
VMS

VMS DECwindows
Guide to Xlib Programming:
VAX Binding

Order Number: AA-MG25A-TE

VMS DECwindows
Guide to Xlib Programming:
VAX Binding

Order Number: AA-MG25A-TE

December 1988

This manual is a guide to programming Xlib routines.

Revision/Update Information: This is a new manual.

Software Version: VMS Version 5.1

digital equipment corporation
maynard, massachusetts

December 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1988.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA MASS BUS VAX RMS
DDIF PrintServer 40 VAXstation
DEC Q-bus VMS
DECnet ReGIS VT
DECUS ULTRIX XUI
DECwindows UNIBUS
DIGITAL VAX

mamaomo™ LN03 VAXcluster

The following are third-party trademarks:

Postscript is a registered trademark of Adobe Systems, Inc.

X Window System, Version 11 and its derivations (X, X11, X Version 11, X Window
System) are trademarks of the Massachusetts Institute of Technology.

ZK4998

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use DIGITAL-supported devices, such as the LN03 laser
printer and PostScript printers (PrintServer 40 or LN03R ScriptPrinter),
to produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE xvii

CHAPTER 1 PROGRAMMING OVERVIEW OF XLIB 1-1

1.1 OVERVIEW OF XLIB 1-1

1.2 SAMPLE XLIB PROGRAM 1-2
1.2.1 Initializing Xlib Resources 1-2
1.2.1.1 Creating Windows • 1-3
1.2.1.2 Defining Colors • 1-3
1.2.1.3 Working with the Window Manager• 1-3
1.2.1.4 Making Windows Visible on the Screen • 1-3
1.2.2 Handling Events 1-4

1.3 HANDLING ERROR CONDITIONS 1-9

1.4 DEBUGGING XLIB PROGRAMS 1-9

CHAPTER 2 MANAGING THE CLIENT-SERVER CONNECTION 2-1

2.1 OVERVIEW OF THE CLIENT-SERVER CONNECTION 2-1

2.2 ESTABLISHING THE CLIENT-SERVER CONNECTION .. 2-3

2.3 CLOSING THE CLIENT-SERVER CONNECTION 2-4

2.4 GETTING INFORMATION ABOUT THE CLIENT-SERVER
CONNECTION 2-5

2.5 MANAGING REQUESTS TO THE SERVER 2-8

v

Contents

CHAPTER 3 WORKING WITH WINDOWS

3.1 WINDOW FUNDAMENTALS
3.1.1 Window Hierarchy
3.1.2 Window Position
3.1.3 Window Visibility and Occlusion

3.2 CREATING WINDOWS
3.2.1 Using Attributes of the Parent Window
3.2.2 Defining Window Attributes

3.3 DESTROYING WINDOWS

3.4 MAPPING AND UNMAPPING WINDOWS

3.5 ASSOCIATING PROPERTIES WITH WINDOWS
3.5.1 Using Properties to Communicate with the Window Manager
3.5.1.1 Defining Properties Using the SET WM HINTS Routine • 3-25
3.5.1.2 Defining Individual Properties • 3-26
3.5.1.3 Providing Size Hints • 3-27
3.5.2 Exchanging Properties Between Clients

3.6 CHANGING WINDOW CHARACTERISTICS
3.6.1 Reconfiguring Windows
3.6.2 Effects of Reconfiguring Windows
3.6.3 Changing Stacking Order
3.6.4 Changing Window Attributes

3.7 GETTING INFORMATION ABOUT WINDOWS

CHAPTER 4 DEFINING GRAPHICS CHARACTERISTICS

4.1

4.2

vi

THE GRAPHICS CONTEXT

DEFINING MULTIPLE GRAPHICS CHARACTERISTICS IN ONE
CALL

3-1

3-1
3-2
3-4
3-5

3-6
3-6
3-7

3-16

3-16

3-17
3-24

3-30

3-31
3-31
3-35
3-37
3-38

3-40

4-1

4-1

4-2

Contents

4.3 DEFINING INDIVIDUAL GRAPHICS CHARACTERISTICS 4-18

4.4 COPYING, CHANGING, AND FREEING GRAPHICS CONTEXTS 4-21

4.5 USING GRAPHICS CHARACTERISTICS EFFICIENTLY 4-22

CHAPTERS USING COLOR 5-1

5.1 PIXELS AND COLOR MAPS 5-1

5.2 MATCHING COLOR REQUIREMENTS TO SCREEN TYPES 5-4

5.3 SHARING COLOR RESOURCES 5-6
5.3.1 Using Named VMS DECwindows Colors 5-7
5.3.2 Specifying Exact Color Values 5-8

5.4 ALLOCATING COLORS FOR EXCLUSIVE USE 5-11
5.4.1 Specifying a Color Map 5-11
5.4.2 Allocating Color Cells 5-12
5.4.3 Storing Color Values 5-21

5.5 FREEING COLOR RESOURCES 5-21

5.6 QUERYING COLOR MAP ENTRIES 5-22

CHAPTER 6 DRAWING GRAPHICS 6-1

6.1 GRAPHICS COORDINATES 6-1

6.2 USING GRAPHICS ROUTINES EFFICIENTLY 6-1

6.3 DRAWING POINTS AND LINES 6-2
6.3.1 Drawing Points 6-2
6.3.2 Drawing Lines and Line Segments 6-5

vii

Contents

6.4 DRAWING RECTANGLES AND ARCS 6-9
6.4.1 Drawing Rectangles 6-9
6.4.2 Drawing Arcs 6-13

6.5 FILLING AREAS 6-18
6.5.1 Filling Rectangles and Arcs 6-18
6.5.2 Filling a Polygon 6-19

6.6 CLEARING AND COPYING AREAS 6-22
6.6.1 Clearing Window Areas 6-23
6.6.2 Copying Areas of Windows and Pixmaps 6-24

6.7 DEFINING REGIONS 6-24
6.7.1 Creating Regions 6-24
6.7.2 Managing Regions 6-27

6.8 DEFINING CURSORS 6-32
6.8.1 Creating Cursors 6-32
6.8.2 Managing Cursors 6-38
6.8.3 Destroying Cursors 6-39

CHAPTER 7 USING PIXMAPS AND IMAGES 7-1

7.1 CREATING AND FREEING PIXMAPS 7-1

7.2 CREATING AND MANAGING BITMAPS 7-3

7.3 WORKING WITH IMAGES 7-5

CHAPTER 8 WRITING TEXT 8-1

8.1 CHARACTERS AND FONTS 8-1

8.2 SPECIFYING A FONT 8-13

viii

Contents

8.3 GETTING INFORMATION ABOUT A FONT 8-15

8.4 COMPUTING THE SIZE OF TEXT 8-17

8.5 DRAWING TEXT 8-18

CHAPTER 9 HANDLING EVENTS 9-1

9.1 EVENT PROCESSING 9-1

9.2 SELECTING EVENT TYPES 9-5
9.2.1 Using the SELECT INPUT Routine 9-5
9.2.2 Specifying Event Types When Creating a Window 9-7
9.2.3 Specifying Event Types When Changing Window Attributes 9-7

9.3 POINTER EVENTS 9-8
9.3.1 Handling Button Presses and Releases 9-8
9.3.2 Handling Pointer Motion 9-11

9.4 KEY EVENTS 9-14

9.5 WINDOW ENTRIES AND EXITS 9-15
9.5.1 Normal Window Entries and Exits 9-18
9.5.2 Pseudomotion Window Entries and Exits 9-21

9.6 INPUT FOCUS EVENTS 9-22
9.6.1 Normal Keyboard Input Focus 9-24
9.6.2 Keyboard Input Focus Changes Caused by Grabs 9-27

9.7 KEY MAP STATE EVENTS 9-27

9.8 EXPOSURE EVENTS 9-28
9.8.1 Handling Window Exposures 9-28
9.8.2 Handling Graphics Exposures 9-30

ix

Contents

9.9 WINDOW STATE NOTIFICATION EVENTS 9-36
9.9.1 Handling Window Circulation 9-37
9.9.2 Handling Changes in Window Configuration 9-38
9.9.3 Handling Window Creations 9-40
9.9.4 Handling Window Destructions 9-41
9.9.5 Handling Changes in Window Position 9-42
9.9.6 Handling Window Mappings 9-43
9.9.7 Handling Key, Keyboard, and Pointer Mappings 9-44
9.9.8 Handling Window Reparenting 9-45
9.9.9 Handling Window Unmappings 9-47
9.9.10 Handling Changes in Window Visibility 9-48

9.10 COLOR MAP STATE EVENTS 9-49

9.11 CLIENT COMMUNICATION EVENTS 9-50
9.11.1 Handling Event Notification from Other Clients 9-50
9.11.2 Handling Changes in Properties 9-51
9.11.3 Handling Changes in Selection Ownership 9-53
9.11.4 Handling Requests to Convert a Selection 9-54
9.11.5 Handling Requests to Notify of a Selection 9-55

9.12 EVENT QUEUE MANAGEMENT 9-56
9.12.1 Checking the Contents of the Event Queue 9-57
9.12.2 Returning the Next Event on the Queue 9-57
9.12.3 Selecting Events That Match User-Defined Routines 9-57
9.12.4 Selecting Events Using an Event Mask 9-58
9.12.5 Putting an Event Back on Top of the Queue 9-59
9.12.6 Sending Events to Other Clients 9-59

9.13 ERROR HANDLING 9-59
9.13.1 Enabling Synchronous Operation 9-59
9.13.2 Using the Default Error Handlers 9-60

APPENDIX A COMPILING FONTS A-1

x

Contents

APPENDIX B ROUTINES REQUIRING PROTOCOL REQUESTS B-1

APPENDIX C VMS DECWINDOWS NAMED COLORS C-1

APPENDIX D VMS DECWINDOWS FONTS D-1

INDEX

EXAMPLES
1-1 Sample Program 1-5
3-1 Creating a Simple Window 3-7

3-2 Defining Attributes When Creating Windows 3-14

3-3 Mapping and Raising Windows 3-17

3-4 Exchanging Window Properties 3-21

3-5 Reconfiguring a Window 3-33
3-6 Changing Window Attributes 3-39
4-1 Defining Graphics Characteristics Using the CREATE GC

Routine 4-17
4-2 Using Individual Routines to Define Graphics

Characteristics 4-20

5-1 Using Named VMS DECwindows Colors 5-7
5-2 Specifying Exact Color Values 5-9

5-3 Allocating Colors for Exclusive Use 5-12
6-1 Drawing Multiple Points 6-3
6-2 Drawing Multiple Lines 6-6
6-3 Drawing Multiple Rectangles 6-12

6-4 Drawing Multiple Arcs 6-16

6-5 Filling a Polygon 6-20

6-6 Clearing a Window 6-23

6-7 Defining a Region Using the POLYGON REGION Routine 6-25

6-8 Defining the Intersection of Two Regions 6-28
6-9 Creating a Pixmap Cursor 6-37

7-1 Creating a Pixmap 7-2
7-2 Creating a Bitmap Data File 7-4

7-3 Creating a Pixmap from Bitmap Data 7-4
8-1 Drawing Text Using the DRAW TEXT Routine 8-20

xi

Contents

8-2 Drawing Text Using the DRAW STRING Routine 8-21

9-1 Selecting Event Types Using the CREATE WINDOW Routine 9-7
9-2 Handling Button Presses 9-11
9-3 Handling Pointer Motion 9-13
9-4 Handling Window Entries and Exits 9-20
9-5 Handling Graphics Exposures 9-33

FIGURES
1-1 Client, Xlib, and Server 1-2
2-1 Graphics Output to Instructor VAXstation 2-2
2-2 Graphics Output to Student VAXstations 2-3
3-1 Root Window and One Child 3-2
3-2 Relationship Between Second-Level Windows 3-3
3-3 Relationship Between Third-Level Windows 3-4
3-4 Coordinate System 3-5

3-5 Set Window Attributes Data Structure 3-8
3-6 Window Before Restacking 3-18

3-7 Restacked Window 3-19

3-8 WM Hints Data Structure 3-25
3-9 Class Hint Data Structure 3-27
3-10 Size Hints Data Structure 3-28
3-11 Window Changes Data Structure 3-31
3-12 Reconfigured Window 3-34
3-13 East Bit Gravity 3-36
3-14 Northwest Window Gravity 3-37

3-15 Window Attributes Data Structure 3-41
4-1 GC Values Data Structure 4-3
4-2 Bounding Box 4-11
4-3 Line Styles 4-11
4-4 Butt, Round, and Projecting Cap Styles 4-12

4-5 Cap Not Last Style 4-12

4-6 Join Styles 4-13

4-7 Fill Rules 4-14

4-8 Pixel Boundary Cases 4-15
4-9 Styles for Filling Arcs 4-15
4-10 Dashed Line Offset 4-16
4-11 Dashed Line 4-18
4-12 Line Defined Using GC Routines 4-21

xii

Contents

5-1 Pixel Values and Planes 5-2

5-2 Color Map, Cell, and Index 5-3

5-3 Visual Types and Color Map Characteristics 5-5

5-4 Color Data Structure 5-8

5-5 Polygons That Define the Color Wheel 5-20

6-1 Point Data Structure 6-2

6-2 Circles of Points Created Using the DRAW POINTS Routine - 6-5

6-3 Star Created Using the DRAW LINES Routine 6-8

6-4 Segment Data Structure 6-8

6-5 Rectangle Coordinates and Dimensions 6-10

6-6 Rectangle Drawing 6-10

6-7 Rectangle Data Structure 6-11

6-8 Rectangles Drawn Using the DRAW RECTANGLES Routine - 6-13

6-9 Specifying an Arc 6-14

6-10 Arc Data Structure 6-15

6-11 Multiple Arcs Drawn Using the DRAW ARCS Routine 6-18

6-12 Filled Star Created Using the FILL POLYGON Routine 6-22

6-13 Arcs Drawn Within a Region 6-27

6-14 Intersection of Two Regions 6-31

6-15 Cursor Shape and Cursor Mask 6-36

7-1 Image Data Structure 7-5

7-2 XV Bitmap Format 7-9

7-3 XV Pixmap Format 7-9

7-4 Z Format 7-10

8-1 Composition of a Character 8-2

8-2 Composition of a Back Slash 8-3

8-3 Char Struct Data Structure 8-3

8-4 Single-Row Font 8-5

8-5 Multiple-Row Font 8-5

8-6 Char 2B Data Structure 8-6

8-7 Font Struct Data Structure 8-6

8-8 Indexing Single-Row Font Character Metrics 8-9

8-9 Indexing Multiple-Row Font Character Metrics 8-10

8-10 Atoms and Font Properties 8-12

8-11 Font Prop Data Structure 8-13

8-12 Text Item Data Structure 8-18

8-13 Text Item 16 Data Structure 8-19

9-1 Any Event Data Structure 9-4

9-2 Event Data Structure 9-4

9-3 Button Event Data Structure 9-9

xiii

Contents

9-4 Motion Event Data Structure 9-12

9-5 Key Event Data Structure 9-14
9-6 Crossing Event Data Structure 9-16
9-7 Window Entries and Exits 9-21
9-8 Focus Change Event Data Structure 9-23
9-9 Keymap Event Data Structure 9-27
9-10 Expose Event Data Structure 9-29
9-11 Graphics Expose Event Data Structure 9-31
9-12 No Expose Event Data Structure 9-32
9-13 Window Scrolling 9-36
9-14 Circulate Event Data Structure 9-37
9-15 Configure Event Data Structure 9-39
9-16 Create Window Event Data Structure 9-40
9-17 Destroy Window Event Data Structure 9-41
9-18 Gravity Event Data Structure 9-42
9-19 Map Window Event Data Structure 9-43
9-20 Mapping Event Data Structure 9-44
9-21 Reparent Event Data Structure 9-46
9-22 Unmap Event Data Structure 9-47
9-23 Visibility Event Data Structure 9-48
9-24 Color Map Event Data Structure 9-49
9-25 Client Message Event Data Structure 9-51
9-26 Property Event Data Structure 9-52
9-27 Selection Clear Event Data Structure 9-53
9-28 Selection Request Event Data Structure 9-54
9-29 Selection Event Data Structure 9-55
9-30 Error Event Data Structure 9-60

TABLES
2-1 Client-Server Connection Routines 2-5
2-2 Screen Routines 2-7
2-3 Image Format Routines 2-7
2-4 Output Buffer Routines 2-8
3-1 Set Window Attributes Data Structure Members 3-9
3-2 Default Values of the Set Window Attributes Data Structure - 3-13
3-3 Set Window Attributes Data Structure Flags 3-13
3-4 Predefined Atoms 3-20
3-5 Routines for Managing Properties 3-23
3-6 Atom Names of Window Manager Properties 3-24

xiv

Contents

3-7 WM Hints Data Structure Members 3-26

3-8 Class Hint Data Structure Members 3-27

3-9 Set Window Attributes Data Structure Flags 3-28

3-10 Size Hints Data Structure Members 3-29

3-11 Window Changes Data Structure Members 3-32

3-12 Stacking Values 3-32

3-13 Window Changes Data Structure Flags 3-33

3-14 Window Configuration Routines 3-35

3-15 Gravity Definitions 3-35

3-16 Routines for Changing Window Attributes 3-39

3-17 Effects of Window Attribute Changes 3-40

3-18 Window Information Routines 3-41

3-19 Window Attributes Data Structure Members 3-42

4-1 GC Data Structure Default Values 4-2

4-2 GC Values Data Structure Members 4-4

4-3 GC Values Data Structure Flags 4-16

4-4 Routines That Define Individual or Functional Groups of
Graphics Characteristics 4-19

5-1 VAXstation Visual Types 5-6

5-2 Color Data Structure Members 5-9

6-1 Point Data Structure Members 6-2

6-2 Segment Data Structure Members 6-9

6-3 Rectangle Data Structure Members 6-11

6-4 Arc Data Structure Members 6-15

6-5 Routines for Managing Regions 6-28

6-6 Predefined Xlib Cursors 6-32

6-7 Predefined VMS DECwindows Cursors 6-34

7-1 Image Data Structure Members 7-6

7-2 Routines That Change Images 7-10

8-1 Char Struct Data Structure Members 8-4

8-2 Char 28 Data Structure Members 8-6

8-3 Font Struct Data Structure Members 8-7

8-4 Font Prop Data Structure Members 8-13

8-5 Atom Names of Font Properties 8-15

8-6 Text Item Data Structure Members 8-18

8-7 Text Item 16 Data Structure Members 8-19

9-1 Event Types 9-2

9-2 Any Event Data Structure Members 9-4

9-3 Event Masks 9-5

9-4 Values Used for Grabbing Buttons 9-8

xv

Contents

9-5 Button Event Data Structure Members 9-10

9-6 Motion Event Data Structure Members 9-12

9-7 Key Event Data Structure Members 9-15

9-8 Crossing Event Data Structure Members 9-17

9-9 Normal Window Entry and Exit Event Reporting 9-18

9-10 Focus Change Event Data Structure Members 9-23

9-11 Effect of Focus Changes: Windows on Same Screen 9-24

9-12 Focus Changes Caused by Pointer Movement 9-25

9-13 Effect of Focus Changes: Windows on Different Screens 9-25

9-14 Pointer Window and No Focus Changes 9-26

9-15 Keymap Event Data Structure Members 9-28

9-16 Expose Event Data Structure Members 9-29

9-17 Graphics Expose Event Data Structure Members 9-31

9-18 No Expose Event Data Structure Members 9-33

9-19 Circulate Event Data Structure Members 9-37

9-20 Configure Event Data Structure Members 9-39

9-21 Create Window Event Data Structure Members 9-41

9-22 Destroy Window Event Data Structure Members 9-42

9-23 Gravity Event Data Structure Members 9-43

9-24 Map Event Data Structure Members 9-44

9-25 Mapping Event Data Structure Members 9-45

9-26 Reparent Event Data Structure Members 9-46

9-27 Unmap Event Data Structure Members 9-47

9-28 Visibility Event Data Structure Members 9-48

9-29 Color Map Event Data Structure Members 9-50

9-30 Client Message Event Data Structure Members 9-51

9-31 Property Event Data Structure Members 9-52

9-32 Selection Clear Event Data Structure Members 9-54

9-33 Selection Request Event Data Structure Members 9-55

9-34 Selection Event Data Structure Members 9-56

9-35 Selecting Events Using a Predicate Procedure 9-58

9-36 Routines to Select Events Using a Mask 9-58

9-37 Error Event Data Structure Members 9-60

9-38 Event Error Codes 9-61

8-1 Routines Requiring Protocol Requests 8-1

C-1 VMS DECwindows Named Colors C-1

D-1 VMS DECwindows 75 DPI Fonts D-1

D-2 VMS DECwindows 100 DPI Fonts D-8

xvi

Preface

This manual describes how to program Xlib routines using the VAX
binding. VMS DECwindows provides the VAX binding for Xlib
programmers who want to adhere to the VAX calling standard. For
information about the standard, see the Introduction to VMS System
Routines in the VMS operating system documentation set.

The manual includes an overview of Xlib and tutorials that show how to
use Xlib routines.

Intended Audience
This manual is intended for experienced programmers who need to learn
graphics programming using Xlib routines. Readers should be familiar
with a high-level language. The manual requires minimal knowledge of
graphics programming.

Document Structure
This manual is organized as follows:

• Chapter 1 provides an overview ofXlib, a sample Xlib program, and a
guide to debugging Xlib programs.

• Chapters 2 through 9 provide tutorials that show how to use Xlib
routines and include descriptions of predefined Xlib data structures
and code examples that illustrate the concepts described.

This manual also includes the following appendixes:

• Appendix A is a guide to using the VMS DECwindows font compiler.

• Appendix B lists routines that require Xlib to issue protocol requests
to the server.

• Appendix C lists named VMS DECwindows colors.

• Appendix D lists VMS DECwindows fonts.

Associated Documents
The following documents contain additional information:

• VMS DECwindows Guide to Application Programming-Provides an
overview of programming in the VMS DECwindows environment and
a guide to programming the XUI Toolkit

• VMS DECwindows Xlib Routines Reference Manual-Provides detailed
descriptions of each Xlib routine

• XU! Style Guide-Describes the standard VMS DECwindows user
interface

xvii

Preface

Conventions

xviii

The following conventions are used in this manual:

mouse

MB1, MB2, MB3

[]

boldface text

italic text

UPPERCASE TEXT

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one or
all of the choices.

Boldface text represents the introduction of a new
term or the name of an argument, a constant, or a
flag.

Italic text represents a variable or a client-defined
routine.

Uppercase letters indicate the name of a routine or a
system service call.

1 Programming Overview of Xlib

1.1 Overview of Xlib

The VMS DECwindows programming environment includes Xlib, a library
of low-level routines that enable the VMS DECwindows programmer to
perform windowing and graphics operations.

This chapter provides the following:

• An overview of the library

• A description of error handling conditions

• Xlib debugging techniques

Additionally, the chapter includes an introductory Xlib program. The
program includes annotations that are explained more completely in the
programming descriptions in later chapters of this guide.

The VMS DECwindows programming environment enables application
programs, called clients, to interact with workstations using the
X Window System, Version 11 protocol. The program that controls
workstation devices such as screens and pointing devices is the server.
Xlib is a library of routines that enables a client to communicate with the
server to create and manage the following:

• Connections between clients and the server

• Windows

• Colors

• Graphics characteristics such as line width and line style

• Graphics

• Cursors

• Fonts and text

• Pixmaps and offscreen images

• Windowing and sending graphics between clients

• Client notification of windowing and graphics operations

Xlib processes some client requests, such as requests to measure the width
of a character string, within the Xlib library. It sends other client requests,
such as those pertaining to putting graphics on a screen or receiving device
input, to the server.

The server returns information to clients through either replies or events.
Replies and events both return information to clients; the server returns
replies synchronously and events asynchronously.

1-1

Programming Overview of Xlib
1.1 Overview of Xlib

Appendix B lists routines that cause Xlib to send requests to the server.

Figure 1-1 illustrates the relationships among client, Xlib, and server.
The client calls Xlib routines, which always reside on the client system.
If possible, Xlib processes calls internally and returns information to
the client when appropriate. When an Xlib function requires server
intervention, Xlib generates a request and sends the request to the server.

The server may or may not reside on the same system as the client
and Xlib. In either case, Xlib communicates with the server through a
transport protocol, which can be either local shared memory or DECnet.

Figure 1-1 Client, Xlib, and Server

Routine

Client r Calls ~ Xlib I .. Requests ~ Server I~
~ Xlib/SeNer i ____ _ Replies andi ·

Messages Events

ZK-0003A-GE

1.2 Sample Xlib Program

1.2.1

The introductory Xlib program described in Example 1-1 illustrates the
structure of a typical client program that uses Xlib windowing and graphic
operations. The program creates two windows, draws text in one of them,
and exits if the user clicks any mouse button while the cursor is in the
window containing text.

This section describes the program and introduces fundamental concepts
about Xlib resources, windowing, and event-handling.

Initializing Xlib Resources

1-2

The sample program begins by creating Xlib resources that the client
needs in order to perform tasks. Xlib resources include windows, fonts,
pixmaps, cursors, color maps, and data structures that define the
characteristics of graphics objects. The sample program uses a default
font, default cursor, default color map, client-defined windows, and a
client-defined data structure that specifies the characteristics of the text
displayed.

The program first makes a connection between the client and the server.
The client-server connection is the display. After making the connection,
or opening the display, the client can get display information from the
server. For example, immediately after opening the display, the program
calls the DEFAULT SCREEN OF DISPLAY routine to get the identifier of

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

Programming Overview of Xlib
1.2 Sample Xlib Program

the default screen. The program uses the identifier as an argument in a
variety of routines it calls later.

Creating Windows
A window is an area of the screen that either receives input or both
receives input and displays graphics.

Windows in the X Window System are hierarchically related. At the base
of the hierarchy is the root window. All windows that a client creates
after opening a display are inferiors of the root window. The sample
program includes two inferiors of the root window. First-generation
inferiors of a window are its children. The root window has one child,
identified in the sample as WINDOW_l. The window named WINDOW_2
is an inferior of the root window and a child of WINDOW _1.

To complete the window genealogy, all windows created before a specified
window and hierarchically related to it are its ancestors. In the sample
program, WINDOW_l has one ancestor (the root window); WINDOW_2 has
two ancestors (the root window and WINDOW_l).

Defining Colors
Defining background and foreground colors is part of the process
of creating windows in the sample program. The DEFINE_COLOR
subroutine allocates named VMS DECwindows colors for client use
in a way that permits other clients to share the same color resource.
For example, the routine specifies the VMS DECwindows color named
"light grey" as the background color of WINDOW_2. If other clients were
using VMS DECwindows color resources, they too could access the VMS
DECwindows data structure that defines "light grey." Sharing enables
clients to use color resources efficiently.

The program calls the DEFINE_COLOR subroutine again in the next
step of initialization, creating the graphics context that defines the
characteristics of a graphics object. In this case, the program defines
foreground and background colors used when writing text.

Working with the Window Manager
Most clients run on systems that have a window manager, which is an Xlib
application that controls conflicts between clients. The window manager
also provides the user with control of the appearance of the window session
screen. Clients provide the window manager with information about how
it should treat client resources, although the manager can ignore the
information. The sample program provides the window manager with
information about the size and placement of WINDOW _1. Additionally,
the program assigns a name that the window manager displays in the title
bar of WINDOW _1.

Making Windows Visible on the Screen
Creating windows does not make them visible. To make its windows
visible, a client must map them, painting the windows on a specified
screen. The last step of initializing the sample program is to map
WINDOW_l and WINDOW_2.

1-3

1.2.2

Programming Overview of Xlib
1.2 Sample Xlib Program

Handling Events

1-4

The core of an Xlib program is a loop in which the client waits for the
server to notify it of an event, which is a report of either a change in
the state of a device or the execution of a routine call by another client.
The server can report 30 types of events associated with the following
occurrences:

• Key presses and releases

• Pointer motion

• Window entries and exits

• Changes of keyboards receiving input

• Changes in keyboard configuration

• Window and graphics exposures

• Changes in window hierarchy and configuration

• Requests by other clients to change windows

• Changes in available color resources

• Communication from other clients

When an event occurs, the server sends information about the event to
Xlib. Xlib stores the information in a data structure. If the client has
specified an interest in that kind of event, Xlib puts the data structure on
an event queue. The sample program polls the event queue to determine
if it contains an event of interest to the client. When the program finds an
event that is of interest to the client, the program performs a task.

Because Xlib clients do their essential work in response to events, they are
event driven.

The sample program continually checks its event queue to determine if
a window has been made visible or a button has been clicked. When the
server informs it of either kind of event, the program performs its real
work, as follows.

If a window has been made visible, the server reports a window exposure
event. Upon receiving this type of event, the program checks to determine
whether or not the window exposed is WINDOW_2, and the event is the
first instance of the exposure. If both conditions are true, the program
writes a message into the window.

If the event reported is a button press, the program checks to make certain
the cursor was in WINDOW_2 when the user clicked the mouse button. If
the user clicked the mouse button when the cursor was on the root window
or WINDOW_l, the program reminds the user to click on WINDOW_2.
Otherwise, the program initiates a series of shutdown routines.

The shutdown routines unmap WINDOW _1 and WINDOW _2, free
resources allocated for the windows, break the connection between the
sample program and its server, and exit the system.

Programming Overview of Xlib
1.2 Sample Xlib Program

On the VMS operating system, clients only need to call SYS$EXIT. Exiting
the system causes the other shutdown operations to occur. The call to
SYS$EXIT breaks the connection between client and server, which frees
resources allocated for client windows, and so forth.

See Example 1-1 for the sample Xlib program.

Example 1-1 Sample Program

c

PROGRAM SAMPLE PROGRAM

INCLUDE 'SYS$LIBRARY:DECW$XLIBDEF'

INTEGER*4 DPY
INTEGER*4 SCREEN
INTEGER*4 WINDOW 1, WINDOW 2
INTEGER*4 ATTR MASK
INTEGER*4 GC
INTEGER*4 FONT
INTEGER*4 DEFINE COLOR
INTEGER*4 WINDOW_lX, WINDOW
INTEGER*4 DEPTH
INTEGER*4 STATUS, FUNC
INTEGER*4 STATE

lY

display id
screen id
window id
attributes mask
gc id
font id
color function
window origin
number of planes
synchronous behavior
flag for text

RECORD /X$VISUAL/ VISUAL visual type
RECORD /X$SET WIN ATTRIBUTES/ XSWDA window attributes
RECORD /X$GC_VALUES/ XGCVL gc values
RECORD /X$SIZE HINTS/ XSZHN hints
RECORD /X$EVENT/ EVENT input event

CHARACTER*19 WINDOW NAME
DATA WINDOW_NAME /'Sample Xlib Program'/
CHARACTER*60 FONT NAME
DATA FONT NAME
1 /'-ADOBE-NEW CENTURY SCHOOLBOOK-MEDIUM-R-NORMAL--*-140-*-*-P-*' /
CHARACTER*19 MESSAGE(2)
DATA MESSAGE /'Click here to exit', 'Click HERE to exit!'/

PARAMETER
1
1

STATE = 1

WINDOW lW
WINDOW 2W
WINDOW 2X

400, WINDOW_lH = 300,
300, WINDOW_2H = 150,
50, WINDOW 2Y = 75

C Initialize display id and screen id
c
tt DPY = X$0PEN_DISPLAY()

IF (DPY .EQ. 0) THEN
WRITE(6,*) 'Display not opened!'
CALL SYS$EXIT(%VAL(l))

END IF
SCREEN= X$DEFAULT_SCREEN_OF_DISPLAY(DPY)

~ STATUS= X$SYNCHRONIZE(DPY,1, FUNC)

c
C Create the WINDOW 1 window
c

WINDOW lX
WINDOW lY

(X$WIDTH OF SCREEN(DPY) - WINDOW lW) / 2
(X$HEIGHT_OF_SCREEN(DPY) - WINDOW_lH) I 2

(continued on next page)

1-5

Programming Overview of Xlib
1.2 Sample Xlib Program

Example 1-1 (Cont.) Sample Program

DEPTH = X$DEFAULT DEPTH OF SCREEN(SCREEN)
CALL X$DEFAULT_VISUAL_OF_SCREEN(SCREEN, VISUAL)
ATTR_MASK = X$M_CW_EVENT_MASK .OR. X$M_CW_BACK_PIXEL

XSWDA.X$L SWDA EVENT MASK = X$M EXPOSURE .OR. X$M_BUTTON_PRESS
XSWDA.X$L=SWDA=BACKGROUND_PIXEL-=
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 1)

WINDOW 1 = X$CREATE WINDOW(DPY,
1 X$ROOT_WINDOW_OF_SCREEN(SCREEN),
1 WINDOW lX, WINDOW lY, WINDOW lW, WINDOW_lH, 0,
1 DEPTH,-X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

c
C Create the WINDOW_2 w4ndow
c

XSWDA.X$L_SWDA_BACKGROUND_PIXEL
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 2)

WINDOW_2 = X$CREATE_WINDOW(DPY, WINDOW_l,
1 WINDOW 2X, WINDOW 2Y, WINDOW 2W, WINDOW_2H, 4,
1 DEPTH,-X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

c
C Create graphics context
c

c

XGCVL.X$L_GCVL_FOREGROUND
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 3)

XGCVL.X$L_GCVL_BACKGROUND =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 2)

GC
1

X$CREATE GC(DPY, WINDOW 2,
(X$M_GC_FOREGROUND .OR.-X$M_GC_BACKGROUND), XGCVL)

C Load the font for text writing
c
@t FONT = X$LOAD FONT(DPY, FONT NAME)

CALL X$SET_FONT(DPY, GC, FONT)

c
C Define the size and name of the WINDOW 1 window
c

XSZHN.X$L_SZHN_X = 362
XSZHN.X$L SZHN Y = 282
XSZHN.X$L-SZHN-WIDTH = 400
XSZHN.X$L-SZHN-HEIGHT = 300
XSZHN.X$L=SZHN=FLAGS = X$M_P_POSITION .OR. X$M_P_SIZE

G) CALL X$SET_NORMAL_HINTS(DPY, WINDOW_l, XSZHN)

CALL X$STORE_NAME(DPY, WINDOW_l, WINDOW_NAME)

c
C Map the windows
c
fj CALL X$MAP_WINDOW(DPY, WINDOW_l)

CALL X$MAP_WINDOW(DPY, WINDOW_2)

1-6

(continued on next page)

Programming Overview of Xlib
1.2 Sample Xlib Program

Example 1-1 (Cont.) Sample Program

c
C Handle events
c
fD DO WHILE (. TRUE.)

c
c
c
c

c
c
c e

c
c

CALL X$NEXT_EVENT(DPY, EVENT)

If this is an expose event on our child window,
then write the text.

IF (EVENT.EVNT TYPE .EQ. X$C EXPOSE .AND.
1 EVENT.EVNT=EXPOSE.X$L_EXEV_WINDOW .EQ. WINDOW 2 THEN

CALL X$CLEAR WINDOW(DPY, WINDOW 2)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW_2, GC,

1 75, 75, MESSAGE(STATE))
END IF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS) THEN
IF (EVENT.EVNT_EXPOSE.X$L_EXEV_WINDOW .EQ. WINDOW_l) THEN

STATE = 2
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW_2, GC,

1 75, 75, MESSAGE(STATE))
ELSE

Unmap and destroy windows

CALL X$UNMAP WINDOW(DPY, WINDOW 1)
CALL X$DESTROY WINDOW(DPY, WINDOW 1)
CALL X$CLOSE_DISPLAY(DPY) -
CALL SYS$EXIT(%VAL(l))

END IF
END IF

END DO

END

C Create color
c
~ INTEGER*4 FUNCTION DEFINE_COLOR(DISP, SCRN, VISU, N)

INCLUDE 'SYS$LIBRARY:DECW$XLIBDEF'

INTEGER*4 DISP, SCRN, N
RECORD /X$VISUAL/ VISU
RECORD /X$COLOR/ SCREEN_COLOR
INTEGER*4 STR_SIZE, STATUS, COLOR_MAP
CHARACTER*15 COLOR NAME(3)
DATA COLOR_NAME /'DARK SLATE BLUE', 'LIGHT GREY

IF (VISU.X$L_VISU_CLASS .EQ. X$C PSEUDO COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C=DIRECT=COLOR) THEN

'FIREBRICK , I

(continued on next page)

1-7

Programming Overview of Xlib
1.2 Sample Xlib Program

Example 1-1 (Cont.) Sample Program

1-8

COLOR MAP = X$DEFAULT COLORMAP OF SCREEN(SCRN)
STATUS= STR$TRIM(COLOR_NAME(N), -

1 COLOR NAME(N), STR SIZE)
STATUS = X$ALLOC_NAMED_COLOR(DISP, COLOR_MAP,

1 COLOR_NAME(N) (l:STR_SIZE), SCREEN_COLOR)
IF (STATUS .NE. 0) THEN

DEFINE_COLOR = SCREEN_COLOR.X$L_COLR_PIXEL
ELSE

WRITE(6,*) 'Color not allocated!'
CALL LIB$SIGNAL(%VAL(STATUS))
DEFINE COLOR = 0

END IF
ELSE

IF (N .EQ. 1 .OR. N .EQ. 3)
1 DEFINE COLOR = X$BLACK_PIXEL_OF_SCREEN(DISP)

IF (N .EQ. 2)
1 DEFINE COLOR = X$WHITE_PIXEL_OF_SCREEN(DISP)
END IF

RETURN
END

0 For information about connecting client and server, see Chapter 2.

8 Xlib buffers client requests and sends them to the server
asynchronously. This causes clients to receive errors after they have
occurred. When debugging a program, call the SYNCHRONIZE
routine to enable synchronous error reporting. Using the
SYNCHRONIZE routine has a serious negative effect on performance.
Clients should call the routine only when debugging. For more
information about debugging, see Section 1.4.

8 For information about creating windows, see Chapter 3.

8 Before drawing a graphics object on the screen, clients must define the
characteristics of the object. The program defines the foreground and
background values for writing text. For information about defining
graphics characteristics, see Chapter 4.

0 The sample program loads a VMS DECwindows font, New Century
Schoolbook Roman 14, which the program uses to write the text in
WINDOW_2. For information about loading fonts, see Chapter 8.

0 The program provides the window manager with hints about window
size and position. For more information about window management,
see Section 3.5.1.

8 Mapping windows makes them visible on the screen. For information
about window mapping, see Chapter 3

0 For more information about event handling, see Chapter 9.

0 When a client exits a VMS DECwindows program on the VMS
operating system, the series of calls to unmap and destroy windows
and close the display occurs automatically.

Programming Overview of Xlib
1.2 Sample Xlib Program

I> VMS DECwindows includes named colors for the convenience of
clients. The sample program uses the named colors "dark slate blue,"
"light grey," and "firebrick." It shares the named colors it uses with
other clients. For information about sharing colors, whether named or
client-defined, see Chapter 5. For information about defining colors for
exclusive use, see Section 5.4. For a list of named VMS DECwindows
colors, see Appendix C.

1.3 Handling Error Conditions
Xlib differs from most VMS programming libraries in the way it handles
error conditions. In particular, Xlib does not perform any validation of
input arguments when an Xlib routine is called.

If the input arguments are incorrect, the server usually generates an error
event when it receives the Xlib request. Unless the client has specified
an error handler, the server invokes the default Xlib error handler, which
prints out a diagnostic message and exits. For more information about the
Xlib error handler, refer to Section 9.13.2.

In some cases, Xlib signals a fatal access violation (SYS-F-ACCVIO) when
passed incorrect arguments. This occurs when arguments are missing or
are passed using the wrong addressing mode (passed by value instead of
passed by reference).

1.4 Debugging Xlib Programs
As noted in Section 1.1, Xlib handles client requests asynchronously.
Instead of dispatching requests as it receives them, Xlib buffers requests
to increase communication efficiency.

Buffering contributes to delays in error reporting. Asynchronous reporting
enables Xlib and the server to continue processing client requests despite
the occurrence of errors. However, buffering contributes to the delay
between the occurrence and client notification of an error.

As a result, programmers who want to step through routines to
locate errors must override the buffering that causes asynchronous
communication between client and server. To override buffering, use
the SYNCHRONIZE routine. Example 1-1 includes a SYNCHRONIZE
call as a debugging tool. Use the SYNC routine if you are interested in a
specific call. The SYNC routine flushes the output buffer and then waits
until all requests have been processed.

1-9

2 Managing the Client-Server Connection

A client requires one or more servers to process requests and return
keyboard and mouse input. The server can be located either on the same
system as the client or at a remote location where it is accessed across a
network.

This chapter describes the following topics related to managing the client
server connection:

• Overview of the client-server connection

• Opening and closing a display

• Getting information about a display

• Managing sending requests to the server

2.1 Overview of the Client-Server Connection
A client using Xlib makes its first call to open a display. After opening a
display, the client can get display information from and send requests to
the server. To increase the efficiency of the client-server connection, Xlib
buffers client requests.

To understand the relationship between a display and hardware, consider
the classroom illustrated in Figure 2-1. The server and an instructor
client program are running on the instructor VAXstation, which includes a
screen, a keyboard, and a mouse. When the instructor opens a display,
Xlib establishes a connection between the instructor client program
and the server. The instructor can output graphics on the instructor
VAXstation screen.

2-1

Managing the Client-Server Connection
2.1 Overview of the Client-Server Connection

Figure 2-1 Graphics Output to Instructor VAXstation

2-2

Instructor VAXstation Student VAXstations

Server

Xlib

Client

ZK-0001A-GE

If the instructor wants to output graphics to student screens, each student
VAXstation must be running a server, and the client program must be
connected to each server, as Figure 2-2 illustrates. Unlike the prior
example, where the client program opened one display by making an
internal connection with the server running on the VAXstation, here the
client program establishes connections with multiple servers.

Xlib also enables multiple clients to establish connections with one server.
For example, to output student work on the instructor screen, each
student must open a display with the server running on the instructor
VAXstation.

Managing the Client-Server Connection
2.1 Overview of the Client-Server Connection

Figure 2-2 Graphics Output to Student VAXstations

Instructor VAXstation Student VAXstations

Drivers

Server

Xlib

Client

Drivers
I
!

Server
I
I
I

Transport
Connection

Drivers
I
I

Server
I
I
I

ZK-0002A-GE

2.2 Establishing the Client-Server Connection
The OPEN DISPLAY routine establishes a connection between the client
and the server. The OPEN DISPLAY routine call has the following format:

display = X$0PEN_DISPLAY(display_name)

In this call, display _name is a string that specifies the node on which
the server is running and the transport mechanism used to make the
connection between the client and the server. If the transport mechanism
is local shared memory, users should use the DCL command SET DISPLAY
to define which display to open and pass a null argument to the OPEN
DISPLAY routine. The null argument causes the server to search for
the definition of the display. If the transport mechanism is DECnet, the
display _name argument has the following format:

hostname::number.screen

The elements of the argument are as follows:

2-3

Managing the Client-Server Connection
2.2 Establishing the Client-Server Connection

Elements

hostname

number

screen

Description

The host on which the server is running. The double colons indicate
that the transport mechanism is DECnet.

The number of the display on the host machine. If the client and
server are physically running in the same CPU, clients can specify a
display number of zero, which causes the transport to use a version
of DECnet that optimizes local performance.

The screen on which client input and output is handled.

See Example 1-1 for an example of defining a display.

If successful, OPEN DISPLAY returns a unique identifier of the display.

Refer to the VMS DECwindows User's Guide for more information about
specifying a display.

2.3 Closing the Client-Server Connection

2-4

Although Xlib automatically destroys windows and resources related to
a process when the process exits the server, clients should close their
connection with a server explicitly. Clients can close the connection using
the CLOSE DISPLAY routine. CLOSE DISPLAY destroys all windows
associated with the display and all resources the client has allocated. The
CLOSE DISPLAY routine call has the following format:

X$CLOSE_DISPLAY(display)

For an example of closing a display, see Example 1-1.

After closing a display, clients should not refer to windows, identifiers, and
other resources associated with that display.

When a display is closed automatically or by an explicit call to CLOSE
DISPLAY, the server does the following:

• Discards all input events selected by the client. For information about
input events, see Chapter 9.

• If the client has marked the keyboard, specific keys, the pointer button,
the pointer, or the server for its exclusive use, the server releases them
for use by other clients.

• Determines what happens to client resources after the display is
closed.

If the server is to destroy all client resources, it destroys them as follows:

• Examines each window in the client save set. The save set is a list of
windows that other clients are using. If a window is a member of the
save set, the server reparents the window to an ancestor not created
by the client.

• Maps the save set window, if it is unmapped. The server does this
even if the save set window was not a subwindow of a window created
by the client.

• Destroys all windows created by the client after examining each in the
client save set.

Managing the Client-Server Connection
2.3 Closing the Client-Server Connection

• Frees each nonwindow resource (font, pixmap, cursor, color map, and
graphics context) created by the client.

• Frees all colors and color map entries allocated by the client.

When the last connection to the server closes and the server is to destroy
all client resources, the server performs the following additional steps:

• Resets its state as if it had just been started

• Deletes all identifiers except predefined names of window
characteristics

• Deletes all information associated with the root window

• Resets all device maps and attributes (key click, bell volume,
acceleration) and the server access control list, a list of hosts
that can run client programs

• Restores the standard cursors and root tile, which is a pixmap
replicated to create a window background

• Restores the default font path

• Restores input focus to the root window

The server does not perform reset operations if a client requests the server
to retain its resources.

Refer to the VMS DECwindows Xlib Routines Reference Manual for
information about the SET CLOSE DOWN MODE routine.

2.4 Getting Information About the Client-Server Connection
After opening a display, clients can get information about the client-server
connection using routines listed in Table 2-1. Clients can get information
about client screens using routines listed in Table 2-2. Clients can get
information about images created on screens using routines listed and
described in Table 2-3.

These routines are useful for supplying arguments to other routines.
See the VMS DECwindows Xlib Routines Reference Manual for the
syntax of information routines. Programming examples throughout
this programming guide provide examples and descriptions of the use
of information routines.

Table 2-1 Client-Server Connection Routines

Routine Value returned

ALL PLANES All bits set on. Used as a plane argument to a
routine.

BLACK PIXEL Pixel value that yields black on the specified
screen.

(continued on next page)

2-5

Managing the Client-Server Connection
2.4 Getting Information About the Client-Server Connection

2-6

Table 2-1 (Cont.) Client-Server Connection Routines

Routine

CONNECTION NUMBER

DEFAULT COLORMAP

DEFAULT DEPTH

DEFAULT GC

DEFAULT ROOT WINDOW

DEFAULT SCREEN

DEFAULT VISUAL

DISPLAY CELLS

DISPLAY PLANES

DISPLAY STRING

IMAGE BYTE ORDER

PROTOCOL REVISION

PROTOCOL VERSION

Q LENGTH

ROOT WINDOW

SCREEN COUNT

SERVER VENDOR

VENDOR RELEASE

WHITE PIXEL

Value returned

Connection number of the specified display.

Identifier of the default color map for allocation
on the specified screen.

Depth in planes of the default root window for
the specified screen.

Default graphics context for the root window of
the specified screen.

Default root window for the specified screen.

Default screen referred to by the OPEN
DISPLAY routine.

Default visual data structure for the specified
screen.

Number of color map entries on the specified
screen.

Number of planes on the specified screen.

String passed when the display was opened.
The string takes the form O::NAME.

Byte order for images for each scanline unit in
XV format (bitmap) or for each pixel value in
Z format. If byte order is least most significant
bit first, the server returns the constant x$c_
lsb_first. If the byte order is most significant
bit first, the server returns the constant x$c_
msb_first.

Minor protocol revision number that the server
is using.

Version number of the protocol associated with
the display.

Length of the event queue for the display.
There may be events that the server has not
put on the queue.

Identifier of the root window.

Number of available screens.

Identifier of the owner of the server
implementation.

Release number of the server, which is
assigned by the vendor.

Pixel value that yields white on the specified
screen.

Managing the Client-Server Connection
2.4 Getting Information About the Client-Server Connection

Table 2-2 Screen Routines

Routine

BLACK PIXEL OF SCREEN

CELLS OF SCREEN

Value Returned

Black pixel value of the specified screen.

Number of color map entries for the specified
screen.

DEFAULT COLORMAP OF SCREEN Identifier of the default color map of the
specified screen.

DEFAULT DEPTH OF SCREEN Depth in planes of the specified screen.

DEFAULT GC OF SCREEN Default graphics context of the specified

DEFAULT SCREEN OF DISPLAY

DEFAULT VISUAL OF DISPLAY

DOES BACKING STORE

DOES SAVE UNDERS

DISPLAY OF SCREEN

EVENT MASK OF SCREEN

HEIGHT OF SCREEN

HEIGHT MM OF SCREEN

MAX CMAPS OF SCREEN

MIN CMAPS OF SCREEN

PLANES OF SCREEN

ROOT WINDOW OF SCREEN

SCREEN OF DISPLAY

WHITE PIXEL OF SCREEN

WIDTH OF SCREEN

WIDTH MM OF SCREEN

screen.

Default screen of display.

Default visual type of display.

Backing store is not supported in this release.

Either true or false. True indicates the server
saves the contents of windows that the client
window obscures.

Display of the screen.

Root event mask of the screen.

Height of screen in pixels.

Height of screen in millimeters.

Maximum number of color maps supported by
the screen.

Minimum number of color maps supported by
the screen.

Number of planes on the screen.

Root window on the screen.

Identifier of the specified screen.

White pixel value of the specified screen.

Width of the screen in pixels.

Width of the screen in millimeters.

Table 2-3 Image Format Routines

Routine

BITMAP BIT ORDER

BITMAP PAD

BITMAP UNIT

DISPLAY HEIGHT

Value Returned

The leftmost bit in a bitmap can be either
the least or most significant bit. This routine
returns either the constant x$c_lsb_first or the
constant x$c_msb_first.

Number of bits by which scanlines are padded.

Size in bits of a bitmap unit.

Height of the screen in pixels.

(continued on next page)

2-7

Managing the Client-Server Connection
2.4 Getting Information About the Client-Server Connection

Table 2-3 (Cont.) Image Format Routines

Routine

DISPLAY HEIGHT MM

DISPLAY WIDTH

DISPLAY WIDTH MM

Value Returned

Height of the screen in millimeters.

Width of the display in pixels.

Width of the display in millimeters.

2.5 Managing Requests to the Server

2-8

Instead of sending each request to the server as the client specifies the
request, Xlib buffers requests and sends them as a block to increase
the efficiency of client-to-server communication. The routines listed in
Table 2-4 control how requests are output from the buffer.

Table 2-4 Output Buffer Routines

Routine

FLUSH

SET AFTER FUNCTION

SYNC

SYNCHRONIZE

Description

Flushes the buffer.

Specifies the function the client calls after
processing each protocol request.

Flushes the buffer and waits until the server
has received and processed all events,
including errors. Use SYNC to isolate one call
when debugging.

Causes the server to process requests in the
buffer synchronously. SYNCHRONIZE causes
Xlib to generate a return after each Xlib routine
completes. Use it to debug an entire client or
block.

Most clients do not need to call the FLUSH routine because the output
buffer is automatically flushed by calls to event management routines.
Refer to Chapter 9 for more information about event handling.

3 Working with Windows

Windows receive information from users; they display graphics, text, and
messages. Xlib enables a client to create multiple windows and define
window size, location, and visual appearance on one or more screens.

Conflicts between clients about displaying windows are handled by a
window manager, which controls the size and placement of windows and,
in some cases, window characteristics such as title bars and borders. The
window manager also keeps clients informed about what it is doing with
their windows. For example, the window manager might tell a client
that one of its windows has been resized so that the client can reformat
information displayed in the window.

This chapter describes the following topics related to windows and the
window manager:

• Window fundamentals-A discussion of window type, hierarchy,
position, and visibility

• Creating and destroying windows-How to create and destroy windows

• Working with the window manager-How to work with the window
manager to define user information concerning window management

• Mapping and unmapping windows-How to make windows visible on
the screen

• Changing window characteristics-How to change the size, position,
stacking order, and attributes of windows

• Getting information about windows-How to get information about
window hierarchies, attributes, and geometry

3.1 Window Fundamentals
A window is an area of the screen that either receives input or receives
input and displays graphics.

One type of window only receives input. Because an input-only window
does not display text or graphics, it is not visible on the screen. Clients
can use input-only windows to control cursors, manage input, and define
regions in which the pointer is used exclusively by one client.

A second type of window both receives input and displays text and
graphics.

Clients can make input-output windows visible on the screen. To make
a window visible, a client first creates the window 'B.nd then maps it.
Mapping a window allows it to become visible on the screen. When more
than one window is mapped, the windows may overlap. Window hierarchy
and position on the screen determine whether or not one window hides the
contents of another window.

3-1

3.1.1

Working with Windows
3.1 Window Fundamentals

Window Hierarchy
Windows that clients create are part of a window hierarchy. The hierarchy
determines how windows are seen. At the base of the hierarchy is the root
window, which covers the entire screen when the client opens a display.
All windows created after opening a display are subwindows of the root
window.

When a client creates one or more subwindows of the root window, the root
window becomes a parent. Children of the root window become parents
when clients create subwindows of the children.

The hierarchy is structured like a stack of papers. At the bottom of the
stack is the root window. Windows that clients create after opening a
display are stacked on top of the root window, overlapping parts of it.
For example, the window named child-of-root overlaps parts of the root
window in Figure 3-1. The child-of-root window always touches the root
window. Xlib always stacks children on top of the parents.

Figure 3-1 Root Window and One Child

Child-of-root

3-2

ZK-0004A-GE

If a window has more than one child and if their borders intersect, Xlib
stacks siblings in the order the client creates them, with the last sibling on
top. For example, the second-level window named 2nd-child-of-root, which
was created last, overlaps the second-level window named 1st-child-of-root
in Figure 3-2.

Working with Windows
3.1 Window Fundamentals

Figure 3-2 Relationship Between Second-Level Windows

1st-child-of-root

2nd-child-of-root

Root

ZK-0005A-GE

Third-level windows maintain the hierarchical relationships of their
parents. The child-of-1st-child window overlaps child-of-2nd-child in
Figure 3-3.

3-3

3.1.2

Working with Windows
3.1 Window Fundamentals

Figure 3-3 Relationship Between Third-Level Windows

Child-of-1st-child ---

Child-of-2nd-child--

Root ~

Window Position

3-4

ZK-0006A-GE

Windows created before a specified window and hierarchically related to
it are ancestors of that window. For example, the root window and the
window named 1st-child-of-root are ancestors of child-of-1st-child-of-root.

Xlib coordinates define window position on a screen and place graphics
within windows. Coordinates that specify the position of a window
are relative to the origin, the upper left corner of the parent window.
Coordinates that specify the position of a graphic object within a window
are relative to the origin of the window in which the graphic object is
displayed.

Xlib measures length along the x axis from the origin to the right; it
measures length along the y axis from the origin down. Xlib specifies
coordinates in units of pixels, the smallest unit the server can display on
a screen. Figure 3-4 illustrates the Xlib coordinate system.

3.1.3

Working with Windows
3.1 Window Fundamentals

Figure 3-4 Coordinate System

Parent'
Origin

Child
Origin

Parent

Child

ZK-0007 A-GE

For more information about positioning windows, see Section 3.2. For
more information about positioning graphics, see Chapter 6.

Window Visibility and Occlusion
A window is visible if one can see it on the screen. To be visible, a window
must be an input-output window, it must be mapped, its ancestors must
be mapped, and it must not be totally hidden by another window. When a
window and its ancestors are mapped, the window is considered viewable.
A viewable window that is totally hidden by another window is not visible.

Even though input-only windows are never visible, they can overlap
other windows. An input-only window that overlaps another window
is considered to occlude that window. Specifically, window A occludes
window B if both are mapped, if A is higher in the stacking order than
B, and if the rectangle defined by the outside edges of A intersects the
rectangle defined by the outside edges of B.

A viewable input-output window that overlaps another window is
considered to obscure that window. Specifically, window A obscures
window B if A is a viewable input-output window, if A is higher in the
stacking order than B, and if the rectangle defined by the outside edges of
A intersects the rectangle defined by the outside edges of B.

3-5

Working with Windows
3.2 Creating Windows

3.2 Creating Windows

3.2.1

After opening a display, clients can create windows. As noted in the
description of window fundamentals (Section 3.1), creating a window does
not make it visible on a screen. To be visible, the window must meet the
conditions described in Section 3.1.3.

Clients can either create windows that inherit most characteristics not
relating to size or shape from their parents or define all characteristics
when creating windows.

Using Attributes of the Parent Window

3-6

An attribute is a characteristic of a window not relating to size or shape,
such as the window background color. The CREATE SIMPLE WINDOW
routine creates an input-output subwindow that inherits the following
attributes from its parent:

• Method of moving the contents of a window when the parent is moved
or resized

• Instructions for saving window contents when the window obscures or
is obscured by another window

• Instructions to the server regarding information that ancestors should
know when a window change occurs

• Instructions to the window manager concerning map requests

• Color

• Cursor

For more information about these attributes, see Section 3.2.2.

If the parent is a root window, the new window created with the CREATE
SIMPLE WINDOW routine has the following attributes:

• The server discards window contents if the window is reconfigured.

• The server discards the contents of obscured portions of the window.

• The server discards the contents of any window that the new window
obscures.

• No events are specified as being of interest to the window ancestors.

• No restrictions are placed on the window manager.

• The color is identical to the parent color.

• No cursor is specified.

In addition to creating a window with attributes inherited from the parent
window, the CREATE SIMPLE WINDOW routine enables clients to define
the border and background attributes of the window and its position and
size.

3.2.2

Working with Windows
3.2 Creating Windows

Example 3-1 illustrates creating a simple window. To make the window
visible, the example includes mapping and event handling functions, which
are described in Section 3.4 and Chapter 9.

Example 3-1 Creating a Simple Window

INTEGER*4 WINDOW 1
INTEGER*4 WINDOW_lX, WINDOW lY

0 PARAMETER WINDOW lW = 600, WINDOW lH 600

8 WINDOW lX = (X$DISPLAY WIDTH OF SCREEN(SCREEN) - WINDOW lW) / 2
WINDow-=._1y = (X$DISPLAY-=._HEIGHT_o"'F_scREEN(scREEN) - wINDOW_lH) I 2

@) WINDOW 1 = X$CREATE SIMPLE WINDOW(DPY,
1 X$ROOT_WINDOW_OF_SCREEN(SCREEN),
1 WINDOW lX, WINDOW lY, WINDOW lW, WINDOW_lH, 10,
1 X$BLACK_PIXEL_OF_SCREEN(SCREEN), X$WHITE_PIXEL_OF_SCREEN(SCREEN))

0 Assign window width and height the value of 600 (pixels) each.

8 The client specifies the position of the window using two display
information routines, DISPLAY WIDTH and DISPLAY HEIGHT.
The WINDOW _lX and WINDOW _lY coordinates define the top left
outside corner of the window borders relative to the inside of the
parent border. In this case, the parent is the root window, which does
not have a border.

@) The CREATE SIMPLE WINDOW routine call has the following format:

window_id = X$CREATE_SIMPLE_WINDOW(display, parent_id,
x_coord, y_coord, width, height, border_width,
border_id, background_id)

The client specifies a black border ten pixels wide, a white background,
and a size of 600 by 600 pixels.

The window manager overrides border width and color.

CREATE SIMPLE WINDOW returns a unique identifier, WINDOW _1,
used in subsequent calls related to the window.

Defining Window Attributes
To create a window whose attributes are different from the parent window,
use the CREATE WINDOW routine. The CREATE WINDOW routine
enables clients to specify the following window attributes when creating
an input-output window:

• Default contents of an input-output window

• Border of an input-output window

• Treatment of the window when it or its relative is obscured

3-7

Working with Windows
3.2 Creating Windows

• Treatment of the window when it or its relative is moved

• Information the window receives about operations associated with
other windows

• Color

• Cursor

Clients creating input-only windows can define the following attributes:

• Treatment of the window when it or its relative is moved

• Information the window receives about operations associated with
other windows

• Cursor

Specifying other attributes for an input-only window causes the server to
generate an error. Input-only windows cannot have input-output windows
as children.

Use the following method to define window attributes:

• Assign values to the relevant members of a set window attributes data
structure.

• Indicate the defined attribute by specifying the appropriate flag and in
the value_mask argument of the CREATE WINDOW routine. If more
than one attribute is to be defined, indicate the attributes by doing
a bitwise OR on the appropriate flags and passing the result in the
value_mask argument of the CREATE WINDOW routine.

Figure 3-5 illustrates the set window attributes data structure.

Figure 3-5 Set Window Attributes Data Structure

x$1_swda_background_pixmap 0

x$1_swda_background_pixel 4

x$1_swda_border_pixmap 8

x$1_swda_border _pixel 12

x$1_swda_bit_gravity 16

x$1_swda_win_gravity 20

x$1_swda_backing_store 24

x$1_swda_backing_planes 28

x$1_swda_backing_pixel 32

(continued on next page)

3-8

Working with Windows
3.2 Creating Windows

Figure 3-5 (Cont.) Set Window Attributes Data Structure

x$1_swda_save_under 36

x$1_swda_event_mask 40

x$1_swda_do_not_propagate_mask 44

x$1_swda_override_redirect 48

x$1_swda_ colormap 52

x$1_swda_ cursor 56

Table 3-1 describes the members of the data structure.

Table 3-1 Set Window Attributes Data Structure Members

Member Name

X$L_SWDA_BACKGROUND_PIXMAP

Contents

Defines the window background of an input-output window. This
member can assume one of three possible values: pixmap identifier,
the constant x$c_none (default), or the constant x$c_parent_relative.

If the client specifies a pixmap identifier, a pixmap defines the
window background. The pixmap must have the same root and
number of bits per pixel as the window but can be any size. For
more information about creating pixmaps, see Chapter 7.

If the client specifies the constant x$c_none (the default), the
window has no defined background. If the parent has no defined
background, neither does the window being created.

If the client specifies the constant x$c_parent_relative, the
background of the window is identical to the background of its
parent. In this case, the window must have the same number of
bits per pixel as the parent. If the background value of the window
is x$c_parent_relative and the parent background is x$c_none, the
window being created has no defined background.

(continued on next page)

3-9

Working with Windows
3.2 Creating Windows

Table 3-1 (Cont.) Set Window Attributes Data Structure Members

Member Name

X$L_SWDA_BACKGROUND_PIXEL

X$L_SWDA_BORDER_PIXMAP

3-10

Contents

The server does not copy the parent background; instead, it
reexamines the parent background each time the client needs
the window background. For a background that is identical to the
parent background, the origin of the background tile always aligns
with the origin of the parent background tile origin. Otherwise, the
background tile origin is always the window origin.

If the client alters the pixmap after using it for the background, the
results are unpredictable because the server might either make a
copy of the pixmap used to draw the background, or it might refer to
the pixmap directly. Free the background pixmap when the client no
longer needs to refer to it. In particular, free the pixmap after setting
it into the window but before destroying the window.

When regions of the window are exposed and the server has not
retained their contents, the server automatically tiles the regions with
the background pixmap if the client specified a pixmap identifier or
the constant x$c_parent_relative. If the client specified the constant
x$c_none, the server leaves the previous screen contents in place,
provided the window and its parent have the same number of bits
per pixel. Otherwise, the initial contents of the exposed region are
undefined.

Specifying a value for the X$L_SWDA_BACKGROUND_
PIXEL member causes the server to override the X$L_SWDA_
BACKGROUND_PIXMAP member. This is equivalent to specifying a
pixmap of any size filled with the background pixel and used to paint
the window background.

Defines the window border of an input-output window. The following
conditions apply:

The border tile origin is always the same as the background tile
origin.
The border pixmap and the window must have the same root
and the same number of bits per pixel. Otherwise, the server
issues an error.
Clients can specify a pixmap of any size. Using some sizes,
however, increases performance.
The default copies the border pixmap from the parent. If the
client specifies the constant x$c_copy_from_parent, the parent
border pixmap is copied. The window must have the same
number of bits per pixel as the parent, or the server issues an
error. Subsequent changes to the parent do not affect the child.

If the client alters the pixmap after using it for the border, the results
are unpredictable because the server may either make a copy of
the pixmap used to draw the border, or it may refer to the pixmap
directly.

Because output to a window is always limited or clipped to the inside
of the window, graphics operations are never affected by the window
border.

(continued on next page)

Working with Windows
3.2 Creating Windows

Table 3-1 (Cont.) Set Window Attributes Data Structure Members

Member Name

X$L_SWDA_BORDER_PIXEL

X$L_SWDA_BIT _GRAVITY

X$L_SWDA_WIN_GRAVITY

X$L_SWDA_BACKING_STORE

X$L_SWDA_BACKING_PLANES

X$L_SWDA_BACKING_PIXEL

X$L_SWDA_SAVE_UNDER

Contents

Specifying a value for X$L_SWDA_BORDER_PIXEL causes the
server to override the X$L_SWDA_BORDER_PIXMAP member. This
is equivalent to specifying a pixmap of any size filled with the border
pixel and used to paint the window border.

Defines how window contents should be moved when an input-only
or input-output window is resized. By default, the server does not
retain window contents. For more information about bit gravity, see
Section 3.6.

Defines how the server should reposition the newly created input
only or input-output window when its parent window is resized. By
default, the server does not move the newly created window. For
more information about window gravity, see Section 3.6.

Provides a hint to the server about how the client wants it to manage
obscured portions of the window. In this release, clients must
maintain window contents.

Indicates (with bits set to one) which bit planes of the window hold
dynamic data that must be preserved if the window obscures or is
obscured by another window. In this release, clients must maintain
data to be preserved.

Defines what values to use in planes not specified by the X$L_
SWDA_BACKING_PLANES member. In this release, clients must
maintain values.

Setting the X$L_SWDA_SAVE_UNDER member to true informs the
server that the client would like the contents of the screen saved
when an input-output window obscures them. Clients must maintain
the contents of screens.

(continued on next page)

3-11

Working with Windows
3.2 Creating Windows

Table 3-1 (Cont.) Set Window Attributes Data Structure Members

Member Name

X$L_SWDA_EVENT _MASK

X$L_SWDA_DO_NOT _PROPAGATE_
MASK

X$l_SWDA_OVERRIDE_REDIRECT

X$L_SWDA_COLORMAP

X$L_SWDA_CURSOR

Contents

Defines which types of events associated with an input-only or
input-output window the server should report to the client. For more
information about defining event types, see Chapter 9. Following are
events about which the client can state an interest:

Event Type

Button

Color

Window

Exposure

Input focus

Keyboard and keys

Pointer

Property

Structure

Description

Motion, button press and release,
exclusive input

Change in color map

Entry into and exit from a window

Exposure of a previously obscured
window

Change in window that receives keyboard
input

Change in keyboard state, and key press
or release

Motion

Change in window characteristics

Notification and control of requests from
clients

Defines which kinds of events should not be propagated to
ancestors. For more information about managing events, see
Chapter 9.

Specifies whether calls to map and configure an input-only or
input-output window should override a request by another client to
redirect those calls. For more information about redirecting calls, see
Chapter 9. Typically, this is used to inform a window manager not
to tamper with the window, such as when the client is creating and
mapping a menu.

Specifies the color map, if any, that best reflects the colors of an
input-output window. The color map must have the same visual type
as the window. If it does not, the server issues an error. For more
information about the color map and visual types, see Chapter 5.

Specifying a value for the cursor member causes the server to use a
particular cursor when the pointer is in an input-only or input-output
window.

Table 3-2 lists default values for the set window attributes data
structure.

3-12

Working with Windows
3.2 Creating Windows

Table 3-2 Default Values of the Set Window Attributes Data Structure

Member

X$L_SWDA_BACKGROUND_PIXMAP

X$L_SWDA_BACKGROUND_PIXEL

X$L_SWDA_BORDER_PIXMAP

X$L_SWDA_BORDER_PIXEL

X$L_SWDA_BIT _GRAVITY

X$L_SWDA_WIN_GRAVITY

X$L_SWDA_BACKING_STORE

X$L_SWDA_BACKING_PLANES

X$L_SWDA_BACKING_PIXEL

X$L_SWDA_SAVE_UNDER

X$L_SWDA_EVENT _MASK

X$L_SWDA_DO_NOT _PROPAGATE_
MASK

X$L_SWDA_OVERRIDE_REDIRECT

X$L_SWDA_COLORMAP

X$L_SWDA_CURSOR

Default Value

None

Undefined

Copied from the parent window

Undefined

Window contents not retained

Window not moved

Window contents not retained

All 1s

0

False

Empty set

Empty set

False

Copied from parent

None

Xlib assigns a flag for each member of the set window attributes data
structure to facilitate referring to the members, as listed in Table 3-3.

Table 3-3 Set Window Attributes Data Structure Flags

Flag Name

x$m_cw_back_pixmap

x$m_cw_background_pixel

x$m_cw_border_pixmap

x$m_cw_border_pixel

x$m_cw _bit_gravity

x$m_cw_win_gravity

x$m_cw_backing_store

x$m_cw_backing_planes

x$m_cw_backing_pixel

x$m_cw_override_redirect

x$m_cw_save_under

x$m_cw_event_mask

Set Window Attributes Member

X$L_SWDA_BACKGROUND_PIXMAP

X$L_SWDA_BACKGROUND_PIXEL

X$L_SWDA_BORDER_PIXMAP

X$L_SWDA_BORDER_PIXEL

X$L_SWDA_BIT _GRAVITY

X$L_SWDA_WIN_GRAVITY

X$L_SWDA_BACKING_STORE

X$L_SWDA_BACKING_PLANES

X$L_SWDA_BACKING_PIXEL

X$L_SWDA_OVERRIDE_REDIRECT

X$L_SWDA_SAVE_UNDER

X$L_SWDA_EVENT _MASK

(continued on next page)

3-13

Working with Windows
3.2 Creating Windows

Table 3-3 (Cont.) Set Window Attributes Data Structure Flags

Flag Name

x$m_cw_dont_propagate

x$m_cw_colormap

x$m_cw_cursor

Set Window Attributes Member

X$L_SWDA_DO_NOT _PROPAGATE_MASK

X$L_SWDA_COLORMAP

X$L_SWDA_CURSOR

Note that in addition to the mask symbols (x$m_) listed in Table 3-3, the
Xlib definition files also define the corresponding bit field symbols (x$v _).

Example 3-2 illustrates how clients can define window attributes while
creating input-output windows with the CREATE WINDOW routine.
The program creates a parent window and two children windows. The
hierarchy of the subwindows is determined by the order in which the
program creates them. In this case, SUBWINDOW_l is superior to
SUBWINDOW _2, which is created last.

Example 3-2 Defining Attributes When Creating Windows

INTEGER*4 WINDOW window id
INTEGER*4 SUBWINDOW 1 window id
INTEGER*4 SUBWINDOW 2 window id

tt RECORD /X$SET_WIN_ATTRIBUTES/ XSWDA ! window attributes

c

PARAMETER
1
1
1
1

WINDOW_W = 600, WINDOW_H = 600,
SUBWINDOW_lX = 150, SUBWINDOW_lY = 100,
SUBWINDOW lW = 300, SUBWINDOW_lH = 400,
SUBWINDOW 2X = 275, SUBWINDOW_2Y = 125,
SUBWINDOW 2W = 50, SUBWINDOW_2H = 150

WINDOW X = (X$WIDTH OF SCREEN(SCREEN) - WINDOW W) / 2
WINDOW=Y = (X$HEIGHT_OF_SCREEN(SCREEN) - WINDOW_H) I 2

DEPTH= X$DEFAULT DEPTH OF SCREEN(SCREEN)
CALL X$DEFAULT VISUAL OF SCREEN(SCREEN,VISUAL)
ATTR_MASK = X$M_CW_EVENT=MASK .OR. X$M_CW_BACK_PIXEL

XSWDA.X$L SWDA EVENT MASK = X$M EXPOSURE .OR. X$M_BUTTON_PRESS
XSWDA.X$L-=._swDA-=-BACKGROUND_PIXEL-=
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 1)

WINDOW = X$CREATE WINDOW(DPY,
1 X$ROOT_WINDow-=._oF_SCREEN(SCREEN),
1 WINDOW X, WINDOW Y, WINDOW W, WINDOW H, 0,
1 DEPTH,-X$C_INPUT=OUTPUT, VISUAL, ATTR_MASK, XSWDA)

C Create the SUBWINDOW 1 window
c

XSWDA.X$L_SWDA_BACKGROUND_PIXEL
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 2)

(continued on next page)

3-14

Working with Windows
3.2 Creating Windows

Example 3-2 (Cont.) Defining Attributes When Creating Windows

c

SUBWINDOW_l = X$CREATE_WINDOW(DPY, WINDOW,
1 SUBWINDOW lX, SUBWINDOW lY, SUBWINDOW lW, SUBWINDOW lH, 4,
1 DEPTH, X$C_INPUT_OUTPUT~ VISUAL, ATTR=MASK, XSWDA)

C Create the SUBWINDOW 2 window
c

XSWDA.X$L_SWDA_BACKGROUND_PIXEL
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 3)

SUBWINDOW_2 = X$CREATE_WINDOW(DPY, WINDOW,
1 SUBWINDOW_2X, SUBWINDOW_2Y, SUBWINDOW_2W, SUBWINDOW 2H, 4,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

INTEGER*4 FUNCTION DEFINE_COLOR(DISP, SCRN, VISU, N)

0 Allocate storage for a set window attributes data structure used to
define window attributes.

8 Set the attributes of the parent window. The client indicates an
interest in window exposure and button press events. For more
information about events, see Chapter 9.

The client defines window background by calling the DEFINE_COLOR
routine. For more information about defining colors, see Chapter 5.

8 The CREATE WINDOW routine call has the following format:

window_id_return=X$CREATE_WINDOW(display, parent_id,
x coord, y coord, width, height, border width,
depth, class, visual struc, attributes mask,
attributes) - -

The depth of a window is its number of bits per pixel. The call passes
a display information routine to indicate that the client wants the
parent window depth to be identical to the display depth.

The window class can be either input only or input-output, specified by
the following constants:

• x$c_input_only

• x$c_input_output

If the window is the same class as the parent, pass the constant
x$c_copy _from_parent.

Note that the only attributes clients can define for input-only windows
are window gravity, event mask, do-not-propagate mask, override
redirect, and cursor.

The border width of input-only windows must be zero.

3-15

Working with Windows
3.2 Creating Windows

The visual type indicates how the window displays color values. For
more information about visual types, see Chapter 5.

3.3 Destroying Windows
When a client no longer needs a window, the client should destroy it using
either the DESTROY WINDOW or the DESTROY SUBWINDOWS routine.
DESTROY WINDOW destroys a specified window and all its subwindows.
DESTROY SUBWINDOWS destroys all subwindows of a specified window
in bottom to top stacking order.

Destroying a window frees all storage allocated for that window. If the
window is mapped to the screen, the server notifies applications using the
window that it has been destroyed.

3.4 Mapping and Unmapping Windows

3-16

After creating a window, the client can map it to a screen using the MAP
WINDOW or MAP SUBWINDOWS routine. Mapping generally makes a
window visible at the location the client specified when creating it. Part or
all of the window is not visible when the following conditions occur:

• One or more windows higher in the stacking order obscures it

• One or more window ancestors is not mapped

• The new window extends beyond the boundary of its parent

MAP WINDOW maps a window. If the window is an inferior, and one
or more of its ancestors has not been mapped, the server considers the
window to be mapped after the call, even though the window is not visible
on the screen. The window becomes visible when its ancestors are mapped.

To map all subwindows of a specified window in top to bottom order, use
MAP SUBWINDOWS. Using the MAP SUBWINDOWS routine to map
several windows may be more efficient than calling the MAP WINDOW
routine to map each window. The MAP SUBWINDOWS routine enables
the server to map all of the windows at one time instead of mapping a
single window with the MAP WINDOW routine.

To ensure that the window is completely visible, use the MAP RAISED
routine. MAP RAISED reorders the stack with the window on top and
then maps the window. Example 3-3 illustrates how a window is mapped
and raised to the top of the stack.

Working with Windows
3.4 Mapping and Unmapping Windows

Example 3-3 Mapping and Raising Windows

INTEGER*4 WINDOW
INTEGER*4 SUBWINDOW 1
INTEGER*4 SUBWINDOW 2

window id
window id
window id

C Create windows in the following order:
C WINDOW, SUBWINDOW_2, SUBWINDOW 1
c

CALL X$MAP_WINDOW(DPY, WINDOW)

0 CALL X$MAP_WINDOW(DPY, SUBWINDOW_l)

@ CALL X$MAP_RAISED(DPY, SUBWINDOW_2)

0 In this example, the client creates SUBWINDOW_l after
SUBWINDOW _2, putting SUBWINDOW _1 at the top of the stack.

Consequently, whether SUBWINDOW _2 were mapped before or after
SUBWINDOW_l, SUBWINDOW_l would obscure SUBWINDOW_2.

The effect is illustrated in Figure 3-6.

8 Mapping and raising SUBWINDOW_2 moves it to the top of the stack.
It is now visible, as Figure 3-7 illustrates.

When the client no longer needs a window mapped to the screen, call
UNMAP WINDOW. If the window is a parent, its children are no longer
visible after the call, although they are still mapped. The children become
visible when the parent is mapped again.

To unmap all subwindows of a specified window, use UNMAP
SUBWINDOWS. UNMAP SUBWINDOWS results in an UNMAP
WINDOW call on all subwindows of the parent, from bottom to top
stacking order.

3.5 Associating Properties with Windows
Xlib enables clients to associate data with a window. This data is
considered a property of the window. For example, a client could store
text as a window property. Although a property must be data of only one
type, it can be stored in 8-bit, 16-bit, and 32-bit formats.

Xlib uses atoms to name properties. An atom is a string paired with an
identifier. For example, a client could use the atom X$C_XA_ WM_ICON_
NAME to name a window icon stored for later use. The atom X$C_XA_
WM_ICON_NAME pairs the string X$C_XA_WM_ICON_NAME with a
value, 25, that uniquely identifies the stored name.

3-17

Working with Windows
3.5 Associating Properties with Windows

3-18

Figure 3-6 Window Before Restacking

SUBWINDOW_1 SUBWINDOW_2

ZK-0162A-GE

In SYS$LIBRARY:DECW$XLIBDEF.H, VMS DECwindows includes
predefined atoms such as X$C_XA_WM_ICON_NAME for commonly
used properties. Table 3-4 lists all predefined atoms except those used to
identify font properties and those used to communicate with the window
manager. See Table 3-6 for a list of atoms related to window management.
See Chapter 8 for a list of atoms related to fonts.

Working with Windows
3.5 Associating Properties with Windows

Figure 3-7 Restacked Window

SUBWINDOW_ 1 SUBWINDOW_2

ZK-0163A-GE

3-19

Working with Windows
3.5 Associating Properties with Windows

3-20

Table 3-4 Predefined Atoms

For Global Selection

X$C_XA_PRIMARY

For Cut Buffers

X$C_XA_CUT_BUFFERO
X$C_XA_CUT_BUFFER2
X$C_XA_CUT_BUFFER4
X$C_XA_CUT_BUFFER6

For Color Maps

X$C_XA_RGB_COLOR_MAP
X$C_XA_RGB_BLUE_MAP
X$C_XA_RGB_GREEN_MAP
X$C_XA_RGB_DEFAULT_MAP

For Resources

X$C_XA_RESOURCE_MANAGER
X$C_XA_ATOM
X$C_XA_CARDINAL
X$C_XA_CURSOR
X$C_XA_FONT
X$C_XA_PIXMAP
X$C_XA_RECTANGLE
X$C_XA_ VISUALID

X$C_XA_SECONDARY

X$C_XA_CUT_BUFFER1
X$C_XA_CUT_BUFFER3
X$C_XA_CUT_BUFFER5
X$C_XA_CUT_BUFFER7

X$C_XA_RGB_BEST_MAP
X$C_XA_RGB_RED_MAP
X$C_XA_RGB_GRAY_MAP

X$C_XA_ARC
X$C_XA_BITMAP
X$C_XA_COLORMAP
X$C_XA_DRAWABLE
X$C_XA_INTEGER
X$C_XA_POINT
X$C_XA_STRING
X$C_XA_WINDOW

In addition to providing predefined atoms, Xlib enables clients to create
their own atom names. To create an atom name, use the INTERN ATOM
routine, as in the following example:

INTEGER*4 ATOM ID
INTEGER*4 IF EXISTS
CHARACTER*? ATOM NAME
DATA ATOM_NAME /7MY_ATOM'/

ATOM_ID = X$INTERN_ATOM(DPY, ATOM_NAME, IF_EXISTS)

Working with Windows
3.5 Associating Properties with Windows

The routine returns an identifier associated with the string MY_ATOM.
Xlib also returns the value of false to IF _EXISTS if the atom does not
exist in the atom table.

To get the name of an atom, use the GET ATOM NAME routine, as in the
following example:

CHARACTER*lOO ATOM NAME
INTEGER*4 ATOM_ID, STATUS

ATOM ID = 19
STATUS = X$GET_ATOM_NAME(DPY, ATOM_ID, ATOM_NAME)

The routine returns a string associated with the atom identifier, 39.

Xlib enables clients to change, obtain, update, and interchange properties.
Example 3-4 illustrates exchanging properties between two subwindows.
The example uses the CHANGE PROPERTY routine to set a property on
the parent window and the GET PROPERTY routine to get the data from
the parent window.

Example 3-4 Exchanging Window Properties

c

CHARACTER*50 PROPERTY DATA
CHARACTER*50 PROP
CHARACTER*lOOO PROPERTY RETURNED

!Data stored as a property
!Data stored as a property
!Property returned

RECORD /X$VISUAL/ VISUAL visual type
RECORD /X$SET WIN ATTRIBUTES/ XSWDA window attributes
RECORD /X$GC VALUES/ XGCVL gc values
RECORD /X$SIZE HINTS/ XSZHN hints
RECORD /X$EVENT/ EVENT input event

PARAMETER WIN WIDTH = 600, WIN HEIGHT 600,
1 SUB WIDTH = 300, SUB HEIGHT = 150,
1 WIN X = 100, WIN y = 100,
1 SUBl x 150, SUBl y = 100,
1 SUB2 x = 150, SUB2 y = 350,
1 OFFSET = 0, LENGTH = 1000

DATA PROPERTY_DATA /'You clicked MBl'/

C Create the WINDOW window
c

D~PTH = X$DEFAULT_DEPTH_OF_SCREEN(SCREEN)
CALL X$DEFAULT VISUAL OF SCREEN(SCREEN,VISUAL)
ATTR_MASK = X$M_CW_EVENT=MASK .OR. X$M_CW_BACK_PIXEL

XSWDA.X$L SWDA EVENT MASK = X$M EXPOSURE .OR. X$M_BUTTON_PRESS
1 .OR. x$M PROPERTY CHANGE
XSWDA.X$L_SWDA_BACKGROUND=PIXEL =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 1)

(continued on next page)

3-21

Working with Windows
3.5 Associating Properties with Windows

Example 3-4 (Cont.) Exchanging Window Properties

WINDOW = X$CREATE WINDOW(DPY,
1 X$ROOT_WINDOW=OF_SCREEN(SCREEN),
1 WIN_X, WIN Y, WIN WIDTH, WIN HEIGHT, 0,
1 DEPTH, X$C=INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

c
C Create the subwindows
c

XSWDA.X$L_SWDA_BACKGROUND_PIXEL =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 2)

SUBWINDOWl = X$CREATE_WINDOW(DPY, WINDOW,
1 SUBl X, SUBl Y, SUB WIDTH, SUB HEIGHT, 4,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

SUBWINDOW2 = X$CREATE_WINDOW(DPY, WINDOW,
1 SUB2 X, SUB2 Y, SUB WIDTH, SUB HEIGHT, 4,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

c
C Handle events
c

0

3-22

DO WHILE (. TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE .AND.
1 EVENT.EVNT EXPOSE.X$L EXEV WINDOW .EQ. WINDOW) THEN

CALL X$DRAW IMAGE STRING(DPY, WINDOW, GC,
1 150, 25~ 'Press MBl in the upper window.')

CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,
1 150, 50, 'To exit, press MB2.')

END IF

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT=BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN

CALL SYS$EXIT(%VAL(l))
END IF

IF (EVENT.EVNT BUTTON.X$L BTEV WINDOW .EQ. SUBWINDOWl .AND.
1 EVENT.EVNT=BUTTON.X$L=BTEV=BUTTON .EQ. X$C_BUTTON1) THEN

1
1

CALL X$CHANGE PROPERTY(DPY, WINDOW, X$C XA CUT BUFFERO,
X$C_XA_STRING, 16, X$C_PROP_MODE_REPLACE, -
%REF(PROPERTY_DATA), 15)

END IF

IF (EVENT.EVNT TYPE .EQ. X$C PROPERTY NOTIFY .AND.
1 EVENT.EVNT=PROPERTY.X$L_PPEV_ATOM-.EQ. X$C_XA_CUT_BUFFERO) THEN

CALL X$GET WINDOW PROPERTY(DPY, WINDOW, X$C XA CUT BUFFERO,
1 OFFSET~ LENGTH, TRUE, X$C_XA_STRING, TYPE_RETURNED,
1 FORMAT RETURNED, NUM ITEMS RETURNED, BYTES REMAINING,
1 ,%REF(l000),%REF(PROPERTY_RETURNED)) -

(continued on next page)

Working with Windows
3.5 Associating Properties with Windows

Example 3-4 (Cont.) Exchanging Window Properties

1
CALL X$DRAW_STRING(DPY, SUBWINDOW2, GC, 75, 75,

PROPERTY_RETURNED, NUM_ITEMS_RETURNED)
END IF

END DO

END

0 When the user clicks MBl in subwindow SUBWINDOW1, the client
calls the CHANGE PROPERTY routine. CHANGE PROPERTY causes
the server to change the property identified by the atom X$C_XA_
CUT_BUFFERO to the value specified by PROPERTY_DATA. The
property is associated with the parent window, WINDOW.

When changing properties, the client can specify how the server
should treat them. If the client specifies the constant x$c_prop_
mode_replace, the server discards the previous property. If the client
specifies the constant x$c_prop_mode_prepend, the server inserts
the new data at the beginning of the existing property data. If the
client specifies the constant x$c_prop_mode_append, the server
inserts the new data at the end of the existing property data.

Changing the property causes the server to send a property notify
event to the parent window, WINDOW. For information about event
handling, see Chapter 9.

8 After checking to ensure that the changed property is the one to
obtain, the client calls the GET WINDOW PROPERTY routine. Note
that the client returns the property, which is a string type, into a
buffer of 1000 bytes, specified by the variable
PROPERTY_RETURNED.

@) After getting the string data from the parent window, the client uses
it to write text in SUBWINDOW2. For information about writing text,
see Chapter 8.

In addition to the GET WINDOW PROPERTY routine, Xlib includes the
property-management routines described in Table 3-5.

Table 3-5 Routines for Managing Properties

Routine

LIST PROPERTIES

ROTATE WINDOW
PROPERTIES

DELETE PROPERTY

Description

Returns a list of properties defined for a specified
window.

Rotates the properties of a specified window and
generates a property notify event. For more information
about property notify events, see Chapter 9.

Deletes a specified property.

3-23

3.5.1

Working with Windows
3.5 Associating Properties with Windows

Using Properties to Communicate with the Window Manager
Xlib provides predefined atoms to enable clients to communicate hints to
the window manager about the following:

• Window names

• Icon names

• Pixmaps used to define window icons

• Commands used to start the application

• Position and size of windows in their startup state

• Initial state of windows

• Input that windows accept

• Names used to retrieve application resources

Table 3-6 describes the atom names, data types, and formats of these
properties.

Table 3-6 Atom Names of Window Manager Properties

Atom Data Type Format Description of the Property

X$C_XA_WM_NAME STRING 8

X$C_XA_WM_ICON_NAME STRING 8

Application name

Icon name

X$C_XA_WM_NORMAL_HINTS WM_SIZE_HINTS 32 Size hints for a window in its
normal state

X$C_XA_WM_ZOOM_HINTS WM_SIZE_HINTS 32 Size hints for a zoomed window

Hints about keyboard input,
initial state, icon pixmap, icon
window, icon position, and icon
mask

X$C_XA_WM_HINTS WM_ HINTS

X$C_XA_WM_COMMAND STRING

X$C_XA_WM_ICON_SIZE WM_ICON_SIZE

X$C_XA_WM_CLASS STRING

32

8

32

32

Command used to start the
client

Specifies the icon size
supported by the window
manager

Allows window manager to
obtain the application resources
from the resource database

X$C_XA_WM_ TRANSIENT_FOR WINDOW 32 Indicates that a window, such
as a dialog box, is transient

3-24

Xlib provides the following methods for using the properties described in
Table 3-6 to communicate with the window manager:

• Defining properties with the SET WM HINTS routine-SET WM
HINTS uses the WM hints data structure to define hints about
keyboard input, initial state of the window, icon pixmap, icon window,
icon position, icon mask, and window group.

3.5.1.1

Working with Windows
3.5 Associating Properties with Windows

• Using convenience routines to communicate with the window
manager-Xlib includes routines that enable clients to communicate
individual hints about window names, window icon names, and
window classes.

• Providing and obtaining hints about the size and position of windows
Xlib routines communicate information about the size and position of
windows.

• Changing the values of a property-Xlib includes a routine to change
the value of an existing property.

Note that it is not guaranteed that the window manager will apply window
manager hints.

This section describes how to use properties to communicate with the
window manager.

Defining Properties Using the SET WM HINTS Routine
Use the SET WM HINTS routine to provide the window manager with
hints about keyboard input, initial window state, icon pixmap, icon
window, icon position, icon mask, and window group. A window manager
can use the window group property to treat a set of windows as a group.
For example, if a client manipulates multiple children of the root window,
SET WM HINTS enables the client to provide enough information so that
a window manager can make all windows into icons, rather than just one
window.

Xlib provides a WM hints data structure to enable clients to specify these
hints easily. Figure 3-8 illustrates the wm hints data structure. Table 3-7
describes its members.

Figure 3-8 WM Hints Data Structure

x$1_hint_flags 0

x$1_hint_input 4

x$1_hint_initial_state 8

x$1_hint_icon_pixmap 12

x$1_hint_icon_window 16

x$1_hint_icon_x 20

x$1_hint_icon_y 24

x$1_hint_icon_mask 28

x$1_hint_window_group 32

3-25

Working with Windows
3.5 Associating Properties with Windows

Table 3-7 WM Hints Data Structure Members

Member Name

X$L_HINT _FLAGS

X$L_HINT_INPUT

X$L_HINT_INITIAL_STATE

Contents

Specifies the members of the data structure that are defined.

Indicates whether or not the client relies on the window manager to get
keyboard input.

Defines how the window should appear in its initial configuration. Possible
initial states are as follows:

Constant

x$c_dont_care_state

x$c_normal_state

x$c_zoom_state

x$c_iconic_state

x$c_inactive_state

Description

Client is not interested in the initial state

Initial state used most often

Window starts zoomed

Window starts as an icon

Window is seldom used

X$L_HINT _ICON_PIXMAP

X$L_HINT_ICON_WINDOW

X$L_HINT _ICON_X

X$L_HINT _ICON_ Y

X$L_HINT _ICON_MASK

X$L_HINT _WINDOW_GROUP

Identifies the pixmap used to create the window icon.

Specifies the window to be used as an icon.

Specifies the initial x-coordinate of the icon position.

Specifies the initial y-coordinate of the icon position.

Specifies the pixels of the icon pixmap used to create the icon.

Specifies that a window belongs to a group of other windows.

3.5.1.2

3-26

Defining Individual Properties
Xlib includes routines to enable clients to define individual properties
for communicating with the window manager about window names, icon
names, and window classes.

To define a window name, use the STORE NAME routine. The sample
program in Chapter 1 uses the STORE NAME routine to define the name
of its parent window, as follows:

CALL X$STORE_NAME(DPY, WINDOW_l,
1 'A Sample Xlib Program')

To get the name of a window, use the FETCH NAME routine. The routine
either returns the name of the specified window or sets the value of the
X$C _XA_ WM_NA.i.'1:E property to null.

The SET ICON NAME and GET ICON NAME routines define and get the
name of a window icon.

Working with Windows
3.5 Associating Properties with Windows

To define and get the class of a specified window, use the SET CLASS
HINT and GET CLASS HINT routines. The routines refer to the class
hint data structure illustrated in Figure 3-9.

Figure 3-9 Class Hint Data Structure

x$a_chnt_res_name 0

x$a_ chnt_res_class 4

Table 3-8 describes members of the data structure.

Table 3-8 Class Hint Data Structure Members

Member Name

X$A_CHNT_RES_NAME

X$A_CHNT_RES_CLASS

3.5.1.3

Contents

Defines the name of the window. The name defined in this data structure may
differ from the name defined by the X$C_XA_WM_NAME property. The
X$C_XA_WM_NAME property specifies what should be displayed in the title bar.
Consequently, it may contain a temporary name, as in the name of a file a client
currently has in a buffer. In contrast to X$C_XA_WM_NAME, this member defines
the formal window name that clients should use when retrieving resources from
the resource database.

Defines the class of the window.

At times, clients may need to indicate to the window manager that a
top-level window is really only a transient window. For instance, a client
may communicate to the window manager that the window is a dialog box
mapped on behalf of another window. To communciate this, a client calls
the SET TRANSIENT FOR HINT routine. The routine sets the
X$C_XA_ WM_TRANSIENT_FOR property of the transient window and
associates the transient window with a main window. To obtain the
X$C_XA_ WM_TRANSIENT_FOR property for a specified window, call the
GET TRANSIENT FOR HINT routine.

To define the command that invokes an application in a specified window,
use the SET COMMAND routine.

Providing Size Hints
Xlib provides routines to communicate with the window manager about the
size and position of windows in their normal and zoomed startup states.
Use the following method to specify the size and position of a window in
its usual startup state:

1 Assign values to the relevant members of the size hints data structure,
including the X$L_SZHN_FLAGS member. This member specifies
which members of the data structure are defined. Table 3-9 lists the
flags.

3-27

Working with Windows
3.5 Associating Properties with Windows

2 Call the SET NORMAL HINTS routine

Table 3-9 Set Window Attributes Data Structure Flags

Flag Name

x$m_p_position

x$m_us_size

x$m_p _position

x$m_p_size

x$m_p_min_size

x$m_p_max_size

x$m_p_resize_inc

x$m_p_aspect

x$m_p_all_hints

Size Hints Member

User-specified position of the window

User-specified size of the window

Client-specified position

Client-specified size

Client-specified minimum size of the window

Client-specified maximum size of the window

Client-specified increments for resizing the window

Client-specified minimum and maximum aspect ratios

The bitwise OR of the following flags: x$m_p_position,
xm_p_size, xm_p_min_size, x$m_p_max_size,
x$m_p_resize_inc, and x$m_p_aspect.

Figure 3-10 illustrates the size hints data structure. Table 3-10 describes
its contents.

Figure 3-1 O Size Hints Data Structure

x$1_szhn_flags 0

x$1_szhn_x 4

x$1_szhn_y 8

x$1_szhn_width 12

x$1_szhn_height 16

x$1_szhn_min_width 20

x$1_ szhn_min_height 24

x$1_szhn_max_width 28

x$1_szhn_max_height 32

x$1_szhn_width_inc 36

x$1_szhn_height_inc 40

x$1_szhn_mnas_x 44

x$1_szhn_mnas_y 48

(continued on next page)

3-28

Working with Windows
3.5 Associating Properties with Windows

Figure 3-10 (Cont.) Size Hints Data Structure

1--------------------------------x-$_1 __ s_zh_n ___ m_x_a_s __ x ______________________________ ---tl 5

5

2

6 x$1_szhn_mxas_y _

Table 3-10 Size Hints Data Structure Members

Member Name

X$L_SZHN_FLAGS

X$L_SZHN_X

X$L_SZHN_Y

X$L_SZHN_WIDTH

X$L_SZHN_HEIGHT

X$L_SZHN_MIN_WIDTH

X$L_SZHN_MIN_HEIGHT

X$L_SZHN_MAX_WIDTH

X$L_SZHN_MAX_HEIGHT

X$L_SZHN_WIDTH_INC

X$L_SZHN_HEIGHT_INC

X$L_SZHN_MNAS_X

X$L_SZHN_MNAS_ Y

X$L_SZHN_MXAS_X

X$L_SZHN_MXAS_ Y

Contents

Defines which members the client is assigning values to.

Specifies the x-coordinate that defines window position.

Specifies the y-coordinate that defines window position.

Defines the width of the window.

Defines the height of the window.

Specifies the minimum useful width of the window.

Specifies the minimum useful height of the window.

Specifies the maximum useful width of the window.

Specifies the maximum useful height of the window.

Defines the increments by which the width of the window can be resized.

Defines the increments by which the height of the window can be resized.

With the X$L_SZHN_MNAS_ Y member, specifies the minimum aspect ratio of the
window.

With the X$L_SZHN_MNAS_X member, specifies the minimum aspect ratio of the
window.

With the X$L_SZHN_MXAS_ Y member, specifies the maximum aspect ratio of the
window.

With the X$L_SZHN_MXAS_X member, specifies the maximum aspect ratio of the
window.

Setting the minimum and maximum aspects indicates the preferred range of the
size of a window. An aspect is expressed in terms of a ratio between x and y.

For example, if the minimum aspect of x is 1 and y is 2, and the maximum aspect of
x is 2 and y is 5, then the minimum window size is a ratio of 1 /2, and the maximum
is a ratio of 2/5. In this case, a window could have a width of 300 pixels and a
height of 600 pixels minimally, and maximally a width of 600 pixels and a height of
1500 pixels.

The following illustrates using the size hints data structure to set the
normal window manager hints for a window:

3-29

3.5.2

Working with Windows
3.5 Associating Properties with Windows

XSZHN.X$L_SZHN_X = 362
XSZHN.X$L SZHN Y = 282
XSZHN.X$L=SZHN=WIDTH = 400
XSZHN.X$L SZHN HEIGHT = 300
XSZHN.X$L=SZHN=FLAGS = X$C_P_POSITION .OR. X$C P SIZE

CALL X$SET_NORMAL_HINTS(DPY, WINDOW_l, XSZHN)

The example sets hints about the size and location of WINDOW _1.

Exchanging Properties Between Clients

3-30

Xlib provides routines that enable clients to exchange properties. The
properties, which are global to the server, are called selections. Text cut
from one window and pasted into another window exemplifies the global
exchange of properties. The text cut in window A is a property owned by
client A. Ownership of the property transfers to client B, who then pastes
the text into window B.

Properties are exchanged between clients by a series of calls to routines
that manage the selected text. When a user drags the pointer cursor,
client A responds by calling the SET SELECTION OWNER routine. SET
SELECTION OWNER identifies client A as the owner of the selected text.
The routine also identifies the window of the selection, associates an atom
with the text, and puts a timestamp on the selection. The atom,
X$C_XA_PRIMARY, names the selection. The timestamp enables any
clients competing for the selection to determine selection ownership.

Clients can determine the owner of a selection by calling the GET
SELECTION OWNER routine.

When a user decides to paste the selected text in window B, client B, who
owns window B, sends client A a selection request. The request identifies
the window requesting the cut text and the format in which the client
would like the property transferred.

In response to the request, client A first checks to ensure that the time of
the request corresponds to the time in which client A owns the selection.
If the time coincides, and if the selection is in the data type required by
client B, client A notifies client B that the text is stored and available. The
text is then moved to client B.

After receiving the text, client B informs client A that client Bis the
current owner of the selection.

In addition to requesting a selection in its current format, clients can
call the CONVERT SELECTION routine. CONVERT SELECTION
asks the owner of a selection to convert it to a particular data type. If
conversion is possible, the client converting the selection notifies the client
requesting the conversion that the selection is available. The property is
then exchanged as previously described.

Working with Windows
3.5 Associating Properties with Windows

Clients request and notify other clients of selections by using events. For
information about using events to request, convert, and notify clients of
selections, see Chapter 9. For style guidelines about using selections, see
the XU! Style Guide.

3.6 Changing Window Characteristics

3.6.1

Xlib provides routines that enable clients to change window position, size,
border width, stacking order, and attributes.

This section describes how to use Xlib routines to do the following:

• Change multiple window characteristics in one call

• Change position, size, or border width

• Change stacking order

• Change window attributes

Reconfiguring Windows
Xlib enables clients either to change window characteristics using. one
call or to use individual routines to reposition, resize, or to change border
width.

The CONFIGURE WINDOW routine enables clients to change window
position, size, border width, and place in the hierarchy. To change these
window characteristics in one call, use the CONFIGURE WINDOW
routine, as follows:

1 Set values of relevant members of a window changes data structure.

2 Indicate what is to be reconfigured by specifying the appropriate flag
in the CONFIGURE WINDOW value_mask argument.

The window changes data structure enables clients to specify one or more
values for reconfiguring a window. Figure 3-11 illustrates the window
changes data structure. Table 3-11 describes the members of the data
structure.

Figure 3-11 Window Changes Data Structure

x$1_wchg_x 0

x$1_wchg_y 4

x$1_wchg_width 8

x$1_wchg_height 12

x$1_wchg_border_width 16

(continued on next page)

3-31

Working with Windows
3.6 Changing Window Characteristics

Figure 3-11 (Cont.) Window Changes Data Structure

1--~~~~~~~~~~~~~~~x_$_1 __ w_c_h_g ___ si_b_lin_g~~~~~~~~~~~~~~~--t1 2

2

0

4 x$1_wchg_stack_mode _

Table 3-11 Window Changes Data Structure Members

Member Name

X$L_WCHG_X

X$L_ WCHG_ Y.

Contents

Defines the x-coordinate of the new location of the window relative to the
origin of its parent. The x- and y-coordinates specify the upper left outside
corner of the window.

Defines the y-coordinate of the new location of the window relative to the
origin of its parent. The x- and y-coordinates specify the upper left outside
corner of the window.

X$L_WCHG_WIDTH

X$L_WCHG_HEIGHT

X$L_WCHG_BORDER_WIDTH

X$L_ WCHG_SIBLING

X$L_WCHG_STACK_MODE

Defines the new width of the window, excluding the border.

Defines the new height of the window, excluding the border.

Specifies the new window border in pixels.

Specifies the sibling window for stacking order.

Defines how the window is restacked. Table 3-12 lists constants and
definitions for restacking windows.

The client can change the hierarchical position of a window in relation to
all windows in the stack or to a specified sibling. If the client changes the
size, position, and stacking order of the window by calling CONFIGURE
WINDOW, the server restacks the window based on its final, not initial,
size and position. Table 3-12 lists constants and definitions for restacking
windows.

Table 3-12 Stacking Values

Constants

x$c_above

x$c_below

x$c_top_if

x$c_bottom_if

x$c_opposite

3-32

Relative to All

Top of stack.

Bottom of stack.

If any sibling obscures a window, the server
places the obscured window on top of the
stack.

If a window obscures any sibling, the server
places the obscuring window at the bottom
of the stack.

If any sibling obscures a window, the server
places the obscured window on top of the
stack. If a window obscures any window,
the server places the obscuring window at
the bottom of the stack.

Relative to Sibling

Just above sibling.

Just below sibling.

If the specified sibling obscures a window, the
server places the obscured window at the top of
the stack.

If the window obscures the specified sibling, the
server places the obscuring window at the bottom
of the stack.

If the specified sibling obscures a window, the
server places the obscuring window on top of the
stack. If a window obscures the specified sibling,
the server places the obscuring window on the
bottom of the stack.

Working with Windows
3.6 Changing Window Characteristics

Xlib assigns a symbol to the flag associated with each member of the data
structure (Table 3-13).

Table 3-13 Window Changes Data Structure Flags

Flag Name

x$m_cw_x

x$m_cw_y

x$m_cw_width

x$m_cw_height

x$m_cw_border_width

x$m_cw_sibling

x$m_cw _stack_mode

Window Changes Member

X$L_WCHG_X

X$L_WCHG_Y

X$L_WCHG_WIDTH

X$L_WCHG_HEIGHT

X$L_WCHG_BORDER_WIDTH

X$L_WCHG_SIBLING

X$L_WCHG_STACK_MODE

Example 3-5 illustrates using CONFIGURE WINDOW to change the
position, size, and stacking order of a window when the user presses a
button.

Example 3-5 Reconfiguring a Window

c
C This program changes the position, size, and stacking
C order of SUBWINDOW 1

RECORD /X$WINDOW_CHANGES/ XWC

0 WCHG MASK = X$M CW X .OR. X$M CW Y .OR. X$M CW WIDTH .OR.
1 - X$M_cwj"fEIGHT .OR. X$M_Cw_SIBLING .OR.-X$M_CW_STACK_MODE

fj XWC.X$L WCHG X = 200
XWC.X$LWCHG-Y = 350
XWC.X$L-WCHG-WIDTH = 200
XWC.X$L-WCHG-HEIGHT = 50
XWC.X$L-WCHG-SIBLING = SUBWINDOW 2
XWC.X$L=WCHG=STACK_MODE = X$C_ABOVE

CALL X$CONFIGURE_WINDOW(DPY, SUBWINDOW_l, WCHG MASK, XWC)

0 Specify the members of the window changes data structure that
have assigned values. Create a mask by performing a bitwise OR
operation on relevant flags that indicate which members of WINDOW
CHANGES the client will define.

8 Assign values to relevant members of the window
changes data structure. Because the client identifies a sibling
(SUBWINDOW_l), it must also choose a mode for stacking operations.

6) The call to reconfigure SUBWINDOW_l. The CONFIGURE WINDOW
routine call has the following format:

X$CONFIGURE_WINDOW(display, window_id, change_mask, values)

3-33

Working with Windows
3.6 Changing Window Characteristics

Figure 3-12 illustrates how the windows look after being reconfigured.

Figure 3-12 Reconfigured Window

SUBWINDOW_1 SUBWINDOW_2

ZK-0164A-GE

3-34

3.6.2

Working with Windows
3.6 Changing Window Characteristics

Table 3-14 lists routines to change individual window characteristics.

Table 3-14 Window Configuration Routines

Routine

MOVE WINDOW

RESIZE WINDOW

MOVE RESIZE WINDOW

SET WINDOW BORDER
WIDTH

Effects of Reconfiguring Windows

Description

Moves a window without changing its size.

Changes the size of a window without moving it. The
upper left window coordinate does not change after
resizing.

Moves and changes the size of a window.

Changes the border width of a window.

It is important to know how reconfiguring windows affects graphics and
text drawn in them by the client. (See Chapter 6 for a description of
working with graphics and Chapter 8 for a description of writing text.)
When a client resizes a window, window contents are either moved or lost,
depending on the bit gravity of the window. Bit gravity indicates that a
designated region of the window should be relocated when the window is
resized. Resizing also causes the server to resize children of the changed
window.

To control how the server moves children when a parent is resized, set the
window gravity attribute. Table 3-15 lists choices for retaining window
contents and controlling how the server relocates children.

Table 3-15 Gravity Definitions

Constant Name

x$c_forget_gravity

x$c_north_ west_gravity

x$c_north_gravity

x$c_north_east_gravity

x$c_west_gravity

x$c_center_gravity

x$c_east_gravity

x$c_south_west_gravity

Movement of Window Contents and
Subwindows

The server always discards window contents and
tiles the window with its selected background. If
the client has not specified a background, existing
screen contents remain the same.

Not moved.

Moved to the right half the window width.

Moved to the right the distance of the wiridow
width.

Moved down half the window height.

Moved to the right half the window width and down
half the window height.

Moved to the right the distance of the window width
and down half the window height.

Moved down the distance of the window height.

(continued on next page)

3-35

Working with Windows
3.6 Changing Window Characteristics

3-36

Table 3-15 (Cont.) Gravity Definitions

Constant Name

x$c_south_gravity

x$c_south_east_gravity

x$c_static_gravity

x$c_unmap_gravity

Movement of Window Contents and
Subwindows

Moved to the right half the window width and down
the distance of the window height.

Moved to the right the distance of the window width
and down the distance of the window height.

Contents or origin is not moved relative to the
origin of the root window. Static gravity only takes
effect with a change in window width or height.

Window should not be moved; the child should be
unmapped when the parent is resized.

Figure 3-13 illustrates how the server moves the contents of a
reconfigured window when the bit gravity is set to the constant
x$c_east__gravity.

Figure 3-13 East Bit Gravity

Original Window Resized Window

t
h

+
r

w
h/2

2h

1
ZK-0072A-GE

Figure 3-14 illustrates how the server moves a child window if its parent
is resized and its window gravity is set to the constant x$c_northwest_
gravity.

3.6.3

Working with Windows
3.6 Changing Window Characteristics

Figure 3-14 Northwest Window Gravity

Original Parent and Child Windows
w

1
h

!
Child Parent

Resized Parent Window
2w ~~~~~~~~~--

Child

ZK-0073A-GE

Changing Stacking Order
Xlib provides routines that alter the window stacking order in the
following ways:

• A specified window moves to either the top or the bottom of the stack.

3-37

3.6.4

Working with Windows
3.6 Changing Window Characteristics

• The lowest mapped child obscured by a sibling moves to the top of the
stack.

• The highest mapped child that obscures a sibling moves to the bottom
of the stack.

Use the RAISE WINDOW and LOWER WINDOW routines to move a
specified window to either the top or the bottom of the stack, respectively.

To raise the lowest mapped child of an obscured window to the top of the
stack, call CIRCULATE SUBWINDOWS UP. To lower the highest mapped
child that obscures another child, call CIRCULATE SUBWINDOWS
DOWN. The CIRCULATE SUBWINDOWS routine enables the client to
perform these operations by specifying either the constant x$c_raise_
lowest or the constant x$c_lower _highest.

To change the order of the window stack, use RESTACK WINDOW, which
changes the window stack to a specified order. Reordered windows must
have a common parent. If the first window the client specifies has other
unspecified siblings, its order relative to those siblings remains unchanged.

Changing Window Attributes

3-38

Xlib provides routines that enable clients to change the following:

• Default contents of an input-output window

• Border of an input-output window

• Treatment of the window when it or its relative is obscured

• Treatment of the window when it or its relative is moved

• Information the window receives about operations associated with
other windows

• Color

• Cursor

Section 3.2.2 includes descriptions of window attributes and their
relationship to the set window attributes data structure.

This section describes how to change any attribute using the CHANGE
WINDOW ATTRIBUTES routine. In addition to CHANGE WINDOW
ATTRIBUTES, Xlib includes routines that enable clients to change
background and border attributes. Table 3-16 lists these routines and
their functions.

Working with Windows
3.6 Changing Window Characteristics

Table 3-16 Routines for Changing Window Attributes

Routine

SET WINDOW BACKGROUND

Description

Sets the background pixel

Sets the background pixmap SET WINDOW BACKGROUND PIXMAP

SET WINDOW BORDER Sets the window border to a specified
pixel

SET WINDOW BORDER PIXMAP Sets the window border to a specified
pixmap

To change any window attribute, use CHANGE WINDOW ATTRIBUTES
as follows:

• Assign a value to the relevant member of a set window attributes data
structure.

• Indicate the attribute to change by specifying the appropriate flag
and passing it to the CHANGE WINDOW ATTRIBUTES value_mask
argument. To define more than one attribute, indicate the attributes
by doing a bitwise OR on the appropriate flags.

See Table 3-3 for symbols Xlib assigns to each member to facilitate
referring to the attributes.

Example 3-6 illustrates using CHANGE WINDOW ATTRIBUTES to
redefine the characteristics of a window.

Example 3-6 Changing Window Attributes

RECORD /X$SET_WIN_ATTRIBUTES/ XSWDA

ATTR_MASK = X$M_CW_BORDER_PIXEL .OR. X$M_CW_BACK_PIXEL

0 XSWDA.X$L SWDA BACKGROUND PIXEL= X$BLACK PIXEL OF SCREEN(SCREEN)
XSWDA.X$L-=-SWDA-=-BORDER_PIXEL = X$WHITE_PIXEL_OF~CREEN(SCREEN)

8 CALL X$CHANGE_WINDOW_ATTRIBUTES(DPY, WINDOW, ATTR_MASK, XSWA)

0 Assign new values to a set window attributes data structure.

8 Call CHANGE WINDOW ATTRIBUTES to change the window
attributes. The CHANGE WINDOWS attributes routine has the
following format:

X$CHANGE_WINDOW_ATTRIBUTES(display, window_id,
attributes_mask, attributes)

Specify the attributes to change with a bitwise inclusive OR of the
relevant symbols listed in Table 3-3. The values argument passes the
address of a set window attributes data structure.

3-39

Working with Windows
3.6 Changing Window Characteristics

Table 3-17 lists changes in attributes and their effects.

Table 3-17 Effects of Window Attribute Changes

Attribute Changed

Background

Border

Bit and window gravity

Backing store

Backing planes

Backing pixels

Save under

Event mask

Do not propagate mask

Color map

Cursor

Effects

Window contents are unchanged.

If the window is a root window, specifying the constant
x$c_none or x$c_parent_relative restores the default
background pixmap.

The server does not repaint the background
automatically.

Setting the border causes the border to be repainted.

If a background change causes a change in the
border tile origin, the server repaints the border.

Specifying the constant x$c_copy_from_parent on a
root window restores the default border pixmap.

A change in window gravity has no effect until the
window is resized.

In this release of the DECwindows server, backing
store is not supported.

In this release of the DECwindows server, backing
planes is not supported.

In this release of the DECwindows server, backing
pixels is not supported.

If the window is mapped, changing the value of save
under may have no immediate effect.

See Chapter 9.

See Chapter 9.

See Chapter 5.

Specifying the constant x$c_none on a root window
restores the default cursor.

3.7 Getting Information About Windows

3-40

Using Xlib information routines, clients can get information about the
parent, children, and number of children in a window tree; window
geometry; the root window in which the pointer is currently visible; and
window attributes.

Table 3-18 lists and describes Xlib routines that return information about
windows.

Working with Windows
3. 7 Getting Information About Windows

Table 3-18 Window Information Routines

Routine

QUERY TREE

GET GEOMETRY

QUERY POINTER

GET WINDOW ATTRIBUTES

Description

Returns information about the window tree

Returns information about the root window
identifier, coordinates, width and height, border
width, and depth

Returns the root window the pointer is
currently on and the pointer coordinates
relative to the root window origin

Returns information from the window attributes
data structure

To get information about window attributes, use the GET WINDOW
ATTRIBUTES routine. The client receives requested information in the
window attributes data structure. Figure 3-15 illustrates the window
attributes data structure. Table 3-19 describes the members of the data
structure.

Figure 3-15 Window Attributes Data Structure

x$1_wdat_x 0

x$1_wdat_y 4

x$1_wdat_width 8

x$1_ wdat_height 12

x$1_wdat_border_width 16

x$1_wdat_depth 20

x$1_wdat_visual 24

x$1_ wdat_root 28

x$1_wdat_class 32

x$1_ wdat_bit_gravity 36

x$1_wdat_win_gravity 40

x$1_ wdat_backing_store 44

x$1_wdat_backing_planes 48

x$1_wdat_backing_pixel 52

x$1_wdat_save_under 56

(continued on next page)

3-41

Working with Windows
3. 7 Getting Information About Windows

Figure 3-15 (Cont.) Window Attributes Data Structure

x$1_ wdat_ colormap 60

x$1_wdat_map_installed 64

x$1_wdat_map_state 68

x$1_wdat_all_ event_masks 72

x$1_wdat_your _event_mask 76

x$1_wdat_not_propagate_mask 80

x$1_wdat_override_redirect 84

x$1_wdat_screen 88

Table 3-19 Window Attributes Data Structure Members

Member Name

X$L_WDAT_X

X$L_WDAT_Y

X$L_WDAT_WIDTH

X$L_WDAT _HEIGHT

X$L_WDAT _BORDER_WIDTH

X$L_WDAT_DEPTH

X$L_WDAT_VISUAL

X$L_WDAT _ROOT

X$L_WDAT _CLASS

X$L_WDAT_BIT_GRAVITY

X$L_WDAT ~WIN_GRAVITY

X$L_WDAT_BACKING_STORE

3-42

Contents

Specifies the x-coordinate of the upper left corner of the window
relative to its parent.

Specifies the y-coordinate of the upper left corner of the window
relative to its parent.

Specifies the width of the window, excluding the window border, in
pixels.

Specifies the height of the window, excluding the window border, in
pixels.

Specifies the width of the window border in pixels.

Specifies the bits per pixel of the window.

The visual data structure associated with the window. The visual
data structure specifies how displays should treat color resources.
For more information, see Section 3.5.1.

Identifies the screen with which the window is associated.

Specifies whether the window accepts input and output, or input
only.

Specifies how pixels should be moved when the window is resized.

Specifies how the window should be repositioned when its parent is
resized.

Indicates whether or not the server should maintain a record
of portions of a window that are obscured when the window is
mapped. In this release, clients must maintain window contents.

(continued on next page)

Working with Windows
3. 7 Getting Information About Windows

Table 3-19 (Cont.) Window Attributes Data Structure Members

Member Name

X$L_WDAT _BACKING_PLANES

X$L_WDAT _BACKING_PIXEL

X$L_WDAT _SAVE_UNDER

X$~WDAT_COLORMAP

X$L_WDAT _MAP _INSTALLED

X$L_WDAT_MAP _STATE

Contents

Indicates (with bits set to 1) which bit planes of the window hold
dynamic data that must be preserved in backing stores arid during
save under operations. In this release, clients must maintain their
own data.

Defines what values to use in planes not specified by X$L_WDAT_
BACKING_PLANES. In this release, clients must maintain their own
values.

Setting this member to true informs the server that the client would
like the contents of the screen saved when the window obscures
them. Saving the contents of obscured portions of the screen is not
guaranteed.

Specifies the color map, if any, that best reflects the colors of the
window. The color map must have the same visual type as the
window. If it does not, an error occurs. For more information about
color maps, see Chapter 5.

If set to true, indicates that the color map is currently installed and
the window is being displayed in its correct colors.

Indicates whether the window is mapped and viewable. Clients can
specify the following constants:

Constant Name

x$c_is_unmapped

x$c_is_unviewable

x$c_is_viewable

Description

Indicates that the window is not mapped

Indicates that the window is mapped, but
that one of its ancestors is unmapped,
causing the window to be unviewable

Indicates that the window is mapped and
viewable

X$L_ WDAT _ALL_EVENTS_MASK Indicates the set of events in which all applications have an
interest. X$L_WDAT_ALL_EVENTS_MASK is the inclusive OR of
all event masks set for the window. For more information about
event masks, see Chapter 9.

X$L_WDAT_YOUR_EVENT_MASK Indicates the events about which the querying client is interested in
receiving notice.

X$L_WDAT_DO_NOT_PROPAGATE_MASK Defines which events should not be propagated to a window's
ancestors when no application has the event type selected in the
window.

X$L_WDAT _OVERRIDE_REDIRECT Specifies whether requests to map and configure the window
should override a request by another client to redirect those calls
(see Chapter 9). Typically, this mask, which informs the window
manager not to tamper with the window, should be used only on
subwindows such as menus.

X$L_WDAT_SCREEN Specifies the screen on which the window is mapped.

3-43

4 Defining Graphics Characteristics

After opening a display and creating a window, clients can draw lines
and shapes, create cursors, and draw text. Creating a graphics object is
a two-step process. Clients first define the characteristics of the graphics
object and then create it. For example, before creating a line, a client first
defines line width and style. After defining the characteristics, the client
creates the line with the specified width and style.

This chapter describes how to define the graphics characteristics prior to
creating them, including the following topics:

• The graphics context-A description of the graphics characteristics a
client can define and the GC values data structure used to define them

• Defining graphics characteristics-How to define graphics
characteristics using the CREATE GC routine

• Copying, changing, and freeing attributes-How to copy, change, and
undefine graphics characteristics

• Defining graphics characteristics efficiently-How to work efficiently
with several sets of graphics characteristics

Chapter 6 describes how to create graphics objects. Chapter 8 describes
how to work with text.

4.1 The Graphics Context
The characteristics of a graphics object make up its graphics context. As
with window characteristics, Xlib provides a data structure and routine
to enable clients to define multiple graphics characteristics easily. By
setting values in the GC values data structure and calling the CREATE
GC routine, clients can define all characteristics relevant to a graphics
object.

Xlib also provides routines that enable clients to define individual or
functional groups of graphics characteristics.

Xlib always records the defined values in a GC data structure, which is
reserved for the use of Xlib and the server only. This occurs when clients
define graphic characteristics using either the CREATE GC routine or one
of the individual routines. Table 4-1 lists the default values of the GC
data structure.

4-1

Defining Graphics Characteristics
4.1 The Graphics Context

Table 4-1 GC Data Structure Default Values

Member

Function

Plane mask

Foreground

Background

Line width

Line style

Cap style

Join style

Fill style

Fill rule

Arc mode

lile

Stipple

lile or stipple x origin

Tile or stipple y origin

Font

Subwindow mode

Graphics exposures

Clip x origin

Clip y origin

Clip mask

Dash offset

Dashes

Default Value

x$c_gx_copy

All ones

0

1

0

Solid

Butt

Mitre

Solid

Even odd

Pie slice

Pixmap of unspecified size filled with foreground pixel

Pixmap of unspecified size filled with ones

0

0

Varies with implementation

Clip by children

True

0

0

None

0

4 (the list [4,4])

4.2 Defining Multiple Graphics Characteristics in One Call

4-2

Xlib enables clients to define multiple characteristics of a graphics object
in one call. To define multiple characteristics, use the CREATE GC routine
as follows:

• Assign values to the relevant members of the GC values data
structure.

• Indicate the attributes to define by specifying the appropriate flag and
passing the flag to the value_mask argument of the routine. To define
more than one attribute, do a bitwise OR on the appropriate attribute
flags.

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-1 illustrates the GC values data structure.

Figure 4-1 GC Values Data Structure

x$1_gcvl_function 0

x$1_gcvl_plane _mask 4

x$1_gcvl_foregrour:td 8

x$1_gcvl_background 12

x$1_gcvl_line_width 16

x$1_gcvl_line_style 20

x$1_gcvl_cap_style 24

x$1_gcvljoin_style 28

x$1_gcvl_fill_style 32

x$1_gcvl_fill_rule 36

x$1_gcvl_arc_mode 40

x$1_gcvl_tile 44

x$1_gcvl_ stipple 48

x$1_gcvl_ts_x_origin 52

x$1_gcvl_ts_y _origin 56

x$1_gcvl_font 60

x$1_gcvl_subwindow_mode 64

x$1_gcvl_graphics_exposures 68

x$1_gcvl_clip_x_origin 72

x$1_gcvl_clip_y_origin 76

x$1_gcvl_clip_mask 80

x$1_gcvl_dash_ offset 84

l x$b_gcvl_dashes

4-3

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 describes the members of the data structure.

Table 4-2 GC Values Data Structure Members

Member Name

X$L_GCVL_FUNCTION

X$L_ GCVL_PLANE_MASK

X$L_GCVL_FOREGROUND

4-4

Contents

Defines how the server computes pixel values when the client updates a
section of the screen. The following lists available functions:

Constant Name Description

X$C_GX_CLEAR

x$C_GX_AND

X$C_GX_AND_REVERSE

X$C_GX_COPY

X$C_GX_AND_INVERTED

X$C_GX_NOOP

X$C_GX_XOR

X$C_GX_OR

X$C_GX_NOR

X$C_GX_EQUIV

X$C_GX_INVERT

X$C_GX_OR_REVERSE

X$C_GX_COPY _INVERTED

X$C_GX_OR_INVERTED

X$C_GX_NAND

X$C_GX_SET

0

src AND dst

src AND NOT dst

src

(NOT src) AND dst

dst

src XOR dst

src OR dst

(NOT src) AND NOT dst

(NOT src) XOR dst

NOT dst

src OR NOT dst

NOT src

(NOT src) OR dst

(NOT src) OR NOT dst

The screen the client is updating is the destination (dst). The graphics
context the client uses to update the screen is the source (src).
X$L_GCVL_FUNCTION specifies how the server computes new
destination bits from the source (src) and the old bits of the destination
(dst).

The most common logical function is the default specified by the constant
x$c_gx_copy, which only uses relevant values in the specified GC values
data structure to update the screen.

Specifies the planes on which the server performs the bitwise
computation of pixels, defined by X$L_GCVL_FUNCTION.

Because a monochrome display has only one plane, the plane mask
value is given in the least significant bit of the longword. As planes are
added to the display hardware, they are defined in the more significant
bits of the mask. The display routine ALL PLANES specifies that all
planes of the display are referred to simultaneously.

The server does not perform range checking on the plane mask. It
truncates values to the appropriate number of bits.

Specifies an index to a color map entry for foreground color.

(continued on next page)

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

X$L_GCVL_BACKGROUND

X$L_ GCVL_LINE_ WIDTH

Contents

Specifies an index to a color map entry for background color.

Defines the width of a line in pixels.

The server draws a line with a width of one or more pixels centered
on the path described in the graphics request and contained within a
bounding box. Unless otherwise specified by the join or cap style, the
bounding box of a line with endpoints [zl, yl], [z2, y2] and width w > o
is a rectangle with vertices at the following real coordinates:

[xl-w*sn/2, yl+w*cs/2], [xl+w*sn/2, yl-w*cs/2]
[x2-w*sn/2, y2+w*cs/2], [x2+w*sn/2, y2-w*cs/2]

In this example, sn is the sine of the angle of the line. The symbol cs is
the cosine of the angle of the line. A pixel is part of the line and is drawn
if the center of the pixel is fully inside the bounding box. If the center
of the pixel is exactly on the bounding box, the pixel is part of the line if
and only if the interior is immediately to its right (x increasing direction).
Pixels with centers on a horizontal edge are a special case and are part
of the line if and only if the interior is immediately below the bounding box
(y increasing direction). See Figure 4-2.

Lines with zero line width are one pixel wide. The server draws them
using an unspecified, device-dependent algorithm that imposes the
following two constraints:

If the server draws the line unclipped from [zl, yl] to [x2, y2], and
if the server draws a second line from [xl + dx, yl + dy] to [x2 + dx,
y2 + dy], then point [x, y] is touched by drawing the first line if and
only if the point [x + dz, y + dy] is touched by drawing the second
line.
The effective set of points that compose a line cannot be affected by
clipping. That is, a point is touched in a clipped line if and only if the
point lies inside the clipping region and if the point would be touched
by the line when drawn unclipped.

A line more than one pixel wide drawn from [zl, yl] to [x2, y2] always
draws the same pixels as a line of the same width drawn from [x2, y2] to
[xl, yl], excluding cap and join styles.

In general, drawing a line whose line width is zero is substantially faster
than drawing a line whose line width is one or more. However, because
the drawing algorithms for thin lines is different than those for wide lines,
thin lines may not look as good when mixed with wide lines. If clients
want precise and uniform results across all displays, they should always
use a line width of one or more. Note, however, that specifying a line
width of greater than zero decreases performance substantially.

(continued on next page)

4-5

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

X$L_ GCVL_LINE_STYLE

X$L_GCVL_CAP _STYLE

4-6

Contents

Defines which sections of the line the server draws. The following lists
available line styles and the constants that specify them:

Constant Name

x$c_line_solid

x$c_line_double_dash

x$c_line_off_on_dash

Description

The full path of the line is drawn.

The full path of the line is drawn, but the
even dashes are filled differently than the
odd dashes, with cap butt style used where
even and odd dashes meet.

Only the even dashes are drawn. The
X$L_CAP _STYLE member applies to all
internal ends of dashes. Specifying the
constant, x$c_cap_not_last, is equivalent to
specifying x$c_cap_butt.

Figure 4-3 illustrates the styles.

Defines how the server draws the endpoints of a path. The following lists
available cap styles and the constants that specify them:

Constant Name

x$c_cap_butt

x$c_cap_not_last

x$c_cap_round

x$c_cap_projecting

Description

Square at the endpoint (perpendicular to
the slope of the line) with no projection
beyond the endpoint

Equivalent to specifying x$c_cap_butt,
except that the final endpoint is not drawn if
the line width is zero or one

A circular arc with the diameter equal to
the line width, centered on the endpoint
(equivalent to specifying x$c_cap_butt for a
line width of zero or one)

Square at the end, but the path continues
beyond the endpoint for a distance equal
to half the width of the line (equivalent to
specifying x$c_cap_butt for a line width of
zero or one)

Figure 4-4 illustrates the butt, round, and projecting cap styles.
Figure 4-5 illustrates the style specified by the constant x$c_cap_
not_last.

(continued on next page)

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

X$L_ GCVL_JOIN_STYLE

Contents

If a line has coincident endpoints (xl = x2, yl = y2), the cap style is
applied to both endpoints with the following results:

Line
Constant Name Width Description

x$c_cap_not_last Thin Device dependent, but the desired
effect is that nothing is drawn.

x$c_cap_butt Thin Device dependent, but the desired
effect is that a single pixel is drawn.

x$c_cap_butt Wide Nothing is drawn.

x$c_cap_round Thin Device dependent, but the desired
effect is that a single pixel is drawn.

x$c_cap_round Wide The closed path is a circle, centered
at the endpoint, with the diameter
equal to the line width.

x$c_cap_projecting Thin Device dependent, but the desired
effect is that a single pixel is drawn.

x$c_cap_projecting Wide The closed path is a square, aligned
with the coordinate axes, centered
at the endpoint with sides equal to
the line width.

Defines how the server draws corners for wide lines. Available join styles
and the constants that specify them are as follows:

Constant Name

x$cjoin_mitre

x$cjoin_round

x$cjoin_bevel

Description

The outer edges of the two lines extend to meet
at an angle.

A circular arc with diameter equal to the line
width, centered at the join point.

Cap butt endpoint style, with the triangular notch
filled.

Figure 4-6 illustrates the styles.

For a line with coincident endpoints (x1 = x2, yl = y2), when the join
style is applied at one or both endpoints, the effect is as if the line were
removed from the overall path. However, if the total path consists of (or
is reduced to) a single point joined with itself, the effect is the same as if
the X$L_GCVL_CAP _STYLE were applied to both endpoints.

(continued on next page)

4-7

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

X$L_ GCVL_FILL_STYLE

4-8

Contents

Specifies the contents of the source for line, text, and fill operations. The
following lists available fill styles for text and fill requests (DRAW TEXT,
DRAW TEXT 16, FILL RECTANGLE, FILL POLYGON, FILL ARC). It also
lists available styles applicable to solid lines and even dashes resulting
from line requests (LINE, SEGMENTS, RECTANGLE, ARC):

Constant Name

x$c_fill_solid

x$c_fill_tiled

x$c_fill_opaque_stippled

x$c_fill_stippled

Description

Foreground

Tile

A tile with the same width and height as
stipple but with background everywhere
stipple has a zero and with foreground
everywhere stipple has a one

Foreground masked by stipple

The following lists available styles applicable to odd dashes resulting
from line requests:

Constant Name

x$c_fill_solid

x$c_fill_tiled

x$c_fill_opaque_stippled

x$c_fill_stippled

Description

Background

Tile

A tile with the same width and height as
stipple but with background everywhere
stipple has a zero and with foreground
everywhere stipple has a one

Background masked by stipple

(continued on next page)

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

X$L_GCVL_FILL_RULE

X$L_GCVL_ARC_MODE

X$L_GCVL_ TILE

Contents

Defines what pixels the server draws along a path when a polygon is
filled (see Section 6.5.2). The two available choices are x$c_even_odd_
rule and x$c_winding_rule. The x$c_even_odd_rule constant defines
a point to be inside a polygon if an infinite ray with the point as origin
crosses the path an odd number of times. If the point meets these
conditions, the server draws a corresponding pixel.

The x$c_winding_rule constant defines a point to be inside the polygon
if an infinite ray with the pixel as origin crosses an unequal number of
clockwise-directed and counterclockwise-directed path segments. A
clockwise-directed path segment is one that crosses the ray from left to
right as observed from the pixel. A counterclockwise-directed segment
is one that crosses the ray from right to left as observed from that point.
When a directed line segment coincides with a ray, choose a different ray
that is not coincident with a segment. If the point meets these conditions,
the server draws a corresponding pixel.

For both even odd rule and winding rule, a point is infinitely small, and
the path is an infinitely thin line. A pixel is inside the polygon if the center
point of the pixel is inside, and the center point is not on the boundary.
If the center point is on the boundary, the pixel is inside if and only if
the polygon interior is immediately to its right (x increasing direction).
Pixels with centers along a horizontal edge are a special case and are
inside if and only if the polygon interior is immediately below (y increasing
direction).

Figure 4-7 illustrates fill rules. Figure 4-8 illustrates rules for filling a
pixel when it falls on a boundary.

Controls how the server fills an arc. The available choices are specified
by the constants x$c_arc_pie_slice and x$c_arc_chord. Figure 4-9
illustrates the two modes.

Specifies the pixmap the server uses for tiling operations. The pixmap
must have the same root and depth as the graphics context, or an error
occurs. Clients can use any size pixmap for tiling, although some sizes
produce a faster response than others. To determine the optimum size,
use the QUERY BEST SIZE routine.

Storing a pixmap in a graphics context might or might not result in a copy
being made. If the pixmap is later used as the destination for a graphics
request, the change might or might not be reflected in the graphics
context. If the pixmap is used simultaneously in a graphics request both
as a destination and as a tile, the results are not defined.

(continued on next page)

4-9

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

X$L_GCVL_STIPPLE

X$L_GCVL_ TS_X_ORIGIN

X$L_GCVL_ TS_ Y _ORIGIN

X$L_ GCVL_FONT

X$L_GCVL_SUBWINDOW_MODE

X$L_GCVL_GRAPHIC_EXPOSURES

X$L_GCVL_CLIP _X_ORIGIN

X$L_GCVL_CLIP _ Y _ORIGIN

X$L_GCVL_CLIP _MASK

4-10

Contents

Specifies the pixmap the server uses for stipple operations. The pixmap
must have the same root as the graphics context and a depth of one,
or an error occurs. For stipple operations where the fill style is specified
as x$c_fill_stippled but not x$c_fill_opaque_stipple constant, the stipple
pattern is tiled in a single plane and acts as an additional clip mask.
Perform a bitwise AND operation with the clip mask. Clients can use any
size pixmap for stipple operations, although some sizes produce a faster
response than others. To determine the optimum size, use the QUERY
BEST SIZE routine.

Defines the origin for tiling and stipple operations. Origins are relative
to the origin of whatever window or pixmap is specified in the graphics
request.

Defines the origin for tiling and stipple operations. Origins are relative
to the origin of whatever window or pixmap is specified in the graphics
request.

Specifies the font that the server uses for text operations.

Specifies whether or not inferior windows clip superior windows. The
constant x$c_clip_by_children specifies that all viewable input-output
children clip both source and destination windows. The constant
x$c_include_inferiors specifies that inferiors clip neither source nor
destination windows. This results in drawing through subwindow
boundaries. The semantics of using the constant on a window with a
depth of one and with mapped inferiors of differing depth is undefined by
the core protocol.

Specifies whether or not the server informs the client when the contents
of a window region are lost.

Defines the x-coordinate of the clip origin. The clip origin specifies the
point within the clip region that is aligned with the drawable origin.

Defines the y-coordinate of the clip origin. The clip origin specifies the
point within the clip region that is aligned with the drawable origin.

Identifies the pixmap the server uses to restrict write operations to the
destination drawable. The pixmap must have a depth of one and have
the same root as the graphics context. The clip mask clips only the
destination drawable, not the source drawable. Where a value of one
appears in the mask, the corresponding pixel in the destination drawable
is drawn; where a value of zero occurs, no pixel is drawn. Any pixel
within the destination drawabie that is not represented within the ciip
mask pixmap is not drawn. When a client specifies the value of clip mask
as x$c_none, the server draws all pixels.

(continued on next page)

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name Contents

X$L_GCVL_DASH_OFFSET Specifies the pixel within the dash length sequence, defined by
X$B_GCVL_DASHES, to start drawing a dashed line. For example, a
dash offset of zero starts a dashed line as the beginning of the dash line
sequence. A dash offset of five starts the line at the fifth pixel of the line
sequence.

X$B_GCVL_DASHES Specifies the length, in number of pixels, of each dash. The value of this
member must be nonzero or an error occurs.

Figure 4-2 Bounding Box

,-- Endpoint [X1, Y 11

D .-D
D ••••• D
D ••••• D
D ••••• D
D ••••• D D ••••• D
D ••••• D
D D

'-- Endpoint [X2 , Y 21

Figure 4-3 Line Styles

Solid

Double Dash

On Off Dash -

D Pixel

I Bounding
Box

ZK-0011A-GE

ZK-001 OA-GE

4-11

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

4-12

Figure 4-4 Butt, Round, and Projecting Cap Styles

Original Line [without cap]

fl
LJCap

Cap Butt Style

t":cap Cap Round Style

U Arc Diameter = Line Width

~
'-_Jcap

Cap Projecting Style

ZK-0012A-GE

Figure 4-5 Cap Not Last Style

••••••••• Original Line [without cap]

•••••••• Cap Not Last Style

ZK-0165A-GE

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-6 Join Styles

Miter

Round

Bevel

ZK-0013A-GE

4-13

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

4-14

Figure 4-7 Fill Rules

Even Odd

Winding

Direction
of Path
Segment

Direction of Ray

Direction of Ray

ZK-0071 A-GE

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-8 Pixel Boundary Cases

Pixels are
Inside

~Po~ly~go··~~~~~~~~~---..

ZK-0075A-GE

Figure 4-9 Styles for Filling Arcs

Chord

Pie Slice

ZK-0008A-GE

4-15

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

4-16

Figure 4-10 Dashed Line Offset

Dash List: 5, 10,3,5, 10,3

Dash Offset = O

5

Dash Offset = 4

10

10 3

3 5

5 10 3

10 3

ZK-0009A-G E

Xlib assigns a flag for each member of the GC values data structure to
facilitate referring to members (Table 4-3).

Table 4-3 GC Values Data Structure Flags

Flag Name

x$m_gc_function

x$m_gc_plane_mask

x$m_gc_foreground

x$m_gc_background

x$m_gc_line_width

x$m_gc_line_style

x$m_gc_cap_style

x$m_gcjoin_style

x$m_gc_fill_style

x$m_gc_fill_rule

x$m_gc_tile

x$m_gc_stippie

x$m_gc_tile_stip_x_origin

x$m_gc_tile_stip_y_origin

x$m_gc_font

x$m_gc_subwindow_mode

x$m_gc_graphics_exposures

x$m_gc_clip_x_origin

GC Values Member

X$L_ GCVL_FUNCTION

X$L_ GCVL_PLANE_MASK

X$L_GCVL_FOREGROUND

X$L_GCVL_BACKGROUND

X$L_GCVL_LINE_WIDTH

X$L_ GCVL_LINE_STYLE

X$L_GCVL_CAP_STYLE

X$L_ GCVL_JOIN_STYLE

X$L_ GCVL_FILL_STYLE

X$L_ GCVL_FILL_RULE

X$L_GCVL_ TILE

X$L_GCVL_STIPPLE

X$L_ GCVL_ TS_X_ORIGIN

X$L_GCVL_ TS_ Y _ORIGIN

X$L_ GCVL_FONT

X$L_ GCVL_SUBWINDOW_MODE

X$L_GCVL_GRAPHICS_EXPOSURES

X$L_GCVL_CLIP _X_ORIGIN

(continued on next page)

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-3 (Cont.) GC Values Data Structure Flags

Flag Name

x$m_gc_clip_y _origin

x$m_gc_clip_mask

x$m_gc_dash_offset

x$m_gc_dash_list

x$m_gc_arc_mode

GC Values Member

X$L_GCVL_CLIP _ Y _ORIGIN

X$L_GCVL_CLIP _MASK

X$L_ GCVL_DASH_ OFFSET

X$B_ GCVL_DASH ES

X$L_GCVL_ARC_MODE

Example 4-1 illustrates how a client can define graphics context values
using the CREATE GC routine. Figure 4-11 shows the resulting output.

Example 4-1 Defining Graphics Characteristics Using the CREATE GC Routine

c

INTEGER*4 GC
INTEGER*4 GC MASK
RECORD /X$GC=VALUES/ XGCVL

PARAMETER Xl = 100, Yl = 100,
1 X2 = 550, Y2 = 550

C Create the graphics context
c
0 GC MASK = X$M GC FOREGROUND .OR. X$M GC BACKGROUND .OR.

1 - X$M GC LINE WIDTH .OR. X$M GC LINE STYLE .OR. X$M_GC_DASH OFFSET
1 .OR~ X$M_GC=DASH_LIST - - -

XGCVL.X$L_GCVL_FOREGROUND =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 3)

XGCVL.X$L_GCVL_BACKGROUND =

1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 4)

XGCVL.X$L_GCVL_LINE_WIDTH 4

XGCVL.X$L_GCVL_LINE_STYLE X$C_LINE DOUBLE DASH

XGCVL.X$L_GCVL_DASH_OFFSET = 0

XGCVL.X$B_GCVL_DASHES = 25

6) GC = X$CREATE_GC(DPY, WINDOW, GC_MASK, XGCVL)

., CALL X$DRAW_LINE(DPY, WINDOW, GC, Xl, Yl, X2, Y2)

0 Specify the members of the GC values data structure that will have
assigned values.

8 Specify the foreground, background, line width, line style, dash offset,
and dashes for line drawing.

The dashed line is four pixels wide. A dash offset value of zero starts
dashes at the beginning of the line. The dashes value specifies that
dashes be 25 pixels long.

4-17

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

8 The CREATE GC routine loads values into a GC data structure. The
CREATE GC routine has the following format:

gc_id = X$CREATE_GC (display, drawable_id, gc_mask,
values_struc)

8 See Chapter 6 for information about drawing lines.

Figure 4-11 Dashed Line

m Dashed Line [S]fm

Click MB 1 to draw a dashed line.

Click MB3 to exit.

'
' ' '

ZK-0104A-GE

4.3 Defining Individual Graphics Characteristics

4-18

Xlib offers routines that enable clients to define individual or functional
groups of graphics characteristics. Table 4-4 lists and briefly describes
these routines. For more information about the components, see
Section 4.1.

Defining Graphics Characteristics
4.3 Defining Individual Graphics Characteristics

Table 4-4 Routines That Define Individual or Functional Groups of
Graphics Characteristics

Routine Description

Foreground, Background, Plane Mask, and Function Routines

SET STATE

SET FOREGROUND

SET BACKGROUND

SET PLANE MASK

SET FUNCTION

Line Attribute Routines

SET LINE ATTRIBUTES

SET LINE DASHES

Fill Style and Rule Routines

SET FILL STYLE

SET FILL RULE

Fill Tile and Stipple Routines

QUERY BEST SIZE

QUERY BEST STIPPLE

QUERY BEST TILE

SET STIPPLE

SET TILE

SETTS ORIGIN

Font Routine

SET FONT

Sets the foreground, background, plane mask,
and function

Sets the foreground

Sets the background

Sets the plane mask

Sets the function

Sets line width, line style, cap style, and join
style

Sets the dash offset and dash list of a line

Sets fill style to solid, tiled, stippled, or opaque
stippled

Sets fill rule to either even and odd or winding
rule

Queries the server for the size closest to the
one specified

Queries the server for the closest stipple
shape to the one specified

Queries the server for the closest tile shape to
the one specified

Sets the stipple pixmap

Sets the tile pixmap

Sets the tile or stipple origin

Sets the current font

(continued on next page)

4-19

Defining Graphics Characteristics
4.3 Defining Individual Graphics Characteristics

Table 4-4 (Cont.) Routines That Define Individual or Functional Groups
of Graphics Characteristics

Routine

Clip Region Routines

SET CLIP MASK

SET CLIP ORIGIN

SET CLIP RECTANGLES

Description

Sets the mask for bitmap clipping

Sets the origin for clipping

Changes the clip mask from its current value
to the specified rectangles

Arc, Subwindow, and Exposure Routines

SET ARC MODE

SET SUBWINDOW MODE

SET GRAPHICS EXPOSURES

Sets the arc mode to either chord or pie slice

Sets the subwindow mode to either clip by
children or include inferiors

Specifies whether exposure events are created
when calling COPY AREA or COPY PLANE

Example 4-2 illustrates using individual routines to set background,
foreground, and line attributes. Figure 4-12 illustrates the resulting
output.

Example 4-2 Using Individual Routines to Define Graphics Characteristics

0 BYTE DASH LIST(3)
DATA DASH-=-LIST /20,5,10/

PARAMETER Xl = 100, Yl = 100,
1 X2 = 550, Y2 = 550

CALL X$SET_BACKGROUND(DPY, GC, DEFINE_COLOR(DPY, SCREEN,
1 VISUAL, 4))

ft CALL X$SET_LINE_ATTRIBUTES(DPY, GC, 10,
1 X$C_LINE_DOUBLE_DASH, 0, 0)

@) CALL X$SET_DASHES(DPY, GC, 0, DASH_LIST, 3)

4-20

CALL X$DRAW_LINE(DPY, WINDOW, GC, Xl, Yl, X2, Y2)

0 DASH_LIST defines the length of odd and even dashes. The first and
third elements of the initialization list specify even dashes; the second
element specifies odd dashes.

ft The SET LINE ATTRIBUTES routine enables the client to define line
width, style, cap style, and join style in one call.

The SET LINE ATTRIBUTES routine has the following format:

X$SET_LINE_ATTRIBUTES(display, gc_id, line_width,
line_style, cap_style, join_style)

The zero cap_style argument specifies the default cap style.

Defining Graphics Characteristics
4.3 Defining Individual Graphics Characteristics

8 When using the CREATE GC routine to set line dashes, odd and even
dashes must have equal length. The SET DASHES routine enables the
client to define dashes of varying length. The SET DASHES routine
has the following format:

X$SET_DASHES(display, gc_id, dash_offset, dash_list,
dash_list_len)

The dash_list_len argument specifies the length of the dash list.

Figure 4-12 Line Defined Using GC Routines

IE3] Line Defined with GC Convenience Routines ill liiIJ
Click MB1 to draw a dashed line.

Click MB3 to exit.

4.4 Copying, Changing, and Freeing Graphics Contexts

ZK-0102A-GE

In addition to defining a graphics context, clients can copy defined
characteristics from one GC data structure into another. To copy a GC

4-21

Defining Graphics Characteristics
4.4 Copying, Changing, and Freeing Graphics Contexts

data structure, use COPY GC. The COPY GC routine has the following
format:

X$COPY_GC(display, src_gc_id, gc_mask, dst_gc_id)

The gc_mask argument selects values to be copied from the source
graphics context (src_gc_id). Use the method described in Section 4.2
for assigning values to a GRAPHICS CONTEXT.

The dst_gc_id argument specifies the new graphics context into which the
server copies values.

After creating a graphics context structure, change values as needed using
CHANGE GC. The following code fragment, which alters the values of
the line drawn by Example 4-1, illustrates changing a graphics context
structure:

GC_MASK = X$M_GC_LINE_WIDTH .OR. X$M_GC_LINE_STYLE

XGCVL.X$L_GCVL_LINE_WIDTH 10

XGCVL.X$L_GCVL_LINE_STYLE X$C_LINE SOLID

CALL X$CHANGE_GC(DPY, GC, GC_MASK, XGCV)

The example illustrates defining a new line style and width, and changing
the graphics context to include the new values.

4.5 Using Graphics Characteristics Efficiently

4-22

The server must revalidate a graphics context whenever a client redefines
it. Causing the server to revalidate a graphics context unnecessarily can
seriously degrade performance.

The server revalidates a graphics context when one of the following
conditions occurs:

• A client associates the graphics context with a different window.

• The graphics context clip list changes. Changes in the clip list can
happen either when a client changes the graphics context clip origin
or when the server modifies the clip list in response to overlapping
windows.

• Any member of the graphics context changes.

To minimize revalidating the graphics context, submit as a group the
requests to the server that identify the same window and graphics context.
Grouping requests enables the server to revalidate the graphics context
once instead of many times.

When it is necessary to change the value of graphics context members
frequently, creating a new graphics context is more efficient than
redefining an existing one, provided the client creates no more than 50
graphics contexts.

5 Using Color

Color is one attribute clients can define when creating a window or a
graphics object. Depending on display hardware, clients can define color
as black or white, as shades of gray, or as a spectrum of hues. Section 5.2
describes color definition in detail, including workstation types and the
colors they support.

Xlib offers clients the choice of either sharing colors with other clients or
allocating colors for exclusive use.

A client that does not have to change colors can share them with other
clients. By sharing colors, the client saves color resources.

A client must allocate colors for its exclusive use when it needs to change
them. For example, when presenting a graphic representation of a
pipeline, the client might indicate flow through the pipeline by changing
colors rather than redrawing the entire pipeline schematic. In this case,
the client would allocate for exclusive use colors that represent pipeline
flow.

This chapter introduces color management using Xlib and describes how
to share and allocate color resources. The chapter includes the following
topics:

• Color fundamentals-A description of pixels and planes, and color
indices, cells, and maps

• Matching color requirements to screen types- How screen types affect
color presentation

• Sharing color resources-How to share color resources with other
clients

• Allocating colors for exclusive use-How to reserve colors for a single
client

• Querying color resources-How to return values of color map entries

• Freeing color resources-How to release color resources

The concepts presented in this chapter apply to managing the color of both
windows and graphic objects. Chapter 6 describes how to create graphic
objects.

5.1 Pixels and Color Maps
The color of a window or graphics object depends on the values of
pixels that constitute it. The number of bits associated with each pixel
determines the number of possible pixel values. On a monochrome screen,
one bit maps to each pixel. The number of possible pixel values is two.
Pixels are either zero or one, black or white.

5-1

Using Color
5.1 Pixels and Color Maps

5-2

On a monochrome screen, all bits that define an image reside on
one plane, an allocation of memory in which there is a one-to-one
correspondence between bits and pixels. The number of planes is the
depth of the screen.

The depth of intensity or color screens is greater than one. More than one
bit defines the value of a pixel. Each bit associated with the pixel resides
on a different plane.

The number of possible pixel values increases as depth increases. For
example, if the screen has a depth of four planes (hardware will support
a four-plane screen), the value of each pixel comprises four bits. Clients
using a four-plane intensity display can produce up to sixteen levels of
brightness. Clients using a four-plane color display can produce as many
as sixteen colors.

Figure 5-1 illustrates the relationship between pixel values and planes.

Figure 5-1 Pixel Values and Planes

Bit Setting

Planes

Screen Depth=4

ZK-0074A-GE

Xlib uses color maps to define the color of each pixel. A color map
contains a collection of color cells, each of which defines the color pixel
value in terms of its red, green, and blue (RGB) components. Red, green,
and blue components are in the range of zero (oft) to 65535 (brightest)
inclusive.

Each pixel value refers to a location in a color map, or is an index into a
color map. For example, the pixel value illustrated in Figure 5-1 indexes
color cell 11 in Figure 5-2.

Using Color
5.1 Pixels and Color Maps

Figure 5-2 Color Map, Cell, and Index

Color Map

Col.o_r V..alue
Color Value

II

II

I

II

II

II

II

Col.o_r V...alue

,/'
Pixel Value 1011 2 or 11 10 Indexes the Color Map ----

0
1
2
3
4
5
6
7
8
9
10
11---·-+ Digital-to-Analog
12 Converter

13
14
15

Corresponding pixel is
illuminated using the
value in the eleventh
color map entry.

ZK-0076A-GE

Because most VAXstations have a hardware color map that is global to the
entire display, clients should use the same color map whenever possible.
Otherwise, some clients will appear in the wrong color.

For example, an image processing program that requires 128 colors might
allocate and store a color map of these values. To alter some colors,
another client may invoke a color palette program that chooses and mixes
colors. The color palette program itself requires a color map, which the
program allocates and installs.

Since both programs have allocated different color maps, this can produce
undesirable results. When the image processing program runs, the color
palette image may be incorrectly displayed because only the image
processing color map is installed. Conversely, when the color palette
program runs, the image processing program may be incorrectly displayed
because only the color palette color map is installed.

5-3

Using Color
5.1 Pixels and Color Maps

Xlib reduces the problem of contending for color resources in two ways.
First, Xlib provides a default color map to which all clients have access.
Second, clients can· either allocate color cells for exclusive use or allocate
colors for shared use from the default color map. By sharing colors, a
client can use the same color cells as other clients. This method conserves
space in the default color map.

In cases where the client cannot use the default color map and must use
a new color map, Xlib creates virtual color maps. The use of virtual color
maps is analogous to the use of virtual memory in a multiprogramming
environment where many processes must access physical memory. When
concurrent processes collectively require more color map entries than exist
in the hardware color map, the color values are swapped in and out of the
hardware color map. However, swapping virtual color maps in and out of
the hardware color map causes contention for color resources. Therefore,
the client should avoid creating color maps whenever possible.

The process of loading or unloading color values of the virtual color map
into the hardware lookup table occurs when a client calls the INSTALL
COLORMAP or UNINSTALL COLORMAP routines. Typically, the
privilege to install or remove color maps is restricted to the window
manager.

5.2 Matching Color Requirements to Screen Types

5-4

Each screen has a list of visual types associated with it. The visual type
identifies the characteristics of the screen, such as color or monochrome
capability. Visual types partially determine the appearance of color on
the screen and determine how a client can manipulate color maps for a
specified screen.

Color maps can be manipulated in a variety of ways on some hardware,
in a limited way on other hardware, and not at all on yet other hardware.
For example, a screen may be able to display a full range of colors or a
range of grays only, depending on its visual type.

VMS DECwindows supports the following visual types:

• Pseudocolor-A pixel value indexes a color map to produce independent
RGB values. RGB values can be changed dynamically, if a pixel has
been allocated for exclusive use.

• Gray scale-Same as pseudocolor, except the pixel value indexes a
color map that produces only shades of gray.

• Static gray-Same as gray scale, except that clients cannot change
values in the color map.

In addition to supporting pseudocolor, gray scale, and static gray, VMS
DECwindows enables clients to simulate the direct color visual type.
Direct color stores RGB components into three separate data structures:
one for red values, one for green values, and one for blue values. Pixel
values refer to these three data structures, as Figure 5-3 illustrates. A
direct color pixel value of 000000010, or 000 000 010, refers to member
0 of the data structure of red values, member 0 of the data structure of
green values, and member 2 of the data structure of blue values.

Using Color
5.2 Matching Color Requirements to Screen Types

See Section 5.4.2 for information about simulating a direct color device.

Figure 5-3 Visual Types and Color Map Characteristics

Pseudocolor

Pixel Value= 000 000 01 o2

256
R

Gray Scale
Pixel Value =

0
1
2

256

Static Gray

Pixel Value =

L~I I

256 256 ---G 8

000 000 0102

000 000 0102
I

I Converter r
f

ZK-0291 A-GE

Default visual types are defined for each screen of a display and depend on
the workstation and monitor type.

5-5

Using Color
5.2 Matching Color Requirements to Screen Types

Table 5-1 lists VAXstations and their visual types.

Table 5-1 VAXstation Visual Types

Visual Type

Monochrome Color
VAXstation Type Monitor Monitor

VAXstation II Static gray N/A

VAXstation 2000 Static gray NIA

VAXstation 11/GPX Gray scale Pseudocolor

VAXstation 2000/GPX Gray scale Pseudocolor

VAXstation 3200 Gray scale Pseudocolor

VAXstation 3500 Gray scale Pseudocolor

Before defining colors, use the following method to determine the visual
type of a screen:

Use the DEFAULT VISUAL OF SCREEN routine to determine the
identifier of the visual. Xlib returns the identifier to a visual data
structure.

2 Refer to the X$L_ VISU _CLASS member of the data structure to
determine the visual type.

T!ie following example illustrates how to determine the visual type of a
screen:

CALL X$DEFAULT_VISUAL_OF_SCREEN(SCREEN,VISUAL)

IF (VISU.X$L VISU CLASS .EQ. X$C PSEUDO COLOR .OR.
1 VISU.X$L-VISU-CLASS .EQ. X$C-DIRECT-COLOR) THEN

COLOR_MAP x$DEFAULT_COLORMAP_OF_SCREEN(SCRN)

5.3 Sharing Color Resources

5-6

Xlib provides the following ways to share color resources:

• Using named VMS DECwindows colors

• Specifying exact color values

The choice of using a named color or specifying an exact color depends on
the needs of the client. For instance, if the client is producing a bar graph,
specifying the named VMS DECwindows color "Red" as a color value may
be sufficient, regardless of the hue that VMS DECwindows names "Red".

5.3.1

Using Color
5.3 Sharing Color Resources

However, if the client is reproducing a portrait, specifying an exact red
color value might be necessary to produce accurate skin tones.

Note that because of differences in hardware, no two monitors display
colors exactly the same even though the same named colors are specified.

For a list of named VMS DECwindows colors, see Appendix C.

Using Named VMS DECwindows Colors
VMS DECwindows includes named colors that clients can share. To use a
named color, call the ALLOC NAMED COLOR routine. ALLOC NAMED
COLOR determines whether the color map defines a value for the specified
color. If the color exists, the server returns the index to the color map. If
the color does not exist, the server returns an error.

Example 5-1 illustrates specifying a color using ALLOC NAMED COLOR.

Example 5-1 Using Named VMS DECwindows Colors

•
f)

INTEGER*4 FUNCTION DEFINE_COLOR(DISP, SCRN, VISU, N)

INCLUDE 'SYS$LIBRARY:DECW$XLIBDEF'

INTEGER*4 DISP, SCRN, N
RECORD /X$VISUAL/ VISU ! visual type
RECORD /X$COLOR/ SCREEN_COLOR
INTEGER*4 STR_SIZE, STATUS, COLOR_MAP
CHARACTER*15 COLOR NAME(3)
DATA COLOR_NAME /'DARK SLATE BLUE', 'LIGHT GREY

IF (VISU.X$L_VISU_CLASS .EQ. X$C PSEUDO COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C=DIRECT=COLOR) THEN

COLOR_MAP = X$DEFAULT_COLORMAP_OF_SCREEN(SCRN)

, 'FIREBRICK

@) STATUS STR$TRIM(COLOR_NAME(N),
1 COLOR_NAME(N), STR_SIZE)

., STATUS X$ALLOC_NAMED_COLOR(DISP, COLOR_MAP,
1 COLOR_NAME(N) (l:STR_SIZE), SCREEN_COLOR)

ELSE

1

1
END

IF (STATUS .NE. 0) THEN
DEFINE_COLOR = SCREEN_COLOR.X$L_COLR_PIXEL

ELSE

END

IF

IF

IF

WRITE(6,*) 'Color not allocated!'
CALL LIB$SIGNAL(%VAL(STATUS))
DEFINE COLOR = 0
IF

(N .EQ. 1 .OR. N .EQ. 3)
DEFINE_COLOR = X$BLACK_PIXEL OF SCREEN(DISP)

(N .EQ. 2)
DEFINE COLOR= X$WHITE_PIXEL_OF_SCREEN(DISP)

RETURN
END

'/

8 Allocate storage for a color data structure that defines the closest RGB
values supported by the hardware.

5-7

5.3.2

Using Color
5.3 Sharing Color Resources

For an illustration of the color data structure, see Section 5.3.2.

8 Create an array to store the names of predefined VMS DECwindows
colors used by the client. In the sample program, the client uses
three named colors: dark slate blue, light grey, and firebrick. When
allocating a color, the client refers to the array element that stores the
appropriate named VMS DECwindows color.

@) Xlib requires clients to pass names of predefined colors without
padding. In the DEFINE_COLOR function, the names of predefined
colors are stored in an array of three 15-byte members. Because the
names "light grey" and "firebrick" require less than 15 bytes of storage,
they are padded.

To pass the names without padding, use the system-define procedure
STR$TRIM, which returns to the STR_SIZE variable the length of the
string minus any trailing blanks.

8 The ALLOC NAMED COLOR routine has the following format:

X$ALLOC_NAMED_COLOR(display, colormap_id, color_name,
[screen_def_return], [exact_def_return])

The client refers to array COLOR_NAME to pass the name of the
color. The client passes only the substring that contains the predefined
name; blanks used to pad the array are ignored.

Specifying Exact Color Values
To specify exact color values, use the following method:

1 Assign values to a color data structure

2 Call the ALLOC COLOR routine, specifying the color map that stores
the definition. ALLOC COLOR returns a pixel value and changes the
RGB values to indicate the closest color supported by the hardware.

Xlib provides a color data structure to enable clients to specify exact color
values when sharing colors. (Routines that allocate colors for exclusive
use and that query available colors also use the color data structure. For
information about using the color data structure for these purposes, see
Section 5.4.)

Figure 5-4 illustrates the color data structure.

Figure 5-4 Color Data Structure

x$1_colr _pixel 0

x$w_colr_green x$w_colr_red 4

x$b_colr_pad l x$b_colr _flags x$w_colr_blue 8

5-8

Using Color
5.3 Sharing Color Resources

Table 5-2 describes the members of the data structure.

Tab~e 5-2 Color Data Structure Members

Member Name

X$L_COLR_PIXEL

X$W_COLR_RED

X$W_COLR_GREEN

X$W_COLR_BLUE

X$B_COLR_FLAGS

X$B_COLR_PAD

Contents

Pixel value.

Defines the red value of the pixel 1

Defines the green value of the pixel 1

Defines the blue value of the pixel 1

Defines which color components are to be changed in
the color map. Possible flags are as follows:
x$m_do_red Sets red values

x$m_do_green

x$m_do_blue

Sets green values

Sets blue values

Makes the data structure an even length

1 Color values are scaled between O and 65535. "On full" in a color is a value of 65535,
independent of the number of planes of the display. Half brightness in a color is a value of
32767; off is a value of 0. This representation gives uniform results for color values across
displays with different color resolution.

Example 5-2 illustrates how to specify exact color definitions.

Example 5-2 Specifying Exact Color Values

C Create color
c

INTEGER*4 FUNCTION DEFINE_COLOR(DISP, SCRN, VISU, N)

INCLUDE 'SYS$LIBRARY:DECW$XLIBDEF'

INTEGER*4 DISP, SCRN, N
RECORD /X$VISUAL/ VISU ! visual type
RECORD /X$COLOR/ COLORS(3)
INTEGER*4 STATUS, COLOR MAP
INTEGER*4 FLAGS

(continued on next page)

5-9

Using Color
5.3 Sharing Color Resources

Example 5-2 (Cont.) Specifying Exact Color Values

•

5-10

IF (VISU.X$L VISU CLASS .EQ. X$C PSEUDO COLOR .OR.
1 VISU.X$L=VISU=CLASS .EQ. X$C=DIRECT=COLOR) THEN

FLAGS = X$M DO RED .OR. X$M DO GREEN .OR. X$M DO BLUE
COLOR_MAP =-X$DEFAULT_COLORMAP-=-OF_SCREEN(SCRN) -
IF (N .EQ. 1) THEN

ELSE

COLORS(N) .X$B_COLR_FLAGS =FLAGS
COLORS(N) .X$W_COLR_RED = 59904
COLORS(N) .X$W_COLR_GREEN = 44288
COLORS(N) .X$W_COLR_BLUE = 59904
STATUS= X$ALLOC_COLOR(DISP, COLOR_MAP, COLORS(N))
IF (STATUS .NE. 0) THEN

ELSE
DEFINE_COLOR = COLORS(N) .X$L_COLR_PIXEL

WRITE(6,*) 'Color not allocated!'
CALL LIB$SIGNAL(%VAL(STATUS))
DEFINE COLOR = 0

END IF
ELSE IF (N. EQ. 2) THEN

COLORS(N) .X$B_COLR_FLAGS =FLAGS
COLORS(N) .X$W COLR RED= 65280
COLORS(N) .X$W=COLR=GREEN = 0
COLORS(N) .X$W COLR BLUE= 32512
STATUS= X$ALLOC_COLOR(DISP, COLOR_MAP, COLORS(N))
IF (STATUS .NE. 0) THEN

ELSE
DEFINE_COLOR = COLORS(N) .X$L_COLR_PIXEL

WRITE(6,*) 'Color not allocated!'
CALL LIB$SIGNAL(%VAL(STATUS))
DEFINE COLOR = 0

END IF
ELSE IF (N. EQ. 3) THEN

COLORS(N) .X$B_COLR_FLAGS =FLAGS
COLORS(N) .X$W COLR RED= 37632
COLORS(N) .X$W=COLR=GREEN = 56064
COLORS(N) .X$W COLR BLUE= 28672
STATUS= X$ALLOC_COLOR(DISP, COLOR_MAP, COLORS(N))
IF (STATUS .NE. 0) THEN

ELSE
DEFINE_COLOR = COLORS(N) .X$L_COLR_PIXEL

WRITE(6,*) 'Color not allocated!'
CALL LIB$SIGNAL(%VAL(STATUS))
DEFINE COLOR = 0

END IF
END IF

IF (N .EQ. 1 .OR. N .EQ. 3)
1 DEFINE COLOR X$BLACK_PIXEL OF SCREEN(DISP)

IF (N .EQ. 2)
1 DEFINE COLOR X$WHITE_PIXEL_OF_SCREEN(DISP)
END IF

RETURN
END

8 FLAGS specifies that RGB values are defined.

8 Define color values in the first of three color data structures.

Using Color
5.3 Sharing Color Resources

8 After defining RGB values, call the ALLOC COLOR routine. ALLOC
COLOR allocates shared color cells on the default color map and
returns a pixel value for the color that matches the specified color most
closely.

5.4 Allocating Colors for Exclusive Use

5.4.1

A client that does not need to change color values should share colors using
the methods described in Section 5.3.2. Sharing colors saves resources.
However, a client that changes color values must allocate them for its
exclusive use.

Xlib provides two methods for allocating colors for the exclusive use of
a client. First, the client can allocate cells and store color values in the
default color map. Second, if the default color map does not contain
enough storage, the client can create its own color map and store color
values in it.

This section describes how to specify a color map, how to allocate cells for
exclusive use, and how to store values in the color cells.

Specifying a Color Map
Clients can either use the default color map and allocate its color cells for
exclusive use or create their own color maps.

If possible, use the default color map. Although a client can create color
maps for its own use, the hardware color map storage is limited. When a
client creates its own color map, the map must be loaded, or installed, into
the hardware color map before the client map can be used. If the client
color map is not installed, the client may refer to a different color map and
possibly display the wrong color. Using the default color map eliminates
this problem. See Section 5.1 for information about how Xlib handles color
maps.

To specify the default color map, use the DEFAULT COLORMAP routine.
DEFAULT COLORMAP returns the identifier of the default color map.

If the default color map does not contain enough resources, the client can
create its own color map.

To create a color map, use the following method:

1 Determine the visual type of a specified screen using the method
described in Section 5.2

2 Call the CREATE COLORMAP routine.

The CREATE COLORMAP routine creates a color map for the specified
window and visual type. CREATE COLORMAP has the following format:

X$CREATE_COLORMAP(display, window_id, visual_struc, alloc)

5-11

5.4.2

Using Color
5.4 Allocating Colors for Exclusive Use

The alloc argument specifies whether the client creating the color map
allocates all of the color map entries for its exclusive use or creates a
color map with no allocated color map entries. To allocate all entries for
exclusive use, specify the constant x$c_alloc_all. To allocate no defined
map entries, specify the constant x$c_alloc_none. The latter is useful
when two or more clients are to share the newly created color map.

If the visual type is pseudocolor or gray scale, the client can either allocate
all or no map entries. If the visual type is static gray, the client must
allocate no entries.

See Section 5.4.2 for information about allocating colors. See Example 5-3
for an example of specifying the default color map.

Allocating Color Cells
After specifying a color map, allocate color cells in it.

To allocate color cells, call the ALLOC COLOR CELLS routine to allocate
cells for a pseudocolor device or a gray scale device. Call the ALLOC
COLOR PLANES routine to simulate a direct color device. See Section 5.2
for information about the direct color visual type.

Example 5-3 illustrates how to allocate colors for exclusive use. The
program creates a color wheel that rotates when the user presses MBl.

Example 5-3 Allocating Colors for Exclusive Use

5-12

PROGRAM COLOR WHEEL

INCLUDE 'SYS$LIBRARY:DECW$XLIBDEF'

INTEGER*4 DPY
INTEGER*4 SCREEN
INTEGER*4 WINDOW
INTEGER*4 GC MASK
INTEGER*4 ATTR MASK
INTEGER*4 GC
INTEGER*4 OFFSET X
INTEGER*4 OFFSET Y
INTEGER*4 CMAP
INTEGER*4 PIXMAP
INTEGER*4 WIDTH, HEIGHT
INTEGER*4 BUTTON IS DOWN
INTEGER*4 FULL COUNT
INTEGER*4 STATUS, FUNC
INTEGER*4 WINDOW_X, WINDOW_Y,

RECORD /X$VISUAL/ VISUAL
RECORD /X$COLOR/ COLORS(l28)

DEPTH

RECORD /X$SET WIN ATTRIBUTES/ XSWDA
RECORD /X$GC VALUES/ XGCVL
RECORD /X$SIZE HINTS/ XSZHN
RECORD /X$EVENT/ EVENT
PARAMETER WINDOW_W = 600, WINDOW H = 600,
1 BACK_W = 800, BACK_H = 800

(continued on next page)

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

OFFSET X = 100
OFFSET Y = 100

C Initialize display id and screen id
c

DPY = X$0PEN_DISPLAY()
SCREEN X$DEFAULT_SCREEN_OF DISPLAY(DPY)

STATUS= X$SYNCHRONIZE(DPY, 1, FUNC)

c
C Create the WINDOW window
c

c

WINDOW X = (X$WIDTH OF SCREEN(SCREEN) - WINDOW W) / 2
WINDOW y = (X$HEIGHT_OF_SCREEN(SCREEN) - WINDOW_H) I 2

DEPTH = X$DEFAULT DEPTH OF SCREEN(SCREEN)
CALL X$DEFAULT_VISUAL_OF_SCREEN(SCREEN,VISUAL)
ATTR_MASK = X$M_CW_EVENT_MASK .OR. X$M_CW_BACK_PIXEL

XSWDA.X$L SWDA EVENT MASK = X$M EXPOSURE .OR. X$M BUTTON PRESS
1 .OR. x$M_EXPOSURE .OR. X$M_BUTTON_RELEASE-.OR. -
1 X$M_STRUCTURE_NOTIFY

XSWDA.X$L SWDA BACKGROUND PIXEL =
1 X$BLACK_PIXEL_OF_SCREEN(SCREEN)

WINDOW = X$CREATE WINDOW(DPY,
1 X$ROOT_WINDOW=OF_SCREEN(SCREEN),
1 WINDOW X, WINDOW Y, WINDOW W, WINDOW H, 0,
1 DEPTH,-X$C_INPUT=OUTPUT, VISUAL, ATTR_MASK, XSWDA)

C Create graphics context
c

GC = X$CREATE GC(DPY, WINDOW, 0, 0)
CALL X$SET_FOREGROUND(DPY, GC, X$WHITE_PIXEL OF SCREEN(SCREEN))

c
C Create the pixmap used for backing store
c
t) PIXMAP= X$CREATE PIXMAP(DPY, X$ROOT WINDOW(DPY,

1 X$DEFAULT SCREEN(DPY)), BACK w, BACK H, DEPTH)
CALL X$FILL_RECTANGLE(DPY, PIXMAP, GC, O~ 0, BACK_W, BACK_H)

c
C Create the initial colors for the wheel
c
~ CALL CREATE_COLORS(DPY, SCREEN, VISUAL, COLORS, CMAP, FULL_COUNT)

c
C Create the wheel
c

CALL CREATE_WHEEL(DPY, SCREEN, GC, PIXMAP, COLORS)

c
C Define the size and name of the WINDOW window
c

(continued on next page)

5-13

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

c

XSZHN.X$L SZHN X = 212
XSZHN.X$L=SZHN=Y = 132
XSZHN.X$L SZHN WIDTH = 600
XSZHN.X$L-SZHN-HEIGHT = 600
XSZHN.X$L=SZHN=FLAGS = X$M_P_POSITION .OR. X$M P SIZE

CALL X$SET NORMAL HINTS(DPY, WINDOW, XSZHN)
CALL X$STORE_NAME(DPY, WINDOW,
1 'Color Wheel: Press MBl to Rotate or Click MB2 to Exit.')

C Map the window
c

CALL X$MAP_WINDOW(DPY, WINDOW)

c
C Handle events
c

c
c

DO WHILE (. TRUE.)

1
1
1
1
1
1

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE) THEN
CALL X$COPY AREA(DPY, PIXMAP, WINDOW, GC,

OFFSETX + EVENT.EVNT EXPOSE.X$L EXEV X,
OFFSET=Y + EVENT.EVNT=EXPOSE.X$L=EXEV=Y,
EVENT.EVNT EXPOSE.X$L EXEV WIDTH,
EVENT.EVNT=EXPOSE.X$L=EXEV=HEIGHT,
EVENT.EVNT EXPOSE.X$L EXEV X,
EVENT.EVNT=EXPOSE.X$L=EXEV=Y)

END IF
IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.

1 EVENT.EVNT=BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN
BUTTON IS DOWN = 1

IF (BUTTON_IS_DOWN .EQ. 1) THEN
CALL CHANGE_COLORS(DPY, CMAP, COLORS, FULL_COUNT)

END IF
END IF
IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.

1 EVENT.EVNT BUTTON.X$L BTEV BUTTON .EQ. X$C_BUTTON2) THEN
CALL SYS$EXIT(%VAL(l)) -

END IF
IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON RELEASE) THEN

BUTTON IS DOWN = 0
END IF

Cj IF (EVENT.EVNT_TYPE .EQ. X$C_CONFIGURE_NOTIFY) THEN
OFFSET X =

1 (BACK_W - EVENT.EVNT_CONFIGURE.X$L_CFEV_WIDTH)/2
OFFSET Y =

1 (BACK_H - EVENT.EVNT_CONFIGURE.X$L_CFEV_HEIGHT)/2
END IF

END DO

END
c
C CREATE COLORS SUBROUTINE
c
fB SUBROUTINE CREATE_COLORS(DISP, SCRN, VISU, CLRS, MAP, FC)

5-14

(continued on next page)

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

INCLUDE 'SYS$LIBRARY:DECW$XLIBDEF'

INTEGER*4 DISP, SCRN, MAP, FC
INTEGER*4 PIXELS(l28)
INTEGER*4 CONTIG, STATUS
INTEGER*4 PLANE_MASKS(128)

RECORD /X$VISUAL/ VISU
RECORD /X$COLOR/ CLRS(128)

IF (VISU.X$L VISU CLASS .EQ. X$C_PSEUDO_COLOR .OR.
1 VISU.X$L=VISU=CLASS .EQ. X$C_DIRECT_COLOR) THEN

(!) MAP = X$DEFAULT COLORMAP OF SCREEN(SCRN)
FC = X$DISPLAY_CELLS(DISP, X$DEFAULT_SCREEN(DISP))
IF (FC .GT. 128) THEN

FC 128
END IF
STATUS X$ALLOC_COLOR CELLS(DISP, MAP, CONTIG, PLANE_MASKS,

c

1 0, PIXELS, FC)
IF (STATUS .EQ. 0) THEN

CALL SYS$EXIT(%VAL(l))
END IF
CALL LOAD_COLORMAP(DISP, MAP, CLRS, PIXELS, FC)

ELSE

END IF

RETURN
END

CALL SYS$EXIT(%VAL(l))

C LOAD COLORMAP SUBROUTINE
c
fj SUBROUTINE LOAD_COLORMAP(DIS, MP, COLR, PIXS, COUNT)

INCLUDE 'SYS$LIBRARY:DECW$XLIBDEF'

INTEGER*4 DIS, MP, COUNT
INTEGER*4 PIXS(128)
INTEGER*4 I, C, FLAGS
INTEGER*2 J(2)
EQUIVALENCE (C, J(l))
REAL*16 H, R, G, B

RECORD /X$COLOR/ COLR(128)

FLAGS = X$M_DO_RED .OR. X$M_DO GREEN .OR. X$M_DO_BLUE
DO I = 1, COUNT

COLR(I) .X$L COLR PIXEL= PIXS(I)
COLR(I) .X$B=COLR=FLAGS = FLAGS

@) H =I * 360./(COUNT + 1.)
CALL HLS_TO_RGB(H, .5, .5, R, G, B)
C = R * 65535.0
COLR(I) .X$W_COLR_RED = J(l)
C = G * 65535.0
COLR(I) .X$W_COLR_GREEN = J(l)
C = B * 65535.0
COLR(I) .X$W_COLR_BLUE = J(l)

END DO
CALL X$STORE_COLORS(DIS, MP, COLR, COUNT)

{continued on next page)

5-15

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

c

RETURN
END

C HLS TO RGB SUBROUTINE
c

c

SUBROUTINE HLS_TO_RGB(HUE, LGHT, SATUR, RD, GRN, BLU)

REAL*16 VALUE
REAL*16 HUE, LGHT, SATUR
REAL*16 RD, GRN, BLU
REAL*16 Ml, M2

IF (LGHT .LT .. 05) THEN
M2 L * (1 + SATUR)

ELSE
M2

END IF
LGHT + SATUR - (LGHT * SATUR)

Ml = 2 * LGHT - M2
IF (SATUR .EQ. 0) THEN

RD = LGHT

ELSE

GRN LGHT
BLU = LGHT

RD= VALUE(Ml, M2, (HUE+ 120.))
GRN VALUE(Ml, M2, (HUE+ 000.))
BLU = VALUE(Ml, M2, (HUE - 120.))

END IF

RETURN
END

C CREATE WHEEL SUBROUTINE
c
@> SUBROUTINE CREATE_WHEEL(DISP, SCRN, GRAPH_CON, PMAP, CLRS)

INCLUDE 'SYS$LIBRARY:DECW$XLIBDEF'

INTEGER*4 DISP, SCRN, GRAPH_CON, PMAP
INTEGER*4 I, J, PIXEL
INTEGER*4 X_CENT, Y_CENT
REAL*16 X, Y, XCENT_F, YCENT_F

RECORD /X$COLOR/ CLRS(128)
RECORD /X$POINT/ PGON(387)

PARAMETER PMAP WIDTH = 800, PMAP HEIGHT 800

5-16

(continued on next page)

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

X CENT = PMAP WIDTH/2
Y=CENT = PMAP=HEIGHT/2

4D) PGON(l) .X$W GPNT X = PMAP WIDTH

c

PGON(l) .X$W-=-GPNT-=-Y = PMAP-=-HEIGHT/2
I = 2
DO WHILE (I .LT. 384)

PGON(I) .X$W GPNT X
PGON(I) .X$W=GPNT=Y
I = I + 3

END DO
I = 2
PIXEL = 1

X CENT
Y CENT

DO WHILE (PIXEL .LT. 129)
XCENT F = X CENT
YCENT F = Y CENT
x = COS((QFLOAT(PIXEL)/128)*2*3.14159)
Y = SIN((QFLOAT(PIXEL)/128)*2*3.14159)
PGON(I + 1) .X$W GPNT X (X * XCENT F) + X CENT
PGON(I + 1) .X$W-GPNT-Y (Y * YCENT-F) + Y CENT
PGoN<I + 2> .x$w-GPNT-x PGON<I + 1).x$w GPNr x
PGON(I + 2) .X$W-GPNT-Y PGON(I + 1) .X$W-GPNT-Y
CALL X$SET FOREGROUND(DISP, GRAPH CON, CLRS((I+l)/3) .X$L COLR PIXEL)
CALL X$FILL_POLYGON(DISP, PMAP, GRAPH_CON, PGON(I-1), 3,-

1 XC_CONVEX, XC_COORD_MODE_ORIGIN)
I = I + 3
PIXEL = PIXEL + 1

END DO

RETURN
END

C CHANGE COLORS SUBROUTINE
c
48 SUBROUTINE CHANGE_COLORS(DISP, MAP, CLRS, CNT)

INCLUDE 'SYS$LIBRARY:DECW$XLIBDEF'

INTEGER*4 DISP, MAP, CNT, PENDING
INTEGER*4 I, TEMP

RECORD /X$COLOR/ CLRS(l28)

DO WHILE (X$PENDING(DISP) .EQ. 0)
TEMP = CLRS(l) .X$L_COLR_PIXEL
I = 1
DO WHILE (I .LT. CNT)

CLRS(I) .X$L_COLR_PIXEL CLRS(I + 1) .X$L_COLR_PIXEL
I = I +1

END DO
CLRS(CNT) .X$L COLR PIXEL= TEMP
CALL X$STORE_COLORS(DISP, MAP, CLRS(l), CNT)

END DO

RETURN
END

(continued on next page)

5-17

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

c
C VALUE FUNCTION
c

5-18

REAL*16 FUNCTION VALUE(Nl, N2, HUE)

REAL*16 Nl, N2, HUE, VAL

IF (HUE .GT. 360.) THEN
HUE = HUE - 360.

END IF
IF (HUE .LT. 0) THEN

HUE = HUE + 360.
END IF
IF (HUE .LT. 60) THEN

VAL= Nl + (N2 - Nl) * HUE/60.
ELSE IF (HUE .LT. 180.) THEN

VAL = N2
ELSE IF (HUE .LT. 240) THEN

VAL= Nl + (N2 - Nl) * (240. - HUE)/60.
ELSE

VAL = Nl
END IF
VALUE = VAL

RETURN
END

0 The client uses a pixmap as a backing store for the color wheel. When
a user reconfigures the color wheel window, the client copies the color
wheel from the pixmap into the resized window. For information about
creating and using pixmaps, see Chapter 7.

8 After creating the pixmap for backing store, the client creates colors
for the wheel and the wheel itself. For details about these subroutines,
see callouts 8, 9, and 10.

8 When the user reconfigures the window, the server generates an
expose event. In response to the event, the client copies the pixmap
into the exposed area, which is calculated using the offset from the
original to the new position of the window. For information about
handling exposure events, see Chapter 9.

8 The client calculates the offset from the original window position in
response to a configure notify event. The server issues a configure
notify event each time the user resizes the color wheel window. For
information about handling configure notify events, see Chapter 9.

0 The client-defined CREATE_COLORS routine allocates color cells for
the exclusive use and stores initial color values in the color map.

0 The client uses the default color map, specifying that only 128 color
cells be allocated. After allocating color cells, the client calls the
client-defined LOAD_COLORMAP routine to define color values.

8 The LOAD_COLORMAP routine defines 128 colors and stores them in
the color map.

Using Color
5.4 Allocating Colors for Exclusive Use

0 Colors are defined initially using the Hue, Light, Saturation (HLS)
system. The values of color hues vary, while values for light and
saturation remain constant. After a color has been defined using HLS,
the color is converted into RGB values by the client-defined HLS_TO_
RGB routine. When all colors are defined, the client stores them in the
color map by calling the client-defined STORE COLORS routine.

0 The client-defined CREATE_ WHEEL routine defines the wheel used to
display colors and specifies initial color values.

8 The wheel is composed of polygons. Each polygon is defined by three
points, one in the center of the wheel and two at the circumference.
After the initial polygon is specified, each polygon shares one point
with the polygon previously defined, as Figure 5-5 illustrates.

To define each point the client uses a poiP.t data structure, which is
described in Chapter 6. After defining a polygon, the client fills it with
a specified foreground color.

e The rotation of the color wheel is accomplished by changing values in
the color map. As long as there are no pending events, and the user
is pressing MBl, the client-defined CHANGE_COLORS routine shifts
color values by one.

5-19

Using Color
5.4 Allocating Colors for Exclusive Use

5-20

Figure 5-5 Polygons That Define the Color Wheel

,-Pixmap

-==:::::.;::::=:::::--~~~~~~

P3 =P4

ZK-0532A-GE

When allocating colors from any shared color map, the client may exhaust
the resources of the color map. In this case, Xlib provides a routine for
copying the default color map entries into a new client-created color map.

To create a new color map when the client exhausts the resources of a
previously shared color map, use the COPY COLORMAP AND FREE
routine. The routine creates a color map of the same visual type and
for the same screen as the previously shared color map. The previously
shared color map can be either the default color map or a client-created
color map. The COPY COLORMAP AND FREE routine has the following
format:

X$COPY_COLORMAP_AND_FREE(display, colormap_id)

COPY COLORMAP AND FREE copies all allocated cells from the
previously shared color map to the new color map, keeping color values
intact. The new color map is created with the same value of the argument
alloc as the previously shared color map and has the following effect on
the new color map entries:

5.4.3

Value of alloc

x$c_alloc_all

x$c_alloc_none

Storing Color Values

Using Color
5.4 Allocating Colors for Exclusive Use

Effect

All entries are copied from the previously shared color map
and are then freed to create writable map entries.

The entries moved are all pixels and planes that have been
allocated using the following routines and that have not been
freed since they were allocated: ALLOC COLOR, ALLOC
NAMED COLOR, ALLOC COLOR CELLS, ALLOC COLOR
PLANES.

After allocating color entries in the color map, store RGB values in the
color map cells using the following method:

1 Assign color values to the color data structure and set the X$B_COLR_
FLAGS member to indicate the values defined.

2 Call the STORE COLOR routine to store one color, the STORE
COLORS routine to store more than one color, or the STORE NAMED
COLOR routine to store a named color.

The STORE COLOR routine has the following format:

X$STORE_COLOR(display, colormap_id, screen_def_return)

The STORE COLORS routine has the following format:

X$STORE_COLORS(display, colormap_id, screen_defs_return,
num_colors)

The STORE NAMED COLOR routine has the following format:

X$STORE_NAMED_COLOR(display, colormap_id, color_name,
pixel, flags)

5.5 Freeing Color Resources
To free storage allocated for client colors, call the FREE COLORS routine.
FREE COLORS releases all storage allocated by the following color
routines: ALLOC COLOR, ALLOC COLOR CELLS, ALLOC NAMED
COLORS, ALLOC COLOR PLANES.

To delete the association between the color map ID and the color map, use
the FREE COLORMAP routine. FREE COLORMAP has no effect on the
default color map of the screen. If the color map is an installed color map,
FREE COLORMAP removes it.

5-21

Using Color
5.6 Querying Color Map Entries

5.6 Querying Color Map Entries

5-22

Xlib provides routines to return both the RGB values of the color map
index and the name of a color.

To query the RGB values of a specified pixel in the color map, use the
QUERY COLOR routine. The value returned is the value passed in the
pixel member of the color data structure.

To query the RGB values of an array of pixel values, use the QUERY
COLORS routine. The values returned are the values passed in the pixel
member of the color data structure.

To look up the values associated with a named color, use the LOOKUP
COLOR routine. LOOKUP COLOR uses the specified color map to find out
the values with respect to a specific screen. It returns both the exact RGB
values and the closest RGB values supported by hardware.

6 Drawing Graphics

Xlib provides clients with routines that draw graphics into windows and
pixmaps. This chapter describes how to create and manage graphics
drawn into windows, including the following topics:

• Drawing points, lines, rectangles, and arcs

• Filling rectangles, polygons, and arcs

• Copying graphics

• Limiting graphics to a region of a window or pixmap

• Clearing graphics from a window

• Creating cursors

Chapter 7 describes drawing graphics into pixmaps.

6.1 Graphics Coordinates
Xlib graphics coordinates define the position of graphics drawn in a
window or pixmap. Coordinates are either relative to the origin of the
window or pixmap in which the graphics object is drawn or relative to a
previously drawn graphics object.

Xlib graphics coordinates are similar to the coordinates that define window
position. Xlib measures length along the x axis from the origin to the
right. Xlib measures length along the y axis from the origin down. Xlib
specifies coordinates in units of pixels.

6.2 Using Graphics Routines Efficiently
If clients use the same drawable and graphics context for each call,
Xlib handles back to back calls of DRAW POINT, DRAW LINE, DRAW
SEGMENT, DRAW RECTANGLE, FILL ARC, and FILL RECTANGLE in
a batch. Batching increases efficiency by reducing the number of requests
to the server.

When drawing more than a single point, line, rectangle, or arc, clients
can also increase efficiency by using routines that draw or fill multiple
graphics (DRAW POINTS, DRAW LINES, DRAW SEGMENTS, DRAW
RECTANGLES, DRAW ARCS, FILL ARCS, and FILL RECTANGLES).
Clipping negatively affects efficiency. Consequently, clients should ensure
that graphics they draw to a window or pixmap are within the boundary
of the drawable. Drawing outside the window or pixmap decreases
performance. Clients should also ensure that windows into which they
are drawing graphics are not occluded.

6-1

Drawing Graphics
6.2 Using Graphics Routines Efficiently

The most efficient method for clearing multiple areas is using the FILL
RECTANGLES routine. By using the FILL RECTANGLES routine, clients
can increase server performance. For information about using FILL
RECTANGLES to clear areas, see Section 6.6.1.

6.3 Drawing Points and Lines

6.3.1 Drawing Points

Xlib includes routines that draw points and lines. When clients draw
more than one point or line, performance is most efficient if they use Xlib
routines that draw multiple points or lines rather than calling single point
and line-drawing routines many times.

This section describes using routines that draw both single and multiple
points and lines.

To draw a single point, use the DRAW POINT routine, specifying x and y
coordinates, as in the following:

PARAMETER X = 100, Y = 100

CALL X$DRAW_POINT(DPY, WINDOW, GC, X, Y)

If drawing more than one point, use the following method:

1 Define an array of point data structures.

2 Call the DRAW POINTS routine, specifying the array that defines the
points, the number of points the server is to draw, and the coordinate
system the server is to use. The server draws the points in the order
specified by the array.

Xlib includes the point data structure to enable clients to define an array
of points easily. Figure 6-1 illustrates the data structure.

Figure 6-1 Point Data Structure

6-2

x$w_gpnt_y x$w_gpnt_x

Table 6-1 describes the members of the data structure.

Table 6-1 Point Data Structure Members

Member Name

X$W_GPNT_X

X$W_GPNT_Y

Contents

Defines the x value of the coordinate of a point

Defines the y value of the coordinate of a point

0

Drawing Graphics
6.3 Drawing Points and Lines

The server determines the location of points according to the following:

• If the client specifies the constant x$c_coord_mode_origin, the
server defines all points in the array relative to the origin of the
drawable.

• If the client specifies the constant x$c_coord_mode_previous, the
server defines the coordinates of the first point in the array relative
to the origin of the drawable and the coordinates of each subsequent
point relative to the point preceding it in the array.

The server refers to the following members of the GC data structure to
define the characteristics of points it draws:

Function

Foreground

Clip x origin

Clip mask

Plane mask

Subwindow mode

Clip y origin

Chapter 4 describes GC data structure members.

Example 6-1 uses the DRAW POINTS routine to draw a circle of points
each time the user clicks MBl.

Figure 6-2 illustrates sample output from the program.

Example 6-1 Drawing Multiple Points

C Create window WINDOW on display DPY, defined as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

PARAMETER POINT CNT = 100, RADIUS 50

c
C Handle events
c

DO WHILE (. TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

t» IF (EVENT.EVNT TYPE .EQ. X$C EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, 'To create points, click MBl')
CALL X$DRAW IMAGE STRING(DPY, WINDOW, GC,

1 150, so; 'Each click creates a new circle of points')
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 75, 'To exit, click MB2')
END IF

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

(continued on next page)

6-3

Drawing Graphics
6.3 Drawing Points and Lines

Example 6-1 (Cont.) Drawing Multiple Points

6-4

X = EVENT.EVNT BUTTON.X$L BTEV X
Y = EVENT.EVNT=BUTTON.X$L=BTEV=Y

DO I = 1, POINT CNT
POINT ARR(I).X$W GPNT X X +RADIUS* COS(FLOAT(I))
POINT=ARR(I) .X$W=GPNT=Y Y +RADIUS* SIN(FLOAT(I))

END DO

CALL X$DRAW_POINTS(DPY, WINDOW, GC, POINT_ARR, POINT_CNT,
1 X$C_COORD_MODE_ORIGIN)

ENDIF
IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.

1 EVENT.EVNT-BUTTON.X$L BTEV BUTTON .EQ. X$C_BUTTON2) THEN
CALL SYS$EXIT(%VAL(l)) -

END IF
END DO

0 After receiving notification that the server has mapped the window,
the client writes three messages into the window. For information
about using the DRAW IMAGE STRING routine, see Chapter 8.

8 If the user clicks MBl, the client draws 50 points. If the user clicks
MB2, the client exits from the system. The client determines which
button the user clicked by referring to the button member of the
button event data structure. For more information about the button
event data structure, see Chapter 9.

8 The DRAW POINTS routine has the following format:

X$DRAW POINTS(display, drawable id, gc id, points,
- num_points, point_mode) -

The point_mode argument specifies whether coordinates are relative
to the origin of the drawable or to the previous point in the array.

6.3.2

Drawing Graphics
6.3 Drawing Points and Lines

Figure 6-2 Circles of Points Created Using the DRAW POINTS Routine

[83] Drawing Multiple Points l!IJ [51]

To create points, click MB1.

Each click creates a new circle of points.

To exit, click MB2.

~··" .. ·; .. ,_.~ ...
. I ;ii•~ ... ·-: I{~·~ l. ~ :.:~\\.._

~~ .. -.::.-'t'J·~· - .>.- }1•y
J'~ .:•- ·~··. ,p ~'-.• .~ .. ~\,.1•,,1\ I

7 W'-r•7......itr-.• • .,. 11'1. .. > - r •- • h d I

... ~"a:.~ .. ,.~\:>-~~·\·{ ,1:, .. , '• :·. • :, ••. \ ,;.
....... ·-· '" ••• , I .. • I •• I I • "' I I I • • •' , , ... , I I I '\I • I I Si ,. \ i' I • 1 • ,., I • • I I \ I f.

./t ~::r, . .._11 I ",•~1~ I 11', ',•!: :.' ,!~~11 '•. •. ;1 I : : .. ~.:
1';.t"•:'::,r .. 'i,'1 :.,: j•"/':.•.•.1;'!,'.!2,L•; I 1!.",1 ,1 ,11"\1

.·,·.' .. ·~·iJ: .. J·l',f,i•,, ·~ ··:·.:··.· •. ;. 1 1-:l.1 ... lt' -'7···· •••• .'t·
• j' ,1,11 I f l'f\1 1' • • 1• I I 11 I • J I • t-•• ~~1. • .I I;•" •' i.t

- • ·-
/

1 - • •r 1 "' • • •1 • • • •• ' • • f • •' I : I • 1~•••r•.!,'l J•,f1,!:.':. o":,"'I •,>J•I 11 I •.•\• \•o~ •\ \\oj// • 1, ,•

- ~ """-'' ' '• ,,•, ~lo "1 1'' 1' ,... ..:,• 1•1 \I \ ." lj., .. "• \ •• I., I .,,~ •.. i:.,,,, .!,"l.!'" 1c' .. -·~·- \'11."'.1 •'1 -~ •1•·.··~' \.'1h~ ', ·., '··', ••••
)fi-•r-.,,\;.i•, -\l•'-\t~llll', -1.,.-.,,• •'" .l\J • 1f,J 1

' •• •.\ \
1

.} J" "•\ \ool / •" ,l -,,~ 1~{ .,.• •• !&. .. "- ... -," • 1 ·C't·\~(",J,,·,·,.· '··'
,., - ... -. 1 ~ I 1

1
\ i'.' #'- ! .::~'- p • 't \ 1 •,ZT°' • .\;.I •

• ~•-i•:"-1 1 1 1 1 1 •, 1' .\ .. 1r, ll•J 111., •,\ \~.J'!,lii:./
... "~ I • " .. I > I ··I , ... ~ \\' I I • • \ I •.• I • !=· I I • • I I ,\ ., I ._, ,. I I t- • \ I \ \ • ·' I •• I rA

•1. I • • • I I • • .. " I ':.•1' •••• :1 • ,· ••• • •••• ,. I I I ••• I I •
1•1 .,• •• 1,,., ••• , .. ,•~ •••• v •• 1.rti'J'··
,•i I •:• 1•. I I • .. -:_;•.• .. ~ .. • • i. 11 •••. •\•.\•• •• 1;1 •1.,A
' I • I .,,, I I ••• jl f1 I • II •• •• I I • • \ L I I "'"

i • i ' , r i • i • • ~ ' t • • i , • ·' i ·""
• ••• •• ••• ~·I •• ~1..t•. I •• ' •• ··!. i•\ ,. ,.1--'-
• • I I ••• \ '\~~~'i"' I • ••• • 1 I I • "•\ • ~ • r. •f • ' • • ' 'r1! .r. • .• L • " ,· f , , ,.·•

·. •.·.· ·.~' '··', ·t ,\:'!l1 · · ... · ',1s. ·, '.'·" ~-·
I I • \ • ·' \. I/_ I • • I "' ''·'·' I II •.~\\•;'/•,I ·~.y:..it'- :..• ~)t,,.:t"/ •

• • • •• \ • • i\ -
• \ \•.I I

ZK-0107A-GE

Drawing Lines and Line Segments
Xlib includes routines that draw single lines, multiple lines, and line
segments. To draw a single line, use the DRAW LINE routine, specifying
beginning and ending points, as in the followin~:

PARAMETER Xl = 100, Yl = 100,
1 X2 = 200, Y2 = 200

CALL X$DRAW_LINE(DISPLAY, WINDOW, GC, Xl, Yl, X2, Y2)

6-5

Drawing Graphics
6.3 Drawing Points and Lines

To draw multiple lines, use the following method:

1 Define an array of points using the point data structure described in
Section 6.3.1 to specify beginning and ending line points. The server
interprets pairs of array elements as beginning and ending points. For
example, if the array that defines the beginning point is point[i], the
server reads point[i + 1] as the corresponding ending point.

2 Call the DRAW LINES routine, specifying the following:

• The array that defines the points.

• The number of points that define the line.

• The coordinate system the server uses to locate the points. The
server draws the lines in the order specified by the array.

Clients can specify either the x$c_coord_mode_origin or the
x$c_coord_mode_previous constant to indicate how the server
determines the location of beginning and ending points. The server uses
the methods described in Section 6.3.1.

The server draws lines in the order the client has defined them in the
point data structure. Lines join correctly at all intermediate points. If
the first and last points coincide, the first and last line also join correctly.
For any given line, the server draws pixels only once. The server draws
intersecting pixels multiple times if zero-width lines intersect; it draws
intersecting pixels of wider lines only once.

Example 6-2 uses the DRAW LINES routine to draw a star when the
server notifies the client that the window is mapped.

Example 6-2 Drawing Multiple Lines

C Create window WINDOW on display DPY, defined as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

PARAMETER POINT CNT = 100, RADIUS 50

c
C Handle events
c

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT TYPE .EQ. X$C EXPOSE) THEN
CALL x$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, 'To create a star, click MBl.')
CALL X$DRAW IMAGE STRING(DPY, WINDOW, GC,

1 150, 50~ 'To exit, click MB2.')
END IF

(continued on next page)

6-6

Drawing Graphics
6.3 Drawing Points and Lines

Example 6-2 (Cont.) Drawing Multiple Lines

0 IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

POINT_ARR(l) .X$W_GPNT_X 75
POINT ARR(l) .X$W GPNT Y 500
POINT=ARR(2) .X$W=GPNT=X 300
POINT_ARR(2) .X$W_GPNT_Y 100
POINT_ARR(3) .X$W_GPNT_X 525
POINT_ARR(3) .X$W_GPNT_Y 500
POINT_ARR(4) .X$W_GPNT_X 50
POINT_ARR(4) .X$W_GPNT_Y 225
POINT_ARR(5) .X$W_GPNT_X 575
POINT_ARR(5) .X$W_GPNT_Y 225
POINT_ARR(6) .X$W_GPNT_X 75
POINT_ARR(6) .X$W_GPNT_Y 500

CALL X$DRAW_LINES(DPY, WINDOW, GC, POINT_ARR, POINTS,
1 X$C_COORD_MODE_ORIGIN)

ENDIF
IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.

1 EVENT.EVNT-BUTTON.X$L BTEV BUTTON .EQ. X$C BUTTON2) THEN
CALL SYS$EXIT(%VAL(l)) - -

END IF
END DO

0 The program uses point data structures to define beginning and ending
points of lines.

8 The call to draw lines refers to a graphics context (GC), which the
client has previously defined, and an array of point data structures.
The constant x$c_coord_mode_origin indicates that all points are
relative to the origin of WINDOW (100, 100).

Figure 6-3 illustrates the resulting output.

6-7

Drawing Graphics
6.3 Drawing Points and Lines

Figure 6-3 Star Created Using the DRAW LINES Routine

mJ Drawing Multiple Lines [DrmJ

To create a star, click MB1.

To exit, click MB2.

ZK-0103A-GE

Use the DRAW SEGMENTS routine to draw multiple, unconnected lines,
defining an array of segments in the segment data structure. Figure 6-4
illustrates the data structure.

Figure 6-4 Segment Data Structure

x$w_gseg_y1 x$w_gseg_x1

x$w_gseg_y2 x$w_gseg_x2

6-8

0

4

Drawing Graphics
6.3 Drawing Points and Lines

Table 6-2 describes the members of the data structure.

Table 6-2 Segment Data Structure Members

Member Name

X$W_GSEG_X1

X$W_GSEG_ Y1

X$W_GSEG_X2

X$W_GSEG_ Y2

Contents

The x value of the coordinate that specifies one endpoint of
the segment

The y value of the coordinate that specifies one endpoint of
the segment

The x value of the coordinate that specifies the other endpoint
of the segment

The y value of the coordinate that specifies the other endpoint
of the segment

DRAW SEGMENTS functions like the DRAW LINES routine, except the
routine does not use the coordinate mode.

The DRAW LINE and DRAW SEGMENTS routines refer to all but the join
style, fill rule, arc mode, and font members of the GC data structure to
define the characteristics of lines. The DRAW LINES routine refers to all
but the fill rule, arc mode, and font members of the data structure.

Chapter 4 describes the GC data structure.

6.4 Drawing Rectangles and Arcs

6.4.1

As with routines that draw points and lines, Xlib provides clients the
choice of drawing either single or multiple rectangles and arcs. If a client
is drawing more than one rectangle or arc, use the multiple-drawing
routines for most efficiency.

Drawing Rectangles
To draw a single rectangle, use the DRAW RECTANGLE routine,
specifying the coordinates of the upper left corner and the dimensions
of the rectangle, as in the following:

PARAMETER X = 50, Y = 100,
1 WIDTH = 25, LENGTH = 50

CALL X$DRAW_RECTANGLE(DISPLAY, WINDOW, GC, X, Y, WIDTH, LENGTH)

Figure 6-5 illustrates how Xlib interprets coordinate and dimension
parameters. The x and y coordinates are relative to the origin of the
drawable.

6-9

Drawing Graphics
6.4 Drawing Rectangles and Arcs

6-10

Figure 6-5 Rectangle Coordinates and Dimensions

[x, y]

r
h

j
[x, y + h]

w

[X + W, y]
•

....
[X + W, y + h]

ZK-0078A-GE

To draw multiple rectangles, use the following method:

1 Define an array of rectangles using the rectangle data structure.

2 Call the DRAW RECTANGLES routine, specifying the array that
defines rectangle origin, width, and height, and the number of array
elements.

The server draws each rectangle as shown in Figure 6-6.

Figure 6-6 Rectangle Drawing

,-Path of lines drawn
[x 4' Y4]=[X 0' Yo] -------------------[X1 'Y1]

r ~ .

[x 3 • Y31e-----------------[X 2' Y2]

ZK-0077 A-GE

Drawing Graphics
6.4 Drawing Rectangles and Arcs

For a specified rectangle, the server draws each pixel only once. If
rectangles intersect, the server draws intersecting pixels multiple times.

Xlib includes the rectangle data structure to enable clients to define an
array of rectangles easily. Figure 6-7 illustrates the data structure.

Figure 6-7 Rectangle Data Structure

x$w_grec_y x$w_grec_x

x$w_grec_height x$w_grec_width

Table 6-3 describes the members of the data structure.

Table 6-3 Rectangle Data Structure Members

Member Name

X$W_GREC_X

X$W_GREC_Y

X$W_GREC_WIDTH

X$W_GREC_HEIGHT

Contents

Defines the x value of the rectangle origin

Defines the y value of the rectangle origin

Defines the width of the rectangle

Defines the height of the rectangle

When drawing either single or multiple Tectangles, the server refers
to the following members of the GC data structure to define rectangle
characteristics:

Function

Foreground

Line width

Join style

Tile

Tile/stipple x origin

Subwindow mode

Clip y origin

Dash offset

Plane mask

Background

Line style

Fill style

Stipple

Tile/stipple y origin

Clip x origin

Clip mask

Dashes

Chapter 4 describes the GC data structure members.

Example 6-3 illustrates using the DRAW RECTANGLES routine.
Figure 6-8 shows the resulting output.

0

4

6-11

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Example 6-3 Drawing Multiple Rectangles

C Create window WINDOW on display DPY, defined as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

PARAMETER POINT CNT = 100, RADIUS 50

c
C Handle events
c

DO WHILE (. TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

• IF (EVENT.EVNT TYPE .EQ. X$C EXPOSE) THEN
CALL X$DRAW IMAGE STRING(DPY, WINDOW, GC,

6-12

1 150, 25~ 'To draw multiple rectangles, click MBl.')
CALL X$DRAW IMAGE STRING(DPY, WINDOW, GC,

1 150, 50~ 'To ;xit, click MB2.')
END IF

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT-=-BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

DO I = 1, REC_CNT
REC ARR(I) .X$W GREC X = STEP * I
REC-ARR(I) .X$W-GREC-Y = STEP * I
REC-ARR(I) .X$W-GREC-WIDTH = STEP * 2
REC=ARR(I) .X$W=GREC=HEIGHT = STEP * 3

END DO

CALL X$DRAW_RECTANGLES(DPY, WINDOW, GC, REC_ARR, REC_CNT)

ENDIF

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT-BUTTON.X$L BTEV BUTTON .EQ. X$C BUTTON2) THEN

END IF
END DO

CALL SYS$EXIT(%VAL(l)) -

8 After receiving notification that the server has mapped the window,
the client writes two messages into the window. For information about
using the DRAW IMAGE STRING routine, see Chapter 8.

ft If the user clicks MBl, the client draws rectangles defined in the
initialization loop. If the user clicks MB2, the client exits the system.
The client determines which button the user has clicked by referring
to the button member of the button event data structure. For more
information about the button event data structure, see Chapter 9.

6) The DRAW RECTANGLE routine has the following format:

X$DRAW_RECTANGLES(display, drawable_id, gc_id, rectangles,
num _rectangles)

6.4.2 Drawing Arcs

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Figure 6-8 Rectangles Drawn Using the DRAW RECTANGLES Routine

To draw multiple rectangles, click MB 1.

To exit, click MB2.

ZK-01 OSA-GE

Xlib routines enable clients to draw either single or multiple arcs. To
draw a single arc, use the DRAW ARC routine, specifying a rectangle that
defines the boundaries of the arc and two angles that determine the start
and extent of the arc, as in the following:

PARAMETER X = 50, Y = 100,
1 WIDTH = 25, LENGTH = 50,
1 ANGLEl = 5760, ANGLE2 = 5760

CALL X$DRAW_ARC(DISPLAY, WINDOW, GC, X, Y, WIDTH, HEIGHT,
1 ANGLEl, ANGLE2)

6-13

Drawing Graphics
6.4 Drawing Rectangles and Arcs

6-14

The server draws an arc within a rectangle. The client specifies the upper
left corner of the rectangle, relative to the origin of the drawable. The
center of the rectangle is the center of the arc. The width and height of
the rectangle are the major and minor axes of the arc, respectively.

Two angles specify the start and extent of the arc. The angles are signed
integers in degrees scaled up by 64. For example, a client would specify a
90 degree arc as 64 * 90 or 5760. The start of the arc is specified by the first
angle, relative to the three o'clock position from the center of the rectangle.
The extent of the arc is specified by the second angle, relative to the start
of the arc. Positive integers indicate counterclockwise motion; negative
integers indicate clockwise motion.

Figure 6-9 illustrates the relationships among the rectangle, axes, and
angles that specify the arc.

Figure 6-9 Specifying an Arc

X-Y
Coordinate

'

Angle 2:
Relative to
Angle 1

Angle 1:
Relative to Three
O'clock Position

Height ~------1--- Three O'clock
Position

Width

ZK-001 SA-GE

For an arc specified as [x, y, width, height, anglel, angle2], the origin of the
major and minor axes is at [x + width/2, y + height/2]. The infinitely
thin path describing the entire arc intersects the horizontal axis at
[x, y + height/2] and [x +width, y + height/2] and the vertical axis at
[x + width/2, y] and [x + width/2, y +height]. These coordinates are not
truncated to discrete coordinates if they are fractional.

The path of the arc is defined as the ideal mathematical path. For a wide
line of width w, the bounding outlines for filling are given by two infinitely
thin paths consisting of all points whose perpendicular distance from the
path of the circle or ellipse is equal to w /2.

Drawing Graphics
6.4 Drawing Rectangles and Arcs

For an ellipse defined as [x, y, width, height, anglel, angle2], the angles
must be specified in the skewed coordinate of the ellipse. The relationship
between the coordinate system of the ellipse and that of a circle is specified
using the following formula:

skewed angle= atan(tan(normal angle)* width/height)+ adfust

The skewed angle and normal angle are expressed in radians (rather than
in degrees scaled by 64) in the range [0, 2 * ?r], where the atan returns a
value in the range [-?r /2, 1r /2]. The adf ust is as follows:

• O for normal-angle in the range [0, ?r/2]

• 1r for a normal angle in the range [1r /2, 3 * 1r /2]

• 2 * 1r for a normal angle in the range [3 * 1r /2, 2 * 1r]

To draw multiple arcs, use the following method:

1 Define an array of arc data structures.

2 Call the DRAW ARCS routine, specifying the array that defines the
arcs and the number of array elements.

Figure 6-10 illustrates the arc data structure.

Figure 6-1 O Arc Data Structure

x$w_garc_y x$w_garc_x

x$w_garc_height x$w_garc_width

x$w_garc_angle2 x$w_garc_angle1

Table 6-4 describes the members of the arc data structure.

Table 6-4 Arc Data Structure Members

Member Name

X$W_GARC_X

X$W_GARC_Y

X$W_GARC_WIDTH

X$W_GARC_HEIGHT

Contents

Defines the x-coordinate value of the rectangle in which
the server draws the arc

Defines the y-coordinate value of the rectangle in which
the server draws the arc

Defines the major axis of the arc

Defines the minor axis of the arc

0

4

8

(continued on next page)

6-15

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Table 6-4 (Cont.) Arc Data Structure Members

Member Name

X$W_GARC_ANGLE1

X$W_GARC_ANGLE2

Contents

Defines the starting point of the arc relative to the
3-o'clock position from the center of the rectangle

Defines the extent of the arc relative to the starting point

When drawing either single or multiple arcs, the server refers to the
following members of the GC data structure to define arc characteristics:

Function Plane mask

Foreground Background

Line width Line style

Join style Cap style

Fill style Tile

Tile/stipple x origin Tile/stipple y origin

Clip x origin Clip y origin

Clip mask Dash offset

Dashes Stipple

Subwindow mode

Chapter 4 describes the GC data structure members.

If the last point in one arc coincides with the first point in the following
arc, the two arcs join. If the first point in the first arc coincides with the
last point in the last arc, the two arcs join.

If two arcs join, the line width is greater than zero, and the arcs intersect,
the server draws all pixels only once. Otherwise, it may draw intersecting
pixels multiple times.

Example 6-4 illustrates using the DRAW ARCS routine.

Example 6-4 Drawing Multiple Arcs

C Create window WINDOW on display DPY, defined as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

PARAMETER ARC_CNT = 16, RADIUS 50,
1 INNER RADIUS = 20

c
C Handle events
c

DO WHILE (. TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

(continued on next page)

6-16

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Example 6-4 (Cont.) Drawing Multiple Arcs

IF (EVENT.EVNT TYPE .EQ. X$C EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, 'To create arcs, click MBl.')
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 50, 'Each click creates a new circle of arcs.')
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 75, 'To exit, click MB2.')
END IF

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT=BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

0 X = EVENT.EVNT_BUTTON.X$L_BTEV_X
Y = EVENT.EVNT_BUTTON.X$L_BTEV_Y

DO I = 1, ARC CNT
ARC ARR(I).X$W GARC ANGLEl = (64 * 360)/ARC CNT * I
ARC-ARR(I) .X$W-GARC-ANGLE2 = (64 * 360)/ARC=CNT * 3
ARC-ARR(I) .X$W-GARC-WIDTH = RADIUS * 2
ARC-ARR(I) .X$W-GARC-HEIGHT = RADIUS * 2
ARC-ARR(I) .X$W-GARC-X = X - RADIUS +

1 - SIN(2*3.141S9/ARC CNT*I) * INNER RADIUS
ARC ARR(I) .X$W GARC Y = Y-- RADIUS +

1 - COS(2*3.141S9/ARC_CNT*I) * INNER RADIUS
END DO
CALL X$DRAW_ARCS(DPY, WINDOW, GC, ARC_ARR, ARC_CNT)
ENDIF

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT=BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN

CALL SYS$EXIT(%VAL(l))
END IF

END DO

0 The x and y variables specify the upper left corner of the rectangle that
defines the boundary of the arc. The client determines the rectangle
coordinates by taking the values of the x and y arguments from the
button event data structure. Because these values indicate the position
of the cursor when the user clicks the mouse button, the server draws
the arcs relative to the position of the cursor. For more information
about the button event data structure, see Chapter 9.

8 The DRAW ARCS routine has the following format:

X$DRAW_ARCS(display,drawable_id,gc_id,arcs,num_arcs)

Figure 6-11 illustrates the resulting output.

6-17

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Figure 6-11 Multiple Arcs Drawn Using the DRAW ARCS Routine

m Drawing Multiple Arcs [pJ [51_]

To create arcs, click MB 1.
Each click creates a new circle of arcs.

To exit, click MB2.

ZK-0106A-GE

6.5 Filling Areas

6.5.1

This section describes using Xlib routines to fill single rectangles, arcs,
and polygons, and multiple rectangles and arcs.

Filling Rectangles and Arcs

6-18

The FILL RECTANGLE, FILL RECTANGLES, FILL ARC, and FILL
ARCS routines create single and multiple rectangles or arcs and fill them
using the fill style the client specifies in a graphics context data structure.

The method of calling the fill routines is identical to that for drawing
rectangles and arcs. For example, to create rectangles filled solidly with
foreground color in Example 6-3, the client needs only to call the FILL
RECTANGLES routine instead of DRAW RECTANGLES. The default
value of the GC data structure fill style member is solid. If the client were

6.5.2 Filling a Polygon

Drawing Graphics
6.5 Filling Areas

to specify a tile or stipple for filling the rectangles, the client would have
to change the graphics context used by the FILL RECTANGLES routine.

The server refers to the following members of the GC data structure to
define characteristics of the rectangles and arcs it fills:

Function

Foreground

Fill style

Stipple

Tile/stipple x origin

Clip x origin

Clip mask

Plane mask

Background

Tile

Subwindow mode

Tile/stipple y origin

Clip y origin

Additionally, the server refers to the arc mode member if filling arcs.

For information about using graphics context, see Chapter 4.

To fill a polygon, use the following method:

1 Define an array of point data structures.

2 Call the FILL POLYGON routine, specifying the array that defines the
points of the polygon, the number of points the server is to draw, the
shape of the polygon, and the coordinate system the server is to use.
The server draws the points in the order specified by the array.

See Figure 6-1 for an illustration of the point data structure.

To improve performance, clients can specify whether the shape of the
polygon is complex, convex, or nonconvex, as follows:

• Specify the constant x$c_complex as the shape argument if the path
that draws the polygon may intersect itself.

• Specify the constant x$c_convex if the path that draws the shape is
wholly convex. If a client specifies x$c_convex for a path that is not
convex, the results are undefined.

• Specify the constant x$c_nonconvex as the shape argument if the
path does not intersect itself, but the shape is not wholly convex. If a
client specifies x$c_nonconvex for a path that intersects itself, the
results are undefined.

When filling the polygon, the server draws each pixel only once.

The server determines the location of points as follows:

• If the client specifies the constant x$c_coord_mode_origin, the
server defines all points in the array relative to the origin of the
drawable.

6-19

Drawing Graphics
6.5 Filling Areas

• If the client specifies the constant x$c_coord_mode_previous, the
server defines the coordinates of the first point in the array relative
to the origin of the drawable and the coordinates of each subsequent
point relative to the point preceding it in the array.

If the last point does not coincide with the first point, the server closes the
polygon automatically.

The server refers to the following members of the GC data structure to
define the characteristics of the polygon it fills:

Function

Foreground

Fill rule (if polygon is complex)

Tile/stipple x origin

Clip x origin

Subwindow mode

Stipple

Plane mask

Fill style

Tile

Tile/stipple y origin

Clip y origin

Clip mask

Background

Chapter 4 describes GC data structure members.

Example 6-5 uses the FILL POLYGON routine to draw and fill the star
created in Example 6-2.

Example 6-5 Filling a Polygon

C Create window WINDOW on display DPY, defined as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

«t RECORD /X$POINT/ PT_ARR(6)

6-20

PT ARR(l) .X$W GPNT X
PT-ARR(l) .X$W-GPNT-Y
PT-ARR(2) .X$W-GPNT-X
PT-ARR(2) .X$W-GPNT-Y
PT-ARR(3) .X$W-GPNT-X
PT-ARR(3) .X$W-GPNT-Y
PT-ARR(4) .X$W-GPNT-X
PT-ARR(4) .X$W-GPNT-Y
PT-ARR(5) .X$W-GPNT-X
PT-ARR(5) .X$W-GPNT-Y
PT-ARR(6) .X$W-GPNT-X
PT=ARR(6) .X$W=GPNT=Y

= 75
500
300
100
525
500
50
225
575
225
75
500

(continued on next page)

Drawing Graphics
6.5 Filling Areas

Example 6-5 (Cont.) Filling a Polygon

c
C Handle events
c

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT TYPE .EQ. X$C EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, 'To create a filled polygon, click MBl')
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 50, 'To exit, click MB2')
END IF

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT-BUTTON.X$L BTEV BUTTON .EQ. X$C BUTTONl) THEN

CALL X$FILL POLYGON(DPY, WINDOW, GC, PT_ARR, 6~ X$C COMPLEX,
1 X$C_COORD_MODE_ORIGIN) -

ENDIF

8 Use an array of point data structures to specify the points that define
the polygon.

8 The call to fill the polygon refers to a graphics context (GC), which the
client has previously defined, and an array of point data structures.
The constant x$c_complex indicates that the path of the line that
draws the polygon intersects itself. The constant x$c_coord_mode_
origin indicates that all points are relative to the origin of WINDOW
(100,100).

Figure 6-12 illustrates the resulting output.

6-21

Drawing Graphics
6.5 Filling Areas

Figure 6-12 Filled Star Created Using the FILL POLYGON Routine

m Filling a Polygon l!IJ liil]
To create a filled polygon, click MB1.

To exit, click MB2.

ZK-0158A-GE

6.6 Clearing and Copying Areas

6-22

Xlib includes routines that enable clients to clear or copy a specified area
of a drawable. Because pixmaps do not have defined backgrounds, clients
clearing an area of a pixmap must use the FILL RECTANGLE routine
described in Section 6.5.1. For more information about pixmaps, see
Chapter 7.

This section describes how to clear windows and copy areas of windows
and pixmaps.

6.6.1

Drawing Graphics
6.6 Clearing and Copying Areas

Clearing Window Areas
To clear an area of a window, use the CLEAR AREA or CLEAR WINDOW
routine. The CLEAR AREA routine clears a specified area and generates
an exposure event, if the client directs the server to do so.

The CLEAR WINDOW routine clears the entire area of the specified
window. If the window has a defined background tile, the window is
retiled. If the window has no defined background, the server does not
change the window contents.

Example 6-6 illustrates clearing a window.

Example 6-6 Clearing a Window

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT=BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

X = EVENT.EVNT BUTTON.X$L BTEV X
Y = EVENT.EVNT=BUTTON.X$L=BTEV=Y

DO I = 1, ARC CNT
ARC ARR(I).X$W GARC ANGLEl = (64 * 360)/ARC_CNT *I
ARC-ARR(I) .X$W-GARC-ANGLE2 = (64 * 360)/ARC CNT * 3
ARC-ARR(I) .X$W-GARC-WIDTH = RADIUS * 2
ARC=ARR(I) .X$W=GARC=HEIGHT = RADIUS * 2
ARC ARR(I) .X$W GARC X = X - RADIUS +

1 - SIN(2*3.141S9/ARC_CNT*I) * INNER_RADIUS
ARC ARR(I) .X$W GARC Y = Y - RADIUS +

1 - COS(2*3.141S9/ARC_CNT*I) * INNER_RADIUS
END DO
CALL X$DRAW_ARCS(DPY, WINDOW, GC, ARC_ARR, ARC_CNT)
ENDIF

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT=BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN

CALL SYS$EXIT(%VAL(l))
END IF
IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.

1 EVENT.EVNT-BUTTON.X$L BTEV BUTTON .EQ. X$C_BUTTON3) THEN
CALL X$CLEAR_WINDOW(DPY, WINDOW)

END IF
END DO

The example modifies Example 6-4 to clear the window when the user
clicks MB3.

If clearing multiple areas, using the FILL RECTANGLES routine is faster
than using the CLEAR WINDOW or CLEAR AREA routine. To clear
multiple areas on a monochrome screen, first set the function member of
the GC data structure to the value specified by the constant
X$C_GX_CLEAR. Then call the FILL RECTANGLES routine. If the
screen is a color type, set the value of the background to the background of
the window before calling FILL RECTANGLES.

6-23

6.6.2

Drawing Graphics
6.6 Clearing and Copying Areas

Copying Areas of Windows and Pixmaps
Xlib includes the COPY AREA and COPY PLANE routines to enable
clients to copy a rectangular area defined on one window or pixmap (the
source) to an area of another window or pixmap (the destination). COPY
AREA copies areas between drawables of the same root and depth. COPY
PLANE copies a single bit plane of the specified drawable to another
drawable, regardless of their depths. The bit plane is treated as a stipple
with a fill style of x$c_fill_opaque_stippled. Both drawables must have
the same root window.

The server refers to the following members of the GC data structure when
copying areas and planes:

Function

Clip x origin

Subwindow mode

Graphics exposures

Plane mask

Clip y origin

Clip mask

If the client calls COPY AREA or COPY PLANE, the server also refers to
the graphics exposures member of the GC data structure. If the client calls
the COPY PLANE routine, the server additionally refers to the foreground
and background members.

6.7 Defining Regions

6.7.1

A region is an arbitrarily defined area within which graphics drawing is
clipped. In other words, clipping regions are portions of either windows or
pixmaps in which clients can restrict output. As Chapter 4 notes, the SET
CLIP MASK, SET CLIP ORIGIN, and SET CLIP RECTANGLES routines
define clipping regions. Xlib provides other, more convenient, routines that
enable clients to define regions and associate them with drawables without
having to change graphics context values directly.

This section describes how to create and manage clipping using Xlib region
routines.

Creating Regions

6-24

Xlib includes the CREATE REGION and POLYGON REGION routines for
creating regions. CREATE REGION creates an empty region. POLYGON
REGION creates a region defined by an array of points.

Example 6-7 illustrates using POLYGON REGION to create a star-shaped
region. Using the DRAW ARCS routine of Example 6-4, the program
limits arc drawing to the star region.

Drawing Graphics
6.7 Defining Regions

Example 6-7 Defining a Region Using the POLYGON REGION Routine

C Create window WINDOW on display DPY, defined as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

INTEGER*4 STAR REGION

PARAMETER
1
1

WINDOW W = 600, WINDOW_H = 600,
ARC_CNT = 16, RADIUS = 50,
INNER_RADIUS = 20, NUM_POINTS 6

RECORD /X$ARC/ ARC ARR(ARC CNT)
RECORD /X$POINT/ POINT_ARR(NUM_POINTS)

tt POINT ARR(l) .X$W GPNT X = 75
POINT-ARR (1) . X$W- GPNT-Y 500
POINT-ARR(2) .X$W-GPNT-X 300
POINT-ARR(2) .X$W-GPNT-Y 100
POINT-ARR(3) .X$W-GPNT-X 525
POINT~RR(3) .X$W-GPNT-Y 500
POINT-ARR(4) .X$W-GPNT-X 50
POINT-ARR(4) .X$W-GPNT-Y 225
POINT-ARR(5) .X$W-GPNT-X 575
POINT-ARR(5) .X$W-GPNT-Y 225
POINT-ARR(6) .X$W-GPNT-X 75
POINT=ARR(6) .X$W=GPNT=Y 500

~ STAR REGION = X$POLYGON REGION(POINT ARR, NUM_POINTS,
1 X$C_WINDING-=-RULE) -

c
C Handle events
c

DO WHILE (. TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT TYPE .EQ. X$C EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, 'To create arcs, click MBl.')
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 50, 'Each click creates a new circle of arcs.')
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 75, 'To exit, click MB2.')
END IF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

X EVENT.EVNT BUTTON.X$L BTEV X
Y EVENT.EVNT=BUTTON.X$L=BTEV=Y

(continued on next page)

6-25

Drawing Graphics
6.7 Defining Regions

Example 6-7 (Cont.) Defining a Region Using the POLYGON REGION Routine

@) CALL X$SET_REGION(DPY, GC, STAR_REGION)

6-26

DO I = 1, ARC CNT
ARC ARR(I).X$W GARC ANGLEl = (64 * 360)/ARC CNT * I
ARC-ARR(I) .X$W-GARC-ANGLE2 = (64 * 360)/ARC-CNT * 3
ARC=ARR(I) .X$W=GARC=WIDTH = RADIUS * 2 -
ARC_ARR(I) .X$W_GARC_HEIGHT = RADIUS * 2
ARC ARR(I) .X$W GARC X = X - RADIUS +

1 - SIN(2*3.141S9/ARC CNT*I) * INNER RADIUS
ARC ARR(I) .X$W GARC Y = Y-- RADIUS +

1 - COS(2*3.141S9/ARC_CNT*I) * INNER_RADIUS
END DO
CALL X$DRAW_ARCS(DPY, WINDOW, GC, ARC_ARR, ARC_CNT)
END IF

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT=BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN

CALL SYS$EXIT(%VAL(l))
END IF

END DO

0 Define an array of point data structures to define the clipping region.

8 Define the clipping region. Note that defining the region does not
associate it with a graphics context.

Fill rule can be either even odd rule or winding rule. For more
information about fill rule, see Chapter 4.

@) Associate the region with a graphics context. The association sets
fields in the specified GC data structure that control clipping.
Drawables that refer to the GC data structure have output clipped
to the region.

Figure 6-13 illustrates sample output from the program.

6.7.2

Drawing Graphics
6. 7 Defining Regions

Figure 6-13 Arcs Drawn Within a Region

m Drawing Multiple Arcs in a Region [!j]lm]

To create arcs, click MB1.
Each click creates a new circle of arcs.

To exit, click MB2.

ZK-0323A-GE

Managing Regions
Xlib includes routines that enable clients to do the following:

• Move and shrink a region

• Compute the intersection, union, and resul~s of two regions

• Determine if regions are empty or equal

• Locate a point or rectangle within a region

Table 6-5 lists and describes Xlib routines that manage regions.

6-27

Drawing Graphics
6.7 Defining Regions

Table 6-5 Routines for Managing Regions

Routine

Moving and Shrinking

OFFSET REGION

SHRINK REGION

Computing

INTERSECT REGION

UNION REGION

SUBTRACT REGION

XOR REGION

Description

Moves a region a specified amount

Reduces a region a specified amount

Computes the intersection of two regions

Computes the union of two regions

Subtracts two regions

Calculates the difference between the union and
intersection of two regions

Determining if Regions are Empty or Equal

EMPTY REGION

EQUAL REGION

Determines if a region is empty

Determines if two regions have the same offset, size,
and shape

Locating a Point or Rectangle Within a Region

POINT IN REGION

RECT IN REGION

Determines if a point is within a region

Determines if a rectangle is within a region

Example 6-8 illustrates creating a region from the intersection of two
others.

Example 6-8 Defining the Intersection of Two Regions

C Create window WINDOW on display DPY, defined as
C follows:
c
c
c
c GC

Position: x = 100,y
Width = 600
Height = 600

refers to the graphics

INTEGER*4 PIXMAP 1 -
INTEGER*4 PIXMAP 2 -
INTEGER*4 PIXMAP 3 -
INTEGER*4 REGION 1
INTEGER*4 REGION 2
INTEGER*4 REGION 3

= 100

context

tt RECORD /X$POINT/ PT ARR1(4)
RECORD /X$POINT/ PT-=-ARR2(4)

6-28

(continued on next page)

Drawing Graphics
6. 7 Defining Regions

Example 6-8 (Cont.) Defining the Intersection of Two Regions

PT ARRl(l) .X$W GPNT X 200
PT-ARRl(l) .X$W-GPNT-Y 100
PT-ARR1(2) .X$W-GPNT-X 50
PT-ARR1(2) .X$W-GPNT-Y 300
PT-ARR1(3) .X$W-GPNT-X 200
PT-ARR1(3) .X$W-GPNT-Y 500
PT-ARR1(4) .X$W-GPNT-X 350
PT=ARR1(4) .X$W=GPNT=Y 300

PT ARR2(1) .X$W GPNT X 400
PT=ARR2(1) .X$W=GPNT=Y 100
PT ARR2(2) .X$W GPNT X 250
PT-ARR2(2) .X$W-GPNT-Y 300
PT-ARR2(3) .X$W-GPNT-X 400
PT-ARR2(3) .X$W-GPNT-Y 500
PT-ARR2(4) .X$W-GPNT-X 550
PT=ARR2(4) .X$W=GPNT=Y 300

c
C Initialize the counter for mapping regions
c

I = 0

c
C Create pixmaps for tiling
c
8 PIXMAP 1 = X$CREATE PIXMAP(DPY, WINDOW, PIX_WIDTH, PIX_HEIGHT,

PIXMAP-2 = X$CREATE-PIXMAP(DPY, WINDOW, PIX_WIDTH, PIX_HEIGHT,
PIXMAP=3 = X$CREATE=PIXMAP(DPY, WINDOW, PIX_WIDTH, PIX_HEIGHT,

CALL X$FILL_RECTANGLE(DPY, PIXMAP - 1, GC, 0, 0, PIX_ WIDTH,
1 PIX_ HEIGHT)
CALL X$FILL_RECTANGLE(DPY, PIXMAP_2, GC, 0, 0, PIX_ WIDTH,
1 PIX_ HEIGHT)
CALL X$FILL_RECTANGLE(DPY, PIXMAP_3, GC, 0, 0, PIX_ WIDTH,
1 PIX_HEIGHT)

CALL X$SET_FOREGROUND(DPY, GC, DEFINE_COLOR(DPY, SCREEN,
1 VISUAL, 2))

CALL X$DRAW_LINE(DPY, PIXMAP_l, GC, 0, 4, 0, 8)
CALL X$DRAW_LINE(DPY, PIXMAP_2, GC, 4, 0, 8, 0)
CALL X$DRAW_LINE(DPY, PIXMAP_3, GC, 0, 4, 0, 8)
CALL X$DRAW_LINE(DPY, PIXMAP_3, GC, 4, 0, 8, 0)

c
C Create the regions
c

c

REGION 1
REGION 2

X$POLYGON REGION(PT ARRl, 4, X$C WINDING RULE)
X$POLYGON=REGION(PT=ARR2, 4, X$C=WINDING=RULE)

C Handle events
c

DO WHILE (. TRUE.)

DEPTH)
DEPTH)
DEPTH)

(continued on next page)

6-29

Drawing Graphics
6.7 Defining Regions

Example 6-8 (Cont.) Defining the Intersection of Two Regions

6-30

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT TYPE .EQ. X$C EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, 'To map regions click MBl three times.')
CALL X$DRAW IMAGE STRING(DPY, WINDOW, GC,

1 150, 75~ 'To exit, click MB2')
END IF

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT=BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

I = I + 1

1

1

IF (I .EQ. 1) THEN
CALL X$SET FILL STYLE(DPY, GC, X$C FILL TILED)
CALL X$CLEAR_WINDOW(DPY, WINDOW)
CALL X$SET_TILE(DPY, GC, PIXMAP_l)
CALL X$SET_REGION(DPY, GC, REGION_l)
CALL X$FILL_RECTANGLE(DPY, WINDOW, GC, X_ORIGIN,

Y_ORIGIN, WINDOW_W, WINDOW_H)
END IF
IF (I .EQ. 2) THEN

CALL X$CLEAR_WINDOW(DPY, WINDOW)
CALL X$SET TILE(DPY, GC, PIXMAP 2)
CALL X$SET-REGION(DPY, GC, REGION 2)
CALL X$FILL_RECTANGLE(DPY, WINDOW~ GC, X_ORIGIN,

Y_ORIGIN, WINDOW_W, WINDOW_H)
END IF
IF (I .EQ. 3) THEN

CALL X$CLEAR_WINDOW(DPY, WINDOW)
REGION 3 = X$CREATE REGION()
CALL X$INTERSECT_REGION(REGION_l, REGION_2,

1 REGION 3)
CALL X$SET-TILE(DPY, GC, PIXMAP 3)
CALL X$SET-REGION(DPY, GC, REGION 3)
CALL X$FILL_RECTANGLE(DPY, WINDOW~ GC, X_ORIGIN,

1 Y_ORIGIN, WINDOW_W, WINDOW_H)

1

END IF
IF (I .GT. 3) THEN

CALL X$SET FILL STYLE(DPY, GC, X$C FILL SOLID)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

END IF
END IF

150, 75, 'That''s it! Click MB2 to exit.')

0 Arrays of point data structures define two regions.

8 The pixmaps are used to tile the window with horizontal, vertical, and
cross-hatched lines. For information about pixmaps, see Chapter 7.

8 After writing messages in the window, the fill style defined in the
GC data structure is changed to tile the window with pixmaps. The
subsequent call to SET TILE defines one of the three pixmaps created
earlier as the window background pixmap. For information about fill
styles and tiling, see Chapter 4.

Drawing Graphics
6.7 Defining Regions

8 The SET REGION routine specifies the clipping region in the graphics
context. The region defined by PT _AllRl is first specified.

0 FILL RECTANGLE repaints the window, filling it with the tiling
pattern defined in PIXMAP _1. Tiling is restricted to the region defined
by REGION_l.

0 Before specifying a new tiling pattern and region, the window is
cleared.

8 CREATE REGION creates an empty region and returns an identifier,
REGION _3. Xlib returns the results of intersecting REGION _1 and
REGION_2 to REGION_3.

0 Before displaying a final message in the window, the fill style is
redefined to solid to enable text writing.

Figure 6-14 illustrates the output from the program.

Figure 6-14 Intersection of Two Regions

IWJ Intersection of Two Regions (!i] [iij]

-·
4 -· -· .. . • -· -· -· -· -· -· -· -· _ .. ··-·-·-· -·-·-·--· -· -· ·' -· -· -· -· . -· -· -· -· -· -· I•' •' •' .1

.• -· -· ·' -· -·

ZK-0322A-GE

6-31

Drawing Graphics
6.8 Defining Cursors

6.8 Defining Cursors

6.8.1

A cursor is a bit image on the screen that indicates either the movement
of a pointing device or the place where text will next appear. Xlib enables
clients to associate a cursor with each window they create. After making
the association between cursor and window, the cursor is visible whenever
it is in the window. If the cursor indicates movement of a pointing device,
the movement of the cursor in the window automatically reflects the
movement of the device.

Xlib and VMS DECwindows provide fonts of predefined cursors. Clients
that want to create their own cursors can either define a font of shapes
and masks or create cursors using pixmaps.

This section describes the following:

• Creating cursors using the Xlib cursor font, a font of shapes and
masks, and pixmaps

• Associating cursors with windows

• Managing cursors

• Freeing memory allocated to cursors when clients no longer need them

Creating Cursors

6-32

Xlib enables clients to use predefined cursors or to create
their own cursors. To create a predefined Xlib cursor, use the
CREATE FONT CURSOR routine. Xlib cursors are predefined in
SYS$LIBRARY:DECW$XLIBDEF. Table 6-6 lists the constants that
refer to the predefined Xlib cursors.

Table 6-6 Predefined Xlib Cursors

x$c_X_cursor

x$c_based_arrow_down_cursor

x$c_boat_cursor

x$c_bottom_left_ corner_ cursor

x$c_bottom_side_cursor

x$c_box_spirai_cursor

x$c_circle_cursor

x$c_coffee_mug_cursor

x$c_cross_reverse_cursor

x$c_diamond_cross_cursor

x$c_dotbox_cursor

x$c_draft_large_cursor

x$c_draped_box_cursor

x$c_arrow_cursor

x$c_based_arrow_up_cursor

x$c_bogosity _cursor

x$c_bottom_right_corner _cursor

x$c_bottom _tee _cursor

x$c_centei_pti_cuisor

x$c_clock_cursor

x$c_cross_cursor

x$c_crosshair_cursor

x$c_dot_cursor

x$c_double_arrow_cursor

x$c_draft_small_cursor

x$c_exchange_cursor

(continued on next page)

Drawing Graphics
6.8 Defining Cursors

Table 6-6 (Cont.) Predefined Xlib Cursors

x$c_fleur _cursor

x$c_gumby _cursor

x$c_hand2_cursor

x$c_icon_cursor

x$c_left_ptr _cursor

x$c_left_tee_cursor

x$c_ll_angle_cursor

x$c_man_cursor

x$c_mouse_cursor

x$c_pirate_cursor

x$c_question_arrow_cursor

x$c_right_side _cursor

x$c_rightbutton_cursor

x$c_sailboat_cursor

x$c_sb_h_double_arrow_cursor

x$c_sb_right_arrow_cursor

x$c_sb_v_double_arrow_cursor

x$c_sizing_cursor

x$c_spraycan_cursor

x$c_target_cursor

x$c_top_left_arrow_cursor

x$c_top_right_corne_cursor

x$c_top_tee_cursor

x$c_ul_angle_cursor

x$c_ur_angle_cursor

x$c_xterm_cursor

x$c_gobbler _cursor

x$c_hand1_cursor

x$c_heart_cursor

x$c_iron_cross_cursor

x$c_left_side_cursor

x$c_leftbutton_cursor

x$c_lr _angle_cursor

x$c_middlebutton_cursor

x$c_pencil_cursor

x$c_plus_cursor

x$c _right_ptr _cursor

x$c_right_tee_ cursor

x$c_rtl_logo_cursor

x$c_sb_down_arrow_cursor

x$c_sb_left_arrow_cursor

x$c_sb_up_arrow_cursor

x$c_shuttle_cursor

x$c_spider_cursor

x$c_star_cursor

x$c_tcross_cursor

x$c_top_left_corner_cursor

x$c_top_side_ cursor

x$c_trek_cursor

x$c_umbrella_cursor

x$c_watch_cursor

The following example creates a sailboat cursor, one of the predefined Xlib
cursors, and associates the cursor with a window:

INTEGER*4 FONTCURSOR

FONTCURSOR = X$CREATE_FONT_CURSOR(DPY, X$C_SAILBOAT_CURSOR)
CALL X$DEFINE_CURSOR(DPY, WIN, FONTCURSOR)

The DEFINE CURSOR routine makes the sailboat cursor automatically
visible when the pointer is in window WIN.

To create a predefined VMS DECwindows cursor, use the CREATE
GLYPH CURSOR routine. VMS DECwindows cursors are predefined
in SYS$LIBRARY:DECW$XLIBDEF. Table 6-7 lists the constants that
refer to the predefined VMS DECwindows cursors.

6-33

Drawing Graphics
6.8 Defining Cursors

6-34

Table 6-7 Predefined VMS DECwindows Cursors

decw$c_select_cursor

decw$c_help_select_cursor

decw$c_inactive_cursor

decw$c_vpane _cursor

decw$c_text_insertion_cursor

decw$c_cross_hair _cursor

decw$c_pencil_cursor

decw$c_center_cursor

decw$c_wselect_cursor

decw$c_x_cursor

decw$c_mouse_cursor

decw$c_leftgrab_cursor

decw$c_rightgrab_cursor

decw$c_uppointing_cursor

decw$c_leftselect_cursor

decw$c_wait_cursor

decw$c_resize_cursor

decw$c_hpane_cursor

decw$c_text_insertion_bl_cursor

decw$c_draw_cursor

decw$c_rpencil_cursor

decw$c_rightselect_cursor

decw$c_eselect_cursor

decw$c_circle_cursor

decw$c_lpencil_cursor

decw$c_grabhand_cursor

decw$c_leftpointing_cursor

decw$c_rightpointing_ cu rs or

CREATE GLYPH CURSOR selects a cursor shape and cursor mask from
the VMS DECwindows cursor font, defines how the cursor appears on
the screen, and assigns a unique cursor identifier. The following example
illustrates creating the select cursor and associating the cursor with a
window:

INTEGER*4 CURSOR FONT
INTEGER*4 GLYPHCURSOR

RECORD/ X$COLOR/ FORE_COLOR, BACK COLOR

CURSOR FONT= X$LOAD FONT(DPY, 'DECW$CURSOR')
CALL x$sET_FONT(DPY,-GC, 'DECW$CURSOR')
GLYPHCURSOR = X$CREATE GLYPH CURSOR(DPY, CURSOR FONT,
1 CURSOR FONT, DECW$C SELECT CURSOR, -
1 DECW$C-SELECT CURSOR + 1, FORE COLOR, BACK COLOR)
CALL X$DEFINE__'CURSOR(DPY, WIN, GLYPHCURSOR) -

To create client-defined cursors, either create a font of cursor shapes or
define cursors using pixmaps. In each case the cursor consists of the
following components:

• Shape-Defines the cursor as it appears without modification in a
window

• Mask-Acts as a clip mask to define how the cursor actually appears
in a window

• Background color-Specifies RGB values used for the cursor
background

• Foreground color-Specifies RGB values used for the cursor foreground

• Hot spot-Defines the position on the cursor that reflects movements
of the pointing device

Drawing Graphics
6.8 Defining Cursors

Figure 6-15 illustrates the relationship between the cursor shape and the
cursor mask. The cursor shape defines the cursor as it would appear on
the screen without modification. The cursor mask bits that are set to 1
select which bits of the cursor shape are actually displayed. If the mask
bit has a value of 1, the corresponding shape bit is displayed whether it
has a value of 1 or 0. If the mask bit has a value of 0, the corresponding
shape bit is not displayed.

In the resulting cursor shape, bits with a 0 value are displayed in the
specified background color; bits with a 1 value are displayed in the
specified foreground color.

6-35

Drawing Graphics
6.8 Defining Cursors

Figure 6-15 Cursor Shape and Cursor Mask

Cursor Shape

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 1 0 1 1 0 0 0

0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0

0 0 0 1 1 0 1 1 0 0 0

0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

Resulting Cursor

Background

6-36

Cursor Mask

0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 0 0 0 1 1 0 0

0 0 1 1 1 0 1 1 1 0 0

0 0 1 1 1 0 1 1 1 0 0

0 0 0 1 1 0 1 1 0 0 0

0 0 0 1 1 0 1 1 0 0 0

0 0 1 1 1 0 1 1 1 0 0

0 0 1 1 1 0 1 1 1 0 0

0 0 1 1 0 0 0 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0

ZK-0154A-GE

Drawing Graphics
6.8 Defining Cursors

To create a client-defined cursor from a font of glyphs, use the CREATE
GLYPH CURSOR routine, specifying the cursor and mask fonts that
contain the glyphs. To create a cursor from pixmaps, use the CREATE
PIXMAP CURSOR routine. The pixmaps must have a depth of one. If the
depth is not one, the server generates an error.

The size of the pixmap cursor must be supported by the display on which
the cursor is visible. To determine the supported size closest to the size
the client specifies, use the QUERY BEST CURSOR routine. Example 6-9
illustrates creating a pencil pointer cursor from two pixmaps.

Example 6-9 Creating a Pixmap Cursor

PROGRAM PIXMAP CURSOR

INCLUDE 'SYS$LIBRARY:DECW$XLIBDEF'

INTEGER*4 DPY
INTEGER*4 SCREEN
INTEGER*4 WINDOW
INTEGER*4 GC MASK
INTEGER*4 ATTR MASK
INTEGER*4 GC
INTEGER*4 FONT
INTEGER*4 PIXMAP
INTEGER*4 PENCIL, PENCIL MASK
INTEGER*4 PENCIL CURSOR
INTEGER*4 I, STATUS
INTEGER*4 DEFINE COLOR
INTEGER*4 WINDOW_X, WINDOW_Y, DEPTH
LOGICAL*l PENCIL_BITS(32)
LOGICAL*l PENCIL_MASK_BITS(32)

RECORD /X$COLOR/ COLOR DUMMY used for the pixmap
RECORD /X$COLOR/ CURSOR FOREGROUND used for the pixmap
RECORD /X$COLOR/ CURSOR-BACKGROUND used for the pixmap
RECORD /X$VISUAL/ VISUAL visual type
RECORD /X$SET WIN ATTRIBUTES/ XSWDA window attributes
RECORD /X$GC VALUES/ XGCVL gc values
RECORD /X$SIZE HINTS/ XSZHN hints
RECORD /X$EVENT/ EVENT ! input event

PARAMETER WINDOW_W = 600, WINDOW_H = 600,
1 PENCIL_WIDTH = 16, PENCIL_HEIGHT 16,
1 PENCIL_XHOT = 1, PENCIL_YHOT = 15

DATA PENCIL _BITS /'0000'X, '0070'X, '0000'X, '0088' X, '0000' X,
1 '008C'X, , 0000' x, '0096'X, '0000' X, '0069'X, '0080'X,
1 '0030' X, , 0040' x, '0010' X, '0020' X, '0008' X, '0010'X,
1 , 0004, x, '0008'X, '0002'X, '0008'X, '0001' X, '0094'X,
1 , 0000' x, '0064'X, , 0000' x, '001E'X, '0000' x, '0006'X,
1 '0000'X, '0000'X, '0000'X/

(continued on next page)

6-37

6.8.2

Drawing Graphics
6.8 Defining Cursors

Example 6-9 (Cont.) Creating a Pixmap Cursor

c
c
c

0

•

DATA PENCIL MASK BITS /'OO'X, 'F8' X, '00'X, 'FC'X, '00'X, - -
1 'FE' X, 'OO'X, 'FF'X, '80' X, 'FF' X, 'CO' X, '7F'X,
1 'EO'X, '3F' X, 'FO'X, 'lF' X, 'F8' X, 'OF'X, 'FC'X,
1 '07' X, 'FC' X, '03' X, 'FE' X, 'Ol'X, 'FE'X, 'OO'X,
1 '7F'X, ' 0 0' X, 'lF' X, '00' x, '07' X, '00'X/

Create the pixmap cursor

PIXMAP= X$CREATE_PIXMAP(DPY, X$ROOT_WINDOW_OF_SCREEN(SCREEN),
1 1, 1, 1)
CALL X$LOOKUP_COLOR(DPY, X$DEFAULT_COLORMAP_OF_SCREEN(SCREEN),
1 'BLACK', COLOR DUMMY, CURSOR FOREGROUND)
CALL X$LOOKUP_COLOR(DPY, X$DEFAULT_COLORMAP_OF_SCREEN(SCREEN),
1 'WHITE', COLOR_DUMMY, CURSOR_BACKGROUND)
PENCIL = X$CREATE_PIX_FROM_BITMAP_DATA(DPY, PIXMAP, PENCIL_BITS,
1 PENCIL_WIDTH, PENCIL_HEIGHT, 1, 0, 1)
PENCIL_MASK = X$CREATE_PIX_FROM_BITMAP_DATA(DPY, PIXMAP,
1 PENCIL_MASK_BITS, PENCIL_WIDTH, PENCIL_HEIGHT, 1, 0, 1)

PENCIL_CURSOR = X$CREATE_PIXMAP_CURSOR(DPY, PENCIL, PENCIL_MASK,
1 CURSOR_FOREGROUND, CURSOR_BACKGROUND, PENCIL_XHOT,
1 PENCIL YHOT)
CALL X$DEFINE_CURSOR(DPY, WINDOW, PENCIL_CURSOR)

0 The client first creates a pixmap into which it will draw bit images for
the cursor and cursor mask. Note that the depth of the pixmap must
be one. For information about creating pixmaps, see Chapter 7.

8 The LOOKUP COLOR routine returns the color value associated with
the named color to the CURSOR_FOREGROUND and CURSOR_
BACKGROUND variables. For information about LOOKUP COLOR,
see Chapter 5.

6) The CREATE PIXMAP FROM BITMAP DATA routine writes an image
into a specified pixmap. The client uses the routine to write images for
the cursor and the cursor mask into two pixmaps.

8 The CREATE PIXMAP CURSOR routine uses the two pixmaps to
create the pixmap cursor.

Managing Cursors

6-38

To dissociate a cursor from a window, call the UNDEFINE CURSOR
routine. After a call to UNDEFINE CURSOR, the cursor associated with
the parent window is used. If the window is a root window, UNDEFINE
CURSOR restores the default cursor. UNDEFINE CURSOR does not
destroy a cursor. Using its identifier, the client can still refer to the cursor
and associate it with a window.

6.8.3

Drawing Graphics
6.8 Defining Cursors

To change the color of a cursor, use the RECOLOR CURSOR routine. If
the cursor is displayed on the screen, the change is immediately visible.
For information about defining foreground and background colors, see
Chapter 5. For information about loading fonts, see Chapter 8.

Destroying Cursors
To destroy a cursor, use the FREE CURSOR routine. FREE CURSOR
deletes the association between the cursor identifier and the specified
cursor. It also frees memory allocated for the cursor.

6-39

7 Using Pixmaps and Images

Xlib enables clients to create and work with both on-screen graphics, such
as lines and cursors, and off-screen images, such as pixmaps. Chapter 4
and Chapter 6 describe how to work with on-screen graphics objects.

This chapter describes how to work with off-screen graphics resources,
including the following topics:

• Creating and freeing pixmaps

• Creating and managing bitmap files

• Working with images

7.1 Creating and Freeing Pixmaps
A pixmap is an area of memory into which clients can either define an
image or tern porarily save part of a screen. Pixmaps are useful for defining
cursors and icons, for creating tiling patterns, and for saving portions of a
window that has been exposed. Additionally, drawing complicated graphics
sequences into pixmaps and then copying the pixmaps to a window is often
faster than drawing the sequences directly to a window.

Use the CREATE PIXMAP routine to create a pixmap. The routine creates
a pixmap of a specified width, height, and depth. If the width or height is
zero or the depth is not supported by the drawable root window, the server
returns an error. The pixmap must be associated with a window, which
can be either an input-output or an input-only window.

Example 7-1 illustrates creating a pixmap to use as backing store for
drawing the star of Example 6-5.

7-1

Using Pixmaps and Images
7 .1 Creating and Freeing Pixmaps

Example 7-1 Creating a Pixmap

C Create window WINDOW on display DPY, defined
C as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

INTEGER*4 PIXMAP
INTEGER*4 EXPOSE FLAG

c
C Create graphics context
c

GC_MASK = X$M_GC_FOREGROUND .OR. X$M_GC_BACKGROUND

tt XGCVL.X$L_GCVL_FOREGROUND =

c
c
c

1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 3)

XGCVL.X$L_GCVL_BACKGROUND =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 3)

GC = X$CREATE_GC(DPY, WINDOW, GC_MASK, XGCVL)

Create the pixmap

• @)
PIXMAP= X$CREATE_PIXMAP(DPY, WINDOW, WINDOW W, WINDOW H, DEPTH)
CALL X$FILL_RECTANGLE(DPY, PIXMAP, GC, 0, 0, WINDOW_W,
1 WINDOW H)
CALL X$SET_FOREGROUND(DPY, GC, DEFINE_COLOR(DPY, SCREEN,
1 VISUAL, 2))

CALL X$FILL POLYGON(DPY, PIXMAP, GC, PT ARR, 6, X$C_COMPLEX,
1 - X$C_COORD_MODE_ORIGIN) -

c
C Handle events
c

7-2

DO WHILE (. TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE) THEN
CALL X$DRAW_I~..AGE_STRING(DPY, WINDOW, GC,

1 150, 25, 'To create a filled polygon, click MBl')
CALL X$DRAW IMAGE STRING(DPY, WINDOW, GC,

1 150, 75~ 'To exit, click MB2')
IF (EXPOSE_FLAG .EQ. 0) THEN

EXPOSE FLAG = 1
ELSE

CALL X$COPY_AREA(DPY, PIXMAP, WINDOW, GC, 0, 0,
1 WINDOW W, WINDOW H, 0, 0)

CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,
1 150, 75, 'To exit, click MB2')

END IF
END IF

(continued on next page)

Using Pixmaps and Images
7 .1 Creating and Freeing Pixmaps

Example 7-1 {Cont.) Creating a Pixmap

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT=BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

CALL X$COPY_AREA(DPY, PIXMAP, WINDOW, GC, 0, 0,
1 WINDOW W, WINDOW H, 0, 0)

CALL X$DRAW IMAGE STRING(DPY, WINDOW, GC,
1 150, 75~ 'To exit, click MB2')

ENDIF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT BUTTON.X$L BTEV BUTTON .EQ. X$C_BUTTON2) THEN

CALL SYS$EXIT(%VAL(l)) -
END IF

END DO

END

8 Pixmaps use only the foreground member of the graphics context
to define color. Because the client is using the pixmap as backing
store, which is copied into the window to repaint exposed areas, both
foreground and background members of the graphics context are first
defined as the window background color.

8 The pixmap has the width, height, and depth of the window.

8 FILL RECTANGLE fills the pixmap with the background color of the
window. After filling the pixmap to ensure that pixel values of both
the pixmap and window background are the same, the foreground color
is redefined for graphics operations.

e After redefining foreground color, the client draws the polygon into
the pixmap. For a description of specifying and filling the polygon, see
Example 6-5.

0 At the first window exposure, the client draws only the text into the
window. On subsequent exposures, the client copies the pixmap into
the window to repaint exposed areas. For a description of handling
exposure events, see Chapter 9.

When a client no longer needs a pixmap, use the FREE PIXMAP routine to
free storage associated with it. FREE PIXMAP first deletes the association
between the pixmap identifier and the pixmap and then frees pixmap
storage.

7.2 Creating and Managing Bitmaps
Xlib enables clients to create files of bitmap data and then use those files
to create either bitmaps or pixmaps. To create a bitmap data file, use the
WRITE BITMAP FILE routine. Example 7-2 illustrates creating a pixmap
and writing the pixmap data into a bitmap data file.

7-3

Using Pixmaps and Images
7.2 Creating and Managing Bitmaps

Example 7-2 Creating a Bitmap Data File

PT_ARR(l) .X$W_GPNT_X 20
PT_ARR(l) .X$W_GPNT_Y 0
PT_ARR(2) .X$W_GPNT_X 20
PT_ARR(2) .X$W_GPNT_Y 5
PT_ARR(3) .X$W_GPNT_X 20
PT_ARR(3) .X$W_GPNT_Y 10
PT_ARR(4) .X$W_GPNT_X 20
PT_ARR(4) .X$W_GPNT_Y 15
PT_ARR(5) .X$W_GPNT_X 20
PT_ARR(5) .X$W_GPNT_Y 20

c
C Create the pixmap
c

PIXMAP= X$CREATE_PIXMAP(DPY, WINDOW, PIX WIDTH, PIX HEIGHT,
1 DEPTH)
CALL X$FILL_RECTANGLE(DPY, PIXMAP, GC, 0, 0, PIX_WIDTH,
1 PIX HEIGHT)
CALL X$SET_FOREGROUND(DPY, GC, DEFINE_COLOR(DPY, SCREEN,
1 VISUAL, 2))
CALL X$DRAW LINES(DPY, PIXMAP, GC, PT ARR, 5, X$C COORD MODE)
STATUS= X$WRITE_BITMAP_FILE(DPY, 'BITFILE.DAT', PIXMAP,
1 20, 20, 0, 0)

The client first creates a pixmap using the method described in Section 7.1
and then calls the WRITE BITMAP FILE routine to write the pixmap data
into the BITFILE.DAT bitmap file.

To create a bitmap or pixmap from a bitmap data file, use either the
CREATE BITMAP FROM DATA or CREATE PIXMAP FROM DATA
routine. Example 7-3 illustrates creating a pixmap from the bitmap data
stored in BITFILE.DAT.

Example 7-3 Creating a Pixmap from Bitmap Data

INTEGER*4 LINES (60)

DATA LINES /'AA'X, 'AA' X, 'OA' X, '55'X, '55' X, '05'X,
1 'AA' X, 'AA'X, 'OA' X, '55' X, '55'X, '05' X, 'AA' X,
1 'AA' X, 'OA' X, '55'X, '55'X, '05'X, 'AA'X, 'AA'X,
1 'OA' X, , 55, x, '55' X, '05'X, 'AA' X, 'AA'X, 'OA'X,
1 '55'X, '55' X, , 05, x, 'AA' X, 'AA' X, 'OA' X, '55'X,
1 , 55' x, '05'X, 'AA' X, 'AA'X, ' OA' X, '55' X, '55'X,
1 '05'X, 'AA' X, 'AA' X, 'OA' X, '55'X, , 55, x, '05' X,
1 'AA' X, 'AA'X, 'OA' X, '55'X, '55'X, '05' X, 'AA' X,
1 'AA' X, 'OA' X, '55, x, '55'X, '05'X/

(continued on next page)

7-4

Using Pixmaps and Images
7.2 Creating and Managing Bitmaps

Example 7-3 (Cont.) Creating a Pixmap from Bitmap Data

c
C Create the pixmap
c

PIX FOREGROUND = XGCVL.X$L_GCVL_FOREGROUND
PIX BACKGROUND = XGCVL.X$L GCVL BACKGROUND
PIXMAP = X$CREATE PIX FROM-BITMAP DATA(DPY, WINDOW, LINES,
1 PIX_WIDTH, PIX_HEIGHT, PIX_FOREGROUND,
1 PIX_BACKGROUND, DEPTH)
CALL X$SET_WINDOW_BACKGROUND_PIXMAP(DPY, WINDOW, PIXMAP)

The client uses the pixmap to define window background.

7.3 Working with Images
Instead of managing images directly, clients perform operations on them
by using the image data structure, which includes a pointer to data such
as the LINES array defined in Example 7-3. In addition to the image
data, the image data structure includes pointers to client-defined functions
that perform the following operations:

• Destroying an image

• Getting a pixel from the image

• Storing a pixel in the image

• Extracting part of the image

• Adding a constant to the image

If the client has not defined a function, the corresponding Xlib routine is
called by default.

Figure 7-1 illustrates the data structure.

Figure 7-1 Image Data Structure

x$1_imag_width 0

x$1_imag_height 4

x$1_imag_xoffset 8

x$1_imag_format 12

x$a_imag_data 16

(continued on next page)

7-5

Using Pixmaps and Images
7.3 Working with Images

Figure 7-1 (Cont.) Image Data Structure

x$1_imag_byte_order

x$1_imag_bitmap_unit

x$1_imag_bitmap_bit_order

x$1_imag_bitmap_pad

x$1_imag_depth

x$1_imag_bytes_per _line

x$Limag_bits_per _pixel

x$1_imag_red_mask

x$1_imag_green_mask

x$1_imag_blue_mask

x$a_imag_obdata

x$a_imag_create_image

x$a_imag_destroy_image

x$a_imag_get_pixel

x$a_imag_put_pixel

x$a_imag_sub_image

x$a_imag_add_pixel

Table 7-1 describes the members of the data structure.

Table 7-1 Image Data Structure Members

Member Name Contents

Specifies the width of the image.

Specifies the height of the image.

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

X$L_IMAG_WIDTH

X$L_IMAG_HEIGHT

X$L_IMAG_OFFSET Specifies the number of pixels offset in the x direction. Specifying an offset
permits the server to ignore the beginning of scanlines and rapidly display
images when Z pixmap format is used.

(continued on next page)

7-6

Using Pixmaps and Images
7.3 Working with Images

Table 7-1 (Cont.) Image Data Structure Members

Member Name

X$L_IMAG_FORMAT

X$A_IMAG_DATA

X$L_IMAG_BYTE_ORDER

X$L_IMAG_BITMAP _UNIT

X$L_IMAG_BITMAP _BIT_ ORDER

X$L_IMAG_BITMAP _PAD

X$L_IMAG_DEPTH

X$L_IMAG_BYTES_PER_LINE

X$L_IMAG_BITS_PER_PIXEL

X$L_IMAG_RED_MASK

X$L_IMAG_GREEN_MASK

X$L_IMAG_BLUE_MASK

X$A_IMAG_OBDATA

X$A_IMAG_CREATE_IMAGE

X$A_IMAG_DESTROY _IMAGE

X$A_IMAG_GET _PIXEL

X$A_IMAG_PUT _PIXEL

X$A_IMAG_SUB_IMAGE

X$A_IMAG_ADD_PIXEL

Contents

Specifies whether the data is stored in XV pixmap or Z pixmap format. The
following flags facilitate specifying data format:

Flag Name

x$c_xy_bitmap

x$c_xy _pixmap

x$c_z_pixmap

Address of the image data.

Description

A single bitmap representing one plane

A set of bitmaps representing individual planes

Data organized as a list of pixel values viewed
as a horizontal row

Indicates whether least significant or most significant byte is first.

Specifies whether the bitmap is organized in units of 8, 16, or 32 bits.

Specifies whether the bitmap order is least or most significant.

Specifies whether padding in XV format or Z format should be done in
units of 8, 16, or 32 bits.

Depth of the image.

Bytes per line to be used as an accelerator.

Indicates for Z format the number of bits per pixel.

Specifies the red value of Z format.

Specifies the green value of Z format.

Specifies blue values of Z format.

A data structure that contains object routines.

Client-defined function that creates an image.

Client-defined function that destroys an image.

Client-defined function that gets the value of a pixel in the image.

Client-defined function that changes the value of a pixel in the image.

Client-defined function that creates a new image from an existing one.

Client-defined function that increments each pixel value in the image by a
constant.

To create an image, use either the CREATE IMAGE or the GET IMAGE
routine. CREATE IMAGE initializes an image data structure, including
a reference to the image data. For example, the following call creates an
image data structure that points to the image data LINES, illustrated in
Example 7-3:

7-7

Using Pixmaps and Images
7 .3 Working with Images

7-8

RECORD /X$IMAGE/ IMAGE

PARAMETER
1
1

WINDOW_W = 600, WINDOW_H = 600,
PIX WIDTH = 16, PIX HEIGHT = 16,
BITMAP_PAD 16, BYTES PER_LINE 16

CALL X$CREATE_IMAGE(DPY, VISUAL, DEPTH, X$C_Z_PIXMAP,
1 0, LINES, PIX_WIDTH, PIX_HEIGHT, BITMAP_PAD,
1 BYTES_PER_LINE)

Note that the CREATE IMAGE routine does not allocate storage space for
the image data.

To create an image from a drawable, use the GET IMAGE routine. In the
following example, the client creates an image from a pixmap:

PARAMETER X_ORIGIN = 0, Y_ORIGIN = 0,
1 PIX_WIDTH = 16, PIX_HEIGHT 16

IMAGE.= X$GET_IMAGE(DPY, PIXMAP, X ORIGIN, Y ORIGIN,
1 PIX WIDTH, PIX HEIGHT, XGCVL.X$L=GCVL_PLANE_MASK,
1 X$C=Z_PIXMAP) -

To transfer an image from memory to a drawable, use the PUT IMAGE
routine. In the following example, the client transfers the image from
memory to a window:

PARAMETER
1
1

SRC_X = 0, SRC_Y = 0,
DST_X = 200, DST_Y = 200,
PIX WIDTH = 16, PIX_HEIGHT 16

CALL X$PUT_IMAGE(DPY, WINDOW, GC, IMAGE, SRC_X, SRC_Y,
1 DST_X, DST_Y, PIX_WIDTH, PIX_HEIGHT)

The call transfers the entire image, which was created in the call to GET
IMAGE, from memory to coordinates (200, 200) in the window.

As the description of the image data structure indicates, Xlib enables
clients to store an image in the following ways:

• As a bitmap-XY bitmap format stores the image as a two-dimensional
array. Figure 7-2 illustrates XY bitmap format.

• As a set of bitmaps-XY pixmap format stores the image as a stack of
bitmaps. Figure 7-3 illustrates XY pixmap format.

Using Pixmaps and Images
7.3 Working with Images

• As a list of pixel values-Z pixmap format stores the image as a list of
pixel values viewed as a horizontal row. Each example of creating an
image uses Z pixmap format. Figure 7-4 illustrates scanline order.

Figure 7-2 XV Bitmap Format

XV Bitmap Format

1 2 3

4 5 6

7 8 9

ZK-0157A-GE

Figure 7-3 XV Pixmap Format

XV Pixmap Format

ZK-0155A-G E

7-9

Using Pixmaps and Images
7.3 Working with Images

7-10

Figure 7-4 Z Format

Z Pixmap Format

ZK-0156A-GE

Xlib includes routines to change images by manipulating their pixel values
and creating new images out of subsections of existing images. Table 7-2
lists these routines and their use. Clients can override these routines by
defining functions referred to in the image data structure.

Table 7-2 Routines That Change Images

Routine

ADD PIXEL

GET PIXEL

PUT PIXEL

SUB IMAGE

Description

Increments each pixel in an image by a constant value

Returns the pixel value of an image

Sets the pixel value of an image

Creates a new image out of a subsection of an existing image

When a client no longer needs an image, use the DESTROY IMAGE
routine to deallocate memory associated with the image data structure.

8 Writing Text

This chapter describes writing text using Xlib. The chapter includes the
following topics:

• Characters and fonts-A description of the composition of characters
and types of fonts and their components

• Specifying fonts-How to load a font and associate it with a graphics
context

• Computing text size--How to determine the size of text

• Getting information about text-How to get information about text

• Drawing text-How to write text on the screen

VMS DECwindows provides a font compiler to enable programmers
to convert ASCII files into binary form. For a guide to using the font
compiler, see Appendix A.

8.1 Characters and Fonts
The smallest unit of text the server displays on a screen is a character.
Pixels that form a character are enclosed within a bounding box that
defines the number of pixels the server turns on or off to represent the
character on the screen. For example, Figure 8-1 illustrates the bounding
box that encloses the character "y."

The server turns each pixel within the bounding box either on or off,
depending on the character. Consequently, bounding box size affects
performance. Larger bounding boxes require more server time to process
than do smaller boxes.

The character is positioned relative to the baseline and the character
origin. The baseline is logically viewed as the x axis that runs just below
nondescending characters. The character origin is a point along the
baseline. The left bearing of the character is the distance from the origin
to the left edge of the bounding box; the right bearing is the distance
from the origin to the right edge. Ascent and descent measure the
distance from the baseline to the top and bottom of the bounding box,
respectively. Character width is the distance from the origin to the next
character origin (x + width, y).

8-1

Writing Text
8.1 Characters and Fonts

Figure 8-1 Composition of a Character

I
,-character Width

'4----------~

1'4 r Right Bearing

I
Left Bearing _b, (_ Ascent'

7 -7

Baseline'

Origin of _JI
Character

8-2

6 -6

5 -5

4 -4

3 -3

2 -2

-1

0 0

-1

-2 2

-3 3
,-oescent

~Bou~din~-
-4 4

Origin of Next
Box Character

ZK-0290A-GE

Figure 8-2 illustrates that the bounding box of a character can extend
beyond the character origin. The bounding box of the back slash extends
one pixel to the left of the origin of the slash, giving the character a
left bearing of -1. The back slash is also unusual because its bounding
box extends to the right of the next character. The width of the slash,
measured from origin to origin, is 5; the right bearing, measured from
origin to the right edge of the bounding box, is 6.

Writing Text
8.1 Characters and Fonts

Figure 8-2 Composition of a Back Slash

·--I
I

•• • • • • • • •••

• •• • •• • • • • •• • • • • • • • • • • •
.'1 •• • • •• Origin of Next Character I

-- ---
ZK-0289A-GE

The left bearing , right bearing, ascent, descent, and width of a character
are its character metrics. Xlib maintains information about character
metrics in a char struct data structure. Figure 8-3 illustrates the data
structure.

Figure 8-3 Char Struct Data Structure

x$w _char _rbearing x$w_char_lbearing

x$w_char_ascent x$w _char _width

x$w_char _attributes x$w_char_descent

Table 8-1 describes members of the char struct data structure. Any
member of the data structure can have a negative value, except the
X$W _CHAR_ATTRIBUTES member.

0

4

8

8-3

Writing Text
8.1 Characters and Fonts

8-4

Table 8-1 Char Struct Data Structure Members

Member Name

X$W_CHAR_LBEARING

X$W_CHAR_RBEARING

X$W_CHAR_WIDTH

X$W_CHAR_ASCENT

X$W_CHAR_DESCENT

X$W_CHAR_ATIRIBUTES

Contents

Distance from the origin to the left edge of the
bounding box.

Distance from the origin to the right edge of the
bounding box.

Distance from the current origin to the origin of
the next character. Text written left to right, such
as Arabic, uses a negative width to place the next
character to the left of the current origin.

Distance from the baseline to the top of the
bounding box.

Distance from the baseline to the bottom of the
bounding box.

Attributes defined in the bitmap distribution format
file. A character is not guaranteed to have any
attributes.

A font is a group of characters that have the same style and size. Xlib
supports both fixed and proportional fonts. A fixed font has equal
metrics. For example, all characters in the font have the same value
for left bearing. Consequently, the bounding box for all characters is the
same. All metrics in a proportional font can vary from character to
character. A monospaced font is a special type of proportional font in
which only the width of all characters must be equal. Bounding boxes of
characters in a monospaced font vary depending on the size pf characters.
If the same font is compiled as a monospaced font and a fixed font, the
hounding boxes of the monospaced font are typically smaller than the
bounding box that encloses fixed-font characters. For information about
compiling fonts, see Appendix A.

Xlib uses indexes to refer to characters that compose a font. The indexes,
each defined by a byte, are arranged in one or more rows of up to 256
indexes. A font can contain as many as 256 rows of character indexes,
used contiguously. Fonts seldom use all possible indexes.

For example, the font illustrated in Figure 8-4 comprises 219 characters
in columns 32 through 250, one column for each character index. Columns
1 through 31 and 251 through 256 are undefined. The first character of
the font is located at column 32; the last character is located at column
250. Because all characters ate defined in one row of 256 indexes, the
font is a single-row font. In the illustration, character "A" is located at
column 65.

Writing Text
8.1 Characters and Fonts

Figure 8-4 Single-Row Font

..._
25

_
6

_L-as..._t _Ch a-ra-ct-er,,__' __
25_0_~f: '_I 6_

5
_I _....__--'--__.l_32-?Jhlara~t~r I

ZK-0274A-GE

Multiple-row fonts, such as Kanji, comprise more characters than
can be indexed by a single row of 256 bytes. Figure 8-5 illustrates the
configuration of a multiple-row font. Byte 1 refers to the row. Byte 2
refers to the column in the row. In Figure 8-5, the character is located at
column 36 in row 17. Note that each row of a multiple-row font has the
same number of undefined bytes at the beginning and end. In each row,
characters begin at column 32 and end at column 250.

Figure 8-5 Multiple-Row Font

Byte 1

Byte 2

8

0

0

0

0

0 1

1 0

256 250 -((

1111111 b):_

11111111

0

0

• • •

•

1 r Char 2B Structure

0 0 1

1 0 0

I r First Character

36 35 34 33 32 5 Jda ~

I I I 11 I 11) i I I I I I I I 5 f ifE:~:
Last Character_/

ZK-0273A-GE

8-5

Writing Text
8.1 Characters and Fonts

Xlib provides a char 2B data structure to enable clients to index multiple
row fonts easily. Figure 8-6 illustrates the data structure.

Figure 8-6 Char 28 Data Structure

x$t_ch2b_byte2 x$t_ch2b_byte1

Table 8-2 describes members of the data structure.

Table 8-2 Char 28 Data Structure Members

Member Name

X$T_CHAR2B_BYTE1

X$T_CHAR2B_BYTE2

Contents

Row in which the character is indexed

Position of the character in the row

Xlib provides clients a font struct data structure to record the
characteristics of single-row and multiple-row fonts. Figure 8-7 illustrates
the font struct data structure.

Figure 8-7 Font Struct Data Structure

x$a_fstr_ext_data 0

x$1_fstr_fid 4

x$1_fstr _direction 8

x$1_fstr_min_char_or_byte2 12

x$1_fstr_max_char_or_byte2 16

x$1_fstr_min_byte1 20

x$1_fstr_max_byte1 24

x$1_fstr_all_chars_exist 28

x$1_fstr _default_ char 32

x$1_fstr _n_properties 36

x$a_fstr _properties 40

x$a_fstr _min_bounds 44

x$a_fstr_max_bounds 48

(continued on next page)

8-6

Writing Text
8.1 Characters and Fonts

Figure 8-7 (Cont.) Font Struct Data Structure

x$a_fstr_per_char 52

x$1_fstr _ascent 56

x$1_fstr_descent 60

Table 8-3 describes members of the data structure.

Table 8-3 Font Struct Data Structure Members

Member Name

X$A_FSTR_EXT_DATA

X$L_FSTR_FID

X$L_FSTR_DIRECTION

X$L_FSTR_MIN_CHAR_OR_BYTE2

X$L_FSTR_MAX_CHAR_OR_BYTE2

X$L_FSTR_M IN_BYTE1

X$L_FSTR_MAX_BYTE1

X$L_FSTR_ALL_ CHARS _EXIST

X$L_FSTR_DEFAULT _CHAR

X$L_FSTR_N_PROPERTIES

X$A_FSTR_PROPERTIES

X$R_FSTR_MIN_BOUNDS

Contents

Data used by extensions.

Identifier of the font.

Hint about the direction in which the font is painted. The direction
can be either left to right, specified by the constant x$c_font_left_
to_right, or right to left, specified by the constant x$c_font_right_to_
left. The core protocol does not support vertical text.

First character in the font.

Last character in the font.

First row that exists.

Last row that exists.

If the value of this member is true, all characters in the array
pointed to by X$A_FSTR_PER_CHAR have nonzero bounding
boxes.

Character used when an undefined or nonexistent character is
printed. The default character is a 16-bit, not a 2-byte, character.
For a multiple-row font, X$L_FSTR_DEFAULT_CHAR has byte 1 in
the most significant byte and byte 2 in the least significant byte. If
X$L_FSTR_DEFAULT_CHAR specifies an undefined or nonexistent
character, the server does not print an undefined or nonexistent
character.

Number of properties associated with the font.

Address of an array of font prop data structures that define font
properties. For a description of the font prop data structure, see
Section 8.3

Minimum metrics values of all the characters in the font. The
metrics define the left and right bearings, ascent and descent, and
width of characters.

For a description of the use of X$R_FSTR_MIN_BOUNDS, see
X$R_FSTR_MAX_BOUNDS.

(continued on next page)

8-7

Writing Text
8.1 Characters and Fonts

Table 8-3 (Cont.) Font Struct Data Structure Members

Member Name

X$R_FSTR_MAX_BOUNDS

X$A_FSTR_PER_CHAR

X$L_FSTR_ASCENT

X$L_FSTR_DESCENT

8-8

Contents

Maximum metrics values of all the characters in the font.

Using the values of X$R_FSTR_MIN_BOUNDS and X$R_FSTR_
MAX_BOUNDS, clients can compute the bounding box of a font.
The bounding box of the font is determined by first computing the
minimum and maximum value of the left bearing, right bearing,
width, ascent, and descent of all characters and then subtracting
minimum from maximum values. The upper left coordinate of the
font bounding box (x, y) is defined as follows:

x + X$R_FSTR_MIN_BOUNDS.X$W_CHAR_LBEARING,
y - X$R_FSTR_MAX_BOUNDS.X$W_CHAR_ASCENT

The width of the font bounding box is defined as follows:

X$R_FSTR_MAX_BOUNDS.X$W_CHAR_RBEARING -
X$R_FSTR_MIN_BOUNDS.X$W_CHAR_LBEARING

Note that this is not the width of a font character.

The height is defined as follows:

X$R_FSTR_MAX_BOUNDS.X$W_CHAR_ASCENT +
X$R_FSTR_MAX_BOUNDS.X$W_CHAR_DESCENT

Address of an array of char struct data structures that define each
character in the font. For a fixed font, the value of this member is
null.

Distance from the baseline to the top of the bounding box. With
X$L_FSTR_DESCENT, X$L_FSTR_ASCENT is used to determine
line spacing. Specific characters in the font may extend beyond the
font ascent.

The distance from the baseline to the bottom of the bounding
box. With XL_FSTR_ASCENT, XL_FSTR_DESCENT is used to
determine line spacing. Specific characters in the font may extend
beyond the font descent.

As Table 8-3 indicates, Xlib records metrics for each character in an array
of char struct data structures specified by the font struct X$A_FSTR_PER_
CHAR member. The array comprises as many char struct data structures
as there are characters in the font. However, the indexes that refer to the
location of characters in the array differs from the indexes to characters in
the font. For example, 32 indexes the first character of the font illustrated
in Figure 8-8, whereas 0 indexes its char struct data structure in the
array.

Writing Text
8.1 Characters and Fonts

Figure 8-8 Indexing Single-Row Font Character Metrics

Array of Char Struct Structures

Char Struct

Char Struct

• • •
Char Struct

• • •
Char Struct

1 Defines Metrics of First Character (32)
2 Defines Metrics of Second Character (33)

34 Defines Metrics of "A" (65)

219 Defines Metrics of Last Character

ZK-0271 A-GE

To locate the char struct data structure that defines the metrics of any
character in a single-row font, subtract the value of the column that
indexes the first character in the font, specified by X$L_FSTR_MIN_
CHAR_OR_BYTE_2, from the position of the character. Then add 1 to
this number. For instance, in Figure 8-8 the metrics of character "A" are
located at index 34 in the array of char struct data structures specified by
the X$A_FSTR_PER_CHAR member.

To locate the char struct data structure that defines the metrics of a
character of a mulitple-row font, use the following formula to adjust for
both the number of rows in the font and the position of the character in a
row:

(row - first row of characters)* N +(position in column - first column)

N is equal to the last column minus the first column plus 1.

For example, the array index of the character specified in Figure 8-9
is 443.

8-9

Writing Text
8.1 Characters and Fonts

Figure 8-9 Indexing Multiple-Row Font Character Metrics

Byte 1

Byte 2

8

0

0

0

0

0 1

1 0

1
/Char 2B Structure

0 0 0 1

0 1 0 0

l (First Character

256 250 -((

1111111 b)~
36 35 34 33 32) ifffi~

111111

• •
- - - - - - - - - - - - ! - - ~~ - - - - - - - - - - !- .. t I

I
• I
: I

I I I I I I 11) ~ I I I I I I ~)L I I I
Last Character~-------------------------..!

1255
256

'-Font Characters

Array of Char Struct Structures

Char Struct

• • •
Char Struct

Char Struct

• • •
Char Struct

• • •
Char Struct

8-10

Defines Metrics of Character at Row 15, Column 32

219 Defines Metrics of Character in Row 15, Column 250

220 Defines Metrics of Character in Row 16, Column 32

443 Defines Metrics of Char 28 Character

52997 Defines Metrics of Last Character

ZK-0272A-GE

Like windows, fonts may have properties associated with them. However,
font properties differ from window properties. Window properties are data
associated with windows; font properties describe font characteristics, such
as spacing between words. When the font is compiled, its properties are
defined in an array of font prop data structures.

Writing Text
8.1 Characters and Fonts

Just as atoms name window properties, atoms name font properties. If
the atoms are predefined, they have associated literals. For example, the
predefined atom that identifies the height of capitalized letters is referred
to by the literal X$C_XA_CAP _HEIGHT.

When working with properties, clients must know beforehand how to
interpret the font property identified by an atom. Figure 8-10 illustrates
this concept.

The server maintains an atom table for font properties. The table
associates values with strings. For example, the atom table illustrated
in Figure 8-10 defines two atoms. One associates the string FULL_NAME
with the value 41. The other associates the string CAP _HEIGHT with
the value 42. Notice that the string in the atom table is different from
X$C_XA_FULL_NAME, the literal that refers to the atom.

Both atoms uniquely identify different types of data. FULL_NAME
identifies string data that names the font. CAP _HEIGHT identifies integer
data that defines the size of capitalized letters.

Although the atoms identify different types of data, the property table
illustrated in Figure 8-10 associates both atoms with integers. The integer
associated with CAP _HEIGHT defines without further interpretation the
height of capitalized letters. However, the integer listed with FULL_
NAME is an atom value. This integer, 90, corresponds to a value in the
atom table that has an associated string, HELVETICA BOLD. To use the
string, the client must know that the value associated with the atom is
itself an atom value.

8-11

Writing Text
8.1 Characters and Fonts

Figure 8-1 O Atoms and Font Properties

Atom Table

Value String

• •
• •
• • Literals

FULL_ NAME .._ X$C_XA_FULL_NAME

42 CAP_HEIGHT .._ X$C_XA_CAP _HEIGHT

• •
• •
• •
90

• •
• •
• •

Array of FONT PROP Structures

FONT PROP (n+1)

8-12

Atom Value

• •
• •
• •
41 90

42 10

• •
• •
• •

ZK-0320A-GE

Xlib lists each font property and its corresponding atom in a font prop data
structure. The property value table in Figure 8-10 is an array of font prop
data structures.

Figure 8-11 illustrates the font prop data structure.

Writing Text
8.1 Characters and Fonts

Figure 8-11 Font Prop Data Structure

x$1_fntp_name

x$1_f ntp _ card32

Table 8-4 describes members of the data structure.

Table 8-4 Font Prop Data Structure Members

Member Name

X$L_FNTP _NAME

X$L_FNTP _ CARD32

8.2 Specifying a Font

Contents

String of characters that names the property

A 32-bit value that defines the font property

0

4

To specify a font for writing text, first load the font and then associate the
loaded font with a graphics context. Appendix D lists VMS DECwindows
fonts.

To load a font, use either the LOAD FONT or the LOAD QUERY FONT
routine. LOAD FONT loads the specified font and returns a font identifier.
LOAD QUERY FONT loads the specified font and returns information
about the font to a font struct data structure.

Because LOAD QUERY FONT returns information to a font struct data
structure, calling the routine takes significantly longer than calling LOAD
FONT, which returns only the font identifier.

When using either routine, pass the display identifier and font name. Xlib
font names consist of the following fields, in left to right order:

1 Foundry that supplied the font, or the font designer

2 Typeface family of the font

3

4

Weight (book, demi, medium, bold, light)

Style (R (roman), I (italic), 0 (oblique))

5 Width per horizontal unit of the font (normal, wide, double wide,
narrow)

6 Additional style font identifier

7 Pixel font size

8 Point size (8, 10, 12, 14, 18, 24)

9 Resolution in pixels/dots per inch

10 Spacing (monospaced, proportional, or character cell)

11 Average width of all characters in the font

12 Set character encoding 8-13

Writing Text
8.2 Specifying a Font

The full name of a representative font in
SYS$SYSROOT:[DECW$FONT.l OODPI] is as follows:

-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--14-100-100-100-P-80-IS08859-1

The font is named ITC Avant Garde Gothic. Font weight is book, font style
is R (roman), and width between font units is normal.

The pixel size is 14 and the decipoint size is 100.

Horizontal and vertical resolution in dots per inch (dpi) is 100. When the
dpi is 100, 14 pixels are required to be a 10 point font.

The font is proportionally spaced. Average width of characters is 80.
Character encoding is ISOLATINl.

The following designates the full name of the comparable font designed for
a 75 dpi system:

-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--10-100-75-75-P-59-IS08859-1

Unlike the previous font, this font requires only 10 pixels to be 10 points.
Note that this font differs from the previous font only in pixel size,
resolution, and character width.

Xlib enables clients to substitute a question mark for a single character
and an asterisk for one or more fields in a font name. The following
illustrates using the asterisk to specify a 10-point ITC Avant Garde Gothic
font of book weight, roman style, and normal spacing for display on either
75 or 100 dpi systems:

-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--*-100-*-*-P-*

When using the asterisk, make sure that substitutions are clearly defined.
For example, the following name ambiguously specifies two fonts:

-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--*-100-*-P-*

Because the leftmost asterisk substitutes for all fields before the 100, the
name defines the following two 100 dpi fonts:

-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--11-80-100-100-P-80-IS08859-1

-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--14-100-100-100-P-80-IS08859-1

8-14

The first is an 8 point font. The second is a 10 point font.

The following example illustrates loading the 10-point font:

CHARACTER*58 FONT NAME
DATA FONT NAME
1 /'-ADOBE-ITC AVANT GARDE GOTHIC-BOOK-R-NORMAL--*-100-*-*-P-*'/

FONT X$LOAD_FONT(DPY, FONT_NAME)

Writing Text
8.2 Specifying a Font

After loading a font, associate it with a graphics context by calling the
SET FONT routine. Specify the font identifier that either LOAD FONT or
LOAD QUERY FONT returned, and a graphics context, as in the following
example:

CALL X$SET_FONT(DPY, GC, FONT)

The call associates FONT with GC.

8.3 Getting Information About a Font
Xlib provides clients with routines that list available fonts, get font
information with or without character metrics, and return the value of
a specified font property.

To get a list of available fonts, use the LIST FONTS routine, specifying the
font searched for.

LIST FONTS returns a list of available fonts that match the specified font
name. When the client no longer needs the list of font names, call the
FREE FONT NAMES routine to free storage allocated for the font list.

To receive both a list of fonts and information about the fonts, use the
LIST FONTS WITH INFO routine. LIST FONTS WITH INFO returns
both a list of fonts that match the font specified by the client and the
address of a font struct data structure for each font listed. Each data
structure contains information about the font. The data structure does not
include character metrics in the X$A_FSTR_PER_CHAR member. For a
description of the information returned, see Table 8-3.

To receive information about a font, including character metrics, use the
QUERY FONT routine. Because the server returns character metrics,
calling QUERY FONT takes approximately eight times longer than calling
LIST FONTS WITH INFO. To get the value of a specified property, use the
GET FONT PROPERTY routine.

Although a font is not guaranteed to have any properties, it should have
at least the properties described in Table 8-5. The table lists properties
by atom name and data type. For information about properties, see
Section 3.5.

Table 8-5 Atom Names of Font Properties

Atom

X$C_XA_MIN_SPACE

X$C_XA_NORMAL_SPACE

X$C_XA_MAX_SPACE

X$C_XA_END_SPACE

Data Type

Unsigned

Unsigned

Unsigned

Unsigned

Description of the Property

Minimum interword spacing, in pixels.

Normal interword spacing, in pixels.

Maximum interword spacing, in pixels.

Additional spacing at the end of a sentence, in pixels.

(continued on next page)

8-15

Writing Text
8.3 Getting Information About a Font

Table 8-5 (Cont.) Atom Names of Font Properties

Atom Data Type

X$C_XA_SUPERSCRIPT _)(Signed

X$C_XA_SUPERSCRIPT _ Y Signed

X$C_XA_SUBSCRIPT _X Signed

X$C_XA_SUBSCRIPT_Y Signed

X$C_XA_UNDERLINE_POSITION Signed

X$C_XA_UNDERLINE_ THICKNESS Unsigned

X$C_XA_STRIKEOUT _ASCENT Signed

X$C_XA_STRIKEOUT_DESCENT Signed

X$C_XA_ITALIC_ANGLE Signed

X$C_XA_X_HEIGHT Signed

X$C_XA_QUAD_WIDTH Signed

8-16

Description of the Property

With X$C_XA_SUPERSCRIPT_Y, the offset from the
character origin where superscripts should begin, in
pixels. If the origin is [x, y], superscripts should begin at
the following coordinates:

x + X$C_XA_SUPERSCRIPT_X,
y - X$C_XA_SUPERSCRIPT_Y

With X$C_XA_SUPERSCRIPT _X, the offset from
the character origin where superscripts should begin,
in pixels. See the description under X$C_XA_
SUPERSCRIPT _X.

With X$C_XA_SUBSCRIPT _ Y, the offset from the
character origin where subscripts should begin, in pixels.
If the origin is [x, y], subscripts should begin at the
following coordinates:

x + X$C_XA_SUBSCRIPT_X,
y + X$C_XA_SUBSCRIPT_Y

With X$C_XA_SUBSCRIPT _X, the offset from the
character origin where subscripts should begin, in pixels.
See the description under X$C_XA_SUBSCRIPT _X.

The y offset from the baseline to the top of an underline,
in pixels. If the baseline y-coordinate is y, then the
top of the underline is at y + X$C_XA_UNDERLINE_
POSITION.

Thickness of the underline, in pixels.

With X$C_XA_STRIKEOUT_DESCENT, the vertical
extent for boxing or voiding characters, in pixels. If the
baseline y-coordinate is y, the top of the strikeout box is
y - X$C_XA_STRIKEOUT_ASCENT. The height of the
box is as follows:

X$C_XA_STRIKEOUT_ASCENT +
X$C_XA_STRIKEOUT_DESCENT

With X$C_XA_STRIKEOUT_ASCENT, the vertical extent
for boxing or voiding characters, in pixels. See the
description under X$C_XA_STRIKEOUT_ASCENT.

The angle of the dominant staffs of characters in the font,
in degrees scaled by 64, relative to the 3-o'clock position
from the character origin. Positive values indicate
counterclockwise motion.

One ex, as in TeX, but expressed in units of pixels.
Often the height of lowercase x.

One em, as in TeX, but expressed in units of pixels.
Often the width of the digits O to 9.

(continued on next page)

Writing Text
8.3 Getting Information About a Font

Table 8-5 (Cont.) Atom Names of Font Properties

Atom

X$C_XA_CAP _HEIGHT

X$C_XA_WEIGHT

X$C_XA_POINT _SIZE

X$C_XA_RESOLUTION

X$C_XA_COPYRIGHT

X$C_XA_NOTICE

X$C_XA_FONT_NAME

X$C_XA_FAMILY _NAME

X$C_XA_FULL_NAME

Data Type

Signed

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Atom

Atom

Atom

Description of the Property

They offset from the baseline to the top of capital letters,
ignoring ascents. If the baseline y-coordinate is y, the
top of the capitals is at y - X$C_XA_CAP _HEIGHT.

Weight or boldness of the font, expressed as a value
between O and 1000.

Point size of the font at ideal resolution, expressed in
1/10 points.

Number of pixels per point, expressed in 1/100, at which
the font was created.

Copyright date of the font.

Copyright date of the font name.

Font name.

Name of the font family.

Full name of the font.

8.4 Computing the Size of Text
Use the TEXT WIDTH and TEXT WIDTH 16 routines to compute the
width of 8-bit and 2-byte strings, respectively. The routines return the
sum of the width of each character in the specified string. To compute the
bounding box of a specified 8-bit string, use either the TEXT EXTENTS
or QUERY TEXT EXTENTS routine. Both TEXT EXTENTS and QUERY
TEXT EXTENTS return the direction hint, ascent, descent, and overall
size of the character string being queried.

TEXT EXTENTS passes to Xlib the font struct data structure returned
by a previous call to either LOAD QUERY FONT or QUERY FONT.
QUERY TEXT EXTENTS queries the server for font information, which
the server returns to a font struct data structure. Because Xlib can process
TEXT EXTENTS locally, without querying the server for font metrics,
calling TEXT EXTENTS is significantly faster than calling QUERY TEXT
EXTENTS.

To compute the bounding boxes of a specified 2-byte string, use either the
TEXT EXTENTS 16 or the QUERY TEXT EXTENTS 16 routine. Both
routines return information identical to information returned by TEXT
EXTENTS and QUERY TEXT EXTENTS. As with TEXT EXTENTS,
calling TEXT EXTENTS 16 is significantly faster than calling QUERY
TEXT EXTENTS 16 because Xlib can process the call without making the
round-trip to the server.

8-17

Writing Text
8.5 Drawing Text

8.5 Drawing Text
Xlib enables clients to draw text stored in text data structures, text
whose foreground bits are only displayed, and text whose foreground and
background bits are displayed.

To draw 8-bit or 2-byte text stored in data structures, use either the
DRAW TEXT or the DRAW TEXT 16 routine. Xlib includes text item and
text item 16 data structures to enable clients to store text. Figure 8-12
illustrates the text item data structure.

Figure 8-12 Text Item Data Structure

8-18

x$a_text_chars 0

x$1_text_n_chars 4

x$1_text_delta 8

x$1_text_font 12

Table 8-6 describes members of the text item data structure.

Table 8-6 Text Item Data Structure Members

Member Name

X$A_TEXT_CHARS

X$L_TEXT_N_CHARS

X$L_ TEXT _DEL TA

X$L_ TEXT _FONT

Contents

Address of a string of characters.

Number of characters in the string.

Horizontal spacing before the start of the string.
Spacing is always added to the string origin and is not
dependent on the font used.

Identifier of the font used to print the string. If the
value of this member is x$c_none, the server uses the
current font in the GC data structure. If the member
has a value other than x$c_none, the specified font is
stored in the GC data structure.

Figure 8-13 illustrates the text item 16 data structure.

Figure 8-13 Text Item 16 Data Structure

x$a_tx16_chars

x$1_tx16_n_chars

x$1_tx16_delta

Writing Text
8.5 Drawing Text

0

4

8

x$1_tx16_font 12

Table 8-7 describes members of the text item 16 data structure.

Table 8-7 Text Item 16 Data Structure Members

Member Name

X$A_TX16_CHARS

X$L_ TX16_N_CHARS

X$L_TX16_DELTA

X$L_ TX16_FONT

Contents

Address of a string of characters stored in a char 28
data structure. For a description of the char 28 data
structure, see Figure 8-6.

Number of characters in the string.

Horizontal spacing before the start of the string. Spacing
is always added to the string origin and is not dependent
on the font used.

Identifier of the font used to print the string. If the value
of this member is x$c_none, the server uses the current
font in the GC data structure. If the member has a value
other than x$c_none, the specified font is stored in the
GC data structure.

Xlib processes each text item in turn. Each character image, as defined by
the font in the graphics context, is treated as an additional mask for a fill
operation on the drawable. The drawable is modified only where the font
character has a bit set to 1.

Example 8-1 illustrates using the DRAW TEXT routine to draw three
words in one call.

8-19

Writing Text
8.5 Drawing Text

Example 8-1 Drawing Text Using the DRAW TEXT Routine

RECORD /X$TEXT_ITEM/ TEXT_ARR(3)

CHARACTER*57 FIRST FONT
DATA FIRST FONT
1 /'-ADOBE-NEW CENTURY SCHOOLBOOK-BOLD-R-NORMAL--*-80-*-*-P-*'/

CHARACTER*58 SECOND FONT
DATA SECOND FONT
1 /'-ADOBE=NEW CENTURY SCHOOLBOOK-BOLD-R-NORMAL--*-140-*-*-P-*'/

CHARACTER*58 THIRD FONT
DATA THIRD FONT
1 /'-ADOBE-NEW CENTURY SCHOOLBOOK-BOLD-R-NORMAL--*-240-*-*-P-*'/

CHARACTER*5 FIRST WORD
DATA FIRST_WORD /'SMALL' I

CHARACTER*6 SECOND WORD
DATA SECOND_WORD /'BIGGER'/

CHARACTER*7 THIRD WORD
DATA THIRD WORD /'BIGGEST'/

c
C Load the fonts for text writing
c

8-20

FONT_l = X$LOAD_FONT(DPY, FIRST_FONT)

TEXT ARR(l) .X$A TEXT CHARS = %LOC(FIRST_WORD)
TEXT-ARR(l) .X$L-TEXT-N CHARS = 5
TEXT-ARR(l) .X$L-TEXT-DELTA = 0
TEXT=ARR(l) .X$L=TEXT=FONT = FONT_l

FONT 2 = X$LOAD FONT(DPY, SECOND FONT)
CALL-X$SET_FONT(DPY, GC, FONT_2)-

TEXT ARR(2) .X$A TEXT CHARS = %LOC(SECOND_WORD)
TEXT-ARR(2) .X$L-TEXT-N CHARS = 6
TEXT-ARR(2) .X$L-TEXT-DELTA = 20
TEXT=ARR(2) .X$L=TEXT=FONT = FONT 2

FONT_3 = X$LOAD_FONT(DPY, THIRD_FONT)

TEXT ARR(3) .X$A TEXT CHARS = %LOC(THIRD_WORD)
TEXT-ARR(3) .X$L-TEXT-N CHARS = 7
TEXT=ARR(3) .X$L=TEXT=DELTA = 20
TEXT_ARR(3) .X$L_TEXT_FONT FONT_3

(continued on next page)

Writing Text
8.5 Drawing Text

Example 8-1 (Cont.) Drawing Text Using the DRAW TEXT Routine

c
C Handle events
c

DO WHILE (. TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT TYPE .EQ. X$C EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, 'To draw text, click MBl')
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 50, 'To exit, click MB2')
END IF

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT=BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

CALL X$DRAW_TEXT(DPY, WINDOW, GC, 100, 200, TEXT_ARR(l), 3)
END IF

IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.
1 EVENT.EVNT-BUTTON.X$L BTEV BUTTON .EQ. X$C BUTTON2) THEN

CALL SYS$EXIT(%VAL(l)) - -
END IF

END DO

To draw 8-bit or 2-byte text, use the DRAW STRING, DRAW STRING
16, DRAW IMAGE STRING, and DRAW IMAGE STRING 16 routines.
DRAW STRING and DRAW STRING 16 display the foreground values of
text only. DRAW IMAGE STRING and DRAW IMAGE STRING 16 display
both foreground and background values.

Example 8-2 illustrates drawing text with the DRAW STRING routine.
The example modifies the sample program in Chapter 1 to draw shadow
text.

Example 8-2 Drawing Text Using the DRAW STRING Routine

IF (EVENT.EVNT TYPE .EQ. X$C EXPOSE .AND.
1 EVENT.EVNT-EXPOSE.X$L EXEV WINDOW .EQ. WINDOW_2) THEN

CALL x$cLEAR WINDOW(DPY, WINDOW 2)
CALL X$SET_FOREGROUND(DPY, GC, -

1 DEFINE COLOR(DPY, SCREEN, VISUAL,3))
CALL X$DRAW_STRING(DPY, WINDOW_2, GC,

1 35, 75, MESSAGE(STATE))
CALL X$SET_FOREGROUND(DPY, GC,

1 DEFINE COLOR(DPY, SCREEN, VISUAL,4))
CALL X$DRAW_STRING(DPY, WINDOW_2, GC,

1 31, 71, MESSAGE(STATE))
END IF

{continued on next page)

8-21

Writing Text
8.5 Drawing Text

Example 8-2 (Cont.) Drawing Text Using the DRAW STRING Routine

IF

1

1

1

1

c
c
c

END
END DO

END

8-22

(EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS) THEN
IF (EVENT.EVNT_EXPOSE.X$L_EXEV_WINDOW .EQ. WINDOW 1) THEN -

ELSE

END
IF

STATE = 2
CALL X$CLEAR WINDOW(DPY, WINDOW 2)
CALL X$SET_FOREGROUND(DPY, GC, -

DEFINE COLOR(DPY, SCREEN, VISUAL, 3))
CALL X$DRAW_STRING(DPY, WINDOW_2, GC,

35, 7 5, MESSAGE (STATE))
CALL X$SET_FOREGROUND(DPY, GC,

DEFINE COLOR(DPY, SCREEN, VISUAL, 4))
CALL X$DRAW_STRING(DPY, WINDOW_2, GC,

31, 71, MESSAGE(STATE))

Unmap and destroy windows

CALL X$UNMAP WINDOW(DPY, WINDOW 1)
CALL X$DESTROY WINDOW(DPY, WINDOW 1)
CALL X$CLOSE DISPLAY(DPY) -
CALL SYS$EXIT(%VAL(l))
IF

The server refers to the following members of the GC data structure when
writing text with DRAW TEXT, DRAW TEXT 16, DRAW STRING, and
DRAW STRING 16:

Function

Foreground

Stipple

Background

Plane mask

Subwindow mode

Font

Tile

Tile stipple x origin Tile stipple y origin

Clip x origin Clip y origin

Clip mask Fill style

To draw both foreground and background values of text, use the DRAW
IMAGE STRING and DRAW IMAGE STRING 16 routines. For example,
the sample program uses the DRAW IMAGE routine to write the text
"Click Here to Exit," as follows:

INTEGER*4 STATE !flag for text

CHARACTER*19 MESSAGE(2)
DATA MESSAGE /'Click here to exit', 'Click HERE to exit!'/

CALL X$DRAW_IMAGE_STRING(DPY, WINDOW_2, GC,
1 75, 75, MESSAGE(STATE))

Writing Text
8.5 Drawing Text

The effect is first to fill a rectangle with the background defined in the
graphics context and then to paint the text with the foreground pixel. The
upper left corner of the filled rectangle is at 75, (75 - font ascent). The
width of the rectangle is equal to the width of the string. The height of the
rectangle is equal to font ascent+ font descent.

When drawing text in response to calls to DRAW IMAGE STRING and
DRAW IMAGE STRING 16, the server ignores the function and fill style
the client has defined in the graphics context. The value of the function
member of the GC data structure is effectively the value specified by the
constant x$c_gx_copy. The value of the fill style member is effectively
the value specified by the constant x$c_fill_solid.

The server refers to the following members of the GC data structure when
writing text with DRAW IMAGE STRING and DRAW IMAGE STRING 16:

Subwindow mode

Foreground

Stipple

Clip x origin

Clip mask

Plane mask

Background

Font

Clip y origin

8-23

g Handling Events

An event is a report of either a change in the state of a device (such as a
mouse) or the execution of a routine called by a client. An event can be
either unsolicited or solicited. Typically, unsolicited events are reports of
keyboard or pointer activity. Solicited events are Xlib responses to calls by
clients.

Xlib reports events asynchronously. When any event occurs, Xlib processes
the event and sends it to clients that have specified an interest in that
type of event.

This chapter describes the following concepts needed to manage events:

• Event processing-An overview of types of events

• Event type selection-A description of how clients can specify the types
of events Xlib reports to them

• Event handling-A description of handling specific types of events

9.1 Event Processing
Apart from errors, which Section 9.13 describes, Xlib events issue from
operations on either windows or pixmaps. Most events result from
operations associated with windows. The smallest window that contains
the pointer when a window event occurs is the source window.

Xlib searches the window hierarchy upward from the source window until
one of the following applies:

• Xlib finds a window that one or more clients has identified as
interested in the event. This window is the event window. After
Xlib locates an event window, it sends information about the event to
appropriate clients.

• Xlib finds a window whose X$L_SWDA_DO_NOT_PROPAGATE
attribute has been set by a client. Setting this attribute specifies
that Xlib should not notify ancestors of the window owned by the
client of events occurring in the window and its children. For more
information about the X$L_SWDA_DO_NOT_PROPAGATE attribute,
see Chapter 3.

• Xlib reaches the top of the window hierarchy without finding a window
that a client has identified as interested in the event. In this case, the
event is not sent.

While there are many types of window events, events associated with
pixmaps occur only when a client cannot compute a destination region
because the source region is out of bounds (see Chapter 6 for a description
of source and destination regions). When a client attempts an operation
on an out of bounds pixmap region, Xlib puts the event on the event queue

9-1

Handling Events
9.1 Event Processing

9-2

and checks a list to determine if a client is interested in the event. If a
client is interested, Xlib sends information to the client using an event
data structure.

Xlib can report 30 types of events related to keyboards, mice, windowing,
and graphics operations. A flag identifies each type to facilitate referring
to the event. Table 9-1 lists event types, grouped by category, and the
flags that represent them.

Table 9-1 Event Types

Event Type Flag Name

Keyboard Events

Key press

Key release

Pointer Motion Events

Button press

Button release

Motion notify

Window Crossing Events

Enter notify

Leave notify

Input Focus Events

Focus in

Focus out

Keymap State Event

Keymap notify

Exposure Events

Expose

Graphics expose

No expose

x$c_key _press

x$c_key _release

x$c_button_press

x$c_button_release

x$c_motion_notify

x$c_enter_notify

x$c_leave_notify

x$c_focus_in

x$c_focus_out

x$c_keymap_notify

x$c_expose

x$c_graphics_expose

x$c_no_expose

(continued on next page)

Table 9-1 (Cont.) Event Types

Event Type

Data Structure Control Events

Circulate request

Configure request

Map request

Resize request

Window State Events

Circulate notify

Configure notify

Create notify

Destroy notify

Gravity notify

Map notify

Mapping notify

Reparent notify

Unmap notify

Visibility notify

Color Map State Events

Color map notify

Client Communication Events

Client message

Property notify

Selection clear

Selection notify

Selection request

Flag Name

x$c_circulate_request

x$c_configure_request

x$c_map_request

x$c_resize_request

x$c_circulate_notify

x$c_configure_notify

x$c_create_notify

x$c_destroy _notify

x$c_gravity _notify

x$c_map_notify

x$c_mapping_notify

x$c _reparent_notify

x$c_unmap_notify

x$c_ visibility _notify

x$c_colormap _notify

x$c_client_message

x$c_property_notify

x$c_selection_clear

x$c_selection_notify

x$c_selection_request

Handling Events
9.1 Event Processing

Every event type has a corresponding data structure that Xlib uses to pass
information to clients. See the sections that describe handling specific
event types for a description of the relevant event-specific data structures.

Xlib includes the any event data structure, which clients can use to receive
reports of any type of event. Figure 9-1 illustrates the data structure.

9-3

Handling Events
9.1 Event Processing

Figure 9-1 Any Event Data Structure

x$1_anyv _type 0

x$1_anyv _serial 4

x$1_anyv _send_event 8

x$a_anyv _display 12

x$1_anyv _window 16

Table 9-2 describes members of the data structure.

Table 9-2 Any Event Data Structure Members

Member Name Contents

Type of event Xlib is reporting X$L_ANYV _TYPE

X$L_ANYV _SERIAL

X$L_ANYV_SEND_EVENT

Number of the last request processed by the server

Value defined by the constant true if the event came
from a SEND EVENT request

X$A_ANYV _DISPLAY

X$L_ANYV _WINDOW

Display on which the event occurred

Window in which the event occurred

To enable clients to manage multiple types of events easily, Xlib also
includes an event data structure, which is composed of the union
of individual event data structures. Figure 9-2 illustrates the data
structure.

Figure 9-2 Event Data Structure

I
I!~ ------------~--~-x-$L_e_vn+_0_ype----------~~--~-----11 0

variable event data, depending upon x$1_evnt_type (124 bytes) T

.__----------~--...... J12a

9-4

The X$L_EVNT_TYPE member specifies the type of event being reported.
For descriptions of the other members of the event data structure, see the
section that describes the specific event.

Handling Events
9.2 Selecting Event Types

9.2 Selecting Event Types

9.2.1

Xlib sends information about an event only to clients that have specified
an interest in that event type. Clients use one of the following methods to
indicate interest in event types:

• By calling the SELECT INPUT routine. SELECT INPUT indicates to
Xlib which events to report.

• By specifying event masks when creating a window.

• By specifying event masks when changing window attributes.

• By specifying the graphics exposure mask when creating the graphics
context. For more information about specifying a graphics exposure
mask, see Chapter 4.

Note that Xlib always reports client messages, mapping notifications,
selection clearings, selection notifications, and selection requests.

See the description of the SELECT INPUT routine in the VMS
DECwindows Xlib Routines Reference Manual for restrictions on event
reporting to multiple clients.

Using the SELECT INPUT Routine
Use the SELECT INPUT routine to specify the types of events Xlib reports
to a client. Select event types by passing to Xlib one or more of the masks
listed in Table 9-3.

Table 9-3 Event Masks

Event Mask

x$m_button_motion

x$m_button1_motion

x$m _button2 _motion

x$m_button3_motion

x$m_button4_motion

x$m_button5_motion

x$m_button_press

x$m_button_release

x$m_colormap_change

x$m_enter_window

x$m_exposure

x$m_leave_window

Event Reported (Event Type)

At least one button on the pointing device is pressed while the pointer moves
(x$c_motion_notify).

Pointing device button 1 is pressed while the pointer moves (x$c_motion_notify).

Pointing device button 2 is pressed while the pointer moves (x$c_motion_notify).

Pointing device button 3 is pressed while the pointer moves (x$c_motion_notify).

Pointing device button 4 is pressed while the pointer moves (x$c_motion_notify).

Pointing device button 5 is pressed while the pointer moves (x$c_button_press).

Any pointing device button is pressed (x$c_button_press).

Any pointing device button is released (x$c_button_release).

A client installs, changes, or removes a color map (x$c_colormap_notify).

The pointer enters a window (x$c_enter_notify).

A window becomes visible, a graphics region cannot be computed, a graphics
request exposes a region, or all source available and a no expose generated
(xc_expose, xc_graphics_expose, x$c_graphics_noexpose).

The pointer leaves a window (x$c_leave_notify).

(continued on next page)

9-5

Handling Events
9.2 Selecting Event Types

Table 9-3 (Cont.) Event Masks

Event Mask

x$m_focus_change

x$m_keymap _state

x$m_key _press

x$m_owner_grab_button

x$m_pointer _motion

x$m_pointer_motion_hint

x$m_property _change

x$m_structure_notify

x$m_substructure_notify

x$m_visibility _change

9-6

Event Reported (Event Type)

The keyboard focus changes (xc_focus_in, xc_focus_out).

The key map changes (x$c_keymap_notify).

A key is pressed or released (xc_key_press, xc_key_release).

Not applicable.

The pointer moves (x$c_motion_notify).

Xlib is free to report only one pointer-motion event (x$c_motion_notify) until one of
the following occurs:

Either the key or button state changes.

The pointer leaves the window.

The client calls QUERY POINTER or GET MOTION EVENTS.

A client changes a property (x$c_property_notify).

One of the following operations occurs on a window:

Circulate (x$c_circulate_notify)

Configure (x$c_configure_notify)

Destroy (x$c_destroy_notify)

Move (x$c_gravity_notify)

Map (x$c_map_notify)

Reparent (x$c_reparent_notify)

Unmap (x$c_unmap_notify)

One of the following operations occurs on the child of a window:

Circulate (x$c_circulate_notify)

Configure (x$c_configure_notify)

Create (x$c_create_notify)

Destroy (x$c_destroy_notify)

Move (x$c_gravity_notify)

Map (x$c_map_notify)

Reparent (x$c_reparent_notify)

Unmap (x$c_unmap_notify)

The visibility of a window changes (x$c_visibility_notify).

The following illustrates using the SELECT INPUT routine:

CALL X$SELECT_INPUT(DPY, WINDOW, X$M_STRUCTURE_NOTIFY)

Clients specify the x$m_structure_notify mask to indicate an interest in
one or more of the following window operations (see Table 9-3):

Circulating

Destroying

Changing gravity

Configuring

Reparenting

Mapping and unmapping

9.2.2

9.2.3

Handling Events
9.2 Selecting Event Types

Specifying Event Types When Creating a Window
To specify event types when calling the CREATE WINDOW routine,
use the method described in Section 3.2.2 for setting window attributes.
Indicate the type of event Xlib reports to a client by doing the following:

1 Set the X$L_SWDA_EVENT_MASK window attribute to one or more
masks listed in Table 9-3.

2 Specify the event mask flag in the value_mask argument of the
CREATE WINDOW routine.

Example 9-1 illustrates this method of selecting events. The program
specifies that Xlib notify the client of a exposure events.

Example 9-1 Selecting Event Types Using the CREATE WINDOW Routine

INTEGER*4 WINDOW 1

PARAMETER WINDOW_W = 400, WINDOW_H 300

c
C Create the WINDOW 1 window
c

WINDOW lX = (X$WIDTH OF SCREEN(SCREEN) - WINDOW lW) / 2
WINDOW=lY = (X$HEIGHT_OF_SCREEN(SCREEN) - WINDOW_lH) I 2

DEPTH= X$DEFAULT_DEPTH_OF_SCREEN(SCREEN)
CALL X$DEFAULT VISUAL OF SCREEN(SCREEN,VISUAL)
ATTR_MASK = X$M_CW_EVENT=MASK .OR. X$M_CW_BACK_PIXEL

0 XSWDA.X$L SWDA EVENT MASK = X$M EXPOSURE .OR. X$M_BUTTON_PRESS
XSWDA.X$~SWDA-=-BACKGROUND_PIXEL- =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 1)

WINDOW 1 = X$CREATE WINDOW(DPY,
1 X$ROOT_WINDOW_OF_SCREEN(SCREEN),
1 WINDOW lX, WINDOW lY, WINDOW lW, WINDOW_lH, 0,
1 DEPTH,-X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

0 Set the event mask of the set window attributes data structure to
indicate interest in exposure events.

8 The window attribute is referred to by ATTR_MASK, which specifies
the attribute.

Specifying Event Types When Changing Window Attributes
To specify one or more event types when changing window attributes,
use the method described in Section 3.6 for changing window attributes.
Indicate an interest in event types by doing the following:

1 Set the X$L_SWDA_EVENT_MASK window attribute to one or more
masks listed in Table 9-3.

2 Specify the event mask flag using the value_mask argument of the
CHANGE WINDOW ATTRIBUTES routine.

9-7

Handling Events
9.2 Selecting Event Types

The following illustrates this method:

ATTR_MASK = X$M_STRUCTURE_NOTIFY

CALL X$CHANGE_WINDOW_ATTRIBUTES(DPY, WINDOW, ATTR_MASK, XSWA)

9.3 Pointer Events

9.3.1

Xlib reports pointer events to interested clients when the button on the
pointing device is pressed or released, or when the pointer moves.

This section describes how to handle the following pointer events:

• Pressing a button on the pointing device

• Releasing a button on the pointing device

• Moving the pointing device

The section also describes the button event and motion event data
structures.

Handling Button Presses and Releases

9-8

To receive event notification of button presses and releases, pass the
window identifier and either the x$m_button_press or the x$m_button_
release mask when using the selection method described in Section 9.2.

When a button is pressed, Xlib searches for ancestors of the event window
from the root window down to determine whether or not a client has
specified a passive grab, an exclusive interest in the button. If Xlib finds
no passive grab, it starts an active grab, reserving the button for the
sole use of the client receiving notification of the event. Xlib also sets the
time of the last pointer grab to the current Xlib time. The effect is the
same as calling the GRAB BUTTON routine with argument values listed
in Table 9-4.

Table 9-4 Values Used for Grabbing Buttons

Argument

window_id

event_ mask

pointer_mode

keyboard_mode

Vaiue

Event window.

Client pointer motion mask.

The value specified by the constant x$c_grab_mode_async.

The value specified by the constant x$c_grab_mode_async.

(continued on next page)

Handling Events
9.3 Pointer Events

Table 9-4 (Cont.) Values Used for Grabbing Buttons

Argument

owner_events

confine_to

cursor

Value

True, if the owner has specified x$m_owner_grab_button.
Otherwise, false.

None.

None.

Xlib terminates the grab automatically when the button is released.
Clients can modify the active grab by calling the UNGRAB POINTER and
CHANGE ACTIVE POINTER GRAB routines.

Xlib uses the button event data structure to report button presses and
releases. Figure 9-3 illustrates the data structure.

Figure 9-3 Button Event Data Structure

x$1_btev_type

x$1_btev_serial

x$1_btev _send_event

x$a_btev _display

x$1_btev_window

x$1_ btev _root

x$1_btev _subwindow

x$1_btev_time

x$1_btev_x

x$1_btev_y

x$1_btev_x_root

x$1_btev_y_root

x$1_btev_state

x$1_btev _button

x$1_btev_same_screen

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

9-9

Handling Events
9.3 Pointer Events

Table 9-5 describes members of the button event data structure.

Table 9-5 Button Event Data Structure Members

Member Name

X$L_BTEV _TYPE

X$L_BTEV _SERIAL

X$L_BTEV_SEND_EVENT

X$A_BTEV_DISPLAY

X$L_BTEV _WINDOW

X$L_BTEV _ROOT

X$L_BTEV _SUBWINDOW

X$L_BTEV _TIME

X$L_BTEV_X

X$L_BTEV_Y

X$L_BTEV _X_ROOT

X$L_BTEV _ Y _ROOT

X$L_BTEV _STATE

X$L_BTEV _BUTTON

Contents

Type of event reported. The event type can be either x$c_button_press or
x$c_button_release.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a SEND EVENT
request.

Display on which the event occurred.

Event window.

Root window in which the event occurred.

Source window in which the event occurred.

Time in milliseconds at which the event occurred.

The x value of the pointer coordinates in the source window at the time the
event occurred.

They value of the pointer coordinates in the source window at the time the
event occurred.

The x value of the pointer coordinates, relative to the root window.

The y value of the pointer coordinates, relative to the root window.

State of the button just prior to the event. Xlib can set this member to the
bitwise OR of one or more of the following masks:

x$m_button1 x$m_button2

x$m_button3

x$m_button5

x$m_mod2

x$m_mod4

x$m_button4

x$m_mod1

x$m_mod3

x$m_mod5

Buttons that changed state. Xlib can set this member to one of the
following values:

x$c_button1 x$c_button2

x$c_button3

x$c_button5

x$c_button4

X$L_BTEV_SAME_SCREEN Indicates whether or not the event window is on the same screen as the

9-10

root window.

Example 9-2 illustrates the button press event handling routine of the
sample program described in Chapter 1.

9.3.2

Handling Events
9.3 Pointer Events

Example 9-2 Handling Button Presses

IF

1

END

(EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS) THEN
IF (EVENT.EVNT_EXPOSE.X$L_EXEV_WINDOW .EQ. WINDOW_l) THEN

ELSE

END
IF

STATE = 2
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW_2, GC,

75, 7 5, MESSAGE (STATE))

CALL X$UNMAP WINDOW(DPY, WINDOW_l)
CALL X$DESTROY_WINDOW(DPY, WINDOW_l)
CALL X$CLOSE_DISPLAY(DPY)
CALL SYS$EXIT(%VAL(l))
IF

The program calls shutdown routines when the user presses the mouse
button in WINDOW_2. When creating WINDOW_l and WINDOW_2, the
client indicated an interest in exposures and button presses by setting the
event mask field of the set window attributes data structure, as follows:

RECORD /X$SET_WIN_ATTRIBUTES/ XSWDA

XSWDA.X$L SWDA EVENT MASK = X$M CW EVENT MASK
.OR. X$M_CW_BUTTON_PRESS - - -

For more information about selecting event types, see Section 9.2.

Handling Pointer Motion
To only receive pointer motion events when a specified button is pressed,
pass the window identifier and one of the following masks when using the
selection method described in Section 9.2:

x$m_button_motion

x$m_button2_motion

x$m_button4_motion

x$m_button 1 _motion

x$m_button3_motion

x$m_button5 _motion

Xlib reports pointer motion events to interested clients whenever the
pointer moves and the movement begins and ends in the window. Spatial
and temporal resolution of the events is not guaranteed, but clients are
assured they will receive at least one event when the pointer moves and
then rests. Figure 9-4 illustrates the data structure Xlib uses to report
these events.

9-11

Handling Events
9.3 Pointer Events

Figure 9-4 Motion Event Data Structure

x$1_mtev _type 0

x$1_mtev _serial 4

x$1_mtev _send_event 8

x$a_mtev _display 12

x$1_mtev_window 16

x$1_mtev _root 20

x$1_mtev _subwindow 24

x$1_mtev _time 28

x$1_mtev_x 32

x$1_mtev_y 36

x$1_mtev_x_root 40

x$1_mtev _y_root 44

x$1_mtev _state 48

x$1_mtev _same_screen x$b_mtev _is_hint
~

52

x$1_mtev _same _screen

Table 9-6 describes members of the data structure.

Table 9-6 Motion Event Data Structure Members

Member Name

X$L_MTEV _TYPE

X$A_MTEV _DISPLAY

X$L_MTEV _SERIAL

X$L_MTEV_SEND_EVENT

X$L_MTEV _WINDOW

X$L_MTEV _ROOT

X$L_MTEV _SUBWINDOW

9-12

Contents

Type of event reported. The member can have only the value specified by the
constant x$c_motion_notify.

Display on which the event occurred.

Number of the last request processed by the seNer.

Value defined by the constant true if the event came from a SEND EVENT
request.

Event window.

Root window in which the event occurred.

Source window in which the event occurred.

(continued on next page)

Handling Events
9.3 Pointer Events

Table 9-6 (Cont.) Motion Event Data Structure Members

Member Name

X$L_MTEV _TIME

X$L_MTEV_X

X$L_MTEV_Y

X$L_MTEV _X_ROOT

X$L_MTEV _ Y _ROOT

X$L_MTEV _STATE

X$B_MTEV_IS_HINT

Contents

Time in milliseconds at which the event occurred.

The x value of the pointer coordinates in the source window.

The y value of the pointer coordinates in the source window.

The x value of the pointer coordinates relative to the root window.

The y value of the pointer coordinates relative to the root window.

State of the button just prior to the event. Xlib can set this member to the
bitwise OR of one or more of the following masks:

x$m_button1 x$m_button2

x$m_button3

x$m_button5

x$m_mod2

x$m_mod4

x$m_button4

x$m_mod1

x$m_mod3

x$m_mod5

Indicates that motion hints are active. No other events reported until pointer
moves out of window.

X$L_MTEV_SAME_SCREEN Indicates whether or not the event window is on the same screen as the root
window.

Example 9-3 illustrates pointer motion event handling.

Example 9-3 Handling Pointer Motion

IF (EVENT.EVNT_TYPE .EQ. X$C_MOTION_NOTIFY) THEN

X = EVENT.EVNT MOTION.X$L MTEV X
Y = EVENT.EVNT=MOTION.X$L=MTEV=Y

CALL X$FILL_RECTANGLE(DPY, WINDOW, GC, X, Y, WIDTH, LENGTH)
END IF

Each time the pointer moves, the program draws a filled rectangle at the
resulting x and y coordinates.

To receive pointer motion events, the client specifies the x$c_motion_
notify flag when removing events from the queue. The client indicated
an interest in pointer motion events when creating window WINDOW, as
follows:

XSWDA.X$L SWDA EVENT MASK = X$M EXPOSURE
1 .OR. x$M_BUTTON_PRESS -
1 .OR. X$M POINTER MOTION
XSWDA.X$L_SWDA_BACKGROUND_PIXEL =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 1)

9-13

Handling Events
9.3 Pointer Events

9.4 Key Events

WINDOW = X$CREATE_WINDOW(DPY,
1 X$ROOT_WINDOW_OF_SCREEN(SCREEN),
1 WINDOW_X, WINDOW_Y, WINDOW_W, WINDOW_H, 0,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

The server reports pointer movement. Xlib records the resulting position
of the pointer in a motion data structure, one of the event structures that
constitute the event structure. The client determines the origin of the
filled rectangle it draws by referring to the motion event data structure x
andy members.

Xlib reports key press and key release events to interested clients. To
receive event notification of key presses and releases, pass the window
identifier and either the x$m_key _press mask or the x$m_key _release
mask when using the selection method described in Section 9.2.

Xlib uses a key event data structure to report key presses and releases to
interested clients whenever any key changes state, even when the key is
mapped to modifier bits.

Figure 9-5 illustrates the data structure.

Figure 9-5 Key Event Data Structure

x$1_kyev _type 0

x$1_kyev _serial 4

x$1_kyev _send_event 8

x$a_kyev_display 12

x$1_kyev _window 16

x$1_kye'\(_root 20

x$1_kyev _subwindow 24

x$1_kyev _time 28

x$1_kyev_x 32

x$1_kyev_y 36

x$1_kyev _x_root 40

x$1_kyev _y_root 44

x$1_kyev _state 48

(continued on next page)

9-14

Handling Events
9.4 Key Events

Figure 9-5 (Cont.) Key Event Data Structure

i-----------------~-------------x-$_1 __ k_ye_v ___ ke_y_c_od_e ____ ~----~--------------~---41 s
5

2

6 x$1_kyev_same_screen _

Table 9-7 describes members of the data structure.

Table 9-7 Key Event Data Structure Members

Member Name

X$L_KYEV _TYPE

X$L_KYEV _SERIAL

X$L_KYEV_SEND_EVENT

X$A_KYEV _DISPLAY

X$L_KYEV_WINDOW

X$L_KYEV _ROOT

X$L_KYEV _SUBWINDOW

X$L_KYEV _TIME

X$L_KYEV_X

X$L_KYEV_Y

X$L_KYEV _X_ROOT

X$L_KYEV _ Y _ROOT

X$L_KYEV _STATE

Contents

Value defined by either the x$c_key_press or the x$c_key_release constant.

Number of the last event processed by the server.

Value defined by the constant true if the event came from a SEND EVENT
request.

Display on which the event occurred.

Event window.

Root window on which the event occurred.

Source window of the event.

Time in milliseconds at which the key event occurred.

The x value of the pointer coordinates in the source window.

The y value of the pointer coordinates in the source window.

The x value of the pointer coordinates relative to the root window.

The y value of the pointer coordinates relative to the root window.

State of the key just prior to the key event. Xlib can set this member to the
bitwise OR of the following states:

x$m_shift x$m_lock

x$m_control

x$m_mod2

x$m_mod4

x$m_mod1

x$m_mod3

x$m_mod5

X$L_KYEV _KEYCODE

X$L_KYEV_SAME_SCREEN

An arbitrary but unique representation of the key that generated the event.

Indicates whether the event window is on the same screen as the root window.

9.5 Window Entries and Exits
Xlib reports window entries and exits to interested clients when one of the
following occurs:

• · The pointer moves into or out of a window due to either pointer
movement or to a change in window hierarchy. This is normal window
entry and exit.

• A client calls WARP POINTER, which moves the pointer to any
specified point on the screen.

9-15

Handling Events
9.5 Window Entries and Exits

• A client calls CHANGE ACTIVE POINTER GRAB, GRAB
KEYBOARD, GRAB POINTER, or UNGRAB POINTER. This is
pseudomotion, which simulates window entry or exit without actual
pointer movement.

To receive event notification of window entries and exits, pass the window
identifier and either the x$m_enter_ window mask or the x$m_leave_
window mask when using the selection method described in Section 9.2.

Xlib uses the crossing event data structure to report window entries and
exits. Figure 9-6 illustrates the data structure.

Figure 9-6 Crossing Event Data Structure

x$1_crev _type 0

x$1_crev_serial 4

x$1_ crev _send_ event 8

x$a_crev_display 12

x$1_crev _window 16

x$1_ crev _root 20

x$1_ crev _subwindow 24

x$1_crev_time 28

x$1_crev_x 32

x$1_crev_y 36

x$1_crev _x_root 40

x$1_crev _y _root 44

x$1_crev _mode 48

x$1_crev _detail 52

x$1_crev _same_screen 56

x$1_crev_focus 60

x$1_ crev _state 64

9-16

Handling Events
9.5 Window Entries and Exits

Table 9-8 describes members of the data structure.

Table 9-8 Crossing Event Data Structure Members

Member Name

X$L_ CREV _TYPE

X$L_CREV _SERIAL

X$L_CREV_SEND_EVENT

X$A_CREV_DISPLAY

X$L_CREV _WINDOW

X$L_CREV _ROOT

X$L_CREV _SUBWINDOW

X$L_CREV _TIME

X$L_CREV_X

X$L_CREV_Y

X$L_CREV _X_ROOT

X$L_ CREV _ Y _ROOT

X$L_CREV _MODE

X$L_CREV _DETAIL

X$L_CREV _SAME_SCREEN

X$L_CREV _FOCUS

X$L_CREV_STATE

Contents

Value defined by either the x$c_enter_notify or the x$c_leave_notify
constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a SEND EVENT
request.

Display on which the event occurred.

Event window.

Root window in which the event occurred.

Source window in which the event occurred.

Time in milliseconds at which the event occurred.

The x value of the pointer coordinates in the source window.

The y value of the pointer coordinates in the source window.

The x value of the pointer coordinates relative to the root window.

The y value of the pointer coordinates relative to the root window.

Indicates whether the event is normal or pseudomotion. Xlib can set this
member to the value specified by xc_notify_normal, xc_notify_grab, and
x$c_notify _ungrab. See Section 9.5.1 and Section 9.5.2 for descriptions of
normal and pseudomotion events.

Indicates which windows Xlib notifies of the window entry or exit event.
Xlib can specify in this member one of the following constants:

x$c_notify _ancestor x$c_notify _virtual

x$c_notify _inferior

x$c_notify_nonlinear_virtual

x$c_notify _nonlinear

Indicates whether or not the event window is on the same screen as the
root window.

Specifies whether the event window or an inferior is the focus window. If
true, the event window is the focus window. If false, an inferior is the focus
window.

State of buttons and keys just prior to the event. Xlib can return the
following constants:

x$m_button1 x$m_button2

x$m_button3 x$m_button4

x$m_button5 x$m_mod1

x$m_mod2 x$m_mod3

x$m_mod4 x$m_mod5

x$m_shift x$m_control

x$m_lock

9-17

9.5.1

Handling Events
9.5 Window Entries and Exits

Normal Window Entries and Exits
A normal window entry or exit event occurs when the pointer moves from
one window to another due to either a change in window hierarchy or the
movement of the pointer. In either case, Xlib sets the X$L_CREV_MODE
member of the crossing event data structure to the constant x$c_notify _
normal

If the pointer leaves or enters a window as a result of one of the following
changes in window hierarchy, Xlib reports the event after reporting the
hierarchy event:

Mapping

Configuring

Changing gravity

Un mapping

Circulating

Xlib can report a window entry or exit event caused by changes in focus,
visibility, and exposure either before or after reporting these events.

Table 9-9 describes the events Xlib reports when the pointer moves from
window A to window B as a result of normal window entry or exit.

Table 9-9 Normal Window Entry and Exit Event Reporting

Relationship of Windows

Window A is inferior to window B

Window B is inferior of window A

9-18

Events Reported

A leave notify event on window A with the X$L_CREV_DETAIL
member of the crossing event data structure set to the constant
x$c_notify _ancestor

A leave notify event on each window between window A and
window B exclusive, with the X$L_CREV_DETAIL member of each
crossing event data structure set to the constant x$c_notify_virtual

An enter notify event on window B with the X$L_CREV_DETAIL
member of the crossing event data structure set to the constant
x$c_notify _inferior

A leave notify event on window A with the X$L_CREV_DETAIL
member of the crossing event data structure set to the constant
x$c _notify _inferior

An enter notify event on each window between window A and
window B exclusive with the X$L_CREV_DETAIL member of each
crossing event data structure set to the constant x$c_notity_virtual

An enter notify event on window B with the X$L_CREV_DETAIL
member of the crossing event data structure set to the constant
x$c_notify _ancestor

(continued on next page)

Handling Events
9.5 Window Entries and Exits

Table 9-9 (Cont.) Normal Window Entry and Exit Event Reporting

Relationship of Windows

Window C is the least common ancestor of
A and B

Window A and window 8 are on different
screens

Events Reported

A leave notify event on window A with the X$L_CREV _DETAIL
member of the crossing event data structure set to the constant
x$c_notify_nonlinear

A leave notify event on each window between window A and
window C exclusive with the X$L_CREV_DETAIL member of the
crossing event data structure set to the constant
x$c_notify _nonlinear_ virtual

An enter notify event on each window between window C and
window 8 exclusive with the X$L_CREV_DETAIL member of each
crossing event data structure set to the constant
x$c_notify_nonlinear_virtual

An enter notify event on window 8 with the X$L_CREV_DETAIL
member of the crossing event data structure set to the constant
x$c_notify _nonlinear

A leave notify event on window A with the X$L_CREV_DETAIL
member of the crossing event data structure set to the constant
x$c_notify _nonlinear

If window A is not a root window, a leave notify event on each
window above window A up to and including its root, with the
X$L_CREV_DETAIL member of each crossing event data structure
set to the constant x$c_notify_nonlinear_virtual

If window 8 is not a root, an entry notify event on each window
from window B's root down to but not including window 8, with the
X$L_CREV_DETAIL member of the crossing event data structure
set to the constant x$c_notify_nonlinear_virtual

An enter notify event on window 8 with the X$L_CREV_DETAIL
member of the crossing event data structure set to the constant
x$c_notify _nonlinear

Example 9-4 illustrates window entry and exit event handling. The
program changes the color of a window when the pointer enters or leaves
the window.

Figure 9-7 shows the resulting output.

9-19

Handling Events
9.5 Window Entries and Exits

Example 9-4 Handling Window Entries and Exits

C Create windows WINDOW, SUBl, SUB2,
C SUB3, and SUB4 on display DPY.
C Position of WINDOW is: x = 100,y = 100

0

9-20

PARAMETER
1

WINDOW_W = 600, WINDOW_H = 600,
SUB_WIDTH = 120, SUB_HEIGHT= 120,
SUBl_X 120, SUBl_Y 120, 1

1
1
1

1

1

SUB2 X 360, SUB2 Y 120,
SUB3 X 120, SUB3 Y 360,
SUB4 X 360, SUB4 Y 360

IF (EVENT.EVNT_TYPE .EQ. X$C_ENTER_NOTIFY) THEN

END IF

CROSS WINDOW = EVENT.EVNT CROSSING.X$L CREV WINDOW
CALL X$SET_WINDOW_BACKGROUND(DPY, CROSS_WINDOW,

DEFINE_COLOR(DPY, SCREEN, VISUAL, 3))
CALL X$CLEAR_AREA(DPY, CROSS_WINDOW, 0, 0, SUB_WIDTH,

SUB_HEIGHT, 0)

IF (EVENT.EVNT TYPE .EQ. X$C LEAVE NOTIFY) THEN
CROSS_WINDOW = EVENT.EVNT_CROSSING.X$L_CREV_WINDOW
CALL X$SET_WINDOW_BACKGROUND(DPY, CROSS_WINDOW,

1 DEFINE COLOR(DPY, SCREEN, VISUAL, 2))
CALL X$CLEAR_AREA(DPY, CROSS_WINDOW, 0, 0, SUB_WIDTH,

1 SUB_HEIGHT, 0)
END IF

0 Xlib gives the identifier of the window that the pointer cursor has
entered in the crossing event data structure window field. The
program uses the identifier to define the window background and
clear the window.

8 The CLEAR AREA routine clears the window and repaints it with the
newly defined window background.

9.5.2

Handling Events
9.5 Window Entries and Exits

Figure 9-7 Window Entries and Exits

m Window Entry and Exit [g[i]

Subwindows turn gray when pointer cursor is in them.

To exit, click MB2.

ZK-0153A-GE

Pseudomotion Window Entries and Exits
Pseudomotion window entry and exit events occur when the pointer cursor
moves from one window to another due to activating or deactivating a
pointer grab.

Xlib reports a pseudomotion window entry if a client grabs the pointer,
causing the pointer cursor to change from one window to another even
though the pointer cursor has not moved. For example, if the pointer
cursor is in window A and a client maps window B over window A, the
pointer cursor changes from being in window A to being in window B. If
possible, the pointer cursor remains in the same position on the screen.
When the placement of the two windows prevents the pointer cursor from
maintaining the same position, the pointer cursor moves to the location
closest to its original position.

9-21

Handling Events
9.5 Window Entries and Exits

Clients can grab pointers actively by calling the GRAB POINTER routine
or passively by calling the GRAB BUTTON routine. Whether the grab is
active or passive, Xlib sets the following members of the crossing event
data structure to the indicated constants after the pointer cursor moves
from one window to another:

• X$L_CREV _TYPE member-x$c_enter_notify

• X$L_CREV_MODE member-x$c_notify_grab

When a client passively grabs the pointer by calling the GRAB BUTTON
routine, Xlib reports a button press event after reporting the pointer grab.

Xlib reports a pseudomotion window exit when a client deactivates a
pointer grab, causing the pointer cursor to change from one window to
another even though the pointer cursor has not moved.

Clients can deactivate pointer grabs either actively by calling the
UNGRAB POINTER routine or passively by calling the UNGRAB
BUTTON routine. Whether deactivating the grab is active or passive,
Xlib sets the following members of the crossing event data structure to
the indicated constants after the pointer cursor moves from one window to
another:

• X$L_CREV _TYPE member-x$c_leave_notify

• X$L_CREV _MODE member-x$c_notify _ungrab

When a client passively deactivates a pointer grab by calling the UNGRAB
BUTTON routine, Xlib reports a button release event before reporting that
the pointer has been released.

9.6 Input Focus Events

9-22

Input focus defines the window to which Xlib sends keyboard input. The
keyboard is always attached to some window. Typically, keyboard input
goes to either the root window or to a window at the top of the stack called
the focus window. The focus window and the position of the pointer
determine the window that receives keyboard input.

When the keyboard input focus changes from one window to another, Xlib
reports a focus out event and a focus in event. The window that loses the
input focus receives the focus out event. The window that gains the focus
receives a focus in event. Additionally, Xlib notifies other windows in the
hierarchy of focus in and focus out events.

To receive notification of input focus events, pass the window identifier and
the x$m_focus_change mask when using the selection method described
in Section 9 .2

Xlib uses the focus change event data structure to report keyboard input
focus events. Figure 9-8 illustrates the data structure.

Handling Events
9.6 Input Focus Events

Figure 9-8 Focus Change Event Data Structure

x$1_fcev_type 0

x$1_fcev _serial

x$1_fcev _send_event 8

x$a_fcev _display 12

x$1_fcev_window 16

x$1_fcev _mode 20

x$1_fcev _detail 24

Table 9-10 describes members of the data structure.

Table 9-10 Focus Change Event Data Structure Members

Member Name

X$L_FCEV _TYPE

X$L_FCEV _SERIAL

X$L_FCEV_SEND_EVENT

X$A_FCEV _DISPLAY

X$L_FCEV _WINDOW

X$L_FCEV _MODE

X$L_FCEV _DETAIL

Contents

Value defined by either the x$c_focus_in or x$c_focus_out constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a SEND EVENT
request.

Display on which the event occurred.

Event window.

Specifies whether the event is the result of normal keyboard input, keyboard
input after a client has grabbed the keyboard, keyboard input at the time
the client activates a keyboard grab, or keyboard input at the time the client
deactivates a keyboard grab.

Xlib can set this field to one of the following constants:

x$c_notify_normal x$c_notify_while_grabbed

x$c_notify _grab x$c_notify _ungrab

See Section 9.6.1 and Section 9.6.2 for descriptions of processing input focus
events in each of these conditions.

Specifies which windows and pointers Xlib notifies of the input focus change.

Xlib can set this field to one of the following constants:

x$c_notify_ancestor x$c_notify_virtual

x$c_notify_inferior

x$c_notify_nonlinear_virtual

x$c_notify_pointer_root

x$c_notify _nonlinear

x$c_notify_pointer

x$c_notify_detail_none

9-23

9.6.1

Handling Events
9.6 Input Focus Events

Normal Keyboard Input Focus
A normal keyboard input focus event occurs when keyboard input focus
changes, and the keyboard has not been or is not being grabbed. When
a normal keyboard input focus event occurs, Xlib sets the X$L_FCEV _
MODE member of the focus change event data structure to the constant
x$c_notify _normal.

Table 9-11 lists focus change events reported when window A and window
B are on the same screen, the focus changes from window A to window B,
and the pointer cursor is in window P.

Table 9-11 Effect of Focus Changes: Windows on Same Screen

Window A Inferior to Window B

Window

Window A

Window B

Window P

Other windows

Event Reported Value of X$L_FCEV _DETAIL

Focus out event x$c_notify _ancestor

Focus in event x$c_notify_inferior

Focus in event on each window between x$c_notify_inferior
window B and window P including P if
window P is an inferior of window B, but
window P is not window A or an inferior of A

Focus out event on each window between x$c_notify_virtual
window A and window B exclusive

Window B Inferior to Window A

Window

Window A

Window B

Window P

Other windows

9-24

Event Reported

Focus out event

Focus in event

Focus out event on each window between
window P and window A if window Pis an
inferior of window A, but window P is not
window A or an inferior or ancestor of B

Focus in event on each window between
window A and window B exclusive

Value of X$L_FCEV _DETAIL

x$c_notify _inferior

x$c_notify_ancestor

x$c_notify _pointer

x$c_notify_virtual

Table 9-12 lists focus change events reported when the pointer cursor
moves from window A to window B and window C is their least common
ancestor. The pointer cursor is in window P.

Handling Events
9.6 Input Focus Events

Table 9-12 Focus Changes Caused by Pointer Movement

Pointer Moves from Window A to Window B

Window

Window A

Window 8

Window P

Other windows

Event Reported

Focus out event

Focus in event

If window P is an inferior of window A, but
window P is not window A or an inferior
or ancestor of 8, a focus out event on
each window from window Pup to but not
including window A

If window P is an inferior of window 8,
a focus in event on each window below
window 8 down to and including window P

Focus out event on each window between
window A and window C exclusive

Focus in event on each window between
window C and window 8 exclusive

Value of X$L_FCEV _DETAIL

x$c_notify_nonlinear

x$c_notify _nonlinear

x$c_notify _pointer

x$c_notify _pointer

x$c_notify_nonlinear_virtual

x$c_notify_nonlinear_virtual

Table 9-13 lists focus change events reported when window A and window
B are on different screens and the focus changes from window A to window
B. The pointer cursor is in window P.

Table 9-13 Effect of Focus Changes: Windows on Different Screens

Focus Changes from Window A to Window B

Window Event Reported Value of X$L_FCEV_DETAIL

Window A

Window 8

Window P

Other windows

Focus out event

Focus in event

If window P is an inferior of window A,
a focus out event on each window from
window Pup to but not including window A

If window P is an inferior of window 8,
a focus in event on each window below
window 8 down to and including window P

x$c_notify _nonlinear

x$c_notify _nonlinear

x$c_notify_pointer

x$c_notify _pointer

If window A is not a root window, a focus x$c_notify_nonlinear_virtual
out event on each window above window A
up to and including its root

If window 8 is not a root window, a focus in x$c_notify_nonlinear_virtual
event on each window from the root window
of 8 down to but not including 8

Table 9-14 lists focus change events reported when the focus changes
between window A and the pointer window, or when the focus is set to
none (no focus).

9-25

Handling Events
9.6 Input Focus Events

Table 9-14 Pointer Window and No Focus Changes

Focus Changes from Window A to Pointer Window or to No Focus

Window Event Reported

Window A

All root windows

Window P

Other windows

Focus out event

Focus in event

If window P is an inferior of window A,
a focus out event on each window from
window P up to but not including window A

If window A is not a root window, a focus
out event on each window above window A
up to and including its root

If the new focus is the window under the
pointer, a focus in event on each window
from the root of window P down to and
including window P

Focus Changes from Pointer Window or No Focus to Window A

Window Event Reported

Window A

All root windows

Window P

Other windows

9-26

Focus in event

Focus out event

If window P is an inferior of window A,
a focus in event on each window below
window A down to and including P

Focus out event on each window from
window P up to and including the root of P

Focus out event on each window from
window Pup to and including the root of P

If window A is not a root window, a focus
in event on each window from the root of
window A down to but not including A

Value of X$L_FCEV _DETAIL

x$c_notify _nonlinear

x$c_notify_pointer_root or x$c_notify_
detail_ none

x$c_notify _pointer

x$c_notify _nonlinear_virtual

x$c_notify _pointer_root

Value of X$L_FCEV _DETAIL

x$c_notify _nonlinear

x$c_notify_pointer_root or x$c_notify_
detail_none

x$c_notify _pointer

x$c_notify _pointer _root

x$c_notify _pointer _root

x$c_notify_nonlinear_virtual

(continued on next page)

9.6.2

Handling Events
9.6 Input Focus Events

Table 9-14 (Cont.) Pointer Window and No Focus Changes

Focus Changes from Pointer Window to No Focus or from No Focus
to Pointer Window

Window

All root windows

Old focus window

New focus window

Event Reported

Focus out event

If the old focus was the window under the
pointer, a focus out event on each window
from window P up to and including the root
of P

If the new focus is the window under the
pointer, a focus in event on each window
from the root of P down to and including P

Value of X$L_FCEV _DETAIL

x$c_notify_pointer_root or x$c_notify_
detail_none

x$c_notify _pointer _root

x$c_notify_pointer_root

Keyboard Input Focus Changes Caused by Grabs
When a keyboard focus event occurs because a client activates a grab,
Xlib sets the X$L_FCEV _MOVE member of the focus change event data
structure to the constant x$c_notify _grab.

When a keyboard focus event occurs because a client deactivates a grab,
Xlib sets the X$L_FCEV _MOVE member of the focus change event data
structure to the constant x$c_notify _ungrab.

9.7 Key Map State Events
Xlib reports changes in the state of the key map immediately after every
enter notify and focus in event.

To receive notification of key map state events, pass the window identifier
and the x$m_keymap_state mask when using the selection method
described in Section 9.2.

Xlib uses the keymap event data structure to report changes in the key
map state. Figure 9-9 illustrates the data structure.

Figure 9-9 Keymap Event Data Structure

x$1_kmev _type 0

x$1_kmev _serial 4

x$1_kmev _send _event 8

l
x$a_kmev_display 12

x$1_kmev _window 16

(continued on next page)

9-27

Handling Events
9. 7 Key Map State Events

Figure 9-9 (Cont.) Keymap Event Data Structure

t x$b_kmev_key_vector (32 bytes) t
l.____ _________ Js2

Table 9-15 describes members of the data structure.

Table 9-15 Keymap Event Data Structure Members

Member Name

X$L_KMEV _TYPE

X$L_KMEV _SERIAL

X$L_KMEV_SEND_EVENT

X$A_KMEV _DISPLAY

X$L_KMEV _WINDOW

X$B_KMEV_KEY_VECTOR

Contents

Value defined by the x$c_keymap_notify constant.

Number of the last request processed by the
server.

Value defined by the constant true if the event
came from a SEND EVENT request.

Display on which the event occurred.

Event window.

Bit vector of the keyboard. Each one bit indicates
that the corresponding key is currently pressed.
Byte N contains the bits for keys 8N to 8N+ 7 with
the least significant bit representing key 8N.

9.8 Exposure Events

9.8.1

Xlib reports an exposure event when one of the following conditions occurs:

• A formerly obscured window or window region becomes visible.

• A destination region cannot be computed.

• A graphics request exposes one or more regions.

This section describes how to handle window exposures and graphics
exposures.

Handling Window Exposures

9-28

A window exposure occurs when a formerly obscured window becomes
visible again. Because Xlib does not guarantee to preserve the contents of
regions when windows are obscured or reconfigured, clients are responsible
for restoring the contents of the exposed window.

To receive notification of window exposure events, pass the window
identifier and the x$m_exposure mask when using the selection
method described in Section 9.2. Xlib notifies clients of window exposures
using the expose event data structure. Figure 9-10 illustrates the data
structure.

Handling Events
9.8 Exposure Events

Figure 9-10 Expose Event Data Structure

x$1_exev _type

x$1_exev _serial

x$1_exev_send_event

x$a_exev_display

x$1_ exev _window

x$1_exev_x

x$1_exev_y

x$1_exev_width

x$1_exev_height

x$1_ exev _count

Table 9-16 describes members of the data structure.

Table 9-16 Expose Event Data Structure Members

Member Name

X$L_EXEV _TYPE

X$L_EXEV _SERIAL

X$L_EXEV_SEND_EVENT

X$A_EXEV _DISPLAY

X$L_EXEV _WIN DOW

X$L_EXEV_X

X$L_EXEV_Y

Contents

Value defined by the x$c_expose constant.

Number of the last request processed by the
server.

Value defined by the constant true if the event
came from a SEND EVENT request.

Display on which the event occurred.

Event window.

The x value of the coordinates that define the
upper left corner of the exposed region. The
coordinates are relative to the origin of the
drawable.

The y value of the coordinates that define the
upper left corner of the exposed region. The
coordinates are relative to the origin of the
drawable.

0

4

8

12

16

20

24

28

32

36

(continued on next page)

9-29

9.8.2

Handling Events
9.8 Exposure Events

Table 9-16 (Cont.) Expose Event Data Structure Members

Member Name

X$L_EXEV_WIDTH

X$L_EXEV _HEIGHT

X$L_EXEV_COUNT

Contents

Width of the exposed region.

Height of the exposed region.

Number of exposure events that are to follow. If
Xlib sets the count to zero, no more exposure
events follow for this window.

Clients that do not optimize redisplay by
distinguishing between subareas of its windows
can ignore all exposure events with nonzero
counts and perform full redisplays on events with
zero counts.

The following fragment from the sample program in Chapter 1 illustrates
window exposure event handling:

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE .AND.
1 EVENT.EVNT EXPOSE.X$L EXEV WINDOW .EQ. WINDOW_2) THEN

CALL X$CLEAR WINDOW(DPY, WINDOW 2)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW_2, GC,

1 75, 75, 'Click here to exit')
END IF

The program checks exposure events to verify that the server has mapped
the second window. After the window is mapped, the program writes text
into it.

Handling Graphics Exposures

9-30

Xlib reports graphics exposures when one of the following conditions
occurs:

• A destination region could not be computed due to an obscured or out
of bounds source region. For information about destination and source
regions, see Chapter 6.

• A graphics request exposes one or more regions. If the request exposes
more than one region, Xlib reports them continuously.

Instead of using the SELECT INPUT routine to indicate an interest
in graphics exposure events, assign a value of true to the X$L_GCVL_
GRAPHICS_EXPOSURES member of the GC values data structure.
Clients can set the value to true at the time they create a graphics context.
If a graphics context exists, use the SET GRAPHICS EXPOSURES
routine to set the value of the field. For information about creating a
graphics context and using the SET GRAPHICS EXPOSURES routine, see
Chapter 4.

Handling Events
9.8 Exposure Events

Xlib uses the graphics expose event data structure to report graphics
exposures. Figure 9-11 illustrates the data structure.

Figure 9-11 Graphics Expose Event Data Structure

x$1_geev _type

x$1_geev _serial

x$1_geev _send _event

x$a_geev _display

x$1_geev _drawable

x$1_geev_x

x$1_geev_y

x$1_geev _width

x$1_geev _height

x$1_geev_count

x$1_geev _major _code

x$1_geev _minor_code

Table 9-1 7 describes members of the data structure.

Table 9-17 Graphics Expose Event Data Structure Members

Member Name

X$L_ GEEV _TYPE

X$L_GEEV_SERIAL

X$L_GEEV_SEND_EVENT

X$L_GEEV_DISPLAY

X$L_GEEV_DRAWABLE

Contents

Value defined by the constant x$c_graphics_
expose.

Number of the last request processed by the
server.

Value defined by the constant true if the event
came from a SEND EVENT request.

Display on which the event occurred.

Window or pixmap reporting the event.

0

4

8

12

16

20

24

28

32

36

40

44

(continued on next page)

9-31

Handling Events
9.8 Exposure Events

Table 9-17 (Cont.) Graphics Expose Event Data Structure Members

Member Name

X$L_GEEV_X

X$L_GEEV_Y

X$L_GEEV_WIDTH

X$L_GEEV _HEIGHT

X$L_GEEV_COUNT

X$L_GEEV_MAJOR_CODE

X$L_GEEV _MINOR_CODE

Contents

The x value of the coordinates that define the
upper left corner of the exposed region. The
coordinates are relative to the origin of the
drawable.

The y value of the coordinates that define the
upper left corner of the region that is exposed.
The coordinates are relative to the origin of the
drawable.

Width of the exposed region.

Height of the exposed region.

Number of exposure events that are to follow. If
Xlib sets the count to zero, no more exposure
events follow for this window.

Indicates whether the graphics request was a copy
area or copy plane.

The value zero. Reserved for use by extensions.

Xlib uses the no expose event data structure to report when a graphics
request that might have produced an exposure did not. Figure 9-12
illustrates the data structure.

Figure 9-12 No Expose Event Data Structure

x$1_neev _type 0

x$1_neev _serial 4

x$1_neev _send_ event 8

x$a_neev_display 12

x$1_neev_drawable 16

x$1_neev _ma1or _coae I:: x$1_neev_minor_code

9-32

Handling Events
9.8 Exposure Events

Table 9-18 describes members of the no expose event data structure.

Table 9-18 No Expose Event Data Structure Members

Member Name

X$L_NEEV _TYPE

X$L_NEEV _SERIAL

X$L_NEEV_SEND_EVENT

X$A_NEEV _DISPLAY

X$L_NEEV _DRAWABLE

X$L_NEEV _MAJOR_CODE

X$L_NEEV _MINOR_CODE

Contents

Value defined by the constant x$c_no_expose.

Number of the last request processed by the
server.

Value defined by the constant true if the event
came from a SEND EVENT request.

Display on which the event occurred.

Window or pixmap reporting the event.

Indicates whether the graphics request was a copy
area or a copy plane.

The value zero. Reserved for use by extensions.

Example 9-5 illustrates handling graphics exposure events. The program
checks for graphics exposures and no exposures to scroll up a window.

Figure 9-13 shows the resulting output of the program.

Example 9-5 Handling Graphics Exposures

INTEGER*4 X, y

INTEGER*4 PX, PY
INTEGER*4 WIDTH, HEIGHT
INTEGER*4 BUTTON IS DOWN -
INTEGER*4 VY

c
C Handle events
c

DO WHILE (. TRUE.)

(continued on next page)

9-33

Handling Events
9.8 Exposure Events

Example 9-5 (Cont.) Handling Graphics Exposures

CALL X$NEXT EVENT(DPY, EVENT)
IF (EVENT.EVNT TYPE .EQ. X$C EXPOSE) THEN

CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,
1 150, 25, 'To scroll, press MBl.')

CALL X$DRAW IMAGE STRING(DPY, WINDOW, GC,
1 150, 75: 'To exit, click MB2.')

END IF
IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.

1 EVENT.EVNT=BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN
BUTTON IS DOWN = 1

0

c
c

1

1

CALL START_SCROLL(DPY, WINDOW, GC, SCROLL_PIXELS,
WINDOW_W, WINDOW_H, VY)

END IF
IF (EVENT.EVNT TYPE .EQ. X$C BUTTON PRESS .AND.

EVENT.EVNT-BUTTON.X$L BTEV BUTTON .EQ. X$C_BUTTON2) THEN
CALL SYS$EXIT(%VAL(l)) -

END IF
IF (EVENT.EVNT_TYPE .EQ. X$C_GRAPHICS EXPOSE) THEN

X = EVENT.EVNT GRAPHICS EXPOSE.X$L GEEV X
y = EVENT.EVN~GRAPHics-=:_ExPOSE.X$L-=-GEEV-=-Y
WIDTH = EVENT.EVNT GRAPHICS EXPOSE.X$L GEEV WIDTH
HEIGHT = EVENT.EVNT_GRAPHICS_EXPOSE.X$L_GEEV_HEIGHT
DO PY = Y, Y + HEIGHT-1

DO PX = X, X + WIDTH-1
IF (MOD(PX +PY+ VY, 10) .EQ. 0) THEN

CALL X$DRAW_POINT (DPY, WINDOW, GC, PX, PY)
END IF

END DO
END DO
IF (BUTTON_IS_DOWN .NE. 0) THEN
CALL START_SCROLL(DPY, WINDOW, GC, SCROLL_PIXELS,

1 WINDOW_W, WINDOW_H, VY)
END IF

END IF
IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON RELEASE) THEN

BUTTON IS DOWN = 0
END IF
IF (EVENT.EVNT_TYPE .EQ. X$C_NO_EXPOSE) THEN

IF (BUTTON_IS_DOWN .NE. 0) THEN
CALL START_SCROLL(DPY, WINDOW, GC, SCROLL_PIXELS,

1 WINDOW_W, WINDOW_H, VY)
END IF

END IF
END DO

C START SCROLL SUBPROGRAM
c
~ SUBROUTINE START_SCROLL(DISP, WIN, GCONTEXT, SCR_PIX, WIN_W,

9-34

1 WIN_H, VEC_Y)

INTEGER*4 DISP, WIN, GCONTEXT, SCR PIX
INTEGER*4 WIN_W, WIN_H, VEC Y

(continued on next page)

Handling Events
9.8 Exposure Events

Example 9-5 (Cont.) Handling Graphics Exposures

@) CALL X$COPY_AREA(DISP, WIN, WIN, GCONTEXT, 0,
1 SCR_PIX, WIN_W, WIN_H, 0, 0)
VEC Y SCR PIX + VEC Y - -
END

0 When a graphics exposure occurs, the client calculates where to draw
points into the exposed area by referring to members of the expose
event data structure.

8 The user-defined START_SCROLL routine copies the window contents,
less one row of pixels, to the top of the window. The result leaves an
exposed area one pixel high at the bottom of the window.

@) The COPY AREA routine copies new points into the exposed area.

9-35

Handling Events
9.8 Exposure Events

Figure 9-13 Window Scrolling

m Graphics Exposure !!I] !iii]

To scroll, press MB1.

To exit, click MB2.

ZK-0152A-GE

9.9 Window State Notification Events

9-36

Xlib reports events reiated to the state of a window when a client does one
of the following:

• Circulates a window, changing the order of the window hierarchy

• Configures a window, changing its position, size, or border

• Creates a window

• Destroys a window

• Changes the size of a parent, causing Xlib to move a child window

• Maps a window

9.9.1

Handling Events
9.9 Window State Notification Events

• Reparents a window

• Unmaps a window

• Changes the visibility of a window

This section describes handling events that result from these operations.

Handling Window Circulation
To receive notification when a client circulates a window, pass either the
window identifier and the x$m_structure_notify mask or the identifier of
the parent window and the x$m_substructure_notify mask when using
a selection method described in Section 9.2.

Xlib reports to interested clients a change in the hierarchical position
of a window when a client calls the CIRCULATE SUBWINDOWS,
CIRCULATE SUBWINDOWS UP, or CIRCULATE SUBWINDOWS DOWN
routines.

Xlib uses the circulate event data structure to report circulate events.
Figure 9-14 illustrates the data structure.

Figure 9-14 Circulate Event Data Structure

x$1_ciev _type 0

x$1_ciev_serial 4

x$1_ciev _send _event 8

x$a_ciev _display 12

x$1_ciev _event 16

x$1_ciev _window 20

x$1_ciev_place 24

Table 9-19 describes members of the data structure.

Table 9-19 Circulate Event Data Structure Members

Member Name Contents

X$L_CIEV_TYPE

X$L_CIEV_SERIAL

Value defined by the constant x$c_circulate_notify.

Number of the last request processed by the
server.

(continued on next page)

9-37

9.9.2

Handling Events
9.9 Window State Notification Events

Table 9-19 (Cont.) Circulate Event Data Structure Members

Member Name

X$L_CIEV_SEND_EVENT

X$A_CIEV_DISPLAY

X$L_ CIEV _EVENT

X$L_CIEV_WINDOW

X$L_CIEV_PLACE

Contents

Value defined by the constant true if the event
came from a SEND EVENT request.

Display on which the event occurred.

Event window.

Window that has been circulated.

Place of the window on the stack after it has been
circulated. Xlib sets the value of this member
to either the constant x$c_place_on_top or the
constant x$c_place_on_bottom. The constant x$c_
place_on_top indicates that the window is above
all siblings. The constant x$c_place_on_bottom
indicates that the window is below all siblings.

Handling Changes in Window Configuration

9-38

To receive notification when window size, position, border, or stacking
order changes, pass either the window identifier and the
x$m_structure_notify mask or the identifier of the parent window and
the x$m_substructure_notify mask when using the selection method
described in Section 9.2.

Xlib reports changes in window configuration when the following occur:

• Window size, position, border, and stacking order change when a client
calls the CONFIGURE WINDOW routine

• Window position in the stacking order changes when a client calls the
LOWER WINDOW, RAISE WINDOW, or RESTACK WINDOW routine

• Window moves when a client calls the MOVE WINDOW routine

• Window size changes when a client calls the RESIZE WINDOW
routine

• Window size and location change when a client calls the MOVE
RESIZE WINDOW routine

• Border width changes when a client calls the SET WINDOW BORDER
WIDTH routine

For more information about these routines, see Chapter 3.

Xlib reports changes to interested clients using the configure event data
structure. Figure 9-15 illustrates the data structure.

Handling Events
9.9 Window State Notification Events

Figure 9-15 Configure Event Data Structure

x$1_cfev _type 0

x$1_cfev_serial 4

x$1_cfev_send_event 8

x$a_cfev_display 12

x$1_cfev_event 16

x$1_cfev _window 20

x$1_cfev_x 24

x$1_cfev_y 28

x$1_cfev_width 32

x$1_cfev _height 36

x$1_ cfev _border_ width 40

x$1_cfev_above 44

x$1_cfev_override_redirect 48

Table 9-20 describes members of the data structure.

Table 9-20 Configure Event Data Structure Members

Member Name

X$L,_ CFEV _TYPE

X$L_CFEV _SERIAL

X$L_CFEV_SEND_EVENT

X$A_CFEV_DISPLAY

X$L_ CFEV ~EVENT

X$L_CFEV _WINDOW

X$L_CFEV_X

X$L_CFEV_Y

Contents

Value defined by the constant x$c_cfev_configure_notify.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a SEND
EVENT request.

Display on which the event occurred.

Event window.

Window that has been reconfigured.

The x value of the coordinates that define the upper left corner of the
window relative to the upper left corner of the parent window.

The y value of the coordinates that define the upper left corner of the
window relative to the upper left corner of the parent window.

(continued on next page)

9-39

9.9.3

Handling Events
9.9 Window State Notification Events

Table 9-20 (Cont.) Configure Event Data Structure Members

Member Name Contents

Width of the window, excluding the border.

Height of the window, excluding the border.

Border width of the reconfigured window.

X$L_CFEV_WIDTH

X$L_CFEV _HEIGHT

X$L_CFEV_BORDER_WIDTH

X$L_CFEV_ABOVE Identifier of the sibling window above which the window is stacked. If this
member has a value specified by the constant x$c_none, Xlib places the
window at the bottom of the stack.

X$L_CFEV_OVERRIDE_REDIRECT If this member has a value defined by the constant true, the window
manager ignores requests to reconfigure the window.

Handling Window Creations
To receive notification when a client creates a window, pass the identifier
of the parent window and the x$m_substructure_notify mask when
using the selection method described in Section 9.2.

Xlib reports window creations using the create window event data
structure. Figure 9-16 illustrates the data structure.

Figure 9-16 Create Window Event Data Structure

x$1_cwev_type

x$1_cwev _serial

x$1_cwev _send_event

x$a_cwev_display

x$1_cwev _parent

x$1_cwev_window

x$1_cwev_x

x$1_cwev_y

x$1_cwev _width

x$1_cwev _height

x$1_cwev_border_width

x$1_cwev _override_redirect

9-40

0

4

8

12

16

20

24

28

32

36

40

44

9.9.4

Handling Events
9.9 Window State Notification Events

Table 9-21 describes members of the data structure.

Table 9-21 Create Window Event Data Structure Members

Member Name

X$L_CWEV _TYPE

X$L_CWEV_SERIAL

X$L_CWEV _SEND_EVENT

X$A_CWEV_DISPLAY

X$L_ CWEV _EVENT

X$L_CWEV_WINDOW

X$L_CWEV_X

X$L_CWEV_Y

X$L_CWEV_WIDTH

X$L_CWEV _HEIGHT

Contents

Value defined by the constant x$c_create_notify.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a SEND
EVENT request.

Display on which the event occurred.

Parent window.

Window that has been created.

The x value of the coordinates that define the origin of the window.

The y value of the coordinates that define the origin of the window.

Width of the newly created window, excluding the border.

Height of the newly created window, excluding the border.

X$L_CWEV _BORDER_WIDTH

X$L_CWEV _OVERRIDE_REDIRECT

Border width of the new window.

If this member has a value defined by the constant true, the window
manager ignores requests to create the window.

Handling Window Destructions
To receive notification when a client destroys a window, pass either the
window identifier and the x$m_structure_notify mask or the identifier of
the parent window and the x$m_substructure_notify mask when using
the selection method described in Section 9.2.

Xlib reports window destructions using the destroy window event data
structure. Figure 9-17 illustrates the data structure.

Figure 9-17 Destroy Window Event Data Structure

x$1_dwev _type

x$1_dwev_serial

x$1_dwev _send _event

x$a_dwev_display

x$1_ dwev _event

x$1_dwev _window

0

4

8

12

16

20

9-41

9.9.5

Handling Events
9.9 Window State Notification Events

Table 9-22 describes members of the data structure.

Table 9-22 Destroy Window Event Data Structure Members

Member Name

X$L_DWEV _TYPE

X$L_DWEV _SERIAL

X$L_DWEV _SEN D_EVENT

X$A_DWEV _DISPLAY

X$L_DWEV _EVENT

X$L_DWEV_WINDOW

Contents

Value defined by the x$c_destroy_notify constant.

Number of the last request processed by the
server.

Value defined by the constant true if the event
came from a SEND EVENT request.

Display on which the event occurred.

Event window.

Window that has been destroyed.

Handling Changes in Window Position
To receive notification when a window is moved because a client has
changed the size of its parent, pass the window identifier and the
x$m_structure_notify mask or the identifier of the parent window and
the x$m_substructure_notify mask when using the selection method
described in Section 9.2.

Xlib reports window gravity events using the gravity event data structure.
Figure 9-18 illustrates the data structure.

Figure 9-18 Gravity Event Data Structure

x$1_gvev _type 0

x$1_gvev _serial 4

x$1_gvev _send_event 8

x$a_gvev _display 12

x$1_gvev _event 16

x$1_gvev _window 20

x$1_gvev_x 24

x$1_gvev_y 28

9-42

9.9.6

Handling Events
9.9 Window State Notification Events

Table 9-23 describes members of the data structure.

Table 9-23 Gravity Event Data Structure Members

Member Name

X$L_GVEV_TYPE

X$L_GVEV_SERIAL

X$L_GVEV_SEND_EVENT

X$A_GVEV _DISPLAY

X$L_GVEV _EVENT

X$L_GVEV_WINDOW

X$L_GVEV_X

X$L_GVEV_Y

Handling Window Mappings

Contents

Value defined by the x$c_gravity_notify constant.

Number of the last request processed by the
server.

Value defined by the constant true if the event
came from a SEND EVENT request.

Display on which the event occurred.

Event window.

Child window that has moved.

The x value of the coordinates that define the
upper left corner of the window relative to the
upper left corner of the parent window.

The y value of the coordinates that define the
upper left corner of the window relative to the
upper left corner of the parent window.

To receive notification when a window changes state from unmapped to
mapped, pass either the window identifier and the x$m_structure_notify
mask or the identifier of the parent window and the x$m_substructure_
notify mask when using the selection method described in Section 9.2.

Xlib reports window gravity events using the map event data structure.
Figure 9-19 illustrates the data structure.

Figure 9-19 Map Window Event Data Structure

x$1_mpev_type

x$1_mpev _serial

x$1_mpev _send_ event

x$a_mpev_display

x$1_mpev _event

x$1_mpev_window

x$1_mpev _ override_redirect

0

4

8

12

16

20

24

9-43

9.9.7

Handling Events
9.9 Window State Notification Events

Table 9-24 describes members of the data structure.

Table 9-24 Map Event Data Structure Members

Member Name

X$L_MPEV _TYPE

X$L_MPEV _SERIAL

X$L_MPEV_SEND_EVENT

X$A_MPEV _DISPLAY

X$L_MPEV _EVENT

X$L_MPEV _WINDOW

X$L_MPEV_OVERRIDE_REDIRECT

Contents

Value defined by the x$c_map_notify
constant.

Number of the last request processed by
the server.

Value defined by the constant true if
the event came from a SEND EVENT
request.

Display on which the event occurred.

Event window.

Window that has been mapped.

If the value of this member is defined by
the constant true, the window manager
should disregard requests to map the
window. When true, it overrides a
substructure redirect on the parent.

Handling Key, Keyboard, and Pointer Mappings
All clients receive notification of changes in key, keyboard, and pointer
mapping. Xlib reports these events when a client has successfully done
one of the following:

• Called the SET MODIFIER MAPPING routine to indicate which
keycodes are modifiers

• Changed keyboard mapping using the CHANGE KEYBOARD
MAPPING routine

• Set pointer mapping using the SET POINTER MAPPING routine

Xlib reports key, keyboard, and pointer mapping events using the mapping
event data structure. Figure 9-20 illustrates the data structure.

Figure 9-20 Mapping Event Data Structure

x$1_mppg_type 0

x$1_mppg_serial 4

x$1_mppg_send_event 8

x$a_mppg_display 12

x$1_mppg_window 16

(continued on next page)

9-44

9.9.8

Handling Events
9.9 Window State Notification Events

Figure 9-20 (Cont.) Mapping Event Data Structure

x$1_mppg_request 20

x$1_mppg_first_keycode 24

x$1_mppg_count 28

Table 9-25 describes members of the data structure.

Table 9-25 Mapping Event Data Structure Members

· Member Name

X$L_MPPG_ TYPE

X$L_MPPG_SERIAL

X$L_MPPG_SEND_EVENT

X$A_MPPG_DISPLAY

X$L_MPPG_WINDOW

X$L_MPPG_REQUEST

Contents

Value defined by the x$c_mapping_notify constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a SEND EVENT
request.

Display on which the event occurred.

Unused member.

The type of mapping change being reported. Possible values are indicated
by the following constants:

x$c_mapping_modifier

x$c_mapping_keyboard

x$c_mapping__pointer

Specified key codes are used as
modifiers.

Keyboard mapping has changed. Sets
the X$L_MPPG_FIRST _KEYCODE and
X$L_MPPG_COUNT members.

Pointer button mapping is set.

X$L_M PPG_FI RST _KEYCODE First number of the range of altered keys, set only if the request member
has a value specified by the constant x$c_mapping_keyboard.

X$L_MPPG_COUNT Last number of the range of altered keys, set only if the request member
has a value specified by the constant x$c_mapping_keyboard.

Handling Window Reparenting
To receive notification when the parent of a window changes, pass
either the window identifier and the x$m_structure_notify mask or
the identifier of the parent window and the x$m_substructure_notify
mask when using the selection method described in Section 9.2.

Xlib reports window reparenting events using the reparent event data
structure. Figure 9-21 illustrates the data structure.

9-45

Handling Events
9.9 Window State Notification Events

Figure 9-21 Reparent Event Data Structure

x$1_rpev _type 0

x$1_rpev _serial 4

x$1_rpev _send_event 8

x$a_rpev _display 12

x$1_rpev _event 16

x$1_rpev _window 20

x$1_rpev _parent 24

x$1_rpev_x 28

x$1_rpev_y 32

x$1_rpev _override _redirect 36

Table 9-26 describes members of the data structure.

Table 9-26 Reparent Event Data Structure Members

Member Name

X$L_RPEV _TYPE

X$L_RPEV _SERIAL

X$L_RPEV _SEND_EVENT

X$A_RPEV_DISPLAY

X$L_RPEV _EVENT

X$L_RPEV _WINDOW

X$L_RPEV _PARENT

X$L_RPEV_X

X$L_RPEV_Y

X$L_RPEV_OVERRIDE_REDIRECT

9-46

Contents

Value defined by the x$c_reparent_notify constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a SEND
EVENT request.

Display on which the event occurred.

Event window.

Window reparented.

New parent of the window.

The x value of the coordinates that define the upper left corner of the
window relative to the upper left corner of the parent window.

The y value of the coordinates that define the upper left corner of the
window relative to the upper left corner of the parent window.

If this member has a value defined by the constant true, the window
manager ignores requests to reparent the window. When true, it
overrides a substructure redirect on the parent.

9.9.9

Handling Events
9.9 Window State Notification Events

Handling Window Unmappings
To receive notification when a window changes from mapped to unmapped,
pass either the window identifier and the x$m_structure_notify mask
or the identifier of the parent window and the x$m_substructure_notify
mask when using the selection method described in Section 9.2.

Xlib reports window unmapping events using the unmap event data
structure. Figure 9-22 illustrates the data structure.

Figure 9-22 Unmap Event Data Structure

x$1_umev _type 0

x$1_umev _serial 4

x$1_umev_send_event 8

x$a_umev_display 12

x$1_umev _event 16

x$1_umev _window 20

x$1_umev _from_configure 24

Table 9-27 describes members of the data structure.

Table 9-27 Unmap Event Data Structure Members

Member Name

X$L_UMEV _TYPE

X$L_UMEV_SERIAL

X$L_UMEV _SEND_EVENT

X$A_UMEV _DISPLAY

X$L_UMEV _EVENT

X$L_UMEV _WINDOW

X$L_UMEV _FROM_CONFIGURE

Contents

Value defined by the x$c_unmap_notify
constant.

Number of the last request processed by the
server.

Value defined by the constant true if the
event came from a SEND EVENT request.

Display on which the event occurred.

Event window.

Window unmapped.

If the value of this member is defined by
the constant true, the event occurred as a
result of resizing the parent window when the
window itself has a window gravity specified
by the constant x$c_unmap_gravity.

9-47

Handling Events
9.9 Window State Notification Events

9.9.10 Handling Changes in Window Visibility
All or part of a window is visible if it is mapped to a screen, if all of its
ancestors are mapped, and if it is at least partially visible on the screen.
To receive notification when the visibility of a window changes, pass the
window identifier and the x$m_structure_notify mask when using the
selection method described in Section 9.2.

Xlib reports changes in visibility to interested clients using the visibility
event data structure. Figure 9-23 illustrates the data structure.

Figure 9-23 Visibility Event Data Structure

x$1_ vsev _type 0

x$1_vsev_serial 4

x$1_ vsev _send_ event 8

x$a_ vsev _display 12

x$1_ vsev _window 16

x$1_ vsev _state 20

Table 9-28 describes members of the data structure.

Table 9-28 Visibility Event Data Structure Members

Member Name

X$L_ VSEV _TYPE

X$L_ VSEV _SERIAL

X$L_VSEV_SEND_EVENT

X$A_VSEV_DISPLAY

X$L_VSEV_WINOOW

X$L_ VSEV _STATE

9-48

Contents

Value defined by the x$c_visibility_notify constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a SEND EVENT
request.

Display on which the event occurred.

Window whose visibility changed.

If set to the value defined by the x$c_visibility_unobscured constant, the
window has changed from being partially and fully obscured to being ·fully
visible. If set to the value defined by the x$c_visibility_part_obscured, the
window has changed from being fully obscured or fully visible to partially
obscured. If set to the value defined by the x$c_visibility_fully_obscured
constant, the window has changed from being fully visible or partially obscured
to not visible.

9.10

Handling Events
9.10 Color Map State Events

Color Map State Events
Xlib reports a color map event when the window manager installs,
changes, or removes the color map.

To receive notification of color map events, pass the window identifier
and the x$m_colormap_change mask when using the selection method
described in Section 9.2.

Xlib reports color map events to interested clients when the following
occur:

• A client sets the color map member of the set window attributes data
structure by calling CHANGE WINDOW ATTRIBUTES. See Chapter 3
for more information on the data structure and routine.

• A client calls the FREE COLORMAP routine. See Section 5.5 for more
information about FREE COLORMAP.

• The window manager installs or removes a color map in response
to either a client call of the INSTALL COLORMAP or UNINSTALL
COLORMAP routine.

Xlib reports color map events using the color map event data structure.
Figure 9-24 illustrates the data structure.

Figure 9-24 Color Map Event Data Structure

x$1_cmev _type

x$1_cmev _serial

x$1_cmev _send_event

x$a_cmev _display

x$1_cmev_window

x$1_cmev _colormap

x$1_cmev_new

x$1_cmev _state

0

4

8

12

16

20

24

28

9-49

Handling Events
9.10 Color Map State Events

Table 9-29 describes members of the data structure.

Table 9-29 Color Map Event Data Structure Members

Member Name

X$L_CMEV_TYPE

X$L_CMEV_SERIAL

X$L_CMEV_SEND_EVENT

X$A_CMEV _DISPLAY

X$L_CMEV_WINDOW

X$L_CMEV _COLORMAP

X$L_CMEV_NEW

X$L_CMEV _STATE

Contents

Value defined by the x$c_colormap_notify constant.

Number of the last request processed by the seNer.

Value defined by the constant true if the event came from a SEND EVENT
request.

Display on which the event occurred.

Window whose associated color map has changed.

If the window manager changes the color map in response to a call to CHANGE
WINDOW ATTRIBUTES, INSTALL COLORMAP, or UNINSTALL COLORMAP,
this member has a value specified by the constant x$c_colormap. If the window
manager changes the color map in response to a call to FREE COLORMAP,
this member has a value specified by the constant x$c_none.

Value defined by the constant true if the window manager has changed the
color map or the value defined by the constant false if the window manager has
installed or removed the color map.

Value defined by the constant x$c_colormap_installed if the color map is
installed. The value defined by the constant x$c_colormap_uninstalled if the
color map is not installed.

9.11 Client Communication Events

9.11.1

Xlib reports an event when one of the following occurs:

• One client notifies another client that an event has happened.

• A client changes, deletes, rotates, or gets a property.

~ A client loses ownership of a window.

• A client requests ownership of a window.

This section describes how to handle communication between clients.

Handling Event Notification from Other Clients

9-50

Clients can notify each other of events by calling the SEND EVENT
routine.

Xlib sends notification between clients using the client message event data
structure. Figure 9-25 illustrates the data structure.

Handling Events
9.11 Client Communication Events

Figure 9-25 Client Message Event Data Structure

x$1_clnt_type 0

x$1_ cl nt_ serial 4

x$1_clnt_send_event 8

x$a_clnt_display 12

x$1_clnt_window 16

x$1_clnt_message_type 20

x$1_clnt_format 24

........ ,.i.,

l
x$b_clnt_b (20 bytes) T

....._ ______________ ___,J 48

Table 9-30 describes members of the data structure.

Table 9-30 Client Message Event Data Structure Members

Member Name

X$L_CLNT~ TYPE

X$L_CLNT_SERIAL

X$L_CLNT_SEND_EVENT

X$A_CLNT_DISPLAY

X$L_CLNT_WINDOW

X$L_CLNT_MESSAGE_TYPE

X$L_CLNT_FORMAT

X$B_CLNT_B

Contents

Value defined by the x$c_client_message constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a SEND EVENT
request.

Display on which the event occurred.

Window to which the message is sent.

Indicates how the message data is to be interpreted by the receiving client.
For more information about atoms, see Chapter 3.

Indicates whether the data is in units of 8, 16, or 32 bits.

Data of 20 8-bit values.

9.11.2 Handling Changes in Properties
As Chapter 3 notes, a property associates a constant with data of a
particular type. Xlib reports a property event when a client does one of
the following:

9-51

Handling Events
9.11 Client Communication Events

• Changes a property

• Rotates a window property

• Gets a property

• Deletes a property

To receive information about property changes, pass the window identifier
and the x$m_property _change mask when using the selection method
described in Section 9.2.

Xlib reports changes in properties to interested clients using the property
event data structure. Figure 9-26 illustrates the data structure.

Figure 9-26 Property Event Data Structure

x$1_ppev _type

x$1_ppev_serial

x$1_ppev_send_event

x$a_ppev _display

x$1_ppev _window

x$1_ppev _atom

x$1_ppev_time

x$1_ppev _state

Table 9-31 describes members of the data structure.

Table 9-31 Property Event Data Structure Members

Member Name

X$L_PPEV _TYPE

X$L_PPEV _SERIAL

X$L_PPEV_SEND_EVENT

X$A_PPEV _DISPLAY

X$L_PPEV_WINDOW

Contents

Value defined by the x$c_property_notify constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a SEND EVENT
request.

Display on which the event occurred.

Window whose property was changed.

0

4

8

12

16

20

24

28

(continued on next page)

9-52

Handling Events
9.11 Client Communication Events

Table 9-31 (Cont.) Property Event Data Structure Members

Member Name

X$L_PPEV _ATOM

X$L_PPEV _TIME

X$L_PPEV _STATE

Contents

Identifies the property that was changed. For more information about properties
and atoms, see Chapter 3.

Server time that the property changed.

Value specified by the constant x$c_property_new_value if a client changes
a property by calling either the CHANGE PROPERTY or the ROTATE
PROPERTY routine. The same result occurs if the client replaces all or
part of a property with identical data using CHANGE PROPERTY or ROTATE
PROPERTY.

The value specified by the constant x$c_property_delete if a client deletes a
property by calling either the DELETE PROPERTY or the GET PROPERTY
routine. For more information about properties, see Chapter 3.

9.11.3 Handling Changes in Selection Ownership
Clients receive notification automatically when they are losing ownership
of a window. Xlib reports the event when a client takes ownership of a
window by calling the SET SELECTION OWNER routine.

To report the event, Xlib uses the selection clear event data structure.
Figure 9-27 illustrates the data structure.

Figure 9-27 Selection Clear Event Data Structure

x$1_scev _type

x$1_scev_serial

x$1_scev _send_event

x$a_scev_display

x$1_scev _window

x$1_scev _selection

x$1_scev_time

Table 9-32 describes members of the data structure.

0

4

8

12

16

20

24

9-53

Handling Events
9.11 Client Communication Events

Table 9-32 Selection Clear Event Data Structure Members

Member Name

X$L_SCEV _TYPE

X$L_SCEV _SERIAL

X$L_SCEV_SEND_EVENT

X$A_SCEV _DISPLAY

X$L_SCEV _WINDOW

X$L_SCEV _SELECTION

X$L_SCEV _TIME

Contents

Value defined by the x$c_selection_clear constant.

Number of the last request processed by the
server.

Value defined by the constant true if the event
came from a SEND EVENT request.

Display on which the event occurred.

Window losing ownership of the selection.

Selection atom. For more information about atoms
and selection, see Chapter 3.

Last time change recorded for the selection.

9.11.4 Handling Requests to Convert a Selection
The server issues a selection request event to the owner of a selection
when a client calls the CONVERT SELECTION routine. For information
about the CONVERT SELECTION routine, see Section 3.5.2.

To report the event, Xlib uses the selection request event data structure.
Figure 9-28 illustrates the data structure.

Figure 9-28 Selection Request Event Data Structure

9-54

x$1_srev _type

x$1_srev _serial

x$1_srev _send_ event

x$a_srev _display

x$1_srev _owner

x$1_srev _requestor

x$1_srev _selection

x$1_srev_target

x$1_srev_property

x$1_srev _time

Table 9-33 describes members of the selection request event data
structure.

0

4

8

12

16

20

24

28

32

36

Handling Events
9.11 Client Communication Events

Table 9-33 Selection Request Event Data Structure Members

Member Name

X$L_SREV _TYPE

X$L_SREV _SERIAL

X$L_SREV_SEND_EVENT

Contents

Value defined by the x$c_selection_request
constant.

Number of the last request processed by the
server.

Value defined by the constant true if the event
came from a SEND EVENT request.

Display on which the event occurred.

Window that owns the selection.

Window that requests the selection.

X$A_SREV _DISPLAY

X$L_SREV _OWNER

X$L_SREV _REQUESTOR

X$L_SREV _SELECTION Selection atom. For more information about atoms
and selection, see Chapter 3.

X$L_SREV _TARGET

X$L_SREV _PROPERTY

X$L_SREV _TIME

Data type that selection is converted to before
being returned.

Atom that specifies a property or the constant
x$c_none.

Timestamp, expressed in milliseconds, or the
constant x$c_current_time from the convert
selection request.

9.11.5 Handling Requests to Notify of a Selection
The server issues a selection notify event to the requestor of a selection
after the selection has been converted and stored as a property.

For information about the CONVERT SELECTION routine, see
Section 3.5.2. To report the event, Xlib uses the selection event data
structure. Figure 9-29 illustrates the data structure.

Figure 9-29 Selection Event Data Structure

x$1_slev _type

x$1_slev _serial

x$1_slev_send_event

x$a_slev _display

x$1_slev _requestor

x$1_slev _selection

x$1_slev _target

0

4

8

12

16

20

24

(continued on next page)

9-55

9.12

Handling Events
9.11 Client Communication Events

Figure 9-29 (Cont.) Selection Event Data Structure

.,__ ______________________________ x_$_L_s_1e_v_J> __ ro_p_e_rty--------------------------------11

3

2

2

8

x$Lslev_time _

Table 9-34 describes members of the selection event data structure.

Table 9-34 Selection Event Data Structure Members

Member Name

X$L_SLEV _TYPE

X$L_SLEV _SERIAL

X$L_SLEV_SEND_EVENT

X$A_SLEV_DISPLAY

X$L_SLEV _REQUESTOR

X$L_SLEV _SELECTION

X$L_SLEV _TARGET

X$L_SLEV_PROPERTY

X$L_SLEV _TIME

Contents

Value defined by the x$c_selection_notify constant.

Number of the last request processed by the
server.

Value defined by the constant true if the event
came from a SEND EVENT request.

Display on which the event occurred.

Window that has requested the selection.

Selection atom. For more information about atoms
and selection, see Chapter 3.

Data type to which selection is converted.

Atom that specifies a property or the constant
x$c_none.

Timestamp, expressed in milliseconds, or the
constant x$c_current_time from the convert
selection request.

Event Queue Management

9-56

Xlib maintains an input queue known as the event queue. When an
event occurs, the server sends the event to Xlib, which places it at the end
of an event queue. By using routines described in this section, the client
can check, remove, and process the events on the queue. As the client
removes an event, remaii"'ling events move up the event queue.

Certain routines may block or prevent other routine calls from accessing
the event queue. If the blocking routine does not find an event that the
client is interested in, Xlib flushes the output buffer and waits until an
event is received from the server.

This section describes how the event queue is managed, including the
following topics:

• Checking events on the queue

• Returning events in order and removing them from the queue

• Returning events without removing them from the queue

9.12.1

Handling Events
9.12 Event Queue Management

• Obtaining events that match the event mask or the arbitrary functions
that the client provides

• Putting events back onto the event queue

• Sending events to other clients

Checking the Contents of the Event Queue
To check the event queue without preventing other routines from accessing
the queue, use the EVENTS QUEUED routine. Clients can check events
already queued by calling the EVENTS QUEUED routine and specifying
one of the following constants:

x$c_queued_already

x$c_queued_after_flush

x$c_queued_after_reading

Returns the number of events already in the event
queue and never performs a system call.

Returns the number of events in the event queue if
the value is a nonzero. If there are no events in the
queue, this routine flushes the output buffer, attempts
to read more events out of the client connection, and
returns the number read.

Returns the number of events already in the event
queue if the value is a nonzero. If there are no events
in the queue, this routine attempts to read more
events out of the client connection without flushing the
output buffer and returns the number read.

To return the number of events in the event queue, use the PENDING
routine. If there are no events in the queue, PENDING flushes the output
buffer, attempts to read more events out of the client connection, and
returns the number read. The PENDING routine is identical to EVENTS
QUEUED with constant x$c_queued_after_flush specified.

9.12.2 Returning the Next Event on the Queue
To return the first event on the event queue and copy it into the specified
event data structure, use the NEXT EVENT and PEEK EVENT routines.
NEXT EVENT returns the first event, copies it into an EVENT structure,
and removes it from the queue. PEEK EVENT returns the first event,
copies it into an event data structure, but does not remove it from the
queue. In both cases, if the event queue is empty, the routine flushes the
output buffer and blocks until an event is received.

9.12.3 Selecting Events That Match User-Defined Routines
Xlib enables the client to check all the events on the queue for a specific
type of event by specifying a client-defined routine known as a predicate
procedure. The predicate procedure determines if the event on the queue
is one that the client is interested in.

The client calls the predicate procedure from inside the event routine.
The predicate procedure should determine only if the event is useful and
must not call Xlib routines. The predicate procedure is called once for each
event in the queue until it finds a match.

9-57

Handling Events
9.12 Event Queue Management

Table 9-35 lists routines that use a predicate procedure and indicates
whether or not the routine blocks.

Table 9-35 Selecting Events Using a Predicate Procedure

Routine Description Blocking/No Blocking

IF EVENT Checks the event queue for the specified event. Blocking
If the event matches, removes the event from the
queue. This routine is also called each time an
event is added to the queue.

CHECK IF EVENT Checks the event queue for the specified event. No blocking
If the event matches, removes the event from the
queue. If the predicate procedure does not find a
match, it flushes the output buffer.

PEEK IF EVENT Checks the event queue for the specified event but Blocking
does not remove it from the queue. This routine
is also called each time an event is added to the
queue.

9.12.4 Selecting Events Using an Event Mask
Xlib enables a client to process events out of order by specifying a window
identifier and one of the event masks listed in Table 9-3 when calling
routines listed in Table 9-36.

For example, the following specifies keyboard events on window WINDOW
by using the event mask name constant x$c_keymap_state_mask.

CALL X$WINDOW EVENT(DPY, WINDOW,
1 X$C_KEYMAP_STATE, EVENT)

Table 9-36 lists routines that use event or window masks and indicates
whether the routine blocks.

Table 9-36 Routines to Select Events Using a Mask

Routine Description Blocking/No Blocking

WINDOW EVENT Searches the event queue and removes the next Blocking
event that matches both the specified window and
event mask

CHECK WINDOW EVENT Searches the event queue, then the events No blocking
available on the server connection, and removes
the first event that matches the specified event and
window mask

MASK EVENT Searches the event queue and removes the next Blocking
event that matches the event mask

(continued on next page)

9-58

Handling Events
9.12 Event Queue Management

Table 9-36 (Cont.) Routines to Select Events Using a Mask

Routine

CHECK MASK EVENT

CHECK TYPED EVENT

CHECK TYPED WINDOW
EVENT

Description Blocking/No Blocking

Searches the event queue, then the events No blocking
available on the server connection, and removes
the next event that matches an event mask

Returns the next event in the queue that matches No blocking
an event type

Searches the event queue, then the events No blocking
available on the server connection, and removes
the next event that matches the specified type and
window

9.12.5 Putting an Event Back on Top of the Queue
To push an event back onto the top of the event queue, use the PUT BACK
EVENT routine. PUT BACK EVENT is useful when a client returns an
event from the queue and decides to use it later. There is no limit to how
many times in succession PUT BACK EVENT can be called.

9.12.6 Sending Events to Other Clients

9.13

9.13.1

Error Handling

To send an event to a client, use the SEND EVENT routine. For example,
owners of a selection should use this routine to send a SELECTION
NOTIFY event to a requestor when a selection has been converted and
stored as a property.

Xlib has two default error handlers. One manages fatal errors, such as
when the connection to a display is severed due to a system failure. The
other handles error events from the server. The default error handlers
print an explanatory message and text and then exit.

Each of these error handlers can be replaced by client error handling
routines. If a client-supplied routine is passed a null pointer, Xlib
reinvokes the default error handler.

This section describes the Xlib event error handling resources including
enabling synchronous operation, handling server errors, and handling
input/output (l/0) errors.

Enabling Synchronous Operation
When debugging programs it is convenient to require Xlib to behave
synchronously so that errors are reported at the time they occur.

To enable synchronous operation, use the SYNCHRONIZE routine. The
client passes the display argument and the onoff argument. The onoff
argument passes either a value of zero (disabling synchronization) or a
nonzero value (enabling synchronization).

9-59

Handling Events
9.13 Error Handling

9.13.2 Using the Default Error Handlers
To handle error events when an error event is received, use the SET
ERROR HANDLER routine.

Xlib provides an error event data structure that passes information to the
SET ERROR HANDLER routine.

Figure 9-30 illustrates the error event data structure.

Figure 9-30 Error Event Data Structure

9-60

x$1_erev_type 0

x$a_erev _display 4

x$1_erev_resource_id 8

x$1_erev _serial 12

l x$b_erev_minor_code I x$b_erev_request_code J x$b_erev_error_code

Table 9-37 describes the members of the data structure.

Table 9-37 Error Event Data Structure Members

Member Name

X$L_EREV _TYPE

X$A_EREV _DISPLAY

X$L_EREV _SERIAL

X$B_EREV_ERROR_CODE

X$8_EREV_REQUEST_CODE

X$B_EREV _MINOR_CODE

X$L_EREV _RESOURCE_ID

Description

Type of error event being reported

Display on which the error event occurred

Number of requests starting at one sent over the
network connection since it was opened

Identifying error code of the failing routine

Protocol representation of the name of the
procedure that failed and defined in X11/X.h

Minor opcode of failed request

Resource ID

The routines described in this section return Xlib error codes. Table 9-38
lists the codes and describes the errors.

Handling Events
9.13 Error Handling

Table 9-38 Event Error Codes

Error Code

X$C_BAD_ACCESS

X$C _BAD _ALLOC

X$C_BAD_ATOM

X$C_BAD_COLOR

X$C_BAD_CURSOR

X$C_BAD_DRAWABLE

X$C_BAD _FONT

X$C_BAD_GC

X$C _BAD _ID_ CHOICE

X$C_BAD_
IMPLEMENTATION

X$C _BAD _LENGTH

X$C_BAD_MATCH

X$C_BAD_NAME

X$C_BAD_PIXMAP

Description

Possible causes are:

An attempt to grab a key/button combination that has already been grabbed by
another client.

An attempt to free a color map entry that was not allocated by the client.

An attempt to store into a read-only, or unallocated, color map entry.

An attempt to modify the access control list from other than the local host.

An attempt to select an event type that only one client can select at a time when
another client has already selected it.

The server did not allocate the requested resource for any cause.

The value specified in an atom argument does not name a defined atom.

A value specified for a color map argument does not name a defined color map.

A value specified for a cursor argument does not name a defined cursor.

A value specified for a drawable argument does not name a defined window or
pixmap.

A value specified for a font argument does not name a defined font (or, in some
cases, graphics context).

A value specified for a graphics context argument does not name a defined graphics
context.

The value specified for a resource identifier is either not included in the range
assigned to the client, or is already in use. Under normal circumstances this cannot
occur and should be considered a server or Xlib error.

The server does not implement some aspect of the request. This error is most likely
caused by a server extension; a server that generates this error for a core protocol
request is deficient. As such, this error is not listed for any particular request. Clients
should be prepared to receive this type of error and either handle or discard it.

The length of a request is shorter or longer than required to minimally contain the
arguments. This error usually indicates an internal Xlib or server error. The length of
a request exceeds the maximum length accepted by the server.

Possible causes are:

In a graphics request, the root and depth of the graphics context does not match
that of the drawable.

An input-only window is used as a drawable.

One argument or pair of arguments has the correct type and range but fails to
match in some other way required by the request.

An input only window lacks this attribute.

The font or color specified does not exist.

A value specified for a pixmap argument does not name a defined pixmap.

(continued on next page)

9-61

Handling Events
9.13 Error Handling

Table 9-38 (Cont.) Event Error Codes

Error Code

X$C_BAD_REQUEST

X$C_BAD_VALUE

X$C_BAD_WINDOW

9-62

Description

The major or minor opcode specified does not indicate a valid request. This is usually
an Xlib or server error.

Some numeric values fall outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined by the
argument's type is accepted. Any argument defined as a set of alternatives can
generate this error.

A value specified for a window argument does not name a defined window.

Note that Bad Atom, Bad Color, Bad Cursor, Bad Drawable, Bad Font,
Bad Pixmap, and Bad Window errors are also used when the argument
type is extended by a set of fixed alternatives.

To obtain a text description of the specified error code, use the GET
ERROR TEXT routine. This routine copies a null terminated string
describing the specified error code into the specified buffer. The client
should use this routine to obtain an error description because extensions
to Xlib may define their own error codes and error strings.

To obtain error messages from the error database, use the GET ERROR
DATABASE TEXT routine. This routine returns a message (or the default
message) from the error message database. The GET ERROR DATABASE
TEXT uses the resource manager to look up a string and returns it in the
buffer argument. Xlib uses this function internally to look up its error
messages.

To report an error when the requested display does not exist, use the
DISPLAY NAME routine. This routine returns the name of the display
that the client is currently using. The DISPLAY NAME routine passes
the argument string. If null string is specified, DISPLAY NAME looks in
the environment and returns the display name requested. This makes it
easier to report precisely which display the client attempted to open when
the initial connection attempt failed.

To handle fatal I/O errors, use the SET IO ERROR HANDLER routine.
Xlib calls the supplied error handler if any system call error occurs (for
example, the connection to the server is lost). In this case, the called
routine should not return. If the 1/0 handler does return, the client exits.

A Compiling Fonts

VMS DECwindows includes a font compiler that enables programmers
to convert an ASCII bitmap distribution format (BDF) into binary server
natural form (SNF). The server uses an SNF file to display a font. In
addition to converting the BDF file to binary form, the compiler provides
statistical information about the font and the compilation process.

To invoke the font compiler, use the following format:

FONT filespec [
/[NO]OUTPUT[=filename]
/[NO]MINBBOX
/[NO] REPORT
]

The filename parameter specifies the BDF file to be converted. A
file name is required. The default value of the optional file type is
DECW$BDF.

The /OUTPUT qualifier specifies the file name and type of the resulting
SNF file. The default output file name is the file name of the BDF file
being converted. The default output SNF file type is DECW$FONT.

Compiler output consists of a header file that contains font information,
character metrics, and the image of each character in the font. Font
information in the header file is essentially the same as information stored
in the font struct data structure. For a description of the data structure,
see Section 8.1.

The /MINBBOX qualifier specifies that the compiler produce the minimum
bounding box for each character in the font and adjust values for the left
bearing, right bearing, ascent, and descent of each character accordingly.
Character width is not affected. Specifying the /MINBBOX qualifier
is equivalent to converting a fixed font to a monospaced font. For a
description of character metrics and fonts, see Section 8.1.

Using the /MINBBOX qualifier has two advantages. Because the font
compiler produces minimum instead of fixed bounding boxes, the resulting
SNF file is significantly smaller than the comparable fixed font SNF file.
Consequently, both disk requirements for storing the font and server
memory requirements when a client loads the font are reduced. Also,
because the resulting font comprises minimum inkable characters, server
performance when writing text is increased as much as 20 percent.

The /REPORT qualifier directs the compiler to report information about
the font and the conversion process, including BDF information, font
properties, compiler generation information, and metrics. The /REPORT
qualifier also causes the compiler to illustrate each glyph in the font.

A-1

B Routines Requiring Protocol Requests

Table B-1 lists Xlib routines requiring protocol requests. The table
provides the protocol request and a short description for each Xlib function.

Table B-1 Routines Requiring Protocol Requests

Xlib Function

ALLOC COLOR

ALLOC COLOR CELLS

ALLOC COLOR PLANES

ALLOC NAMED COLOR

CHANGE GC

CHANGE PROPERTY

CHANGE WINDOW ATTRIBUTES

CIRCULATE SUBWINDOWS

CIRCULATE SUBWINDOWS DOWN

CIRCULATE SUBWINDOWS UP

CLEAR AREA

CLEAR WINDOW

CONFIGURE WINDOW

CONVERT SELECTION

COPY AREA

Protocol Request

ALLOC COLOR

ALLOC COLOR CELLS

ALLOC COLOR PLANES

ALLOC NAME COLOR

CHANGE GC

CHANGE PROPERTY

CHANGE WINDOW
ATTRIBUTES

CIRCULATE WINDOW

CIRCULATE WINDOW

CIRCULATE WINDOW

CLEAR AREA

CLEAR AREA

CONFIGURE WINDOW

CONVERT SELECTION

COPY AREA

Description

Allocates a read-only color cell

Allocates read/write color cells and
color plane combinations for a
PseudoColor model

Allocates read/write color resources for
DirectColor visual types

Allocates a read-only color cell by
name and returns the closest color
supported by the hardware

Changes the components in the
specified graphics context

Changes the property of a specified
window

Changes one or more window
attributes

Circulates a subwindow up or down

Lowers the highest mapped child of
a window that partially or completely
occludes another child

Raises the lowest mapped child of an
occluded window

Clears a specified rectangular area of
the specified window

Clears the entire area in the specified
window

Configures a window's size, location,
stacking, or border

Requests conversion of a selection

Copies an area of the specified
drawable between drawables of the
same root and depth

(continued on next page)

B-1

Routines Requiring Protocol Requests

Table 8-1 (Cont.) Routines Requiring Protocol Requests

Xlib Function

COPY COLORMAP AND FREE

COPY GC

COPY PLANE

CREATE COLORMAP

CREATE FONT CURSOR

CREATE GC

CREATE GLYPH CURSOR

CREATE PIXMAP

CREATE PIXMAP CURSOR

CREATE SIMPLE WINDOW

CREATE WINDOW

DEFINE CURSOR

DELETE PROPERTY

DESTROY SUBWINDOWS

DESTROY WINDOW

DRAW ARC

DRAW ARCS

DRAW IMAGE STRING

DRAW IMAGE STRING 16

DRAW LINE

DRAW LINES

8-2

Protocol Request Description

COPY COLORMAP AND FREE Creates a new color map when
allocating out of a previously shared
color map has failed due to resource
exhaustion

COPY GC

COPY PLANE

CREATE COLORMAP

CREATE GLYPH CURSOR

CREATE GC

CREATE GLYPH CURSOR

CREATE PIXMAP

CREATE CURSOR

CREATE WINDOW

CREATE WINDOW

CHANGE WINDOW
ATIRIBUTES

DELETE PROPERTY

DESTROY SUBWINDOWS

DESTROY WINDOW

POLY ARC

POLY ARC

IMAGE TEXT 8

IMAGE TEXT 16

POLY SEGMENT

POLY LINE

Copies components from a source
graphics context to a destination
graphics context

Copies a single bit-plane of the
specified drawable

Creates a color map for a screen

Creates a cursor from a standard font

Creates a new graphics context that is
usable with the specified drawable

Creates a cursor from font glyphs

Creates a pixmap of a specified size

Creates a cursor from two bitmaps

Creates an unmapped input-output
subwindow of the specified parent
window

Creates an unmapped subwindow for a
specified parent window

Defines which cursor will be used in a
window

Deletes a property for the specified
window

Destroys all subwindows of a specified
window

Destroys a window and all of its
subwindows

Draws a single arc in the specified
drawable

Draws multiple arcs in the specified
drawable

Draws 8-bit image text characters in
the specified drawable

Draws 2-byte image text characters in
the specified drawable

Draws a single line between two points
in the specified drawable

Draws multiple lines in the specified
drawable

(continued on next page)

Routines Requiring Protocol Requests

Table B-1 (Cont.) Routines Requiring Protocol Requests

Xlib Function Protocol Request

DRAW POINT POLY POINT

DRAW POINTS POLY POINT

DRAW RECTANGLE POLY RECTANGLE

DRAW RECTANGLES POLY RECTANGLE

DRAW SEGMENTS POLY SEGMENT

DRAW STRING POLY TEXT 8

DRAW STRING 16 POLY TEXT 16

DRAW TEXT POLY TEXT 8

DRAW TEXT 16 POLY TEXT 16

FETCH BYTES GET PROPERTY

FETCH NAME GET PROPERTY

FILL ARC POLY FILL ARC

FILL ARCS POLY FILL ARC

FILL POLYGON FILL POLY

FILL RECTANGLE POLY FILL RECTANGLE

FILL RECTANGLES POLY FILL RECTANGLE

FREE COLORMAP FREE COLOR MAP

FREE COLORS FREE COLOR

FREE CURSOR FREE CURSOR

FREE FONT CLOSE FONT

FREE GC FREE GC

Description

Draws a single point in the specified
drawable

Draws multiple points in the specified
drawable

Draws the outline of a single rectangle
in the specified drawable

Draws the outline of multiple rectangles
in the specified drawable

Draws multiple but not necessarily
connected lines in the specified
drawable

Draws 8-bit characters in the specified
drawable

Draws 2-byte characters in the
specified drawable

Draws 8-bit characters in the specified
drawable

Draws 2-byte characters in the
specified drawable

Returns data from cut buffer O

Gets the name of a window

Fills a single arc in the specified
drawable

Fills multiple arcs in the specified
drawable

Fills a polygon area in the specified
drawable

Fills a single rectangular area in the
specified drawable

Fills multiple rectangular areas in the
specified drawable

Deletes the association between the
color map resource ID and the color
map

Frees color map cells

Frees (destroys) the specified cursor

Unloads the font and frees the storage
used by the font data structure that
was allocated by QUERY FONT and
LOAD QUERY FONT

Frees the specified graphics context

(continued on next page)

8-3

Routines Requiring Protocol Requests

Table 8-1 (Cont.) Routines Requiring Protocol Requests

Xlib Function

FREE PIXMAP

GET ATOM NAME

GET FONT PATH

GET GEOMETRY

GET ICON SIZES

GET IMAGE

GET MOTION EVENTS

GET NORMAL HINTS

GET SELECTION OWNER

GET SIZE HINTS

GET WM HINTS

GET WINDOW ATTRIBUTES

GET WINDOW PROPERTY

GET ZOOM HINTS

INIT EXTENSION

INTERN ATOM

LIST EXTENSIONS

LIST FONTS

LIST FONTS WITH INFO

LIST PROPERTIES

LOAD FONT

8-4

Protocol Request

FREE PIXMAP

GET ATOM NAME

GET FONT PATH

GET GEOMETRY

GET PROPERTY

GET IMAGE

GET MOTION EVENTS

GET PROPERTY

GET SELECTION OWNER

GET PROPERTY

GET PROPERTY

GET WINDOW ATTRIBUTES
GET GEOMETRY

GET PROPERTY

GET PROPERTY

QUERY EXTENSION

INTERN ATOM

LIST EXTENSIONS

LIST FONTS

LIST FONTS WITH INFO

LIST PROPERTIES

OPEN FONT

Description

Frees all storage associated with a
specified pixmap

Returns a name for the specified atom
identifier

Gets the current font search path

Obtains the current geometry of the
specified drawable

Returns the value of the icon sizes
atom

Returns the contents of a rectangle in
the specified drawable on the display

Gets the motion history for a specified
window and time

Returns the size hints for a window in
its normal state

Returns the selection owner

Reads the value of any property of
type WM_SIZE_HINTS

Reads the value of the window
manager hints atom

Obtains the current attributes or
geometry of a specified window

Obtains the atom type and property
format of a specified window

Reads the value of the zoom hints
atom

Allocates storage for maintaining
the information about the extension
on the connection, chains this onto
the extension list, and returns the
information the stub implementor
needs to access the extension

Returns an atom for a specified name

Returns a list of all extensions
supported by the server

Returns a list of the available font
names

Obtains the names and information
about loaded fonts

Obtains the specified window's
property list

Loads the specified font

(continued on next page)

Routines Requiring Protocol Requests

Table 8-1 (Cont.) Routines Requiring Protocol Requests

Xlib Function

LOAD QUERY FONT

LOOKUP COLOR

LOWER WINDOW

MAP RAISED

MAP SUBWINDOWS

MAP WINDOW

MOVE RESIZE WINDOW

MOVE WINDOW

NOOP

OPEN DISPLAY

PARSE COLOR

PUT IMAGE

QUERY BEST CURSOR

QUERY BEST SIZE

QUERY BEST STIPPLE

QUERY BEST TILE

QUERY COLOR

QUERY COLORS

QUERY EXTENSION

QUERY POINTER

QUERY TEXT EXTENTS

Protocol Request

OPEN FONT
QUERY FONT

LOOKUP COLOR

CONFIGURE WINDOW

CONFIGURE WINDOW
MAP WINDOW

MAP SUBWINDOWS

MAP WINDOW

CONFIGURE WINDOW

CONFIGURE WINDOW

NO OPERATION

CREATE GC

LOOKUP COLOR

PUT IMAGE

QUERY BEST SIZE

QUERY BEST SIZE

QUERY BEST SIZE

QUERY BEST SIZE

QUERY COLORS

QUERY COLORS

QUERY EXTENSION

QUERY POINTER

QUERY TEXT EXTENTS

Description

Performs a LOAD FONT and QUERY
FONT in a single operation

Looks up the name of a color

Lowers a window so that it does not
obscure any sibling window

Maps and raises a window

Maps all subwindows for a specified
window

Maps the specified window

Changes size and location of a window

Moves a window without changing its
size

Sends a NoOperation request to the
server

Opens a connection to the server
controlling the specified display

Parses color values

Combines an image in memory with a
rectangle of a drawable on the display

Determines useful cursor sizes

Obtains the best size of a tile, stipple,
or cursor

Obtains the best stipple shape

Obtains the fill tile shape

Queries the RGB values of a single
specified pixel value

Queries the RGB values of an array
of pixels stored in the color data
structures

Determines if the named extension
is present and, if so, returns major
opcode for the extension

Obtains the root window the pointer
is currently on and the pointer
coordinates relative to the root's
origin

Queries the server for the bounding
box of a 1-byte character string

(continued on next page)

8-5

Routines Requiring Protocol Requests

Table B-1 (Cont.) Routines Requiring Protocol Requests

Xlib Function Protocol Request

QUERY TEXT EXTENTS 16 QUERY TEXT EXTENTS

QUERY TREE QUERY TREE

RAISE WINDOW CONFIGURE WINDOW

RECOLOR CURSOR RECOLOR CURSOR

RESIZE WINDOW CONFIGURE WINDOW

RESTACK WINDOWS CONFIGURE WINDOW

ROTATE BUFFERS ROTATE PROPERTIES

ROTATE WINDOW PROPERTIES ROTATE PROPERTIES

SELECT INPUT CHANGE WINDOW
ATTRIBUTES

SEND EVENT SEND EVENT

SET ARC MODE CHANGE GC

SET BACKGROUND CHANGE GC

SET CLIP MASK CHANGE GC

SET CLIP ORIGIN CHANGE GC

SET CLIP RECTANGLES SET CLIP RECTANGLES

SET COMMAND CHANGE PROPERTY

SET DASHES SET DASHES

SET FILL RULE CHANGE GC

SET FILL STYLE CHANGE GC

B-6

Description

Queries the server for the bounding
box of a 2-byte character string in the
specified font

Obtains a list of children, the parent,
and number of children for a specified
window

Raises a window so that no sibling
window obscures it

Changes the color of the specified
cursor

Changes a window's size without
changing the upper left coordinate

Restacks a set of windows from top to
bottom

Rotates the cut buffers

Rotates properties in the properties
array

Requests server to report events
associated with the event masks
passed to the event_mask argument

Sends an event to a specified window

Sets the arc mode of the specified
graphics context

Sets the background of the specified
graphics context

Sets the clip_mask of the specified
graphics context to the specified
pixmap

Sets the clip origin of the specified
graphics context

Sets the clip_mask of the specified
context to the specified list of
rectangles

Sets the value of the command atom

Sets the dash_offset and dash_list
for dashed line styles of the specified
graphics context

Sets the fill rule of the specified
graphics context

Sets the fill style of the specified
graphics context

(continued on next page)

Routines Requiring Protocol Requests

Table 8-1 (Cont.) Routines Requiring Protocol Requests

Xlib Function Protocol Request

SET FONT CHANGE GC

SET FONT PATH SET FONT PATH

SET FOREGROUND CHANGE GC

SET FUNCTION CHANGE GC

SET GRAPHICS EXPOSURES CHANGE GC

SET ICON SIZES CHANGE PROPERTY

SET LINE ATTRIBUTES CHANGE GC

SET NORMAL HINTS CHANGE PROPERTY

SET PLANE MASK CHANGE GC

SET SELECTION OWNER SET SELECTION OWNER

SET SIZE HINTS CHANGE PROPERTY

SET STANDARD PROPERTIES CHANGE PROPERTY

SET STATE CHANGE GC

SET STIPPLE CHANGE GC

SET SUBWINDOW MODE CHANGE GC

SET TILE CHANGE GC

SET TS ORIGIN CHANGE GC

SET WM HINTS CHANGE PROPERTY

SET WINDOW BACKGROUND CHANGE WINDOW
ATTRIBUTES

SET WINDOW BACKGROUND CHANGE WINDOW
PIXMAP ATTRIBUTES

SET WINDOW BORDER CHANGE WINDOW
ATTRIBUTES

Description

Sets the current font of the specified
graphics context

Sets the font search path

Sets the foreground of the specified
graphics context

Sets the display function in the
specified graphics context

Sets the graphics exposures flag of the
specified graphics context

Sets the value of the icon size atom

Sets the line drawing components of
the specified graphics context

Sets the size hints for a window in its
normal state

Sets the plane mask of the specified
graphics context

Sets the selection owner

Sets the value of any property of type
WM_SIZE_HINTS

Specifies a minimum set of properties
describing a simple application

Sets the foreground, background,
plane mask, and function components
for the specified graphics context

Sets the stipple of the specified
graphics context

Sets the subwindow mode of the
specified graphics context

Sets the fill tile of the specified
graphics context

Sets the tile or stipple origin of the
specified graphics context

Sets the value of the window manager
hints atom

Sets the background of a specified
window to the specified pixel

Sets the background of a specified
window to the specified pixmap

Changes and repaints a window's
border to the specified pixel

(continued on next page)

8-7

Routines Requiring Protocol Requests

Table B-1 (Cont.) Routines Requiring Protocol Requests

Xlib Function

SET WINDOW BORDER PIXMAP

SET WINDOW BORDER WIDTH

SET WINDOW COLORMAP

SET ZOOM HINTS

STORE BUFFER

STORE BYTES

STORE COLOR

STORE COLORS

STORE NAME

STORE NAMED COLOR

SYNC

TRANSLATE COORDINATES

UNDEFINE CURSOR

UNLOAD FONT

UNMAP SUBWINDOWS

UNMAP WINDOW

B-8

Protocol Request

CHANGE WINDOW
ATTRIBUTES

CONFIGURE WINDOW

CHANGE WINDOW
ATTRIBUTES

CHANGE PROPERTY

CHANGE PROPERTY

CHANGE PROPERTY

STORE COLORS

STORE COLORS

CHANGE PROPERTY

STORE NAMED COLOR

GET INPUT FOCUS

TRANSLATE COORDINATES

CHANGE WINDOW
ATTRIBUTES

CLOSE FONT

UNMAP SUBWINDOWS

UNMAP WINDOW

Description

Changes and repaints a window's
border tile

Changes the border width of a window

Sets the color map of a specified
window

Sets the value of the zoom hints atom

Stores data in specified cut buffer

Stores data in cut buffer zero

Stores an RGB value into a single
color map cell

Stores RGB values into color map cells

Assigns a name to a window

Sets the color of a pixel to the named
color

Flushes the output buffer and then
waits until all requests have been
processed

Performs a coordinate transformation
from the coordinate space of one
window to another window

Removes the association of the cursor
with the specified window

Unloads the specified font that was
loaded by LOAD FONT

Unmaps all subwindows for a specified
window

Unmaps a window

C VMS DECwindows Named Colors

Table C-1 lists available VMS DECwindows named colors. The table
provides the color name and the RGB values associated with that color.
For a description of using named colors, see Section 5.3.1.

Table C-1 VMS DECwindows Named Colors

Named Color
RGB Values

Red Green Blue

Aquamarine 28672 56064 37632

MediumAquamarine 12800 52224 39168

Medium Aquamarine 12800 52224 39168

Black 0 0 0

Blue 0 0 65280

CadetBlue 24320 40704 40704

Cadet Blue 24320 40704 40704

CornflowerBlue 16896 16896 28416

Cornflower Blue 16896 16896 28416

DarkSlateBlue 27392 8960 36352

Dark Slate Blue 27392 8960 36352

LightBlue 48896 55296 55296

Light Blue 48896 55296 55296

LightSteelBlue 36608 36608 48128

Light Steel Blue 36608 36608 48128

Medium Blue 12800 12800 52224

Medium Blue 12800 12800 52224

MediumSlateBlue 32512 0 65280

Medium Slate Blue 32512 0 65280

MidnightBlue 12032 12032 20224

Midnight Blue 12032 12032 20224

NavyBlue 8960 8960 36352

Navy Blue 8960 8960 36352

Navy 8960 8960 36352

SkyBlue 12800 39168 52224

Sky Blue 12800 39168 52224

Slate Blue 0 32512 65280

(continued on next page)

C-1

VMS DECwindows Named Colors

Table C-1 (Cont.) VMS DECwindows Named Colors

Named Color
RGB Values

Red Green Blue

Slate Blue 0 32512 65280

Steel Blue 8960 27392 36352

Steel Blue 8960 27392 36352

Brown 42240 10752 10752

SandyBrown 62464 41984 24576

Coral 65280 32512 0

Cyan 0 65280 65280

Firebrick 36352 8960 8960

Gold 52224 32512 12800

Goldenrod 56064 56064 28672

MediumGoldenrod 59904 59904 44288

Medium Goldenrod 59904 59904 44288

Green 0 65280 0

DarkGreen 12032 20224 12032

Dark Green 12032 20224 12032

DarkOliveGreen 20224 20224 12032

Dark Olive Green 20224 20224 12032

ForestGreen 8960 36352 8960

Forest Green 8960 36352 8960

LimeGreen 12800 52224 12800

Lime Green 12800 52224 12800

MediumForestGreen 27392 36352 8960

Medium Forest Green 27392 36352 8960

MediumSeaGreen 16896 28416 16896

Medium Sea Green 16896 28416 16896

MediumSpringGreen 32512 65280 0

Medium Spring Green 32512 65280 0

PaleGreen 36608 48128 36608

Pale Green 36608 48128 36608

Sea Green 8960 36352 27392

Sea Green 8960 36352 27392

SpringGreen 0 65280 32512

Spring Green 0 65280 32512

YellowGreen 39168 52224 12800

Yellow Green 39168 52224 12800

(continued on next page)

C-2

VMS DECwindows Named Colors

Table C-1 (Cont.) VMS DECwindows Named Colors

Named Color
RGB Values

Red Green Blue

DarkSlateGray 12032 20224 20224

Dark Slate Gray 12032 20224 20224

Dark Slate Grey 12032 20224 20224

DarkSlateGrey 12032 20224 20224

Dim Gray 21504 21504 21504

Dim Gray 21504 21504 21504

Dim Grey 21504 21504 21504

Dim Grey 21504 21504 21504

LightGray 43008 43008 43008

Light Gray 43008 43008 43008
LightGrey 43008 43008 43008

Light Grey 43008 43008 43008

Khaki 40704 40704 24320

Magenta 65280 0 65280

Maroon 36352 8960 27392

Orange 52224 12800 12800

Orchid 56064 28672 56064

DarkOrchid 39168 12800 52224

Dark Orchid 39168 12800 52224

MediumOrchid 37632 28672 56064

Medium Orchid 37632 28672 56064

Pink 48128 36608 36608
Plum 59904 44288 59904

Red 65280 0 0

Indian Red 20224 12032 12032

Indian Red 20224 12032 12032
MediumVioletRed 56064 28672 37632

Medium Violet Red 56064 28672 37632
Orange Red 65280 0 32512
Orange Red 65280 0 32512

VioletRed 52224 12800 39168

Violet Red 52224 12800 39168

Salmon 28416 16896 16896

Sienna 36352 27392 8960
Tan 56064 37632 28672

(continued on next page)

C-3

VMS DECwindows Named Colors

Table C-1 (Cont.) VMS DECwindows Named Colors

Named Color
RGB Values

Red Green Blue

Thistle 55296 48896 55296

Turquoise 44288 59904 59904

DarkTurquoise 28672 37632 56064

Dark Turquoise 28672 37632 56064

Medium Turquoise 28672 56064 56064

Medium Turquoise 28672 56064 56064

Violet 20224 12032 20224

Blue Violet 40704 24320 40704

Blue Violet 40704 24320 40704

Wheat 55296 55296 48896

White 65535 65535 65535

Yellow 65280 65280 0

Green Yellow 37632 56064 28672

Green Yellow 37632 56064 28672

C-4

D VMS DECwindows Fonts

Table D-1 lists VMS DECwindows 75 DPI fonts and their file names.
Table D-2 lists VMS DECwindows 100 DPI fonts and their file names. For
information about using fonts, see Chapter 8.

Table D-1 VMS DECwindows 75 DPI Fonts

File Name Font Name

FIXED FIXED (MIT) (now ISOLATIN1)

CURSOR CURSOR (MIT)

DECW$CURSOR DECW$CURSOR (VMS)

DECW$SESSION DECW$SESSION (VMS)

VARIABLE VARIABLE (MIT)

AVANT GARDE

AVANTGARDE_BOOK8

AVANTGARDE_BOOK10

AVANTGARDE_BOOK12

AVANTGARDE_BOOK14

AVANTGARDE_BOOK18

AVANTGARDE_BOOK24

AVANTGARDE_BOOKOBLIQUE8

AVANTGARDE_BOOKOBLIQUE10

AVANTGARDE_BOOKOBLIQUE12

AVANTGARDE_BOOKOBLIQUE14

AVANTGARDE_BOOKOBLIQUE18

AVANTGARDE_BOOKOBLIQUE24

AVANTGARDE_DEMl8

AVANTGARDE_DEMl10

AVANTGARDE_DEM112

AVANTGARDE_DEMl14

AVANTGARDE_DEMl18

AVANTGARDE_DEM124

AVANTGARDE_DEMIOBLIQUE8

AVANTGARDE_DEMIOBLIQUE10

-Adobe-ITC Avant Garde Gothic-Book-R-Normal-8-80-75-75-P-49-IS08859-1

-Adobe-ITC Avant Garde Gothic-Book-R-Normal-10-100-75-75-P-59-IS08859-1

-Adobe-ITC Avant Garde Gothic-Book-R-Normal-12-120-75-75-P-70-IS08859-1

-Adobe-ITC Avant Garde Gothic-Book-R-Normal-14-140-75-75-P-80-IS08859-1

-Adobe-ITC Avant Garde Gothic-Book-R-Normal-18-180-75-75-P-103-IS08859-1

-Adobe-ITC Avant Garde Gothic-Book-R-Normal-24-240-75-75-P-138-IS08859-1

-Adobe-ITC Avant Garde Gothic-Book-O-Normal-8-80-75-75-P-49-IS08859-1

-Adobe-ITC Avant Garde Gothic-Book-0-Normal-10-100-75-75-P-59-IS08859-1

-Adobe-ITC Avant Garde Gothic-Book-O-Normal-12-120-75-75-P-69-IS08859-1

-Adobe-ITC Avant Garde Gothic-Book-O-Normal-14-140-75-75-P-81-IS08859-1

-Adobe-ITC Avant Garde Gothic-Book-O-Normal-18-180-75-75-P-103-IS08859-1

-Adobe-ITC Avant Garde Gothic-Book-O-Normal-24-240-75-75-P-138-IS08859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-8-80-75-75-P-51-IS08859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-10-100-75-75-P-61-IS08859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-12-120-75-75-P-70-IS08859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-14-140-75-75-P-82-IS08859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-18-180-75-75-P-105-IS08859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-24-240-75-75-P-140-IS08859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-8-80-75-75-P-51-IS08859-1

-Adobe-ITC Avant Garde Gothic-Demi-0-Normal-10-100-75-75-P-61-IS08859-1

(continued on next page)

D-1

VMS DECwindows Fonts

Table D-1 (Cont.) VMS DECwindows 75 DPI Fonts

File Name Font Name

AVANT GARDE

AVANTGARDE_DEMIOBLIQUE12

AVANTGARDE_DEMIOBLIQUE14

AVANTGARDE_DEMIOBLIQUE18

/'VANTGARDE_DEMIOBLIQUE24

COURIER

COURIER10

COURIER12

COURIER14

COURIER18

COURIER24

COURIERS

COURIER_BOLD10

COURIER_BOLD12

COURIER_BOLD14

COURIER_BOLD18

COURIER_BOLD24

COURIER_BOLD8

COURIER_BOLDOBLIQUE10

COURIER_BOLDOBLIQUE12

COURIER_BOLDOBLIQUE14

COURIER_BOLDOBLIQUE18

COURIER_BOLDOBLIQUE24

COURIER_BOLDOBLIQUES

COURIER_OBLIQUE10

COURIER_OBLIQUE12

COURIER_OBLIQUE14

COURIER_OBLIQUE18

COURIER_OBLIQUE24

COURIER_ OBLIQUES

D-2

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-12-120-75-75-P-71-1808859-1

-Adobe-ITC Avant Garde Goth1c-Demi-O-Normal-14-140-75-75-P-82-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-0-Normal-18-180-75-75-P-103-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-24-240-75-75-P-139-1808859-1

-Adobe-Courier-Medium-R-Normal-10-100-75-75-M-60-1808859-1

-Adobe-Courier-Med1um-R-Normal-12-120-75-75-M-70-1808859-1

-Adobe-Couner-Med1um-R-Normal-14-140-75-75-M-90-1808859-1

-Adobe-Courier-Medium-R-Normal-18-180-75-75-M-110-1808859-1

-Adobe-Courier-Medium-R-Normal-24-240-75-75-M-150-1808859-1

-Adobe-Courier-Medium-R-Normal-8-80-75-75-M-50-1808859-1

·Adobe-Courier-Bold-R-Normal-10-100-75-75-M-60-1808859-1

-Adobe-Courier-Bold-R-Normal-12-120-75-75-M-70-1808859-1

-Adobe-Cou ner-Bold-R-Normal-14-140-75-75-M-90-1808859-1

-Adobe-Courier-Bold-R-Normal-18-180-75-75-M-110-1808859-1

-Adobe-Couner-Bold-R-Normal-24-240-75-75-M-150-1808859-1

-Adobe-Couner-Bold-R-Normal-8-80-75-75-M-50-1808859-1

-Adobe-Couner-Bold-O-Normal-10-100-75-75-M-60-1508859-1

-Adobe-Couner-Bold-O-Normal-12-120-75-75-M-70-1808859-1

-Adobe-Couner-Bold-O-Normal-14-140-75-75-M-90-1808859-1

-Adobe-Courier-Bold-O-Normal-18-180-75-75-M-110-1808859-1

-Adobe-Courier-Bold-O-Normal-24-240-75-75-M-150-1808859-1

-Adobe-Courier-Bold-0-Normal-8-80-75-75-M-50-1808859-1

-Adobe-Courier-Medium-0-Normal-10-100-75-75-M-60-1808859-1

-Adobe-Courier-Medium-O-Normal-12-120-75-75-M-70-1808859-1

-Adobe-Couroer-Medium-O-Norma!-14-140-75-75-M-90-IS08859-1

-Adobe-Courier-Medium-O-Normal-18-180-75-75-M-110-1808859-1

-Adobe-Courier-Medium-O-Normal-24-240-75-75-M-150-1808859-1

-Adobe-Courier-Medium-O-Normal-8-80-75-75-M-50-1808859-1

(continued on next page)

VMS DECwindows Fonts

Table D-1 (Cont.) VMS DECwindows 75 DPI Fonts

File Name Font Name

HELVETICA

HELVETICA10

HELVETICA12

HELVETICA14

HELVETICA18

HELVETICA24

HELVETICA8

HELVETICA_BOLD10

HELVETICA_BOLD12

HELVETICA_BOLD14

HELVETICA_BOLD18

HELVETICA_BOLD24

HELVETICA_BOLD8

HELVETICA_BOLDOBLIQUE10

HELVETICA_BOLDOBLIQUE12

HELVETICA_BOLDOBLIQUE14

HELVETICA_BOLDOBLIQUE18

HELVETICA_BOLDOBLIQUE24

HELVETICA_BOLDOBLIQUE8

HELVETICA_OBLIQUE10

HELVETICA_OBLIQUE12

HELVETICA_OBLIQUE14

HELVETICA_OBLIQUE18

HELVETICA_OBLIQUE24

HELVETICA_ OBLIQUE8

INTERIM

INTERIM_DM_EXTEN810N14

INTERIM_DM_ITALIC14

INTERIM_DM_8YMBOL 14

LUBALIN GRAPH

LUBALINGRAPH_BOOK8

LUBALINGRAPH_BOOK10

LUBALINGRAPH_BOOK12

-ADOBE-Helvetica-Med1um-R-Normal-10-100-75-75-P-56-1808859-1

-ADOBE-Helvetica-Medium-R-Normal-12-120-75-75-P-67-1808859-1

-ADOBE-Helvetica-Medium-R-Normal-14-140-75-75-P-77-1808859-1

-ADOBE-Helvetica-Med1um-R-Normal-18-180-75-75-P-98-1808859-1

-ADOBE-Helvetica-Medium-R-Normal-24-240-75-75-P-130-1808859-1

-ADOBE-Helvet1ca-Medium-R-Normal-8-80-75-75-P-46-1808859-1

-ADOBE-Helvetica-Bold-R-Normal-10-100-75-75-P-60-1808859-1

-ADOBE-Helvetica-Bold-R-Normal-12-120-75-75-P-70-1808859-1

-ADOBE-Helvetica-Bold-R-Normal-14-140-75-75-P-82-1808859-1

-ADOBE-Helvetica-Bold-R-Normal-18-180-75-75-P-103-1808859-1

-ADOBE-Helvet1ca-Bold-R-Normal-24-240-75-75-P-138-1808859-1

-ADOBE-Helvetica-Bold-R-Normal-8-80-75-75-P-50-1808859-1

-ADOBE-Helvetica-Bold-0-Normal-10-100-75-75-P-60-1808859-1

-ADOBE-Helvetica-Bold-O-Normal-12-120-75-75-P-69-1808859-1

-ADOBE-Helvetica-Bold-0-Normal-14-140-75-75-P-82-1808859-1

-ADOBE-Helvetica-Bold-0-Normal-18-180-75-75-P-104-1808859-1

-ADOBE-Helvetica-Bold-0-Normal-24-240-75-75-P-138-1808859-1

-ADOBE-Helvetica-Bold-O-Normal-8-80-75-75-P-50-1808859-1

-ADOBE-Helvetica-Medium-0-Normal-10-100-75-75-P-57-1808859-1

-ADOBE-Helvetica-Medium-O-Normal-12-120-75-75-P-67-1808859-1

-ADOBE-Helvetica-Medium-O-Normal-14-140-75-75-P-78-1808859-1

-ADOBE-Helvetica-Medium-0-Normal-18-180-75-75-P-98-1808859-1

-ADOBE-Helvetica-Medium-O-Normal-24-240-75-75-P-130-1808859-1

-ADOBE-Helvet1ca-Medium-O-Normal-8-80-75-75-P-47-1808859-1

-ADOBE-Interim DM-Medium-l-Normal-14-140-75-75-P-140-DEC-DECMATH_EXTEN810N

-ADOBE-Interim DM-Medium-l-Normal-14-140-75-75-P-140-DEC-DECMATH_ITALIC

-ADOBE-Interim DM-Medium-l-Normal-14-140-75-75-P-140-DEC-DECMATH_8YMBOL

-Adobe-ITC Lubalin Graph-Book-R-Normal-8-80-75-75-P-50-1808859-1

-Adobe-ITC Lubalin Graph-Book-R-Normal-10-100-75-75-P-60-1808859-1

-Adobe-ITC Lubalin Graph-Book-R-Normal-12-120-75-75-P-70-1808859-1

(continued on next page)

D-3

VMS DECwindows Fonts

Table D-1 (Cont.) VMS DECwindows 75 DPI Fonts

File Name Font Name

LUBALIN GRAPH

LUBALINGRAPH_BOOK14.

LUBALINGRAPH_BOOK18

LUBALINGRAPH_BOOK24

LUBALINGRAPH_BOOKOBLIQUE8

LUBALINGRAPH_BOOKOBLIQUE10

LUBALINGRAPH_BOOKOBLIQUE12

LUBALINGRAPH_BOOKOBLIQUE14

LUBALINGRAPH_BOOKOBLIQUE18

LUBALINGRAPH_BOOKOBLIQUE24

LUBALINGRAPH_DEMl8

LUBALINGRAPH_DEMl10

LUBALINGRAPH_DEM112

LUBALINGRAPH_DEMl14

LUBALINGRAPH_DEMJ18

LUBALINGRAPH_DEMl24

LUBALINGRAPH_DEMIOBLIQUE8

LUBALINGRAPH_DEMIOBLIQUE10

LUBALINGRAPH_DEMIOBLIQUE12

LUBALINGRAPH_DEMIOBLIQUE14

LUBALINGRAPH_DEMIOBLIQUE18

LUBALINGRAPH_DEMIOBLIQUE24

MENU

MENU10

MENU12

NEW CENTURY SCHOOLBOOK

NEWCENTURY8CHLBK_BOLD10

NEWCENTURY8CHLBK_BOLD12

NEWCENTURY8CHLBK_BOLD14

NEWCENTURY8CHLBK_BOLD18

NEWCENTURY8CHLBK_BOLD24

NEWCENTURY8CHLBK_BOLD8

NEWCENTURY8CHLBK_BOLDITALIC10

D-4

-Adobe-ITC Lubalin Graph-Book-R-Normal-14-140-75-75-P-81-1508859-1

-Adobe-ITC Lubalin Graph-Book-R-Normal-18-180-75-75-P-106-1508859-1

-Adobe-ITC Lubalin Graph-Book-R-Normal-24-240-75-75-P-139-1508859-1

-Adobe-ITC Lubalin Graph-Book-O-Normal-8-80-75-75-P-50-1808859-1

-Adobe-ITC Lubalin Graph-Book-0-Normal-10-1 00-75-75-P-60-1808859-1

-Adobe-ITC Lubalin Graph-Book-O-Normal-12-120-75-75-P-70-1508859-1

-Adobe-ITC Lubalin Graph-Book-O-Normal-14-140-75-75-P-82-1808859-1

-Adobe-ITC Lubalin Graph-Book-O-Normal-18-180-75-75-P-105-1808859-1

-Adobe-ITC Lubalin Graph-Book-O-Normal-24-240-75-75-P-140-1508859-1

-Adobe-ITC Lubalin Graph-Demi-R-Normal-8-80-75-75-P-51-1808859-1

-Adobe-ITC Lubahn Graph-Dem1-R-Norma1-10-100-75-75-P-61-1508859-1

-Adobe-ITC Lubalin Graph-Demi-R-Normal-12-120-75-75-P-73-1808859-1

-Adobe-ITC Lubalin Graph-Demi-R-Normal-14-140-75-75-P-85-1508859-1

-Adobe-ITC Lubalin Graph-Demi-R-Normal-18-180-75-75-P-109-1508859-1

-Adobe-ITC Lubalin Graph-Demi-R-Normal-24-240-75-75-P-144-1808859-1

-Adobe-ITC Lubalin Graph-Demi-O-Normal-8-80-75-75-P-52-1808859-1

-Adobe-ITC Lubalin Graph-Demi-0-Normal-10-100-75-75-P-62-1808859-1

-Adobe-ITC Lubalin Graph-Demi-O-Normal-12-120-75-75-P-74-1808859-1

-Adobe-ITC Lubalin Graph-Demi-O-Normal-14-140-75-75-P-85-1808859-1

-Adobe-ITC Lubalin Graph-Demi-O-Normal-18-180-75-75-P-109-1808859-1

-Adobe-ITC Lubalin Graph-Demi-O-Normal-24-240-75-75-P-144-1808859-1

-Bigelow & Holmes-Menu-Medium-R-Normal-10-100-75-75-P-56-1808859-1

-Bigelow & Holmes-Menu-Medium-R-Normal-12-120-75-75-P-70-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-10-100-75-75-P-66-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-12-120-75-75-P-77-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-14-140-75-75-P-87-1808859-1

-Adobe-New Century Schoo lbook-Bold-R-Normal-18-180-75-75-P-113-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Nofmal-24-240-75-75-P-149-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-8-80-75-75-P-56-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-10-100-75-75-P-66-1808859-1

(continued on next page)

VMS DECwindows Fonts

Table D-1 (Cont.) VMS DECwindows 75 DPI Fonts

File Name Font Name

NEW CENTURY SCHOOLBOOK

NEWCENTURY8CHLBK_BOLDITALIC12

NEWCENTURY8CHLBK_BOLDITALIC14

NEWCENTURY8CHLBK_BOLDITALIC18

NEWCENTURY8CHLBK_BOLDITALIC24

NEWCENTURY8CHLBK_BOLDITALIC8

NEWCENTURY8CHLBK_ITALIC10

NEWCENTURY8CHLBK_ITALIC12

NEWCENTURY8CHLBK_ITALIC14

NEWCENTURY8CHLBK_ITALIC18

NEWCENTURY8CHLBK_ITALIC24

NEWCENTURY8CHLBK_ITALIC8

NEWCENTURY8CHLBK_ROMAN10

NEWCENTURY8CHLBK_ROMAN12

NEWCENTURY8CHLBK_ROMAN 14

NEWCENTURY8CHLBK_ROMAN18

NEWCENTURY8CHLBK_ROMAN24

NEWCENTURY8CHLBK_ROMAN8

SOUVENIR

80UVENIR_DEMl10

80UVENIR_DEMl12

80UVENIR_DEMl14

80UVENIR_DEMl18

80UVENIR_DEMl24

80UVENIR_DEMl8

80UVENIR_DEMllTALIC10

80UVENIR_DEMllTALIC12

80UVENIR_DEMllTALIC14

80UVENIR_DEMllTALIC18

80UVENIR_DEMllTALIC24

80UVENIR_DEMllTALIC8

80UVENIR_LIGHT10

80UVENIR_LIGHT12

80UVENIR_LIGHT14

80UVENIR_LIGHT18

-Adobe-New Century 8choolbook-Bold-l-Normal-12-120-75-75-P-76-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-14-140-75-75-P-88-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-18-180-75-75-P-111-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-24-240-75-75-P-148-1808859-1

-Adobe-New Century 8choolbook-Bold-1-Normal-8-80-75-75-P-56-IS08859-1

-Adobe-New Century 8choolbook-Medium-l-Normal-10-100-75-75-P-60-1808859-1

-Adobe-New Century 8choolbook-Medium+Normal-12-120-75-75-P-70-1808859-1

-Adobe-New Century 8choolbook-Medium-l-Normal-14-140-75-75-P-81-1808859-1

-Adobe-New Century 8choolbook-Medium-l-Normal-18-180-75-75-P-104-1808859-1

-Adobe-New Century 8choolbook-Medium-l-Normal-24-240-75-75-P-136-1808859-1

-Adobe-New Century 8choolbook-Medium-l-Normal-8-80-75-75-P-50-1808859-1

-Adobe-New Century 8choolbook-Medium-R-Normal-10-100-75-75-P-60-1808859-1

-Adobe-New Century 8choolbook-Medium-R-Normal-12-120-75-75-P-70-1808859-1

-Adobe-New Century 8choolbook-Medium-R-Normal-14-140-75-75-P-82-1808859-1

-Adobe-New Century 8choolbook-Medium-R-Normal-18-180-75-75-P-103-1808859-1

-Adobe-New Century 8choolbook-Medium-R-Normal-24-240-75-75-P-137-1808859-1

-Adobe-New Century 8choolbook-Medium-R-Normal-8-80-75-75-P-50-1808859-1

-Adobe-ITC 8ouvenir-Demi-R-Normal-10-100-75-75-P-62-1808859-1

-Adobe-ITC 8ouvenir-Demi-R-Normal-12-120-75-75-P-75-1808859-1

-Adobe-ITC 8ouvenir-Demi-R-Normal-14-140-75-75-P-90-1808859-1

-Adobe-ITC 8ouvenir-Demi-R-Normal-18-180-75-75-P-112-1808859-1

-Adobe-ITC 8ouvenir-Demi-R-Normal-24-240-75-75-P-149-1808859-1

-Adobe-ITC 8ouvenir-Demi-R-Normal-8-80-75-75-P-52-1808859-1

-Adobe-ITC 8ouvenir-Demi-1-Normal-10-100-75-75-P-67-1808859-1

-Adobe-ITC 8ouvenir-Demi-1-Normal-12-120-75-75-P-78-1808859-1

-Adobe-ITC 8ouvenir-Demi-1-Normal-14-140-75-75-P-92-1808859-1

-Adobe-ITC 8ouvenir-Demi-1-Normal-18-180-75-75-P-115-1808859-1

-Adobe-ITC 8ouvenir-Demi-l-Normal-24-240-75-75-P-154-1808859-1

-Adobe-ITC 8ouvenir-Dem1-l-Normal-8-80-75-75-P-57-1808859-1

-Adobe-ITC 8ouvenir-Light-R-Normal-10-100-75-75-P-56-1808859-1

-Adobe-ITC 8ouvenir-Light-R-Normal-12-120-75-75-P-68-1808859-1

-Adobe-ITC 8ouvenir-Light-R-Normal-14-140-75-75-P-79-1808859-1

-Adobe-ITC 8ouveni r-Light-R-Normal-18-180-75-75-P-102-1808859-1

(continued on next page)

D-5

VMS DECwindows Fonts

Table D-1 (Cont.) VMS DECwindows 75 DPI Fonts

File Name Font Name

SOUVENIR

SOUVENIA_LIGHT24

SOUVENIA_LIGHT8

SOUVENIA_LIGHTITALIC10

SOUVENIA_LIGHTITALIC12

SOUVENIA_LIGHTITALIC14

SOUVENIA_LIGHTITALIC18

SOUVENIA_LIGHTITALIC24

SOUVENIA_LIGHTITALIC8

SYMBOL

SYMBOL10

SYMBOL12

SYMBOL14

SYMBOL18

SYMBOL24

SYMBOLS

TERMINAL

TEAMINAL14

TEAMINAL18

TEAMINAL28

TEAMINAL36

TEAMINAL_BOLD14

TEAMINAL_BOLD18

TEAMINAL_BOLD28

TEAMINAL_BOLD36

TEAMINAL_BOLD_DBLWIDE14

TEAMINAL_BOLD_DBLWIDE18

TEAMINAL_BOLD_DBLWIDE_DECTECH14

TEAMINAL_BOLD_DBLWIDE_DECTECH18

TEAMINAL_BOLD_DECTECH14

TEAMINAL_BOLD_DECTECH18

TEAMINAL_BOLD_DECTECH28

TEAMINAL_BOLD_DECTECH36

D-6

-Adobe-ITC Souvenir-Light-A-Normal-24-240-75-75-P-135-IS08859-1

-Adobe-ITC Souvenir-Light-A-Normal-8-80-75-75-P-46-1808859-1

-Adobe-ITC Souvenir-Light-1-Normal-10-100-75-75-P-59-1808859-1

-Adobe-ITC Souvenir-Light+Normal-12-120-75-75-P-69-IS08859-1

-Adobe-ITC Souvenir-Light-l-Normal-14-140-75-75-P-82-IS08859-1

-Adobe-ITC Souvenir-Light-1-Normal-18-180-75-75-P-104-1808859-1

-Adobe-ITC Souvenir-Light-l-Normal-24-240-75-75-P-139-1808859-1

-Adobe-ITC Souvenir-Light-l-Normal-8-80-75-75-P-49-IS08859-1

-Adobe-Symbol-Medium-A-Normal-10-100-75-75-P-61-ADOBE-FONTSPECIFIC

-Adobe-Symbol-Medium-A-Normal-12-120-75-75-P-74-ADOBE-FONTSPECIFIC

-ADOBE-Symbol-Medium-A-Normal-14-140-75-75-P-85-ADOBE-FONTSPECIFIC

-Adobe-Symbol-Medium-A-Normal-18-180-75-75-P-107-ADOBE-FONTSPECIFIC

-Adobe-Symbol-Medium-A-Normal-24-240-75-75-P-142-ADOBE-FONTSPECIFIC

-Adobe-Symbol-Medium-A-Normal-8-80-75-75-P-51-ADOBE-FONTSPECIFIC

-DEC-Terminal-Medium-A-Normal-14-140-75-75-C-8-IS08859-1

-Bitstream-Terminal-Medium-A-Normal-18-180-75-75-C-11-IS08859-1

-DEC-Terminal-Medium-A-Normal-28-280-75-75-C-16-IS08859-1

-Bitstream-Terminal-Medium-A-Normal-36-360-75-75-C-22-IS08859-1

-DEC-Terminal-Bold-A-Normal-14-140-75-75-C-8-IS08859-1

-Bitstream-Terminal-Bold-A-Normal-18-180-75-75-C-11-IS08859-1

-DEC-Terminal-Bold-A-Normal-28-280-75-75-C-16-IS08859-1

-Bitstream-Terminal-Bold-A-Normal-36-360-75-75-C-22-IS08859-1

-DEC-Terminal-Bold-A-Double Wide-14-140-75-75-C-16-1808859-1

-Bitstream-Terminal-Bold-A-Double Wide-18-180-75-75-C-22-1808859-1

-DEC-Terminal-Bold-A-Double Wide-14-140-75-75-C-16-DEC-DECtech

-Bitstream-Terminal-Bold-A-Double Wide-18-180-75-75-C-22-DEC-DECtech

-DEC-Terminal-Bold-A-Normal-14-140-75-75-C-8-DEC-DECtech

-Bitstream-Terminal-Bold-A-Normal-18-180-75-75-C-11-DEC-DECtech

-DEC-Terminal-Bold-A-Normal-28-280-75-75-C-16-DEC-DECtech

-Bitstream-Terminal-Bold-A-Normal-36-360-75-75-C-22-DEC-DECtech

(continued on next page)

VMS DECwindows Fonts

Table D-1 (Cont.) VMS DECwindows 75 DPI Fonts

File Name Font Name

TERMINAL

-DEC-Terminal-Bold-R-Narrow-14-140-75-75-C-6-1808859-1

-B1tstream-Terminal-Bold-R-Narrow-18-180-75-75-C-7-1808859-1

-DEC-Term1nal-Bold-R-Narrow-28-280-75-75-C-12-1808859-1

-Bitstream-Terminal-Bold-R-Narrow-36-360-75-75-C-14-1808859-1

-DEC-Termmal-Bold-R-Narrow-14-140-75-75-C-6-DEC-DECtech

-B1tstream-Termmal-Bold-R-Narrow-18-180-75-75-C-7-DEC-DECtech

-DEC-Terminal-Bold-R-Narrow-28-280-75-75-C-12-DEC-DECtech

-B1tstream-Terminal-Bold-R-Narrow-36-360-75-75-C-14-DEC-DECtech

-DEC-Terminal-Bold-R-Wide-14-140-75-75-C-12-1808859-1

-Bitstream-Terminal-Bold-R-Narrow-18-180-75-75-C-14-1808859-1

-DEC-Terminal-Bold-R-Wide-14-140-75-75-C-12-DEC-DECtech

-Bitstream-Terminal-Bold-R-Narrow-18-180-75-75-C-14-DEC-DECtech

-DEC-Terminal-Medium-A-Double Wide-14-140-75-75-C-16-1808859-1

-Bitstream-Termmal-Med1um-R-Double Wide-18-180-75-75-C-22-1808859-1

-DEC-Termmal-Med1um-R-Double Wide-14-140-75-75-C-16-DEC-DECtech

TERMINAL_BOLD_NARROW14

TERMINAL_BOLD_NARROW18

TERMINAL_BOLD_NARROW28

TERMINAL_BOLD_NARROW36

TERMINAL_BOLD_NARROW_DECTECH14

TERMINAL_BOLD_NARROW_DECTECH18

TERMINAL_BOLD_NARROW_DECTECH28

TERMINAL_BOLD_NARROW_DECTECH36

TERMINAL_BOLD_WIDE14

TERMINAL_BOLD_WIDE18

TERMINAL_BOLD_WIDE_DECTECH 14

TERMINAL_BOLD_WIDE_DECTECH 18

TERMINAL_DBLWIDE14

TERMINAL_DBLWIDE18

TERMINAL_DBLWIDE_DECTECH14

TERMINAL_DBLWIDE_DECTECH18

TERMINAL_DECTECH14

TERMINAL_DECTECH18

TERMINAL_DECTECH28

TERMINAL_DECTECH36

TERMINAL_NARROW14

TERMINAL_NARROW18

TERMINAL_NARROW28

TERMINAL_NARROW36

TERMINAL_NARROW_DECTECH14

TERMINAL_NARROW_DECTECH18

TERMINAL_NARROW_DECTECH28

TERMINAL_NARROW_DECTECH36

TERMINAL_WIDE14

-Bitstream-Termmal-Medium-R-Double Wide-18-180-75-75-C-22-DEC-DECtech

TERMINAL_WIDE18

TERMINAL_WIDE_DECTECH14

TERMINAL_WIDE_DECTECH 18

-DEC-Termmal-Medium-R-Normal-14-140-75-75-C-8-DEC-DECtech

-Bitstream-Terminal-Medium-R-Normal-18-180-75-75-C-11-DEC-DECtech

-DEC-Terminal-Medium-R-Normal-28-280-75-75-C-16-DEC-DECtech

-Bitstream-Terminal-Medium-R-Normal-36-360-75-75-C-22-DEC-DECtech

-DEC-Terminal-Medium-R-Narrow-14-140-75-75-C-6-1808859-1

-Bitstream-Termmal-Medium-R-Narrow-18-180-75-75-C-7-1808859-1

-DEC-Terminal-Medium-R-Narrow-28-280-75-75-C-12-1808859-1

-Bitstream-Terminal-Medium-R-Narrow-36-360-75-75-C-14-1808859-1

-DEC-Terminal-Medium-R-Narrow-14-140-75-75-C-6-DEC-DECtech

-Bitstream-Terminal-Medium-R-Narrow-18-180-75-75-C-7-DEC-DECtech

-DEC-Terminal-Medium-R-Narrow-28-280-75-75-C-12-DEC-DECtech

-Bitstream-Terminal-Med1um-R-Narrow-36-360-75-75-C-14-DEC-DECtech

-DEC-Termi nal-Medium-R-Wide-14-140-75-75-C-12-1808859-1

-Bitstream-Terminal-Med1um-R-Wide-18-180-75-75-C-14-1808859-1

-DEC-Terminal-Medium-R-Wide-14-140-75-75-C-12-DEC-DECtech

-Bitstream-Terminal-Med1um-R-Wide-18-180-75-75-C-14-DEC-DECtech

(continued on next page)

D-7

VMS DECwindows Fonts

Table D-1 (Cont.) VMS DECwindows 75 DPI Fonts

File Name Font Name

TIMES

TIMES_BOLD10

TIMES_BOLD12

TIMES_BOLD14

TIMES_BOLD18

TIMES_BOLD24

TIMES_BOLD8

TIMES_BOLDITALIC10

TIMES_BOLDITALIC12

TIMES_BOLDITALIC14

TIMES_BOLDITALIC18

TIMES_BOLDITALIC24

TIMES_BOLDITALIC8

TIMES_ITALIC10

TIMES_ITALIC12

TIMES_ITALIC14

TIMES_ITALIC18

TIMES_ITALIC24

TIMES_ITALIC8

TIMES_ROMAN10

TIMES_ROMAN12

TIMES_ROMAN14

TIMES_ROMAN18

TIMES_ROMAN24

TIMES_ROMAN8

-ADOBE-Times-Bold-R-Normal-10-1 00-75-75-P-57-IS08859-1

-ADOBE-Times-Bold-R-Normal-12-120-75-75-P-67-IS08859-1

-ADOBE-Times-Bold-R-Normal-14-140-75-75-P-77-IS08859-1

-ADOBE-Times-Bold-R-Normal-18-180-75-75-P-99-IS08859-1

-ADOBE-Times-Bold-R-Normal-24-240-75-75-P-132-IS08859-1

-ADOBE-Times-Bold-R-Normal-8-80-75-75-P-47-IS08859-1

-ADOBE-Times-Bold-1-Normal-10-100-75-75-P-57-IS08859-1

-ADOBE-Times-Bold-l-Normal-12-120-75-75-P-68-IS08859-1

-ADOBE-Times-Bold-l-Normal-14-140-75-75-P-77-IS08859-1

-ADOBE-Times-Bold-l-Normal-18-180-75-75-P-98-IS08859-1

-ADOBE-Times-Bold-l-Normal-24-240-75-75-P-128-IS08859-1

-ADOBE-Times-Bold-l-Normal-8-80-75-75-P-47-IS08859-1

-ADOBE-Times-Medium-1-Normal-10-100-75-75-P-52-IS08859-1

-ADOBE-Times-Medium-l-Normal-12-120-75-75-P-63-IS08859-1

-ADOBE-Times-Medium-l-Normal-14-140-75-75-P-73-IS08859-1

-ADOBE-Times-Medium-l-Normal-18-180-75-75-P-94-IS08859-1

-ADOBE-Times-Medium+Normal-24-240-75-75-P-125-IS08859-1

-ADOBE-Times-Medium+Normal-8-80-75-75-P-42-IS08859-1

-ADOBE-Times-Medium-R-Normal-10-100-75-75-P-54-IS08859-1

-ADOBE-Times-Medium-R-Normal-12-120-75-75-P-64-IS08859-1

-ADOBE-Times-Medium-R-Normal-14-140-75-75-P-74-IS08859-1

-ADOBE-Times-Medium-R-Normal-18-180-75-75-P-94-IS08859-1

-ADOBE-Times-Medium-R-Normal-24-240-75-75-P-124-IS08859-1

-ADOBE-Times-Medium-R-Normal-8-80-75-75-P-44-IS08859-1

Table D-2 VMS DECwindows 100 DPI Fonts

File Name

FIXED_ 1 OODPI

CURSOR_ 1 OODPI

DECW$CURSOR_ 1 OODPI

VARIABLE_ 1 OODPI

D-8

Font Name

FIXED (MIT)

CURSOR (MIT)

W$CURSOR (VMS)

VARIABLE (MIT)

(continued on next page)

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

AVANT GARDE

AVANTGARDE_BOOK8_ 1 OODPI -Adobe-ITC Adobe-ITC Avant Garde Gothic-Book-R-Normal-11-80-100-1 OO-P-59-1808859-1

AVANTGARDE_BOOK10_ 1 OODPI -Adobe-ITC Avant Garde Gothic-Book-R-Normal-14-100-100-100-P-80-1808859-1

AVANTGARDE_BOOK12_ 100DPI -Adobe-ITC Avant Garde Gothic-Book-R-Normal-17-120-100-1 OO-P-93-1808859-1

AVANTGARDE_BOOK14_1 OODPI -Adobe-ITC Avant Garde Gothic-Book-R-Normal-20-140-100-100-P-104-1808859-1

AVANTGARDE_BOOK18_ 1 OODPI -Adobe-ITC Avant Garde Gothic-Book-R-Normal-25-180-100-100-P-138-1808859-1

AVANTGARDE_BOOK24_ 1 OODPI

AVANTGARDE_BOOKOBLIQUE8_ 1 OODPI

AVANTGARDE_BOOKOBLIQUE10_ 1 OODPI

AVANTGARDE_BOOKOBLIQUE12_1 OODPI

AVANTGARDE_BOOKOBLIQUE14_ 1 OODPI

AVANTGARDE_BOOKOBLIQUE18_ 1 OODPI

AVANTGARDE_BOOKOBLIQUE24_ 1 OODPI

AVANTGARDE_DEMl8_ 1 OODPI

AVANTGARDE_DEMl10_100DPI

AVANTGARDE_DEMl12_ 1 OODPI

AVANTGARDE_DEM114_1 OODPI

AVANTGARDE_DEMl18_ 1 OODPI

AVANTGARDE_DEMl24_ 1 OODPI

AVANTGARDE_DEMIOBLIQUE8_ 1 OODPI

AVANTGARDE_DEMIOBLIQUE10_1 OODPI

AVANTGARDE_DEMIOBLIQUE12_ 1 OODPI

AVANTGARDE_DEMIOBLIQUE14_ 1 OODPI

AVANTGARDE_DEMIOBLIQUE18_ 1 OODPI

AVANTGARDE_DEMIOBLIQUE24_ 1 OODPI

COURIER

COURIER8_ 1 OODPI

COURIER10_ 1 OODPI

COURIER12_ 1 OODPI

COURIER14_100DPI

COURIER18_ 1 OODPI

COURIER24_ 1 OODPI

COURIER_BOLD8_ 1 OODPI

COURIER_BOLD10_ 1 OODPI

COURIER_BOLD12_ 1 OODPI

-Adobe-ITC Avant Garde Gothic-Book-R-Normal-34-240-100-1 OO-P-183-1808859-1

-Avant Garde Gothic-Book-0-Normal-10-80-100-1 OO-P-59-1808859-1

-Adobe-ITC Avant Garde Gothic-Book-O-Normal-14-100-100-1 oo-P-81-1808859-1

-Adobe-ITC Avant Garde Gothic-Book-0-Normal-17-120-1 00-1 00-P-92-1808859-1

-Adobe-ITC Avant Garde Gothic-Book-O-Normal-20-140-100-100-P-103-1808859-1

-Adobe-ITC Avant Garde Gothic-Book-O-Normal-25-180-100-1 OO-P-138-1808859-1

-Adobe-ITC Avant Garde Gothic-Book-0-Normal-34-240-1 00-100-P-184-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-11-80-100-1 OO-P-61-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-14-100-100-1 OO-P-82-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-17-120-100-1 OO-P-93-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-20-140-100-100-P-105-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-25-180-100-1 OO-P-140-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-34-240-100-1 OO-P-182-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-11-80-100-1 OO-P-61-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-14-100-100-100-P-82-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-17-120-100-1 OO-P-93-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-20-140-100-1OO-P-103-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-25-180-100-1 OO-P-139-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-34-240-100-1 OO-P-183-1808859-1

-Adobe-Courier-Medium-R-Normal-11-80-100-1 OO-M-60-1808859-1

-Adobe-Courier-Medium-R-Normal-14-100-100-1 OO-M-90-1808859-1

-Adobe-Courier-Medium-R-Normal-17-120-100-100-M-100-1808859-1

-Adobe-Courier-Medium-R-Normal-20-140-100-1OO-M-110-1808859-1

-Adobe-Courier-Medium-R-Normal-25-180-100-1 OO-M-150-1808859-1

-Adobe-Courier-Medium-R-Normal-34-240-100-100-M-200-1808859-1

-Adobe-Courier-Bold-R-Normal-11-80-100-1 OO-M-60-1808859-1

-Adobe-Courier-Bold-R-Normal-14-100-100-100-M-90-1808859-1

-Adobe-Courier-Bold-R-Normal-17-120-100-100-M-100-1808859-1

(continued on next page)

D-9

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

COURIER

COURIER_BOLD14_ 1 OODPI -Adobe-Courier-Bold-R-Normal-20-140-100-100-M-110-1808859-1

COURIER_BOLD18_ 1 OODPI -Adobe-Courier-Bold-R-Normal-25-180-100-100-M-150-1808859-1

COURIER_BOLD24_ 1 OODPI -Adobe-Courier-Bold-R-Normal-34-240-100-100-M-200-1808859-1

COURIER_BOLDOBLIQUE8_ 1 OODPI

COUR1ER_BOLDOBLIQUE10_ 1 OODPI

COURIER_BOLDOBLIQUE12_ 1 OODPI

COURIER_BOLDOBLIQUE14_ 1 OODPI

COURIER_BOLDOBLIQUE18_1 OODPI

COURIER_BOLDOBLIQUE24_ 1 OODPI

COURIER_OBLIQUE8_ 1 OODPI

COURIER_ OBLIQUE10_ 1 OODPI

COURIER_OBLIQUE12_ 1 OODPI

COURIER_OBLIQUE14_ 1 OODPI

COURIER_OBLIQUE18_1 OODPI

COURIER_OBLIQUE24_ 1 OODPI

HELVETICA

HELVETICA10_100DPI

HELVETICA 12_ 1 OODPI

HELVETICA 14_ 1 OODPI

HELVETICA18_100DPI

HELVETICA24_ 1 OODPI

HELVETICA8_ 1 OODPI

HELVETICA_BOLD10_ 1 OODPI

HELVETICA_BOLD12_ 1 OODPI

HELVETICA_BOLD14_ 1 OODPI

HELVETICA_BOLD18_ 1 OODPI

HELVETICA_BOLD24_ 1 OODPI

HELVETICA_BOLD8_ 1 OODPI

HELVETICA_BOLDOBLIOUE10_ 1 OODPI

HELVETICA_BOLDOBLIQUE12_ 1 OODPI

HELVETICA_BOLDOBLIOUE14_ 1 OODPI

HELVETICA_BOLDOBLIOUE18_ 1 OODPI

HELVETICA_BOLDOBLIOUE24_ 1 OODPI

HELVETICA_BOLDOBLIOUE8_ 1 OODPI

D-10

-Adobe-Couner-Bold-0-Normal-11-80-100-1 OO-M-60-1808859-1

-Adobe-Courier-Bold-O-Normal-14-100-100-100-M-90-1808859-1

-Adobe-Couner-Bold-O-Normal-17-120-100-100-M-100-1808859-1

-Adobe-Courier-Bold-O-Normal-20-140-100-1OO-M-110-1808859-1

-Adobe-Courier-Bold-O-Normal-25-180-100-100-M-150-1808859-1

-Adobe-Courier-Bold-O-Normal-34-240-100-100-M-200-1808859-1

-Adobe-Courier-Medium-O-Normal-11-80-100-1 OO-M-60-1808859-1

-Adobe-Courier-Medium-O-Normal-14-100-100-100-M-90-1808859-1

-Adobe-Courier-Medium-O-Normal-17-120-100-100-M-100-1808859-1

-Adobe-Courier-Medium-O-Normal-20-140-100-100-M-110-1808859-1

-Adobe-Courier-Medium-0-Normal-25-180-100-1 OO-M-150-1808859-1

-Adobe-Courier-Medium-O-Normal-34-240-100-1 OO-M-200-1808859-1

-Adobe-Helvetica-Medium-R-Normal-14-100-100-1 OO-P-76-1808859-1

-Adobe-Helvetica-Medium-R-Normal-17-120-100-100-P-88-1808859-1

-Adobe-Helvetica-Med1um-R-Normal-20-140-100-100-P-100-1808859-1

-Adobe-Helvetica-Medium-R-Normal-25-180-100-1 OO-P-130-1808859-1

-Adobe-Helvetica-Medium-R-Normal-34-240-100-100-P-176-1808859-1

-Adobe-Helvetica-Medium-R-Normal-11-80-100-1 OO-P-56-1808859-1

-Adobe-Helvetica-Bold-R-Normal-14-100-100-100-P-82-1808859-1

-Adobe-Helvetica-Bold-R-Normal-17-120-100-100-P-92-1808859-1

-Adobe-Helvetica-Bold-R-Normal-20-140-100-1 00-P-105-1808859-1

-Adobe-Helvetica-Bold-R-Normal-25-180-100-100-P-138-1808859-1

-Adobe-Helvetica-Bold-R-Normal-34-240-100-1 OO-P-182-1808859-1

-Adobe-Helvet1ca-Bold-R-Normal-11-80-100-1 OO-P-60-1808859-1

-Adobe-Helvet1ca-Bold-O-Normal-14-1 00-100-1 OO-P-82-1808859-1

-Adobe-Helvetica-Bold-O-Normal-17-120-100-1 OO-P-92-1808859-1

-Adobe-Helvetica-Bold-O-Normal-20-140-100-100-P-103-1808859-1

-Adobe-Helvetica-Bold-O-Normal-25-180-100-1 OO-P-138-1808859-1

-Adobe-Helvetica-Bold-O-Normal-34-240-100-100-P-182-1808859-1

-Adobe-Helvetica-Bold-O-Normal-11-80-100-100-P-60-1808859-1

(continued on next page)

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

HELVETICA

HELVETICA_OBLIQUE10_ 1 OODPI -Adobe-Helvettca-Medium-O-Normal-14-100-100-1 OO-P-78-1808859-1

HELVETICA_OBLIQUE12_1 OODPI

HELVETICA_OBLIQUE14_ 1 OODPI

HELVETICA_OBLIQUE18_1 OODPI

HELVETICA_OBLIQUE24_ 1 OODPI

HELVETICA_OBLIQUE8_ 1 OODPI

INTERIM

INTERIM_DM_EXTEN810N14_ 1 OODPI

INTERIM_DM_ITALIC14_ 1 OODPI

INTERIM_DM_8YMBOL 14_1 OODPI

LUBALIN GRAPH

LUBALINGRAPH_BOOK8_ 1 OODPI

LUBALINGRAPH_BOOK10_ 1 OODPI

LUBALINGRAPH_BOOK12_ 1 OODPI

LUBALINGRAPH_BOOK14_ 1 OODPI

LUBALINGRAPH_BOOK18_ 1 OODPI

LUBALINGRAPH_BOOK24_ 1 OODPI

LUBALINGRAPH_BOOKOBLIQUE8_ 1 OODPI

LUBALINGRAPH_BOOKOBLIQUE10_ 1 OODPI

LUBALINGRAPH_BOOKOBLIQUE12_ 1 OODPI

LUBALINGRAPH_BOOKOBLIQUE14_ 1 OODPI

LUBALINGRAPH_BOOKOBLIQUE18_ 1 OODPI

LUBALINGRAPH_BOOKOBLIQUE24_ 1 OODPI

LUBALINGRAPH_DEMl8_ 1 OODPI

LUBALINGRAPH_DEMl10_ 1 OODPI

LUBALINGRAPH_DEMl12_ 1 OODPI

LUBALINGRAPH_DEMl14_ 1 OODPI

LUBALINGRAPH_DEMl18_ 1 OODPI

LUBALINGRAPH_DEMl24_ 1 OODPI

LUBALINGRAPH_DEMIOBLIQUE8_ 1 OODPI

LUBALINGRAPH_DEMIOBLIQUE10_ 1 OODPI

-Adobe-Helvetica-Med1um-O-Normal-17-120-100-100-P-88-1808859-1

-Adobe-Helvetica-Medium-O-Normal-20-140-100-1 OO-P-98-1808859-1

-Adobe-Helvetica-Medium-O-Normal-25-180-100-1 OO-P-130-1808859-1

-Adobe-Helvetica-Medium-O-Normal-34-240-100-1 OO-P-176-1808859-1

-Adobe-Helvetica-Medium-O-Normal-11-80-100-1 OO-P-57-1808859-1

-ADOBE-lntenm DM-Medium-l-Normal-20-140-100-1 OO-P-180-DEC-DECMATH_EXTEN810N

-ADOBE-Interim DM-Medium-l-Normal-20-140-100-1 OO-P-180-DEC-DECMATH_ITALIC

-ADOBE-Interim DM-Medium-1-Normal-20-140-100-100-P-180-DEC-DECMATH_8YMBOL

-Adobe-ITC Lubalin Graph-Book-R-Normal-11-80-100-1 OO-P-60-1808859-1

-Adobe-ITC Lubalin Graph-Book-R-Normal-14-100-100-100-P-81-1808859-1

-Adobe-ITC Lubahn Graph-Book-R-Normal-17-120-100-1 OO-P-89-1808859-1

-Adobe-ITC Lubahn Graph·Book-R-Normal-19-140-100-100-P-106-1808859-1

-Adobe-ITC Lubahn Graph-Book-R-Normal-24-180-100-1 OO-P-139-1808859-1

-Adobe-ITC Lubalin Graph-Book-R-Normal-33-240-100-1 OO-P-180-1808859-1

-Adobe-ITC Lubahn Graph-Book-0-Normal-11-80-100-1 OO-P-60-1808859-1

-Adobe-ITC Lubalin Graph-Book-O-Normal-14-100-100-100-P-82-1808859-1

-Adobe-ITC Lubalin Graph-Book-O-Normal-19-120-100-100-P-89-1808859-1

-Adobe-ITC Lubalin Graph-Book-O-Normal-20-140-100-100-P-105-1808859-1

-Adobe-ITC Lubalin Graph-Book-0-Normal-24-180-100-1 OO-P-140-1808859-1

-Adobe-ITC Lubahn Graph-Book-0-Normal-33-240-100-1 OO-P-181-1808859-1

-Adobe-ITC Lubalin Graph-Demt-R-Normal-11-80-100-1 OO-P-61-1808859-1

-Adobe-ITC Lubalin Graph-Demi-R-Normal-14-100-100-100-P-85-IS08859-1

-Adobe-ITC Lubalin Graph-Demi-R-Normal-17-120-100-100-P-92-1808859-1

-Adobe-ITC Lubahn Graph-Demi-R-Normal-19-140-100-100-P-109-1808859-1

-Adobe-ITC Lubalin Graph-Demi-R-Normal-24-180-100-1 OO-P-144-1808859-1

-Adobe-ITC Lubahn Graph-Demt-R-Normal-33-240-100-100-P-184-1808859-1

-Adobe-ITC Lubalin Graph-Demi-O-Normal-11-80-100-100-P-62-1808859-1

-Adobe-ITC Lubahn Graph-Demi-O-Normal-14-100-100-1 OO-P-85-1808859-1

(continued on next page)

D-11

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

LUBALIN GRAPH

LUBALINGRAPH_DEMIOBLIQUE12_ 1 OODPI

LUBALINGRAPH_DEMIOBLIQUE14_ 1 OODPI

LUBALINGRAPH_DEMIOBLIQUE18_ 1 OODPI

LUBALINGRAPH_DEMIOBLIQUE24_ 1 OODPI

MENU

MENU10_100DPI

MENU12_100DPI

NEW CENTURY SCHOOLBOOK

NEWCENTURY8CHLBK_BOLD8_ 1 OODPI

NEWCENTURY8CHLBK_BOLD10_ 1 OODPI

NEWCENTURY8CHLBK_BOLD12_ 1 OODPI

NEWCENTURY8CHLBK_BOLD14_ 1 OODPI

NEWCENTURY8CHLBK_BOLD18_ 1 OODPI

NEWCENTURY8CHLBK_BOLD24_ 1 OODPI

NEWCENTURY8CHLBK_BOLDITALIC8_ 1 OODPI

NEWCENTURY8CHLBK_BOLDITALIC10_ 1 OODPI

NEWCENTURY8CHLBK_BOLDITALIC12_ 1 OODPI

NEWCENTURY8CHLBK_BOLDITALIC14_ 1 OODPI

NEWCENTURY8CHLBK_BOLDITALIC18_ 1 OODPI

NEWCENTURY8CHLBK_BOLDITALIC24_ 1 OODPI

NEWCENTURY8CHLBK_ITALIC8_ 1 OODPI

NEWCENTURY8CHLBK_ITALIC10_ 1 OODPI

NEWCENTURY8CHLBK_ITALIC12_ 1 OODPI

NEWCENTURY8CHLBK_ITALIC14_ 1 OODPI

NEWCENTURY8CHLBK_ITALIC18_ 1 OODPI

NEWCENTURY8CHLBK_ITALIC24_ 1 OODPI

NEWCENTURY8CHLBK_ROMAN8_ 1 OODPI

NEWCENTURY8CHLBK_ROMAN10_ 1 OODPI

NEWCENTURY8CHLBK_ROMAN 12_ 1 OODPI

D-12

-Adobe-ITC Lubalin Graph-Derni-0-Norrnal-17-120-100-1 OO-P-92-1808859-1

-Adobe-ITC Lubalin Graph-Derni-O-Norrnal-19-140-100-100-P-109-1808859-1

-Adobe-ITC Lubalin Graph-Derni-O-Norrnal-24-180-100-1 OO-P-144-1808859-1

-Adobe-ITC Lubalin Graph-Derni-O-Norrnal-33-240-100-1 OO-P-184-1808859-1

-Bigelow & Holrnes-Menu-Mediurn-R-Norrnal-14-100-100-100-P-77-1808859-1

-Bigelow & Holrnes-Menu-Mediurn-R-Norrnal-17-120-100-100-P-92-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Norrnal-11-80-100-100-P-66-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Norrnal-14-100-100-1 OO-P-87-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Norrnal-17-120-100-100-P-99-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Norrnal-20-140-100-1 OO-P-113-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Norrnal-25-180-100-100-P-149-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Norrnal-34-240-100-1 oo-P-193-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Norrnal-11-80-100-100-P-66-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Norrnal-14-100-100-1 OO-P-88-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Norrnal-17-120-100-1 OO-P-99-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Norrnal-20-140-100-100-P-111-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Norrnal-25-180-100-100-P-148-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Norrnal-34-240-100-100-P-193-1808859-1

-Adobe-New Century 8choolbook-Mediurn-l-Norrnal-11-80-100-100-P-60-1808859-1

-Adobe-New Century 8choolbook-Mediurn-l-Norrnal-14-100-100-1 OO-P-81-1808859-1

-Adobe-New Century 8choolbook-Mediurn-l-Norrnal-17-120-100-1 OO-P-92-1808859-1

-Adobe-New Century 8choolbook-Mediurn-l-Norrnal-20-140-100-100-P-104-1808859-1

-Adobe-New Century 8choolbook-Mediurn-l-Norrnal-25-180-100-1 OO-P-136-1808859-1

-Adobe-New Century 8choolbook-Mediurn+Norrnal-34-240-100-1 OO-P-182-1808859-1

-Adobe-New Century 8choolbook-Mediurn-R-Norrnal-11-80-100-1 OO-P-60-1808859-1

-Adobe-New Century 8choolbook-Mediurn-R-Norrnal-14-100-100-1 OO-P-82-1808859-1

-Adobe-New Century 8choolbook-Mediurn-R-Norrnal-17-120-100-1 OO-P-91-1808859-1

(continued on next page)

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

NEWCENTURY8CHLBK_ROMAN14_ 1 OODPI

NEWCENTURY8CHLBK_ROMAN 18_ 1 OODPI

NEWCENTURY8CHLBK_ROMAN24_ 1 OODPI

SOUVENIR

80UVENIR_DEM18_ 1 OODPI

80UVENIR_DEMl10_1 OODPI

80UVENIR_DEMl12_1 OODPI

80UVENIR_DEMl14_1 OODPI

80UVENIR_DEMl18_1 OODPI

80UVENIR_DEMl24_ 1 OODPI

SOUVEN IR_DEMllTALIC8_ 1 OODPI

SOUVENIR_DEMllTALIC10_ 1 OODPI

SOUVENIR_DEMllTALIC12_ 1 OODPI

SOUVENIR_DEMllTALIC14_ 1 OODPI

SOUVENIR_DEMllTALIC18_ 1 OODPI

SOUVENIR_DEMllTALIC24_ 1 OODPI

SOUVENIR_LIGHT8_ 1 OODPI

SOUVENIR_LIGHT10_ 100DPI

SOUVENIR_LIGHT12_ 1 OODPI

80UVENIR_LIGHT14_1 OODPI

SOUVENIR_LIGHT18_ 1 OODPI

SOUVENIR_LIGHT24_ 1 OODPI

SOUVENIR_LIGHTITALIC8_ 1 OODPI

SOUVENIR_LIGHTITALIC10_ 1 OODPI

SOUVENIR_LIGHTITALIC12_ 1 OODPI

80UVENIR_LIGHTITALIC14_ 1 OODPI

80UVENIR_LIGHTITALIC18_ 1 OODPI

SOUVENIR_LIGHTITALIC24_ 1 OODPI

SYMBOL

SYMBOL8_ 1 OODPI

8YMBOL10_100DPI

SYMBOL 12_ 1 OODPI

-Adobe-New Century 8choolbook-Medium-R-Normal-20-140-100-100-P-103-1808859-1

-Adobe-New Century 8choolbook-Medium-R-Normal-25-180-100-1 OO-P-136-IS08859-1

-Adobe-New Century 8choolbook-Medium-R-Normal-34-240-100-1 OO-P-181-IS08859-1

-Adobe-ITC Souvenir-Demi-R-Normal-11-80-100-1 OO-P-62-IS08859-1

-Adobe-ITC Souvenir-Demi-R-Normal-14-100-100-1 OO-P-90-1808859-1

-Adobe-ITC Souvenir-Demi-R-Normal-17-120-100-100-P-94-IS08859-1

-Adobe-ITC Souvenir-Demi-R-Normal-20-140-100-1 OO-P-112-1808859-1

-Adobe-ITC Souvenir-Demi-R-Normal-25-180-100-1 OO-P-149-IS08859-1

-Adobe-ITC Souvenir-Demi-R-Normal-34-240-100-1 OO-P-191-IS08859-1

-Adobe-ITC Souvenir-Demi-l-Normal-11-80-100-100-P-67-IS08859-1

-Adobe-ITC 8ouvenir-Demi-l-Normal-14-100-100-100-P-92-1808859-1

-Adobe-ITC Souvenir-Demi-l-Normal-17-120-100-1 OO-P-98-1808859-1

-Adobe-ITC Souveni r-Demi-l-Normal-20-140-100-100-P-115-IS08859-1

-Adobe-ITC Souvenir-Demi-l-Normal-25-180-100-1 OO-P-154-IS08859-1

-Adobe-ITC 8ouvenir-Demi-l-Normal-34-240-100-100-P-197-1$08859-1

-Adobe-ITC Souvenir-Light-R-Normal-11-80-100-1 OO-P-56-IS08859-1

-Adobe-ITC 8ouvenir-Light-R-Normal-14-100-100-100-P-79-IS08859-1

-Adobe-ITC Souveni r-Light-R-Normal-17-120-100-1 OO-P-85-IS08859-1

-Adobe-ITC Souveni r-Light-R-Normal-20-140-100-1OO-P-102-IS08859-1

-Adobe-ITC 8ouvenir-L1ght-R-Normal-25-180-100-1 OO-P-135-IS08859-1

-Adobe-ITC Souvenir-Light-R-Normal-34-240-100-1 OO-P-174-IS08859-1

-Adobe-ITC Souveni r-Light-l-Normal-11-80-100-1 OO-P-59-1$08859-1

-Adobe-ITC 8ouveni r-Light-l-Normal-14-100-100-1 OO-P-82-1808859-1

-Adobe-ITC Souvenir-Light-l-Normal-17-120-100-1 OO-P-88-1808859-1

-Adobe-ITC 8ouvenir-Light-l-Normal-20-140-100-100-P-104-1808859-1

-Adobe-ITC Souveni r-Light-l-Normal-25-180-100-1 OO-P-139-1808859-1

-Adobe-ITC 8ouveni r-Light-l-Normal-34-240-100-100-P-177-1808859-1

-Adobe-8ymbol-Med1um-R-Normal-11-80-100-100-P-61-ADOBE-FONTSPECIFIC

-Adobe-8ymbol-Medium-R-Normal-14-100-100-100-P-85-ADOBE-FONT8PECIFIC

-Adobe-8ymbol-Medium-R-Normal-17-120-100-100-P-95-ADOBE-FONT8PECIFIC

(continued on next page)

D-13

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

SYMBOL

SYMBOL 14_ 1 OODPI -Adobe-8ymbol-Medium-R-Normal-20-140-100-100-P-107-ADOBE-FONT8PECIFIC

SYMBOL 18_ 1 OODPI -Adobe-8ymbol-Medium-R-Normal-25-180-100-100-P-142-ADOBE-FONT8PECIFIC

8YMBOL24_ 1 OODPI -Adobe-8ymbol-Medium-R-Normal-34-240·100-100-P-191-ADOBE-FONT8PECIFIC

TERMINAL

TERMINAL 10_ 1 OODPI

TERMINAL 14_ 1 OODPI

TEAMINAL20_ 1 OODPI

TEAMINAL28_ 1 OODPI

TEAMINAL_BOLD10_ 1 OODPI

TEAMINAL_BOLD14_ 1 OODPI

TEAMINAL_BOLD20_ 1 OODPI

TEAMINAL_BOLD28_ 1 OODPI

TEAMINAL_BOLD_DBLWIDE10_ 1 OODPI

TEAMINAL_BOLD_DBLWIDE14_1 OODPI

TEAMINAL_BOLD_DBLWIDE_DECTECH10_ 1 OODPI

TEAMINAL_BOLD_DBLWIDE_DECTECH14_ 1 OODPI

TEAMINAL_BOLD_DECTECH10_ 100DPI

TEAMINAL_BOLD_DECTECH14_ 1 OODPI

TEAMINAL_BOLD_DECTECH20_ 1 OODPI

TEAMINAL_BOLD_DECTECH28_ 1 OODPI

TEAMINAL_BOLD_NAAAOW10_ 1 OODPI

TEAMINAL_BOLD_NAAAOW14_ 1 OODPI

TEAMINAL_BOLD_NAAAOW20_ 1 OODPI

TEAMINAL_BOLD_NAAROW28_ 1 OODPI

TEAMINAL_BOLD_NAAAOW_DECTECH10_ 1 OODPI

TEAMINAL_BOLD_NAAAOW_DECTECH14_ 1 OODPI

TEAMINAL_BOLD_NAAAOW_DECTECH20_ 1 OODPI

TEAMINAL_BOLD_NAAAOW_DECTECH28_ 1 OODPI

TEAMINAL_BOLD_WIDE, 0_1 OODPI

TEAMINAL_BOLD_WIDE14_ 1 OODPI

TEAMINAL_BOLD_WIDE_DECTECH10_ 1 OODPI

TERMINAL_BOLD_WIDE_DECTECH14_ 1 OODPI

TERMINAL_DBLWIDE10_ 1 OODPI

TERMINAL_DBLWIDE14_ 1 OODPI

D-14

-DEC-Terminal-Medium-R-Normal-14-100-100-100-C-8-1808859-1

-Bitstream-Terminal-Medium-A-Normal-20-140-100-100-C-11-1808859-1

-DEC-Terminal-Medium-R-Normal-28-200-100-1 OO-C-16-1808859-1

-Bitstream-Terminal-Medium-A-Normal-40-280-100-100-C-22-IS08859-1

-DEC-Terminal-Bold-A-Normal-14-100-100-1 OO-C-8-1808859-1

-Bitstream-Terminal-Bold-A-Normal-20-140-100-100-C-11-1808859-1

-DEC-Terminal-Bold-R-Normal-28-200-100-1 OO-C-16-1808859-1

-Bitstream-Terminal-Bold-A-Normal-40-280-100-100-C-22-1808859-1

-DEC-Terminal-Bold-A-Double Wide-14-100-100-100-C-16-1808859-1

-Bitstream-Termlnal-Bold-A-Double Wide-20-140-100-100-C-22-1808859-1

-DEC-Terminal-Bold-A-Double Wide-14-100· 100-1 OO·C-16-DEC-DECtech

-Bitstream-Terminal-Bold-A-Double Wide-20-140-100-1 OO-C-22-DEC-DECtech

-DEC-Terminal-Bold-A-Normal-14-100-100·100-C-8-DEC-DECtech

-Bitstream-Terminal-Bold-A-Normal-20-140-100-100-C-11-DEC-DECtech

-DEC-Terminal-Bold-A-Normal-28-200-100-100-C-16-DEC-DECtech

-Bitstream-Terminal-Bold-A-Normal-40-280-100-1 OO-C-22-DEC-DECtech

-DEC-Terminal-Bold-A-Narrow-14-100-100-1 oo-C-6-IS08859-1

-Bitstream-Terminal-Bold-A-Narrow-20-140-100-100-C-7-1808859-1

-DEC-Terminal-Bold-A-Narrow-28-200-100-100-C-12-1808859-1

-Bitstream-Terminal-Bold-A-Narrow-40-280-100-100-C-14-IS08859-1

-DEC-Terminal-Bold-R-Narrow-14-100-100-100-C-6-DEC-DECtech

-Bitstream-Terminal-Bold-A-Narrow-20-140-100-100-C-7-DEC-DECtech

-DEC-Terminal-Bold-A-Narrow-28-200-100-100-C-12-DEC-DECtech

-Bitstream-Terminal-Bold-A-Narrow-40-280-100-100-C-14-DEC-DECtech

-DEC-Terminal-Bold-A-Wide-14-100-100-1 OO-C-12-1808859-1

-Bitstream-Terminal-Bold-R-Narrow-20-140-100-1 OO-C-14-IS08859-1

-DEC-Terminal-Bold-A-Wide-14-100-100-1 OO-C-12-DEC-DECtech

-Bitstream-Terminal-Bold-A-Narrow-20-140-100-100-C-14-DEC-DECtech

-DEC-Terminal-Medium-A-Double Wide-14-100-100-1 OO-C-16-IS08859-1

-Bitstream-Terminal-Medium-R-Double Wide-20-140-100-1 oo-C-22-1808859-1

(continued on next page)

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

TERMINAL

TERMINAL_DBLWIDE_DECTECH10_ 1 OODPI

TERMINAL_DBLWIDE_DECTECH14_ 1 OODPI

TERMINAL_DECTECH10_ 1 OODPI

TERMINAL_DECTECH14_ 1 OODPI

TERMINAL_DECTECH20_ 1 OODPI

TERMINAL_DECTECH28_ 1 OODPI

TERMINAL_NARROW10_ 1 OODPI

TERMINAL_NARROW14_ 1 OODPI

TERMINAL_NARROW20_ 1 OODPI

TERMINAL_NARROW28_ 1 OODPI

TERMINAL_NARROW_DECTECH10_ 1 OODPI

TERMINAL_NARROW_DECTECH14_ 1 OODPI

TERMINAL_NARROW_DECTECH20_ 1 OODPI

TERMINAL_NARROW_DECTECH28_ 1 OODPI

TERMINAL_WIDE10_1 OODPI

TERMINAL_WIDE14_ 1 OODPI

TERMINAL_WIDE_DECTECH10_100DPI

TERMINAL_WIDE_DECTECH 14_ 1 OODPI

TIMES

TIME5_BOLD8_ 1 OODPI

TIME5_BOLD10_ 1 OODPI

TIMES_BOLD12_ 1 OODPI

TIME5_BOLD14_ 1 OODPI

TIME5_BOLD18_ 1 OODPI

TIME8_BOLD24_ 1 OODPI

TIME8_BOLDITALIC8_ 1 OODPI

TIME8_BOLDITALIC10_ 1 OODPI

TIME5_BOLDITALIC12_ 1 OODPI

TIME8_BOLDITALIC14_ 1 OODPI

TIME5_BOLDITALIC18_ 1 OODPI

TIME5_BOLDITALIC24_ 1 OODPI

TIME8_1TALIC8_ 1 OODPI

TIME5_1TALIC10_ 1 OODPI

TIMES_ITALIC12_ 1 OODPI

-DEC-Termmal-Medium-R-Double Wide-14-100-100-100-C-16-DEC-DECtech

-Bitstream-Terminal-Medium-R-Double Wide-20-140-100-100-C-22-DEC-DECtech

-DEC-Terminal-Medium-R-Normal-14-100-100-1 OO-C-8-DEC-DECtech

-Bitstream-Terminal-Medium-R-Normal-20-140-100-1 OO-C-11-DEC-DECtech

-DEC-Terminal-Medium-R-Normal-28-200-100-100-C-16-DEC-DECtech

-Bitstream-Terminal-Medium-R-Normal-40-280-100-100-C-22-DEC-DECtech

-DEC-Terminal-Medium-R-Narrow-14-100-100-100-C-6-1508859-1

-Bitstream-Terminal-Medium-R-Narrow-20-140-100-1 OO-C-7-1508859-1

-DEC-Terminal-Medium-R-Narrow-28-200-100-1 OO-C-12-1508859-1

-Bitstream-Terminal-Medium-R-Narrow-40-280-100-100-C-14-1508859-1

-DEC-Terminal-Medium-R-Narrow-14-100-100-100-C-6-DEC-DECtech

-Bitstream-Terminal-Medium-R-Narrow-20-140-100-1 OO-C-7-DEC-DECtech

-DEC-Terminal-Medium-R-Narrow-28-200-100-100-C-12-DEC-DECtech

-Bitstream-Terminal-Medium-R-Narrow-40-280-100-100-C-14-DEC-DECtech

-DEC-Terminal-Medium-R-Wide-14-100-100-100-C-12-1508859-1

-Bitstream-Terminal-Medium-R-Wide-20-140-100-1 OO-C-14-1508859-1

-DEC-Terminal-Medium-R-Wide-14-100-100-1 OO-C-12-DEC-DECtech

-Bitstream-Terminal-Medium-R-Wide-20-140-100-100-C-14-DEC-DECtech

-Adobe-Times-Bold-R-Normal-11-80-100-100-P-57-1508859-1

-Adobe-Times-Bold-R-Normal-14-100-100-100-P-76-1508859-1

-Adobe-limes-Bold-R-Normal-17-120-100-100-P-88-1508859-1

-Adobe-Times-Bold-R-Normal-20-140-100-100-P-100-1508859-1

-Adobe-Times-Bold-R-Normal-25-180-100-1 OO-P-132-1508859-1

-Adobe-Times-Bold-R-Normal-34-240-100-1 OO-P-177-1808859-1

-Adobe-Times-Bold-l-Normal-11-80-100-100-P-57-1508859-1

-Adobe-Times-Bold-l-Normal-14-100-100-100-P-77-1808859-1

-Adobe-Times-Bold-1-Normal-17-120-100-1 OO-P-86-1508859-1

-Adobe-Times-Bold-l-Normal-20-140-100-1 OO-P-98-1508859-1

-Adobe-Times-Bold-l-Normal-25-180-100-1 OO-P-128-1508859-1

-Adobe-Times-Bold-l-Normal-34-240-100-1 OO-P-170-1508859-1

-Adobe-Times-Medium-l-Normal-11-80-100-100-P-52-1508859-1

-Adobe-Times-Medium-l-Normal-14-100-100-1 OO-P-73-1508859-1

-Adobe-Times-Medium-1-Normal-17-120-100-1 OO-P-84-1508859-1

(continued on next page)

D-15

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

TIMES

TIME8_1TALIC14_ 1 OODPI -Adobe-limes-Medium-l-Normal-20-140-100-100-P-94-1808859-1

TIME8_1TALIC18_ 1 OODPI -Adobe-limes-Med1um-l-Normal-25-180-100-100-P-125-1808859-1

TIME8_1TALIC24_ 1 OODPI -Adobe-limes-Medium-l-Normal-34-240-100-100-P-168-1808859-1

TIMES_ROMAN8_ 1 OODPI -Adobe-limes-Medium-R-Normal-11-80-100-1 OO-P-54-1808859-1

TIME8_ROMAN10_ 1 OODPI -Adobe-limes-Med1um-R-Normal-14-100-100-100-P-74-1808859-1

TIME8_ROMAN12_ 1 OODPI -Adobe-limes-Medium-R-Normal-17-120-100-100-P-84-1808859-1

TIME8_ROMAN14_ 1 OODPI -Adobe-limes-Medium-R-Normal-20-140-100-100-P-96-1808859-1

TIME8_ROMAN18_ 1 OODPI -Adobe-limes-Med1um-R-Normal-25-180-100-1 OO-P-125-1808859-1

TIME8_ROMAN24_ 1 OODPI -Adobe-limes-Medium-R-Normal-34-240-100-1 OO-P-170-1808859-1

D-16

Index

A
ALLOC COLOR CELLS routine • 5-12
ALLOC COLOR routine • 5-8
ALLOC NAMED COLOR routine• 5-7
Any event data structure • 9-4
Arc

drawing• 6-14 to 6-15
drawing more than one• 6-15
filling• 6-18
GC members used to draw • 6-16
GC members used to fill• 6-19
styles of filling• 4-9

illustrated • 4-15
Arc data structure • 6-15
Area

clearing• 6-22
copying • 6-22
filling • 6-18
GC members used to copy • 6-24

Atom
associated with font properties • 8-11
associated with window properties • 3-18
definition • 3-17

Attribute
changing window• 3-38 to 3-40
defining window• 3-7
getting information about window • 3-41 to 3-43

B
Background color

specifying • 4-5
Backing pixel

definition • 3-11
effect of changing • 3-40

Backing plane
definition • 3-11
effect of changing• 3-40

Backing store
definition • 3-11
effect of changing • 3-40

BDF (Bitmap Distribution Format) • A-1

Bit gravity
definition • 3-11
effect of changing• 3-40

Bitmap
creating data file for• 7-3

Bitmap Distribution Format

See BDF
Blocking

definition • 9-56
Bounding box

line• 4-11
text character • 8-1

Button
handling presses and releases• 9-8 to 9-11

Button event data structure • 9-9

c
CHANGE WINDOW ATTRIBUTES routine• 3-39
Char 2B data structure • 8-6
Char struct data structure • 8-3
CHECK IF EVENT routine • 9-58
CHECK MASK EVENT routine • 9-59
CHECK TYPED EVENT routine • 9-59
CHECK TYPED WINDOW EVENT routine• 9-59
CHECK WINDOW EVENT routine• 9-58
Child window

See also Window hierarchy
definition • 1-3
getting information about• 3-40

Circulate event data structure• 9-37
CIRCULATE SUBWINDOWS DOWN routine• 3-38
CIRCULATE SUBWINDOWS UP routine• 3-38
Class hint data structure • 3-27
CLEAR AREA routine • 6-23
CLEAR WINDOW routine• 6-23
Client

communication with • 9-50 to 9-56
connecting with server• 2-3
definition • 1-1
sending message to • 9-50

Client message event data structure• 9-51
Client request

controlling • 2-8

lndex-1

Index

Client request
handling by Xlib

See Server
Client-server connection

breaking • 2-4
establishing • 2-3
getting information about • 2-5

Clipping
specifying pixmap for• 4-10

CLOSE DISPLAY routine• 2-4
Color

allocating for exclusive use• 5-12
direct• 5-4
exclusive use of• 5-11 to 5-21
freeing storage assigned for• 5-21
gray scale • 5-4
index • 5-2
named

list of• C-1
pseudocolor • 5-4
range of • 5-2
RGB components • 5-2
RGB values • 5-4
screen configuration and • 5-4
sharing• 5-6 to 5-11

named• 5-7 to 5-8
specifying exact value • 5-8 to 5-11

static gray • 5-4
type of

See Visual type
using named• 5-7
VAXstations that support • 5-6

Color cell
allocating for exclusive use• 5-12 to 5-21
definition• 5-2

Color data structure • 5-8
Color index

definition • 5-2
Color map • 5-1 to 5-4

creating • 5-11
creating from default• 5-20
default

allocating for exclusive use • 5-11
definition• 5-2
hardware • 5-4
receiving notification of change in • 9-49
specifying • 5-11 to 5-12
specifying for a window• 3-12
storing colors • 5-21
virtual• 5-4

Color map event data structure • 9-49

lndex-2

Color values
specifying exact • 5-8

Configure event data structure • 9-38
Configure request

overriding • 3-12
CONFIGURE WINDOW routine• 3-31
CONVERT SELECTION routine • 3-30
COPY AREA routine • 6-24
COPY COLORMAP AND FREE routine• 5-20
COPY PLANE routine • 6-24
CREATE COLORMAP routine• 5-11
CREATE FONT CURSOR routine• 6-33
CREATE GLYPH CURSOR routine• 6-33
CREATE IMAGE routine • 7-7
CREATE PIXMAP CURSOR routine• 6-37
CREATE PIXMAP routine• 7-1
CREATE REGION routine• 6-24
CREATE SIMPLE WINDOW routine• 3-6
Create window event data structure • 9-40
CREATE WINDOW routine• 3-7
Crossing event data structure• 9-16
Cursor

creating• 6-32 to 6-38
using a client cursor font • 6-34
using pixmaps • 6-37
using VMS DECwindows cursor font • 6-33
using Xlib cursor font• 6-32

definition • 6-32
destroying• 6-39
determining size of • 6-37
effect of changing default• 3-40
elements of " 6-34
illustration of shape and mask • 6-35
making visible on screen • 6-33
mask• 6-35
shape• 6-35
specifying for a window• 3-12

D
Debugging programs • 1-9
DEFAULT COLORMAP routine• 5-11
DEFAULT VISUAL OF SCREEN routine • 5-6
Default window characteristics

See Window
DEFINE CURSOR routine• 6-33
Depth

definition • 5-2
DESTROY SUBWINDOWS routine• 3-16

Destroy window event data structure • 9-41
DESTROY WINDOWS routine• 3-16
Direct color • 5-4
Display

closing • 2-4
compared to hardware• 2-1
information routines • 2-5 to 2-8
opening • 2-3 to 2-4
server response to closing • 2-4 to 2-5

Display information routines • 2-5 to 2-8
DISPLAY NAME routine• 9-62
DRAW ARC routine • 6-13
DRAW ARCS routine • 6-16
DRAW IMAGE STRING 16 routine • 8-22
DRAW IMAGE STRING routine• 8-22
DRAW LINE routine• 6-5
DRAW LINES routine• 6-6
DRAW POINT routine• 6-2
DRAW RECTANGLE routine • 6-9
DRAW SEGMENTS routine • 6-9
DRAW STRING 16 routine• 8-21
DRAW STRING routine• 8-21
DRAW TEXT 16 routine• 8-19
DRAW TEXT routine • 8-19

E
Error

codes• 9-61
handling event• 9-59

using default• 9-60
Error event data structure • 9-60
Error handling conditions • 1-9
Error reporting

delays caused by Xlib buffering • 1-9
Event

blocking • 9-56
button press and release • 9-8 to 9-11
client communication • 9-50 to 9-56
client message • 9-50
color map • 9-49
convert selection • 9-54
data structure used to report all types of • 9-3
data structure used to report multiple types of•

9-4
default error handlers• 9-59
definition • 9-1
error codes• 9-61
error handling • 9-59 to 9-62

Event (cont'd.)

graphics exposure• 9-30 to 9-35
handling queue • 9-56 to 9-59
key• 9-14
keyboard mapping • 9-44
key mapping • 9-44
masks used to specify• 9-5
notifying ancestors of• 3-12
pointer • 9-8
pointer grab • 9-22
pointer mapping • 9-44
pointer motion • 9-11
predicate procedure

definition • 9-57
processing• 9-1 to 9-4
property change • 9-51

Index

reported as result of window entry or exit• 9-18
selecting

using a mask • 9-58 to 9-59
using predicate procedure • 9-57
using the SELECT INPUT routine• 9-5
when changing window attributes• 9-7
when creating a window• 9-7

selecting types of• 9-5 to 9-8
selection notification • 9-55
selection ownership • 9-53
sending to other applications • 9-59
specifying type associated with a window • 3-12
types• 9-2
types always reported • 9-5
window circulation • 9-37
window creation • 9-40
window destruction • 9-41
window entry or exit

caused by a grab • 9-18
caused by pointer movement • 9-18

window exposure• 9-28 to 9-30
window gravity • 9-42
window mapping • 9-43
window reparenting • 9-45
window unmapping • 9-47
window visibility • 9-48

Event data structure • 9-4
Event mask

effect of changing• 3-40
selecting events out of order using • 9-58

Event queue• 9-56
checking • 9-57
putting event back on • 9-59
returning next event• 9-57

EVENTS QUEUED routine• 9-57

lndex-3

Index

Expose event data structure• 9-29
Exposure

notification of window region • 4-1 O

F
FILL POLYGON routine• 6-20
Fill style • 4-8

illustration of• 4-14
Flags

for defining color values • 5-9
for referring to window attributes • 3-13
for referring to window change values• 3-33

Focus change event data structure• 9-23
Font

advantages of minimum bounding box • A-1
associating with graphics context • 8-15
bounding box of• 8-8
compiling • A-1
converting from BDF to SNF • A-1
definition • 8-4
fixed • 8-4
getting illustration of when compiling• A-1
getting information about• 8-15
getting information about a property • 8-15
list of VMS DECwindows • D-1
loading • 8-14
monospaced • 8-4
multiple-row • 8-5
naming

conventions when • 8-13
wildcards used when • 8-14

pixel size of • 8-14
point size of• 8-14
properties • 8-15
single-row• 8-4
specifying • 4-10, 8-13
specifying output file • A-1

Font prop data structure • 8-13
Font struct data structure • 8-6
Foreground color

specifying• 4-4
FREE COLORMAP routine• 5-21
FREE COLORS routine• 5-21
FREE CURSOR routine• 6-39
FREE PIXMAP routine• 7-3

lndex-4

G
GC

See Graphics context
GC data structure

default values of• 4-1
GC values data structure • 4-3

flags for referring to members of • 4-16
GET ERROR DATABASE TEXT routine • 9-62
GET ERROR TEXT routine • 9-62
GET GEOMETRY routine• 3-41
GET IMAGE routine• 7-8
GET SELECTION OWNER routine• 3-30
GET WINDOW ATTRIBUTES routine • 3-41 to

3-43
Grab

active• 9-8
effect on input focus • 9-27
handling pointer • 9-22
passive • 9-8

Graphics
clearing areas • 6-22 to 6-23
copying areas • 6-24
defining characteristics of• 4-2 to 4-21
defining the position of• 6-1
drawing

arcs• 6-13
lines • 6-5 to 6-9
points • 6-2 to 6-5
rectangles• 6-9

filling areas • 6-18 to 6-22
introduction to • 6-1
position relative to drawable • 6-1
styles of filling • 4-8

Graphics characteristics

See Graphics context
Graphics context

changing• 4-22
copying • 4-22
default values of• 4-1
defining in one call • 4-2
definition • 4-1
effect of window changes on • 4-22
maximum number of• 4-23
overview of • 4-1
specifying individual components of• 4-18
using efficiently• 4-22

Graphics expose event data structure• 9-31
Graphics exposure • 9-30 to 9-35

definition • 9-30

Graphics exposure (cont'd.)

example of handling • 9-33
Gravity event data structure • 9-42
Gray scale• 5-4

H
Host machine

specifying • 2-4

I
IF EVENT routine• 9-58
Image

changing• 7-10
creating• 7-7 to 7-8

from pixmap • 7-8
creating data file of• 7-3
destroying• 7-10
format of • 7-8
storing• 7-8
transferring to drawable • 7-8

Image data structure• 7-5
Inferior window

definition • 1-3
Information routines

as arguments to routines • 2-5
Input focus

change caused by grab • 9-27
definition • 9-22
normal keyboard • 9-24

K
Key

mapping events • 9-44
presses • 9-14
releases • 9-14

Keyboard input
providing window manager hints about• 3-25

Key event data structure • 9-14
Key map

changes in state of• 9-27
Keymap event data structurn • 9-27

L
Line

dash offset illustrated • 4-16
double dash • 4-6
drawing more than one• 6-6
endpoints of• 4-6
how server draws • 4-5
on off dash • 4-6
solid• 4-6
specifying beginning of dashed • 4-11
specifying length of dash in dashed • 4-11
specifying style of • 4-6
specifying width of • 4-5
styles of • 4-11
styles of endpoints • 4-12
styles of filling dashed • 4-8
styles of joining another• 4-13
styles of joining another line• 4-7
treatment of coincident endpoints of• 4-6
Xlib performance and width of• 4-5

LIST FONTS routine • 8-15
LIST FONTS WITH INFO routine• 8-15
LOAD FONT routine • 8-14
LOAD QUERY FONT routine• 8-14
LOOKUP COLOR routine• 5-22
LOWER WINDOW routine• 3-38

M
Map event data structure • 9-43

Index

Mapping and unmapping windows • 3-16 to 3-17
Mapping event data structure • 9-44
MAP RAISED routine• 3-16
Map request

overriding • 3-12
MAP SUBWINDOWS routine• 3-16
MAP WINDOW routine• 3-16
MASK EVENT routine • 9-58
Motion event data structure• 9-12
MOVE RESIZE WINDOW routine• 3-35
MOVE WINDOW routine • 3-35

lndex-5

Index

N
Named VMS DECwindows colors

list of• C-1
using • 5-7 to 5-8

NEXT EVENT routine• 9-57
No expose event data structure • 9-32

0
OPEN DISPLAY routine • 2-3
Origin

definition• 3-4
Ownership

See Window selection

p
Parent window

See also Window hierarchy
definition• 3-2
getting information about• 3-40
receiving notification of change of • 9-45
using attributes of• 3-6

PEEK EVENT routine • 9-57
PEEK IF EVENT routine• 9-58
PENDING routine• 9-57
Pixel

and color values • 5-1
definition • 3-4
determining if inside a filled polygon • 4-9

illustrated• 4-15
relationship to planes • 5-2

Pixel value
computing • 4-4

Pixmap
clearing areas of • 6-22
copying areas of • 6-24
creating• 7-1
creating from bitmap data file• 7-4
example of creating • 7-1
freeing storage for• 7-3

Plane
definition• 5-2

lndex-6

Point

determining location of• 6-3
drawing more than one • 6-2
GC members used to draw • 6-3

Point data structure • 6-2
Pointer

button event handling • 9-8 to 9-11
mapping events• 9-44
motion event handling• 9-11 to 9-14

Polygon
filling• 6-19 to 6-22
GC members used to fill • 6-20

POLYGON REGION routine• 6-24
Predicate procedure • 9-58
Property

communicating with window manager using •
3-24

defining for window manager• 3-24
defining individual • 3-26
definition • 3-17
example of using • 3-21
exchanging between clients • 3-30
font• 8-15
receiving notification of change in • 9-51
used by window manager• 3-24

Property event data structure • 9-52
Protocol requests • B-1
Pseudocolor • 5-4
Pseudomotion

definition • 9-16
window entry or exit • 9-21

PUT BACK EVENT routine • 9-59
PUT IMAGE routine• 7-8

Q
QUERY BEST CURSOR routine• 6-37
QUERY BEST SiZE routine• 4-9
QUERY COLOR routine• 5-22
QUERY POINTER routine• 3-41
QU ERV TEXT EXTENTS 16 routine • 8-17
QUERY TEXT EXTENTS routine• 8-17
QUERY TREE routine• 3-41

R
RAISE WINDOW routine• 3-38

Rectangle

drawing more than one • 6-1 O
filling• 6-18
GC members used to draw • 6-11
GC members used to fill • 6-19

Rectangle data structure• 6-11
Region

creating • 6-24 to 6-27
definition • 6-24
example of intersecting • 6-28
managing • 6-27 to 6-31

Reparent event data structure• 9-46
Request

buffering• 1-9
client• 1-9
how Xlib handles client• 1-9

RESIZE WINDOW routine• 3-35
RESTACK WINDOW routine• 3-38
Root window • 3-2

definition • 1-3
Routines

ALLOC COLOR • 5-8
ALLOC COLOR CELLS• 5-12
ALLOC NAMED COLOR• 5-7
CHANGE WINDOW ATTRIBUTES• 3-39
CHECK IF EVENT• 9-58
CHECK MASK EVENT• 9-59
CHECK TYPED EVENT• 9-59
CHECK TYPED WINDOW EVENT• 9-59
CHECK WINDOW EVENT• 9-58
CIRCULATE SUBWINDOWS DOWN• 3-38
CIRCULATE SUBWINDOWS UP• 3-38
CLEAR AREA• 6-23
CLEAR WINDOW• 6-23
CLOSE DISPLAY• 2-4
CONFIGURE WINDOW• 3-31
CONVERT SELECTION • 3-30
COPY AREA• 6-24
COPY COLORMAP AND FREE• 5-20
COPY PLANE • 6-24
CREATE COLORMAP • 5-11
CREATE FONT CURSOR• 6-33
CREATE GLYPH CURSOR• 6-33
CREATE IMAGE• 7-7
CREATE PIXMAP• 7-1
CREATE PIXMAP CURSOR• 6-37
CREATE REGION• 6-24
CREATE SIMPLE WINDOW• 3-6
CREATE WINDOW• 3-7
DEFAULT COLORMAP • 5-11
DEFAULT VISUAL OF SCREEN • 5-6
DEFINE CURSOR• 6-33

Routines (cont'd.)

DESTROY SUBWINDOWS • 3-16
DISPLAY NAME• 9-62
DRAW ARC• 6-13
DRAW ARCS• 6-16
DRAW IMAGE STRING • 8-22
DRAW IMAGE STRING 16 • 8-22
DRAW LINE• 6-5
DRAW LINES • 6-6
DRAW POINT• 6-2
DRAW RECTANGLE• 6-9
DRAW SEGMENTS• 6-9
DRAW STRING • 8-21
DRAW STRING 16 • 8-21
DRAW TEXT• 8-19
DRAW TEXT 16 • 8-19
EVENTS QUEUED• 9-57
FILL POLYGON • 6-20
FREE COLORMAP • 5-21
FREE COLORS • 5-21
FREE CURSOR• 6-39
FREE PIXMAP • 7-3
GET ERROR DATABASE TEXT• 9-62
GET ERROR TEXT• 9-62
GET GEOMETRY• 3-41
GET IMAGE • 7-8
GET SELECTION OWNER• 3-30

Index

GET WINDOW ATTRIBUTES• 3-41 to 3-43
IF EVENT• 9-58
LIST FONTS • 8-15
LIST FONTS WITH INFO• 8-15
LOAD FONT• 8-14
LOAD QUERY FONT• 8-14
LOOKUP COLOR• 5-22
LOWER WINDOW• 3-38
MAP RAISED • 3-16
MAP SUBWINDOWS • 3-16
MAP WINDOW• 3-16
MASK EVENT• 9-58
MOVE RESIZE WINDOW• 3-35
MOVE WINDOW• 3-35
NEXT EVENT• 9-57
OPEN DISPLAY• 2-3
PEEK EVENT• 9-57
PEEK IF EVENT• 9-58
PENDING • 9-57
POLYGON REGION• 6-24
PUT BACK EVENT• 9-59
PUT IMAGE• 7-8
QUERY BEST CURSOR• 6-37
QUERY BEST SIZE• 4-9
QUERY COLOR• 5-22

lndex-7

Index

Routines (cont'd.)

QUERY POINTER• 3-41
QUERY TEXT EXTENTS• 8-17
QUERY TEXT EXTENTS 16 • 8-17
QUERY TREE• 3-41
RAISE WINDOW• 3-38
requiring protocol requests • B-1
RESIZE WINDOW• 3-35
RESTACK WINDOW• 3-38
SELECT INPUT• 9-5
SEND EVENT• 9-59
SET ERROR ROUTINE• 9-60
SET FONT• 8-15
SET 10 ERROR HANDLER • 9-62
SET SELECTION OWNER• 3-30
SET WINDOW BORDER WIDTH• 3-35
SET WM HINTS• 3-25
STORE COLOR• 5-21
STORE COLORS • 5-21
STORE NAMED COLOR• 5-21
SYNCHRONIZE• 9-59
TEXT EXTENTS• 8-17
TEXT EXTENTS 16 • 8-17
TEXT WIDTH• 8-17
TEXT WIDTH 16 • 8-17
UNDEFINE CURSOR• 6-38
UNMAP SUBWINDOWS • 3-17
UNMAP WINDOW• 3-17
WINDOW EVENT• 9-58

s
Save under operation

definition • 3-12
effect of changing• 3-40

Screen
specifying display• 2-4
updating pixel values • 4-4

Screen type

See Visual type
Segment data structure • 6-8
SELECT INPUT routine• 9-5
Selection

See Window selection
Selection clear event data structure • 9-53
Selection event data structure • 9-55
Selection request event data structure • 9-54
SEND EVENT routine• 9-59

lndex-8

Server

client requests to • 1-9
definition• 1-1
managing requests • 2-8
relationship to client • 2-1

Server access control list
definition • 2-5

Server Natural Form
See SNF

SET ERROR HANDLER routine • 9-60
SET FONT routine • 8-15
SET 10 ERROR HANDLER routine• 9-62
SET SELECTION OWNER routine• 3-30
Set window attributes data structure • 3-8
SET WINDOW BORDER WIDTH routine• 3-35
SET WM HINTS routine• 3-25
Size hints data structure• 3-28
SNF (Server Natural Form)• A-1
Stacking order

changing • 3-37 to 3-38
Static gray• 5-4
Stippling

origin for• 4-1 O
specifying pixmap for• 4-1 O

STORE COLOR routine • 5-21
STORE COLORS routine• 5-21
STORE NAMED COLOR routine• 5-21
Subwindow

lowering • 3-38
mapping • 3-16
movement when reconfiguring parent • 3-35
raising• 3-38
reordering in hierarchy • 3-16

SYNCHRONIZE routine• 9-59
Synchronous operation • 9-59

T
Text

computing size of• 8-17
drawing • 8-18
example of drawing with DRAW STRING • 8-21
example of drawing with DRAW TEXT• 8-19
styles of filling • 4-8
text character

definition • 8-1
illustrated• 8-1
positioning • 8-1

TEXT EXTENTS 16 routine • 8-17
TEXT EXTENTS routine• 8-17

Text item 16 data structure • 8-19
Text item data structure • 8-18
TEXT WIDTH 16 routine • 8-17
TEXT WIDTH routine• 8-17
Tiling

origin for• 4-1 O
specifying pixmap for• 4-9

Transport mechanism • 2-4

u
UNDEFINE CURSOR routine· 6-38
Unmap event data structure• 9-47
UNMAP SUBWINDOWS routine• 3-17
UNMAP WINDOW routine• 3-17

v
Visibility event data structure • 9-48
Visual type

default• 5-6
definition • 5-4
determining • 5-6
direct color• 5-4
gray scale • 5-4
pseudocolor • 5-4
static gray • 5-4
using to share color• 5-4

w
Window

associating properties with • 3-17
changing

attributes • 3-38 to 3-40
characteristics of• 3-31
stacking order • 3-37 to 3-38

circulation
receiving notification of• 9-37

clearing areas of• 6-23
clearing areas with FILL RECTANGLES• 6-23
copying areas of• 6-24
creating

receiving notification of• 9-40
using attributes of parent • 3-6

Index

Window (cont'd.)

creating and specifying attributes of• 3-7 to
3-16

creating simple• 3-6 to 3-7
default characteristics • 3-6
destroying • 3-16

receiving notification of • 9-41
entries and exits • 9-15
example of configuring • 3-33
example of creating simple • 3-7
example of mapping and raising in hierarchy •

3-16
flags for referring to attributes • 3-13
getting information about • 3-40 to 3-43
initial state

providing window manager hints about• 3-25
lowering in the hierarchy • 3-38
mapping• 3-16

receiving notification of • 9-43
obscuring • 3-5

treating • 3-11
overview of • 3-1
parent

definition • 3-2
receiving notification of change of • 9-45

position relative to parent • 3-4
raising in the hierarchy • 3-38
reconfiguration

effects on graphics and text • 3-35
resizing • 3-31
restacking

constants for specifying • 3-32
restoring contents of exposed• 9-28
saving contents of another • 3-12
specifying background color of• 4-5
specifying color maps for • 3-12
specifying cursor for• 3-12
specifying foreground color of• 4-4
types of • 3-1
unmapping • 3-16

receiving notification of• 9-47
visibility of • 3-5

receiving notification of change in • 9-48
Window attribute

data structure used to define• 3-8
default value of• 3-12
defining• 3-7 to 3-16

Window attributes data structure• 3-41
Window background

effect of changing• 3-40
repainting• 3-40
server treatment of • 3-10

lndex-9

Index

Window background (cont'd.)

specifying when creating a window• 3-6 to 3-7,
3-9 to 3-10

using a pixel to define• 3-1 O
using a pixmap to define • 3-9

Window border
effect of changing• 3-40
effect on graphic operations• 3-11
specifying when creating a window• 3-6 to 3-7,

3-11
using a pixel to define • 3-11
using a pixmap to define • 3-11

Window changes data structure • 3-31
Window clipping

specifying• 4-1 O
Window contents

managing when window is resized • 3-11
preserving• 3-11
repainting when obscured• 3-11
saving• 3-12

Window coordinate system • 3-4 to 3-5
Window entry or exit

caused by a grab • 9-18
caused by pointer movement • 9-18
events reported as result of• 9-18
example of handling • 9-19
pseudomotion • 9-21

Window event
See Event

WINDOW EVENT routine• 9-58
Window exposure • 9-28 to 9-30

definition • 9-28
example of handling • 9-30

Window gravity
definition • 3-11
effect of changing • 3-40

Window hierarchy • 3-2 to 3-4
Window icon

providing window manager hints about• 3-25
Window manager

providing hints to• 3-24
working with• 3-24

Window movement
managing when parent is resized• 3-11

Window obscuring • 3-5
treating • 3-11

Window occlusion • 3-5
Window position

receiving notification of change in • 9-42
specifying when creating a window• 3-6 to 3-7

Window restacking • 3-3~

lndex-10

Window selection

definition • 3-30
receiving notification of• 9-53
receiving notification of request for• 9-55
receiving request to convert• 9-54

Window size
specifying when creating a window• 3-6 to 3-7

Window visibility• 3-5

See also Mapping
receiving notification of changes in • 9-48

WM hints data structure• 3-25

x
Xlib program

sample of • 1-2
XV bitmap format• 7-8
XV pixmap format• 7-8

z
Z pixmap format • 7-9

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local DIGITAL subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local DIGITAL subsidiary or
approved distributor

SDC Order Processing - WMO/E15
or
Software Distribution Center
Digital Equipment Corporation
Westminster, Massachusetts 014 73

1 For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VMS DECwindows
Guide to Xlib Programming:

VAX Binding
AA-MG25A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

--;o;~~;;:d Here ud Ta~ ------------------~ll~-------;~~;~---
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1

I
I
t
I
I
I
I

-- Do Not Tear - Fold Here --1
I
I
I
I
I
I
11

c
.! .. .,
c
c

' l
I
~ ..

Reader's Comments VMS DECwindows
Guide to Xlib Programming:

VAX Binding
AA-MG25A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) 0
Figures (useful) D
Examples (useful) D
Index (ability to find topic) 0
Page layout (easy to find information) 0

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D 0 0
0 D D
0 0 0

Dept.

Date

Phone

·- Do Not Tear - Fold Here and Tape -------------------~lllr--------------
No Postage

~amaoma™ ~:~=i~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 •• 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

in the
United States

I
I
I
I
I
I
I

·-Do Not Tear - Fold Here --,
1

c
.f
""
1 • c
' t s
..s
41!1

