no effect.

Notes

1 A reserved operand fault occurs if:

• size GTRU 32

• pos GTRU 31, size NEQ 0, and the field is contained in the registers

2 On a reserved operand fault, the field is unaffected, and the condition
codes are UNPREDICTABLE.

9-41

VAX Instruction Set
9. 6 Control Instructions

9. 6 Control Instructions
In most implementations of the VAX architecture, improved execution speed
will result if the target of a control instruction is on an aligned longword
boundary.

9-42

The following instructions are described in this section.

1.

2.

Description and Opcode

Add Compare and Branch
ACB{B,W,L,F,D,G,H} limit.rx, add.rx,
index.mx, displ.bw
Compare is LE on positive add, GE on
negative add.

Add One and Branch Less Than or Equal
AOBLEO limit.rl, index.ml, displ.bb

3. Add One and Branch Less Than
AOBLSS limit.rl, index.ml, displ.bb

4.

5.

6.

7.

Conditional Branch

Condition Name

LSS Less Than

LEO Less Than or Equal

EOL,EQLU Equal, Equal Unsigned

NEO,NEOU Not Equal, Not Equal Unsigned

GEO Greater Than or Equal

GTR Greater Than

LSSU,CS Less Than Unsigned, Carry Set

LEOU Less Than or Equal Unsigned

GEOU,CC Greater Than or Equal Unsigned,
Carry Clear

GTRU Greater Than Unsigned

vs Overflow Set

vc Overflow Clear

Branch on Bit
BB{S~C} pos.rl, base.vb, displ.bb,
{field.rv}

Branch on Bit
(and modify without interlock)
BB{S,C}{S,C} pos.rl, base.vb, displ.bb,
{field.mv}

Branch on Bit (and modify) Interlocked
BB{SS,CC}I pos.rl, base.vb, displ.bb,
{field.mv}

Number of
Instructions

7

12

2

4

2

8.

9.

10.

11.

12.

13.

14.

15.

16.

VAX Instruction Set
9. 6 Control Instructions

Number of
Description and Opcode Instructions

Branch on Low Bit 2
BLB{S,C} src.rl, displ.bb

Branch with {Byte, Word} Displacement 2
BR{B,W} displ.bx

Branch to Subroutine with {Byte, Word} 2
Displacement BSB{B,W} displ.bx, {-(SP).wl}

Case 3
CASE{B,W,L} selector.rx, base.rx,
limit.rx, displ.bw-list

Jump
JMP dst.ab

Jump to Subroutine
JSB dst.ab, {-(SP).wl}

Return from Subroutine
RSB {(SP)+.rl}

Subtract One and Branch Greater Than
or Equal SOBGEQ index.ml, displ.bb

Subtract One and Branch Greater Than
SOBGTR index.ml, displ.bb

9-43

VAX Instruction Set
ACB

ACB

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-44

Add Compare and Branch

opcode limit.rx, add.rx, index.mx, displ.bw

N

z
v
c

90

30

F1

4F

+-- index LSS 0;

+-- index EQL 0;

+-- (integer overflow};

+-- C;

integer overflow
floating overflow
floating underflow
reserved operand

ACBB

ACBW

ACBL

ACBF

4FFO ACBG

6F ACBD

6FFO ACBH

Add Compare and Branch Byte

Add Compare and Branch Word

Add Compare and Branch Long

Add Compare and Branch F _floating

Add Compare and Branch G_floating

Add Compare and Branch O_floating

Add Compare and Branch H_floating

The addend operand is added to the index operand and the index operand
is replaced by the result. The index operand is compared with the limit
operand. If the addend operand is positive (or 0) and the comparison is less
than or equal to 0, or if the addend is negative and the comparison is greater
than or equal to 0, the sign-extended branch displacement is added to the PC,
and the PC is replaced by the result.

Notes

1 ACB efficiently implements the general FOR or DO loops in high-level
languages, since the sense of the comparison between index and limit is
dependent on the sign of the addend.

2 On integer overflow, the index operand is replaced by the low-order
bits of the true result. Comparison and branch determination proceed
normally on the updated index operand.

3 On floating underflow, if FU is clear, the index operand is replaced by
0, and comparison and branch determination proceed normally. A fault
occurs if FU is set, and the index operand is unaffected.

VAX Instruction Set
ACB

4 On floating overflow, the instruction takes a floating overflow fault, and
the index operand is unaffected.

-
5 On a reserved operand fault, the index operand is unaffected, and

condition codes are UNPREDICTABLE.

6 Except for the circumstance described in note 5, the C-bit is unaffected.

9-45

VAX Instruction Set
AOBLEQ

AOBLEQ

Add One and Branch Less Than or Equal

FORMAT opcode limit.rl, index.ml, displ.bb

condition codes
N ~ index LSS O;

Z ~index EQL 0;

V ~ linteger overflow};

c ~c;

exceptions integer overflow

opcodes

DESCRIPTION

9-46

F3 AOBLEQ Add One and Branch Less Than or Equal

One is added to the index operand, and the index operand is replaced by
the result. The index operand is compared with the limit operand. If the
comparison is less than or equal to 0, the sign-extended branch displacement
is added to the PC, and the PC is replaced by the result.

Notes

1 Integer overflow occurs if the index operand before addition is the largest
positive integer. On overflow, the index operand is replaced by the
largest negative integer, and the branch is taken.

2 The C-bit is unaffected.

AOBLSS

FORMAT

condition codes

Add One and Branch Less Than

VAX Instruction Set
AOBLSS

opcode limit. rl, index. ml, displ. bb

N +-----index LSS 0;

Z +----- index EQL 0;

V +----- {integer overflow};

C +----- C;

exceptions integer overflow

opcodes

DESCRIPTION

F2 AOBLSS Add One and Branch Less Than

One is added to the index operand and the index operand is replaced by
the result. The index operand is compared with the limit operand. If the
comparison result is less than 0, the sign-extended branch displacement is
added to the PC, and the PC is replaced by the result.

Notes

1 Integer overflow occurs if the index operand before addition is the largest
positive integer. On overflow, the index operand is replaced by the
largest negative integer, and thus (unless the limit operand is the largest
negative integer), the branch is taken.

2 The C-bit is unaffected.

9-47

VAX Instruction Set
B

B

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9--48

Branch on (condition)

opcode displ.bb

N -N;

z - Z;
v -v;
c -c;

None.

14 {NOR Z} EQL 0 BGTR Branch on Greater Than (signed)

15 {NOR Z} EQL 1 BLEO Branch on Less Than or Equal
(signed)

12 Z EQL 0 BNEQ, Branch on Not Equal (signed)

BNEOU Branch on Not Equal Unsigned

13 Z EOL 1 BEQL, Branch on Equal (signed)

BEOLU Branch on Equal Unsigned

18 N EOLO BGEQ Branch on Greater Than or Equal
(signed)

19 N EQL 1 BLSS Branch on Less Than (signed)

1A {C OR Z} EQL 0 BGTRU Branch on Greater Than Unsigned

1B {C OR Z} EQL 1 BLEQU Branch Less Than or Equal
Unsigned

1C V EQLO BVC Branch on Overflow Clear

10 V EQL 1 BVS Branch on Overflow Set

1E C EQLO BGEQU, Branch on Greater Than or Equal
Unsigned

BCC Branch on Carry Clear

1F C EQL 1 BLSSU, Branch on Less Than Unsigned

BCS Branch on Carry Set

The condition codes are tested. If the condition indicated by the instruction is
met, the sign-extended branch displacement is added to the PC, and the PC
is replaced by the result.

Notes

VAX Instruction Set
B

The VAX conditional branch instructions permit considerable flexibility in
branching but require care in choosing the correct branch instruction. The
conditional branch instructions are best seen as three overlapping groups:

1 Overflow and Carry Group

BVS V EOL 1

BVC V EQL 0

BCS C EQL 1

BCC C EOL 0

Typically, you would use these instructions to check for overflow (when
overflow traps are not enabled), for multiprecision arithmetic, and for
other special purposes.

2 Unsigned Group

BLSSU C EQL 1

BLEQU {C OR Z} EOL 1

BEOLU Z EQL 1

BNEQU Z EQLO

BGEQU C EOLO

BGTRU {C OR Z} EOL 0

These instructions typically follow integer and field instructions where
the operands are treated as unsigned integers, address instructions, and
character string instructions.

3 Signed Group

BLSS N EQL 1

BLEQ {N OR Z} EOL 1

BEOL Z EQL 1

BNEQ Z EQL 0

BGEQ N EQL 0

BGTR {N OR Z} EOL 0

These instructions typically follow floating-point instructions, decimal
string instructions, and integer and field instructions where the operands
are being treated as signed integers.

9--49

VAX Instruction Set
BB

BB
Branch on Bit

FORMAT opcode pos.rl, base. vb, displ.bb

condition codes
N +----- N;

Z +----- Z;

V +----- V;

C +----- C;

exceptions reserved operand

opcodes

DESCRIPTION

9-50

EO

E1

BBS

BBC

Branch on Bit Set

Branch on Bit Clear

The single bit field specified by the position and base operands is tested. If
it is in the test state indicated by the instruction, the sign-extended branch
displacement is added to the PC, and the PC is replaced by the result.

Notes

1 A reserved operand fault occurs if pos GTRU 31 and the bit specified is
contained in a register.

2 On a reserved operand fault, the condition codes are UNPREDICTABLE.

BB

FORMAT

condition codes

VAX Instruction Set
BB

Branch on Bit (and modify without interlock)

opcode pos.rl, base. vb, displ.bb

N +-- N;

Z +-- Z;

V +-- V;

C +-- C;

exceptions reserved operand

opcodes

DESCRIPTION

E2

E3

E4

E5

BBSS

BBCS

BBSC

BBCC

Branch on Bit Set and Set

Branch on Bit Clear and Set

Branch on Bit Set and Clear

Branch on Bit Clear and Clear

The single bit field specified by the position and base operands is tested. If
it is in the test state indicated by the instruction, the sign-extended branch
displacement is added to the PC, and the PC is replaced by the res.ult.
Regardless of whether the branch is taken or not, the tested bit is put in the
new state as indicated by the instruction.

Notes

1 A reserved operand fault occurs if pos GTRU 31 and the bit is contained
in a register.

2 On a reserved operand fault, the field is unaffected, and the condition
codes are UNPREDICTABLE.

3 The modification of the bit is not an interlocked operation. See BBSSI and
BBCCI for interlocking instructions.

9-51

VAX Instruction Set
BB

BB
Branch on Bit Interlocked

FORMAT opcode pos.rl, base. vb, displ.bb

condition codes
N +-- N;

Z +-- Z;
V +-- V;

C +-- C;

exceptions reserved operand

opcodes

DESCRIPTION

9-52

E6

E7

BBSSI

BBCCI

Branch on Bit Set and Set Interlocked

Branch on Bit Clear and Clear Interlocked

The single bit field specified by the position and base operands is tested. If
it is in the test state indicated by the instruction, the sign-extended branch
displacement is added to the PC, and the PC is replaced by the result.
Regardless of whether the branch is taken or not, the tested bit is put in the
new state as indicated by the instruction. If the bit is contained in memory,
the reading of the state of the bit and the setting of the bit to the new state
is an interlocked operation. No other processor or 1/0 device can do an
interlocked access on this bit during the interlocked operation.

Notes

1 A reserved operand fault occurs if pos GTRU 31 and the specified bit is
contained in a register.

2 On a reserved operand fault, the field is unaffected, and the condition
codes are UNPREDICTABLE.

3 Except for memory interlocking, BBSSI is equivalent to BBSS, and BBCCI
is equivalent to BBCC.

4 This instruction is designed to modify interlocks with other processors or
devices. For example, to implement ubusy waitingn:

1$: BBSSI bit,base,1$

BLB

FORMAT

condition codes

exceptions

opcodes

VAX Instruction Set
BLB

Branch on Low Bit

opcode src.rl, displ.bb

N ~N;

z ~z;

v ~v;

c ~c;

None.

ES BLBS Branch on Low Bit Set

E9 BLBC Branch on Low Bit Clear

DESCRIPTION The low bit (bit 0) of the source operand is tested. If it is equal to the test
state indicated by the instruction, the sign-extended branch displacement is
added to the PC, and the PC is replaced by the result.

9-53

VAX Instruction Set
BR

BR

Branch

FORMAT opcode

condition codes
N +--- N;

Z +--- Z;

V +--- V;

C +--- C;

exceptions None.

opcodes
11

31

BRB

BRW

displ.bx

Branch with Byte Displacement

Branch with Word Displacement

DESCRIPTION The sign-extended branch displacement is added to the PC, and the PC is
replaced by the result.

9-54

BSB

FORMAT

condition codes

Branch to Subroutine

opcode displ.bx

N f-- N;

Z f-- Z;

V f-- V;

C f-- C;

VAX Instruction Set
BSB

exceptions None.

opcodes

DESCRIPTION

10

30

BSBB

BSBW

Branch to Subroutine with Byte Displacement

Branch to Subroutine with Word Displacement

The PC is pushed on the stack as a longword. The sign-extended branch
displacement is added to the PC, and the PC is replaced by the result.

9-55

VAX Instruction Set
CASE

CASE

FORMAT

condition codes

Case

opcode selector.rx, base.rx, limit.rx,
displ[O}.bw,
... ,
displ[limit}.bw

N +-- tmp LSS limit;

Z +-- tmp EQL limit;

V +-- O;

C +-- tmp LSSU limit;

exceptions None.

opcodes

DESCRIPTION

9-56

8F

AF

CF

CASES

CA SEW

CASEL

Case Byte

Case Word

Case Long

The base operand is subtracted from the selector operand, and the result
replaces a temporary operand. The temporary operand is compared with
the limit operand; if it is less than or equal unsigned, a branch displacement
selected by the temporary value is added to the PC, and the PC is replaced
by the result. Otherwise, twice the sum of the limit operand and 1 is added
to the PC, and the PC is replaced by the result. This operation causes the PC
to be moved past the array of branch displacements. Regardless of the branch
taken, the condition codes are modified as a result of the comparison of the
temporary operand with the limit operand.

Notes

1 After operand evaluation, the PC points at displ[O], not to the next
instruction. The branch displacements are relative to the address of
displ[O].

2 The selector and base operands can both be considered as either signed
or unsigned integers.

In the following example, the CASEB instruction selects one of eight
displacements immediately following the instruction. The example is for
illustration only. An actual instruction would use run-time variables instead
of the assembly-time static values shown. Also, in an actual instruction,
the displacements selected by the CASEB instruction would be branches to
various routines.

VAX Instruction Set
CASE

.PSECT CODE, PIC, SHR, WRT, EXE, LONG
TAB IND: . WORD 4

.ENTRY START,-M<>
CLRW R4
CLRW R5
MOVW #O,R4
MOVW #7,R5
CASEB TABIND,R4,R5

TAB: . WORD 1$-TAB
.WORD 2$-TAB
.WORD 3$-TAB
.WORD 4$-TAB
.WORD 5$-TAB
.WORD 6$-TAB
.WORD 7$-TAB
BRB 9$

1$: .ASCII /AT 1/
2$: .ASCII /AT 2/
3$: .ASCII /AT 3/
4$: .ASCII /AT 4/
5$: .ASCII /AT 5/
6$: .ASCII /AT 6/
7$: .ASCII /AT 7/
8$: .ASCII /AT 8/
9$: $EXIT_S

.END START

The objective of the CASE instruction is to transfer control to one of many
possible locations depending on the value of "selector," or TABIND, as shown
in the example. These locations are labeled in the example from 1$: to 8$:.

In the example, the table contains eight branch displacements. In all cases,
the limit operand (here shown as RS, which contains a 7) is one less than the
number of displacements (8) in the table. The base operand (here shown as
R4, which contains a 0) is the lowest permissible value for TABIND.

The CASE instruction subtracts base (contents of R4, a 0) from the value of
TABIND to produce a zero-origin index into the table. The limit (contents
of RS, a 7) is compared with this index to ensure that the table limit is not
exceeded.

After operand evaluation, the PC points to TAB:. The locations to which
branching occurs are represented in the table as displacements. The
displacement in the table selected by TABIND is added to the PC to form
a destination address. The destination selected in the example is at location
S$:. In practical usage, this location would contain a branch to a specific
routine.

9-57

VAX Instruction Set
JMP

JMP

Jump

FORMAT opcode

condition codes
N +-- N;

z +-- Z;
v +-- V;

c +-- C;

exceptions None.

opcodes
17 JMP

dst.ab

Jump

DESCRIPTION The PC is replaced by the destination operand.

9-58

JSB

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Jump to Subroutine

opcode dst.ab

N +-N;

z +-Z;

v +-V;

c +- C;

None.

16 JSB

VAX Instruction Set
JSB

Jump to Subroutine

The PC is pushed onto the stack as a longword. The PC is replaced by the
destination operand.

Note

Because the operand specifier conventions cause the evaluation of the
destination operand before saving the PC, you can use JSB for coroutine
calls with the stack used for linkage. The form of this call is:

JSB @(SP)+

9-59

VAX Instruction Set
RSB

RSB

Return from Subroutine

FORMAT opcode

condition codes
N +--N;

z +--Z;

v +--V;

c +--C;

exceptions None.

opcodes
05 RSB Return From Subroutine

DESCRIPTION The PC is replaced by a longword popped from the stack.

9-60

Notes

1 Use RSB to return from subroutines called by the BSBB, BSBW, and JSB
instructions.

2 RSB is equivalent to JMP @(SP)+, but is one byte shorter.

SOBGEQ

FORMAT

condition codes

VAX Instruction Set
SOBGEQ

Subtract One and Branch Greater Than or Equal

opcode index.ml, displ.bb

N +--index LSS 0;

Z +--index EOL 0;

V +--{integer overflow};

c -c;

exceptions integer overflow

opcodes

DESCRIPTION

F4 SOBGEQ Subtract One and Branch Greater Than or Equal

One is subtracted from the index operand, and the index operand is replaced
by the result. If the index operand is greater than or equal to 0, the sign
extended branch displacement is added to the PC, and the PC is replaced by
the result.

Notes

1 Integer overflow occurs if the index operand before subtraction is the
largest negative integer. On overflow, the index operand is replaced by
the largest positive integer; therefore, the branch is taken.

2 The C-bit is unaffected.

9-61

VAX Instruction Set
SOBGTR

SOBGTR

Subtract One and Branch Greater Than

FORMAT opcode index.ml, disp/.bb

condition codes
N - index LSS O;

Z - index EQL O;

V +--- {integer overflow};

c -c:

exceptions integer overflow

opcodes

DESCRIPTION

9-62

F5 SOBGTR Subtract One and Branch Greater Than

One is subtracted from the index operand, and the index operand is replaced
by the result. If the index operand is greater than 0, the sign-extended branch
displacement is added to the PC, and the PC is replaced by the result.

Notes

1 Integer overflow occurs if the index operand before subtraction is the
largest negative integer. On overflow, the index operand is replaced by
the largest positive integer, and thus, the branch is taken.

2 The C-bit is unaffected.

VAX Instruction Set
9.7 Procedure Call Instructions

9. 7 Procedure Call Instructions
The following three instructions implement a standard procedure calling
interface:

• CALLG

• CALLS

• RET

CALLG and CALLS call the procedure. The RETURN instruction returns
from the procedure. Refer to the Introduction to VMS System Routines for the
procedure calling standard.

The CALLG instruction calls a procedure with the argument list in an
arbitrary location.

The CALLS instruction calls a procedure with the argument list on the stack.
Upon return after a CALLS instruction, this list is automatically removed
from the stack. Both call instructions specify the address of the entry point of
the procedure being called. The entry point is assumed to consist of a word
called the entry mask followed by the procedure's instructions. The procedure
terminates by executing a RET instruction.

The entry mask specifies the register use and overflow enables of the
subprocedure.

1 1 1 1 1
5 4 3 2 1 0

+-+-+---+-----------------------+
IDIIIMBZI
IVIVI I

REGISTERS

+-+-+---+-----------------------+
At the occurrence of one of the call instructions, the stack is aligned to a
longword boundary, and the trap enables in the PSW are set to a known state
to ensure consistent behavior of the called procedure. Integer overflow enable
and decimal overflow enable are affected according to bits 14 and 15 of the
entry mask, respectively. Floating underflow enable is cleared. Registers Rll
through RO, specified by bits 11 through 0, respectively, are saved on the
stack and are restored by the RET instruction. In addition, the PC, SP, FP,
and AP are always preserved by the CALL instructions and restored by the
RET instruction.

All external procedure calls generated by standard DIGITAL language
processors and all intermodule calls to major VAX software subsystems
comply with the procedure calling software standard (see the VAX Procedure
Calling and Condition Handling Standard in the Introduction to VMS System
Routines). The procedure calling standard requires that all registers in the
range R2 through Rll used in the procedure must appear in the mask. RO
and Rl are not preserved by any called procedure that complies with the
procedure calling standard.

To preserve the state, the CALL instructions form a structure on the stack
termed a call frame or stack frame. The call frame contains the saved registers,
the saved PSW, the register save mask, and several control bits. The frame
also includes a longword that the CALL instructions clear. The system uses
this longword to implement the VMS condition handling facility (see the
VAX Procedure Calling and Condition Handling Standard in the Introduction
to VMS System Routines). At the end of execution of the CALL instruction,

9-63

VAX Instruction Set
9. 7 Procedure Call Instructions

9-64

FP contains the address of the stack frame. The RET instruction uses the
contents of FP to find the stack frame and the restore state. The condition
handling facility assumes that FP always points to the stack frame.

The stack frame has the following format:

+---+
condition handler (initially 0) :(FP)

+---+-+-+-----------------------+---------------------+---------+
ISPAISIOI mask<11:0> saved PSW<15:5> 0
+---+-+-+-----------------------+---------------------+---------+

saved AP
+---+

saved FP
+---+

saved PC
+---+

saved RO (...)
+---+

+---+
saved R11 (...)

+---+
(0 to 3 bytes specified by SPA, Stack Pointer Alignment)

S = set if CALLS; clear if CALLG.

Note that the saved condition codes and the saved trace enable (PSW <T>)
are cleared.

The contents of the frame PSW <3:0> at the time RET is executed will
become the condition codes resulting from the execution of the procedure.
Similarly, the content of the frame PSW <4> at the time the RET is executed
will become the PSW <T> bit.

The following instructions are described in this section.

Description and Opcode

1 . Call Procedure with General Argument List
CALLG arglist.ab, dst.ab, (-(SP).w•}

2. Call Procedure with Stack Argument List
CALLS numarg.rl, dst.ab, (-(SP).w•}

3. Return from Procedure
RET ((SP)+.r•}

Number of
Instructions

CALLG

FORMAT

condition codes

VAX Instruction Set
CALLG

Call Procedure With General Argument List

opcode

N +-- O;

z +-- 0;

v +-- 0;

c +-- 0;

arglist.ab, dst.ab

exceptions reserved operand

opcodes

DESCRIPTION

FA CALLG Call Procedure with General Argument List

The SP is saved in a temporary register. Bits 1:0 are replaced by 0, so that
the stack is longword aligned. The procedure entry mask is scanned from bit
11 to bit 0, and the contents of registers whose numbers correspond to set
bits in the mask are pushed on the stack as longwords. The PC, FP, and AP
are pushed on the stack as longwords. The condition codes are cleared. A
longword containing the saved two low bits of the SP in bits 31 :30, a 0 in
bits 29 and 28, the low 12 bits of the procedure entry mask in bits 27:16, and
the PSW in bits 15:0 with T cleared are pushed on the stack. A longword 0
is pushed on the stack. The FP is replaced by the SP. The AP is replaced by
the arglist operand. The trap enables in the PSW are set to a known state.
Integer overflow and decimal overflow are affected according to bits 14 and
15 of the entry mask, respectively; floating underflow is cleared. The T-bit
is unaffected. The PC is replaced by the sum of destination operand plus 2,
which transfers control to the called procedure at the byte beyond the entry
mask.

+---+ :(SP)
:(FP)

stack

frame

+---+
(0 to 3 bytes specified by SPA)

9-65

VAX Instruction Set
CALLG

9-66

Notes

1 If bits 13:12 of the entry mask are not 0, a reserved operand fault occurs.

2 On a reserved operand fault, condition codes are UNPREDICTABLE.

3 The procedure calling standard and the condition handling facility require
the following register saving conventions:

• RO and Rl are always available for function return values and are
never saved in the entry mask.

• All registers R2 through R 11 that are modified in the called procedure
must be preserved in the mask.

Refer to the VAX Procedure Calli:!lg and Condition Handling Standard in
the Introduction to VMS System Routines.

CALLS

FORMAT

condition codes

Call Procedure with Stack Argument List

opcode

N -o;
z -o;
v -o;
c -o;

numarg.rl, dst.ab

VAX Instruction Set
CALLS

exceptions reserved operand

opcodes

DESCRIPTION

FB CALLS Call Procedure with Stack Argument List

The numarg operand is pushed on the stack as a longword (byte 0 contains
the number of arguments; DIGITAL software uses the high-order 24 bits).
The SP is saved in a temporary register, and then bits 1 :0 of the SP are
replaced py 0 so that the stack is longword aligned. The procedure entry
mask is scanned from bit 11 to bit 0, and the contents of registers whose
numbers correspond to set bits in the mask are pushed on the stack. The
PC, FP, and AP are pushed on the stack as longwords. The condition codes
are cleared. A longword containing the saved two low bits of the SP in bits
31:30, a 1 in bit 29, a 0 in bit 28, the low 12 bits of the procedure entry
mask in bits 27:16, and the PSW in bits 15:0 with T cleared is pushed on
the stack. A longword 0 is pushed on the stack. The FP is replaced by the
SP. The AP is set to the value of the stack pointer after the numarg operand
was pushed on the stack. The trap enables in the PSW are set to a known
state. Integer overflow and decimal overflow are affected according to bits 14
and 15 of the entry mask, respectively. Floating underflow is cleared. T-bit
is unaffected. The PC is replaced by the sum of destination operand plus 2,
which transfers control to the called procedure at the byte beyond the entry
mask. The appearance of the stack after CALLS is executed is:

+---+ :(SP)
:(FP)

stack

frame

+---+
(0 to 3 bytes specified by SPA)

9-67

VAX Instruction Set
CALLS

9-68

+---+---------------+
N : (AP)

+---+---------------+
N longwords of argument list

+---+

Notes

1 If bits 13:12 of the entry mask are not 0, a reserved operand fault occurs.

2 On a reserved operand fault, the condition codes are UNPREDICTABLE.

3 Normal use is to push the arglist onto the stack in reverse order
prior to the CALLS. On return, the arglist is removed from the stack
automatically.

4 The procedure calling standard and the condition handling facility require
the following register saving conventions:

• RO and Rl are always available for function return values and are
never saved in the entry mask.

• All registers R2 through Rl 1 that are modified in the called procedure
must be preserved in the entry mask.

Refer to the VAX Procedure Calling and Condition Handling Standard in
the Introduction to VMS System Routines.

RET

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Return from Procedure

opcode

N +-- tmp 1 <3> ;
z +-- tmp 1 <2> ;
v +-- tmp 1 < 1 > ;
c +-- tmp1 <O>;

reserved operand

04 RET

VAX Instruction Set
RET

Return from Procedure

The SP is replaced by the FP plus 4. A longword containing stack alignment
bits in bits 31:30, a CALLS/CALLG flag in bit 29, the low 12 bits of the
procedure entry mask in bits 27:16, and a saved PSW in bits 15:0 is popped
from the stack and saved in a temporary. The PC, FP, and AP are replaced
by longwords popped from the stack. A register restore mask is formed from
bits 27:16 of the temporary. Scanning from bit 0 to bit 11 of the restore mask,
the contents of registers whose numbers are indicated by set bits in the mask
are replaced by longwords popped from the stack. The SP is incremented by
31:30 of the temporary. The PSW is replaced by bits 15:0 of the temporary.
H bit 29 in the temporary is 1 (indicating that the procedure was called by
CALLS), a longword containing the number of arguments is popped from
the stack. Four times the unsigned value of the low byte of this longword is
added to the SP, and the SP is replaced by the result.

Notes

1 A reserved operand fault occurs if tmpl <15:8> NEQ 0.

2 On a reserved operand fault, the condition codes are UNPREDICTABLE.

3 The value of tmpl < 28 > is ignored.

4 The procedure calling standard and condition handling facility assume
that procedures which return a function value or a status code do so in
RO, or RO and Rl. Refer to the VAX Procedure Calling and Condition
Handling Standard in the Introduction to VMS System Routines.

9-69

VAX Instruction Set
9.8 Miscellaneous Instructions

9.8 Miscellaneous Instructions
The following instructions are described in this section.

Number of
Description and Opcode Instructions

1. Bit Clear PSW
BICPSW mask.rw

2. Bit Set PSW
BISPSW mask.rw

3. Breakpoint Fault
BPT {-(KSP).w•}

4. Halt
HALT {-(KSP). w•}

5. Index
INDEX subscript.rl, low.rl, high.rl,
size.rl, indexin.rl, indexout.wl

6. Move from PSL
MOVPSL dst.wl

7. No Operation
NOP

8. Pop Registers
POPA mask.rw, {(SP)+.r*}

9. Push Registers
PUSHR mask.rw, {-(SP).w•}

10. Extended Function Call
XFC {unspecified operands}

9-70

BICPSW

FORMAT

condition codes

Bit Clear PSW

opcode mask.rw

N +- N AND {NOT mask <3> };
Z +- Z AND {NOT mask <2> };
V +- V AND {NOT mask <1> };
C +- C AND {NOT mask <O> };

VAX Instruction Set
BICPSW

exceptions reserved operand

opcodes
89 BICPSW Bit Clear PSW

DESCRIPTION The result of the logical AND on PSW and the one's complement of the mask
operand replaces PSW.

Note

A reserved operand fault occurs if mask <15:8> is not 0. On a reserved
operand fault, the PSW is not affected.

9-71

VAX Instruction Set
BISPSW

BISPSW

Bit Set PSW

FORMAT opcode mask.rw

condition codes
N +---NOR mask <3>;
z +--- Z OR mask <2>;
v +--- V OR mask < 1 > ;
c +--- C OR mask <O>;

exceptions reserved operand

opcodes
88 BISPSW Bit Set PSW

DESCRIPTION The result of the logical OR on PSW and the mask operand replaces PSW.

9-72

Note

A reserved operand fault occurs if mask <15:8> is not 0. On a reserved
operand fault, the PSW is not affected.

BPT

FORMAT

condition codes

exceptions

opcodes

Breakpoint Fault

opcode

VAX Instruction Set
BPT

N +-- 0; ! Condition codes cleared after BPT fault

z +-- O;

v +-- O;

c +-- O;

None.

03 BPT Breakpoint Fault

DESCRIPTION To understand the operation of this instruction, refer to Appendix E. This
instruction, together with the T-bit, is used to implement debugging facilities.

9-73

VAX Instruction Set
HALT

HALT

Halt

FORMAT opcode

condition codes
N +-- 0; ! If privileged instruction fault,

Z +-- 0; ! condition codes are cleared after

V +-- 0; ! the fault. PSL saved on stack

C +-- 0; ! contains condition codes prior to HALT.

N +-- N; ! If processor halt

z +-- Z;

v +-- V;

c +-- C;

exceptions privileged instruction

opcodes

DESCRIPTION

9-74

00 HALT Halt

If the process is running in kernel mode, the processor is halted. Otherwise,
a privileged instruction fault occurs. For information about privileged
instruction faults, refer to Appendix E.

Note

This opcode is 0 to trap many branches to data.

INDEX

FORMAT

condition codes

exceptions

opt;odes

DESCRIPTION

Compute Index

VAX Instruction Set
INDEX

opcode subscript.rl, low.rl, high.rl, size.rl, indexin.rl,
indexout. wl

N +-- indexout LSS 0;

z +-- indexout EQL 0;

v -o;
c -o;

subscript range

OA INDEX index

The indexin operand is added to the subscript operand and the sum
multiplied by the size operand. The indexout operand is replaced by the
result. If the subscript operand is less than the low operand or greater than
the high operand, a subscript range trap is taken.

Notes

1 No arithmetic exception other than subscript range can result from this
instruction. Therefore, no indication is given if overflow occurs in either
the add or the multiply steps. If overflow occurs on the add step, the
sum is the low-order 32 bits of the true result. If overflow occurs on the
multiply step, the indexout operand is replaced by the low-order 32 bits
of the true product of the sum and the subscript operand. In the normal
use of this instruction, overflow cannot occur without a subscript range
trap occurring.

2 The index instruction is useful in index calculations for arrays of the
fixed-length data types (integer and floating) and for index calculations
for arrays of bit fields, character strings, and decimal strings. The indexin
operand permits cascading INDEX instructions for multidimensional
arrays. For one-dimensional bit field arrays, it also permits introduction
of the constant portion of an index calculation that is not readily absorbed
by address arithmetic. The following notes show some of the uses of
INDEX.

9-75

VAX Instruction Set
INDEX

9-76

3 The following example shows a sequence of COBOL statements and the
VAX MACRO code their compilation might generate:

COBOL:

01 A-ARRAY.
02 A PIC X(10) OCCURS 15 TIMES.

01 B PIC X(10).
MOVE A(I) TO B.

MACRO:

INDEX I, #1, #15, #10, #0, RO

MOVC3 #10, A-10[RO], B.

4 The following example shows a sequence of PL/I statements and the
VAX MACRO code their compilation might generate:

PL/I:

DCL A(-3:10) BIT (5);
A(I) = 1;

MACRO:

INDEX I, #-3, #10, #5, #3, RO

INSV #1, RO, #5, A ; Assumes A is byte aligned

5 The following example shows a sequence of FORTRAN statements and
the VAX MACRO code their compilation might generate:

FORTRAN:

INTEGER*4 A(L1:U1, L2:U2), I, J
A(I,J) = 1

MACRO:

INDEX J, #L2, #U2, #M1, #0, RO; M1=U1-L1+1
INDEX I, #L1, #U1, #1, RO, RO;
MOVL #1, A-a[RO]; a= {{L2*M1} + L1} *4

MOVPSL

FORMAT

condition codes

exceptions

opcodes

Move from PSL

opcode dst.wl

N +---- N;

z +---- Z;

v +---- V;

c +---- C;

None.

DC MOVPSL

VAX Instruction Set
MOVPSL

Move from PSL

DESCRIPTION The destination operand is replaced by PSL.

9-77

VAX Instruction Set
NOP

NOP

No Operation

FORMAT opcode

condition codes
N +-- N;

z +-- Z;

v +-- V;

c +-- C;

exceptions None.

opcodes
01 NOP

DESCRIPTION No operation is performed.

9-78

No Operation

POPR

FORMAT

condition codes

exceptions

opcodes

Pop Registers

opcode

N f-- N;

z f-- Z;

v f-- V;

c f-- C;

None.

BA POPR

mask.rw

VAX Instruction Set
POPA

Pop Registers

DESCRIPTION The contents of registers whose numbers correspond to set bits in the mask
operand are replaced by longwords popped from the stack. R[n] is replaced
if mask <n> is set. The mask is scanned from bit 0 to bit 14. Bit 15 is
ignored.

9-79

VAX Instruction Set
PUS HR

PUS HR

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-80

Push Registers

opcode mask.rw

N +-- N;

z +-- Z;
v +-- V;

c +-- C;

None.

BB PUSHR Push Registers

The contents of registers whose numbers correspond to set bits in the mask
operand are pushed on the stack as longwords. R[n] is pushed if mask <n >
is set. The mask is scanned from bit 14 to bit 0. Bit 15 is ignored.

Note

The order of pushing is specified so that the contents of higher-numbered
registers are stored at higher memory addresses. An example of a result
of this would be a double-floating datum stored in adjacent registers being
stored by PUSHR in memory in the correct order.

XFC

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Extended Function Call

opcode

N +-- 0;

z +-- O;

v +-- 0;

c +-- O;

None.

FC XFC

VAX Instruction Set
XFC

Extended Function Call

To understand the operation of this instruction, refer to Appendix E and the
VAX Architecture Reference Manual. This instruction provides for customer
defined extensions to the instruction set.

9-81

VAX Instruction Set
9. 9 Queue Instructions

9.9 Queue Instructions

9.9.1 Absolute Queues

9-82

A queue is a circular, doubly linked list. A queue entry is specified by its
address. Each queue entry is linked to the next by a pair of longwords. The
first longword is the forward link; it specifies the location of the succeeding
entry. The second longword is the backward link; it specifies the location of
the preceding entry. Because a queue contains redundant links, it is possible
to create ill-formed queues. The VAX instructions produce UNPREDICTABLE
results when used on ill-formed queues.

A queue is classified by the type of link that it uses. The VAX supports two
distinct types of links: absolute and self-relative.

Absolute queues use absolute addresses as links. Queue entries are linked
by a pair of longwords. The first (lowest-addressed) longword is the forward
link; it is the address of the succeeding queue entry. The second (highest
addressed) longword is the backward link; it is the address of the preceding
queue entry.

A queue is specified by a queue header, which is identical to a pair of queue
linkage longwords. The forward link of the header is the address of the entry
called the head of the queue. The backward link of the header is the address
of the entry termed the tail of the queue. The forward link of the tail points
to the header.

Two general operations can be performed on queues: insertion of entries and
removal of entries. Generally, entries can be inserted or removed only at the
head or tail of a queue. (Under certain restrictions they can be inserted or
removed elsewhere; this is discussed later.)

The following text contains examples of queue operations. An empty queue
is specified by its header at address H.

3
1 0

+---+
H

+---+
H

+---+
3
1

0

:H

:H+4

If an entry at address B is inserted into an empty queue (at either the head or
the tail), the queue appears as follows:

3
1 0

+---+
B

+---+
B

+---+
3
1

0

:H

:H+4

VAX Instruction Set
9.9 Queue Instructions

3
1 0

+---+
H

+---+
H

+---+
3
1

0

:B

:B+4

If an entry at address A is inserted at the head of the queue, the queue
appears as follows:

3
1 0

+---+
A

+---+
B

+---+
3
1

3
1

0

0
+---+

B
+---+

H

+---+
3
1

3
1

0

0
+---+

H
+---+

A
+---+
3
1

0

:H

:H+4

:A

:A+4

:B

:B+4

Finally, if an entry at address C is inserted at the tail, the queue appears as
follows:

3
1 0

+---+
A

+---+
c

+---+
3
1

3
1

0

0
+---+

B
+---+

H

+---+
3
1

0

:H

:H+4

:A

:A+4

9-83

VAX Instruction Set
9.9 Queue Instructions

9-84

3
1 0

+---+
c

+---+
A

+---+
3
1

3
1

0

0
+---+

H

+---+
B

+---+
3
1

0

:B

:B+4

:C

:C+4

Following the preceding steps in reverse order gives the effect of removal at
the tail and removal at the head.

If more than one process can perform operations on a queue simultaneously,
insertions and removals should only be done at the head or tail of the queue.
If only one process (or one process at a time) can perform operations on a
queue, insertions and removals can be made at other than the head or tail of
the queue. In the preceding example with the queue containing entries A,B,
and C, the entry at address B can be removed, giving the following:

3
1 0

+---+
A

+---+
c

+---+
3
1

3
1

0

0
+---+

c
+---+

H

+---+
3
1

3
1

0

0
+---+

H
+---+

A
+---+
3
1

0

:H

:H+4

:A

:A+4

:C

:C+4

9.9.2

VAX Instruction Set
9. 9 Queue Instructions

The reason for this restriction is that operations at the head or tail are always
valid because the queue header is always present. Operations elsewhere in
the queue depend on specific entries being present and may become invalid if
another process is simultaneously performing operations on the queue.

Two instructions are provided for manipulating absolute queues: INSQUE
and REMQUE. INSQUE inserts an entry specified by an entry operand
into the queue following the entry specified by the predecessor operand.
REMQUE removes the entry specified by the entry operand. Queue entries
can be on arbitrary byte boundaries. Both INSQUE and REMQUE are
implemented as noninterruptible instructions.

Self-Relative Queues
Self-relative queues use displacements from queue entries as links. Queue
entries are linked by a pair of longwords. The first (lowest addressed)
longword is the forward link; it is the displacement of the succeeding queue
entry from the present entry. The second (highest-addressed) longword is the
backward link; it is the displacement of the preceding queue entry from the
present entry.

A queue is specified by a queue header, which also consists of two longword
links. The forward link of the header is the address of the entry called the
head of the queue. The backward link of the header is the address of the
entry called the tail of the queue. The forward link of the tail points to the
header.

The following text contains examples of queue operations. An empty queue
is specified by its header at address H. Because the queue is empty, the
self-relative links must be 0, as shown.

3
1 0

+---+
0

+---+
0

+---+
3
1

0

:H

:H+4

If an entry at address Bis inserted into an empty queue (at either the head or
tail), the queue appears as follows:

3
1 0

+---+
B - H

+---+
B - H

+---+
3
1

0

:H

:H+4

9-85

VAX Instruction Set
9. 9 Queue Instructions

9-86

3
1 0

+---+
H - B

+---+
H - B

+---+
3
1

0

:B

:B+4

If an entry at address A is inserted at the head of the queue, the queue
appears as follows:

3
1 0

+---+
A - H

+---+
B - H

+---+
3
1

3
1

0

0
+---+

B - A
+---+

H - A
+---+

3
1

3
1

0

0
+---+

H - B
+---+

A - B
+---+

3
1

0

:H

:H+4

:A

:A+4

:B

:B+4

Finally, if an entry at address C is inserted at the tail, the queue appears as
follows:

3
1 0

+---+
A - H

+---+
C - H

+---+
3
1

3
1

0

0
+---+

B - A
+---+

H - A
+---+

3
1

0

:H

:H+4

:A

:A+4

VAX Instruction Set
9.9 Queue Instructions

3
1 0

+---+
C - B

+---+
A - B

+---+
3
1

3
1

0

0
+---+

H - C

+---+
B - C

+---+
3
1

0

:B

:B+4

:C

:C+4

Following the previous steps in reverse order gives the effect of removal at
the tail and at the head.

The following four instructions manipulate self-relative queues:

1 INSQHI - Insert entry into queue at head, interlocked.

2 INSQTI - Insert entry into queue at tail, interlocked.

3 REMQHI - Remove entry from queue at head, interlocked.

4 REMQTI - Remove entry from queue at tail, interlocked.

These operations are interlocked to allow cooperating processes in
a multiprocessor system to access a shared list without additional
synchronization. Queue entries must be quadword-aligned. A hardware
supported interlocked memory access mechanism is used to read the queue
header. Bit 0 of the queue header is used as a secondary interlock; it is
set when the queue is being accessed. If an interlocked queue instruction
encounters the secondary interlock set, it terminates after setting the condition
codes to indicate failure to gain access to the queue. If the secondary interlock
bit is not set, then the interlocked queue instruction sets it during its operation
and clears it at instruction completion. In this way, other interlocked queue
instructions are prevented from operating on the same queue.

9-87

9.9.3

VAX Instruction Set
9.9 Queue Instructions

Instruction Descriptions

9-88

The following instructions are described in this section:

Description and Opcode

1 . Insert Entry into Queue at Head, Interlocked
INSQHI entry.ab, header.aq

2. Insert Entry into Queue at Tail, Interlocked
INSQTI entry.ab, header.aq

3. Insert Entry in Queue
INSQUE entry.ab, pred.ab

4. Remove Entry from Queue at Head, Interlocked
REMQHI header .aq, addr. wl

5. Remove Entry from Queue at Tail, Interlocked
REMQTI header.aq, addr.wl

6. Remove Entry from Queue
REMQUE entry.ab, addr.wl

Number of
Instructions

INSQHI

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

VAX Instruction Set
INSQHI

Insert Entry into Queue at Head, Interlocked

opcode entry.ab, header.aq

if {insertion succeeded} then

begin

else

N +--- 0;

Z +--- (entry) EOL (entry+4);

V +--- O;

C +--- O;

end;

begin

N +--- O;

z +--- 0;

V +--- O;

c +--- 1;

end;

reserved operand

First entry in queue

Secondary interlock failed

5C INSOHI Insert Entry into Queue at Head, Interlocked

The entry specified by the entry operand is inserted into the queue following
the header. If the entry inserted was the first one in the queue, the condition
code Z-bit is set; otherwise it is cleared. The insertion is a noninterruptible
operation. The insertion is interlocked to prevent concurrent interlocked
insertions or removals at the head or tail of the same queue by another
process even in a multiprocessor environment. Before performing any
part of the operation, the processor validates that the entire operation
can be completed. This method ensures that if a memory management
exception occurs (see Appendix E), the queue is left in a consistent state. If
the instruction fails to acquire the secondary interlock, the instruction sets
condition codes and terminates.

9-89

VAX Instruction Set
INSQHI

9-90

Notes

1 Because the insertion is noninterruptible, processes running in kernel
mode can share queues with interrupt service routines.

2 The INSQHI, INSQTI, REMQHI, and REMQTI instructions are
implemented such that cooperating software processes in a multiprocessor
may access a shared list without additional synchronization.

3 To set a software interlock realized with a queue, you can use the
following:

INSERT:

1$:

INSQHI
BEQL
BCS
CALL

1$
INSERT
WAIT(...)

Was queue empty?
Yes
Try inserting again
No, wait

4 During access validation, any access that cannot be completed results in
a memory management exception even though the queue insertion is not
started.

5 A reserved operand fault occurs if entry or header is an address that is
not quadword aligned (that is, <2:0> NEQU 0) or if header <2:1>
is not 0. A reserved operand fault also occurs if header equals entry. In
this case, the queue is not altered.

INSQTI

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

VAX Instruction Set
INSQTI

Insert Entry into Queue at Tail, Interlocked

opcode entry.ab, header.aq

if {insertion succeeded} then

begin

else

50

N-0;

Z - (entry) EOL (entry+4);

v-o;
c-o;
end;

begin

N-O;

z-o;
v-o;
c-1;

end;

reserved operand

INSOTI

First entry in queue

! Secondary interlock failed

Insert Entry into Queue at Tail, Interlocked

The entry specified by the entry operand is inserted into the queue preceding
the header. If the entry inserted was the first one in the queue, the condition
code Z-bit is set; otherwise it is cleared. The insertion is a noninterruptible
operation._ The insertion is interlocked to prevent concurrent interlocked
insertions or removals at the head or tail of the same queue by another
process even in a multiprocessor environment. Before performing any part
of the operation, the processor validates that the entire operation can be
completed. This method ensures that if a memory management exception
occurs (see Appendix E), queue is left in a consistent state. If the instruction
fails to acquire the secondary interlock, the instruction sets condition codes
and terminates.

9-91

VAX Instruction Set
INSQTI

9-92

Notes

1 Because the insertion is noninterruptible, processes running in kernel
mode can share queues with interrupt service routines.

2 The INSQHI, INSQTI, REMQHI, and REMQTI instructions are
implemented such that cooperating software processes in a multiprocessor
may access a shared list without additional synchronization.

3 To set a software interlock realized with a queue, you can use the
following:

INSERT:

1$:

INSQHI
BEQL
BCS
CALL

1$
INSERT
WAIT(...)

Was queue empty?
Yes
Try inserting again
No. wait

4 During access validation, any access that cannot be completed results in
a memory management exception even though the queue insertion is not
started.

5 A reserved operand fault occurs if entry, header, or (header+4) is an
address that is not quadword aligned (that is, <2:0> NEQU 0) or if
header <2:1> is not 0. A reserved operand fault also occurs if header
equals entry. In this case, the queue is not altered.

INSQUE

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

VAX Instruction Set
INSQUE

Insert Entry in Queue

opcode entry.ab, pred.ab

N - (entry) LSS (entry+4);

z - (entry) EQL (entry+4); I First entry in queue

v -o;
c - (entry) LSSU (entry+4);

None.

OE INSOUE Insert Entry in Queue

The entry specified by the entry operand is inserted into the queue following
the entry specified by the predecessor operand. If the entry inserted was the
first one in the queue, the condition code Z-bit is set; otherwise it is cleared.
The insertion is a noninterruptible operation. Before performing any part
of the operation, the processor validates that the entire operation can be
completed. This method ensures that if a memory management exception
occurs (see Appendix E), the queue is left in a consistent state.

Notes

1 The following three types of insertion can be performed by appropriate
choice of the predecessor operand:

• Insert at head:

INSQUE entry, h h is queue head

• Insert at tail:

INSQUE entry,©h+4 ; h is queue head
(Note "©" in this case only)

• Insert after arbitrary predecessor:

INSQUE entry,p ; p is predecessor

2 Because the insertion is noninterruptible, processes running in kernel
mode can share queues with interrupt service routines.

3 The INSQUE and REMQUE instructions are implemented such that
cooperating software processes in a single processor may access a shared
list without additional synchronization, if the insertions and removals are
only at the head or tail of the queue.

9-93

VAX Instruction Set
INSQUE

9-94

4 To set a software interlock realized with a queue, you can use the
following:

INS QUE
BEQL 1$
CALL WAIT(...)

1$:

Was queue empty?
Yes
No, wait

5 During access validation, any access that cannot be completed results in a
memory management exception, even though the queue insertion is not
started.

REMQHI

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

VAX Instruction Set
REMQHI

Remove Entry from Queue at Head, Interlocked

opcode header.aq, addr. wl

if {removal succeeded} then

begin

else

N +-- 0;

Z +-- (header) EQL 0; ! Queue empty after removal

V +-- {queue empty before this instruction};

C +-- O;

end;

begin

N +-- 0;

z +-- 0;

V +-- 1 ; ! Did not remove anything

C +-- 1 ; ! Secondary interlock failed

end;

reserved operand

5E RE MOH I Remove Entry from Queue at Head, Interlocked

If the secondary interlock is clear, the queue entry following the header is
removed from the queue and the address operand is replaced by the address
of the entry removed. If the queue was empty prior to this instruction, or if
the secondary interlock failed, the condition code V-bit is set; otherwise it is
cleared.

If the interlock succeeded and the queue is empty at the end of this
instruction, the condition code Z-bit is set; otherwise it is cleared. The
removal is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process even in
a multiprocessor environment. The removal is a noninterruptible operation.
Before performing any part of the operation, the processor validates that
the entire operation can be completed. This ensures that if a memory
management exception occurs (see Appendix E), the queue is left in a
consistent state. If the instruction fails to acquire the secondary interlock,
the instruction sets condition codes and terminates without altering the
queue.

9-95

VAX Instruction Set
REMQHI

9-96

Notes

1 Because the removal is noninterruptible, processes running in kernel
mode can share queues with interrupt service routines.

2 The INSQHI, INSQTI, REMQHI, and REMQTI instructions are
implemented so that cooperating software processes in a multiprocessor
may access a shared list without additional synchronization.

3 To release a software interlock realized with a queue, you can use the
following:

1$: REMQHI

2$:

BEQL
BCS
CALL

2$
1$
ACTIVATE(...)

Removed last?
Yes
Try removing again
Activate other waiters

4 To remove entries until the queue is empty, you can use the following:

1$: REMQHI
BVS 2$

process removed entry

BR 1$

2$ BCS 1$
queue empty

Anything removed?
; Ne

Try removing again

5 During access validation, any access that cannot be completed results in
a memory management exception, even though the queue removal is not
started.

6 A reserved operand fault occurs if header or (header+ (header)) is an
address that is not quadword aligned (that is, < 2:0 > NEQU 0) or if
(header) <2:1> is not 0. A reserved operand fault also occurs if the
header address operand equals the address of the addr operand. In this
case, the queue is not altered.

REMQTI

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

VAX Instruction Set
REMQTI

Remove Entry from Queue at Tail, Interlocked

opcode header. aq, addr. wl

if {removal succeeded} then

begin

else

N+--0;

Z +-- (header+ 4) EQL 0; I Queue empty after removal

V +-- {queue empty before this instruction};

c +-- 0;

end;

begin

N +-- O;

z +-- 0;

V +-- 1 ; I Did not remove anything

C +-- 1 ; I Secondary interlock failed

end;

reserved operand

5F REMQTI Remove Entry from Queue at Tail, Interlocked

If the secondary interlock is clear, the queue entry preceding the header is
removed from the queue and the address operand is replaced by the address
of the entry removed. If the queue was empty prior to this instruction, or if
the secondary interlock failed, the condition code V-bit is set; otherwise it is
cleared.

If the interlock succeeded and the queue is empty at the end of this
instruction, the condition code Z-bit is set; otherwise it is cleared. The
removal is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, even in
a multiprocessor environment. The removal is a noninterruptible operation.
Before performing any part of the operation, the processor validates that
the entire operation can be completed. This ensures that if a memory
management exception occurs (see Appendix E), the queue is left in a
consistent state. If the instruction fails to acquire the secondary interlock,
the instruction sets condition codes and terminates without altering the
queue.

9-97

VAX Instruction Set
REMQTI

9-98

Notes

1 Because the removal is noninterruptible, processes running in kernel
mode can share queues with interrupt service routines.

2 The INSQHI, INSQTI, REMQHI, and REMQTI instructions are
implemented to allow cooperating software processes in a multiprocessor
system to access a shared list without additional synchronization.

3 To release a software interlock realized with a queue, you can use the
following:

1$: REMQTI Removed last?
BEQL 2$ Yes
BCS 1$ Try removing again
CALL ACTIVATE(...) Activate other waiters

2$:

4 To remove entries until the queue is empty, you can use the following:

1$: REMQTI
BVS 2$

process removed entry

BR 1$

2$: BCS 1$
queue empty

Anything removed?
; No

Try removing again

5 During access validation, any access which cannot be completed results in
a memory management exception, even though the queue removal is not
started.

6 A reserved operand fault occurs if header, (header+ 4), or (header
+(header+ 4)+4) is an address that is not quadword aligned (that is,
<2:0> NEQU 0), or if (header) <2:1> is not 0. A reserved operand

fault also occurs if the header address operand equals the address of the
addr operand. In this case, the queue is not altered.

REM QUE

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Remove Entry From Queue

VAX Instruction Set
REM QUE

opcode entry.ab,addr. wl

N +-- (entry) LSS (entry+4);

z +-- (entry) EOL (entry+4); ! Queue empty

v +-- (entry) EOL (entry+4); ! No entry to remove

c +-- (entry) LSSU (entry+4);

None.

OF RE MOUE Remove Entry from Queue

The queue entry specified by the entry operand is removed from the queue.
The address operand is replaced by the address of the entry removed. If there
was no entry in the queue to be removed, the condition code V-bit is set;
otherwise it is cleared. If the queue is empty at the end of this instruction,
the condition code Z-bit is set; otherwise it is cleared. The removal is a
noninterruptible operation. Before performing any part of the operation, the
processor validates that the entire operation can be completed. This ensures
that if a memory management exception occurs (see Appendix E), the queue
is left in a consistent state.

Notes

1 Three types of removal can be performed by suitable choice of entry
operand:

• Remove at head:

REMQUE ©h,addr h is queue header

• Remove at tail:

REMQUE ©h+4,addr h is queue header

• Remove arbitrary entry:

REMQUE entry,addr

2 Because the removal is noninterruptible, processes running in kernel
mode can share queues with interrupt service routines.

3 The INSQUE and REMQUE instructions are implemented so that
cooperating software processes in a single processor may access a shared
list without additional synchronization, if the insertions and removals are
only at the head or tail of the queue.

9-99

VAX Instruction Set
REMQUE

9-100

4 To release a software interlock realized with a queue, you can use the
following:

REM QUE
BEQL 1$
CALL ACTIVATE(...)

1$:

Queue empty?
Yes
Activate other waiters

5 To remove entries until the queue is empty, you can use the following:

1$: REM QUE
BVS EMPTY

BR 1$

Anything removed?
; No

6 During access validation, any access which cannot be completed results in
a memory management exception, even though the queue removal is not
started.

VAX Instruction Set
9.10 Floating Point Instructions

9.10 Floating Point Instructions

9.10.1 Introduction

Floating-point instructions operate on the following four data types:

• F_floating, standard on all VAX processors

• D_floating, standard on all VAX processors

• G_floating, optional on the VAX-11/780 and the VAX-11/750, and
standard on the VAX-11/730

• H_floating, optional on the VAX-11/780 and the VAX-11/750, and
standard on the VAX-11/730

To be consistent with the floating-point instruction set, which faults on
reserved operands (see Chapter 8), software-implemented floating-point
functions (for example, the absolute function) should verify that no input
operands are reserved. An easy way to do this is a floating move or test of
the input operand(s).

To make high-speed floating-point operations easier, restrictions are placed
on the addressing mode combinations usable within a single floating-
point instruction. These combinations involve the logically inconsistent
simultaneous use of a value as both a floating-point operand and an address.

If, within the same instruction, you use the contents of register Rn as both
a part of a floating-point input operand (an .rf, .rd, .rg, .rh, .mf, .md, .mg,
or .mh operand) and as an address in an addressing mode that modifies Rn
(autoincrement, autodecrement, or autoincrement deferred), the value of the
floating-point operand is UNPREDICTABLE.

Mathematically, a floating-point number may be defined as having the
following form: (+or-)(2 * *K) * f
where K is an integer and f is a nonnegative fraction. For a nonvanishing
number, Kand fare uniquely determined by imposing the following
condition:

1/2 LEQ f LSS 1.

The fractional factor, f, of the number is then said to be binary normalized.
For the number 0, f must be assigned the value 0, and the value of K is
indeterminate.

VAX derives these floating-point data formats from this mathematical
representation for floating-point numbers. Four types of floating-point data
are provided: the two standard PDP-11 formats (F_floating and
D_floating), and two extended-range formats (G_floating and H_floating).
Single-precision, or floating, data is 32 bits long. Double-precision, or
D_floating, data is 64 bits long. Extended-range double-precision, or
G_floating, data is 64 bits long. Extended-range quadruple-precision, or
H_floating, data is 128 bits long. Use sign magnitude notation as follows:

1 Nonzero floating-point numbers:

The most significant bit of the floating-point data is the sign bit: 0 for
positive and 1 for negative.

9-101

VAX Instruction Set
9.10 Floating Point Instructions

The fractional factor f is assumed normalized, so that its most significant
bit must be 1. This 1 is the "hidden" bit: it is not stored in the data word,
but the hardware restores it before carrying out arithmetic operations.
The F_floating and D_floating data types use 23 and 55 bits, respectively,
for f, which, with the hidden bit, imply effective significance of 24 bits
and 56 bits for arithmetic operations. The extended-range (G_floating
and H_floating) data types use 52 and 112 bits, respectively, for f, which,
with the hidden bit, imply effective significance of 53 and 113 bits for
arithmetic operations.

In the F_floating and D_floating data types, eight bits are reserved for
the storage of the exponent K in excess 128 notation. Thus, exponents
from -128 to +127 could be represented, in biased form, by 0 to 255.
For reasons given later, a biased EXP of 0 (the true exponent of -128) is
reserved for floating-point 0. Thus, for F_floating and D_floating data
types, exponents are restricted to the range -127 to +127 inclusive or, in
excess 128 notation, 1 to 255.

In the G_floating data type, 11 bits are reserved for the storage of the
exponent in excess 1024 notation. In the H_floating data type, 15 bits
are reserved for the storage of the exponent in excess 16,384 notation.
A biased exponent of 0 is reserved for floating-point 0. Thus, exponents
are restricted to -1023 to +1023 inclusive (in excess notation, 1 to 2047),
and -16,383 to +16,383 inclusive (in excess notation, 1 to 32,767) for
G_floating and H_floating data types, respectively.

2 Floating-point 0:

Because of the hidden bit, the fractional factor is not available to
distinguish between zero and nonzero numbers whose fractional factor is
exactly 1 /2. Therefore, the VAX reserves a sign-exponent field of 0 for
this purpose. Any positive floating-point number with a biased exponent
of 0 is treated as if it were an exact 0 by the floating-point instruction set.
In particular, a floating-point operand whose bits are all zeros is treated
as 0, and this is the format generated by all floating-point instructions for
which the result is 0.

3 The reserved operands:

A reserved operand is defined to be any bit pattern with a sign bit of 1
and a biased exponent of 0. On the VAX, all floating-point instructions
generate a fault if a reserved operand is encountered. A reserved operand
is never generated as a result of a floating-point instruction.

9.10.2 Overview of the Instruction Set

9-102

The VAX has the standard arithmetic operations ADD, SUB, MUL, and
DIV implemented for all four floating-point data types. The results of these
operations are always rounded, as described in 9.10.3. In addition, VAX
has two composite operations, EMOD and POLY, also implemented for all
four floating-point data types. EMOD generates a product of two operands
and then separates the product into its integer and fractional terms. POLY
evaluates a polynomial, given the degree, the argument, and a pointer to
a table of coefficients. Details on the operation of EMOD and POLY are
given in their respective descriptions. All of these instructions are subject to
the rounding errors associated with floating-point operations, as well as to
exponent overflow and underflow. Accuracy is discussed in Section 9.10.3.
Exceptions are discussed in Appendix E.

9.10.3 Accuracy

VAX Instruction Set
9.10 Floating Point Instructions

The VAX architecture also has a complete set of instructions for conversion
from integer arithmetic types (byte, word, longword) to all floating types
(F_floating, D_floating, G _floating, H_floating), and vice versa. The VAX
also has a set of instructions for conversion between all of the floating types
except between D_floating and G _floating. Many of these instructions are
exact, in the sense defined 9.10.3. However, a few may generate rounding
error, floating overflow, or floating underflow, or induce integer overflow.
Details are given in the description of the CVT instructions.

The following move-type instructions are always exact: MOV, NEG, CLR,
CMP, and TST. The ACB (Add Compare and Branch) instruction is subject to
rounding errors, overflow, and underflow.

All of the floating-point instructions on the VAX fault if they encounter
a reserved operand. Floating-point instructions also fault on the
occurrence of floating overflow or divide by 0, and the condition codes are
UNPREDICTABLE. The FU bit in the PSW is available to enable or disable
an exception on underflow. If the FU bit is clear, no exception occurs on
underflow and 0 is returned as the result. If the FU bit is set, a fault occurs
on underflow. Further details on the actions taken if any of these exceptions
occurs are included in the descriptions of the instructions and discussed in
Appendix E.

This section discusses general comments on the accuracy of the VAX floating
point instruction set. The descriptions of the individual instructions may
include additional details on their accuracy.

An instruction is defined to be exact if its result, extended on the right by
an infinite sequence of zeros, is identical to that of an infinite precision
calculation involving the same operands. The prior accuracy of the operands
is ignored. For all arithmetic operations except DIV, a 0 operand implies that
the instruction is exact. The instruction is exact for DIV if the 0 operand is
the dividend. If the 0 operand is the divisor, division is undefined and the
instruction faults.

For nonzero floating-point operands, the fractional factor is binary normalized
with 24 or 56 bits for single-precision (F_floating) or double-precision
(D_floating), respectively; and 53 or 113 bits for extended-range double
precision (G_floating), and extended-range quadruple-precision (H_floating),
respectively. As shown below, for ADD, SUB, MUL, and DIV, an overflow
bit (on the left) and two guard bits (on the right) are necessary to guarantee
the return of a rounded result identical to the corresponding infinite precision
operation rounded to the specified word length. With these two guard bits, a
rounded result has an error bound of 1/2 LSB (least significant bit).

Note that an arithmetic result is exact if no nonzero bits are lost in chopping
the infinite precision result to the data length to be stored. Chopping is
defined to mean that the 24 (F_floating), 56 (D_floating), 53 (G _floating), or
113 (H_floating) high-order bits of the normalized fractional factor of a result
are stored; the rest of the bits are discarded. The first bit lost in chopping is
referred to as the "rounding" bit. The value of a rounded result is related to
the chopped result as follows:

• If the rounding bit is 1, the rounded result is the chopped result
incremented by an LSB (least significant bit).

9-103

VAX Instruction Set
9.10 Floating Point Instructions

• If the rounding bit is 0, the rounded and chopped results are identical.

All VAX processors implement rounding to produce results identical to the
results produced by the following algorithm: add a 1 to the rounding bit and
propagate the carry, if it occurs. Note that a renormalization may be required
after rounding takes place. If this occurs, the new rounding bit will be O;
therefore, it can occur only once. The following statements summarize the
relations among chopped, rounded, and true (infinite precision) results:

• If a stored result is exact:

- roundedvalue = choppedvalue = truevalue

• If a stored result is not exact:

Its magnitude is always less than that of the true result for chopping.

Its magnitude is always less than that of the true result for rounding
if the rounding bit is 0.

Its magnitude is greater than that of the true result for rounding if the
rounding bit is 1.

9. 1 0 .4 Instruction Descriptions

9-104

The following instructions are described in this section:

1.

2.

3.

4.

5.

6.

7.

8.

9.

Description and Opcode

Add 2 Operand
ADD{F,D,G,H}2 add.rx, sum.mx

Add 3 Operand
ADD{F,D,G,H}3 add 1.rx, add2.rx, sum.wx

Clear
CLR{L=F,O=D=G,O=H} dst.wx

Compare
CMP{F,D,G,H} srcl .rx, src2.rx

Convert
CVT{F,D,G,H}{B,W,L,F,D,G,H} src.rx, dst.wy
CVT{B,W,L}{F,D,G,H} src.rx, dst.wy
All pairs except FF,DD,GG,HH,DG, and GD

Convert Rounded
CVTR{F,D,G,H}L src.rx, dst.wl

Divide 2 Operand
DIV{F ,D,G,H}2 divr.rx, quo.mx

Divide 3 Operand
DIV{F,D,G,H}3 divr.rx, divd.rx, quo.wx

Extended Modulus
EMOD{F,D} mulr.rx, mulrx.rb, muld.rx,
int. wl, tract. wx
EMOD{G,H} mulr.rx, mulrx.rw, muld.rx,
int.wl, fract.wx

Number of
Instructions

4

4

3

4

34

4

4

4

4

VAX Instruction Set
9.10 Floating Point Instructions

10.

11.

12.

13.

Description and Opcode

Move Negated
MNEG{F,D,G,H} src.rx, dst.wx

Move
MOV{F,D,G,H} src.rx, dst.wx

Multiply 2 Operand
MUL{F,O,G,H}2 mulr.rx, prod.mx

Multiply 3 Operand
MUL{F,D,G,H}3 mulr.rx, muld.rx, prod.wx

14. Polynomial Evaluation F _floating
POL YF arg.rf, degree.rw, tbladdr.ab,
{R0-3.wl}

15. Polynomial Evaluation O_floating
POL YD arg.rd, degree.rw, tbladdr.ab,
{R0-5.wl}

16. Polynomial Evaluation G_floating
POL YG arg.rg, degree.rw, tbladdr.ab,
{R0-5.wl}

17. Polynomial Evaluation H_floating
POL YH arg.rh, degree.rw, tbladdr.ab,
{R0-5. wl,-16(SP):-1 (SP). wb}

18. Subtract 2 Operand
SUB{F,D,G,H}2 sub.rx, dif.mx

19. Subtract 3 Operand
SUB{F,O,G,H}3 sub.rx, min.rx, dif.wx

20. Test
TST{F,D,G,H} src.rx

Number of
Instructions

4

4

4

4

4

4

4

The following floating-point instructions are described in the section on
Control Instructions:

1.

Description and Opcode

Add Compare and Branch
ACB{F,O,G,H} limit.rx, add.rx, index.mx,
displ.bw

Compare is LE on positive add, GE on
negative add.

Number of
Instructions

4

9-105

VAX Instruction Set
ADD

ADD

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-106

Add

2operand:
3operand:

opcode
opcode

N

z
v
c

+--sum LSS 0;

+-- sum EQL O;

+-- 0;

+--0;

floating overflow
floating underflow
reserved operand

40 ADDF2
41 ADDF3
60 ADDD2
61 ADDD3
40FD ADDG2
41FD ADDG3
60FD ADDH2
61FD ADDH3

add.rx, sum.mx
add1.rx, add2.rx, sum.wx

Add F _floating 2 Operand

Add F _floating 3 Operand

Add O_floating 2 Operand

Add O_floating 3 Operand

Add G _floating 2 Operand

Add G_floating 3 Operand

Add H _floating 2 Operand

Add H_floating 3 Operand

In 2 operand format, the addend operand is added to the sum operand, and
the sum operand is replaced by the rounded result. In 3 operand format, the
addend 1 operand is added to the addend 2 operand, and the sum operand is
replaced by the rounded result.

Notes

1 On a reserved operand fault, the sum operand is unaffected, and the
condition codes are UNPREDICTABLE.

2 On floating underflow, if FU is set, a fault occurs. Zero is stored as the
result of floating underflow only if FU is clear. On a floating underflow
fault, the sum operand is unaffected. If FU is dear, the sum operand is
replaced by 0, and no exception occurs.

3 On floating overflow, the instruction faults, the sum operand is
unaffected, and the condition codes are UNPREDICTABLE.

CLR

Clear

FORMAT opcode

condition codes
N +--- 0;

z +--- 1;

v +--- O;

c +--- C;

exceptions None.

opcodes
04 CLRF

7C CLAD

CLRG

7CFD CLRH

dst.wx

VAX Instruction Set
CLR

Clear F _floating

Clear O_floating,

Clear G_floating

Clear H_floating

DESCRIPTION The destination operand is replaced by 0.

Note

CLRx dst is equivalent to MOVx S"#O, dst, but is one byte shorter.

9-107

VAX Instruction Set
CMP

CMP

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-108

Compare

opcode src 1.rx, src2.rx

N +--- src1 LSS src2;

z +--- src1 EQL src2;

v +--- 0;

c +--- O;

reserved operand

51 CMPF

71 CMPD

51FD CMPG

71FD CMPH

Compare F _floating

Compare O_floating

Compare G_floating

Compare H_floating

The source 1 operand is compared with the source 2 operand. The only
action is to affect the condition codes.

CVT

FORMAT

condition codes

exceptions

opcodes

Convert

VAX Instruction Set
CVT

opcode src.rx, dst. wy

N +--- dst LSS 0;

Z +--- dst EOL O;

V +--- {integer overflow};

c +--- 0;

integer overflow
floating overflow
floating underflow
reserved operand

4C CVTBF Convert Byte to F _floating

6C CVTBD Convert Byte to D_floating

4CFD CVTBG Convert Byte to G _floating

6CFD CVTBH Convert Byte to H _floating

40 CVTWF Convert Word to F _floating

60 CV TWO Convert Word to O_floating

40FD CVTWG Convert Word to G_floating

60FD CVTWH Convert Word to H _floating

4E CVTLF Convert long to F _floating

6E CVTLD Convert Long to O_floating

4EFD CVTLG Convert long to G_floating

6EFD CVTLH Convert long to H _floating

48 CVTFB Convert F _floating to Byte

68 CVTDB Convert O_floating to Byte

48FD CVTGB Convert G_floating to Byte

68FD CVTHB Convert H_floating to Byte

49 CVTFW Convert F _floating to Word

69 CVTDW Convert O_floating to Word

49FD CVTGW Convert G_floating to Word

69FD CVTHW Convert H _floating to Word

4A CVTFL Convert F _floating to long

4B CVTRFL Convert Rounded F _floating to Long

9-109

VAX Instruction Set
CVT

DESCRIPTION

9-110

SA CVTDL Convert D_floating to Long

68 CVTRDL Convert Rounded D_floating to Long

4AFD CVTGL Convert G_floating to Long

4BFD CVTRGL Convert Rounded G_floating to Long

6AFD CVTHL Convert H_floating to Long

6BFD CVTRHL Convert Rounded H _floating to Long

56 CVTFD Convert F _floating to D_floating

99FD CVTFG Convert F _floating to G_floating

98FD CVTFH Convert F _floating to H_floating

76 CVTDF Convert D_floating to F _floating

32FD CVTDH Convert D_floating to H_floating

33FD CVTGF Convert G_floating to F _floating

56FD CVTGH Convert G_floating to H_floating

F6FD CVTHF Convert H_floating to F _floating

F7FD CVTHD Convert H_floating to D_floating

76FD CVTHG Convert H_floating to G_floating

The source operand is converted to the data type of the destination operand,
and the destination operand is replaced by the result. The form of the
conversion is as follows:

CVTBF exact

CVTBD exact

CVTBG exact

CVTBH exact

CVTWF exact

CVTWD exact

CVTWG exact

CVTWH exact

CVTLF rounded

CVTLD exact

CVTLG exact

CVTLH exact

CVTFB truncated

CVTDB truncated

CVTGB truncated

CVTHB truncated

CVTFW truncated

CVTDW truncated

CVTGW truncated

CVTHW truncated

CVTFL
CVTRFL
CVTDL
CVTRDL
CVTGL
CVTRGL
CVTHL
CVTRHL
CVTFD
CVTFG
CVTFH
CVTDF
CVTDH
CVTGF
CVTGH
CVTHF
CVTHD
CVTHG

Notes

truncated

rounded

truncated

rounded

truncated

rounded

truncated

rounded

exact

exact

exact

rounded

exact

rounded

exact

rounded

rounded

rounded

VAX Instruction Set
CVT

1 Only CVTDF, CVTGF, CVTHF, CVTHD, and CVTHG can result in a
floating overflow fault; the destination operand is unaffected, and the
condition codes are UNPREDICTABLE.

2 Only converts with a floating-point source operand can result in a
reserved operand fault. On a reserved operand fault, the destination
operand is unaffected, and the condition codes are UNPREDICTABLE.

3 Only converts with an integer destination operand can result in integer
overflow. On integer overflow, the destination operand is replaced by the
low-order bits of the true result.

4 Only CVTGF, CVTHF, CVTHD, and CVTHG can result in floating
underflow. If FU is set, a fault occurs. On a floating underflow fault, the
destination operand is unaffected. If FU is clear, the destination operand
is replaced by 0, and no exception occurs.

9-111

VAX Instruction Set
DIV

DIV

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-112

Divide

2operand:
3operand:

opcode
opcode

N

z
v
c

- quo LSS O;

- quo EOL O;

-o;
-o;

floating overflow
floating underflow
divide by 0
reserved operand

46 DIVF2

47 DIVF3

66 DIVD2

67 DIVD3

46FD DIVG2

47FD DIVG3

66FD DIVH2

67FD DIVH3

divr.rx, quo.mx
divr.rx, divd.rx, quo. wx

Divide F _floating 2 Operand

Divide F _floating 3 Operand

Divide D_floating 2 Operand

Divide D_floating 3 Operand

Divide G_floating 2 Operand

Divide G_floating 3 Operand

Divide H_floating 2 Operand

Divide H_floating 3 Operand

In 2 operand format, the quotient operand is divided by the divisor operand
and the quotient operand is replaced by the rounded result. In 3 operand
format, the dividend operand is divided by the divisor operand, and the
quotient operand is replaced by the rounded result.

Notes

1 On a reserved operand fault, the quotient operand is unaffected, and the
condition codes are UNPREDICTABLE.

2 On floating underflow, if FU is set, a fault occurs. On a floating underflow
fault, the quotient operand is unaffected. If FU is clear, the quotient
operand is replaced by 0, and no exception occurs.

3 On floating overflow, the instruction faults, the quotient operand is
unaffected, and the condition codes are UNPREDICTABLE.

VAX Instruction Set
DIV

4 On divide by 0, the quotient operand, and condition codes are affected as
in note 3.

9-113

VAX Instruction Set
EMOD

EMOD

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-114

Extended Multiply and lntegerize

EMODF and EMODD:
opcode mulr.rx, mulrx.rb, muld.rx, int.wt, fract.wx
EMODG and EMODH:
opcode mulr. rx, mulrx. rw, muld. rx, int. wl, tract. wx

N +----- tract LSS 0;

z +----- fract EQL 0;

v +----- {integer overflow};

c +----- O;

integer overflow
.floating underflow
reserved operand

54 EMODF

74 EMODD

54FD EMODG

74FD EMODH

Extended Multiply and lntegerize F _floating

Extended Multiply and lntegerize D_floating

Extended Multiply and lntegerize G_floating

Extended Multiply and lntegerize H_floating

The multiplier extension operand is concatenated with the multiplier operand
to gain 8 (EMODD and EMODF), 11 (EMODG), or 15 (EMODH) additional
low-order fraction bits. The low-order 5 or 1 bits of the 16-bit multiplier
extension operand are ignored by the EMODG and EMODH instructions,
respectively. The multiplicand operand is multiplied by the extended
multiplier operand. The multiplication result is equivalent to the exact
product truncated (before normalization) to a fraction field of 32 bits in F_
floating, 64 bits in D_floating and G_floating, and 128 bits in H_floating.
The result is regarded as the sum of an integer and fraction of the same sign.
The integer operand is replaced by the integer part of the result, and the
fraction operand is replaced by the rounded fractional part of the result.

Notes

1 On a reserved operand fault, the integer operand, and the fraction
operand are unaffected. The condition codes are UNPREDICTABLE.

2 On floating underflow, if FU is set, a fault occurs. On a floating underflow
fault, the integer and fraction parts are unaffected. If FU is clear, the
integer and fraction parts are replaced by 0, and no exception occurs.

VAX Instruction Set
EMOD

3 On integer overflow, the integer operand is replaced by the low-order bits
of the true result.

4 Floating overflow is indicated by integer overflow; however, integer
overflow is possible in the absence of floating overflow.

5 The signs of the integer and fraction are the same unless integer overflow
results.

6 Because the fraction part is rounded after separation of the integer part, it
is possible that the value of the fraction operand is 1.

9-115

VAX Instruction Set
MNEG

MNEG

Move Negated

FORMAT opcode src.rx, dst. wx

condition codes
N +-- dst LSS O;

Z +-- dst EOLO;

v -o;
c +--0;

exceptions reserved operand

opcodes

DESCRIPTION

9-116

52 MNEGF

72 MNEGD

52FD MNEGG

72FD MNEGH

Move Negated F _floating

Move Negated O_floating

Move Negated G_floating

Move Negated H_floating

The destination operand is replaced by the negative of the source operand.

MOV

FORMAT

condition codes

Move

opcode src.rx, dst. wx

N +-- dst LSS 0;

Z +-- dst EQL O;

V +-- O;

C +-- C;

VAX Instruction Set
MOV

exceptions reserved operand

opcodes

DESCRIPTION

50

70

50FD

70FD

MOVF

MOVD

MOVG

MOVH

Move Lfloating

Move O_floating

Move G_floating

Move H_floating

The destination operand is replaced by the source operand.

Note

On a reserved operand fault, the destination operand is unaffected, and the
condition codes are UNPREDICTABLE.

9-117

VAX Instruction Set
MUL

MUL

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-118

Multiply

2operand:
3operand:

opcode
opcode

N

z
v
c

+-- prod LSS 0;

+-- prod EOL 0;

+-- 0;

+-- 0;

floating over.flow
floating under.flow
reserved operand

44 MULF2

45 MULF3

64 MULD2

65 MULD3

44FD MULG2

45FD MULG3

64FD MULH2

65FD MULH3

mulr.rx, prod.mx
mulr.rx, muld.rx, prod. wx

Multiply F _floating 2 Operand

Multiply F _floating 3 Operand

Multiply D_floating 2 Operand

Multiply D_floating 3 Operand

Multiply G_floating 2 Operand

Multiply G_floating 3 Operand

Multiply H_floating 2 Operand

Multiply H_floating 3 Operand

In 2 operand format, the product operand is multiplied by the multiplier
operand, and the product operand is replaced by the rounded result. In 3
operand format, the multiplicand operand is multiplied by the multiplier
operand, and the product operand is replaced by the rounded result.

Notes

1 On a reserved operand fault, the product operand is unaffected, and the
condition codes are UNPREDICTABLE.

2 On floating underflow, if FU is set, a fault occurs. On a floating underflow
fault, the product operand is unaffected. If FU is clear, the product
operand is replaced by 0, and no exception occurs.

3 On floating overflow, the instruction faults, the product operand is
unaffected, and the condition codes are UNPREDICTABLE.

POLY

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

VAX Instruction Set
POLY

Polynomial Evaluation

opcode arg.rx, degree.rw, tbladdr.ab

N

z
v
c

+--RO LSS 0;

+--RO EOL 0;

+-0;

+-0;

floating overflow
floating underflow
reserved operand

55

75

55FD

75FD

POLYF

POL YD

POLYG

POLYH

Polynomial Evaluation F _floating

Polynomial Evaluation O_floating

Polynomial Evaluation G _floating

Polynomial Evaluation H_floating

The table address operand points to a table of polynomial coefficients. The
coefficient of the highest-order term of the polynomial is pointed to by the
table address operand. The table is specified with lower-order coefficients
stored at increasing addresses. The data type of the coefficients is the same
as the data type of the argument operand. The evaluation is carried out by
Homer's method, and the contents of RO (Rl'RO for POLYD and POLYG,
R3'R2'Rl'RO for POLYH) are replaced by the result. The result computed is:

if d = degree
and x = arg
result = C[O]=x**O + x*(C[1] + x*(C[2] + ... X*C[d]))

The unsigned word degree operand specifies the highest-numbered coefficient
to participate in the evaluation. POL YH requires four longwords on the stack
to store arg in case the instruction is interrupted.

Notes

1 After execution:

POLYP:
RO= result
Rl = 0
R2 = 0
R3 = table address + degree•4 + 4

9-119

VAX Instruction Set
POLY

9-120

POLYD and POLYG:
RO= high-order part of result
Rl =low-order part of result
R2= 0
R3 = table address + degree•8 + 8
R4= 0
RS= 0

POLYH:
RO = highest-order part of result
Rl = second-highest-order part of result
R2 = second-lowest-order part of result
R3 = lowest-order part of result
R4= 0
RS = table address + degree• 16 + 16

2 On a floating fault:

• If PSL <FPD> = 0, the instruction faults, and all relevant side effects
are restored to their original state.

• If PSL <FPD> = 1, the instruction is suspended, and the state is
saved in the general registers as follows:

POLYF:
RO = tmp3

R1 = arg

Partial result after iteration
prior to the one causing the
overflow/underflow

R2<7:0> = tmp1 ! Number of iterations remaining
R2<31:8> = implementation specific
R3 = tmp2 ! Points to table entry causing

! exception

POLYD and POLYG:
R1'RO = tmp3 Partial result after iteration

prior to the one causing the
overflow/underflow

R2<7:0> = tmp1 Number of iterations remaining
R2<31:8> = implementation specific
R3 = tmp2 ! Points to table entry causing

R5'R4 = arg

POLYH:
R3'R2'R1'RO = tmp3

exception

Partial result after iteration
prior to the one causing the
overflow/underflow

R4<7:0> = tmp1 Number of iterations remaining
R4<31:8> = implementation specific
R5 = tmp2 ! Points to table entry causing

! exception

arg is saved on the stack in use during the faulting instruction.

Implementation-specific information is saved to allow the instruction
to continue after possible scaling of the coefficients and partial result
by the fault handler.

3 If the unsigned word degree operand is 0 and the argument is not a
reserved operand, the result is C[O].

EXAMPLE

VAX Instruction Set
POLY

4 If the unsigned word degree operand is greater than 31, a reserved
operand fault occurs.

5 On a reserved operand fault:

• If PSL <FPD> = 0, the reserved operand is either the degree
operand (greater than 31), or the argument operand, or some
coefficient.

• If PSL <FPD> = 1, the reserved operand is a coefficient, and R3
(except for POLYH) or RS (for POLYH) is pointing at the value that
caused the exception.

• The state of the saved condition codes and the other registers is
UNPREDICTABLE. If the reserved operand is changed and the
contents of the condition codes and all registers are preserved, the
fault is continuable.

6 On floating underflow after the rounding operation at any iteration of the
computation loop, a fault occurs if FU is set. If FU is clear, the temporary
result (tmp3) is replaced by 0 and the operation continues. In this case,
the final result may be nonzero if underflow occurred before the last
iteration.

7 On floating overflow after the rounding operation at any iteration of the
computation loop, the instruction terminates with a fault.

8 If the argument is 0 and one of the coefficients in the table is the reserved
operand, whether a reserved operand fault occurs is UNPREDICTABLE.

9 For POLYH, some implementations may not save arg on the stack until
after an interrupt or fault occurs. However, arg will always be on the
stack if an interrupt or floating fault occurs after FPO is set. If the four
longwords on the stack overlap any of the source operands, the results
are UNPREDICTABLE.

To compute P(x) = CO + Cl*x + C2*X**2
where CO = 1.0, Cl = .5, and C2 = .25

POLYF X,#2,PTABLE

PTABLE: .FLOAT 0.25 C2
.FLOAT 0.5 Cl
.FLOAT 1.0 CO

9-121

VAX Instruction Set
SUB

SUB

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-122

Subtract

2operand:
3operand:

N

z
v
c

+- dif LSS 0;
+- dif EOL O;

+-0;

+-0;

opcode
opcode

floating overflow
floating underflow
reserved operand

42 SUBF2
43 SUBF3
62 SUBD2
63 SUBD3
42FD SUBG2
43FD SUBG3
62FD SUBH2
63FD SUBH3

sub.rx, dif.mx
sub.rx, min.rx, dif. wx

Subtract F _floating 2 Operand

Subtract F _floating 3 Operand

Subtract D_floating 2 Operand

Subtract D_floating 3 Operand

Subtract G_floating 2 Operand

Subtract G_floating 3 Operand

Subtract H_floating 2 Operand

Subtract H_floating 3 Operand

In 2 operand format, the subtrahend operand is subtracted from the difference
operand, and the difference is replaced by the rounded result. In 3 operand
format, the subtrahend operand is subtracted from the minuend operand, and
the difference operand is replaced by the rounded result.

Notes

1 On a reserved operand fault, the difference operand is unaffected, and the
condition codes are UNPREDICTABLE.

2 On floating underflow, if FU is set, a fault occurs. Zero is stored as the
result of floating underflow only if FU is clear. On a floating underflow
fault, the difference operand is unaffected. If FU is clear, the difference
operand is replaced by 0, and no exception occurs.

3 On floating overflow, the instruction faults, the difference operand is
unaffected, and the condition codes are UNPREDICTABLE.

TST

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Test

opcode src.rx

N - src LSS 0;
z - src EQL O;

v -o;
c -o;

reserved operand

53 TSTF

73 TSTD

53FD TSTG

73FD TSTH

VAX Instruction Set
TST

Test F _floating

Test D_floating

Test G_floating

Test H _floating

The condition codes are affected according to the value of the source operand.

Notes

1 TSTx src is equivalent to CMPx src, #0, but is 5 (F_floating) or 9
(D_floating or G_floating) or 17 (H_floating) bytes shorter.

2 On a reserved operand fault, the condition codes are UNPREDICTABLE.

9-123

9.11

VAX Instruction Set
9.11 Character String Instructions

Character String Instructions

9-124

A character string is specified by two operands:

1 An unsigned word operand that specifies the length of the character string
in bytes.

2 The address of the lowest-addressed byte of the character string. This is
specified by a byte operand of address access type.

Each of the character string instructions uses general registers RO through
Rl, RO through R3, or RO through RS to contain a control block that
maintains updated addresses and state during the execution of the instruction.
At completion, these registers are available to software to use as string
specification operands for a subsequent instruction on a contiguous character
string. During the execution of the instructions, pending interrupt conditions
are tested. If any conditions are found, the control block is updated, a first
part-done bit is set in the PSL, and the instruction is interrupted (refer to
Appendix E). After the interruption, the instruction resumes transparently.
The format of the control block is:

+-------------------------------+-------------------------------+
LENGTH 1 RO

+-------------------------------+-------------------------------+
ADDRESS 1 R1

+-------------------------------+-------------------------------+
LENGTH 2 R2

+-------------------------------+-------------------------------+
ADDRESS 2 R3

+-------------------------------+-------------------------------+
LENGTH 3 R4

+-------------------------------+-------------------------------+
ADDRESS 3 R5

+---+
The fields LENGTH 1, LENGTH 2 (if required), and LENGTH 3 (if required)
contain the number of bytes remaining to be processed in the first, second,
and third string operands, respectively. The fields ADDRESS l, ADDRESS
2 (if required), and ADDRESS 3 (if required) contain the address of the
next byte to be processed in the first, second, and third string operands,
respectively.

Memory access faults do not occur when a zero-length string is specified
because no memory reference occurs.

The following instructions are described in this section.

VAX Instruction Set
9.11 Character String Instructions

Description and Opcode

1 . Compare Characters 3 Operand
CMPC3 len.rw, src1addr.ab, src2addr.ab,
{R0-3.wl}

2. Compare Characters 5 Operand
CMPC5 src11en.rw, src1addr.ab, fill.rb,
src21en.rw, src2addr.ab, fR0-3.wl}

3. Locate Character
LOCC char.rb, len.rw, addr.ab, {R0-1.wl}

4. Match Characters
MATCHC len1 .rw, addr1 .ab, len2.rw, addr2.ab,
{R0-3.wl}

5. Move Character 3 Operand
MOVC3 len.rw, srcaddr.ab, dstaddr.ab,
{R0-5.wl}

6. Move Character 5 Operand
MOVC5 srclen.rw, srcaddr.ab, fill.rb,
dstlen.rw, dstaddr.ab, {R0-5.wl}

7. Move Trans lated Characters
MOVTC srclen.rw, srcaddr.ab, fill.rb,
tbladdr.ab, dstlen.rw, dstaddr.ab, {R0-5.wl}

8. Move Translated Until Character
MOVTUC srclen.rw, srcaddr.ab, esc.rb,
tbladdr.ab, dstlen.rw, dstaddr.ab, {R0-5.wl}

9. Scan Characters
SCANC len.rw, addr.ab, tbladdr.ab, mask.rb,
{R0-3.wl}

10. Skip Character
SKPC char.rb, len.rw, addr.ab, {R0-1.wl}

11 . Span Characters
SPANC len.rw, addr.ab, tbladdr.ab,
mask.rb, {R0-3.wl}

Number of
Instructions

9-125

VAX Instruction Set
CMPC

CMPC

FORMAT

condition codes

Compare Characters

3operand: opcode

5operand: opcode

Jen. rw, src 1 addr. ab,
src2addr.ab
src 1 len.rw, src 1 addr.ab, fill.rb,
src2/en.rw, src2addr.ab

N +----- {first byte} LSS {second byte};

Z +----- {first byte} EOL {second byte};

v +-0;

C +----- {first byte} LSSU {second byte};

exceptions None.

opcodes

DESCRIPTION

9-126

29

20

CMPC3

CMPC5

Compare Characters 3 Operand

Compare Characters 5 Operand

In 3 operand format, the bytes of stringl specified by the length and address!
operands are compared with the bytes of string2 specified by the length and
address2 operands. Comparison proceeds until inequality is detected or all
the bytes of the strings have been examined. Condition codes are affected
by the result of the last byte comparison. In 5 operand format, the bytes
of the string 1 operand specified by the length 1 and address 1 operands are
compared with the bytes of the string2 operand specified by the length2
and address2 operands. If one string is longer than the other, the shorter
string is conceptually extended to the length of the longer by appending (at
higher addresses) bytes equal to the fill operand. Comparison proceeds until
inequality is detected or all the bytes of the strings have been examined.
Condition codes are affected by the result of the last byte comparison. For
either CMPC3 or CMPCS, two zero-length strings compare equal (that is, Z is
set and N, V, and C are cleared).

Notes

1 After execution of CMPC3:

VAX Instruction Set
CMPC

RO = number of bytes remaining in string 1 (including byte that terminated
comparison); RO is 0 only if strings are equal

R 1 = address of the byte in string 1 that terminated comparison; if strings
are equal, address of one byte beyond string 1

R2 = RO

R3 = address of the byte in string2 that terminated comparison; if strings
are equal, address of one byte beyond string2

2 After execution of CMPCS:

RO = number of bytes remaining in string 1 (including byte that terminated
comparison); RO is 0 only if string 1 and string2 are of equal length
and equal or string 1 was exhausted before comparison terminated

R 1 = address of the byte in string 1 that terminated comparison; if
comparison did not terminate before string 1 exhausted, address
of one byte beyond string 1

R2 = number of bytes remaining in string2 (including byte that terminated
comparison); R2 is 0 only if string2 and string 1 are of equal length or
string2 was exhausted before comparison terminated

R3 = address of the byte in string2 that terminated comparison; if
comparison did not terminate before string2 was exhausted, address
of one byte beyond string2

3 If both strings have 0 length, condition code Z is set and N, V, and Care
cleared just as in the case of two equal strings.

9-127

VAX Instruction Set
LOCC

LOCC

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-128

Locate Character

opcode char.rb, len.rw, addr.ab

N -o;
z - RO EQL 0;
v -o;
c -o;

None.

3A LOCC Locate Character

The character operand is compared with the bytes of the string specified by
the length and address operands. Comparison continues until equality is
detected or all bytes of the string have been compared. If equality is detected,
the condition code Z-bit is cleared; otherwise, the Z-bit is set.

Notes

1 After execution:

RO = number of bytes remaining in the string (including located one) if byte
located; otherwise, 0

R 1 = address of the byte located if byte located; otherwise, address of
one byte beyond the string

2 If the string has 0 length, condition code Z is set just as though each byte
of the entire string were unequal to character.

MATCHC

FORMAT

condition codes

Match Characters

VAX Instruction Set
MATCHC

opcode objlen.rw, objaddr.ab, src/en.rw, srcaddr.ab

N ~o;

Z ~RO EOL 0; !match found

v ~o;

c ~o;

exceptions None.

opcodes

DESCRIPTION

39 MATCHC Match Characters

The source string specified by the source length and source address operands
is searched for a substring that matches the object string specified by the
object length and object address operands. If the substring is found, the
condition code Z-bit is set; otherwise, it is cleared.

Notes

1 After execution:

RO= if a match occurred, O; otherwise, the number of bytes in the object
string

R 1 = if a match occurred, the address of one byte beyond the object
string; that is, objaddr + objlen; otherwise, the address of the object
string

R2 = if a match occurred, the number of bytes remaining in the source
string; otherwise, 0

R3 = if a match occurred, the address of one byte beyond the last byte
matched; otherwise, the address of one byte beyond the source
string; that is, srcaddr + srclen

For zero-length source and object strings, R3 and Rl contain the source
and object addresses, respectively.

2 If both strings have 0 length, or if the object string has 0 length, condition
code Z is set, and registers RO through R3 are left just as though the
substring were found.

3 If the source string has 0 length and the object string has nonzero length,
condition code Z is cleared, and registers RO through R3 are left just as
though the substring were not found.

9-129

VAX Instruction Set
MOVC

MOVC

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-130

Move Character

3operand:
5operand:

opcode
opcode

N +--- O; !MOVC3

z +--- 1;

v +--- O;

c +--- O;

len.rw, srcaddr.ab, dstaddr.ab
srclen. rw, srcaddr. ab, fill. rb,
dstlen.rw, dstaddr.ab

N +--- srclen LSS dstlen; !MOVCS

z
v
c

28

2C

+--- srclen EQL dstlen;

+--- O;

+--- srclen LSSU dstlen;

None.

MOVC3

MOVCS

Move Character 3 Operand

Move Character 5 Operand

In 3 operand format, the destination string specified by the length and
destination address operands is replaced by the source string specified by the
length and source address operands. In 5 operand format, the destination
string specified by the destination length and destination address operands
is replaced by the source string specified by the source length and source
address operands. If the destination string is longer than the source string, the
highest-addressed bytes of the destination are replaced by the fill operand. If
the destination string is shorter than the source string, the highest-addressed
bytes of the source string are not moved. The operation of the instruction
is such that overlap of the source and destination strings does not affect the
result.

VAX Instruction Set
MOVC

Notes

1 After execution of MOVC3:

RO= 0

R 1 = address of one byte beyond the source string

R2 = 0

R3 = address of one byte beyond the destination string

R4= 0

R5 = 0

2 After execution of MOVCS:

RO = number of unmoved bytes remaining in source string. RO is nonzero
only if source string is longer than destination string

R 1 = address of one byte beyond the last byte in source string that was
moved

R2 = 0

R3 = address of one byte beyond the destination string

R4 = 0

R5 = 0

3 MOVC3 is the preferred way to copy one block of memory to another.

4 MOVCS with a 0 source length operand is the preferred way to fill a
block of memory with the fill character.

9-131

VAX Instruction Set
MOVTC

MOVTC

FORMAT

condition codes

Move Translated Characters

opcode srclen.rw, srcaddr.ab, fill.rb, tbladdr.ab,
dstlen.rw, dstaddr.ab

N +-- srclen LSS dstlen;

Z +-- srclen EOL dstlen;

v +-- 0;

C +-- srclen LSSU dstlen;

exceptions None.

opcodes

DESCRIPTION

9-132

2E MOVTC Move Translated Characters

The source string specified by the source length and source address operands
is translated. It replaces the destination string specified by the destination
length and destination address operands. Translation is accomplished by
using each byte of the source string as an index into a 256-byte table whose
first entry (entry number 0) address is specified by the table address operand.
The byte selected replaces the byte of the destination string. If the destination
string is longer than the source string, the highest-addressed bytes of the
destination string are replaced by the fill operand. If the destination string
is shorter than the source string, the highest-addressed bytes of the source
string are not translated and moved. The operation of the instruction is such
that overlap of the source and destination strings does not affect the result.

If the destination string overlaps the translation table, the destination string is
UNPREDICTABLE.

Notes

1 After execution:

RO = number of untranslated bytes remaining in source string; RO is
nonzero only if source string is longer than destination string

R 1 = address of one byte beyond the last byte in source string that was
translated

R2 = 0

R3 = address of the translation table

R4 = 0

RS = address of one byte beyond the destination string

MOVTUC

FORMAT

condition codes

Move Translated Until Character

VAX Instruction Set
MOVTUC

opcode srclen.rw, srcaddr.ab, esc.rb, tbladdr.ab,
dstlen.rw, dstaddr.ab

N +-- srclen LSS dstlen;

Z +-- srclen EQL dstlen;

V +--{terminated by escape};

C +-- srclen LSSU dstlen;

exceptions None.

opcodes

DESCRIPTION

2F MO VT UC Move Translated Until Character

The source string specified by the source length and source address operands
is translated. It replaces the destination string specified by the destination
length and destination address operands. Translation is accomplished by
using each byte of the source string as an index into a 2S6-byte table whose
first entry address (entry number 0) is specified by the table address operand.
The byte selected replaces the byte of the destination string. Translation
continues until a translated byte is equal to the escape byte, or until the
source string or destination string is exhausted. If translation is terminated
because of escape, the condition code V-bit is set; otherwise, it is cleared.

If the destination string overlaps the table, the destination string and registers
RO through RS are UNPREDICTABLE. If the source and destination strings
overlap and their addresses are not identical, the destination string and
registers RO through RS are UNPREDICTABLE. If the source and destination
string addresses are identical, the translation is performed correctly.

9-133

VAX Instruction Set
MOVTUC

9-134

Notes

1 After execution:

RO = number of bytes remaining in source string (including the byte that
caused the escape); RO is 0 only if the entire source string was
translated and moved without escape

R 1 = address of the byte that resulted in destination string exhaustion or
escape; or if no exhaustion or escape, address of 1 byte beyond the
source string

R2 = 0

R3 = address of the table

R4 = number of bytes remaining in the destination string

R5 = address of the byte in the destination string that would have received
the translated byte that caused the escape or would have received
a translated byte if the source string were not exhausted; or if no
exhaustion or escape, the address of one byte beyond the destination
string

SCA NC

FORMAT

condition codes

Scan Characters

VAX Instruction Set
SCA NC

opcode len.rw, addr.ab, tbladdr.ab, mask.rb

N f-- 0;

Z f-- RO EQL O;

v f-- 0;

c f-- 0;

exceptions None.

opcodes

DESCRIPTION

2A SCA NC Scan Characters

The assembler successively uses the bytes of the string specified by the length
and address operands to index into a 256-byte table whose first entry (entry
number 0) address is specified by the table address operand. The logical AND
is performed on the byte selected from the table and the mask operand. The
operation continues until the result of the AND is nonzero1 or until all the
bytes of the string have been exhausted. If a nonzero AND result is detected1

the condition code Z-bit is cleared; otherwise1 the Z-bit is set.

Notes

1 After execution:

RO = number of bytes remaining in the string (including the byte that
produced the nonzero AND result); RO is 0 only if there was no
nonzero AND result

R 1 = address of the byte that produced the nonzero AND result; if no
nonzero result, address of one byte beyond the string

R2 = 0

R3 = address of the table

2 If the string has 0 length, condition code Z is set just as though the entire
string were scanned.

9-135

VAX Instruction Set
SKPC

SKPC

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-136

Skip Character

opcode char.rb, len.rw, addr.ab

N +-- 0;

z +--RO EOL O;

v +-- 0;

c +-- 0;

None.

38 SKPC Skip Character

The character operand is compared with the bytes of the string specified
by the length and address operands. Comparison continues until inequality
is detected or all bytes of the string have been compared. If inequality is
detected, the condition code Z-bit is cleared; otherwise, the Z-bit is set.

Notes

1 After execution:

RO = number of bytes remaining in the string (including the unequal one) if
unequal byte located; otherwise, 0

R1 = address of the byte located if byte located; otherwise, address of
one byte beyond the string

2 If the string has 0 length, condition code Z is set just as though each byte
of the entire string were equal to the character.

SPANC

FORMAT

condition codes

Span Characters

VAX Instruction Set
SPANC

opcode len.rw, addr.ab, tbladdr.ab, mask.rb

N +-- O;

Z +-- RO EOL 0;

v +-- 0;

c +-- 0;

exceptions None.

opcodes

DESCRIPTION

28 SPANC Span Characters

The assembler successively uses the bytes of the string specified by the length
and address operands to index into a 256-byte table whose first entry (entry
number 0) address is specified by the table address operand. The logical AND
is performed on the byte selected from the table and the mask operand. The
operation continues until the result of the AND is 0, or until all the bytes of
the string have been exhausted. If a 0 AND result is detected, the condition
code Z-bit is cleared; otherwise, the Z-bit is set.

Notes

1 After execution:

RO = number of bytes remaining in the string (including the byte that
produced the 0 AND result); RO is 0 only if there was no 0 AND
result

R 1 = address of the byte that produced a 0 AND result; if no nonzero
result, address of one byte beyond the string

R2 = 0

R3 = address of the table

2 If the string has 0 length, the condition code Z-bit is set just as though
the entire string were spanned.

9-137

9.12

VAX Instruction Set
9.12 Cyclic Redundancy Check Instruction

Cyclic Redundancy Check Instruction

9-138

This instruction implements the calculation of a cyclic redundancy check
(CRC) string for any CRC polynomial up to 32 bits. Cyclic redundancy
checking is an error detection method involving a division of the data stream
by a CRC polynomial. The data stream is represented as a standard VAX
string in memory. Error detection is accomplished by computing the CRC at
the source and again at the destination, comparing the CRC computed at each
end. The choice of the polynomial minimizes the number of undetected block
errors of specific lengths. The choice of a CRC polynomial is not given here.

The operands of the CRC instruction are a string descriptor, a 16-longword
table, and an initial CRC. The string descriptor is a standard VAX operand
pair of the length of the string in bytes (up to 65,535) and the starting address
of the string. The contents of the table are a function of the CRC polynomial
to be used. It can be calculated from the polynomial by the algorithm in the
notes. Several common CRC polynomials are also included in the notes. The
system uses the initial CRC to start the polynomial correctly. Typically, the
CRC has the value 0 or -1. If the data stream is represented by a sequence of
noncontiguous strings, the value would vary from 0 to -1.

The CRC instruction scans the string and includes each byte of the data
stream in the CRC being calculated. The instruction includes the byte of
the data stream by performing a logical exclusive OR (XOR) with it and the
rightmost eight bits of the CRC. Then the instruction shifts the CRC right
one bit and inserts a 0 on the left. The instruction uses the rightmost bit
of the CRC (lost by the shift) to control the logical XOR operation of the
CRC polynomial with the resultant CRC. If the bit is a 1, the instruction
performs a logical XOR with the polynomial and the CRC. The instruction
again shifts the CRC to the right and performs a conditional logical XOR on
the polynomial with the result, for a total of eight times. The actual algorithm
used can shift by one, two, or four bits at a time using the appropriate entries
in a specially constructed table. The instruction produces a 32-bit CRC. For
shorter polynomials, the result must be extracted from the 32-bit field. The
data stream must be either a multiple of eight bits in length or right-adjusted
in the string with leading 0 bits.

CRC

FORMAT

condition codes

Calculate Cyclic Redundancy Check

VAX Instruction Set
CRC

opcode tbl.ab, inicrc.rl, strlen.rw, stream.ab

N ~RO LSS 0;

Z ~RO EOL 0;

v ~o;

c ~o;

exceptions None.

opcodes

DESCRIPTION

OB CRC Calculate Cyclic Redundancy Check

The CRC of the data stream described by the string descriptor is calculated.
The initial CRC is given by inicrc; it is normally 0 or -1, unless the CRC is
calculated in several steps. The result is left in RO. If the polynomial is less
than order 32, the result must be extracted from the low-order bits of RO. The
CRC polynomial is expressed by the contents of the 16-longword table. See
the notes for the calculation of the table.

Notes

1 After execution:

RO = result of CRC

R1 = 0

R2 = 0

R3 = address one byte beyond the end of the source string

2 If the data stream is not a multiple of eight bits, it must be right-adjusted
with leading 0 fill.

3 If the CRC polynomial is less than order 32, the result must be extracted
from the low-order bits of RO.

4 Use the following algorithm to calculate the CRC table given a
polynomial expressed:

polyn<n> <- {coefficient of X**{order -1-n}}

The following routine is system library routine LIB$CRC_TABLE (poly.rt,
table.ab). The table is the location of the 64-byte (16-longword) table into
which the result will be written.

9-139

VAX Instruction Set
CRC

9-140

SUBROUTINE LIB$CRC_TABLE (POLY, TABLE)

INTEGER*4 POLY, TABLE(0:15), TMP, X

DO 190 INDEX = 0, 15

TMP = INDEX
DO 150 I = 1, 4
X = TMP .AND. 1
TMP = ISHFT(TMP,-1) !logical shift right one bit
IF (X .EQ. 1) TMP = TMP .XOR. POLY

150 CONTINUE
TABLE(INDEX) = TMP

190 CONTINUE
RETURN
END

5 The following are descriptions of some commonly used CRC polynomials:

CRC-16 (used in DDCMP and Bisync)

polynomial:
poly:
initialize:
result:

x-16 + x-15 + x-2 + 1
120001 (octal)
0
R0<15:0>

CCITT (used in ADCCP, HDLC, SDLC)

polynomial:
poly:
initialize:
result:

AUTODIN-II

polynomial:

poly:
initialize:
result:

x-16 + x-12 + x-5 + 1
102010 (octal)
-1<15:0>
one's complement of R0<15:0>

x-32+x-26+x-23+x-22+x-16+x-12
+x-11+x-10+x-a+x-7+x-5+x-4+x-2+x+1

EDB88320 (hex)
-1<31:0>
one's complement of R0<31:0>

6 The CRC instruction produces an UNPREDICTABLE result unless the
table is well-formed, like the one produced in note 3. Note that for
any well-formed table, entry[O] is always 0 and entry(8] is always the
polynomial expressed as in note 3. The operation can be implemented
using shifts of one, two, or four bits at a time, as follows:

Shift Steps Table Index Table Index Use Table
per Byte Multiplier Entries

(s) (limit) (i)

1 8 tmp3<0> 8 [O] =O, [8]

2 4 tmp3<1:0> 4 [O] =O, [4], [8] , [12]

4 2 tmp3<3:0> 1 all

7 If the stream has 0 length, RO receives the initial CRC.

9.13

VAX Instruction Set
9.13 Decimal String Instructions

Decimal String Instructions
Decimal string instructions operate on packed decimal strings.

The decimal string instructions in this section operate on the following data
types:

• Packed decimal string

• Trailing numeric string (overpunched and zoned)

• Leading separate numeric string

Where the phrase "decimal string" is used, it means any of the three data
types. Conversion instructions are provided between the data types. Where
necessary, a specific data type is identified.

A decimal string is specified by two operands:

1 For all decimal strings, the length is the number of digits in the string.
The number of bytes in the string is a function of the length and the type
of decimal string referenced (see Chapter 8).

2 The address of the lowest-addressed byte of the string. This byte contains
the most significant digit for trailing numeric and packed decimal strings,
as well as a sign for leading separate numeric strings. The address is
specified by a byte operand of address access type.

Each of the decimal string instructions uses general registers RO through R3 or
RO through RS to hold a control block that maintains updated addresses
and state during the execution of the instruction. At completion, the
registers containing addresses are available to the software for use as string
specification operands for a subsequent instruction on the same decimal
strings.

During the execution of the instructions, pending interrupt conditions are
tested; if any is found, the control block is updated. First part done is set in
the PSL, and the instruction is interrupted (refer to Appendix E). After the
interruption, the instruction resumes transparently. The format of the control
block at completion is:

3
1 0

+---+
0 RO

+---+
ADDRESS 1 R1

+---+
0 R2

+---+
ADDRESS 2 R3

+---+
0 R4

+---+
ADDRESS 3 R5

+---+
The fields ADDRESS l, ADDRESS 2, and ADDRESS 3 (if required) contain
the address of the byte containing the most significant digit of the first,
second, and third (if required) string operands, respectively.

9-141

VAX Instruction Set
9.13 Decimal String Instructions

The decimal string instructions treat decimal strings as integers with the
decimal point assumed immediately beyond the least significant digit of the
string. If a string in which a result is to be stored is longer than the result, its
most significant digits are filled with zeros.

9.13.1 Decimal Overflow

9.13.2 Zero Numbers

Decimal overflow occurs if the destination string is too short to contain all of
the digits (excluding leading zeros) of the result. On overflow, the destination
string is replaced by the correctly signed least significant digits of the true
result (even if the stored result is -0). Note that neither the high nibble of
an even-length packed decimal string nor the sign byte of a leading separate
numeric string is used to store result digits.

A 0 result has a positive sign for all operations that complete without decimal
overflow, except for CVTPT, which does not change a -0 to a +O. However,
when digits are lost because of overflow, a 0 result receives the sign (positive
or negative) of the correct result.

A decimal string with value -0 is treated as identical to a decimal string with
value +O. Thus, for example, +O compares as equal to -0. When condition
codes are affected on a -0 result, they are affected as if the result were +O;
that is, N is cleared and Z is set.

9.13.3 Reserved Operand Exception
A reserved operand abort occurs if the length of a decimal string operand is
outside the range 0 through 31, or if an invalid sign or digit is encountered in
CVTSP or CVTTP. The PC points to the opcode of the instruction causing the
exception.

9.13.4 UNPREDICTABLE Results

9-142

The result of any operation is UNPREDICTABLE if any source decimal string
operand contains invalid data. Except for CVTSP and CVTTP, the decimal
string instructions do not verify the validity of source operand data.

If the destination operands overlap any source operands, the result of an
operation will be UNPREDICTABLE. The destination strings, registers used
by the instruction, and condition codes will be UNPREDICTABLE when a
reserved operand abort occurs.

VAX Instruction Set
9.13 Decimal String Instructions

9.13.5 Packed Decimal Operations
Packed decimal strings generated by the decimal string instructions always
have the preferred sign representation: 12 for"+" and 13 for"-". An even
length packed decimal string is always generated with a "O" digit in the high
nibble of the first byte of the string.

A packed decimal string contains an invalid nibble if:

• A digit occurs in the sign position

• A sign occurs in a digit position

• A nonzero nibble occurs in the high-order nibble of the lowest-addressed
byte in an even length string

9.13.6 Zero-Length Decimal Strings
The length of a packed decimal string can be 0. In this case, the value is 0
(plus or minus) and one byte of storage is occupied. This byte must contain a
"O" digit in the high nibble and the sign in the low nibble.

The length of a trailing numeric string can be 0. In this case, no storage
is occupied by the string. If a destination operand is a zero-length trailing
numeric string, the sign of the operation is lost. Memory access faults do not
occur when a zero-length trailing numeric operand is specified because no
memory reference occurs. The value of a zero-length trailing numeric string
is identically 0.

The length of a leading separate numeric string can be 0. In this case, one
byte of storage is occupied by the sign. Memory is accessed when a zero
length operand is specified, and a reserved operand abort will occur if an
invalid sign is detected. The value of a zero-length leading separate numeric
string is 0.

9. 1 3. 7 Instruction Descriptions
The following instructions are described in this section:

Description and Opcode

1 . Add Packed 4 Operand
ADDP4 addlen.rw, addaddr.ab, sumlen.rw,
sumaddr.ab, {R0-3.wll

2. Add Packed 6 Operand
ADDP6 add11en.rw, add1addr.ab, add21en.rw,
add2addr.ab, sumlen.rw, sumaddr.ab,
{R0-5.wll

3. Arithmetic Shift and Round Packed
ASHP cnt.rb, srclen.rw, srcaddr.ab,
round.rb, dstlen.rw, dstaddr.ab,
{R0-3.w!I

Number of
Instructions

9-143

VAX Instruction Set
9. 13 Decimal String Instructions

Number of
Description and Opcode Instructions

4. Compare Packed 3 Operand
CMPP3 len.rw, src 1addr.ab, src2addr.ab,
{R0-3.wl}

5. Compare Packed 4 Operand
CMPP4 src11en.rw, src1addr.ab, src21en.rw,
src2addr.ab, {R0-3.wl}

6. Convert Long to Packed
CVTLP src.rl, dstlen.rw, dstaddr.ab,
{R0-3.wl}

7. Convert Packed to Long
~VTPL srclen.rw, srcaddr.ab, {R0-3.wl},
dst.wl

8. Convert Packed to Leading Separate
CVTPS srclen.rw, srcaddr.ab, dstlen.rw,
dstaddr.ab, {R0-3.wl}

9. Convert Packed to Trailing
CVTPT srclen.rw, srcaddr.ab, tbladdr.ab,
dstlen.rw, dstaddr.ab, {R0-3.wl}

10. Convert Leading Separate to Packed
CVTSP srclen.rw, srcaddr.ab, dstlen.rw,
dstaddr.ab, {R0-3.wl}

11. Convert Trailing to Packed
CVTTP srclen.rw, srcaddr.ab, tbladdr.ab,
dstlen.rw, dstaddr.ab, {R0-3.wl}

12. Divide Packed
DIVP divrlen.rw, divraddr.ab, divdlen.rw,
divdaddr.ab, quolen.rw, quoaddr.ab,
{R0-5.wl, -16(SP):-1(SP).wb}

13. Move Packed
MOVP len.rw, srcaddr.ab, dstaddr.ab,
{R0-3.wl}

14. Multiply Packed
MULP mulrlen.rw, mulraddr.ab, muldlen.rw,
muldaddr.ab, prodlen.rw, prodaddr.ab,
{R0-5.wl}

15. Subtract Packed 4 Operand
SUBP4 sublen.rw, subaddr.ab, diflen.rw,
difaddr.ab, {R0-3.wl}

16. Subtract Packed 6 Operand
SUBP6 sublen.rw, subaddr.ab, minlen.rw,
minaddr.ab, diflen.rw, difaddr.ab,
{R0-5.wl}

9-144

ADDP

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

VAX Instruction Set
ADDP

Add Packed

opcode addlen.rw, addaddr.ab, sumlen.rw,
sumaddr.ab

opcode add1/en.rw, add1addr.ab, add2/en.rw,
add2addr.ab, sumlen.rw, sumaddr.ab

N

z
v
c

20

21

+----{sum string} LSS 0;

+---- {sum string} EOL O;

+----{decimal overflow};

+-0;

reserved operand
decimal overflow

ADDP4

ADDP6

Add Packed 4 Operand

Add Packed 6 Operand

In 4 operand format, the addend string specified by the addend length and
addend address operands is added to the sum string specified by the sum
length and sum address operands, and the sum string is replaced by the
result.

In 6 operand format, the addendl string specified by the addendl length and
addend 1 address operands is added to the addend2 string specified by the
addend2 length and addend2 address operands. The sum string specified by
the sum length and sum address operands is replaced by the result.

Notes

1 After execution of ADDP4:

RO= 0

R 1 = address of the byte containing the most significant digit of the
addend string

R2 = 0

R3 = address of the byte containing the most significant digit of the sum
string

9-145

VAX Instruction Set
ADDP

9-146

2 After execution of ADDP6:

RO= 0

R 1 = address of the byte containing the most significant digit of the
addend 1 string

R2 = 0

R3 = address of the byte containing the most significant digit of the
addend2 string

R4 = 0

R5 = address of the byte containing the most significant digit of the sum
string

3 The sum string, RO through R3 (or RO through RS for ADDP6) and the
condition codes are UNPREDICTABLE if: the sum string overlaps the
addend, addendl, or addend2 strings; the addend, addendl, addend2,
or sum (4 operand only) strings contain an invalid nibble; or a reserved
operand abort occurs.

ASHP

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

VAX Instruction Set
ASHP

Arithmetic Shift and Round Packed

opcode cnt.rb, srclen.rw, srcaddr.ab, round.rb,
dstlen.rw, dstaddr.ab

N

z
v
c

F8

+--- {dst string} LSS 0;

+--- {dst string} EOL 0;

+---{decimal overflow};

+-0;

reserved operand
decimal overflow

ASHP Arithmetic Shift and Round Packed

The source string specified by the source length and source address operands
is scaled by a power of 10 specified by the count operand. The destination
string specified by the destination length and destination address operands is
replaced by the result.

A positive count operand effectively multiplies, a negative count effectively
divides, and a 0 count just moves and affects condition codes. When a
negative count is specified, the result is rounded using the round operand.

Notes

1 After execution:

RO= 0

R 1 = address of the byte containing the most significant digit of the source
string

R2 = 0

R3 = address of the byte containing the most significant digit of the
destination string

2 The destination string, RO through R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string,
the source string contains an invalid nibble, or a reserved operand abort
occurs.

9-147

VAX Instruction Set
ASHP

9-148

3 When the count operand is negative, the result is rounded by decimally
adding bits 3:0 of the round operand to the most significant low-order
digit discarded and propagating the carry, if any, to higher-order digits.
Both the source operand and the round operand are considered to be
quantities of the same sign for the purpose of this addition.

4 If bits 7:4 of the round operand are nonzero, or if bits 3:0 of the
round operand contain an invalid packed decimal digit, the result is
UNPREDICTABLE.

5 When the count operand is 0 or positive, the round operand has no effect
on the result except as specified in note 4.

6 The round operand is normally 5. Truncation can be accomplished by
using a 0 round operand.

CMPP

FORMAT

condition codes

Compare Packed

3operand: opcode

4operand: opcode

VAX Instruction Set
CMPP

fen. rw, src 1 addr. ab,
src2addr.ab
src 1 len. rw, src 1 addr. ab,
src2/en.rw, src2addr.ab

N +----- {src 1 string} LSS {src2 string};

Z +----- { src 1 string} EQL { src2 string};

v +----- 0;

C +----- O;

exceptions reserved operand

opcodes

DESCRIPTION

35

37

CMPP3

CMPP4

Compare Packed 3 Operand

Compare Packed 4 Operand

In 3 operand format, the source 1 string specified by the length and source 1
address operands is compared to the source 2 string specified by the length
and source 2 address operands. The only action is to affect the condition
codes.

In 4 operand format, the source 1 string specified by the source 1 length and
source 1 address operands is compared to the source 2 string specified by the
source 2 length and source 2 address operands. The only action is to affect
the condition codes.

Notes

1 After execution of CMPP3 or CMPP4:

RO= 0

R 1 = address of the byte containing the most significant digit of string 1

R2 = 0

R3 = address of the byte containing the most significant digit of string2

2 RO through R3 and the condition codes are UNPREDICTABLE if the
source strings overlap, if either string contains an invalid nibble, or if a
reserved operand abort occurs.

9-149

VAX Instruction Set
CVTLP

CVTLP

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-150

Convert Long to Packed

opcode src.rl, dstlen.rw, dstaddr.ab

N

z
v
c

F9

+- {dst string} LSS O;

+- {dst string} EQL 0;

+-{decimal overflow};

+-0;

reserved operand
decimal overflow

CVTLP Convert Long to Packed

The source operand is converted to a packed decimal string. The destination
string operand specified by the destination length and destination address
operands is replaced by the result.

Notes

1 After execution:

RO= 0

R1 = 0

R2 = 0

R3 = address of the byte containing the most significant digit of the
destination string

2 The destination string, RO through R3, and the condition codes are
UNPREDICTABLE on a reserved operand abort.

3 Overlapping operands produce correct results.

CVTPL

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Convert Packed to Long

VAX Instruction Set
CVTPL

opcode srclen.rw, srcaddr.ab, dst. wl

N

z
v
c

36

+-- dst LSS O;

+-- dst EOL 0;

+-- {integer overflow};

+-- O;

reserved operand
integer overflow

CVTPL Convert Packed to Long

The source string specified by the source length and source address operands
is converted to a longword, and the destination operand is replaced by the
result.

Notes

1 After execution:

RO= 0

R 1 = address of the byte containing the most significant digit of the source
string

R2 = 0

R3 = 0

2 The destination operand, RO through R3, and the condition codes are
UNPREDICTABLE on a reserved operand abort, or if the string contains
an invalid nibble.

3 The destination operand is stored after the registers are updated as
specified in note 1. You may use RO through R3 as the destination
operand.

4 If the source string has a value outside the range -2,147,483,648 through
+2,147,483,647, integer overflow occurs and the destination operand is
replaced by the low-order 32 bits of the correctly signed infinite precision
conversion. On overflow, the sign of the destination may be different
from the sign of the source.

5 Overlapping operands produce correct results.

9-151

VAX Instruction Set
CVTPS

CVTPS

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-152

Convert Packed to Leading Separate Numeric

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab

N

z
v
c

08

+--- tsrc string} LSS 0;

+--- lsrc string} EQL O;

+--- ldecimal overflow};

+-0;

reserved operand
decimal overflow

CVTPS Convert Packed to Leading Separate Numeric

The source packed decimal string specified by the source length and source
address operands is converted to a leading separate numeric string. The
destination string specified by the destination length and destination address
operands is replaced by the result.

Conversion is effected by replacing the lowest-addressed byte of the
destination string with the ASCII character ,, + n or ,, - H, determined by the
sign of the source string. The remaining bytes of the destination string are
replaced by the ASCII representations of the values of the corresponding
packed decimal digits of the source string.

Notes

1 After execution:

RO= 0

R 1 = address of the byte containing the most significant digit of the source
string

R2 = 0

R3 = address of the sign byte of the destination string

2 The destination string, RO through R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string,
the source string contains an invalid nibble, or a reserved operand abort
occurs.

VAX Instruction Set
CVTPS

3 This instruction produces an ASCII /1 + n or /1
-" in the sign byte of the

destination string.

4 If decimal overflow occurs, the value stored in the destination might be
different from the value indicated by the condition codes (Zand N bits).

5 If the conversion produces a -0 without overflow, the destination leading
separate numeric string is changed to a +O representation.

9-153

VAX Instruction Set
CVTPT

CVTPT

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-154

Convert Packed to Trailing Numeric

opcode srclen. rw, srcaddr. ab, tbladdr. ab, dstlen. rw,
dstaddr.ab

N f-- {src string} LSS 0;

z f-- { src string} EOL 0;

v f-- {decimal overflow};

c f-- O;

reserved operand
decimal overflow

24 CVTPT Convert Packed to Trailing Numeric

The source packed decimal string specified by the source length and source
address operands is converted to a trailing numeric string. The destination
string specified by the destination length and destination address operands is
replaced by the result. The condition code N and Z bits are affected by the
value of the source packed decimal string.

Conversion is effected by using the highest-addressed byte of the source
string (the byte containing the sign and the least significant digit), even if the
source string value is -0. The assembler uses this byte as an unsigned index
into a 256-byte table whose first entry (entry number 0) address is specified
by the table address operand. The byte read out of the table replaces the
least significant byte of the destination string. The remaining bytes of the
destination string are replaced by the ASCII representations of the values of
the corresponding packed decimal digits of the source string.

Notes

1 After execution:

RO= 0

R 1 = address of the byte containing the most significant digit of the source
string

R2 = 0

R3 = address of the most significant digit of the destination string

2 The destination string, RO through R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string or
the table; if the source string or the table contains an invalid nibble; or if
a reserved operand abort occurs.

VAX Instruction Set
CVTPT

3 The condition codes are computed on the value of the source string even
if overflow results. In particular, condition code N is set only if the source
is nonzero and contains a minus sign.

4 By appropriate specification of the table, you can convert any form of
trailing numeric string. See Chapter 8 for the preferred form of trailing
overpunch, zoned and unsigned data. In addition, the table can be set up
for absolute value, negative absolute value, or negated conversions. The
translation table may be referenced even if the length of the destination
string is 0.

5 Decimal overflow occurs if the destination string is too short to contain
the converted result of a nonzero packed decimal source string (not
including leading zeros). Conversion of a source string with 0 value
never results in overflow; conversion of a nonzero source string to a
zero-length destination string results in overflow.

6 If decimal overflow occurs, the value stored in the destination may be
different from the value indicated by the condition codes (Zand N bits).

9-155

VAX Instruction Set
CVTSP

CVTSP

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-156

Convert Leading Separate Numeric to Packed

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab

N

z
v
c

09

+- {dst string} LSS 0;

+- {dst string} EQL 0;

+-{decimal overflow};

+-0;

reserved operand
decimal overflow

CVTSP Convert Leading Separate Numeric to Packed

The source numeric string specified by the source length and source address
operands is converted to a packed decimal string, and the destination string
specified by the destination address and destination length operands is
replaced by the result.

Notes

1 A reserved operand abort occurs if:

• The length of the source leading separate numeric string is outside
the range 0 through 31

• The length of the destination packed decimal string is outside the
range 0 through 31

• The source string contains an invalid byte. An invalid byte is any
character other than an ASCII "O" through "9" in a digit byte or an
ASCII"+", " <space> ",or"-" in the sign byte

2 After execution:

RO= 0

R 1 = address of the sign byte of the source string

R2 = 0

R3 = address of the byte containing the most significant digit of the
destination string

3 The destination string, RO through R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string, or
if a reserved operand abort occurs.

CVTTP

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

VAX Instruction Set
CVTTP

Convert Trailing Numeric to Packed

opcode srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw,
dstaddr.ab

N

z
v
c

26

+- {dst string}LSS O;

+- {dst string} EOL O;

+-{decimal overflow};

-o;

reserved operand
decimal overflow

CVTTP Convert Trailing Numeric to Packed

The source trailing numeric string specified by the source length and source
address operands is converted to a packed decimal string, and the destination
packed decimal string specified by the destination address and destination
length operands is replaced by the result.

Conversion is effected by using the highest-addressed (trailing) byte of the
source string as an unsigned index into a 256-byte table whose first entry
(entry number 0) is specified by the table address operand. The byte read-out
of the table replaces the highest-addressed byte of the destination string (the
byte containing the sign and the least significant digit). The remaining packed
digits of the destination string are replaced by the low-order 4 bits of the
corresponding bytes in the source string.

Notes

1 A reserved operand abort occurs if:

• The length of the source trailing numeric string is outside the range 0
through 31

• The length of the destination packed decimal string is outside the
range 0 through 31

• The source string contains an invalid byte. An invalid byte is any
value other than ASCII "O,, through "9" in any high-order byte (that
is, any byte except the least significant byte)

• The translation of the least significant digit produces an invalid
packed decimal digit or sign nibble

9-157

VAX Instruction Set
CVTTP

9-158

2 After execution:

RO= 0

R 1 = address of the most significant digit of the source string

R2 = 0

R3 = address of the byte containing the most significant digit of the
destination string

3 The destination string, RO through R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string or
the table, or if a reserved operand abort occurs.

4 If the convert instruction produces a -0 without overflow, the destination
packed decimal string is changed to a +O representation, condition code N
is cleared, and Z is set.

5 If the length of the source string is 0, the destination packed decimal
string is set equal to 0, and the translation table is not referenced.

6 By appropriate specification of the table, you can convert any form of
trailing numeric string. See Chapter 8 for the preferred form of trailing
overpunch, zoned and unsigned data. In addition, the table can be set up
for absolute value, negative absolute value, or negated conversions.

7 If the table translation produces a sign nibble containing any valid sign,
the preferred sign representation is stored in the destination packed
decimal string.

DIVP

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

VAX Instruction Set
DIVP

Divide Packed

opcode divrlen. rw, divraddr. ab, divdlen. rw,
divdaddr.ab, quolen.rw, quoaddr.ab

N

z
v
c

27

+--- {quo string} LSS 0;

+---{quo string} EOL 0;

+--- {decimal overflow};

+--- 0;

reserved operand
decimal overflow
divide by 0

DIVP Divide Packed

The dividend string specified by the dividend length and dividend address
operands is divided by the divisor string specified by the divisor length and
divisor address operands. The quotient string specified by the quotient length
and quotient address operands is replaced by the result.

Notes

1 This instruction allocates a 16-byte workspace on the stack. After
execution, the SP is restored to its original contents, and the contents
of {(SP)-16}:{(SP)-1} are UNPREDICTABLE.

2 The division is performed, resulting in the following conditions:

• The absolute value of the remainder (which is lost) is less than the
absolute value of the divisor

• The product of the absolute value of the quotient times the absolute
value of the divisor is less than or equal to the absolute value of the
dividend

• The sign of the quotient is determined by the rules of algebra from
the signs of the dividend and the divisor; if the value of the quotient
is 0, the sign is always positive

9-159

VAX Instruction Set
DIVP

9-160

3 After execution:

RO= 0

R 1 = address of the byte containing the most significant digit of the divisor
string

R2 = 0

R3 = address of the byte containing the most significant digit of the
dividend string

R4 = 0

RS = address of the byte containing the most significant digit of the
quotient string

4 The quotient string, RO through RS, and the condition codes are
UNPREDICTABLE if: the quotient string overlaps the divisor or dividend
strings; the divisor or dividend string contains an invalid nibble; the
divisor is 0; or a reserved operand abort occurs.

MOVP

FORMAT

condition codes

Move Packed

VAX Instruction Set
MOVP

opcode len.rw, srcaddr.ab, dstaddr.ab

N +- {dst string} LSS 0;

Z +- {dst string} EOL 0;

v +-0;

C +-C;

exceptions reserved operand

opcodes

DESCRIPTION

34 MOVP Move Packed

The destination string specified by the length and destination address
operands is replaced by the source string specified by the length and source
address operands.

Notes

1 After execution:

RO= 0

R 1 = address of the byte containing the most significant digit of the source
string

R2 = 0

R3 = address of the byte containing the most significant digit of the
destination string

2 The destination string, RO through R3, and the condition codes are
UNPREDICTABLE if: the destination string overlaps the source string;
the source string contains an invalid nibble; or a reserved operand abort
occurs.

3 If the source is -0, the result is +O, N is cleared, and Z is set.

9-161

VAX Instruction Set
MULP

MULP

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-162

Multiply Packed

opcode mulrlen. rw, mulraddr. ab, muldlen. rw,
muldaddr. ab, prod/en. rw, prodaddr.ab

N

z
v
c

25

+-- {prod string} LSS 0;

+-- {prod string} EQL O;

+-- {decimal overflow};

+-- 0;

reserved operand
decimal overflow

MULP Multiply Packed

The multiplicand string specified by the multiplicand length and multiplicand
address operands is multiplied by the multiplier string specified by the
multiplier length and multiplier address operands. The product string
specified by the product length and product address operands is replaced
by the result.

Notes

1 After execution:

RO= 0

R 1 = address of the byte containing the most significant digit of the
multiplier string

R2 = 0

R3 = address of the byte containing the most significant digit of the
multiplicand string

R4 = 0

RS = address of the byte containing the most significant digit of the
product string

2 The product string, RO through RS, and the condition codes are
UNPREDICTABLE if: the product string overlaps the multiplier or
multiplicand strings; the multiplier or multiplicand strings contain an
invalid nibble; or a reserved operand abort occurs.

SUBP

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Subtract Packed

4operand: opcode

6operand: opcode

N +- {dif string} LSS 0;

z +- { dif string} EOL 0;

v +-{decimal overflow};

c +-0;

reserved operand
decimal overflow

22 SUBP4

23 SUBP6

VAX Instruction Set
SUBP

sublen.rw, subaddr.ab,
diflen.rw, difaddr.ab
sublen.rw, subaddr.ab,
minlen.rw, minaddr.ab,
diflen.rw, difaddr.ab

Subtract Packed 4 Operand

Subtract Packed 6 Operand

In 4 operand format, the subtrahend string specified by the subtrahend length
and subtrahend address operands is subtracted from the difference string
specified by the difference length and difference address operands, and the
difference string is replaced by the result.

In 6 operand format, the subtrahend string specified by the subtrahend
length and subtrahend address operands is subtracted from the minuend
string specified by the minuend length and minuend address operands. The
difference string specified by the difference length and difference address
operands is replaced by the result.

Notes

1 After execution of SUBP4:

RO= 0

R 1 = address of the byte containing the most significant digit of the
subtrahend string

R2 = 0

R3 = address of the byte containing the most significant digit of the
difference string

9-163

VAX Instruction Set
SUBP

9-164

2 After execution of SUBP6:

RO= 0

R 1 = address of the byte containing the most significant digit of the
subtrahend string

R2 = 0

R3 = address of the byte containing the most significant digit of the
minuend string

R4= 0

R5 = address of the byte containing the most significant digit of the
difference string

3 The difference string, RO through R3 (RO through RS for SUBP6}, and
the condition codes are UNPREDICTABLE if: the difference string
overlaps the subtrahend or minuend strings; the subtrahend, minuend, or
difference (4 operand only) strings contain an invalid nibble; or a reserved
operand abort occurs.

9.14

VAX Instruction Set
9.14 The EDITPC Instruction and Its Pattern Operators

The EDITPC Instruction and Its Pattern Operators
The EDITPC instruction implements the common editing functions that occur
when handling fixed-format output. The operation consists of converting an
input packed decimal number to an output character string and generating
characters for the output. When converting digits, options include filling in
leading zeros, protecting leading zeros, insertion of floating sign, insertion
of floating currency symbol, insertion of special sign representations, and
blanking an entire field when it is 0. An example of this operation is a
MOVE to a numeric edited (PICTURE) item in COBOL or PL/I. Many other
applications are possible.

The operands to the EDITPC instruction are:

1 A packed decimal string descriptor (as input). This is a standard VAX
operand pair consisting of the length of the decimal string in digits (up to
31) and the starting address of the string.

2 A pattern specification, consisting of the starting address of a pattern
operation editing sequence. VAX MACRO interprets a pattern
specification in the same way as it interprets normal instructions.

3 The starting address of the output string. The output string is described
by its starting address only, because the pattern defines the length
unambiguously.

The EDITPC instruction manipulates two character registers and the four
condition codes:

The fill register (R2 <7:0>) contains the fill character. This is normally an
ASCII blank but could be changed to an asterisk, for instance, for check
protection.

The sign register (R2 < 15:8>) contains the sign character. Initially this
register contains either an ASCII blank or a minus sign, depending upon
the sign of the input. You can change the contents of this register to allow
other sign representations such as plus/minus or plus/blank. You can also
manipulate it to output special notations such as CR or DB. To implement a
floating currency sign, you can change the sign register to the currency sign.

After execution, the condition codes describe the following:

N

z
v
c

The sign of the input

The presence of a zero source

An overflow condition

The presence of significant digits

Condition code N is determined at the start of the instruction and remains
unchanged (except for correcting a -0 input). The processor computes and
updates the other condition codes as the instruction proceeds.

When the EDITPC instruction completes processing, registers RO through RS
contain the values they would normally have after a decimal instruction.

9-165

VAX Instruction Set
EDITPC

EDITPC

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-166

Edit Packed to Character String

opcode srclen.rw,. srcaddr.ab, pattern.ab, dstaddr.ab

N

z
v
c

38

+-- {src string} LSS 0; !N <- 0 if src is -0

+-- {src string} EOL O;

+--{decimal overflow}; !nonzero digits lost

+-- {significance};

reserved operand
decimal overflow

EDIT PC Edit Packed to Character String

The destination string specified by the pattern and destination address
operands is replaced by the edited version of the source string specified
by the source length and source address operands. The editing is performed
according to the pattern string, starting at the address of the pattern operand
and extending until a pattern end pattern operator (EO$END) is encountered.

The pattern string consists of 1-byte pattern operators. Some pattern
operators take no operands. Some take a repeat count that is contained
in the rightmost nibble of the pattern operator itself. The rest take a 1-byte
operand that immediately follows the pattern operator. This operand is either
an unsigned integer length or a byte character.

Table 9-1 lists the pattern operators that can be used with the EDITPC
instruction to form a pattern. Subsequent pages define each pattern operator
in a format similar to that of the normal instruction descriptions. In each
case, if there is an operand, it is either a repeat count (r) from 1 through 15,
an unsigned byte length (len), or a character byte (ch). The encoding of the
pattern operators is represented graphically in Table 9-2.

See Appendix E for information about exceptions that affect the EDITPC
instruction.

Notes

1 A reserved operand abort occurs if srclen GTRU 31.

2 The destination string is UNPREDICTABLE if any of the following is
true:

• The source string contains an invalid nibble.

• The EO$ADJUST--1NPUT operand is outside the range 1 through 31.

VAX Instruction Set
EDITPC

• The source and destination strings overlap.

• The pattern and destination strings overlap.

3 After execution, the following general registers have contents as specified:

RO = length of source string

R 1 = address of the byte containing the most significant digit of the source
string

R2 = 0

R3 = address of the byte containing the EO$END pattern operator

R4 = 0

R5 = address of one byte beyond the last byte of the destination string

If the destination string is UNPREDICTABLE, RO through RS and the
condition codes are UNPREDICTABLE.

4 If V is set at the end and DV is enabled, a numeric overflow trap occurs
unless the conditions in note 9 are satisfied.

5 The destination length is specified exactly by the pattern operators in
the pattern string. If the pattern is incorrectly formed or if it is modified
during the execution of the instruction, the length of the destination string
is UNPREDICTABLE.

6 If the source is -0, the result may be -0 unless a fixup pattern operator is
included (EO$BLANK-2:ERO or EO$REPLACE_SIGN).

7 The contents of the destination string and the memory preceding it
are UNPREDICTABLE if the length covered by E0$BLANK-2:ERO or
EO$REPLACE_SIGN is 0, or if it is outside the destination string.

8 If more input digits are requested by the pattern than are specified, a
reserved operand abort is taken with RO = -1 and R3 = location of the
pattern operator that requested the extra digit. The condition codes and
other registers are as specified in note 11. This abort is not continuable.

9 If fewer input digits are requested by the pattern than are specified, a
reserved operand abort is taken with R3 =location of EO$END pattern
operator. The condition codes and other registers are as specified in note
11. This abort is not continuable.

10 On an unimplemented or reserved pattern operator, a reserved operand
fault is taken with R3 = location of the faulting pattern operator. The
condition codes and other registers are as specified in note 11. This
fault is continuable as long as the defined register state is manipulated
according to the pattern operator description and the state specified as
0 implementation dependent" is preserved.

9-167

VAX Instruction Set
EDITPC

9-168

11 On a reserved operand exception, as specified in notes 8 through 10, FPD
is set and the condition codes and registers are as follows:

N = {src has minus sign}

Z = all source digits 0 so far

V=

C=

RO <31:16>

RO <15:0> =

R1 =

R2 <31:16> =

R2<15:8> =

R2 <7:0>

R3 =

R4 =

R5 =

nonzero digits lost

significance

-(count of source zeros to supply)

remaining srclen

current source location

implementation dependent

current contents of sign register

current contents of fill register

location of edit pattern operator causing exception

implementation dependent

location of next destination byte

Table 9-1 Summary of EDITPC Pattern Operators

Name

Insert operators

E0$1NSERT

EO$STORE _SIGN

EO$FILL

Move operators

EO$MOVE

EO$FLOAT

EO$END_FLOA T

Fixup operators

EO$BLANK_ZERO

EO$REPLACE_SIGN

Load operators

EO$LOAD_FILL

EO$LOAD_SIGN

Key:

ch - One character

Operand Summary

ch

len

len

ch

ch

Insert character, fill if insignificant

Insert sign

Insert fill

Move digits, fill if insignificant

Move digits, floating sign

End floating sign

Fill backward when 0

Replace with fill if -0

Load fill character

Load sign character

r - Repeat count in the range 1 through 15
len - Length in the range 1 through 255

VAX Instruction Set
EDITPC

Table 9-1 (Cont.) Summary of EDITPC Pattern Operators

Name Operand Summary

Load operators

EO$LOAD_PLUS

EO$LOAD_MINUS

Control operators

EO$SET_SIGNIF

EO$CLEAR_SIGNIF

ch

ch

EO$ADJUST_INPUT len

EO$END

Key:

ch - One character

Load sign character if positive

Load sign character if negative

Set significance flag

Clear significance flag

Adjust source length

End edit

r - Repeat count in the range 1 through 15
len - Length in the range 1 through 255

Table 9-2 EDITPC Pattern Operator Encoding

Hex Symbol Notes

00 EO$END

01 EO$END_FLOAT

02 EO$CLEAR_SIGNIF

03 EO$SET_SIGNIF

04 EO$STORE_SIGN

05 ... 1F Reserved to DIGIT AL

20 ... 3F Reserved for all time

40 EO$LOAD_FILL Character is in next byte

41 EO$LOAD_SIGN Character is in next byte

42 EO$LOAD_PLUS Character is in next byte

43 EO$LOAD_MINUS Character is in next byte

44 E0$1NSERT Character is in next byte

45 EO$BLANK-2ERO Unsigned length is in next byte

46 EO$REPLACE_SIGN Unsigned length is in next byte

47 EO$ADJUST_INPUT Unsigned length is in next byte

48 ... SF Reserved to DIGIT AL

60 ... 7F Reserved to CSS and customers

80,90,AO Reserved to DIGIT AL

81 ... SF EO$FILL

91 ... 9F EO$MOVE Repeat count is <3:0>

9-169

VAX Instruction Set
EDITPC

Table 9-2 (Cont.) EDITPC Pattern Operator Encoding

Hex

A1 ... AF

BO ... FE

FF

9-170

Symbol

EO$FLOAT

Notes

Reserved to DIGIT AL

Reserved for all time

VAX Instruction Set
EO$ADJUST_INPUT

EO$ADJUST_INPUT

FORMAT

pattern operators

DESCRIPTION

Adjust Input Length

opcode pattern Jen

47 EO$ADJUST_INPUT Adjust Input Length

The EO$ADJUST-1NPUT pattern operator is followed by an unsigned byte
integer length in the range 1 through 31. If the source string has more digits
than this length, the excess leading digits are read and discarded. If any
discarded digits are nonzero, the overflow is set, significance is set, and zero
is cleared. If the source string has fewer digits than this length, a counter
is set of the number of leading zeros to supply. This counter is stored as a
negative number in RO <31:16> .

Note

If the length is not in the range 1 through 31, the destination string, condition
codes, and RO through RS are UNPREDICTABLE.

9-171

VAX Instruction Set
EO$BLANK_ZERO

EO$BLANK_ZERO

FORMAT

pattern operators

DESCRIPTION

9-172

Blank Backwards when Zero

opcode pattern fen

45 EO$BLANK_ZERO Blank Backwards when Zero

The EO$BLANK-2ERO pattern operator is followed by an unsigned byte
integer length. If the value of the source string is 0, then the contents of the
fill register are stored into the last length bytes of the destination string.

Notes

1 The length must be nonzero and within the destination string already
produced. If it is not, the contents of the destination string and the
memory preceding it are UNPREDICTABLE.

2 Use this pattern operator to blank out any characters stored in the
destination under a forced significance such as a sign or the digits
following the radix point.

EO$END

FORMAT

pattern operators

End Edit

opcode pattern

00 EO$END End Edit

VAX Instruction Set
EOSEND

DESCRIPTION The EO$END pattern operator terminates the edit operation.

Notes

1 If there are still input digits, a reserved operand abort is taken.

2 If the source value is -0, the N condition code is cleared.

9-173

VAX Instruction Set
EO$ENO_FLOAT

EO$END_FLOAT

FORMAT

pattern operators

DESCRIPTION

9-174

End Floating Sign

opcode pattern

01 EO$END_FLOA T End Floating Sign

The EO$ENDJLOAT pattern operator terminates a floating sign operation.
If the floating sign has not yet been placed in the destination (if significance
is not set), the contents of the sign register are stored in the destination, and
significance is set.

Note

Use this pattern operator after a sequence of one or more EO$FLOAT pattern
operators that start with significance clear. The EO$FLOAT sequence can
include intermixed EO$INSERTs and EO$FILLs.

EO$FILL

FORMAT

pattern operators

DESCRIPTION

Store Fill

opcode pattern r

8x EO$FILL Store Fill

VAX Instruction Set
EO$FILL

The rightmost nibble of the pattern operator is the repeat count. The EO$FILL
pattern operator places the contents of the fill register into the destination the
number of times specified by the repeat count.

Note

Use this pattern operator for fill (blank) insertion.

9-175

VAX Instruction Set
EO$FLOAT

EO$FLOAT

FORMAT

pattern operators

DESCRIPTION

9-176

Float Sign

opcode pattern r

Ax EO$FLOAT Float Sign

The EO$FLOAT pattern operator moves digits, floating the sign across
insignificant digits. The rightmost nibble of the pattern operator is the repeat
count. For the number of times specified in the repeat count, the following
algorithm is executed:

The next digit from the source is examined. If it is nonzero and significance is
not yet set, then the contents of the sign register are stored in the destination,
significance is set, and zero is cleared. If the digit is significant, it is stored
in the destination; otherwise, the contents of the fill register are stored in the
destination.

Notes

1 If r is greater than the number of digits remaining in the source string, a
reserved operand abort is taken.

2 Use this pattern operator to move digits with a floating arithmetic sign.
The sign must already be set up as for EO$STORE_SIGN. A sequence
of one or more EO$FLOATs can include intermixed EO$INSERTs and
EO$FILLs. Significance must be clear before the first pattern operator of
the sequence. The sequence must be terminated by one
EO$ENDJLOAT.

3 Use this pattern operator to move digits with a floating currency sign.
The sign must already be set up with an EO$LOAD_SIGN. A sequence
of one or more EO$FLOATs can include intermixed EO$INSERTs and
EO$FILLs. Significance must be clear before the first pattern operator of
the sequence. The sequence must be terminated by one
EO$ENDJLOAT.

E0$1NSERT

FORMAT

pattern operators

DESCRIPTION

Insert Character

opcode pattern ch

44 E0$1NSERT

VAX Instruction Set
E0$1NSERT

Insert Character

The EO$INSERT pattern operator is followed by a character. If significance is
set, the character is placed into the destination. If significance is not set, the
contents of the fill register are placed into the destination.

Note

Use this pattern operator for blankable inserts (for example, comma) and fixed
inserts (for example, slash). Fixed inserts require that significance be set (by
EO$SET_SIGNIF or EO$ENDJLOAT).

9-177

VAX Instruction Set
EO$LOAD_

EO$LOAD_

FORMAT

pattern operators

DESCRIPTION

9-178

Load Register

opcode pattern ch

40

41

42

43

EO$LOAD_FILL

E0$LOAD_SIGN

EO$LOAD_PLUS

EO$LOAD_MINUS

Load Fill Register

Load Sign Register

Load Sign Register If Plus

Load Sign Register If Minus

The pattern operator is followed by a character. For EO$LOADJILL, this
character is placed into the fill register. For EO$LOAD_SIGN, this character
is placed into the sign register. For EO$LOAD_p1us, this character is placed
into the sign register if the source string has a positive sign. For
EO$LOAD_MINUS, this character is placed into the sign register if the source
string has a negative sign.

Notes

1 Use E0$LOADJILL to set up check protection(* instead of space).

2 Use E0$LOAD_SIGN to set up a floating currency sign.

3 Use E0$LOAD_pLUS to set up a nonblank plus sign.

4 Use E0$LOAD_MINUS to set up a nonminus minus sign (such as CR,
DB, or the PL/I +).

EO$MOVE

FORMAT

pattern operators

DESCRIPTION

Move Digits

opcode pattern r

9x EO$MOVE

VAX Instruction Set
EOSMOVE

Move Digits

The EO$MOVE pattern operator moves digits, filling for insignificant digits.
The rightmost nibble of the pattern operator is the repeat count. For the
number of times specified in the repeat count, the following algorithm is
executed:

The next digit is moved from the source to the destination. If the digit is
nonzero, significance is set and zero is cleared. If the digit is not significant
(that is, a leading 0), it is replaced by the contents of the fill register in the
destination.

Notes

1 If r is greater than the number of digits remaining in the source string, a
reserved operand abort is taken.

2 Use this pattern operator to move digits without a floating sign. If
leading-zero suppression is desired, significance must be clear. If leading
zeros should be explicit, significance must be set. A string of EO$MOVEs
intermixed with EO$INSERTs and EO$FILLs will handle suppression
correctly.

3 If check protection(*) is desired, EO$LOADJILL must precede the
EO$MOVE.

9-179

VAX Instruction Set
EO$REPLACE_SIGN

EO$REPLACE_SIGN

FORMAT

pattern operators

DESCRIPTION

9-180

Replace Sign when Zero

opcode pattern /en

46 EO$REPLACE_SIGN Replace Sign when Zero

The E0$REPLACE_SIGN pattern operator is followed by an unsigned byte
integer length. If the value of the source string is 0 (that is, if Z is set), the
contents of the fill register are stored in the byte of the destination string that
is len bytes before the current position.

Notes

1 The length must be nonzero and within the destination string already
produced. If it is not, the contents of the destination string and the
memory preceding it are UNPREDICTABLE.

2 You can use this pattern operator to correct a stored sign
(E0$ENDJLOAT or EO$STORE_SIGN) if a minus was stored and the
source value turned out to be 0.

VAX Instruction Set
EQ$_SIGNIF

EO$_SIGNIF

FORMAT

pattern operators

DESCRIPTION

Significance

opcode pattern

02

03

EO$CLEAR_SIGNIF

EO$SET_SIGNIF

Clear Significance

Set Significance

The significance indicator is set or cleared. This controls the treatment of
leading zeros (leading zeros are 0 digits for which the significance indicator is
clear).

Notes

1 Use EO$CLEAR_SIGNIF to initialize leading-zero suppression
(EO$MOVE) or floating sign (EO$FLOAT) following a fixed insert
(EO$INSERT with significance set).

2 Use EO$SET_SIGNIF to avoid leading-zero suppression (before
EO$MOVE) or to force a fixed insert (before EO$INSERT).

9-181

VAX Instruction Set
EO$STORE_SIGN

EO$STORE_SIGN

Store Sign

FORMAT opcode pattern

pattern operators
04 EO$STORE_SIGN Store Sign

DESCRIPTION The EO$STORE_SIGN pattern operator places contents of the sign register
into the destination.

9-182

Note

Use this pattern operator for any nonfloating arithmetic sign. Precede it with
either a EO$LOADJLUS or EO$LOAD_MINUS, or both, if the default sign
convention is not desired.

9.15

VAX Instruction Set
9.15 Other VAX Instructions

Other VAX Instructions
The following table lists other VAX instructions:

1.

2.

Description and Opcode

Probe {Read, Write} Accessibility
PROBE{R, W} mode.rb, len.rw, base.ab

Change Mode
CHM{K,E,S,U} param.rw, {-(ySP).w•}
Where y=MINU(x, PSL < current_mode >)

3. Return from Exception or Interrupt
REI {(SP)+.r•}

4. Load Process Context
LDPCTX {PCB.r•, -(KSP).w•}

5. Save Process Context
SVPCTX {(SP)+.r*, PCB.w•}

6. Move To Process Register
MTPR src.rl, procreg.rl

7. Move From Processor Register
MFPR procreg.rl, dst.wl

8. Bugcheck with {word, longword} message identifier
BUG{W,L} message.bx

Number of
Instructions

2

4

2

9-183

VAX Instruction Set
PROBEx

PROB Ex

Probe Accessibility

FORMAT opcode mode.rb, len.rw, base.ab

condition codes
N +-- O;

Z +-- if {both accessible} then 0 else 1;

v +-- 0;

C +-- C;

exceptions translation not valid

opcodes

DESCRIPTION

9-184

oc
OD

PROBER

PRO BEW

Probe Read Accessibility

Probe Write Accessibility

The PROBE instruction checks the read or write accessibility of the first and
last byte specified by the base address and the zero-extended length. Note
that the bytes in between are not checked. System software must check all
pages if they will be accessed between the two end bytes.

The protection is checked against the larger (and therefore less privileged) of
the modes specified in bits < 1 :0 > of the mode operand and the previous
mode field of the PSL. Note that probing with a mode operand of 0 is
equivalent to probing the mode specified in the previous-mode field of the
PSL.

EXAMPLE

MOVL 4(AP),RO

PROBER #0,#4,(RO)

BEQL violation

MOVQ 8(AP),RO

PROBER #0,RO,(R1)

BEQL violation

VAX Instruction Set
PROBEx

Copy the address of first arg so
that it cannot be changed

Verify that the longword pointed to
by the first arg could be read by
the previous access mode

Note that the arg list itself must
already have been probed

Branch if either byte gives an
access violation

Copy length and address of buff er
arg so that they cannot change

Verify that the buff er described by
the 2nd and 3rd args could be
written by the previous access
mode

Note that the arg list must already
have been probed and that the 2nd
arg must be known to be less than
512

Branch if either byte gives an
access violation

Note that for the PROBE instruction, probing an address returns only the
accessibility of the page(s) and has no effect on their residency. However,
probing a process address may cause a page fault in the system address space
on the per-process page tables.

Notes

1 If the valid bit of the examined page table entry is set, it is
UNPREDICTABLE whether the modify bit of the examined page table
entry is set by a PROBER. If the valid bit is clear, the modify bit is not
changed.

2 Except for note 1, above, the valid bit of the page table entry,
PTE <31>, mapping the probed address is ignored.

3 A length violation gives a status of "not-accessible."

4 On the probe of a process virtual address, if the valid bit of the system
page table entry is 0, a Translation Not Valid Fault occurs. This allows
for the demand paging of the process page tables.

5 On the probe of a process virtual address, if the protection field of the
system page table entry indicates No Access, a status of "not-accessible"
is given. Thus, a single No Access page table entry in the system map is
equivalent to 128 No Access page table entries in the process map.

9-185

VAX Instruction Set
CHM

CHM

FORMAT

condition codes

Change Mode

opcode

N +-- 0;

z +-- 0;

v +-- 0;

C +-- O;

code.rw

exceptions halt

opcodes

DESCRIPTION

9-186

BC

BO

BE
BF

CHMK

CHME

CHMS

CHMU

Change Mode to Kernel

Change Mode to Executive

Change Mode to Supervisor

Change Mode to User

Change Mode instructions allow processes to change their access mode in
a controlled manner. The instruction increases privilege only (decreases the
access mode).

A change in mode also results in a change of stack pointers; the old pointer
is saved, and the new pointer is loaded. The PSL, PC, and code passed by
the instruction are pushed onto the stack of the new mode. The saved PC
addresses the instruction following the CHMx instruction. The code is sign
extended. After execution, the appearance of the new stack is:

+---+
sign-extended code :(SP)

+---+
PC of next instruction

+---+
old PSL

+---+
The destination mode selected by the opcode is used to obtain a location from
the System Control Block. This location addresses the CHMx dispatcher for
the specified mode. If the vector< 1:0> code is NEQU 0, then the operation
is UNDEFINED.

EXAMPLES

CHMK #7

CHME #4

CHMS #-2

Notes

VAX Instruction Set
CHM

1 As usual for faults, any Access Violation or Translation Not Valid fault
saves the PC and the PSL, and leaves the SP as it was at the beginning
of the instruction except for any pushes onto the kernel stack.

2 The noninterrupt stack pointers may be fetched and stored either in
privileged registers or in their allocated slots in the PCB. Only LDPCTX
and SVPCTX always fetch and store in the PCB. MFPR and MTPR always
fetch and store the pointers whether in registers or the PCB.

3 By software convention, negative codes are reserved to CSS and
customers.

Request the kernel mode service
specified by code 7

Request the executive mode service
specified by code 4

Request the supervisor mode service
specified by customer code -2

9-187

VAX Instruction Set
REI

REI

Return from Exception or Interrupt

FORMAT opcode

condition codes
N +--saved PSL <3> ;

Z +--saved PSL <2>;

V +-- saved PSL < 1 > ;
C +--saved PSL <O> ;

exceptions reserved operand

opcodes

DESCRIPTION

9-188

02 REI Return from Exception or Interrupt

A longword is popped from the current stack and held in a temporary PC. A
second longword is popped from the current stack and held in a temporary
PSL. Validity of the popped PSL is checked. The current stack pointer is
saved, and a new stack pointer is selected according to the new PSL
CUR_MOD and IS fields. The level of the highest privilege AST is checked
against the current mode to see whether a pending AST can be delivered.
Execution resumes with the instruction being executed at the time of the
exception or interrupt. Any instruction latched in the processor is reinitialized.

Notes

1 The exception or interrupt service routine is responsible for restoring any
registers saved and for removing any parameters from the stack.

2 As usual for faults, any Access Violation or Translation Not Valid
conditions on the stack pops restore the stack pointer and fault.

3 The noninterrupt stack pointers may be fetched and stored either in
privileged registers or in their allocated slots in the PCB. Only LDPCTX
and SVPCTX always fetch and store in the PCB. MFPR and MTPR always
fetch and store the pointers, whether in registers or in the PCB.

LDPCTX

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

Load Process Context

opcode

N ~N;

z ~ Z;

v ~v;

c ~c;

reserved operand
privileged instruction

06 LDPCTX

VAX Instruction Set
LDPCTX

load Process Context

The PCB is specified by the privileged register PCB base. The general
registers are loaded from the PCB. The memory management registers
describing the process address space are also loaded and the process entries
in the translation buffer are cleared. Execution is switched to the kernel stack.
The PC and PSL are moved from the PCB to the stack, suitable for use by a
subsequent REI instruction.

Notes

1 Some processors keep a copy of each of the per-process stack pointers
in internal registers. In those processors, LDPCTX loads the internal
registers from the PCB. Processors that do not keep a copy of all four
per-process stack pointers in internal registers keep only the current
access mode register in an internal register and switch this with the PCB
contents whenever the current access mode field changes.

2 Some implementations may not perform some or all of the reserved
operand checks.

9-189

VAX Instruction Set
SVPCTX

SVPCTX

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-190

Save Process Context

opcode

N +-- N;
z +-- Z;
v +-- V;

c +-- C;

privileged instruction

07 SVPCTX Save Process Context

The Process Control Block is specified by the privileged register Process
Control Block Base. The general registers are saved into the PCB. The PC
and PSL currently on the top of the current stack are popped and stored in
the PCB. If a SVPCTX instruction is executed when the Interrupt Stack (IS)
is clear, then IS is set, the interrupt stack pointer is activated, and IPL is
maximized with 1 because of the switch to the interrupt stack.

Notes

1 The map, ASTL VL, and PME contents of the PCB are not saved because
they are rarely changed. Thus, not writing them saves overhead.

2 Some processors keep a copy of each of the per-process stack pointers
in internal registers. In those processors, SVPCTX stores the internal
registers in the PCB. Processors that do not keep a copy of all four per
process stack pointers in internal registers keep only the current access
mode register in an internal register and switch this access mode register
with the PCB contents whenever the current access mode field changes.

3 Between the SVPCTX instruction that saves the state for one process and
the LDPCTX that loads the state of another, the internal stack pointers
may not be referenced by MFPR or MTPR instructions. This implies that
interrupt service routines invoked at a priority higher than the lowest one
used for context switching must not reference the process stack pointers.

MTPR

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

VAX Instruction Set
MTPR

Move to Processor Register

opcode src. rl, procreg. rl

N

z
v

c

N

z
v
c

DA

+-- src LSS 0;

+-- src EQL 0;

+-0;

+-C;

+-N;

+-Z;

+-V;

+-C;

! If register is replaced

! Except TBCHK register

Please refer to

! Appendix E.

If register is not replaced

reserved operand fault
reserved instruction fault

MTPR Move to Processor Register

Loads the source operand specified by src into the processor register specified
by procreg. The procreg operand is a longword that contains the processor
register number. Execution may have register-specific side effects.

Notes

1 If the processor internal register does not exist, a reserved operand fault
occurs.

2 A reserved instruction fault occurs if instruction execution is attempted in
other than kernel mode.

3 A reserved operand fault occurs on a move to a read-only register.

9-191

VAX Instruction Set
MFPR

MFPR

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-192

Move from Processor Register

opcode procreg. rl, dst. wl

N

z
v
c

N

z
v
c

DB

+-- dst LSS 0; If destination is replaced

+-- dst EOL 0;

+-- 0;

+-- C;

+-- N; If destination is not replaced

+-- Z;

+-- V;

+-- C;

reserved operand fault
reserved instruction fault

MFPR Move from Processor Register

The destination operand is replaced by the contents of the processor register
specified by procreg. The procreg operand is a longword that contains the
processor register number. Execution may have register-specific side effects.

Notes

1 If the processor internal register does not exist, a reserved operand fault
occurs.

2 A reserved instruction fault occurs if instruction execution is attempted in
other than kernel mode.

3 A reserved operand fault occurs on a move from a write-only register.

BUG

FORMAT

condition codes

Bug check

opcode

N +-- N;

Z +-- Z;

V +-- V;

C +-- C;

message.bx

VAX Instruction Set
BUG

exceptions reserved instruction

opcodes

DESCRIPTION

EXAMPLES
BUGW
.WORD

BUGL
.LONG

4

5

FEFF BUGW

FDFF BUGL

Bugcheck with word message identifier

Bugcheck with longword message identifier

The hardware treats these opcodes as reserved to DIGITAL and as faults. The
VMS operating system treats them as requests to report software detected
errors. The inline message identifier is zero extended to a longword (BUGW)
and interpreted as a condition value (see theVAX Procedure Calling and
Condition Handling Standard in the Introduction to VMS System Routines). If
the process is privileged to report bugs, a log entry is made. If the process is
not privileged, a reserved instruction is signaled.

Bugcheck with word message
identifier 4

Bugcheck with longword
message identifier 5

9-193

A ASCII Character Set

Table A-1 lists the ASCII characters and the decimal and hexadecimal codes
for each.

Table A-1 Decimal, Hexadecimal, and ASCII Conversion

Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII

00 00 NUL 32 20 SP 64 40 @ 96 60

01 01 SOH 33 21 65 41 A 97 61 a

02 02 STX 34 22 II 66 42 B 98 62 b

03 03 ETX 35 23 # 67 43 c 99 63 c

04 04 EOT 36 24 $ 68 44 D 100 64 d

05 05 ENO 37 25 % 69 45 E 101 65 e

06 06 ACK 38 26 & 70 46 F 102 66 f

07 07 BEL 39 27 71 47 G 103 67 g

08 08 BS 40 28 72 48 H 104 68 h

09 09 HT 41 29 73 49 I 105 69

10 OA LF 42 2A * 74 4A J 106 6A j

11 OB VT 43 2B + 75 4B K 107 6B k

12 oc FF 44 2C 76 4C 108 6C

13 OD CR 45 20 77 40 M 109 60 m

14 OE so 46 2E 78 4E N 110 6E n

15 OF SI 47 2F I 79 4F 0 111 6F 0

16 10 OLE 48 30 0 80 50 p 112 70 p

17 11 DC1 49 31 1 81 51 Q 113 71 q

18 12 DC2 50 32 2 82 52 R 114 72

19 13 DC3 51 33 3 83 53 s 115 73 5

20 14 DC4 52 34 4 84 54 T 116 74 t

21 15 NAK 53 35 5 85 55 u 117 75 u

22 16 SYN 54 36 6 86 56 v 118 76 v

23 17 ETB 55 37 7 87 57 w 119 77 w

24 18 CAN 56 38 8 88 58 x 120 78 x

25 19 EM 57 39 9 89 59 y 121 79 y

26 1A SUB 58 3A 90 SA z 122 7A z

27 1B ESC 59 3B 91 SB 123 7B

A-1

ASCII Character Set

Table A-1 (Cont.) Decimal, Hexadecimal, and ASCII Conversion

Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII

28 1C FS 60 3C < 92 SC \ 124 7C

29 1D GS 61 30 93 SD] 12S 70

30 1E RS 62 3E > 94 SE 126 7E

31 1F us 63 3F ? 9S SF 127 7F DEL

A-2

B Hexadecimal/Decimal Conversion

Table B-1 lists the decimal value for each possible hexadecimal value in each
byte of a longword. The following sections contain instructions to use the
table to convert hexadecimal numbers to decimal and decimal numbers to
hexadecimal.

B.1 Hexadecimal to Decimal
For each integer position of the hexadecimal value, locate the corresponding
column integer and record its decimal equivalent in the conversion table. Add
the decimal equivalent to obtain the decimal value.

For example:

D0500ADO (hex)

00000000
500000

AOO
DO

D0500ADO

B.2 Decimal to Hexadecimal

?(dee)

= 3,489,660,928
5,242,880

2,560
208

= 3,494,904,576

To determine the hexadecimal equivalent of a given decimal value, perform
the following steps:

1 In the conversion table, locate the largest decimal value that does not
exceed the decimal number to be converted.

2 Record the hexadecimal equivalent, followed by the number of zeros that
corresponds to the integer column minus 1.

3 Subtract the table decimal value from the decimal number to be
converted.

4 Repeat steps 1 through 3 until the subtraction balance equals 0. Add the
hexadecimal equivalents to obtain the hexadecimal value.

For example:

22,466 (dee) = ?(hex)

20,480
1,792

192
2

22,466

= 5000
700
co

2

= 57C2

22,466
-20.480

1,986
- 1, 792

194
192

2
2
0

B-1

Hexadecimal/Decimal Conversion
8.3 Powers of 2 and 16

B.3 Powers of 2 and 16
This section lists the decimal values of powers of 2 and 16. These values are
useful in converting decimal numbers to hexadecimal.

Powers of 2 Powers of 16

2**n n 16**n n

256 8 1 0
512 9 16 1

1024 10 256 2
2048 11 4096 3
4096 12 65536 4
8192 13 1048576 5

16384 14 16777216 6
32768 15 268435456 7
65536 16 4294967296 8

131072 17 68719476736 9
262144 18 1099511627776 10
524288 19 17592186044416 11

1048576 20 281474976710656 12
2097152 21 4503599627370496 13
4194304 22 72057594037927936 14
8388608 23 1152921504606846976 15

16777216 24

Table B-1 Hexadecimal to Decimal Conversion

HEXADECIMAL TO DECIMAL CONVERSION TABLE

8 7 6 5 4 3 2

HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 268,435,456 1 16,777,216 1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 536,870,912 2 33,554,432 2 2,097, 152 2 131,072 2 8,192 2 512 2 32 2 2
3 805,306,368 3 50,331,648 3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 1,073,741,824 4 67,108,864 4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 1,342.177 ,280 5 83,886,080 5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 1,610,612,736 6 100,663,296 6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 1,879,048, 192 7 117,440,512 7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7
8 2,147,483,648 8 134,217,728 8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 2,415,919,104 9 150,994,944 9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 2,952,790,016 B 184,549,376 B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11
c 3,221,225,472 c 201,326,592 c 12,582,912 c 786,432 c 49,152 c 3,072 c 192 c 12
D 3,489,660,928 D 218,103,808 D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13
E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 4,026,531,840 F 251,658,240 F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

ZK-2013-84

B-2

C VAX Macro Assembler Directives and Language
Summary

C.1 Assembler Directives
The following table summarizes the VAX MACRO assembler directives:

Table C-1 Assembler Directives

Format Operation

.ADDRESS address-list

.ALIGN keyword[,expression]

.ALIGN integer[,expression]

.ASCIC string

.ASCID string

. ASCII string

. ASCIZ string

. BLKA expression

. BLKB expression

. BLKD expression

. BLKF expression

.BLKG expression

.BLKH expression

. BLKL expression

.BLKO expression

.BLKQ expression

.BLKW expression

.BYTE expression-list

.CROSS

Stores successive longwords of
address data

Aligns the location counter to the
boundary specified by the keyword

Aligns location counter to the
boundary specified by (2Ainteger)

Stores the ASCII string (enclosed in
delimiters), preceded by a count byte

Stores the ASCII string (enclosed
in delimiters), preceded by a string
descriptor

Stores the ASCII string (enclosed in
delimiters)

Stores the ASCII string (enclosed in
delimiters) followed by a 0 byte

Reserves longwords of address data

Reserves bytes for data

Reserves quadwords for double
precision floating-point data

Reserves longwords for single
precision floating-point data

Reserves quadwords for floating
point data

Reserves octawords for extended
precision floating-point data

Reserves longwords for data

Reserves octawords for data

Reserves quadwords for data

Reserves words for data

Generates successive bytes of data;
each byte contains the value of the
specified expression

Enables cross-referencing of all
symbols

C-1

VAX Macro Assembler Directives and Language Summary
C.1 Assembler Directives

C-2

Table C-1 (Cont.) Assembler Directives

Format

. CROSS symbol-list

.DEBUG symbol-list

. DEFAULT DISPLACEMENT, keyword

.D_FLOATING literal-list

. DISABLE argument-list

.DOUBLE literal-list

. DSABL argument-list

.ENABL argument-list

.ENABLE argument-list

.END [symbol]

.ENDC

.ENDM [macro-name]

.ENDA

. ENTRY symbol [,expression]

. ERROR [expression] ;comment

.EVEN

. EXTERNAL symbol-list

. EXTRN symbol-list

.F _FLOATING literal-list

.FLOAT literal-list

.G_FLOATING literal-list

.GLOBAL symbol-list

.GLOBL

.H_FLOATING literal-list

.IDENT string

Operation

Cross-references specified symbols

Makes symbol names known to the
debugger

Specifies the default displacement
length for the relative addressing
modes

Generates 8-byte double-precision
floating-point data

Disables function(s) specified in
argument-list

Equivalent to .D_FLOATING

Equivalent to . DISABLE

Equivalent to . ENABLE

Enables function(s) specified in
argument-list

Indicates logical end of source
program; optional symbol specifies
transfer address

Indicates end of conditional assembly
block

Indicates end of macro definition

Indicates end of repeat block

Procedure entry directive

Displays specified error message

Ensures that the current location
counter has an even value (adds 1 if
it is odd)

Indicates specified symbols are
externally defined

Equivalent to . EXTERNAL

Generates 4-byte single-precision
floating-point data

Equivalent to .F _FLOATING

Generates 8-byte G_floating-point
data

Indicates specified symbols are
global symbols

Equivalent to .GLOBAL

Generates 16-byte extended
precision H _floating-point data

Provides means of labeling object
module with additional data

VAX Macro Assembler Directives and Language Summary
C.1 Assembler Directives

Table C-1 (Cont.) Assembler Directives

Format

.IF condition(,] argument(s)

.IFF

.ILFALSE

.IFT

.IFTF

.IF_TRUE

.IF_ TRUE_FALSE

.llF condition argument(s), statement

.IRP symbol, <argument list>

.IRPC symbol, <BIT_STRING>

.LIBRARY macro-library-name

.LINK utile-spec" (/qualifier(=(module
name(, ...])], ...]

.LIST [argument-list]

.LONG expression-list

.MACRO macro-name (formal-argument
list]

.MASK symbol (,expression]

. MCALL macro-name-list

Operation

Begins a conditional assembly block
of source code which is included
in the assembly only if the stated
condition is met with respect to the
argument(s) specified

Equivalent to . IF _FALSE

Appears only within a conditional
assembly block; begins block of
code to be assembled if the original
condition tests false

Equivalent to . IF_ TRUE

Equivalent to .IF_ TRUE_FALSE

Appears only within a conditional
assembly block; begins block of
code to be assembled if the original
condition tests true

Appears only within a conditional
assembly block; begins block
of code to be assembled
unconditionally

Acts as a 1-line conditional assembly
block where the condition is tested
for the argument specified; the
statement is assembled only if the
condition tests true

Replaces a formal argument with
successive actual arguments
specified in an argument list

Replaces a formal argument with
successive single characters
specified in string

Specifies a macro library

Includes linker option records in
object module

Equivalent to .SHOW

Generates successive longwords of
data; each longword contains the
value of the specified expression

Begins a macro definition

Reserves a word for and copies a
register save mask

Specifies the system and/or user
defined macros in libraries that are
required to assemble the source
program

C-3

VAX Macro Assembler Directives and Language Summary
C.1 Assembler Directives

C-4

Table C-1 (Cont.) Assembler Directives

Format

. MDELETE macro-name-list

.MEXIT

.NARG symbol

.NCHR symbol, <BIT_STRING>

. NLIST [argument-list]

.NOCROSS

.NOCROSS symbol-list

.NOSHOW

.NOSHOW argument-list

.NTYPE symbol,operand

. OCT A literal

.OCTA symbol

.ODD

.OPDEF opcode value, operand
descriptor-list

.PACKED decimal-string [,symbol]

.PAGE

. PRINT [expression] ;comment

.PSECT

. PSECT section-name argument list

.QUAD literal

.QUAD symbol

.REF 1 operand

.REF2 operand

. REF4 operand

Operation

Deletes from memory the macro
definitions of the macros in the list

Exits from the expansion of a macro
before the end of the macro is
encountered

Determines the number of arguments
in the current macro call

Determines the number of characters
in a specified character string

Equivalent to . NOSHOW

Disables cross-referencing of all
symbols

Disables cross-referencing of
specified symbols

Decrements listing level count

Controls listing of macros and
conditional assembly blocks

Can appear only within a macro
definition; equates the symbol to the
addressing mode of the specified
operand

Stores 16 bytes of data

Stores 16 bytes of data

Ensures that the current location
counter has an odd value (adds 1 if
it is even)

Defines an opcode and its operand
list

Generates packed decimal data, 2
digits per byte

Causes the assembly listing to skip
to the top of the next page and to
increment the page count

Displays the specified message

Begins or resumes the blank program
section

Begins or resumes a user-defined
program section

Stores 8 bytes of data

Stores 8 bytes of data

Generates byte operand

Generates word operand

Generates longword operand

VAX Macro Assembler Directives and Language Summary
C.1 Assembler Directives

Table C-1 (Cont.) Assembler Directives

Format

.REFS operand

.REF 16 operand

.REPEAT expression

.REPT

.RESTORE

.RESTORE_PSECT

.SAVE [LOCAL_BLOCK]

.SAVE_PSECT [LOCAL_BLOCK]

.SBTTL comment-string

.SHOW

.SHOW argument-list

.SIGNED_BYTE expression-list

.SIGNED_ WORD expression-list

.SUBTITLE comment-string

. TITLE module-name comment-string

. TRANSFER symbol

.WARN [expression] ;comment

. WEAK symbol-list

. WORD expression-list

Operation

Generates quadword operand

Generates octaword operand

Begins a repeat block; the section of
code up to the next .ENDR directive
is repeated the number of times
specified by the expression

Equivalent to . REPEAT

Equivalent to .RESTORE_PSECT

Restores program section context
from the program section context
stack

Equivalent to .SA VE_PSECT

Saves current program section
context on the program section
context stack

Equivalent to .SUBTITLE

Increments listing level count

Controls listing of macros and
conditional assembly blocks

Stores successive bytes of signed
data

Stores successive words of signed
data

Causes the specified string to be
printed as part of the assembly
listing page header; the string
component of each .SUBTITLE is
collected into a table of contents at
the beginning of the assembly listing

Assigns the first 15 characters in the
string as an object module name and
causes the string to appear on each
page of the assembly listing

Directs the linker to redefine the
value of the global symbol for use in
a shareable image

Displays specified warning message

Indicates that each of the listed
symbols has the weak attribute

Generates successive words of data;
each word contains the value of the
corresponding specified expression

C-5

VAX Macro Assembler Directives and Language Summary
C.2 Special Characters

C.2 Special Characters
The following table summarizes the VAX MACRO special characters:

Table C-2 Special Characters Used in VAX MACRO Statements

Character Character Name Function(s)

Underline Character in symbol names

$ Dollar sign Character in symbol names

Period Character in symbol names, current
location counter, and decimal point

Colon label terminator

Equal sign Direct assignment operator and macro
keyword argument terminator

Tab Field terminator

Space Field terminator

Number sign Immediate addressing mode indicator

@ At sign Deferred addressing mode indicator and
arithmetic shift operator

Comma Field, operand, and item separator

Semicolon Comment field indicator

+ Plus sign Autoincrement addressing mode
indicator, unary plus operator, and
arithmetic addition operator

Minus sign Autodecrement addressing mode
indicator, unary minus operator,
arithmetic subtraction operator, and
line continuation indicator

• Asterisk Arithmetic multiplication operator

I Slash Arithmetic division operator

& Ampersand logical AND operator

Exclamation logical inclusive OR operator
point

\ Backslash logical exclusive OR and numeric
conversion indicator in macro arguments

Circumflex Unary operator indicator and macro
argument delimiter

[] Square brackets Index addressing mode and repeat count
indicators

() Parentheses Register deferred addressing mode
indicators

C-6

C.3

C.3.1

VAX Macro Assembler Directives and Language Summary
C.2 Special Characters

Operators

Unary Operators

Table C-2 (Cont.) Special Characters Used in VAX MACRO
Statements

Character

<>

?

%

Character Name

Angle brackets

Question mark

Apostrophe

Percent sign

Function(s)

Argument or expression grouping
delimiters

Created label indicator in macro
arguments

Macro argument concatenation indicator

Macro string operators

The following table summarizes the VAX MACRO unary operators:

Table C-3 Unary Operators

Unary
Operator Operator Name Example Effect

+ Plus sign +A Results in the positive
value of A (default)

Minus sign -A Results in the negative
(2 's complement) value
of A

AB Binary ABl 1000111 Specifies that 11000111
is a binary number

AD Decimal AD127 Specifies that 127 is a
decimal number

Ao Octal A034 Specifies that 34 is an
octal number

Ax Hexadecimal AXFCF9 Specifies that FCF9 is a
hexadecimal number

AA ASCII AA/ABC/ Produces an ASCII string;
the characters between
the matching delimiters
are converted to ASCII
representation

AM Register mask AM <R3,R4,R5> Specifies the registers
R3, R4, and R5 in the
register mask

AF Floating point AF3.0 Specifies that 3.0 is a
floating-point number

Ac Complement AC24 Produces the 1 's
complement value of
24 (decimal)

C-7

C.3.2

C.3.3

VAX Macro Assembler Directives and Language Summary
C.3 Operators

Binary Operators

The following table summarizes the VAX MACRO binary operators:

Table C-4 Binary Operators

Binary
Operator Operator Name Example Operation

+ Plus sign A+B Addition

Minus sign A-8 Subtraction

Asterisk A•B Multiplication

I Slash A/B Division

@ At sign A@B Arithmetic Shift

& Ampersand A&B Logical AND

Exclamation point AIB Logical inclusive OR

\ Backslash A\B Logical exclusive OR

Macro String Operators

C-8

The following table summarizes the macro string operators. These operators
can be used only in macros.

Table C-5 Macro String Operators

Format

%LENGTH(string)

%LOCA TE(string 1,string2[,symbol])

%EXTRACT(symbol 1 ,symbol2,string)

Function

Returns the length of the string

Locates the substring string 1
within string2 starting the
search at the character position
specified by symbol

Extracts a substring from
string that begins at character
position specified by symbol 1
and has a length specified by
symbol2

C.4

VAX Macro Assembler Directives and Language Summary
C.4 Addressing Modes

Addressing Modes
The following table summarizes the VAX MACRO addressing modes:

Table C-6 Addressing Modes

Addressing Hex
Type Mode Format Value Description Indexable?

General Register Rn 5 Register contains the No
Register operand.

Register Deferred (Rn) 6 Register contains the Yes
address of the operand.

Autoincrement (Rn)+ 8 Register contains the Yes
address of the operand;
the processor increments
the register contents by the
size of the operand data
type.

Autoincrement @(Rn)+ 9 Register contains the Yes
Deferred address of the operand

address; the processor
increments the register
contents by 4.

Autodecrement -(Rn) 7 The processor decrements Yes
the register contents by
the size of the operand
data type; the register then
contains the address of the
operand.

Displacement dis(Rn) The sum of the contents Yes
BAdis(Rn) A of the register and the
WAdis(Rn) c displacement is the address
LAdis(Rn) E of the operand; BA, WA, and

LA, respectively, indicate
byte, word, and longword
displacement.

Displacement @dis(Rn) The sum of the contents Yes
Deferred @BAdis(Rn) B of the register and the

@WAdis(Rn) D displacement is the address
@LAdis(Rn) F of the operand address; BA,

WA, and LA, respectively,
indicate, byte, word, and
longword displacement.

Key:

Rn - Any general register RO through R12. Note that the AP, FP, or SP register can be used in place of Rn.
Rx - Any general register RO through R12. Note that the AP, FP, or SP register can be used in place of Rx. Rx
cannot be the same as the Rn specified in the base-mode for certain base modes (see Section 5.3).
dis - An expression specifying a displacement.
address - An expression specifying an address.
literal - An expression, an integer constant, or a floating-point constant.

C-9

VAX Macro Assembler Directives and Language Summary
C.4 Addressing Modes

Table C-6 (Cont.) Addressing Modes

Addressing Hex
Type Mode Format Value Description Indexable?

Literal #literal The literal specified is the No
SA#literal 0-3 operand; the literal is stored

as a short literal.

Program Relative address The address specified is Yes
Counter BA address A the address of the operand;

WAaddress c the address is stored as a
LAaddress E displacement from the PC;

BA, WA, and LA, respectively,
indicate byte, word, and
longword displacement.

Relative @address The address specified is Yes
Deferred @BAaddress B the address of the operand

@WA address D address; the address
@LAaddress F specified is stored as a

displacement from the PC;
BA, WA, and LA indicate
byte, word, and longword
displacement, respectively.

Absolute @#address 9 The address specified is Yes
the address of the operand;
the address specified is
stored as an absolute
virtual address, not as a
displacement.

Immediate #literal The literal specified is the No
r#literal 8 operand; the literal is stored

as a byte, word, longword,
or quadword.

General GA address The address specified is Yes
the address of the operand;
if the address is defined
as relocatable, the linker
stores the address as a
displacement from the PC;
if the address is defined
as an absolute virtual
address, the linker stores
the address as an absolute
value.

Key:

Rn - Any general register RO through R12. Note that the AP, FP, or SP register can be used in place of Rn.
Rx - Any general register RO through R12. Note that the AP, FP, or SP register can be used in place of Rx. Rx
cannot be the same as the Rn specified in the base-mode for certain base modes (see Section 5.3).
dis - An expression specifying a displacement.
address - An expression specifying an address.
literal - An expression, an integer constant, or a floating-point constant.

C-10

VAX Macro Assembler Directives and Language Summary
C.4 Addressing Modes

Table C-6 (Cont.) Addressing Modes

Hex
Type

Addressing
Mode Format Value Description Indexable?

Index Index base-mode[Rx]

Branch Branch address

Key:

4 The base-mode specifies No
the base address, and
the register specifies the
index; the sum of the base
address and the product of
the contents of Rx and the
size of the operand data
type is the address of the
operand; base mode can
be any addressing mode
except register, immediate,
literal, index, or branch.

The address specified is No
the operand; this address
is stored as a displacement
from the PC; branch mode
can only be used with the
branch instructions.

Rn - Any general register RO through R12. Note that the AP, FP, or SP register can be used in place of Rn.
Rx - Any general register RO through R12. Note that the AP, FP, or SP register can be used in place of Rx. Rx
cannot be the same as the Rn specified in the base-mode for certain base modes (see Section 5.3).
dis - An expression specifying a displacement.
address - An expression specifying an address.
literal - An expression, an integer constant, or a floating-point constant.

C-11

D Permanent Symbol Table

The permanent symbol table (PST) contains the symbols that VAX MACRO
automatically recognizes. These symbols consist of both opcodes and
assembler directives. Sections D .1 and D .2 below present the opcodes
(instruction set) in alphabetical and numerical order, respectively. Section C.1
(in Appendix C) presents the assembler directives.

See Chapter 9 for detailed descriptions of the instruction set.

D.1 Opcodes (Alphabetic Order)

Table D-1 Opcodes and Functions

Hex
Value Mnemonic Functional Name

90 ACBB Add compare and branch byte

6F ACBO Add compare and branch D_floating

4F ACBF Add compare and branch F _floating

4FFO ACBG Add compare and branch G_floating

6FFO ACBH Add compare and branch H_floating

F1 ACBL Add compare and branch long

30 ACBW Add compare and branch word

58 AOAWI Add aligned word interlocked

80 AOOB2 Add byte 2 operand

81 AOOB3 Add byte 3 operand

60 AOOD2 Add O_floating 2 operand

61 AOOD3 Add O_floating 3 operand

40 AOOF2 Add F _floating 2 operand

41 AOOF3 Add F _floating 3 operand

40FO ADOG2 Add G_floating 2 operand

41FD AOOG3 Add G_floating 3 operand

60FO ADOH2 Add H _floating 2 operand

61FO AOOH3 Add H _floating 3 operand

co AOOL2 Add long 2 operand

C1 ADOL3 Add long 3 operand

20 AOOP4 Add packed 4 operand

21 AOOP6 Add packed 6 operand

AO AOOW2 Add word 2 operand

A1 ADOW3 Add word 3 operand

D-1

Permanent Symbol Table
D.1 Opcodes (Alphabetic Order)

Table 0-1 (Cont.) Opcodes and Functions

Hex
Value Mnemonic Functional Name

08 ADWC Add with carry

F3 AOBLEQ Add one and branch on less or equal

F2 AOBLSS Add one and branch on less

78 ASHL Arithmetic shift long

F8 ASHP Arithmetic shift and round packed

79 ASHQ Arithmetic shift quad

E1 BBC Branch on bit clear

E5 BBCC Branch on bit clear and clear

E7 BBCCI Branch on bit clear and clear interlocked

E3 BBCS Branch on bit clear and set

EO BBS Branch on bit set

E4 BBSC Branch on bit set and clear

E2 BBSS Branch on bit set and set

E6 BBSSI Branch on bit set and set interlocked

1E BCC Branch on carry clear

1F BCS Branch on carry set

13 BEOL Branch on equal

13 BEOLU Branch on equal unsigned

18 BGEQ Branch on greater or equal

1E BGEQU Branch on greater or equal unsigned

14 BGTR Branch on greater

1A BGTRU Branch on greater unsigned

SA BICB2 Bit clear byte 2 operand

SB BICB3 Bit clear byte 3 operand

CA BICL2 Bit clear long 2 operand

CB BICL3 Bit clear long 3 operand

B9 BICPSW Bit clear program status word

AA BICW2 Bit clear word 2 operand

AB BICW3 Bit clear word 3 operand

88 BISB2 Bit set byte 2 operand

89 BISB3 Bit set byte 3 operand

ca BISL2 Bit set long 2 operand

C9 BISL3 Bit set long 3 operand

BS BISPSW Bit set program status word

AS BISW2 Bit set word 2 operand

A9 BISW3 Bit set word 3 operand

93 BITB Bit test byte

D-2

Permanent Symbol Table
D.1 Opcodes (Alphabetic Order)

Table 0-1 (Cont.) Opcodes and Functions

Hex
Value Mnemonic Functional Name

03 BITL Bit test long

83 BITW Bit test word

E9 BLBC Branch on low bit clear

ES BLBS Branch on low bit set

15 BLEO Branch on less or equal

1B BLEOU Branch on less or equal unsigned

19 BLSS Branch on less

1F BLSSU Branch on less unsigned

12 BNEO Branch on not equal

12 BNEOU Branch on not equal unsigned

03 BPT Break point trap

11 BRB Branch with byte displacement

31 BRW Branch with word displacement

10 BSBB Branch to subroutine with byte displacement

30 BSBW Branch to subroutine with word displacement

1C BVC Branch on overflow clear

1D BVS Branch on overflow set

FA CALLG Call with general argument list

FB CALLS Call with stack

BF CASEB Case byte

CF CASEL Case long

AF CASEW Case word

BO CHME Change mode to executive

BC CHMK Change mode to kernel

BE CHMS Change mode to supervisor

BF CHMU Change mode to user

94 CLRB Clear byte

7C CLRO Clear O_floating

OF CLRF Clear F _floating

7C CLRG Clear G_floating

7CFO CLRH Clear H_floating

04 CLRL Clear long

7CFO CLRO Clear octa

7C CLRO Clear quad

B4 CLRW Clear word

91 CMPB Compare byte

29 CMPC3 Compare character 3 operand

D-3

Permanent Symbol Table
D.1 Opcodes (Alphabetic Order)

Table D-1 (Cont.) Opcodes and Functions

Hex
Value Mnemonic Functional Name

20 CMPC5 Compare character 5 operand

71 CMPD Compare O_floating

51 CMPF Compare F _floating

51FD CMPG Compare G_floating

71FD CMPH Compare H_floating

01 CMPL Compare long

35 CMPP3 Compare packed 3 operand

37 CMPP4 Compare packed 4 operand

EC CMPV Compare field

B1 CMPW Compare word

ED CMPZV Compare zero-extended field

OB CRC Calculate cyclic redundancy check

6C CVTBD Convert byte to O_floating

4C CVTBF Convert byte to Lfloating

4CFD CVTBG Convert byte to G_floating

6CFD CVTBH Convert byte to H_floating

98 CVTBL Convert byte to long

99 CVTBW Convert byte to word

68 CVTDB Convert O_floating to byte

76 CVTDF Convert O_floating to F _floating

32FD CVTDH Convert O_floating to H_floating

6A CVTDL Convert O_floating to long

69 CVTDW Convert O_floating to word

48 CVTFB Convert F _floating to byte

56 CVTFD Convert F _floating to O_floating

99FD CVTFG Convert F _floating to G_floating

98FD CVTFH Convert F _floating to H_floating

4A CVTFL Convert F _floating to long

49 CVTFW Convert F _floating to word

48FD CVTGB Convert G _floating to byte

33FD CVTGF Convert G _floating to F _floating

56FD CVTGH Convert G _floating to H _floating

4AFD CVTGL Convert G_floating to long

49FD CVTGW Convert G _floating to word

68FD CVTHB Convert H _floating to byte

F7FD CVTHD Convert H_floating to D_floating

F6FD CVTHF Convert H _floating to F _floating

D-4

Permanent Symbol Table
D.1 Opcodes (Alphabetic Order)

Table 0-1 (Cont.) Opcodes and Functions

Hex
Value Mnemonic Functional Name

76FD CVTHG Convert H_floating to G_floating

6AFD CVTHL Convert H_floating to long

69FD CVTHW Convert H_floating to word

F6 CVTL8 Convert long to byte

6E CVTLD Convert long to D_floating

4E CVTLF Convert long to F _floating

4EFD CVTLG Convert long to G_floating

6EFD CVTLH Convert long to H_floating

F9 CVTLP Convert long to packed

F7 CVTLW Convert long to word

36 CVTPL Convert packed to long

08 CVTPS Convert packed to leading separate

24 CVTPT Convert packed to trailing

68 CVTRDL Convert rounded D_floating to long

4B CVTRFL Convert rounded F _floating to long

4BFD CVTRGL Convert rounded G_floating to long

6BFD CVTRHL Convert rounded H_floating to long

09 CVTSP Convert leading separate to packed

26 CVTTP Convert trailing to packed

33 CVTWB Convert word to byte

6D CVTWD Convert word to D_floating

4D CVTWF Convert word to F _floating

4DFD CVTWG Convert word to G_floating

6DFD CVTWH Convert word to H_floating

32 CVTWL Convert word to long

97 DECB Decrement byte

D7 DECL Decrement long

87 DECW Decrement word

86 DIVB2 Divide byte 2 operand

87 DIVB3 Divide byte 3 operand

66 DIVD2 Divide D_floating 2 operand

67 DIVD3 Divide D_floating 3 operand

46 DIVF2 Divide F _floating 2 operand

47 DIVF3 Divide F _floating 3 operand

46FD DIVG2 Divide G_floating 2 operand

47FD DIVG3 Divide G_floating 3 operand

66FD DIVH2 Divide H _floating 2 operand

D-5

Permanent Symbol Table
D.1 Opcodes (Alphabetic Order)

Table D-1 (Cont.) Opcodes and Functions

Hex
Value Mnemonic Functional Name

67FD DIVH3 Divide H_floating 3 operand

C6 DIVL2 Divide long 2 operand

C7 DIVL3 Divide long 3 operand

27 DIVP Divide packed

A6 DIVW2 Divide word 2 operand

A7 DIVW3 Divide word 3 operand

38 EDITPC Edit packed to character

7B EDIV Extended divide

74 EMODD Extended modulus D_floating

S4 EMODF Extended modulus F _floating

S4FD EMODG Extended modulus G_floating

74FD EMO DH Extended modulus H_floating

7A EMUL Extended multiply

EE EXTV Extract field

EF EXTZV Extract zero-extended field

EB FFC Find first clear bit

EA FFS Find first set bit

00 HALT Halt

96 INCB Increment byte

D6 INCL Increment long

86 INCW Increment word

OA INDEX Index calculation

SC INSOHI Insert into queue at head, interlocked

SD INSOTI Insert into queue at tail, interlocked

OE INSOUE Insert into queue

FO INSV Insert field

17 JMP Jump

16 JS8 Jump to subroutine

06 LDPCTX Load program context

3A LOCC Locate character

39 MATCHC Match characters

92 MCOM8 Move complemented byte

D2 MCOML Move complemented long

82 MCOMW Move complemented word

DB MFPR Move from processor register

SE MNEGB Move negated byte

72 MNEGD Move negated D_floating

D-6

Permanent Symbol Table
D. 1 Opcodes (Alphabetic Order)

Table D-1 (Cont.) Opcodes and Functions

Hex
Value Mnemonic Functional Name

52 MNEGF Move negated F _floating

52FD MNEGG Move negated G_floating

72FD MNEGH Move negated H_floating

CE MN EGL Move negated long

AE MNEGW Move negated word

9E MOVAB Move address of byte

7E MOVAD Move address of D_floating

DE MOVAF Move address of F _floating

7E MOVAG Move address of G _floating

7EFD MOVAH Move address of H_floating

DE MOVAL Move address of long

7EFD MOVAO Move address of octa

7E MOVAO Move address of quad

3E MOVAW Move address of word

90 MOVB Move byte

28 MOVC3 Move character 3 operand

2C MOVC5 Move character 5 operand

70 MOVD Move D_floating

50 MOVF Move F _floating

50FD MOVG Move G_floating

70FD MOVH Move H_floating

DO MOVL Move long

7DFD MOVO Move data

34 MOVP Move packed

DC MOVPSL Move program status longword

70 MOVO Move quad

2E MOVTC Move translated characters

2F MOVTUC Move translated until character

BO MOVW Move word

OA MOVZBL Move zero-extended byte to long

98 MOVZBW Move zero-extended byte to word

3C MOVZWL Move zero-extended word to long

DA MTPR Move to processor register

84 MULB2 Multiply byte 2 operand

85 MULB3 Multiply byte 3 operand

64 MULD2 Multiply O_floating 2 operand

65 MULD3 Multiply O_floating 3 operand

D-7

Permanent Symbol Table
D .1 Opcodes (Alphabetic Order)

Table D-1 (Cont.) Opcodes and Functions

Hex
Value Mnemonic Functional Name

44 MULF2 Multiply F _floating 2 operand

45 MULF3 Multiply F _floating 3 operand

44FD MULG2 Multiply G_floating 2 operand

45FD MULG3 Multiply G_floating 3 operand

64FD MULH2 Multiply H_floating 2 operand

65FD MULH3 Multiply H_floating 3 operand

C4 MULL2 Multiply long 2 operand

C5 MULL3 Multiply long 3 operand

25 MULP Multiply packed

A4 MULW2 Multiply word 2 operand

A5 MULW3 Multiply word 3 operand

01 NOP No operation

75 POL YD Evaluate polynomial D_floating

55 POLYF Evaluate polynomial F _floating

55FD POLYG Evaluate polynomial G_floating

75FD POLYH Evaluate polynomial H_floating

BA POPA Pop registers

oc PROBER Probe read access

OD PROBEW Probe write access

9F PUSH AB Push address of byte

7F PUSH AD Push address of D_floating

DF PUSH AF Push address of F _floating

7F PU SHAG Push address of G_floating

7FFD PU SHAH Push address of H_floating

DF PUSH AL Push address of long

7FFD PUSH AO Push address of octa

7F PUSHAQ Push address of quad

3F PUSHAW Push address of word

DD PUSHL Push long

BB PUSHR Push registers

02 REI Return from exception or interrupt

5E REMQHI Remove from queue at head, interlocked

5F REMQTI Remove from queue at tail, interlocked

OF REMQUE Remove from queue

04 RET Return from called procedure

SC ROTL Rotate long

05 RSB Return from subroutine

0-8

Permanent Symbol Table
D.1 Opcodes (Alphabetic Order)

Table D-1 (Cont.) Opcodes and Functions

Hex
Value Mnemonic Functional Name

D9 S8WC Subtract with carry

2A SCA NC Scan for character

38 SKPC Skip character

F4 S08GEO Subtract one and branch on greater or equal

F5 S08GTR Subtract one and branch on greater

28 SPANC Span characters

82 SU882 Subtract byte 2 operand

83 SU883 Subtract byte 3 operand

62 SU8D2 Subtract D_floating 2 operand

63 SU8D3 Subtract D_floating 3 operand

42 SU8F2 Subtract F _floating 2 operand

43 SU8F3 Subtract F _floating 3 operand

42FD SU8G2 Subtract G_floating 2 operand

43FD SUBG3 Subtract G_floating 3 operand

62FD SUBH2 Subtract H_floating 2 operand

63FD SUBH3 Subtract H_floating 3 operand

C2 SUBL2 Subtract long 2 operand

C3 SUBL3 Subtract long 3 operand

22 SUBP4 Subtract packed 4 operand

23 SUBP6 Subtract packed 6 operand

A2 SUBW2 Subtract word 2 operand

A3 SUBW3 Subtract word 3 operand

07 SVPCTX Save process context

95 TSTB Test byte

73 TSTD Test D_floating

53 TSTF Test F _floating

53FD TSTG Test G _floating

73FD TSTH Test H_floating

D5 TSTL Test long

85 TSTW Test word

FC XFC Extended function call

SC XORB2 Exclusive-OR byte 2 operand

SD XORB3 Exclusive-OR byte 3 operand

cc XORL2 Exclusive-OR long 2 operand

CD XORL3 Exclusive-OR long 3 operand

AC XORW2 Exclusive-OR word 2 operand

AD XORW3 Exclusive-OR word 3 operand

D-9

D.2

Permanent Symbol Table
D.2 Opcodes (Numeric Order)

Opcodes (Numeric Order)

Table D-2 One-Byte Opcodes

Hex
Value Mnemonic

00 HALT

01 NOP

02 REI

03 BPT

04 RET

05 RSB

06 LDPCTX

07 SVPCTX

08 CVTPS

09 CVTSP

OA INDEX

OB CRC

oc PROBER

OD PROBEW

OE INSOUE

OF RE MOUE

10 BSBB

11 BRB

12 BNEQ, BNEOU

13 BEOL, BEOLU

14 BGTR

15 BLEQ

16 JSB

17 JMP

18 BGEQ

19 BLSS

1A BGTRU

18 BLEOU

1C BVC

1D BVS

1E BGEQU,BCC

1F BLSSU, BCS

20 ADDP4

21 ADDP6

22 SUBP4

D-10

Hex
Value Mnemonic

30 BSBW

31 BRW

32 CVTWL

33 CVTWB

34 MOVP

35 CMPP3

36 CVTPL

37 CMPP4

38 EDITPC

39 MATCHC

3A LOCC

3B SKPC

3C MOVZWL

3D ACBW

3E MOVAW

3F PUSHAW

40 ADDF2

41 ADDF3

42 SUBF2

43 SUBF3

44 MULF2

45 MULF3

46 DIVF2

47 DIVF3

48 CVTFB

49 CVTFW

4A CVTFL

4B CVTRFL

4C CVTBF

4D CVTWF

4E CVTLF

4F ACBF

50 MOVF

51 CMPF

52 MNEGF

Permanent Symbol Table
D.2 Opcodes (Numeric Order)

Table D-2 (Cont.) One-Byte Opcodes

Hex Hex
Value Mnemonic Value Mnemonic

23 SU8P6 53 TSTF

24 CVTPT 54 EMO OF

25 MULP 55 POLYF

26 CVTTP 56 CVTFO

27 DIVP 57 Reserved to
DIGITAL

28 MOVC3 58 AOAWI

29 CMPC3 59 Reserved to
DIGITAL

2A SCA NC 5A Reserved to
DIGITAL

28 SPANC 58 Reserved to
DIGITAL

2C MOVC5 5C INSOHI

2D CMPC5 50 INSOTI

2E MOVTC 5E REMOHI

2F MO VT UC 5F REMO Tl

60 AD002 90 MOV8

61 AD003 91 CMP8

62 SU8D2 92 MCOM8

63 SU803 93 81T8

64 MUL02 94 CLR8

65 MUL03 95 TST8

66 DIV02 96 INC8

67 DIVD3 97 DEC8

68 CVT08 98 CVT8L

69 CVTOW 99 CVT8W

6A CVTOL 9A MOVZ8L

68 CVTRDL 98 MOVZ8W

6C CVT8D 9C ROTL

60 CVTWO 9D AC88

6E CVTLD 9E MOVA8

6F AC80 9F PUSHA8

70 MOVO AO AOOW2

71 CMPO A1 ADOW3

72 MNEGD A2 SU8W2

73 TSTO A3 SU8W3

74 EMO OD A4 MULW2

D-11

Permanent Symbol Table
D.2 Opcodes (Numeric Order)

Table D-2 (Cont.) One-Byte Opcodes

Hex
Value Mnemonic

75 POL YD

76 CVTDF

77 Reserved to DIGIT AL

78 ASHL

79 ASHQ

7A EMUL

7B EDIV

7C CLRQ, CLRD, CLRG

70 MOVQ

7E MOVAO,MOVAD,MOVAG

7F PUSHAO,PUSHAD,PUSHAG

80 ADDB2

81 ADDB3

82 SUBB2

83 SUBB3

84 MULB2

85 MULB3

86 DIVB2

87 DIVB3

88 BISB2

89 BISB3

SA BICB2

SB BICB3

SC XORB2

80 XORB3

SE MNEGB

SF CASEB

co ADDL2

C1 ADDL3

C2 SUBL2

C3 SUBL3

C4 MULL2

C5 MULL3

C6 DIVL2

C7 DIVL3

ca BISL2

C9 BISL3

D-12

Hex
Value Mnemonic

A5 MULW3

A6 DIVW2

A7 DIVW3

AS BISW2

A9 BISW3

AA BICW2

AB BICW3

AC XORW2

AD XORW3

AE MNEGW

AF CA SEW

BO MOVW

B1 CMPW

B2 MCOMW

B3 BITW

B4 CLRW

B5 TSTW

B6 INCW

B7 DECW

BS BISPSW

B9 BICPSW

BA POPR

BB PUS HR

BC CHMK

BO CHME

BE CHMS

BF CHMU

EO BBS

E1 BBC

E2 BBSS

E3 BBCS

E4 BBSC

E5 BBCC

E6 BBSSI

E7 BBCCI

ES BLBS

E9 BLBC

Permanent Symbol Table
D.2 Opcodes (Numeric Order)

Table D-2 (Cont.) One-Byte Opcodes

Hex Hex
Value Mnemonic Value Mnemonic

CA BICL2 EA FFS

CB BICL3 EB FFC

cc XORL2 EC CMPV

CD XORL3 ED CMPZV

CE MNEGL EE EXTV

CF CASEL EF EXTZV

DO MOVL FO INSV

01 CMPL F1 ACBL

02 MCOML F2 AOBLSS

03 BITL F3 AOBLEQ

04 CLRL, CLRF F4 SOBGEQ

05 TSTL F5 SO BG TR

D6 INCL F6 CVTLB

07 DECL F7 CVTLW

DB ADWC F8 ASHP

09 SBWC F9 CVTLP

DA MTPR FA CALLG

DB MFPR FB CALLS

DC MOVPSL FC XFC

DD PUSHL FD ESCO to
DIGITAL

DE MOVAL, MOVA FE ESCE to
DIGITAL

DF PUSHAL, PUSHAF FF ESCF to
DIGITAL

0-13

Permanent Symbol Table
0.2 Opcodes (Numeric Order)

Table D-3 Two-Byte Opcodes

Hex
Value Mnemonic

OOFD Reserved to DIGIT AL

01FD Reserved to DIGIT AL

02FD Reserved to DIGIT AL

03FD Reserved to DIGIT AL

04FD Reserved to DIGIT AL

05FD Reserved to DIGIT AL

06FD Reserved to DIGIT AL

07FD Reserved to DIGIT AL

08FD Reserved to DIGIT AL

09FD Reserved to DIGIT AL

OAFD Reserved to DIGIT AL

OBFD Reserved to DIGIT AL

OCFD Reserved to DIGIT AL

ODFD Reserved to DIGIT AL

OEFD Reserved to DIGIT AL

OFFD Reserved to DIGIT AL

10FD Reserved to DIGIT AL

11FD Reserved to DIGIT AL

12FD Reserved to DIGIT AL

13FD Reserved to DIGIT AL

14FD Reserved to DIGIT AL

15FD Reserved to DIGIT AL

16FD Reserved to DIGIT AL

17FD Reserved to DIGIT AL

18FD Reserved to DIGIT AL

19FD Reserved to DIGIT AL

1AFD Reserved to DIGIT AL

1BFD Reserved to DIGIT AL

1CFD Reserved to DIGIT AL

1DFD Reserved to DIGIT AL

1EFD Reserved to DIGIT AL

1FFD Reserved to DIGIT Al

20FD Reserved to DIGIT Al

21FD Reserved to DIGIT AL

22FD Reserved to DIGIT AL

23FD Reserved to DIGIT AL

24FD Reserved to DIGIT Al

D-14

Hex
Value Mnemonic

30FD Reserved to DIGIT AL

31FD Reserved to DIGIT AL

32FD CVTDH

33FD CVTGF

34FD Reserved to DIGIT AL

35FD Reserved to DIGIT AL

36FD Reserved to DIGIT AL

37FD Reserved to DIGIT AL

38FD Reserved to DIGIT AL

39FD Reserved to DIGIT AL

3AFD Reserved to DIGIT AL

3BFD Reserved to DIGIT AL

3CFD Reserved to DIGIT AL

3DFD Reserved to DIGIT AL

3EFD Reserved to DIGIT AL

3FFD Reserved to DIGIT AL

40FD ADDG2

41FD ADDG3

42FD SUBG2

43FD SUBG3

44FD MULG2

45FD MULG3

46FD DIVG2

47FD DIVG3

48FD CVTGB

49FD CVTGW

4AFD CVTGL

4BFD CVTRGL

4CFD CVTBG

4DFD CVTWG

4EFD CVTLG

4FFD ACBG

50FD MOVG

51FD CMPG

52FD MNEGG

53FD TSTG

54FD EMODG

Table 0-3 (Cont.) Two-Byte Opcodes

Hex
Value Mnemonic

25FD Reserved to DIGIT AL

26FD Reserved to DIGIT AL

27FD Reserved to DIGIT AL

28FD Reserved to DIGIT AL

29FD Reserved to DIGIT AL

2AFD Reserved to DIGIT AL

2BFD Reserved to DIGIT AL

2CFD Reserved to DIGIT AL

2DFD Reserved to DIGIT AL

2EFD Reserved to DIGIT AL

2FFD Reserved to DIGIT AL

60FD ADDH2

61FD ADDH3

62FD SUBH2

63FD SUBH3

64FD MULH2

65FD MULH3

66FD DIVH2

67FD DIVH3

68FD CVTHB

69FD CVTHW

6AFD CVTHL

6BFD CVTRHL

6CFD CVTBH

6DFD CVTWH

6EFD CVTLH

6FFD ACBH

70FD MOVH

71FD CMPH

72FD MNEGH

73FD TSTH

74FD EMODH

75FD POLYH

76FD CVTHG

77FD Reserved to DIGIT AL

78FD Reserved to DIGIT AL

79FD Reserved to DIGIT AL

Hex
Value

55FD

56FD

57FD

58FD

59FD

5AFD

5BFD

5CFD

5DFD

5EFD

5FFD

90FD

91FD

92FD

93FD

94FD

95FD

96FD

97FD

98FD

99FD

9AFD

9BFD

9CFD

9DFD

9EFD

9FFD

AOFD

A1FD

A2FD

A3FD

A4FD

A5FD

A6FD

A7FD

A8FD

A9FD

Permanent Symbol Table
0.2 Opcodes (Numeric Order)

Mnemonic

POLYG

CVTGH

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

CVTFH

CVTFG

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

D-15

Permanent Symbol Table
D.2 Opcodes (Numeric Order)

Table D-3 (Cont.) Two-Byte Opcodes

Hex
Value Mnemonic

7AFD Reserved to DIGIT AL

7BFD Reserved to DIGIT AL

7CFD CLRH, CLRO

7DFD MOVO

7EFD MOVAH,MOVAO

7FFD PUSHAH, PUSHAO

80FD Reserved to DIGIT AL

81FD Reserved to DIGIT AL

82FD Reserved to DIGIT AL

83FD Reserved to DIGIT AL

84FD Reserved to DIGIT AL

85FD Reserved to DIGIT AL

86FD Reserved to DIGIT AL

87FD Reserved to DIGIT AL

88FD Reserved to DIGIT AL

89FD Reserved to DIGIT AL

8AFD Reserved to DIGIT AL

8BFD Reserved to DIGIT AL

8CFD Reserved to DIGIT AL

SDFD Reserved to DIGIT AL

8EFD Reserved to DIGIT AL

8FFD Reserved to DIGIT AL

COFD Reserved to DIGIT AL

C1FD Reserved to DIGIT AL

C2FD Reserved to DIGIT AL

C3FD Reserved to DIGIT AL

C4FD Reserved to DIGIT AL

C5FD Reserved to DIGIT AL

C6FD Reserved to DIGIT AL

C7FD Reserved to DIGIT AL

CSFD Reserved to DIGIT AL

C9FD Reserved to DIGIT AL

CAFD Reserved to DIGIT AL

CBFD Reserved to DIGIT AL

CCFD Reserved to DIGIT AL

CDFD Reserved to DIGIT AL

CEFD Reserved to DIGIT AL

D-16

Hex
Value Mnemonic

AAFD Reserved to DIGIT AL

ABFD Reserved to DIGIT AL

ACFD Reserved to DIGIT AL

ADFD Reserved to DIGIT AL

AEFD Reserved to DIGIT AL

AFFD Reserved to DIGIT AL

BOFD Reserved to DIGIT AL

B1FD Reserved to DIGIT AL

B2FD Reserved to DIGIT AL

B3FD Reserved to DIGIT AL

B4FD Reserved to DIGIT AL

B5FD Reserved to DIGIT AL

B6FD Reserved to DIGIT AL

B7FD Reserved to DIGIT AL

BSFD Reserved to DIGIT AL

B9FD Reserved to DIGIT AL

BAFD Reserved to DIGIT AL

BBFD Reserved to DIGIT AL

BCFD Reserved to DIGIT AL

BDFD Reserved to DIGIT AL

BEFD Reserved to DIGIT AL

BFFD Reserved to DIGIT AL

EOFD Reserved to DIGIT AL

E1FD Reserved to DIGIT AL

E2FD Reserved to DIGIT AL

E3FD Reserved to DIGIT AL

E4FD Reserved to DIGIT AL

E5FD Reserved to DIGIT AL

E6FD Reserved to DIGIT AL

E7FD Reserved to DIGIT AL

ESFD Reserved to DIGIT AL

E9FD Reserved to DIGIT AL

EAFD Reserved to DIGIT AL

EBFD Reserved to DIGIT AL

ECFD Reserved to DIGIT AL

EDFD Reserved to DIGIT AL

EEFD Reserved to DIGIT AL

Table D-3 (Cont.) Two-Byte Opcodes

Hex
Value Mnemonic

CFFD Reserved to DIGIT AL

DOFD Reserved to DIGIT AL

D1FD Reserved to DIGIT AL

D2FD Reserved to DIGIT AL

D3FD Reserved to DIGIT AL

D4FD Reserved to DIGIT AL

D5FD Reserved to DIGIT AL

D6FD Reserved to DIGIT AL

D7FD Reserved to DIGIT AL

DSFD Reserved to DIGIT AL

D9FD Reserved to DIGIT AL

DAFD Reserved to DIGIT AL

DBFD Reserved to DIGIT AL

DCFD Reserved to DIGIT AL

DDFD Reserved to DIGIT AL

DEFD Reserved to DIGIT AL

DFFD Reserved to DIGIT AL

Hex
Value

EFFD

FOFD

F1FD

F2FD

F3FD

F4FD

FSFD

F6FD

F7FD

FSFD

F9FD

FAFD

FBFD

FCFD

FCFE

FCFF

FDFF

FEFF

FFFF

Permanent Symbol Table
0.2 Opcodes (Numeric Order)

Mnemonic

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

CVTHF

CVTHD

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

Reserved to DIGIT AL

BUGL

BUGW

Reserved for all time

D-17

E Exceptions

Exceptions can be grouped into the following six classes:

• Arithmetic traps and faults

• Memory management exceptions

• Exceptions detected during operand reference

• Tracing

• Serious system failures

E.1 Arithmetic Traps and Faults
This section contains the descriptions of the exceptions that occur as the
result of performing an arithmetic or conversion operation. They are mutually
exclusive and are all assigned the same vector in the system control block
(SCB) and the same signal Hreason" code. Each exception indicates that an
instruction has been completed (trap) or backed up (fault). An appropriate
distinguishing exception type code is pushed onto the stack as a longword.
Table E-1 lists the arithmetic exception type codes.

Table E-1 Arithmetic Exception Type Codes

Exception Type

Traps

integer overflow

integer divide-by-zero

floating overflow

floating or decimal
divide-by-zero

floating underflow

decimal overflow

subscript range

Faults

floating underflow

floating divide-by-zero

floating underflow

Mnemonic

SS$_1NTOVF

SS$_1NTDIV

SS$_FLTOVF

SS$_FLTDIV

SS$_FLTUND

SS$_0ECOVF

SS$_SUBRNG

SS$_FL TOVF _F

SS$_FL TDIV_F

SS$_Fl TUND_F

Decimal
Value

1

2

3

4

5

6

7

8

9

10

Hexa-
decimal
Value

1

2

3

4

5

6

7

8

9

A

E-1

E.1.1

E.1.2

E.1.3

E.1.4

E.1.5

Exceptions
E.1 Arithmetic Traps and Faults

Integer Overflow Trap
An integer overflow trap is an exception indicating that the last instruction
executed had an integer overflow, which set the program status longword
(P5L) V bit, and that the integer overflow was enabled (the IV bit in the PSL
was set). The stored result is the low-order part of the correct result. The N
and Z bits in the P5L are set according to the stored result. The type code
pushed onto the stack is 1 (55$_.INTOVF).

Integer Divide-by-Zero Trap
An integer divide-by-zero trap is an exception indicating that the last
instruction executed had an integer zero divisor. The stored result is equal
to the dividend, and condition code V bit in the P5L is set. The type code
pushed onto the stack is 2 (55$_.INTDIV).

Floating Overflow Trap
A floating overflow trap is an exception indicating that the last instruction
executed resulted in an exponent greater than the largest representable
exponent for the data type after normalization and rounding. The stored
result contains a one in the sign field and zeros in the exponent and fraction
fields. This is a reserved operand. It causes a reserved operand fault if used
in a subsequent floating point instruction. The N and V condition code bits in
the P5L are set, and the Z and C bits in the P5L are cleared. The type code
pushed onto the stack is 3 (55$-.FLTOVF).

Divide-by-Zero Trap
A floating divide-by-zero trap is an exception indicating that the last
instruction executed had a floating zero divisor. The stored result is the
reserved operand described previously for the floating overflow trap. The
condition codes are set as they are for the floating overflow trap.

A decimal string divide-by-zero trap is an exception indicating that the last
instruction executed had a decimal-string zero divisor. The destination, RO
through RS, and condition codes are UNPREDICTABLE. The zero divisor can
be either +O or -0.

The type code pushed onto the stack for both types of divide-by-zero is 4
(55$-.FL TDIV).

Floating Underflow Trap

E-2

A floating underflow trap is an exception indicating that the last instruction
executed resulted in an exponent less than the smallest representable
exponent for the data type after normalization and rounding, and that floating
underflow was enabled (FU set). The stored result is zero. The N, V, and C
condition codes bits in the P5L are cleared, and the Z bit in the P5L is set,
except for the polynomial evaluation instruction POL Yx. In POL Yx, the trap
occurs on completion of the instruction, which may be many operations after
the underflow. The condition codes are set on the final result in POLYx. The
type code pushed onto the stack is 5 (55$JL TUND).

E.1.6

E.1.7

E.1.8

E.1.9

Decimal String Overflow Trap

Exceptions
E.1 Arithmetic Traps and Faults

A decimal string overflow trap is an exception indicating that the last
instruction executed had a decimal-string result too large for the destination
string provided, and that decimal overflow was enabled (the DV bit in the
PSL was set). The V condition code bit in the PSL is always set. The type
code pushed onto the stack is 6 (SS$_DECOVF).

Subscript-Range Trap
A subscript range trap is an exception indicating that the last instruction was
an INDEX instruction with a subscript operand that failed the range check.
The value of the subscript operand is lower than the low operand or greater
than the high operand. The result is stored in indexout, and the condition
codes are set as if the subscript were within range. The type code pushed
onto the stack is 7 (SS$_SUBRNG).

Floating Overflow Fault
A floating overflow fault is an exception indicating that the last instruction
executed resulted in an exponent greater than the largest representable
exponent for the data type after normalization and rounding. The destination
was unaffected, and the saved condition codes are UNPREDICTABLE. The
saved PC points to the instruction causing the fault. The POL Yx instruction is
suspended with the first-part-done bit (FPO) set. The type code pushed onto
the stack is 8 (SS$JL TOVFJ).

Divide-by-Zero Floating Fault
A floating divide-by-zero fault is an exception indicating that the last
instruction executed had a floating zero divisor. The quotient operand was
unaffected and the saved condition codes are UNPREDICTABLE. The saved
PC points to the instruction causing the fault. The type code pushed onto the
stack is 9 (SS$_FL TDIVJ).

E. 1 . 1 0 Floating Underflow Fault
A floating underflow fault is an exception indicating that the last instruction
executed resulted in an exponent less than the smallest representable
exponent for the data type after normalization and rounding, and that floating
underflow was enabled (the FU bit was set). The destination operand is
unaffected. The saved condition codes are UNPREDICTABLE. The saved
PC points to the instruction causing the fault. The POLYx instruction is
suspended with FPO set. The type code pushed onto the stack is 10
(SS$JL TUNDJ).

E.2 Memory Management Exceptions
A memory management exception can be either an access control violation
fault or a translation not valid fault.

E-3

E.2.1

E.2.2

Exceptions
E.2 Memory Management Exceptions

Access Control Violation Fault
An access control violation fault is an exception indicating that the process
attempted a reference not allowed at the current access mode.

Translation Not Valid Fault
A translation not valid fault is an exception indicating that the process
attempted a reference to a page for which the valid bit in the page table had
not been set.

Note that if a process attempts to reference a page for which the page table
entry specifies both translation not valid fault and access control violation, an
access control violation fault occurs.

E.3 Exceptions Detected During Operand Reference

E.3.1

E.3.2

Two exceptions are possible during operand reference: the reserved
addressing mode fault and the reserved operand exception.

Reserved Addressing Mode Fault
A reserved addressing mode fault is an exception indicating that an operand
specifier attempted to use an addressing mode that is disallowed. No
parameters are pushed.

Reserved Operand Exception

E-4

A reserved operand exception is an exception indicating that an accessed
operand has a format reserved for future use by DIGITAL. No parameters
are pushed onto the stack. This exception always backs up the saved PC to
point to the opcode. The exception service routine may determine the type of
operand by examining the opcode using the saved PC.

Note that only the changes made by instruction fetch and the changes
made because of operand specifier evaluation may be restored. Therefore,
some instructions are not restartable. These exceptions are labeled as
aborts rather than as faults. The saved PC is always restored properly
unless the instruction attempted to modify it in a manner that results in
UNPREDICTABLE results.

The reserved operand exceptions are caused by the following:

• Bit field too wide

• Invalid combination of bits in PSL restored by the return from interrupt
(REI) instruction (fault)

• Invalid combination of bits in PSW mask longword during a return from
procedure (RET) instruction (fault)

• Invalid combination of bits in the bit set PSW (BISPSW) or bit clear PSW
(BICPSW) instructions (fault)

• Invalid call procedure with stack argument list (CALLS) or call procedure
with general argument list (CALLG) instructions entry mask (fault)

Exceptions
E.3 Exceptions Detected During Operand Reference

• Invalid register number in the move from processor register (MFPR)
instruction or move to processor register (MTPR) instruction (fault)

• Invalid PCB contents in the load processor context (LDPCTX) instruction
for some implementations (abort)

• Unaligned operand in the add aligned word interlocked (ADAWI)
instruction (fault)

• Invalid register contents in the move to processor register (MTPR)
instruction for some implementations (fault)

• Invalid operand addresses in insert and remove queue interlocked
(INSQHI, INSQTI, REMQHI, or REMQTI) instructions (fault)

• A floating point number that has the sign bit set and the exponent zero in
the polynomial evaluation (POLY) instruction table (fault)

• POLY degree too large (fault)

• Decimal string too long (abort)

• Invalid digit in convert trailing numeric to packed (CVTTP) or convert
separate numeric to packed (CVTSP) instructions (abort)

• Reserved pattern operator in the edit packed to character string (EDITPC)
instruction (fault)

• Incorrect source string length at completion of EDITPC (abort)

E.4 Exceptions Occurring as the Consequence of an Instruction

E.4.1

The following exceptions may occur as a consequence of instruction execution:

• Reserved or privileged instruction fault

• Opcode reserved to customers fault

• Instruction emulation exceptions

• Compatibility mode exception

• Change mode trap

• Breakpoint fault

Each is described in the following subsections.

Reserved or Privileged Instruction Fault
A reserved or privileged instruction fault occurs when the processor
encounters an opcode that is not specifically defined or requires higher
privileges than the current mode. No parameters are pushed onto the stack.
Opcode FFFF (hex) will always fault.

E-5

E.4.2

E.4.3

E.4.4

Exceptions
E.4 Exceptions Occurring as the Consequence of an Instruction

Operand Reserved to Customers Fault
An opcode reserved to customers fault is an exception that occurs when an
opcode reserved to customers is executed. The operation is identical to the
reserved or privileged instruction fault, except that the event is caused by a
different set of opcodes and faults through a different vector. All opcodes
reserved to customers start with FC (hex), which is the XFC instruction. If
the special instruction must generate a unique exception, one of the reserved
to-customer vectors should be used. An example might be an unrecognized
second byte of the instruction.

The XFC fault is intended primarily for use with writable control store to
implement installation-dependent instructions. The method used to enable
and disable the handling of an XFC fault in user-written microcode is
implementation dependent. Some implementations may transfer control
to microcode without checking bits <l:O> of the exception vector.

Instruction Emulation Exceptions
When a subset processor executes a string instruction that is omitted from its
instruction set, an emulation exception results. An emulation exception can
occur through either of two system control block (SCB) vectors, depending on
whether or not the first-part-done (FPO) bit in the program status longword
was set at the beginning of the instruction. If the FPO bit is clear, a subset
emulation trap occurs through the SCB vector at offset CB (hex), and a subset
emulation trap frame is pushed onto the current stack. If the FPO bit is set, a
suspended emulation fault occurs through the SCB vector at offset CC (hex),
and the PC and the PSL are pushed onto the current stack.

Compatibility Mode Exception

E-6

A compatibility mode exception is an exception that occurs when the
processor is in compatibility mode. A longword of information containing
a code that indicates the exception type is pushed onto the stack. Figure E-1
shows the stack frame, which is the same as that for arithmetic exceptions.

Figure E-1 Compatibility Mode Exception Stack Frame

Type Code :(SP)

PC of Next Instruction to Execute

PSL

ZK-6351-HC

E.4.5

E.4.6

Exceptions
E.4 Exceptions Occurring as the Consequence of an Instruction

The compatibility type codes are shown in Table E-2.

Table E-2 Compatibility Mode Exception Type Codes

Exception Type

Faults

reserved opcode

BPT instruction

IOT instruction

EMT instruction

TRAP instruction

illegal instruction

Aborts

odd address

Decimal
Value

0

2

3

4

5

6

All other exceptions in compatibility mode, including the access control
violation fault, the translation not valid fault, and the machine check abort,
occur by means of the regular native-mode vector.

Change Mode Trap

Breakpoint Fault

A change mode trap is an exception occurring when one of the change mode
instructions (CHMK, CHME, CHMS, or CHMU) is executed. The instruction
operand is pushed onto the exception stack.

A breakpoint fault is an exception that occurs when the breakpoint instruction
(BPT) is executed. The BPT instruction pushes the current PSL onto the stack.

To proceed from a breakpoint fault, a debugger or tracing program does the
following:

1 Restores the original contents of the location containing the BPT
instruction.

2 Sets the T bit in the PSL saved by the BPT fault. The PSL is on the stack.

3 Resumes operation of the main instruction stream.

When the instruction that has a breakpoint completes execution, a trace
exception occurs. At this point, the tracing program takes control and does the
following:

1 Reinserts the BPT instruction.

2 Restores the T bit to its original state (usually 0).

3 Resumes operation of the main instruction stream.

E-7

Exceptions
E.4 Exceptions Occurring as the Consequence of an Instruction

E.5 Trace Fault

E-8

Note that if both tracing and breakpointing are in progress (if the PSL T bit
was set at the time of the BPT), both the BPT restoration and a normal trace
exception should be processed on the trace exception by the trace handler.

Program tracing is used for many purposes. Debugging programs and
evaluating program performance are the most common uses of program
tracing.

A trace fault is an exception that occurs between instructions when trace
is enabled. One trace fault occurs before the execution of each traced
instruction. The address in the PC saved when a trace fault occurs is the
address of the instruction after the trace fault that would normally be
executed. The trace exception for an instruction takes precedence over
all other exceptions. The detection of reserved instruction faults occurs
after the trace fault. If a trace fault and a memory management fault (or
an odd address abort during a compatibility mode instruction fetch) occur
simultaneously, exceptions are taken in UNPREDICTABLE order.

To ensure that exactly one trace occurs per instruction despite other traps and
faults, the PSL contains the trace enable (T) and trace pending (TP) bits.

The PSL TP bit generates a fault before any other processing at the start of
the next instruction.

The following are rules of operation for trace:

1 At the beginning of an instruction, if the trace pending (TP) bit is set, it is
cleared and a trace fault is taken.

2 The value of the trace enable (T) bit is loaded into the trace pending (TP)
bit.

3 The detection of interrupts and other exceptions can occur during
instruction execution. In this case, TP is cleared before the exception
or interrupt is initiated. The system saves the entire PSL including the T
bit and TP bit on interrupt or exception initiation and restores the PSL at
the end with an REI. This makes interrupts and benign exceptions totally
transparent to the executing program.

The following are conditions and results that might occur during
instruction execution or before the next instruction:

a. If the instruction faults or an interrupt is serviced, the PSL TP bit is
cleared before the PSL is saved on the stack. The saved PC (the next
lower word on the stack after the saved PSL) is set to the start of the
faulting or interrupted instruction. Instruction execution is resumed at
step 1.

b. If the instruction aborts or takes an arithmetic trap, the PSL TP bit is
not changed before the PSL is saved on the stack.

c. If an interrupt is serviced after instruction completion and arithmetic
traps but before the presence of tracing is checked at the start of the
next instruction, the PSL TP bit is not changed before the PSL is
saved on the stack.

E.5.1

E.5.2

E.5.3

E.5.4

Exceptions
E.5 Trace Fault

Trace Operation When Entering a Change Mode Instruction
The routine entered by a change mode (CHMx) instruction is not traced
because change mode clears T and TP in the new PSL that is used for
whichever new mode is entered. However, if the T bit was set in the old
PSW (the one to be saved) at the beginning of the change mode instruction,
the system sets both the T and the TP bit in the saved PSL. Trace faults
resume with the instruction that follows other returns from interrupt (REI) in
the routine entered by the CHMx instruction. An instruction following an REI
faults if T was set when the REI was executed, or if the TP bit in the saved
PSL is set. In both cases, TP is set after the REI.

Trace Operation Upon Return From Interrupt
Note that a trace fault that occurs for an instruction following an REI
instruction that had set the TP will be taken with the new PSL restored
by the REI instruction. Thus, special care must be taken if exception or
interrupt routines are traced.

Trace Operation After a BISPSW Instruction
If the T bit is set by a BISPSW instruction, trace faults begin with the second
instruction after the BISPSW.

Trace Operation After a CALLS or CALLG Instruction
The CALLS and CALLG instructions save a clear T bit, although the T bit
in the PSL is unchanged. This is done so that a debugger or trace program
proceeding from a BPT fault does not get a spurious trace from the RET that
matches the CALL.

E.6 Serious System Failures
The following are possible serious system failures:

• Kernel stack not valid abort

• Interrupt stack not valid halt

• Machine check exception

These system failures are described in the following sections.

E-9

E.6.1

E.6.2

E.6.3

Exceptions
E.6 Serious System Failures

Kernel Stack Not Valid Abort
The kernel stack not valid abort is an exception indicating that the kernel
stack was not valid while the processor was pushing information onto it
during the initiation of an exception or interrupt. This is usually an indication
of a stack overflow or other operating system error. During this process,
the attempted exception is transformed into an abort that uses the interrupt
stack. Only the PSL and PC of the original exception are pushed onto the
interrupt stack. The interrupt priority level (IPL) is raised to IF (hex). If the
exception vector bits <l:O> are not both 1, the operation of the processor is
UNDEFINED.

Software can abort the process without aborting the system. However,
because of the lost information, the process cannot be continued. If the kernel
stack is not valid during the normal execution of an instruction (including
CHMx or REI), the normal memory management fault is initiated.

Interrupt Stack Not Valid Halt
An interrupt stack not valid halt results when the interrupt stack was not valid
or a memory error occurred while the processor was pushing information
onto the interrupt stack during the initiation of an exception or interrupt. No
further interrupt requests are acknowledged on the processor. The processor
leaves the PC, the PSL, and the reason for the halt in registers so that they
are available to a debugger, to the normal bootstrap routine, or to an optional
watch-dog bootstrap routine. A watch-dog bootstrap routine can cause the
processor to leave the halted state.

Machine Check Exception

E-10

A machine check exception indicates that the processor detected an internal
error. As is usual for exceptions, a machine check is taken regardless of
current interrupt priority level (IPL). The machine check exception vector
(bits 0 to 1) must specify 1 or the operation of the processor is UNDEFINED.
The exception is taken on the interrupt stack, and IPL is raised to lF (hex).

The processor pushes a machine check stack frame onto the interrupt stack,
consisting of a count longword, an implementation-dependent number of
error report longwords, and a PC, and a PSL. The count longword reports the
number of bytes of error report pushed. For example, if 4 longwords of error
report are pushed, the count longword will contain 16 (decimal).

Software can decide, on the basis of the information presented, whether to
abort the current process if the machine check came from the process. The
machine check includes any uncorrected bus and memory errors and any
other processor-detected errors. Some processor errors cannot ensure the
state of the machine at all. For such errors, the state is preserved as well as
possible, given the circumstances.

Index

A
Abort

kernel stack not valid • E-10
Absolute expression • 3-9
Absolute mode • 5-14

assembling relative mode as• 6-22
Absolute queue• 9-82 to 9-85

manipulating• 9-85
ACBB (Add Compare and Branch Byte) instruction•

9-44to 9-45
ACBD (Add Compare and Branch D __ floating)

instruction• 9-44 to 9-45
ACBF (Add Compare and Branch F __ floating)

instruction • 9-44 to 9-45
ACBG (Add Compare and Branch G __ floating)

instruction• 9-44 to 9-45
ACBH (Add Compare and Branch H __ floating)

instruction• 9-44 to 9-45
ACBL (Add Compare and Branch Long) instruction•

9-44to 9-45
ACBW (Add Compare and Branch Word)

instruction• 9-44 to 9-45
ADAWI (Add Aligned Word Interlocked)

instruction• 9-7
ADDB2 (Add Byte 2 Operand) instruction • 9-8
ADDB3 (Add Byte 3 Operand) instruction • 9-8
ADDD2 (Add D_floating 2 Operand) instruction •

9-106
ADDD3 (Add D_floating 3 Operand) instruction •

9-106
ADDF2 (Add F _floating 2 Operand) instruction•

9-106
ADDF3 (Add F _floating 3 Operand) instruction•

9-106
ADDG2 (Add G_floating 2 Operand) instruction•

9-106
ADDG3 (Add G_floating 3 Operand) instruction•

9-106
ADDH2 (Add H_floating 2 Operand) instruction•

9-106
ADDH3 (Add H _floating 3 Operand) instruction •

9-106
ADDL2 (Add Long 2 Operand) instruction • 9-8
ADDL3 (Add Long 3 Operand) instruction• 9-8
ADDP4 (Add Packed 4 Operand) instruction•

9-145 to 9-146

ADDP6 (Add Packed 6 Operand) instruction •
9-145 to 9-146

Address
access type• 8-16
instructions• 9-33 to 9-35
storage directive (.ADDRESS)• 6-4
virtual • 8-1

.ADDRESS directive• 6-4
Addressing mode• 5-1 to 5-19

absolute• 5-14, 6-22
autodecrement • 5-7
autoincrement • 5-5 to 5-6
autoincrement deferred• 5-6 to 5-7
branch•5-18to 5-19
determining• 6-67 to 6-68
displacement• 5-8 to 5-9
displacement deferred• 5-9 to 5-10
general•5-15 to 5-16
general register• 5-1 to 5-12
immediate• 5-14 to 5-15
index•5-16 to 5-18
literal•5-10 to 5-12, 5-15
operand specifier formats• 8-17 to 8-27
program counter• 5-12 to 5-16
register• 5-4 to 5-5
register deferred• 5-5
relative•5-12 to 5-13, 6-19, 6-22
relative deferred• 5-13, 6-1 9
summary• 5-1, C-9

Address storage directive (.ADDRESS)• 6-4
ADDW2 (Add Word 2 Operand) instruction• 9-8
ADDW3 (Add Word 3 Operand) instruction• 9-8
ADWC (Add with Carry) instruction• 9-9
.ALIGN directive• 6-5 to 6-6
AND operator• 3-16
AOBLEQ (Add One and Branch Less Than or Equal)

instruction• 9-46
AOBLSS (Add One and Branch Less Than)

instruction • 9-4 7
Argument

actual• 4-1 to 4-2
in a macro • 4-1 to 4-6
length • 6-63
number of• 6-62

Arithmetic instruction
integer• 9-5 to 9-32

lndex-1

Index

Arithmetic instructions• 9-14 1 to 9-164
floating-point• 9-101 to 9-123

Arithmetic shift operator• 3-16
.ASCIC directive• 6-8
.ASCID directive• 6-9
ASCII

character set• A-1
operator• 3-13

.ASCII directive• 6-10
ASCII string storage directive• 6-1 to 6-11

counted (.ASCIC) • 6-8
string (.ASCII)• 6-10
string-descriptor (.ASCID) • 6-9
zero-terminated (.ASCIZ) • 6-11

.ASCIZ directive• 6-11
ASHL (Arithmetic Shift Long) instruction• 9-10
ASHP (Arithmetic Shift and Round Packed)

instruction• 9-14 7 to 9-148
ASHQ (Arithmetic Shift Quad) instruction• 9-10
Assembler directives,

summary• C-1
Assembly termination• 6-25
Assembly termination directive (.END)• 6-25
Assignment statement• 1-1, 3-17
Autodecrement mode • 5-7

operand specifier format• 8-19
Autoincrement deferred mode• 5-6 to 5-7

operand specifier format• 8-19
Autoincrement mode• 5-5 to 5-6

operand specifier format• 8-18

B
Base operand specifier• 8-24
BBC (Branch on Bit Clear) instruction• 9-50
BBCC (Branch on Bit Clear and Clear) instruction •

9-51
BBCCI (Branch on Bit Clear and Clear Interlocked)

instruction• 9-52
BBCS (Branch on Bit Clear and Set) instruction•

9-51
BBS (Branch on Bit Set) instruction• 9-50
BBSC (Branch on Bit Set and Clear) instruction •

9-51
BBSS (Branch on Bit Set and Set) instruction•

9-51
BBSSI (Branch on Bit Set and Set Interlocked)

instruction • 9-52
BCC (Branch on Carry Clear) instruction•

9-48to 9-49

lndex-2

BCS (Branch on Carry Set) instruction •
9-48 to 9-49

BEQL (Branch on Equal) instruction•
9-48to 9-49

BEQLU (Branch on Equal Unsigned) instruction •
9-48to 9-49

BGEO (Branch on Greater Than or Equal) instruction
• 9-48 to 9-49

BGEQU (Branch on Greater Than or Equal
Unsigned) instruction• 9-48 to 9-49

BGTR (Branch on Greater Than) instruction•
9-48to 9-49

BGTRU (Branch on Greater Than Unsigned)
instruction • 9-48 to 9-49

BICB2 (Bit Clear Byte 2 Operand) instruction• 9-11
BICB3 (Bit Clear Byte 3 Operand) instruction• 9-11
BICL2 (Bit Clear Long 2 Operand) instruction• 9-11
BICL3 (Bit Clear Long 3 Operand) instruction• 9-11
BICPSW (Bit Clear PSW) instruction• 9-71
BICW2 (Bit Clear Word 2 Operand) instruction•

9-11
BICW3 (Bit Clear Word 3 Operand) instruction•

9-11
Binary operator• 3-15 to 3-16

summary• C-8
BISB2 (Bit Set Byte 2 Operand) instruction• 9-12
BISB3 (Bit Set Byte 3 Operand) instruction • 9-12
BISL2 (Bit Set Long 2 Operand) instruction • 9-12
BISL3 (Bit Set Long 3 Operand) instruction • 9-12
BISPSW (Bit Set PSW) instruction• 9-72
BISW2 (Bit Set Word 2 Operand) instruction•

9-12
BISW3 (Bit Set Word 3 Operand) instruction•

9-12
BITB (Bit Test Byte) instruction• 9-13
BITL (Bit Test Long) instruction• 9-13
BITW (Bit Test Word) instruction• 9-13
BLBC (Branch on Low Bit Clear) instruction • 9-53
BLBS (Branch on Low Bit Set) instruction • 9-53
BLEQ (Branch on Less Than or Equal) instruction•

9-48to 9-49
BLEQU (Branch on Less Than or Equal Unsigned)

instruction• 9-48 to 9-49
Block storage allocation directives (.BLKx) •

6-12 to 6-13
BLSS (Branch on Less Than) instruction •

9-48to 9-49
BLSSU (Branch on Less Than Unsigned) instruction

•9-48to 9-49
BNEQ (Branch on Not Equal) instruction•

9-48to 9-49
BNEQU (Branch on Not Equal Unsigned) instruction

•9-48to 9-49

BPT (Breakpoint Fault) instruction• 9-73
Branch access type• 8-16
Branch mode • 5-18 to 5-19

operand specifier format• 8-26 to 8-27
BAB (Branch Byte Displacement) instruction • 9-54
BRW (Branch Word Displacement) instruction•

9-54
BSBB (Branch to Subroutine Byte Displacement)

instruction• 9-55
BSBW (Branch to Subroutine Word Displacement)

instruction• 9-55
BUGL (Bugcheck Longword Message Identifier)

instruction • 9-193
BUGW (Bugcheck Word Message Identifier)

instruction • 9-193
BVC (Branch on Overflow Clear) instruction•

9-48to 9-49
BVS (Branch on Overflow Set) instruction •

9-48to 9-49
Byte data type• 8-1
.BYTE directive• 6-14 to 6-15
Byte storage directive (.BYTE)• 6-14 to 6-15

c
Call frame• 9-63
CALLG (Call Procedure With General Argument

List) instruction• 9-65 to 9-66
CALLS (Call Procedure with Stack Argument List)

instruction• 9-67 to 9-68
Carry condition code (C) • 8-14
CASEB (Case Byte) instruction• 9-56
CASEL (Case Long) instruction • 9-56
CASEW (Case Word) instruction• 9-56
Character set

in source statement•3-1 to 3-2
special characters• C-6 to C-7
table•A-1

Character string
data type • 8-7
instructions• 9-124 to 9-137
length• 6-63

CHME (Change Mode to Executive) instruction •
9-186 to 9-187

CHMK (Change Mode to Kernel) instruction •
9-186 to 9-187

CHMS (Change Mode to Supervisor) instruction •
9-186 to 9-187

CHMU (Change Mode to User) instruction•
9-186 to 9-187

CLRB (Clear Byte) instruction • 9-14
CLAD (Clear D_floating) instruction• 9-107
CLRF (Clear F _floating) instruction• 9-107
CLRG (Clear G_floating) instruction• 9-107
CLRH (Clear H_floating) instruction• 9-107
CLRL (Clear Long) instruction• 9-14
CLRO (Clear Octa) instruction • 9-14
CLRQ (Clear Quad) instruction • 9-14
CLAW (Clear Word) instruction• 9-14
CMPB (Compare Byte) instruction • 9-1 5
CMPC3 (Compare Characters 3 Operand)

instruction• 9-126 to 9-127
CMPC5 (Compare Characters 5 Operand)

instruction• 9-126 to 9-127

Index

CMPD (Compare D_floating) instruction • 9-108
CMPF (Compare F _floating) instruction • 9-108
CMPG (Compare G _floating) instruction• 9-108
CMPH (Compare H _floating) instruction• 9-108
CMPL (Compare Long) instruction • 9-15
CMPP3 (Compare Packed 3 Operand) instruction •

9-149
CMPP4 (Compare Packed 4 Operand) instruction •

9-149
CMPV (Compare Field) instruction • 9-38
CMPW (Compare Word) instruction• 9-15
CMPZV (Compare Zero Extended Field) instruction

•9-38
Colon(:)

in label field• 2-2
Complement operator• 3-1 5
Conditional assembly block directive

.ENDC•6-26
(.IF)• 6-39 to 6-41
listing unsatisfied code• 6-87

Condition code• 8-13 to 8-15, 9-4
carry (C) • 8-14
negative (N) • 8-14
overflow (V) • 8-14
zero (Z) • 8-14

Continuation character (-)
in listing file • 3-9
in source statement• 2-1

Control instructions• 9-42 to 9-62
CRC (Calculate Cyclic Redundancy Check)

instruction• 9-139 to 9-140
Created local label • 4-7

range•3-7
. CROSS directive• 6-16 to 6-1 7
Cross-reference directive

.CROSS• 6-16 to 6-17

.NOCROSS•6-16to 6-17
(.NOCROSS) • 6-65

lndex-3

Index

Current location counter• 3-1 7 to 3-18
CVTBD (Convert Byte to D_floating) instruction•

9-109 to 9-111
CVTBF (Convert Byte to F _floating) instruction •

9-109 to 9-111
CVTBG (Convert Byte to G_floating) instruction•

9-109 to 9-111
CVTBH (Convert Byte to H_floating) instruction•

9-109 to 9-111
CVTBL (Convert Byte to Long) instruction • 9-16
CVTBW (Convert Byte to Word) instruction• 9-16
CVTDB (Convert O_floating to Byte) instruction •

9-109 to 9-111
CVTDF (Convert O_floating to F _floating)

instruction • 9-109 to 9-111
CVTDH (Convert O_floating to H_floating)

instruction • 9-109 to 9-111
CVTDL (Convert O_floating to Long) instruction •

9-109 to 9-111
CVTDW (Convert O_floating to Word) instruction•

9-109 to 9-111
CVTFB (Convert F _floating to Byte) instruction•

9-109 to 9-111
CVTFD (Convert F _floating to D_floating)

instruction • 9-109 to 9-111
CVTFG (Convert F _floating to G_floating)

instruction • 9-109 to 9-1 11
CVTFH (Convert F _floating to H_floating)

instruction • 9-109 to 9-111
CVTFL (Convert F _floating to Long) instruction •

9-109 to 9-111
CVTFW (Convert F _floating to Word) instruction•

9-109 to 9-111
CVTGB (Convert G_floating to Byte) instruction•

9-109 to 9-111
CVTGF (Convert G_floating to F _floating)

instruction • 9-109 to 9-111
CVTGH (Convert G_floating to H_floating)

instruction • 9-109 to 9-111
CVTGL (Convert G_floating to Long) instruction•

9-109 to 9-111
CVTGW (Convert G_floating to Word) instruction•

9-109 to 9-111
CVTHB (Convert H _floating to Byte) instruction•

9-109 to 9-111
CVTHD (Convert H _floating to O_floating)

instruction • 9-109 to 9-111
CVTHF (Convert H _floating to F _floating)

instruction • 9-109 to 9-111
CVTHG (Convert H _floating to G _floating)

instruction • 9-109 to 9-111
CVTHL (Convert H _floating to Long) instruction•

9-109 to 9-111

lndex-4

CVTHW (Convert H_floating to Word) instruction•
9-109 to 9-111

CVTLB (Convert Long to Byte) instruction • 9-16
CVTLD (Convert Long to O_floating) instruction •

9-109 to 9-111
CVTLF (Convert Long to F _floating) instruction •

9-109 to 9-111
CVTLG (Convert Long to G_floating) instruction•

9-109 to 9-111
CVTLH (Convert Long to H_floating) instruction•

9-109 to 9-111
CVTLP (Convert Long to Packed) instruction •

9-150
CVTL W (Convert Long to Word) instruction • 9-16
CVTPL (Convert Packed to Long) instruction •

9-151
CVTPS (Convert Packed to Leading Separate

Numeric) instruction• 9-152 to 9-153
CVTPT (Convert Packed to Trailing Numeric)

instruction • 9-154 to 9-155
CVTRDL (Convert Rounded O_floating to Long)

instruction • 9-109 to 9-111
CVTRFL (Convert Rounded F _floating to Long)

instruction • 9-109 to 9-111
CVTRGL (Convert Rounded G_floating to Long)

instruction • 9-109 to 9-111
CVTRHL (Convert Rounded H_floating to Long)

instruction• 9-109 to 9-111
CVTSP (Convert Leading Separate Numeric to

Packed) instruction • 9-156
CVTTP (Convert Trailing Numeric to Packed)

instruction• 9-15 7 to 9-158
CVTWB (Convert Word to Byte) instruction• 9-16
CVTWD (Convert Word to D_floating) instruction•

9-109 to 9-1 11
CVTWF (Convert Word to F _floating) instruction•

9-109 to 9-111
CVTWG (Convert Word to G_floating) instruction•

9-109 to 9-111
CVTWH (Convert Word to H_floating) instruction•

9-109 to 9-111
CVTWL (Convert Word to Long) instruction• 9-16
Cyclic redundancy check instruction•

9-138to 9-140

D
O_floating data type• 9-102
.D_FLOA TING directive• 6-20
Data storage directive

. ADDRESS• 6-4

Data storage directive (cont'd.)

.ASCIC•6-8

.ASCID•6-9

.ASCII• 6-10

.ASCIZ•6-11

.BYTE•6-14to 6-15

.D_FLOATING•6-20
F_FLOA TING• 6-34
G_FLOA TING• 6-35
H_FLOA TING• 6-37
.LONG•6-55
.OCTA•6-69
.PACKED•6-73
.OUAD•6-80
.SIGNED_BYTE • 6-89
.SIGNED_WORD•6-90 to 6-91
.WORD•6-99

Data type•8-1 to 8-13
byte•8-1
character string • 8-7
floating-point• 8-3 to 8-5, 9-101 to 9-102
integer• 8-1 to 8-3
leading separate numeric string • 8-11 to 8-12
longword• 8-2
octaword • 8-3
packed decimal string• 8-12 to 8-13
quadword• 8-2
string•8-7 to 8-13
trailing numeric string • 8-7 to 8-11
variable-length bit field• 8-5 to 8-6
word•8-1

. DEBUG directive• 6-18
Debug directive (.DEBUG)• 6-18
Debugger

module name• 6-23
routine name• 6-23

DECB (Decrement Byte) instruction • 9-17
Decimal/hexadecimal conversion• B-1

table•B-2
Decimal overflow enable (DV) • 8-15
Decimal string instructions• 9-14 1 to 9-164
DECL (Decrement Long) instruction• 9-17
DECW (Decrement Word) instruction • 9-17
. DEFAULT directive• 6-19
Default displacement length directive (.DEFAULT)•

6-19
Delimiter

string argument• 4-3
Direct assignment statement• 1-1 , 3-17
Directive• 1-1 to 1-2, 6-1 to 6-99

as operator• 2-3

Index

Directive (cont'd.)

general assembler• 1-1, 6-1, 6-1 to 6-2
macro• 1-1, 6-1, 6-2 to 6-3
summary• C-1 to C-5

Disable assembler functions directive (.DISABLE)•
6-21

.DISABLE directive• 6-21
Displacement deferred mode• 5-9 to 5-10

operand specifier formats• 8-20 to 8-21
Displacement mode• 5-8 to 5-9

operand specifier formats• 8-20
DIVB2 (Divide Byte 2 Operand) instruction • 9-18
DIVB3 (Divide Byte 3 Operand) instruction • 9-18
DIVD2 (Divide D_floating 2 Operand) instruction •

9-112 to 9-113
DIVD3 (Divide D_floating 3 Operand) instruction •

9-112 to 9-113
DIVF2 (Divide F _floating 2 Operand) instruction•

9-112 to 9-113
DIVF3 (Divide F _floating 3 Operand) instruction•

9-112 to 9-113
DIVG2 (Divide G_floating 2 Operand) instruction•

9-11 2 to 9-113
DIVG3 (Divide G_floating 3 Operand) instruction•

9-112 to 9-113
DIVH2 (Divide H_floating 2 Operand) instruction•

9-11 2 to 9-113
DIVH3 (Divide H_floating 3 Operand) instruction•

9-112 to 9-113
Divide-by-zero trap• 8-15
DIVL2 (Divide Long 2 Operand) instruction• 9-18
DIVL3 (Divide Long 3 Operand) instruction• 9-18
DIVP (Divide Packed) instruction• 9-159 to 9-160
DIVW2 (Divide Word 2 Operand) instruction•

9-18
DIVW3 (Divide Word 3 Operand) instruction•

9-18
.DOUBLE directive• 6-20

E
Edit

instruction• 9-165 to 9-182
pattern operator• 9-166, 9-168 to 9-182

EDITPC (Edit Packed to Character String)
instruction • 9-166 to 9-182

EDIV (Extended Divide) instruction • 9-19
EMODD (Extended Multiply and lntegerize D_

floating) instruction• 9-114 to 9-115
EMODF (Extended Multiply and lntegerize F _

floating) instruction • 9-114 to 9-115

lndex-5

Index

EMODG (Extended Multiply and lntegerize G_
floating) instruction • 9-114 to 9-115

EMODH (Extended Multiply and lntegerize H_
floating) instruction• 9-114 to 9-115

EMUL (Extended Multiply) instruction• 9-20
Enable assembler functions• 6-22 to 6-24
.ENABLE directive• 6-22 to 6-24, 6-33
.ENDC directive• 6-26
End conditional assembly directive (.END)• 6-26
.END directive• 6-25
End macro definition directive (.ENDM) • 6-27
.ENOM directive• 6-27
.ENDR directive• 6-28
.ENTRY directive• 6-29 to 6-30
Entry mask• 9-63
Entry point

defining• 6-29 to 6-30
Entry point directive (.ENTRY)• 6-29 to 6-30
EO$ADJUST _INPUT (Adjust Input Length) pattern

operator• 9-171
EO$BLANK_lERO (Blank Backwards when Zero)

pattern operator• 9-17 2
EO$CLEAR_SIGNIF (Clear Significance) pattern

operator• 9-181
EO$END (End Edit) pattern operator• 9-173
EO$END_FLOA T (End Floating Sign) pattern

operator• 9-17 4
EO$FILL (Store Fill) pattern operator• 9-175
EO$FLOA T (Float Sign) pattern operator• 9-17 6
E0$1NSERT (Insert Character) pattern operator•

9-177
EO$LOAD_FILL (Load Fill Register) pattern

operator• 9-178
EO$LOAD_MINUS (Load Sign Register If Minus)

pattern operator• 9-178
EO$LOAD_PLUS (Load Sign Register If Plus)

pattern operator• 9-178
EO$LOAD_SIGN (Load Sign Register) pattern

operator• 9-178
EO$MOVE (Move Digits) pattern operator• 9-179
EO$REPLACE_SIGN (Replace Sign when Zero)

pattern operator• 9-180
EO$SET_SIGNIF (Set Significance) pattern operator

• 9-181
EO$STORE_SIGN (Store Sign) pattern operator•

9-182
.ERROR directive• 6-31
.EVEN directive• 6-32
Exception • E-1

access control violation• E-4
arithmetic • E-1
arithmetic type code• E-1

lndex-6

Exception (cont'd.)

breakpoint • E-7
change mode • E-7
compatibility mode• E-6

type code• E-7
control•8-13 to 8-15
customer reserved opcode • E-6
decimal

string overflow • E-3
floating

divide-by-zero• E-2, E-3
overflow•E-2, E-3
underflow• E-2, E-3

instruction
emulation • E-6
execution • E-5

integer
divide-by-zero• E-2
overflow• E-2

kernel stack not valid • E-10
machine check• E-10
memory management• E-3
operand reference• E-4
reserved

addressing mode • E-4
operand • E-4

subscript-range• E-3
trace•E-8
trace operation • E-8
translation not valid• E-4

Exclusive OR operator• 3-16
Expression • 3-9 to 3-10

absolute • 3-9
evaluation of• 3-9
example of• 3-10
external • 3-9
global•3-9
relocatable• 3-9, 3-18

Extent
syntax• 7-1

.EXTERNAL directive• 6-33
External expression • 3-9
External symbol• 6-98

attribute directive (.EXTERNAL)• 6-33
defining• 6-22, 6-33

%EXTRACT operator• 4-10 to 4-11
EXTV (Extract Field) instruction • 9-39
EXTZV (Extract Zero Extended Field) instruction •

9-39

F
F _floating • 8-3
F_floating data type • 9-102
.F _FLOATING directive• 6-34
Fault

access control violation• E-4
arithmetic• E-1
arithmetic type code• E-1
breakpoint• E-7
customer reserved opcode• E-6
floating

divide-by-zero• E-3
overflow•E-2, E-3
underflow• E-3

instruction execution• E-5
memory management• E-3
privileged instruction• E-5
reserved

addressing mode • E-4
opcode•E-5

trace•E-8
translation not valid • E-4

FFC (Find First Clear) instruction • 9-40
FFS (Find First Set) instruction • 9-40
Field• 2-1 to 2-4

comment• 2-1, 2-3 to 2-4
label• 2-1, 2-2
Must Be Zero (MBZ) • 7-1
operand• 2-3
operator• 2-3
variable-length bit• 8-5 to 8-6

.FLOAT directive• 6-34
Floating overflow fault• 8-15
Floating-point

accuracy• 9-103 to 9-104
rounding • 9-103 to 9-104
zero•9-102

Floating-point constants (.D_FLOA TING)• 6-20
Floating-point data type • 8-3 to 8-5,

9-101 to 9-102
D_floating • 8-4
G_floating • 8-4
H_floating • 8-5

Floating-point instructions• 9-101 to 9-123
Floating-point number• 9-101

format•3-3
F _floating • 6-34
G_floating • 6-35
H_floating • 6-37

Floating-point number (cont'd.)

in source statement• 3-3 to 3-4
rounding• 6-23
storage• 6-20
storing• 6-34, 6-35, 6-37
truncating• 6-23

Floating-point operator• 3-14
Floating-point storage directive

.D_FLOATING • 6-20

.F _FLOATING• 6-34

.G_FLOATING • 6-35
Floating underflow enable (FU) • 8-14
Formal argument• 4-1 to 4-2
Frame

call•9-63
stack•9-63

G
G_floating data type• 9-102
.G_FLOATING directive• 6-35
General mode • 5-15 to 5-16
General register mode• 5-1 to 5-12
. GLOBAL directive• 6-36
Global expression • 3-9
Global label• 2-2
Global symbol• 3-6, 6-98

attribute directive (.GLOBAL)• 6-36
defining• 6-22, 6-33, 6-36

Index

defining for shareable image • 6-94 to 6-96

H
.H_FLQATING directive• 6-37
H_floating-point storage directive (.H_FLQATING)

• 6-37
Halt

interrupt stack not valid • E-10
HALT (Halt) instruction • 9-7 4
Hexadecimal/decimal conversion• B-1

table•B-2

I
. IDENT directive• 6-38
Identification directive (.IDENT) • 6-38

lndex-7

Index

.IF directive• 6-39 to 6-4 1

.IF _FALSE directive• 6-42 to 6-44

.IF_ TRUE directive• 6-42 to 6-44

. IF_ TRUE_FALSE directive• 6-42 to 6-44

.llF directive• 6-45
Immediate conditional assembly block directive

(.llF) • 6-45
Immediate mode• 5-14 to 5-15

contrasted with literal mode • 5-15
INCB (Increment Byte) instruction• 9-21
INCL (Increment Long) instruction• 9-21
Inclusive OR operator• 3-16
INCW (Increment Word) instruction• 9-21
Indefinite repeat argument directive (.IRP) •

6-46to 6-47
Indefinite repeat character directive (.IRPC) •

6-48 to 6-49
INDEX (Compute Index) instruction •

9-75 to 9-76
Index mode•5-16 to 5-18

operand specifier format• 8-23 to 8-24
INSQHI (Insert Entry into Queue at Head,

Interlocked) instruction• 9-89 to 9-90
INSQTI (Insert Entry into Queue at Tail, Interlocked)

instruction• 9-91 to 9-92
INSQUE (Insert Entry in Queue) instruction •

9-93 to 9-94
Instruction • 1-1, 9-1 to 9-193

address• 9-33 to 9-35
arithmetic•9-5 to 9-32, 9-101 to 9-123,

9-141 to 9-164
as operator• 2-3
character string• 9-124 to 9-137
control• 9-42 to 9-62
decimal string • 9-14 1 to 9-164
floating-point• 9-101 to 9-123
format• 8-15 to 8-27
integer• 9-5 to 9-32
logical • 9-5 to 9-32
packed decimal • 9-14 1 to 9-164
procedure call • 9-63 to 9-69
queue• 9-82 to 9-100
string• 9-124 to 9-137, 9-14 1 to 9-164
variable-length bit field• 9-36 to 9-41

Instruction notation
operand specifier• 9-2 to 9-3
operation description • 9-3 to 9-4

INSV (Insert Field) instruction • 9-4 1
Integer

data type • 8-1 to 8-3
in source statement • 3-3
unsigned• 8-1, 8-2

lndex-8

Integer instructions• 9-5 to 9-32
Integer overflow enable (IV) • 8-14
.IRPC directive• 6-48 to 6-49
. IRP directive• 6-46 to 6-4 7

J
JMP (Jump) instruction • 9-58
JSB (Jump To Subroutine) instruction• 9-59

K
Keyword argument• 4-3

L
Label

created local • 4-7
global•2-2
user-defined local• 3-7 to 3-8, 4-7

LDPCTX (Load Process Context) instruction •
9-189

Leading separate numeric string
data type• 8-11 to 8-12

%LENGTH operator• 4-8 to 4-9
.LIBRARY directive• 6-50
. LINK directive• 6-51 to 6-53

/INCLUDE qualifier• 6-51
/LIBRARY qualifier• 6-51
/SELECTIVE_SEARCH qualifier• 6-52
/SHAREABLE qualifier• 6-52

. LIST directive• 6-54
See also .SHOW directive

Listing
table of contents• 6-92

Listing control directive
. IDENT • 6-38
.LIST•6-54
. NLIST • 6-64
.NOSHOW•6-66,6-87to 6-88
.PAGE•6-74
.SHOW•6-87 to 6-88

Listing level count• 6-88
Literal mode• 5-10 to 5-12

contrasted with immediate mode• 5-1 5
operand specifier format• 8-21 to 8-23

Local label
saving • 6-85 to 6-86
user-defined • 3-7 to 3-8

Local label block
ending• 6-22
starting• 6-22

Local symbol• 3-6
%LOCATE operator• 4-9 to 4-10
Location control directive

.ALIGN•6-5 to 6-6

.BLKx•6-12 to 6-13
Location counter alignment directive

(.ODD)•6-70
Location counter control directive

(.EVEN)• 6-32
LOCC (Locate Character) instruction• 9-128
Logical AND operator

See AND operator
Logical exclusive OR operator

See Exclusive OR operator
Logical inclusive OR operator

See Inclusive OR operator
Logical instruction• 9-5 to 9-32
.LONG directive• 6-55
Longword data type • 8-2
Longword storage directive (.LONG)• 6-55

M
Macro•4-1 to 4-11

nested• 4-4 to 4-5
passing numeric value to• 4-6
with the same name as an opcode• 6-5 7

Macro argument• 4-1 to 4-6
actual• 4-1 to 4-2
concatenated• 4-5 to 4-6
delimited• 4-3 to 4-4, 4-5
formal•4-1 to 4-2
keyword• 4-3
positional • 4-3
string • 4-3 to 4-5

Macro call• 4-1
as operator• 2-3
listing• 6-87
number of arguments• 6-62

Macro call directive (.MCALL)• 6-59
Macro definition• 4-1

default value• 4-2
end•6-27

Macro definition (cont'd.)

labeling in• 4-7
listing• 6-87

Macro definition directive
(.MACRO)• 6-56 to 6-57

Index

Macro deletion directive (.MDELETE) • 6-60
.MACRO directive• 6-56 to 6-57
Macro exit directive (.MEXIT) • 6-61
Macro expansion

listing• 6-87
printing• 4-1
terminating • 6-61

Macroinstruction
See Macro

Macro library
adding a name to • 6-50

Macro library directive (.LIBRARY)• 6-50
Macro link directive (.LINK)• 6-51 to 6-53
Macro name• 3-6
Macro operator

%EXTRACT•4-10to 4-11
%LENGTH•4-8to 4-9
%LOCATE•4-9to 4-10
string • 4-8 to 4-11

Macro string operator
summary• C-8

Mask
entry•9-63
register• 3-13 to 3-14
register save• 6-29, 6-58

.MASK directive• 6-58
MA TCHC (Match Characters) instruction • 9-129
MBZ field• 7-1
.MCALL directive• 6-59
MCOMB (Move Complemented Byte) instruction•

9-22
MCOML (Move Complemented Long) instruction•

9-22
MCOMW (Move Complemented Word) instruction

•9-22
.MDELETE directive• 6-60
Memory management

exception• E-3
fault•E-3

Message display directive
(.ERROR)• 6-31
(.PRINT)• 6-75

Message warning display directive
(.WARN)•6-97

. MEXIT directive • 6-61
MFPR (Move from Processor Register) instruction •

9-192

lndex-9

Index

MNEGB (Move Negated Byte) instruction • 9-23
MNEGD (Move Negated D_floating) instruction•

9-116
MNEGF (Move Negated F _floating) instruction•

9-116
MNEGG (Move Negated G_floating) instruction•

9-116
MNEGH (Move Negated H_floating) instruction•

9-116
MNEGL (Move Negated Long) instruction• 9-23
MNEGW (Move Negated Word) instruction• 9-23
Modify access type• 8-16
Module name

made available to debugger• 6-23
MOV AB (Move Address Byte) instruction• 9-34
MOV AD (Move Address O_floating) instruction•

9-34
MOV AF (Move Address F _floating) instruction•

9-34
MOV AG (Move Address G_floating) instruction•

9-34
MOV AH (Move Address H_floating) instruction•

9-34
MOV AL (Move Address Long) instruction• 9-34
MOV AO (Move Address Octa) instruction• 9-34
MOV AO (Move Address Quad) instruction• 9-34
MOV AW (Move Add~ss Word) instruction• 9-34
MOVB (Move Byte) instruction• 9-24
MOVC3 (Move Character 3 Operand) instruction•

9-130 to 9-131
MOVC5 (Move Character 5 Operand) instruction•

9-130 to 9-131
MOVD (Move O_floating) instruction• 9-117
MOVF (Move F _floating) instruction• 9-117
MOVG (Move G_floating) instruction• 9-117
MOVH (Move H_floating) instruction• 9-117
MOVL (Move Long) instruction• 9-24
MOVO (Move Octa) instruction• 9-24
MOVP (Move Packed) instruction• 9-161
MOVPSL (Move PSL) instruction• 9-77
MOVQ (Move Quad) instruction • 9-24
MOVTC (Move Translated Characters) instruction•

9-132
MOVTUC (Move Translated Until Character)

instruction • 9-133 to 9-134
MOVW (Move Word) instruction• 9-24
MOVZBL (Move Zero-Extended Byte to Long)

instruction• 9-25
MOVZBW (Move Zero-Extended Byte to Word)

instruction• 9-25
MOVZWL (Move Zero-Extended Word to Long)

instruction• 9-25

lndex-10

MTPR (Move to Processor Register) instruction •
9-191

MULB2 (Multiply Byte 2 Operand) instruction•
9-26

MULB3 (Multiply Byte 3 Operand) instruction •
9-26

MULD2 (Multiply D_floating 2 Operand) instruction
• 9-118

MULD3 (Multiply D_floating 3 Operand) instruction
• 9-118

MULF2 (Multiply F _floating 2 Operand) instruction •
9-118

MULF3 (Multiply F _floating 3 Operand) instruction•
9-118

MULG2 (Multiply G_floating 2 Operand) instruction
• 9-118

MULG3 (Multiply G_floating 3 Operand) instruction
• 9-118

MULH2 (Multiply H_floating 2 Operand) instruction
• 9-118

MULH3 (Multiply H_floating 3 Operand) instruction
• 9-118

MULL2 (Multiply Long 2 Operand) instruction•
9-26

MULL3 (Multiply Long 3 Operand) instruction•
9-26

MULP (Multiply Packed) instruction • 9-162
MUL W2 (Multiply Word 2 Operand) instruction•

9-26
MULW3 (Multiply Word 3 Operand) instruction•

9-26
Must Be Zero

See also MBZ
See Field

N
.NARG directive• 6-62
. NCHR directive• 6-63
Negative condition code (N) • 8-14
. NLIST directive • 6-64

See also . NOS HOW directive
.NOCROSS directive• 6-16 to 6-17, 6-65
NOP (No Operation) instruction• 9-78
.NOSHOW directive• 6-66, 6-87 to 6-88
.NTYPE directive• 6-67 to 6-68
Number

See also Integer, Floating-point number, and
Packed decimal string

in source statement• 3-2 to 3-4
Number of arguments directive (.NARG) •6-62

Number of characters directive (.NCHR) • 6-63
Numeric control operator• 3-14 to 3-1 5
Numeric string

leading separate• 8-11 to 8-12
trailing • 8-7 to 8-11

0
Object module

identifying • 6-38
naming• 6-93
title•6-93

.OCT A directive• 6-69
Octaword data type• 8-3
Octaword storage directive (.OCTA)• 6-69
.ODD directive•6-70
One's complement

of expression • 3-15
Opcode

creating • 6-7 1 to 6-7 2
defining • 6-81
format• 8-15
redefining• 6-57, 6-71 to 6-72
summary • D-1 to D-1 7

alphabetic order• D-1
numeric order• D-10

with the same name as a macro • 6-5 7
Opcode definition directive (.OPDEF) •

6-71 to 6-72
.OPDEF directive• 6-71 to 6-72
Operand• 2-3

determining addressing mode of•
6-67 to 6-68

primary• 8-24
reserved• 9-102, 9-103, 9-142

Operand generation directive
(.REF16) • 6-81
(.REF2) • 6-81
(. REF4) • 6-81
(.REFS) • 6-81

Operand specifier• 8-16 to 8-2 7
access type notation• 9-2
access types• 8-16
base•8-24
data type notation• 9-2 to 9-3
data types• 8-16
notation• 9-2 to 9-3

Operand specifier addressing mode formats •
8-17 to 8-27

autodecrement mode • 8-1 9

Index

Operand specifier addressing mode formats
(cont'd.)

autoincrement deferred mode• 8-19
autoincrement mode • 8-18
branch mode• 8-26 to 8-27
displacement deferred mode• 8-20 to 8-21
displacement mode• 8-20
index mode• 8-23 to 8-24
literal mode• 8-21 to 8-23
register deferred mode• 8-18
register mode• 8-1 7 to 8-18

Operand type directive (.NTYPE) • 6-67 to 6-68
Operator• 2-3

AND•3-16
arithmetic shift • 3-16
ASCll•3-13
binary• 3-15 to 3-16, C-8
complement• 3-15
exclusive OR• 3-16
floating-point• 3-14
inclusive OR• 3-16
macro • 4-8 to 4-11
macro string• C-8
numeric control• 3-14 to 3-1 5
pattern • 9-168 to 9-182
radix control• 3-11 to 3-12
register• 3-13 to 3-14
summary• C-7 to C-8
textual•3-12 to 3-14
unary• 3-10 to 3-11 , C-7

Overflow condition code (V) • 8-14

p
Packed decimal instructions• 9-14 1 to 9-164
Packed decimal string• 9-141 to 9-143

data type• 8-12 to 8-13
format•3-4
in source statement • 3-4
storing• 6-73

Packed decimal string directive (.PACKED)• 6-73
.PACKED directive• 6-73
Page ejection directive (.PAGE)• 6-74
Pattern operator• 9-166, 9-168 to 9-182
Period(.)

current location counter• 3-17
Permanent symbol • 3-4 to 3-5, 3-6
Permanent symbol table• 0-1 to D-1 7
POL YD (Polynomial Evaluation D_floating)

instruction• 9-119 to 9-12 1

lndex-11

Index

POL YF (Polynomial Evaluation F _floating)
instruction • 9-119 to 9-12 1

POLYG (Polynomial Evaluation G_floating)
instruction• 9-119 to 9-12 1

POLYH (Polynomial Evaluation H_floating)
instruction • 9-119 to 9-12 1

POPL instruction• 9-27
POPA (Pop Registers) instruction• 9-79
Positional argument• 4-3
Primary operand• 8-24
. PRINT directive• 6-7 5
PROBER (Probe Read) instruction• 9-184 to 9-185
PROBEW (Probe Write) instruction•

9-184to 9-185
Procedure call instructions• 9-63 to 9-69
Processor status longword• 8-13
Processor status word • 8-13 to 8-15

condition codes • 8-13 to 8-14
decimal overflow enable (DV) • 8-15
floating underflow enable (FU) • 8-14
integer overflow enable (IV) • 8-14
trace trap enable (T) • 8-14

Program counter mode• 5-12 to 5-16
Program section

absolute• 6-78, 6-79
alignment • 6-79
attributes•6-76 to 6-78, 6-79
defining• 6-76 to 6-79
directive

(.PSECT) •6-76 to 6-79
(.RESTORE_PSECT) • 6-84
(.SA VE_PSECT) • 6-85 to 6-86

name•6-76, 6-79
restoring context of• 6-84
saving context of• 6-85 to 6-86
saving local label• 6-85 to 6-86
unnamed•6-78, 6-79

.PSECT directive•6-76 to 6-79
PSW

See Processor status word
PUSHAB (Push Address Byte) instruction• 9-35
PUSH AD (Push Address D_floating) instruction•

9-35
PUSHAF (Push Address F _floating) instruction•

9-35
PUSHAG (Push Address G_floating) instruction•

9-35
PUSHAH (Push Address H_floating) instruction•

9-35
PUSHAL (Push Address Long) instruction• 9-35
PUSHAQ (Push Address Quad) instruction• 9-35
PUSHAW (Push Address Word) instruction• 9-35

lndex-12

PUSHL (Push Long) instruction• 9-27
PUSHR (Push Registers) instruction • 9-80

Q
.QUAD directive• 6-80
Quadword• 8-2
Quadword storage directive (.QUAD)• 6-80
Queue• 9-82 to 9-87

absolute • 9-82 to 9-85
header•9-82,9-85
inserting entries • 9-82 to 9-85,

9-85to 9-87
removing entries• 9-84 to 9-85, 9-87
self-relative• 9-85 to 9-87

Queue instructions • 9-82 to 9-100

R
Radix control operator• 3-11 to 3-1 2
Range

syntax• 7-1
Read access type• 8-16
. REFn directive• 6-81
Register deferred mode• 5-5

operand specifier format • 8-18
Register mask operator• 3-13 to 3-14, 6-29
Register mode• 5-4 to 5-5

operand specifier format• 8-17 to 8-18
Register name• 3-5, 3-6
Register save mask• 6-29, 6-58
Register save mask directive (.MASK)• 6-58
REI (Return from Exception or Interrupt) instruction

• 9-188
Relative deferred mode • 5-13

setting default displacement length • 6-19
Relative mode• 5-12 to 5-13

assembled as absolute mode• 6-22
setting default displacement length • 6-19

Relocatable expression • 3-9
REMQHI (Remove Entry from Queue at Head,

Interlocked) instruction• 9-95 to 9-96
REMQTI (Remove Entry from Queue at Tail,

Interlocked) instruction• 9-97 to 9-98
REMQUE (Remove Entry from Queue) instruction •

9-99 to 9-100
Repeat block

argument substitution • 6-46 to 6-4 7

Repeat block (cont'd.)

character substitution• 6-48 to 6-49
end•6-28
listing range definitions of• 6-87
listing range expansions of• 6-87
listing specifiers• 6-87
terminating repetition • 6-61

Repeat block directive (.REPEAT)• 6-82 to 6-83
.REPEAT directive• 6-82 to 6-83
Repeat range end directive (.ENDR) • 6-28
Reserved operand• 9-102, 9-103, 9-142
.RESTORE_PSECT directive• 6-84
RET (Return from Procedure) instruction•

9-69to 9-70
ROTL (Rotate Long) instruction• 9-28
Routine name

made available to debugger• 6-23
RSB (Return from Subroutine) instruction • 9-60

s
.SA VE_PSECT directive• 6-85 to 6-86
SBWC (Subtract with Carry) instruction • 9-29
SCANC (Scan Characters) instruction• 9-135
Section name

made available to debugger• 6-23
Self-relative queue• 9-85 to 9-87
Shift operator• 3-16
.SHOW directive• 6-87 to 6-88
.SIGNED_BYTE storage directive• 6-89
.SIGNED_ WORD storage directive• 6-90 to 6-91
Significance indicator• 9-181
SKPC (Skip Character) instruction • 9-136
SOBGEQ (Subtract One and Branch Greater Than

or Equal) instruction• 9-61
SOBGTR (Subtract One and Branch Greater Than)

instruction• 9-62
Source statement

See Statement
SP ANC (Span Characters) instruction• 9-13 7
Stack frame• 9"""'."63
Statement• 1-1

charact~r set• 3-1 to 3-2
comment•2-3 to 2-4
continuation of• 2-1
format• 2-1 to 2-4
label•2-2
operand• 2-3
operator• 2-3, C-7 to C-8
special characters• C-6 to C-7

String argument• 4-3 to 4-5
String data type

character• 8-7

Index

leading separate numeric• 8-11 to 8-12
packed decimal • 8-12 to 8-13
trailing numeric• 8-7 to 8-11

String instructions• 9-124 to 9-137,
9-141 to 9-164

String operator
in macro• 4-8 to 4-11

SUBB2 (Subtract Byte 2 Operand) instruction •
9-30

SUBB3 (Subtract Byte 3 Operand) instruction •
9-30

Subconditional assembly block directive •
6-42to 6-44

. IF _FALSE• 6-42 to 6-44

. IL TRUE• 6-42 to 6-44

.IF_TRUE_FALSE•6-42 to 6-44
Subconditional assembly block directive (.IF _x) •

6-42to 6-44
SUBD2 (Subtract D_floating 2 Operand) instruction

• 9-122
SUBD3 (Subtract O_floating 3 Operand) instruction

• 9-122
SUBF2 (Subtract F _floating 2 Operand) instruction •

9-122
SUBF3 (Subtract F _floating 3 Operand) instruction •

9-122
SUBG2 (Subtract G_floating 2 Operand) instruction

• 9-122
SUBG3 (Subtract G_floating 3 Operand) instruction

• 9-122
SUBH2 (Subtract H_floating 2 Operand) instruction

• 9-122
SUBH3 (Subtract H_floating 3 Operand) instruction

• 9-122
SUBL2 (Subtract Long 2 Operand) instruction •

9-30
SUBL3 (Subtract Long 3 Operand) instruction •

9-30
SUBP4 (Subtract Packed 4 Operand) instruction•

9-163 to 9-164
SUBP6 (Subtract Packed 6 Operand) instruction •

9-163 to 9-164
.SUBTITLE directive• 6-92
Subtitle listing control directive

(.SUBTITLE)• 6-92
SUBW2 (Subtract Word 2 Operand) instruction•

9-30
SUBW3 (Subtract Word 3 Operand) instruction•

9-30

lndex-13

Index

Summary of OPCODES
alphabetic order• D-1
numeric order• D-10

SVPCTX (Save Process Context) instruction •
9-190

Symbol• 3-4 to 3-7
cross-referencing• 6-16 to 6-17, 6-65
determining value of• 3-6
external • 6-33, 6-98
global•3-6, 6-33, 6-36, 6-94, 6-98
in operand field• 3-6
in operator field • 3-6
local•3-6
macro name• 3-6
made available to debugger• 6-22
permanent• 3-4 to 3-5, 3-6
register name• 3-5, 3-6
suppressing• 6-23
transferral to VAX Symbolic Debugger• 6-18
undefined• 6-22
user-defined• 3-5 to 3-6, 3-6

Symbol attribute directive
(.WEAK)• 6-98

Symbol definition for shareable image•
6-94to 6-96

Symbol for shareable image directive (.TRANSFER)
• 6-94 to 6-96

System failure• E-9

T
Tab stops

in source statement• 2-1
Term in MACRO statement• 3-9
Textual operator• 3-12 to 3-14
. TITLE directive• 6-93
Title listing control directive

(.TITLE)• 6-93
Traceback• 6-23
Trace trap enable (T) • 8-14
Trailing numeric string

data type• 8-7 to 8-11
. TRANSFER directive• 6-94 to 6-96
Trap

arithmetic • E-1
arithmetic type code• E-1
change mode• E-7
decimal

string overflow • E-3
decimal overflow• 8-1 5

lndex-14

Trap (cont'd.)

divide-by-zero• 8-15
floating

divide-by-zero• E-2
overflow• E-2
underflow• E-2

integer
divide-by-zero• E-2
overflow• E-2

integer overflow• 8-14
subscript-range • E-3
trace• 8-14

TSTB (Test Byte) instruction • 9-3 1
TSTD (Test D_floating) instruction • 9-123
TSTF (Test F _floating) instruction • 9-123
TSTG (Test G_floating) instruction• 9-123
TSTH (Test H_floating) instruction• 9-123
TSTL (Test Long) instruction • 9-31
TSTW (Test Word) instruction • 9-31

u
Unary operator• 3-10 to 3-11

summary• C-7
UNDEFINED results • 7-1
UNPREDICTABLE results• 7-1
User-defined local label • 3-7 to 3-8

range•3-7
User-defined symbol• 3-5 to 3-6, 3-6

v
Variable bit base address access type• 8-16
Variable-length bit field

bytes referenced • 8-6
data type• 8-5 to 8-6

Variable-length bit field instructions•
9-36 to 9-41

Virtual address • 8-1

w
. WARN directive• 6-97
. WEAK directive• 6-98
Word data type • 8-1
. WORD directive• 6-99

Word storage directive (.WORD)• 6-99
Write access type• 8-16

x
XFC (Extended Function Call) instruction • 9-81
XORB2 (Exclusive OR Byte 2 Operand) instruction •

9-32
XORB3 (Exclusive OR Byte 3 Operand) instruction •

9-32
XORL2 (Exclusive OR Long 2 Operand) instruction •

9-32
XORL3 (Exclusive OR Long 3 Operand) instruction•

9-32
XORW2 (Exclusive OR Word 2 Operand)

instruction • 9-32
XORW3 (Exclusive OR Word 3 Operand)

instruction • 9-32

z
Zero condition code (Z) • 8-14

Index

lndex-15

Reader's Comments VAX MACRO and
Instruction Set Reference

Manual
AA-LA89A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

--;;~';;;:d Here -d Ta~ ------------------~lllr-------~~~;~---
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

·- Do Not Tear - Fold Here --

I

I

I
I
I
I
I

1

Reader's Comments VAX MACRO and
Instruction Set Reference

Manual
AA-LA89A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D 0
D D 0
D D 0
D D 0
D D 0
D D 0
D D 0
D D 0

Dept.

Date

Phone

--;;~·;~~:d Hen ~d Ta~ ------------------~ll~-------;~~----
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1

·- Do Not Tear - Fold Here --

i
I
I
I
I
I

