
VMS DECwindows Guide to
Application Programming

Order Number: AA-MG21 8-TE

June 1990

This manual is a guide to creating applications using the XUI Toolkit, including
the User Interface Language (UIL) and the XUI Resource Manager (ORM).

Revision/Update Information: This manual supersedes the VMS
DECwindows Guide to Application
Programming, Version 5.3.

Software Version: VMS Version 5.4

digital equipment corporation
maynard, massachusetts

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described. in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop-VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GIGI ReGIS VMS
DECnet HSC ULTRIX VT
DEC US Live Link UNIBUS XUI
DECwindows LN03 VAX

mnmnama™ DECwriter MASS BUS VAXcluster

The following are third-party trademarks:

Postscript is a registered trademark of Adobe Systems Incorporated.

X Window System, Version 11 and its derivations (X, X11, X Version 11, X Window
System) are trademarks of the Massachusetts Institute of Technology.

ZK4734

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LN03R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE xxxi

CHAPTER 1 OVERVIEW OF THE XUI TOOLKIT 1-1

1.1 OVERVIEW OF XUI TOOLKIT COMPONENTS 1-1
1.1.1 User Interface Objects 1-2
1.1.2 X Toolkit Routines 1-3
1.1.3 Cut and Paste Routines 1-4
1.1.4 Application Development Tools 1-4

1.2 PROGRAMMING CONCEPTS 1-4
1.2.1 Creating the Form of Your Application 1-6
1.2.2 Associating Function with Form 1-7

1.3 WIDGETS IN THE XUI TOOLKIT 1-8

1.4 WIDGET ATTRIBUTES 1-14
1.4.1 Size and Position Attributes 1-14
1.4.2 Appearance Attributes 1-15
1.4.3 Callback Attributes 1-15
1.4.4 Assigning Values to Widget Attributes 1-15

CHAPTER2 CREATING A VMS DECWINDOWS APPLICATION 2-1

2.1 OVERVIEW OF A VMS DECWINDOWS APPLICATION 2-1

2.2 SYMBOL DEFINITION FILES 2-2

2.3 INITIALIZING THE XUI TOOLKIT 2-4
2.3.1 Application Shell Widget 2-6
2.3.2 Using Multiple Shell Widgets 2-7

v

Contents

2.4 CREATING THE WIDGETS IN THE INTERFACE 2-8
2.4.1 Using Low-Level Widget Creation Routines 2-9
2.4.1.1 Using Low-Level Routines to Define the Parent/Child Relationship

of a Widget• 2-10
2.4.1.2 Using Low-Level Routines to Define the Initial Appearance of a

Widget • 2-10
2.4.1.3 Using Low-Level Routines to Associate Callback Routines with a

Widget • 2-12
2.4.2 Using High-Level Widget Creation Routines 2-14
2.4.2.1 Using High-Level Routines to Define the Parent/Child Relationship

of a Widget• 2-15
2.4.2.2 Using High-Level Routines to Define the Initial Appearance of a

Widget • 2-15
2.4.2.3 Using High-Level Routines to Associate Callback Routines with a

Widget • 2-16
2.4.3 Using UIL and ORM to Create Widgets 2-17
2.4.3.1 Using UIL to Define the Parent/Child Relationship of a

Widget • 2-18
2.4.3.2 Using UIL to Define the Initial Appearance of a Widget • 2-18
2.4.3.3 Using UIL to Associate Callbacks with a Widget• 2-19

2.5 MANAGING THE WIDGETS IN THE INTERFACE 2-21
2.5.1 Managing a Single Child Widget 2-22
2.5.2 Managing Multiple Child Widgets 2-23

2.6 REALIZING THE WIDGETS IN THE INTERFACE 2-24

2.7 MAIN INPUT LOOP 2-25

2.8 CREATING A CALLBACK ROUTINE 2-27
2.8.1 Identifying the Widget Performing the Callback 2-27
2.8.2 Associating· Application-Specific Data with a Widget 2-27
2.8.3 Widget-Specific Callback Data 2-27
2.8.4 Guidelines for Creating Callback Routines 2-29

2.9 MANIPULATING THE INTERFACE AT RUN TIME 2-30
2.9.1 Standard Widget Manipulation Routines 2-31
2.9.2 Widget-Specific Manipulation Routines 2-32

vi

Contents

2.10 COMPLETE LISTING OF THE HELLO WORLD! SAMPLE
APPLICATION 2-32

2.10.1 Using Low-Level Routines to Create the Hello World! User
Interface 2-32

2.10.2 Using High-Level Routines to Create the Hello World! User
Interface 2-33

2.10.3 Using UIL and ORM to Create the Hello World! User Interface _ 2-35
2.10.4 The Hello World! Sample Application Main Input Loop and Callback

Routine 2-38

CHAPTER3 CREATING A USER INTERFACE USING UIL AND ORM 3-1

3.1 OVERVIEW OF UIL AND ORM 3-1

3.2 SPECIFYING A USER INTERFACE USING UIL-A SAMPLE
PROGRAM 3-4

3.2.1 Recommended UIL Coding Techniques 3-5
3.2.1.1 Naming Values and Objects • 3-6
3.2.1.2 Declaring Values, Identifiers, and Procedures • 3-6
3.2.1.3 Declaring Objects • 3-7
3.2.1.4 Using Local Definitions for Objects • 3-10
3.2.2 Creating a UIL Specification File 3-10
3.2.3 Structure of a UIL Module 3-11
3.2.4 Declaring the UIL Module 3-12
3.2.5 Using the UIL Constants Include File 3-13
3.2.6 Declaring Procedures in UIL 3-15
3.2.7 Declaring Values in UIL 3-16
3.2.7.1 Defining Arguments for Attached Dialog Box Widgets• 3-17
3.2.7.2 Defining Integer Values • 3-18
3.2.7.3 Defining String Values • 3-18
3.2.7.4 Specifying Multiline Compound Strings • 3-20
3.2.7.5 Defining String Table Values• 3-20
3.2.7.6 Defining Font Values • 3-21
3.2.7.7 Defining Color Values • 3-22
3.2.7.8 Defining Pixmap Values • 3-23
3.2.8 Declaring Interface Objects in a UIL Module 3-24
3.2.8.1 Specifying Arguments in an Object Declaration • 3-25
3.2.8.2 Specifying Children in an Object Declaration • 3-26
3.2.8.3 Specifying Callbacks in an Object Declaration• 3-27
3.2.9 Specifying an Icon as a Widget Label 3-29

vii

Contents

3.3 CREATING A USER INTERFACE AT RUN TIME USING ORM 3-31
3.3.1 Accessing the UID File at Run Time 3-35
3.3.2 Deferring Fetching 3-37
3.3.3 Retrieving Literal Values from UID Files 3-38
3.3.4 Setting Values at Run Time Using UID Resources 3-40
3.3.5 Using an Object Definition as a Template 3-45

3.4 CUSTOMIZING A VMS DECWINDOWS INTERFACE USING UIL AND
ORM 3-49

3.4.1 Designing an International Application Using UIL and ORM - 3-50
3.4.2 Specifying the User Interface for an International Application - 3-52
3.4.3 Creating the User Interface for an International Application 3-53

3.5 USING IDENTIFIERS IN UIL 3-57

3.6 USING SYMBOLIC REFERENCES TO WIDGET IDENTIFIERS IN
UIL 3-58

3.7 DEVELOPING AND TESTING PROTOTYPES USING UIL 3-59
3.7.1 Setting Up the UIL Module for Prototype Testing 3-60
3.7.2 Setting Up the Application Program for Prototype Testing 3-62

3.8 USING UIL ON LARGE PROJECTS 3-63

3.9 WORKING WITH USER-DEFINED WIDGETS IN UIL 3-65
3.9.1 Defining Arguments and Reasons for a User-Defined Widget 3-66
3.9.2 Using a User-Defined Widget in an Interface Specification 3-68
3.9.3 Accessing a User-Defined Widget at Run Time 3-71

CHAPTER4 CREATING A MAIN WINDOW WIDGET 4-1

4.1 OVERVIEW OF WINDOW WIDGETS 4-1

4.2 CHILDREN OF A MAIN WINDOW WIDGET 4-1
4.2.1 Menu Bar Widget 4-2
4.2.2 Command Window Widget 4-2
4.2.3 Scroll Bar Widgets 4-2
4.2.4 Work Area Widget 4-3

viii

Contents

4.3 CREATING A MAIN WINDOW WIDGET 4-4
4.3.1 Adding Children to a Main Window Widget 4-5
4.3.1.1 Using SET VALUES to Add Children to a Main Window

Widget• 4-6
4.3.1.2 Using the MAIN WINDOW SET AREAS Routine • 4-6
4.3.1.3 Accepting Main Window Widget Defaults• 4-6
4.3.2 Customizing the Main Window Widget 4-7

4.3.3 Associating Callback Routines with a Main Window Widget 4-8

4.4 CREATING A SCROLL WINDOW WIDGET 4-8
4.4.1 Adding Children to a Scroll Window Widget 4-10
4.4.1.1 Using SET VALUES to Add Children to a Scroll Window

Widget • 4-10
4.4.1.2 Using the SCROLL WINDOW SET AREAS Support

Routine • 4-10
4.4.1.3 Accepting Scroll Window Widget Defaults • 4-11

4.5 CREATING A WINDOW WIDGET 4-11
4.5.1 Drawing Graphics in a Window Widget 4-12
4.5.2 Associating Callback Routines with a Window Widget 4-14

4.6 CREATING A COMMAND WINDOW WIDGET 4-15
4.6.1 Command Window Widget Support Routines 4-16
4.6.2 Specifying the Contents of the Command Line 4-16

4.6.3 Displaying Error Messages in the Command Window Widget 4-17
4.6.4 Defining Accelerators for the Command Window Widget -- 4-17
4.6.5 Customizing the Appearance of the Command Window Widget 4-17

4.6.5.1 Specifying the Command Line Prompt • 4-17
4.6.5.2 Specifying the Size and Content of the Command History

Window• 4-17
4.6.6 Associating Callback Routines with the Command Window

Widget 4-18

CHAPTER 5 USING THE LABEL, SEPARATOR, AND BUTTON WIDGETS 5-1

5.1 OVERVIEW OF LABEL, SEPARATOR, AND BUTTON WIDGETS AND
GADGETS 5-1

ix

Contents

5.2 CREATING A LABEL WIDGET OR GADGET 5-2
5.2.1 Customizing a Label Widget 5-3
5.2.1.1 Specifying the Size and Position of a Label Widget • 5-3
5.2.1.2 Specifying the Alignment in a Label Widget • 5-4
5.2.1.3 Specifying Margins in a Label Widget • 5-4
5.2.1.4 Specifying the Content of a Label Widget • 5-5
5.2.2 Customizing a Label Gadget 5-5

5.3 CREATING A SEPARATOR WIDGET OR GADGET 5-6
5.3.1 Customizing a Separator Widget or Gadget 5-7

5.4 CREATING A PUSH BUTTON WIDGET OR GADGET 5-7
5.4.1 Customizing a Push Button Widget 5-10
5.4.1.1 Specifying Highlighting Behavior • 5--10
5.4.1.2 Specifying Shadowing • 5-10
5.4.1.3 Specifying the Insensitive Pixmap• 5-10
5.4.2 Customizing a Push Button Gadget 5-10
5.4.3 Associating Callback Routines with a Push Button Widget or

Gadget 5-11

5.5 CREATING A TOGGLE BUTTON WIDGET OR GADGET 5-12
5.5.1 Specifying the State of a Toggle Button Widget or Gadget 5-16
5.5.2 Customizing a Toggle Button Widget 5-17
5.5.2.1 Specifying the Appearance of the Indicator• 5-17
5.5.2.2 Specifying On and Off Pixmaps • 5-17
5.5.3 Customizing a Toggle Button Gadget 5-18
5.5.4 Associating Callback Routines with a Toggle Button Widget or

Gadget 5-18

5.6 WORKING WITH COMPOUND STRINGS 5-19
5.6.1 Creating a Compound String 5-21
5.6.2 Creating Compound Strings with Multiple Segments 5-22
5.6.3 Manipulating a Compound String 5-23
5.6.4 Retrieving Information About a Compound String 5-23
5.6.5 Specifying Fonts 5-25

5.7 DEFINING ACCELERATORS FOR BUTTON WIDGETS AND
GADGETS 5-27

5.7.1 Defining the Accelerator Key or Key Combination 5-27
5.7.2 Adding an Accelerator to a Widget or Gadget 5-28
5.7.3 Installing an Accelerator in an Application 5-28
5.7.4 Specifying an Accelerator Label 5-29

x

5.7.5 Adding an Accelerator to the Hello World! Sample Application

CHAPTER 6 CREATING MENU WIDGETS

6.1

6.2
6.2.1
6.2.2

6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.1.4
6.3.1.5
6.3.1.6
6.3.2

6.4
6.4.1
6.4.2

6.5
6.5.1

6.6
6.6.1
6.6.1.1
6.6.1.2

6.7
6.7.1
6.7.2
6.7.3
6.7.4

OVERVIEW OF MENU WIDGETS

MENU WIDGETS IN THE XUI TOOLKIT
Creating Menu Items
Nesting Menu Widgets

CREATING A WORK AREA MENU WIDGET
Customizing a Work Area Menu Widget

Specifying the Size of a Work Area Menu Widget • 6-9
Specifying the Arrangement of Menu Items • 6-10
Specifying Margins and Spacing • 6-10
Determining Menu Item Alignment• 6-11
Specifying Radio Button Exclusivity • 6-11
Restricting Menu Items to Classes of Widgets • 6-11

Associating Callback Routines with a Work Area Menu Widget

CREATING A PULL-DOWN MENU WIDGET
Customizing the Appearance of a Pull-Down Menu Widget
Associating Callback Routines with a Pull-Down Menu Widget

CREATING A MENU BAR WIDGET
Customizing a Menu Bar Widget

CREATING AN OPTION MENU WIDGET
Customizing an Option Menu Widget

Specifying the Initial Value of an Option Menu Widget • 6-23
Specifying the Label in an Option Menu Widget • 6-24

CREATING A POP-UP MENU WIDGET
Creating an Action Procedure
Adding an Action Procedure to a Widget
Customizing a Pop-Up Menu Widget
Associating Callback Routines with a Pop-Up Menu Widget

Contents

5-30

6-1

6-1

6-1
6-2
6-4

6-5
6-9

6-12

6-12
6-14
6-14

6-15
6-19

6-19
6-23

6-24
6-26
6-27
6-31
6-31

xi

Contents

CHAPTER7 CREATING DIALOG BOX WIDGETS 7-1

7.1 OVERVIEW OF THE DIALOG BOX WIDGET 7-1

7.2 DIALOG BOX WIDGETS IN THE XUI TOOLKIT 7-1
7.2.1 Generic Dialog Box Widgets 7-1
7.2.1.1 Dialog Box Widget• 7-2
7.2.1.2 Attached Dialog Box Widget • 7-2
7.2.2 Standard Dialog Box Widgets 7-4
7.2.2.1 Message Box Widget• 7-4
7.2.2.2 Selection Box Widget • 7-4

7.3 STYLES OF DIALOG BOX WIDGETS 7-4

7.4 CREATING A DIALOG BOX WIDGET 7-5
7.4.1 Specifying the Layout of Children in a Dialog Box Widget 7-6
7.4.2 Customizing the Dialog Box Widget 7-10
7.4.2.1 Sizing and Resizing a Dialog Box Widget• 7-10
7.4.2.2 Positioning a Dialog Box Widget• 7-11
7.4.2.3 Selecting the Unit of Measure Used in a Dialog Box

Widget• 7-11
7.4.2.4 Defining Translations for Simple Text Widgets • 7-11
7.4.2.5 Assigning Accelerators to Child Widgets• 7-12
7.4.2.6 Grabbing the Input Focus • 7-12
7.4.3 Associating Callback Routines with a Dialog Box Widget 7-12

7.5 CREATING AN ATTACHED DIALOG BOX WIDGET 7-13
7.5.1 Defining Attachments in an Attached Dialog Box Widget 7-14
7.5.1.1 Attaching an Edge to the Attached Dialog Box• 7-16
7.5.1.2 Attaching an Edge to Another Child Widget• 7-17
7.5.1.3 Attaching an Edge to a Position in the Attached Dialog Box

Widget• 7-18
7.5.1.4 Accepting Default Attachments • 7-19
7.5.2 Using Attachment Attributes 7-19
7.5.3 Customizing an Attached Dialog Box Widget 7-21
7.5.3.1 Specifying the Default Spacing Between Child Widgets• 7-22
7.5.3.2 Defining the Default Denominator Used in Fraction

Positioning • 7-22
7.5.3.3 Controlling Resizing Behavior of Child Widgets • 7-22
7.5.4 Associating Callback Routines with an Attached Dialog Box

Widget 7-22

xii

CHAPTER 8 CREATING A LIST BOX WIDGET

8.1

8.2
8.2.1
8.2.1.1
8.2.1.2

8.2.2

8.3
8.3.1
8.3.1.1
8.3.1.2
8.3.1.3

8.3.2

8.3.2.1

8.3.2.2
8.3.2.3
8.3.3
8.3.3.1
8.3.3.2
8.3.3.3
8.3.4

OVERVIEW OF THE LIST BOX WIDGET

CREATING A LIST BOX WIDGET
Creating an Item List

Creating an Item List as an Array of Compound Strings • 8-3
Creating an Item List Using the UIL STRING TABLE
Function • 8-5

Selecting and Canceling Selections of List Items

LIST BOX WIDGET SUPPORT ROUTINES
Adding and Deleting List Items at Run Time

Using SET VALUES to Add or Delete List Items • 8-9
Using a Support Routine to Add an Item to an Item List • 8-10
Using a Support Routine to Delete an Item from an Item
List • 8-10

Selecting and Canceling the Selection of List Items at Run
Time

Using the SET VALUES Intrinsic Routine to Select List
Items • 8-11
Using a Support Routine to Select a List Item • 8-11
Canceling the Selection of Items in an Item List • 8-12

Customizing the Appearance of a List Box Widget
Specifying the Size of a List Box Widget • 8-12
Specifying List Items to Be Visible • 8-14
Specifying Margins and Spacing in a List Box Widget• 8-14

Associating Callbacks with a List Box Widget

CHAPTER 9 HANDLING TEXT

9.1

9.2
9.2.1
9.2.1.1
9.2.1.2
9.2.1.3
9.2.1.4
9.2.2
9.2.2.1

OVERVIEW OF TEXT WIDGETS

CREATING TEXT WIDGETS
Manipulating the Text Contents of the Text Widgets

Placing Text in a Text Widget • 9-6
Retrieving Text from a Text Widget• 9-7
Disabling Text Editing • 9-7
Limiting the Length of the Text • 9-8

Customizing the Appearance of the Text Widgets
Specifying Size • 9-8

Contents

8-1

8-1

8-2
8-3

8-6

8-8
8-9

8-11

8-12

8-15

9-1

9-1

9-4
9-6

9-8

xiii

Contents

9.2.2.2
9.2.2.3
9.2.2.4
9.2.2.5
9.2.2.6
9.2.2.7
9.2.3

9.2.3.1
9.2.3.2
9.2.3.3
9.2.4

Specifying Margins • 9-9

Controlling Resizing Behavior • 9-10
Controlling Text Cursor Appearance • 9-10
Positioning the Insertion Point • 9-11
Specifying Border Visibility and Color• 9-11
Identifying the Current Writing and Editing Directions • 9-11

Handling Text Selections
Selecting Text • 9-12
Retrieving Selected Text • 9-12
Canceling the Selection of Text • 9-13

Associating Callbacks with Text Widgets

9-12

9-13

CHAPTER 10 USING THE SCALE AND THE SCROLL BAR WIDGETS 10-1

xiv

10.1

10.2
10.2.1
10.2.2
10.2.2~ 1
10.2.2.2
10.2.2.3
10.2.2.4
10.2.2.5
10.2.2.6
10.2.3

10.3

10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6

OVERVIEW OF THE SCALE WIDGET

CREATING A SCALE WIDGET
Determining the Range of Values
Customizing the Appearance of a Scale Widget

Specifying the Size of a Scale Widget • 10-4
Specifying the Orientation of the Scale Widget • 10-5
Specifying the Title of the Scale Widget • 10-5
Specifying the Color of the Slider • 10-6
Representing the Velue of the Scale • 10-6
Adding Labeled Tick Marks to a Scale Widget• 10-7

Associating Callbacks with a Scale Widget

OVERVIEW OF THE SCROLL BAR WIDGET

CREATING A SCROLL BAR WIDGET
Determining the Range of a Scroll Bar Widget
Specifying the Size of the Slider in a Scroll Bar Widget
Defining the Size of Increment and Decrement
Modifying the Action of the Stepping Arrows
Customizing the Appearance of the Scroll Bar Widget
Associating Callbacks with a Scroll Bar Widget

1o-;.1

10-2
10-3
10-4

10-8

10-10

10-11
10-12
10-13
10-13
10-14
10-14
10-15

CHAPTER 11 USING THE COLOR MIXING WIDGET

11.1 OVERVIEW OF THE COLOR MIXING.WIDGET
11.1.1 Color Models
11.1.2 Components of the Color Mixing Widget
11.1.2.1 Color Display Subwidget • 11-4
11.1.2.2 Color Model Option Menu Subwidget • 11-5
11.1.2.3 Color Mixer Subwidget • 11-5
11.1.2.4 Push Button Subwidgets • 11-6
11.1.2.5 Label Subwidgets • 11-7
11.1.2.6 Work Area Subwidget • 11-7

11.2 C,REATING A COLOR MIXING WIDGET
11.2.1 Setting and Retrieving New Color Values
11.2.2 Customizing the Color Mixing Widget
11.2.2.1 Specifying the Size • 11-9
11.2.2.2 Specifying Margins • 11-9
11.2.2.3 Labeling the Color Mixing Widget• 11-10
11.2.2.4 Defining the Background Color of the Color Display

Subwidget • 11-13
11.2.2.5 Adding a Work Area to the Color Mixing Widget• 11-13

11.3 SUPPORTING OTHER COLOR MODELS
11.3.1 Replacing the Color Display Subwidget
11.3.2 Replacing the Color Mixer Subwidget

11.4 ASSOCIATING CALLBACKS WITH A COLOR MIXING WIDGET

CHAPTER 12 USING HELP

12.1
12.1.1

12.2
12.2.1

OVERVIEW OF THE HELP WIDGET
Help Widget Terminology

HELP LIBRARY INFORMATION
VMS Help Library Enhancements

Contents

11-1

11-1
11-1
11-2

11-7
11-8
11-9

11-14
11-14
11-14

11-14

12-1

12-1
12-3

12-3
12-4

xv

Contents

12.3
12.3.1

12.4

12.5

CHAPTER 13

13.1
13.1.1
13.1.2

13.2
13.2.1
13.2.2
13.2.3
13.2.4

13.3

13.4

13.5
13.5.1
13.5.2
13.5.3
13.5.3.1
13.5.3.2

MODIFYING HELP WIDGET APPEARANCE
Help Widget Topic Information

USING THE HELP WIDGET

CONTEXT-SENSITIVE HELP

USING THE CUT AND PASTE ROUTINES

OVERVIEW OF THE CUT AND PASTE ROUTINES
Communicating with Other Applications
Implementing the Copy, Cut, and Paste Functions

COPYING DATA TO THE CLIPBOARD
Copying Data to the Clipboard by Name
Creating a Clipboard Callback Routine
Deleting Data from the Clipboard
Specifying Clipboard Data Formats

COPYING DATA FROM THE CLIPBOARD

INQUIRING ABOUT CLIPBOARD CONTENTS

QUICKCOPY IMPLEMENTATION
QuickCopy Message Types
Selection Threshold Resource
Implementing the QuickCopy Function

CopyFrom and MoveFrom Operations• 13-17
CopyTo and MoveTo Operations• 13-22

CHAPTER 14 COMMUNICATING WITH THE WINDOW MANAGER

14.1 OVERVIEW

xvi

12-7
12-7

12-8

12-13

13-1

13-1
13-3
13-3

13-5
13-9

13-10
13-11
13-11

13-11

13-15

13-16
13-16
13-17
13-17

14-1

14-1

Contents

14.2
14.2.1
14.2.1.1
14.2.1.2
14.2.2

14.3

MAKING REQUESTS OF THE WINDOW MANAGER
Using Window Properties

Predefined Window Properties • 14-2
Vendor-Specific Window Properties • 14-4

Using Shell Widget Attributes

SETTING AND RETRIEVING PREDEFINED WINDOW MANAGER
PROPERTIES

14.4 SETTING AND RETRIEVING VENDOR-SPECIFIC WINDOW MANAGER

14-1
14-2

14-8

14-8

PROPERTIES 14-10

14.5 SETTING AND RETRIEVING SHELL WIDGET ATTRIBUTES
14.5.1 Setting Shell Widget Attributes at Widget Creation Time
14.5.2 Setting Shell Widget Attributes After Creation Time

14.6 RECEIVING MESSAGES FROM THE WINDOW MANAGER

14.7 CUSTOMIZING YOUR APPLICATION USING WINDOW MANAGER
HINTS

14.7.1 Customizing Your Main Application Window
14.7.1.1 Associating a Name with Your Main Application Window • 14-18
14.7.1.2 Specifying the Initial Size and Position of Your Application • 14-19
14.7.1.3 Customizing the Title Bar • 14-19
14.7.1.4 Including Shrink-to-Icon, Push-to-Back, and Resize Buttons in the

Title Bar • 14-22
14.7.2 Getting Information About Your Main Application Window
14.7.3 Customizing Your Application Icon
14.7.3.1 Specifying the Text in the Icon • 14-24
14.7.3.2 Specifying the Pixmap Used in Your Application Icon • 14-24
14.7.3.3 Using a Window in Your Icon • 14-26
14.7.3.4 Positioning Your Icon on the Display • 14-27
14.7.4 Specifying the Initial State of Your Application
14.7.5 Creating Transient and Sticky Windows
14.7.6 Bypassing the Window Manager

APPENDIX A USING THE DECTERM PORT ROUTINE
DECTERM PORT A-3

14-11
14-11
14-13

14-14

14-14
14-17

14-22
14-23

14-27
14-27
14-27

A-1

xvii

Contents

APPENDIX B USING THE VAX BINDINGS

B.1 USING THE DECWINDOWS ADA PROGRAMMING INTERFACES
B.1.1 Using the Ada Packages
B.1.1.1 Package CDA • B-3
B.1.1.2 Package DDIF • B-3
B.1.1.3 Package DTIF • B-3
B.1.1.4 Package DWT • B-4
B.1.1.5 Package X • B-4
B.1.2 Callbacks
B.1.3 Tasking Considerations
B.1.4 Ada Examples

B.2 USING THE FORTRAN BINDINGS

B.3 USING THE VAX PASCAL BINDINGS

APPENDIX C INTERNATIONAL VERSION OF THE DECBURGER
APPLICATION

APPENDIX D BUILDING YOUR OWN WIDGETS

D.1 OVERVIEW OF WIDGETS
D.1.1 Building a Widget
D.1.2 Building a Sample Widget

D.2 WIDGET CLASS DEFINITIONS
D.2.1 Core Widgets
D.2.1.1 CoreClassPart Structure • D-11
D.2.1.2 CorePart Structure • D-12
D.2.1.3 CorePart Default Values • D-12
D.2.2 Composite Widgets
D.2.2.1 CompositeClassPart Structure • D-14
D.2.2.2 CompositePart Structure • D-14
D.2.2.3 CompositePart Default Values • D-15
D.2.3 Constraint Widgets
D.2.3.1 ConstraintClassPart Structure • D-15
D.2.3.2 ConstraintPart Structure • D-16

xviii

B-1

B-1
B-2

8-6
8-6
B-7

B-11

B-14

C-1

D-1

D-1
D-1
D-2

D-10
D-10

D-14

D-15

Contents

D.3 WIDGET CLASSING D-16
D.3.1 Widget Naming Conventions D-17
D.3.2 Widget Subclassing in Public .h Files D-18
D.3.3 Widget Subclassing in Private .h Files D-19
D.3.4 Widget Subclassing in .c Files D-20
D.3.5 Superclass Chaining D-23
D.3.6 Class Initialization D-24
D.3.7 Inheritance of Superclass Operations D-25
D.3.8 Invocation of Superclass Operations D-27

D.4 CREATING INSTANCES OF WIDGETS TO BUILD A USER
INTERFACE D-27

D.4.1 Widget Instance Initialization D-28
D.4.2 Constraint Widget Instance Initialization D-29
D.4.3 Nonwidget Data Initialization D-30
D.4.4 Widget Instance Window Creation D-30
D.4.5 Dynamic Data Deallocation D-31
D.4.6 Dynamic Constraint Data Deallocation D-32

D.5 COMPOSITE WIDGETS AND THEIR CHILDREN D-32
D.5.1 Addition of Children to a Composite Widget D-34
D.5.2 Insertion Order of Children D-34
D.5.3 Deleting Children D-35
D.5.4 Constrained Composite Widgets D-35

D.6 GEOMETRY MANAGEMENT D-37
D.6.1 Initiating Geometry Changes D-37
D.6.2 General Geometry Manager Requests D-38
D.6.3 Resize Requests D-39
D.6.4 Potential Geometry Changes D-39
D.6.5 Child Geometry Management D-40
D.6.6 Widget Placement and Sizing D-41
D.6.7 Obtaining the Preferred Geometry D-42
D.6.8 Managing Size Changes D-43

D.7 EVENT MANAGEMENT D-44
D-.7.1 X Event Filters D-44
D.7.1.1 Pointer Motion Compression • D-45
D.7.1.2 Enter/Leave Compression • D-45
D.7.1.3 Exposure. Compression • D-45
D.7.2 Widget Exposure and Visibility D-45
D.7.2.1 Redisplay of a Widget • D-45
D.7.2.2 Widget Visibility • D-47

xix

Contents

D.7.3 X Event Handlers D-47

D.8 RESOURCE MANAGEMENT D-48
D.8.1 Resource Lists D-48
D.8.2 Superclass to Subclass Chaining of Resource Lists D-52
D.8.3 Retrieving Subresources D-52
D.8.4 Obtaining Application Resources D-52
D.8.5 Resource Conversions D-52
D.8.5.1 Predefined Resource Converters • D-53
D.8.5.2 New Resource Converters • D-54
D.8.6 Reading and Writing Widget Resource Fields D-56
D.8.6.1 Widget Subpart Resource Data • D-57
D.8.7 Setting Widget Resource Fields D-57
D.8.7.1 Specifying Widget State • D-57
D.8.7.2 Specifying Widget Geometry Values • D-58
D.8.7.3 Specifying Widget Constraint Information • D-59
D.8.7.4 Specifying the Widget Subpart Resources• D-59

D.9 TRANSLATION MANAGEMENT D-60
D.9.1 Action Tables D-60
D.9.2 Translating Action Names to Procedures D-61
D.9.3 Translation Tables D-62
D.9.3.1 Event Sequences • D-62
D.9.3.2 Action Sequences • D-63
D.9.4 Translation Table Syntax D-63
D.9.4.1 Modifier Names in a Translation Table • D-63
D.9.4.2 Event Types • D-66
D.9.4.3 Canonical Representation • D-68
D.9.5 Translation Table Management D-71
D.9.6 Using Accelerators D-71
D.9.7 Key Code to Key Symbol Conversions D-72

GLOSSARY Glossary-1

INDEX

xx

Contents

EXAMPLES
2-1 Including the XUI Toolkit Symbol Definition File in an

Application 2-3
2-2 Initializing the XUI Toolkit 2-4

2-3 Creating Your Own Application Context 2-5
2-4 Creating a User Interface Using Low-Level Routines 2-13

2-5 Creating a User Interface Using High-Level Routines 2-16
2-6 Using UIL to Define a Widget 2-19

2-7 Creating the Interface at Run Time Using DRM 2-21
2-8 Managing a Single Widget 2-22
2-9 Managing a Group of Child Widgets 2-23
2-10 Realizing a Widget Hierarchy 2-25
2-11 Entering the Main Input Loop 2-26

2-12 Hello World! Application Callback Routine 2-29
2-13 Adding a Work Procedure 2-30
2-14 Setup Section of the Hello World! Application Using

Low-Level Routines 2-32
2-15 Setup Section of the Hello World! Application Using

High-Level Routines 2-34
2-16 Hello World! Application UIL Specification File 2-35

2-17 Hello World! Application Using UIL 2-36
2-18 Main Input Loop and Callback Routine of the Hello World!

Application 2-38
3-1 Widget Hierarchy in the DECburger UIL Module 3-10

3-2 UIL Module Structure 3-12
3-3 Module Declaration in the DECburger UIL Module 3-13

3-4 Constants from Include File in the DECburger UIL Module 3-14
3-5 Procedure Declaration in the DECburger UIL Module 3-16
3-6 Defining Integer Values in the DECburger UIL Module 3-18
3-7 Defining String Values in the DECburger UIL Module 3-19

3-8 Defining a String Table Value in the DECburger UIL Module - 3-21
3-9 Declaring a Font Value in the DECburger UIL Module 3-21
3-10 Defining Colors in the DECburger UIL Module 3-22
3-11 Defining a Color Table in the DECburger UIL Module 3-23
3-12 Defining an Icon in the DECburger UIL Module 3-24
3-13 Declaring an Object in the DECburger UIL Module 3-25
3-14 Specifying Children in the DECburger UIL Module 3-27
3-15 Specifying Multiple Procedures per Callback Reason 3-29
3-16 Using an Icon as a Label in the DECburger UIL Module 3-31

xxi

Contents

3-17 Initializing ORM and the. XUI Toolkit in the DECburger
Application 3-35

3-18 Declaring the UID Hierarchy for the DECburger Application - 3-36
3-19 Opening the UID Hierarchy for the DECburger Application 3-36
3-20 Declaring a Vector of Names to Register for ORM in the

DECburger Application 3-37
3-21 Registering Names for ORM in the DECburger Application 3-37
3-22 DECburger UIL Module Setup for Deferred Fetching 3-38
3-23 Title Bar String for DECburger Application 3-39
3-24 Getting a Value from the UID File for the DECbu~ger

Application 3-39
3-25 UIL Module for the FETCH SET VALUES Application 3-42
3-26 C Program for the FETCH SET VALUES Application 3-44

3-27 UIL Module Setup for the FETCH WIDGET OVERRIDE
Routine 3-47

3-28 Using the FETCH WIDGET OVERRIDE Routine in a C
Program 3-48

3-29 French UIL Module for the International DECburger
Application 3-52

3-30 C Program for the International DECburger Application 3-54
3-31 Using Identifiers in a UIL Module 3-57
3-32 Using Symbolic References in a UIL Module 3-59
3-33 Declarations in the DECburger UIL Module for Prototype

Testing 3-61
3-34 Declaring an Unimplemented Object in the DECburger UIL

Module 3-62
3-35 Definition of the Activate Routine in the DECburger

Application 3-62
3-36 Sample Main UIL File 3-64
3-37 User-Defined XYZ Widget 3-61
3-38 Declaring the User-Defined XYZ Widget in a UIL Module 3-68
3-39 C Program for Displaying the XYZ User-Defined Widget 3-71
4-1 Main Window Created in the DECburger UIL Module 4-8

4-2 Performing Graphics Operations in a Window Widget 4-12
5-1 Push Button Gadgets in the DECburger Option Menu 5-9
5-2 Push Button Callback Procedure in the DECburger

Application 5-12
5-3 Creating the Radio Box Widget in the DECburger

Application 5-15
5-4 Setting the Initial State of a Toggle Button 5-16
5-5 Toggle Button Callback Procedure in the DECburger

Application 5-19
5-6 Creating a Compound String 5-22

xx ii

Contents

4-8 Widget Attributes Accessible Using the High-Level Routine
WINDOW 4-12

4-9 Command Window Widget Creation Mechanisms 4-15
4-10 Widget Attributes Accessible Using the High-Level Routine

COMMAND WINDOW 4-15
4-11 Command Window Widget Support Routines 4-16
4-12 Command Window Widget Callbacks 4-18
5-1 Label Widget and Gadget Creation. Mechanisms 5-2
5-2 Attributes Accessible Using the High-Level Routine LABEL - 5-3
5-3 Separator Widget and Gadget Creation Mechanisms 5-6
5-4 A•tributes Accessible Using the High-Level Routine

SEPARATOR 5-7
5-5 Push Button Widget and Gadget Creation Mechanisms 5-8

5-6 Attributes Accessible Using the High-Level Routine PUSH
BUTTON 5-8

5-7 Push Button Widget and Gadget Callbacks 5-11
5-8 Toggle Button Widget and Gadget Creation Mechanisms 5-12
5-9 Attributes Accessible Using the High-Level Routine TOGGLE

BUTTON 5-13
5-10 Toggle Button Widget and Gadget Callbacks 5-19
5-11 Compound String Routines 5-20
6-1 Work Area Menu Widget Creation Mechanisms 6-6

6-2 Attributes Accessible Using the High-Level Routine MENU 6-6

6-3 XUI Toolkit Widget and Gadget Class Names 6-12
6-4 Pull-Down Menu Widget Creation Mechanisms 6-13
6-5 Pull-Down Menu Entry Widget and Gadget Creation

Mechanisms 6-13
6-6 Attributes Accessible Using the High-Level Routine MENU 6-14
6-7 Menu Bar Widget Creation Mechanisms 6-16
6-8 Attributes Accessible Using the High-Level Routine MENU

BAR 6-17
6-9 Option Menu Widget Creation Mechanisms 6-20
6-10 Attributes Accessible Using the High-Level Routine OPTION

MENU 6-21
6-11 Pop-Up Menu Widget Creation Mechanisms 6-25
6-12 Attributes Accessible Using the High-Level Routine MENU 6-25
7-1 Dialog Box Widget Creation Mechanisms 7-5
7-2 Attributes Accessible Using the High-Level Routine DIALOG

BOX 7-6
7-3 Attached Dialog Box Widget Creation Mechanisms 7-13
7-4 Attributes Accessible Using the High-Level Routine

ATTACHED DIALOG BOX 7-14

xx vii

Contents

7-5 Attachment Attributes 7-15

7-6 Attachment Constants for the Attached Dialog Box Widget - 7-15

8-1 List Box Widget Creation Mechanisms 8-2

8-2 Attributes Accessible Using the High-Level Routine
LIST BOX 8-3

8-3 List Box Widget Support Routines 8-8

8-4 List Box Widget Callbacks 8-15

9-1 Text Widget Support Routines 9-3

9-2 Mechanisms for Creating Text Widgets 9-4

9-3 Attributes Accessible Using the High-Level Routines S TEXT
and CS TEXT 9-5

9-4 Text Widget Callbacks 9-14

10-1 Scale Widget Creation Mechanisms 10-2

10-2 Attributes Accessible Using the High-Level Routine SCALE - 10-3

10-3 Horizontal and Vertical Orientation Constants 10-5

10-4 Scale Widget Callbacks 10-9

10-5 Scroll Bar Widget Creation Mechanisms 10-11

10-6 Attributes Accessible Using the High-Level RouUne SCROLL
BAR 10-12

10-7 Scroll Widget Callbacks 10-15

11-1 Color Model Constants 11-5

11-2 Mechanisms for Creating the Color Mixing Widget 11-7

11-3 Support Routines for the Color Mixing Widget 11-9

11-4 Color Mixing Widget Label Attributes 11-10

11-5 Color Mixing Widget Callbacks 11-15

12-1 Help Widget Terminology 12-3

12-2 VMS Librarian Utility Extensions 12-5

12-3 Help Widget Appearance Attributes 12-7

12-4 Help Widget Topic Attributes 12-7

12-5 Help Widget Creation Routines 12-9

13-1 Cut and Paste Routines 13-1

13-2 Edit Menu Functions 13-5

13-3 QuickCopy Operations 13-16

14-1 Predefined Window Manager Properties 14-3

14-2 Members of the WM Hints Data Structure 14-4

14-3 Properties Defined by the DECwindows Window Manager 14-5

14-4 Members of the DEC WM Hints Data Structure 14-6

14-5 Members of the WM Decoration Geometry Data Structure 14-8

14-6 Xlib Routines for Setting and Retrieving Predefined Window
Manager Properties 14-9

14-7 Common Tasks Performed with the Window Manager 14-16

xxviii

Contents

14-8 Information Provided by the Window Manager 14-17

B-1 Subtype Definitions-Package DWT B-4

B-2 Subtype Definitions-Package X B-4

D-1 Default Values for the CorePart Structure D-13

D-2 Default Values for the CompositePart Structure D-15

D-3 Resource Types D-49

D-4 Translation Table Modifiers D-64

D-5 Event Types D-66

D-6 Event Type Abbreviations for Translation Tables D-67

xxix

Preface

This manual describes how to create an application using the XUI Toolkit,
including the User Interface Language (UIL) and the XUI Resource
Manager (DRM).

Intended Audience
This manual is intended for experienced programmers who want to learn
how to use the components of the VMS DECwindows programming
environment to create applications. Readers should be familiar with a
high-level programming language.

Document Structure
This manual is organized as follows:

• Chapter 1 provides an overview of the XUI Toolkit, introduces the
basic programming concepts of using the XUI Toolkit, and introduces
the widgets in the XUI Toolkit.

• Chapter 2 describes the basic structure of a typical application
program by examining a sample program, the Hello Worldt
application.

• Chapter 3 describes how to create a user interface using the User
Interface Language (UIL) and the XUI Resource Manager (DRM).

• Chapters 4 through 12 provide tutorials that show how to use the
widgets in the XUI Toolkit and include code examples to illustrate the
concepts described.

• Chapter 13 describes how to use the cut and paste routines.

• Chapter 14 describes how your application can communicate with the
window manager.

The manual includes the following appendixes:

• Appendix A, Using the DECTERM PORT Routine, describes how to
create a terminal window on a local or remote node.

• Appendix B, Using the VAX Bindings, presents three versions of the
Hello World! sample application created in Chapter 2. The appendix
includes versions of the program written in VAX Ada, VAX FORTRAN,
and VAX Pascal. The appendix also includes specific information about
using the Ada bindings.

• Appendix C, International Version of the DECburger Application, is
the complete source listing for a version of DECburger that illustrates
how to internationalize an application using UIL and DRM. Chapter 3
describes this example.

xxxi

Preface

• Appendix D, Building Your Own Widgets, describes how to build your
own widgets.

• The Glossary defines key terms used in this manual.

Associated Documents

Conventions

xxxii

For more information about topics covered in this manual, see the
following manuals in the VMS DECwindows document set.

• XUI Style Guide

• VMS DECwindows Toolkit Routines Reference Manual

• VMS DECwindows Xlib Routines Reference Manual

• VMS DECwindows Xlib Programming Volume

• VMS DECwindows User Interface Language Reference Manual

The following conventions are used in this manual:

mouse

MB1, MB2, MB3

Ctrl/x

()

[]

{}

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

A sequence such as Ctrl/x indicates that you must
hold down the key labeled Ctrl while you press
another key or a pointing device button.

In examples, a key name is shown enclosed in a box
to indicate that you press a key on the keyboard. (In
text, a key name is not enclosed in a box.)

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed within the brackets is optional; you can
select none, one, or all of the choices. (Brackets are
not, however, optional in the syntax of a directory
name in a file specification or in the syntax of a
substring specification in an assignment statement.)

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Contents

5-7 Creating a Compound String with Multiple Segments 5-22

5-8 Extracting the Text Content from a Compound String 5-25
5-9 Specifying a Font 5-26
5-10 Adding an Accelerator to a Push Button Widget or Gadget 5-28
5-11 Adding an Accelerator to the Hello World! Application 5-30
6-1 Building a Work Area Menu 6-7
6-2 Creating the Menu Bar Widget in the DECburger

Application 6-17
6-3 Creating the Option Menu Widget in the DECburger

Application 6-22
6-4 Creating an Option Menu Widget with an Item Selected 6-23
6-5 Action Procedure to Pop Up a Pop-Up Menu Widget 6-27
6-6 Creating a Pop-Up Menu Widget 6-28
7-1 Creating the Dialog Box Widget in the DECburger

Application 7-7
7-2 Creating the Children of the Dialog Box Widget in the

DECburger Application 7-8
7-3 Positioning Children in an Attached Dialog Box Widget 7-19
8-1 Creating an Item List as an Array of Compound Strings 8-4

8-2 Creating an Item List Using the UIL STRING TABLE
Function 8-5

8-3 Selecting an Item in an Item List 8-7
8-4 Adding an Item to a List Box Widget 8-10
8-5 Specifying the Size of the DECburger List Box Widget 8-13
8-6 Associating a Callback Routine with a List Box Widget -- 8-16
8-7 Callback Routine DECburger Associates with the List Box

Widget 8-17
9-1 · Defining the Simple Text Widget in the DECburger Sample

Application 9-5

9-2 Using the S TEXT GET STRING Support Routine in the
DECburger Sample Application 9-7

10-1 Determining the Range of Values 10-4
10-2 Setting Appearance. Attributes of the Scale Widget in the

DECburger Sample Application 10-6
10-3 Labeling Points Along a Scale in a Scale Widget 10-7
10-4 Associating a Callback Routine with a Scale Widget 10-9
10-5 Scale Widget Callback Routine in the DECburger

Application 10-10
10-6 Specifying the Range of Values in a Scroll Bar Widget 10-13
11-1 Creating a Color Mixing Widget 11-8
12-1 Sample Help File 12-6
12-2 Creating a Help Widget 12-9

xx iii

Contents

12-3

13-1

13-2

13-3

13-4

13-5

13-6

13-7

13-8

14-1

14-2

14-3

14-4

14-5

14-6

A-1

A-2

B-1

B-2

B-3

C-1

D-1

D-2

D-3

D-4

FIGURES
1-1

1-2

1-3

xx iv

1-4

2-1

2-2

UIL Help Widget Implementation

Copying Data to the Clipboard

Copying Data from the Clipboard

Calling the OWN SELECTION Routine

Notifying the Receiving Application that Data Is Available

Getting the Selection Value

Getting the Secondary Selection Data

QuickCopy Callback Routine

Sending a KILL_SELECTION Message

Assigning Values to Predefined Window Manager
Properties

Setting Vendor-Specific Window Manager Properties

Setting Shell Widget Attributes at Widget Creation Time

Using the SET VALUES Intrinsic Routine to Set Shell Widget
Attributes

Specifying the Shrink-to-Icon Pixmap Using the CHANGE
PROPERTY Xlib Routine

Using Shell Widget Attributes to Specify Your Application
Icon

Creating a DECterm on a Remote Node

Command Procedure to Compile, Link, and Run a DECterm
on a Remote Node

Hello World! Application in VAX Ada

Hello World! Application in VAX FORTRAN

Hello World! Application in VAX Pascal

C Program tor the International Version of DECburger

Sample Widget

Modifying the Hello World! Application to Use the Sample
Widget

Compiling and Linking the Sample Widget

The .c File tor a Label Widget

XUI Layered Architecture

Hello World! Application User Interface

Application Widget Hierarchy of the Hello World!
Application

DECburger User Interface

Structure of an XUI Application

Relationship of Shell Widget to Application

12-11

13-6

13-12

13-18

13-18

13-20

13-21

13-22

13-23

14-9

14-10

14-12

14-13

14-20

14-25

A-1

A-2

B-7

B-11

B-15

C-2

D-3

D-9

D-10

D-21

1-2

1-5

1-7

1-12

2-2

2-7

Contents

2-3 Argument Data Structure (VAX Binding) 2-11
2-4 Callback Routine Data Structure (VAX Binding) 2-12
2-5 Widget Callback Data Structure (VAX Binding) 2-28
3-1 Setting Up a User Interface Specified with UIL 3-2
3-2 Radio Box with Toggle Buttons in the DECburger

Application 3-8

3-3 Widget Hierarchy for the DECburger Radio Box Widget 3-9
3-4 Using an Icon in the DECburger Application Interface 3-30

3-5 Widget Creation in a DRM Fetch Operation 3-33
3-6 Sample Application Using the FETCH SET VALUES Routine 3-41
3-7 Using UID Hierarchies to Provide Alternatives or Refinements

to an Interface 3-50
4-1 Main Window Widget 4-4

5-1 Attributes for Setting Margins 5-5
5-2 Radio Box with Toggle Button Gadgets in the DECburger

Application 5-14
5-3 Hello World! Application with an Accelerator 5-29
6-1 Menu Widget 6-2
6-2 Relationship of Pull-Down Menu Widget and Pull-Down Menu

Entry Widget or Gadget 6-4

6-3 Widget Hierarchy of Nested Pull-Down Menu Widgets 6-5

6-4 Widget Hierarchy of a Work Area Menu 6-9
6-5 Laying Out Menu Items 6-10
6-6 DECburger Menu Bar with a Pull-Down Menu Selected 6-15
6-7 Widget Hierarchy of the DECburger Menu Bar Widget 6-19
6-8 Option Menu Widget 6-20
6-9 Pop-Up Menu Widget 6-31
7-1 Resizing a Dialog Box Widget 7-3
7-2 Layout of the DECburger Dialog Box Widget 7-10
7-3 Attaching an Edge of a Child Widget to the Attached Dialog

Box Widget 7-16
7-4 Attaching an Edge of a Child Widget to Another Child Widget

in an Attached Dialog Box Widget 7-17
7-5 Attaching an Edge to a Position in an Attached Dialog Box - 7-18
8-1 List Box Widget 8-1
8-2 List Box Widget Used in the DECburger User Interface 8-6

8-3 Margins and Spacing in a List Box Widget 8-15
9-1 Text Widgets 9-2
9-2 Default Configuration of the Text Widgets 9-9
10-1 Scale Widget 10-2
10-2 Scale Widget Sizing Attributes 10-5

xxv

Contents

10-3 Scroll Bar Widget 10-10
11-1 Components of the Color Mixing Widget (HLS Color Model) - 11-3
11-2 Components of the Color Mixing Widget (RGB Color Model) 11-4
11-3 Labels in the Color Mixing Widget (HLS Color Model) 11-12
11-4 Labels in the Color Mixing Widget (RGB Color Model) 11-13
12-1 Sample XUI Toolkit Help Widget 12-2
13-1 Edit Menu 13-4
14-1 DEC WM Hints Data Structure (VAX Binding) 14-6
14-2 WM Decoration Geometry Data Structure (VAX Binding) 14-7
14-3 Appearance of an Application Running Under the

DECwindows Window Manager 14-15
14-4 Customizable Aspects of the Main Application Window 14-18
14-5 Informational Attributes Provided by the Window Manager 14-22
14-6 Customizable Aspects of Your Application Icon 14-24

TABLES
1-1 Summary of XUI Toolkit Widgets 1-9
1-2 Widget Size and Position Attributes 1-14
1-3 Callback Attributes Supported by the Push Button Widget 1-15
2-1 Symbol Definition Files 2-3
2-2 Widget Creation Mechanisms 2-8
2-3 Standard Arguments Used with Low-Level Routines 2-10
2-4 Arguments Used with the High-Level Routine PUSH

BUTTON 2-14
2-5 Standard Widget Manipulation Routines 2-31
3-1 Optional UIL Module Header Clauses 3-12
3-2 UIL Compiler Rules for Checking Argument Type and

Count 3-15
3-3 UIL Value Types 3-16
3-4 ORM Routines and Functions 3-34
4-1 Main Window Widget Creation Mechanisms 4-4

4-2 Widget Attributes Accessible Using the High-Level Routine
MAIN WINDOW 4-5

4-3 Child Widget Attributes of the Main Window Widget 4-6
4-4 Scroll Window Widget Creation Mechanisms 4-9
4-5 Widget Attributes Accessible Using the High-Level Routine

SCROLL WINDOW 4-9
4-6 Child Widget Attributes of the Scroll Window Widget 4-10
4-7 Window Widget Creation Mechanisms 4-11

xxvi

red ink

boldface text

UPPERCASE TEXT

numbers

Preface

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on.

For online versions of the book, user input is shown in
bold.

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

Boldface text is also used to show user input in online
versions of the book.

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ), or they
indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for
a system privilege.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes-binary,
octal, or hexadecimal-are explicitly indicated.

xxxiii

1 Overview of the XUI Toolkit

This chapter provides the following:

• An overview of the XUI Toolkit components

• An overview of basic XUI Toolkit programming concepts

• A list of the widgets in the XUI Toolkit

1.1 Overview of XUI Toolkit Components
The XUI Toolkit is a set of run-time routines and application development
tools you can use to create application programs that implement the user
interface techniques and appearance guidelines specified in the XUI Style
Guide.

Using the XUI Toolkit, you can:

• Open a connection to a display device (workstation)

• Create windows on the display

• Perform output operations to windows

• Receive notification of pointer or keyboard input through windows

The XUI Toolkit consists of the following components:

• A set of user interface objects, called widgets, with run-time routines
to create them

• A set of run-time routines to manipulate the widgets, called X Toolkit
intrinsics

• A set of cut and paste routines to copy data between applications

• A pair of application development tools, called the User Interface
Language (UIL) and the XUI Resource Manager (DRM)

Figure 1-1 illustrates the components of the XUI Toolkit and its
relationship to other layers of the XUI architecture. The following sections
describe each component of the XUI Toolkit.

1-1

1.1.1

Overview of the XUI Toolkit
1.1 Overview of XUI Toolkit Components

Figure 1-1 XUI Layered Architecture

T
User Interface I
Language (UIL) I

1-------------;
XUI I
Resource I
Manager I

I

Application

l
!

High-Level Low-Level
Routines Creation

Routines

~------------1----------------------x Toolkit (Intrinsics)

1
Xlib

! Cut
and
Paste
Routines

XUI Toolkit

ZK-0084A-GE

User Interface Objects

1-2

The XUI Toolkit provides a set of user interface objects including menus,
push buttons, and scroll bars. These objects, called widgets, are the
building blocks of the user interface of an XUI application.

An XUI Toolkit widget is made up of a window packaged with input and
output capabilities. Some widgets display information, such as text or
graphics. Others are merely containers for other widgets. Some widgets
are output-only and do not react to pointer or keyboard input. Others
change their display in response to input and can invoke functions that an
application has attached to them. Table 1-1, in Section 1.3, lists all the
widgets provided by the XUI Toolkit.

Each widget supports a set of attributes, such as width, height, font, color,
and border width, that you can use to customize widget appearance and
function. The XUI Toolkit assigns default values to widget attributes to
create widgets that conform to the recommendations of the XU! Style
Guide. Section 1.4 describes these attributes.

The XUI Toolkit provides two versions of some widgets. These widgets
have variants, called gadgets, that have the same general appearance as
their widget counterparts but have restricted capabilities. Gadgets use
fewer system resources and can offer improved application performance.
For example, gadgets do not have an associated window, thus eliminating
the processing involved with creating a window. However, gadgets do not

Overview of the XUI Toolkit
1.2 Programming Concepts

Figure 1-2 Hello World! Application User Interface

HI

Press button once
to change label;
twice to exit.

~
L...::!!!!...J

I Hi

Press button once
to change label;
twice to exit.

Good-bye
WOl1d!

Hi
Press button once

to change label;
twice to exit.

IU] Hi

Hello ~
World!

Press button once
to change label;
twice to exit.

Good-bye
World! ~

ZK-0201A-GE

The source files for the Hello World! sample application are included in
the examples directory (DECW$EXAMPLES:). To become familiar with a
basic VMS DECwindows application, run the sample application on your
workstation. To do this, copy the source files into your own directory, as
follows:

$ COPY DECW$EXAMPLES: HELLOWORLD. * *
Use the UIL compiler to compile the UIL module that defines the user
interface of the Hello World! application. (You must define the UIL
include file logical before invoking the compiler.) Then compile the Hello
Worldl C language program and link it with the XUI Toolkit shareable
image. The following summarizes this procedure:

$ DEFINE UIL$INCLUDE DECW$INCLUDE

$ OIL HELLOWORLD. UIL

$ CC HELLOWORLD. C

$ LINK/NODEB HELLOWORLD,SYS$INPUT/OPT
SYS$LIBRARY:DECW$DWTLIBSHR/SHARE

!Ctrl/z!

$ RUN HELLOWORLD

1-5

1.2.1

Overview of the XUI Toolkit
1.2 Programming Concepts

The XUI Toolkit includes a second example program called DECburger.
The DECburger sample application implements an order-entry system
for a fictitious fast food restaurant. In DECburger, the user interface is
made up of dozens of widgets (and gadgets). (Figure 1-4, in Section 1.3,
illustrates the user interface of the DECburger sample application.)

DECburger is designed only to illustrate examples of using the widgets
and gadgets in the XUI Toolkit. It is not meant as an example of interface
design.

The source files for the DECburger sample application are included in the
examples directory (DECW$EXAMPLES:). To run the sample program,
copy all the component source files and execute the command procedure
using the following commands:

$ COPY DECW$EXAMPLES:DECBURGER.* *

$ @DECBURGER. COM

Creating the Form of Your Application

1-6

You create a user interface for your application by arranging widgets
in parent/child relationships. Parent widgets control the behavior and
appearance of their children. In turn, their children can have children.
This layering of parent/child relationships creates the application
widget hierarchy. The application widget hierarchy mirrors the window
hierarchy maintained by the X Window System. Child widgets are clipped
by their parents just as subwindows are clipped by their superiors; that
is, the edge of a child widget cannot extend outside the boundaries of its
parent.

The XUI Toolkit includes one type of widget, called a pop-up widget,
that breaks the window hierarchy. Pop-up widgets can extend beyond the
boundaries of their parents. The XUI Toolkit includes several menu and
dialog box widgets that are pop-up widgets. For more information, see
Section 6.1 and Section 7.3.

Not every XUI Toolkit widget can be a parent. Widgets are either
composite widgets or primitive widgets. Composite widgets can be
parents or children of other composite widgets; primitive widgets can only
be children.

The user interface of the Hello World! application is an example of
a simple application widget hierarchy made up of four widgets: an
application shell widget, a dialog box widget, a label widget, and a push
button widget. (Note that a real application could contain hundreds of
widgets.)

At the top of the application widget hierarchy of the Hello World! program
is the application shell widget. The application shell widget acts as
the mediator between the application program and the workstation
environment in which the application runs. Every XUI application
must have a shell widget at the top of its application widget hierarchy.
Section 2.3.1 provides more information about the application shell widget.

1.1.2

Overview of the XUI Toolkit
1.1 Overview of XUI Toolkit Components

provide access to all the attributes supported by their widget counterparts.
For more information about gadgets, see Section 5.1.

To build a user interface using widgets (or gadgets), you must create
instances of the widgets in your application program. When you create
a widget, you specify its parent/child relationship, its initial appearance,
and other characteristics of the widget by assigning values to widget
attributes. To create widgets and determine widget attributes, the XUI
Toolkit provides two sets of run-time routines, called low-level and
high-level routines.

Low-level widget creation routines provide access to the complete set of
attributes supported by a widget. Using these routines, you assign values
to widget attributes in a data structure called an argument list. You then
pass this argument list to the low-level routine. Section 2.4.1 describes
how to build a user interface using low-level routines.

High-level widget creation routines provide a more convenient way to
create widgets. Instead of assigning values to widget attributes in an
argument list, you pass the values of widget attributes as arguments
to the high-level routines. However, high-level routines provide access
to only a subset of a widget's attributes at widget creation time. High
level routines specify only the most commonly used widget attributes as
arguments. Section 2.4.2 describes how to build a user interface using
high-level routines.

Note that you always can use the widget manipulation routines (described
in Section 2.9) to access the complete set of widget attributes after a
widget has been created. However, it is more efficient to assign values
to widget attributes when you create the widget. For this reason, choose
the creation routine that provides access to the widget attributes you
need to set. The VMS DECwindows Toolkit Routines Reference Manual
provides complete information about XUI Toolkit high- and low-level
widget creation routines.

The application development tools UIL and DRM provide another way
to create the widgets in a user interface. For more information, see
Section 1.1.4.

X Toolkit Routines
X Toolkit routines, called intrinsics, let you manipulate widgets at run
time. The X Toolkit is a standard public domain routine library layered on
the X Window System, Version 11.

Intrinsics are the basis of every XUI application. You use intrinsics to do
the following:

• Initialize the XUI Toolkit

• Map and unmap widgets to the screen

• Process input from an application end user

Section 2.9.1 provides more information about intrinsics.

1-3

1.1.3

1.1.4

Overview of the XUI Toolkit
1.1 Overview of XUI Toolkit Components

You can also use intrinsics to build your own widgets. Appendix D provides
more information about this topic.

Cut and Paste Routines
The cut and paste routines provided by the XUI Toolkit are a set of run
time routines you can use to copy data to or from applications. Chapter 13
describes the cut and paste routines.

Application Development Tools
The XUI Toolkit includes two closely related application development tools:
the User Interface Language (UIL) and the XUI Resource Manager (DRM).

UIL is a user interface definition language. Using UIL, you can specify
a user interface in a text file called a UIL specification file. You then
compile this file using the UIL compiler. At run time, your application
retrieves the compiled interface specification, called a UID file, using
DRM routines. DRM routines enable you to open the UID specification
file, retrieve the widget definitions from the file, create the widgets, and
build the user interface at run time. Use of DRM run-time routines
optimizes initialization and startup (that is, widget creation) for an XUI
application. Chapter 3 describes how to define a user interface in a UIL
file and how to use the DRM routines to create the user interface at run
time.

Using UIL and DRM, you can change the user interface specification
without having to recompile or relink your main application program.
This feature of UIL and DRM is particularly important for applications
developed for international markets. For example, you can create user
interfaces in several languages for a single application.

When you define widgets in a UIL specification file, you can access the
complete set of widget attributes. The UIL compiler checks that the values
you assign to attributes are of the data type expected by the widget.
High-level and low-level widget creation routines do not perform any
type-checking on attribute values.

1.2 Programming Concepts

1-4

The fundamental concept of programming with the XUI Toolkit is the
separation of form and function. Using the XUI Toolkit, you can consider
th'.e form your application takes, its user interface, separately from the
routines that implement the functions of your application.

For example, the form of the sample Hello World! application is a push
button widget containing the text string 11 Hello World!". The function of
the Hello World! application is to change the wording of the text string in
the push button widget to 11 Goodbye World! 11

• Figure 1-2 shows the user
interface of the Hello World! application as it initially appears and as it
changes when a user interacts with the interface.

1.2.2

Overview of the XUI Toolkit
1.2 Programming Concepts

The main widget of the Hello World! application is a dialog box widget.
This widget is the child of the application shell widget (an application
shell widget can only have one child). The dialog box widget, a composite
widget, is the parent of a push button widget and a label widget. The label
and push button widgets are children of the dialog box widget. The label
and push button widgets are examples of primitive widgets; they do not
support children. Figure 1-3 illustrates the widget hierarchy formed by
the user interface of the Hello World! application.

Figure 1-3 Application Widget Hierarchy of the Hello World!
Application

Shell
Widget

l
Dialog Box Widget

I I
Push Button Label

Widget Widget

ZK-0204A-GE

Note that the application widget hierarchy should not be confused with
the widget class hierarchy. The application widget hierarchy defines the
parent/child relationship of widgets in a user interface. The widget class
hierarchy defines the subclass/superclass relationship of the widgets in
the XUI Toolkit. The widget class hierarchy determines which attributes
a widget inherits from its superclass and which attributes are unique to
a particular widget class. For more information about widget classes and
the widget class hierarchy, see Appendix D and the VMS DECwindows
Toolkit Routines Reference Manual.

Associating Function with Form
When a user invokes a VMS DECwindows application program, the initial
user interface of the application appears on the display. The application
then waits in an infinite loop for the user to interact with its interface.
Applications running in the VMS DECwindows environment perform their
functions only in response to user interaction with the interface.

When a user of your application interacts with a widget in its interface
using a pointing device, such as a mouse or the keyboard, the user action
causes a change in the state of the widget. Each widget supports a specific
set of such changes in its state that cause it to notify an application.
This fl.ow of data from the interface to the application at run time is
accomplished through the callback mechanism. The callback mechanism

1-7

Overview of the XUI Toolkit
1.2 Programming Concepts

provides a one-way path of communication from the interface to the
application. This is the primary means an application has of getting input
from its interface.

A widget can define one or more callbacks depending on how many
changes in its state it is willing to communicate. Each particular set
of user actions that triggers a callback is called a reason. When a change
in state in the widget triggers a callback, your application executes the
routine you have associated with the widget. This routine is called a
callback routine. In this way, you associate the routines that implement
the functions of your application with the widgets that make up the user
interface of your application. You can associate more than one callback
routine with a single callback reason. When there is more than one
callback routine, the routines are executed in the order in which you
specify them.

For example, one callback reason supported by the push button widget
is the activate reason. This callback occurs when a user clicks MBl
on the push button widget. The Hello World! application associates its
function with the activate callback reason. (The VMS DECwindows
Toolkit Routines Reference Manual lists the callback reasons supported by
each widget.)

Note that reasons are not actions such as MBl up; they are more abstract
concepts such as "activate." The X Window System, on which the XUI
Toolkit is based, defines an action such as MBl up that occurs in a window
as an event. The server is responsible for noting when an event occurs
in a window. An application that uses XUI Toolkit widgets need not
be concerned with events. XUI Toolkit widgets automatically notify
applications when the event or sequence of events the widget defines
as a reason occurs. For example, the push button widget defines the MBl
down/MBl up sequence of events as the activate callback reason.

1.3 Widgets in the XUI Toolkit

1-8

The XUI Toolkit contains three types of widgets:

• Input/output widgets

These widgets provide the basic input and output capabilities of a user
interface, such as displaying text or graphics, allowing text editing,
and enabling a user to input values to your application. The widgets
that provide these functions are the label, push button, toggle button,
scale, scroll bar, and simple text widgets.

• Container widgets

These widgets act as containers for other widgets. You use these
widgets to gather together the widgets that provide access to the
functions of your application. The widgets that provide these functions
include the dialog box, attached dialog box, and main window
widgets. The XUI Toolkit includes some container widgets that
are preconfigured to perform commonly needed functions such as
presenting caution messages.

• Choice widgets

Overview of the XUI Toolkit
1.3 Widgets in the XUI Toolkit

These widgets present choices to the user of your application. The
widgets that provide these functions include the menu and list box
widgets.

Table 1-1 lists all the widgets in the XUI Toolkit.

Table 1-1 Summary of XUI Toolkit Widgets

Widget

Input/Output Widgets

Compound string text

Label

Separator

Push button

Toggle button

Scale

Scroll bar

Simple text

Function

Allows text to be entered and edited in multiple
characters sets and writing directions.

A rectangle containing read-only text or graphics.

A dotted line used to graphically set off areas of a
user interface.

A label widget with input capabilities. Used to invoke
an immediate action when selected.

A label widget with input capabilities. Maintains state
information such as "on" or "off." Usually contains a
graphical indicator that indicqtes its current state.

An elongated rectangle that graphically represents a
range of values and is sensitive to user input. Users
can select a value within the range by moving a
slider or by clicking MB1 within the scale.

A widget designed to allow users to input information
relating to scrolling a work area. A scroll bar widget
contains an elongated rectangle that graphically
represents a range of values and is sensitive to user
input. Users can select a value within the range by
moving the slider that overlays the scroll region or by
clicking a mouse button within the scroll region. The
scroll bar widget also contains two arrow-shaped
buttons that implement the stepping functions.

Allows text to be entered and edited.

(continued on next page)

1-9

Overview of the XUI Toolkit
1.3 Widgets in the XUI Toolkit

Table 1-1 (Cont.) Summary of XUI Toolkit Widgets

Widget

Container Widgets

Dialog box

Attached dialog box

Pop-up dialog box

Pop-up attached dialog box

Message box

Caution box

Work-in-progress box

Selection box

File selection

Main window

Command window

Scroll window

Window

Help

1-10

Function

A box into which you can place other widgets. You
can use dialog boxes to solicit information from or
present information to a user.

A box into which you can place other widgets.
Note that, in an attached dialog box, you specify
the relative position of the child widgets instead of
specifying fixed positions. When a user resizes an
attached dialog box, the child widgets it contains
move and resize to maintain the original layout of
the box.

A variant of the dialog box that does not get clipped
by its parent.

A variant of the attached dialog box that does not
get clipped by its parent.

A type of dialog box that contains predefined child
widgets that allow you to display a message to the
user.

A version of the message box widget configured to
present a warning message to the user.

A version of the message box widget configured to
present a "Work in Progress" message.

A type of dialog box widget that contains predefined
child widgets that allow you to present a choice to
the user.

A special type of selection box widget that queries
the user for a file specification.

A tiling window that can contain a menu bar, scroll
bars, a command window, and a work area.

A window that contains a text entry field that allows
users to enter commands on a command line. This
widget includes a visible display of command history.

A convenience widget that automatically sizes the
slider on the scroll bars used with the window.

An empty rectangle in which you can perform
graphics operations. The window widget is the only
XUI Toolkit widget that supports graphics operations.

A widget that presents the user of an application
with information about a chosen topic.

(continued on next page}

Overview of the XUI Toolkit
1.3 Widgets in the XUI Toolkit

Table 1-1 (Cont.) Summary of XUI Toolkit Widgets

Widget

Choice Widgets

Color mixing

Work area menu

Menu bar

Option menu

Pop-up menu

Pull-down menu entry

Pull-down menu

Radio box

List box

Function

A pop-up dialog box widget that enables users
to define colors and provides users immediate
feedback by displaying the colors they define.

A rectangle containing menu items. This is the
generic menu widget.

A type of menu widget in which the menu items
cause a pull-down menu to appear on the display
when selected.

A type of menu widget that contains a descriptive
text label and a display of the current selection. The
actual menu containing the menu items, which is a
pull-down menu, appears on the display only when
the option menu is activated by the user.

A menu that appears on the display when the user
presses MB2; a pop-up menu can extend beyond
the borders of its parent.

A button-like widget that causes a pull-down menu
to appear.

A menu that appears on the display when a user
presses MB1 or MB2; a pull-down menu can extend
beyond the borders of its parent.

A type of work area menu in which a list of choices
is presented, only one of which can be selected at
any one time.

A rectangle containing a list of choices. List boxes
are typically used to present long lists of items. Only
a portion of the list is visible in the list box at any
time. The list box widget contains a scroll bar that
enables users to view the complete item list.

To illustrate these widgets, Figure 1-4 shows the DECburger user
interface.

1-11

Overview of the XUI Toolkit
1.3 Widgets in the XUI Toolkit

Figure 1-4 DECburger User Interface

Welcome to DECburger

.File

d
~~•~--~~~~~~~~~~-----1

Dismiss Order Box ...

Cancel Order

Submit Order • DECburger Order-Entry Box !IJlnl!

.Fries Drinks ·---0

Hamburgers

Apple Juice

Orange Juice It
0 Rare D Ketchup . Size I Medium

• • (j) Medium D Mustard -
0 Well Done D Pickle '. •

1-12

Grape Juice '[1
· Cola .n.
~·--___._¥___.

8D Onion ~
D Mayonnaise :

0

•l.___l!J __ ___. ~· :Quantity ~
Quantity

Apply Dismiss Reset ,

ZK-0136A-GE

0 DECburger uses a main window widget as the base of the
application. The main window widget enables the DECburger
application to present some of its basic functions, such as placing
an order, as items in a menu bar widget.

8 The DECburger menu bar widget contains three menus: File, Edit,
and Order.

tD Each item in the DECburger menu bar widget is a pull-down menu
entry widget. When the user selects one of the menus in the menu
bar widget, a pull-down menu widget appears on the screen. The pull
down menu widget disappears when the user releases MBl. In the
figure, the pull-down menu widget associated with the Order menu in
the menu bar widget is illustrated as if a user had selected that menu.
The pull-down menu widget itself is described in 8.

Overview of the XUI Toolkit
1.3 Widgets in the XUI Toolkit

8 The pull-down menu widget displayed is the Order pull-down menu
widget DECburger uses when the order box is already displayed. The
contents of this menu vary depending on whether the order-entry box
is visible.

8 The DECburger order-entry box is a pop-up dialog box widget.
Pop-up widgets may extend beyond the boundaries of their parent
widgets.

(t DECburger uses a separator gadget to draw the vertical dotted lines
that mark the boundary of each section of the order-entry box.

8 To distinguish each section of the order-entry box, DECburger includes
a descriptive text label at the top of each section. Each of these text
labels is a label gadget.

(i) DECburger uses a radio box widget to present a list of choices from
which the user can choose only one item at a time. Each item in the
radio box widget is implemented by a toggle button gadget.

CD To present a list of choices from which the user can select any number
of items, DECburger uses a work area menu widget. Each item in
the menu is a toggle button gadget.

8 To solicit quantity information, DECburger uses the scale widget.
Because scale widgets graphically present a range of values, they
prevent users from entering an incorrect value.

• DECburger uses an option menu widget to present a list of choices
from which only one item can be selected at a time. Each item in the
option menu widget is a push button gadget. As with the pull-down
menu widget, the option menu only appears on the display when the
user presses MBl. In this way, the list of items does not take up any
display space until it is invoked. The option menu widget always
displays its current selection.

8 DECburger uses a simple text widget to handle another quantity
choice. The simple text widget enables the user to enter text from the
keyboard.

8 To present a long list of choices, DECburger uses the list box widget.
Only a portion of the entire list of items is visible in the list box as
it appears on the display. Users must use the scroll bar widget
included in the list box widget to view the complete list of items. List
box widgets can be configured to allow users to select more than one
item at a time.

e DECburger uses an attached dialog box widget to implement drink
··quantity selection. The attached dialog box widget includes two push
button widgets with pixmap labels. The "up arrow'' push button
increases the drink quantity; the "down arrow" push button decreases
the drink quantity. Note the use of push button widgets in,stead of
gadgets. You cannot use pixmap labels with push button gadgets. The
attached dialog box widget also includes two label gadgets to display
descriptive text and to present the current value selected by the user.

1-13

Overview of the XUI Toolkit
1.3 Widgets in the XUI Toolkit

8 DECburger uses a horizontally oriented work area menu widget
containing three push button widgets to implement the Apply,
Dismiss, and Reset functions. Note the use of push button widgets
instead of gadgets to allow DECburger to specify a larger font size to
emphasize these important functions. You cannot specify the font in
a gadget; gadgets use the font specified in their parent. (The figure
does not represent the actual font used in these buttons. To see this
attribute, run the DECburger application.)

1.4 Widget Attributes

1.4.1

Every XUI Toolkit widget supports a set of attributes you can use to
customize aspects of its appearance and function. A subset of these widget
attributes is supported by every XUI Toolkit widget. These are called
common widget attributes. In addition, most widgets support their
own unique attributes. The VMS DECwindows Toolkit Routines Reference
Manual describes the complete set of attributes that each widget supports.

All widgets support the following basic types of attributes:

• Size and position attributes (geometry management)

• Appearance attributes

• Callback attributes

Size and Position Attributes

1-14

All widgets support size and position attributes. Table 1-2 lists these
attributes.

Table 1-2 Widget Size and Position Attributes

Attribute

width

height

x
y

Description

Specifies the width of the widget in pixels

Specifies the height of the widget in pixels

Specifies the x-coordinate of the upper left corner of the widget

Specifies the y-coordinate of the upper left corner of the widget

Note that, while you can specify the size and position of a widget using
these attributes, for many widgets it is preferable to let the widget define
its own size and position in the context in which it is used. The size and
position of a widget is controlled by its parent. A child can request to be
a certain size, but its parent makes the final decision. Parent widgets
must weigh the sizing and positioning needs of their other children. In
addition, parent widgets are children themselves and must negotiate their
space requirements with their parent. This negotiation between parent
and child for display space is called geometry management.

1.4.3

1.4.4

Appearance Attributes

Overview of the XUI Toolkit
1.4 Widget Attributes

All XUI Toolkit widgets support attributes that specify aspects of their
appearance. Many of these attributes are unique to each widget. For
example, the push button widget can appear on the display with a shadow
to give a three-dimensional impression. However, you can create push
buttons without shadows by setting the push button widget shadow
attribute to false.

If you do not set an appearance attribute of a widget, the XUI Toolkit uses
a default value. The default values for widget attributes create widgets
that conform to the recommendations of the XU! Style Guide.

Callback Attributes
All XUI Toolkit widgets support attributes that let you associate callback
routines with their callback reasons. For example, Table 1-3 lists the four
callback attributes supported by the push button widget.

Table 1-3 Callback Attributes Supported by the Push Button Widget

activate_callback

arm_ callback

disarm_callback

help_callback

Callback performed when a user clicks MB1 inside the push
button widget

Callback performed when a user holds down MB1 inside the
push button widget

Callback performed when a user moves the pointer cursor off
the push button widget without releasing MB1

Callback performed when a user presses the Help key and
clicks MB1 in the push button widget

Assigning Values to Widget Attributes
When you create a widget, the XUI Toolkit determines the initial settings
of widget attributes from the following sources, checked in order:

1 The argument list supplied with the creation routine

2 The widget attribute database

3 The default values contained in the widget

The XUI Toolkit first checks the argument list for attribute values. You
assign values to widget attributes when you create the widget using high
level routines, low-level routines, or UILJDRM. (See Section 2.4 for more
information about using these widget creation mechanisms.) If you have
specified any attribute values in an argument list, the XUI Toolkit assigns
this value to the widget when it creates it.

For any attributes to which you do not assign values, the XUI Toolkit
retrieves a default value from a database of attribute values.

1-15

Overview of the XUI Toolkit
1.4 Widget Attributes

1-16

If the XUI Toolkit cannot find a value for an attribute in an argument list
or an attribute database, the default value contained in the widget itself is
used. Each widget contains a default value for every attribute it supports.

2 Creating a VMS DECwindows Application

This chapter describes how to create an application using the XUI Toolkit.
The chapter includes information about the following:

• XUI Toolkit symbol definition files

• Initializing the XUI Toolkit

• Creating the widgets in the user interface

• Managing the widgets in the user interface

• Realizing the widgets in the user interface

• Entering the main processing loop

• Creating a callback routine

• Manipulating the interface at run time

This chapter also includes complete listings for three versions of the Hello
World! sample application. Each version illustrates a different method for
creating the widgets in the interface.

2.1 Overview of a VMS DECwindows Application
A typical VMS DECwindows application consists of three sections:

• Initial setup of the user interface

• Main input loop

• Callback routines

In the first section, you create the widgets that make up the user interface
and make them appear on the display. In this section, you must perform
the following steps:

• Initialize the XUI Toolkit

• Create the widgets used in the interface

• Manage the widgets

• Realize the widgets to make them appear on the display

In the second section, your application enters an infinite loop in which it
waits for input from a user. When the event or sequence of events the
widget has defined as a reason occurs, the widget notifies the application
using the callback mechanism. Your application responds to this user
interaction by executing a callback routine.

The last section of your application contains the callback routines that
implement the functions of your application.

2-1

Creating a VMS DECwindows Application
2.1 Overview of a VMS DECwindows Application

Figure 2-1 illustrates the structure of a typical VMS DECwindows
application.

Figure 2-1 Structure of an XUI Application

Callback

Routine

Set Up the
User

Interface

Callback

Routine

Callback

Routine •••

ZK-0140A-GE

The following sections describe the components of a VMS DECwindows
application and illustrate this structure by creating the Hello World!
application, introduced in Chapter 1.

2.2 Symbol Definition Files

2-2

Before you start setting up the user interface, you must include the XUI
Toolkit symbol definition file in your application. The XUI Toolkit routines
are available in the VAX binding and the MIT C binding. Use the symbol
definition file associated with the language and binding you are using
to write your application. Table 2-1 shows the symbol definition files
available for the VAX and MIT C bindings. The symbol definition files for
the VAX binding reside in SYS$LIBRARY:. The symbol definition files for
the MIT C binding reside in the DECW$INCLUDE: directory.

Creating a VMS DECwindows Application
2.2 Symbol Definition Files

Table 2-1 Symbol Definition Files

File Specification

MIT C Binding

DwtAppl.h

DwtWidget.h

VAX Binding

DECW$DWTDEF1

DECW$DWTWIDGETDEF1

Description

Contains symbol definitions (constants for commonly
used arguments, for example) of interest to application
developers

Contains symbol definitions of interest to programmers
who will be building their own widgets

Contains symbol definitions (constants for commonly
used arguments, for example) of interest to application
developers

Contains symbol definitions of interest to programmers
who will be building their own widgets

1 The file type for these files depends on the language. There is a symbol definition file available
for several languages (including VAX BASIC, VAX Pascal, VAX BLISS, VAX Ada, VAX PU1,
VAX MACRO, VAX C, and VAX FORTRAN).

The examples used in this chapter build the Hello World! application using
the C language with the MIT C binding. In Example 2-1, the Hello World!
application includes the symbol definition file. For more information about
the symbol definition files used with other languages and examples of
Hello World! written using the VAX binding, see Appendix B.

Example 2-1 Including the XUI Toolkit Symbol Definition File in an
Application

&#include <decw$include/DwtAppl.h>

ftstatic void helloworld_button_activate();

static DwtCallback callback_arg[2];

/******** Main Program ********/

@)int main(argc, argv)
unsigned int argc;
char **argv;

'.

8 In this statement, the Hello World! application includes the XUI
Toolkit symbol definition file.

8 These declarations are used by the callback mechanism. Later sections
describe their use.

8 This statement is the required starting point for a C program.

2-3

Creating a VMS DECwindows Application
2.3 Initializing the XUI Toolkit

2.3 Initializing the XUI Toolkit
To initialize the XUI Toolkit, use the INITIALIZE intrinsic routine. This
routine performs three essential startup functions:

• Establishes the connection between the appJication program and the
server

• Initializes internal XUI Toolkit data structures

• Creates the application shell widget

The INITIALIZE routine takes the following arguments:

• A name you assign to the application, passed as a text string

• A class name you assign to the application, passed as a text string

• An array of options that instruct the application how to parse the
command line

• The number of command line option instructions

• The number of command line arguments passed at application startup

• An array of command line arguments passed as text strings

The name you assign to your application appears in the title bar of your
main window. Example 2-2 shows the initialization of the XUI Toolkit in
the Hello World! application.

Example 2-2 Initializing the XUI Toolkit

t»wlctget toplevel, helloworldmain, button, label;
Arg arglist[5];

f9toplevel = Xtinitialize("Hi","helloworldclass",NULL, O, &argc, argv);

XtSetArg(arglist[O], XtNallowShellResize, TRUE);
fDxtsetValues(toplevel, arglist, 1);

2-4

0 This statement creates variables to hold the identifiers of the widgets
used in the Hello World! application. The variable named toplevel
will hold the widget identifier returned by the INITIALIZE intrinsic
routine.

8 The Hello World! application calls the intrinsic routine INITIALIZE
to initialize the XUI Toolkit. The Hello World! application names
the application with the text string 11 Hi 11

• This text will appear in
the title bar of the application. The class name of the application
is the text string 11 helloworldclass". The Hello World! application
does not pass any command line option instructions or command line

Creating a VMS DECwindows Application
2.3 Initializing the XUI Toolkit

arguments. The INITIALIZE intrinsic routine returns the identifier of
the application shell widget in the variable toplevel.

8 After creating the shell widget, the Hello World! application sets one
of the attributes of the shell widget using the intrinsic routine SET
VALUES. The attribute, named XtNallowShellResize, is set to true.
This enables the application shell widget to change its size if the child
of the shell widget requests a size change. The attribute is assigned
a value in an argument list. See Section 2.4.1.2 for information about
creating argument lists.

When you initialize the XUI Toolkit, you obtain an application context
for your application. An application context is an internal data structure
in which the XUI Toolkit maintains information about the state of your
application. For example, the XUI Toolkit stores the list of displays to
which your application has open connections in an application context.
This structure also contains the list of work procedures you register. (For
information about work procedures, see Section 2.8.4.) Every application
using the XUI Toolkit has an application context.

The INITIALIZE intrinsic routine creates a default application context
for your application. However, you can also explicitly create one for your
application by calling the CREATE APPLICATION CONTEXT intrinsic
routine. If you wish to create your own application context, you must use
the TOOLKIT INITIALIZE intrinsic routine to initialize the XUI Toolkit,
instead of the INITIALIZE intrinsic routine, and you must explicitly open
a connection to a display by calling the OPEN DISPLAY intrinsic routine.
In addition, you must create the application shell widget at the top of
your application widget hierarchy by calling the APPLICATION CREATE
SHELL intrinsic routine. The INITIALIZE intrinsic routine performs all
these tasks for you.

Example 2-3 shows the initialization of the XUI Toolkit in a version of the
the Hello World! application that creates its own application context.

Example 2-3 Creating Your Own Application Context

Widget toplevel, helloworldmain, button, label;
Arg arglist[S];

OxtAppContext context;
ftDisplay *display;

8xtToolkitinitialize();

Ctcontext = XtCreateApplicationContext();

9display = XtOpenDisplay(context, "mynode: :0", "Hi", "testclass",
NULL, O, &argc, &argv);

XtSetArg(arglist[ac], XtNallowShellResize, TRUE); ac++;

0toplevel XtAppCreateShell ("Hi", "helloworldclass",
applicationShellWidgetClass, display, arglist, ac);

0 Declaration of an application context.

2-5

2.3.1

Creating a VMS DECwindows Application
2.3 Initializing the XUI Toolkit

8 Declaration of a variable to hold a pointer to a display.

0 The TOOLKIT INITIALIZE intrinsic routine is called to initialize
the toolkit. This routine takes no arguments and does not return
anything.

8 The CREATE APPLICATION CONTEXT intrinsic routine returns an
application context. This application context will be used throughout
the application as an argument to other intrinsic routines.

0 The OPEN DISPLAY intrinsic routine is called to open a connection
to a display. You pass the application context as the first argument to
the routine. The XUI Toolkit maintains a list of open connections to
displays in the application context.

0 The APPLICATION CREATE SHELL intrinsic routine is called
to create the application shell widget. This routine returns the
identifier of the application shell widget. Note that, when you use
the APPLICATION CREATE SHELL intrinsic routine, you can assign
values to shell widget attributes when you create the widget. When
you create the shell widget with the INITIALIZE intrinsic routine, you
must use the SET VALUES intrinsic routine to assign values to shell
widget attributes after it has been created.

Note that, if you create your own application context, you must use the
version of the intrinsic routines that accepts an application context as an
argument. Many intrinsic routines have two interfaces: one that takes
an application context as its first argument and one that does not. For
example, you would use the ADD TIMEOUT intrinsic routine if you accept
the default application context and you would use the APPLICATION
ADD TIMEOUT intrinsic routine if you create your own application
context. (For another example, see Section 2.7.) The routines without the
application context argument use the default application context. You can
use either set of routines to create a VMS DECwindows application.

Application Shell Widget

2-6

The application shell widget handles the interaction between the
application and the outside world; that is, the VMS DECwindows
environment in which it runs. When a user moves or resizes an
application running in the VMS DECwindows environment, the moving
and resizing of the application is controlled by the window manager.
Because more than one application can run in the VMS DECwindows
environment simultaneously, the window manager controls the sizing
and positioning of all applications that appear on a display. (For more
information about the window manager, see Chapter 14.)

An application shell widget is a rectangular window that sizes itself to
exactly fit its child. The child obscures the application shell widget on
the display. A shell widget can have only one child, which is typically the
widget at the top of your application widget hierarchy. Figure 2-2 is a
graphic representation of the relationship between the application shell
widget, the window manager, and your application.

2.3.2

Creating a VMS DECwindows Application
2.3 Initializing the XUI Toolkit

Figure 2-2 Relationship of Shell Widget to Application

Window~
Manager
Window

Application _JI
Shell
Widget
Window

'--- Main Application
Widget
Window

ZK-0397 A-GE

Using Multiple Shell Widgets
An application should only call the INITIALIZE intrinsic routine once. To
have multiple windows for your application, you can do one of two things:

• Use a pop-up dialog box

• Create another shell widget

To create another shell widget, use the APPLICATION CREATE SHELL
or the CREATE POPUP SHELL intrinsic routine. The XUI Toolkit defines
several types of shell widgets. The application shell widget is typically the
top of an application widget hierarchy.

2-7

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

2.4 Creating the Widgets in the Interface
After initializing the XUI Toolkit and creating the application shell widget,
you must create the widgets that make up the user interface of your
application. When you create a widget, you specify three aspects of the
widget:

• The parent/child relationship of the widget

• The initial appearance of the widget

• The callback routines associated with the widget

When you create a widget, the XUI Toolkit allocates memory for the
internal data structures that define the widget. In addition, the parent of
the widget is notified that it is responsible for the widget being created.
Every widget in an application has a parent except for shell widgets
created by the APPLICATION CREATE SHELL intrinsic routine (or the
INITIALIZE intrinsic routine).

To release the memory allocated for a widget, use the intrinsic routine
DESTROY WIDGET. Because creating widgets consumes system
resources, do not destroy widgets that you may want to reuse in your
application. Instead, make widgets appear and disappear from the
display by manipulating their parent's list of managed children. For
more information about this topic, see Section 2.5.

You can create the widgets that comprise a user interface· by calling high
level or low-level widget creation ro-q.tines in your appli.cation program,
or you can define the interface in a.· UIL module. Table 2"'-2 lists the UIL
object type, the high-level creation routine, and the low;.level creatioti
routine for each widget in the XUI Toolkit. The following sections describe
how to use these mechanisms. · Note that, for some widgets, the name of
the creation routine is different for the high-level routine and the low-level
routine. In addition, the UIL object type for some widgets is different than
the high- or low-level creation routine name.

Table 2-2 Widget Creation Mechanisms

Widget UIL Object Type High-Level Routine

Attached dialog box attached_dialog_box ATTACHED DIALOG
BOX

Caution box caution_box CAUTION BOX

Color mixing color_mix No high-level routine

Command window command_window COMMAND WINDOW

Compound string compound_str_text CS TEXT
text

Dialog box dialog_ box DIALOG BOX

File selection file_selection FILE SELECTION

2-8

Low-Le'!el Routine

ATTACHED DIALOG BOX CREATE

CAUTION BOX CREATE

COLOR MIX CREATE

COMMAND WINDOW CREATE

CSTEXT CREATE

DIALOG BOX CREATE

FILE SELECTION CREATE

(continued on next page)

2.4.1

Table 2-2 {Cont.)

Widget

Help

Label

List box

Main window

Menu bar

Message box

Option menu

Pop-up attached
dialog box

Pop-up dialog box

Pop-up menu

Pull-down menu
entry

Pull-down menu

Push button

Radio box

Scale

Scroll bar

Scroll window

Selection box

Separator

Simple text

Toggle button

Window

Work area menu

Work-in-progress
box

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

Widget Creation Mechanisms

UIL Object iype High-Level Routine Low-Level Routine

help_box HELP HELP CREATE

label LABEL LABEL CREATE

list_ box LIST BOX LIST BOX CREATE

main_ window MAIN WINDOW MAIN WINDOW CREATE

menu_bar MENU BAR MENU BAR CREATE

message_box MESSAGE BOX MESSAGE BOX CREATE

option_menu OPTION MENU OPTION MENU CREATE

popup_attached_db ATTACHED DIALOG ATTACHED DIALOG BOX POPUP
Box1 CREATE

popup_dialog_box DIALOG BOX1 DIALOG BOX POPUP CREATE

popup_menu MENU2 MENU POPUP CREATE

pulldown_entry PULL DOWN MENU PULL DOWN MENU ENTRY CREATE
ENTRY

pulldown_menu MENU2 MENU PULLDOWN CREATE

push_button PUSH BUTTON PUSH BUTTON CREATE

radio_box RADIO BOX RADIO BOX CREATE

scale SCALE SCALE CREATE

scroll_ bar SCROLL BAR SCROLL BAR CREATE

scroll_ window SCROLL WINDOW SCROLL WINDOW CREATE

selection SELECTION SELECTION CREATE

separator SEPARATOR SEPARATOR CREATE

simple_text STEXT S TEXT CREATE

toggle_button TOGGLE BUTTON TOGGLE BUTTON CREATE

window WINDOW WINDOW CREATE

work_area_menu MENU2 MENU CREATE

work_in_progress_ WORK BOX WORK BOX CREATE
box

1 The high-level routines DIALOG BOX and ATTACHED DIALOG BOX allow you to specify the pop-up variant in their style
argument.

2The high-level routine MENU allows you to specify whether the menu is a pop-up, pull-down, or work area menu in its format
argument.

Using Low-Level Widget Creation Routines
Every XUI Toolkit widget has a corresponding low-level widget creation
routine (listed in Table 2-2). By convention, the name of the routine is the
name of the widget followed by the word create. For example, the low-level
routine for the push button widget is called PUSH BUTTON CREATE.

2-9

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

2-10

All low-level widget creation routines take the same four arguments.
Table 2-3 describes these arguments.

Table 2-3 Standard Arguments Used with Low-Level Routines

parent_ widget

name

override_arglist

override_argcount

The widget identifier of the parent widget.

A name you assign to the widget.

The address of an argument list containing values for attributes
of the widget.

The number of arguments in the argument list. If you do not
specify an argument list, this argument must be specified as 0.

2.4.1.1 Using Low-Level Routines to Define the Parent/Child Relationship of a Widget
You use the parent_ widget argument to define the parent/child
relationship of the widget you are creating. Pass the widget identifier
of the parent as the value of this low-level routine argument. Note that
parent widgets must. be created before their children.

In the following example, taken from the Hello World! application, the
push button widget is created as the child of the dialog box widget by
using the low-level widget creation routine PUSH BUTTON CREATE. The
widget identifier of the dialog box widget, helloworldmain, is passed as the
first argument to the routine.

button= DwtPushButtonCreate(helloworldmain,"button",arglist,4);

2.4.1.2 Using Low-Level Routines to Define the Initial Appearance of a Widget
You define the initial appearance of a widget by assigning values to widget
attributes. Each widget supports a set of attributes that controls aspects
of its appearance such as width and height. Using low-level routines, you
assign values to widget attributes in an argument list. If you assign a
value to an attribute that the widget does not support, the widget ignores
the value.

An argument list is an array of argument data structures. In each
argument data structure, which is defined by the XUI Toolkit, you
associate the name of the widget attribute with the value you want
assigned to that attribute. The following is the definition of the argument
data structure.

typedef struct {
char *name;
XtArgVal value;

} Arg, *ArgList;

Figure 2-3 details the VAX binding definition of this structure.

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

Figure 2-3 Argument Data Structure (VAX Binding)

31 0

arg_name

arg_value

ZK-0541 A-GE

The XUI Toolkit defines the name of each widget attribute as a constant.
The VMS DECwindows Toolkit Routines Reference Manual lists the
complete set of attributes supported by each widget, with their associated
constants.

Widget attributes can take a variety of values, such as integers or
character strings. The XUI Toolkit defines the value field of this data
structure as a longword, named XtArg Val. If the attribute value fits into
a longword, the value field of the structure contains the actual value. If
the size of the value exceeds a longword, the value field of the structure
contains a pointer to the value.

As a convenience, the XUI Toolkit provides a routine you can use to fill in
the argument data structures in an argument list. This intrinsic routine
SET ARG takes the following three arguments:

• The address of the argument list element

• The name of the widget attribute

• The value being assigned to the attribute

In the following example, taken from the Hello World! application, values
for push button widget attributes are specified in an argument list:

Arg arglist[S];

XtSetArg(arglist[O], DwtNx, 15);
XtSetArg(arglist[l], DwtNy, 40);
XtSetArg(arglist[2], DwtNactivateCallback, callback arg);
XtSetArg(arglist[3], DwtNlabel, DwtLatinlString("Hello\nWorld!"));

button= DwtPushButtonCreate(helloworldmain,"button",arglist,4);

The attributes include the x- and y-coordinates that determine the position
of the push button widget and the text label the push button widget
contains. The argument list, named arglist, is declared as an array of
argument data structures. The address of the argument list is passed
as the third argument to the PUSH BUTTON CREATE routine. (The
fourth argument to the PUSH BUTTON CREATE routine is the nuinber of
attributes specified in the argument list.)

2-11

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

2-12

2.4.1.3 Using Low-Level Routines to Associate Callback Routines with a Widget
To use a low-level routine to associate a callback routine with a widget,
you must pass a callback routine list as the value of a callback attribute.
As with other widget attributes, using the low-level routine, you assign the
value to the attribute in an argument list (described in Section 2.4.1.2).

A callback routine list is a null-terminated array of callback routine data
structures. A callback routine data structure is an XUI Toolkit-defined
data structure that pairs the address of the callback routine with any
application-specific data you specify. This application-specific data is
called a tag. The following is the definition of the callback routine data
structure:

typedef struct {
VoidProc proc;
int tag;

} DwtCallback, *DwtCallbackPtr;

Figure 2-4 is the VAX binding definition of this data structure.

Figure 2-4 Callback Routine Data Structure (VAX Binding)

31

callback_proc

callback_tag

ZK-0268A-GE

0

The first field of the callback routine data structure contains the address
of the callback routine. The second field of the data structure contains the
actual tag value, if it can fit into a longword. If the tag cannot fit into a
longword, the tag field contains the address of the tag. A tag can be any
data you want to associate with the widget, such as an integer, text string,
or data structure. When the widget performs a callback, it passes this
data to your application. The XUI Toolkit performs no processing on this
data.

The Hello World! application associates the callback routine, named
helloworld_button_activate, with the push button widget attribute
activate_callback. Example 2-4 shows how the Hello World! application
creates a callback routine list by declaring an array, named callback_
arg, consisting of two callback routine data structures. The example
assigns the address of the callback routine and a tag value to members
of the callback routine data structure. Note that you must terminate a
callback routine list by assigning a null value to the last callback routine
structure.

Creating a VMS DECwindows Application
2.4 . Creating ·the Widgets in the Interface

Example 2-4 Creating a User Interface Using Low-Level Routines

Gstatic void helloworld_button_activate();

&static DwtCallback callback_arg [2];

@)widget toplevel, helloworldmain, button, label;
Arg arglist[S];

8h~lloworldmain = DwtDialogBoxCreate (toplevel, "MAINWIN", NULL, 0);

Oc~llback_arg[O] .proc = helloworld_button_activate;
callback_arg[O] .tag = O;
callback_arg[l] .proc = NULL;

GtxtsetArg (arglist[O], DwtNx, 15);
XtSetArg (arglist[l], DwtNy, 40);
XtSetArg (arglist[2], DwtNactivateCallback, callback arg);
XtSetArg (arglist[3], DwtNlabel, DwtLatinlString("Hello\nWorld!"));

&button= DwtPushButtonCreate(helloworldmain, "button", arglist, 4);

8 The Hello Worldl application makes a forward declaration of the
callback routine named helloworld_button_activate to be able to refer
to the routine in a callback routine list.

8 The Hello Worldl application declares the callback routine list as
an array· of callback routine data structures. Note that the array
contains two elements. All callback routine lists must contain at least
two elements because a callback routine list is a null-terminated list.
Assign the value null to the last element of the array to signify the
end of the· list.

8 The Hello Worldl . application creates variables to hold the identifiers
of the widgets used in the application.

8 The Hello World! application creates the main widget of its user
interface, a dialog box widget, using the low-level routine DIALOG
BOX CREATE. Note that the application does not set any widget
attributes of the dialog box. The override_arglist argument is passed
as null.

CB In these three. statements, the example assigns values to elements of
the callback routine list. Each callback routine data structure contains
the address of a callback. routine and a tag. The first statement
assigns the address of the callback routine used in the Hello World!
application as the value of' the first member of the data structure.
The second statement assigns the tag value to the second member of

2-13

2.4.2

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

this data structure. The third statement assigns a null to a callback
routine data structure signifying the end of the callback routine list.

C) These four calls to the intrinsic routine SET ARG create the argument
list used to set attributes of the push button widget. In this argument
list, the Hello World! application positions the push button widget
within its parent by assigning values to its x- and y-coordinates. In
addition, the text string 11 Hello World! 11 is passed as the label the push
button widget will contain. A callback routine is associated with the
activate callback.

All text strings that are to appear on the display must be converted
to compound strings. The example shows how the text string used
as the label in the push button widget is converted into a compound
string using the routine LATINl STRING. Section 5.6 provides more
information about compound strings. (UIL performs this conversion
automatically. See Section 3.2. 7 .3 for more information.)

8 This statement creates the push button widget using the low-level
routine PUSH BUTTON CREATE. In the four standard arguments
to the low-level routine, the Hello World! application names the
dialog box widget as the parent of the push button widget, assigns the
name button to the widget, passes the address of the argument list
containing attribute values, and passes the number of attributes set in
the argument list.

Using High-Level Widget Creation Routines

2-14

Every XUI Toolkit widget has a corresponding high-level creation routine
(listed in Table 2-2). By convention, the name of the high-level routine is
the name of the widget. For example, the high-level routine for creating a
push button.widget is called PUSH BUTTON.

All high-level widget creation routines take the same first two arguments.
These are the widget identifier of the parent widget and the name you
assign to the widget. The other arguments vary for each widget because,
instead of using an argument list to assign values to widget attributes, the
high-level routines accept attribute values as arguments to the routine.
As an example, Table 2-4 lists the arguments accepted by the high-level
routine used to create a push button widget.

Table 2-4 Arguments Used with the High-Level Routine PUSH BUTTON

parent_ widget

name

x

y

The widget identifier of the parent widget

A name you assign to the widget

The x-coordinate of the upper left corner of the widget

The y-coordinate of the upper left corner of the widget

(continued on next page)

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

Table 2-4 (Cont.) Arguments Used with the High-Level Routine PUSH
BUTTON

label

callback

help_callback

The text string to be displayed in the widget

The address of a callback routine list

The address of a callback routine list

The VMS DECwindows Toolkit Routines Reference Manual describes the
arguments supported by each of the high-level routines.

2.4.2.1 Using High-Level Routines to Define the Parent/Child Relationship of a
Widget

As with low-level routines, you specify the parent of the widget in the
parent_ widget argument. Pass the widget identifier of the parent as the
value of this high-level routine argument. Note that parent widgets must
be created before their children.

In the following example, the push button widget in the Hello World!
application is created as the child of the dialog box widget by using the
high-level widget creation routine PUSH BUTTON. The widget identifier
of the dialog box widget, helloworldmain, is passed as the first argument
to the routine.

button= DwtPushButton(helloworldmain, "button", 15, 40,
DwtLatinlString("Hello\nWorld!"), callback_arg, 0);

2.4.2.2 Using High-Level Routines to Define the Initial Appearance of a Widget
As with low-level routines, you specify the initial appearance of a widget
by assigning values to widget attributes. However, instead of assigning
values to widget attributes in an argument list, with a high-level routine
you pass the attribute values as arguments to the high-level routine. The
high-level routine arguments provide access to the same widget attributes
as the argument list used with a low-level routine. For example, the label
argument of the PUSH BUTTON routine provides access to the same
attribute as the label attribute used in an argument list.

Note that high-level widget creation routines only provide access to a
subset of the attributes supported by the widget at widget creation time.
You can use the widget manipulation routines (described in Section 2.9.2)
to access the complete set of widget attributes after the widget has been
created. However, it is more efficient to set widget attributes when you
create the widget.

In the following example, values for push button widget attributes are
specified as arguments to the PUSH BUTTON routine. The attributes
include the x- and y-coordinates that determine the position of the push
button widget in the dialog box widget and the text label the push button
widget contains.

button= DwtPushButton(helloworldmain, "button", 15, 40,
DwtLatinlString("Hello\nWorld!"), callback_arg, 0);

2-15

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

2.4.2.3 Using High-Level Routines to Associate Callback Routines with a Widget
To use a high-level routine to associate a callback routine with a widget,
you must pass a callback routine list as the value of an argument to
the high-level routine. See Section 2.4.1.3 for information about how to
create a callback routine list. Each high-level routine includes arguments
associated with the callback supported by the widget.

The high-level routine might not define arguments for every callback
supported by a widget. In these cases, the callback routine is associated
with the callback reason the widget identifies as its main callback. For
example, the main callback supported by the push button widget is its
activate callback reason.

In Example 2-5, the Hello World! application associates the callback
routine with the push button widget by passing the address of a callback
routine list as an argument to the routine.

Example 2-5 Creating a User Interface Using High-Level Routines

Os~atic void helloworld_button_activate ();

8static DwtCallback callback_arg[2];

6>wictget toplevel, helloworldmain, button, label;

8h~lloworldmain = DwtDialogBox(toplevel, "MAINWIN", TRUE,O,O,
DwtLatinlString("Hi"), DwtWorkarea, 0, 0);

@tc~llback_arg[O) .proc = helloworld_button_activate;
callback_arg[O) .tag = 0;
callback_arg[l) .proc = NULL;

0button DwtPushButton(helloworldmain, "button", 15, 40,
DwtLatinlString("Hello\nWorld!"), callback_arg, 0);

2-16

0 The example makes a forward declaration of the callback routine
named helloworld_button_activate to be able to refer to the routine in
a callback routine list.

8 The example declares the callback routine list. The callback routine
list is declared as an array of callback routine data structures. Note
that the array contains two elements. All callback routine lists must
contain at least two elements because a callback routine list is a null
terminated list. The last element of the array is always set to null to
signify the end of the list.

2.4.3

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

8 The Hello World! application creates variables to hold the identifiers
of the widgets used in the application. The variable button will hold
the push button widget identifier.

8 The Hello World! application creates the main widget of its user
interface, the dialog box widget, using the high-level routine DIALOG
BOX.

0 As with the low-level routine, the Hello World! application creates a
callback routine list with these three assignment statements. This list
is used to associate a callback routine with a widget. Section 2.4.1.3
describes how to create a callback routine list.

0 This statement creates the push button widget using the high-level
routine PUSH BUTTON. In the arguments passed to the high-level
widget creation routine, the Hello World! application names the
parent of the push button widget and assigns the name "button" to
the widget. In addition, the Hello World! application passes values
for several widget attributes as arguments to the high-level routine.
These attributes include values for the x- and y-coordinates of the
push button widget, the text string to be contained in the push button
widget, and the address of a callback routine list.

As with the low-level widget creation routine, the example shows how
the text string used as the label in the push button widget is converted
into a compound string using the routine LATINl STRING. Section 5.6
provides more information about com pound strings.

Using UIL and ORM to Create Widgets
Every XUI Toolkit widget has a corresponding UIL object type. By
convention, the UIL object type is the name of the widget made into a
single word using the underscore character. For example, the UIL object
type for the push button widget is push_button. Table 2-2 lists the UIL
object types for all XUI Toolkit widgets.

As with high- and low-level routines, you can use UIL to define the same
three aspects of the widgets in a user interface:

• The parent/child relationship of the widget

• The initial appearance of the widget

• The callback routines associated with the widget

Using UIL, you define these aspects of a widget in a UIL object
declaration. A UIL module can contain the object declarations of all the
widgets in an interface. You then compile this interface definition using
the UIL compiler and store the output in a file called a User Interface
Definition (UID) file. At run time, your application calls DRM routines to
open the UID file and fetch the compiled interface definition. The DRM
routine FETCH WIDGET creates the widgets according to the definitions
you specify in the UIL module. You can fetch the entire interface with one
call to the FETCH WIDGET routine.

2-17

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

2-18

This section provides a brief overview of how to define an interface in
a UIL module. For more information about using UIL and DRM, see
Chapter 3.

2.4.3.1 Using UIL to Define the Parent/Child Relationship of a Widget
Using UIL, you specify the children of a widget in the object declaration
of the parent, instead of specifying the parent of the widget when you
create the child (as with the high- and low-level routines). You specify
the children by name in the controls list section of the parent object
declaration.

In the following example from the Hello World! application UIL module,
the push button widget, named helloworld_button, is specified as the child
of the dialog box widget in the controls list of the dialog box widget object
declaration. (The label widget, named helloworld_label, which is the only
other child of the dialog box widget in the Hello World! application, also
appears in the controls list.)

object
helloworld_main : dialog_box

controls {

} i

} i

label helloworld_label;
push_button helloworld_button;

2.4.3.2 Using UIL to Define the Initial Appearance of a Widget
You define the initial appearance of a widget by assigning values to widget
attributes in the arguments list section of a UIL object declaration. UIL
defines a keyword that identifies every widget attribute. For example,
the keyword identifying the label attribute of a push button widget is
label_label. UIL provides access to the complete set of widget attributes.

In the following example from the Hello World! application UIL module,
values for push button widget attributes are specified in the arguments
list of the push button widget object declaration. The attributes include
the x- and y-coordinates that specify the position of the push button widget
and the text label the push button widget contains.

object
helloworld button

arguments {
x = 15;
y = 40;
label label

} i

callbacks {

push_button

compound string('Hello' ,separate=true)&
compound=string('World!');

activate = procedure helloworld_button_activate ();
} i

} i

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

2.4.3.3 Using UIL to Associate Callbacks with a Widget
You associate callbacks with a widget in the callbacks list section of
the object declaration. As with the other widget attributes, UIL defines
keywords to identify each of the callback attributes supported by a widget.
For example, the callback attribute for the activate reason supported by
the push button widget is identified by the ACTIVATE keyword. However,
you do not have to create a callback routine list to pass to the callback
attribute. In a UIL module, you declare the callback routine by name in
the procedure section of a UIL module. You can use this name to refer to
the callback routine in the remainder of the UIL module in callbacks lists.

You associate a tag with the callback routine by inserting the value
between the parentheses used in the procedure name. (The Hello World!
application does not use the tag feature. For an example of this capability,
see Section 3.2.6.)

In Example 2-6, the Hello World! application associates the callback
routine, named helloworld_button_activate, with the push button widget
by listing it in the callbacks list section of the object declaration.

Example 2-6 Using UIL to Define a Widget

ttp;ocedure
helloworld_button_activate();

8object
@) helloworld main dialog_box {

controls {
label helloworld_label;
push_button helloworld_button;

} ;
} ;

object
helloworld button push_button

arguments {

} ;

x = 15;
y = 40;
label label

~ callbacks {

compound string('Hello' ,separate=true)&
compound=string('World!');

activate procedure helloworld_button_activate();
} ;

} ;

0 In this statement, Hello World! declares the callback routine in the
procedure section of a UIL module. The name of the callback routine
can be used throughout the UIL module. This procedure must also be

2-19

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

2-20

declared and registered with DRM in your application program (see
Example 2-17).

ft The UIL keyword OBJECT signifies the start of an object declaration.

8) This object declaration defines a dlalog box widget using the UIL object
type dialog_box. The object declaration names the widget helloworld_
main.

8 In the object declaration of the dialog box widget, the parent/child
relationship of the push button widget is defined. The controls list
section lists the two widgets that are children of the dialog box widget
by their object type and the name assigned to them in the UIL module.
In the Hello World! application, the push button widget is named
helloworld_button.

8 In the object declaration of the push button widget, the initial
appearance of the push button widget is defined in the arguments
list section. The Hello Wo;rld! application positions the push button
widget by assigning values to the x- and y-coordinates. In addition, the
module creates a compound string containing the text "Hello World!"
and assigns it as the value of the label attribute of the push button
widget. To make the text "Hello World!" appear on two separate lines,
the UIL module uses the UIL keyword SEPARATE. The SEPARATE
function ensures that a newline character will appear after the word
"Hello". The module then creates the word "World!" as a separate
compound string and concatenates the two strings.

0 In the callbacks list section of the object declaration, the Hello World!
application associates a callback routine with the activate_callback
attribute.

At run time, you create the interface defined in the UIL module by using
the DRM routine FETCH WIDGET. Example 2-7 shows how the Hello
World! application uses DRM routines -to open the interface definition
file, match the callback routines specified in the UIL module with their
addresses in the application program, and fetch the application widget
hierarchy.

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

Example 2-7 Creating the Interface at Run Time Using ORM

Oif (DwtOpenHierarchy (l,vec,NULL, &s_DRMHierarchy) != DRMSuccess)
{

printf ("can't open hierarchy");

f°tDwtRegisterDRMNames (regvec, regnum);

8if (DwtFetchWidget (s_DRMHierarchy, "helloworld_main", toplevel,
&helloworldmain, &class) ! = DRMSuccess)

printf("can't fetch interface");

0 This statement opens the compiled interface definition file using the
DRM routine OPEN HIERARCHY.

8 The example fills in the actual values of symbols used in the interface
definition file. For example, this call to the DRM routine REGISTER
DRM NAMES resolves references to addresses of callback routines.

8 The example retrieves the main application widget, helloworld_main.
The DRM routine FETCH WIDGET retrieves the widget definitions
for all of its children as well. The FETCH WIDGET routine creates all
the widgets in the interface.

Procedures declared in a UID file cannot be bound to addresses prior to
running the program. This is a function usually done by the linker (which
accepts object modules as input). DRM provides a registration facility that
accepts the string name and the procedure address and maps the name to
the address.

For more information about use of the DRM routines, see Section 3.3.

2.5 Managing the Widgets in the Interface
Once you create the widgets of the user interface, the next step is to
manage them. Managing a widget adds the widget to its parent's list
of managed children. The parent widget is responsible for the physical
layout of all of its children. When you manage a widget, the parent widget
calculates its space requirements to accommodate all of its managed
children. Managing a widget makes it displayable.

You can manage a single widget at a time using the intrinsic routine
MANAGE CHILD, or you can manage multiple children of the same
parent at the same time using the intrinsic routine MANAGE CHILDREN.
Section 2.5.1 and Section 2.5.2 describe these routines.

You can remove a widget from its parent's list of managed children using
the UNMANAGE CHILD intrinsic routine. If the widget and its parent
appear on the display, removal causes the child to disappear from the
display. Removing a widget from its parent's list of managed children does
not destroy the widget. You can make the widget reappear on the display

2-21

2.5.1

Creating a VMS DECwindows Application
2.5 Managing the Widgets in the Interface

by managing it again. To remove a group of children of the same parent in
a single call, use the UNMANAGE CHILDREN intrinsic routine.

Note that manipulating a parent's list of managed children is a very
effective way to make widgets appear, disappear, and then reappear
during the execution of your application. Creating, destroying, and then
re-creating widgets at run time consumes many more system resources
and is less efficient.

To find out if a widget is currently managed, use the intrinsic routine IS
MANAGED. This routine takes one argument: the identifier of the widget
you are querying about.

Note that when using UIL to define a user interface, you do not have
to explicitly manage the widgets. By default, the DRM routine FETCH
WIDGET manages every widget it creates. You can override this default
by specifying the keyword UNMANAGED in the controls list section. Only
the topmost widget in the hierarchy being fetched needs to be managed.
For more information, see Section 3.2.8.2.

Managing a Single Child Widget
Use the MANAGE CHILD intrinsic routine to add a single child widget
to the set of managed children of its parent. This routine takes one
argument: the identifier of the widget being managed. (You specify the
parent of the widget when you create it.) Example 2-8 shows how the
Hello World! application manages the push button widget.

Example 2-8 Managing a Single Widget

callback_arg[O] .proc = helloworld_button_activate;
callback_arg[O] .tag = O;
callback_arg[l] .proc = NULL;

XtSetArg (arglist[O], DwtNx, 15) ;
XtSetArg (arglist[l], DwtNy, 40);
XtSetArg (arglist[2], DwtNactivateCallback, callback arg) ;
XtSetArg (arglist[3], DwtNlabel, DwtLatinlString("Heilo\nWorld!")) ;

Obutton = DwtPushButtonCreate(helloworldmain, "button", arglist, 4);

fDxtManageChild(button);

2-22

0 The example program creates the push button widget using the low
level routine PUSH BUTTON CREATE. The parent of the push button
widget is specified in the first argument to the routine. The variable
button receives the widget identifier returned by the creation routine.

2.5.2

Creating a VMS DECwindows Application
2.5 Managing the Widgets in the Interface

8 The Hello World! application manages the push button widget in this
call to the MANAGE CHILD intrinsic routine. The variable button,
the only argument passed to the routine, contains the widget identifier
of the push button widget.

Managing Multiple Child Widgets
To manage a group of widgets in a single call, use the MANAGE
CHILDREN intrinsic routine. This routine takes two arguments: an
array of widget identifiers and the number of widget identifiers in the
array. All the widgets managed using the MANAGE CHILDREN intrinsic
routine must be children of the same parent.

After the parent widget has been realized (see Section 2.6), using
MANAGE CHILDREN to manage multiple children of the same parent
is more efficient than making multiple calls to MANAGE CHILD. With
MANAGE CHILDREN, the parent only has to calculate the layout of its
children once.

Example 2-9 is a version of the Hello World! application in which the
two children of the dialog box widget are managed using the MANAGE
CHILDREN intrinsic routine. The example creates the interface of the
Hello World! application using high-level widget creation routines. In the
Hello World! user interface, the dialog box widget has two children: a
label widget and a push button widget.

Example 2-9 Managing a Group of Child Widgets

Widget toplevel, helloworldmain;
ttw"idgetList main children[2];
8int count = 0; -

Arg arglist [2];

helloworldmain = DwtDialogBox(toplevel, "MAINWIN", TRUE,0,0,
DwtLatinlString("Hi"), DwtWorkarea, 0, 0);

fDmain_children[count++] = DwtLabel(helloworldmain, "label", O, 0,
DwtLatinlString("Press button once\nto change label;\ntwice to exit."), 0);

callback_arg[O] .proc = helloworld_button_activate;
callback_arg[O] .tag = O;
callback_arg[l] .proc = NULL;

Gmain_children[count++] = DwtPushButton(helloworldmain, "button", 15, 40,
DwtLatinlString("Hello\nWorld!"), callback_arg, 0);

CBxtManageChildren(main_children, count);

2-23

Creating a VMS DECwindows Application
2.5 Managing the Widgets in the Interface

0 To use the intrinsic routine MANAGE CHILDREN, you must create
an array of widget identifiers. The XUI Toolkit defines a data type,
WidgetList, that you use for this purpose. The example declares
an array, named main_children, composed of pointers to widget
identifiers.

8 This statement declares a variable that will contain the number of
widget identifiers in the array.

6) Hello World! creates the label widget child of the dialog box widget
using the high-level routine LABEL. The first element of the main_
children array receives the widget identifier returned by this routine.

8 The Hello World! application creates the push button widget using the
high-level routine PUSH BUTTON. The second element of the main_
children array receives the widget identifier returned by this routine.

0 This version of the Hello World! application manages both children
of the dialog box widget at the same time by calling the MANAGE
CHILDREN intrinsic routine. The array of widget identifiers and
the number of widgets in the array are passed as arguments to the
routine.

2.6 Realizing the Widgets in the Interface

2-24

As the last step in setting up a user interface, you make the widgets that
you have created and managed appear on a display by realizing them.
Realizing a widget creates a window for the widget and maps the window
to the display. For composite widgets (widgets with children), realizing the
widget also creates windows for all of the managed children of the widget
and causes these windows to be mapped as well. Thus, you need only
realize the widget at the top of the widget hierarchy in a user interface to
cause the entire interface to appear on the display.

To realize a widget, use the intrinsic routine REALIZE WIDGET. This
routine takes one argument: the identifier of the widget being realized.

To find out if a widget is currently realized, use the intrinsic routine IS
REALIZED. This routine takes one argument: the identifier of the widget
you are querying about.

Example 2-10 shows how the complete widget hierarchy of the Hello
World! application is realized in a single call to REALIZE WIDGET. The
Hello World! application realizes the shell widget, called toplevel, returned
by the INITIALIZE intrinsic routine. By doing this, all the widgets below
the top-level widget in the widget hierarchy are realized in one call.

Creating a VMS DECwindows Application
2.6 Realizing the Widgets in the Interface

Example 2-1 O Realizing a Widget Hierarchy

Widget toplevel, helloworldmain, button, label;
Arg arglist[S];

/******** Set Up the User Interface ********/

8toplevel = Xtinitialize("Hi","helloworldclass",NULL, 0, &argc, argv);

XtSetArg (arglist[O], XtNallowShellResize, TRUE);
XtSetValues (toplevel, arglist, 1);

/**** Create and manage the widgets using either ****
**** low-level routines, high-level routines, or UIL. ****/

8x~RealizeWidget (toplevel);

/******** End of Set Up ********/

2.7 Main Input Loop

8 In the example, the Hello World! application creates the shell widget
using the intrinsic routine INITIALIZE. This routine returns the
identifier of the shell widget.

8 After creating and managing the widgets in the interface, the example
realizes the widget at the top of the widget hierarchy, toplevel, causing
the entire widget hierarchy to appear on the display.

After setting up the interface, your application program must wait for
input from the user of the application. The widgets in the interface notify
your application when a user interacts with them. For example, when a
user moves the pointer cursor onto a push button widget and clicks MBl,
the widget notifies the application of this action by executing a callback.
You can perform any type of processing in response to these callbacks
using a callback routine.

To make your application loop while waiting for input, use the intrinsic
routine MAIN LOOP. The MAIN LOOP routine takes no arguments.
Example 2-11 shows the call to the MAIN LOOP routine used in the Hello
World! application.

2-25

Creating a VMS DECwindows Application
2. 7 Main Input Loop

2-26

Example 2-11 Entering the Main Input Loop

#include <decw$include/DwtAppl.h>

static void helloworld_button_activate();

static DwtCallback callback_arg[2];

/******** Main Program ********/

int main(argc, argv)
unsigned int argc;
char **argv;

Widget toplevel, helloworldmain, button, label;
Arg arglist[5];

/******** Set Up the User Interface ********/

toplevel = Xtinitialize("Hi","helloworldclass",
NULL, 0, &argc, argv);

XtSetArg(arglist[O], XtNallowShellResize, TRUE);
XtSetValues(toplevel, arglist, 1);

/**** Create and manage the widgets using either ****
**** low-level routines, high-level routines, or UIL. ****/

XtRealizeWidget (toplevel);

/********* MAIN INPUT LOOP *********/

XtMainLoop ();

The MAIN LOOP routine encloses calls to the intrinsic routines NEXT
EVENT and DISPATCH EVENT in an infinite loop. The NEXT EVENT
intrinsic routine returns the value from the head of the input queue
associated with the application. The DISPATCH EVENT intrinsic
routine calls the appropriate event handlers and passes them the widget
identifier, the event, and the application-specific data registered with each
procedure. The MAIN LOOP routine never returns. Your application
should terminate from a callback routine as a result of a user action.

If you have created an application context, as described in Section 2.3, you
must use the APPLICATION MAIN LOOP intrinsic routine to enter an
event-processing loop. The APPLICATION MAIN LOOP intrinsic routine
takes one argument: the application context that you created using the
CREATE APPLICATION CONTEXT intrinsic routine. As with the MAIN
LOOP intrinsic routine, the APPLICATION MAIN LOOP intrinsic routine
never returns.

Creating a VMS DECwindows Application
2.8 Creating a Callback Routine

2.8 Creating a Callback Routine

2.8.1

2.8.2

2.8.3

You associate the functions of your application with its user interface using
callback routines. All callback routines have three standard arguments:

• The widget identifier of the widget making the callback

• The tag (application-specific data)

• The callback data structure (widget-specific data)

The following sections describe these arguments.

Identifying the Widget Performing the Callback
The first standard argument to a callback routine identifies the widget
performing the callback. The callback routine used in the Hello World!
application, shown in Example 2-12 in Section 2.8.3, uses this information
when it calls the SET VALUES intrinsic routine to change the text
contained in the push button widget.

Associating Application-Specific Data with a Widget
In the second standard argument to a callback routine, the tag, you
can associate data with a widget. The widget passes this data to your
application when it performs a callback. You can use this argument to
pass integers, text strings, application-specific data structures, or any
other type of data you define. The XUI Toolkit performs no processing on
this data; it simply passes it to your application when the widget executes
the callback routine. (The Hello World! application passes a 0 as its
tag value because it does not use this feature. However, the DECburger
sample application uses the tag argument to identify each widget in its
user interface.)

Widget-Specific Callback Data
In the third standard argument to a callback routine, the callback data
structure, the widget returns other data to your application. The content
of this data structure varies among the XUI Toolkit widgets. The VMS
DECwindows Toolkit Routines Reference Manual describes the callback
data returned by each widget. At a minimum, all XUI Toolkit widgets
that perform callbacks return the following data in their callback data
structure:

• The reason for the callback

• The address of the last event data structure on the X event queue

In the reason field of the callback data structure, the widget returns the
callback reason. The reason identifies the event or sequence of events that
caused the widget to perform the callback. The XUI Toolkit defines a set of
constants to identify each callback reason. Each widget supports its own
set of callback reasons. You can find out why the widget performed the
callback by reading the value of this field of the callback data structure.

2-27

Creating a VMS DECwindows Application
2.8 Creating a Callback Routine

2-28

You typically only need to read the reason field when using certain high
level routines or if your application specifies the same callback routine
for different callback reasons. Using low-level routines or UIL, you can
associate a callback routine with a specific widget attribute associated with
a particular callback. For example, in the Hello World! application using
low-level routines, the callback routine is associated with the activate_
callback attribute. However, some high-level routines do not provide
access to every callback attribute supported by a widget. These routines
associate the callback routine list you pass as the value of the callback
argument with many callback attributes supported by the widget.

The event data structure contains information about the event that caused
the callback. For more information about the data returned in the event
data structure, see the VMS DECwindows Xlib Programming Volume.

The following is the definition of the minimum callback data structure
returned by every XUI Toolkit widget that performs a callback.

typedef struct {
int reason;
XEvent *event;

} DwtAnyCallbackStruct;

Figure 2-5 details the VAX definition of this data structure.

Figure 2-5 Widget Callback Data Structure (VAX Binding)

31

I

reason

event

0

I

ZK-0091 A-GE

Example 2-12 shows the callback routine used with the Hello World!
application. The first time this routine is executed, it changes the text
of the label in the push button widget. The second time this routine is
executed, it causes the application to terminate.

2.8.4

Creating a VMS DECwindows Application
2.8 Creating a Callback Routine

Example 2-12 Hello World! Application Callback Routine

Os~atic void helloworld button activate(widget, tag, callback data
Widget widget; - -
char *tag;
DwtAnyCallbackStruct *callback_data;

Arg arglist[2];

static int call count 0;

call_count += 1 ;
switch (call_count)

{

case 1:
XtSetArg(arglist[O], DwtNlabel, DwtLatinlString("Goodbye\nWorld!"));

XtSetArg(arglist[l], DwtNx, 11);
XtSetValues(widget, arglist, 2);

break ;
case 2:

exit(l);
break ;

0 The Hello World! callback routine uses the standard three arguments
that all callback routines must use.

8 The Hello World! application sets up an argument list in which it
assigns values to two push button widget attributes. In the first
statement, the callback routine assigns a new text string to the label
attribute of the push button widget in an argument list. In the second
call to the SET ARG intrinsic routine, Hello World! assigns a new
value to the x-coordinate of the push button widget. The longer text
string requires this change in the x-coordinate to keep the push button
widget centered in the dialog box widget.

8 The Hello World! callback routine passes the argument list to the
intrinsic routine SET VALUES. This routine replaces the original
text string in the push button widget with the new text string
and repositions the push button by assigning a new value to the
x-coordinate using the x attribute.

Guidelines for Creating Callback Routines
Because your application needs to continually check the incoming event
queue, you should write callback routines that execute quickly. If your
application enters a callback routine that requires extensive processing
time (more than 0.25 of a second), your application could miss processing
important events. For example, if a portion of the user interface of your
application that had been obscured on the display becomes visible, the
widget needs to receive this expose event so that it can repaint the screen.

2-29

Creating a VMS DECwindows Application
2.8 Creating a Callback Routine

One way to perform lengthy processing without ignoring the event queue
is to perform the processing in a work procedure. A work procedure is
like a callback routine except that it is not associated with any particular
widget. Instead, you register work procedures with your application using
the ADD WORK PROC intrinsic routine. When the NEXT EVENT or
PROCESS EVENT intrinsic routines have no other events to process,
they call the work procedure that you registered. (The main input loop
of an application is an infinite loop that continually calls NEXT EVENT
to check the input queue for incoming events.) You can register multiple
work procedures; however, the last one added is the one that is executed.

You create a work procedure as you would create a callback routine except
that a work procedure only takes a tag as a standard argument. As
with a callback routine, the tag is any data that you specify. With work
procedures, you can use the tag to maintain state information on the
progress of the processing so that each time the NEXT EVENT intrinsic
routine calls the work procedure, it performs another segment of the
processing. As with standard callback routines, your application should
not remain in a work procedure for a long time without checking the input
queue.

A work procedure should always return a Boolean value. While it returns
false, the work procedure that you registered is called repeatedly. Once
your work procedure returns true, it is removed from the list of work
procedures. You can also explicitly remove a work procedure from the list
by calling the REMOVE WORK PROC intrinsic routine.

Example 2-13 illustrates how to add a work procedure.

Example 2-13 Adding a Work Procedure

Boolean work proc();
int state; -

XtAddWorkProc(work_proc, &state);

Boolean work_proc(state)
int *state;

/* perform processing */

2.9 Manipulating the Interface at Run Time

2-30

Callbacks provide a one-way communication path from the interface to the
application. To manipulate the interface once it has been displayed, you
must use widget manipulation routines.

2.9.1

Creating a VMS DECwi.ndows Application
2.9 Manipulating the Interface at Run Time

The XUI Toolkit provide two types of widget manipulation routines:

• Standard widget manipulation routines

• Widget-specific manipulation routines

Standard Widget Manipulation Routines
The standard widget manipulation routines perform general operations
on all XUI Toolkit widgets. For example, using the standard widget
manipulation routine SET VALUES, you can assign a value to a widget
attribute after the widget has been created.

The X Toolkit intrinsics provide the standard widget manipulation routines
of the XUI Toolkit. Table 2-5 lists the commonly used intrinsics routines
that provide for standard widget manipulation.

Table 2-5 Standard Widget Manipulation Routines

Routine

REALIZE WIDGET

DESTROY WIDGET

GET VALUES

SET VALUES

MANAGE CHILD

MANAGE CHILDREN

UNMANAGE CHILD

UNMANAGE CHILDREN

ADD CALLBACKS

REMOVE CALLBACKS

Function

Create the widget window and map it

Destroy a widget including its window and data

Retrieve the value of one or more widget attributes

Set the value of one or more widget attributes

Add a widget to a composite widget's list of managed
children

Add a list of widgets to a composite widget's list of
managed children

Remove a widget from a composite widget's list of
managed children

Remove a list of widgets from a composite widget's list
of managed children

Add a callback routine to a widget

Remove a callback routine from a widget

The Hello World! application uses the standard widget manipulation
routine SET VALUES to change the text of the label displayed in the push
button widget.

As with any widget attribute, you can use the SET VALUES intrinsic
routine to assign a callback routine list as the value of a callback attribute.
However, the SET VALUES intrinsic routine destroys the existing callback
routine list when it assigns this new value. The callback routine list of
a widget can contain callbacks set up internally by the parent widget.
For this reason, the XUI Toolkit provides the intrinsic routines ADD
CALLBACKS and REMOVE CALLBACKS to add or delete callback
routines.

2-31

2.9.2

2.10

2.10.1

Creating a VMS DECwindows Application
2.9 Manipulating the Interface at Run Time

Widget-Specific Manipulation Routines
In addition to standard widget manipulation routines, the XUI Toolkit
includes many widget-specific manipulation routines. These routines
perform common operations associated with a particular widget. For
example, a toggle button widget, which indicates on and off states, has two
associated widget-specific manipulation routines that allow you to read the
current state or set the current state.

Complete Listing of the Hello World! Sample Application
The following sections contain the source code for three versions of the
Hello World! sample application. Each version illustrates a different
method of creating the widgets in the user interface. All three versions of
the program produce the same result.

Using Low-Level Routines to Create the Hello World! User Interface
Example 2-14 is the setup section of the Hello World! application that
uses low-level routines to create the widgets of the user interface.

Example 2-14 Setup Section of the Hello World! Application Using Low-Level Routines

#include <decw$include/DwtAppl.h>

static void helloworld_button_activate();

static DwtCallback callback_arg[2];

/******** Main Program ********/

int main(argc, argv)
unsigned int argc;
char **argv;

Widget toplevel, helloworldmain, button, label;
Arg arglist [5];

/******** Set up the User Interface ********/

toplevel = Xtinitialize ("Hi","helloworldclass",NULL, 0, &argc, argv);

XtSetArg (arglist[O], XtNallowShellResize, TRUE);
XtSetValues (toplevel, arglist, 1);

0 helloworldmain = DwtDialogBoxCreate (toplevel, "MAINWIN", NULL, 0);

XtSetArg (arglist[O], DwtNlabel,
DwtLatinlString ("Press button once\nto change label;\ntwice to exit."));

8 label= DwtLabelCreate (helloworldmain, "label", arglist, 1);

callback_arg[O] .proc = helloworld_button_activate;
callback_arg[O] .tag = O;
callback_arg[l] .proc = NULL;

2-32

(continued on next page)

Creating a VMS DECwindows Application
2.10 Complete Listing of the Hello World! Sample Application

Example 2-14 {Cont.) Setup Section of the Hello World! Application Using Low-Level Routines

XtSetArg (arglist[O], DwtNx, 15);
XtSetArg (arglist[l], DwtNy, 40);
XtSetArg (arglist[2], DwtNactivateCallback, callback arg);
XtSetArg (arglist[3], DwtNlabel, DwtLatinlString("Hello\nWorld!"));

8 button= DwtPushButtonCreate (helloworld.main, "button", arglist, 4);

XtManageChild (label);

XtManageChild (button);

XtManageChild (helloworld.main);

XtRealizeWidget (toplevel);

/******* End of Set Up ********/

8 This version of the Hello World! application uses the low-level routine
DIALOG BOX CREATE to create the dialog box widget. In the
example, the dialog box widget is created without setting any widget
attributes.

8 Hello World! ~reates the label widget with a call to the low-level
routine LABEL CREATE.

8 Hello World! creates the only other widget in the application, the push
button widget, using the low-level routine PUSH BUTTON CREATE.

2.10.2 Using High-Level Routines to Create the Hello World! User Interface
Example 2-15 is the setup section of the Hello World! application that
uses high-level routines to create the widgets of the user interface.

2-33

Creating a VMS DECwindows Application
2.1 O Complete Listing of the Hello World! Sample Application

Example 2-15 Setup Section· of the Hello World! Application Using High-Level Routines

#include <decw$include/DwtAppl.h>

static void helloworld_button_activate();

static DwtCallback callback_arg[2];

/******** Main Program ********/

int main(argc, argv)
unsigned int argc;
char **argv;

Widget toplevel, helloworldmain, button, label;
Arg arglist[2];

/******** Set up'the User Interface **********/

toplevel = Xtinitialize ("Hi","helloworldclass", NULL, 0, &argc, argv);

XtSetArg (arglist[O], XtNallowShellResize, TRUE);
XtSetValues (toplevel, arglist, 1);

8 helloworldmain = DwtDialogBox (toplevel, "MAINWIN", TRUE, 0, 0,
DwtLatinlString ("Hi"), DwtWorkarea, 0, 0);

8 label = DwtLabel (helloworldmain, "label", O, O,
DwtLatinlString ("Press button once\nto change label;\ntwice to exit."), 0);

callback_arg(O] .proc = helloworld_button_activate;
callback_arg[O] .tag = O;
callback_arg[l] .proc = NULL;

• button = DwtPushButton (helloworldmain, "button", 15, 40,
DwtLatinlString ("Hello\nWorld!"), callback_arg, 0);

XtManageChild (label);

XtManageChild (button);

XtManageChild (helloworldmain);

XtRealizeWidget (toplevel);

/******** End of Set Up *********/

2-34

8 This version of the Hello World! application uses the high-level routine
DIALOG BOX to create the dialog box widget.

8 Hello World! creates the label widget with a call to the high-level
routine LABEL.

e Hello World! creates the only other widget in the application, the push
button widget, using the high-level routine PUSH BUTTON.

Creating a VMS DECwindows Application
2.10 Complete Listing of the Hello World! Sample Application

2.10.3 Using UIL and ORM to Create the Hello World! User Interface
Example 2-16 and Example 2-17 are the files that make up the
UIUDRM version of the Hello World! application. Example 2-16 is the
UIL specification file for the Hello World! user interface; Example 2-17
is the main application program of the Hello World! application. In this
version, the application uses DRM routines to access the user interface
database created with UIL.

Example 2-16 Hello World! Application UIL Specification File

ttmodule helloworld
version = 'v2.0'
names = case sensitive

8procedure
helloworld_button_activate();

8object
helloworld_main : dialog_box {

controls {

} ;

8object

} ;

label helloworld_label;
push_button helloworld_button;

helloworld button push_button {

} ;

8object

arguments {
x = 15;
y = 40;
label label

} ;

callbacks {

compound string ('Hello' ,.separate=true) &
compound=string('World!');

activate= procedure helloworld_button_activate();
} ;

helloworld_label : label {
arguments {

} ;
} ;

label label =
compound_string('Press button once' ,separate=true)&
compound string('to change label;' ,separate=true)&
compound=string('twice to exit.');

<tend module;

8 Required statement to begin a UIL module. This statement assigns a
name and a version number to the UIL module, and declares that the
names of objects in the module are case sensitive.

8 Procedure declaration of the callback routine to be associated with the
push button widget. Note that this routine is also declared in the main
application program for the Hello World! application.

2-35

Creating a VMS DECwindows Application
2.1 O Complete Listing of the Hello World! Sample Application

8 Object declaration of the main Hello World! application widget, the
dialog box widget. Note the listing of its two children in the controls
list section of the object declaration.

8 Object declaration of the label widget child.

8 Object declaration of the push button widget.

8 Required statement to signify the end of the UIL specification file.

Example 2-17 Hello World! Application Using UIL -

#include <stdio.h>
#include <decw$include/DwtAppl.h>

t»static DRMHierarchy s_DRMHierarchy;
8static char *vec [] = { "helloworld. uid"};
8static DRMCode class ;

static void helloworld_button_activate();

8static DRMCount regnum = 1 ;
8static DRMRegisterArg regvec[] = {

{"helloworld_button_activate", (caddr_t)helloworld button activate}
} ;

int main(argc, argv)
unsigned int argc;
char **argv;

{

8 Widget toplevel, helloworldmain;
Arg arglist[l] ;

/******** Set up the User Interface ********/

fj DwtinitializeDRM ();

toplevel = Xtinitialize("Hi","helloworldclass",NULL, O, &argc, argv);

XtSetArg (arglist[O], XtNallowShellResize, TRUE) ;
XtSetValues (toplevel, arglist, 1) ;

G) if (DwtOpenHierarchy (1,vec,NULL, &s_DRMHierarchy) != DRMSuccess)
{

printf ("can't open hierarchy");

CD DwtRegisterDRMNames (regvec, regnum)

I> if (DwtFetchWidget (s_DRMHierarchy, "helloworld_main", toplevel,
&helloworldmain, &class) != DRMSuccess)

printf("can't fetch interface");

G> XtManageChild(helloworldmain);
XtRealizeWidget(toplevel);

2-36

0 The application declares a variable, named s_DRMHierarchy, which is
a pointer to a DRM data structure. This data structure describes the
DRM database hierarchy. The routine DwtOpenHierarchy returns the
value of s_DRMHierarchy.

Creating a VMS DECwindows Application
2.10 Complete Listing of the Hello World! Sample Application

8 The application specifies the name (or names) of the UID file in an
array of pointers to strings, named vec. Using DRM, you can specify a
hierarchy of UID files. A search for widgets involves a search through
this UID file hierarchy.

8 The example declares a variable, named class, to hold the DRM class
value returned by the FETCH WIDGET routine. (The class variable is
not used by the Hello World! application.)

8 The sample application initializes a variable that identifies the number
of names DRM must register. This is later used in the call to the DRM
routine REGISTER NAMES.

8 The application stores the name of the callback routine helloworld_
button_activate and its address in an array for later use by the DRM
routine REGISTER NAMES.

(!) Note that this version of the Hello World! application only declares
two variables to hold widget identifiers. This version does not need
variables to hold the widget identifiers of the label or push button
widgets because it does not manipulate these widgets. DRM manages
the widgets automatically. The DRM routine FETCH WIDGET returns
the widget identifier of the topmost widget in the application hierarchy
when it creates the widgets. The application uses this widget identifier
when it manages the topmost widget in the hierarchy. You can retrieve
the widget identifiers for any widget created by DRM by requesting a
creation callback.

8 The DRM routine INITIALIZE DRM initializes DRM. An application
must initialize DRM before initializing the XUI Toolkit.

8 Using the DRM routine OPEN HIERARCHY, the application opens the
UID file that contains the definition of the Hello World! application
interface. The application specified the names of the UID files earlier
in8.

0 The call to the DRM routine REGISTER DRM NAMES maps the
names of the callback procedures in the UIL specification file to the
actual procedures in the program. The names and corresponding
addresses were defined in 8.

8 In this call to the DRM routine FETCH WIDGET, the application
fetches the widget named helloworld_main from the hierarchy of UID
files. DRM retrieves the widget definition and creates the widget,
returning its widget identifier in the variable helloworldmain.

At the same time it creates the main widget of the Hello World!
application, FETCH WIDGET also fetches the definitions for all the
children of the specified widget and creates them as well.

e The application manages the topmost widget in its widget hierarchy
and then realizes the widget, making the interface appear on the
screen.

2-37

Creating a VMS DECwindows Application
2.10 Complete Listing of the Hello World! Sample Application

2.10.4 The Hello World! Sample Application Main Input Loop and Callback
Routine

Example 2-18 is the main input loop and callback routine used by all
three versions of the Hello World! application.

Example 2-18 Main Input Loop and Callback Routine of the Hello World! Application

/******** Main Input Loop ********/

8 XtMainLoop();

/******** Callback Routine ********/

8static void helloworld button activate(widget, tag, callback data
Widget widget; - -
char *tag;
DwtAnyCallbackStruct *callback_data;

Arg arglist[2];

static int call count 0;

call_count += 1 ;
switch (call_count)

{

2-38

case 1:
XtSetArg (arglist[O], DwtNlabel, DwtLatinlString("Goodbye\nWorld!"));
XtSetArg (arglist[l], DwtNx, 11);
XtSetValues (widget, arglist, 2);
break ;

case 2:
exit(l);
break ;

8 The Hello World! application enters its main input loop by calling the
intrinsic routine MAIN LOOP. You call this routine no matter how you
have created the interface.

8 The callback routine used by the Hello World! application.

3 Creating a User Interface Using UIL and ORM

This chapter describes how to use the User Interface Language (UIL) to
specify a user interface for a VMS DECwindows application. The chapter
also describes how to access the compiled interface specification at run
time using the XUI Resource Manager (DRM).

3.1 Overview of UIL and DRM
The User Interface Language (UIL) is a specification language for
describing the initial state of a user interface for a VMS DECwindows
application. The specification describes the objects (for example, menu
widgets, dialog box widgets, label widgets, and push button widgets)
used in the interface and specifies the routines to be called when the
interface changes state (as a result of user inte;raction). You specify the
user interface in a UIL module, which you store in a UIL specification
file.

Using UIL, you can specify the following:

• Objects (widgets and gadgets) that make up your interface

• Arguments (or resources) of the objects you specify

• Callback routines and tags for each object

• The widget hierarchy.for your application

• Literal values that can be fetched by the application

The UIL compiler has built-in tables containing information about
widgets. For every object (widget or gadget) in the XUI Toolkit, the UIL
compiler knows which widgets are valid children of the object, the object's
arguments, and the valid callback reasons for the object. The UIL compiler
uses this information to check the validity of your interface specification
at compile time, thereby helping you reduce run-time errors. The VMS
DECwindows User Interface Language Reference Manual describes the
information stored in the UIL built-in tables.

The UIL compiler translates the UIL ·module into a User Interface
Definition (UID) file. You include DRM routine calls in your application
program that allow access to the UID file. During execution of the
application, DRM builds the arguments list and makes the necessary
calls to the widget creation routines in order to create the user interface.
By default, the newly created interface conforms to the XUI Style Guide.
UIL and DRM are components of the XUI Toolkit.

Using UIL and DRM offers many benefits. By specifying the widgets
in the interface in a separate UIL module, the size of your application
program (particularly in the setup portion) is greatly reduced. (Compare
the different versions of the Hello World! application in Section 2.10.)
Since the UIL specification exists in a separate file, you can change

3-1

Creating a User Interface Using UIL and ORM
3.1 Overview of UIL and ORM

the user interface with few, if any, changes to the application program.
This separation of form and function also allows you to develop multiple
interfaces (for example, in different languages) for a single application.

When you use UIL and DRM, you do not call high- or low-level widget
creation routines directly in your application program; you let UIL and
DRM do much of this work for you. DRM simplifies and automates the
widget creation process and allows the fastest possible initialization of a
VMS DECwindows application. For example, DRM automatically creates
shell widgets; you do not have to specify shell widgets in UIL. Since you do
not need to know the format of the widget creation routine calls, UIL can
be easier to learn. UIL and DRM are designed to be language independent
and to make applications portable. UIL and DRM hide XUI Toolkit data
structures and other programming details; you may not have to change
your application every time the XUI Toolkit changes.

Figure 3-1 shows the steps involved at run time to set up an interface that
was specified with UIL.

Figure 3-1 Setting Up a User Interface Specified with UIL

1. Initialization

• Initialize DRM

• Open UID Hierarchy Set Up the
User

Interface
• Register names for DRM

2. Creation

• Fetch interface and create widgets

D DRM Routine

Ill Intrinsic Routine

3-2

CaHbac:k Callback Callback 1 • • •

Routlne Routine Routine j

ZK-0166A-GE

As Figure 3-1 shows, setting up an interface specified with UIL requires
the following steps:

1 Initialization

In the initialization step, the application program must make calls to
DRM and intrinsic routines in the following sequence:

• Initialize DRM.

Creating a User Interface Using UIL and ORM
3.1 Overview of UIL and ORM

The DRM routine INITIALIZE DRM prepares your application to
use DRM widget-fetching facilities.

• Register user-defined classes.

The DRM routine REGISTER CLASS saves the information
needed to access the widget creation routine for a user-defined
widget and to perform type conversion of user-defined arguments.
If you use only XUI Toolkit widgets and gadgets in your interface,
you do not call this routine. (Appendix D explains how to build
your own widgets.)

• Initialize the XUI Toolkit.

The intrinsic routine INITIALIZE parses the command line used
to invoke the application, opens the display, and initializes the XUI
Toolkit.

• Open the UID hierarchy.

The UID hierarchy is the set of UID files containing the widget
definitions for the user interface. The DRM routine OPEN
HIERARCHY opens these UID files.

• Register names for DRM.

The DRM routine REGISTER DRM NAMES registers names and
associated values for access by DRM. The values can be callback
routines, pointers to user-defined data, or any other values. DRM
uses this information to resolve symbolic references in UID files to
their run-time values.

2 Creation

In the creation step, you call the DRM routine FETCH WIDGET to
fetch the user interface. Fetching is a combination of widget creation
and children management. The DRM routine FETCH WIDGET
performs the following operations:

• Locates a widget description in the UID hierarchy

• Creates the widget and recursively creates the widget's children

• Manages all children as specified in the UID descriptions

• Returns the widget identifier

You specify the top-level widget of the application (usually the main
window) and its parent (the widget identifier returned by the call to
INITIALIZE) in the call to FETCH WIDGET. As a result of this single
call, DRM fetches all widgets below the top-level widget in the widget
hierarchy.

You can defer fetching portions of an application interface until
requested by the end user. For example, you can defer fetching a
pull-down menu widget until the user activates the corresponding
pull-down menu entry. Consider deferring fetching of some portions of
your interface if you need to improve the startup performance of your
application. Deferred fetching is explained in Section 3.3.2.

3-3

Creating a User Interface Using UIL and ORM
3.1 Overview of UIL and ORM

3 Realization

The steps to manage and realize a user interface created with UIL and
DRM are the same as those for an interface created with XUI Toolkit
routines:

• Manage the top-level widget.

The intrinsic routine MANAGE CHILD adds a child to the top
level widget returned by the call to INITIALIZK The entire widget
hierarchy below the top-level widget in the interface (usually the
main window widget) is automatically managed as a result of this
call to MANAGE CHILD.

• Realize the top-level widget.

The intrinsic routine REALIZE WIDGET displays the entire
fetched interface (the top-level widget and the widget hierarchy
below it) on the screen.

DRM's role in a VMS DECwindows application is limited for the most part
to widget creation. DRM makes run-time calls that create widgets from
essentially invariant information (that is, information that does not change
from one invocation of the application to the next). Once DRM fetches a
widget (creates it and manages its children), all subsequent operations on
the widget-realization, managing children after initialization, getting and
setting resource values-must be done by run-time calls. After creation,
modification of widgets during application execution is accomplished
using widget manipulation routines. (DRM provides widget manipulation
routines, which are described in Section 3.3. Section 2.9 describes run-time
modification of widget attributes using XUI Toolkit routines.)

The VMS DECwindows User Interface Language Reference Manual
completely describes UIL. DRM routines are fully described in the VMS
DECwindows Toolkit Routines Reference Manual.

3.2 Specifying a User Interface Using UIL-A Sample Program

3-4

The examples in this section are based on the sample VMS DECwindows
application called DECburger, which is introduced in Section 1.2.
Specifically, this section explains how the interface for the DECburger
sample application is specified in UIL. Figure 1-4 shows the DECburger
interface.

Note that although the DECburger application is designed to show as
many different widgets and UIL coding techniques as possible, this
application does not use every feature of UIL. For a complete description
of UIL, see the VMS DECwindows User Interface Language Reference
Manual.

The examples in this section show only relevant portions of the UIL
module for the DECburger application. Section 3.3 shows the relevant
portions of the C language program for the DECburger application to
illustrate the use of DRM run-time routines.

Note: In this section, reserved UIL keywords are shown in uppercase
letters in the text. This is for emphasis only and is not required

3.2.1

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

by the UIL compiler. If you specify that names and keywords in
your UIL module are case sensitive (see Section 3.2.4), you must
put keywords in lowercase letters.

Do not use reserved keywords as names in a UIL module. The
VMS DECwindows User Interface Language Reference Manual lists
reserved and nonreserved keywords.

To specify an interface using UIL, perform the following steps:

1 Create one or more UIL specification files with file type UIL.

The number of files you use to completely specify the interface
depends on the complexity of the application; the need for variations
(for example, English and French versions); and the size of the
development project team (on large projects, the UIL module can
be distributed over several files to avoid access competition).

2 Declare the UIL module (begin a module block).

The module block header contains some module-wide declarations
(such as case sensitivity for names and keywords in the module, the
default character set for compound strings, and identification of which
objects should be interpreted as gadgets).

3 Include the file containing useful UIL constants.

This file contains definitions of many constants you need to use to
specify objects in UIL (for example, to align label widgets or to orient
menu widgets). There is a file of constant definitions for each of the
MIT C and VAX bindings.

4 Declare the callback routines referenced in the object declarations.

For each object in the UIL module, associate these routines with
the callback reasons that the object supports. Define these callback
routines in the application program.

5 Declare the values (integers, strings, colors, and so on) you will use in
the object declarations.

6 Declare the interface objects (widgets and gadgets).

Declare interface objects in roughly the same order the objects appear
in the widget hierarchy. Figure 6-7 in Section 6.5 shows a portion of
the DECburger widget hierarchy.

7 End the module block.

Recommended UIL Coding Techniques
The DECburger UIL module shows recommended coding practices that
should improve your productivity and increase the flexibility of your
programs. This section explains how these practices can help you write
better UIL modules. Descriptions of the particulars appear in later
sections of this chapter. The language elements and semantics of UIL
are similar to those in other high-level programming languages.

3-5

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

3-6

3.2.1.1 Naming Values and Objects
The names of constants, labels, colors, icons, and widgets in the
DECburger UIL module indicate their purpose in the application. For
example, the name for the constant having integer value 12 is k_burger _
rare. From its name, you can tell that this constant represents the choice
Rare on the Hamburgers menu.

Similarly, the names for objects (widgets and gadgets) indicate their
purpose in the application. In addition, object names should reflect the
object type. For example, you can tell by its name that the m_copy_button
is a button widget (of some kind) on a menu and is associated with the
Copy option.

3.2.1.2 Declaring Values, Identifiers, and Procedures
Group value declarations according to purpose and list them near the
beginning of the module. The UIL compiler requires only that values be
declared before you reference them. So, although you could have a value
section to declare a value immediately preceding an object section in which
the value is used, you will be able to look up the definition of a particular
value more easily if all declarations are in one place in the module.

In the DECburger UIL module, separate value sections are used to group
values as follows:

• Constants for positioning attached dialog boxes

• Constants for callback routines

• Labels and other text strings

• Fonts

• Colors

• Color tables

• Icons

Having the constants for callback routines located in a single value section
makes it easier to cut this section from the UIL module and paste it into
the accompanying application program (since these constants must be
defined in the program as well as in the UIL module).

By setting up all labels as compound string values, rather than hardcoding
them in the object declarations, you can more easily change the labels
from one language to another. (Specify a string as a compound string by
using the UIL built-in function COMPOUND_STRING.)

In addition, declaring text strings as values allows the text string to
be reused by several objects, thereby saving space in the generated
UID file. For example, the value quantity _label is used three times in
the DECburger order dialog box widget, but only one compound string,
"Quantity", is stored in the UID file.

Note that some arguments for the simple text widget and the command
window widget accept only null-terminated strings. For example, labels
for these widgets must be declared as null-terminated text strings. The
UIL compiler automatically converts a null-terminated text string to a

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

compound string if the string value is used to specify an argument that
takes a compound string.

Similar to the value section, in the DECburger UIL module, all procedure
declarations for callback routines are listed in a single procedure section at
the beginning of the module, immediately following the module declaration
and include directive.

The DECburger application does not use identifiers (which function
like global variables). Treat identifier sections as you would treat value
sections. (Identifiers are described in Section 3.5.)

You can isolate visual appearance information in a single section of a UIL
module by declaring position and geometry values (for example, arguments
x, y, width, and height) as UIL values. Having this information readily
available in one place in the UIL module is very helpful for people who
must translate the interface into another language. Language changes
often require changes to widget size or position to accommodate different
string lengths.

3.2.1.3 Declaring Objects
Once all your values, identifiers, and callback routines are declared, the
rest of the UIL module consists of object declarations. The key technique
here is to structure your module to reflect the widget hierarchy of the
application interface. For example, in the DECburger UIL module,
the choices for how the hamburger should be cooked are presented in
a radio box widget having three children, which are toggle button widgets.
Figure 3-2 shows how this radio box widget looks in the DECburger
application interface.

3-7

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

Figure 3-2 Radio Box with Toggle Buttons in the DECburger Application

elcome to OECburger

File Edit Order

Hamburgers

0Rare
(i) Medium
QWell Done

D Ketchup
D Mustard
D Pickle
D Onion

Fries

: Size [Medium

D Mayonnaise'.

0

:Quantity ~
Quantity

(Apply Dismiss I

Drinks

Orange Juice
Grape Juice

Cola

I Quantity

Reset

0

ZK-0160A-GE

Figure 3-3 shows how these widgets are arranged in a hierarchy, which is
defined by the controls list for the radio box named burger _doneness_box.

3-8

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

Figure 3-3 Widget Hierarchy for the DECburger Radio Box Widget

burger_doneness_box

radio_box

burger_rare burger_medium burger_well ------
toggle_button toggle_button toggle_button

ZK-0159A-GE

Example 3-1 shows the object declaration in the UIL module for the
burger _doneness_box widget. Note that the children of the radio box
widget (the three toggle button widgets) are declared immediately
following the radio box object declaration. By ordering your object
declarations in this way, you can get an idea of the overall widget
hierarchy for your interface by scanning the UIL module.

3-9

3.2.2

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

Example 3-1 Widget Hierarchy in the DECburger UIL Module

object
burger_doneness box

arguments {

object

} ;

controls
toggle_button
toggle_button
toggle_button
} ;

} ;

radio box

burger_rare;
burger_medium;
burger_well;

burger_rare toggle_button {

} ;

object
burger_medium toggle_button {

} ;

object
burger_well toggle_button

} ;

3.2.1.4 Using Local Definitions for Objects
If you need to define an object that is used as a child of a single parent and
that will not be referenced by any other object in the UIL module, define
the object in the controls list for its parent rather than in an object section
of its own. This simplifies the UIL module and saves you from having to
create an artificial name for that object. Example 3-14 in Section 3.2.8.2
shows local definitions for the separator gadgets used in the DECburger
interface.

Creating a UIL Specification File

3-10

Store the UIL specification for a user interface in a UIL specification file.
The UIL specification file contains the definitions of user interface objects
and the values and callback routine names used in these definitions. The
UIL compiler assumes a default file type of UIL. The compiled version
of these definitions is stored in a User Interface Definition (UID) file.
Compile a UIL specification file using the DCL command UIL.

3.2.3

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

For example, if your interface specification is in the file
DECBURGER.UIL, you compile this file by entering the following
command:

$ UIL DECBURGER

By default, the compiled version of DECBURGER.UIL is named
DECBURGER.UID. Specify the name of the UID file in the UID hierarchy
list in your application program. (Section 3.3 describes how to use DRM to
access the information stored in UID files.)

When you compile your UIL specification file, you can use the NERSION
qualifier. The NERSION qualifier provides upward compatibility between
the UIL compiler in VMS Version 5.1 and that in VMS Version 5.3.

In particular, the NERSION qualifier allows you to continue building
interfaces that will run under the XUI Toolkit in VMS Version 5.1 (for
example, the processing of newline characters that are embedded in
compound strings), while still being able to use the new UIL compiler
features implemented for VMS Version 5.3.

Allowable values for the NERSION qualifier are Vl (for VMS Version 5.1)
and V2 (for VMS Version 5.3). The default is NERSION=V2.

Structure of a UIL Module
The UIL specification file contains a module block that consists of a series
of value, identifier, procedure, list, and object sections. There can be any
number of these sections in a UIL module. The UIL has an include
directive that allows you to include the contents of another file in your
UIL module. You can use an include directive to specify one or more
complete sections. You can place the include directive wherever a section
is valid. You cannot specify a part of a section using an include directive.

You can also use the include directive to include a file of useful constants
you need to specify values for some attributes (such as style and
alignment). Section 3.2.5 describes this include file.

Example 3-2 shows the overall structure of a UIL module.

3-11

3.2.4

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

Example 3-2 UIL Module Structure

!+
Sample UIL module

!-

module example ! Module name
!+

!-

!+

!-

Place module header clauses here.

Declare the VALUES, IDENTIFIERS, PROCEDURES, LISTS, and
OBJECTS here.

end module;

Declaring the UIL Module
In the module declaration, you name the module and make module-wide
specifications by using one or more module header clauses. Table 3-1
briefly explains the optional UIL module header clauses you can use in the
module declaration.

Table 3-1 Optional UIL Module Header Clauses

Clause

Version

Case sensitivity

Default character set

Object variant

3-12

Purpose Default

Allows you to ensure the None
correct version of the UIL
module is being used

Specifies whether names and Case
keywords in the UIL module insensitive
are case sensitive

Specifies the default ISO_LATIN1
character set for string
literals in the compiled UIL
module

Specifies the default variant Widget
of objects defined in the
module on a type-by-type
basis

Example

version = 'v2.0'

names = case_sensitive

character_set = iso_latin6

objects = { separator = gadget; push_
button = widget; toggle_button =
widget; label = gadget; }

Example 3-3 shows the module declaration for the DECburger UIL
module.

3.2.5

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

Example 3-3 Module Declaration in the DECburger UIL Module

module decburger_demo
version = 'v2.0'
names = case sensitive
objects = {

separator = gadget
label = gadget ;
push_button = gadget
toggle_button = gadget
}

include file 'DwtAppl.uil';

The name you specify in the UIL module declaration is stored in the UID
file when you compile the module. The module declaration for DECburger
specifies the following:

• DRM will identify the DECburger interface module by the name
decburger _demo.

• This is the first version of this module.

• Names are case sensitive.

• All separator, label, push button, and toggle button objects are gadgets
unless overridden in specific object declarations. All other types of
objects are widgets.

Note: Refer to the UIL built-in tables in the VMS DECwindows User
Interface Language Reference Manual to verify that you can
specify a gadget as a child of a particular object. Some objects
support only the widget variant of the push button and the toggle
button. You might need to override the default gadget variant
when defining a push button or toggle button that will be a child
of one of these objects. The definition of the up_value push button
in Example 3-16 in Section 3.2.9 shows how to override the default
gadget variant set for push buttons in the DECburger UIL module.

Using the UIL Constants Include File
The last line in Example 3-3 is an example of a UIL include directive.
When you compile the module, the UIL compiler replaces the include
directive with the contents of the specified file.

The file containing definitions of UIL constants is named DwtAppl. uil
for the MIT C binding and DECW$DWTDEF.UIL for the VAX binding.
By default, these files are located in the directories associated with the
logical names DECW$INCLUDE: and SYS$LIBRARY:, respectively. The
UIL constants file must be included before its contents are referenced.
Therefore, include the UIL constants file immediately following the module
header.

3-13

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

The logical name UIL$1NCLUDE, which points to the directory containing
the UIL constants file, is defined in the command procedure for building
and running the DECburger application (DECBURGER.COM). Therefore,
the file specification in the include directive does not need to contain
a directory specification. As long as you use the DECBURGER.COM
command procedure to run the DECburger application, the UIL constants
file will be included.

If you do not use the DECBURGER.COM command procedure to
build the DECburger application, you need to define the logical name
UIL$INCLUDE to point to the directory associated with the logical name
DECW$INCLUDE, or you must completely specify the UIL constants file
in the include directive as follows:

include file 'decw$include:DwtAppl.uil';

The UIL module for the DECburger application makes use of some
of the constants defined in DwtAppl.uil. For example, the constants
DwtModeless and DwtOrientationVertical shown in Example 3-4
come from this include file.

Example 3-4 Constants from Include File in the DECburger UIL Module

object

control box : popup_dialog_box {

3-14

arguments {
title = k_decburger_title;
style = DwtModeless;
x = 300;
y = 100;
margin_width = 20;
background_color = lightblue;

} ;

controls {

label
label
label

separator

burger_label;
fries label;
drink~)abel;

{arguments {
x = 110;
y = 10;
orientation = DwtOrientationVertical;
height= 180; };};

3.2.6

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

Declaring Procedures in UIL
Use a procedure declaration to declare a routine that can be used as a
callback routine for an object. You can reference the routine name in
object declarations that occur later in the UIL module.

As explained in Section 2.8, callback routines must be defined to accept
three parameters: the identifier of the widget triggering the callback, a
tag for user-defined information, and the callback data structure (which
is unique to each widget). The widget identifier and callback structure
parameters are under the control of the XUI Toolkit. The tag, however, is
under the control of the application program.

In a UIL module, you can specify the data type of the tag to be passed to
the corresponding callback routine at run time by putting the data type in
parentheses following the routine name. When you compile the module,
the UIL compiler checks that the argument you specify in references to
the routine is of this type. Note that the data type of the tag must be one
of the valid UIL types (see Table 3-3).

For example, in the following procedure declaration, the callback routine
named toggle_proc must be passed an integer tag at run time. The UIL
compiler checks that the parameter specified in any reference to the
routine named toggle_proc is an integer.

procedure
toggle_proc (integer);

While you may use any UIL data type to specify the type of a tag in a
procedure declaration, you must be able to represent that data type in the
high-level language you will be using to write your application program.
Some data types (such as integer, Boolean, and string) are common data
types recognized by most programming languages. Other UIL data types
(such as string tables) are more complicated and may require that you set
up an appropriate corresponding data structure in the application in order
to pass a tag of that type to a callback routine.

Table 3-2 summarizes the rules the UIL compiler follows for checking
the argument type and count. The way you declare the callback routine
determines which rule the UIL compiler uses to perform this checking.

Table 3-2 UIL Compiler Rules for Checking Argument Type and Count

Declaration Type

No parameters

{)

(ANY)

(value_type)

Description of Rule

No argument type or argument count checking. You can
supply no arguments or one argument in the procedure
reference.

Checks that argument count is 0.

Checks that argument count is 1 . Does not check argument
type. Use ANY to prevent type checking on callback routine
tags.

Checks for one argument of the specified value type.

3-15

3.2.7

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

Example 3-5 shows that all callback routines in the DECburger UIL
module specify that argument type and argument count are to be checked
when the module is compiled.

Example 3-5 Procedure Declaration in the DECburger UIL Module

procedure
toggle_proc
activate_proc
create_proc
scale_proc
list_proc
quit proc
show ::)ide _proc
pull_proc

(integer);
(integer);
(integer);
(integer);
(integer);
(string);
(integer);
(integer);

You can also use a procedure declaration to specify the creation routine for
a user-defined widget. In this case, you must not specify any parameters.
The creation routine is invoked by DRM with the standard four arguments
passed to all low-level creation routines (see Section 2.4.1). Refer to
Section 3.9 for information about working with user-defined widgets in
UIL.

Declaring Values in UIL
A value declaration is a way of giving a name to a value expression. The
value name can be referenced by declarations that occur later in the
UIL module in any context where a value can be used. You must have
previously declared a value before you reference it.

Table 3-3 lists the supported value types in UIL. See the VMS
DECwindows User Interface Language Reference Manual for a complete
description of UIL values.

Table 3-3 UIL Value Types

ANY

ARGUMENT

ASCIZ_STRING_ TABLE

BOOLEAN

CLASS_REC_NAME

COLOR

3-16

COLOR_ TABLE INTEGER

COMPOUND_STRING INTEGER_ TABLE

COMPOUND_STRING_ TABLE PIXMAP

FLOAT REASON

FONT STRING

FONT_TABLE TRANSLATION_ TABLE

You can control whether values are local to the UIL module or globally
accessible by DRM by specifying one of the following keywords in the
value declaration:

• EXPORTED-A value that you declare as exported. This value
is stored in the UID file as a named resource and can be either
referenced by name in other UID files, or fetched from the UID file
by the application using DRM literal fetching routines.

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

• IMPORTED-A value that is defined as a named resource in a UID
file. When you declare a value as imported, DRM looks outside the
module in which the imported value is declared to get its value at
run time. DRM resolves this value declaration with the corresponding
exported declaration at application run time.

• PRIVATE-A value that is neither imported nor exported and is
not stored as a distinct named resource in the UID file. You can
reference a private value only in the UIL module containing the value
declaration.

EXPORTED, IMPORTED, and PRIVATE are reserved UIL keywords. By
default, values are private.

The DECburger application uses several kinds of values, as shown in
the examples in the remainder of this section. There is a separate value
section for each type of value to make it easier to find the value declaration
during debugging.

3.2.7.1 Defining ·Arguments for Attached Dialog Box Widgets
Use an attached dialog box widget when you want to position and size
the children of the dialog box widget relative to the other children in the
dialog box widget or to the dialog box widget itself. Using an attached
dialog box widget, you can omit the x, y, width, and height arguments in
favor of relationship expressions.

The attached dialog box widget is an object that allows the definition
of constraint arguments. That is, the attached dialog box widget has
arguments that constrain the geometry of its children, thereby overriding
the children's arguments that specify position and size.

To supply constraint arguments, you include the constraint arguments in
the arguments list of the child object. The following example shows how
to define attachments for a push button. The VMS DECwindows User
Interface Language Reference Manual provides more information about
defining constraint arguments.

object

} ;

my_dialog_box: dialog_box
arguments {

} ;

x = 70;
y = 20;
row = 35;

controls {

} ;

push_button
arguments {

} ;
} ;

adb_left_attachment = DwtAttachWidget;
adb_left_offset = 10;

Note: Do not defer the creation of any widget that is referenced in an
attachment. DRM requires all widgets referenced in attachments
to be created before the attachments can be resolved. If you defer
creation of a widget referenced in an attachment, the UIL module

3-17

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

3-18

will compile, but DRM will not be able to resolve the attachment;
the result is a run-time error.

Refer to Section 7.5 for more information about specifying and using
attached dialog box widgets in a VMS DECwindows application.

3.2.7.2 Defining Integer Values
Integer values are defined together in a single value section of the
DECburger UIL module. These integers are used as tags in the callback
routines. Example 3-6 shows a segment of this value section.

Example 3-6 Defining Integer Values in the DECburger UIL Module

value
k_create_order 1;
k_order_pdme 2;
k_file_pdme 3;
k edit pdme 4;
k=nyi - 5;
k_apply 6;
k dismiss 7;
k_noapply 8;
k_cancel_order 9;
k_submit_order 10;
k_order_box 11;
k burger rare 12;
k=burger=medium 13;
k_burger_well 14;
k_burger_ketchup 15;
k burger mustard 16;
k=burger=onion · 17;
k_burger_mayo 18;
k_burger_pickle 19;
k_burger_quantity 20;

You can also use the INTEGER_TABLE function to define an array
of integer values. By using this method, you can pass more than
one integer value per callback reason. The VMS DECwindows User
Interface Language Reference Manual provides more information about the
INTEGER_TABLE function.

3.2.7.3 Defining String Values
The next value section in the DECburger UIL module contains string
value declarations (see Example 3-7). These strings are the labels for
the various widgets used in the interface. Using values for widget labels
rather than hardcoding the labels in the specification makes it easier to
modify the interface (for example, from English to German). Putting all
label definitions together at the beginning of the module makes it easier to
find a label if you want to change it later. Also, a string resource declared
as a value can be shared by many objects, thereby reducing the size of the
UID file.

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

A compound string can be associated with a character set and, optionally,
a writing direction. Any text in a UIL module intended for dialog box
widget instructions, labels for push button widgets, titles, and so forth
should be declared as a compound string. In general, these strings require
customization for international markets and must include character set
information.

Because the label_label argument requires a compound string value,
the UIL compiler would have automatically converted these strings
to compound strings if they were declared as null-terminated strings.
However, the conversion process can waste space in the UID file. (See the
VMS DECwindows User Interface Language Reference Manual for more
information about data storage consumption.)

The exception, k_O_label_text, is used to define an argument for the simple
text widget; since this widget does not accept compound strings, the value
for k_O_label_text must be a null-terminated text string.

Because there is no default character set specified in the module header
and the individual string values do not specify a character set, the default
character set associated with all these compound strings is ISO_LATINl.

Note that some value names are indented in the value section. This
indentation is not required but improves the readability of the UIL
module. Specifically, this indentation indicates the widget hierarchy.
For example, the widgets labeled Cut, Copy, Paste, Clear, and Select All
are children of the widget labeled Edit. (Section 3.2.8 explains how to
define the widget hierarchy.)

Example 3-7 Defining String Values in the DECburger UIL Module

value
k_decburger_title

compound_string("DECburger Order-Entry Box");
k_nyi_label_text

compound string("Feature is not yet implemented");
k file label text

- k quit l~bel text
k edit label text

- compound_string ("File");

- - -
k cut dot label text - - - -
k_copy_dot_label_text
k_paste_dot_label_text
k clear dot label text - - - -
k_select_all_label_text

k order label text - - -
k_show_controls_label_text
k_cancel_order_label_text
k_submit_order_label_text

compound_string("Quit");
compound_string("Edit");
compound_string("Cut");
compound_string("Copy");
compound_string("Paste");
compound_string ("Clear");
compound string("Select All");
compound:=string("Order");
compound_string("Show Controls ... ");
compound_string("Cancel Order");
compound_string("Submit Order");

3-19

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

3-20

3.2.7.4 Specifying Multiline Compound Strings
In versions of VMS higher than 5.1 (for example, 5.3 and 5.4), the UIL
compiler does not consistently process newline characters (\ n) that
are embedded in compound strings. The effect of a newline character
embedded in a compound string depends entirely on the character set you
specify, and the result may not always be a multiline compound string.

To guarantee that you create a multiline compound string, you must use
the SEPARATE clause in the COMPOUND_STRING function and the
concatenation operator(&) to join the segments into a multiline compound
string. The SEPARATE clause takes the form SEPARATE= boolean
expression. For example, in VMS Version 5.1, the UIL compiler would
generate a multiline compound string from the following input:

value
sample_string : compound_string ("Hello\nWorld!");

To guarantee the same result in versions of VMS higher than 5.1 (for
example, 5.3 and 5.4), you must use the following syntax:

value
sample_linel : compound_string ("Hello", separate= true);
sample line2 : compound string ("World!");
sample=string : sample_linel & sample_line2;

To retain VMS Version 5.1 behavior of the newline character (\n) in a
compound string, compile your UIL specification file using the NERSION
qualifier as follows:

$ UIL/VERSION=Vl MY_FILE. UIL

See the VMS DECwindows User Interface Language Reference Manual
for more information on the COMPOUND_STRING function and the
NERSION qualifier.

3.2.7.5 Defining String Table Values
A string table is a convenient way to express a table of compound strings.
Some widgets require a string table argument (such as the list box widget,
which is used for drink selection in the DECburger application).

Example 3-8 shows how to define a string table value in UIL.

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

Example 3-8 Defining a String Table Value in the DECburger UIL Module

value

k_drinks_label_text : compound_string("Drinks");
k 0 label text : '0';
k-drink list text
- -string_table ('Apple Juice', 'Orange Juice', 'Grape Juice',

'Cola', 'Punch' ,'Root beer', 'Water',
'Ginger Ale', 'Milk', 'Coffee', 'Tea');

k_drink_list_select : string_table('Apple Juice');

The labels for the types of drinks are elements of the string table named
k_drink_list_text. Notice that Apple Juice is a single element in the string
table named k_drink_list_select. This value is passed to the drink_list_
box widget to show apple juice as the default. drink selection. (Refer to
Section 8.2.2 for more information about showing default selection for the
list box widget.)

The UIL compiler automatically converts the strings in a string table
to compound strings, regardless of whether the strings are delimited by
quotation marks or apostrophes.

3.2. 7.6 Defining Font Values
Use the FONT function to declare a UIL value as a font.

Example 3-9 shows the declaration of a font value in the DECburger UIL
module. This value is used later as the value for the font_argument
attribute of the apply _button, can_button, and dismiss_button push button
widgets.

Example 3-9 Declaring a Font Value in the DECburger UIL Module

value
k button font - -

font('-ADOBE-Courier-Bold-R-Normal--14-140-75-75-M-90-IS08859-1');

The VMS DECwindows Xlib Programming Volume lists the valid VMS
DECwindows font names you can use as the argument to the FONT
fun ti on.

Note that the UIL compiler converts a font to a font table when the font
value is used to specify an argument that requires a font table value.

3-21

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

3-22

3.2.7.7 Defining Color Values
Example 3-10 shows the value section in the DECburger module
containing color declarations.

Example 3-1 O Defining Colors in the DECburger UIL Module

value
yellow
red
green
magenta
gold
lightblue

color('yellow', foreground);
color(' red', background);
color('green', foreground);
color('magenta', background);
color('gold', foreground);
color('lightblue', background);

By using the COLOR function, you can designate a string as specifying a
color and then use that string for arguments requiring a color value. The
optional keywords FOREGROUND and BACKGROUND identify how the
color is to be displayed on a monochrome device.

The UIL compiler does not have built-in color names. Colors are a server
dependent attribute of a widget. Colors are defined on each server,
according to the RGB (Red, Green, Blue) color model, and might have
different RGB values on each server. The string you specify as the color
argument to the COLOR function must be recognized by the server on
which your application runs.

In a UID file, colors are represented as a character string. DRM calls
X-level translation routines that convert the color string to the device
specific pixel value. If you are running on a monochrome server, all colors
translate to black or white. If you. are on a color server, the color names
translate to their proper colors if the following two conditions are met:

• The color is defined.

• The color map is not yet full.

If the color map is full, even valid colors translate to black (foreground) or
white (background).

If you have VMS DECwindows software installed on your system, you
can see a listing of the color name strings understood by the VMS
DECwindows servers by entering the following command:

$ TYPE SYS$MANAGER:DECW$RGB.COM

The command procedure DECW$RGB.COM is executed during VMS
DECwindows startup to set up the mapping of color names to RGB
color indexes. These names are defined so that you can use reasonable
names, rather than specify numeric color levels, to pick colors. (The
server stores the equivalent numeric color levels of color names in the
XDEFAULTS.DAT file.)

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

3.2.7.8 Defining Pixmap Values
Pixmap values are designed to let you specify labels that are graphic
images rather than text strings. Pixmap values are not directly supported
by UIL. Instead, UIL supports icons, which are a simplified form of
pixmap. You use a character to describe each pixel in the icon.

You can generate pixmaps in UIL in two ways:

• Define an icon using the ICON function (and optionally use the
COLOR_TABLE function to specify colors for the icon).

• Use the XBITMAPFILE function, specifying the name of an X bitmap
file that you created outside UIL to be used as the pixmap value.

Example 3-11 shows the value section in the DECburger module
containing a color table declaration.

Example 3-11 Defining a Color Table in the DECburger UIL Module

value
button ct color_table(

yellow='o'
, red=' . '
,background color=' ');

The colors you specify when defining a color table must have been
previously defined using the COLOR function. For example, in
Example 3-11, the colors yellow and red were previously defined (see
Example 3-10). Color tables must be private because the UIL compiler
must be able to interpret their contents at compilation time to construct an
icon. The colors within a color table, however, oan be imported, exported,
or private.

Example 3-12 shows how the button_ct color table is used to specify an
icon pixmap. Referring to the definition shown in Example 3-11, each
lowercase o in the icon defined in Example 3-12 is replaced with the color
yellow, and each period(.) is replaced with the color red. Whatever color
is defined as the background color when the application is run replaces the
spaces.

In UIL, if you specify an argument of type pixmap, you should specify an
icon or X bitmap file as its value. Example 3-12 is given as the value of
the label on the drink quantity push button widget. (Refer to the definition
of the drink_quantity widget in Section 3.2.9.)

3-23

3.2.8

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

Example 3-12 Defining an Icon in the DECburger UIL Module

value

drink_up_icon: icon(color_table=button_ct, , ,
, oo ,
, ••••••••• 0000......... ,

, •••••••• 000000 •••••••• ,

, ••••••• 00 •••• 00....... ,

, oo oo ,
, ••••• 00 •••••••• 00..... ,

, oo oo ••.. ,
, ... oo oo ... ,
, .. oo oo .. ,
, .oo oo.
, 0000000000000000000000 , ,

, 0000000000000000000000 ',

, ••••••••• 0000 ••••••••• ,

, oooo ,
, ••••••••• 0000 ••••••••• ,

, ••••••••• 0000 ••••••••• ,

, oooo ,
, ••••••••• 0000. • • • • • • • • , ,

,) ;

Each row in the icon must contain the same number of pixels and therefore
must contain the same number of characters. The height of the icon is
dictated by the number of rows. For example, the arrow icon defined in
Example 3-12 is 24 pixels wide and 20 pixels tall. (The rows of spaces
at the top and bottom of the pixmap and the spaces at the start and end
of each row are included in this count and are defined as the background
color in the button_ct color table.)

A default color table is used if you omit the color table argument. The
definition of the default color table is as follows:

color_table(background color= ' ', foreground color= '*')

You can specify icons as imported, exported, or private.

Declaring Interface Objects in a UIL Module

3-24

Use an object declaration to define an instance of widget or gadget that
is to be stored in the UID file. The object declaration contains a sequence
of lists that define the arguments (also called widget-specific attributes),
children, and callback routines for the object. You can specify only one
list of each type for an object. As with values, you can specify an object as
imported, exported, or private (see Section 3.2. 7) .

. You can reference the object name in. declarations that occur elsewher~ in
the UIL module, usually to specify one object as a child of another objecl..
This is useful for declaring a parent first, followed by the declarations for
all its children. (The declaration of the parent includes a list of the names
of its children.) In this way, the structure of your UIL module resembles
the widget hierarchy of your interface.

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

Some widget arguments accept a widget name (and the widget type) as
a value. This use of a widget name is called a symbolic reference to a
widget identifier and is explained in Section 3.6. You can also use a widget
name (and type) as the tag_ value argument to a callback routine.

All references to an object name must be consistent with the type you
specified· when you declared the object. (See Table 2-2 for a listing of UIL
object types.)

Example 3-13 shows how the file_menu widget is declared in the
DECburger UIL module.

Example 3-13 Declaring an Object in the DECburger UIL Module

object
f ile_menu : pulldown_menu {

arguments {

} ;

label label = k_file_label_text;
} ;

controls {
push button m print button;
push=button m=quit_button;

} ;
callbacks {

create= procedure create_proc (k_file_menu);
} ;

As shown in Example 3-13, an object declaration generally consists of
three parts: an arguments list, a controls list, and a callbacks list. These
parts are explained in the following sections.

3.2.8.1 Specifying Arguments in an Object Declaration
Use an arguments list to specify the arguments (attributes) for an object.
An arguments list defines which arguments are to be specified in the
override_arglist argument when the creation routine for a particular
object is called at run time. An arguments list also specifies the values
that these arguments are to have. The argument values you specify in
UIL take precedence over any other source (for example, user or XUI
Toolkit defaults). You identify an arguments list to the UIL compiler by
using the keyword ARGUMENTS.

Each entry in the list consists of the argument name and the argument
value. In Example 3-13, the file_menu widget has an argument named
label_label, and the value of the argument is k_file_label_text. (The value
k_file_label_text is a compound string defined in a value section at the
beginning of the module.) The VMS DECwindows User Interface Language
Reference Manual shows the UIL built-in arguments supported for each
widget in the XUI Toolkit (including their UIL data type and default value)
in an appendix.

Note: UIL has its own generic data types for arguments that map to VAX
or MIT C binding data types. UIL forces you to specify argument
values of the correct data type and is more structured than the
XUI Toolkit in this regard. When you use UIL to specify an
interface, you must use UIL data types as indicated in the UIL

3-25

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

3-26

built-in tables in the VMS DECwindows User Interface Language
Reference Manual.

If you use the same argument name more than once in an arguments list,
the last entry supersedes all previous entries, and the compiler issues a
message.

If your application interface employs a user-defined widget, and this
widget has arguments that are not UIL built-ins, you need to define these
arguments with the ARGUMENT function. See the VMS DECwindows
User Interface Language Reference Manual for more information about the
ARGUMENT function.

3.2.8.2 Specifying Children in an Object Declaration
You use a controls list to define which widgets are children of, or controlled
by, a particular widget. The controls lists for all the widgets in a UIL
module define the widget hierarchy for an interface. If you specify that
a child is to be managed (which is the default), at run time the widget is
created and managed; if you specify that the child is to be removed from
the managed list at creation (by including the keyword UNMANAGED in
the controls list entry), the widget is only created. You identify a controls
list to the UIL compiler using the keyword CONTROLS.

For example, in Example 3-13, the objects m_print_button and m_quit_
button are children of the file_menu widget (which is a pull-down menu).
(For each widget in the XUI Toolkit, the VMS DECwindows User Interface
Language Reference Manual lists in an appendix the valid children of the
widget.) The objects m_print_button and m_quit_button are defined as
push button widgets, which are valid children of a pull-down menu widget
(UIL object type pulldown_menu).

In Example 3-14, the pop-up dialog box widget called control_box is a
top-level composite widget having a variety of widgets as children. Some
of these children are also composite widgets, having children of their
own. For example, the button_box and burger _doneness_box widgets are
declared later on in the module, and each of these has a controls list.

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

Example 3-14 Specifying Children in the DECburger UIL Module

object

control box : popup_dialog_box {
arguments {

} ;

title = k_decburger_title;
style = DwtModeless;
x = 300;
y = 100;
margin_width = 20;
background_color lightblue;

controls {

label
label
label

burger label;
fries_label;
drink_label;

separator

separator

{arguments {
x = 110;
y = 10;
orientation DwtOrientationVertical;
height = 180; } ; } ;

{arguments {
x = 205;
y = 10;
orientation = DwtOrientationVertical;
height = 180; } ; } ;

work_area_menu button_box;

radio box burger_doneness_box;

Notice that the separator widgets are defined locally in the controls list for
control_box, rather than in object sections of their own. As a result, the
separator widgets do not have names and cannot be referenced by other
objects in this UIL module. However, the local definitions make it easier
for someone reading the UIL specification file to tell that the separator
widgets are used only by the control_box widget. When you define an
object locally, you do not need to create an artificial name for that object.

Unlike the arguments list (and the callbacks list, described in
Section 3.2.8.3), when you specify the same widget in a controls list
more than once, DRM creates multiple instances of the widget at run time
when it creates the parent widget.

3.2.8.3 Specifying Callbacks in an Object Declaration
Use a callbacks list to define which callback reasons are to be processed by
a particular widget at application run time. As shown in Example 3-13,
each entry in a callbacks list has a reason (in this example, create) and
the name of a callback routine (in this example, create_proc).

3-27

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

3-28

For XUI Toolkit widgets, the reason must be a UIL built-in name. For
a user-defined widget, you can reference a user-defined reason that
you previously specified by using the REASON function (see the VMS
DECwindows User Interface Language Reference Manual). If you use a
built-in reason in a widget definition, the UIL compiler ensures that the
reason is supported by the type of widget you are defining. The VMS
DECwindows User Interface Language Reference Manual lists built-in
reasons for each widget in an appendix.

If you use the same reason more than once in a callbacks list, the last
entry that uses that reason supersedes all others, and the UIL compiler
issues a message.

You must have previously defined the routine name in a procedure
declaration. For an example of a procedure declaration, see Example 3-5.
In this example, the routine activate_proc was declared in the beginning of
the UIL module.

Since the UIL compiler produces a UID file rather than an object module,
the binding of the UIL name to the address of the routine entry point
is not done by the VMS Linker. Instead, the binding is established at
run time using the DRM routine REGISTER DRM NAMES. You call this
routine prior to fetching any widgets, giving it the UIL names and the
addresses of each callback routine. The name you register with DRM in
the application program must match the name you specified in the UIL
module. Section 3.3 explains how the DECburger callback routine names
are registered with DRM.

UIL also allows you to specify multiple procedures per callback reason by
defining the procedures as a type of list. Just as with any other list type,
you can define a procedures list either locally in an object declaration or in
a separate list section that you reference by name.

If you define a reason more than once (for example, when the reason is
defined in a referenced procedures list and in the callbacks list for the
object), all previous definitions are overridden by the latest definition.

Example 3-15 shows how to specify multiple callback procedures for the
activate reason locally in the callbacks list of an object declaration.

3.2.9

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

Example 3-15 Specifying Multiple Procedures per Callback Reason

object

} ;

m_quit_button: push_button
arguments {

} ;
callbacks

activate = procedures {

} ;
} ;

quit_proc ('normal demo exit'); /*First proc for activate reason*/
shutdown (); /*Second proc for activate reason*/

The VMS DECwindows User Interface Language Reference Manual
contains more information on how to specify multiple callback procedures
per reason.

Specifying an Icon as a Widget Label
Figure 3-4 highlights the drink quantity selector. This widget in the user
interface for the DECburger application uses icons for the labels on its
push button widgets. When the user clicks on the up arrow icon, the drink
quantity increases. When the user clicks on the down arrow icon, the
drink quantity decreases.

3-29

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL-A Sample Program

Figure 3-4 Using an Icon in the DECburger Application Interface

Welcome to DECburger

File Edit Order

j DECburger Order~Entrv Box •llJ
Hamburgers Fries Drinks

0Rare
@Medium
QWeU Done

0

Quantity

0 Ketchup Size I Medium
0 Mustard .
0 Pickle
0 Onion
0 Mayonnaise'.

: Quantity L

Apple Juice

Orange Juice
Grape Juice

Cola

I Qua~

0

g
0

0

Apply Dismiss r Reset

3-30

ZK-0161A-GE

Example 3-12 defined the icon named drink_up_icon. Example 3-16
shows how to specify this icon as a label for a push button widget. In
the DECburger UIL module, the icon named drink_up_icon is a pixmap
label argument to the up _value push button widget. In turn, the up _valuE
widget is controlled by the drink_quantity attached dialog box widget.

Creating a User Interface Using UIL and ORM
3.2 Specifying a User Interface Using UIL-A Sample Program

Example 3-16 Using an Icon as a Label in the DECburger UIL Module

object
drink_quantity attached_dialog_box

object

arguments {
x = 230;
y = 85;
} ;

controls {
label

} ;

label
push_button
push_button
} ;

quantity_label;
value_label;
up_value;
down_ value;

up_value : push_button widget {
arguments {

y = 0 ;
adb left attachment = DwtAttachWidget;
adb=left=off set = 10 ;
adb left widget = label value label
label label type = DwtPixmap;
label=:J>ixmap = drink_up_icon;
} ;

callbacks {

} ;

activate= procedure activate__proc (k_drink_add);
} ;

3.3 Creating a User Interface at Run Time Using DRM
The XUI Resource Manager (DRM) creates interface objects based on
definitions in UID files. Call DRM routines in your application program
to initialize DRM, to provide information required by DRM to interpret
information in UID files, and to create objects using UID definitions.

DRM also has routines that allow an application to read literal definitions
from UID files. You create these literal definitions when you declare a
value in UIL as exported. You can use these literals in your application
program for any purpose~ Section 3.3.3 explains how to read literals from
UID files.

Similar to the way you can set values for a widget at run time using the
XUI Toolkit routine SET VALUES, DRM provides a routine that allows
you to set v.alues at run time based on values stored in the UID file.
Section 3.3.4 explains how to set values using values in the UID file.

You can use a DRM routine to fetch a widget and override widget attribute
values or set values in addition to those you specified in a UIL module. In
effect, a single object definition can be used like a template. Section 3.3.5
describes this routine.

3-31

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using ORM

3-32

All definitions required to use DRM are contained in the file
decw$include:DwtAppl.h for the MIT C binding or in the file
SYS$LIBRARY:DECW$DWTDEF.H for the VAX binding.

DRM does not replace, but rather complements, the X Resource Manager.
The X Resource Database (an in-memory database, stored in the
XDEFAULTS.DAT file) supplies default values. When you use UIL to
specify a user interface, you do not need to specify all argument values
(resources); you need to specify an argument only when you want to
override the default value stored in the X Resource Database. DRM
generates the override_arglist argument for the appropriate low-level
widget creation routines at run time.

Figure 3-5 shows how widget argument values are applied inside the
DRM fetch operation. The numbers 8, •, and 8 indicate the sequence
in which DRM searches for argument values and, therefore, the order of
precedence. (Once DRM finds an argument definition, it stops searching.)

Creating a User Interface Using UIL and ORM
3.3 Creating a User Interface at Run Time Using ORM

Figure 3-5 Widget Creation In a DRM Fetch Operation

UIL
Compiler

FETCH
WIDGET
Routine

(override_arglist)

•

Xdefaults

XRM
Database

Application
Defaults

INITIALIZE Routine

Widget Creation Routine

Widget
Resources

XUI
Toolkit

ZK-0128A-GE

The examples showing how to create a user interface at run time using
DRM are based on the C program for the DECburger application.
(The DECburger application can be found in the examples directory

3-33

Creating a User Interface Using UIL and ORM
3.3 Creating a User Interface at Run Time Using ORM

3-34

DECW$EXAMPLES:. Section 1.2 describes how you can access these
files.) The DECburger application demonstrates the most commonly used
DRM routines. Table 3-4 briefly describes the DRM routines available
to you; a complete description of these routines is given in the VMS
DECwindows Toolkit Routines Reference Manual.

Table 3-4 DRM Routines and Functions

Routine or Function Name

CLOSE HIERARCHY

ORM FREE RESOURCE CONTEXT

ORM GET RESOURCE CONTEXT

ORM HGET INDEXED LITERAL

ORM RC BUFFER

ORM RC SET TYPE

ORM RC SIZE

ORM RC TYPE

FETCH COLOR LITERAL

FETCH ICON LITERAL

FETCH INTERFACE MODULE

FETCH LITERAL

FETCH SET VALUES

FETCH WIDGET

FETCH WIDGET OVERRIDE

INITIALIZE ORM

Description

Closes a UID hierarchy

Frees a resource context

Sets up a resource context

Fetches indexed (named) literals from a UID
hierarchy (preferred method for fetching literal
is to use either the FETCH COLOR LITERAL
the FETCH ICON LITERAL, or the FETCH
LITERAL routine)

Returns a pointer to the resource context
buffer

Modifies the resource context type

Returns the size of the resource context

Returns the resource context type

Fetches a named color literal from a U ID
hierarchy

Fetches a named icon literal from a UID
hierarchy

Fetches all the objects defined in some
interface module in the U ID hierarchy

Fetches a named string literal from a UID
hierarchy

Fetches the values to be set from literals
stored in UID files

Fetches any indexed (named) application
widget

Fetches any indexed (named) application
widget and overrides values stored in the UIC
file with those supplied in the routine call

Prepares an application to use ORM widget
fetching facilities

(continued on next pagE

3.3.1

Creating a User Interface Using UIL and ORM
3.3 Creating a User Interface at Run Time Using ORM

Table 3-4 (Cont.) ORM Routines and Functions

Routine or Function Name

OPEN HIERARCHY

REGISTER CLASS

REGISTER ORM NAMES

Accessing the UID File at Run Time

Description

Allocates a hierarchy descriptor and opens all
the UIO files in the hierarchy

Saves the information needed to access the
widget creation routine for a user-defined
widget using the information in UIO files and to
perform type conversion of an arguments list

Registers a vector of names and associated
values for access by ORM

As explained in Section 3.1, a VMS DECwindows application whose
interface is specified in UIL must contain calls to the following routines:

• INITIALIZE DRM-Prepare the application for fetching and other
DRM facilities.

• REGISTER CLASS-Register user-defined widget classes with DRM
(not required for XUI Toolkit objects).

• INITIALIZE-Parse the command line used to invoke the application,
open the display, and initialize the XUI Toolkit.

• OPEN HIERARCHY-Bind the application program with the
appropriate interface definition.

• REGISTER DRM NAMES-Register values used to resolve symbolic
references in the interface definition.

The call to the INITIALIZE DRM routine must come before the call to the
INITIALIZE routine. Example 3-17 shows the initialization of DRM and
the XUI Toolkit in the DECburger application.

Example 3-17 Initializing DRM and the XUI Toolkit in the DECburger
Application

unsigned int main(argc, argv)
unsigned int argc;
char *argv[];

DwtinitializeDRM();

toplevel_widget = Xtinitialize("Welcome to DECburger",
"example",
NULL,
0,
&argc,
argv);

3-35

Creating a User Interface Using UIL and ORM
3.3 Creating a User Interface at Run Time Using ORM

3-36

The compiled interface, described in one or more UIL modules, is
connected to the application by setting up a UID hierarchy at run time.
The names of the UID files containing the compiled interface definitions
are stored in an array. Because compiled UIL files are not object files
(OBJ extension), this run-time connection is necessary to bind an interface
with an application program. The DECburger application has a single
UIL module (DECBURGER.UIL), so the UID hierarchy consists of one
file (DECBURGER.UID). Example 3-18 shows the declaration of the UID
hierarchy for DECburger.

Example 3-18 Declaring the UID Hierarchy for the DECburger
Application

static DRMHierarchy s_DRMHierarchy;

static char *db filename vec[J
{"decburger.uid" -
} ;

The name of the UID hierarchy is s_DRMHierarchy. The array containing
the names of the UID files in the UID hierarchy is db_filename_vec. In
Example 3-19, the application opens this UID hierarchy. At this point in
the application, DRM has access to the DECburger interface definition and
can fetch widgets.

Example 3-19 Opening the UID Hierarchy for the DECburger
Application

if (DwtOpenHierarchy(db filename num,
db_filename_vec, - -
NULL,
&s_DRMHierarchy)
!=DRMSuccess)

s_error("can't open hierarchy");

The final step in preparing to use DRM to fetch widgets is to register a
vector of names and associated values. These values can be the names of
callback routines, pointers to user-defined data, or any other values. DRM
uses the information provided in this vector to resolve symbolic references
that occur in UID files to their run-time values. For callback routines,
the vector provides addresses required by the XUI Toolkit. For names
used as variables in UIL (identifiers), this information provides whatever
mapping the application requires. (The use of identifiers is explained in
Section 3.5.)

Example 3-20 shows the declaration of the names vector in the DECburger
C program. In the DECburger application, the names vector contains only
names of callback routines and their addresses.

3.3.2

Creating a User Interface Using UIL and ORM
3.3 Creating a User Interface at Run Time Using ORM

Example 3-20 Declaring a Vector of Names to Register for ORM in the
DECburger Application

static DRMRegisterArg reglist[] = {

} ;

{ "activate_proc", (caddr_t) activate_proc},
{"create proc", (caddr t) create proc},
{ "list_proc", (caddr_t) list_proc},
{"pull_proc", (caddr_t) pull_proc},
{ "quit_proc", (caddr_t) quit_proc},
{ "scale_proc", (caddr_t) scale_proc},
{"show_hide_proc", (caddr_t) show_hide_proc},
{"show_label_proc", (caddr_t) show_label_proc},
{ "toggle_proc", (caddr_t) toggle_proc}

static int reglist_num = (sizeof reglist I sizeof reglist [0]);

The names are registered in a call to the REGISTER DRM NAMES
routine, as shown in Example 3-21.

Example 3-21 Registering Names for DRM In the DECburger
Application

DwtRegisterDRMNames(reglist, reglist_nurn);

Deferring Fetching
DRM allows you to defer fetching off-screen widgets until the application
needs to display these widgets. There are two types of off-screen widgets:
pull-down and pop-up. Whenever DRM fetches an off-screen widget, it
also fetches the entire widget hierarchy below that widget. By deferring
fetching of off-screen widgets, you can reduce the time it takes to start up
your application.

The DECburger application uses deferred fetching. The pull-down menu
widgets for the File, Edit, and Order options are not fetched when the
main window widget is fetched. Instead, these menus are fetched and
created by individual calls to the FETCH WIDGET routine when the
corresponding pull-down menu entry widget is activated (selected by the
end user). You can use the FETCH WIDGET routine at any time to fetch
a widget that was not fetched at application startup.

The UIL module for the DECburger application is set up to allow either
deferred fetching· or a single fetch to create the entire widget hierarchy.
To fetch the entire interface at once, remove the comment character (!)
from the controls list for the file_menu_entry, edit_menu_entry, and order_
menu_entry widgets. As long as the comment characters remain on the
controls list for the pull-down menu entries, their associated pull-down
menu widgets are no longer children; they are top-level widgets and can
be fetched individually. Example 3-22 shows the object declaration for the
file_menu_entry.

3-37

3.3.3

Creating a User Interface Using UIL and ORM
3.3 Creating a User Interface at Run Time Using ORM

Example 3-22 · DECburger UIL Module Setup for Deferred Fetching

object
file_menu_entry : pulldown_entry {

arguments {

} ;

label_label = k_file_label_text;
} ;

controls {
pulldown_menu file_menu;

} ;
callbacks {

} ;

pulling= procedure pull_proc (k_file_pdme);
create = procedure create _ _proc (k_f ile_pdme);

When you remove the comment characters, the controls list on each pull
down entry widget specifies the pull-down menu widget as a child. The
pull-down menu widgets are no longer top-level widgets; instead, they are
loaded when the pull-down entry is created (that is, when the DECburger
main window widget is fetched).

Retrieving Literal Values from UID Files

3-38

Using the literal fetching routines (FETCH COLOR LITERAL, FETCH
ICON LITERAL, and FETCH LITERAL), you can retrieve any named,
exported UIL value from a UID file at run time. These literal fetching
routines are particularly useful when you want to use a value in a context
other than for specifying an object. The three literal fetching routines
allow you to treat the UID file as a repository for all the programming
variables you need for your application interface. For example, you
can store the following as named, exported literals in a UIL module
for run-time retrieval:

• All the error messages to be displayed in a message box (stored in a
string table)

• An ASCIZ string used to query the operating system (for example,
to retrieve the correct version of the help library for a portable
application)

• Language-dependent strings

In the C program for the DECburger application, the text string displayed
in the title bar of the main window widget is supplied directly to the
INITIALIZE routine, as shown in Example 3-23.

Creating a User Interface Using UIL and ORM
3.3 Creating a User Interface at Run Time Using DRM

Example 3-23 Title Bar String for DECburger Application

toplevel_widget = Xtinitialize ("Welcome to DECburger",
"example",
NULL,
0,
&argc,
argv);

Alternatively, this string could be specified in a UIL module as a named,
exported string, and retrieved from the UID file at run time with the
FETCH LITERAL routine.

In the following example, the string for the DECburger title bar is defined
in the UIL module:

value
k welcome text - - : exported 'Welcome to DECburger';

Example 3-24 shows the changes needed in the DECBURGER.C program
to get the title bar string from the UID file.

Example 3-24 Getting a Value from the UID Fiie for the DECburger Appllcatlon

8static char * welcome_text_ptr;
flstatic int dtype;

9owtFetchLiteral (s_DRMhierarchy, "k_welcome_text", NULL, &welcome_text_ptr, &dtype);

~tFree (welcome_text_ptr);

8 A character pointer to the string containing the text for the application
title that will be retrieved from the UID hierarchy. This pointer is
passed to the FETCH LITERAL routine, which is shown in e.

e Data type of the returned literal.

8 The first parameter to the FETCH LITERAL routine is the identifier of
the UID hierarchy containing the named value (literal) to be fetched.

The second parameter specifies the named value (as specified in
UIL) to fetch from the UID hierarchy. This call to the FETCH
LITERAL routine fetches the literal named k_welcome_text from
the UID hierarchy named s_DRMhierarchy. Note that DRM does not
do any type conversion when it retrieves literal values from a UID file.

The third parameter to the FETCH LITERAL routine is the display.
You need to provide this ·parameter when fetching fonts and font lists.
You can use the intrinsic DISPLAY function on any widget identifier to
retrieve the display value.

8 The intrinsic routine FREE is used to free the memory used for the
welcome text string. You are responsible for freeing all allocated
storage after the fetched value is no longer needed.

3-39

3.3.4

Creating a User Interface Using UIL and ORM
3.3 Creating a. User Interface at Run Time Using ORM

Setting Values at Run Time Using UID Resources
The DRM routine FETCH SET VALUES allows you to modify at run
time an object that has already been created. The FETCH SET VALUES
routine works like the SET VALUES routine except that DRM fetches the
values to be set from named, exported resources (literals) in the UID file.
The fetched values are converted to the correct data type, if necessary,
and placed in the args argument for a call to the XUI Toolkit routine SET
VALUES. Since the FETCH SET VALUES routine looks for the literal
values in a UID file, the argument names you provide to the FETCH SET
VALUES routine must be UIL argument names (not XUI Toolkit attribute
names). .

You can think of the FETCH SET VALUES routine as a convenience
routine that packages the functions provided by FETCH LITERAL and
SET VALUES.

The value member of the name and value pairs passed to FETCH SET
VALUES is the UIL name of the value, not an explicit value. When the
application calls FETCH SET VALUES, DRM looks up the names in the
UID file, then uses the values corresponding to those names to override
the original values in the object declaration. The FETCH SET VALUES
routine, therefore, allows you to keep all values used in an application in
the UIL module and not in the application program. (The values you pass
to the FETCH SET VALUES routine must be named, exported literals in
the UIL module.)

The FETCH SET VALUES routine offers the following advantages:

• It performs all the necessary UIL resource manipulation to make
the fetched UIL values usable by the XUI Toolkit. (For example, the
FETCH SET VALUES routine enables a UIL icon to act as a pixmap.)

• It lets you isolate a greater amount of interface information from
the application program (to achieve further separation of form and
function).

There are some limitations to the FETCH SET VALUES routine:

• All values in the args argument must be names of exported resources
listed in a UIL module (UID hierarchy); therefore, the application
cannot provide computed values from within the program itself as part
of the arguments list.

• It uses the SET VALUES routine, ignoring the possibility of the less
costly high-level routine that the widget itself may provide.

The examples in this section are based on a simple application that
displays text in two list box widgets. The text displayed in the second
list box widget depends on what the user selected in the first. Figure 3-6
shows the interface for this application.

Creating a User Interface Using UIL and ORM
3.3 Creating a User Interface at Run Time Using ORM

Figure 3-6 Sample Application Using the FETCH SET VALUES Routine

8 Materials Classifications [pJ]~
File Edit Customize Help

Materials

ii,ii+t.1
Metal

Waste

¢11 [

0
.c::li

Material Types
0 Redwood 0

~ ~ Dogwood

Birch

Q Pine 0

1..1

.~
Q

"

l I> D
ZK-0540A-GE

This application is well-suited to using the DRM routine FETCH SET
VALUES for the following reasons:

• The data (list box widget contents) is all known in advance; that is, the
values themselves do not need to be computed at run time.

• The data consists of tables of compound strings that appear in the user
interface and, therefore, must be translated for international markets.
(Strings that'. must be translated should be stored in a UID file.)

• The FETCH SET VALUES routine performs all the necessary
manipulations to make the string table usable by the list box. Because
the program will not be using the fetched string table directly but
intends only to modify the visual appearance of a widget based on
items in the table, the FETCH LITERAL routine is less convenient to
use.

Example 3-25 shows the UIL module for this application; Example 3-26
shows the C pr<fl"am. The segment of the UIL module shown in
Example 3-25 assumes that the module header, procedure declarations,
include files, and value declarations for each of the names used in the
example are in place.

3-41

Creating a User Interface Using UIL and DAM
3.3 Creating a User Interface at Run Time Using DRM

Example 3-25 UIL Module for the FETCH SET VALUES Application

value
8cs_wood : compound string ("Wood");

cst_materials_selected : string_table(cs_wood);

flcst_materials : exported string table(
cs_wood, !-material type 1
"Metal", ! material type 2
"Waste"); ! material type 3

ft est type 1 : exported string table(! Materials for type 1 (wood)
- - "Redwood", "Dogwood","Bir.ch", "Pine", "Cherry");

l_count_type_l : exported 5; ·

cst_type_2 : exported string_table(! Materials for type 2 (metal)

"Aluminum","Steel","Titanium","Iron","Linoleum");
l_count_type_2 : exported 5;

cst_type_3 : exported string table(! Materials for type 3 (waste)
"Toxic","Solid","Biodegradable","Party Platforms");

l_count_type_3 : exported 4;

k_zero : exported O;

object
materials_ListBox
{

list_box

} ;

3-42

arguments
{

x = k tst materials ListBox x;
y = k-tst-materials-ListBox-y;
width-= k-tst materials ListBox wid;
visible items-count = 4; -
items =-est materials;
selected items = est materials selected;
single selection = true; . -
resize-= DwtResizeFixed;

} ;
callbacks
{

help= procedure tst_help_proc(k_tst_materials_ListBox_key);
create procedure tst_create_proc(k_tst_materials_ListBox);
single procedure tst_single_proc(k_tst_materials_ListBox);

} ;

(continued on next page)

Creating a User Interface Using UIL and ORM
3.3 Creating a User Interface at Run Time Using ORM

Example 3-25 (Cont.) UIL Module for the FETCH SET VALUES Application

types_ListBox
{

list box

} ;

a·rguments
{

x = k tst types ListBox x;
y = k-tst-types-ListBox-y;
width-= k-tst types ListBox wid;
visible items-count-= 4; -
items =-est type 1;
single selection-= true;
resize-= DwtResizeFixed;

} ;
callbacks
{

} ;

help= procedure tst_help_proc(k_tst_types_ListBox_key);
create= procedure tst_create_proc(k_tst_types_ListBox);
single= procedure tst_single_proc(k_tst_types_ListBox);

8 Prefixes on value names indicate the type of value. For example,
cs_ means compound string, est_ means compound string table, and
l_ means longword integer.

e This string table provides the contents for the Materials list box widget
(on the left in Figure 3-6). This string table does not need to follow
the naming scheme for the string table in the Material Types list box
widget (that is, cst_type_n) because the contents of the Materials list
box does not change once the application is ·realized. (The numbering
of the string tables in • is vital to the proper functioning of the
Material Types list box widget. The string table for the Materials list
box widget could have been named anything.)

e These string tables provide the contents for the various versions of
the Material Types list box widget (on the right in Figure 3-6). Each
one of these lists of strings corresponds (in order) to the string names
in the first list box widget (Materials). These tables are numbered
to facilitate programming. When the user selects an item in the
Materials list box widget, the index of the selected item will be
concatenated with the string "cst_type_" to form the name of one
of these tables. This named table will be retrieved with the FETCH
SET VALUES routine and placed in the Material Types list box widget.

Note that in addition to the string table, a count of the number of
items in the table is declared as an exported value. This is done
because using the SET VALUES routine on a list box widget requires
that three arguments be set: items, item_count, and selected_
items_count (which must be set to 0).

3-43

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using ORM

In the C program shown in Example 3-26, note the activation procedure
named tst_single_JJroc, where the user's selection causes the program to
act.

Example 3-26 C Program for the FETCH SET VALUES Application

#define k zero name "k zero"
#define k-table name prefix "est type_"
#define k:=table:=count_name_prefix- "l_count_type_"

ttvoid tst single proc(w,object index,callbackdata)
Widget- WJ -
int *object index;
DwtListBoxCallbackStruct *callbackdata;

{

ftchar *t number;
.,char t_table_name[32] = k_table_name_prefix;

char t_table_count_name[32] = k_table_count_name_prefix;
.,Arg r override arguments[3] =

{{DwtNitems,NULL},{DwtNitemsCount,NULL}, {DwtNselecteditemsCount,k_zero name}};

switch (*object_index)
{

• case k_tst_materials_ListBox:
{

8 sprintf(&t_number,"%d",callbackdata->item_number);

fj strcpy(&t_table_name[sizeof(k_table_name_prefix)-1),&t_number);
XtSetArg(r_override_arguments[O],DwtNitems,&t_table_name);

f9 strcpy(&t table count name[sizeof(k table count name prefix)-1),&t number);
XtSetArg(r-=._override_arguments[l),DwtNitemsCount,&t_table_count_name);

CD DwtFetchSetValues(ar DRMHierarchy,
object ids[k tst types ListBox],
r_override_arguments,3);

•

} ;

} ;

3-44

break;
} ;

case k_tst_types_ListBox:

break;
} ;

0 Routine that handles the single callback functions for any object.
When the user selects an item in a list box widget, the contents of a
neighboring list box are replaced. This routine uses the list box widget
callback structure named DwtListBoxCallbackStruct. This structure
contains the following fields: reason, event pointer, item, item_length,
and item_number.

3.3.5

Creating a User Interface Using UIL and ORM
3.3 Creating a User Interface at Run Time Using ORM

• Used to form the string version of the item number.

e Local character storage.

8 Override argument list for the FETCH SET VALUES routine.

8 User has selected an itemJrom the Materials list box widget. The
application needs to place a new items list in the Material Types list
box widget. The string tables stored in the UID file are named est_
type_11 index number" and their count names are l_count_type_11 index
number" (where 11 index number" corresponds to the item's position in
the list box widget). Using the index of the selected item from this
box, the application forms the name of the appropriate compound
string table.

Using the item number instead of the text value of the selection
separates the function of the application from the form (in this case,
the contents of the list box widgets) and reduces complexity. If the
program used the text value of the selected item as the means to
determine what to display, it would need to deal with possible invalid
characters for a UIL name in the text and would have to convert the
text value (a compound string) to a null-terminated string so that the
string could be passed to the XUI Toolkit routine SET VALUES.

• Form the string version of the item number.

8 Form the name of the string table.

• Form the name of the string table count.

e Fill the Material Types list box widget with a new list of items.

e Similar selection recording code goes here.

Using an Object Definition as a Template
The UID file stores object definitions that contain argument value
specifications. When DRM fetches the object, these values override XUI
Toolkit default values for the specified arguments when the object is
created ·

You can use the FETCH WIDGET OVERRIDE routine to create a new
instance of an object, based on an existing object definition in the UID file,
and override values or set new values in addition to those you originally
specified in the UIL module. You do not have to define the new object in
the UIL module; instead, you supply the argument values in the call to the
FETCH WIDGET OVERRIDE routine. In effect, you can use an existing
object definition in the UIL module as a template, modifying the template
as needed when you create additional instances of the object at run time.

, When you call the FETCH WIDGET OVERRIDE routine, you pass a vector
of name and value pairs as the override_args argument. The name and
value pairs consist of the XUI Toolkit attribute name and an explicit value
for that attribute. These name and value pairs take precedence over any
arguments you specified in the UIL module. Note that since callbacks are
XUI Toolkit attributes, it is also possible to override the callbacks for an
object using the FETCH WIDGET OVERRIDE routine.

3-45

Creating a User Interface Using UIL and ORM
3.3 Creating a User Interface at Run Time Using ORM

3-46

The FETCH WIDGET OVERRIDE routine is useful for specifying in the
application program those things that cannot be represented in UIL (such
as user-defined arguments that are data structures).

You can also use the FETCH WIDGET OVERRIDE routine when you have
to create many widgets that are very similar. Consider an application
interface that has a large number of push button widgets contained
in a dialog box widget. The push button widgets are the same except
for their y position and label. Instead of declaring each push button
widget individually, you can declare one push button and use the DRM
routine FETCH WIDGET OVERRIDE to use that definition as a template,
modifying the y position and label for each additional push button widget
at run time.

When you use the FETCH WIDGET OVERRIDE routine in an application,
you can use UIL identifiers to specify unique tag values for each callback
routine. Ordinarily, the tag is specified in the callback structure and
cannot be changed unless the callback is deleted and replaced. The
callback structure is not stored in the widget data, but is instead stored by
the intrinsics.

If you do not use identifiers for tag values, your callback routines must
contain a check for the parent of the calling widget or some other field
of the widget (as opposed to checking only the tag value) because it is
not possible to override just the tag value with the FETCH WIDGET
OVERRIDE routine. (Note, however, that it is possible to override the
entire callback declaration given in the UID file.) If you do not use an
identifier for the tag val-ut:, all i.i1sta1J.(;ei:> of Lhe muitiply fetched object
return identical tag values for all callbacks. If the callback routine checks
only the tag value, the callback routine could not distinguish which
instance made the call. Section 3.5 explains how to use UIL identifiers.

Another practical use of the FETCH WIDGET OVERRIDE routine is to
create objects with arguments whose values can be determined only at run
time (that is, values that are not known at UIL compilation time). For
example, the help widget (called help_box in UIL) has an argument called
help_library _spec, which is a full file specification (including the device
and directory). When developing portable applications, the form and
content of this file specification will vary depending on the target system
when the program is compiled. Using the FETCH WIDGET OVERRIDE
routine, you can set the value of the help_library_spec argument at run
time when the help widget is created.

Similarly, the help widget has a first_topic argument, which specifies the
help frame the user sees when the help widget initially appears on the
screen. You can significantly improve the performance of your application
by setting the value of the first_topic argument when the help widget
is fetched rather than setting this value using the SET VALUES routine
after the widget is created. (See Section 12.2 for information on how to
construct keys for retrieving help topics.)

Example 3-27 shows how to declare an object in UIL to take advantage of
the FETCH WIDGET OVERRIDE routine.

Creating a User Interface Using UIL and DAM
3.3 Creating a User Interface at Run Time Using ORM

Example 3-27 UIL Module Setup for the FETCH WIDGET OVERRIDE Routine

procedure
burger_help_proc(compound_string);

value
k_fries_quantity : compound_string("DECburger fries_quantity");

object
DECburger_help_box : help_box
{ -

} ;

object

arguments
{

title = k decburger help title;
default_position =true;-
cols = 55;
application_name = k_decburger_name;

} ;
callbacks
{

create= procedure create_proc(k_help_box);
} ;

fries_quantity simple_text
{

} ;

callbacks
{

help= procedure burger_help_proc(k_fries_quantity);

} ;

Example 3-28 shows the FETCH WIDGET OVERRIDE routine in a C
program.

3-47

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using ORM

Example 3-28 Using the FETCH WIDGET OVERRIDE Routine in a C Program

8 #ifdef VMS
define HELP_FILE LOCATION "DECW$DECBURGER"
#else
define HELP_FILE_LOCATION "/usr/lib/help/decburger"
#endif

• static unsigned int burger_help_proc (w, tag, sornecallbackstruct)

Widget
DwtCornpString
unsigned int

*w;
*tag;
*sornecallbackstruct;

•

DRMType *durruny class;
Arg arglist[2J7
int i = O;

if (widget array[k help box] == 0)
{ - - -
XtSetArg(arglist(i], DwtNlibrarySpec,

DwtLatinlString(HELP_FILE_LOCATION)); i++;

XtSetArg(arglist[i], DwtNfirstTopic, tag); i++;

if (DwtFetchWidgetOverride (
S_DRMHierarchy,
"DECburger_help_box",
parent,

} ;

NULL,
arglist,
i,
&widget array[k help boxl.
&durruny_class) !~ DRMSuccess)

printf ("DECburger: Can't fetch help window\n");
return 0;

8 else
{

XtSetArg(arglist[O], DwtNfirstTopic, tag);
XtSetValues(widget array[k help box], arglist, l);
}; - - -

fD if (!XtisManaged(widget array[k help b9x]))
XtManageChild(widget-=:_array[k-=:_help-=:_box]);

} ;

8 Locations of the help library file on either VMS or ULTRIX.

• The burger_help_proc routine must be added to the registration list
of callback routines. The formal parameters for this routine are as
follows:

• Identifier of the widget for which the user requests help

• Tag containing the key to the Help topic for the widget

• The standard callback structure tag is not required by the burger_
help_proc routine. The tag field contains all the information
relevant to the help reason (namely, the key to the Help topic

Creating a User Interface Using UIL and ORM
3.3 Creating a User Interface at Run Time Using DRM

8 Set the first topic as the help widget is created.

e The help widget has already been fetched, so reuse it.

• Display the help widget.

3.4 Customizing a VMS OECwindows Interface Using UIL and ORM
UIL offers the advantage of separating the form an interface takes from
the functions of the application. The form of the interface can change,
while the functions the application performs remain the same. By
specifying these varying forms of the interface in separate UIL modules,
you can change the interface by changing the definition of the UID
hierarchy (the set of UID files) in the application program and recompiling
and relinking the application.

For example, you can use a UID hierarchy to provide an application
interface in several languages. The text on title bars, menu widgets,
and other interface objects can be displayed in the language of the end
user with minimal changes to the application program. In this case, the
multiple UIL modules are alternatives from which to choose at run time.

Another use of the UID hierarchy feature might be to isolate individual,
department, and division customizations to a corporate-style interface by
placing the customizations in separate UIL modules. In the application
program, the UID hierarchy declaration would list these files in the
following order: USER.UID, DEPT.UID, Div.UID, and CORP.UID.
Starting with the first file in the list, DRM searches for value definitions.
If a value is defined in USER. UID (representing the user's preferences),
that value is used to create the object. If a value is not specified in the
USER. UID file, DRM searches for the definition in the DEPT. UID file, and
so on. In this case, the multiple UIL modules represent refinements to a
base interface.

Figure 3-7 shows the alternative and refinement models for DRM
hierarchies.

3-49

3.4.1

Creating a User Interface Using UIL and DRM
3.4 Customizing a VMS DECwindows Interface Using UIL and DRM

Figure 3-7 Using UID Hierarchies to Provide Alternatives or Refinements to an Interface

Refinement

Alternative Department
Customizations

UID Hierarchy
UID
Hierarchy

French English Division
Strings Strings Customizations

ZK-0137 A-GE

Designing an International Application Using UIL and DRM

3-50

You might need to develop a variety of interfaces for a VMS DECwindows
application, particularly if the application will be used by people who
speak different languages. This section describes two methods for
designing an international VMS DECwindows application, using the
DECburger application as an example.

In this section, the DECburger application is redesigned to support a
French version of the interface in addition to the English version. To
develop an international version of DECburger you must make the
following changes:

• Use the following files when writing the interface specification for the
international version of DECburger:

Creating a User Interface Using UIL and ORM
3.4 Customizing a VMS DECwindows Interface Using UIL and ORM

Module Name

ENGLISH.UIL

FRENCH.UIL

DECBURGER_
INTL.UIL

Contents

English string values appearing in the interface, declared
as exported compound strings

French translation of these string values, declared as
exported compound strings

Imported string declarations (to be read from either
the French or English UIL module), all other value
declarations, procedure declarations, and object definitions

• Concatenate differently the strings displayed in the list box to confirm
the user's order. This avoids problems with noun-adjective order.

• Use a logical name in the application to switch between the two
versions of the interface. You must define this logical name to point
to either the FRENCH.UID file or the ENGLISH.UID file; place the
logical name before the DECBURGER_INTL.UID file in the UID
hierarchy list.

These design changes are described in the following sections.

DECburger is a simple application, and therefore does not have some
common widgets such as a caution box or a help box. However, more
complex applications with common widgets would use two additional files ·
to help developers internationalize applications. They are:

Module Name

DwtXLatArg.UIL

DwtXLatText.UIL

Contents

Common widgets whose labels (translatable text) are created
by default. These widgets include the following:

Caution Box

Command Window

File Selection

Help Box

Message Box

Any language string values of the widgets that appear in the
DwtXLatArg.U IL.

The purpose of these two extra files is to make it easier and quicker
for developers to internationalize their applications. For example, most
applications use caution boxes, command windows, and help boxes. If you
are creating a French version of your specific application, you could modify
the text in DwtXLatText. UIL. Then you could append DwtXLatText. UIL
to FRENCH. UIL, and DwtXLatArg.UIL to DECBURGER_INTL. UIL to
create common French labels. You would also use FRENCH. UIL for labels
that are specific to your application. Other developers who are creating
French interfaces would also be able to use the same DwtXLatText. UIL
and DwtXLatArg. UIL files.

Use of these two files is described in the following sections.

3-51

3.4.2

Creating a User Interface Using UIL and ORM
3.4 Customizing a VMS DECwindows Interface Using UIL and ORM

Specifying the User Interface for an International Application
As described in Section 3.4.1, the design for the international version of
DECburger calls for at least three separate UIL modules.

The UIL module in Example 3-29 shows the compound string literals for
the DECburger interface in French. This is a separate UIL module (called
FRENCH.UIL), not an edited version of the original DECburger UIL
module. There is a similar UIL module containing the English translation
of these strings. The name of this UIL module is ENGLISH.UIL.

Note that the default character set, ISO_LATINl, contains the glyphs
required to represent French letters such as e and ~·

Example 3-29 French UIL Module for the International DECburger Application

module french literals

value

3-52

version = 'v2.0'
names = case sensitive

k welcome text
k-decburger title
k-file label text

- k quit label text
k quit text -
k-edit-label text

- - -
k cut dot label text - - - -
k copy dot label text
k=paste_dot_label_text
k_clear_dot_label_text
k select all label text - - - -

k order label text
- k show controls label text - - - -

k cancel order label text
k=subrnit=order=label=text
k create order label text
k-disrniss order label text

- - - -
k_hamburgers_label_text

k rare label text
k=medium_label_text
k well done label text - - - -
k_ketchup_label_text
k mustard label text
k=onion_label_text
k mayonnaise label text
k-pickle label text
k-quantity label text

k fries label text -
- k size label text

k=tiny=label=text
k_small_label_text
k_large_label_text
k huge label text

k drinks label text
- k 0 label text

k-apple juice text
k-drink-list text - - -

exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported
exported

.. exported
exported
exported
exported
exported
exported
exported
exported

'Bienvenue au DECburger';
"DECburger - Commandes";
"Fichier";
"Quitter";
"Quitter";
"Edition";
"Couper";
"Copier";
"Coller";
"Effacer tout";
"Selectionner tout";
"Commande";
"Voir codes ... " ;
"Annuler commande";
"Transmettre commande";
"Commence";
"Termine";
"Hamburgers";
"Saignant";
"A point";
"Tres cuit";
"Ketchup";
"Moutarde";
"Oignons";
"Mayonnaise";
"Cornichons";
"Quantite";
11 Frites 11

;

"Taille";
"Minuscule";
"Petit 11

;

"Gros";
"Enorme";
"Boissons";
"0";
"Jus de pomme";

(continued on next page)

3.4.3

Creating a User Interface Using UIL and ORM
3.4 Customizing a VMS DECwindows Interface Using UIL and DRM

Example 3-29 (Cont.) French UIL Module for the International DECburger Application

string_ table

k_drink_list_select
k u label text - - -
k d label text - - -

("Jus de pomme", "Jus d'orange",
"Jus de raisin", "Cola", "Punch",
"Root beer", "Eau", "Ginger Ale",
"Lait", "Cafe", "The");

exported string_table("Jus de pomme");
exported "U";
exported "D";

k_apply_label_text
k reset label text

exported "Appliquer";
exported "Remise A 0"; - - -k cancel label text exported "Annulation";

k=dismiss_label_text exported "Termine";

end module;

In the main UIL module for the international DECburger application
(called DECBURGER_INTL.UIL), the corresponding string literals are
declared as imported compound strings. For example, the declaration for
the label named kJries_label_text is as follows:

k_fries_label_text : imported compound_string;

Both the French UIL module (shown in Example 3-29) and the English
UIL module (not shown) specify the corresponding values as exported
and give their definitions. For example, the English definition of the
kJries_label_text label is 11Fries 11

; the French definition is 11Frites". You
choose which of these UIL modules to use at run time as explained in
Section 3.4.3.

If DECburger were a more complex application with a caution box
or a message box, the UIL module in Example 3-29 would remain
essentially the same. However, if you had common labels they would
be defined in DwtXLatText. UIL, and you would append DwtXLatTest. UIL
to FRENCH.UIL so that common labels and application-specific labels
would be in one file.

You would also append DwtXLatArg. UIL, which lists the arguments that
are translatable for the common widgets, to the DECBURGER_INTL. UIL
file.

You can find examples of DwtXLatText. UIL and DwtXLatArg. UIL in the
DECW$INCLUDE area of your DECwindows development environment.

Creating the User Interface for an International Application
To create the interface for the international version of the DECburger
application, based on the redesigned UIL specification, you must make
several changes to the C program. Example 3-30 shows the relevant
portions of the C program for the international version of DECburger.

3-53

Creating a User Interface Using UIL and DRM
3.4 Customizing a VMS DECwindows Interface Using UIL and ORM

Example 3-30 C Program for the International DECburger Application

tts~atic char * welcome_text_ptr;

fts~atic DwtCompString latin_separator;

~s~atic DRMResourceContextPtr resource_ctx;

static char *db_filename_vec[]
8 {"decburger$text",

"decburger_intl.uid",
} ;

CDvoid get literal (lit, ptr, compound)
char * lit;
char * * ptr;
int compound;

if (compound)
(* ptr) DwtLatinlString(DwtDrrnRCBuffer (resource_ctx));

else
(* ptr) = DwtDrmRCBuffer (resource_ctx);

C9 if (DwtDrmGetResourceContext (
NULL, /* Allocation routine */
NULL, /* Deallocation routine */
100, /* Size of buffer - arbitrary value */
& resource_ctx) !=DRMSuccess)

s error ("can't get resource context");

8 Dwtfetchliteral ("k_welcome_text", & welcome_text_ptr, 0);

• toplevel_widget Xtinitialize(welcome_text_ptr,

3-54

(continued on next page)

Creating a User Interface Using UIL and ORM
3.4 Customizing a VMS DECwindows Interface Using UIL and DRM

Example 3-30 (Cont.) C Program for the International DECburger Appllcatlon

"example",
NULL,
0,
&argc,
argv);

• ~wtfetchliteral ("k apple juice text", & current drink, 1);
Dwtfetchliteral <"k_tiny_label_text", & current_fries, 1);

• Dwtfetchliteral ("k create order label text", & latin create, 1);
Dwtfetchliteral <"k dismiss order label text", & latin dismiss, 1);
latin space = DwtLatinlString(" 11); - -

latin-separator = DwtLatinlString(": ");
latin:=zero = DwtLatinlString(" 0 ");

tltstatic void activate_proc(w, tag, reason)

switch (widget_num)

case k_apply:

if (quantity_vector[k_burger_index] > 0) {

list txt =name vector[k burger index];
list=txt = DwtCStrcat(list_txt,-latin_separator);

sprintf(list buffer, "%d ", quantity vector[k.burger index]);
list_txt = DwtCStrcat(list_txt, DwtLatinlString(list=buffer));

for (i = k burger min; i <= k burger max; i++)
if (toggle_array[i - k_burger_minJ> {

get something(widget array[i], DwtNlabel, &txt);
list txt DwtCStrcat(list txt, txt);
list:=txt = DwtCStrcat(list:=txt, latin_space);

DwtListBoxAdditem(widget_array[k_total_order], list_txt, 0);

8 Pointer to title string. See Section 3.3.3 for details about fetching a
literal value from a UID file.

• A variable initialized to the string ": ", used for concatenation in
several places throughout the application (see •>.

3-55

Creating a User Interface Using UIL and ORM
3.4 Customizing a VMS DECwindows Interface Using UIL and DRM

3-56

e Resource context required for the HGET INDEXED LITERAL call in
the get_literal procedure (see Cit).

8 Logical name for the UID file containing the strings to be displayed ir
the interface (either English or French) listed as the first element of
the UID hierarchy array. This logical name must be defined to either
ENGLISH.DID or FRENCH.DID prior to running the application.

8 Procedure to get the application title from the UID hierarchy. This
procedure is described in Section 3.3.3.

e Routine call to set up the resource context for retrieving strings.

• Retrieve the application title string from the UID hierarchy.

e Title string pointer is passed to the INITIALIZE routine (instead of to
the actual string itself).

O> Initialize the current values of various items to match their initial
values in the UID hierarchy.

• Set up the required compound strings. The strings are fetched from
the UID hierarchy in the international version.

• Callback routine called by all push button widgets in DECburger.
This routine uses the tag to determine which widget made the call,
then displays the current order information in the list box widget.
The difference between this version of DECburger and the original
version is the manner in which the displayed strings are built. In the
international version, an ordered item is displayed in the list box as
follows:

Hamburgers: 2 medium

The routine gets the name of the qualifier (in this example, medium)
from the widget and adds the qualifier to the displayed string. This
allows orders to be displayed consistently regardless of noun-adjective
order in a particular language. Note the use of the latin_separator
literal (see 8).

Similar statements occur later in the C program to display orders for
drinks and fries.

To run the international version of DECburger, follow these steps:

1 Compile the files FRENCH.UIL, ENGLISH.UIL, and DECBURGER_
INTL.UIL.

If you had a more complex program, you would have appended the
DwtXLatText.UIL file to the FRENCH.UIL or ENGLISH.UIL file
before compiling.

2 Define the logical name DECBURGER$TEXT to either FRENCH. UID
or ENGLISH.DID, depending on the language in which you want to
display the interface.

3 pompile, link, and run th~ C program.

Creating a User Interface Using UIL and ORM
3.5 Using Identifiers in UIL

3.5 Using Identifiers in UIL
Identifiers provide run-time binding of data to names that you specify in
a UIL module. Identifiers work like global variables in a programming
language.

List the names of identifiers in an identifier section in a UIL module. An
identifier section consists of the reserved keyword IDENTIFIER followed
by a list of names, with each name followed by a semicolon. You can use
these names later in the UIL module as either the value of an object
argument or the tag value to a callback routine. At run time, use the
DRM routine REGISTER DRM NAMES to bind the identifier name with
the data associated with the identifier. (See the VMS DECwindows Toolkit
Routines Reference Manual for information about the REGISTER DRM
NAMES routine.)

Since UIL has a single name space, you cannot use the name you used in
a value, object, or procedure declaration as an identifier name.

Your application can successively call the routine REGISTER DRM
NAMES with the same identifier names to supersede the value of that
name for all subsequent calls to DRM that might use these identifiers. For
example, you would use this procedure to change callback tags <ror objects
created from a template definition (see Section 3.3.5). ·

Example 3--31 shows an identifier section in a UIL module.

Example 3-31 Using Identifiers In a UIL Module

MODULE id_example
NAMES = CASE INSENSITIVE

IDENTIFIER
my x id;
my-y-id;
my~·~/ocus_id;

PROCEDURE
my_focus_callback (STRING);

OBJECT my_main : MAIN_WINDOW
ARGUMENTS {

} ;

END MODULE;

} ;

x = my x id;
Y = IDYJ~)d;

CALLBACKS {
focus= PROCEDURE my_focus_callback (my_focus_id);

} ;

The UIL compiler does not do any type checking on the use of identifiers in
a UIL module. Unlike a UIL value, an identifier does not have a UIL data
type associated with it. You can use an identifier as an object argument or
callback routine tag, regardless of the data type specified in the object or
procedure declaration.

3-57

Creating a User Interface Using UIL and ORM
3.5 Using Identifiers in UIL

To reference these identifier names in a UIL module, use the name of the
identifier wherever you want its value to be used. The value is determine
at run time. The UIL module in Example 3-31 shows identifiers used as
argument values and callback routine tags. However, you can reference a
identifier in any context where you can reference a value.

The identifiers my_x_id and my_y_id are used as argument values for the
main window widget, my _main. The position of the main window widget
may depend on the screen size of the terminal on which the interface is
displayed. Using identifiers, you can provide the values of x and y at run
time.

The identifier myJocus_id is specified as the tag to the callback routine
myJocus_callback. In the application program, you could allocate a data
structure and use myJocus_id to store the address of that data structure.
When the focus reason occurs, the data structure is passed as the tag to
routine myJocus_callback.

3.6 Using Symbolic References to Widget Identifiers in UIL

3-58

The UIL compiler allows you to refer to a widget identifier symbolically
by using its name. This mechanism addresses the problem that the
UIL compiler views objects by name and the XUI Toolkit views objects
by widget identifier. Widget identifiers are defined at run time and are
therefore unavailable for use in a UIL module.

When you need to supply an argument that requires a widget identifier,
you can use the UIL name of that widget and its object type as the
argument. For example, the menu bar widget has an argument
DwtNMenuHelpWidget that expects the identifier of a widget (a pull
down menu entry widget, for instance). You can give the name and objeci
type of the pull-down menu entry widget as the value for this argument.
Another practical use of a symbolic reference is to specify the default pus]
button widget (in a dialog box widget or radio box widget).

Note: To specify a symbolic reference completely in UIL, you must
include the object type with the object name.

Example 3-32 shows the use of a symbolic reference.

Creating a User Interface Using UIL and ORM
3.6 Using Symbolic References to Widget Identifiers in UIL

Example 3-32 Using Symbolic References in a UIL Module

MODULE symbolic_ref _example
NAMES = CASE_INSENSITIVE

OBJECT rny_dialog_box : DIALOG_BOX {
ARGUMENTS {

} ;

default_button = PUSH_BUTTON yes_button;
} ;

CONTROLS {

} ;

PUSH_BUTTON yes_button;
PUSH_BUTTON no_button;

OBJECT yes_button : PUSH_BUTTON
ARGUMENTS {

label label = 'yes';
} ;

} ;

OBJECT no button : PUSH BUTTON - -
ARGUMENTS {

label label= 'no';
} ;

} ;

END MODULE;

In Example 3-32, two push button widgets are defined as yes_button and
no_button. In the definition of the dialog box widget, the name yes_button
is given as the value for the default_button argument. Usually, the
default push button argument accepts a widget identifier. When you use
a symbolic reference (the object type and name of the yes_button widget)
as the value for the default push button argument, DRM substitutes the
widget identifier of the yes_button push button widget for its name at run
time.

There is a restriction on the use of symbolic references: the object name
you reference must be a· descendant of the object being fetched in order
for DRM to find the referenced object; you cannot reference an arbitrary
object. DRM checks this at run time.

The UIL built-in tables listed in an appendix in the VMS DECwindows
User Interface Language Reference Manual indicate where symbolic
referencing of widget identifiers is acceptable by showing the term object
reference as the type of an argument.

3.7 Developing and Testing Prototypes Using UIL
UIL allows you to separate the form and function of a VMS DECwindows
application. Because changes in the representation or layout of the
interface do not require changes to the application program, you can
quickly see the impact of design changes on the interface. Once you
have in place the standard XUI Toolkit routine calls to create, manage,
and realize the interface, you can change the interface design by editing
the UIL module, recompiling only the UIL module, and rerunning the
application program.

3-59

3.7.1

Creating a User Interface Using UIL and ORM
3.7 Developing and Testing Prototypes Using UIL

The direct manipulation semantics of a VMS DECwindows interface
(that is, the appearance and behavior of the interface when the end
user interacts with it) are built into the XUI Toolkit objects themselves.
When you present the end user with an interface prototype, the end user
immediately gets the look and feel of the interface. For example, when
the user clicks on a push button widget, the highlighting feedback occurs
automatically. This reaction to manipulation by the user does not require
application routines.

The combination of these features (the separation of form and function
and the built-in look and feel of interface objects) can significantly
shorten the time required to develop a VMS DECwindows application.
Interface designers and application programmers can work essentially
independently (and, therefore, concurrently) without relying on one
another to finish.

Eventually, the interface and the functional routines are brought together
and tested as a unit. The DECburger application demonstrates a useful
technique you can use to test whether the callback routines in the
application are correctly registered with DRM, and whether the routines
are called correctly in response to the user's interaction with the interface
This technique does not require all the functional routines to be in place,
so it is particularly useful during the prototyping phase.

In the DECburger application, the callback routine named activate_proc ii
used to exercise the callbacks for features that are not yet implemented ii
the application program. The activate_proc routine displays a message ho
widget bearing the message 11 Feature is not yet implemented" whenever
the user activates one of the nonfunctional features. Section 3. 7 .1 explain
what you need to do in UIL to use this prototype testing technique, and
Section 3.7.2 explains what you need to do in the application program.

Setting Up the UIL Module for Prototype Testing

3-60

To use the prototype testing technique demonstrated in the DECburger
application, you need to declare the following in the UIL module:

Resource Name in DECburger

activate_proc

k_nyi

nyi

k_nyi_label_text

Declaration

Routine to be called when the user activates
an interface object

Callback tag that will be passed to this routinE

Message box to be fetched and displayed
when the routine is called with the callback ta

String literal to define the message box label

All objects not fully implemented in DECburger (for example, the
operations on the Edit pull-down menu widget) use this technique.
Example 3-33 shows these declarations in the DECburger UIL module.

Creating a User Interface Using UIL and ORM
3.7 Developing and Testing Prototypes Using UIL

Example 3-33 Declarations in the DECburger UIL Module for Prototype Testing

procedure

tt activate_proc (integer);

value
• k_nyi 5;

value
• k_nyi_label_text

: compound_string("Feature is not yet implemented");

object
8 nyi : message_box {

arguments {
CD label label = k nyi label text;

default_position =true; -

} ;

} ;

callbacks {

} ;
create= procedure create_proc (k_nyi);

8 Declares the activate routine (activate_proc) and specifies that the
routine must be passed an integer when called.

• Declares an integer literal, named k_nyi, to be used as the callback tag
passed to the activate routine (see Example 3-34).

• Declares a compound string literal, named k_nyi_label_text, to be used
to specify the label of the message box widget that is fetched and
displayed when the activate routine is called (see CD).

8 Declares an instance of a message box widget to be fetched and
displayed when the user activates an object that does not have
functional code in the application.

CD Value of the string literal declared in • will be used as the label of the
message box widget.

(!) Here, k_nyi is used as the callback tag to the creation routine, create_
proc, to identify the message box widget as the widget that is being
created (note that the name of the message box widget is nyi). Do not
confuse this with the use of k_nyi as the callback tag passed to the
activate routine (see Example 3~34).

3-61

3.7.2

Creating a User Interface Using UIL and ORM
3. 7 Developing and Testing Prototypes Using UIL

Example 3-34 shows the definition of the push button widget associated
with the Copy operation on the Edit menu widget. The Copy operation in
DECburger is not implemented. Note that the k_nyi callback tag is passed
to the activate routine for this push button wi.dget. When the user clicks
on the Copy operation, the message box widget pops up, displaying the
"Feature is not yet implemented" message. The example in Section 3.7.2
shows the definition of the activate routine.

Example 3-34 Declaring an Unimplemented Object In the DECburger
UIL Module

object
m_copy_button : push_button {

arguments {

} ;

label_label = k_copy_dot_label_text;
} ;

callbacks {
activate= procedure activate_proc (k_nyi);

} ;

Setting Up the Application Program for Prototype Testing
In the C program for the DECburger application, the k_nyi callback and
the activate routine are defined as shown in Example 3-35. All push
button widgets in the DECburger application call back to this routine.
Ordinarily, the callback tag identifies which widget made the call. In the
case where the user selects an unimplemented feature, the callback tag
causes the application to display the "Feature is not yet implemented"
message.

Example 3-35 Definition of the Activate Routine in the DECburger Application

#define k_nyi 5

static void activate proc(w, tag, reason)
Widget w; -
int *tag;
unsigned long *reason;

tt int widget num = *tag;
int i, value, fries num;
char *txt, *fries_text, *list_txt, list_buffer[20];

switch (widget_num) {
ft case k_nyi:
6) if (widget_array[k_nyi] == NULL)

3-62

(continued on next pagE

Creating a User Interface Using UIL and ORM
3. 7 Developing and Testing Prototypes Using UIL

Example 3-35 (Cont.) Definition o.f the Activate Routine in the DECburger Application

•

if (DwtFetchWidget(s DRMHierarchy, "nyi", toplevel widget,
&widget array[k nyiJ, &dummy class) != DRMSuccess) {

s_error("can't fetch nyi widget");

XtManageChild(widget_array[k_nyi]);
break;

0 Converts the tag to a widget number.

8 Sends a message when the user activates a push button widget
associated with a nonfunctional feature.

0 Fetches the message box widget from the UID file the first time the
activate routine is called with the k_nyi tag. Once the message box
has been fetched, it will be redisplayed (but not re-created) upon
subsequent calls with this tag.

8 Pops up the message box widget saying "Feature is not yet
implemented".

3.8 Using UIL on Large Projects
When several programmers are working together to specify the interface
for a VMS DECwindows application, competition for access to the UIL
module can develop. Access competition can be eased if the UIL module is
broken up into several small files, with each containing a segment of the
total interface specification.

One approach to breaking up the UIL module is to construct a main UIL
file containing the following information.

• Comments describing copyright information, module history, project
information, and other relevant information.

• Global declarations, such as case sensitivity, objects clause, and
procedure declarations.

• A series of INCLUDE FILE statements (include directives). Each
include directive points to a UIL specification file containing some
portion of the interface specification.

Once you create a main UIL file, you should rarely need to change its
contents.

Example 3-36 shows a sample main UIL file. Note that there is no
technical reason to divide the user interface specification as in this
example. The purpose of using multiple UIL files here is simply to make

3-63

Creating a User Interface Using UIL and DRM
3.8 Using UIL on Large Projects

it easier for large programming project teams to work concurrently on the
same application interface.

Example 3-36 Sample Main UIL File

module big project
version;;;;- '2.0'

**
*
* COPYRIGHT (c) 1990 BY
* XYZ CORPORATION
* ALL RIGHTS RESERVED.
*

*
*
*
*
*

**

++

CREATION DATE: 19-Apr-1990

MODIFIED BY:
04/19/90
04/19/90

!++

JMK Create this main UIL file.
VPR Add some context-sensitive help text.

! NOTE: This file includes several other UIL specification files
that collectively specify the user interface for BIG_PROJECT.

!--

names case insensitive

!++
! These are the callback routines for the big_project application.
!--

procedure

!++

BPROJ$Create Callback Routine
BPROJ$Destroy Callback Routine
BPROJ$Help Callback Routine
BPROJ$Universal_Callback_Routine

(integer);
(integer);
(integer);
(integer);

! The following file contains value definitions (the "k
!--

" literals) •

include file 'lib$:bprojlits';

!++
The following files contain segments of the big_project
application interface.

These files are self-contained and do not have any include directives.
!--

include file 'lib$:bprojwindow';

include file 'lib$:bprojdialog';

include file 'lib$:bprojother';

end module;

3-64

Defines windows and pull-down menus.

Defines dialog boxes

Defines miscellaneous objects such as
caution boxes and pop-up menus.

Creating a User Interface Using UIL and ORM
3.8 Using UIL on Large Projects

In Example 3-36, the VIL specification for an application interface is
divided into the following files:

• Shared literals

The first included file defines all literals shared between the VIL
module and the application source code. These are the constants used
as tags to the callback routines (see Section 3.2.1).

• Main window widget

The second included file defines the main window widget for the
application. This might include a menu bar widget with associated
pull-down menu entry widgets, the work region, and other relevant
pieces.

• Dialog box widgets

The third included file defines all the dialog box widgets used in the
application.

• Other interface objects

The fourth included file defines all the other objects that do not fit into
the first three categories. This file might include display windows with
their menu bar widgets and work regions, pop-up menu widgets, and
the command dialog box widget.

It is a matter of style whether the included files themselves contain
include directives. Some programmers prefer to work with a single main
UIL file and know that this file names all of the remaining files needed to
complete the interface specification. Having a list of all needed files visible
in the main UIL file can be helpful, for example, to someone translating
the user interface into another language. All files can be accounted for
easily and included in the translation.

You can further simplify the translator's job by isolating in a separate
include file all items that vary visually (for example, strings, x- and y
coordinates, and width and height attributes) as a result of translation. In
this way, the translator can find in a single file all the values that need
to be translated. (Declare these items as values in the separate file and
reference the values in the object declarations in the primary UIL module.)

3.9 Working with User-Defined Widgets in UIL
You can extend the XUI Toolkit by building your own widgets. In UIL, a
widget you build yourself is called a user-defined widget and is identified
by the UIL object type user_defined. A user-defined widget can accept any
UIL built-in argument or callback reason. If needed, you can use UIL to
define your own arguments and callback reasons for a user-defined widget.
You can specify any object as a child of a user-defined widget.

To use a user-defined widget in an application interface, follow these steps
in the UIL module:

1 Define the arguments and callback reasons for the user-defined widget
that are not UIL built-ins. This can be done in line when declaring an

3-65

3.9.1

Creating a User Interface Using UIL and DRM
3.9 Working with User-Defined Widgets in UIL

instance of the user-defined widget or in one or more value sections (as
shown in Example 3-37).

2 Declare the creation routine for the user-defined widget.

3 Declare an instance of the user-defined widget. Use user_defined as
the object type and include the name of the widget creation routine in
the declaration.

In the application program, you must register the class of the user-defined
widget using the DRM routine REGISTER CLASS. Part of the information
you provide to the REGISTER CLASS routine is the name of the widget
creation routine. By registering the class (and creation routine), you allow
DRM to create a user-defined widget using the same mechanisms used to
create XUI Toolkit objects. You can specify the widget using UIL and fetch
the widget with DRM.

The examples in this section are based on a previously built user-defined
widget called the XYZ Widget. (Appendix D explains how to build a user
defined widget.) The remainder of this section explains how to include the
XYZ Widget in an application interface using UIL and how to create the
widget at run time using DRM.

Defining Arguments and Reasons for a User-Defined Widget

3-66

The UIL compiler has built-in arguments and callback reasons that are
supported by objects in the XUI Toolkit. A user-defined widget can be built
having only standard XUI Toolkit arguments and reasons as its resources.
If your application interface uses a user-defined widget of this type, you
can use the UIL built-in argument names and callback reasons directly
when you declare an instance of the user-defined widget. If the user
defined widget supports arguments and reasons that are not built into the
UIL compiler, you need to define these arguments and reasons using the
ARGUMENT and REASON functions, respectively, before specifying them.

Example 3-37 shows a UIL specification file that defines arguments and
callback reasons, and declares the creation routine, for the XYZ Widget.
This UIL specification file should be included in any UIL module in which
you declare an instance of the XYZ Widget.

Creating a User Interface Using UIL and ORM
3.9 Working with User-Defined Widgets in UIL

Example 3-37 User-Defined XVZ Widget

8 value
xyz_font_level_O
xyz_font_level_l
xyz_font_level_2
xyz_font_level_3
xyz font level 4
xyz-indent margin
xyz=unit_level :
xyz page level :
xyz=root=widget:
xyz root entry:
xyz-display mode:
xyz=fixed_width_entries:

8 value
xyz select and confirm
xyz=extend=confirm :
xyz_entry_selected :
xyz_entry_unselected
xyz_help_requested:
xyz_attach_to_source
xyz_detach_from_source
xyz_alter_root :
xyz_selections_dragged
xyz_get_entry :
xyz_dragging :
xyz_dragging_end
xyz_dragging_cancel

0 value
XyzPositionTop 1;
XyzPositionMiddle 2;
XyzPositionBottom 3;

XyzDisplayOutline 1;
XyzDisplayTopTree 2;

argument
argument
argument
argument
argument
argument
argument
argument
argument
argument
argument
argument

('fontLevelO' font);
('fontLevell' font);
('fontLevel2' font);
('fontLevel3' font);
('fontLevel4' , font);
('indentMargin' , integer);
('unitLevel' , integer);
('pageLevel' , integer);
('rootWidget' , integer);
('rootEntry' , integer);
('displayMode' , integer);
('fixedWidthEntries' , boolean);

reason ('selectAndConfirmCallback');
reason ('extendConfirmCallback');
reason ('entrySelectedCallback');
reason ('entryUnselectedCallback');
reason ('helpCallback');
reason ('attachToSourceCallback');
reason ('detachFromSourceCallback');
reason ('alterRootCallback');
reason ('selectionsDraggedCallback');
reason ('getEntiyCallback');
reason ('draggingCallback');
reason ('draggingEndCallback');
reason ('draggingCancelCallback');

C. procedure XyzLowLevelCreate();

8 Defines UIL argument names for the XYZ Widget that are not built-in
XUI Toolkit arguments. The strings you pass to the ARGUMENT
function must match the names listed in the resource list structure in
the widget class record for the XYZ Widget. (Section D.2.2 describes
the contents of the widget class record.)

In addition to the string, specify the data type of the argument. Just
as for built-in arguments, when you declare an instance of the XYZ
Widget in a UIL module, the UIL compiler checks the data type of the
values you specify for these arguments. For example, the UIL compiler
checks that the value you specify for the xyz_indent_margin argument
is an integer.

8 Defines the XYZ Widget's callback reasons that are not UIL built-in
reasons. The strings you pass to the REASON function must match
the names listed in the resource list structure in the widget class
record for the XYZ Widget. (Callback reasons, like UIL arguments, are
considered to be widget-specific attributes in the XUI Toolkit and are
defined as resources.)

3-67

3.9.2

Creating a User Interface Using UIL and ORM
3.9 Working with User-Defined Widgets in UIL

0 Defines some integer literals for specifying arguments of the XYZ
Widget. These literals have names configured in the MIT C binding
style. In the VAX binding style, the names of these integer literals
would be configured as follows:

XYZ$C_POSITION_TOP
XYZ$C_POSITION_MIDDLE
XYZ$C_POSITION_BOTTOM
XYZ$C_DISPLAY_ OUTLINE
XYZ$C_DISPLAY_TOP_TREE

8 Declares the widget creation routine for the XYZ Widget. This creation
routine is registered with DRM through the REGISTER CLASS
routine (see Example 3-39).

Using a User-Defined Widget in an Interface Specification
Example 3-38 shows how to specify the XYZ Widget in a UIL module. This
UIL module includes the UIL specification file shown in Example 3-37 as
XYZ_ WIDGET.UIL.

Example 3-38 Declaring the User-Defined XYZ Widget in a UIL Module

module xyz example
names ~ case_sensitive

include file 'decw$include:DwtAppl.uil';

t» include file 'xyz_widget.uil';

fl procedure

3-68

XyzAttach ();
XyzDetach ();
XyzExtended ();
XyzConfirmed ();
XyzGetEntry ();
XyzSelected ();
XyzUnselected ();
XyzDragged ();
XyzDragging ();
XyzDraggingEnd ();
create proc ();
MenuQuit ();
MenuExpandAll ();
MenuCollapseAll ();

(continued on next page)

Creating a User Interface Using UIL ·and ORM
3.9 Working with User-Defined Widgets in UIL

Example 3-38 (Cont.) Declaring the User-Defined XYZ Widget in a UIL Module

0 object
main main window

arguments

} ;

{

x = 0;
y = 0;
height = O;
width = 0;

} ;
controls

{ menu bar main menu;
user=defined xyz_widget;

} ;

~ xyz_widget : user defined procedure XyzLowLevelCreate

•

•
•

{ arguments
{

x = 0;
y = O;
height = 600;
width = 400;
xyz_display_mode XyzDisplayOutline;

} ;

} ;
callbacks

{ xyz_attach_to_source
xyz_detach_from_source
xyz get entry =
xyz-select and confirm
xyz=extend=confirm =
xyz_entry_selected =
xyz entry unselected
xyz-selections dragged
xyz=dragging =
xyz_dragging_end
create =

} ;

main menu: menu bar
arguments

procedure XyzAttach();
procedure XyzDetach();
procedure XyzGetEntry();

=procedure XyzConfirmed();
procedure XyzExtended();
procedure XyzSelected();
procedure XyzUnselected();

=procedure XyzDragged();
procedure XyzDragging();
procedure XyzDraggingEnd();
procedure create_proc();

{ orientation DwtOrientationHorizontal;

} ;

} ;
controls

{ pulldown_entry file_menu;
} ;

(continued on next page)

3-69

Creating a User Interface Using UIL and ORM
3.9 Working with User-Defined Widgets in UIL

Example 3-38 {Cont.) Declaring the User-Defined XYZ Widget in a UIL Module

file menu: pulldown_entry
{ arguments

} ;

{ label_label = 'File';
} ;

controls
{ pulldown_menu

{ controls

} ;
} ;

{ push_button expand_all_button;
push button collapse all button;
push=button quit_button;-

};

expand_all_button: push_button
{ arguments

} ;

{ label_label = "Expand All";
} ;

callbacks
{ activate= procedure MenuExpandAll();
} ;

collapse_all_button: push_button
{ arguments

} ;

{ label_label = "Collapse All";
} ;

callbacks
{ activate = procedure MenuCollapseAll ();
} ;

quit_button: push_button
{ arguments

} ;

{ label_label = "Quit";
} ;

callbacks
{ activate= procedure MenuQuit();
} ;

end module;

3-70

0 Include directive to include the definition of the XYZ Widget shown in
Example 3-37.

• Declarations for the callback routines defined in the application
program.

e Declaration for the main window widget. The main window widget has
two children: a menu bar widget and the XYZ Widget.

8 Declaration for the XYZ Widget. Note that the object type is user_
defined and that the creation routine, XyzLowLevelCreate, is included
in the declaration.

3.9.3

Creating a User Interface Using UIL and ORM
3.9 Working with User-Defined Widgets in UIL

9 The xyz_display _mode argument, defined with the ARGUMENT
function in Example 3-37, is specified using one of the integer literals
also defined in that example.

G) All widgets support the create reason.

8 The remaining objects declarations comprise the menu bar widget and
its pull-down menu widgets.

Accessing a User-Defined Widget at Run Time
Example 3-39 shows a C application program that displays the XYZ
Widget (defined in Example 3-37 and declared in Example 3-38).

Example 3-39 C Program for Displaying the XVZ User-Defined Widget

#include <decw$include/DwtAppl.h>

• #include <decw$include/DECwWsXyz.h>

• globalref int xyzwidgetclassrec;

• extern void XyzAttach {);

extern void XyzDetach {) ;
extern void XyzGetEntry {);

extern void XyzConf irmed {) ;
extern void XyzExtended {);

extern void XyzSelected {) ;
extern void XyzUnselected {) ;
extern void XyzHelpRoutine {);

extern void XyzDragged {) ;

extern void XyzDragging {);

extern void XyzDraggingEnd ();

extern void create_proc {);

extern void MenuQuit {) ;
extern void MenuExpandAll () ;
extern void MenuCollapseAll () ;

e. static DRMRegisterArg
{

register_ vector[]

} ;

"XyzAttach",
"XyzDetach",
"XyzGetEntry",
"XyzConfirmed",
"XyzExtended",
"XyzSelected",
"XyzUnselected",
"XyzHelpRoutine",
"XyzDragged",
"XyzDragging",
"XyzDraggingEnd",
"create_proc,
"MenuQuit",
"MenuExpandAll",
"MenuCollapseAll",

(caddr_t) XyzAttach J,
(caddr_t) XyzDetach },
(caddr_t) XyzGetEntry },
(caddr_t) XyzConfirmed },
(caddr_t) XyzExtended },
(caddr_t) XyzSelected },
(caddr_t) XyzUnselected },
(caddr_t) XyzHelpRoutine },
(caddr_t) XyzDragged },
(caddr_t) XyzDragging },
(caddr_t) XyzDraggingEnd },
(caddr_t) create_proc },
(caddr t) MenuQuit },
(caddr=t) MenuExpandAll },
(caddr_t) MenuCollapseAll }

(continued on next page)

3-71

Creating a User Interface Using UIL and ORM
3.9 Working with User-Defined Widgets in UIL

Example 3-39 {Cont.) C Program for Displaying the XVZ User-Defined Widget

#define register vector length ((sizeof register vector) I \
- - (sizeof register.=vector[O]))

., static DRMHierarchy
static char

hierarchy id ;
*vec [] ={ •iXyz_example. uid"};
class ; static DRMCode

Widget toplevel;
Widget mainwindow;

(t int main (argc, argv)

unsigned int argc;
char **argv;

{

fj Arg arguments[l];

ft DwtinitializeDRM();

CD if (DwtRegisterClass
(DRMwcUnknown,

XyzClassName,
"XyzLowLevelCreate",
XyzLowLevelCreate,
&xyzwidgetclassrec

!= DRMSuccess)

printf ("Can't register XYZ widget");

8 toplevel = Xtinitialize ("xyz", "xyz", NULL, 0, &argc, argv);

.. if (DwtOpenHierarchy
(1,

vec,
NULL,
&hierarchy_id

!= DRMSuccess)

printf ("Can't open hierarchy");

'9 DwtRegisterDRMNames(register_vector, register_vector_length);

XtSetArg (arguments[O], XtNallowShellResize, TRUE);
XtSetValues (toplevel, arguments, 1);

I) if (DwtFetchWidget

3-72

(hierarchy id,
"main", -
toplevel,
&mainwindow,
&class)

!= DRMSuccess

printf ("Can't fetch interface");

XtManageChild (mainwindow);

XtRealizeWidget (toplevel);

(continued on next page)

Creating a User Interface Using UIL and ORM
3.9 Working with User-Defined Widgets in UIL

Example 3-39 {Cont.) C Program for Displaying the XVZ User-Defined Widget

XtMainLoop();

return (0);

8 Includes XYZ declarations. (See Section D.3.3 for information on
widget subclassing in private .h files.)

• Provides a reference to the widget class record for the XYZ Widget
(named xyzwidgetclassrec). (Section D.2.1.1 explains how to construct
a widget class record for a user-defined widget.)

e Declares callback routines defined (but not shown) later in the
program.

8 Defines the mapping between UIL procedure names and their
addresses.

CD Specifies the UID hierarchy list. The UID hierarchy for this
application consists of a single UID file, the compiled version of XYZ_
EXAMPLE. UIL. (Assume the UIL specification file has the same name
as the UIL module; see the module header in Example 3-38. The
file named XYZ_EXAMPLE. UIL includes the file XYZ_ WIDGET. UIL,
shown in Example 3-37.)

e Main routine.

• Arguments for the widgets.

«B Initializes DRM.

• Registers the XYZ widget class with DRM. This allows DRM to use
standard creation mechanisms to create the XYZ Widget (see e). The
arguments passed to the REGISTER CLASS routine are as follows:

• DRMwcUnknown-Indicates that class is user-defined

• XyzClassN ame-Class name of XYZ widget, defined in
DECwWsXyz.h.

• ''XyzLowLevelCreate"-Name of the low-level creation routine

• XyzLowLevelCreate-Address of the low-level creation routine

• &xyzwidgetclassrec-Pointer to the widget class record

8 Initializes the XUI Toolkit.

e Defines the UID hierarchy.

8 Registers callback routine names with DRM.

3-73

Creating a User Interface Using UIL and DRM
3.9 Working with User-Defined Widgets in UIL

3-74

8 Fetches the interface (the main window widget with a menu bar
widget and the XYZ Widget in the work area). Note that the XYZ
Widget is treated like any XUI Toolkit widget. DRM calls the XYZ
Widget's low-level creation routine (XyzLowLevelCreate) and passes
this routine the values for the x, y, width, height, and xyz_display _
mode arguments as specified in the UID file, using the standard
low-level routine format.

Note: In cases where one widget will not allow another type of widget
to be its child, you can declare as "user-defined" the widget that
you want to be a child. For example, menu bars do not allow
attached dialog boxes as children. However, if you want to make
the attached dialog box the child of a menu bar, declare the
attached dialog box as a ''user-defined" widget.

4 Creating a Main Window Widget

This chapter provides the following:

• An overview of the. main window widget in the XUI Toolkit

• A detailed description of how to use the main window widget in an
application

In addition, this chapter describes the three other window widgets closely
related to the main window widget:

• Command window widget

• Scroll window widget

• Window widget

4.1 Overview of Window Widgets
The first task your application program must perform is to create
a window on the display. Windows are the way your application
communicates with a user.

While all widgets create a window on a display, you typically base your
application widget hierarchy on one window, called a main window. The
main window presents all the primary functions of your application. In
addition, the main window usually provides a blank work area you can fill
in any way appropriate to your application. To provide these capabilities,
the XUI Toolkit includes the main window widget.

Other XUI Toolkit widgets provide blank areas, such as the dialog box
widgets (see Chapter 7). However, the main window widget provides
services these other widgets do not. For example, the main window
widget is the only XUI Toolkit widget that can automatically manage the
wrapping of a menu bar widget when necessary.

4.2 Children of a Main Window Widget
A main window widget can have any number of child widgets; however,
only five of the managed children can be visible at any one time. Based on
widget type, the main window widget places each visible child within its
borders to create a standard layout. The following lists the five widgets
that can be visible children of a main window widget (all of these widgets
are optional):

• Menu bar widget

• Command window widget

• Horizontal scroll bar widget

4-1

4.2.1

4.2.2

4.2.3

Creating a Main Window Widget
4.2 Children of a Main Window Widget

• Vertical scroll bar widget

• Work area widget

Menu Bar Widget
A menu bar widget allows you to present a list of choices to the user. Many
applications use menu bar widgets to provide access to basic functions,
such as exiting, copying, and cut and paste. For this reason, menu bar
widgets are often used with the main window widget. See Section 6.5 for
more information about the menu bar widget.

The main window widget places the menu bar widget at the top of the
main window widget's window. By default, the main window widget sizes
the menu bar widget so that its width extends across the entire window.
The menu bar widget determines its height by what it needs to display the
choices it contains.

Command Window Widget
The command window widget provides users of your application with
the ability to enter commands on a command line using a keyboard.
The command widget contains a text entry area in which users of your
application can enter commands as text strings. Previously entered
commands can be recalled and edited. By default, the command window
displays the last two commands in a display area above the text entry
area. You can specify that more than two lines of command history appear
in this display. Section 4.6 provides more information about the command
window widget.

The main window widget places the command window widget at the
bottom of the main window widget's window. By default, the main window
widget sizes the command window widget so that its width extends across
the entire window. Once the main window widget has been realized, you
cannot alter the height of the command window widget.

Scroll Bar Widgets

4-2

The scroll bar widgets enable users to view areas of the work area widget
that are not currently visible. The work area widget may not be able to fit
its entire contents into the size provided by the layout of the main window
widget. In this case, you can include scroll bar widgets in your main
window widget. Section 10.4 describes how to create scroll bar widgets.

The main window widget places the horizontal scroll bar widget just above
the command window widget. If there is no command window widget, the
horizontal scroll bar appears at the bottom of the main window widget.
You can only specify the height of the horizontal scroll bar widget. The
main window widget determines the width of the horizontal scroll bar
widget so that it extends across the entire window. If the main window
widget includes a vertical scroll bar widget, the width of the horizontal
scroll bar widget is the width of the main window widget minus the width
of the vertical scroll bar.

4.2.4

Creating a Main Window Widget
4.2 Children of a Main Window ·widget

The main window widget places the vertical scroll bar widget on the right
edge of the main widget window widget. The vertical scroll bar appears
below the menu bar widget and above the command window widget, if
either of these widgets is present. You can only specify the width of a
vertical scroll bar widget. The main window widget determines the height
of the vertical scroll bar widget in relation to the height of the work area
window. If the main window widget includes a horizontal scroll bar widget,
the height of the vertical scroll bar widget is adjusted by the height of the
horizontal scroll bar widget.

Work Area Widget
The work area widget child comprises the remainder of the main window
widget. The main window widget places the work area widget in the area
under the menu bar widget, to the left of the vertical scroll bar widget, and
above the horizontal scroll bar widget, if any of these widgets is present.
You can specify both height and width dimensions of the work area widget.

For example, you can make a dialog box widget the work area widget of a
main window widget. You can then add as many children as you want to
the dialog box widget.

The scroll window widget is commonly used as a work area widget because
it can automatically update the size of the slider in the scroll bar widget.
The slider represents the portion of the work area widget that is currently
visible. If you use a scroll window widget, you do not have to have scroll
bar widgets as children of the main window widget. Section 4.4 describes
the scroll window widget.

The window widget is another widget that can be used as a work
area widget. The window widget is an empty rectangle that places no
restrictions on what it contains. The window widget is the only XUI
Toolkit widget that supports graphics operations.

Figure 4-1 illustrates the layout of a main window widget.

4-3

Creating a Main Window Widget
4.2 Children of a ·Main Window Widget

Figure 4-1 Main Window Widget

Menu Bar~

~

Work Area

Command~
Window

File Edit Text Format Help
lakds.fh l.ak lk.ajd sjd.fa asdf alk ueab l. l.k kJsdisdaJj ka.fb
lakf lak la.fka jata lkatka keua akeu daj\vk kfor kforla
fao kt]aeo la do kdoe jasd.f ghesa lf geo lafa sdkf ddf sdd
nadj .f oa sdo forot osd od oifhrks os

slfg:o odfr od t]gnes knde cl lasdhc ksec ged adf gcwk os
sdjfa ltew os jwrk sd ad asd lksdqi. ksnfa ks ak:!dn :tsd
fao k1jaeo fa.do kdoe jasdf ghesa lfgeo fafa sdkfckff sdd
1akf lak Jafka jata lkat.ka keua akeu dajwk kfor kfnda
fao k.(jaeo lado k.doe jasd.f ghesa 1.fgeo lafo gh~~:r

slfg:o odfr od f]gnes kn de c 1 lasdhc ksec ged adf gcwk os
lakf fak fafka iata lkatka keua akeu dajwk k:for kforla
fao kfjaeo fa(fo kdoe 1asdf d1esa lfgeo fafa sdkfddf sdd
1akdsih lak Ikajd sjdfa'asd.f ilk ueah l lk kisd.bd.alj kafb
sdjfa ltew os jwrk. sd ad asd lk.sdqi. ksnfa ks akidn :tsd

¢l [
dkdk ieka iielx/ksew ejejk lpq jwl;;klljo pwwo pwiiwu
dkkv_uiqlwi iwoqd/eiwo yuow powl;. wqhw wqpkc cm
>

0

D
v-scroll Bar

D
0

ZK-0405A-GE

4.3 Creating a Main Window Widget

4-4

To create a main window widget, perform the following steps:

1 Create the main window widget.

Use any of the widget creation mechanisms listed in Table 4-1. The
choice of mechanism depends on the attributes you need to access.

Table 4-1 Main Window Widget Creation Mechanisms

High-level routine

Low-level routine

UIL object type

Use the MAIN WINDOW routine to create a main window
widget.

Use the MAIN WINDOW CREATE routine to create a main
window widget.

Use the main_window object type to define a main window
widget in a UIL module. At run time, the DAM routine FETCH
WIDGET creates the widget according to this definition.

4.3.1

Creating a Main Window Widget
4.3 Creating a Main Window Widget

2 Create the child widgets of the main window widget.

You create the child widgets specifying the main window widget as
their parent. For information about specifying where you want the
main window widget to place the children, see Section 4.3.1.

3 Manage the child widgets of the main window widget.

Use the MANAGE CHILD or the MANAGE CHILDREN intrinsic
routine to manage children of the main window widget. In UIL this
step is not necessary, since by default the DRM routine FETCH
WIDGET manages the widgets it creates at run time.

4 Manage the main window widget.

Use the intrinsic routine MANAGE CHILD to manage the main
window widget. In UIL this step is not necessary, since by default the
DRM routine FETCH WIDGET manages the widgets it creates at run
time.

After completing these steps, if the parent of the main window widget has
been realized, the main window widget will appear on the display.

Low-level routines and UIL provide access to the complete set of
widget attributes at creation time. High-level routines provide access
to only a subset of these widget attributes at widget creation time.
(To access attributes not available in a high-level routine, use the SET
VALUES intrinsic routine after the widget has been created.) The VMS
DECwindows Toolkit Routines Reference Manual describes the complete
list of attributes supported by the inain window widget. Table 4--2 lists the
attributes available using the high-level routine MAIN WINDOW. Pass
the values for these attributes as arguments to the high-level routine.

Table 4-2 Widget Attributes Accessible Using the High-Level Routine
MAIN WINDOW

x

y

width

height

The x-coordinate of the upper left corner of the widget

The y-coordinate of the upper left corner of the widget

The width of the widget

The height of the widget

Adding Children to a Main Window Widget
You can add children to a main window widget in three ways:

• Use the SET VALUES intrinsic routine

• Use the MAIN WINDOW SET AREAS routine

• Accept the defaults of the main window widget

4-5

Creating a Main Window Widget
4.3 Creating a Main Window Widget

4-6

4.3.1.1 Using SET VALUES to Add Children to a Main Window Widget
The main window widget supports attributes that identify the child widget
to be used for each of its five designated areas (described in Section 4.2).
However, you cannot set these attributes at widget creation time because
you do not know the widget identifier of the child until you create the
children. You can only set these attributes after the main window widget
has been created.

As with any widget attribute, you can use the SET VALUES intrinsic
routine to assign values to these attributes after the widget has been
created. Specify the widget identifier of the child widget as the value
of these attributes. Table 4-3 lists these attributes of the main window
widget.

Table 4-3 Child Widget Attributes of the Main Window Widget

Attribute

command_window

work_window

menu_bar

horizontal_scroll_bar

vertical_scroll_bar

Value

The widget identifier of the command window widget child

The widget identifier of the widget that implements the work
area

The widget identifier of the menu bar widget

The widget identifier of the horizontal scroll bar widget

The widget identifier of the vertical scroll bar widget

4.3.1.2 Using the MAIN WINDOW SET AREAS Routine
As a convenience, you can use the MAIN WINDOW SET AREAS routine
to specify all the child widgets to be used with a main window widget in
one call. This routine takes the following arguments:

• The widget identifier of the main window widget

• The widget identifier of the menu bar widget

• The widget identifier of the work area widget

• The widget identifier of the command window widget

• The widget identifier of the scroll bar widget with horizontal
orientation

• The widget identifier of the scroll bar widget with vertical orientation

You use the MAIN WINDOW SET AREAS routine after you have created
the main window widget and each of its children. Pass a null value as an
argument for any child widget not included in the main window.

4.3.1.3 Accepting Main Window Widget Defaults
If you do not explicitly specify which child widget should be used for each
area of a main window widget using the SET VALUES intrinsic routine or
the MAIN WINDOW SET AREAS routine, the main window widget selects
the widget to be used from its list of managed children. The main window
widget determines where to place its children based on the following rules:

• Any child widget that is a menu widget is used as the menu bar
widget.

4.3.2

Creating a Main Window Widget
4.3 Creating a Main Window Widget

• Any child widget that is a command window widget is used as the
command window widget.

• Any child widget that is a scroll bar widget is used as the scroll bar
widget. A scroll bar widget with its orientation attribute set to
horizontal is used as the horizontal scroll bar; a scroll bar widget with
its orientation attribute set to vertical is used as the vertical scroll
bar.

• A child widget of any other type is the work area widget.

The main window widget only considers currently managed children when
determining which children will implement its areas. If you manage
multiple children of the same type, the main window widget selects the
first one to appear in its window. A main window widget can have any
number of managed children; however, only five of these children can be
visible at any one time.

When a main window widget is resized, it recalculates the layout of its
children according to the same rules.

Customizing the Main Window Widget
The main window widget supports attributes that enable you to specify its
size and position.

You can specify the size of a main window widget using the common widget
attributes width and height. Specify these dimensions in pixels. If you
create the main window widget with these attributes set to 0, the main
window widget sizes itself to accommodate the size of all of its children. If
you specify values for these attributes, the main window sizes the children
to fit into the space allotted.

Specify the position of a main window widget using x and y attributes.
Specify these values in pixels.

Example 4-1 is the section from the DECburger UIL module in which the
main window is defined. Note that the width and height are explicitly set
to 0. The size of the main window widget will be determined by the size
requirements of its two children: the menu bar and the list box widgets.

4-7

4.3.3

Creating a Main Window Widget
4.3 Creating a Main Window Widget

Example 4-1 Main Window Created in the DECburger UIL Module

object
S MAIN WINDOW : main window - -

} ;

arguments {

} ;

x = 10;
y = 20;
width = 0;
height = O;

controls {
menu bar
list-box

} ;

s_menu_bar;
total_order;

Associating Callback Routines with a Main Window Widget
The main window widget executes a callback when it accepts the input
focus. When a user clicks MBl on the title bar, the main window widget
will attempt to give the input focus to the work area widget or the
command window widget (in that order). If neither of these children
accepts the input focus and the accept_focus attribute is set to true, the
main window widget will accept the input focus.

To associate a callback routine with this callback, pass a callback routine
list to the main window widget as the. value of the focus_callback
attribute.

The main window widget does not support the help callback.

4.4 Creating a Scroll Window Widget

4-8

A scroll window widget can be used as the work area widget of a main
window widget. In this case, the actual work area widget and the two
scroll bar widgets. are children of the scroll window widget, not the main
window widget.

If the shown_ value_automatic_horiz attribute is set to true, the
scroll window widget automatically sizes and positions the slider in
the horizontal scroll bar widget when your application moves the work
area widget horizontally in relation to the scroll window widget. If the
shown_ value_automatic_ vert attribute is set to true, the scroll window
widget automatically sizes and positions the slider in the vertical scroll
bar widget when your application moves the work area widget vertically in
relation to the scroll window widget.

To create a scroll window widget, perform the following steps:

1 Create the scroll window widget.

Creating a Main Window Widget
4.4 Creating a Scroll Window Widget

Use any of the widget creation mechanisms listed in Table 4-4. The
choice of mechanism depends on the attributes you need to access.

Table 4-4 Scroll Window Widget Creation Mechanisms

High-level routine Use the SCROLL WINDOW routine to create a scroll window
widget.

Low-level routine Use the SCROLL WINDOW CREATE routine to create a
scroll window widget.

UIL object type Use the scroll_window object type to define a scroll window
widget in a UIL module. At run time, the ORM routine FETCH
WIDGET creates the widget according to this definition.

2 Create the children of the scroll window widget.

The scroll window widget can have three children: a widget that
implements the work area and two scroll bar widgets. Use any of the
widget creation mechanisms to create these children.

3 Manage the children of the scroll window widget.

Use the MANAGE CHILD intrinsic routine to manage a single child.
Use MANAGE CHILDREN to manage a group of children. In UIL
this step is not necessary, since by default the DRM routine FETCH
WIDGET manages the widgets it creates at run time.

4 Manage the scroll window widget.

Use the intrinsic routine MANAGE CHILD to manage the widget.
In UIL this step is not necessary, since by default the DRM routine
FETCH WIDGET manages the widgets it creates at run time.

After you complete these steps, if the parent of the scroll window widget
has been realized, the scroll window widget will appear on the display.

Low-level routines and UIL provide access to the complete set of widget
attributes at creation time. High-level routines provide access to only
a subset of these widget attributes at widget creation time. (To access
attributes not available using the high-level routine, use the SET VALUE
intrinsic routine.) The VMS DECwindows Toolkit Routines Reference
Manual describes the complete list of attributes supported by the scroll
window widget. Table 4--5 lists the attributes available using the high
level routine SCROLL WINDOW. Pass values for these attributes as
arguments to the routine.

Table 4-5 Widget Attributes Accessible Using the High-Level Routine
SCROLL WINDOW

x

y

width

height

The x-coordinate of the upper left corner

The y-coordinate of the upper left corner

The width of the widget

The height of the widget

4-9

4.4.1

Creating a Main Window Widget
4.4 Creating a Scroll Window Widget

Adding Children to a Scroll Window Widget

4-10

As with the main window widget, there are three ways to add children to
a scroll window widget:

• Use the SET VALUES intrinsic routine

• Use the SCROLL WINDOW SET AREAS routine

• Accept the defaults of the scroll window widget

4.4.1.1 Using SET VALUES to Add Children to a Scroll Window Widget
The scroll window widget supports attributes that identify the child widget
to be used for each of its three designated areas. However, you cannot
set these attributes at widget creation time because you do not know the
widget identifier of the child until you create the children. You can only
set these attributes after the scroll window widget has been created.

As with any widget attribute, you can use the SET VALUES intrinsic
routine to assign values to these attributes after the widget has been
created. Specify the widget identifier of the child widget as the value
of these attributes. Table 4-6 lists these attributes of the main window
widget.

Table 4-6 Child Widget Attributes of the Scroll Window Widget

Attribute

work_ window

h_scroll

v_scroll

Value

The widget identifier of the widget that implements the work area

The widget identifier of the horizontal scroll bar widget

The widget identifier of the vertical scroll bar widget

4.4.1.2 Using the SCROLL WINDOW SET AREAS Support Routine
As a convenience, you can use the SCROLL WINDOW SET AREAS
routine to specify all the child widgets to be used with a main window
widget in one call. This routine takes the following arguments:

• The widget identifier of the scroll window widget

• The widget identifier of the scroll bar widget with horizontal
orientation

• The widget identifier of the scroll bar widget with vertical orientation

• The widget identifier of the work area widget

You use the SCROLL WINDOW SET AREAS routine after you have
created the scroll window widget and each of its children. Pass a null
value as an argument for any child widget not included in the scroll
window widget.

Creating a Main Window Widget
4.4 Creating a Scroll Window Widget

4.4.1.3 Accepting Scroll Window Widget Defaults
If you do not explicitly specify which child widget should be used for
each area of a scroll window widget using the SET VALUES intrinsic
routine or the SCROLL WINDOW SET AREAS routine, the scroll window
widget selects the widget to be used from its list of managed children. The
scroll window widget determines where to place its children based on the
following rules:

• Any child widget that is a scroll bar widget is used as the scroll bar
widget. A scroll bar widget with its orientation attribute set to
horizontal is used as the horizontal scroll bar; a scroll bar widget with
its orientation attribute set to vertical is used as the vertical scroll
bar.

• A child widget of any other type is the work area widget.

The scroll window widget considers only currently managed children in its
calculations. If you try to manage multiple children of the same type, the
scroll window widget only manages the first.

4.5 Creating a Window Widget
The window widget provides a blank, rectangular work space and imposes
no restrictions on what it contains. The window widget is the only XUI
Toolkit widget that supports graphics operations.

To create a window widget, perform the following steps:

1 Create the window widget.

Use any of the widget creation mechanisms listed in Table 4-7. The
choice of mechanism depends on the attributes you need to access.

Table 4-7 Window Widget Creation Mechanisms

High-level routine

Low-level routine

UIL object type

Use the WINDOW routine to create a window widget.

Use the WINDOW CREATE routine to create a window
widget.

Use the window object type to define a window widget in a
UIL module. At run time, the ORM routine FETCH WIDGET
creates the widget according to this definition.

2 Manage the window widget.

Use the intrinsic routine MANAGE CHILD to manage the window
widget. In UIL this step is not necessary, since widgets created using
UIL are managed by default.

After you complete these steps, if the parent of the window widget has
been realized, the window widget will appear on the display.

Low-level routines and UIL provide access to the complete set of
widget attributes at creation time. High-level routines provide access
to only a subset of these widget attributes at widget creation time.
(To access attributes not available in a high-level routine, use the SET

4-11

4.5.1

Creating a Main Window Widget
4.5 Creating a Window Widget

VALUES intrinsic routine after the widget has been created.) The VMS
DECwindows Toolkit Routines Reference Manual describes the complete
list of attributes supported by the window widget. Table 4-8 lists the
attributes available using the high-level routine WINDOW. Pass values for
these attributes as arguments to the routine.

Table 4-8 Widget Attributes Accessible Using the High-Level Routine
WINDOW

x

y

width

height

callback

The x-coordinate of the upper left corner

The y-coordinate of the upper left corner

The width of the widget

The height of the widget

The address of a callback routine list

Drawing Graphics in a Window Widget
To draw graphics in a window widget, create a callback routine that
contains the graphics operations and associate the callback routine with
the expose callback of the window widget. Whenever the window widget
becomes visible on the screen, either when it is first created or when it
becomes visible after being obscured, it executes this callback routine.
You should always perform graphics operations from an expose callback
routine because your application is responsible for repainting your window
whenever an expose event occurs.

Example 4-2 draws a star using the DRAW LINES Xlib routine.

Example 4-2 Performing Graphics Operations in a Window Widget

#include <stdio>
#include <decw$include/DwtAppl.h>

Widget toplevel, graphics_window;
Goisplay *dpy;
ftwindow win;
•Ge gc;

static void draw_in_window();

DwtCallback cb_list[2];

int main(argc, argv)
unsigned int argc;
char **argv;

Arg arglist[15];
int ac = 0;
Screen *screen;
XSetWindowAttributes xswa;
XGCValues xgcv;

toplevel = Xtinitialize("Graphics Example","exampleclass",NULL, 0, &argc, argv);

(continued on next page)

4-12

Using the Label, Separator, and Button Widgets
5.1 Overview of Label, Separator, and Button Widgets and Gadgets

A toggle button widget, like a push button widget, is a text string or
pixmap inside a rectangular box with input and output capabilities. A
toggle button widget maintains state information. A user can turn a toggle
button widget on or off by clicking MBl. A toggle button widget usually
contains an indicator to distinguish it from a push button widget. An
indicator is a square or an oval, appearing at the left of the toggle button
label, that provides a visual cue to the current state of the toggle button.
For example, when the toggle button widget is on, the indicator is filled.

Use a push button widget to invoke an immediate action. Use a toggle
button widget to implement functions that can be in on or off states.

Because the label, separator, and button widgets have such widespread
usefulness, the XUI Toolkit provides the high-performance gadget version

•

of these widgets. Gadgets provide the same functional capabilities as their •
widget counterparts but are not as customizable. By using gadgets instead
of widgets wherever customization is not essential, you can improve the
performance of your application. You can only use gadgets as children of
menu widgets or dialog box widgets.

The label, separator, push button, and toggle button widgets, with the
pull-down menu entry widget described in Section 6.2.1, are the only
widgets in the XUI Toolkit with gadget counterparts.

Creating a Label Widget or Gadget
To create a label widget or gadget, perform the following steps:

1 Create the label widget or gadget.

Use one of the widget or gadget creation mechanisms listed in
Table 5-1. Your choice of creation mechanism should depend on
how much you need to customize the widget or gadget. Section 5.2.2
describes the attributes supported by the label gadget.

Table 5-1 Label Widget and Gadget Creation Mechanisms

Mechanism

High-level routine

Low-level routine

UIL object type

5-2

Widget

Use the LABEL routine to create a label
widget.

Use the LABEL CREATE routine to
create a label widget.

Use the label object type to define a label
in a U IL module. At run time, the ORM
routine FETCH WIDGET will create a
label widget according to this definition.

Gadget

There is no high-level gadget creation routine.

Use the LABEL GADGET CREATE routine to
create a label gadget.

Use the label object type with the gadget
qualifier.

The label widget and the label gadget creation mechanisms return
widget identifiers to the application; the XIB Toolkit does not define a
gadget identifier.

•

•

•

•

•

•

•

•

5 Using the Label, Separator, and Button Widgets

5.1

This chapter provides the following:

• An overview of the label, separator, and button widgets and gadg

• A detailed description of how to include the label, button, and
separator widgets and gadgets in your application

• A description of how to use compound strings

• A description of how to define an additional mode of access, calle 1

accelerator, to functions associated with buttons

Overview of Label, Separator, and Button Widgets and Gadgets
Labels, separators, and buttons provide much of the basic input a
output capabilities in a VMS DECwindows application. Labels and
separators allow you to output text and graphics to a user interface.
(To handle text input, use the text widgets described in Chapter 9.) '
push button and toggle button widgets allow you to provide users of:
application with access to functions using a pointing device.

The XUI Toolkit includes a label widget, a separator widget, and tw~
button widgets: a push button and a toggle button. These widgets a1
primitive widgets; that is, they cannot be parents of other widgets.

A label widget is a text string or pixmap inside a rectangular box.
default, the borders of the rectangle do not appear on a display, althc
you can make them visible. A label widget is an inactive interface ot
it does not support callbacks .

A separator widget is a vertical or horizontal dotted line. A separ2
widget is an inactive interface object. Separator widgets can be thoui
as label widgets containing a predefined pixmap, which is a dotted Iii

A push button widget is a text string or pixmap inside a rectangul~
with both input and output capabilities. When a user moves the poii
cursor onto a push button widget and presses MBl, the widget highli
to indicate a change in state. If the user then releases MBl within t
borders of the push button widget, the widget performs a callback to
application. Push button widgets can be thought of as label widgets ,
added input capabilities: the text string or pixmap provides the outi:
capabilities, and the callback mechanism provides the input capabilit

You can simulate push button activation using the ACTIVATE WIDG
convenience routine. This routine causes the push button widget yo1
specify to highlight and perform a callback to your application. This
capability can be useful if you provide users with more than one wa~
access a function associated with a push button widget. When the m
employs the alternate access, you can activate the push button widgE
maintain a consistent interface.

Creating a Main Window Widget
4.5 Creating a Window Widget

Example 4-2 (Cont.) Performing Graphics Operations in a Window Widget

ac = O;
XtSetArg(arglist[ac], XtNallowShellResize, TRUE); ac++;
XtSetArg(arglist[ac], XtNx, 150); ac++;
XtSetArg(arglist[ac], XtNy, 150); ac++;
XtSetValues(toplevel, arglist, ac);

cb list[O] .proc =draw in window;
cb-list[O).tag = O; - -
cb=list[l] .proc =NULL;

ac = O;
XtSetArg(arglist[ac], DwtNwidth, 600); ac++;
XtSetArg(arglist[ac], DwtNheight, 600); ac++;
XtSetArg(arglist[ac], DwtNexposeCallback, cb_list); ac++;

8 graphics_window = DwtWindowCreate(toplevel, "gwindow", arglist, ac);

XtManageChild(graphics_window);

XtRealizeWidget(toplevel);

• dpy

• win

XtDisplay(graphics_window);

XtWindow(graphics_window);

fj screen= DefaultScreenOfDisplay(dpy);

I* Create graphics context. */

xgcv.foreground BlackPixelOfScreen(screen);
xgcv.background = WhitePixelOfScreen(screen);
xgcv.line_width = 1;

., gc = XCreateGC(dpy, win, GCForeground I GCBackground
I GCLineWidth, &xgcv);

XtMainLoop();

CDstatic void draw in window(w, tag, callback data
Widget w; - -
char *tag;
DwtWindowCallbackStruct *callback_data;

XPoint pt_arr[6];

pt_arr[O].x 75;
pt_arr[O] .y 500;
pt_arr[l].x 300;
pt_arr[l].y 100;
pt_arr[2) .x 525;
pt_arr[2] .y 500;
pt_arr[3] .x 50;
pt_arr[3].y 225;
pt_arr[4].x 575;
pt_arr[4].y 225;
pt_arr[5] .x 75;
pt_arr[5].y 500;

(continued on next page)

4-13

4.5.2

Creating a Main Window Widget
4.5 Creating a Window Widget

Example 4-2 (Cont.) Performing Graphics Operations in a Window Widget

XDrawLines(dpy, win, gc, &pt_arr, 6, CoordModeOrigin);

8 This variable will hold a pointer to the display.

8 This variable will hold a window identifier.

0 This variable is a graphics context. For information about this data
structure, see the VMS DECwindows Xlib Programming Volume.

8 The WINDOW CREATE routine creates the window widget. In the
argument list passed to the creation routine, the example specifies the
size of the window widget and the callback routine to be associated
with the expose callback of the window widget.

8 The DISPLAY intrinsic routine returns a pointer to the display
associated with the window widget.

CB The WINDOW intrinsic routine returns the identifier of the window
associated with the window widget.

8 The DEFAULT SCREEN OF DISPLAY Xlib routine returns a pointer
to the screen on which the window widget is displayed.

fD The call to the CREATE GC Xlib routine defines the visible
characteristics of the line used in the drawing in a graphics context
structure. The line will be drawn in black.

CD In the callback routine associated with the expose event, the DRAW
LINES Xlib routine draws the star-shaped figure in the window
widget. The display, window, and graphics context are specified as
arguments to this routine. Whenever an expose event occurs in the
window widget, this callback routine will be executed, causing the star
to be drawn again.

Associating Callback Routines with a Window Widget

4-14

The window widget executes a callback when an expose event occurs
within its borders. An expose event occurs when the window widget is
mapped. Mapping occurs when the widget is realized for the first time,
when your application goes from iconified state to active state, or when
a portion of the widget that had previously been obscured by another
widget becomes visible. When the window widget performs a callback, it
returns the reason, the event structure that triggered the callback, and
the identifier of the window in which the exposure event occurred. For
more information about the data returned in the callback of the window
widget, see the VMS DECwindows Toolkit Routines Reference Manual.

To associate a callback routine with a window widget, pass a callback
routine list to the widget in the expose_callback attribute. See
Example 4-2 for an illustration.

Creating a Main Window Widget
4.6 Creating a Command Window Widget

4.6 Creating a Command Window Widget
To create a command window widget, perform the following steps:

1 Create the command window widget.

Use any of the widget creation mechanisms listed in Table 4-9. The
choice of mechanism depends on the attributes you need to access.

Table 4-9 Command Window Widget Creation Mechanisms

High-level routine

Low-level routine

U IL object type

Use the COMMAND WINDOW routine to create a command
window widget.

Use the COMMAND WINDOW CREATE routine to create a
command window widget.

Use the command_window object type to define a command
window widget in a UIL module. At run time, the ORM
routine FETCH WIDGET creates the widget according to this
definition.

2 Manage the command window widget.

Use the intrinsic routine MANAGE CHILD to manage the command
window widget. In UIL this step is not necessary, since widgets
created with UIL are managed by default.

After you complete these steps, if the parent of the command window
widget has been realfaed, the command window widget will appear on the
display.

Low-level routines and UIL provide access to the complete set of widget
attributes at creation time. High-level routines provide access to
only a subset of these widget attributes at widget creation time. (To
access attributes not available using a high-level routine, use the SET
VALUES intrinsic routine after the widget has been created.) The VMS
DECwindows Toolkit Routines Reference Manual describes the complete
list of attributes supported by the command window widget. Table 4-10
lists the attributes available using the high-level routine COMMAND
WINDOW. Pass the values for these attributes as arguments to the
routine.

Table 4-10 Widget Attributes Accessible Using the High-Level Routine
COMMAND WINDOW

prompt

lines

callback

help_callback

String used as command line prompt

Number of command history lines displayed

Address of a callback routine list

Address of a callback routine list

4-15

4.6.1

4.6.2

Creating a Main Window Widget
4.6 Creating a Command Window Widget

Command Window Widget Support Routines
The XUI Toolkit provides a set of support routines that perform commonly
needed operations on a command window widget (listed in Table 4-11).
Use these routines to specify the text of the command line, append a string
to the current contents of the command line, or display error messages.

Table 4-11 Command Window Widget Support Routines

COMMAND APPEND Appends a text string onto the end of the text string
currently in the command line.

COMMAND ERROR MESSAGE Outputs an error message in the form of a text
string. The message appears in the command
history window of the command window widget.

COMMAND SET Replaces the contents of the command line with
the text string specified.

Specifying the Contents of the Command Line

4-16

After the command window widget appears on the display, the user of
your application can enter a. command string in its text entry area. Your
application can specify the initial contents of the text area of the command
window widget by assigning the address of text string as the value of the
value attribute. Note that this text string does not have to be converted
into a compound string.

If the text string ends with a carriage return or a line-feed character, the
command window widget executes the command, notifies your application
using the callback mechanism, moves the command line into the history
window, and issues a new prompt. The text string can also represent
multiple command lines.

To change the value of the command window widget after the widget
has been created, you can assign a new string as the value of the value
argument using the SET VALUES intrinsic routine or you can use the
command window support routine COMMAND SET. The COMMAND SET
routine takes the following arguments:

• The widget identifier of the command window widget

• The text to be placed in the command line

To add text to a command line, use the COMMAND APPEND support
routine. This routine takes the following two arguments:

• The widget identifier of the command window widget

• The text to be added to the command line

4.6.3

4.6.4

4.6.5

Creating a Main Window Widget
4.6 Creating a Command Window Widget

Displaying Error Messages in the Command Window Widget
To display error messages generated by command line execution, use the
COMMAND ERROR MESSAGE support routine. This routine accepts the
following arguments:

• The widget identifier of the command window widget

• The text of the error message to be displayed

The error message appears in the command history area of the command
window widget.

Defining Accelerators for the Command Window Widget
You can define the actions performed by the command window widget
upon certain keyboard events using the t_translations attribute. Pass
a parsed translation table as the value of this attribute. You typically
use this attribute to define accelerators. See Section 6. 7 for details about
translation tables.

Customizing the Appearance of the Command Window Widget
The attributes of the command window widget enable you to customize the
following aspects of its appearance:

• The command line prompt

• The number of command lines visible in the command history window

You can assign values to widget attributes when you create the widget
using any of the widget creation mechanisms, or after the widget has been
created using the intrinsic routine SET VALUES.

4.6.5.1 Specifying the Command Line Prompt
You can specify the string of characters used as the command line prompt
using the prompt attribute. Specify the prompt as a text string. The
default prompt is the right angle bracket (>).

Note that you must convert the prompt text string into a compound string
before passing it to the command window widget.

4.6.5.2 Specifying the Size and Content of the Command History Window
You can use the lines attribute to specify how many command lines appear
in the command history window of the command window widget. Specify
the number of lines as an integer. By default, the command window
widget displays two command lines in its command history window.

4-17

4.6.6

Creating a Main Window Widget
4.6 Creating a Command Window Widget

Associating Callback Routines with the Command Window Widget

4-18

Using the callback mechanism, a command window widget notifies your
application when a change is made to the contents of the command line
or when a command is executed. A command is executed when the user
presses the Return key or your application pas~es a string containing a
return or line-feed character. When a command is executed, the command
window widget removes it from the command entry field and places it in
the command history. Your application must parse the command string
and execute the command in a callback routine.

The command window widget also. performs a callback when it accepts the
input focus.

When a command window widget performs a callback, it returns callback
data to the application. In this callback data, the command window widget
returns the text string that is the contents of the command line and the
length of the command line. For complete information about the data
returned in a callback by the command window widget, see the VMS
DECwindows Toolkit Routines Reference Manual.

To associate a callback routine with a command window widget callback,
pass a callback routine list to one of the command window widget callback
attributes. Table 4-12 describes what conditions trigger these callbacks
and the widget attributes you use to associate callback routines with
them.

Table 4-12 Command Window Widget Callbacks

Callback Attribute Description

value_callback The contents of the command line changed.

command_entered_callback The user has pressed the Return or the Line Feed
key.

focus_callback The command window widget has received the input
focus.

5.2.1

Using the Label, Separator, and Button Widgets
5.2 Creating a Label Widget or Gadget

2 Manage the label widget or gadget.

Use the intrinsic routine MANAGE CHILD to manage the widget or
gadget.

After you complete· these steps, if the parent of the label widget or gadget
has been realized, the label widget or gadget will appear on the display.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a
subset of these attributes at widget creation time. (To access attributes
not available in a high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 5-2 lists the attributes
you can set if you use the high-level routine LABEL to create a label
widget. Pass the values of these attributes as arguments to the routine.

Table 5-2 Attributes Accessible Using the High-Level Routine LABEL

x

y

labl1

help_callback

The x-coordinate of the upper left corner

The y-coordinate of the upper left corner

The text or pixmap to be displayed in the label widget

The address of a callback routine list

1 The high-level routines use this spelling for the label attribute to avoid conflicts with
programming languages in which "label" is a reserved word.

Customizing a Label Widget
The attributes of the label widget enable you to customize the following
aspects of its appearance and functioning:

• Size and position

• Alignment

• Margins

• Content

5.2.1.1 Specifying the Size and Position of a Label Widget
Use the common widget attributes width and height to specify the size
of a label widget. By default, a label widget sizes itself to fit the text
string or pixmap it contains. The parent widget of the label widget can
also determine the size of a label widget.· For example, menu widgets
determine the dimensions of the widgets that implement the menu items
they contain.

You can specify that a label widget always attempt to fit the text or pixmap
it contains using the conform_to_text attribute. If you set this attribute
to true, the label widget will grow or shrink as the text or pixmap it
contains grows or shrinks.

Use the common widget attributes x and y to specify the position of a label
widget. You do not always need to specify the position of the label widget,
because the parent of the label widget will determine its position.

5-3

Using the Label, Separator, and Button Widgets
5.2 Creating a Label Widget or Gadget

5-4

5.2.1.2 Specifying the Alignment in a Label Widget
Use the alignment attribute to position the text string within the borders
of the label widget. You cannot align pixmaps contained in a label widget.
You can center the text string within the label widget, or you can align
the text string to the right side or to the left side of the label widget. The
VMS DECwindows Toolkit Routines Reference Manual lists the constants
used to indicate types of alignment.

5.2.1.3 Specifying Margins in a Label Widget
The label widget supports six margin attributes that you can use to
determine the amount of space surrounding the text or pixmap the widget
contains.

Specify the amount of space between the left border of the label widget
and the beginning of the text string or pixmap it contains in the margin_
width attribute. This value is also used as the right margin.

Specify the amount of space between the top border of the label widget and
the top of the text or pixmap in the label widget in the margin_height
attribute. This value is also used to determine the amount of space left
between the bottom side of the label widget and the bottom of the text or
pixmap it contains.

The other four margin attributes, margin_left, margin_right, margin_
top, and margin_bottom, determine the space surrounding the text or
pixmap contained in the label widget. A text string or pixmap is contained
within its own rectangle. Note that the borders of this inner rectangle
are distinct from the borders of the label widget. You cannot make this
inner rectangle visible. Using these attributes, you can specify margins
within this rectangle. For example, the distance between the left side of
the label widget and the first character in a text string can be the sum of
the margin_ width and margin_left attributes.

Figure 5-1 illustrates these margins in a label widget.

5.2.2

Using the Label, Separator, and Button Widgets
5.2 Creating a Label Widget or Gadget

Figure 5-1 Attributes for Setting Margins

Label Widget

. 'h . h margin_ e1g t

margin_width ___________________ l ________ ,,margin_width
• • 4 .~

. I
margm_top l

margin_left La+bel margin_right: • • • •• I
.4b : margin_ ottom :
+ I L----------------------------J

. 'h . h margin_ e1g t

~
ZK-0199A-GE

5.2.1.4 Specifying the Content of a Label Widget
Use the label attribute to specify the text the label widget will contain.
You must pass the text to the label widget in the form of a compound
string. Section 5.6 describes how to convert text strings to compound
strings. Identify the type of label as a text string in the label_type
attribute.

Use the pixmap attribute to specify the pixmap used in a label widget.
Pass the identifier of the pixmap to the label in this attribute. You can
create a pixmap in the following three ways:

• Use the bitmap editor supplied with Xlib.

• Use the UIL built-in ICON function, described in Section 3.2.7.8.

• Use the DECpaint application, described in the VMS DECwindows
Desktop Applications Guide.

When using a pixmap in a label widget, you must specify the type of label
in the label_type attribute.

Customizing a Label Gadget
The label gadget provides access to only a subset of the attributes provided
by the label widget. The following list summarizes aspects of the label
gadget that you can customize:

• Size and position

• Alignment

Using the Label, Separator, and Button Widgets
5.2 Creating a Label Widget or Gadget

• Text content of the label

For information about assigning values to these attributes, see
Section 5.2.1.

The primary label widget attributes not supported by label gadgets are the
margin and pixmap attributes. However, the gadget version also does not
support certain common widget attributes supported by the label widget.
The attributes the gadget does not support deal mainly with aspects of the
appearance of the widget that relate to properties of the widget window.
To reduce their overhead and improve performance, gadgets do not have
an associated window. For the attributes of the label gadget you cannot
customize, the label gadget uses the value contained in its parent.

Specifically, the label gadget imposes the following restrictions:

• You cannot specify margins.

• You cannot specify a pixmap label.

• You cannot specify the color of the foreground, background, or border.

• You cannot specify the pixmap used as the foreground, background, or
border of a widget.

• You cannot specify a font.

5.3 Creating a Separator Widget or Gadget
To create a separator widget or gadget, perform the following steps:

1 Create the separator widget or gadget.

Use any of the widget or gadget creation mechanisms listed in
Table 5-3. Your choice of which creation mechanism to use depends on
how you want to configure the separator widget and which attributes
you need to set.

Table 5-3 Separator Widget and Gadget Creation Mechanisms

Mechanism

High-level routine

Low-level routine

UIL object type

5-6

Widget Gadget

Use the SEPARATOR routine to create a There is no high-level gadget creation routine.
separator widget.

Use the SEPARATOR CREATE routine to Use the SEPARATOR GADGET CREATE
create a separator widget.

Use the separator object type to define
a separator in a UIL module. At run
time, the ORM routine FETCH WIDGET
creates the object according to this
definition.

routine to create a separator gadget.

Use the separator object type with the gadget
qualifier.

2 Manage the separator widget or gadget.

Use the intrinsic routine MANAGE CHILD to manage a separator
widget or gadget.

5.3.1

Using the Label, Separator, and Button Widgets
5.3 Creating a Separator Widget or Gadget

After you complete these steps, if the parent of the separator has been
realized, the separator widget or gadget will appear on the display.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a
subset of these attributes at widget creation time. (To access attributes
not available in a high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 5-4 lists the attributes
you can set if you use the high-level routine SEPARATOR to create a
separator widget. Pass the values of these attributes as arguments to the
routine.

Table 5-4 Attributes Accessible Using the High-Level Routine
SEPARATOR

x

y

orientation

Specifies the x-coordinate of the upper left corner

Specifies the y-coordinate of the upper left corner

Specifies whether the separator widget is vertical or horizontal

Customizing a Separator Widget or Gadget
The separator widget and gadget support all of the attributes supported
by the label widget and gadget. For information about customizing a label
widget, see Section 5.2.1.

In addition, the separator widget and gadget support an attribute
with which you can specify their orientation. Separator widgets and
gadgets can have either a horizontal or a vertical orientation. Specify the
orientation of the separator widget or gadget in the orientation attribute
using the constants listed in the VMS DECwindows Toolkit Routines
Reference Manual.

5.4 Creating a Push Button Widget or Gadget
To create a push button widget or gadget, perform the following steps:

1 Create the push button widget or gadget.

Use any of the three widget or gadget creation mechanisms listed in
Table 5--5. The choice of creation mechanism depends on how you want
to configure the push button widget or gadget and which attributes you
need to set.

5-7

Using the Label, Separator, and Button Widgets
5.4 Creating a Push Button Widget or Gadget

Table 5-5 Push Button Widget and Gadget Creation Mechanisms

Mechanism

High-level routine

Low-level routine

UIL object type

5-8

Widget Gadget

Use the PUSH BUTTON routine to create There is no high-level gadget creation routine.
a push button widget. ·

Use the PUSH BUTTON CREATE routine Use the PUSH BUTTON GADGET CREATE
to create a push button widget.

Use the push_button object type to define
a push button widget in a UIL module.
At run time, the ORM routine FETCH
WIDGET will create the object according
to this definition.

routine to create a push button gadget.

Use the push_button object type with the gadget
qualifier.

2 Manage the push button widget or gadget.

Use the intrinsic routine MANAGE CHILD to manage a push button
widget or gadget.

After you complete these steps, if the parent of the push button widget or
gadget has been realized, the push button widget or gadget will appear on
the display.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a
subset of these attributes at widget creation time. (To access attributes
not available using the high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 5-6 lists the attributes
you can set if you use the high-level routine PUSH BUTTON to create a
push button widget. Pass the values of these attributes as argument~ to
the routine.

Table 5-6 Attributes Accessible Using the High-Level Routine PUSH
BUTTON

x

y

labl1

callback

help_callback

The x-coordinate of the upper left corner

The y-coordinate of the upper left corner

The text to be displayed in the push button widget

The address of a callback routine list

The address of a callback routine list

1 The high-level routines use this spelling for the label attribute to avoid conflicts with
programming languages in which "label" is a reserved word.

Example 5-1 is the section from the DECburger UIL module in which
the DECburger option menu widget is defined. The example creates the
individual items in the option menu widget as push button gadgets. This
is a typical use of push button widgets or gadgets.

Using the Label, Separator, and Button Widgets
5.4 Creating a Push Button Widget or Gadget

Example 5-1 Push Button Gadgets in the DECburger Option Menu

8object
fries_option_menu option_menu {

arguments {
x = 130;
y = 22;
label label = k size label text;
menu_history = push_button-medium_fries;
} ;

controls {

} ;

@object

pulldown_menu fries_menu;
} ;

fries_menu : pulldown_menu {
controls {

push_button
push_button
push_button
push_button
push_button
} ;

tiny_fries;
small_fries;
medium fries;
large fries;
huge_fries;

} ;

•object
tiny_fries : push button {

arguments {
label_label = k_tiny_label_text;
} ;

callbacks {

} ;

activate= procedure activate_proc (k_fries_tiny);
} ;

8 The object declaration of the option menu widget lists its only child,
the pull-down menu widget. (See Section 6.6 for more information
about the option menu widget.)

8 In this object declaration of the pull-down menu widget, the five push
button gadgets that implement the menu items are listed as children
of the pull-down menu widget.

• This is the object declaration of the first push button gadget used in
the pull-down menu widget. Note that, because DECburger defines
gadgets as the default type for all the push buttons it uses, it does not
have to explicitly qualify the push_button object type with the gadget
qualifier. See Section 3.2.4 for more information about specifying
default object types.

In the object declarations for each push button gadget, DECburger
only specifies the text the gadget will contain. DECburger allows the
pull-down menu widget to determine the size and position of the push
button gadgets that are its children.

5-9

5.4.1

5.4.2

Using the Label, Separator, and Button. Widgets
5.4 Creating a Push Button Widget or Gadget

Customizing a Push Button Widget
The push button widget supports all attributes supported by a
label widget. For information about customizing a label widget, see
Section 5.2.1.

In addition, the push button widget supports its own unique attributes
that enable you to customize the following aspects of its appearance and
functioning:

• Highlighting behavior

• Shadowing

• Pixmap used to indicate insensitive state

5.4.1.1 Specifying Highlighting Behavior
Use the border_highlight or the fill_llighlight attribute to specify
how a push button widget is highlighted when selected by a user. If
you set the border_highlight attribute to true, the push button widget
indicates it has been selected by highlighting its border. (This is the
default behavior for push button widgets and gadgets in menus.) If you set
the fill_highlight attribute to true, the entire push button widget changes
color to indicate it has been selected by a user.

You also can use the common widget attributes highlight_pixel and
highlight_pixmap to specify the color or pixmap pattern used as the
highlight.

If you want your application to conform to the recommendations of the
XUI Style Guide, accept the default values determined by the use of the
push button widget.

5.4.1.2 Specifying Shadowing
The shadow attribute enables the application to choose whether the push
l;mtton widget should appear with a shadow. The shadow provides push
button widgets with a three-dimensional look.

5.4.1.3 Specifying the Insensitive Pixmap
Use the insensitive_pixmap attribute to specify the pixmap the push
button widget should contain when it is insensitive to user input.

Customizing a Push Button Gadget

5-10

Push button gadgets do not provide access to any attributes beyond those
supported by the label gadget. For information about customizing a label
widget, see Section 5.2.1.

5.4.3

Using the Label, Separator, and Button Widgets
5.4 Creating a Push Button Widget or Gadget

Associating Callback Routines with a Push Button Widget or Gadget
When activated, a push button widget or gadget notifies an application
using the callback mechanism. The push button widget or gadget is
activated when a user moves the pointer cursor onto it and clicks MBl.

In addition, the push button widget performs callbacks when a user moves
the pointer cursor onto the push button and holds down MBl. This user
interaction is said to arm the push button widget. The push button widget
also performs a callback when a user moves the pointer cursor off the push
button without releasing MBl. This user interaction is said to disarm the
push button widget. The push button gadget does not support the arm or
disarm callback reasons.

The push button widget and gadget both perform callbacks when the user
presses the Help key while simultaneously clicking MBl inside a push
button widget or gadget.

When the push button widget or gadget performs a callback, it returns
callback data to your application. For complete information about the data
returned by the push button widget or gadget in a callback, see the VMS
DECwindows Toolkit Routines Reference Manual.

To associate a callback routine with a push button widget or gadget, pass
a callback routine list to one of the callback attributes supported by the
widget or gadget. Table 5-7 lists the callback attributes supported by
the push button widget and gadget and the conditions that trigger these
callbacks.

Table 5-7 Push Button Widget and Gadget Callbacks

Callback Attribute

activate _callback

arm_callback

disarm_callback

help_callback

Description

A user has clicked MB1 on the push button widget or gadget.

A user has moved the pointer cursor onto the push button
widget and is holding down MB1 (widget only).

A user has moved the pointer cursor off the push button
widget without releasing MB1 (widget only).

A user has pressed the Help key while the pointer cursor is
in the push button widget or gadget.

All the push button widgets and gadgets in the DECburger sample
application execute the same callback routine, called activate_proc, when
activated. DECburger uses the tag to determine which push button widget
or gadget performed the callback and then performs whatever processing
is required. Example 5-2 is a fragment from the callback routine in which
the callbacks from the option menu widget are handled. When a push
button gadget in the option menu widget is activated, DECburger reads
the text label in the activated push button gadget to retrieve the value of
the user's selection.

5-11

Using the Label, Separator, and Button Widgets
5.4 Creating a Push Button Widget or Gadget

Example 5-2 Push Button Callback Procedure in the DECburger Application

static void activate proc(w, tag, reason)
Widget w; -
int *tag;
unsigned long *reason;

int widget num = *tag;
int i, value, fries_num;
char *txt, *fries_text, *list_txt, list_buffer[20];

switch (widget_num)
{

case k fries tiny:
case k-fries-small:
case k-fries-medium:
case k=fries=large:
case k_fries_huge:

get_something(w, DwtNlabel, ¤t_fries);
break;

5.5 Creating a Toggle Button Widget or Gadget
To create a toggle button widget or gadget, perform the following steps:

1 Create the toggle button widget or gadget.

Use any of the widget creation mechanisms listed in Table 5-8. The
choice of creation mechanism depends on how you want to customize
the toggle button widget and which attributes you need to set.

Table 5-8 Toggle Button Widget and Gadget Creation Mechanisms

Mechanism

High-level routine

Low-level routine

UIL object type

5-12

Widget

Use the TOGGLE BUTTON routine to
create a toggle button widget.

Use the TOGGLE BUTTON CREATE
routine to create a toggle button widget.

Use the toggle_button object type to
define a toggle button widget in a UIL
module. At run time, the ORM routine
FETCH WIDGET creates the widget
according to this definition.

Gadget

There is no high-level gadget creation routine.

Use the TOGGLE BUTTON GADGET CREATE
routine to create a toggle button gadget.

Use the toggle_button object type with the
gadget qualifier.

Using the Label, Separator, and Button Widgets
5.5 Creating a Toggle Button Widget or Gadget

2 Manage the toggle button widget or gadget.

Use the intrinsic routine MANAGE CHILD to manage a toggle button
widget or gadget.

After you complete these steps, if the parent of the toggle button widget or
gadget has been realized, the toggle button widget or gadget will appear
on the display.

Low-level routines and UIL provide access to the complete set of widget
attributes at widget creation time. High-level routines provide access
to only a subset of these attributes at widget creation time. (To access
attributes not available in a high-level routine, use the SET VALUES
intrinsic routine after the widget has been created.) Table 5-9 lists the
attributes you can set if you use the high-level routine TOGGLE BUTrON
to create a toggle button widget. Pass the values of these attributes as
arguments to the routine.

Table 5-9 Attributes Accessible Using the High-Level Routine TOGGLE
BUTTON

x

y

labl1

value

callback

help_callback

The x-coordinate of the upper left corner

The y-coordinate of the upper left corner

The text to be displayed in the toggle button widget

The state of the toggle button widget

The address of a callback routine list

The address of a callback routine list

1 The high-level routines use this spelling for the label attribute to avoid conflicts with
programming languages in which "label" is a reserved word.

The DECburger sample application uses toggle buttons in a radio box
widget. Figure 5-2 illustrates this widget as it appears in the DECburger
user interface.

5-13

Using the Label, Separator, and Button Widgets
5.5 Creating a Toggle Button Widget or Gadget

Figure 5-2 Radio· Box with Toggle Button Gadgets in the DECburger Application

rlJ We~come to OECburger

File Edit Order

Hamburgers

0Rare
@Medium
0 Well Done

D Ketchup
D Mustard
D Pic~de
D Onion

Fries

~ Size I _M_e_di_u_m__.

D Mayonnaise:

0

llfl :auantity ~
Quantity

Apply : I (:: ~lsmiss J

Drinks

Orange Juice
Grape Juice

Cola

· 1 Quantity

Reset

0

ZK-0160A-GE

In Example 5-3, the DECburger application creates the radio box widget
and the three toggle button gadgets that implement the items it contains.
Note that the only attribute explicitly set in the toggle button gadget
definitions is the text they will contain. DECburger allows the radio box
widget to determine the size of the toggle button gadgets.

5-14

Using the Label, Separator, and Button Widgets
5.5 Creating . a Toggle Button Widget or Gadget

Example 5-3 Creating the Radio Box Widget in the DECburger Application

object

•

burger_doneness_box radio box
arguments {

x = 10;
y = 22;
orientation = DwtOrientationVertical;
border width = 0;
} ;

controls {
toggle_ button
toggle_button
toggle_button
} ;

} ;

burger_ rare;
burger_medium;
burger_well;

object
fl burger_rare : toggle_button {

arguments {

object

label label k_rare_label_text;
} ;

callbacks {

} ;

value_changed =procedure toggle__proc (k_burger_rare);
create= procedure create__proc (k_burger_rare);
} ;

burger_medium : toggle_button {
arguments {

object

label label = k medium label text;
toggle__value = on; - -
} ;

callbacks {

} ;

value_changed =procedure toggle__proc (k_burger_medium);
create= procedure create_proc (k_burger_medium);
} ;

burger_well : toggle_button {
arguments {

label label k well done_label_text;
} ;

callbacks {

} ;

value_changed =procedure toggle__proc (k_burger_we+l);
create= procedure create_proc (k_burger_well);
} ;

8 The controls section of the radio box widget object declaration lists the
three toggle button gadgets that are its children.

5-15

5.5.1

Using the Label, Separator, and Button Widgets
5.5 Creating a Toggle Button Widget or Gadget

8 After defining the radio box widget, the DECburger UIL module
defines each of the three toggle button gadgets it contains. Note
that DECburger does not have to use the gadget qualifier with the
toggle_button object type because, at the beginning of the UIL module,
DECburger declares toggle button gadgets as the default of the toggle_
button object type. See Section 3.2.4 for more information about
specifying default object types.

For each toggle button gadget, DECburger passes the text string the
gadget will contain as the value of the label attribute (called label_
label in UIL). DECburger accepts defaults for all other toggle button
gadget attributes. The radio box widget determines the sizing and
positioning of the toggle button gadgets that are its children.

Specifying the State of a Toggle Button Widget or Gadget
The toggle button widget and gadget both maintain their current state
in their value attribute. You can set the current state of a toggle button
widget or gadget when you create it by setting this attribute on or off. The
VMS DECwindows Toolkit Routines Reference Manual lists the constants
used to indicate these values.

DECburger sets the initial value of one of the toggle button gadgets used
in the radio box widget. In this way, DECburger specifies the default
choice for the radio box widget. Example 5-4 shows the UIL object
declaration of the toggle button in which the value attribute is set to
on. (Note that, in UIL, this attribute is named toggle_value.)

Example 5-4 Setting the Initial State of a Toggle Button

object
burger_medium : toggle_button {

5-16

arguments {
label_label = k_medium_label_text;
toggle_value = on;
} ;

callbacks {

} ;

value_changed =procedure toggle_proc (k_burger_medium);
create= procedure create_proc (k_burger_medium);
} ;

After the toggle button widget or gadget has been created, you can read
the current state or set the current state using the GET VALUES and
SET VALUES intrinsics routines. Alternately, you can use the following
support routines provided by the XUI Toolkit for use with toggle button
widgets and gadgets:

• TOGGLE BUTTON GET STATE routine

• TOGGLE BUTTON SET STATE routine

The TOGGLE BUTTON GET STATE support routine retrieves the current
value of the toggle button widget or gadget. The routine takes as its only
argument the identifier of the toggle button widget or gadget whose state
you want to read.

5.5.2

Using the Label, Separator, and Button Widgets
5.5 Creating a Toggle Button Widget or Gadget

The TOGGLE BUTTON SET STATE support routine allows you to set the
current value of the toggle button widget or gadget. This routine takes the
following arguments:

• The widget identifier of the toggle button widget or gadget

• The value you want the toggle button widget or gadget to have

• A Boolean variable that determines whether the toggle button widget
or gadget notifies your application that its value has changed

The DECburger sample application uses the TOGGLE BUTTON SET
STATE support routine to set the state of one of the toggle button gadgets
in the radio box widget when a user chooses to reset the user interface.

Customizing a Toggle Button Widget
The toggle button widget supports all the attributes supported by the
label widget. (For information about customizing a label widget, see
Section 5.2.1.) In addition to supporting these attributes, the toggle button
widget allows you to customize the following:

• The appearance of the indicator

• The pixmaps used to indicate on and off states when the widget is
sensitive

• The pixmaps used to indicate on and off states when the widget is
insensitive

5.5.2.1 Specifying the Appearance of the Indicator
Use the shape, spacing, and indicator attributes to specify the
appearance of the indicator and its presence in the toggle button widget.

To specify whether the indicator is square or oval, use the shape attribute.
The VMS DECwindows Toolkit Routines Reference Manual lists the
constants used to specify these values.

To specify the amount of space between the indicator and the start of the
label (if it is· a text label) in the toggle button widget, use the spacing
attribute. Specify this value in pixels.

To specify whether the toggle button widget includes an indicator, use the
indicator attribute. Set this attribute to true to include an indicator in a
toggle button widget. The XU! Style Guide recommends that toggle button
widgets include an indicator.

If you set the visible_ when_ off attribute to true, the indicator will not be
visible in the toggle button widget when it is in its off state.

5.5.2.2 Specifying On and Off Pixmaps
To specify the pixmap label that appears in a toggle button widget, pass
the identifier of the pixmap in the pixmap_on and pixmap_off attributes.
You can specify two separate pixmaps that graphically represent the toggle
button in its on and off states.

5-17

5.5.3

5.5.4

Using the Label, Separator, and Button Widgets
5.5 Creating a Toggle Button Widget or Gadget

To specify the pixmap label that will appear in a toggle button widget
when it is insensitive to user input, pass the identifier of the pixmap in
the insensitive_pixmap_on and insensitive_pixmap_off attributes.

Customizing a Toggle 'Button Gadget
Toggle button gadgets support all attributes supported by the label gadget.
For information about customizing a label gadget, see Section 5.2.2.

In addition, with the toggle button gadget, you can customize the shape of
the indicator (see Section 5.5.2.1).

Associating Callback Routines with a Toggle Button Widget or Gadget

5-18

When its value changes, a toggle button widget or gadget notifies an
application using the callback mechanism. The value changes when a user
selects the toggle button widget or gadget by moving the pointer cursor
onto it and clicking MBl. Your application can also change the value of
the toggle button widget or gadget using the TOGGLE BUTTON SET
STATE support routine or the intrinsic routine SET VALUES.

In addition, the toggle button widget performs callbacks when a user
moves the pointer cursor onto it and holds down MBl. This user
interaction arms the toggle button widget. The toggle button widget
also performs a callback when a user moves the pointer cursor off of it
without releasing MB 1. This user interaction disarms the toggle button
widget. The toggle button gadget does not support these callbacks.

The toggle button widget and gadget both perform callbacks when the user
presses the Help key while simultaneously clicking MBl inside the toggle
button widget or gadget.

When the toggle button widget or gadget performs a callback, it returns
callback data to your application. In this callback data, the toggle button
widget or gadget returns its current value, along with other data. For
complete information about the data returned in a callback by the toggle
button widget or gadget, see the VMS DECwindows Toolkit Routines
Reference Manual.

To associate a callback routine with a toggle button widget or gadget,
pass a callback routine list to one of the callback attributes they support.
Table 5-10 lists the callback attributes and the conditions that trigger
these callbacks.

Using the Label, Separator, and Button Widgets
5.5 Creating a Toggle Button Widget or Gadget

Table 5-1 O Toggle Button Widget and Gadget Callbacks

Callback Attribute

value_changed

arm_callback

disarm_callback

help_ callback

Description

A user has clicked MB1 on the toggle button widget or
gadget, causing it to change value, or your application
has assigned a value to the value attribute using the
SET VALUES intrinsic routine or the support routine
TOGGLE BUTTON SET STATE.

A user has moved the pointer cursor onto the toggle
button widget and is holding down MB1 (widget only).

A user has moved the pointer cursor off the toggle
button widget without releasing MB1 (widget only).

A user has pressed the Help key while the pointer
cursor is in the toggle button widget or gadget.

All the toggle button gadgets in the DECburger sample application use the
same callback routine, called toggle_proc, shown in Example 5-5. In the
callback routine, DECburger assigns the value returned in the callback
data to a position in an array, called toggle_array. DECburger uses the
array to store the current state of all its toggle buttons. In the callback
routine, DECburger determines which toggle button gadget performed the
callback by checking the tag field of the callback data.

Example 5-5 Toggle Button Callback Procedure in the DECburger
Application

static void toggle_proc(w, tag, toggle)
Widget w;
int *tag;
DwtTogglebuttonCallbackStruct *toggle;

toggle_array[*tag - k_burger_min] = toggle->value;

5 .. 6 Working with Compound Strings
All the text labels used in XUI Toolkit widgets are compound strings.
For example, to specify the text in the label attribute of the label, push
button, or toggle button widget (or gadget), you must pass the address
of a compound string. (The simple text widget is the only XUI Toolkit
widget that does not accept compound strings. See Chapter 9 for more
information.)

5-19

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

5-20

A compound string is a Digital Document Interchange Format (DDIF) data
type that describes a text string not only by the characters it contains
but also by other aspects, such as the character set and writing direction
used to display the text on a workstation screen. A compound string can
be made up of multiple segments. You can specify a different character
set, writing direction, or other attribute for each different segment of a
compound string. (For an illustration of a compound string containing
multiple segments, see Figure 9-1 in Section 9.1.)

The XUI Toolkit includes a set of routines that enable you to perform the
following tasks on compound strings:

• Create a compound string

• Create a compound string made up of multiple segments

• Manipulate a compound string

• Retrieve information about the compound string

• Specify fonts

Table 5-11 lists all the compound string routines in the XUI Toolkit.

Table 5-11 Compound String Routines

Routine Description

Creating a Compound String

CS STRING

LATIN1 STRING

STRING

Creates a compound string, allowing you to specify all
aspects of the string including character set and writing
direction.

Creates a compound string that uses the ISO Latin1
character set and the left-to-right writing direction.

Creates a compound string, allowing you to specify
character set and writing direction.

Manipulating a Compound String

CS BYTE CMP

CS CAT

CS COPY

CS EMPTY

CS LEN

Compares two compound strings to determine if they are
identical.

Appends a copy of one compound string to the end of
another compound string.

Copies a compound string.

Determines if the compound string contains any text
segments.

Returns the number of bytes in a compound string.

(continued on next page)

5.6.1

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

Table 5-11 (Cont.) Compound String Routines

Routine Description

Retrieving Information About a Compound String

GET NEXT SEGMENT Returns information about a segment of a compound
string.

INIT GET SEGMENT Initializes a compound string context.

STRING FREE CONTEXT Frees a compound string context.

STRING INIT CONTEXT Initializes a compound string context.

Specifying Fonts

ADD FONT LIST

CREATE FONT LIST

Creating a Compound String

Adds an entry to a font list.

Creates a new font list.

To create a compound string, pass a text string to one of the following
compound string creation routines. (You can also use the UIL built
in function COMPOUND_STRING to create compound strings in a
UIL module. For more information about this built-in function, see
Section 3.2. 7 A.)

• CS STRING routine

• STRING routine

• LATINl STRING routine

The CS STRING routine provides access to all the aspects of a compound
string that you can specify, including character set and writing direction.
The STRING and LATINI STRING routines are convenience routines
that use default values for certain aspects of a compound string. Using
the STRING routine, you can only specify the character set and writing
direction. The STRING routine uses default values for all other aspects
of a compound string. The LATINI STRING routine uses default values
for all of the aspects of a compound string. The LATINI STRING routine
creates a compound string that uses the ISO LatinI character set and the
left-to-right writing direction. Most English language applications can use
the LATINl STRING convenience routine.

The compound string routines take a standard text string as an argument
and create a compound string version of the text. Example 5-6 shows
an excerpt from the Hello World! sample application in which the text
contained in the label widget is defined. The example uses the LATINl
STRING conversion routine to convert the text into a compound string.

5-21

5.6.2

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

Example 5-6 Creating a Compound String

XtSetArg (arglist[O],DwtNlabel,
DwtLatinlString("Press button once\nto change label;\ntwice to exit."));

label= DwtLabelCreate(helloworldmain, "label", arglist, 1);

Note that the compound string routines allocate memory. Remember to
free the memory obtained by the compound string routines when the
compound string is no longer needed. Use the FREE intrinsic routine to
free the memory associated with a compound string.

Creating Compound Strings with Multiple Segments
To create a compound string with multiple segments, create each segment
as a separate compound string and then concatenate the strings using
the CS CAT routine. Use any of the routines described in Section 5.6.1 to
create the segments.

Example 5-7 illustrates how to create a compound string with multiple
segments.

Example 5-7 Creating a Compound String with Multiple Segments

t»#include <cda$def .h>

8o~tCompString cstringl = DwtLatinlString("Compound string text widget");
•DwtCompString cstring2 = DwtString("Compound string text widget",

CDA$K ISO LATINl,
DwtDi;ectTonLeftDown);

~DwtCompString mixed_string = DwtCStrcat(cstringl, cstring2);

5-22

0 The Compound Document Architecture (CDA) symbol definition file,
named cda$def.h, enables the example to use the CDA constants to
specify character sets.

8 The LATINI STRING compound string routine creates a compound
string that uses the ISO Latini character set and the left-to-right
writing direction.

8 The STRING compound string routine allows you to specify the
character set and writing direction. In the example, the ISO Latini
character set and the right-to-left writing direction are specified.

5.6.3

5.6.4

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

8 The CS CAT compound string routine concatenates the two compound
strings to create one compound string containing multiple segments.

Manipulating a Compound String
To compar.e, copy, determine the length, or determine the text content of a
compound string, use one of the following compound string manipulation
routines:

• CS BYTE CMP routine

• CS COPY routine

• CS LEN routine

• CS EMPTY routine

To compare two compound strings, use the CS BYTE CMP routine. This
routine compares not only the text content of the compound strings, but
also the character set and writing direction. The routine returns zero (0) if
both compound strings are identical.

To copy a compound string, use. the CS COPY routine. This routine makes
a byte-for-byte copy of the specified compound string.

To determine the length of a compound string, use the CS LEN routine.
The value returned by this routine includes all the components of the
compound string, not just the length of the text component.

To determine if a compound string contains any text, use the CS EMPTY
routine. The routine returns true (1) if the compound string does not
contain text.

Retrieving Information About a Compound String
You can use compound string routines to determine the following
information about a compound string:

• Text content

• Character set

• Writing direction

To obtain this information, perform the following steps:

1 Obtain an initialized compound string context for the compound string.

The compound string context is a data structure that contains
information about a particular compound string. You pass a compound
string to the STRING INIT CONTEXT routine with the address of a
compound string context. The routine fills the compound string context
with information about the compound string that you specified.

5-23

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

5-24

2 Extract information about the string from the compound string
context.

Use the GET NEXT SEGMENT routine to determine the text content,
character set, and writing direction of a compound string. If the
compound string is made up of more than one segment, the GET NEXT
SEGMENT routine returns information about the first segment and
returns a status value indicating that there are additional segments.
The following table lists all of the possible status values returned by
the GET NEXT SEGMENT routine.

Status

DwtEndCS

DwtFail

DwtSuccess

DwtTruncate (VAX only)

Meaning

End of compound string has been reached.

Context is not valid.

Normal completion.

Text string was truncated to fit in the buffer described
by the static descriptor.

3 Free the compound string context.

Use the STRING FREE CONTEXT routine to free the compound string
context obtained by the STRING INIT CONTEXT routine.

You can also use the INIT GET SEGMENT routine to obtain an initialized
compound string context; however, the STRING INIT CONTEXT routine
is recommended because it offers better performance. If you use the INIT
GET SEGMENT routine, you do not need to free the compound string
context.

Example 5-8 shows how to use the GET NEXT SEGMENT routine to
extract the text content from the first segment of a compound string. Note
that extracting the text content from each segment of a compound string
and concatenating the text to create a single text string may not always
produce meaningful results.

5.6.5

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

Example 5-8 Extracting the Text Content from a Compound String

DwtCompString comp string= DwtLatinlString("My compound string");
OowtCompStringContext context;

char *result;
long status, charset, direction, lang, rend;

f:ls~atus = DwtStringinitContext(&context, comp_string);

if (status != DwtSuccess)
{

printf("Cannot Initialize Compound String Context.");

else

statu~ = DwtGetNextSegment(&context, &result, &charset,
&direction, &lang, &rend);

}

~wtStringFreeContext(&context);

Specifying Fonts

8 The compound string context will hold information about a particular
compound string.

fl The STRING !NIT CONTEXT routine initializes the compound string
context with information about the compound string named comp_
string.

e The GET NEXT SEGMENT routine extracts the information about
this compound string from the compound string context. The text
content of the compound string is returned as a null-terminated array
of text characters in the result argument.

8 The STRING FREE CONTEXT routine frees the compound string
context obtained earlier by the call to the STRING !NIT CONTEXT
routine.

To specify the font you want used to display text, you must create a font
list by using the compound string routine CREATE FONT LIST. A font list
is an internal data structure that associates font names with character set
identifiers. The XUI Toolkit specifies fonts in font lists because compound
strings can employ more than one character set and, consequently, might
require more than one font to display these character sets.

To add an additional font specification to an existing font list, use the ADD
FONT LIST routine.

5-25

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

The program in Example 5-9 creates a font list and uses it to specify the
font used in a simple text widget. (Use system default fonts whenever
possible to ensure that your application appears well integrated in the
VMS DECwindows environment.)

Example 5-9 Specifying a Font

#include <stdio>
#include <decw$include/DwtAppl.h>
8:ff:include <cda$def .h>

Widget toplevel, main_db, text_w;

int main(argc, argv}
unsigned int argc;
char **argv;

Arg arglist[15];
int ac = O;

• XFontStruct *font;
fD DwtFontList font_list;

toplevel = Xtinitialize("Font Example","exampleclass",NULL, 0, &argc, argv};

ac = 0;
XtSetArg(arglist[ac], XtNallowShellResize, TRUE }; ac++;
XtSetArg(arglist[ac], XtNx, 150 }; ac++;
XtSetArg(arglist[ac], XtNy, 150 }; ac++;
XtSetValues(toplevel, arglist, ac };

ac = O;
XtSetArg(arglist[ac], DwtNmarginHeight, 15 }; ac++;

main db= DwtDialogBoxCreate(toplevel, "MAINWIN", arglist, ac };

t» font= XLoadQueryFont(XtDisplay(toplevel },
"-*-Courier-BOLD-R-Normal--*-120-*-*-M-*-*-*"};

CB font list= DwtCreateFontList(font, CDA$K_ISO_LATIN1 };

ac = O;
C9 XtSetArg(arglist[ac], DwtNfont, font list); ac++;

XtSetArg(arglist[ac], DwtNvalue, "Sample text" }; ac++;
XtSetArg(arglist[ac], DwtNx, 20 }; ac++;
XtSetArg(arglist[ac], DwtNy, 20 }; ac++;
XtSetArg(arglist[ac], DwtNrows, 1 }; ac++;
XtSetArg(arglist[ac], DwtNcols, 25 }; ac++;

text_w = DwtSTextCreate(main_db, "textwidget", arglist, ac);

fl XtFree(font_list };

XtManageChild(text w };

XtManageChild(main_db);

XtRealizeWidget(toplevel);

XtMainLoop(};

5-26

8 The Compound Document Architecture (CDA) symbol definition file,
named cda$def.h, enables the example to use the CDA constants to
specify character sets.

• The variable font is declared as a pointer to an X font structure.

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

e The variable font_list is declared as a font list.

8 The LOAD QUERY FONT Xlib routine returns a pointer to the
specified font. This routine returns the address of an X font structure.
If the specified font cannot be loaded, the routine returns a null
pointer.

8 The CREATE FONT LIST routine creates a font list. In the example,
the first argument to the CREATE FONT LIST routine specifies
the X font structure returned by the LOAD QUERY FONT routine.
The second argument to this routine is a constant that identifies the
character set.

• The font list is used to specify the font the simple text widget will use
to display text.

9 After using the font list, free the memory associated with the font list.

5.7 Defining Accelerators for Button Widgets and Gadgets

5.7.1

The primary mode of access to functions associated with push button
widgets and gadgets and toggle button widgets and gadgets is by clicking
a mouse button. However, you can also provide access to these same
functions using the keyboard. This alternate mode of access is called an
accelerator.

Defining an accelerator is a three-step process:

1 Create an event specification that defines the key or combination of
keys used as the accelerator.

2 Add the definition of the accelerator to the accelerator table of the
widget or gadget.

3 Install the event specification in the translation table of another
widget higher in the application widget hierarchy that can accept the
input focus.

You can optionally include a text label in the widget or gadget to provide a
visual cue to users that the widget has an accelerator.

Defining the Accelerator Key or Key Combination
You specify the key or combination of keys that will be the accelerator in
a translation table event specification. An event specification is a text
string that contains the event name (enclosed in angle brackets), the name
of the keyboard key, and any modifier keys, such as the control key. The
modifier keys precede the event name. Terminate the event specification
with a colon. Enclose the entire event specification with quotation marks.

As an example, to define the Ctrl/B key combination as an accelerator for
a push button, you create the following event specification:

"Ctrl<KeyPress>b:"

5-27

5.7.2

5.7.3

Using the Label, Separator, and Button Widgets
5. 7 Defining Accelerators for Button Widgets and Gadgets

In the example, the control key is the modifier key, specified by the
abbreviation Ctrl. Following the modifier key is the event name enclosed
in angle brackets. For an accelerator, the event is the pressing of a
keyboard key, specified by the event name KeyPress. Following the event
name, you specify the keyboard key that will be the accelerator. In the
example, this is the letter b. The colon terminates the event specification.
The entire event specification is enclosed with quotation marks. (For more
information about translation table syntax, see Section D.9.4.)

If you are defining the user interface of your application in a UIL
module, use the UIL built-in function TRANSLATION TABLE to create
an accelerator event specification. For more information, see the VMS
DECwindows User Interface Language Reference Manual.

Adding an Accelerator to a Widget or Gadget
To add an accelerator definition to a widget or gadget, assign the
event specification as the value of the button_accelerator attribute.
Example 5-10 adds an accelerator to a push button widget. Note in the
example how the entire event specification is passed as the value of the
button_accelerator attribute.

Example 5-10 Adding an Accelerator to a Push Button Widget or Gadget

XtSetArg(arglist[O], DwtNx, 10);
XtSetArg(arglist[l], DwtNy, 40);
XtSetArg(arglist[2], DwtNactivateCallback, callback arg);
XtSetArg(arglist[3], DwtNlabel, DwtLatinlString("Hello\nWorld!"));
XtSetArg(arglist[4], DwtNacceleratorText, DwtLatinlString(""b"));
XtSetArg(arglist[S], DwtNbuttonAccelerator, "Ctrl<KeyPress>b:");

button= DwtPushButtonCreate(helloworldrnain, "button", arglist, 6);

Installing an Accelerator in an Application

5-28

After creating the widget or gadget with the accelerator, you must add
the accelerator to the translation table of a widget that is higher in the
application widget hierarchy and that can accept input focus. The push
button widget or gadget with the accelerator cannot accept input focus and
so cannot receive keyboard input. Therefore, you must choose a widget in
the application widget hierarchy that can accept input focus and install
the accelerator on that widget. The main window widget, the dialog box
widget, the attached dialog box widget, and the simple text widget are the
only XUI Toolkit widgets that accept input focus.

To install an accelerator on a widget, use either the INSTALL
ACCELERATORS or the INSTALL ALL ACCELERATORS intrinsic
routine, as in the following example:

XtinstallAllAccelerators(main_win, main win);

5.7.4

Using the Label, Separator, and Button Widgets
5. 7 Defining Accelerators for Button Widgets and Gadgets

The INSTALL ACCELERATORS and the INSTALL ALL
ACCELERATORS routines both accept the same arguments:

• The widget identifier of the destination widget

• The widget identifier of the source widget

The destination widget argument is the identifier of the widget on which
you want the accelerators installed. The source widget argument is the
identifier of the widget that contains the accelerators. For the INSTALL
ACCELERATORS routine, the source widget is a single widget. For the
INSTALL ALL ACCELERATORS routine, the source widget is a widget
hierarchy. The INSTALL ALL ACCELERATORS routine searches for
accelerators in the widget specified as the argument as well as all of the
widgets below it in the widget hierarchy.

Specifying an Accelerator Label
When you define an accelerator for a widget or gadget, you can optionally
include a text representation of the accelerator in the widget or gadget.
The text representation of the accelerator makes the user of the
application aware of the accelerator for the widget or gadget.

To include an accelerator label, pass the label, in the form of a compound
string, to the widget or gadget using the accelerator_text attribute, as in
the following example:

XtSetArg{arglist[4], DwtNacceleratorText, DwtLatinlString{""b"));

The accelerator label you specify appears in the widget or gadget to the
right of the text label. Figure 5-3 shows the appearance of the Hello
World! application with the accelerator label 11 Ab 11

•

Figure 5-3 Hello World! Application with an Accelerator

Hi

Press button once
to change label;
twice to exit.

Hello "b
World!

ZK-0202A-GE

5-29

5.7.5

Using the Label, Separator, and Button Widgets
5. 7 Defining Accelerators for Button Widgets and Gadgets

Adding an Accelerator to the Hello World! Sample Application
Example 5-11 modifies. the Hello World! application to accept an
accelerator. This version of the Hello World! application adds a main
window widget to the application widget hierarchy of the Hello World!
application to enable the application to accept input focus. The widget
must be able to accept keyboard input to make use of accelerators. The
example explicitly sets the width and height of the main window widget to
0, causing the main window widget to size itself to fit its children.

Example 5-11 Adding an Accelerator to the Hello World! Appllcatlon

#include stdio
#include <decw$include/DwtAppl.h>

static void helloworld button activate ();
static DwtCallback callback_arg[2];

int main (argc, argv)
unsigned int argc;
char **argv;

Widget toplevel, helloworldmain, button, label, main_win;
Arg arglist[lO];

toplevel = Xtinitialize("Hi", "helloworldclass",NULL, 0, &argc, argv);

XtSetArg(arglist[O], XtNallowShellResize, TRUE);
XtSetValues (toplevel, arglist, 1);

XtSetArg(arglist[O], DwtNacceptFocus, TRUE);
XtSetArg(arglist[l], DwtNwidth, 0);
XtSetArg(arglist[2], DwtNheight, 0);

8 main_win = DwtMainWindowCreate (toplevel, "main", arglist, 3);

XtManageChild (main_win);

helloworldmain = DwtDialogBoxCreate(main_win, "d_box", arglist, 0);

XtSetArg(arglist[O], DwtNlabel,
DwtLatinlString ("Press button once\nto change label;\ntwice to exit."));

label= DwtLabelCreate(helloworldmain, "label", arglist, 1);

XtManageChild(label);

callback_arg[O] .proc = helloworld_button_activate;
callback_arg[O] .tag = 0;
callback_arg[l] .proc = NULL;

XtSetArg(arglist[O], DwtNx, 10);
XtSetArg(arglist[l], DwtNy, 40);
XtSetArg(arglist[2], DwtNactivateCallback, callback_arg);
XtSetArg(arglist[3], DwtNlabel, DwtLatinlString("Hello\nWorld"));

8 XtSetArg(arglist[4], DwtNacceleratorText, DwtLat:i.nlString(""b"));
• XtSetArg(arglist[S], DwtNbuttonAccelerator, "Ctrl<KeyPress>b:");

button= DwtPushButtonCreate(helloworldmain, "button", arglist, 6);

XtManageChild(button);

XtManageChild(helloworldmain);

XtRealizeWidget(toplevel};

(continued on next page)

5-30

Using the Label, Separator, and Button Widgets
5. 7 Defining Accelerators· for Button Widgets and Gadgets

Example 5-11 (Cont.) Adding an Accelerator to the Hello World! Application

8 XtinstallAllAccelerators(main_win, main win);

XtMainLoop();

static void helloworld button activate (widget, tag, callback_data)
Widget widget; - -

{

char *tag;
DwtAnyCallbackStruct *callback_data;

Arg arglist[2];
static int call count = 0;

call_count += 1;

switch (call_count)
case 1:

XtSetArg(arglist[O], DwtNlabel, DwtLatinlString("Goodbye\nWorld"));
XtSetArg(arglist[l], DwtNx, 6);
XtSetValues (widget, arglist, 2);
break;

case 2:
exit(O);
break;

}
}

e This version of the Hello World! application adds a main window
widget at the top of its application widget hierarchy. The main window
widget can accept input focus, which an application using accelerators
requires. In the argument list used to set the attributes of the main
window widget, the example sets the accept_focus attribute to true.

8 In this statement, the example program defines the accelerator label
that will appear to the right of the push button label. This information
tells the user what accelerator key works with this push button. Note
that, as with any other text label intended to. appear on the display,
the accelerator text must be converted into a compound string. The
example converts the text string 11 Ab 11 into a compound string using
the LATINI STRING routine.

8 The example assigns the event specification as the value of the
button_accelerator attribute in the argument list used to create
the push button widget. The information is passed as a text string.
(Note that the event specification does not have to be converted into
a compound string.) The sample program defines the Ctrl/B key
sequence as the accelerator.

8 After the program realizes the entire widget hierarchy, including the
widget with the accelerator, the example installs the accelerator in the
translation table of an application widget that accepts input focus. The
example installs the accelerator on the main window widget, main_
win. In the INSTALL ALL ACCELERATORS routine, both the

5-31

Using the Label, Separator, and Button Widgets
5. 7 Defining Accelerators for Button Widgets and Gadgets

5-32

source and the destination arguments are the same widget. Used as
the source argument, main_win represents the entire Hello Worldl
application widget hierarchy. As the destination, main_win represents
the main window widget on which the accelerators are installed.

6 Creating Menu Widgets

This chapter includes the following:

• An overview of the menu widgets provided by the XUI Toolkit

• A detailed description of how to include a menu widget in your
application

6.1 Overview of Menu Widgets
Menu widgets allow you to present users with a list of choices. Users
can select an option or activate an application function by clicking a mouse
button on a menu item. You would typically use a menu widget to present
a list of choices that perform actions. To present long lists of choices, use
a list box widget. The list box widget allows users to scroll through long
lists of choices. Chapter 8 describes the list box widget.

6.2 Menu Widgets in the XUI Toolkit
A menu widget is a rectangular container for menu items. The XUI Toolkit
includes six menu widgets. All of the menu widgets are fundamentally the
same; that is, they all are rectangular containers. The menu widgets
differ in the type of user interaction they provide. The following are menu
widgets in the XUI Toolkit:

• Work area menu widget

• Menu bar widget

• Option menu widget

• Radio box widget

• Pull-down menu widget

• Pop-up menu widget

The work area menu widget is the simplest menu widget. As with the
other widgets in the XUI Toolkit, the work area menu widget is the child
of a given parent widget and is clipped by that parent. You make work
area menus appear on a display and remove them from a display by adding
and removing them from their parent's list of managed widgets. The menu
bar, option menu, and radio box widgets are all specially configured work
area menu widgets.

The pull-down and pop-up menu widgets are spring-loaded menu
widgets. Spring-loaded menu widgets appear on the display only when
a user presses a mouse button. They disappear when the user releases the
mouse button. The pull-down menu widget and the pop-up menu widget
are not clipped by their parent. ·

6-1

6.2.1

Creating Menu Widgets
6.2 Menu Widgets in the XUI Toolkit

Pull-down menu widgets are spring-loaded on MBl or MB2, depending
on what type of widget is the parent of the pull-down menu widget. If
the parent is a menu bar, work area menu, or option menu widget, the
pull-down menu widget is spring-loaded on MBl. If the parent is a pop-up
menu widget, the pull-down menu widget is spring-loaded on MB2, since
pop-up menu widgets are themselves spring-loaded on MB2. The parent of
a pull-down menu widget must be another menu widget.

Pop-up menu widgets are spring-loaded on MB2. Pop-up menu widgets
appear on the display wherever the user has positioned the pointer cursor.

Figure 6-1 shows a work area menu widget. For an illustration of other
menu widgets, see the illustration of the DECburger application user
interface in Figure 1-4. (DECburger does not include a pop-up menu
widget. For an illustration of a pop-up menu widget, see Figure 6-9.)

Figure 6-1 Menu Widget

Item A
Item B
ltemC
Item D

ZK-0208A-GE

Creating Menu Items

6-2

You build a menu by creating a menu widget with a group of child widgets
or gadgets that implement the menu items. Each item in a menu is a
widget or a gadget. The menu widget displays menu items in the order
you create them. You can dynamically change the contents of a menu
widget at run time by adding and removing the widgets and gadgets that
implement menu items from the menu widget's list of managed children.

Menu items can be active or inactive. Active menu items are sensitive
to user interaction using a pointing device. Inactive menu items are
insensitive to user interaction.

Use the following XUI Toolkit widgets and gadgets to implement menu
items:

• Label

• Separator

• Push button

• Toggle button

• Pull-down menu entry

Creating Menu Widgets
6.2 Menu Widgets in the XUI Toolkit

Note: To improve the performance of your application, use gadgets
instead of widgets to implement menu items. For example, a
pull-down menu widget containing menu items that are gadgets
will appear on the display faster than a pull-down menu widget
containing menu items that are widgets.

Use label and separator widgets and gadgets to create inactive menu
items. Inactive menu items provide descriptive information to the user or
organize menu items into logical groups.

Use the push button and toggle button widgets and gadgets to create
active menu items. Active menu items gather input from the user or
activate application functions. Use the push button widget to implement
menu items that carry out actions. Use the toggle button widget to
implement menu items that require state information, such as on or off.
Section 5.4 describes how to create push button widgets and gadgets;
Section 5.5 describes how to create toggle button widgets and gadgets.

Use the pull-down menu entry widget or gadget to create an active menu
item that makes a pull-down menu widget appear on the display. When
a user selects the pull-down menu entry widget or gadget, the pull-down
menu widget you associated with it appears on the display. This is the
only way a user can access a pull-down menu.

Note the distinction between the pull-down menu widget and the pull
down menu entry widget (or gadget). A pull-down menu widget, like all
menu widgets, is the rectangular container. A pull-down menu entry
widget is a push button-like widget through which users access a pull
down menu widget. For example, you could create a menu bar widget
containing three menu items. Each menu item is a pull-down menu
entry widget. When a user selects an item in the menu bar widget,
the pull-down menu widget associated with the pull-down menu entry
widget appears on the display immediately below the menu item (or
immediately to the right of the item for vertically oriented menus).
Figure 6-2 illustrates these widgets.

6-3

6.2.2

Creating Menu Widgets
6.2 Menu Widgets in the XUI Toolkit

Figure 6-2 Relationship of Pull-Down Menu Widget and Pull-Down
Menu Entry Widget or Gadget

Pull-Down_/
Menu Entry
Widget

Create Order Box

Cancel Order
Submit Order

rPull-Down
Menu Widget

ZK-0446A-GE

You can specify the text string or pixmap that the pull-down menu entry
widget will contain. The pull-down menu entry gadget does not support
pixmaps. Pull-down menu entry widgets or gadgets can also contain a
hotspot. A· hotspot is a graphical image that is sensitive to user input
using a mouse button. Pull-down menu entry widgets and gadgets contain
hotspots when they are used to create nested pull-down menu widgets.
(For more information about nesting menus, see Section 6.2.2.) In the
pull-down menu entry widget, you can specify the pixmap used for the
hotspot. The pull-down menu entry gadget does not allow you to specify
the hotspot pixmap.

Nesting Menu Widgets

6-4

By including a pull-down menu entry widget or gadget in a pull-down
menu widget, you can create a cascade of nested menus (also called
submenus). Figure 6-3 illustrates the application widget hierarchy of a
pull-down me:p.u widget containing a nested pull-down menu widget.

Creating Menu Widgets
6.2 Menu Widgets in the XUI Toolkit

Figure 6-3 Widget Hierarchy of Nested Pull-Down Menu Widgets

Menu Entry

Parent Widget of Menu

Menu Widget

Menu Entry
Pull-Down
Menu Entry

Menu Entry

Pull-Down Menu

Menu Entry Menu Entry

ZK-0205A-GE

You can nest an unlimited number of menu widgets. However, the XUI
Style Guide recommends using no more than four levels of nested pull
down menu widgets.

A pull-down menu widget activated from within another pull-down
menu, option menu, or pop-up menu widget appears on the display to
the immediate right of the pull-down menu entry widget that triggers it.
For this reason, these pull-down menu widgets are sometimes called pull
right menu widgets. Pull-right menu widgets are functionally identical to
pull-down menu widgets.

6.3 Creating a Work Area Menu Widget
To create a work area menu widget, perform the following steps:

1 Create the work area menu widget.

Use any of the widget creation mechanisms listed in Table 6-1. The
choice of mechanism depends on the attributes of the widget you need
to access.

DECLIT AA VAX MG21B

VMS DECwindows guide to
application programming

6-5

Creating Menu Widgets
6.3 Creating a Work Area Menu Widget

6-6

Table 6-1 Work Area Menu Widget Creation Mechanisms

High-level routine

Low-level routine

UIL object type

Use the MENU routine to create a work area menu widget.
Specify the type of menu in the format argument.

Use the MENU CREATE routine to create a work area menu
widget.

Use the work_area_menu object type to define a work area
menu widget in a UIL module. At run time, the ORM routine
FETCH WIDGET creates the work area menu widget according
to this definition.

2 Create the children of the work area menu widget.

Use any of the widget creation mechanisms to create the widgets that
you want to appear as items in the menu. The child widgets appear in
the menu widget in the same order that you create them.

3 Manage the children of the work area menu widget.

Use the intrinsic routine MANAGE CHILD to manage a single child
or the MANAGE CHILDREN routine to manage a group of children at
the same time.

4 Manage the work area menu widget.

Use the intrinsic routine MANAGE CHILD to manage the widget.

After you complete these steps, if the parent of the work area menu widget
has been realized, the work area menu widget and all of its children will
appear on the display.

Low-level routines and VIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a subset
of these widget attributes at widget creation time. (To access attributes
not available using a high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 6-2 lists the attributes
you can set if you use the high-level routine MENU to create a work area
menu widget. Pass the values of these attributes as arguments to the
routine.

Table 6-2 Attributes Accessible Using the High-Level Routine MENU

x
y

format

orientation

map_callback

entry_callback

help_callback

Specifies the x-coordinate of the upper left corner

Specifies the y-coordinate of the upper left corner

Specifies the type of menu: pull-down, pop-up, or work area

Specifies whether the menu has a horizontal or vertical
orientation

Specifies the address of a callback routine list

Specifies the address of a callback routine list

Specifies the address of a callback routine list

Creating Menu Widgets
6.3 Creating a Work Area~ Menu Widget

Example 6-1 creates a typical work area menu widget. The example
creates a work area menu widget with three push button widgets as its
children. The push button widgets are the menu items.

Example 6-1 Building a Work Area Menu

t»widget toplevel, parent widget,
WidgetList menu_items[3];-

static void buttonl callback();
static void button2=callback();
static void button3_callback();

menu;

static DwtCallback callback_list[2];

build_menu ()
{

Arg arglist[5];
int count = 0;

XtSetArg(arglist[O], DwtNmarginWidth, 20);

8 menu= DwtMenuCreate(parent_widget, "menu", arglist, 1);

callback list[O] .proc buttonl_callback;
callback-list[O] .tag = 0;
callback=list[l] .proc =NULL;

XtSetArg(arglist[O], DwtNactivateCallback, callback list);
XtSetArg(arglist[l], DwtNlabel,

DwtLatinlString("Menu Item One"));

0 menu_items[count++] = DwtPushButtonCreate(menu,"buttonl", arglist,2);

callback list[O] .proc button2_callback;
callback=list[O] .tag = 0;
callback_list[l] .proc =NULL;

XtSetArg(arglist[O], DwtNactivateCallback, callback list);
XtSetArg(arglist[l], DwtNlabel,

DwtLatinlString("Menu Item Two"));

menu_items[count++] = DwtPushButtonCreate(menu, "button2", arglist, 2);

callback list[O] .proc button3_callback;
callback=list[O] .tag = 0;
callback_list[l] .proc =NULL;

XtSetArg(arglist[O], DwtNactivateCallback, callback list);
XtSetArg(arglist[l], DwtNlabel,

DwtLatinlString("Menu Item Three"));

menu_items[count++] = DwtPushButtonCreate(menu, "button3", arglist,2);

Ct XtManageChildren(menu_items, count);

(continued on next page)

6-7

Creating Menu Widgets
6~3 Creating a Work Area Menu Widget

Example 6-1 (Cont.) Building a Work Area Menu

CD XtManageChild(menu);
}

6-8

8 The example declares variables to hold the widget identifiers for
the widgets in the application widget hierarchy. The variable menu
will hold the widget identifier of the work area menu widget. The
variable menu_items is an array of widget identifiers that will hold the
identifiers for the widgets that are the menu items.

• The example creates the work area menu widget using the low-level
routine MENU CREATE. In the argument list, the example specifies
a margin width of 20 pixels in the margin_ width attribute. The
argument list is passed to the widget creation routine along with a
count of the number of attributes set in the argument list.

8 After creating the work area menu widget, the sample program creates
the widgets that will be menu items. In the example, all the menu
items are push button widgets. Each push button widget is a child of
the work area menu widget. The sample program creates the push
button widgets using the low-level routine PUSH BUTTON CREATE.
For each push button widget, the sample program specifies a callback
routine list, callback_list, and the text of the label the push button
widget will contain. The widget identifier returned by each call to
the PUSH BUTTON CREATE routine is stored in the array of widget
identifiers, menu_items.

8 The example manages all the children of the work area menu widget
in a single call to the intrinsic routine MANAGE CHILDREN. All the
widgets managed in this call must be children of the same parent. The
sample program passes the address of the array of widget identifiers
and the number of widgets in the array as arguments to the routine.

0 The example manages the work area menu widget using the MANAGE
CHILD intrinsic routine.

Figure 6-4 illustrates the application widget hierarchy of the menu created
in Example 6-1.

6.3.1

Creating Menu Widgets
6.3 Creating a Work. Area· Menu Widget

Figure 6-4 Widget Hierarchy of a Work Area Menu

Menu Item

Parent Widget
of Menu

Menu Widget

Menu Item

Customizing a Work Area Menu Widget

Menu Item

ZK-0207 A-GE

The attributes of the work area menu widget enable you to customize the
following aspects of its appearance and functioning:

• Size

• Arrangement of menu items

• Margins and spacing between menu items

• Alignment of menu items

• Radio button exclusivity

• Type of widget that can be a menu item

By default, the menu widget can change many of the visible attributes of
its child widgets to make the menu items appear uniform. For example,
the menu widget can set the border size, align labels, change margin
settings, and change the shape and visibility of a toggle button indicator.
However, you can specify that the menu widget leave these attributes
unchanged by setting the change_ vis_atts attribute to false (this
attribute is true by default).

6.3.1.1 Specifying the Size of a Work Area Menu Widget
You can specify the size of a work area menu widget using the common
widget attributes width and height. Specify each dimension in pixels.
By default, work area menu widgets size themselves to accommodate their
children.

Work area menu widgets will grow to fit additional children to the degree
the parent of the menu widget allows. When resized, work area menu
widgets recalculate the layout of their children. If the work area menu
widget cannot grow to accommodate its new children, the children are
clipped.

6-9

Creating Menu Widgets
6.3 Creating a Work Area Menu Widget

6-10

6.3.1.2 Specifying the Arrangement of Menu Items
Use the menu_packing, menu_num_columns, and orientation
attributes to specify the arrangement of the child widgets in a work
area menu widget.

Use the menu_packing attribute to specify that the work area menu
widget arrange its children in columns. If you do this, you can also specify
the number of columns in the menu_num_columns attribute.

By default, work area menu widgets attempt to fit all their children as
efficiently as possible by wrapping them when necessary. Wrapping means
the work area menu widget starts a new column or row if the number
of children would cause the work area menu widget to grow beyond the
limitations set on the work area menu widget by its parent. You can
disable this default behavior using the menu_packing attribute. In this
case, you can determine the individual position of each child widget by
setting their x and y attributes.

6.3.1.3 Specifying Margins and Spacing
Use the margin_ width, margin_height, and spacing attributes to
determine the amount of space surrounding each child of a work area
menu widget. Specify these attributes in pixels.

Figure 6-5 illustrates the margins in a work area menu widget.

Figure 6-5 Laying Out Menu Items

Menu Widget

' margin_height

~argin wid~l------~-------l~rgin_width
. Menu Item .

t

+

spfing

Menu Item

' margin_height

+
ZK-0200A-GE

You can also control the margins of the widgets that implement the menu
items by using the adjust_margin attribute. If you set this attribute
to true, the work area menu widget sets the internal margins of the

Creating Menu Widgets
6.3 Creating a Work Area Menu Widget

widgets that are the menu items so that the text they contain is aligned.
(Section 5.2.1.3 describes the margins of the label, separator, push button
and toggle button widgets and gadgets.)

6.3.1.4 Determining Menu Item Alignment
Use the menu_alignment and entry _alignment attributes to control
how the text in each child widget of the work area menu widget lines up.
If you set menu_alignment to true, the work area menu widget aligns
the text contained in each child widget of the work area menu widget.
Choose the type of alignment in the entry _alignment attribute. The text
can be centered, aligned to the right margin, or aligned to the left margin
of the child widget. The XUI Toolkit defines constants that indicate each
of these values. See the VMS DECwindows Toolkit Routines Reference
Manual for these constants.

You can also specify whether the active area of the menu item should
extend to the full width and height of the menu or whether it should
follow the true length of the menu item. If you set the menu_extend_
last_row attribute to true, the menu widget enlarges the active area of
menu items with shorter labels to match the length of the longest menu
item. Likewise, the height of the active area of the shortest menu item is
extended to match the height of the tallest menu item.

6.3.1.5 Specifying Radio Button Exclusivity
Use the menu_radio attribute to specify that only one item in a work
area menu widget can be selected at a time. This restriction is called radio
button exclusivity. If you set this attribute to true, you can also specify
that one item in the work area menu widget must always be selected by
setting the menu_always_one attribute to true.

A radio box widget is a work area menu with the menu_radio attribute
set to true by default.

6.3.1.6 Restricting Menu Items to Classes of Widgets
Use the menu_is_homogeneous and the menu_entry _class attribute
to restrict the type of widgets that can be children of a work area menu
widget. By setting the menu_is_homogeneous attribute to true, you
specify that the work area menu widget accept only one class of widget
as children. Specify the class of widgets that is allowed as children in the
menu_entry _class attribute by class name. 'fable 6-3 lists the widget
class names of the XUI Toolkit widgets commonly used as menu items.

6-11

6.3.2

Creating Menu Widgets
6.3 Creating a Work Area Menu Widget

Table 6-3 XUI Toolkit Widget and Gadget Class Names

Class Name

labelwidgetclass

separatorwidgetclass

pushbuttonwidgetclass

togglebuttonwidgetclass

labelgadgetclass

separatorgadgetclass

pushbuttongadgetclass

togglebuttongadgetclass

pulldownwidgetclass

Widgets and Gadgets

Label widgets

Separator widgets

Push button widgets

Toggle button widgets

Label gadgets

Separator gadgets

Push button gadgets

Toggle button gadgets

Pull-down menu entry widgets

Note that when you restrict menu items to a certain class, widgets that
are subclasses of that widget will be excluded. For example, if you restrict
menu items to only the label widget, the push button and toggle button
widgets, which are subclasses of the label widget, will be excluded.

Associating Callback Routines with a Work Area Menu Widget
The input capabilities of a work area menu widget are provided mainly
by the child widgets it contains. For example, in a work area menu
containing push button widgets, it is the push button widgets that perform
callbacks when activated by a user. However, you can specify that all the
callbacks associated with the child widgets be redirected to a common
callback routine.

To associate a common callback routine with a work area menu widget,
pass a callback routine list to the work area menu widget in the entry_
callback attribute. If you do not specify a callback routine in this
argument, each child widget executes its own callback routine.

You can also associate a help callback routine with a work area menu
widget. To do this, pass a callback list to the widget in the help_callback
attribute. The application executes this routine when a user presses the
Help key while positioning the pointer cursor in an inactive area of the
work area menu widget and pressing MBl.

6.4 Creating a Pull-Down Menu Widget

6-12

To create a pull-down menu widget, perform the following steps:

1 Create the pull-down menu widget.

Use any of the widget creation mechanisms Hsted in Table 6-4. The
choice of mechanism depends on the attributes of the pull-down menu
you need to access.

Creating Menu Widgets
6.4 Creating a Pull-Down Menu Widget

Table 6-4 Pull-Down Menu Widget Creation Mechanisms

High-level routine

Low-level routine

UIL object type

Use the MENU routine to create a pull-down menu widget.
Specify the type of menu in the format argument.

Use the MENU PULLDOWN CREATE routine to create a
pull-down menu widget.

Use the pulldown_menu object type to define a pull-down
menu widget in a UIL module. At run time, the ORM routine
FETCH WIDGET will create the pull-down menu widget
according to this definition.

2 Create the children of the pull-down menu widget.

Use any of the widget creation mechanisms to create the widgets
that you want to appear as items in the pull-down menu widget. (For
information about creating label, separator, push button, or toggle
button widgets or gadgets, see Chapter 5.) The children appear in the
pull-down menu widget in the same order that you create them.

3 Create a pull-do"Wn menu entry widget or gadget.

Use any of the mechanisms listed in Table 6-5 to create a pull-down
menu entry widget or gadget. The choice of mechanism depends on the
attributes of the widget or gadget to which you want to assign values.
Pass the identifier of the pull-down menu widget you want associated
with the pull"."down menu entry widget or gadget in the sub_menu_id
attribute of the pull-down menu entry widget.

Table 6-5 Pull-Down Menu Entry Widget and Gadget Creation Mechanisms

Mechanism

High-level routine

Low-level routine

UIL object type

Widget

Use the PULL DOWN MENU ENTRY
routine to create a pull-down menu entry
widget.

Use the PULL DOWN MENU ENTRY
CREATE routine to create a pull-down
menu entry widget.

Use the pulldown_entry object type to
define a pull-down menu entry widget
in a U IL module. At run time, the ORM
routine FETCH WIDGET creates the
widget according to this definition.

Gadget

There is no high-level gadget creation routine.

Use the PULL DOWN MENU ENTRY GADGET
CREATE routine to create a pull-down menu
entry gadget.

Use the pulldown_entry object type with the
gadget qualifier.

4 Manage the children of the pull-down menu widget.

Use the intrinsic routine MANAGE CHILD to manage a single child
or the intrinsic routine MANAGE CHILDREN to manage a group of
children at the-same time.

5 Manage the pull-down menu entry widget or gadget.

Use the intrinsic routine MANAGE CHILD to manage the widget or
gadget.

6-13

6.4.1

6.4.2

Creating Menu Widgets
6.4 Creating a Pull-Down Menu Widget

Note that you do not manage the pull-down menu widget.

After you complete these steps, if the parent of the pull-down menu widget
has been realized, the pull-down menu entry widget or gadget will appear
on the display. The pull-down menu widget and all of its managed children
do not appear on the display until a user activates the pull-down menu
entry widget or gadget by pressing MBl.

Low-level and UIL provide access to the complete set of attributes at
widget creation time. High-level routines provide access to only a subset
of these widget attributes at widget creation time. (To access attributes
not available using .a high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 6-6 lists the attributes
you can set if you use the high-level routine MENU to create a pull-down
menu widget. Pass the values of these attributes as arguments to the
routine.

Table 6-6 Attributes Accessible Using the High-Level Routine MENU

x

y

format

orientation

map_callback

entry _callback

help_callback

Specifies the x-coordinate of the upper left corner.

Specifies the y-coordinate of the upper left corner.

Specifies the type of menu: pull-down, pop-up, or work area.

Specifies whether the menu has a horizontal or vertical
orientation.

Specifies the address of a callback routine list.

Specifies the address of a callback routine list.

Specifies the address of a callback routine list.

Example 6-2 in Section 6.5 illustrates how the pull-down menu widgets
used in the menu bar widget of the DECburger sample application are
created.

Customizing the Appearance of a Pull-Down Menu Widget
The pull-down menu widget supports the same set of attributes as the
work area menu widget. For information about customizing a work area
menu widget, see Section 6.3.1.

Associating Callback Routines with a Pull-Down Menu Widget

6-14

The pull-down menu widget supports the same callback attributes as
the work area menu widget. These callback attributes are described in
Section 6.3.2.

In addition, with the pull-down menu widget, you can associate callback
routines that get executed when the pull-down menu widget is about to
appear on the display (be mapped) or has disappeared from the display
(been unmapped). To associate a callback routine with these callbacks,
pass a callback routine list to the map_callback or unmap_callback
attributes.

Creating Menu Widgets
6.4 Creating a Pull-Down Menu Widget

For example, you could write a map callback routine that creates the
children of the pull-down menu widget only when it is about to be mapped.
In this way, you perform this processing only when necessary, saving on
application startup time.

The pull-down menu entry widget and gadget, in addition to causing a
pull-down menu widget to appear on the display, perform callbacks to your
application when activated. Using the pulling_callback attribute, you
can associate a callback routine with a pull-down menu entry widget or
gadget that gets called immediately before the pull-down menu widget is
mapped. For example, you could use this callback to defer creation of the
pull-down menu widget until it is needed.

6.5 Creating a Menu Bar Widget
A menu bar widget can have only the following widgets or gadgets as
children:

• Label widgets or gadgets

• Separator widgets or gadgets

• Pull-down menu entry widgets or gadgets

• Pull-down menu widgets

Use the label and separator widgets or gadgets to create inactive menu
items. Use the pull-down menu entry widget or gadget, which causes
pull-down menu widgets to appear on the display,· to create active menu
items. The pull-down menu widget is also a child of the menu bar widget;
however, it does not appear as a visible item in the menu bar.

Figure 6-6 shows the menu bar from the DECburger sample application.
In the illustration, the Order pull-down menu widget has been selected.

Figure 6-6 DECburger Menu Bar with a Pull-Down Menu Selected

Pull-Down_/
Menu Entry
Widget

Create Order Box

Cancel Order
Submit Order

,-Pull-Down
Menu Widget

ZK-0446A-GE

To create a menu bar widget, perform the following steps:

1 Create the menu bar widget.

6-15

Creating· :Menu Widgets
6.5 Creating a Menu Bar Widget

6-16

Use any of the widget creation mechanisms listed in Table 6-7. The
choice of mechanism depends on which attributes of the menu bar
widget you need to access.

Table 6-7 Menu Bar Widget Creation Mechanisms

High-level routine

Low-level routine

UIL object type

Use the MENU BAR routine to create a menu bar widget.

Use the MENU BAR CREATE routine to create a menu bar
widget.

Use the menu_bar object type to define.a menu bar widget in
a UIL module. At run time, the ORM routine FETCH WIDGET
creates the widget according to this definition.

2 Create the pull-down menu widgets associated with items in the menu
bar widget.

Section 6.4 describes how to create a pull-down menu widget.

3 Create the children of the menu bar widget.

For information about creating label or separator widgets or gadgets,
see Chapter 5. For information about creating a pull-down menu entry
widget, see Section 6.4. The children appear in the menu bar widget
in the same order that you create them.

Each pull-down menu entry widget that is a child of the menu bar
widget must have an associated pull-down menu widget. Pass the
widget identifier of the pull-down menu widget to the pull-down menu
entry widget using the sub_menu_id attribute.

4 Manage the children of the menu bar widget.

Use the intrinsic routine MANAGE CHILD to manage a single child of
the menu bar widget. Use the intrinsic routine MANAGE CHILDREN
to manage a group of children of the menu bar widget at one time.

5 Manage the menu bar widget.

Use the intrinsic routine MANAGE CHILD to manage the menu bar
widget.

After you complete these steps, if the parent of the menu bar widget has
been realized, the menu bar widget will appear on the display. Note that
you do not manage the pull-down menu widgets, even though they are
children of the menu bar widget. These widgets get managed when a user
activates a pull-down menu entry widget or gadget.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a subset
of these widget attributes at widget creation time. (To access attributes
not available using the high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 6-8 lists the attributes
you can set if you use the high-level routine MENU BAR to create a
menu bar widget. Pass the values of these attributes as arguments to the
routine.

Creating Menu Widgets
6.5 Creating a, Menu Bar Widget

Table 6-8 Attributes Accessible Using the High-Level Routine MENU
BAR

entry _callback

help_callback

Address of a callback routine list

Address of a callback routine list

Example 6-2 is the section of the UIL module in which the DECburger
menu bar widget is specified.

Example 6-2 Creating the Menu Bar Widget in the DECburger Application

8object
s menu bar : menu bar - -

fj arguments {

} ;

&object

orientation = DWT$C_ORIENTATION HORIZONTAL;
spacing 15;

} ;

controls {

} ;

pulldown entry file menu entry;
pulldown-=_entry edit-=_menu-=_entry;
pulldown_entry order_menu_entry;

file_menu_entry : pulldown_entry {

arguments {
label label

} ;
controls {

k_file_label_text;

pulldown_menu file_menu;
} ;

} ;

Oobject
file_menu : pulldown_menu {

} ;

arguments {
label label

} ;

controls {

k_file_label text;

push_button m_print_button;
push_button m_quit_button;

} ;

callbacks
entry= procedure activate~proc (0);

} ;

(continued on next page)

6-17

Creating Menu Widgets
6.5 Creating a Menu Bar Widget

Example 6-2 (Cont.) Creating the Menu Bar Widget in the DECburger Application

•object

•

6-18

rn_print_button : push_button {

} ;

arguments {
label_label = k_print_dot_label_text;

} ;

callbacks {

} ;
activate= procedure activate_proc (k_nyi);

0 In this UIL object declaration, DECburger defines an object named
s_menu_bar as a menu bar widget.

8 In the argument section of the menu bar widget definition, DECburger
assigns values to two menu bar widget attributes. The first attribute
defines the orientation of the menu bar as horizontal. The second
attribute defines the amount of space between the items in pixels.

• In the controls section of the menu bar widget definition, DECburger
specifies that the menu bar widget has three pull-down menu entry
widgets as its children. DECburger names these widgets file_menu_
entry, edit_menu_entry, and order _menu_entry.

8 In the UIL object declaration for the file_menu_entry pull-down menu
entry widget, DECburger specifies the text that will appear in the
pull-down menu entry widget as the value of the label attribute
(called label_label in UIL).

As a convenience, UIL allows you to specify a pull-down menu widget
as a child of a pull-down menu entry widget (in the controls section of
the object declaration). The pull-down menu widget is actually a child
of the menu bar widget. If you use high- or low-level routines to create
a pull-down menu widget used as a child of a menu bar widget, specify
the menu bar widget as the parent.

0 The next widget definition is for the pull-down menu widget that
implements the File choice. This pull-down menu widget has two push
button widgets as its children (in its controls list).

• One of the children of the File pull-down menu is the Print push
button widget. This definition defines the label and the callback
routine used with the push button widget.

8 The UIL module goes on to create each child of the menu bar widget.

Figure 6-7 shows the widget hierarchy of the menu bar widget in the
DECburger application.

6.5.1

Creating Menu Widgets
6.5 Creating a Menu Bar Widget

Figure 6-7 Widget Hierarchy of the DECburger Menu Bar Widget

Print

File Menu
Entry

File Menu

Quit Select

Main Window

Menu Bar

Edit Menu
Entry

Edit Menu

Cut

Clear Paste

Order Menu
Entry

Order Menu

Cancel

Show
Control Submit

Main Window
Widget

Menu Bar
Widget

Pull-Down Menu
Entry Widgets

Pull-Down
Menu Widgets

I Separator I

--~~~----~------'---y---J
Push Button Gadgets Separator Gadget

ZK-0206A-GE

Customizing a Menu Bar Widget
The menu bar widget supports the same attributes as the work area menu
widget. Use the attributes described in Section 6.3.1 to size, position, and
customize aspects of the menu bar widget.

6.6 Creating an Option Menu Widget
An option menu widget is a rectangular box that contains a descriptive
text label and the current value of the menu. The current value of the
option menu widget is the active area of an option menu. When a user
presses MBl in the active area of an option menu, a pull-down menu
widget appears on the display. The pull-down menu widget contains the
list of options.

Figure 6-8 illustrates an option menu widget and its components, both
before and after the option menu widget is selected by a user.

6-19

Creating Menu Widgets
6.6 Creating an Option Menu Widget

6-20

Figure 6-8 Option Menu Widget

Active Area

Label

Menu Item
Menu Item SiiJ
Menu Item
Menu Item

Menu Item
Menu Item

ZK-0442A-GE

An option menu widget can have only one child: a pull-down menu widget.
When used with an option menu widget, a pull-down menu widget does
not require an associated pull-down menu entry widget. Instead, you pass
the widget identifier of the pull-down menu widget to the option menu
widget using the sub_menu_id attribute.

To create an option menu widget, perform the following steps:

1 Create the pull-down menu widget.

This is the pull-down menu widget that the option menu widget will
invoke. Section 6.4 describes how to create a pull-down menu widget.

2 Create the option menu widget.

Use any of the widget creation mechanisms listed in Table 6-9. The
choice of mechanism depends on the attributes of the option menu you
need to access. Section 6.6.1 describes the attributes supported by the
work area menu widget.

Table 6-9 Option Menu Widget Creation Mechanisms

High-level routine

Low-level routine

UIL object type

Use the OPTION MENU routine to create an option menu
widget.

Use the OPTION MENU CREATE routine to create an option
menu widget.

Use the option_menu object type to define an option menu
widget in a UIL module. At run time, the ORM routine FETCH
WIDGET creates the widget according to this definition.

When you create the option menu widget, you must pass it the widget
identifier of the pull-down menu widget in the sub_menu_id attribute.

3 Manage the option menu widget.

Use the intrinsic routine MANAGE CHILD.

Creating Menu Widgets
6.6 Creating an Option Menu Widget

After you complete these steps, if the parent of the option menu widget
has been realized, the option menu widget will appear on the display.
The pull-down menu widget associated with the option menu widget only
appears on the display when a user activates the option menu widget by
pressing MBl.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a subset
of these widget attributes at widget creation time. (To access attributes
that are not available using the high-level routine, use the SET VALUES
intrinsic routine after the widget has been created.) Table 6-10 lists the
attributes you can set if you use the high-level routine OPTION MENU
to create an option menu widget. Pass the values of these attributes as
arguments to the routine.

Table 6-1 O Attributes Accessible Using the High-Level Routine OPTION
MENU

x

y

labl1

orientation

entry _callback

help_callback

Specifies the x-coordinate of the upper left corner of the
widget.

Specifies the y-coordinate of the upper left corner of the
widget.

Specifies the text of the descriptive label.

Specifies whether the menu has a horizontal or vertical
orientation.

Specifies the address of a call.back routine list.

Specifies the address of a callback routine list.

1 The high-level routines use this spelling for the label attribute to avoid conflicts with
programming languages in which "label" is a reserved word.

Example 6-3 shows how the option menu widget used in the DECburger
application is created in the DECburger UIL module.

6-21

Creating Menu Widgets
6.6 Creating an Option Menu Widget

6-22

Example 6-3 Creating the Option Menu Widget in the DECburger
Application

Oobject
fries_option_menu option_menu

8object

arguments {
x = 130;
y = 22;
label label = k size label text;
menu_history = push_button-medium_fries;
} ;

controls {

} ;

pulldown_menu fries_menu;
} ;

fries menu : pulldown_menu {

Oobject

controls {
push_button
push_button
push_button
push_ button
push_button
} ;

} ;

tiny fries;
small fries;
medium_fries;
large fries;
huge_fries;

tiny_fries : push_button {

arguments {
label_label = k_tiny_label_text;
} ;

callbacks {
activate= procedure activate_proc (k_fries_tiny);
} ;

} ;

0 DECburger defines the option menu widget in this UIL object
declaration. DECburger positions the option menu widget within
the parent dialog box by assigning values to the x and y attributes. In
addition, DECburger specifies the label the option menu will contain as
the value of the label attribute (called label_label in UIL). DECburger
defines the initial value of the option menu widget by specifying the
widget identifier of a child of the pull-down menu widget in the menu_
history attribute. In the example, the push button widget named
mediumJries is the initial value of the option menu widget.

8 In the controls list section of the option menu widget declaration,
DECburger defines the children of the option menu widget. For an
option menu this is a pull-down menu widget. Note that in UIL, the
pull-down menu widget appears in the controls list section of the object
declaration. Using the high- or low-level routines, you pass the widget

6.6.1

Creating Menu Widgets
6.6 Creating an Option Menu Widget

identifier of the pull-down menu widget to the option menu widget in
its sub_menu_id attribute.

0 After defining the option menu widget, DECburger defines the pull
down menu widget. The controls list of the pull-down menu widget
declaration lists the children of the pull-down menu widget. These
children will be the items in the pull-down menu widget.

The DECburger UIL module goes on to define each of the five push
button widgets that are children of the pull-down menu widget.

Customizing an Option Menu Widget
The option menu widget supports the same attributes as the work area
menu widget. Use the attributes described in Section 6.3.1 to size,
position, and customize aspects of the option menu widget.

In addition, the option menu widget supports other attributes that enable
you to specify the initial value of the option menu widget and the content
of the descriptive label it contains.

6.6.1.1 Specifying the Initial Value of an Option Menu Widget
The menu_history attribute contains the widget identifier of the child of
the menu widget that was last selected. Use the menu_history attribute
to specify the initial value of the option menu· widget. For the option
menu widget, the selected item is actually a child of the pull-down menu
widget that implements the option menu widget's list of choices. All menu
widgets support the menu_history attribute; however, the option menu
widget also displays the value of this attribute in its active area.

Example 6-4 shows how DECburger creates the default selection of the
option menu widget it uses in its interface. DECburger passes the widget
identifier of the push button widget child of the pull-down menu widget as
the value of the menu_history attribute.

Example 6-4 Creating an Option Menu Widget with an Item Selected

object
fries_option_menu option_menu

arguments {
x = 130;
y = 22;
label_label = k_size_label_text;
menu_history = push_button medium_fries;
} ;

controls {

} ;

pulldown_menu fries_menu;
} ;

6-23

Creating Menu Widgets
6.6 Creating an Option Menu Widget

6.6.1.2 Specifying the Label in an Option Menu Widget
Use the label attribute to specify the descriptive text contained in an
option menu widget. The optiOn menu widget is the only menu widget that
supports a label attribute. Other menu widgets can have label widgets as
children, but only the option menu widget supports a label as an attribute.
Specify this label as a compound string.

6.7 Creating a Pop-Up Menu Widget

6-24

You create a pop-up menu widget as you would any other menu widget.
Create the pop-up menu widget, then create the widgets that will be items
in the menu as its children. Pop-up menu widgets differ from other menu
widgets in how you make them appear on the display. To make a pop-up
menu widget appear on the display, you must modify the action table and
the translation table of the pop-up menu widget's parent.

To create a pop-up menu widget, perform the following steps:

1 Create an action. procedure that displays the pop-up menu widget.

To create a pop-up menu widget, you must create an action procedure
that manages the pop-up menu widget when a user of the application
presses MB2. Section 6.7.1 describes how to create an action
procedure.

2 Create a translation table entry for the new action procedure.

A translation table maps an event to the name of an action procedure.
Section 6. 7 .2 describes how to create a translation table entry.

3 Create an action table entry for the new action procedure.

An action table maps the name of an action procedure to its address.
Section 6. 7 .2 describes how to create an action table entry.

4 Create the parent of the pop-up menu widget.

You must create the parent of a pop-up menu widget before you create
the pop-up menu widget itself. Use any of the three widget creation
mechanisms.

5 Manage the parent of the pop-up menu widget.

Use the intrinsic routine MANAGE CHILD to manage the widget.

6 Add the new action procedure to the translation table of the parent
widget of the pop-up menu widget.

You must add the pop-up action procedure to the action table of the
parent widget. When the user presses MB2 in the parent widget, the
parent widget will activate the pop-up action procedure. Section 6. 7 .2
describes this procedure.

7 Realize the parent of the pop-up menu widget.

You must realize the parent of the pop-up menu widget before you
create the pop-up menu widget.

Creating Menu Widgets
6. 7 Creating a Pop-Up Menu Widget

8 Create the pop-up menu widget.

Use any of the widget creation mechanisms listed in Table 6-11. The
choice of mechanism depends on the attributes of the pop-up menu
widget you need to access.

Table·s-11 Pop-Up Menu Widget Creation Mechanisms

High-level routine Use the MENU routine to create a pop-up menu widget.
Specify the type in the format argument.

Low-level routine Use the MENU POPUP CREATE routine to create a pop-up
menu widget.

UIL object type Use the popup_menu object type to define a pop-up menu
widget in a UIL module. At run time, the DRM routine FETCH
WIDGET will create the widget according to this definition.

9 Create the children of the pop-up menu widget.

Use any of the widget creation. mechanisms to create the widgets that
you want to appear as items in the pop-up menu widget. The widgets
are children of the pop-up menu widget. The children appear in the
menu in the order that you create them.

10 Manage the children of the pop-up menu widget.

Use the intrinsic routine MANAGE CHILD to manage a single child
of the pop-up menu widget. Use the intrinsic routine MANAGE
CHILDREN to manage more than one child of the pop-up menu widget
in a single call.

When a user running the application moves the pointer cursor into the
parent widget of the pop-up menu widget and presses MB2, the pop-up
menu widget will appear on the display. Note that you manage the pop-up
menu widget in the action procedure you create.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a subset
of these widget attributes at widget creation time. (To access attributes
not available using a high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 6-12 lists the attributes
you can set if you use the high-level routine MENU to create a pop-up
menu widget. Pass the values of these attributes as arguments to the
routine.

Table 6-12 Attributes Accessible Using the High-Level Routine MENU

x

y

Specifies the x-coordinate of the upper left corner of the
widget.

Specifies the y-coordinate of the upper left corner of the
widget.

(continued on next page)

6-25

6.7.1

Creating Menu Widgets
6. 7 Creating a Pop-Up Menu Widget

Table 6-12 (Cont.) Attributes Accessible Using the High-Level Routine
MENU

format

orientation

map_callback

entry _callback

help_callback

Specifies the type of menu: pull-down, pop-up, or work area.

Specifies whether the menu has a horizontal or vertical
orientation.

Specifies the address of a callback routine list.

Specifies the address of a callback routine list.

Specifies the address of a callback routine list.

Creating an Action Procedure

6-26

An action procedure is a procedure that is executed when a particular
event occurs in a widget. All widgets contain action procedures. For
example, when a user activates a push button widget by moving the
pointer cursor into the push button and pressing MBl, the push button
widget executes an action procedure.

To cause a pop-up menu widget to pop up on a display, you must create an
action procedure and add it to the set of action procedures known by the
parent of the pop-up menu widget. The action procedure you write must
perform the following two functions:

• Positioning the pop-up menu widget where the user of the application
has moved the pointer cursor

• Managing the pop-up menu widget

An action procedure must have the following four arguments:

• Widget in which the event occurred

• Event that occurred

• Parameters used by the action procedure

• Number of parameters passed to the action procedure

To position the pop-up menu widget where the user has placed the
pointer cursor, use the MENU POSITION routine. This routine takes
the following two arguments:

• The identifier of the menu widget to be positioned

• A pointer to the event data structure returned by the widget

The event data structure contains information on where the event occurred
on the display. If you do not explicitly position the pop-up menu widget, it
appears in the upper left corner of the display. Note that the pop-up menu
widget must be realized before you call the MENU POSITION routine.

Use the intrinsic routine MANAGE CHILD to manage the pop-up menu
widget. Since its parent has already been realized, the pop-up menu
widget will appear on the display. Pop-up menu widgets disappear from
the display automatically when the user of the application releases MB2.

6.7.2

Creating Menu Widgets
6.7 Creating a Pop-Up Menu Widget

Example 6-5 is a sample action procedure that pops up a pop-up menu
widget.

Example 6-5 Action Procedure to Pop Up a Pop-Up Menu Widget

static void pop up(widget, event, params, num_params)
Widget widget;
XButtonPressedEvent *event;
char **params;
int num_params;

if (!XtisRealized(popup menu
XtRealizeWidget(popup_menu);

DwtMenuPosition(popup_menu, event);

XtManageChild(popup_menu);

Adding an Action Procedure to a Widget
To add a new action procedure to a widget, you must add entries for
the action procedure to the translation table and the action table of the
widget. The widgets in the XUI Toolkit map an event to the name of an
action procedure in their translation table and map the name of the action
procedure to the address of the action procedure in their action table.

A translation table is a text string containing a list of translations. The
translations are separated from each other by the newline character (\ n).
Each translation pairs an event identifier, terminated by a colon, with the
name of an action procedure. Following is a sample translation table entry
that associates the MB2 press event with the action procedure illustrated
in Example 6-5. (See Section D.9.4 for more information about creating
translation table entries.)

~tatic char popup_translation_table[] = "<Btn2Down>: pop_up() ";

An action table is an array of data structures that pair action procedure
names with their addresses. The XUI Toolkit defines this data structure
(XtActionRec). Following is a sample action table entry that associates the
name of the action procedure illustrated in Example 6-5 with its address:

static XtActionRec our_action_table[]
{

"pop_up", (caddr_t) pop_up }

Before you can add the new translation table entry to a widget, you must
convert the entry from its ASCII format to the binary format used by the
XUI Toolkit. Use the intrinsic routine PARSE TRANSLATION TABLE
to perform this step. This routine returns the parsed translation table
defined as the data type XtTranslations.

6-27

Creating Menu Widgets
6.7 Creating a Pop-Up Menu Widget

After converting the translation table entry, you can add the new
translation to the existing translation table entry by using the intrinsic
routine OVERRIDE TRANSLATIONS. This routine adds the new
translation to the translation table of the widget without destroying
the other translations in the table.

To add the new action table entry to an existing action table, use the
intrinsic routine ADD ACTIONS.

The sample program in Example 6-6 creates a pop-up menu widget.

Example 6-6 Creating a Pop-Up Menu Widget

#include <stdio>
#include <decw$include/DwtAppl.h>

static Widget toplevel, main widget, popup_menu, label;
static WidgetList menu_items[S];

t»static void pop_up();

8static char popup_translation_table[] = "<Btn2Down>: pop_up() ";

.,static XtActionsRec our_action_table[]
{

{"pop_up", (XtActionProc)pop_up},
} ;

int main(argc, argv)
unsigned int argc;
char **argv;

Arg arglist[S];

/******* Set up the User Interface ********/

toplevel = Xtinitialize("Popup Demo","demo",NULL, 0, &argc, argv);

XtSetArg (arglist[O], XtNallowShellResize, TRUE);
XtSetValues (toplevel, arglist, 1);

XtSetArg (arglist[O], DwtNwidth, 300);
XtSetArg (arglist[l], DwtNheight, 300);

8 main_widget = DwtDialogBoxCreate(toplevel, "MAINWIN", arglist, 4);

XtSetArg (arglist[O], DwtNmarginLeft, 75);
XtSetArg (arglist[l], DwtNlabel,

DwtLatinlString("Move the pointer\nanywhere in this box\nand press MB2"));

Cl label= DwtLabelCreate(main_widget, "label", arglist, 2).;

(i) XtManageChild(label);
XtManageChild(main_widget);

(continued on next page)

6-28

Creating Menu Widgets
6.7 Creating a Pop-Up Menu Widget

Example 6-6 (Cont.) Creating a Pop-Up Menu Widget

fj handle_mb2_press(main_widget);

0 XtRealizeWidget(toplevel);

f> build_popup_menu();

/******** Main Input Loop ***********/

XtMainLoop();

return (0);

C&static void pop up(widget, event, params, num_params)
Widget widget;-
XButtonPressedEvent *event;
char **params;
int num_params;

if (!XtisRealized(popup menu)
XtRealizeWidget(popup_menu);

DwtMenuPosition(popup_menu, event);

XtManageChild(popup_menu);

•handle mb2 press(widget)
Widget- widget;

Arg arglist [2];
XtTranslations parsed_t_table;

XtAddActions(our_action_table, 1);

parsed_t_table = XtParseTranslationTable(popup_translation_table);

XtOverrideTranslations(widget, parsed_t_table);

41build_popup_menu()
{

Arg arglist[4];
int count 0;

popup_menu = DwtMenuPopupCreate(main_widget, "button", NULL, 0);

XtSetArg(arglist[O],DwtNlabel, DwtLatinlString("Menu Item A"));
menu_items[count++] = DwtPushButtonCreate(popup_menu, "buttonl", arglist, 1);

XtSetArg(arglist[O],DwtNlabel, DwtLatinlString("Menu Item B "));
menu_items[count++] = DwtPushButtonCreate(popup_menu, "button2", arglist, l);

XtManageChildren(menu_items, count);

8 This is a forward declaration of the action procedure that pops up the
pop-up menu widget under the pointer cursor. e defines this action
procedure.

6-29

Creating Menu Widgets
6.7 Creating a Pop-Up Menu Widget

6-30

• This statement creates an entry in a translation table, popup _
translation_table, that associates the event of a MB2 press with
the name of the pop-up action procedure, pop_up.

e In this statement, the sample program creates an entry in an action
table, our _action_table, that associates the name of the action
procedure with the address of the procedure. The sample program
creates an action table entry for its pop-up action procedure.

8 The sample program creates a dialog box widget as the base of the
application widget hierarchy by calling the low-level routine DIALOG
BOX CREATE. This dialog box has as its children a label widget and
the pop-up menu widget.

8 This statement creates the label widget with a call to the low-level
routine LABEL CREATE. This label widget puts the instructional
message ''Move the pointer anywhere in this box and press MB2"
inside the dialog box widget. By setting the left margin of the label
widget, the label appears centered within the dialog box widget.

C8 In these two calls to MANAGE CHILD, the sample program manages
the label and the dialog box widget. Note that the other child of
the main widget, the pop-up menu widget, does not get created or
managed at this point in the application. This is accomplished after
the dialog box widget has been realized.

8 The procedure handle_mb2_press adds the pop-up procedure to the
action table of the dialog box widget. • details this routine.

• In this call to the intrinsic routine REALIZE WIDGET, the sample
program causes the dialog box widget and its managed child to appear
on the display.

e After realizing the widgets in the application widget hierarchy, the
sample program calls the procedure that builds the pop-up menu
widget. • describes this procedure.

8 This is the application-written routine that causes the pop-up menu
widget to appear on the display. The routine pops up the pop-up menu
widget wherever the user has positioned the pointer cursor within its
parent. Section 6. 7 .1 describes this routine.

• The handle_mb2_press routine performs all the processing necessary
to add the pop-up routine to the action table of a widget so that
it can manage the pop-up menu widget when a user presses MB2.
Section 6. 7 .2 describes this procedure.

• This routine creates the pop-up menu widget and its children. The
child widgets will be items in the pop-up menu widget. Note that you
only manage the children of the pop-up menu widget. The pop-up
menu widget is managed in the action routine invoked when a user
presses MB2 in the parent widget.

Figure 6--9 illustrates how the pop-up menu created in Example 6--6
appears on the display. The figure shows how a user can position the
pointer cursor within the borders of the pop-up menu widget's parent and,
by pressing MB2, make the pop-up menu widget appear on the display
over the pointer cursor position.

6.7.3

6.7.4

Figure 6-9 Pop-Up Menu Widget

m Pop-Up Demo [Sj[lj
Move the pointer

anywhere in this box
and press MB2.

Customizing a Pop-Up Menu Widget

Creating Menu Widgets
6.7 Creating a Pop-Up Menu Widget

m Pop-Up Demo [Sj[lj
Move the pointer

anywhere in this box
and press MB2.

Menu Item A
Menu Item B

ZK-0203A-GE

The pop-up menu widget supports the same set of attributes as the work
area menu widget. For information about customizing a work area menu
widget, see Section 6.3.1.

Associating Callback Routines with a Pop-Up Menu Widget
The pop-up menu widget supports the same callbacks as the work area
menu widget. For information about these callbacks, see Section 6.3.1.

In addition, with the pop-up menu widget, you can associate callback
routines that get executed when the pop-up menu widget is about to
appear on the display (be mapped) or has disappeared from the display
(been unmapped). This notification enables an application to perform
processing or perform some other action before the pop-up menu widget
appears on the display or disappears from the display. To associate a
callback routine with these callbacks, pass a callback list to the map_
callback and unmap_callback attributes.

For example, you could write a map callback routine that creates the
children of the pop-up menu widget only when the pop-up menu widget is
about to be mapped. In this way, you perform this processing only when
necessary, saving on application startup time.

6-31

7 Creating Dialog Box Widgets

This chapter provides the following:

• An overview of the dialog box widgets in the XUI Toolkit

• A detailed description of how to include a dialog box widget in your
application

7 .1 Overview of the Dialog Box Widget
A dialog box widget is a rectangular container for other widgets. You
use a dialog box widget to solicit information from, and present messages
to, users of your application. A dialog box widget can accept input focus to
allow users to perform input using the keyboard.

The Hello World! sample application and the DECburger sample
application both provide examples of dialog box widgets used as containers.
The Hello World! application uses a dialog box widget to contain the
label widget and th~ push button widget that implement the application
function. The DECburger order entry box is a dialog box widget that
contains dozens of widgets.

7.2 Dialog Box Widgets in the XUI Toolkit

7.2.1

A dialog box widget is a composite widget and, as such, its primary
function is to act as a container for other widgets. The XUI Toolkit
provides several dialog box widgets that fall into two general categories:

• Generic dialog box widgets

• Standard dialog box widgets

The generic dialog box widgets are simply empty rectangles. You decide
what widgets they will contain to suit the needs of your application.
The standard dialog box widgets are preconfigured with child widgets to
perform certain commonly needed functions.

Generic Dialog Box Widgets
The XUI Toolkit provides two generic dialog box widgets:

• Dialog box widget

• Attached dialog box widget

Both widgets provide the same functional capabilities; they differ in how
you specify the layout of their child widgets and how this positioning is
maintained.

7-1

Creating Dialog Box Widgets
7 .2 Dialog Box Widgets in the XUI Toolkit

7-2

7 .2.1.1 Dialog Box Widget
· In a dialog box widget, you create the layout of the child widgets by

positioning each child within the dialog box widget by its x- and y
coordinates. This creates a: fixed layout. If the dialog box widget is resized
by a user or by the request of one of its. children, the borders of the dialog
box widget change, but the position of each child widget remains fixed. If
the dialog box widget is made smaller, a child widget can be partially or
completely clipped by the new boundaries of the parent.

In addition, the fixed layout of a dialog box widget creates font and
language dependences. If you make the font larger or smaller, you risk
upsetting the layout of the dialog box widget. Similarly, the text of a label
may be significantly longer or shorter in different languages. In these
cases, the child widgets may overlap, or labels may be clipped.

The Hello World! sample application provides an example of this behavior.
In the Hello World! application, a push button widget containing the
text string 11Hello World!" appears centered in the dialog box when the
user interface initially appears. When the user activates the push button
widget, the text in the push button widget changes to 11 Good-bye World!".
Because this text string is longer, the push button widget resizes to
accommodate the new text. After being resized, the push button no longer
appears centered in the dialog box widget. For this reason, when the Hello
World! application cha:nges the text, it also assigns a new value to the
x-coordinate of the push button widget so that it will remain centered in
the dialog box widget~

7 .2.1.2 Attached Dialog Box Widget
To eliminate the limitations of the dialog box widget, the XUI Toolkit
includes the attached dialog box widget. In an attached dialog box widget,
you design the initial layout as you would with a normal dialog box widget.
However, instead of defining the fixed position of each child widget by its x
and y-coordinates, you specify the position of the child widgets in relation
to other child widgets or in relation to the attached dialog box widget.

You specify the position of a child widget in an attached dialog box widget
by defining attachments between the child widget and its surroundings.
An attachment is a special widget attribute you can use with any XUI
Toolkit widget. The attachment defines the relationship between an
edge of a child widget to an edge of the attached dialog box, to another
child widget in the attached dialog box widget, or to a position within
the attached dialog box widget. When the attached dialog box widget is
resized·, the child widgets can grow or shrink to maintain their original
layout in the attached dialog box and to avoid being clipped. Section 7 .5.1
describes how to define attachments.

Figure 7-1 illustrates the resizing behavior of a dialog box widget and
an attached dialog box widget. The resizing behavior of the child widgets
depends on the types of attachments defined and their individual resizing
characteristics.

Creating Dialog Box Widgets
7.2 Dialog Box Widgets in the XUI Toolkit

Figure 7-1 Resizing a Dialog Box Widget

Initial Dialog Box

Find !IJIRIJ
I d1 ptj klpdI

(f) AsTyped

0 Mixed Case

0 Lowercase Only

0 Uppercase Only

f Previous I II Next II Dismiss

Resized Dialog Box

Find !IJIRIJ

I d1 pfj klpd kdjfkld lopiproiit io oddjo u uuy Ills dlf lj dds jl I

(f) AsTyped

0 Mixed Case

0 Lowercase Only

0 Uppercase Only

Previous I II Next II Dismiss

Resized Attached Dialog Box

Find !IJIRIJ
I d1 pfj klpd kdjfkld lopiproiit io oddjo u uuy Ills dlf lj dds jl I

(I) As Typed

0 Mixed Case

Previous I II Next II

0 Lowercase Only

0 Uppercase Only

Dismiss

ZK-0406A-GE

7-3

7.2.2

7.3

Creating Dialog Box Widgets
7 .2 Dialog Box Widgets in the XUI Toolkit

Standard Dialog Box Widgets

7-4

The XUI Toolkit proVides a set of standard dialog box widgets that perform
commonly needed functions, such as presenting messages or selections.
The standard. dialog box widgets are preconfigured to contain the child
widgets they need. to implement their particular function. You do not have
to build these dialog box widgets out of their component widgets.

Following are the standard dialog box widgets. The widgets listed under
each of the two main standard dialog box widgets are variations of the
standard dialog box widgets that perform specialized functions.

• Message box widget

Caution box widget

Work-in-progress box widget

• Selection box widget

- File selection widget

7 .2.2.1 Message Box Widget
A message box widget is a dialog box widget that contains a label widget
and can optionally contain a push button widget. You specify the text of
your message in the label widget. The push button widget allows the user
to acknowledge the message. Use the message box widget to present any
application-specific information to the user.

The XUI Toolkit provides two other versions of the message box widget
that you can use for specific types of messages. Use the caution box widget
to present a warning message to the user of your application. Use the
work-in-progress box widget to notify the user of your application that

·\ processing is in progress.

7.2.2.2 Selection Box Widget
The selection box widget is a dialog box widget that contains a list box
widget and a simple text widget, and can optionally contain several push
button widgets. The list box presents the items of the selection.

The XUI Toolkit also provides a version of the selection widget, called the
file selection widget, that is designed to be used with directories of files.

The XUI Toolkit supports three styles of dialog box widgets:

·• Work area

• Modal

• Modeless

Work area dfaJgg bgx widgets are clipped by their parents~ The dialog box
widget in the Hello World! applidifaon is an example of a work area style
dialog box widget.

Creating Dialog Box Widgets
7 .3 Styles of Dialog Box Widgets

Modal and mode}e§S dialog box widgets are poe-up wi<!Jmt§; phw are PQt
Cl'ipped by their parents. A mgdaj dialog box widget causes an application
to suspend all other processing until the user responds to the query
presented by the dialog box widget. Modal dialog box widgets do not
support resizing. Modeless dialog box widgets have title bars and can
optionally be moved and resized by a user.

The dialog box widget in the DECburger sample application is an example
of a modeless pop-up dialog box widget. All standard dialog box widgets
are pop-up dialog box widgets.

7.4 Creating a Dialog Box Widget
The dialog box widget is a container for its child widgets. The child
widgets may themselves have children. For example, a dialog box widget
can contain a menu widget, which can contain many push button widgets.

To create a dialog box widget, perform the following steps:

1 Create the dialog box widget.

Use any of the widget creation mechanisms listed in Table 7-1. The
choice of creation mechanism depends on the attributes of the dialog
box you need to access to customize the dialog box widget.

Table 7-1 Dialog Box Widget Creation Mechanisms

High-level routine Use the DIALOG BOX routine to create any style of dialog box
widget. Indicate the style of the dialog box widget in the style
argument.

Low-level routine Use the DIALOG BOX CREATE routine to create a work area
dialog box widget. To create a modal or modeless dialog box
widget, use the DIALOG BOX POPUP CREATE routine. Indicate
the style of the dialog box widget in the style attribute.

UIL object type Use the UIL object type dialog_box to define a work area dialog
box widget in a U IL module. To define a modal or modeless
dialog box widget, use the UIL object type popup_dialog_box. At
run time, the ORM routine FETCH WIDGET creates the widget
according to this definition.

2 Create the children of the dialog box widget.

Use any of the widget creation mechanisms to create the widgets you
want to appear inside the dialog box widget. In this step, position the
child widgets within the dialog box widget.

3 Manage the children of the dialog box widget.

Use the intrinsic routine MANAGE CHILD to manage a single child
widget; use the MANAGE CHILDREN routine to manage a group of
child widgets.

4 Manage the dialog box widget.

Use the intrinsic routine MANAGE CHILD to manage a single child
widget.

7-5

7.4.1

Creating Dialog Box Widgets
7 .4 Creating a Dialog Box Widget

After you complete these steps, if the parent of the dialog box widget has
been realized, the dialog box widget and all its managed children will
appear on the display.

Low-level widget creation routines and UIL provide access to the complete
set of attributes at creation time. High-level routines provide access to
only a subset of these widget attributes at widget creation time. (To assign
values to those widget attributes not accessible, you must use the SET
VALUES intrinsic routine after the widget has been created.) Table 7-2
lists the attributes you can set if you use the high-level routine DIALOG
BOX to create a dialog box widget. Pass the values of these attributes as
arguments to the routine.

Table 7-2 Attributes Accessible Using the High-Level Routine DIALOG
BOX

default_position

x

y

title

style

map_callback

help_callback

A Boolean value that determines whether the x- and y
coordinates should be ignored in favor of default positioning.

Specifies the x-coordinate of the upper left corner of the
widget.

Specifies the y-coordinate of the upper left corner of the
widget.

Specifies the title displayed in the title bar (modeless dialog
boxes only).

Specifies the style of dialog box: modal, modeless, or work
area.

Specifies the address of callback routine list.

Specifies the address of callback routine list.

Specifying the Layout of Children in a Dialog Box Widget

7-6

To position the child widgets within a dialog box widget, specify the x
and y-coordinates for each child widget in their common widget attributes
x and y. The origin of the coordinate system is the upper left comer of
the dialog box widget. If you specify margins, the origin of the coordinate
system is offset by the amount of the margin.

The XU! Style Guide provides recommendations for the aesthetic
arrangement of child widgets in a dialog box widget.

As an example, the DECburger sample application creates its order entry
box as a dialog box widget. The DECburger dialog box widget contains
work area menu widgets, label widgets, separator widgets, a radio box
widget, a scale widget, an option menu widget, a simple text widget, and
a list box widget. Some of these child widgets (for example, the menu
widgets) have child widgets of their own. The following sections detail the
attributes of the dialog box widget using the DECburger order entry box
as an example. Example 7-1 presents the section of the DECburger UIL
module in which the dialog box widget is defined.

Creating Dialog Box Widgets
7 .4 Creating a Dialog Box Widget

Example 7-1 Creating the Dialog Box Widget in the DECburger Application

8object

control_box : popup_dialog_box {
arguments {

fl title = k_decburger_title;

•

} ;

} ;

style = DwtModeless;
x = 300;
y = 100;
margin_width = 20;
background_color = lightblue;

controls {
label
label
label

burger label;
fries label;
drink=label;

separator {arguments {
x = 110;
y = 10;
orientation = DwtOrientationVertical;
height= 180; };};

separator {arguments {
x = 205;
y = 10;
orientation = DwtOrientationVertical;
height= 180; };};

work_area_menu button_box;

radio box burger_doneness_box;

work_area_menu burger toppings menu;
scale burger=quantity;

option_menu fries_option_menu;

label fries quantity label;
simple_text fries=quantity7

list box drink_list_box;

attached_dialog_box
} ;

callbacks {

drink_quantity;

create procedure create_proc (k_order_box);
} ;

8 In this UIL object declaration, DECburger defines the dialog box
widget used to implement its order entry box. DECburger uses a
modeless dialog box widget, so, in UIL, it must use the popup_dialog_
box object type identifier.

7-7

Creating Dialog Box Widgets
· 7 .4 Creating a Dialog Box Widget

7-8

8 In the argument list, DECburger configures the dialog box widget. In
these attributes, DECburger defines the text string that will appear
in the title bar, defines the style of the dialog box widget as modeless,
and positions the dialog box in relation to its parent using its x- and y
coordinates. The last two attributes determine the width of the border
and the color of the dialog box .widget.

0 In the controls section of the UIL object declaration, DECburger
defines the widgets that will be the children of the dialog box widget.
These widgets implement the selections contained in the DECburger
order entry box.

After creating the dialog box widget, DECburger creates all the widgets
that will be children of the dialog box widget. DECburger determines the
layout of the dialog box widget by specifying the position of each child
using the x and y attributes. If DECburger did not specify the position, by
default all the widgets would appear in the upper left comer of the dialog
box widget overlapping each other. Example 7-2 presents a portion of the
DECburger UIL module in which the widgets in the Hamburgers section
of the order entry box are defined.

Example 7-2 Creating the Children of the Dialog Box Widget in the
DECburger Application

Oobject
burger_label : label

} ;

8object

arguments {
x = 25;
y = 5;
label label = k_hamburgers_label_text;
} ;

callbacks {
create= procedure create_proc (k_burger_label);

} ;

burger_doneness box radio box
arguments {

x = 10;
y = 22;
orientation = DwtOrientationVertical;
border width = 0;
} ;

controls {
toggle_ button
toggle_button
toggle_button
} ;

} ;

burger_rare;
burger_medium;
burger_well;

(continued on next page)

Creating Dialog Box Widgets
7 .4 Creating a Dialog Box Widget

Example 7-2 (Cont.) Creating the Children of the Dialog Box Widget in
the DECburger Application

•object
burger_toppings_menu work_area_menu

arguments {
x = 55;
y = 22;
orientation = DwtOrientationVertical;
border width = O;
} ;

controls {
toggle_button
toggle_button
toggle_button
toggle_button
toggle_button
} ;

} ;

ketchup;
mustard;
pickle;
onion;
mayo;

8 In this object declaration, DECburger defines the label gadget that
contains the text string Hamburgers. Note how DECburger specifies
the position of the gadget within the dialog box widget by assigning
values to the x and y attributes.

8 DECburger defines the radio box widget child of the dialog box widget.
Once again, DECburger specifies the position of the widget using x
and y attributes. (The object declarations of the children of the radio
box widget are left out of this example because they are not children of
the dialog box widget.)

• DECburger uses a work area menu widget to present the choice of
toppings. DECburger positions this widget by assigning values to the
x and y attributes.

Figure 7-2 shows how this layout appears in the DECburger user
interface. Note that in the example, the borders of the widgets are
included to show the upper left corners of the widgets with their associated
x- and y-coordinates.

7-9

7.4.2

Creating Dialog Box Widgets
7.4 Creating a Dialog Box Widget

Figure 7-2 Layout of the DECburger Dialog Box Widget

25,5

[~~~§~~~~
110,10

Fries Drinks
10,22 55,22 . 1----------,
10 Rare I f ol<etch"~P"--i ~ Size I Medium 0
I <i> Medium I
I O Well Donel
L----------1

ID Mustard 1 • ----
10 1:
1 Pickle 1

1 • I .

Orange Juice g Grape Juice

Cola 0
10 Onion I:
ID Mayonnaisel : ,_ ___________ J •

25,85

I Quantity ::ti 0

1-----------------..
I 0 I
I I

ii~ 11
I Quantity 1
~----------------J

: Quantity

45,140 r---1 ! I Aflply I I Dismiss I I Reset I !
~---~

ZK-0407 A-GE

Customizing the Dialog Box Widget

7-10

The attributes of the dialog box widget enable you to customize the
following aspects of its appearance and functioning:

• Initial size and resizing behavior

• Initial position

• Unit of measure used· in the dialog box widget

• Translations used by simple text widgets in a dialog box widget

• Accelerators used by push button widgets in a dialog box widget

• Management of input focus

7.4.2.1 Sizing and Resizing a Dialog Box Widget
Use the common widget attributes width and height to size· a dialog box
widget. You specify these dimensions in pixels. By default, a dialog box
widget sizes itself to fit all its child widgets.

When calculating its size, the dialog box widget includes margin settings.
Use the margin_width attribute to specify a horizontal margin in pixels.
Use the margin_height attribute to specify a vertical margin in pixels.
You can only set the bottom and the left margins in a dialog box widget.

Creating Dialog Box Widgets
7 .4 Creating a Dialog Box Widget

By default, a dialog box widget grows to accommodate additional children
or the growth of an existing child widget, but you can control this behavior
using the resize attribute. The XUI Toolkit defines three types of resizing
behavior:

• Grow to accommodate child widgets (the default)

• Shrink when a child widget reduces its size

• Remain initial size

The VMS DECwindows Toolkit Routines Reference Manual lists the
constants used to specify this resizing behavior.

A modeless dialog box widget can optionally contain a resize icon in its
title bar. Only modeless dialog box widgets contain title bars.

When a dialog box widget resizes, its child widgets may overlap. You can
control this behavior by using the child_overlap attribute. If you do not
want child widgets to overlap, set the child_overlap attribute to false.

7 .4.2.2 Positioning a Dialog Box Widget
To position a dialog box widget in relation to its parent, specify its x- and
y-coordinates in the common widget attributes x and y. If you set the
default_position true, the parent widget ignores any x- and y-coordinate
values and centers the dialog box widget within the boundaries of its
parent.

Some parent widgets determine the position of a dialog box widget child.
For example, a main window widget positions a dialog box widget child
below its title bar.

By default, modal and modeless dialog box widgets (both pop-up widgets)
appear centered in relation to their parent. Because modeless dialog box
widgets allow users to move them on the display, any positioning specified
only determines the initial position of the widget.

7.4.2.3 Selecting the Unit of Measure Used in a Dialog Box Widget
The unit of measure in a dialog box widget is either the pixel or the font
unit. For horizontal dimensions, a font unit is one-fourth the width of the
default font. For vertical dimensions, a font unit is one-eighth the height
of the font. Specify the unit of measure in the units attribute. By default,
dialog box widgets use the font unit.

Any dialog box widget that displays text should use the font unit of
measure. In this way, dimensions specified will remain valid if the font
changes.

7.4.2.4 Defining Translations for Simple Text Widgets
Dialog box widgets provide special translation capabilities for the simple
text widgets they contain. You can define keyboard translations in a
translation table, parse the translation table, and then pass the parsed
translation table to the dialog box widget. Section 6. 7 .2 details how to
create a translation table and parse it. The text_merge_translations
attribute accepts the identifier of the parsed translation table as its value
and calls the intrinsic routine OVERRIDE TRANSLATIONS on all its
children that are simple text widgets.

7-11

7.4.3

Creating Dialog Box Widgets
7 .4 Creating a Dialog Box Widget

7.4.2.5 Assigning Accelerators to Child Widgets
Accelerators allow users of an application to activate a function associated
with a push button or toggle button widget using a keyboard key. Dialog
box widgets contain built-in accelerator key definitions that you can
associate with the push button widgets contained in the dialog box widget.
To make use of an accelerator, you need only pass the widget identifier of
the push button widget to the dialog box widget in the default_button
attribute.

To associate an accelerator with the Cancel button in a dialog box widget,
pass the widget identifier of the push button widget implementing the
cancel option to the dialog box widget in the cancel_button attribute.

7 .4.2.6 Grabbing the Input Focus
By default, modal dialog box widgets take the input focus when they
appear on the display because the rest of the application is disabled until
the user responds to the modal dialog box widget. By default, modeless
dialog box widgets do not take the input focus when they appear on the
display. To change the default for either style dialog box widget, use the
take_focus attribute.

The auto_unmanage attribute determines whether the dialog box widget
automatically disappears when the user activates any of the push button
widgets contained in the dialog box widget. If this attribute is set to false,
you must explicitly remove the dialog box widget from its parent's list of
managed children.

Associating Callback Routines with a Dialog Box Widget

7-12

The child widgets contained in a dialog box widget provide the primary
input capabilities of dialog box widgets. For example, in a dialog box
widget containing push button widgets, the push button widgets perform
callbacks when activated by a user. However, the dialog box widget does
support several callbacks with which you can associate callback routines.

To associate a callback routine with a dialog box widget that gets executed
when the dialog box accepts the input focus, pass a callback routine list
in the focus_callback attribute. Dialog box widgets take the input focus
when a user clicks MB 1 in an inactive area of the dialog box widget.

Pop-up dialog box widgets also execute a callback when they are about
to appear on a display (be mapped) or have just disappeared from the
display (been unmapped). You can use these callbacks to defer processing
and reduce application startup time. For example, your application could
delay creation of the children of the dialog box widget until it receives
notification that the dialog box widget is about to be mapped.

To associate a callback routine with these callback reasons, pass a callback
list in the map_callback and unmap_callback attributes.

Another callback supported by the dialog box widget is the help_callback.
The dialog box widget executes this callback when a user presses the help
key while simultaneously positioning the pointer cursor in an inactive
area of the dialog box widget and pressing MBl. An inactive area of a

Creating Dialog Box Widgets
7 .4 Creating a Dialog Box Widget

dialog box widget is the space surrounding all the children of the dialog
box widget.

7.5 Creating an Attached Dialog Box Widget
Like a dialog box widget, an attached dialog box widget is a container for
its children. The main difference between the two is how you specify the
positioning of the child widgets.

To create an attached dialog box widget, perform the following steps:

1 Create the attached dialog box widget.

Use any of the widget creation mechanisms listed in Table 7-3. The
choice of creation mechanism depends on the style of attached dialog
box widget and the attributes you want to initialize to other than
default values.

Table 7-3 Attached Dialog Box Widget Creation Mechanisms

High-level routine Use the ATTACHED DIALOG BOX routine to create any style
of attached dialog box widget. Indicate the style of the attached
dialog box widget in the style argument.

Low-level routine Use the ATTACHED DIALOG BOX CREATE routine to create
a work area attached dialog box widget. To create a modal
or modeless attached dialog box widget, use the ATTACHED
DIALOG BOX POPUP CREATE routine. Indicate the style of the
attached dialog box widget in the style attribute.

UIL object type Use the UIL object type attached_dialog_box to define a work
area style attached dialog box widget in a U IL module. To define
a modal or modeless attached dialog box widget, use the UIL
object type popup_attached_db. At run time, the ORM routine
FETCH WIDGET creates the widget according to this definition.

2 Create the children of the attached dialog box widget.

In this step, position the child widgets within the attached dialog box
widget by defining attachments. Section 7.5.1 describes how to define
attachments.

3 Manage the children of the attached dialog box widget.

Use the intrinsic routine MANAGE CHILD to manage a single child.
Use the intrinsic routine MANAGE CHILDREN to manage a group of
children.

4 Manage the attached dialog box widget.

Use the intrinsic routine MANAGE CHILD to manage the attached
dialog box widget.

After you complete these steps, if the parent of the attached dialog box
widget has been realized, the attached dialog box widget and all its
children will appear on the display.

7-13

7.5.1

Creating Dialog Box Widgets
7.5 Creating an Attached Dialog Box Widget

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a subset
of these widget attributes at widget creation time. (To assign values to
those widget attributes not accessible, you must use the SET VALUES
intrinsic routine after the widget has been created.) Table 7-4 lists
the attributes you can set if you use the high-level routine ATTACHED
DIALOG BOX to create an attached dialog box widget. Pass the values of
these attributes as arguments to the routine.

Table 7-4 Attributes Accessible Using the High-Level Routine
ATTACHED DIALOG BOX

default_position

x

y

title

style

map_callback

help_callback

A Boolean value that determines whether the x- and y
coordinates should be ignored in favor of default positioning.

Specifies the x-coordinate of the upper left corner of the
widget.

Specifies the y-coordinate of the upper left corner of the
widget.

Specifies the title displayed in the title bar (modeless dialog
boxes only).

Specifies the style of dialog box: modal, modeless, or work
area.

Specifies the address of a callback routine list.

Specifies the address of a callback routine list.

Defining Attachments in an Attached Dialog Box Widget

7-14

Position child widgets in an attached dialog box widget by defining
attachments for any of the four edges of the child widget. Using the
attachment attributes, you can attach an edge of the child widget to any of
the following:

• An edge of the attached dialog box widget

• An edge of another child of the attached dialog box widget

• A position within the attached dialog box widget

Define attachments by assigning values to attachment attributes and
passing these values to the children of the attached dialog box widget.
Note that you define attachments in the child widgets, not in the attached
dialog box widget that contains them.

The attachment attributes may alter the widget attributes that define
position and size: the x, y, width, and height attributes. If you define an
attachment attribute as well as one of these other sizing and positioning
attributes and the values conflict, the attachment attribute overrides the
normal widget attribute.

Table 7-5

Edge

top

bottom

right

left

Creating Dialog Box Widgets
7.5 Creating an Attached Dialog Box Widget

The XUI Toolkit defines four attachment attributes for each of the four
edges of a child widget. Table 7-5 shows the set of attachment attributes
used to specify the attachment of each edge.

Attachment Attributes

Attachment Attribute

adb_top_attachment

adb_top_widget

adb_top_position

adb_top_offset

adb_bottom_attachment

adb_bottom_widget

adb_bottom_position

adb_bottom_offset

adb_right_attachment

adb_right_widget

adb_right_position

adb_right_offset

adb_left_attachment

adb_left_widget

adb_left_position

adb_left_offset

Function

Type of attachment (see Table 7-6)

Identifier of sibling widget to which edge is being attached

Numerator of fraction used in fractionat positioning

Amount of space between attached edges

Type of attachment (see Table 7-6)

Identifier of sibling widget to which edge is being attached

Numerator of fraction used in fractional positioning

Amount of space between attached edges

Type of attachment (see Table 7-6)

Identifier of sibling widget to which edge is being attached

Numerator of fraction used in fractional positioning

Amount of space between attached edges

Type of attachment (see Table 7-6)

Identifier of sibling widget to which edge is being attached

Numerator of fraction used in fractional positioning

Amount of space between attached edges

Notice in Table 7-5 that each edge has the same four attributes. You need
not always specify all four attributes for each edge; this depends on what
type of attachment you define. The XUI Toolkit defines seven types of
attachment. Table 7-6 lists the types of attachments with the constants
you use to specify them.

Table 7-6 Attachment Constants for the Attached Dialog Box Widget

Attachment Type
Constant

DwtAttachAdb

DwtAttachOppAdb

DwtAttachWidget

DwtAttachOppWidget

Function

Attach this edge to the same edge of the attached dialog box
(the parent)

Attach this edge to the opposite edge of the attached dialog
box (the parent)

Attach this edge to the opposite edge of the sibling

Attach this edge to the same edge of the sibling

(continued on next page)

7-15

Creating Dialog Box Widgets
7.5 Creating an Attached Dialog Box Widget

7-16

Table 7-6 {Cont.) Attachment Constants for the Attached Dialog Box
Widget

Attachment Type
Constant

DwtAttachPosition

DwtAttachSelf

DwtAttachNone

Function

Attach this edge to a point within the attached dialog box

Attach this edge to its current position in the attached dialog
box

Do not attach this edge

The following sections describe how you use the attachment attributes to
create these types of attachments.

7.5.1.1 Attaching an Edge to the Attached Dialog Box
You can attach an edge of a child widget to either of the following two
edges of the attached dialog box widget that is its parent:

• The same edge of the attached dialog box widget (DwtAttachAdb)

• The opposite edge of the attached dialog box widget
(DwtAttachOppAdb)

Specify these types of attachment by passing the attachment type constant
as the value of the attachment type attribute.

For example, set the adb_right_attachment attribute to DwtAttachAdb
to attach the right edge of the child widget to the right edge of the
attached dialog box widget. To attach the right edge of the child widget
to the left edge of the attached dialog box widget, set the adb_right_
attachment attribute to DwtAttachOppAdb. Figure 7-3 illustrates
these two types of attachment. The shorter dotted line represents
attachment of the right edge of the child widget to the same edge of
the attached dialog box widget.

Figure 7-3 Attaching an Edge of a Child Widget to the Attached Dialog
Box Widget

---f-------------------~---

ZK-0443A-GE

When you specify this type of attachment, you can also specify the amount
of space between the two edges. Specify this value in either pixels or font
units in the attachment offset attribute. Use the unit of measure used in
the attached dialog box widget. The default is font units. If you do not
specify an offset, the borders of the two attached widgets abut each other.

Creating Dialog Box Widgets
7.5 Creating an Attached Dialog Box Widget

You can also use an attached dialog box widget attribute to define default
offsets; see Section 7 .5.3 for more details.

Attachment to an edge of the attached dialog box widget is typically the
first attachment you define when laying out an attached dialog box widget.
For example, start by attaching the left edge of the widget in the upper
left corner to the same edge of the attached dialog box widget. Then
define attachments for the other widgets in the attached dialog box widget
moving down and to the right inside the attached dialog box widget. The
first attachment to the edge of the attached dialog box widget anchors the
other attachments and helps avoid defining circular attachments.

7.5.1.2 Attaching an Edge to Another Child Widget
You can attach an edge of a child widget to either of the following two
edges of another child widget in the attached dialog box widget:

• The opposite edge of the child widget (DwtAttach Widget)

• The same edge of the child widget (DwtAttachOppWidget)

Specify this type of attachment by passing the attachment type constants
as the value of the attachment type attribute.

For example, set the adb_right_attachment attribute to
DwtAttach Widget to attach the right edge of a child widget to the
left edge of another child of the attached dialog box widget. To attach
the right edge of a child widget to the right edge of another child of
the attached dialog box widget, set the adb_right_attachment to
DwtAttachOppWidget. Figure 7-4 illustrates these two types of
attachments. In the figure, the shorter dotted line represents attachment
of the right edge of child widget A to the left edge of the child widget B.

Figure 7-4 Attaching an Edge of a Child Widget to Another Child
Widget in an Attached Dialog Box Widget

o=:g
ZK-0444A-GE

When you specify this type of attachment, you must also specify the
widget to which you are defining the attachment. Do this by passing the
widget identifier of the child widget as the value of the attachment widget
attribute. You can also specify the amount of space between the two
widgets in the attachment offset attribute. Specify the amount in pixels or
font units. The default is font units.

7-17

Creating Dialog Box Widgets
7.5 Creating an Attached Dialog Box Widget

7-18

Note that while it is common practice to attach together two widgets in
close proximity to each other, this is not a requirement. You can attach an
edge of a child widget to an edge of any other child widget of the attached
dialog box widget.

7.5.1.3 Attaching an Edge to a Position in the Attached Dialog Box Widget
You can attach an edge of a widget to a position in the attached dialog
box widget. Instead of specifying the position by its x- and y-coordinates,
specify the position as a fraction of the total dimension of the attached
dialog box widget. This is called fractional positioning.

You specify this type of attachment by passing the attachment type
constant DwtAttachPosition as the value of the attachment type
attribute. You specify the position by supplying the numerator of the
fractional position as the value of the attachment position attribute. The
default denominator is 100, but you can change this default using an
attached dialog box widget attribute, described in Section 7 .5.3.

For example, the midpoint of the attached dialog box widget is one-half
the distance between the two edges. To attach the right edge of a child
widget to the midpoint of the attached dialog box widget, set the adb_
right_attachment attribute to DwtAttachPosition and specify the
numerator of the fractional position as 50 in the adb_right_position
attribute. (The default denominator is 100.) Figure 7-5 illustrates this
type of attachment.

Figure 7-5 Attaching an Edge to a Position in an Attached Dialog Box

50

CJ
ZK-0445A-GE

As with the other types of attachment, you can also specify an offset with
fractional positioning. Specify the offset in pixels or font units in the
attachment offset attribute. If you do not, the edge of the widget abuts
the position specified. Note that the offset used is one-half the value you
specify.

As a convenience, the XUI Toolkit includes an attachment type,
DwtAttachSelf, that calculates the fractional position for you. This
can be valuable when you do not know the size of the attached dialog
box widget and therefore cannot calculate the fractional position yourself.
Specify this attachment type by passing the attachment type constant
DwtAttachSelf as the value of the attachment type attribute. Using this
attachment type, you can explicitly position an edge of a child widget in
the attached dialog box widget by its position and size attributes. The
attached dialog box widget will calculate the relative position of the edge
of the widget within the attached dialog box widget using these attributes.

7.5.2

Creating Dialog Box Widgets
7.5 Creating an Attached Dialog Box Widget

7 .5.1.4 Accepting Default Attachments
If you do not specify an attachment type or specify the attachment type
DwtAttachNone for certain edges of a child widget, the attached dialog
box widget will calculate the relative position of the edge according to
its own defaults, depending on the setting of the rubber_positioning
attribute. For more details about this topic, see. Section 7 .5.3.

Using Attachment Attributes
Maintaining the relationship between a simple text widget and a label
widget is a common task that is well suited to an attached dialog box
widget. If you specify fixed positions for these widgets, changes to the
language or font size can disturb the layout. For example, the label
widget could overlap the simple text widget. Using an attached dialog box
widget, you can specify the relative positions of these two widgets so that
they maintain their spatial relationship even if the language or font size
changes.

Example 7-3 redefines the label and simple text widgets used in the
DECburger user interface. In the example, the label and simple text
widgets are contained in an attached dialog box widget, which is their
parent. The attached dialog box widget is a child of the DECburger order
entry dialog box widget. To maintain the original design of the DECburger
interface, the border of the attached dialog box widget is set to zero width
so it will not be visible in the user interface (see Figure 1-4).

Example 7-3 Positioning Children in an Attached Dialog Box Widget

Oobject
fries_quantity_box attached_dialog_box
{

} ;

arguments
{

} ;

x = 130;
y = 100;
border_width = 0;

controls
{

} ;

label fries quantity label;
simple_text-fries_quantity;

(continued on next page)

7-19

Creating Dialog Box Widgets
7 .5 Creating an Attached Dialog Box Widget

7-20

Example 7-3 (Cont.) Positioning Children in an Attached Dialog Box
Widget

'lobject
fries_quantity_label label
{

} ;

arguments
{

} ;

adb_left_attachment = DwtAttachAdb;
adb_left_offset = O;
adb_top_attachment = DwtAttachAdb;
adb_top_offset = 0;
label_label = k_quantity_label_text;

Oobject
fries_quantity
{

simple_text

} ;

arguments
{

} ;

adb_left_attachment = DwtAttachWidget;
adb left off set = k label stext delta x;
adb=left=widget = label fries_quantity_label;

adb_top_attachment = DwtAttachOppWidget;
adb top offset = -1;
adb=top=widget = label fries_quantity_label;

max_length = 3;
cols = 3;
rows = 1;
resize width = false;
resize-height = false;
simple=text_value k_O_label text;

0 In this UIL object declaration, the attached dialog box widget is
defined. In the arguments section, the attached dialog box widget is
positioned within its parent widget by specifying x- and y-coordinates.

In the controls section of the object declaration, the label widget and
the simple text widget are specified as children of the attached dialog
box widget.

8 This UIL object declaration defines the label widget. In the arguments
section, the label attribute (called label_label in UIL) is set to the
"Quantity" text string (defined as the constant k_quantity_label_text
at the beginning of the UIL module).

In addition, the arguments section contains four attachment attributes.
In these attachment attributes, the left edge of the label widget
is attached to the right edge of the attached dialog box widget.
(Note use of the attachment type DwtAttachAdb.) Similarly, the
top edge of the label widget is attached to the same edge of the
attached dialog box widget. (Note use of the attachment type constant
DwtAttachOppWidget.) For both attachments, the edge of the child

7.5.3

Creating Dialog Box Widgets
7.5 Creating an Attached Dialog Box Widget

widget abuts the edge of the attached dialog box because the offset is
set to 0.

The label widget is upper-leftmost in the attached dialog box, so this
attachment creates an anchor for other attachments.

9 The simple text widget is defined so that this horizontal orientation of
the label and the simple text widgets is maintained no matter where
the label widget may be moved. Note that the simple text widget in
its arguments list makes reference to the label widget. Because of this
dependency, you must list the simple text widget after the label widget
in the controls list of the attached dialog box widget.

In the arguments section, the simple text widget is sized using simple
text widget attributes that provide font independence. For more
information about these attributes, see Section 9.2.2.1.

In addition, the arguments section contains six attachment attributes.
The first three of these attributes define the attachment of the left
edge of the simple text widget to the right edge of the label widget.
(Note rise of the DwtAttachWidget attachment type constant.) The
widget identifier of the label widget is passed as the value of the
adb_left_ widget attribute, and the space between the two widgets is
specified in the adb_left_offset attribute.

The second three attachment attributes define the attachment of the
top edge of the simple text widget to the top edge of the label widget.
(Note use of the DwtAttachOppWidget attachment type constant.)
The widget identifier of the label widget is passed as the value of the
adb_left_ widget attribute, and the space between the two widgets
is specified in the adb_left_offset attribute. (The example assigns a
negative offset. Experimentation determined that this offset lines up
the text in the label widget and the simple text widget, creating the
best appearance.)

Customizing an Attached Dialog Box Widget
The attached dialog box widget supports all the attributes the dialog box
widget supports. For information about customizing a dialog box widget,
see Section 7.4.2.

In addition, the attached dialog box widget supports a unique set of
attributes that enable you to customize the following aspects of its
appearance and functioning:

• Default horizontal and vertical spacing between child widgets

• Default denominator used in fractional positioning

• Resizing behavior of child widgets

7-21

7.5.4

Creating Dialog Box Widgets
7.5 Creating an Attached Dialog Box Widget

7.5.3.1 Specifying the Default Spacing Between Child Widgets
Use the default_ vertical_ offset and default_horizontal_offset
attributes to determine the amount of space between the edge of the
child widget being attached and the edge or position to which it is being
attached. Specify the offset in pixels or font units. The default is font
units.

The default_ vertical_offset attribute determines the offset for
attachments of the top and bottom edges of a child widget. The default_
horizontal_ offset attribute determines the offset for attachments of the
right and left edges of a child widget. By default, both offset attributes are
set to 0.

7 .5.3.2 Defining the Default Denominator Used in Fraction Positioning
Use the fraction_base attribute to specify the denominator used in
fractional positioning. The default denominator is 100.

7 .5.3.3 Controlling Resizing Behavior of Child Widgets
The rubber _positioning attribute determines how child widgets behave
when the attached dialog box widget is resized. This attribute acts in
coordination with several of the attachment attributes.

For example, when rubber positioning is set to true and both the left
and right edges of a child widget have no explicit attachments defined,
the attached dialog box attaches both edges to their initial positions (see
Section 7.5.1.3). In this case, when the attached dialog box widget is
resized, the child widget will stretch so that its new size encompasses the
same percentage of the attached dialog box widget width.

If rubber positioning is set to false and both the left and right edges have
no explicit attachments defined, the attached dialog box widget attaches
only the left edge to the left edge of the attached dialog box widget. When
the attached dialog box widget is resized, both edges maintain their
original position in the attached dialog box widget.

Similarly, if rubber positioning is set to true and both the top and bottom
edges of a child widget have no explicit attachments defined, the attached
dialog box widget attaches both edges to their initial positions (see
Section 7.5.1.3). If rubber positioning is set to false and both the top
and bottom edges of a child widget have no explicit attachments defined,
the attached dialog box widget attaches the top edge to the same edge of
the attached dialog box widget.

Associating Callback Routines with an Attached Dialog Box Widget
The attached dialog box widget supports the same set of callback
attributes as the dialog box widget. For information about associating
a callback routine with a dialog box widget, see Section 7.4.3.

7-22

8 Creating a List Box Widget

This chapter provides the following:

• An overview of the list box widget in the XUI Toolkit

• A detailed description of how to create a list box widget for an
application

• A description of the list box widget support routines provided in the
XUI Toolkit

8.1 Overview of the List. Box Widget
The list box widget is a rectangular window containing the visible portion
of an item list. The list box widget is similar to the menu widgets
described in Chapter 6 in that they both allow you to present the users of
your application with a list of choices. As with a menu widget, a user can
select an item in the list box widget by moving the pointer cursor onto the
item and clicking MBl. The list box widget notifies your application when
a list item has been selected using the callback mechanism.

Unlike the menu widgets, the list box widget includes a scroll bar widget
that provides users with the ability to scroll through the list of choices.
The list box widget is a window onto a portion of a larger list of choices.
The user can scroll backwards and forwards to view the complete item list.
This capability makes the list box widget preferable to the menu widgets
for presenting many choices. Typically, applications use menu widgets to
present lists of choices where each choice performs an action; they use list
box widgets to present lists of choices where each choice is an option.

Figure 8-1 shows a list box widget and its components.

Figure 8-1 List Box Widget

Selected
Item

Visible~
Portion
of Item List

List Item One
List Item Two

List Item Three
List Item Four
List Item Five
List Item Six

Vertical
Scroll
Bar

ZK-0399A-GE

8-1

Creating a List Box Widget
8.2 Creating a List Box Widget

8.2 Creating a List Box Widget

8-2

While the list box widget is similar to a menu widget, you use a different
procedure to create it. You build a menu widget as a widget hierarchy
where you create the menu items as widget. or gadget children of the
parent menu widget. In a list box widget, you create the list items as an
array of text ·strings. You pass the address of the array to the list box
widget as the value of the list box widget items attribute.

Because the list items appear on the display, you must convert the text
strings to compound strings before passing them to the list box widget.
Use any of the compound string routines described in Section 5.6 to
convert the list item text strings to compound strings.

To create a list box widget, perform the following steps:

1 Create the item list.

Create an array of compound strings with each string representing one
list item. Section 8.2.1 describes this procedure.

2 Create the list box widget.

Use any of the widget creation mechanisms listed in Table 8-1. The
choice of mechanism depends on the attributes of the list box widget
you need to access.

Pass the address of the item list in the items attribute when you
create the list box widget.

Table 8-1 List Box Widget Creation Mechanisms

High-level routine

Low-level routine

U IL object type

Use the LIST BOX routine to create a list box widget.

Use the LIST BOX CREATE routine to create a list box
widget.

Use the list_box object type to define a list box widget in a
UIL module. At run time, the ORM routine FETCH WIDGET
will create the widget according to this description.

3 Manage the list box widget.

Use the intrinsic routine MANAGE CHILD to manage the list box
widget. If you use UIL to define the user interface, this step is not
necessary. By default, DRM manages the widgets it creates.

After you complete these steps, if the parent of the list box widget has
been realized, the list box widget will appear on the display.

Low-level widget routines and UIL provide access to the complete set of
widget attributes at creation time. High-level routines provide access only
to a subset of these widget attributes at widget creation time. (To access
attributes not available using a high-level routine, use the SET VALUES
intrinsic routine after the widget has been created.) Table 8-2 lists the
attributes available using the high-level routine LIST BOX. Pass values
for these attributes as arguments to the routine.

8.2.1

Creating a List Box Widget
8.2 Creating a List Box Widget

Table 8-2 Attributes Accessible Using the High-Level Routine LIST BOX

x

y

items

Specifies the x-coordinate of the upper left corner of the
widget.

Specifies the y-coordinate of the upper left corner of the
widget.

Specifies the array of list items.

Specifies the number of items in the item list. item_ count

visible_item_count Specifies the number of items that should appear in the list
box widget window.

Specifies the address of a callback routine list.

Specifies the address of a callback routine list.

callback

help_callback

resize

horiz

Specifies whether the list box allows horizontal resizing.

Specifies whether the list box includes a horizontal scroll bar.

Creating an Item List
There are two ways you can create an item list:

• Create an array of compound strings using the capabilities of the
programming language in which you are writing your application.

• Use the UIL built-in function STRING TABLE to create an array of
text strings independent of the programming language used.

Note that all items in the list must be unique. A list box widget cannot
contain two items containing the same text.

8.2.1.1 Creating an Item List as an Array of Compound Strings
An item list is an array of pointers to compound strings. Pass the address
of the array to the list box widget as the value of the items attribute.
When you pass an item list to a list box widget, you must also pass it the
number of items in the item list. Use the item_count attribute to do this.

Example 8-1 creates the item list shown in Figure 8-1.

8-3

Creating a List Box Widget
8.2 Creating a List Box Widget

Example 8-1 Creating an Item List as an Array of Compound Strings

8s~atic DwtCompString *list_items[] NULL;

int item_count = 0;

81ist items[item count++] = DwtLatinlString("List Item One");
list items [item count++] DwtLatinlString ("List Item Two");
list-items[item-count++] DwtLatinlString("List Item Three");
list-items[item-count++] DwtLatinlString("List Item Four");
list-items[item-count++] DwtLatinlString("List Item Five");
list-items[item-count++] DwtLatinlString("List Item Six");
list-items[item-count++] DwtLatinlString("List Item Seven");
list-items[item-count++] DwtLatinlString("List Item Eight");
list-items[item-count++] DwtLatinlString("List Item Nine");
list-items[item-count++] DwtLatinlString("List Item Ten");
list-items[item-count++] DwtLatinlString("List Item Eleven");
lis<)tems[item:=count++] DwtLatinlString("List Item Twelve");

9xtsetArg(arglist[O], DwtNitems, list items);
XtSetArg(arglist[l], DwtNitemsCount, item count);
XtSetArg(arglist[2], DwtNvisibleitemsCount, 6);

81ist_box = DwtListBoxCreate(main_widget, "list", arglist, 3);

CBxtManageChild(list box);

8-4

8 The example declares an array, named list_items, of pointers to
compound strings.

8 In this group of assignment statements, the example creates an item
list by assigning the address of a compound string to each element of
the list_items array. The example uses the compound string routine
LATINl STRING to convert the text strings to compound strings.

9 After creating the array of list items, the example assigns the address
of the array as the value of the items attribute. The example uses the
SET ARG intrinsic routine to do this. The example also assigns the
number of items in the list as the value of the item_ count attribute.

8 In this statement, the example creates the list box widget using the
low-level widget creation routine LIST BOX CREATE. The example
passes the argument list as a parameter to the low-level routine along
with the count of the number of arguments in the argument list.

CB The program fragment ends by managing the list box widget using the
MANAGE CHILD intrinsic routine.

Creating a List Box Widget
8.2 Creating a List Box Widget

8.2.1.2 Creating an Item List Using the UIL STRING TABLE Function
UIL includes the built-in function STRING TABLE, which you can use to
create an array of text strings to create an item list independent of the
programming language you use. Using UIL, you can declare the item list
in a UIL module as a named value and use the STRING TABLE function
to create the value. You can use the value name to refer to the item list
throughout the remainder of the UIL module.

To create an item list using the UIL STRING TABLE function, pass the
function a list of text strings, delimiting each string with quotation marks
or apostrophes. Separate the text strings with commas. UIL creates an
array of list items out of the text strings, converting the text strings to
compound strings automatically. You can then pass this value by name
in the arguments list of the UIL object declaration. For more information
about defining string tables in UIL, see Section 3.2. 7 .5.

The DECburger sample application uses a list box widget to present a
selection of drink choices to the user. In Example 8-2, DECburger uses
the STRING TABLE function to create the item list for the drink selection
list box.

Example 8-2 Creating an Item List Using the UIL STRING TABLE Function

8k~drink_list text string_table ('Apple Juice',
'Orange Juice', 'Grape Juice',
'Cola', 'Punch' ,'Root beer',
'Water' ,'Ginger Ale', 'Milk',
'Coffee', 'Tea');

k_drink_list_select string_table('Apple Juice');

object
drink_list box : list_box

•
arguments {

x = 230;
y = 22;
visible_items_count = 4;
items = k drink list text;
selected 1.tems-: k drink list select;
single_selection =-true;- -
} ;

callbacks {

} ;

single= procedure list_proc (k_drink_list);
} ;

8 The DECburger sample application creates the item list for the drink
selection list box widget using the UIL STRING TABLE function. The
name of the item list is k_drink_list_text. (Note that, in the example,
DECburger creates a second item list, named k_drink_list_select. This

8-5

8.2.2

Creating a List Box Widget
8.2 Creating a List Box Widget

item list is used to select a list item as the default choice in the drink
list box. Section 8.2.2 describes this procedure.)

8 DECburger passes the item list by name, k_drink_list_text, to the list
box widget as the value of the items attribute.

Figure 8-2 shows the drink selection list box widget as it appears in the
DECburger user interface.

Figure 8-2 List Box Widget Used in the DECburger User Interface

Welcome to DECburger

File Edit Ordet·

Hamburgers Fries

0Rare
®'Medium
QWeUDone

g ~=i: ~ Size I ~ediu~:::]

0

Quantity

D Pickle
0 Onion
0 Mayonnaise:

: Quantity ~

Dismiss

Drinks

Apple Juice

Orange Juice
Grape Juice
Cola

Quantity

[Reset

0

ZK-0404A-GE

Selecting and Canceling Selections of List Items

8-6

The user of an application can select an item from a list box widget by
moving the pointer cursor onto the item and clicking MBl. When an item
is selected, the list box widget does the following:

• Highlights the selected item

Creating a List Box Widget
8.2 Creating a List Box Widget

• Adds the item to the list of selected items maintained in the selected_
items attribute

• N otifi.es the application, using the callback mechanism, that an item
has been selected

• Updates the count of selected items maintained in the selected_item_
count attribute

When a list box widget performs a callback to notify your application
that a list item has been selected, the list box widget also informs your
application whether the user selected the item with a single click on MBl
or a double click on MBl. The list box widget distinguishes between these
two types of selections and informs your application which type caused the
selection. Your application can perform different processing depending on
how an item was selected. (Section 8.3.4 describes how you can associate
callback routines with either type of selection.)

By default, the list box widget only allows one item to be selected at a
time. When_the user clicks MBl on an item when another item is selected,
the list box widget cancels the selection on the previous item. When a
selection is canceled,. the list box widget turns off the highlighting of the
item and removes the item from the list of selected items.

You can configure the list box to allow selection of multiple items by
setting the single_selection attribute to false. To select additional items,
the user presses the shift key in conjunction with the click of MB 1 on an
item.

Example 8-3 shows how DECburger makes the apple juice option the
default selection of the drink selection list box widget.

Example 8-3 Selecting an Item in an Item List

k drink list text string_table ('Apple Juice', - -

t»k_drink_list_select

'Orange Juice', 'Grape Juice',
'Cola', 'Punch' ,'Root beer',
'Water' ,'Ginger Ale', 'Milk',
'Coffee', 'Tea');

string_table('Apple Juice');

object
drink list box : list box

arguments {
x = 230;
y = 22;
visible items count = 4;
items =-k_drink_list_text;

selected_items = k_drink_list_select;
single_selection = true;
} ;

callbacks {

(continued on next page)

8-7

Creating a List Box Widget
8.2 Creating a List Box Widget

Example 8-3 (Cont.) Selecting an Item in an Item List

} ;

single= procedure list_proc (k_drink_list);
} ;

8 DECburger creates an item·list, called k_drink_list_select, using the
UIL built-in function STRING TABLE. This string table contains only
one item: apple juice.

8 DECburger passes this single-item string table as the value of the
selected_items attribute in the object declaration of the list box
widget. When the list box widget appears in the DECburger user
interface, the apple juice item is highlighted.

8.3 List Box Widget Support Routines

8-8

The XUI Toolkit provides a set of support routines for use with the list
box widget. These routines provide convenient ways to perform commonly
needed tasks, such as adding items to an item list. Table 8-3 lists these
support routines; the following sections describe how to use them.

Table 8-3 List Box Widget Support Routines

LIST BOX ADD ITEM

LIST BOX DELETE ITEM

LIST BOX DELETE POSITION

LIST BOX SELECT ITEM

LIST BOX DESELECT ITEM

LIST BOX DESELECT ALL
ITEMS

LIST BOX SET ITEM

Adds an item to a list box widget.

Deletes an item, identified by its content, from a
list box widget.

Deletes an item, identified by its position in the
item list, from a list box widget.

Highlights the item in the list box widget, if it is
visible, and adds it to the list of selected items.
When you use this routine to select an item, you
can optionally specify that the list box widget use
the callback mechanism to notify your application
that an item has been selected.

Removes an item that had previously been
selected from the list of selected items and turns
off highlighting of the item.

Removes all selected items from the list of items
in the list box widget, turning off highlighting of
the visible items.

Specifies which item, identified by its content, will
appear at the top of the visible items displayed in
the list box widget.

(continued on next page)

8.3.1

Creating a List Box Widget
8.3 List Box Widget Support Routines

Table 8-3 (Cont.) List Box Widget Support Routines

LIST BOX SET POS Specifies which item, identified by its position in
the list, will appear at the top of the visible items
displayed in the list box widget.

LIST BOX SET HORIZ POS Specifies a horizontal position in a list item where
all text to the left of the position will not appear
on the display. Specify the position in pixels. The
text of the list item that is not currently visible can
be viewed using the horizontal scroll bar, if the
list box widget includes one.

LIST BOX ITEM EXISTS Verifies that an item, identified by its content,
is currently in the list contained in the list box
widget.

Adding and Deleting List Items at Run Time
To add or delete an item from a list box widget after the list box widget
has been created, use one of the following two methods:

• The SET VALUES intrinsic routine

• The list box widget support routines

The support routines offer several advantages over the SET VALUES
routine:

• The support routines use fewer system resources than the SET
VALUES routine and are, therefore, more efficient.

• The support routines renumber the positions of items in the item list
to accommodate the change in the list.

• The support routines automatically update the item count.

Use the support routines if you need to add or delete a single item in an
item list; use the SET VALUES intrinsic routine when you need to update
the entire item list.

8.3.1.1 Using SET VALUES to Add or Delete List Items
To add or delete list items using the SET VALUES intrinsic routine, you
must create a new item list, inserting or deleting list items as necessary.
You then assign the address of the new item list to the items attribute of
the list box widget using the SET VALUES intrinsic routine. Whenever
you modify an item list, you must also update the item count maintained
in the item_count attribute and the selected item count maintained in
the selected_item_count attribute.

When using the SET VALUES intrinsic routine to dynamically add items
to an item list, be careful to allocate memory for the items in the original
list. Do not simply add items to the item list returned by the GET
VALUES intrinsic routine. The GET VALUES intrinsic routine returns
pointers to the list box widget's copies of the strings. When you pass a
new item list as the value of the items attribute using the SET VALUES
intrinsic routine, the list box widget releases the memory that it used to

8-9

Creating a List Box Widget
8.3 List Box Widget Support Routines

store the original item list and allocates new memory for the new item list.
Thus, the pointers returned by the GET VALUES intrinsic routine for the
original list will be meaningless.

8.3.1.2 Using a Support Routine to Add an Item to an Item List
To add a single item to an item list, use the LIST BOX ADD ITEM support
routine. This routine takes the following three arguments:

• Widget identifier of the list box widget

• Compound string that is the new list item

• Position in which you want the new item to appear in the list

The list box widget identifies each item in an item list by its position
number. The first item in the list is numbered 1 (not 0) with each
subsequent item numbered sequentially. If you pass the position
parameter as null, the list box widget adds the new item to the bottom of
the item list.

The DECburger sample application uses the LIST BOX ADD ITEM
support routine to add items to the total order list box widget. In
Example 8-4, DECburger adds the item to the bottom of the list by
specifying the position parameter as 0.

Example 8-4 Adding an Item to a List Box Widget

sprintf(list buffer, "%d ", fries num);
list_txt = D;tLatinlString(list_buffer);

list txt = DwtCStrcat(list txt, current fries);
list txt = DwtCStrcat(list=txt, latin_space);

list txt = DwtCStrcat(list txt, name vector[k fries_index]);
DwtListBoxAdditem(widget_array[k_total_orderJ; list_txt, 0);

8-10

8.3.1.3 Using a Support Routine to Delete an Item from an Item List
The XUI Toolkit provides two support routines for deleting a single item
from an item list. The support routines allow you to specify the item to be
deleted in two ways:

• By the text content of the item

• By the position of the item in the item list

To delete an item by specifying its content, use the LIST BOX DELETE
ITEM support routine. Note that the item must be unique. This routine
takes the following two arguments:

• Widget identifier of the list box

• Compound string identifying the list item to be deleted

8.3.2

Creating a List Box Widget
8.3 List Box Widget Support Routines

To delete an item by specifying its position, use the LIST BOX DELETE
POSITION support routine. This routine takes the following two
arguments:

• Widget identifier· of the list box

• Position of the item in the item list to be deleted

To determine if a list box widget contains a particular item in its item list,
use the support routine LIST BOX ITEM EXISTS. This routine takes the
following two arguments:

• Widget identifier of the list box

• Compound string identifying the list item

Selecting and Canceling the Selection of List Items at Run Time
To select or cancel the selection of an item in a list box widget after the
list box widget has been created, use one of the following two methods:

• The SET VALUES intrinsic routine

• The list box widget support routines

The support routines offer several advantages over the SET VALUES
routine:

• The support routines use fewer system resources than the SET
VALUES routine and are, therefore, more efficient.

• The support routines automatically update the count of selected items.

Use the support routines if you need to select or cancel the selection of a
single item in an item list; use the SET VALUES intrinsic routine when
you want to select more than one item.

8.3.2.1 Using the SET VALUES Intrinsic Routine to Select List Items
To select items in an item list using the SET VALUES intrinsic routine,
first create a list of selected items. Then assign this list as the value of
the selected_items attribute using the SET VALUES routine. Whenever
you modify the list of selected items, you must update the value of the
selected_item_count attribute.

Note that passing a list of selected items using the SET VALUES intrinsic
routine overwrites the current list of selected items. This cancels the
selection of items that had been selected but that are not in the new
selected item list.

8.3.2.2 Using a Support Routine to Select a List Item
To select a single item in a list box widget, use the LIST BOX SELECT
ITEM support routine. This routine takes the following three arguments:

• The widget identifier of the list box

• The compound string that identifies the list item

8-11

8.3.3

Creating a List Box Widget
8.3 List Box Widget Support Routines

• A Boolean value that indicates whether the list box widget should
notify the application through the callback mechanism that the item
has been selected

8.3.2.3 Canceling the Selection of Items in an Item List
You can cancel the selection of an item using the SET VALUE intrinsic
routine or by using a list box widget support routine. The XUI Toolkit
provides two support routines for canceling selections. Using the support
routines you can:

• Cancel the selection of a single selected item in an item list

• Cancel the selection of all selected items in an item list

To cancel the selection of a single item from a list box widget, use the LIST
BOX DESELECT ITEM support routine. This routine takes the following
two arguments:

• The widget identifier of the list box

• The compound string identifying the item whose selection you want to
cancel

To cancel the selection of all the items currently selected in a list box
widget, use the LIST BOX DESELECT ALL ITEMS support routine. This
routine accepts only the widget identifier of the list box widget as an
argument.

Customizing the Appearance of a List Box Widget

8-12

The attributes of the list box widget enable you to customize the following
aspects of its appearance:

• Size

• List of visible items

• Margins and spacing

8.3.3.1 Specifying the Size of a List Box Widget
You can specify the size of a list box widget in pixels using the common
widget attributes width and height. However, as with all widgets that
display text, using these attributes to specify the size of a list box widget
makes the widget font-dependent. If the font size changes, fewer items
will be visible in the list box widget, and some items may be clipped.

Instead of specifying the height of a list box in pixels, specify the number
of items in the item list that should be visible at any time using the
visible_items_count attribute. The list box widget calculates its height
dimension, to the degree allowed by its parent, based on the number of
items you specify to be visible and on the font size.

By default, the list box widget determines its width from the width of the
longest list item. If you specify a width in the width attribute and set the
resize attribute to false, the rightmost portion of list items that extend
beyond the right border of the list box will not be visible. To enable a user

Creating a List Box Widget
8.3 List Box Widget Support Routines

to view this information, include a horizontal scroll bar in the list box
widget. To include a horizontal scroll bar, set the horiz attribute to true.

In Example 8-5, DECburger specifies the height of the drink selection list
box by specifying.the number of visible items in the visible_item_count
attribute. Of the total of 11 items fa the item list, DECburger specifies
that 4 items be visible.

Example 8-5 Specifying the Size of the DECburger List Box Widget

object
drink list box : list box - -

arguments {
x = 230;
y = 22;
visible items count = 4;
items =-k drink list text;
selected Items ~ k drink list select;
single_selection =-true;- -
} ;

callbacks {

} ;

single= procedure list_proc (k_drink_list);
} ;

If your list is made up of long items that would make the list box wider
than you want it to be, you can position the left border of the list box
so that a specific amount of each list item will not be visible. The XUI
Toolkit file selection widget provides an example of this attribute. The file
selection widget positions the list of file specifications in a directory so that
only the file name part of the file specification is visible. The device and
directory parts of the file specifications, which appear at the left of a file
specification, are not visible.

Specify the horizontal position in pixels using the list box widget support
routine LIST BOX SET HORIZ POS. The user can view this information
using the horizontal scroll bar widget, if one is included in the list box
widget. The routine takes the following two arguments:

• The widget identifier of the list box

• The horizontal position in the list item where you want it to begin to
appear on the display

Note that the position argument for this routine specifies a point,
measured in pixels, along the horizontal axis of a list item. The other
list box widget support routines use the term position to refer to the order
of elements in the item list array.

8-13

Creating a List Box Widget
8.3 List Box Widget Support Routines

8-14

8.3.3.2 Specifying List Items to Be Visible
By default, the list box widget displays the list item at position 1 as
the topmost visible item. However, you can specify that another item in
the item list appear as the topmost item. The XUI Toolkit provides two
list box widget support routines that you can use to specify which item
appears as the topmost visible item in the list. In conjunction with the
visible_items_count attribute, you can use these support routines to
determine what list items are visible in the list box widget.

You can specify the topmost item in two ways:

• By the text of the list item

• By the position of the item in the item list

To specify the topmost item by text content, use the LIST BOX SET ITEM
routine. This routine takes the following two arguments:

• The widget identifier of the list box

• The compound string that identifies the item

To specify the topmost item by position, use the LIST BOX SET POS
routine. This routine takes the following two arguments:

• The widget identifier of the list box

• The position of the item in the list

Your choice of topmost item is limited by the number of items in the list
and the number of visible items you have specified. For example, in a list
box widget with 10 items, if you specify that 5 items should always be
visible, you cannot specify item 8 as the topmost item. The list box widget
will always display 5 items to the limit of the available items.

The list box widget always attempts to display the last selected item as
close to the top of the list box as it can, depending on the number of items
in the list and the size of the list box.

8.3.3.3 Specifying Margins and Spacing in a List Box Widget
You can determine the amount of space around the items in a list box
widget by assigning values to the margin_ width, margin_height, and
spacing attributes. Specify these values in pixels. Figure 8-3 illustrates
these margins.

8.3.4

Creating a List Box Widget
8.3 List Box Widget Support Routines

Figure 8-3 Margins and Spacing in a List Box Widget

margin_height

margin_width

margin_height

ZK-0400A-GE

Associating Callbacks with a List Box Widget
When an item in an item list is selected, a list box widget notifies your
application using the callback mechanism. A user can select an item by
moving the pointer cursor onto the item and clicking MBl. Your program
can select an item using a list box widget support routine or the SET
VALUES intrinsic routine.

When the list box widget performs a callback, it returns callback data to
the application. In this callback data, the list box widget identifies which
list item has been selected. For complete information about the data
returned in a callback by the list box widget, see the VMS DECwindows
Toolkit Routines Reference Manual.

To associate a callback routine with a list box widget callback, pass a
callback routine list to one of the four list box widget callback attributes.
The list box widget supports four distinct callbacks, depending on the
type of user interaction. Table 8-4 describes what conditions trigger these
callbacks and the widget attributes you use to -associate callback routines
with them.

Table 8-4 List Box Widget Callbacks

Callback Attribute

single_callback

Description

A user has clicked MB1 on an item in the list box
widget, causing it to be selected, or your application
has selected the item using the support routine LIST
BOX SELECT ITEM.

(continued on next page)

8-15

Creating a List Box Widget
8.3 List Box Widget Support Routines

8-16

Table 8-4 {Cont.) List Box Widget Callbacks

Callback Attribute Description

extend_callback A user has selected an item in the list box widget, and
there is already at least one other item selected.

single_confirm_callback A user has selected an item in the list box widget by
double clicking MB1 on the item.

extend_confirm_callback A user has double clicked MB1 on an item in the list
box widget, and there is already at least one other
item selected.

DECburger specifies that only one item can be selected at a time in the
drink selection list box widget. In Example 8-6, DECburger associates
a callback routine by assigning the symbolic reference for the callback
routine as the value of the single_callback attribute. DECburger does
not associate a callback with a double click on a list item.

Example 8-6 Associating a Callback Routine with a List Box Widget

object
drink list box : list box - -

arguments {
x = 230;
y = 22;
visible_items_count = 4;
items = k drink list text;
selected items ~ k drink list select;
single_selection =-true;- -
} ;

callbacks {

} ;

single= procedure list_proc (k_drink_list);
} ;

Example 8-7 shows the callback routine used by the DECburger drink
selection list box widget. The list box widget returns the text of the
selected item in its callback data structure. The callback routine reads
this data from the data structure and assigns it to the static variable
current_drink. DECburger maintains the current drink selection in this
variable.

Creating a List Box Widget
8.3 List Box Widget Support Routines

Example 8-7 Callback Routine DECburger Associates with the List Box
Widget

static void list_proc(w, tag, list)
Widget w;
int *tag;
DwtListBoxCallbackStruct *list;

current drink = list->item;

The XUI Toolkit file selection widget provides an example of how to use a
double click callback. The file selection widget contains a list box widget
in which it displays the list of files in a specified directory. When a user
selects a file from the list with a single click, the list box widget notifies
the file selection widget using the callback mechanism. In response, the
file selection widget displays the file in its text field. This allows the user
to edit the file name, if necessary.

When a user double clicks MBl on a file name, the file selection widget
displays the file name in its text field and also activates the default push
button OK in the file selection widget. In this context, the file selection
widget interprets the double click as confirmation of the operation.

8-17

g Handling Text

This chapter provides the following:

• An overview of the text widgets in the XUI Toolkit

• A description of the support routines used with the text widgets

9.1 Overview of Text Widgets
The XUI Toolkit includes two widgets that you can use to provide your
application with text editing capabilities:

• Simple text widget

• Compound string text widget

Both text widgets enable users of your application to enter text or edit
existing text using the keyboard. The difference between the two widgets
is that the simple text widget supports manipulation of a null-terminated
array of characters; the compound string text widget supports compound
strings.

In a compound string, you specify not only the characters in the text
string, but also the character set and writing direction you want for
displaying the text string on a workstation screen. All the XUI Toolkit
widgets that contain text labels use compound strings to represent these
labels. By using the compound string text widget, you enable users of your
application to enter and edit text in the same character set and writing
direction used throughout the user interface of your application.

The simple text and compound string text widgets have the same visual
appearance (see Figure 9-1). In compliance with the XUI Style Guide,
both widgets appear on the display by default as two perpendicular lines
forming a right angle. These lines, known together as the half-border,
mark off the text entry area. In the simple text widget, the half-border
is made up of the left and bottom borders of the widget. The compound
string text widget·uses the left and bottom borders to form the half-border
if the main writing direction of the compound string it contains is left-to
right. If the main writing direction is right-to-left, the compound string
text widget uses the right and bottom borders to create the half-border.
(For information about how the compound string text widget determines
the main writing direction, see Section 9.2.2.7.)

The text entry area marked off by the half-border contains a text cursor
that indicates where text will be inserted. When the widgets have input
focus, the text cursor blinks and is displayed at full brightness. When the
widgets do not have input focus, the text cursor appears dimmed and does
not blink.

9-1

Handling Text
9.1 Overview of Text Widgets

The text cursor in the compound string text widget can also indicate the
current editing direction. The editing direction is the direction in which
characters can be inserted or deleted. Users of your application can switch
between the left-to-right and right-to-left editing directions by pressing
the toggle key (Fl 7). Whenever a user changes the editing direction
in a compound string text widget, the shape of the text cursor, called
a bidirectional text cursor, can change to indicate the new editing
direction. When the compound string text widget does not have the input
focus, it contains a dimmed, standard text cursor. For information on how
to create a compound string text widget with a ·bidirectional text cursor,
see Section 9.2.2. 7.

Figure 9-1 illustrates both the simple text and compound string text
widgets. Note how the first compound string text widget, which contains a
compound string using the ISO Latinl character set and the left-to-right
writing direction, appears identical to the simple text widget. The second
compound string text widget, which contains a compound string using
the right-to-left writing direction, illustrates a half-border made from the
right and bottom borders of the widget. The third compound string text
widget contains a compound string made up of two segments, each with
a different writing direction. This compound string text widget, shown in
the figure with input focus, also illustrates a bidirectional text cursor.

Figure 9-1 Text Widgets

Text Cursor (without inputfocus) Half-Border

I Simple text widget

I I Compound string text widget

tegdiw beet gnirts dnuopmoCI I

Compound string text widgettegdiw txet gnirts dnuopmoC

Bidirectional Text Cursor (with input focus)

9-2

ZK-1275A-GE

The widgets use the callback mechanism to notify ·your application when
the text they contain changes. Note, however, that the widgets do not
return the text in the callback. To retrieve the text, you must use the GET
VALUES intrinsic routine or one of the support routines provided by the

Handling Text
9.1 Overview of Text Widgets

XUI Toolkit for use with the text widgets. (For more information about
this topic, see Section 9.2.1.2.)

The XUI Toolkit includes support routines for many commonly performed
tasks, such as specifying the text contained in the text widget. Table 9-1
lists these support routines by function; the following sections describe
how to use them.

Table 9-1 Text Widget Support Routines

Simple Text Widget
Compound String Text
Widget Description

Manipulating the Text Content of the Widget

S TEXT GET STRING

S TEXT SET STRING

S TEXT REPLACE

Modifying Widget Behavior

S TEXT GET EDITABLE

S TEXT SET EDITABLE

S TEXT GET MAX LENGTH

S TEXT SET MAX LENGTH

Handling Text Selections

S TEXT GET SELECTION

CS TEXT GET STRING

CS TEXT SET STRING

CS TEXT REPLACE

Retrieves the current text contents of the
widget.

Replaces the text contents of the widget with
completely new text.

Replaces the portion of the current text
contents of the widget, specified by the start
and end point positions, with new text.

CS TEXT GET EDITABLE Returns a Boolean value that indicates
whether the user of the application can edit
the current text contents of the widget. When
this routine returns true, the user can edit the
text; when it returns false, the user cannot edit
the text.

CS TEXT SET EDITABLE Sets the Boolean value that indicates whether
the user can edit the current text contents of
the widget. To allow editing, set this value to
true.

CS TEXT GET MAX LENGTH Returns the maximum length of text that the
widget will allow a user to enter.

CS TEXT SET MAX LENGTH Sets the maximum length of the text that the
user can enter in the widget.

CS TEXT GET SELECTION Retrieves the text in the widget that has been
selected using the selection mechanism.
Selected text is highlighted on the display.

(continued on next page)

9-3

Handling Text
9.1 Overview of Text Widgets

Table 9-1 (Cont.) Text Widget Support Routines

Simple Text Widget
Compound String Text
Widget Description

Handling Text Selections

S TEXT SET SELECTION CS TEXT SET SELECTION Sets the text in the widget or the portion of
the text specified by the start and end point
positions as the selection, and highlights the
text on the screen.

S TEXT CLEAR SELECTION CS TEXT CLEAR SELECTION Cancels the selection of text in the widget and
turns off highlighting of the text.

9.2 Creating Text Widgets
To create a simple or compound string text widget, perform the following
steps:

1 Create the text widget using any of the widget creation mechanisms
listed in Table 9-2.

Choose the mechanism that provides access to the widget attributes
you need to set.

Table 9-2 Mechanisms for Creating Text Widgets

Mechanism

High-level routine

Low-level routine

UIL object type

9-4

Simple Text Widget

Use the S TEXT routine to create a simple
text widget.

Use the S TEXT CREATE routine to create
a simple text widget.

Use the UIL object type simple_text
to define a simple text widget in a UIL
module. At run time, the ORM routine
FETCH WIDGET creates the widget
according to this definition.

Compound String Text Widget

Use the CS TEXT routine to create a
compound string text widget.

Use the CS TEXT CREATE routine to
create a compound string text widget.

Use the UIL object type cs_text to define
a compound string text widget in a UIL
module. At run time, the ORM routine
FETCH WIDGET creates the widget
according to this definition.

2 Manage the text widget using the intrinsic routine MANAGE CHILD.

After you complete these steps, the text widget will appear on the display
if its parent has been realized.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a
subset of these widget attributes at widget creation time. (To assign
values to attributes not available at widget creation time, use the SET
VALUES intrinsic routine or support routine after the widget has been
created.) Table 9-3 lists the attributes that you can set if you use the
high-level routine S TEXT to create a simple text widget or if you use the
CS TEXT routine to create a compound string widget. Pass the values of
these attributes as arguments to the routine.

Handling Text
9.2 Creating Text Widgets

Table 9-3 Attributes Accessible Using the High-Level Routines S TEXT
and CS TEXT

Attribute

x

y

cols

rows

value1

Description

Specifies the x-coordinate of the upper left corner of the
widget.

Specifies the y-coordinate of the upper left corner of the
widget.

Specifies the initial width of the widget measured in character
spaces.

Specifies the initial height of the widget measured by the height
of a character.

Specifies the text content of the widget.

1 In the high-level routine S TEXT, the argument to access this attribute is named string_value.

When you create a text widget, you can specify aspects of the initial
appearance of the widget by assigning values to widget attributes.
For example, the simple text widget used in the user interface of the
DECburger sample application defines the initial text that appears in
the widget, specifies the initial position of the widget by its x-coordinate
and y-coordinate, specifies the width of the widget in pixels, and restricts
the number of characters that a user can enter. Example 9-1 shows an
excerpt from the DECburger UIL module in which the simple.text widget
is defined.

Example 9-1 Defining the Simple Text Widget in the DECburger Sample Application

object
fries_quantity : simple_text {

arguments {
x = 165;
y = 100;
width = 30;
max_length = 3;
simple_text_value = k_O_label_text;
} ;

callbacks {

} ;

create= procedure create_proc (k_fries_quantity);
} ;

In the example, the value attribute (called simple_text_ value in UIL)
receives the initial value 0, defined as the constant k_O_label_text. The
DECburger UIL module uses constants to represent all text strings. These
constants are defined at the beginning of the DECburger UIL module.

The following sections describe how to use the attributes of the text
widgets and the text widget support routines.

9-5

9.2.1

Handling Text
9.2 Creating Text Widgets

Manipulating the Text Contents of the Text Widgets

9-6

The text widgets provide text entry and text editing capabilities in a user
interface. To manipulate the text content of the text widgets at run time
(after the widget has been created), you can use either of the following two
methods:

• The SET VALUES or GET VALUES intrinsic routine

• The text widget support routines

The support routines offer several advantages over the SET VALUES or
GET VALUES intrinsic routines:

• The support routines use fewer system resources and, therefore, are
more efficient.

• The support routines do not require that you create an argument list.

9.2.1.1 Placing Text in a Text Widget
To place text in a text widget after the widget has been created, you can
use the SET VALUES intrinsic routine or a support routine.

To use the SET VALUES intrinsic routine, specify the address of the
text string or compound string as the value of the value attribute in an
argument list. Then pass this argument list to the SET VALUES intrinsic
routine to assign the value to the widget attribute.

Using the text widget support routines, you can either modify the text the
widget contains or replace the text entirely.

To replace all the text in a simple text widget, use the S TEXT SET
STRING support routine. Use the CS TEXT SET STRING routine to
replace all the text in a compound string text widget. Both support
routines place the address of the new text in the value attribute.

To modify the text currently in the simple text widget, use the S TEXT
REPLACE support routine. Use the CS TEXT REPLACE support routine
to modify the text currently in the compound string text widget. Both
routines take the following arguments:

• The identifier of the text widget

• The position in the text where the text to be replaced begins

• The position in the text where the text to be replaced ends

• The new text that you want to put in place of the existing text

Specify the position in the text as an offset from the beginning. Determine
the offset by counting the characters, including spaces. The first character
is numbered 0 (zero). Successive characters are numbered sequentially.

To insert text, specify the same position for both the start and the end
points. If the start and end points are not specified as the same position,
the text in the section defined by the start and end points is replaced by
the new text.

Handling Text
9.2 Creating Text Widgets

9.2.1.2 Retrieving Text from a Text Widget
To retrieve the current text content of a text widget, you can use the GET
VALUES intrinsic routine or a support routine.

To use the GET VALUES intrinsic routine, create a variable to hold the
address of the text string or compound string and specify this variable
as the value of the value attribute in an argument list. Then pass this
argument list to the GET VALUES intrinsic routine. The GET VALUES
intrinsic routine writes the address contained in the value attribute into
the variable that you specified in the argument list.

Use the S TEXT GET STRING support routine to retrieve the current
text content of the simple text widget. For the compound string text
widget, use the CS TEXT GET STRING support routine to retrieve its text
content. These support routines return the value of the value attribute.

Example 9-2 shows how the DECburger sample application uses the
S TEXT GET STRING support routine to retrieve the current value of
a simple text widget. The DECburger user interface uses a simple text
widget to solicit information about quantity from the user. In the example,
the S TEXT GET STRING support routine returns the text contained in
the simple text widget. (The variable fries_text holds this string.) The
example goes on to convert the text into an integer so that DECburger can
manipulate the value.

Example 9-2 Using the S TEXT GET STRING Support Routine in the DECburger Sample
Application

fries text= DwtSTextGetString(widget array[k fries quantity]);
fries=num = 0; - - -
sscanf(fries_text, "%d", &fries_num);

9.2.1.3 Disabling Text Editing
By default, users can edit the text contained in the text widgets. However,
you can disable text editing by setting the editable attribute to false (this
attribute is true by default). To change this value after the widget has
been created, use the SET VALUES intrinsic routine or a support routine.

To set the value of the editable attribute in the simple text widget, use
the S TEXT SET EDITABLE support routine. In the compound string
text widget, use the CS TEXT SET EDITABLE support routine to set this
attribute.

To read the value of the editable attribute in the simple text widget, use
the S TEXT GET EDITABLE support routine. In the compound string text
widget, use the CS TEXT GET EDITABLE support routine to read this
attribute.

9-7

9.2.2

Handling Text
9.2 Creating Text Widgets

9.2.1.4 Limiting the Length of the Text
You can specify the maximum amount of text that the user can enter in
the text widgets by using the max_len attribute. To assign a value to
this attribµte at run time, use the SET VALUES intrinsic routine or the
S TEXT SET MAX LENGTH support routine. To read the value of this
attribute at run time, use the GET VALUES intrinsic routine or the S
TEXT GET MAX LENGTH support routine. Use the CS TEXT GET MAX
LENGTH and the CS TEXT SET MAX LENGTH support routines to read
and set this attribute in the compound string text widget.

Customizing the Appearance of the Text Widgets

9-8

You can customize the following aspects of the appearance and function of
the text widgets:

• Size

• Margins

• Resizing behavior

• Text cursor appearance

• Position of the insertion point

• Border visibility and color

The compound string text widget supports additional attributes that are
not supported by the simple text widget. These additional attributes
enable you to do the following:

• Identify the current writing direction

• Identify the current editing direction

• Specify the text cursor shape

Section 9.2.2. 7 describes these attributes.

9.2.2.1 Specifying Size
To specify the dimensions of the text widgets, use the cols and rows
attributes. These attributes specify the size of the widget in relation to the
size of the characters they contain, which is determined by the fonts used
to display the characters.

Use the cols attribute to specify the· width of the text widgets. (Each
character width is referred to as a column.) With this attribute, you can
specify the width by the number of characters that the widget can contain
horizontally.

Use the rows attribute to specify the height of the text widgets. The
height of each row is determined by the height of a character. The overall
height dimension of the simple text widget is determined by the number of
rows that you specify in the rows attribute.

Handling Text
9.2 Creating Text Widgets

The exact measurement in pixels of these two dimensions depends on the
font being used. In the XUI Toolkit, fonts are specified in font lists. (For
more information about specifying fonts in font lists, see Section 5.6.5.)
The simple text widget, which can only use a single font, uses the
dimensional values from the first font specified in the font list as the
unit of the cols and rows attributes. The compound string text widget,
which can use as many fonts as are specified in the font list, uses the
maximum dimensional values from all of the specified fonts as the unit of
the cols and rows attributes.

While you can specify the size of the text widgets in pixels by using
the common widget attributes width and height, this method is not
recommended. Fixing the size of the widget in this way creates a
dependency on the font. The size that you specify may work well with
a particular font, but if the font size is increased, the text characters may
no longer fit inside the widget.

Figure 9-2 illustrates where each of these attributes appears in the text
widgets. As shown, the default values for these attributes are 20 columns
wide and 1 row high.

Figure 9-2 Default Configuration of the Text Widgets

' margin_height = 2 pixels

margin_width _________________ ~-........... ~i margin_width
= 2 pixels O 1 2 3 4 5 6 7 8 Jjg = 2 pixels

4 • .
20 character units wide .

' margin_height = 2 pixels

~

9.2.2.2 Specifying Margins

l row = 1 character
height

ZK-0398A-GE

You can specify the amount of space around the text entry area of the text
widgets by using the margin_ width and margin_height attributes.

Use the margin_ width attribute to specify the amount of space between
the border of the widget and the beginning of the array of characters. (The
length of the text determines the amount of space between the end of the
text and the border.) Specify this margin in pixels.

Use the margin_height attribute to specify the amount of space between
the top and bottom borders of the widget and the top and bottom edges of
the text entry area. Specify this margin in pixels.

Figure 9-2 illustrates where each of these attributes appears in the text
widgets. As shown, the default values for these attributes are 2 pixels for
each margin.

9-9

Handling Text
9.2 · Creating Text Widgets

9-10

9.2.2.3 Controlling Resizing Behavior
Although you might specify the dimensions of the text widgets, if the user
enters more text than will fit in the widget, the text widgets attempt to
expand to fit the text. Using the attributes of the text widgets, you can
control this behavior in the following ways:

• Setting the resize attributes to false

• Making the text wrap

• Including a scroll bar in the simple text widget

You can turn off the automatic resizing behavior of the text widgets by
using the resize_height, resize_ width, or word_ wrap attributes.

To prevent the text widgets from increasing their height, set the resize_
height attribute to false. To prevent the text widgets from increasing
their width, set the resize_ width attribute to false.

The direction_rtol attribute determines in which direction the text
widgets expand. For example, if the writing direction is right-to-left, the
widgets attempt to expand to the left, keeping the rightmost column fixed
in its place.

If you fix the width of a text widget, you can specify that the text widget
wrap words that would otherwise extend beyond the right edge of the
widget onto the next line by setting the word_ wrap attribute to true.

Another way to control resizing is by including a vertical scroll bar in the
text widget. If you include a vertical scroll bar in a text widget, the widget
will not resize its height to fit additional text. The scroll bar enables the
user to scroll through text that is not currently visible.

To include a vertical scroll bar in a text widget, set the scroll_ vertical
attribute to true. By default, the vertical scroll bar appears on the right
side of the widget, but you can make the scroll bar appear on the left side
of the widget by setting the scroll_left_side attribute to true.

9.2.2.4 Controlling Text Cursor Appearance
When. the text widget has input focus, its text cursor blinks. By assigning
values to text widget attributes, you can specify the following:

• How fast the text cursor blinks

• Whether the text cursor is visible

Use the blink_rate attribute to specify how fast the text cursor should
blink. Specify this value in milliseconds.

Use the insertion_point_ visible attribute to determine whether or not
the· text cursor is visible in the widget. (The text cursor is visible when it
is drawn in the foreground color.) Set this value to true if you want the
text cursor to be visible.

Note that the insertion_point_ visible argument specifies only whether
the text cursor should be drawn in the foreground color. If the text cursor
is positioned in a portion of the text that is not currently visible in the text
widget, the text cursor will not be visible. To ensure that the text cursor

Handling Text
9.2 Creating Text Widgets

is always in the visible portion of the text widget, use the auto_show _
insert_position attribute (described in Section 9.2.2.5).

In the compound string text widget, you can also specify whether the
shape of the text cursor indicates the current editing direction. For more
information about this topic, see Section 9.2.2.7.

9.2.2.5 Positioning the Insertion Point
Use the insertion_position attribute to position the text cursor within
the text contents of the text widget. Specify the position of the insertion
point as an offset from the beginning of the text string or compound string.
Determine the offset by counting the number of characters in the string,
including spaces. The first character in a string is numbered 0 (zero).
Successive characters are numbered sequentially.

To specify that the insertion point should always be in the visible portion
of the text widget, set the auto_show _insert_position to true. This
causes the widget to scroll as the position of the insertion point changes,
keeping the insertion point in the visible portion of the text.

9.2.2.6 Specifying Border Visibility and Color
According to the XU! Style Guide, the text widgets appear in a user
interface by default as two perpendicular lines forming a right angle at
the text entry area (see Figure 9-1). These lines are actually two of the
borders of the widget. To create one of these widgets without a visible
half-border, set the half_border attribute to false.

The foreground attribute determines the color of the text widget. Specify
the pixel to be used as the value of this attribute.

9.2.2.7 Identifying the Current Writing and Editing Directions
You can identify the current writing and editing directions of the text
contained in a compound string text widget by reading the value of the
text_path and editing_path attributes. The simple text widget does not
support these attributes.

The text_path attribute indicates the main writing direction of the text
in the compound string text widget. The compound string text widget sets
the value of the text_path attribute to the writing direction specified in
the compound string that it contains when it is created. If this compound
string has multiple segments, the compound string text widget uses the
value of the first segment.

The editing_path attribute indicates the writing direction enabled for
text entry and editing. For example, if the value of the editing_path
attribute is left-to-right, the delete key deletes characters to the left of
the insertion point. If the value is right-to-left, the delete key deletes the
character to the right of the insertion point.

At widget creation time, the compound string text widget sets the value
of the editing_path attribute to be the same as the value of the text_
path attribute. However, the value of the editing_path attribute changes
whenever a user changes the editing direction. (Users of your application
can switch between the left-to-right and right-to-left editing directions by
pressing the toggle key [Fl 7].)

9-11

9.2.3

Handling Text
9.2 Creating Text Widgets

The compound string text widget can indicate the current editing
direction by changing the shape of the cursor. To use this feature, set
the bidirectional_cursor attribute to true. By default, the text cursor
does not indicate editing direction.

Handling Text Selections

9-12

All applications running in the VMS DECwindows environment
have access to a global selection facility. This facility allows users of
applications to select portions of the display by moving the pointer cursor.
Selected portions appear highlighted on the display. For more information
about this facility, see the XU! Style Guide.

The text widgets support the selection mechanism. In these widgets, you
can perform the following functions:

• Select text in the text widget

• Retrieve the selected text

• Cancel the current selection

9.2.3.1 Selecting Text
To select text in a simple text widget, use the S TEXT SET SELECTION
support routine. Use the CS TEXT SET SELECTION support routine to
select a portion of the text in a compound string text widget. Both routines
take the following arguments:

• The widget identifier of the text widget

• The position in the text where you want to start the selection

• The position in the text where you want to end the selection

• The time of the event that led to the call to the selection

Section 9.2.1.1 describes how to determine positions in a text string or
compound string.

You obtain the time stamp of the event that triggered the selection from
the X Event data structure. (See Example 13-1inSection13.2 for an
example of how to obtain the time stamp from the X Event data structure.)

If the currently selected text contains the insertion point, the selected text
is deleted when new text is entered. You can specify that this selected
text not be deleted by setting the pending_delete attribute to false. By
default, this attribute is set to true.

9.2.3.2 Retrieving Selected Text
To retrieve the currently selected text in a simple text widget, use the
S TEXT GET SELECTION support routine. Use the CS TEXT GET
SELECTION support routine to retrieve the currently selected text in a
compound string text widget. The selected text is returned as a text string
by the simple text widget or as a compound string by the compound string
text widget.

9.2.4

9.2.3.3 Canceling the Selection of Text

Handling Text
9.2 Creating Text Widgets

To cancel the selection of text in the simple text widget, use the S
TEXT CLEAR SELECTION support routine. Use the CS TEXT CLEAR
SELECTION support routine to cancel the selection of text in the
compound string widget.

Both routines ~urn off the selected text highlighting.

Associating Callbacks with Text Widgets
When the text contained in a text widget changes, the widget uses the
callback mechanism to notify your application. The text in the widget can
change as the result of a user interaction, such as entering new text or
editing existing text. Your program can also cause a callback by changing
the text in a text widget using the SET VALUES intrinsic routine or a
support routine.

In addition, the text widgets perform callbacks whenever they accept or
lose input focus. To enable users to enter text by using the keyboard, the
text widgets must have input focus. The text widgets get input focus when
the user clicks MBl anywhere within their borders.

The compound string text widget performs a callback if it cannot find
in its font list the character set required to display a segment of text.
(The simple text widget does not support this callback.) In this callback,
the compound string text widget identifies the required character set for
which there is no entry in the font list. The compound string text widget
searches its font list a second time for the character set when the callback
routine returns. If you update the compound string text widget's font list
in the callback routine, the widget will find the character set in its font list
and be able to display the text tagged with this character set. If you do
not associate a callback routine with this callback reason, the compound
string text widget does not perform the second search of the font list. The
compound string text widget uses a checkerboard character in place of any
character tagged with a character set it cannot find in the font list.

For complete information about the data returned in the callbacks
performed by the text widgets, see the VMS DECwindows Toolkit Routines
Reference Manual.

To associate a callback routine with a text widget, pass a callback routine
list to one of the callback attributes. Table 9-4 lists the callback attributes
and describes the conditions that trigger these callbacks.

9-13

Handling Text
9.2 Creating Text Widgets

Table 9-4 Text Widget Callbacks

9-14

Callback Attribute

value_changed

focus_callback

lost_focus_ callback

help_callback

nofont_callback

Conditions for Callback

The text contained in the text widget has changed. This
callback can be triggered by a user interaction or because
your application has changed the text in the widget using
the SET VALUES intrinsic routine or one of the text widget
support routines.

The text widget has accepted input focus.

The text widget has lost input focus.

A user has pressed the Help key while clicking MB1 in the
text widget.

The compound string text widget cannot find a character set
in its font list that is needed to display the text in a compound
string.

10 Using the Scale and the Scroll Bar Widgets

Both the scale and scroll bar widgets are graphical widgets that enable
users to input data to your application using a pointing device, such as a
mouse. This chapter provides the following:

• Overviews of the scale and scroll bar widgets in the XUI Toolkit

• A detailed description of how to use these widgets in an application
user interface

10.1 Overview of the Scale Widget
The scale widget is a rectangular window containing a scale and a
descriptive text label, called a title.

The scale contained in the scale widget is an elongated rectangle that
represents a range of values. Users of your application can select a value
from the range by moving an indicator, called a slider, inside the scale.
Users can also select a value by moving the pointer cursor anywhere in
the scale and clicking MBl. The position of the slider corresponds to the
current value of the scale. Use the scale widget to solicit input from users
of your application. Specify the range of values represented by the scale to
ensure that the user can enter only legal values.

The title contained in the scale widget is descriptive text or graphics that
labels the scale widget. In a scale widget with horizontal orientation, the
title appears beneath the scale and aligned with the left end of the scale.
In a scale widget with vertical orientation, the title appears to the left of
the scale and aligned with the top of the scale.

You can optionally mark off points along the range of the scale by including
labeled tick marks. Section 10.2.2.6 describes how to add tick marks to a
scale.

Figure 10-1 shows a scale widget and its components. In the figure, the
border of the scale widget is visible. By default, the border of the scale
widget does not appear on the display. However, you can make it visible
by assigning a value to the border_width attribute.

10-1

10.2

Using the Scale and the Scroll Bar Widgets
10.1 Overview of the Scale Widget

Figure 10-1 Scale Widget

Title

Slider

0
I

Current Scale Value

--Labeled
Tick
Mark

ZK-0402A-GE

Creating a Scale Widget

10-2

The main tasks involved in creating a scale widget are determining the
range of values it represents and configuring its appearance. You can
create children of a scale widget, but the children can only be used to
implement tick mark labels. While you can use any widget as a tick mark
label, typically you would use only a label widget.

To create a scale widget, perform the following steps:

1 Create the scale widget.

Use any of the widget creation mechanisms listed in Table 10-1. The
choice of mechanism depends on the attributes you need to access.

Table 10-1 Scale Widget Creation Mechanisms

High-level routine

Low-level routine

UIL object type

Use the SCALE routine to create a scale widget.

Use the SCALE CREATE routine to create a scale widget.

Use the scale object type to define a scale widget in a UIL
module. At run time, the ORM routine FETCH WIDGET
creates the widget according to this definition.

2 Create the children of the scale widget.

If you want to include labeled tick marks on your scale, you must
create the labels as children of the scale widget. Section 10.2.2.6
provides more information about this procedure.

3 Manage the children of the scale widget.

Use the intrinsic routine MANAGE CHILD to manage a single child
of the scale widget. Use MANAGE CHILDREN to manage a group of
children.

Using the Scale and the Scroll Bar Widgets
10.2 Creating a Scale Widget

4 Manage the scale widget.

Use the intrinsic routine MANAGE CHILD to manage the scale
widget.

After you complete these steps, if the parent of the scale widget has been
realized, the scale widget will appear on the display.

Low-level routines and VIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a subset
of these widget attributes at widget creation time. (To access attributes
not available with a high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) The VMS DECwindows Toolkit
Routines Reference Manual lists the complete set of attributes supported
by the scale widget. Table 10-2 lists the attributes you can set if you use
the high-level routine SCALE to create a scale widget. Pass the values of
these attributes as arguments to the routine.

Table 10-2 Attributes Accessible Using the High-Level Routine SCALE

x

y

width

height

scale_width

scale_height

title

min_ value

max_ value

decimal_points

value

orientation

callback

drag_ callback

help_ callback

The x-coordinate of the upper left corner of the widget

The y-coordinate of the upper left corner of the widget

The horizontal dimension of the widget

The vertical dimension of the widget

The horizontal dimension of the scale

The vertical dimension of the scale

The text string used as title of the scale

The minimum value represented by the scale

The maximum value represented by the scale

The placement of decimal point in value labels

The current value of the scale

The orientation of the scale (horizontal or vertical)

The address of a callback routine list

The address of a callback routine list

The address of a callback routine list

10.2.1 Determining the Range of Values
You can determine the range of values represented by the scale in a scale
widget. By default, the range is from 0 to 100. You can choose any integer
value.

Specify the minimum value in the min_ value attribute. This value will
be the top of a vertical scale and the left of a horizontal scale. Specify the
maximum value in the max_ value attribute. This value is represented by
the bottom or the right end of the scale.

10-3

Using the Scale and the Scroll Bar Widgets
10.2 Creating a Scale Widget

The scale widget always maintains its current value in the value
attribute. The position of the slider in the scale represents the current
value. You can create the scale widget with a default value by assigning a
value to this attribute. To change the value of the scale widget after it has
been created, use the SET VALUES intrinsic routine.

Example 10-1 shows the scale widget definition from the DECburger UIL
module. In it, the scale is configured with a minimum value of 0 and a
maximum value of 10.

Example 10-1 Determining the Range of Values

object
burger_quantity scale {

} ;

arguments {
x = 25;
y = 85;
min value = O;
max value = 10;
width = 70;
border width = 0;
title ~ k_quantity_label_text;
} ;

callbacks {

} ;

create= procedure create_proc (k_burger_quantity);
value_changed =procedure scale_proc (k_burger_quantity);

10.2.2 Customizing the Appearance of a Scale Widget

10-4

The attributes of the scale widget enable you to customize the following
aspects of its appearance:

• Size

• Orientation

• Title

• Appearance of the slider

• Representation of scale value

• Placement of tick marks along the scale

10.2.2.1 Specifying the Size of a Scale Widget
Specify the size of a scale widget using the common widget attributes
width and height. Specify these dimensions in pixels.

You can also specify the size of the scale contained in the scale widget.
Specify the dimensions of the scale by assigning values to the scale_
width and the scale_height attributes. Note that if you specify the size
of the scale larger than the size of the scale widget that contains it, the
scale will be clipped.

Using the Scale and the Scroll Bar Widgets
10.2 Creating a Scale Widget

Figure 10-2 illustrates the dimensions these attributes affect.

Figure 10-2 Scale Widget Sizing Attributes

T
height

l -----------------

._ ______ __.l.+.l ________ _.I I

·I ... I•----- scale_width

scale_height

... 1 .. ------ width--------

ZK-0401 A-GE

You do not need to specify any of these dimension attributes. The scale
widget can calculate its size to accommodate the space requirement of its
children.

10.2.2.2 Specifying the Orientation of the Scale Widget
You can specify the orientation of the scale widget by setting the
orientation attribute. Specify the value of this attribute using one of
the constants listed in Table 10-3.

Table 10-3 Horizontal and Vertical Orientation Constants

Orientation

Horizontal

Vertical

MIT C Binding

DwtHorizontal

DwtVertical

10.2.2.3 Specifying the Title of the Scale Widget

VAX Binding

DWT$C_HORIZONTAL

DWT$C_VERTICAL

You can include a title, in the form of a compound string, in your scale
widget to describe its function to users. To specify a title, create the
title as a text string, convert the text string into a compound string, and
pass the address of the compound string to the scale widget in the title
attribute.

Example 10-2 shows how the title, width, position, and other aspects of
the scale widget in the DECburger application are specified.

10-5

Using the Scale and the Scroll Bar Widgets
10.2 Creating a Scale Widget

Example 10-2 Setting Appearance Attributes of the Scale Widget in the DECburger Sample
Application

object
burger_quantity scale {

arguments {
x = 25;
y = 85;
min value 0;
max value 10;

t» width = 70;
border_width = 0;

fl title = k_quantity_label_text;

} ;

10-6

} ;
callbacks {

} ;

create= procedure create proc (k burger quantity);
value_changed = procedure-scale_proc (k_burger_quantity);

t» DECburger specifies the horizontal dimension of the scale widget by
assigning a value to the width attribute.

fl DECburger specifies the text used as the title of the scale widget by
assigning the constant k_quantity _label_text as the value of the title
attribute. DECburger defines constants for all the text strings used in
its interface at the beginning of the UIL module. This makes changing
the text of a label easy to manage.

10.2.2.4 Specifying the Color of the Slider
You can specify the color used for the slider. When your application runs
on a color workstation, the slider will appear in the color you specify.
When your application runs on a workstation with a black and white
monitor, the slider will appear as a shade of gray.

Specify the color by passing the color pixel in the slider_pixel attribute.

10.2.2.5 Representing the Value of the Scale
By default, the scale widget displays its current value above the scale
over the slider position, if the orientation of the scale is horizontal. If the
orientation of the scale widget is vertical, the widget displays its current
value to the right of the scale, opposite the slider position. The value. is
displayed as a decimal number. You can specify that the current value not
appear in the scale widget by setting the show_ value attribute to false
(the default is true).

The scale widget always maintains its value as an integer. However, you
can specify that the value be presented on the display with a decimal
point. Use the decimal_points attribute to specify the number of
positions you want displayed to the right of the decimal point. Note
that, to the scale widget, the value is still an integer.

For example, to represent a value with two places to the right of the
decimal point, specify the decimal_points attribute as 2. If the scale
range was 0 to 10,000, the scale widget would represent the current value
as 0.00 to 100.00. The value returned by the scale widget is always an
integer between the minimum and maximum values.

Using the Scale and the Scroll Bar Widgets
10.2 Creating ·a Scale Widget

10.2.2.6 Adding Labeled Tick Marks to a Scale Widget
You can mark off points along the scale contained in a scale widget by
adding labeled tick marks. You create the labeled tick marks by creating
children of the scale widget. Each child represents a point along the scale.
You only need to specify the tick mark labels (typically label widgets).
The scale widget positions the children symmetrically along the scale and
draws the actual tick marks at each position on the scale.

For example, if you create two widgets as children of the scale widget, the
scale widget positions the children at either end of the scale. If you create
three or more children, the scale widget spaces their positions evenly
across the scale.

For scale widgets with vertical orientation, the tick marks appear on the
right side of the scale; for scale widgets with horizontal orientation, the
tick marks appear above the scale. See Figure 10-1 for an illustration.

Example 10-3 shows a code fragment that creates a scale widget with two
labeled tick marks.

Example 10-3 Labeling Points Along a Scale in a Scale Widget

build_ scale()
{

WidgetList scale_marks(] =NULL;
int count = 0;

«t scale = DwtScale(parent_widget,
"Image Reduction",
0,0,
0,0,
0,0,

/* will appear as title */
/* x and y */
/* width and height */
/* scale width and height */

DwtLatinlString("Sample
0,100,

Scale"), /* title */
/* minimum and maximum values */

~ scale_marks[count++J

@) scale_marks[count++J

0, /* no decimal points */
50,
DwtHorizontal,
callback_list,
NULL,NULL);

/* default value */
/* orientation */
/* on change of value, do this */
/* no drag or help callbacks */

DwtLabel(scale,
"label_min",
0,0, /* x and y */

DwtLatinlString("O"), /*label */
NULL); /*no help callback*/

DwtLabel(scale,
"label_ max",
0,0,

DwtLatinlString ("100"),
NULL);

~ XtManageChildren(scale_marks, count);

CB XtManageChild(scale);

10-7

Using the Scale and the Scroll Bar Widgets
10.2 Creating a Scale Widget

0 In this statement, the example creates the scale widget using the
high-level routine SCALE. The example configures the scale widget by
passing attribute values as arguments to the routine. In the example,
the orientation of the scale widget is specified as horizontal. The scale
contained in the scale widget is specified with a minimum value of 0
and a maximum value of 100. The initial value of the scale is specified
as 50.

8 After creating the scale widget, the example creates the two label
widgets that will be the labeled tick marks on the scale. In this
statement, the example creates a label widget using the high-level
routine LABEL. The example specifies the text string that will appear
in the label: the text string "O". The scale widget positions its children
in the order they are managed. This label will appear at the extreme
left of the scale.

8 The example creates a second label widget as a child of the scale
widget. This label widget will contain the text string 11 100 11

• This label
will appear at the extreme right of the scale.

8 The example manages both children of the scale widget using the
intrinsic routine MANAGE CHILDREN.

8 The example then manages the scale widget itself using the intrinsic
routine MANAGE CHILD.

10.2.3 Associating Callbacks with a Scale Widget

10-8

When the value of the scale is changed, the scale widget uses the callback
mechanism to notify your application. The change can be due to a user
interaction, such as moving the slider, or because your application changed
the value using the SET VALUES intrinsic routine.

In addition, the scale widget also uses the callback mechanism to notify
your application of the intermediate values of the scale when the slider is
in motion.

When the scale widget performs a callback, it returns the new value in
its callback data along with other data. For complete information about
the data returned in a scale widget callback, see the VMS DECwindows
Toolkit Routines Reference Manual.

To associate a callback routine with a scale widget, pass a callback
routine list to one of the scale widget callback attributes. The scale
widget supports two callbacks, depending on the type of user interaction.
Table 10-4 lists the callback attributes and the conditions that trigger
them.

Using the Scale and the Scroll Bar Widgets
10.2 Creating a Scale Widget

Table 10-4 . Scale Widget Callbacks

Callback Attribute

drag_ callback

value_changed_callback

Description

A user has pressed MB1 on the slider and is moving the
slider across the scale.

The value of the scale has changed because a user has
moved the slider or clicked MB1 in the scale, or your
application changed the contents of the value attribute
using SET VALUES.

In Example 10-4, DECburger associates a callback routine with the
value_changed_callback attribute of the scale widget it uses in its
interface. DECburger does not use the drag_callback attribute.

Example 10-4 Associating a Callback Routine with a Scale Widget

object
burger_quantity scale {

} ;

arguments {
x = 25;
y = 85;
min value = 0;
max value = 10;
width = 70;
border width = O;
title ~ k quantity label text;
}; - - -

callbacks {

} ;

create= procedure create proc (k burger quantity);
value_changed = procedure-scale_proc (k_burger_quantity);

Example 10-5 shows the callback routine DECburger uses with the
scale widget. The callback routine assigns the value returned by the
scale widget in the scale callback data structure to an array of quantity
variables. This information is then used to complete the total order.

10-9

10.3

Using the Scale and the Scroll Bar Widgets
10.2 Creating a Scale Widget

Example 10-5 Scale Widget Callback Routine in the DECburger Application

static void scale_proc(w, tag, scale)
Widget w;
int *tag;
DwtScaleCallbackStruct *scale;

quantity_vector[k_burger_index] scale->value;

Overview of the Scroll Bar Widget
A scroll bar widget is a rectangular window containing an elongated
rectangular area, called the scroll region, that is sensitive to user
input using a mouse button. Overlaying the scroll region is the slider.
The position of the slider indicates the current value of the scroll bar
widget. (The top of the slider represents the current value in vertical
scroll bar widgets; the left side of the slider represents the current value
in horizontal scroll bar widgets.) The slider also provides, by its size, a
visual representation of the portion of the work area that is visible.

In addition, a scroll bar includes two arrow-shaped, push buttons widgets,
called stepping arrows, that appear at both ends of the scroll region. The
stepping arrows allow the user to move in increments through the work
area. You can determine the amount of increment that one MBl click on
a stepping arrow causes. For example, for a spreadsheet application, you
might choose a row or co,lumn as the amount of increment or decrement.

The scroll bar widget includes additional input capabilities that allow
users to request that a position in the work area be moved to the top or
bottom of the visible portion of the work area.

Figure 10-3 shows a scroll bar widget and its components.

Figure 10-3 Scroll Bar Widget

Current Value-,,

J~~~'===='====~=====:h:::!::;;=~l~~lll_
Stepping Slider=>' Scroll Region :Ji Stepping
Arrow Arrow
(Decrement) (Increment)

ZK-0403A-GE

10-10

10.4

Using the Scale and the Scroll Bar Widgets
10.4 Creating . a Scroll Bar Widget

Creating a Scroll Bar Widget
The primary task involved in creating a scroll bar widget is determining
the range of values it represents, determining the size of the slider,
and creating the callback routines that will perform the actual scrolling
operations.

The scroll bar widget is specially designed to allow users to indicate what
portion of the work area they want to be visible. Note, however, that the
scroll bar widget only returns data to your application; it does not perform
the scrolling of the work area. Your application must interpret the data
returned by the scroll bar widget and adjust the visible portion of the
work area to satisfy the user request. Your application must also update
the size of the slider when you change the visible portion of the work
area. (The scroll window widget updates the size and position of the slider
automatically. For more information, see Section 4.4.)

To create a scroll bar widget, perform the following steps:

1 Create the scroll bar widget.

Use any of the widget creation mechanisms listed in Table 10-5. The
choice of mechanism depends on the attributes of the scroll bar widget
you need to access.

Table 10-5 Scroll Bar Widget Creation Mechanisms

High-level routine

Low-level routine

UIL object type

Use the SCROLL BAR routine to create a scroll bar widget.

Use the SCROLL BAR CREATE routine to create a scroll bar
widget.

Use the scroll_bar object type to define a scroll widget in a
UIL module. At run time, the ORM routine FETCH WIDGET
creates the widget according to this definition.

2 Manage the scroll bar widget.

Use the intrinsic routine MANAGE CHILD to manage the scroll bar
widget.

After completing these steps, if the parent of the scroll bar widget has
been realized, the scroll bar widget will appear on the display.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a subset
of these attributes at widget creation time. (To access widget attributes
not available using the high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) The VMS DECwindows Toolkit
Routines Reference Manual lists the complete set of widget attributes.
Table 10-6 lists the attributes you can set if you use the high-level routine
SCROLL BAR to create a scroll bar widget. Pass the values of these
attributes as arguments to the routine.

10-11

10.4.1

Using the Scale and the Scroll Bar Widgets
10.4 Creating a Scroll Bar Widget

Table 10-6 Attributes Accessible Using the High-Level Routine SCROLL
BAR

x

y

width

height

inc

page_inc

shown

value

min_ value

max_ value

orientation

callback

help_callback

unit_inc_callback

unit_dec_callback

page_inc_callback

page_dec_callback

to_top_callback

to_bottom_callback

drag_ callback

The x-coordinate of the upper left corner of the widget

They-coordinate of the upper left corner of the widget

The horizontal dimension of the widget

The vertical dimension of the widget

The amount of unit increment in application-defined units

The amount of page increment in application-defined units

The size of the slider proportional to the amount of the work
area visible

The current value of the scroll bar indicated by the top or the
.left of the slider

The minimum value represented by the scroll bar

The maximum value represented by the scroll bar

The orientation of the scroll bar (horizontal or vertical)

The address of a callback routine list

The address of a callback routine list

The address of a callback routine list

T:1e address of a callback routine list

The address of a callback routine list

The address of a callback routine list

The address of a callback routine list

The address of a callback routine list

The address of a callback routine list

Determining the Range of a Scroll Bar Widget

10-12

You determine the range of values represented by the scroll bar widget.
Specify the minimum value in the min_ value attribute. This value will
be the top of a vertical scroll bar widget and the left of a horizontal scroll
bar widget. Specify the maximum value in the max_ value attribute. This
value is represented by the bottom or the right end of the scroll bar widget.
Specify these values as integers. Your application determines what units
the integers represent.

The value attribute .always contains the current value of the scroll bar
widget. In a scroll bar widget with a vertical orientation, the top edge
of the slider represents the current value. In a scroll bar widget with
horizontal orientation, the left edge of the slider represents the current
value. You can specify the current value of a scroll bar widget when you
create it by assigning a value to the value attribute. To change the value
of this attribute after the widget has been created, use the SET VALUES
intrinsic routine.

Using the Scale and the Scroll Bar Widgets
10.4 Creating a Scroll Bar Widget

Example 10-6 sets the minimum value of the scroll bar widget to 0 in the
min_ value attribute and the maximum value to 1000 in the max_ value
attribute.

Example 10-6 Specifying the Range of Values in a Scroll Bar Widget

object
sample_scroll : scroll_bar

} ;

arguments {
min_value = 0;
max_value = 1000;
shown = 200;
} ;

callbacks {
value_changed =procedure scroll_proc();

} ;

10.4.2 Specifying the Size of the Slider in a Scroll Bar Widget
The size of the slider overlaying the scroll region in a scroll bar widget
should represent the portion of the work area currently visible in the
scrolling window. Use the shown attribute to specify the size of the
slider. Specify the size as an integer. (If you use the scroll window widget,
described in Section 4.4, the scroll window widget will update the size of
the slider for you.) Your application is responsible for keeping the size of
the slider current.

For example, if the work area widget is 1000 pixels in height, and the
window onto the work area widget is 200 pixels in height, only one-fifth of
the work area is visible. Calculate the size of the slider to represent this
proportion. After initial setup, the size of the slider will not change unless
the widget implementing the window onto the work area is resized or the
size of the work area changes.

10.4.3 Defining the Size of Increment and Decrement
In addition to the slider, the scroll bar widget supports the following three
mechanisms through which users can indicate movement of the window on
the work area:

• Unit increment or decrement

• Page increment or decrement

• Movement of a position in the work area to the top or bottom of the
window

The two stepping arrows included in the scroll bar widget implement
the unit stepping functions. Each time a user clicks MBl on a stepping
arrow, your application should adjust the visible portion of the work
area accordingly. You define the unit of increment or decrement within
your application. By default, each click of a stepping area translates into
increment or decrement of 10 units, but you can specify another value
using the inc attribute.

10-13

Using the Scale and the Scroll Bar Widgets
10.4 Creating a Scroll Bar Widget

For example, you could specify in your application that a unit is one pixel.
If you accept the default value of the inc attribute, you would have to
move the work area 10 pixels for each click on an increment or decrement
stepping arrow.

The page increment and decrement functions are activated when a user
clicks MB 1 in the scroll region between the slider and the stepping arrows.
The area between the top or left of the slider and the top or left stepping
arrow invokes the page decrement function. The area between the bottom
or right of the slider and the bottom or right stepping arrow invokes the
page increment function. As with the unit stepping functions, you define
the size of the page increment or decrement within your application and
specify the number of pages incremented or decremented in the page_inc
attribute.

The unit and page increment and decrement functions automatically move
the slider to represent the new position in the work area.

Users can indicate that they want to move a position in the work area to
the top of the window by clicking MB2 anywhere in the scroll bar widget.
They can indicate they want to move a position in the work area to the
bottom of the window by clicking MB3 anywhere in the scroll bar widget.
Note that these functions do not automatically set the slider position.

10.4.4 Modifying the Action of the Stepping Arrows
You can use the two translations attributes to modify the events that the
increment and decrement stepping arrows respond to. Use translationsl
to change the decrement stepping arrows. Use the translations2
attribute to change the increment stepping arrow. Specify the new action
in a translation table, parse it, and pass the parsed translation table as
the value of the translations argument. See Section 5. 7 for more details
about defining translations.

10.4.5 Customizing the Appearance of the Scroll Bar Widget

10-14

You can specify the size of a scroll bar widget using the width and
height attributes. However, you should let the· parent of the scroll bar
widget determine its size. By default, the vertical scroll bar widget takes
the height of its parent (minus 17 pixels) and a width of 17 pixels. A
horizontal scroll bar widget takes the width of its parent (minus 17 pixels)
and a height of 17 pixels.

As with the scale widget, you specify the orientation of the scroll bar in the
orientation attribute. See Section 10.2.2.2 for more information about
this topic. By default, the vertical scroll widget bar appears on the right
side of its parent; the horizontal scroll bar widget appears on the bottom
of its parent.

Using the Scale and the Scroll Bar Widgets
10.4 Creating a Scroll Bar Widget

10.4.6 Associating Callbacks with a Scroll Bar Widget
When the value of the scroll bar widget is changed, the widget uses the
callback mechanism to notify your application. The change can be due
to user interaction, such as moving the slider or activating a stepping
arrow. You can also change the value of the scroll bar widget using the
SET VALUES intrinsic routine.

When the scroll bar widget performs a callback, it returns data to your
application in a callback data structure. In this data structure, the scroll
bar widget returns the new value, along with other data. For complete
information about the data returned in a scroll bar widget callback, see
the VMS DECwindows Toolkit Routines Reference Manual.

To associate a callback routine with a scroll bar widget, pass a callback
routine list to one of the scroll bar widget callback attributes. The scroll
bar widget supports eight callbacks associated with the many types of
user interaction it supports. In addition, the scroll bar widget supports
the help callback. The XU! Style Guide describes the types of user
interaction supported by the scroll bar widget. Table 10-7 summarizes
these interactions and lists the scroll bar widget attributes you use to
associate callback routines with them.

Table 10-7 Scroll Widget Callbacks

Callback Attribute

unit_inc_callback

unit_dec_callback

page_inc_callback

page_dec_callback

to_top_callback

to_ bottom_callback

drag_ callback

value_changed_callback

Description

A user has clicked MB1 in the top stepping arrow, for
vertical scroll bar widgets, or the left stepping arrow,
for horizontal scroll bar widgets.

A user has clicked MB1 in the bottom stepping arrow,
for vertical scroll bar widgets, or the right stepping
arrow, for horizontal scroll bar widgets.

A user has clicked MB1 in the scroll region above the
slider.

A user has clicked MB1 in the scroll region below the
slider.

A user has clicked MB2 somewhere in the scroll
bar widget, indicating the point in the work area that
should be moved to the top of the window.

A user has clicked MB3 somewhere in the scroll
bar widget, indicating the point in the work area that
should be moved to the bottom of the window.

A user has pressed MB1 on the slider and is moving
the slider across the scroll bar widget.

The value of the scroll bar widget has changed
because of a user interaction or because your
application changed the contents of the value attribute
using SET VALUES.

10-15

11 Using the Color Mixing Widget

This chapter provides the following:

• An overview of the color mixing widget in the XUI Toolkit

• A description of the support routines for the color mixing widget

In addition, the chapter describes how to modify the color.mixing widget
to support various color models.

11.1 Overview of the Color Mixing Widget

11.1.1 Color Models

The color mixing widget enables users of your application to define colors
according to either the HLS (Hue, Lightness, Saturation) color model or
the RGB (Red, Green, Blue) color model. In addition, the color mixing
widget provides users with immediate feedback, displaying each new
color as it is defined. When the user activates the color mixing widget
by pressing one of its push buttons, the color mixing. widget performs
a callback to your application, returning the RGB values of the newly
defined color (as wen· as the initial color values).

Note that the color mixing widget returns only RGB values-your
application is responsible for obtaining the color resources· necessary to
display the color. The color mixing widget uses RGB values to specify
colors, regardless of the color model being supported, because the X
Window System, Version 11, uses the RGB color model to specify colors. In
the X Window System, Version 11, you specify the intensity of red, green,
or blue as a value between 0 and 65,535.

By default, the color mixing widget supports the HLS and RGB color
models (described in Section 11.1.1). However, you can customize the color
mixing widget to support other color models (see Section 11.3).

Use the color mixing widget to provide users of your application with the
ability to customize the colors used in your application. For example, if
your application includes graphics, such as a pie chart; allow users to
define the colors used in the pie chart by including the color mixi:p.g widget
as an item in a customization menu.

Color models are abstractions that enable unambiguous color specification.
The color mixing widget supports the HLS and RGB color models.

In the HLS color model, a color is specified by three characteristics: hue,
lightness, and saturation. Hue is color. Lightness describes the intensity ·
of the color, that is, the amount of the color. Saturation describes the
purity of the color or how much the color is diluted by white,

11-1

Using the Color Mixing Widget
11.1 Overview of the Color Mixing Widget

HLS expresses hue as a continuous spectrum of values arranged in a
circular pattern. Red appears at 0 degrees (and again at 360 degrees),
magenta is at 60 degrees, blue is at 120 degrees, cyan is at .180 degrees,
green is at 240 degrees, and yellow is at 300 degrees. HLS expresses the
lightness or intensity of a color as a percentage between 0 and 100 percent.
One hundred percent lightness creates white light; zero percent lightness
creates black. One oddity of the HLS color model is that full intensity
colors are specified at 50 percent lightness. HLS expresses the saturation
or purity of a color also as a percentage between 0 and 100 percent. One
hundred percent saturation is a pure color. A zero-saturated color is a
shade of gray, determined by the value of lightness.

In the RGB color model, a color is specified as a mixture of different
intensities of red, green, and blue. In the X Window System, Version 11,
you specify the intensity of red, green, or blue as a value between 0 and
65,535. Zero is the lowest intensity. Black is defined as a zero-intensity
value for all three colors; white is 100 percent intensity for all three colors.

The color mixing widgets shown in Figure 11-1 and Figure 11-2 (in
Section 11.1.2) illustrate how the color "sky blue" is specified in each color
model. (The X Window System, Version 11, specifies a number of "named"
colors, such as sky blue, by their RGB values. For a complete list of the
colors named by the X Window System, see the VMS DECwindows Xlib
Programming Volume.) In the HLS color model, sky blue is specified as
199 on the Hue scale, 49 percent lightness, and 60 percent saturation.
In the RGB color model, sky blue is specified as a mixture of red at
12,800 intensity, green at 39,168 intensity, and blue at 52,224 intensity.
Figure 11-2 illustrates how the scales in the color mixer subwidget express
these Xll RGB values as percentages.

11.1.2 Components of the Color Mixing Widget

11-2

The color mixing widget is a pop-up dialog box that is preconfigured
to contain the child widgets, called subwidgets, it needs to implement
its functions. (When an XUI Toolkit widget contains other widgets, the
widgets it contains are called subwidgets.) The color mixing widget
contains the following subwidgets:

• Color display subwidget-displays the original color and the new color

• Color model option menu subwidget-implements choice of color model

• Color mixer subwidget-provides graphic tools with which users can
define new colors

• Push button subwidgets-activate color mixing widget functions

• Label subwidgets-provide descriptive information

• Work area subwidget-supplies additional functions defined by
application (optional)

Using the Color Mixing Widget
11.1 Overview of the Color Mixing Widget

Figure 11-1 shows these components in a color mixing widget with the
HLS color model selected.

Figure 11-1 Components of the Color Mixing Widget (HLS Color Model)

Color Mixing [PJ II
__ _..., ______,.Main Label

...,___ ______ _.Display Label

Label
Subwidgets

Color Mixing Widget

. .----+1--Color Display Subwidget

Color Model: ~--------t----Color Model Option Subwidget

--...... --------Mixer Label

199

Hue:.__! ____ [11=~=--------

49

Lightness:! ____ ...;;ffi=--------
Black White

Color Mixer Subwidget

60

Saturation: 1 -------=11].,..__ ___ ___.
Gray Full

~ I Apply I I Reset I I Cancel I
'------- ______) y

Push Button Subwidgets

ZK-1888A-GE

Figure 11-2 shows these components in a color mixing widget with
the RGB color model selected. The following sections describe these
components.

11-3

Using the Color IVlixing Widget
11,, 1 Overview of the Color Mixing Widget

Figure 11-2 Components of the Color Mixing Widget (RGB Color Model)

Label
Subwidgets

Color Mixing Widget

.,.._--+.,_ Color Display Subwidget

Color Model: 1. RGB 1..---....... -Color Model Option Subwidget

.___......,. _____ Mixer Label

11-4

Percentage Value
19

111 I I I12aoo
Red

59

ffi I I39168 Color Mixer Subwidget

Green
79

111 I IIs2224
Blue

~ I Apply I I Reset I I Cancel . I

'-----~~--v-· ~~~~-;
Push Button Subwidgets

ZK-1277A-GI;

11.1.2.1 Color Display Subwidget
The default color display subwidget is a dialog box widget (work area
style) that contains two window widgets: one to display the original color
and one to display the new color. The color displayec;l in the new-color
window widget changes to represent the new color as it is defined. When
you create the color mixing widget, you can specify. the initial values
of both the original color and the new color. If you do not specify an
initial value for the new color, the color mixing widget sets it to :match

Using the Color Mixing Widget
11.1 Overview of the Color Mixing Widget

the .original color. You can also specify the background color of the color
display.subwidget (which is gray by default).

The color mixing widget allocates three color cells to represent the new
color, the original color, and .the background· color. If the widget cannot
allocate three color cells, it uses the cells it can allocate to represent the
colors in the following order:

1 New color

2 Original color

3 Background color

When displayed on a gray scale device, the color display subwidget
represents the color values as shades of gray. However, the color mixing
widget does not display· gray scale values on a color display device. On
static gray and monochrome devices, the color display subwidget is not
visible in the color mixing widget.

You can replace the default color display subwidget with a widget of your
own design. For information about this topic, see Section 11.3.1.

11.1.2.2 Color Model Option Menu Subwidget
The color model option menu subwidget allows users of your application
to choose the color model supported by the color mixer subwidget. (See
Section 11.1.2.3 for information about the color mixer subwidget.) The two
default color models appear as items in the option menu. Users can switch
between color models at any time. When the color model is changed, the
color mixing widget preserves the current color definition, translating
the values that define the color in the current color model into values
appropriate to the new color model.

The color model option menu subwidget appears in the color mixing widget
only when the default color mixer subwidget is used.

11.1.2.3 Color Mixer Subwidget
The color mixer subwidget provides users with the graphic tools with
which to define colors. When a user changes a value in the color mixer
subwidget, the color· mixing widget immediately updates the color
displayed in the new-color window of the color display subwidget.

The default color mixer subwidget can support either the HLS or the
RGB color models. You can specify which color model the color mixer
subwidget supports initially by assigning a value to the color_model
attribute. If you do not specify a color model, by default the color mixer
subwidget initially supports the HLS color model. Use the constants listed
in Table 11-1 to specify the color model in the color_model attribute.

Table 11-1 Color Model Constants

Color Model

HLS

RGB

Vax Binding Constant

DWT$C_COLOR_MODEL_HLS

DWT$C_COLOR_MODEL_RGB

C Binding Constant

DwtColorModelHLS

DwtColorModelRGB

11-5

Using the·Color Mixing Widget
11.1 Overview of the Color Mixing Widget

11-6

To support the HLS color model, the· color mixer subwidget contains three
scales that represent the ranges of hue, lightness, and saturation. The hue
scale presents color values as a range between 0 and 360. The lightness
and saturation scales present their values as a range of percentages
between 0 and 100.

To support the RGB color model, the color mixer subwidget contains three
scales that represent the ranges of intensity of red, green, and blue. Each
scale presents these color values as a percentage between 0 and 100. In
addition, when supporting the RGB color model, the color mixer subwidget
also contains text widgets in which users of your application can enter
RGB values directly as text. The text widgets and the scales are linked: a
change in one effects a corresponding change in the other.

You can replace the default color mixer subwidget with a widget of your
own design. For information about this topic, see Section 11.3.2.

11.1.2.4 Push Button Subwidgets
By default, the color mixing widget contains four push button subwidgets
labeled OK, Apply, Reset, and Cancel. When activated, the OK, Apply, and
Cancel push buttons cause the color mixing widget to perform a callback
to your application. (The Reset push button does not trigger a callback to
your application because it has a built-in function that is internal to the
color mixing widget. When activated, the Reset button changes the values
in the color mixer subwidget and the color displayed in the new-color
window of the color display subwidget back to their initial values.)

You implement the functions associated with the color mixing widget
push buttons. The XUI Style Guide contains specific recommendations
about what functions should be associated with push buttons containing
labels such as OK, Apply, and Cancel. The following list restates these
recommendations as they might be implemented with the color mixing
widget:

• The OK push button makes the newly defined color appear in your
application and then remove the color mixing widget from the display.

• The Apply push button makes the newly defined color appear in
your application while the color mixing widget remains active on the
display.

• The Cancel push button removes the color mixing widget from the
display without implementing any of the changes a user might have
made.

You implement as callback routines the functions you want associated
with these push buttons. You associate these callback routines with the
callback attributes of the color mixing widget. For example, to associate a
function with the OK push button, use the activate_callback attribute.
(For more information about associating callback routines with the color
mixing widget, see Section 11.4.)

Note that you can change the text displayed in the push button subwidgets
(see Section 11.2.2.3 for more information). You can also remove any of the
push button subwidgets by specifying a null value for the text label.

11.2

11.1.2.5 Label Subwidgets

Using the Color Mixing Widget
11.1 Overview of ·the Color Mixing Widget

The color mixing widget contains more than a dozen labels that you can
use to provide descriptive text for the components of the color mixing
widget. Section 11.2.2.3 describes how to specify text for these labels.

11.1.2.6 Work Area Subwidget
The color mixing widget· can contain a work area subwidget, if your
application supplies one. The color mixing widget manages this subwidget
and positions it below the color mixer subwidget and above the. push
button subwidgets.

The work area subwidget can be any other XUI Toolkit widget, such as a
label, push button, or dialog box widget. If you use a dialog box widget,
use only the work area style of this widget.

For example, your application can use this additional subwidget to include
additional push button widgets to extend the functions of the color mixing
widget.

Creating a Color Mixing Widget
To create a color mixing widget, perform the following steps:

1 Create the color mixing widget using any of the widget creation
mechanisms listed in Table ll '"-2.

Note that there is no high-level mechanism for creating a color mixing
widget.

Table 11-2 Mechanisms for Creating the Color Mixing Widget

Mechanism

Low-level routine

UIL object type

Routine Name or Object Type

Use the COLOR MIX CREATE routine to create a color
mixing widget.

Use the UIL object type color_mix to define a color mixing
widget in a UIL module. At run time, the ORM routine FETCH
WIDGET creates the widget according to this definition.

2 Manage the color mixing widget using the intrinsic routine MANAGE
CHILD.

After completing these steps, if the parent of the color mixing widget has
been realized, the color mixing widget appears on the display.

As an illustration, Example 11-1 creates the color mixing widget shown
in Figure 11-1. The example defines a color mixing widget that uses the
default color display subwidget and the default color mixer subwidget.
Because no color model is specified, the color mixing widget created uses
the HLS color model, by default. Note that, in the example, the initial
values for the original color are specified as RGB values even though the
color model supported is HLS. You always use RGB values to specify colors
in the color mixing widget and the color mixing widget· always returns
RGB values, regardless of the color model supported.

11-1

11.2.1

Using the Color Mixing Widget
11.2 Creating a· Color. Mixing Widget

Example 11-1 Creating a Color Mixing Widget

object
0 color_input : color_mix

arguments {
8 main label sample~colormix_text;

default_color_display_text;
default_color_mixer_text;

•
•

display label
mixer label
orig_red_value 12800;
orig green value 39168;
orig=blue_value = 52224;

} ;

callbacks {

} ;

ok =procedure ok_proc();
apply =procedure apply_proc();
cancel= procedure cancel_proc();

} ;

0 The object declaration defines a color mixing widget named color_
input. The UIL keyword for the color mixing widget is color _mix.

8 The argument list section of the UIL object declaration assigns initial
values to attributes of the color mixing widget. The first three
statements define the text contents of the label subwidgets. In this
UIL module, all text strings are defined as constants.

8 The arguments list section also contains initial values for the original
color window in the color display subwidget. By default, the new color
will appear as the same color.

8 The callbacks list section of the UIL object declaration assigns values
to each of the primary callbacks performed by the color mixing widget.

Setting and Retrieving New Color Values

11-8

To set or retrieve the RGB values of the new color displayed in the color
display subwidget, you can use the SET VALUES and GET VALUES
intrinsic routines. However, the XUI Toolkit provides support routines
that allow you to perform these tasks much faster.

To set the values of the new _red_ value, new _green_ value, and new_
blue_ value attributes, use the COLOR MIX SET NEW COLOR support
routine. You specify the values of these attributes as arguments to the
routine. The default color display subwidget updates the new-color window
to represent the newly defined color.

To retrieve the value of the new-color attributes, use the COLOR MIX GET
NEW COLOR support routine. This support routine writes the current
values of the new _red_ value, new _green_ value, and new _blue_ value
attributes into variables that you pass as arguments to the routine.

Using the Color Mixing Widget
11.2 Creating a Color Mixing Widget

Table 11-3 summarizes the support routines for the color mixing widget.

Table 11-3 Support Routines for the Color Mixing Widget

Routine Description

COLOR MIX GET NEW COLOR Retrieves the current values of the new-color
attributes.

COLOR MIX SET NEW COLOR Assigns values to the new-color attributes.

11.2.2 Customizing the Color Mixing Widget
You can customize the following aspects of the appearance and function of
the color mixing widget:

• Size

• Margins

• Labels

• Background color

• Work area subwidget

11.2.2.1 Specifying the Size
The color mixing widget sizes itself to fit the subwidgets that it contains.
For example, if you specify long compound strings as values for the label
subwidgets, the color mixing widget increases its size to accommodate the
labels. · (You do not need to set the common widget attributes width and
height to 0 [zero] to get the default size.)

In the default color display subwidget, you can specify the size of the
windows in which the original and new colors are displayed. By default,
each of these windows is 80 pixels square. Use the displa.y_col_win_
width attribute and the display _col_win_height attribute to specify the
dimensions of these windows. Specify these dimensions in pixels. These
attributes affect only the default color display subwidget.

11.2.2.2 Specifying Margins
You can specify the amount of space surrounding the subwidgets that the .
color mixing widget contains. Use the common widget attribute margin_
width to specify the amount of space between the left and right edges of
the subwidgets (the default is 10 pixels). Use the common widget attribute
margin_height to specify the amount of space between the top and
bottom edges of the subwidgets (the default is 10 pixels). Specify these
margins .. in pixels.

In addition, you can specify the amount of space surrounding the two
window widgets in the default display subwidget. Use the display_ win ...
margin attribute to specify the size for all the margins in the display
subwidget (the default is 20 pixels). The display_win_margin attribute
affects only the default color display subwidget.

11•9

Using the Color Mixing Widget
11.2 Creating a Color Mixing Widget

11-10

11.2.2.3 Labeling the Color Mixing Widget
You can specify the text in each of the labels that the color mixing widget
contains by assigning values to color mixing widget attributes. You must
specify these labels as compound strings.

Table 11-4 lists the color mixing widget label attributes, describing the
location of the label in the color mixing widget and the default text value
of the label.

Table 11-4 Color Mixing Widget Label Attributes

Label Attribute Function Default Text

Common Labels

main_label Specifies the text that appears at the top of No default
the color mixing widget, centered between
the left and right borders

display _label Specifies the text that appears above the No default
color display subwidget, centered between
the left and right borders

mixer_label Specifies the text that appears above the No default
color mixer subwidget, centered between
the left and right borders

option_label Specifies the text that appears inside the "Color Model: "
color model option menu subwidget

hls_label Specifies the text that appears as the top "HLS"
item in the color model option menu

rgb_label Specifies the text that appears as the "RGB"
bottom item in the color model option
menu

ok_label Specifies the text that appears inside the "OK"
OK push button

apply_label Specifies the text that appears inside the "Apply"
Apply push button

reseUabel Specifies the text that appears inside the "Reset"
Reset push button

cancel_label Specifies the text that appears inside the "Cancel"
Cancel push button

HLS Color Model Labels

hue_label

saUabel

light_label

Specifies the text that appears to the left of "Hue"
the top scale subwidget

Specifies the text that appears to the left of "Saturation"
the middle scale subwidget

Specifies the text that appears to the left of "Lightness"
the bottom scale subwidget

(continued on next page)

Using the Color Mixing Widget
11.2 Creating a Color Mixing Widget

Table 11-4 (Cont.) Color Mixing Widget Label Attributes

Label Attribute Function Default Text

HLS Color Model Labels

black_label Specifies the text that appears below the "Black"
left end of the middle scale subwidget

white_label Specifies the text that appears below the "White"
right end of the middle scale subwidget

gray_label Specifies the text that appears below the "Gray"
left of the bottom scale subwidget

full_label Specifies the text that appears below the "Full"
right end of the bottom scale subwidget

RGB Color Model Labels

slider_label Specifies the text that appears above the "Percentage"
left end of the top scale subwidget

red_label Specifies the text that appears below the "Red"
left end of the top scale subwidget

green_label Specifies the text that appears below the "Green"
left end of the middle scale subwidget

blue_label Specifies the text that appears below the "Blue"
left end of the bottom scale subwidget

value_label Specifies the text that appears above the "Value"
column of text subwidgets

If you do not specify values for the main_label, display _label, or mixer_
label attributes, the color mixing widget does not include these label
subwidgets. If you specify a null value for the ok_label, apply _label,
reset_label, or cancel_label attributes, the color mixing widget deletes
the push button subwidget.

Note that the attributes that specify the text labels in the color mixer
subwidget, both the HLS and RGB versions, work only with the default
color mixer subwidget.

Figure 11-3 shows the labels in the color mixing widget using the HLS
color model.

11-11

Using the Color Mixing Widget
11.2 Creating a Color Mixing Widget

Figure 11-3 Labels in the Color Mixing Widget (HLS Color Model)

option_label

huejabel

lighUabel

blaCk_label

saUabel

gray_label

11-12

Color Mixing [!i.J II
Main Label..-------+-1--- main_label

Display Label display_label

Color Model: ~ hls_label

Mixer Label mixerjabel

273
Hue:f 111

46
Lightness: f ffi

Black White whitejabel

47

Saturation: I ffi
Gray Full full_label

OK Apply Reset I Cancel I canceljabel

okJabel reset_label
apply_label

ZK-1889A-G E

Figure 11-4 show the labels in the color mixing widget using the RGB
color model.

Using the Color Mixing Widget
11.2 Creating a Color Mixing Widget

Figure 11-4 Labels in the Color Mixing Widget (RGB Color Model)

Color Mixing [!I] II
Main Label------++-- main_label

.-----+ti- display_label

option_label Color Model: I RGB I rgb_label

Mixer Label mixer_label

slider_label Value valuejabel

48

ffi 111a2000

red_label

24

ffi I II 16000

greenjabel

68

ffi II45000

bluejabel

canceljabel

okjabel apply_label reset_label

ZK-1276A-GE

11.2.2.4 Defining the Background Color of the Color Display Subwidget
Use the back_red_ value, back_green_ value, and back_blue_ value
attributes to define the color of the background of the display subwidget.
These attributes work only with the default color display subwidget.

11.2.2.5 Adding a Work Area to the Color Mixing Widget
To specify that the color mixing widget contain a work area subwidget,
create the widget that you want to be the subwidget and assign the widget
identifier as the value of the work_ window attribute.

You do not have to manage the work area subwidget.

11-13

11.3

11.3.1

Using the Color Mixing Widget
11.3 Supporting Other Color Models

Supporting Other Color Models
The color mixing widget has built-in support for the HLS and the RGB
color models. You can extend the color mixing widget to support other
color models by replacing the default color mixer subwidget and the color
display subwidget with widgets of your own design. Section 11.3.1 and
Section 11.3.2 describe how to replace these subwidgets.

Whatever color system you choose to support, remember that the X
Window System, Version 11, defines colors by their RGB values. Your
custom subwidget must convert whatever values it accepts into RGB
values and provide these values to the color mixing widget, which returns
the values to the application as callback data. (For more information
about obtaining color resources as well as an example of converting color
values from another color model to RGB, see the color example program in
the VMS DECwindows Xlib Programming Volume.)

Replacing the Color Display Subwidget
To replace the default color display subwidget, specify the identifier of
the new color display subwidget as the value of the display_ window
attribute. You can switch back to the default color display subwidget at
any time by setting this attribute to null. If you do not specify a value
for this attribute, the color mixing widget uses the default color display
subwidget.

If you, replace the default color display subwidget, you must provide a
procedure to update the new-color window when a user changes the color
mixer widget. The color mixing widget calls this routine whenever a user
changes a value in the color mixer subwidget. Pass the address of this
routine as the value of the set_new _color_proc attribute.

11.3.2 Replacing the Color Mixer Subwidget

11.4

To replace the default color mixer subwidget with one of your own design,
assign the widget identifier of the new subwidget as the value of the
mixer_window attribute. To switch back to the default color mixer
subwidget, set this attribute to null. If you do not specify a value for this
attribute, the color mixing widget uses the default color mixer subwidget.

Associating Callbacks with a Color Mixing Widget

11-14

When a user presses the OK, Apply, or Cancel push button, the color
mixing widget performs a callback to your application. (Activating the
Reset button does not trigger a callback.) When the color mixing widget
performs a callback, it returns data to your application, including the RGB
values that define the original color (specified in the orig_red_ value,
orig_green_value, and orig_blue_value attributes) and the RGB values
that define the new color (specified in the new _red_ value, new _green_
value, and new _blue_ value attributes). For complete information about
the data returned in the callback by the color mixing widget, see the VMS
DECwindows Toolkit Routines Reference Manual.

Using the Color Mixing Widget
11.4 Associating Callbacks with a Color Mixing Widget

To associate a callback routine with a color mixing widget callback, pass a
callback routine list to one of the color mixing widget callback attributes.
Table 11""'"'."5 lists the callback attributes and describes the conditions that
trigger these callbacks.

Table 11-5 Color Mixing Widget Callbacks

Callback Attribute

activate_callback

apply_callback

cancel_ callback

help_callback

Conditions for Callback

The user has clicked the OK push button widget in the color
mixing widget.

The user has clicked the Apply push button widget in the
color mixing widget.

The user has clicked the Cancel push button widget in the
color mixing widget.

A user has pressed the Help key while clicking MB1 in the
color mixing widget.

11-15

12 Using Help

VMS DECwindows applications can use the XUI Toolkit help widget
to display general and context-sensitive user assistance information in
response· to a user request. This chapter describes how to include the help
widget in an application. The following topics are described:

• An overview of the XUI Toolkit help widget

• Help library information

• Creating the help widget

• Using the help widget

The XUI Style Guide describes the recommended appearance and behavior
of the help widget.

12.1 Overview of the Help Widget
The XUI Toolkit help widget is a modeless widget that allows you to
display appropriate, context-sensitive help text in response to a user query.

The help widget can be viewed as an independent application that your
application calls to provide help functions. Using the help widget, you
can create and manage one or more help windows and determine the first
topic to be displayed to the user. The modeless behavior of the help widget
permits an application to support one or more concurrent help widgets.

Figure 12-1 shows a sample help widget.

12-1

Using Help
12.1 Overview of the Help Widget

12-2

Figure 12-1 Sample XUI Toolkit Help Widget

HelponAKC
File Edit View Search Using Help

Overview of AKC

AKC is a new kind of software for the canine
connoisseur interested in identifying, selecting, or
breeding a pedigree dog.

You will find every kind of dog from Afghan to
Weimaraner, all groups, all breeds. There are
descriptions of the strengths and weaknesses of each
kind of dog, potential health problems to be aware of,
personality traits, and official appearance standards.

If you are looking for a canine corrpanion well-suited
to your lifestyle and disposition, AKC also has a
personality profile test that will reveal your needs,
likes, and dislikes. When you have corrpleted the test,
AKC will suggest a number of breeds that may be a
good match.

For infonnation about using Help, choose Overview from
the Using Help menu above.

Additional topics

Getting Started

Identifying a Breed

Finding a Breeder or Veterinarian

Choosing the Right Dog

ExitingAKC

I GoBack I I Exit I

-Q

ZK-0241 A-GE

Your application is responsible for creating a Help pull-down menu widget
with push button widgets for your chosen help topics. The labels for the
push button widgets should indicate the types of help available. You may
want to provide the following help topics:

• The Overview topic, to display overview or context-sensitive help

• The About topic, to display information about the application, such as
its formal name and version number

• The Glossary topic, to display an application-specific glossary

The XUI Style Guide recommends that applications include Overview
and About topics in the Help pull-down menu widget. You can also add
application-specific help topics.

Using Help
12.1 Overview of the Help Widget

There are four possible ways to invoke help:

• The user clicks on the Help option in the menu bar. Your application
calls the help widget to create a help window.

• The user presses the Help key. Pressing the Help key is equivalent
to selecting the Help pull-down menu widget of the window that has
input focus.

• The user types a help topic command string in a command window
widget. Your application must include a command window widget to
support this mechanism.

• The user holds down the Help key and clicks on a widget in the user
interface. This combination of actions causes the widget to perform
a help callback to your application. This is called context-sensitive
help. You can use the callback routine to create a help widget (or
change an existing help widget) to display appropriate help text. See
Section 12.5 for more information.

12.1.1 Help Widget Terminology

12.2

This chapter uses the terms defined in Table 12-1 to describe the help
widget.

Table 12-1 Help Widget Terminology

Term

help widget

help window

help session

Help Library Information

Definition

The general name for all modules that comprise the widget.

The window that contains all of the help information. There
is one help window for each help widget. Help display is
synonymous with help window.

All the help interactions (requests, answers, and so on) that
occur while an application is running. It can be composed of
several help widgets.

When you create a help widget, you pass a help library specification to the
help widget creation routine. The help widget uses this specification to
locate and read the help files. The help libraries for VMS DECwindows
applications are based on a conventional help library.

This section describes how to use help libraries with the help widget. For
more information about the VMS Librarian Utility (LIBRARIAN), see the
VMS Librarian Utility Manual.

Use the library _type and library _spec attributes to specify a
library type and specification for the help widget. Predefined values
for library_type are DWT$C_TEXT_LIBRARY or DwtTextLibrary;
library _spec specifies a help library file specification. The help widget
uses these attributes to identify the location and type of help topic

12-3

Using Help
12.2 Help Library Information

database. Once you have invoked the help widget, it is able to navigate
only within the selected help library.

A help library has a default file type of HLB and defaults the file type of
input files to HLP. The files that you insert into help libraries are text files
that you build using a program or a text editor. Each help input file can
contain one or more modules; each module contains a group of related keys
numbered key 1 to key 9. Each key represents a hierarchical level within
the module.

LIBRARIAN stores a key-1 name as its module name. The key-2 through
key-9 names identify subtopics that are related to the key-1 name. For the
purpose of making the HLP file easier to maintain, it is good practice to
associate top-level help topics with key-1 names. There is no requirement
to do so.

Your application can access a module from the key-1 name or from any
key in the module. For example, if you have help. push button widgets for
Overview, About, and Glossary top-level topics, you might maintain the
help library as one file called APPLICATION.HLP and create a VMS help
library called APPLICATION.HLB. APPLICATION.HLP would contain a
separate module, identified by a key-1 name, for each top-level topic. You
can also maintain the help library modules in multiple HLP files.

When a user asks for help on the Overview topic, your application could
determine from the push button widget help callback that the user wanted
Overview help. Your application could then create a help widget and,
through the first_topic or the overview _topic attribute, pass the help
widget the string that identifies the correct help topic. This string would
identify a key-1 name or another key in the module.

The help widget uses the key name hierarchy to find the help topic. For
example, if you want to directly access the help topic identified by a key-3
name, you must also specify the key-1 andkey-2 names that form a path
to the key-3 name.

The help widget looks in the specified library for the module defined by
the string and displays the text. If the string identifies a key-1 name,
any key-2 subentries in the Overview module automatically appear as
additional topics, which are hotspots.

If the user then asks for help on a key-2 subentry, the help widget displays
the key-2 text, and the key-3 subentries appear as additional topics, and
so on.

12.2.1 VMS Help Library Enhancements

12-4

The help widget provides several extensions to LIBRARIAN. The
extensions provide the help widget with more sophisticated search
capabilities. The extensions take the form of help widget commands
(special text lines) in conventional VMS help topics. These commands
have the following format:

=name operand(s)

Using Help
12.2 Help Library Information

The following syntax rules· apply to all commands:

•
•
•
•
•
•

Commands should be the first lines of text in a help topic .

The first character of a command line must be an equal sign (=) .
The command name must immediately follow the equal sign .

Command names are not case sensitive and cannot be abbreviated .

At least one space must precede the command operand .

The remainder of the line is the command operand .

The extensions to LIBRARIAN are described in Table 12-2.

Table 12-2 VMS Librarian Utility Extensions

Command Name

=TITLE

=KEYWORD

=NOSEARCH

=INCLUDE

Description

Permits a case-sensitive title to be associated with the help
topic. This title is displayed in situations where a topic is
identified. For example, Overview of the Help Widget.

If no title is provided, the help library topic key becomes the
topic title. The help widget Search menu allows users to
search by keyword and title.

Permits one or more case-insensitive keywords to be
associated with the help topic. If more than one keyword
is specified, the individual keywords must be separated by a
comma or at least one space. The help widget Search menu
allows users to search by keyword and title.

Disables search operations for title and keywords on a
specific topic.

Permits help topics to be shared across modules within a
single help library. The operand of the INCLUDE command
is a help topic key name. See Section 12.3.1 for more
information about help topic key names. The title of the
included topic is automatically added as an additional topic.

Example 12-1 shows the contents of a sample help file.

12-5

Using Help
12.2 Help Library Information

12-6

Example 12-1 Sample Help File

81 overview
ft=Title Overview of the Help Widget
0=Keyword overview
8=Include programming creating create_help_widget

A help widget is a modeless widget that allows you
to display appropriate, context-sensitive help text
in response to a user query. The help widget can
be viewed as an independent application that your
application calls to provide help functions.

The help widget creates and manages one or more
help windows and determines the first topic to be
displayed to the user.

02 functions 1
=Title Using the help widget
=Keyword overview functions

To use the help widget, you perform the following
steps:

1. Use the VMS Librarian Utility (LIBRARIAN) to
create a help library.

2. Create a Help menu bar item for your
application. The Help menu item should be
located at the right of the menu bar. If the
menu bar is wider than a line, the Help menu
item should be located at the bottom right.

0 The name of the key-1 module is overview. You pass the string
overview to the help widget. The help widget then searches the help
library for a module with this name and displays the text. A module is
terminated by either another key-1 name or by an end-of-file record.

8 The title that the help widget displays for the Overview topic is
Overview of the Help Widget.

0 The name of the keyword topic to search for with the help widget
Search function is overview.

8 The included topic key name from the programming module is
programming creating create_help_ widget. The title of the key
identified by the =INCLUDE tag is displayed as an additional topic,
which is a hotspot.

0 The name of the key-2 subentry in the Overview module is
functions_!. The functions_! subentry appears as an additional
topic.

12.3

Using Help
12.3 Modifying Help Widget Appearance

Modifying Help Widget Appearance
You can use the help widget attributes described in Table 12-3 to modify
the appearance of the help widget. Use one of the help widget creation
mechanisms to assign values to these attributes when you create the help
widget.

Table 12-3 Help Widget Appearance Attributes

Attribute

help_font

cols

rows

default_position

Description

Specifies the font of the text displayed in the help text widget. The
default is language dependent. The American English default uses
-*-TERMINAL-MEDIUM-R-NARROW-*-140-*-*-C-*-IS08859-1 for all display text. This
attribute is ignored if library_type is not DWT$C_TEXT_LIBRARY or DwtTextLibrary.

Specifies the width, in characters, of the help text displayed by the help widget. The default is
language dependent. The American English default is 55 characters. This attribute is ignored
if library_type is not DWT$C_TEXT_LIBRARY or DwtTextLibrary.

Specifies the height, in characters, of the help text displayed by the help widget. The American
English default is 20 lines. This attribute is ignored if library_type is not DWT$C_TEXT_
LIBRARY or DwtTextLibrary.

Specifies whether to use the default help window position. If default_position is true, any
x- and y-coordinate values you may have specified in the argument list are ignored. The
default position is adjacent to the parent of the help widget, which is the top-level window of
your application.

12.3.1 Help Widget Topic Information
You can use the help widget attributes described in Table 12-4 to specify
the topics of the help widget.

Table 12-4 Help Widget Topic Attributes

Attribute

first_ topic

overview_topic

glossary_topic

Description

Specifies the first help topic to be displayed.

If the first_topic attribute is not specified (set to null), the help widget displays an empty
window with a list of level 1 topics in the additional topic list box.

See Section 12.5 for information about using first_topic to specify context-sensitive help.

Specifies the Overview topic to be displayed. The Overview topic is displayed when you
select the Go To Overview menu item from the View menu.

As described in Section 12.2, your application uses the overview_topic attribute to pass
the help widget a string that identifies the key name of the Overview module. Overview is
generally a key-1 name.

Specifies the Glossary topic to be displayed. Your application uses the glossary_
topic attribute to pass the help widget a string that identifies the key name of the
Glossary module. Glossary is generally a key-1 name. Set glossary_topic to null if your
application does not support glossary help.

If you specify a help topic identified by a subkey name, you must also
specify the key names that form the path to the subkey name. The key
names must be separated by at least one space.

12-7

12.4

Using Help
12.3 Modifying Help Widget Appearance

For example, given the following module, if you wanted to display the
create_help_widget key-3 help text as the first topic in the help widget,
you would pass the compound string "programming creating create_help_
widget".

1 programming
2 creating
3 create_help_ widget

Using the Help Widget

12-8

This section describes general programming considerations for using the
help widget.

The most basic approach to using the help widget is to create it, manage it
to cause the help window to appear, and destroy it when the user is done.
However, any changes to· the help window, such as resizing, are lost when
the widget is destroyed.

If your application destroys a help widget and then re-creates it, your
application assumes the help widget creation overhead. However, a help
library is initialized when it is first opened by the help widget and is
cached in memory until the application closes down. Once a help widget
initializes a help libr&.ry on behalf of your application, the library is not
reinitialized unless your application is restarted.

The recommended approach is to create the help widget once and use the
same help widget each time the user requests help. You can do this by
specifying a new first topic in the first_ topic attribute (using the SET
VALUES routine) and managing the widget (using the MANAGE CHILD
routine) to cause the help window to appear.

To use the help widget, perform the following steps:

1 Use LIBRARIAN to create a help library. See Section 12.2 for more
information.

2 Create a Help menu bar item for your application. To conform to the
guidelines of the XU! Style Guide, use the help_menu_right attribute
of the menu bar widget to position the Help menu item at the right
end of the menu bar. If the menu bar widget wraps onto additional
lines, the menu bar widget positions the Help menu item at the bottom
right of the menu bar.

3 Create a Help pull-down menu widget with items such as Overview,
About, and Glossary. For information about creating a pull-down
menu, see Section 6.4.

An application that does not support a specific help menu item
should not include that item in its Help pull-down menu widget.
To accommodate the situation where the user does not select a help
topic, the Help pull-down menu widget should have a callback to the
Help menu widget.

Using Help
12.4 Using the Help Widget

4 Create the help buttons for the pull-down menu widget. Create one
push button widget for each topic on the Help pull-down menu widget.
The push button widgets are associated with the routines to call when
the buttons are pressed.

5 Use any of the widget creation routines listed in Table 12-5 to create
an instance of the help widget.

Table 12-5 Help Widget Creation Routines

High-level routine

Low-level routine

UIL object type

Use the HELP routine to create a help widget.

Use the HELP CREATE routine to create a help widget.

Use the help_box object type identifier to create a help widget
in a UIL module.

6 Specify the callback routine to be called when the help widget is
umnapped.

Example 12-2 creates a help widget in the C language using the MIT C
binding.

Example 12-2 Creating a Help Widget

«»void help_menu_cb(widgetID, tag, cb_struct)
Widget *widgetID;
caddr t tag;
DwtMenuCallbackStruct *cb_struct;

DwtCompString
unsigned int
Arg
DwtCallback

} ;

8topic = NULL;

appname, libname, overview, topic, glossary;
ac;
arglist [10];
help_unmap_CB [2]
{help_unmap, NULL},
{NULL, NULL}

if (cb struct->s widget == data.help about)
topic = DwtLatinlString ("About");

if (cb struct->s widget == data.help glossary)
topic= DwtLatinlString ("Glossary");

@)if (data.help_widget == NULL)
{

appname = DwtLatinlString ("My App Name");
libname = DwtLatinlString ("Help File Library");
overview DwtLatinlString ("Overview11);
glossary= DwtLatinlString ("Glossary");

(continued on next page)

12-9

Using Help
12.4 Using the Help Widget

Example 12-2 (Cont.) Creating a Help Widget

else

data.help_widget = DwtHelp(data.toplevel, "Help", TRUE, 0, 0,
appname, DwtTextLibrary, libname, topic,
overview, glossary, help_unmap_CB);

XtManageChild (data.help_widget);
XtFree (appname);
XtFree (libname);
XtFree (overview);
XtFree (glossary);
}

{

ac = 0;
8xtsetArg (arglist[ac], DwtNfirstTopic, topic); ac++;

XtSetValues (data.help_widget, arglist, ac);
}

CDif (!XtisManaged(data.help widget)
XtManageChild(data.help_widget);

if (topic !=NULL)
XtFree (topic) ;

return;
}

12-10

8 All of the push button widgets on the Help pull-down menu can be
associated with a single help widget creation routine, in this example
help_menu_cb.

8 The help_menu_cb routine uses the identity of the push button
widget that called it to set the value for first_topic. The first_topic
argument determines which help topic is displayed first.

If the About push button widget has called help_menu_cb, first_topic
is set to "About". If the Glossary push button widget has called help_
menu_cb, first_topic is set to "Glossary".

0 If the help widget does not already exist, create it.

The help widget sizes and locates the help window based on the
size and location of its parent, which is the top-level window of your
application. The help widget opens the help library that you specify.
All of the help widgets for an application can (but are not required to)
use the same help library.

8 If the help widget already exists, set first_topic. If the About or
Glossary push button widget has called help_menu_cb, first_topic is
already set to About or Glossary.

If the Overview push button widget has called help_menu_cb, the value
of first_topic is null, and the overview _topic is displayed first.

Once the widget is created, you can use the SET VALUES routine to
specify a new first topic.

Using Help
12.4 Using the Help Widget

e If the widget is not already managed, call the MANAGE CHILD
routine to cause the help window to appear.

Example 12-3 shows a sample UIL help widget implementation.

Example 12-3 UIL Help Widget Implementation

PROCEDURE display_help(compound_string);
PROCEDURE create_help();
PROCEDURE unmap_help();

VALUE

overview fr
about fr
glossary_fr

compound_string ("overview");
compound_string("aboutframe");
compound_string("glossary");

object main_help : HELP BOX

ARGUMENTS
{

APPLICATION_NAME = 'Help Example';
GLOSSARY TOPIC compound string("glossary");

compound-string("overview"); OVERVIEW TOPIC
LIBRARY SPEC
LIBRARY TYPE
} ;

compound string("sys$help:decw$helphelp.hlb");
DwtTextLibrary;

CALLBACKS

} ;

{

CREATE
UNMAP
} ;

PROCEDURE create_help();
PROCEDURE unmap_help();

object s menu bar MENU BAR
{ - -
ARGUMENTS

{

ORIENTATION = DwtOrientationHorizontal;
tt MENU_HELP_WIDGET PULLDOWN ENTRY help_menu_entry;

} ;

CONTROLS
{

} ;

PULLDOWN ENTRY help_menu_entry;
} ;

(continued on next page)

12-11

Using Help
12.4 Using the Help Widget

Example 12-3 (Cont.) UIL Help Widget Implementation

object help_menu_entry PULLDOWN_ENTRY
{

ARGUMENTS
{

LABEL LABEL
} ;

CONTROLS
{

"Help";

PULLDOWN_MENU help_menu;
} ;

} ;

~ object help menu ; PULLOOWN_MENU
{ -
CONTROLS

} ;

{

PUSH BUTTON help_button;
PUSH_BUTTON help_about;
PUSH BUTTON help_glossary;
} ;

@t object help_button PUSH BUTTON
{

ARGUMENTS
{

LABEL LABEL
} ;

CALLBACKS
{

'Help';

ACTIVATE PROCEDURE display_help(overview_fr);
} ;

} ;

~ object help_about PUSH_BUTTON
{

ARGUMENTS
{

LABEL_LABEL
} ;

CALLBACKS
{

'About';

ACTIVATE PROCEDURE display_help(about_fr);
} ;

} ;

CB object help_glossary PUSH BUTTON

12-12

ARGUMENTS
{

LABEL LABEL
} ;

'Glossary';

(continued on next page)
\;

12.5

Using Help
12.4 Using the Help Widget

Example 12-3 (Cont.) UIL Help Widget Implementation

CALLBACKS
{

} ;

ACTIVATE= PROCEDURE display_help(glossary_fr);
} ;

0 Define the Help menu item in the menu bar widget.

8 Define the Help pull-down menu widget.

0 Define the Help push button widget.

8 Define the About push button widget.

8 Define the Glossary push button widget.

Context-Sensitive Help
In context-sensitive help, the application presents direct help on the
current topic rather than starting at a higher level and working down
through a help hierarchy. Users do not have to navigate through several
layers of help to find the information they need.

The help widget does not distinguish general help from context-sensitive
help and cannot tell which type of help your application requests. Your
application is responsible for implementing context-sensitive help and the
help callback.

You can use the first_topic attribute of the help widget to specify a
context-sensitive help topic. To do this, associate a help callback routine
with the widgets for which you want to provide help. When a user moves
the pointer cursor onto the widget, holds down the Help key, and presses
MBl, the widget's help callback routine is called.

Note: All widgets that are a subclass of the common widget class support
a help callback. Other widgets may also support the help callback,
but there is no requirement to do so.

There are two possible ways to implement the help callback routine:

• You can directly specify the key name for the help topic in the callback
routine. The disadvantage to this method is that the key names
specified in first_topic must match the key names in the help library.
This might be difficult to maintain if you have help support for a large
number of widgets.

• The callback routine can specify the key name as a resource name.
Create a UIL module that maps the resource names to the key names
for the help topics. If you change the key name of the help topic, you
do not have to change application code.

12-13

Using Help
12.5 Context-Sensitive Help

12-14

Regardless of which method you choose, the help callback routine should
perform the following tasks:

• Check to see if a help widget already exists. If a help widget has not
yet been created, the routine creates a help widget with first_topic
set to the key name or resource name of the topic for which you want
to display help.

If a help widget has been created but is not managed, use the SET
VALUES routine to specify the key name or resource name of the topic
for which you want to display help as :6.rst_topic. This avoids the
overhead of creating a new help widget.

• Call the MANAGE CHILD routine to display the help window. The
appropriate help text is displayed. Any subtopics or included topics
are displayed as additional topics. Use include commands in the HLB
library to link together context-sensitive help topics.

13 Using the Cut and Paste Routines

This chapter provides the following:

• An overview of the cut and paste routines

• A detailed description of how to use the cut and paste routines in your
application

• A description of how to implement the QuickCopy function

13.1 Overview of the Cut and Paste Routines
The XUI Toolkit includes a set of cut and paste. routines that provide
convenient access to the clipboard. The clipboard is a buffer, external
to your application, in which you can temporarily store data. You use the
cut and paste routines to copy data to the clipboard, inquire about the
contents of the clipboard, or copy data from the clipboard. Table 13-1 lists
the cut and paste routines in groups by function; later sections describe
their use.

Table 13-1 Cut and Paste Routines

Routine Name

Copying to the Clipboard

START COPY TO CLIPBOARD

COPY TO CLIPBOARD

END COPY TO CLIPBOARD

CANCEL COPY TO CLIPBOARD

UNDO COPY TO CUPBOARD

RECOPY TO CLIPBOARD

LIST PENDING ITEMS

CANCEL COPY FORMAT

Description

Sets up storage and data structures to receive
clipboard data. (See also BEGIN COPY TO
CLIPBOARD.) \

Copies a data item to the clipboard.

Ends the COPY TO CLIPBOARD operation and
places the data in the clipboard data structure.

Cancels the current COPY TO CLIPBOARD
operation.

Deletes the last data item placed on the
clipboard if the item was placed there by
this application.

Copies to the clipboard a data item that was
previously passed by name.

Returns a list of pending items as data ID and
private ID pairs for a specified format name.

Indicates that the application will no longer
supply a data item that the application had
previously passed by name to the clipboard.

(continued on next page)

13-1

Using the Cut and Paste Routines
13.1 Overview of the Cut and Paste Routines

13-2

Table 13-1 (Cont.) Cut and Paste Routines

Routine Name

Copying to the Clipboard

CLIPBOARD REGISTER FORMAT

Copying from the Clipboard

START COPY FROM CLIPBOARD

COPY FROM CLIPBOARD

END COPY FROM CLIPBOARD

Inquire Routines

INQUIRE NEXT PASTE COUNT

INQUIRE NEXT PASTE FORMAT

INQUIRE NEXT PASTE LENGTH

Obsolete Routines2

BEGIN COPY TO CLIPBOARD

Description

Registers the length of the data for formats
not specified by the conventions defined in the
ICCCM1

•

Indicates that the application is ready to start
copying data from the clipboard and locks the
clipboard.

Retrieves a data item from the clipboard.

Indicates that the application has completed
copying data from the clipboard and unlocks the
clipboard.

Returns the number of data item formats that
are available for the next paste clipboard data
item.

Returns a specified format name for the next
paste data item on the clipboard.

Returns the length of the data stored under
a specified format name for the next paste
clipboard item.

Superseded by the START COPY TO
CLIPBOARD routine. Like the START COPY
TO CLIPBOARD routine, this routine sets up
storage and data structures to receive clipboard
data.
However, the START COPY TO CLIPBOARD
routine accepts the time stamp of the event
causing the copy operation as one of its
arguments.
The addition of this argument makes the START
COPY TO CLIPBOARD routine comply with the
ICCCM conventions. The BEGIN COPY TO
CLIPBOARD routine is not ICCCM compliant.

1 ICCCM is described in the X Window System, Version 11 Inter-Client Communication
Conventions Manual by David S. H. Rosenthal.

2These routines have been superseded by other cut and paste routines, but are still supported.

(continued on next page)

Using the Cut and Paste Routines
13.1 Overview of the Cut and Paste Routines

Table 13-1 (Cont.) Cut and Paste Routines

Routine Name

Obsolete Routines2

CLIPBOARD LOCK

CLIPBOARD UNLOCK

Description

Locks the clipboard from access by other
applications. If you use the START COPY
FROM CLIPBOARD routine, which locks
the clipboard, you do not have to use the
CLIPBOARD LOCK routine.

Unlocks the clipboard, enabling it to be
accessed by other applications. If you use
the END COPY FROM CLIPBOARD routine,
which unlocks the clipboard, you do not have to
use the CLIPBOARD UNLOCK routine.

2These routines have been superseded by other cut and paste routines, but are still supported.

13.1.1 Communicating with Other Applications
Because the clipboard is available to all applications running on a
workstation, it enables communication between applications. For example,
your application may copy data to the clipboard. While that data remains
on the ~lipboard, any other application running on the workstation can
obtain a copy of the data you copied to the clipboard.

The application performing a clipboard operation, such as putting data
on the clipboard, has temporary ownership of the clipboard during the
operation. This is called locking the clipboard. After the clipboard
operation completes, any other application can perform a clipboard
operation.

The clipboard can hold only a single data item (although it can hold that
data item in more than one format). When an application copies data
to the clipboard, the new data supersedes the previous contents of the
clipboard.

(The QuickCopy function enables applications to exchange data without
using the clipboard. For information about this feature, see Section 13.5.)

13.1.2 Implementing the Copy, Cut, and Paste Functions
The cut and paste routines implement the functions available in the Edit
menu in the main menu bar of an. application. Every application that
allows a user to select text or graphics in its windows should provide
functions in the Edit menu, such as copy, cut, and paste, that allow the
user to manipulate the selected text or graphics. Figure 13-1 illustrates a
typical· Edit· menu.

13-3

Using the Cut and Paste Routines
13.1 Overview of the Cut and Paste Routines

13--4

Figure 13-1 Edit Menu

Undo

Cut
Copy
Paste
Clear

Select.All

ZK-0543A-GE

By using the functions in the Edit menu, a user can copy text or graphics
from one application to another. The following sequence describes how a
user performs a typical copy and paste operation:

1 The user selects a portion of text or graphics in an application window
by pressing and holding MBl, dragging the pointer cursor through the
data to be selected,. and releasing MB 1.

2 The user displays the Edit menu in the main menu bar, drags the
pointer cursor to the Copy menu item, and releases MB 1. In the
callback routine associated with the copy function, your application
determines what data the user has selected and copies the data to the
clipboard. Section 13.2 describes how to copy data to the clipboard.

3 The user moves the pointer cursor to the application receiving the data
and chooses the Paste menu item from the Edit menu. In the callback
routine associated with the paste function, your application copies the
current contents of the clipboard. Section 13.3 describes how to copy
data from the clipboard.

4 Your application inserts the data at the current pointer cursor location.
Your application is responsible for determining where the user wants
to paste the data.

If you want to give the user maximum access to the clipboard, include
the functions listed in Table 13-2 in the Edit menu in your application.
The XUI Style Guide gives recommendations on how these functions
should operate and how the Edit menu should look in your application.
(Section 6.5 describes how to create a menu bar with pull-down menu
items, such as an Edit menu, using the DECburger sample application as
an example.)

13.2

Using the Cut and Paste Routines
13.1 Overview of the Cut and Paste Routines

Table 13-2 Edit Menu Functions

Edit Menu
Item

Copy

Cut

Paste

Select All

Clear

Undo

Redo

Description

Copies the selected data to the clipboard.

Copies the selected data to the clipboard and deletes it from the
window. Your application should save the deleted data if you allow
users to cancel (undo) a cut operation, because an action by another
application might alter the contents of the clipboard between the cut
and the cancel operations.

Copies the data from the clipboard and allows the user to place the
data in an application window.

Selects all of the data in the application window.

Cancels the selection of data in the application window. The Clear
function does not affect the clipboard.

Cancels a cut, copy, or paste operation and restores the previous
state. To cancel a cut operation, redraw the deleted data and delete
it from the clipboard. Your application should not use the clipboard
contents to redraw the deleted data. To cancel a copy operation,
your application needs only to delete the data from the clipboard. To
cancel a paste operation, your application should delete the pasted
data from the application window. Cut and paste routines are not
involved in canceling a paste operation. Save the deleted paste data
if your application allows users to repeat a canceled operation.

Repeats a canceled operation. Repeating a paste operation restores
the data saved from the last canceled paste operation. The clipboard
is not involved with repeating a paste operation.

Copying Data to the Clipboard
To copy data to the clipboard, perfom1 the following steps:

1 Identify the data that the user has selected and copy it into a buffer.

Your application is responsible for determining and highlighting the
selected data on the display. The cut and paste routines do not perform
this function but instead only copy a buffer of data to the clipboard.

The XUI Toolkit text widgets, described in Section 9.2.3, support the
selection mechanism. These widgets highlight text selected by the user
and can supply the selected text to your application.

2 Start the copy operation using the START COPY TO CLIPBOARD
routine.

This routine sets up the data structures needed to transfer data to the
clipboard. The clipboard is locked during the execution of the START
COPY TO CLIPBOARD routine.

3 Copy the data to the clipboard using the COPY TO CLIPBOARD
routine.

13-5

Using the Cut and Paste Routines
13.2 Copying Data to the Clipboard

In this call, you specify the data to be copied, its length, and its format.
The clipboard is locked during execution of the COPY TO CLIPBOARD
routine.

To make the single data item available in multiple formats, call the
COPY TO CLIPBOARD routine for each format. To append data to
the data item on the clipboard in any of the available formats, make
additional calls to the COPY TO CLIPBOARD routine and specify the
format.

If you have a large amount of data to copy to the clipboard and do not
want to incur the overhead of a copy operation, you can copy the data
to the clipboard by name. When passing data by name, you notify
the clipboard that you have data available. If an application makes a
request to the clipboard for the data, the clipboard requests that your
application supply the data. For more information about copying data
to the clipboard by name, see Section 13.2.1.

4 End the copy operation by using the END COPY TO CLIPBOARD
routine.

The clipboard is locked during the execution of the END COPY TO
CLIPBOARD routine.

Example 13-1 illustrates a simple copy-to-clipboard operation.

Example 13-1 Copying Data to the Clipboard

static void copy proc(widget, tag, callback data
Widget widget; -
char *tag;
DwtAnyCallbackStruct *callback_data;

Ct Display *display;
Window window;
Time timestamp;
int status;
unsigned long item_id, count, buf len;
char copy to buffer[lOO];
DwtCompString clip_label = DwtLatinlString("Your Application Name");

~ display= XtDisplay(toplevel);

@) window= XtWindow(toplevel);

13-6

(continued on next page)

Using the Cut and Paste Routines
13.2 Copying Data to the Clipboard

Example 13-1 (Cont.) Copying Data to the Clipboard

., switch(callback_data->event->type
{

I*
*
*
*I

case KeyPress:
case KeyRelease:

timestamp callback_data->event->xkey.time;
break;

case ButtonPress:
case ButtonRelease:

timestamp = callback_data->event->xbutton.tirne;
break;

case MotionNotify:
tirnestarnp callback_data->event->xrnotion.tirne;
break;

case EnterNotify:
case LeaveNotify:

timestarnp = callback_data->event->xcrossing.tirne;
break;

case PropertyNotify:
timestarnp = callback_data->event->xproperty.tirne;
break;

case SelectionClear:
timestamp = callback_data->event->xselectionclear.tirne;
break;

case SelectionRequest:
tirnestarnp = callback_data->event->xselectionrequest.time;
break;

case SelectionNotify:

default:

tirnestarnp callback_data->event->xselection.time;
break;

time stamp
break;

Current Time;

Find out what the user has selected
and fill copy_to_buffer.

(t status = DwtStartCopyToClipboard(display, window, clip label,
tirnestarnp, o~ 0, &itern_id);

if (status != ClipboardSuccess
{

return(0) ;

buf_len = strlen(copy_to_buffer);

8 status = DwtCopyToClipboard(display, window, item id, "STRING",
copy_to_buffer, buf_len, 0, 0);

(continued on next page)

13-7

Using the Cut and Paste Routines
13.2 Copying Data to the Clipboard

Example 13-1 (Cont.) Copying Data to the Clipboard

if (status != Clipboa~dSuccess)
{

DwtCancelCopyToClipboard(display, window, item id);
return(0) ;

8 status= DwtEndCopyToClipboard(display, window, item id);

if (status != ClipboardSuccess)
{

DwtCancelCopyToClipboard(display, window, item id);
return (0) ;

return(1);

13-8

8 The declarations of variables required by the cut and paste. routines
include a pointer to a Display structure (display), a window identifier
(window), and a buffer to hold the data to be transferred to the
clipboard (copy _to _buffer).

8 The DISPLAY intrinsic routine returns a pointer to the display to
which the application is connected.

8 The WINDOW intrinsic routine returns the identifier of a window
associated with one of the widgets in the user interface of the
application. You can use any widget in the user interface; the example
obtains the identifier of the window associated with the topmost widget
in its application widget hierarchy, named toplevel.

8 The time stamp of the event that triggered the callback is obtained
from the X Event structure returned as callback data. You must find
out the type of event that triggered the callback in order to access the
time member of the X Event structure.

8 The START COPY TO CLIPBOARD routine is called to start the
copy operation. For arguments to the routine, you must pass the
display and window information, a text string that can be associated
with the contents of the clipboard, and the time stamp of the event
that triggered the copy operation. In addition, you can also pass a
valid widget identifier and the address of a callback routine to the
routine, but these arguments are required when you pass data to the
clipboard by name. (For information about passing data by name, see
Section 13.2.1.) The START COPY TO CLIPBOARD routine returns a
unique identifier assigned to this copy operation by the clipboard in its
last argument.

If another application has the clipboard locked, the START COPY TO
CLIPBOARD routine returns a value that indicates this condition
(ClipboardLocked). If the clipboard is available, the routine returns a
value that indicates success (ClipboardSuccess).

Using the Cut and Paste Routines
13.2 Copying Data to the Clipboard

(i) The COPY TO CLIPBOARD routine is called to copy data to the
clipboard. For arguments to this routine, you specify the identifier
returned by the START COPY TO CLIPBOARD routine (item_id),
the buffer of data being copied to the clipboard, and the length and
format of the data. In addition, you can associate some private data
with the clipboard data. The COPY TO CLIPBOARD routine returns
an identifier in its last argument that can be used if you pass data by
name.

You specify the format name argument as a character string. The
ICCCM1 supplies a set of predefined, named data formats. The VMS
DECwindows Toolkit Routines Reference Manual lists these format
names. Format names are case sensitive and require all uppercase
letters. For more information about clipboard data formats, see
Section 13.2.4.

8 The copy operation is ended by calling the END COPY TO
CLIPBOARD routine.

To abort a copy operation, call the CANCEL COPY TO CLIPBOARD
routine any time before the call to the END COPY TO CLIPBOARD
routine. You do not need to call the END COPY TO CLIPBOARD routine
after aborting a copy operation with CANCEL COPY TO CLIPBOARD.

13.2.1 Copying Data to the Clipboard by Name
To avoid incurring the overhead of copying to the clipboard a large amount
of data that may not be requested by another application, you can copy the
data to the clipboard by name. When passing data by name, you notify
the clipboard that you have data available. If an application requests the
data, the clipboard asks your application to supply the data.

To pass data to the clipboard by name, perform the following steps:

1 Start the copy-by-name operation using the START COPY TO
CLIPBOARD routine.

However, to pass the data to the clipboard by name, you must specify
values for the· following arguments:

• Specify a valid widget identifier in the widget argument. You can
choose any widget in your application widget hierarchy.

• Specify the address of a callback routine in the callback
argument. (Pass the address of the callback routine, not a callback
routine list as you would with a XUI Toolkit widget.)

The callback routine used for a clipboard callback is different from the
standard callback routine that is used with XUI Toolkit widgets. The
clipboard callback routine accepts four standard arguments. For more
information about creating a clipboard callback, see Section 13.2.2.

2 Copy the name of the data to the clipboard by using the COPY TO
CLIPBOARD routine.

1 ICCCM is described in the X Window System, Version 11 Inter-Client Communicatfon Conventions Manual
by David S. H. Rosenthal.

13-9

Using the Cut and Paste Routines
13.2 Copying Data to the Clipboard

However, to pass the data to the clipboard by name, you must specify
values for the following arguments:

• Specify the value of the buffer argument as null. Note that you
must still specify a length for the data in the length argument.

• Specify private identification information, if desired, in the
private_id argument.

• Specify the address of a variable to store the identifier returned by
the COPY TO CLIPBOARD routine.

3 End the copy operation by using the END COPY TO CLIPBOARD
routine.

When an application requests the data you have passed to the clipboard by
name, the clipboard executes the callback routine specified in the START
COPY TO CLIPBOARD routine.

13.2.2 Creating a Clipboard Callback Routine

13-10

The format of a clipboard callback routine is different from the standard
callback routine used with the XUI Toolkit widgets. The clipboard callback
routine requires four arguments; the standard widget callback requires
three arguments. The format of a clipboard callback is as follows:

clipboard callback(widget, data_id, private_id, reason)
Widget -*widget;
int *data id;
int *private;
int *reason;

In the widget argument, the clipboard returns the widget identifier
passed to the START COPY TO CLIPBOARD routine.

The data_id argument is the identifier returned by the COPY TO
CLIPBOARD routine.

The private_id argument is the data that you associated with the
clipboard data in the COPYTO CLIPBOARD routine.

The reason argument contains the reason why the clipboard is
~xecuting the callback routine. The clipboard executes a callback
when an application requests the data that had been passed by name
(DwtCRClipboardDataRequest) or when the data passed by name has been
deleted from the clipboard (DwtCRClipboardDataDelete). A data item
passed by name is deleted from the clipboard if another application places
data on the clipboard.

If an application has requested the data passed by name, use the RECOPY
TO CLIPBOARD routine to copy the data to the clipboard. If your
application will no longer supply the data, use the CANCEL COPY
FORMAT routine to inform the clipboard.

If the data passed by name has been deleted from the clipboard, your
application might respond, for example, by freeing the data buffer. A
callback for this reason, however, does not require a response from your
application.

Using the Cut and Paste Routines
13.2 Copying Data to the Clipboard

Before exiting, your application should check to see whether data that it
passed to the clipboard by name is still on the clipboard. Use the LIST
PENDING ITEMS routine to determine this information. This routine
returns a list of the contents of the clipboard as data identifier/private
identifier pairs. If the copy-by-name operation is still pending, your
application should either copy the data to the clipboard or cancel the
copy-by-name operation before exiting.

13.2.3 Deleting Data from the Clipboard
To delete a data item that you have copied to the clipboard, use the
UNDO COPY TO CLIPBOARD routine. This routine can only delete data
on the clipboard that was placed there by the application identified by
the display· and window arguments passed to the routine. If another
application has placed data in the clipboard since your application, the
UNDO COPY TO CLIPBOARD has no effect. When your application uses
the UNDO COPY TO CLIPBOARD routine to delete data it had previously
copied to the clipboard using the COPY TO CLIPBOARD routine, the
previous contents of the clipboard are restored.

13.2.4 Specifying Clipboard Data Formats

13.3

When copying data to the clipboard, you must specify the format of the
data in the COPY TO CLIPBOARD routine. When you assign a format
to clipboard data, you instruct the X server to transfer the data in 8-bit,
16-bit, or 32-bit quantities.

To help communication between applications, the ICCCM1 has established
a set of standard data formats. The VMS DECwindows Toolkit Routines
Reference Manual lists the names and sizes of the formats. With these
conventions, applications can exchange data in predictable formats.

You can define your own clipboard data format. The format must use 8-bit,
16-bit, or 32-bit quantities. To ensure that X servers running on different
machine architectures can perform proper byte-swapping operations
on your data, register the format you define using the CLIPBOARD
REGISTER FORMAT routine.

Copying Data from the Clipboard
To copy data from the clipboard, perform the following steps:

1 Start the copy operation using the START COPY FROM CLIPBOARD
routine.

This routine locks the clipboard and leaves it locked until you call the
END COPY FROM CLIPBOARD routine.

2 Copy the data from the clipboard using the COPY FROM CLIPBOARD
routine.

1 ICCCM is described in the X Window System, Version 11 Inter-Client Communication Conventions Manual
by David S. H. Rosenthal.

13-11

Using the Cut and Paste Routines
13.3 Copying Data from the Clipboard

If the size of the data item is larger than the buffer you have
provided, the COPY FROM CLIPBOARD routine returns the constant
ClipboardTruncate. Calling the COPY FROM CLIPBOARD routine
before the START COPY FROM CLIPBOARD routine enables you to
copy the remaining data from the clipboard in increments. If you call
the COPY FROM CLIPBOARD routine again, specifying the same
data format, the routine starts copying at the point where the data
was truncated in the preceding call.

3 End the copying operation using the END COPY FROM CLIPBOARD
routine.

This routine unlocks the clipboard that had previously been locked by
a call to the START COPY FROM CLIPBOARD routine.

You can use the COPY FROM CLIPBOARD routine without enclosing
it between calls to START COPY FROM CLIPBOARD and END COPY
FROM CLIPBOARD. However, when used without these routines, the
COPY FROM CLIPBOARD routine cannot be used to copy data from the
clipboard incrementally. Also, to ensure that your application complies
with ICCCM conventions, use the START COPY FROM CLIPBOARD and
END COPY FROM CLIPBOARD routines.

Example 13-2 illustrates the basic steps in copying data from the
clipboard.

Example 13-2 Copying Data from the Clipboard

static void paste proc(widget, tag, callback_data
Widget widget;-
char *tag;
DwtAnyCallbackStruct *callback_data;

~ Display *display;
Window window;
Time timestamp;
int status;
unsigned long count, format_name_len, bytes_copied, private_id;
char copy from buffer[BUFLEN];
DwtCompString clip_label = DwtLatinlString("Test_label");

display= XtDisplay(toplevel);

window= XtWindow(toplevel);

13-12

(continued on next page)

Using the Cut and Paste Routines
13.3 Copying Data from the Clipboard

Example 13-2 (Cont.) Copying Data from the Clipboard

fl switch(callback_data->event->type
{

case KeyPress:
case KeyRelease:

time stamp
break;

case ButtonPress:

callback_data->event->xkey.time;

case ButtonRelease:
timestamp = callback_data->event->xbutton.time;
break;

case MotionNotify:
timestamp callback_data->event->xmotion.time;
break;

case EnterNotify:
case LeaveNotify:

timestamp = callback_data->event->xcrossing.time;
break;

case PropertyNotify:
timestamp = callback_data->event->xproperty.time;
break;

case SelectionClear:
timestamp = callback_data->event->xselectionclear.time;
break;

case SelectionRequest:
timestamp = callback_data->event->xselectionrequest.time;
break;

case SelectionNotify:

default:

timestamp callback_data->event->xselection.time;
break;

time stamp
break;

Current Time;

@) status= DwtStartCopyFromClipboard(display, window, timestamp);

if (status != ClipboardSuccess
{

return(0);

8 status = DwtCopyFromClipboard(display, window, "STRING",

if (status != ClipboardSuccess
{

return(0);

copy from buffer, BUFLEN,
&bytes_copied, &private_id);

fit status= DwtEndCopyFromClipboard(display, window);

(continued on next page)

13-13

Using the Cut and Paste Routines
13.3 Copying Data from the Clipboard

Example 13-2 (Cont.) Copying Data from the Clipboard

if (status != ClipboardSuccess
{

return(0);

return(1);

13-14

0 The variables required by the cut and paste routines include a buffer
to accept the data copied from the clipboard (copy Jrom_buffer).

8 The time stamp of the event that triggered the callback is obtained
from the X Event structure returned as callback data. You must find
out the type of event that triggered the callback to access the time
member of the X Event structure.

0 The START COPY FROM CLIPBOARD routine is called to begin
copying data from the clipboard. This routine locks the clipboard until
a call to END COPY FROM CLIPBOARD unlocks it. For arguments,
the START COPY FROM CLIPBOARD routine accepts a pointer to
the display to which the application is connected, a window identifier
associated with a widget used in the application user interface, and
the time stamp of the event that triggered the operation.

If an application has locked the clipboard, the START COPY FROM
CLIPBOARD routine returns a value (ClipboardLocked) that indicates
this state. If the routine is able to lock the clipboard, it returns a value
(ClipboardSuccess) to indicate success.

8 The COPY FROM CLIPBOARD routine is called to copy the data
to the clipboard. For arguments to this routine, you specify the
name of the buffer into which the clipboard data will be copied, the
length of the buffer, and the format in which you want the data. (For
information about specifying format names, see Section 13.2.4.) In the
final two arguments, the COPY FROM CLIPBOARD routine returns
the number of bytes copied from the clipboard and any private data
associated with the data on the clipboard.

The COPY FROM CLIPBOARD returns a value that indicates success
(ClipboardSuccess). If the COPY FROM CLIPBOARD returns the
value ClipboardTruncate, which indicates that more data is available
on the clipboard, another call to COPY FROM CLIPBOARD specifying
the same format will copy data from the clipboard starting where the
last call stopped.

0 The paste operation is ended by calling the END COPY FROM
CLIPBOARD routine. The END COPY FROM CLIPBOARD routine
unlocks the clipboard that had previously been locked by the call to
the START COPY FROM CLIPBOARD routine.

13.4

Using the Cut and Paste Routines
13.3 Copying Data from the Clipboard ·

Your application should allow the user to indicate where the data is to be
placed on the window. This may be implicit; for example, text data may be
automatically pasted at the current text cursor location.

Inquiring About Clipboard Contents
Before copying data to or from the clipboard, you may want to examine its
contents. For example, in a paste operation, you may be looking for data
in a specific format. Using the cut and paste inquire routines, you can
obtain the following information about the contents of the clipboard:

• The number of formats in which the data item on the clipboard is
available

• The names of the formats in which the data item on the clipboard is
available

• The length of the data item in a specified format

Use the INQUIRE NEXT PASTE COUNT routine to find out the number
of formats in which the data item on the clipboard is. available. This
routine returns the number of formats and the length of the longest
format name. (You use the length information returned by this routine
to determine the size of the buffer that you will provide to the INQUIRE
NEXT PASTE FORMAT routine. This ensures that your buffer is large
enough to fit any of the format names available.)

Use the INQUIRE NEXT PASTE FORMAT routine to find out the name
of a particular data format in which the data item on the clipboard is
available. You specify the format that you are inquiring about by number.
If you specify a number that is greater than the total number of formats
available, the INQUIRE NEXT PASTE FORMAT routine returns 0 (zero)
in the copied_len argument. The routine returns the name of the format
as a character string in the format_name_buf argument and returns the
number of bytes in the format name string in the copied_len argument.
(When using the C programming language, you must also specify the size
of the buffer in the buffer_len argument.)

Use the INQUIRE NEXT PASTE LENGTH routine to find out the length
of the data item on the clipboard. You specify the format by name, and the
routine returns the length in bytes.

You typically use the values returned by the inquire routines as arguments
to other cut and paste routines, such as the COPY FROM CLIPBOARD
routine. To ensure that the values returned are still valid when you
make these routine calls, lock the clipboard between the call to the
inquire routine and calls to the other routines. For example, if you are
inquiring about data that you intend to copy from the clipboard, call the
inquire routines after locking the clipboard with the START COPY FROM
CLIPBOARD routine. (You can use the obsolete CLIPBOARD LOCK
routine to lock the clipboard. If you use this routine, be sure to unlock
the clipboard using the CLIPBOARD UNLOCK routine after you have
completed your clipboard operation.)

13-15

13.5

13.5.1

Using the Cut and Paste Routines
13.5 QuickCopy Implementation

QuickCopy Implementation
The QuickCopy function allows users to copy data between applications
without first having to copy the data to the clipboard and then paste it in
their chosen application; The QuickCopy function acts as an accelerator
for the copy function in the Edit menu.

Table 13-3 describes the QuickCopy operations.

Table 13-3 QuickCopy Operations

Operation

Copy From

Copy To

Move From

Move To

Description

The user presses and holds MB3, drags the pointer cursor
to select the area to copy, and releases MB3. This creates a
secondary selection (independent of any clipboard selection) that
is copied to the window with input focus. Before initiating the
CopyFrom operation, the user should make sure that the window
to receive the data has the input focus.

Using one of the primary selection mechanisms (dragging MB1,
Select All, and so on), the user creates a primary selection. The
user then moves the pointer cursor to the desired location and
clicks MB3 to copy the primary selection.

The user presses and holds Ctrl/MB3, drags the pointer cursor to
select the area to copy, and releases the Ctrl/MB3 combination.
This creates a secondary selection that is inserted into the active
input position and removed from the original location. Before
initiating the MoveFrom operation, the user should make sure that
the window receiving the data has input focus.

Using one of the primary selection mechanisms (dragging MB1,
Select All, and so on), the user creates a primary selection. The
user then moves the pointer cursor to the desired location and
presses and releases Ctrl/MB3 to insert the primary selection into
the indicated position and remove it from the original location.

QuickCopy Message Types

13-16

Because users can use the QuickCopy function to copy data between
applications, applications need a mechanism for telling other applications
that data is available.

When an application receives an MB3 Button Release event from a
CopyFrom operation, it sends a STUFF ..;.SELECTION client message
event to the window that has the input focus. The data field of the client
message structure should contain the atom XA_SECONDARY.

In a MoveTo operation, the application that receives the data must tell
the owner of the selection when to delete the data, because the Ctrl/MB3
combination that identifies a move operation is seen only by the receiving
application. To notify the sender of the data that you have received the
data, send a KILL_SELECTION client message event to the owner of the
primary selection. Set the data member of the client message· structure to
the atom XA_PRIMARY. The owner of the primary selection deletes the
data when it receives a KILL_SELECTION message.

Using the Cut and Paste Routines
13.5 QuickCopy Implementation

13.5.2 Selection Threshold Resource
When an application receives an MB3 Button Press event, the application
does not know whether the user intends to drag the mouse and perform
a CopyFrom operation, or to release the button and perform a CopyTo
operation.

Applications can use the selection threshold to specify the number of
pixels that the pointer must cross in order for the application to treat the
drag operation as intentional.

When your application receives the MB3 Button Press event, record the
pointing device coordinates and compare them with the MB3 Button
Release event or pointing device motion events. If the pointing device has
moved more than the number of pixels specified in the selection threshold,
treat the drag operation as intentional.

The resource name should be selectionThreshold. The default selection
threshold value· should be 5 pixels.

13.5.3 Implementing the QuickCopy Function
The four QuickCopy operations are similar in that they allow users to copy
or move data between applications without having to use the clipboard.
However, there are some differences in how the four operations function.

The CopyFrom and MoveFrom operations affect the secondary selection,
which means that the user uses MB3 or Ctrl/MB3 to make the selection.
The CopyFrom and MoveFrom operations have the window with the input
focus as their destination.

The CopyTo and MoveTo operations use the primary selection, which
means that the user uses MB! to make the selection, as in a typical cut
and paste operation. The user can then choose the destination for the
data.

The CopyTo and MoveTo operations do not use the STUFF_SELECTION
message to notify the application that is to receive the data.

13.5.3.1 CopyFrom and MoveFrom Operations
The following sample illustrates the CopyFrom and MoveFrom operations:

1 The user presses MB3 and drags the pointer cursor.

Your application uses the pointer screen location to find out what data
is affected and highlights that data. If the user presses Ctrl/MB3, your
application recognizes that this is a MoveFrom operation.

The simple text widget is sensitive to MB3 events within its borders.
If the user clicks MB3 within the boundaries of the simple text widget,
the widget highlights its contents.

2 When the user releases MB3 (or Ctrl/MB3) and your application
receives the Button Release event, your application calls the OWN
SELECTION routine with the selection argument set to XA_
SECONDARY to indicate ownership of the secondary selection atom as
shown in Example 13-3.

13-17

Using the Cut and Paste Routines
13.5 QuickCopy Implementation

Example 13-3 Calling the OWN SELECTION Routine

XtOwnSelection(w, XA SECONDARY, time, convert_proc,
lose_selection,-NULL}

The convert_proc argument is a callback routine for the XUI Toolkit
to call when an application requests the current value of the selection.
The convert_proc argument is described in Example 13-6.

The notify _proc argument, passed as null in Example 13-3, specifies
the routine to call after the requesting application has received the
selection.

The lose_selection argument is a routine to be called when the widget
has lost selection ownership. Widgets can lose selection ownership
if another widget later asserts ownership of the selection or if the
original widget voluntarily gives up ownership.

3 Your application notifies the receiving application that the QuickCopy
data is available, as shown in Example 13-4.

Example 13-4 Notifying the Receiving Application that Data Is Available

static void quick_copy(w, event}
Widget w;
XEvent *event;

~ XClientMessageEvent cm;
int revert;

cm.type = ClientMessage;
cm.display= XtDisplay(w};

8 cm.message_type = XInternAtom(XtDisplay(w}, "STUFF SELECTION",
FALSE};

t) XGetinputFocus(XtDisplay(w}, &cm.window, &revert};
e • • • }

cm.format = 32;
cm.data.1(0] = XA_SECONDARY;
cm.data.1(1] = event->xbutton.time;
XSendEvent(XtDisplay(w}, cm.window, TRUE, NoEventMask, &cm};

0 The XUI Toolkit uses client message events to transfer messages
about the QuickCopy selection. Your application QuickCopy code
must be able to accommodate these client messages.

13-18

Using the Cut and Paste Routines
13.5 QuickCopy Implementation

8 The XUI Toolkit uses the STUFF _SELECTION message to notify
applications that there is data available for them to insert.
The STUFF _SELECTION message is associated with the XA_
SECONDARY atom.

Your application needs to identify the atom identifier for the
STUFF _SELECTION message in the message_type member of the
client message structure. The atom identifier can be different for
each invocation of the server. Therefore, your application calls the
Xlib INTERN ATOM routine to determine the atom identifier for
the STUFF _SELECTION message.

The Xlib INTERN ATOM routine returns the atom identifier
for the atom_name argument, which in this case is STUFF_
SELECTION. The only_if_exists argument, in this case false,
creates an atom identifier for an atom if one does not already exist.

See the VMS DECwindows Xlib Programming Volume for more
information about the INTERN ATOM routine.

8 Because the QuickCopy data is copied to the window with the
input focus, the application calls the Xlib GET INPUT FOCUS
routine to get the input focus. In this example, the input focus is
returned to the window member of the client message structure.

See the VMS DECwindows Xlib Programming Volume for more
information about the GET INPUT FOCUS routine.

8 The data associated with this property is stored in 32-bit format.

0 The first field of the data member of the client message structure
identifies the XA_SECONDARY atom.

G The second field of the data member of the client message
structure identifies the time at which the MB3 Button Release
event occurred.

8 The application sends the STUFF _SELECTION client message
event, using the Xlib SEND EVENT routine, to the window that
has input focus.

4 The receiving application gets the STUFF _SELECTION message and
calls the INTERN ATOM routine to determine its message type.

The receiving application knows that it is being asked to insert some
data and calls the GET SELECTION VALUE routine to get the data,
as shown in Example 13-5.

13-19

Using the Cut and Paste Routines
13.5 QuickCopy Implementation

Example 13-5 Getting the Selection Value

static void get selection(w, event)
Widget w; -
XEvent *event;
{

XClientMessageEvent *cm= (XClientMessageEvent *)event;
if(event->type != ClientMessage)

return;
if (cm->message_type !=

XInternAtom(XtDisplay(w), "STUFF_SELECTION", FALSE))
return;

8 XtGetSelectionValue(w, XA_SECONDARY, XA_STRING, stuff_proc, 0,
cm->data.1(1));

13-20

8 This call gets the selection value for the secondary selection. The
target argument, in this case XA_STRING, indicates that the
selection value should be returned as an XA_STRING atom.

As part of the call to the GET SELECTION VALUE routine, the
receiving application passes in a callback routine to call, in this
case stuff_proc, when the selection value has been obtained. The
cm->data.l[l] argument identifies the time at which the MB3
Button Release event occurred.

5 The XUI Toolkit gets the GET SELECTION VALUE request. The
server already knows which widget owns the secondary selection
because of the prior call to OWN SELECTION. The convert_proc
argument of OWN SELECTION specifies an application-specific
callback routine for the XUI Toolkit to call to get the data, as shown in
Example 13-6.

The convert_proc callback routine cancels the secondary selection in
addition to transferring the data.

Using the Cut and Paste Routines
13.5 QuickCopy Implementation

Example 13-6 Getting the Secondary Selection Data

static Boolean convert_proc(w, selectionp, desiredtypep,
typep, value, lengthp, formatp)

8 Widget w;
Atom *selectionp;
Atom *desiredtypep;

8 Atom *typep;
caddr t *value;
int *lengthp;
int *formatp;

char *ptr;
int line, column;
int type;

if (*selectionp == XA PRIMARY) {
type = 0;

}else {
if(*selectionp

type = 1;
else

return(FALSE);

XA SECONDARY

if(! Source_has_selection(w, type))
return (FALSE);

if (*desiredtypep == 1)
*typep = 1;

else {
*typep = XA_STRING;

/* Allocate a value buffer with XtMalloc */

/* Fill in the buffer */

/* Set the length of the buffer */

/* If secondary selection, clear selection */

8 The XUI Toolkit indicates that it wants the XA_SECONDARY
selection that this widget owns. The desiredtypep argument
specifies the desired target atom type, in this case XA_STRING.

8 The typep argument returns the atom type of the secondary
selection. The value argument returns the selection data. The
lengthp and formatp arguments return the length and format of
the selection data.

13-21

Using the Cut and Paste Routines
13.5 QuickCopy Implementation

6 When the XUI Toolkit gets the data for the QuickCopy procedure, it
calls the callback argument that the receiving application passed in
the GET SELECTION VALUE routine, in this case stuff_proc, as
shown in Example 13-7. Your application is responsible for displaying
the data.

Example 13-7 QuickCopy Callback Routine

static void stuff_proc(w, closure, selectionp, typep, value,
lengthp, formatp)

Widget w;
Opaque closure;
0Atom *selectionp;
8Atom *typep;
8char *value;
Gint *lengthp;
0int *formatp;
{

/* Insert data */

0 Specifies the primary or secondary atom.

8 A pointer to the selection type returned from convert_proc.

8 A pointer to the selection data returned from convert_proc.

8 A pointer to the selection length returned from convert_proc.

0 A pointer to the selection format returned from convert_proc.

13.5.3.2 CopyTo and MoveTo Operations

13-22

The following sample illustrates the CopyTo and MoveTo operations:

1 The user presses MBl and drags the pointer cursor.

Your application uses the pointer screen location to find out what data
is affected and highlights that data.

2 When the user releases MBl and your application receives the
Button Release event, your application calls the OWN SELECTION
routine with the selection argument set to XA_PRIMARY to indicate
ownership. of the primary selection atom.

Your application provides callback routines for the XUI Toolkit to call
when an application requests the current value of the selection and
after the requesting application has received the selection.

3 The user decides where to insert the data and clicks either MB3 to
copy the data or Ctrl/MB3 to move the data.

Using the Cut and Paste Routines
13.5 QuickCopy Implementation

When the receiving application gets the MB3 or Ctrl/MB3 Button
Release event, the application knows that it is being asked to insert
some data and calls the GET SELECTION VALUE routine to get the
primary selection data.

4 The XUI Toolkit gets the GET SELECTION VALUE request.

Because of the prior call to OWN SELECTION, the server already
knows which application owns the primary selection and the routine
for the XUI Toolkit to call to get the primary selection data.

5 When the XUI Toolkit gets the data for the QuickCopy procedure, the
toolkit calls the callback routine that the receiving application passed
in the GET SELECTION VALUE routine.

6 The receiving application copies the data.

If this were a MoveTo operation, the receiving application would send
the sending application the atom identifier for a KILL_SELECTION
message. The atom identifier is of type XA_PRIMARY.

The receiving application needs to identify the atom identifier for
the KILL_SELECTION message in the message_type member of the
client message structure. As with the STUFF _SELECTION message,
the atom identifier can be different for each invocation of the server.
Therefore, your application calls the Xlib INTERN ATOM routine to
determine the atom identifier, as shown in Example 13-8.

Example 13-8 Sending a KILL_SELECTION Message

static void send kill(w, event)
Widget w; -
XEvent *event;

XClientMessageEvent cm;
int revert;

•
•

cm.type = ClientMessage;
cm.display= XtDisplay(w);
cm.message_type = XInternAtom(XtDisplay(w), "KILL_SELECTION", FALSE);

cm.window= XGetSelectionOwner(XtDisplay(w), XA_PRIMARY);
cm.format = 32;
cm.data.1(0) = XA PRIMARY;
cm.data.1(1) = event->xbutton.time;
XSendEvent(XtDisplay(w), cm.window, TRUE, NoEventMask, &cm);

13-23

Using the Cut and Paste Routines
13.5 QuickCopy Implementation

13-24

0 The receiving application calls the:XlibGET SELECTION OWNER
routine to get the identifier of the resource that owns the primary
selection.

See the VMS DECwindows Xlib Programming Volume for more
information about the GET SELECTION OWNER routine.

8 The receiving application sends an event with the atom identifier
for a KILL_SELECTION message.

14

14.1

14.2

Communicating with the Window Manager

Overview

This chapter describes how your application interacts with the window
manager, and includes information about the following topics:

• Making requests of the window manager

• Retrieving information about window manager restrictions

You should write your application to run effectively under a variety of
window managers. The chapter uses the DECwindows window manager as
an example and includes specific information about this window manager.

The chapter describes how to communicate with the window manager
using the XUI Toolkit and Xlib routines.

Different applications running on the same system simultaneously might
have different requirements for display space and other resources. Window
manager programs enable users to manipulate windows on the display and
thereby control the final layout of the screen. Users can move windows on
the display, resize windows, change the stacking order of windows, shrink
windows to icons, and expand windows from icons.

For example, in the DECwindows environment, a user can change the size
of a window by clicking on the resize button in the title bar at the top of
each window. Once the resize button is activated, the user can expand or
contract the boundaries of the window using the pointer cursor. (The VMS
DECwindows User's Guide describes this and other functions provided by
the DECwindows window manager.)

Your application can request a desired size or location from the window
manager. Section 14.2 describes how your application makes requests,
called hints, ofthe window manager. The window manager can grant the
request, ignore the request, or provide a compromise.

Although you can write an application that bypasses the window manager,
users cannot move or resize the application, nor can they shrink it to an
icon. (See Section 14.7.6 for more information about bypassing the window
manager in your application.)

Making Requests of the Window Manager
Your application can communicate its requests to the window manager in
two ways:

• Using window properties (predefined and vendor specific)

• Using shell widget attributes

14-1

14.2.1

Communicating with the Window Manager
14.2 Making Requests of the Window Manager

You must use Xlib routines to communicate using window properties.
If your application is written using the XUI Toolkit, you can use shell
widget attributes. The shell widget attributes hide some of the complexity
of working with window properties· and, in most cases, provide identical
capabilities.

Using Window Properties

14-2

Your application can communicate with the window manager by setting
properties on the window associated with the top-level widget of your
application widget hierarchy (each widget has an associated window). A
property is data associated with a particular window; every X window
can have properties associated with it. Every property has a name, a
data type, and an identifier (the identifier is known as an atom). (For
more information on window properties, see VMS DECwindows XUb
Programming Volume.) The window manager reads the properties you
place on the top-level window to get information from your application.
Your application reads the properties of the root window to get information
from the window manager. (The root window is the window that covers
the entire screen.)

You can use two types of properties to communicate with the window
manager:

• Predefined window properties

• Vendor-specific window properties

14.2.1.1 Predefined Window Properties
The predefined window properties are part of the X Window System,
Version 11, standard. These properties enable you to make commonly
needed requests of the window manager, such as the following:

• Associate a name with the top-level window of your application

• Specify the initial. size and screen location of your application

• Specify the pixmap used as the icon for your application

• Customize other aspects of the appearance and behavior of your
application

By convention, the names of the predefined properties begin with the
characters WM_. For example, the property you use to associate a name
with your application window is called WM_NAME. Property names
are case sensitive. The predefined window manager properties use all
uppercase characters. Table 14-1 lists the predefined window manager
properties.

Communicating with the Window Manager
14.2 Making Requests of the Window Manager

Table 14-1 Predefined Window Manager Properties

Property Data Type

WM_NAME STRING

WM_ICON_NAME STRING

WM_NORMAL_HINTS WM_SIZE_HINTS

WM_ZOOM;._HINTS1 WM_SIZE_HINTS

WM_HINTS WM_HINTS

WM_ COMMAND STRING

WM_ICON_SIZE WM_ICON_SIZE

WM_ CLASS STRING

WM_ TRANSIENT_FOR WINDOW

1 Not supported by the DECwindows window manager.

Description

Specifies the name you want to
associate with a window.

Specifies the name you want to
display in the icon associated
with your application.

Specifies the size of a window
in its normal state.

Specifies the size of a window
in its zoomed state.

Specifies information about the
initial state of your application,
the pixmap used as the icon,
the position of the icon,
and other aspects of your
application.

Specifies the command that
starts your application.

Lists the icon sizes supported
by the window manager.

Specifies the .name of an
instance of your application and
its class name.

Indicates that a window, such
as a dialog box, is transient.

Each property listed in Table 14-1 has an associated data type. For
example, the data type of the WM_NAME property is STRING. (Data type
names are also case sensitive.) The data types of some of the predefined
properties are data structures. For example, Xlib defines the data type of
the WM_HINTS property as the WM Hints data structure. The following
example illustrates the WM Hints data structure. To see the definitions
of all the predefined window properties, see the VMS DECwindows Xlib
Programming Volume.

typedef struct {
long flags;
Bool input;
int initial state;
Pixmap icon=:Fixmap;
Window icon window;
int icon x,-{con y;
Pixmap icon mask7
XID window_group;

XWmHints;

14-3

Communicating with the Window Manager
14.2 Making Requests of the Window Manager

Table 14-2 defines the members of the WM Hints data structure.

Table 14-2 Members of the WM Hints Data Structure

Member Name

flags

input

initial_ state

icon_pixmap

icon_ window

icon_x

icon_y

icon_mask

window_group

Contents

Specifies the members of the data structure that are defined.

Indicates whether the client relies on the window manager to get keyboard input.

Defines how the window should initially appear. Possible initial states are:

Constant Name

DontCareState

NormalState

ZoomState1

lconicState

lnactiveState

Description

Application can start up in any state.

Main application window is mapped.

Window starts in zoomed state.

Main application window is not mapped.

Application appears as option in a menu.

Identifies the pixmap used to create the window icon.

Identifies the window to be used as an icon.

Specifies the initial x-coordinate of the icon.

Specifies the initial y-coo~dinate of the icon.

Specifies the pixels of the icon pixmap used to create the icon.

Specifies that the window belongs to a group of other windows.

1 Not supported by the DECwindows window manager.

14-4

14.2.1.2 Vendor-Specific Window Properties
Vendors that create window managers can extend the set of predefined
window manager properties to enable applications to communicate with
their window managers. You use these additional properties to specify
values for the additional capabilities provided by the vendor's window
manager. For example, the DECwindows window manager enables you to
specify the icon it displays in the title bar of your application.

By convention, vendors distinguish the name of their window manager
properties with some identifying prefix. For example, the names of
properties specific to the DECwindows window manager begin with the
characters DEC_ WM_. Table 14-3 lists the properties defined by the
DECwindows window manager.

Communicating with the Window Manager
14.2 Making Requests of the Window Manager

Table 14-3 Properties Defined by the DECwindows Window Manager

Property

DEC_WM_HINTS

DEC WM DECORATION
_GEOMETRY1

Data Type

DEC_WM_HINTS

DEC_WM_DECORATION
_GEOMETRY

Description

Specifies the shrink-to-icon button pixmap, position of
the icon in the icon box, and appearance of the title
bar.

Specifies the font the DECwindows window manager
uses in the title bar and icon and specifies the sizes it
supports for the shrink-to-icon button and other aspects
of the title bar.

1 The application should not attempt to set this property. The DECwindows window manager uses this property to communicate
with your application.

The data type of the DEC_ WM_HINTS property is a DEC WM Hints data
structure. The following illustrates the DEC WM Hints data structure;
Figure 14-1 illustrates the VAX definition of this data structure. Note
the distinction between the DEC_WM_HINTS property, which contains
vendor-specific information, and the WM_HINTS property, which specifies
information predefined by the Xlib standard.

typedef struct {
unsigned long value mask;
Pixmap iconify_pixmap;
int icon bqx x;
int icon-box-y;
Bool tiled; -
Bool sticky;
Bool no_iconify_button;
Bool no lower button;
Bool no-resize button;

DECWmHintsRec; *DECWIDHints;

14-5

Communicating with the Window Manager
14.2 Making Requests of the Window Manager

Figure 14-1 DEC WM Hints Data Structure (VAX Binding)

31 0

value_mask

iconify _pixmap

icon_box_x

icon_box_y

tiled

sticky

no_iconify

no_lower

no_resize

ZK-1317A-GE

Table 14-4 defines the members of the DEC WM Hints data structure.

Table 14-4 Members of the DEC WM Hints Data Structure

Member

value_mask

iconify_pixmap

icon_box_x

icon_box_y

14-6

Contents

Specifies the members of the data structure that are defined. Possible values are:

Constant Name

DECWmlconifyPixmapMask

DECWmlconBoxXMask

DECWmlconBoxYMask

DECWmTiledMask

DECWmStickyMask

DECWmNolconifyButtonMask

DECWmNolowerButtonMask

DECWmNoResizeButtonMask

Description

lconify_pixmap member is defined.

lcon_box_x member is defined.

lcon_box_y member is defined.

Tiled member is defined.

Sticky member is defined.

No_iconify_button member is defined.

No_lower_button member is defined.

No_resize_button member is defined.

Identifies the pixmap used to create the shrink-to-icon button in the title bar and, if the
user specified use of small icons, the icon pixmap.

Specifies the initial x-coordinate of the icon in the icon box. Specify this value in icon
units.

Specifies the initial y-coordinate of the icon in the icon box. Specify this value in icon
units.

(continued on next page}

Communicating with the Window Manager
14.2 Making Requests of the Window Manager

Table 14-4 (Cont.) Members of the DEC WM Hints Data Structure

Member

tiled

sticky

no_iconify _button

no_lower_button

no_resize_button

Contents

Specifies whether windows should overlap.

Specifies whether windows should remain in their place in the window stacking order.

Specifies whether the shrink-to-icon button should be present in the title bar.

Specifies whether the push-to-back button should be present in the title bar.

Specifies whether the resize button should be present in the title bar.

The data type of the DEC_ WM_DECORATION_GEOMETRY property is
the WM Decoration Geometry data structure. The following illustrates
the WM Decoration Geometry data structure; Figure 14-2 illustrates
the VAX definition of this data structure. You cannot specify values for
the members of this property; the window manager uses this property to
communicate information to applications.

typedef struct {
Font title_font;
Font icon font;
int border width;
int title height;
int non title width;
int icon name-width;
int iconify width;
int iconify-height;

} WrnDecorationGeometryRec, *WrnDecorationGeometry;

Figure 14-2 WM Decoration Geometry Data Structure (VAX Binding)

31 0

title_font

icon_font

border_width

title_height

non_title_width

icon_name_width

iconify_width

iconify _height

ZK-1318A-GE

Table 14-5 defines the members of the WM Decoration Geometry data
structure.

14-7

Communicating with the Window Manager
14.2 Making Requests of the Window Manager

Table 14-5 Members of the WM Decoration Geometry Data Structure

Member

title_font

icon_font

border_width

title_height

non_title_width

icon_name_width

iconify_width

iconify _height

Contents

Identifies the font in which the window manager displays the name you associate with
the top-level window of your application.

Identifies the font in which the window manager displays the name you associate with
your application icon.

Specifies the width of the border with which the window manager surrounds your
top-level window.

Specifies the height of the title bar the window manager displays at the top of your
application's top-level window.

Specifies the width of the title bar, not including the width of the title area. This
includes the left and right border widths, the width of the shrink-to-icon button, and
the push-to-back and resize buttons and the borders around each of these buttons.

Specifies the width of the icon name.

Specifies the width of the shrink-to-icon button in the title bar.

Specifies the height of the shrink-to-icon button in the title bar.

14.2.2 Using Shell Widget Attributes

14.3

As an alternative to using window properties, you can communicate with
a window manager by using shell widget attributes. The shell widget is
always the top-level widget of an application. (Section 2.3.1 describes the
application widget hierarchy.)

With shell widget attributes, you can communicate with the window
manager the same way you assign values to the attributes of any other
XUI Toolkit widget: by using an argument list. Section 14.5 describes how
to communicate with the window manager using shell widget attributes.

The XUI Toolkit defines shell widget attributes that allow you to set
both standard and vendor-specific window manager properties. The VMS
DECwindows Toolkit Routines Reference Manual describes the class
hierarchy of the shell widgets and lists all the attributes supported by the
shell widgets.

Setting and Retrieving Predefined Window Manager Properties

14-8

To set or retrieve the value of a predefined window manager property,
use one of the routines that Xlib provides for performing these tasks. For
example, to specify the text string that the window manager displays in
your application's icon, use the SET ICON NAME Xlib routine. Table 14-6
lists these routines. For more information about these routines, see the
VMS DECwindows Xlib Routines Reference Manual.

Communicating with the Window Manager
14.3 Setting and Retrieving Predefined Window Manager Properties

Table 14-6 Xlib Routines for Setting and Retrieving Predefined Window
Manager Properties

Property Set Routine Retrieve Routine

WM_ NAME STORE NAME FETCH NAME

WM_ICON_NAME SET ICON NAME GET ICON NAME

WM_HINTS SET WM HINTS GET WM HINTS

WM_NORMAL_HINTS SET NORMAL HINTS GET NORMAL HINTS

WM_ CLASS SET CLASS HINT GET CLASS HINT

WM_ICON_SIZE SET ICON SIZES1 GET ICON SIZES

WM_TRANSIENT_FOR SET TRANSIENT GET TRANSIENT FOR HINT
FOR HINT

1 Applications should only read this property; the window manager sets the value of this property
to provide information to applications.

When you use one of these routines to set a window manager property
whose data type is a data structure, the routine changes the values of
all the members of the data structure, not just the value of the members
for which you have specified values. To change the value of a member
of a window manager property data structure, first retrieve the current
value of the property (using the appropriate Xlib routine) and modify
the member of the data structure you want to change. Then assign the
modified data structure as the value of the property.

Example 14-1 illustrates how to use Xlib routines to set the value of the
WM_HINTS and WM_NAME predefined properties. Note that the WM_
HINTS property is a data structure.

Example 14-1 Assigning Values to Predefined Window Manager Properties

O#include <decw$include/Xutil.h>
#include <decw$include/Xatom.h>

flx~MHints wmhints;

@>w~hints.icon_pixmap = XCreatePixmapFromBitmapData(dpy, root, checker32 bits,
checker32 width, checker32 height, fg, bg,-depth);

wmhints.-flags = IconPixmapHint; - -

e»xsetWMHints(dpy, win, &wmhints);

8xstoreName(dpy, win, "Checkers");

0 The example includes two Xlib symbol definition files. The Xutil.h file
defines the contents of the property data structures. The Xatom.h file
contains the declarations of the atoms used to refer to the properties;

14-9

14.4

Communicating with the Window Manager
14.3 Setting and Retrieving Predefined Window Manager Properties

8 The example declares a variable, named wmhints, .of the data type
WM Hints data structure. This data structure holds the values to be
assigned to the WM_HINTS property.

e In the next two statements, the example assigns values to members
of the data structure. First, the example assigns the identifier of a
pixmap as the value of the appropriate member of the data structure.
Second, the example sets the flag member of the WM Hints data
structure to indicate which member of the data structure has been
assigned a value.

e After setting up the data structure with values, the example uses the
SET WM HINTS Xlib routine to change the value of the WM_HINTS
property. The filled-in WM Hints data structure is passed to the
routine.

8 To associate a name with its main application window, the example
uses the STORE NAME Xlib routine. This routine assigns the string
passed as an argument to the routine as the value of the WM_NAME
property. Do not use compound strings for this text.

Setting and Retrieving Vendor-Specific Window Manager Properties
As with predefined window manager properties, vendors can provide
support routines that you can use to set the value of the properties they
define. If the vendor does not provide support routines, you must use the
generic property manipulation Xlib routine, CHANGE PROPERTY, to set
a vendor-specific property. Example 14-2 illustrates how to set the value
of the DEC WM Hints property to specify the icon that appears in the title
bar.

Example 14-2 Setting Vendor-Specific Window Manager Properties

#include <decw$include/Xlib.h>
#include <decw$include/Xutil.h>
#include <decw$include/Xatom.h>
#include <decw$include/decwmhints.h>
#include <stdio.h>

«tnicwmHints dwmhints;
DECWmHintsRec *h = &dwmhints;

8Atom wmatom;

ew~atom = XInternAtom(dpy, "DEC_WM_HINTS", 0);

8if (wmatom != None)
{

h->value_mask = DECWmiconifyPixmapMask;

h->iconify_pixmap = XCreatePixmapFromBitmapData(dpy, root,
checker16 bits, checker16 width,
checker16=height, fg, bg,-depth);

14-10

(continued on next page)

14.5

Communicating with the Window Manager
14.4 Setting and Retrieving Vendor-Specific Window Manager Properties

Example 14-2 (Cont.) Setting Vendor-Specific Window Manager Properties

0 XChangeProperty(dpy, win, wmatom, wmatom, 32, PropModeReplace,
h, sizeof(DECWmHintsRec)/4);

0 The example declares a variable of the DEC WM Hints data structure,
named dwmhints, and a pointer to the data structure, named h.

8 The example declares a variable to hold the DECwindows window
manager atom.

@) The example creates an atom called DEC_WM_HINTS using the
INTERN ATOM Xlib routine.

e If the example successfully creates the atom, it then assigns the
pixmap identifier as the value of the appropriate member of the DEC
WM Hints data structure. The example indicates which member of the
data structure has been assigned a value in the value mask member.

0 The example uses the CHANGE PROPERTY Xlib routine to assign the
pixmap as the value of the DEC_WM_HINTS property.

To read the value of a vendor-specific window manager property, use the
GET WINDOW PROPERTY Xlib routine. For example, the DECwindows
window manager provides information about the sizes of pixmaps it
accepts for the shrink-to-icon button in the title bar, the height of the title
bar, and other read:-only information.

Setting and Retrieving Shell Widget Attributes
As with any XUI Toolkit widget, you assign values to shell widget
attributes by using an argument list (Section 2.4.1.2 describes how to
create an argument list). Unlike other XUI Toolkit widgets, certain
shell widget attributes can be set only when you create the shell widget.
Section 14.5.1 lists these attributes and describes how to set them. The
remaining shell widget attributes can be set either when you create the
shell widget or after it has been created. Section 14.5.2 describes how to
set these attributes.

14.5.1 Setting Shell Widget Attributes at Widget Creation Time
The following are the shell widget attributes that can be assigned values
only when you create the shell widget.

14-11

Communicating with the Window Manager
14.5 Setting and Retrieving Shell Widget Attributes

argc input width_inc

argv geometry height_inc

icon_x min_ width min_aspect_x

icon_y min_height max_aspect_y

iconic max_width wm_timeout

initial_ state max_height wait_for_wm

To assign a value to one of these attributes, you must use the
APPLICATION CREATE SHELL intrinsic routine to create the widget.
You cannot set shell widget attributes at creation time if you use the
INITIALIZE intrinsic routine to create the top-level shell widget of your
application. (To assign values to the attributes of a pop-up shell widget,
pass an argument list to the CREATE POPUP SHELL intrinsic routine.)

Example 14-3 illustrates how to set shell widget attributes at widget
creation time.

Example 14-3 Setting Shell Widget Attributes at Widget Creation Time

Display *display;
XtAppContext context;
Widget toplevel;
Arg arglist[25];
int ac;

OxtToolkitinitialize();

context= XtCreateApplicationContext();

display= XtOpenDisplay(context, "mynode::O", "appl_test",
"testclass", NULL, 0, &argc, &argv);

ac = O;
8xtsetArg(arglist[ac], DwtNallowShellResize, TRUE); ac++;

XtSetArg(arglist[ac], DwtNx, 150); ac++;
XtSetArg(arglist[ac], DwtNy, 150); ac++;

Otoplevel = XtAppCreateShell("Appl Test", "testclass",
applicationShellWidgetClass,
display, arglist, ac);

14-12

0 The example calls the TOOLKIT INITIALIZE intrinsic routine to
initialize the XUI Toolkit and then calls the DISPLAY intrinsic routine
to open a connection to the display device. The example also calls the
CREATE APPLICATION CONTEXT routine to create the application
context.

8 After initializing the XUI Toolkit and opening the connection to the
display, the example creates an argument list in which it assigns
values to shell widget attributes. The example sets the allow _shell_
resize attribute to true, which instructs the shell widget to accept

Communicating with the Window Manager
14.5 Setting and Retrieving Shell Widget Attributes

resize requests from the application. The example also specifies its
initial position in the x and y attributes.

• The example then creates the shell widget using the APPLICATION
CREATE SHELL intrinsic routine, passing the argument list to the
routine. This routine returns the identifier of a shell widget.

14.5.2 Setting Shell Widget Attributes After Creation Time
To assign values to shell widget attributes after the widget has been
created, use the SET VALUES intrinsic routine. Create an argument list
in which you assign values to the shell widget attributes you want to set
and then pass the argument list to the SET VALUES intrinsic routine.
Example 14-4 shows how to use the SET VALUES intrinsic routine to
assign values to shell widget attributes.

Example 14-4 Using the SET VALUES Intrinsic Routine to Set Shell Widget Attributes

8tinclude decw$include/vendor.h

ftt~plevel Xtinitialize("Hi","helloworldclass",NULL, 0, &argc, argv);

count = O;
•xtsetArg(arglist[count], XtNallowShellResize, TRUE); count++;

XtSetArg(arglist[count], XtNx, 150); count++;
XtSetArg(arglist[count], XtNy, 150); count++;
XtSetArg(arglist[count], XtNiconPixmap, IconPixmap); count++;
XtSetArg(arglist[count], XtNiconifyPixmap, SmalliconPixmap); count++;

CtxtsetValues (toplevel, arglist, count);

8 The XUI Toolkit symbol definition file vendor.h contains definitions of
the vendor specific properties, such as the iconify _pixmap attribute.

• The INITIALIZE intrinsic routine is called to create the shell widget.
This routine initializes the XUI Toolkit and returns the identifier of an
application shell widget.

• After creating the shell widget, the example creates an argument list
in which it assigns values to shell widget attributes. The example sets
the allow _shell_resize attributes to true, which instructs the shell
widget to accept resize requests from the application, and specifies the
initial screen location by its x-coordinate and y-coordinate. In addition,
the•example specifies the pixmaps it wants used in its icon and in the
shrink-to-icon button in the title bar. The example assigns the pixmap
identifiers as the value of the icon_pixmap and iconify _pixmap
attributes.

14-13

14.6

14.7

Communicating with the Window Manager
14.5 Setting and Retrieving Shell Widget .Attributes

8 The example assigns values to these attributes using the SET VALUES
intrinsic routine.

Receiving Messages from the Window Manager
The preceding sections describe how to communicate with the window
manager by setting and reading the values of window properties. However,
some applications may need to know when the window manager changes
the value of a property. For example, your application might want to know
when it is iconified. Window managers tell your application when the
value of a property changes by sending a client message event. To receive
these events from a window manager, you must indicate that you want to
receive property change events on the top-level widget of your application
and on the root window.

If a window manager is not going to fulfill a request, it sends the WM_
CONFIGURE_DENIED client message event.

If the window manager moves your main application window, it sends
the WM_MOVED client message event to your application. The data
in this event contains the new x-coordinate and y-coordinate of your
window. Your application should not assume that requests to the window
manager are complete until the window manager notifies your application
that the operation completed. To receive these events, choose to receive
StructureN otify events on your top-level window.

The DECwindows window manager uses the DEC_ WM_TAKE_FOCUS
client message event to instruct your application to set the input focus to
one of its children. If your application previously had input focus, restore
focus to the child that had input focus. Otherwise, either give the input
focus to a child that can accept it or ignore the event.

If your application uses the XUI Toolkit, you do not need to choose
explicitly to receive these events. The shell widget handles these
events automatically. However, you can specify the amount of time your
application will wait for notification from a window manager. Specify the
time as the value of the wm_timeout attribute. If the window manager
does not respond in the allotted time, the XUI Toolkit sets the value of the
wait_for_wm attribute to false. Later events may reset this value.

Customizing Your Application Using Window Manager Hints

14-14

The following sections describe the aspects of your application that you can
customize using window manager hints. The following sections use the
DECwindows window manager as an example; other window managers
might implement some of these functions differently. For example, the
DECwindows window manager decorates each window with a title bar in
which it displays the name that you associate with the window. Other
window managers might use another mechanism to display the text
you specify as the name. If you want to write an application that runs
with any window manager, do not rely on the presence of vendor-specific
features.

Communicating with the Window Manager
14. 7 Customizing Your Application Using Window Manager Hints

Figure 14-3 presents the screen appearance of an application running
with the DECwindows window manager. The figure illustrates the two
main areas you can customize: the main application window and your
application icon. The DECwindows window manager decorates each
window with a title bar that contains a shrink-to-icon button, the name of
your window, a push,.to-back button, and a resize button. In addition, the
DECwindows window manager creates an icon for every application and
displays the icons in the Icon Box.

Figure 14-3 Appearance of an Application Running Under the DECwindows Window Manager

~k:onBox ~~onHUBeuel
\:'.:::: Icon

Shrink-to
Icon

/--Button
/ JI' Title Bar

Resize Button~
Push-to-Back Button ~ "'\. ,

~l Session Manager: © 1988, 1990 Digital Equipment Corporation. All Rights Reserved. lh!llliiJ
Session Applications Customize Print Screen Help

Messages

ZK-1278A-GE

Table 14-7 lists the common tasks you can perform using hints to the
window manager. The table also lists the shell widget attribute and
window property you must use to perform the tasks.

14-15

Communicating with ~he Wind~w .Manager
14. 7 Customizing Your Application Using Window Manager Hints

Table 14-7 Common Tasks.Perfe>rmed with the Window Manager .

Task

Main Application Window

Specify the name that appears in the title bar

Position the application on display at startup

Specify the initial width and height of the application

Specify the minimum initial width and height of the
application

Specify the maximum initial width and height of the
application

Specify how much to increase the width or height
when resized

Sp~cify the aspect ratio of the display

Specify the pixmap used in the shrink-to-icon button in
the title bar

Specify to omit the shrink-to-icon button in the title bar

Specify to omit the push-to-back button in the title bar

Specify to omit the resize button in the title bar

Icon

Associate a name with the application icon

Specify the pixmap used in the application icon

Create an application icon that appears nonrectangular

Replace the pixmap used in the application icon with a
window

Position the application icon in the Icon Box

Shell Widget
Attribute

title·

x
y

width
height

min_ width
min_height

max_width
max_height

width_inc
height_inc

min;._aspect_x
max_aspect_x
min_aspect_y
max_aspect_y

iconify _pixmap

no_iconify _button

no_restack_button

no_resize_button

icon_name

icon_pixmap

icon_mask

icon_window

icon_box_x
icon box_y

Window Manager Property

WM_NAME

NORMAL_HINTS

NORMAL HINTS

NORMAL_HINTS

NORMAL_HINTS

NORMAL_HINTS

NORMAL_HINTS

DEC_WM_HINTS

DEC_WM_HINTS

DEC_WM_HINTS

DEC_WM_HINTS

WM_ICON_NAME

WM_HINTS

WM_HINTS

WM"'"""HINTS

DEC_WM_HINTS

In addition to the attributes you can set, you can also read certain
attributes to obtain information about aspects of the environment. The
application cannot set these attributes; the window manager places
information in these attributes. Table 14-8 lists the information that
the window manager provides in these attributes.

14-16

Communic.ating with the Window Manager
14. 7 Customizing Your Application Using Window Manager Hints

Table 14-8 Information Provided by the Window Manager

Information

Minimum width and height of an icon

Maximum width and height of an icon

Amount width and height of icon can be
increased

Font used by the window manager in the
title bar

Font used by the window manager in the
application icon

Border width

Height of the title bar

Width of the title bar, not including the title

Maximum width of the title in the icon

Maximum width and height of the shrink-to
icon button in the title bar

Current application state

Shell Widget
Attribute

No attribute

No attribute

No attribute

title_font

icon_ font

border_width

title_height

non_title_width

icon_name_width

iconify_width
iconify _height

icon_state

14.7.1 Customizing Your Main Application Window

Window Manager Property

WM_ICON_SIZE

WM_ICON_SIZE

WM_ICON_SIZE

DEC_WM_DECORATION~GEOMETRY

DEC_WM_DECORATION_GEOMETRY

DEC_WM_DECORATION_GEOMETRY

DEC_WM_DECORATION_GEOMETRY

DEC_WM_DECORATION_GEOMETRY

DEC_WM_DECORATION_GEOMETRY

DEC_WM_DECORATION_GEOMETRY

WM_ STATE

You can customize the following aspects of your main application window:

• Name associated with the window

• Initial size and position of the window

• Title bar

Figure 14-4 presents the main application window from Figure 14-3 and
labels the parts you can customize with the name of the shell widget
attribute or window property you would use.

14-17

Communicating with the Window Manager
14.7 Customizing Your Application Using Window Manager Hints

Figure 14-4 Customizable Aspects of the Main Application Window

x,y no_iconify

L r iconify_pixmap
noJesize~

no_lower~"' rtitle

~I Session Manager:© 1988, 1990 Digital Equipment Corporation. All Rights Reserved. lb!lfilJ

l
height

l

14-18

Session Applications Customize Print Screen Help

Messages

width -----------------.
ZK-1291A-GE

14. 7 .1.1 Associating a Name with Your Main Application Window
To associate a name with your main application window, assign the
address of a text string as the value of the title shell widget attribute or
the WM_NAME property. The WM_NAME property typically is used to
communicate some information to the user that can change during the
execution of your application. For example, you could display a file name
in the title bar that changes as the user manipulates different files.

Using the XUI Toolkit, specify the name as an argument to the
APPLICATION CREATE SHELL intrinsic routine. If your application
uses the INITIALIZE intrinsic routine to create the top-level shell widget,
pass the text you want the window manager to use as the name in the
name argument to the routine. To change this text during execution of
your application, use the SET VALUES intrinsic routine to pass a new
value to the title attribute of the application shell widget. The window
manager does not use compound strings for the name.

Using window properties, use the STORE NAME Xlib routine to assign a
value to the WM_NAME property.

The DECwindows window manager displays the text in the title bar it
places at the top of the window. The DECwindows window manager
places no restrictions on the amount of text you can specify as the name.
However, long names will be clipped by the size of the title area in the title
bar. The window manager displays only a single line of text in the title
bar.

Communicating with the Window Manager
14. 7 Customizing Your Application Using Window Manager Hints

14.7.1.2 Specifying the lnitial·Size and Position of Your Application
To specify the initial size and position of your application, assign
values to the width, height, x, and y attributes of the shell widget.
Using properties, these attributes are members of the X Size Hints
data structure, which is the data type of the WM_NORMAL_HINTS
property. Use the SET NORMAL HINTS Xlib routine to assign values
to this property. Specify these values in pixels; the x-coordinate and y
coordinate specify the position relative to the root window. Example 14-3
in Section 14.5.1 uses shell widget attributes to specify the initial position
of the application on the display.

You can also specify both a range of appropriate sizes for your application
and the increment to be used within this range. Specify the minimum
width dimension in the min_ width attribute and the maximum width
in the max_ width attribute. Similarly, use the min_height and max_
height attributes to specify a range of heights. Specify the increment
in the width_inc and height_inc attributes. For example, if you were
writing a terminal emulator program, you might set the height_inc
attribute to be the height of the font.

Your application should avoid resizing or repositioning itself. These
functions should be under the user's control by way of the window
manager. However, under some circumstances, self-resizing may be
appropriate; for example, a bitmap editor may need to resize itself in order
to accommodate a bigger bitmap that has just been read in from a file.

14.7.1.3 Customizing the Title Bar
You can customize certain aspects of the title bar that the window manager
places at the top of the main window of your application. In addition to
specifying the title bar text (described in Section 14.7.1.1), you can:

• Specify the pixmap used as the shrink-to-icon button in the title bar

• Specify whether or not the title bar should include a shrink-to-icon
button, push-to-back button, or resize button

To specify the pixmap used in the shrink-to-icon button, pass the identifier
of a pixmap as the value of the iconify_pixmap attribute. Using window
properties, you would pass the identifier in the DEC_ WM_HINTS property.
If you do not specify a pixmap for the shrink-to.:.icon button, the window
manager uses a pixmap of a paned window as the default. Example 14-5
illustrates how to specify the pixmap used for the shrink-to-icon button
using window manager properties. (For an example of how to specify the
pixmap used for the shrink-to-icon button using shell widget attributes,
see Section 14. 7 .3.2.)

14-19

Communfcating with the Window Manager
14.7 Customizing Your Application .. Using Window Manager Hints

Example 14--5 Specifying the Shrink-to-Icon Pixmap Using the CHANGE PROPERTY Xlib
Routine

#include <decw$include/Xlib.h>
#include <decw$include/Xutil.h>
#include <decw$include/Xatom.h>
#include <decw$include/decwmhints.h>
#include <stdio.h>

/* small icon pixmap bits */

t»#define checker16 width 16
#define checker16 height 16
static char checker16_bits[] = {

OxOf, OxOf, OxOf, OxOf, OxOf, OxOf, OxOf, OxOf, OxfO, OxfO, OxfO, OxfO,
OxfO, OxfO, OxfO, OxfO, OxOf, OxOf, OxOf, OxOf, OxOf, OxOf, OxOf, OxOf,
OxfO, OxfO, OxfO, OxfO, OxfO, OxfO, OxfO, OxfO};

/* big icon pixmap bits */

#define checker32 width 32
#define checker32-height 32
static char checker32_bits[] = {

OxOf, OxOf, OxOf, OxOf, OxOf, OxOf,
OxOf, OxOf, OxOf, OxOf, OxfO, OxfO,
OxfO, OxfO, OxfO, OxfO, OxfO, OxfO,
OxOf, OxOf, OxOf, OxOf, OxOf, OxOf,
OxfO, OxfO, OxfO, OxfO, OxfO, OxfO,
OxfO, OxfO, OxfO, OxfO, OxOf, OxOf,
OxOf, OxOf, OxOf, OxOf, OxOf, OxOf,
OxfO, OxfO, OxfO, OxfO, OxfO, OxfO,
OxOf, OxOf, OxOf, OxOf, OxOf, OxOf,
OxOf, OxOf, OxOf, OxOf, OxfO, OxfO,
OxfO, OxfO, OxfO, OxfO, OxfO, OxfO,

int main()
{

Display *dpy;
Screen *screen;
Window root, win;
unsigned long fg, bg;
unsigned int depth, screen_number;
XEvent event;
XWMHints wmhints;

ft DECWmHints dwmhints;
DECWmHintsRec *h = &dwmhints;

6) Atom wmatom;

dpy = XOpenDisplay(NULL);

OxOf,
OxfO,
OxfO,
OxOf,
OxfO,
OxOf,
OxOf,
OxfO,
OxOf,
OxfO,
OxfO,

if (dpy ==NULL) printf("Dpy is NULL!\n");
screen_number = XDefaultScreen(dpy);
screen = XDefaultScreenOfDisplay(dpy);
root= XDefaultRootWindow(dpy);
fg = XBlackPixelOfScreen(screen);
bg = XWhitePixelOfScreen(screen);
depth= XDefaultDepth(dpy,screen number);

OxOf, OxOf, OxOf, OxOf, OxOf,
OxfO, OxfO, OxfO, OxfO, OxfO,
OxfO, OxOf, OxOf, OxOf, OxOf,
OxOf, OxOf, OxOf, OxOf, OxOf,
OxfO, OxfO, OxfO, OxfO, OxfO,
OxOf, OxOf, OxOf, OxOf, OxOf,
OxOf, OxfO, OxfO, OxfO, OxfO,
OxfO, OxfO, OxfO, OxfO, OxfO,
OxOf, OxOf, OxOf, OxOf, OxOf,
OxfO, OxfO, OxfO, OxfO, OxfO,
OxfO};

win= XCreateSimpleWindow(dpy, root, 200, 200, 400, 400, 1, fg, bg);

~ wmhints.icon pixmap= XCreatePixmapFromBitmapData(dpy, root, checker32 bits,
- checker32 width, checker32 height, fg, bg,-depth);

wmhints.flags = IconPixmapHint; - -
XSetWMHints(dpy, win, &wmhints);

(continued on next page)

14-20

Communicating with the Window Manager
14~7 'Customizing Your Application Using Window Manager Hints

Example 14-5' (Cont~) . Specifying the Shrink-to-Icon Pixmap Using the CHANGE PROPERTY
Xlib Routine

XStoreName(dpy, win, "Checkers");
XSeticonName(dpy, win, "Checkers");

• wmatom = XInternAtom(dpy, "DEC WM HINTS", 0);
if (wmatom != None) { - -

(!) h->value_mask = DECWmiconifyPixmapMask;
h->iconify_pixmap = XCreatePixmapFromBitmapData(dpy,

root, checker16_bits, checker16_width,
checker16_height, fg, bg, depth);

0 XChangeProperty(dpy, win, wmatom, wmatom, 32, PropModeReplace,
h, sizeof(DECWmHintsRec)/4);

.}

XMapWindow(dpy, win);
for (;;)

XNextEvent(dpy, &event);

0 The bits that make up the shrink-to-icon button pixmap, in Xll
format.

8 The example declares a variable, named dwmhints, of the DEC WM
HINTS data structure, the data type of the DEC_ WM_HINTS property.
You use this property to specify the shrink-to-icon button pixmap.

0 The example declares an atom, named wm_atom. To use the DEC_
WM_HINTS property, you must first define an atom for the structure.

8 The example creates the pixmap using the CREATE PIXMAP FROM
BITMAP DATA Xlib routine. This routine returns a pixmap identifier.
For more information about this routine, see the VMS DECwindows
Xlib Routines Reference Manual.

CD To use the DEC_ WM_HINTS property, the example must create an
atom for the property. The example uses the INTERN ATOM Xlib
routine to create this atom. For more information about this routine,
see the VMS DECwindows Xlib Routines Reference Manual.

0 If it creates the atom successfully, the example then assigns values
to members of the DEC WM Hints data structure. In the ·example,
the identifier of the small icon pixmap is assigned as the value of the
iconify _pixmap member of the data structure. In addition, the example
indicates which member of the data structure has been specified by
assigning the constant DECWmlconifyPixmapMask as the value of
the value_mask member of the data structure. Table 14-4 lists the
constants you would use to identify the members of the DEC WM
Hints data structure to which you have assigned values.

0 The example sets the value of this attribute using the CHANGE
PROPERTY Xlib routine. The example passes the DECwindows
window manager structure as an argument to the routine. For
more information about this routine, see the VMS DECwindows
Xlib Routines Reference Manual.

14-21

Communicating with the Window Manager
14. 7 Customizing Your Application Using Window Manager Hints

If the user has chosen to use small icons, the pixmap specified for the
shrink-to-icon button is also used in the icon. In the DECwindows
environment, a user can choose between two sizes of icon: large and
small. For information about the icon pixmap, see Section 14.7.3.2.

14.7.1.4 Including Shrink-to-Icon, Push-to-Back, and Resize Buttons in the Title Bar
By default, the window manager includes shrink-to-icon, push-to-back, and
resize buttons in the title bar. These buttons invoke the window manager
functions that allow a user to shrink an application to an icon; change
the position of a window in the stacking order, or change the size of the
window. You can specify that the title bar not include these buttons by
setting the no_iconify, no_lower, and no_resize attributes to true.

14.7.2 Getting Information About Your Main Application Window
In addition to the attributes and properties that you can set, you can
also use certain attributes and properties to inquire about aspects of your
main application window. The window manager uses these attributes and
properties to communicate information about sizes it supports and other
restrictions. You cannot assign values to these attributes; however, you
can use them to find out the following information:

• Font used to display text in the title bar

• Height of the title bar

• Width of the title bar, not including the width of the title

• Width and height of the pixmap used for the shrink-to-icon button

• Width of the border the window manager puts around the main
window of your application

Figure 14-5 shows the parts of the main application window about which
you can inquire. Each part is labeled with the name of the shell widget
attribute you would use to specify it.

Figure 14-5 Informational Attributes Provided by the Window Manager

14-22

iconify _height

r iconify_width

~ title_font

---------------non_title_width -------------

'--border_width
ZK-1293A-GE

Use the title_font attribute to find out the font the window manager uses
to display text. To find out the height of the title bar, read the value of
the title_height attribute. To find out how large to make the pixmap
that you want to use as the shrink-to-icon button, read the value of the
iconify _height and iconify _width attributes.

Communicating with the Window Manager
14. 7 Customizing Your Application Using Window Manager Hints

To find out how much space is available for displaying text in the title
bar, subtract the value of the non_title_ width attribute from the total
width of your main application window. The value of the non_ title_ width
attribute is the sum of the widths of the shrink-to-icon, push-to-back,
and resize buttons plus the sum of the border widths on each side of the
window with the border widths around each button. For example, if the
window manager supports shrink-to-icon button pixmaps that are
17 pixels wide, the value of the non_ title_ width attribute would be
61 pixels. This value is calculated by multiplying 17 pixels by 3 (for each
button in the title bar) and adding 2 pixels for each of the 5 borders.

You can also obtain this information by using the GET WINDOW
PROPERTY Xlib routine on the DEC_ WM_DECORATION_GEOMETRY
property.

14.7.3 Customizing Your Application Icon
The window manager creates an icon for every application running on
a workstation. The icon is a rectangular window containing a graphical
pixmap and a text string. When an application is active (that is, when
its main window is mapped), the window manager displays a dimmed
image of the pixmap. When an application is in its iconic state, the image
appears at full brightness. The DECwindows window manager displays
these icons in an Icon Box.

You can customize various aspects of the icon associated with your
application, including:

• Text that appears in the icon

• Pixmap used in the icon

• Position of the icon in the Icon Box

Figure 14-6 shows the Icon Box from Figure 14-3. In this illustration, the
parts of the icon you can customize are labeled with the name of the shell
widget attribute name you would use to specify it.

14-23

Communicating with the Window Manager
14. 7 Customizing Your Application Using Window Manager Hints

Figure 14-6 Customizable Aspects of Your Application Icon

14-24

--- icon_name

icon_pixmap
icon_window
icon_mask

14.7.3.1 Specifying the Text in the Icon

ZK-1292A-GE

To specify the text you want to appear in the icon associated with your
application, assign the address of a text string as the value of the icon_
name attribute. Using window properties, you would assign the address
of the text string as the value of the predefined Xlib property WM_ICON_
NAME using the SET ICON NAME Xlib routine. You must pass standard
text strings for these text values; the window manager does not use
compound strings.

If you do not specify an icon name, the DECwindows window manager
uses the text you specified for the value of the title attribute as the icon
name.

Some window managers restrict the length of the text string they display
in icons. To find out this restriction, read the value of the icon_name_
width attribute or retrieve the value from the DEC_ WM_DECORATION_
GEOMETRY property. The DECwindows window manager places no
restriction on the length of the icon name (the attribute value is 0).

You can also find out what font the window manager uses to display the
text by reading the value of the icon_font attribute or retrieving the value
from the DEC_WM_DECORATION_GEOMETRY property.

14. 7 .3.2 Specifying the Pixmap Used in Your Application Icon
To specify the pixmap that the window manager will use in your
application icon, assign a pixmap identifier as the value of the icon_
pixmap attribute. Example 14-6 presents a version of the Hello Worldl
application, introduced in Chapter 1, that includes a customized icon. (For
an example of how to specify the icon pixmap using the SET WM HINTS
Xlib routine, see Section 14.7.1.3.) If you do not specify an icon pixmap,
the DECwindows window manager uses the default paned window pixmap
in the icon. However, if the user has selected the small icon option, the
window manager uses the pixmap that you specified for the shrink-to-icon
button as the pixmap in the icon.

Communicating with the Window Manager
14.7 Customizing Your Application Using Window Manager Hints

Example 14-6 Using Shell Widget Attributes to Specify Your Application Icon

#include <stdio>
#include <decw$include/DwtAppl.h>
t»#include <decw$include/vendor.h>
#define icon width 32
#define icon=height 32
&static char icon_bits [] = {

OxOO, OxOO, OxOO, OxOO, OxOO,
OxOO, Oxc2, Ox41, OxOO, OxOO,
OxOO, Oxc7, Oxel, OxOO, OxOO,
OxOO, Oxce, Ox71, Oxlc, OxOO,
Oxlc, Oxce, Ox71, OxOf, Oxlc,
Oxlc, Oxfe, Oxff, Ox03, Ox3c,
Oxf8, Oxff, Ox ff, Ox03, Oxf8,
OxfO, Oxff, Oxff, Ox03, OxfO,
Ox80, Oxff, Oxff, OxOl, Ox80,
OxOO, Oxfe, Oxff, OxOO, OxOO,
OxOO, Oxf c, Ox7f, OxOO, OxOO,

#define sm icon width 17
#define sm-icon-height 17
static char srn_Icon_bits[] = {

Ox80,
Oxc7,
Oxcf,
Oxce,
Oxce,
Oxfe,
Oxff,
Oxff,
Oxff,
Oxf c,
OxOO,

OxOO, OxOO, OxOO, OxcO, OxOl, OxOO,
Oxel, OxOO, OxOO, Oxc7, Oxel, OxOO,
Oxel, OxOO, OxOO, Oxce, Ox61, Ox18,
Ox71, Oxlc, Ox18, Oxce, Ox71, OxOe,
Ox39, Ox07, Oxlc, Oxde, Oxb9, Ox03,
Oxff, Ox03, Ox3c, Oxfe, Oxff, Ox03,
Oxff, Ox03, Oxf8, Oxff, Oxff, Ox03,
Oxff, Ox03, OxcO, Oxff, Oxff, Ox03,
Oxff, OxOO, OxOO, Ox ff, Oxff, OxOO,
Ox7f, OxOO, OxOO, Oxf c, Ox7f, OxOO,
OxOO, OxOO};

OxOO, OxOO, OxOO, OxOO, OxOl, OxOO, Ox80, Ox19, OxOO, Ox90, Ox19, OxOO,
OxbO, Ox99, OxOO, OxbO, Oxc9, OxOO, OxbO, Ox4d, OxOO, OxbO, Ox6d, OxOO,
Oxb4, Ox6d, OxOO, Oxf6, Ox7f, OxOO, Oxe6, Ox7f, OxOO, Oxee, Ox7f, OxOO,
Oxec, Ox7f, OxOO, Oxfc, Ox3f, OxOO, OxfO, Ox3f, OxOO, OxcO, Oxlf, OxOO,
OxcO, Oxlf, OxOO};

static Display *display;

static void helloworld button_activate();

static DwtCallback callback_arg[2];

int rnain(argc, argv)
unsigned int argc;
char **argv;

Widget toplevel, helloworldrnain, button, label;
Arg arglist[5];
int count = O;

6) Pixmap IconPixrnap;
Pixmap SmalliconPixmap;

toplevel = Xtinitialize("Hi","helloworldclass",NULL, 0, &argc, argv);

display= XtDisplay(toplevel);

C. IconPixmap = XCreateBitmapFrornData(display,
XDefaultRootWindow(display),

SmalliconPixmap

icon bits,
icon ;idth,

icon_height);

XCreateBitmapFrornData(display,
XDefaultRootWindow(display),

sm icon bits,
srn_Icon_;idth,

srn_icon_height);

(continued on next page)

14-25

Communicating with the Window Manager
14. 7 Customizing Your Application Using Window Manager Hints

Example 14-6 (Cont.) Using Shell Widget Attributes to Specify Your Application Icon

0 XtSetArg(arglist[count], XtNallowShellResize, TRUE); count++;
XtSetArg(arglist[count], XtNiconPixmap, IconPixmap); count++;
XtSetArg(arglist[count], XtNiconifyPixmap, SmalliconPixmap); count++;

XtSetValues (toplevel, arglist, count);

/**** Remainder of Hello World! sample application ****/

14-26

0 The example includes the XUI Toolkit symbol definition file vendor.h.
This symbol definition file contains the definitions of the shell widget
attributes that are needed to specify the shrink-to-icon button pixmap.

8 The example includes the bits that define the icon pixmap.

8 The example declares two variables of type Pixmap to hold the pixmap
identifiers for the shrink-to-icon button pixmap and the icon pixmap.

8 The example creates the pixmaps using the CREATE BITMAP FROM
DATA Xlib routine. The routine returns the identifier of the bitmap
created. For more information about this routine, see the VMS
DECwindows Xlib Routines Reference Manual.

0 The example assigns the identifiers of the pixmaps as values in an
argument list that is used to set the values of shell widget attributes.

If the depth of the pixmap you provide does not match the depth of the
display, the window manager uses the default pixmap. Use only the
default colormap for icons because you cannot assume other colormaps are
installed.

To create an icon that appears nonrectangular, use a pixmap mask that
specifies which pixels in the icon pixmap should be used as the icon.
Either assign the identifier of the pixmap mask as the value of the icon_
mask shell widget attribute, or use the SET WM HINTS Xlib routine to
specify this value in the WM_HINTS property.

14.7.3.3 Using a Window in Your Icon
You can specify that your application icon contain a window instead of
a pixmap. Assign the identifier of the window as the value of the icon_
window attribute or, if you are using window properties, use the SET WM
HINTS Xlib routine to set this value in the WM_HINTS property.

By using a window instead of a pixmap, you can actively draw graphics
into your icon instead of using a static graphic. For example, a clock
application, which continuously displays the time in its icon, could replace
the pixmap with a window into which it continuously updates the clock
face. Your application should not depend on user input through your icon
window.

Communicating with the Window Manager
14. 7 Customizing Your Application Using Window Manager Hints

Even if your application uses an icon window, you should still supply an
icon pixmap because the window manager creates the dimmed image by
stippling the icon pixmap. If your application's icon contains a window,
the window manager creates the dimmed image by taking a snapshot
of the window and stippling it. Because the application may have been
painting illto its icon window at the time of the snapshot, the stippling
operation can produce unexpected results. If you specify an icon pixmap
in addition to the icon window, the window manager uses the pixmap to
display the dimmed version of the graphic when your application is in its
active mapped state.

14.7.3.4 Positioning Your Icon on the Display
You can specify the position of your application icon by assigning values to
the icon_box_x and icon_box_y shell widget attributes or by using the
SET WM HINTS Xlib routine to set these values in the DEC_WM_HINTS
property. Specify the values for these attributes in pixels. If you do not
specify values for the.se attributes, the DECwindows window manager
positions your application icon in the Icon Box so that it does not obscure
any other icon.

14.7.4 Specifying the Initial State of Your Application
To make your application initially appear in its iconic state, set the iconic
shell widget attribute to true. This sets the value of the initial_state
attribute to the constant IconicState. If you are using window properties,
use the SET WM HINTS Xlib routine to specify the value of this member
of the WM_HINTS property. Table 14-2 lists the constants Xlib has
defined as possible values for this attribute.

To find out whether your application is in its iconic state, read the value of
the icon_state shell widget attribute. If you are using window properties,
use the GET WINDOW PROPERTY Xlib routine to read the value of the
DEC_ WM_ICON_STATE property.

14.7.5 Creating Transient and Sticky Windows
To create a transient window, set the transient attribute to true or use
the WM_TRANSIENT_FOR property.

To make a window stay in its position in the stacking order, even if it gets
input focus, set the sticky attribute to true.

14.7.6 Bypassing the Window Manager
You can specify that your application should bypass the window manager
by setting the override_redirect attribute to true. When you bypass the
window manager, your application appears without a title bar and icon.
Users cannot move or resize the application, nor can they shrink it to an
icon.

14-27

A Using the DECTERM PORT Routine

Your application can use the DECTERM PORT routine to create a
DECterm window on any node, local or remote. You can also create
DECterm windows by spawning a CREATE!I'ERMINAL command;
however, using the DECTERM PORT routine provides better performance.
(Users can create a DECterm from the session manager's Applications
menu or by using the CREATE!I'ERMINAL command in DCL.)

Example A-1 illustrates how to use the DECTERM PORT routine to
create a DECterm on a remote system.

Example A-1 Creating a DECterm on a Remote Node

#include descrip
#include ssdef
#include prcdef

/* descriptor definitions */
/* system status codes */
/* stsflg bits for creating process */

main(
{

int status, stsflg;
short device_length;

Ochar device name[50];
$DESCRIPTOR(command, "SYS$SYSTEM: LOGINOUT. EXE") ;
$DESCRIPTOR(input file, "");
$DESCRIPTOR(output_file, 1111

);

/* send the message to the controller */

ftstatus = DECwTermPort(0, O, O, device name, &device_length);
if (status != SS$ NORMAL) -

printf ("DECterm creation fai;t.ed, status is' %x\n", status) ;
else
{

/* create a process that is already logged in */
/* input from TWn: */

8) input file.dsc$w length = device length;
input-:=_file.dsc$a-:=_pointer device_name;

I* output to TWn_; *I
output file.dsc$w length device length;
output=file.dsc$a=pointer = device_name;

/* make it detached, interactive, logged in */
stsflg = PRC$M_DETACH I PRC$M_INTER I PRC$M_NOPASSWORD;

/* create the process */
~ status = sys$creprc(0, &command, &input file,

&output file, O, 0,-0, 0, 4, 0, O, stsflg);
if (status != SS$ NORMAL) -

printf("Could not run LOGINOUT.EXE, status is %x\n", status);

0 The DECTERM PORT routine returns the name of the virtual
terminal device in this character array.

A-1

Using the DECTERM PORT Routine

8 This call to the DECTERM PORT routine creates a DECterm window
on a remote node. In the example, the display argument is specified
as 0. This indicates that the default display should be used. By
specifying the second argument as 0, the example uses the default
setup file. By specifying the third argument as 0, the example specifies
that the default values in the setup and resource files should not be
overridden.

The DECTERM PORT routine returns the naine of the virtual
terminal device in the fourth argument, device_name. The DECTERM
PORT routine writes the length of the virtual terminal device name in
the last argument, device_length.

0 After successfully creating a remote DECterm, the example creates a
process that is already logged in.

8 This call to SYS$CREPRC creates the process that runs in the
DECterm window. The SYS$INPUT of the process is the DECterm
window, and the process is created with a priority of 4. The process is
logged in as a detached process.

Example A-2 provides a command procedure to compile, link, and run the
example program.

Example A-2 Command Procedure to Compile, Link, and Run a DECterm on a Remote Node

0$ cc create decterm
8$ link create decterm, sys$input/opt
sys$share:decw$~libshr/share
sys$share:decw$dwtlibshr/share
sys$share:vaxcrtl/share
sys$share:decw$terminalshr/share
0$ set display/create/node=mynode
8$ run create decterm

A-2

0 The command procedure invokes the compiler to compile the example
program.

8 The command procedure invokes the linker, specifying the name of the
object module and an options file as command line arguments. The
options file lists the shareable libraries needed to run the example
program. The DECterm shareable image is named decw$terminalshr.

0 The default display is set to point to mynode. Because the display
argument to the DECTERM PORT routine in Example A-1 was
specified as 0 (zero), the DECterm is created on mynode. The same
effect could have been achieved by specifying the display argument to
the DECTERM PORT routine as "mynode::O".

8 The command procedure runs the example program.

Using the DECterm Port Routine
DECTERM PORT

DECTERM PORT

VAX FORMAT

argument
information

MITCFORMAT

argument
Information

Creates a DECterm window on a node.

status= DECW$TERM_PORT
(display, setup_file, customization, resu/t_dev,
result_len[,controller][,char_buff][,char_chng_buff])

Argument Usage Data Type Access Mechanism

status uns longword uns longword write value

display char string char string read descriptor

setup_file char string char string read descriptor

customization char string char string read descriptor

result_dev char string char string write descriptor

result_len word word write reference

controller char string char string read descriptor

char_buff record uns longword read descriptor

char_chng_buff record uns longword read descriptor

status= DECwTermPort
(display,setup_file,customization,result_dev,
resu/t_/en[,controller][,char_buff][,char_chng_buff])

int DECwTermPort(display,setup_file,customization,result_dev,
result len[,controller] [,char buff]

char
char
char
char
short

[,.char-chng buff]) -
*ctisplay;
*setup_file;
*customization;
*result.:..._dev;
*result_len;

char *controller;
struct tt_chars *char_buff;
struct tt chars *char_chng_buff;

A-3

Using the DECterm Port Routine
DECTERM PORT

RETURNS

ARGUMENTS

A-4

status

SS$_NORMAL VMS status code indicating successful completion.

display
A character string that identifies the server and screen on which the
created DECterm appears. If the string address is 0, the default display is
used.

setup_file
A character string that specifies the name of the setup file.
The setup file changes DECterm's initial settings. (See the
customization argument for information about the syntax of
a setup file.) If the string address is 0, the default setup file,
DECW$USER_DEFAULTS:DECW$TERMINAL_DEFAULT.DAT, is used.

customization
A character string that specifies setup options that override the default
values established in resource and setup files. If the string address is 0,
default values are not to be overridden. The syntax is the same as the
syntax for resource and setup files:

"param: value \n param: value \n param: value "

In languages other than C, replace 11 \n" with a line-feed character, ASCII
code 10.

You can create a customization file using the Application menu of the
session manager. To do this, create a DECterm using the Applications
menu, use the Customize option to change settings, and save the new
settings in a file (be sure to use a nondefault file name). You can use the
name of this file as the value of the customization argument.

result dev
A character string that specifies the virtual terminal device name for the
created DECterm. This argument is intended for applications that want to
assign the created DECterm or pass the name to a new process.

result /en
The address of a 16-bit word into which the length of the returned device
name is written. When using the VAX calling format, you can point this
argument directly at the result_dev descriptor to trim the descriptor for
subsequent use.

controller
An optional argument that is a character string that specifies which
controller should be used with the DECterm window. For example,
you can specify a foreign language variant of DECterm. The default is
SYS$SYSTEM:DECW$TERMINAL.EXE.

char buff
An optional argument that is the address of a 12-byte terminal
characteristic buffer in which the terminal characteristics of the DECterm
are specified. See the VMS I I 0 User's Reference Manual: Part I for
further information.

char_chng_buff

Using the DECterm Port Routine
DECTERM PORT

An optional argument that is the address of a 12-byte terminal
characteristic buffer that specifies which characteristics are set in the
char_buff argument. This argument must be specified with the char_
buff argument. Only those terminal characteristics that have nonzero
values in the char_chng_buff buffer are set to the values specified in
the char _buff argument. Otherwise, the terminal characteristic is not
changed. See the VMS I I 0 User's Reference Manual: Part I for further
information.

DESCRIPTION The DECTERM PORT routine creates a DECterm window on a local or
remote node.

A-5

B Using the VAX Bindings

This appendix presents information on using the XUI Toolkit with the VAX
bindings. The appendix includes three example programs that re-create
the Hello World! application using the VAX binding version of the XUI
Toolkit routines. In addition, the appendix includes specific information
about using the VAX bindings with the Ada programming language.

Example B-1 is a version of the Hello World! sample application written
in VAX Ada. Example B-2 is a version of the Hello World! sample
application written in VAX FORTRAN. Both of these sample programs
use the same UIL module as the C language version of the Hello World!
sample application described in Chapter 2. Example 2-16 shows this UIL
module.

Example B-3 presents a VAX Pascal version of the Hello World! sample
application written using the high-level widget creation routines.

B.1 Using the DECwindows Ada Programming Interfaces
DECwindows provides programming interface definitions for the Ada
language. When you select Ada support at the time of the DECwindows
kit installation, the following Ada package source files are placed in the
SYS$LIBRARY: directory of your system:

• CDA$CDA_.ADA-Package CDA (Compound Document Architecture)

• DDIF$DDIF _.ADA-Package DDIF (Digital Document Interchange
Format)

• DTIF$DTIF _.ADA-Package DTIF (Digital Table Interchange Format)

• DECW$DWT_.ADA-Package DWT (DECwindows Toolkit)

• DECW$X_.ADA-Package X (Xlib)

These package source files can be individually compiled into your Ada
program libraries or compiled into the systemwide Ada predefined
library. To make the packages available systemwide, the command file
SYS$UPDATE:DECW$COMPILE_ADA_UNITS.COM is provided.

This command procedure compiles all four packages into the predefined
Ada library, and, if the VAX Source Code Analyzer (SCA) product is
present, loads SCA analysis data for the packages into the SCA library for
the predefined library. The command procedure should be run as a batch
job and should have available a minimum of 2000 pages in the working
set; however, 3000 pages is preferable. A page file quota of at least 30,000
pages is suggested.

B-1

B.1.1

Using the VAX Bindings
B.1 Using the DECwindows Ada Programming Interfaces

Once the units are compiled into the predefined Ada library, you must
execute the following Ada program library manager command to make the
units visible:

ACS ENTER UNIT ADA$PREDEFINED CDA,DDIF,DTIF,DWT,X

You need do this only once. This step is also performed automatically
for all Ada program libraries created after the DECwindows units are
compiled into the predefined library.

Future installations of DECwindows might replace the Ada packages. If
so, the new packages must be compiled as shown. If you have already
entered the units into your own library, you must then execute the
following command to make your library current:

ACS REENTER *

Future installations ofVAX Ada might replace the Ada predefined
library and remove the DECwindows units. If this occurs, reexecute
the DECW$COMPILE_ADA_UNITS.COM command procedure.

If you want to compile the units into your program libraries directly, you
must execute the following commands after compilation of packages DWT
andX:

ACS ENTER FOREIGN SYS$SHARE:DECW$DWTLIBSHR/SHAREABLE DWT
ACS ENTER FOREIGN SYS$SHARE:DECW$XLIBSHR/SHAREABLE X

This step is not necessary if the units are entered from the predefined
library.

Once the units are entered into your program library, applications that use
the DECwindows packages are linked in the normal manner using ACS
LINK. It is not necessary to explicitly specify the shareable images when
linking.

Using the Ada Packages

B-2

Each package (CDA, DDIF, DTIF, DWT, and X) contains definitions of
constants, structures, status codes, and routines for each facility. All the
packages observe certain common conventions for naming and use; these
conventions are outlined as follows:

• All dollar signs ($) in symbols have been replaced with underscores
(_). The dollar sign is not allowed in Ada identifiers.

• In each package, the facility prefix (CDA$, DDIF$, DTIF$, DWT$, X$)
has been removed from all the symbols defined in that package. It is
intended that the Ada USE clause not be used with these packages.
This encourages clarity in the application source and also improves
compiler efficiency. For example:

Using the VAX Bindings
B.1 Using the DECwindows Ada Programming Interfaces

with DWT;
procedure CALLBACK (
WIDGET: in DWT.WIDGET_TYPE) is

ARGLIST: DWT.ARG_ARRAY_TYPE (0 .. 0);
CSTRING: DWT.COMP_STRING_TYPE;

begin
DWT.LATINl_STRING (.....);

In some packages, symbols defined with other facility prefixes are
present; these have not been removed from the symbol names. For
example, routine XT$INITIALIZE is DWT.XT_INITIALIZE.

• When a symbol would conflict with an Ada reserved word or predefined
identifier, the last letter of the symbol name is removed. For example,
the routine DWT$STRING is DWT.STRIN. See the individual package
descriptions for a list of affected identifiers.

• Unconstrained array types are defined as name_ARRAY_TYPE for
an array of name_TYPE elements. The DECwindows documentation
sometimes uses name_LIST for such arrays; in the Ada packages,
these names are used when the address of an array is desired, most
commonly as an element of a structure.

• All functions are defined as ''valued procedures." The function return
value is usually named STATUS or RESULT, depending on the type of
value returned.

• The null-terminated strings required by some procedures can be
created by concatenating the string with ASCII.NUL. Further
information about the interfaces can be found by examining the
package sources provided in SYS$LIBRARY:, as described previously.

Usage information for the specific packages is given in the following
sections.

B.1.1.1 Package CDA
This package defines constants and types for the Compound Document
Architecture (CDA) facility. There are no package-specific usage comments
for package CDA.

B.1.1.2 Package DDIF
This package defines constants and types for the Digital Document
Interchange Format (DDIF) facility. There are no package-specific usage
comments for package DDIF.

B.1.1.3 Package DTIF
This package defines constants and types for the Digital Table Interchange
Format (DTIF) facility. There are no package-specific usage comments for
package DDIF.

B-3

Using the VAX Bindings
B.1 Using the DECwindows Ada Programming Interfaces

B-4

B.1.1.4 Package DWT
This package defines constants, types, and procedures for the XUI Toolkit
facility. The following usage comments are specific to package DWT:

• The procedure STRING is renamed STRIN to avoid conflict with the
predefined type.

• The parameter ADDRESS of procedure XT_FREE is renamed
ADDRES to avoid conflict with the predefined type.

• The subtype definitions listed in Table B-1 rename types from package
DWT.

Table B-1 Subtype Definitions-Package DWT

Subtype Definition

DISPLAY_TYPE X.DISPLAY_TYPE

EVENT_TYPE X.EVENT_TYPE

GC_TYPE X.GC_ID_TYPE

PIXMAP _TYPE X.PIXMAP _ID_ TYPE

TIME_ TYPE X.TIME_ TYPE

SCREEN_ TYPE X.SCREEN_ID_ TYPE

WINDOW_ TYPE X.WINDOW_ID_ TYPE

XRMDATABASE_ TYPE X.DATABASE_ID_ TYPE

• The types INTEGER_ARRAY and ADDRESS_ARRAY are defined for
use with procedures in package DWT, being unconstrained arrays of
INTEGER and ADDRESS, respectively.

• The type DESCRIPTOR_TYPE is defined for constructing string
descriptors required by certain procedures.

B.1.1.5 Package X
This package defines types, structures, and procedures for the Xlib facility.
The following usage comments are specific to package X:

• The subtype definitions listed in Table B-2 are provided.

Table B-2 Subtype Definitions-Package X

Subtype

ATOM_ID_ TYPE

BITMAP _ID_ TYPE

CLASS_LIST_ID_ TYPE

COLORMAP _ID_TYPE

CURSOR_ID_ TVPE

DATABASE_ID_ TYPE

Definition

SYSTEM.UNSIGNED_LONGWORD

SYSTEM.UNSIGNED_LONGWORD

SYSTEM.UNSIGNED_LONGWORD

SVSTEM.UNSIGNED_LONGWORD

SVSTEM.UNSIGNED_LONGWORD

SYSTEM.UNSIGNED_LONGWORD

(continued on next page)

.-,,

Using the VAX Bindings
B.1 Using the DECwindows Ada Programming Interfaces

Table B-2 (Cont.) Subtype Definitions-Package X

Subtype Definition

DISPLAY_ID_TYPE SYSTEM.ADDRESS

DISPLAY_TYPE SYSTEM.ADDRESS

DRAWABLE_ID_ TYPE SYSTEM.UNSIGNED_LONGWORD

FONT_ID_TYPE SYSTEM.UNSIGNED_LONGWORD

GC_ID_TYPE SYSTEM.UNSIGNED_LONGWORD

KEYSYM_ID_TYPE SYSTEM.UNSIGNED_LONGWORD

NAME_LIST_ID_TYPE SYSTEM.UNSIGNED_LONGWORD

PIXMAP _ID_TYPE SYSTEM.UNSIGNED_LONGWORD

PROPERTY_ID_TYPE SYSTEM.UNSIGNED_LONGWORD

REGION_ID_TYPE SYSTEM.UNSIGNED_LONGWORD

SCREEN_ID_ TYPE SYSTEM.UNSIGNED_LONGWORD

SEARCH_LIST_ID_ TYPE SYSTEM.UNSIGNED_LONGWORD

SELECTION_ID_ TYPE SYSTEM.UNSIGNED_LONGWORD

TARGET _ID_ TYPE SYSTEM.UNSIGNED_LONGWORD

TIME_ TYPE SYSTEM.UNSIGNED_LONGWORD

TYPE_ID_ TYPE SYSTEM.UNSIGNED_LONGWORD

WINDOW_ID_ TYPE SYSTEM.UNSIGNED_LONGWORD

• The argument EVENT_TYPE of procedures CHECK_TYPED_EVENT
and CHECK_TYPED_WINDOW_EVENT has been renamed to
EVENT_TYP to avoid conflict with the EVENT_TYPE type definition.

• EVENT_TYPE has been defined as a variant record; subtypes for
specific event types are also defined as specific instances of the variant
record. The discriminant for EVENT_TYPE is the field EVNT_TYPE;
each variant uses its own prefixes for the field names, for example,
KYEV _DISPLAY for a key event.

When you declare a variable as being type EVENT_TYPE, Ada
automatically allocates the maximum possible event size for the
variable. When examining event variables, be sure to use only the
correct fields for the variant defined by EVNT_TYPE; otherwise an
Ada constraint error can be generated. For example, the following
code is correct:

if EVENT.EVNT TYPE = X.C EXPOSE then
if EVENT.EXEV-WINDOW = WINDOW 2 then - -

while the following is incorrect:

if EVENT.EVNT TYPE = X.C EXPOSE and - -
EVENT.EXEV WINDOW = WINDOW 2 then - -

B-5

B.1.2

B.1.3

Using the VAX ·Bindings
B.1 Using the DECwindows Ada Programming Interfaces

Callbacks

The second code fragment would raise a constraint error on the
reference to EVENT.EXEV _WINDOW if the value of the discriminant
(EVNT_TYPE) was not C_EXPOSE.

When using the DECwindows Toolkit with callback routines written in
Ada, the tag provided to the Toolkit must be the address of the value to be
returned as the tag. The actual value cannot be used due to a conflict in
the calling mechanisms. The DECwindows Toolkit passes the tag to the
callback routine by immediate value. Callback routines written in Ada
expect the tag to be passed by reference. Passing the address of the value
to be returned allows the Ada code to access the tag by reference.

Ada procedures that are to be used as callback routines must be made
visible by means of the EXPORT_PROCEDURE pragma. This requires
that the procedure be a library unit or be declared in the outermost
declarative part of a library package. See the section on Exporting
Subprograms in the VAX Ada Language Reference Manual for more
details.

Be aware that EXPORT_PROCEDURE implicitly declares the procedure
name as a global symbol. If the same procedure name is used in multiple
packages, you should specify an "external designator" as the second
argument of pragma EXPORT_PROCEDURE to give the procedure a
unique external name.

Callback routines used in tasking applications must also specify pragma
SUPPRESS_ALL. This suppresses the task stack check that might fail for
routines called from outside the context of an Ada task.

Tasking Considerations

B-6

Ada programs that use tasking can call DECwindows routines, but
applications designers should be aware that the DECwindows design
philosophy is oriented towards event polling and not asynchronous
notification of events.

An important consideration is that calling DECwindows routines that wait
for an event, such as X.NEXT _EVENT, potentially can block all tasks until
the event occurs. To VAX Ada, a task that is blocked in a DECwindows call
appears to be continuing to execute. VAX Ada does not know that the task
is in any way blocked. As a result, the only tasks that can execute while a
task is blocked in a DECwindows call are tasks that have higher priorities
than the calling task, unless time slicing is in effect. If time slicing is
enabled with pragma TIME_SLICE, then in addition to the higher priority
tasks, other tasks of equal priority will get a chance to run at the end of
the time slice; but when the blocked task is again scheduled, it will block
the tasks of equal priority until its time slice has expired. Tasks of lower
priority will not run.

B.1.4 Ada Examples

Using the VAX Bindings
B.1 Using the DECwindows Ada Programming Interfaces

Another consideration is that even though other tasks may be scheduled,
they must not call DECwindows while another call is outstanding.
DECwindows is not reentrant. The user must ensure that at most one
task is calling DECwindows at any one time. The simplest way to ensure
this is to dedicate a single task to calling DECwindows. Whenever it
is desirable to perform work in a different task, the "DECwindows task"
must be made to suspend if there is any possibility that the other task may
call any DECwindows function. This can be done by using a rendezvous
to block the dedicated task and to transfer control to other tasks in the
application.

The VMS DECwindows examples directory (DECW$EXAMPLES:) contains
the following Ada language examples:

• HELLOWORLD.ADA is a simple example of using the XUI Toolkit and
XUI Resource Manager (DRM). Example B-1 presents this program.

• DECBURGER.ADA is a more complex example that uses many of the
widgets in. the XUI Toolkit, demonstrates the use of callbacks, and
illustrates how to use UIL and DRM to create a user interface.

• XLIBINTRO.ADA demonstrates the use of the Xlib interface and
responding to events.

The first two example programs require that the appropriate UIL file
from the directory DECW$EXAMPLES be compiled using the UIL
compiler before running the programs. See the command procedure
DECW$EXAMPLES:DEMO_BUILD.COM for details on compiling and
linking the example applications. Example B-1 is the VAX Ada version of
the Hello World! application.

Example B-1 Hello World! Application in VAX Ada

with DWT;
package HELLOWORLD_CALLBACKS is

procedure HELLOWORLD_BUTTON_ACTIVATE
WIDGET: in DWT.WIDGET_TYPE;
TAG : in INTEGER;
REASON: in INTEGER);

pragma EXPORT_PROCEDURE (HELLOWORLD_BUTTON ACTIVATE);

DONE: exception;

end HELLOWORLD_CALLBACKS;

with DWT,SYSTEM;
package body HELLOWORLD_CALLBACKS is

PUSHED: BOOLEAN := FALSE;

ttprocedure HELLOWORLD_BUTTON_ACTIVATE
WIDGET: in DWT.WIDGET_TYPE;
TAG in INTEGER;
REASON: in INTEGER) is

(continued on next page)

8-7

Using the VAX Bindings
B.1 Using the DECwindows Ada Programming Interfaces

Example B-1 (Cont.) Hello World! Application in VAX Ada

~ ARG_LIST: DWT.ARG_ARRAY_TYPE (0 .. 1);

CSTRING: DWT.COMP_STRING_TYPE;
CS_STATUS: INTEGER;

begin
if PUSHED then

raise DONE;
else

@) DWT.LATINl_STRING (

e DWT.VMS

STATUS => CS STATUS,
TEXT=> "Goodbye"&ASCII.CR&"World!",
COMPOUND_STRING => CSTRING);

SET ARG
ARG => CSTRING,
ARGLIST => ARG_LIST,
ARGNUMBER => 0,
ARGNAME => DWT.C_NLABEL);

DWT.VMS SET_ARG
ARG => 11,
ARGLIST => ARG_LIST,
ARGNUMBER => 1,
ARGNAME => DWT.C_NX);

CB DWT.XT SET VALUES
WIDGET => WIDGET,
ARGLIST => ARG_LIST,
ARGCOUNT => ARG_LIST'LENGTH);

DWT.XT_FREE (CSTRING);

PUSHED := TRUE;

end if;
end HELLOWORLD_BUTTON_ACTIVATE;

end HELLOWORLD_CALLBACKS;

-- Main program

with DWT, HELLOWORLD_CALLBACKS, STARLET, SYSTEM, TEXT_IO;
use HELLOWORLD_CALLBACKS, SYSTEM;
procedure HELLOWORLD is

(!) TOPLEVEL, HELLOWORLD_MAIN: DWT.WIDGET_TYPE;

8 HIERARCHY_FILE_NAME : constant STRING := "HELLOWORLD.UID";
HIERARCHY_FILE_DESCR : DWT.DESCRIPTOR_TYPE := (

CLASS => STARLET.DSC_K_CLASS_S,
DTYPE => STARLET.DSC_K_DTYPE_T,
LENGTH => HIERARCHY_FILE_NAME'LENGTH,
POINTER=> HIERARCHY_FILE_NAME'ADDRESS);

HIERARCHY_NAME_LIST : DWT.ADDRESS_ARRAY (0 .. 0) :=
(0=> HIERARCHY_FILE_DESCR'ADDRESS);

CALLBACK NAME : constant STRING := "helloworld button_activate"&ASCII.NUL;

CALLBACK ARGLIST: DWT.DRMREG ARG ARRAY TYPE (0 .. 0) :=
(0 => (DRMR_NAME => CALLBACK=NAME'ADDRESS,

DRMR_VALUE => HELLOWORLD_BUTTON_ACTIVATE'ADDRESS));

(continued on next page)

B-8

Using the VAX Bindings
B.1 Using the DECwindows Ada Programming Interfaces

Example B-1 (Cont.) Hello World! Application in VAX Ada

ARG_LIST : DWT.ARG_ARRAY_TYPE (0 .. 0);

DRM_HIERARCHY: DWT.DRM_HIERARCHY_TYPE;

URLIST: UNSIGNED_LONGWORD_ARRAY(0 .. 0) := (0=> 0);
ARGV: DWT.ADDRESS ARRAY(0 .. 0) := (0=> ADDRESS ZERO);
ARGC : UNSIGNED_LONGWORD := 0; -

HIERARCHY_$TATUS, FETCH_STATUS, REGISTER STATUS: DWT.CARDINAL_TYPE;

CLASS: DWT.DRM_TYPE_TYPE;

begin

fD DWT.INITIALIZE_DRM;

C9 DWT.XT_INITIALIZE
WIDGET
NAME
CLASS NAME
URLIST
NUM_URLIST
ARGCOUNT
ARGVALUE

DWT.VMS_SET_ARG

=> TOPLEVEL,
=> "Hi",
=> "helloworldclass",
=> URLIST,
=> 0,
=> ARGC,
=> ARGV);

ARG => DWT.C_TRUE,
ARGLIST => ARG_LIST,
ARGNUMBER => ARG_LIST'FIRST,
ARGNAME => DWT.C_NALLOW_SHELL_RESIZE);

DWT.XT SET VALUES (
WIDGET- => TOPLEVEL,
ARGLIST => ARG_LIST,
ARGCOUNT => ARG_LIST'LENGTH);

tD DWT.OPEN_HIER,ARCHY (
STATUS => HIERARCHY_STATUS,
NUM_FILES => HIERARCHY_NAME_LIST'LENGTH,
FILE_NAMES~LIST => HIERARCHY_NAME_LIST,
HIERARCHY ID RETURN=> DRM HIERARCHY);

if HIERARCHY STATUS /= DWT.C DRM SUCCESS
then - - -

TEXT IO.PUT LINE ("Can't open hierarchy");
raise DONE;-

end if;

~ DWT.REGISTER DRM NAMES (
STA'l'US - - => REGISTER_STATUS,
REGISTER LIST => CALLBACK_ARGLIST,
REGISTER=COUNT =>CALLBACK ARGLIST'LENGTH);

if REGISTER_STATUS /= DWT.C_DRM=SUCCESS
then

TEXT_IO.PUT_LINE ("Can't register callback");
raise DONE;

end if;

(continued on next page)

8-9

Using the VAX Bindings
B.1 Using the DECwindows Ada Programming Interfaces

Example B-1 (Cont.) Hello World! Application in VAX Ada

48 DWT.FETCH WIDGET
STATUS => FETCH_STATUS,
HIERARCHY ID => DRM HIERARCHY,
INDEX => "helloworld_main",
PARENT => TOPLEVEL,
W RETURN => HELLOWORLD_MAIN,
CLASS_RETURN =>CLASS);

if FETCH_STATUS /= DWT.C_DRM_SUCCESS
then

TEXT_IO.PUT_LINE ("Can't fetch interface");
raise DONE;

end if;

I) DWT.XT_MANAGE_CHILD
WIDGET => HELLOWORLD_MAIN);

~ DWT.XT_REALIZE_WIDGET (
WIDGET => TOPLEVEL);

~ DWT.XT_MAIN_LOOP;

exception

when DONE =>
NULL;

end HELLOWORLD;

8-10

0 This procedure implements the callback routine used by the Hello
World! application.

8 The program creates an argument list by declaring an array of
argument data structures. Note that the array begins with element
zero.

@) The program creates the text string 11 Goodbye World! 11 as a compound
string. This string will be placed in the push button widget when the
callback routine executes. Because it appears on the display, the text
string must be converted into a compound string.

8 The program uses the VMS SET ARG routine to assign values to
attributes in the argument list.

0 The program calls the intrinsic routine SET VALUES to change the
value of the text label in the push button widget.

0 This statement declares the variables that will hold the widget
identifiers.

8 The sample program creates the DRM hierarchy in which all the UID
files used by the application are listed. The Hello World! application
uses only one UID file (included in the DECW$EXAMPLES: directory).

8 The sample program initializes DRM in this call to the INITIALIZE
DRM routine.

CD The sample program initializes the XUI Toolkit by calling the
INITIALIZE intrinsic routine.

Using the VAX Bindings
B.2 Using the FORTRAN Bindings

Example B-2 (Cont.) Hello World! Application in VAX FORTRAN

48 CALL XT$MANAGE_CHILD (HELLOWORLD_MAIN)

~ CALL XT$REALIZE_WIDGET (TOPLEVEL)

! Main Input Loop

CALL XT$MAIN_LOOP

END

! Callback routine

48 SUBROUTINE HELLOWORLD BUTTON ACTIVATE
1 WIDGET, TAG, REASON)

INCLUDE 'SYS$LIBRARY:DECW$DWTSTRUCT'

INTEGER*4 WIDGET, TAG, REASON

RECORD /DWT$ARG/ ARG_LIST(O:l)

INTEGER*4 CSTRING, CS_STATUS

LOGICAL PUSHED /.FALSE./

! Only WIDGET is used

SAVE PUSHED Ensure that it is static

IF (PUSHED) THEN
STOP

ELSE
49 CALL DWT$LATIN1_STRING ('Goodbye'//CHAR(13)//'World!',

1 CSTRING)

4l0 CALL DWT$VMS_SET_ARG
1 CSTRING,
2 ARG_LIST,
3 0,
4 DWT$C NLABEL)

CALL DWT$VMS_SET_ARG
1 11,
2 ARG_LIST,
3 1,
4 DWT$C_NX)

fl CALL XT$SET_VALUES (WIDGET,ARG_LIST,1)

CALL XT$FREE (%VAL(CSTRING))

PUSHED = .TRUE.
END IF

RETURN
END

8 The sample program includes the XUI Toolkit symbol definition file.

8 The sample program declares variables to hold the widget identifiers.

@) The sample program declares the descriptor for the DRM hierarchy file
name.

8 These statements declare the callback routine. Note that the name is
declared as a case-sensitive, null-terminated string.

B-13

Using the VAX Bindings
B.2 Using the FORTRAN Bindings

8 The sample program declares the argument list used to assign values
to widget attributes.

0 The sample program initializes DRM by calling the INITIALIZE DRM
routine.

0 The sample program initializes the XUI Toolkit in this call to the
intrinsic routine INITIALIZE.

8 The sample program opens the DRM hierarchy by calling the OPEN
HIERARCHY routine.

0 The sample program registers the callback routines so that DRM can
resolve references to the routines at widget creation time.

8 The sample program fetches the interface definition in the UID file
with this call to the DRM routine FETCH WIDGET. Note that DRM
creates the widgets in this call.

4D The sample program manages the topmost widget in the application
widget hierarchy using the MANAGE CHILD intrinsic routine.

e The sample program makes the interface appear on the display by
realizing the application shell widget using the intrinsic routine
REALIZE WIDGET.

8 The sample program enters an infinite loop in which it waits for events
to process.

e This is the callback routine used by the Hello World! application.

8 The sample program converts the text string the push button widget
will contain into a compound string using the LATIN! STRING
routine.

48 The sample program uses the VMS SET ARG routine to assign a value
to a widget attribute in an argument list.

• The sample program changes the text string in the push button widget
by calling the intrinsic routine SET VALUES.

B.3 Using the VAX Pascal Bindings

8-14

Example B-3 illustrates how to use the XUI Toolkit with the VAX Pascal
programming language.

Using the VAX Bindings
B.1 Using the DECwindows Ada Programming Interfaces

8 The sample program opens the UID files identified in the DRM
hierarchy using the OPEN HIERARCHY routine.

e The sample program resolves the values of symbols used in the UIL
module in this call to the DRM routine REGISTER NAMES.

8 The sample program fetches the interface definition in this call to
the DRM routine FETCH WIDGET. DRM creates the widgets in the
interface in this routine.

8 The sample program manages the topmost widget in the application
interface in this call to the MANAGE CHILD intrinsic routine.

e The sample program makes the interface appear on the display by
calling the REALIZE WIDGET intrinsic routine.

I) The sample program enters an infinite loop in which it waits for events
to process.

8.2 Using the FORTRAN Bindings
Example B-2 illustrates how to use the XUI Toolkit, UIL, and DRM in
FORTRAN with the VAX binding. This example program uses the same
UIL module in the DECW$EXAMPLES: directory as the Ada and C
versions of the Hello World! application.

Example B-2 Hello World! Application in VAX FORTRAN

PROGRAM HELLOWORLD

tt INCLUDE 'SYS$LIBRARY:DECW$DWTSTRUCT'
INCLUDE 'SYS$LIBRARY:DECW$DWTENTRY'
INCLUDE' ($DSCDEF)'

... INTEGER*4 TOPLEVEL, HELLOWORLD_MAIN

fl STRUCTURE /DESCRIPTOR_STRUCT/
INTEGER*2 LENGTH
BYTE DTYPE
BYTE CLASS
INTEGER*4 POINTER

END STRUCTURE !DESCRIPTOR STRUCT
RECORD /DESCRIPTOR STRUCT/ HIERARCHY FILE DESCR
INTEGER*4 HIERARCHY_NAME_LIST(O:O) T Array of pointers
CHARACTER*(*) HIERARCHY_FILE_NAME
PARAMETER (HIERARCHY_FILE_NAME = 'HELLOWORLD.UID')

Ct EXTERNAL HELLOWORLD BUTTON ACTIVATE - -
CHARACTER*(*) CALLBACK_NAME
PARAMETER (CALLBACK_NAME =

"~ 1 'helloworld_button_activate' //CHAR(O))

RECORD /DWT$DRMREG_ARG/ CALLBACK_ARGLIST(O:O)

RECORD /DWT$ARG/ ARG_LIST(O:O)

INTEGER*4 DRM HIERARCHY

INTEGER*4 ARGC/0/,CLASS

(continued on next page}

B-11

Using the VAX Bindings
B.2 Using the FORTRAN Bindings

Example B-2 (Cont.) Hello World! Application In VAX FORTRAN

INTEGER*4 HIERARCHY_STATUS,FETCH_STATUS,REGISTER_STATUS

HIERARCHY FILE DESCR.LENGTH = LEN(HIERARCHY FILE NAME)
HIERARCHY-FILE-DESCR.DTYPE = DSC$K DTYPE T - -
HIERARCHY=FILE=DESCR.CLASS = DSC$K=CLASS=S
HIERARCHY_FILE_DESCR.POINTER = %LOC(HIERARCHY_FILE_NAME)
HIERARCHY NAME LIST(O) = %LOC(HIERARCHY FILE DESCR)
CALLBACK ARGLIST(O) .DWT$A DRMR NAME= %LOC(CALLBACK NAME)
CALLBACK=ARGLIST(O).DWT$L=DRMR=VALUE -
1. %LOC(HELLOWORLD_BUTTON_ACTIVATE)

! Set up the User Interface

ti) CALL DWT$INITIALIZE_DRM

fj TOPLEVEL = XT$INITIALIZE (
1 I Hi I I NAME
2 'helloworldclass', CLASS
3 %VAL(0), URLIST (omitted)
4 0, URCOUNT
5 ARGC, ARGCOUNT
6 %VAL(0)) ARGVALUE

CALL DWT$VMS SET ARG
1 DWT$C_TRUE,
2 ARG_LIST,
3 0,
4 DWT$C_NALLOW_SHELL RESIZE)

CALL XT$SET_VALUES
1 TOP LEVEL,
2 ARG_LIST,
3 1)

@) HIERARCHY STATUS = DWT$0PEN_HIERARCHY
1 1,
2 HIERARCHY_ NAME_ LIST,
3 %VAL(0), ! ANCILLARY_STRUCTURES LIST
3 ORM HIERARCHY)
IF (HIERARCHY STATUS .NE. DWT$C ORM SUCCESS) THEN

TYPE *,'Can''t open hierarchy, status= ',HIERARCHY_STATUS
STOP

END IF

CD REGISTER STATUS = DWT$REGISTER_DRM_NAMES (
1 CALLBACK ARGLIST,1)
IF (REGISTER-STATUS .NE. DWT$C ORM SUCCESS) THEN

TYPE *,'Can''t register callback, status= ',REGISTER_STATUS
STOP

END IF

I) FETCH STATUS = DWT$FETCH_WIDGET (

B-12

1 %VAL(DRM HIERARCHY),! HIERARCHY ID
2 'helloworld_main', INDEX -
3 TOP LEVEL, PARENT
4 HELLOWORLD_MAIN, W RETURN
5 CLASS) CLASS RETURN
IF (FETCH_STATUS .NE. DWT$C_DRM=SUCCESS) THEN

TYPE *,'Can''t fetch interface, status= ',FETCH_STATUS
STOP

END IF

(continued on next page)

Using the VAX Bindings
B.3 Using the VAX Pascal Bindings

Example B-3 Hello World! Application in VAX Pascal

8 [inherit (' decw$dwtdef. pen')]

program helloworld(inptit,output);

var
toplevel, helloworldbutton,
dialogbox dwt$widget;

callback list
callback_list_null

array[l •. 2] of dwt$ca11back;
array [1. .1] of dwt$callback;

la tin

tag

dwt$comp_string;

[static] integer;

dwt$cardinal; argc
arglist array[l .. l] of dwt$arg;

function sys$exit(%immed status : integer) : integer; extern;

~rocedure buttonpressed(var widget
var tag
var struct

var arglist
la tin

array[l .. l] of dwt$arg;
dwt$comp_string;

begin

writeln('Tag is ',tag);

if tag = 123 then
begin

: dwt$widget;
integer;
dwt$any_cb_st);

•
dwt$1atinl_string('Goodbye World' (13),latin);

dwt$vms_set_arg(latin,arglist,O,dwt$c~nlabel);
xt$set_values(widget,arglist,l);

end;

begin

xt$free (latin);

tag := 0;
end

else

sys$exit(l);

argc := 0;

callback list null [l] .dwt$a callback proc
callback=list:null[l] .dwt$l=callback=tag

tag := 123;

:= nil;
:= 0;

(t callback_list[l] .dwt$a_callback_proc::integer := iaddress(buttonpressed);
callback list[l] .dwt$1 callback tag := iaddress(tag);
ca11back=list[2] := callback_list_null[l];

fj toplevel := xt$initialize('Hi',
'helloworldclass',
0,0,argc,);

(continued on next page)

B-15

Using the VAX Bindings
B.3 Using the VAX Pascal Bindings

Example B-3 (Cont.) Hello World! Application in VAX Pascal

•
dwt$vrns set desc arg('TRUE' ,arglist,O,dwt$c nallow shell resize);
xt$set_values(toplevel,arglist,1); - - -

dwt$latinl_string('Box Title',latin);

dialogbox := dwt$dialog box(toplevel,
- 'DialogBoxName',

xt$free(latin);

xt$manage_child(dialogbox);

dwt$c_false,

0' 0'
lat in,
dwt$c_workarea,
callback list null,
callback=list=null);

dwt$latinl_string('HelloWorld' (13)'0nce to change' (13)'twice to exit' ,latin);

CD helloworldbutton := dwt$push button(dialogbox,
- 'HelloWorldPushButton',

end.

B-16

xt$free(latin);

xt$manage_child(helloworldbutton);

xt$realize_widget(toplevel);

xt$main_loop;

0,0,
lat in,
callback_list,
callback_list_null);

0 The program includes the XUI Toolkit symbol definition file for VAX
· Pascal.

8 In this statement, the sample program declares a variable to store the
tag. In VAX Pascal, this variable must be a static variable.

t) This is the callback routine used by the Hello World! application.

8 The sample program sets up an argument list using the VMS-specific
XUI Toolkit routine VMS SET ARG. The XUI Toolkit identifies widget
attributes as null-terminated strings. Because the VAX bindings pass
text strings by descriptor, you must use the VMS SET ARG routine to
create argument lists. This routine converts the attribute name into a
null-terminated text string.

8 The sample program frees the storage obtained by the compound string
routine in this statement.

0 The sample program sets up a callback list. This list associates the
address of the callback routine with a tag.

8 The sample program initializes the XUI Toolkit in this call to the
intrinsic routine INITIALIZE. This routine also returns the widget
identifier of the application shell widget.

Using the VAX Bindings
B.3 Using the VAX Pascal Bindings

& The sample program creates the dialog box widget using the high-level
routine DIALOG BOX.

e The sample program uses the high-level routine PUSH BUTTON to
create the push button widget used in the application.

B-17

C International Version of the DECburger Application

Example C-1 shows the complete C language program for the
international version of the DECburger application. Differences between
this version and the original version of DECburger are described in
Section 3.4.1.

C-1

International Version of the DECburger Application

Example C-1 C Program for the International Version of DECburger

#include <stdio.h>
#ifdef VMS
#include <decw$include/DwtAppl.h>
#else
#include <Xll/DwtAppl.h>
#endif

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
:fl:def ine
#define
#define

C-2

k create order 1 - -
k order pdme 2
k-file pdme 3
k-edit-pdme 4
k=nyi - 5
k apply 6
k-dismiss 7
k_noapply 8
k cancel order 9 - -
k submit order 10 - -
k order box 11
k=burger_min 12
k_burger_rare 12
k_burger_medium 13
k_burger_well 14
k_burger_ketchup 15
k burger mustard 16
k=burger=onion 17
k burger mayo 18
k-burger-pickle 19
k=burger=quantity 20
k burger max 20
k=fries_tiny 21
k fries small 22
k-fries-medium 23
k-fries-large 24
k-fries-huge 25
k-fries-quantity 26
k-drink-list 27
k-drink-add 28
k--drink-sub 29

- -
k_drink_quantity 30
k total order 31 - -
k_burger_label 32
k fries label 33
k-drink-label 34 - -
k menu bar 35 - -
k file menu 36
k edit menu 37 - -
k order menu 38
k=max_widget 38
MAX_WIDGETS (k_max_widget +
NUM BOOLEAN (k burger max -
k b~rger index- 0 -
k-fries index 1 - -
k drinks index 2
k-index count 3 - -

1)
k_burger_min + 1)

(continued on next page)

International Version of the DECburger Application

Example C-1 (Cont.) C Program for the International Version of DECburger

static Widget toplevel_widget,

main_ window_ widget,

widget_array[MAX_WIDGETS];

static char toggle_array[NUM_BOOLEAN];

static DwtCompString current_drink,
current fries,
name_vector[k_index_count];

static char * welcome text ptr;
static int quantity_vector[k_index_count];

static DwtCompString latin create;
static DwtCompString latin=dismiss;
static DwtCompString latin space;
static DwtCompString latin-zero;
static DwtCompString latin-separator;
static DRMHierarchy s_DRMHierarchy;
static DRMResourceContextPtr resource_ctx;
static DRMType *dummy class;
static char *db filename vec[]

{ "decburger$text", -
"decburger.uid",

} ;

static int db filename num =
- (sizeof db_filename_vec I sizeof db_filename_vec [0]);

static void s_error();
static void get_something();
static void set something();
static void activate_proc();
static void create proc();
static void list_proc();
static void quit_proc();
static void pull_proc();
static void scale_proc();
static void show_hide_proc();
static void show label proc();
static void toggle proc();
static DRMRegisterArg reglist[] = {

} ;

{ "activate_proc", (caddr_t) activate_proc},
{"create proc", (caddr t) create proc},
{"list_proc", (caddr_t) list_proc},
{"pull proc", (caddr t) pull proc},
{ "quit=proc", (caddr=:t) quit=:proc},
{"scale proc", (caddr t) scale proc},
{"show_hide_proc", (caddr_t) show_hide_proc},
{"show_label_proc", (caddr_t) show_label_proc},
{ "toggle_proc", (caddr_t) toggle_proc}

(continued on next page)

C-3

International Version of the DECburger Application

Example C-1 (Cont.) C Program for the International Version of DECburger

static int reglist num = (sizeof reglist I sizeof reglist [0]);
void get literal ffit, ptr, compound)
char * lit;
char * * ptr;
int compound;
{

if (DwtDrmHGetindexedLiteral
s_DRMHierarchy,

}

lit,
resource ctx) !=DRMSuccess)
s error (lit);
(* ptr) = NULL;
return;

if (compound)
(* ptr) DwtLatinlString(DwtDrmRCBuffer (resource_ctx));

else
(* ptr) DwtDrmRCBuffer (resource_ctx);

unsigned int main(argc, argv)
unsigned int argc;
char *argv[];

DwtinitializeDRM();

if (DwtDrmGetResourceContext
NULL,
NULL,
100,
& resource_ctx) !=DRMSuccess)

s_error ("can't get resource context");

if (DwtOpenHierarchy(db filename num,
db_filename~vec, - -
NULL,
&s_DRMHierarchy)
!=DRMSuccess)

s_error("can't open hierarchy");

get_literal ("k_welcome_text", & welcome_text_ptr, 0);

toplevel_widget = Xtinitialize(welcome_text_ptr,

"example",
NULL,
0,
&argc,
argv);

init_application();

DwtRegisterDRMNames(reglist, reglist_num);

if (DwtFetchWidget(s DRMHierarchy, "S MAIN WINDOW", toplevel_widget,
&main window widget, &dummy class) l= DRMSuccess)

s_error("can't fetch main-window");

C-4

XtManageChild(main window widget);
XtRealizeWidget(toplevel_widget);

XtMainLoop ();

(continued on next page)

International Version of the DECburger Application

Example C-1 (Cont.) C Program for the International Version of DECburger

static int init_application()
{

int k;

for (k = 0; k < MAX_WIDGETS; k++)
widget_array[k] = NULL;

for (k = 0; k < NUM_BOOLEAN; k++)
toggle_array[k] = FALSE;

toggle_array[k_burger_medium - k burger_min] = TRUE;

get_literal ("k apple juice text", & current drink, 1);
get_literal ("k=tiny_label_text", & current_fries, 1);

get_literal ("k create order label text", & latin create, 1);
get_literal ("k-dismiss orde; label text", & latin dismiss, 1);
latin space= o'wtLatinlString(" ");- -
latin-separator = DwtLatinlString(": ");
latin=zero = DwtLatinlString(" 0 ");

static void s_error(problem_string)
char *problem_string;

printf("%s\n", problem_string);
exit(O);

static void set_something(w, resource, value)
Widget w;
char *resource, *value;

Arg al[l];
XtSetArg(al[O], resource, value);
XtSetValues(w, al, 1);

static void get something(w, resource, value)
Widget w; -
char *resource, *value;

Arg al[l];
XtSetArg(al[O], resource, value);
XtGetValues(w, al, 1);

static void set boolean(i, state)
int i; -
int state;

toggle array[i - k burger min] = state;
DwtToggleButtonSetState(widget_array[i],

state,
FALSE);

(continued on next page)

C-5

International Version of the DECburger Application

Example C-1 (Cont.) C Program for the International Version of DECburger

static void update_drink_display()
{

char drink txt[50];
sprintf(drink txt, "%d ", quantity vector[k drinks index]);
set something(widget array[k drink quantity]~ DwtNlabel,

DwtLatinlString(drink_txt)); -

static void reset_values()
{

int i;

for (i = k_burger_min; i <= k_burger_max; i++)

set_boolean(i, (i == k_burger_medium));

set something(widget array[k burger quantity], DwtNvalue, 0);
quantity_vector[k_burger_index] = o;
DwtSTextSetString(widget_array[k_fries_quantity], " 0 ");

set something(widget array[k drink quantity], DwtNlabel, latin_zero);
quantity_vector[k_drinks_index] = O;

static void clear_order()
{

Arg arglist[S];
int ac = O;
XtSetArg(arglist[ac], DwtNitemsCount, 0);
ac++;
XtSetArg(arglist[ac], DwtNitems, NULL);
ac++;
XtSetArg(arglist[ac], DwtNselecteditemsCount, 0);
ac++;
XtSetValues(widget_array[k_total_order], arglist, ac);

static void activate proc(w, tag, reason)
Widget w; -

C-6

int *tag;
unsigned long *reason;

int widget num = *tag;
int i, value, fries num;
char *txt, *fries_text, *list_txt, list_buffer[20];
switch (widget num) {

case k_nyi:

if (widget_array[k_nyi] ==NULL)

if (DwtFetchWidget(s DRMHierarchy, "nyi", toplevel widget,
&widget array[k nyi], &dummy class) != DRMSuccess) {

s_error("can't fetch nyi widget");

XtManageChild(widget_array[k_nyi]);
break;

(continued on next page)

International Version of the DECburger Application

Example C-1 (Cont.) C Program for the International Version of DECburger

case k submit order:

clear_order();
break;

case k cancel order: - -
clear_order();
break;

case k dismiss:

XtUnmanageChild(widget_array[k order box]);
case k_noapply:

reset_ values() ;
break;

case k_apply:

if (quantity vector[k burger index] > 0) {
list txt-= name vector[k-burger index];
list=txt = DwtCStrcat(list_txt,-latin_separator);

sprintf(list buffer, "%d ", quantity vector[k burger index]);
list_txt = D;tCStrcat(list_txt, DwtL~tinlString(list=buffer));

for (i = k burger min; i <= k burger max; i++)
if (toggle_array[i - k_burger_min]) {

get_something(widget_array[i], DwtNlabel, &txt);
list txt DwtCStrcat(list txt, txt);
list=txt = DwtCStrcat(list=txt, latin_space);

DwtListBoxAdditem(widget_array[k_total_order], list_txt, 0);

fries text= DwtSTextGetString(widget array[k fries quantity]);
fries=num = 0; - - -
sscanf(fries text, "%d", &fries num);
if (fries_num != 0) { -

list_txt = name_vector[k_fries_index];
list_txt = DwtCStrcat(list_txt, latin_separator);

sprintf(list buffer, "%d ", fries num);
list_txt D;tCStrcat(list_txt, D;tLatinlString(list_buffer));

list_txt = DwtCStrcat(list_txt, current_fries);

DwtListBoxAdditem(widget_array[k_total_order], list_txt, 0);

if (quantity vector[k drinks index] > 0) {
list txt-= name vector[k-drinks index];
list=txt = DwtCStrcat(list_txt,-latin_separator);

sprintf(list_buffer, "%d ", quantity_vector[k_drinks_index]);
list_txt DwtCStrcat(list_txt, DwtLatinlString(list_buffer));

list_txt = DwtCStrcat(list_txt, current_drink);

DwtListBoxAdditem(widget_array[k_total_order], list_txt, 0);

break;

(continued on next page)

C-7

International Version of the DECburger Application

Example C-1 (Cont.) C Program for the International Version of DECburger

case k_fries_tiny:
case k fries small: - -
case k fries medium: - -
case k_fries_large:
case k fries huge:

get_something(w, DwtNlabel, ¤t_fries);
break;

case k drink add: - -
quantity vector[k drinks index]++;
update_drink_display(); -
break;

case k drink sub: - -
if (quantity vector[k drinks index] > 0)

quantity-vector[k-drinks-index]--;
update_drink=display(); -
break;

default:
break;

static void toggle_proc(w, tag, toggle)
Widget w;
int *tag;
DwtTogglebuttonCallbackStruct *toggle;

toggle_array[*tag - k_burger_min] = toggle->value;

static void list_proc(w, tag, list)
Widget w;
int *tag;
DwtListBoxCallbackStruct *list;

current drink = list->item;

static void scale proc(w, tag, scale)
Widget w; -
int *tag;
DwtScaleCallbackStruct *scale;

quantity_vector[k_burger_index] = scale->value;

static void show hide proc(w, tag, reason)
Widget w; - -

C-8

int *tag;
unsigned long *reason;

if (XtisManaged(widget array[k order box]))
XtUnmanageChild(widget_array[k_order_box]);

else
XtManageChild(widget_array[k_order_box]);

(continued on next page)

International Version of the DECburger Application

Example C-1 {Cont.) C Program for the International Version of DECburger

static void show label proc(w, tag, reason)
Widget w; - -
int *tag;
unsigned long *reason;

if (widget_array[k_order_box] == NULL)

if (DwtFetchWidget(s DRMHierarchy, "control box", toplevel widget,
&widget_array[k_order_box], &durruny_class)-!= DRMSuccess)-{

s_error("can't fetch order box widget");

if (XtisManaged(widget array[k order box]))
set_something(widget_array[k_create_order], DwtNlabel, latin_dismiss);

else
set_something(widget_array[k_create_order], DwtNlabel, latin_create);

static void create proc(w, tag, reason)
Widget w; -
int *tag;
unsigned long *reason;

int widget num = *tag;
widget_array[widget_numJ w;

switch (widget_num) {
case k_burger_label:

get_something(w, DwtNlabel, &name_vector[k_burger_index]);
break;

case k_fries_label:
get_something(w, DwtNlabel, &name_vector[k_fries_index]);
break;

case k drink label: - -
get_something(w, DwtNlabel, &name_vector[k_drinks_index]};
break;

default:
break;

static void quit proc(w, tag, reason}
Widget w; -
int *tag;
unsigned long *reason;

if (tag ! = NULL}
printf("%s", tag);

exit(l);

static void pull proc(w, tag, reason}
Widget w; -
int *tag;
unsigned long *reason;

(continued on next page)

C-9

International Version of the DECburger Application

Example C-1 (Cont.) C Program for the International Version of DECburger

int widget num = *tag;
switch (widget_num) {

case k_file_pdme:

C-10

if (widget array[k file menu] ==NULL) {
if (DwtFetchWidget(s DRMHierarchy, "file menu", widget array[

k_menu_bar], &widget_array[k_file_menu], &dummy_class) !=
DRMSuccess)

s error("can't fetch file pulldown menu widget");
set_something(widget_array[k_file_pdme], DwtNsubMenuid,

widget_array[k_file_menu]);

break;
case k edit pdme:

if-(widget array[k edit menu] ==NULL) {
if (DwtFetchWidget(s_DRMHierarchy, "edit_menu", widget_array[

k_menu_bar], &widget_array[k_edit_menu], &dummy_class) !=
DRMSuccess)

s error("can't fetch edit pulldown menu widget");
set_something(widget_array[k_edit_pdme), DwtNsubMenuid,

widget_array[k_edit_menu]);

break;

case k_order_pdme:
if (widget array[k order menu] == NULL) {

if (DwtFetchWidget(s:=DRMHierarchy, "order_menu", widget_array[
k_menu_bar], &widget_array[k_order_menu], &dummy_class) !=
DRMSuccess)

s_error("can't fetch order pulldown menu widget");
set_something(widget_array[k_order_pdme], DwtNsubMenuid,

widget array[k order menu]);
if (DwtFetchWidget(s DRMHierarchy, "control box",

toplevel_widget, &;idget_array[k_order_box], &dummy_class) !=
DRMSuccess)

s_error("can't fetch order box widget");

if widget_array[k_order_box] ==NULL
if (DwtFetchWidget (

s_DRMHierarchy,
"control box",
toplevel:=widget,
&widget_array [k_order_box],
&dummy class) != DRMSuccess)

s_error ("can't fetch order box widget");
if (XtisManaged(widget array[k order box]))

set something(widget array(k create order], DwtNlabel,
latin_dismiss); - - -

else
set something(widget array[k create order], DwtNlabel,

latin_create); - - -
break;

D Building Your Own Widgets

The XUI Toolkit includes a set of widgets you can use to create the user
interface of your application. You also have the option of building your
own widgets.

This appendix describes how to build widgets.

D.1 Overview of Widgets

D.1.1

As defined in Chapter 1, a widget is a window packaged with input and
output capabilities. In an application program, a widget is a collection
of data and procedures, gathered into predefined data structures. The
data defines characteristics of a widget, such as the width and height
of the widget window. The procedures define the basic set of operations
that can be performed on the widget, such as initialization, creation, and
destruction.

The data and procedures that define a widget are collected in two data
structures, defined by the X Toolkit: the widget class data structure
and the widget instance data structure. The widget class data structure
contains all the data and procedures that define a particular type, or
class, of widget. Section D.2.1.1 describes this data structure. The widget
instance data structure contains all the data and procedures that define
an instance of a widget of a particular class. Section D.2.1.2 describes
this data structure.

For example, consider an application that contains dozens of push button
widgets. For this application, one widget class data structure contains the
data and procedures common to all the push button widgets. However,
the application includes one widget instance data structure for each push
button widget it contains. The widget instance data structure defines
those aspects of the push button widget that vary with each instance, such
as size, position, and text content.

Building a Widget
You build a widget by defining the data and procedures that characterize
the widget's appearance and functions. The X Toolkit defines a
fundamental widget, called the core widget, on which all other widgets
can be based. The core widget definition contains the basic set of data and
procedures common to all widgets. To build a new widget, add the data
and procedures that define the new widget to the core widget definition.
In this way, you can build a widget without having to rewrite existing data
and procedures.

D-1

D.1.2

Building Your Own Widgets
D.1 Overview of Widgets

Thus, the core widget and all of its descendants are related in a
hierarchical structure. A new widget is called a subclass of the core
widget. The core widget is called the superclass of the new widget. A
subclass is said to inherit all the data and procedures of its superclass.
(A subclass can also override a data field or procedure of its superclass.)

Note that the superclass/subclass relationship between widgets is different
from the parent/child.widget relationship described in Chapter 1. The
relationship of widget classes defines the characteristics of a type
of widget. For example, in the XUI Toolkit, the push button widget
is a subcla~s of the label widget. Therefore, the push button widget
contains all the data and procedures of the label widget plus the data and
procedures unique to a push button widget. The parent/child relationship
describes how instances of widgets are arranged to create user interfaces.
The parent controls aspects of the appearance of its children. For example,
in the Hello World! application introduced in Chapter 1, the dialog box
widget is the parent of the label widget and the push button widget.

Building a Sample Widget

D-2

To illustrate widget building, this section introduces a sample widget:
the simple push button widget. The simple push button widget does not
attempt to duplicate the appearance or function of the XUI Toolkit push
button widget (described in Section 5.4). For example, the simple push
button widget does not accept compound strings and does not flash when
activated by a user. However, this sample widget does provide a useful
illustration of the process of widget building.

The following summarizes the steps required to build and test the sample
widget:

1 Define the data and procedures that must be added to the core widget
class data structure to provide the push button functions.

Example D-1 shows the source code for the sample widget. The
example shows how a widget is constructed of data declarations and
procedures. You must initialize the widget class data structure when
you declare it.

2 Compile the widget.

The widget data declarations and procedure definitions are usually
segregated into a separately compilable module. Use the command
syntax summarized in Example D-3.

3 Link the widget with an application that uses it.

To test the sample widget, use it in an application. For example,
Example D-2 shows the changes you would make to the Hello World!
application to replace the XUI Toolkit push button widget with the
simple push button widget. Example D-3 presents the syntax to
perform the link operation.

4 Run the test program.

Building Your Own Widgets
0.1 Overview of Widgets

Example D-1 is the source file for the sample widget.

Example D-1 Sample Widget

O#include "decw$include:dwtwidget.h"

ftstatic void Notify(), Destroy(), Initialize(), Redisplay(), set_gcs();
static Boolean Setvalues();
Widget SimplePushCreate();

(!)=tfdef ine f orGCmask GCForeground I GCBackground I GCLineWidth
#define TheLabel(w) ((w)->simplepush.label)

~typedef struct _SimplePushClass {
DwtOff setPtr simplepushoff sets;
int reserved;

SimplePushClassPart;

CBtypedef struct _SimplePushClassRec
CoreClassPart core class;
SimplePushClassPart simplepush class;

SimplePushClassRec, *SimplePushWidgetClass;

G}typedef struct {
char
XtCallbackList
GC

SimplePushPart;

*label;
callback_list;
gc;

fltypedef struct _SimplePushRec
CorePart core;
SimplePushPart simplepush;

SimplePushRec, *SimplePushWidget;

«Bstatic XtResource resources[] = {

{XtNcallback, XtCCallback, XtRCallback, sizeof(caddr_t),
XtOffset(SimplePushWidget, simplepush.callback_list),

XtRCallback, (caddr_t) NULL},

} ;

{XtNlabel, XtCString, XtRString, sizeof(char*),
XtOffset(SimplePushWidget, simplepush.label),

XtRString, NULL},

CDstatic char defaultTranslations[]

G>static XtActionsRec actionsList[]

"<BtnlUp>: notify()";

{ {"notify", Notify} })

(continued on next page)

D-3

Building Your Own Widgets
D.1 Overview of Widgets

Example D-1 (Cont.) Sample Widget

4DsimplePushClassRec simplepushClassRec = {

} ;

{ /* Core Class Part */
/* superclass */
/* class name */
/* widget_size */
/* class initialize */
/* class-part initialize*/
/* class-inited */
/* initialize */
/* initialize hook */
/* realize */
/* actions */
/* num actions */
/* resources */
/* num resources */
/* xrm class */
I* compress_motion */
/* compress exposure */
/* compress-enterleave*/
/* visible interest */
/* destroy- */
/* resize */
/* expose */
/* set values */
/* set_values_hook */
/* set_values_almost */
/* get_values_hook */
/* accept_focus */
/* version */
/* callback offsets */
/* tm table */
/* geometry */
/* disp accelerators */
/* extension */
} '

(WidgetClass) &widgetClassRec,
"SimplePush",
sizeof(SimplePushRec),
NULL,
NULL,
FALSE,
Initialize,
NULL,
XtinheritRealize,
actionsList,
XtNumber(actionsList),
(XtResource *) resources,
XtNumber(resources),
NULLQUARK,
TRUE,
TRUE,
TRUE,
FALSE,
Destroy,
XtinheritResize,
Redisplay,
(XtSetValuesFunc)SetValues,

NULL,
XtinheritSetValuesAlmost,
NULL,
NULL,
XtVersionDontCheck,
NULL,
defaultTranslations,
NULL,
NULL,
NULL,

{ /* simplepush class record */
/* */ NULL,
I* *I NULL,
}

48widgetClass simplepushWidgetClass

49static void set gcs(w)

(WidgetClass) &simplepushClassRec;

D-4

SimplePushWidget w;

XGCValues values;

values.font= XLoadFont (XtDisplay(w), "fixed");
w->simplepush.gc = XtGetGC (w, GCFont, &values);

(continued on next page)

Building Your Own Widgets
D.1 Overview of Widgets

Example D-1 (Cont.) Sample Widget

void UpdateCallback (r, rstruct, s,
Widget r;
DwtCallbackStructPtr rstruct;
Widget s;

sstruct, argname)
/* the real widget*/
/* the real callback list */
I* the scratch widget*/

DwtCallbackStructPtr sstruct; /* the scratch callback list
char *argname;

DwtCallbackPtr list;

/*
* if a new callback has been specified in the scratch widget,
* remove and deallocate old callback and init new
*I

if (rstruct->ecallback != sstruct->ecallback)
{

list= (DwtCallbackPtr)sstruct->ecallback;
I*

* Copy the old callback list into the new widget, since
* XtRemoveCallbacks needs the "real" widget
*/

*sstruct = *rstruct;
XtRemoveAllCallbacks(s, argname);
sstruct->ecallback = NULL;
XtAddCallbacks(s, argname, list);

'lstatic void Initialize(req, new)
Widget req, /* as built from arglist */

new; /* as modif by superclasses */

SimplePushWidget w = (SimplePushWidget) new;

/*
* Handle the string and set widget gcs
*/

if (TheLabel (w) == NULL)
TheLabel (w) = strcpy (XtMalloc ((unsigned)

else
TheLabel (w)

set_gcs (w);

strlen (w->core.name) + 1),
w->core.name);

strcpy (XtMalloc ((unsigned)
strlen (TheLabel(w)) + 1),
TheLabel (w)) ;

'9static void Redisplay(w, event, region)
SimplePushWidget w;
XEvent *event;
Region region;

if (XtisRealized (w))

*/

(continued on next page)

D-5

Building Your Own Widgets
0.1 Overview of Widgets

Example D-1 {Cont.) Sample Widget

XDrawString (XtDisplay (w),
XtWindow (w) ,
w->simplepush.gc,
1,
XtHeight (w)/2,
TheLabel (w) ,
strlen(TheLabel(w)));

IOstatic void Notify(w, event)
SimplePushWidget w;
XEvent *event;

int data = 0;

XtCallCallbacks(w, XtNcallback, data);

'9static Boolean SetValues(old, request, new)
SimplePushWidget old,request,new;

Boolean redisplay = FALSE;

UpdateCallback(old,
&(old->simplepush.callback_list),
new,
&(new->simplepush.callback list),
XtNcallback); -

I*
* if the address and/or contents of the label have been modified,
* free old string and store new. Also must redisplay new label.
*I

if (TheLabel(old) != TheLabel(new)
11

strcmp(TheLabel(old), TheLabel(new)) != 0)

XtFree (TheLabel(old));
TheLabel(old) NULL;

TheLabel(new) = strcpy (XtMalloc ((unsigned)

redisplay = TRUE;

return (Boolean) (redisplay);

strlen (TheLabel(new)) + 1),
TheLabel (new));

4tstatic void Destroy(w)
SimplePushWidget w;

D-6

XtFree(TheLabel(w));
XtRemoveAllCallbacks(w, XtNcallback);

(continued on next page)

Building Your Own Widgets
D.1 Overview of Widgets

Example D-1 (Cont.) Sample Widget

fbwidget SimplePushCreate(parent, name, args, argCount)
Widget parent;
char *name;
ArgList args;
int argCount;

return XtCreateWidget(name,
simplepushWidgetClass,
parent,
args,
argCount));

0 Symbol definition file used by widget builders.

8 Forward declarations of procedures defined in the module.

0 Constant definitions used by the widget.

8 This statement defines that part of the class record that is unique to
the simple push button widget. This is called the class part definition.
In the example, this includes two fields.

8 After defining the new fields of the simple push button widget class,
the sample widget appends these new fields to the class part record of
the core widget. Section D.2.1.1 describes this structure.

0 The sample widget defines the part of the widget instance record
unique to the simple push button widget. The sample widget defines
three new fields:

• The text string the simple push button widget will contain

• The list of callback routines

• A graphics context data structure

8 After defining the new fields in the instance record, the sample widget
appends these new fields to the core widget instance record. The core
widget instance record is described in Section D.2.1.2.

e This is a declaration of an array of XtResource data structures, with
initialization of the data structures. The XtResource data structure is
defined by the X Toolkit (see Section D.8.1). This array defines which
aspects of the simple push button widget can be set at widget creation
time.

0 The translation table for the simple push button widget defines the
action the widget performs in response to user interaction. This
translation table specifies that when the user clicks MBl in the
simple push button widget, the procedure notify() should be executed.
Section D.9.3 describes the elements of a translation table.

D-7

Building Your Own Widgets
D.1 Overview of Widgets

D-8

8 The action table maps the name of the action procedure to the address
of the action procedure. Here the notify() procedure is associated with
the text string "notify". Section D.9.1 describes the elements of an
action table.

e The fields in the structure that define the simple push button widget
class are initialized. This structure contains all the fields from the
core widget class definition plus the new fields defined by the simple
push button widget. Note that the first field in the structure points to
the class definition of the superclass of this widget.

By initializing this structure, you determine which data and
procedures are inherited from the core widget class and which data
and procedures are new with the simple push button widget class.
Section D.2.1 describes the core widget definition. The simple push
button widget inherits most of the procedures except the initialize,
destroy, and expose procedures.

8 This statement declares a static pointer to the simple push button
widget class.

8 The next two procedures are local procedures used by the initialize()
procedure. These procedures set the graphics context for displaying
text.

e This is the simple push button widget instance initialization
procedure. It is called every time an instance of this widget is created.
Section D.4.1 describes this procedure.

8 This is the simple push button widget expose procedure. This
procedure is called whenever the widget becomes visible.
Section D.7.2.1 describes this procedure.

8 This is the action routine for the widget, named notify(). This
procedure is listed in the translation table for this widget.

• This is the simple push button widget set values procedure. This
procedure is called when an application program calls the intrinsic
routine SET VALUES. The set values procedure, described in
Section D.8.7.1, updates widget-specific attributes.

8 This is the simple push button widget destroy procedure. This
procedure, described in Section D.4.5, destroys an instance of the
widget.

$. The simple push button widget defines a low-level creation routine
that you can use to create instances of the widget.

Example D-2 contains the changes you must make to the Hello World!
sample application that appears in Example 2-14 to replace the XUI
Toolkit push button widget with the sample widget.

Building Your Own Widgets
D.1 Overview of Widgets

Example D-2 Modifying the Hello World! Application to Use the Sample
Widget

8A~g arglist[15];

XtSetArg (arglist[O], XtNx, 10) ;
XtSetArg (arglist[l], XtNy, 40);
XtSetArg (arglist[2), XtNcallback, callback arg) ;
8xtsetArg (arglist [3], XtNlabel, " Hello W;-rld! ")
OxtsetArg (arglist[4], XtNwidth, 84);
XtSetArg (arglist[S], XtNheight, 25);

&button= SimplePushCreate(helloworldmain,"button",arglist,6);

CDx~setArg(arglist[O], XtNlabel, "Goodbye World!");
XtSetValues(widget, arglist, 1);

8 Increase the size of the array of argument data structures.

8 The sample widget does not use compound strings.

0 The width and height of the sample widget are 0, by default, so you
must supply explicit values for these attributes.

8 Create the sample widget using the low-level routine declared in the
widget.

CD Change the compound string used in the callback routine to a standard
text string. Also, because the size of the simple push button is fixed,
the repositioning done in the original Hello World! example has been
removed.

Example D-3 presents the command syntax to compile, link, and run the
sample widget and test program.

D-9

Building Your Own Widgets
D.1 Overview of Widgets

Example D-3 Compiling and Linking the Sample Widget

$ CC SAMPLE WIDGET. C

$ CC NEW HELLOWORLD.C

$ LINK/NODEB NEW HELLOWORLD,SAMPLE WIDGET,SYS$INPUT/OPT
SYS$LIBRARY:DECW$DWTLIBSHR/SHARE -

lctrl/ZI

$ RUN NEW HELLOWORLD

D.2 Widget Class Definitions

D.2.1 Core Widgets

D-10

Every widget belongs to exactly one widget class that is statically allocated
and initialized and that contains the operations allowable on widgets of
that class. Logically, a widget class is the procedures and data that is
associated with all widgets belonging to that class. These procedures
and data can be inherited by subclasses. Physically, a widget class is a
pointer to a structure. The contents of this structure are constant for
all widgets of the widget class but will vary from class to class. Here,
constant means that the class structure is initialized at compile time
and never changed, except for a one-time class initialization and in-place
compilation of resource lists, which takes place when the first widget of
the class or subclass is created.

The organization of the declarations and code for a new widget class
between a public .h file, a private .h file, and the implementation .c file is
described in Section D.3. The predefined widget classes adhere to these
conventions.

A widget instance is composed of two parts:

• A data structure that contains instance-specific values

• A class structure that contains information applicable to all widgets of
that class

Much of the input/output of a widget (for example, fonts, colors, sizes,
border widths, and so on) is customizable by users.

The next three sections discuss the base widget classes:

• Core widgets

• Composite widgets

• Constraint widgets

The core widget contains definitions of fields common to all widgets.
All widgets are subclasses of the core widget, which is defined by the
CoreClassPart and CorePart structures.

Bulldi.ng .Your Own Widgets
0.2 ·Widget Class Definition~

D.2.1.1 CoreClassPart Structure
The common fields for all widget classes are. defined in the CoreClassPart
structure, as follows:

typedef struct {
WidgetClass superclass;
String class name;
Cardinal widget_size;
XtProc class initialize;
XtWidgetClassProc class part initialize;
Boolean class inited; - -
XtinitProc initialize;
XtArgsProc initialize_hook;
XtRealizeProc realize;
XtActionList actions;
Cardinal num_actions;
XtResourceList resources;
Cardinal num resources;
XrmClass xrm-class;
Boolean compress_motion;
Boolean compress exposure;
Boolean compress-enterleave;
Boolean visible Interest;
XtWidgetProc destroy;
XtWidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set values;
XtArgsFunc set_values_hook;
XtAlmostProc set_va+ues_almost;
XtArgsProc get_values_h~ok;
XtAcceptFocusProc accept ~ocus;
XtVersionType version; -
XtOffsetList callback private;

String tm_table; -
XtGeometryHandler query geometry;
XtStringProc display accelerator;
caddr_t extension; -

CoreClas.;:sPart;

All widget classes have the core class fields as their first component. The
prototypical WidgetClass is defined with only this set of fields. Various
routines can cast widget class pointers, as needed, to specific widget class
types, as shown in the following example:

typedef struct {
CoreClassPart core_class;

} WidgetClassRec, *WidgetClass;

The predefined class record and pointer for WidgetClassRec ~re:

extern WidgetClassRec widgetClassRec;
extern WidgetClass widgetClass;

The opaque types Widget and WidgetClass and the opaque· variable
widgetClass are defined for generic actions oil widgets.

D-11

· · Building :Your: Owrr Widgets
; · D.2 Widget Class Definitions

D-12

· 0.2~1.2 CorePart Structure
The common fields for all widget instances are defined in the CorePart
structure, as follows:

typedef struct _CorePart {
Widget self;
WidgetClass widget_class;
Widget parent;
XrmName xrm name;
Boolean being destroyed;
XtCallbackList destroy callbacks;
caddr t constraints; -
Position x;
Position y;
Dimension width;
Dimension height;
Dimension border_width;
Boolean managed;
Boolean sensitive;
Boolean ancestor_sensitive;
XtEventTable event_table;
XtTMRec tm;
XtTranslations accelerators;
Pixel border_pixel;
Pixmap border_pixmap;
WidgetList popup list;
Cardinal num_popups;
String name;
Screen *screen;
Colormap colormap;
Window window;
Cardinal depth;
Pixel background_pixel;
Pixmap background_pixmap;
Boolean visible;
Boolean mapped_when_managed;

CorePart;

All widget instances have the core fields as their first component. The
prototypical type Widget is defined with only this set of fields. Various
routines can cast widget pointers, as needed, to specific widget types, as
shown in the following example:

typedef struct {
CorePart core;

} WidgetRec, *Widget;

D.2.1.3 CorePart Default Values
The default values for the core widget fields, which are filled in by the core
widget resource list and the core widget initialize procedure, are listed in
Table D-1.

Building Your Own Widgets
0.2 Widget Class Definitions

Table D-1 Default Values for the CorePart Structure

Field Default Value

self Address of the widget structure (cannot be changed)

widget_class The widget_class argument to the CREATE WIDGET
intrinsic routine (cannot be changed)

parent The parent argument to the CREATE WIDGET intrinsic
routine (cannot be changed)

xrm_name Encoded name argument to the CREATE WIDGET
intrinsic routine (cannot be changed)

being_ destroyed

destroy_ callbacks

constraints

x
y

width

height

border_ width

managed

sensitive

ancestor _sensitive

event_ table

tm

accelerators

border _pixel

border_pixmap

popup_list

num_popups

name

screen

colormap

window

depth

background_pixel

background_pixmap

visible

map_when_managed

Parent's being_destroyed value

Null

Null

0

0

0

0

False

True

Bitwise AND of sensitive and ancestor_sensitive fields of
the·parent widget's CorePart structure

Initialized by the event manager

Initialized by the translation manager

Null

XtDefaultForeground

Null

Null

0

The name argument to the CREATE WIDGET intrinsic
routine (cannot be changed)

Parent's screen; top-level widget gets it from display
specifier (cannot be changed)

Default color map for the screen

Null

Parent's depth; top-level widget gets root window depth

XtDefaultBackground

Null

True

True

D-13

D.2.2

Building Your Own 'Widgets
D.2 Widget Class Definitions

Composite Widgets

D-14

Composite widgets are a subclass of the core widget (see Section D.5).
They are intended to. be containers for other widgets and are defined by
the CompositeClassPart and CompositePart structures.

D.2.2.1 CompositeClassPart Structure
In addition to the core widget class fields, composite widgets have the
following class fields:

typedef struct {
XtGeometryHandler geometry manager;
XtWidgetProc change_managed;
XtWidgetProc insert_child;
XtWidgetProc delete_child;
caddr_t extension;

CompositeClassPart;
"

Composite widget classes have the composite fields immediately following
the core fields, as shown in the following example:

typedef struct { ·
CoreClassPart core_class;
CompositeClassPart composite class;

} CompositeClassRec, *CompositeWidgetClass;

The predefined class record and pointer for CompositeClassRec are:

extern CompositeClassRec compositeClassRec;
extern WidgetClass compositeWidgetClass;

The opaque types Composite Widget and Composite WidgetClass and the
opaque variable compositeWidget are defined for generic operations on
widgets that are a subclass of Composite Widget.

D.2.2.2 CompositePart Structure
In addition to the CorePart fields, composite widgets have the following
fields defined in the CompositePart structure:

typedef struct {
WidgetList children;
Cardinal num children;
Cardinal num-slots;
XtOrderProc insert_position;

CompositePart;

Composite widgets have the composite fields immediately following the
core fields, as shown in the following example:

typedef struct {
CorePart core;
CompositePart composite;

} CompositeRec, *CompositeWidget;

D.2.3

Building Your Own Widgets
D.2 Widget Class Definitions

D.2.2.3 CompositePart Default Values
The default values for the composite fields, which are filled in by the
composite widget resource list and the composite widget initialize
procedure, are listed in Table D-2.

Table D-2 Default Values for the CompositePart Structure

Field

children

num_children

num_slots

insert_position

Constraint Widgets

Default Value

Null

0

0

Internal function lnsertAtEnd

Constraint widgets are a subclass of the Composite widget (see
Section D.5.4) that maintain additional state data for each child, such
as client-defined constraints on the child's geometry. They are defined by
the ConstraintClassPart and ConstraintPart structures.

D.2.3.1 ConstraintClassPart Structure
In addition to the composite class fields, constraint widgets have the
following class fields:

typedef struct {
XtResourceList resources;
Cardinal num resources;
Cardinal constraint size;
XtinitProc initialize;
XtWidgetProc destroy;
XtSetValuesFunc set values;
caddr t extension; -

Constrai~tClassPart;

Constraint widget classes have the constraint fields immediately following
the composite fields, as follows:

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;
ConstraintClassPart constraint class;

ConstraintClassRec, *ConstraintWidgetClass;

The predefined class record and pointer for ConstraintClassRec are:

extern ConstraintClassRec constraintClassRec;
extern WidgetClass constraintWidgetClass;

The opaque types ConstraintWidget and ConstraintWidgetClass and the
opaque variable constraintWidgetClass are defined for generic operations
on widgets that are a subclass of ConstraintWidgetClass.

D-15

Building Ypur Own Widgets
D.2 Widget Class Definitions

D.2.3.2 ConstraintP~rt Structure

0.3 Widget Classing

D-16

In addition to the CompositePart fields, Constraint widgets have the
following fields defined in the ConstraintPart structure:

typedef struct { int empty; } ConstraintPart;

Constraint widgets have the constraint fields immediately following the
composite fields, as follows:

typedef struct {
CorePart core;
CompoqitePart composite;
Constraintpart constraint;

ConstraintRec, *ConstraintWidget;

The widget_class field of a widget points to its widget class structure,
which contains iQ.formation that is constant across all widgets of that
class. As a consequence, widget classes usually do not implement directly
callable procedures; rather, they implement procedures that are available
through their widget class structure. These methods are invoked by
generic procedures that envelop common actions around the procedures
implemented by the widget class. Such procedures are applicable to all
widgets of that class and also to widgets that are subclasses of that class.

All widget class~s are a subclass of the core widget. These widget classes
can, in turn, have subclasses. Subclasses reduce the amount of code and
declarations you write to make a new widget class that is similar to an
existing class. For example, you do not have to describe every resource
your widget uses in an XtResourceList. Instead, you describe only the
resources your widget has that its .superclass does not. Subclasses usually
inherit many of their superclass's procedures (for example, the expose
procedure ·or geometry handler).

Subclassing, however, can be taken too far. If you create a subclass that
inherits none of the procedures of its superclass, you should consider
whether or not you, have chosen the most appropriate superclass.

To lllake good· use of subclassing, widget declarations. and naming
conventions are highly stylized. A widget declaration consists of three
files;

• A public .h file that is used by client widgets or applications

• A private .h file· that is used by widgets that are subclasses of the
widget

• A .c file that implements the widget class

D.3.1

Building Your ·Own Widgets
D.3 Widget Classing

Widget Naming Conventions
Intrinsics routines provide a vehicle by which programmers can create new
widgets and organize a collection of widgets into an application. To ensure
that applications need not deal with as many styles of capitalization
and spelling as the number of widget classes it uses, use the following
guidelines when writing new widgets:

• Use the X naming conventions that are applicable (see the VMS
DECwindows Guide to Xlib Programming: MIT C Binding). For
example, a record component name is all lowercase and uses
underscores (_) for compound words (for example, background_
pixmap). Type and procedure names start with a capital letter and
use initial capitalization for compound words (for example, ArgList or
XtSetValues).

• A resource name string is spelled identically to the field name except
that compound names use initial capitalization rather than an
underscore. To let the compiler catch spelling errors, each resource
name should have a macro definition prefixed with XtN. For example,
the background_pixmap field has the corresponding resource name
identifier XtNbackgroundPixmap, which is defined as the string
11 backgroundPixmap". Many predefined names are listed in
<Xll/StringDefs.h>. Before you create a new name, make sure that
your proposed name is not already defined, or that there is not already
a name that you can use.

• A resource class string starts with a capital letter and uses initial
capitalization for compound names (for example, BorderWidth). Each
resource class string should have a macro definition prefixed with XtC
(for example, XtCBorderWidth).

• A resource representation string is spelled identically to the type
name (for example, TranslationTable). Each representation string
should have a macro definition prefixed with XtR (for example,
XtRTran~lationTable).

• New widget classes start with a capital letter and use initial
capitalization for compound words. For example, given a new class
name AbcXyz, you should derive several names:

Partial widget instance structure name AbcXyzPart

Complete .widget instance structure names AbcXyzRec and
_AbcXyzRec

Widget instance pointer type name AbcXyzWidget

Partial class structure name AbcXyzClassPart

Complete class structure names AbcXyzClassRec and
_AbcXyzClassRec

Class structure variable abcXyzClassRec

Class pointer variable abcXyz WidgetClass

D-17

0.3.2

, ; Building~· Your Own.'. Widgets
o.~.:·Widget Classing

• Action procedures available to transla_tion specificatioll.S E;hould ;follow
the same naming conventions as pro:cedures. That,is~ they start with·
a capital letter, and compound names use il)itial capitalization (for
example, Highlightand NotifyClient).

Widget Subclassing in Public .h Files

0-18

The public .h file for a widget class is imported by clients and contains the
following:

• A reference to the public .h fi,les for the superclass

• The names and classes of the new resources that this widget adds to
its superclass

• The class record pointer that you use to create widget instances

• The C type that you use to declare widget instances of this class

• Entry points for new class methods

For example, the following is the public .h file for a possible
implementation of a label widget:

:fl:ifndef LABEL H
#define LABEL=H

/* New resources */
#define XtNjustify"justify"
#define XtNforeground"foreground"
#define XtNlabel "label"
#define XtNfont rrfont"
#define XtNinternalWidth"internalWidth"
#define XtNinternalHeight"internalHeight"

/* Class record pointer */
extern WidgetClass labelWidgetClass;

/* c Widget type definition */
typedef struct _LabelRec *LabelWidget;

/* New class method entry points */
extern void Label SetText();

I* Widget w */
/* String text */

extern String Label GetText();
/* Widget w */

#endif LABEL_H

The conditional inclusion of the text. allows the application to include
header files for different widgets without being concern.ed that they
already may be included as a superclass of another widget.

To accommodate operating systems with file name length restrictions, the
name of the public .h file is the first 10 characters of the widget class. For
example, the public .h file for the Constraint widget is Constraint.h.

0.3.3

Building,:::vour··own Widgets·
:.:, 0~3.·Widget Classing

Widget:Subclassing in Private.h Files
· The private .h file for a widget. is imported by widget classes that are
· subclasses of the widget and contains the following:

• A reference to the public .h file for the class

• A reference to the private .h file for the superclass

• The new fields that the widget instance adds to its superclass's· widget
structure

• The complete .widget instance structure for this widget

• The new fields that this Widget class adds to·its superclass's Constraint
structure if the widget is· a subclass of Constraint

• The complete Constraint structure if the widget is·· a subclass of
Constraint

• The new fields. that this widget class adds to its superclass's Widget
class structure

• The complete widget class structure for this widget

• The name of a constant of the generic widget class structure

• An inherit procedure for subclasses that want to inherit a superclass
operation· for each new procedure in the widget class structure

For example, the following is the private .h file for a label widget:

#ifndef LAgELP H
#define LABELP=H

#include <Xll/Label.h>

I* New fields for the Label widget record */
typedef struct {
/* Settable resources */

Pixel foreground;
XFontStruct *font;
String label; /* text to diaplay */
XtJustify justify;
Dimension internal width;/* # of pixels horizontal border */
Dimension internal=height;/* # of pixels vertical border */

/* Data derived from resources */
GC normal_GC;
GC gray_GC;
Pixmap gray pixmap;
Position label x;
Position label-y;
Dimension label width;
Dimension label~height;
Cardinal label len;
Boolean display_sensitive;

LabelPart;

I* Full instance record declaration */
typedef struct _LabelRec {

CorePart core;
LabelPart label;

} LabelRec;

D-19

D.3.4

Building Your :Qwn Widgets
D.3 Widget Classing

/* Types for label class methods */
typedef void (*LabelSetTextProc) ();

/* Widget w */
/* String text */

typedef String (*Lab~lGetT~xtProc) ();
/* Widget w */

/* New fields for the Label widget class record */
typedef struct {

LabelSetTextProc set_text;
LabelGetTextProc get_text;
caddr_t extension;

LabelClassPart;

/* Full class record declaration */
typedef struct _LabelClassRec {

CoreClassPart core_class;
LabelClassPart label_class;

} LabelClassRec;

/* Class record variable */
extern LabelClassRec labelClassRec;

#define LabelinheritSetText((LabelSetTextProc) Xtinherit)
#define LabelinheritGetText((LabelGetTextProc)-Xtinherit
#endif LABELP H -

To accommodate operating systems with file name length restrictions,
the name of the private .h file is the first nine characters of the widget
class followed by an uppercase P. For example, the private .h file for the
Constraint widget is ConstraintP.h.

Widget Subclassing in .c Files

D-20

The .c file for a widget contains the structure initializer for the class record
variable, which contains the following types of fields:

• Class information (for example, superclass, class_name, widget_size,
class_initialize, and class_inited)

• Data constants (for example, resources and num_resources, actions and
num_actions, visible_interest, compress_motion, compress_exposure,
and version)

• Widget operations (for example, initialize, realize, destroy, resize,
expose, set_ values, accept_focus, and any operations specific to the
widget)·

The superclass field ·points to the superclass WidgetClass record. For
direct subclasses of the generic core widget, the superclass should be
initialized to the address of the widgetClassRec structure. The superclass
is used for class chaining operations (see Section D.3.5) and for inheriting
or enveloping a superclass's operations.

The class_name field contains the text name for this class (used by the
resource manager). For example, the label widget has the string 11 Label 11

•

More than one widget class can share the same text class name.

The widget_size field is the size of the corresponding widget structure (not
the size of the class structure).

Building Your Own Widgets
D.3 Widget Classing

The version field indicates the X Toolkit version number and is used
for run·time consistency checking of the intrinsl.cs and widgets in an
application. Widget writers must set the versiori field to the symbolic
value XtVersion in the widget class initialization. Widget writers who
know that their widgets are backward compatible With previous versions
of the intrinsics can put the special value XtVersionDontCheck in the
version field to turn off version checking for those widgets.

The extension field is for future upward compatibility. If you add
additional fields to class parts, all subclass structure layouts change~
requiring complete recompilation. To allow 'clients to avoid recompilation,
an extension field at the end of each class part can point to a record that
contains any additional class information requited.

All other fields are described in their respective sections.

Example D--4 is an abbreviated version of the .c file for the label widget.
(The resource table is described in Section D.8.)

Example D-4 The .c File for a Label Widget

/* Resources specific to Label */
#define XtRJustify "Justify"
static XtResource resources[] = {

{XtNforeground, XtCForeground, XtRPiXel, sizeof(Pixel),
XtOffset (LabelWidget, label. foreground), XtRString,. ~tDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString, XtDefaultE"oht},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

/* Forward declarations of procedures */
static void Classinitialize();
static void Initialize();
static void Realize();
static void SetText();
static void GetText();

(continued on next page)

0-21

Building Your Own Widgets
D.3 Widget Classing

Example D-4 {Cont.) The .c File for a Label Widget

/* Class record constant */
LabelClassRec labelClassRec

{

} ;

} '
{

/* core class fields */
I* superclass */
/* class name */
/* widget_size */
/* class initialize
/* class part initialize
/* class-inited
I* initialize */
/* initialize hook
I* realize */
I* actions */
/* num actions */
/* resources */
/* num resources
/* xrm-class */
/* compress_motion
/* compress_exposure
/* compress enterleave
/* visible Interest
/* destroy- */
/* resize */
/* expose */
/* set values */
/* set values hook
/* set_values_almost
/* get_values_hook
/* accept focus
/* version */
/* callback off sets
/* tm table */
/* query_geometry
/* display accelerator
/* extension */

/* Label class fields
I* get_text */
/* set text */
/* extension */

/* Class record pointer */
WidgetClass labelWidgetClass

D-22

(WidgetClass) &widgetClassRec,
"Label",
sizeof(LabelRec),
*/Classinitialize,
*/NULL,
*/False,
Initialize,
*/NULL,
Realize,
NULL,
0,
resources,
*/XtNumber(resources),
NULLQUARK,
*/True,
*/True,
*/True,
*/False,
NULL,
Resize,
Redisplay,
SetValues,
*/NULL,
*/XtinheritSetValuesAlmost,
*/NULL,
*/NULL,
XtVersion,
*/NULL,
NULL,
*/XtinheritQueryGeometry,
*/NULL,
NULL

*/
Get Text,
Set Text,
NULL

(WidgetClass) &labelClassRec;

(continued on next page)

D.3.5

Building Your Own Widgets
D.3 Widget Classing

Example D-4 (Cont.) The .c File for a Label Widget

I* New method access routines */
void Label SetText(w, text)

Widget w;

}

String text;

Label WidgetClass lwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(w, labelWidgetClass, NULL);
*(lwc->label_class.set_text) (w, text)

/* Private procedures */

Superclass Chaining
While most fields in a widget class structure are self-contained, some
fields are linked to their corresponding field in their superclass or subclass
structures. With a linked field, the intrinsics access the value in the
widget class field only after accessing the value in the corresponding
superclass field (called downward superclass chaining) or before accessing
the value in the corresponding superclass field (called upward superclass
chaining). The self-contained fields in a widget class are:

• The class_name field

• The class_initialize field

• The widget_size field

• The realize field

• The visible_interest field

• The resize field

• The expose field

• The accept_focus field

• The compress_motion field

• The compress_exposure field

• The compress_enterleave field

• The set_ values_almost field

• The tm_table field

• The version field

With downward superclass chaining, the invocation of an operation
first accesses the field from the Core class structure, then the subclass
structure, and so on down the class chain to that widget's class structure.

D-23

D.3.6

Building Your Own Widgets
D.3 Widget Classing

These superclass-to-subclass fields are:

• The class_part_initialize field

• The get_ values_hook field

• The initialize field

• The initialize_hook field

• The set_values field

• The set_ values_hook field

• The resources field

In addition, for subclasses of the constraint widget, the resources field of
the ConstraintClassPart structure is chained from the Constraint class
down to the subclass.

With upward superclass chaining, the invocation of an operation first
accesses the field from the widget· class structure, then the. field from
the superclass structure, and so on up the class chain to the Core class
structure. The subclass·-to-superclass fields are:

• The destroy field

• The actions field

Class Initialization

D-24

Many class records can be initialized completely at compile time. In some
cases, however, a class may need to register type converters or perform
other sorts of one-time initialization.

Because the C language does not have initialization procedures that are
invoked automatically when a program starts up, a widget class can
declare a class initialize procedure that will be automatically called exactly
once by the X Toolkit. A class initialization procedure is of type XtProc, as
follows:

typedef void (*XtProc) ();

A widget class indicates that it has no class initialization procedure by
specifying null in the class_initialize field.

In addition to having class initializations done exactly once, some classes
need to perform additional initialization for fields in their part of the class
record. These are performed for the particular class· and· for subclasses
as well. This is done in· the class part initialization procedure, which is
stored in the class_part_initialize field and is of type Xt WidgetClassProc,
as follows:

typedef void (*XtWidgetClassProc) (WidgetClass);
WidgetClass widgetClass;

During class initialization, the class part initialization procedures for
the class and all its superclasses are called in superclass-to-subclass
order on the class record. These procedures have the responsibility of
doing any dynamic initializations necessary to their class's part of the

D.3.7

Building Your Own Widgets
. D.3 Widget Classing

record. The most common task is the resolution of any inherited methods
defined in the class. For example, if a widget class Chas superclasses
Core, Composite, A, and B, the class record for C is first passed to Core's
class_part_initialize record. This resolves any inherited core methods
and compiles the textual representations of the resource list and action
table that are defined in the class record. Next, the Composite's class part
initialize procedure is called to initialize the composite part of C's class
record. Finally, the class part initialize procedures for A, B, and C (in
order) are called. Classes that do not define any new class fields or that
need no extra processing can specify null in the class_part_initialize field.

All widget classes, whether they have a class initialization procedure or
not, must start with their class_inited field set to false.

The first time a widget of a class is created, the CREATE WIDGET
intrinsic routine ensures that the widget class and all superclasses are
initialized, in superclass to subclass order, by checking each class_inited
field and, if it is set to false, by then calling the class initialize and the
class part initialize procedures for the class and all its superclasses.
The intrinsics then set the class_inited field to true. After the one-time
initialization, a class structure is constant.

The following provides the class initialization procedure for the label
widget described in Example D-4.

static void Classinitialize()
{

XtQEleft = XrmStringToQuark("left");
XtQEcenter = XrmStringToQuark("center");
XtQEright = XrmStringToQuark("right");

XtAddConverter(XtRString, XtRJustify, CvtStringToJustify, NULL, 0);

A class is initialized the first time a widget of that class or any subclass is
created. If the class initialization procedure registers type converters, they
are not available until this first widget is created.

Inheritance of Superclass Operations
A widget class is free to use any of its superclass's self-contained
operations rather than implementing its own code. The most frequently
inherited operations are:

• The expose operation

• The realize operation

• The insert_child operation

• The delete_child operation

• The geometry _manager operation

• The set_ values_almost operation

For example, to inherit an expose· operation, specify the constant
XtlnheritExpose in your class record.

D-25

Building Your Own Widgets
D.3 Widget Classing

Every class that declares a new procedure in its widget class part must
provide for inheriting the procedure in its class part initialize procedure.
(The special chained operations initialize, set values; and destroy declared
in the Core record do not have inherited procedures. Widget elasses .that
do nothing beyond what their superclass does ·specify null for chained
procedures in their class records.)

Inheriting works by comparing the value of the field with a known, special
value. If a match occurs, the superclass's value for that field is copied.
This special value is usually the internal value _Xtinherit cast to the
appropriate type. LXtinherit is a procedure that· issues an error message
if it is called.)

For example, the Composite class's private include file contains the
following definitions:

#define XtinheritGeometryManager ((XtGeometryHandler) Xtinherit)
#define :XtinheritChangeManaged ((XtWidgetProc) Xt!nherit)
#define XtinheritinsertChild ((XtArgsProc) Xt!hherit)
#define XtinheritDeleteChild ((XtWidgetProc) _Xtinherit)

The composite widget's Class part initialize procedure bagins as follows:

static void CompositeClassPartinitialize(widgetClass)
WidgetClass widgetClass;

D-26

register CompositeWidgetClass we = (CompositeWidgetClass) widgetClass;
CompositeWidgetClass super = (CompositeWidgetClass) wc->core_class.superclass

if (wc->cornposite~class.geometry_manager == Xtinheri.tGeometryManager)
wc"'">composite_class.geometry_manager = ·

super->composite_class.geometry_manager;

if (wc->cornposite_:class.change_managed == XtinheritChangeManaged)
wc->cotnposite_class.change~managed = super->composite.._class.change_managed;

The inherit constants defined for the core widget are:

• XtlnheritRealize

• XtlnheritResize

• XtlnheritExpose

• :XtlnheritSetValuesAlmost

• XtinheritAcceptFocus

• XtlnheritDisplay Acceleratot

The inherit constants defined for the composite widget are:

• XtlnheritGeometryManager

• XtinheritChangeManaged

• XtlnheritinsertChild

• XtlnheritDeleteChild

D.3.8 Invocation of Superclass Operations

Builc;ling,.>Yo:~:r >Olf/n, Widgets
D .. ~· W,idget Classing

A widget class sometimes explicitly needs to call a superclass operation
that usually is not chained. For example, a widget's expose procedure
lllight call its superclass's expose and then perform more work of its own.
Composite classes with fixed children can implement the insert_child
procedure by first calling their superclass's insert_child procedure and
then calling XtManageChild to add the child to the managed list.

Note that a method should call its own superclass method, not the widget's
superclass method. That is, it should use its own class pointers only, not
the widget's class pointers. This technique is referred to as enveloping the
superclass's operation.

D.4 Creating Instances of Widgets to Build a User Interface
A collection of widget instances constitutes an application widget
hierarchy. The shell widget returned by APPLICATION CREATE SHELL
is the root of the application widget hierarchy. Widgets with one or more
children are the intermediate nodes of the hierarchy; widgets with no
children of any kind are the leaves of the hierarchy. The application
widget hierarchy defines the associated X Window hierarchy.

Widgets can be either composite or primitive. Using composite widgets
to build an application widget hierarchy is advisable for many reasons.
While both types of widgets can contain children, the intrinsics provide a
set of management mechanisms for building and communicating between
composite widgets, their children, and other clients.

Composite widgets, subclasses of Composite, are containers for an
arbitrary but implementation-defined collection of children, which may be
created by the composite widget itself, by other clients, or by a combination
of the two. Composite widgets also contain methods for managing the
geometry (layout) of any child widget. Under unusual circumstances, a
composite widget may have no children, but it usually has at least one. By
contrast, primitive widgets that contain children typically create specific
children of a known class themselves and do not expect external clients to
do so. Primitive widgets also do not have general geometry management
methods.

In addition, the intrinsics recursively perform many operations (for
example, realization and destruction) on composite widgets and all of
their children. Primitive widgets that have children must be prepared to
perform the recursive operations themselves on behalf of their children.

The application widget hierarchy is manipulated by several intrinsics
routines. For example, the REALIZE WIDGET intrinsic routine traverses
the hierarchy downward and recursively realizes all pop-up widgets
and children of composite widgets. DESTROY WIDGET traverses the
hierarchy downward and destroys all pop-up widgets and children of
composite widgets. The functions that fetch and modify resources traverse
the hierarchy upward and determine the inheritance of resources from a
widget's ancestors. The MAKE GEOMETRY REQUEST intrinsic routine
traverses the hierarchy up one level and calls the geometry manager that
is responsible for a widget child's geometry.

D-27

D.4.1

Building Your Own Widgets
D.4 Creating Instances of Widgets to Build a User Interface

To facilitate traversing up the application widget hierarchy, each
widget has a pointer to its parent widget. The shell widget that the
APPLICATION CREATE SHELL intrinsic routine returns, however, has a
parent pointer of null.

To facilitate traversing down the application widget hierarchy, each
composite widget has a pointer to an array of children widgets, which
includes all normal children created, not just the subset of children that
are managed by the composite widget's geometry manager. Primitive
widgets that create children are entirely responsible for all operations that
require downward traversal below themselves. In addition, every widget
has a pointer to an array of pop-up children widgets.

Widget Instance Initialization

D-28

The initialize procedure for a widget class is of type XtlnitProc, as follows:

typedef void (*XtinitProc) (Widget, Widget);
Widget request, new;

Argument

request

new

Function

Specifies the widget with resource values as requested by the
argument list, the resource database, and the widget defaults

Specifies a widget with the new values, both resource and
nonresource, that are actually allowed

An initialization procedure does the following:

• Allocates space for and copies any resources that are referenced by
address. For example, if a widget has a field that is a string, it cannot
depend on the characters at that address remaining constant but must
dynamically allocate space for the string and copy it to the new space.
(Do not allocate space for or copy callback lists.)

• Computes values for unspecified resource fields. For example, if width
and height are 0, the widget should compute an appropriate width and
height based on other resources. This is the only time that a widget
should ever directly assign its own width and height.

• Computes values for uninitialized nonresource fields that are derived
from resource fields. For example, graphics contexts (GCs) that the
widget uses are derived from resources like background, foreground,
and font.

An initialization procedure can also check certain fields for internal
consistency. For example, it makes no sense to specify a color map for a
depth that does not support that color map.

Initialization procedures are called in superclass-to-subclass order. Most of
the initialization code for a specific widget class deals with fields defined
in that class and not with fields defined in its superclasses.

If a subclass does not need an initialization procedure because it does not
need to perform any initialization operations, it can specify null for the
initialize field in the class record.

D.4.2

Building Your Own Widgets
D.4 Creating Instances of Widgets to Build a User Interface

Sometimes a subclass may want to overwrite values filled in by its
superclass. In particular, size calculations of a superclass are often
incorrect for a subclass and, in this case, the subclass must modify or
recalculate fields declared and computed by its superclass.

As an example, a widget subclass can require more display area than
its superclass. In this case, the width and height calculated by the
superclass initialize procedure are too small and need to be incremented.
The subclass widget needs to know if its superclass's size was calculated
by the superclass or was specified explicitly. All widgets must place
themselves into whatever size is explicitly given, but they should compute
a reasonable size if no size is requested.

The request and new arguments provide the necessary information for
how a subclass knows the difference between a specified size and a size
computed by a superclass. The request widget is the widget as originally
requested. The new widget starts with the values in the request, but
it has been updated by all superclass initialization procedures called so
far. A subclass initialize procedure can compare these two to resolve any
potential conflicts.

In the previous example, the widget subclass that is larger than its
superclass can see if the width and height in the request widget are 0. If
so, the subclass widget adds its size to the width and height fields in the
new widget. If not, it must make do with the size originally specified.

The new widget will become the actual widget instance record. Therefore,
the initialization procedure should do all its work on the new widget (the
request widget should never be modified). If the initialization procedure
needs to call any routines that operate on a widget, it should specify new
as the widget instance.

Constraint Widget Instance Initialization
The constraint widget initialization procedure is of type XtinitProc. The
values passed to the parent constraint initialization procedure are the
same as those passed to the child's class widget initialization procedure.

The constraint initialization procedure should compute any constraint
fields derived from constraint resources. It can make further changes to
the widget to make the widget conform to the specified constraints, such
as changing the widget's size or position.

If a constraint class does not need a constraint initialization procedure, it
can specify null for the initialize field of the ConstraintClassPart in the
class record.

D-29

D.4.3

D.4.4

Building Your Own Widgets
D.4 Creating Instances of Widgets to Build a User Interface

Nonwidget Data Initialization
The initialize hook procedure is of type XtArgsProc, as follows:

typedef void (*XtArgsProc) (Widget, ArgList, Cardinal*);
Widget w;
ArgList args;
Cardinal *num_args;

Argument

w

args

num_args

Function

Specifies the widget

Specifies the argument list to override the resource defaults

Specifies the number of arguments in the argument list

If this procedure is not null, it is called immediately after the
corresponding initialize procedure or in its place if the initialize procedure
is null.

The initialize hook procedure allows a widget instance to initialize
nonwidget data using information from the specified argument list. For
example, the text widget has subparts that are not widgets, yet these
subparts have resources that can be specified by means of the resource file
or an argument list.

Widget Instance Window Creation
The realize procedure for a widget class is of type XtRealizeProc, as
follows:

typedef void (*XtRealizeProc) (Widget, XtValueMask *, XSetWindowAttributes *);
Widget w;

D-30

XtValueMask *value mask;
XSetWindowAttributes *attributes;

Argument

w

value_mask

attributes

Function

Specifies the widget

Specifies which fields in the attributes structure to use

Specifies the window attributes to use in the XCreateWindow call

The realize procedure must create the widget's window.

The REALIZE WIDGET intrinsic routine fills in a mask and a
corresponding XSetWindowAttributes structure. It sets the following
fields based on information in the widget Core structure:

• The background_pixmap field (or background_pixel if background_
pixmap is null) is filled in from the corresponding field.

• The border_pixmap field (or border_pixel if border_pixmap is null) is
filled in from the corresponding field.

• The event_mask field is filled in based on the event handlers
registered, the event translations specified, whether expose is not
null, and whether visible_interest is true.

D.4.5

Building Your Own Widgets
D.4 Creating Instances of Widgets to Build a User Interface

• The bit_gravity field is set to NorthWestGravity if the expose field is
null.

• The do_not_propagate_mask field is set to propagate all pointer
and keyboard events up the window tree. A composite widget can
implement functionality caused by an event anywhere inside it
(including on top of children widgets) as long as children do not specify
a translation for the event.

All other fields in the XSetWindowAttributes structure (and the
corresponding bits in the value_mask argument of the CREATE
WINDOW Xlib routine) can be set by the realize procedure.

Note that, because realize is not a chained operation, the widget class
realize procedure must update the XSetWindowAttributes structure with
all the appropriate fields from non-Core superclasses.

A widget class can inherit its realize procedure from its superclass during
class initialization. The realize procedure defined for the core widget
calls the CREATE WINDOW intrinsic routine with the passed value_
mask and attributes arguments, and with window _class and visual
arguments set to CopyFromParent. Both CompositeWidgetClass and
ConstraintWidgetClass inherit this realize procedure, and most new
widget subclasses can do the same.

The most common noninherited realize procedures set the bit_gravity
field in the mask and in the XSetWindow Attributes structure to the
appropriate value and then create the window. For example, depending on
its justification, the label widget sets the bit_gravity field to WestGravity,
CenterGravity, or EastGravity. Consequently, shrinking the label
widget just moves the bits appropriately, and no Expose event is needed
for repainting.

If a composite widget's children should be realized in a particular order
(typically to control the stacking order), the composite widget should call
the REALIZE WIDGET intrinsic routine on its children in the appropriate
order from within its own realize procedure.

Widgets that have children and that are not a subclass of
composite WidgetClass are responsible for calling the REALIZE WIDGET
intrinsic routine on their children, usually from within the realize
procedure.

Dynamic Data Deallocation
The destroy procedure is retrieved from the destroy field of the
CoreClassPart structure and is of type XtWidgetProc, as follows:

typedef void (*XtWidgetProc) (Widget);
Widget w;

Argument Function

w Specifies the widget

D-31

D.4.6

Building Your Own Widgets
D.4 Creating Instances of Widgets to Build a User Interface

The destroy procedures are called in subclass-to-superclass order.
Therefore, a widget's destroy procedure should only deallocate storage
that is specific to the subclass and should not deallocate the storage
allocated by any of its superclasses. If a widget does not need to deallocate
any storage, the destroy procedure entry in its widget class record can be
null.

Deallocating storage includes but is not limited to:

• Calling XtFree on dynamic storage allocated with XtMalloc, XtCalloc,
and so on

• Calling XFreePixmap on pixmaps created with direct X calls

• Calling XtDestroyGC on GCs allocated with XtGetGC

• Calling XFreeGC on GCs allocated with direct X calls

• Calling XtRemoveEventHandler on event handlers added with
XtAddEventHandler

• Calling XtRemoveTimeOut on timers created with XtAppAddTimeOut

• Calling XtDestroyWidget for each child if the widget has children and
is not a subclass of composite WidgetClass

Dynamic Constraint Data Deallocation
The constraint destroy procedure is retrieved from the destroy field of
the ConstraintClassPart structure, is called for a widget whose parent is
a subclass of constraint WidgetClass, and is of type Xt WidgetProc. The
constraint destroy procedures are called in subclass-to-superclass order,
starting at the widget's parent and ending at constraintWidgetClass.
Therefore, a parent's constraint destroy procedure only should deallocate
storage that is specific to the constraint subclass and not the storage
allocated by any of its superclasses.

If a parent does not need to deallocate any constraint storage, the
constraint destroy procedure entry in its class record can be null.

D.5 Composite Widgets and Their Children

D-32

Composite widgets (widgets that are a subclass of compositeWidgetClass)
can have any number of children. Consequently, they are responsible
for much more than primitive widgets. Their responsibilities (either
implemented directly by the widget class or indirectly by intrinsics
routines) include:

• Overall management of children from creation to destruction

• Destruction of descendants when the composite widget is destroyed

• Physical arrangement (geometry management) of a displayable subset
of children (that is, the managed children)

• Mapping and unmapping of a subset of the managed children

Building Your Own Widgets
D.5 Composite Widgets and Their Children

Overall management is handled by the CREATE WIDGET and DESTROY
WIDGET intrinsic routines. CREATE WIDGET adds children to the
parent by calling the parent's insert child procedure. DESTROY WIDGET
removes children from the parent by calling the parent's delete child
procedure and ensures that all children of a destroyed composite widget
also get destroyed.

Only a subset of the total number of children is actually managed by the
geometry manager and, hence, possibly visible. For example, a multibuffer
composite editor widget might allocate one child widget for each file buffer,
but it might display only a small number of the existing buffers. Windows
that are in this displayable subset are called managed windows and enter
into geometry manager calculations. The other children are not managed
and, by definition, are not mapped.

Children are added to and removed from the managed set by using the
MANAGE CHILD, MANAGE CHILDREN, UNMANAGE CHILD, and
UNMANAGE CHILDREN intrinsic routines, which notify the parent to
recalculate the physical layout of its children by calling the parent's change
managed procedure. The CREATE MANAGED WIDGET convenience
routine calls CREATE WIDGET and MANAGE CHILD on the result.

Most managed children are mapped, but some widgets can be in a state
where they take up physical space but do not show anything. Managed
widgets are not mapped automatically if their map_ when_managed field
is false. The default is true and is changed by using the SET MAPPED
WHEN MANAGED intrinsic routine.

Each composite widget class has a geometry manager, which is responsible
for figuring out where the managed children should appear within the
composite widget's window. Geometry management techniques fall into
four classes:

• Managing fixed boxes

Fixed boxes have a fixed number of children that are created by the
parent. All of these children are managed, and none ever makes a
geometry manager request.

• Managing homogeneous boxes

Homogeneous boxes treat all children equally and apply the same
geometry constraints to each child. Many clients insert and delete
widgets freely.

• Managing heterogeneous boxes

Heterogeneous boxes have a specific location where each child is
placed. This location usually is not specified in pixels because the
window may be resized. Rather, it is expressed in terms of the
relationship between a child and the parent or between the child and
other specific children. Heterogeneous boxes are usually subclasses of
the constraint· widget.

D-33

D.5.1

D.5.2

Building Your Own Widgets
D.5 Composite Widgets and Their Children

• Managing shell boxes

Shell boxes have only one child, which is exactly the size of the shell
widget. The geometry manager must communicate with the window
manager if it exists. The box must also accept ConfigureNotify events
when the window size is changed by the window manager.

Addition of Children to a Composite Widget
To add a child to the parent's list of children, the CREATE WIDGET
intrinsic routine calls the parent's class insert child procedure. The insert
child procedure for a composite widget is of type XtWidgetProc, as follows:

typedef void (*XtWidgetProc) (Widget);
Widget w;

Argument

w

Function

Specifies the child that is being added to the parent's list of
children

Most composite widgets inherit their superclass's operation. The composite
widget's insert child procedure calls the insert position procedure and
inserts the child at the specified position.

Some composite widgets define their own insert child procedure so that
they can order their children in some convenient way, create companion
controller widgets for a new widget, or limit the number or type of their
children widgets.

If there is not enough room to insert a new child in the children array
(that is, the value of the num_children field equals the value of the num_
slots field), the insert child procedure must first reallocate the array and
update the num_slots field. The insert child procedure then places the
child wherever it wants and increments the num_children field.

Insertion Order of Children

D-34

Instances of composite widgets need to specify the order in which their
children are placed. For example, an application may want a set of
command button widgets in some logical order grouped by function, and
it may want the command button widgets that represent file names to be
kept in alphabetical order.

The insert position procedure for a composite widget instance is of type
XtOrderProc, as follows:

typedef Cardinal (*XtOrderProc) (Widget);
Widget w;

Argument Function

w Specifies the widget

D.5.3

D.5.4

Building Your Own Widgets
D.5 Composite Widgets and Their Children

Composite widgets that allow clients to order their children (usually
homogeneous boxes) can call their widget instance's insert position
procedure from the class's insert child procedure to determine where a
new child should go in its children array. Thus, a client of a composite
class can apply different sorting criteria to widget instances of the class,
passing in a different insert position procedure when it creates each
composite widget instance.

The return value of the insert position procedure indicates how many
children should go before the widget. Returning 0 means placement before
all other children. Returning the value of the num_children field means
placement after all other children. The default insert position procedure
returns the value of the num_children field and can be overridden by a
specific composite widget's resource list or by the argument list provided
when the composite widget is created.

Deleting Children
To remove the child from the parent's children array, the DESTROY
WIDGET routine eventually causes a call to the composite parent's class
delete child procedure. A delete child procedure is of type Xt WidgetProc,
as follows:

typedef void (*XtWidgetProc) (Widget);
Widget w;

Argument Function

w Specifies the widget

Most widgets inherit the delete child procedure from their superclass.
Composite widgets that create companion widgets define their own delete
child procedure to remove these companion widgets.

Constrained Composite Widgets
Constrained composite widgets are a subclass of composite WidgetClass.
Their name is derived from the fact that they manage the geometry of
their children based on constraints associated with each child. These
constraints can be as simple as the maximum width and height the
parent will allow the child to occupy, or can be as complicated as how
other children should change if this child is moved or resized. Constraint
widgets let a parent define resources that are supplied for their children.
For example, if the Constraint parent defines the maximum sizes for
its children, these new size resources are retrieved for each child as if
they were resources that were defined by the child widget. Accordingly,
constraint resources may be included in the argument list or resource file
just like any other resource for the child.

Constraint widgets have all the responsibilities of normal composite
widgets and, in addition, must process and act upon the constraint
information associated with each of their children.

D-35

Building Your Own Widgets
D.5 Composite Widgets and Their Children

D-36

To make it easy for widgets and the intrinsics to keep track of the
constraints associated with a child, every widget has a constraints
field, which is the address of a parent-specific structure that contains
constraint information about the child. If a child's parent is not a subclass
of constraintWidgetClass, the child's constraints field is null.

Subclasses of a constraint widget can add additional constraint fields to
their superclass. To allow this, widget writers should define the constraint
records in their private .h file by using the same conventions used for
widget records. For example, a widget that needs to maintain a maximum
width and height for each child might define its constraint record as
follows:

typedef struct {
Dimension max width, max_height;

} MaxConstraintPart;

typedef struct {
MaxConstraintPart max;

} MaxConstraintRecord, *MaxConstraint;

A subclass of this widget that also needs to maintain a minimum size
would define its constraint record as follows:

typedef struct {
Dimension min width, min_height;

} MinConstraintParti

typedef struct {
MaxConstraintPart max;
MinConstraintPart min;

} MaxMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise
maintained as much as possible by the intrinsics. The constraint
class record part has several entries that facilitate this. All entries in
ConstraintClassPart are information and procedures that are defined and
implemented by the parent, but they are called whenever actions are
performed on the parent's children.

The CREATE WIDGET intrinsic routine uses the constraint_size field to
allocate a constraint record when a child is created. The constraint_size
field gives the number of bytes occupied by a constraint record. CREATE
WIDGET also uses the constraint resources to fill in resource fields in
the constraint record associated with a child. It then calls the constraint
initialize procedure so that the parent can compute constraint fields that
are derived from constraint resources and can possibly move or resize the
child to conform to the given constraints.

The GET VALUES and SET VALUES intrinsic routines use the constraint
resources to get the values or set the values of constraints associated with
a child. The SET VALUES intrinsic routine then calls the constraint set
values procedures so that a parent can recompute derived constraint fields
and move or resize the child as appropriate.

The DESTROY WIDGET intrinsic routine calls the constraint destroy
procedure to deallocate any dynamic storage associated with a constraint
record. The constraint record itself must not be deallocated by the
constraint destroy procedure; DESTROY WIDGET does this automatically.

Building Your Own Widgets
D.6 Geometry Management

D.6 Geometry Management

D.6.1

A widget does not directly control its size and location; rather, its parent
is responsible for controlling its siZe and location. Although the position of
children is usually left up to the parent, widgets themselves often have the
best idea of their optimal sizes and, possibly, preferred locations.

To resolve physical layout conflicts between sibling widgets and between
a widget and its parent, the intrinsics provide the geometry management
mechanism. Almost all composite widgets have a geometry manager
(geometry _manager field in the widget class record) that is responsible for
the size, position, and stacking order of the widget's children. The only
exception are fixed box widgets, which create their children themselves
and can ensure that their children will never make a geometry request.

Initiating Geometry Changes
Parents, children, and clients all cause geometry changes differently.
Because a parent has absolute control of its children's geometry, it changes
the geometry directly by calling the MOVE WIDGET, RESIZE WIDGET,
or CONFIGURE WIDGET intrinsic routines. A child must ask its parent
for a geometry change by calling the MAKE GEOMETRY REQUEST or
MAKE RESIZE REQUEST intrinsic routines. An application or other
client code initiates a geometry change by calling the SET VALUES
intrinsic routine on the appropriate geometry fields, thereby giving the
widget the opportunity to modify or reject the client request before it gets
propagated to the parent.

When a widget that needs to change its size, position, border width, or
stacking depth asks its parent's geometry manager to make the desired
changes, the geometry manager can do one of the following:

• Allow the request

• Disallow the request

• Suggest a compromise

When the geometry manager is asked to change the geometry of a child,
the geometry manager may also rearrange and resize any or all of the
other children that it controls. The geometry manager can move children
around freely using MOVE WIDGET. When it resizes a child (that is,
changes width, height, or border width) other than the one making the
request, it should do so by calling XtResizeWidget. It can simultaneously
move and resize a child with a single call to the CONFIGURE WIDGET
intrinsic routine.

Often, geometry managers find that they can satisfy a request only if they
can reconfigure a widget that they are not in control of (in particular,
when the composite widget wants to change its own size). In this case,
the geometry manager makes a request to its parent's geometry manager.
Geometry requests can cascade this way to arbitrary depth.

Because such cascaded arbitration of widget geometry can involve
extended negotiation, windows are not actually allocated to widgets at
application startup until all widgets are satisfied With their geometry.

D-37

D.6.2

Building Your Own Widgets
D.6 Geometry Management

Users should be aware of the following:

• The intrinsics treatment of stacking requests is deficient in several
areas. Stacking requests for unrealized widgets are granted but will
have no effect. In addition, there is no way to use the SET VALUES
intrinsic routine to generate a stacking geometry request.

• After a successful geometry request (one that returned
XtGeometryYes), a widget does not know whether or not its resize
procedure has been called. Therefore, widgets should have resize
procedures that can be called more than once without negative effects.

General Geometry Manager Requests

D-38

To make a general geometry manager request from a widget, use the
MAKE GEOMETRY REQUEST intrinsic routine.

The return codes from geometry managers are:

typedef enum _XtGeometryResult
XtGeometryYes,
XtGeometryNo,
XtGeometryAlmost,
XtGeometryDone

XtGeometryResult;

The XtWidgetGeometry structure, shown in the following example, is quite
similar but not identical to the corresponding Xlib structure:

typedef unsigned long XtGeometryMask;

typedef struct {
XtGeometryMask request mode;
Position x, y; -
Dimension width, height;
Dimension border width;
Widget sibling; -
int stack mode;

XtWidgetGeometry;

The following request_mode definitions are from the X Window System
symbol definition file (<Xll/X.h>):

#define CWX (1 «0)

#define CWY (1 «1)

#define CWWidth (1«2)

#define CWHeight (1«3)

#define CWBorderWidth (1«4)

#define CWSibling (1«5)

#define CWStackMode (1«6)

#define CWQueryOnly (1«7)

The additional mode XtCWQueryOnly indicates that the corresponding
geometry request is only a query as to what would happen if this geometry
request were made. No widgets should actually be changed.

D.6.3

D.6.4

Resize Requests

Building Your Own Widgets
D.6 Geometry Management

The MAKE GEOMETRY REQUEST intrinsic routine, like the
XConfigure Window Xlib routine, uses bits in the request_mode field mask
to determine which fields in the Xt WidgetGeometry structure you want to
specify.

The following stack_mode definitions are from the X Window System
symbol definition file (<XlllX.h>):

#define Above 0

#define Below

#define Top If 2

#define Bottom If 3

#define Opposite 4

#define XtSMDontChange 5

For definition and behavior of Above, Below, Toplf, Bottomlf, and Opposite,
see the VMS DECwindows Xlib Programming Volume. XtSMDontChange
indicates that the widget wants its current stacking order preserved.

To make a simple resize request from within a widget, you can use the
MAKE RESIZE REQUEST intrinsic routine as an alternative to the
MAKE GEOMETRY REQUEST intrinsic routine.

Potential Geometry Changes
Sometimes a geometry manager cannot respond to a geometry request
from a child without first making a geometry request to the widget's own
parent (the requestor's grandparent). If the request to the grandparent
would allow the parent to satisfy the original request, the geometry
manager can make the intermediate geometry request as if it were the
originator. However, if the geometry manager already has determined
that the original request cannot be completely satisfied (for example,
if it always denies position changes), it needs to tell the grandparent
to respond to the intermediate request without actually changing the
geometry, because it does not know if the child will accept the compromise.
To accomplish this, the geometry manager uses the XtCWQueryOnly mode
in the request_mode field in the intermediate request.

When the XtCWQueryOnly mode is used, the geometry manager needs
to cache enough information to reconstruct exactly the intermediate
request. If the grandparent's response to the intermediate query was
XtGeometry Almost, the geometry manager needs to cache the entire reply
geometry in the event the child accepts the parent's compromise.

If the grandparent's response was XtGeometryAlmost, it may also be
necessary to cache the entire reply geometry from the grandparent when
XtCWQueryOnly is not used. If the geometry manager is still able to
satisfy the original request, it may immediately accept the grandparent's
compromise and then act on the child's request. If the grandparent's
compromise geometry is insufficient to allow the child's request and if the
geometry manager is willing to offer a different compromise to the child,

D-39

D.6.5

Building Your Own Widgets
D.6 Geometry Management

the grandparent's compromise should not be accepted until the child has
accepted the new compromise.

Note that a compromise geometry returned with XtGeometryAlmost is
guaranteed only for the next call to the same widget; therefore, a cache of
size one is sufficient.

Child Geometry Management
The geometry manager procedure for a composite widget class is of type
XtGeometryHandler, as follows:

typedef XtGeometryResult (*XtGeometryHandler) (Widget, XtWidgetGeometry *,
XtWidgetGeometry *);

D-40

Widget w;
XtWidgetGeometry *request;
XtWidgetGeometry *geometry_return;

A class can inherit its superclass's geometry manager during class
initialization.

A bit set to 0 in the request's mask field means that the child widget does
not care about the value of the corresponding field. The geometry manager
can change it as it wishes. A bit set to 1 means that the child wants that
geometry element changed to the value in the corresponding field.

If the geometry manager can satisfy all changes requested and if
XtCWQueryOnly is not specified, it updates the widget's x, y, width,
height, and border_width values appropriately. Then, it returns
XtGeometryYes, and the value of the geometry _return argument is
undefined. The widget's window is moved and resized automatically by the
MAKE GEOMETRY REQUEST routine.

Homogeneous composite widgets often find it convenient to treat the
widget making the request the same as any other widget, possibly
reconfiguring it as part of its layout process, unless XtCWQueryOnly
is specified. If it does this, it should return XtGeometryDone to
inform MAKE GEOMETRY REQUEST that it does not need to do the
configuration itself. Although MAKE GEOMETRY REQUEST resizes the
widget's window, it does not call the widget class's resize procedure if the
geometry manager returns XtGeometryYes. The requesting widget must
perform whatever resizing calculations are needed explicitly.

If the geometry manager chooses to disallow the request, the widget
cannot change its geometry. The value of the geometry _return argument
is undefined; and the geometry manager returns XtGeometryNo.

Sometimes the geometry manager cannot satisfy the request exactly,
but it may be able to satisfy a similar request. That is, it could satisfy
only a subset of the requests (for example, size but not position) or
a lesser request (for example, it cannot make the child as big as the
request, but it can make the child bigger than its current size). In such
cases, the geometry manager fills ill the geometry _return argument
with the actual changes it is willing to make, including an appropriate
mask, and returns XtGeometry Almost. If a bit in request_mode field of
the geometry _return argument is 0, the geometry manager does not
change the corresponding value if the geometry _return argument is

D.6.6

Building Your Own Widgets
D.6 Geometry Management

used immediately in a new request. If a bit is set to 1, the geometry
manager does change that element to the corresponding value in the
geometry _return argument. More bits may be set in the geometry_
return argument than in the original request if the geometry manager
intends to change other fields if the child accepts the compromise.

When XtGeometryAlmost is returned, the widget must decide if the
compromise suggested in the geometry _return argument is acceptable.
If it is, the widget must not change its geometry directly; rather, it must
make another call to the MAKE GEOMETRY REQUEST intrinsic routine.

If the next geometry request from this child uses the geometry _return
argument structure filled in by an XtGeometryAlmost return and if there
have been no intervening geometry requests on either its parent or any
of its other children, the geometry manager must grant the request,
if possible. That is, if the child asks immediately with the returned
geometry, it should get an answer of XtGeometryYes. However, the user's
window manager may affect the final outcome.

To return an XtGeometryYes answer, the geometry manager frequently
rearranges the position of other managed children by calling the MOVE
WIDGET intrinsic routine. However, a few geometry managers may
sometimes change the size of other managed children by calling the
RESIZE WIDGET or CONFIGURE WIDGET intrinsic routines. If
XtCWQueryOnly is specified, the geometry manager must return how
it would react to this geometry request without actually moving or resizing
any widgets.

Geometry managers must not assume that the request and geometry_
return arguments point to independent storage. The caller is permitted
to use the same field for both, and the geometry manager must allocate its
own temporary storage if necessary.

Widget Placement and Sizing
To move a sibling widget of the child making the geometry request, use
the MOVE WIDGET intrinsic routine.

To resize a sibling widget of the child making the geometry request, use
the RESIZE WIDGET intrinsic routine.

To move and resize the sibling widget of the child making the geometry
request, use the CONFIGURE WIDGET intrinsic routine.

To resize a child widget that already has the new values of its width,
height, and border width fields, use the RESIZE WINDOW intrinsic
routine.

D-41

D.6.7

Building Your Own Widgets
D.6 Geometry Management

Obtaining the Preferred Geometry
Some parents may be willing to adjust their layouts to accommodate the
preferred geometries of their children. To obtain the preferred geometry
and, as they see fit, use or ignore any portion of the response, these
parents can use the QUERY GEOMETRY intrinsic routine. The syntax of
the QUERY GEOMETRY routine is as follows:

XtGeometryResult XtQueryGeometry(w, intended, preferred return)
Widget w; -
XtWidgetGeometry *intended, *preferred_return;

Argument

w
intended

preferred _return

Function

Specifies the widget.

Specifies any changes the parent plans to make to the child's
geometry or NULL.

Returns the child widget's preferred geometry.

To discover a child's preferred geometry, the child's parent sets
any changes that it intends to make to the child's geometry in the
corresponding fields of the intended structure, sets the corresponding bits
in intended.request_mode, and calls the QUERY GEOMETRY intrinsic
routine.

The QUERY GEOMETRY intrinsic routine clears all bits in the preferred_
return->request_mode and checks the quecy_geometry field of the specified
widget's class record. If the query _geometry field is not specified as null,
the QUERY GEOMETRY intrinsic routine calls the query_geometry
procedure and passes as arguments the specified widget, the intended
structure, and the preferred_return structure. If the intended
argument is specified as null, the QUERY GEOMETRY instrinsic routine
replaces it with a pointer to an XtWidgetGeometry structure with the
request_mode field set to 0 before calling the query _geometry procedure.

The query geometry procedure is of type XtGeometry Handler, as follows:

typedef XtGeometryResult (*XtGeometryHandler) (Widget, XtWidgetGeometry *,
XtWidgetGeometry *);

0--42

Widget w;
XtWidgetGeometry *request;
XtWidgetGeometry *geometry_return;

The query geometry procedure is expected to examine the bits set
in the request_mode field of the intended argument, evaluate the
preferred geometry of the widget, and store the result in the preferred_
return argument (setting the bits in the request mode field of the
preferred_return argument corresponding to those geometry fields
that it cares about). If the proposed geometry change is acceptable without
modification, the query geometry procedure should return XtGeometryYes.
If at least one field in the preferred_return argument is different from
the corresponding field in the intended argument or if a bit was set in the
preferred_return argument that was not set in the intended argument,
the query geometry procedure should return XtGeometry Almost. If
the preferred geometry is identical to the current geometry, the query
geometry. procedure should return XtGeometryN o.

D.6.8

Building Your Own Widgets
D.6 Geometry Management

After calling the query geometry procedure or if the query _geometry
field is null, the QUERY GEOMETRY intrinsic routine examines all the
unset bits in preferred_return->request_mode and sets the corresponding
fields in the preferred_return argument to the current values from the
widget instance. If CWStackMode is not set, the stack_mode field is set to
XtSMDontChange. The QUERY GEOMETRY intrinsic routine returns the
value returned by the query geometry procedure or XtGeometryYes if the
query _geometry field is null.

Therefore, the caller can interpret a return of XtGeometryYes as not
needing to evaluate the contents of the reply and, more importantly, not
needing to modify its layout plans. A return of XtGeometry Almost means
either that both the parent and the child expressed interest in at least
one common field and the child's preference does not match the parent's
intentions, or that the child expressed interest in a field that the parent
might need to consider. A return value ofXtGeometryNo means that both
the parent and the child expressed interest in a field and that the child
suggests that the field's current value is its preferred value. In addition,
whether or not the caller ignores the return value or the reply mask,
it is guaranteed that the reply structure contains complete geometry
information for the child.

Parents are expected to call the QUERY GEOMETRY intrinsic routine in
their layout routine and wherever other information is significant after
the change managed procedure has been called. The changed managed
procedure may assume that the child's current geometry is its preferred
geometry. Thus, the child is still responsible for storing values into its own
geometry during its initialize procedure.

Managing Size Changes
A child can be resized by its parent at any time. Widgets usually need to
know when they have changed size so that they can lay out their displayed
data again to match the new size. When a parent resizes a child, it calls
the RESIZE WIDGET intrinsic routine, which updates the geometry fields
in the widget, configures the window if the widget is realized, and calls the
child's resize procedl.l.re to notify the child. The resize procedure is of type
XtWidgetProc, as follows:

typedef void (*XtWidgetProc) (Widget);
Widget w;

Argument Function

w Specifies the widget

If a class need not recalculate anything when a widget is resized, it can
specify null for the resize field in its class record. This is an unusual case
and should occur only for widgets with very trivial display semantics. The
resize procedure takes a widget as its only argument. The x, y, width,
height and border_ width fields of the widget contain the new values. The
resize procedure should recalculate the layout of internal data as needed.
(For example, a centered label in a window that changes size should
recalculate the starting position of the text.) The widget must obey resize

D-43

Building Your Own Widgets
D.6 Geometry Management

as a command and must not treat it as a request. A widget must not call
the MAKE GEOMETRY REQUEST or MAKE RESIZE REQUEST intrinsic
routines from its resize procedure.

D.7 Event Management

D.7.1 X Event Filters

D-44

While X allows the reading and processing of events anywhere in an
application, widgets in the X Toolkit neither directly read events nor grab
the server or pointer. Widgets register procedures that are to be called
when an event or class of events occurs in that widget.

A typical application consists of startup code followed by an event loop that
reads events and dispatches them by calling the procedures that widgets
have registered. The default event loop provided by the intrinsics is the
APPLICATION MAIN LOOP intrinsic routine.

The event manager is a collection of functions to perform the following
tasks:

• Add or remove event sources other than X server events (in particular,
timer interrupts and file input).

• Query the status of event sources.

• Add or remove procedures to be called when an event occurs for a
particular widget.

• Enable and disable the dispatching of user-initiated events (keyboard
and pointer events) for a particular widget.

• Constrain the dispatching of events to a cascade of pop-up widgets.

• Call the appropriate set of procedures currently registered when an
event is read.

Most widgets do not need to call any of the event handler functions
explicitly. The normal interface to X events is through the higher-level
translation manager, which maps sequences ofX events (with modifiers)
into procedure calls. Applications rarely use any of the event manager
routines besides the APPLICATION MAIN LOOP intrinsic routine ..

The event manager provides filters that can be applied to X user events.
The filters, which screen out events that are redundant or are temporarily
unwanted, handle the following:

• Pointer motion compression

• Enter/leave compression

• Exposure compression

D.7.2

D,7.1.1 Pointer Motion Compression

Building Your Own Widgets
D~7 Event Management

Widgets can have a hard time keeping up with pointer motion events.
Further, they usually do not actually care about every motion event. To
disregard redundant motion events, the widget class field compress_motion
should be true. When a request for an event would return a motion event,
the intrinsics check if there are any other motion events immediately
following the current one and, if so, skip all but the last of them.

D.7.1.2 Enter/Leave Compression
To disregard pairs of enter and leave events that have no intervening
events, as can happen when the user moves the pointer across a widget
without stopping in it, the widget class field compress_enterleave should
be true. These enter and leave events are never delivered to the client.

D. 7.1.3 Exposure Compression
Many widgets prefer to process a series of exposure events as a single
expose region rather than as individual rectangles. Widgets with complex
displays might use the expose region as a clip list in a graphics context;
widgets with simple displays might ignore the region entirely and
redisplay their whole window, or they might get the bounding box from the
region and redisplay only that rect~ngle.

In either case, these widgets do not care about getting partial expose
events. If the compress_exposure field in the widget class structure is
true, the event manager calls the widget's expose procedure only once
for each series of exposure events. In this case, all expose events are
accumulated into a region. When the expose event with count zero is
received, the event manager replaces the rectangle in the event with
the bounding box for the region and calls the widget's expose procedure,
passing the modified exposure event and the region.

If the compress_exposure field is false, the event manager calls the
widget's expose procedure for every exposure event, passing it the event
and a region argument of null.

Widget Exposure and Visibility
Every primitive widget and some composite widgets display data on
the screen by means of Xlib calls. Widgets cannot simply write to the
screen and forget what they have done. They must keep enough state
information to redisplay the window or parts of it if a portion is obscured
and then reexposed.

D.7.2.1 Redisplay of a Widget
The expose procedure for a widget class is of type XtExposeProc, as follows.

D-45

Building Your Own Widgets
D.7 Event Management

D-46

typedef void (*XtExposeProc) (Widget, XEvent *,Region);
Widget w;
XEvent *event;
Region region;

Argument

w

event

region

Function

Specifies the widget instance requiring redisplay

Specifies the exposure event giving the rectangle requiring
redisplay

Specifies the union of all rectangles in this exposure sequence

The redisplay of a widget upon exposure is the responsibility of the
expose procedure in the widget's class record. If a widget has no display
semantics, it can specify null for the expose field. Many composite widgets
serve only as containers for their children and have no expose procedure.

If the expose procedure is null, the REALIZE WIDGET intrinsic routine
fills in a default bit gravity of NorthWestGravity before it calls the widget's
realize procedure.

If the widget's compress_exposure field is set to false, the region argument
is always null. If the widget's compress_exposure field is set to true, the
event contains the bounding box for region.

A small simple widget (for example, a label widget) can ignore the
bounding box information in the event and redisplay the entire window. A
more complicated widget (for example, a text widget) can use the bounding
box information to minimize the amount of calculation and redisplaying of
the widget it does. A very complex widget uses the region as a clip list in a
graphics context and ignores the event information. The expose procedure
is responsible for exposure of all superclass data as well as its own.

However, it is often possible to anticipate the display needs of several
levels of subclassing. For example, rather than separate display
procedures for the label, command, and toggle widgets, you could write
a single display procedure in the label widget that uses the following
display state fields:

Boolean invert
Boolean highlight
Dimension highlight_width

The label widget would have the invert and highlight fields always set to
false and the highlight_width field set to 0. The command widget would
dynamically set highlight and highlight_ width, but it would leave invert
always false. Finally, the toggle widget would dynamically set all three.
In this case, the expose procedures for the command and toggle widgets
inherit their superclass's expose procedure.

D.7.3

Building Your Own Widgets
D.7 Event Management

D.7.2.2 Widget Visibility
Some widgets may use substantial computing resources to display data.
However, this effort is wasted if the widget is not actually visible on the
screen, such as when the widget is obscured by another application or is
made into an icon.

The visible field in the core widget structure provides a hint to the widget
that it need not display data. This field is guaranteed true by the time an
Expose event is processed if the widget is visible, but is usually false if the
widget is not visible.

Widgets can use or ignore the visible hint. If they ignore it, they should
have the visible_interest field in their widget class record set to false. In
such cases, the visible field is initialized to true and never changes. If
visible_interest is set to true, the event manager asks for VisibilityNotify
events for the widget and updates the visible field accordingly.

X Event Handlers
Event handlers are procedures that are called when specified events occur
in a widget. Most widgets need not use event handlers explicitly. Instead,
they use the intrinsics translation manager. Event handlers are of the
type XtEventHandler, as follows:

typedef void (*XtEventHandler) (Widget, caddr_t, XEvent *);
Widget w;
caddr_t client_data;
XEvent *event;

Argument Function

w Specifies the widget for which to handle events

client_ data Specifies the client-specific information registered with the event
handler, which is usually null if the event handler is registered by
the widget itself

event Specifies the triggering event

To register an event handler procedure with the dispatch mechanism, use
the ADD EVENT HANDLER intrinsic routine.

To remove a previously registered event handler, use the REMOVE
EVENT HANDLER intrinsic routine.

To stop a procedure from receiving any events, which will remove it from
the widget's event table entirely, call the REMOVE EVENT HANDLER
intrinsic routine with the event_mask argument set to XtAllEvents and
with the nonmaskable set to true.

On occasion, clients need to register an event handler procedure with the
dispatch mechanism without causing the server to select for that event. To
do this, use the ADD RAW EVENT HANDLER intrinsic routine.

To remove a previously registered raw event handler, use the REMOVE
RAW EVENT HANDLER intrinsic routine.

D-47

Building Your Own Widgets
D. 7 Event Management

To retrieve the event mask for a given widget, use the BUILD EVENT
MASK intrinsic routine.

0.8 Resource Management

D.8.1 Resource Lists

D-48

A resource is a field in the widget record with a corresponding resource
entry in the resource list of the widget or any of its superclasses. This
means that the field is settable by the CREATE WIDGET intrinsic
routine (by naming the field in the argument list), by an entry in the
default resource files (by using either the name or class), and by using
th~ SET VALUES intrinsic routine. In addition, it is readable by the
GET VALUES routine. Not all fields in a widget record are resources.
Some are for bookkeeping use by the generic routines (like managed and
being.,...destroyed). Others can be for local bookkeeping, and still others are
derived from resources (many graphics contexts and pixmaps).

Writers of widgets nee<il to obtain a large set of resources at widget creation
time. Some of the resources come from the argument list supplied in the
call to the CREATE WIDGET intrinsic routine, some from the resource
database, and some from the internal defaults specified for the widget.
Resources are obtained first from the argument list, then from the resource
database for all resources not specified in the argument list, and finally
from the internal default, if needed.

A resource entry specifies a field in the widget, the text name and class of
the field that argument lists and external resource files use to refer to the
field, and a default value that the field should get if ;no value is specified.
The declaration for the XtResource structure is as follows:

typedef struct {
String resource name;
String resource=class;
String r~source type;
Cardinal resource_size;
Cardinal resource off set;
String default_type;
caddr t default address;

XtResource, *XtResourceList;

The resource_name field contains the name used b;v clientE? to access the
field in the widget. By convention, it starts with a lowercase letter and is
spelled identically to the field name, except all underscores (_) are deleted,
and the next letter is replaced by its uppercase counterp~rt. For example,
the resource name for background_pixel becomes backgroundPixel.
Widget header files typically contain a symbolic name for each resource
name. All resource names, classes, and types used by the intrinsics
are named in <Xll/StringDefs.h>. The intrinsics symbolic resource
names begin with XtN and are followed by the string name (for ex;ample~
XtNbackg:roundPixel for backgroundPixel).

A resource class provides two functions:

• It isolates an application from different representations that widgets
can use for a similar resource.

Building Your Own Widgets
0~8 Resource Management

• It lets you specify values for several actual resources with a single
name. A resource class should be chosen to span a group of closely
related fields.

For example, a widget can have several pixel resources: background,
foreground, border, block cursor, pointer cursor, and so on. Typically, the
background defaults to white and everything else to black. The resource
class for each of these resources in the resource list should be chosen so
that it takes the minimal number of entries in the resource database to
make background off.,.white and everything else dark blue.

In this case, the background pixel should have a resource class of
Background and all the other pixel entries a resource class of Foreground.
Then the resource file needs only two lines to change all pixels to off-white
or dark blue:

*Background:
*Foreground:

offwhite
darkblue

Similarly, a widget may have several resource fonts (such as normal and
bold), but all fonts should have the class Font. Thus, changing all fonts
requires only a single line in the default resource file:

*Font: 6x13

By convention, resource classes always start with an initial capital. Their
symbolic names are preceded with XtC (for example, XtCBackground).

The resource_ type field is the physical representation type of the resource.
By convention, it starts with an uppercase letter and is spelled identically
to the type name of the field. The resource type is used when resources
are fetched to convert from the resource database format (usually a text
string) or the default resource format (almost anything, but often a text
string) to the desired physical representation. Table D-3 lists the resource
types defined by the intrinsics.

Table D-3 Resource Types

Resource Type Structure or Field Type

XtRAcceleratorTable XtAccelerators

XtRBool Boo I

XtRBoolean Boolean

XtRCallback XtCallbackList

XtRColor XColor

XtRCursor Cursor

XtRDimension Dimension

XtRDisplay Pointer to a Display structure

XtRFile Pointer to a FILE structure

XtRFont Font

(continued on next page)

D-49

Building Your Own Widgets
D.8 Resource Management

0-50

Table D-3 (Cont.) Resource Types

Resource Type

XtRFontStruct

XtRFunction

XtRlnt

XtRPixel

XtRPixmap

XtRPointer

XtRPosition

XtRShort

XtRString

XtRTranslationTable

XtRUnsignedChar

XtRWidget

XtRWindow

Structure or Field Type

Pointer to an XFontStruct structure

Pointer to a procedure

int

Pixel

Pixmap

caddr_t

Position

short

Pointer to a string of characters

XtTranslations

unsigned char

Widget

Window

The resource,...size field is the size of the physical representation in bytes;
you should specify it as sizeof(type) so that the compiler fills in the value.
The resource_,offset field is the offset in bytes of the field within the
widget. Use the XtOffset macro to retrieve this value. The default_ type
field is the representation type of the default resource value. If default_
type is different from resource_type and the default_type is needed, the
resource manager invokes a conversion procedure from default_type to
resource_type. Whenever possible, the default type should be identical
to the resource type in order to minimize widget creation time. However,
there are sometimes no values of the type that the program can easily
specify. In this case, it should be a value that the converter is guaranteed
to work for (for example, XtDefaultForeground for a pixel resource). The
default_address field is the address of the default resource value. The
default is used if a resource is not specified in the argument list or in the
resource database, or if the conversion from the representation type stored
in the resource database fails, which can happen for various reasons (for
example, a misspelled entry in a resource file).

Two special representation types (XtRimmediate and XtRCallProc) are
usable only as default resource types. XtRimmediate indicates that the
value in the default_address field is the actual value of the resource
rather than the address of the value. The value must be in the correct
representation type for the resource. No conversion is possible since
there is no source representation type. XtRCallProc indicates that
the value in the default_address field is a procedure variable. This
procedure is automatically invoked with the widget, resource_ofiset,
and a pointer to the Xrm Value in which to store the result, and is an
XtResourceDefaultProc, as follows:

Building Your Own Widgets
o~a Resource Management

typedef void (*XtResourceDefaultProc)(Widget, int, XrmValue *)
Widget w;
int offset;
XrmValue *value;

Argument

w

offset

value

Functior:i

Specifies the widget whose resource is to be obtained

Specifies the offset of the field in the widget record

Specifies the resource value to fill in

The XtResourceDefaultProc procedure should fill in the address field (addr)
of the value with a pointer to the default data in its correct type.

The default_address field in the resource structure is declared as caddr_t.
On some machine architectures, this may be insufficient to hold procedure
variables.

To get the resource list structure for a particular class, use the GET
RESOURCE LIST intrinsic routine.

The following is an abbreviated version of the resource list in a label
widget:

/* Resources specific to Label */
static XtResource resources[] = {

{XtNforeground, XtCForegrourid, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString, XtDefaultForeground},

{XtNfont, XtCFont,: XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString, XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

The complete resource name for a field of a widget instance is the
concatenation of the application name (from argv[O]) or the name
command-line option, the instance names of all the widget's parents,
the instance name of the widget itself, and the resource name of the
specified field of the widget. Likewise, the full resource class of a field
of a widget instance is the concatenation of the application class (from
the APPLICATION CREATE SHELL intrinsic routine), the widget class
names of all the widget's patents (not the sup.erclasses), the widget class
name of the widget itself, and the resource name of the specified field of
the widget.

To determine the byte offset of a field within a structure, use the OFFSET
intrinsic routine.

P-51

D.8.2

D.8.3

D.8.4

D.8.5

Building Your Own Widgets
D.8 Resource Management

Superclass to Subclass Chaining of Resource Lists
The CREATE WIDGET intrinsic routine gets resources as a superclass
to-subclass operation. That is, the resources specified in the core widget
resource list are fetched, then those in the subclass, and so on down to the
resources specified for this widget's class. Within a class, resources are
fetched in the order they are declared.

In general, if a widget resource field is declared in a superclass, that field
is included in the superclass's resource list and need not be included in the

. subclass's resource list. For example, the core widget class contains
a resource entry for the background pixel, called background_pixel.
Consequently, the implementation of a label widget need not also have
a resource entry for the background_pixel field. However, a subclass,
by specifying a resource entry for that field in its own resource list, can
override the resource entry for any field declared in a superclass. This is
most often done to override the defaults provided in the superclass with
new ones. At class initialization time, resource lists for that class are
scanned from the superclass down to the class to look for resources with
the same offset. A matching resource in a subclass will be reordered to
override the superclass entry. (A copy of the superclass resource list is
made to avoid affecting other subclasses of the superclass.)

Retrieving Subresources
A widget does not do anything to get its own resources; instead, the
CREATE WIDGET intrinsic routine does this automatically before calling
the class initialize procedure.

Some widgets have subparts that are not widgets but for which the
widget would like to fetch resources. For example, the text widget fetches
resources for its source and destination. Such widgets call the GET
SUBRESOURCES intrinsic routine to accomplish this.

Obtaining Application Resources
To retrieve resources that are not specific to a widget but that apply to the
overall application, use the GET APPLICATION RESOURCES intrinsic
routine.

Resource Conversions

D-52

The intrinsics provide a mechanism for registering representation
converters that are automatically invoked by the resource fetching
routines. The intrinsics additionally provide and register several
commonly used converters. This resource conversion mechanism serves
several purposes:

• It permits user and application resource files to contain ASCII
representations of nontextual values.

Building Your Own Widgets
0.8 Resource Management

• It allows textual or other rep~esentations of default resource values
that are dependent on the display; screen, or color map, and thus must
be computed at run time.

• It caches all conversion source and result data. Conversions that
require much computation or space (for example, string to translation
table) or that require round trips to the server (for example, string to
font or· color) are performed only once.

0.8.5.1 Predefined Resource Converters
The intrinsics define all the representations used in the core, composite,
constraint, and shell widgets. Furthermore, the. intrinsics register resource
converters that convert resources from their text string representation to
all the following representations.

For XtRString, the intrinsics register the following representations:

• XtRAcceleratorTable

• XtRBool

• XtRBoolean

• XtRCursor

• XtRDimension

• XtRDisplay

• XtRFile

• XtRFloat

• XtRFont

• XtRFontStruct

• XtRlnt

• XtRPixel

• XtRPosition

• XtRShort

• XtRTranslationTable

• XtRUnsignedChar

For XtRColor, the intrinsics register the following representations:

• XtRPixel

For XRint, the intrinsics register the following representations:

• XtRBool

• XtRBoolean

• XtRColor

• XtRDimension

• XtRFloat

D-53

Building Your Own Widgets
D.8 Resource Management

• XtRFont

• XtRPixel

• XtRPixmap

• XtRPosition

• XtRShort

• XtRUnsignedChar

For XtRPixel, the intrinsics register the following representation:

• XtRColor

The string-to-pixel conversion has two predefined constants that are
guaranteed to work and contrast with each other (XtDefaultForeground
and XtDefaultBackground). They evaluate the black and white pixel
values of the widget's screen, respectively. For applications that run with
reverse video, however, they evaluate the white and black pixel values
of the widget's screen, respectively. Similarly, the string-to-font and font
structure converters recognize the constant XtDefaultFont and evaluate
this to the font in the screen's default graphics context.

D.8.5.2 New Resource Converters
Type converters use pointers to Xrm Value structures for input and output
values. The following is the definition of the Xrm Value structure in the X
Window System symbol definition file (<Xll/Xresource.h>):

typedef struct {
unsigned int size;
caddr_t addr;

} XrmValue, *XrmValuePtr;

A resource converter js a procedure of type XtConverter, as follows:

typedef void (*XtConverter) (XrmValue *, Cardinal*, XrmValue *, XrmValue *);
XrmValue *args;

D-54

Cardinal *num_args;
XrmValue *from;
XrmValue *to;

Argument

args

num_args

from

to

Function

Specifies a list of additional XrmValue arguments to the converter
if additional context is needed to perform the conversion or null.
For example, if the string-to-font converter needs the widget's
screen, or if the string-to-pixel converter needs the widget's
screen and color map.

Specifies the number of additional XrmValue arguments or 0.

Specifies the value to convert.

Specifies the descriptor to use to return the converted value.

Type converters should perform the following actions:

• Check to see that the number of arguments passed is correct.

• Attempt the type conversion.

Building Your Own Widgets
D.8 Resource Management

• If successful, return a pointer to the data in the to argument;
otherwise, call XtWarningMsg and return without modifying the to
argument.

Most type converters just take the data described by the specified from
argument and return data by writing into the specified to argument. A
few need other information, which is available in the specified argument
list. A type converter can invoke another type converter, which allows
differing sources that may convert into a common intermediate result to
make maximum use of the type converter cache.

Note that the address written in the address field (addr) of the to
argument cannot be that of a local variable of the converter because
this is not valid after the converter returns. It should be a pointer to a
static variable, as in the following example where screenColor is returned.

The following is an example of a converter that takes a string and converts
it to a pixel:

static void CvtStringToPixel(args, num_args, fromVal, toVal)
XrmValuePtr args;
Cardinal *num_args;
XrmValuePtr f romVal;
XrmValuePtr to Val;

static XColor screenColor;
XColor exactColor;
Screen
Colormap
Status
char
XrmQuark
String
Cardinal

*screen;
colormap;
status;
message[lOOO];
q;
params[l];
num_params = 1;

if (*num_args != 2)
XtErrorMsg("cvtStringToPixel","wrongParameters","XtToolkitError",

"String to pixel conversion needs screen and colormap arguments",
(String *)NULL, (Cardinal *)NULL);

screen= *((Screen**) args[O] .addr);
colormap = *((Colormap *) args[l] .addr);

LowerCase((char *) fromVal->addr, message);
q = XrmStringToQuark(message);

if (q == XtQExtdefaultbackground)
{

done(&screen->white_pixel, Pixel);
return;

if (q == XtQExtdefaultforeground)
{

done(&screen->black_pixel, Pixel);
return;

if ((char) fromVal->addr[O] == '#')
{

/* some color rgb definition */

status XParseColor(DisplayOfScreen(screen), colormap,
(String) fromVal->addr, &screenColor);

D-55

D.8.6

Building Your Own Widgets
D.8 Resource Management

if (status != 0)
{

status XAllocColor(DisplayOfScreen(screen), colormap,
&screenColor);

else /* some color name */

status XAllocNamedColor(DisplayOfScreen(screen), colormap,
(String) fromVal->addr, &screenColor,

&exactColor);

if (status == 0) {

} ;

params[O]=(String)fromVal->addr;
XtWarningMsg("cvtStringToPixel","noColormap","XtToolkitError",

"Cannot allocate colormap entry for \"%s\"", params, &num_params);

else {

done(&(screenColor.pixel), Pixel)

All type converters should define some set of conversion values that
they are guaranteed· to succeed on so these can be used in the resource
defaults. This issue arises only with conversions, such as fonts and colors,
where there is no string representation that all server implementations
will necessarily recognize. For resources like these, the converter
should define a symbolic constant (for example, XtDefaultForeground,
XtDefaultBackground, or XtDefaultFont).

The STRING CONVERSION WARNING intrinsic routine issues a
warning message with name "conversionError", type "string", class
11XtToolkitError", and the default message string 11 Cannot convert src to
type dst_type" for new resource converters that convert from strings.

To register a new converter, use the APPLICATION ADD CONVERTER
intrinsic routine.

All resource-fetching routines (for example, GET RESOURCES, GET
APPLICATION RESOURCES, and so on) call resource converters if the
user specifies a resource that is a different representation from the desired
representation or if the widget's default resource value representation is
different from the desired representation.

To invoke resource conversions, use the CONVERT or DIRECT CONVERT
intrinsic routines.

Reading and Writing Widget Resource Fields

D-56

Any resource field in a widget can be read or written by a client. On a
write operation, the widget decides what changes it will actually allow and
updates all derived fields appropriately.

To retrieve the current value of a resource associated with a widget
instance, use the GET VALUES intrinsic routine.

D.8.7

Building Your Own Widgets
D.8 Resource Management

D.8.6.1 Widget Subpart Resource Data
Widgets that have subparts can return resource values from them for the
GET VALUES routine by supplying a get values hook procedure. The get
values hook procedure is of type XtArgsProc, as follows:

typedef void (*XtArgsProc) (Widget, ArgList, Cardinal*);
Widget w;
ArgList args;
Cardinal *num_args;

Argument Function

w Specifies the widget whose nonwidget resource values are to be
retrieved

args

num_args

Specifies the argument list that was passed to XtCreateWidget

Specifies the number of arguments in the argument list

The widget should call the GET SUBVALUES intrinsic routine and pass
in its subresource list and the arg and num_args arguments.

To retrieve the current value of a nonwidget resource data associated with
a widget instance, use the GET SUBVALUES routine. For a description of
nonwidget subclass resources, see Section D.8.3.

Setting Widget Resource Fields
To modify the current value of a resource associated with a widget
instance, use the SET VALUES intrinsic routine.

D.8.7.1 Specifying Widget State
The set values procedure for a widget class is of type XtSetValuesFunc, as
follows:

typedef Boolean (*XtSetValuesFunc) (Widget, Widget, Widget);
Widget current;
Widget request;
Widget new;

Argument Function

current

request

new

Specifies a copy of the widget as it was before the XtSetValues
call

Specifies a copy of the widget with all values changed as asked
for by the XtSetValues call before any class set values procedures
have been called

Specifies the widget with the new values that are actually allowed

The set values procedure should recompute any field derived from
resources that are changed (for example, many graphics contexts depend
on foreground and background). If no recomputation is necessary and
if none of the resources specific to a subclass require the window to be
redisplayed when their values are changed, you can specify null for the
set_ values field in the class record.

D-57

Building Your Own Widgets
D.8 Resource Management

Like the initialize procedure, the set values procedure deals mostly with
the fields defined in the subclass, but it has to resolve conflicts with its
superclass, especially conflicts over width and height.

The new widget is the actual widget instance record. Therefore, the set
values procedure should do all its work on the new widget (the request
widget should never be modified), and if it needs to call any routines that
operate on a widget, it should specify the new argument as the widget
instance.

The widget specified in the new argument starts with the values of that
specified by request but has been modified by any superclass set values
procedures. A widget need not refer to the request widget, unless it must
resolve conflicts between the current and new widgets. Any changes that
the widget needs to make, including geometry changes, should be made in
the new widget.

Finally, the set values procedure must return a Boolean value that
indicates whether the widget needs to be redisplayed. Note that a change
in the geometry fields alone does not require the set values procedure
to return true; the X server will eventually generate an expose event, if
necessary. After calling all the set values procedures, the SET VALUES
intrinsic routine forces a redisplay by calling the Xlib CLEAR AREA
routine if any of the set values procedures returned true. Therefore, a set
values procedure should not try to do its own redisplaying.

Set values procedures should not do any work in response to changes
in geometry because the SET VALUES intrinsic routine will eventually
perform a geometry request, and that request might be denied. If the
widget actually changes size in response to the SET VALUES intrinsic
routine, its resize procedure is called. Widgets should do any geometry
related work in their resize procedures.

Note that it is permissible to call the SET VALUES intrinsic routine before
a widget is realized. Therefore, the set values procedure must not assume
that the widget. is realized.

D.8.7.2 Specifying Widget Geometry Values
The set values almost procedure for a widget class is of type XtAlmostProc,
as follows:

typedef void (*XtAlmostProc) (Widget,
Widget w;

Widget, XtWidgetGeometry *, XtWidgetGeometry *);

D-58

Widget new widget return;
XtWidgetGeometry *request;
XtWidgetGeometry *reply;

Argument

w

new_widget_
return

request

Function

Specifies the widget on which the geometry change is requested

Specifies the new widget into which the geometry changes are to
be stored

Specifies the original geometry request that was sent to the
geometry manager that returned XtGeometryAlmost

Argument

reply

Function

Building Your Own Widgets
D.8 Resource Management

Specifies the compromise geometry that was returned by the
geometry manager that returned XtGeometryAlmost

Most classes inherit this operation from their superclass by specifying
XtinheritSetValuesAlmost in the class initialization. The core widget set
values almost procedure accepts the compromise suggested.

The set values almost procedure is called when a client tries to set a
widget's geometry by means of a call to the SET VALUES routine, and
the geometry manager c~nnot satisfy the request but instead returns
XtGeometryAlmost and a compromise geometry. The set values almost
procedure takes the original geometry and the compromise geometry and
determines whether the compromise is acceptable or whether a different
compromise might work better. It returns its results in the new_ widget
argument, which is then sent back to the geometry manager for another
try.

D.8.7.3 Specifying Widget Constraint Information
The constraint set values procedure is of type XtSetValuesFunc. The
values passed to the parent's constraint set values procedure are the
same as those passed to the child's class set values procedure. A class can
specify null for the set_ values field of the ConstraintPart if it need not
compute anything.

The constraint set values procedure should recompute any constraint fields
derived from constraint resource that are changed. Further, it should
modify the widget fields as appropriate. For example, if a constraint for
the maximum height of a widget is changed to a value smaller than the
widget's current height, the constraint set values procedure should reset
the height field in the widget.

D.8.7.4 Specifying the Widget Subpart Resources
To set the current value of a nonwidget resource associated with a widget
instance, use the SET SUBVALUES intrinsic routine. For a discussion of
nonwidget subclass resources, see Section D.8.3.

Widgets that have a subpart can set the resource values by using the
SET VALUES routine and supplying a set values hook procedure. The set
values hook procedure for a widget class is of type XtArgsFunc, as follows:

typedef Boolean (*XtArgsFunc) (Widget, Arglist, Cardinal*);
Widget w;
ArgList args;
Cardinal *num_args;

Argument

w

args

num_args

Function

Specifies the widget whose nonwidget resource values are to be
changed

Specifies the argument list that was passed to XtCreateWidget

Specifies the number of arguments in the argument list

D-59

Building Your Own Widgets
D.9 Translation Management

D.9 Translation Management

D.9.1 Action Tables

Except under unusual circumstances, widgets do not specify the mapping
of user events into widget behavior by using the event manager. Instead,
they provide a default mapping of events that you can override.

The translation manager provides an interface to specify and manage the
mapping of X Event sequences into widget-supplied functionality, such as
calling procedure Abe when the Y key is pressed.

The translation manager uses two kinds of tables to perform translations:

• The action tables, which are in the widget class structure, specify
the mapping of externally available procedure name strings to the
corresponding procedure implemented by the widget class.

• A translation table, which is in the widget class structure, specifies the
mapping of event sequence to procedure name strings.

You can override the translation table in the class structure for a specific
widget instance by supplying a different translation table for the widget
instance. The resource name is XtNtranslations.

All widget class records contain an action table. An action table is made
up of action records, defined as follows:

typedef struct _XtActionsRec {
char *string;
XtActionProc proc;

} XtActionsRec;

The action_name field of the action record is the name that you use in
translation tables to access the procedure. The action_proc field is a
pointer to a procedure that implements the functionality.

An application can register its own action tables with the translation
manager so that the translation tables it provides to widget instances
can access application functionality. The action procedure pointer in the
translation table is of type XtActionProc, as follows:

typedef void (*XtActionProc) (Widget, XEvent *, String*, Cardinal*);
Widget w;

D-60

XEvent *event;
String *params;
Cardinal *num_params;

Argument

w

event

Function

Specifies the widget that caused the action to be called.

Specifies the event that caused the action to be called. If the
action is called after a sequence of events, the last event in the
sequence is used.

D.9.2

Building Your Own Widgets
D.9 Translation Management

Argument Function

params Specifies a pointer to the list of strings that were specified in the
translation table as arguments to the action.

num_params Specifies the number of arguments specified in the translation
table.

For example, the command widget has procedures to take the following
actions:

• Set the command button to indicate it is activated

• Unset the button back to its normal mode

• Highlight the button borders

• Unhighlight the button borders

• Notify any callbacks that the button has been activated

The action table for the command widget class makes these functions
available to translation tables written for the command widget· or any
subclass. The string entry is the name used in translation tables. The
procedure entry (often spelled identically to the string) is the name of the
procedure that implements that function. The following is the action table
for the command widget:

XtActionsRec actionTable[] = {
{"Set", Set},

} ;

{"Unset", Unset},
{"Highlight",Highlight},
{"Unhighlight",Unhighlight}
{"Notify", Notify},

To declare an action table and register it with the translation manager,
use the ADD ACTIONS intrinsic routine.

Translating Action Names to Procedures
The translation manager uses a simple algorithm to convert the name
of a procedure specified in a translation table into the actual procedure
specified in an action table. When the widget is realized, the translation
manager performs a search for the name in the following tables:

• The widget's class action table for the name

• The widget's superclass action table and up the superclass chain

• The action tables registered with the ADD ACTIONS routine (from the
most recently added table to the oldest table)

As soon as it finds a name, the translation manager stops the search. If it
cannot find a name, the translation manager generates an error message.

D-61

D.9.3

Building Your Own Widgets
D.9 Translation Management

Translation Tables

D-62

All widget instance records contain a translation table, which is a resource
with no default value. A translation table specifies what action procedures
are invoked for an event or a sequence of events. A translation table is a
string containing a list of translations from an event sequence into one or
more action procedure calls. The translations are separated by new line
characters (ASCII LF).

As an example, the default behavior of the command widget is:

• Highlight on enter window

• Unhighlight on exit window

• Invert on left button down

• Call callbacks and reinvert on left button up

The following illustrates the command widget's default translation table:

static String defaultTranslations =
"<EnterWindow>:Highlight()\n\
<LeaveWindow>:Unhighlight()\n\
<BtnlDown>:Set()\n\
<BtnlUp>: Notify() Unset()";

The tm_table field of the CoreClass record should be filled in at
static initialization time with the string containing the class's default
translations. If a class wants to inherit its superclass's translations, it
can store the special value XtinheritTranslations into the tm_table field.
After the class initialization procedures have been called, the intrinsics
compile this translation table into an efficient internal form. Then, at
widget creation time, this default translation table is used for any widgets
that have not had their core translations field set by the resource manager
or the initialize procedures.

The resource conversion mechanism automatically compiles string
translation tables that are resources. If a client uses translation tables
that are not resources, it must compile them itself using the PARSE
TRANSLATIONS TABLE intrinsic routine.

The intrinsics use the compiled form of the translation table to register the
necessary events with the event manager. Widgets need do nothing other
than specify the action and translation tables for events to be processed by
the translation manager.

D.9.3.1 Event Sequences
An event sequence is a comma-separated list of X event descriptions
that describes a specific sequence ofX events to map to a set of program
actions. Each X event description consists of three parts:

• The X event type

• A prefix consisting of the X modifier bits

• An event-specific suffix

Various abbreviations are supported to make translation tables easier to
read.

D.9.4

Building Your Own Widgets
D.9 Translation Management

D.9.3.2 Action Sequences
Action sequences specify what program or widget actions to take in
response to incoming X events. An action sequence is a sequence of action
procedure call specifications. Each action procedure call consists of the
name of an action procedure and a parenthesized list of string parameters
to pass to that procedure.

Translation Table Syntax

translationTable
directive
production
lhs
key seq
key char
event
modifier list
modifier-
count
modifier name
event type
detail
rhs
name
name char
pa rams
string
quoted_string
unquoted_string

The following Extended Backus Naur Form (EBNF) notation describes
the syntax of a translation table file. The description uses the following
conventions:

Means either nothing or "a" [a]
{ a } Means zero or more occurrences of "a"

All terminals are enclosed in quotation marks. Informal descriptions are
enclosed in angle brackets (< >).

[directive] { production
("#replace" I "#override" I "#augment") "\n"
lhs ":" rhs "\n"
(event I keyseq) { "," (event I keyseq)
""" keychar {keychar} """
[nAn I "$" I "\"] <ISO Latin 1 character>
[modifier list] "<"event type">" ("(" count("+"] ")"] {detail}
(["!" I":"] {modifier}-) I "None"
("-"] modifier_name
("1" I "2" I "3" I "4" I ...)
"@" <keysym> I <see ModifierNames table below>
<see Event Types table below>
<event specific details>
{ name "(" [params] ")" }
namechar { namecha.r }
{ "a"-"z" I "A"-"Z" I "0"-"9"
string {"," string}.

"$" I " "

quoted string I unquoted string
""" {<Latin 1 character>} """
{<Latin 1 character except space, tab, ",",newline, ")">}

It is often convenient to include new lines in a translation table to make it
more readable. In C, indicate a new line as \n, for example:

"<BtnlDown>:DoSomething()\n\
<Btn2Down>:DoSomethingElse()"

D.9.4.1 Modifier Names in a Translation Table
The modifier field is used to specify normal X keyboard and button
modifier mask bits. Modifiers are legal on event types KeyPress,
KeyRelease, ButtonPress, ButtonRelease, MotionNotify, EnterNotify,
LeaveNotify, and their abbreviations. An error is generated when a
translation table that contains modifiers for any other events is parsed.

The following rules are .applicable to modifier lists:

• If the modifier list has no entries and has not been specified as None,
it means any modifier is acceptable.

D-63

Building Your Own Widgets
D.9 Translation· Management

D-64

• If an exclamation point (!) is specified at the beginning of the modifier
list, it means that the listed modifiers must be in the correct state and
no other modifiers can be asserted.

• If any modifiers are specified and an exclamation point is not specified,
it means that the listed modifiers must be in the correct state; any
unlisted modifiers can be in any order.

• If a modifier is preceded by a tilde· (,..,), it means that the modifier
must not be asserted.

• If None is specified, it means no modifiers can be asserted.

• A colon (:) specified at the beginning of the modifier list directs the
intrinsics to apply any standard modifiers in the event to map the
event keycode into a key symbol. The default standard modifiers are
Shift and Lock, with the interpretation as defined in the X Window
System. The resulting key symbol must exactly match the specified
key symbol, and the nonstandard modifiers in the event must match
the modifier_list. For example, :<Key>a is distinct from :<KeY>A, and
:Shift<Key>A is distinct from :<Key>A.

• If a colon is not specified, no standard modifiers are applied. Then, for
example, <KeY>A and <Key>a are equivalent.

In key sequences, a circumflex (A) is an abbreviation for the Control
modifier, a dollar sign ($) is an abbreviation for Meta, and a backslash
(\) can be used to quote any character, in particular a quotation mark
("), a circumflex, a dollar sign, and another backslash. The following
table shows how a translation table interprets the presence or absence of
modifiers:

Modifier Specification Interpretation

No modifiers None <event> detail

Any modifiers <event> detail

Only these modifiers ! mod1 mod2 <event> detail

These modifiers and mod1 mod2 <event> detail
any others

The use of None for a modifier list is identical to the use of an exclamation
point with no modifiers.

Table D-4 lists the modifiers with their abbreviations and meanings.

Table D-4 Translation Table Modifiers

Modifier

Ctr I

Shift

Abbreviation Meaning

c
s

Control modifier bit

Shift modifier bit

(continued on next page)

Building Your Own Widgets
D.9 Translation Management

Table D-4 (Cont.) Translation Table Modifiers

Modifier Abbreviation Meaning

Lock Lock modifier bit

Meta m Meta key modifier

Hyper h Hyper key modifier

Super SU Super key modifier

Alt a Alt key modifier

Mod1 Mod1 modifier bit

Mod2 Mod2 modifier bit

Mod3 Mod3 modifier bit

Mod4 Mod4 modifier bit

Mods Mods modifier bit

Button1 Button1 modifier bit

Button2 Button2 modifier bit

Button3 Button3 modifier bit

Button4 Button4 modifier bit

Buttons Buttons modifier bit

ANY Any combination

A key modifier is any modifier bit whose corresponding key code contains
the corresponding left or right key symbol. For .example, m or Meta means
any modifier bit mapping to a key code whose key symbol list contains XK_
Meta_L or XK_Meta_R. Note that this interpretation is for each display,
not global or even for. each application context. The Control, Shift, and
Lock modifier names refer explicitly to the corresponding modifier bits;
there is no additional interpretation of key symbols for these modifiers.

Because it is possible to associate arbitrary key symbols with modifiers,
the set of modifier key modifiers is extensible. The @<keysym> syntax
means any modifier bit whose corresponding key code contains the
specified key symbol.

A modifier_list/key symbol combination in a translation matches a
modifiers/key code combination in an event in the following:

• If a colon (:)is used, the intrinsics call the display's XtKeyProc with
the key code and modifiers. To match, (modifiers & -modifiers_return)
must equal modifier_list, and keysym_return must equal the given key
symbol.

• If a colon is not used, the intrinsics mask off all unspecified modifier
bits from the modifiers. This value must be equal to the modifier_list
field. Then, for each possible combination of the unspecified modifiers
in the modifier_list field, the intrinsics call the display's XtKeyProc
with the key code and that combination in a bitwise OR with the
specified modifier bits from the event. The keysym_return field must
match the key symbol in the translation.

D-65

Building Your Own Widgets
D.9 Translation Management

D-66

D.9.4.2 Event Types
The EventType field describes XEvent types. Table D-5 lists the currently
defined EventType values.

Table D-5 Event Types

Type Meaning

Key Key Press

Key Down Key Press

KeyUp Key Release

BtnDown Button Press

BtnUp Button Release

Motion MotionNotify

PtrMoved MotionNotify

Mouse Moved MotionNotify

Enter EnterNotify

EnterWindow EnterNotify

Leave Leave Notify

Leave Window LeaveNotify

Focus In Focus In

Focus Out Focus Out

Key map KeymapNotify

Expose Expose

GrExp GraphicsExpose

No Exp No Expose

Visible VisibilityNotify

Create CreateNotify

Destroy DestroyNotify

Unmap Un map Notify

Map Map Notify

MapReq Map Request

Re parent ReparentNotify

Configure ConfigureNotify

ConfigureReq ConfigureRequest

Grav Gravity Notify

ResReq Resize Request

Circ Circulate Notify

CircReq CirculateRequest

Prop Property Notify

SelClr Selection Clear

(continued on next page)

Building Your Own Widgets
D.9 Translation Management

Table D-5 (Cont.) Event Types

Ty~e Meaning

SelReq Selection Request

Select Selection Notify

Clrmap ColormapNotify

Message ClientMessage

Mapping Mapping Notify

Table D-6 lists the supported abbreviations.

Table D-6 · Event Type Abbreviations for Translation Tables

Abbreviation

Ctrl

Meta

Shift

Btn1Down

Btn1Up

Btn2Down

Btn2Up

Btn3Down

Btn3Up

Btn4Down

Btn4Up

Btn5Down

BtnSUp

BtnMotion

Btn1Motion

Btn2Motion

Btn3Motion

Btn4Motion

Btn5Motion

Meaning

KeyPress with control modifier

KeyPress with meta modifier

KeyPress with shift modifier

Button Press with Btn 1 detail

ButtonRelease with Btn1 detail

ButtonPress with Btn2 detail

ButtonRelease with Btn2 detail

Button Press with Btn3 detail

ButtonRelease with Btn3 detail

ButtonPress with Btn4 detail

ButtonRelease with Btn4 detail

ButtonPress with Btn5 detail

ButtonRelease with Btn5 detail

MotionNotify with any button modifier

MotionNotify with Button1 modifier

MotionNotify with Button2 modifier

MotionNotify with Button3 modifier

MotionNotify with Button4 modifier

MotionNotify with Buttons modifier

The detail field is event specific and normally corresponds to the detail
field of an X Event, such as <Key>A. If no detail field is specified, then
ANY is assumed.

A key symbol can be specified as any of the standard key symbol names,
a hexadecimal number prefixed with Ox or OX, an octal number prefixed
with 0 or a decimal number. A key symbol expressed as a single digit
is interpreted as the corresponding Latinl key symbol; for example, 0 is
the key symbol XK_O. Other single character key symbols are treated as
literal constants from Latinl; for example, ! is treated as Ox21. Standard
key symbol names are as defined in <Xll/keysymdef.h> with the XK_
prefix removed.

D-67

BuUding Your Own Widgets
D.9 Translation Management

D.9.4.3 Canonical Representation
Every translation table has a unique, canonical text representation.
This representation is passed to a widget's display _accelerator method
to describe the accelerators installed on that widget. The canonical
representation of a translation table file is the following:

translationTable { production }
production = lhs ":" rhs "\n"
lhs event { ", " event
event [modifier list] "<"event type">" [" (" count ["+"] ") "] {detail}
modifier list [" ! " I ": "1 {modifier} -
modifier ["-"] modifier_name
count
modifier name
event type
detail
rhs
name
name char
pa rams
string
quoted_string

D-68

("1" I "2" I "3" I "4" I ...)
"@" <keysym> I <see canonical modifier
<see canonical event types below>
<event specific details>
{ name"(" [params] ")" }
namechar { namechar }
{ "a"-"z" I "A"-"Z" I "0"-"9" I "$" I
string{"," string}.
quoted_string
""" {<Latin 1 character>} """

The canonical modifier names are:

• Ctrl

• Shift

• Lock

• Modl

• Mod2

• Mod3

• Mod4

• Mod5

• Buttonl

• Button2

• Button3

• Button4

• Button5

The canonical event types are:

• KeyPress

• KeyRelease

• ButtonPress

• ButtonRelease

• MotionN otify

• EnterN otify

• LeaveNotify

names below>

" "

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Focus In

Focus Out

KeymapNotify

Expose

GraphicsExpose

NoExpose

Visibility Notify

CreateN otify

DestroyN otify

UnmapNotify

MapNotify

MapRequest

ReparentN otify

ConfigureN otify

ConfigureRequest

GravityN otify

ResizeRequest

CirculateN otify

CirculateRequest

PropertyN otify

Selection Clear

SelectionRequest

SelectionN otify

ColormapN otify

ClientMessage

Building Your Own Widgets
D.9 Translation Management

The following examples illustrate common translation table entries:

• Always put specific events in the table before general ones, as follows:

Shift <BtnlDown> : proc()\n\
<BtnlDown> : proc()

• For double click on Button 1 Up with Shift, use the following
specification:

Shift<Btn1Up>(2) : proc()

This is equivalent to the following line with appropriate timers set
between events:

Shift<BtnlDown>,Shift<BtnlUp>,
Shift<BtnlDown>,Shift<BtnlUp>: proc()

D-69

Building Your Own Widgets
D.9 Translation Management

D-70

• For double click on Button 1 Down with Shift, use the following
specification:

Shift<Btn1Down>(2) : proc()

This is equivalent to the following line with appropriate timers set
between events:

Shift<BtnlDown>,Shift<BtnlUp>,Shift<BtnlDown> : proc()

• Mouse motion is always discarded when it occurs between events in a
table where no motion event is specified, as follows:

<BtnlDown>,<BtnlUp> : proc()

This translation is taken, even if the pointer moves a bit between
the down and up events. Similarly, any motion event specified in a
translation matches any number of motion events. If the motion event
causes an action procedure to be invoked, the procedure is invoked
after each motion event.

• If an event sequence is part of another event sequence (but not the
first part), the event sequence is not taken if it occurs in the context
of the longer sequence. This occurs mostly in sequences like the
following:

<Btn1Down>,<Btn1Up> : proc()\n\
<BtnlUp> : proc()

The second translation is taken only if the button release is not
preceded by a button press or if there are intervening events between
the press and the release. Be particularly aware of this when using
repeat notation with buttons and keys (because their expansion
includes additional events) and when specifying motion events
because they are implicitly included between any two other events.
In particular, pointer motion and double click translations cannot
coexist in the same translation table.

• For single click on Button 1 Up with Shift and Meta, use the following
specification:

Shift Meta <BtnlDown>, Shift Meta<BtnlUp>: proc()

• You can use a plus sign (+) to indicate for any number of clicks greater
than or equal to count. For example:

Shift <Btn1Up>(2+) : proc()

• To indicate EnterNotify with any modifiers, use the following
specification:

<Enter> : proc ()

• To indicate EnterNotify with no modifiers, use the following
specification:

None <Enter> : proc()

• To indicate EnterNotify with Button 1 Down and Button 2 Up and
other modifiers unspecified, use the following specification:

Buttonl -Button2 <Enter> : proc()

D.9.5

D.9.6

Building Your Own Widgets
D.9 Translation Management

• To indicate EnterNotify with Button! Down and Button2 Down
exclusively, use the following specification:

! Buttonl Button2 <Enter> : proc()

You do not need to use a tilde (-) with an exclamation point (!).

Translation Table Management
Sometimes an application needs to destructively or nondestructively add
its own translations to a widget's translation. For example, a window
manager provides functions to move a window. It can usually move the
window when any pointer button is pressed down in a title bar, but it
allows the user to specify other translations for MB2 or MB3 pressed down
in the title bar and ignores any user translations for MBl pressed down.

To accomplish this, the window manager first should create the title bar
and then should merge the two translation tables into the title bar's
translations. One translation table contains the translations that the
window manager wants only if the user has not specified a translation
for a particular event (or event sequence). The other translation table
contains the translations that the window manager wants regardless of
what the user has specified.

Three intrinsics routines support this merging:

• PARSE TRANSLATION TABLE-Compiles a translation table

• AUGMENT TRANSLATIONS-Nondestructively merges a compiled
translation table into a widget's compiled translation table

• OVERRIDE TRANSLATIONS-Destructively merges a compiled
translation table into a widget's compiled translation table

Using Accelerators
It is often convenient to be able to bind events in one widget to actions in
another. In particular, it is often useful to be able to invoke menu actions
from the keyboard. The intrinsics provide a facility, called accelerators,
that let you accomplish this. An accelerator is a translation table that
is bound with its actions in the context of a particular widget. The
accelerator table can then be installed on some destination widget. When
an action in the destination widget would cause an accelerator action to be
taken, rather than causing an action in the context of the destination, the
actions are executed as though triggered by an action in the accelerator
widget.

Each widget instance contains that widget's exported accelerator table.
Each class of widget exports a method that takes a displayable string
representation of the accelerators so that widgets can display their current
accelerators. The representation is the accelerator table in canonical
translation table form.

D-71

D.9.7

Building Your Own Widgets
D.9 Translation Management

The display accelerator procedure pointer is of type XtStringProc, as
follows:

typedef void (*XtStringProc) (Widget, String);
Widget w;
String string;

Argument

w

string

Function

Specifies the widget on which the accelerators are installed

Specifies the string representation of the accelerators for the
widget

Accelerators can be specified in default files, and the string representation
is the same as for a translation table. However, the interpretation of the
augment and override directives apply to what will happen when the
accelerator is installed, that is, whether or not the accelerator translations
will override the translations in the destination widget. The default
is augment, which means that the accelerator translations have lower
priority than the destination translations. The replace directive is ignored
for accelerator tables.

To parse an accelerator table, use the PARSE ACCELERATOR TABLE
intrinsic routine.

To install accelerators from a widget on another widget, use the INSTALL
ACCELERATORS intrinsic routine. As a convenience for installing all
accelerators from a widget and all its descendants onto one destination,
use the INSTALL ALL ACCELERATORS intrinsic routine.

Key Code to Key Symbol Conversions
The translation manager provides support for automatically translating
key codes in incoming key events into key symbols. KeyCode-to-KeySym
translator procedure pointers are of type XtKeyProc, as follows:

typedef void (*XtKeyProc) (Display*, KeyCode, Modifiers, Modifiers*, KeySym *);
Display *display;

D-72

KeyCode keycode;
Modifiers modifiers;
Modifiers *modifiers_return;
KeySym *keysym_return;

Argument

display

keycode

modifiers

modifiers_return

keysym_return

Function

Specifies the display that the key code is from

Specifies the key code to translate

Specifies the modifiers to the key code

Returns a mask that indicates the subset of all modifiers that are
examined by the key translator

Returns the resulting key symbol

This procedure takes a key code and modifiers and produces a key symbol.
For any given key translator function, the modifiers_return argument

Building Your Own Widgets
D.9 Translation Management

will be a constant that indicates the subset of all modifiers that are
examined by the key translator.

To register a key translator, use the SET KEY TRANSLATOR intrinsic
routine.

To invoke the currently registered KeyCode-to-KeySym translator, use the
TRANSLATE KEYCODE intrinsic routine.

To handle capitalization of nonstandard key symbols, the intrinsics allow
clients to register case conversion routines. Case converter procedure
pointers are of type XtCaseProc, as follows:

typedef void (*XtCaseProc) (KeySym *, KeySym *,
KeySym *);

KeySym *keysym;
KeySym *lower_return;
KeySym *upper_return;

Argument

keysym

lower_return

upper_return

Function

Specifies the key symbol to convert

Specifies the lowercase equivalent for the key symbol

Specifies the uppercase equivalent for the key symbol

If there is no case distinction, this procedure should store the KeySym into
both return values.

To register a case converter, use the REGISTER CASE CONVERTER
intrinsic routine.

To determine uppercase and lowercase equivalents for a key symbol, use
the CONVERT CASE intrinsic routine.

D-73

Glossary

accelerator: A shortcut that allows users to work more quickly by eliminating steps
needed to invoke a command. Accelerators include key bindings or pointing
device-button bindings, pop-up menus, and double clicks.

active: Ready to accept user input, as in active insertion point, active window.

active grab: The condition that exists when a client has exclusive use of the pointer
or keyboard.

active insertion point: An insertion point, indicated by a blinking cursor, that is
ready to accept user input.

active window: The window that is ready to accept input from the keyboard (that
is, that currently has input focus).

ancestor: In a hierarchy of windows, a window is an ancestor if it is logically closer
to the root window than to another window.

application title: The part of the window that identifies the window and the primary
file, if any, associated with an application. The application title is located to the
right of the shrink-to-icon button.

arguments list: In UIL, the sequence of argument name/argument value pairs that
describes the initial state of a widget. The UIL compiler and DRM translate
the pairs into a data structure that can be passed as an argument to a low-level
widget creation routine.

atom: A unique identifier for a string.

attribute: A characteristic of a window other than those related to its size and
shape.

background: The default contents of a window.

bit gravity: The location of the contents of a window after it has been resized and
repainted.

bitmap: A two-dimensional array of bits that represent the pixels of an image in
which the 1 bits represent foreground pixel values and the 0 bits represent
background pixel values.

In UIL, a· bitmap can have one of two values: FOREGROUND or
BACKGROUND. See also pixmap.

bitmap text insertion pointer: The pointer that specifies the point where text can
be entered in a bitmapped image. This pointer includes a horizontal baseline to
help align text.

Glossary-1

Glossary

Glossary-2

bitmask: A sequence of 8 (byte), 16 (word), or 32 (longword) unsigned bits that
can be combined with a variable of the same size by a binary operator (AND,
OR, XOR, and so on) to either set or check the value of individual bits in the
variables.

border: The margin of a window, defined by either a pixel value or a pixmap.

button: An on-screen control that allows users to choose actions or operations and
set states.

byte order: The order in which data is organized in a bitmap or pixmap.

callback: A mechanism for allowing the XUI Toolkit widget routines to notify an
application that a particular event has occurred. Every widget has a callback
list that connects the user's manipulation of that widget with the functions of
the application. For example, when the user clicks on (activates) a widget, every
procedure on the widget's ACTIVATE callback list is called. See also callbacks
list.

callback reason: A constant, defined by the XUI Toolkit, that describes a state
change in a widget. For example, when the user clicks on a toggle button, the
state changes. The callback reason for this state change is called value_changed.

callback routine: An application-specified routine to be invoked by a widget when a
widget changes state. See also callbacks list.

callbacks list: In UIL, the sequence of reason/procedure pairs that describes the
state changes in a widget under which an application is to receive control.
Each reason describes a state change, and the corresponding procedure is
the procedure the application invokes. The UIL compiler and DRM translate
the pairs into a data structure that can be passed as an argument to a low
level widget creation routine. Procedures are specified as case-sensitive names
(strings), which must be registered in DRM for this translation to work correctly.
See also registration.

cancel: To remove a modal dialog box without applying changes.

case-sensitivity clause: The part of the UIL module that specifies whether or not
names in a UIL module are case sensitive.

caution dialog box: A standard dialog box that informs the user of the consequences
of carrying out an action. When the box appears, application activity stops and
user input is required for application activity to proceed.

character set: A code that identifies the character encoding and writing direction
of a primitive string. For example, the UIL character set name ISO _LATINI
states that the hexadecimal value 5C is the backslash character (\), while the
DEC_KATAKANA character set states that the value 5C is the yen symbol (Y).

child: A first-level subwindow of a window.

In an application widget hierarchy, a child is a widget that is controlled by
another widget; a descendant of a widget.

choose: To pick an operation by clicking on a control or dragging to a menu item.

Glossary

class: The type of a window. Possible types are input-only and input-output.

click: To press and release a mouse button.

click on: To press and release a mouse button when the pointer is positioned on an
active object.

click rate: The speed with which one click follows another in a double click.

client: An application program connected to the· server.

clip: To restrict drawing to a specified area of a window.

clip region: A region to which screen output is restricted.

clipboard: The storage area (buffer) for the most recently cut or copied information
(text or graphics).

close: To remove a window associated with an application.

color: In UIL, the text string naming a color. The DRM converts this string into
a usable internal form. The terms FOREGROUND and BACKGROUND are
also acceptable color names in UIL and DRM for mapping colors to monochrome
displays. See also color table.

color cell: An entry in a color map that defines one color or shade of gray.

color dialog box: A standard dialog box that displays colors and color attributes
from which a user can choose.

color map: A resource that associates colors with pixel values.

color table: In UIL, a map associating defined colors and single characters that may
be used to construct icons. FOREGROUND and BACKGROUND are defined
colors in the UIL color tables, in addition to named colors. See also color.

command box: A subdivision of the main window within which users can enter
commands and receive messages in response to those commands.

command item: A choice on a menu that initiates an action or operation directly,
without calling a dialog box or submenu.

compound string: A string stored with character set and writing direction
information. A compound string can consist of multiple segments. Each segment
in the string can have a different character set and writing direction properties.

connection: The network path between a client and server.

control: A screen object that allows users to provide input to applications.

control panel: A subregion or dialog box containing controls often used during a
work session. The control panel can remain on the screen during a work session.

controls list: In UIL, the sequence of widgets that defines the children controlled by
a particular widget.

Glossary-3

Glossary

Glossary-4

conversion: In DRM, the translation of some information from its representation
in a UID file into the internal form required by the XUI Toolkit or X Window
System. Some conversions rely on information supplied through registration
(for example, procedure names to addresses, identifier names to values). Others
depend on information available through low-level XUI Toolkit procedure calls
and other mapping transformations (for example, compound strings, font lists,
colors, color tables, and icons).

creation callback: A callback that is invoked directly by DRM at the moment
it creates a widget instance during fetch operations. It differs from most
other callbacks in that the widget's change of state is not caused by an input
event. Creation callbacks provide a mechanism for applications to discover the
identifiers of widgets created by fetch operations. Creation callbacks are specified
in UIL exactly like other callbacks; the callback reason is create.

cursor: An image that displays either the movement of the pointer or the current
insertion point of text on the screen.

default character set: The character set, specified by a character set clause in a UIL
module, used to interpret a string literal if no character set is specified for that
literal.

default color table: The color table used by the UIL compiler when a color table is
omitted from an icon definition.

default push button: The default option that provides the user with the most
reasonable and least destructive response to a dialog box query. The default
push button is selected when a user presses the Return key.

depth: The number of bits associated with a pixel.

dialog box: A special window that is displayed in response to user action. Usually,
the user must take an appropriate action (as indicated by the alternatives
presented in the dialog box) to continue application activity.

See also caution dialog box, color dialog box, file dialog box, font attributes dialog
box, message dialog box, modal dialog box, modeless dialog box, print dialog box,
standard dialog box, work-in-progress dialog box.

dim: To give an object a faded appearance, indicating that the object is inactive or
disabled.

direct manipulation: Use of the pointing device to issue commands.

disable: To make inaccessible to the user.

discontinuous selection: Selection of two or more nonadjacent text or graphic
objects.

dismiss: To remove a modeless dialog box.

display: The connection between a client and server.

do not propagate mask: Values that define which events should not be reported to
the ancestors of a window.

Glossary

double-click: A type of accelerator in which the user presses and releases a mouse
button twice quickly without moving the mouse.

double click: To press and release a mouse button twice quickly without moving the
mouse.

drag: To press and hold a mouse button, move the mouse, and then release the
button when the pointer is in the desired position.

drawable: A window or pixmap.

DRM (XUI Resource Manager): A collection of XUI Toolkit routines for creating a
set of widgets or retrieving values from a hierarchy of UID files. See also DRM
hierarchy.

DRM hierarchy: The ordered list of UID files that DRM searches to find public
resources. All DRM fetch or read operations have a scope of exactly one
hierarchy. Applications may open more than one hierarchy.

event: An asynchronous report, sent by the server to a client, of either a change in
the state of a device or the execution of a routine by another client.

event mask: Values that define which events associated with a window that the
server should report to a client.

exit: To leave an application, automatically saving the file.

exported resource: A public resource defined in a given UID file; can be referenced
by name in some other UID file.

exposure: A report that the server has made either a window or part of a window
visible on the screen.

extended selection: An existing selection that has been altered by pressing and
holding the Shift key in conjunction with MBl.

fetch: In DRM, the action of retrieving the description of a widget from a UID
file and creating an instance of that widget. If the widget has any descendants
(children), DRM also retrieves and creates these descendants in the same fetch
operation. See also widget hierarchy.

file dialog box: A standard dialog box that solicits and accepts a file name from the
user.

font: An array of glyphs, specifying the height, width, and shape of each symbol
(uppercase and lowercase letters, numbers, punctuation marks, and so on) in a
typeface.

Fonts are stored in files. In UIL, a font consists of the name of a file (that holds
the array of glyphs) and a character set (that specifies the expected character
encoding for the font).

font attributes dialog box: A standard dialog box that displays fonts and font
attributes from which the user can choose.

font path: A server-dependent description of where to find fonts.

Glossary-5

Glossary

Glossary-6

font table: A sequence of fonts often called a font list in the XUI Toolkit. When ·
the XUI Toolkit needs to display a primitive string, it selects the correct font by
searching its font table for the first font whose character set matches that of the
primitive string.

foreground: The pixel value written by graphic objects.

gadget: A functionally limited widget; there is no window associated with a gadget.
Gadgets use less memory than widgets and therefore provide better performance
to applications. See also widget.

ghost image: An outline image of an object.

glyph: An image, typically of a character, in a font.

grab: A request by a client to get exclusive control of the keyboard, the pointer, or
the server.

graphics context: A resource used to define the characteristics of graphic objects.

graphics exposure: A report by the server that part of the source for a copy
operation is unavailable.

handle: A rectangular symbol on the border of a screen object that appears when
that object is selected for operations such as moving, sizing, copying, or deleting.

help menu: Allows a user to access a help facility associated with a specific
application.

help pointer: The pointer used with DECwindows Help.

hierarchy: The genealogical relationship of two or more windows.

horizontal pane pointer: The pointer used to reposition a vertical boundary between
panes by moving the boundary left or right.

host: The system on which the client is operating.

hotspot: The point within the pointer that corresponds to the coordinate location of
the pointing device.

icon: In the user environment, an icon is a symbol that represents an application,
object, process, or window.

In the programming environment, an icon is a simple pixmap that can be
described directly in UIL. A common use of an icon is to replace the text label of
a button with a graphic symbol.

icon box: A special window that contains icons representing the applications
available to the user.

identifier: In UIL, a placeholder for a value that is not known until run time. Not
all values of arguments or tag values for callback procedures are known when.
the UID file is created; Identifiers receive values through registration of their
names. See also registration.

Glossary

imported resource: An object referenced in a particular UID file but defined in
another UID file in the DRM hierarchy.

inactive: Not ready to accept user input.

inactive insertion point: An insertion point, indicated by a dimmed cursor,
associated with text in an inactive window.

inactive pointer: The pointer that appears in regions of the application window
that the application has rendered temporarily inactive, as when waiting for user
input to a dialog box.

inactive window: A window that is not ready to accept input from the keyboard.

index window: A window attached to the scroll bar that offers a guide to the
material to be displayed on the screen when the mouse button is released.

indicator: A symbol that designates the status of a radio or toggle button, or a radio
or toggle item.

See also radio indicator, toggle indicator.

inferior: A subwindow of a specified window.

input device: A keyboard, mouse, tablet, track-ball, button, key, or other source of
input to the workstation.

input focus: The ability to accept user input from the keyboard.

insertion point: The point on the screen where data will be inserted using the
keyboard, the clipboard, or functions for creating graphic objects.

interface module: A list of all the top-level widgets defined in a UIL module. This
list is stored in UID files in order to allow DRM to fetch an entire interface in a
single fetch operation.

key map: The mapping between key symbols and key codes.

key vector: A list of the values of keys.

keyboard: Primary device for text insertion.

label: An inactive symbol or text that identifies a control.

list box: A dialog box component that displays a list of options, such as available
files, from which the user can select one or more options. List boxes include
scroll bars to allow users to move through lists that are too big to display in the
dialog box.

literal: In UIL, a constant value. Common examples include ASCII strings,
compound strings, or pixmaps. Exported literals may be fetched by DRM for
arbitrary use by an application.

main window: A single window that is the starting point for all user interaction
with an application.

Glossary-7

·Glossary

Glossary-8

map: To make one or more windows visible on the screen;

maximum slider: A slider that fills the entire scroll region.

MB1, MB2, MB3, ... , MBn: Mouse button 1, mouse button 2, mouse button 3, mouse
button n. Usually, MBl is the left mouse button, MB2 the center button, and
MB3 the right button; however, users can redefine the setup to make MBl
the right mouse button-usually because the particular user is left-handed.
Functionally, MB 1 is usually the primary selector, MB2 is often used to call
pop-up menus, and any others are usually application defined.

menu: A list from which users can choose one or more items.

menu bar: A horizontal subdivision of a window that contains the names of pull
down menus.

menu item: A choice on any type of menu, including. pop-up menus, pull-down
menus, and submenus.

menu name: The title of a menu listed in the menu bar.

message dialog box: A standard dialog box that appears in response to a user
action to report system or application information.

minimum slider: A slider that is a square based on the width of the scroll region.

modal dialog box: A dialog box that requires a user response ·before application
activity can continue.

modeless dialog box: A dialog box that does not require a user response before
application activity can continue.

mouse: A pointing device that, when moved across any surface, causes a
corresponding movement of the pointer. A mouse can have. one or more buttons.

mouse button: A button on a mouse.

name: An active symbol or text that identifies a control or menu. In UIL, a user ..
defined string identifying a value or object.

null-terminated string: A sequence of characters terminated by an ASCII null (\ n).

object: An entity on the screen, such as a button, control, graphic, icon, menu,
pointer, text, and so on.

In UIL, a construct that can be named. Widgets, identifiers, values, procedures,
and lists are example of objects.

object selection: Selection of graphic screen entities, such as pictures.

object text insertion pointer: The pointer that specifies the point where text can be
entered.

obscure: Window A obscures window B if both are viewable input-output windows,
if A is higher in the stacking order than B, and if the rectangle· defined by the
outside edges of A intersects the rectangle defined by the outside edges of B.

Glossary

occlude: Window A occludes window B. if both are mapped, if A is higher in the
stacking order than B, and if the rectangle defined by the outside edges of A
intersects the rectangle defined by the outside edges of B.

option box: A control within a dialog box, consisting of a label and an active region,
that shows the available options and the current option selected.

option menu: Control that consists of a label and an active area that shows the
current option selected. Clicking on the active area produces a pop-up menu.

origin: The reference point (0,0) in a window, pixmap, or graphic object that is used
to determine the position of other windows, pixmaps, and graphic objects.

override redirect: A request that the server ignore redirect instructions for a
window.

pane: A special type of region whose size can be adjusted.

parent: The first-level ancestor of a window.

passive grab: A request to get control of the pointer or keyboard when specific keys
or buttons are pressed, or when the pointer is in a specific window.

PB1, PB2, PB3, PB4, ... , PBn: Puck button 1, puck button 2, puck button 3, puck
button 4, puck button n. Usually, PBl is the left puck button, PB2 the top center
button, PB3 the right button, and PB4 the bottom center button; however, users
can redefine the setup to make PBl the right puck button-usually because the
particular user is left-handed. Functionally, PBl is usually the primary selector,
PB2 is often used to call pop-up menus, and any others are usually application
defined.

pending delete: A state in which selected text will disappear when a key is pressed;
the selected text is replaced with keyboard input.

pixel: The smallest definable graphic image on a screen.

pixel value: Each pixel on the screen has a pixel value that controls the visual
effect of that pixel. On monochrome displays, only two pixel values exist:
FOREGROUND and BACKGROUND. However, on color displays, the number of
pixel values supported determines the range of colors that can be displayed;

UIL does not directly support pixel values because the individual values are
server dependent. Instead, UIL supports colors that are mapped to pixel values
at run time by DRM. See also color, color table.

pixmap: A two-dimensional array of nonnegative integers that represents an image.
Each integer contains the value of the corresponding pixel in the image.

In the XUI Toolkit, a pixmap is represented using a data structure that holds the
height and width of the image in pixels, the depth of the image (range of values
each pixel can take), and the pixel value of each pixel.

In UIL, a pixmap is represented as an icon. UIL pixmaps are device
independent; therefore, they are described by specifying the color of each pixel
rather than its pixel value. See also color, color table.

Glossary-9

Glossary

Glossary-10

plane: An allocation of memory in which there is a one-to-one correspondence
between pixels and bits.

pointer: An on-screen symbol that specifies position by reflecting the motion of the
mouse. The pointer shape indicates the type of operation being performed.

pointer shape: The form of the pointer. Different pointer shapes indicate the type
or state of the operation the user has chosen.

pointer speed: The relationship between the distance that the user moves the
mouse and the distance that the pointer moves on the screen.

pointing device: The hardware used to control pointer position on the screen.

See also mouse, puck, stylus, tablet.

pointing device button: A button on the hardware used to control pointer position
on the screen.

pop-up menu: A context-sensitive menu that appears at the current pointer position
when the user presses the mouse button defined for this function.

prefill: The first text entry field in a dialog box that is filled with the current
selection.

primary selector: The pointing device button that initiates actions, such as menu
manipulation and selection or cut and paste operations.

print dialog box: A standard dialog box with which the user can choose attributes
related to the printing of a file.

private resource: A resource whose scope is the UID file in which it is defined.
Private resources can only be referenced by other resources in the same UID file.

procedure name: The case-sensitive name of a callback routine stored by UIL
in callbacks lists in UID files. DRM converts procedure names to procedure
addresses using information registered by the application. See also callbacks list,
conversion, registration.

progressive text selection hierarchy: A selection hierarchy that increases during
successive clicks of MBl.

property: A collection of named, typed data associated with a window.

pseudomotion: The apparent movement of the cursor when a client grabs the
pointer, causing the server to reposition the cursor from one window to another,
even though the pointer has not moved.

public resource: A resource whose scope is the entire DRM hierarchy of UID files.
Public resources can be referenced by other resources anywhere in the DRM
hierarchy.

puck: A pointing device used with a tablet. Moving a puck across the tablet causes
a corresponding movement of the pointer. A puck can have one or more buttons.

See also PB1, PB2, PB3, PB4, .. ., PBn; pointing device; tablet.

Glossary

pull-down menu: A menu that is displayed when the user presses a mouse button
when the pointer is positioned on a menu name in the menu bar.

push button: A control consisting of a rectangular box and a label that indicates the
command to be performed.

push-to•back button: A button within the window title bar that allows users to
move the window to the back of the window stack.

quit: To leave an application. The user will be prompted as to whether to save
changes to a file.

radio button: An on-screen control consisting of a button name with an indicator
next to it. Radio buttons interact in a special way: only one can be chosen at a
time; choosing one turns off any previously chosen button.

radio icon: One of a set of icons, from which only one icon can be chosen at a time.

radio indicator: A circle, which is part of a radio button or a radio item, that
designates which button or item from a set of radio buttons or items has been
chosen.

radio item: One item in a set of items on a menu, consisting of a name and an
indicator for the chosen item. Radio items interact in a special way: only one
can be chosen at a time; choosing one turns off any previously chosen item.

Redo: A type of operation that reverses the effects of the last Undo operation
performed.

region: An area of a window or pixmap.

registration: The provision of information to DRM at run time that is needed to
correctly interpret information contained in a DRM hierarchy of UID files.

DRM supports two registration operations. Class registration provides the
information necessary to interpret definitions of user-defined widgets. Name
registration. provides the mapping between names such as procedures and
identifiers stored as strings in a UID file and the run-time values associated with
the names (for example, the addresses of callback routines).

reparent: To change the location of a window in the hierarchy. Reparenting windows
is limited to the window manager.

reply: A message sent synchronously from the server to a client.

resize: To change the size of a screen object.

resize button: A control used to resize a window.

resize pointer: ·The pointer used for resizing operations.

resource: A data object stored in a UID file that is a component of an interface
specification (for example, a widget, a color, a font, a string). DRM retrieves
resources from a UID file and then interprets them as required.

Glossary-11

Glossary

Glossary-12

resource context: A data structure used by the DRM to retrieve resources from UID
files, providing flexible memory management. Applications must use resource
contexts to retrieve literals from UID files.

resource database: A static, binary-encoded, read-only database containing the
specification of a DECwindows application user interface, or some components of
an interface (for example, a given resource database may contain only literals).
See also UID file.

root window: The initial window on a screen.

save set: A list of windows that will not be destroyed if the client-server connection
is broken. Save sets are typically used by window managers only.

save under: Instructions to the server regarding whether to save the screen
contents when a window hides them.

SB1, SB2, ... , SBn: Stylus button 1, stylus button 2, stylus button n. SBl is
the button on the barrel of the stylus, SB2 the button on the tip of the stylus.
Functionally, SBl is usually the primary selector, SB2 is often used to call pop-up
menus, and any others are usually application defined.

See also primary selector, stylus.

scale: Control that allows the user to enter a numerical value by adjusting a pointer
to a specific position along a line.

scope: The visibility of a UIL name within the DRM hierarchy of UID files. An
exported object in the UIL has a scope of the entire hierarchy and so can be
referenced by other objects in any of the UID files in the hierarchy. A private
object has scope only within an individual UID file and so cannot be referenced
by objects in other UID files.

scroll bar: A subregion that allows users to move through a block of information
that is too big to be displayed at one time.

scroll region: A scroll bar component in which the slider moves. The relationship
between the size of the slider and the size of the scroll region corresponds to the
relationship between the size of the material displayed and the size of the file.

select: To designate information, either text or graphics, that will be the object of a
subsequent operation or operations.

select pointer: The pointer used for selection operations.

selection: Text or graphics that will be the object of a subsequent operation or
operations.

selection hierarchy: Multiple clicks of MBl used to select successively larger (or
smaller) text regions.

sensitivity: In the XUI Toolkit, a description of the state of a widget. An
"insensitive" widget is dormant and does not receive notification of input events
that may occur within it. The screen appearance of many widgets changes when
they go into dormancy.

Glossary

server: The program that controls workstation devices such as screens and pointers.

shift click: To position the pointer where you want the action to occur, and then
press and hold the Shift key while clicking MB 1.

shrink-to-icon button: A control that shrinks a window to an icon.

sibling: One of two or more windows created from the same parent.

size: To define the size of screen objects.

slider: A scroll bar component used to move a window over information that is too
big to be displayed at one time. The relationship between the size of the slider
and the size of the scroll region corresponds to the relationship between the size
of the material displayed and the size of the file.

standard dialog box: Any specific-purpose dialog box supplied with the
DECwindows Toolkit.

See also caution dialog box, color dialog box, file dialog box, font attributes dialog
box, message dialog box, print dialog box, work-in-progress dialog box.

standard menu: Any specific-purpose menu supplied with the DECwindows Toolkit.

status region: A region that provides users with information about the state of the
operating system or application.

stepping arrow: A scroll bar component used to move a window incrementally
through information that is too big to be displayed at one time.

stipple: A pixmap with a depth of 1, used to tile a region or window with foreground
and background values.

structure control: The management of requests by other clients to resize, configure,
circulate, and map windows.

stylus: A pointing device used with a tablet. Moving the stylus across the tablet
causes a corresponding movement of the pointer. The tip of the stylus usually
functions as a button; the barrel of the stylus can have one or more additional
buttons.

submenu: A menu, associated with a pull-down or pop-up menu, that is displayed
in response to dragging the pointer over a submenu icon. The availability of a
submenu is shown on a menu by a submenu icon.

See also pop-up menu, pull-down menu, submenu icon.

submenu icon: A symbol, associated with a menu item, that signifies the
availability of a submenu. Dragging the pointer over- the icon causes the
submenu to appear.

subregion: A subdivision of a region. Applications can divide regions into multiple
subregions.

Glossary-13

Glossary

Glossary-14

substructure redirect: An instruction from a client for the server to send configure
and map requests by children of the window to the client rather than acting on
the requests directly.

symbolic reference: In a UIL module, the use of a widget name in place of a widget
identifier as an argument for a widget in the same widget hierarchy.

tablet: The surface across which a puck or stylus is moved.

tabular selection: Selection of a unit within a table or form.

tag: An argument to a callback procedure allowing the application programmer
to pass arbitrary information to the procedure. A typical use of the tag is to
identify the reason for a callback. For example, a single callback procedure may
be invoked for multiple reasons. The programmer can use the tag to store a
constant that identifies the particular reason the procedure is being invoked.

text insertion cursor: A block-shaped cursor that shows where text will be entered
in a window. This cursor indicates that text will be entered in insert mode.

text Insertion pointer: The pointer that specifies the point where text can be
entered.

text overstrike cursor: A cursor shaped like an I-beam or a capital I that shows
where text will be entered in a window. This cursor indicates that text will be
entered in overstrike mode.

text-entry field: A dialog box control that allows the user to enter text in a
structured area.

tile: To set up the screen so that windows do not overlap; to paint an area by
replicating a pixmap within the area.

title bar: A horizontal bar in a window that identifies the application and contains
window management controls.

toggle: To switch a two-state option to its opposite state.

toggle button: An on-screen control consisting of a button name with an indicator
next to it. Toggle buttons allow users to choose one of two alternate states.

toggle indicator: A square, which is part of a toggle button or toggle item, that
designates which buttons or items have been chosen.

toggle item: An item on a menu, consisting of a name and an indicator designating
each item chosen. A menu can include more than one toggle item.

top-level widget: The widget you get back from a call to the X Toolkit routine
INITIALIZE. This widget does not have a parent. All widgets fetched by the
DRM must have a parent, either a top-level widget or some widget previously
created by a fetch operation.

triple click: To position the pointer where you want the action to occur, and then
press and release a mouse button three times quickly without moving the mouse.

Glossary

UID (User Interface Definition) file: A binary-encoded file containing the output of
the UIL compiler that is read by DRM at application run time. See also DRM
hierarchy.

UIL (User Interface Language): A strongly typed specification language for defining
the initial state of a user interface for a DECwindows application; used in
conjunction with the XUI Resource Manager (DRM).

UIL include directive: A UIL directive that incorporates the contents of a specified
file into the UIL module.

UIL include file: A file that holds a set of UIL statements, which may define values,
widgets, and so on. Digital provides DECW$DWTDEF.UIL (VAX binding) and
DwtAppl.uil (C binding), which define standard enumeration values for XUI
Toolkit widgets.

UIL module: The contents of a UIL specification file. The name of the UIL module
follows the MODULE keyword.

Each UID file contains an interface module that provides DRM access to all
top-level widgets defined in a UIL module. The name of this interface module is
the UIL module name.

UIL specification file: An ASCII-encoded file containing the definition of the initial
state of the user interface for an application; the file that holds a UIL module.
UIL (and UID) files are separate and distinct from application programs.

Undo: A type of operation that reverses the effects of the last operation performed.

User Interface Definition file: See UID file.

User Interface Language: See UIL.

user-defined widget: A widget designed and built by an application programmer,
not part of the XUI Toolkit or the X Toolkit.

version clause: Specifies the version of a UIL module.

vertical pane pointer: The pointer used to reposition a horizontal boundary between
panes by moving the boundary up and down.

See also pane.

viewable: A window is viewable if it and its ancestors are mapped. The window
does not have to be visible. For example, if a window is mapped but hidden by
another window, it is viewable.

visible: A window is visible if one can see it on the screen.

visual: A resource that describes how pixel values are interpreted on a screen. For
example, a screen may be configured variously to display color or black and white
images.

wait pointer: The pointer used to indicate that work is in progress.

Glossary-15

Glossary

Glossary-16

widget: A primary component of an interface to a DECwindows application.

For a user of an application, a widget appears on a display as a collection of
graphics (such as a window, title bar, or menu) and text. Using the keyboard
and mouse, the user manipulates this visual manifestation of a set of widgets to
communicate with the application.

For an application developer, a widget is a data structure and a collection of
routines that will create, destroy, and modify the data structure. The contents
of the data structure are a set of resources including arguments that control the
visual manifestation, callbacks that describe routines to be called when the user
manipulates the widget, and child widgets that define and control. subfunctions
of the widget.

In UIL, a widget is a declaration that specifies the initial state a widget is to take
when DRM fetches the widget. By using the UIL, an application programmer
can specify the initial arguments, callbacks, and children of a widget.

widget class: A means of grouping widgets according to common properties and
functions. Widgets can be classified as main windows, scroll bars, menu bars,
and so on. Each of these is a separate widget class. An application may consist
of zero or more widgets of each widget class. The class of a widget is fixed when
the widget is created and determines which additional resources it supports.

widget creation: In the XUI Toolkit, the process through which an application
obtains an instance of a widget. In the creation process, the widget is allocated
and initialized with resources. See also widget management and widget
realization.

widget hierarchy: The hierarchy formed by the widgets in an application user
interface that is defined by parent-child relationships of the widgets. When
DRM fetches a widget, the entire widget hierarchy rooted at that widget is also
fetched. A widget hierarchy may be resolved across a DRM hierarchy; that is,
the widget definitions are not required to be retrieved from a single UID file.

widget identifier: An identifier for a widget generated by a DRM fetch operation or
by an XUI Toolkit creation routine.

widget management: In the XUI Toolkit, the process through which a widget
becomes displayable. When an application creates an instance of a widget
through the widget creation process, the widget does not appear on the display.
To make the widget displayable, the application must manage the widget, that
is, add the widget to the set of widgets controlled by a particular parent widget.
The parent widget is responsible for the overall management and physical
arrangement of its children. Every widget in an application is the child of some
other widget in the application. When a parent widget is realized, it and all of
the children managed are mapped on the display. See also widget realization.

widget realization: In the XUI Toolkit, the process that causes a widget to appear
on the display. The realization process obtains a window for the widget and,
if the widget is managed, maps the window to the display. See also widget
management.

window: An area on the screen in which users can interact with an application.

Glossary

window crossing: The window entry or exit of the cursor.

window gravity: The location of a window after its parent has been resized and
repainted.

window manager: The application that governs sizing, positioning, and stacking of
windows, determines the object that has input focus, and creates and controls
icons and the icon box.

window stack: Windows on the workstation screen that overlap, like sheets of paper
stacked one on top of another.

work region: A subdivision of a window or subwindow in which users perform most
application tasks.

work-in-progress dialog box: A standard dialog box that indicates that an
application is completing an ongoing operation.

XUI Resource Manager: See DRM.

Glossary-17

Index

A
Accelerator• D-71

adding to a widget or gadget • 5-28
definition • 5-27
installing an accelerator in a widget • 5-28
using with command window widget• 4-17
using with push button widget• 5-27
using with push button widgets in a dialog box

widget• 7-12
using with scroll bar widget stepping arrows •

10-14
using with toggle button widget• 5-27

Accelerator label • 5-29
Action procedure

adding to a widget • 6-27
definition • 6-26
example • 6-27
standard arguments • 6-26

Action table • D-60
definition • 6-27

ACTIVATE WIDGET routine• 5-1
Ada

Hello World! sample application • B-7
programming interfaces• B-1

ADD ACTIONS routine • 6-28, D-61
ADD CALLBACKS routine• 2-31
ADD EVENT HANDLER routine• D-47
ADD FONT LIST routine • 5-25
ADD RAW EVENT HANDLER routine• D-47
ADD WORK PROC routine • 2-30
Application

associating form with function • 1-7
creating form of• 1-6
interaction with window manager • 14-1
specifying the name that appears in the title bar•

14-18
starting in iconic state • 14-27
structure of• 2-1

APPLICATION ADD CONVERTER routine • D-56
Application context

creating• 2-5
definition • 2-5
routines • 2-6, 2-26

APPLICATION CREATE SHELL routine• 2-5, 2-7,
2-8

APPLICATION CREATE SHELL routine (Cont.)

setting shell widget attributes • 14-11
APPLICATION MAIN LOOP routine• 2-26
Application shell widget • 2-6

assigning values to attributes • 14-13
attributes that must be set at creation time • 14-11
communicating with the window manager • 14-8,

14-11
creating • 2-4
definition • 1-6
setting attributes at creation time• 14-11
using multiple• 2-7

Application widget hierarchy • 1-6
specifying in UIL • 3-8
traversing up and down • D-27

Argument
defining for user-defined widget in UIL • 3-66

Argumer:it data structure • 2-1 O
Argument list

specifying in UIL • 2-18, 3-25
using with low-level widget creation routines• 2-1 O

ARGUMENTS keyword • 3-25
ATTACHED DIALOG BOX CREATE routine• 7-13
ATTACHED DIALOG BOX POPUP CREATE routine•

7-13
ATTACHED DIALOG BOX routine• 7-13
Attached dialog box widget

attaching a child to• 7-16
attaching a child to another child• 7-17
attachment types • 7-15
callbacks • 7-22
comparing to dialog box widget• 7-2
creating• 7-13
customizing• 7-21
defining attachments• 7-14
defining offsets between children• 7-22
fractional positioning• 7-18

convenience attachment attribute• 7-18
defining the default fraction denominator •

7-22
positioning child widgets• 7-14
resizing behavior• 7-2

rubber positioning• 7-22
specifying in UIL • 3-17

Attachment attributes
definition• 7-15
summary table• 7-15
using• 7-19

lndex-1

Index

Attributes
See Widget attributes

AUGMENT TRANSLATIONS routine• D-71

B
BEGIN COPY TO CLIPBOARD routine• 13-2
Bidirectional text cursor

definition • 9-1
Blink rate

specifying for text cursor• 9-1 O
Border visibility

in text widgets • 9-11
BUILD EVENT MASK routine• D-48
Building widgets• D-1

sample widget • D-2
using UIL • 3-65

Button widget

See Push button widget

See Toggle button widget

c
Callback data structure • 2-27
Callback mechanism

definition• 1-7
Callback reason

See Reason
Callback routine

associating with a widget using UIL • 3-27
clipboard callback routine format • 13-10
creating • 2-27
example • 2-28
standard arguments • 2-27
using UIL identifier to pass data structure to• 3-58

Callback routine data structure • 2-12
Callback routine list

specifying in UIL • 2-19, 3-27
using with high-level widget creation routines •

2-16
using with low-level widget creation routines • 2-12

CALLBACKS keyword • 3-27
Callbacks list entry • 3-27
Callback tag

See Tag
CANCEL COPY FORMAT routine• 13-1
CANCEL COPY TO CLIPBOARD routine• 13-1

lndex-2

Caution box widget • 7-4
C binding

See MIT C binding
Character

See Text character
Character sets

specifying in a compound string • 5-20
specifying in compound string text widget • 9-1

Children
clipping • 1-6
definition • 1-6
managing • 2-21
managing multiple • 2-23
positioning in a dialog box widget• 7-6
positioning in an atta9hed dialog box widget• 7-14
specifying in UIL • 3-26

Class
definition • D-1

Clear function
in Edit menu • 13-5

Client message event
used by window manager• 14-14

Clipboard
accessing • 13-1
callback routine format • 13-10
communicating with other applications • 13-3
copying data from • 13-11
copying data to • 13-5
data formats • 13-11
deleting data from the clipboard • 13-11
description • 13-1
inquire routines• 13-15
locking the clipboard • 13-3, 13-15
passing data by name • 13-9
typical copy operation • 13-4
typical paste operation • 13-4

CLIPBOARD LOCK routine• 13-3, 13-15
CLIPBOARD REGISTER FORMAT routine• 13-2,

13-11
CLIPBOARD UNLOCK routine• 13-3, 13-15
Clipping of child widgets • 1-6
CLOSE HIERARCHY routine• 3-34
Coding techniques

in UIL•3-5
Color

color mixing widget • 11-1
color models • 11-14
defining colors • 11-1
RGB values• 11-2
server names for defining in UIL • 3-22

COLOR function

in UIL• 3-22
COLOR MIX CREATE routine• 11-7
COLOR MIX GET NEW COLOR routine• 11-8
Color mixing widget

callbacks• 11-14
color display subwidget • 11-4

defining the background color • 11-13
replacing • 11-14

color mixer subwidget • 11-5
replacing • 11-14

color resources required • 11-5
components • 11-2
creating• 11-7
customizing • 11-9
deleting labels from • 11-1 O
label subwidgets • 11-7
margins • 11-9
on grayscale device• 11-5
overview • 11-1
push button subwidgets • 11-6
retrieving the new color • 11-8
setting the new color• 11-8
sizing • 11-9
specifying labels in• 11-10
supporting color models • 11-14
support routines • 11-9
work area subwidget • 11-7

specifying • 11-13
COLOR MIX SET NEW COLOR routine• 11-8
Color models

HLS•11-1
Color table

default in UIL • 3-24
Color values

defining in UIL • 3-22
COLOR_ TABLE function

in UIL•3-23
COMMAND APPEND routine•4-16
COMMAND ERROR MESSAGE routine•4-16, 4-17
Command line

command history display • 4-17
specifying command in command window widget•

4-16
specifying the prompt for • 4-17

Command line prompt• 4-17
Command procedure

for mapping colors • 3-22
COMMAND SET routine • 4-16
COMMAND WINDOW CREATE routine•4-15
COMMAND WINDOW routine• 4-15

Command window widget
callbacks • 4-18
creating • 4-15
customizing • 4-17
overview • 4-2
sizing the command history display • 4-17
support routines

summary • 4-16
Communicating between applications

using the QuickCopy function • 13-16
Communicating with other applications

using the clipboard • 13-3
Composite widget • 1-6

adding children to • D-34
as container for other widgets • D-27
class part data structure • D-14
instance data structure • D-14

default values • D-15
removing children • D-35
specifying the order of children • D-34

Compound string
comparing • 5-23
containing multiple segments • 5-22
copying • 5-23
creating• 5-21

Index

extracting text from a compound string • 5-23
finding the length • 5-23
freeing memory • 5-22
overview • 5-19
retrieving information about • 5-23

Compound string context
definition • 5-23
freeing • 5-24
initializing • 5-24

Compound string routines
summary • 5-20

Compound strings, multiline • 3-20
Compound string text widget

bidirectional text cursor • 9-1
callbacks• 9-13
controlling resizing behavior • 9-1 O
creating • 9-4
customizing• 9-8
determining editing direction • 9-11
determining positions in • 9-6
determining writing direction • 9-11
disabling text editing• 9-7
half-border visibility • 9-11
including scroll bars in • 9-1 O
margins • 9-9
overview • 9-1

lndex-3

Index

Compound string text widget (Cont.)

placing text in • 9-6
recommended way to specify size • 9-8
retrieving current value• 9-7
selecting text • 9-12
specifying insertion position • 9-11
support routines

advantages • 9-6
summary • 9-3

text cursor
specifying the blink rate• 9-1 O

COMPOUND_STRING function
in UIL • 3-6, 3-19

CONFIGURE WIDGET routine• D-37, D-41
Constraint widget

class part data structure • D-15
defining arguments for in UIL • 3-17
defining subclasses • D-35
destroy procedure • D-32
initializing• D-29
instance data structure• D-16

Context-sensitive help
creating• 12-13

CONTROLS keyword • 3-26
Controls list• 3-26
CONVERT CASE routine • D-73
CONVERT routine• D-56
COPY FROM CLIPBOARD routine• 13-2
CopyFrom operation• 13-16
Copy function

description • 13-4
how to implement • 13-5
in Edit menu • 13-3

Copying data from the clipboard
incremental copying • 13-12
procedure • 13-11

Copying data to the clipboard
passing data by name • 13-9
procedure • 13-5

COPY TO CLIPBOARD routine• 13-1
CopyTo operation • 13-16
Core widget • D-1

class part data structure • D-11
instance data structure • D-12

default values • D-12
CREATE APPLICATION CONTEXT routine• 2-5
CREATE FONT LIST routine• 5-25
CREATE MANAGED WIDGET routine• D-33
CREATE POPUP SHELL routine• 2-7
CREATE WIDGET routine •D-33, D-48

obtaining widget resources • D-52

lndex-4

CREATE WIDGET routine (Cont.)

using with constraint widget • D-36
Creating a DECterm

example • A-1
CS BYTE CMP routine • 5-23
CS CAT routine • 5-22
CS COPY routine • 5-23
.CS EMPTY routine • 5-23
CS LEN routine • 5-23
CS STRING routine • 5-21
CS TEXT CLEAR SELECTION routine • 9-4
CS TEXT CREATE routine • 9-4
CS TEXT GET EDITABLE routine• 9-3
CS TEXT GET MAX LENGTH routine• 9-3, 9-8
CS TEXT GET SELECTION routine• 9-3, 9-12
CS TEXT GET STRING routine• 9-3, 9-7
CS TEXT REPLACE routine • 9-3, 9-6
CS TEXT routine • 9-4
CS TEXT SET EDITABLE routine • 9-3
CS TEXT SET MAX LENGTH routine • 9-3, 9-8
CS TEXT SET SELECTION routine• 9-4, 9-12
CS TEXT SET STRING routine • 9-3, 9-6
Customizing widgets • 1-2
Cut and paste routines • 1-4

callback routine format • 13-1 O
data formats • 13-11
inquiring about clipboard contents• 13-15
list of• 13-1
overview • 13-1
passing data by name • 13-9

Cut function
description • 13-4
in Edit menu • 13-3

Cut routines
See Cut and paste routines

D
DECBURGER.COM command procedure• 3-14
DECburger sample application • 3-4

creating the dialog box widget• 7-8
creating the list box widget• ~5
creating the main window widget• 4-7
creating the menu bar widget• 6-18
creating the radio box widget • 5-14
French version• 3-50
international version • C-1
introduced• 1-6
user interface• 1-11

Declaring objects in UIL

as a template • 3-45
DECterm

creating • A-1
DECTERM PORT routine • A-1
DECW$DWTDEF.H include file• 3-32
DECW$DWTDEF.UIL include file• 3-13
DECW$RGB.COM command procedure• 3-22
DECwindows window manager

communicating with• 14-10
extensions • 14-4

DEC WM Hints data structure
definition • 14-5

DEC_WM_DECORATION_GEOMETRY property•
14-5

definition• 14-7
DEC_WM_HINTS property• 14-5

definition • 14-5
Deleting data from the clipboard • 13-11
DESTROY WIDGET routine • 2-8, D-33

traversing the application widget hierarchy • D-27
using with constraint widget • D-36

DIALOG BOX CREATE routine• 7-5
DIALOG BOX POPUP CREATE routine • 7-5
DIALOG BOX routine• 7-5
Dialog box widget

See also Attached dialog box widget
callbacks • 7-12
comparing to attached dialog box widget• 7-2
creating • 7-5
customizing • 7-1 O
defining accelerators for push button widgets •

7-12
generic • 7-1
handling the input focus• 7-12
modal style • 7-5
modeless style • 7-5
overview • 7-1
pop-up•7-4
positioning • 7-11
positioning child widgets• 7-6
resizing behavior• 7-2

controlling• 7-11
sizing• 7-10
specifying translations for text widgets • 7-11
specifying unit of measure• 7-11
standard • 7-4
types of • 7-4
work area style• 7-4

DIRECT CONVERT routine• D-56
DISPATCH EVENT routine • 2-26

ORM (XU I Resource Manager)
creating a user interface with • 3-31
definition • 1-4
include file for constants • 3-32
initialization of • 3-2
list of routines • 3-34
registering names for • 3-36

Index

registering user-defined classes for• 3-71
retrieving literal values from UID files• 3-38
scope of references in UID file• 3-16
using to create widgets in a user interface • 2-20

ORM FREE RESOURCE CONTEXT routine • 3-34
ORM GET RESOURCE CONTEXT routine • 3-34
ORM HGET INDEXED LITERAL routine • 3-34
ORM RC BUFFER function• 3-34
ORM RC SET TYPE function • 3-34
ORM RC SIZE function• 3-34
ORM RC TYPE function • 3-34
OwtAnyCallbackStruct

definition • 2-27
OwtAppl.h include file • 3-32
OwtAppl.uil include file • 3-13
OwtXLatArg.uil • 3-51
OwtXLatText.uil • 3-51

E
Editing path

in a compound string text widget• 9-11
Editing text

using the text widgets • 9-1
Edit menu

functions • 13-3
list of• 13-5

END COPY FROM CLIPBOARD routine • 13-2
END COPY TO CLIPBOARD routine• 13-1
Error message

displaying in command window widget • 4-17
Event

handling expose events in a window widget• 4-12
ignoring the event queue• 2-29
processing loop • 2-25
receiving from window manager • 14-14

Event management • D-44
procedure• D-47

Events
relationship to callback reasons • 1-8
types of • D-66

Event specification • D-62

lndex-5

Index

Event specification (Cont.)

in a translation table • 5-27
Example program

See DECburger sample application

See Hello World! sample application
EXPORTED keyword • 3-16
Exported resource

defining in UIL • 3-16
Expose event

redisplaying a widget • D-45
Exposure• D-45

F
FETCH COLOR LITERAL routine • 3-38
FETCH ICON LITERAL routine • 3~38
Fetching off-screen widgets

deferred using ORM routines• 3-37
FETCH INTERFACE MODULE routine • 3~34
FETCH LITERAL routine • 3-38
FETCH NAME routine • 14-9
Fetch operation

definition • 3-3
FETCH SET VALUES routine• 3-40
FETCH WIDGET OVERRIDE routine• 3-45
FETCH WIDGET routine • 2-20, 3-3, 3-37
File selection widget• 7-4
Font

determining font used by window manager• 14-22
specifying in text strings• 5-25

Font list
definition • 5-25

Font unit
definition• 7-11

Font values
defining in UIL • 3-21

Format
data format used by clipboard • 13-11

FORTRAN
Hello World! sample application• B-11

Fractional positioning
defining the default fraction denominator• 7-22
in an attached dialog box widget• 7-18

FREE routine • 5-22
Functions (UIL)

COLOR •3-22
COLOR_ TABLE • 3-23
COMPOUND_STRING • 3-6, 3-19
ORM RC BUFFER• 3-34

lndex-6

Functions (UIL) (Cont.)

ORM RC SET TYPE • 3-34
ORM RC SIZE • 3-34
ORM RC TYPE • 3-34
ICON•3-23
STRING TABLE • 8-3
xalTMAPFILE • 3-23

G
Gadgets

as menu items • 6-3
definition • 1-2
label• 5-1
pull-down menu entry • 6-3
push button • 5-1
separator • 5-1
toggle button • 5-1

Geometry management • 1-14
creating a procedure• 0-40
negotiation between parent and child• 0-39
of widgets • D-37
return codes from a procedure • D-38
techniques• D-33

GET APPLICATION RESOURCES routine• D-52
GET CLASS HINT routine• 14-9
GET ICON NAME routine• 14-9
GET ICON SIZES routine• 14-9
GET NEXT SEGMENT routine • 5-24
GET NORMAL HINTS routine• 14-9
GET RESOURCE LIST routine• 0-51
GET SELECTION OWNER routine• 13-24
GET SELECTION VALUE routine• 13-19, 13-22
GET SUBVALUES routine• D-57
GET TRANSIENT FOR HINT routine• 14-9
GET VALUES routine

using with constraint widget • D-36
GET WINDOW PROPERTY routine• 14-11
GET WM HINTS routine• 14-9
Global values

defining in UIL • 3-16
Graphics

using the window widget• 4-12

H
Half-border

definition • 9-1

Hello World! sample application
complete source listing• 2-32
introduced • 1-4
in VAX Ada• B-7
in VAX FORTRAN• B-11
in VAX Pascal• B-14

Help file
sample of • 12-6

Help library
default file type • 12-4
include command • 12-5
key names • 12-4
keyword command • 12-5
sample help file • 12-5
title command • 12-5
using with help widget• 12-3

Help session
definition • 12-3

Help widget
C code example • 12-9
creating context-sensitive help using • 12-13
creation routines • 12-9
definition • 12-3
description • 12-1
DWT$C_TEXT_LIBRARY value• 12-3
DwtTextLibrary value • 12-3
first topic attribute• 12-7
glossary topic attribute • 12-7
invoking • 12-2
library information • 12-3
library type attribute • 12-3
modifying appearance • 12-7
overview topic attribute • 12-7
sample ~ 12-1
specifying in UIL • 3-46
specifying topic• 12-7
terminology • 12-3
UIL code example• 12-11
using• 12-8

Help window
definition • 12-3

High-level widget creation routines • 2-14
compared to low-level routines • 1-3
using to associate callback routines with a widget•

2-16
using to define initial appearance of widget• 2-15
using to define parent/child relationship• 2-15

HLS color model • 11-1
Hue, Lightness, Saturation Color Model

See HLS color model

Index

I
ICCCM (Inter-Client Communication Conventions

Manµa~

cut and paste routine compliance • 13-2
data formats • 13-11

Icon
description • 14-23
positioning in Icon Box • 14-27
screen appearance under DECwindows window

manager • 14-15
specifying in UIL • 3-23
specifying the pixmap used as • 14-24
specifying the text in • 14-24
using as a label in UIL • 3-29
using a window as • 14-26

Icon Box
definition • 14-23
positioning icons in • 14-27
screen appearance under DECwindows window

manager • 14-15
ICON function

in UIL•3-23
using to create pixmap labels • 5-5

Iconic state
starting your application in • 14-27

lconify button

See Shrink-to-icon button
Identifier

defining in UIL • 3-57
registering for ORM • 3-36
using in object declaration template • 3-45
using to pass data structure to callback routine •

3-58
Identifier declaration

UIL coding techniques for• 3-6
IMPORTED keyword• 3-17
Imported resource

defining in UIL • 3-16
Include directive

in UIL•3-13
Include file • 2-2

of constants for U IL • 3-13
Indicator

in toggle button widget
customizing • 5-17

Inherit constants
definition • D-26

INIT GET SEGMENT routine • 5-24

lndex-7

Index

Initialization

of ORM •3-2
of user interface• 3-2
of widget instance • D-28
of XU I Toolkit • 2-4, 3-2

INITIALIZE ORM routine• 3-34, 3-35
INITIALIZE routine• 2-4
Input focus

dialog box widget grabbing• 7-12
in text widgets • 9-1
using with accelerators • 5-29

Input/output widgets • 1-8
INQUIRE NEXT PASTE COUNT routine• 13-2,

13-15
INQUIRE NEXT PASTE FORMAT routine• 13-2,

13-15
INQUIRE NEXT PASTE LENGTH routine• 13-2,

13-15
Inserting text

in the text widgets • 9-6
Insertion point

specifying position in text widgets• 9-11
visibility in text widgets • 9-10

INSTALL ACCELERATORS routine • 5-28
INSTALL ALL ACCELERATORS routine • 5-28
Integer values

defining in UIL • 3-18
Inter-client communication • 13-3
Inter-Client Communication Conventions Manual

See ICCCM
Interface

See User interface
Internationalization

of text strings in labels • 5-19
using UIL and ORM • 1-4, 3-49
using UIL include files for• 3-65

INTERN ATOM routine• 13-19
Intrinsics

commonly used routines• 2-31
definition • 1-3

IS MANAGED routine • 2-22
IS REALIZED routine • 2-24
Item list

canceling selections • 8-12
creating • 8-3
selecting items • 8-6

K
Key code

lndex-8

Key code (Cont.)

conversion to key symbol• D-72
Key symbol

in event specification • D-67

L
Label

specifying as an icon in UIL • 3-29
LABEL CREATE routine • 5-2
Label gadget

as menu item • 6-3
attributes • 5-5
creating • 5-2
overview • 5-1

LABEL GADGET CREATE routine • 5-2
LABEL routine • 5-2
Label widget

alignment • 5-4
as menu item • 6-3
attributes supported by gadget version • 5-5
creating • 5-2
customizing • 5-3
margins • 5-4
overview • 5-1
sizing •5-3
text content • 5-5
using attachment attributes with• 7-19

LATIN1 STRING routine• 5-21
LIST BOX ADD ITEM routine• 8-10
LIST BOX CREATE routine• 8-2
LIST BOX DELETE ITEM routine • 8-10
LIST BOX DELETE POSITION routine• 8-11
LIST BOX DESELECT ALL ITEMS routine • 8-12
LIST BOX DESELECT ITEM routine • 8-12
LIST BOX ITEM EXISTS routine • 8-11
LIST BOX routine • 8-2
LIST BOX SELECT ITEM routine • 8-11
LIST BOX SET HORIZ POS routine • 8-13
LIST BOX SET ITEM routine • 8-14
LIST BOX SET POS routine • 8-14
List box widget

adding items to an item list • 8-9
callbacks • 8-15
canceling selections • 8-12
comparing with menu widget • 8-1
creating • 8-2
creating item list • 8-3
customizing • 8-12
deleting items from an item list• 8-9, 8-10

List box widget (Cont.)

margins • 8-14
overview • 8-1
selecting list items. 8-7

using support routines • 8-11
sizing • 8-12
specifying in UIL • 3-40
specifying visible items • 8-14
support routines

summary • 8-8
LIST PENDING ITEMS routine• 13-1, 13-11
Literals

retrieving from UID files• 3-38
Literal values

obtaining from UID files• 3-38
Local values

defining in UIL • 3-16
Locking the clipboard • 13-3, 13-15
Logical names

DECW$1NCLUDE • 3-14
for color names • 3-22
SYS$LIBRARY • 3-13
UIL$1NCLUDE • 3-14

Low-level widget creation routines
compared to high-level routines • 1-3
standard arguments • 2-10
using to associate callbacks with a widget• 2-12
using to define initial appearance of a widget •

2-10
using to define parent/child relationship• 2-1 O

M
MAIN LOOP routine • 2-25
Main window

customizing • 14-17
MAIN WINDOW CREATE routine• 4-4
MAIN WINDOW routine• 4-4
MAIN WINDOW SET AREAS routine• 4-6
Main. window widget

adding child widgets • 4-5
callbacks • 4-8
creating • 4-4
layout of children • 4-1
overview • 4-1
positioning • 4-7
sizing •4-7

MAKE GEOMETRY REQUEST routine• 0-37, 0-38
stack modes • D-39
traversing the application widget hierarchy • D-27

MAKE RESIZE REQUEST routine• D-37
MANAGE CHILDREN routine• 2-21, D-33
MANAGE CHILD routine• 2-21, D-33

managing a single widget • 2-22
using with help widget • 12-8

Managing widgets • 2-21
Margins

in color mixing widget• 11-9
in compound string text widget • 9-9
in label widget • 5-4
in list box widget• 8-14
in menu widget • 6-10
in simple text widget• 9-9

MENU BAR CREATE routine• 6-16
MENU BAR routine• 6-16
Menu bar widget • 6-1

creating • 6-15
customizing• 6-19
using with main window widget• 4-2

MENU CREATE routine • 6-6
Menu item

active• 6-3
alignment • 6-11
arrangement in a menu • 6-10
definition • 6-2
inactive • 6-3
radio button exclusivity • 6-11
restricting widget type • 6-11

Menu packing
definition • 6-10

MENU POPUP CREATE routine • 6-25
MENU POSITION routine • 6-26
MENU PULLDOWN CREATE routine •6-13
MENU routine• 6-6, 6-13, 6-25
Menu widget

application widget hierarchy• 6-8
arrangement of menu items • 6-1 O
callbacks• 6-12
creating • 6-5
customizing • 6-9
maintaining menu history • 6-23
nesting menu widgets • 6-4
overview • 6-1
pop-up • 6-24
restricting child widgets • 6-11
specifying margins• 6-10
spring-loaded • 6-1

Message box widget • 7-4
MIT C binding

include file for ORM constants • 3-32
include file for UIL constants• 3-13

Index

lndex-9

Index

Modal dialog box• 7-5
Modeless dialog box• 7-5
Module declaration

in UIL•3-12
Module header clauses

in UIL•3-12
MoveFrom operation • 13-16
Move To operation • 13-16
MOVE WIDGET routine• D-37, D-41
Multiline compound strings • 3-20

N
Names

defining in UIL • 3-6
Nesting menu widgets • 6-4
NEXT EVENT routine • 2-26, 2-30

0
Object

local definition of in UIL • 3-10
modifying at run time • 3-40

Object arguments
specifying in UIL • 3-25

Object declaration • 3-24
UIL coding techniques for• 3-7
using as a template • 3-45

OFFSET routine• D-51
OPEN DISPLAY routine• 2-5
OPEN HIERARCHY routine• 3-35, 3-36
OPTION MENU CREATE routine • 6-20
OPTION MENU routine• 6-20
Option menu widget• 6-1

creating • 6-19
customizing • 6-23
overview • 6-19
specifying default option • 6-23
specifying label • 6-24

OVERRIDE TRANSLATIONS routine• 6-28, D-71
OWN SELECTION routine • 13-17

p
Page increment

using scroll bar widget • 10-14

lndex-10

Parent/child relationship
defining using UIL • 2-18
defining with a high-level routine• 2-15
defining with a low-level routine• 2-10

Parent/child widget relationship • 1-6
Parent widget

definition • 1-6
PARSE ACCELERATOR TABLE routine • D-72
PARSE TRANSLATION TABLE routine• 6-27, D-71
Pascal

Hello World! sample application• B-14
Paste function

description • 13-4
how to implement• 13-11
in Edit menu • 13-3

Paste routines
See Cut and paste routines

Pending delete
in text widgets • 9-12

Pixmap
as label•5-5
using in push button widget • 5-1 0
using with toggle button widget • 5-17

Pixmap value
specifying in UIL • 3-23

Pointer motion • D-45
Pop-up dialog box widget• 7-5
Pop-up menu widget • 6-1

callbacks• 6-31
creating • 6-24
customizing• 6-31
overview • 6-1

Positioning
specifying the initial position of your application •

14-19
Primitive widget • 1-6
PRIVATE keyword• 3-17
Private resource

defining in UIL•3-16
Procedure declaration

in UIL•3-15
UIL coding techniques for• 3-6

PROCESS EVENT routine • 2-30
Property

communicating with window manager using • 14-2
DEC_WM_DECORATION GEOMETRY• 14-7
DEC_WM_DECORATION_GEOMETRY • 14-5
DEC_WM_HINTS • 14-5

definition • 14-5
defined by window manager vendors • 14-4

setting values • 14-10

Property (Cont.)

list of DECwindows window manager properties •
14-4

predefined for communicating with window
manager • 14-2
list of• 14-2
setting values • 14-8

setting values of properties that are data
structures • 14-9

types of • 14-2
WM_CLASS • 14-3
WM_COMMAND • 14-3
WM_HINTS • 14-3
WM_ICON_NAME • 14-3
WM_ICON_SIZE • 14-3
WM_NAME • 14-3
WM_NORMAL_HINTS • 14-3
WM_ TRANSIENT _FOR• 14-3
WM_ZOOM_HINTS • 14-3

Prototypes
developing using UIL • 3-59
testing using UIL • 3-60

PULL DOWN MENU ENTRY CREATE routine •6-13
Pull-down menu entry gadget

as menu item • 6--3
creating• 6-13
definition• 6-3
pulling callback• 6--15

PULL DOWN MENU ENTRY GADGET CREATE
routine • 6-13

PULL DOWN MENU ENTRY routine•6-13
Pull-down menu entry widget

as menu item • 6--3
creating • 6-13
definition • 6-3
pulling callback • 6--15

Pull-down menu widget• 6--1
callbacks • 6--14
creating • 6-12
customizing • 6--14
overview • 6-1
using with an option menu widget • 6--20

Pull-right·menu widget
definition• 6--5

PUSH BUTTON CREATE routine• 5-7
Push button gadget

as menu item • 6--3
attributes • 5-1 O
callbacks • 5-11
creating • 5-7
defining accelerators for• 5-27
overview • 5-1

Index

PUSH BUTTON GADGET CREATE routine• 5-7
PUSH BUTTON routine• 5-7
Push button widget

as menu item • 6-3
attributes supported by gadget version • 5-10
callbacks• 5-11
creating• 5-7
customizing • 5-10
defining accelerators for • 5-27
highlighting behavior • 5-10
overview • 5-1
shadowing• 5-10
simulating activation • 5-1
specifying the insensitive pixmap • 5-10

Push-to-back button
removing from title bar • 14-22

Q
QUERY GEOMETRY routine• D-42
QuickCopy function.

callback routines • 13-18
CopyFrom operation • 13-16
CopyTo operation• 13-16
differences among operations • 13-17
getting the selection data • 13-19
how to implement • 13-16
KILL_SELECTION message• 13-16
message types • 13-16
MoveFrom operation • 13-16
Move To operation • 13-16
possible operations • 13-16
sample• 13-17, 13-22
selection threshold use • 13-17
sending STUFF _SELECTION message• 13-18
STUFF _SELECTION message• 13-16

R
Radio box widget • 6-1, 6-11

creating the DECburger radio box widget • 5-14
Radio button exclusivity

definition • 6--11
Realization

of user interface • 2-24, 3-4
REALIZE WIDGET routine

creating a window • D-30

lndex-11

Index

REALIZE WIDGET routine (Cont.)

traversing the application widget hierarchy • D-27
Reason

defining for user-defined widget in UIL • 3-66
definition • 1-8
in callback data structure • 2-27

REASON function • 3-28
RECOPY TO CLIPBOARD routine• 13-1
Red, Green, Blue color model

See RGB color model
Redo function

in Edit menu • 13-5
REGISTER CASE CONVERTOR routine• D-73
REGISTER CLASS routine• 3-3, 3-66, 3-71
REGISTER ORM NAMES routine• 3-3, 3-28, 3-37
Registration

of callback routines for DRM • 3-48
of names for ORM • 3-3, 3-28, 3-36
of user-defined classes for DRM • 3-71

REMOVE CALLBACKS routine• 2-31
REMOVE EVENT HANDLER routine• 0-47
REMOVE WORK PROC routine • 2-30
Resize button

removing from title bar• 14-22
RESIZE WIDGET routine• D-37, D-41, D-43
RESIZE WINDOW routine• D-41
Resources

See Widget resources
RGB color model

definition • 11-2
RGB values

definition• 11-2
Routines

ACTIVATE WIDGET• 5-1
ADD ACTIONS• 6-28, D-61
ADD CALLBACKS• 2-31
ADD EVENT HANDLER• D-47
ADD FONT LIST• 5-25
ADD RAW EVENT HANDLER• D-47
ADD WORK PROC • 2-30
APPLICATION ADD CONVERTER• D-56
APPLICATION CREATE SHELL• 2-5, 2-7, 2-8

setting shell widget attributes• 14-11
APPLICATION MAIN LOOP• 2-26
ATTACHED DIALOG BOX• 7-13
ATTACHED DIALOG BOX CREATE• 7-13
ATTACHED DIALOG BOX POPUP CREATE•

7-13
AUGMENT TRANSLATIONS• D-71
BEGIN COPY TO CLIPBOARD• 13-2
BUILD EVENT MASK• D-48

lndex-12

Routines (Cont.)

CANCEL COPY FORMAT• 13-1
CANCEL COPY TO CLIPBOARD• 13-1
CLIPBOARD LOCK• 13-3, 13-15
CLIPBOARD REGISTER FORMAT• 13-2, 13-11
CLIPBOARD UNLOCK• 13-3, 13-15
CLOSE HIERARCHY• 3-34
COLOR MIX CREATE• 11-7
COLOR MIX GET NEW COLOR• 11-8
COLOR MIX SET NEW COLOR• 11-8
COMMAND APPEND •4-16
COMMAND ERROR MESSAGE• 4-16, 4-17
COMMAND SET•4-16
COMMAND WINDOW•4-15
COMMAND WINDOW CREATE• 4-15
CONFIGURE WIDGET• D-37, D-41
CONVERT• D-56
CONVERT CASE• D-73
COPY FROM CLIPBOARD• 13-'-2
COPY TO CLIPBOARD• 13-1
CREATE APPLICATION CONTEXT• 2-5
CREATE FONT LIST• 5-25
CREATE MANAGED WIDGET• D-33
CREATE POPUP SHELL• 2-7
CREATE WIDGET• D-33, D-48
CS BYTE CMP • 5-23
CS CAT•5-22
CS COPY• 5-23
CS EMPTY• 5-23
CS LEN •5-23
CS STRING • 5-21
CS TEXT•9-4
CS TEXT CLEAR SELECTION • 9-4
CS TEXT CREATE •9-4
CS TEXT GET EDITABLE• 9-3
CS TEXT GET MAX LENGTH • 9-3, 9-8
CS TEXT GET SELECTION • 9-3, 9-12
CS TEXT GET STRING • 9-3, 9-7
CS TEXT REPLACE • 9-3, 9-6
CS TEXT SET EDITABLE • 9-3
CS TEXT SET MAX LENGTH • 9-3, 9-8
CS TEXT SET SELECTION• 9-4, 9-12
CS TEXT SET STRING• 9-3, 9-6
cut and paste • 13-1
DECTERM PORT• A-1
DESTROY WIDGET• 2-8, D-33
DIALOG BOX• 7-5
DIALOG BOX CREATE • 7-5
DIALOGBOX POPUP CREATE •7-5
DIRECT CONVERT• D-56
DISPATCH EVENT• 2-26
DRM FREE RESOURCE CONTEXT• 3-34

Routines (Cont.)

ORM GET RESOURCE CONTEXT• 3-34
ORM HGET INDEXED LITERAL• 3-34
END COPY FROM CLIPBOARD• 13-2
END COPY TO CLIPBOARD• 13-1
FETCH COLOR LITERAL• 3-38
FETCH ICON LITERAL• 3-38
FETCH INTERFACE MODULE • 3-34
FETCH LITERAL• 3-38
FETCH NAME • 14-9
FETCH SET VALUES• 3-40
FETCH WIDGET• 2-20, 3-3, 3-37
FETCH WIDGET OVERRID.E • 3-45
for deferred fetching with ORM • 3-37
FREE•5-22
GET APPLICATION RESOURCES• D-52
GET CLASS HINT• 14-9
GET ICON NAME• 14-9
GET ICON SIZES • 14-9
GET NEXT SEGMENT• 5-24
GET NORMAL HINTS • 14-9
GET RESOURCE LIST• D-51
GET SUBVALUES • D-57
GET TRANSIENT FOR HINT• 14-9
GET WINDOW PROPERTY• 14-11
GET WM HINTS• 14-9
INIT GET SEGMENT• 5-24
INITIALIZE• 2-4
INITIALIZE ORM• 3-34, 3-35
INQUIRE NEXT PASTE COUNT• 13-2, 13-15
INQUIRE NEXT PASTE FORMAT• 13-2, 13-15
INQUIRE NEXT PASTE LENGTH• 13-2, 13-15
INSTALL ACCELERATORS• 5-28
INSTALL ALL ACCELERATORS • 5-28
IS MANAGED • 2-22
IS REALIZED • 2-24
LABEL•5-2
LABEL CREATE• 5-2
LABEL GADGET CREATE • 5-2
LATIN1 STRING • 5-21
LIST BOX • 8-2
LIST BOX ADD ITEM • 8-10
LIST BOX CREATE • 8-2
LIST BOX DELETE ITEM • 8-10
LIST BOX DELETE POSITION• 8-11
LIST BOX DESELECT ALL ITEMS • 8-12
LIST BOX DESELECT ITEM • 8-12
LIST BOX ITEM EXISTS • 8-11
LIST BOX SELECT ITEM• 8-11
LIST BOX SET HORIZ POS • 8-13
LIST BOX SET ITEM • 8-14
LIST BOX SET POS • 8-14

Routines (Cont.)

LIST PENDING ITEMS• 13....:1, 13-11
MAIN LOOP • 2-25
MAIN WINDOW• 4-4
MAIN WINDOW CREATE• 4-4
MAIN WINDOW SET AREAS• 4-6

Index

MAKE GEOMETRY REQUEST• D-37, D-38
MAKE RESIZE REQUEST• D-37
MANAGE CHILD•2-21, D-33
MANAGE CHILDREN •2-21, D-33
MENU• 6-6, 6-12, 6-25
MENU BAR• 6-16
MENU BAR CREATE• 6-16
MENU CREATE • 6-6
MENU POPUP CREATE• 6-25
MENU POSITION • 6-26
MENU PULLDOWN CREATE• 6-12
MOVE WIDGET• D-37, D-41
NEXT EVENT• 2-26, 2-30
OFFSET• D-51
OPEN DISPLAY• 2-5
OPEN HIERARCHY• 3-34, 3-36
OPTION MENU • 6-20
OPTION MENU CREATE• 6-20
OVERRIDE TRANSLATIONS • 6-27, D-71
PARSE ACCELERATOR TABLE • D-72
PARSE TRANSLATION TABLE• 6-27, D-71
PROCESS EVENT• 2-30
PULL DOWN MENU ENTRY• 6-13
PULL DOWN MENU ENTRY CREATE• 6-13
PULL DOWN MENU ENTRY GADGET CREATE•

6-13
PUSH BUTTON • 5-7
PUSH BUTTON CREATE • 5-7
PUSH BUTTON GADGET CREATE• 5-7
QUERY GEOMETRY• D-42
RECOPY TO CLIPBOARD• 13-1
REGISTER CASE CONVERTOR • D-73
REGISTER CLASS• 3-3, 3-66, 3-71
REGISTER ORM NAMES• 3-3, 3-28, 3-37
REMOVE CALLBACKS• 2-31
REMOVE EVENT HANDLER • D-47
REMOVE WORK PROC • 2-30
RESIZE WIDGET• D-37, D-41, D-43
RESIZE WINDOW• D-41
SCALE• 10-2
SCALE CREATE• 10-2
SCROLL BAR • 10-11
SCROLL BAR CREATE• 10-11
SCROLL WINDOW• 4-9
SCROLL WINDOW CREATE• 4-9
SCROLL WINDOW SET AREAS• 4-10

lndex-13

Index

Routines (Cont.)

SEPARATOR• 5-6
SEPARATOR CREATE• 5-6
SEPARATOR GADGET CREATE• 5-6
SET ARG • 2-11
SET CLASS HINT• 14-9
SET ICON NAME • 14-9
SET ICON SIZES • 14-9
SET KEY TRANSLATOR• D-73
SET MAPPED WHEN MANAGED• D-33
SET NORMAL HINTS• 14-9
SET TRANSIENT FOR HINT• 14-9
SET VALUES• 2-29, 2-31, 14-13
SET WM HINTS• 14-9
START COPY FROM CLIPBOARD • 13-2
START COPY TO CLIPBOARD• 13-1
S TEXT•9-4
S TEXT CLEAR SELECTION• 9-4, 9-13
S TEXT CREATE • 9-4
S TEXT GET EDITABLE• 9-3, 9-7
S TEXT GET MAX LENGTH • 9-3, 9-8
S TEXT GET SELECTION •9-3, 9-12
S TEXT GET STRING• 9-3, 9-7
S TEXT REPLACE • 9-3, 9-6
S TEXT SET EDITABLE• 9-3, 9-7
S TEXT SET MAX LENGTH • 9-3, 9-8
S TEXT SET SELECTION • 9-4, 9-12
S TEXT SET STRING • 9-3, 9-6
STORE NAME• 14-9
STRING • 5-21
STRING CONVERSION WARNING • D-56
STRING FREE CONTEXT• 5-24
STRING INIT CONTEXT• 5-24
TOGGLE BUTTON •5-12
TOGGLE BUTTON CREATE• 5-12
TOGGLE BUTTON GADGET CREATE• 5-12
TOGGLE BUTTON GET STATE•5-16
TOGGLE BUTTON SET STATE• 5-16
TOOLKIT INITIALIZE• 2-5
TRANSLATE KEYCODE • D-73
UNDO COPY TO CLIPBOARD• 13-1, 13-11
UNMANAGE CHILD• 2-21, D-33
UNMANAGE CHILDREN • 2-21, D-33

Rubber positioning
in attached dialog box widget• 7-22

s
Sample program

See DECburger sample application

lndex-14

Sample program (Cont.)

See Hello World! sample application
SCALE CREATE routine • 10-2
SCALE routine • 1 0-2
Scale widget

adding labeled tick marks • 10-7
callbacks • 10-8
creating • 10-2
customizing • 10-4
displaying the value of• 10-6
overview • 10-1
sizing • 1 0-4
specifying the orientation • 10-5
·specifying the range of values• 10-3
specifying the title • 10-5

SCROLL BAR CREATE routine• 10-11
SCROLL BAR routine • 10-11
Scroll bar widget

callbacks • 10-15
creating • 10-11
customizing• 10-14
defining stepping functions• 10-13
overview • 10-1 O
sizing the slider in • 10-13
specifying the range of values • 10-12
using with main window widget• 4-2
using with text widgets• 9-10

SCROLL WINDOW CREATE routine • 4-9
SCROLL WINDOW routine• 4-9
SCROLL WINDOW SET AREAS routine•4-10
Scroll window widget

adding child widgets• 4-10
creating • 4-8
overview • 4-3

Select All function
in Edit menu • 13-5

Selecting text
canceling the selection in text widgets• 9-13
in text widgets • 9....:12
retrieving the current selection in text widgets •

9-12
Selection

with cut and paste routines • 13-5
Selection threshold

default value • 13-17
using in QuickCopy • 13-17

Selection widget • 7-4
SEND EVENT routine • 13-19
SEPARATOR CREATE routine • 5....:6
Separator gadget

as menu item • 6-3

Separator gadget (Cont.)

creating • 5-6
overview • 5-1

SEPARATOR GADGET CREATE routine • 5-6
SEPARATOR routine • 5-6
Separator widget

as menu item • 6-3
creating • 5-6
customizing • 5-7
overview• 5-1

Server
opening connection to • 2-4

SET ARG routine• 2-11
SET CLASS HINT routine• 14-9
SET ICON NAME routine• 14-9
SET ICON SIZES routine • 14-9
SET KEY TRANSLATOR routine • D-73
SET MAPPED WHEN MANAGED routine • D-33
SET NORMAL HINTS routine• 14-9
SET TRANSIENT FOR HINT routine• 14-9
SET VALUES routine• 2"'.""29, 2-31, 12-8

using to assign values to shell widget attributes •
14-13

using with constraint widget• D-36
SET WM HINTS routine • 14-9
Shell widget

See Application shell widget
Shrink-to-icon button

determining size limitations
removing from title bar• 14-22
specifying pixmap used in• 14-19

Simple text widget
callbacks • 9-13
controlling resizing behavior• 9-1 O
creating • 9-4
customizing • 9-8
determining positions in • 9-6
disabling text editing• 9-7
half-border visibility • 9-.11
including scroll bars in • 9-1 O
margins • 9-9
overview • 9-1
placing text in • 9-6
recommended way to specify size • 9-8
retrieving current value• 9-7
selecting text • 9-12
specifying insertion position • 9-11
support routines

advantages • 9-6
summary • 9-3

text cursor • 9-1

Simple text widget
<text cursor (Cont.)

specifying the blink rate • 9-1 O
using attachment attributes with • 7-19
using in a dialog box widget• 7-11

Sizing

Index

specifying the initial size of your application •
14-19

Slider
specifying color of • 1 Q-6

using with scale widget • 10-1
using with scroll bar widget • 10-1 O

Standard dialog box widget
See also Dialog box widget • 7-4

START COPY FROM CLIPBOARD routine • 13-2
START COPY TO CLIPBOARD routine• 13-1
S TEXT CLEAR SELECTION routine • 9-4, 9-13
S TEXT CREATE routine• 9-4
S TEXT GET EDITABLE routine• 9-3, 9-7
S TEXT GET MAX LENGTH routine • 9-3, 9-8
S TEXT GET SELECTION routine • 9-3, 9-12
S TEXT GET STRING routine • 9-3, 9-7
S TEXT REPLACE routine • 9-3, 9-6
S TEXT routine • 9-4
S TEXT SET EDITABLE routine • 9-3, 9-7
S TEXT SET MAX LENGTH routine • 9-3, 9-8
S TEXT SET SELECTION routine • 9-4, 9-12
S TEXT SET STRING routine • 9-3, 9-6
Sticky windows • 14-27
STORE NAME routine • 14-9
STRING CONVERSION WARNING routine• D-56
STRING FREE CONTEXT routine • 5-24
STRING INIT CONTEXT routine• 5-24
String literals

See String values
. STRING routine • 5-21
STRING TABLE function (UIL)

using with list box widget • 8-3
String table values

defining in U IL • 3-20
String values

defining in UIL•3-18
Subclass

definition • D-2
Submenu

. creating • 6-4
Superclass

definition • D-2
inheritance constants • D-26
inheritance of operations • D-25
invocation of operations • D-27

lndex-15

Index

Superclass chaining
definition • D-23

Symbol definition file • 2-2
Symbolic references

to widget identifiers • 3-58

T
Tag

in callback routine data structure • 2-12
in UIL•3-15
standard argument to callback routine • 2-27

Terminal
creating a DECterm • A-1

Text
determining position in• 9-6
displaying for editing • 9-6
displaying read-only • 5-1
extracting from a compound string • 5-23
handling text sel~ction • 9-12
inserting text in the text widgets • 9-6
retrieving text from the text widgets• 9-7

Text character
input using text widgets • 9-1

Text cursor
in text widgets • 9-1
specifying appearance • 9-10

Text editing
disabling • 9-7
using text widgets • 9-1

Text path
in a compound string text widget • 9-11

Text string
conversion to compound string • 5-19

Tick marks
creating a scale with• 10-7
using with scale widget• 10-1

Time stamp
obtaining from the X Event data structure • 13-8
with text selection • 9-12

Title bar
components • 14-22
customizing • 14-19
determining width and height• 14-23
screen appearance under DECwindows window

manager • 14-15
specifying the application name • 2-4, 14-18

TOGGLE BUTTON CREATE routine•5-12
Toggle button gadget

as menu item • 6-3

lndex-16

Toggle button gadget (Cont.)

callbacks • 5-18
creating • 5-12
customizing • 5-18
defining accelerators for • 5-27
overview • 5-1
specifying initial state • 5-16

TOGGLE BUTTON GADGET CREATE routine• 5-12
TOGGLE BUTTON GET STATE routine•5-16
TOGGLE BUTTON routine • 5-12
TOGGLE BUTTON SET STATE routine• 5-16
Toggle button widget

as menu item • 6-3
callbacks • 5-18
creating • 5-12
customizing • 5-17
defining accelerators for • 5-27
overview • 5-1
specifying initial state • 5-16
specifying pixmap • 5-17
specifying shape of indicator • 5-17
support routines • 5-16

TOOLKIT INITIALIZE routine• 2-5
TRANSLATE KEYCODE routine • D-73
Translation management • D-60
Translation table • D-62

definition • 6-27
management• D-71
modifier names • D-63
syntax • D-63

u
UID file

accessing at run time • 3-35
color names in • 3-22
compared with object module • 3-28
definition• 3-1, 3-1 O
name of UIL module in• 3-12
resolving symbolic references in • 3-36
retrieving literal values from • 3-38
string literals in • 3-6
widget definition in • 3-24

UID hierarchy
declaring in application program • 3-36
definition • 3-3
uses for • 3-49

UIL (User Interface Language)
ARGUMENT function• 3-66
ARGUMENTS keyword • 3-25

UIL (User Interface Language) (Cont.)

arguments list • 3-25
attached dialog box widget• 3-17
CALLBACKS keyword • 3-27
callbacks list • 3-27
coding techniques • 3-5
CONTROLS keyword • 3-26
controls list • 3-26
creating module• 3-10
defining the widgets in an interface • 2-17
definition • 1-4
EXPORTED keyword • 3-16
ICON function • 3-23
identifier declaration in • 3-6
identifiers • 3-57
IMPORTED keyword • 3-16
include directive • 3-13
include file for constants • 3-13
keywords • 3-4
list of value types • 3-16
modifying objects at run time • 3-40
module declaration • 3-12
module header clauses • 3-12
names •3-6
object declaration in• 3-7, 3-24
PRIVATE keyword• 3-16
procedure declaration • 3-15
procedure declaration in • 3-6
REASON function • 3-28, 3-66
referencing user-defined widget in• 3-68
registering identifiers for ORM • 3-36
scope of references in module • 3-16
setting up for deferred fetching • 3-37
specifying an icon as a label in • 3-29
specifying an interface for international markets •

3-49
specifying callbacks in • 3-27
specifying children in • 3-26
specifying color values • 3-22
specifying font values• 3-21
specifying integer values • 3-18
specifying object arguments in • 3-25
specifying pixmap values • 3-23
specifying string table values• 3-20
specifying string values• 3-18
specifying widget attributes in • 3-25
specifying widget hierarchy in • 3-26
structure of module• 3-11
symbolic references to widget identifiers • 3-58
using help widget • 3-46
using identifiers in template • 3-45

UIL (User Interface Language) (Cont.)

using multiple UIL modules• 3-63

Index

using object declaration as a template in • 3-45
using to associate callback routines with a widget •

2-19
using to define the initial appearance of widgets in

an interface• 2-18
using to define the parent/child relationship • 2-18
using to develop and test prototypes • 3-59
value declaration in• 3-6, 3-16
widget declaration in• 3-7, 3-24

UIL command• 3-10
UIL compiler

data type checking rules • 3-15
invoking • 3-10

UIL functions
COLOR•3-22
COLOR_ TABLE • 3-23
COMPOUND_STRING • 3-6, 3-19
ICON•3-23
STRING TABLE • 8-3
XBITMAPFILE • 3-23

UIL include file
for constants • 3-13

UIL keywords• 3-4
UIL names• 3-6
UIL specification file

See UIL
UIL value

global • 3-16
list of types • 3-16
local •3-16
retrieving from UID files• 3-38

UNDO COPY TO CLIPBOARD routine• 13-1, 13-11
Undo function

in Edit menu • 13-5
Unit increment

using scroll bar widget • 10-13
UNMANAGE CHILDREN routine• 2-21, D-33
UNMANAGE CHILD routine• 2-21, D-33
User-defined widget

declaring creation routine for in UIL • 3-16
defining in UIL • 3-65
referencing in UIL • 3-68

User interface • 1-4
creating form of • 1-6
creating using high-level routines • 2-14
creating using low-level routines • 2-9
creating using UIL and ORM• 3-3
designing for international markets • 3-49
initializing • 3-2

lndex-17

Index

User interface (Cont.)

integrating application function with• 1-7
manipulating at run time • 2-30
realization of • 3-4
set up• 2-1
specifying using UIL • 3-4

User Interface Language

See UIL
User interface object

declaring in UIL • 3-7, 3-24
definition • 1-2

v
Value declaration

in UIL•3-16
scope of reference to • 3-16
UIL coding techniques for• 3-6

VAX binding
examples • B-1
include file for ORM constants• 3-32
include file for UIL constants• 3-13

Vendor.h
vendor-specific window manager attribute

definition file • 14-13
VMS help library enhancements • 12-4
VMS Librarian Utility extensions • 12-5

w
Widget attributes • 1-2, 1-14

assigning values to • 1-15
specifying in UIL • 3-25
specifying using high-level widget creation routines

•2-15
specifying using low-level widget creation routines

•2-10
Widget creation routines • 1-3
Widget declaration • 3-24

UIL coding techniques for• 3-7
WIDGET GEOMETRY structure• D-38

request modes • D-38
Widget hierarchy

See also Application widget hierarchy
specifying in UIL • 3-26

Widget resource data structure• 0-48
Widget resources• D-48

assigning values to • D-57

lndex-18

Widget resources (Cont.)

classes • D-48
converters • D-52
lists• D-48
resource converters

predefined• D-53
resource converters

creating • D-54
types of • D-49

Widgets

See also Gadgets

See also Object
appearance attributes • 1-15
application shell • 1-6, 2-6
application widget hierarchy• 1-6
as menu items • 6-2
attached dialog box• 7-2
attributes • 1-14

assigning values to • 1-15
building • D-1

sample• D-2
using UIL • 3-65

callback attributes • 1-15
caution box • 7-4
choice • 1-9
class• D-10
class initialization • D-24
class part structure

initialization • D-20
class relationship• D-1
clipping• 1-6
color mixing• 11-1
command window• 4-15
common attributes • 1-14
composite• 1-6
compound string text• 9-1
container • 1-8
core• D-1
creating• 2-8

summary • 2-8
creating a window

realize procedure• D-30
creating subclasses of• D-16
creation routines • 1-3
customizing• 1-2
declaring creation routine for user-defined• 3-16
definition • 1-2
destroy procedure • D-31
dialog box• 7-2
file selection• 7-4
inheriting superclass operations • D-25

Widgets (Cont.)

input/output • 1-8
instance initialization • D-28
invocation of superclass operations • D-27
label •5-1
list box • 8-1
list of• 1-9
local definition of in UIL • 3-1 O
main window• 4-1
managing• 2-21
manipulating at run time• 2-31
menu bar • 6-1
message box • 7-4
naming conventions • D-17
option menu• 6-1
parent/child relationship • 1-6
pop-up menu • 6-1
position attributes • 1-14
primitive • 1-6
pull-down menu • 6-1
push button • 5-1
query geometry procedure • D-42
radio box • 6-1
realizing • 2-24
scale• 10-1
scroll bar• 10-1 O
scroll window • 4-8
selection• 7-4
separator • 5-1
simple text • 9-1
size attributes • 1-14
size changes

initiation • D-37
subclass

definition • D-2
superclass

definition • D-2
superclass chaining• D-23
support routines • 2-32
toggle button • 5-1
user-defined in U lL • 3-65
visibility • D-4 7
window • 4-11
work area menu • 6-1
work in progress box• 7-4

Window background color • 3-22
WINDOW CREATE routine• 4-:11
Window foreground color• 3-22
Window manager

See also DECwindows window manager
bypassing • 14-27

Window manager (Cont.)

communicating limitations• 14-16
communicating with• 14-1
communicating with using vendor-specific

properties • 14-1 O

Index

DECwindows window manager extensions • 14-4
determining font used by • 14-22
list of common programming tasks • 14-15
overview • 14-1
providing hints to • 14-1
relation to application • 2-6

screen appearance • 14-15
routines for setting properties • 14-8
using properties to communicate with • 14-2
using shell widget attributes to communicate with•

14-8
using widget attributes to communicate with•

14-11
vendor extensions • 14-4

Window manager hints
definition • 14-1

WINDOW routine• 4-11
Window selection

See also Selecting text
in text widgets• 9-12

Window widget
callbacks• 4-14
creating • 4-11

WM Decoration Geometry data structure
definition• 14-7

WM_CLASS property• 14-3
WM_COMMAND property• 14-3
WM_HINTS property• 14-3

definition • 14-3
WM_ICON_NAME property • 14-3
WM_ICON_SIZE property• 14-3
WM_NAME property • 14-3
WM_NORMAL_HINTS property• 14-3
WM_TRANSIENT_FOR property• 14-3
WM_ZOOM_HINTS property• 14-3
Work area

of main window widget • 4-3
Work area menu widget • 6-1

callbacks • 6-12
creating • 6-5
customizing • 6-9
margins • 6-1 O
overview • 6-1
sizing •6-9

Work-in-progress box widget• 7-4
Work procedure

creating • 2-30

lndex-19

Index

Work procedure (Cont.)

definition • 2-30
registering • 2-30

Writing direction
specifying in a compound string • 5-20
text cursor as indicator• 9-12

lndex-20

x
XA_PRIMARY atom

using in QuickCopy function• 13-16
XA_SECONDARY atom

using in QuickCopy function • 13-16
XUI Resource Manager

See DAM

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMO/El5
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VMS DECwindows Guide to
Application Programming

AA-MG218-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

·-;;~~;;:Id Ben ud Ta~ ------------------~lllr-------;~~~~---
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

·- Do Not Tear • Fold Here --

i
I
I
I
I

