
VMS

VMS DECwindows
Xlib Routines Reference Manual:
Part I

Order Number: AA-MG26A-TE

VMS DECwindows
Xlib Routines
Reference Manual
Order Numbers: Part I: AA-MG26A-TE

Part II: AA-MG27 A-TE

December 1988

This manual describes the VMS DECwindows Xlib programming routines.

Revision/Update Information: This is a new manual.

Software Version: VMS Version 5.1

digital equipment corporation
maynard, massachusetts

December 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1988.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA MASS BUS VAX RMS
DDIF PrintServer 40 VAXstation
DEC Q-bus VMS
DECnet ReGIS VT
DECUS ULTRIX XUI
DECwindows UNIBUS
DIGITAL VAX

mama om a TM LN03 VAXcluster

The following are third-party trademarks:

Postscript is a registered trademark of Adobe Systems, Inc.

X Window System, Version 1 O and its derivations (X, X10, X Version 10, X Window
System) are trademarks of the Massachusetts Institute of Technology.

X Window System, Version 11 and its derivations (X, X11, X Version 11, X Window
System) are trademarks of the Massachusetts Institute of Technology.

ZK4732

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use DIGITAL-supported devices, such as the LN03 laser
printer and PostScript printers (PrintServer 40 or LN03R ScriptPrinter),
to produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE xxv

CHAPTER 1 INTRODUCTION TO THE DECWINDOWS XLIB ROUTINES 1-1

1.1 ROUTINE DOCUMENTATION FORMAT 1-4
1.1.1 Routine Name 1-4
1.1.2 Overview 1-4
1.1.3 VAX Format 1-4
1.1.4 MIT C Format 1-8
1.1.5 Returns 1-8
1.1.6 Argument Information 1-9
1.1.7 Description 1-9
1.1.8 X Errors 1-9

1.2 DATA STRUCTURES 1-9

1.3 PROTOCOL REQUEST AND UTILITY ROUTINES 1-10

CHAPTER2 DISPLAY ROUTINES 2-1

2.1 DISPLAY ROUTINES 2-4
ALL PLANES 2-5
BITMAP BIT ORDER 2-6
BITMAP PAD 2-7
BITMAP UNIT 2-8
BLACK PIXEL 2-9
BLACK PIXEL OF SCREEN 2-10
CELLS OF SCREEN 2-11
CLOSE DISPLAY 2-12
CONNECTION NUMBER 2-14
DEFAULT COLORMAP 2-15
DEFAULT COLORMAP OF SCREEN 2-16
DEFAULT DEPTH 2-17
DEFAULT DEPTH OF SCREEN 2-18
DEFAULT GC 2-19

v

Contents

DEFAULT GC OF SCREEN 2-20
DEFAULT ROOT WINDOW 2-21
DEFAULT SCREEN 2-22
DEFAULT SCREEN OF DISPLAY 2-23
DEFAULT VISUAL 2-24
DEFAULT VISUAL OF SCREEN 2-25
DISPLAY CELLS 2-26
DISPLAY HEIGHT 2-27
DISPLAY HEIGHT MM 2-28
DISPLAY NAME 2-29
DISPLAY OF SCREEN 2-31
DISPLAY PLANES 2-32
DISPLAY STRING 2-33
DISPLAY WIDTH 2-35
DISPLAY WIDTH MM 2-36
DOES BACKING STORE 2-37
DOES SAVE UNDERS 2-38
EVENT MASK OF SCREEN 2-39
FREE 2-40
HEIGHT MM OF SCREEN 2-41
HEIGHT OF SCREEN 2-42
IMAGE BYTE ORDER 2-43
LAST KNOWN REQUEST PROCESSED 2-44
MAX CMAPS OF SCREEN 2-45
MIN CMAPS OF SCREEN 2-46
NEXT REQUEST 2-47
NOOP 2-48
OPEN DISPLAY 2-49
PLANES OF SCREEN 2-51
PROTOCOL REVISION 2-52
PROTOCOL VERSION 2-53
Q LENGTH 2-54
ROOT WINDOW 2-55
ROOT WINDOW OF SCREEN 2-56
ROTATE BUFFE~S 2-57
SCREEN COUNT 2-59
SCREEN OF DISPLAY 2-60
SERVER VENDOR 2-61
STORE BUFFER 2-63
STORE BYTES 2-65
VENDOR RELEASE 2-67
WHITE PIXEL 2-68

vi

CHAPTER3

3.1

3.2

3.3

3.4

WHITE PIXEL OF SCREEN

WIDTH MM OF SCREEN

WIDTH OF SCREEN

WINDOW ROUTINES

SET WINDOW ATTRIBUTES DATA STRUCTURE

WINDOW CHANGES DATA STRUCTURE

WINDOW ATTRIBUTES DATA STRUCTURE

WINDOW ROUTINES

CHANGE WINDOW ATTRIBUTES

CIRCULATE SUBWINDOWS

CIRCULATE SUBWINDOWS DOWN

CIRCULATE SUBWINDOWS UP

CONFIGURE WINDOW

CREATE SIMPLE WINDOW

CREATE WINDOW

DESTROY SUBWINDOWS

DESTROY WINDOW

GET GEOMETRY

GET WINDOW ATTRIBUTES

LOWER WINDOW

MAP RAISED

MAP SUBWINDOWS

MAP WINDOW

MOVE RESIZE WINDOW

MOVE WINDOW

QUERY POINTER

QUERY TREE

RAISE WINDOW

RESIZE WINDOW

RESTACK WINDOWS

SET WINDOW BACKGROUND

SET WINDOW BACKGROUND PIXMAP

SET WINDOW BORDER

SET WINDOW BORDER PIXMAP

2-69
2-70
2-71

3-15
3-18
3-20
3-22
3-24
3-27
3-31
3-35
3-37
3-39
3-42
3-44
3-46
3-47
3-48
3-50
3-53
3-55
3-58
3-61
3-62
3-64
3-66
3-68
3-70
3-72

Contents

3-1

3-3

3-7

3-9

3-14

vii

Contents

CHAPTER 4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

viii

SET WINDOW BORDER WIDTH

TRANSLATE COORDINATES

UNMAP SUBWINDOWS

UNMAP WINDOW

EVENT ROUTINES

EVENT DATA STRUCTURE

THE EVENT MASK

THE PREDICATE PROCEDURE

TIME COORDINATE DATA STRUCTURE

ERROR HANDLING

ERROR EVENT DATA STRUCTURE

EVENT ROUTINES

CHECK IF EVENT

CHECK MASK EVENT

CHECK TYPED EVENT

CHECK TYPED WINDOW EVENT

CHECK WINDOW EVENT

EVENTS QUEUED

FLUSH

GET ERROR DATABASE TEXT

GET ERROR TEXT

GET MOTION EVENTS

IF EVENT

MASK EVENT

NEXT EVENT

PEEK EVENT

PEEK IF EVENT

PENDING

PUT BACK EVENT

SELECT ASYNC EVENT

3-74
3-75
3-78
3-79

4-12
4-14
4-16
4-18
4-20
4-22
4-24
4-25
4-27
4-29
4-32
4-34
4-36
4-37
4-38
4-40
4-41
4-42

4-1

4-3

4-4

4-6

4-6

4-7

4-9

4-11

Contents

SELECT ASYNC INPUT 4-44
SELECT INPUT 4-46
SEND EVENT 4-48
SET AFTER FUNCTION 4-51
SET ERROR HANDLER 4-53
SET 10 ERROR HANDLER 4-55
SYNC 4-56
SYNCHRONIZE 4-57
WINDOW EVENT 4-59

CHAPTER 5 GRAPHICS CONTEXT ROUTINES 5-1

5.1 THE GC VALUES DATA STRUCTURE 5-2

5.2 GC MASK 5-22

5.3 GRAPHICS CONTEXT ROUTINES 5-24
CHANGE GC 5-25
COPY GC 5-27
CREATE GC 5-29
FREE GC 5-32
GCONTEXT FROM GC 5-33
QUERY BEST SIZE 5-34
QUERY BEST STIPPLE 5-37
QUERY BEST TILE 5-40
SET ARC MODE 5-43
SET BACKGROUND 5-45
SET CLIP MASK 5-47
SET CLIP ORIGIN 5-49
SET CLIP RECTANGLES 5-51
SET DASHES 5-54
SET FILL RULE 5-57
SET FILL STYLE 5-60
SET FONT 5-62
SET FOREGROUND 5-64
SET FUNCTION 5-66
SET GRAPHICS EXPOSURES 5-68
SET LINE ATTRIBUTES 5-70
SET PLANE MASK 5-75
SET STATE 5-77

ix

Contents

CHAPTER 6

6.1

6.2

6.3

6.4

6.5

6.6

x

SET STIPPLE

SET SUBWINDOW MODE

SET TILE

SET TS ORIGIN

GRAPHICS ROUTINES

POINT DATA STRUCTURE

SEGMENT DATA STRUCTURE

RECTANGLE DATA STRUCTURE

ARC DATA STRUCTURE

IMAGE DATA STRUCTURE

GRAPHICS ROUTINES

ADD PIXEL

CLEAR AREA

CLEAR WINDOW

COPY AREA

COPY PLANE

CREATE IMAGE

DESTROY IMAGE

DRAW ARC

DRAW ARCS

DRAW LINE

DRAW LINES

DRAW POINT

DRAW POINTS

DRAW RECTANGLE

DRAW RECTANGLES

DRAW SEGMENTS

FILL ARC

FILL ARCS

FILL POLYGON

FILL RECTANGLE

FILL RECTANGLES

5-80

5-82
5-84

5-86

6-11
6-12
6-15
6-17
6-21
6-25
6-29
6-30
6-34
6-37
6-40
6-45
6-47
6-51
6-55
6-58
6-61
6-64
6-67
6-72
6-75

6-1

6-2

6-3

6-4

6-5

6-6

6-10

Contents

GET IMAGE 6-78

GET PIXEL 6-81

GET SUBIMAGE 6-83

PUT IMAGE 6-87

PUT PIXEL 6-90

SU Bl MAGE 6-92

CHAPTER7 TEXT ROUTINES 7-1

7.1 DRAWING TEXT 7-2
7.1.1 Text Item 8-Bit Data Structure 7-2
7.1.2 Text Item 16-Bit Data Structure 7-3

7.2 TEXT ROUTINES 7-4

DRAW IMAGE STRING 7-5

DRAW IMAGE STRING 16 7-8

DRAW STRING 7-11

DRAW STRING 16 7-14

DRAW TEXT 7-17

DRAW TEXT 16 7-20

QUERY TEXT EXTENTS 7-23

QUERY TEXT EXTENTS 16 7-26

TEXT EXTENTS 7-29

TEXT EXTENTS 16 7-32
TEXT WIDTH 7-35

TEXT WIDTH 16 7-37

CHAPTER 8 PROPERTY ROUTINES 8-1

8.1 SIZE HINTS DATA STRUCTURE 8-3

8.2 ICON SIZE DATA STRUCTURE 8-6

8.3 WINDOW MANAGER HINTS DATA STRUCTURE 8-8

xi

Contents

8.4 PROPERTY ROUTINES 8-10
CHANGE PROPERTY 8-11
CONVERT SELECTION 8-14
DELETE CONTEXT 8-16
DELETE PROPERTY 8-18
FETCH BUFFER 8-20
FETCH BYTES 8-22
FETCH NAME 8-24
FIND CONTEXT 8-26
GET ATOM NAME 8-28
GET CLASS HINT 8-30
GET ICON NAME 8-32
GET ICON SIZES 8-34
GET NORMAL HINTS 8-37
GET SELECTION OWNER 8-39
GET SIZE HINTS 8-41
GET TRANSIENT FOR HINT 8-43
GET WINDOW PROPERTY 8-45
GET WM HINTS 8-50
GET ZOOM HINTS 8-52
INTERN ATOM 8-54
LIST PROPERTIES 8-56
ROTATE WINDOW PROPERTIES 8-58
SAVE CONTEXT 8-60
SET CLASS HINT 8-62
SET COMMAND 8-64
SET ICON NAME 8-66
SET ICON SIZES 8-68
SET NORMAL HINTS 8-70
SET SELECTION OWNER 8-72
SET SIZE HINTS 8-74
SET STANDARD PROPERTIES 8-76
SET TRANSIENT FOR HINT 8-79
SET WM HINTS 8-81
SET ZOOM HINTS 8-83
STORE NAME 8-85
UNIQUE CONTEXT 8-87

xii

Contents

CHAPTER 9 REGION ROUTINES 9-1

9.1 RECTANGLE DATA STRUCTURE 9-2

9.2 REGION ROUTINES 9-3
CLIP BOX 9-4
CREATE REGION 9-5
DESTROY REGION 9-6
EMPTY REGION 9-7
EQUAL REGION 9-8
INTERSECT REGION 9-9
OFFSET REGION 9-11
POINT IN REGION 9-12
POLYGON REGION 9-14
RECT IN REGION 9-17
SET REGION 9-19
SHRINK REGION 9-20
SUBTRACT REGION 9-22
UNION RECT WITH REGION 9-24
UNION REGION 9-26
XOR REGION 9-28

CHAPTER10 WINDOW AND SESSION MANAGER ROUTINES 10-1

10.1 NETWORK DATA STRUCTURE 10-5

10.2 KEYBOARD CONTROL DATA STRUCTURE 10-6
10.2.1 Keyboard Control Value Mask 10-8

10.3 KEYBOARD STATE DATA STRUCTURE 10-10

10.4 COMPOSE DATA STRUCTURE 10-12

10.5 MODIFIER KEY MAP DATA STRUCTURE 10-12

xiii

Contents

10.6 WINDOW AND SESSION MANAGER ROUTINES 10-13
ACTIVATE SCREEN SAVER 10-14
ADD HOST 10-15
ADD HOSTS 10-17
ADD TO SAVE SET 10-19
ALLOW EVENTS 10-21
AUTO REPEAT OFF 10-25
AUTO REPEAT ON 10-26
BELL 10-27
CHANGE ACTIVE POINTER GRAB 10-29
CHANGE KEYBOARD CONTROL 10-32
CHANGE KEYBOARD MAPPING 10-34
CHANGE POINTER CONTROL 10-37
CHANGE SAVE SET 10-39
DELETE MODIFIERMAP ENTRY 10-41
DISABLE ACCESS CONTROL 10-43
ENABLE ACCESS CONTROL 10-45
FORCE SCREEN SAVER 10-47
FREE MODIFIERMAP 10-49
GEOMETRY 10-50
GET DEFAULT 10-54
GET INPUT FOCUS 10-56
GET KEYBOARD CONTROL 10-58
GET KEYBOARD MAPPING 10-59
GET MODIFIER MAPPING 10-62
GET POINTER CONTROL 10-64
GET POINTER MAPPING 10-66
GET SCREEN SAVER 10-68
GRAB BUTTON 10-71
GRAB KEV 10-77
GRAB KEYBOARD 10-81
GRAB POINTER 10-84
GRAB SERVER 10-89
INSERT MODIFIERMAP ENTRY 10-90
INSTALL COLORMAP 10-93
KEVCODE TO KEVSYM 10-95
KEVSVM TO KEVCODE 10-96
KEVSVM TO STRING 10-97
KILL CLIENT 10-98
LIST HOSTS 10-100
LIST INSTALLED COLORMAPS 10-102
LOOKUP KEVSVM 10-104

xiv

Contents

LOOKUP STRING 10-105
NEW MODIFIER MAP 10-107
PARSE COLOR 10-108
PARSE GEOMETRY 10-112
QUERY KEYMAP 10-115
REBIND KEYSYM 10-116
REFRESH KEYBOARD MAPPING 10-118
REMOVE FROM SAVE SET 10-119
REMOVE HOST 10-121
REMOVE HOSTS 10-123
REPARENT WINDOW 10-125
RESET SCREEN SAVER 10-128
SET ACCESS CONTROL 10-129
SET CLOSE DOWN MODE 10-131
SET INPUT FOCUS 10-133
SET MODIFIER MAPPING 10-136
SET POINTER MAPPING 10-138
SET SCREEN SAVER 10-140
STRING TO KEYSYM 10-143
UNGRAB BUTTON 10-144
UNGRAB KEY 10-146
UNGRAB KEYBOARD 10-148
UNGRAB POINTER 10-149
UNGRAB SERVER 10-150
UNINSTALL COLORMAP 10-151
WARP POINTER 10-153

CHAPTER 11 PIXMAP AND BITMAP ROUTINES 11-1

11.1 PIXMAP AND BITMAP ROUTINES 11-1
CREATE BITMAP FROM DATA 11-2
CREATE PIXMAP 11-4
CREATE PIXMAP FROM BITMAP DATA 11-6
FREE PIXMAP 11-8
READ BITMAP FILE 11-9
WRITE BITMAP FILE 11-12

xv

Contents

CHAPTER12 COLOR ROUTINES 12-1

12.1 STANDARD COLOR MAP DATA STRUCTURE 12-2

12.2 COLOR DEFINITION DATA STRUCTURE 12-5

12.3 COLOR ROUTINES 12-7
ALLOC COLOR 12-8
ALLOC COLOR CELLS 12-10
ALLOC COLOR PLANES 12-13
ALLOC NAMED COLOR 12-17
COPYCOLORMAPANDFREE 12-20
CREATE COLORMAP 12-22
FREE COLORMAP 12-25
FREE COLORS 12-27
GET STANDARD COLORMAP 12-29
GET VISUAL INFO 12-32
LOOKUP COLOR 12-35
MATCH VISUAL INFO 12-38
QUERY COLOR 12-40
QUERY COLORS 12-42
SET STANDARD COLORMAP 12-44
SET WINDOW COLORMAP 12-46
STORE COLOR 12-48
STORE COLORS 12-50
STORE NAMED COLOR 12-52

CHAPTER 13 FONT ROUTINES 13-1

13.1 FONT DATA STRUCTURE 13-2

1·3.2 CHARACTER DATA STRUCTURE 13-6

13.3 FONT PROPERTY DATA STRUCTURE 13-8

xvi

Contents

13.4 FONT ROUTINES 13-9

FREE FONT 13-10

FREE FONT INFO 13-11

FREE FONT NAMES 13-12

FREE FONT PATH 13-13

GET CHAR STRUCT 13-14

GET FONT PATH 13-15

GET FONT PROPERTY 13-17

LIST FONT 13-19

LIST FONT WITH INFO 13-21

LIST FONTS 13-23

LIST FONTS WITH INFO 13-25

LOAD FONT 13-27

LOAD QUERY FONT 13-29

QUERY FONT 13-31

SET FONT PATH 13-33

UNLOAD FONT 13-35

CHAPTER 14 CURSOR ROUTINES 14-1

14.1 CURSOR ROUTINES 14-1

CREATE FONT CURSOR 14-2

CREATE GLYPH CURSOR 14-4

CREATE PIXMAP CURSOR 14-7

DEFINE CURSOR 14-10

FREE CURSOR 14-12

QUERY BEST CURSOR 14-13

RECOLOR CURSOR 14-15

UNDEFINE CURSOR 14-17

CHAPTER 15 RESOURCE MANAGER ROUTINES 15-1

15.1 THE RESOURCE MANAGER 15-2

15.2 RESOURCE MANAGER MATCHING RULES 15-3

xvii

Contents

15.3 QUARKS 15-4

15.4 THE RESOURCE MANAGER VALUE DATA STRUCTURE 15-5

15.5 RESOURCE MANAGER ROUTINES 15-6
PERMALLOC 15-7
RM GET FILE DATABASE 15-8
RM GET RESOURCE 15-9
RM GET STRING DATABASE 15-11
RM INITIALIZE 15-12
RM MERGE DATABASES 15-13
RM PARSE COMMAND 15-14
RM PUT FILE DATABASE 15-16
RM PUT LINE RESOURCE 15-17
RM PUT RESOURCE 15-18
RM PUT STRING RESOURCE 15-20
RM Q GET RESOURCE 15-21
RM Q GET SEARCH LIST 15-23
RM Q GET SEARCH RESOURCE 15-25
RM Q PUT RESOURCE 15-27
RM Q PUT STRING RESOURCE 15-29
RM QUARK TO STRING 15-31
RM STRING TO BIND QUARK LIST 15-32
RM STRING TO QUARK 15-33
RM STRING TO QUARK LIST 15-34
RM UNIQUE QUARK 15-35

INDEX

FIGURES
3-1 Set Window Attributes Data Structure (VAX Binding) 3-3
3-2 Set Window Attributes Data Structure (MIT C Binding) 3-6
3-3 Window Changes Data Structure (VAX Binding) 3-8
3-4 Window Changes Data Structure (MIT C Binding) 3-9
3-5 Window Attributes Data Structure (VAX Binding) 3-9
3-6 Window Attributes Data Structure (MIT C Binding) 3-13
4-1 Event Data Structure (VAX Binding) 4-3
4-2 Event Data Structure (MIT C Binding) 4-4

xvm

Contents

4-3 Time Coordinate Data Structure (VAX Binding) 4-6

4-4 Time Coordinate Data Structure (MIT C Binding) 4-7

4-5 Error Event Data Structure (VAX Binding) 4-10

4-6 Error Event Data Structure (MIT C Binding) 4-10

5-1 GC Values Data Structure (VAX Binding) 5-3

5-2 Line Styles 5-10

5-3 Cap Styles 5-11

5-4 Join Styles 5-12

5-5 Fill Rules 5-13

5-6 Arc Fill Options 5-13

5-7 GC Values Data Structure (MIT C Binding) 5-15

5-8 Arc Fill Options 5-44

5-9 Dash Offset and Dash List 5-55

5-10 Odd Dash List 5-56

5-11 Fill Rules 5-59

5-12 Line Styles 5-71

5-13 Cap Styles 5-72

5-14 Join Styles 5-73

6-1 Point Data Structure (VAX Binding) 6-2

6-2 Point Data Structure (MIT C Binding) 6-3

6-3 Segment Data Structure (VAX Binding) 6-3

6-4 Segment Data Structure (MIT C Binding) 6-4

6-5 Rectangle Data Structure (VAX Binding) 6-4

6-6 Rectangle Data Structure (MIT C Binding) 6-5

6-7 Arc Data Structure (VAX Binding) 6-5

6-8 Arc Data Structure (MIT C Binding) 6-6

6-9 Image Data Structure (VAX Binding) 6-7

6-10 Image Data Structure (MIT C Binding) 6-9

6-11 Rectangular Area Cleared 6-14

6-12 Specifying an Arc 6-32

6-13 Lines Drawn in Different Line Modes 6-43

6-14 Points Drawn in Different Coordinate Modes 6-49

6-15 Outline of a Rectangle 6-53

6-16 Polygon Shapes Drawn in Different Coordinate Modes 6-70

7-1 Text Item Data Structure (VAX Binding) 7-2

7-2 Text Item Data Structure (MIT C Binding) 7-3

7-3 Text Item 16 Data Structure (VAX Binding) 7-3

7-4 Text Item 16 Data Structure (MIT C Binding) 7-4

8-1 Size Hints Data Structure (VAX Binding) 8-3

8-2 Size Hints Data Structure (MIT C Binding) 8-5

xix

Contents

8-3 Icon Size Data Structure (VAX Binding) 8-7

8-4 Icon Size Data Structure (MIT C Binding) 8-8

8-5 WM Hints Data Structure (VAX Binding) 8-8

8-6 WM Hints Data Structure (MIT C Binding) 8-10

9-1 Rectangle Data Structure (VAX Binding) 9-2

9-2 Rectangle Data Structure (MIT C Binding) 9-3

9-3 Region Intersection 9-10
9-4 Point Data Structure (VAX Binding) 9-15

9-5 Point Data Structure (MIT C Binding) 9-16

9-6 Shrinking a Region 9-21

9-7 Subtracting a Region 9-23

9-8 Union of a Source Region and a Rectangle 9-25

9-9 Union of Two Regions 9-27
9-10 Exclusive OR Operation 9-29
10-1 Network Data Structure (VAX Binding) 10-5
10-2 Network Data Structure (MIT C Binding) 10-5

10-3 Keyboard Control Data Structure (VAX Binding) 10-6
10-4 Keyboard Control Data Structure (MIT C Binding) 10-7

10-5 Keyboard State Data Structure (VAX Binding) 10-10
10-6 Keyboard State Data Structure (MIT C Binding) 10-11
10-7 Compose Data Structure (VAX Binding) 10-12
10-8 Compose Data Structure (MIT C Binding) 10-12
10-9 Modifier Key Map Data Structure (VAX Binding) 10-13
10-10 Modifier Key Map Data Structure (MIT C Binding) 10-13
10-11 Color Definition Data Structure (VAX Binding) 10-110
10-12 Color Definition Data Structure (MIT C Binding) 10-111
12-1 Standard Color Map Data Structure (VAX Binding) 12-3
12-2 Standard Color Map Data Structure (MIT C Binding) 12-4
12-3 Color Definition Data Structure (VAX Binding) 12-6
12-4 Color Definition Data Structure (MIT C Binding) 12-7
13-1 Font Data Structure (VAX Binding) 13-2
13-2 Font Data Structure (MIT C binding) 13-5
13-3 Character Data Structure (VAX Binding) 13-7
13-4 Character Data Structure (MIT C Binding) 13-8
13-5 Font Property Data Structure (VAX Binding) 13-9
13-6 Font Property Data Structure (MIT C Binding) 13-9
15-1 Resource Manager Value Data Structure (VAX Binding) 15-5
15-2 Resource Manager Value Data Structure (MIT C Binding) - 15-6

xx

TABLES
1-1

1-2

1-3
1-4

1-5
2-1

3-1
3-2

3-3
3-4

3-5

3-6

3-7

3-8

3-9
3-10
4-1

4-2

4-3

4-4

4-5

4-6
4-7

5-1

5-2

5-3

5-4

5-5
5-6
5-7

General Rules of Syntax

VAX Usage Entries

Access Entries

Mechanism Entries

Protocol and Utility Routines

Display Routines

Window Routines

Members of the Set Window Attributes Data Structure (VAX
Binding)

Default Values of the Set Window Attributes Structure __

Members of the Set Window Attributes Structure (MIT C
Binding)

Members of the Window Changes Data Structure (VAX
Binding)

Members of the Window Changes Data Structure (MIT C
Binding)

Members of the Window Attributes Data Structure (VAX
Binding)

Members of the Window Attributes Data Structure (MIT C
Binding)

CHANGE WINDOW ATTRIBUTES Flags

Change Mask Bits

Event Routines

Event Mask Elements

Members of the Time Coordinate Data Structure (VAX
Binding)

Members of the Time Coordinate Data Structure (MIT C
Binding)

Xlib Error Codes

Members of the Error Event Data Structure (VAX Binding)

Members of the Error Event Data Structure (MIT C Binding) _

Graphics Context Routines

Members of the GC Values Data Structure (VAX Binding) _

Default Values for the GC Values Data Structure

Members of the GC Values Data Structure (MIT C Binding)

Default Values for the GC Values Data Structure

GC Mask Bits

Graphics Context Codes for Function Member

Contents

1-4

1-5
1-7
1-8

1-10
2-1

3-1

3-3

3-5

3-6

3-8

3-9

3-10

3-13
3-16
3-25
4-1

4-5

4-7

4-7

4-8
4-10
4-11

5-1

5-4

5-14
5-15

5-21
5-22
5-67

xxi

Contents

5-8 Graphics Context Codes for Function Member 5-78

6-1 Graphics Routines 6-1

6-2 Members of the Point Data Structure (VAX Binding) 6-3

6-3 Members of the Point Data Structure (MIT C Binding) 6-3

6-4 Members of the Rectangle Data Structure (VAX Binding) 6-4

6-5 Members of the Rectangle Data Structure (MIT C Binding) 6-5

6-6 Members of the Arc Data Structure (VAX Binding) 6-5

6-7 Members of the Arc Data Structure (MIT C Binding) 6-6

6-8 Members of the Image Data Structure (VAX Binding) 6-8

6-9 Members of the Image Data Structure (MIT C Binding) 6-9

7-1 Text Routines 7-1

7-2 Members of the Text Item Data Structure (VAX Binding) -- 7-2

7-3 Members of the Text Item Data Structure (MIT C Binding) - 7-3

7-4 Members of the Text Item 16 Data Structure (VAX Binding) - 7-3

7-5 Members of the Text Item 16 Data Structure (MIT C Binding) 7-4

8-1 Property Routines 8-1

8-2 Members of the Size Hints Data Structure (VAX Binding) - 8-4

8-3 Members of the Size Hints Data Structure (MIT C Binding) - 8-5

8-4 Members of the Icon Size Data Structure (VAX Binding) -- 8-7

8-5 Members of the Icon Size Data Structure (MIT C Binding) - 8-8

8-6 Members of the WM Hints Data Structure (VAX Binding) - 8-9

8-7 Members of the WM Hints Data Structure (MIT C Binding) 8-10

9-1 Region Routines 9-1

9-2 Members of the Rectangle Data Structure (VAX Binding) - 9-3

9-3 Members of the Rectangle Data Structure (MIT C Binding) 9-3

9-4 Fill Rule Constants 9-15

9-5 Members of the Point Data Structure (VAX Binding) 9-16

9-6 Members of the Point Data Structure (MIT C Binding) 9-16

10-1 Window and Session Manager Routines 10-1

10-2 Members of the Network Data Structure (VAX Binding) 10-5

10-3 Members of the Network Data Structure (MIT C Binding) 10-6

10-4 Members of the Keyboard Control Data Structure (VAX
Binding) 10-7

10-5 Members of the Keyboard Control Data Structure (MIT C
Binding) 10-7

10-6 Keyboard Control Value Mask 10-8

10-7 Members of the Keyboard State Data Structure (VAX
Binding) 10-10

10-8 Members of the Keyboard State Data Structure (MIT C
Binding) 10-11

10-9 Members of the Compose Data Structure (VAX Binding) 10-12

xxii

Contents

10-10 Members of the Compose Data Structure (MIT C Binding) 10-12

10-11 Members of the Modifier Key Map Data Structure (VAX
Binding) 10-13

10-12 Members of the Modifier Key Map Data Structure (MIT C
Binding) 10-13

10-13 Event Mask Description 10-30
10-14 Parse Mask Bits 10-51

10-15 Event Mask Description 10-73
10-16 Event Mask Description 10-85

10-17 Adding a Key Code to a Zero Value 10-92

10-18 Adding a Key Code to a Nonzero Value 10-92

10-19 Members of the Color Definition Data Structure (VAX
Binding) 10-110

10-20 Members of the Color Definition Data Structure (MIT C
Binding) 10-111

10-21 Parse Mask Bits 10-113
11-1 Pixmap and Bitmap Routines 11-1
12-1 Color Routines 12-1
12-2 Members of the Standard Color Map Data Structure (VAX

Binding) 12-3
12-3 Members of the Standard Color Map Data Structure (MIT C

Binding) 12-4
12-4 Members of the Color Definition Data Structure (VAX

Binding) 12-6
12-5 Members of the Color Definition Data Structure (MIT C

Binding) 12-7
12-6 Visual Information Mask Bits 12-33
13-1 Window and Session Font Routines 13-1
13-2 Members of the Font Data Structure (VAX Binding) 13-3
13-3 Members of the Font Data Structure (MIT C Binding) 13-5
13-4 Members of the Character Data Structure (VAX Binding) 13-7
13-5 Members of the Character Data Structure (MIT C Binding) - 13-8
13-6 Members of the Font Property Data Structure (VAX Binding) 13-9
13-7 Members of the Font Property Data Structure (MIT C

Binding) 13-9
14-1 Window and Session Cursor Routines 14-1
15-1 Resource Manager Routines 15-1
15-2 Members of the Resource Manager Value Data Structure (VAX

Binding) 15-5
15-3 Members of the Resource Manager Value Data Structure (MIT

C Binding) 15-6

xxiii

Preface

Intended Audience
This document is for experienced programmers who will be creating
applications with VMS DECwindows. This document assumes a
knowledge of VAX calling standards and of the C programming language.

Document Structure
This document is composed of an Introduction chapter and fourteen
Reference chapters.

The Introduction chapter provides information on the documentation
format for the VMS DECwindows graphics programming routines.

The Reference chapters provide the following information on each
programming routine:

• How to call the routine according to the VMS calling standard for any
VAX supported language.

• How to call the routine according to the MIT C programming
standards.

• A description of each argument in the routine.

• A description of how the routine functions.

• A list of values returned by the routine.

This document is in two parts. Part I contains the Introduction chapter
and the Reference chapters for the following sets of routines:

• Display routines

• Window routines

• Event routines

• Graphics context routines

• Graphics routines

• Text routines

Part II contains the Reference chapters for the following sets of routines:

• Property routines

• Region routines

• Window and session manager routines

• Pixmap and bitmap routines

xxv

Preface

• Color routines

• Font routines

• Cursor routines

• Resource manager routines

Associated Documents

Conventions

xxvi

Readers may find the following documents useful when programming with
DECwindows Xlib routines:

• VMS DECwindows Xlib Programming Volume-Describes how to
program DECwindows routines using the VAX. and MIT C bindings

• VMS DECwindows Guide to Application Programming-As well
as offering a guide to programming the DECwindows toolkit, this
manual provides an overview of programming in the DECwindows
environment

• XUI Style Guide-Describes the standard DECwindows user interface

The following conventions are used in this manual:

mouse

()

[]

{}

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

In examples, a horizontal ellipsis indicates one of the
following possibilities:

Additional optional arguments in a statement
have been omitted.

The preceding item or items can be repeated one
or more times.
Additional parameters, values, /or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or
all of the choices.

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

boldface text

UPPERCASE TEXT

numbers

Preface

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

Uppercase letters indicate the name of a routine, the
name of a file, the name of a file protection code, or
the abbreviation for a system privilege.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes-binary,
octal, or hexadecimal-are explicitly indicated.

xxvii

1 Introduction to the DECwindows Xlib Routines

The VMS DECwindows Xlib programming library routines provide the
programming interface to the X Window System, Version 11. Many of
these routines provide input directly to or receive output directly from
the X server and are therefore the lowest level of programming interface.
Other sets of VMS DECwindows tools are built on top of these routines to
provide higher levels of programming interface.

The VMS DECwindows Xlib library (hereafter referred to as Xlib) is a
subset of the MIT X Window System Release 2 Xlib with several additions.

Xlib provides a complete implementation of the Xlib C Language
X Interface (Release 2) with the exception of the X Window System,
Version 10 compatibility routines and the X extension routines. The
following routines and macros are not provided in Xlib:

X Version 10 compatibility routines:

XCreateAssocTable
XDeleteAssoc
XDestroy AssocTable
XDraw
XDrawFilled
XLookU pAssoc
XMakeAssocTable

X Version 11 extension routines/macros:

Data
GetReq
GetReqExtra
GetResReq
GetEmptyReq
LockDisplay
PackData
SyncHandle
UnlockDisplay
XAddToExtensionList
XAllocID
Xcalloc
XESetCloseDisplay
XESetCreateFont
XESetCreateGC
XESetCopyGC
XESetError
XESetErrorString
XESetEventTo Wire
XESetFlushGC
XESetFreeGC
XESetFreeFont

1-1

Introduction to the DECwindows Xlib Routines

1-2

XE Set WireToEvent
XFindOnExtensionList
XFlushGC
Xfree
XFreeExtensionList
XInitExtension
XListExtensions
Xmalloc
XQuery Extension
_XAllocScratch
_XFlushGCCache
_XRead
_XReply
_XS end

Xlib provides several additions to the MIT Xlib, including support for
asynchronous programming and entry points that conform to the VAX
Procedure Calling Standard. You can perform Xlib calls at Asynchronous
System Trap (AST) level, and these can be mixed with other calls at non
AST level. Xlib also extends the LOOKUP STRING routine to support
DIGITAL international keyboards and the ISO Latin 1 character set.

The routines are organized according to function. Within each functional
group, they are organized alphabetically. The categories of Xlib routines
are as follows:

• Display routines connect and disconnect the server, send and retrieve
data to and from the server, and obtain default information about the
display with which you are working.

• Window routines create, map, move, change, and destroy windows.
This category also includes routines that obtain information about a
window.

• Event and error handling routines select and check input/output
events and handle error conditions.

• Graphics context routines create, change, and delete graphics context
structures and attributes.

• Graphics routines draw, fill, and erase points, lines, polygons, and arcs.
This category also includes routines that handle complex images.

• Text routines manipulate text in a window.

• Property routines create, use, and destroy window properties. This
category also includes context routines.

• Region routines create, use, and destroy regions within a window.

• Window and session management routines, which are special purpose
routines normally only used by the window manager and session
manager.

• Pixmap and bitmap routines create and free pixmaps and bitmaps.

• Color routines manipulate color maps and allocate, define, and use
colors. This category also includes visual information routines.

Introduction to the DECwindows Xlib Routines

• Font routines specify, load, and free fonts.

• Cursor routines create, use, and delete cursors.

• Resource manager routines store, retrieve, and search for resources.

For each functional group of routines, an overview section at the beginning
of each chapter describes the routines in general. The overview section
also includes descriptions of each predefined data structure used within
that functional group.

Most routines can be formatted and called according to the following
bindings:

• VAX binding-Where the routine follows the VAX Procedure Calling
Standard

• C binding-Where the routine follows the MIT C language binding

Xlib can be used by programs written in any language that follows the
VAX Procedure Calling Standard. Xlib library definition files are provided
for the following 8 languages and may be found in SYS$LIBRARY:

• VAX Ada

• VAX BASIC

• VAX BLISS

• VAXC

• VAX FORTRAN

• VAX MACRO

• VAX Pascal

• VAX PL/I

Xlib programs that desire to retain binary compatibility with future
releases of DECwindows should not be coded to use the MIT C language
macros. Instead they should use the corresponding routine calls. No
commitment is made to retain binary compatibility for programs that use
the macro interface.

Xlib should not be used by VAX C language programs that have been
compiled with the /G_FLOAT qualifier. Xlib has been compiled with the
default /D_FLOAT qualifier and should not be intermixed with VAX C
/G_FLOAT modules.

If your program is going to use other portions of code written in another
VAX language, use the VAX binding to ensure that the VAX Procedure
Calling Standard is met. If the programming language you are using
cannot easily support the style used in many of the MIT C binding routines
(such as parameters passed by value and structure types used), you might
want to use the VAX binding. If the programming language you are using
easily accommodates the MIT C language binding (for example, C and
perhaps VAX BLISS), use the MIT C binding.

1-3

Introduction to the DECwindows Xlib Routines
1.1 Routine Documentation Format

1.1 Routine Documentation Format

1.1.1 Routine Name

1.1.2 Overview

1.1.3 VAX Format

1-4

Each Xlib routine is documented for both bindings using a standard
template. This section describes each category in this template, the
information that is presented under each category, and the format used to
present the information.

The following subsections describe each part in the documentation format.

The generic name of the routine that is used to refer to the routine for
both the VAX or C bindings.

A statement describing what the routine does. The overview is relevant to
both the VAX and C bindings.

The VAX routine call format. The format syntax is summarized in
Table 1-1.

Table 1-1 General Rules of Syntax

Element Syntax Rule

Routine entry point name

Equals sign

Parentheses

Argument names

Spaces

Brackets

Commas

The name is shown in all capital letters with the prefix
X. The routine entry point name is required.

For specific return values, the equals sign is required.

Open and close parentheses surround the argument
list in a routine call. They are required.

Argument names, including names of return
arguments, are always shown in lowercase
characters. All arguments not enclosed by brackets
([]) are required. They must be listed in the same
order in your program as they appear in the format.

One or more spaces are shown between the entry
point name and the first argument, and between each
argument. They are not required.

Brackets ([]) surround optional arguments. Commas
that appear inside brackets are optional and appear
only when the optional argument appears. The
brackets are not required.

Commas must appear between required arguments.
When commas appear inside brackets ([]), they
appear only when the optional argument appears.

The VAX format is followed by a table that lists information about each
argument listed in the format. Arguments are described in the order they

Introduction to the DECwindows Xlib Routines
1.1 Routine Documentation Format

appear in the format. The table lists the argument name, usage, data
type, access, and mechanism for each argument.

The following information is provided for each argument:

Usage

The Usage column specifies the general VAX binding argument type.
For example, if the argument is a resource identifier, the Usage field is
"identifier." This field provides additional information about the argument
that is helpful when declaring the argument within a program. Refer to
Table 1-2 for a list of usage entries used in Xlib routines.

Table 1-2 VAX Usage Entries

Entry

address

array

Boolean

byte

uns byte

char string

cond value

identifier

longword

uns longword

mask longword

procedure

record

word

uns word

Data Type

Description

Unsigned longword containing the virtual address of data
or code, but not of a procedure entry mask (which is a
procedure entry).

An array with the specific description of its elements provided
in the argument description.

Unsigned longword with the predefined values of 1 for true
and O for false.

A signed byte integer.

An unsigned byte integer.

String of O to 65,535 8-bit characters.

Unsigned longword specifying that a predefined condition
value will be returned in RO.

A value used to refer to a resource. It is originally returned
by the system. In the VAX binding, an identifier is a longword
integer (unsigned).

A signed longword integer

An unsigned longword integer

An unsigned longword interpreted as a bit mask.

Entry mask to a procedure.

A data structure with the specific description of the structure
provided in the argument description.

A signed word integer

An unsigned word integer

The data type column specifies the standard VAX data type of the
argument. For example, if the argument is a resource identifier, the data
type is "longword (unsigned)." If the argument has a predefined value, it
is provided in the description of the argument. The following are the VAX
data type entries used in the Xlib routines:

• byte

• character string

1-5

Introduction to the DECwindows Xlib Routines
1.1 Routine Documentation Format

1-6

• longword

• longword (unsigned), notated as uns longword

• vector longword

• word (signed)

• word (unsigned), notated as uns word

• The name of a VAX data structure. The following are the valid VAX
data structure names that can appear in this column:

x$any_event
x$arc
x$button_event
x$char_2b
x$char _struct
x$circ_request_event
x$circulate_event
x$class_hint
x$clie_message_event
x$color
x$colormap_event
x$compose_status
x$conf_request_event
x$configure_event
x$creat_ window _event
x$crossing_event
x$depth
x$destr_ window _event
x$display
x$error _event
x$event
x$expose_event
x$ext_codes
x$ext_data
x$focus_change_event
x$font_prop
x$font_struct
x$frame
x$gc_struct
x$gc_ values
x$graph_expose_event
x$gravity _event
x$host_address
x$icon_size
x$image
x$key_event
x$keyboard_control
x$keyboard_state
x$keymap_event
x$map_event
x$map_request_event
x$mapping_event
x$modifier_keymap

Introduction to the DECwindows Xlib Routines
1.1 Routine Documentation Format

x$motion_event
x$no_expose_event
x$point
x$property_event
x$rectangle
x$reparent_event
x$resource_req
x$resz_request_event
x$rm_value
x$screen
x$screen_format
x$segment
x$sel_request_event
x$select_clear_event
x$selection_event
x$set_ win_attributes
x$size_hints
x$standard_colormap
x$text_item
x$text_item_l 6
x$time_coord
x$unmap_event
x$visibility _event
x$visual
x$visual_info
x$window _attributes
x$window _changes
x$wm_hints

Access

The access column specifies the way in which the called routine accesses
the argument. For example, when the argument is passed as input,
the access is "read only" for both bindings and when the argument is
returned by the routine, the access is "write only" for both bindings. Refer
to Table 1-3 for a list of access entries used in the Xlib routines.

Table 1-3 Access Entries

Entry

read

write

Description

Input data needed by the routine to perform its operation
must be readable. When an argument specifies input data,
the access entry is readable. The routine cannot write data
back to this argument.

Output data returned by the routine to a specific location.
When an argument specifies output data, the access entry
is writable. The routine does not read the contents of the
location either before or after it writes into the location.

(continued on next page)

1-7

1.1.4

1.1.5

Introduction to the DECwindows Xlib Routines
1.1 Routine Documentation Format

MIT C Format

Returns

1-8

Table 1-3 (Cont.) Access Entries

Entry

read/write or modify

Mechanism

Description

The routine reads the input data, which it uses in its
operation, and then overwrites the input data with the
results (the output data) of the operation. Thus, when the
routine completes execution, the input data specified by the
argument is lost.

The mechanism column specifies the passing mechanism used by the
called routine. For example, when the argument is the value itself, the
mechanism is "by value" and when the argument is a pointer to the value,
the mechanism is "by reference." Refer to Table 1-4 for a complete list of
mechanism entries used in the Xlib routines.

Table 1-4 Mechanism Entries

Entry

value

reference

descriptor

Description

The argument contains the actual data to be used by the
routine. Note that because an argument is only one longword
in length, only data that can be represented in one longword
can be passed by value.

The argument contains the address of the data to be used by
the routine. The argument is a pointer to the actual data.

The argument contains the address of a descriptor. A
descriptor consists of two or more longwords (depending
on the type of descriptor used), which describe the location,
length, and the VAX standard data type of the data to be
used by the called routine. The argument is a pointer to a
descriptor that itself is a pointer to the actual data.

The section contains the MIT C routine call format. The MIT C format
follows the same conventions listed in Table 1-1, with the exception of the
routine entry point name. In MIT C, the name is shown in initial capitals
with the prefix X. The format is followed by the MIT C declarations for
each argument.

Most routines return a value. This section describes what the returned
value specifies. In the VAX binding, the first item in the argument table
describes how to declare the return value. In the MIT C binding, the
declaration for the return value is the first item in the declaration list. If
a routine does not have a return value, this section is omitted.

Introduction to the DECwindows Xlib Routines
1.1 Routine Documentation Format

1.1.6 Argument Information

1.1.7 Description

1.1.8 X Errors

1.2 Data Structures

Detailed descriptions of each argument follow the Returns section. These
descriptions cover what the arguments specify and any predefined values.

This section describes how to use the routine. Generally, the topics covered
can include what the routine is used for, how it is processed, other routines
to use before or after it, other routines to use to accomplish similar tasks,
and any other useful routine-specific information. For a more tutorial
description of how to use the Xlib routines, see VMS DECwindows Xlib
Programming Volume.

This section lists the X errors that the routine can return. An X error
event is generated by the server when it detects erroneous or inconsistent
information in a client request. Error events contain an error code that
tells the client what problem the server has with the request; for instance,
X$C_BAD_VALUE or BadValue would indicate a problem with the value
of some setting in the request. The X errors section contains a table that
lists the VAX and MIT C names for the error and a description of the error.

The X error description sections for utility routines list only the first-level
errors that the routines can generate. The utility routines may indirectly
generate additional errors if they call protocol requests that fail.

Predefined data structures are provided for complex data structures used
by Xlib routines. The data structures are presented in the overview section
for each functional group of routines. They are presented in two formats:

• VAX binding format-The data structure in a generic VAX language.
The generic language provides the VAX binding names for the data
structure and individual fields within the data structure. It also
provides the basic VAX data type for each field. The data type used for
a specific language must be subsequently derived. For information on
how to derive the data type for each supported VAX language, see the
Introduction to VMS System Routines in the VMS documentation set.

• MIT C binding format-The data structure in the MIT C programming
language.

For consistency, this manual refers to fields in data structures as
members.

1-9

Introduction to the DECwindows Xlib Routines
1.3 Protocol Request and Utility Routines

1.3 Protocol Request and Utility Routines

1-10

Although many Xlib routines make protocol requests directly, some do
not. Xlib routines that do make protocol requests directly are called the
protocol routines; those that do not are called the utility routines. The
utility routines make certain programming tasks easier.

For example, you can create clip areas using two routines: SET CLIP
RECTANGLES or SET REGION. SET CLIP RECTANGLES is a protocol
routine because it calls the SetClipRectangles protocol request directly.
SET REGION is a utility routine because it calls the Xlib routine SET
CLIP RECTANGLES, which then calls the SetClipRectangles protocol
request.

Table 1-5 lists each Xlib routine. If the routine makes a direct protocol
request, the name of the protocol request is listed. If it is a utility routine,
the term "Utility" appears. Only the Xlib routines are documented in this
reference manual, not the protocol requests.

Table 1-5 Protocol and Utility Routines

Xlib Routine

ACTIVATE SCREEN SAVER

ADD HOST

ADD HOSTS

ADD PIXEL

ADD TO SAVE SET

ALLOC COLOR

ALLOC COLOR CELLS

ALLOC COLOR PLANES

ALLOC NAMED COLOR

ALLOW EVENTS

ALL PLANES

AUTO REPEAT OFF

AUTO REPEAT ON

BELL

BITMAP BIT ORDER

BITMAP PAD

BITMAP UNIT

BLACK PIXEL

BLACK PIXEL OF SCREEN

CELLS OF SCREEN

CHANGE ACTIVE POINTER GRAB

CHANGE GC

Protocol Request or Utility Routine

ForceScreenSaver

Change Hosts

Change Hosts

Utility

ChangeSaveSet

AllocColor

AllocColorCells

AllocColorPlanes

AllocNamedColor

Allow Events

Utility

ChangeKeyboardControl

ChangeKeyboardControl

Bell

Utility

Utility

Utility

Utility

Utility

Utility

ChangeActivePointerGrab

ChangeGC

(continued on next page)

Introduction to the DECwindows Xlib Routines
1.3 Protocol Request and Utility Routines

Table 1-5 (Cont.) Protocol and Utility Routines

Xlib Routine

CHANGE KEYBOARD CONTROL

CHANGE KEYBOARD MAPPING

CHANGE POINTER CONTROL

CHANGE PROPERTY

CHANGE SAVE SET

CHANGE WINDOW ATTRIBUTES

CHECK IF EVENT

CHECK MASK EVENT

CHECK TYPED EVENT

CHECK TYPED WINDOW EVENT

CHECK WINDOW EVENT

CIRCULATE SUBWINDOWS

CIRCULATE SUBWINDOWS DOWN

CIRCULATE SUBWINDOWS UP

CLEAR AREA

CLEAR WINDOW

CLIP BOX

CLOSE DISPLAY

CONFIGURE WINDOW

CONNECTION NUMBER

CONVERT SELECTION

COPY AREA

COPYCOLORMAPANDFREE

COPY GC

COPY PLANE

CREATE BITMAP FROM DATA

CREATE COLORMAP

CREATE FONT CURSOR

CREATE GC

CREATE GLYPH CURSOR

CREATE IMAGE

CREATE PIXMAP

CREATE PIXMAP CURSOR

CREATE PIXMAP FROM BITMAP
DATA

CREATE REGION

Protocol Request or Utility Routine

ChangeKeyboardControl

ChangeKeyboardMapping

ChangePointerControl

Change Property

ChangeSaveSet

ChangeWindowAttributes

Utility

Utility

Utility

Utility

Utility

CirculateWindow

CirculateWindow

CirculateWindow

Clear Area

Clear Area

Utility

Utility

Configure Window

Utility

ConvertSelection

Copy Area

CopyColormapAndFree

CopyGC

Copy Plane

CreateGC, CreatePixmap, FreeGC, Putlmage

CreateColormap

CreateGlyphCursor

CreateGC

CreateGlyphCursor

Utility

Create Pixmap

CreateCursor

CreateGC, CreatePixmap, FreeGC, Putlmage

Utility

(continued on next page)

1-11

Introduction to the DECwindows Xlib Routines
1.3 Protocol Request and Utility Routines

1-12

Table 1-5 (Cont.) Protocol and Utility Routines

Xlib Routine

CREATE SIMPLE WINDOW

CREATE WINDOW

DEFAULT COLORMAP

DEFAULT COLORMAP OF SCREEN

DEFAULT DEPTH

DEFAULT DEPTH OF SCREEN

DEFAULT GC

DEFAULT GC OF SCREEN

DEFAULT ROOT WINDOW

DEFAULT SCREEN

DEFAULT SCREEN OF DISPLAY

DEFAULT VISUAL

DEFAULT VISUAL OF SCREEN

DEFINE CURSOR

DELETE CONTEXT

DELETE MODIFIER MAP ENTRY

DELETE PROPERTY

DESTROY IMAGE

DESTROY REGION

DESTROY SUBWINDOWS

DESTROY WINDOW

DISABLE ACCESS CONTROL

DISPLAY CELLS

DISPLAY HEIGHT

DISPLAY HEIGHT MM

DISPLAY NAME

DISPLAY OF SCREEN

DISPLAY PLANES

DISPLAY STRING

DISPLAY WIDTH

DISPLAY WIDTH MM

DOES BACKING STORE

DOES SAVE UNDERS

DRAW ARC

DRAW ARCS

DRAW IMAGE STRING

Protocol Request or Utility Routine

Create Window

Create Window

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Change Window Attributes

Utility

Utility

Delete Property

Utility

Utility

DestroySubwindows

DestroyWindow

SetAccessControl

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Poly Arc

Poly Arc

Image Texts

(continued on next page)

Introduction to the DECwindows Xlib Routines
1.3 Protocol Request and Utility Routines

Table 1-5 (Cont.) Protocol and Utility Routines

Xlib Routine Protocol Request or Utility Routine

DRAW IMAGE STRING 16 lmageText16

DRAW LINE PolySegment

DRAW LINES Polyline

DRAW POINT PolyPoint

DRAW POINTS PolyPoint

DRAW RECTANGLE Poly Rectangle

DRAW RECTANGLES PolyRectangle

DRAW SEGMENTS PolySegment

DRAW STRING PolyText8

DRAW STRING 16 PolyText16

DRAW TEXT PolyText8

DRAW TEXT 16 PolyText16

EMPTY REGION Utility

ENABLE ACCESS CONTROL SetAccessControl

EQUAL REGION Utility

EVENT MASK OF SCREEN Utility

EVENTS QUEUED Utility

FETCH BUFFER Utility

FETCH BYTES GetProperty

FETCH NAME GetProperty

FILL ARC PolyFillArc

FILL ARCS PolyFillArc

FILL POLYGON Fill Poly

FILL RECTANGLE PolyFillRectangle

FILL RECTANGLES PolyFillRectangle

FIND CONTEXT Utility

FLUSH Utility

FORCE SCREEN SAVER ForceScreenSaver

FREE Utility

FREE COLORMAP FreeColormap

FREE COLORS FreeColors

FREE CURSOR FreeCursor

FREE FONT Close Font

FREE FONT INFO (MIT Conly) Utility

FREE FONT NAMES (MIT C only) Utility

FREE FONT PATH (MIT Conly) Utility

(continued on next page)

1-13

Introduction to the DECwindows Xlib Routines
1.3 Protocol Request and Utility Routines

Table 1-5 (Cont.) Protocol and Utility Routines

Xlib Routine Protocol Request or Utility Routine

FREE GC FreeGC

FREE MODIFIERMAP Utility

FREE PIXMAP Free Pixmap

GCONTEXT FROM GC Utility

GEOMETRY Utility

GET ATOM NAME GetAtomName

GET CHAR INFO (VAX only) Utility

GET CHAR STRUCT (VAX only) Utility

GET CLASS HINT Utility

GET DEFAULT Utility

GET ERROR DATABASE TEXT Utility

GET ERROR TEXT Utility

GET FONT PATH GetFontPath

GET FONT PROPERTY Utility

GET GEOMETRY GetGeometry

GET ICON NAME Utility

GET ICON SIZES GetProperty

GET IMAGE Getlmage

GET INPUT FOCUS GetlnputFocus

GET KEYBOARD CONTROL GetKeyboardControl

GET KEYBOARD MAPPING GetKeyboardMapping

GET MODIFIER MAPPING GetModifierMapping

GET MOTION EVENTS GetMotionEvents

GET NORMAL HINTS Get Property

GET PIXEL Utility

GET POINTER CONTROL GetPointerControl

GET POINTER MAPPING GetPointerMapping

GET SCREEN SAVER SetScreenSaver

GET SELECTION OWNER GetSelectionOwner

GET SIZE HINTS GetProperty

GET STANDARD COLORMAP Utility

GET SUBIMAGE Utility

GET TRANSIENT FOR HINT Utility

GET VISUAL INFO Utility

GET WINDOW ATTRIBUTES GetWindow Attributes

GET WINDOW PROPERTY GetProperty

(continued on next page)

1-14

Introduction to the DECwindows Xlib Routines
1.3 Protocol Request and Utility Routines

Table 1-5 (Cont.) Protocol and Utility Routines

Xlib Routine

GET WM HINTS

GET ZOOM HINTS

GRAB BUTTON

GRAB KEY

GRAB KEYBOARD

GRAB POINTER

GRAB SERVER

HEIGHT MM OF SCREEN

HEIGHT OF SCREEN

IF EVENT

IMAGE BYTE ORDER

INSERT MODIFIERMAP ENTRY

INSTALL COLORMAP

INTERN ATOM

INTERSECT REGION

KEYCODE TO KEYSYM

KEYSYM TO KEYCODE

KEYSYM TO STRING

KILL CLIENT

LAST KNOWN REQUEST
PROCESSED

LIST FONT (VAX only)

LIST FONTS

LIST FONT WITH INFO (VAX only)

LIST FONTS WITH INFO

LIST HOSTS

LIST INSTALLED COLORMAPS

LIST PROPERTIES

LOAD FONT

LOAD QUERY FONT

LOOKUP COLOR

LOOKUP KEYSYM

LOOKUP STRING

LOWER WINDOW

MAP RAISED

MAP SUBWINDOWS

Protocol Request or Utility Routine

GetProperty

GetProperty

Grab Button

Grab Key

Grab Keyboard

Grab Pointer

GrabServer

Utility

Utility

Utility

Utility

Utility

lnstallColormap

lnternAtom

Utility

Utility

Utility

Utility

Kill Client

Utility

ListFonts

ListFonts

ListFonts With Info

ListFontsWith Info

ListHosts

ListlnstalledColormaps

ListProperties

Open Font

OpenFont, QueryFont

LookupColor

Utility

Utility

Configure Window

ConfigureWindow, MapWindow

MapSubwindows

(continued on next page)

1-15

Introduction to the DECwindows Xlib Routines
1.3 Protocol Request and Utility Routines

Table 1-5 (Cont.) Protocol and Utility Routines

Xlib Routine Protocol Request or Utility Routine

MAP WINDOW Map Window

MASK EVENT Utility

MATCH VISUAL INFO Utility

MAX CMAPS OF SCREEN Utility

MIN CMAPS OF SCREEN Utility

MOVE RESIZE WINDOW Configure Window

MOVE WINDOW Configure Window

NEW MODIFIERMAP Utility

NEXT EVENT Utility

NEXT REQUEST Utility

NOOP NoOperation

OFFSET REGION Utility

OPEN DISPLAY CreateGC

PARSE COLOR LookupColor

PARSE GEOMETRY Utility

PEEK EVENT Utility

PEEK IF EVENT Utility

PENDING Utility

PERMALLOC Utility

PLANES OF SCREEN Utility

POINT IN REGION Utility

POLYGON REGION Utility

PROTOCOL REVISION Utility

PROTOCOL VERSION Utility

PUT BACK EVENT Utility

PUT IMAGE Put Image

PUT PIXEL Utility

Q LENGTH Utility

QUERY BEST CURSOR QueryBestSize

QUERY BEST SIZE QueryBestSize

QUERY BEST STIPPLE QueryBestSize

QUERY BEST TILE QueryBestSize

QUERY COLOR QueryColors

QUERY COLORS QueryColors

QUERY FONT Utility

QUERY KEYMAP Utility

(continued on next page)

1-16

Introduction to the DECwindows Xlib Routines
1.3 Protocol Request and Utility Routines

Table 1-5 (Cont.) Protocol and Utility Routines

Xlib Routine

QUERY POINTER

QUERY TEXT EXTENTS

QUERY TEXT EXTENTS 16

QUERY TREE

RAISE WINDOW

READ BITMAP FILE

REBIND KEYSYM

RECOLOR CURSOR

RECT IN REGION

REFRESH KEYBOARD MAPPING

REMOVE FROM SAVE SET

REMOVE HOST

REMOVE HOSTS

REPARENT WINDOW

RESET SCREEN SAVER

RESIZE WINDOW

RESTACK WINDOWS

RM GET FILE DATABASE

RM GET RESOURCE

RM GET STRING DATABASE

RM INITIALIZE

RM MERGE DATABASES

RM PARSE COMMAND

RM PUT FILE DATABASE

RM PUT LINE RESOURCE

RM PUT RESOURCE

RM PUT STRING RESOURCE

RM Q GET RESOURCE

RM Q GET SEARCH LIST

RM Q GET SEARCH RESOURCE

RM Q PUT RESOURCE

RM Q PUT STRING RESOURCE

RM QUARK TO STRING

RM STRING TO BIND QUARK LIST

RM STRING TO QUARK

RM STRING TO QUARK LIST

Protocol Request or Utility Routine

Query Pointer

QueryTextExtents

QueryTextExtents

Query Tree

Configure Window

CreateGC, CreatePixmap, FreeGC, Putlmage

Utility

RecolorCursor

Utility

Utility

ChangeSaveSet

Change Hosts

Change Hosts

ReparentWindow

ForceScreenSaver

Configure Window

Configure Window

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

Utility

(continued on next page)

1-17

Introduction to the DECwindows Xlib Routines
1.3 Protocol Request and Utility Routines

1-18

Table 1-5 (Cont.) Protocol and Utility Routines

Xlib Routine

RM UNIQUE QUARK

ROOT WINDOW

ROOT WINDOW OF SCREEN

ROTATE BUFFERS

ROTATE WINDOW PROPERTIES

SAVE CONTEXT

SCREEN COUNT

SCREEN OF DISPLAY

SELECT ASYNC EVENT

SELECT ASYNC INPUT

SELECT INPUT

SEND EVENT

SERVER VENDOR

SET ACCESS CONTROL

SET AFTER FUNCTION

SET ARC MODE

SET BACKGROUND

SET CLASS HINT

SET CLIP MASK

SET CLIP ORIGIN

SET CLIP RECTANGLES

SET CLOSE DOWN MODE

SET COMMAND

SET DASHES

SET ERROR HANDLER

SET FILL RULE

SET FILL STYLE

SET FONT

SET FONT PATH

SET FOREGROUND

SET FUNCTION

SET GRAPHICS EXPOSURES

SET ICON NAME

SET ICON SIZES

SET INPUT FOCUS

SET 10 ERROR HANDLER

Protocol Request or Utility Routine

Utility

Utility

Utility

Rotate Properties

Rotate Properties

Utility

Utility

Utility

Utility

Utility

Change Window Attributes

Send Event

Utility

SetAccessControl

Utility

ChangeGC

ChangeGC

Utility

ChangeGC

ChangeGC

SetClipRectangles

SetCloseDownMode

Change Property

SetDashes

Utility

ChangeGC

ChangeGC

ChangeGC

SetFontPath

ChangeGC

ChangeGC

ChangeGC

Utility

Change Property

SetlnputFocus

Utility

(continued on next page)

Introduction to the DECwindows Xlib Routines
1.3 Protocol Request and Utility Routines

Table 1-5 (Cont.) Protocol and Utility Routines

Xlib Routine

SET LINE ATTRIBUTES

SET MODIFIER MAPPING

SET NORMAL HINTS

SET PLANE MASK

SET POINTER MAPPING

SET REGION

SET SCREEN SAVER

SET SELECTION OWNER

SET SIZE HINTS

SET STANDARD COLORMAP

SET STANDARD PROPERTIES

SET STATE

SET STIPPLE

SET SUBWINDOW MODE

SET TILE

SET TRANSIENT FOR HINT

SET TS ORIGIN

SET WINDOW BACKGROUND

SET WINDOW BACKGROUND
PIXMAP

SET WINDOW BORDER

SET WINDOW BORDER PIXMAP

SET WINDOW BORDER WIDTH

SET WINDOW COLORMAP

SET WM HINTS

SET ZOOM HINTS

SHRINK REGION

STORE BUFFER

STORE BYTES

STORE COLOR

STORE COLORS

STORE NAME

STORE NAMED COLOR

STRING TO KEYSYM

SUB IMAGE

SUBTRACT REGION

Protocol Request or Utility Routine

ChangeGC

SetModifierMapping

Change Property

ChangeGC

SetPointerMapping

Utility

SetScreenSaver

SetSelectionOwner

Change Property

Utility

Change Property

ChangeGC

ChangeGC

ChangeGC

ChangeGC

Utility

ChangeGC

Change Window Attributes

ChangeWindowAttributes

Change Window Attributes

ChangeWindowAttributes

Configure Window

ChangeWindowAttributes

Change Property

Change Property

Utility

Change Property

Change Property

StoreColors

StoreColors

Change Property

StoreNamedColor

Utility

Utility

Utility

(continued on next page)

1-19

Introduction to the DECwindows Xlib Routines
1.3 Protocol Request and Utility Routines

Table 1-5 (Cont.) Protocol and Utility Routines

Xlib Routine Protocol Request or Utility Routine

SYNC GetlnputFocus

SYNCHRONIZE Utility

TEXT EXTENTS Utility

TEXT EXTENTS 16 Utility

TEXT WIDTH Utility

TEXT WIDTH 16 Utility

TRANSLATE COORDINATES TranslateCoordinates

UNDEFINE CURSOR ChangeWindowAttributes

UNGRAB BUTTON UngrabButton

UNGRAB KEY UngrabKey

UNGRAB KEYBOARD U ngrabKeyboard

UNGRAB POINTER UngrabPointer

UNGRAB SERVER UngrabServer

UNINSTALL COLORMAP UninstallColormap

UNION RECT WITH REGION Utility

UNION REGION Utility

UNIQUE CONTEXT Utility

UNLOAD FONT Close Font

UNMAP SUBWINDOWS UnmapSubwindows

UNMAP WINDOW UnmapWindow

VENDOR RELEASE Utility

WARP POINTER Warp Pointer

WHITE PIXEL Utility

WHITE PIXEL OF SCREEN Utility

WIDTH MM OF SCREEN Utility

WIDTH OF SCREEN Utility

WINDOW EVENT Utility

WRITE BITMAP FILE Utility

XOR REGION Utility

1-20

2 Display Routines

This chapter includes routines that open and close a display, provide
information about an open display, and manipulate buffers.

The Xlib routines allow you to perform window operations on any
supported display in a network. You can think of a display as the
connection between a client program and an instance of the X server.

Client programs can run in any CPU in the network and open explicit
connections to displays to perform input and output. The X server is said
to control the display because it maintains client status information, such
as the state of the graphics context, and manages input and output for the
connection. Client programs can open connections to one or more displays
at one time; X servers can maintain multiple client connections at one
time.

For example, an instructor who wants to draw a box on all displays in
a class could write a program that opened a connection to each display.
This program could use its event mask to accept input from one or more
of the connections. For more information about creating an event mask,
see Chapter 4. If the students in the class write programs that open
connections to their own displays, their instance of the server prioritizes
the client requests and schedules them accordingly.

Xlib routines provide functions that allow you to specify the display on
which you want to perform window operations. Xlib also provides C
language macros that return information about a specific display. This
section describes routines that enable you to perform the following
operations:

• Open (connect to) a display

• Obtain information about a display

• Close (disconnect) a display

For concepts related to display routines and information on how to use
display routines, see VMS DECwindows Xlib Programming Volume.

The routines described in this chapter are listed in Table 2-1.

Table 2-1 Display Routines

Routine Name

ALL PLANES

Description

Returns a value with all bits set on. This value
can then be used in a plane argument to a
procedure.

(continued on next page)

2-1

Display Routines

Table 2-1 (Cont.) Display Routines

2-2

Routine Name

BITMAP BIT ORDER

BITMAP PAD

BITMAP UNIT

BLACK PIXEL

BLACK PIXEL OF SCREEN

CELLS OF SCREEN

CLOSE DISPLAY

CONNECTION NUMBER

DEFAULT COLORMAP

DEFAULT COLORMAP OF SCREEN

DEFAULT DEPTH

DEFAULT DEPTH OF SCREEN

DEFAULT GC

DEFAULT GC OF SCREEN

DEFAULT ROOT WINDOW

DEFAULT SCREEN

DEFAULT SCREEN OF DISPLAY

DEFAULT VISUAL

DEFAULT VISUAL OF SCREEN

DISPLAY CELLS

DISPLAY HEIGHT

DISPLAY HEIGHT MM

Description

Returns the value of the leftmost bit in a
bitmap.

Returns a number of bits by which all scan
lines must be padded.

Returns the size of a bitmap's unit.

Returns the color index (pixel value) that yields
black on the specified screen.

Returns the black pixel of the specified screen.

Returns the number of color map cells on the
specified screen.

Closes a connection between a client program
and the display that you specify.

Returns the connection number of the display.

Returns the default color map for allocation on
the specified screen.

Returns the default color map of the specified
screen.

Returns the depth of the default root window
for the specified screen.

Returns the default depth of the specified
screen.

Returns the default graphics context for the
root window of the specified screen.

Returns the default graphics context of the
specified screen.

Returns the default root window for a specified
display.

Returns the default screen referenced in
OPEN DISPLAY.

Returns the default screen of the specified
display.

Returns the default visual type for the specified
screen.

Returns the default visual of the specified
screen.

Returns the number of color map cells on the
specified screen.

Returns a number that specifies the height of
the screen in pixels.

Returns a number that specifies the height of
the screen in millimeters.

(continued on next page)

Display Routines

Table 2-1 (Cont.) Display Routines

Routine Name

DISPLAY NAME

DISPLAY PLANES

DISPLAY STRING

DISPLAY WIDTH

DISPLAY WIDTH MM

DOES BACKING STORE

DOES SAVE UNDERS

DISPLAY OF SCREEN

EVENT MASK OF SCREEN

HEIGHT MM OF SCREEN

HEIGHT OF SCREEN

IMAGE BYTE ORDER

LAST KNOWN REQUEST
PROCESSED

MAX CMAPS OF SCREEN

MIN CMAPS OF SCREEN

NEXT REQUEST

OPEN DISPLAY

PLANES OF SCREEN

PROTOCOL REVISION

PROTOCOL VERSION

Description

Returns the name of the display that you were
trying to open.

Returns the number of planes on the specified
screen.

Returns the name of the string that was
passed to OPEN DISPLAY when the current
display was opened.

Returns a number that specifies the width of
the screen in pixels.

Returns a number that specifies the width of
the screen in millimeters.

Returns a value that indicates whether the
screen supports backing stores.

Returns a Boolean value that indicates
whether the screen supports save unders.

Returns the display of the specified screen.

Returns the initial root event mask of the
specified screen.

Returns the height, in millimeters, of the
specified screen.

Returns the height, in pixels, of the specified
screen.

The required byte order for images for each
scan line unit in XYFormat (bitmap) or for each
pixel value in ZFormat.

Extracts the serial number of the last request
known by Xlib to have been processed to the
X server.

Returns the maximum number of color maps
supported by the specified screen.

Returns the minimum number of color maps
supported by the specified screen.

Extracts the serial number that is to be used
for the next request.

Opens a connection between a client program
and the display that you specify.

Returns the number of planes in the specified
screen.

Returns the minor protocol revision number
that the X server is using.

Returns the version number of the X protocol
associated with the connected display.

(continued on next page)

2-3

Display Routines

2.1 Display Routines

2-4

Table 2-1 (Cont.) Display Routines

Routine Name

Q LENGTH

ROOT WINDOW

ROOT WINDOW OF SCREEN

ROTATE BUFFERS

SCREEN COUNT

SCREEN OF DISPLAY

SERVER VENDOR

STORE BUFFER

STORE BYTES

VENDOR RELEASE

WHITE PIXEL

WHITE PIXEL OF SCREEN

WIDTH MM OF SCREEN

WIDTH OF SCREEN

Description

Returns the length of the input queue for the
connected hardware display.

Returns the identifier of the root window.

Returns the root window of the specified
screen.

Rotates the ring of cut buffers from 0 to 7.

Returns the number of available screens.

Returns a pointer to the screen of the specified
display.

Returns a pointer to a string that identifies the
owner of the X server implementation.

Stores data in a specified cut buffer.

Stores data in cut buffer zero.

Returns the number of the release of the X
server, as assigned by the vendor.

Return$ the color index (pixel value) that yields
white on the specified screen.

Returns the white pixel of the specified screen.

Returns the width, in millimeters, of the
specified screen.

Returns the width, in pixels, of the specified
screen.

The following pages describe the Xlib display routines.

ALL PLANES

Display Routines
ALL PLANES

Returns a value with all bits set on. This value can then be used in a plane
argument to a procedure.

VAX FORMAT

argument
information

value_return = X$ALL_PLANES

Argument Usage Data Type

value_return uns longword uns longword

MIT C FORMAT value return= XAllPlanes

argument
information unsigned long XAllPlanes ()

RETURNS value return
The returned value with all bits set to 1.

Access Mechanism

write value

DESCRIPTION ALL PLANES returns a value with all bits set on. This value can then be
used in a plane argument to a procedure.

2-5

Display Routines
BITMAP BIT ORDER

BITMAP BIT ORDER

VAX FORMAT

argument
information

Returns whether the bits in a bitmap are ordered with the least significant bit
first or the most significant bit first.

order_return = X$BITMAP _BIT_ORDER (display)

Argument

order_return

display

Usage

longword

identifier

Data Type

longword

uns longword

Access

write

read

Mechanism

value

reference

MIT C FORMAT order_return = XBitmapBitOrder (display)

argument
information

RETURNS

int XBitmapBitOrder(display)
Display *display;

order return
The value of the leftmost bit in the bitmap, as displayed on the screen.
Valid values are shown in the following table:

VAX C

X$C_LSB_FIRST LSBFirst

X$C_MSB_ MSBFirst
FIRST

Description

The least significant bit is displayed first.

The most significant bit is displayed first.

ARGUMENTS display
The display information originally returned by OPEN DISPLAY.

DESCRIPTION BITMAP BIT ORDER returns whether the bits in a bitmap are ordered
with the least significant bit first or the most significant bit first. Within
each bitmap unit, the leftmost bit in the bitmap (as displayed on the
screen) is either the least significant bit or the most significant bit in the
bitmap unit.

2-6

BITMAP PAD

VAX FORMAT

argument
information

Display Routines
BITMAP PAD

Returns a number of bits by which all scan lines must be padded.

pad_return = X$BITMAP _PAD (display)

Argument Usage Data Type Access Mechanism

pad_return longword longword write value

display identifier uns longword read reference

MIT C FORMAT pad_return = XBitmapPad (display)

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

int XBitmapPad(display)
Display *display;

pad_return
The number of bits by which all scan lines must be padded.

display
The display information originally returned by OPEN DISPLAY.

BITMAP PAD returns a multiple of bits by which all scan lines must be
padded. When an image is sent to the server, the number of bits in each
scan line must be a multiple of pad_return. If the number of bits in
the scan line is greater than the number of bits in the image, the server
ignores the extra bits.

2-7

Display Routines
BITMAP UNIT

BITMAP UNIT

Returns the size of a bitmap's unit.

VAX FORMAT size_return = X$BITMAP _UNIT (display)

argument
information

Argument Usage Data Type Access Mechanism

size_return uns longword uns longword write value

display identifier uns longword read reference

MIT C FORMAT size_return = XBitmapUnit (display)

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

2-8

int XBitmapUnit(display)
Display *display;

size return
The size, in bits, of the bitmap's unit.

display
The display information originally returned by OPEN DISPLAY.

BITMAP UNIT returns the size, in bits, of a bitmap's unit. This value can
equal 8, 16, or 32. When an image is sent to the server, the server receives
the image in units of the number of bits specified in BITMAP UNIT.

Display Routines
BLACK PIXEL

BLACK PIXEL

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the color index (pixel value) that yields black on the specified screen.

color_index_return = X$BLACK_PIXEL
(display, screen_number)

Argument Usage Data Type

color_index_return identifier uns longword

display identifier uns longword

screen_number uns longword uns longword

color_index_return = XBlackPixel
(display, screen_number)

Access

write

read

read

unsigned long XBlackPixel(display, screen_number)
Display *display;
int screen_number;

color index return

Mechanism

value

reference

reference

The identifier of the color index (pixel value) that yields black on the
specified screen.

display
The display information originally returned by OPEN DISPLAY.

screen_number
The number of the screen for which the black pixel is requested.

DESCRIPTION BLACK PIXEL returns the color index (pixel value) that yields black on
the specified screen.

To obtain the color index (pixel value) that yields white on a specified
screen, use WHITE PIXEL.

2-9

Display Routines
BLACK PIXEL OF SCREEN

BLACK PIXEL OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

2-10

Returns the black pixel of the specified screen.

color_index_return = X$BLACK_PIXEL_OF _SCREEN
(screen_id)

Argument Usage Data Type Access

color_index_return identifier uns longword write

screen_id identifier uns longword read

color_index_return = XBlackPixelOfScreen
(screen_id)

unsigned long XBlackPixelOfScreen(screen_id)
Screen *screen_id;

color index return

Mechanism

value

reference

The identifier of the color index (pixel value) that yields black on the
specified screen.

screen id
The identifier of the screen for which the black pixel is requested.

BLACK PIXEL OF SCREEN returns the black pixel of the specified
screen.

To obtain the white pixel of a specified screen, use WHITE PIXEL OF
SCREEN.

Display Routines
CELLS OF SCREEN

CELLS OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

Returns the number of color map cells on the specified screen.

cel/s_return = X$CELLS_OF _SCREEN
(screen_id)

Argument Usage Data Type

cells_return longword longword

screen_id identifier uns longword

cells_return = XCellsOfScreen
(screen_id)

int XCellsOfScreen(screen_id)
Screen screen_id;

cells return

Access

longword

read

The number of color map cells on the specified screen.

screen id

Mechanism

write

reference

The identifier of the screen for which the number of color map cells is
requested.

CELLS OF SCREEN returns the number of color map cells on the specified
screen.

2-11

Display Routines
CLOSE DISPLAY

CLOSE DISPLAY

VAX FORMAT

argument
information

Closes a connection between a client program and the display that you
specify.

X$CLOSE_DISPLAV (display)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

MIT C FORMAT XCloseDisplay (display)

argument
information

ARGUMENTS

DESCRIPTION

2-12

XCloseDisplay(display)
Display *display;

display
The display information originally returned by OPEN DISPLAY.

CLOSE DISPLAY disconnects a client's connection to the display specified
in the display identifier. OPEN DISPLAY returned a pointer to the display
identifier when it opened the display.

CLOSE DISPLAY destroys all windows created by the client, resource
identifiers (Window, Font, Pixmap, Colormap, Cursor, and GContext), or
other resources (such as graphics contexts) that the client application has
created on this display, unless the closedown mode of the resource has
been changed. Therefore, these windows, resource identifiers, and other
resources should never be referenced again. In addition, CLOSE DISPLAY
discards any output events that have been buffered but have not yet been
sent. Because these operations automatically (implicitly) occur if a process
exits, you normally do not need to call CLOSE DISPLAY explicitly.

The server performs a number of automatic operations when its connection
to the display hardware closes. These operations are described in VMS
DECwindows Xlib Programming Volume.

XERRORS
VAX c

X$C_BAD_GC BadGC

Description

Display Routines
CLOSE DISPLAY

A value that you specified for a graphics
context argument does not name a defined
graphics context.

2-13

Display Routines
CONNECTION NUMBER

CONNECTION NUMBER

Returns an integer identifying the connection.

VAX FORMAT int= X$CONNECTION_NUMBER (display)

argument
information

Argument Usage Data Type Access Mechanism

int longword longword write value

display identifier uns longword read reference

MIT C FORMAT int= XConnectionNumber (display)

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

2-14

int ConnectionNumber(display)
Display *display;

int
The connection number of the specified display.

display
The display information originally returned by OPEN DISPLAY.

CONNECTION NUMBER returns an integer that identifies the
connection. This routine is defined to be operating system specific by
MIT, and there is no direct analogue to the Unix file descriptor in VMS.

Display Routines
DEFAULT COLORMAP

DEFAULT COLORMAP

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the default color map for allocation on the specified screen.

colormap_id_return = X$DEFAULT _ COLORMAP
(display, screen_number)

Argument Usage Data Type Access

colormap_id_return identifier longword write

display identifier uns longword read

screen_number uns longword uns longword read

colormap_id_return = XDefaultColormap
(display, screen_number)

Colormap XDefaultColormap(display, screen_number)
Display *display;
int screen_number;

colormap _id _return
The identifier of the default color map for the specified screen.

display

Mechanism

value

reference

reference

The display information originally returned by OPEN DISPLAY.

screen number
The number of the screen for which the default color map is being
requested.

DESCRIPTION DEFAULT COLORMAP returns the identifier of the default color map for
the specified screen. Most applications should allocate pixel values out of
this color map.

2-15

Display Routines
DEFAULT COLORMAP OF SCREEN

DEFAULT COLORMAP OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

2-16

Returns the default color map of the specified screen.

colormap_id_return =
X$DEFAULT_COLORMAP_OF_SCREEN

(screen_id)

Argument Usage Data Type Access

colormap_id_return identifier uns longword write

screen_id identifier uns longword read

Mechanism

value

reference

colormap_id_return = XDefaultColormapOfScreen
(screen_id)

Colormap XDefaultColormapOfScreen(screen_id)
Screen *screen_id;

colormap_id_return
The identifier of the default color map of the specified screen.

screen id
The identifier of the screen for which the colormap is requested.

DEFAULT COLORMAP OF SCREEN returns the default color map of the
specified screen.

Display Routines
DEFAULT DEPTH

DEFAULT DEPTH

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the depth of the default root window for the specified screen.

depth_return = X$DEFAULT _DEPTH
(display, screen_number)

Argument Usage Data Type

depth_return uns longword uns longword

display identifier uns longword

screen_number uns longword uns longword

depth_return = XDefaultDepth
(display, screen_number)

int XDefaultDepth(display, screen_nurnber)
Display *display;
int screen_nurnber;

Access

write

read

read

Mechanism

value

reference

reference

depth_return
The depth (number of planes) of the default root window for the specified
screen.

display
The display information originally returned by OPEN DISPLAY.

screen number
The number of the screen associated with the default color map used.

DESCRIPTION DEFAULT DEPTH returns the number of planes of the default root
window for the specified screen. The identifier of the root window was
originally returned by ROOT WINDOW.

2-17

Display Routines
DEFAULT DEPTH OF SCREEN

DEFAULT DEPTH OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

2-18

Returns the default depth of the specified screen.

depth_return =X$DEFAULT_DEPTH_OF _SCREEN
(screen_id)

Argument Usage Data Type Access

depth_return longword longword write

screen_id identifier uns longword read

depth_return =XDefaultDepthOfScreen
(screen_id)

int XDefaultDepthOfScreen(screen_id)
Screen *screen_id;

depth_return
The default depth, in pixels, of the specified screen.

screen id
The identifier of the screen for which the depth is requested.

Mechanism

value

reference

DEFAULT DEPTH OF SCREEN returns the default depth, in pixels, of
the specified screen.

Display Routines
DEFAULT GC

DEFAULT GC

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the default graphics context for the root window of the specified
screen.

context_id_return = X$DEFAULT _ GC
(display, screen_number)

Argument Usage Data Type

context_id _return identifier uns longword

display identifier uns longword

screen_number identifier uns longword

context_id_return = XDefaultGC
(display, screen_number)

GC XDefaultGC(display, screen_number)
Display *display;
int screen_number;

context id return

Access Mechanism

write value

read reference

read reference

The identifier of the default graphics context for the root window of the
specified screen.

display
The display information originally returned by OPEN DISPLAY.

screen number
The number of the screen associated with the graphics context.

DESCRIPTION DEFAULT GC returns the identifier of the default graphics context for the
root window of the specified screen.

If you change the default graphics context using the CHANGE GC, SET
CLIP RECTANGLES, or SET DASHES routines, a subsequent call to
DEFAULT GC returns the new default graphics context.

2-19

Display Routines
DEFAULT GC OF SCREEN

DEFAULT GC OF SCREEN

VAX FORMAT

argument
information

Returns the default graphics context of the specified screen.

gc_return =X$DEFAULT_GC_OF _SCREEN
(screen_id)

Argument Usage Data Type Access

gc_return identifier uns longword write

screen_id identifier uns longword read

Mechanism

value

reference

MIT C FORMAT gc_return =XDefaultGCOfScreen
(screen_id)

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

2-20

GC XDefaultGCOfScreen(screen_id)
Screen *screen_id;

gc_return
The identifier of the default graphics context of the specified screen.

screen id
The identifier of the screen for which the default graphics context is
requested.

DEFAULT GC OF SCREEN returns the default graphics context of the
specified screen.

Display Routines
DEFAULT ROOT WINDOW

DEFAULT ROOT WINDOW

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

Returns the default root window for a specified display.

window_id_return = X$DEFAULT_ROOT_WINDOW
(display)

Argument Usage Data Type Access Mechanism

window_id_return identifier uns longword write

display identifier uns longword read

window_id_return = XDefaultRootWindow
(display)

Window XDefaultRootWindow(display)
Display *display;

window id return
The identifier of the root window.

display

value

reference

The display information originally returned by OPEN DISPLAY.

DEFAULT ROOT WINDOW returns the identifier of the default root
window for a specified display.

2-21

Display Routines
DEFAULT SCREEN

DEFAULT SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

2-22

Returns the default screen referenced in OPEN DISPLAY.

screen_number_return = X$DEFAULT _SCREEN
(display)

Argument Usage Data Type Access

screen_number_return identifier uns longword write

display identifier uns longword read

screen_number_return = XDefaultScreen
(display)

int XDefaultScreen(display)
Display *display;

screen number return

Mechanism

value

reference

The identifier of the default screen referenced in OPEN DISPLAY.

display
The display information originally returned by OPEN DISPLAY.

DEFAULT SCREEN returns the identifier for the default screen referenced
in the OPEN DISPLAY routine.

Display Routines
DEFAULT SCREEN OF DISPLAY

DEFAULT SCREEN OF DISPLAY

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

Returns the default screen of the specified display.

screen_id_return =
X$DEFAULT_SCREEN_OF _DISPLAY

(display)

Argument Usage Data Type Access Mechanism

screen_id_return record x$screen write value

display identifier uns longword read reference

screen_id_return = XDefaultScreenOfDisplay
(display)

Screen *XDefaultScreenOfDisplay(display)
Display *display;

screen id return
The identifier of the default screen for the specified display.

display
The display information originally returned by the OPEN DISPLAY
routine.

DEFAULT SCREEN OF DISPLAY returns the default screen of the
specified display.

2-23

Display Routines
DEFAULT VISUAL

DEFAULT VISUAL

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns a visual structure for the specified screen.

status_return = X$DEFAULT _VISUAL
(display, screen_number, visua/_return)

Argument Usage Data Type

status_return cond_value uns longword

display identifier uns longword

screen_ number uns longword uns longword

visual_return record x$visual

visua/_return = XDefaultVisual
(display, screen_number)

Access

write

read

read

write

Visual *XDefaultVisual(display, screen_number)
Display *display;
int screen_nurnber;

status_return (VAX only)
Specifies whether the routine completed successfully.

visual_return (MIT Conly)
The returned visual structure.

display

Mechanism

value

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

screen number
The number of the screen for which you are requesting the visual
structure.

visual_return (VAX only)
The returned visual structure.

DESCRIPTION DEFAULT VISUAL returns the default visual structure for the specified
screen.

2-24

Display Routines
DEFAULT VISUAL OF SCREEN

DEFAULT VISUAL OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the default visual of the specified screen.

X$DEFAULT_VISUAL_OF _SCREEN
(screen_id, visual_return)

Argument Usage Data Type Access

screen_id identifier uns longword read

visual_return record x$visual write

visual_return = XDefaultVisualOfScreen
(screen_id)

Visual *XDefaultVisualOfScreen(screen_id)
Screen *screen_id;

visual_return (MIT Conly)
The default visual structure for the specified screen.

screen id

Mechanism

reference

reference

The identifier of the screen for which the default visual is requested.

visual_return (VAX only)
The returned visual structure.

DESCRIPTION DEFAULT VISUAL OF SCREEN returns the default visual structure of
the specified screen.

2-25

Display Routines
DISPLAY CELLS

DISPLAY CELLS

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the number of color map cells on the specified screen.

cells_return = X$DISPLAY_CELLS
(display, screen_number)

Argument Usage Data Type

cells_return longword longword

display identifier uns longword

screen_ number uns longword uns longword

cells_return = XDisplayCells
(display, screen_number)

int XDisplayCells(display, screen_number)
Display *display;
int screen_number;

cells return

Access

write

read

read

The number of color map cells on the specified screen.

display

Mechanism

value

reference

reference

The display information originally returned by OPEN DISPLAY.

screen_number
The number of the screen for which the number of cells is to be
determined.

DESCRIPTION DISPLAY CELLS returns the number of color map cells present on the
specified screen.

2-26

Display Routines
DISPLAY HEIGHT

DISPLAY HEIGHT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns a number that specifies the height of the screen in pixels.

height_return = X$DISPLAV _HEIGHT
(display, screen_number)

Argument Usage Data Type

height_return uns longword uns longword

display identifier uns longword

screen_number uns longword uns longword

height_return = XDisplayHeight
(display, screen_number)

int XDisplayHeight(display, screen_number)
Display *display;
int screen_number;

height_ return
The height, in pixels, of the specified screen.

display

Access

write

read

read

Mechanism

value

reference

reference

The display information originally returned by OPEN DISPLAY.

screen number
The number of the screen for which the height is to be obtained.

DESCRIPTION DISPLAY HEIGHT returns an integer that specifies the height, in pixels,
of the specified screen.

When you want to obtain the height of a screen in millimeters, use
DISPLAY HEIGHT MM.

2-27

Display Routines
DISPLAY HEIGHT MM

DISPLAY HEIGHT MM

Returns a number that specifies the height of the screen in millimeters.

VAX FORMAT height_return = X$DISPLAV_HEIGHT_MM
(display, screen_number)

argument
information

Argument Usage Data Type Access Mechanism

height_return uns longword uns longword write value

display identifier uns longword read reference

screen_number uns longword uns longword read reference

MIT C FORMAT height_return = XDisplayHeightMM
(display, screen_number)

argument
information

RETURNS

ARGUMENTS

int XDisplayHeightMM(display, screen_number)
Display *display;
int screen_number;

height_ return
The height, in millimeters, of the specified screen.

display
The display information originally returned by OPEN DISPLAY.

screen number
The number of the screen for which the height is to be obtained.

i

DESCRIPTION DISPLAY HEIGHT MM returns an integer that specifies the height, in
millimeters, of the specified screen.

2-28

When you want to obtain the height of a screen in pixels, use DISPLAY
HEIGHT.

Display Routines
DISPLAY NAME

DISPLAY NAME

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the name of the display that you were trying to open.

status= X$DISPLAY_NAME
(disp_string, disp_name_return [,disp_len_return])

Argument Usage

status cond_value

disp_string char string

disp_name_return char string

disp _len _return longword

char= XDisplayName
(disp_string)

char *XDisplayName(disp_string)
char *string;

status (VAX only)

Data Type Access

uns longword write

char string read

char string write

uns longword write

Specifies whether or not the routine completed successfully.

char (MIT C only)

Mechanism

value

descriptor

descriptor

reference

The name of the display that you are currently using is returned to this
argument.

disp_string
The name of the display that you are trying to open. If you specify a null
string, DISPLAY NAME looks in the environment for the display and
returns the name of the display that OPEN DISPLAY would attempt to
use.

VAX only

The string argument is the address of a character string descriptor that
points to the string.

MIT Conly

The string argument is a pointer to the null-terminated character string.

2-29

Display Routines
DISPLAY NAME

disp_name_return (VAX only)
The address of a character string descriptor that points to the string.
DISPLAY NAME returns the display name to this argument.

disp_len_return (VAX only)
DISPLAY NAME returns the length of the display name string to this
optional argument.

DESCRIPTION DISPLAY NAME returns the name of the display that you were trying

2-30

to open. Errors are usually reported relative to a display. If your client
program fails in an attempt to open a connection to a display, you can use
DISPLAY NAME to find out the name of the display.

Display Routines
DISPLAY OF SCREEN

DISPLAY OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the display of the specified screen.

X$DISPLAY_OF _SCREEN
(screen_id, display_return)

Argument Usage Data Type

screen_id identifier uns longword

display _return record x$display

Access

read

write

display_return = XDisplayOfScreen
(screen_id)

Display *XDisplayOfScreen(screen_id)
Screen *screen_id;

display_return (MIT Conly)
The display of the specified screen.

screen id
The identifier of the screen for which the value is requested.

display_return (VAX only)
The display of the specified screen.

Mechanism

reference

value

DESCRIPTION DISPLAY OF SCREEN returns the display of the specified screen.

2-31

Display Routines
DISPLAY PLANES

DISPLAY PLANES

Returns the number of planes on the specified screen.

VAX FORMAT planes_return = X$DISPLAY _PLANES
(display, screen_number)

argument
information

Argument Usage Data Type

planes_return longword longword

display identifier uns longword

screen_number uns longword uns longword

MIT C FORMAT planes_return = XDisplayPlanes
(display, screen_number)

argument
information

RETURNS

ARGUMENTS

int XDisplayPlanes(display, screen_number)
Display *display;
int screen_number;

planes_return
The number of planes on the specified screen.

display

Access

write

read

read

Mechanism

value

reference

reference

The display information originally returned by OPEN DISPLAY.

screen number
The number of the screen for which you want to obtain the number of
planes.

DESCRIPTION DISPLAY PLANES returns the number of planes on the specified screen.

2-32

Display Routines
DISPLAY STRING

DISPLAY STRING

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the name of the string that was passed to OPEN DISPLAY when the
current display was opened.

status_return = X$DISPLAY _STRING
(display, name_return [,len_return])

Argument Usage Data Type Access Mechanism

status_return cond_value uns longword

display identifier uns longword

name_return char string char string

len_return unsigned_ word uns word

status_return = XDisplayString
(display)

char *XDisplayString(display)
Display *display;

status return

write

read

write

write

Specifies whether the routine completed successfully.

display

value

reference

descriptor

reference

The display information originally returned by OPEN DISPLAY.

name_return (VAX only)
The name of the string that was passed to OPEN DISPLAY when the
current display was opened.

The name_return argument is the address of a character string
descriptor that points to the string.

len_return (VAX only)
The length of the returned string. This argument is optional.

2-33

Display Routines
DISPLAY STRING

DESCRIPTION DISPLAY STRING returns the name of the string that was passed to
OPEN DISPLAY when the current hardware display was opened. If the
string was null, DISPLAY STRING returns the value of the logical name
when the current display was opened.

2-34

DISPLAY STRING is useful to applications that want to open a new
connection from the child process to the same hardware display.

Display Routines
DISPLAY WIDTH

DISPLAY WIDTH

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns a number that specifies the width of the screen in pixels.

width_return = X$DISPLAY_WIDTH
(display, screen_number)

Argument Usage Data Type

width_return uns longword uns longword

display identifier uns longword

screen_ number uns longword uns longword

width_return = XDisplayWidth
(display, screen_number)

int XDisplayWidth(display, screen_nurnber)
Display *display;
int screen_nurnber;

width return
The width, in pixels, of the specified screen.

display

Access Mechanism

write value

read reference

read reference

The display information originally returned by OPEN DISPLAY.

screen number
The number of the screen for the width is to be obtained.

DESCRIPTION DISPLAY WIDTH returns an integer that specifies the width, in pixels, of
the specified screen.

When you want to obtain the width of a screen in millimeters, use
DISPLAY WIDTH MM.

2-35

Display Routines
DISPLAY WIDTH MM

DISPLAY WIDTH MM

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns a number that specifies the width of the screen in millimeters.

width_return = X$DISPLAY _WIDTH_MM
(display, screen_id)

Argument Usage Data Type

width_return uns longword uns longword

display identifier uns longword

screen_id identifier uns longword

width_return = XDisplayWidthMM
(display, screen_id)

int XDisplayWidthMM(display, screen_id)
Display *display;
int screen_id;

width return

Access

write

read

read

The width, in millimeters, of the specified screen.

display

Mechanism

value

reference

reference

The display information originally returned by OPEN DISPLAY.

screen id
The identifier of the screen for which the width is to be obtained.

DESCRIPTION DISPLAY WIDTH MM returns an integer that specifies the width, in
millimeters, of the specified screen.

2-36

When you want to obtain the width of a screen in pixels, use DISPLAY
WIDTH.

Display Routines
DOES BACKING STORE

DOES BACKING STORE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

Returns a value that indicates whether the screen supports backing stores.

support_ value= X$DOES_BACKING_STORE
(screen_id)

Argument Usage Data Type Access

support_ value longword longword write

screen_id identifier uns longword read

support_ value= XDoesBackingStore
(screen_id)

ret XDoesBackingStore(screen_id)
Screen *screen_id;

Mechanism

value

reference

support_ value
A value that indicates whether the screen supports backing stores. This
can be one of the following values:

VAX C Description

X$C_ALWAYS Always The server always maintains the contents
of obscured window regions.

X$C_WHEN_MAPPED WhenMapped The server maintains the contents of
obscured window regions when the
window is mapped.

X$C_NOT_USEFUL NotUseful The server does not maintain the contents
of obscured window regions.

ARGUMENTS scraen ~
The identifier of the screen for which the value is requested.

DESCRIPTION DOES BACKING STORE returns a value that indicates whether the
screen supports backing stores.

2-37

Display Routines
DOES SAVE UNDERS

DOES SAVE UNDERS

VAX FORMAT

argument
information

Returns a Boolean value that indicates whether the screen supports save
unders.

Boo/ =X$DOES_SAVE_UNDERS (screen_id)

Argument Usage Data Type Access Mechanism

Boo I Boolean uns longword write value

screen_id identifier uns longword read reference

MIT C FORMAT Boo/= XDoesSaveUnders (screen_id)

argument
information

RETURNS

ret XDoesSaveUnders(screen_id)
Screen *screen_id;

Boo/
A Boolean value that, when true, indicates that the screen supports save
unders. If this value is false, the screen does not support save unders.

ARGUMENTS screen id
The identifier of the screen for which the value is requested.

DESCRIPTION DOES SAVE UNDERS indicates whether the screen supports save unders.

2-38

Display Routines
EVENT MASK OF SCREEN

EVENT MASK OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

Returns the initial root event mask of the specified screen.

mask_return = X$EVENT_MASK_OF _SCREEN
(screen_id)

Argument Usage Data Type Access Mechanism

mask_return longword longword write

screen_id identifier uns longword read

mask_return =XEventMaskOfScreen
(screen_id)

long XEventMaskOfScreen(screen_id)
Screen *screen_id;

mask return
The initial root event mask of the specified screen.

screen id

value

reference

The identifier of the screen for which the event mask is requested.

EVENT MASK OF SCREEN returns the initial root event mask of the
specified screen.

2-39

Display Routines
FREE

FREE

VAX FORMAT

argument
information

CFORMAT

argument
information

ARGUMENTS

Frees a data buffer that was created by an Xlib routine.

X$FREE (buff_ptr [,buff_len])

Argument Usage

buff_ptr byte

buff_len longword

XFree (buff_ptr)

XFree (buff _ptr)
char *buff_ptr

buff_ptr

Data Type

v. uns byte

longword

Access

read

read

A pointer to the data buffer that is to be freed.

buff _len (MIT C Only)

Mechanism

reference

reference

The size, in bytes, of the buffer. This argument is optional; if it is not
specified, buff_ptr is assumed to contain a null-terminated byte stream.

DESCRIPTION FREE frees a data buffer that was created by an Xlib routine.

2-40

Display Routines
HEIGHT MM OF SCREEN

HEIGHT MM OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

Returns the height, in millimeters, of the specified screen.

height_return = X$HEIGHT_MM_OF _SCREEN
(screen_id)

Argument Usage Data Type Access Mechanism

height_return longword longword write

screen_id identifier uns longword read

height_return = XHeightMMOfScreen
(screen_id)

int XHeightMMOfScreen(screen_id)
Screen *screen_id;

height_ return
The height, in millimeters, of the specified screen.

screen id
The identifier of the screen for which the height is requested.

value

reference

HEIGHT MM OF SCREEN returns the height, in millimeters, of the
specified screen.

When you want to obtain the height of a screen in pixels, use HEIGHT OF
SCREEN.

2-41

Display Routines
HEIGHT OF SCREEN

HEIGHT OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

2-42

Returns the height, in pixels, of the specified screen.

height_return = X$HEIGHT_OF _SCREEN
(screen_id)

Argument Usage Data Type

height_return longword longword

screen_id identifier uns longword

height_return = XHeightOfScreen
(screen_id)

int XHeightOfScreen(screen_id)
Screen *screen_id;

height_return
The height, in pixels, of the specified screen.

screen id

Access

write

read

Mechanism

value

reference

The identifier of the screen for which the height is requested.

HEIGHT OF SCREEN returns the height, in pixels, of the specified screen.

When you want to obtain the height of a screen in millimeters, use
HEIGHT MM OF SCREEN.

Display Routines
IMAGE BYTE ORDER

IMAGE BYTE ORDER

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

The required byte order for images for each scan line unit in XYFormat
(bitmap) or for each pixel value in ZFormat.

order_return = X$1MAGE_BYTE_ORDER
(display)

Argument Usage Data Type

order_return longword longword

display identifier uns longword

order_return = XlmageByteOrder
(display)

int XImageByteOrder(display)
Display *display;

order return

Access

write

read

Mechanism

value

reference

The byte order for images for each scan line unit in XYFormat (bitmap) or
for each pixel value in ZFormat. IMAGE BYTE ORDER returns one of the
following constants:

VAX

X$C_LSB_FIRST

X$C_MSB_FIRST

c

LSBFirst

MSBFirst

Description

Least significant bit first

Most significant bit first

ARGUMENTS display
The display information originally returned by OPEN DISPLAY.

DESCRIPTION IMAGE BYTE ORDER specifies the required byte order for images for
each scan line unit in XYFormat (bitmap) or for each pixel value in
ZFormat. IMAGE BYTE ORDER returns a value of either least significant
byte first or most significant byte first.

2-43

Display Routines
LAST KNOWN REQUEST PROCESSED

LAST KNOWN REQUEST PROCESSED

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

2-44

Extracts the serial number of the last request known by Xlib to have been
processed to the X server.

requesLreturn =
X$LAST _KNOWN_REQUEST _PROCESSED

(display)

Argument Usage Data Type Access Mechanism

request_return uns longword uns longword write value

display identifier uns longword read reference

requesLreturn = XLastKnownRequestProcessed
(display)

int XLastKnownRequestProcessed(display)
Display *display;

request_ return
The serial number of the last request known by Xlib to have been
processed to the X server.

display
The display information originally returned by OPEN DISPLAY.

LAST KNOWN REQUEST PROCESSED extracts the serial number of the
last request known by Xlib to have been processed to the X server. This
number is automatically set by Xlib when replies, events, and errors are
received.

Display Routines
MAX CMAPS OF SCREEN

MAX CMAPS OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

Returns the maximum number of installed color maps supported by the
specified screen.

colormaps_return = X$MAX_CMAPS_OF _SCREEN
(screen_id)

Argument Usage Data Type Access

colormaps_return longword longword write

screen_id identifier uns longword read

colormaps_return = XMaxCmapsOfScreen
(screen_id)

int XMaxCmapsOfScreen(screen_id)
Screen *screen_id;

colormaps_return

Mechanism

value

reference

The maximum number of installed color maps supported by the specified
screen.

ARGUMENTS screen id
The identifier of the screen for which the number of colormaps is
requested.

DESCRIPTION MAX CMAPS OF SCREEN returns the maximum number of installed
color maps supported by the specified screen.

2-45

Display Routines
MIN CMAPS OF SCREEN

MIN CMAPS OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

Returns the minimum number of installed color maps supported by the
specified screen.

colormaps_return = X$MIN_CMAPS_OF _SCREEN
(screen_id)

Argument Usage Data Type Access

colormaps_return longword longword write

screen_id identifier uns longword read

colormaps_return = XMinCmapsOfScreen
(screen_id)

int XMinCmapsOfScreen(screen_id)
Screen *screen_id;

colormaps_return

Mechanism

value

reference

The minimum number of installed color maps supported by the specified
screen.

ARGUMENTS screen id
The identifier of the screen for which the number of colormaps is
requested.

DESCRIPTION MIN CMAPS OF SCREEN returns the minimum number of installed color
maps supported by the specified screen.

2-46

Display Routines
NEXT REQUEST

NEXT REQUEST

Extracts the serial number that is to be used for the next request.

VAX FORMAT request_return == X$NEXT _REQUEST (display)

argument
information

Argument Usage Data Type Access Mechanism

request_retu rn uns longword uns longword write value

display identifier uns longword read reference

MIT C FORMAT request_return = XNextRequest (display)

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

int XNextRequest(display)
Display *display;

request_ return
The serial number that Xlib is to use for the next request.

display
The display information originally returned by OPEN DISPLAY.

NEXT REQUEST extracts the serial number that is to be used for the
next request. Serial numbers are maintained separately for each display
connection.

2-47

Display Routines
NO OP

NO OP

VAX FORMAT

argument
information

Sends a no-operation protocol request to the server.

X$NO_OP (display)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

MIT C FORMAT XNoOp (display)

argument
information

ARGUMENTS

DESCRIPTION

2-48

XNoOp(display)
Display *display;

display
The display information originally returned by OPEN DISPLAY.

NO OP generates a no-operation server protocol request. It does not
explicitly flush the output buffer.

Display Routines
OPEN DISPLAY

OPEN DISPLAY

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Opens a connection between a client program and the display that you
specify.

display_return = X$0PEN_DISPLAY
(display_name)

Argument Usage Data Type Access Mechanism

display_return identifier uns longword

display _name char string char string

display_return = XOpenDisplay
(display_name)

Display *XOpenDisplay(display_name)
char *display_name;

write value

read descriptor

display_return
An identifier that uniquely identifies the connection to the display that you
opened.

display_name
The name of the hardware display to which you want to connect. The
display _name argument is a string that has the following format:

hostname::number.screen.

The string elements are as follows:

hostname

number

The name of the host machine to which the display is physically
connected. Specify o if the client program and the server are running
in the same CPU.

The number of the server on that host machine. A single CPU can
have more than one server, which are usually numbered starting with
zero.

2-49

Display Routines
OPEN DISPLAY

DESCRIPTION

2-50

screen

VAX only

The number of the screen on that server. An X server can control
multiple screens on one display. The screen sets an internal variable
that can be accessed by using the DefaultScreen macro or the
DEFAULT SCREEN function.

The display _name argument is the address of the character string
descriptor that points to the string.

Conly

The display _name argument is a pointer to a null-terminated character
string.

OPEN DISPLAY connects a client program to the specified display. You
pass to OPEN DISPLAY the name of the display to which you want to
connect. If successful, OPEN DISPLAY establishes the connection to the
display and returns a pointer to a display identifier. If OPEN DISPLAY
does not succeed, it returns a null value in the MIT C binding and a zero
in the VAX binding.

After you successfully connect the client to the display, you can obtain data
from the display using other Xlib routines. However, OPEN DISPLAY
should be called before calling any other Xlib routines.

Display Routines
PLANES OF SCREEN

PLANES OF SCREEN

VAX FORMAT

argument

Returns the number of planes in the specified screen.

planes_return = X$PLANES_OF _SCREEN
(screen_id)

information
Argument Usage Data Type Access Mechanism

planes_return longword longword write value

screen_id identifier uns longword read reference

MIT C FORMAT planes_return = XPlanesOfScreen
(screen_id)

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

int XPlanesOfScreen(screen_id)
Screen *screen_id;

planes_return
The number of planes in the specified screen.

screen id
The identifier of the screen

PLANES OF SCREEN returns the number of planes in the specified
screen.

2-51

Display Routines
PROTOCOL REVISION

PROTOCOL REVISION

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

2-52

Returns the minor protocol revision number that the X server is using.

revision_return = X$PROTOCOL_REVISION
(display)

Argument Usage Data Type Access

revision_retu rn longword longword write

display identifier uns longword read

rev1s1on return= XProtocolRevision
(display)

int XProtocolRevision(display)
Display *display;

revision return

Mechanism

value

reference

The minor protocol revision number that the X server is using.

display
The display information originally returned by OPEN DISPLAY.

PROTOCOL REVISION returns the minor protocol revision number that
the X server is using.

Display Routines
PROTOCOL VERSION

PROTOCOL VERSION

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

Returns the version number of the X protocol associated with the connected
display.

version_return = X$PROTOCOL_ VERSION
(display)

Argument Usage Data Type Access Mechanism

version_return longword longword

display identifier uns longword

version return = XProtocolVersion
(display)

int XProtocolVersion(display)
Display *display;

version return

write value

read reference

The version number of the X protocol associated with the connected
hardware display.

display
The display information originally returned by OPEN DISPLAY.

PROTOCOL VERSION returns the version number of the X protocol
associated with the connected display.

2-53

Display Routines
Q LENGTH

Q LENGTH

VAX FORMAT

argument
information

Returns the length of the input event queue for the connected hardware
display.

length_return = X$Q_LENGTH (display)

Argument Usage Data Type Access Mechanism

length_return longword longword write value

display identifier uns longword read reference

MIT C FORMAT length_return = XQLength (display)

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

2-54

int XQLength(display)
Display *display;

length_return
The length of the input event queue for the connected hardware display.

display
The display information originally returned by OPEN DISPLAY.

Q LENGTH returns the length of the input event queue for the connected
hardware display. See also the EVENTS QUEUED routine.

Display Routines
ROOT WINDOW

ROOT WINDOW

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the identifier of the root window.

rooLwindow_id_return = X$ROOT _WINDOW
(display, screen_number)

Argument Usage Data Type Access

root_window_id_return identifier uns longword

display identifier uns longword

screen_number uns longword uns longword

rooLwindow_id_return = XRootWindow
(display, screen_number)

Window XRootWindow(display, screen_number)
Display *display;
int screen_number;

root window id return
The identifier of the root window.

display

write

read

read

Mechanism

value

reference

reference

The display information originally returned by OPEN DISPLAY.

screen number
The number of the screen for which the root window is to be obtained.

DESCRIPTION ROOT WINDOW obtains the identifier of the root window. ROOT
WINDOW is useful with other Xlib routines that take a parent window
as an argument.

2-55

Display Routines
ROOT WINDOW OF SCREEN

ROOT WINDOW OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the root window of the specified screen.

window_id_return =X$ROOT_WINDOW_OF _SCREEN
(screen_id)

Argument Usage Data Type Access

window_id_return identifier uns longword write

screen_id identifier uns longword read

window id return =XRootWindowOfScreen
(screen_id)

Window XRootWindowOfScreen(screen_id)
Screen *screen_id;

window id return
The identifier of root window of the specified screen.

screen id

Mechanism

value

reference

The identifier of the screen for which the root window is requested.

DESCRIPTION ROOT WINDOW OF SCREEN returns the root window of the specified
screen.

2-56

ROTATE BUFFERS

Rotates the ring of cut buffers from Oto 7.

Display Routines
ROTATE BUFFERS

VAX FORMAT X$ROTATE_BUFFERS (display, rotate)

argument
information

Argument Usage Data Type

display identifier uns longword

rotate longword longword

MIT C FORMAT XRotateBuffers (display, rotate)

argument
information

ARGUMENTS

XRotateBuffers(display, rotate)
Display *display;
int rotate;

display

Access Mechanism

read reference

read reference

The display information originally returned by OPEN DISPLAY.

rotate
Specifies how much to rotate the cut buffers.

DESCRIPTION ROTATE BUFFERS rotates the cut buffers based on the value that you
specify. Buffer 0 becomes buffer n, buffer 1 becomes buffer n+l MOD 8,
and so on. This method of numbering cut buffers is global to the display.
Note that ROTATE BUFFERS generates an error if any of the eight
buffers have not been created.

2-57

Display Routines
ROTATE BUFFERS

XERRORS
VAX

X$C_BAD_ATOM

X$C_BAD_MATCH

c
BadAtom

Bad Match

X$C_BAD_WINDOW BadWindow

2-58

Description

The value that you specified in an atom
argument does not name a defined atom.

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.

An input-only window is used as a
drawable.

One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.

An input-only window lacks this
attribute.

A value that you specified for a window
argument does not name a defined
window.

Display Routines
SCREEN COUNT

SCREEN COUNT

Returns the number of screens in the specified display.

VAX FORMAT count_return = X$SCREEN_COUNT (display)

argument
information

Argument Usage Data Type Access Mechanism

count_return longword longword write value

display identifier uns longword read reference

MIT C FORMAT count_return = XScreenCount (display)

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

int XScreenCount(display)
Display *display;

request_ return
The number of screens in the specified display.

display
The display information originally returned by OPEN DISPLAY.

SCREEN COUNT returns the number of screens in the specified disp] ay.

2-59

Display Routines
SCREEN OF DISPLAY

SCREEN OF DISPLAY

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the identifier of the screen of the specified display.

X$SCREEN_OF _DISPLAV
(display, screen_number, screen_return)

Argument Usage Data Type Access

display identifier uns longword read

screen_number uns longword uns longword read

screen_return record x$screen write

screen_id_return =XScreenOfDisplay
(display, screen_number)

Screen *XScreenOfDisplay(display, screen_number)
Display *display;
int screen_number;

screen_id_return (MIT Conly)

Mechanism

reference

reference

reference

The identifier of the screen associated with the specified display.

display
The display information originally returned by the OPEN DISPLAY
routine.

screen number
The number of the returned screen.

screen_return (VAX only)
The identifier of the screen associated with the specified display.

DESCRIPTION SCREEN OF DISPLAY returns the identifier of the screen associated with
the specified display.

2-60

Display Routines
SERVER VENDOR

SERVER VENDOR

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns a pointer to a string that identifies the owner of the X server
implementation.

X$SERVER VENDOR
(display, vendor_name_return, [len_return])

Argument Usage Data Type Access Mechanism

string_name char string char string read descriptor

display identifier uns longword read reference

vendor _name _return char string char_string write descriptor

len_return word uns word write reference

vendor_name_return = XServerVendor
(display)

char *XServerVendor(display)
Display *display;

vendor_name_return (MIT Conly)
The name of the string that identifies the owner of the X server
implementation.

The vendor_name_return argument is a pointer to the null-terminated
character string.

display
The display information originally returned by OPEN DISPLAY.

vendor_name_return (VAX only)
The name of the string that identifies the owner of the X server
implementation.

The vendor _name_return argument is the address of a character string
descriptor that points to the string.

len_return (VAX only)
The length of the returned string. This argument is optional.

2-61

Display Routines
SERVER VENDOR

DESCRIPTION SERVER VENDOR returns a pointer to a character string that identifies
the owner of the X server implementation.

2-62

Display Routines
STORE BUFFER

STORE BUFFER

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Stores data in a specified cut buffer.

X$STORE_BUFFER
(display, bytes, num_bytes, buffer)

Argument Usage Data Type Access

display identifier uns longword read

bytes array byte read

num_bytes longword longword read

buffer longword longword read

XStoreBuffer
(display, bytes, num_bytes, buffer)

XStoreBuffer(display, bytes, num_bytes, buffer)
Display *display;
char bytes[];
int num_bytes;
int buffer;

display

Mechanism

reference

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

bytes
A pointer to the array of bytes that you want to store. The length of the
array is specified by num_bytes. The byte string is not necessarily ASCII
or null terminated.

num_bytes
The number of bytes that you want to store in the bytes argument.

buffer
The buffer in which you want to store the byte string. Valid entries are 0
through 7.

DESCRIPTION STORE BUFFER stores the string of bytes in the buffer that you specify.
Clients can retrieve the contents of the cut buffer by calling FETCH
BUFFER.

2-63

Display Routines
STORE BUFFER

XERRORS

2-64

VAX C Description

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested
resource for any cause.

X$C_BAD_ATOM BadAtom The value that you specified in an atom
argument does not name a defined atom.

X$C_BAD_WINDOW BadWindow A value that you specified for a window
argument does not name a defined window.

Display Routines
STORE BYTES

STORE BYTES

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Stores data in cut buffer zero.

X$STORE_BVTES
(display, bytes, num_bytes)

Argument Usage Data Type

display identifier uns longword

bytes array byte

num_bytes longword longword

XStoreBytes
(display, bytes, num_bytes)

XStoreBytes(display, bytes, num_bytes)
Display *display;
char bytes[];
int num_bytes;

display

Access Mechanism

read reference

read reference

write reference

The display information originally returned by OPEN DISPLAY.

bytes
A pointer to the array of bytes that you want to store. The byte string is
not necessarily ASCII text or a null-terminated string. The length of the
array is specified by num_bytes.

num_bytes
The number of bytes in the string that you want to store.

DESCRIPTION STORE BYTES returns the number of bytes to be stored to the
num_bytes argument.

Clients can retrieve the contents of the cut buffer by calling FETCH
BYTES.

2-65

Display Routines
STORE BYTES

XERRORS

2-66

VAX C Description

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested
resource for any cause.

X$C_BAD_WINDOW BadWindow A value that you specified for a window
argument does not name a defined window.

Display Routines
VENDOR RELEASE

VENDOR RELEASE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

Returns the number of the release of the X server, as assigned by the vendor.

release_return == X$VENDOR_RELEASE
(display)

Argument Usage Data Type Access Mechanism

release_return longword longword

display identifier uns longword

release_return == XVendorRelease
(display)

int XVendorRelease(display)
Display *display;

release return

write value

read reference

The number of the release of the X server, as assigned by the vendor.

display
The display information originally returned by OPEN DISPLAY.

VENDOR RELEASE returns the number of the release of the X server, as
assigned by the vendor.

2-67

Display Routines
WHITE PIXEL

WHITE PIXEL

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the color index (pixel value) that yields white on the specified screen.

color_index_return = X$WHITE_PIXEL
(display, screen_id)

Argument Usage Data Type

color_index_return identifier uns longword

display identifier uns longword

screen_id identifier uns longword

color index return = XWhitePixel - -
(display, screen_id)

unsigned long XWhitePixel(display, screen_id)
Display *display;
int screen_id;

color index return

Access Mechanism

write value

read reference

read reference

The identifier of the color index (pixel value) that yields white on the
specified screen.

display
The display information originally returned by OPEN DISPLAY.

screen id
The identifier of the screen for which the white pixel is requested.

DESCRIPTION WHITE PIXEL returns the color index (pixel value) that yields white on
the specified screen.

2-68

To obtain the color index that yields black on the specified screen, use
BLACK PIXEL.

Display Routines
WHITE PIXEL OF SCREEN

WHITE PIXEL OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

Returns the white pixel of the specified screen.

color_index_return = X$WHITE_PIXEL_OF _SCREEN
(screen_id)

Argument Usage Data Type Access Mechanism

color _index_return identifier uns longword write

screen_id identifier uns longword read

color index return = XWhitePixelOfScreen - -
(screen_id)

unsigned long XWhitePixelOfScreen(screen_id)
Screen *screen_id;

color index return

value

reference

The identifier of the color index (pixel value) that yields white on the
specified screen.

screen id
The identifier of the screen for which the white pixel is requested.

WHITE PIXEL OF SCREEN returns the white pixel of the specified
screen.

To obtain the black pixel of the specified screen, use BLACK PIXEL OF
SCREEN.

2-69

Display Routines
WIDTH MM OF SCREEN

WIDTH MM OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

2-70

Returns the width, in millimeters, of the specified screen.

width_return = X$WIDTH_MM_OF _SCREEN
(screen_id)

Argument Usage Data Type Access

width_return longword longword write

screen_id identifier uns longword read

width_return = XWidthMMOfScreen
(screen_id)

width XWidthMMOfScreen(screen_id)
Screen *screen_id;

width return
The width, in millimeters, of the specified screen.

screen id
The identifier of the screen for which the width is requested.

Mechanism

value

reference

WIDTH MM OF SCREEN returns the width, in millimeters, of the
specified screen.

When you want to obtain the width of a screen in pixels, use WIDTH OF
SCREEN.

Display Routines
WIDTH OF SCREEN

WIDTH OF SCREEN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

Returns the width, in pixels, of the specified screen.

width_return = X$WIDTH_OF _SCREEN
(screen_id)

Argument Usage Data Type

width_return longword longword

screen_id identifier uns longword

width_return = XWidthOfScreen
(screen_id)

long XWidthOfScreen(screen_id)
Screen *screen_id;

width return
The width, in pixels, of the specified screen.

screen id

Access

write

read

The identifier of the screen for which the width is requested.

Mechanism

value

reference

WIDTH OF SCREEN returns the width, in pixels, of the specified screen.

When you want to obtain the width of a screen in millimeters, use WIDTH
MM OF SCREEN.

2-71

3 Window Routines

The Xlib window routines enable you to perform the following operations:

• Create windows

• Destroy windows

• Map windows

• Unmap windows

• Configure windows

• Raise and lower windows

• Change window attributes

• Provide window information

• Translate window coordinates

For concepts related to window routines and information on how to use
window routines, see the VMS DECwindows Xlib Programming Volume.

The routines described in this chapter are listed in Table 3-1.

Table 3-1 Window Routines

Routine Name Description

CHANGE WINDOW ATTRIBUTES Sets the attributes of a specified window.

CIRCULATE SUBWINDOWS Circulates the appropriate child of a window in
a specified direction.

CIRCULATE SUBWINDOWS DOWN Lowers the highest mapped child window of a
window that occludes another window.

CIRCULATE SUBWINDOWS UP Raises the lowest mapped child of an
occluded window.

CONFIGURE WINDOW Reconfigures a window's size, position, border,
and stacking order.

CREATE SIMPLE WINDOW Creates a subwindow of a specified parent
window from an application.

CREATE WINDOW Creates a subwindow of a parent window and
defines the attributes of the subwindow.

DESTROY SUBWINDOWS Destroys all subwindows of a window.

DESTROY WINDOW Destroys a window and all of its subwindows
from an application.

GET GEOMETRY Obtains the current geometry of the specified
drawable.

(continued on next page)

3-1

Window Routines

3-2

Table 3-1 (Cont.) Window Routines

Routine Name

GET WINDOW ATTRIBUTES

LOWER WINDOW

MAP RAISED

MAP SUBWINDOWS

MAP WINDOW

MOVE RESIZE WINDOW

MOVE WINDOW

QUERY POINTER

QUERY TREE

RAISE WINDOW

RESIZE WINDOW

RESTACK WINDOWS

SET WINDOW BACKGROUND

SET WINDOW BACKGROUND
PIXMAP

SET WINDOW BORDER

SET WINDOW BORDER PIXMAP

SET WINDOW BORDER WIDTH

TRANSLATE COORDINATES

UNMAP SUBWINDOWS

UNMAP WINDOW

Description

Obtains the attributes of a specified window.

Lowers a window so that it does not obscure
any sibling windows.

Maps the specified window and raises it to the
top of the stack.

Maps all subwindows of a specified window.

Maps a window and all of its subwindows that
have had map requests.

Changes the location and the size of a
specified window.

Moves and raises a window without changing
its size.

Obtains the root window where the pointer is
currently located and the pointer coordinates
relative to the root window's origin.

Lists the parent, the children, and the number
of children for a window.

Raises a window so that no sibling window
obscures it.

Changes the size of a window.

Restacks an array of windows from top to
bottom.

Sets the background of a specified window to
the specified pixel.

Changes the background tile of a specified
window.

Sets a window's border to a specified pixel.

Changes and repaints the border tile of a
specified window.

Changes the border width of a window.

Transfers coordinates from the coordinate
space of one window to another.

Unmaps all subwindows of a specified window.

Unmaps a window.

The routines use the following data structures:

• Set window attributes

• Window changes

• Window attributes

Window Routines
3.1 Set Window Attributes Data Structure

3.1 Set Window Attributes Data Structure
The set window attributes data structure specifies and receives
information about window attributes. The data structure for the VAX
binding is shown in Figure 3-1, and information about members in the
data structure is described in Table 3-2.

Figure 3-1 Set Window Attributes Data Structure (VAX Binding)

x$1_swda_background_pixmap 0

x$1_swda_background_pixel 4

x$1_swda_border_pixmap 8

x$1_swda_border_pixel 12

x$1_swda_bit_gravity 16

x$1_swda_win_gravity 20

x$1_swda_backing_store 24

x$1_swda_backing_planes 28

x$t_swda_backing_pixel 32

x$1_swda_save_under 36

x$1_swda_event_mask 40

x$1_swda_ do _not_propagate _mask 44

x$1_swda_override_redirect 48

x$1_swda_colormap 52

x$1_swda_cursor 56

Table 3-2 Members of the Set Window Attributes Data Structure (VAX Binding)

Member Name

X$L_SWDA_BACKGROUND_PIXMAP

Contents

Defines the window background of an input-output window. This
member can assume one of three possible values: pixmap
identifier, the constant x$c_none (default), or the constant
x$c_parent_relative.

(continued on next page)

3-3

Window Routines
3.1 Set Window Attributes Data Structure

Table 3-2 (Cont.) Members of the Set Window Attributes Data Structure (VAX Binding)

Member Name

X$L_SWDA_BACKGROUND_PIXEL

X$L_SWDA_BORDER_PIXMAP

X$L_SWDA_BORDER_PIXEL

X$L_SWDA_BIT _GRAVITY

X$L_SWDA_WIN_GRAVITY

X$L_SWDA_BACKING_STORE

X$L_SWDA_BACKING_PLANES

X$L_SWDA_BACKING_PIXEL

X$L_ SWDA_SAVE_ UNDER

X$L_SWDA_EVENT _MASK

X$L_SWDA_DO_NOT_PROPAGATE_MASK

3-4

Contents

Specifying a value for the X$L_SWDA_BACKGROUND_PIXEL
member causes the server to override the
X$L_SWDA_BACKGROUND_PIXMAP member. This is
equivalent to a specifying pixmap of any size filled with the
background pixel and used to paint the window background.

Defines the window border of an input-output window. This
member can be either X$C_COPY_FROM_PARENT or a
pixmap identifier.

Specifying a value for X$L_SWDA_BORDER_PIXEL causes the
server to override the X$L_SWDA_BORDER_PIXMAP member.
This is equivalent to specifying a pixmap of any size filled with
the border pixel and used to paint the window border.

Defines how window contents should be moved when an input
only or input-output window is resized. By default, the server
does not retain window contents.

Defines how the server should reposition the newly-created
input-only or input-output window when its parent window is
resized. By default, the server does not move the newly created
window.

Provides a hint to the server about how the client wants it to
manage obscured portions of the window. In this release clients
must maintain window contents.

Indicates (with bits set to one) which bit planes of the window
hold dynamic data that must be preserved if the window
obscures or is obscured by another window. In this release
clients must maintain data to be preserved.

Defines what values to use in planes not specified by the
X$L_SWDA_BACKING_PLANES member. In this release
clients must maintain values.

Setting the X$L_SWDA_SAVE_UNDER member to true informs
the server that the client would like the contents of the screen
saved when an input-output window obscures them. Clients
must maintain the contents of screens.

Defines which types of events associated with an input-only or
input-output window the server should report to the client. A
complete table appears in Chapter 4.

Defines which kinds of events should not be propagated to
ancestors.

(continued on next page)

Window Routines
3.1 Set Window Attributes Data Structure

Table 3-2 (Cont.) Members of the Set Window Attributes Data Structure (VAX Binding)

Member Name Contents

X$L_SWDA_OVERRIDE_REDIRECT Specifies whether calls to map and configure an input-only or
input-output window should override a request by another client
to redirect those calls. Typically, this is used to inform a window
manager not to tamper with the window, for example when the
client is creating and mapping a menu.

X$L_SWDA_COLORMAP

X$L_SWDA_ CURSOR

Specifies the color map, if any, that best reflects the colors of an
input-output window. The color map must have the same visual
type as the window. If it does not, the server issues an error.

Specifying a value for the cursor member causes the server to
use a particular cursor when the pointer is in an input-only or
input-output window.

Table 3-3 lists default values for the SET WINDOW ATTRIBUTES
structure.

Table 3-3 Default Values of the Set Window Attributes Structure

Member

X$L_SWDA_BACKGROUND_PIXMAP

X$L_SWDA_BACKGROUND_PIXEL

X$L_SWDA_BORDER_PIXMAP

X$L_SWDA_BORDER_PIXEL

X$L_SWDA_BIT _GRAVITY

X$L_SWDA_WIN_GRAVITY

X$L_SWDA_BACKING_STORE

X$L_SWDA_BACKING_PLANES

X$L_SWDA_BACKING_PIXEL

X$L_SWDA_SAVE_UNDER

X$L_SWDA_EVENT _MASK

X$L_SWDA_DO_NOT _PROPAGATE_MASK

X$L_SWDA_OVERRIDE_REDIRECT

X$L_SWDA_COLORMAP

X$L_SWDA_CU RSOR

Default Value

None

Undefined

Copied from the parent window

Undefined

Window contents not retained

Window not moved

Window contents not retained

All 1s

0

False

Empty set

Empty set

False

Copied from parent

None

The data structure for the MIT C binding is shown in Figure 3-2,
and information about members in the data structure is described in
Table 3-4.

3-5

Window Routines
3.1 Set Window Attributes Data Structure

Figure 3-2 Set Window Attributes Data Structure (MIT C .Binding)

typedef struct {
Pixmap background pixmap;
unsigned long background pixel;
Pixmap border_pixmap; -
unsigned long border_pixel;
int bit_gravity;
int win_gravity;
int backing_store;
unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;
long event_mask;
long do_not_propagate_mask;
Bool override_redirect;
Colormap colormap;
Cursor cursor;

XSetWindowAttributes

Table 3-4 Members of the Set Window Attributes Structure (MIT C Binding)

Member Name

background_pixmap

background_pixel

border _pixmap

border_pixel

bit_gravity

win_gravity

3-6

Contents

Defines the window background. The background_pixmap member can
assume one of three possible values: pixmap identifier, the constant None
(default), or the constant ParentRelative.

Specifying a value for the background_pixel member causes the server
to override the background_pixmap member. This is equivalent to a
specifying pixmap of any size filled with the background pixel and used to
paint the window background.

Defines the window border. This can either be CopyFromParent or a
Pixmap.

Specifying a value for border_pixel causes the server to override the
border_pixmap member. This is equivalent to specifying a pixmap of any
size filled with the border pixel and used to paint the window border.

Defines how the contents of the window should be moved when the
window is resized. By default, the server does not retain window contents.

Defines how the server should reposition the newly-created window when
its parent window is resized. By default, the server does not move the
newly created window.

(continued on next page)

Window Routines
3.1 Set Window Attributes Data Structure

Table 3-4 (Cont.} Members of the Set Window Attributes Structure (MIT C Binding}

Member Name

backing_ store

backi ng_planes

backi ng_pixel

save_under

event_ mask

do _not_propagate _mask

override_redirect

colormap

cursor

Contents

Provides a hint to the server about how the client wants it to manage
obscured portions of the window. The hint does not guarantee the server
will maintain window contents. The following are possible:

The constant WhenMapped-Advises the server that the client wants
it to maintain the contents of obscured regions when the window is
mapped.

The constant Always-Advises the server that the client wants it to
maintain the contents of obscured regions even when the window is
unmapped. The server might maintain complete contents of a window
when part of the window is obscured. If the server maintains the
contents, exposure events are not generated, but the server may stop
maintaining contents at any time.
The constant NotUseful-Advises the server that it does not need to
maintain the contents of the window.

Indicates (with bits set to one) which bit planes of the window hold dynamic
data that must be preserved if the window obscures or is obscured by
another window.

Defines what values to use in planes not specified by the backing_planes
member. The server is free to save only specified bit planes and to
regenerate the remaining planes with the specified pixel value. Bits that
extend beyond the number per pixel of the window are ignored.

Setting the save_under member to true informs the server that the client
would like the contents of the screen saved when the window obscures
them. Saving the contents of obscured portions of the screen is not
guaranteed.

Defines which types of events associated with the window the server
should report to the client. See the complete table in Chapter 4.

Defines which kinds of events should not be propagated to ancestors.

Specifies whether calls to map and configure the window should override
a request by another client to redirect those calls. Typically, this is used
to inform a window manager not to tamper with the window, for example
when the client is creating and mapping a menu.

Specifies the color map, if any, that best reflects the colors of the window.
The color map must have the same visual type as the window. If it does
not, the server issues an error.

Specifying a value for the cursor member causes the server to use a
particular cursor when the pointer is in the window.

3.2 Window Changes Data Structure
The window changes data structure specifies and receives information
about a window. You use the window changes data structure in the
CONFIGURE WINDOW routine, when you want to reconfigure a window's
size, position, border, and stacking order.

3-7

Window Routines
3.2 Window Changes Data Structure

The data structure for the VAX binding is shown in Figure 3-3, and
information about members in the data structure is described in
Table 3-5.

Figure 3-3 Window Changes Data Structure (VAX Binding)

x$1_wchg_x

x$1_wchg_y

x$1_ wchg_ width

x$1_wchg_height

x$1_ wchg_ border_ width

x$1_wchg_sibling

x$1_ wchg_stack_mode

Table 3-5 Members of the Window Changes Data Structure (VAX Binding)

Member Name Contents

0

4

8

12

16

20

24

X$L_WCHG_X Defines the x-coordinate of the new location of the window relative to the
origin of its parent. The x and y coordinates specify the upper left outside
corner of the window.

X$L_WCHG_Y

X$L_WCHG_WIDTH

X$L_WCHG_HEIGHT

X$L_WCHG_BORDER_WIDTH

X$L_WCHG_SIBLING

X$L_WCHG_STACK_MODE

Defines the y-coordinate of the new location of the window relative to the
origin of its parent. The x and y coordinates specify the upper left outside
corner of the window.

Defines the new width of the window, excluding the border.

Defines the new height of the window, excluding the border.

Specifies the new window border in pixels.

Specifies the sibling window for stacking order.

Defines how the window is restacked.

The data structure for the MIT C binding is shown in Figure 3-4,
and information about members in the data structure is described in
Table 3-6.

8-8

Window Routines
3.2 Window Changes Data Structure

Figure 3-4 Window Changes Data Structure {MIT C Binding)

typedef struct {
int x,y;
int width, height;
int border_width;
Window sibling;
int stack_mode;

XWindowChanges

Table 3-6 Members of the Window Changes Data Structure {MIT C
Binding)

Member
Name

x

y

width

height

border_ width

sibling

stack_mode

Contents

Defines, with they member, the new location of the window relative
to the origin of its parent.

Defines, with the x member, the new location of the window relative
to the origin of its parent.

Defines the new width of the window, excluding the border.

Defines the new height of the window, excluding the border.

Specifies the new window border in pixels.

Specifies the sibling window for stacking order.

Defines how the window is restacked.

3.3 Window Attributes Data Structure
The window attributes data structure specifies and receives information
about a window. Use this data structure when you want to obtain the
current attributes of a window with the GET WINDOW ATTRIBUTES
routine.

The data structure for the VAX binding is shown in Figure 3-5, and
information about members in the data structure is described in
Table 3-7.

Figure 3-5 Window Attributes Data Structure {VAX Binding)

x$1_wdat_x

x$1_wdat_y

x$1_wdat_width

0

4

8

x$1_wdat_height 12

x$1_wdat_border_width 16

(continued on next page)

3-9

Window Routines
3.3 Window Attributes Data Structure

Figure 3-5 (Cont.) Window Attributes Data Structure (VAX Binding)

x$1_ wdat_ depth 20

x$1_wdat_visual 24

x$1_ wdat_root 28

x$1_wdat_class 32

x$1_wdat_bit_gravity 36

x$1_ wdat_ win_g ravity 40

x$1_wdat_backing_store 44

x$1_ wdat_ backing_planes 48

x$1_wdat_backing_pixel 52

x$1_wdat_save_under 56

x$1_wdat_colormap 60

x$1_wdat_map_installed 64

x$1_wdat_map_state 68

x$1_wdat_all_event_masks 72

x$1_wdat_your_event_mask 76

x$1_ wdat_not_propagate _mask 80

x$1_ wdat_ override _redirect 84

x$1_wdat_screen 88

Table 3-7 Members of the Window Attributes Data Structure (VAX Binding)

Member Name

X$L_WDAT_X

X$L_WDAT_Y

X$L_WDAT_WIDTH

3-10

Contents

Specifies the x-coordinate of the upper left outside corner of the
window relative to its parent.

Specifies the y-coordinate of the upper left outside corner of the
window relative to its parent.

Specifies the width of the window, excluding the window border, in
pixels.

(continued on next page)

Window Routines
3.3 Window Attributes Data Structure

Table 3-7 (Cont.) Members of the Window Attributes Data Structure (VAX Binding)

Member Name

X$L_WDAT_HEIGHT

X$L_WDAT _BORDER_WIDTH

X$L_WDAT_DEPTH

X$L_ WDAT _VISUAL

X$L_WDAT_ROOT

X$L_WDAT_CLASS

X$L_WDAT_BIT_GRAVITY

X$L_WDAT _WIN_GRAVITY

X$L_ WDAT _BACKING_STORE

X$L_ WDAT _BACKING_PLANES

X$L_WDAT_BACKING_PIXEL

X$L_SWDA_SAVE_UNDER

X$L_WDAT _COLORMAP

X$L_WDAT_MAP _INSTALLED

Contents

Specifies the height of the window, excluding the window border, in
pixels.

Specifies the width of the window border in pixels.

Specifies the bits per pixel of the window.

The VISUAL structure associated with the window. The VISUAL
structure specifies how displays should treat color resources.

Identifies the screen with which the window is associated.

Specifies whether the window accepts input and output, or input
only.

Specifies how pixels should be moved when the window is resized.

Specifies how the window should be repositioned when its parent is
resized.

Indicates whether or not the server should maintain a record
of portions of a window that are obscured when the window is
mapped. In this release clients must maintain window contents.

Indicates (with bits set to 1) which bit planes of the window hold
dynamic data that must be preserved in backing stores and during
save unders. In this release clients must maintain their own data.

Defines what values to use in planes not specified by
X$L_WDAT_BACKING_PLANES. In this release clients must
maintain their own values.

Setting this member to true informs the server that the client would
like the contents of the screen saved when the window obscures
them. Saving the contents of obscured portions of the screen is not
guaranteed.

Specifies the color map, if any, that best reflects the colors of the
window. The color map must have the same visual type as the
window. If it does not, an error occurs.

If set to true, indicates that the color map is currently installed and
the window is being displayed in its correct colors.

(continued on next page)

3-11

Window Routines
3.3 Window Attributes Data Structure

Table 3-7 (Cont.) Members of the Window Attributes Data Structure (VAX Binding)

Member Name

X$L_WDAT_MAP _STATE

Contents

Indicates whether the window is mapped and viewable. Clients can
specify the following constants:

Constant Name

x$c_is_unmapped

x$c _is_unviewable

x$c_is_viewable

Description

Indicates that the window is not mapped.

Indicates that the window is mapped, but
that one of its ancestors is unmapped,
causing the window to be unviewable.

Indicates that the window is mapped and
viewable.

X$L_WDAT_ALL_EVENTS_MASK Indicates the set of events in which all applications have an interest.
X$L_WDAT_ALL_EVENTS_MASK is the inclusive-OR of all event
masks set for the window.

X$L_WDAT_YOUR_EVENT_MASK Indicates the events about which the querying client is interested in
receiving notice.

X$L_WDAT_DO-NOT_PROPAGATE_MASK Defines which events should not be propagated to its ancestors
when no application has the event type selected in the window.

X$L_WDAT _OVERRIDE_REDIRECT Specifies whether requests to map and configure the window
should override a request by another client to redirect those calls.
Typically, this mask, which informs the window manager not to
tamper with the window, should be used only on subwindows such
as menus.

X$L_WDAT_SCREEN

3-12

Specifies the screen on which the window is mapped.

The data structure for the MIT C binding is shown in Figure 3-6, and
information about members in the data structure is described in Table 3-8.

Window Routines
3.3 Window Attributes Data Structure

Figure 3-6 Window Attributes Data Structure (MIT C Binding)

typedef struct {
int x,y;
int width,height;
int border_width;
int depth;
Visual *visual
Window root;
int class;
int bit_gravity;
int win_gravity;
int backing store;
unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;
Colormap colormap;
Bool map_installed;
int map_state;
long all_event_masks;
long your_event_mask;
long do not propagate mask;
Bool override_redirect;
Screen *screen

XWindowAttributes

Table 3-8 Members of the Window Attributes Data Structure (MIT C Binding)

Member Name

x

y

width

height

border_ width

depth

visual

root

class

bit_gravity

win_gravity

backing_ store

Contents

Specifies, with the y member, the coordinates of the upper left corner of
the window relative to its parent.

Specifies, with the x member, the coordinates of the upper left corner of
the window relative to its parent.

Specifies the width of the window, excluding the window border, in pixels.

Specifies the height of the window, excluding the window border, in pixels.

Specifies the width of the window border in pixels.

Specifies the bits per pixel of the window.

A pointer to a VISUAL structure associated with the window. The VISUAL
structure specifies how displays should treat color resources.

Identifies the screen with which the window is associated.

Specifies whether the window accepts input and output, or input only.

Specifies how pixels should be moved when the window is resized.

Specifies how the window should be repositioned when its parent is
resized.

Indicates whether or not the server should maintain a record of portions of
a window that are obscured when the window is mapped. In this release
clients must maintain contents of obscured windows.

(continued on next page)

3-13

Window Routines
3.3 Window Attributes Data Structure

Table 3-8 (Cont.) Members of the Window Attributes Data Structure (MIT C Binding)

Member Name

backing_planes

backing_pixel

save_under

colormap

map_installed

map_state

all_events_mask

your_event_mask

do _not_propagate

override_redirect

screen

3.4 Window Routines

Contents

Indicates (with bits set to 1) which bit planes of the window hold dynamic
data that must be preserved in backing stores and during save unders.
In this release clients must maintain data to be preserved.

Defines what values to use in planes not specified by the backing_planes
member. In this release clients must maintain values to be saved.

Setting the save_under member to true informs the server that the client
would like the contents of the screen saved when the window obscures
them. Saving the contents of obscured portions of the screen is not
guaranteed.

Specifies the color map, if any, that best reflects the colors of the window.
The color map must have the same visual type as the window. If it does
not, an error occurs.

If set to true, the map_installed member indicates that the color map is
currently installed and the window is being displayed in its correct colors.

Indicates whether the window is mapped. Clients can specify the following
constants:

Constant
Name

lsUnmapped

lsUnviewable

ls Viewable

Description

Indicates that the window is not mapped

Indicates that the window is mapped, but that one of
its ancestors is unmapped, causing the window to be
unviewable

Indicates that the window is mapped and viewable

Indicates the set of events in which all applications have an interest. The
all_events_mask member is the inclusive-OR of event masks set for the
window.

Indicates the events about which the querying application is interested in
receiving notice.

Defines which events should not be propagated to its ancestors when no
application has the event type selected in the window.

Specifies whether requests to map and configure the window should
override a request by another client to redirect those calls. Typically, this
mask, which informs the window manager not to tamper with the window,
should be used only on subwindows such as menus.

Specifies the screen on which the window is mapped.

The following pages describe the Xlib window routines.

3-14

Window Routines
CHANGE WINDOW ATTRIBUTES

CHANGE WINDOW ATTRIBUTES

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Sets the attributes of a specified window.

X$CHANGE_ WINDOW _ATTRIBUTES
(display, window_id, attributes_mask, attributes)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

attributes_mask uns longword uns longword read reference

attributes record x$set_win_ read reference
attributes

XChangeWindowAttributes
(display, window_id, attributes_mask, attributes)

XChangeWindowAttributes(display, window_id, attributes_mask,
attributes)

Display *display;
Window window_id;
unsigned long attributes mask;
XSetWindowAttributes *attributes;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window whose attributes are to be changed. The
identifier of the window was originally specified by any CREATE
WINDOW request.

attributes mask
The window attributes defined in the attributes argument that will be
changed. If the value of attributes_mask is 0, the attributes argument
is ignored and is not referenced. See Table 3-9.

3-15

Window Routines
CHANGE WINDOW ATTRIBUTES

DESCRIPTION

3-16

Table 3-9 CHANGE WINDOW ATTRIBUTES Flags

Flag Name

x$m_cw_back_pixmap

x$m_cw_background_pixel

x$m_cw_border_pixmap

x$m_cw_border_pixel

x$m_cw_bit_gravity

x$m_cw_win_gravity

x$m_cw_backing_store

x$m_cw_backing_planes

x$m_cw _backing_pixel

x$m_cw_override_redirect

x$m_ cw _save _under

x$m_cw_event_mask

x$m_ cw_ dont_propagate

x$m_cw_colormap

x$m_cw_cursor

attributes

Member

X$L_SWDA_BACKGROUND _PIXMAP

X$L_SWDA_BACKGROUND _PIXEL

X$L_SWDA_BORDER_PIXMAP

X$L_SWDA_BORDER_PIXEL

X$L_SWDA_BIT _GRAVITY

X$L_SWDA_WIN_GRAVITY

X$L_SWDA_BACKING_STORE

X$L_SWDA_BACKING_PLANES

X$L_SWDA_BACKING_PIXEL

X$L_SWDA_ OVERRIDE_RED IRECT

X$L_SWDA_SAVE_UNDER

X$L_SWDA_EVENT _MASK

X$L_SWDA_DO_NOT_PROPAGATE_MASK

X$L_SWDA_COLORMAP

X$L_SWDA_CURSOR

A pointer to the attribute data structure containing values to be changed.

For more information about the set window attributes data structure, see
Section 3.1.

CHANGE WINDOW ATTRIBUTES sets specific window attributes for a
specified window.

Depending on which attributes are specified in attributes, CHANGE
WINDOW ATTRIBUTES can affect the specified window as follows:

• Changing the background does not change the window contents.

• Changing the background of a root window to None or ParentRelative
restores the default background pixmap.

• Changing the window gravity does not affect the current window
position.

• Changing the color map of a window generates a Colormap Notify
event.

• Changing the cursor of a root window to None restores the default
cursor.

• If a client attempts to select the Substructure Redirect event, the
Resize Redirect event, or the Button Press event and another client
has already selected it, the X server generates a Bad Access error.

XERRORS
VAX c
X$C_BAD_ACCESS Bad Access

X$C_BAD_COLOR BadColor

X$C_BAD_CURSOR BadCursor

X$C_BAD_MATCH Bad Match

X$C_BAD _PIXMAP Bad Pixmap

X$C_BAD_ VALUE BadValue

X$C_BAD_WINDOW BadWindow

Window Routines
CHANGE WINDOW ATTRIBUTES

Description

Possible causes are as follows:

An attempt to grab a key/button
combination that has already been
grabbed by another client

An attempt to free a color map entry
that was not allocated by the client

An attempt to store in to a read-only
or unallocated color map entry
An attempt to modify the access
conrol list from other than the local
host

An attempt to select an event type
that at most one client can select at a
time, when another client has already
selected it

A value that you specified for a color map
argument does not name a defined color
map.

A value that you specified for a cursor
argument does not name a defined
cursor.

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.

An input-only window lacks this
attribute.

A value that you specified for a pixmap
argument does not name a defined
pixmap.

Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

A value that you specified for a window
argument does not name a defined
window.

3-17

Window Routines
CIRCULATE SUBWINDOWS

CIRCULATE SUBWINDOWS

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

3-18

Circulates the appropriate child of a window in a specified direction.

X$CIRCULATE_SUBWINDOWS
(display, window_id, direction)

Argument Usage Data Type

display identifier uns longword

window_id identifier uns longword

direction longword longword

XCirculateSubwindows
(display, window_id, direction)

Access

read

read

read

XCirculateSubwindows(display, window_id, direction)
Display *display;
Window window_id;
int direction;

display

Mechanism

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

window id
The identifier of the parent of the window that you want to circulate.
The identifier of the window was originally returned by any CREATE
WINDOW request.

direction
The direction in which you want to circulate the window. Valid values are
listed as follows:

VAX C

X$C_RAISE_LOWEST Raise Lowest

X$C _LOWER_H IGH EST LowerHighest

Description

The lowest window in the same stack
as the specified window is raised.

The highest window in the same stack
as the specified window is lowered.

DESCRIPTION

XERRORS

Window Routines
CIRCULATE SUBWINDOWS

CIRCULATE SUBWINDOWS circulates children of a window in a specified
direction.

If the specified direction is Raise Lowest, CIRCULATE SUBWINDOWS
raises the lowest mapped child (if any) that is occluded by another child
to the top of the stack. If the specified direction is Lower Highest,
CIRCULATE SUBWINDOWS lowers the highest mapped child (if any)
that occludes another child to the bottom of the stack.

If another client selects the Substructure Redirect event on the window
specified in window _id, CIRCULATE SUBWINDOWS generates a
circulate request event and performs no further processing.

VAX C

X$C_BAD_WINDOW BadWindow

Description

A value that you specified for a window
argument does not name a defined window.

3-19

Window Routines
CIRCULATE SUBWINDOWS DOWN

CIRCULATE SUBWINDOWS DOWN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Lowers the highest mapped child window of a window that occludes another
window.

X$CIRCULATE_SUBWINDOWS_DOWN
(display, window_id)

Argument Usage Data Type

display identifier uns longword

window_id identifier uns longword

XCirculateSubwindowsDown
(display, window_id)

Access

read

read

XCirculateSubwindowsDown(display, window_id)
Display *display;
Window window_id;

display

Mechanism

reference

reference

The display information originally returned by OPEN DISPLAY.

window id
The identifier of the parent window of the highest mapped child window.
The identifier of the parent window was originally returned by any
CREATE WINDOW request.

DESCRIPTION CIRCULATE SUBWINDOWS DOWN lowers the highest mapped child of
a window that partially or completely occludes another child window.

3-20

Lowering the child window generates exposure events on any window that
the child window had occluded.

If another client has selected Substructure Redirect on the window
specified in window _id, CIRCULATE SUBWINDOWS DOWN generates
a circulate request event and performs no further processing.

XERRORS
VAX C

Window Routines
CIRCULATE SUBWINDOWS DOWN

Description

X$C_BAD_WINDOW BadWindow A value that you specified for a window
argument does not name a defined window.

3-21

Window Routines
CIRCULATE SUBWINDOWS UP

CIRCULATE SUBWINDOWS UP

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Raises the lowest mapped child of an occluded window.

X$CIRCULATE_SUBWINDOWS_UP
(display, window_id)

Argument Usage Data Type

display identifier uns longword

window_id identifier uns longword

XCirculateSubwindowsUp
(display, window_id)

XCirculateSubwindowsUp(display, window_id)
Display *display;
Window window_id;

display

Access

read

read

Mechanism

reference

reference

The display information originally returned by OPEN DISPLAY.

window id
The identifier of the parent of the lowest mapped child window. The
identifier of the window was originally returned by any CREATE
WINDOW request.

DESCRIPTION CIRCULATE SUBWINDOWS UP raises the lowest mapped child of a
partially or completely occluded window.

3-22

Raising the child window generates exposure events on portions of the
child window that had been occluded, as well as on any descendants of the
child window. CIRCULATE SUBWINDOWS UP also generates a Circulate
Notify event.

If another client has selected Substructure Redirect on the window
specified in window _id, CIRCULATE SUBWINDOWS UP generates a
circulate request event and performs no further processing.

XERRORS
VAX C

X$C_BAD_WINDOW BadWindow

Window Routines
CIRCULATE SUBWINDOWS UP

Description

A value that you specified tor a window
argument does not name a defined window.

3-23

Window Routines
CONFIGURE WINDOW

CONFIGURE WINDOW

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

3-24

Reconfigures a window's size, position, border, and stacking order.

X$CONFIGURE_WINDOW
(display, window_id, change_mask, values)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

change_mask mask_uns uns longword read reference
longword

values record x$window_ read reference
changes

XConfigureWindow
(display, window_id, change_mask, values)

XConfigureWindow(display, window_id, change_mask, values)
Display *display;
Window window_id;
unsigned int change mask;
XWindowChanges *values;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window to be reconfigured. The identifier of the
window was originally returned by any CREATE WINDOW request.

change_mask
A bit mask that specifies the values that are to be set using the
information in the data structure that the values argument points to.

Table 3-10 lists each bit for the change_mask argument, its predefined
value, and its description.

DESCRIPTION

XERRORS

Table 3-10 Change Mask Bits

Bit VAX Value

0 X$C_CW_X

1 X$C_CW_Y

2 X$C_CW_WIDTH

3 X$C_CW_HEIGHT

4 X$C_CW_BORDER_WIDTH

5 X$C_CW_SIBLING

6 X$C_CW_STACK_MODE

7 NONE

8 NONE

values

C Value

CWY

CWY

CWWidth

CW Height

CWBWidth

CWSibling

Window Routines
CONFIGURE WINDOW

Meaning when Set

CWStackMode

Change x-coordinate

Change y-coordinate

Change width

Change height

Change border width

Change sibling

Change stack mode

Reserved None

None Reserved

A pointer to the window changes data structure.

For more information about the window changes data structure, see
Section 3.2.

CONFIGURE WINDOW reconfigures a window's size, position, border, and
stacking order.

A Bad Match error is generated if a sibling is specified without a stack
mode or ifthe window is not actually a sibling. Note that the computations
for stack mode are performed with respect to the window's final geometry,
not its initial geometry. Any backing store contents of the window, its
inferiors, and other newly visible windows are either discarded or changed
to reflect the current screen contents.

VAX c
X$C_BAD_MATCH Bad Match

Description

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.

An input-only window is used as a
drawable.

One argument or pair of arguments
has the correct type and range but fails
to match in some other way required
by the request.

An input-only window lacks this
attribute.

3-25

Window Routines
CONFIGURE WINDOW

VAX C

X$C_BAD_ VALUE BadValue

X$C_BAD_WINDOW BadWindow

3-26

Description

Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

A value that you specified for a window
argument does not name a defined window.

Window Routines
CREATE SIMPLE WINDOW

CREATE SIMPLE WINDOW

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

Creates a subwindow of a specified parent window.

window_id_return = X$CREATE_SIMPLE_WINDOW
(display, parent_id, x_coord, y_coord, width, height,
border_width, border_id, background_id)

Argument Usage Data Type Access Mechanism

window_id_return identifier uns longword write value

display identifier uns longword read reference

parent_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

width uns longword uns longword read reference

height uns longword uns longword read reference

border_width uns longword uns longword read reference

border_id identifier uns longword read reference

background_id identifier uns longword read reference

window_id_return = XCreateSimpleWindow
(display, parent_id, x_coord, y_coord, width, height,
border_width, border_id, background_id)

Window XCreateSimpleWindow(display, parent_id, x_coord, y_coord,
width, height, border_width,
border_id, background_id)

Display *display;
Window parent id;
int x coord, y coord;
unsigned int width, height, border_width;
unsigned long border id;
unsigned long background_id;

window id return
The identifier of the new subwindow.

3-27

Window Routines
CREATE SIMPLE WINDOW

ARGUMENTS display
The display information originally returned by OPEN DISPLAY.

parent_ id
The identifier of the parent window.

x coord
The x-coordinate of the new subwindow. This coordinate is relative to the
inside of the parent window. The x- and y-coordinates define the upper left
corner of the new subwindow.

y_coord
The y-coordinate of the new subwindow. This coordinate is relative to the
inside of the parent window. The x- and y-coordinates define the upper left
corner of the new subwindow.

width
The width of the new subwindow. The width and height represent the
outline of the new subwindow.

Width and height represent the new subwindow's inside dimensions;
they do not include the new subwindow's borders, which are outside the
window.

height
The height of the new subwindow. The height and width represent the
outline of the new subwindow.

Height and width represent the new subwindow's inside dimensions;
they do not include the new subwindow's borders, which are outside the
window.

border width
The width, in pixels, of the new subwindow's border.

border id
The identifier of the pixmap used to specify the border pattern.

background_id
The identifier of the pixmap that specifies the background.

DESCRIPTION CREATE SIMPLE WINDOW creates a subwindow of a specified parent
window from an application. The identifiers of the pixmaps were originally
returned by CREATE PIXMAP.

3-28

CREATE SIMPLE WINDOW returns the window identifier of the new
subwindow. All subsequent operations that are performed on the new
subwindow use this window identifier as the identifier of that window.
The window identifier remains associated with the subwindow until you
destroy it.

XERRORS

Window Routines
CREATE SIMPLE WINDOW

The outline of the new subwindow is defined by the arguments x_coord,
y _coord, width, and height. The x- and y-coordinates are relative to the
inside of the parent window and define the upper left corner of the new
subwindow. The width and height determine the area inside the window
of the border. The width and height must be nonzero; otherwise a Bad
Value error is returned.

If the border width is specified, the x- and y-coordinates specify the origin
at the border, and the origin of the window is offset by the border width.

When you create a window with the CREATE SIMPLE WINDOW routine,
the new window inherits the depth, class, and visual identifier of the
parent window. You cannot change these attributes. Upon creation, the
new subwindow does not have an associated icon window in the property
list. The name of the new subwindow is the null string.

Once you create a window with the CREATE SIMPLE WINDOW routine,
you must then call the MAP WINDOW routine to display the window
on the screen. In order for the window to appear on the screen, all of
the window's ancestors must also be mapped, and the window cannot be
obscured by any of its ancestors. The new subwindow does not have its
own cursor at creation time; its uses the parent window's cursor until its
own cursor is registered.

The CREATE SIMPLE WINDOW routine generates a Create Notify event.

To create a subwindow and specify its attributes, use the CREATE
WINDOW routine.

VAX c
X$C _BAD _ALLOC BadAlloc

X$C_BAD_MATCH Bad Match

Description

The server did not allocate the requested
resource for any cause.

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.

One argument or pair of arguments
has the correct type and range but fails
to match in some other way required
by the request.

An input-only window lacks this
attribute.

3-29

Window Routines
CREATE SIMPLE WINDOW

VAX C

X$C_BAD_ VALUE BadValue

X$C_BAD _WINDOW BadWindow

3-30

Description

Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

A value that you specified for a window
argument does not name a defined window.

Window Routines
CREATE WINDOW

CREATE WINDOW

Creates a subwindow of a parent window and defines the attributes of the
subwindow.

VAX FORMAT window id return= X$CREATE WINDOW

argument
information

(display, Parent_id, x_coord, r coord, width,
height, border_width, depth, class, visuaLstruc,
attributes_ mask, attributes)

Argument Usage Data Type Access Mechanism

window_id_ identifier uns longword write reference
return

display identifier uns longword read reference

parent_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

width uns longword uns longword read reference

height uns longword uns longword read reference

border_width uns longword uns longword read reference

depth longword longword read reference

class longword longword read reference

visual_struc record x$visual read reference

attributes_mask uns longword uns longword read reference

attributes record x$set_win_ read reference
attributes

MIT C FORMAT window_id_return = XCreateWindow
(display, parent_id, x_coord, y_coord, width,
height, border_width, depth, class, visuaLstruc,
attributes_mask, attributes)

3-31

Window Routines
CREATE WINDOW

argument
information

RETURNS

ARGUMENTS

3-32

Window XCreateWindow(display, parent_id, x_coord, y_coord 1 width,
height, border_width, depth, class,
visual struc, attributes_mask, attributes)

Display *display;
Window parent_id;
int x_coord, y_coord;
unsigned int width, height;
unsigned int border_width;
int depth;
unsigned int class;
Visual *visual_struc;
unsigned long attributes_mask;
XSetWindowAttributes *attributes;

window id return
The identifier of the new subwindow that is created.

display
The display information originally returned by OPEN DISPLAY.

parent_ id
The identifier of the window that is the parent of the new subwindow.

x coord
The x-coordinate of the new subwindow. This coordinate is relative to the
inside of the parent window. The x- and y-coordinates define the upper left
corner of the new subwindow.

y_coord
The y-coordinate of the new subwindow. This coordinate is relative to the
inside of the parent window. The x- and y-coordinates define the upper left
corner of the new subwindow.

width
The width, in pixels, of the new subwindow. The width and height
determine the area of the new subwindow.

The width and the height arguments represent the new subwindow's
inside dimensions; they do not include the new subwindow's borders,
which are outside the window.

height
The height, in pixels, of the new subwindow. The height and width
determine the area of the new subwindow.

The height and the width arguments represent the new subwindow's
inside dimensions; they do not include the new subwindow's borders,
which are outside the window.

border width
The width, in pixels, of the new subwindow's border. For input-only
windows, border_ width must be zero, otherwise a Bad Match error is
generated.

DESCRIPTION

Window Routines
CREATE WINDOW

depth
The depth, in bits per pixel, of the new subwindow. If the value of depth
equals zero and the class argument is either input output or Copy From
Parent, the depth of the new subwindow is the same as the depth of the
parent window. For input only windows, depth must be zero.

class
The class of the new subwindow.

If the parent window is input only, the class of the subwindow cannot be
input output.

A window with a class of input only cannot be used as output.

For Copy From Parent windows, the class of the new subwindow is the
same as the parent window.

visual struc
A pointer to a visual structure associated with the window.

attributes_mask
The window attributes to be specified in the attributes argument. For
any attributes not specified, default values are used. If the value of
attributes_mask is zero, the attributes argument is ignored and is not
referenced.

attributes
A pointer to the set window attributes data structure for the window.

CREATE WINDOW creates a subwindow of a specified parent window and
sets the attributes of the new subwindow. CREATE WINDOW returns the
window identifier of the new subwindow. All subsequent operations that
are performed on the new subwindow use this window identifier as the
identifier of that window. The window identifier remains associated with
the new subwindow until you destroy the new subwindow.

The outline of the new subwindow is defined by the arguments x_coord,
y_coord, width, and height. The x- and y-coordinates are relative to the
inside of the parent window and define the upper left corner of the new
subwindow. The width and height determine the area inside the border.
The width and height must be nonzero, otherwise a Bad Value error is
returned.

If the border width is specified, the x- and y-coordinates specify the origin
at the border, and the origin of the window is offset by the border width.

An input-only window cannot process graphics requests, exposure events,
or visibly notify events. In addition, an input-only window cannot be used
as a drawable (a source or destination for graphics requests). Input-only
and input-output windows act identically in all other respects. Only the
following window attributes are defined for input-only windows:

• Window gravity

• Event mask

• Do not propagate mask

3-33

Window Routines
CREATE WINDOW

XERRORS

3-34

• Override redirect

• Cursor

If you specify any other attribute for an input only window, a Bad Match
error is generated.

The CREATE WINDOW routine generates a Create Notify event.

CREATE WINDOW differs from CREATE SIMPLE WINDOW because
it lets you specify the new subwindow's attributes, such as class, visual
type, and attributes contained in the set window attributes data structure.
With CREATE SIMPLE WINDOW, these attributes are automatically
inherited from the parent window. You specify the attributes of the new
subwindow by setting the appropriate bits in attributes_mask to indicate
the attributes that are set in attributes. For more information about the
set window attributes data structure, see Section 3.1.

VAX c Description

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested
resource for any cause.

X$C_BAD_COLOR Bad Color A value that you specified for a color map
argument does not name a defined color
map.

X$C_BAD_ Bad Cursor A value that you specified for a cursor
CURSOR argument does not name a defined cursor.

X$C_BAD_MATCH Bad Match Possible causes are as follows:

In a graphics request, the root and depth
of the graphics context do not match
those of the drawable.

An input-only window is used as a
drawable.

One argument or pair of arguments has
the correct type and range but fails to
match in some other way required by
the request.

An input-only window lacks this attribute.

X$C_BAD_PIXMAP Bad Pixmap A value that you specified for a pixmap
argument does not name a defined pixmap.

X$C_BAD_VALUE BadValue Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument,
the full range defined by the argument's type
is accepted. Any argument defined as a set
of alternatives can generate this error.

X$C_BAD_ BadWindow A value that you specified for a window
WINDOW argument does not name a defined window.

Window Routines
DESTROY SUBWINDOWS

DESTROY SUBWINDOWS

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Destroys all subwindows of a window.

X$DESTROV _SUBWINDOWS
(display, window_id)

Argument Usage

display identifier

window_id identifier

XDestroySubwindows
(display, window_id)

Data Type

uns longword

uns longword

XDestroySubwindows(display, window_id)
Display *display;
Window window_id;

display

Access Mechanism

read reference

read reference

The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window for which all subwindows are to be destroyed.
The identifier of the window was originally returned by any CREATE
WINDOW request.

DESCRIPTION DESTROY SUBWINDOWS destroys all subwindows (children) of a
specified window in bottom-to-top stacking order.

After you destroy a subwindow, you cannot reference that subwindow
again. If any mapped subwindows are destroyed, DESTROY
SUBWINDOWS generates exposure events on the window specified in
window_id.

When you want to destroy not only the subwindows of a given window, but
also the window itself, use DESTROY WINDOW.

3-35

Window Routines
DESTROY SUBWINDOWS

XERRORS
VAX C

X$C_BAD_WINDOW BadWindow

3-36

Description

A value that you specified for a window
argument does not name a defined window.

Window Routines
DESTROY WINDOW

DESTROY WINDOW

Destroys a window and all of its subwindows.

VAX FORMAT X$DESTROY_WINDOW (display, window_id)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

MIT C FORMAT XDestroyWindow (display, window_id)

argument
information

ARGUMENTS

XDestroyWindow(display, window_id)
Display *display;
Window window_id;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window to be destroyed. The identifier of the window
was originally returned by any CREATE WINDOW request.

DESCRIPTION DESTROY WINDOW unmaps and destroys the specified window and all of
its subwindows.

If the specified window was mapped before calling DESTROY WINDOW,
the window is unmapped automatically. The window and all subwindows
are then destroyed, and a destroy notify event is generated for each
window. Destroy notify events are first generated for the inferiors or
ancestors of the window before being generated on the window itself.

If you specify a root window, no windows are destroyed.

Once you destroy a window, you cannot reference that window again.
Destroying a mapped window generates exposure events on other windows
that the destroyed window had obscured.

When you want to destroy only the subwindows of a given window, use
DESTROY SUBWINDOWS.

3-37

Window Routines
DESTROY WINDOW

XERRORS
VAX C

X$C_BAD_WINDOW BadWindow

3-38

Description

A value that you specified for a window
argument does not name a defined window.

Window Routines
GET GEOMETRY

GET GEOMETRY

Obtains the current geometry of the specified drawable.

VAX FORMAT status_return = X$GET_GEOMETRY

argument
information

(display, drawable_id lwindow_id_return]
[,x_coord_return] [,y_coord_return] [, width_return]
[,height_return] lborder_width_return] [,depth_return])

Argument Usage Data Type Access Mechanism

status_return longword longword write value

display identifier uns longword read reference

drawable_id identifier uns longword read reference

window_id_return identifier uns longword write reference

x_coord_return longword longword write reference

y_coord_return longword longword write reference

width_return uns longword uns longword write reference

height_return uns longword uns longword write reference

border_width - uns longword uns longword write reference
return

depth_return longword longword write reference

MIT C FORMAT status_return = XGetGeometry

argument
information

(display, drawable_id, window_id_return,
x_coord_return, y_coord_return, width_return,
height_return, border_width_return, depth_return)

Status XGetGeometry(display, drawable_id, window_id_return,
x coord return, y coord return, width return,
height_;eturn, bo;der_width_return, -
depth_return)

Display *display;
Drawable drawable_id;
Window *window id return;
int *x_coord_retu;n, *y_coord_return;
unsigned int *width_return, *height_return;
unsigned int *border width return;
unsigned int *depth_;eturn7

3-39

Window Routines
GET GEOMETRY

RETURNS

ARGUMENTS

3-40

status return
Specifies whether or not the routine completed successfully.

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the drawable for which the current geometry is to be
obtained. This can be either a window or a pixmap.

window_id_return
The identifier of the root window of the specified drawable.

VAX only

This argument is optional.

x coord return - -
If the drawable is a window, x_coord_return specifies the x-coordinate of
the window. The x- and y-coordinates define the upper left corner of the
window, relative to the origin of the parent window. If the drawable is a
pixmap, x_coord_return and y_coord_return equal zero.

VAX only

This argument is optional.

y_coord_return
If the drawable is a window, y _coord_return specifies the y-coordinate of
the window. The x- and y-coordinates define the upper left corner of the
window, relative to the origin of the parent window. If the drawable is a
pixmap, x_coord_return and y_coord_return equal zero.

VAX only

This argument is optional.

width_return
The width, in pixels, of the drawable. GET GEOMETRY returns the width
of the drawable to this argument. The width and height represent the
inside area of the drawable, not including the border of the drawable.

VAX only

This argument is optional.

DESCRIPTION

XERRORS

height_ return

Window Routines
GET GEOMETRY

The height, in pixels, of the drawable. GET GEOMETRY returns the
height of the drawable to this argument. The width and height represent
the inside area of the drawable, not including the border of the drawable.

VAX only

This argument is optional.

border width return - -
The width, in pixels, of the new subwindow's border. If the drawable is
a window, GET GEOMETRY returns the width of the window's border to
this argument. If the drawable is a pixmap, GET GEOMETRY returns
zero to this argument.

VAX only

This argument is optional.

depth_return
The depth of the pixmap. The depth must be supported by the root window
of the specified drawable. GET GEOMETRY returns the depth, in bits per
pixel, to this argument.

VAX only

This argument is optional.

GET GEOMETRY obtains the current geometry of the specified drawable.

If the specified drawable is a pixmap, GET GEOMETRY returns the width,
height, and depth of the pixmap. GET GEOMETRY returns zero for the
x_coord_return, y _coord_return, and border_ width_return
arguments when the specified drawable is a pixmap.

If the specified drawable is a window, GET GEOMETRY returns the
x- and y-coordinates of the upper left corner of the window (relative to
its parent's origin), along with the width and height of the window and
the width of the window's border. GET GEOMETRY returns zero for the
depth_return argument when the drawable is a window.

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

3-41

Window Routines
GET WINDOW ATTRIBUTES

GET WINDOW ATTRIBUTES

Obtains the attributes of a specified window.

VAX FORMAT status_return = X$GET_WINDOW_ATTRIBUTES
(display, window_id, window_attributes_return)

argument
information

Argument Usage Data Type Access Mechanism

status_return longword longword write value

display identifier uns longword read reference

window_id identifier uns longword read reference

window_attributes - array x$window_ write reference
return attributes

MIT C FORMAT status_return = XGetWindowAttributes
(display, window_id, window_attributes_return)

argument
information Status XGetWindowAttributes(display, window_id,

RETURNS

3-42

Display *display;
Window window_id;

window_attributes_return)

XWindowAttributes *window_attributes_return;

status return
Return value that specifies whether the routine completed successfully.

Conly

This argument returns 1 if the routine completes successfully, and zero if
it does not complete successfully.

VAX only

This argument returns one of the following values:

ARGUMENTS

DESCRIPTION

XERRORS

Value Description

Window Routines
GET WINDOW ATTRIBUTES

X$_ERRORREPLY

SS$_NORMAL

Otherwise

Error received from the server-window no longer exists.

Success.

Failure for reason given.

display
The display information originally returned by 0 1PEN DISPLAY.

window id
The identifier of the window whose attributes are to be obtained.
The identifier of the window was originally returned by any CREATE
WINDOW request.

window attributes return - -
A pointer to an array of attribute data structures, in which each element
defines a window attribute. For more information about the window
attributes data structure, see Section 3.3.

GET WINDOW ATTRIBUTES obtains the current attributes for a window.

GET WINDOW ATTRIBUTES returns a status value that specifies
whether or not the routine completed successfully. This value is zero if
the routine fails and nonzero if the routine succeeds.

VAX C

X$C_BAD_WINDOW BadWindow

Description

A value that you specified for a window
argument does not name a defined window.

3-43

Window Routines
LOWER WINDOW

LOWER WINDOW

Lowers a window so that it does not obscure any sibling windows.

VAX FORMAT X$LOWER_WINDOW (display, window_id)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

MIT C FORMAT XLowerWindow (display, window_id)

argument
information

ARGUMENTS

XLowerWindow(display, window_id)
Display *display;
Window window_id;

display
The display information originally returned by OPEN DISPLAY

window id
The identifier of the window that you want to lower. The identifier of the
window was originally returned by any CREATE WINDOW request.

DESCRIPTION LOWER WINDOW lowers a window so that it does not obscure any sibling
windows.

3-44

Lowering a window does not change the x- and y-coordinates of the
window. Lowering a mapped window generates exposure events for any
windows that had been obscured.

If the override attribute of the window is false and another client has
selected the Substructure Redirect event on the parent window, LOWER
WINDOW generates a configure request event and performs no further
processing.

XERRORS
VAX C

X$C_BAD_WINDOW BadWindow

Description

Window Routines
LOWER WINDOW

A value that you specified for a window
argument does not name a defined window.

3-45

Window Routines
MAP RAISED

MAP RAISED

Maps the specified window and raises it to the top of the stack.

VAX FORMAT X$MAP _RAISED (display, window_id)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

MIT C FORMAT XMapRaised (display, window_id)

argument
information

ARGUMENTS

XMapRaised(display, window_id)
Display *display;
Window window_id;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window to be mapped and raised. The identifier of
the window was originally returned by any CREATE WINDOW request.

DESCRIPTION MAP RAISED maps and raises a specified window.

XERRORS

3-46

MAP RAISED is basically the same routine as MAP WINDOW, except that
it also raises the specified window to the top of the stack.

VAX C

X$C_BAD_WINDOW BadWindow

Description

A value that you specified for a window
argument does not name a defined window.

Window Routines
MAP SUBWINDOWS

MAP SUBWINDOWS

Maps all subwindows of a specified window.

VAX FORMAT X$MAP _SUBWINDOWS (display, window_id)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

MIT C FORMAT XMapSubwindows (display, window_id)

argument
information

ARGUMENTS

XMapSubwindows(display, window id)
Display *display; -
Window window_id;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window for which all subwindows are to be mapped.
The identifier of the window was originally returned by any CREATE
WINDOW request.

DESCRIPTION MAP SUBWINDOWS maps all subwindows for a specified window in
top-to-bottom stacking order.

XERRORS

MAP SUBWINDOWS generates an exposure event on each newly
displayed window.

When you want to map not only the subwindows of a window, but also the
window itself, use MAP WINDOW.

VAX C

X$C_BAD_WINDOW BadWindow

Description

A value that you specified for a window
argument does not name a defined window.

3-47

Window Routines
MAP WINDOW

MAP WINDOW

Maps a window and all of its subwindows that have had mapping requests.

VAX FORMAT X$MAP _WINDOW (display, window_id)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

MIT C FORMAT XMapWindow (display, window_id)

argument
information

ARGUMENTS

XMapWindow(display, window_id)
Display *display;
Window window_id;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window to be mapped. The identifier of the window
was originally returned by any CREATE WINDOW request.

If the window specified in window _id has an unmapped ancestor, it is not
displayed on the screen until the ancestor is also mapped.

If the window specified in window _id is opaque, MAP WINDOW
generates expose events on each opaque window that becomes displayed.

DESCRIPTION MAP WINDOW maps a window and all of its subwindows that have had
mapping requests.

3-48

If you first map a window, then paint it, and then process input events,
the window will be painted twice. To avoid painting a window twice, call
SELECT INPUT for exposure events, then map the window, and then
process input events.

To map all subwindows of a given window, use MAP SUBWINDOWS.
Using MAP WINDOW repeatedly is less efficient than using MAP
SUBWINDOWS. To map a window and raise it to the top of a stack,
use MAP RAISED.

XERRORS
VAX C

X$C_BAD_WINDOW BadWindow

Description

Window Routines
MAP WINDOW

A value that you specified tor a window
argument does not name a defined window.

3-49

Window Routines
MOVE RESIZE WINDOW

MOVE RESIZE WINDOW

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

3-50

Changes the location and the size of a specified window.

X$MOVE_RESIZE_ WINDOW
(display, window_id, x_coord, y_coord, width, height)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

width uns longword uns longword read reference

height uns longword uns longword read reference

XMoveResizeWindow
(display, window_id, x_coord, y_coord, width, height)

XMoveResizeWindow(display, window_id, x_coord, y_coord, width,
height)

Display *display;
Window window id;
int x_coord, y_coord;
unsigned int width, height;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window that will be changed in size and location.
The identifier of the window was originally returned by any CREATE
WINDOW request.

x coord
The x-coordinate of the window's new location. This coordinate is relative
to the parent window. The x- and y-coordinates define the new location of
the window's upper left corner.

DESCRIPTION

XERRORS

y_coord

Window Routines
MOVE RESIZE WINDOW

The y-coordinate of the window's new location. This coordinate is relative
to the parent window. The x- and y-coordinates define the new location of
the window's upper left corner.

width
The new width, in pixels, of the window. The width and height define the
interior area of the window.

height
The new height, in pixels, of the window. The width and height define the
interior area of the window.

MOVE RESIZE WINDOW changes the size and the location of a specified
window.

Configuring a mapped window causes the window to lose its contents
and generates an exposure event. Configuring a window also generates
exposure events on any other windows that the window had formerly
obscured.

If the override attribute of the window is false ana another client has
selected substructure redirect on the parent window, MOVE RESIZE
WINDOW generates a configure request event and performs no further
processing.

When you want to change only the size of a window, use RESIZE
WINDOW. When you want to change only the location of a window, use
MOVE WINDOW.

VAX c
X$C_BAD_MATCH Bad Match

Description

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but fails
to match in some other way required
by the request.

An input-only window lacks this
attribute.

3-51

Window Routines
MOVE RESIZE WINDOW

VAX C

X$C_BAD_ VALUE BadValue

X$C_BAD_WINDOW BadWindow

3-52

Description

Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

A value that you specified for a window
argument does not name a defined window.

Window Routines
MOVE WINDOW

MOVE WINDOW

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Moves and raises a window without changing its size.

X$MOVE_ WINDOW
(display, window_id, x_coord, y_coord)

Argument Usage Data Type Access

display identifier uns longword read

window_id identifier uns longword read

x_coord longword longword read

y_coord longword longword read

XMoveWindow
(display, window_id, x_coord, y_coord)

XMoveWindow(display, window_id, x_coord, y_coord)
Display *display;
Window window_id;
int x_coord, y_coord;

display

Mechanism

reference

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window to be moved. The identifier of the window
was originally returned by any CREATE WINDOW request.

x coord
The x-coordinate of the window's new location. The x- and y-coordinates
define the new location of the upper left corner of the window's border (or
the window itself if it has no border).

y_coord
They-coordinate of the window's new location. The x- and y-coordinates
define the new location of the upper left corner of the window's border (or
the window itself if it has no border).

3-53

Window Routines
MOVE WINDOW

DESCRIPTION

XERRORS

3-54

MOVE WINDOW moves and raises a window without changing its size.

MOVE WINDOW does not change the mapping state of the window.
Moving a mapped window generates exposure events on any windows
that were obscured. However, if you move a mapped window, it may lose
its contents if no backing store exists for the window and the window is
obscured by windows other than its subwindows. If the window loses its
contents, exposure events are generated for the window and any of its
mapped subwindows.

If the override attribute of the window is false and another client has
selected substructure redirect on the parent window, MOVE WINDOW
generates a configure request event and performs no further processing.
The stacking order does not change.

If you want to move a window and change its size, use CONFIGURE
WINDOW or MOVE RESIZE WINDOW.

VAX C

X$C_BAD_WINDOW BadWindow

Description

A value that you specified for a window
argument does not name a defined window.

Window Routines
QUERY POINTER

QUERY POINTER

Obtains the root window where the pointer is currently located and the pointer
coordinates relative to the root window's origin.

VAX FORMAT result_return = X$QUERY _POINTER

argument
information

(display, window_id, root_id_return [,child_id_return]
lroot_x_coord_return] [,root_y_coord_return]
l win_x_coord_return] l win_y_coord_return]
lstate_mask_return])

Argument Usage Data Type Access

result_return longword longword write

display identifier uns longword read

window_id identifier uns longword read

root_id _return identifier uns longword write

child_id_return identifier uns longword write

root_x_ coord_return longword longword write

root_y _ coord _return longword longword write

win_x_coord_return longword longword write

win_y_coord_return longword longword write

state_mask_return uns longword uns longword write

Mechanism

value

reference

reference

reference

reference

reference

reference

reference

reference

reference

MIT C FORMAT result_return = XQueryPointer

argument
information

(display, window_id, root_id_return, child_id_return,
root_x_coord_return, root_y_coord_return,
win_x_coord_return, win_y_coord_return,
state_mask_return)

Bool XQueryPointer(display, window id, root id return,
child_id_return~ root_x_coord_return,
root_y_coord_return, win_x_coord_return,
win y coord return, state mask return)

Display *display;- - - - -
Window window id;
Window *root id return, *child id return;
int *root x coord return, *root y-coord return;
int *win x coord return, *win y-coord return;
unsigned-int *state_mask_return; -

3-55

Window Routines
QUERY POINTER

RETURNS

ARGUMENTS

3-56

result return
This argument specifies whether or not the pointer is on the same screen
as the window specified in window _id. When true, this argument is a
nonzero value. When false, this argument is zero.

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window; this window is relative to the pointer to
be queried. The identifier of the window was originally returned by any
CREATE WINDOW request.

root id return
The identifier of the root window of the window specified in window _id.
QUERY POINTER returns the root window where the pointer is currently
located to this argument.

child id return
The identifier of the child window that contains the pointer coordinates.
QUERY POINTER returns the child window where the pointer is located
(if any) to this argument.

VAX only

This argument is optional.

root x coord return - - -
The x-coordinate of the pointer. This coordinate is relative to the root
window's origin. The x- and y-coordinates define the location of the
pointer. QUERY POINTER returns the pointer coordinates (relative to
the root window's origin) to this argument.

VAX only

This argument is optional.

root_y _ coord _return
The y-coordinate of the pointer. This coordinate is relative to the root
window's origin. The x- and y-coordinates define the location of the
pointer. QUERY POINTER returns the pointer coordinates (relative to
the root window's origin) to this argument.

VAX only

This argument is optional.

DESCRIPTION

XERRORS

win x coord return

Window Routines
QUERY POINTER

The i='co~dinate of the window. This coordinate is relative to the root
window's origin. The x- and y-coordinates define the location of the
pointer. QUERY POINTER returns the pointer coordinates (relative to
the root window's origin) to this argument.

VAX only

This argument is optional.

win_y_coord_return
They-coordinate of the pointer. This coordinate is relative to the root
window's origin. The x- and y-coordinates define the location of the
pointer. QUERY POINTER returns the pointer coordinates (relative to
the root window's origin) to this argument.

VAX only

This argument is optional.

state mask return
The current stat-; of the modifier keys and the buttons. QUERY POINTER
returns the current state to this argument.

VAX only

This argument is optional.

QUERY POINTER obtains the root window where the pointer is currently
located and the pointer coordinates relative to the root window's origin.

If QUERY POINTER returns zero, then win_x_coord_return and
win_y _coord_return are equal to zero, because the pointer is not on
the same screen as the root window and the child window. If QUERY
POINTER returns a nonzero value, then win_x_coord_return and
win_y _coord_return are the pointer coordinates relative to the origin of
the window _id.

VAX C

X$C_BAD_WINDOW BadWindow

Description

A value that you specified for a window
argument does not name a defined window.

3-57

Window Routines
QUERY TREE

QUERY TREE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

3-58

Lists the parent, the children, and the number of children for a window.

status_return = X$QUERY _TREE
(display, window_id [,root_id_return]
[,parent_id_return] [,children_return}
[,num_children_return] [,children_size_return]
[, children_buff_return])

Argument Usage Data Type Access

status _return longword longword write

display identifier uns longword read

window_id identifier uns longword read

root_id _return identifier uns longword write

parent_id_return identifier uns longword write

children_return address uns longword write

num_children_return longword longword write

children_size_return longword longword write

children_buff_return identifier uns longword write

status_return = XQueryTree

Mechanism

value

reference

reference

reference

reference

reference

reference

reference

reference

(display, window_id, root_id_return, parent_id_return,
children_return, num_children_return])

Status XQueryTree(display, window_id, root_id_return,
parent_id_return, children_return,
num_children_return)

Display *display;
Window window_id;
Window *root_id_return;
Window *parent id return;
Window **children=return;
unsigned int *num_children_return;

RETURNS

ARGUMENTS

Window Routines
QUERY TREE

status return
Specifies whether the routine completed successfully.

Conly

This argument returns 1 if the routine completes successfully, and zero if
it does not complete successfully.

VAX only

This argument returns one of the following values:

Value Description

X$_ERRORREPLY

SS$_NORMAL

Otherwise

Error received from the server-window no longer exists.

Success.

Failure for reason given.

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window for which the window tree information is to
be obtained. The identifier of the window was originally returned by any
CREATE WINDOW request.

root id return
The identifier of the root window of the specified window.

VAX only

This argument is optional.

parent_id_return
The identifier of the parent window of the specified window.

VAX only

This argument is optional.

children return
The virtual address of a pointer to an array of child windows, returned by
the routine and residing in space reserved by Xlib. Each element in the
array is a child window of the specified window. The number of elements
in the array is specified by num_children_return.

VAX only

This argument is optional.

3-59

Window Routines
QUERY TREE

num children return - -
The number of children associated with the specified window.

VAX only

This argument is optional.

children_size_return (VAX only)
The size of the buffer containing the child windows, specified in
children_buff_return.

children_buff_return (VAX only)
A pointer to a data buffer, residing in space you have reserved, where each
entry is one child window identifier. The size of the buffer is specified by
children_size_return. This data is returned by the routine.

DESCRIPTION QUERY TREE lists the parent, the children, and the number of children
for a specified window.

XERRORS

3-60

QUERY TREE lists the children in bottom-to-top stacking order. QUERY
TREE returns a nonzero value if it completes successfully, and zero if it
does not.

To specify arguments that describe the child window identifiers returned
by the routine, use children_return and num_children_return to
access data owned by Xlib, or use children_size_return and
children_buff_return to obtain a private copy of the data. To free the
storage returned by this routine, use the display routine FREE.

VAX C

X$C_BAD_WINDOW BadWindow

Description

A value that you specified for a window
argument does not name a defined window.

Window Routines
RAISE WINDOW

RAISE WINDOW

Raises a window so that no sibling window obscures it.

VAX FORMAT X$RAISE_WINDOW (display, window_id)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

MIT C FORMAT XRaiseWindow (display, window_id)

argument
information

ARGUMENTS

XRaiseWindow(display, window_id)
Display *display;
Window window_id;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window to be raised. The identifier of the specified
window was originally returned by any CREATE WINDOW request.

DESCRIPTION RAISE WINDOW raises a window so that no sibling window obscures it.

XERRORS

Raising a window does not change the x- and y-coordinates of the window.

Raising a mapped window generates exposure events for that window and
for any mapped subwindows that were obscured.

If the override attribute of the window is false and another client has
selected substructure redirect on the parent window, RAISE WINDOW
generates a configure request event and performs no further processing.

VAX C

X$C_BAD_WINDOW BadWindow

Description

A value that you specified for a window
argument does not name a defined window.

3-61

Window Routines
RESIZE WINDOW

RESIZE WINDOW

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Changes the size of a window.

X$RESIZE_ WINDOW
(display, window_id, width, height)

Argument Usage Data Type Access

display identifier uns longword read

window_id identifier uns longword read

width uns longword uns iongword read

height uns longword uns longword read

XResizeWindow
(display, window_id, width, height)

XResizeWindow(display, window_id, width, height)
Display *display;
Window window_id;
unsigned int width, height;

display

Mechanism

reference

reference

reference

reference

The display information originally returned by OPEN DISPLAY

window id
The identifier of the window. The identifier of the window was originally
returned by any CREATE WINDOW request.

width
The new width, in pixels, for the window.

height
The new height, in pixels, for the window.

DESCRIPTION RESIZE WINDOW changes the size of a specified window.

3-62

The width and height define the inside area of the window, not including
the window's border.

XERRORS

Window Routines
RESIZE WINDOW

Changing the size of a mapped window can cause the window to lose its
contents. If you decrease the size of a mapped window, exposure events
are generated on any windows that were obscured.

If the override attribute of the window is false and another client has
selected Substructure Redirect on the parent window, RESIZE WINDOW
generates a configure request event and performs no further processing.

If you want to change the size of a window and move the window, use
MOVE RESIZE WINDOW.

VAX C

X$C_BAD_VALUE BadValue

X$C_BAD_WINDOW BadWindow

Description

Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

A value that you specified for a window
argument does not name a defined window.

3-63

Window Routines
RESTACK WINDOWS

RESTACK WINDOWS

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Restacks an array of windows from top to bottom.

X$RESTACK_WINDOWS
(display, window_ids, num_windows)

Argument Usage Data Type Access

display identifier uns longword read

window_ids record uns longword read

num_windows longword longword read

XRestackWi ndows
(display, window_ids, num_windows)

XRestackWindows(display, window_ids, num_windows);
Display *display;
Window window_ids[];
int num_windows;

display

Mechanism

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

window ids
A pointer to an array of windows. Each element is the identifier of a
window that will be restacked. The length of the array is specified by
num_windows.

num windows
The total number of window entries. This value specifies the number of
elements in window _ids.

DESCRIPTION RESTACK WINDOWS restacks an array of windows from top to bottom.

3-64

The stacking order of the first window in the array is unaffected, but all
other windows in the array are stacked underneath it in the order of the
array.

All windows in the specified array must have a common parent.

XERRORS

Window Routines
RESTACK WINDOWS

If the override attribute of a window in the array is false and another
client has selected substructure redirect on the parent window, RESTACK
WINDOWS generates a Configure Request event for each array window
that has an override attribute of false and performs no further processing.

VAX c
X$C_BAD_MATCH Bad Match

X$C_BAD_WINDOW BadWindow

Description

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but fails
to match in some other way required
by the request.
An input-only window lacks this
attribute.

A value that you specified for a window
argument does not name a defined window.

3-65

Window Routines
SET WINDOW BACKGROUND

SET WINDOW BACKGROUND

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Sets the background of a specified window to the specified pixel.

X$SET _WINDOW _BACKGROUND
(display, window_id, pixel)

Argument Usage Data Type

display identifier uns longword

window_id identifier uns longword

pixel uns longword uns longword

XSetWindowBackg round
(display, window_id, pixel)

Access

read

read

read

XSetWindowBackground(display, window_id, pixel)
Display *display;
Window window_id;
unsigned long pixel;

display

Mechanism

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window. The identifier of the window was originally
returned by any CREATE WINDOW request.

pixel
The entry in the color map to be used for the window's background.

DESCRIPTION SET WINDOW BACKGROUND sets the background of a specified window
to a specified pixel. SET WINDOW BACKGROUND uses the color map
entry specified in pixel for the window's background.

3-66

SET WINDOW BACKGROUND PIXMAP can be performed only on an
opaque window. An attempt to perform SET WINDOW BACKGROUND
PIXMAP on an input-only window generates an error.

XERRORS
VAX c
X$C_BAD_MATCH Bad Match

X$C_BAD_WINDOW BadWindow

Window Routines
SET WINDOW BACKGROUND

Description

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.

One argument or pair of arguments
has the correct type and range but fails
to match in some other way required
by the request.
An input-only window lacks this
attribute.

A value that you specified for a window
argument does not name a defined window.

3-67

Window Routines
SET WINDOW BACKGROUND PIXMAP

SET WINDOW BACKGROUND PIXMAP

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Changes the background tile of a specified window.

X$SET _WINDOW _BACKGROUND _PIXMAP
(display, window_id, background_pixmap_id)

Argument Usage Data Type Access

display identifier uns longword read

window_id identifier uns longword read

background_pixmap_id identifier uns longword read

XSetWindowBackgroundPixmap
(display, window_id, background_pixmap_id)

XSetWindowBackgroundPixmap(display, window_id,
background_pixmap_id)

Display *display;
Window window_id;
Pixmap background_pixmap_id;

display

Mechanism

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window that will have its background tile changed.
The identifier of the window was originally returned by any CREATE
WINDOW request.

background_pix111ap_id
The identifier of the pixmap to be used as the background tile.

DESCRIPTION SET WINDOW BACKGROUND PIXMAP changes the background tile of a
specified window.

3-68

SET WINDOW BACKGROUND PIXMAP uses the pixmap specified
in background_pixmap_id as a background. If you do not specify
a background pixmap, SET WINDOW BACKGROUND PIXMAP uses
the background pixmap of the parent window. If you do not specify a
background pixmap for the root window, SET WINDOW BACKGROUND
PIXMAP restores the default background.

XERRORS

Window Routines
SET WINDOW BACKGROUND PIXMAP

SET WINDOW BACKGROUND PIXMAP does not repaint the background
and does not change the current contents of the window. After you use
SET WINDOW BACKGROUND PIXMAP, you can then clear and repaint
the screen; this will not repaint the background you just set.

The background pixmap can be freed immediately if no further explicit
references to it are made.

SET WINDOW BACKGROUND PIXMAP can be performed only on an
opaque window. An attempt to perform SET WINDOW BACKGROUND
PIXMAP on an input-only window generates a Bad Match error.

VAX c

X$C_BAD_MATCH Bad Match

X$C_BAD_PIXMAP Bad Pixmap

X$C_BAD_WINDOW BadWindow

Description

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.

An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but fails
to match in some other way required
by the request.
An input-only window lacks this
attribute.

A value that you specified for a pixmap
argument does not name a defined pixmap.

A value that you specified for a window
argument does not name a defined window.

3-69

Window Routines
SET WINDOW BORDER

SET WINDOW BORDER

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Sets a window's border to a specified pixel.

X$SET _WINDOW _BORDER
(display, window_id, pixel)

Argument Usage Data Type

display identifier uns longword

window_id identifier uns longword

pixel uns longword uns longword

XSetWindowBorder
(display, window_id, pixel)

Access

read

read

read

XSetWindowBorder(display, window_id, pixel)
Display *display;
Window window_id;
unsigned long pixel;

display

Mechanism

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window for which the border is to be changed and
repainted. The identifier of the window was originally specified by any
CREATE WINDOW request.

pixel
The entry in the color map to be used for painting the border.

DESCRIPTION SET WINDOW BORDER sets the border of a window to a specified pixel.

3-70

SET WINDOW BORDER uses the color map entry specified in pixel for
the window's border.

SET WINDOW BORDER cannot be performed on an input-only window;
this generates a Bad Match error.

To set the border tile of a window to a specified pixel, use SET WINDOW
BORDER TILE.

XERRORS
VAX c

X$C_BAD_MATCH Bad Match

X$C_BAD_WINDOW BadWindow

Window Routines
SET WINDOW BORDER

Description

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but fails
to match in some other way required
by the request.

An input-only window lacks this
attribute.

A value that you specified for a window
argument does not name a defined window.

3-71

Window Routines
SET WINDOW BORDER PIXMAP

SET WINDOW BORDER PIXMAP

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Sets the border tile of a specified window.

X$SET _WINDOW _BORDER_PIXMAP
(display, window_id, border_pixmap_id)

Argument Usage Data Type Access

display identifier uns longword read

window_id identifier uns longword read

border _pixmap _id identifier uns longword read

XSetWindowBorderPixmap
(display, window_id, border_pixmap_id)

Mechanism

reference

reference

reference

XSetWindowBorderPixmap(display, window_id, border_pixmap_id)
Display *display;
Window window_id;
Pixmap borde.r _pixmap_ id;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window that will have its border tile changed and
repainted. The identifier of the window was originally returned by any
CREATE WINDOW request.

border _pixmap_ id
The identifier of the pixmap to be used as a background.

DESCRIPTION SET WINDOW BORDER PIXMAP sets the border tile of a specified
window.

3-72

SET WINDOW BORDER PIXMAP uses the pixmap specified in
border_pixmap_id for the border. SET WINDOW BORDER PIXMAP
does not repaint the background; CLEAR can be used to repaint the
background.

The border pixmap can be freed immediately if no further explicit
references to it are made.

XERRORS

Window Routines
SET WINDOW BORDER PIXMAP

SET WINDOW BORDER PIXMAP can be performed only on an input
output window that has a border. An attempt to perform SET WINDOW
BORDER PIXMAP on an input-only window generates a Bad Match error.

To set the border of a window to a specified pixel, use SET WINDOW
BORDER.

VAX c Description

X$C_BAD_MATCH Bad Match Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.

One argument or pair of arguments
has the correct type and range but fails
to match in some other way required
by the request.
An input-only window lacks this
attribute.

X$C_BAD_PIXMAP Bad Pixmap A value that you specified for a pixmap
argument does not name a defined pixmap.

X$C_BAD_VALUE BadValue Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

X$C_BAD_WINDOW BadWindow A value that you specified for a window
argument does not name a defined window.

3-73

Window Routines
SET WINDOW BORDER WIDTH

SET WINDOW BORDER WIDTH

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Changes the border width of a window.

X$SET_WINDOW_BORDER_WIDTH
(display, window_id, width)

Argument Usage Data Type

display identifier uns longword

window_id identifier uns longword

width uns longword uns longword

XSetWindowBorderWidth
(display, window_id, width)

Access

read

read

read

XSetWindowBorderWidth(display, window_id, width)
Display *display;
Window window id;
unsigned int ;idth;

display

Mechanism

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window to be raised. The identifier of the window was
originally returned by any CREATE WINDOW request.

width
The new width, in pixels, of the window border.

DESCRIPTION SET WINDOW BORDER WIDTH changes the border of a window.

XERRORS
VAX C

X$C_BAD_WINDOW BadWindow

3-74

Description

A value that you specified tor a window
argument does not name a defined window.

Window Routines
TRANSLATE COORDINATES

TRANSLATE COORDINATES

Transfers coordinates from the coordinate space of one window to another
window.

VAX FORMAT boo/= X$TRANSLATE_COORDINATES

argument
information

(display, src_window_id, dst_window_id,
src_x_coord, src_y_coord [,dst_x_coord_return]
ldst_y_coord_return] [,child_id_return])

Argument Usage Data Type Access Mechanism

boo I longword longword write value

display identifier uns longword read reference

src_window_id identifier uns longword read reference

dst_ window _id identifier uns longword read reference

src_x_coord longword longword read reference

src_y_coord longword longword read reference

dst_x_coord_return longword longword write reference

dst_y _coord _return longword longword write reference

child_id_return identifier uns longword write reference

MIT C FORMAT boo/= XTranslateCoordinates

argument

(display, src_window_id, dst_window_id, src_x_coord,
src_y_coord, dst_x_coord_return, dst_y_coord_return,
child_id_return)

information int XTranslateCoordinates(display, src_window_id, dst_window_id,
src_x_coord, src_y_coord,
dst x coord return, dst y coord return,
child=id_return) - - -

Display *display;
Window src window id, dst window id;
int src x coord, ;re y coord; -
int *dst x coord ret~r~, *dst y coord return;
Window *child_id=return; - - -

3-75

Window Routines
TRANSLATE COORDINATES

RETURNS

ARGUMENTS

3-76

boo/
If TRANSLATE COORDINATES returns zero, this means that the source
window and the destination window are on different screens, and that
dst_x_coord and dst_y _coord are zero. If the destination coordinates are
in a mapped child of the destination window, the identifier of that child
window is returned in child_id_return. Otherwise, this argument is set
to none.

display
The display information originally returned by OPEN DISPLAY.

src_window_id
The identifier of the source window, which was originally returned by any
CREATE WINDOW request.

dst_window_id
The identifier of the destination window.

src x coord
The x-coordinate of the source window. This coordinate is relative to the
origin of the source window. The x- and y-coordinates define the upper left
corner of the source window.

src_y_coord
The y-coordinate of the source window. This coordinate is relative to the
origin of the source window. The x- and y-coordinates define the upper left
corner of the source window.

dst_x_coord_return
The x-coordinate of the destination window. TRANSLATE COORDINATES
returns the source coordinates relative to the origin of the source window
to the dst_x_coord_return and dst_y _coord_return arguments, which
are relative to the destination window's origin.

VAX only

This argument is optional.

dst_y_coord_return
The y-coordinate of the destination window. TRANSLATE COORDINATES
returns the source coordinates relative to the origin of the source window
to the dst_x_coord_return and dst_y _coord_return arguments, which
are relative to the destination window's origin.

VAX only

This argument is optional.

child id return

Window Routines
TRANSLATE COORDINATES

If the destination coordinates are contained in a mapped child of the
destination window, the identifier of that child window is returned in
child_id_return.

VAX only

This argument is optional.

DESCRIPTION TRANSLATE COORDINATES transfers coordinates from the coordinate
space of one window to another window. Using TRANSLATE
COORDINATES for this purpose frees the server from the need to perform
this task.

XERRORS
VAX C

X$C_BAD_WINDOW BadWindow

Description

A value that you specified for a window
argument does not name a defined window.

3-77

Window Routines
UNMAP SUBWINDOWS

UNMAP SUBWINDOWS

Unmaps all subwindows of a specified window.

VAX FORMAT X$UNMAP _SUBWINDOWS (display, window_id)

argument
information Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

MIT C FORMAT XUnmapSubwindows (display, window_id)

argument
information

ARGUMENTS

XUnmapSubwindows(display, window_id)
Display *display;
Window window_id;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window for which all subwindows are to be unmapped.
The identifier of the window was originally returned by any CREATE
WINDOW request.

DESCRIPTION UNMAP SUBWINDOWS unmaps all subwindows of a specified window, in
bottom-to-top stacking order.

XERRORS

3-78

UNMAP SUBWINDOWS generates an Unmap Window event on each
subwindow and generates exposure events on windows that were obscured.

When you want to unmap a single window, use UNMAP WINDOW.

VAX C

X$C_BAD_WINDOW BadWindow

Description

A value that you specified for a window
argument does not name a defined window.

Window Routines
UNMAP WINDOW

UNMAP WINDOW

Unmaps a window.

VAX FORMAT X$UNMAP _WINDOW (display, window_id)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

MIT C FORMAT XUnmapWindow (display, window_id)

argument
information

ARGUMENTS

XUnmapWindow(display, window_id)
Display *display;
Window window_id;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window to be unmapped. The identifier of the window
was originally returned by any CREATE WINDOW request.

DESCRIPTION UNMAP WINDOW unmaps a window.

When you unmap a window using UNMAP WINDOW, any subwindows of
the specified window remain mapped, but they will not be visible until the
parent window is mapped again.

Unmapping a window generates exposure events on any windows that
were obscured by the window and its children. UNMAP WINDOW also
generates an Unmap Window event for the window specified in
window_id, unless the server implements backing stores.

If the specified window is already unmapped, UNMAP WINDOW has no
effect.

When you want to unmap all subwindows of a specified window, use
UNMAP SUBWINDOWS. Using UNMAP SUBWINDOWS is much more
efficient than using UNMAP WINDOW repeatedly.

3-79

Window Routines
UNMAP WINDOW

XERRORS
VAX C

X$C_BAD_WINDOW BadWindow

3-80

Description

A value that you specified for a window
argument does not name a defined window.

4 Event Routines

An event is a report of either a change in the state of a device or the
execution of a routine called by a client.

The server reports events related to changes in the state of devices such
as keyboards and pointers, changes in windows, graphics operations, client
communications, and errors. Xlib maintains an event queue for each
connection. The transport buffers events on a per-connection basis and
delivers them to the Xlib event queues. An event may wait in a transport
buffer until it is added to the appropriate Xlib event queues. It is therefore
possible for an event to be available to a connection even though it has not
yet been queued in the Xlib event queue.

The event routines allow client programs to select the types of events that
they want to be informed about and to manage event processing.

The routines described in this chapter allow you to perform the following
operations:

• Select the event types to send to a window

• Send an event to a window

• Manipulate the event queue

• Enable or disable synchronization

• Handle I/O errors

• Handle server errors

• Return error messages

For information on how to use the event routines, see the VMS
DECwindows Xlib Programming Volume.

The routines described in this chapter are listed in Table 4-1.

Table 4-1 Event Routines

Routine Name

CHECK IF EVENT

CHECK MASK EVENT

CHECK TYPED EVENT

Description

Checks the event queue for the event that
you specify and flushes the output buffer if the
event is not found.

Removes the next matching event from the
queue.

Returns the next event in the Xlib event queue
that matches the event type.

(continued on next page)

4-1

Event Routines

4-2

Table 4-1 {Cont.) Event Routines

Routine Name

CHECK TYPED WINDOW EVENT

CHECK WINDOW EVENT

EVENTS QUEUED

FLUSH

GET ERROR DATABASE TEXT

GET ERROR TEXT

GET MOTION EVENTS

IF EVENT

MASK EVENT

NEXT EVENT

PEEK EVENT

PEEK IF EVENT

PENDING

PUT BACK EVENT

SELECT ASYNC EVENT

SELECT ASYNC INPUT

SELECT INPUT

SEND EVENT

SET AFTER FUNCTION

Description

Returns the next matched event in the queue
for the specified window.

Removes the next matching event from the
queue and returns immediately to indicate the
status.

Checks the number of events in the event
queue.

Flushes the Xlib output buffer for a client
connection.

Returns error messages from the error
database.

Returns a text string that describes the error
code that you specify.

Returns pointer motion events for a window
based on the time coordinates that you supply.

Checks the event queue for the event that
you specify in the predicate procedure and
removes the event if the events match.

Removes the next matching event from the
queue or blocks until a matching event is
received.

Gets the next event from the event queue,
then removes the event.

Peeks at and copies an event from the event
queue.

Checks the event queue for the event that you
specify, but does not remove the event from
the event queue.

Returns the number of pending events.

Copies an event back onto the head of the
client's Xlib event queue.

Specifies an action routine and argument to be
called when an event occurs.

Specifies an action routine and arguments to
be called when some subset of events occurs.

Selects the event types to send to a window.

Sends an event to a window without the
window requesting the event.

The synchronization handler to call before
returning from an Xlib routine.

(continued on next page)

Event Routines

Table 4-1 {Cont.) Event Routines

Routine Name

SET ERROR HANDLER

SET 10 ERROR HANDLER

SYNC

SYNCHRONIZE

WINDOW EVENT

4.1 Event Data Structure

Description

A user-written nonfatal error handler to be
called when an XError event is received.

A user-written routine to handle fatal 1/0
errors.

Flushes the client's Xlib output buffer and
waits for all requests to be received and
processed by the server.

Enables or disables synchronization for a
display and returns the status of the previous
state.

Removes the next matching event from the
queue for the specifed window.

The event data structure is a union of structures that stores values for
input event attributes. Client programs can use the event mask to select
the input event attributes for which they receive notification.

Note: See the VMS DECwindows Xlib Programming Volume for a
complete description of the structures that form the event data
structure. The VMS DECwindows Xlib Programming Volume
includes descriptions of the structure members for both the VAX
binding and the MIT C binding.

The VAX binding event structure is shown in Figure 4-1.

Figure 4-1 Event Data Structure {VAX Binding)

!,~-----------------------x-$l _ _e_vn_L_ty_pe ______________________ --11 0

variable event data, depending upon x$1_evnt_type (124 bytes) T
--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_.J12a

The members of the structures that comprise the VAX binding event
data structure are described in the VMS DECwindows Guide to Xlib
Programming: VAX Binding.

The MIT C binding event structure is shown in Figure 4-2.

4-3

Event Routines
4.1 Event Data Structure

4.2 The Event Mask

4-4

Figure 4-2 Event Data Structure (MIT C Binding)

typedef union XEvent {
int type;
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;
long pad[24];

XEvent;

The members of the structures that comprise the MIT C binding event
data structure are described in the VMS DECwindows Guide to Xlib
Programming: MIT C Binding.

The event routines require that you use the event_mask argument to
define the events for which a client receives notice. To do this, you pass an
event mask to an Xlib event-handling function that takes an event_mask
argument. The event mask name describes the events that you want the
server to return to the client.

Table 4-2 lists the elements of the event mask and their descriptions.

Event Routines
4.2 The Event Mask

Table 4-2 Event Mask Elements

Bit

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

VAX Value MIT C Value Description

X$M_KEY_PRESS KeyPressMask Keyboard down events wanted

X$M_KEY_RELEASE Key Release Mask Keyboard up events wanted

X$M_BUTTON_PRESS Button Press Mask Pointer button down events
wanted

X$M_BUTTON_RELEASE Button ReleaseMask Pointer button up events wanted

X$M_ENTER_WINDOW EnterWindowMask Pointerwindow entry events
wanted

X$M_LEAVE_WINDOW LeaveWindowMask Pointerwindow leave events
wanted

X$M_POINTER_MOTION PointerMotionMask Pointer motion events wanted

X$M_POINTER_MOTION_HINT PointerMotionHintMask Pointer motion hints wanted

X$M_BUTTON1_MOTION Button 1 Motion Mask Pointer motion while button 1
down

X$M_BUTTON2_MOTION Button2MotionMask Pointer motion while button 2
down

X$M_BUTTON3_MOTION Button3MotionMask Pointer motion while button 3
down

X$M_BUTTON4_MOTION Button4MotionMask Pointer motion while button 4
down

X$M_BUTTON5_MOTION Button5MotionMask Pointer motion while button 5
down

X$M_BUTTON_MOTION ButtonMotionMask Pointer motion while any button
down

X$M_KEYMAP_STATE KeymapStateMask Keyboard state wanted at
window entry and focus in

X$M_EXPOSURE Exposure Mask Any exposure wanted

X$M_ VISIBILITY _CHANGE VisibilityChangeMask Any change in visibility wanted

X$M_STRUCTURE_NOTIFY Structure NotifyMask Any change in window structure
wanted

X$M_RESIZE_REDIRECT ResizeRedirectMask Redirect resize of this window

X$M_SUBSTRUCTURE_NOTIFY SubstructureNotifyMask Substructure notification wanted

X$M_SUBSTRUCTURE_ SubstructureRedirectMask Redirect substructure of window
REDIRECT

X$M_FOCUS_CHANGE FocusChangeMask Any change in input focus
wanted

X$M_PROPERTY_CHANGE PropertyChangeMask Any change in property wanted

X$M_COLORMAP_CHANGE ColormapChangeMask Any change in color map wanted

X$M_OWNER_GRAB_BUTTON OwnerGrabButtonMask Automatic grabs should activate
with owner_events set to true

You can also specify X$M_NO_EVENT or NoEventMask in event_mask
to indicate that no events are wanted.

4-5

Event Routines
4.3 The Predicate Procedure

4.3 The Predicate Procedure
Xlib provides routines that allow you to see if the next event on the Xlib
event queue is the one that your client program wants. These routines
require you to provide a predicate procedure, which determines if the next
event in the queue matches the one your client program wants.

Your predicate procedure must decide only if the event is useful (for
example, by checking the type member of the event data structure) and
must not call Xlib routines. Xlib routines lock the event queue when they
access it; the predicate procedure is called from within an Xlib routine and
must not attempt to lock the queue itself.

The format of the predicate procedure in the MIT C binding is as follows:

Bool (*predicate) (display, event, args)
Display *display;
XEvent *event;
char *args;

The arguments of the predicate procedure are defined as follows:

display

event

args

A pointer to the display data structure for which you want to check
the input event queue. OPEN DISPLAY returned a pointer to the
display structure when it opened the display.

A pointer to the event data structure. The event data structure is a
union of the individual structures declared for each event type.

A pointer to the arguments passed in from IF EVENT, CHECK IF
EVENT, or PEEK IF EVENT.

The predicate procedure should return a nonzero (true) or zero (false)
value to indicate if the event is the one that should be returned. Xlib calls
the predicate procedure once for each event in the queue until it finds
a match between the event in the queue and the event specified by the
corresponding routine.

4.4 Time Coordinate Data Structure
The time coordinate data structure defines the data structure that is
returned by the GET MOTION EVENTS routine.

The VAX binding time coordinate data structure is shown in Figure 4-3.

Figure 4-3 Time Coordinate Data Structure (VAX Binding)

4-6

x$1_timc_time

x$w_timc_y x$w_timc_x

The members of the VAX binding time coordinate structure are described
in Table 4-3.

0

4

4.5 Error Handling

Event Routines
4.4 Time Coordinate Data Structure

Table 4-3 Members of the Time Coordinate Data Structure (VAX
Binding)

Member Name

X$C_ TIMC_ TIME

X$C_TIMC_X

X$C_TIMC_Y

Contents

Set to the time, in milliseconds

Set to the x-coordinate of the pointer cursor
and is reported relative to the origin of the
specified window

Set to the y-coordinate of the pointer cursor
and is reported relative to the origin of the
specified window

The MIT C binding time coordinate data structure is shown in
Figure 4-4.

Figure 4-4 Time Coordinate Data Structure (MIT C Binding)

typedef struct XTimeCoord
Time time;
short x, y;
} XTimeCoord;

The members of the MIT C binding time coordinate structure are described
in Table 4-4.

Table 4-4 Members of the Time Coordinate Data Structure (MIT C
Binding)

Member Name

time

x

y

Contents

Set to the time, in milliseconds

Set to the x-coordinate of the pointer cursor
and are reported relative to the origin of the
specified window

Set to the y-coordinate of the pointer cursor
and are reported relative to the origin of the
specified window

There are two default Xlib error handlers: one to handle typically
fatal conditions, such as losing the connection to a display, and one to
handle error events from the server. The default error handlers print an
explanatory message and exit. You can substitute your own user-written
error handling routines for the default error handlers at any time. If
either of the error handling routines (SET ERROR HANDLER or SET IO
ERROR HANDLER) is passed a null pointer, Xlib reinvokes the default
error handler.

4-7

Event Routines
4.5 Error Handling

Xlib calls the default or user-written error handler whenever an error
event is received. The error event is assumed to be nonfatal, and it is
acceptable for the error handler to generate a return. The error handler
should not perform any operations, either directly or indirectly, on the
display.

The Xlib routines can return the error codes described in Table 4-5.

Table 4-5 Xlib Error Codes

VAX MITC

X$C_BAD_ACCESS BadAccess

X$C_BAD_ALLOC BadAlloc

X$C_BAD_ATOM BadAtom

X$C_BAD_COLOR Bad Color

X$C_BAD_CURSOR BadCursor

X$C_BAD_ Bad Drawable
DRAWABLE

X$C _BAD _FONT Bad Font

X$C_BAD_GC BadGC

X$C_BAD_ID_ BadlDChoice
CHOICE

X$C_BAD_ Bad Implementation
IMPLEMENTATION

4-8

Description

Possible causes are as follows:

An attempt to grab a key/button combination that has
already been grabbed by another client
An attempt to free a color map entry that was not allocated
by the client

An attempt to store in a read-only or unallocated color map
entry

An attempt to modify the access control list from other than
the local host

An attempt to select an event type that at most one client
can select at a time, when another client has already
selected it

The server did not allocate the requested resource for any
cause.

The value that you specified in an atom argument does not
name a defined atom.

A value that you specified for a color map argument does not
name a defined color map.

A value that you specified for a cursor argument does not name
a defined cursor.

A value that you specified for a drawable argument does not
name a defined window or pixmap.

A value that you specified for a font argument does not name a
defined font (or, in some cases, graphics context).

A value that you specified for a graphics context argument does
not name a defined graphics context.

The value that you chose for a resource identifier is either not
included in the range assigned to the client, or it is already in
use. Under normal circumstances this cannot occur and should
be considered a server or Xlib error.

The server does not implement some aspect of the request.
This error is most likely caused by a server extension; a server
that generates this error for a core protocol request is deficient.
As such, this error is not listed for any particular request. Client
programs should be prepared to receive this type of error and
either handle or discard it.

(continued on next page)

Table 4-5 (Cont.) Xlib Error Codes

VAX MITC

X$C_BAD_LENGTH Bad Length

X$C_BAD_MATCH Bad Match

X$C_BAD_NAME BadName

X$C_BAD_PIXMAP Bad Pixmap

X$C_BAD_REQUEST BadRequest

X$C_BAD_VALUE BadValue

X$C_BAD_WINDOW BadWindow

Description

Event Routines
4.5 Error Handling

The length of a request is shorter or longer than required to
minimally contain the arguments. This error usually indicates an
internal Xlib or server error. The length of a request exceeds the
maximum length accepted by the server.

Possible causes are as follows:

In a graphics request, the root and depth of the graphics
context do not match those of the drawable.
An input-only window is used as a drawable.

One argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

An input-only window lacks this attribute.

The font or color that you specified does not exist.

A value that you specified for a pixmap argument does not name
a defined pixmap.

The major or minor opcode that you specified does not indicate
a valid request. This is usually an Xlib or server error.

Some numeric values fall outside the range of values accepted
by the request. Unless a specific range is specified for an
argument, the full range defined by the argument's type is
accepted. Any argument defined as a set of alternatives can
generate this error.

A value that you specified for a Window argument does not
name a defined window.

Note: The Bad Atom, Bad Color, Bad Cursor, Bad Drawable, Bad Font,
Bad Pixmap, and Bad Window errors are also used when the
argument type is extended by a set of fixed alternatives.

4.6 Error Event Data Structure
The error event data structure defines the format of errors reported to the
default or user-supplied error handlers.

The VAX binding error event data structure is shown in Figure 4-5.

4-9

Event Routines
4.6 Error Event Data Structure

Figure 4-5 Error Event Data Structure (VAX Binding)

4-10

x$1_ erev _type 0

x$a_erev_display 4

x$1_erev _resource_id 8

x$1_erev_serial 12

l x$b_erev_minor_code J x$b_erev_request_code l x$b_erev_error_code

The members of the VAX binding error event data structure are described
in Table 4-6.

Table 4-6 Members of the Error Event Data Structure (VAX Binding)

Member Name

X$L_EREV _TYPE

X$A_EREV _DISPLAY

X$L_EREV _RESOURCE_I D

X$L_EREV _SERIAL

X$B_EREV_ERROR_CODE

X$B_EREV_REQUEST_CODE

X$B_EREV _MINOR_CODE

Contents

The type of event.

The display information originally returned by
OPEN DISPLAY.

The resource identifier associated with the
error.

The serial number of the request processed by
the server immediately before the failing call
was made. Xlib and the server use the serial
number to identify the protocol request that
caused the error.

The error code of the failed request. The error
codes are described in Table 4-5.

The major operation code of the failed request.

The minor operation code of the failed request.

The MIT C binding error event data structure is shown in Figure 4-6.

Figure 4-6 Error Event Data Structure (MIT C Binding)

typedef struct XErrorEvent
int type;
Display *display;
XID resourceid;
unsigned long serial;
unsigned char error_code;
unsigned char request code;
unsigned char minor_code;

}XErrorEvent;

4.7 Event Routines

Event Routines
4.6 Error Event Data Structure

The members of the MIT C binding error event data structure are
described in Table 4-7.

Table 4-7 Members of the Error Event Data Structure (MIT C Binding)

Member Name

type

display

resourceid

serial

error_code

request_ code

minor_code

Contents

The type of event.

The display information originally returned by
OPEN DISPLAY.

The resource identifier associated with the
error.

The serial number of the request processed by
the server immediately before the failing call
was made. Xlib and the server use the serial
number to identify the protocol request that
caused the error.

The error code of the failed request. The error
codes are described in Table 4-5.

The major operation code of the failed request.

The minor operation code of the failed request.

The following pages describe the Xlib event routines.

4-11

Event Routines
CHECK IF EVENT

CHECK IF EVENT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

4-12

Checks the event queue for the event that you specify in the predicate
procedure and flushes the output buffer if the event is not found.

present_return = X$CHECK_IF _EVENT
(display, event_return, predicate, arg)

Argument Usage Data Type Access

present_return Boolean longword write

display identifier uns longword read

event_return record x$event write

predicate procedure proc entry mask read

arg longword uns longword read

present_return = XChecklfEvent
(display, event_return, predicate, arg)

Mechanism

value

reference

reference

reference

value

Bool XCheckifEvent(display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate) ();
char *arg;

present_ return
A Boolean value that specifies whether the routine completed successfully.
When the value of present_return is zero, no matching events were
found. When the value of present_return is one (1), a matching event
was found.

display
The display information originally returned by OPEN DISPLAY.

event_ return
A pointer to the event structure to which the matching event is returned.
CHECK IF EVENT copies the matched event's associated structure into
this client-supplied structure. The event data structure is shown in
Section 4.1.

DESCRIPTION

predicate

Event Routines
CHECK IF EVENT

A pointer to a user-supplied procedure that determines if the next event
in the event queue matches the event you specify in the args argument.
When true, predicate returns a nonzero value. When false, predicate
returns zero. Xlib calls the predicate procedure once for each event in the
queue until it returns true.

For more information about the predicate procedure see Section 4.3.

arg
The user-specified arguments that are passed to the predicate procedure.

CHECK IF EVENT returns true when the specified predicate procedure
returns true for the next event in the queue that matches the specified
event. If the predicate procedure finds a match, CHECK IF EVENT copies
the matched event into the client-supplied event structure and returns
true. The event is removed from the queue. All earlier events in the
queue are not discarded.

If the predicate procedure finds no match, CHECK IF EVENT returns
false and flushes the output buffer. CHECK IF EVENT does not block.

The event data structure is shown in Section 4.1.

4-13

Event Routines
CHECK MASK EVENT

CHECK MASK EVENT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

4-14

Removes the next matching event from the queue and immediately returns a
value to indicate the status.

present_return = X$CHECK_MASK_EVENT
(display, event_mask, evenLreturn)

Argument Usage Data Type

present_retu rn Boolean longword

display identifier uns longword

event_mask mask_longword longword

evenLreturn record x$event

present_return = XCheckMaskEvent
(display, event_mask, evenLreturn)

Access

write

read

read

write

Mechanism

value

reference

reference

reference

Bool XCheckMaskEvent(display, event_mask, event_return)
Display *display;
long event_mask;
XEvent *event_return;

present_ return
A Boolean value that specifies whether the routine completed successfully.
When present_return is false, no matching events were found. When
present_return is true, a matching event was found.

display
The display information originally returned by OPEN DISPLAY.

event_ mask
A bitmask that specifies the event types for which you want to remove
an event. The mask is an inclusive OR of one or more of the event mask
elements described in Table 4-2.

event_ return
A pointer to an event structure to which the matching event is returned.
CHECK MASK EVENT copies the matched event's associated data
structure into this client-supplied data structure. The event data structure
is shown in Section 4.1.

Event Routines
CHECK MASK EVENT

DESCRIPTION CHECK MASK EVENT searches the event queue, and the server
connection, for the event that matches the specified mask. If it finds a
match, CHECK MASK EVENT removes the event, copies it into an event
structure supplied by the caller and returns true. Earlier events in the
queue are not discarded.

If no matching event has been queued, CHECK MASK EVENT flushes the
client's output buffer and returns false.

Note that CHECK MASK EVENT differs from MASK EVENT in that
CHECK MASK EVENT returns immediately while MASK EVENT blocks
until a match is found. CHECK MASK EVENT also returns a Boolean
value indicating if the event was returned.

The event data structure is shown in Section 4.1.

4-15

Event Routines
CHECK TYPED EVENT

CHECK TYPED EVENT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

4-16

Returns and removes the next event in the event queue that matches the
event type.

present_return = X$CHECK_ TYPED _EVENT
(display, event_type, event_return)

Argument Usage Data Type Access

present_return Boolean longword write

display identifier uns longword read

event_ type longword longword read

event_return record x$event write

present_return = XCheckTypedEvent
(display, event_type, event_return)

Mechanism

value

reference

reference

reference

Bool XCheckTypedEvent(display, event_type, event_return)
Display *display;
int event_type;
XEvent *event_return;

present_ return
A Boolean value that specifies whether the routine completed successfully.
When the value of present_return is false, no matching events were
found. When the value of present_return is true, a matching event was
found.

display
The display information originally returned by OPEN DISPLAY.

event_type
The event type to be compared.

event_ return
A pointer to an event structure to which the matching event is returned.
CHECK TYPED EVENT copies the matched event's associated structure
into this client-supplied structure.

Event Routines
CHECK TYPED EVENT

DESCRIPTION CHECK TYPED EVENT searches the event queue for the first event that
matches the specified event type. If CHECK TYPED EVENT does not find
a match, Xlib searches the available events for the connection that have
yet to be queued. If CHECK TYPED EVENT finds a match, it removes the
event, copies the associated event structure to the event structure specified
by event_return, and returns true. Earlier events in the queue are not
discarded.

If no match is found, CHECK TYPED EVENT flushes the output buffer
and returns false.

4-17

Event Routines
CHECK TYPED WINDOW EVENT

CHECK TYPED WINDOW EVENT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

4-18

Returns the next matching event in the queue for the specified window.

present_return = X$CHECK_ TYPED_ WINDOW_EVENT
(display, window_id, event_type, event_return)

Argument Usage Data Type Access Mechanism

present_return Boolean longword write value

display identifier uns longword read reference

window_id identifier uns longword read reference

event_ type longword longword read reference

event_return record x$event write reference

present_return = XCheckTypedWindowEvent
(display, window_id, event_type, event_return)

Bool XCheckTypedWindowEvent(display, window_id, event_type,
event_return)

Display *display;
Window window_id;
int event_type;
XEvent *event_return;

present_ return
A Boolean value that specifies whether the routine completed successfully.
When the value of present_return is false, no matching events were
found. When the value of present_return is true, a matching event was
found.

display
The display information originally returned by OPEN DISPLAY.

window id
The windo;-identifier for which you want to check the typed event.

event_ type
The event type to be compared.

event return

Event Routines
CHECK TYPED WINDOW EVENT

A pointer to an event structure to which the matching event is returned.
CHECK TYPED WINDOW EVENT returns the matched event's associated
structure into this client-supplied structure.

DESCRIPTION CHECK TYPED WINDOW EVENT searches the event queue for the
events associated with the specified type and window. If CHECK TYPED
WINDOW EVENT does not find a match, Xlib searches the available
events for the connection that have yet to be queued. If it finds a match,
CHECK TYPED WINDOW EVENT removes the event from the queue,
copies it into the event data structure specified by event_return, and
returns true. Earlier events in the queue are not discarded. If no match is
found, CHECK TYPED WINDOW EVENT flushes the output buffer and
returns false.

4-19

Event Routines
CHECK WINDOW EVENT

CHECK WINDOW EVENT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

4-20

Removes the next matching event from the queue and indicates status.

present_return = X$CHECK_WINDOW_EVENT
(display, window_id, event_mask, event_return)

Argument Usage Data Type Access Mechanism

present_ return Boolean longword write value

display identifier uns longword read reference

window_id identifier uns longword read reference

event_ mask mask_longword uns longword read reference

event_return record x$event write reference

present_return = XCheckWindowEvent
(display, window_id, event_mask, event_return)

Bool XCheckWindowEvent(display, window_id, event_mask,
event_return)

Display *display;
Window window_id;
long event_mask;
XEvent *event_return;

present_ return
A Boolean value that specifies whether the routine completed successfully.
When the value of present_return is false, no matching events were
found. When the value of present_return is true, a matching event was
found.

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window for which you want to remove the event from
the event queue.

DESCRIPTION

event_ mask

Event Routines
CHECK WINDOW EVENT

A bitmask that specifies the events types for which you want to remove
an event. This mask is an inclusive OR of one or more of the event mask
elements described in Table 4-2.

event return
A pointer to an event structure to which the matching event is returned.
CHECK WINDOW EVENT copies the matched event's associated structure
to this client-supplied structure. The event data structure is shown in
Section 4.1.

CHECK WINDOW EVENT searches the event queue for the next event
that matches both window _id and event_mask. If CHECK WINDOW
EVENT does not find a match, Xlib searches the available events for the
connections that have yet to be queued.

If it finds a match, CHECK WINDOW EVENT removes the event, copies
it into the event structure specified in event_return, and returns true.
Earlier events on the queue are not discarded. If no matching event is
found, CHECK WINDOW EVENT flushes the output buffer and returns
false.

Note that CHECK WINDOW EVENT differs from WINDOW EVENT in
that CHECK WINDOW EVENT returns immediately while WINDOW
EVENT blocks until a match is found.

The event data structure is shown in Section 4.1.

4-21

Event Routines
EVENTS QUEUED

EVENTS QUEUED

Checks the number of events in the event queue.

VAX FORMAT count= X$EVENTS_QUEUED (display, mode)

argument
information

Argument Usage Data Type Access Mechanism

count longword longword write value

display identifier uns longword read reference

mode longword longword read reference

MIT C FORMAT count= XEventsQueued (display, mode)

argument
information

RETURNS

ARGUMENTS

4-22

int XEventQueued(display, mode)
Display *display;
int mode;

count
The number of events in the event queue.

display
The display information originally returned by OPEN DISPLAY.

mode
The mode by which you want to return the number of queued events. The
predefined values for mode are as follows:

DESCRIPTION

VAX

X$C_QUEUED_ALREADY

X$C_QUEUED_AFTER_
FLUSH

X$C_QUEUED_AFTER_
READING

Event Routines
EVENTS QUEUED

MIT C Description

QueuedAlready Returns the number of
events already in the queue.

QueuedAfterFlush Returns the number of
events already in the queue,
if it is nonzero. If there are
no events in the queue, it
flushes the output buffer,
attempts to read more
events for the applications's
connection, and returns the
number read.

QueuedAfterReading Returns the number of
events already in the queue,
if it is nonzero. If there are
no events in the queue,
it attempts to read more
events for the applications's
connection, without flushing
the output buffer, and returns
the number read.

EVENTS QUEUED checks the number of events in the event queue,
including those that have yet to be queued. Xlib maintains an event queue
for each connection. The transport buffers events on a per-connection
basis and delivers them to the Xlib event queues. An event may wait in
a transport buffer until it is added to the appropriate Xlib event queues.
It is therefore possible for an event to be available to a connection even
though it has not yet been queued in the Xlib event queue.

EVENTS QUEUED always returns immediately without I/O if there
are events in the queue. EVENTS QUEUED with a mode of Queued
After Flush is identical to PENDING. EVENTS QUEUED with a mode of
Queued Already is identical to the Q LENGTH display routine.

4-23

Event Routines
FLUSH

FLUSH

VAX FORMAT

argument
information

Flushes the Xlib output buffer for a client connection.

X$FLUSH (display)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

MIT C FORMAT XFlush (display)

argument
information

ARGUMENT

DESCRIPTION

4-24

XFlush(display)
Display *display;

display
The display information originally returned by OPEN DISPLAY.

FLUSH flushes all output requests that have been buffered in the client
output buffer but have not yet been sent to the server. Because flushing is
done as needed, the next time the client calls PENDING, NEXT EVENT,
or WINDOW EVENT, most client programs do not need to call the FLUSH
routine.

Event Routines
GET ERROR DATABASE TEXT

GET ERROR DATABASE TEXT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Returns error messages from the error database.

X$GET_ERROR_DATABASE_TEXT
(display, app/_name, message_name,
default_message_name, buff_return [,length])

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

appl_name char string character string read descriptor

message_name char string character string read descriptor

default_ message_ char string character string read descriptor
name

buff_return char string character string write descriptor

length word uns word write reference

XGetErrorDatabaseText
(display, app/_name, message_name,
default_message_name, buff_return, length)

XGetErrorDatabaseText(display, appl_name, message_name,
default_message_name, buff_return,
length)

Display *display;
char *appl_name, *message_name;
char *default_message_name;
char *buff _return;
int length;

display
The display information originally returned by OPEN DISPLAY.

appl_name
The name of the application for which you want to obtain error messages.

4-25

Event Routines
GET ERROR DATABASE TEXT

DESCRIPTION

4-26

message_name
The type of the error message that you want. Xlib uses the following
message types to report errors:

VAX Binding MIT C Binding Description

X$C_PROTO_ERROR XProtoError The protocol error number is used as a
string for message_name.

X$C_XLIB_MESSAGE XlibMessage These are the message strings that are
used internally by Xlib.

X$C_REQUEST XRequest The major protocol request number is
used for the message argument. If no
string is found in the error database, the
default string is returned to buff_return.

VAX only

The message_name argument is the address of a character string
descriptor that points to the string.

MIT Conly

The message_name argument is a pointer to the null-terminated
character string.

default_ message _name
The default error message if no message is found in the database.

buff return
The error message.

length
The size of the buffer that is passed in buff_return.

VAX only

This argument is optional.

GET ERROR DATABASE TEXT returns a message (or the default
message) from the error message database. Xlib uses this function
internally to look up error messages.

Event Routines
GET ERROR TEXT

GET ERROR TEXT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Returns a text string that describes the error code that you specify.

X$GET_ERROR_TEXT
(display, code, buff_return [,len_return])

Argument Usage Data Type Access Mechanism

display identifier uns longword read

code longword longword read

buff_return char string character string write

len_return longword uns longword write

XGetErrorText
(display, code, buff_return, length)

XGetErrorText(display, code, buff_return, length)
Display *display;
int code;
char *buff _return;
int length;

display

reference

reference

descriptor

reference

The display information originally returned by OPEN DISPLAY.

code
The error code for which you want to obtain a textual description.

4-27

Event Routines
GET ERROR TEXT

buff return
A pointer to the buffer to which GET ERROR TEXT returns the
description.

VAX only

The buff_return argument is the address of a character string descriptor
that points to the string.

MIT Conly

The buff_return argument is a pointer to a client-allocated buffer.

len_return (VAX only)
The size of the text string that GET ERROR TEXT returns. This
argument is optional in the VAX binding.

length (MIT Conly)
The size of the buff_return buffer.

DESCRIPTION GET ERROR TEXT returns a textual description of the error code that you
specify. You should use this routine to obtain an error description because
extensions to Xlib can define their own error codes and strings.

4-28

Event Routines
GET MOTION EVENTS

GET MOTION EVENTS

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

Returns pointing device motion events for a window based on the time
coordinates that you supply.

status_return = X$GET_MOTION_EVENTS
(display, window_id, start, stop, num_events_return
[,time_return] [,time_size] [,time_buff_return])

Argument Usage Data Type Access Mechanism

status_return cond_value uns longword write value

display identifier uns longword read reference

window_id identifier uns longword read reference

start longword uns longword read reference

stop longword uns longword read reference

num_events_return longword longword write reference

time_return address uns longword write reference

time_size longword longword read reference

time_buff_return array uns longword write reference

timecoord_return = XGetMotionEvents
(display, window_id, start, stop, num_events_return)

XTimeCoord *XGetMotionEvents(display, window_id, start, stop,
num_events_return)

Display *display;
Window window_id;
Time start, stop;
int *num_events_return;

status_return (VAX only)
Possible status values returned by the VAX. binding are as follows:

Value Description

X$_ERRORREPLY An error was received from the server.

4-29

Event Routines
GET MOTION EVENTS

ARGUMENTS

4-30

Value

X$_ TRUNCATED

SS$_NORMAL

Description

The user buffer specified in time_buff_return was not large
enough.

The routine completed successfully.

timecoord_return (MIT Conly)
All the events in the motion history buffer that fall within the specified
starting and stopping times (inclusive), and that have coordinates that lie
within the specified window (including borders) at its current placement,
are returned.

If the starting time is later than the stopping time, or if the starting time
is in the future, no events are returned.

The time coordinate data structure is shown in Section 4.4.

display
The display information originally returned by OPEN DISPLAY.

window_id
The identifier of the window for which you want to receive Il!Otion events.

start
The beginning of the time interval, in milliseconds, for which the events
are returned from the motion history buffer. You can pass a time
stamping, expressed in milliseconds, or the predefined values
X$C_CURRENT_TIME or CurrentTime. If the stopping time is in the
future, it is equivalent to specifying Current Time.

stop
The end of the time interval, in milliseconds, for which the events are
returned from the motion history buffer. You can pass a time-stamping,
expressed in milliseconds, or the predefined values X$C_CURRENT_TIME
or CurrentTime. If the stopping time is in the future, it is equivalent to
specifying Current Time.

num_events_return
A pointer to the number of events returned from the motion history buffer.

time_return (VAX only)
The address of the time coordinate data structure. This argument is
optional. You can specify either time_return to receive the address of the
time coordinate data structure, or the time_size and time_buff_return
arguments to receive an array of time coordinates in a buffer.

time_size (VAX only)
The length of the time coordinate buffer. This argument is optional.

time_buff_return (VAX only)
A pointer to an array of time coordinates. The length of the array is
specified by time_size. This argument is optional.

Event Routines
GET MOTION EVENTS

DESCRIPTION GET MOTION EVENTS returns a pointer to all of the events in the
pointing device motion history queue that fall between the starting and
stopping times (inclusive) that you specify and that have coordinates
that lie within (including borders) the specified window at its present
placement.

XERRORS

If the starting time is later that the stopping time, or if the starting time
is in the future, no events are returned. If the stopping time is in the
future, it is equivalent to specifying the predefined value Current Time,
which is reserved for use in requests to represent the current server time.

GET MOTION EVENTS does not request notification of pointing device
motion history events from the Xlib input event queue; it receives this
information in the form of a reply directly from the server.

The time coordinate data structure is shown in Section 4.4.

The time member of the time coordinate data structure is set to the time
in milliseconds. The x and y members are set to the coordinates of the
pointer and are reported relative to the origin of the specified window.

Clients should use FREE to free the data that is returned from this call.

Note: Some XU server implementations maintain a history of pointer
motion by storing the pointer position at each pointer hardware
interrupt in a motion history buffer. GET MOTION EVENTS
returns a pointer to the events in the motion history buffer. The
VMS DECwindows server does not support the motion history
buffer.

VAX MIT C

X$C_BAD_WINDOW BadWindow

Description

A value that you specified for a window
argument does not name a defined window.

4-31

Event Routines
IF EVENT

IF EVENT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

4-32

Checks the input event queue for the event that you specify in the predicate
procedure, and removes the event from the queue if the events match.

X$1F EVENT
(display, evenLreturn, predicate, arg)

Argument Usage Data Type Access

display identifier uns longword read

event_return record x$event write

predicate procedure proc entry mask read

arg longword uns longword read

XlfEvent
(display, evenLreturn, predicate, arg)

XIfEvent(display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate)();
char *arg;

display

Mechanism

reference

reference

reference

value

The display information originally returned by OPEN DISPLAY.

event return
A pointer to the event structure to which the matching event is returned.
IF EVENT copies the matched event's associated structure into this client
supplied structure. The event data structure is shown in Section 4.1.

predicate
A pointer to a user-supplied procedure that determines if the next event
in the event queue matches the event you specify in the arg argument.
When true, predicate returns a nonzero value. When false, predicate
returns zero. You call the predicate procedure once for each event in the
queue until it returns a nonzero value.

For more information about the predicate procedure see Section 4.3.

arg
The user-specified arguments that are passed to the predicate procedure.

DESCRIPTION

Event Routines
IF EVENT

IF EVENT checks the input event queue for the event that you specify
in the predicate procedure, and removes the event from the queue
if the events match. IF EVENT completes only when the predicate
procedure returns true for an event. You supply a predicate procedure
that determines if the next event in the event queue matches the event
you specify in arg. The predicate procedure is called each time an event is
added to the queue.

If the predicate procedure returns true, IF EVENT removes the event from
the queue and, when it returns, copies the event data structure into the
data structure specified in event_return.

If IF EVENT does not find a match, it flushes the output buffer and waits
for an event. The CHECK IF EVENT routine differs in that it returns
false and does not block if it does not find a match.

The event data structure is shown in Section 4.1.

4-33

Event Routines
MASK EVENT

MASK EVENT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Removes and copies the next matching event from the queue or blocks until a
matching event is received.

X$MASK_EVENT
(display, event_mask, event_return)

Argument Usage Data Type

display identifier uns longword

event_ mask mask_longword longword

event_return record x$event

XMaskEvent
(display, event_mask, event_return)

XMaskEvent(display, event_mask, event_return)
Display *display;
long event_mask;
XEvent *event_return;

display

Access Mechanism

read reference

read reference

write reference

The display information originally returned by OPEN DISPLAY.

event mask
A bitmask that specifies the events types for which you want to remove an
event. The event mask is described in Table 4-2.

event return
A pointer to the event data structure to which the matching event is
returned. MASK EVENT copies the matched event's associated structure
to this client-supplied structure. The event data structure is shown in
Section 4.1.

DESCRIPTION MASK EVENT removes the next event in the queue that matches the
mask that you specified in event_mask. MASK EVENT copies the event
into the event structure specified in event_return. Earlier events in the
queue are not discarded.

4-34

If no matching event is found, MASK EVENT flushes the client's output
buffer and then blocks until one is received.

The event data structure is shown in Section 4.1.

Event Routines
MASK EVENT

Note that MASK EVENT differs from CHECK MASK EVENT in that
CHECK MASK EVENT returns immediately while MASK EVENT blocks
until a match is found. CHECK MASK EVENT also returns a Boolean
value indicating if the event was returned.

4-35

Event Routines
NEXT EVENT

NEXT EVENT

VAX FORMAT

argument
information

Gets the next event and removes it from the queue. NEXT EVENT can flush
the client's Xlib output buffer.

X$NEXT_EVENT (display, event_return)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

event_return record x$event write reference

MIT C FORMAT XNextEvent (display, event_return)

argument
information

ARGUMENTS

XNextEvent(display, event_return)
Display *display;
XEvent *event_return;

display
The display information originally returned by OPEN DISPLAY.

event_ return
A pointer to the event structure to which the next event is returned.
NEXT EVENT copies the next event's associated structure to this client
supplied storage. The event data structure is shown in Section 4.1.

DESCRIPTION NEXT EVENT copies the next event's associated structure to the event
structure specified in event_return and removes the event from the top of
the event queue. For example, if a Create Notify event is at the top of the
queue, NEXT EVENT removes it and then copies the create window event
structure into the event structure specified in event_return.

4-36

If the event queue is empty, NEXT EVENT flushes the client's output
buffer and blocks until an event is received.

NEXT EVENT is similar to PEEK EVENT, except that NEXT EVENT
removes the event from the queue and PEEK EVENT does not.

For more information about the event data structure, see Section 4.1.

Event Routines
PEEK EVENT

PEEK EVENT

Looks at and copies an event from the event queue.

VAX FORMAT X$PEEK_EVENT (display, evenLreturn)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

event_return record x$event write reference

MIT C FORMAT XPeekEvent (display, evenLreturn)

argument
information

ARGUMENTS

XPeekEvent(display, event_return)
Display *display;
XEvent *event_return;

display
The display information originally returned by OPEN DISPLAY.

event return
A pointer to the event structure to which the next event is returned.
PEEK EVENT copies the event's associated structure to this structure.
The event data structure is shown in Section 4.1.

DESCRIPTION PEEK EVENT looks at the event at the top of the event queue and copies
the associated structure to the event structure specified in event_return.
PEEK EVENT does not remove the event from the event queue. For
example, if a Create Notify event is at the top of the queue, PEEK EVENT
copies the create window event structure into event_return.

If the event queue is empty, PEEK EVENT flushes the client's output
buffer then blocks until an event is received.

PEEK EVENT is similar to NEXT EVENT, except that NEXT EVENT
removes the event from the queue and PEEK EVENT does not.

The event data structure is shown in Section 4.1.

4-37

Event Routines
PEEK IF EVENT

PEEK IF EVENT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

4-38

Checks the event queue for the event that you specify in the predicate
procedure; does not remove the event from the event queue.

X$PEEK_IF _EVENT
(display, event_return, predicate, arg)

Argument Usage Data Type Access

display identifier uns longword read

event_return record x$event write

predicate procedure proc entry mask read

arg longword uns longword read

XPeeklfEvent
(display, event_return, predicate, arg)

XPeekifEvent(display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate) ();
char *arg;

display

Mechanism

reference

reference

reference

value

The display information originally returned by OPEN DISPLAY.

event return
A pointer to an event structure to which the matched event is returned.
PEEK IF EVENT copies the matched event's associated structure into this
client-supplied structure. The event data structure is shown in Section 4.1.

predicate
A pointer to the user-supplied procedure that determines if the next event
in the event queue matches the event you specify in the arg argument.
When true, predicate returns a nonzero value. When false, predicate
returns zero. Xlib calls the predicate procedure once for each event in the
queue until it returns a nonzero value.

For more information on the predicate procedure, see Section 4.3.

arg
The user-specified arguments that are passed to the predicate procedure.

DESCRIPTION

Event Routines
PEEK IF EVENT

PEEK IF EVENT checks the event queue for the event that you specify
in the arg argument. You supply a predicate procedure that determines
if the next event in the event queue matches the event you specify in the
arg argument. This predicate procedure is called each time that an event
is added to the queue. PEEK IF EVENT returns the event in the event
argument only when the specified predicate procedure returns true.

When it returns, PEEK IF EVENT does not remove the event from the
event queue, but instead copies it to the event structure specified in
event_return.

If there is no match, PEEK IF EVENT flushes the Xlib output buffer and
blocks until a matching event is received.

The event data structure is shown in Section 4.1.

4-39

Event Routines
PENDING

PENDING

Returns the number of pending input events.

VAX FORMAT count_return = X$PENDING (display)

argument
information

Argument Usage Data Type Access Mechanism

count_return longword longword write value

display identifier uns longword read reference

MIT C FORMAT count_return = XPending (display)

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

4-40

int XPending(display)
Display *display;

count return
The number of events that have been received by Xlib but are not yet
removed from the event queue.

display
The display information originally returned by OPEN DISPLAY.

PENDING returns the number of events that have been received by Xlib
but are not yet removed from the event queue.

PENDING is identical to EVENTS QUEUED with the mode Queued After
Flush.

Event Routines
PUT BACK EVENT

PUT BACK EVENT

Pushes an event back to the top of the client's event queue.

VAX FORMAT X$PUT _BACK_EVENT (display, event)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

event record x$event read reference

MIT C FORMAT XPutBackEvent (display, event)

argument
information

ARGUMENTS

XPutBackEvent(display, event)
Display *display;
XEvent *event;

display
The display information originally returned by OPEN DISPLAY.

event
A pointer to the event structure from which you want to return the event
to the event queue. The event data structure is shown in Section 4.1.

DESCRIPTION PUT BACK EVENT copies an event to the top of the event queue. If you
use a routine such as IF EVENT to remove an event from the event queue,
you can use PUT BACK EVENT to return the event to the queue.

There is no limit to the number of times that a client can successively call
PUT BACK EVENT.

The event data structure is shown in Section 4.1.

4-41

Event Routines
SELECT ASYNC EVENT

SELECT ASVNC EVENT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

4-42

Specifies an action routine and argument to be called when an event occurs.

X$SELECT_ASVNC_EVENT
(display, window_id, event_type, ast_routine,
ast_userarg)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

event_ type longword uns longword read reference

ast_routine procedure proc entry mask read reference

ast_userarg longword uns longword read reference

XSelectAsyncEvent
(display, window_id, event_type, ast_routine,
ast_userarg)

XSelectAsyncEvent(display, window_id, event_type,
ast routine, ast userarg)

Display *display; -
Window window_id;
unsigned long event type;
int (*ast_routine) ();
unsigned long ast_userarg;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window for which you want to select asynchronous
events.

event_ type
The type of event for which you want to select asynchronous events.

ast routine
The particular Asynchronous System Trap (AST) action routine to use
when notifying the client that the specified event has occurred.

DESCRIPTION

ast_ userarg

Event Routines
SELECT ASVNC EVENT

The user-specified argument to use when notifying the client that the
specified event has occurred.

Before calling SELECT INPUT to specify interest in a particular set of
events for a window, clients can call SELECT ASYNC EVENT to specify
an action routine and argument to be called when the specified event
occurs.

Xlib uses the client's ast_routine and ast_userarg information to deliver
an AST whenever it places the specified event on the event queue. The
AST acts only as an event notification mechanism; the application uses
the standard Xlib event routines to actually retrieve and process the event
from the event queue.

Clients can call SELECT ASYNC EVENT multiple times to specify
different routine and argument pairs for different events for a window.
The last call always takes precedence. If called with ast_routine equal
to zero, asynchronous notification is disabled, but the current selection for
the specified event is unaffected.

Notification ASTs are queued in the same order as events are placed in
the event queue by Xlib. Therefore, clients can assume that they receive
notification ASTs in the same order that they find events in the queue.

SELECT ASYNC EVENT is similar to SELECT ASYNC INPUT except
that SELECT ASYNC EVENT specifies one event type and SELECT
ASYNC INPUT specifies an event mask.

4-43

Event Routines
SELECT ASYNC INPUT

SELECT ASVNC INPUT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

4-44

Specifies an action routine and arguments to be called when some subset of
events occurs.

X$SELECT _ASYNC _INPUT
(display, window_id, event_mask, ast_routine,
ast_userarg)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

event_mask longword uns longword read reference

ast_routine procedure proc entry mask read reference

ast_userarg longword uns longword read reference

XSelectAsynclnput
(display, window_id, event_mask, ast_routine,
ast_userarg)

XSelectAsyncinput(display, window_id, event_mask,
ast_routine, ast_userarg)

Display *display;
Window window_id;
unsigned long event_mask;
int (*ast_routine) ();
unsigned long ast_userarg;

display
The display information originally returned by OPEN DISPLAY.

window_id
The identifier of the window for which you want to select asynchronous
input.

event_ mask
A bitmask that specifies the event types for which you want to remove
an event. The mask is an inclusive OR of one or more of the event mask
elements described in Table 4-2.

DESCRIPTION

ast_routine

Event Routines
SELECT ASYNC INPUT

The particular Asynchronous System Trap (AST) action routine to use
when notifying the client that one of the specified events has occurred.

ast_ userarg
The user-specified parameter to use when notifying the client that one of
the specified events has occurred.

Before calling SELECT INPUT to specify interest in a particular set of
events for a window, clients can call SELECT ASYNC INPUT to specify
action routines and arguments to be called when some subset of those
events occurs.

Xlib uses the client's ast_routine and ast_userarg information to deliver
an AST whenever it places one of the specified events on its event queue.
The ast_routine and ast_userarg arguments allow the client to specify
the particular action routine and parameter pair to use when notifying the
client that one of the specified events has occurred. The AST acts only as
an event notification mechanism; the application uses the standard Xlib
event routines to actually retrieve and process the event from the event
queue.

Clients can call SELECT ASYNC INPUT multiple times to specify
different routine and parameter pairs for different sets of events for a
window. The last call always takes precedence. If called with ast_routine
equal to zero, asynchronous notification is disabled, but the current
selection for the specified events is unaffected.

Notification ASTs are queued in the same order as events are placed in
the event queue by Xlib. Therefore, clients can assume that they receive
notification ASTs in the same order that they find events in the queue.

SELECT ASYNC INPUT is similar to SELECT ASYNC EVENT except
that SELECT ASYNC EVENT specifies one event type and SELECT
ASYNC INPUT specifies an event mask.

4-45

Event Routines
SELECT INPUT

SELECT INPUT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Selects the events types to send to a window.

X$SELECT _INPUT
(display, window_id, event_mask)

Argument Usage Data Type

display identifier uns longword

window_id identifier uns longword

event_ mask mask_longword longword

XSelectlnput
(display, window_id, event_mask)

XSelectinput(display, window_id, event_mask)
Display *display;
Window window_id;
long event_mask;

display

Access Mechanism

read reference

read reference

read reference

The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window for which you want to select input events.
Client applications that are interested in an event for a particular window
pass that window identifier.

event mask
A bitmask that specifies the event types for which you want the window
to receive notification. This mask is the inclusive OR of one or more event
mask elements described in Table 4-2.

DESCRIPTION SELECT INPUT allows you to specify the input events for which a window
receives notification. If a window is not interested in an event, the event
propagates until an ancestor of the window expresses interest, or until the
event is explicitly discarded. Initially, the server does not report any of
these events.

4-46

XERRORS

Event Routines
SELECT INPUT

There are two ways to select the events that you want to report to your
client application. The first way is to set the event mask members of
the select window attributes data structure when you call CREATE
WINDOW and CHANGE WINDOW ATTRIBUTES. The second way is
to use SELECT INPUT.

Setting the event _mask attribute of a window overrides any previous call
for the same window, but not for other clients. Multiple clients can select
events on the same window because their event masks are disjoint. When
the server generates an event, it reports the event to all interested clients.
Multiple clients can select the same events on the same window with the
following restrictions:

• Only one client at a time can select Circulate Request, Configure
Request, or Map Request events, which are associated with the
Substructure Redirect mask.

• Only one client at a time can select a Resize Request event, which is
associated with the Resize Redirect mask.

• Only one client at a time can select a Button Press event, which is
associated with the Button Press mask.

The server reports the events to all interested clients.

VAX MITC

X$C_BAD_WINDOW BadWindow

Description

A value that you specified for a window
argument does not name a defined window.

4-47

Event Routines
SEND EVENT

SEND EVENT

Sends an event to a window without the window requesting the event.

VAX FORMAT status_return = X$SEND_EVENT
(display, window_id, propagate, event_mask, event)

argument
information

Argument Usage Data Type Access Mechanism

status _return cond_value uns longword write value

display identifier uns longword read reference

window_id identifier uns longword read reference

propagate longword longword read reference

event_mask mask_longword longword read reference

event record x$event read reference

MIT C FORMAT status_return = XSendEvent

argument
information

RETURNS

ARGUMENTS

4-48

(display, window_id, propagate, event_mask, event)

Status XSendEvent(display, window_id, propagate, event_mask,
event)

Display *display;
Window window_id;
Bool propagate;
long event_mask;
XEvent *event;

status return
Returns false if the conversion to the wire protocol failed. Returns true if
the conversion to the wire protocol was successful.

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window to which you want to send the event. This
window is called the destination window. You can pass the window
identifier or the constants Pointer Window or Input Focus, which are
defined as follows:

DESCRIPTION

VAX Binding

XSC_POINTER_
WINDOW

X$C_INPUT_FOCUS

propagate

MIT C Binding

PointerWindow

Input Focus

Event Routines
SEND EVENT

Description

The destination window is the
window that contains the pointer.

The destination window is the
window that has the input focus,
regardless of whether the window
contains the pointer.

A Boolean value that determines whether or not to propagate the event.

If event_mask does not specify any event types, the event is sent to the
client that created the destination window. If that client no longer exists,
no event is sent.

When true, and no client has selected the destination window for any of
the event types specified in the event mask, the destination is replaced
with its closest ancestors for which some client has selected a matching
event type. This condition is true only when intervening windows
propagate that event type.

If no such window exists, or if the window is an ancestor of the focus
window and input focus was originally specified as the destination, then
the event is not sent to any clients. Otherwise, the event is reported to
every client that selects any of the types specified in the event mask on
the final destination.

When false, the event is sent to every client selecting on destination any of
the event types specified in event_mask.

event mask
A bitmask that specifies the events types for which you want the window
to receive notification. This mask is the inclusive OR of one or more of the
valid event mask elements described in Table 4-2.

event
A pointer to the event that is to be sent.

SEND EVENT identifies the destination window, determines which clients
should receive the specified events, and ignores any active grabs.

The event codes defined by the event_mask argument must be one of the
core events described in the event structure, or one of the events defined
by a loaded extension, so that the server can byte swap the contents
as necessary. The contents of the events are otherwise unaltered and
unchecked by the server except to force the send event member of the
forwarded event structure to true and to set the serial number in the
event. Active grabs are ignored for this request.

The event data structure is shown in Section 4.1.

4-49

Event Routines
SEND EVENT

XERRORS

4-50

VAX MITC

X$C_BAD_ VALUE BadValue

X$C_BAD_WINDOW BadWindow

Description

Some numeric values fall outside the
range of values accepted by the request.
Unless you specify a specific range for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

A value that you specified for a window
argument does not name a defined window.

Event Routines
SET AFTER FUNCTION

SET AFTER FUNCTION

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Specifies the synchronization handler to call before returning from an Xlib
protocol routine.

X$SET AFTER FUNCTION
(display, tune addr, prev_func_addr_return)

Argument Usage Data Type

display identifier uns longword

func_addr procedure proc entry mask

prev_func_addr_return procedure proc entry mask

prev_func_return = XSetAfterFunction
(display, func_addr)

int (*XSetAfterFunction(display, func_addr)) ()
Display *display;
int (*func_addr) ();

prev_func_return (MIT Conly)
The previous after function is returned.

display

Access

read

read

write

Mechanism

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

tune addr
The function to be called after an Xlib function that generates a protocol
request completes its work. Only a display pointer is passed to the
function.

prev_func_addr_return (VAX only)
The previous synchronization routine is returned.

4-51

Event Routines
SET AFTER FUNCTION

DESCRIPTION

4-52

SET AFTER FUNCTION specifies a synchronization routine to call before
returning from an Xlib routine that generates a protocol request. All
Xlib routines that generate protocol requests will then call this "after
function" synchronization routine before returning. You use SET AFTER
FUNCTION before a call to SYNCHRONIZE to specify a synchronization
routine.

The X server does not automatically notify Xlib when the server has
received and processed an output request. However, when debugging
your client program, it is sometimes helpful to know that a routine
has completed successfully, or generated an error, before the next
output request is sent to the server. To do this, you can use SET
AFTER FUNCTION to follow each Xlib output request with a call to
a synchronization routine that generates a return. When your client
program receives the return, you know that the previous routine completed
successfully.

The synchronization routine can be any Xlib or user-written routine
that generates a return. For example, you can specify a routine that
generates program statistics. When your client program receives the
values returned by the statistics routine, you can be sure that the previous
routine completed successfully or caused an error.

The synchronization routine is called with one argument, a pointer to the
display.

Event Routines
SET ERROR HANDLER

SET ERROR HANDLER

VAX FORMAT

argument
information

Specifies a user-written routine to handle nonfatal errors.

X$SET_ERROR_HANDLER (hand~~

Argument Usage Data Type Access Mechanism

handler procedure proc entry mask read reference

MIT C FORMAT XSetErrorHandler (handler)

argument
information

ARGUMENTS

XSetErrorHandler(handler)
int (*handler) (Display*, XErrorEvent*);

handler
A user-written routine that handles nonfatal errors. The handler
argument is the address of the entry mask for the routine. The routine
returns an integer value. SET ERROR HANDLER passes the following
arguments to the routine:

• display-Pointer to the display structure associated with the display.

• error_event-Pointer to the error event. The error must be of type
X$ERROR_EVENT for the VAX binding and XErrorEvent for the
MIT C binding.

DESCRIPTION SET ERROR HANDLER specifies the user-written error handler to be
called whenever an error event is received. These errors are assumed to
be nonfatal, and it is acceptable for the error handler to return control
to the client program. However, the error handler should not call any
routines (directly or indirectly) that generate protocol requests or look for
input events.

4-53

Event Routines
SET ERROR HANDLER

4-54

The error handler is not called for the following conditions:

• On Bad Name errors from OPEN FONT, LOOKUP COLOR, and
ALLOC NAMED COLOR protocol requests

• On Bad Font errors from a QUERY FONT protocol request

• On Bad Alloc or Bad Access errors from syncronous protocol requests

These errors are reflected back to the program through the routine's return
value. Errors are listed for a routine only if the error results in a call to
the error handler.

The error event structure defines the format of errors reported to the
default or user-supplied error handlers.

The attributes of the error event structure are as follows:

Member

display

serial

error_code

request_ code

minor_code

resource_id

Description

The display from which the event was read.

The total number of protocol requests, starting from one, sent across
the transport since the connection was opened. This member
reflects the number of the request immediately before the failing call
was made.

The identifying error code of the failing call.

The operation code for the protocol request that failed.

The minor operation code for the protocol request that failed.

The resource identifier for which the error occured.

The error event data structure is shown in Section 4.6.

See also the SET IO ERROR HANDLER routine.

Event Routines
SET 10 ERROR HANDLER

SET 10 ERROR HANDLER

VAX FORMAT

argument
information

Specifies a user-written routine to handle fatal 1/0 errors.

X$SET _IO _ERROR_HANDLER (handler)

Argument Usage Data Type Access Mechanism

handler procedure proc entry mask read reference

MIT C FORMAT XSetlOErrorHandler (handler)

argument
information

ARGUMENTS

XSetIOErrorHandler(handler)
int (*handler) (Display*);

handler
A user-written routine that handles fatal errors. The handler argument is
the address of the entry mask for the routine. SET IO ERROR HANDLER
passes a pointer to the display structure to the routine.

DESCRIPTION SET IO ERROR HANDLER specifies a user-written error handler to be
called by Xlib if any type of system-call error, such as losing the connection
to the server, occurs. This is assumed to be a fatal condition; the error
handler should not return. If the IO error handler does return, the client
process exits.

Also see the SET ERROR HANDLER routine.

4-55

Event Routines
SYNC

SYNC

VAX FORMAT

argument
information

Flushes the client's Xlib output buffer and waits for all requests to be received
and processed by the server.

X$SYNC (display, discard)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

discard longword longword read reference

MIT C FORMAT XSync (display, discard)

argument
information

ARGUMENTS

XSync(display, discard)
Display *display;
Bool discard;

display
The display information originally returned by OPEN DISPLAY.

discard
If true, SYNC discards all events on the client event queue, including
those events that were on the queue before SYNC was called. If discard is
false, SYNC does not discard the events on the queue.

DESCRIPTION SYNC flushes the client's Xlib output buffer and then waits until all
requests have been received and processed by the server. New events

4-56

are placed on the Xlib event queue by the server. Any errors that are
generated must be handled by the error handler; the client's error handling
routine is called once for each error received.

Client applications seldom need to call SYNC.

See also the SYNCHRONIZE routine.

Event Routines
SYNCHRONIZE

SYNCHRONIZE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Enables or disables synchronization for a display.

state_return = X$SYNCHRONIZE
(display, onoff, after_function_return)

Argument Usage Data Type

state_return longword longword

display identifier uns longword

on off longword longword

after_function_return procedure proc entry mask

after_return = XSynchronize
(display, onoff)

int (*XSynchronize (display, onoff)) ()
Display *display;
Bool onoff;

state_return (VAX only)

Access Mechanism

write value

read reference

read reference

write reference

Specifies whether the routine completed successfully. The argument
returns true if an after function was present and returns false if no after
function was present.

after_return (MIT Conly)
The address of the after function. The after function specifies a
synchronization routine to call before returning from an Xlib routine that
generates a protocol request. See the SET AFTER FUNCTION routine for
more information.

display
The display information originally returned by OPEN DISPLAY.

on off
A Boolean value that enables or disables synchronization. Possible values
are zero (disable) or nonzero (enable).

after_function_return (VAX only)
The previous after function is returned.

4-57

Event Routines
SYNCHRONIZE

DESCRIPTION

4-58

SYNCHRONIZE enables or disables synchronization and returns the after
function. The X server does not automatically notify Xlib when the server
has received and processed an output request. However, when debugging
your client program, it is sometimes helpful to know that a routine has
completed successfully, or generated an error, before the next output
request is sent to the server.

SYNCHRONIZE flushes the client's Xlib output buffer after each Xlib
routine then calls a synchronization routine that generates a return.
When your client program receives the return, you know that the previous
routine completed. If an output request generates an error, the server
reports the error back to the client at the time it occurs.

SYNCHRONIZE uses the window and session manager routine GET
INPUT FOCUS as the default synchronization routine. You can use SET
AFTER FUNCTION to specify another synchronization routine.

Note that when you enable synchronization, all output for the display is
synchronized. Graphics output may occur dramatically (30 or more times)
slower when synchronization is enabled because of the increased overhead
incurred by sending each output request individually and waiting for a
return or error condition.

SYNCHRONIZE is similar to SYNC, except that SYNCHRONIZE flushes
the output buffer after each Xlib routine and waits for the after function
return value to be returned; SYNC flushes the output buffer only once and
may also clear the event queue.

Event Routines
WINDOW EVENT

WINDOW EVENT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Removes the next matching event from the queue for the specifed window.

X$WINDOW _EVENT
(display, window_id, event_mask, event_return)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

event_ mask mask_longword uns longword read reference

event_return record x$event write reference

XWindowEvent
(display, window_id, event_mask, event_return)

XWindowEvent(display, window id, event_mask, event_return)
Display *display; -
Window window_id;
long event_mask;
XEvent *event_return;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window for which you want to remove the next
matching event.

event mask
A bitmask that specifies the event types for which you want to remove
an event. This mask is the inclusive OR of one or more of the valid event
mask elements described in Table 4-2.

event return
A point;: to the event structure to which the matching event is returned.
WINDOW EVENT copies -::he matched event's associated structure into
this client-supplied structure. The event data structure is shown in
Section 4.1.

4-59

Event Routines
WINDOW EVENT

DESCRIPTION WINDOW EVENT searches the event queue for an event that matches
both the specified window and event mask. If it finds a match, WINDOW
EVENT removes the event from the queue and copies it into an event
structure supplied in the event_return argument. Other events in the
queue are not discarded. If no such event has been queued, WINDOW
EVENT flushes the output buffer and blocks until one is received.

4-60

Note that WINDOW EVENT differs from CHECK WINDOW EVENT in
that CHECK WINDOW EVENT returns immediately while WINDOW
EVENT blocks until a match is found.

The event data structure is shown in Section 4.1.

5 Graphics Context Routines

Graphics contexts are data structures that specify several graphics
attributes. For example, the graphics routines use the graphics context
attributes to define how various operations are performed. For example,
when a line is drawn, the graphics routine DRAW LINE uses a GC values
data structure to define how wide the line is, how to draw the end points
of the line, and which pattern to use to fill the line. For more information
about graphics routines, see Chapter 6.

The graphics context routines enable you to perform the following
operations:

• Create GC values data structures

• Manipulate the data structures

• Change members within the data structure

For concepts related to graphics context routines and information on
how to use graphics context routines, see the VMS DECwindows Xlib
Programming Volume.

The routines described in this chapter are listed in Table 5-1.

Table 5-1 Graphics Context Routines

Routine Name

CHANGE GC

COPY GC

CREATE GC

FREE GC

GCONTEXT FROM GC

QUERY BEST SIZE

QUERY BEST STIPPLE

Description

Change any attribute by changing the values
in the graphics context data structure.

Copies the graphics context values from one
graphics context data structure to another
graphics context data structure.

Creates a new graphics context for a specific
window. Unless specified, the members of the
graphics context are the default values.

Frees the storage associated with the graphics
context and its identifier.

Obtains the graphics context resource
identifier for a specified graphics context.

Obtains the optimal size for improved server
performance for the cursor, the tile pattern, or
the stipple pattern.

Obtains the optimal size for improved server
performance for a stipple pattern.

(continued on next page)

5-1

Graphics Context Routines

Table 5-1 (Cont.) Graphics Context Routines

Routine Name

QUERY BEST TILE

SET ARC MODE

SET BACKGROUND

SET CLIP MASK

SET CLIP ORIGIN

SET CLIP RECTANGLES

SET DASHES

SET FILL RULE

SET FILL STYLE

SET FONT

SET FOREGROUND

SET FUNCTION

SET GRAPHICS EXPOSURES

SET LINE ATTRIBUTES

SET PLANE MASK

SET STATE

SET STIPPLE

SET SUBWINDOW MODE

SET TILE

SET TS ORIGIN

Description

Obtains the optimal size for improved server
performar1ce for a tile pattern.

Sets the arc mode to the value specified.

Sets the background color index to the value
specified.

Changes the pixmap identifier of the clip mask
for the specified graphics context.

Changes the clip origin members in the
specified graphics context.

Changes the clip origin members in the
specified graphics context and specifies
rectangular clip areas.

Changes the values for the dash offset and
the dash list.

Sets the fill rule member in the graphics
context to the value specified.

Sets the fill style member in the graphics
context to the value specified.

Changes the identifier of the font in the
specified graphics context.

Sets the foreground color index to the value
specified.

Sets the function value to the value specified.

Changes the graphics exposure.

Changes the line drawing members in the
graphics context.

Sets the plane mask to the value specified.

Changes values for the foreground,
background, plane mask, and function
members of the graphics context.

Changes the pixmap identifier of the stipple
pattern in the specified graphics context.

Changes the value for the subwindow mode
member in the graphics context.

Changes the pixmap identifier of the tile
pattern in the specified graphics context.

Changes the x- and y-coordinates of the tile or
stipple origin in the graphics context.

5.1 The GC Values Data Structure

5-2

The GC values data structure stores all the values for each of 23 graphics
context members.

Graphics Context Routines
5.1 The GC Values Data Structure

The data structure for the VAX binding is shown in Figure 5-1, and
information about members in the data structure is described in
Table 5-2.

Figure 5-1 GC Values Data Structure (VAX Binding)

x$1_gcvl_function

x$1_gcvl_plane_mask

x$1_gcvl_foreground

x$1_gcvl_background

x$1_gcvl_line_width

x$1_gcvl_line_style

x$1_gcvl_cap_style

x$1_gcvljoin_style

x$1_gcvl_fill_style

x$1_gcvl_fi ll_ru le

x$1_gcvl_arc_mode

x$1_gcvl_tile

x$1_gcvl_stipple

x$1_gcvl_ts_x_origin

x$1_gcvl_ts_y _origin

x$1_gcvl_font

x$1_gcvl_subwindow_mode

x$1_gcvl_graph ics_ exposures

x$1_gcvl_clip_x_origin

x$1_gcvl_clip_y _origin

x$1_gcvl_clip_mask

x$1_gcvl_ dash_ offset

l x$b_gcvl_dashes

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

5-3

Graphics Context Routines
5.1 The GC Values Data Structure

Table 5-2 Members of the GC Values Data Structure (VAX Binding)

Member Name

X$L_GCVL_FUNCTION

X$L_GCVL_PLANE_MASK

X$L_ GCVL_FOREGROUND

X$L_ GCV~BACKGROUND

5-4

Contents

Defines how the seNer computes pixel values when the client updates
a section of the screen. The following lists available functions:

Constant Name Description

X$C_GX_CLEAR

x$C_GX_AND

X$C_GX_AND_REVERSE

X$C_GX_COPY

X$C_GX_AND_INVERTED

X$C_GX_NOOP

X$C_GX_XOR

X$C_GX_OR

X$C_GX_NOR

X$C_GX_EQU IV

X$C_GX_INVERT

X$C_GX_OR_REVERSE

X$C_GX_COPY _INVERTED

X$C_GX_OR_INVERTED

X$C_GX_NAND

X$C_GX_SET

0

src AND dst

src AND NOT dst

src

(NOT src) AND dst

dst

src XOR dst

src OR dst

(NOT src) AND NOT dst

(NOT src) XOR dst

NOT dst

src OR NOT dst

NOT src

(NOT src) OR dst

(NOT src) OR NOT dst

The screen the client is updating is the destination (dst). The graphics
context the client uses to update the screen is the source (src).
X$L_GCVL_FUNCTION specifies how the seNer computes new
destination bits from the source (src) and the old bits of the destination
(dst).

The most common logical function is the default specified by the
constant x$c_gx_copy, which uses only relevant values in the specified
GC values structure to update the screen.

Specifies the planes on which the seNer performs the bitwise
computation of pixels, defined by X$L_GCVL_FUNCTION.

Because a monochrome display has only one plane, the plane mask
value is given in the least signficant bit of the longword. As planes are
added to the display hardware, they are defined in the more signficant
bits of the mask. The display routine ALL PLANES specifies that all
planes of the display are referred to simultaneously.

The seNer does not perform range checking on the plane mask. It
truncates values to the appropriate number of bits.

Specifies an index to a color map for foreground color.

Specifies an index to a color map for background color.

(continued on next page)

Graphics Context Routines
5.1 The GC Values Data Structure

Table 5-2 (Cont.) Members of the GC Values Data Structure (VAX Binding)

Member Name

X$L_GCVL_LINE_WIDTH

Contents

Defines the width of a line in pixels.

The server draws a line with a width of two or more pixels centered
on the path described in the graphics request and contained within a
bounding box. Unless otherwise specified by the join or cap style, the
bounding box of a line with endpoints [xl, yl], [x2, y2] and width w
is a rectangle with vertices at the following real coordinates:

[xl-w*sn/2, yl+w*cs/2], [xl+w*sn/2, yl-w*cs/2]
[x2-w*sn/2, y2+w*cs/2], [x2+w*sn/2, y2-w*cs/2]

In this example, sn is the sine of the angle of the line. The symbol cs
is the cosine of the angle of the line. A pixel is part of the line and is
drawn if the center of the pixel is fully inside the bounding box. If the
center of the pixel is exactly on the bounding box, the pixel is part of
the line if and only if the interior is immediately to its right (x increasing
direction). Pixels with centers on a horizontal edge are a special case
and are part of the line if and only if the interior is immediately below
the bounding box (y increasing direction).

Lines with zero line width are one pixel wide. The server draws them
using an unspecified, device-dependent algorithm that imposes the
following two constraints:

If the server draws the line unclipped from [xl, yl] to [x2, y2],
and if the server draws a second line from [xl + dx, yl + dy] to [
x2 + dx, y2 + dy], then point [x, y] is touched by drawing the first
line if and only if the point [x + dx, y + dy] is touched by drawing
the second line.

The effective set of points that compose a line cannot be affected
by clipping. That is, a point is touched in a clipped line if and only
if the point lies inside the clipping region and if the point would be
touched by the line when drawn unclipped.

A line more than one pixel wide drawn from [xl, yl] to [x2, y2]
always draws the same pixels as a line of the same width drawn from
[x2, y2] to [xl, yl], excluding cap and join styles.

In general, drawing a line whose line width is zero is faster than
drawing a line whose line width is one or more. However, because
the drawing algorithms for thin lines is different than those for wide
lines, thin lines may not look as good when mixed with wide lines.
If clients want precise and uniform results across all displays, they
should always use a line width of one or more. Note, however, that
specifying a line width of greater than zero decreases performance
substantially.

(continued on next page)

5-5

Graphics Context Routines
5.1 The GC Values Data Structure

Table 5-2 (Cont.) Members of the GC Values Data Structure (VAX Binding)

Member Name

X$L_GCVL_LINE_STYLE

X$L_GCVL_CAP_STYLE

5-6

Contents

Defines which sections of the line the server draws. The following lists
available line styles and the constants that specify them. Figure 5-2
illustrates the styles.

Constant Name

x$c_line_solid

x$c_line_double_dash

x$c_line_off_on_dash

Description

The full path of the line is drawn.

The full path of the line is drawn, but the
even dashes are filled differently from
the odd dashes, with cap butt style used
where even and odd dashes meet.

Only the even dashes are drawn. The
X$L_CAP _STYLE member applies to all
internal ends of dashes. Specifying the
constant, x$c_cap_not_last, is equivalent
to specifying x$c_cap_butt.

Defines how the server draws the endpoints of a path. The following
lists available cap styles and the constants that specify them.
Figure 5-3 illustrates the available cap styles.

Constant Name

x$c_cap_not_last

x$c_cap_butt

x$c_cap_round

x$c_cap_projecting

Description

Equivalent to specifying x$c_cap_butt,
except that the final endpoint is not
drawn if the line width is zero or one

Square at the endpoint (perpendicular to
the slope of the line) with no projection
beyond the endpoint

A circular arc with the diameter equal to
the line width, centered on the endpoint
(equivalent to specifying x$c_cap_butt
for a line width of zero or one)

Square at the end, but the path
continues beyond the endpoint for a
distance equal to half the width of the
line (equivalent to specifying
x$c_cap_butt for a line width of zero or
one)

(continued on next page)

Graphics Context Routines
5.1 The GC Values Data Structure

Table 5-2 (Cont.) Members of the GC Values Data Structure (VAX Binding)

Member Name

X$L_ GCVL_JOIN_STYLE

Contents

If a line has coincident endpoints (xl = x2, yl = y2), the cap style is
applied to both endpoints with the following results:

Line
Constant Name Width Description

x$c_cap_not_last Thin Device dependent, but the
desired effect is that nothing is
drawn

x$c_cap_butt Thin Device dependent, but the
desired effect is that a single
pixel is drawn

x$c_cap_butt Wide Nothing is drawn

x$c_cap_round Thin Device dependent, but the
desired effect is that a single
pixel is drawn

x$c_cap_round Wide The closed path is a circle,
centered at the endpoint, with the
diameter equal to the line width

x$c_cap_projecting Thin Device dependent, but the
desired effect is that a single
pixel is drawn

x$c_cap_projecting Wide The closed path is a square,
aligned with the coordinate axes,
centered at the endpoint with
sides equal to the line width

Defines how the server draws corners for wide lines. Available join
styles and the constants that specify them are as follows:

Constant Name

x$cjoin_mitre

x$cjoin_round

x$cjoin_bevel

Description

The outer edges of the two lines extend to
meet at an angle.

A circular arc with diameter equal to the line
width, centered at the join point.

Cap butt endpoint style, with the triangular
"notch" filled.

For a line with coincident endpoints (xl = x2, yl = y2), when the
join style is applied at one or both endpoints, the effect is as if the
line were removed from the overall path. However, if the total path
consists of (or is reduced to) a single point joined with itself, the effect
is the same as if the X$L_GCVL_CAP _STYLE were applied to both
endpoints. Figure 5-4 illustrates the styles.

(continued on next page)

5-7

Graphics Context Routines
5.1 The GC Values Data Structure

Table 5-2 (Cont.) Members of the GC Values Data Structure (VAX Binding)

Member Name

X$L_ GCVL_FI LL_ STYLE

X$L_GCVL_FILL_RULE

5-8

Contents

Specifies the contents of the source for line, text, and fill operations.
The following lists available fill styles for text and fill requests (DRAW
TEXT, DRAW TEXT 16, FILL RECTANGLE, FILL POLYGON, FILL
ARC). It also lists available styles applicable to solid lines and even
dashes resulting from line requests (LINE, SEGMENTS, RECTANGLE,
ARC):

Constant Name

x$c_fill_solid

x$c_fill_tiled

x$c_fill_opaque_stippled

x$c_fill_stippled

Description

Foreground

Tile

A tile with the same width and height
as stipple, but with background
everywhere stipple has a zero and
with foreground everywhere stipple
has a one

Foreground masked by stipple

The following lists available styles applicable to odd dashes resulting
from line requests:

Constant Name

x$c_fill_solid

x$c_fill_tiled

x$c_fill_opaque_stippled

x$c_fill_stippled

Description

Background

Tile

A tile with the same width and height
as stipple, but with background
everywhere stipple has a zero and
with foreground everywhere stipple
has a one

Background masked by stipple

Defines what pixels the server draws along a path when a polygon is
filled. The two available choices are x$c_even_odd_rule and
x$c_winding_rule. The x$c_even_odd_rule constant defines a point to
be inside a polygon if an infinite ray with the point as origin crosses
the path an odd number of times. If the point meets these conditions,
the server draws a corresponding pixel.

(continued on next page)

Graphics Context Routines
5.1 The GC Values Data Structure

Table 5-2 (Cont.) Members of the GC Values Data Structure (VAX Binding)

Member Name

X$L_ GCVL_ARC_MODE

X$L_ GCVL_ Tl LE

X$L_GCVL_STIPPLE

X$L_GCVL_ TS_X_ORIGIN

X$L_GCVL_ TS_ Y _ORIGIN

X$L_ GCVL_FONT

Contents

The x$c_winding_rule constant defines a point to be inside the
polygon if an infinite ray with the pixel as origin crosses an unequal
number of clockwise and counterclockwise directed path segments. A
clockwise directed path segment is one that crosses the ray from left
to right as observed from the pixel. A counterclockwise segment is
one that crosses the ray from right to left as observed from that point.
When a directed line segment coincides with a ray, choose a different
ray that is not coincident with a segment. If the point meets these
conditions, the server draws a corresponding pixel.

For both even odd rule and winding rule, a point is infinitely small, and
the path is an infinitely thin line. A pixel is inside the polygon if the
center point of the pixel is inside, and the center point is not on the
boundary. If the center point is on the boundary, the pixel is inside if
and only if the polygon interior is immediately to its right (x increasing
direction). Pixels with centers along a horizontal edge are a special/
case and are inside if and only if the polygon interior is immediately
below (y increasing direction). Figure 5-5 illustrates fill rules.

Controls how the server fills an arc. The available choices are
specified by the constants x$c_arc_pie_slice and x$c_arc_chord.
Figure 5-6 illustrates the two modes.

Specifies the pixmap the server uses for tiling operations. The pixmap
must have the same root and depth as the graphics context or an
error occurs. Clients can use any size pixmap for tiling, although
some sizes are faster than others.

Storing a pixmap in a graphics context might or might not result in a
copy being made. If the pixmap is later used as the destination for a
graphics request, the change might or might not be reflected in the
graphics context. If the pixmap is used simultaneously in a graphics
request both as a destination and as a tile, the results are not defined.

Specifies the pixmap the server uses for stipple operations. The
pixmap must have the same root as the graphics context and a depth
of one, or an error occurs. For stipple operations where the fill style
is specified as x$c_fill_stippled but not x$c_fill_opaque_stipple, the
stipple pattern is tiled in a single plane and acts as an additional clip
mask. Perform a bitwise AND operation with the clip mask. Clients
can use any size pixmap for stipple operations, although some sizes
are faster than others.

Defines the origin for tiling and stipple operations. Origins are relative
to the origin of whatever window or pixmap is specified in the graphics
request.

Defines the origin for tiling and stipple operations. Origins are relative
to the origin of whatever window or pixmap is specified in the graphics
request.

Specifies the font that the server uses for text operations.

(continued on next page)

5-9

Graphics Context Routines
5.1 The GC Values Data Structure

Table 5-2 (Cont.) Members of the GC Values Data Structure (VAX Binding)

Member Name

X$L_GCVL_SUBWINDOW_MODE

X$L_GCVL_GRAPHIC_EXPOSURES

X$L_GCVL_CLIP _X_ORIGIN

X$L_GCVL_CLIP _ Y _ORIGIN

X$L_GCVL_CLIP _MASK

X$L_GCVL_DASH_OFFSET

X$T _GCVL_DASHES

Contents

Specifies whether inferior windows clip superior windows. The
constant x$c_clip_by_children specifies that all viewable input-output
children clip both source and destination windows. The constant
x$c_include_inferiors specifies that inferiors clip neither source nor
destination windows. This results in drawing through subwindow
boundaries. The semantics of using the constant on a window with a
depth of one and with mapped inferiors of differing depth is undefined
by the core protocol.

Specifies whether the server informs the client when the contents of a
window region are lost.

Defines the x-coordinate of the clip origin. The clip origin specifies the
point within the clip region that is aligned with the drawable origin.

Defines the y-coordinate of the clip origin. The clip origin specifies the
point within the clip region that is aligned with the drawable origin.

Identifies the pixmap the server uses to restrict write operations to
the destination that is drawable. The pixmap must have a depth of
one and have the same root as the graphics context. The clip mask
clips only the destination that is drawable, not the source drawable.
Where a value of one appears in the mask, the corresponding pixel
in the destination drawable is drawn; where a value of zero occurs,
no pixel is drawn. Any pixel within the destination drawable that is not
represented within the clip mask pixmap is not drawn. When a client
specifies the value of clip mask as x$c_none, the server draws all
pixels.

Specifies the pixel within the dash length sequence, defined by
X$T _GCVL_DASHES, to start drawing a dashed line. For example, a
dash offset of zero starts a dashed line as the beginning of the dash
line sequence. A dash offset of five starts the line at the fifth pixel of
the line sequence.

Specifies the length, in number of pixels, of each dash. The value of
this member must be nonzero or an error occurs.

Figure 5-2 Line Styles

Solid

Double Dash

OnOffDash lBlll
ZK-0010A-GE

5-10

Figure 5-3 Cap Styles

Butt

f
Round

(

Projecting

I·
Cap Styles for Wide Lines

(Line Widths Greater Than 1)

Graphics Context Routines
5.1 The GC Values Data Structure

Butt

+
Not Last

' • •
Cap Styles for Thin Lines
(Line Widths of O and 1)

·I

ZK-0021 A-GE

The default values for the GC values data structure are listed in Table 5-3.
These values are used in the default graphics context.

5-11

Graphics Context Routines
5.1 The GC Values Data Structure

Figure 5-4 Join Styles

Miter

Round

Bevel

ZK-0013A-GE

5-12

Figure 5-5 Fill Rules

Even Odd

Winding

Direction
of Path

Segment

Figure 5-6 Arc Fill Options

Chord

Pie Slice

ZK-0008A-GE

Graphics Context Routines
5.1 The GC Values Data Structure

Direction of Ray

Direction of Ray

ZK-0071 A-GE

5-13

Graphics Context Routines
5.1 The GC Values Data Structure

5-14

Table 5-3 Default Values for the GC Values Data Structure

Member

X$L_ GCVL_FU NCTION

X$L_ GCVL_PLAN E_MASK

X$L_GCVL_FOREGROUND

X$L_GCVL_BACKGROUND

X$L_ GCVL_LINE_ WIDTH

X$L_GCVL_LINE_STYLE

X$L_GCVL_CAP_STYLE

X$L_GCVL_JOIN_STYLE

X$L_GCVL_FILL_STYLE

X$L_ GCVL_FI LL_RU LE

X$L_GCVL_ARC_MODE

X$L_GCVL_TILE

X$L_GCVL_STIPPLE

X$L_GCVL_ TS_X_ORIGIN

X$L_GCVL_ TS_ Y _ORIGIN

X$L_GCVL_FONT

X$L_GCVL_SUBWINDOW_MODE

X$L_GCVL_GRAPHICS_
EXPOSURES

X$L_GCVL_CLIP _X_ORIGIN

X$L_GCVL_CLIP _ Y _ORIGIN

X$L_GCVL_CLIP _MASK

X$L_ GCVL_DASH_ OFFSET

X$L_ GCVL_DASH_LIST

Default Value

X$CGX_COPY

All ones

0

0

x$c_line_solid

x$c_cap_butt

x$cjoin_mitre

x$c_fill_solid

x$c_even_odd

x$c_arc_pie_slice

Pixmap of unspecified size filled with
foreground pixel

Pixmap of unspecified size filled with ones

0

0

Can vary

x$C_clip_by_children

True

0

0

None

0

4 (the list [4,4])

The data structure for the MIT C binding is shown in Figure 5-7,
and information about members in the data structure is described in
Table 5-4.

Graphics Context Routines
5.1 The GC Values Data Structure

Figure 5-7 GC Values Data Structure (MIT C Binding)

typedef struct {
int function;
unsigned long plane_mask;
unsigned long foreground;
unsigned long background;
int line_width;
int line_style;
int cap_style;
int join_style;
int fill_style;
int fill_rule;
int arc_mode;
Pixmap tile;
Pixmap stipple;
int ts_x_origin;
int ts_y_origin;
Font font;
int subwindow_mode;
Bool graphics_exposures;
int clip_x_origin;
int clip_y_origin;
Pixmap clip mask;
int dash_offset;
char dashes;

XGCValues;

Table 5-4 Members of the GC Values Data Structure (MIT C Binding)

Member Name

function

Contents

Defines how the seNer computes pixel values when the client updates a section of
the screen. The following lists available functions:

Constant Name Description

GXclear 0

GXand src AND dst

GXandReverse src AND NOT dst

GXcopy src

GXandlnverted (NOT src) AND dst

GXnoop dst

GXxor src XOR dst

GXor src OR dst

GXnor (NOT src) AND NOT dst

GXequiv (NOT src) XOR dst

GXinvert NOT dst

(continued on next page)

5-15

Graphics Context Routines
5.1 The GC Values Data Structure

Table 5-4 (Cont.) Members of the GC Values Data Structure (MIT C Binding)

Member Name

plane_mask

foreground

background

line_width

5-16

Contents

Constant Name

GXorReverse

GXcopylnverted

GXorlnverted

GXnand

GXset

Description

src OR NOT dst

NOT src

(NOT src) OR dst

(NOT src) OR NOT dst

The screen the client is updating is the destination (dst). The graphics context the
client uses to update the screen is the source (src). The function member specifies
how the server computes new destination bits from the source (src) and the old bits
of the destination (dst).

The most common logical function is the default specified by the constant GXcopy,
which only uses relevant values in the specified GC VALUES structure to update the
screen.

Specifies the planes on which the server performs the bitwise computation of pixels,
defined by function.

Because a monochrome display has only one plane, the plane mask value is given in
the least significant bit of the longword. As planes are added to the display hardware,
they are defined in the more significant bits of the mask. The display routine ALL
PLANES specifies that all planes of the display are referred to simultaneously.

The server does not perform range checking on the plane mask. It truncates values
to the appropriate number of bits.

Specifies an index to a color map for foreground color.

Specifies an index to a color map for background color.

Defines the width of a line in pixels.

The server draws a line with a width of two or more pixels centered on the path
described in the graphics request and contained within a bounding box. Unless
otherwise specified by the join or cap style, the bounding box of a line with endpoints
[xl, yl], [x2, y2] and width w is a rectangle with vertices at the following real
coordinates:

[xl-w*sn/2, yl+w*cs/2], [xl+w*sn/2, yl-w*cs/2]
[x2-w* sn/2, y2+w*cs/2] , [x2+w* sn/2, y2-w*cs/2]

In this example, sn is the sine of the angle of the line. The symbol cs is the cosine of
the angle of the line. A pixel is part of the line and is drawn if the center of the pixel
is fully inside the bounding box. If the center of the pixel is exactly on the bounding
box, the pixel is part of the line if and only if the interior is immediately to its right
(x increasing direction). Pixels with centers on a horizontal edge are a special case
and are part of the line if and only if the interior is immediately below the bounding
box (y increasing direction).

(continued on next page)

Graphics Context Routines
5.1 The GC Values Data Structure

Table 5-4 (Cont.) Members of the GC Values Data Structure (MIT C Binding)

Member Name

line_style

Contents

Lines with zero line width are one pixel wide. The server draws them using an
unspecified, device-dependent algorithm that imposes the following two constraints:

If the server draws the line unclipped from [xl, yl) to [x2, y2], and if the server
draws a second line from [xl + dx, yl + dy] to [x2 + dx, y2 + dy], then point
[x, y] is touched by drawing the first line if and only if the point [x + dx, y + dy]
is touched by drawing the second line.

The effective set of points that compose a line cannot be affected by clipping.
That is, a point is touched in a clipped line if and only if the point lies inside
the clipping region and if the point would be touched by the line when drawn
unclipped.

A line more than one pixel wide drawn from [xl, yl] to [x2, y2] always draws the
same pixels as a line of the same width drawn from [x2, y2] to [xl, yl], excluding
cap and join styles.

In general, drawing a line whose line width is zero is faster than drawing a line whose
line width is one or more. However, because the drawing algorithms for thin lines is
different than those for wide lines, thin lines may not look as good when mixed with
wide lines. If clients want precise and uniform results across all displays, they should
always use a line width of one or more. Note, however, that specifying a line width of
greater than zero decreases performance substantially.

Defines which sections of the line the server draws. The following lists available line
styles and the constants that specify them:

Constant
Name Description

LineSolid The full path of the line is drawn

LineDoubleDash The full path of the line is drawn, but the even dashes are filled
differently than the odd dashes, with cap butt style used where
even and odd dashes meet

LineOffOnDash Only the even dashes are drawn. The cap_style member applies
to all internal ends of dashes. Specifying the constant CapNotlast
is equivalent to specifying CapButt.

Figure 5-2 illustrates the styles.

(continued on next page)

5-17

Graphics Context Routines
5.1 The GC Values Data Structure

Table 5-4 (Cont.) Members of the GC Values Data Structure (MIT C Binding)

Member Name

cap_style

5-18

Contents

Defines how the server draws the endpoints of a path. The following lists available
cap styles and the constants that specify them:

Constant
Name Description

CapNotlast Equivalent to CapButt, except that the final endpoint is not drawn if
the line width is zero or one

CapButt Square at the endpoint (perpendicular to the slope of the line) with
no projection beyond the endpoint

CapRound A circular arc with the diameter equal to the line width, centered on
the endpoint (equivalent to the value specified by CapButt for a line
width of zero or one)

CapProjecting Square at the end, but the path continues beyond the endpoint for
a distance equal to half the width of the line (equivalent to the value
specified by the constant CapButt for a line width of zero or one)

Figure 5-3 illustrates the butt, round, and projecting cap styles.

If a line has coincident endpoints (xl = x2, yl = y2), the cap style is applied to both
endpoints with the following results:

Constant Line
Name Width

CapNotLast Thin

Cap Butt Thin

Cap Butt Wide

Cap Round Thin

Cap Round Wide

Cap Projecting Thin

Cap Projecting Wide

Description

Device dependent, but the desired effect is that nothing
is drawn

Device dependent, but the desired effect is that a single
pixel is drawn

Nothing is drawn

Device dependent, but the desired effect is that a single
pixel is drawn

The closed path is a circle, centered at the endpoint, with
the diameter equal to the line width

Device dependent, but the desired effect is that a single
pixel is drawn

The closed path is a square, aligned with the coordinate
axes, centered at the endpoint with sides equal to the
line width

(continued on next page)

Graphics Context Routines
5.1 The GC Values Data Structure

Table 5-4 (Cont.) Members of the GC Values Data Structure (MIT C Binding)

Member Name

join_style

fill_ style

Contents

Defines how the server draws corners for wide lines. Available join styles and the
constants that specify them are as follows:

Constant
Name

Join Mitre

Join Round

Join Bevel

Description

The outer edges of the two lines extend to meet at an angle.

A circular arc with diameter equal to the line width, centered at the
join point.

Cap butt endpoint style, with the triangular "notch" filled.

Figure 5-4 illustrates the styles.

For a line with coincident endpoints (xl = x2, yl = y2), when the join style is applied
at one or both endpoints, the effect is as if the line were removed from the overall
path. However, if the total path consists of (or is reduced to) a single point joined
with itself, the effect is the same as if the cap style were applied to both endpoints.

Specifies the contents of the source for line, text, and fill operations. The following
lists available fill styles for text and fill requests (DRAW TEXT, DRAW TEXT 16, FILL
RECTANGLE, FILL POLYGON, FILL ARC). It also lists available styles applicable
to solid lines and even dashes resulting from line requests (LINE, SEGMENTS,
RECTANGLE, ARC):

Constant Name

Fill Solid

Fill Tiled

FillOpaqueStippled

Fi II Stippled

Description

Foreground

Tile

A tile with the same width and height as stipple, but
with background everywhere stipple has a zero and with
foreground everywhere stipple has a one

Foreground masked by stipple

The following lists available styles applicable to odd dashes resulting from line
requests:

Constant Name

FillSolid

FillTiled

FillOpaqueStippled

Fi II Stippled

Description

Background

Tile

A tile with the same width and height as stipple, but
with background everywhere stipple has a zero and with
foreground everywhere stipple has a one

Background masked by stipple

(continued on next page)

5-19

Graphics Context Routines
5.1 The GC Values Data Structure

Table 5-4 (Cont.) Members of the GC Values Data Structure (MIT C Binding)

Member Name

fill_rule

arc_mode

tile

stipple

ts_x_origin

5-20

Contents

Defines what pixels the server draws along a path when a polygon is filled. The two
available choices are EvenOddRule and WindingRule. The EvenOddRule constant
defines a point to be inside a polygon if an infinite ray with the point as origin crosses
the path an odd number of times. If the point meets these conditions, the server
draws a corresponding pixel.

The WindingRule constant defines a point to be inside the polygon if an infinite ray
with the pixel as origin crosses an unequal number of clockwise and counterclockwise
directed path segments. A clockwise directed path segment is one that crosses the
ray from left to right as observed from the pixel. A counterclockwise segment is one
that crosses the ray from right to left as observed from that point. When a directed
line segment coincides with a ray, choose a different ray that is not coincident with a
segment. If the point meets these conditions, the server draws a corresponding pixel.

For both even odd rule and winding rule, a point is infinitely small, and the path is an
infinitely thin line. A pixel is inside the polygon if the center point of the pixel is inside,
and the center point is not on the boundary. If the center point is on the boundary,
the pixel is inside if and only if the polygon interior is immediately to its right
(x increasing direction). Pixels with centers along a horizontal edge are a special
case and are inside if and only if the polygon interior is immediately below
(y increasing direction).

Figure 5-5 illustrates fill rules.

Controls how the server fills an arc. The available choices are the values specified
by the ArcPieSlice and ArcChord constants. Figure 5-6 illustrates the two modes.

Specifies the pixmap the server uses for tiling operations. The pixmap must have the
same root and depth as the graphics context or an error occurs. Clients can use any
size pixmap for tiling, although some sizes are faster than others.

Storing a pixmap in a graphics context might or might not result in a copy being
made. If the pixmap is used later as the destination for a graphics request, the
change might or might not be reflected in the graphics context. If the pixmap is used
simultaneously in a graphics request both as a destination and as a tile, the results
are not defined.

Specifies the pixmap the server uses for stipple operations. The pixmap must have
the same root as the graphics context and a depth of one, or an error occurs. For
stipple operations where the fill style is specified as the FillStippled constant but not
the FillOpaqueStipple constant, the stipple pattern is tiled in a single plane and acts
as an additional clip mask. Perform a bitwise AND operation with the clip mask.
Clients can use any size pixmap for stipple operations, although some sizes are
faster than others.

Storing a pixmap in a graphics context might or might not result in a copy being
made. If the pixmap is used later as the destination for a graphics request, the
change might or might not be reflected in the graphics context. If the pixmap is
used simultaneously in a graphics request both as a destination and as a stipple, the
results are not defined.

Defines the origin for tiling and stipple operations. Origins are relative to the origin of
whatever window or pixmap is specified in the graphics request.

(continued on next page)

Graphics Context Routines
5.1 The GC Values Data Structure

Table 5-4 (Cont.) Members of the GC Values Data Structure (MIT C Binding)

Member Name

ts_y_origin

font

subwindow_mode

graphic_ exposures

clip_x_origin

clip_y_origin

clip_mask

dash_ offset

dashes

Contents

Defines the origin for tiling and stipple operations. Origins are relative to the origin of
whatever window or pixmap is specified in the graphics request.

Specifies the font that the server uses for text operations.

Specifies whether inferior windows clip superior windows. The constant
ClipByChildren specifies that all viewable input-output children clip both source
and destination windows. The constant lncludelnferiors specifies that inferiors clip
neither source nor destination windows. This results in drawing through subwindow
boundaries. The semantics of using the constant on a window with a depth of one
and with mapped inferiors of differing depth is undefined by the core protocol.

Specifies whether the server informs the client when the contents of a window region
are lost.

Defines the x-coordinate of the clip origin. The clip origin specifies the point within
the clip region that is aligned with the drawable origin.

Defines the y-coordinate of the clip origin. The clip origin specifies the point within
the clip region that is aligned with the drawable origin.

Identifies the pixmap the server uses to restrict write operations to the destination
that is drawable. The pixmap must have a depth of one and have the same root as
the graphics context. The clip mask clips only the destination that is drawable, not
the source drawable. Where a value of one appears in the mask, the corresponding
pixel in the destination drawable is drawn; where a value of zero occurs, no pixel is
drawn. Any pixel within the destination drawable that is not represented within the
clip mask pixmap is not drawn. When a client specifies the value of clip mask as
None, the server draws all pixels.

Specifies the pixel within the dash length sequence, defined by the dashes member,
to start drawing a dashed line. For example, a dash offset of zero starts a dashed
line as the beginning of the dash line sequence. A dash offset of five starts the line
at the fifth pixel of the line sequence. Figure 5-9 illustrated dashed offsets.

Specifies the length, in number of pixels, of each dash. The value of this member
must be nonzero or an error occurs.

The default values for the GC values data structure are listed in Table 5-5.
These values are used in the default graphics context.

Table 5-5 Default Values for the GC Values Data Structure

Member Default Value

function GXcopy

plane_mask All ones

foreground 0

background 1

line_width 0

line_style Solid

(continued on next page)

5-21

Graphics Context Routines
5.1 The GC Values Data Structure

5.2 GC Mask

5-22

Table 5-5 (Cont.) Default Values for the GC Values Data Structure

Member

cap_style

join_style

fill_ style

fill_rule

arc_mode

Default Value

Butt

Miter

Solid

Even Odd

PieSlice

tile

stipple

Pixmap of unspecified size filled with foreground pixel

Pixmap of unspecified size filled with ones

ts_x_origin

ts_y_origin

font

subwindow_mode

graphics_exposures

clip_x_origin

clip_y _origin

clip_mask

dash_offset

dash_list

0

0

Can vary

ClipByChildren

True

0

0

None

0

4 (the list [4,4])

Table 5-6 lists the predefined values for the graphics context bit mask and
their meaning.

Table 5-6 GC Mask Bits

VAX Predefined Bit Value

X$M_GC_FUNCTION

X$M_GC_PLANE_MASK

X$M_GC_FOREGROUND

X$M_GC_BACKGROUND

X$M_GC_LINE_WIDTH

C Predefined Bit
Value

GCFunction

GCPlaneMask

GCForeground

GCBackground

GCLineWidth

Meaning when Set

Change the function member
(default is GXCopy)

Change the plane mask
member (default is all ones)

Change the foreground
member (default is 0)

Change the background
member (default is 1)

Change the line width
member (default is 0)

(continued on next page)

Graphics Context Routines
5.2 GC Mask

Table 5-6 (Cont.) GC Mask Bits

C Predefined Bit
VAX Predefined Bit Value Value Meaning when Set

X$M_GC_LINE_STYLE GCLineStyle Change the line style
member (default is
LineSolid)

X$M_GC_CAP_STYLE GCCapStyle Change the cap, endpoint,
style member (default is
Cap Butt)

X$M_GC_JOIN_STYLE GCJoinStyle Change the join style
member (default is
Join Miter)

X$M_ GC _FILL_STYLE GCFillStyle Change the fill style member
(default is FillSolid)

X$M_GC_FILL_RULE GCFillRule Change the fill rule member
(default is EvenOddRule)

X$M_GC..:...ARC_MODE GCArcMode Change the arc fill mode
(default is ArcPieSlice)

X$M_GC_ TILE GCTile Change the tile pixmap
identifier (default is a pixmap
of unspecified size filled with
foreground pixel)

X$M_GC_STIPPLE GCStipple Change the stipple pixmap
identifier (default is a pixmap
of unspecified size filled with
ones)

X$M_GC_TILE_STIP _X_ GCTileStipXOrigin Change the x-coordinate for
ORIGIN a tile/stipple origin (default

is 0)

X$M_TILE_STIP _ Y_ GCTileStip YOrigin Change the y-coordinate for
ORGIGN a tile/stipple origin (default

is 0)

X$M_GC_FONT GCFont Change the font identifier

X$M_GC_SUBWINDOW_ GCSubwindowMode Change the subwindow
MODE mode member (default is

ClipByChildren)

X$M_GC_GRAPHICS_ GCGraphicsExposures Change the graphics
EXPOSURE exposures flag (default

is True)

X$M_GC_CLIP _X_ORIGIN GCClipXOrigin Change the x-coordinate for
a clip origin (default is 0)

(continued on next page)

5-23

Graphics Context Routines
5.2 GC Mask

Table 5-6 (Cont.) GC Mask Bits

VAX Predefined Bit Value

X$M_GC_CLIP _ Y _ORIGIN

X$M_GC_CLIP _MASK

X$M_GC_DASH_OFFSET

X$M_GC_DASH_LIST

5.3 Graphics Context Routines

C Predefined Bit
Value

GCClip YOrigin

GCClipMask

GCDashOffset

GCDashlist

Meaning when Set

Change the y-coordinate for
a clip origin (default is 0)

Change clip mask pixmap
identifier (default is none)

Change the dash offset
member (default is 0)

Change the dash list
member (default is 4)

The following pages describe the Xlib graphics context routines.

5-24

CHANGE GC

VAX FORMAT

argument
information

l\l!JT C FORMAT

argument
information

ARGUMENTS

Graphics Context Routines
CHANGE GC

Changes any attribute by changing the values in the GC values data structure.

X$CHANGE_GC
(display, gc_id, gc_mask, values_struc)

Argument Usage Data Type Access

display identifier uns longword read

gc_id identifier uns longword read

gc_mask mask_longword uns longword read

values_struc record x$gc_values read

XChangeGC
(display, gc_id, gc_mask, values_struc)

XChangeGC(display, gc id, gc mask, values_struc)
Display *display; -
GC gc_id;
unsigned long gc_mask;
XGCValues *values_struc;

display

Mechanism

reference

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context to be changed. The graphics context
identifier was originally returned by DEFAULT GC or CREATE GC.

gc_mask
A bit mask that specifies the members in the graphics context to be
changed. A bitwise logical OR operation of the members sets the mask.

Table 5-6 lists the predefined values and the description for the gc_mask
argument.

values_struc
The GC values data structure that contains the new values. The new
values specified in gc_mask will be copied into the GC values data
structure specified by gc_id.

5-25

Graphics Context Routines
CHANGE GC

DESCRIPTION

XERRORS

5-26

CHANGE GC uses the mask to identify the values in the graphics context
to be changed. You identify each member you want to change in that
mask, then provide the new values for those members in the GC values
data structure passed in values_struc.

If the clip mask member is changed by this routine, any previous SET
CLIP RECTANGLES routine request for the same graphics context is
overridden by the new clip mask. If the dash offset or dash list members
are changed by this routine, any previous SET DASHES request for the
same graphics context is overridden.

For more information on using the GC values data structure and an
illustration of this structure, refer to Section 5.1.

VAX c
X$C_BAD_ALLOC BadAlloc

X$C _BAD _FONT Bad Font

X$C_BAD_GC BadGC

X$C_BAD_MATCH Bad Match

X$C_BAD_PIXMAP BadPixmap

X$C_BAD_ VALUE BadValue

Description

The server did not allocate the requested
resource for any cause.

A value that you specified for a font argument
does not name a defined font (or, in some
cases, graphics context).

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Possible causes are as follows:

In a graphics request, the root and depth
of the graphics context do not match
those of the drawable.

An input-only window is used as a
drawable.
One argument or pair of arguments has
the correct type and range but fails to
match in some other way required by
the request.

An input-only window lacks this attribute.

A value that you specified for a pixmap
argument does not name a defined pixmap.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument,
the full range defined by the argument's type
is accepted. Any argument defined as a set
of alternatives can generate this error.

COPY GC

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Graphics Context Routines
COPY GC

Copies the graphics context values from one graphics context data structure
to another GC values data structure.

X$COPY_GC
(display, src_gc_id, gc_mask, dst_gc_id)

Argument Usage Data Type Access

display identifier uns longword read

src_gc_id identifier uns longword read

gc_mask mask_longword uns longword read

dst_gc_id identifier uns longword read

XCopyGC
(display, src_gc_id, gc_mask, dst_gc_id)

XCopyGC(display, src gc id, gc mask, dst_gc_id)
Display *display;- -
GC src_gc_id, dst_gc_id;
unsigned long gc_mask;

display

Mechanism

reference

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

src_gc_id
The identifier of the source graphics context to be copied. The source
GC values data structure contains the values that will be copied. This
identifier was originally returned by DEFAULT GC or CREATE GC.

gc_mask
The bit mask that specifies the members that will be copied from the
source graphics context to the destination graphics context. Use a bitwise
OR operation of the predefined values to set the bit mask, or use the mask
structure.

Table 5-6 lists the predefined values and descriptions for the gc_mask.

5-27

Graphi-cs Context Routines
COPY GC

DESCRIPTION

XERRORS

5-28

dst_gc_id
The identifier of the destination graphics context that the values from
the source graphics context are copied to. Only those values specified
in the gc_mask are changed. This identifier was originally returned by
DEFAULT GC or CREATE GC.

COPY GC copies specific values from one graphics context to another.
The only values copied are those specified in the gc_mask. The source
graphics context and the destination graphics context must be of the same
root and depth.

The graphics context is an identifier for an internal
structure/representation and this routine must be used to copy it from
one variable into others.

VAX c
X$C_BAD_ALLOC BadAlloc

X$C_BAD_GC BadGC

X$C_BAD_MATCH Bad Match

Description

The seNer did not allocate the requested
resource for any cause.

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Possible causes are as follows:

In a graphics request, the root and depth
of the graphics context do not match
those of the drawable.

An input-only window is used as a
drawable.

One argument or pair of arguments has
the correct type and range but fails to
match in some other way required by
the request.

An input-only window lacks this attribute.

CREATE GC

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Graphics Context Routines
CREATE GC

Creates a new graphics context for a specific window. Unless specified, the
members of the graphics context are the default values.

gc_id_return = X$CREATE_GC
(display, drawable_id, gc_mask, values_struc)

Argument Usage Data Type Access Mechanism

gc_id_return identifier uns longword write value

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_mask mask_longword uns longword read reference

values_struc record x$gc_values read reference

gc_id_return = XCreateGC
(display, drawable_id, gc_mask, values_struc)

GC XCreateGC(display, drawable_id, gc_mask, values_struc)
Display *display;
Drawable drawable_id;
unsigned long gc_mask;
XGCValues *values_struc;

gc_id_return
The identifier of the new graphics context is returned.

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the window or pixmap (drawable) to create the new
graphics context for.

5-29

Graphics Context Routines
CREATE GC

DESCRIPTION

XERRORS

5-30

gc_mask
The bit mask that specifies the values within the GC values data structure
that are different from the default values. The values that are different
from the default values are specified in values_struc. Do a bitwise OR
operation with the predefined values to set the mask.

Table 5-6 lists the predefined values and descriptions for the gc_mask.

values struc
The GC values data structure that specifies nondefault values for the new
graphics context.

For more information about this data structure, see the Section 5.1.

CREATE GC creates a new graphic context for use with a specified pixmap
or window (drawable). It returns an identifier for the new graphics
context. Use the identifier to reference the graphics context in any
subsequent routines.

If you need to use nondefault values, use this routine. To specify a
nondefault value, set the appropriate bit in gc_mask. Then, specify
the value you want in the appropriate member in values_struc. If you do
not set the bit, the value is not changed.

Once created, you can change graphic context values with the CHANGE
GC or individual SET routines. You can also copy the values from one
graphics context to another one using the COPY GC routine.

You can use a default graphics context if the default values are valid
for your program. Use the DEFAULT GC to return the identifier of the
default graphics context. The default values are listed in Section 5.1.

When you are done with the graphics context, be sure to call FREE GC to
free the storage associated with the graphics context.

VAX C

X$C_BAD_ALLOC BadAlloc

X$C_BAD_DRAWABLE BadDrawable

X$C_BAD_FONT Bad Font

Description

The server did not allocate the requested
resource for any cause.

A value that you specified for a drawable
argument does not name a defined
window or pixmap.

A value that you specified for a font
argument does not name a defined font
(or, in some cases, graphics context).

VAX c

X$C_BAD_MATCH Bad Match

X$C_BAD_PIXMAP Bad Pixmap

Graphics Context Routines
CREATE GC

Description

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.

An input-only window is used as a
drawable.

One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.

An input-only window lacks this
attribute.

A value that you specified for a pixmap
argument does not name a defined
pixmap.

5-31

Graphics Context Routines
FREE GC

FREE GC

Frees a specified graphics context.

VAX FORMAT X$FREE_GC (display, gc_id)

argument
information Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

gc_id identifier uns longword read reference

MIT C FORMAT XFreeGC (display, gc_id)

argument
information

ARGUMENTS

XFreeGC(display, gc_id)
Display *display;
GC gc_id;

display
The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context to be freed. This must be an
identifier that was originally returned by CREATE GC or COPY GC; it
cannot be the default graphics context identifier.

DESCRIPTION FREE GC destroys a specified graphics context, and frees the storage
associated with the graphics context as well.

XERRORS

5-32

You cannot free the default GC values data structure; you can free only
those created with CREATE GC or COPY GC. Therefore, you cannot
specify the identifier of the default graphics context in gc_id.

VAX c
X$C_BAD_GC BadGC

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Graphics Context Routines
GCONTEXT FROM GC

GCONTEXT FROM GC

VAX FORMAT

argument
information

Obtains the graphics context resource identifier for a specified graphics
context.

gc_resource_id_return = X$CREATE_GC (gc_id)

Argument

gc_resource_id_return

gc_id_return

Usage Data Type Access Mechanism

identifier uns longword write

identifier uns longword read

value

reference

MIT C FORMAT gc_resource_id_return = XCreateGC (gc_id)

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

GContext XGContextFromGC(gc_id)
GC gc_id;

gc_resource_id_return
The graphics context resource identifier for the specified graphics context.

gc_id
The graphics context for which you want to obtain the resource identifier.

GCONTEXT FROM GC obtains the graphics context resource identifier for
a specified graphics context.

5-33

Graphics Context Routines
QUERY BEST SIZE

QUERY BEST SIZE

Obtains the optimal size for improved server performance for the cursor, the
tile pattern, or the stipple pattern.

VAX FORMAT status_return = X$QUERY_BEST_SIZE

argument
information

(display, class, drawable_id, width, height,
width_return, heighLreturn)

Argument Usage Data Type Access

status_return longword longword write

display identifier uns longword read

class longword longword read

drawable_id identifier uns longword read

width uns longword uns longword read

height uns longword uns longword read

width_return uns longword uns longword write

height_return uns longword uns longword write

Mechanism

value

reference

reference

reference

reference

reference

reference

reference

MIT C FORMAT status_return = XQueryBestSize

argument
information

RETURNS

5-34

(display, class, drawable_id, width, height,
width_return, heighLreturn)

Status XQueryBestSize(display, class, drawable_id, width, height,
width return, height return)

Display *display; - -
int class;
Drawable drawable id;
unsigned int width, height;
unsigned int *width_return, *height_return;

status return
Specifies whether the routine completed successfully.

Conly

This argument returns 1 if the routine completes successfully, and zero if
it does not complete successfully.

ARGUMENTS

VAX only

Graphics Context Routines
QUERY BEST SIZE

This argument returns one of the following values.

Value

X$_ERRORREPLY

SS$_NORMAL

display

Description

Error received from the server.

Success.

The display information originally returned by OPEN DISPLAY.

class
The item to determine the best size for. The predefined values for class
are as follows:

VAX

X$C_ TILE_SHAPE

X$C_STIPPLE_
SHAPE

X$C_CURSOR_
SHAPE

c
TileShape

StippleShape

CursorShape

Description

Determine the best size for the tile pattern.

Determine the best size for the stipple
pattern.

Determine the best size for the cursor.

Other values specified in this argument are not valid.

drawable_id
The identifier of the drawable (window or pixmap) associated with the
item to determine the best size for. The drawable_id argument cannot
refer to an input-only window for a tile or a stipple, otherwise the routine
cannot complete successfully.

width
The width, in pixels, of the item to determine the best size for. The width
and height determine the desired area of the tile, stipple, or cursor.

height
The height, in pixels, of the item to determine the best size for. The height
and width determine the desired area of the tile, stipple, or cursor.

width return
A pointer to the optimal width, in pixels, of the item returned by the
server. The width and height determine the best size closest to the area
specified for the tile, stipple, or cursor that maximizes server performance.

height_ return
A pointer to the optimal height, in pixels, of the item returned by the
server. The width and height determine the best size that is closest to
the area specified for the tile, stipple, or cursor that maximizes server
performance.

5-35

Graphics Context Routines
QUERY BEST SIZE

DESCRIPTION

XERRORS

5-36

QUERY BEST SIZE obtains the optimal size for a tile, stipple, or cursor
pattern that maximizes server performance. For a tile and stipple, the
best size is the size that can be tiled or stippled in the least amount of
time. For a cursor, the best size is the largest cursor that can be fully
displayed.

You specify the desired size of the tile, stipple, or cursor in the width and
height arguments. The server returns the best size that is closest to the
size you specified for the item in the width_return and height_return
arguments.

You can also use the QUERY BEST TILE, QUERY BEST STIPPLE and
QUERY BEST CURSOR routines to determine the best sizes for these
items.

VAX C

X$C_BAD_DRAWABLE BadDrawable

X$C_BAD_MATCH BadMatch

X$C_BAD_VALUE BadValue

Description

A value that you specified for a drawable
argument does not name a defined
window or pixmap.

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.

An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

Graphics Context Routines
QUERY BEST STIPPLE

QUERY BEST STIPPLE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

Obtains the optimal size for improved server performance for a stipple pattern.

status_return = X$QUERY _BEST _STIPPLE
(display, drawable_id, width, height, width_return,
height_return)

Argument Usage Data Type Access Mechanism

status_return longword longword write value

display identifier uns longword read reference

drawable_id identifier uns longword read reference

width uns longword uns longword read reference

height uns longword uns longword read reference

width_return uns longword uns longword write reference

height_return uns longword uns longword write reference

status_return = XQueryBestStipple
(display, drawable_id, width, height, width_return,
height_return)

Status XQueryBestStipple(display, drawable_id, width, height,
width_return, height_return)

Display *display;
Drawable drawable_id;
unsigned int width, height;
unsigned int *width_return, *height_return;

status return
Specifies whether the routine completed successfully.

Conly

This argument returns 1 if the routine completes successfully, and zero if
it does not complete successfully.

5-37

Graphics Context Routines
QUERY BEST STIPPLE

ARGUMENTS

VAX only

This argument returns one of the following values.

Value

X$_ERRORREPL Y

SS$_NORMAL

display

Description

Error received from the server.

Success.

The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the drawable (window or pixmap) associated with the
stipple pattern. The drawable refers to the screen and possibly the window
class and depth that the stipple pattern will be used on. The
drawable_id argument cannot refer to an input-only window, otherwise
the routine cannot complete successfully.

width
The width, in pixels, of the stipple pattern to determine the best size for.
The width and height determine the desired area of the stipple.

height
The height, in pixels, of the stipple pattern to determine the best size for.
The lieight and width determine the desired area of the stipple.

width return
A pointer to the optimal width, in pixels, of the stipple returned by the
server. The width and height determine the best size that is closest to the
size specified for the stipple that maximizes server performance.

height_ return
A pointer to the optimal height, in pixels, of the stipple returned by the
server. The width and height determine the best size that is closest to the
size specified for the stipple that maximizes server performance.

DESCRIPTION QUERY BEST STIPPLE obtains the optimal size for a stipple pattern
that maximizes server performance. The best size is the size that can be
stippled in the least amount of time.

5-38

You specify the desired size of the stipple in the width and height
arguments. The server returns the best size that is closest to the size
specified in the width_return and height_return arguments.

You can also use the QUERY BEST SIZE routine to determine the best
size for a stipple pattern.

XERRORS

Graphics Context Routines
QUERY BEST STIPPLE

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

5-39

Graphics Context Routines
QUERY BEST TILE

QUERY BEST TILE

Obtains the optimal size for improved server performance for a tile pattern.

VAX FORMAT status_return = X$QUERY_BEST_TILE

argument
information

(display, drawable_id, width, height, width_return,
height_ return)

Argument Usage Data Type Access Mechanism

status_return longword longword write value

display identifier uns longword read reference

drawable_id identifier uns longword read reference

width uns longword uns longword read reference

height uns longword uns longword read reference

width_return uns longword uns longword write reference

height_return uns longword uns longword read reference

MIT C FORMAT status_return = XQueryBestTile

argument
information

RETURNS

5-40

(display, drawable_id, width, height, width_return,
height_return)

Status XQueryBestTile(display, drawable_id, width, height,
width return, height return)

Display *display; - -
Drawable drawable_id;
unsigned int width, height;
unsigned int *width_return, *height_return;

status return
Specifies whether the routine completed successfully.

VAX only

This argument returns one of the following values:

ARGUMENTS

DESCRIPTION

Graphics Context Routines
QUERY BEST TILE

Value

X$_ERRORREPLY

SS$_NORMAL

Conly

Description

Error received from the server.

Success.

This argument returns 1 if the routine completes successfully, and zero if
it does not complete successfully.

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the drawable (window or pixmap) associated with the tile
pattern. The drawable refers to the screen and possibly the window class
and depth that the tile pattern will be used on. The drawable_id cannot
refer to an input-only window, otherwise the routine cannot complete
successfully.

width
The width, in pixels, of the tile pattern to determine the best size for. The
width and height determine the desired area of the tile.

height
The height, in pixels, of the tile pattern to determine the best size for. The
height and width determine the desired area of the tile.

width return
A pointer to the optimal width, in pixels, of the tile returned by the server.
The width and height determine the best size that is closest to the size
specified for the tile that maximizes server performance.

height_ return
A pointer to the optimal height, in pixels, of the tile returned by the server.
The width and height determine the best size that is closest to the size
specified for the tile that maximizes server performance.

QUERY BEST TILE obtains the optimal size for a tile pattern that
maximizes server performance. The best size is the size that can be
tiled in the least amount of time.

You specify the desired size of the tile in the width and height
arguments. The server returns the best size, which is closest to the
size specified, in the width_return and height_return arguments.

You can also use the QUERY BEST SIZE routine to determine the best
size for a tile pattern.

5-41

Graphics Context Routines
QUERY BEST TILE

XERRORS

5-42

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Graphics Context Routines
SET ARC MODE

SET ARC MODE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Sets the arc mode to the value specified.

X$SET_ARC_MODE
(display, gc_id, arc_mode)

Argument Usage Data Type

display identifier uns longword

gc_id identifier uns longword

arc_mode longword longword

XSetArcMode
(display, gc_id, arc_mode)

XSetArcMode(display, gc id, arc_mode)
Display *display;-
GC gc_id;
int arc_mode;

display

Access Mechanism

read reference

read reference

read reference

The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the arc mode member will
be changed. The graphics context identifier was originally returned by
DEFAULT GC or CREATE GC.

arc mode
Specifies how an arc will be filled in a subsequent graphics request. The
predefined values for arc_mode are as follows:

VAX

X$C_ARC_CHORD

X$C _ARC_PIE_SLICE

c
ArcChord

ArcPieSlice

Description

Only the chord area of the arc is filled.

The triangular area defined by the arc
center and the arc endpoints is filled.

Other values specified in this argument are not valid.

5-43

Graphics Context Routines
SET ARC MODE

DESCRIPTION

XERRORS

5-44

SET ARC MODE changes the value for the arc mode member in the
graphics context data structure. The graphics context identifier was
originally returned by DEFAULT GC or CREATE GC.

The arc mode specifies which portion of an arc to draw: either a pie slice
or a chord. Refer to Figure 5-8 for an illustration of the arc fill options.

Figure 5-8 Arc Fill Options

Chord

Pie Slice

ZK-0008A-GE

You can also use CHANGE GC to change the arc mode.

VAX C

X$C_BAD_GC BadGC

X$C_BAD_VALUE BadValue

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument, the
full range defined by the argument's type is
accepted. Any argument defined as a set of
alternatives can generate this error.

Graphics Context Routines
SET BACKGROUND

SET BACKGROUND

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Sets the background color index to the value specified.

X$SET_BACKGROUND
(display, gc_id, background)

Argument Usage Data Type

display identifier uns longword

gc_id identifier uns longword

background uns longword uns longword

XSetBackground
(display, gc_id, background)

XSetBackground(display, gc id, background)
Display *display; -
GC gc_id;
unsigned long background;

display

Access

read

read

read

Mechanism

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the background member will
be changed. The graphics context identifier was originally returned by
DEFAULT GC or CREATE GC.

background
The new value of the background member. The background value is a color
index to a color map containing the color definition for the background.

DESCRIPTION SET BACKGROUND changes the value for the background member in the
GC values data structure. The graphics context identifier was originally
returned by DEFAULT GC or CREATE GC.

The background member value is the color index to a color map containing
the color definition for the background. The color index you specify in
background must have been returned by one of the color routines
(ALLOC COLOR CELLS, ALLOC COLOR PLANES, ALLOC COLOR,
or ALLOC NAMED COLOR) or by one of the display information routines

5-45

Graphics Context Routines
SET BACKGROUND

XERRORS

5-46

(BLACK PIXEL or WHITE PIXEL). For more information on working with
colors, see Chapter 12.

You can also use SET STATE or CHANGE GC to change the background.
When you use SET STATE, you must also change the foreground, function,
and plane mask members.

VAX c

X$C_BAD_GC BadGC

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Graphics Context Routines
SET CLIP MASK

SET CLIP MASK

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Sets the clip mask of a graphics context to the specified pixmap.

X$SET_CLIP _MASK
(display, gc_id, pixmap_id)

Argument Usage Data Type

display identifier uns longword

gc_id identifier uns longword

pixmap_id identifier uns longword

XSetClipMask
(display, gc_id, pixmap_id)

XSetClipMask(display, gc id, pixmap_id)
Display *display; -
GC gc_id;
Pixmap pixmap_id;

display

Access Mechanism

read reference

read reference

read reference

The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the clip mask will be changed.
This identifier was originally returned by CREATE PIXMAP.

pixmap_id
The identifier of the pixmap containing the new clip mask.

DESCRIPTION SET CLIP MASK sets the clip mask of a graphics context to the specified
pixmap. Use a clip mask when you want to clip a nonrectangular area.
The area clipped out is represented by zeros; the area maintained is
represented by ones.

If you specify None, all pixels are drawn.

After you identify a pixmap as a clip mask, you should not write into that
pixmap. Otherwise, the results are undefined.

5-47

Graphics Context Routines
SET CLIP MASK

When you want to clip a rectangular area, use SET CLIP RECTANGLES.
You can also change the clip mask with CHANGE GC.

XERRORS
VAX C

X$C_BAD_GC BadGC

X$C_BAD_MATCH BadMatch

X$C_BAD_VALUE BadValue

5-48

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Possible causes are as follows:

In a graphics request, the root and depth
of the graphics context do not match
those of the drawable.

An input-only window is used as a
drawable.
One argument or pair of arguments has
the correct type and range but fails to
match in some other way required by the
request.
An input-only window lacks this attribute.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument, the
full range defined by the argument's type is
accepted. Any argument defined as a set of
alternatives can generate this error.

Graphics Context Routines
SET CLIP ORIGIN

SET CLIP ORIGIN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Changes the clip origin members in the specified graphics context.

X$SET_CLIP _ORIGIN
(display, gc_id, clip_x_coord, clip_y_coord)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

gc_id identifier uns longword read reference

clip_x_coord longword longword read reference

clip_y_coord longword longword read reference

XSetClipOrigin
(display, gc_id, clip_x_coord, clip_y_coord)

XSetClipOrigin(display, gc_id, clip_x_coord, clip_y_coord)
Display *display;
GC gc_id;
int clip_x_coord, clip_y_coord;

display
The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where clip origin coordinates will
be changed. The graphics context identifier was originally returned by
DEFAULT GC or CREATE GC.

clip_x_coord
The new x-coordinate of the clip origin. The default value is 0.

clip_y_coord
The new y-coordinate of the clip origin. The default value is 0.

5-49

Graphics Context Routines
SET CLIP ORIGIN

DESCRIPTION SET CLIP ORIGIN changes the x- and y-coorclinate values for the clip
origin. The clip origin is aligned with the origin of the window or pixmap
(drawable) involved in the clip operation. The graphics context identifier
was originally returned by DEFAULT GC or CREATE GC.

XERRORS

5-50

You can also change the clip origin members with CHANGE GC.

VAX c
X$C_BAD_GC BadGC

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Graphics Context Routines
SET CLIP RECTANGLES

SET CLIP RECTANGLES

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Changes the clip origin members in the specified graphics context and
specifies rectangular clip areas.

X$SET _CLIP _RECTANGLES
(display, gc_id, clip_x_coord, clip_y_coord, rectangles,
num_rectangles, ordering)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

gc_id identifier uns longword read reference

clip_x_coord longword longword read reference

clip_y_coord longword longword read reference

rectangles record x$rectangle read reference

num_rectangles longword longword read reference

ordering longword longword read reference

XSetClipRectangles
(display, gc_id, clip_x_coord, clip_y_coora, rectangles,
num_rectangles, ordering)

XSetClipRectangles (display, gc id, clip x coord, clip y coord,
rectangles,-num rectangles, ordering)

Display *display; -
GC gc_id;
int clip_x_coord, clip_y_coord;
XRectangle rectangles[];
int num_rectangles;
int ordering;

display
The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the clip origin will be changed.
The graphics context identifier was originally returned by DEFAULT GC
or CREATE GC.

5-51

Graphics Context Routines
SET CLIP RECTANGLES

5-52

clip_x_coord
The new x-coordinate of the clip origin. The default value is 0. The x- and
y-coordinates define the clip origin.

clip_y_coord
The new y-coordinate of the clip origin. The default value is 0. The x- and
y-coordinates define the clip origin.

rectangles
A pointer to an array of rectangle data structures where each element
defines a clip area. Within each rectangle data structure, you specify the
rectangle size (width and height) and position of the upper left corner
(x- and y-coordinates). The x- and y-coordinates are interpreted relative to
the clip origin. The array length is specified by num_rectangles.

num _rectangles
The number of rectangles to be specified in the graphics context. This
value defines the length of the array in rectangles.

ordering
Specifies the ordering relationship of the clip rectangles.

The predefined values for ordering are as follows:

VAX

X$C_UN_SORTED

X$C_ Y _SORTED

X$C_ Y _X_SORTED

X$C_ Y _X_BANDED

c

Unsorted

YSorted

YXSorted

YXBanded

Description

Rectangles are in arbitrary order.

Rectangles are nondecreasing in the
y-coordinate of their origin.

Rectangles are nondecreasing in the
y-coordinate of their origin. For
rectangles with an equal y-coordinate,
they are nondecreasing in the x
coordinate of their origin.

Rectangles are nondecreasing in the
y-coordinate of their origin for every
possible y scan line, all rectangles that
include that scan line have an identical
y-coordi nate.

Other values specified in this argument are not valid.

Server performance improves if the rectangles are ordered (UnSorted
would result in the lowest performance, then YSorted, then YXSorted,
with YXBanded having the best performance). However, if the rectangles
are not in the same order as specified in this argument, the graphics
results will be undefined.

DESCRIPTION

XERRORS

Graphics Context Routines
SET CLIP RECTANGLES

SET CLIP RECTANGLES changes the clip origin in the specified graphics
context. It also specifies the size and position of rectangular clip areas.

The output is clipped to remain contained within the rectangles. The
clip origin is aligned with the origin of the destination drawable that is
specified in a graphics request. The coordinates are interpreted relative to
the clip origin. The rectangles should not intersect, or graphics results will
be undefined.

If you know the correct order of the rectangles, you can specify the order
in ordering to improve server performance. If you specify an incorrect
order, the graphics results are undefined.

If you want to effectively disallow any output, the list of rectangles in
rectangles can be empty.

If you want to clip a nonrectangular area, use a clip mask. Use the
SET CLIP MASK routine to specify the pixmap in the graphics context
containing the clip mask.

You cannot use CHANGE GC to specify clip rectangles, although you can
use CHANGE GC to specify the clip origin.

VAX C

X$C_BAD_ALLOC BadAlloc

X$C_BAD_GC BadGC

X$C_BAD_ VALUE BadValue

Description

The server did not allocate the requested
resource for any cause.

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument, the
full range defined by the argument's type is
accepted. Any argument defined as a set of
alternatives can generate this error.

5-53

Graphics Context Routines
SET DASHES

SET DASHES

Changes the values for the dash offset and the dash list.

VAX FORMAT X$SET DASHES
(display, gc_id, dash_offset, dash_list, dash_lisLlen)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

gc_id identifier uns longword read reference

dash_ offset longword longword read reference

dash_list byte byte read reference

dash_list_len longword longword read reference

MIT C FORMAT XSetDashes

argument
information

ARGUMENTS

5-54

(display, gc_id, dash_offset, dash_list, dash_lisLlen)

XSetDashes(display, gc_id, dash_offset, dash_list, dash_list_len)
Display *display;
GC gc_id;
int dash offset;
char dash_list[];
int dash_list_len;

display
The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the dash members will be
changed. The graphics context identifier was originally returned by
DEFAULT GC or CREATE GC.

dash_ offset
The pixel within the dash length sequence, defined in dash_list, to start
drawing a dashed line. A dash_offset of zero would start at the beginning
of the dash length sequence. A dash_offset of 5 would start at the fifth
pixel. Refer to Figure 5-9.

DESCRIPTION

dash_list

Graphics Context Routines
SET DASHES

A pointer to an array that lists the length, in number of pixels, for each
dash. The initial and alternating elements in the array (elements 0, 2,
4, and so forth) are the even dashes. The other elements in the array (in
other words, elements 3, 5, and so forth) reference the odd dashes.

The values of all elements must be nonzero. The number of elements (in
other words, the length of the array) is defined by n. The default value
is 4.

This argument cannot be empty, otherwise the routine will not complete
successfully.

dash_list_len
The number of dash lengths specified. This value defines the length of the
array in dash_list.

SET DASHES changes the dash members in the specified graphics context.

The dash list specifies the length, in pixels, of each element in the dash
line. For example, the dash list array might have the following values:

Array Element
0
1
2
3
4
5

Value
5
10
3
5
10
3

The first dash in the line (even dash 0) is 5 pixels long, the second dash in
the line is 10 pixels long (odd dash 1), and so forth. Refer to Figure 5-9.

Figure 5-9 Dash Offset and Dash List

Dash List: 5, 10,3,5, 10,3

Dash Offset= O

5

Dash Offset = 4

10

10 3 5

3 5

10 3

10 3

ZK-0009A-GE

The actual dash line is likely to have more dashes than are represented in
the dash list. In this case, the list is simply reread so that the next dash

5-55

Graphics Context Routines
SET DASHES

has the length specified in array element 0, and so forth. The dash list
array will continue to be read until the dash line is complete.

You can specify an odd number of dash lengths in the dash list. For
example, the dash list array might have the following values:

Array Element
0
1
2

Value
5
10
5

If this dash line has nine dashes, the lengths are as shown in
Figure 5-10.

Figure 5-10 Odd Dash List

Dash List 5, 10, 5

5 10

Even

XERRORS

5-56

5 5 5 5 10 5

Even Even Even Even

ZK-0017 A-GE

The dash offset specifies where to start reading, within the dash list, the
lengths of the dashes. For example, if the dash offset is 3, the first length
in the dash list is the third from the start. In the preceding dash list
example, a dash offset of 3 means that the length of the first dash is 2.

A dashed line is continuous through a specified path. When dashed lines
are joined, they are joined according to the join style specified in the
graphics context. When a dashed line is ended (in other words, a cap_style
from the graphics context is applied to an endpoint), the dash line is reset
to the dash offset.

VAX C

X$C_BAD_ALLOC BadAlloc

X$C_BAD_GC BadGC

X$C_BAD_VALUE BadValue

Description

The server did not allocate the requested
resource for any cause.

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument, the
full range defined by the argument's type is
accepted. Any argument defined as a set of
alternatives can generate this error.

Graphics Context Routines
SET FILL RULE

SET FILL RULE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Sets the fill rule in the graphics context to the value specified.

X$SET _FILL_RULE
(display, gc_id, filLrule)

Argument Usage Data Type

display identifier uns longword

gc_id identifier uns longword

fill_rule longword longword

XSetFillRule
(display, gc_id, filLrule)

XSetFillRule(display, gc_id, fill_rule)
Display *display;
GC gc_id;
int fill_rule;

display

Access

read

read

read

Mechanism

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the fill rule member will
be changed. The graphics context identifier was originally returned by
DEFAULT GC or CREATE GC.

fill rule
The fill rule that you want to set for the specified graphics context. The
fill rule specifies which pixels are considered to be inside of a polygon for
a FILL POLYGON routine. Those inside the polygon are then displayed
creating the fill. There are two predefined values:

5-57

Graphics Context Routines
SET FILL RULE

VAX

X$C_EVEN_ODD_RULE

X$C_WINDING_RULE

c

EvenOddRule

Winding Rule

Description

A pixel is considered to be inside
the polygon when a ray drawn
from the pixel intersects the
polygon lines an odd number of
times. If the ray drawn from the
pixel intersects an even number
of times, the pixel is not drawn.

A pixel is considered to be
inside when a ray with the
point as origin crosses an
unequal number of clockwise
and counterclockwise directed
path segments. A clockwise line
is one that crosses the ray from
left to right as observed from the
origin. A counterclockwise line is
one which crosses the ray from
right to left as observed from the
origin.

Refer to Figure 5-11 for an illustration of the Even Odd and Winding
options.

5-58

DESCRIPTION

XERRORS

Figure 5-11 Fill Rules

Even Odd

Winding

Direction
of Path

Segment

Graphics Context Routines
SET FILL RULE

Direction of Ray

Direction of Ray

ZK-0071 A-GE

SET FILL RULE changes the value for the fill rule in the graphics context
data structure.

You can also use CHANGE GC to change the fill rule.

VAX C

X$C_BAD_GC BadGC

X$C_BAD_ VALUE BadValue

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument, the
full range defined by the argument's type is
accepted. Any argument defined as a set of
alternatives can generate this error.

5-59

Graphics Context Routines
SET FILL STYLE

SET FILL STYLE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

5-60

Sets the fill style in the graphics context to the value specified.

X$SET_FILL_STYLE
(display, gc_id, fi/J_style)

Argument Usage Data Type

display identifier uns longword

gc_id identifier uns longword

fill_ style longword longword

XSetFillStyle
(display, gc_id, fil/_style)

XSetFillStyle(display, gc_id, fill_style)
Display *display;
GC gc_id;
int fill_style;

display

Access

read

read

read

Mechanism

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the fill style member will
be changed. The graphics context identifier was originally returned by
DEFAULT GC or CREATE GC.

fi/Lstyle
The fill style for the space within the bounding box of a line, the even
dash of an On Off Dash or Double Dash line, for an odd dash of a Double
Dash line, for text lines, and for all fill requests. The predefined values for
fill_style are as follows:

DESCRIPTION

XERRORS

Graphics Context Routines
SET FILL STYLE

VAX C Description

X$C_FILL_SOLID

X$C_FILL_ TILED

X$C_FILL_OPAQUE_
STIPPLED

X$C_FILL_STIPPLED

FillSolid Use the color index specified by
the graphics context foreground
member for each pixel in the fill
area. For the odd dash, use the
color index specified by the graphics
context background member for
each pixel in the odd dash fill area.

FillTiled Use the tile pattern as specified by
the graphics context tile member.

FillOpaqueStippled Use the stipple pattern as specified
by the graphics context stipple
member. Where the value of 1
appears in the stipple pattern, use
the foreground color index for the
corresponding pixel; where the
value of zero appears, use the
background color index for the
corresponding pixel.

FillStippled Use the stipple pattern as specified
by the graphics context. Where
the value of 1 appears in the
stipple pattern, you can write to
the corresponding pixel; where the
value of zero appears, you cannot
write to the corresponding pixel.
Use the background color index for
the corresponding pixel.

Other values specified in this argument are not valid.

SET FILL STYLE changes the fill style in the graphics context data
structure.

The fill style specifies how to fill in bounding boxes in lines or figures.

You can also use CHANGE GC to change the fill style.

VAX C

X$C_BAD_GC BadGC

X$C _BAD_ VALUE BadValue

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument, the
full range defined by the argument's type is
accepted. Any argument defined as a set of
alternatives can generate this error.

5-61

Graphics Context Routines
SET FONT

SET FONT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Changes the identifier of the font in the specified graphics context.

X$SET_FONT
(display, gc_id, font_id)

Argument Usage Data Type

display identifier uns longword

gc_id identifier uns longword

font_id identifier uns longword

XSetFont
(display, gc_id, font_id)

XSetFont(display, gc id, font_id)
Display *display;
GC gc_id;
Font font_id;

display

Access Mechanism

read reference

read reference

read reference

The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the font identifier will be
changed. The graphics context identifier was originally returned by
DEFAULT GO or CREATE GO.

font_ id
The identifier of the font that will be set in the graphics context. The font
identifier was originally returned by GET FONT.

DESCRIPTION SET FONT changes the font identifier in the graphics context. Before
you change the font identifier, you must have already loaded the font and
generated a font identifier using GET FONT and LOAD FONT.

You can also use CHANGE GC to change the font identifier.

5-62

XERRORS
VAX C

X$C_BAD_ALLOC BadAlloc

X$C_BAD_FONT BadFont

X$C_BAD_GC BadGC

Graphics Context Routines
SET FONT

Description

The server did not allocate the requested
resource for any cause.

A value that you specified for a font argument
does not name a defined font (or, in some
cases, graphics context).

A value that you specified for a graphics
context argument does not name a defined
graphics context.

5-63

Graphics Context Routines
SET FOREGROUND

SET FOREGROUND

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Sets the foreground color index to the value specified.

X$SET _FOREGROUND
(display, gc_id, foreground)

Argument Usage Data Type

display identifier uns longword

gc_id identifier uns longword

foreground uns longword uns longword

XSetForeground
(display, gc_id, foreground)

XSetForeground(display, gc id, foreground)
Display *display; -
GC gc_id;
unsigned long foreground;

display

Access

read

read

read

Mechanism

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the foreground member will
be changed. The graphics context identifier was originally returned by
DEFAULT GC or CREATE GC.

foreground
The new value of the foreground member. The foreground value is a color
index to a color map containing the color definition for the foreground
color. The default value is zero.

DESCRIPTION SET FOREGROUND changes the value for the foreground in the GC
values data structure.

5-64

The foreground member value is the color index to a color map containing
the color definition for the foreground. The color index you specify in
foreground must have been returned by one of the color routines (ALLOC
COLOR CELLS, ALLOC COLOR PLANES, ALLOC COLOR, or ALLOC
NAMED COLOR) or by one of the display information routines (BLACK

XERRORS

Graphics Context Routines
SET FOREGROUND

PIXEL or WHITE PIXEL). For more information about working with
colors, see Chapter 12.

You can also use SET STATE or CHANGE GC to change the foreground
member. When you use SET STATE, you must also change the
background, function, and plane mask members.

VAX c
X$C_BAD_GC BadGC

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

5-65

Graphics Context Routines
SET FUNCTION

SET FUNCTION

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

5-66

Sets the function value to the value specified.

X$SET FUNCTION
(display, gc_id, function)

Argument Usage Data Type

display identifier uns longword

gc_id identifier uns longword

function longword longword

XSetFunction
(display, gc_id, function)

XSetFunction(display, gc_id, function)
Display *display;
GC gc id;
int function;

display

Access Mechanism

read reference

read reference

read reference

The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the function member will
be changed. The graphics context identifier was originally returned by
DEFAULT GC or CREATE GC.

function
The new value for the function member of the graphics context. The
function member describes how the new destination bits are to be
computed from the source bits and the old destination bits. Table 5-7
lists the valid values for function. The default value is 3 for GX Copy.

Graphics Context Routines
SET FUNCTION

Table 5-7 Graphics Context Codes for Function Member

Hex C Function
Value VAX Function Name Name Operation

0 X$C_GX_CLEAR GXclear 0

1 X$C_GX_AND GXand src AND dst

2 X$C_GX_AND_REVERSE GXandReverse src AND NOT dst

3 X$C_GX_COPY GXcopy src

4 X$C_GX_AND_INVERTED GXand Inverted (NOT src) AND dst

5 X$C_GX_NOOP GXnoop dst

6 X$C_GX_XOR GXxor src XOR dst

7 X$C_GX_OR GXor src OR dst

8 X$C_GX_NOR GXnor (NOT src) AND NOT dst

9 X$C_GX_EQUIV GXequiv (NOT src) XOR dst

A X$C_GX_INVERT GXinvert NOT dst

B X$C_GX_OR_REVERSE GXorReverse src OR NOT dst

c X$C_GX_COPY _INVERTED GXcopy Inverted NOT src

D X$C_GX_OR_INVERTED GXorlnverted (NOT src) OR dst

E X$C_GX_NAND GXnand (NOT src) OR NOT dst

F X$C_GX_SET GXset

DESCRIPTION SET FUNCTION changes the value for the function member in the GC
values data structure. The function describes how the new destination bits
are computed from the source bits and the old destination bits.

XERRORS

You can also change the function using SET STATE or CHANGE GC.
When you use SET STATE, you also change the foreground, background,
and plane mask.

VAX C

X$C_BAD_GC BadGC

X$C_BAD_VALUE BadValue

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument, the
full range defined by the argument's type is
accepted. Any argument defined as a set of
alternatives can generate this error.

5-67

Graphics Context Routines
SET GRAPHICS EXPOSURES

SET GRAPHICS EXPOSURES

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Changes the graphics exposures.

X$SET_GRAPHICS_EXPOSURES
(display, gc_id, graphics_exposures)

Argument Usage Data Type

display identifier uns longword

gc_id identifier uns longword

graphics_ exposures boolean uns longword

XSetGraphicsExposures
(display, gc_id, graphics_exposures)

Access Mechanism

read reference

read reference

read reference

XSetGraphicsExposures(display, gc_id, graphics_exposures)
Display *display;
GC gc_id;
Boolean graphics_exposures;

display
The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the graphics exposures
member will be changed. The graphics context identifier was originally
returned by DEFAULT GC or CREATE GC.

graphics_ exposures
A graphics exposures member that specifies whether to generate graphics
exposures events when using the COPY AREA or COPY PLANE routines.
When true, the events are generated. When false, the events are not
generated.

DESCRIPTION SET GRAPHICS EXPOSURES changes the value for the graphics
exposures member in the graphics context.

You can also use CHANGE GC to change graphics exposures.

5-68

XERRORS
VAX C

X$C_BAD_GC BadGC

X$C_BAD_ VALUE BadValue

Graphics Context Routines
SET GRAPHICS EXPOSURES

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument, the
full range defined by the argument's type is
accepted. Any argument defined as a set of
alternatives can generate this error.

5-69

Graphics Context Routines
SET LINE ATTRIBUTES

SET LINE ATTRIBUTES

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

5-70

Changes the line drawing members in the graphics context.

X$SET _LINE_ATTRIBUTES
(display, gc_id, line_width, line_style, cap_style,
join_style)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

gc_id identifier uns longword read reference

line_width longword longword read reference

line_style longword longword read reference

cap_style longword longword read reference

join_style longword longword read reference

XSetlineAttributes
(display, gc_id, line_width, line_style, cap_style,
join_style)

XSetLineAttributes(display, gc_id, line_width, line_style,
cap_style, join_style)

Display *display;
GC gc_id;
unsigned int line_width;
int line_style;
int cap_style;
int join_style;

display
The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the line attributes will be
changed. The graphics context identifier was originally returned by
DEFAULT GC or CREATE GC.

line width

Graphics Context Routines
SET LINE ATTRIBUTES

Specifies the line width member. The line width defines how wide lines are
drawn, in terms of number of pixels. The default value is zero, specifying
the special case of a line one pixel wide. The maximum value for this
member is limited by the size of the window you are working in. Refer to
the VMS DECwindows Xlib Programming Volume for more information on
line widths.

line_style
Specifies the line style member. Line style defines the pattern of a line.
The predefined values for line_style are as follows:

VAX

X$C_LINE_SOLID

X$C_LINE_
DOUBLE_DASH

X$C_LINE_OFF _
DASH

c Description

LineSolid A solid line

LineDoubleDash A dashed line where the even dashes are
different from the odd dashes

LineOnOffDash A dashed line where the even dashes are
drawn, but the odd dashes are empty

Other values specified in this argument are not valid.

The default value specifies the Solid pattern. Refer to Figure 5-12 for an
illustration of these styles.

Figure 5-12 Line Styles

Solid

Double Dash

OnOffDash -

ZK-0010A-GE

cap_style
Specifies the cap style member, which defines how the endpoints of a path
are drawn. The predefined values for cap_style are as follows:

VAX C

X$C_CAP _NOT_ CapNotlast
LAST

X$C _CAP _BUTT CapButt

Description

A square endpoint with no projection. This style
is used for line widths of zero or 1 only.

A square endpoint, where the square is
perpendicular to the slope of the line, with
no projection beyond the endpoint.

5-71

Graphics Context Routines
SET LINE ATTRIBUTES

5-72

VAX

X$C_CAP_
ROUND

X$C_CAP_
PROJECTING

C Description

CapRound A circular arc endpoint. The diameter of the arc
is equal to the line width. The arc is centered
on the endpoint. This style is not used for line
widths of zero or 1 .

CapProjecting A square endpoint with the path extended
beyond the endpoint. The distance extended is
equal to one-half the line width. This style is not
used for line widths of zero or 1.

Other values specified in this argument are not valid.

The default value is the Butt pattern. Refer to Figure 5-13 for an
illustration of these styles.

Figure 5-13 Cap Styles

Butt

+
Round

(

Projecting

I·
Cap Styles for Wide Lines

(Line Widths Greater Than 1)

join_style

+

J •

·I

Butt

Not Last

Cap Styles for Thin Lines
(Line Widths of O and 1)

•

ZK-0021 A-GE

The join style. The join style specifies how corners are drawn for wide
lines. The predefined values for join_style are as follows:

VAX C

X$C_JOIN_MITER Join Miter

X$C_JOIN_ROUND JoinRound

X$C_JOIN_BEVEL JoinBevel

Description

The outer edges of the lines are extended to
meet at an angle.

A circular arc corner. The diameter of the arc
is equal to the line width. The arc is centered
on the point where the two lines join.

A square corner with the triangular notch of
the corner filled in.

Other values specified in this argument are not valid.

Graphics Context Routines
SET LINE ATTRIBUTES

The default value is the Miter pattern. Refer to Figure 5-14 for an
illustration of these styles.

Figure 5-14 Join Styles

Miter

Round

Bevel

ZK-0013A-GE

DESCRIPTION SET LINE ATTRIBUTES changes the values for the following line drawing
members in the specified graphics context:

• Line width

• Line style

• Cap style (how endpoints are drawn)

• Join Style (how corners are drawn)

The patterns for the line style, cap style, and join style are illustrated
in the argument descriptions. The join style is used only when lines are
joined within a single graphics request.

You can also change the line attributes with CHANGE GC.

5-73

Graphics Context Routines
SET LINE ATTRIBUTES

XERRORS
VAX C

X$C_BAD_GC BadGC

X$C_BAD_ VALUE BadValue

5-74

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument, the
full range defined by the argument's type is
accepted. Any argument defined as a set of
alternatives can generate this error.

Graphics Context Routines
SET PLANE MASK

SET PLANE MASK

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Sets the plane mask to the value specified.

X$SET_PLANE_MASK
(display, gc_id, plane_mask)

Argument Usage Data Type

display identifier uns longword

gc_id identifier uns longword

plane_mask mask_longword uns longword

XSetPlaneMask
(display, gc_id, plane_mask)

XSetPlaneMask(display, gc id, plane mask)
Display *display; - -
GC gc_id;
unsigned long plane_mask;

display

Access Mechanism

read reference

read reference

read reference

The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the plane mask member will
be changed. The graphics context identifier was originally returned by
DEFAULT GC or CREATE GC.

plane_mask
A bit mask that specifies which planes will be modified.

The plane mask specifies which planes of the display will be modified. For
monochrome displays, there is only one plane. Within the plane mask, the
least significant bit represents this plane. For displays with additional
planes, the bits that represent those planes occupy more significant bits.

When a plane is to be modified, its corresponding bit in plane_mask
is set. The default value is all ones, specifying that all planes can be
modified.

5-75

Graphics Context Routines
SET PLANE MASK

DESCRIPTION SET PLANE MASK changes the value for the plane mask member in the
GC values data structure. The graphics context identifier was originally
returned by DEFAULT GC or CREATE GC.

XERRORS

5-76

The plane mask member identifies which planes of a display can be
modified. There is one bit in the plane mask per plane. The least
significant bit represents the first plane. As planes are added, they are
represented by more significant bits.

You can also change the plane mask with CHANGE GC or SET STATE.
When you use SET STATE, you must also change the foreground,
background, and function members.

VAX c

X$C_BAD_GC BadGC

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

SET STATE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Graphics Context Routines
SET STATE

Changes values for the foreground, background, plane mask, and function
members of a graphics context.

X$SET_STATE
(display, gc_id, foreground, background, tune,
plane_mask)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

gc_id identifier uns longword read reference

foreground longword longword read reference

background longword longword read reference

tune longword longword read reference

plane_mask mask_longword uns longword read reference

XSetState
(display, gc_id, foreground, background, tune,
plane_mask)

XSetState(display, gc_id, foreground, background, func,
plane mask)

Display *display;
GC gc_id;
unsigned long foreground, background;
int func;
unsigned long plane_mask;

display
The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the new values will be set.
The graphics context identifier was originally returned by DEFAULT GC
or CREATE GC.

5-77

Graphics Context Routines
SET STATE

5-78

foreground
The new value for the foreground member of the graphics context. The
foreground value is a color index to a color map containing the color
definition for the foreground. If the value specified is out of range, it is
truncated to the appropriate number of bits.

background
The new value for the background member of the graphics context. The
background value is a color index to a color map containing the color
definition for the background. If the value specified is out of range, it is
truncated to the appropriate number of bits.

tune
The new value for the function member of the graphics context.

The function member describes how the new destination bits are computed
from the source bits and the old destination bits. Table 5-8 lists the valid
values for func. The default value is 3 for GX Copy.

Table 5-8 Graphics Context Codes for Function Member

Hex C Function
Value VAX Function Name Name Operation

0 X$C_GX_CLEAR GXclear 0

X$C_GX_AND GXand src AND dst

2 X$C_GX_AND_REVERSE GXandReverse src AND NOT dst

3 X$C_GX_COPY GXcopy src

4 X$C_GX_AND_INVERTED GXandlnverted (NOT src) AND dst

5 X$C_GX_NOOP GXnoop dst

6 X$C_GX_XOR GXxor src XOR dst

7 X$C_GX_OR GXor src OR dst

8 X$C_GX_NOR GXnor (NOT src) AND NOT dst

9 X$C_GX_EQUIV GXequiv (NOT src) XOR dst

A X$C_GX_INVERT GXinvert NOT dst

8 X$C_GX_OR_REVERSE GXorReverse src OR NOT dst

c X$C_GX_COPY _INVERTED GXcopylnverted NOT src

D X$C_GX_OR_INVERTED GXorlnverted (NOT src) OR dst

E X$C_GX_NAND GXnand (NOT src) OR NOT dst

F X$C_GX_SET GXset

plane_mask
A bit mask that specifies which planes will be modified.

The plane mask specifies which planes of the display will be modified. For
monochrome displays, there is only one plane. Within the plane mask, the
least significant bit represents this plane. For displays with additional
planes, the bits that represent those planes occupy more significant bits.

DESCRIPTION

XERRORS

Graphics Context Routines
SET STATE

When a plane is to be modified, its corresponding bit in plane_mask
is set. The default value is all ones, specifying that all planes can be
modified.

SET STATE changes values in the GC values data structure for four
members:

• Foreground

• Background

• Function

• Planes

Use the graphics context identifier to refer to the specific graphics context
that you want to change.

Use this routine when you want to change all these values in the same
graphics context. If you want to change individual values, use the routines
SET FOREGROUND to change the foreground; SET BACKGROUND to
change the background; SET FUNCTION to change the function value; or
SET PLANE MASK to change planes.

VAX C

X$C_BAD_GC BadGC

X$C_BAD_ VALUE BadValue

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument, the
full range defined by the argument's type is
accepted. Any argument defined as a set of
alternatives can generate this error.

5-79

Graphics Context Routines
SET STIPPLE

SET STIPPLE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Changes the pixmap identifier of the stipple pattern in the specified graphics
context.

X$SET STIPPLE
(display, gc_id, stipple_id)

Argument Usage Data Type

display identifier uns longword

gc_id identifier uns longword

stipple_id identifier longword

XSetStipple
(display, gc_id, stipple_id)

XSetStipple(display, gc id, stipple_id)
Display *display;-
GC gc_id;
Pixmap stipple_id;

display

Access Mechanism

read reference

read reference

read reference

The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the pixmap identifier of
the stipple pattern will be changed. The graphics context identifier was
originally returned by DEFAULT GC or CREATE GC.

stipple_id
The identifier of the pixmap containing the stipple pattern. The pixmap
identifier was originally returned by CREATE PIXMAP.

DESCRIPTION SET STIPPLE changes the pixmap identifier in the specified graphics
context to the identifier of a pixmap containing the desired stipple pattern.
The default value is a pixmap of unspecified size filled with values of 1.

5-80

XERRORS

Graphics Context Routines
SET STIPPLE

The stipple pixmap can be any size, although some sizes might be faster
to use than others. Use the QUERY BEST STIPPLE routine to determine
the best size. The stipple pixmap must have the same depth as the
graphics context.

You can also use CHANGE GC to specify the pixmap identifier for a stipple
pattern.

VAX c Description

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested
resource for any cause.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a defined
graphics context.

X$C_BAD_MATCH Bad Match Possible causes are as follows:

In a graphics request, the root and depth
of the graphics context do not match
those of the drawable.

An input-only window is used as a
drawable.

One argument or pair of arguments has
the correct type and range but fails to
match in some other way required by
the request.

An input-only window lacks this attribute.

X$C_BAD _PIXMAP Bad Pixmap A value that you specified for a pixmap
argument does not name a defined pixmap.

5-81

Graphics Context Routines
SET SUBWINDOW MODE

SET SUBWINDOW MODE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

5-82

Changes the value for the subwindow mode in the graphics context.

X$SET _ SUBWINDOW _MODE
(display, gc_id, subwindow_mode)

Argument Usage Data Type

display identifier uns longword

gc_id identifier uns longword

subwindow_mode longword longword

XSetSubwindowMode
(display, gc_id, subwindow_mode)

Access

read

read

read

XSetSubwindowMode(display, gc_id, subwindow_mode)
Display *display;
GC gc_id;
int subwindow_mode;

display

Mechanism

reference

reference

reference

The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the subwindow mode member
will be changed. The graphics context identifier was originally returned by
DEFAULT GC or CREATE GC.

subwindow_mode
Specifies whether the source and destination windows are clipped by
subwindows. The predefined values are as follows:

DESCRIPTION

XERRORS

VAX C

Graphics Context Routines
SET SUBWINDOW MODE

Description

X$C_CLIP _BY _CHILDREN ClipByChildren The source and destination
windows are clipped.

X$C_INCLUDE_INFERIORS lncludelnferiors Inferiors clip neither source
nor destination windows.
This results in drawing
through subwindows
boundaries.

Other values specified in this argument are not valid.

SET SUBWINDOW MODE changes the value for the subwindow mode in
the graphics context.

You can also use CHANGE GC to change the subwindow mode.

VAX C

X$C_BAD_GC BadGC

X$C_BAD_VALUE BadValue

Description

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument, the
full range defined by the argument's type is
accepted. Any argument defined as a set of
alternatives can generate this error.

5-83

Graphics Context Routines
SET TILE

SET TILE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Changes the pixmap identifier of the tile pattern in the specified graphics
context.

X$SET_TILE
(display, gc_id, tile_id)

Argument Usage Data Type

display identifier uns longword

gc_id identifier uns longword

tile_id identifier uns longword

XSetTile
(display, gc_id, tile_id)

XSetTile(display, gc_id, tile_id)
Display *display;
GC gc_id;
Pixmap tile_id;

display

Access Mechanism

read reference

read reference

read reference

The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the tile pixmap identifier will
be changed. The graphics context identifier was originally returned by
DEFAULT GC or CREATE GC.

tile_id
The identifier of the pixmap containing the tile pattern. The pixmap
identifier was originally returned by CREATE PIXMAP.

DESCRIPTION SET TILE changes the pixmap identifier in the specified graphics context
to the identifier of a pixmap containing the desired tile pattern. The
default value is a pixmap of unspecified size filled with the foreground
pixel.

5-84

XERRORS

Graphics Context Routines
SET TILE

The tile pixmap can be any size, although some sizes might be faster
to use than others. Use the QUERY BEST TILE to determine the best
size. The tile pixmap must have the same root and depth as the graphics
context.

The graphics context identifier was originally returned by DEFAULT GC
or CREATE GC.

You can also use CHANGE GC to specify a tile pixmap identifier.

VAX c Description

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested
resource for any cause.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a defined
graphics context.

X$C_BAD_MATCH Bad Match Possible causes are as follows:

In a graphics request, the root and depth
of the graphics context do not match
those of the drawable.

An input-only window is used as a
drawable.

One argument or pair of arguments has
the correct type and range but fails to
match in some other way required by
the request.

An input-only window lacks this attribute.

X$C_BAD_PIXMAP Bad Pixmap A value that you specified for a pixmap
argument does not name a defined pixmap.

5-85

Graphics Context Routines
SET TS ORIGIN

SET TS ORIGIN

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

5-86

Changes the x- and y-coordinates of the tile or stipple origin in the graphics
context.

X$SET_TS_ORIGIN
(display, gc_id, ts_x_coord, ts_y_coord)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

gc_id identifier uns longword read reference

ts_x_coord longword longword read reference

ts_y_coord longword longword read reference

XSetTSOrigin
(display, gc_id, ts_x_coord, ts_y_coord)

XSetTSOrigin(display, gc id, ts x coord, ts_y_coord)
Display *display; - - -
GC gc id;
int t;_x_coord, ts_y_coord;

display
The display information originally returned by OPEN DISPLAY.

gc_id
The identifier of the graphics context where the tile or stipple origin
is located. The graphics context identifier was originally returned by
DEFAULT GC or CREATE GC.

ts x coord
The x-coordinate of the tile or stipple origin to be changed. The x- and
y-coordinates define where the tile or stipple pattern is aligned with the
origin of the drawable.

ts_y_coord
The y-coordinate of the tile or stipple origin to be changed. The x- and
y-coordinates define where the tile or stipple pattern is aligned with the
origin of the drawable.

Graphics Context Routines
SET TS ORIGIN

DESCRIPTION SET TS ORIGIN changes the coordinates of the tile or stipple origin in
the graphics context. The identifier of the graphics context was originally
returned by DEFAULT GC or CREATE GC.

XERRORS

The tile or stipple origin defines the point within the tile or stipple pixmap
that is aligned with the drawable that will be tiled or stippled.

When graphics requests call for tiling or stippling, the parent's origin is
interpreted to whatever destination drawable is specified in the graphcis
context.

You can also change the coordinate values with CHANGE GC.

VAX C

X$C_BAD_ALLOC BadAlloc

X$C_BAD_GC BadGC

Description

The server did not allocate the requested
resource for any cause.

A value that you specified for a graphics
context argument does not name a defined
graphics context.

5-87

6 Graphics Routines

Use the graphics routines to complete the following graphics operations:

• Clearing areas

• Copying areas

• Drawing points

• Drawing lines

• Drawing rectangles

• Drawing arcs

• Filling rectangles, polygons, and arcs

• Creating and manipulating images

For concepts related to graphics routines and information on how to use
graphics routines, see the VMS DECwindows Xlib Programming Volume.

The routines described in this chapter are listed in Table 6-1.

Table 6-1 Graphics Routines

Routine Name

ADD PIXEL

CLEAR AREA

CLEAR WINDOW

COPY AREA

COPY PLANE

CREATE IMAGE

DRAW ARC

DRAW ARCS

DRAW LINE

DRAW LINES

DRAW POINT

DRAW POINTS

Description

Increments each pixel in a pixmap by a constant value.

Clears a rectangular area in a window.

Clears an entire window.

Copies a specified rectangular area from one window or
pixmap (drawable) to another drawable.

Copies a rectangular area from one plane of a window or
pixmap (drawable) to another drawable.

Specifies the size of the image and allocates sufficient
memory for the image data structure.

Draws one arc in the specified window or pixmap.

Draws more than one arc in the specified window or
pixmap.

Draws one line between two points in the specified window
or pixmap.

Draws more than one connected line in the specified
drawable.

Draws a point in the specified window or pixmap.

Draws more than one point in the specified drawable.

(continued on next page)

6-1

Graphics Routines

Table 6-1 (Cont.) Graphics Routines

Routine Name

DRAW RECTANGLE

DRAW RECTANGLES

DRAW SEGMENTS

FILL ARC

FILL ARCS

FILL POLYGON

FILL RECTANGLE

FILL RECTANGLES

GET IMAGE

GET PIXEL

PUT IMAGE

PUT PIXEL

SUB IMAGE

Description

Draws the outline of one rectangle in the specified drawable.

Draws the outline of more than one rectangle in the
specified drawable.

Draws more than one line in the specified drawable. The
lines are not connected.

Fills in either a pie slice or chord area of an arc in the
specified drawable.

Fills in either a pie slice or a chord area of more than one
arc in the specified window or pixmap.

Fills a polygon area in a specified drawable.

Fills the area defined by a rectangular outline in the
specified drawable.

Fills the areas defined by rectangular outlines in the
specified drawable.

Returns the contents of a rectangle to the specified
drawable.

Obtains the value of one pixel stored in an image.

Combines the image in memory with the image in a
specified rectangle on the specified drawable.

Changes one pixel value within the pixmap containing an
image.

Creates a new image from an existing image.

The graphics routines use several predefined data structures for points,
unconnected line segments, rectangles, and arcs.

6.1 Point Data Structure
The point data structure defines a list of coordinates for use with the
DRAW POINTS and DRAW LINES routines. In the case of DRAW
POINTS, it affects those pixels of the specified coordinates, while in
the case of DRAW LINES, it uses the specified coordinates as endpoints
of consecutive, adjoining lines. The data structure for the VAX binding
is shown in Figure 6-1, and information about members in the data
structure is described in Table 6-2.

Figure 6-1 Point Data Structure (VAX Binding)

x$w_gpnt_y x$w_gpnt_x

6-2

0

Graphics Routines
6.1 Point Data Structure

Table 6-2 Members of the Point Data Structure (VAX Binding)

Member Name

X$W_GPNT_X

X$W_GPNT_Y

Contents

Defines the x value of the coordinate of a point

Defines the y value of the coordinate of a point

The data structure for the MIT C binding is shown in Figure 6-2,
and information about members in the data structure is described in
Table 6-3.

Figure 6-2 Point Data Structure (MIT C Binding)

typedef struct
short x,y;

}XPoint;

Table 6-3 Members of the Point Data Structure (MIT C Binding)

Member Name

x

y

6.2 Segment Data Structure

Contents

Defines the x value of the coordinate of a point

Defines the y value of the coordinate of a point

The segment data structure defines the x- and y-coordinates for two points.
A line segment is drawn between one pair of points. The data structure
for the VAX binding is shown in Figure 6-3.

Figure 6-3 Segment Data Structure (VAX Binding)

x$w_gseg_y1 x$w_gseg_x1 0

x$w_gseg_y2 x$w_gseg_x2 4

6-3

Graphics Routines
6.2 Segment Data Structure

The MIT C binding segment data structure is shown in Figure 6-4.

Figure 6-4 Segment Data Structure (MIT C Binding)

typedef struct {
short xl,yl,x2,y2;

} XSegment;

6.3 Rectangle Data Structure
The rectangle data structure defines the upper left corner and the width
and height of a rectangle. The data structure for the VAX binding is shown
in Figure 6-5, and information about members in the data structure is
described in Table 6-4.

Figure 6-5 Rectangle Data Structure (VAX Binding)

6-4

x$w_grec_y x$w_grec_x

x$w_grec_height x$w_grec_width

Table 6-4 Members of the Rectangle Data Structure (VAX Binding)

Member Name

X$W_GREC_X

X$W_GREC_Y

X$W_GREC_WIDTH

X$W_GREC_HEIGHT

Contents

Defines the x value of the rectangle origin

Defines the y value of the rectangle origin

Defines the width of the rectangle

Defines the height of the rectangle

The data structure for the MIT C binding is shown in Figure 6-6,
and information about members in the data structure is described in
Table 6-5.

0

4

Graphics Routines
6.3 Rectangle Data Structure

Figure 6-6 Rectangle Data Structure (MIT C Binding)

typedef struct {
short x,y;
unsigned short width, height;

} XRectangle;

Table 6-5 Members of the Rectangle Data Structure (MIT C Binding)

Member Name

x

y

width

height

6.4 Arc Data Structure

Contents

Defines the x value of the rectangle origin

Defines the y value of the rectangle origin

Defines the width of the rectangle

Defines the height of the rectangle

The arc data structure defines the starting point and size of an arc.
The data structure for the VAX binding is shown in Figure 6-7, and
information about members in the data structure is described in
Table 6-6.

Figure 6-7 Arc Data Structure (VAX Binding)

x$w_garc_y x$w_garc_x

x$w_garc_height x$w_garc_width

x$w_garc_angle2 x$w_garc_angle 1

Table 6-6 Members of the Arc Data Structure (VAX Binding)

Member Name

X$W_GARC_X

X$W_GARC_Y

X$W_GARC_WIDTH

Contents

Defines the x-coordinate value of the rectangle in which
the server draws the arc

Defines the y-coordinate value of the rectangle in which
the server draws the arc

Defines the x axis diameter of the arc

0

4

8

(continued on next page)

6-5

Graphics Routines
6.4 Arc Data Structure

Table 6-6 (Cont.) Members of the Arc Data Structure (VAX Binding)

Member Name Contents

X$W_GARC_HEIGHT

X$W_GARC_ANGLE1

Defines the y axis diameter of the arc

Defines the starting point of the arc relative to the three
o'clock position from the center of the rectangle

X$W_GARC_ANGLE2 Defines the extent of the arc relative to the starting point

The data structure for the MIT C binding is shown in Figure 6-8,
and information about members in the data structure is described in
Table 6-7.

Figure 6-8 Arc Data Structure (MIT C Binding)

typedef struct {
short x,y;
unsigned short width, height;
short anglel, angle2;

XArc;

Table 6-7 Members of the Arc Data Structure (MIT C Binding)

Member Name

x

y

width

height

angle1

angle2

Contents

Defines the x-coordinate of the rectangle in which the server
draws the arc

Defines the y-coordinate of the rectangle in which the server
draws the arc

Defines the x axis diameter of the arc

Defines the y axis diameter of the arc

Defines the starting point of the arc relative to the three o'clock
position from the center of the rectangle

Defines the extent of the arc relative to the starting point

6.5 Image Data Structure

6-6

Each image is defined and referenced using the image data structure.
The data structure for the VAX binding is shown in Figure 6-9, and
information about members in the data structure is described in Table 6-8.

Figure 6-9 Image Data Structure (VAX Binding)

x$1_imag_width

x$1_imag_height

x$1_i mag_xoffset

x$1_imag_format

x$a_imag_data

x$1_imag_byte_order

x$1_imag_bitmap_unit

x$1_imag_bitmap_bit_order

x$1_imag_bitmap_pad

x$1_imag_depth

x$1_imag_bytes_per_line

x$1_imag_bits_per_pixel

x$1_imag_red_mask

x$1_imag_green_mask

x$1_imag_blue_mask

x$a_imag_ obdata

x$a_imag_create_image

x$a_imag_destroy _image

x$a_imag_get_pixel

x$a_imag_put_pixel

x$a_imag_sub_image

x$a_imag_add_pixel

Graphics Routines
6.5 Image Data Structure

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

6-7

Graphics Routines
6.5 Image Data Structure

Table 6-8 Members of the Image Data Structure (VAX Binding)

Member Name

X$L_IMAG_WIDTH

X$L_IMAG_HEIGHT

X$L_IMAG_OFFSET

X$L_IMAG_FORMAT

X$A_IMAG_DATA

X$L_IMAG_BYTE_ORDER

X$L_IMAG_BITMAP _UNIT

X$L_IMAG_BITMAP _BIT_ORDER

X$L_IMAG_BITMAP _PAD

X$L_IMAG_DEPTH

X$L_IMAG_BYTES_PER_LINE

X$L_IMAG_BITS_PER_PIXEL

X$L_IMAG_RED_MASK

X$L_IMAG_GREEN_MASK

X$L_IMAG_BLUE_MASK

X$A_IMAG_OBDATA

X$A_IMAG_CREATE_IMAGE

X$A_IMAG_DESTROY _IMAGE

X$A_IMAG_GET _PIXEL

X$A_IMAG_PUT _PIXEL

X$A_IMAG_SUB_IMAGE

X$A_IMAG_ADD_PIXEL

Contents

Specifies the width of the image

Specifies the height of the image

Specifies the number of pixels offset in the x direction. Specifying an offset
permits the server to ignore the beginning of scan lines and rapidly display
images when ZPixmap format is used.

Specifies whether the data is stored in XYPixmap or ZPixmap format. The
following flags facilitate specifying data format:

Flag Name

x$c_xy _bitmap

x$c_xy _pixmap

x$c_z_pixmap

Description

A single bitmap representing one plane

A set of bitmaps representing individual planes

Data organized as a list of pixel values viewed as
a horizontal row

The address of the image data

Indicates whether the least significant or the most significant byte is first

Specifies whether the bitmap is organized in units of 8, 16, or 32 bits

Specifies whether the bitmap order is least or most signficant

Specifies whether padding in XV format or Z format should be done in
units of 8, 16, or 32 bits

The depth of the image

The bytes per line to be used as an accelerator

Indicates for Z format the number of bits per pixel

Specifies the red values for ZFormat

Specifies the green values for ZFormat

Specifies the blue values for ZFormat

A structure that contains object routines

A CREATE IMAGE routine

A DESTROY IMAGE routine

A GET PIXEL routine

A PUT IMAGE routine

A SUB IMAGE routine

An ADD PIXEL routine

The data structure for the MIT C binding is shown in Figure 6-10,
and information about members in the data structure is described in
Table 6-9.

6-8

Graphics Routines
6.5 Image Data Structure

Figure 6-10 Image Data Structure (MIT C Binding)

typedef struct_XImage{
int width,height;
int xoffset;

}XImage;

int format;
char *data;
int byte order;
int bitm2i"p_unit;
int bitmap_bit_order;
int bitmap_pad;
int depth;
int bytes per line;
int bits per pixel;
unsigned-long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
char *obdata;
struct funcs {

} f;

struct XImage *(*create image)();
int(*destroy_image) (); -
unsigned long(*get_pixel) ();
int(*put_pixel) ();
struct_Ximage*(*sub_image) ();
int (*add_pixel) ();

Table 6-9 Members of the Image Data Structure (MIT C Binding)

Member Name

width

height

offset

format

data

Contents

Specifies the width of the image in pixels.

Specifies the height of the image in pixels.

Specifies the number of bits offset in the x direction.
Specifying an offset permits the seNer to ignore the
beginning of scan lines and rapidly display images when
ZPixmap format is used.

Specifies whether the data is stored in XYPixmap or
ZPixmap format. The following flags facilitate specifying
data format:

Constant
Name

XYBitmap

XYPixmap

ZPixmap

Description

A single bitmap representing one plane

A set of bitmaps representing individual
planes

Data organized as a list of pixel values
viewed as a horizontal row

The address of the image data.

(continued on next page)

6-9

Graphics Rc;>utines
6.5 Image Data Structure

Table 6-9 (Cont.) Members of the Image Data Structure (MIT C Binding)

Member Name

byte_order

bitmap_unit

bitmap_bit_order

bitmap_pad

depth

bytes_per_line

bits_per_pixel

red_mask

green_mask

blue_mask

obdata

create_image

destroy _image

get_pixel

put_pixel

sub_image

add_pixel

6.6 Graphics Routines

Contents

Indicates whether the least significant or the most significant
byte is first. The following flags facilitate specifying byte
order:

Constant
Name

LSBFirst

MSBFirst

Description

Least significant byte first

Most significant byte first

Specifies whether the bitmap is organized in units of 8, 16,
or 32 bits (not used with ZPixmap).

Specifies whether the least significant or most significant bit
is first. The following flags facilitate specifying bitmap order:

Constant
Name

LSBFirst

MSBFirst

Description

Least significant byte first

Most significant byte first

Specifies whether scan line padding in XV format or Z
format should be done in units of 8, 16, or 32 bits.

Specifies the depth of the image.

Specifies the bytes per line to be used as an accelerator.

Indicates for ZFormat the number of bits per pixel.

Specifies red values for ZFormat.

Specifies green values for ZFormat.

Specifies blue values for ZFormat.

The address of a structure that contains object routines.

The address of a CREATE IMAGE routine.

The address of a DESTROY IMAGE routine.

The address of a GET PIXEL routine.

The address of a PUT PIXEL routine.

The address of a SUB IMAGE routine.

The address of an ADD PIXEL routine.

The following pages describe the Xlib graphics routines.

6-10

ADD PIXEL

VAX FORMAT

argument
information

Graphics Routines
ADD PIXEL

Increments each pixel in an image by a constant value.

X$ADD_PIXEL (ximage, value)

Argument Usage Data Type Access Mechanism

ximage record x$image read reference

value longword longword read reference

MIT C FORMAT XAddPixel (ximage, value)

argument
information

ARGUMENTS

int XAddPixel(ximage, value)
XImage *ximage;
int value;

ximage
The image data structure which contains the image to be changed. For
more information on the image data structure, see Section 6.5.

value
The constant value to add to each pixel.

DESCRIPTION ADD PIXEL adds a constant value to each pixel in an image.

6-11

Graphics Routines
CLEAR AREA

CLEAR AREA

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

6-12

Clears a rectangular area in a window.

X$CLEAR AREA
(display, -window_id, x_coord, y_coord, width, height,
exposures)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

width longword uns longword read reference

height longword uns longword read reference

exposures Boolean uns longword read reference

XClearArea
(display, window_id, x_coord, y_coord, width, height,
exposures)

XClearArea(display, window_id, x_coord, y_coord, width, height,
exposures)

Display *display;
Window window_id;
int x coord, y coord;
unsigned int width, height;
Bool exposures;

display
The display information originally returned by OPEN DISPLAY.

window id
The identifier of the window where an area will be cleared. If the window
specified is an input-only window, an error will occur.

x_coord
The x-coordinate of the rectangle to be cleared. This coordinate is relative
to the origin of the window. The x- and y-coordinates define the upper left
corner of the rectangle.

DESCRIPTION

y_coord

Graphics Routines
CLEAR AREA

The y-coordinate of the rectangle to be cleared. This coordinate is relative
to the origin of the window. The x- and y-coordinates define the upper left
corner of the rectangle.

width
The width, in pixels, of the rectangle to be cleared. The width and height
determine the area of the rectangle to be cleared.

If the value of width is zero, it is assigned a default value equivalent to
the current width of the window minus the value of the x-coordinate.

height
The height, in pixels, of the rectangle to be cleared. The width and height
determine the area of the rectangle to be cleared.

If the value of height is zero, it is assigned a default value equivalent to
the current height of the window minus the value of the y-coordinate.

exposures
The flag that specifies whether or not one or more exposure events are
generated. When true, one or more exposure events are generated for
regions of the rectangle that are either visible or are being retained in a
backing store. When false, no exposure events are generated.

CLEAR AREA clears a rectangular area in a specified window.

The rectangle is defined by the arguments x_coord, y _coord, width, and
height and by the window origin coordinates. The x- and y-coordinates
are relative to the window origin coordinates and define the upper left
corner of the rectangle. The width and height specify the area. For
example, if you specify the width and height to be 10 and 10, the rectangle
to be cleared would be as shown in Figure 6-11.

6-13

Graphics Routines
CLEAR AREA

XERRORS

6-14

Figure 6-11 Rectangular Area Cleared

Drawable Origin (10, 10)

(20,20) D 1Height(10)

• •
Width (10)

ZK-0015A-GE

The area cleared is replaced by a background. If the background has a
specific tile pattern, the rectangular area is tiled with a plane mask of all
ones and a function of GXcopy. If the background is none, the contents of
the cleared rectangular area do not change.

To clear the entire window, use CLEAR WINDOW.

VAX c Description

X$C_BAD_MATCH Bad Match Possible causes are as follows:

In a graphics request, the root and depth
of the graphics context do not match
those of the drawable.

An input-only window is used as a
drawable.
One argument or pair of arguments has
the correct type and range but fails to
match in some other way required by
the request.

An input-only window lacks this attribute.

X$C_BAD_VALUE BadValue Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument,
the full range defined by the argument's type
is accepted. Any argument defined as a set
of alternatives can generate this error.

X$C_BAD_ BadWindow A value that you specified for a window
WINDOW argument does not name a defined window.

Graphics Routines
CLEAR WINDOW

CLEAR WINDOW

Clears an entire window.

VAX FORMAT X$CLEAR_WINDOW (display, window_id)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

window_id identifier uns longword read reference

MIT C FORMAT XClearWindow (display, window_id)

argument
information

ARGUMENTS

XClearWindow(display, window_id)
Display *display;
Window window_id;

display
The display information originally returned by OPEN DISPLAY.

window_id
The identifier of the window to be cleared.

DESCRIPTION CLEAR WINDOW clears the entire window area. The identifier of the
window was originally returned by CREATE SIMPLE WINDOW or
CREATE WINDOW.

The area cleared is replaced by the window's background. If the
background has a defined tile, the window is tiled with a plane mask of all
ones and a function of GXcopy. If the background is none, the contents of
the cleared window does not change.

To clear an area within a window, use CLEAR AREA.

6-15

Graphics Routines
CLEAR WINDOW

XERRORS

6-16

VAX

X$C_BAD_MATCH

X$C_BAD_VALUE

X$C_BAD_
WINDOW

c
Bad Match

BadValue

BadWindow

Description

Possible causes are as follows:

In a graphics request, the root and depth
of the graphics context do not match
those of the drawable.

An input-only window is used as a
drawable.

One argument or pair of arguments has
the correct type and range but fails to
match in some other way required by
the request.
An input-only window lacks this attribute.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument,
the full range defined by the argument's type
is accepted. Any argument defined as a set
of alternatives can generate this error.

A value that you specified for a window
argument does not name a defined window.

COPY AREA

VAX FORMAT

argument
information

MITCFORMAT

argument
information

Graphics Routines
COPY AREA

Copies a specified rectangular area from one window or pixmap (drawable) to
another drawable.

X$COPY_AREA
(display, src_drawable_id, dst_drawable_id, gc_id,
src_x_coord, src_y_coord, width, height, dst_x_coord,
dst_y _ coord)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

src_drawable_id identifier uns longword read reference

dst_drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

src_x_coord longword longword read reference

src_y_coord longword longword read reference

width longword uns longword read reference

height longword uns longword read reference

dst_x_coord longword longword read reference

dst_y_coord longword longword read reference

XCopyArea
(display, src_drawable_id, dst_drawable_id, gc_id,
src_x_coord, src_y_coord, width, height, dst_x_coord,
dst_y _ coord)

XCopyArea(display, src_drawable_id, dst drawable id, gc id,
src_x_coord, src_y_coord, width, height, dst_~_coord,
dst y coord)

Display-*display;
Drawable src drawable id, dst drawable id;
GC gc_id; - - - -
int src x coord, src y coord;
unsigned int width, height;
int dst_x_coord, dst_y_coord;

6-17

Graphics Routines
COPY AREA

ARGUMENTS display
The display information originally returned by OPEN DISPLAY.

src drawable id
The identifier of the-source window or pixmap (drawable) containing the
rectangular area to be copied. The drawable identifier can be either a
window or pixmap identifier. The source drawable must be of the same
root and depth as the destination drawable.

dst drawable id
The identifier of the destination window or pixmap (drawable) where the
rectangular area will be copied to. The drawable identifier can be either
a window or pixmap identifier. The destination drawable must be of the
same root and depth as the source drawable.

gc_id
The identifier of the graphics context associated with the drawables.

src_x_coord
The x-coordinate of the rectangle to be copied from the source drawable.
The x-coordinate is relative to the origin of the drawable. The x- and
y-coordinates define the upper left corner of the rectangle.

src_y_coord
They-coordinate of the rectangle to be copied from the source drawable.
The y-coordinate is relative to the origin of the drawable. The x- and
y-coordinates define the upper left corner of the rectangle.

width
The width, in pixels, of the rectangle. The width and height define the
area of the rectangle to be copied. The rectangle copied to the destination
drawable also has the same dimensions.

height
The height, in pixels, of the rectangle. The width and height define the
area of the rectangle to be copied. The rectangle copied to the destination
drawable also has the same dimensions.

dst_x_coord
The x-coordinate of the destination drawable where the rectangle will be
copied to. The x-coordinate is relative to the origin of the drawable. The
x- and y-coordinates define the upper left corner of the rectangle.

dst_y_coord
The y-coordinate of the destination drawable where the rectangle will be
copied to. The y-coordinate is relative to the origin of the drawable. The
x- and y-coordinates define the upper left corner of the rectangle.

DESCRIPTION COPY AREA copies a rectangular area from one window or pixmap
(drawable) to another drawable. The drawables are specified by their
identifiers. If the drawables are pixmaps, the identifiers were originally
returned by CREATE PIXMAP. If the drawables are windows, the
identifiers were originally returned by any CREATE WINDOW request.

6-18

XERRORS

Graphics Routines
COPY AREA

The rectangular area to be copied is specified as follows:

• The starting point is specified by x- and y-coordinates in src_x_coord
and src_y _coord. These coordinates define the upper left corner of
the rectangle, in relation to the origin of the drawable.

• The size of the rectangle is specified by width and height.

The rectangular area copied is specified as follows:

• The place where the copying starts is specified by x- and y-coordinates
in dst_x_coord and dst_y _coord. These coordinates define the upper
left corner of the rectangle, in relation to the origin of the drawable.

• The size of the rectangle is defined by width and height.

COPY AREA uses the graphics context to define how copying is done. The
following members are used:

• Function

• Plane Mask

• Subwindow Mode

• Graphics Exposures

• Clip X Origin

• Clip Y Origin

• Clip Mask

COPY AREA combines the specified rectangle from the source with the
specified rectangle of the destination. If the regions of the source rectangle
are obscured and have not been retained by the server, or if regions outside
the boundaries of the source drawable are specified, the corresponding
regions of the destination are tiled with the plane mask member of all
ones and function GXcopy with that background, unless the destination
drawable is a window with a background of none.

When the graphics exposure member in the graphics context is true,
graphics exposure events for the corresponding destination regions are
generated. If the graphics exposure member is true, but no regions are
exposed, then a no expose event is generated.

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

6-19

Graphics Routines
COPY AREA

VAX

X$C_BAD_MATCH

6-20

c

Bad Match

Description

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.

An input-only window is used as a
drawable.

One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Graphics Routines
COPY PLANE

COPY PLANE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

Copies a rectangular area from one plane of a window or pixmap (drawable)
to another drawable.

X$COPY PLANE
(display, src_drawable_id, dst_drawable_id, gc_id,
src_x_coord, src_y_coord, width, height, dst_x_coord,
dst_y_coord, plane)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

src_ drawable _id identifier uns longword read reference

dst_drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

src_x_coord longword longword read reference

src_y_coord longword longword read reference

width longword uns longword read reference

height longword uns longword read reference

dst_x_coord longword longword read reference

dst_y _coord longword longword read reference

plane mask_longword uns longword read reference

XCopyPlane
(display, src_drawable_id, dst_drawable_id, gc_id,
src_x_coord, src_y_coord, width, height, dst_x_coord,
dst_y _ coord, plane)

XCopyPlane(display, src_drawable_id, dst drawable id, gc id,
src_x_coord, src_y_coord, width, height, dst_x_coord,
dst_y_coord, plane)

Display *display;
Drawable src drawable id, dst drawable id;
GC gc id; - - - -
int s~c x coord, src y coord;
unsigned Int width, height;
int dst x coord, dst y coord;
unsigned long plane;- -

6-21

Graphics Routines
COPY PLANE

ARGUMENTS

6-22

display
The display information originally returned by OPEN DISPLAY.

src drawable id
The identifier of the window or pixmap (drawable) containing the bit
plane to be copied. The drawable identifier can be either a window or
pixmap identifier. The source drawable must be of the same root, but not
necessarily of the same depth, as the destination drawable.

dst drawable id
The identifier of th;-window or pixmap (drawable) where the bit plane will
be copied to. The drawable identifier can be either a window or pixmap
identifier. The destination drawable must be of the same root, but not
necessarily of the same depth, as the source drawable.

gc_id
The identifier of the graphics context associated with the drawables.

src x coord
The ~coordinate of the rectangle to be copied from the plane of the source
drawable. The x-coordinate is relative to the origin of the drawable. The
x- and y-coordinates define the upper left corner of the rectangle.

src_y_coord
The y-coordinate of the rectangle to be copied from the plane of the source
drawable. The y-coordinate is relative to the origin of the drawable. The
x- and y-coordinates define the upper left corner of the rectangle.

width
The width, in pixels, of the rectangle. The width and height define the
area of the rectangle to be copied. The rectangle copied to the destination
drawable also has the same dimensions.

height
The height, in pixels, of the rectangle. The width and height define the
area of the rectangle to be copied. The rectangle copied to the destination
drawable also has the same dimensions.

dst x coord
The x-coordinate within a plane of the destination drawable where the
rectangle will be copied to. The x-coordinate is relative to the origin of
the drawable. The x- and y-coordinates define the upper left corner of the
rectangle.

dst_y_coord
The y-coordinate within a plane of the destination drawable where the
rectangle will be copied to. They-coordinate is relative to the origin of
the drawable. The x- and y-coordinates define the upper left corner of the
rectangle.

plane
A bit mask that specifies which plane to copy from. Exactly one bit is
set to 1. The least significant bit represents the first plane; increasingly
significant bits represent subsequent planes (in order).

DESCRIPTION

Graphics Routines
COPY PLANE

COPY PLANE copies a rectangular area from a plane of a window or
pixmap (drawable) to another drawable. The drawables are specified
by their identifiers. If the drawables are pixmaps, the identifiers were
originally returned by CREATE PIXMAP. If the drawables are windows,
the identifiers were originally returned by CREATE SIMPLE WINDOW or
CREATE WINDOW.

The rectangular area to be copied is specified as follows:

• The starting point is specified by x- and y-coordinates in src_x_coord
and src_y _coord. These coordinates define the upper left corner of
the rectangle, in relation to the origin of the drawable.

• The size of the rectangle is defined by width and height.

The rectangular area copied is specified as follows:

• The place where the copying starts is specified by x- and y-coordinates
in dst_x_coord and dst_y _coord. These coordinates define the upper
left corner of the rectangle, in relation to the origin of the drawable.

• The size of the rectangle is defined by width and height.

COPY PLANE uses the graphics context to define how copying is done.
The following members are used:

• Function

• Plane Mask

• Foreground

• Background

• Subwindow Mode

• Graphics Exposures

• Clip X Origin

• Clip Y Origin

• Clip Mask

For more information about the graphics context data structure and each
of its members, see Section 5.1.

COPY PLANE combines the rectangular area of the plane from the source
drawable with the foreground/background pixels in the graphics context
to form a pixmap of the same depth as the destination drawable. The
rectangular area of the plane is treated similarly to an opaque stippled fill.
All ones are replaced by the foreground color, and all zeros are replaced by
the background color. The equivalent of a call to COPY AREA is performed
with all the same exposure semantics.

6-23

Graphics Routines
COPY PLANE

XERRORS

6-24

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

X$C_BAD_VALUE BadValue

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

Graphics Routines
CREATE IMAGE

CREATE IMAGE

Specifies the size of the image and allocates sufficient memory for the image
data structure.

VAX FORMAT status_return = X$CREATE_IMAGE

argument
information

(display, visuaLid, depth, image_format, offset,
data, width, height, bitmap_pad, bytes_per_line,
ximage_return)

Argument Usage Data Type Access Mechanism

status_return longword longword write value

display identifier uns longword read reference

visual_id identifier uns longword read reference

depth longword longword read reference

image_format longword longword read reference

offset longword longword read reference

data char string char string read descriptor

width longword uns longword read reference

height longword uns longword read reference

bitmap_pad longword longword read reference

bytes_per_line longword longword read reference

ximage_return record x$image write reference

MIT C FORMAT ximage_return = XCreatelmage
(display, visuaLid, depth, image_format, offset, data,
width, height, bitmap_pad, bytes_per_line)

6-25

Graphics Routines
CREATE IMAGE

argument
information

RETURNS

ARGUMENTS

6-26

XImage *XCreateimage(display, visual_id, depth, image_format,
offset, data, width, height, bitmap_pad,
bytes_per_line)

Display *display;
Visual *visual id;
unsigned int depth;
int image_format;
int off set;
char *data;
unsigned int width;
unsigned int height;
int bitmap pad;
int bytes_i?er_line;

status_return (VAX only)
Specifies whether or not the return completed successfully.

ximage_return (MIT Conly)
A pointer to the newly created image.

display
The display information originally returned by OPEN DISPLAY.

visual id
A pointer to a visual structure. For information about this visual
structure, see the description of the DEFAULT VISUAL routine in
Chapter 2.

depth
The depth of the image that will be created and referenced by the image
data structure.

image_format
The format of the image that will be created and referenced by the image
data structure. The predefined values for format are as follows:

VAX

X$C_BITMAP

X$C_XY _PIXMAP

X$C_Z_PIXMAP

c

Bitmap

XYPixmap

ZPixmap

Bitmap image

XV pixmap format image

Z pixmap format image

Other values specified in this argument are not valid.

offset
The number of pixels beyond the first address of a scan line where an
image actually begins. The offset argument is useful when the image is
not on an addressable boundary.

data
A pointer to the data that defines the image.

DESCRIPTION

XERRORS

width

Graphics Routines
CREATE IMAGE

The width, in pixels, of the image. The width and height determine the
area of the image.

height
The height, in pixels, of the image. The width and height determine the
area of the image.

bitmap_pad
The space allocated in memory for each scan line. This value specifies the
number of bits to multiply by bytes_per_line. The value of the
bitmap_pad argument must be 8, 16, or 32.

bytes_per_line
The number of bytes in a scan line. When zero, it is assumed that the
scan lines are contiguous in memory and the number of bytes per line will
then be calculated for you.

ximage_return
A pointer to the newly created image.

CREATE IMAGE allocates memory for the image data structure. It
initializes the image data structure with the values you specify in the
arguments. A pointer to the image data structure is returned. Use this
pointer in subsequent routines to reference the image data structure.

CREATE IMAGE does not allocate space for the image itself.

The red, green, and blue mask values stored in the image data structure
are relevant only for z pixmap format images. If you are working with the
z pixmap format, these values are derived from the visual type specified in
visual_id.

VAX C

X$C_BAD_ALLOC BadAlloc

X$C_BAD_COLOR BadColor

X$C_BAD_ BadCursor
CURSOR

Description

The server did not allocate the requested
resource for any cause.

A value that you specified for a color map
argument does not name a defined color
map.

A value that you specified for a cursor
argument does not name a defined cursor.

6-27

Graphics Routines
CREATE IMAGE

VAX

X$C_BAD_MATCH

X$C_BAD_PIXMAP

X$C_BAD_VALUE

X$C_BAD_
WINDOW

6-28

c

Bad Match

Bad Pixmap

BadValue

BadWindow

Description

Possible causes are as follows:

In a graphics request, the root and depth
of the graphics context do not match
those of the drawable.

An input-only window is used as a
drawable.

One argument or pair of arguments has
the correct type and range but fails to
match in some other way required by
the request.

An input-only window lacks this attribute.

A value that you specified for a pixmap
argument does not name a defined pixmap.

Some numeric values fall outside the range
of values accepted by the request. Unless a
specific range is specified for an argument,
the full range defined by the argument's type
is accepted. Any argument defined as a set
of alternatives can generate this error.

A value that you specified for a window
argument does not name a defined window.

Graphics Routines
DESTROY IMAGE

DESTROY IMAGE
Deallocates the memory associated with an image structure.

VAX FORMAT status_return = X$DESTROY _IMAGE (ximage)

argument
information

Argument Usage Data Type Access Mechanism

status_return longword longword write value

ximage record x$image read reference

MIT C FORMAT status_return = XDestroylmage (ximage)

argument
information

RETURNS

ARGUMENTS

DESCRIPTION

int *XDestroyimage(ximage)
XImage *ximage;

status return
A return value that specifies whether or not the routine completed
successfully.

ximage
A pointer to the image data structure that you want to destroy.

DESTROY IMAGE deallocates the memory associated with an image data
structure.

When the image specified by ximage was created by CREATE IMAGE,
GET IMAGE, or SUB IMAGE, the destroy procedure that DESTROY
IMAGE calls frees both the image structure and the data pointed to by the
image structure.

6-29

Graphics Routines
DRAW ARC

DRAW ARC

Draws one arc in the specified window or pixmap.

VAXFORMAT X$DRAW_ARC

argument
information

(display, drawable_id, gc_id, x_coord, y_coord, width,
height, angle 1, angle2)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

width longword uns longword read reference

height longword uns longword read reference

angle1 longword longword read reference

angle2 longword longword read reference

MIT C FORMAT XDrawArc

argument
information

ARGUMENTS

6-30

(display, drawable_id, gc_id, x_coord, y_coord, width,
height, angle 1, angle2)

XDrawArc(display, drawable id, gc id, x_coord, y_coord, width,
height, anglel, angle2) -

Display *display;
Drawable drawable_id;
GC gc_id;
int x_coord, y_coord;
unsigned int width, height;
int anglel, angle2;

display
The display information originally returned by OPEN DISPLAY.

drawable_id
The identifier of the window or pixmap (drawable) to draw the arc in. The
drawable identifier can be either a window or pixmap identifier. If the
drawable is a window, the identifier was originally returned by CREATE

DESCRIPTION

Graphics Routines
DRAW ARC

SIMPLE WINDOW or CREATE WINDOW. If the drawable is a pixmap,
the identifier was originally returned by CREATE PIXMAP.

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by DEFAULT GC or CREATE GC.

x coord
The x-coordinate of the rectangle used to define the arc. This coordinate is
relative to the origin of the drawable. The x- and y-coordinates define the
upper left corner of the rectangle.

y_coord
The y-coordinate of the rectangle used to define the arc. This coordinate is
relative to the origin of the drawable. The x- and y-coordinates define the
upper left corner of the rectangle.

width
The width, in pixels, of the rectangle used to define the arc. The width
and height are the major and minor axes of the arc. If one of the axes is
specified as zero, a horizontal or vertical line is drawn.

height
The height, in pixels, of the rectangle used to define the arc. The width
and height are the major and minor axes of the arc. If one of the axes is
specified as zero, a horizontal or vertical line is drawn.

angle1
The angle to specify the beginning of the arc relative to the three o'clock
position from the center. This value is in degrees, scaled by 64 with
positive indicating counterclockwise motion and negative indicating
clockwise motion.

angle2
The angle to specify the path and extent of the arc relative to the start
of the arc. This value is in degrees, scaled by 64 with positive indicating
counterclockwise motion and negative indicating clockwise motion.

DRAW ARC draws one arc in the specified drawable. To specify the
dimensions of an arc, follow this procedure:

• Specify a rectangle that represents the size of the ideal center path of
an ellipse from which the arc will be cut. The x_coord and y _coord
arguments specify the upper left corner of the rectangle. The width
and height arguments specify the size of the rectangle.

• Specify where the arc should start in relation to the three o'clock
position within the ellipse (in anglel).

• Specify the extent or angular length of the arc, relative to the start of
the arc (in angle2).

6-31

Graphics Routines
DRAW ARC

6-32

Figure 6-12 illustrates the angles that specify an ellipse.

Figure 6-12 Specifying an Arc

Height

Angle 2:
Relative to
Angle 1

Angle 1:
Relative to Three
O'clock Position

i.c:;;;...------11---- Three O'clock
Position

Width

ZK-0018A-GE

DRAW ARC uses the following graphics context members:

• Function

• Plane Mask

• Subwindow Mode

• Graphics Exposures

• Clip X Origin

• Clip Y Origin

• Clip Mask

DRAW ARC also uses the following mode-dependent members:

• Foreground

• Background

• Tile

• Stipple

• Ts x origin

• Ts y origin

• Dash offset

• Dash list

XERRORS

Graphics Routines
DRAW ARC

For more information about the graphics context data structure and each
of its members, see Section 5.1.

When you want to draw more than one arc, use DRAW ARCS. Using
DRAW ARC repeatedly is less efficient than using DRAW ARCS.

For information about filling an arc, see the descriptions of the FILL ARC
and FILL ARCS routines.

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

6-33

Graphics Routines
DRAW ARCS

DRAW ARCS

Draws more than one arc in the specified window or pixmap.

VAXFORMAT X$DRAW_ARCS
(display, drawable_id, gc_id, arcs, num_arcs)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

arcs array x$arc read reference

num_arcs longword longword read reference

MIT C FORMAT XDrawArcs

argument
information

ARGUMENTS

6-34

(display, drawable_id, gc_id, arcs, num_arcs)

XDrawArcs(display, drawable id, gc_id, arcs, num_arcs)
Display *display; -
Drawable drawable id;
GC gc_id; -
XArc *arcs;
int num_arcs;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the window or pixmap (drawable) to draw the arcs in.
The drawable identifier can be either a window or pixmap identifier.

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by DEFAULT GC or CREATE GC.

arcs
A pointer to an array of arc data structures, where each element defines
one arc to be drawn. The length of the array is specified by num_arcs.

DESCRIPTION

Graphics Routines
DRAW ARCS

num arcs
The number of arcs to be drawn. This value specifies the length of the
array arcs.

DRAW ARCS draws more than one arc in the specified drawable. If the
drawable is a window, the identifier was originally returned by CREATE
SIMPLE WINDOW or CREATE WINDOW. If the drawable is a pixmap,
the identifier was originally returned by CREATE PIXMAP.

The arcs are drawn in the order they are listed in the array arcs. For any
given arc drawn with nonzero line widths, no pixel is drawn more than
once. If arcs intersect, pixels are drawn multiple times. If the last point in
one arc coincides with the first point in the following arc, the two arcs will
join according to the join style. Angles are computed based on a coordinate
system (before skewing either axis to form an ellipse).

Specify the position and size of one arc in one arc data structure.

For information about the arc data structure, see Section 6.4.

DRAW ARCS uses the following members of the graphics context:

• Function

• Plane Mask

• Join Style

• Subwindow Mode

• Cap Style

• Graphics Exposures

• Clip X Origin

• Clip Y Origin

• Clip Mask

DRAW ARCS also uses the following mode-dependent members:

• Foreground

• Background

• Tile

• Stipple

• Ts x origin

• Ts y origin

• Dash offset

• Dash list

For more information about the graphics context data structure and its
members, see Section 5.1.

6-35

Graphics Routines
DRAW ARCS

XERRORS

6-36

For more information about specifying the dimensions of an arc, or for
information on drawing just one arc, refer to the DRAW ARC routine.

For information about filling an arc, see the descriptions of the FILL ARC
and FILL ARCS routines.

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

DRAW LINE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Graphics Routines
DRAW LINE

Draws one line between two points in the specified window or pixmap.

X$DRAW_LINE
(display, drawable_id, gc_id, x1_coord, y1_coord,
x2_coord, y2_coord)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

x1_coord longword longword read reference

y1_coord longword longword read reference

x2_coord longword longword read reference

y2_coord longword longword read reference

XDrawline
(display, drawable_id, gc_id, x1_coord, y1_coord,
x2_coord, y2_coord)

XDrawLine(display, drawable_id, gc_id, xl_coord, yl_coord,
x2_coord, y2_coord)

Display *display;
Drawable drawable id;
GC gc_id; -
int xl_coord, yl_coord, x2_coord, y2_coord;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the window or pixmap (drawable) to draw the line in. The
drawable identifier can be either a window or pixmap identifier.

gc_id
The identifier of the graphics context associated with the drawable. The
identifier of the graphics context was originally returned by DEFAULT GC
or CREATE GC.

6-37

Graphics Routines
DRAW LINE

DESCRIPTION

6-38

x1 coord
Th;-x-coordinate of the first point. This coordinate is relative to the origin
of the drawable. The xl- and yl-coordinates define the first point of the
line.

y1_coord
The y-coordinate of the first point. This coordinate is relative to the origin
of the drawable. The xl- and yl-coordinates define the first point of the
line.

x2 coord
Th;-x-coordinate of the second point. This coordinate is relative to the
origin of the drawable. The x2- and y2-coordinates define the second point
of the line.

y2_coord
The y-coordinate of the second point. This coordinate is relative to the
origin of the drawable. The x2- and y2-coordinates define the second point
of the line.

DRAW LINE draws one line between the two specified points on a
drawable. If the drawable is a window, the identifier was originally
returned by CREATE WINDOW or CREATE SIMPLE WINDOW. If the
drawable is a pixmap, the identifier was originally returned by CREATE
PIXMAP.

DRAW LINE uses the following graphics context members to draw the line
in the drawable:

• Function

• Plane Mask

• Subwindow Mode

• Graphics Exposures

• Clip X Origin

• Clip Y Origin

• Clip Mask

DRAW LINE also uses the following mode-dependent members:

• Foreground

• Background

• Tile

• Stipple

• Ts x origin

• Ts y origin

• Dash offset

• Dash list

XERRORS

Graphics Routines
DRAW LINE

For more information about the graphics context data structure and its
members, see Section 5.1.

When you want to draw more than one line, use DRAW LINES to draw
connected lines or DRAW SEGMENTS to draw unconnected lines. Using
DRAW LINE repeatedly is less efficient than using DRAW LINES or
DRAW SEGMENTS.

VAX C

X$C_BAD_DRAWABLE BadDrawable

X$C_BAD_GC BadGC

X$C _BAD _MATCH Bad Match

Oe$cription

A value that you specified for a drawable
argument does not name a defined
window or pixmap.

A value that you specified for a graphics
context argument does not name a
defined graphics context.

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

6-39

Graphics Routines
DRAW LINES

DRAW LINES

Draws more than one connected line in the specified drawable.

VAX FORMAT X$DRAW LINES

argument
information

(display, drawable_id, gc_id, points, num_points,
line_mode)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

points array x$point read reference

num_points longword longword read reference

line_mode longword longword read reference

MIT C FORMAT XDrawlines

argument
information

ARGUMENTS

6-40

(display, drawable_id, gc_id, points, num_points,
line_mode)

XDrawLines(display, drawable_id, gc_id, points, num_points,
line_mode)

Display *display;
Drawable drawable_id;
GC gc_id;
XPoint *points;
int num_points;
int line_mode;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the window or pixmap (drawable) to draw the lines in.
The drawable identifier can be either a window or pixmap identifier.

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by DEFAULT GC or CREATE GC.

DESCRIPTION

points

Graphics Routines
DRAW LINES

A pointer to an array of point data structures where each element defines
a single point. The length of the array is specified by num_points.

num_points
The number of points to be drawn. This value defines the length of the
array points.

line mode
The coordinate mode of the points. The coordinates of the points can be
relative to the drawable origin or to the previous point. The predefined
values for mode are as follows:

VAX C Description

X$C _ COORD _MODE CoordModeOrigin The point coordinates are relative to
the drawable origin.

X$C _ COORD _ CoordModePrevious
MODE_PREVIOUS

The first point is relative to
the drawable origin and each
subsequent point is relative to
the point preceding it.

Other values specified in this argument are not valid.

DRAW LINES draws more than one line in the specified drawable. If the
drawable is a window, the identifier was originally returned by CREATE
SIMPLE WINDOW or CREATE WINDOW. If the drawable is a pixmap,
the identifier was originally returned by CREATE PIXMAP.

DRAW LINES draws lines from one point in the array points to the next
point in the array. The lines are drawn in the same order as the points
are listed in the array. For any given line with a nonzero width, no pixel
is drawn more than once. If zero width (this) lines intersect, pixels are
drawn multiple times. If wide lines intersect, the intersecting pixels are
drawn only once. If the first and last points coincide, the first and last
lines will join according to the join style specified in the graphics context.

DRAW LINES uses the following members of the graphics ccmtext:

• Function

• Plane Mask

• Subwindow Mode

• Graphics Exposures

• Clip X Origin

• Clip Y Origin

• Clip Mask

DRAW LINES also uses the following mode-dependent members:

• Foreground

• Background

6-41

Graphics Routines
DRAW LINES

6-42

• Tile

• Stipple

• Ts x origin

• Ts y origin

• Dash offset

• Dash list

For more information about the graphics context data structure and its
members, see Section 5.1.

The points can be drawn relative to the origin or relative to the previous
point. Refer to Figure 6-13 for an illustration of how the mode changes
the position of the points.

Graphics Routines
DRAW LINES

Figure 6-13 Lines Drawn in Different Line Modes

Values supplied
to the routine:
Point 1 =(5,5)
Point 2=(10,10)
Point 3=(15, 15)

Values supplied
to the routine:
Point 1 =(5,5)
Point 2=(10, 10)
Point 3=(15, 15)

Coordinate Mode Origin

Drawable Origin (5,5)

Point 3 (20,20)

Coordinate Mode Previous

Drawable Origin (5,5)

Point 3 (35,35)

ZK-0020A-GE

When you want to draw a series of unconnected lines, use DRAW
SEGMENTS. When you want to draw just one line, use DRAW LINE.

6-43

Graphics Routines
DRAW LINES

XERRORS

6-44

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

X$C_BAD_VALUE Bad Value

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

Graphics Routines
DRAW POINT

DRAW POINT

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Draws a point in the specified window or pixmap.

X$DRAW_POINT
(display, drawable_id, gc_id, x_coord, y_coord)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

XDrawPoint
(display, drawable_id, gc_id, x_coord, y_coord)

XDrawPoint(display, drawable id, gc_id, x_coord, y_coord)
Display *display; -
Drawable drawable_id;
GC gc id;
int x=coord, y_coord;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the window or pixmap (drawable) where the point will
be drawn. The drawable identifier can be either a window or pixmap
identifier.

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by CREATE GC.

x_coord
The x-coordinate of the drawable where the point will be drawn.

y_coord
The y-coordinate of the drawable where the point will be drawn.

6-45

Graphics Routines
DRAW POINT

DESCRIPTION DRAW POINT draws one point in the specified drawable. If the drawable
is a window, the identifier was originally returned by CREATE SIMPLE
WINDOW or CREATE WINDOW. If the drawable is a pixmap, the
identifier was originally returned by CREATE PIXMAP. The identifier

XERRORS

6-46

of the graphics context was originally returned by CREATE GC.

DRAW POINT uses the following graphics context members to draw the
point in the drawable:

• Function

• Plane Mask

• Foreground

• Subwindow Mode

• Clip X Origin

• Clip Y Origin

• Clip Mask

For more information about the graphics context data structure and its
members, see Section 5.1.

DRAW POINT is not affected by the tile or stipple pattern in the graphics
context.

When you want to draw more than one point, use DRAW POINTS. Using
DRAW POINT repeatedly is less efficient than using DRAW POINTS.

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Graphics Routines
DRAW POINTS

DRAW POINTS

Draws more than one point in the specified drawable.

VAX FORMAT X$DRAW POINTS

argument
information

(display, drawable_id, gc_id, points, num_points,
poinLmode)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

points array x$point read reference

num_points longword longword read reference

point_ mode longword longword read reference

MIT C FORMAT XDrawPoints

argument
information

ARGUMENTS

(display, drawable_id, gc_id, points, num_points,
poinLmode)

XDrawPoints(display, drawable_id, gc_id, points, num_points,
point mode)

Display *display;
Drawable drawable id;
GC gc id; -
XPoint *points;
int num_points;
int point_mode;

display
The display information originally returned by OPEN DISPLAY.

drawable_id
The identifier of the window or pixmap (drawable) where the points will
be drawn. The drawable identifier can be either a window or pixmap
identifier. If the drawable is a window, the identifier was originally
returned by any CREATE WINDOW request. If the drawable is a pixmap,
the identifier was originally returned by CREATE PIXMAP.

6-47

Graphics Routines
DRAW POINTS

DESCRIPTION

6-48

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by DEFAULT GC or CREATE GC.

points
A pointer to an array of point data structures where each element defines
a single point. The length of the array is specified by num_points.

num_points
The number of points to be drawn. This value defines the length of the
array points.

point_ mode
The coordinate mode of the points. The coordinates of the points can
be relative to the drawable origin or relative to the previous point. The
predefined values for point_mode are as follows:

VAX

X$C_COORD_
MODE_ ORIGIN

X$C_COORD_
MODE_PREVIOUS

c
CoordModeOrigin

CoordModePrevious

Description

The point coordinates are relative to
the drawable origin.

The first point is relative to
the drawable origin and each
subsequent point is relative to
the point preceding it.

Other values specified in this argument are not valid.

DRAW POINTS draws more than one point on the specified drawable.

You specify the x- and y-coordinates in a point data structure for each
point you want to draw. The point data structures are stored in the array
points.

For more information about the point data structure, see Section 6.1.

DRAW POINTS uses the following members of the graphics context:

• Function

• Plane Mask

• Foreground

• Subwindow Mode

• Clip X Origin

• Clip Y Origin

• Clip Mask

For more information about the graphics context data structure and its
members, see Section 5.1.

Graphics Routines
DRAW POINTS

The points can be drawn relative to the origin or relative to the previous
point. Refer to Figure 6-14 for an illustration of how the mode changes
the position of the points.

Figure 6-14 Points Drawn in Different Coordinate Modes

Values supplied
to the routine:
Point 1 =(5,5)
Point 2=(10, 10)
Point 3=(15, 15)

Values supplied
to the routine:
Point 1 =(5,5)
Point 2=(10, 10)
Point 3=(15, 15)

Coordinate Mode Origin

Drawable Origin (5,5)

• Point 1 (10,10)

• Point 2 (15,15)

• Point 3 (20,20)

Coordinate Mode Previous

Drawable Origin (5,5)

• Point 1 (10, 10)

• Point 2 (20,20)

• Point 3 (35,35)

ZK-0019A-GE

When you want to draw just one point, use DRAW POINT.

6-49

Graphics Routines
DRAW POINTS

XERRORS

6-50

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

X$C_BAD_VALUE BadValue

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

Graphics Routines
DRAW RECTANGLE

DRAW RECTANGLE

Draws the outline of one rectangle in the specified drawable.

VAXFORMAT X$DRAW_RECTANGLE

argument
information

(display, drawable_id, gc_id, x_coord, y_coord, width,
height)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

width longword uns longword read reference

height longword uns longword read reference

MIT C FORMAT XDrawRectangle

argument
information

ARGUMENTS

(display, drawable_id, gc_id, x_coord, y_coord, width,
height)

XDrawRectangle(display, drawable_id, gc_id, x_coord, y_coord,
width, height)

Display *display;
Drawable drawable id;
GC gc_id; -
int x coord, y coord;
unsigned int width, height;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the window or pixmap (drawable) to draw the rectangle
in. The drawable identifier can be either a window or a pixmap identifier.
If the drawable is a window, the identifier was originally returned by any
CREATE WINDOW request. If the drawable is a pixmap, the identifier
was originally returned by CREATE PIXMAP.

6-51

Graphics Routines
DRAW RECTANGLE

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by DEFAULT GC or CREATE GC.

x coord
The x-coordinate of the rectangle. This coordinate is relative to the origin
of the drawable. The x- and y-coordinates define the upper left corner of
the rectangle.

y_coord
The y-coordinate of the rectangle. This coordinate is relative to the origin
of the drawable. The x- and y-coordinates define the upper left corner of
the rectangle.

width
The width, in pixels, of the rectangle to be drawn. The width and height
define the outline of the rectangle.

height
The height, in pixels, of the rectangle to be drawn. The width and height
define the outline of the rectangle.

DESCRIPTION DRAW RECTANGLE draws a single rectangular outline in the specified
drawable.

6-52

The x- and y-coordinates (x_coord and y_coord) specify the position. The
values you specify are relative to the origin of the drawable. The point
defined by the coordinates is the upper left corner of the rectangle. The
width and height specify the size.

For example, the drawable has an origin at position (10,10). You specify
the x-coordinate of the drawable origin as 10 and they-coordinate of the
drawable origin as 10. The upper left corner of the rectangle is at position
(20,20). You specify the width and height of the rectangle as 10 and 5,
respectively. The resulting rectangular outline is shown in Figure 6-15.

Figure 6-15 Outline of a Rectangle

Drawable Origin (10, 10)

(20,20) l Height (5)

Width (10)

Graphics Routines
DRAW RECTANGLE

ZK-0014A-GE

DRAW RECTANGLE uses the following members of the graphics context:

• Function

• Plane Mask

• Line Width

• Line Style

• Join Style

• Subwindow Mode

• Clip X Origin

• Clip Y Origin

• Clip Mask

DRAW RECTANGLE also uses the following mode-dependent members:

• Foreground

• Background

• Tile

• Stipple

• Ts x origin

• Ts y origin

• Dash offset

• Dash list

For more information about the graphics context data structure and its
members, see Section 5.1.

When you want to draw several rectangles, use DRAW RECTANGLES.

6-53

Graphics Routines
DRAW RECTANGLE

XERRORS

6-54

For information about filling a rectangular outline, see the descriptions of
the FILL RECTANGLE and FILL RECTANGLES routines.

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Graphics Routines
DRAW RECTANGLES

DRAW RECTANGLES

Draws the outline of more than one rectangle in the specified drawable.

VAXFORMAT X$DRAW_RECTANGLES

argument
information

(display, drawable_id, gc_id, rectangles,
num_rectangles)

Argument Usage Data Type Access

display identifier uns longword read

drawable_id identifier uns longword read

gc_id identifier uns longword read

rectangles array x$rectangle read

num_rectangles longword longword read

Mechanism

reference

reference

reference

reference

reference

MIT C FORMAT XDrawRectangles

argument
information

ARGUMENTS

(display, drawable_id, gc_id, rectangles,
num_rectangles)

XDrawRectangles(display, drawable_id, gc_id, rectangles,
num rectangles)

Display *display;
Drawable drawable id;
GC gc_id; -
XRectangle rectangles[];
int num_rectangles;

display
The display information originally returned by OPEN DISPLAY.

drawable_id
The identifier of the window or pixmap (drawable) to draw the rectangles
in. The drawable identifier can be either a window or pixmap identifier.
If the drawable is a window, the identifier was originally returned by
CREATE SIMPLE WINDOW or CREATE WINDOW. If the drawable is a
pixmap, the identifier was originally returned by CREATE PIXMAP.

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by DEFAULT GC or CREATE GC.

6-55

Graphics Routines
DRAW RECTANGLES

rectangles
A pointer to an array of rectangle data structures where each element
defines one rectangular outline. The rectangle data structure has members
to specify the position and size of the rectangular outline. The length of
the array is specified in num_rectangles.

num_rectangles
The number of rectangles to be drawn. This value specifies the length of
the array in rectangles.

DESCRIPTION DRAW RECTANGLES draws more than one rectangular outline in the
specified drawable. The rectangles are drawn in the order they are listed
in the array rectangles. For any given rectangle with a nonzero line
width, no pixel is drawn more than once. If rectangles intersect, pixels are
drawn multiple times.

6-56

Specify the position and size of one rectangle in one rectangle data
structure. The x- and y-coordinates (in the x_coord and y _coord members)
specify the position. The values you specify are relative to the origin of the
drawable. The point defined by the coordinates is the upper left corner of
the rectangle. The width and height (in the width and height members)
specify the size.

For information about the rectangle data structure, see Section 6.3.

DRAW RECTANGLES uses the following members of the graphics context:

• Function

• Plane Mask

• Line Width

• Line Style

• Join Style

• Subwindow Mode

• Clip X Origin

• Clip Y Origin

• Clip Mask

DRAW RECTANGLES also uses the following mode-dependent members:

• Foreground

• Background

• Tile

• Stipple

XERRORS

• Ts x origin

• Ts y origin

• Dash offset

• Dash list

Graphics Routines
DRAW RECTANGLES

For more information about the graphics context data structure and its
members, see Section 5.1.

When you want to draw just one rectangle, use DRAW RECTANGLE.

For information about filling a rectangular outline, see the descriptions of
the FILL RECTANGLE and FILL RECTANGLES routines.

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

6-57

Graphics Routines
DRAW SEGMENTS

DRAW SEGMENTS

Draws more than one line in the specified drawable. The lines are not
connected unless specified.

VAX FORMAT X$DRAW SEGMENTS

argument
information

(display, drawable_id, gc_id, segments,
num_segments)

Argument Usage Data Type Access

display identifier uns longword read

drawable_id identifier uns longword read

gc_id identifier uns longword read

segments array x$segment read

num_segments longword longword read

Mechanism

reference

reference

reference

reference

reference

MIT C FORMAT XDrawSegments

argument
information

ARGUMENTS

6-58

(display, drawable_id, gc_id, segments,
num_segments)

XDrawSegments(display, drawable_id, gc_id, segments,
num_segments)

Display *display;
Drawable drawable_id;
GC gc_id;
XSegment *segments;
int num_segments;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifie;-of the window or pixmap (drawable) to draw the lines in.
The drawable identifier can be either a window or a pixmap identifier.
If the drawable is a window, the identifier was originally returned by
CREATE SIMPLE WINDOW or CREATE WINDOW. If the drawable is a
pixmap, the identifier was originally returned by CREATE PIXMAP.

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by DEFAULT GC or CREATE GC.

DESCRIPTION

segments

Graphics Routines
DRAW SEGMENTS

A pointer to an array of segment data structures where each entry defines
two points. The line is drawn between the two points. The coordinates
defining the points are relative to the origin of the drawable. The length
of the array is specified by num_segm.ents.

num_segments
The number of lines to be drawn. This value defines the length of the
array segments.

DRAW SEGMENTS draws more than one line in the specified drawable.

DRAW SEGMENTS uses the points defined in the segment data structures
to draw each line. The lines are drawn in the order they are stored in the
array. The lines are not connected by a join when you specify a common
point. Segments sharing common endpoints will not be joined with the
graphics context's join style. You specify the two points for each line
within the segment data structure. Refer to Section 6.2 for an illustration
of this data structure. Use the Xl and Yl members to define one point;
use the X2 and Y2 members to define the second point.

For information about the segment data structure, see Section 6.2.

For any given line, no pixel is drawn more than once. If lines intersect,
pixels are drawn multiple times. The lines are drawn separately, without
regard to the join style member specified by the graphics context.

DRAW SEGMENTS uses the following members of the graphics context:

• Function

• Plane Mask

• Line Width

• Line Style

• Cap Style

• Subwindow Mode

• Clip X Origin

• Clip Y Origin

• Clip Mask

DRAW SEGMENTS also uses the following mode-dependent members:

• Foreground

• Background

• Tile

• Stipple

6-59

Graphics Routines
DRAW SEGMENTS

XERRORS

6-60

• Ts x origin

• Ts y origin

• Dash offset

• Dash list

For more information about the graphics context data structure and its
members, see Section 5.1.

When you want to draw a series of connected lines, use DRAW LINES.
When you want to draw just one line, use DRAW LINE.

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

FILL ARC

Graphics Routines
FILL ARC

Fills in either a pie slice or chord area of an arc in the specified drawable.

VAX FORMAT X$FILL_ARC

argument
information

(display, drawable_id, gc_id, x_coord, y_coord, width,
height, angle 1, angle2)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

width longword uns longword read reference

height longword uns longword read reference

angle1 longword longword read reference

angle2 longword longword read reference

MIT C FORMAT XFillArc

argument
information

ARGUMENTS

(display, drawable_id, gc_id, x_coord, y_coord, width,
height, angle 1, angle2)

XFillArc(display, drawable id, gc id, x_coord, y_coord, width,
height, anglel, angle2) -

Display *display;
Drawable drawable id;
GC gc id; -
int x-coord, y coord;
unsigned int width, height;
int anglel, angle2;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifie;-of the window or pixmap (drawable) where the arc is. The
drawable identifier can be either a window or pixmap identifier. If the
drawable is a window, the identifier was originally returned by CREATE

6-61

Graphics Routines
FILL ARC

DESCRIPTION

6-62

WINDOW or CREATE SIMPLE WINDOW. If the drawable is a pixmap,
the identifier was originally returned by CREATE PIXMAP.

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by DEFAULT GC or CREATE GC.

x coord
The x-coordinate of the rectangle used to define the arc. This coordinate is
relative to the origin of the drawable. The x- and y-coordinates define the
upper left corner of the rectangle.

y_coord
The y-coordinate of the rectangle used to define the arc. This coordinate is
relative to the origin of the drawable. The x- and y-coordinates define the
upper left corner of the rectangle.

width
The width, in pixels, of the rectangle used to define the arc. The width
and height are the major and minor axes of the arc.

height
The height, in pixels, of the rectangle used to define the arc. The width
and height are the major and minor axes of the arc.

angle1
The angle to specify the start of the arc relative to the three o'clock
position from the center. This value is in degrees, scaled by 64 with
positive indicating counterclockwise motion and negative indicating
clockwise motion.

angle2
The angle to specify the path and extent of the arc relative to the start
of the arc. This value is in degrees, scaled by 64 with positive indicating
counterclockwise motion and negative indicating clockwise motion.

FILL ARC fills the area defined by one arc in the specified drawable.

The pattern used and the area filled in the arc is specified by the fill style
and arc mode members of the associated graphics context. The arc mode
specifies whether the pie slice or chord area is filled.

For more information about the graphics context data structure and its
members, see Section 5.1.

FILL ARC uses the following graphics context members:

• Function

• Plane Mask

• Fill Style

• Arc Mode

• Subwindow Mode

• Clip X Origin

XERRORS

• Clip Y Origin

• Clip Mask

Graphics Routines
FILL ARC

FILL ARC also uses the following mode-dependent members:

• Foreground

• Background

• Tile

• Stipple

• Ts x origin

• Ts y origin

When you want to fill in more than one arc, use FILL ARCS. Using FILL
ARCS is more efficient than using FILL ARC repeatedly.

For information about drawing and specifying the dimensions of an arc,
see the description of the DRAW ARC routine.

VAX C

X$C_BAD_DRAWABLE BadDrawable

X$C _BAD_ GC BadGC

X$C_BAD_MATCH Bad Match

Description

A value that you specified for a drawable
argument does not name a defined
window or pixmap.

A value that you specified for a graphics
context argument does not name a
defined graphics context.

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

6-63

Graphics Routines
FILL ARCS

FILL ARCS

Fills in either a pie slice or a chord area of more than one arc in the specified
window or pixmap.

VAX FORMAT X$FILL_ARCS
(display, drawable_id, gc_id, arcs, num_arcs)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

arcs array x$arc read reference

num_arcs longword longword read reference

MIT C FORMAT XFillArcs

argument
information

ARGUMENTS

6-64

(display, drawable_id, gc_id, arcs, num_arcs)

XFillArcs(display, drawable id, gc_id, arcs, num_arcs)
Display *display; -
Drawable drawable id;
GC gc_id; -
XArc *arcs;
int num_arcs;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the window or pixmap (drawable) where the arcs are.
The drawable identifier can be either a window or pixmap identifier. If the
drawable is a window, the identifier was originally returned by CREATE
WINDOW or CREATE SIMPLE WINDOW. If the drawable is a pixmap,
the identifier was originally returned by CREATE PIXMAP.

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by DEFAULT GC or CREATE GC.

DESCRIPTION

Graphics Routines
FILL ARCS

arcs
A pointer to an array of arc data structures, where each element defines
one arc to be filled in. The length of the array is specified by num_arcs.

num arcs
The number of arcs to be filled in. This value specifies the length of the
array arcs.

FILL ARCS fills areas defined by arcs in the specified drawable.

The identifier of the graphics context associated with the drawable was
originally returned by DEFAULT GC or CREATE GC.

The arcs are filled in according to their order in the array. For any one
arc, no pixel is drawn more than once. If filled areas intersect, pixels are
drawn multiple times.

The pattern used and the area filled in the arc is specified by the fill style
and arc mode members of the associated graphics context. The arc mode
specifies whether the pie slice or chord area is filled.

For more information about the graphics context data structure and its
members, see Section 5.1.

FILL ARCS uses the following graphics context members:

• Function

• Plane Mask

• Fill Style

• Arc Mode

• Subwindow Mode

• Clip X Origin

• Clip Y Origin

• Clip Mask

FILL ARCS also uses the following mode-dependent members:

• Foreground

• Background

• Tile

• Stipple

• Ts x origin

• Ts y origin

For information about drawing and specifying the dimensions of an arc,
see the description of the DRAW ARC routine.

When you want to fill one arc, use FILL ARC.

6-65

Graphics Routines
FILL ARCS

XERRORS

6-66

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Graphics Routines
FILL POLYGON

FILL POLYGON

Fills a polygon within a specified drawable.

VAX FORMAT X$FILL_POLVGON

argument
information

(display, drawable_id, gc_id, points, num_points,
shape, mode)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

points array x$point read reference

num_points longword longword read reference

shape longword longword read reference

mode longword longword read reference

MIT C FORMAT XFillPolygon

argument
information

ARGUMENTS

(display, drawable_id, gc_id, points, num_points,
shape, mode)

XFillPolygon(display, drawable_id, gc_id, points, num_points,
shape, mode)

Display *display;
Drawable drawable_id;
GC gc_id;
XPoint *points;
int num_points;
int shape;
int mode;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the window or pixmap (drawable) where the rectangle
will be filled. The drawable identifier can be either a window or pixmap
identifier. If the drawable is a window, the identifier was originally
returned by CREATE WINDOW or CREATE SIMPLE WINDOW. If the

6-67

Graphics Routines
FILL POLYGON

6-68

drawable is a pixmap, the identifier was originally returned by CREATE
PIXMAP.

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by DEFAULT GC or CREATE GC.

points
A pointer to an array of points that define the polygon shape. Each
element in the array is a point data structure. Within the point data
structure, the x- and y-coordinates of a point are specified. A path is
drawn from one point in the array to the next. This path defines the
polygon. The length of the array is specified in num_points.

num_points
The number of points in the polygon. This defines the length of the array
in points.

shape
The shape of the polygon. The predefined values for shape are as follows:

VAX C

X$C_POLYCOMPLEX Complex

X$C_CONVEX Convex

X$C_NONCONVEX Nonconvex

Description

The polygon outline can intersect itself

The polygon is wholly convex

The polygon outline does not intersect itself

Other values specified in this argument are not valid.

If the shape of the polygon is known and correctly specified with this
argument, server performance can be improved. If the shape is specified
incorrectly, the result of the operation will be undefined.

mode
The coordinate mode of the points. The coordinates of the points can
be relative to the drawable origin or relative to the previous point. The
predefined values for mode are as follows:

VAX

X$C_COORD_
MODE_ ORIGIN

X$C_COORD_
MODE_PREVIOUS

c
CoordModeOrigin

CoordModePrevious

Description

The point coordinates of each point
are relative to the drawable origin.

The first point is relative to
the drawable origin and each
subsequent point is relative to
the point preceding it.

Other values specified in this argument are not valid.

DESCRIPTION

Graphics Routines
FILL POLYGON

FILL POLYGON fills in the area of a multi-sided shape in the specified
window or pixmap (drawable). The fill pattern is specified by the fill style
member in the associated graphics context.

Specify the polygon outline by defining point coordinates in the points
array. Lines are drawn between the points. If the last point in the list
does not coincide with the first point to close the polygon, it is closed by
the routine. No pixel is drawn more than once.

The first point in the array is always relative to the origin of the drawable.
Subsequent points can be drawn relative to the origin or relative to the
previous point. Refer to Figure 6-16 for an illustration of how the mode
changes the position of the points.

The polygon is filled according to the fill pattern and fill rule specified in
the graphics context.

The points array uses a predefined point data structure. This data
structure has members for the x- and y-coordinates that define one point.

For information about the point data structure, see Section 6.1.

FILL POLYGON uses these graphics context members:

• Function

• Plane Mask

• Fill Style

• Fill Rule

• Subwindow Mode

• Clip X Origin

• Clip Y Origin

• Clip Mask

FILL POLYGON also uses the following mode-dependent members:

• Foreground

• Background

• Tile

• Stipple

• Ts x origin

• Ts y origin

For more information about the graphics context data structure and its
members, see Section 5.1.

6-69

Graphics Routines
FILL POLYGON

Figure 6-16 Polygon Shapes Drawn in Different Coordinate Modes

Values supplied
to the routine:
Point 1 =(5,5)
Point 2=(10, 10)
Point 3=(15, 10)
Point 4=(15,5)
Point 5=(5,5)

Values supplied
to the routine:
Point 1 =(5,5)
Point 2=(10, 10)
Point 3=(15, 10)
Point 4=(15,5)
Point 5=(5,5)

6-70

Origin

Drawable Origin (5,5)

Points 1 and 5 (10, 10)
V I Point 4 (20, 10)

"'-,._ ____ Point 3 (20,15)

Point 2 (15, 15)

Previous

Drawable Origin (5,5)

Point 5 (55,40)

ZK-0016A-GE

XERRORS
VAX C

X$C _BAD _DRAWABLE BadDrawable

X$C_BAD_GC BadGC

X$C_BAD_MATCH Bad Match

X$C_BAD_VALUE BadValue

Graphics Routines
FILL POL VGON

Description

A value that you specified for a drawable
argument does not name a defined
window or pixmap.

A value that you specified for a graphics
context argument does not name a
defined graphics context.

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

6-71

Graphics Routines
FILL RECTANGLE

FILL RECTANGLE

Fills the area defined by a rectangular outline in the specified drawable.

VAX FORMAT X$FILL_RECTANGLE

argument
information

(display, drawable_id, gc_id, x_coord, y_coord, width,
height)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

width longword uns longword read reference

height longword uns longword read reference

MIT C FORMAT XFillRectangle

argument
information

ARGUMENTS

6-72

(display, drawable_id, gc_id, x_coord, y_coord, width,
height)

XFillRectangle(display, drawable_id, gc_id, x_coord, y_coord,
width, height)

Display *display;
Drawable drawable id;
GC gc_id; -
int x coord, y coord;
unsigned int width, height;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the window or pixmap (drawable) where the rectangle
will be filled. The drawable identifier can be either a window or pixmap
identifier.

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by DEFAULT GC or CREATE GC.

Graphics Routines
FILL RECTANGLE

x coord
The x-coordinate of the rectangle. This coordinate is relative to the origin
of the drawable. The x- and y-coordinates define the upper left corner of
the rectangle.

y_coord
The y-coordinate of the rectangle. This coordinate is relative to the origin
of the drawable. The x- and y-coordinates define the upper left corner of
the rectangle.

width
The width, in pixels, of the rectangle. The width and height define the size
of the rectangular area to be filled.

height
The height, in pixels, of the rectangle. The width and height define the
size of the rectangular area to be filled.

DESCRIPTION FILL RECTANGLE fills in a rectangular area in the specified window.
The fill pattern used is specified in the fill style graphics context member.

FILL RECTANGLE uses the following members of the graphics context:

• Function

• Plane Mask

• Fill Style

• Subwindow Mode

• Clip X Origin

• Clip Y Origin

• Clip Mask

FILL RECTANGLE also uses the following mode-dependent members:

• Foreground

• Background

• Tile

• Stipple

• Ts x origin

• Ts y origin

For more information about the graphics context data structure and its
members, see Section 5.1.

When you want to fill more than one rectangular area, use FILL
RECTANGLES. Using FILL RECTANGLE repeatedly is less efficient
than using FILL RECTANGLES.

For information on drawing a rectangular outline, see the descriptions of
the DRAW RECTANGLE and DRAW RECTANGLES routines.

6-73

Graphics Routines
FILL RECTANGLE

XERRORS

6-74

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Graphics Routines
FILL RECTANGLES

FILL RECTANGLES

Fills the areas defined by rectangular outlines in the specified drawable.

VAX FORMAT X$FILL RECTANGLES

argument
information

(display, drawable_id, gc_id, rectangles,
num_rectangles)

Argument Usage Data Type Access

display identifier uns longword read

drawable_id identifier uns longword read

gc_id identifier uns longword read

rectangles array x$rectangle read

num_rectangles longword longword read

Mechanism

reference

reference

reference

reference

reference

MIT C FORMAT XFillRectangles

argument
information

ARGUMENTS

(display, drawable_id, gc_id, rectangles,
num_rectangles)

XFillRectangles(display, drawable_id, gc_id, rectangles,
num_rectangles)

Display *display;
Drawable drawable id;
GC gc_id; -
XRectangle *rectangles;
int num_rectangles;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier-of the window or pixmap (drawable) where the rectangle
will be filled. The drawable identifier can be either a window or pixmap
identifier.

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by DEFAULT GC or CREATE GC.

6-75

Graphics Routines
FILL RECTANGLES

DESCRIPTION

6-76

rectangles
A pointer to an array of rectangles, where each element defines a
rectangular area to be filled. Each element is a rectangle data structure.
The x- and y-coordinates define the upper left corner of the rectangle and
are relative to the origin of the drawable. The rectangular area within
each data structure is defined by the width and height. The length of the
array is defined by num_rectangles.

For information about the rectangle data structure, see Section 6.3.

num_rectangles
The number of rectangular areas to be filled. This value specifies the
length of the array in rectangles.

FILL RECTANGLES fills in rectangular areas in the specified window
or pixmap (drawable). The area filled is within the outline defined by
the rectangle. The fill pattern is specified by the fill style member in the
associated graphics context.

The rectangles are filled in the order listed in the array rectangles. For
any given rectangle, no pixel is drawn more than once. If rectangles
intersect, the pixel is drawn multiple times.

For information about the rectangle data structure, see Section 6.3.

The x- and y-coordinates (in the x_coord and y_coord members) specify
the position. The values you specify are relative to the origin of the
drawable. The point defined by the coordinates is the upper left corner of
the rectangle. The width and height (in the width and height members)
specify the size.

FILL RECTANGLES uses the following members of the graphics context:

• Function

• Plane Mask

• Fill Style

• Subwindow Mode

• Clip X Origin

• Clip Y Origin

• Clip Mask

FILL RECTANGLES also uses the following mode-dependent members:

• Foreground

• Background

• Tile

• Stipple

• Ts x origin

• Ts y origin

XERRORS

Graphics Routines
FILL RECTANGLES

For information about the graphics context data structure and its
members, see the Section 5.1.

When you want to fill one rectangular area, use FILL RECTANGLE.

For information on drawing a rectangular outline, see the descriptions of
the DRAW RECTANGLE and DRAW RECTANGLES routines.

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

6-77

Graphics Routines
GET IMAGE

GET IMAGE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

6-78

Returns the contents of a rectangle to the specified image structure.

status return = X$GET IMAGE
(display, drawable_id-; x_coord, y_coord, width, height,
plane_mask, image_format, ximage_return)

Argument Usage Data Type Access Mechanism

status_return longword longword write value

display identifier uns longword read reference

drawable_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

width longword uns longword read reference

height longword uns longword read reference

plane_mask mask_longword uns longword read reference

image_format longword longword read reference

ximage_return record x$image write reference

ximage_return=XGetlmage
(display, drawable_id, x_coord, y_coord, width, height,
plane_mask, image_format)

XImage *XGetimage(display, drawable_id, x_coord, y_coord, width,
height, plane_mask, image_format)

Display *display;
Drawable drawable_id;
int x_coord, y_coord;
unsigned int width, height;
long plane mask;
int image_format;

status_return (VAX only)
Specifies whether or not the routine completed successfully.

ximage_return (MIT Conly)
A pointer to an image data structure containing the data requested.

ARGUMENTS

Graphics Routines
GET IMAGE

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifie:;-of the window or pixmap (drawable) where the image data
will be returned.

x coord
The x-coordinate of the rectangle to retrieve image data from. This
coordinate is relative to the origin of the drawable. The x- and
y-coordinates define the upper left corner of the rectangle.

y_coord
The y-coordinate of the rectangle to retrieve image data from. This
coordinate is relative to the origin of the drawable. The x- and
y-coordinates define the upper left corner of the rectangle.

width
The width, in pixels, of the rectangle.

height
The height, in pixels, of the rectangle.

plane_mask
A bit mask specifying the planes to be retrieved.

image_format
The format of the image. The predefined values for format are as follows:

VAX

X$C_XV _BITMAP

X$C_XV _PIXMAP

X$C_Z_PIXMAP

c
XV Bitmap

XV Pixmap

ZPixmap

Descriptiopn

XV bitmap format

XV pixmap format

Z pixmap format

Other values specified in this argument are not valid.

ximage_return (VAX only)
The returned image data structure containing the requested data.

DESCRIPTION GET IMAGE returns an image data structure that contains the data
for the rectangular image requested. If the drawable is a window, the
identifier was originally returned by CREATE SIMPLE WINDOW or
CREATE WINDOW. If the drawable is a pixmap, the identifier was
originally returned by CREATE PIXMAP.

If the value of format is XY bitmap or XY pixmap, only the bit planes
specified in plane_mask are returned. If the value of format is Z pixmap,
all bits in all planes not specified in plane_mask are set to zero.

6-79

Graphics Routines
GET IMAGE

XERRORS

6-80

GET IMAGE returns the depth of the image to the depth member of the
image data structure. The depth is defined by the depth of the drawable
when the drawable was created, except when getting a subset of the planes
in XY Pixmap format, where the depth is given by the number of bits set
to 1 in plane_mask.

If the drawable is a window, the window must be mapped. The rectangular
area would be contained within the window, including its borders, if the
window were fully visible. In addition, the rectangular area must be fully
contained within pixmaps. The returned image will include any visible
portions of subwindows or overlapping windows contained in the rectangle.

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_MATCH BadMatch Possible causes are as follows:

X$C_BAD_VALUE BadValue

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

GET PIXEL

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Obtains the value of one pixel stored in an image.

pixeL value_return=X$GET _PIXEL
(ximage, x_coord, y_coord)

Argument Usage Data Type

pixel_value_return longword uns longword

ximage record x$image

x_coord longword longword

y_coord longword longword

pixeL value _return=XGetPixel
(ximage, x_coord, y_coord)

Graphics Routines
GET PIXEL

Access Mechanism

write reference

read reference

read reference

read reference

unsigned long XGetPixel(ximage, x_coord, y_coord)
XImage *ximage;
int x_coord;
int y_coord;

pixel_ value_return
The value of the pixel, as stored in the image. The pixel value is returned
in normalized format (in other words, the least significant byte of the
longword is the least significant byte of the pixel).

ximage
The image data structure containing the pixel.

For information about the image data structure, see Section 6.5.

x_coord
The x-coordinate of the pixel within the pixmap of the image. This
coordinate is relative to the origin of the image. The x- and y-coordinates
define the location of the pixel to obtain the value for.

y_coord
The y-coordinate of the pixel within the pixmap of the image. This
coordinate is relative to the origin of the image. The x- and y-coordinates
define the location of the pixel to obtain the value for.

6-81

Graphics Routines
GET PIXEL

DESCRIPTION GET PIXEL returns a pixel value (index in a pixmap) for the specified
pixel. The specified pixel is contained with the pixmap that stores the
image. The image data structure specified in ximage specifies the exact
pixmap.

6-82

Graphics Routines
GET SUBIMAGE

GET SUBIMAGE

Returns the contents of a rectangle to a location within a specified preexisting
image structure.

VAX FORMAT status_return = X$GET_SUB_IMAGE

argument
information

(display, drawable_id, x_coord, y_coord, width, height,
plane_mask, image_format, dst_ximage_return,
dst_x_coord, dst_y_coord)

Argument Usage Data Type Access Mechanism

status_return longword longword write value

display identifier uns longword read reference

drawable_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

width longword uns longword read reference

height longword uns longword read reference

plane_mask mask_longword uns longword read reference

image_format longword longword read reference

dst_ximage_ record x$image write reference
return

dst_x_coord longword longword read reference

dst_y _coord longword longword read reference

MIT C FORMAT ximage_return=XGetSublmage
(display, drawable_id, x_coord, y_coord, width, height,
plane_mask, image_format, dst_ximage_return,
dst_x_coord, dst_y_coord)

6-83

Graphics Routines
GET SUBIMAGE

argument
information

RETURNS

ARGUMENTS

6-84

XImage *XGetSubimage(display, drawable_id, x_coord, y_coord,
width, height, plane_mask, image_format,
dst_ximage_return, dst_x_coord, dst_y_coord)

Display *display;
Drawable drawable_id;
int x coord, y coord;
unsigned int width, height;
long plane mask;
int image_format;
XImage dst_ximage_return;
int dst_x_coord, dst_y_coord;

status_return (VAX only)
Return value that specifies whether the routine completed successfully.

ximage_return (MIT Conly)
A pointer to a preexisting source image data structure containing the data
requested.

display
The display information originally returned by OPEN DISPLAY.

drawable_id
The identifier of the window or pixmap (drawable) where the image data
will be returned.

x coord
The x-coordinate of the rectangle to retrieve image data from. This
coordinate is relative to the origin of the drawable. The x- and
y-coordinates define the upper left corner of the rectangle.

y_coord
The y-coordinate of the rectangle to retrieve image data from. This
coordinate is relative to the origin of the drawable. The x- and
y-coordinates define the upper left corner of the rectangle.

width
The width, in pixels, of the rectangle.

height
The height, in pixels, of the rectangle.

plane_mask
A bit mask specifying the planes to be retrieved.

DESCRIPTION

image_format

Graphics Routines
GET SUBIMAGE

The format of the image. The predefined values for format are as follows:

VAX

X$C_XY _BITMAP

X$C_XY _PIXMAP

X$C_Z_PIXMAP

c

XV Bitmap

XYPixmap

ZPixmap

Descriptiopn

XY bitmap format

XY pixmap format

Z pixmap format

Other values specified in this argument are not valid.

dst_ximage_return
The returned destination image data structure.

dst x coord
The ~coordinate of the destination rectangle. This coordinate is relative
to the origin of the drawable. The destination x- and y-coordinates define
the upper left corner of the destination rectangle and determine where the
subimage will be placed within the destination image.

dst_y_coord
The y-coordinate of the destination rectangle. This coordinate is relative
to the origin of the drawable. The destination x- and y-coordinates define
the upper left corner of the destination rectangle and determine where the
subimage will be placed within the destination image.

GET SUBIMAGE returns the contents of a rectangle to a location within
a specified preexisting image structure. If the drawable is a window,
the identifier was originally returned by CREATE SIMPLE WINDOW
or CREATE WINDOW. If the drawable is a pixmap, the identifier was
originally returned by CREATE PIXMAP.

If the value of imageJormat is XY bitmap or XY pixmap, only the bit
planes specified in plane_mask are returned. If the value of
image_format is Z pixmap, all bits in all planes not specified in
plane_mask are set to zero.

GET SUB IMAGE does not update any fields in the destination image data
structure. The depth of the destination image structure must be the same
as the depth of the drawable. If the specified subimage does not fit at the
specified location on the destination image, the right and bottom edges are
clipped.

If the drawable is a window, the window must be mapped. The rectangular
area would be contained within the window, including its borders, if the
window were fully visible. In addition, the rectangular area must be
fully contained within pixmaps. The returned image includes any visible
portions of subwindows or overlapping windows contained in the rectangle.

6-85

Graphics Routines
GET SUBIMAGE

XERRORS

6-86

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are:

X$C_BAD_VALUE BadValue

In a graphics request, the root and
depth of the graphics context does
not match that of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

PUT IMAGE

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Graphics Routines
PUT IMAGE

Combines the image in memory with the image in a specified rectangle on the
specified drawable.

X$PUT_IMAGE
(display, drawable_id, gc_id, ximage, src_x_coord,
src_y_coord, dst_x_coord, dst_y_coord, width, height)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

ximage record x$image read reference

src_x_coord longword longword read reference

src_y _coord longword longword read reference

dst_x_coord longword longword read reference

dst_y_coord longword longword read reference

width longword longword read reference

height longword longword read reference

XPutlmage
(display, drawable_id, gc_id, ximage, src_x_coord,
src_y_coord, dst_x_coord, dst_y_coord, width, height)

XPutimage(display, drawable id, gc id, ximage, src x coord,
src y coord, dst ~ coord~ dst y coord, width, height)

Display-*display; - - - -
Drawable drawable id;
GC gc_id; -
XImage *ximage;
int src x coord, src y coord;
int dst-x-coord, dst-y-coord;
unsigned int width, height;

display
The display information originally returned by OPEN DISPLAY.

6-87

Graphics Routines
PUTlMAGE

drawable id
The identifier-of the window or pixmap (drawable) containing the image
data. If the drawable is a window, the identifier was originally returned
by CREATE SIMPLE WINDOW or CREATE WINDOW. If the drawable is
a pixmap, the identifier was originally returned by CREATE PIXMAP.

gc_id
The identifier of the graphics context associated with the drawable. This
identifier was originally returned by DEFAULT GC or CREATE GC.

ximage
The image to be combined with the rectangle.

src_x_coord
The x-coordinate specifying the offset from the left edge of the image in
memory, specified by the image data structure. The source x- and
y-coordinates specify the beginning point of the image in memory that will
be combined with the image in the drawable.

src_y_coord
The y-coordinate specifying the offset from the top edge of the image in
memory, specified by the image data structure. The source x- and
y-coordinates specify the beginning point of the image in memory that will
be combined with the image in the drawable.

dst x coord
The -;_coordinate of the rectangle defining the image in the drawable. This
coordinate is relative to the origin of the drawable. The destination
x- and y-coordinates define the upper left corner in the drawable that will
be combined with the image in memory.

dst_y _ coord
The y-coordinate of the rectangle defining the image in the drawable. This
coordinate is relative to the origin of the drawable. The destination
x- and y-coordinates define the upper left corner in the drawable that will
be combined with the image in memory.

width
The width of the rectangular area defining the image in memory to be
combined with the image in the drawable.

height
The height of the rectangular area defining the image in memory to be
combined with the image in the drawable.

DESCRIPTION PUT IMAGE combines an image in memory with an image in a drawable.

6-88

Define the portion of the image in memory that you want to combine. That
subimage is combined with the image that is currently displayed in the
drawable at the position specified by dst_x_coord and dst_y _coord. If
XY bitmap format is used, then the depth must be one. For XY pixmap
and Z pixmap, the depth must match the depth of the drawable. For XY
pixmap, the image must be sent in XY format. For Z pixmap, the image
must be sent in the Z format defined for the given depth.

XERRORS

Graphics Routines
PUT IMAGE

PUT IMAGE uses the following graphics context members:

• Function

• Plane Mask

• Subwindow Mode

• Clip X Origin

• Clip Y Origin

• Clip Mask

For XY bitmap images only, PUT IMAGE also uses the foreground and
background mode-dependent graphics context members. The foreground
value is used for all one bits in the image and the background value is
used for all zero bits in the image.

VAX C

X$C_BAD_DRAWABLE BadDrawable

X$C _BAD_ GC BadGC

X$C_BAD_MATCH Bad Match

X$C_BAD_VALUE BadValue

Description

A value that you specified for a drawable
argument does not name a defined
window or pixmap.

A value that you specified for a graphics
context argument does not name a
defined graphics context.

Possible causes are as follows:

In a graphics request, the root and
depth of the graphics context do not
match those of the drawable.

An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Some numeric values fall outside the
range of values accepted by the request.
Unless a specific range is specified for
an argument, the full range defined by
the argument's type is accepted. Any
argument defined as a set of alternatives
can generate this error.

6-89

Graphics Routines
PUT PIXEL

PUT PIXEL

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

6-90

Changes one pixel value within the pixmap containing an image.

X$PUT _PIXEL
(ximage, x_coord, y_coord, pixel)

Argument Usage Data Type Access

ximage record x$image read

x_coord longword longword read

y_coord longword longword read

pixel longword uns longword read

XPutPixel
(ximage, x_coord, y_coord, pixel)

int XPutPixel(ximage, x_coord, y_coord, pixel)
XImage *ximage;
int x coord;
int y-coord;
unsigned long pixel;

ximage
The image data structure containing the pixel to be changed.

Mechanism

reference

reference

reference

reference

For information about the image data structure, see Section 6.5.

x_coord
The x-coordinate of the pixel within the pixmap of the image. This
coordinate is relative to the origin of the image. The x- and y-coordinates
define the location of the pixel to be changed.

y_coord
The y-coordinate of the pixel within the pixmap of the image. This
coordinate is relative to the origin of the image. The x- and y-coordinates
define the location of the pixel to be changed.

pixel
The new value of the pixel. The pixel value must be in normalized format
(in other words, the least significant byte of the longword is the least
significant byte of the pixel).

Graphics Routines
PUT PIXEL

DESCRIPTION PUT PIXEL changes the value of one pixel within a pixmap containing an
image. The pixmap is specified with the image data structure. You specify
the new pixel value in pixel.

6-91

Graphics Routines
SUBIMAGE

SUBIMAGE

Creates a new image from an existing image.

VAX FORMAT X$SUB_IMAGE

argument
information

(ximage, x_coord, y_coord, width, height,
sub_image_return)

Argument Usage Data Type Access

ximage record x$image read

x_coord longword longword read

y_coord longword longword read

width longword uns longword read

height longword uns longword read

sub_image_return record x$image write

Mechanism

reference

reference

reference

reference

reference

reference

MIT C FORMAT sub_image_return=XSublrnage

argument
information

RETURNS

ARGUMENTS

6-92

(ximage, x_coord, y_coord, width, height)

XImage *XSubimage(ximage, x_coord, y_coord, width, height)
XImage *ximage;
int x_coord;
int y_coord;
int width;
int height;

sub_image_return (Conly)
A pointer to the image data structure created for the new sub image.

ximage
A pointer to the image data structure that references the existing image to
create the new image.

x coord
The x-coordinate of the existing image. This coordinate is relative to origin
of the image. The x- and y-coordinates define the point within the existing
image where copying will start.

Graphics Routines
SUBIMAGE

y_coord
The y-coordinate of the existing image. This coordinate is relative to origin
of the image. The x- and y-coordinates define the point within the existing
image where copying will start.

width
The width, in pixels, of the new subimage. The width and height
determine the area of the new subimage.

height
The height, in pixels, of the new subimage. The width and height
determine the area of the new subimage.

sub_image_return (VAX only)
A pointer to the image data structure created for the new subimage.

DESCRIPTION SUBIMAGE copies a portion of an existing image to create a new image.
In the MIT C binding, it also allocates memory sufficient for a new image
data structure that references the subimage; the pointer to the subimage's
data structure is returned.

SUBIMAGE creates the new image by repeating GET PIXEL and PUT
PIXEL calls. Therefore, this operation might be slow.

6-93

7 Text Routines

Use the text routines to perform the following tasks:

• Computing string sizes

• Returning the logical extents of strings

• Drawing text

For concepts related to text routines and information on how to use text
routines, see the VMS DECwindows Xlib Programming Volume.

The routines described in this chapter are listed in Table 7-1.

Table 7-1 Text Routines

Routine Name

DRAW IMAGE STRING

DRAW IMAGE STRING 16

DRAW STRING

DRAW STRING 16

DRAW TEXT

DRAW TEXT 16

QUERY TEXT EXTENTS

QUERYTEXTEXTENTS16

TEXT EXTENTS

TEXT EXTENTS 16

TEXT WIDTH

TEXT WIDTH 16

Description

Draws a string of 8-bit character image text to
the screen.

Draws a string of 16-bit character image text
to the screen.

Draws a text string (8-bit characters) to the
screen in a single font.

Draws a text string (16-bit characters) to the
screen in a single font.

Draws text (8-bit characters) to the screen in
various fonts.

Draws text (16-bit characters) to the screen in
various fonts.

Returns the logical extents of an 8-bit
character string by querying the server.

Returns logical extents of an 16-bit character
string by querying the server.

Returns logical extents of an 8-bit character
string.

Returns logical extents of an 16-bit character
string.

Returns the length of a string composed of
8-bit characters, given the string and the font
in which the string is to be written.

Returns the length of a string composed of
16-bit characters, given the string and the font
in which the string is to be written.

7-1

Text Routines
7.1 Drawing Text

7.1 Drawing Text

7.1.1

DRAW TEXT and DRAW TEXT 16 output arrays of text defined in text
item structures. Each binding includes a text item structure for 8-bit
strings and a text item structure for 16-bit strings. The following sections
describe these structures for each binding.

Text Item 8-Bit Data Structure
The data structure for the VAX binding is shown in Figure 7-1, and
information about members in the data structure is described in
Table 7-2.

Figure 7-1 Text Item Data Structure (VAX Binding)

7-2

x$a_text_chars 0

x$1_text_n_chars 4

x$1_text_delta 8

x$1_text_font 12

Table 7-2 Members of the Text Item Data Structure (VAX Binding)

Member Name

X$A_ TEXT_ CHARS

X$L_TEXT_N_CHARS

X$L_ TEXT _DELTA

X$L_ TEXT _FONT

Contents

Address of a string of characters.

Number of characters in the string.

Spacing before the start of the string. Spacing is always
added to the string origin and is not dependent on the
font used.

Identifier of the font used to print the string. If the value
of this member is x$c_none, the server uses the current
font in the GC data structure. If the member has a value
other than x$c_none, the specified font is stored in the
GC data structure.

The data structure for the MIT C binding is shown in Figure 7-2,
and information about members in the data structure is described in
Table 7-3.

7.1.2

Text Routines
7.1 Drawing Text

Figure 7-2 Text Item Data Structure (MIT C Binding)

typedef struct {
char *chars;
int nchars;
int delta;
Font font;

XTextitem;

Table 7-3 Members of the Text Item Data Structure (MIT C Binding)

Member Name Contents

The address of a string of characters.

Number of characters in the string.

chars

nchars

delta Spacing before the start of the string. Spacing is always added to
the string origin and is not dependent on the font used.

font Identifier of the font used to print the string. If the value of this
member is None, the server uses the current font in the GC
data structure. If the member has a value other than None, the
specified font is stored in the GC data structure.

Text Item 16-Bit Data Structure
The data structure for the VAX binding is shown in Figure 7-3, and
information about members in the data structure is described in
Table 7-4.

Figure 7-3 Text Item 16 Data Structure (VAX Binding)

x$a_tx16_chars

x$1_tx16_n_chars

x$1_tx16_delta

0

4

8

x$1_tx16_font 12

Table 7-4 Members of the Text Item 16 Data Structure (VAX Binding)

Member Name

X$A_ TX16_CHARS

Contents

Address of a string of characters stored in a char 2b data
structure.

(continued on next page)

7-3

Text Routines
7.1 Drawing Text

7.2 Text Routines

7-4

Table 7-4 (Cont.) Members of the Text Item 16 Data Structure (VAX
Binding)

Member Name Contents

X$L_TX16_N_CHARS

X$L_ TX16_DELTA

Number of characters in the string.

Spacing before the start of the string. Spacing is always
added to the string origin and is not dependent on the
font used.

X$L_ TX16_FONT Identifier of the font used to print the string. If the value
of this member is x$c_none, the server uses the current
font in the GC data structure. If the member has a value
other than x$c_none, the specified font is stored in the
GC data structure.

The data structure for the MIT C binding is shown in Figure 7-4,
and information about members in the data structure is described in
Table 7-5.

Figure 7-4 Text Item 16 Data Structure (MIT C Binding)

typedef struct {
XChar2b *chars;
int nchars;
int delta;
Font font;

XTextiteml6;

Table 7-5 Members of the Text Item 16 Data Structure (MIT C Binding)

Member Name

chars

nchars

delta

font

Contents

The address of a string of characters stored in a char 2b data
structure. For a description of the char 2b data structure, see the
description immediately following this table.

Number of characters in the string.

Spacing before the start of the string. Spacing is always added to
the string origin and is not dependent on the font used.

Identifier of the font used to print the string. If the value of this
member is None, the server uses the current font in the GC
data structure. If the member has a value other than None, the
specified font is stored in the GC data structure.

The following pages describe the Xlib text routines.

Text Routines
DRAW IMAGE STRING

DRAW IMAGE STRING

Draws a string of 8-bit character image text to the screen.

VAX FORMAT X$DRAW_IMAGE_STRING
(display, drawable_id, gc_id, x_coord, y_coord, string)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

string char_string character string read descriptor

MIT C FORMAT XDrawlmageString

argument
information

ARGUMENTS

(display, drawable_id, gc_id, x_coord, y_coord, string,
length)

XDrawimageString(display, drawable_id, gc_id, x_coord,
y_coord, string, length)

Display *display;
Drawable drawable_id;
GC gc_id;
int x_coord, y_coord;
char *string;
int length;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the window or pixmap (drawable) in which you want to
write the text. This identifier is returned when you create the drawable.

gc_id
The identifier of the graphics context to be used for writing the text.
This identifier is returned when you create a graphics context using the
CREATE GC routine.

7-5

Text Routines
DRAW IMAGE STRING

DESCRIPTION

7-6

For image text to be visible, the foreground and background values in the
graphics context must be different. Otherwise, you get a filled rectangle
which may or may not show up, depending on the current window
background color. This is not true, however, if the text string extends
outside the background rectangle on the left or right.

x coord
The x-coordinate of the starting point of the text baseline. Coordinates are
specified in pixels relative to the origin of the drawable.

y_coord
The y-coordinate of the starting point of the text baseline. Coordinates are
specified in pixels relative to the origin of the drawable.

string
The text string to be written to the screen.

VAX only

The string argument is the address of a descriptor that points to a string.

length (MIT C only)
The length of the string. A null character can be a valid representation, so
null termination cannot be used to determine the length of the string.

DRAW IMAGE STRING draws a string of 8-bit character image text to
the screen. Image text is drawn by painting both the foreground and
background pixels of each character, using a single font.

First, a destination rectangle is drawn using the specified background
color defined in graphics context. The upper left corner of the rectangle is
point (x, y), defined as follows:

• x = The x-coordinate of the baseline starting point.

• y = The y-coordinate of the baseline starting point minus the font
ascent. (Font ascent is measured from top to bottom.)

The width of the destination rectangle is the overall width of all characters
in the string (the sum of all the widths).

The height of the rectangle is the sum of the font ascent and the font
descent.

Leftbearing, rightbearing, font ascent, and font descent values are
returned by QUERY TEXT EXTENTS.

After the destination rectangle is drawn, text is drawn using the specified
foreground color.

DRAW IMAGE STRING uses the following graphics context members:

• Plane mask

• Foreground

• Background

• Font

XERRORS

•
•
•
•

Subwindow mode

Clip x origin

Clip y origin

Clip mask

Text Routines
DRAW IMAGE STRING

For more information about graphics context members, see Chapter 5.

This routine disregards any function or fill style specified in the graphics
context. DRAW IMAGE STRING always uses GXcopy as the function and
solid as the fill style.

VAX C

X$C_BAD_DRAWABLE BadDrawable

X$C_BAD_GC BadGC

X$C_BAD_MATCH Bad Match

Description

A value that you specified for a drawable
argument does not name a defined
window or pixmap.

A value that you specified for a graphics
context argument does not name a
defined graphics context.

Possible causes are:

In a graphics request, the root and
depth of the graphics context does
not match that of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

7-7

Text Routines
DRAW IMAGE STRING 16

DRAW IMAGE STRING 16

Draws a string of 16-bit character image text to the screen.

VAX FORMAT X$DRAW IMAGE STRING 16

argument
information

(display, drawable_id, gc_id, x_coord, y_coord,
string16, length)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

string16 array word read reference

length word uns word read reference

MIT C FORMAT XDrawlmageString16

argument
information

ARGUMENTS

7-8

(display, drawable_id, gc_id, x_coord, y_coord,
string16, length)

XDrawimageString16(display, drawable_id, gc_id, x_coord, y_coord,
string16, length)

Display *display;
Drawable drawable id;
GC gc id; -
int x=coord, y_coord;
XChar2b *string16;
int length;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifie;-of the window or pixmap (drawable) in which you want to
write the text. This identifier is returned when you create the drawable.

DESCRIPTION

Text Routines
DRAW IMAGE STRING 16

gc_id
The identifier of the graphics context to be used for writing the text.
This identifier is returned when you create a graphics context using the
CREATE GC routine.

For image text to be visible, the foreground and background values in the
graphics context must be different. Otherwise, you get a filled rectangle
which may or may not show up, depending on the current window
background color. This is not true, however, if the text string extends
outside the background rectangle on the left or right.

x_coord
The x-coordinate of the starting point of the text baseline. Coordinates are
specified in pixels relative to the origin of the drawable.

y_coord
The y-coordinate of the starting point of the text baseline. Coordinates are
specified in pixels relative to the origin of the drawable.

string16
The text string to be written to the screen.

length
The length of the string. A null character may be a valid representation,
so null termination cannot be used to determine the length of the string.

DRAW IMAGE STRING 16 draws a string of 16-bit character image text
to the screen. Image text is drawn by painting both the foreground and
background pixels of each character, using a single font.

First, a destination rectangle is drawn using the specified background
color defined in graphics context. The upper left corner of the rectangle is
point (x,y), defined as follows:

• x =The x-coordinate of the baseline starting point.

• y = The y-coordinate of the baseline starting point minus the font
ascent. (Font ascent is measured from top to bottom.)

The width of the destination rectangle is the overall width of all characters
in the string.

The height of the rectangle is the sum of the font ascent and the font
descent.

Leftbearing, rightbearing, font ascent, and font descent values are
returned by QUERY TEXT EXTENTS 16.

After the destination rectangle is drawn, text is drawn using the specified
foreground color.

DRAW IMAGE STRING 16 uses the following graphics context members:

• Plane mask

• Foreground

• Background

7-9

Text Routines
DRAW IMAGE STRING 16

XERRORS

7-10

• Font

• Subwindow mode

• Clip x origin

• Clip y origin

• Clip mask

For more information about graphics context members, see Chapter 5.

This routine disregards any function or fill style specified in the graphics
context. DRAW IMAGE STRING always uses GXcopy as the function and
solid as the fill style.

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are:

In a graphics request, the root and
depth of the graphics context does
not match that of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

Text Routines
DRAW STRING

DRAW STRING

Draws a text string (8-bit characters) to the screen in a single font, drawing
only foreground pixels.

VAX FORMAT X$DRAW_STRING
(display, drawable_id, gc_id, x_coord, y_coord, string)

argument
information

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

string char_string character string read descriptor

MIT C FORMAT XDrawString

argument
information

ARGUMENTS

(display, drawable_id, gc_id, x_coord, y_coord, string,
length)

XDrawString(display, drawable id, gc_id, x_coord, y_coord,
string, length) -

Display *display;
Drawable drawable_id;
GC gc id;
int x-coord, y coord;
char *string; -
int length;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the drawable in which you want to write the text. The
drawable can be either a window or a pixmap. This identifier is returned
when you create the drawable.

gc_id
The identifier of the graphics context to be used for writing the text.
This identifier is returned when you create a graphics context using the
CREATE GC routine.

7-11

Text Routines
DRAW STRING

DESCRIPTION

7-12

x coord
The x-coordinate of the starting point of the text baseline. Coordinates are
specified in pixels relative to the origin of the drawable.

y_coord
The y-coordinate of the starting point of the text baseline. Coordinates are
specified in pixels relative to the origin of the drawable.

string
A null-terminated string to be written to the screen.

length (MIT C only)
The length of the string specified.

Because a null character can be a valid representation, null termination
cannot be used to determine the length of the string.

DRAW STRING writes 8-bit character text to the screen using the font
specified in the graphics context, drawing only foreground pixels.

DRAW STRING uses the following graphics context members to control
the appearance of the text on the screen:

• Function

• Plane mask

• Fill style

• Font

• Subwindow mode

• Clip x origin

• Clip y origin

• Clip mask

Each character image defined by the font member of graphics context is
treated as an additional mask for a fill operation on the drawable.

DRAW STRING also uses the following graphics context mode-dependent
members:

• Foreground

• Background

• Tile

• Stipple

• Ts x origin

• Ts y origin

For more information on graphics context, see the Chapter 5.

XERRORS
VAX C

X$C_BAD_DRAWABLE BadDrawable

X$C_BAD_FONT Bad Font

X$C_BAD_GC BadGC

X$C_BAD_MATCH Bad Match

Text Routines
DRAW STRING

Description

A value that you specified for a drawable
argument does not name a defined
window or pixmap.

A value that you specified for a font
argument does not name a defined font
(or, in some cases, graphics context).

A value that you specified for a graphics
context argument does not name a
defined graphics context.

Possible causes are:

In a graphics request, the root and
depth of the graphics context does
not match that of the drawable.
An input-only window is used as a
drawable.

One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

7-13

Text Routines
DRAW STRING 16

DRAW STRING 16

Draws a text string (16-bit characters) to the screen in a single font, using only
foreground pixels.

VAX FORMAT X$DRAW STRING 16

argument
information

(display, drawable_id, gc_id, x_coord, y_coord,
string 16, length)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

string16 array word read reference

length word word read reference

MIT C FORMAT XDrawString16

argument
information

ARGUMENTS

7-14

(display, drawable_id, gc_id, x_coord, y_coord,
string16, length)

XDrawString16(display, drawable_id, gc_id, x_coord, y_coord,
string16, length)

Display *display;
Drawable drawable_id;
GC gc_id;
int x coord, y coord;
XChar2b *stringl6;
int length;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the drawable in which you want to write the text. The
drawable can be either a window or a pixmap. This identifier is returned
when you create the drawable.

DESCRIPTION

gc_id

Text Routines
DRAW STRING 16

The identifier of the graphics context to be used for writing the text.
This identifier is returned when you create a graphics context using the
CREATE GC routine.

x coord
The x-coordinate of the starting point of the text baseline. Coordinates are
specified in pixels relative to the origin of the drawable.

y_coord
The y-coordinate of the starting point of the text baseline. Coordinates are
specified in pixels relative to the origin of the drawable.

string16
A null-terminated string to be written to the screen.

length
The length of the string specified.

Because a null character can be a valid representation, null termination
cannot be used to determine the length of the string.

DRAW STRING 16 writes 16-bit character text to the screen using the font
specified in the graphics context, drawing only foreground pixels.

DRAW STRING 16 uses the following graphics context members to control
the appearance of the text on the screen:

• Function

• Plane mask

• Fill style

• Font

• Subwindow mode

• Clip x origin

• Clip y origin

• Clip mask

Each character image defined by the font member of graphics context is
treated as an additional mask for a fill operation on the drawable.

DRAW STRING 16 also uses the following graphics context mode
dependent members:

• Foreground

• Background

• Tile

7-15

Text Routines
DRAW STRING 16

XERRORS

7-16

• Stipple

• Ts x origin

• Ts y origin

For more information about graphics context, see Chapter 5.

VAX C Description

X$C_BAD_DRAWABLE BadDrawable A value that you specified for a drawable
argument does not name a defined
window or pixmap.

X$C_BAD_FONT BadFont A value that you specified for a font
argument does not name a defined font
(or, in some cases, graphics context).

X$C_BAD_GC BadGC A value that you specified for a graphics
context argument does not name a
defined graphics context.

X$C_BAD_MATCH BadMatch Possible causes are:

In a graphics request, the root and
depth of the graphics context does
not match that of the drawable.
An input-only window is used as a
drawable.
One argument or pair of arguments
has the correct type and range but
fails to match in some other way
required by the request.
An input-only window lacks this
attribute.

DRAW TEXT

Text Routines
DRAW TEXT

Draws text (8-bit characters) to the screen in various fonts.

VAXFORMAT X$DRAW_TEXT

argument
information

(display, drawable_id, gc_id, x_coord, y_coord, items,
num_items)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

items array vector _longword read reference

num_items longword longword read reference

MIT C FORMAT XDrawText

argument
information

ARGUMENTS

(display, drawable_id, gc_id, x_coord, y_coord, items,
num_items)

XDrawText(display, drawable id, gc_id, x_coord, y_coord, items,
num items) -

Display-*display;
Drawable drawable id;
GC gc_id; -
int x_coord, y_coord;
XTextitem *items;
int num_items;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the drawable in which you want to write the text. The
drawable can be either a window or a pixmap. This identifier is returned
when you create the drawable.

7-17

Text Routines
DRAW TEXT

DESCRIPTION

7-18

gc_id
The identifier of the graphics context to be used for writing the text.
This identifier is returned when you create a graphics context using the
CREATE GC routine.

x coord
The x-coordinate of the starting point of the text baseline. Coordinates are
specified in pixels relative to the origin of the drawable.

y_coord
The y-coordinate of the starting point of the text baseline. Coordinates are
specified in pixels relative to the origin of the drawable.

items
An array of text item structures. The number of text item structures in
the array is specified by num_items.

num items
The number of items (elements) in the specified text item array.

DRAW TEXT writes 8-bit character text to the screen using one or more
fonts. The text is defined in an array of text item structures. Each text
item structure contains the following information:

• Pointer to the text string

• Number of characters in the string

• Change in horizontal x position of the text before it is mapped to the
drawable

Change in text position is relative to the end of the last string. The
end of the last string is calculated as the starting position on the last
string, plus the sum of the character widths for all characters in the
string.

• Identifier of the font to be used to draw the string

For more information about the text item structure, see Section 7 .1.1.

Text items are specified in the array in the order in which the text is
written. That is, if DRAW TEXT is used to write three words, one in
10-point Times Roman, one in 12-point Times Roman, and one in 24-point
Times Roman, the item array would have three elements, each describing
the word and its respective font.

DRAW TEXT uses the following graphics context members to control the
appearance of the text on the screen:

• Function

• Plane mask

• Fill style

• Subwindow mode

• Clip x origin

XERRORS

• Clip y origin

• Clip mask

Text Routines
DRAW TEXT

If a font is not specified in the text item structure, the graphics context
default font is used.

Each character image defined by the font member of graphics context is
treated as an additional mask for a fill operation on the drawable.

DRAW TEXT also uses the following graphics context mode-dependent
members:

• Foreground

• Background

• Tile

• Stipple

• Ts x origin

• Ts y origin

For more information about graphics context, see Chapter 5.

VAX c
X$C_BAD_ Bad Drawable
DRAWABLE

X$C_BAD_FONT Bad Font

X$C_BAD_GC BadGC

X$C_BAD_MATCH Bad Match

Description

A value that you specified for a drawable
argument does not name a defined window or
pixmap.

A value that you specified for a font argument
does not name a defined font (or, in some
cases, graphics context).

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Possible causes are:

In a graphics request, the root and depth
of the graphics context does not match
that of the drawable.

An input-only window is used as a
drawable.
One argument or pair of arguments has
the correct type and range but fails to
match in some other way required by the
request.

An input-only window lacks this attribute.

7-19

Text Routines
DRAW TEXT 16

DRAW TEXT 16

Draws text (16-bit characters) to the screen in various fonts.

VAX FORMAT X$DRAW_TEXT_16

argument
information

(display, drawable_id, gc_id, x_coord, y_coord,
items 16, num_items)

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

drawable_id identifier uns longword read reference

gc_id identifier uns longword read reference

x_coord longword longword read reference

y_coord longword longword read reference

items16 array vector _longword read reference

num_items longword longword read reference

MIT C FORMAT XDrawText16

argument
information

ARGUMENTS

7-20

(display, drawable_id, gc_id, x_coord, y_coord,
items 16, num_items)

XDrawText16(display, drawable id, gc_id, x_coord, y_coord,
items16, num items)

Display *display; -
Drawable drawable_id;
GC gc id;
int x=coord, y_coord;
XTextitem16 *items16;
int num_items;

display
The display information originally returned by OPEN DISPLAY.

drawable id
The identifier of the drawable in which you want to write the text. The
drawable can be either a window or a pixmap. This identifier is returned
when you create the drawable.

DESCRIPTION

gc_id

Text Routines
DRAW TEXT 16

The identifier of the graphics context to be used for writing the text.
This identifier is returned when you create a graphics context using the
CREATE GC routine.

x coord
The x-coordinate of the starting point of the text baseline. Coordinates are
specified in pixels relative to the origin of the drawable.

y_coord
The y-coordinate of the starting point of the text baseline. Coordinates are
specified in pixels relative to the origin of the drawable.

items16
An array of text item 16 structures. The number of text item 16 structures
in the array is specified by num_items.

num items
The number of items (elements) in the specified text item array.

DRAW TEXT 16 writes 16-bit character text to the screen using one or
more fonts. The text is defined in an array of text item 16 structures.
Each text item 16 structure contains the following information:

• Pointer to the text string

• Number of characters in the string

• Change in horizontal x position of the text before it is mapped to the
drawable

Change in text position is relative to the end of the last string. The
end of the last string is calculated as the starting position on the last
string, plus the sum of the character widths for all characters in the
string.

• Identifier of the font to be used to draw the string

For more information about the text item 16 structure, see Section 7 .1.2.

Text items are specified in the array in the order in which the text is
written. That is, if DRAW TEXT 16 is used to write three words, one in
10-point Times Roman, one in 12-point Times Roman, and one in 24-point
Times Roman, the item array would have three elements, each describing
the word and its respective font.

DRAW TEXT 16 uses the following graphics context members to control
the appearance of the text on the screen:

• Function

• Plane mask

• Fill style

• Subwindow mode

• Clip x origin

7-21

Text Routines
DRAW TEXT 16

XERRORS

7-22

• Clip y origin

• Clip mask

If a font is not specified in the text item 16 structure, the graphics context
default font is used.

Each character image defined by the font member of graphics context is
treated as an additional mask for a fill operation on the drawable.

DRAW TEXT 16 also uses the following graphics context mode-dependent
members:

• Foreground

• Background

• Tile

• Stipple

• Ts x origin

• Ts y origin

For more information about graphics context, see Chapter 5.

VAX c
X$C_BAD_ Bad Drawable
DRAWABLE

X$C_BAD_FONT Bad Font

X$C_BAD_GC BadGC

X$C_BAD_MATCH Bad Match

Description

A value that you specified for a drawable
argument does not name a defined window or
pixmap.

A value that you specified for a font argument
does not name a defined font (or, in some
cases, graphics context).

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Possible causes ate:

In a graphics request, the root and depth
of the graphics context does not match
that of the drawable.

An input-only window is used as a
drawable.
One argument or pair of arguments has
the correct type and range but fails to
match in some other way required by the
request.

An input-only window lacks this attribute.

Text Routines
QUERY TEXT EXTENTS

QUERY TEXT EXTENTS

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

Returns the logical extents of an 8-bit character string by querying the server.

X$QUERV_TEXT_EXTENTS
(display, font_id, string [,direction_return]
[,ascent_ return][, descent_ return][, overal/_return])

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

font_id identifier uns longword read reference

string char_string character string read descriptor

di rection_retu rn longword longword write reference

ascent_retu rn longword longword write reference

descent_return longword longword write reference

overal l_retu rn record x$char _ struct write reference

XQueryTextExtents
(display, font_id, string, num_chars, direction_return,
ascent_return, descent_return, overal/_return)

XQueryTextExtents(display, font id, string, num chars,
direction_return, ascent_return,
descent return, overall return)

Display *display; - -
XID font_id;
char *string;
int num chars;
int *di~ection return;
int *ascent_return, *descent_return;
XCharStruct *overall_return;

display
The display information originally returned by OPEN DISPLAY.

font_ id
The identifier of the font whose extents are being queried. The font
identifier is returned by LOAD FONT. The address of the font data
structure, which includes the font identifier, is returned by LOAD QUERY
FONT.

7-23

Text Routines
QUERY TEXT EXTENTS

DESCRIPTION

7-24

string
The character string whose logical extents are being queried.

num_chars (MIT Conly)
The number of characters in the string whose extents are being queried.

direction return
The directio;-the string is painted on the screen. The direction_return
argument is the returned value of the direction element of the font data
structure.

VAX only

This argument is optional.

ascent return
The maxi~um ascent of the font used to draw the string. The
ascent_return argument is the returned value of the font ascent element
of the font data structure.

VAX only

This argument is optional.

descent return
The maxim~m descent of the font used to draw the string. The
descent_return argument is the returned value of the font descent
element of the font data structure.

VAX only

This argument is optional.

overall return
The mini~um left bearing, maximum right bearing, string width,
maximum character ascent, and maximum character descent.

Values are returned from a character structure.

For information about the character structure, see Chapter 13.

VAX only

This argument is optional.

QUERY TEXT EXTENTS returns the logical extents of a specified 8-bit
string. Unlike TEXT EXTENTS, which determines the sizes of characters
directly from the font data structure, QUERY TEXT EXTENTS computes
the size of the string by querying the server. Because this requires extra
overhead, use QUERY TEXT EXTENTS only when LOAD FONT has
loaded the font used to write the string specified by string.

Given an 8-bit string, QUERY TEXT EXTENTS returns the following
information about the extents:

• Direction the font is painted

• Ascent above the baseline used for determining line spacing

XERRORS

Text Routines
QUERY TEXT EXTENTS

• Descent below the baseline used for determining line spacing

• Character extents

The following string extents are returned:

Extent

Leftbearing

Rightbearing

Width

Ascent

Descent

Value

The minimum left bearing of all characters in the string

The maximum right bearing of all characters in the string

The sum of all character widths in the string

The maximum ascent of all characters in the string

The maximum descent of all characters in the string

When a font has no defined default character, undefined characters in the
specified string are given zero character metric values.

QUERY TEXT EXTENTS generates the following errors:

VAX C

X$C_BAD_FONT BadFont

X$C_BAD_GC BadGC

Description

A value that you specified for a font argument
does not name a defined font (or, in some
cases, graphics context).

A value that you specified for a graphics
context argument does not name a defined
graphics context.

7-25

Text Routines
QUERY TEXT EXTENTS 16

QUERY TEXT EXTENTS 16

VAX FORMAT

argument
information

MITCFORMAT

argument
information

ARGUMENTS

7-26

Returns logical extents of a 16-bit character string by querying the server.

X$QUERY_TEXT_EXTENTS_16
(display, font_id, string16, num_chars
[, direction_return] [,ascent_ return][, descent_ return]
[,overall_ return])

Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

font_id identifier uns longword read reference

string16 array word read reference

num_chars word word read reference

direction_return longword longword write reference

ascent_return longword longword write reference

descent_return longword longword write reference

overall_return record x$char _struct read reference

XQueryTextExtents16
(display, font_id, string16, num_chars,
direction_return, ascent_return, descent_return,
overal/_return)

XQueryTextExtentsl6(display, font_id, stringl6, num_chars,
direction_return, ascent_return,
descent_return, overall_return)

Display *display;
XID font_id;
XChar2b *stringl6;
int num_chars;
int *direction return;
int *ascent_return, *descent_return;
XCharStruct *overall_return;

display
The display information originally returned by OPEN DISPLAY.

Text Routines
QUERY TEXT EXTENTS 16

font id
The identifier of the font whose extents you want to know. The font
identifier is returned by LOAD FONT. The address of the font data
structure, which includes the font identifier, is returned by LOAD QUERY
FONT.

string16
The character string whose logical extents are being queried.

num chars
The number of characters in the string whose extents are being queried.

direction return
The directionthe string is painted on the screen. The direction_return
argument is the returned value of the direction element of the font data
structure.

VAX only

This argument is optional.

ascent return
Maximum-ascent of the font used to draw the string. The ascent_return
argument is the returned value of the font ascent element of the font data
structure.

VAX only

This argument is optional.

descent_ return
Maximum descent of the font used to draw the string. The
descent_return argument is the returned value of the font descent
element of the font data structure.

VAX only

This argument is optional.

overall return
The mini~m left bearing, maximum right bearing, string width,
maximum character ascent, and maximum character descent.

Values are returned from a character structure.

For information about the structure, see Chapter 13.

VAX only

This argument is optional.

DESCRIPTION QUERY TEXT EXTENTS 16 returns the logical extents of a specified
16-bit string. Unlike TEXT EXTENTS 16, which determines the sizes of
characters directly from the font data structure, QUERY TEXT EXTENTS
16 computes the size of the string by querying the server. Because this
results in additional overhead, use QUERY TEXT EXTENTS 16 only when

7-27

Text Routines
QUERY TEXT EXTENTS 16

XERRORS

7-28

LOAD FONT has loaded the font used to write the string specified by
stringl6.

Given a 16-bit string, QUERY TEXT EXTENTS 16 returns the following
information about the extents:

• Direction the font is painted

• Ascent above the baseline used for determining line spacing

• Descent below the baseline used for determining line spacing

• Character extents

The following string extents are returned:

Extent

Leftbearing

Rightbearing

Width

Ascent

Descent

Value

The minimum left bearing of all characters in the string

The maximum right bearing of all characters in the string

The sum of all character widths in the string

The maximum ascent of all characters in the string

The maximum descent of all characters in the string

When a font has no defined default character, undefined characters in the
specified string are given zero character metric values.

VAX C

X$C_BAD_FONT BadFont

X$C_BAD_GC BadGC

Description

A value that you specified for a font argument
does not name a defined font (or, in some
cases, graphics context).

A value that you specified for a graphics
context argument does not name a defined
graphics context.

Text Routines
TEXT EXTENTS

TEXT EXTENTS

Returns logical extents of an 8-bit character string in a given font.

VAX FORMAT X$TEXT_EXTENTS

argument
information

(font_ptr, string [,direction_return] [,ascent_return]
[,descent_return] [,overa/Lreturn])

Argument Usage Data Type Access Mechanism

font_ptr record x$font_struct read reference

string char_string character string read descriptor

direction_return longword longword write reference

ascent_return longword longword write reference

descent_return longword longword write reference

overall_return record x$char _struct write reference

MIT C FORMAT XTextExtents

argument

(font_ptr, string, num_chars, direction_return,
ascent_return, descent_return, overa!Lreturn)

information XTextExtents(font_ptr, string, num_chars, direction_return,

ARGUMENTS

ascent_return, descent_return, overall_return)
XFontStruct *font ptr;
char *string; -
int num chars;
int *direction return;
int *ascent return, *descent return;
XCharStruct-*overall_return;-

font ptr
The address of a font data structure. TEXT EXTENTS uses the character
information contained in the font data structure to determine extents. The
address of the font data structure is returned by LOAD QUERY FONT or
QUERY FONT.

string
The character string whose logical extents are being queried.

num_chars (MIT Conly)
The number of characters in the string whose extents are being queried.

7-29

Text Routines
TEXT EXTENTS

DESCRIPTION

7-30

direction return
The directionthe font is painted on the screen. The direction_return
argument is the returned value of the direction element of the font data
structure.

VAX only

This argument is optional.

ascent return
The maximum ascent of the font that draws the string. The
ascent_return argument is the returned value of the font ascent element
of the font data structure.

VAX only

This argument is optional.

descent return
Maximum descent of the font that draws the string. The descent_return
argument is the returned value of the font descent element of the font data
structure.

VAX only

This argument is optional.

overall return
The minimum left bearing, maximum right bearing, string width,
maximum character ascent, and maximum character descent.

For more information about the character structure, see Chapter 13.

VAX only

This argument is optional.

TEXT EXTENTS returns the logical extents of a specified 8-bit string in
a given font. Unlike QUERY TEXT EXTENTS, which queries the server
for the sizes of characters in the string, TEXT EXTENTS uses the pointer
returned by LOAD QUERY FONT to query the font data structure directly.

Given an 8-bit string, TEXT EXTENTS returns the following information
about the extents:

• Direction the font is painted

• Ascent above the baseline used for determining line spacing

• Descent below the baseline used for determining line spacing

• Character extents

Text Routines
TEXT EXTENTS

The following string extents are returned:

Extent

Leftbearing

Rightbearing

Width

Ascent

Descent

Value

The minimum left bearing of all characters in the string

The maximum right bearing of all characters in the string

The sum of all character widths in the string

The maximum ascent of all characters in the string

The maximum descent of all characters in the string

When a font has no defined default character, undefined characters in the
specified string receive zero character metric values.

7-31

Text Routines
TEXT EXTENTS 16

TEXT EXTENTS 16

Returns logical extents of a 16-bit character string in a given font.

VAX FORMAT X$TEXT_EXTENTS_16

argument
information

(font_ptr,string, num_chars [,direction_return]
[,ascent_return] [,descent_return] [,overa!Lreturn])

Argument Usage Data Type Access Mechanism

font_ptr record x$font_struct read reference

string array word read reference

num_chars word word1 read reference

direction_return longword longword write reference

ascent_return longword longword write reference

descent_return longword longword write reference

overall_return record x$char _struct write reference

1unsigned

MIT C FORMAT XTextExtents16

argument

(font_ptr,string, num_ chars, direction_return,
ascent_return, descent_return, overa!Lreturn)

information XTextExtents16(font_ptr, string, num_chars, direction_return,

ARGUMENTS

7-32

ascent_return, descent_return, overall_return)
XFontStruct *font_ptr;
XChar2b *string;
int num chars;
int *direction return;
int *ascent_return, *descent_return;
XCharStruct *overall_return;

font otr
The address of a font data structure. TEXT EXTENTS uses the character
information contained in the font data structure to determine extents. The
address of the font data structure is returned by LOAD QUERY FONT or
QUERY FONT.

string
The character string whose logical extents are being queried.

DESCRIPTION

Text Routines
TEXT EXTENTS 16

num chars
The number of characters in the string whose extents are being queried.

direction return
The directio;the string is painted on the screen. The direction_return
argument is the returned value of the direction element of the font data
structure.

VAX only

This argument is optional.

ascent return
Maximum ascent of the font used to draw the string. The ascent_return
argument is the returned value of the font ascent element of the font data
structure.

VAX only

This argument is optional.

descent return
Maximum descent of the font used to draw the string. The
descent_return argument is the returned value of the font descent
element of the font data structure.

VAX only

This argument is optional.

overall return
The minimum left bearing, maximum right bearing, string width,
maximum character ascent, and maximum character descent of the string.

For more information about the character structure, see Chapter 13.

VAX only

This argument is optional.

TEXT EXTENTS 16 returns the logical extents of a specified 16-bit string
of a given font. Unlike QUERY TEXT EXTENTS 16, which queries the
server for the sizes of characters in the string, TEXT EXTENTS 16 uses
the pointer returned by LOAD QUERY FONT to query the font data
structure directly.

Given a 16-bit string, TEXT EXTENTS 16 returns the following
information about extents:

• Direction the font is painted

• Ascent above the baseline used for determining line spacing

• Descent below the baseline used for determining line spacing

• Character extents

7-33

Text Routines
TEXT EXTENTS 16

7-34

The following string extents are returned:

Extent

Leftbearing

Rightbearing

Width

Ascent

Descent

Value

The minimum left bearing of all characters in the string

The maximum right bearing of all characters in the string

The sum of all character widths in the string

The maximum ascent of all characters in the string

The maximum descent of all characters in the string

When fonts are defined with linear indexing rather than 2-byte matrix
indexing, the server interprets each 2-byte character as a 16-bit number
with the first byte as most significant.

When a font has no defined default character, undefined characters in the
specified string receive zero character metric values.

TEXT WIDTH

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Text Routines
TEXT WIDTH

Returns the length of a string composed of 8-bit characters, given the string
and the font in which the string is to be written.

width_return = X$TEXT_WIDTH
(font_ptr, string)

Argument Usage Data Type

width _return longword uns longword

font_ptr record x$font_struct

string char_string character string

width_return = XTextWidth
(font_ptr, string, count)

int XTextWidth(font_ptr, string, count)
XFontStruct *font_ptr;
char *string;
int count;

width return

Access Mechanism

write value

read reference

read descriptor

The length, in pixels, of the specified string, measured using the character
information stored in the specified font.

font_ptr
The address of a font data structure. TEXT WIDTH uses the character
information contained in the structure to calculate the length. The address
of the structure is returned by LOAD QUERY FONT and QUERY FONT.

string
The character string to be measured for length. The string must consist of
8-bit characters.

count (MIT C only)
The character count of the named string.

7-35

Text Routines
TEXT WIDTH

DESCRIPTION

7-36

TEXT WIDTH returns the length of the specified string.

Length, measured in the direction of text painting, is the sum of all the
characters in the string.

This information is stored in a font structure associated with the font used
initially to create the string. The identifier of the structure is returned
by FONT or QUERY FONT. For more information about the font data
structure, see Chapter 13.

Typically, this routine is used to ensure that a proposed character string
does not exceed some maximum size, as when you are putting a label in a
box on the screen.

Text Routines
TEXT WIDTH 16

TEXT WIDTH 16

VAX FORMAT

argument
information

MITCFORMAT

argument
information

RETURNS

ARGUMENTS

Returns the length of a string composed of 16-bit characters, given the string
and the font in which the string is to be written.

width_return = X$TEXT_WIDTH_16
(fonLptr, string 16, count)

Argument Usage Data Type

width_return longword uns longword

font_ptr record x$font_struct

string16 array word

count word uns word

width_return = XTextWidth16
(fonLptr, string 16, count)

Access

write

read

read

read

int XTextWidth16(font_ptr, string16, count)
XFontStruct *font_ptr;
XChar2b *string16;
int count;

width return

Mechanism

value

reference

reference

reference

The length, in pixels, of the specified string, measured using the character
information stored in the specified font.

font_ptr
The address of a font data structure. TEXT WIDTH 16 uses the character
information contained in the font data structure to calculate the length.
The address of the font data structure is returned by LOAD QUERY
FONT and QUERY FONT.

string16
The character string to be measured for length. The string must consist of
16-bit characters.

count
The character count of the named string.

7-37

Text Routines
TEXT WIDTH 16

DESCRIPTION TEXT WIDTH 16 returns the length of the specified string.

7-38

Length, measured in the direction of text painting, is the sum of the width
of all the characters in the string.

This information is stored in a font structure associated with the font used
initially to create the string. The identifier of the structure is returned
by FONT or QUERY FONT. For more information about the font data
structure, see Chapter 13.

Typically, this routine is used to ensure that a proposed character string
does not exceed some maximum size.

