
VMS
Obsolete Features
Manual

Order Number: AA-LB25A-TE

April 1988

This manual contains information about DCL commands and qualifiers,
system services, RTL routines, and VMS utilities and components that are
now obsolete. The manual also includes an appendix of DCL commands
and qualifiers, RTL routines, and VMS utilities and components that have
been eliminated from VMS.

Revision/Update Information: This is a new manual.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS Edu System VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-1 0 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~urnua~u TM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA* CANADA INTERNATIONAL

ZK-4710

Digital Equipment Corporation Digital Equipment
P.O. Box CS2008 of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire 100 Herzberg Road
03061 Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

In Continental USA, Alaska, and Hawaii call 800-DIGIT AL.
In Canada call 800-267-6215.

c/o Digital' s local subsidiary
or approved distributor

*Any order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a registered trademark of Adobe Systems, Inc.

Contents

PREFACE ix

CHAPTER 1 OBSOLETE DCL COMMANDS AND QUALIFIERS 1-1

1.1 OBSOLETE DCL COMMANDS 1-1

SET CLUSTER/QUORUM 1-2

SET DEVICE/ ACL 1-4

SET DIRECTORY/ACL 1-8

SET FILE/ACL 1-14

SET QUEUE/ENTRY 1-20

1.2 OBSOLETE DCL COMMAND QUALIFIERS 1-29
1.2.1 Obsolete Qualifiers of the INITIALIZE/QUEUE Command 1-29
1.2. 1. 1 INITIALIZE/QUEUE/[NO]BURST • 1-29
1.2.1.2 INITIALIZE/QUEUE/[NO]FLAG • 1-30
1.2.1.3 INITIALIZE/QUEUE/PRIORITY • 1-30
1.2. 1.4 INITIALIZE/QUEUE/TERMINAL • 1-30
1.2.2 Obsolete Qualifiers of the START/QUEUE Command 1-30
1.2.2.1 ST ART /QUEUE/[NO]BA TCH • 1-30
1.2.2.2 ST ART /QUEUE/PRIORITY=n • 1-31
1.2.2.3 ST ART /QUEUE/TERMINAL • 1-31

CHAPTER 2 OBSOLETE SYSTEM SERVICES 2-1

$BRDCST 2-2

$CNTREG 2-6

$CRELOG 2-8

$DELLOG 2-10

$GETCHN 2-12

$GET DEV 2-16

$INPUT 2-19

$OUTPUT 2-20

$SNDACC 2-22

$SNDSMB 2-26

$TRNLOG 2-42

v

Contents

CHAPTER 3 OBSOLETE RTL ROUTINES 3-1

vi

3.1

3.2

3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3

3.3

3.4

OBSOLETE FOR$ ROUTINES 3-1

OBSOLETE TERMINAL-INDEPENDENT SCREEN MANIPULATION
PROCEDURES 3-2
Obtaining Screen Information 3-3
Positioning the Cursor on the Screen 3-4

Controlling Input from and Output to the Screen • 3-5
Buffering Screen 1/0 • 3-7
Using Screen Procedures with Files and Hardcopy
Terminals • 3-8

LIB$EMULATE

OBSOLETE RTL ROUTINES
FOR$CNV_OUT_I

FOR$CNV_OUT_L
FOR$CNV_OUT_O

FOR$CNV_OUT_Z

FOR$CNV_IN_I

FOR$CNV_IN_L
FOR$CNV_IN_O

FOR$CNV_IN_DEFG

FOR$CNV_IN_Z

LIB$DOWN_SCROLL

LIB$EMULA TE

LIB$ERASE-'-LINE
LIB$ERASE_PAGE
LIB$GET_SCREEN

LIB$PUT_BUFFER

LIB$PUT_LINE

LIB$PUT_SCREEN

LIB$SCREEN_INFO

LIB$SET_BUFFER

LIB$SET_CURSOR

LIB$SET_OUTPUT

LIB$SET_SCROLL

LIB$STOP_OUTPUT

LIB$UP _SCROLL

SCR$DOWN_SCROLL
SCR$ERASE_LINE

3-9

3-9
3-10
3-11
3-12
3-13
3-14
3-16
3-18
3-20
3-23
3-25
3-26
3-28
3-30
3-31
3-33
3-35
3-37
3-39
3-41
3-43
3-45
3-48
3-49
3-50
3-51
3-52

Contents

SCR$ERASE_PAGE 3-53
SCR$GET_SCREEN 3-54
SCR$SCREEN_INFO 3-56
SCR$PUT_BUFFER 3-57
SCR$PUT_LINE 3-58
SCR$PUT_SCREEN 3-60
SCR$SET_BUFFER 3-62
SCR$SET_CURSOR 3-64
SCR$SET_OUTPUT 3-65
SCR$SET_SCROLL 3-68
SCR$STOP _OUTPUT 3-69
SCR$UP_SCROLL 3-70

CHAPTER 4 OBSOLETE UTILITIES AND UTILITY COMPONENTS 4-1

4.1

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5

OBSOLETE UTILITIES

DISK QUOTA
Establishing Disk Quotas
Creating a Quota File
Maintaining a Quota File
Disabling a Quota File
Listing of Commands

DISKQUOTA Commands
ADD
CREATE
DISABLE
ENABLE
EXIT
HELP
MODIFY
REBUILD
REMOVE
SHOW
USE

4-2

4-6
4-7
4-8
4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16

4.2 OBSOLETE COMPONENTS OF CURRENT VMS UTILITIES

4-1

4-2
4-2
4-3
4-3
4-3

4-5

4-17

vii

Contents

APPENDIX A ELIMINATED FEATURES
ELIMINATED FEATURES

TABLES
1-1 Table of Obsolete DCL Commands

1-2 Table of Obsolete DCL Command Qualifiers

2-1 Table of Obsolete System Services

3-1 Table of Obsolete RTL Routines

3-2 The Terminal-Independent Screen Procedures

3-3 Screen Attributes

4-1 DISKQUOTA Command Summary

viii

A-1

A-2

1-1
1-29
2~1

3-1

3-3

3-6

4-3

Preface

Intended Audience
This manual is for those users who maintain programs and command
procedures containing references or calls to the now obsolete DCL commands,
system services, and RTL routines as well as for all those who use the now
obsolete utilities and commands.

This manual is new for VMS Version 5.0. However, its contents have
appeared previously in earlier versions of the VMS manuals that describe
the individual components.

Structure of the Document
This manual is organized by VMS operating system components, with one
chapter each for DCL commands, system services, RTL routines, and utilities.

The contents of the chapters are as follows:

• Chapter 1 lists obsolete DCL commands and their replacements. The
chapter also contains the DCL Dictionary entry for each obsolete
command.

• Chapter 2 lists obsolete system services and their replacements. The
chapter also describes each obsolete system service.

• Chapter 3 lists obsolete Run-Time Library routines and their
replacements. The chapter also describes each obsolete routine.

• Chapter 4 describes obsolete VMS utilities and their replacements. The
chapter also lists and describes obsolete components of current VMS
utilities.

The manual also contains an appendix that describes DCL commands, RTL
routines, and utilities and utility components eliminated from VMS. Note that
eliminated features no longer work and do not have replacements.

Associated Documents
This manual describes obsolete features of VMS. For detailed reference
information about replacement features, see VMS DCL Dictionary, VMS Run
Time Library Routines Volume, VMS System Services Volume, or VMS SYSMAN
Utility Manual.

ix

Preface

Conventions

x

Convention

CTRL/C

$SHOW TIME
05-JUN-1988 11 :55:22

$ TYPE MYFILE.DAT

input-file,

[logical-name]

quotation marks
apostrophes

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (·) is used to refer to a single
quotation mark.

Preface

New and Changed Features
This is a new manual for VMS Version 5.0.

xi

1 Obsolete DCL Commands and Qualifiers

This chapter describes all DCL commands and qualifiers that have been made
obsolete since VMS Version 4.0. Obsolete commands and obsolete qualifiers
have been superseded by more flexible or more efficient commands and
qualifiers and are no longer updated. DIGITAL recommends that you use
current commands when you write new programs. Old programs that use
obsolete commands and qualifiers should be updated with current commands
and qualifiers.

1 .1 Obsolete DCL Commands
This section describes obsolete DCL commands. Table 1-1 lists the obsolete
command in the left column, the version of VMS that superseded the obsolete
command in the center column, and the current command in the third
column. For example, SET CLUSTER/QUORUM was replaced in VMS
Version 5.0 by SET CLUSTER/EXPECTED_ VOTES.

Table 1-1 Table of Obsolete DCL Commands

Made
Obsolete

Obsolete Command in Version Current Command

SET CLUSTER/QUORUM 5.0 SET CLUSTER/EXPECTED_ VOTES

SET DEVICE/ ACL 5.0 SET ACL/OBJECT_ TYPE=DEVICE

SET DIRECTORY/ ACL 5.0 SET ACL/OBJECT_ TYPE=FILE

SET FILE/ ACL 5.0 SET ACL/OBJECT_ TYPE=FILE

SET QUEUE/ENTRY 5.0 SET ENTRY

1-1

SET CLUSTER/QUORUM

SET CLUSTER/QUORUM

FORMAT

Sets the cluster quorum to a value that you specify or, if no value is
specified, sets the cluster quorum to a value determined by the system.
The /QUORUM qualifier is required.

In VMS Version 5.0, the SET CLUSTER/QUORUM command was replaced
by SET CLUSTER/EXPECTED_ VO"PES. For more information on the
replacement command see the Version 5.0 VMS DCL Dictionary.

SET CLUSTER/QUORUM[=quorum-value]

RESTRICTIONS Requires operator (OPER) privilege.

PARAMETERS

DESCRIPTION

1-2

None.

The SET CLUSTER/QUORUM command enables you to manually adjust
the cluster quorum value. The cluster quorum is based upon an estimate of
the total number of votes available in the cluster. It is automatically adjusted
upward as new systems join.

You can specify the desired quorum value as part of the SET CLUSTER
/QUORUM command string. If you issue the SET CLUSTER/QUORUM
command without specifying a value for quorum, the system calculates the
value for you, using the formula:

(V+2)/2

where Vis the sum of the votes of all nodes that are currently in the cluster.
The system will not allow you to set the quorum to a value less than or equal
to the value calculated by the system formula or to a value greater than the
number of votes present.

When you issue the SET CLUSTER/QUORUM command without specifying
a quorum value, the system assumes that all nodes that are expected to be in
the cluster are currently members.

In general, you use the SET CLUSTER/QUORUM command only when a
node is leaving the cluster for an extended period of time. Under normal
circumstances, quorum is not reduced when a node leaves the cluster, since
it is assumed that the node may be rebooted and rejoin the cluster. If a
node is removed from the cluster and is unable to rejoin the cluster within a
reasonable period of time (for example, if a node crashes due to a hardware
problem and cannot rejoin the cluster for several days), the quorum for the
cluster can safely be reduced until that node rejoins.

The purpose of the quorum is to eliminate any possibility of the cluster
partitioning into separate clusters and simultaneously accessing the same
resources (such as HSCSO disks). If the sum of the votes of all members

· of the cluster is smaller than the cluster quorum, all nodes in the cluster
will block activity until new nodes join to increase the vote total. Lowering

EXAMPLES

SET CLUSTER/QUORUM

the quorum value when one or more nodes leave the cluster, reduces the
possibility of this happening.

When you issue the SET CLUSTER/QUORUM command, either with or
without a quorum value specified, the system will respond with a message
indicating the new quorum value that was actually set. Note that you need
only issue this command on one node in the cluster, since the new value for
the quorum will be propogated through the cluster. This new quorum value
should then be stored in the SYSGEN parameter QUORUM on each cluster
node, so that it remains in effect after the nodes reboot.

When a node that was previously a member of the cluster is ready to rejoin,
you should increase the SYSGEN parameter QUORUM to its original value
before bringing the node back to the cluster. Note that you do not need to
use the SET CLUSTER/QUORUM command to increase the cluster quorum,
since the quorum value will be increased automatically when the node rejoins
the cluster.

iJ $ SET CLUSTER/QUORUM

This command instructs the system to calculate the cluster quorum value for
you, since no value is specified as part of the command string. The system
will use the formula: (V+2)/2, described above.

~ $ SET CLUSTER/QUORUM=9

This command sets the cluster quorum to 9, which is the value specified in
the command string.

1-3

SET DEVICE/ACL

SET DEVICE/ ACL

FORMAT

Allows you to modify the access control list (ACL) of a device. The / ACL
qualifier is required.

In VMS Version 5.0, the SET DEVICE/ ACL command was replaced by SET
ACL/OBJECT_ TYPE=DEVICE. For more information on the replacement
command see the Version 5.0 VMS DCL Dictionary.

SET DEVICE/ACL[=(ace[, ... j)j device-name

RESTRICTIONS None.

PARAMETERS

DESCRIPTION

1-4

device-name
Specifies a device whose access control list (ACL) is being modified. Wildcard
characters are not allowed in the device name.

(ace[, ...])
Specifies one or more access control entries (ACEs) to be modified. When no
ACE is specified, the entire access control list is affected. Separate multiple
ACEs with commas. The specified ACEs are inserted at the top of the ACL
unless the /AFTER qualifier is specified.

The SET DEVICE/ ACL command enables you to manipulate the entire access
control list (ACL) of a device, or to create, modify, or delete access control
entries (ACEs) in the ACL of a device. The only valid access to be specified
in an ACE for a device is READ access, which means that the device can be
allocated.

To use the SET DEVICE/ ACL command, you specify the name of the device
whose ACL you want to manipulate.

The SET DEVICE/ ACL command can be used to add ACEs to an ACL. For
example, the following command adds an ACE to the ACL of the terminal
device TTA3 so that no users associated with the identifier SALES have access
to that terminal:

$ SET DEVICE/ACL=(IDENTIFIER=SALES,ACCESS=NONE) TTA3

If the device specified with the SET DEVICE/ ACL command does not have
an ACL, one is created.

The SET DEVICE/ ACL command provides the following qualifiers to
manipulate ACEs and ACLs:

/AFTER
/DELETE
/LIKE
/NEW
/REPLACE

QUALIFIERS

SET DEVICE/ACL

You can delete ACEs from an ACL by including the /DELETE qualifier and
specifying the ACEs with the / ACL qualifier. To delete all the ACEs (except
those with the PROTECTED option), include the /DELETE qualifier and
specify / ACL without specifying any ACEs.

You can copy an ACL from one object to another by using the /LIKE qualifier.
The ACL of the object specified with /LIKE replaces the ACL of the device
given with the command.

You can replace existing ACEs in the ACL of the device specified with the
command by using the /REPLACE qualifier. Any ACEs specified with/ ACL
are deleted and replaced by those specified with /REPLACE.

The /NEW qualifier is used to delete all ACEs (except those with the
PROTECTED option) before adding any ACEs specified by / ACL, /LIKE,
or /REPLACE.

When referring to existing ACEs with /DELETE, /REPLACE, or /AFTER, the
existing ACE may be abbreviated.

By default, any ACEs (except security alarm ACEs) added to an ACL are
placed at the top of the ACL. Security alarm ACEs are always positioned at
the top of the ACL, regardless of positioning qualifiers. Whenever the system
receives a request for access to a device that has an ACL, the system searches
each entry in the ACL from the first to the last for the first match it can find,
and then stops searching. If another match occurs further down in the ACL,
it will have no effect. Since the position of an ACE in an ACL is so important,
you can use the/ AFTER qualifier to correctly position an ACE. When you use
the /AFTER qualifier, any ACEs added will be added after the ACE specified
with /AFTER.

The SET DEVICE/ ACL command can also be used with the /EDIT qualifier
to invoke the ACL editor. The following qualifiers can be used only when the
/EDIT qualifier has been specified.

/JOURNAL
/KEEP
/MODE
/RECOVER

/AFTER=ace
Causes all access control entries (ACEs) specified with the / ACL qualifier to
be added after the ACE specified with the /AFTER qualifier. By default, any
ACEs added to the ACL are always placed at the top of the list.

This qualifier cannot be used with the /EDIT qualifier.

/DELETE
Indicates that the access control entries (ACEs) specified with the / ACL
qualifier are to be deleted. If no ACEs are specified with / ACL, the entire
ACL is deleted (except for ACEs with the PROTECTED option). If you specify
an ACE that does not exist, you will be notified that the ACE does not exist,
and the delete operation will continue.

This qualifier cannot be used with the /EDIT qualifier.

1-5

SET DEVICE/ ACL

1-6

/EDIT
Invokes the ACL Editor and allows you to use the /JOURNAL, /KEEP,
/MODE, or /RECOVER qualifiers. Any other qualifiers specified with /EDIT
are ignored.

/JOURNAL[=file-spec]
/NOJOURNAL
Controls whether a journal file is created from the editing session. By default,
a journal file is created if the editing session ends abnormally.

If you omit the file specification, the journal file has the same name as the
input file and a file type of JOU. You can use the /JOURNAL qualifier to
specify a journal file name that is different from the default. No wildcard
characters are allowed in the /JOURNAL file-spec parameter.

You must specify /EDIT in order to use this qualifier.

/KEEP=(option[, .. .])
Determines whether the journal file or the recovery file will be deleted when
the editing session ends. The options are:

• JOURNAL-saves the journal file for current editing session

• RECOVER-saves the journal file used for restoring the ACL

You can shorten the keywords JOURNAL and RECOVER to J and R,
respectively. If you specify only one option, you can omit the parentheses.

You must specify /EDIT in order to use this qualifier.

/LIKE=object-spec
Indicates that the ACL of the object given with the /LIKE qualifier is to
replace .the ACL of the device specified with SET DEVICE/ ACL. Any existing
ACE (except those with the PROTECTED option) will be deleted before the
ACL specified by /LIKE is copied.

No wildcard characters are allowed in the /LIKE device-name parameter.

This qualifier cannot be used with the /EDIT qualifier.

/LOG
/NOLOG (default)
Controls whether the SET DEVICE/ ACL command displays the device name
of the device that has been affected by the command.

This qualifier cannot be used with the /EDIT qualifier.

/MODE=[NO]PROMPT
Determines whether the ACL editor prompts for field values. By default, the
ACL editor selects prompt mode.

You must specify the /EDIT qualifier to use this qualifier.

/NEW
Indicates that any existing ACE in the ACL of the device specified with SET
DEVICE/ ACL (except those with the PROTECTED option) is to be deleted.
In order to use the /NEW qualifier, you must specify a new ACL or ACE with
the/ ACL, /LIKE, or /REPLACE qualifier.

EXAMPLES

SET DEVICE/ACL

This qualifier cannot be used with the /EDIT qualifier.

/RECOVER[=file-spec]
/NORECOVER (default)
Specifies the name of the journal file to be used in a recovery operation. If
the file specification is omitted with /RECOVER, the journal file is assumed
to have the same name as the input file and a file type of JOU. No wildcard
characters are allowed with the /RECOVER file-spec parameter.

You must specify /EDIT in order to use this qualifier.

/REPLACE=(ace[, ...])
Deletes the access control entries (ACEs) specified with the / ACL qualifier
and replaces them with those specified with /REPLACE. Any ACEs specified
with the / ACL qualifier must exist and must be specified in the order in
which they appear in the ACL.

This qualifier cannot be used with the /EDIT qualifier.

i] $ SET DEVICE/ACL/LIKE=ABCD$ WRKD$

This example replaces the ACL of WRKD$ with the ACL for the device
ABCD$.

~ $ SET DEVICE/ACL/EDIT/JOURNAL=ACL.JOB WORK3:

This SET DEVICE/ ACL command invokes the interactive ACL editor and
creates a journal file, named ACL.JOB, if the editing session ends abnormally.
The /EDIT qualifier enables use of the /JOURNAL qualifier.

1-7

SET DIRECTORY/ACL

SET DIRECTORY/ACL

FORMAT

Allows you to modify the access control list (ACL) of one or more
directories. The / ACL qualifier is required.

In VMS Version 5.0 the SET DIRECTORY/ ACL command was replaced by
SET ACL/OBJECT_ TYPE=FILE. For more information on the replacement
command see the Version 5.0 VMS DCL Dictionary.

SET DIRECTORY/ AC L[=(ace{, ...])] directory-spec{, ...]

RESTRICTIONS None.

PARAMETERS directory-spec[, ...]

DESCRIPTION

1-8

Specifies one or more directories whose access control list (ACL) is being
modified. Separate multiple directory specifications with commas. Device
name and colon are optional. Wildcard characters are allowed in the directory
specifications. Each directory must be a disk directory on a Files-11 Structure
Level 2 formatted volume.

When the /EDIT qualifier is used, only one directory specification can be
given, and it cannot include any wildcard characters.

(ace[, ...])
Specifies one or more access control entries (ACEs) to be modified. When no
ACE is specified, the entire access control list is affected. Separate multiple
ACEs with commas. The specified ACEs are inserted at the top of the ACL
unless the /AFTER qualifier is specified.

The SET DIRECTORY/ ACL command enables you to manipulate an entire
access control list (ACL) of one or more directories, or to create, modify, or
delete access control entries (ACEs) in the ACL of one or more directories.
To use the SET DIRECTORY/ ACL command, you specify the directory
specification of the directory whose ACL you want to manipulate.

By using wildcard characters in the directory specification to the command,
you can manipulate the ACLs of multiple directories with a single command.
The following qualifiers can be used with wildcard characters to select a
subset of the specified directories:

/BEFORE
/BY_OWNER
/CREATED
/EXCLUDE
/SINCE

You can also use the /CONFIRM qualifier to verify the directory selection.

SET DIRECTORY/ACL

The SET DIRECTORY/ ACL command can be used to add ACEs to an
ACL. For example, the following command adds an ACE to the ACL of the
directory [.CONFIDENTIAL] so that all users associated with the identifier
PERSONNEL are allowed read access to that directory:

$ SET DIRECTORY/ACL=(IDENTIFIER=PERSONNEL,ACCESS=READ) [.CONFIDENTIAL]

If the directory specified with the SET DIRECTORY/ ACL command does not
have an ACL, one is created.

The SET DIRECTORY/ ACL command provides the following qualifiers to
manipulate ACEs and ACLs:

/AFTER
/DELETE
/LIKE
/NEW
/REPLACE

You can delete ACEs from an ACL by including the /DELETE qualifier and
specifying the ACEs with the / ACL qualifier. To delete all the ACEs (except
those with the PROTECTED option), include the /DELETE qualifier and
specify / ACL without specifying any ACEs.

You can copy an ACL from one object to a directory by using the /LIKE
qualifier. The ACL of the object specified with /LIKE replaces the ACL of the
directory given with the command.

You can replace existing ACEs in the ACL of the directory specified with the
command by using the /REPLACE qualifier. Any ACEs specified with/ ACL
are deleted and replaced by those specified with /REPLACE.

The /NEW qualifier is used to delete all ACEs (except those with the
PROTECTED option) before adding any ACEs specified by / ACL, /LIKE,
or /REPLACE.

When referring to existing ACEs with /DELETE, /REPLACE, or /AFTER, the
existing ACE may be abbreviated.

By default, any ACEs (except security alarm ACEs) added to an ACL are
placed at the top of the ACL. Security alarm ACEs are always positioned at
the top of the ACL, regardless of positioning qualifiers. Whenever the system
receives a request for access to a directory that has an ACL, the system
searches each entry in the ACL from the first to the last for the first match it
can find and then stops searching. If another match occurs further down in
the ACL, it will have no effect. Since the position of an ACE in an ACL is
so important, you can use the /AFTER qualifier to correctly position an ACE.
When you use the/ AFTER qualifier, any ACEs added will be added after the
ACE specified with /AFTER.

The SET DIRECTORY/ ACL command can also be used with the /EDIT
qualifier to invoke the ACL editor. When the /EDIT qualifier is specified,
only one directory specification is allowed. When specifying the directory
with /EDIT, use the syntax directory.DIR. The following qualifiers can be
used only when the /EDIT qualifier has been specified.

/JOURNAL
/KEEP
/MODE
/RECOVER

1-9

SET DIRECTORY/ACL

QUALIFIERS

1-10

/AFTER=ace
Causes all access control entries (ACEs) specified with the / ACL qualifier to
be added after the ACE specified with the /AFTER qualifier. By default any
ACEs added to the ACL are always placed at the top of the list.

This qualifier cannot be used with the /EDIT qualifier.

/BEFORE[=time]
Selects only those directories that are dated before the specified time. You can
specify either an absolute time or a combination of absolute and delta times.
You can als.o use the keywords TODAY, TOMORROW, and YESTERDAY. If
no time is specified, TODAY is assumed.

This qualifier cannot be used with the /EDIT qualifier.

/BY _OWNER[=uic]
Selects one or more directories whose owner user identification code (UIC)
matches the specified owner UIC. If the /BY_OWNER qualifier is specified
without a UIC, the UIC of the current process is assumed.

This qualifier cannot be used with the /EDIT qualifier.

/CONFIRM
/NOCONFIRM (default)
Controls whether a request is issued before each individual SET DIRECTORY
/ ACL operation to confirm that the operation should be performed on that
directory.

When the system issues the prompt, you can issue any of the following
responses:

YES

TRUE

NO

FALSE

0

<RET>

QUIT

ICTRL/ZI

ALL

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, T, TR, or TRU for TRUE). Affirmative answers are YES, TRUE, and
1. Negative answers are NO, FALSE, 0, and <RET> . QUIT or lcTRL/ZI
indicates that you want to stop processing the command at that point. When
you respond with ALL, the command continues to process, but no further
prompts are given. If you type a response other than one of those in the list,
the prompt will be reissued.

This qualifier cannot be used with the /EDIT qualifier.

/CREATED
Selects directories based on their dates of creation. This qualifier is relevant
only when used with the /BEFORE or /SINCE qualifier.

This qualifier cannot be used with the /EDIT qualifier.

/DEFAULT
Creates an ACL for the specified files as if the files were newly created.
For a directory file, the /DEFAULT qualifier propagates the entire ACL
(except ACEs with the NOPROPAGATE option) so that a particular access

SET DIRECTORY/ACL

protection can be propagated throughout a directory tree. For all other files,
the /DEFAULT qualifier propagates the DEFAULT option ACEs in the ACL
of the parent directory to the ACL of the specified files.

The /DEFAULT qualifier uses the ACL of the parent directory of the specified
file, not the current default directory. This qualifier cannot be used with the
/EDIT qualifier.

/DELETE
Indicates that the access control entries (ACEs) specified with the / ACL
qualifier are to be deleted. If no ACEs are specified with / ACL, the entire
ACL is deleted (except for ACEs with the PROTECTED option). If you specify
an ACE that does not exist, you will be notified that the ACE does not exist
and the delete operation will continue.

This qualifier cannot be used with the /EDIT qualifier.

/EDIT
Invokes the ACL Editor and allows you to use the /JOURNAL, /KEEP,
/MODE, or /RECOVER qualifiers. Any other qualifiers specified with /EDIT
are ignored. You can only supply one directory file specification with SET
DIRECTORY/ ACL/EDIT.

/EXCLUDE=(directory-spec[, ...])
Excludes any directories that match the listed directory specifications from
the SET DIRECTORY/ ACL operation. If you specify only one directory, you
can omit the parentheses. Wildcard characters are allowed in the directory
specifications. The directory specification cannot contain a device name.

This qualifier cannot be used with the /EDIT qualifier.

/JOURNAL[=file-spec]
/NOJOURNAL
Controls whether a journal file is created from the editing session. By default,
a journal file is created if the editing session ends abnormally.

If you omit the file specification, the journal file has the same name as the
input file and a file type of JOU. You can use the /JOURNAL qualifier to
specify a journal file name that is different from the default. No wildcard
characters are allowed in the /JOURNAL file-spec parameter.

You must specify /EDIT in order to use this qualifier.

/KEEP=(option[, ...])
Determines whether the journal file or the recovery file will be deleted when
the editing session ends. The options are:

• JOURNAL-saves the journal file for the current editing session

• RECOVER-saves the journal file used for restoring the ACL

You can shorten the keywords JOURNAL and RECOVER to J and R,
respectively. If you specify only one option, you can omit the parentheses.

You must specify /EDIT in order to use this qualifier.

1-11

SET DIRECTORY/ACL

1-12

/LIKE=object-spec
Indicates that the ACL of the object given with the /LIKE qualifier is to
replace the ACL of the directories specified with SET DIRECTORY/ ACL. Any
existing ACE (except those with the PROTECTED option) will be deleted
before the ACL specified by /LIKE is copied.

No wildcard characters are allowed in the /LIKE object-spec parameter.

This qualifier cannot be used with the /EDIT qualifier.

/LOG
/NOLOG (default)
Controls whether the SET DIRECTORY/ ACL command displays the directory
specification of each directory that has been affected by the command. By
default, no log information is displayed.

This qualifier cannot be used with the /EDIT qualifier.

/MODE=[NO]PROMPT
Determines whether the ACL editor prompts for field values. By default, the
ACL editor selects prompt mode.

You must specify the /EDIT qualifier tq,use this qualifier.

/NEW
Indicates that any existing ACE in the ACL of the directory specified with
SET DIRECTORY/ ACL (except those with the PROTECTED option) is to be
deleted. In order to use the /NEW qualifier, you must specify a new ACL or
ACE with the/ ACL, /LIKE, or /REPLACE qualifier.

This qualifier cannot be used with the /EDIT qualifier.

/RECOVER[=file-spec]
/NORECOVER (default)
Specifies the name of the journal file to be used in a recovery operation. If
the file specification is omitted with /RECOVER, the journal file is assumed
to have the same name as the input file and a file type of JOU. No wildcard
characters are allowed with the /RECOVER file-spec parameter.

You must specify /EDIT in order to use this qualifier.

/REPLACE=(ace[, ...])
Deletes the access control entries (ACEs) specified with the / ACL qualifier
and replaces them with those specified with /REPLACE. Any ACEs specified
with the / ACL qualifier must exist and must be specified in the order in
which they appear in the ACL.

This qualifier cannot be used with the /EDIT qualifier.

/SINCE[=time]
Selects only those directories that are dated after the specified time. You can
specify either an absolute time or a combination of absolute and delta times.
You can also use the keywords TODAY, TOMORROW, and YESTERDAY. If
no time is specified, TODAY is assumed.

This qualifier cannot be used with the /EDIT qualifier.

SET DIRECTORY/ACL

EXAMPLES

i] $SET DIRECTORY/ACL/LIKE=[.USER] [.USER.CAPTIVE_ACCOUNTS]

This example replaces the ACL of the directory CAPTIVE_ACCOUNTS with
the ACL for the directory USER.LIS.

$SET DIRECTORY/ACL=(IDENTIFIER=[123,321]+NETWORK,ACCESS=NONE) [.CONFIDENTIAL]

This command adds an ACE that specifies that NETWORK access for user
[123,321] is not allowed for directory CONFIDENTIAL.

~ $SET DIRECTORY/ACL/EDIT/JOURNAL=ACL.JOB [.PAYROLL]

This SET DIRECTORY/ ACL command invokes the interactive ACL editor and
creates a journal file, named ACL.JOB, if the editing session ends abnormally.
The /EDIT qualifier enables use of the /JOURNAL qualifier.

~ $SET DIRECTORY/ACL/EDIT/RECOVER=ACL.JOB [.PAYROLL]

This command uses the /RECOVER qualifier to restore the editing session
from the previous example after the session ended abnormally.

1-13

SET FILE/ACL

SET FILE/ACL

FORMAT

Allows you to modify the access control list (ACL) of one or more files.
The / ACL qualifier is required.

In VMS Version 5.0, the SET FILE/ ACL command was replaced by SET
ACL/OBJECT_ TYPE=FILE. For more information on the replacement
command see the Version 5.0 VMS DCL Dictionary.

SET FILE/ACL[=(ace{, ... })} file-spec{, ... }

RESTRICTIONS None.

PARAMETERS file-spec[, ...]

DESCRIPTION

1-14

Specifies one or more files whose access control list (ACL) is being modified.
Separate multiple file specifications with commas. Wildcard characters are
allowed in the file specifications. Each file must be a disk file on a Files-11
Structure Level 2 formatted volume.

When the /EDIT qualifier is used, only one file specification can be given,
and it cannot include any wildcard characters.

(ace[, ...])
Specifies one or more access control entries (ACEs) to be modified. When no
ACE is specified, the entire access control list is affected. Separate multiple
ACEs with commas. The specified ACEs are inserted at the top of the ACL
unless the /AFTER qualifier is specified.

The SET FILE/ ACL command enables you to manipulate an entire access
control list (ACL) of one or more files, or to create, modify, or delete access
control entries (ACEs) in the ACL of one or more files. To use the SET FILE
/ ACL command, you specify the file specification of the file whose ACL you
want to manipulate.

By using wildcard characters in the file specification to the command, you
can manipulate the ACLs of multiple files with a single command. The
following qualifiers can be used with wildcard characters to select a subset of
the specified files:

/BEFORE
/BY_OWNER
/CREATED
/EXCLUDE
/SINCE

You can also use the /CONFIRM qualifier to verify the file selection.

SET FILE/ACL

The SET FILE/ ACL command is used to add ACEs to an ACL. For example,
the following command adds an ACE to the ACL of the file SALARY85.DAT
so that all users associated with the identifier PERSONNEL are allowed read
access to the file:

$ SET FILE/ACL=(IDENTIFIER=PERSONNEL,ACCESS=READ) SALARY85.DAT

If the file specified with the SET FILE/ ACL command does not have an ACL,
one is created.

The SET FILE/ ACL command provides the following qualifiers to manipulate
ACEs and ACLs:

/AFTER
/DELETE
/LIKE
/NEW
/REPLACE

You can delete ACEs from an ACL by including the /DELETE qualifier and
specifying the ACEs with / ACL. To delete all the ACEs (except those with
the PROTECTED option), include the /DELETE qualifier and specify / ACL
without specifying any ACEs.

You can copy an ACL from one file to another by using the /LIKE qualifier.
The ACL of the file specified with /LIKE replaces the ACL of the file given
with the command.

You can replace existing ACEs in the ACL of the file specified with the
command by using the /REPLACE qualifier. Any ACEs specified with/ ACL
are deleted and replaced by those specified with /REPLACE.

The /NEW qualifier is used to delete all ACEs (except those with the
PROTECTED option) before adding any ACEs specified by / ACL, /LIKE,
or /REPLACE.

When referring to existing ACEs with /DELETE, /REPLACE, or/ AFTER, the
existing ACE may be abbreviated.

By default, any ACEs (except security alarm ACE), added to an ACL are
placed at the top of the ACL. Security alarm ACEs are always positioned at
the top of the ACL, regardless of positioning qualifiers. Whenever the system
receives a request for access to a file that has an ACL, the system searches
each entry in the ACL from the first to the last for the first match it can find
and then stops searching. If another match occurs further down in the ACL,
it will have no effect. Since the position of an ACE in an ACL is so important,
you can use the/ AFTER qualifier to correctly position an ACE. When you use
the/ AFTER qualifier, any ACEs added will be added after the ACE specified
with /AFTER.

The SET FILE command can also be used with the /EDIT qualifier to
invoke the ACL editor. When the /EDIT qualifier is specified, only one
file specification is allowed. The following qualifiers can be used only when
the /EDIT qualifier has been specified.

/JOURNAL
/KEEP
/MODE
/RECOVER

1-15

SET FILE/ACL

QUALIFIERS

1-16

/AFTER=ace
Causes all access control entries (ACEs) specified with the / ACL qualifier to
be added after the ACE specified with the /AFTER qualifier. By default, any
ACEs added to the ACL are always placed at the top of the list.

This qualifier cannot be used with the /EDIT qualifier.

/BEFORE[=time]
Selects only those files that are dated before the specified time. You can
specify either an absolute time or a combination of absolute and delta times.
You can also use the keywords TODAY, TOMORROW, and YESTERDAY. If
no time is specified, TODAY is assumed.

This qualifier cannot be used with the /EDIT qualifier.

/BY _OWNER[=uic]
Selects one or more files whose owner user identification code (UIC) matches
the specified owner UIC. If the /BY_OWNER qualifier is specified without a
UIC the UIC of the current process is assumed.

This qualifier cannot be used with the /EDIT qualifier.

/CONFIRM
/NOCONFIRM (default}
Controls whether a request is issued before each individual SET FILE/ ACL
operation to confirm that the operation should be performed on that file.

When the system issues the prompt, you can issue any of the following
responses:

YES

TRUE

NO

FALSE

0

<RET>

QUIT

CTRL/Z

ALL

You can use any combination of upper- and lowercase letters for word
responses. Word respon~es can be abbreviated to one or more letters (for
example, T, TR, or TRU for TRUE). Affirmative answers are YES, TRUE, and
1. Negative answers are NO, FALSE, 0, and <RET> . QUIT or CTRL/Z
indicates that you want to stop processing the command at that point. When
you respond with ALL, the command continues to process, but no further
prompts are given. If you type a response other than one of those in the list,
the prompt will be reissued.

This qualifier cannot be used with the /EDIT qualifier.

/CREATED
Selects files based on their dates of creation. This qualifier is relevant only
when used with the /BEFORE or /SINCE qualifier.

This qualifier cannot be used with the /EDIT qualifier.

/DEFAULT
Creates an ACL for the specified files as if the files were newly created.
For a directory file, the /DEFAULT qualifier propagates the entire ACL
(except ACEs with the NOPROPAGATE option) so that a particular access
protection can be propagated throughout a directory tree. For all other files,

SET FILE/ACL

the /DEFAULT qualifier propagates the DEFAULT option ACEs in the ACL
of the parent directory to the ACL of the specified files.

The /DEFAULT qualifier uses the ACL of the parent directory of the specified
file, not the current default directory. This qualifier cannot be used with the
/EDIT qualifier.

/DELETE
Indicates that the access control entries (ACEs) specified with the / ACL
qualifier are to be deleted. If no ACEs are specified with / ACL, the entire
ACL is deleted (except for ACEs with the PROTECTED option). If you specify
an ACE that does not exist with the / ACL qualifier, you will be notified that
the ACE does not exist and the delete operation will continue.

This qualifier cannot be used with the /EDIT qualifier.

/EDIT
Invokes the ACL Editor and allows you to use the /JOURNAL, /KEEP,
/MODE, or /RECOVER qualifiers. Any other qualifiers specified with /EDIT
are ignored. You can only supply one file specification with SET FILE/ ACL
/EDIT.

/EXCLUDE=(file-spec[, .. .])
Excludes any files that match the listed file specifications from the SET FILE
/ ACL operation. If you specify only one file, you can omit the parentheses.
Wildcard characters are allowed in the file specifications. However, you
cannot use relative version numbers to exclude a specific version. The
file specification can contain a directory specification; however, the file
specification cannot contain a device name.

This qualifier cannot be used with the /EDIT qualifier.

/JOURNAL[=file-spec]
/NOJOURNAL
Controls whether a journal file is created from the editing session. By default,
a journal file is created if the editing session ends abnormally.

If you omit the file specification, the journal file has the same name as the
input file and a file type of JOU. You can use the /JOURNAL qualifier to
specify a journal file name that is different from the default. No wildcard
characters are allowed in the /JOURNAL file-spec parameter.

You must specify /EDIT in order to use this qualifier.

/KEEP=(option[, .. .])
Determines whether the journal file or the recovery file will be deleted when
the editing session ends. The options are:

• JOURNAL-saves the journal file for current editing session

• RECOVER-saves the journal file used for restoring the ACL

You can shorten the keywords JOURNAL and RECOVER to J and R,
respectively. If you specify only one option, you can omit the parentheses.

You must specify /EDIT in order to use this qualifier.

1-17

SET FILE/ACL

1-18

/LIKE=file-spec
Indicates that the ACL of the file given with the /LIKE qualifier is to replace
the ACL of the files specified with SET FILE/ ACL. Any existing ACE (except
those with the PROTECTED option) will be deleted before the ACL specified
by /LIKE is copied.

No wildcard characters are allowed in the /LIKE file-spec parameter.

This qualifier cannot be used with the /EDIT qualifier.

/LOG
/NOLOG (default}
Controls whether the SET FILE/ ACL command displays the file specification
of each file that has been affected by the command.

This qualifier cannot be used with the /EDIT qualifier.

/MODE=[NO]PROMPT
Determines whether the ACL editor prompts for field values. By default, the
ACL editor selects prompt mode.

You must specify the /EDIT qualifier to use this qualifier.

/NEW
Indicates that any existing ACE in the ACL of a file specified with SET FILE
/ ACL (except those with the PROTECTED option) is to be deleted. In order
to use the /NEW qualifier, you must specify a new ACL or ACE with the
/ ACL, /LIKE, or /REPLACE qualifier.

This qualifier cannot be used with the /EDIT qualifier.

/RECOVER[=file-spec]
/NORECOVER (default}
Specifies the name of the journal file to be used in a recovery operation. If
the file specification is omitted with /RECOVER, the journal file is assumed
to have the same name as the input file and a file type of JOU. No wildcard
characters are allowed with the /RECOVER file-spec parameter.

You must specify /EDIT in order to use this qualifier.

/REPLACE=(ace[, .. .]}
Deletes the access control entries (ACEs) specified with the / ACL qualifier
and replaces them with those specified with /REPLACE. Any ACEs specified
with the / ACL qualifier must exist and must be specified in the order in
which they appear in the ACL.

This qualifier cannot be used with the /EDIT qualifier.

/SINCE[=time]
Selects only those files that are dated after the specified time. You can specify
either an absolute time or a combination of absolute and delta times. You can
also use the keywords TODAY, TOMORROW, and YESTERDAY. If no time
is specified, TODAY is assumed.

This qualifier cannot be used with the /EDIT qualifier.

SET FILE/ACL

EXAMPLES

iJ $SET FILE/ACL/LIKE=USER.LIS CAPTIVE_ACCOUNTS.LIS

This example replaces the ACL of the file CAPTIVE_ACCOUNTS.LIS with
the ACL for the file USER.LIS.

$SET FILE/ACL=(IDENTIFIER=[123,321]+NETWORK,ACCESS=NONE) *·*

This command adds an ACE that specifies that NETWORK access for
user [123,321] is not allowed for each file in the default directory.

$SET FILE/ACL=(IDENTIFIER=[SALES,FRANK] ,ACCESS=READ)/DELETE *·*

This SET FILE/ ACL command deletes the specified ACE from all files in the
default directory.

~ $SET FILE/ACL/EDIT/JOURNAL=ACL.JOB PASSWORD_2.DAT

This SET FILE/ ACL command invokes the interactive ACL editor and creates
a journal file, ACL.JOB, if the editing session ends abnormally. The /EDIT
qualifier enables use of the /JOURNAL qualifier.

~ $SET FILE/ACL/EDIT/RECOVER=ACL.JOB PASSWORD_2.DAT

This command uses the /RECOVER qualifier to restore the editing session
from the previous example after the session ended abnormally.

1-19

SET QUEUE/ENTRY

SET QUEUE/ENTRY

Changes the current status or attributes of a job that is not currently
executing in a queue. The /ENTRY qualifier is required.

In VMS Version 5.0, the SET QUEUE/ENTRY command was replaced
by SET ENTRY. For more information on the replacement command see
Version 5.0 VMS DCL Dictionary.

FORMAT SET QUEUE/ENTRY=entry-number queue-name[:}

RESTRICTIONS Requires operator (OPER) privilege or execute (E) access to the specified
queue. If you have D access to the specified job, you can alter the attributes
for that job.

PARAMETERS entry-number

DESCRIPTION

QUALIFIERS

1-20

Specifies the entry number of the job you want to change.

queue-name[:]
Specifies the name of the queue in which the specified job is entered.

The SET QUEUE/ENTRY command allows you to change the status or
attributes of a job that has been submitted to a printer or batch queue, as long
as the job is not currently executing. (You cannot affect individual files within
a multifile job with the SET /QUEUE/ENTRY command.)

The qualifiers enable you to specify different attributes or delete attributes.
Some qualifiers apply to both batch and print jobs. Others are restricted to
either batch jobs or print jobs. The defaults for all the SET QUEUE/ENTRY
qualifiers are the attributes and status that the job has before you issue the
SET QUEUE/ENTRY command.

The system assigns a unique entry number to each queued print or batch job
in the system. The PRINT and SUBMIT commands display the job number
when they successfully queue a job for processing. You can issue the SHOW
QUEUE command to refresh your memory about a job's entry number. Use
the job entry number to specify which job you want to change.

/AFTER=time
/NOAFTER
Requests that the specified job be held until after a specific time. If the
specified time has already passed, the job is queued for immediate processing.

You can specify either an absolute time or a combination of absolute and
delta times.

SET QUEUE/ENTRY

/BURST[=keyword]
/NOBURST
Controls whether a burst page is included at the beginning of a print job. A
burst page precedes a flag page and contains the same information. However,
it is printed over the perforation between the burst page and the flag page.
The printing on the perforation makes it easy to separate individual print
jobs.

When you specify /BURST, you need not specify /FLAG; a flag page will
automatically follow the burst page.

You can specify one of the following keywords:

ALL All printed files contain a burst page.

ONE The first printed file contains a burst page.

Use the /[NO]BURST qualifier to override the installation-defined defaults
that have been set for the printer queue you are using.

/CHARACTERISTICS=(characteristic[, ...]}
/NOCHARACTERIST/CS
Enables you to change the characteristics desired for the job. If you
specify only one characteristic, you can omit the parentheses. Codes
for characteristics can be either names or values from 0 to 127 and are
installation-defined. Use the SHOW QUEUE/CHARACTERISTICS command
to see which characteristics have been defined for your system. Use the
SHOW QUEUE/FULL command to see which characteristics are available on
a particular queue.

When you include the /CHARACTERISTICS qualifier with the SET QUEUE
/ENTRY command, all the characteristics you specify must also be specified
for the queue that will be executing the job. If not, the job will remain
pending in the queue until the queue characteristics are changed or you
delete the entry with the DELETE/ENTRY command. You need not specify
every characteristic of a queue with the SET QUEUE/ENTRY command as
long as the ones you specify are a subset of the characteristics set for that
queue. The job will also run if no characteristics are specified.

Specification of a characteristic for a queue does not prevent jobs that do not
specify that characteristic from being executed.

/CL/=filename
Enables you to specify a different command language interpreter (CLI)
to use in processing the job. The file name specifies that the CU be
SYS$SYSTEM:filename.EXE. If you do not specify the /CU qualifier, the
job is run by the CU specified in the user's authorization record, or whatever
CU was specified when the job was originally submitted to the queue.

/COPIES=n
Specifies the number of copies to print. Then parameter can be any number
from 1 to 255.

When you use the /COPIES qualifier with the SET QUEUE/ENTRY
command, the number of copies can apply only to the entire job. You
cannot use this qualifier to specify different numbers of copies for individual.
files within a multifile job.

1-21

SET QUEUE/ENTRY

1-22

/CPUTIME=option
Defines a CPU time limit for the batch job. You can specify a delta time, the
value 0, or the keyword NONE or INFINITE for n.

When you need less CPU time than authorized, use the /CPUTIME qualifier
to override the base queue value established by the system manager or the
value authorized in your user authorization file. Specify 0 or INFINITE
to request an infinite amount of time. Specify NONE when you want the
CPU time to default to your user authorization file (UAF) value or the
limit specified on the queue. Note that you cannot request more time than
permitted by the base queue limits or your own UAF.

/FEED
/NOFEED
Controls whether form feeds are inserted into print jobs when the printer
nears the end of a page. The number of lines per form can be reset by
the /FORM qualifier. You can suppress this automatic form feed (without
affecting any of the other carriage control functions that are in place) by using
the /NOFEED qualifier.

When you use the /FEED qualifier with the SET QUEUE/ENTRY command,
the qualifier applies to all files in the print job. You cannot use this qualifier
to specify form feeds for individual files within a multi-file job.

/FLAG[=keyword]
/NOFLAG
Controls whether a flag page is printed preceding a print job. The flag page
contains the name of the user submitting the job, the job entry number,
and other information about the job. You can specify one of the following
keywords:

ALL Prints a flag page before each file in the job

ONE Prints a flag page before the first file in the job

Use the /[NO]FLAG qualifier to override the installation-defined defaults that
have been set for the printer queue you are using.

/FORM=type
Specifies the name of the form that you want for the print job.

Specify the form type using a numeric value or alphanumeric code. Form
types can refer to the width, length, or type of paper. Codes for form types
are installation-defined. You can use the SHOW QUEUE/FORM command to
find out the form types available for your system. The SHOW QUEUE/FULL
command tells you which form is set for a specific queue.

If you specify a form type different from that of the queue, your job remains
pending until the form type of the queue is set equal to the form type of the
job or you delete the job with the DELETE/ENTRY command. You can use
the SET QUEUE/ENTRY to change the form type of your job to match that of
the queue so your job can be printed. In order to have the form type for the
queue changed, request that the system manager stop the queue, physically
change the form type of the printer, and restart the queue specifying the new
form type.

SET QUEUE/ENTRY

/HEADER
/NOH EADER
Controls whether a heading line is printed at the top of each output page in a
print job.

/HOLD
/NOH OLD
Controls whether or not the job is to be made available for immediate
processing or held for processing later.

If you specify /HOLD, the job is not released for processing until you
specifically release it with the /NOHOLD or /RELEASE qualifier. You can
use the SET QUEUE/ENTRY command to release a job that was previously
submitted with a /HOLD qualifier or you can place a job on hold so that it
will run later.

You can use the /NOHOLD qualifier to release jobs that have been held for
the following reasons:

• A job was submitted with the /HOLD qualifier.

• A completed job is being held in a queue that has /RETAIN specified.

• A user-written symbiont has refused a job.

/JOB_COUNT=n
Requests that an entire print job be printed n times, where n is a decimal
integer from 1 to 255. This qualifier overrides the /JOB_COUNT qualifier
specified or defaulted with the PRINT command.

/KEEP
/NOKEEP
Controls whether the batch job log file is deleted after it is printed.

/LOG_F/LE=file-spec
/NOLOG_F/LE
Controls whether a log file with the specified name is created for the batch
job or whether a log file is created.

When you use the /LOG_FILE qualifier, the system writes the log file to the
file you specify. If you use /NOLOG_FILE, no log file is created. If neither
form of the qualifier has been used for the job, the log file is written to a file
in the default directory that has the same file name as the first command file
and a file type of LOG.

You can use the /LOG_FILE qualifier to specify that the log file be written to
a different device. Logical names in the file specification are translated in the
context of the process that executes the SET QUEUE/ENTRY command. The
process executing the batch job must have access to the device on which the
log file will reside.

If you omit the /LOG_FILE qualifier and specify the /NAME qualifier, the
log file is written to a file having the same file name as that spedfied by
the /NAME qualifier; the file type is LOG. When you omit the /LOG_FILE
qualifier, the job-name value used with /NAME must be a valid file name.

1-23

SET QUEUE/ENTRY

1-24

/LOWERCASE
/NOLOWERCASE
Indicates whether the files must be printed on a printer that can print both
uppercase and lowercase letters. The /NOLOWERCASE qualifier means
that files can be printed on printers supporting only uppercase letters. If all
available printers can print both uppercase and lowercase letters, you do not
need to specify /LOWERCASE.

/NAME= job-name
Defines a name string to identify the job. The name string can have from 1 to
39 characters. The job name is used in the SHOW QUEUE command display.
For batch jobs, the job name is also used for the batch job log file. For print
jobs, the job name is also used on the flag page of the printed output.

If the /NAME qualifier has not been specified for the job, the name string
defaults to the file name of the first, or only, file in the job; the file type is
LOG.

/NOCHECKPOINT
For a batch job, erases the value established by the most recently executed
SET RESTART_ VALUE command. For a print job, clears the stored
checkpoint so that the job will restart from the beginning.

/NODELETE
Cancels file deletion for a job that was submitted with the /DELETE qualifier.
If no /DELETE qualifier was specified when the job was originally submitted
to the queue, you cannot use the SET QUEUE/ENTRY to establish file
deletion at a later time.

You cannot use the /NODELETE qualifier to specify that individual files in a
multi-file job not be deleted.

/NOTE=string
Allows you to specify a message to appear on the flag page for the print job.
The string can contain up to 255 characters.

/NOTIFY
/NONOTIFY
Controls whether a message is broadcast to any terminal at which you are
logged in, notifying you when your job has been completed or aborted.

/OPERATOR=string
Allows you to specify a message to be sent to the operator. The string can
contain up to 255 characters.

When the job begins execution, the queue pauses and the message is
transmitted to the operator.

/PAGES=([l,]u)
Specifies the number of pages to print for the specified job. You can use the
/PAGES qualifier to print portions of a long file. ·

When you use the /PAGES qualifier with the SET QUEUE /ENTRY
command, the qualifier can only apply to an entire job. You cannot use
this qualifier to specify different numbers of pages to be printed for individual
files within a multi-file job.

SET QUEUE/ENTRY

The 1 (lower) specifier refers to the first page in the group of pages that you
want printed for that job. If you omit the 1 specifier, the printing starts on the
first page of the job. The u (upper) specifier refers to the last page of the file
that you want printed. When you want to print to the end of the file but do
not know how many pages that will be, you can use 1111 as the u specifier. You
can omit the parentheses when you specify only a value for u. For example,
/PAGES=lO prints the first 10 pages of the job; /PAGES=(5,10) prints pages
5 through 10; /PAGES=(5,"") starts printing at page 5 and continues until the
end of the job is reached.

/PARAMETERS=(parameter[, ...])
Specifies from 1 to 8 optional parameters to be passed to the job. Each
parameter can have as many as 255 characters.

If you specify only one parameter, you can omit the parentheses. The
commas delimit individual parameters. To specify a parameter that contains
any special characters or delimiters, enclose the parameter in quotation marks.

For batch jobs, the parameters define values to be equated to the symbols
named Pl through PS in each command procedure in the job. The symbols
are local to the specified command procedures.

/PASSALL
/NOPASSALL
Specifies whether the symbiont bypasses all formatting and sends the output
QIO to the driver with format suppressed. All qualifiers affecting formatting,
as well as the /HEADER, /PAGES, and /P AGE_SETUP qualifiers, will be
ignored.

When you use the /PASSALL qualifier with the SET QUEUE/ENTRY
command, the qualifier applies to the entire job. You cannot use this qualifier
to specify P ASSALL mode for individual files within a multifile job.

/PRINTER[=queue-name]
/NOPRINTER
Controls whether the batch job log is queued for printing when your job is
completed. The /PRINTER qualifier allows you to specify a particular printer
queue.

If you specify /NOPRINTER, /KEEP is assumed.

/PRIOR/TY=n
Specifies the priority of the job. The priority value must be in the range of 0
through 255, where 0 is the lowest priority and 255 is the highest.

The default value for /PRIORITY is the value of the SYSGEN parameter
DEFQUEPRI. You must have either OPER (operator) or ALTPRI (alter
priority) privilege to raise the priority value above the value of the SYSGEN
parameter MAXQUEPRI. No privilege is needed to set the priority lower than
the MAXQUEPRI value.

/RELEASE
Releases a previously held job for processing. You can use this qualifier to
release jobs that have been held for the following reasons:

• A job was submitted with the /HOLD qualifier.

• A job was submitted with the /AFTER qualifier.

1-25

SET QUEUE/ENTRY

1-26

• A completed job is being held in a queue that has /RETAIN specified.

• A user-written symbiont has refused a job.

/REQUEUE=queue-name[:]
Requests that the job be moved from the original queue to the specified
queue.

/RESTART
/NORESTART
Specifies whether a batch or print job will be restarted after a system crash or
a STOP /QUEUE/REQUEUE command.

/SETUP=module[, .. .]
Calls for the specified modules to be extracted from the device control library
and copied to the printer before a job is printed.

When you use the /SETUP qualifier with the SET QUEUE/ENTRY command,
the qualifier applies to the entire job. You cannot use this qualifier to specify
different setup modules for individual files within a multi-file job.

/SPACE
/NOSPACE
Controls whether output is to be double-spaced.

When you use the /SP ACE qualifier with the SET QUEUE/ENTRY command,
the qualifier applies to the entire job. You cannot use this qualifier to specify
different spacing for individual files within a multi-file job.

/TRAILER[=keyword]
/NO TRAILER
Controls whether a trailer page is printed at the end of a job. The trailer
page displays the job entry number, as well as information about the user
submitting the job.

When you use the /TRAILER qualifier with the SET QUEUE/ENTRY
command, trailer pages are placed at the end of each file in a multi-file
job. You can specify one of the following keywords:

ALL All printed files contain a trailer page.

ONE The last printed file contains a trailer page.

Use the /[NO]TRAILER qualifier to override the installation-defined defaults
that have been set for the printer queue you are using.

/WSDEFAUL T=n
Defines a working set default for a batch job. You can specify a positive
integer in the range 1 through 65,535, 0, or the word NONE for n.

Use this qualifier to override the base queue value established by the system
manager or the value authorized in the user authorization file (UAF), provided
you want to impose a lower value. Specify 0 or NONE if you want the
working set value defaulted to either the UAF value or the working set quota
specified on the queue. You cannot request a value higher than the default.

EXAMPLES

SET QUEUE/ENTRY

/WSEXTENT=n
Defines a working set extent for a batch job. You can specify a positive
integer in the range 1 through 65,535, 0, or the word NONE for n.

Use this qualifier to override the base queue value established by the system
manager or the value authorized in the user authorization file (UAF), provided
you want to impose a lower value. Specify 0 or NONE if you want the
working set extent defaulted to either the UAF or the working set extent
specified on the queue. You cannot request a value higher than the default.

/WSQUOTA=n _
Defines the maximum working set size for a batch job. This is the working
set quota. You can specify a positive integer in the range 1 through 65,535, 0,
or the word NONE for n.

Use this qualifier to override the base queue value established by the system
manager or the value authorized in the user authorization file (UAF), provided
you want to impose a lower value. Specify 0 or NONE if you want the
working set quota defaulted to either the user authorization file value or the
working set quota specified on the queue. You cannot request a value higher
than the default.

iJ $ PRINT/HOLD MYFILE,DAT
Job MYFILE (queue SYS$PRINT, entry 112) holding

$ SET QUEUE/ENTRY=112/RELEASE/JOB_COUNT=3

~ $ SUBMIT WEATHER

The PRINT command requests that the file MYFILE.DAT be queued to
the system printer, but placed in a hold status. The SET QUEUE/ENTRY
command releases the file for printing and changes the number of copies of
the job to three.

Job WEATHER (queue SYS$BATCH, entry 210) pending
$ SUBMIT CLIMATE

Job CLIMATE (queue SYS$BATCH, entry 211) pending
$ SET QUEUE/ENTRY=211/HOLD/NAME=TEMP SYS$BATCH

The two SUBMIT commands queue command procedures for batch
processing. The system assigns them job numbers of 210 and 211,
respectively. The SET QUEUE/ENTRY command places the second job
in a hold state and changes the job name to TEMP, assuming that job 211
had not yet begun execution.

1-27

SET QUEUE/ENTRY

~ $ PRINT/FLAG=ALL/AFTER=20:00 MEMO.MEM, LETTER.MEM, REPORT.MEM/SPACE
Job MEMO (queue SYS$PRINT, entry 172) holding until 20:00

$ S~T QUEUE/ENTRY=172 /BURST/NOSPACE/HEADER SYS$PRINT

1-28

The PRINT command requests that three files be printed after 8:00 P .M. on
the default printer with flag pages preceding each file. It also requests that the
file REPORT.MEM be double-spaced. Later a SET QUEUE/ENTRY command
is issued. This command calls for a burst page at the beginning of each file
and requests that all files in the job be single-spaced. Headers are printed on
each page of each file in the job.

Obsolete DCL Commands and Qualifiers
1 .2 Obsolete DCL Command Qualifiers

1 .2 Obsolete DCL Command Qualifiers

1.2.1

This section describes obsolete DCL command qualifiers for current DCL
commands. Table 1-2 lists the obsolete command string in the left column,
the version of VMS that superseded the obsolete command string in the
center column, and the current command string in the third column. For
example, INITIALIZE/QUEUE/FLAG was replaced in VMS Version 4.0 by
INITIALIZE/QUEUE/SEP ARATE=FLAG.

Table 1-2 Table of Obsolete DCL Command Qualifiers

Obsolete Command String

Made
Obsolete
in Version Current Command String

INITIALIZE/QUEUE/FLAG
/BURST
/PRIORITY
/TERMINAL

4.0
4.0
4.0
5.0

INITIALIZE/QUEUE/SEPARA TE=FLAG
/SEP ARA TE=BURST
/BASE _PRIORITY
/DEVICE= TERMINAL

ST ART /QUEUE/BATCH
/PRIORITY
/TERMINAL

5.0
4.0
5.0

INITIALIZE/QUEUE/BATCH
ST ART /QUEUE/BASE_PRIORITY
INITIALIZE/QUEUE/DEVICE= TERMINAL

Obsolete Qualifiers of the INITIALIZE/QUEUE Command

1.2.1.1

This section describes the following obsolete qualifiers of the INITIALIZE
/QUEUE command:

• /[NO]BURST

• /[NO]FLAG

• /PRIORITY

• /TERMINAL

I NITIALIZE/QUEUE/[NO]BURST
The /BURST qualifier of the INITIALIZE/QUEUE command has been
replaced by the /SEPARATE=BURST qualifier. For more information on
the replacement qualifier see the Version 5.0 VMS DCL Dictionary.

/BURST
/NO BURST
Controls whether a burst header page is printed for each print job.

Use the /BURST qualifier to print a header page over the paper perforations
so that the page header is visible from the side of a stack of paper. A burst
header uses an extra page for each job but simplifies separating listings.

The default is /NOBURST.

1-29

1.2.2

Obsolete DCL Commands and Qualifiers
1 .2 Obsolete DCL Command Qualifiers

1.2.1.2

1.2.1.3

1.2.1.4

I NITIALIZE/QUEUE/[NO]FLAG
The /[NO]FLAG qualifier of the INITIALIZE/QUEUE command has been
replaced by the /SEP ARATE=FLAG qualifier. For more information on the
replacement qualifier see the Version 5.0 VMS DCL Dictionary.

/FLAG
/NO FLAG
Specifies whether a header page is printed at the beginning of the first file in
each print job.

The default is /NOFLAG.

INITIALIZE/QUEUE/PRIORITY
The /PRIORITY qualifier of the INITIALIZE/QUEUE command has been
replaced by the /BASE_PRIORITY qualifier. For more information on the
replacement qualifier see the Version 5.0 VMS DCL Dictionary.

/PRIORITY=n
Specifies the base process priority at which jobs are initiated from a batch
queue. By default, if you omit the qualifier, jobs are initiated at the base
priority established by the DEFPRI system generation parameter.

INITIALIZE/QUEUE/TERMINAL
The /TERMINAL qualifier of the INITIALIZE/QUEUE command has been
replaced by the /DEVICE=TERMINAL qualifier. For more information on the
replacement qualifier see the Version 5.0 VMS DCL Dictionary.

/TERMINAL
Indicates that a generic queue will be associated with terminal queues instead
of printer queues. The /TERMINAL qualifier allows all jobs entered in the
generic queue to be moved to terminal queues with matching settings.

Obsolete Qualifiers of the START/QUEUE Command

1.2.2.1

1-30

This section describes the following obsolete qualifiers of the START /QUEUE
command:

• /[NO]BATCH

• /PRIORITY

• /TERMINAL

START /QUEUE/[NO]BATCH
The /BATCH qualifier of the START/QUEUE command has been replaced by
the INITIALIZE/QUEUE/BATCH command string. For more information on
the replacement command string see the Version 5.0 VMS DCL Dictionary.

/BATCH
/NOBATCH (default)
Indicates that you are starting a batch queue. You cannot use the /BATCH
qualifier unless the queue you are starting was initialized as a batch queue.
If an existing queue is a batch queue, you can optionally use the /BATCH
qualifier.

1.2.2.2

1.2.2.3

Obsolete DCL Commands and Qualifiers
1 .2 Obsolete DCL Command Qualifiers

START /QUEUE/PRIORITY=n
The /PRIORITY qualifier of the START /QUEUE command has been replaced
by the /BASE_PRIORITY qualifier. For more information on the replacement
qualifier see the Version 5.0 VMS DCL Dictionary.

/PRIORITY=n
Specifies the base process priority at which jobs are initiated from a batch
queue. By default, if you omit the qualifier, jobs are initiated at the base
priority established by the DEFPRI system generation parameter.

START/QUEUE/TERMINAL
The /TERMINAL qualifier of the START/QUEUE command has been
replaced by the INITIALIZE/QUEUE/DEVICE=TERMINAL command string.
For more information on the replacement command string see the Version 5.0
VMS DCL Dictionary.

/TERMINAL
/NOTERMINAL
Indicates that a generic queue will be associated with terminal queues instead
of printer queues. The /TERMINAL qualifier allows all jobs entered in the
generic queue to be moved to terminal queues with matching settings.

The /NOTERMINAL qualifier cancels the effect of a previous /TERMINAL
setting.

1-31

2 Obsolete System Services

This chapter describes obsolete system services. An obsolete service is one
whose functions have been superseded by a new service. Obsolete services
are no longer updated.

DIGITAL recommends that you use current services when you write new
programs. Old programs. that use obsolete services should be updated with
current services.

The following table displays the obsolete services described in this chapter
and the current services that have replaced them.

Table 2-1 Table of Obsolete System Services

Obsolete Service Current Service

$BRDCST $BRKTHRU,$BRKTHRUVV

$CNTREG $DEL TVA

$CRELOG $CRELNM

$DELLOG $DELLNM

$GETCHN $GETDVI, $GETDVIVV

$GETDEV $GETDVI, $GETDVIVV

$INPUT $QIO ,$QIOVV

$OUTPUT $010 ,$QIOVV

$SNDACC $SNDJBC,$SNDJBCVV

$SNDSMB $SNDJBC, $SNDJBCVV

$TRNLOG $TRNLNM

2-1

$BRDCST

$BRDCST

FORMAT

RETURNS

ARGUMENTS

2-2

Broadcast

The Broadcast service writes a message to one or more terminals.

The Breakthrough ($BRKTHRU) and Breakthrough and Wait ($BRKTHRUW)
services supersede the $BRDCST service. New programs should be
written using $BRKTHRU or $BRKTHRUW, not $BRDCST, and old
programs using $BRDCST should be changed to use $BRKTHRU or
$BRKTHRUW.

SYS$BRDCST msgbuf [,devnam] [,flags] [,carcon]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition
value in RO. Condition values that can be returned by this service are listed
under "CONDITION VALUES RETURNED."

msgbuf
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Message text to be sent to the specified terminal(s). The msgbuf argument is
the address of a descriptor pointing to this message text.

The $BRDCST service permits the message text to be as long as 16,350 bytes;
however, both the SYSGEN parameter MAXBUF and the caller's buffered
1/0 byte count limit (BYTLM) quota may affect the maximum length of the
message text.

devnam
VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Terminal name to which to send the message. The devnam argument is the
address of a character string descriptor pointing to the terminal name.

If this argument is omitted or specified as 0, the message is broadcast to all
terminals.

If the first longword in the descriptor contains a 0, the message is sent to all
terminals that are currently allocated to processes.

$BRDCST

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag bit mask specifying (1) positioning options for the message and (2) the
number of screen lines to clear before writing the message (only for terminals
that have set the DEC-CRT characteristic). The flags argument is a longword
value that is the logical OR of each desired flag option and of the number of
lines to be cleared.

Terminals set the DEC_CRT characterististic by issuing the DCL command
SET TERMINAL/DEC_CRT. If a terminal has not set the DEC_CRT
characteristic, $BRDCST positions the message on the screen using the
options specified in flags, but it does not clear any lines before writing the
message.

If the flags argument is not specified, $BRDCST positions the message by
using the information supplied in the carcon argument (if specified) or by
using the default carriage control and line feed (if carcon is not specified).

Each flag option has a symbolic name. These symbolic names are defined
by the $BRDCSTDEF macro. The following lists the symbolic name and
description of each flag option.

Flag Option

BRDCST$M_SCREEN

BRDCST$M_
BOTTOM

BRDCST$M _REFRSH

carcon

Description

When specified, $BRDCST writes the message to the
top of the terminal screen, issues a carriage control and
line feed, redisplays the last line of a read operation
(if one was interrupted by the broadcast message),
and repositions the cursor to its position prior to the
broadcast message.

When BRDCST$M_BOTTOM is specified and when
BRDCST$M_SCREEN is also specified, $BRDCST writes
the message to the bottom of the terminal screen. If
BRDCST$M_SCREEN is not also specified, $BRDCST
writes the message to the line where the cursor is
currently positioned.

When specified, $BRDCST, after writing the message
to the screen, does not redisplay the last line of a
read operation that was interrupted by the broadcast
message.

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Carriage control specifier indicating the carriage control sequence that is
to follow the message that $BRDCST sends to the terminal(s). The carcon
argument is a longword containing the carriage control specifier.

If the carcon argument is not specified, $BRDCST follows the message with a
carriage return and line feed.

2-3

$BRDCST

DESCRIPTION

2-4

The carcon argument should only be specified if the BRDCST$M_SCREEN
flag in the flags argument is not set; since if this flag is set, $BRDCST
automatically formats the screen. Refer to the description of this flag in
the flags argument for more information.

The calling process must have OPER privilege to send a message to either
more than one terminal or to a terminal that is allocated to another user.

The $BRDCST service requires system dynamic memory; it also uses the
process's buffered I/O byte count limit (BYTLM) quota to buffer the message
while the service executes.

The service does not return control to the caller until all specified terminals
have displayed the broadcast message.

The current state of the terminal determines if and when the broadcast
message is displayed on the screen:

1 If the terminal is reading when $BRKTHRU sends the message, the read
operation is suspended, the message is displayed, and then the line that
was being read when the read operation was suspended is redisplayed
(equivalent to the action produced by CTRL/R).

2 If the terminal is writing when $BRKTHRU sends the message, the
message is displayed after the current write operation has completed.

3 The message is not displayed in any of the following cases:

• The terminal has set the NOBROADCAST characteristic, for all
images, or for the image that is currently requesting the broadcast.

• The terminal is in P ASSALL mode.

• The terminal's current operation is read physical block
(IQ$_READPBLK function code).

• The terminal's current operation has specified no echo
(IQ$_NOECHO function modifier).

• The terminal's current operation has specified no format
(IQ$_NOFORMAT function modifier).

After the message is displayed, the terminal is returned to the state it was in
prior to receiving the message.

Terminals with the DEC_CRT characteristic can be directed to clear a number
of lines before the message is broadcast. To specify the number of lines,
use the logical OR of the number of lines and the flags mask. For example,
to clear four lines on a DEC_CRT terminal, the following value would be
specified:

<#4!BRDCST$M_SCREEN>

CONDITION
VALUES
RETURNED

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DEVOFFLINE

SS$_EXQUOT A

SS$_1NSFMEM

SS$_NONLOCAL

SS$_NOPRIV

SS$_NOSUCHDEV

$BRDCST

Service successfully completed.

The message buffer, message buffer descriptor,
device name string, or device name string
descriptor cannot be read by the caller.

The message length exceeds 16,350 bytes;
the process's buffered 1/0 byte count limit
(BYTLM) quota is insufficient; or the message
length exceeds the value specified by the SYSGEN
parameter MAXBUF.

The specified terminal is offline, has enabled
PASSALL mode, or is not a terminal.

The process has exceeded its buffer space quota
and has disabled resource wait mode with the Set
Resource Wait Mode ($SETRWM) service.

Insufficient system dynamic memory is available to
complete the request and the process has disabled
resource wait mode with the Set Resource Wait
Mode ($SETRWM) service.

Warning. The device is on a remote node.

The process does not have the privilege to
broadcast messages.

Warning. The specified terminal does not exist, or
it cannot receive the message.

2-5

$CNTREG

$CNTREG Contract Program/Control Region

FORMAT

RETURNS

The Contract Program/Control Region service deletes a specified number
of pages from the current end of the program or control region of a
process's virtual address space. The deleted pages become inaccessible,
and references to them cause access violations.

Note: Do not use the $CNTREG, or $CRETVA system services in conjunction
with other user-written procedures and/or DIGIT AL-supplied procedures
(including run-time library procedures). These system services provide
no means to communicate a change in virtual address space with other
routines. DIGIT AL recommends that you use either $EXPREG or the
Run-time Library Procedure Allocate Virtual Memory (LIB$GET_ VM) to
get memory. When using $DEL TV A, you should take care to only delete
pages that you have specifically created.

SYS$CNTREG pagcnt ,{retadr} ,{acmode} ,{region}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by immediate value) a
condition value in RO. Condition values that can be returned by this service
are listed under "CONDITION VALUES RETURNED."

ARGUMENTS pa gent

2-6

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number of pages to be deleted from the current end of the program or control
region. The pagcnt argument is a longword specifying this number.

retadr
VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending pages of the deleted area. The retadr argument is the
address of a two-longword array to receive the virtual addresses of the
starting page and ending page of the deleted area.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

DESCRIPTION

CONDITION
VALUES
RETURNED

$CNTREG

Access mode of the owner of the pages to be deleted. The acmode argument
is a longword containing the access mode. The $PSLDEF macro defines the
following symbols for the four access modes:

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access mode

Kernel mode

Executive mode

Supervisor .mode

User mode

The most privileged access mode used is the access mode of the caller.

region
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Indicator specifying which region of memory (PO or Pl) is to be contracted.
The region argument is a longword containing the indicator. A value
of 0 (the default) indicates that the program region (PO region) is to be
contracted, and a value of 1 indicates that the control region (Pl region) is to
be contracted.

If an error occurs while deleting pages, the retadr argument, if specified,
indicates the range of pages that were successfully deleted before the error
occurred. If no pages were deleted, both longwords in retadr contain a -1.

The $CNTREG service can delete pages only from the current end of the
process's program or control region. To delete a specific range of pages in
either region, use the Delete Virtual Address Space ($DELTVA) service.

SS$_NORMAL

SS$_ACCVIO

SS$_1LLPAGCNT

SS$_PAGOWNVIO

Service successfully completed.

The retadr argument cannot be written by the
caller.

The specified page count was less than 1 .

A page in the specified range is owned by a more
privileged access mode.

2-7

$CRELOG

$CRELOG

FORMAT

RETURNS

ARGUMENTS

2-8

Create Logical Name

The Create Logical Name service inserts a logical name and its equivalence
name into the process, group, or system logical name table. If the logical
name already exists in the respective table, the new definition supersedes
the old.

The Create Logical Name ($CRELNM) service supersedes the $CRELOG
service. New programs should be written using $CRELNM, not $CRELOG,
and old programs that use $CRELOG should be converted to use
$CRELNM.

SYS$CRELOG [tblflg} ,lognam ,eqlnam [,acmode}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition
value in RO. Condition values that can be returned by this service are listed
under "CONDITION VALUES RETURNED."

tblflg
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Logical name table into which the newly created logical name is to be placed.
The tblflg argument is a longword value specifying this table. A value of 0
(the default) specifies the system table; 1, the group table; and 2, the process
table.

lognam
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the logical name to be created. The lognam is the address of a
character string descriptor pointing to the logical name string.

eqlnam
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Equivalence name string for the logical name. The eqlnam is the address of a
character string descriptor pointing to the equivalence name string.

DESCRIPTION

CONDITION
VALUES
RETURNED

$CRELOG

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the logical name table entry. The acmode
argument is a longword containing the access mode. The access mode only
qualifies names in the process logical name table. The $PSLDEF macro
defines the following symbols for the four access modes:

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access mode

Kernel mode

Executive mode

Supervisor mode

User mode

The most privileged access mode used is the access mode of the caller.

The calling process must have the following:

• GRPNAM privilege to place an entry in the group logical name table

• SYSNAM privilege to place an entry in the system logical name table

Creation of logical names for the group and system logical name tables
requires system dynamic memory.

Logical names can also be created from the command stream, with the DCL
commands ASSIGN, DEFINE, ALLOCATE, and MOUNT.

SS$_NORMAL

SS$_SUPERSEDE

SS$_ACCVIO

SS$_1NSFMEM

SS$_1VLOGNAM

SS$_1VLOGT AB

SS$_NOPRIV

Service successfully completed. A new name was
entered in the specified logical name table.

Service successfully completed. A new
equivalence name replaced a previous equivalence
name in the specified logical name table.

The logical name or equivalence name string or
string descriptor cannot be read by the caller.

Insufficient system dynamic memory is available
to allocate a group or system logical name table
entry, or the process has exceeded its limit for
process logical name table entries.

The logical name or equivalence name string has a
length of 0 or has more than 255 characters.

An invalid logical name table number was
specified.

The process does not have the privilege to place
an entry in the specified logical name table.

2-9

$DELLOG

$DELLOG

FORMAT

RETURNS

ARGUMENTS

2-10

Delete Logical Name

The Delete Logical Name service deletes a logical name and its equivalence
name from the process, group, or system logical name table.

The Delete Logical Name ($DELLNM) service supersedes the $DELLOG
service. New programs should be written using $DELLNM, not $DELLOG,
and old programs that use $DELLOG should be converted to use
$DELLNM.

SYS$DELLOG {tblflg} {,lognam} {,acmode}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition
value in RO. Condition values that can be returned by this service are listed
under "CONDITION VALUES RETURNED."

tblflg
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Logical name table flag indicating the table in which the logical name to be
deleted resides. The tblflg argument is a longword value. A value of 0 (the
default) specifies the system table; 1 specifies the group table; and 2 specifies
the process table.

lognam
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Logical name to be deleted. The lognam argument is the address of a
character string descriptor pointing to the logical name string. If lognam is
not specified, $DELLOG deletes all logical names that the process is privileged
to delete, in the specified table. The maximum length of a logical name is 255
characters.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

DESCRIPTION

CONDITION
VALUES
RETURNED

$DELLOG

Access mode associated with the process logical name table entry. This
argument is used only for deleting names from the process logical name table.
The acmode argument is a longword containing the access mode.

The most privileged access mode used is the access mode of the caller; only
the logical name entered at the resulting access mode or a less privileged
access mode is deleted.

The calling process must have the following:

• GRPNAM privilege to delete a logical name from the group logical name
table

• SYSNAM privilege to delete a logical name from the system logical name
table

Deletion of a logical name from the group or system table returns storage to
system dynamic memory. Deletion of a logical name from the process table
returns storage to the control region of the process's virtual address space.

Logical names can be deleted from the command stream with the DEASSIGN
command.

Names in the process logical name table that were created from user mode
are automatically deleted at image exit.

SS$_NORMAL

SS$---'ACCVIO

SS$_1VLOGNAM

SS$_1VLOGT AB

SS$_NOLOGNAM

SS$_NOPRIV

Service successfully completed.

The lognam argument or the logical name string
cannot be read by the caller.

The logical name string has a length of 0 or has
more than 255 characters. Note that, prior to
Version 4 of VMS, SS$_1VLOGNAM was returned
when the length of a logical name exceeded 63
characters.

An invalid logical name table number was
specified.

Either (1) the specified logical name does not
exist in the specified logical name table, or (2) the
specified logical name exists in the process logical
name table but the entry was made from a more
privileged access mode.

The process does not have the privilege to delete
an entry from the specified logical name table.

2-11

$GETCHN

$GETCHN

FORMAT

RETURNS

ARGUMENTS

2-12

Get 1/0 Channel Information

The Get 1/0 Channel Information service returns information about a device
to which the calling process has assigned an 1/0 channel. The information
returned consists of either primary or secondary device characteristics, or
both.

The Get Device/Volume Information ($GETDVI) service supersedes the
$GETCHN service. New programs should be written using $GETDVI
instead of $GETCHN, and old programs that use $GETCHN should be
converted to use $GETDVI or $GETDVIW.

SYS$GETCHN chan ,{prilen] ,{pribuf] ,{scdlen]
,{scdbuf]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition
value in RO. Condition values that can be returned by this service are listed
under "CONDITION VALUES RETURNED."

chan
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the 1/0 channel assigned to the device. The chan argument is a
longword containing this number.

prilen
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the primary device characteristics that $GETCHN returns
to the caller. The prilen argument is the address of a word into which
$GETCHN writes the length.

pribuf
VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Buffer into which $GETCHN writes the primary device characteristics. The
pribuf argument is the address of a character string descriptor pointing to this
buffer.

DESCRIPTION

$GETCHN

If pribuf is specified as 0 (an address of 0), $GETCHN interprets this to mean
that no buffer is specified. This is the default.

scdlen
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the secondary device characteristics that $GETCHN
returns to the caller. The scdlen argument is the address of a word into
which $GETCHN writes the length.

scdbuf
VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Buffer into which $GETCHN writes the secondary device characteristics. The
scdbuf argument is the address of a character string descriptor pointing to
this ·buffer.

If scdbuf is specified as 0 (an address of 0), $GETCHN interprets this to mean
that no buffer is specified. This is the default.

The channel number specified in the chan argument must correspond to an
assigned channel.

In most cases, the two sets of characteristics (primary and secondary)
returned by $GETCHN are identical. However, the two sets provide different
information in the following cases:

• If the device has an associated mailbox, the primary characteristics are
those of the assigned device and the secondary characteristics are those of
the associated mailbox.

• If the device is a spooled device, the primary characteristics are those of
the intermediate device and the secondary characteristics are those of the
spooled device.

• If the device represents a logical link on the network, the secondary
characteristics contain information about the link.

2-13

$GETCHN

2-14

Note also that the Get 1/0 Device Information ($GETDEV) service returns the .
same information as the $GETCHN service. Both services return information
in a user-supplied buffer. Symbolic names defined in the $DIBDEF macro
represent offsets from the beginning of the buffer. The length of the buffer is
defined in the constant DIB$K_LENGTH, and the field offset names, lengths,
and contents are listed below.

Field Name

DIB$L_DEVCHAR

DIB$B_DEVCLASS

DIB$B_DEVTYPE

DIB$B_SECTORS

DIB$B_ TRACKS

DIB$W _CYLINDERS

DIB$W _DEVBUFSIZ

DIB$L _DEVDEPEND

DIB$L_MAXBLOCK

DIB$W_UNIT

DIB$W _DEVNAMOFF

DIB$L_PID

DIB$L_OWNUIC

DIB$W_VPROT

DIB$W_ERRCNT

DIB$L_OPCNT

DIB$W_VOLNAMOFF

DIB$W _RECSIZ

Length
(bytes)

4

1

1

2

2

4

4

2

2

4

4

2

2

4

2

2

Contents

Device characteristics

Device class

Device type

Number of sectors per track (disk)

Number of tracks per cylinder (disk)

Number of cylinders on the volume (disk)

Device buffer size

Device-dependent information

Number of logical blocks on the vulume
(disk)

Unit number

Offset to device name string

Process identification of device owner

UIC of device owner

Volume protection mask

Error count

Operation count

Offset to volume label string

Blocked record size; valid for magnetic
tapes when DIB$W _ VQLNAMOFF is
nonzero

The device name string and volume label string are returned in the buffer
as counted ASCII strings and must be located by using their offsets from the
beginning of the buffer.

Any fields not applicable to a particular device are returned as zeros.

CONDITION
VALUES
RETURNED

SS$_NORMAL

SS$_BUFFEROVF

SS$_ACCVIO

SS$_1VCHAN

SS$_NOPRIV

$GETCHN

Service successfully completed.

Service successfully completed. The device
information returned overflowed the buffer(s)
provided and has been truncated.

A buffer descriptor cannot be read by the caller, or
a buffer or buffer length cannot be written by the
caller.

An invalid channel number was specified, that is,
a channel number of 0 or a number larger than the
number of channels available.

The specified channel is not assigned or was
assigned from a more privileged access mode.

2-15

$GETDEV

$GETDEV Get 1/0 Device Information

FORMAT

RETURNS

ARGUMENTS

2-16

The Get 1/0 Device Information service returns information about an 1/0
device; the calling process need not have assigned a channel to the device.
The information returned consists of either primary or secondary device
characteristics, or both.

The Get Device/Volume Information ($GETDVI) service supersedes the
$GETDEV service. New programs should be written using $GETDVI
instead of $GETDEV, and old programs that use $GETDEV should be
converted to use $GETDVI or $GETDVIW.

SYS$GETDEV devnam ,{prilen] ,{pribuf] ,[scdlen]
,{scdbuf]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition
value in RO. Condition values that can be returned by this service are listed
under "CONDITION VALUES RETURNED."

devnam
VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the device about which information is to be returned. The devnam
argument is the address of a character string descriptor pointing to this device
name string.

prilen
VMS usage: Word (unsigned)
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the primary device characteristics that $GETDEV returns
to the caller. The prilen argument is the address of a word into which
$GETDEV writes the length.

pribuf
VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

DESCRIPTION

$GETDEV

Buffer into which $GETDEV writes the primary device characteristics. The
pribuf argument is the address of a character string descriptor pointing to this
buffer.

If pribuf is specified as 0 (an address of 0), $GETDEV interprets this. to mean
that no buffer is specified. This is the default.

scdlen
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the secondary device characteristics that $GETDEV returns
to the caller. The scdlen argument is the address of a word into which
$GETDEV writes the length.

scdbuf
VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Buffer into which $GETDEV writes the secondary device characteristics. The
scdbuf argument is the address of a character string descriptor pointing to
this buff er.

If scdbuf is specified as 0 (an address of 0), $GETDEV interprets this to mean
that no buffer is specified. This is the default.

In most cases, the two sets of characteristics (primary and secondary)
returned by $GETDEV are identical. However, the two sets provide different
information in the following cases:

• If the device has an associated mailbox, the primary characteristics are
those of the assigned device and the secondary characteristics are those of
the associated mailbox.

• If the device is a spooled device, the primary characteristics are those of
the intermediate device and the secondary characteristics are those of the
spooled device.

• If the device represents a logical link on the network, the secondary
characteristics contain information about the link.

The Get I/O Channel Information ($GETCHN) service returns the same
information as the $GETDEV service and returns it in the same format. Both
services return information in a user-supplied buffer. The $DIBDEF macro
defines symbolic names for the length and contents of this buffer; refer to
the Description section of the $GETCHN service for a list of these symbolic
names.

2-17

$GETDEV

CONDITION
VALUES
RETURNED

2-18

SS$_NORMAL

SS$_BUFFEROVF

SS$_ACCVIO

SS$_1VDEVNAM

SS$_1VLOGNAM

SS$_NONLOCAL

SS$_NOSUCHDEV

Service successfully completed.

Service successfully completed. The device
information returned overflowed the buffer(s)
provided and has been truncated.

A buffer descriptor cannot be read by the caller, or
a buffer or buffer length cannot be written by the
caller.

No device name was specified, or the device name
string has invalid characters.

The device name string has a length of 0 or has
more than 63 characters.

Warning. The device is on a remote system.

Warning. The specified device does not exist on
the host system.

$INPUT

$INPUT Queue Input Request and Wait
for Event Flag

FORMAT

$INPUT is a simplified form of the Queue 1/0 Request and Wait for Event
Flag ($QIOW) service. It queues a virtual input operation using the 10$_
READVBLK function code and waits for 1/0 completion.

$INPUT is not a system service, but rather a macro that may be invoked
only by the VAX MACRO language.

DIGIT AL no longer recommends the use of $INPUT, even by VAX MACRO
users; the $010 or $QIOW services should be used instead.

SYS$1NPUT chan ,length ,buffer [,iosb} [,efn]

RETURNS type:

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

access:
mechanism:

Longword condition value. All system services return (by value) a condition
value in RO. Condition values that can be returned by this service are listed
under "CONDITION VALUES RETURNED."

ch an
Number of the I/O channel assigned to the device from which input is to be
read.

length
Length of the input buffer.

buffer
Address of the input buffer.

iosb
Address of a quadword 1/0 status block.

ef n
Number of the event flag to be set when the request is complete. The default
is event flag 0.

The $INPUT macro has only one form. Arguments must be specified as for
the $name_S macro form, but "_S" must not be included in the macro call.

Any condition values returned by $QIO

2-19

$OUTPUT

$OUTPUT Queue Output Request and
Wait for Event Flag

FORMAT

$OUTPUT is a simplified form of the Queue 1/0 Request and Wait for
Event Flag ($QIOW) service. It queues a virtual output operation using the
10$_WRITEVBLKBLK function code and waits for 1/0 completion.

$OUTPUT is not a system service, but rather a macro that may be invoked
only by the VAX MACRO language.

DIGIT AL no longer recommends the use of $OUTPUT, even by VAX
MACRO users; the $010 or $QIOW services should be used instead.

SYS$0UTPUT chan ,length ,buffer [,iosb} [,efn}

RETURNS type:

ARGUMENTS

DESCRIPTION

2-20

access:
mechanism:

Longword condition value. All system services return (by value) a condition
value in RO. Condition values that can be returned by this service are listed
under "CONDITION VALUES RETURNED."

chan
Number of the 1/0 channel assigned to the device to which output is to be
written.

length
Length of the output buffer.

buffer
Address of the output buffer.

iosb
Address of the quadword 1/0 status block.

efn
Number of the event flag to be set when the request is complete. The default
is event flag 0.

The $OUTPUT macro has only one form. Arguments must be specified as for
the $name_S macro form, but "_S" must not be included in the macro call.

The $OUTPUT macro supplies a P4 value of hexadecimal 20 to the $QIOW
service. For output to a terminal, this value is a carriage control specifier
indicating the following sequence: line feed, print buffer contents, carriage
return.

CONDITION
VALUES
RETURNED

Same as those for $QIO

$OUTPUT

2-21

$SNDACC

$SNDACC

FORMAT

RETURNS

ARGUMENTS

2-22

Send Message to Accounting
Manager

The Send Message to Accounting Manager service controls accounting
log activity and allows a process to write an arbitrary data message into
the accounting log file.

The Send to Job Controller ($SNDJBC) service supersedes the $SNDACC
service. New code should be written using $SNDJBC (or $SNDJBCW)
instead of $SND.ACC, and old code using $SNDACC should be converted
to use $SN DJ BC or $SNDJBCW.

SYS$SNDACC msgbuf ,[chan}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition
value in RO. Condition values that can be returned by this service are listed
under "CONDITION VALUES RETURNED."

msgbuf
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Message buffer specifying the message type and message. The msgbuf
argument is the address of a character string descriptor pointing to the
message buffer.

The first word in the message buffer must specify a message type. These
message types have symbolic names, which are defined by the $ACCDEF
macro. Some message types require that data follow the message type code
in the message buffer, while other message types require no data at all. The
following lists each message type and describes the nature of the data, if any,
that must follow that type.

$SNDACC Message Types

ACC$K_INSMESG
This message type directs $SNDACC to insert a message in the accounting
log file. Following the message type in the buffer is the message text itself.
$SNDACC precedes the message with a default header when the message is
written to the accounting log file.

$SNDACC

ACC$K_NEWFILE
This message type directs $SNDACC to close the current accounting log file
and to open a new accounting log file. OPER privilege is requirE:d to issue
this request. No data follows the message type in the buffer.

ACC$K_ENABACC
This message type enables accounting for all types of jobs. OPER privilege is
required to issue this request. No data follows the message type in the buffer.

ACC$K_DISAACC
This message type disables accounting for all types of jobs. OPER privilege is
required to issue this request. No data follows the message type in the buffer.

ACC$K_ENABSEL
This message type enables accounting for certain types of jobs. OPER
privilege is required to issue this request. In the buffer, the message type
is followed by one or more 1-byte job type codes that define the types of
job for which accounting is to be enabled. The list of job type codes must be
terminated with a byte containing 0. The following job type codes are defined
by the $ACCDEF macro:

Type Code Job Type

Batch job

User message

Interactive job

Login failure

ACC$K_BATTRM

ACC$K_INSMSG

ACC$K_INTTRM

ACC$K_LOGTRM

ACC$K_PRCTRM

ACC$K_PRT JOB

Noninteractive process, subprocess, or detached process

Print job

ACC$K_DISASEL
This message type disables accounting for certain types of jobs. OPER
privilege is required to issue this request. In the buffer, the message type is
followed by one or more 1-byte job type codes that define the types of job
for which accounting is to be disabled. The list of job type codes must be
terminated with a byte containing 0. The list of job type codes appears under
the description of the ACC$K_ENABSEL message type code.

chan
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Channel number of the mailbox to which $SNDACC writes the completion
status of the operation. The chan argument is a longword containing this
number.

If the chan argument is not specified or is specified as 0, $SNDACC does
not return the completion status. The completion status is lost if insufficient
buffer space exists, if the message is too long, or if the mailbox no longer·
exists when $SNDACC attempts to return the status.

2-23

$SNDACC

DESCRIPTION

CONDITION
VALUES
RETURNED

2-24

The $SNDACC returns the completion status to the mailbox in the following
format:

Bits

0-15

16-31

32-63

Description

In this word $SNDACC writes the code MSG$_ACCRSP, indicating
that this mailbox has been written to by $SNDACC. This code is
defined by the $MSGDEF macro.

0

Completion status code. These codes are defined by the
$JBCMSGDEF macro and are listed under "Condition Values Returned
in the Mailbox" at the end of the $SNDACC description.

The calling process must have OPER privilege to: (1) create a new log; or
(2) enable or disable accounting.

The $SNDACC service requires system dynamic memory.

The accounting log file is located on the system disk in
SYS$MANAGER:ACCOUNTNG.DAT. The file is sequentially organized
and contains variable-length records.

The general procedure for writing a call to this service is as follows:

1 Construct the message buffer and place its final length in the first word of
the buffer descriptor.

2 Call the $SNDACC service.

3 Check the status code returned in RO for successful completion.

4 Issue a read request to the mailbox specified, if any.

5 When the read completes, check the status code returned in the mailbox
for successful completion.

By default, the system writes a record into the accounting log file whenever
a job terminates. Termination records are written for interactive users, batch
jobs, noninteractive processes, login failures, and print jobs.

The $SNDACC service allows users to write additional data into the
accounting log and allows privileged users to disable or enable all accounting
for particular types of jobs.

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DEVNOTMBX

SS$_1NSFMEM

Successful completion.

The message buffer or buffer descriptor cannot be
read by the caller.

The specified message has a length of 0 or has
more than 196 characters.

The channel specified is not assigned to a mailbox.

Insufficient system dynamic memory is available to
complete the service.

CONDITION
VALUES
RETURNED IN
THE MAILBOX

EXAMPLE

$ACCDEF
ACCMSG: .WORD 0
MESSAGE:

SS$_1VCHAN

SS$_NOPRIV

JBC$_NORMAL

JBC$_NQOPER

JBC$_1NVFUNCOD

JBC$_1NVITMCOD

JBC$_1NVMSGBUF

JBC$_1NVPARLEN

.WORD ENDRQ-REQUEST

.WORD 0

.ADDRESS -

REQUEST:
.WORD
.BYTE
.BYTE
.BYTE

ENDRQ:

REQUEST

ACC$K_ENABSEL
ACC$K_BATTRM
ACC$K_PRTJOB
0

$CREMBX_S -
chan=ACCMSG

$SNDACC

An invalid channel number was specified, that is,
a channel number of 0 or a number larger than the
number of channels available.

The caller does not have write access to the
specified mailbox.

Successful completion.

The caller does not have the necessary OPER
privilege for the requested operation.

The specified message type code is invalid.

The specified job type code is invalid.

The message buffer is not large enough to contain
all required fields.

The message text is more than 255 characters.

mailbox channel number
character string descriptor
size of request

address of request

message buff er for $SNDACC
selectively enable:
batch jobs
print jobs
end of message buff er

create mailbox for message

$SNDACC_S -
msgbuf=MESSAGE, -
chan=ACCMSG

; address of descriptor
; mailbox channel for data

The above example shows a segment of a program used to selectively enable
accounting for batch jobs and print jobs.

2-25

$SNDSMB

$SNDSMB

FORMAT

RETURNS

ARGUMENTS

2-26

Send Message to Symbiont Manager

The Send Message to Symbiont Manager service allows a user to create
and manage queues, as well as the jobs in those queues.

The Send to Job Controller ($SNDJBC) service supersedes the $SNDSMB
service. New code should be written using $SNDJBC (or $SNDJBCW)
instead of $SNDSMB, and old code using $SNDSMB should be converted
to use $SN DJ BC or $SNDJBCW.

SYS$SNDSMB msgbuf ,[chan}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition
value in RO. Condition values that can be returned by this service are listed
under "CONDITION VALUES RETURNED."

msgbuf
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Address of a character string descriptor that points to the message buffer. The
user constructs a message buffer for each $SNDSMB request. The first 2-byte
field of the buffer specifies the request type; additional fields specify other
required information; the last field specifies other optional information.

The size and content of the message buffer varies depending on the
$SNDSMB request. The Description section contains a list of $SNDSMB
request types and, for each type, shows the content and format of the
message buffer including allowable options. The Description section also
contains a list describing each option.

ch an
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the channel assigned to the mailbox that is to receive the reply
from $SNDSMB. If no channel number is specified or if it is specified as 0
(the default), $SNDSMB does not reply.

DESCRIPTION

$SNDSMB

If the chan argument is specified, the symbiont manager returns one
quadword of information to the mailbox. This information is formatted as
follows:

Bits

0-15

16-31

32-63

Contents

MSG$_SMBRSP. This name, which is defined by the $MSGDEF
macro, indicates that the message is from the symbiont manager.

The job entry number (or job id). The symbiont manager assigns a
jobid to each batch or print job.

Status code. This status code describes the actual results of
the symbiont operation. These status codes are defined by the
$JBCMSGDEF macro, which is located in SYS$LIBRARY:LIB.MLB. A
list of these status codes appears under "Condition Values Returned
in the Mailbox".

Note that, in contrast to these status codes, the status codes
returned in RO describe the call to $SNDSMB (whether it was
successful, ill-formed, and so on).

If the mailbox cannot handle the message because either (1) there is
insufficient buffer space, (2) the message is too long, or (3) the mailbox
no longer exists when the reply is sent, then the response is lost.

The Send Message To Symbiont Manager service requires system dynamic
memory.

The general procedure for using this service is as follows:

1 Construct the message buffer and place its final length in the first word of
the buffer descriptor.

2 Issue the $SNDSMB service.

3 Check the return status code from the service to ensure successful
completion.

4 Issue a read request to the specified mailbox, if any.

5 When the read completes, check that the operation was successfully
performed.

$SNDSMB Request Types and Message Buffer Formats

This section lists each $SNDSMB request type, describes the operation it
designates, shows the content and format of the message buffer for the
request type, and lists the options that may be specified with the request type.

2-27

$SNDSMB

2-28

The format of the message buffer for each request type is described in terms
of required and optional fields. Some of the items for required fields are used
for several request types; rather than repeat the syntactical description of a
required item for each request type, the syntactical description is given once
here:

Queue name

Device name

File ID

Dir ID

File name

Job name

The total length of this field must be 16 bytes. The first
byte contains the length of the queue name string (maximum
15 characters). Successive bytes contain the queue name
string, one character per byte. Unused bytes are filled with
any characters to bring the total length of the field to 16
bytes.

The total length of this field must be 16 bytes. The contents
of this field is actually supplied by RMS; the user need only
copy to the message buffer 16 bytes beginning at offset
NAM$T_DVI of the RMS Name Block (NAM).

The total length of this field must be 6 bytes. The contents
of this field is actually supplied by RMS; the user need only
copy to the message buffer 6 bytes beginning at offset
NAM$W_FID of the RMS Name Block (NAM).

The total length of this field must be 6 bytes. The contents
of this field is actually supplied by RMS; the user need only
copy to the message buffer 6 bytes beginning at offset
NAM$W _DID of the RMS Name Block (NAM).

The total length of this field must be 20 bytes. It is not
used.

The total length of this field must be 10 bytes. The first
byte contains the length of the job name string (maximum 9
characters). Successive bytes contain the job name string,
one character per byte. Unused bytes are filled with any
characters to bring the total length of the field to 10 bytes.

If an option is specified in the message buffer, it must be specified after
all required fields. If the option requires a data value, that value must
immediately follow the option in the message buffer.

After all options and their data values (if any) have been specified in the
message buffer, an option code of 0 may be entered in the message buffer.
The zero option code indicates the end of all options (and the end of the
message buffer).

SMR$K_ABORT
This request stops the current job on a specified queue and starts the next job
in that queue.

Required fields in the message buffer:

SMR$K_ABORT

Queue name

2-byte request type

16-byte name of the queue whose current job is to be
stopped

Optional contents of the message buffer (valid only for output queues):

SMO$K_REODEST SMO$K_REOPRIO SMO$K_REOUEUE

$SNDSMB

SMR$K_ADDFIL
This request adds a file to a job that was created by the SMR$K_CREJOB
request.

Required fields in the message buff er:

SMR$K_ADDFIL

Device name

File ID

Dir ID

File name

2-byte request type

16-byte device name that identifies the device on which
the file resides

6-byte file identification of the file

6-byte directory identification of the file

20-byte unused field

Optional contents of the message buffer:

SMO$K_CQPIES SMO$K_BRSTPAG SMO$K_DELETE

SMO$K_FLAGPAG

SMO$K_NOFLAGPAG

SMO$K_DOUBLE SMO$K_FILESIZ

SMO$K_NOBRSTPAG SM0$K_NOFEED

SMO$K_PAGCNT SMO$K_PAGHDR

SMR$K_ALTER
This request changes the attributes of a previously queued job and then
requeues the job.

Required fields in the message buffer:

SMR$K_AL TER

Queue name

Job ID

2-byte request type

16-byte queue name that identifies the queue on which
the job is queued

2-byte job entry number; this identifier was returned by
$SNDSMB on a previous call when the job, which is now
to be altered, was initially queued

Optional contents of the message buffer:

SMO$K_CPULIM SMO$K_DQCHAR SMO$K_DESTOUE

SMO$K_FORMTYPE SMO$K_HOLD SMO$K_JQBCOPY

SMO$K_JOBNAME SMO$K_JOBPRI SMO$K_LOWER

SMO$K_NOCPULM SMO$K_NOLOWER SMO$K_NOWSDFT

SMO$K_ SMO$K_NOWSOUO SMO$K_RLSTIM
NOWSEXTNT

SMO$K_WSDEFL T SMO$K_ WSEXTNT SMO$K_WSOUOTA

SMR$K_CLSJOB
This request closes the current job and enters it on the queue specified in the
SMR$K_CREJOB request. SMR$K_CLSJOB works in tandem with SMR$K_
CREJOB. For example, the user creates a job with the SMR$K_CREJOB
request, adds files to the job with the SMR$K_ADDFIL request, and closes
the job with the SMR$K_CLSJOB request.

2-29

$SNDSMB

2-30

Required fields in the message buffer:

SMR$K_CLSJOB 2-byte request type

No options are allowed.

SMR$K_CREJOB
This request creates a job on a specified queue. It is used to create a job
consisting of a number of files and is used in tandem with SMR$K_ADDFIL
and SMR$K_CLSJOB. See the description of SMR$K_CLSJOB above.

Required fields in the message buffer:

SMR$K_CREJOB

Queue name

2-byte request type

16-byte name of the queue that identifies the queue on
which the job is to be queued

Optional contents of the message buffer:

SMO$K_CPULIM

SMO$K_HOLD

SMO$K_JOBPRI

SMO$K_LOGQNAM

SMO$K_NOKEEPLOG

SMO$K_NONOTFY

SMO$K_NOWSDFT

SMO$K_PARAMS

SMO$K_ WSEXTNT

SMR$K_DELETE

SMO$K_DQCHAR

SMO$K _JOBCOPY

SMO$K_KEEPLOG

SMO$K_LOWER

SMO$K_NOLOG

SMO$K_NOSPOOL

SMO$K_
NOWSEXTNT

SMO$K_RLSTIM

SMO$K_ WSQUOT A

SMO$K_FORMTYPE

SMO$K_JOBNAME

SMO$K_LOGFNAM

SMO$K_NOCPULM

SMO$K_NOLOWER

SMO$K_NOTIFY

SMO$K_NOWSQUO

SMO$K_ WSDEFL T

This request deletes a queue.

Required fields in the message buffer:

SMR$K_DELETE 2-byte request type

Queue name 16-byte name of the queue to be deleted

No options are allowed.

SMR$K_ENTER
This request enters a single file in a queue. Use SMR$K_CREJOB to enter
more than one file in a queue.

Required fields in the message buffer:

SMR$K_ENTER

Queue name

Device name

File ID

2-byte request type

16-byte name that identifies the queue in which the file is
to be queued

16-byte device name that identifies the device on which
the file resides

6-byte file identification of the file

$SNDSMB

Dir ID 6-byte directory identification of the file (required only if
the file is to be deleted after processing)

File name 20-byte unused field

Optional contents of the message buffer:

SMO$K_BRSTP AG SMO$K_COPIES SMO$K_CPULIM

SMO$K_DELETE SMO$K_DOUBLE SMO$K_DQCHAR

SMO$K_FILESIZ SMO$K_FLAGPAG SMO$K_FORMTYPE

SMO$K_HOLD SMO$K_JOBCOPY SMO$K_JOBNAME

SMO$K_JOBPRI SMO$K_KEEPLOG SMO$K_LOGFNAM

SMO$K_LOGQNAM SMO$K_LOWER SMO$K_NOBRSTPAG

SMO$K_NOCPULM SMO$K_NQFEED SMO$K_NOFLAGPAG

SMO$K_NOKEEPLOG SMO$K_NOLOG SMO$K_NOLOWER

SMO$K_NONOTFY SMO$K_NOSPOOL SMO$K_NOTIFY

SMO$K_NOWSDFT SMO$K_NOWSEXTNT SMO$K_NOWSQUO

SMO$K_PAGCNT SMO$K_PAGHDR SMO$K_PARAMS

SMO$K_RLSTIM SMO$K_ WSDEFL T SMO$K_WSEXTNT

SMO$K_ WSQUOT A

SMR$K_INITIAL
This request initializes or reinitializes a queue.

Required fields in the message buff er:

SMR$K_INITIAL 2-byte request type

Queue name 16-byte name of the queue to be initialized or reinitialized

Optional contents of the message buffer:

SMO$K_ SMO$K_CURFORM SMO$K_DCPULM
CURDOCHAR

SMO$K_DEFBRST SMO$K_DEFFLAG SMO$K_DET JOB

SMO$K_DISW AP SMO$K_GENDEV SMO$K_GENPRT

SMO$K_INIPRI SMO$K_JOBLIM SMO$K_MCPULM

SMO$K_NODCPULM SMO$K_NODEFBRST SMO$K_NODEFFLAG

SMO$K_NODISWAP SMO$K_NOGENDEV SMO$K_NOGENPRT

SMO$K_NOMCPULM SMO$K_NOTRMDEV SMO$K_NOWSDFL T

SMO$K_NOWSOUT A SMO$K_NOWSXTNT SMO$K_SMBNAME

SMO$K_ TRMDEV SMO$K_ WSDFL T SMO$K_WSOUT A

SMO$K_WSXT ANT

SMR$K_MERGE
This request deletes jobs from one queue (the source queue) and requeues
them in another queue (the destination queue).

2-31

$SNDSMB

2-32

Required fields in the message buffer:

SMR$K_MERGE

Destination queue name

Source queue name

2-byte request type

16-byte name that identifies the queue to which
the jobs are to be requeued

16-byte name that identifies the queue from
which the jobs are to be deleted

No options are allowed.

SMR$K_PAUSE
This request pauses the execution of jobs in a specified queue.

Required fields in the message buffer:

SMR$K_PAUSE 2-byte request type

Queue name 1 6-byte name of the queue that is to be paused

No options are allowed.

SMR$K_REDIRECT
This request assigns a logical queue (the source queue) to an execution queue
(the destination queue).

Required fields in the message buffer:

SMR$K_REDIRECT

Destination queue name

Source queue name

2-byte request type

16-byte name that identifies the execution
queue to which a logical queue is to be assigned

16-byte name that identifies the logical queue
which is to be assigned to the execution queue;
if the source queue name field contains all
binary zeros, the request revokes a previous
assignment of the queue specified in the
destination queue name field

No options are allowed.

SMR$K_RELEASE
This request releases a job that was put on hold by specifying the SMO$K_
HOLD option with either the SMR$K_CREJOB or SMR$K_ENTER request
types.

Required fields in the message buffer:

SMR$K_RELEASE

Queue name

Job ID

2-byte request type

16-byte queue name field that identifies the queue in
which the job is held

2-byte job entry number; this identifier was returned by
$SNDSMB on a previous call when the job, which is now
to be released, was initially put on hold

No options are allowed.

SMR$K_RMVJOB
This request removes a job from a queue.

$SNDSMB

Required fields in the message buff er:

SMR$K_RMV JOB 2-byte request type

Queue name 16-byte queue name that identifies the queue from which
to remove the job

Job ID 2-byte job entry number; this identifier was returned by,
$SNDSMB on a previous call when the job, which is now
to be removed, was initially queued

No options are allowed.

SMR$K_START
This request enables printing on a device, resumes printing on a paused
device, restarts printing on a stopped device, or starts a batch queue.

Required fields in the message buffer:

SMR$K_ST ART 2-byte request type

Queue name 16-byte name of the queue to be started

Optional contents of the message buffer:

SMO$K_ SMO$K_CURFORM SMO$K_DCPULM
CURDQCHAR

SMO$K_DEFBRST SMO$K_DEFFLAG SMO$K_DET JOB

SMO$K_DISW AP SMO$K_GENDEV SMO$K_GENPRT

SMO$K_INIPRI SMO$K_JOBLIM SMO$K_MCPULM

SMO$K_NEXT JOB SMO$K_NODCPULM SMO$K_NODEFBRST

SMO$K_NODEFFLAG SMO$K_NOGENDEV SMO$K_NOGENPRT

SMO$K_NOMCPULM SMO$K_NQTRMDEV SMO$K_NOWSDFL T

SMO$K_NOWSQUT A SMO$K_NOWSXTNT SMO$K_SMBNAME

SMO$K_SPCCNT SMO$K_ TOPOFILE SMO$K_ TRMDEV

SMO$K_WSDFL T SMO$K_ WSQUT A SMO$K_ WSXT ANT

SMR$K_STOP
This request stops the execution of jobs in a queue.

Required fields in the message buff er:

SMR$K_STOP 2-byte request type

Queue name 16-byte name of the queue to be stopped

No options are allowed.

SMR$K_SVNCJOB
This request waits for a job to complete and then returns the 8-byte
completion message. The status code contained in the second longword
of the completion message is the completion status of the job.

Required fields in the message buffer (only one of either the job id or job
name fields is required; if both are specified, the job id field is used):

2-33

$SNDSMB

2-34

SMR$K_SYNCJOB

Queue name

Job ID

Job name

$SNDSMB Options

2-byte request type

1 6-byte name of the queue in which the job is queued

2-byte job entry number that identifies the job for which
to await completion; this identifier was returned by
$SNDSMB on a previous call when the job was initially
queued

1 0-byte job name

The following lists each $SNDSMB option. If an option requires that a data
value also be specified, the format of the required data is described.

If an option is specified in the message buffer, it must be specified after
all required fields. If the option requires a data value, that value must be
specified in the message buffer immediately following its associated option.

After all options and their data values (if any) have been specified in the
message buffer, an option code of 0 may be entered in the message buffer.
The zero option code indicates the end of all options (and the end of the
message buffer).

SMO$K_BRSTPAG
SMO$K_NOBRSTPAG
SMO$K_BRSTP AG specifies that a burst page be printed.

SMO$K_NQBRSTP AG specifies that a burst page not be printed.

No data value is required.

SMO$K_COPIES
SMO$K_COPIES specifies the number of copies of the file to be printed. The
required 1-byte data field specifies the desired number.

SMO$K_CPULIM
SMO$K_NOCPULIM
SMO$K_CPULIM specifies the CPU time limit for a batch job. The required
data field is an unsigned longword containing the desired number of 10
millisecond units.

SMO$K_NQCPULIM specifies that no CPU time limit is to be applied to the
batch job. No data field is required.

SMO$K_CURDQCHAR
SMO$K_CURDQCHAR specifies the current queue characteristics. The
required 16-byte data field contains a 128-bit mask. Each bit corresponds to
a queue characteristic; set bits indicate that the corresponding characteristic is
desired.

SMO$K_CURFORM
SMO$K_CURFORM specifies the form number currently on the printer. The
required 1-byte data field specifies this form number.

SMO$K_DCPULM
SMO$K_NODCPULM
SM0$K_DCPULM specifies the default CPU time limit for batch jobs
originating from a queue. The required data field is an unsigned longword

$SNDSMB

containing the desired number of 10 millisecond units. This number must be
less than or equal to the maximum CPU time limit (specified by
SMO$K_MCPULM).

SMO$K_NODCPULM specifies that no default CPU time limit is to be
applied to batch jobs originating from a queue. No data field is required.

SMO$K_DEFBRST
SMO$K_NODEFBRST
SMO$K_DEFBRST specifies that by default a printing queue should print a
burst page. No data field is required.

SMO$K_NODEFBRST specifies that by default a printing queue should not
print a burst page. No data field is required.

SMO$K_DEFFLAG
SMO$K_NODEFFLAG
SMO$K_DEFFLAG specifies that by default a printing queue should print a
flag page. No data field is required.

SMO$K_NODEFFLAG specifies that by default a printing queue should not
print a flag page. No data field is required.

SMO$K_DELETE
SMO$K_DELETE specifies that a file be deleted after printing. The DIR ID
field of the request is required.

SMO$K_DESTQUE
SMO$K_DESTQUE specifies the name of a new queue in which to put a job.
The required data field is a counted string containing the name of the queue.

SMO$K_DET JOB
SMO$K_DETJOB specifies that a queue is defined as a batch queue. No data
field is required.

SMO$K_DISWAP
SMO$K_NQDISWAP
SMO$K_DISWAP disables the swapping of all batch jobs in a queue. No
data field is required.

SMO$K_NODISWAP enables the swapping of all batch jobs in a queue. No
data field is required.

SMO$K_DOUBLE
SMO$K_DOUBLE specifies that all print jobs be double-spaced. No data
field is required.

SMO$K_DQCHAR
SMO$K_DQCHAR specifies characteristics that a device queue must have
before a job in it can be dequeued. The required 16-byte data field is a
128-bit bit mask, where each bit corresponds to a characteristic.

SMO$K_FILESIZ
SMO$K_FILESIZ specifies the size of a file. The required data field is an
unsigned longword that specifies the number of blocks in the file.

2-35

$SNDSMB

2-36

SMO$K_FLAGPAG
SMO$K_NOFLAGPAG
SMO$K_FLAGPAG specifies that a flag page be printed with a job. No data
field is required.

SMO$K_NOFLAGP AG specifies that a flag page not be printed with a job.
No data field is required.

SMO$K_FORMTYPE
SMO$K_FORMTYPE specifies the form number. The required 1-byte data
field contains the form number.

SMO$K_GENDEV
SMO$K_NOGENDEV
SMO$K_GENDEV defines a queue as a generic queue. No data field is
required.

SMO$K_NOGENDEV defines a queue as an execution queue. No data field
is required.

SMO$K_GENPRT
SMO$K_NOGENPRT
SMO$K_GENPRT allows processing of jobs entered in a generic queue by
this execution queue. No data field is required.

SMO$K_NOGENPRT disallows processing of jobs entered in a generic queue
by this execution queue. No data field is required.

SMO$K:_HQLD
SMO$K_HOLD specifies that a job be held until it is explicitly released. No
data field is required.

SMO$K_INIPRI
SMO$K_INIPRI specifies the base priority of a batch job. The required
1-byte data field contains a priority value from 0 to 15.

SMO$K_JQBCOPY
SMO$K_JOBCOPY specifies that a job be repeated. The required 1-byte data
field contains a number specifying how many times the job is to be repeated.

SMO$K_JOBLIM
SMO$K_JOBLIM specifies the maximum number of jobs that can be executed
simultaneously in a batch queue. The required 1-byte data field contains this
number.

SMO$K_JOBNAM
SMO$K_JOBNAM specifies the job name. The required data field is a
counted ASCII string from 1 to 39 bytes.

SMO$K_JOBPRI
SMO$K_JOBPRI specifies priority for the queueing of a job. The required
1-byte data field contains a priority value from 0 through 255.

SMO$K_KEEPLOG
SMO$K_NQKEEPLOG

$SNDSMB

SMO$K_KEEPLOG specifies that the log file not be deleted after printing a
batch job. No data field is required.

SMO$K_NOKEEPLOG specifies that the log file be deleted after printing a
batch job. No data field is required.

SMO$K_LOGFNAM
SMO$K_LOGFNAM specifies the name of a log file for a job. The required
data field contains a counted string specifying the name.

SMO$K_LQGQNAM
SMO$K_LOGQNAM specifies the name of a queue to which a batch job
log file is to be spooled. The required data field contains a counted string
specifying the name.

SMO$K_LOWER
SMO$K_NQLOWER
SMO$K_LOWER specifies that a printer must be equipped with lowercase
characters. No data field is required.

SMO$K_NOLOWER specifies that a printer need not be equipped with
lowercase characters. No data field is required.

SMO$K_MCPULM
SMO$K_NOMCPULM
SMO$K_MCPULM specifies the maximum CPU time for batch jobs. The
required data field is an unsigned longword containing the desired number
of 10 millisecond units of CPU time.

SMO$K_NOMCPULM specifies that no maximum CPU time is to be applied
to batch jobs. No data field is required.

SMO$K_NEXT JOB
SMO$K_NEXTJOB terminates the current job and starts printing the next job
in the queue. No data field is required.

SMO$K_NOFEED
SMO$K_NOFEED cancels automatic form feed for print jobs. No data field
is required.

SMO$K_NQLOG
SMO$K_NOLOG specifies that no log file be kept for a batch job. No data
field is required.

SMO$K_NOSPOOL
SMO$K_NOSPOOL specifies that a batch job log file not be spooled when
the batch job completes. No data field is required.

SMO$K_NOTIFY
SMO$K_NONOTI FY
SMO$K_NOTIFY specifies that the user be notified (via BROADCAST) when
a job has completed. No data field is required.

SMO$K_NONOTIFY specifies that the user is not to be notified when a job
has completed. No data field is required.

2-37

$SNDSMB

2-38

SMO$K_PAGCNT
SMO$K_P AGCNT specifies the number of pages to print. The required
2-byte data field contains the number.

SMO$K_PAGHDR
SMO$K_P AGHDR specifies that a page heading be printed on the top of
each output page. No data field is required.

SMO$K_PARAMS
SM0$K_P ARAMS specifies parameters for a batch job. The required data
field consists of one or more counted ASCII strings, terminated by 0.

SMO$K_REQDEST
SMO$K_REQDEST specifies the name of a queue in which to place jobs that
have been requeued using SMO$K_REQUEUE. The required data field is a
counted ASCII string.

SMO$K_REQPRIO
SMO$K_REQPRIO specifies a new priority for a job when the job is requeued
using SM0$K_REQUEUE. The required data field is a priority value from 0
to 255.

SMO$K_REQUEUE
SMO$K_REQUEUE places an aborted print job back in the queue. No data
field is required.

SMO$K_RLSTIM
SMO$K_RLSTIM specifies a time at which to release a held job. The required
data field is a quadword containing a binary time value.

SMO$K_SMBNAME
SMO$K_SMBNAME specifies the name of a print symbiont for jobs
originating from this queue. The required data field is a counted ASCII
string containing the file name of the symbiont image.

SMO$K_SPCCNT
SMO$K_SPCCNT restarts the current job at some number of pages either
previous to or subsequent to the page at which the job stopped. The required
data field is a signed word containing the plus or minus page count.

SMO$K_ TO PO Fl LE
SMO$K_TOPOFILE restarts the current job at the top of the file. No data
field is required.

SMO$K_TRMDEV
SMO$K_NOTRMDEV
SMO$K_TRMDEV specifies that a generic queue can place jobs in ,terminal
queues. No data field is required.

SMO$K_NOTRMDEV specifies that a generic queue can place jobs in printer
queues. No data field is required.

SMO$K_WSDEFL T
SMO$K_NOWSDFT

$SNDSMB

SMO$K_ WSDEFL T specifies the default working set size for a batch job.
The default working set size must be less than or equal to the working set
quota (SMO$K_WSQUOTA). The required data field is an unsigned word
containing the number of pages.

SMO$K_NOWSDFT specifies that no working set default size be applied to
this job. No data field is required.

SMO$K_WSDFLT
SMO$K_NOWSDFL T
SMO$K_WSDFLT specifies the default working set size for jobs originating
from this queue. The default working set size must be less than or equal
to the working set quota (SMO$K_WSQUTA). The required data field is an
unsigned word containing the number of pages.

SMO$K_NOWSDFL T specifies that no default working set size is specified
for jobs originating from this queue. No data field is required.

SMO$K_WSEXTNT
SMO$K_NOWSEXTNT
SMO$K_ WSEXTNT specifies the working set extent for this batch job. The
required data field is an unsigned word containing the number of pages.

SMO$K_NOWSEXTNT specifies that no working set extent is specified for
this batch job. No data field is required.

SMO$K_WSQUOTA
SMO$K_NOWSQUO
SMO$K_WSQUOTA specifies the working set quota for this batch job. The
required data field is an unsigned word containing the number of pages.

SMO$K_NOWSQUO specifies that no working set quota be applied to this
job. No data field is required.

SMO$K_WSQUTA
SMO$K_NOWSQUTA
SMO$K_WSQUTA specifies the working set quota for jobs originating from
this batch queue. The required data field is an unsigned word containing the
number of pages.

SMO$K_NOWSQUTA specifies that no working set quota is specified for
jobs originating from this batch queue. No data field is required.

SMO$K_WSXTANT
SMO$K_NOWSXTNT
SMO$K_WSXTANT specifies the default working set extent for jobs
originating from this batch queue. The required data field is an unsigned
word containing the number of pages.

SM0$K_NOWSXTNT specifies that no working set extent be applied to jobs
originating from this batch queue. No data field is required.

The working set default size, the working set quota and the working set
extent (maximum size) are included in each user record in the system user
authorization file (UAF), and can be specified for individual jobs and/or for
all jobs in a given queue.

2-39

$SNDSMB

CONDITION
VALUES
RETURNED

CONDITION
VALUES
RETURNED IN
THE MAILBOX

2-40

A CPU time limit for the process is included in each user record in the system
user authorization file (UAF). You can also specify any or all of the following:
a CPU time limit for individual jobs, a default CPU time limit for all jobs in a
given queue, and a maximum CPU time limit for all jobs in a given queue.

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DEVNOTMBX

SS$_1NSFMEM

SS$_1VCHAN

SS$_NQPRIV

JBC$_NORMAL

JBC$_DELACCESS

JBC$_EMPTYJOB

JBC$_EXECUTING

JBC$_1NCDSTOUE

JBC$_1NCOMPLETE

JBC$_1NCOUETYP

JBC$_1NVDSTOUE

JBC$_1NVFUNCOD

JBC$_1NVITMCOD

JBC$_1NVMSGBUF

Service successfully completed.

The message buffer or buffer descriptor cannot be
read by the caller.

The specified message has a length of 0 or has
more than 1000 characters.

The specified channel is not assigned to a mailbox.

Insufficient system dynamic memory is available to
complete the service, and the process has disabled
resource wait mode with the Set Resource Wait
Mode ($SETRWM) service.

An invalid channel number was specified; that is,
a channel number of 0 or a number larger than the
number of channels available.

The caller does not have write access to the
specified mailbox.

Normal successful completion.

The file protection of the specified file, which was
entered with the delete option, does not allow
delete access to the caller.

The open job cannot be closed because it contains
no files.

The parameters of the specified job cannot be
modified because the job is currently executing.

The type of the specified destination queue is
inconsistent with the requested operation.

The requested queue management operation
cannot be executed because a previously
requested queue management operation has
not yet completed.

The type of the specified queue is inconsistent
with the requested operation.

The destination queue name is not syntactically
valid.

The $SNDSMB request type is invalid.

An optional item is invalid for the specified request
type.

The message buffer_ is invalid because either it is
not long enough to contain all required fields or an
option extends beyond the end of the buffer.

EXAMPLE

$SMRDEF
REQUEST:

JBC$_1NVPARLEN

JBC$_1NVPARV AL

JBC$_1NVOUENAM

JBC$_JOBOUEDIS

JBC$_NODSTOUE

JBC$_NOOPENJOB

JBC$_NOPRIV

JBC$_NOOUESPACE

JBC$_NOREST ART

JBC$_NOSUCHFORM

JBC$_NOSUCHJOB

JBC$_NOSUCHOUE

JBC$_NOT ASSIGN

JBC$_REFERENCED

JBC$_ST ARTED

$SNDSMB

The length of a string specified with a $SNDSMB
option is outside the valid range for that option.

A specified option is outside the valid range.

The queue name is not syntactically valid.

The request cannot be executed because the
system job queue manager has not been started.

The specified destination queue does not exist.

The requesting process did not open a job with
the SJC$_CREATE_JOB function.

The queue protection denies access to the queue
for the specified operation.

The system job queue file was full and could not
be extended.

The specified job cannot be requeued because it
was not defined to be restartable.

The specified form does not exist.

The specified job does not exist.

The specified queue does not exist.

The specified queue cannot be deassigned because
it is not assigned.

The specified queue cannot be deleted because of
existing references by other queues or jobs.

The specified queue cannot be started because it
is already running.

.WORD SMR$K_ALTER
start of message buff er
alter queue

QUEUE: .ASCIC /SYS$PRINT ______ /

RJOBID: .WORD 0
OPT: .BYTE SMO$K_JOBPRI
NEWPRI: .BYTE 4

.BYTE 0

MOVW JOBID,RJOBID
MOVB R6,NEWPRI
$SNDSMB_S -

MSGBUF=REQUEST, -
CHAN=MBXCHAN

name of queue padded
with spaces
destination of job identifier
alter the priority
destination of priority
(default value of 4)
end of message buff er

move job identifier to buffer
R6 has new priority

The above example shows a segment of a program used to alter the priority
of a job in the queue SYS$PRINT.

2-41

$TRNLOG

$TRNLOG

FORMAT

RETURNS

ARGUMENTS

2-42

Translate Logical Name

The Translate Logical Name service searches the logical name tables for
a specified logical name and returns an equivalence name string into a
user-specified buffer; the search is not iterative. The process, group, and
system logical name tables are searched in that order.

The Translate Logical Name ($TRNLNM) service supersedes the $TRNLOG
service. New programs should be written using $TRNLNM, not $TRNLOG,
and old programs that use $TRNLOG should be converted to use
$TRNLNM.

SYS$TRNLOG lognam ,[rs/Jen} ,rslbuf ,{table]
,[acmode] ,{dsbmsk}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by value) a condition
value in RO. Condition values that can be returned by this service are listed
under "CONDITION VALUES RETURNED."

lognam
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string ~escriptor

Name of the logical name tq be translated. The lognam is the address of a
character string descriptor pointing to the logical name string.

rs II en
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by refe.rtince

Length in bytes of the equivalence name to which the logical name translates.
The rsllen argument is the address of a word to receive this length.

rslbuf
VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Buffer into which $TRNLOG writes the equivalence name. The rslbuf
argum~nt is the address of a character string descriptor pointing to this buffer.

DESCRIPTION

$TRNLOG

table
VMS usage: byte_unsigned
type: byte (unsigned)
access: write only
mechanism: by reference

Logical name table in which the equivalence name was found. The table
argument is the address of a byte into which $TRNLOG writes a value. The
value 0 specifies the system logical name table; 1, the group table; and 2, the
process table.

acmode
VMS usage: access_mode
type: byte (unsigned)
access: write only
mechanism: by reference

Access mode associated with the logical name and equivalence name. The
acmode argument is the address of a byte into which $TRNLOG writes this
access mode. The $PSLDEF macro defines the symbols for the four access
modes. The contents of this byte is valid only if the equivalence name was
found in the process logical name table (table 2).

dsbmsk
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Logical name tables that are not to be searched by $TRNLOG. The dsbmsk
argument is a longword bit vector wherein a bit, when set, disables the search
of the corresponding logical name table. Bit 0 corresponds to the system
logical name table; bit 1, to the group logical name table; and bit 2, to the
process logical name table.

If dsbmsk is not specified or is specified as 0 (the default), all three logical
name tables are searched.

If the first character of a specified logical name is an underscore character (-),
no translation is performed. However, the underscore character is removed
from the string and the modified string is returned in the output buffer.

2-43

$TRNLOG

CONDITION
VALUES
RETURNED

2-44

SS$_NORMAL

SS$_NOTRAN

SS$_ACCVIO

SS$_1VLOGNAM

SS$_RESUL TOVF

Service successfully completed. An equivalence
name was returned.

Service successfully completed. An equivalence
name was not found; the logical name was
returned in the buffer.

The logical name string or string descriptor cannot
be read by the caller; or the output length, output
buffer, or table or access mode field cannot be
written by the caller.

The specified logical name string has a length of 0
or has more than 255 characters.

The buffer was too small to receive the returned
string.

3 Obsolete RTL Routines

This chapter describes obsolete RTL routines. An obsolete routine is a routine
that has been superseded by a more efficient or more flexible routine.
Obsolete routines are no longer updated.

Section 3.1 through Section 3.3 describe RTL routines by functional groups.
Section 3.4 contains a complete description of each obsolete RTL routine.

DIGITAL recommends that you use current routines when you write new
programs. Old programs which use obsolete routines should be updated to
make future maintenance easier.

3.1 Obsolete FOR$ Routines
Table 3-1 displays the obsolete FOR$ routines described in this chapter and
the current OTS$ routines that have replaced them.

Table 3-1 Table of Obsolete RTL Routines

Obsolete Routine New Routine

FOR$CNV_OUT_I OTS$CVT_L_ Tl

FOR$CNV_OUT _L OTS$CVT_L_TL

FOR$CNV_OUT _O OTS$CVT_L_TO

FOR$CNV_OUT _Z OTS$CVT_L_TZ

FOR$CNV_IN_I OTS$CVT_ Tl_L

FOR$CNV_IN_L OTS$CVT_TL_L

FOR$CNV_IN_O OTS$CVT_TQ_L

FOR$CNV_IN_DEFG OTS$CVT_ T_Z

FOR$CNV_IN_Z OTS$CVT_ TZ_L

The obsolete FOR$ routines listed in the first column of Table 3-1 were the
original routines. FOR$ routines were written to support conversion and I/O
functions in FORTRAN. As more languages evolved that also needed these
types of services, the FOR$ routines were rewritten as OTS$ routines. OTS$
routines are generic routines and are language independent. Therefore, a
BASIC compiler can call an OTS$ routine, but may not call the equivalent
FOR$ routine. It is interesting to note that even the FORTRAN compiler now
uses the OTS$ entry points rather than the FOR$ entry points.

The FOR$ and OTS$ routines listed above are equivalent. In fact, each pair
not only performs the same function, but does so using the same code. Each
routine module contains two entry points, one for OTS$ and one for FOR$.
These two entry points lead to a common code path.

3-1

Obsolete RTL Routines
3.1 Obsolete FOR$ Routines

In some of the routines, however, there is a slight difference between OTS$
and FOR$. Many of the optional arguments provided in the OTS$ routines
are not provided in their FOR$ equivalents. In each case where the FOR$
routine does not include optional arguments present in the OTS$ version, the
default values of the optional arguments are used.

Because OTS$ now provides the same services as FOR$, with the added
advantage of being language independent, DIGITAL strongly recommends
that you use only OTS$ routines.

3.2 Obsolete Terminal-Independent Screen Manipulation Procedures

3-2

These obsolete screen manipulation procedures have been superseded by the
SMG$ routines. DIGITAL recommends that you use only SMG$ routines for
screen manipulation. ·

The obsolete terminal-independent screen procedures were designed to allow
high-level language programs to manipulate output to terminals and files.
Table 3-2 lists these obsolete screen procedures and their functions.

When you write code that uses these procedures, you do not need to know
what kind of terminal will be used when your program runs. They are
intended primarily for controlling output to video terminals, but they also
function predictably if the output device is a hardcopy terminal or a file. The
word screen refers to the screen of a video terminal.

Each of these procedures also has a corresponding SCR$ entry point, where
scalar input arguments are passed by immediate value. For example, if you
use SCR$SET_CURSOR rather than LIB$SET_CURSOR, you must pass the
line number and column number by immediate value.

Note: These procedures set the terminal type to correspond to the type specified
by the /DEVICE_ TYPE qualifier of the SET TERMINAL command.

3.2.1

Obsolete RTL Routines
3.2 Obsolete Terminal-Independent Screen Manipulation Procedures

Table 3-2 The Terminal-Independent Screen Procedures

Entry Point

LIB$SCREEN_INFO
SCR$SCREEN_INFO

LIB$DOWN_SCROLL
SCR$DOWN _SCROLL

LIB$ERASE_LINE
SCR$ERASE_LINE

LIB$ERASE_PAGE
SCR$ERASE_PAGE

LIB$SET_CURSOR
SCR$SET_CURSOR

LIB$SET_SCROLL
SCR$SET _SCROLL

LIB$UP _SCROLL
SCR$UP _SCROLL

LIB$GET_SCREEN
SCR$GET_SCREEN

LIB$PUT_LINE
SCR$PUT_LINE

LIB$PUT_SCREEN
SCR$PUT_SCREEN

LIB$SET _OUTPUT
SCR$SET _OUTPUT

LIB$STOP _OUTPUT
SCR$STOP _OUTPUT

LIB$PUT_BUFFER
SCR$PUT _BUFFER

LIB$SET _BUFFER
SCR$SET _BUFFER

Obtaining Screen Information

Function

Returns terminal specifications to your program

Moves the cursor up one line, or scrolls down if at top

Erases all of the character positions on the screen from
the specified cursor position to the end of the line

Erases all of the character positions on the screen from
the specified cursor position to the end of the screen

Sets the cursor to the specified position on the screen

Establishes a scrolling region

Moves the cursor down one line, or scrolls up if at
bottom

Accepts input from a terminal and puts it into a
user-specified buffer

Displays the specified text at the current cursor
position followed by. a specified number of line
advances

Puts specified text to the screen beginning at a
specified line and column

Creates a channel to the specified terminal or buffer

Closes the channel to the specified terminal or buffer

Puts the current buffer to the screen or to the previous
buffer

Sets or clears buffer mode

LIB$SCREEN _INFO determines information about the terminal currently
being used and places it in a storage area that you provide. The following
information is available:

• Special terminal characteristics

DIGITAL video terminal

Hardcopy terminal, unknown terminal type, or file

ANSI terminal (VTlOO-compatible)

The terminal has Advance Video Option

The terminal understands REGIS graphics

The terminal is a block mode terminal

3-3

3.2.2

Obsolete RTL Routines
3.2 Obsolete Terminal-Independent Screen Manipuiation Procedures

• Type of terminal

•
•

Unknown type (=SET TERMINAL/DEVICE_TYPE=UNKNOWN)

VT52 (=SET TERMINAL/DEVICE_TYPE=VT52)

VTlOO (=SET TERMINAL/DEVICE_TYPE=VTlOO)

Or any of the other VMS terminal types

Line width

Lines per page

Positioning the Cursor on the Screen

3-4

Screen procedures let you customize interactive input and output by
manipulating the cursor, erasing parts of the screen display, and setting
the scrolling region. You can also cause the screen to scroll up or down a
specified number of lines. Furthermore, you can write programs that perform
many of these functions without knowing what type of DIGITAL terminal
will be used. If the terminal is unable to perform a particular function, it
will usually ignore the procedure call and continue, without issuing an error
message.

These procedures use the following conventions:

• The top line of a screen is line number one.

• The leftmost column of a screen is column number one.

• When the line and column arguments are optional, you must specify both
agruments or neither.

These procedures are designed to display the information you have passed
to them as accurately as possible. If you commit a formatting error, such
as entering too much text for the display area or moving the cursor to an
invalid position, you do not want your program to exit. Therefore, the screen
procedures ignore such errors rather than treat them as fatal. For example:

• The screen procedures do not check for cursor position specifications that
exceed the maximum number of lines or columns for the terminal.

• The screen procedures do not insert carriage returns in order to cause
lines to wrap.

• The screen procedures do not try to prevent the loss of text characters,
when text is positioned beyond the screen boundaries.

Obsolete RTL Routines
3.2 Obsolete Terminal-Independent Screen Manipulation Procedures

3.2.2.1 Controlling Input from and Output to the Screen
Three procedures let your program control IjO to and from the screen.

• LIB$GET_SCREEN reads an input string from SYS$INPUT into a
destination text string. The destination string can be fixed-length or
dynamic. You can supply two optional arguments to this procedure:

prompt-str

out-I en

Specifies text string to be displayed on the terminal before the
procedure accepts the contents of the screen as input.

Will contain the actual number of characters written into the
destination string.

• LIB$PUT_SCREEN displays the contents of the specified text string on
the screen. This procedure accepts three optional arguments:

line-no, col-no

flags

The line number and column number at which the displayed
text will begin. If you specify one of these arguments, you
must specify both.

A longword value that specifies the special graphics
attributes, such as blinking and reverse video, available on
some terminals. Currently, only the first four bits of the
longword are used. Table 3-3 indicates the binary value
corresponding to each combination of screen attributes
currently available.

• LIB$PUT_LINE displays a single line of text on the screen and then
moves the cursor. Its arguments specify the address of the text and
the number of lines to move the cursor. The second argument is a
signed value. If it is negative, the cursor moves upward after the line is
displayed.

By default, the cursor moves to the beginning of the next line. The effect
is the same as a carriage return and line feed.

3-5

Obsolete RTL Routines
3.2 Obsolete Terminal-Independent Screen Manipulation Procedures

3-6

Table 3-3 Screen Attributes

Binary value Decimal value Attributes

0000 0 None

0001 1 Bold

0010 2 Reverse Video

0011 3 Bold, Reverse Video

0100 4 Blinking

0101 5 Blinking, Bolded

0110 6 Blinking, Reverse Video

0111 7 Blinking, Reverse Video, Bolded

1000 8 Underlined

1001 9 Underlined, Bolded

1010 10 Underlined, Reverse Video

1011 11 Underlined, Reverse Video, Bolded

1100 12 Underlined, Blinking

1101 13 Underlined, Blinking, Bolded

1110 14 Underlined, Blinking, Reverse Video

1111 15 Underlined, Blinking, Reverse Video,
Bolded

LIB$SET_OUTPUT allows you to direct output to a terminal or file other
than the default output device, SYS$0UTPUT. This procedure can be used
to allow a single process to display information on multiple terminals. To do
this, your program calls LIB$SET_OUTPUT once for each terminal, before
sending output. You can also use it to direct output to a file.

The first time you call this procedure, you must use all the arguments in
order to set up the channel to the device or file. After this, you can simply
use the file specification or device name for each call and user routines and
user arguments, if any.

If you call LIB$SET_OUTPUT with no arguments, the output goes to
SYS$0UTPUT, the default process output stream.

LIB$STOP_OUTPUT can be used to close the output stream established by
LIB$SET_OUTPUT. If you do not call LIB$STOP_OUTPUT, the channel will
be freed automatically when the image exits.

LIB$STOP_OUTPUT is useful, for example, if you wish to make multiple
versions of a single file. If you call LIB$SET_OUTPUT, several times to send
output to a file and do not call LIB$STOP_OUTPUT, the original file will
be overwritten. All of the output except the last version will be lost. If you
call LIB$STOP_OUTPUT after each call to LIB$SET_QUTPUT, however,
LIB$SET_OUTPUT will open a new version of the file each time, and all of
the output will be preserved.

Obsolete RTL Routines
3.2 Obsolete Terminal-Independent Screen Manipulation Procedures

3.2.2.2 Buffering Screen 1/0
Normally, when your program displays text on the terminal, the Queue
I/O ($QIO) system service is called at least once for each call to a screen
procedure. However, buffer mode may also be used with the screen
procedures to format output to a hardcopy file or terminal.

The use of buffer mode involves four steps:

1 You set up an area of storage to act as the buffer.

2 You establish buffer mode in your program by calling LIB$SET_BUFFER.

3 The program calls other screen procedures, such as LIB$PUT_SCREEN.
Instead of displaying text on the screen, these procedures put the text into
the buffer.

4 The program writes the contents of the buffer on the screen by calling
LIB$PUT_BUFFER. This is normally done when enough information has
accumulated to fill the screen.

The amount of data that fills the screen cannot always be determined ahead
of time. For this reason, when the data overflows the buffer, $QIO is called
automatically to display the buffer's contents. Then LIB$SET_BUFFER sets
the buffer data size to zero and continues the current buffer mode by placing
new data in the current buffer.

Modular programs can use screen buffering at several levels. That is, a
procedure can establish buffer mode, then call another procedure which also
establishes buffer mode, and so on.

Each procedure that calls LIB$SET_BUFFER to establish buffer mode must
also set aside storage for a buffer. However, only one buffer is active at a
time. When a called procedure establishes a buffer, LIB$SET_BUFFER copies
the contents of the previously established buffer into the current one, and sets
the previous buffer to "empty."

A pointer to the buffer established previously is available to the called
procedure. You can access this pointer by declaring a longword to contain it
and by passing it as an argument to LIB$SET_BUFFER or LIB$PUT_BUFFER.
If you call LIB$SET_BUFFER using the address of the previous buffer as an
argument, this address is saved. Then you can use it as an argument for
LIB$PUT_BUFFER, to copy the current buffer back to the calling program's
buffer before returning to the calling program.

For example, assume that you want to write a procedure A that calls a
procedure B, and that you will use a buffer to accumulate the output from
both A and B. Procedure A performs the following:

1 Calls LIB$SET_BUFFER to establish a buffer called ABUF.

2 Puts text into ABUF.

3 Calls procedure B.

Procedure B performs the following:

1 Declares a longword to save the address of ABUF.

2 Sets up a buffer for itself, called BBUF.

3-7

Obsolete RTL Routines
3.2 Obsolete Terminal-Independent Screen Manipulation Procedures

3.2.2.3

3-8

3 Calls LIB$SET_BUFFER, using as arguments BBUF and the address of
ABUF. This establishes buffer mode for procedure B, specifies the new
buffer, and saves the address of ABUF.

4 Places into BBUF its own additions to the text.

5 Calls LIB$PUT_BUFFER, using the longword (the address of ABUF) as
the argument. This copies BBUF contents to ABUF.

This call passes the contents of 8BUF back to the procedure A's buffer. At
this point, procedure B returns control to procedure A. Its buffer now contains
all the text generated by both procedures. It then can display the text or pass
it up to a higher level by calling LIB$PUT_BUFFER.

Because of this process of copying the buffer's contents from one procedure
to the next, the contents of the buffer accumulate from the time that the
buffer mode is first established. This means that when you set up the buffer
for the main procedure, you must make it large enough to contain all the
information created by all of the procedures it calls, not just the output from
the called procedure itself. Otherwise, the data will overflow the buffer, and
an automatic $QIO will occur. Similarly, the calling procedure must set up
a buffer large enough to contain the data that will be buffered by all the
procedures called at lower levels, in addition to its own output.

LIB$SET_BUFFER takes two arguments. The first (required) argument
specifies the buffer being established. The second (optional) argument
saves the address of the previously established buffer. In order to preserve
modularity, the main program in this example uses both of these arguments.
Using LIB$SET_BUFFER and LIB$PUT_BUFFER in pairs also preserves
modularity by ensuring that the contents of the buffer are predictable at any
point in the execution of the program.

Calling LIB$PUT_BUFFER with no argument causes the contents of the
buffer to be flushed to the screen. If LIB$PUT_BUFFER is called with the
buffer argument set to zero, buffer mode stops automatically but the current
contents of the buffer are lost. You should call only these procedures with
buffer equal to zero if a situation occurs (such as a call to LIB$STOP or
SYS$EXIT) that will prevent your procedure from returning to its caller and
thus printing the contents of the buffer.

Using Screen Procedures with Files and Hardcopy Terminals
The terminal-independent screen procedures will execute if the output device
is a hardcopy terminal or a file instead of a video terminal. The output of a
program on these devices, however, may not be precisely comparable to the
same program's output on a screen. When the screen procedures are used
to output text to something other than a video screen, they use VMS Record
Management Services (RMS) to format the output, rather than the $QIO
system service. Unlike $QIO, RMS adds a carriage return and line feed to
each line.

As with video terminals, you can use the screen procedures to write to a
hardcopy terminal or file either with or without buffering. If you use the
procedures without establishing buffer mode, all features relating to the
formatting of the screen are ignored. The procedures will ignore arguments
specifying cursor position, and all output will be done line by line. For
example, LIB$UP_SCROLL and LIB$DOWN _SCROLL will do nothing, and
text displayed by LIB$PUT_SCREEN and LIB$PUT_LINE will be followed by
a carriage return/line feed.

Obsolete RTL Routines
3.2 Obsolete Terminal-Independent Screen Manipulation Procedures

3.3 LIB$EMULATE

However, if you use the procedures after establishing buffer mode, the
output in the file or on the hardcopy page will look as much as possible
like the corresponding screen display. When you call LIB$SET_BUFFER and
specify a hardcopy device or a file, the procedure establishes its own buffer,
equivalent to a logical "screen." It then moves the cursor and places text
within that buffer as though the buffer were the screen. The arguments of
LIB$PUT_SCREEN that specify holding and underlining also cause holding
and underlining on hardcopy terminals and in files; the blinking and reverse
video options are ignored.

When your program calls LIB$PUT_BUFFER to display the contents of the
buffer, the procedure scans the buffer from top to bottom, placing each line in
the file or on the hardcopy page and adding a carriage return and line feed.
If the procedure finds more than one blank line at the bottom, it stops the
output and issues a form feed.

Errors that occur during output to hardcopy terminals and files are handled
like other screen formatting errors: the procedures do the best they can to
reproduce the screen display without causing the image to exit. For example,
overflow does not cause the buffer's contents to be output. Rather, the buffer
is displayed only by a call to LIB$PUT_BUFFER; any text that exceeded the
limits of the buffer is lost. Transfer of information beyond the end of a line
causes line wrap; any text that already exists on the next line is overwritten
and lost. If you move the cursor to a point within the buffer and write text
that will overflow, or if you move the cursor to a point beyond the limits of
the buffer, no error message results. The procedure does the best it can, and
the excess text is lost. Because of this "best try" error handling, you should
structure your output carefully when writing output to hardcopy terminals
and files to avoid overflow and line wrap.

The functions that were previously performed by LIB$EMULATE are now
done automatically. Although no error will result when you call this routine,
it is no longer necessary to do so.

3.4 Obsolete RTL Routines
This reference section contains obsolete RTL routines.

3-9

Obsolete RTL Routines
FOR$CNV_QUT_I

FOR$CNV_QUT_I Convert Signed Integer to
Decimal Text

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

3-10

FOR$CNV_OUT_I converts a signed integer to a decimal ASCII text string.
This procedure supports FORTRAN lw and lw.m output.

FOR$CNV_OUT_I value,out-str

type: longword (unsigned)
access: write only
mechanism: by value

value
type: longword integer (signed)
access: read only
mechanism: by reference

Signed integer value that FOR$CNV_OUT_I converts to a decimal ASCII text
string. The value argument is the address of this integer value.

out-str
type: character string
access: write only
mechanism: by descriptor, fixed-length

Decimal ASCII text string that FOR$CNV_OUT_l creates when it converts
the signed integer to a decimal ASCII text string. The out-str argument is the
address of a descriptor pointing to this text string. The string is assumed to
be fixed-length (DSC$K_CLASS_S).

SS$_NORMAL
OTS$_0UTCONERR

Routine successfully completed

Output conversion error. The result would have
exceeded the fixed-length string; the output string
is filled with asterisks.

Obsolete RTL Routines
FOR$CNV_OUT_L

FOR$CNV_OUT_L Convert Integer to Logical Text

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

FOR$CNV_OUT _L converts an integer to the ASCII text string
representation using FORTRAN L (logical) format.

FOR$CNV_OUT_L value, out-str

type: longword (unsigned)
access: write only
mechanism: by value

value
type: longword integer (signed)
access: read only
mechanism: by reference

Signed integer value that FOR$CNV_OUT_L converts to an ASCII text string.
The value argument is the address of this integer value.

out-str
type: character string
access: write only
mechanism: by descriptor, fixed-length

Output string that FOR$CNV_OUT_L creates when it converts the integer
value to an ASCII text string. The out-str argument is the address of a
descriptor pointing to this ASCII text string.

The output string is assumed to be fixed-length (DSC$K_CLASS_S).

The output string consists of (length-1) blanks followed by:

The letter T if bit 0 is set
The letter F if bit 0 is clear

Routine successfully completed. SS$_NORMAL

OTS$_0UTCONERR Output conversion error. The result would have
exceeded the fixed-length string; the output string
is of zero length (DSC$W_LENGTH=O).

3-11

Obsolete RTL Routines
FOR$CNV_OUT_Q

FOR$CNV_QUT_O Convert Unsigned Integer to
Octal Text

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

3-12

FOR$CNV_OUT _O converts an unsigned integer to an octal ASCII text
string. FOR$CNV_OUT_O supports FORTRAN Ow and Ow.m output
conversion formats.

FOR$CNV_OUT_O value, out-str

type: longword (unsigned)
access: write only
mechanism: by value

value
type: longword integer (signed)
access: read only
mechanism: by reference

Integer value that FOR$CNV_OUT_Q converts to an octal ASCII text string.
The value argument is the address of this integer value.

out-str
type: character string
access: write only
mechanism: by descriptor, fixed-length

Output string that FOR$CNV_OUT_Q creates when it converts the integer
value to an octal ASCII text string. The out-str argument is the address of a
descriptor pointing to the octal ASCII text string. The string is assumed to be
fixed-length (DSC$K_CLASS_S).

SS$_NORMAL

OTS$_0UTCONERR

Routine successfully completed.

Output conversion error. The result would have
exceeded the fixed-length string; the output string
is filled with asterisks.

Obsolete RTL Routines
FOR$CNV_OUT_Z

FOR$CNV_OUT_Z Convert Integer to
Hexadecimal Text

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

FOR$CNV_OUT _Z converts an unsigned integer to a hexadecimal ASCII
text string. FOR$CNV_OUT_Z supports FORTRAN Zw and Zw.m output
conversion formats.

FOR$CNV_OUT_Z value, out-str

type: longword (unsigned)
access: write only
mechanism: by value

value
type: longword integer (signed)
access: read only
mechanism: by reference

Integer value that FOR$CNV_QUT_Z converts to a hexadecimal ASCII text
string. The value argument is the address of this integer value.

out-str
type: character string
access: write only
mechanism: by descriptor, fixed-length

Output string that FOR$CNV_OUT_Z creates when it converts the integer
value to a hexadecimal ASCII text string. The out-str argument is the address
of a descriptor pointing to this ASCII text string. The string is assumed to be
fixed-length (DSC$K_CLASS_S).

SS$_NORMAL

OTS$_0UTCONERR

Routine successfully completed.

Output conversion error. The result would have
exceeded the fixed-length string; the output string
is filled with asterisks.

3-13

Obsolete RTL Routines
FOR$CNV_IN_I

FOR$CNV_IN_I Convert Signed Integer Text to
Integer

FORMAT

RETURNS

ARGUMENTS

3-14

FOR$CNV_IN_I converts an ASCII text string representation of a decimal
number to a signed byte, word, or longword integer value.

FOR$CNV_IN_I inp-str, value[, value-size}[,flags}

type: longword (unsigned)
access: write only
mechanism: by value

inp-str
type: character string
access: read only
mechanism: by descriptor, fixed-length

Input ASCII text string that FOR$CNV_IN_I converts to a signed byte, word,
or longword. The imp-str argument is the address of a descriptor pointing to
the input string.

The syntax of a valid ASCII text input string is:

[+ or -] [<integer-digits>]

FOR$CNV_IN _I always ignores leading blanks. A decimal point is assumed
at the right of the input string.

value
type: unspecified
access: write only
mechanism: by reference

Signed byte, word, or longword integer value (depending on value-size) that
FOR$CNV_IN _I creates when it converts the ASCII text string. The value
argument is the address of the integer value.

value-size
type: longword integer (signed)
access: read only
mechanism: by value

Number of bytes occupied by the value that FOR$CNV_IN _I creates when
it converts the ASCII text string to an integer value. Valid values for the
value-size argument are one, two, and four. The contents of value-size
determine whether the integer value that FOR$CNV_IN _I creates is a byte,
word, or longword. If an invalid value is given, FOR$CNV_IN_I returns
an error. This is an optional argument. If omitted, the default is four and
FOR$CNV_IN _I returns a longword integer.

CONDITION
VALUES
RETURNED

flags

Obsolete RTL Routines
FOR$CNV_IN_I

type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags which FOR$CNV_IN _I uses to determine how blanks
and tabs are interpreted.

Bit Description

0 If set, FOR$CNV_IN_I ignores all blanks. If clear, FOR$CNV_IN_I ignores
leading blanks, but interprets blanks after the first legal character as zeros.

4 If set, FOR$CNV_IN_I ignores tabs. If clear, FOR$CNV_IN_I interprets tabs
as invalid characters.

This is an optional argument. If omitted, the default is that all bits are set and
FOR$CNV_IN _I ignores blanks and tabs.

SS$_NORMAL

OTS$_1NPCONERR

Routine successfully completed.

Input conversion error; an invalid character in the
input string, or the value overflows byte, word, or
longword, or value-size is invalid; value is set to
zero.

3-15

Obsolete RTL Routines
FOR$CNV_I N _L

FOR$CNV_IN_L Convert Logical Text to Integer

FORMAT

RETURNS

ARGUMENTS

3-16

FOR$CNV_IN_L converts an ASCII text string representation of a
FORTRAN-77 L format to a byte, word, or longword integer value. The
result is a longword by default, but the calling program can specify a byte
or a word value instead.

FOR$CNV_IN_L inp-str, value[, value-size}

type: longword (unsigned)
access: write only
mechanism: by value

inp-str
type: character string
access: read only
mechanism: by descriptor, fixed-length

Input string containing an ASCII text representation of a FORTRAN-77 L
format that FOR$CNV_IN _L converts to a byte, word, or longword integer
value. The inp-str argument is the address of a descriptor pointing to the
input string.

The syntax of a valid ASCII text input string is:

<zero or more blanks>
< <end of string>

or
<

Letter:

value

<"."or nothing>
<"T", "t", "F", or "f ">

<zero or more of any character>
<end of string>>>

type: unspecified
access: write only
mechanism: by reference

Integer value that FOR$CNV_IN _L creates when it converts the ACSII
text input string. The value argument is the address of this integer value.
FOR$CNV_IN _L returns a minus one as the contents of the value argument
if the character denoted by "Letter:" is "T" or "t." Otherwise, FOR$CNV_IN_L
sets value to zero.

value-size
type: longword integer (signed)
access: read only
mechanism: by value

Number of bytes occupied by the integer value that FOR$CNV_IN _L creates
when it converts the ASCII text input string. The value-size argument
contains the number of bytes. Valid values are one, two, and four. These

CONDITION
VALUES
RETURNED

Obsolete RTL Routines
FOR$CNV_IN_L

values determine whether FOR$CNV_IN _L returns a byte, word, or
longword integer value. If an invalid value is given, FOR$CNV_IN _L
returns an error. This is an optional argument. If omitted, the default is four
and FOR$CNV_IN _L returns a longword integer value.

SS$NORMAL

OTS$_1NPCONERR

Routine successfully completed.

Invalid character in the input string or invalid
value-size; value is set to zero.

3-17

Obsolete RTL Routines
FOR$CNV_IN_Q

FOR$CNV_IN_Q Convert Octal Text to Signed
Integer

FORMAT

RETURNS

ARGUMENTS

3-18

FOR$CNV_IN_Q converts an ASCII text string representation of an
unsigned octal value to an unsigned integer of an arbitrary length. The
result is a longword by default, but the calling program can specify any
number of bytes.

FOR$CNV_I N _O inp-str, value{, value-size][, flags]

type: longword (unsigned)
access: write only
mechanism: by value

inp-str
type: character string
access: read only
mechanism: by descriptor, fixed-length

Input string containing an ASCII text string representation of an unsigned
octal value that FOR$CNV_IN_O converts to an unsigned integer. The
inp-str argument is the address of a descriptor pointing to the input string.
The valid input characters are the space and the digits 0 through 7. No sign
is permitted.

value
type: unspecified
access: write only
mechanism: by reference

Integer value that FOR$CNV_IN _O creates when it converts the input string.
The value argument is the address of the unsigned integer value.

value-size
type: longword integer (signed)
access: read only
mechanism: by value

Number of bytes occupied by the unsigned integer value. The value-size
argument contains the number of bytes. If the content of the value-size
argument is zero or a negative number, FOR$CNV_IN _O returns an error.
This is an optional argument. If omitted, the default is four and FOR$CNV_
IN _O returns a longword integer.

flags
type: longword (unsigned)
access: read only
mechanism: by value

CONDITION
VALUES
RETURNED

Obsolete RTL Routines
FOR$CNV_IN_Q

User-supplied flags that FOR$CNV_IN _O uses to determine how blanks
within the input string are interpreted. The flags argument contains the
user-supplied flags.

Bit 0 If set, FOR$CNV_IN_O ignores all blanks. If clear, FOR$CNV_IN_O
interprets blanks as zeros.

This is an optional argument. If omitted, the default is that all bits are clear.

SS$_NORMAL

OTS$_1NPCONERR

Routine successfully completed.

Input conversion error. An invalid character,
overflow, or invalid value-size occurred.

3-19

Obsolete RTL Routines
FOR$CNV_IN_OEFG

FOR$CNV_IN_DEFG Convert Numeric Text to
Floating

FORMAT

RETURNS

ARGUMENTS

3-20

FOR$CNV_IN_DEFG converts an ASCII text string representation of a
numeric value to a D_floating value. The routine supports FORTRAN D, E,
F, and G input type conversion as well as similar types for other languages.

FOR$CNV_IN_DEFG inp-str, value [,digits-in-tract}
[,scale-factor} [,flags} [,extbits}

type: longword (unsigned)
access: write only
mechanism: by value

inp-str
type: character string
access: read only
mechanism: by descriptor, fixed-length

Input string containing an ASCII text string representation of a numeric
value that FOR$CNV_IN _DEFG converts to a D_floating value. The inp-str
argument is the address of a descriptor pointing to the address of the input
string.

The syntax of a valid input string is:

<zero or more blanks>
<"+", 11 - 11 , or nothing>
<zero or more decimal digits>
<"." or nothing>
<zero or more decimal digits>
<exponent or nothing, where exponent is:

< <<"E", "e". "D", "d", "Q", or "q">
<zero or more blanks>
<"+", "-", or nothing>>>
or
<"+", or"-">>

<zero or more decimal digits>>
<end of string>

There is no difference in semantics between any of the six valid exponent
letters (E, e, D, d, Q, q).

value
type: D_floating
access: write only
mechanism: by reference

Floating-point value that FOR$CNV_IN _DEFG creates when it converts the
input string. The value argument is the address of a D_floating number
containing the value.

digits-in-fract
type: longword (unsigned)
access: read only
mechanism: by value

Obsolete RTL Routines
FOR$CNV_IN_DEFG

Number of digits in the fraction if no decimal point is included in the input
string. The digits-in-fract argument contains the number of digits. This is an
optional argument. If omitted, the default is zero.

scale-factor
type: longword integer (signed)
access: read only
mechanism: by value

Scale factor. The scale-factor argument contains the value of the scale factor.
If flags bit 6 is clear, the resultant value is multiplied by lO**factor unless the
exponent is present. If flags bit 6 is set, the scale factor is always applied.
This is an optional argument. If omitted, the default is zero.

flags
type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags.

Bit 0 If set, FOR$CNV_IN_DEFG ignores blanks. If clear, FOR$CNV_IN_
DEFG interprets blanks as zeros.

Bit 1 If set, FOR$CNV_IN_DEFG allows only E or e exponents. If clear,
FOR$CNV_IN_DEFG allows E, e, D, d, Q, and q exponents. (Bit 1
would be clear for BASIC and set for FORTRAN).

Bit 2 If set, FOR$CNV_IN_DEFG interprets an underflow as an error. If
clear, FOR$CNV_IN_DEFG does not interpret an underflow as an
error.

Bit 3 If set, FOR$CNV_IN_DEFG truncates the value. If clear, FOR$CNV_
IN_DEFG rounds the value.

Bit 4 If set, FOR$CNV_IN_DEFG ignores tabs. If clear, FOR$CNV_IN_
DEFGz interprets tabs as invalid characters.

Bit 5 If set, an exponent must begin with a valid exponent letter. If dear,
the exponent letter may be omitted.

Bit 6 If set, FOR$CNV_IN_DEFG always applies the scale factor. If clear,
FOR$CNV_IN_DEFG applies the scale factor only if there is no
exponent present in the string.

If flags is omitted, all bits are clear.

ext-bits
type: word integer (signed)
access: write only
mechanism: by reference

The extra precision bits. If present, value is not rounded, and the first 8 bits
after truncation are returned as a byte in this argument. This value is suitable
for use as the extension operand in an EMOD instruction.

3-21

Obsolete RTL Routines
FOR$CNV_IN_DEFG

CONDITION
VALUES
RETURNED

3-22

SS$_NORMAL

OTS$_1NPCONERR

Routine successfully completed.

Input conversion error; an invalid character in the
input string, or the value is outside the range that
can be represented. Value is set to +0.0 (not
reserved operand -0.0).

Obsolete RTL Routines
FOR$CNV_IN_Z

FOR$CNV_IN_Z Convert Hexadecimal Text to
Unsigned Integer

FORMAT

RETURNS

ARGUMENTS

FOR$CNV_IN_Z converts an ASCII text string representation of an
unsigned hexadecimal value to an unsigned integer of an arbitrary length.
By default, the result is a longword, but the calling program can specify
any number of bytes.

FOR$CNV_IN_Z inp-str, value[, va/ue-size}[,flags]

type: longword (unsigned)
access: write only
mechanism: by value

inp-str
type: character string
access: read only
mechanism: by descriptor, fixed-length

Input string containing an ASCII text string representation of an unsigned
hexadecimal value the FOR$CNV_IN _Z converts to an unsigned integer.
The inp-str argument is the address of a descriptor pointing to the input
string. Valid input characters are the space, the digits 0 through 9, and
letters A through F. No sign is permitted. Lowercase letters a through fare
acceptable.

value
type: unspecified
access: write only
mechanism: by reference

Integer value created when FOR$CNV_IN _Z converts the input string. The
value argument is the address of the integer value.

value-size
type: longword integer (signed)
access: read only
mechanism: by value

Number of bytes occupied by the integer value. The value-size argument
contains the number of bytes. If the value size is zero or a negative number,
FOR$CNV_IN _Z returns an input conversion error. This is an optional
argument. If omitted, the default is four.

flags
type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags that FOR$CNV_IN _Z uses to determine how blanks are
interpreted.

3-23

Obsolete RTL Routines
FOR$CNV_IN_Z

CONDITION
VALUES
RETURNED

3-24

Bit 0 If set, FOR$CNV_IN_Z ignores blanks. If set, FOR$CNV_IN_Z
interprets blanks as zeros.

This is an optional argument. If omitted, the default is that all bits are clear.

SS$_NORMAL

OTS$_1NPCONERR

Routine successfully completed.

Input conversion error. An invalid character,
overflow, or invalid value-size occurred.

Obsolete RTL Routines
LIB$DOWN_SCROLL

LIB$DOWN_SCROLL Down Scroll the Screen
(Move Cursor Up One Line)

FORMAT

RETURNS

CONDITION
VALUES
RETURNED

EXAMPLE

LIB$DOWN_SCROLL moves the cursor up one line on the screen. If the
cursor is already at the top line on the screen, all lines move down one
line, the top line is replaced with a blank line, and the data that was on
the bottom line is lost. If a scrolling region is active, then the above logic
applies to the top and bottom lines of the scrolling region.

LIB$DOWN_SCROLL

type: longword (unsigned)
access: write only
mechanism: by value

SS$_NORMAL Routine sucessfully completed.

CALL LIB$SET_CURSOR (1, 1)
CALL LIB$DOWN_SCROLL ()

This FORTRAN code fragment causes the text on the screen to be scrolled
down one line.

3-25

Obsolete RTL Routines
LIB$EMULATE

LIB$EMULATE Emulate Execution of VAX
Instructions

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

3-26

LIB$EMULA TE is a condition handler that emulates excution of VAX
instructions that are not implemented on the host processor. If
LIB$EMULA TE can emulate the instruction, the exception essentially
disappears. The instructions emulated are the G_floating, H_floating, and
octaword integer instructions.

LIB$EMULATE sig-args ,mch-args

type: longword (unsigned)
access: write only
mechanism: by value

sig-args
type: longword (unsigned)
access: modify
mechanism: by reference, array reference

Signal argument vector. The sig-args argument is the address of an unsigned
longword array containing the signal argument vector.

mch-args
type: longword (unsigned)
access: modify
mechanism: by reference, array reference

Mechanism argument vector. The mch-args argument is the address of an
unsigned longword array containing the mechanism argument vector.

The preferred use of LIB$EMULATE is to establish it as a condition handler
by the appropriate method for the source language .. An alternative is provided
for users who do not want to modify the source program. The module
LIB$ESTEMU in SYS$LIBRARY:STARLET.OLB uses LIB$INITIALIZE to
enable LIB$EMULATE as a condition handler before program execution
begins. To use this method, link the program with LIB$ESTEMU as follows:

$ LINK program, SYS$LIBRARY:ST ARLET /INCLUDE=LIB$ESTEMU

If LIB$EMULATE is established this way, the new instructions will be
available to all of program.

Because of an addition to the VMS operating system, the functions that
were performed by LIB$EMULATE are now done automatically. Therefore,
although it will not cause an error to call this routine, it is never necessary to
do so.

CONDITION
VALUES
RETURNED

SS$_RESIGNAL

Obsolete RTL Routines
LIB$EMULATE

Resignal condition to next handler. The exception
was not one that LIB$EMULATE could handle.

3-27

Obsolete RTL Routines
LIB$ERASE_LINE

LIB$ERASE_LINE Erase Line from Screen

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

3-28

LIB$ERASE_LINE erases all the character positions on the screen from the
specified cursor position to the end of the line.

LIB$ERASE_LINE [line-no ,col-no}

type: longword (unsigned)
access: write only
mechanism: by value

line-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the line at which LIB$ERASE_LINE begins erasing. The line-no
argument is the address of a signed word integer containing this line number.
If omitted, the default is the current line. This is an optional argument.
However, if line-no is specified, col-no must also be specified or you will
receive an invalid argument error.

col-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the column at which LIB$ERASE_LINE begins erasing. The
col-no argument is the address of a signed word integer containing this
column number. This is an optional argument. If omitted, the default is
the current column. However, if col-no is specified, line-no must also be
specified or you will receive an invalid argument error.

SS$_NQRMAL

LIB$_1NV ARG

LIB$_1NVSCRPOS

Routine successfully completed.

Invalid argument. You must specify both aruments
or no arguments.

Invalid screen position values. Line-no or col-no
was zero.

EXAMPLE

ICOL = 42
ILINE = 12

Obsolete RTL Routines
LIB$ERASE_LINE

ISTAT = LIB$ERASE_LINE (ILINE,ICOL)

This FORTRAN code fragment erases the screen from column 41 of line 12 to
the end of line 12.

3-29

Obsolete RTL Routines
LIB$ERASE_PAGE

LIB$ERASE_PAGE Erase Page from Screen

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

3-30

LIB$ERASE_PAGE erases all the character positions on the screen from
the specified cursor position to the end of the screen.

LIB$ERASE_PAGE [line-no ,col-no]

type: · longword (unsigned)
access: write only
mechanism: by value

line-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the line at which LIB$ERASE_P AGE begins erasing. The
line-no argument is the address of a signed word integer containing this line
number. This is an optional argument. If omitted, the default is the current
line number. However, if line-no is specified, col-no must also be specified
or you will receive an invalid argument error.

col-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the column at which LIB$ERASE_PAGE begins erasing. The
col-no argument is the address of a signed word integer containing this
column number. This is an optional argument. If omitted, the default is the
current column number. However, if col-no is specified, line-no must also be
specified or you will receive an invalid argument error.

SS$_NORMAL

LIB$_1NV ARG

LIB$_1NVSCRPOS

Routine successfully completed.

Invalid argument. You must specify two arguments
or no arguments.

Invalid screen position values. Line-no or col-no
was zero.

Obsolete RTL Routines
LIB$GET_SCREEN

LIB$GET_SCREEN Get Text from Screen

FORMAT

RETURNS

ARGUMENTS

LIB$GET_SCREEN reads an input string from SYS$1NPUT into a destination
text string. The destination string can be fixed-length or dynamic.

LIB$GET_SCREEN input-text [,prompt-strj[,out-lenj

type: longword (unsigned)
access: write only
mechanism: by value

input-text
type: character string
access: write only
mechanism: by descriptor

Text copied from the screen by LIB$GET_SCREEN. The input-text argument
is the address of a descriptor pointing to the input text.

prompt-str
type: character string
access: read only
mechanism: by descriptor

Prompt displayed by LIB$GET_SCREEN prior to accepting input from the
user terminal. The prompt-str argument is the address of a descriptor
pointing to the prompt string. The prompt is shown on the screen starting at
the current cursor position.

out-I en
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters LIB$GET_SCREEN writes into input-text, not counting
padding in the case of a fixed-length string. The out-len argument is the
address of an unsigned word into which LIB$GET_SCREEN writes this
number. If the input string is truncated to the size specified in the input-text
descriptor, out-len is set to this size. Therefore, out-len can always be used
by the calling program to access a valid substring of input-text.

3-31

Obsolete RTL Routines
LI B$GET_SCREEN

CONDITION
VALUES
RETURNED

SS$_NORMAL

LIB$_1NPSTRTRU

LIB$_1NVSTRDES

LIB$_SCRBUFOVF

Routine successfully completed.

The input string is truncated to the size specified
in the input-text descriptor.

Invalid argment. The descriptor class field is not a
recognized code.

Screen buffer overflow.

Condition values returned by RMS.

3-32

Obsolete RTL Routines
LIB$PUT_BUFFER

LIB$PUT_BUFFER Put Current Buffer to Screen
or to Previous Buffer

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB$PUT_BUFFER terminates the current buffering mode, and reverts to
the previous mode as specified by the argument old-buffer.

LIB$PUT_BUFFER [old-buffer}

type: longword (unsigned)
access: write only
mechanism: by value

old-buffer
type: longword integer (unsigned)
access: read only
mechanism: by reference

Zero or the address of an area previously used as a screen buffer. The
old-buffer argument is the address of an unsigned longword containing this
value or address. If old-buffer is omitted or contains zero, the contents of
the current screen buffer are displayed on the screen, the data length of the
buffer is set to zero, and buffer mode is terminated. If old-buffer is not zero,
it is assumed to be the address of an area previously used as a screen buffer.
The contents of the current active buffer are copied to this area which then
becomes the new active buffer.

LIB$PUT_BUFFER terminates the current buffering mode.

If the argument is zero or omitted:

• Buffering is terminated

• The contents of the current screen buffer are displayed on the screen

If the argument is not zero:

• Buffering is terminated at the current level

• The value of the argument is taken as the address of a previous screen
buffer to which the data from the current buffer is copied

• , The current buffer is set to zero length

• The previous buffer becomes the active buffer

Each modular program should use LIB$SET_BUFFER and LIB$PUT_BUFFER
in pairs.

3-33

Obsolete RTL Routines
LIB$PUT_BUFFER

CONDITION
VALUES
RETURNED

3-34

LIB$SET_BUFFER establishes the current buffering mode and saves the
address of the previous buffer (if any). LIB$PUT_BUFFER reverts from the
current buffering mode to the previous mode through the use of the previous
buffer address, made available by the corresponding LIB$SET_BUFFER
procedure call from the current modular program.

If buffering was in effect at the time of the call to LIB$SET_BUFFER in
this modular program, the contents of the current buffer are copied to the
previous buffer, and the previous buffer is reestablished as the active buffer.
If buffering was not in effect, buffer mode is terminated and the contents of
the buffer are displayed on the terminal.

SS$_NORMAL
LIB$_SCRBUFOVF

Routine successfully completed.

Screen buffer overflow.

Obsolete RTL Routines
LIB$PUT_LINE

LIB$PUT_LINE Put Text to Screen in Line Mode

FORMAT

RETURNS

ARGUMENTS

LIB$PUT_LINE displays the specified text on the screen, beginning at the
current cursor position followed by a specified number of line advances.

LIB$PUT_LINE text [,line-adv}[, flags]

type: longword (unsigned)
access: write only
mechanism: by value

text
type: character string
access: read only
mechanism: by descriptor

Text that LIB$PUT_LINE writes to the screen. The text argument is the
address of a descriptor pointing to this text.

line-adv
type: longword integer (signed)
access: read only
mechanism: by reference

Number of lines which LIB$PUT_LINE advances the cursor after displaying
the text. The line-adv argument is the address of a signed longword integer
containing this number. If line-adv is negative, the cursor moves upward
after displaying the line; if it is positive, the cursor moves downward. The
default value is one.

flags
type: longword (unsigned)
access: read only
mechanism: by reference

Attributes bit vector used by LIB$PUT_LINE to determine the terminal
characteristics. The flags argument is the address of an unsigned longword
containing the attributes bit vector.

A bit must be set to one to get the desired attribute. Bits are additive.
Currently, these bits are used:

Mnemomic Bit Description

SCR$M_BOLD 0 Bold

SCR$M_REVERSE 1 Reverse Video

SCR$M_BLINK 2 Blinking

SCR$M_UNDERLINE 3 Underscored

3-35

Obsolete RTL Routines
LIB$PUT_LINE

DESCRIPTION

CONDITION
VALUES
RETURNED

3-36

LIB$PUT_LINE displays the specified text on the screen beginning at the
current cursor position and followed by a specified number of line advances.

Terminal attributes, such as bold, blinking, reverse video, and underscoring,
can be specified by an optional argument.

By default, the cursor moves to the beginning of the next line. The effect is
the same as a carriage return and line feed.

SS$_NQRMAL

LIB$_1NV ARG

Routine successfully completed.

Invalid argument. More than three arguments were
specified.

Obsolete RTL Routines
LI B$PUT_SCREEN

LIB$PUT_SCREEN Put Text to Screen

FORMAT

RETURNS

ARGUMENTS

LIB$PUT _SCREEN displays the specified text on the screen beginning
at a specified line and column. No carriage return or line feed control
characters are inserted.

LIB$PUT_SCREEN text [,line-no,col-no}[,flags}

type: longword (unsigned)
access: write only
mechanism: by value

text
type: character string
access: read only
mechanism: by descriptor

Text that LIB$PUT_SCREEN writes to the screen. The text argument is the
address of a descriptor pointing to this text.

line-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the line at which LIB$PUT_SCREEN begins writing the text. The
line-no argument is the address of a signed word integer containing this line
number. This is an optional argument. If omitted, the default is the current
line.

col-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the column at which LIB$PUT_SCREEN begins writing the text.
The col-no argument is the address of a signed word integer containing this
column number. This is an optional argument. If omitted, the default is the
current column.

flags
type: longword (unsigned)
access: read only
mechanism: by reference

Attributes bit vector which LIB$PUT_SCREEN uses to determine the terminal
characteristics. The flags argument is the address of an unsigned longword
containing these flags.

3-37

Obsolete RTL Routines
LIB$PUT_SCREEN

DESCRIPTION

CONDITION
VALUES
RETURNED

3-38

A bit must be set to one to get the desired attribute. Bits are additive.
Currently, these bits are used:

Mnemomic Bit Description

SCR$M_BOLD 0 Bold

SCR$M_REVERSE 1 Reverse Video

SCR$M_BLINK 2 Blinking

SCR$M_UNDERLINE 3 Underscored

LIB$PUT_SCREEN displays the specified text on the screen beginning at a
specified line and column. No carriage return or line feed control characters
are inserted.

Terminal attributes, such as bold, blinking, reverse video, and underscoring,
can be specified by an optional argument, flags. See Table 3-3 for the
possible values for the flags argument.

SS$_NORMAL

LIB$_1NV ARG

LIB$_1NVSCRPOS

Routine successfully completed.

Invalid argument. The call to LIB$PUT_SCREEN
specified more than four arguments.

Invalid screen position values. Line-no or col-no
was zero.

Obsolete RTL Routines
LIB$SCREEN_INFO

LIB$SCREEN_INFO Retrieve Screen Information

FORMAT

RETURNS

ARGUMENTS

LIB$SCREEN_INFO returns a terminal's characteristics, including flags,
device type, screen width, number of lines per screen, and special
characteristics, to your program.

LIB$SCREEN_INFO flags [,dev-type} [,line-width]
[,lines-per-page]

type: longword (unsigned)
access: write only
mechanism: by value

flags
type: longword (unsigned)
access: write only
mechanism: by reference

Bit map representing special terminal characteristics. The flags argument is
the address of an unsigned longword containing these flags.

Currently, these bits are used:

Bit Description

0 The terminal is a DIGIT AL video terminal.

1 The terminal is a VT 100-compatible terminal.

2 The terminal understands REGIS graphic commands.

3 The terminal is a block mode terminal.

4 The terminal has the standard VT 100 AVO.

dev-type
type: byte integer (signed)
access: write only
mechanism: by reference

Terminal type. The dev-type argument is the address of a signed byte integer
containing the device type. The terminal types are defined in the VAX System
Services $DCDEF macro.

3-39

Obsolete RTL Routines
LIB$SCREEN_INFO

CONDITION
VALUES
RETURNED

3-40

Some of the terminal types are:

Type

Unknown type

VT52

VT100

line-width

Equivalent DCL Command

SET TERMINAL/DEVICE_ TYPE=UNKNOWN

SET TERMINAL/DEVICE_ TYPE=VT52

SET TERMINAL/DEVICE_ TYPE=VT 100

type: word integer (signed)
access: write only
mechanism: by reference

Width (in columns) for which the terminal is configured. The line-width
argument is the address of a signed word integer containing the line
width. This corresponds to the value supplied by the DCL command SET
TERMINAL/WIDTH=n.

lines-per-page
type: word integer (signed)
access: write only
mechanism: by reference

Lines (per screen) for which the terminal is configured. The lines-per-page
argument is the address of a signed word integer containing the number
of lines per screen. This corresponds to the value supplied by the DCL
command SET TERMINAL/P AGE=n.

None.

Obsolete RTL Routines
LIB$SET_BUFFER

LIB$SET_BUFFER Set or Clear Screen Buffer
Mode

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB$SET_BUFFER establishes or ends screen buffering.

LIB$SET_BUFFER buffer [,old-buffer]

type: longword (unsigned)
access: write only
mechanism: by value

buffer
type: character sring
access: modify
mechanism: by descriptor, fixed-length

Modifiable fixed-length string used as the buffer for storing characters that the
other screen output procedures would normally send to the terminal without
buffering until the next LIB$SET_BUFFER or LIB$PUT_BUFFER procedure
call occurs. The buffer argument is the address of a descriptor pointing to
this buffer. The buffer must be at least 12 bytes long.

If buffer is zero, buffering mode is terminated.

old-buffer
type: longword (unsigned)
access: write only
mechanism: by reference

Previous buffer (if any). The old-buffer argument is the address of a
longword integer containing the previous buffer. The old-buffer is most
useful for subsequent use as an input argument to LIB$PUT_BUFFER.

LIB$SET_BUFFER is called by your program to set up a buffer and initiate the
buffering mode. While in buffer mode, the other screen procedures do not
alter the appearance of the screen. Instead, the output of these procedures is
stored in the buffer set up by LIB$SET_BUFFER.

To display the results of all procedures called since the buffering mode was
entered, your program must call LIB$PUT_BUFFER.

It is sometimes useful, when writing a program with subprogams, to have
more than one buffer initialized at the same time. If you call LIB$SET_
BUFFER a second time, without having called LIB$PUT_BUFFER, a second
buffer will be set up. When using LIB$SET_BUFFER to set up a second
buffer, you MUST specify the old-buffer argument. LIB$SET_BUFFER will
write the address of the old buffer into this argument. Because the second
buffer is generally set up for use within a subprogram, it is good practice to
append the contents of this subprogram buffer to the end of the mainprogram
buffer at the end of the subprogram call. This will ensure that when the

3-41

Obsolete RTL Routines
LI B$SET_BUFFER

CONDITION
VALUES
RETURNED

3-42

contents of the buffer are written to the screen, the displays will appear in
their original order. This is also the reason that LIB$SET_BUFFER writes the
address of that mainprogram buffer into the old-buffer argument. To append
the contents of your subprogram buffer to the end of the mainprogram
buffer, your program must call LIB$PUT_BUFFER and pass the routine to the
old-buffer argument.

When setting up the buffer, it is important to make sure that the buffer will
be large enough to hold the header information, and the terminal commands.
You must allow 12 bytes within the buffer for header information. If your
buffer size is less than 12 bytes, LIB$SET_BUFFER will return immediately
with the error LIB$_SCRBUFOVF, screen buffer overflow.

If your buffer size is greater than 12 bytes, you may still get the LIB$_
SCRBUFOVF error if your program attempts to write text to the buffer which
is larger than the size of the buffer.

The MAXBUF system argument will determine how large a buffer you may
declare. Although MAXBUF varies slightly from system to system, a typical
size is 1500 bytes. Your buffer may not exceed the size of MAXBUF.

SS$_NORMAL

LIB$SCRBUFOVF

LIB$_1NV ARG

Routine successfully completed.

Screen buffer overflow. The buffer is less than 12
bytes long.

Invalid argument. Zero or more than two
arguments were specified.

Obsolete RTL Routines
LIB$SET_CURSOR

LIB$SET_CURSOR Set Cursor to Character
Position on Screen

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

LIB$SET _CURSOR positions the cursor to the specified line and column on
the screen.

LIB$SET_CURSOR line-no ,col-no

type: longword (unsigned)
access: write only
mechanism: by reference

line-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the line to which LIB$SET_CURSOR moves the cursor. The
line-no argument is the address of a signed word integer containing this line
number.

col-no
type: word integer (signed)
access: read only
mechanism: by reference

Number of the column to which LIB$SET_CURSOR moves the cursor. The
col-no argument is the address of a signed word integer containing this
column number.

LIB$SET_CURSOR lets your program control the cursor's position on the
screen without knowing what type of DIGITAL terminal will be used. If the
terminal is unable to change the cursor's position, it ignores the procedure
call and continues without issuing an error message.

LIB$SET_CURSOR considers the screen's top line is line number one and
that its leftmost column is column number one. If you give a value of zero
for either of these arguments, you will receive the error LIB$_INVARG.

Since the terminal-independent screen procedures are designed to display
the information you have passed to them as accurately as possible, they
ignore formatting errors. Thus, LIB$SET_CURSOR does not check for cursor
position specifications that exceed the maximum number of lines or columns
for the terminal.

3-43

Obsolete RTL Routines
LIB$SET_CURSOR

CONDITION
VALUES
RETURNED

EXAMPLE

SS$_NORMAL

LIB$_1NV ARG

LIB$_1NVSCRPOS

Routine successfully completed.

Invalid argument. LIB$SET _CURSOR requires
exactly two arguments.

Invalid screen position values. Line-no or col-no
was zero.

!STAT = LIB$SET_CURSOR (5, 7)

This FORTAN code fragment moves the cursor to column seven of line five.

3-44

Obsolete RTL Routines
LIB$SET_OUTPUT

LIB$SET_OUTPUT Set a Terminal or a Screen
Buffer for Output

FORMAT

RETURNS

ARGUMENTS

LIB$SET_OUTPUT establishes a terminal or buffer to receive output.

LIB$SET_OUTPUT {stream] {,file-spec] {,user-routine]
[,user-arg] {,old-stream]

type: longword (unsigned)
access: write only
mechanism: by value

stream
type: word integer (signed)
access: read only
mechanism: by reference

Stream number, assigned by the caller. The stream argument is the address
of a signed word integer pointing to the stream number. This is an optional
argument. If omitted, the default is 0, SYS$0UTPUT.

file-spec
type: character string
access: read only
mechanism: by descriptor

File specification of the file to which you want LIB$SET_OUTPUT to send the
output. The file-spec argument is the address of a descriptor pointing to the
file specification. This is an optional argument.

user-routine
type: procedure entry mask
access: read only
mechanism: by reference, procedure reference

User-supplied routine. The user-routine argument is the address of the entry
mask to the user routine.

By default, LIB$SET_OUTPUT uses RMS to open the output file. You can
open the file yourself using a user routine. The user routine is also called
whenever LIB$SET_OUTPUT needs to send output to the device or file.
Normally, LIB$SET_OUTPUT does the $QIOs to terminals and the $PUTs to
files. The user routine allows you to do these yourself. For more information
on the user routine, see "Call Format for a User Routine" in the Description
Section.

user-arg
type: longword integer (signed)
access: read only
mechanism: by reference

3-45

Obsolete RTL Routines
LI B$SET_QUTPUT

DESCRIPTION

3-46

32-bit value passed to the user routine without interpretation. The user-arg
argument is the address of a signed longword integer containing the user
argument.

old-stream
type: longword integer (signed)
access: write only
mechanism: by reference

Previous stream number. The old-stream argument is the address of a signed
longword integer containing the previous stream number.

This Description section has been divided into two parts:

• Guidelines for Using LIB$SET_OUTPUT

• Call Format for a User Routine

Guidelines for Using LI B$SET_QUTPUT

LIB$SET_OUTPUT allows you to direct output to a terminal or file other
than the default output device, SYS$0UTPUT. If you are sending output
to only one device, SYS$0UTPUT, the call to LIB$SET_OUTPUT is
optional. However, by using LIB$SET_OUTPUT a single process can display
information on several terminals at the same time. To do this, your program
calls LIB$SET_OUTPUT once for each terminal, before it sends any output to
the terminals.

You can also use LIB$SET_OUTPUT to direct output to a file. By default,
LIB$SET_OUTPUT uses RMS to open the file, but you can include a user
routine to open the file yourself and output to the file. You also can perform
your own $QIOs to a terminal via this user routine.

The first time you call LIB$SET_OUTPUT, you must use all the arguments.
This sets up the channel to the device or file. On this initial call, LIB$SET_
OUTPUT obtains the device characteristics. If the device type is unknown,
the channel is deassigned. After this, you can use just the file specification or
device name along with the user routine and user argument for each call.

If you call LIB$SET_OUTPUT with no arguments, the output goes to
SYS$0UTPUT, the default process output stream.

LIB$STOP_OUTPUT can be used to close the output stream established by
LIB$SET_OUTPUT. If you do not call LIB$STOP_OUTPUT, the channel
will be freed automatically when the image exits. However, if you do call
LIB$STOP_OUTPUT, you MUST call LIB$SET_OUTPUT afterward to resume
output even if you are using the default, SYS$0UTPUT. If you do not follow
a call to LIB$STOP_OUTPUT with a call to LIB$SET_OUTPUT, you will get
a LIB$INVCHA error.

You should use LIB$STOP_OUTPUT if you wish to make multiple versions
of a single file. Otherwise, if you call LIB$SET_OUTPUT several times to
send output to a file, the original file will be overwritten and all the output
except the last version will be lost. If you call LIB$STOP_OUTPUT after each
call to LIB$SET_OUTPUT, however, LIB$SET_OUTPUT will open a new
version of the file each time, and all of the output will be preserved.

CONDITION
VALUES
RETURNED

Obsolete RTL Routines
LI B$SET_OUTPUT

Call Format for a User Routine

LIB$SET_OUTPUT calls the user routine using the format:

user-routine [,user-arg] [,chan] [,output-string] [,stream]

Arguments

user-arg
type: longword integer (signed)
access: read only
mechanism: by reference

32-bit value that LIB$SET_OUTPUT passes to your user routine without
interpretation. The user-arg argument is the address of a signed longword
integer containing the user argument.

chan
type: word integer (signed)
access: read only
mechanism: by reference

Channel or stream number. The chan argument is the address of a signed
word integer pointing to the channel.

output-string
type: character string
access: read only
mechanism: by descriptor

Output string passed to your user routine by LIB$SET_OUTPUT. The output
string argument is the address of a descriptor pointing to the output string.
This is an optional argument.

stream
type: longword integer (signed)
access: write only
mechanism: by reference

Previous stream number. The stream argument is the address of a signed
longword integer containing the previous stream number.

SS$_NORMAL Routine successfully completed.

Condition values returned by your user routine.

3-47

Obsolete RTL Routines
LI B$SET_SCROLL

LIB$SET_SCROLL Set Scrolling Region

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

3-48

LIB$SET_SCROLL establishes a scrolling region by setting the internal
scrolling region arguments. The cursor position is unchanged.

LIB$SET_SCROLL start-line ,end-line

type: longword (unsigned)
access: write only
mechanism: by value

start-line
type: word integer (signed)
access: read only
mechanism: by reference

Starting line of the scrolling region that LIB$SET_SCROLL establishes. The
start-line argument is the address of a signed word integer containing the
starting line.

end-line
type: word integer {signed)
access: read only
mechanism: by reference

Ending line of the scrolling region LIB$SET_SCROLL establishes. The
end-line argument is the address of a signed word integer containing the
ending line.

SS$_NORMAL

LIB$_1NV ARG

Routine successfully completed.

Invalid arguments. You must specify exactly two
arguments to LIB$SET_SCROLL.

Obsolete RTL Routines
LIB$STQP_OUTPUT

LIB$STOP._OUTPUT Stop Output to a Terminal or
Screen Buffer

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

LIB$STOP _OUTPUT deassigns a terminal or buffer stream established for
output.

LIB$STOP_OUTPUT {chan}

type: longword (unsigned)
access: write only
mechanism: by value

ch an
type: word integer (signed)
access: read only
mechanism: by reference

Channel number that LIB$STOP_OUTPUT deassigns. The chan argument is
the address of a signed word integer containing this number. This argument
is currently not used.

LIB$STOP_OUTPUT can be used to close an output stream established by
LIB$SET_OUTPUT. If you do not call LIB$STOP_QUTPUT, the channel will
be freed automatically when the image exits.

LIB$STOP_OUTPUT is useful, for example, if you wish to make multiple
versions of a single file. If you call LIB$SET_OUTPUT several times to send
output to a file, and do not call LIB$STOP_OUTPUT, the original file will
be overwritten. All of the output execept the last version will be lost. If you
call LIB$STOP_OUTPUT after each call to LIB$SET_OUTPUT, however,
LIB$SET_OUTPUT will open a new version of the file each time, and all of
the output will be preserved.

If the device type is unknown, the channel is deassigned. If a file specification
is given but no user output routine is declared, then the file is opened using
RMS.

SS$_NORMAL Routine completed successfully.

3-49

Obsolete RTL Routines
LIB$UP_SCROLL

LIB$UP._SCROLL Up Scroll, Move Cursor Down
One Line

LIB$UP_SCROLL moves the cursor down one line on the screen.

FORMAT LIB$UP_SCROLL

RETURNS type: longword (unsigned)
access: write only
mechanism: by value

ARGUMENTS None.

DESCRIPTION LIB$UP_SCROLL moves the cursor down one line on the' screen. If the cursor
was already at the bottom line of the screen, all lines are moved up one line.
The information that was on the top line is lost and a blank line appears at
the bottom.

CONDITION
VALUES
RETURNED

3-50

If a scrolling region is active, then the above logic applies to the top and
bottom lines of the scrolling region.

SS$_NORMAL Routine completed successfully.

Obsolete RTL Routines
SCR$DOWN_SCROLL

SCR$DOWN_SCROLL Down Scroll, Move Cursor
Up One Line

SCR$DOWN_SCROLL moves the cursor up one line on the screen.

FORMAT SCR$DOWN_SCROLL

RETURNS type: longword (unsigned)
access: write only
mechanism: by value

ARGUMENTS None.

DESCRIPTION If the cursor is already at the top line on the screen, SCR$DOWN_SCROLL
moves all lines down one line, and replaces the top line with a blank line.
Any data that was on the bottom line is lost.

CONDITION
VALUES
RETURNED

If a scrolling region is active, then the above logic applies to the top and
bottom lines of the scrolling region.

SS$_NORMAL Routine successfully completed.

3-51

Obsolete RTL Routines
SCR$ERASE_LINE

SCR$ERASE_LINE Erase Line from Screen

FOR.MAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

3-52

SCR$ERASE_LINE erases all of the character positions on the screen from
the specified cursor position to the end of the line.

SCR$ERASE_LINE {line-no ,col-no}

type: longword (unsigned)
access: write only
mechanism: by value

line-no
type: word integer (signed)
access: read only
mechanism: by value

Number of the line at which SCR$ERASE _LINE begins erasing. The line-no
argument is a signed word integer containing the line number. This is an
optional argument; however, if it is specified, the col-no argument must also
be specified. If line-no is omitted or if line-no is specified but col-no is
omitted, SCR$ERASE_LINE uses the current line number.

col-no
type: word integer (signed)
access: read only
mechanism: by value

Number of the column at which SCR$ERASE_LINE begins erasing. The
col-no argument is a signed word integer containing the column number.
This is an optional argument; however, if it is specified, the line-no argument
must also be specified. If col-no is omitted or if col-no is specified but
line-no is omitted, SCR$ERASE_LINE uses the current column number.

SS$_NORMAL Routine successfully completed.

Obsolete RTL Routines
SCR$ERASE_PAGE

SCR$ERASE_PAGE Erase Page from Screen

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

SCR$ERASE_PAGE erases all of the character positions on the screen
from the specified cursor position to the end of the screen.

SCR$ERASE_PAGE [line-no ,col-no}

type: longword (unsigned)
access: write only
mechanism: by value

line-no
type: word integer (signed)
access: read only
mechanism: by value

Number of the line at which SCR$ERASE_P AGE begins erasing. The
line-no argument is a signed word integer containing the line number. This
is an optional argument; however, if it is specified, the col-no argument must
also be specified. If line-no is omitted or if line-no is specified but col-no is
omitted, SCR$ERASE_PAGE uses the current line number.

col-no
type: word integer (signed)
access: read only
mechanism: by value

Number of the column at which SCR$ERASE_P AGE begins erasing. The
col-no argument is a signed word integer containing the column number.
This is an optional argument; however, if it is specified, the line-no argument
must also be specified. If col-no is omitted or if col-no is specified but
line-no is omitted, SCR$ERASE_P AGE uses the current column number.

SS$_NORMAL Routine successfully completed.

3-53

Obsolete RTL Routines
SCR$GET_SCREEN

SCR$GET_SCREEN Get Text from Screen

FORMAT

RETURNS

ARGUMENTS

3-54

SCR$GET_SCREEN reads an input string from SYS$1NPUT into a
destination text string. The destination string can be fixed-length or
dynamic.

SCR$GET_SCREEN input-text {,prompt-str] {,out-Jen]

type: longword {unsigned)
access: write only
mechanism: by value

input-text
type: character string
access: write only
mechanism: by descriptor

Input text string into which SCR$GET_SCREEN writes the text copied from
the screen. The input-text argument is the address of a descriptor pointing to
the input text string.

prompt-str
type: charcter string
access: read only
mechanism: by descriptor

String that SCR$GET_SCREEN displays prior to accepting input from the user
terminal. The prompt-str argument is the address of a descriptor pointing to
the prompt string. The string is shown on the screen starting at the current
cursor position.

out-Jen
type: word {unsigned)
access: write only
mechanism: by reference

Number of characters written into input-text, not counting padding in the
case of a fixed-length string. The out-len argument is the address of the
number of characters. If the input string is truncated to the size specified
in the input-text descriptor, out-len is set to this size. Therefore, out-len
can always be used by the calling program to access a valid substring of
input-text.

CONDITION
VALUES
RETURNED

SS$_NORMAL

LIB$_1NPSTRTRU

LIB$1NSVIRMEM

LIB$_1NV ARG

RMS$_xyz

Obsolete RTL Routines
SCR$GET_SCREEN

Routine completed successfully.

The input string is truncated to the size specified
in the input-text descriptor.

lnsufficent virtual memory.

Invalid argument. Descriptor class field is not a
recognized code or it is zero.

Condition values returned by RMS.

3-55

Obsolete RTL Routines
SCR$SCREEN_INFO

SCR$SCREEN_INFO Screen Information
Retrieval

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

3-56

SCR$SCREEN _INFO moves terminal specifications to the area or areas
you specify.

SCR$SCREEN_INFO control-block

type: longword (unsigned)
access: write only
mechanism: by value

control-block
type: longword integer (signed)
access: write only
mechanism: by reference

Nine bytes which correspond, in order, to the flags, line-width,
lines-per-page, and dev-type arguments specified for LIB$SCREEN _INFO.
The control-block argument is the address of this information.

SS$_NORMAL

LIB$_NQ_STRACT

Procedure successfully completed.

No active stream on which to return data.

·Obsolete RTL Routines
SCR$PUT_BUFFER

SCR$PUT_BUFFER Put Current Buffer to Screen
or to Previous Buffer

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

SCR$PUT_BUFFER terminates the current buffering mode.

SCR$PUT_BUFFER {old-buffer]

type: longword (unsigned)
access: write only
mechanism: by value

old-buffer
type: longword (unsigned)
access: write only
mechanism: by reference

Address of the area previously used as a screen buffer. The old-buffer
argument is the address of that address. This is an optional argument. If
old-buffer is omitted or contains zero, the contents of the current screen
buffer are displayed on the screen, the data length of the buffer is set to zero,
and the buffer mode is terminated. If old-buffer is not zero, it is assumed to
be the address of an area previously used as a screen buffer. The contents of
the current active buffer are copied to this area which then becomes the new
active buffer.

If the address of the previous screen buffer is given, SCR$PUT_BUFFER
copies the contents of the current buffer to that address before it terminates
the current buffer. If the old-buffer argument was not specified, SCR$PUT_
BUFFER empties the buffer to the terminal screen.

SS$_NORMAL
LIB$_SCRBUFOVF

Routine successfully completed.

Screen buffer overflow.

3-57

Obsolete RTL Routines
SCR$PUT_LINE

SCR$PUT_LINE Put Text to Screen in Line Mode

FORMAT

RETURNS

ARGUMENTS

3-58

SCR$PUT_LINE displays the specified text on the screen, beginning at the
current cursor position followed by a specified number of line advances.

Terminal attributes, such as bold, blinking, reverse video, and
underscoring, can be specified by an optional argument.

SCR$PUT_LINE text [,line-adv}[,flags}

type: longword (unsigned)
access: write only
mechanism: by value

text
type: character string
access: read only
mechanism: by descriptor

Character string that SCR$PUT_LINE writes to the screen. The text argument
is the address of a descriptor pointing to this character string.

line-adv
type: longword integer (signed)
access: read only
mechanism: by value

Number of lines that SCR$PUT_LINE advances after displaying the text. The
line-adv argument is a signed word integer containing the number of lines to
be advanced. This is an optional argument. If omitted, the default is zero.

flags
type: longword (unsigned)
access: read only
mechanism: by value

Attributes bit vector. The flags argument an unsigned longword containing
the flags.

A bit must be set to one to get the desired attribute. Bits are additive.
Currently, these bits are used:

Mnemomic Bit Description

SCR$M_BOLD 0 Bold

SCR$M _REVERSE 1 Reverse Video

SCR$M_BLINK 2 Blinking

SCR$M_UNDERLINE 3 Underscored

CONDITION
VALUES
RETURNED

Obsolete RTL Routines
SCR$PUT_LINE

This is an optional argument. If omitted, the default is SCR$M_NORMAL,
and all bi ts are clear.

SS$_NORMAL

LIB$_ WRONUMARG

Routine successfully completed.

Wrong number of arguments.

3-59

Obsolete RTL Routines
SCR$PUT_SCREEN

SCR$PUT_SCREEN Put Text to Screen

FORMAT

RETURNS

ARGUMENTS

3-60

SCR$PUT _SCREEN displays the specified text on the screen beginning at
a specified line and column.

SCR$PUT_SCREEN text {,line-no ,col-no] {,flags]

type: longword (unsigned)
access: write only
mechanism: by value

text
type: character string
access: read only
mechanism: by descriptor

Character string that SCR$PUT_SCREEN writes to the screen. The text
argument is the address of a descriptor pointing to the character string.

line-no
type: longword integer (signed)
access: read only
mechanism: by value

Number of the line at which SCR$PUT_SCREEN begins writing the text. The
line-no argument is a signed longword integer containing the line number.
This is an optional argument; however, if it is specified, the col-no argument
must also be specified. If line-no is omitted, or if line-no is specified but
col-no is omitted, SCR$PUT_SCREEN uses the current line number.

col-no
type: longword integer (signed)
access: read only
mechanism: by value

Number of the column at which SCR$PUT_SCREEN begins writing the text.
The col-no argument is a signed longword integer containing the column
number. This is an optional argument; however, if it is specified, the line-no
argument must also be specified. If col-no is omitted or if col-no is specified
but line-no is omitted, SCR$PUT_SCREEN uses the current column number.

flags
type: longword (unsigned)
access: read only
mechanism: by value

Attributes bit vector. The flags argument an unsigned longword containing
the flags.

DESCRIPTION

CONDITION
VALUES
RETURNED

Obsolete RTL Routines
SCR$PUT_SCREEN

A bit must be set to one to get the desired attribute. Bits are additive.
Currently, these bits are used:

Mnemomic Bit Description

SCR$M_BQLD 0 Bold

SCR$M _REVERSE 1 Reverse Video

SCR$M_BLINK 2 Blinking

SCR$M_UNDERLINE 3 Underscored

This is an optional argument. If omitted, the default is SCR$M_NORMAL,
and all bits are clear.

SCR$PUT_SCREEN allows terminal attributes, such as bold, blinking,
reverse video, and underscoring, can be specified by an optional argument.
SCR$PUT_SCREEN does not insert carriage return or line feed control
characters. In a non-buffer mode, the total number of characters output
is 512, including text, cursor positioning, and video attribute terminal
commands.

SS$_NORMAL

LIB$_1NV ARG

LIB$_FATERRLIB

LIB$_SCRBUFOVF

Routine successfully completed.

Invalid argument. Undefined bits set in flags.

Fatal internal error in library.

Screen buffer overflow. The length of the text
exceeds the size of the buffer. Applicable in
buffering mode only.

3-61

Obsolete RTL Routines
SCR$SET_BUFFER

SCR$SET_BUFFER Set or Clear Screen Buffer
Mode

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

3-62

SCR$SET_BUFFER sets or clears buffer mode for the other terminal
independent screen procedures.

SCR$SET_BUFFER buffer {,old-buffer}

type: longword (unsigned)
access: write only
mechanism: by value

buffer
type: character string
access: modify
mechanism: by descriptor, fixed-length

Buffer which SCR$SET_BUFFER sets up. The buffer argument is the address
of a descriptor pointing to this buffer. If buffer is zero, SCR$SET_BUFFER
terminates the buffering mode and clears the buffer.

old-buffer
type: longword (unsigned)
access: write only
mechanism: by reference

Address of the previous buffer (if any), supplied by SCR$SET_BUFFER. The
old-buffer argument is the address of the address of this previous buffer. The
old-buffer argument is most useful for subsequent use as an input argument
to LIB$PUT_BUFFER.

SCR$SET_BUFFER is called by your program to set up a buffer and initiate
buffer mode. While in buffer mode, the other screen procedures do not alter
the apperarance of the screen. Instead, the output of these procedures is
stored in the buffer set up by SCR$SET_BUFFER.

To display the results of all procedures called since the buffering mode was
entered, your program must call SCR$PUT_BUFFER.

It is sometimes useful, when writing a program with subprograms, to have
more than one buffer initialized at the same time. If you call SCR$SET_
BUFFER a second time without having called SCR$PUT_BUFFER, a second
buffer will be set up. When using SCR$SET_BUFFER to set up a second
buffer, you MUST specify the old-buffer argument. SCR$SET_BUFFER will
write the address of the old buffer into this argument. Because the second
buffer is generally set up for use within a subprogram, it is good practice to
append the contents of this subprogram buffer to the end of the mainprogram
buffer at the end of the subprogram call. This will ensure that when the
contents of the buffer are written to the screen, the displays will appear in

CONDITION
VALUES
RETURNED

Obsolete RTL Routines
SCR$SET_BUFFER

their original order. This is also the reason that SCR$SET_BUFFER writes the
address of that mainprogram buffer into the old-buffer argument. To append
the contents of your subprogram buffer to the end of the mainprogram
buffer, your program must call SCR$PUT_BUFFER and pass the routine the
old-buffer argument.

When setting up the buffer, it is important to make sure that the buffer will
be large enough to hold the header information and the terminal commands.
You must allow 12 bytes within the buffer for header information. If your
buffer size is less than 12 bytes, SCR$SET_BUFFER will return immediately
with the error LIB$_SCRBUFOVF, screen buffer overflow.

If your buffer size is greater than 12 bytes, you may still get the LIB$_
SCRBUFOVF error if your program attempts to write text to the buffer which
is larger than the size of the buffer.

The MAXBUF system argument will determine how large a buffer you may
declare. Although MAXBUF varies slightly from system to system, a typical
size is 1500 bytes. Your buffer may not exceed the size of MAXBUF.

SS$_NORMAL

LIB$_SCRBUFOVF

LIB$_1NV ARG

Routine successfully completed.

Screen buffer overflow. The buffer is less than 12
bytes in length.

Invalid argument. Zero or more than two
arguments were specified.

3-63

Obsolete RTL Routines
SCR$SET_CURSOR

SCR$SET_CURSOR Set Cursor to Character
Position on Screen

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

3-64

SCR$SET _CURSOR positions the cursor to the specified line and column
on the screen.

SCR$SET_CURSOR line-no ,col-no

type: longword (unsigned)
access: write only
mechanism: by value

line-no
type: word integer (signed)
access: read only
mechanism: by value

Number of the line to which SCR$SET_CURSOR moves the cursor. The
line-no argument is a signed word integer containing the line number.

col-no
type: word integer (signed)
access: read only
mechanism: by value

Number of the column to which SCR$SET_CURSOR moves the cursor. The
col-no argument is a signed word integer containing the column number.

SS$_NORMAL

LIB$_1NV ARG

Routine successfully completed.

Invalid argument. The number of arguments
specified must be two.

Obsolete RTL Routines
SCR$SET_QUTPUT

SCR$SET_OUTPUT Set a Terminal or Screen
Buffer for Output

FORMAT

RETURNS

ARGUMENTS

SCR$SET_OUTPUT establishes a terminal or buffer to receive output.

SCR$SET_OUTPUT [stream} {,file-spec} {,user-routine}
{, user-arg} [,old-stream]

type: longword (unsigned)
access: write only
mechanism: by value

stream
type: word integer (signed)
access: read only
mechanism: by value

Stream number assigned by the caller to identify the output stream. The
stream argument is a word integer containing the stream number value.

file-spec
type: character string
access: read only
mechanism: by descriptor

File specification of the file into which SCR$SET_OUTPUT directs the output.
The file-spec argument is the address of a descriptor pointing to the file
specification. This is an optional argument. If omitted, the SCR$SET_
OUTPUT uses the default SYS$0UTPUT.

user-routine
type: procedure entry mask
access: function call (before return)
mechanism: by reference, procedure reference

User-supplied routine. The user-routine argument is the address of the entry
mask to this routine. By default, SCR$SET_OUTPUT uses RMS to open the
output file. You can open the file yourself using the user routine. The user
routine is also called whenever the screen routine needs to send output to the
device or file. Normally, the screen routine does the $QIOs to terminals and
$PUTs to files. The user routine allows you to do these yourself. For more
information on the user routine, see "Call Format for a User Routine" in the
Description Section.

user-arg
type: longword integer (signed)
access: read only
mechanism: by reference

3-65

Obsolete RTL Routines
SCR$SET_QUTPUT

DESCRIPTION

3-66

Optional 32-bit value that SCR$SET_OUTPUT stores for the user routine.
The user-arg argument is the address of the user argument.

stream
type: longword integer (signed)
access: read only
mechanism: by reference

Previous stream number. The stream argument is the address of the previous
stream number. This is an optional argument.

This Description Section has been divided into two parts:

1 Guidelines for Using SCR$SET_OUTPUT

2 Call Format for a User Routine

Guidelines for Using SCR$SET_OUTPUT

SCR$SET_OUTPUT allows you to direct output to a terminal or file other
than the default output device, SYS$0UTPUT. If you are sending output
to only one device, SYS$0UTPUT, the call to SCR$SET_OUTPUT is
optional. However, by using SCR$SET_OUTPUT a single process can display
information on several terminals at the same time. To do this, your program
calls SCR$SET_OUTPUT once for each terminal, before it sends any output
to the terminals.

You can also use SCR$SET_OUTPUT to direct output to a file. By default,
SCR$SET_OUTPUT uses RMS to open the file, but you can include a user
routine to open the file yourself and output to the file. You also can perform
your own $QIOs to a terminal via this user routine.

The first time you call SCR$SET_OUTPUT, you must use all the arguments.
This sets up the channel to the device or file. On this initial call, SCR$SET_
OUTPUT obtains the device characteristics. If the device type is unknown,
the channel is deassigned. After this, you can use just the file specification or
device name along with the user routine and user argument for each call.

If you call SCR$SET_OUTPUT with no arguments, the output goes to
SYS$0UTPUT, the default process output stream.

Call Format for a User Routine

At output time, the user-supplied routine, if present, is called by the main
program, using the address left to it by SCR$SET_OUTPUT. The user routine
is called using the format:

user-routine user-arg ,chan ,output-string ,stream

Arguments

user-arg
type: unspecified
access: read only
mechanism: by reference

32-bit value that was stored by SCR$SET_OUTPUT, or zero if none was
supplied to SCR$SET_OUTPUT. The user-arg argument is the address of the
user argument.

CONDITION
VALUES
RETURNED

Obsolete RTL Routines
SCR$SET_OUTPUT

ch an
type: longword (unsigned)
access: read only
mechanism: by reference

Channel number assigned internally in order to perform QIOs, or zero if
there are no QIOs to be performed. The chan argument is the address of an
unsigned longword integer pointing to the channel number.

output-string
type: character string
access: read only
mechanism: by descriptor

String to be output. The output-string argument is the address of a descriptor
pointing to the output string.

stream
type: longword integer (signed)
access: read only
mechanism: by reference

Stream number of current output stream. The stream argument is the address
of a signed longword integer containing the stream number.

SS$_NORMAL Routine successfully completed.

Condition values returned by your user routine.

3-67

Obsolete RTL Routines
SCR$SET_SCROLL

SCR$SET_SCROLL Set Scrolling Region

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

3-68

SCR$SET _SCROLL establishes a scrolling region by setting the internal
scrolling region arguments. The cursor position is unchanged.

SCR$SET_SCROLL start-line ,end-line

type: longword (unsigned)
access: write only
mechanism: by value

start-line
type: word (unsigned)
access: read only
mechanism: by value

First line of the scrolling region. The start-line argument is an unsigned word
containing the number of the first line.

end-line
type: word (unsigned)
access: read only
mechanism: by value

Last line of the scrolling region. The end-line argument is an unsigned word
containing the number of the last line.

SS$_NORMAL Routine successfully completed.

Obsolete RTL Routines
SCR$STQP _QUTPUT

SCR$STOP._OUTPUT Stop Output to a Terminal
or Screen Buffer

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

SCR$STOP _OUTPUT deassigns a terminal or buffer stream established for
output.

SCR$STOP _OUTPUT chan

type: longword (unsigned)
access: write only
mechanism: by value

chan
type: word integer (signed)
access: read only
mechanism: by value

Channel number to be deassigned. The chan argument is a signed word
integer containing the channel number. This argument is not currently used
and must contain zero.

SS$_NORMAL The routine completed successfully.

3-69

Obsolete RTL Routines
SCR$UP_SCROLL

SCR$UP._SCROLL Up Scroll, Move Cursor Down
One Line

SCR$UP_SCROLL moves the cursor down one line on the screen.

FORMAT SCR$UP_SCROLL

RETURNS type: longword (unsigned)
access: write only
mechanism: by value

ARGUMENTS None.

DESCRIPTION SCR$UP_SCROLL moves the cursor down one line on the terminal screen.

CONDITION
VALUES
RETURNED

3-70

If the cursor is already at the bottom line of the screen, SCR$UP_SCROLL
moves all lines up one line. The information that was on the top line is lost
and a blank line appears at the bottom.

If a scrolling region is active, then the above logic applies to the top and
bottom lines of the scrolling region.

SS$_NORMAL The routine completed successfully.

4 Obsolete Utilities and Utility Components

4.1 Obsolete Utilities

This chapter describes obsolete utilities. The first part of the chapter
describes the Disk Quota Utility, which has been superseded by the System
Management (SYSMAN) Utility. The second part of the chapter contains
tables and descriptions of obsolete components in currently supported VMS
utilities.

An obsolete utility is a VMS utility that has been superseded by one that
is more flexible or more efficient. Obsolete utilities are no longer updated.
An "obsolete utility component" is a component that has been replaced in a
currently supported VMS utility.

This section contains a description of the Disk Quota Utility which has been
replaced by the System Management (SYSMAN) Utility.

4-1

4.1.1

4.1.2

DISK QUOTA
DISK QUOTA

DISK QUOTA
The Disk Quota Utility (DISKQUOTA) allows you to allocate disk space to
users and maintain an accurate record of disk use for ODS Level 2 disks.

Establishing Disk Quotas
Using the Disk Quota Utility, you create a quota file for each volume or each
volume set. The quota file records all users allowed to use the disk and shows
their current disk usage as well as their maximum disk allocation. A quota
file has the following format:

UIC
[0,0]
[TTD, DAVIS]
[TTD , MORGAN]
[MKT , MORSE]

Usage
0
15590
1929
7650

Permanent Quota
333333
333333
333333
333333

Overdraft Limit
3333
3333
3333
3333

• The User Identification Code (UIC) of each user entitled to maintain files
on the volume appears in the UIC column.

• The number of disk blocks currently dedicated to a user's files appears in
the Usage column.

• The maximum number of blocks on the volume that a user's files can
consume appears in the Permanent Quota column. Once exceeded, the
system issues an error message.

• The number of blocks over the quota that a user's files can consume
appears in the Overdraft Limit column.

The absolute maximum number of blocks permitted a user on a volume is the
sum of the quota and the overdraft. Only users with the EXQUOTA privilege
can bypass the quota file, but even then, their names are listed in the file
without a maximum allocation.

The quota file, called QUOTA.SYS, is stored in directory [000000] with other
system files and requires one block of disk storage for each 16 entries.

DIGITAL recommends that you do not enable disk quotas on the system
volume.

Creating a Quota File

4-2

Whether building a quota file for a newly-formatted disk or a disk with
existing files, first invoke the utility and, if necessary, designate the disk
volume for which you are building a quota file. The Disk Quota Utility uses
your current default disk, SYS$DISK, unless you specify another volume with
the USE command.

To establish the quota file, enter the CREATE command. The utility sets up
the file QUOTA.SYS in the directory [000000], and inserts an entry called UIC
[0,0]. You then use UIC [0,0] to initialize default values for permanent quotas
and overdraft limits, with the command MODIFY
/PERMQUOTA=n /OVERDRAFT=n [0,0].

4.1.3

4.1.4

4.1.5

DISK QUOTA
DISK QUOTA

Finally, for disks with existing files, enter the REBUILD command so the
utility reads the disk and enters all UICs and their current disk usage into the
quota file. For a newly created disk, use the ADD command to add individual
UICs to the quota file.

Maintaining a Quota File
During normal use of a volume with a quota file, the system automatically
updates the usage counts as users create, delete, extend, and truncate files.

When a user creates new files, usage counts must be below the permanent
quota. If an operation to add new files or expand a current file exceeds the
usage count quota, the system prohibits the operation and issues an error
message. A user can successfully perform a write operation, even if over
quota, by trying it a second time. Operations to extend the file succeed until
the usage exceeds the sum of the quota and the overdraft values.

Disabling a Quota File
The DISABLE command suspends quota operations on a volume. The
ENABLE command lifts the suspension, at which point it is necessary to
rebuild the quota file to update UICs and usage counts.

Listing of Commands
Table 4-1 summarizes the DISKQUOTA commands by format and function.
See the Command Section for a complete description of commands.

Table 4-1 DISKQUOTA Command Summary

Command Function

ADD Adds an entry to the quota file

CREA TE Creates a quota file for a volume that does not currently
contain one

DISABLE

ENABLE

EXIT

HELP

MODIFY

REBUILD

REMOVE

SHOW

USE

Suspends quota operations on a volume

Resumes quota operations on a volume

Returns the user to DCL command level

Lists the DISKOUOT A commands

Changes an entry in the quota file, and initializes the
default quota and overdraft values

Reconstructs the usage counts for all entries

Deletes an entry from the quota file

Displays quotas and usage counts

Specifies the volume to be acted upon

4-3

DISK QUOTA
DISK QUOTA

FORMAT RUN SYS$SYSTEM:DISKQUOTA

PARAMETERS None.

usage summary To invoke the Disk Quota Utility, enter the following command at the DCL
prompt:

4-4

$RUN SYS$SYSTEM:DISKQUOTA

You can then enter DISKQUOTA commands at the DISKQ> prompt.
These commands follow the standard rules of DCL syntax. To perform
DISKQUOTA operations on a disk other than your current default disk
(SYS$DISK), you must enter the USE command to specify the appropriate
disk.

To exit from DISKQUOTA, enter the EXIT command at the DISKQ> prompt
or press CTRL/Z. Either method returns control to the DCL command level.

No privileges are needed to invoke the Disk Quota Utility; however, most
DISKQUOT A commands require write access to the quota file and many
require the SYSPRV privilege, a system UIC, or ownership of the volume.
See the individual command descriptions for details.

DISKQUOTA
COMMANDS

DISK QUOTA
DISKQUOTA Commands

This section describes the following DISKQUOTA commands and provides
examples of their use:

ADD
CREATE
DISABLE
ENABLE
EXIT
HELP
MODIFY
REBUILD
REMOVE
SHOW
USE

4-5

DISK QUOTA
ADD

ADD

FORMAT

PARAMETER

QUALIFIERS

DESCRIPTION

EXAMPLE

Adds an entry to the quota file and initializes the usage count to zero.

This command requires write access to the quota file.

ADD uic

uic
Specifies the user identification code (UIC) for which the quota entry is added.
You can specify the UIC in numeric or alphanumeric format.

/PERMQUOTA=quota
Specifies a positive integer that provides the quota for the specified UIC. If
you omit the quota value, the quota defaults to the value of the quota in the
entry for [0,0].

/OVERDRAFT=quota-p/us
Specifies a positive integer that provides an overdraft value for the specified
UIC. If you omit the quota-plus value, the overdraft value defaults to the
quota-plus in the entry for [0,0].

The ADD command appends individual entries to the quota file. Unless
you specify the permanent quota and overdraft values, the utility applies
the default values from the UIC entry [0,0]. (UIC [0,0] is the entry that
you initialize immediately after creating a quota file, using the MODIFY
command.)

DISKQ>ADD [MKT,MORSE] /PERMQUOTA=200/0VERDRAFT=50

4-6

The command in this example sets the permanent quota for UIC
[MKT,MORSE] to 200 disk blocks and the overdraft limit to 50 disk blocks,
for an absolute limit of 250 blocks.

CREATE

DISK QUOTA
CREATE

Creates a quota file for a volume that does not currently contain one.

This command requires write access to the volume's master file directory
(MFD), as well as one of the following: the SYSPRV privilege, a system
UIC, or ownership of the volume.

FORMAT CREATE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The CREATE command creates and enables a quota file for a volume that
does not currently have one.

EXAMPLE

DISKQ> CREATE

Only one quota file, [OOOOOO)QUOTA.SYS, can be present on any volume or
volume set. As soon as you create a quota file, you should establish default
values for quotas and overdrafts by initializing UIC [0,0) with the MODIFY
command. To have DISKQUOTA read a disk with existing files and build
all UICs and their current usage into the newly-created quota file, use the
REBUILD command.

The command in this example creates a new quota file.

4-7

DISK QUOTA
DISABLE

DISABLE

Suspends the maintenance and enforcement of quotas on a volume.

Use of this command requires one of the following: the SYSPRV privilege,
a system UIC, or ownership of the volume.

FORMAT DISABLE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The DISABLE command suspends the maintenance and enforcement of
quotas. If you enable the quota file at a later point, enter the REBUILD
command to update UIC entries and usage counts.

EXAMPLE

DISKQ> DISABLE

The command in this example suspends quota enforcement.

4-8

ENABLE

Resumes quota enforcement on a volume.

DISK QUOTA
ENABLE

This command requires one of the following: the SYSPRV privilege, a
system UIC, or ownership of the volume.

FORMAT ENABLE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The ENABLE command lifts the suspension of quotas on a volume.

EXAMPLE

DISKQ> ENABLE

Whenever you enable quotas on a volume, use the REBUILD command
to update UIC entries and usage counts.

The command in this example resumes quota enforcement.

4-9

DISK QUOTA
EXIT

EXIT

Terminates the DISKQUOT A session and returns control to the DCL
command level.

FORMAT EXIT

PARAMETERS None.

QUALIFIERS None.

4-10

HELP

FORMAT

PARAMETER

QUALIFIERS

EXAMPLE
DISKQ> HELP ENABLE

ENABLE

Lists and describes the DISKQUOT A commands.

HELP [command]

command
Specifies the name of a DISKQUOTA command.

None.

Enable disk quotas on the default volume. The default volume may
be selected by issuing the USE command. Once a quota file is created
on a volume, disk quotas are assumed enabled until explicitly
disabled.

FORMAT:
ENABLE

DISK QUOTA
HELP

The command in this example displays information about the ENABLE
command.

4-11

DISK QUOTA
MODIFY

MODIFY

FORMAT

PARAMETER

QUALIFIERS

DESCRIPTION

EXAMPLE

Changes an entry in the quota file or initializes default values for quotas
and overdrafts. If a new quota limit is less than the current usage count,
the utility issues a warning message before it implements the new quota.

The MODIFY command requires write access to the quota file.

MODIFY uic

uic
Specifies the user identification code (UIC). You can specify the UIC in
numeric or alphanumeric format, and the asterisk wildcard character (*) is
permitted.

/PERMQUOTA=quota
Specifies a positive integer that provides the quota for the specified UIC. If
you omit the quota value, the quota defaults to the value of the quota in the
entry for [0,0].

/OVERDRAFT=quota-plus
Specifies a positive integer that provides an overdraft value for the specified
UIC. If you omit the quota-plus value, the overdraft value defaults to the
quota-plus in the entry for [0,0].

The MODIFY command changes values in the quota file. If you establish a
quota limit that is less than the current usage count, a user can still log in and
out, but cannot create files.

Use the MODIFY command after you have created a quota file to set
appropriate default values for quotas and overdrafts. DISKQUOTA puts
an entry into the newly-created quota file called UIC [0,0] that you initialize
to values appropriate for your site.

DISKQ> MODIFY [0,0] /PERMQUOTA=3000 /OVERDRAFT~300

The command in this example sets the default permanent quota and overdraft
values for the volume by editing the UIC entry [0,0]. If you do not specify a
quota and overdraft, the utility applies these defaults to the UIC.

DISKQ> MODIFY [TTD,DAVIS] /PERMQUOTA=900

4-12

The command in this example sets the permanent quota for UIC [TTD,DAVIS]
to 900 blocks, while making no change to the overdraft limit.

REBUILD

DISK QUOTA
REBUILD

Adds entries to the quota file for files created while quotas were not being
enforced, and updates the usage count for all UICs on the volume.

This command requires write access to the quota file, plus one of the
following: the SYSPRV privilege, a system UIC, or ownership of the
volume.

FORMAT REBUILD

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The REBUILD command reads the disk, updates usage counts for all existing
entries, and adds new entries. It sets quota and overdraft values of new
entries to the defaults set in UIC [0,0]. While the REBUILD command is
executing, file activity on the volume is frozen. No files can be created,
deleted, extended, or truncated. Use the REBUILD command in the following
circumstances:

EXAMPLE
DISKQ> REBUILD

• After creating a quota file on a volume with existing files.

• When the quota file has been enabled after a period of being disabled.
The command corrects the usage counts and adds any new UICs.

The command in this example reconstructs the usage counts for all entries on
the volume.

4-13

DISK QUOTA
REMOVE

REMOVE

FORMAT

PARAMETER

QUALIFIERS

DESCRIPTION

EXAMPLE

Deletes an entry from the quota file.

This command requires write access to the quota file.

REMOVE uic

uic
Specifies the user identification code (UIC). You can specify the UIC in
numeric or alphanumeric format. The asterisk wildcard character (*) is
permitted.

None.

If the usage count for the UIC is not zero, the utility issues a warning message
before it removes the UIC. Files remain on disk, and the user can still log on;
however, any attempt to create files will fail.

The VIC [0,0] entry cannot be removed.

DISKQ> REMOVE [TTD,DAVIS]

The command in this example deletes UIC [TTD ,DAVIS] from the quota file.

4-14

SHOW

FORMAT

PARAMETER

QUALIFIERS

EXAMPLE

DISKQ> SHOW [ACCT,*]

DISK QUOTA
SHOW

Displays quotas, overdrafts, and usage counts.

This command requires no privileges to show one's own quota, overdraft,
and usage count, but otherwise it requires read access to the quota file.

SHOW uic

uic
Specifies the user identification code (UIC). You can specify the UIC in
numeric or alphanumeric format.

You can use an asterisk wildcard character (*) to specify the UIC as follows:

Command

SHOW [TTD,CJ]

SHOW [TTD,*]

SHOW [*,CJ]

SHOW[*]

None.

Description

Show user CJ in group TTD

Show all users in group TTD

Show all users with a member name of CJ

Show all entries

The command in this example displays quotas, overdrafts, and usage counts
for all users in group ACCT.

4-15

DISK QUOTA
USE

USE

FORMAT

PARAMETER

QUALIFIERS

DESCRIPTION

EXAMPLE
DISKQ> USE DMA2:

Specifies the volume to be acted upon.

USE device

device
Specifies the physical or the logical name of the device for which disk quotas
are being set, modified, or inspected.

None.

DISKQUOTA works with the default disk, SYS$DISK, unless the USE
command is issued. Use this command during a DISKQUOTA session to
switch from one quota file to another.

Any volu_gte in a volume set can be specified.

The command in this example specifies the device by its physical name,
DMA2:.

DISKQ> USE X2_RESEARCH_DATA

This command specifies the logical name of the physical device.

4-16

Obsolete Utilities and Utility Components
4.2 Obsolete Components of Current VMS Utilities

4.2 Obsolete Components of Current VMS Utilities

Utility

Runoff

Utility

Librarian

Utility

Show Cluster

The following tables list obsolete components of currently supported utilities
and the components that replace them.

Obsolete Component Replacement

.DO INDEX, .PRINT INDEX RUNOFF /INDEX

The .DO INDEX and .PRINT INDEX commands, for in-core ~ndexing, are no
longer supported. RUNOFF /INDEX must be used to generate an .RNX file
(index file) from a .BRN file. The .RNX file can then be .REQUIREd into the
document.

Obsolete Component Replacement

$LBRCTLTBL $LBRCTLDEF

In VAX/VMS Version 3.0 the macro $LBRCTLTBL in STARTLET.MLB
defined certain librarian control table offsets. In VAX/VMS Version 4.0,
the new structure definition translator renamed the macro $LBRCTLTBL to
$LBRCTLDEF. If you have a program that references $LBRCTLTBL, remove
the macro reference and reassemble your program. If for some reason the
program does not run, then add the reference again using the new name,
$LBRCTLDEF. .

Obsolete Component Replacement

SHOW CLUSTER/REPORT =x SHOW CLUSTER

The /REPORT=x qualifier is now unsupported. The information that was
previously separated into two distinct reports, CLUSTER and LOCAL_
PORTS, can now be displayed on the same screen by using the ADD
command.

By default, the output of the SHOW CLUSTER command is the same as
/REPORT=CLUSTER. To generate the LOCAL_PORTS report, (formerly
done with the /REPORT=LOCAL _PORTS qualifier) create an initialization
file containing the following commands:

REMOVE SYSTEMS, MEMBERS
ADD LOCAL_PORTS, ERRORS

4-17

A Eliminated Features

This appendix lists eliminated DCL commands, utilities, Run-Time Library
(RTL) routines, and miscellaneous components of VMS. Eliminated means that
the feature no longer works and has not been replaced.

A-1

Eliminated Features
Eliminated Features

Eliminated Features
The following table lists features eliminated from VMS:

DCL Commands Eliminated Commands

SET PROCESS/CPU=[NO]A TT ACHED

SET COMMAND /NODELETE

Utilities Eliminated Components

Command Definition SET COMMAND/NODELETE

Linker /GSMA TCH=NEVER

/SHAREABLE=COPY

UNIVERSAL=*

SUMSLP editor

RTL Routine Eliminated Routine

SMG$ALLOW_ESCAPE

Miscellaneous Features Eliminated Feature

Privileges TMPJNL, PRMJNL

A-2

Explanation

Support for the SET PROCESS
/CPU=[NO]A TT ACHED DCL
command has been removed. This
command was part of asymmetric
multiprocessing (ASMP) support
designed to help minimize
scheduling inefficiencies. It has
no counterpart under symmetric
multiprocessing (SMP).

The /NODELETE qualifier to the
SET COMMAND command is no
longer supported.

Explanation

The /NODELETE qualifier to the
SET COMMAND command is no
longer supported.

The NEVER keyword to the
GSMA TCH linker option is no
longer allowed.

The COPY keyword on the options
file qualifier /SHAREABLE is no
longer allowed.

The linker option UNIVERSAL=* is
no longer allowed.

The SLP editor is no longer
supported.

Explanation

This routine was created solely
for the purpose of translating old
application programs that send
escape sequences to SMG$, and is
no longer supported.

Explanation

The TMPJNL and PRMJNL
privileges were never used by
VAX/VMS and have been removed.

Index

A
Accounting file

controlling• 2-22
Accounting manager

sending message to• 2-22
ADD command• 4-6

B
Batch job

queue
changing entry• 1-20

c
Channel

information• 2-12
Control region

deleting page from• 2-6
CPU (central processing unit)

time
to limit for batch job• 1-22

CREA TE command• 4-7

D
Device

information• 2-16
$DIBDEF macro

symbol defined• 2-14
DISABLE command• 4-8

E
ENABLE command• 4-9
Equivalence name

specifying• 2-8

EXIT command• 4-10

F
File

to modify queue entry for• 1-20

H
HELP command• 4-11

I
INITIALIZE/QUEUE command

/BURST qualifier• 1-29
/[NO]FLAG qualifier• 1-30
/PRIORITY qualifier• 1-30
/TERMINAL qualifier• 1-30

Input request
queuing and waiting for event flag• 2-19

L
Logical name

creating• 2-8
deleting• 2-10
translating• 2-42

M
Message

sending to accounting manager• 2-22
writing to terminal• 2-2

MODIFY command• 4-12

lndex-1

Index

0
Output

queuing and waiting for event flag• 2-20

p
Print queue

changing entry• 1-20
Program region

deleting page from• 2-6

a
Queue

changing entry
for batch• 1-20
for printer• 1-20

controlling print• 2-26
Quota file

altering• 4-12
deleting an entry• 4-14
displaying an entry• 4-15

R
REBUILD command• 4-13
REMOVE command • 4-14

s
SET CLUSTER/QUORUM command• 1-2 to 1-3
SET DEVICE/ ACL command• 1-4 to 1-7
SET DIRECTORY/ ACL command• 1-8 to 1-13
SET FILE/ ACL command• 1-14 to 1-19
SET QUEUE/ENTRY command• 1-20 to 1-28
SHOW command• 4-15
ST ART /QUEUE command

/BATCH qualifier• 1-30
/PRIORITY qualifier• 1-31
/TERMINAL qualifier• 1-31

lndex-2

Symbiont manager
sending message to• 2-26

SYS$BRDCST•2-2

See also. SYS$BRKTHRU
SYS$CNTREG • 2-6

See also SYS$DEL TV A
SYS$CRELOG • 2-8

See also SYS$CRELNM
SYS$DELLOG • 2-10

See also SYS$DELLNM
SYS$GETCHN•2-12

See also SYS$GETDVI
SYS$GETDEV • 2-16

See also SYS$GETDVI
SYS$1NPUT • 2-19

See also SYS$QIO
SYS$0UTPUT•2-20

See also SYS$QIO
SYS$SNDACC • 2-22

See also SYS$SNDJBC
SYS$SNDSMB • 2-26

See also SYS$SNDJBC
SYS$TRNLOG • 2-42

See also SYS$TRNLNM

u
Usage counts

reconstructing• 4-13
USE command• 4-16

v
Virtual address space

deleting page from• 2-6
Volume specification• 4-16

Reader's Comments VMS Obsolete
Features Manual

AA-LB25A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Na;111e/Title

Cotnpany

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

I

I
I
I
I
I

. I

-- Do Not Tear - Fold Here and Tape -------------------~1·11r---------------
No Postage

~amanma™ ~:::i~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

Ill 1111111.11 ... 1II11111.11.1 .. 1.1 .. I 111.1 ... 1.11 .. 1

in the
United States

-- Do Not Tear - Fold Here --

.,
I
~
~
I

'

