
VMS DECwindows
Transport Manual

Order Number: AA-PABWA-TE

October 1989

This document describes the theory-of-operation and interconnection of each
component of the VMS DECwindows transport layer. This document also
describes the recommended coding procedures that you should follow when
augmenting the DECwindows transport with a third-party transport.

Revision/Update Information: This is a new manual.

Software Version: VMS Version 5.3

digital equipment corporation
maynard, massachusetts

October 1989

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA Live link VAXcluster
DDIF LN03 VAX RMS
DEC MASS BUS VAXserver
DECnet MicroVAX VAXstation
DECUS PrintServer 40 VMS
DECwindows Q-bus VT
DECwriter ReGIS XUI
DEQNA ULTRIX
DIGITAL UNIBUS

mamanma™ GIGI VAX

The following are third-party trademarks:

Postscript is a registered trademark of Adobe Systems, Inc.

UNIX is a registered trademark of American Telephone & Telegraph Company.

X Window System, Version 1 O and its derivations (X, X10, X Version 10, X Window
System) are trademarks of the Massachusetts Institute of Technology.

X Window System, Version 11 and its derivations (X, X11, X Version 11, X Window
System) are trademarks of the Massachusetts Institute of Technology.

ZK5276

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LN03R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE xi

CHAPTER 1 OVERVIEW OF THE VMS DECWINDOWS TRANSPORT
LAVER 1-1

1.1 THE TRANSPORT LAYER FUNCTION

1.2 TRANSPORT COMMON/SPECIFIC ARCHITECTURE

CHAPTER 2 X11 PROTOCOL OVERVIEW

2.1

2.2

2.3

2.4
2.4.1

CHAPTER3

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7

GENERATING A PROTOCOL REQUEST

XLIB OUTPUT BUFFERING AND SYNCHRONIZATION

TRANSPORTING THE PROTOCOL REQUEST

CLIENT INPUT
Handling Input

TRANSPORT LAYER ARCHITECTURE

TRANSPORT LAYER DATA STRUCTURES
XTPB Data Structure
IXTCC Data Structure
XTCC Data Structure
XTCB Data Structure
XTCQ Data Structure
XTDB Data Structure
XTFT Data Structure

1-1

1-2

2-1

2-1

2-3

2-4

2-4
2-5

3-1

3-1
3-7

3-10
3-13
3-18
3-19
3-21
3-24

v

Contents

3.2 TRANSPORT LAVER COMMUNICATION QUEUES 3-26
3.2.1 Transport Common/Specific Queue Relationship 3-28
3.2.2 Adding and Removing Buffers from the Queues 3-30
3.2.3 Communication Queue Notification Flags 3-32
3.2.4 Preventing Queue Access Confllct 3-33
3.2.4.1 Special-Case Queue Conditions • 3-34

3.3 TRANSPORT-COMMON AND TRANSPORT-SPECIFIC
COMPONENTS 3-34

3.3.1 Transport-Common Functions 3-35
3.3.1.1 Initializing the Transport-Common Layer • 3-35
3.3.1.2 Attaching a Transport-Specific Layer • 3-36
3.3.1.3 Opening a Connection • 3-37
3.3.1.4 Getting and Setting Transport Attributes • 3-38
3.3.1.5 Allocating Transport Memory • 3-38
3.3.1.6 Common Transport Read Routines • 3-38
3.3.1.7 Writing to the Transport • 3-39
3.3.1.8 Transport Layer Timer Mechanism • 3-40
3.3.1.9 Closing a Connection • 3-41
3.3.2 Transport-Specific Functions 3-41
3.3.2.1 Initializing the Transport• 3-41
3.3.3 Attaching the Specific Transport 3-42
3.3.3.1 Opening a Connection • 3-42
3.3.3.2 Writing XTCBs to a Transport• 3-43
3.3.3.3 Reading XTCBs from a Transport • 3-43
3.3.3.4 Closing a Connection • 3-44
3.3.3.5 The Transport-Specific Callback • 3-45

CHAPTER 4 TRANSPORT WALK· THROUGH 4-1

CHAPTERS TRANSPOR~COMMONROUTINES 5-1

DECW$XPORT _ACCEPT _FAILED 5-3

DECW$XPORT_ALLOC_INIT_QUEUES 5-5

DECW$XPORT_ALLOC_PMEM 5-9

DECW$XPORT_ATTACHED 5-10

DECW$XPORT_ATTACH_LOST 5-11

DECW$XPORT_CLOSE 5-12

DECW$XPORT _COPY _AND _:WRITE 5-13

DECW$XPORT_DEALLOC_PMEM 5-16

DECW$XPORT_DEALLOC_QUEUES 5-17

DECW$$XPORT_FREE_INPUT 5-18

vi

CHAPTERS

6.1

CHAPTER7

DECW$XPORT _IN_NOTIFV _USER
DECW$XPORT_REATTACH_FAILED
DECW$XPORT_REFUSED_BV_SERVER
DECW$XPORT_UNEXPECTED_MESSAG
DECW$XPORT_UNKNOWN_LINK
DECW$XPORT_VALIDATE_STRUCT
DECW$XPORT _ VALIDATE_STRUCT _JSB
DECW$XPORT_VALIDATE_XTCB
DECW$XPORT_VALIDATE_XTCB_JSB
DECW$$XPORT_WRITE

TRANSPORT-SPECIFIC ROUTINES

CONDITION VALUES
CLOSE_AND_DEALLOCATE_AST
DECW$TRANSPORT _INIT
DETACH_AND_POLL
FREE_INPUT _AST
REATTACH_AST
TRANSPORT_OPEN_CALLBACK
TRANSPORT_READ_AST
TRANSPORT_READ_QUEUE
WRITE_AST
XTFT$A_ATTACH_TRANSPORT
XTFT$A_CLOSE
XTFT$A_EXECUTE_FREE
XTFT$A_EXECUTE_ WRITE
XTFT$A_FREE_INPUT_BUFFER
XTFT$A_OPEN
XTFT$A_RUNDOWN
XTFT$A_WRITE
XTFT$A_WRITE_USER

TRANSPORT SUPPORT MACROS
XPORT _IN_NOTIFY _SET
XPORT _IN_NOTIFV _CLEAR
XPORT _IN_NOTIFV _WAIT
XPORT _IN_NOTIFV _SEND
XPORT_OUT_NOTIFY_SET
XPORT _OUT _NOTIFY_ CLEAR

5-19
5-20
5-22
5-23
5-24
5-25
5-26
5-27
5-29
5-31

6-3
6-4
6-5
6-6
6-7
6-8
6-9

6-10
6-11
6-12
6-13
6-14
6-16
6-18
6-19
6-21
6-22
6-24

7-3
7-4
7-5
7-6
7-7
7-8

Contents

6-1

6-2

7-1

vii

Contents

XPORT_OUT_NOTIFY _WAIT 7-9
XPORT_OUT_NOTIFY_SEND 7-10
XPORT_XTCB_FILLED 7-11
XPORT_XTCB_TOTAL 7-12
XPORT_XTCB_FREE 7-13
XPORT_WRITE_WAIT 7-14
XPORT_WRITE_UNWAIT 7-15
XPORT_ABORT_SEND 7-16
XPORT _OUT_ WRITE_ENABLE 7-17
XPORT _OUT_ WRITE_DISABLE 7-18
XPORT_OUT_STATE_SRP 7-19
XPORT_OUT_STATE_LRP 7-20
XPORT_IN_STATE_SRP 7-21
XPORT_IN_STATE_LRP 7-22
XPORT _IN_FREE_ENABLE 7-23
XPORT _IN_FREE_DISABLE 7-24
VALIDATE_XTCC 7-25
VALIDATE_USERW 7-26
VALIDATE_ USER 7-27

CHAPTERS WRITING YOUR OWN TRANSPORT 8-1

8.1 WHERE TO BEGIN 8-1
8.1.1 Identifying the Transport-Specific Shareable Image 8-2

8.2 COMPILING AND LINKING OPTIONS FOR THE TRANSPORT 8-2

8.3 SAMPLE TCP/IP TRANSPORT LAYER IMPLEMENTATION 8-4
8.3.1 TCP/IP Transport Layer Setup 8-4
8.3.2 Sample XTFT$A_EXECUTE_WRITE Routine 8-7
8.3.3 Sample XTFT$A_ WRITE Routine 8-8
8.3.4 Sample WRITE_AST Routine 8-11
8.3.5 Sample XTFT$A_WRITE_USER Routine 8-15
8.3.6 Sample XTFT$A_EXECUTE_FREE Routine 8-17
8.3.7 Sample XTFT$A_FREE_INPUT_BUFFER Routine 8-19
8.3.8 Sample FREE_INPUT _AST Routine 8-20
8.3.9 Sample XTFT$A_ CLOSE Routine 8-24
8.3.10 Sample CLOSE_AND_DEALLOCATE_AST Routine 8-25
8.3.11 Sample XTFT$A_ OPEN Routine 8-26
8.3.12 Sample XTFT$A_ATTACH_TRANSPORT Routine 8-32
8.3.13 Sample TRANSPORT_READ_QUEUE Routine 8-37

viii

8.3.14
8.3.15
8.3.16
8.3.17
8.3.18
8.3.19

INDEX

EXAMPLES
8-1
8-2
8-3
8-4
8-5

8-6
8-7
8-8

8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20

FIGURES
1-1
1-2
2-1
2-2
3-1

Sample TRANSPORT_READ_AST Routine
Sample TRANSPORT _OPEN_ CALLBACK Routine
Sample DETACH_AND_POLL Routine
Sample REATTACH_AST Routine
Sample XTFT$A_RUNDOWN Routine
Sample DECW$TRANSPORT_INIT Routine

DEMO_BUILD.COM Procedure

TCP/IP Transport Layer Setup

Sample XTFT$A_EXECUTE_WRITE Routine

Sample XTFT$A_ WRITE Routine

Sample WRITE_AST Routine

Sample XTFT$A_WRITE_USER Routine

Sample XTFT$A_EXECUTE_FREE Routine

Sample XTFT$A_FREE_INPUT_BUFFER Routine

Sample FREE_INPUT _AST Routine

Sample XTFT$A_CLOSE Routine

Sample CLOSE_AND _DEALLOCATE_AST Routine

Sample DECW$$TCPIP _OPEN Routine

Sample XTFT$A_ATTACH_TRANSPORT Routine

Sample TRANSPORT_READ_QUEUE Routine

Sample TRANSPORT_READ_AST Routine

Sample TRANSPORT_ OPEN_ CALLBACK Routine

Sample DETACH_AND_POLL Routine

Sample REATTACH_AST Routine

Sample XTFT$A_RUNDOWN Routine

Sample DECW$TRANSPORT_INIT Routine

Remote Transport Connection

Local Transport Connection

Protocol Request Format

Output Buffer Containing a Protocol Request

Transport Attach Data Structures

Contents

8-39
8-45
8-46
8-48
8-48
8-50

8-3
8-4
8-8

8-9
8-11
8-15
8-18
8-19
8-20
8-25
8-26
8-27
8-33
8-37
8-39
8-45
8-47
8-48
8-49
8-50

1-4

1-5
2-2
2-3
3-3

ix

Contents

3-2 Transport Connection Open Data Structures 3-4
3-3 Transport Connection Open XTCB Data Structures 3-5

3-4 Transport Data Structures 3-6
3-5 XTPB Data Structure 3-7
3-6 IXTCC Data Structure 3-11
3-7 XTCC Data Structure 3-14
3-8 XTCB Data Structure 3-18
3-9 XTCQ Data Structure 3-20
3-10 XTDB Data Structure 3-22
3-11 XTFT Data Structure 3-24
3-12 Transport Layer Communication Queues 3-27
3-13 Client/Server Communication Queue Views 3-28
3-14 Transport Common/Specific Connection 3-29
3-15 Transport Common/Specific Queues 3-31

TABLES
3-1 Transport Layer Data Structures 3-1
3-2 XTPB Data Structure 3-8

3-3 XTPB Default Values 3-9
3-4 IXTCC Data Structure 3-12
3-5 XTCC Data Structure 3-15
3-6 XTCB Data Structure 3-19
3-7 XTCQ Data Structure 3-20
3-8 XTDB Data Structure 3-23
3-9 XTFT Data Structure 3-25
3-10 Transport Layer Communication Queues 3-26
3-11 Views for the Client/Server Communication Queue 3-27
3-12 Communication Queue Notification Flags 3-33
3-13 Transport Memory Allocation Routines 3-38
3-14 Transport Read Routines 3-39
3-15 Common Transport Write Routines 3-39
3-16 Transport-Specific Write Routines 3-43
3-17 Transport-Specific Read Routines 3-44
3-18 Transport-Specific Connection Close Routines 3-44
5-1 Transport-Common Routines 5-1
6-1 Transport-Specific Routines 6-1
7-1 Transport Support Macros 7-1

x

Preface

The VMS DECwindows Transport Manual provides information needed to
write a DECwindows transport interface that runs under VMS
Version 5.3 and to load it under DECwindows. Digital makes no guarantee
that transport interfaces written using these guidelines will execute
without modification on future versions of the operating system. Because
this is the first version of the VMS system that supports user-written
transport layers, it is likely that the existing programming interface will
change.

Intended Audience
This document is intended for programmers who need information about
the components and interfaces of the VMS DECwindows transport
layer. It describes the theory-of-operation and interconnection of each
component of the VMS DECwindows transport layer. It also describes the
recommended coding procedures that you should follow when augmenting
the DECwindows transport layer with a third-party transport.

You should read this document before modifying or replacing the VMS
DECwindows transport.

This document assumes that you are familiar with the overall design of
the VMS DECwindows implementation.

Document Structure
The VMS DECwindows Transport Manual is organized into the following
chapters:

• Chapter 1 provides an overview of the VMS DECwindows transport
layer.

• Chapter 2 describes how Xll protocol requests, events, errors, and
replies are generated and transmitted in the VMS DECwindows
environment. Although the transport layer itself does not interpret the
data that it transfers, you should read this chapter to become familiar
with how the transport layer supports the Xll protocol.

• Chapter 3 describes the theory-of-operation and interconnection of each
component of the VMS DECwindows transport layer. This chapter
includes a description of the functions performed by the common and
specific components and how they interact.

• Chapter 4 describes a walk-through of typical transport layer
activities.

• Chapter 5 describes the transport-common routines that a transport
specific component needs to call. You should read this chapter to
become familiar with the operation and use of these routines.

• Chapter 6 describes the transport-specific routines that you must
implement if you write your own transport-specific component.

xi

Preface

• Chapter 7 describes the transport-layer utility routines that you can
use. These routines are provided for your convenience; there is no
requirement that you use them, but you must implement similar
functions.

• Chapter 8 describes a cookbook approach to writing your own
transport-specific routines. The chapter includes a sample BLISS-32
code example for each of the transport-specific routines that you
must write. Your own implementation of these routines may differ
depending on your chosen network service.

Associated Documents

Conventions

xii

For more information about DECwindows, see the VMS DECwindows
documentation set.

The following conventions are used in this manual:

()

[]

{}

boldface text

italic text

In examples, a horizontal ellipsis indicates one of the
following possibilities:

Additional optional arguments in a statement
have been omitted.

The preceding item or items can be repeated one
or more times.

Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed within the brackets is optional; you can
select none, one, or all of the choices. (Brackets are
not, however, optional in the syntax of a directory
name in a file specification or in the syntax of a
substring specification in an assignment statement.)

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

Italic text represents information that can vary
in system messages (for example, Internal error
numbet').

UPPERCASE TEXT

numbers

Preface

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ), or they
indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for
a system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes-binary,
octal, or hexadecimal-are explicitly indicated.

xiii

1 Overview of the VMS DECwindows Transport Layer

The VMS DECwindows transport layer is separated into transport
common and transport-specific components. The routines that comprise
the transport-common layer are network independent and are used to
buffer and queue data to be sent between a client and server. The
transport-common routines then call routines that are specific to a
particular network service, such as DECnet and TCP/IP, to actually move
the data across the network.

The transport-specific routines perform the following functions:

• Initialize (attach) a specific network service

• Connect a client to a server

• Write data to the network service

• Read data from the network service

• Close a connection and release connection resources

To implement your own transport layer, you must write the transport
specific routines to support your particular network service and link them
as a VMS shareable image that can be accessed by the transport-common
component.

Chapter 8 includes examples of transport-specific routines that implement
a TCP/IP transport layer for DECwindows. You can use these code
examples as a starting point when writing your own transport-specific
routines.

Depending upon the network service on which you are building, you will
probably find that the routines that initialize a transport and establish a
connection require the most modification. You may also find that routines
that primarily insert and remove buffers from the queues can be used with
minimal changes.

The remainder of this chapter provides an overview of the VMS
DECwindows transport layer. Subsequent chapters describe the transport
layer components and their interconnection in greater detail.

1.1 The Transport Layer Function
The function of the transport layer is to move X Window System,
Version 11 (Xll) protocol requests between an application, called the client,
and the Xll server in an efficient manner. The transport layer transmits
data over network transports. VMS DECwindows currently supports
three network transports: DECnet, TCP/IP, and a high-performance local
transport.

1-1

Overview of the VMS DECwindows Transport Layer
1.1 The Transport Layer Function

In the Xll environment, the mechanism for sending information from a
client to the server is by way of a "connection" to the server. Creating a
client/server connection is known as opening a display; when you open a
display, you open a connection.

The transport layer is a general data-transfer mechanism; it does not
interpret or understand the format of the data that it transfers. The
transport layer operates symmetrically on both ends of the client/server
connection: it buffers and sends output requests from Xlib to the server
and buffers and sends input events, errors, and replies to Xlib. The buffers
are maintained in a series of communication queues.

The transport layer maintains status (communication context) on a per
connection basis.

1.2 Transport Common/Specific Architecture

1-2

The VMS DECwindows transport layer is installed as part of
the DECwindows common component; that is, the transport
layer is always installed when DECwindows is installed. The
DECwindows DECW$STARTUP.COM procedure installs all of
the transport images-DECW$TRANSPORT_COMMON.EXE,
DECW$TRANSPORT_LOCAL.EXE, DECW$TRANSPORT_DECNET.EXE,
and DECW$TRANSPORT_TCPIP.EXE--each time DECwindows is
started.

Xlib and the server both initialize and attach a network-specific transport
for their respective side of the connection.

The transport layer is separated into transport-common and transport
specific functions. The transport-common functions, which are contained
in DECW$TRANSPORT_COMMON.EXE, provide the generic services
needed by Xlib or the server. The transport-common functions buffer
and queue the data to be sent between the client and server and then
call functions in the various images (DECW$TRANSPORT_LOCAL.EXE,
DECW$TRANSPORT_DECNET.EXE, DECW$TRANSPORT_TCPIP.EXE)
that are specific to a particular transport service, such as local, DECnet,
and TCP/IP, respectively, to actually move the data.

This architecture allows the transport-common component to present a
common buffer/queue interface to other DECwindows components while
the transport-specific component "hides" the details of how data is actually
transmitted.

The transport-common/transport-specific architecture is particularly
important because the transport layer must be flexible enough to
efficiently support two types of client/server connections:

• If the client and server are executing on two different VMS systems, a
transport image physically executes on both the client system and the
server system. The two transports then establish a network connection
between themselves to pass the data. The transport layer buffers
data to reduce the number of required network round-trips and their
associated overhead.

This is called a remote connection.

Overview of the VMS DECwindows Transport Layer
1.2 Transport Common/Specific Architecture

• If the client and server are executing on the same VMS system, there
is no need to establish a network connection, but the client must still
open a logical connection to the server to pass data. This is called a
local connection. Xlib and the server both initialize the transport
common code for their respective side of the client/server connection
just as they would in the case of a remote connection. However, Xlib
and the server then attach a local transport to transmit data.

The VMS DECwindows transport layer establishes remote or local
connections to a server based on the display name argument passed by a
client in the Xlib OPEN DISPLAY routine or through information specified
in a SET DISPLAY command. (By passing a null value in the call to
the OPEN DISPLAY routine, a client need not hard code the display
name. See the VMS DECwindows Xlib Programming Volume for more
information~)

In a remote transport connection, a node name other than "O" indicates
that a remote workstation node in the network is to be used as the display;
the client application and the server do not execute on the same physical
machine. The transport layer performs its buffering functions and calls a
transport such as DECnet to send the data across the network, as shown
in Figure 1-1.

1-3

Overview of the VMS DECwindows Transport Layer
1.2 Transport Common/Specific Architecture

Figure 1-1 Remote Transport Connection

Client runs on
remote node and
opens connection
toWORK1.

The transport on the client side
of the connection establishes a
connection to the transport on
the server side of the connection.

The transport (both sides) buffers
the data being sent.

1-4

Client appears
here and accepts
input from this
keyboard.

WORK1

ZK-1198A-G E

Overview of the VMS DECwindows Transport Layer
1.2 Transport Common/Specific Architecture

In a local transport connection, a node name of "O" indicates that the
client and server are executing on the same hardware, as shown in
Figure 1-2. There is no need for the transport layer to send the data
across the network, but Xlib and the server must still communicate. The
local transport layer implements a shared-memory transport. The shared
memory transport performs functions that are similar to those performed
by the DECnet or TCP/IP transport-specific components, but does not
incur the network overhead.

Figure 1-2 Local Transport Connection

Client runs
here and accepts
input from this
keyboard.

WORK1
ZK-1199A-GE

1-5

2 X11 Protocol Overview

The X Window System, Version 11 (Xll) standard defines a common
protocol for all communications between client applications and
implementations of the Xll server. This standard protocol makes it
possible to mix client/server pairs from different operating-system and
vendor environments.

The protocol defines the format of the data, such as the request, reply,
error, and event formats, that is passed between the client and server; it
does not dictate the mechanism for transporting this data. The protocol
nests inside transport mechanisms that move the protocol requests
between clients and servers.

This chapter describes how Xll protocol requests, events, errors,
and replies are generated and transmitted in the VMS DECwindows
environment. You should read this chapter to become familiar with how
the transport layer supports the Xll protocol. Later chapters describe the
transport layer's architecture and role in supporting the Xll protocol in
greater detail.

For more information about the Xll protocol, see the X Window System C
Library and Protocol Reference by Robert W. Schei:fter, Jam es Gettys, and
Ron Newman.

2.1 Generating a Protocol Request
When a DECwindows client program needs to generate output on a screen
connected to a display, the client calls an Xlib or XUI Toolkit routine
to perform the output. Xlib translates these routines into one or more
protocol requests. The protocol request is sent from a client to server to
invoke some operation in the server. Requests may be synchronous (the
client waits until the server sends a reply packet) or asynchronous (no
reply is generated and the client may send more requests).

The protocol request is either one of the core protocol requests or a protocol
request that is interpreted by an extension. The format of the core protocol
request is predefined to ensure portability of core requests across various
implementations of the X Window System. The format of the protocol
request is shown in Figure 2-1.

2-1

X11 Protocol Overview
2.1 Generating a Protocol Request

Figure 2-1 Protocol Request Format

0 8 16 31

Major Spare Length Field Data Bytes (256Kb maximum split
Opcode Data (including across buffers; 16Kb typically in
0-127 Byte opcode) 1 buffer for VMS)

l _____ -----'!)
v

2-2

Protocol Request Header

ZK-1200A-GE

Every request consists of a 4-byte header, which contains an 8-bit "major"
opcode, a spare data byte used that is usually used for the "minor" opcode
of an extension, and a 16-bit length field. The header is followed by zero
or more additional bytes of data; unused bytes are not required to be zero,
except in a few special cases such as image text.

The core protocol requests use only seven of the eight available bits of
the opcode field in the request header; major opcodes 0 through 127 are
reserved for core requests. Extensions use all eight bits, and opcodes 128
through 255 are reserved for extensions.

Because the 128 opcodes available for extensions could be consumed fairly
quickly, extensions usually have an additional 8-bit minor opcode encoded
in the spare data byte of the request header. This minor opcode increases
the number of requests that can be associated with a major opcode. By
convention, each extension uses one major opcode.

Note: The placement and interpretation of the minor opcode, and all
other nonheader fields in extension requests, are not defined by
the core protocol.

The length field is a 16-bit value that defines the total number of
longwords in the request, including the header. For example, if the value
of the length field was 4096, multiply 4096 times 4 to compute a request
length of 16,384 bytes. The maximum size of a protocol request that a
server is willing to accept is server dependent; the server communicates
this maximum request length to the client as part of the connection setup
when a client opens a connection.

The length field must be exactly the number of longwords in the request.
If the specified length is shorter or longer than the actual length, the
protocol is corrupted and the default error handler may generate a fatal or
nonfatal error. Under other circumstances an inconsistent length field can
hang the server.

X11 Protocol Overview
2.2 Xlib Output Buffering and Synchronization

2.2 Xlib Output Buffering and Synchronization
Most of the Xlib routines add protocol requests to an output buffer; these
protocol requests are later sent to the server when the buffer fills or is
explicitly flushed by the client. The transport layer maintains the buffers
on a per-connection basis. If a client explicitly flushes a buffer, only the
output requests for that connection are affected; output buffered for other
connections, either to the same or a different server, is not affected.

The total number of available output buffers is set by the server and Xlib
when the transport layer is initialized. The Xlib output buffers for an
individual connection are established when the connection to the server is
opened. The format of the output request buffer is shown in Figure 2-2.

Figure 2-2 Output Buffer Containing a Protocol Request

0

Major
Opcode
0-127

VMS
Structure
Header

8

Spare
Data
Byte

16

Length Field
(including
opcode)

31

Data Bytes (256Kb maximum split
across buffers; 16Kb typically in
1 buffer for VMS)

Data Buffer: Data Buffer
One or more protocol requests per
buffer for VMS implementation

ZK-1201A-GE

The number of protocol requests that Xlib sends in a single output buffer
depends on the amount of data that is associated with each request.
Because the VMS implementation of Xlib tries not to split protocol
requests across output buffers, Xlib adds requests to a buffer until a
protocol request does not fit completely within the remaining space. Xlib
then flushes the current buffer and adds the waiting protocol request to
the head of a new buffer.

Note: The server negotiates the size of the largest request for each
connection when the connection is opened. The VMS DECwindows
server accepts up to a 16Kb protocol request.

The maximum size of a protocol request allowed by the X11
protocol is 256Kb (65,535 times 4). The core protocol allows Xlib
to split protocol requests across output request buffers, and other
Xlib implementations are likely to do this. It is therefore possible
that a read request will not return a complete protocol message
and Xlib and the server must handle this case.

2-3

X11 Protocol Overview
2.2 Xlib Output Buffering and Synchronization

Xlib provides routines with which clients can control output buffering. If
you do not want an output request to wait for the buffer to fill, you can
follow it with an explicit call to a routine such as FLUSH, which sends all
buffered output for a connection.

Xlib also includes routines that allow clients to synchronize output
requests. Xlib accomplishes this synchronization by immediately flushing
the client's Xlib output buffer after each output request and then calling a
synchronization routine that generates a return.

2.3 Transporting the Protocol Request

2.4 Client Input

2-4

Once the transport layer receives the output request buffer from Xlib, it
arranges to have the data transmitted to the server. The transport layer
on the server side of the connection receives the data and notifies the
server that data is available.

Note: The Xlib output request buffer is actually a transport layer
communication buffer (XTCB). The XTCB data structure is
described in Section 3.1.4.

The connection could be across the network to the display, or within a
workstation in the case where the client and server have established a
local connection. The networking service is assumed to be reliable; Xlib,
the transport layer, and the server assume that the data arrives intact and
error-free.

The transport layer notifies the scheduler at user-AST level that it has
data available for a connection. The dispatcher calls the transport layer to
get the data.

Input to clients comes in three forms: input events, errors, and replies. An
event packet is the Xll protocol message sent from a server to a client that
gives information about some event in the server, such as a windowing
operation, a keyboard key transition, or a mouse movement. Clients can
also use request packets (XSend.Event) to send events to another client by
way of the server. An event packet consists of exactly 32 bytes.

An error packet is the Xll protocol message sent from a server to a client
that indicates an error state in the server. An error packet consists of
exactly 32 bytes.

A reply packet is the Xll protocol message sent from a server to a client
in response to a client protocol request that generates data (for example,
Getlmage). A reply can be any length with a maximum size of some
16 gigabytes.

2.4.1 Handling Input

X11 Protocol Overview
2.4 Client Input

Most input events are reported to clients relative to windows. Events
are usually sent to the smallest enclosing window in which the pointer is
located that is interested in the type of event being sent. It is also possible
to assign the keyboard input focus to a specific window. When the input
focus is attached to a window, keyboard events go to the client that has
selected input on that window, rather than to the window in which the
pointer is located.

The input component of the server services the XEvent queue and
interacts with the window manager to determine which window is
associated with the position recorded in the input queue entry. The
window ID to which the event is to be delivered is then recorded in the
event packet. The input component calls the events component to send the
input events to clients that want to know about input in this window ID.

Client programs can use the event_mask argument of the XSelectlnput
routine to select the events for which they want to receive notification. The
server does not send events to a client unless the client has specifically
asked to be informed of that type of event. One exception to this rule is
that one client can use the XSendEvent routine to force events to be sent
to other clients.

An interest list is attached to the window ID data structure. Each entry
on the interest list describes filtering parameters defined by the client's
event masks. If there are multiple windows interested in the event, the
event is sent to multiple windows.

The events component calls the transport layer to transmit the processed
input event packets to the Xlib input queue. The transport layer buffers
the events packets on a per-connection basis and delivers them to the
Xlib input queues. As in the case for output, the transport layer does
not interpret the data. Input normally arrives at the client as an 1/0
completion. Typically, the client processes the input event and generates
output requests.

The input event is retained by Xlib until a client requests the next, or the
next matching, event. It is the responsibility of the client to request the
event; if the client does not request the event, the event remains in the
queue.

Xlib provides routines such as XPeeklfEvent and XChecklfEvent that
client programs can call to check for particular types of events on their
respective input queues. These routines require client programs to supply
a procedure that determines if the next event in the queue matches the
one that the client wants.

2-5

3 Transport Layer Architecture

This chapter describes the theory-of-operation and interconnection of each
component of the VMS DECwindows transport layer. The relationship
between the transport-common and transport-specific layers, as described
in Section 3.3, is of particular importance.

The chapter begins with a description of the transport layer data
structures.

3.1 Transport Layer Data Structures
The transport layer data structures maintain the state of the transport
and each of the established connections. The transport layer data
structures are created in stages as the transport-common code is
initialized, a transport-specific mechanism is attached, and connections
are established.

The XTPB, IXTCC, and XTDB data structures are allocated from memory
pages that have user-mode read access/executive-mode write access
(UREW) to prevent modification by less privileged access levels, including
the transport-specific code that runs in user mode. The transport-common
code depends on the accuracy of the contents of the XTPB, IXTCC, and
XTDB data structures.

The transport layer data structures are described in Table 3-1.

Table 3-1 Transport Layer Data Structures

Name When Created

XTPB Initialization
Transport attach
Connection open

IXTCC Connection open

Write
Access
Mode Description

exec Transport parameter block (XTPB)
contains default transport parameters.
There is a three-level hierarchy of
XTPB data structures.

exec Internal transport communications
context (IXTCC) describes an
established connection for executive
mode routines within the transport
layer. The IXTCC is used by executive
mode routines to store protected
data.

(continued on next page)

3-1

Transport Layer Architecture
3.1 Transport Layer Data Structures

3-2

Table 3-1 (Cont.) Transport Layer Data Structures

Name When Created

XTCC Connection open

XTDB Transport attach

XTCQ Connection open

XTCB Connection open

XTFT Transport attach

Write
Access
Mode Description

user Transport communications context
exec (XTCC) describes an established

connection. The XTCC is used to pass
user-mode data to executive-mode
routines. The XTCC may be modified
by user-mode code and is visible to
either the server or Xlib.

exec

user
exec

user
exec

exec

Transport descriptor block (XTDB)
describes each attached transport.

Transport communication queue
(XTCQ) contains six per-connection
communication queues and their
states.

Transport communication buffers
(XTCB) pass data in the transport
layer.

Transport function table (XTFT)
contains the addresses of the
transport-specific routines. The XTFT
is the transport-common code's link to
the transport-specific code.

The transport-common code creates the global XTPB structure at
initialization time. The transport-common DECW$XPORT_ATTACH_
TRANSPORT routine creates XTDB, XTPB, and XTCB data structures,
as shown in Figure 3-1. The XTCC, XTCQ, and XTCB data structures
are allocated from memory pages that are user-writable so that routines
running in either user or executive mode can modify them.

Transport Layer Architecture
3.1 Transport Layer Data Structures

Figure 3-1 Transport Attach Data Structures

GlobalXTPB
(1 in common transport}

Transport XTPB
(1 per transport}

n
XTDB

(1 per transport}

XTPB

IXT~e

ZK-1202A-GE

The transport-common open routine creates IXTCC and XTPB data
structures. The transport-specific connection open routine creates XTCC,
XTCQ, and XTCB data structures, as shown in Figure 3-2.

3-3

Transport Layer Architecture
3.1 Transport Layer Data Structures

Figure 3-2 Transport Connection Open Data Structures

GlobalXTPB
(1 in common transport)

Transport XTPB
(1 per transport)

h

Connection XTPB
(1 per connection)

rl ~

XTDB
(1 per-transport)

XTPB

rl ~a~~e

IXTCC XTCC
(1 per connection) (1 per connection)

----..., r-?
~ XTCQ XTCQ

XTPB r-- XTPB

XTCC

XTCQ
(1 per connection

~ XTCB

XTCB

XTCB
XTCB

XTCB

XTCB

ZK-1203A-G E

The transport-specific connection open routine also creates XTCB data
structures, as shown in Figure 3-3.

3-4

Transport Layer Architecture
3.1 Transport Layer Data Structures

Figure 3-3 Transport Connection Open XTCB Data Structures

XTCB
(many per connection)

l
l

r-7

XTCQ
1 per connection)

XTCB IL

" XTCB IL_ I-'

" I-'

XTCB
XTCB XTCB
XTCB (many per connection

XTCB l
1

~ ,

1--

I-

ZK-1204A-GE

The shaded areas of Figure 3-4 show the transport layer data structures
that have user-mode read access/executive-mode write access.

3-5

Transport Layer Architecture
3.1 Transport Layer Data Structures

Figure 3-4 Transport Data Structures

3-6

XTCC
(1 per connection)

XTCQ
XTPB

XTCQ
(1 per connection)

XTCB
XTCB
XTCB
XTCB
XTCB
XTCB

ZK-1205A-GE

3.1.1

Transport Layer Architecture
3.1 Transport Layer Data Structures

XTPB Data Structure
When the transport layer is initialized, the transport-common code creates
a global transport parameter block (XTPB). data structure that contains
default parameters. The default parameters are inherited by every
network-specific transport that is subsequently attached. The attached
transport can override the defaults.

Three levels of XTPB data structures are eventually built:

• A global XTPB data structure

• A transport-specific XTPB data structure

• A connection-specific XTPB data structure

The contents of the global XTPB data structure are copied to the transport
specific XTPB data structure when a transport is attached, and from the
transport-specific XTPB data structure to a connection-specific XTPB
data structure when a connection is established. The server and Xlib can
override this inheritance of XTPB parameter values. After an XTPB has
been created, changes to its parent's values do not change its values.

All XTPB data structures are allocated from memory pages that have
user-mode read access/executive-mode write access (UREW) to protect
them from modification by any less privileged access mode.

The XTPB data structure is shown in Figure 3-5.

Figure 3-5 XTPB Data Structure

XTPB$A_FLINK 0

XTPB$A_BLINK 4

XTPB$B_SUBTYPE l XTPB$B_TYPE XTPB$W_SIZE 8

XTPB$W_DISPLAY_NUM XTPB$W_FLAGS 12

XTPB$A_l_NOTIFY _RTNADR 16

XTPB$L_l_NOTIFY _RTNPRM 20

XTPB$A_O_NOTIFY _RTNADR 24

XTPB$L_O_NOTIFY _RTNPRM 28

XTP8$W_ON_EFN XTPB$W_IN_EFN 32

XTPB$W_LRP _SIZE XTPB$W_SRP _SIZE 36

XTPB$L_I_ TIMEOUT 40

XTPB$W_l_LRP _COUNT XTPB$W_l_SRP _COUNT 44

(continued on next page)

3-7

Transport Layer Architecture
3.1 Transport Layer Data Structures

Figure 3-5 (Cont.) XTPB Data Structure

XTPB$W_O_LRP_COUNT I XTPB$W_O_SRP_COUNT

XTPB$L_O_ TIMEOUT

XTPB$L_I_ TICKS

XTPB$L_O_TICKS

Table 3-2 shows the contents of the XTPB data structure.

Table 3-2 XTPB Data Structure

Field

XTPB$A_FLINK

XTPB$A_BLINK

XTPB$W_SIZE

XTPB$B_TYPE

XTPB$B_SUBTYPE

XTPB$W_FLAGS

Use

Reserved for use by Digital.

Reserved for use by Digital.

Total length of this XTPB in bytes.

Constant 255.

Constant DECW$C_DYN_XTPB (7).

See the following list.

The following fields are defined within XTPB$W_FLAGS:

XTPB$V _MODE

XTPB$V_VALID

Type of transport connection. Possible values
are:

DECW$K_XPORT _REMOTE_SERVER (0)
DECW$K_XPORT_REMOTE_CLIENT (1)
DECW$K_XPORT _LOCAL_SERVER (2)
DECW$K_XPORT _LOCAL_CLIENT (3)

If 1, this XTPB is valid.

48

52

56

60

XTPB$W_DISPLAY _NUM The server number. Valid only when the transport
caller is a server.

XTPB$A_l_NOTIFY _RTNADR

XTPB$L_l_NOTIFY _RTN PRM

XTPB$A_O_NOTIFY _RTNADR

3-8

Address of an AST routine to call for input
notification.

A longword value to be passed to the input
notification AST routine.

Address of an AST routine to call for output
notification.

(continued on next page)

Transport Layer Architecture
3.1 Transport Layer Data Structures

Table 3-2 (Cont.) XTPB Data Structure

Field Use

XTPB$L_O_NOTIFY _RTNPRM Argument to be passed to the output notification
AST routine.

XTPB$W_IN_EFN

XTPB$W_ON_EFN

XTPB$W_SRP _SIZE

XTPB$W_LRP _SIZE

XTPB$L_I_ TIMEOUT

XTPB$W_l_SRP _COUNT

XTPB$W_l_LRP _COUNT

XTPB$W_O_SRP_COUNT

XTPB$W_O_LRP_COUNT

XTPB$L_O_ TIMEOUT

XTPB$L_I_ TICKS

XTPB$L_O_ TICKS

Event flag to be set as part of input notification. If
o, no flag is set.

Event flag to be set as part of output notification.
If 0, no flag is set.

Size, in bytes, of the data area of a small XTCB.

Size, in bytes, of the data area of a large XTCB.

Number of milliseconds that a common transport
waits for a blocking input function to complete. If
0, the common transport waits indefinitely.

Number of small XTCBs to allocate for input
operations.

Number of large XTCBs to allocate for input
operations.

Number of small XTCBs to allocate for output
operations.

Number of large XTCBs to allocate for output
operations.

Number of milliseconds that a common transport
waits for a blocking output function to complete.
If 0, the common transport waits indefinitely.

XTPB$L_I_ TIMEOUT converted to ticks of the
internal watchdog timer.

XTPB$L_O_ TIMEOUT converted to ticks of the
internal watchdog timer.

Some fields in the global XTPB have hard-coded defaults that provide a
minimal working environment. Xlib and the server change these values
for better performance when they initialize a transport. The global XTPB
defaults are shown in Table 3-3.

Table 3-3 XTPB Default Values

Field

XTPB$W_LRP _SIZE

XTPB$W_SRP _SIZE

Default
Value Description

16384 Default large XTCB size. The minimum
and maximum values are 16 and 65408,
respectively.

1408 Default small XTCB size. The minimum
and maximum values are 16 and 65408,
respectively.

(continued on next page)

3-9

3.1.2

Transport Layer Architecture
3.1 Transport Layer Data Structures

Table 3-3 (Cont.) XTPB Default Values

Field

XTPB$W_ON_EFN

XTPB$W_IN_EFN

XTPB$L_I_ TIMEOUT
and
XTPB$L_O_ TIMEOUT

XTPB$W_l_SRP _
COUNT

XTPB$W_l_LRP _
COUNT

XTPB$W_O_SRP _
COUNT

XTPB$W_O_LRP _
COUNT

Default
Value Description

0 Do not set an event flag on output.

0 Do not set an event flag on input.

O Don~timeo~

8 The total number of small input XTCBs. The
minimum and maximum values are O and 128,
respectively.

The total number of large input XTCBs. The
minimum and maximum values are O and 128,
respectively.

8 The total number of small output XTCBs. The
minimum and maximum values are O and 128,
respectively.

The-total number of large output XTCBs. The
minimum and maximum values are O and 128,
respectively.

IXTCC Data Structure

3-10

The internal transport communications context (IXTCC) data structure
is created when a connection is created and describes the established
connection. There are actually two per-connection structures that store
the communications context:

• The IXTCC data structure is allocated from memory pages that have
user-mode read access/executive-mode write access (UREW). On the
client side of the connection, the transport-common DECW$XPORT_
OPEN routine creates one IXTCC data structure per connection; on
the server side of the connection, a transport-specific routine (such as
the sample TRANSPORT_READ_AST routine described in Chapter 6)
creates one IXTCC data structure per connection.

The common transport uses the IXTCC structure to refer to a
connection. The IXTCC structure exists during the lifetime of a
connection.

• An XTCC data structure is user-modifiable. The server and Xlib use
the XTCC to identify a connection when calling the transport layer.
The XTCC structure exists during the lifetime of a connection.

The IXTCC data structure is shown in Figure 3-6.

Figure 3-6 IXTCC Data Structure

Transport Layer Architecture
3.1 Transport Layer Data Structures

IXTCC$A_FLINK 0

IXTCC$A_BLINK 4

IXTCC$B_SUBTYPE 1 IXTCC$B_ TYPE 1 IXTCC$W_SIZE 8

IXTCC$A_ TCQ 12

IXTCC$A_ TPB 16

IXTCC$A_ TDB 20

IXTCC$A_ TCC 24

IXTCC$A_USER_REGION 28
1

IXTCC$A_BUFFER_REGION 36

IXTCC$L_ICI 44

IXTCC$A_IW_QUEUE 48

IXTCC$A_IFS_QUEUE 52

IXTCC$A_IFL_QUEUE 56

IXTCC$A_OW_QUEUE 60

IXTCC$A_OFS_QUEUE 64

IXTCC$A_OFL_QUEUE 68

IXTCC$A_ TCQ_FLAGS 72

IXTCC$L_IWQ_FLAG 76

IXTCC$L_IFSQ_FLAG 80

IXTCC$L_IFLQ_FLAG 84

IXTCC$L_OWQ_FLAG 88

IXTCC$L_OFSQ_FLAG 92

IXTCC$L_OFLQ_FLAG 96

(continued on next page)

3-11

Transport Layer Architecture
3.1 Transport Layer Data Structures

Figure 3-6 (Cont.) IXTCC Data Structure

3-12

IXTCC$W_UNIT] IXTCC$W_SCREEN 100

IXTCC$Q_XPORT _RESERVED 104

IXTCC$L_DEC_RESERVED 112

IXTCC$A_XPORT _TABLE 116

Table 3-4 shows the contents of the IXTCC data structure.

Table 3-4 IXTCC Data Structure

Field

IXTCC$A_FLINK

IXTCC$A_BLINK

IXTCC$W_SIZE

IXTCC$8_ TYPE

IXTCC$B_SUBTYPE

IXTCC$A_ TCQ

IXTCC$A_ TPB

IXTCC$A_ TDB

IXTCC$A_ TCC

IXTCC$A_USER_REGION

IXTCC$A_BUFFER_REGION

IXTCC$L_ICI

IXTCC$A_IW_QUEUE

IXTCC$A_IFS_QUEUE

IXTCC$A_IFL_QUEUE

Use

Forward, absolute pointer to the next IXTCC in
the XTDB's queue of IXTCCs.

Backward, absolute pointer to the previous
IXTCC in the XTDB's queue of IXTCCs.

Length of IXTCC in bytes.

Constant 255.

Constant DECW$C_DYN_IXTCC (8).

Address of XTCQ used by this connection.

Address of XTPB private to this connection.

Address of XTDB that owns this connection.

Address of XTCC associated with this
connection.

R~nge of addresses allocated by
DECW$XPORT _ALLOC_INIT _QUEUES.

Range of addresses for communication
buffers.

Internal connection identifier. IXTCC$L_ICI is
a protected copy of XTCC$L_ICI.

Address of input work queue in the XTCQ.
For clients this is the event work queue; for
servers this is the request work queue.

Address of the small XTCB input free queue in
the XTCQ.

Address of the large XTCB input free queue in
the XTCQ.

(continued on next page)

3.1.3

Transport Layer Architecture
3.1 Transport Layer Data Structures

Table 3-4 (Cont.) IXTCC Data Structure

Field

IXTCC$A_OW_QUEUE

IXTCC$A_OFS_QUEUE

IXTCC$A_OFL_QUEUE

IXTCC$A_ TCQ_FLAGS

IXTCC$L_IWQ_FLAG

IXTCC$L_IFSQ_FLAG

IXTCC$L_IFLQ_FLAG

IXTCC$L_OWQ_FLAG

IXTCC$L_OFSQ_FLAG

IXTCC$L_OFLQ_FLAG

IXTCC$W_SCREEN

IXTCC$W_UNIT

IXTCC$Q_XPORT_RESERVED

IXTCC$L_DEC_RESERVED

IXTCC$A_XPORT _TABLE

XTCC Data Structure

Use

Address of the output work queue in the
XTCQ. For clients this is the request work
queue; for servers this is the event work
queue.

Address of the small XTCB output free queue
in the XTCQ.

Address of the large XTCB output free queue
in the XTCQ.

Address of the flags longword in the XTCQ.

Bit position of the input work queue notification
request flag in the flags longword in the XTCQ.

Bit position of the small XTCB input free queue
notification request flag.

Bit position of the large XTCB input free queue
notification request flag.

Bit position of the output work queue
notification request flag.

Bit position of the small XTCB output free
queue interest flag.

Bit position of the large XTCB output free
queue interest flag.

Reserved for use by Digital.

Reserved for use by Digital.

Quadword reserved for use by specific
transport.

Reserved for use by Digital.

Address of XTFT structure for this specific
transport.

As described in Section 3.1.2, the transport communications context
(XTCC) data structure describes an established connection. The server and
Xlib use the XTCC to identify a connection when calling the DECwindows
transport layer. The XTCC structure exists during the lifetime of a
connection. This is a user-writable structure.

The XTCC data structure is shown in Figure 3-7.

3-13

Transport Layer Architecture
3.1 Transport Layer Data Structures

Figure 3-7 XTCC Data Structure

XTCC$A_FLINK

XTCC$A_BLINK

XTCC$B_SUBTYPE I XTCC$B_TYPE J
XTCC$L_FLAGS

XTCC$A_TCQ

XTCC$A_TPB

XTCC$L_ICI

XTCC$A_IW_QUEUE

XTCC$A_IFS_QUEUE

XTCC$A_IFL_QUEUE

XTCC$A_OW_QUEUE

XTCC$A_OFS_QUEUE

XTCC$A_OFL_QUEUE

XTCC$A_TCQ_FLAGS

XTCC$L_IWQ_FLAG

XTCC$L_IFSQ_FLAG

XTCC$L_IFLQ_FLAG

XTCC$L_OWQ_FLAG

XTCC$L_OFSQ_FLAG

XTCC$L_OFLQ_FLAG

PAD

XTCC$Q_USER_RESERVED

XTCC$L_ERR_STATUS

3-14

0

4

XTCC$W_SIZE 8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

88
1

96

(continued on next page)

Transport Layer Architecture
3.1 Transport Layer Data Structures

Figure 3-7 (Cont.) XTCC Data Structure

XTCC$L_REM_USER_LEN

XTCC$A_REM_USER

XTCC$L_REM_NODE_LEN

XTCC$A_REM_NODE

XTCC$L_LCL_USER_LEN

XTCC$A_LCL_USER

XTCC$W_IN_IOSB

XTCC$W_ON_IOSB

XTCC$W_OW_IOSB

XTCC$L_IN_WAIT _TICKS

XTCC$L_OUT_WAIT _TICKS

Table 3-5 shows the contents of the XTCC data structure.

Table 3-5 XTCC Data Structure

Field

XTCC$A_FLINK

XTCC$A_BLINK

XTCC$W_SIZE

XTCC$B_TYPE

XTCC$B_SUBTYPE

XTCC$L_FLAGS

Use

Reserved for use by Digital.

Reserved for use by Digital.

Length of XTCC in bytes.

Constant 255.

Constant DECW$C_DYN_XTCC (1).

See the following list.

100

104

108

112

116

120

124

132

140

148

152

(continued on next page)

3-15

Transport Layer Architecture
3.1 Transport Layer Data Structures

Table 3-5 (Cont.) XTCC Data Structure

3-16

Field Use

The following fields are defined within XTCC$L_FLAGS:

XTCC$V _MODE

XTCC$V _ACTIVE

XTCC$V _DYING

XTCC$V _INPUT _IN_PROG

XTCC$V _OUTPUT _IN_PROG

XTCC$V_MARK_FOR_CLOSE

XTCC$V _ERR_STS_ VALID

XTCC$V_LRP _ON_INPUT

XTCC$V_LRP_ON_OUTPUT

XTCC$V_WAIT_ON_WRITE

XTCC$V _IN_AST _IN_PROG

XTCC$V _OUT_AST _IN_PROG

XTCC$A_TCQ

XTCC$A_TPB

XTCC$L_ICI

Type of transport connection. Possible values
are:

DECW$K_XPORT_REMOTE_SERVER
(0)

DECW$K_XPORT _REMOTE_ CLIENT (1)
DECW$K_XPORT _LOCAL_SERVER (2)
DECW$K_XPORT_LOCAL_CLIENT (3)

Connection has been established.

Connection is aborting and no further
operations should be allowed.

Internal flag used by common transport to
check usage consistency.

Internal flag used by common transport to
check usage consistency.

Deferred close operation requested. Used
privately by the common transport.

If 1, XTCC$L_ERR_STATUS field contains
additional information about the cause of
connection termination.

If 1, specific transport is using large XTCBs for
input operations, otherwise, small XTCBs.

If 1, transport caller is using large XTCBs for
output operations, otherwise, small XTCBs.

If 1, common transport is stalling to wait for
specific transport to empty the output work
queue so that a write_user operation can be
initiated. (Write synchronization flag.)

If clear, the previous input notification AST
has been delivered and no AST is in progress.
This flag prevents EXQUOTA errors due to
excess use of ASTs.

Reserved for use by Digital.

Address of XTCQ used by this connection.

Address of XTPB specific to this connection.

Internal connection identifier. Used to find the
corresponding IXTCC.

(continued on next page)

Transport Layer Architecture
3.1 Transport Layer Data Structures

Table 3-5 (Cont.) XTCC Data Structure

Field

XTCC$A_IW_QUEUE

XTCC$A_IFS_QUEUE

XTCC$A_IFL_QUEUE

XTCC$A_OW_QUEUE

XTCC$A_OFS_QUEUE

XTCC$A_OFL_QUEUE

XTCC$A_TCQ_FLAGS

XTCC$L_IWQ_FLAG

XTCC$L_IFSQ_FLAG

XTCC$L_IFLQ_FLAG

XTCC$L_OWQ_FLAG

XTCC$L_OFSQ_FLAG

XTCC$L_OFLQ_FLAG

XTCC$Q_USER_RESERVED

XTCC$L_ERR_STATUS

XTCC$L_REM_USER_LEN

XTCC$A_REM_USER

XTCC$L_REM_NODE_LEN

XTCC$A_REM_NODE

XTCC$L_LCL_USER_LEN

XTCC$A_LCL_USER

XTCC$W_IN_IOSB

Use

Address of input work queue in the XTCQ.
For clients this is the event work queue; for
servers this is the request work queue.

Address of the small XTCB input free queue in
the XTCQ.

Address of the large XTCB input free queue in
the XTCQ.

Address of the output work queue in the
XTCQ.

Address of the small XTCB output free queue
in the XTCQ.

Address of the large XTCB output free queue
in the XTCQ.

Address of the flags longword in the XTCQ.

Bit position of the input work queue notification
request flag in the flags longword in the XTCQ.

Bit position of the small XTCB input free queue
notification request flag.

Bit position of the large XTCB input free queue
notification request flag.

Bit position of the output work queue
notification request flag.

Bit position of the small XTCB output free
queue notification request flag.

Bit position of the large XTCB output free
queue notification request flag.

Quadword reserved for use by transport caller.

Additional condition code information in case
of connection failure.

Length of the string identifying the remote
user. (Valid for server only.)

Address of the string identifying the remote
user. (Valid for server only.)

Length of the string identifying the remote
node. (Valid for server only.)

Address of the string identifying the remote
node. (Valid for server only.)

Reserved for use by Digital.

Reserved for use by Digital.

IOSB used in the $SYNCH system service
when waiting for input operations to complete.

(continued on next page)

3-17

3.1.4

Transport Layer Architecture
3.1 Transport Layer Data Structures

Table 3-5 (Cont.) XTCC Data Structure

Field

XTCC$W_ON_IOSB

XTCC$W_OW_IOSB

XTCC$L_IN_WAIT _TICKS

XTCC$L_OUT _WAIT_ TICKS

Use

IOSB used in the $SYNCH system service
when waiting for output operations to
complete.

IOSB used in the $SYNCH system service
when stalling the transport caller so that the
output work queue can be emptied prior to a
write_user operation. (Write synchronization
operation.)

Zero minus the number of watchdog-timer
ticks remaining before input operation times
out. Negative-to-zero transition causes the
timeout to occur.

Zero minus the number of watchdog-timer
ticks remaining before output operation times
out. Negative-to-zero transition causes the
timeout to occur.

XTCB Data Structure
The transport layer uses transport communication buffers (XTCBs) to
pass data between the server or Xlib and the underlying transport. Each
connection can have small and large sizes of XTCBs, and the sizes may
be different for different connections. A connection's XTCBs exist for the
duration of the connection and are user-modifiable.

The XTCB structure is shown in Figure 3-8.

Figure 3-8 XTCB Data Structure

XTCB$L_RFLINK

XTCB$L_RBLINK

XTCB$B_SUBTYPE l XTCB$B_TYPE l XTCB$W_SIZE

0

4

8

XTCB$W_IOSB 12

XTCB$A_POINTER 20

XTCB$L_LENGTH 24

l XTCB$T_DATA

3-18

3.1.5

Transport Layer Architecture
3.1 Transport Layer Data Structures

Table 3-6 shows the contents of the XTCB data structure.

Table 3-6 XTCB Data Structure

Field

XTCB$L_RFLINK

XTCB$L_RBLINK

XTCB$W_SIZE

XTCB$B_TYPE

XTCB$B_SUBTYPE

XTCB$W_IOSB

XTCB$A_POINTER

XTCB$L_LENGTH

XTCB$T _DATA

XTCQ Data Structure

Use

Forward, relative pointer to next XTCB in the queue.

Backward, relative pointer to previous XTCB in the queue.

Length of XTC'B in bytes.

Constant 255.

Constant DECW$C_DYN_XTCB_SRP (3) or DECW$C_
DYN_XTCB_LRP (4). DECW$C_DYN_XTCB_SRP
represents a small XTCB; DECW$C_DYN_XTCB_LRP
represents a large XTCB.

IOSB for use by specific transport when performing the
requested 1/0 operation with this XTCB.

Pointer to next unused byte in data area.

Length, in bytes, of valid data in data area.

Start of variable-length data area.

The transport communication queue (XTCQ) data structure contains the
six per-connection communication queues and their state information. The
six per-connection communication queues, which are described in more
detail in Section 3.2, are as follows:

• Event Work Queue. Identified by the XTCQ$L_EW _RFLINK and
XTCQ$L_EW _RBLINK fields in the XTCQ.

• Event Free Queue (small and large). Identified by the XTCQ$L_
EFS_RFLINK, XTCQ$L_EFS_RBLINK, XTCQ$L_EFL_RFLINK, and
XTCQ$L_EFL_RBLINK fields in the XTCQ.

• Request Work Queue. Identified by the XTCQ$L_RW _RFLINK and
XTCQ$L_RW _RBLINK fields in the XTCQ.

• Request Free Queue (small and large). Identified by the XTCQ$L_
RFS_RFLINK, XTCQ$L_RFS_RBLINK, XTCQ$L_RFL_RFLINK, and
XTCQ$L_RFL_RBLINK fields in the XTCQ.

The XTCQ data structure exists during the lifetime of a connection and is
user-modifiable.

The XTCQ data structure is shown in Figure 3-9.

3-19

Transport Layer Architecture
3.1 Transport Layer Data Structures

Figure 3-9 XTCQ Data Structure

3-20

XTCQ$L_EW_RFLINK

XTCQ$L_EW_RBLINK

XTCQ$L_EFS_RFLINK

XTCQ$L_EFS_RBLINK

XTCQ$L_EFL_RFLINK

XTCQ$L_EFL_RBLINK

XTCQ$L_RW_RFLINK

XTCQ$L_RW_RBLINK

XTCQ$L_RFS_RFLINK

XTCQ$L_RFS_RBLINK

XTCQ$L_RFL_RFLINK

XTCQ$L_RFL_RBLINK

XTCQ$L_FLAGS

Table 3-7 shows the contents of the XTCQ data structure.

Table 3-7 XTCQ Data Structure

Field Use

Event work queue relative queue header.

Event work queue relative queue header.

0

4

8

12

16

20

24

28

32

36

40 I

44

48

XTCQ$L_EW_RFLINK

XTCQ$L_EW_RBLINK

XTCQ$L_EFS_RFLINK

XTCQ$L_EFS_RBLINK

XTCQ$L_EFL_RFLINK

XTCQ$L_EFL_RBLINK

XTCQ$L_RW_RFLINK

XTCQ$L_RW_RBLINK

XTCQ$L_RFS_RFLINK

Small XTCB event free queue relative queue header.

Small XTCB event free queue relative queue header.

Large XTCB event free queue relative queue header.

Large XTCB event free queue relative queue header.

Request work queue relative queue header.

Request work queue relative queue header.

Small XTCB request free queue relative queue
header.

(continued on next page)

3.1.6

Transport Layer Architecture
3.1 Transport Layer Data Structures

Table 3-7 (Cont.) XTCQ Data Structure

Field

XTCQ$L_RFS_RBLINK

XTCQ$L_RFL_RFLINK

XTCQ$L_RFL_RBLINK

XTCQ$L_FLAGS

Use

Small XTCB request free queue relative queue
header.

Large XTCB request free queue relative queue
header.

Large XTCB request free queue relative queue
header.

See the following list.

The following fields are defined within XTCQ$L_FLAGS:

XTCQ$V _EWQ_FLAG

XTCQ$V_EFSQ_FLAG

XTCQ$V_EFLQ_FLAG

XTCQ$V _RWQ_FLAG

XTCQ$V_RFSQ_FLAG

XTCQ$V_RFLQ_FLAG

XTCQ$V_ABORT_FLAG

XTDB Data Structure

When 1, notification is desired when an XTCB is
inserted on an empty event work queue.

When 0, notification is desired when an XTCB is
inserted on an empty small XTCB event free queue.

When O, notification is desired when an XTCB is
inserted on an empty large XTCB event free queue.

When 1, notification is desired when an XTCB is
inserted on an empty request work queue.

When 0, notification is desired when an XTCB is
inserted on an empty small XTCB request free queue.

When 0, notification is desired when an XTCB is
inserted on an empty large XTCB request free queue.

Reserved for use by Digital.

The transport descriptor block (XTDB) data structure describes each
attached transport. The XTDB keeps track of resources required by
transport-specific functions, such as the known-object mailbox channel
in the case of a DECnet server, and objects that will be cloned on a
per-connection basis, such as the transport-specific XTFT function table.

The XTDB structure exists during the lifetime of a transport. The XTDB
structure is allocated from memory pages that have user-mode read
access/executive-mode write access (UREW). The common transport layer
maintains a queue of all XTDBs.

The XTDB data structure is shown in Figure 3-10.

3-21

Transport Layer Architecture
3.1 Transport Layer Data Structures

Figure 3-10 XTDB Data Structure

XTDB$A_FLINK

XTDB$A_BLINK

XTDB$B_SUBTYPE l XTDB$B_ TYPE 1
XTDB$L_FLAGS

XTDB$A_TPB

XTDB$L_REF _COUNT

XTDB$Q_RESERVED

XTDB$L_DEC_RESERVED

XTDB$A_ITCC_FLINK

XTDB$A_ITCC_BLINK

XTDB$A_CONNECT_ABORT

XTDB$A_CONNECT_REQUEST

XTDB$L_FAMILY _NAME_LEN

~~ XTDB$T _FAMILY _NAME (16 bytes)

XTDB$L_CHK_OBJTYP

XTDB$L_CHK_OBJNAM_LEN

XTDB$A_CHK_OBJNAM_ADR

XTDB$L_CHK_ACCESS

XTDB$L_CHK_FLAGS

XTDB$A_XPORT_TABLE

3-22

0

4

XTDB$W_SIZE 8

12

16

20

24

32

36

40

44

48

52

~~ 56

72

76

80

84

88

92

Transport Layer Architecture
3.1 Transport Layer Data Structures

Table 3-8 shows the contents of the XTDB data structure.

Table 3-8 XTDB Data Structure

Field

XTDB$A_FLINK

XTDB$A_BLINK

XTDB$W_SIZE

XTDB$B_TYPE

XTDB$B_SUBTYPE

XTDB$L_FLAGS

Use

Forward, absolute pointer to next XTDB in queue.

Backward, absolute pointer to previous XTDB in
queue.

Length of XTDB in bytes.

Constant 255.

Constant DECW$C_DYN_XTDB (5).

See the following list.

The following fields are defined within XTDB$L_FLAGS:

XTPB$V _MODE

XTDB$V _ACTIVE

XTDB$V _DYING

XTDB$A_TPB

XTDB$L_REF _COUNT

XTDB$Q_RESERVED

XTDB$L_DEC_RESERVED

XTDB$A_ITCC_FLINK

XTDB$A_ITCC_BLINK

XTDB$A_CONNECT_ABORT

XTDB$A_CONNECT_
REQUEST

Type of transport connection. Possible values are:

DECW$K_XPORT _REMOTE_SERVER (0)

DECW$K_XPORT _REMOTE_CLIENT (1)

DECW$K_XPORT_LOCAL_SERVER (2)

DECW$K_XPORT _LOCAL_CLIENT (3)

Specific transport image has been activated and is
running.

Specific transport is aborting and no further
operations should be allowed. Connections using
this transport will be disconnected.

Address of the transport-specific XTPB.

Number of connections using this transport.
Should be equivalent to the number of IXTCCs
enqueued on the IXTCC queue header.

Quadword reserved for use by specific transport.

Reserved for use by Digital.

Absolute queue header for IXTCCs of connections
using this transport.

Absolute queue header for IXTCCs of connections
using this transport.

Address of either the server or Xlib connection
abort notification AST routine. Called with one
argument: the XTCC by reference.

Address of the server's connection request
notification AST routine. Called with one argument:
the XTCC by reference.

(continued on next page)

3-23

3.1.7

Transport Layer Architecture
3.1 Transport Layer Data Structures

Table 3-8 (Cont.) XTDB Data Structure

Field

XTDB$L_FAMILY _NAME_LEN

XTDB$T _FAMILY _NAME

XTDB$A_XPORT_TABLE

Use

Length of the transport name string.

Contains the transport family name string
(for example, "DECNET" or "TCPIP"). The
maximum size of the family name is 16 bytes,
as determined by the constant XTDB$S_FAMILY _
NAME. XTDB$S_FAMILY _NAME is defined in
DECW$EXAMPLES:XPORTEXAMPLEDEF.R32.

Address of the XTFT structure for the specific
transport. Returned as a value of the
DECW$TRANSPORT_INIT routine, which is
provided as a global name in every transport
specific image.

XTFT Data Structure
Each specific transport shareable image provides a set of transport-specific
routines that are used for all connections using that transport. The
transport function table (XTFT) data structure contains the addresses of
these routines. During a transport attach operation, the transport-specific
DECW$TRANSPORT_INIT routine initializes and returns that transport's
XTFT.

The XTFT data structure exists during the lifetime of a specific transport
and is accessible by the common transport. The XTFT data structure is
shown in Figure 3-11.

Figure 3-11 XTFT Data Structure

XTFT$L_REQU IREDO 0

XTFT$L_RESERVEDO 4

XTFT$A_EXECUTE_WRITE 8

XTFT$A_WRITE 12

XTFT$A_WRITE_USER 16

XTFT$A_EXECUTE_FREE 20

XTFT$A_FREE_INPUT _BUFFER 24

XTFT$A_CLOSE 28

XTFT$A_OPEN 32

(continued on next page)

3-24

Transport Layer Architecture
3.1 Transport Layer Data Structures

Figure 3-11 (Cont.) XTFT Data Structure

XTFT$A_ATTACH_TRANSPORT 36

XTFT$A_RUNDOWN 40

XTFT$L_XTCC_LENGTH 44

XTFT$L_XTPB_LENGTH 48

XTFT$L_XTDB_LENGTH 52

XTFT$L_IXTCC_LENGTH 56

XTFT$L_REQU IRED1 60

Table 3-9 shows the contents of the XTFT data structure.

Table 3-9 XTFT Data Structure

Field

XTFT$L_REQUIREDO

XTFT$L_RESERVEDO

XTFT$A_EXECUTE_WRITE

XTFT$A_WRITE

XTFT$A_WRITE_USER

XTFT$A_EXECUTE_FREE

XTFT$A_FREE_INPUT_BUFFER

XTFT$A_CLOSE

XTFT$A_OPEN

XTFT$A_ATTACH_TRANSPORT

XTFT$A_RUNDOWN

XTFT$L_XTCC_LENGTH

XTFT$L_XTPB_LENGTH

XTFT$L_XTDB_LENGTH

Use

Longword that must contain the value
XTFT$K_REQUIREDO (-1515870811
decimal).

Longword reserved for use by a specific
transport.

Address of execute-write routine.

Address of write routine.

Address of write-user routine.

Address. of execute-free routine.

Address of free-input routine.

Address of close routine.

Address of open routine.

Address of attach routine.

Address of rundown routine.

Length, in bytes, of XTCCs used by this
transport. Must be at least XTCC$W_SIZE.

Length, in bytes, of XTPBs used by this
transport. Must be at least XTP8$W_SIZE.

Length, in bytes, of XTDBs used by this
transport. Must be at least XTDB$W_SIZE.

(continued on next page)

3-25

Transport Layer Architecture
3.1 Transport Layer Data Structures

Table 3-9 (Cont.) XTFT Data Structure

Field

XTFT$L_IXTCC_LENGTH

XTFT$L_REQUIRED1

Use

Length, in bytes, of IXTCCs used by this
transport. Must be at least IXTCC$W _
SIZE.

Longword that must contain the value
XTFT$K_REQUIRED1 (-1768515946
decimal).

3.2 Transport Layer Communication Queues

3-26

When a connection is created, a specific transport calls the
DECW$XPORT_ALLOC_INIT_QUEUES routine to create six
communication queues that pass XTCBs between servers and clients
and between transport-common and transport-specific components. The
communication queues are relative queues as used by the VAX REMQxI
and INSQxI instructions. With the exception of the local transport, the
queues are private to one side of the connection.

The communication queue headers are stored in the XTCQ data structure.
Each queue is named according to its function, as shown in Table 3-10.

A queue element (XTCB) must be removed from its queue before its
contents can be modified by either the server or Xlib or by transport layer
internal functions.

The component that adds XTCBs to a queue is called the producer; the
component that removes XTCBs from a queue is called the consumer.

Table 3-10 Transport Layer Communication Queues

Queue Name

EventWorkQueue

EventFreeQueue
large and small

RequestWorkQueue

RequestFreeQueue
large and small

Function

Queue of XTCBs containing events, errors,
and replies to be sent to Xlib

Return queue for processed XTCBs from the
EventWorkQueue

Queue of XTCBs containing requests to be
sent to a server

Return queue for processed XTCBs from the
RequestWorkQueue

The transport layer communication queues are shown in Figure 3-12. For
the purpose of simplicity, Figure 3-12 combines the free queues; there are
actually separate free queues for large and small XTCBs.

Transport Layer Architecture
3.2 Transport Layer Communication Queues

Figure 3-12 Transport Layer Communication Queues

Client
Side ...•.....•......••...••....•

Server
Side

: EventWorkQueue :
/----~------ ~----~-~-------------,-~--(---~--~--,
\ : J \ : J
·----7------~-~----L-:.-------------•..._r--7---~--->---•

EventFreeQueue

Transport

RequestFreeQueue
/----~------~~----~-~-------------,-~--(---~--~--,
\ : j \ : j
·-----7------ -~----~.....:.-------------·..._~--7---~--->---·

: RequestWorkQueue :•

ZK-1206A-GE

You can consider the buffers in the transport layer communication queues
to be in an infinite loop similar to a ski lift; once a buffer is received at one
end of the connection it is emptied and added to the returning loop.

The transport layer further distinguishes between the queues so that
terminology is consistent on both sides of the client/server connection;
when the term "input" is used in the context of a client, it means
"event." Conversely, "input" in the context of the server means "request."
Table 3-11 shows the delineation of the queues.

Table 3-11 Views for the Client/Server Communication Queue

General Queue Name Client View Server View

EventWorkQueue lnputWorkQueue OutputWorkQueue

EventFreeQueue lnputFreeQueue OutputFreeQueue

RequestWorkQueue OutputWorkQueue lnputWorkQueue

RequestFreeQueue OutputFreeQueue lnputFreeQueue

Figure 3-13 shows the result of adding the client/server views to the model
of the queues shown in Figure 3-12.

3-27

3.2.1

Transport Layer Architecture
3.2 Transport Layer Communication Queues

Figure 3-13 Client/Server Communication Queue Views

Client
Side

............••••........••••
Server
Side

. .
lnputWorkQueue i EventWorkQueue : OutputWorkQueue
/----~------~~----~-~-------------,-~--(---1----<e---,
\ : J \ : J
·----~-----+-~----L-!.-------------·-r--r--1---->--·

lnputFreeQueue EventFreeQueue OutputFreeQueue

Transport

OutputFreeQueue RequestFreeQueue lnputFreeQueue
/----~------ ~----~-~-------------,-~--(---1----<e---,
\ : J \ : J
·----~ -----+-~----·-!.-------------·-1---r--1---->--·

OutputWorkQueue i RequestWorkQueue : lnputWorkQueue••....•

ZK-1209A-GE

In the case of local communication where the client and server are
executing on the same hardware, the queues are shared between the
client and server. Each queue has two meanings depending upon
whether a server or a client is looking at the queue. For example, the
EventWorkQueue is simultaneously the client's InputWorkQueue and the
server's OutputWorkQueue.

Transport Common/Specific Queue Relationship

3-28

The transport layer seems to be a single entity that somehow moves data
across the wire, but there are actually two transport layers involved: a
transport layer on the client side and a transport layer on the server side.
Each side of the client/server connection initializes the common transport
and attaches one or more specific transports. Each transport layer builds
and maintains its own set of connection queues; the queues are private
to each side of the wire and are not actually shared across a network
connection. The local transport is an exception; the queues are built in
shared global sections.

General discussions of the relationship between the transport layer and
other DECwindows components commonly treat the transport layer as
a single entity that exists on both sides of the client/server connection.
However, the transport layer consists of the transport-common and
transport-specific components.

Transport Layer Architecture
3.2 Transport Layer Communication Queues

The transport-common and transport-specific components pass data to
each other by means of a queue implementation that is similar to the
queues employed between Xlib and the transport-common code. This
intratransport queuing implementation is shown in Figure 3-14.

Figure 3-14 Transport Common/Specific Connection

Remote
Client

Display

WORK1

Xlib Routines r·, r·,
I I I I
I I I I

'f 1' 'f 1'
I I I I
I I I I

Transport-Common
I I I I
I I I I

{14 {14
I I I I •,) •,)

Transport-Specific

Transport-Specific r·, r·,
I I I I
I I I I

'f 1' v 1'
I I I I
I I I I

Transport-Common
I I I I
I I I I

{14 {14
I I I I

•,) •,)
Server Components

ZK-1207A-GE

3-29

3.2.2

Transport Layer Architecture
3.2 Transport Layer Communication Queues

Adding and Removing Buffers from the Queues

3-30

The server and Xlib call transport-common routines such as
DECW$XPORT_READ, DECW$XPORT_FREE_INPUT_BUFFER,
GET_OUTPUT_BUFFER, and DECW$XPORT_CHAINED_WRITE to
remove or add buffers from the queues, as described in Section 3.3.1.6 and
Section 3.3.1.7.

Some of the transport-common routines may call transport-specific
routines such as XTFT$A_ WRITE to actually get the buffer from the
queue. Other transport-common routines such as DECW$XPORT_READ
operate only in the common layer and communicate with the specific
transport only by manipulating data structures.

An example of the transport-common/transport-specific queue process is as
follows:

1 Xlib calls the DECW$XPORT_GET_OUTPUT_BUFFER routine to
get a free XTCB. DECW$XPORT_GET_OUTPUT_BUFFER removes
(REMQHI) an XTCB from the OutputFreeQueue.

2 Xlib copies data to the XTCB and calls DECW$XPORT_CHAINED_
WRITE.

3 DECW$XPORT_CHAINED_WRITE inserts (INSQTI) the XTCB on
the OutputWorkQueue. If the queue was empty, the XTFT$A_ WRITE
routine is called to determine if an I/O should be initiated.

4 When the write completes, the XTCB is inserted on the tail of the
OutputFreeQueue. Xlib is then notified if it is waiting for an output
buffer. If the OutputWorkQueue is not empty, another I/O is initiated.

Figure 3-15 adds the transport-common/transport-specific queue process
to Figure 3-14.

Transport Layer Architecture
3.2 Transport Layer Communication Queues

Figure 3-15 Transport Common/Specific Queues

Remote
Client

Display

1::111:1111::1aaa ai::::i
Fi]

WORK1

aaa
CICICI

a
CICICI

Xlib Routines
r) r) 1n1: 1'11l1

1.£.J I I L!..J I I

'}' 1' '}' 1'
I I I I
I I I I

Transport-Common
I I I I r.:;11 I I I

Wvi}. vi}.
I Im I I

\..) '"·)
Transport-Specific

[iJ REMQHI from
OutputFreeQueue

I]] INSQTI on
OutputWorkQueue

[I) REMQHI from
OutputWorkQueue

(!] INSQTlon
OutputFreeQueue

Transport-Specific
(") (")
I I I I
I I I I

'}' 1' '}' 1'
I I I I
I I I I

Transport-Common
I I I I
I I I I

v4 v4
I I I I

'") •)
Server Components

ZK-1208A-GE

3-31

3.2.3

Transport Layer Architecture
3.2 Transport Layer Communication Queues

On the server side of the connection, the underlying transport notifies
the transport-specific layer that data is available. For example, DECnet
delivers this notification in the form of a $QIO read completion for the
connection; that is, the specific transport receives a read-completion AST
in response to a $QIO read for a given connection.

When the specific transport receives a read completion, it performs the
following steps:

1 Inserts (INSQTI) the XTCB that now has data in it on the
InputWorkQueue.

2 If input notification is requested, it sends the server an input-notify
AST to indicate that an XTCB is available for the connection.

3 Removes (REMQHI) an XTCB from the InputFreeQueue.

4 Initiates a new read into the XTCB.

The server calls DECW$XPORT_READ to remove (REMQHI) the XTCB
from the InputWorkQueue. When the dispatcher is finished with the
XTCB, it calls DECW$XPORT_FREE_INPUT_BUFFER to insert the
XTCB on the InputFreeQueue, and the queue cycle is complete.

If the InputFreeQueue is empty and input for the connection is enabled
when DECW$XPORT_FREE_INPUT_BUFFER inserts the XTCB,
DECW$XPORT_FREE_INPUT_BUFFER calls XTFT$A_EXECUTE_FREE
to remove (REMQHI) the XTCB it just placed on the InputFreeQueue. In
the case of DECnet or TCP/IP, the XTCB is then used to store the result of
the next QIO read operation for the connection.

Communication Queue Notification Flags

3-32

It is possible that at any given time all of a connection's input or output
XTCBs will be in use. To provide for this possibility, there is a flag
associated with each queue that tracks the state of the queue. When a
queue has been exhausted, the component that is removing XTCBs from
the queue (the consumer) sets the state flag to indicate that it wants to be
notified when an XTCB becomes available.

If the component that is adding XTCBs to the queue (the producer) notices
that the queue was empty, it tests the state flag and, if set, notifies the
consumer that an XTCB is available.

The notification is context dependent. When the consumer is a transport
specific layer, as described in Section 3.2.1, the notification causes I/Oto
be initiated using the recently inserted queue element.

When the consumer is the transport-common layer, notification consists of
delivering an AST or setting an event flag. For example, the transport
specific code on the server side of the connection sends the transport
common layer an AST to say that input is available for a connection.

3.2.4

Transport Layer Architecture
3.2 Transport Layer Communication Queues

The notification flags are shown in Table 3-12.

Table 3-12 Communication Queue Notification Flags

Flag Name Meaning

Event consumer awaits event XTCBs EventWorkQueueFlag

EventFreeQueueFlag

RequestWorkQueueFlag

RequestFreeQueueFlag

Event producer awaits returned event XTCBs

Request consumer awaits request XTCBs

Request producer awaits returned request XTCBs

As in the case of the local communication queues, each interest flag
in a local connection has two meanings depending upon whether a
server or a client is looking at the queue: the EventWorkQueue is
the client's lnputWorkQueue and the server's OutputWorkQueue; the
RequestFreeQueuelnterest bit is the client's OutputFreeQueuelnterest bit
and the server's lnputFreeQueuelnterest bit.

A queue element consumer functions as follows:

1 Sets the queue notification flag (in case the queue is empty).

2 Removes an element from the queue-

• If the queue is empty, the consumer can wait for notification that
data is available or it can return without the buffer.

• If the queue is not empty, the consumer clears the notification flag
and returns with the buffer.

A queue element producer functions as follows:

1 Inserts an element on the queue.

2 If the queue was empty and the queue flag was set, clears the queue
flag and generates a notification to tell the consumer that data is
available.

Preventing Queue Access Conflict
The transport layer uses interlocked queues to synchronize access between
the queue producer and consumer. Server or Xlib attempts to remove and
insert buffers result in the interlocked instructions being used in user
mode, possibly at AST level.

The queues are also accessed by inner-mode routines using the example_
queue emulations found in DECW$EXAMPLES:XPORT_EXAMPLE_
QUEUE. Executive-mode code cannot use the REMQxl and INSQxl built
ins to access a relative queue that is modifiable by user-mode code because
of the possibility of overwriting user-write-protected memory.

The XPORT_EXAMPLE_QUEUE.MAR module provides emulations of
the REMQxl and INSQxl instructions that perform appropriate probing.
The REMQxl and INSQxl emulations use the VAX PROBEW instruction
to probe the memory occupied by a queue entry to determine if it has

3-33

Transport Layer Architecture
3.2 Transport Layer Communication Queues

3.2.4.1

user-mode write access and return an ACCVIO status ifthe memory is not
accessible.

The REMQxI and INSQxI emulations also perform a spin-and-wait to see
if the queue is locked by another transport user.

Special-Case Queue Conditions
There are two special-case queue conditions:

• As described in Section 3.2.3, the queue consumer sets the notification
(notify-if-empty) queue flag before attempting a REMQHI from the
queue. If the queue is not empty, the consumer removes the queue
element and clears the flag.

The producer checks this flag after adding an element to the queue.
If the producer is able to insert a queue element between the time
when the consumer sets and clears the flag, the producer generates
an input-available notification when none is necessary. This is called
spurious notification, and queue consumers must be prepared for it.

• A second condition occurs when the consumer can preempt the
producer thread, such as the output half of a remote transport.

For example, assume that the producer does an INSQTI of some
element on the queue and is about to test the queue flag. However,
before the producer can test the queue flag, the consumer does the
following:

1 Removes (REMQHI) an XTCB and processes it

2 Fails when it attempts to remove another XTCB

3 Sets the queue interest flag and quits

The producer does not know that the queue is now empty; it continues
to run and attempts to notify the consumer. In this case, however,
notification consists of removing the head queue element and issuing
a transport write operation from data in the queue element. Because
the element is no longer on the queue, the notification procedure must
be prepared to handle the empty queue.

3.3 Transport-Common and Transport-Specific Components

3-34

As described in Section 1.2, the transport layer is separated into transport
common and transport-specific functions. The routines that support the
transport-common functions have names of the form DECW$XPORT_xxx
and provide the generic services needed by Xlib or the server.

Some transport-common routines only select and call the correct transport
specific routine. Other transport-common routines perform substantial
processing prior or subsequent to invoking the associated transport-specific
routine.

A special set of utility routines and macro definitions perform thread
suspension and resumption, global section mapping and maintenance,
queue maintenance, and communication between transport layer
components for use by transport layer developers. See Chapter 7 for
more information.

3.3.1

Transport Layer Architecture
3.3 Transport-Common and Transport-Specific Components

The transport-common routines call transport-specific routines that are
private to a particular transport service, such as DECnet. The addresses
of the transport-specific routines are contained in the XTFT data structure
and, along with VMS packaging requirements, comprise the interface to
which a transport developer must program.

Transport-Common Functions

3.3.1.1

The transport-common code performs the following functions:

• Initializes the transport-specific layer

• Attaches the transport-specific layer

• Opens a connection

• Gets and sets transport-common and per-connection attributes

• Allocates memory

• Reads from the input queue

• Writes to the output queue

• Closes a connection

Subsequent sections describe the transport-common functions.

Initializing the Transport-Common Layer
The DECW$XPORT_INITIALIZE routine is called before any other
DECwindows transport-common routine. Xlib and the server call the
DECW$XPORT_INITIALIZE routine to initialize the transport-common
code. The common transport knows whether it was called by Xlib or
the server by a caller_type argument that identifies the caller as a
client (DECW$K_XPORT_CLIENT) or as the server (DECW$K_XPORT_
SERVER).

DECW$XPORT_INITIALIZE initializes the global XTPB data structure,
from which other XTPB data structures inherit their default values. (See
Section 3.1.1.)

Transports and connections that are subsequently attached or opened
inherit the parameters set at initialization time unless they override
them in an itmlst argument to the DECW$XPORT_INITIALIZE or
DECW$XPORT_ATTACH_TRANSPORT routines. Both Xlib and the
server override some of these defaults.

The DECW$XPORT_INITIALIZE routine calls the DECW$XPORT_SET_
ATTRIBUTES routine to load the global XTPB data structure with the
attributes passed in the itmlst argument.

The itmlst argument can specify the following parameters:

• The address of a procedure to call when an input operation is
completed on the connection and input notification has been enabled

• The address of a procedure to call when an output operation is
completed on the connection and output notification has been enabled

3-35

Transport Layer Architecture
3.3 Transport-Common and Transport-Specific Components

3.3.1.2

3-36

• The size of the data area of the large communication buffers used by
transport

• The size of the data area of the small communication buffers used by
transport

• A value to be passed to the input notification routine

• A value to be passed to the output notification routine

• The number of the event flag to be set for input notification

• The number of the event flag to be set for output notification

• The number of seconds the default waiting procedures are allowed to
wait for output completion

• The number of seconds the default waiting procedures are allowed to
wait for input completion

Attaching a Transport-Specific Layer
On the client side of the connection, Xlib calls DECW$XPORT_ATTACH_
TRANSPORT to attach and initialize only those transports to which it
wants to connect. Xlib determines the transports to attach and initialize
as follows:

• If the call to the Xlib OPEN DISPLAY routine specifies a display name,
Xlib parses the display name to determine the transport to initialize.

• If the call to the Xlib OPEN DISPLAY routine specifies a null display
name, Xlib uses the result of the last SET DISPLAY command to
determine the transport to initialize.

On the server side of the connection, the server must tell the common
transport which specific transports to attach and initialize. The
server uses the logical name DECW$SERVER_TRANSPORTS (see
SYS$MANAGER:DECW$PRIVATE_SERVER_SETUP.TEMPLATE) to
accomplish this.

For example, DECW$SERVER_TRANSPORTS could translate to
"DECNET,LOCAL,TCPIP". The server calls the common transport
DECW$XPORT_ATTACH_TRANSPORT routine for each transport
identified by the logical name. The transport_name argument specifies
the transport, such as "DECNET".

DECW$XPORT_ATTACH_TRANSPORT needs a way to associate the
transport name specified in the transport_name argument with a
specific transport's image. When called by either Xlib or the server,
DECW$XPORT_ATTACH_TRANSPORT attempts to locate and activate
an image with a name in the form SYS$SHARE:DECW$TRANSPORT_
transport_name.EXE. If it does not find one, DECW$XPORT_ATTACH_
TRANSPORT looks for a name in the form SYS$SHARE:DECW _
TRANSPORT_transport_name.EXE.

For example, if DECW$XPORT_ATTACH_TRANSPORT could not find an
image with the name SYS$SHARE:DECW$TRANSPORT_FOO.EXE, it
would look for SYS$SHARE:DECW_TRANSPORT_FOO.EXE.

3.3.1.3

Transport Layer Architecture
3.3 Transport-Common and Transport-Specific Components

Note: Transport names that contain a dollar sign($) character, such
as SYS$SHARE:DECW$TRANSPORT_DECNET, are reserved for
transport images supplied by Digital.

Transport names that do not contain a "$" character
are reserved for third-party and customer transport
images. These transport names must be in the form
SYS$SHARE:DECW_TRANSPORT_transport_name.EXE.

If the image activation is successful, DECW$XPORT_ATTACH_
TRANSPORT builds an XTDB, initializes the common fields, and calls
the transport-specific DECW$TRANSPORT_INIT routine to complete the
initialization by initializing the XTFT data structure with the addresses of
the transport-specific routines.

Every transport-specific image (SYS$SHARE:DECW$TRANSPORT_
transport_name.EXE or SYS$SHARE:DECW _TRANSPORT_transport_
name.EXE) must provide an implementation of DECW$TRANSPORT_
INIT for its initialization routine. A transfer vector to the
DECW$TRANSPORT_INIT routine must be placed in the first image
section of the transport-specific image.

The DECW$XPORT_ATTACH_TRANSPORT routine performs the
following functions:

• Validates the transport_name argument.

• Checks to see if the transport-specific image is already attached.

• Builds the transport-specific image file name.

• Activates the transport-specific image.

• Calls the transport-specific DECW$TRANSPORT_INIT initialization
routine to get the address of the XTFT.

• Allocates memory for XTDB and XTPB. Copies the contents of the
global XTPB to the new XTPB.

• Attaches the XTPB to the XTDB and sets the XTDB attributes from
the itmlst argument.

• Fills in the XTDB contents, such as the transport family name.

• Enqueues the XTDB on the global XTDB queue.

• Calls the transport-specific attach routine, XTFT$A_ATTACH_
TRANSPORT, and returns the status.

Opening a Connection
Xlib clients call the Xlib OPEN DISPLAY routine to establish a
connection with a server. Xlib in turn calls the DECW$XPORT_ATTACH_
TRANSPORT and DECW$XPORT_OPEN routines.

The DECW$XPORT_OPEN routine performs the following functions:

• Tries to find a transport that will initiate a connection.
DECW$XPORT_OPEN searches the global XTDB queue for a
transport whose family name matches the xportnam argument.
xportnam is typically the transport specified in the last use of the
SET DISPLAY command (for example, "DECNET").

3-37

Transport Layer Architecture
3.3 Transport-Common and Transport-Specific Components

3.3.1.4

3.3.1.5

3.3.1.6

3-38

• Copies the attached transport parameters to connection-specific
parameters. Allocates IXTCC and XTPB data structures for the
connection and partially establishes the connection context.

• Updates the connection parameters if an itmlst argument was
specified.

• Calls the transport-specific open routine, XTFT$A_OPEN, to try to
open the connection.

Getting and Setting Transport Attributes
The DECW$XPORT_SET_ATTRIBUTES and DECW$XPORT_GET_
ATTRIBUTES routines get and set XTPB and XTCC attributes associated
with a connection-specific XTPB or the global XTPB. (It is not possible to
specify the transport-specific XTPB.) When the XTCC argument specifies
an active connection, the parameters of that connection are modified or
returned; when XTCC is zero, the global parameters are modified or
returned.

DECW$XPORT_SET_ATTRIBUTES performs some checks to detect
invalid combinations of parameters.

Allocating Transport Memory
The common transport uses the routines described in Table 3-13 to
allocate and deallocate memory.

Note: The VMS Run-Time Library memory allocation routines may not
be used from inner access modes.

Table 3-13 Transport Memory Allocation Routines

Routine Name Description

DECW$XPORT_ALLOC_INIT_ Allocates storage for an XTCC, XTCQ, and
QUEUES all of the XTCBs for a connection. These

structures are user-writable. Places all of the
XTCBs on the appropriate free queues.

DECW$XPORT _ALLOC_PMEM Allocation routine for protected (user-readable,
executive-writable) structures. Allocates a block
of storage of a given size.

DECW$XPORT _DEALLOC_PMEM Memory deallocation routine (companion to
DECW$XPORT _ALLOC_PMEM). Deallocates
previously allocated structure.

DECW$XPORT _DEALLOC_ Deallocates a block of storage previously
QUEUES allocated for the queues of a connection.

Common Transport Read Routines
The common transport performs a read operation to remove an input
XTCB or return an input XTCB to the queue. There are two read routines:
DECW$$XPORT_FREE_INPUT and DECW$XPORT_READ. The read
routines are described in Table 3-14.

3.3.1.7

Transport Layer Architecture
3.3 Transport-Common and Transport-Specific Components

Table 3-14 Transport Read Routines

Routine Name

DECW$$XPORT _FREE_INPUT

DECW$XPORT _READ

Writing to the Transport

Description

Returns an XTCB aquired with DECW$XPORT _
READ to the input free queues. If no XTCB
was on the queue and notification is desired,
DECW$$XPORT _FREE_INPUT removes the
XTCB and initiates a read operation on the
connection; that is, it calls the transport-specific
XTFT$A_FREE_INPUT _BUFFER routine, which
in turn does a read operation for the underlying
transport.

Attempts to remove an XTCB from the head of
the input work queue. If the attempt succeeds,
the address of the XTCB is returned to the
caller and it returns with successful status.
If DECW$XPORT _READ fails, one of the
following actions occurs:

If it fails and is a nonblocking operation,
input notification is enabled and it returns
failed status.
If it fails and is a blocking operation, the call
uses a $SYNCH system service call to wait
for an input buffer to become available.

The common transport includes routines to write data from the user's
environment to a connection. The transport-common routines in turn call
transport-specific routines to send the data across the wire.

The common transport write routines are described in Table 3-15.

Table 3-15 Common Transport Write Routines

Name

DECW$XPORT _GET_OUTPUT_
BUFFER

Description

Gets an XTCB from the output free queue. The
mode argument modifies the operation:

·If the no-block bit is set and no XTCB is
available when the call is made, the routine
returns a buffer-not-available status and
output notification is enabled.
If the no-block bit is clear, a call to $SYNCH
is made to wait for a buffer to become
available. If timeouts are enabled, it is
possible for the $SYNCH call to time out.

The data-length argument provides a hint as to
what size buffer the caller should receive.

(continued on next page)

3-39

Transport Layer Architecture
3.3 Transport-Common and Transport-Specific Components

3.3.1.8

3-40

Table 3-15 (Cont.) Common Transport Write Routines

Name

DECW$XPORT_WRITE

Description

Initiates a writing operation on the connection
associated with an XTCC. The DECW$XPORT_
WRITE routine copies the data from a
buffer provided by the user to XTCBs.
DECW$XPORT_WRITE supports both blocking
and nonblocking modes.

DECW$XPORT_WRITE may perform multiple
callback operations to the user's callback
routine, specified by the copy_rtnadr argument,
to get data copied from the caller's environment
into the XTCBs.

copy_rtnadr is called with the address of an
XTCB as an argument and the user-specified
copy_rtnarg argument. The transport user is
expected to partially fill the XTCB and return
with the status of the write request.

Works similarly to DECW$XPORT_COPY_
AND_WRITE but allows the caller to copy data
from noncontiguous structures or compute the
data dynamically when that is more practical.

DECW$XPORT_COPY_AND_ Initiates a writing operation on the connection
WRITE associated with the XTCC. DECW$XPORT _

COPY_AND_WRITE performs a buffered write
operation and returns the size of the data
actually copied in the retbuflen argument.

DECW$XPORT_CHAINED_WRITE Initiates a writing operation on the connection
associated with the XTCC. The itmlst argument
specifies a number of buffers to be written
to the connection. Two types of buffers are
supported: XTCBs and user buffers. If the
specific transport being used does not support
writing from the user's buffer, DECW$XPORT _
CHAINED_WRITE performs a copy operation
using DECW$XPORT_COPY_AND_WRITE.

Transport Layer Timer Mechanism
The transport layer timer mechanism is used to create an inner-mode
AST at 5-second intervals so that the transport-common layer can search
through the transport descriptors and connection contexts to find work
that needs to be done. This timer mechanism is particularly useful
in generating timeouts for $SYNCH operations, such as XPORT_IN_
NOTIFY_ WAIT, that have gone on too long.

When the time period expires, the timer finds connections that have been
waiting for the number of ticks specified in the connection's XTPB. The
wait operations are completed by assigning a SS$_TIMEOUT status to the
appropriate 1/0 status block (IOSB), setting an event flag, and setting the 1

XTCC$V _DYING bit in the XTCC.

3.3.2

3.3.1.9

Transport Layer Architecture
3.3 Transport-Common and Transport-Specific Components

Closing a Connection
A transport connection is closed in response to a call to the Xlib CLOSE
DISPLAY routine, or the server closing the connection. The XTCC data
structure XTCC$V _DYING field is set when the connection is to be closed.

The DECW$XPORT_CLOSE routine terminates a connection and releases
the resources that are associated with the connection. The server and Xlib
are expected to return any XTCBs acquired through DECW$XPORT_
READ and DECW$XPORT_GET_OUTPUT_BUFFER before calling
DECW$XPORT_CLOSE. After calling DECW$XPORT_CLOSE, the
structures used by the connection (XTCC, XTCQ, IXTCC, XTPB, and
XTCBs) must not be referenced.

The DECW$XPORT_CLOSE routine calls the transport-specific connection
close routine to actually break the network link.

Transport-Specific Functions

3.3.2.1

The transport-specific code performs the following functions:

• Initializes and returns the address of the XTFT

• Initializes (attaches) a specific transport

• Connects a client to a server by means of the chosen transport

• Writes data from XTCBs to the transport

• Reads data into XTCBs from the transport

• Closes a connection and releases connection structures

• Initiates image rundown processing for the connection

Subsequent sections describe the transport-specific functions.

Initializing the Transport
The XTFT data structure contains the addresses of the transport-specific
routines. The common transport must therefore always be able to find
the transport-specific XTFT structures. To make sure that the common
transport can find the XTFT structures, every transport-specific image
must provide a routine, DECW$TRANSPORT_INIT, as the initialization
routine of that image.

A transfer vector to the DECW$TRANSPORT_INIT routine must be
provided in the first image section of the transport-specific image. See
Section 8.3.19 for an example of this transfer vector.

The DECW$XPORT_ATTACH_TRANSPORT routine calls the
DECW$TRANSPORT_INIT routine to initialize and return the XTFT.
Once the XTFT is initialized, DECW$XPORT_ATTACH_TRANSPORT
calls the XTFT$A_ATTACH_TRANSPORT routine found in this data
structure to complete the transport-specific initialization.

3-41

3.3.3

Transport Layer Architecture
3.3 Transport-Common and Transport-Specific Components

Attaching the Specific Transport

3.3.3.1

3-42

As described in Section 3.3.2.1, the DECW$XPORT_ATTACH_
TRANSPORT routine calls the XTFT$A_ATTACH_TRANSPORT routine
to complete the transport-specific initialization.

XTFT$A_ATTACH_TRANSPORT functions differently depending on
whether the server or Xlib called it. If Xlib called it, XTFT$A_ATTACH_
TRANSPORT performs relatively little transport-specific initialization.

If the server called it, XTFT$A_ATTACH_TRANSPORT performs
additional transport-specific initialization. For example, for DECnet,
XTFT$A_ATTACH_TRANSPORT might function as follows:

• Create a mailbox

• Assign a channel to the network device and associate the mailbox with
this channel

• Associate an object name (for example, X$XO) to which clients may
refer with the network channel

• Issue a $QIO read to the mailbox to receive notification of connection
attempts by clients

The TRANSPORT_READ_QUEUE and TRANSPORT_READ_AST
routines in the example transport are called to initiate a read on the
transport channel. TRANSPORT_READ_QUEUE is called by XTFT$A_
ATTACH_TRANSPORT to perform the first $QIO read on the newly
attached connection. The XTFT$A_ATTACH_TRANSPORT routine assigns
a network channel for the transport and then calls TRANSPORT_READ_
QUEUE to listen on the channel for a connection attempt from a client.

TRANSPORT_READ_AST is a sample read-completion AST routine for
the transport's network channel.

Opening a Connection
The XTFT$A_OPEN routine tries to connect a client to a server.

The transport-common DECW$XPORT_OPEN routine attempts to locate
a transport with a name matching the one passed in the xportnam
argument (for example, "DECNET"). If a matching transport is found, the
XTFT$A_OPEN routine is called with the server number and workstation
node name arguments, and an IXTCC and XTPB that have been partially
initialized. (Xlib calls DECW$XPORT_OPEN with an item list that gives
its desired defaults.)

XTFT$A_OPEN is responsible for the allocation and initialization of the
XTCC, XTCQ, and all necessary XTCBs, and starting an initial read if
needed. Parameters that would affect these operations are found in the
XTPB attached to the IXTCC by means of the IXTCC$A_TPB field.

3.3.3.2

3.3.3.3

Transport Layer Architecture
3.3 Transport-Common and Transport-Specific Components

Writing XTCBs to a Transport
There are three transport-specific routines that are called through the
XTFT data structure for writing to the transport:

• XTFT$A_EXECUTE_ WRITE

• XTFT$A_ WRITE

• XTFT$A_WRITE_USER

Many transport-specific images will also need a write-completion routine.
A sample write-completion AST routine, WRITE_AST, is shown in
Chapter 8.

The transport-specific write routines are described in Table 3-16.

Table 3-16 Transport-Specific Write Routines

Routine Description

XTFT$A_EXECUTE_WRITE Writes the contents of an XTCB to a connection.
XTFT$A_EXECUTE_WRITE is called when the
common transport inserts an XTCB on an empty
output work queue. XTFT$A_EXECUTE_WRITE
must decide whether to call DECW$$XPORT_WRITE
so that an 1/0 operation can be started in executive
mode.

XTFT$A_WRITE Attempts to write an XTCB to the connection
associated with the XTCC. XTFT$A_WRITE writes the
contents of XTCBs across the wire. If there is nothing
to write, that is, the XTCBs are empty, XTFT$A_
WRITE inserts the XTCBs on the appropriate (small
or large} output free queue. This is a method of
populating the free queues.

If the write operation fails, XTFT$A_WRITE puts the
XTCB back at the head of the output work queue and
sets the connection status to dying.

XTFT$A_WRITE_USER Attempts to write a buffer in the user's address space
to a transport connection. XTFT$A_WRITE_USER
can use the common routine DECW$XPORT_COPY_
AND_WRITE to copy the user's buffer into XTCBs
and queue them for writing, or wait for the output work
queue to empty and issue $QIOs directly from the
user's buffer.

Reading XTCBs from a Transport
There are two transport-specific routines that are called through the XTFT
data structure for reading from the transport: XTFT$A_EXECUTE_FREE
and XTFT$A_FREE_INPUT_BUFFER.

Many transport-specific images will also need a read-completion routine.
A sample read-completion AST routine, FREE_INPUT_AST, is shown in
Chapter 8.

3-43

Transport Layer Architecture
3.3 Transport-Common and Transport-Specific Components

3.3.3.4

3-44

The transport-specific read routines are described in Table 3-17.

Table 3-17 Transport-Specific Read Routines

Routine Description

XTFT$A_EXECUTE_FREE Returns an XTCB to a local connection.
DECW$XPORT _EXECUTE_FREE calls XTFT$A_
EXECUTE_FREE to remove the buffer just placed
on the input free queue. In the case of DECnet or
TCP/IP, the buffer is then used to store the result of
the next $010 read operation for the connection.

XTFT$A_FREE_INPUT _
BUFFER

Closing a Connection

In the case of DECnet or TCP/IP, XTFT$A_FREE_
INPUT _BUFFER does a $010 read operation for a
connection into the provided buffer. If there is nothing
to read for the connection, XTFT$A_FREE_INPUT_
BUFFER inserts the XTCB on the free queue and
sets the connection state to dying.

The connection close routines close a connection and release the structures
associated with the connection. The common transport layer begins
deallocation of all connection resources including, but not limited to,
channels, XTCC, XTCBs, XTPB, and transport-private data. After this is
done, the transport user must not refer to any structures associated with 1

the connection.

There are two transport-specific routines that work together to close a
connection: XTFT$A_CLOSE and XTFT$A_RUNDOWN. XTFT$A_CLOSE
uses an additional routine, CLOSE_AND_DEALLOCATE_AST, to clean up
after aborted 1/0 operations. A sample CLOSE_AND_DEALLOCATE_AST
routine is shown in Chapter 8.

The transport-specific connection close routines are described in
Table 3-18.

Table 3-18 Transport-Specific Connection Close Routines

Routine

XTFT$A_CLOSE

XTFT$A_RUNDOWN

Description

Marks the connection as dying and cancels and deassigns
the channel to the connection. XTFT$A_CLOSE declares
an AST to the CLOSE_AND_DEALLOCATE_AST routine
that is executed after any completion ASTs. This performs
the final cleanup operations such as structure invalidation
and deallocation.

Invoked by the common transport when the current image
exits. Each specific transport must release any resources
necessary for a clean exit.

3.3.3.5

Transport Layer Architecture
3.3 Transport-Common and Transport-Specific Components

The Transport-Specific Callback
When a specific transport receives a connection request, it completely
sets up the new connection and then calls the server connection-request
routine, identified by the XTDB$A_CONNECT_REQUEST field, to see
if the server accepts the connection. The sample transport shown in
Chapter 8 uses the TRANSPORT_READ_AST, TRANSPORT_READ_
QUEUE, and TRANSPORT_OPEN_CALLBACK routines to accomplish
this task.

3-45

4 Transport Walk-Through

This chapter describes a walk-through of transport layer activities,
including transport initialization, for both the server and Xlib. The walk
through gives an overview of the transport layer activities; it does not
describe every step of the process. The walk-through is based on the
sample TCP/IP transport.

Note: The boxed numbers in the illustrations correspond to the buffers,
or XTCBs, that are being queued.

The convention for TCP/IP is that server number 0 listens on port
6000. Port 5000 is used in this example to prevent collision with a
"real" TCP/IP transport.

4-1

Transport Walk· Through

Client . . . Server•••.......••••........•....•....•••.......••............

4-2

XOpenDisplay

DECW$XPORT _INITIALIZE
Create global XTPB.

DECW$XPORT_ATTACH_TRANSPORT
XTFT$A_ATTACH_TRANSPORT

• •
DECW$XPORT_OPEN

Allocate IXTCC and XTPB.
XTFT$A_OPEN

Allocate resources (XTCO,
XTCC, XTCBs).

Assigns a channel and port.
Finds network address of
server and does a $010

Server Startup
DECW$XPORT INITIALIZE

Create global XTPB.
DECW$XPORT_ATTACH_TRANSPORT

XTFT$A_ATTACH_TRANSPORT
Assign channel to UCX$DEVICE.
Create TCP port 5000 .
Begin listening on port 5000.
Assign channel to UCX$DEVICE.
$010 ACCEPT CHANNEL to port 5000.

• •

(10$_ACCESS) to port 5000. ---... • $010 from the client completes $010 ACCEPT
• •

DECW$XPORT _FREE_INPUT _BUFFER
$010 READ for this channel.

• •
Exchange protocol information.
Continue with client-specific requests.

• •

CHANNEL. TRANSPORT _READ_AST is called .

Translate client's address to node name.
Allocate resources (XTCO, IXTCC, XTCC,

XTPB, XTCBs) .

Accept connection, drop to user mode, and
call scheduler's CONNECT _REOUEST _NOTIFY
to see if the server accepts the connection.

If the server accepts, do a
$010 READ for the channel.

• •

ZK-121 OA-G E

Client . . .

Transport Walk-Through

Server

For example:
XSEND_AND_GET_REPLY

(for example, XGetlnputFocus)
DECW$XPORT _COPY _AND_ WRITE

Xlib Routines
""') ""')

r,;i : I 1"'11 : I
W1 IL.LJ I I

'f 1' 'f 1'
I I I I
I I I I

Transport-Common
I I I I

r;;1 I I I I

W2.J v "' v "' I Im I I
•) ')

Transport-Specific

1. REMOHI from
output free queue.
Perform data copy.

2. INSOTI on
output work queue.

3. XlFT$A WRITE
REMOHi from
output work queue.

$010 WRITE --
• •

Write AST completion.

4. INSOTlon
output free queue.

DECW$XPORT _READ (Blocking)
Enable NOTIFY.

REMOHI from input work queue.
If empty, XPORT _IN_ NOTIFY _WAIT

and $SYNCH.

• •

Read completion AST received.
Exchange protocol information about
connection.

• •
Read completion AST received.

1. Update XTCB's
length and
pointer.

Transport-Specific
(") (")

INSOTlon

r71 I I I I
L.LJ I I I I

'f 1' 'f 1'
I I f2l I I
I I 1.£.1 I I

input work queue. Transport-Common
I I I I
I I I I

v "' v "' I I I I

'J 'J

2. REMOHI from
input free queue.
If not empty, do
a $010 READ for
the channel.

Server Components

If NOTIFY enabled, call INPUT_NOTIFY _RTN.

(Schedule request processing)
Dispatcher calls DECW$XPORT _READ.

Enable NOTIFY.
REMOHI from input work queue.
If empty, return nothing.
Otherwise, disable NOTIFY and
return buffer .

• •
(Buffer returned so
process request)

ZK-1211 A-GE

4-3

Transport Walk-Through

Client : Server ..

4-4

• •

Generate reply.
DECW$XPORT WRITE

[I] REMQHI from output free queue.
Perform data copy.
Calls WRITE BUFFER.
[g] INSQTlbuffer on output work queue.

Calls XTFT$A EXECUTE WRITE.

(Enter read completion AST) -1111--
[I] REMQHI from output work queue.

$QIOWRITE.
(IJWRITE_COMPLETION INSQTls on Update XTCB's length and pointer.

INSQTI on input work queue.
If NOTIFY enabled, send notification.

REMQHI on input free queue.
If empty and input enabled, $QIO
READ for data.

Return

$SYNCH returns from wait-in-LEF state.
DECW$XPORT_READ

REMQHI from input work queue.

Return buffer.
(Copy reply into user space)

• •

XCloseDisplay ()
DECW$XPORT _CLOSE

XTFT$A_CLOSE

output free queue. ~

Transport-Specific ,,.., ,,..,
I I f'7I I I r,;i
I I t±J I I L]_J
\}''} \}''}
I I I I
I I I I

Transport-Common
I I I I
I I r:;,I I

v * L.1..Jv 4
I I I I (gJ
•) •) ~

Server Components

Dispatcher processes request. When request
stream exhausted or request is incomplete,
calls DECW$XPORT _FREE_INPUT _BUFFER.

XTFT$A_FREE_INPUT _BUFFER
INSQTI on input free queue .
If it was empty and input was
enabled, REMQHI from input free queue.
$QIO READ into buffer.

Return • •
$DASSGN CHANNEL --------• (Enter read completion AST)

Return $QIO READ failed.
Mark connection as dying.
Call CONNECT_ABORT_NOTIFY().
Return

(Schedule connection rundown)
DECW$XPORT _CLOSE

XTFT$A_CLOSE
$DASSGN CHANNEL

Release resources.
Return

ZK-1212A-GE

5 Transport-Common Routines

This chapter describes the transport-common routines that are called
by specific transports. If you write your own transport-specific layer,
use these routines to allocate the communication queues, allocate and
deallocate protected memory for structures, initiate read and write
operations, and so forth.

Transport-common routines that are called only by other transport
common routines or by Xlib and the server are not described in this
chapter.

Modifications to the transport-common routines are not recommended or
supported.

The transport-common routines are listed in Table 5-1.

Table 5-1 Transport-Common Routines

Routine Name

DECW$XPORT _ACCEPT_FAILED

DECW$XPORT _ALLOC_INIT _
QUEUES

DECW$XPORT _ALLOC_PMEM

DECW$XPORT _ATTACHED

DECW$XPORT_ATTACH_LOST

DECW$XPORT_CLOSE

DECW$XPORT _COPY _AND_WRITE

DECW$XPORT _DEALLOC_PMEM

DECW$XPORT _DEALLOC_QUEUES

DECW$$XPORT_FREE_INPUT

DECW$XPORT_IN_NOTIFY _USER

DECW$XPORT _REATTACH_FAILED

Function

Reports that the transport-specific routines
could not accept a network link request.

Allocates storage for an XTCC, XTCQ, and
all of the XTCBs for a connection. Places
all of the XTCBs on the appropriate free
queues.

Allocation routine for protected structures.

Reports that a transport is attached.

Reports that a network has shut down.

Terminates a connection and releases its
associated resources.

Copies data into XTCBs and optionally
starts a write operation.

Deallocation routine for protected structures
allocated with DECW$XPORT_ALLOC_
PMEM.

Deallocates a block of storage previously
allocated by DECW$XPORT_ALLOC_INIT_
QUEUES.

Initiates a read operation for a connection.

Notifies Xlib or the server that data on the
input work queue is available to be read.

Reports that the transport layer cannot
continue attempting to reattach.

(continued on next page)

5-1

Transport-Common Routines

Table 5-1 (Cont.) Transport-Common Routines

5-2

Routine Name

DECW$XPORT_REFUSED_BY_
SERVER

DECW$XPORT_UNEXPECTED_
MESSAG

DECW$XPORT _UNKNOWN_LINK

DECW$XPORT _ VALIDATE_STRUCT

DECW$XPORT _ VALIDATE_STRUCT_
JSB

DECW$XPORT _ VALIDATE_XTCB

DECW$XPORT _ VALIDATE_XTCB_JSB

DECW$$XPORT _WRITE

Function

Reports that the server did not accept a
connection.

Reports that an unexpected message was
received from the underlying transport.

Reports a message from an unknown
connection.

Returns the address of the user write
protected IXTCC structure.

JSB routine that returns the address of the
user write-protected IXTCC structure.

Validates that an XTCB is contained within
the allocated storage for the connection
and that it is correctly formed.

JSB routine that validates that an XTCB
is contained within the allocated storage
for the connection and that it is correctly
formed.

Initiates a writing operation on the
connection.

DECW$XPORT _ACCEPT _FAILED

DECW$XPORT _ACCEPT _FAILED

FORMAT

RETURNS

ARGUMENTS

Reports that the transport could not accept a network link request.

DECW$XPORT _ACCEPT _FAILED length, address,
status

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are. listed under Condition Values Returned.

length
VMS usage: longword
type: longword (unsigned)
access: read
mechanism: value
The length of the connection-failed message string.

address
VMS usage: longword
type: longword (unsigned)
access: read
mechanism: value
The address of the connection-failed message string, which is usually the
node name of the failed connection.

status
VMS usage: longword
type: longword (unsigned)
access: read
mechanism: value
The condition value of the failed connection.

DESCRIPTION DECW$XPORT_ACCEPT_FAILED builds a message vector that describes
the nonacceptance of the connection request. The first element in the
message vector is DECW$_ACCEPT_FAILED; the second element is the
status argument.

5-3

DECW$XPORT _ACCEPT _FAILED

CONDITION
VALUES
RETURNED

5-4

The $PUTMSG system service is called in user mode regardless of the
caller's mode:

• If DECW$XPORT_ACCEPT_FAILED was called in user mode, it calls
$PUTMSG to write the error message.

• If DECW$XPORT_ACCEPT_FAILED was not called in user mode, it
declares an AST to do the $PUTMSG in user mode.

DECW$XPORT_ACCEPT_FAILED is called by the TRANSPORT_READ_
AST routine in Example 8-15.

SS$_NORMAL

SS$_1NSFMEM

Routine successfully completed.

There is insufficient memory to perform the operation.

Any condition value returned by $PUTMSG.

Any condition value returned by $DCLAST.

DECW$XPORT _ALLOC _INIT _QUEUES

DECW$XPORT_ALLOC_INIT_QUEUES

FORMAT

RETURNS

ARGUMENTS

Allocates storage for an XTCC, XTCQ, and all of the XTCBs for a connection.
Places all of the XTCBs on the appropriate free queues.

DECW$XPORT _ALLOC _INIT _QUEUES
itcc, xtcc_length, srp_data_length, lrp_data_length,
e_srp_count, e_Jrp_count, r_srp_count, r_Jrp_count,
extra_ contexLlength, extra_ contexL address

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are listed under Condition Values Returned.

it cc
VMS usage: record
type: ixtcc
access: modify
mechanism: reference
The IXTCC of the connection for which you want to allocate and initialize
the queues. The IXTCC$A_TPB field must already be initialized.

xtcc _length
VMS usage: longword
type: longword
access: read
mechanism: value
The length, in bytes, of the XTCC to allocate. May be longer than a
standard XTCC if the specific transport has appended additional fields.
Must be at least XTCC$C_LENGTH.

srp_data_length
VMS usage: longword
type: longword
access: read
mechanism: value
The length, in bytes, of the data portion of a small XTCB. No modification
of the XTCB by specific transports is allowed.

5-5

DECW$XPORT _ALLOC _INIT _QUEUES

5-6

lrp_data_length
VMS usage: longword
type: longword
access: read
mechanism: value
The length, in bytes, of the data portion of a large XTCB. No modification
of the XTCB by specific transports is allowed.

e_srp_count
VMS usage: longword
type: longword
access: read
mechanism: value
The number of event small XTCBs to allocate. May be 0 or greater.

e_lrp_count
VMS usage: longword
type: longword
access: read
mechanism: value
The number of event large XTCBs to allocate. May be 0 or greater.

r_srp_count
VMS usage: longword
type: longword
access: read
mechanism: value
The number of request small XTCBs to allocate. May be 0 or greater.

r_lrp_count
VMS usage: longword
type: longword
access: read
mechanism: value
The number of request large XTCBs to allocate. May be 0 or greater.

extra_ context_length
VMS usage: longword
type: longword
access: read
mechanism: value
The length, in bytes, of the transport-specific space to be allocated. May
be 0 or greater.

extra_ context_address
VMS usage: address
type: longword
access: write
mechanism: reference
The location to receive the address of the extra transport-specific space.

DECW$XPORT _ALLOC_INIT _QUEUES

DESCRIPTION DECW$XPORT_ALLOC_INIT_QUEUES allocates a block of storage for
an XTCC, XTCQ, and all of the XTCBs for a connection and places all
of the XTCBs on the appropriate free queues. DECW$XPORT_ALLOC_
INIT_QUEUES must allocate at least an XTCC; the other structures are
optional.

If no XTCBs are requested, the XTCQ is not allocated. Otherwise, the
XTCQ is allocated and initialized. The IXTCC is initialized with the
addresses of the XTCC and the XTCQ, the queue headers, and the queue
flags. The IXTCC$L_ICI and IXTCC$A_USER_REGION fields are also
initialized.

When DECW$XPORT_ALLOC_INIT_QUEUES completes, the status of
the data structures is as follows:

Data
Structure

IXTCC

Status

The following fields are initialized:

IXTCC$L_ICI
IXTCC$A_ TCC
IXTCC$A_ TCQ
IXTCC$A_USER_REGION
IXTCC$A_BUFFER_REGION
IXTCC$A_IW_QUEUE
IXTCC$A_IFS_QUEUE
IXTCC$A_IFL_QUEUE
IXTCC$A_OW_QUEUE
IXTCC$A_OFS_QUEUE
IXTCC$A_OFL_QUEUE
IXTCC$L_IWQ_FLAG
IXTCC$L_IFSQ_FLAG
IXTCC$L_IFLQ_FLAG
IXTCC$L_OWQ_FLAG
IXTCC$L_OFSQ_FLAG
IXTCC$L_OFLQ_FLAG

5-7

DECW$XPORT _ALLOC _INIT _QUEUES

CONDITION
VALUES
RETURNED

5-8

Data
Structure

XTCC

Status

The following fields are initialized:

XTCC$W_SIZE

XTCC$B_TYPE

XTCC$B_SUBTYPE

XTCC$A_TPB
XTCC$A_TCQ
XTCC$L_ICI

XTCC$A_IW_QUEUE

XTCC$A_IFS_QUEUE

XTCC$A_IFL_QUEUE
XTCC$A_OW_QUEUE

XTCC$A_OFS_QUEUE

XTCC$A_OFL_QUEUE

XTCC$A_TCQ_FLAGS
XTCC$L_IWQ_FLAG

XTCC$L_IFSQ_FLAG
XTCC$L_IFLQ_FLAG

XTCC$L_OWQ_FLAG
XTCC$L_OFSQ_FLAG

XTCC$L_OFLQ_FLAG

XTCBs Completely initialized

XTCQ Completely initialized

DECW$XPORT_ALLOC_INIT_QUEUES may be called only from
executive mode.

SS$_NORMAL Routine successfully completed.

DECW$_NOT_INITIALIZED The common transport is not initialized.

DECW$_BADQUEUE A queue was corrupted during initialization.

DECW$XPORT_ALLOC_PMEM

DECW$XPORT_ALLOC_PMEM

FORMAT

RETURNS

ARGUMENTS

Allocation routine for protected structures.

status_return=DECW$XPORT _ALLOC _PMEM size,
sub
type

VMS usage: address
type: longword
access: write
mechanism: value

Returns 0 on failure, and a nonzero address of allocated storage if
successful.

size
VMS usage: longword
type: longword
access: read
mechanism: value
The size of the memory block to allocate, in bytes.

subtype
VMS usage: longword
type: longword
access: read
mechanism: value
User-defined subtype field used to initialize the final byte of the third
longword.

DESCRIPTION DECW$XPORT_ALLOC_PMEM is an allocation routine for protected
structures. The sample transport calls DECW$XPORT_ALLOC_PMEM to
allocate IXTCCs and XTPBs, structures that must not be modified by user
mode code. DECW$XPORT_ALLOC_PMEM allocates a block of storage of
the size that you specify. The block is assumed to begin with a 3-longword
structure prefix; the length, type, and subtype fields in the third longword
are initialized to appropriate values.

DECW$XPORT_ALLOC_PMEM is called only from executive mode. The
allocated memory is protected as user-read/executive-write (UREW).

5-9

DECW$XPORT _ATTACHED

DECW$XPORT_ATTACHED

FORMAT

RETURNS

Reports that a transport is attached.

DECW$XPORT_ATTACHED tdb

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are listed under Condition Values Returned.

ARGUMENT tdb
VMS usage: record
type: xtdb
access: modify
mechanism: reference
The XTDB of the transport that is attached.

DESCRIPTION DECW$XPORT_ATTACHED builds a message vector that describes
the attached transport. The only element of the vector is DECW$_
ATTACHED.

CONDITION
VALUES
RETURNED

5-10

The $PUTMSG system service is called in user mode regardless of the
caller's mode:

• If DECW$XPORT_ATTACHED was called in user mode, it calls
$PUTMSG to write the message.

• If DECW$XPORT _ATTACHED was not called in user mode, it declares
a user-mode AST to do the $PUTMSG.

SS$_NORMAL

SS$_1NSFMEM

Routine successfully completed.

There is insufficient memory to perform the operation.

Any condition value returned by $PUTMSG.

Any condition value returned by $DCLAST.

DECW$XPORT_ATTACH_LOST

DECW$XPORT _ATTACH_LOST

FORMAT

RETURNS

Reports that a network has shut down.

DECW$XPORT_ATTACH_LOST tdb, status

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are listed under Condition Values Returned.

ARGUMENTS tdb
VMS usage: record
type: xtdb
access: modify
mechanism: reference
The XTDB of the transport that shut down.

status
VMS usage: longword
type: longword (unsigned)
access: read
mechanism: value
The condition value of the transport that is shutting down.

DESCRIPTION DECW$XPORT_ATTACH_LOST builds a message vector that describes
the network shutdown. The first element in the message vector is
DECW$_ATTACH_LOST; the second element is the status argument.

CONDITION
VALUES
RETURNED

The $PUTMSG system service is called in user mode regardless of the
caller's mode:

• If DECW$XPORT_ATTACH_LOST was called in user mode, it calls
$PUTMSG to write the message.

• If DECW$XPORT_ATTACH_LOST was not called in user mode, it
declares a user-mode AST to do the $PUTMSG.

Routine successfully completed. SS$_NORMAL

SS$_1NSFMEM There is insufficient memory to perform the operation.

Any condition value returned by $PUTMSG.

Any condition value returned by $DCLAST.

5-11

DECW$XPORT_CLOSE

DECW$XPORT_CLOSE
Terminates a connection and releases its associated resources.

FORMAT DECW$XPORT_CLOSE tee

ARGUMENTS tee
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC of the connection to close.

DESCRIPTION DECW$XPORT_CLOSE terminates a connection and releases its
associated resources. The transport user is expected to return any XTCBs
acquired through DECW$XPORT_READ and DECW$XPORT_GET_
OUTPUT_BUFFER before calling DECW$XPORT_CLOSE. After calling
DECW$XPORT_CLOSE, the structures used by the connection (XTCC,
XTCQ, and XTCBs) must not be referenced.

5-12

The DECW$XPORT_CLOSE routine calls the transport-specific connection
close routine, XTFT$A_ CLOSE, to actually break the network link.

DECW$XPORT _COPY _AND_ WRITE

DECW$XPORT _COPY _AND_ WRITE

FORMAT

RETURNS

ARGUMENTS

Copies data into XTCBs and optionally starts a write operation.

DECW$XPORT_COPY_AND_WRITE tee, mode,
buffer, buflen,
retbuflen,
padbytes

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are listed under Condition Values Returned.

tee
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC of the connection from which you want to write.

mode
VMS usage: longword
type: longword
access: read
mechanism: value
Modifying flags for the write operation. The valid fields are:

Constant

DECW$M_MODE_NOBLOCK

Description

Nonblocking write. When the DECW$M_MODE_
NOBLOCK flag is set, any attempt to get a
transport buffer when none is available causes the
the call to return the status DECW$_BUFNOTAVL
and perform only a partial write operation.

When this bit is clear and a nonzero timeout
value was specified in DECW$XPORT _ATTACH_
TRANSPORT, getting a buffer can time out,
causing this routine to return with the DECW$_
BUFFERTIMEOUT status.

5-13

DECW$XPORT _COPY _AND_ WRITE

Constant

DECW$M_MODE_
NOWRTBLOCK

buffer
VMS usage: char string
type: char string
access: read
mechanism: reference

Description

If the specific transport was blocked for the XTCB
write operation, the last XTCB is placed on the
work queue and DECW$XPORT_COPY_AND_
WRITE returns with a DECW$_BLOCKED status.

A buffer in the user's address space that contains data to write to the
connection.

buflen
VMS usage: longword
type: longword
access: read
mechanism: value
The length of the data in the buffer.

retbuflen
VMS usage: longword
type: longword
access: write
mechanism: reference
Address of longword to receive the amount of data that was actually
written to the connection. If DECW$M_MODE_NOBLOCK was not set
in the mode argument, and there is no timeout, retbuften is always the
amount requested.

pad bytes
VMS usage: longword
type: longword
access: read
mechanism: value
Number of pad bytes (zeros) to append to the copy.

DESCRIPTION DECW$XPORT_COPY_AND_WRITE performs a buffered write operation
and returns the size of the data actually copied in the retbuflen
argument. Data from the user's buffer is always copied to transport
buffers prior to processing by the transport-specific write function.

5-14

The sample transport calls DECW$XPORT_COPY_AND_WRITE from the
XTFT$A_ WRITE_USER routine.

DECW$XPORT_COPY_AND_WRITE must be called in user mode.

CONDITION
VALUES
RETURNED

DECW$XPORT _COPY _AND_ WRITE

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

Routine successfully completed.

XTCC is not user-readable.

XTCC argument is not an XTCC.

DECW$_CNXABORT Connection is in abort condition.

DECW$_RECIO_OPE Recursive 1/0 operation.

DECW$_BLOCKED The transport blocked the write operation.

DECW$_BUFFERTIMEOUT Timed out while waiting for buffer.

DECW$_NOT_INITIALIZED The common transport is not initialized.

DECW$_1NV _STRUCT _ID The XTCC$L_ICI field is not valid.

May also return any other status set in the XTCC$L_ERR_STATUS field
if the connection is aborting.

5-15

DECW$XPORT_DEALLOC_PMEM

DECW$XPORT_DEALLOC_PMEM
Deallocation routine for protected structures allocated with DECW$XPORT _
ALLOC_PMEM.

FORMAT DECW$XPORT_DEALLOC_PMEM buffer

ARGUMENTS buffer
VMS usage: address
type: longword
access: read
mechanism: value
The address of the buffer to deallocate.

DESCRIPTION DECW$XPORT_DEALLOC_PMEM deallocates a structure that was
previously allocated by DECW$XPORT_ALLOC_PMEM. Any errors are
signaled. DECW$XPORT_DEALLOC_PMEM does not return a condition
value.

DECW$XPORT_DEALLOC_PMEM must be called in executive mode.

5-16

DECW$XPORT_DEALLOC_QUEUES

DECW$XPORT_DEALLOC_QUEUES

FORMAT

RETURNS

Deallocates a block of storage previously allocated by DECW$XPORT _
ALLOC_INIT_QUEUES.

DECW$XPORT_DEALLOC_QUEUES ffcc

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are listed under Condition Values Returned.

ARGUMENTS itcc
VMS usage: record
type: ixtcc
access: modify
mechanism: reference
The IXTCC of the connection for which you want to deallocate a block of
storage previously allocated for the queues.

DESCRIPTION DECW$XPORT_DEALLOC_QUEUES deallocates a block of storage that
was previously allocated for the queues of a connection by DECW$XPORT_
ALLOC_INIT_QUEUES.

CONDITION
VALUES
RETURNED

DECW$XPORT_DEALLOC_QUEUES must be called in executive mode.

SS$_NORMAL Routine successfully completed.

DECW$_NOT_INITIALIZED The common transport is not initialized.

5-17

DECW$$XPORT _FREE_INPUT

DECW$$XPORT _FREE_INPUT

FORMAT

RETURNS

Initiates a read operation on the connection.

DECW$$XPORT_FREE_INPUT tee, teb

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are listed under Condition Values Returned.

ARGUMENTS tee
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC of the connection from which you want to read.

teb
VMS usage: record
type: xtcb
access: modify
mechanism: reference
DECW$$XPORT_FREE_INPUT initiates a read operation for the
connection into this XTCB.

DESCRIPTION The DECW$$XPORT_FREE_INPUT system service calls the XTFT$A_
FREE_INPUT_BUFFER routine in executive mode to perform an
asynchronous read operation for the connection. The read .operation is
performed asynchronously to avoid waiting for it to complete.

CONDITION
VALUES
RETURNED

5-18

The XTFT$A_FREE_INPUT_BUFFER routine does the actual read
operation for the connection into the XTCB specified in the tcb argument.
If the read operation fails, XTFT$A_FREE_INPUT_BUFFER inserts the
XTCB on the free queue and sets the connection state to dying.

DECW$$XPORT_FREE_INPUT is an executive-mode routine.

SS$_NORMAL

DECW$_CNXABORT

Routine successfully completed.

Connection is in abort condition.

DECW$XPORT _IN_NOTIFY _USER

DECW$XPORT _IN_NOTIFY _USER

FORMAT

Notifies Xlib or the server that data on the input work queue is available to be
read.

DECW$XPORT _IN_NOTIFY _USER tee

ARGUMENT tee
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC of the connection for which you want to limit input-notify AST
delivery.

DESCRIPTION DECW$XPORT_IN_NOTIFY_USER clears the XTCC$V_IN_AST_IN_
PROG bit in the XTCC to indicate that the AST has been delivered,
and calls the input notification procedure, identified by the XTPB$A_I_
NOTIFY_RTNADR field.

Transport users may request notification of input data. One method
of notifying transport users is to deliver an AST that calls the user's
XTPB$A_I_NOTIFY_RTNADR procedure with the XTCC as an argument.

It is possible for a large number of read operations to complete before
the first notification AST is delivered, particularly if an Xlib application
is executing at user-AST level for a long period of time, or not reading
events.

If ASTs were declared without regard for whether they were being
delivered, it is possible to exceed the process AST quota. DECW$XPORT_
IN_NOTIFY_USER and the XPORT_IN_NOTIFY_SEND macro provide a
mechanism for limiting AST use.

The XPORT_IN_NOTIFY_SEND macro tests and sets the XTCC$V _
IN_AST_IN_PROG bit. If it was set, there is already a notification
AST waiting to be delivered. If the XTCC$V _IN_AST_IN_PROG bit
was clear, XPORT_IN_NOTIFY_SEND declares a user-mode AST to call
DECW$XPORT_IN_NOTIFY_USER.

DECW$XPORT_IN_NOTIFY_USER clears the XTCC$V_IN_AST_IN_
PROG bit and then calls the user's XTPB$A_I_NOTIFY_RTNADR
procedure.

DECW$XPORT_IN_NOTIFY_USER is called in user mode.

5-19

DECW$XPORT _REATTACH_FAILED

DECW$XPORT _REATTACH_FAILED

FORMAT

RETURNS

Reports that the transport layer cannot continue attempting to reattach a
transport.

DECW$XPORT_REATTACH_FAILED tdb, status

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are listed under Condition Values Returned.

ARGUMENTS tdb
VMS usage: record
type: xtdb
access: modify
mechanism: reference
The XTDB of the transport to which the transport layer cannot continue
attempting to reattach.

status
VMS usage: longword
type: longword (unsigned)
access: read
mechanism: value
The condition value of the failed reattach attempt.

DESCRIPTION DECW$XPORT_REATTACH_FAILED builds a message vector that
describes the failed reattach attempt. The first element in the message
vector is DECW$_REATTACH_FAILED; the second element is the status
argument.

5-20

When a transport shuts down, a specific transport can attempt to reattach
that transport. If the specific transport is then unable to complete the
reattach attempt, DECW$XPORT_REATTACH_FAILED is called.

The $PUTMSG system service is called in user mode regardless of the
caller's mode:

• If DECW$XPORT_REATTACH_FAILED was called in user mode, it
calls $PUTMSG to write the error message.

• If DECW$XPORT_REATTACH_FAILED was not called in user mode,
it declares a user-mode AST to do the $PUTMSG.

CONDITION
VALUES
RETURNED

DECW$XPORT _REATTACH_FAILED

SS$_NORMAL Routine successfully completed.

SS$_1NSFMEM There is insufficient memory to perform the operation.

Any condition value returned by $PUTMSG.

Any condition value returned by $DCLAST.

5-21

DECW$XPORT_REFUSED_BY_SERVER

DECW$XPORT_REFUSED_BV_SERVER

FORMAT

RETURNS

Reports that the server rejected a connection request.

DECW$XPORT _REFUSED _BY _SERVER status

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are listed under Condition Values Returned.

ARGUMENT status
VMS usage: longword
type: longword (unsigned)
access: read
mechanism: value
The condition value of the server's rejection.

DESCRIPTION DECW$XPORT_REFUSED_BY_SERVER builds a message vector that
describes the server's rejection of a connection request. The first element
in the message vector is DECW$_REFUSED_BY_SERVER; the second
element is the status argument.

CONDITION
VALUES
RETURNED

5-22

The $PUTMSG system service is called in user mode regardless of the
caller's mode:

• If DECW$XPORT_REFUSED_BY_SERVER was called in user mode,
it calls $PUTMSG to write the error message.

• If DECW$XPORT_REFU$ED_BY_SERVER was not called in user
mode, it declares a user-mode AST to do the $PUTMSG.

SS$_NORMAL

SS$_1NSFMEM

Routine successfully completed.

There is insufficient memory to perform the operation.

Any condition value returned by $PUTMSG.

Any .condition value returned by $DCLAST.

DECW$XPORT_UNEXPECTED_MESSAG

DECW$XPORT_UNEXPECTED_MESSAG

FORMAT

RETURNS

Reports that an unexpected message was received from the underlying
transport.

DECW$XPORT_UNEXPECTED_MESSAG ~pe

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are listed under Condition Values Returned.

ARGUMENT type
VMS usage: longword
type: longword (unsigned)
access: read
mechanism: value
The type of the unexpected message.

DESCRIPTION DECW$XPORT_UNEXPECTED_MESSAG builds a message vector that
describes an unexpected message. The only element in the message vector
is DECW$_UNEXPECTED_MESSAGE.

CONDITION
VALUES
RETURNED

The $PUTMSG system service is called in user mode regardless of the
caller's mode:

• If DECW$XPORT_UNEXPECTED_MESSAG was called in user mode,
it calls $PUTMSG to write the error message.

• If DECW$XPORT_UNEXPECTED_MESSAG was not called in user
mode, it declares an AST to do the $PUTMSG.

DECW$XPORT_UNEXPECTED_MESSAG is currently used only by the
DECnet transport.

Routine successfully completed. SS$_NORMAL

SS$_1NSFMEM There is insufficient memory to perform the operation.

Any condition value returned by $PUTMSG.

Any condition value returned by $DCLAST.

5-23

DECW$XPORT _ UNKNOWN_LINK

DECW$XPORT _ UNKNOWN_LINK

FORMAT

RETURNS

Reports a message about an unknown connection from the underlying
transport.

DECW$XPORT_UNKNOWN_LINK unit

VMS usage: cond_value
type: longword (unsigned) •
access: write ,
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are listed under Condition Values Returned.

ARGUMENT unit
VMS usage: longword
type: longword (unsigned)
access: read
mechanism: value
The unknown link's unit number.

DESCRIPTION DECW$XPORT_UNKNOWN_LINK builds a message vector that describes
an unknown connection. The only element of the vector is DECW$_
UNKNOWN_LINK

CONDITION
VALUES
RETURNED

5-24

The $PUTMSG system service is called in user mode regarsUess of the ~
caller's mode:

• If DECW$XPORT_UNKNOWN_LINK was called in user mode, it calls
$PUTMSG to write the error message.

• If DECW$XPORT_UNKNOWN_LINK was not called in user mode, it
declares a user-mode AST to do the $PUTMSG.

DECW$XPORT_UNKNOWN_LINK is currently used only by the DECnet
transport.

SS$_NORMAL

SS$_1NSFMEM

Routine successfully completed.

There is insufficient memory to perform the operation.

Any condition value returned by $PUTMSG.

Any condition value returned by $DCLAST.

DECW$XPORT _ VALIDATE_STRUCT

DECW$XPORT _ VALIDATE_STRUCT

FORMAT

RETURNS

Returns the address of the user write-protected IXTCC structure.

DECW$XPORT_VALIDATE_STRUCT id, struct

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are listed under Condition Values Returned.

ARGUMENTS id
VMS usage: longword
type: longword (unsigned)
access: read
mechanism: value
A previously registered IXTCC structure ID (XTCC$L_ICI).

struct
VMS usage: address
type: ixtcc
access: write
mechanism: reference
Returns the address of the user write-protected IXTCC structure.

DESCRIPTION DECW$XPORT_VALIDATE_STRUCT checks the user write-protected
IXTCC structure ID and, if valid, returns its corresponding address.
DECW$XPORT_VALIDATE_STRUCT invokes the DECW$XPORT_
VALIDATE_STRUCT_JSB routine for callers using CALLS.

CONDITION
VALUES
RETURNED

DECW$XPORT_ VALIDATE_STRUCT is called in both user and executive
modes.

SS$_NORMAL Routine successfully completed.

DECW$_NOT_INITIALIZED The common transport is not initialized.

DECW$_1NV _STRUCT _ID The structure ID is not valid.

5-25

DECW$XPORT _ VALIDATE_STRUCT _JSB

DECW$XPORT _ VALIDATE_STRUCT _JSB

FORMAT

RETURNS

JSB routine that returns the address of the user write-protected IXTCC
structure.

DECW$XPORT_VALIDATE_STRUCT id, struct

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are listed under Condition Values Returned.

ARGUMENTS id
VMS usage: longword
type: longword (unsigned)
access: read
mechanism: value
A previously registered IXTCC structure ID (XTCC$L_ICI).

struct
VMS usage: address
type: ixtcc
access: write
mechanism: reference
Returns the address of the user write-protected IXTCC structure.

DESCRIPTION DECW$XPORT_VALIDATE_STRUCT_JSB checks the ID of the user
write-protected IXTCC structure. If a structure exists with that ID,
DECW$XPORT_ VALIDATE_STRUCT_JSB returns its corresponding
address in the struct argument.

CONDITION
VALUES
RETURNED

5-26

The VALIDATE_XTCC macro calls the DECW$XPORT_VALIDATE_
STRUCT_JSB routine to validate an XTCC.

DECW$XPORT_ VALIDATE_STRUCT_JSB is called in both user and
executive modes.

SS$_NORMAL

DECW$_NOT _INITIALIZED

DECW$_1NV _STRUCT _ID

Routine successfully completed.

The common transport is not initialized.

The structure ID is not valid.

DECW$XPORT _ VALIDATE_XTCB

DECW$XPORT _ VALIDATE_XTCB

FORMAT

RETURNS

ARGUMENTS

Validates that an XTCB is contained within the allocated storage for the
connection and that it is correctly formed.

DECW$XPORT_VALIDATE_XTCB itcc, tcb

VMS usage: cond_value
type: longword(unsigned)
access: write
mechanism: value

Returns a longword condition value to RO. Possible condition values are
listed under Condition Values Returned.

it cc
VMS usage: record
type: ixtcc
access: modify
mechanism: reference
The IXTCC of the connection for which you want to validate the XTCB.

tcb
VMS usage: record
type: xtcb
access: modify
mechanism: reference
The XTCB that you want to validate.

DESCRIPTION DECW$XPORT_ VALIDATE_XTCB invokes DECW$XPORT_ VALIDATE_
XTCB_JSB for callers using CALLS.

DECW$XPORT_ VALIDATE_XTCB validates that an XTCB is contained
within the allocated buffer storage for the connection and that it is
correctly formed.

Either DECW$XPORT_ VALIDATE_XTCB or DECW$XPORT_ VALIDATE_
XTCB_JSB must be called before an XTCB is used in executive mode.

DECW$XPORT_VALIDATE_xTCB may be called in both user and
executive modes.

5-27

DECW$XPORT _ VALIDATE_XTCB

CONDITION
VALUES
RETURNED

5-28

SS$_NORMAL

DECW$_NOT_INITIALIZED

DECW$_NOT_XTCB

DECW$_1LLFORMED_XTCB

SS$_1VBUFLEN

Routine successfully completed.

The common transport is not initialized.

The XTCB is not in the buffer region.

The XTCB header is not valid.

The XTCB length field is not valid.

DECW$XPORT _ VALIDATE_XTCB _JSB

DECW$XPORT_VALIDATE_XTCB_JSB

FORMAT

RETURNS

ARGUMENTS

JSB routine that validates that an XTCB is contained within the allocated
sto~age for the connection and that it is correctly formed.

DECW$XPORT_VALIDATE_XTCB_JSB itcc, tcb

VMS usage: cond_value
type: longword(unsigned)
access: write
mechanism: value

Returns a longword condition value to RO. Possible condition values are
listed under Condition Values Returned.

it cc
VMS usage: record
type: ixtcc
access: modify
mechanism: reference
The IXTCC of the connection for which you want to validate the XTCB.

tcb
VMS usage: record
type: xtcb
access: modify
mechanism: reference
The XTCB that you want to validate.

DESCRIPTION DECW$XPORT_ VALIDATE_XTCB_JSB validates that an XTCB is
contained within the allocated buffer storage for the connection and
that it is correctly formed.

Either DECW$XPORT_VALIDATE_XTCB_JSB or DECW$XPORT_
VALIDATE_XTCB must be called before an XTCB is used in executive
mode.

DECW$XPORT_ VALIDATE_XTCB_JSB may be called in both user and
executive modes.

5-29

DECW$XPORT _ VALIDATE_XTCB_JSB

CONDITION
VALUES
RETURNED

5-30

SS$_NORMAL

DECW$_NOT _INITIALIZED

DECW$_NOT_XTCB

DECW$_1LLFORMED_XTCB

SS$_1VBUFLEN

Routine successfully completed.

The common transport is not initialized.

The XTCB is not in the buffer region.

The XTCB header is not valid.

The XTCB length field is not valid.

DECW$$XPORT _WRITE

DECW$$XPORT _WRITE

FORMAT

RETURNS

Initiates a write operation on the connection.

DECW$$XPORT _WRITE tee, xteb, mode

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO. Condition values returned by
this routine are listed under Condition Values Returned.

ARGUMENTS tee
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC of the connection from which you want to write.

xteb
VMS usage: record
type: xtcb
access: modify
mechanism: reference
The XTCB you want to write to the connection.

mode
VMS usage: longword
type: longword
access: read
mechanism: value
Modifying flags for the write operation. The valid field is:

Constant

DECW$M_MODE_
NOWRTBLOCK

Description

If the specific transport was blocked for the XTCB
write operation, DECW$$XPORT _WRITE returns
with a DECW$_BLOCKED status.

5-31

DECW$$XPORT _WRITE

DESCRIPTION The system service DECW$$XPORT_ WRITE initiates a write operation
on the connection associated with an XTCC. DECW$$XPORT_ WRITE
dispatches a write operation to the transport-specific write function.

CONDITION
VALUES
RETURNED

5-32

DECW$$XPORT_WRITE calls the VALIDATE_XTCC macro to validate
the XTCC. Ifit is valid, DECW$$XPORT_WRITE gets the XTFT from the
IXTCC$A_XPORT_TABLE field and calls the transport-specific XTFT$A_
WRITE routine in executive mode to actually write the XTCB.

SS$_NORMAL

DECW$_CNXABORT

DECW$_RECIO_OPE

DECW$_BLOCKED

Routine successfully completed.

Connection is in abort condition.

Recursive 1/0 operation.

The transport blocked the write operation.

6 Transport-Specific Routines

This chapter describes the transport-specific routines that you must
implement if you write your own transport-specific component.

Most of the routines described in this chapter are called by the transport
common code through the XTFT data structure. However, this chapter
also describes supporting routines, such as AST completion routines, that
you must write if your transport design requires it.

The transport-specific routines are listed in Table 6-1.

Table 6-1 Transport-Specific Routines

Routine

CLOSE_AND_DEALLOCATE_AST

DECW$TRANSPORT_INIT

DETACH_AND_POLL

FREE_INPUT _AST

REATTACH_ AST

TRANSPORT_OPEN_CALLBACK

TRANSPORT_READ_AST

TRANSPORT_READ_QUEUE

WRITE_ AST

XTFT$A_ATTACH_TRANSPORT

XTFT$A_CLOSE

XTFT$A_EXECUTE_FREE

XTFT$A_EXECUTE_WRITE

XTFT$A_FREE_INPUT _BUFFER

Function

Completes the connection close initiated by
XTFT$A_CLOSE. Internal to specific transport.

Initializes and returns the XTFT data structure.

Detaches from the transport and starts polling
for a transport restart. Internal to specific
transport.

AST completion routine for transport read
operations. Internal to specific transport.

Attempts to reattach the transport when the
timer interval has expired. Internal to specific
transport.

Performs a callback to the client during the
connection-open sequence. Internal to specific
transport.

Read-completion AST routine for the
transport's network channel. Internal to
specific transport.

Initiates an asynchronous connection-accept
operation. Internal to specific transport.

AST completion routine for transport write
operations. Internal to specific transport.

Performs the transport-specific initialization
functions.

Closes a transport connection.

Returns an XTCB to a local connection.

Writes an XTCB to a transport-specific
connection.

Starts a read operation on a freed input buffer.

(continued on next page)

6-1

Transport-Specific Routines

6.1 Condition Values

6-2

Table 6-1 (Cont.) TransporM;.pecific Routines

Routine

XTFT$A_OPEN

XTFT$A_RUNDOWN

XTFT$A_WRITE

XTFT$A_WRITE_USER

Function

Attempts to establish a connection to a server.

Performs the transport-specific rundown
functions required during image rundown.

Writes an XTCB buffer from the common
transport to a transport-specific connection.

Attempts to write a buffer in the user's address
space to a transport-specific connection.

The routine descriptions document the generic functions that the
transport-common component expects the transport-specific routines
to perform. Your implementation of the routines depends on your
underlying transport and may therefore differ in details. However,
your implementation of the routines must fullfill the transport-common
expectations.

See Chapter 8 for examples of TCP/IP implementations of these routines.

When a transport-specific routine finishes execution, a numeric status
value is returned in RO. This status value is returned as the status
value of the transport-common routine. Your implementation of the
transport-specific routines can return any valid VMS condition value.

CLOSE_AND_DEALLOCATE_AST

CLOSE AND DEALLOCATE AST

FORMAT

- - -
Completes the connection close initiated by XTFT$A_CLOSE. Internal to
specific transport.

CLOSE_AND_DEALLOCATE_AST ftcc

ARGUMENT itcc
VMS usage: record
type: ixtcc
access: modify
mechanism: reference
The IXTCC of the connection to close.

DESCRIPTION The CLOSE_AND_DEALLOCATE_AST routine is invoked as an AST by
the XTFT$A_CLOSE routine to complete the connection-close process.
Once CLOSE_AND_DEALLOCATE_AST executes, it is assumed that
neither the transport caller nor any part of transport will refer to this
connection again.

CLOSE_AND_DEALLOCATE_AST removes the IXTCC from the IXTCC
queue in the XTDB, decrements the reference count in the XTDB, and
releases the XTCBs on the communication queue.

CLOSE_AND_DEALLOCATE_AST also zeroes various fields in the XTCC
and IXTCC to catch any subsequent references to the connection and
deallo~ates the remaining connection structures.

CLOSE_AND_DEALLOCATE_AST is invoked in executive mode.

Section 8.3.10 shows a sample implementation of the CLOSE_AND_
DEALLOCATE_AST routine.

6-3

DECW$TRANSPORT _INIT

DECW$TRANSPORT _INIT

Initializes and returns the XTFT data structure.

FORMAT xtft=DECW$TRANSPORT _INIT

RETURNS VMS usage: record
type: xtft
access: write
mechanism: reference

Returns a pointer to the XTFT data structure.

ARGUMENTS None.

DESCRIPTION DECW$TRANSPORT_INIT initializes and returns the XTFT data
structure through which the transport-specific routines are called.

6-4

The common transport must always be able to find the transport-specific
XTFT structures. To ensure that the common transport can find the
XTFT structures, all specific transports provide a transfer vector to the
DECW$TRANSPORT_INIT routine as the first image section in the
specific transport shareable image.

The DECW$XPORT_ATTACH_TRANSPORT routine calls
DECW$TRANSPORT_INIT to initialize and return the XTFT data
structure. Once the XTFT is initialized, DECW$XPORT_ATTACH_
TRANSPORT calls the XTFT$A_ATTACH_TRANSPORT routine to
complete the transport-specific initialization.

The DECW$TRANSPORT_INIT routine is called in executive mode.

See Section 8.3.19 for a sample implementation of the
DECW$TRANSPORT_INIT routine and the associated transfer vector.

DETACH_AND_POLL

DETACH AND POLL

FORMAT

RETURNS

Detaches from the transport and starts polling for a transport restart. Internal
to specific transport.

DETACH_AND_POLL tdb

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO.

ARGUMENT tdb
VMS usage: record
type: xtdb
access: modify
mechanism: reference
The XTDB of the transport that you want to poll.

DESCRIPTION The DETACH_AND_POLL routine releases the transport's connection
specific and connection-accept channels and then polls the transport to
attempt a restart. DETACH_AND_POLL does not attempt to restart the
transport if the XTDB$V _DYING bit is set. If it is unable to poll for the
restart, DETACH_AND_POLL reports that the reattach attempt failed.

DETACH_AND_POLL is invoked in executive mode.

See Section 8.3.16 for a sample implementation of the DETACH_AND_
POLL routine.

6-5

FREE_INPUT _AST

FREE INPUT AST

FORMAT

ARGUMENT

AST completion routine for transport read operations. Internal to specific
transport.

FREE_INPUT _AST xtcb

xtcb
VMS usage: record
type: xtcb
access: modify
mechanism: reference
The XTCB to insert on the input work queue.

DESCRIPTION FREE_INPUT_AST is used by the XTFT$A_FREE_INPUT_BUFFER
routine with the XTCB buffer returned by the $QIO read. FREE_INPUT_
AST inserts this XTCB on the tail of the input work queue and then
attempts to remove a free input buffer and initiate a $QIO read into it.

6-6

FREE_INPUT_AST must check if this connection is aborting or the 1/0
failed, and if so, perform failure processing. If FREE_INPUT_AST is the
first to set the dying bit, it must also perform abort notification. Abort
notification consists of conditionally declaring a user-mode AST for the
link abort (by means ofXPORT_ABORT_SEND), sending notification that
a write operation has completed to complete any output wait condition,
and sending notification that a read operation has completed to complete
any input wait condition.

FREE_INPUT_AST also determines whether the large or small XTCBs
should be used in subsequent 1/0 operations. If the $QIO read operation
that just completed filled a small request packet, FREE_INPUT_AST uses
the large request packet. If large XTCBs were being used and the last
read operation would have fit in a small XTCB, FREE_INPUT_AST shifts
down to the small XTCBs.

FREE_INPUT_AST then attempts to remove an XTCB from the free
queue and initiate a $QIO read operation into it. FREE_INPUT_AST
specifies itself as the read-completion routine. If the $QIO read operation
fails, FREE_INPUT_AST marks the connection as dying and performs
connection-abort processing.

FREE_INPUT_AST is invoked in user or executive mode.

See Section 8.3.8 for a sample implementation of the FREE_INPUT_AST
routine.

REATTACH_AST

REATTACH AST

FORMAT

RETURNS

Attempts to reattach the transport when the timer interval has expired. Internal
to specific transport.

REATTACH_AST tdb

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO.

ARGUMENT tdb
VMS usage: record
type: xtdb
access: modify
mechanism: reference
The XTDB of the transport that you want to reattach.

DESCRIPTION REATTACH_AST is the AST completion routine for the $SETIMR system
service invoked by the DETACH_AND_POLL routine. REATTACH_AST
calls the transport-specific XTFT$A_ATTACH_TRANSPORT routine to
reattach the transport.

REATTACH_AST is invoked in executive mode.

See Section 8.3.17 for a sample implementation of the REATTACH_AST
routine.

6-7

TRANSPORT_OPEN_CALLBACK

TRANSPORT OPEN CALLBACK

FORMAT

Performs a callback to the client during the connection-open sequence.
Internal to specific transport.

TRANSPORT_OPEN_CALLBACK ftcc

ARGUMENT itcc
VMS usage: record
type: ixtcc
access: modify
mechanism: reference
The IXTCC associated with this connection.

DESCRIPTION TRANSPORT_OPEN_CALLBACK performs a callback to the client during
the connection-open sequence. Transport semantics require a callback,

6-8

as opposed to a simple AST, during the connection-initiation sequence of
a connect-to-server operation. Because the callback cannot be performed
in executive mode, TRANSPORT_OPEN_CALLBACK is invoked as a
user-mode AST to complete this operation.

If the user accepts the connection, TRANSPORT_OPEN_CALLBACK
populates the communication queue with transport buffers and initiates
110. Ifit fails, TRANSPORT_OPEN_CALLBACK generates a message and
releases the connection resources.

The TRANSPORT_OPEN_CALLBACK routine is called in user-AST mode.

See Section 8.3.15 for a sample implementation of the TRANSPORT_
OPEN_CALLBACK routine.

TRANSPORT_READ_AST

TRANSPORT READ AST

FORMAT

Read-completion AST routine for the transport's network channel. Internal to
specific transport.

TRANSPORT_READ_AST tdb

ARGUMENT tdb
VMS usage: record
type: xtdb
access: modify
mechanism: reference
The XTDB associated with this connection.

DESCRIPTION TRANSPORT_READ_AST is a read-completion AST routine for the
transport's network channel. The TRANSPORT_READ_AST routine
receives connection request notifications only. All other requests from
clients are sent by means of the connection-specific channel, not the
transport-specific channel, and do not follow the TRANSPORT_READ_
QUEUE to TRANSPORT_READ_AST code path.

TRANSPORT_READ_AST must allocate and initialize an XTCC, put it on
the XTDB for this transport, and then call the connection request action
routine XTDB$A_CONNECT_REQUEST provided by the server.

The TRANSPORT_READ_AST routine is called in executive mode.

See Section 8.3.14 for a sample implementation of the TRANSPORT_
READ_AST routine.

6-9

TRANSPORT_READ_QUEUE

TRANSPORT_READ_QUEUE

FORMAT

RETURNS

Initiates an asynchronous connection-accept operation. Internal to specific
transport.

TRANSPORT _READ_ QUEUE tdb

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO.

ARGUMENT tdb
VMS usage: record
type: xtdb
access: modify
mechanism: reference
The XTDB associated with this connection.

DESCRIPTION TRANSPORT_READ_QUEUE initiates an asynchronous connection-accept
operation.

6-10

The XTFT$A_ATTACH_TRANSPORT routine assigns a network channel
for the transport and then calls TRANSPORT_READ_QUEUE to listen on
the channel for a connection attempt from a client.

In the case of the sample transport, the TRANSPORT_READ_QUEUE
routine assigns a channel for this connection and then does a $QIO read
operation with function 10$_ACCESS or 10$M_ACCEPT on the transport
specific channel created by XTFT$A ATTACH_TRANSPORT. This $QIO
performs the following functions:

• "Listens" on this channel for a $QIO connection request from a client.

• When a connection request from a client is received, the $QIO gets a
description of the client node from the client.

• Calls the TRANSPORT_READ_AST routine to accept the connection.
The transport niust accept all valid connection requests; the server
later decides if it wants to reject a connection from the client.

The TRANSPORT_READ_QUEUE routine is called in executive mode.

See Section 8.3.13 for a sample implementation of the TRANSPORT_
READ_QUEUE routine.

WRITE AST

FORMAT

ARGUMENT

WRITE_AST

AST completion routine for transport write operations. Internal to specific
transport.

WRITE_AST xtcb

xtcb
VMS usage: record
type: xtcb
access: modify
mechanism: reference
The XTCB to return to the appropriate free queue.

DESCRIPTION WRITE_AST is an AST completion routine for transport write operations.
WRITE_AST is used by the XTFT$A_ WRITE routine to return an XTCB
to the large or small free queue after a successful write operation and to
initiate another write operation.

If the $QIO failed, or the connection is dying, WRITE_AST performs
failure processing and prevents further operations on this connection.
Failure processing is dependent upon the type of transport being used. In
the case of the TCP/IP service provided by the ULTRIX Connection product
(UCX), a failed 1/0 attempt to the connection indicates that a connection
has aborted. When an 1/0 operation completes and the status indicates
failure, the routine must perform all logical-link rundown operations,
including setting the dying bit and error status, completing any process
waits for input or output, and sending notification to the process that the
connection has died.

After WRITE_AST returns the XTCB to the free queue, it attempts to
remove another XTCB from the head of the output work queue and
initiate a $QIO write operation. If the queue was empty, WRITE_AST
clears the write disable flag for this connection by means of the XPORT_
OUT_WRITE_ENABLE macro.

WRITE_AST is invoked in user or executive mocie.

See Section 8.3.4 for a sample implementation of the WRITE_AST routine.

6-11

XTFT$A_ATTACH_TRANSPORT

XTFT$A_ATTACH_TRANSPORT
Performs the transport-specific initialization functions.

FORMAT XTFT$A_ATTACH_TRANSPORT tdb

RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO.

ARGUMENT tdb
VMS usage: record
type: xtdb
access: modify
mechanism: reference
XTDB structure. This will have been initialized by the caller prior to
entry.

DESCRIPTION As described in Section 3.3.2.1, the DECW$XPORT_ATTACH_
TRANSPORT routine calls the XTFT$A_ATTACH_TRANSPORT routine
to complete the transport-specific initialization.

6-12

XTFT$A_ATTACH_TRANSPORT functions differently depending on what
calls it.

IfXlib calls it, XTFT$A_ATTACH_TRANSPORT does only some transport
specific initialization because clients attach specific transports when they
open a connection.

If the server calls it, as determined by the XTDB XTDB$V _MODE field,
XTFT$A_ATTACH_TRANSPORT creates a mailbox (if DECnet) and gets .
a channel to the device by means of $ASSGN. The specific transport uses
this channel to listen for connection requests from clients; the specific
transport later assigns a separate channel for each connection.

XTFT$A_ATTACH_TRANSPORT also indirectly calls the server's
connection_request routine to see if the server accepts a connection from
this client. If the returned status indicates failure, XTFT$A_ATTACH_
TRANSPORT deallocates all resources acquired to this point and quits.

Once the channel is established, XTFT$A_ATTACH_TRANSPORT starts a
$QIO read (by means ofTRANSPORT_READ_QUEUE) on the channel.

XTFT$A_ATTACH_TRANSPORT is invoked in user or executive mode.

See Section 8.3.12 for a sample implementation of the XTFT$A_ATTACH_
TRANSPORT routine.

XTFT$A_CLOSE

XTFT$A_CLOSE

Closes a transport connection.

FORMAT XTFT$A_CLOSE itcc

RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO.

ARGUMENT itcc
VMS usage: record
type: ixtcc
access: modify
mechanism: by reference
Address of the connection to close.

DESCRIPTION The XTFT$A_CLOSE routine initiates a series of operations that destroy a
connection and release the data structures associated with the link.

After XTFT$A_CLOSE is called, the transport user must not refer to
any structures associated with the connection. The transport begins
deallocation of all connection resources including, but not limited to,
channels, XTCC, XTCBs, XTPB, and transport-private data.

XTFT$A_CLOSE is invoked in executive mode.

See Section 8.3.9 for a sample implementation of the XTFT$A_CLOSE
routine.

6-13

XTFT$A_EXECUTE_FREE

XTFT$A_EXECUTE_FREE

FORMAT

RETURNS

Returns an XTCB to a local connection.

XTFT$A_EXECUTE_FREE tee, nullarg, type,
free_queue

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO.

ARGUMENTS tee

6-14

VMS usage: record
type: xtcc
access: modify
mechanism: by reference
Address of the XTCC for this connection.

nullarg
VMS usage: null_arg
type: longword (unsigned)
access: read
mechanism: value
Place-holding argument reserved for historical reasons. It is never referred
to by XTFT$A_EXECUTE_FREE and its contents are unpredictable.

type
VMS usage: longword
type: longword
access: read
mechanism: value
Type of XTCB. Valid types are DECW$C_XPORT_BUFFER_LRP or
DECW$C_XPORT_BUFFER_SRP.

free_queue
VMS usage: array
type: longword
access: modify
mechanism: reference
Pointer to the free queue.

XTFT$A_EXECUTE_FREE

DESCRIPTION The XTFT$A_EXECUTE_FREE routine logically returns an XTCB to
a logical link. The common transport DECW$XPORT_FREE_INPUT_
BUFFER invokes XTFT$A_EXECUTE_FREE after it returns an input
XTCB to a previously empty free queue.

XTFT$A_EXECUTE_FREE checks to see if input_free operations are
enabled for this connection and tries to remove the first XTCB. If it
successfully removes the XTCB, XTFT$A_EXECUTE_FREE initiates a
$QIO read into it by invoking DECW$$XPORT_FREE_INPUT (which
invokes XTFT$A_FREE_INPUT_BUFFER).

The nullarg argument is a placeholder; XTFT$A_EXECUTE_FREE does
a REMQHI to get the XTCB from the head of the queue.

XTFT$A_EXECUTE_FREE is invoked in user mode.

See Section 8.3.6 for a sample implementation of the XTFT$A_EXECUTE_
FREE routine.

6-15

XTFT$A_EXECUTE_ WRITE

XTFT$A_EXECUTE_WRITE

FORMAT

RETURNS

ARGUMENTS

6-16

Writes an XTCB tc;> a transport-specific connection.

XTFT$A_EXECUTE_WRITE xtcc, nul/arg, mode

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO.

xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
Address of the XTCC for this connection.

nullarg
VMS usage: null_arg
type: longword (unsigned)
access: read
mechanism: value
Place-holding argument reserved for historical reasons.

mode
VMS usage: longword
type: longword
access: read
mechanism: value
Modifying flags for the write operation. The valid field is:

Constant

DECW$M_MODE_NOBLOCK

Description

Nonblocking write. If no buffer is available when
an attempt is made to allocate one, do not block
but return the status value DECW$_8UFNOTAVL.

XTFT$A_EXECUTE_ WRITE

DESCRIPTION XTFT$A_EXECUTE_ WRITE is invoked to write an XTCB to a transport
connection. XTFT$A_EXECUTE_ WRITE is expected to remove the head
XTCB from the output work queue and, if the remove was successful,
initiate a write operation for the XTCB by invoking the common transport
DECW$$XPORT_WRITE routine. DECW$$XPORT_WRITE then calls
XTFT$A_ WRITE to send the buffer.

The nullarg argument is a placeholder retained for historical reasons; its
value is never accessed or relied upon.

XTFT$A_EXECUTE_ WRITE is invoked in user mode.

See Section 8.3.2 for a sample implementation of the XTFT$A_EXECUTE_
WRITE routine.

6-17

XTFT$A_FREE_INPUT _BUFFER

XTFT$A_FREE_INPUT _BUFFER

FORMAT

RETURNS

ARGUMENTS

Starts a read operation on a freed input buffer.

XTFT$A_FREE_INPUT_BUFFER itcc, tcb

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO.

it cc
VMS usage: record
type: ixtcc
access: modify
mechanism: by reference
Address of the connection where communication takes place.

tcb
VMS usage: record
type: xtcb
access: modify
mechanism: by reference
Address of the XTCB to free.

DESCRIPTION The XTFT$A_FREE_INPUT_BUFFER routine does a $QIO read operation
for a connection into the provided buffer. If the read $QIO fails, XTFT$A_
FREE_INPUT_BUFFER inserts the XTCB on the free queue and sets the
connection state to dying.

6-18

The transport-common DECW$$XPORT_FREE_INPUT routine calls
the XTFT$A_FREE_INPUT_BUFFER routine to perform a $QIO read
operation for the connection.

Unlike the XTFT$A_EXECUTE_FREE routine, the xtcb argument
is a "real" XTCB and it is assumed that any enable/disable checks,
performed with the XPORT_IN_FREE_DISABLE macro, have already
been performed.

XTFT$A_FREE_INPUT_BUFFER is invoked in executive mode.

See Section 8.3. 7 for a sample implementation of the XTFT$A_FREE_
INPUT_BUFFER routine.

XTFT$A_OPEN

XTFT$A_OPEN

FORMAT

RETURNS

ARGUMENTS

Attempts to establish a connection to a server.

XTFT$A_OPEN workstation, server, itcc

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO.

workstation
VMS usage: char string
type: descriptor
access: read
mechanism: reference
Name of the server object passed by descriptor. Contains network address
and authentication information. Th~ workstation argument is usually a
node name.

server
VMS usage: longword
type: longword
access: read
mechanism: value
The number of the server to be connected. The server argument is usually
zero because most workstations run only one server.

it cc
VMS usage: record
type: ixtcc
access: modify
mechanism: reference
Location of a preallocated IXTCC. This IXTCC has an XTPB (IXTCC$A_
TPB and XTCC$A_TPB) that has been initialized.

DESCRIPTION The XTFT$A_OPEN routine tries to connect a client to a server.

The transport-common DECW$XPORT_OPEN routine attempts to locate
a transport with a name matching that passed in its xportnam argument
(for example "DECNET"). If a matching transport is found, the XTFT$A_
OPEN routine is called with the server and workstation arguments and an
IXTCC that has been partially initialized.

6-19

XTFT$A_OPEN

6-20

XTFT$A_OPEN is responsible for allocating and initializing the XTCC and
all necessary XTCBs, populating the XTCQ with the XTCBs, and initiating
1/0 on the connection. Parameters that would affect these operations are
found in the XTPB attached to the IXTCC by means of the IXTCC$A_TPB
field.

XTFT$A_OPEN is invoked in executive mode.

See Section 8.3.11 for a sample implementation of the XTFT$A_OPEN
routine.

XTFT$A_RUNDOWN

XTFT$A_RUNDOWN

·FORMAT

RETURNS

Performs the transport-specific rundown functions required during image
rundown.

XTFT$A_RUNDOWN tdb

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO.

ARGUMENT tdb
VMS usage: record
type: xtdb
access: modify
mechanism: reference
XTDB structure. The XTDB is initialized by the common transport before
XTFT$A_RUNDOWN is called.

DESCRIPTION XTFT$A_RUNDOWN is invoked by the common transport when the
image in which the transport is running exits. The transport's rundown
procedure must release any resources that might survive the image exit.
ASTs are disabled while XTFT$A_RUNDOWN is executing.

XTFT$A_RUNDOWN is invoked in executive mode.

See Section 8.3.18 for a sample implementation of the XTFT$A_
RUNDOWN routine.

6-21

XTFT$A_ WRITE

XTFT$A_ WRITE

FORMAT

RETURNS

ARGUMENTS

6-22

Writes an XTCB buffer from the common transport to a transport-specific
connection.

XTFT$A_WRITE itcc, tcb, mode

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO.

it cc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
Address of the IXTCC for this connection.

tcb
VMS usage: record
type: xtcb
access: modify
mechanism: reference
Address of the XTCB to write to the transport-specific connection.

mode
VMS usage: longword
type: longword
access: read
mechanism: value
Modifying flags for the write operation. The valid field is:

Constant

DECW$M_MODE_NOBLOCK

Description

Nonblocking write. If no buffer is available when
an attempt is made to allocate one, do not block
but return the status value DECW$_BUFNOTAVL.

XTFT$A_ WRITE

DESCRIPTION The XTFT$A_ WRITE routine is invoked to write the data in an XTCB,
possibly by means of $QIO, to a transport connection associated with the
XTCC. If there is nothing to write, that is, the XTCB is empty, XTFT$A_
WRITE inserts the XTCB on the appropriate (small or large) output free
queue.

If the $QIO write operation fails, XTFT$A_ WRITE puts the XTCB back at
the head of the output work queue and sets the connection status to dying.

Unlike XTFT$A_EXECUTE_ WRITE, the XTCB parameter in the
argument list is significant and is the address of an XTCB, not an element
of any queue, whose data is to be written to a connection.

The XTFT$A_ WRITE routine is called in executive mode.

See Section 8.3.3 for a sample implementation of the XTFT$A_ WRITE
routine.

6-23

XTFT$A_ WRITE_ USER

XTFT$A_WRITE_USER

FORMAT

RETURNS

ARGUMENTS

6-24

Attempts to write a ·buffer in the user's address space to a transport-specific
connection.

XTFT$A_WRITE_USER itcc, buffer, mode

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value in RO.

it cc
VMS usage: record
type: ixtcc
access: modify
mechanism: reference
Address of the IXTCC data structure that identifies the connection.

buffer
VMS usage: char string
type: char string
access: read
mechanism: descriptor
A buffer in the user's address space that contains data to write to the
connection.

mode
VMS usage: longword
type: longword
access: read
mechanism: value
Modifying flags for the write operation. The valid field is:

Constant

DECW$M_MODE_NOBLOCK

Description

Nonblocking write. If no buffer is available when
an attempt is made to allocate one, do not block
but return the status value DECW$_BUFNOTAVL.

XTFT$A_ WRITE_ USER

DESCRIPTION The XTFT$A_ WRITE_USER routine attempts to write a buffer in the
user's address space to a transport connection. The purpose of this
interface is to avoid a data copy into XTCBs when the caller has a large,
contiguous block of data to be written to a connection, such as when
sending image data between client and server.

There are two methods for implementing this routine. The first is to wait
for the output work queue to become empty and then perform the 1/0
operation on the user's buffer, typically by means of a $QIO. The other
method is to invoke the common transport's DECW$XPORT_COPY_AND_
WRITE routine for the buffer arguments. It is strongly recommended that
transports use the DECW$XPORT_COPY_AND_ WRITE routine.

XTFT$A_ WRITE_ USER is called in user mode.

See Section 8.3.5 for a sample implementation of the XTFT$A_ WRITE_
USER routine.

6-25

7 Transport Support Macros

This chapter describes the support macros that you can use if you write
your own transport-specific component. These routines are provided for
your convenience; there is no requirement that you use them, but you
must implement similar functions.

The transport support macros are located in the file
SYS$LIBRARY:DECW$XPORTMAC.R32.

The transport support macros are listed in Table 7-1.

Table 7-1 Transport Support Macros

Routine

XPORT_IN_NOTIFY _SET

XPORT_IN_NOTIFY _CLEAR

XPORT _IN_NOTIFY _WAIT

XPORT_IN_NOTIFY _SEND

XPORT_OUT _NOTIFY _SET

XPORT _OUT _NOTIFY _CLEAR

XPORT_OUT _NOTIFY _WAIT

XPORT_OUT _NOTIFY _SEND

XPORT_XTCB_FILLED

XPORT_XTCB_TOTAL

XPORT_XTCB_FREE

XPORT_WRITE_WAIT

XPORT _WRITE_UNWAIT

XPORT_ABORT_SEND

XPORT_OUT _WRITE_ENABLE

XPORT_OUT_WRITE_DISABLE

XPORT_OUT_STATE_SRP

XPORT_OUT_STATE_LRP

Function

Requests input notification.

Clears a request-for-input notification.

Initiates a wait-for-input notification.

Sends notice that an input operation has
completed.

Sends notice that output notification is required.

Sends notice that output notification is no longer
required.

Waits for output notification.

Sends notice that an output operation has
completed.

Returns the number of data bytes in an XTCB.

Determines the total number of bytes in the data
area of an XTCB.

Determines the number of unused bytes in the
data area of an XTCB.

Waits for the output work queue to empty.

Reenables output work queue write operations.

Declares a user-mode AST to the process
indicating that the connection has died.

Clears the write disable flag.

Sets the write disable flag.

Marks a switch to the use of SRPs for output
and returns true (1) if an LRP was being used.

Marks a switch to the use of LRPs for output
and returns true (1) if an SRP was being used.

(continued on next page)

7-1

Transport Support Macros

Table 7-1 (Cont.) Transport Support Macros

7-2

Routine

XPOAT _IN_STATE_SRP

XPOAT _IN_STATE_LAP

XPOAT _IN_FAEE_ENABLE

XPOAT _IN_FAEE_DISABLE

VAUDATE_XTCC

VALIDATE_USEAW

VALIDATE_USEA

Function

Marks a switch to the use of SAPs for input and
returns true (1) if an LAP was being used.

Marks a switch to the use of LAPs for input and
returns true (1) if an SAP was being used.

Clears the free disable flag for this connection
type of queue and returns true (1) if it was clear
or false (0) if it was set.

Sets the free disable flag for this connection
and type of queue and returns true (1) if it was
set or false (0) if it was clear.

Validates an XTCC and returns the IXTCC.

Checks user buffer for write access.

Checks user buffer for read access.

XPORT _IN_NOTIFY _SET

XPORT IN NOTIFY SET

FORMAT

ARGUMENTS

DESCRIPTION

Requests input notification.

XPORT _IN_NOTIFY _SET xtcc

xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: value
The XTCC of the connection for which input notification is requested.

The XPORT_IN_NOTIFY_SET macro clears the waiting-for-input YO
status block (IOSB) field of the XTCC and sets the XTCC$L_IWQ_FLAG
bit to indicate that the transport user wants to be notified when input is
delivered to the input work queue.

7-3

XPORT _IN_NOTIFY _CLEAR

XPORT IN NOTIFY CLEAR

Clears a request-for-input notification.

FORMAT XPORT _IN_NOTIFY _CLEAR xtcc

ARGUMENTS xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC of the connection for which to cancel input notification.

DESCRIPTION The XPORT_IN_NOTIFY_CLEAR macro clears the XTCC$L_IWQ_FLAG
bit to indicate that the transport user no longer wants to be notified when
input is delivered to the input work queue.

7-4

XPORT _IN_NOTIFY _WAIT

XPORT IN NOTIFY WAIT

Initiates a wait-for-input notification

FORMAT XPORT_IN_NOTIFY_WAIT xtcc, xtpb

ARGUMENTS xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC of the connection for which to wait for input notification.

xtpb
VMS usage: record
type: xtpb
access: modify
mechanism: reference
The XTPB of the connection for which to wait for input notification.

DESCRIPTION The XPORT_IN_NOTIFY_WAIT macro calls the $SYNCH system service
to suspend a process until input notification is set. The service is
satisfied when the XTPB$W _IN_EFN flag is set and the lower word of
the XTCC$W _IN_IOSB is made nonzero, as performed by the XPORT_IN_
NOTIFY_SEND macro.

7-5

XPORT _IN_NOTIFY _SEND

XPORT IN NOTIFY SEND - - -
Sends notice that an input operation has completed.

FORMAT XPORT_IN_NOTIFY_SEND xtcc, xtpb

ARGUMENTS xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC of the connection for which to send input notification.

xtpb
VMS usage: record
type: xtpb
access: modify
mechanism: reference
The XTPB of the connection for which to send input notification.

DESCRIPTION The XPORT_IN_NOTIFY_SEND macro conditionally performs the
operations that inform a process that an input operation has completed.
These operations consist of sending a user-mode AST to the process in the
case where the XTPB$A_l_NOTIFY_RTNADR field points to a procedure
to call for input notification, or of code that completes the $SYNCH system
service call performed by the XPORT_IN_NOTIFY_WAIT macro.

7-6

XPORT_IN_NOTIFY_SEND sends the AST only if the previous AST
(identified by the XTCC$V_IN_AST_IN_PROG field) has been delivered,
that is, the field was clear. This prevents EXQUOTA errors due to
excessive use of ASTs.

XPORT_OUT_NOTIFY_SET

XPORT OUT NOTIFY SET - -

FORMAT

ARGUMENTS

DESCRIPTION

Sends notice that output notification is required.

XPORT_OUT_NOTIFY_SET xtcc, type

xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC of the connection for which you want to receive output
notification.

type
VMS usage: longword
type: longword
access: read
mechanism: value
The type of output free queue you are interested in. Valid types are
DECW$C_XPORT_BUFFER_SRP and DECW$C_XPORT_BUFFER_LRP.

The XPORT_OUT_NOTIFY_SET macro clears the waiting-for-output 1/0
status block (IOSB) field of the XTCC and sets the XTCC$L_OFSQ_FLAG
or XTCC$L_OFLQ_FLAG bit to indicate that you are waiting for the
output free queue to become empty.

7-7

XPORT _OUT _NOTIFY_ CLEAR

XPORT OUT NOTIFY CLEAR - -

FORMAT

ARGUMENTS

Sends notice that output notification is no longer required.

XPORT_OUT_NOTIFY_CLEAR xtcc, type

xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC of the connection for which you want to cancel output
notification.

type
VMS usage: longword
type: longword
access: read
mechanism: value
The type of output free queue you are no longer interested in. Valid types
are DECW$C_XPORT_BUFFER_SRP and DECW$C_XPORT_BUFFER_
LRP.

DESCRIPTION The XPORT_OUT_NOTIFY_CLEAR macro clears the XTCC$L_OFSQ_
FLAG or XTCC$L_OFLQ_FLAG bit to indicate that you do not want to
receive output notification. The XPORT_OUT_NOTIFY_CLEAR macro
reverses the effect of the XPORT_OUT_NOTIFY_SET macro.

7-8

XPORT_OUT_NOTIFY_WAIT

XPORT OUT NOTIFY WAIT

FORMAT

ARGUMENTS

Waits for output notification.

XPORT_OUT_NOTIFV_WAIT xtcc, xtpb

xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC of the connection for which you want to wait for output
notification.

xtpb
VMS usage: record
type: xtpb
access: modify
mechanism: reference
The XTPB of the connection for which you want to wait for output
notification.

DESCRIPTION The XPORT_IN_NOTIFY_WAIT macro calls the $SYNCH system service
to suspend a process until output notification is set. The service is
satisfied when the XTPB$W_ON_EFN flag is set and the lower word
of the XTCC$W _ON_IOSB field is made nonzero, as performed by the
XPORT_OUT_NOTIFY_SEND macro.

7-9

XPORT _OUT _NOTIFY _SEND

XPORT OUT NOTIFY SEND

FORMAT

ARGUMENTS

Sends notice that an output operation has completed.

XPORT_OUT_NOTIFY_SEND xtcc, xtpb, type

xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC of the connection for which you want to send output
notification.

xtpb
VMS usage: record
type: xtpb
access: modify
mechanism: reference
The XTPB of the connection for which you want to send output notification.

type
VMS usage: longword
type: longword
access: read
mechanism: value
The type of output free queue you are interested in. Valid types are
DECW$C_XPORT_BUFFER_SRP and DECW$C_XPORT_BUFFER_LRP.

DESCRIPTION The XPORT_OUT_NOTIFY_SEND macro conditionally performs the
operations that inform a process that an output operation has completed.
These operations consist of sending a user-mode AST to the process in the
case where the XTPB$A_O_NOTIFY_RTNADR field points to a procedure
to call for output notification, or of code that completes the $SYNCH
system service call performed by the XPORT_OUT_NOTIFY_WAIT macro.

7-10

XPORT _XTCB_FILLED

XPORT XTCB FILLED

FORMAT

ARGUMENTS

Returns the number of data bytes in an XTCB.

XPORT_XTCB_FILLED xtcb

xtcb
VMS usage: record
type: xtcb
access: modify
mechanism: reference
The XTCB for which you want to return the number of data bytes in an
XTCB.

DESCRIPTION The XPORT_XTCB_FILLED macro returns the number of data bytes in
anXTCB.

7-11

XPORT_XTCB_TOTAL

XPORT XTCB TOTAL

FORMAT

ARGUMENTS

Determines the total number of bytes in the data area of an XTCB.

XPORT_XTCB_TOTAL xtcb

xtcb
VMS usage: record
type: xtcb
access: modify
mechanism: reference
The XTCB for which you want to determine the total number of bytes in
the data area of an XTCB.

DESCRIPTION The XPORT_XTCB_TOTAL macro determines the total number of bytes in
the data area of an XTCB.

7-12

XPORT_XTCB_FREE

XPORT XTCB FREE

FORMAT

ARGUMENTS

Determines the number of unused bytes in the data area of an XTCB.

XPORT_XTCB_FREE x~b

xtcb
VMS usage: record
type: xtcb
access: modify
mechanism: reference
The XTCB for which you want to determine the number of unused bytes
in the data area of an XTCB.

DESCRIPTION The XPORT_XTCB_FREE macro determines the number of unused bytes
in the data area of an XTCB.

7-13

XPORT _WRITE_ WAIT

XPORT WRITE WAIT

Waits for the output work queue to empty.

FORMAT XPORT_WRITE_WAIT xtcc, xtpb

ARGUMENTS xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC for the connection on which you want to wait.

xtpb
VMS usage: record
type: xtpb
access: modify
mechanism: reference
The XTPB for the connection on which you want to wait.

DESCRIPTION The XPORT_WRITE_WAIT macro performs a $SYNCH system service to
wait for the output work queue to empty. XPORT_ WRITE_ WAIT is similar
to XPORT_OUT_NOTIFY_ WAIT, but uses the XTCC$W _OW _IOSB field.
Also, because there are no equivalents to the XPORT_OUT_NOTIFY_SET
and XPORT_OUT_NOTIFY_CLEAR macros, you must manually clear the
XTCC$W_OW_IOSB field, or set or clear the XTCC$V_WAIT_ON_WRITE
bit. ~

7-14

XPORT _WRITE_ UNWAIT

XPORT WRITE UNWAIT

Reenables output work queue write operations.

FORMAT XPORT_WRITE_UNWAIT xtcc, xtpb

ARGUMENTS xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC for which you no longer want to wait.

xtpb
VMS usage: record
type: xtpb
access: modify
mechanism: reference
The XTPB for which you no longer want to wait.

DESCRIPTION The XPORT_WRITE_UNWAIT macro cancels the wait on the output work
queue initiated by XPORT_ WRITE_ WAIT.

7-15

XPORT_ABORT_SEND

XPORT ABORT SEND

FORMAT

ARGUMENTS

Declares a user-mode AST to the process indicating that the connection has
aborted.

XPORT_ABORT_SEND xtdb, xtcc

xtdb
VMS usage: record
type: xtdb
access: modify
mechanism: reference
The XTDB for which you want to abort the connection.

xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC for which you want to abort the connection.

DESCRIPTION The XPORT_ABORT_SEND macro declares a user-mode AST to the user
provided connection-abort notification process, identified by the XTDB$A_
CONNECT_ABORT field, indicating that the connection has died.

XPORT_ABORT_SEND is called as part of the abort notification.

7-16

XPORT _OUT_ WRITE_ENABLE

XPORT OUT WRITE ENABLE - - -

FORMAT

RETURNS

Clears the write disable flag.

XPORT _OUT_ WRITE_ENABLE xtcc

VMS usage: longword
type: longword
access: write
mechanism: value

Returns true (1) if the XTCC$L_OWQ_FLAG field was clear, that is, if
write operations were already enabled, or false (0) if it was set.

ARGUMENTS xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC for which you want to enable write operations.

DESCRIPTION The XPORT_OUT_WRITE_ENABLE macro clears the write disable flag
for this connection and returns true (1) if it was clear or false (0) if it was
set.

7-17

XPORT _OUT_ WRITE_DISABLE

XPORT OUT WRITE DISABLE - -

FORMAT

RETURNS

Sets the write disable flag.

XPORT _OUT_ WRITE_DISABLE xtcc

VMS usage: longword
type: longword
access: write
mechanism: value

Returns true (1) if the XTCC$L_ OWQ_FLAG was set, that is, if write
operations were already disabled, or false (0) if it was clear.

ARGUMENTS xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC for which you want to disable write operations.

DESCRIPTION The XPORT_OUT_WRITE_DISABLE macro sets the write disable flag for
this connection and returns true (1) if it was set or false (0) if it was clear.

7-18

XPORT_OUT_STATE_SRP

XPORT OUT STATE SRP

FORMAT

RETURNS

Marks a switch to the use of SRPs for output and returns true (1) if an LRP
was being used.

XPORT_OUT_STATE_SRP xtcc

VMS usage: longword
type: longword
access: write
mechanism: value

Returns true (1) if an LRP was being used.

ARGUMENTS xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC for which you want to test and set the state.

DESCRIPTION The XPORT_OUT_STATE_SRP macro tests to see if the XTCC$V _LRP _
ON_OUTPUT bit was set, and then clears it. XPORT_OUT_STATE_SRP
marks a switch to the use of SRPs for output and returns true (1) if an
LRP was being used.

7-19

XPORT_OUT_STATE_LRP

XPORT OUT STATE LRP - -

FORMAT

RETURNS

Marks a switch to the use of LRPs for output and returns true (1) if an SRP
was being used.

XPORT_OUT_STATE_LRP xtcc

VMS usage: longword
type: longword
access: write
mechanism: value

Returns true (1) if an SRP was being used.

ARGUMENTS xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC for which you want to test and set the state.

DESCRIPTION The XPORT_OUT_STATE_LRP macro tests to see ifthe XTCC$V_LRP_
ON_OUTPUT bit was clear, and then sets it. XPORT_OUT_STATE_SRP
marks a switch to the use of LRPs for output and returns true (1) if an
SRP was being used.

7-20

XPORT _IN_STATE_SRP

XPORT IN STATE SRP - -

FORMAT

RETURNS

Marks a switch to the use of SRPs for input and returns true (1) if an LRP was
being used.

XPORT_IN_STATE_SRP xtcc

VMS usage: longword
type: longword
access: write
mechanism: value

Returns true (1) if an LRP was being used.

ARGUMENTS xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC for which you want to test and set the state.

DESCRIPTION The XPORT_IN_STATE_SRP macro tests to see if the XTCC$V_LRP_ON_
INPUT bit was set, and then clears it. XPORT_IN_STATE_SRP marks
a switch to the use of SRPs for input and returns true (1) if an LRP was
being used.

7-21

XPORT _IN_STATE_LRP

XPORT IN STATE LRP

FORMAT

RETURNS

Marks a switch to the use of LRPs for input and returns true (1) if an SAP was
being used.

XPORT_IN_STATE_LRP xtcc

VMS usage: longword
type: longword
access: write
mechanism: value

Returns true (1) if an SRP was being used.

ARGUMENTS xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC for which you want to test and set the state.

DESCRIPTION The XPORT_IN_STATE_LRP macro tests to see if the XTCC$V _LRP _ON_
INPUT bit was clear, and then sets it. XPORT_IN_STATE_SRP marks a
switch to the use of LRPs for input and returns true (1) if an SRP was
being used.

7-22

XPORT_IN_FREE_ENABLE

XPORT IN FREE ENABLE

FORMAT

RETURNS

ARGUMENTS

Clears the free disable flag for this connection type of queue and returns (1) if
it was clear or (0) if it was set.

XPORT_IN_FREE_ENABLE xtcc, type

VMS usage: longword
type: longword
access: write
mechanism: value

Returns true (1) if the free disable flag was clear, that is, input operations
were already enabled, or false (0) if it was set.

xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC for which you want to clear the disable flag.

type
VMS usage: longword
type: longword
access: read
mechanism: value
The type of buffer for which to clear the disable flag. Valid types are
DECW$XPORT_BUFFER_SRP and DECW$XPORT_BUFFER_LRP.

DESCRIPTION The XPORT_IN_FREE_ENABLE macro tests the XTCC$L_IFSQ_FLAG
flag or the XTCC$L_IFLQ_FLAG flag (depending on the type argument)
to see ifit is clear, and then clears it. XPORT_IN_FREE_ENABLE returns
true (1) if the free disable flag was clear or false (0) if it was set.

7-23

XPORT _IN_FREE_DISABLE

XPORT IN FREE DISABLE - - -

FORMAT

RETURNS

ARGUMENTS

Sets the free disable flag for this connection and type of queue and returns
(1) if it was set or (0) if clear.

XPORT_IN_FREE_DISABLE xtcc, type

VMS usage: longword
type: longword
access: write
mechanism: value

Returns true (1) if the free disable flag was set, that is, free input
operations were already disabled, or false (0) if it was clear.

xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC for which you want to set the disable flag.

type
VMS usage: longword
type: longword
access: read
mechanism: value
The type of buffer for which to set the disable flag. Valid types are
DECW$XPORT_BUFFER_SRP and DECW$XPORT_BUFFER_LRP.

DESCRIPTION The XPORT_IN_FREE_ENABLE macro tests the XTCC$L_IFSQ_FLAG
flag or the XTCC$L_IFLQ_FLAG flag (depending on the type argument)
to see ifit is set, and then sets it. XPORT_IN_FREE_ENABLE returns
true (1) if the free disable flag was set or false (0) if it was clear.

7-24

VALIDATE_XTCC

VALIDATE XTCC

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

Validates an XTCC and returns the IXTCC.

status_return=VALIDATE_XTCC xtcc, ixtcc

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value to RO. Possible condition values are
listed under Condition Values Returned.

xtcc
VMS usage: record
type: xtcc
access: modify
mechanism: reference
The XTCC that you want to validate.

ixtcc
VMS usage: record
type: ixtcc
access: modify
mechanism: reference
The previously registered IXTCC address is returned to this argument.
Valid only if SS$_NORMAL is returned.

The VALIDATE_XTCC macro calls the transport-common DECW$XPORT_
VALIDATE_STRUCT_JSB routine to validate an XTCC. If the XTCC ID
is known and is valid, VALIDATE_XTCC returns the previously registered
address of the :qcTCC data structure in the ixtcc argument.

VALIDATE_XTCC is called only by the transport-common component.

SS$_ACCVIO The XTCC is not user-readable.

SS$_NORMAL Routine successfully completed.

SS$_BADPARAM Bad parameter. Either the XTCC$B_SUBTYPE field
is not equal to the constant DE9W$C_DYN_XTCC, or
the IXTCC$A_ TCC field does not point to this XTCC.

Any DECW$XPORT_VALIDATE_STRUCT_JSB condition value.

7-25

VALIDATE_USERW

VALIDATE USERW

FORMAT

RETURNS

ARGUMENTS

Checks a user buffer for write access.

status_return=VALIDATE_USERW bufadr, buflen

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value to RO. Possible condition values are
listed under Condition Values Returned.

bufadr
VMS usage: record
type: buffer
access: modify
mechanism: reference
The address of the buffer that you want to check for write access.

buflen
VMS usage: longword
type: longword
access: read
mechanism: value
The length of the buffer that you want to check for write access.

DESCRIPTION The VALIDATE_USERW macro checks the user-supplied buffer for write
access and returns a status.

CONDITION
VALUES
RETURNED

7-26

VALIDATE_USERW is called only by the transport-common component.

SS$_NORMAt,.

SS$_ACCVIO

Routine successfully completed. The buffer is user
writable.

The buffer is not user-writable.

VALIDATE_ USER

VALIDATE USER

FORMAT

RETURNS,

ARGUMENTS

Checks a user buffer for read access.

status_return=VALIDATE_USER bufadr, but/en

VMS usage: cond_value
type: longword (unsigned)
access: write
mechanism: value

Returns a longword condition value to RO. Possible condition values are
listed under Condition Values Returned.

bufadr
VMS usage: record
type: buffer
access: modify
mechanism: reference
The address of the buffer that you want to check for read access.

but/en
VMS usage: longword
type: longword
access: read
mechanism: value
The length of the buffer that you want to check for read access.

DESCRIPTION The VALIDATE_USERW macro checks the user-supplied buffer for read
access and returns a status.

CONDITION
VALUES
RETURNED

VALIDATE_USER is called only by the transport-common component.

SS$_NORMAL

SS$_ACCVIO

Routine successfully completed. The buffer is user
readable.

The buffer is not user-readable.

7-27

8 Writing Your Own Transport

This chapter describes the sample transport layer provided in
DECW$EXAMPLES:XPORT_EXAMPLE.B32. The chapter includes a
sample BLISS-32 code example for each of the transport-specific routines
that you must write. This chapter also includes an example of how to
compile and link the routines as a shareable image in the DECwindows
environment.

The code examples collectively describe a TCP/IP transport for
DECwindows layered on the ULTRIX Connection product (UCX), the
implementation of TCP/IP for VMS. Your own implementation of the
transport-specific routines may be different depending on the lower-level
transport on which you are building.

Note: This chapter describes how to write the transport-specific routines
only. Modifications to the existing transport-common routines are
not recommended or supported.

8.1 Where to Begin
Depending upon your implementation, you will probably find that the
routines that initialize a transport and establish a connection require the
most modification. The following routines are included in this group:

• XTFT$A_OPEN (client side)

• XTFT$A_ATTACH_TRANSPORT (server side)

• TRANSPORT_READ_AST (server side)

You may also find that routines that primarily insert and remove buffers
from the queues, such as XTFT$A_EXECUTE_FREE, can be used with
minimal changes.

The sample transport layer described in this chapter uses the $QIO
I AST completion interface. If the lower-level transport on which you
are building uses the $QIO/AST completion interface, you should check
the $QIO function codes to make sure that they are applicable in your
implementation.

If the lower-level transport on which you are building does not use the
$QIO/AST completion interface and instead waits for read operations to
complete, the server may spend a substantial amount of time waiting.

8-1

8.1.1

Writing Your Own Transport
8.1 Where to Begin

Identifying the Transport-Specific Shareable Image
After you write your own transport-specific layer, you must make it known
to the transport-common layer as follows:

• Make sure that the transfer vector to DECW$TRANSPORT_INIT is in
the first cluster of the transport-specific shareable image, as described
in Section 8.2 and Section 8.3.19.

• Make sure your transport-specific shareable image is in the form
SYS$SHARE:DECW_TRANSPORT_transport_name.EXE. When
called by either Xlib or the server, DECW$XPORT_ATTACH_
TRANSPORT attempts to locate and activate an image with a name in
this form.

Note: Because the common transport uses only executive-mode
logical names, the logical name SYS$SHARE cannot be
redefined.

As described in Section 3.3.1.2, transport names
that do not contain a "$" character are reserved
for third-party and customer transport images.
These transport names must be in the form
SYS$SHARE:DECW_TRANSPORT_transport_name.EXE.

• Copy SYS$MANAGER:DECW$PRIVATE_SERVER_ ~
SETUP.TEMPLATE to *.COM and modify the DECW$SERVER_
TRANSPORTS symbolic name to include your transport. For
example, DECW$SERVER_TRANSPORTS could translate to
"DECNET,LOCAL,TCPIP,FOO".

The server uses the logical name DECW$SERVER_TRANSPORTS
to determine which transports to attach and initialize and calls the
DECW$XPORT_ATTACH_TRANSPORT routine for each transport
identified by the logical name. The transport_name argument
specifies the transport, such as "FOO".

8.2 Compiling and Linking Options for the Transport

8-2

The DECW$EXAMPLES:DEMO_BUILD.COM procedure supplied with
the DECwindows kit builds the VMS DECwindows example programs,
including the sample TCP/IP transport layer described in this chapter.
You can refer to this procedure for suggestions on compiling and linking a
transport layer in the DECwindows environment.

Example 8-1 shows the transport-specific portion of the DEMO_
BUILD.COM procedure.

Writing Your Own Transport
8.2 Compiling and Linking Options for the Transport

Example 8-1 DEMO_BUILD.COM Procedure

$
$
$
$

If Bliss and UCX are installed on the system and DECwindows is installed
! with the common transport shareable image and Bliss programming support,
! then compile and link the example transport.
!

$ if f$search("sys$library:ucx$inetdef.r32") .eqs. '"' then goto do_fortran
$ if f$search("sys$share:decw$transport common.exe") .eqs. "" then goto do_fortran
$ def ine/nolog src$ decw$examples -
$ bliss decw$examples:xport_example

0$ macro decw$examples:xport example queue
$ macro decw$examples:xport=example=xfer

8$ link/share=decw$transport_example.exe -
xport_example,-
xport_example_queue,-
xport example xfer,-
sys$input/opt-

• gsmatch=lequal, 12, 12

8 cluster=transfer_cluster,,,
collect=transfer_cluster,$transfer$

0 protect=yes
cluster=own cluster,,,
collect=own=cluster,own
protect=no

cluster=code cluster,,,
collect=code-cluster,$code$
sys$share:decw$transport_common/shareable

0 The DECW$EXAMPLES:XPORT_EXAMPLE_QUEUE.MAR module
provides emulations of the REMQxl and INSQxl instructions that
probe the memory occupied by a queue entry to see ifit has user-mode
write access. See Section 3.2.4 for more information.

The DECW$EXAMPLES:XPORT_EXAMPLE_XFER.MAR module
generates transfer vectors for the sample transport.

8 Link the transport-specific code as a VMS shareable image that can be
accessed by the transport-common component.

e Prevent image activation of incompatible transport versions.

8 Create a cluster for the transfer vector and place the named program
section, in this case $transfer$, in it. The $transfer$ program section
points to the DECW$TRANSPORT_INIT routine, as described in
Section 8.3.19. The transfer vector must be at the beginning of the
image (in the first cluster) or the transport common will not activate
it.

0 OWN variables are protected from user-mode writing.

8-3

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

8.3 Sample TCP/IP Transport Layer Implementation

8.3.1

•

•

The code examples in this section implement a sample TCP/IP
DECwindows transport layer.

TCP/IP Transport Layer Setup
Example 8-2 shows module and data structure declarations, macro and
literal definitions, and external definitions that are used in the TCP/IP
implementation.

Example 8-2 TCP/IP Transport Layer Setup

%TITLE 'XPORT_EXAMPLE - Example TCP/IP Communication Library'
MODULE XPORT EXAMPLE

IDENT = 'Vl. 0',
ADDRESSING_MODE(EXTERNAL =GENERAL,

NONEXTERNAL = WORD_RELATIVE
) =

BEGIN

LIBRARY 'SYS$LIBRARY:STARLET' ;
REQUIRE 'SYS$LIBRARY:UCX$INETDEF.R32'
REQUIRE 'SRC$:XPORTEXAMPLEDEF.R32' ;
REQUIRE 'SYS$LIBRARY:DECW$XPORTMAC.R32'
REQUIRE 'SYS$LIBRARY:DECW$XPORTMSG.R32'

PSECT
PLIT
CODE
OWN
GLOBAL

$CODE$
$CODE$
OWN
OWN

(PIC, SHARE) ,
(PIC, SHARE) ,
(PIC,NOSHARE)
(PIC,NOSHARE)

• FORWARD ROUTINE
DECW$$TCPIP EXECUTE WRITE,
DECW$$TCPIP-WRITE, -
write ast :-NOVALUE,
DECW$$TCPIP WRITE USER,
DECW$$TCPIP-EXECUTE FREE,
DECW$$TCPIP-FREE INPUT BUFFER,
free input ast :-NOVALUE,
DECW$$TCPIP ATTACH TRANSPORT,
DECW$$TCPIP=CLOSE,-
close and deallocate ast : NOVALUE,
DECW$$TCPIP_OPEN, -
transport_read_queue,
transport_read_ast : NOVALUE,
transport_open_callback : NOVALUE,
detach_and_poll : NOVALUE,
reattach ast : NOVALUE,
DECW$$TCPIP RUNDOWN NOVALUE ,
DECW$TRANSPORT_INIT

(continued on next page)

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-2 (Cont.) TCP/IP Transport Layer Setup

8MACRO
inet dev str = 'UCX$DEVICE' %,
inet local node = 'UCX$INET HOST' %,
swap:=long(-val) = (((val-A 24) AND %X'FF000000') OR ((val A 8)

AND %X'FF0000') OR ((val A -8) AND %X'FF00') OR ((val A -24)
AND %X'FF')) %,

swap_short(val) = (((val A 8) AND %X'FF00') OR ((val A -8) AND %X'FF')) %,

xtcc status(xtcc, status) =
IF NOT .xtcc [xtcc$v_err_sts_valid]
THEN

BEGIN
xtcc [xtcc$1 err status] = status
xtcc [xtcc$v-err-sts valid] = 1 ;
END %, - - -

load desc(desc, string) =BEGIN desc [0]
desc [1] = UPLIT(string) ; END %

%CHARCOUNT(string)

• LITERAL

.OWN

REATTACH_INTERVAL_SECS = 60,
USER_WRITE_BY_COPY = 1,
ASYNC_EFN = 31,
WRITE_MAXIMUM_LENGTH = 32768,
INET NODE NAME LEN = 256
BASE-TCP PORT ~ 5000

reattach timer id: INITIAL(0),
reattach-timer-delta : VECTOR[2] INITIAL(0, 0),
inet dev-desc 7 VECTOR[2],
tcpip tft : $BBLOCK [xtft$c length],
tcpip-tdb : REF $BBLOCK, -
local-node : $BBLOCK [INET NODE NAME LEN],
lnn_desc : $BBLOCK [DSC$S_DSCDEF1] -

• EXTERNAL ROUTINE
DECW$$XPORT FREE INPUT,
DECW$$XPORT-WRITE,
DECW$XPORT CLOSE,
DECW$XPORT-FREE INPUT BUFFER,
DECW$XPORT-COPY-AND WRITE,
DECW$XPORT-ALLOC INIT QUEUES,
DECW$XPORT-DEALLOC QUEUES,
DECW$XPORT-ALLOC PMEM,
DECW$XPORT-DEALLOC PMEM : NOVALUE,
DECW$XPORT-VALIDATE STRUCT,
DECW$XPORT-VALIDATE-STRUCT JSB L VALIDATE_STRUOT,
DECW$XPORT-ACCEPT FAILED, -
DECW$XPORT-ATTACHED,
DECW$XPORT-ATTACH LOST,
DECW$XPORT-REATTACH FAILED,
DECW$XPORT=REFUSED_BY_SERVER

8-5

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

8-6

8 The included files are as follows:

• SYS$LIBRARY:STARLET includes the VAX/VMS System Service
definitions.

• SYS$LIBRARY:UCX$INETDEF.R32 includes the definitions for
the UCX product, the TCP/IP implementation upon which this
example is layered.

• SRC$:XPORTEXAMPLEDEF.R32 includes the TCP/IP transport
specific structure definitions.

• SYS$LIBRARY:DECW$XPORTMAC.R32 includes the transport
layer support macros.

• SYS$LIBRARY:DECW$XPORTMSG.R32 includes the transport
layer message symbols.

8 Define the program section (PSECT) names for the four PSECTs
that BLISS implicitly uses. Code and static data should be position
independent and shareable, while OWN and global data should be
position independent and nonshareable. You may choose the PSECT
names, but the PSECT attributes should obey these rules and be used
in the link command.

e Forward declarations for the procedures and routines that are defined
in this module.

8 Define the following macros to be used in this module:

• inet_dev _str is the logical name that identifies UCX's controlling
device.

• inet_local_node is the logical name that contains the name of the
local host.

• swap_long converts between little-endian and big-endian
unsigned longword integer formats.

• swap_short converts between little-endian and big-endian
unsigned word integer formats.

• xtcc_status stores a condition code in an XTCC's error status field
(XTCC$L_ERR_STATUS) exactly once.

• load_desc builds a 2-longword string descriptor suitable for
system services and internal descriptors.

CD Define the following constants used in this module:

• REATTACH_INTERVAL_SECS controls the number of seconds
between transport restart attempts.

• USER_WRITE_BY_COPY controls whether the DECW$$TCPIP_
WRITE_ USER routine implements its function as a call to the
common transport DECW$XPORT_COPY_AND_WRITE routine.

• ASYNC_EFN is the number of the event flag to be used in
asynchronous network 1/0 operations. Event flag 31 is used for
such operations by convention.

8.3.2

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

• WRITE_MAXIMUM_LENGTH has meaning only if USER_
WRITE_BY_COPY tests false. Then, the DECW$$TCPIP_
WRITE_USER routine implements a "true" write-from-user's
buffer function and the value of this literal is the maximum size of
any one $QIO. It should be a multiple of 4 and representable in 15
bits.

• INET_NODE_NAME_LEN is the maximum length of any
Internet node name.

• BASE_TCP _PORT is the TCP/IP port used by server number 0.
The convention for TCP/IP is that server number 0 listens on port
6000. Port 5000 is used in this example to prevent collision with a
"real" TCP/IP transport.

8 Allocate the following data structures that are private to this
transport:

• reattach_timer_id is the identifier of this timer.

• reattach_timer_delta is the time to wait between polling
attempts.

• inet_dev _desc is a 2-longword descriptor of the name of UCX's
controlling device (macro inet_dev _str). It is initialized in the
DECW$$TCPIP _ATTACH_TRANSPORT routine.

• tcpip_tft is the XTFT structure for the TCP/IP transport. It is
initialized in the DECW$TRANSPORT_INIT routine.

• tcpip_tdb is the address of the XTDB allocated by the common
transport on behalf of the TCP/IP transport. It is initialized in the
DECW$$TCPIP _ATTACH_TRANSPORT routine.

• local_node is where the translation of the local node name
logical name (UCX$DEVICE) is stored. It is initialized in the
DECW$$TCPIP _ATTACH_TRANSPORT routine.

• lnn_desc is a 2-longword descriptor for the logical name
that represents the local node name. It is initialized in the
DECW$$TCPIP _ATTACH_TRANSPORT routine.

0 Declare all references to external procedures. These are all resident in
the common transport shareable image.

Sample XTFT$A_EXECUTE_WRITE Routine
XTFT$A_EXECUTE_ WRITE is invoked to write an XTCB to a transport
connection.

The procedure is expected to remove the head XTCB from the output work
queue and, if the remove was successful, initiate I/O on the data in the
XTCB.

Note that the xtcb parameter in the call sequence is merely a placeholder
retained for historical reasons; its value is never accessed or relied upon.
Example 8-3 shows a sample implementation of the XTFT$A_EXECUTE_
WRITE routine.

8-7

8.3.3

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-3 Sample XTFT$A_EXECUTE_WRITE Routine

ROUTINE DECW$$TCPIP_EXECUTE WRITE(
xtcc: REF-$BBLOCK,
xtcb: REF $BBLOCK,
mode

) =

BEGIN
BUILT IN

REMQHI
LOCAL

tcb : REF $BBLOCK,
status ;

8IF NOT xport_out_write_disable(xtcc)
THEN

BEGIN
•WHILE (status = REMQHI (.xtcc [xtcc$a ow queue], tcb))

EQL xport$k queue locked DO - -
WHILE .. xtcc [xtcc$a ow queue] DO

IF .status EQL xport$k queue no entry
THEN - - -

xport_out_write_enable(xtcc)
ELSE

• RETURN DECW$$XPORT_WRITE (.xtcc, .tcb, .mode)
END ;

SS$_NORMAL
END ;

8 If write operations are enabled, then disable them and execute the
following block. Otherwise, leave them disabled and return.

• Attempt to remove an XTCB from the head of the output work
queue. If there was no XTCB on the work queue, enable future write
operations and return.

• If the queue was not empty, initiate a write operation for the XTCB
by invoking the common transport routine (DECW$$XPORT_ WRITE).
This form of write operation expects a "real" XTCB in the argument
list, not just a placeholder.

Sample XTFT$A_ WRITE Routine

8-8

The XTFr$A_ WRITE routine is invoked to write an XTCB to a transport
connection. Unlike XTFr$A_EXECUTE_ WRITE, the XTCB parameter
in the argument list is significant and is the address of an XTCB, not an
element of any queue, whose data is to be written to a connection.

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-4 shows a sample implementation of the XTFT$A_ WRITE
routine.

Example 8-4 Sample XTFT$A_WRITE Routine

GLOBAL ROUTINE DECW$$TCPIP_WRITE(itcc REF $BBLOCK VOLATILE, tcb REF
$BBLOCK, mode) =

BEGIN
BUILT IN

BIND

TESTBITCS,
TESTBITCC ;

xtpb = .itcc [ixtcc$a tpb]
xtcc .itcc [ixtcc$a-tcc]
xtcb = .tcb : $BBLOCK-;

LOCAL
status ;

8 IF .xtcc [xtcc$v_dying]
THEN

BEGIN

$BBLOCK,
$BBLOCK,

$INSQHI(xtcb, .itcc [ixtcc$a ow queue]) ;
RETURN DECW$_CNXABORT ; - -
END ;

49IF .xtcb [xtcb$l_length] GTRU xport_xtcb_total(xtcb)
THEN

RETURN SS$_IVBUFLEN ;

.,IF .xtcb [xtcb$l_length] EQLU 0
THEN

BEGIN
IF .xtcb [xtcb$b_subtype] EQLU decw$c_dyn_xtcb_srp
THEN

status $INSQHI(xtcb, .itcc [ixtcc$a_ofs_queue]
ELSE

status $INSQHI(xtcb, .itcc [ixtcc$a_ofl_queue]

CtIF .status EQL xport$k_queue_corrupted
THEN

BEGIN
xtcc [xtcc$v dying] = 1 ;
xtcc status(-xtcc, DECW$ BADQUEUE
RETURN DECW$_CNXABORT -
END

RETURN SS$_NORMAL
END ;

(continued on next page)

8-9

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-4 (Cont.) Sample XTFT$A_ WRITE Routine

• xtcb [xtcb$1 rflink] = xtcc ;
IF NOT (status= $QIO(EFN =.itcc [ixtcc$w efn],

FUNC = IO$ WRITEVBLK,

0THEN
BEGIN

CHAN= .itcc [ixtcc$w chan],
IOSB = xtcb [xtcb$w iosb],
ASTADR = write_ast,-
ASTPRM = xtcb,
Pl= xtcb [xtcb$t data],
P2 = .xtcb [xtcb$l_length]))

$INSQHI(xtcb, .itcc [ixtcc$a ow queue]) ;
xtcc [xtcc$v_dying] = 1 ; - -
xtcc_status(xtcc, .status) ;
END ;

.status
END ;

8-10

0 See if the connection is marked dying. If so, return the XTCB to the
head of the output work queue and return with a status indicating
that the connection has died.

8 This is a consistency check on the information provided in the XTCB.
If it is bad, return a fatal status.

t) If this XTCB is empty, return it to either the large or small output free
queue, as appropriate for the XTCB type in the XTCB$B_SUBTYPE
field, and return with a successful status.

8 If the queue was found to be corrupted, close the connection and return
with a fatal status.

• The XTCB has a valid data length. Initiate a write $QIO on the
data in the XTCB. Pl is the address of the first byte of user data
in the XTCB; P2 is the length of the data in the buffer. The
ASTADR argument specifies a WRITE_AST routine, as described
in Section 8.3.4. ASTPRM is the address of the XTCB being operated
on.

0 If the $QIO service failed, return the XTCB to the head of the output
work queue and mark the connection as dying. Use the XTCC_
STATUS macro to save the failure code in the XTCC if it has not
yet been set.

8.3.4

•

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Sample WRITE_AST Routine
WRITE_AST is an AST completion routine for TCP/IP write operations.
WRITE_AST returns the XTCB to the appropriate free queue. If the $QIO
failed or the connection is dying, failure processing is performed and the
transport prohibits further operations on this connection.

Failure processing is dependent upon the type of transport being used. In
the case of the TCP/IP implemented by UCX, a failed l/O attempt to the
connection indicates that a connection has aborted. When an 110 operation
completes and the status indicates failure, the code must perform all
logical-link rundown operations including setting the dying bit and error
status, completing any process waits for input or output, and sending
notification to the process that the connection has died.

Other transports such as DECnet provide a separate mechanism for
receiving notice that a connection has aborted. For such a transport, these
logical-link rundown operations need only be performed by the code that
receives this notification.

If the l/O completed successfully, the procedure attempts to remove
another XTCB from the head of the output work queue and initiate a
write operation on this XTCB. If the queue was empty, the procedure must
enable write operations on the connection to cause the common transport
to call the specific transport when an XTCB is next inserted on the output
work queue. If the queue was not empty, the l/O operation is performed
and the usual error processing is performed on the result. Example 8-5
shows a sample implementation of the WRITE_AST routine.

Example 8-5 Sample WRITE_AST Routine

ROUTINE write_ast(xteb REF $BBLOCK}

BEGIN
BIND

tee = .xteb [xteb$1 rflink] : $BBLOCK,

NOVALUE =

iosb = xteb [xteb$w=iosb] VECTOR [4,WORD,UNSIGNED]

BUILT IN
TESTBITCS ;

LOCAL
itee : REF $BBLOCK,
teb : REF $BBLOCK,
status,
type

VALIDATE XTCC(tee, itee } ;
IF .xteb-[xteb$b_subtype] EQLU deew$e_dyn_xteb_srp
THEN

BEGIN
BIND

xtpb = .itee [ixtce$a_tpb] $BBLOCK

(continued on next page)

8-11

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-5 (Cont.) Sample WRITE_AST Routine

status = $INSQHI(.xteb, .itee [ixtee$a ofs queue]) ;
xport_out_notify_send(tee, xtpb, deew$c_xport_buffer_srp
END

ELSE
BEGIN
BIND

xtpb = .itee [ixtee$a_tpb] : $BBLOCK ;

status = $INSQHI(.xteb, .itee [ixtee$a ofl queue]) ;
xport_out_notify_send(tee, xtpb, deew$e_xport_buffer_lrp
END ;

IF .status EQL xport$k_queue_eorrupted
THEN

BEGIN
BIND

xtpb = .itee [ixtee$a_tpb] : $BBLOCK

IF TESTBITCS(tee [xtee$v_dying]
THEN

BEGIN
xport abort send(tepip tdb, tee) ;
IF .tee [xtce$v lrp on output]
THEN xport out notify send(tee, xtpb, deew$e_xport_buffer_lrp
ELSE xport-out-notify-send(tee, xtpb, deew$e_xport_buffer_srp
xport_in_notify_send(-tee, xtpb) ;
END ;

xport out write enable(tee) ;
xport-write unwait(tee, xtpb)
xtee_status(tee, DECW$_BADQUEUE
RETURN
END

ft IF .tee [xtee$v_dying] OR NOT .iosb [OJ
THEN

BEGIN
BIND

xtpb = .itee [ixtee$a_tpb] : $BBLOCK

IF TESTBITCS(tee [xtee$v_dying]
THEN

BEGIN

xport abort send(tepip tdb, tee) ;
IF .tee [xtce$v lrp on output]
THEN xport out notify send(tee, xtpb, deew$e xport buffer lrp
ELSE xport-out-notify-send(tee, xtpb, deew$e=xport=buffer=srp
xport_in_notify_send(-tee, xtpb) ;
END ;

• xport out write enable (tee)
xport-write unwait(tee, xtpb
xtee_status(tee, .iosb [OJ)
RETURN
END ;

8-12

(continued on next page)

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-5 (Cont.) Sample WRITE_AST Routine

C.status = $REMQHI(.itee [ixtee$a ow queue], teb
IF .status EQL xport$k_queue_eorrupted
THEN

BEGIN
BIND

xtpb = .itee [ixtee$a_tpb] : $BBLOCK

IF TESTBITCS(tee [xtee$v_dying]
THEN

BEGIN
xport abort send(tepip tdb, tee } ;
IF .tee [xtee$v_lrp_on_outputl
THEN xport out notify send(tee, xtpb, deew$e xport buffer lrp
ELSE xport-out-notify-send(tee, xtpb, deew$e=xport=buffer=srp
xport_in_notify_send(-tee, xtpb } ;
END ;

xport out write enable(tee } ;
xport-write unwait(tee, xtpb}
xtee_status(tee, DECW$_BADQUEUE
RETURN
END ;

IF .status EQL xport$k_queue_no_entry
THEN

BEGIN
BIND

xtpb = .itee [ixtee$a tpb] : $BBLOCK
xport out write enable(tee }
xport=write_unwait(tee, xtpb } ;
RETURN ;
END ;

4D teb [xteb$1 rflink] = tee ;
IF NOT (status= $qio(EFN = .itee [ixtee$w efn],

FUNC IO$ WRITEVBLK;
CHAN= .itee [ixtee$w ehan],
IOSB = teb [xteb$w iosb],
ASTADR write_ast;

THEN
BEGIN
BIND

xtpb

ASTPRM = .teb,
Pl teb [xteb$t data],
P2 = .teb [xteb$l_length] } }

.itee [ixtee$a_tpb] $BBLOCK

(continued on next page)

8-13

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-5 (Cont.) Sample WRITE_AST Routine

•$INSQHI(.teb, .itee [ixtee$aowqueue]);
IF TESTBITCS(tee [xtee$v_dying]-)
THEN

BEGIN
xport abort send(tepip tdb, tee) ;
xport=in_notify_send(tee, xtpb) ;
xtee_status(tee, .status)
END ;

xport_write_unwait{ tee, xtpb) ;
END

END ;

8-14

0 First, assume that the write operation worked and put the buffer back
on either the small or large OutputFreeQueue. The XPORT_OUT_
NOTIFY_SEND macro informs the process that a write operation has
completed. This operation may consist of sending a user-mode AST to
the process, or of code that completes the $SYNCH system service call
performed by the XPORT_OUT_WAIT macro.

If the output free queue was corrupted, perform failure processing to
close this connection.

• In the case of TCP/IP under UCX, this procedure must detect and
respond to any problem on the connection/socket. If the $QIO
failed, and the connection is not yet marked as dying, then mark
it. Additionally, invoke the XPORT_ABORT_SEND macro to declare a
user-mode AST to the process indicating that the connection has died.
Invoke the XPORT_OUT_NOTIFY_SEND and XPORT_IN_NOTIFY_
SEND macros to complete any $SYNCH service used to wait for this
connection.

0 Allow write operations. The XPORT_WRITE_UNWAIT macro tests the
XTCC$V_WAIT_ON_WRITE flag to see ifit is set. If set, the common
transport is waiting for the specific transport to empty the output
work queue so that a write-user operation can be initiated. XPORT_
WRITE_UNWAIT clears the XTPB$W_ON_EFN flag.

Note: Most transports should implement the write-user function as
a call to DECW$COPY_AND_WRITE and need not invoke the
XPORT_ WRITE_UNWAIT macro.

Save the reason for the link abort and return.

8 The 1/0 operation was successful, so attempt to get another XTCB
from the output work queue. If it is empty, enable write operations on
this connection and call XPORT_WRITE_UNWAIT. If the queue was
corrupted, close the connection and perform abort processing.

Cl There was an XTCB on the output work queue. Initiate a write $QIO
on the data.

8.3.5

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

8 If the $QIO does not return successfully, insert the XTCB back on the
output work queue. Test and set the dying flag and perform abort
processing if it was clear.

Sample XTFT$A_WRITE_USER Routine
The XTFT$A_ WRITE_ USER routine attempts to write a buffer in the
user's address space to a TCP/IP connection. The purpose of this interface
is to avoid a data copy into XTCBs when the caller has a large, contiguous
block of data to be written to a connection, such as when sending image
data between client and server.

There are two methods for implementing the XTFT$A_ WRITE_USER
routine. The first is to wait for the output work queue to become empty
and then perform the I/O operation on the user's buffer, typically by means
of a $QIO.

The other method is to invoke the common transport's DECW$XPORT_
COPY_AND_WRITE routine with the user's buffer as an argument. Due
to the way this feature is being used in the DECwindows software, it is
strongly recommended that transports use the DECW$XPORT_COPY_
AND_ WRITE routine.

Example 8-6 shows a sample implementation of the XTFT$A_ WRITE_
USER routine.

Example 8-6 Sample XTFT$A_WRITE_USER Routine

GLOBAL ROUTINE DECW$$TCPIP WRITE USER(itee REF $BBLOCK VOLATILE, buffer
REF $BBLOCK, mode f = -

BEGIN
BUILT IN

TESTBITCS,
TESTBITCC,
INSQTI,
INSQHI,
REMQHI

BIND
xtee = .itee [ixtee$a tee]
xtpb = .itee [ixtee$a=tpb]

LOCAL
status,
data_adr,
data_len,
size,

$BBLOCK,
$BBLOCK ;

lel iosb : VECTOR[4,WORD,UNSIGNED]

0 IF .xtee [xtcc$v_dying]
THEN

BEGIN
RETURN DECW$_CNXABORT
END ;

(continued on next page)

8-15

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-6 (Cont.) Sample XTFT$A_ WRITE_ USER Routine

•IF (data_adr
OR

.buffer [dsc$a_pointer]) EQLA 0

(data_len .buffer [dsc$w_length]) EQLU 0
THEN

RETURN SS$_NORMAL ;

8t%IF USER WRITE BY COPY
%THEN - - -

C.status DECW$XPORT COPY AND WRITE(xtcc, 0, .data_adr,
.data_len, size-) ;

•
%ELSE

(xtcc [xtcc$w ow iosb])< 0,32, 0> = 0 ;
(xtcc [xtcc$w-ow-iosb])<32,32, 0> = 0 ;

TESTBITCS((xtcc-[xtcc$1 flags])<$BITPOSITION(xtcc$v_wait_on_write), 1>)
'9wHILE (xport_out_write_disable(xtcc)) DO

BEGIN
xport_write_wait(xtcc, xtpb) ;
END ;

8 xport out write enable (xtcc) ;
TESTBITCC((xtcc [xtcc$1 flags])<$BITPOSITION(xtcc$v_wait_on_write), 1>)

9 IF .xtcc [xtcc$v_dying] -
THEN

BEGIN
RETURN DECW$_CNXABORT
END ;

8Do
BEGIN
size = MINU(WRITE_MAXIMUM_LENGTH, .data_len)

l>IF (status= $QIOW(EFN = .itcc [ixtcc$w efn],
FUNC = IO$ WRITEVBLK~
CHAN= .itcc [ixtcc$w chan],
IOSB = lcl_iosb, -
Pl .data_adr,
P2 = . size))

THEN
status = .lcl iosb [0] ;

IF NOT .status
THEN

RETURN . status
data_len .data_len - .size
data adr = .data_adr + .size
END

WHILE .data len NEQU 0 ;

%FI

•.status
END ;

8-16

0 If the dying field is set, return an abort status.

• If the address or length of the data equals zero, we are done.

8.3.6

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

• In the code developed by Digital, the BLISS literal USER_ WRITE_
BY_COPY is always set to the value 1 and the code that invokes
the DECW$XPORT_COPY_AND_ WRITE procedure is compiled. For
completeness, the uncompiled code is also described.

8 Invoke the common transport DECW$XPORT_COPY_AND_WRITE
routine to copy the data in the user's buffer into XTCBs and make
them available for transmission to the connection.

• Clear the waiting-for-output IOSB field of the XTCC and set the
XTCC$V_WAIT_ON_WRITE bit to indicate that it is waiting for the
output work queue to become empty. This operation is similar to the
operation performed by the XPORT_IN_NOTIFY_SET and XPORT_
OUT_NOTIFY_SET macros.

Cl Begin waiting for the output work queue to empty. The wait is
required to ensure that the data sent to the connection is not
reordered. When the output work queue is emptied, writing is
enabled on the connection, hence the WHILE loop. Invoke the XPORT_
WRITE_ WAIT macro inside the loop to perform the $SYNCH service.

8 The wait has been satisfied, so continue processing the write-user
request. The XPORT_OUT_WRITE_DISABLE macro tests and sets
the disable flag, so enable write operations (this is a branch-on-bit
clear-and-clear-interlocked (BBCCI) instruction). Clear the XTCC$V _
WAIT_ON_WRITE bit.

• Check if the connection is dying. Wakeup may be due to connection
abort.

CD Begin a loop that writes the user's data. For very large user data
blocks, it may be necessary to break the data into smaller pieces
for transmission. The optimal size of these pieces may be different
for each type of transport. In the example, this size is given by the
literal WRITE_MAXIMUM_LENGTH, which is a value that can be
represented by a 15-bit integer.

8 Write the data to the connection using the $QIOW system service. The
wait form of the service is required because the user's buffer is not
safely copied until the 1/0 request completes.

e Return the status.

Sample XTFT$A_EXECUTE_FREE Routine
The XTFT$A_EXECUTE_FREE routine logically returns an XTCB to a
local logical link. The common transport invokes XTFT$A_EXECUTE_
FREE after it returns an input XTCB to a previously empty free queue.
XTFT$A_EXECUTE_FREE checks to see if input-free operations are
enabled for this connection, and if so, attempts to start a read operation
into an XTCB after removing it from the head of the queue.

The tcb argument is a placeholder; it is never referred to by the routine
and its contents are unpredictable.

8-17

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-7 shows a sample implementation of the XTFT$A_EXECUTE_
FREE routine.

Example 8-7 Sample XTFT$A_EXECUTE_FREE Routine

ROUTINE DECW$$TCPIP EXECUTE FREE(
tee: REF $BBLOCK,-
teb: REF $BBLOCK,
type,
free_queue

) =
BEGIN
BUILT IN

REMQHI
LOCAL

newteb REF $BBLOCK,
status

0IF NOT xport_in_free_disable(tee, .type)
THEN

BEGIN
ftwHILE (status= REMQHI(.free_queue, newteb)) EQL xport$k_queue_loeked DO

WHILE .. free queue DO;
C»IF .status EQL xport$k_queue_no_entry

THEN
BEGIN
xport in free enable(tee, .type)
status =-SS$_NORMAL ;
END

8ELSE
RETURN DECW$$XPORT_FREE_INPUT(.tee, .newteb)

END ;

SS$_NORMAL
END ;

8-18

0 If free-input operations are disabled, leave them disabled and return a
successful status. No additional work is necessary.

8 Free-input operations that were enabled are now disabled. Attempt
to remove an XTCB from the appropriate free queue. If the queue is
locked, test the interlock bit of the free queue until it is no longer set,
then go back and do the remove operation again.

t) If the queue was empty this was a false start. Enable free-input
operations and return a successful status.

8 Otherwise, invoke XTFT$A_FREE_INPUT_BUFFER by means of the
common transport DECW$$XPORT_FREE_INPUT routine to start a
read operation on the XTCB removed from the queue.

8.3.7

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Sample XTFT$A_FREE_INPUT _BUFFER Routine
The XTFT$A_FREE_INPUT_BUFFER does an asynchronous read, by
means of a $QIO read, for a connection into the provided buffer. The
common transport invokes XTFT$A_FREE_INPUT_BUFFER when an
input XTCB has been returned by the caller to a transport and the specific
transport needs to receive control in order to initiate a read operation.

Unlike the XTFT$A_EXECUTE_FREE routine, the xtcb argument is a
"real" XTCB. It is assumed that any enable/disable checks, performed with
the XPORT_IN_FREE_DISABLE macro, have already been performed.

Example 8-8 shows a sample implementation of the XTFT$A_FREE_
INPUT_BUFFER routine.

Example 8-8 Sample XTFT$A_FREE_INPUT _BUFFER Routine

GLOBAL ROUTINE DECW$$TCPIP FREE INPUT BUFFER(itcc REF $BBLOCK VOLATILE, tcb
: REF $BBLOCK) = -

BEGIN
BIND

xtcb = .tcb : $BBLOCK,
xtcc = .itcc [ixtcc$a tee]
xtpb = .itcc [ixtcc$a=tpb]

$BBLOCK,
$BBLOCK ;

LOCAL
status,
size,
free_queue

ttIF .xtcb [xtcb$b_subtype] EQLU decw$c_dyn_xtcb_srp
THEN

free_queue
ELSE

free_queue

.itcc [ixtcc$a_ifs_queue]

.itcc [ixtcc$a_ifl_queue]

8 xtcb [xtcb$1 rflink]
IF NOT (status = $QIO(

= xtcc ;
EFN = .itcc [ixtcc$w efn],
CHAN= .itcc [ixtcc$w chan],
FUNC = IO$ READVBLK, -

0THEN
BEGIN

IOSB = xtcb [xtcb$w_iosb],
ASTADR = free_input_ast,
ASTPRM = xtcb,
Pl = xtcb [xtcb$t_data],
P2 = xport_xtcb_total(xtcb)))

$INSQHI(xtcb, .free queue
xtcc [xtcc$v_dying] ~ 1 ;
xtcc_status(xtcc, .status
END

.status
END ;

8-19

8.3.8

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

8 Determine which free queue this XTCB came from, based on the
XTCB$B_SUBTYPE field of the XTCB.

• Store the address of the connection structure in the XTCB and then
initiate an asynchronous read $QIO into the XTCB. The FREE_
INPUT_AST read-completion AST routine is called with the address of
the XTCB when the 1/0 operation completes. The FREE_INPUT_AST
routine is described in Section 8.3.8.

• If the $QIO service failed, perform failure recovery. Return the XTCB
to the correct free queue, mark the connection as dying, and store the
failure status code in the XTCC with the XTCC_STATUS macro.

In either case, return the result of the $QIO service as the return
value.

Sample FREE_INPUT _AST Routine
The FREE_INPUT_AST routine is the $QIO read-completion AST routine.
It performs a number of steps based on the type of transport being used.
Example 8--9 shows a sample implementation of the FREE_INPUT_AST
routine.

Example 8-9 Sample FREE_INPUT _AST Routine

ROUTINE free_input_ast(xteb REF $BBLOCK) NOVALUE =

BEGIN
BUILT IN

TESTBITCS

BIND
tee = .xteb [xteb$l_rflink] $BBLOCK

LOCAL
itee : REF $BBLOCK,
tpb : REF $BBLOCK,
status,
teb : REF $BBLOCK,
type,
free_queue ;

VALIDATE XTCC(tee, itee) ;
tpb = .itee [ixtcc$a_tpb] ;

8 status = $INSQTI (.xtcb, . itcc [ixtcc$a iw queue]
•IF .status EQL xport$k_queue_eorrupted - -

THEN
BEGIN
BIND

xtpb = .itec [ixtcc$a_tpb] $BBLOCK;

8-20

(continued on next page)

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-9 (Cont.) Sample FREE_INPUT _AST Routine

IF TESTBITCS(tee [xtee$v_dying])
THEN

BEGIN
xport abort send(tepip tdb, tee) ;
IF .tee [xtce$v lrp on output]
THEN xport out notify send(tee, xtpb, deew$e xport buffer lrp
ELSE xport=out=notify=send(tee, xtpb, deew$e=xport=buffer=srp
xport_in_notify_send(tee, xtpb) ;
END ;

fD xport out write enable (tee)
xport-write unwait(tee, xtpb)
xtee_status(tee, DECW$_BADQUEUE
RETURN
END ;

BEGIN
BIND

xtpb = .itee [ixtee$a tpb] : $BBLOCK,
iosb = xteb [xteb$w_iosb] : VECTOR [4,WORD,UNSIGNED]

CtIF .tee [xtee$v_dying] OR NOT .iosb [0]
THEN

BEGIN
IF TESTBITCS(tee [xtee$v_dying])
THEN

BEGIN
xport_abort_send(tepip_tdb, tee) ;
IF .tee [xtee$v lrp on output]
THEN xport out notify send(tee, xtpb, deew$e xport buffer lrp
ELSE xport-out-notify-send(tee, xtpb, deew$e=xport=buffer=srp
xport_in_notify_send(-tee, xtpb) ;
END ;

xport out write enable(tee)
xport-write unwait(tee, xtpb
xtee_status(tee, .iosb [0])
RETURN
END ;

(continued on next page)

8-21

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-9 (Cont.) Sample FREE_INPUT _AST Routine

0 xteb [xteb$1 length] = • iosb [l] ;
xteb [xteb$a~ointer] = xteb [xteb$t_data] + .iosb [l]

C9IF .iosb [l] LSSU .tpb [xtpb$w_srp_size]
THEN

BEGIN

ELSE

IF (xport_in_state_srp(tee)
THEN

BEGIN
xport_in_free_disable(tee, deew$e_xport_buffer_lrp
END ;

type = deew$e xport buff er srp
free_queue = ~itee [ixtee$a_ifs_queue]
END

BEGIN
IF (xport_in_state_lrp(tee))
THEN

BEGIN
xport_in_free_disable(tee, deew$e_xport_buffer_srp
END ;

type = deew$e xport buff er lrp ;
free_queue = ~itee [ixtee$a_ifl_queue]
END ;

8 status = $REMQHI (. free_queue, teb)

IF .status EQL xport$k_queue_eorrupted
THEN

BEGIN
BIND

xtpb = .itee [ixtee$a_tpb] : $BBLOCK

IF TESTBITCS(tee [xtee$v_dying]
THEN

BEGIN
xport abort send(tepip tdb, tee) ;
IF .tee [xtce$v_lrp_on_output]
THEN xport out notify send(tee, xtpb, deew$e xport buffer lrp
ELSE xport-out-notify-send(tee, xtpb, deew$e=xport=buffer=srp
xport_in_notify_send(-tee, xtpb) ;

8-22

END ;

xport out write enable(tee) ;
xport-write unwait(tee, xtpb)
xtee_status(tee, DECW$_BADQUEUE
RETURN

END ;

(continued on next page)

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-9 (Cont.) Sample FREE_INPUT_AST Routine

IF .status NEQ xport$k_queue_no_entry
THEN

BEGIN
0 teb [xteb$1 rflink] = tee ;
CDIF NOT stat~s = $QIO(EFN = .itee [ixtee$w efn],

CHAN= .itee [ixtee$w ehan],
FUNC = IO$ READVBLK, -
IOSB = teb-[xteb$w iosb],
ASTADR = free_input_ast,
ASTPRM = .teb,
Pl= teb [xteb$t_data],
P2 = xport_xteb_total(teb))

8THEN
$INSQHI(.teb, .free_queue) ;

END
.ELSE

END

BEGIN
IF .type EQLU deew$e xport buffer srp
THEN xport in free enable(-tee, deew$e xport buffer srp
ELSE xport-in-free-enable(tee, deew$e-xport-buffer-lrp
status SS$_NORMAL - - -
END

• IF NOT . status
THEN

BEGIN
BIND

xtpb = .itee [ixtee$a_tpb] : $BBLOCK

IF TESTBITCS(tee [xtee$v_dying]
THEN

END

BEGIN
xport abort send(tepip tdb, tee) ;
xport=in_notify_send(tee, xtpb) ;
xtee_status(tee, .status) ;
END ;

xport_in_notify_send(tee, tpb) ;
END ;

8 Insert the XTCB returned by the read operation on the tail of the
input work queue.

8 If the queue was corrupted, this connection must be run down. Abort
notification must be performed if this is the first attempt at rundown.
This consists of conditionally declaring a user-mode AST for the link
abort (by means ofXPORT_ABORT_SEND), sending notification that a
write operation has completed (to complete any output wait condition),
and sending notification that a read operation has completed (to
complete any input wait condition).

8-23

8.3.9

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

e Failure processing continues by enabling write operations, clearing
any wait-for-empty-output-work-queue condition, saving the reason for
the connection abort, and returning.

8 Check the result of the read $QIO. If it failed, perform failure
processing as done in the case of the corrupted queue.

8 The read operation completed successfully, so initialize the XTCB$L_
LENGTH and XTCB$A_POINTER fields of the completed XTCB.

0 Determine whether the large or small XTCBs should be used in
subsequent 1/0 operations. If the read operation that just completed
filled a small XTCB, then shift up to the large XTCBs. Otherwise, if
large XTCBs were being used and the last read operation would have
fit in a small XTCB, then shift down to the small XTCBs. Otherwise,
no change. At the end of this decision making, type contains the type
of XTCB to be used and free_queue is the address of the free queue
header from which these XTCBs are removed.

8 Attempt to remove an XTCB from the free queue. If the queue was
corrupted, perform failure processing.

8 An XTCB was successfully removed from the queue. Save the
connection structure address in the XTCB for use on reentry to this
procedure.

CD Initiate an asynchronous read $QIO on this XTCB, specifying this
routine as the read-completion AST routine.

8 The 1/0 request failed, so return the XTCB to the free queue.

e There were no XTCBs on the free queue, so no more work can be done
here. Enable free-input operations on the particular free queue being
used and set status to normal completion.

• The $QIO system service failed. Mark the connection as dying and, if
this is the first time that it has been marked, perform connection-abort
processing. Send input notification to complete any wait operation on
the process.

Sample XTFT$A_CLOSE Routine

8-24

The XTFT$A_CLOSE routine initiates a series of operations that
disconnect a connection and release the data structures associated with
the link. Example 8-10 shows a sample implementation of the XTFT$A_
CLOSE routine.

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-10 Sample XTFT$A_CLOSE Routine

GLOBAL ROUTINE DECW$$TCPIP_CLOSE(itee REF $BBLOCK VOLATILE)

BEGIN

LOCAL
tee : REF $BBLOCK INITIAL(.itce [ixtce$a_tcc]),
status ;

8 tee [xtee$v_dying] = 1 ;

• $CANCEL (CHAN = • itee [ixtee$w chan]
$DASSGN(CHAN = .itce [ixtee$w=chan]
itce [ixtee$w_chan] = 0 ;

8status = $DCLAST(ASTADR =close and deallocate ast,

.status
END ;

ASTPRM = .itec-) ;- -

8 Mark the connection as dying, both to prevent the caller from
requesting operations on this connection and to prevent the various
completion AST routines from attempting to perform additional work.

• Cancel 1/0 and deassign the channel to the connection. This action
completes all outstanding 1/0 operations to the connection and
queues all completion ASTs. Further references to the channel are
not permitted.

8 Declare an AST to the CLOSE_AND_DEALLOCATE_AST routine that
is executed after the completion ASTs. This routine performs the final
cleanup operations such as structure invalidation and deallocation.

8.3.10 Sample CLOSE_AND_DEALLOCATE_AST Routine
The CLOSE_AND_DEALLOCATE_AST routine completes the connection
close initiated by XTFT$A_CLOSE. Once this procedure executes, it is
assumed that neither the transport caller nor any part of the transport
will refer to this connection again. It is also assumed that all XTCBs have
been returned to the communication queue structure (XTCQ).

Example 8-11 shows a sample implementation of the CLOSE_AND_
DEALLOCATE_AST routine.

8-25

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-11 Sample CLOSE_AND _DEALLOCATE_AST Routine

ROUTINE close_and_deallocate_ast(itcc REF $BBLOCK) NOVALUE =

BEGIN
BUILTIN

REM QUE

LOCAL
tdb: REF $BBLOCK INITIAL(.itcc [ixtcc$a tdb]),
tpb : REF $BBLOCK INITIAL(.itcc [ixtcc$a=tpb]),
status ;

0 REMQUE (. itcc, itcc) ;
tdb [xtdb$1 ref count] = .tdb [xtdb$1 ref count] - 1

ft DECW$XPORT_DEALLOC_QUEUES (. itcc) ;

• itcc [ixtcc$a_xport_table] = 0 ;

8 DECW$XPORT DEALLOC PMEM (. itcc)
DECW$XPORT=DEALLOC=PMEM(.tpb) ;
END ;

0 Remove the IXTCC from the IXTCC queue in the XTDB and decrement
the reference count in the XTDB.

8 Deallocate the storage previously allocated for the connection queues .

• Zero the IXTCC$A_XPORT_TABLE field in the IXTCC to catch any
subsequent references to the connection.

8 Deallocate the IXTCC and XTPB connection structures. At this point,
the connection is completely run down.

8.3.11 Sample XTFT$A_OPEN Routine

8-26

The XTFT$A_OPEN routine is invoked by a client to establish a
connection to an X server.

Example 8-12 shows a sample implementation of the XTFT$A_OPEN
routine.

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-12 Sample DECW$$TCPIP _OPEN Routine

GLOBAL ROUTINE DECW$$TCPIP_OPEN(workstation
$BBLOCK) =

BEGIN
BUILT IN

BIND

REMQUE,
INSQUE ;

tpb = .itcc [ixtcc$a_tpb] : $BBLOCK

LOCAL

REF $BBLOCK, server, itcc

socktype : INITIAL((UCX$C STREAM A 16) + UCX$C_TCP),
sockaddrin : $BBLOCK [SIN$S SOCKADDRIN] PRESET(

[SIN$W FAMILY] = INET$C-AF INET,
[SIN$W-PORT] = 0, - -
[SIN$L-ADDR] =swap long(INET$C INADDR ANY)),

sin_desc :-VECTOR [2] INITIAL(%ALLOCATION(sockaddrin), sockaddrin),
server_addr : VECTOR [16,BYTE,UNSIGNED],

REF

server_desc : VECTOR [2] INITIAL(%ALLOCATION(server addr) - 1, server addr),
server len : INITIAL(0),
stradr : REF VECTOR [,BYTE,UNSIGNED],
sinadr : REF VECTOR [,BYTE,UNSIGNED],
strlen,
iosb : VECTOR [4,WORD,UNSIGNED],
func_code : INITIAL(INETACP_FUNC$C_GETHOSTBYNAME),
func_code_desc : VECTOR [2] INITIAL(%ALLOCATION(func code), func code),
status,
success : INITIAL (0),
tcb,
tee : REF $BBLOCK,
free_queue

LABEL
connect

8 connect:
BEGIN

.. status= DECW$XPORT ALLOC INIT QUEUES(.itcc,
.tcpip tft[xtft$1 xtcc length],
.tpb [xtpb$w srp size]~
.tpb [xtpb$w-lrp-size],
.tpb [xtpb$w-i srp count],
.tpb [xtpb$w-i-lrp-count],
.tpb [xtpb$w=o=srp=count],
.tpb [xtpb$w_o_lrp_count],
0,
0)

IF NOT .status
THEN

RETURN .status
tee = .itcc[ixtcc$a_tcc]

0 INSQUE (. itcc, tcpip tdb [xtdb$a itcc flink]) ;
tcpip_tdb [xtdb$l_ref_count] = .tcpip=tdb [xtdb$l_ref count] + 1

(continued on next page)

8-27

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-12 (Cont.) Sample DECW$$TCPIP _OPEN Routine

8 IF NOT (status = $assign (DEVNAM = inet dev desc,
CHAN= itcc [ixtcc$w chan],
ACMODE = ps1$c_user))

THEN
LEAVE connect ;

• sockaddr in
IF (status

[SIN$W PORT] = 0 ;
= $qiow(EFN = .tcpip tdb [xtdb$w efn],

CHAN= .itcc-[ixtcc$w chan],
FUNC = IO$ SETMODE, -

THEN

IOSB = iosb,
Pl socktype,
P2 (%X'01000000' OR INET$M_LINGER),
P3 sin_desc))

status = .iosb [0]
IF NOT .status
THEN

LEAVE connect

<tIF .workstation [DSC$W LENGTH] EQL 1
AND . (.workstation [DSC$A_POINTER])<0,8,0> EQL %C'0'

THEN
workstation = lnn_desc ;

8 IF (status = $qiow (EFN = .tcpip tdb [xtdb$w efn],
CHAN= .Itcc [ixtcc$w chan],
FUNC = IO$ ACPCONTROL~

.THEN
status = .iosb [0]

IF NOT .status
THEN

IOSB = iosb,
Pl func code desc,
P2 workstation [0,0,0,0],
P3 server_len,
P4 server desc))

IF .status NEQU SS$_ENDOFFILE
THEN

LEAVE connect ;
.ELSE

BEGIN
IF .workstation [DSC$W_LENGTH] GEQU %ALLOCATION(server addr
THEN

8-28

BEGIN
status = DECW$_INVSRVNAM
LEAVE connect ;
END ;

CH$MOVE(.workstation [DSC$W_LENGTH], .workstation [DSC$A_POINTER],
server addr) ;

server_len = .workstation [DSC$W_LENGTH]
END ;

(continued on next page)

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-12 (Cont.) Sample DECW$$TCPIP _OPEN Routine

8 server_addr [. server_len] = %C' . ' ;
server desc [OJ = .server len + 1 ;
sinadr-= sockaddrin [SIN$L ADDR] ;
sockaddrin [SIN$W PORT] =swap short(BASE TCP PORT + .server))
INCR i FROM 0 TO 3 -

•Do
BEGIN
sinadr [.i] = 0;
stradr = .server desc [1] ;
IF CH$FAIL(strlen = CH$FIND_CH(.server desc [OJ, .server desc [1), %C' .'))
THEN

BEGIN
status = SS$_BADPARAM
LEAVE connect ;
END ;

strlen = .strlen - .stradr
INCR j FROM 0 TO .strlen - 1)
DO

BEGIN
IF .stradr [.j] LSSU %C'0' OR .stradr [.j] GTRU %C'9'
THEN

BEGIN
status = DECW$_INVSRVNAM
LEAVE connect ;
END ;

sinadr [.i] .sinadr [.i] * 10 + (.stradr [.j] - %C'O')
END ;

server_desc [1) .server_desc [1] + .strlen + 1
server_desc [OJ (.server_desc [OJ - .strlen) - 1
IF (.server_desc [OJ LSS 0)
THEN

END

BEGIN
status = SS$_BADPARAM
LEAVE connect ;
END ;

8 IF (status = $qiow (EFN = .tcpip tdb [xtdb$w efn],
CHAN .Itcc [ixtcc$; chan],
FUNC = IO$_ACCESS, -
IOSB = iosb,
P3 sin_desc))

THEN
status = .iosb [OJ

IF NOT .status
THEN

LEAVE connect

8 tee [xtcc$1 flags]
tee [xtcc$v=mode]
itcc [ixtcc$a tdb]
itcc [ixtcc$w-efn]
itcc [ixtcc$a=xport_table]

xtcc$m active ;
DECW$K-XPORT REMOTE CLIENT
.tcpip-tdb - -
.tcpip-tdb [xtdb$w efn] ;
.tcpip=tdb [xtdb$a=xport_table]

e xport_in_state_srp (tee) ;
xport out state srp(tee) ;
xport=in_free_ctisable(tee, decw$c_xport_buffer_lrp

(continued on next page)

8-29

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-12 (Cont.) Sample DECW$$TCPIP _OPEN Routine

8 status = $REMQTI (. itcc [ixtcc$a ifs queue], tcb) ;
IF (.status EQL xport$k queue corrupted) OR

(.status EQL xport$k=queue=no_entry)
THEN

BEGIN
status = DECW$_BADQUEUE
LEAVE connect ;
END ;

ltxport in free disable(tee, decw$c xport buffer srp
status =-DECW$$TCPIP_FREE_INPUT_BUFFER(~itcc, ~tcb
RETURN .status ;
END;

48rF .itcc [ixtcc$w_chan] NEQU 0
THEN

$DASSGN(CHAN = .itcc [ixtcc$w chan]) ;
REMQUE(.itcc, itcc) ; -
tcpip_tdb [xtdb$l_ref_count] = .tcpip_tdb [xtdb$l_ref count] - 1
RETURN .status ;
END

8-30

8 Start a named block of code that attempts to allocate and initialize the
resources needed to maintain a connection. If any part of this setup
fails, the code block exits and failure processing recovers any allocated
resources.

• Call the transport-common DECW$XPORT_ALLOC_INIT_QUEUES
routine to allocate and initialize the communication queues.
DECW$XPORT_ALLOC_INIT_QUEUES allocates a block of storage
for an XTCC, XTCQ, and all of the XTCBs for a connection.
DECW$XPORT_ALLOC_INIT_QUEUES must allocate at least an
XTCC; the other structures are optional. DECW$XPORT_ALLOC_
INIT_QUEUES places all of the XTCBs on the appropriate free queues.

• Insert the IXTCC on the XTDB's queue of active connections so that
the structure can be found if the rundown routine is invoked before
the connection is fully started. Increment the XTDB$L_REF _COUNT
field that tracks the number of connections using this transport.

8 Assign a channel and create a socket to the Internet networking
service.

e Initialize the sockaddrin structure to request an Internet-protocol
socket on any available port. Perform a SETMODE $QIO system
service to establish the desired characteristics on the socket.

The Pl argument specifies a stream-mode, TCP/IP socket.

The P2 argument enables the "linger" option on the TCP/IP socket.

The PS argument provides port, address, and address-family
information for the socket.

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

• If the transport caller requested a connection with a node-identifying
string of "O", use the Internet name of the host as the node string.

9 Attempt to perform a name-to-address conversion with an IO$_
ACPCONTROL $QIO system service that queries the UCX host
database. The IO$_ACPCONTROL arguments are as follows:

• Pl specifies the function to be performed by the ACPCONTROL
$QIO, which in this case requests a get-host-by-name conversion.

• P2 is the address of a descriptor of the host name to search for in
the host database.

• P3 is the address of a word to receive the length of the returned
address string.

• P4 is the address of the descriptor of the storage to receive the
address found by the search.

• If the $QIO failed and the reason was other than SS$_ENDOFFILE,
cease processing.

• If the $QIO failed and the reason was SS$_ENDOFFILE, then the
conversion request could not find the host name in the UCX host
database. In this case, assume that the caller supplied the name of the
node in Internet Standard Format (for example, 130.180.40.44).

This is also the format of the result string returned by the
GETHOSTBYNAME ACPCONTROL function, so continue as if the
$QIO was successful and use the caller's node argument as the result
of the ACPCONTROL $QIO system service.

8 Determine which TCP port to attach to on the server side and place
this port number, in Network Standard Format, in the sockaddrin
structure. The port number is the result of adding the server number
to 5000. (5000 is used in this example to prevent collision with a "real"
TCP/IP transport. In a "real" transport, this number would be 6000.)

e Attempt to convert the ASCII Internet Standard Format address into
the binary, 32-bit Network Standard Format address. This entails
converting numeric fields separated by periods into 1-byte values and
then packing these bytes into a longword with the :first-encountered
field converted and inserted into the rightmost byte of the longword.
For example, the address 130.180.40.44 would be converted to the
longword value 2C28B482161a·

If there are too few fields or any nonnumeric characters seen (other
than the field separator), then fail and indicate a bad parameter or
invalid server name.

If successful, the Network Standard Format address is built in the
sockaddrin structure.

8 Address conversion was successful, so attempt to attach to the
server. This is done by invoking the $QIOW system service with
an IO$_ACCESS function code. The PS argument is the address of a
descriptor of the sockaddrin structure that contains the address and
port number of the server.

8-31

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

e Mark the connection as active by setting the flags longword of the
XTCC to the constant XTCC$M_ACTIVE and the connection mode
as a remote client. These two operations should be performed in this
order because the mode field is a subfield of the flags longword.

Initialize the pointers to the XTDB in the IXTCC and the pointer to
the transport function table in the IXTCC. Inherit the event flag for
1/0 operations from the XTDB.

e Force the input and output operations to use SRPs for startup and
disable free-input operations on the input LRP free queue.

8 Remove an XTCB from the tail of the small input free queue. If the
queue was empty or corrupted, return a bad queue status and leave
the code path.

8 Disable free-input operations on the input SRP free queue. Call
DECW$XPORT_FREE_INPUT_BUFFER to start the first read
operation on the connection, and return with the status. This is
the successful end of the CONNECT code path.

e This code is entered as a result of leaving the CONNECT code path
due to some problem. Deassign the channel, remove the IXTCC from
the IXTCC queue header, and decrement the XTDB$L_REF _COUNT
field that tracks the number of connections using this transport.

The allocated memory will be deallocated by DECW$XPORT_OPEN.

8.3.12 Sample XTFT$A_ATTACH_TRANSPORT Routine

8-32

The XTFT$A_ATTACH_TRANSPORT routine acts as an initialization
procedure to perform any client- or server-specific operations required
prior to establishing connections.

Example 8-13 shows a sample implementation of the XTFT$A_ATTACH_
TRANSPORT routine.

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-13 Sample XTFT$A_ATTACH_TRANSPORT Routine

GLOBAL ROUTINE DECW$$TCPIP_ATTACH_TRANSPORT(

BEGIN
BIND

iosb
xtpb

LABEL
attach

OWN

tdb [xtdb$w iosb]
.tdb [xtdb$a_tpbl

VECTOR [4,WORD],
$BBLOCK ;

tdb REF $BBLOCK)

socktype : INITIAL((UCX$C STREAM A 16) + UCX$C TCP),
sockaddrin : $BBLOCK [SIN$S SOCKADDRIN] PRESET(

[SIN$W FAMILY] INET$C-AF INET,
[SIN$W-PORT] 0, - -
[SIN$L=ADDR] swap_long(INET$C_INADDR_ANY)) ;

LOCAL
sin_desc VECTOR [2] INITIAL(SIN$S SOCKADDRIN, sockaddrin),
log desc $BBLOCK [DSC$S_DSCDEF1], -
tab-desc $BBLOCK [DSC$S DSCDEFl],
items : BLOCKVECTOR [2, ITM$S_ITEM, 11,
host_addr : VECTOR [16,BYTE,UNSIGNED],
host_desc : VECTOR [2] INITIAL(%ALLOCATION(host_addr) - 1, host_addr),
host_len : INITIAL(0),
stradr : REF VECTOR [,BYTE,UNSIGNED],
sinadr : REF VECTOR [,BYTE,UNSIGNED],
strlen,
func code : INITIAL(INETACP FUNC$C GETHOSTBYNAME),
func=code_desc: VECTOR [2] INITIAL(%ALLOCATION(func_code), func_code),
retlen,
status ;

0 inet dev desc [0]
inet=dev=desc [1]

%CHARCOUNT(inet dev str
UPLIT(inet_dev_str f ;

8 tcpip tdb = . tdb ;
tdb [xtdb$w_efn] = ASYNC_EFN ;

t)1nn desc [DSC$A POINTER] =local node ;
items [O,ITM$W ITMCODJ LNM$ STRING ;
items [0,ITM$W-BUFSIZ] %ALLOCATION(local_node
items [0,ITM$L-BUFADR] local node ;
items [0,ITM$L-RETLEN] lnn_desc [DSC$W_LENGTH]
items [1,ITM$W-ITMCOD] 0
items [1,ITM$W-BUFSIZ] 0
items [1,ITM$L-BUFADR] 0
items [1,ITM$L-RETLEN] 0
log_desc [DSC$W_LENGTH] = %CHARCOUNT(inet local node
log desc [DSC$B DTYPE] = DSC$K DTYPE T ;
log-desc [DSC$B-CLASS] = DSC$K-CLASS-S ;
log-desc [DSC$A-POINTER] = UPLIT(inet local node) ;
tab-desc [DSC$W-LENGTH] = %CHARCOUNT('LNM$FILE DEV'
tab-desc [DSC$B-DTYPE] = DSC$K DTYPE T ; -
tab-desc [DSC$B-CLASS] = DSC$K-CLASS-S ;
tab_desc [DSC$A=POINTER] = UPLIT('LNM$FILE_DEV'

(continued on next page)

8-33

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-13 (Cont.) Sample XTFT$A_ATTACH_TRANSPORT Routine

status = $TRNLNM(TABNAM = tab_desc,
LOGNAM = log desc,
ITMLST = items) ;

ttIF (.tdb [xtdb$v_mode] AND DECW$M_XPORT_CLIENT) NEQ 0
THEN

RETURN .status ;

attach:
BEGIN
IF NOT .status
THEN

LEAVE attach;

CIIF NOT (status= $ASSIGN(DEVNAM = inet dev desc,
CHAN= tdb [xtdb$w chan],
ACMODE = psl$c_user))

THEN
LEAVE attach ;

(9 IF (status = $qiow (

THEN
status = .iosb [0]

IF NOT .status
THEN

LEAVE attach

EFN = .tdb [xtdb$w_efn],
CHAN= .tdb [xtdb$w chan],
FUNC = IO$ ACPCONTROL,
IOSB = iosb,
Pl = func_code_desc,
P2 = lnn desc,
P3 = host_len,
P4 host desc))

9 host addr [. host_len] = %C' . ' ;
host-desc [0] = .host len + 1 ;
sinadr = sockaddrin [SIN$L_ADDR]
INCR i FROM 0 TO 3
DO

BEGIN
sinadr [.i] = 0
stradr = .host desc [1] ;
IF CH$FAIL(strlen = CH$FIND_CH(.host_desc [0], .host_desc [1], %C' ·'))
THEN

8-34

BEGIN
status SS$ BADPARAM
LEAVE attach-;
END ;

(continued on next page)

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-13 (Cont.) Sample XTFT$A_ATTACH_TRANSPORT Routine

strlen = .strlen - .stradr ;
INCR j FROM 0 TO .strlen - 1
DO

BEGIN
sinadr [.i] = .sinadr [.i] * 10 + (.stradr [.j] - %C'0')
END ;

host_desc [1] = .host_desc [1] + .strlen + 1
host_desc (0) = (.host_desc [0] - .strlen) - 1
IF (.host_desc [0] LSS 0)
THEN

BEGIN
status = SS$ BADPARAM
LEAVE attach-
END ;

END ;

sockaddrin [SIN$W_PORT] =swap short((BASE TCP PORT+
- .xtpb [xtpb$w_display_num]))

• IF (status = $QIOW (EFN = .tdb [xtdb$w efn],
CHAN= .tdb [xtdb$w chan],
FUNC = IO$ SETMODE,-
IOSB = iosb,
Pl socktype,
P2 (%X'01000000' OR INET$M_LINGER OR INET$M_KEEPALIVE),
P3 sin_desc,

THEN
status = .iosb (0]

IF NOT .status
THEN

LEAVE attach

P4 5))

•IF NOT (status = transport read queue (• tdb))
THEN - -

LEAVE attach ;

8 DECW$XPORT ATTACHED (• tdb
reattach timer id = 0 ;
RETURN SS$_NORMAL ;
END ;

• detach_and_poll (.tdb
RETURN .status ;
END ;

0 Create a suitable descriptor for the Internet device logical name string.
The .address directive that would result from doing this at compile
time cannot be fixed up by the image activator, so the descriptor is
created at run time.

• Store the address of the XTDB that the common transport allocated
for this transport in tcpip_tdb. References to this XTDB by the TCP/IP
transport are usually made through this variable. Use event flag 31
(ASYNC_EFN) in asynchronous transport operations.

8-35

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

8-36

e Get the string that represents the local system name in the Internet
name space by translating the logical name "UCX$INET_HOST" that
is generated by the local_node m~cro.

8 If the transport is being attached by a client, no additional work is
needed. A server continues processing to create a listener socket,
among other things.

8 Create a socket and assign a channel to the Internet networking
service. This socket is owned by the specific transport and becomes the
listener socket for all connection requests received from clients.

C8 Attempt to perform a name-to-address conversion for the local node
with an IO$_ACPCONTROL $QIO system service that queries the
UCX host database. The $QIO arguments are as follows:

• The Pl argument specifies the control function that, in this case,
requests a get-host-by-name conversion. Pl is the function to be
performed by the IO$_ACPCONTROL $QIO.

• P2 is the address of the descriptor of the local node name acquired
at the beginning of this procedure.

• PS is the address of a word to receive the length of the returned
address string.

• P4 is the address of the descriptor of the storage to receive the
address found by the search.

8 Attempt to convert the ASCII Internet Standard Format address
returned by the ACPCONTROL $QIO into the binary, 32-bit Network
Standard Format address. (See Example 8-12.)

To do this, convert numeric fields separated by periods into 1-byte
values and then pack these bytes into a longword with the first
encountered field converted and inserted into the rightmost byte of the
longword. For example, the address 130.180.40.44 would be converted
to the longword value 2C28B48216.

If there are too few fields, or any nonnumeric characters seen (other
than the field separator), fail and indicate a bad parameter or invalid
server name.

If the conversion is successful, the Network Standard Format address
is built in the sockaddrin structure. Determine which TCP port
number to use to listen for client connection requests. Place this port
number, in Network Standard Format, in the sockaddrin structure.
(The port number is the result of adding the server number to 5000.
In a "real" transport, this number would be 6000.)

8 Establish the local address, port number, address family, and socket
options on the listener socket. The $QIO arguments are as follows:

• The Pl argument of the IO$_SETMODE $QIO system service is
the address of a longword containing the protocol family and type
to use (stream-mode, TCP socket).

• The P2 argument sets various options for the socket (in this case,
the linger and keep-alive TCP options).

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

• The P3 argument is the address of a descriptor of the sockaddrin
structure that contains the address information for the socket.

• The P5 argument is a nonzero value (specifically, 5) that marks
the socket as a listener and sets the size of the connect queue. The
connect queue limits the number of unacknowledged client connect
requests that the Internet networking service i~ willing to retain.

8 Invoke the TRANSPORT_READ_QUEUE routine to start an
asynchronous socket-accept operation. At this point, the server is
capable of receiving connection requests from clients.

8 Call DECW$XPORT_ATTACHED to report that the transport is
attached.

• This code is entered only if something went wrong. Call the DETACH_
AND_POLL routine to deassign any channels and attempt to reattach
to the network.

8.3.13 Sample TRANSPORT _READ_ QUEUE Routine
The TRANSPORT_READ_QUEUE routine initiates an asynchronous
connect-accept operation on the listener socket. Example 8-14 shows a
sample implementation of the TRANSPORT_READ_QUEUE routine.

Example 8-14 Sample TRANSPORT_READ_QUEUE Routine

ROUTINE transport_read_queue(tdb REF $BBLOCK)

BEGIN

LOCAL
item3 : VECTOR [3],
status ;

ttIF NOT .tdb [xtdb$v_dying]
THEN

BEGIN

8 IF NOT (status = $ASSIGN (

THEN
BEGIN
tdb [xtdb$v_dying] 1 ;
RETURN .status
END ;

DEVNAM = inet dev desc,
CHAN= tdb [xtdb$; ace chan],
ACMODE = psl$c_user > f

(continued on next page)

8-37

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-14 (Cont.) Sample TRANSPORT_READ_QUEUE Routine

• item3 [0] = xtdb$s ace inaddr ;
item3 [1] = tdb [xtdb$t ace inaddr] ;
item3 [2] = tdb [xtdb$1-acc-inaddr len]

8status = $qio(EFN = .tdb [xtdb$w-efn],
CHAN= .tdb [xtdb$w chan],

IF NOT .status
THEN

BEGIN

FUNC = IO$ ACCESS OR I0$M ACCEPT,
IOSB = tdb-[xtdb$w_acc_iosb],
ASTADR = transport read ast,
ASTPRM = • tdb, - -
P3 = item3,
P4 = tdb [xtdb$w_acc_chan]

$DASSGN (CHAN = • tdb [xtdb$w_acc_chan]
tdb [xtdb$v_dying] = 1

END
ELSE

END

status = DECW$_CNXABORT

RETURN .status ;

END ;

8-38

8 If the transport is dying, do not try to start another accept operation.

e Create a socket and assign a channel to the Internet networking
service. If $ASSIGN fails, mark the transport as dying and quit. If
successful, the channel number is stored in the XTDB$W _ACC_CHAN
field of the XTDB, which is a field specific to this transport.

e Create an item-list structure describing the area that is to receive
information about the client that attempts to connect to the server.
The first longword is the size of the area in bytes, the second is the
address of the first byte, and the third is the address of a longword to
receive the length of the data actually placed in the area.

The item-list structure is allocated as a 16-byte field, XTDB$T_ACC_
INADDR, in the XTDB. XTDB$S_ACC_INADDR is the symbolic name
for the length.

8 Initiate an asychronous accept operation on the listener socket by
means of the $QIO system service. The $QIO arguments are as
follows:

• The CHAN argument is the channel associated with the listener
socket created in the XTFT$A_ATTACH_TRANSPORT routine.
The specific transport uses this channel for connection requests
from all clients.

• The FUNC argument code is 10$_ACCESS with the 10$M_
ACCEPT modifier specified.

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

• The ASTADR argument is the AST completion routine to invoke
on completion. TRANSPORT_READ_AST, which is described in
Section 8.3.14, expects the address of the TCP/IP XTDB as its
argument.

• The P3 argument is the address of the 3-longword item list
previously described. The item list is used to store information
about the connecting client's node.

• The P4 argument is the channel associated with the socket created
on entry to TRANSPORT_READ_QUEUE. The server will use this
channel for communication with the client. Each client connection
is assigned its own channel.

If the $QIO service failed, mark the transport as dying and release the
channel.

8.3.14 Sample TRANSPORT_READ_AST Routine
TRANSPORT_READ_ASTis invoked when the I0$_ACCESS $QIO issued
by the TRANSPORT_READ_QUEUE routine completes and continues
processing to fully establish the client connection.

Example 8-15 shows a sample implementation of the TRANSPORT_
READ_AST routine.

Example 8-15 Sample TRANSPORT_READ_AST Routine

ROUTINE transport_read_ast(tdb REF $BBLOCK) NOVALUE =

BEGIN
BUILT IN

BIND

MOVPSL,
REMQUE,
INSQTI,
INSQUE ;

xtpb = .tcpip tdb [xtdb$a tpb] : $BBLOCK,
acc_iosb = tcpip_tdb [xtdb$w_acc_iosb] : VECTOR [4,WORD,UNSIGNED]

LOCAL
psl : $BBLOCK [4],
found : INITIAL(0),
iosb : VECTOR [4,WORD,UNSIGNED]

0 IF .acc_iosb, [0] EQL SS$_SHUT
THEN

BEGIN
DECW$XPORT ATTACH LOST(.tdb , 0)
detach_and~oll(~tdb)
RETURN ;
END ;

IF .acc_iosb [0]
THEN

(continued on next page)

8-39

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-15 (Cont.) Sample TRANSPORT _READ _AST Routine

BEGIN
MACRO

ctrstr = '!UB. !UB. !UB. !UB' %

LOCAL
tcq : REF $BBLOCK INITIAL(0),
tee : REF $BBLOCK INITIAL(0),
itcc : REF $BBLOCK INITIAL(0),
tee id: INITIAL(0),
tpb-: REF $BBLOCK INITIAL(0),
fail : INITIAL(1),
status,
il count
is_count
ol count
os_count
at_tcb,
tcb_count,

INITIAL(.xtpb [xtpb$w i lrp count]),
INITIAL(.xtpb [xtpb$w-i-srp-count]),
INITIAL(.xtpb [xtpb$w-o-lrp-count]),
INITIAL(.xtpb [xtpb$w=o=srp=count]),

tcb array: REF VECTOR [] INITIAL(0),
func_code : INITIAL(INETACP_FUNC$C_GETHOSTBYADDR),
func_code_desc : VECTOR [2] INITIAL(%ALLOCATION(func_code),

inaddr : $BBLOCK [16],
inaddr len,

f unc _code) ,

inaddr-desc : VECTOR [2] INITIAL(%ALLOCATION(inaddr), inaddr),
client-desc : VECTOR [2],
ctr_desc : VECTOR [2] INITIAL(%CHARCOUNT(ctrstr),

info size,
infoytr,
client len

LABEL
connect

UPLIT(ctrstr)),

•connect: BEGIN

8-40

info size = INET NODE NAME LEN ;
.,IF <itcc = DECW$XPORT=ALLOC_PMEM(ixtcc$c tcpip length,

DECW$C_DYN_IXTCC)) EQLA 0
THEN

BEGIN
status = SS$_INSFMEM
LEAVE connect ;
END

IF (tpb = DECW$XPORT_ALLOC_PMEM(xtpb$c tcpip length,
DECW$C=DYN_XTPB)) EQLA 0

THEN
BEGIN
status = SS$_INSFMEM
LEAVE connect ;
END

itcc [ixtcc$a_tpb] .tpb

(continued on next page)

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-15 (Cont.) Sample TRANSPORT_READ_AST Routine

.. status= DECW$XPORT ALLOC INIT QUEUES(.itcc,
.tcpip tft[xtft$l xtcc length],
.tpb [xtpb$w srp size]~
.tpb [xtpb$w-lrp-size],
.tpb [xtpb$w-i srp count],
.tpb [xtpb$w-i-lrp-count],
.tpb [xtpb$w-o-srp-count],
.tpb [xtpb$w-o-lrp-count],
.info size, - - -
infoytr)

IF NOT .status
THEN

LEAVE connect

tee = .itcc[ixtcc$a tee] ;
inaddr len = 0 ; -

8 IF NOT - (status = $FAO (ctr desc,
inaddr len,
inaddr-desc,

THEN
BEGIN
LEAVE connect
END ;

. (tdb Txtdb$t ace inaddr])<32,8,0>,

. (tdb [xtdb$t-acc-inaddr])<40,8,0>,

. (tdb [xtdb$t-acc-inaddr])<48,8,0>,

. (tdb [xtdb$t=acc=inaddr])<56,8,0>)

inaddr desc [OJ
client-desc [0]
client-desc [l)
client-len 0 ;

.inaddr_len ;
INET NODE NAME LEN - 1
.info_ptr-+ i ;

• IF (status = $QIOW (EFN = .tdb [xtdb$w efn],
CHAN .tdb [xtdb$w_chanJ,
FUNC = IO$ ACPCONTROL,
IOSB = iosb,

THEN

Pl func code desc,
P2 inaddr desc,
P3 client-len,
P4 client-desc

status = .iosb [OJ
IF NOT .status
THEN

BEGIN
IF .status NEQU SS$_ENDOFFILE
THEN

BEGIN
LEAVE connect
END

8ELSE

END

BEGIN
CH$MOVE(.inaddr len, .inaddr desc [l], .client desc [l])
client desc [OJ ~ .inaddr len-
client-len .inaddr len -
END ;

(continued on next page)

8-41

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-15 (Cont.) Sample TRANSPORT_READ_AST Routine

.ELSE
BEGIN
IF CH$EQL(.client len, .client desc [1], .lnn desc [DSC$W_LENGTH],

.lnn_desc [DSC$A_POINTER], %C' ')
THEN

BEGIN
(.client desc [1])<0,8,0>
client desc [0] = 1 ;
client-len = 1 ;

%C'0'

END ;
END

(.info_ptr)<0,8,0> %C'?'

8 IF . info_size GTR 0
THEN

BEGIN
tee [xtcc$a rem user]
tee [xtcc$1-rem-user len]
tee [xtcc$a-rem-node]
tee [xtcc$l=rem=node_len]
END

.info_ptr ;
1 ;
. info_ptr + 1
.client len

48tcpip tdb [xtdb$1 ref count] .tcpip tdb [xtdb$1 ref count] + 1
INSQUE(.itcc, tcpip_tdb [xtdb$a_itcc_flink]) ; - -

8 itcc [ixtcc$w chan]
tcpip tdb [xtdb$w ace chan]

e tee [;-tcc$1 flags) -
tee [xtcc$v-mode]
itcc [ixtcc$w efn]
itcc [ixtcc$a-tdb]
itcc [ixtcc$a=xport_table]

• IF NOT (status = $DCLAST (

THEN
LEAVE connect

• fail = 0 ;
END

= .tcpip tdb [xtdb$w ace chan]
= 0 ; - - -

= xtcc$m active ;
DECW$K-XPORT REMOTE SERVER
.tcpip-tdb [xtdb$w efn] ;

= .tcpip-tdb ; -
= .tcpip=tdb [xtdb$a_xport_table]

ASTADR = transport open callback,
ASTPRM = .itcc, - -
ACMODE = psl$c_user))

• IF .fail
THEN

.BEGIN

8-42

IF .itcc NEQA 0
THEN

BEGIN
IF .itcc [ixtcc$w_chan] NEQU 0
THEN

$DASSGN(CHAN = .itcc [ixtcc$w chan]) ;
REMQUE(.itcc, itcc) ; -
tcpip tdb [xtdb$1 ref count] = .tcpip tdb [xtdb$l_ref count] - 1
DECW$XPORT DEALLOC QUEUES(.itcc) -
DECW$XPORT=DEALLOC=PMEM(.itcc) ;
END ;

IF .tpb NEQA 0
THEN

DECW$XPORT_DEALLOC PMEM(.tpb)

(continued on next page)

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-15 (Cont.) Sample TRANSPORT_READ_AST Routine

DECW$XPORT_ACCEPT_FAILED .tcpip tdb [xtdb$1 ace inaddr len],
tcpip_tdb [xtdb$t_acc_Inaddr]~
.status) ;

END ;
END ;

8 transport_read_queue (.tcpip_tdb)

END ;

0 Test the status from the 10$_ACCESS $QIO. If the network is
shutting down, call DECW$XPORT_ATTACH_LOST to report that
the transport shut down and then call DETACH_AND_POLL to poll
for its return. If it was successful, continue processing to construct a
full connection context.

8 Start a named block of code that attempts to allocate and initialize
the resources needed to maintain a connection. If any part of this
setup fails, the code block is exited and failure processing recovers any
allocated resources.

• Allocate an IXTCC and XTPB for this connection. Store the address of
the XTPB in the IXTCC.

8 Call the transport-common DECW$XPORT_ALLOC_INIT_QUEUES
routine to allocate and initialize the communication queues.
DECW$XPORT_ALLOC_INIT_QUEUES allocates a block of storage
for an XTCC, XTCQ, and all of the XTCBs for a connection.
DECW$XPORT_ALLOC_INIT_QUEUES must allocate at least an
XTCC; the other structures are optional. DECW$XPORT_ALLOC_
INIT_QUEUES places all of the XTCBs on the appropriate free queues.

0 Convert the Network Standard Format Internet address of the
connection client, which is returned by the 10$_ACCESS $QIO in
the XTDB$T_ACC_INADDR field of the XTDB, into a dot-format
Internet address. For example, the longword value 2C28B48216 would
be converted to the ASCII string 130.180.40.44.

6) Attempt to perform address-to-nodename translation of the dot-format
Internet address to get the textual name of the client node. The
arguments of the IO$_ACPCONTROL $QIO system service are as
follows:

• Pl is the address of a 2-longword descriptor of a longword
containing the function code INETACP _FUNC$C_
GETHOSTBYADDR.

• P2 is the address of the descriptor of the dot-format Internet
address to be translated.

• P3 is the address of a word to receive the length of the resultant
string.

8-43

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

8-44

• P4 is the address of a descriptor of an area of memory to receive
the result of the translation.

8 The address-to-nodename translation failed with the status of SS$_
ENDOFFILE. This indicates that the dot-address could not be found
in the local host database. The dot-address form of the client's node
address will be used as the node name of the client.

e The address-to-nodename translation succeeded. Check if the returned
node name matches the local node name. If it does, use the string "O"
as the client's node name; otherwise use the string returned by the
translation operation.

e The Internet protocols do not support the concept of a remote user
name. Synthesize this information by identifying the remote user with
the string "?".

e Point the XTCC to the remote-user name and node fields.

e Increment the reference count and insert the IXTCC on the XTDB so
that the connection can be located during image rundown.

e Copy the channel assigned to the client connection into the IXTCC and
zero this field in the XTDB.

e Mark the connection as active by setting the flags longword of the
XTCC to the constant XTCC$M_ACTIVE and the connection mode
as a remote server (these two operations should be performed in this
order because the mode field is a subfield of the flags longword).

Initialize the pointer to the XTDB in the IXTCC and the pointer to the
transport function table in the IXTCC. Inherit the event flag for 110
operations from the XTDB.

e Deliver a user-mode AST to the TRANSPORT_OPEN_CALLBACK
routine (with the IXTCC as the argument) to complete the connection
acceptance in user mode.

TRANSPORT_OPEN_CALLBACK performs the callback to the
transport caller and starts 1/0 on the connection.

8 Executive-mode connection setup completed.

e If any step of the connection setup in the connect block failed, resource
recovery operations are performed here: channels are deassigned,
memory is deallocated, connection structures are disassociated,
reference counts are decremented, and so on.

• Call the transport common DECW$XPORT_ACCEPT_FAILED routine
to generate a report describing the cause of the failure.

e This is the common exit point. Invoke TRANSPORT_READ_QUEUE
to issue another IO$_ACCESS $QIO to receive another client
connection request.

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

8.3.15 Sample TRANSPORT_OPEN_CALLBACK Routine
TRANSPORT_OPEN_CALLBACK is invoked as a user-mode AST
procedure by TRANSPORT_READ_AST to complete the creation of a
connection. It performs a callback to the server's connect-request routine
and, depending on the value returned by that routine, completes the
connection by starting the initial read operation.

Example 8-16 shows a sample implementation of the TRANSPORT_
OPEN_CALLBACK routine.

Example 8-16 Sample TRANSPORT_OPEN_CALLBACK Routine

ROUTINE transport_open_eallbaek(itee REF $BBLOCK) NOVALUE =
BEGIN
BUILT IN

REMQTI
LOCAL

tee: REF $BBLOCK INITIAL (.itee [ixtee$a_tee]),
free_queue: REF VECTOR[2],
status ;

LABEL
start_reading

start_reading:
BEGIN

ttIF NOT (status= (.tepip_tdb [xtdb$a_eonnect_request]) (.tee))
THEN

LEAVE start reading ;
• xport_in_state_;rp (tee) ;

xport out state srp(tee) ;
xport-in free disable(tee, deew$e xport buffer lrp

e free_que;-e = -:-tee [xtee$a_ifs_queu;] - -
IF .free_queue[O] EQLA 0
THEN

BEGIN
free_queue = .tee [xtee$a_ifl_queue]
IF .free_queue[O] EQLA 0
THEN

BEGIN
status = DECW$ BADQUEUE
LEAVE start_reading ;
END ;

END ;

Gt status= DECW$$TCPIP EXECUTE FREE

IF .status
THEN

RETURN
END ;

(.tee,-0, deew$e_xport_buffer_srp, .free_queue)

• DECW$XPORT _CLOSE (. tee)

(continued on next page)

8-45

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-16 (Cont.) Sample TRANSPORT_OPEN_CALLBACK Routine

C8DECW$XPORT_REFUSED_BY_SERVER (.status) ;
RETURN
END

8 Invoke the server's connect-request routine with the address of the
XTCC for the connection.

• The transport user accepted the connection. Force the input and
output operations to use small request packets for startup and disable
free-input operations on the input large request packet free queue.

e Check the small input free queue and, if it is empty, the large input
free queue. If both are empty, the transport cannot perform a read
operation, so return a bad queue status.

8 Call the XTFT$A_EXECUTE_FREE routine to put the buffers on the
free queue and return.

8 This code is entered only if the callback procedure returned a failure
status. Invoke the transport-common DECW$XPORT_CLOSE routine
to complete the destruction of the connection.

CD Call DECW$XPORT_REFUSED_BY_SERVER to format and deliver a
message vector to describe the reason for the connection refusal. This
is constructed on the status code returned by the callback procedure.

8.3.16 Sample DETACH_AND_POLL Routine

8-46

DETACH_AND_POLL starts polling for a transport restart.

Example 8-17 shows a sample implementation of the DETACH_AND_
POLL routine.

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-17 Sample DETACH_AND_POLL Routine

ROUTINE detach_and_poll(tdb REF $BBLOCK)

BEGIN
BUILT IN

EMUL

LOCAL
status

8 IF . tdb [xtdb$v dying]
THEN

RETURN ;

•IF . tdb [xtdb$w_chan] NEQ 0
THEN

BEGIN
$CANCEL(CHAN = .tdb [xtdb$w chan]
$DASSGN(CHAN = .tdb [xtdb$w-chan]
tdb [xtdb$w_chan] = 0 -
END

0IF .tdb [xtdb$w_acc_chan] NEQ 0
THEN

BEGIN
$CANCEL(CHAN = .tdb [xtdb$w ace chan]
$DASSGN(CHAN = .tdb [xtdb$w-acc-chan]
tdb [xtdb$w_acc_chan] = 0 ; - -
END ;

.. IF .reattach_timer_id EQL 0
THEN

BEGIN
reattach timer id = .tdb

NO VALUE

EMUL(%REF(REATTACH INTERVAL SECS), %REF(-10000000), %REF(0),
reattach_timer_delta) ;

END ;

CitrF .tcpip_tdb [xtdb$v_dying]
THEN

RETURN ;

• status = $SETIMR (
EFN = 31,
DAYTIM = reattach_timer_delta,
ASTADR = reattach ast,
REQIDT .reattach_timer_id) ;

• IF NOT . status
THEN

DECW$XPORT_REATTACH_FAILED(.tdb, .status)
RETURN
END ;

8 If the XTDB$V _DYING bit is set, there is no need to continue.

• Release the channel to the Internet device.

0 Release the connection-accept channel.

8-47

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

8 If the timer is not identified, associate the timer with the address of
theXTDB.

8 Make sure that the transport is still alive.

• Start polling for a network restart at reattach_timer_delta intervals.
(The REATTACH_AST routine is described in Section 8.3.17.)

0 If unable to poll for the restart, report that the reattach failed.

8.3.17 Sample REATTACH_AST Routine
REATTACH_AST calls DECW$$TCPIP _ATTACH_TRANSPORT to
reattach the transport when the reattach_timer _delta interval has
expired.

Example 8-18 shows a sample implementation of the REATTACH_AST
routine.

Example 8-18 Sample REATTACH_AST Routine

ROUTINE reattach_ast(tdb REF $BBLOCK) NOVALUE =

BEGIN

LOCAL
status;

Ostatus = DECW$$TCPIP_ATTACH_TRANSPORT(.tdb)

RETURN ;
END ;

0 Call DECW$$TCPIP _ATTACH_TRANSPORT to reattach the
transport.

8.3.18 Sample XTFT$A_RUNDOWN Routine

8-48

XTFT$A_RUNDOWN is invoked by the common transport when the
image in which the transport is running exits. It is the responsibility of
each transport's rundown procedure to release any resources that might
survive the image exit. ASTs are disabled while XTFT$A_RUNDOWN is
executing.

Example 8-19 shows a sample implementation of the XTFT$A_
RUNDOWN routine.

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

Example 8-19 Sample XTFT$A_RUNDOWN Routine

GLOBAL ROUTINE DECW$$TCPIP _RUNDOWN (tdb REF $BBLOCK)

BEGIN
BIND

iosb = tdb [xtdb$w iosb]
xtpb .tdb [xtdb$a_tpb]

LOCAL

VECTOR [4' WORD] I

$BBLOCK ;

itcc REF $BBLOCK INITIAL(.tdb [xtdb$a_itcc_flink]),
status

8 tdb [xtdb$v_dying] 1 ;

8 WHILE . itcc NEQA tdb [xtdb$a_itcc_flink] DO
BEGIN
BIND

xtcc = .itcc [ixtcc$a_tcc] : $BBLOCK

xtcc [xtcc$v dying] = 1 ;
$CANCEL(CHAN = .itcc [ixtcc$w chan]
$DASSGN(CHAN = .itcc [ixtcc$w-chan]
itcc [ixtcc$w chan] = 0 ; -
itcc = .itcc [xtcc$a_flink] ;
END ;

.,IF (.tdb [xtdb$v_mode] AND DECW$M_XPORT_CLIENT) NEQ 0
THEN

RETURN

8 $CANCEL(
$CANCEL(

CHAN .tdb [xtdb$w chan]) ;
CHAN = .tdb [xtdb$w=acc_chan]

$DASSGN(CHAN = .tdb [xtdb$w ace chan]
tdb [xtdb$w ace chan] = 0 ;
$DASSGN(CHAN-= .tdb [xtdb$w chan]) ;
tdb [xtdb$w_chan] = 0 ; -

IF .reattach_timer_id NEQ 0
THEN

$CANTIM(REQIDT = .reattach_timer_id

RETURN

END ;

NOVALUE

0 Mark this transport as dying to prevent any of the routines, such as
TRANSPORT_READ_QUEUE, from performing additional operations.

8 Locate each connection known to this transport and perform any
rundown operations necessary. For TCP/IP, the connection is marked
as dying to prevent any per-connection routine from operating on
the connection. Any 1/0 operation in progress on the connection is
canceled and the communication channel is deassigned.

e. If the caller is a client, no more processing is needed for rundown.

8-49

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

8 For servers, cancel any I/O operation on the listening and accepting
channels and deassign the channels.

8.3.19 Sample DECW$TRANSPORT_INIT Routine

8-50

The DECW$TRANSPORT_INIT routine initializes and returns the
address of the XTFT. Each specific transport has a global symbol
named DECW$TRANSPORT_INIT. This is the address of the first
procedure invoked in the specific transport during the common transport
DECW$XPORT_ATTACH_TRANSPORT routine and it is responsible for
initializing the fields in the XTFT structure.

The DECW$EXAMPLES:XPORT_EXAMPLE_XFER.MAR module and ~
DECW$EXAMPLES:DEMO_BUILD.COM procedure ensure that the ~
transfer vector to the DECW$TRANSPORT_INIT routine is found at the
beginning of the transport-specific shareable image.

Unlike the other transport-specific functions, DECW$TRANSPORT_INIT
returns the address of the XTFT structure as its return value instead of a
VMS condition code.

Example 8-20 shows a sample implementation of the
DECW$TRANSPORT_INIT routine.

Example 8-20 Sample DECW$TRANSPORT _INIT Routine

GLOBAL ROUTINE DECW$TRANSPORT_INIT =

BEGIN
LOCAL

tft: REF $BBLOCK ;

tft = tcpip tft ;
tft[xtft$l_required0] = xtft$k_required0 ;
tft[xtft$1 reservedO] = 0 ;
tft[xtft$a-execute write] = decw$$tcpip execute write
tft[xtft$a-write] ~ decw$$tcpip write ;- -
tft[xtft$a-write user] = decw$$tcpip write user ;
tft[xtft$a-execute free] = decw$$tcpip execute free
tft[xtft$a-free input buffer] = decw$$tcpip free input buffer
tft[xtft$a-close] = decw$$tcpip close ; - - -
tft[xtft$a-open] = decw$$tcpip open ;
tft[xtft$a-attach transport] =-decw$$tcpip attach transport
tft[xtft$a-rundown] = decw$$tcpip rundown; -
tft[xtft$1-xtcc length] = xtcc$c tcpip length ;
tft[xtft$1-xtpb-length] = xtpb$c-tcpip-length ;
tft[xtft$1-xtdb-length] = xtdb$c-tcpip-length ;
tft[xtft$1-ixtcc length] = ixtcc$c tcpip length
tft[xtft$l=requiredl] xtft$k_required~-;
.tft
END ;

Writing Your Own Transport
8.3 Sample TCP/IP Transport Layer Implementation

DECW$EXAMPLES:XPORT_EXAMPLE_XFER.MAR generates transfer
vectors for the sample transport. A portion of the XPORT_EXAMPLE_
XFER.MAR code follows:

.PSECT $TRANSFER$ PIC,USR,CON,REL,LCL,SHR,EXE,RD,NOWRT,QUAD

TRANSFER DECW$TRANSPORT_INIT

.END

The $TRANSFER$ program section points to a program unit, in this case
DECW$TRANSPORT_INIT. The DEMO_BUILD.COM procedure then
creates a cluster and collects the $TRANSFER$ program section in it, as
described in Example 8-1.

8-51

Index

A
Attaching transport • 3-36, 3-42
Attributes

getting transport • 3-38
setting transport • 3-38

B
Buffer

adding to queue • 3-30
removing from queue • 3-30

c
Callback

transport-specific• 3-45
Client input

handling • 2-5
receiving • 2-4

Client/server connection
types• 1-2

CLOSE_AND_DEALLOCATE_AST routine• 6-3
sample code example• 8-25

Communication context
how maintained • 1-2

Communication queues • 3-26
Components

transport-common • 3-34
transport-specific• 3-34

Connection callback
transport-specific • 3-45

Connections
accepting asynchronously• 6-10
callback during open • 6-8
closing • 3-41, 6-13

AST completion for • 6-3
opening • 3-37, 3-42, 6-19
types of client/server • 1-2

Core protocol request• 2-1

D
Data structures

described • 3-1
IXTCC• 3-10
XTCB• 3-18
XTCC • 3-13
XTCQ• 3-19
XTDB• 3-21
XTFT• 3-24
XTPB• 3-7

DECW$$TCPIP _OPEN routine
sample code example • 8-26

DECW$$XPORT _FREE_INPUT routine • 5-18
DECW$$XPORT_WRITE routine• 5-31
DECW$PRIVATE_SERVER_SETUP.TEMPLATE

modifying • 8-2
DECW$STARTUP.COM procedure

function • 1-2
DECW$TRANSPORT_COMMON.EXE • 1-2
DECW$TRANSPORT_DECNE~EXE• 1-2
DECW$TRANSPORT_INIT routine• 6-4

sample code example • 8-50
DECW$TRANSPORT_LOCAL.EXE • 1-2
DECW$TRANSPORT_TCPIP.EXE • 1-2
DECW$XPORT _ACCEPT _FAILED routine • 5-3
DECW$XPORT_ALLOC_INIT_QUEUES routine•

5-5
DECW$XPORT_ALLOC_PMEM routine• 5-9
DECW$XPORT_ATTACHED routine• 5-10
DECW$XPORT_ATTACH_LOST routine• 5-11
DECW$XP0RT _CLOSE routine• 5-12
DECW$XPORT_COPY_AND_WRITE routine• 5-13
DECW$XPORT _DEALLOC_PMEM routine • 5-16
DECW$XPORT_DEALLOC_QUEUES routine• 5-17
DECW$XPORT_IN_NOTIFY_USER routine• 5-19
DECW$XPORT_REATTACH_FAILED routine• 5-20
DECW$XPORT _REFUSED_BY _SERVER routine •

5-22
DECW$XPORT_UNEXPECTED_MESSAG routine•

5-23
DECW$XPORT_UNKNOWN_LINK routine• 5-24
DECW$XPORT _ VALIDATE_STRUCT routine • 5-25
DECW$XPORT_VALIDATE_STRUCT_JSB routine•

5-26
DECW$XPORT_VALIDATE_XTCB routine• 5-27

lndex-1

Index

DECW$XPORT _ VALIDATE_XTCB_JSB routine •
5-29

DETACH_AND_POLL routine• 6-5
sample code example • 8-46

Display • 1-2

F
FREE_INPUT _AST routine • 6-6

sample code example• 8-20
Functions

I

transport-common • 3-35
transport specific • 3-41

Images
DECW$TRANSPORT_COMMON.EXE • 1-2
DECW$TRANSPORT_DECNET.EXE • 1-2
DECW$TRANSPORT _LOCAL.EXE • 1-2
DECW$TRANSPORT_TCPIP.EXE • 1-2

IXTCC data structure • 3-10

M
Memory

allocating for transport • 3-38

0
Opening a connection• 3-37, 3-42, 6-19
Output buffering and synchronization • 2-3

p
Protocol request • 2-1

client input • 2-4
generating • 2-1
handling input • 2-5
transporting • 2-4

lndex-2

Q
Queue

adding buffer • 3-30
common/specific relationship • 3-28
removing buffer • 3-30

Queue access conflict
preventing • 3-33

Queue conditions
special case • 3-34

Queue notification flags • 3-32

R
Read operations

AST completion for • 6-6, 6-9
transport-common • 3-38

REATTACH_AST routine• 6-7
sample code example • 8-48

Request
core protocol • 2-1

Routines
CLOSE_AND_DEALLOCATE_AST • 6-3, 8-25
DECW$$TCPIP _OPEN• 8-26
DECW$$XPORT _FREE_INPUT • 5-18
DECW$$XPORT _WRITE • 5-31
DECW$TRANSPORT _INIT • 6-4, 8-50
DECW$XPORT _ACCEPT _FAILED• 5-3
DECW$XPORT_ALLOC_INIT_QUEUES • 5-5
DECW$XPORT_ALLOC_PMEM • 5-9
DECW$XPORT _ATTACHED • 5-10
DECW$XPORT _ATTACH_LOST • 5-11
DECW$XPORT_CLOSE • 5-12
DECW$XPORT _COPY _AND_WRITE • 5-13
DECW$XPORT _DEALLOC_PMEM • 5-16
DECW$XPORT_DEALLOC_QUEUES • 5-17
DECW$XPORT_IN_NOTIFY_USER • 5-19
DECW$XPORT _REATTACH_FAILED • 5-20
DECW$XPORT_REFUSED_BY_SERVER • 5-22
DECW$XPORT_UNEXPECTED_MESSAG • 5-23
DECW$XPORT_UNKNOWN_LINK • 5-24
DECW$XPORT _ VALIDATE_STRUCT • 5-25
DECW$XPORT _ VALIDATE_STRUCT _JSB • 5-26
DECW$XPORT_VALIDATE_XTCB • 5-27
DECW$XPORT_VALIDATE_XTCB_JSB • 5-29
DETACH_AND_POLL • 6-5, 8-46
FREE_INPUT_AST• 6-6, 8-20
REATTACH_AST • 6-7, 8-48

Routines (cont'd.)
transport-common • 5-3 to 5-32
transport-specific• 6-3 to 6-25
TRANSPORT _OPEN_ CALLBACK • 6-8, 8-45
TRANSPORT _READ_AST • 6-9, 8-39
TRANSPORT_READ_QUEUE • 6-10, 8-37
utility • 7-3 to 7-27
VALIDATE_USER • 7-27
VALIDATE_USERW • 7-26
VALIDATE_XTCC • 7-25
WRITE_AST • 6-11, 8-11
XPORT_ABORT_SEND • 7-16
XPORT _IN_FREE_DISABLE • 7-24
XPORT _IN_FREE_ENABLE • 7-23
XPORT_IN_NOTIFY_CLEAR • 7-4
XPORT _IN_NOTIFY _SEND• 7-6
XPORT_IN_NOTIFY_SET• 7-3
XPORT_IN_NOTIFY_WAIT• 7-5
XPORT_IN_STATE_LRP • 7-22
XPORT_IN_STATE_SRP • 7-21
XPORT _OUT _NOTIFY _CLEAR• 7-8
XPORT_OUT_NOTIFY_SEND • 7-10
XPORT_OUT_NOTIFY_SET• 7-7
XPORT_OUT_NOTIFY_WAIT • 7-9
XPORT_OUT_STATE_LRP • 7-20
XPORT_OUT_STATE_SRP • 7-19
XPORT _OUT _WRITE_DISABLE • 7-18
XPORT_OUT_WRITE_ENABLE • 7-17
XPORT _UNWRITE_WAIT • 7-15
XPORT_WRITE_WAIT • 7-14
XPORT_XTCB_FILLED • 7-11
XPORT_XTCB_FREE• 7-13
XPORT _XTCB_ TOTAL• 7-12
XTFT$A_ATTACH_ TRANSPORT• 6-12, 8-32
XTFT$A_CLOSE • 6-13, 8-24
XTFT$A_EXECUTE_FREE • 6-14, 8-18
XTFT$A_EXECUTE_WRITE • 6-16, 8-7
XTFT$A_FREE_INPUT_BUFFER • 6-18, 8-19
XTFT$A_OPEN • 6-19
XTFT$A_RUNDOWN • 6-21, 8-48
XTFT$A_WRITE • 6-22, 8-9
XTFT$A_WRITE_USER • 6-24, 8-15

s
Shareable image

identifying transport-specific • 8-2
Synchronization

Xlib output buffering • 2-3

T
TCP/IP transport

sample link example • 8-2
TCP/IP transport layer setup _

sample code example• 8-4
Timer mechanism • 3-40
Transport

allocating memory • 3-38
attaching• 3-42

Index

closing connection • 3-41, 3-44, 6-3, 6-13
common components • 3-34
common functions • 3-35
common read operations • 3-38
common routines • 5-3 to 5-32

list• 5-1
common/specific architecture • 1-2
display • 1-2
establishing connection• 6-5, 6-7
initialization functions • 6-12
initializing • 3-35, 3-41
opening connection• 3-37, 3-42, 6-19
rundown functions • 6-21
specific callback • 3-45
specific components • 3-34
specific functions • 3-41
specific routines • 6-3 to 6-25

list• 6-1
timer mechanism • 3-40
utility routines • 7-3 to 7-27

list• 7-1
walk-through of transport activities • 4-1
writing to • 3-39

Transport attributes
getting • 3-38
setting • 3-38

Transport buffer
adding to queue • 3-30
removing from queue • 3-30

Transport images
DECW$TRANSPORT_COMMON.EXE • 1-2
DECW$TRANSPORT _DECNET.EXE • 1-2
DECW$TRANSPORT_LOCAL.EXE • 1-2
DECW$TRANSPORT_TCPIP.EXE • 1-2

Transport layer
attaching • 3-36
establishing local connections • 1-5
establishing remote connections • 1-3
function• 1-1
overview • 1-1

lndex-3

Index

Transport queue
adding buffer • 3-30
common/specific relationship • 3-28
removing buffer• 3-30

Transport read operations
AST completion for • 6-6, 6-9
common • 3-38

Transport write operations
AST completion for• 6-11
common • 3-39

TRANSPORT_ OPEN_ CALLBACK routine • 6-8
sample code example • 8-45

TRANSPORT_READ_AST routine• 6-9
sample code example • 8-39

TRANSPORT_READ_QUEUE routine• 6-10
sample code example • 8-37

v
VALIDATE_USER macro• 7-27
VALIDATE_USERW macro• 7-26
VALIDATE_XTCC macro• 7-25

w
Walk-through• 4-1
Write operations

AST completion for • 6-11
transport-common • 3-39

WRITE_AST routine• 6-11
sample code example • 8-11

Writing to transport • 3-39

x
X11 protocol

overview • 2-1
X11 protocol request

client input • 2-4
handling input • 2-5
transporting• 2-4

Xlib
output buffering and synchronization • 2-3

XPORT_ABORT_SEND macro• 7-16
XPORT _IN_FREE_DISABLE macro • 7-24
XPORT _IN_FREE_ENABLE macro• 7-23

lndex-4

XPORT _IN_NOTIFY _CLEAR routine• 7-4
XPORT_IN_NOTIFY _SEND routine• 7-6
XPORT_IN_NOTIFY _SET routine• 7-3
XPORT_IN_NOTIFY_WAIT routine• 7-5
XPORT_IN_STATE_LRP macro• 7-22
XPORT_IN_STATE_SRP macro• 7-21
XPORT_OUT_NOTIFY_CLEAR routine• 7-8
XPORT _OUT _NOTIFY _SEND routine• 7-10
XPORT_OUT_NOTIFY_SET routine• 7-7
XPORT_OUT_NOTIFY_WAIT routine• 7-9
XPORT_OUT_STATE_LRP macro• 7-20
XPORT_OUT_STATE_SRP macro• 7-19
XPORT_OUT_WRITE_DISABLE macro• 7-18
XPORT_OUT_WRITE_ENABLE macro• 7-17
XPORT_WRITE_UNWAIT macro• 7-15
XPORT_WRITE_WAIT macro• 7-14
XPORT_XTCB_FILLED macro• 7-11
XPORT_XTCB_FREE macro• 7-13
XPORT_XTCB_TOTAL macro• 7-12
XTCB data structure • 3-18

freeing input buffer• 6-18
reading from transport • 3-43
returning to local connection• 6-14
writing from transport-common to connection •

6-22
writing from user's address space • 6-24
writing to connection • 6-16
writing to transport • 3-43

XTCC data structure • 3-13
XTCQ data structure• 3-19
XTDB data structure• 3-21
XTFT$A_ATTACH_ TRANSPORT routine• 6-12

sample code example • 8-32
XTFT$A_CLOSE routine• 6-13

sample code example • 8-24
XTFT$A_EXECUTE_FREE routine • 6-14

sample code example • 8-18
XTFT$A_EXECUTE_WRITE routine• 6-16

sample code example • 8-7
XTFT$A_FREE_INPUT_BUFFER routine• 6-18

sample code example• 8-19
XTFT$A_OPEN routine• 6-19
XTFT$A_RUNDOWN routine• 6-21

sample code example • 8-48
XTFT$A_WRITE routine• 6-22

sample code example • 8-9
XTFT$A_WRITE_USER routine• 6-24

sample code example • 8-15
XTFT data structure • 3-24

initialization routine • 6-4
XTPB data structure• 3-7

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call
800-DIGITAL

809-754-7575

800-267-6215

Contact
Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VMS DECwindows
Transport Manual

AA-PABWA-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
commeµ.ts on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name!I'itle

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

- Do Not Tear - Fold Here and Tape -------------------~lllr--------------
No Postage

mamaama™ ~;::::~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1

in the
United States

- Do Not Tear· Fold Here --

I
I
I
I
I
I

