
DEC GKS Reference Manual
Part2
Order Number: AA-HW44D-TE

February 1990

This document is an encyclopedic reference to the DEC GKS level 2c run-time func
tions. This volume contains information on the DEC GKS inquiry functions, supported
workstations, error messages, language-specific concerns, fonts, color representations,
escapes, and GDPs.

Revision/Update Information: This revised document supersedes the VAX GKS
Reference Manual Volume II (Order No.
AA-HW44C--TE).

Operating System and Version: VMS Version 5.1 or higher. VAXstation requirement:

Software Version:

digital equipment corporation
maynard, massachusetts

VAXstation Windowing Software Versions 4.0 or
higher, or DECwindows Version 1.0.

DEC GKS Version 4.1

First Printing, March 1984
Revised, November 1984, May 1986, March 1987, April 1989, February 1990

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docum.ent.

The software described in this document is furnished under a license and may be used
or copied only i!'1 accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

©Digital Equipment Corporation 1984, 1986, 1987, 1989, 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1 EduSystem RT
DEC IAS ULTRIX
DEC/CMS MASS~US UNIBUS
DEC/MMS PDP VAX
DECmate PDT VAXcluster
DECnet P/OS VMS
DECsystem-1 O Professional VT
DECSYSTEM-20 Q-bus Work Processor
DEC US Rainbow
DECwriter RSTS mnmDDID™ DIBOL RSX

The following are third-party trademarks:

HP7475, HP7550, HP7580, and HP7585 are registered trademarks of Hewlett-Packard
Company.
MPS2000 is a trademark of LaserGraphics, Inc.
Postscript is a registered trademark of Adobe Systems, Inc.
Tektronix is a registered trademark of Tektronix, Inc.

This document was prepared using VAX DOCUMENT, Version 1.2

ZK5386

Contents

Preface . xiii

Chapter 11 Inquiry Functions

11.1 Using the Inquiry Functions . 11-3
11.1.1 The Error Status Argument . 11-5
11.1.2 The Value Type Argument . 11-6

11.2 Function Descriptions. 11-8
GKS DESCRIPTION TABLE INQUIRIES . 11-9

INQUIRE LEVEL OF GKS. • 11-10
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES 11-13
INQUIRE MAXIMUM NORMALIZATION TRANSFORMATION
NUMBER . 11-16
INQUIRE WORKSTATION MAXIMUM NUMBERS . • 11-18

WORKSTATION DESCRIPTION TABLE INQUIRIES • 11-21
INQUIRE COLOR FACILITIES........................... 11-22
INQUIRE DEFAULT CHOICE DEVICE DATA 11-26
INQUIRE DEFAULT DEFERRAL STATE VALUES 11-35
INQUIRE DEFAULT LOCATOR DEVICE DATA 11-38
INQUIRE DEFAULT PICK DEVICE DATA. 11-45
INQUIRE DEFAULT STRING DEVICE DATA 11-51
INQUIRE DEFAULT STROKE DEVICE DATA................. 11-58
INQUIRE DEFAULT VALUATOR DEVICE DATA 11-65
INQUIRE DISPLAY SPACE SIZE . 11-72
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES . . 11-76
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION
ATTRIBUTES . 11-82
INQUIRE FILL AREA FACILITIES. • 11-88
INQUIRE GENERALIZED DRAWING PRIMITIVE 11-92

iii

INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING
PRIMITIVES
INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE
TABLES
INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES
INQUIRE NUMBER OF SEGMENT PRIORITIES SUPPORTED
INQUIRE PATTERN FACILITIES
INQUIRE POLYLINE FACILITIES
INQUIRE POLYMARKER FACILITIES
INQUIRE PREDEFINED COLOR REPRESENTATION
INQUIRE PREDEFINED FILL AREA REPRESENTATION
INQUIRE PREDEFINED PATTERN REPRESENTATION
INQUIRE PREDEFINED POLYLINE REPRESENTATION
INQUIRE PREDEFINED POLYMARKER REPRESENTATION
INQUIRE PREDEFINED TEXT REPRESENTATION
INQUIRE TEXT FACILITIES
INQUIRE WORKSTATION CATEGORY
INQUIRE WORKSTATION CLASSIFICATION

GKS STATE LIST INQUIRIES
INQUIRE CLIPPING
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES
INQUIRE CURRENT NORMALIZATION TRANSFORMATION
NUMBER .. .
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES
INQUIRE INPUT QUEUE OVERFLOW
INQUIRE LIST OF NORMALIZATION TRANSFORMATION
NUMBERS
INQUIRE MORE SIMULTANEOUS EVENTS
INQUIRE NAME OF OPEN SEGMENT
INQUIRE NORMALIZATION TRANSFORMATION
INQUIRE OPERATING STATE VALUE
INQUIRE PICK IDENTIFIER VALUE
INQUIRE SET OF ACTIVE WORKSTATIONS
INQUIRE SET OF OPEN WORKSTATIONS
INQUIRE SET OF SEGMENT NAMES IN USE

WORKSTATION STATE LIST INQUIRIES
INQUIRE CHOICE DEVICE STATE
INQUIRE COLOR REPRESENTATION
INQUIRE FILL AREA REPRESENTATION
INQUIRE LIST OF COLOR INDICES
INQUIRE LIST OF FILL AREA INDICES
INQUIRE LIST OF PATTERN INDICES
INQUIRE LIST OF POLYLINE INDICES
INQUIRE LIST OF POLYMARKER INDICES · ..

iv

11-96

11-99
11-102
11-106
11-109
11-112
11-116
11-121
11-124
11-128
11-132
11-136
11-140
11-145
11-150
11-153
11-156
11-157
11-160

11-167
11-169
11-175

11-178
11-181
11-183
11-185
11-188
11-190
11-192
11-195
11-198
11-201
11-202
11-211
11-215
11-219
11-222
11-225
11-228
11-231

INQUIRE LIST OF TEXT INDICES
INQUIRE LOCATOR DEVICE STATE
INQUIRE PATTERN REPRESENTATION•.........
INQUIRE PICK DEVICE STATE•.........
INQUIRE POLYLINE REPRESENTATION
INQUIRE POLYMARKER REPRESENTATION
INQUIRE SET OF SEGMENT NAMES ON WORKSTATION
INQUIRE STRING DEVICE STATE
INQUIRE STROKE DEVICE STATE
INQUIRE TEXT EXTENT
INQUIRE TEXT REPRESENTATION
INQUIRE VALUATOR DEVICE STATE
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES
INQUIRE WORKSTATION CONNECTION AND TYPE
INQUIRE WORKSTATION STATE
INQUIRE WORKSTATION TRANSFORMATION

SEGMENT STATE LIST INQUIRIES
INQUIRE SEGMENT ATTRIBUTES
INQUIRE SET OF ASSOCIATED WORKSTATIONS

PIXEL INQUIRIES
INQUIRE PIXEL
INQUIRE PIXEL ARRAY
INQUIRE PIXEL ARRAY DIMENSIONS

Appendix A DEC GKS-Supported Workstations

A.1

A.2

A.3

A.4

Supported Workstation Types

Default Workstation Types

Output-Only Devices

Using Bit Masks for Workstation iypes .
A.4.1 An Alternative to Defining Bit Masks

Appendix B DEC GKS Constants

11-234
11-237
11-'245
11-249
11-258
11-262
11-266
11-269
11-276
11-286
11-290
11-295
11-302
11-307
11-310
11-313
11-317
11-318
11-322
11-325
11-326
11-329
11-334

A-1

A-3

A-4

A-4
A-5

v

Appendix C DEC GKS Attribute Values

C.1

C.2

C.3

C.4

C.5

C.6

C.7

C.8

Appendix D

D.1

D.2

D.3

D.4

D.5

D.6

D.7

D.8

D.9

D.10

D.11

D.12

vi

Initial Polyline Attributes ..

Initial Polymarker Attributes .

Initial Text Attributes

Initial Fill Area Attributes .

Initial Segment Attributes .

Initial Normalization Transformation Settings

DEC GKS-Speciflc Line Types

DEC GKS-Speciflc Marker Types ·

DEC GKS Error Messages

C-1

C-2

C-3

C-4

C-4

C-5

C-5

C-6

Implementation-Specific Errors . D-2

Operating State Errors . D-17

Workstation Errors . D-19

Transformation Function Errors . D-25

Output Attribute Errors . D-26

Output Function Errors . D-33

Segment Function Errors . D-34

Input Function Errors . D-36

Metafile Function Errors . D-39

Escape Function Errors . D-41

Miscellaneous Errors . D-41

System Errors . D-42

Appendix E DEC GKS Metafile Structures (GKSM, CGM)

E.1

E.2

GKSM Metaflles
E.1.1 Data Format Information .
E.1.2 GKSM Structure ...

E.1.2.1 Metafile Header Structure
E.1.2.2 Metafile Item Structure
E.1.2.3 Item Header Structure
E.1.2.4 Layout of Item Data Records

E.1.3 GKSM Physical File Organization . . . ~

Computer Graphics Metaflles (CGM)
E.2.1 CGM Structure .
E.2.2 Differences Between GKS and CGM
E.2.3
E.2.4
E.2.5

E.2.6

Character Encoding .
Clear Text Encoding .
CGM Element Descriptions
E.2.5.1 CGM Encoding Examples
CGM Physical File Organization

Appendix F Language-Specific Programming Information

F.1 Passing Arguments by Descriptor

F.2 Programming in BASIC

F.3 Programming in VAX C

F.4 Programming in VAX COBOL

F.5 Programming in VAX Pascal

Appendix G DEC GKS Device-Independent Fonts

G.1 Font Fiie Formats .

G.2 Font Design

G.3 Stroke Font File .
G.3.1 Stroke Font File Header ...
G.3.2 Character Descriptor.
DEC GKS DEVICE-INDEPENDENT FONTS

E-1
E-2
E-2
E-3
E-4
E-4
E-5
E-9

E-9
E-11
E-13
E-14
E-16
E-17
E-25
E-28

F-1

F-3

F-3

F-3

F-7

G-1

G-2

G-4·
G-5
G-9

G-13

vii

Appendix H DEC GKS Color Chart

Appendix I DEC GKS GDPs and Escapes
DATA RECORD FORMAT USED IN THIS APPENDIX 1-2
GENERALIZED DRAWING PRIMITIVES (GDPS) 1-4

UNFILLED GDPS . • 1-9
FILLED GDPS . 1-26
CELL ARRAY GDPS . 1-44
TEXT GDPS . • 1-46

ESCAPE FUNCTIONS . 1-48
CONTROL ESCAPE FUNCTIONS • 1-49
OUTPUT, ATTRIBUTE, AND TRANSFORMATION ESCAPE
FUNCTIONS . 1-62
DEC GKS DECWINDOWS ESCAPE FUNCTIONS 1-83
DEC GKS STATE LIST INQUIRY ESCAPE FUNCTIONS......... 1-101
WORKSTATION STATE LIST INQUIRY ESCAPE FUNCTIONS..... 1-106
WORKSTATION DESCRIPTION TABLE INQUIRY ESCAPE
FUNCTIONS . • 1-122
UTILITY ESCAPE FUNCTIONS . 1-132

Appendix J DEC GKS-Speclflc Input Values
LOGICAL INPUT DEVICE NUMBERS . J-2

CHOICE DEVICES. • J-4
LOCATOR DEVICES . J-7
PICK DEVICES . • J-8
STRING DEVICES . • • . . . J-9
STROKE DEVICES • J-11
VALUATOR DEVICES................................. J-12
INPUT DEVICES AND ECHO AREA TITLES J-13

PROMPT AND ECHO TYPES, AND DATA RECORDS J-15
CHOICE INPUT CLASS • . J-16
LOCATOR INPUT CLASS . • . . . J-18
PICK INPUT CLASS . J-25
STRING INPUT CLASS . • J-26
STROKE INPUT CLASS . • . J-27
VALUATOR INPUT CLASS . • . . . J-31

KEYPAD FUNCTIONALITY . • • . . . J-33
CYCLING LOGICAL INPUT DEVICES • • . • J-34
NUMERIC KEYPAD (ZONING MECHANISM) • J-35
NUMERIC KEYPAD (CHOICE) . J-36
AUXILIARY KEYPAD (CHOICE) . J-38

viii

Index

Examples
11-1

11-2

11-3

11-4

11-5

11-6

11-7

11-8

11-9

11-10

11-11

11-12

11-13

11-14

E-1

F-1

F-2

G-1

Figures
A-1

E-1

E-2

E-3

E-4

E-5

E-6

E-7

G-1

THE LOCK KEY . • J-39

Set and Realized Inquiry Value Types .

Determining the Default Choice Input Values .

Determining the Default Locator Input Values

Determining the Default Pick Input Values .

Determining the Default String Input Values ..

Determining the Default Stroke Input Values .

Determining the Default Valuator Input Values

Determining the State of the Choice Logical Input Device

Determining the Current Locator State .

Determining the Values Associated with the Current Pick State

Determining the Initial String Logical Input Device Values

Determining the Initial Stroke Logical Input Device Values

Determining the Current Valuator State .

Determining the Dimensions of a Pixel Array •

CGM Metafile Creation ..

Macro Subroutine Used to Build Array Descriptors

A Sample COBOL Program Using the Subroutine BUILDESC

Printing the ASCII Values of Font Characters .

Hexadecimal Bit Masks. as Workstation Type Values . . •

GKSM Metafile Structure ..

GKSM Metafile Header Structure .

GKSM Metafile Item Structure .

GKSM Metafile Item Header Structure .

CGM Components ·

CGM Basic Data Encoding Format•

CGM Basic Encoding Format for Real Numbers

DEC GKS Font Lines ..•...............................•.

11-7

11-32

11-43

11-49

11-56

11-63

11-70

11-208

11-243

11-256

11-274

11-283

11-300

11-337

E-26

F-4

F-6

G-10

A-5

E-3

E-3

E-4

E-5

E-11

E-15

E-16

G-2

ix

G-2 DEC GKS Default Font Number 1
ISO Standard Character Set . G-13

G-3 DEC GKS Font Number -2
Small Uniplex Simplex Roman and Greek . G-14

G-4 DEC GKS Font Number -3
Large Simplex Uniplex Roman....... G-15

G-5 DEC GKS Font Number -4
Large Uniplex Simplex Greek . G-16

G-6 DEC GKS Font Number -5
Large Simplex Uniplex Script. G-17

G-7 DEC GKS Font Number -6
Medium Complex Duplex Roman . G-18

G-8 DEC GKS Font Number -7
Medium Complex Duplex Greek . G-19

G-9 DEC GKS Font Number -8
Medium Complex Duplex Italic . G-20

G-10 DEC GKS Font Number -9
Large Complex Duplex Roman . G-21

G-11 DEC GKS Font Number -10
Large Complex Duplex Greek . G-22

G-12 DEC GKS Font Number-11
Large Complex Duplex Italic . G-23

G-13 DEC GKS Font Number-12
Large Simplex Duplex Roman . G-24

G-14 DEC GKS Font Number -13
Large Complex Duplex Script. G-25

G-15 DEC GKS Font Number -14
Large Complex Duplex Cyrillic . G-26

G-16 DEC GKS Font Number -15
Large Complex Triplex Roman ~ . G-27

G-17 DEC GKS Font Number -16
Large Complex Triplex Italic. G-28

G-18 DEC GKS Font Number -17
Large Gothic Triplex German . G-29

G-19 DEC GKS Font Number -18
Large Gothic Triplex English . G-30

G-20 DEC GKS Font Number -19
Large Gothic Triplex Italian . G-31

G-21 DEC GKS Font Number -20
Medium Complex Duplex Special Characters . .. G-32

G-22 DEC GKS Font Number -21

x

Music, Astronomy, and Business . • G-33

G-23 DEC GKS Font Number -22

Large Uniplex Special Characters . G-34

G-24 DEC GKS Font Number -23
Large Special Characters . G-35

1-1 Using Vector Origin Points. 1-7

1-2 Forming an Ellipse . 1-8

Tables
A-1 DEC GKS-Supported Workstation Types . A-1

8-1 GKS$ Constants . 8-2

E-1 GKSM Metafile Header Fields . E-3

E-2 GKSM Metafile Item Header Fields . E-5

E-3 GKSM Metafile Data Record Fields . E-5

E-4 CGM Element Descriptions . E-17

F-1 Type Definitions . F-8

H-1 DEC GKS Color Chart . H-2

xi

Preface

Manual Objectives

This manual provides encyclopedic reference to the DEC Graphical Kernel
System (GKS) and provides examples illustrating DEC GKS function calls.
DEC GKS is a level 2c GKS implementation. For more information con
cerning GKS implementation levels, refer to Chapter 1, Introduction to DEC
GKS.

Intended Audience

This manual is intended for experienced application programmers who
need to reference information concerning the DEC GKS functions. Readers
should be familiar with one high-level language and the DIGITAL Command
Language (DCL). (For more information concerning DCL, refer to the VMS
DCL Dictionary.)

Refer to the DEC GKS Binding Reference Manuals for information specific
to the binding you use with DEC GKS. The available bindings for DEC GKS
Version 4.1 are FORTRAN, C, and GKS$. These manuals are designed for
the experienced user of DEC GKS who needs to know the binding syntax
and brief argument descriptions.

Although there are lengthy introductions at' the beginning of each of the
chapters, this manual is not tutorial in nature. New users who need tuto
rial information and moderately experienced users needing programming
suggestions should refer to the DEC GKS User Manual.

xiii

Document Structure

xiv

This manual is contained in two volumes. Part 1 contains the following
information:

• Chapter 1, Introduction to DEC GKS, provides an introduction to the
DEC GKS product and to the format of this reference manual.

• Chapter 2, Compiling, Linking, and Running DEC GKS Programs,
provides information about DEC GKS and the VMS operating system.

• Chapter 3, Control Functions, provides information concerning the
establishment of the DEC GKS and workstation environments.

• Chapter 4, Output Functions, provides information concerning the
generation of output primitives.

• Chapter 5, Output Attribute Functions, provides information concerning
the output attributes.

• Chapter 6, Transformation Functions, provides information conceniing
the normalization and workstation transformations.

• Chapter 7, Input Functions, provides information concerning input.

• Chapter 8, Segment Functions, provides information concerning the
storage of output primitives in segments.

• Chapter 9, Metafile Functions, provides information concerning long
term storage of graphical images.

• Chapter 10, Error-Handling Functions, provides information concerning
error-handling by the application program.

Part 2 of this manual contains the following information:

• Chapter 11, Inquiry Functions, provides information concerning the
acquisition of DEC GKS and workstation status information.

• The appendixes, which include the following:
Appendix A, DEC GKS-Supported Workstations

Appendix B, DEC GKS Constants

Appendix C, DEC GKS Attribute Values

Appendix D, DEC GKS Error Messages

Appendix E, DEC GKS Metafile Structures (GKSM, CGM)

Appendix F, Language-Specific Programming Information

Appendix G, DEC GKS Device-Independent Fonts

Appendix H, DEC GKS Color Chart

Appendix I, DEC GKS GDPs and Escapes

Appendix J, DEC GKS-Specific Input Values

Associated Documents

You may find the following documents useful when using DEC GKS:

• DEC GKS User Manual-For programmers who need tutorial informa
tion or guides to programming technique.

• DEC GKS FORTRAN Binding Reference Manual-For programmers
who need specific syntax and argument descriptions for the FORTRAN
binding.

• DEC GKS GKS$ Binding Reference Manual-For programmers who
need specific syntax and argument descriptions for the GKS$ binding.

• DEC GKS C Binding Reference Manual-For programmers who need
specific syntax and argument descriptions for the C binding.

• DEC GKS Device Specifics Reference Manual-For programmers who
need information about specific devices.

• Building a DEC GKS Workstation Handler System-For programmers
who need to build DEC GKS workstation graphics handler.

• Building a DEC GKS Device Handler System-For programmers who
need to provide support for a device unsupported by the DEC GKS
graphics handlers.

• DEC GKS Installation Guide-For system managers who install DEC
GKS software, including the Run-Time installation.

NOTE

Before reading this manual, you should review the DEC GKS
release notes by typing the following:

$ HELP GKS RELEASE_NOTESIAETURNI

xv

Conventions

Convention

$RUN GKSPROG I RETURN I

INTEGERX

X=5

option, ...

[output-source, ...]

deferral mode

GKS$K._LINETYPE_DASHED

xvi

Meaning

The symbol I RETURN I represents a single
stroke of the RETURN key on a terminal.

In interactive examples, the user's re
sponse to a prompt is printed in red; system
prompts are printed in black.

A vertical ellipsis indicates that not all
the text of a program or program output is
illustrated. Only relevant material is shown
in the example.

A horizontal ellipsis indicates that addi
tional arguments, options, or values can be
entered. A comma that precedes the ellipsis
indicates that successive items must be
separated by commas.

Square brackets, in function synopses and a
few other contexts, indicate that a syntactic
element is optional.

All names of the DEC GKS description table
and state list entries, and of the workstation
description table and state list entries,
are italicized. Also, argument names are
italicized when they are referenced in the
text.

In the text, constants and function names
are in uppercase letters.

Chapter 11

Inquiry Functions

The DEC GKS inquiry functions allow you to obtain current and default
values for the operating state, output function attributes, deferral and
regeneration modes, transformations, segments, and device capabilities.
DEC GKS writes the values from the state lists and description tables to the
inquiry function arguments.

The following list describes the tables and lists that are sources of
information for many of the inquiry functions:

Table/List

GKS Description Table

Description

This table contains constant information about the
DEC GKS implementation you are using, such as
the level of GKS (with DEC GKS, level 2c), the
number of available workstation types, the list of
workstation types, the maximum allowable open
workstations, and so forth.
If you are transporting your programs from one
implementation of GKS to another, you may need to
inquire about the implementation level of GKS on
a given system, so that your program does not call
unsupported functions.

Inquiry Functions 11-1

Table/List

Workstation Description
Table

GKS State List

Workstation State List

Segment State List

11-2 Inquiry Functions

Description

This type of table contains constant information
about one particular workstation, such as the
workstation type, the workstation category, the
device-specific maximum coordinate values, the
different bundled output attribute values, and so
forth. Each graphics handler contains a workstation
description table describing that particular device.
If your DEC GKS application uses more than one
workstation at a time, or if you are unsure of the
capabilities of your workstation, you may need to in
quire about the values contained in the workstation
description table.

This list contains entries that specify the current
DEC GKS values such as the set of open worksta
tions (if any), the current normalization transforma
tion number, the current character height, and so
forth.
If you need to check the alterable DEC GKS values,
you may need to inquire about the values contained
in the DEC GKS state list.

For each workstation you open, DEC GKS allocates
space for a workstation state list. This list contains
entries that specify whether output is "on hold"
(deferred), whether or not the surface has to be
redrawn to fulfill an output request, whether the
workstation surface is "empty" by GKS definition,
whether the picture on the surface represents all the
requests for output made thus far by the application
program, and so forth.
If you need information concerning the current state
of a particular workstation, you may need to inquire
about the values contained in the workstation state
list.

When you create a segment, DEC GKS creates a
segment state list. The segment state list contains
entries that specify the segment name, the set of
associated workstations, the detectability of the
segment, and so forth.
If you need information concerning a particular
segment, you may need to inquire about the values
contained in the segment state list.

NOTE

You cannot inquire from the VAXstation workstation description
table unless you are logged onto a MicroVAX running DEC GKS.

The only other type of information obtained by the inquiry functions is
information concerning the color and dimensions of one or more pixels on
the workstation surface. To obtain this information, you can use the pixel
inquiry functions.

Calling the inquiry functions is simple. Consequently, only the INQUIRE
DEFAULT DEVICE DATA and the INQUIRE DEVICE STATE function
descriptions contain program examples. For complete examples that use
calls to these input inquiry functions, refer to Chapter 7, Input Functions.

To gain an understanding of knowing when to call certain DEC GKS inquiry
functions, refer to the DEC GKS User Manual. For more information
concerning the state lists and description tables, refer to Chapter 3, Control
Functions.

11.1 Using the Inquiry Functions

The DEC GKS inquiry functions return information about the DEC GKS
tables, lists, and about the state of the pixels on a given device, by writing
values to arguments passed to the function. For instance, review the
following syntax example:

GKS$1NQ_LEVEL (error_status, gks_level)

The two arguments to the function INQUIRE LEVEL OF GKS are passed
as write-only parameters. If this function completes its task successfully,
DEC GKS returns the value 0 in the first write-only argument error _status.
If this function encounters an error condition (see Section 11.1.1 for detailed
information), DEC GKS returns an error status code in the first argument.
This function returns the level of the DEC GKS implementation with which
you are working in the second write-only argument gks_level.

Inquiry Functions 11-3

Some of the inquiry functions have read-only arguments as well. For
instance, review the following syntax example:

GKS$1NQ_LOCATOR_STATE (workstation_id, device_type,
value_type, error_status, operating_operating_mode,
echo_flag, transformation_number, world_x_value, world_y_value,
prompt_and_echo_type, echo_area, data_record, record_buffer_length,
record_size)

The first three arguments (workstation_id, device_type, value_type) are all
read only; DEC GKS needs to know the workstation identifier, the device
type, and the type of values to be returned to this function, in order to
return the proper values to the other arguments (see Section 11.1.2 for
detailed information concerning the argument value type).

The argument record_buffer _length is a modifiable argument unique to
the INQUIRE DEFAULT DEVICE DATA and INQUIRE DEVICE STATE
functions. On input, the arguriient must contain the size of the data record
buffer you declare. On output, the graphics handler writes the amount of
the buffer filled with data. If on output the argument record_size is larger
than the argument record_buffer _size, you know that the graphics handler
truncated the input data record when writing to the buffer and data was
lost.

The function INQUIRE LOCATOR DEVICE STATE illustrates the useful
ness of the inquiry functions when requesting input. If you wish to change
one of the default input values, you have to assign values to all the input
variables, one by one. This can be tedious if you only want to change one or
two of the default variable values.

A practical way to initialize all the necessary variables with default input
values is to pass the variables to the function INQUIRE LOCATOR DEVICE
STATE. To initialize the values, do the following:

1. Call the function INQUIRE LOCATOR DEVICE STATE to initialize all
the input variables.

2. Change the values of the variables you wish to change.

3. Pass all the variables to INITIALIZE LOCATOR.

For a better understanding of this process, review the following code
example.

11-4 Inquiry Functions

INTEGER WS ID, DATA RECORD(1), PROMPT ECHO TYPE,
* ERROR INDICATOR, INPUT MODE, ECHO FLAG:- TRANSFRM NUMBER,
* RECORD BUFFER LENGTH, RECORD SIZE:- INPUT STATUS,-DEVICE NUM

REAL ECHO AREA (4) , WORLD X, -WORLD Y - -
DATA WS_ID I 1 /, DEVICE_NUM I 1 I -

C Let the graphics handler know how large the data record buffer is ••.
RECORD BUFFER LENGTH = 4

C Initialize variables by passing them to the inquiry function.
CALL GKS$INQ LOCATOR STATE(WS ID, DEVICE NUM,

* GKS$K VALUE-REALIZED, ERROR INDICATOR, INPUT MODE,
* ECHO FLAG, TRANSFRM NUMBER,-WORLD X, WORLD Y:-
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA=RECORD, -
* RECORD BUFFER LENGTH, RECORD SIZE)

C Change only one variable value.
PROMPT ECHO TYPE = 1

C Initialize the logical input device with the necessary variable
C values.

CALL GKS$INIT LOCATOR(WS ID, DEVICE NUM, WORLD X,
* WORLD Y, TRANSFRM NUMBER:- PROMPT ECHO TYPE, ECHO AREA,
* DATA_RECORD, RECORo_BUFFER_LENGTH) - -

C Request input from the device.
CALL GKS$REQUEST LOCATOR(WS ID, DEVICE NUM, INPUT_STATUS,

* TRANSFRM_NUMBER:- WORLD_X, WORLD_Y) -

For more information concerning the workstation identifier, refer to Chapter
3, Control Functions. For more information concerning the input device type
or general input concepts, refer to Chapter 7, Input Functions.

11.1.1 The Error Status Argument

DEC GKS inquiry functions never generate an error, but they can encounter
error conditions. For all inquiry functions, the first write-only argument
within the argument list is always the error status argument. The value
passed to this argument determines whether the values passed to the
remaining write-only arguments are valid.

Since the inquiry functions obtain values from the description tables and
state lists, and since the description tables and state lists are not accessible
unless you have called the proper DEC GKS control functions, the inquiry
functions may or may not be able to access the values you need. There are
other device-dependent situations that would cause a DEC GKS inquiry
function to encounter an error condition.

Inquiry Functions 11-5

If all values are available, the inquiry function returns the value 0 in the
error status argument.

If a value is not presently available, the inquiry function returns a number,
corresponding to an appropriate DEC GKS error message, in the error status
argument. If the value passed to the error status argument is anything
other than the value 0, the values that the inquiry function passed to the
remaining arguments are invalid.

For more information concerning the DEC GKS error messages and their
numbers, refer to Appendix D, DEC GKS Error Messages. For more
information concerning DEC GKS error handling, refer to Chapter 10,
Error-Handling Functions.

11.1.2 The Value Type Argument

Several of the inquiry functions that take their values from the workstation
state list have a value type argument. This argument determines whether
DEC GKS returns the values that you previously specified in the application
program, or returns the values that the DEC GKS device handlers determine
closely approximate the values that you requested.

The possible value types are as follows:

Value Type

GKS$K_ VALUE_SET

GKS$It_ VALUE_REALIZED

Description

If you specify this constant (or the value 0), the in
quiry function returns the requested values exactly
as specified in the application program. If you did
not assign any values in the application program,
the inquiry function returns the default values.

If you specify this constant (or the value 1), and if
you specified values in your application program
that a particular workstation cannot fully support,
the inquiry function returns the realized values
that closely approximate the values you specified
in the application program. If you did not assign
any values in the application program, the inquiry
function returns the default values.

For example, some devices support a limited number of pick aperture sizes
(the size of the tracking prompt used for picking segments). A set aperture
size is one set by the application program, and a realized size is used by
the graphics handler. Using the function INQUIRE PICK DEVICE STATE,

11-6 Inquiry Functions

you can inquire about both types of values. Example 11-1 illustrates this
process on a VAXstation.

Example 11-1: Set and Realized Inquiry Value Types

C This program writes set and realized pick aperture sizes to the
C workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, INITIAL_STATUS, SEGMENT, PICK_ID,

* PROMPT ECHO TYPE, ERROR STATUS, INPUT MODE, ECHO FLAG,
* DATA_LENGTH; RETURN_SIZE, INPUT_STATUS, DEVICE_NUM

REAL ECHO_AREA(4), DATA_RECORD_SET(1),
* DATA RECORD REALIZED

DATA WS_ID /-1 /, DEVICE_NUM I 1 I

CALL GKS$0PEN GKS('SYS$ERROR:')
CALL GKS$0PEN-WS(WS ID, GKS$K CONID DEFAULT, 0)
CALL GKS$ACTIVATE_ws(WS_ID) - -

C Inquire default values so that you can initialize the device.
DATA LENGTH = 4
CALL-GKS$INQ PICK STATE(WS ID, DEVICE NUM,

* GKS$K VALUE-SET,-ERROR STATUS, INPUT MODE, ECHO FLAG,
* INITIAL_STATUS, SEGMENT, PICK_ID, PROMPT_ECHO_TYPE,
* ECHO_AREA, DATA_RECORD_SET, DATA_LENGTH, RETURN_SIZE)

C Set the aperture size to be 0.1 in device coordinates.
DATA_RECORD_SET(1) = 0.001

C Initialize the device with the new aperture size.
CALL GKS$INIT_PICK(WS_ID, DEVICE_NUM, INITIAL_STATUS,

* SEGMENT, PICK ID, PROMPT ECHO TYPE, ECHO AREA,
* DATA_RECORD_SET, DATA_LENGTH,-RETURN_SIZE)

C Obtain the set value •.•
DATA LENGTH = 4 ! One longword for aperture size.
CALL-GKS$INQ PICK STATE(WS ID, DEVICE NUM,

* GKS$K VALUE-SET,-ERROR STATUS, INPUT MODE, ECHO FLAG,
* INITIAL_STATUS, SEGMENT, PICK_ID, PROMPT_ECHO_TYPE,
* ECHO_AREA, DATA_RECORD_SET, DATA_LENGTH, RETURN_SIZE)

C Obtain the realized value .••
DATA LENGTH = 4 ! One longword for aperture size.
CALL-GKS$INQ PICK STATE(WS ID, DEVICE NUM,

* GKS$K VALUE-REALIZED, ERROR STATUS, INPUT MODE, ECHO FLAG,
* INITIAL STATUS, SEGMENT, PICK ID, PROMPT ECHO TYPE, -
* ECHO_AREA, DATA_RECORD_REALIZED, DATA_LENGTH,-RETURN_SIZE

(continued on next page)

Inquiry Functions 11-7

Example 11-1 {Cont.): Set and Realized Inquiry Value Types

WRITE{6,*) 'Set value:', DATA RECORD SET
WRITE{6,*) 'Realized value:' ,-DATA_RECORD_REALIZED

CALL GKS$DEACTIVATE WS{ WS ID
CALL GKS$CLOSE WS{ WS ID)-
CALL GKS$CLOSE=GKS {) -
END

You see the following when you compile, link, and execute this program:

$ FORTRAN EXAMPLE 1 RETURN
$ LINK EXAMPLE 1 RETURN
$ RUN EXAMPLE= 1 I RETURN I
Set value: 1.0000000E-03
Realized value: 4.2635733E-03
$

For more information concerning pick input, refer to Chapter 7, Input
Functions.

11.2 Function Descriptions

This section describes the DEC GKS inquiry functions in detail. The
functions are organized aplphabetically and by the type of inquiry they
perform: DEC GKS description table, workstation description table, DEC
GKS state list, workstation state list, segment state list, and pixel inquiries.

11-8 Inquiry Functions

GKS Description Table Inquiries

GKS Description Table Inquiries
This section describes the DEC GKS description table inquiries. You use
these functions if you are not sure which implementation of DEC GKS you
are using.

Inquiry Functions 11-9

GKS Description Table Inquiries
INQUIRE LEVEL OF GKS

INQUIRE LEVEL OF GKS

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE LEVEL OF GKS returns the DEC GKS implementa
tion level.

The implementation level is available when DEC GKS is in any operating
state except GKS$K_GKCL. If the state is GKS$K_GKCL, the output
argument is undefined. The function sets the error status argument to the
number of one of the errors listed in the Error Messages section.

GKS$1NQ_LEVEL (error_status, gks_level)

GQLVKS (error_status, level)

ginqlevelgks (level, error_status)

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

11-10 Inquiry Functions

GKS Description Table Inquiries
INQUIRE LEVEL OF GKS

gks_level

data type: integer
access: write-only
mechanism: by reference
This argument is the level of the GKS implementation you are using (with
DEC GKS, level 2c). The argument can be any of the following values or
constants:

Value Constant Description

-3 GKS$K._LEVEL_MA Minimal output, no input

-2 GKS$K._LEVEL_MB Minimal output, request input

-1 GKS$K._LEVEL_MC Minimal output, full input

0 GKS$K._LEVEL_OA All primitives and attributes, no input

1 GKS$K._LEVEL_OB All primitives and attributes, request
input

2 GKS$K._LEVEL_OC All primitives and attributes, full input

3 GKS$K._LEVEL_1A Basic segmentation with full output, no
input

4 GKS$K._LEVEL_lB Basic segmentation with full output,
request input

5 GKS$K._LEVEL_lC Basic segmentation with full output,
full input

6 GKS$K._LEVEL_2A Workstation independent and segment
storage, no input

7 GKS$K.._LEVEL_2B Workstation independent and segment
storage, request input

8 GKS$K.._LEVEL_2C Workstation independent and segment
storage, full input

Inquiry Functions 11-11

GKS Description Table Inquiries
INQUIRE LEVEL OF GKS

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

11-12 Inquiry Functions

GKS Description Table Inquiries
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES

INQUIRE LIST OF AVAILABLE WORKSTATION TYPES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE LIST OF AVAILABLE WORKSTATION TYPES
returns a list of the supported workstation types.

The list of supported workstations is available when DEC GKS is in any
operating state except GKS$K_GKCL. If the state is GKS$K_GKCL, the
output argument is undefined. The function sets the error status argument
to the number of one of the errors listed in the Error Messages section.

GKS$1NQ_WSTYPE_LIST (error_status, num_workstation_types,
workstation_type_list, return_size)

GQEWK (element, error_status, num_types, relement)

ginqavailwstypes (bufsize, start, wstypes, actuaLtypes,
error:_ status)

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to

Inquiry Functions 11-13

GKS Description Table Inquiries
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES

one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_workstation_types

data type: integer
access: write-only
mechanism: by reference
This argument is the number of different workstation types.

workstation_type_llst

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the array that contains the integers representing the
various supported workstations. For a list of the DEC GKS-supported
workstation types, refer to Appendix A, DEC GKS-Supported Workstations.

return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the actual number of workstation types passed back to the
array. You can use this value to determine whether you defined an array
large enough to hold all the returned values.

11-14 Inquiry Functions

Error Messages

GKS Description Table Inquiries
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

-33 DECGKS$_ERROR_NEG_33 Array descriptor is not acceptable in
routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****

Inquiry Functions 11-15

GKS Description Table Inquiries
INQUIRE MAXIMUM NORMALIZATION TRANSFORMATION NUMBER

INQUIRE MAXIMUM NORMALIZATION TRANSFORMATION
NUMBER

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE MAXIMUM NORMALIZATION TRANSFORMATION
NUMBER returns the maximum normalization transformation number sup
ported by the GKS implementation being used. The maximum number for
the DEC GKS software is 255. Remember that normalization transformation
number zero (0) is the unity transformation and cannot be changed.

The maximum normalization transformation number is available when
DEC GKS is in any operating state except GKS$K_GKCL. If the state is
GKS$K_GKCL, the output argument is undefined. The function sets the
error status argument to the number of one of the errors listed in the Error
Messages section.

GKS$MAX_XFORM (error_status, max_transformation)

GQMNTN (error_status, max)

ginqmaxntrannum (maxtran, error_status)

Arguments

error _status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function

11-16 Inquiry Functions

GKS Description Table Inquiries
INQUIRE MAXIMUM NORMALIZATION TRANSFORMATION NUMBER

writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

max_transformation

data type: integer
access: write-only
mechanism: by reference
This argument is the maximum normalization transformation number sup
ported by the GKS implementation. You can associate window and viewport
boundaries to transformation numbers 1 through max_transformations.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine****

Inquiry Functions 11-17

GKS Description Table Inquiries
INQUIRE WORKSTATION MAXIMUM NUMBERS

INQUIRE WORKSTATION MAXIMUM NUMBERS

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE WORKSTATION MAXIMUM NUMBERS returns
the maximum number of open workstations, active workstations, and the
maximum number of workstations that can be associated with a segment.

The maximum number of types of workstations is available when DEC GKS
is in any operating state except GKS$K_ GKCL. If this condition is not met,
the output arguments are undefined, and the function sets the error status
argument to the number of one of the errors listed in the Error Messages
section.

For more information concerning segments, refer to Chapter 8, Segment
Functions.

GKS$1NQ_WS_MAX_NUM (error_status,
max_open_workstations,
max_active_ workstations,
max_ws_with_segment)

GQWKM (error_status, sim_open, sim_active, ws_w_seg)

ginqwsmaxnum (maxws, error_status)

11-18 Inquiry Functions

GKS Description Table Inquiries
INQUIRE WORKSTATION MAXIMUM NUMBERS

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

max_ open_ workstations
max_active_workstations

data type: integer
access: write-only
mechanism: by reference
These arguments are the maximum number of open and active workstations
supported by the implementation of GKS.

max_ws_with_segment

data type: integer
access: write-only
mechanism: by reference
This argument is the maximum number of workstations that the GKS
implementation can associate with a segment.

Inquiry Functions 11-19

GKS Description Table Inquiries
INQUIRE WORKSTATION MAXIMUM NUMBERS

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_l9 Invalid error status parameter specified
in routine ****

8

11-20 Inquiry Functions

GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Workstation Description Table Inquiries

Workstation Description Table Inquiries
This section describes the workstation description table inquiries. (For more
information concerning the workstation description table, refer to Chapter 3,
Control Functions.) After you have determined on what type of workstation
you are working, you use these functions to determine the workstation's
capabilities and limits.

Inquiry Functions 11-21

Workstation Description Table Inquiries
INQUIRE COLOR FACILITIES

INQUIRE COLOR FACILITIES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE COLOR FACILITIES returns the number of color
indexes, the number of available colors, and the color capabilities of a
specified workstation.

The color facilities are available when DEC GKS is in any operating state
except GKS$K_GKCL, and ifthe following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined. The
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

GKS$1NQ_COLOR_FAC (workstation_type, error_status,
num_colors, color_or_mono,
num_color_indexes)

GQCF (workstation_type, error_status, ncolors, color_flag,
nindexes)

ginqcolourfacil (workstation_type, bufsize, fac_size, fac,
error_ status)

11-22 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE COLOR FACILITIES

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_colors

data type: integer
access: write-only
mechanism: by reference
This argument is the number of colors supported by the workstation. If the
function "returns a value of 0 to this argument, a continuous range of colors
is available.

color_or_mono

data type:
access:
mechanism:

integer
write-only
by reference

Inquiry Functions 11-23

Workstation Description Table Inquiries
INQUIRE COLOR FACILITIES

This argument is a flag specifying whether color is available on the specified
workstation. The argument can be any of the following values or constants:

Value

0

1

Constant

GKS$K_MONOCHROME

GKS$K_COLOR

num_cDlor_indexes

data type: integer
access: write-only
mechanism: by reference

Description

Monochrome device

Color device

This argument is the number of predefined color indexes available for the
specified workstation.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

22 GKS$_ERROR_22 Specified workstation type is invalid in
routine ****

11-24 Inquiry Functions

Error

Workstation Description Table Inquiries
INQUIRE COLOR FACILITIES

Number Completion Status Code Message

23 GKS$_ERROR_23

39 GKS$_ERROR_39

Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Inquiry Functions 11-25

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

INQUIRE DEFAULT CHOICE DEVICE DATA

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE DEFAULT CHOICE DEVICE DATA returns the
default values for the choice logical input device on a specified workstation.

The default values for the choice input device are available when DEC
GKS is in any operating state except GKS$K_GKCL, and if the following
conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_INPUT or GKS$K_
WSCAT_OUTIN.

• The input device exists on the specified workstation.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning input, refer to Chapter 7, Input Functions.

GKS$1NQ_DEF _CHOICE_DATA (workstation_type,
device_number,
error_status, max_choices,
num_prompt_echo_types,
prompt_ echo _types,
echo_area, data_record,
num_returned_prompts,

11-26 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

record_buffer_length,
record_size)

GQDCH (workstation_type, device_number, element, dim_dr,
error_status, num_choi, num_types, relement,
echo_area, len_dr, dr)

ginqdefchoice (workstation_type, device_number, bufsize,
data_size, data, error_status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

device_number

data type: integer
access: read-only
mechanism: by reference
This argument is the device number that differentiates between logical
input devices of the same class, operating on the same workstation. For
more information, refer to Chapter 7, Input Functions.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

Inquiry Functions 11-27

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

max_cholces

data type: integer
access: write-only
mechanism: by reference
This argument is the maximum number of supported choices.

num_prompt_echo_types

data type: integer
access: write-only
mechanism: by reference
This argument is the number of choice prompt and echo types available on a
specified workstation.

prompt_echo_types

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is an array that contains the available prompt and echo
types on the specified workstation.

echo_area

data type: array (real)
access: write-only
mechanism: by reference
This argument is a 4-element array containing the device coordinate values
that designate the input echo area on the workstation surface, in the order
XMIN, Xl\llAX, YMIN, YMAX. For more information concerning the DEC
GKS coordinate systems, refer to Chapter 6, Transformation Functions.

data_record

data type: address (record)
access: modifiable
mechanism: by reference
This argument is a pointer to the input data record.

INQUIRE DEFAULT CHOICE DEVICE DATA returns a different amount of
information depending on the value contained in the first component of the
data record. If you pass the value 0 as this argument and the value 4 as the
record_buffer _length argument, then this function only returns the default

11-28 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

number of choices (it ignores the rest of the write-only arguments). This
functionality allows you to check to see if your declared string buffers are
large enough to hold all the default strings.

Once you obtain the default number of choices, you must initialize the
arrays containing string sizes, string addresses, and strings, and then call
INQUIRE DEFAULT CHOICE DEVICE DATA a second time. In the second
call, pass the number of choices obtained in the first call to INQUIRE
DEFAULT CHOICE DEVICE DATA, and pass the record_buffer _length
value that specifies the whole data record. Then the function writes all the
default values to its write-only arguments.

To understand the process of calling INQUIRE DEFAULT CHOICE DEVICE
DATA twice, refer to the program example in this function description.

num_returned_prompts

data type: integer
access: write-only
mechanism: by reference
This argument is the number of prompt and echo types actually returned
to this function. Compare this number with the actual number of available
prompt and echo types to see if you have defined an array large enough to
hold all available values.

record_buffer_length

data type: integer
access: modifiable
mechanism: by reference
On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data_record. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record_size is larger than record_buffer _length after
the function call, then you know that the graphics handler truncated the
data record when writing it to the buffer and data was lost.

Inquiry Functions 11-29

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

record_size

data type: integer
access: write-only
mechanism: by reference
This argument is the total size, in bytes, of the data record.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number

-19

-20

-33

8

22

23

39

140

11-30 Inquiry Functions

Completion Status Code

DECGKS$_ERROR_NEG_19

DECGKS$_ERROR_NEG_20

DECGKS$_ERROR_NEG_33

GKS$_ERROR_8

GKS$_ERROR_22

GKS$_ERROR_23

GKS$_ERROR_39

GKS$_ERROR_140

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
Array descriptor is not acceptable in
routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****
Specified input device is not present on
the workstation in routine ****

Program Example

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

Example 11-2 illustrates the use of the function INQUIRE DEFAULT
CHOICE DEVICE DATA.

Inquiry Functions 11-31

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

Example 11-2: Determining the Default Choice Input Values

C This program writes the return values of the function
C GKS$INQ_DEF_CHOICE_DATA to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS ID, DATA RECORD(3), NUM CHOICES,

*LIST PROMPT TYPES(-10), NUM PROMPT-ECHO, ERROR STATUS,
* PROMPT RETURN SIZE, RECORD BUFFER LENGTH, RECORD SIZE,
* STRING=SIZES(-10), STRING=POINTERS(10), DEVICE_NUM,
* I, MAX_CHOICES

CHARACTER*80 STRINGS(lO)

REAL ECHO AREA(4)
DATA WS_ID I 1 /, DEVICE_NUM / 1 /

C First element in the data record is the number of choices.
EQUIVALENCE(DATA_RECORD(l), NUM_CHOICES

CALL GKS$0PEN_GKS('SYS$ERROR:')

C Initialize the first data record component to 0. This forces
C GKS$INQ DEF CHOICE DATA to return only the number of default
C choices~ - -

NUM_CHOICES = 0

C Tell the handler the size of the record buffer (do not include
C the array addresses in this call).

RECORD_BUFFER_LENGTH = 4

C Call the function to find the number of default choices.
CALL GKS$INQ DEF CHOICE DATA(GKS$K VT240, DEVICE NUM,

* ERROR STATUS, MAx CHOICES, NUM PROMPT ECHO, -
* %DESCR(LIST_PROMPT_TYPES), ECHO_AREA~ DATA_RECORD,
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH,
* RECORD_SIZE)

C Initialize the string pointers •.•
DO 100 I = 1, NUM CHOICES

STRING POINTERS(I) = %LOC(STRINGS(!)
STRING-SIZES(I) = 80

100 CONTINUE -

11-32 Inquiry Functions

(continued on next page)

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

Example 11-2 (Cont.): Determining the Default Choice Input Values

C Initialize the rest of the data record .••
DATA_RECORD(2) = %LOC(STRING_SIZES)
DATA_RECORD(3) = %LOC(STRING_POINTERS

C Initialize the modifiable argument (this time, you pass the
C array addresses) ..•

RECORD BUFFER LENGTH = 12 - -
C You can obtain this information as long as GKS is open.

CALL GKS$INQ DEF CHOICE DATA(GKS$K VT240, DEVICE NUM,
* ERROR STATUS, Mix CHOICES, NUM PROMPT ECHO, -
* %DESCR(LIST PROMPT TYPES), ECHO AREA~ DATA RECORD,
* PROMPT_RETURN_SIZE,-RECORD_BUFFER_LENGTH, -
* RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ', ERROR STATUS
WRITE(6, *) 'The maximum number of choices: ',MAX CHOICES
WRITE(6, *) 'The number of prompt/echo types: ', NUM_PROMPT_ECHO
WRITE(6, *) 'The list of prompt/echo types: ', LIST PROMPT TYPES
WRITE(6, *) 'The echo area: ',ECHO AREA - -
WRITE(6, *) 'The choice data record!', DATA RECORD
WRITE(6, *) 'The prompt/echo list return size:',PROMPT RETURN SIZE
WRITE(6, *) 'The data record buffer size: ', - -

* RECORD BUFFER LENGTH
WRITE(6~ *) 'The data record size: ', RECORD_SIZE

C STRINGS holds the default choice strings •..
WRITE(6,*) 'The default choice strings are as follows:'
DO 200 i = 1, NUM_CHOICES

WRITE(6,*) STRINGS(!)
200 CONTINUE

CALL GKS$CLOSE_GKS()
END

Inquiry Functions 11-33

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_2lRETURNl
$ LINK EXAMPLE_ 2 I RETURN I
$ RUN EXAMPLE_ 2 l RETURN I
The error status: 0
The maximum number of choices:
The number of prompt/echo types:
The list of prompt/echo types:

0 0
The echo area: 533.0000
The choice data record:
The prompt/echo list return size:
The data record buffer size:

1
0

799.0000
5

12
The data record size: 0
The default choice strings are as follows:
CHOICEl
CHOICE2
CHOICE3
CHOICE4
CHOICES
$

47
3

3 --1
0 0

O.OOOOOOOE+OO
1076 1116
3

0
0

479.0000

To review the functionality of INQUIRE DEFAULT CHOICE DEVICE DATA
within a larger program, refer to the choice input programs in Chapter 7,
Input Functions.

11-34 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT DEFERRAL STATE VALUES

INQUIRE DEFAULT DEFERRAL STATE VALUES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE DEFAULT DEFERRAL STATE VALUES returns the
default deferral and implicit regeneration modes.

The default deferral and regeneration modes are available when DEC
GKS is in any operating state except GKS$K_GKCL, and if the following
conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K,_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning deferral, implicit regeneration, or operating
states, refer to Chapter 3, Control Functions.

GKS$1NQ_DEF _DEFER_STATE (workstation_type,
error_status, deferraLmode,
regeneration_ flag)

GQDDS (workstation_type, error_status, def_mode, reg_mode)

ginqdefdeferst (workstation_type, def, error_status)

Inquiry Functions 11-35

Workstation Description Table Inquiries
INQUIRE DEFAULT DEFERRAL STATE VALUES

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

deferral_ mode

data type: integer
access: write-only
mechanism: by reference
This argument is the default deferral mode. The argument can be any of the
following values or constants:

Value

0

1

2

3

11-36 Inquiry Functions

Constant

GKS$K_ASAP

GKS$K_BNIG

GKS$K_BNIL

GKS$K_ASTI

Description

Generate images as soon as possible.

Generate images before input is requested globally.

Generate images before input is requested locally.

Generate images some time. Exact time is not
guaranteed.

Workstation Description Table Inquiries
INQUIRE DEFAULT DEFERRAL STATE VALUES

regeneration_flag

data type: integer
access: \Vl"ite-only
mechanism: by reference
This argument is the default implicit regeneration mode. The argument can
be any of the following values or constants.

Value

0

1

Error Messages

Constant

GKS$K_IRG_SUPPRESSED

GKS$K:_IRG_ALLOWED

Description

Image regeneration is suppressed.

Image regeneration is allowed.

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****
Specified workstation type is invalid in
routine **** ·
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Inquiry Functions 11-37

Workstation Description Table Inquiries
INQUIRE DEFAULT LOCATOR DEVICE DATA

INQUIRE DEFAULT LOCATOR DEVICE DATA

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE DEFAULT LOCATOR DEVICE DATA returns the
default values for the locator logical input device on a specified workstation.

The default values for the locator input device are available when DEC
GKS is in any operating state except GKS$K_GKCL, and if the following
conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_INPUT or GKS$K_
WSCAT_OUTIN.

• The input device exists on the specified workstation.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning input, refer to Chapter 7, Input Functions.

GKS$1NQ_DEF _LOCATOR_DATA (workstation_type,
device_number, error_status,
initia/_world_x, initia/_world_y,
num_prompt_echo_types,
prompt_echo_types,
echo_area, data_record,
num_returned_prompts,

11-38 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT LOCATOR DEVICE DATA

record_buffer_length,
record_size)

GQDLC (workstation_type, device_number, element, dim_dr,
error_status, px, py, num_types, relement, echo_area,
len_dr, dr)

ginqdefloc (workstation_type, device_number, bufsize,
data_size, data, error_status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

device_number

data type: integer
access: read-only
mechanism: by reference
This argument is the device number that differentiates between logical
input devices of the same class, operating on the same workstation. For
more information, refer to Chapter 7, Input Functions.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function Writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

Inquiry Functions 11-39

Workstation Description Table Inquiries
INQUIRE DEFAULT LOCATOR DEVICE DATA

initial_ world_x
initial_world_y

data type: real
access: write-only
mechanism: by reference
These arguments comprise the initial starting position of the locator prompt,
in world coordinates. For information concerning the DEC GKS coordinate
system, refer. to Chapter 6, Transformation Functions.

num_prompt_echo_types

data type: integer
access: write-only
mechanism: by reference
This argument is the number of locator prompt and echo types available on
a specified workstation.

prompt_echo_types

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is an array that contains the available locator prompt and
echo types on the specified workstation.

echo_area

data type: array (real)
access: write-only
mechanism: by reference
This argument is a 4-element array containing the device coordinate values
that designate the input echo area on the workstation surface, in the order
XMIN, XMAX, YMIN, YMAX. For more information concerning the DEC
GKS coordinate systems, refer to Chapter 6, Transformation Functions.

11-40 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT LOCATOR DEVICE DATA

data_record

data type: address (record)
access: write-only
mechanism: by reference
This argument is a pointer to the default locator input data record for the
specified device.

num_returned_prompts

data type: integer
access: write-only
mechanism: by reference
This argument is the number of prompt and echo types actually returned
to this function. Compare this number with the actual number of available
prompt and echo types to see if you have defined an array large enough to
hold all available values.

record_buffer_length

data type: integer
access: modifiable
mechanism: by reference
On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data_record. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record_size is larger than record_buffer _length after
the function call, then you know that the graphics handler truncated the
data record when writing it to the buffer and data was lost.

record_size

data type: integer
access: write-only
mechanism: by reference
This argument is the total size, in bytes, of the data record.

Inquiry Functions 11-41

Workstation Description Table Inquiries
INQUIRE DEFAULT LOCATOR DEVICE DATA

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_l 9

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$_ERROR_NEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

38 GKS$_ERROR_38

140 GKS$_ERROR_140

Program Example

Message

Invalid error status parameter specified
in routine ****

GKS not in proper state: GKS in the
error state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be h1
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine****

Specified workstation is neither of cate
gory INPUT nor of category OUTIN in
routine ****

Specified input device is not present on
the workstation in routine ****

Example 11-3 illustrates the use of the function, INQUIRE DEFAULT
LOCATOR DEVICE DATA.

11-42 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT LOCATOR DEVICE DATA

Example 11-3: Determining the Default Locator Input Values

C This program writes the return values of the function
C GKS$INQ DEF LOCATOR DATA to the workstation surface.

IMPLICIT NONE -
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, DATA_RECORD(1), DEVICE_NUM,

* LIST_PROMPT_TYPES(7), NUM_PROMPT_ECHO, ERROR_STATUS,
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH, RECORD_SIZE

REAL ECHO AREA(4), !NIT WORLD X, !NIT WORLD Y
DATA WS_ID I 1 /, DEVICE_NUM I l I - -

CALL GKS$0PEN_GKS('SYS$ERROR:')

C You need to initialize the modifiable argument •.•
RECORD BUFFER LENGTH = 4 - -

C You can obtain this information as long as GKS is open.
CALL GKS$INQ_DEF_LOCATOR_DATA(GKS$K_VT240, DEVICE_NUM,

* ERROR STATUS, !NIT WORLD X, !NIT WORLD Y, NUM PROMPT ECHO,
* %DESCR(LIST PROMPT TYPES) ' ECHO AREA~ DATA RECORD, -
* PROMPT_RETURN_SIZE,-RECORD_BUFFER=LENGTH, RECORD_SIZE

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ', ERROR STATUS
WRITE(6, *) 'The initial X value: ', !NIT WORLD X
WRITE(6, *) 'The initial Y value: ', INIT-WORLD-Y
WRITE(6, *) 'The number of prompt/echo types: '~ NUM PROMPT ECHO
WRITE(6, *) 'The list of prompt/echo types: ', LIST PROMPT TYPES
WRITE(6, *) 'The echo area: ', ECHO_AREA - -
WRITE(6, *) 'The locator data record: ', DATA RECORD
WRITE(6, *) 'The prompt/echo list return size7 '

* PROMPT_RETURN_SIZE
WRITE(6, *) 'The data record buffer size: ',

* RECORD_BUFFER_LENGTH
WRITE(6, *) 'The data record size: ', RECORD_SIZE
CALL GKS$CLOSE_GKS()
END

Inquiry Functions 11-43

Workstation Description Table Inquiries
INQUIRE DEFAULT LOCATOR DEVICE DATA

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE 3 RETURN
$ LINK EXAMPLE - 3 RETURN
$ RUN EXAMPLE~) RETURN
The error status: 0
The initial X value: 0.5000000
The initial Y value: 0.5000000
The number of prompt/echo types:
The list of prompt/echo types:

5 6
The echo area: O.OOOOOOOE+OO
The locator data record:
The prompt/echo list return size:
The data record buffer size:
The data record size:
$

1
--1

479.0000
0

0
0

7
2 3

O.OOOOOOOE+OO 479.0000

7

To review the functionality of INQUIRE DEFAULT LOCATOR DEVICE
DATA within a larger program, refer to the locator input programs in
Chapter 7, Input Functions.

11-44 Inquiry Functions

4

Workstation Description Table Inquiries
INQUIRE DEFAULT PICK DEVICE DATA

INQUIRE DEFAULT PICK DEVICE DATA

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE DEFAULT PICK DEVICE DATA returns the default
values for the pick logical input device on a specified workstation.

The default values for the pick input device are available when DEC GKS is
in any operating state except GKS$K_GKCL, and if the following conditions
exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_INPUT or GKS$K_
WSCAT_OUTIN.

• The input device exists on the specified workstation.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning input, refer to Chapter 7, Input Functions.

GKS$1NQ_DEF _PICK_DATA (workstation_type,
device_number, error_status,
num_prompt_echo_types,
prompt_ echo_types,
echo_area, data_record,
num_returned_prompts,
record_buffer_length, record_size)

Inquiry Functions 11-45

Workstation Description Table Inquiries
INQUIRE DEFAULT PICK DEVICE DATA

GQDPK (workstation_type, device_number, element, dim_dr,
error_status, num_types, relement, echo_area, len_dr,
dr)

ginqdefpick (workstation_type, device_number, bufsize,
data_size, data, error_status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

device_number

data type: integer
access: read-only
mechanism: by reference
This argument is the device number that differentiates between logical
devices of the same class, operating on the same workstation. For more
information, refer to Chapter 7, Input Functions.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

11-46 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT PICK DEVICE DATA

num_prompt_echo_types

data type: integer
access: write-only
mechanism: by reference
This argument is the number of pick prompt and echo types available on a
specified workstation.

prompt_echo_types

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is an array that contains the available pick prompt and echo
types on the specified workstation.

echo_area

data type: array (real)
access: write-only
mechanism: by reference
This argument is a 4-element array containing the device coordinate values
that design.ate the input echo area on the workstation surface, in the order
XMIN, XMAX, YMIN, YMAX. For more information concerning the DEC
GKS coordinate systems, refer to Chapter 6, Transformation Functions.

data_record

data type: address (record)
access: write-only
mechanism: by reference
This argument is a pointer to the default pick input data record for the
specified device.

num_returned_prompts

data type: integer
access: write-only
mechanism: by reference
This argument is the number of prompt and echo types actually returned
to this function. Compare this number with the actual number of available
prompt and echo types to see if you have defined an array large enough to
hold all available values.

Inquiry Functions 11-47

Workstation Description Table Inquiries
INQUIRE DEFAULT PICK DEVICE DATA

record_buHer_length

data type: integer
access: modifiable
mechanism: by reference
On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data_record. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record_size is larger than record_buffer _length after
the function call, then you know that the graphics handler truncated the
data record when writing it to the buffer and data was lost.

record_ size

data type: integer
access: write-only
mechanism: by reference
This argument is the total size, in bytes, of the data record.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

-33 DECGKS$_ERROR_NEG_33 Array descriptor is not acceptable in
routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine****

11-48 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT PICK DEVICE DATA

Error
Number Completion Status Code Message

22 GKS$_ERROR_22

23 GKS$_ERROR_23

38 GKS$_ERROR_38

140 GKS$_ERROR_140

Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory INPUT nor of category OUTIN in
routine ****
Specified input device is not present on
the workstation in routine ****

Program Example

Example 11-4 illustrates the use of the function INQUIRE DEFAULT PICK
DEVICE DATA.

Example 11-4: Determining the Default Pick Input Values

C This program writes the return values of the function
C GKS$INQ DEF PICK DATA to the workstation surface.

IMPLICIT NONE -
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, DEVICE_NUM,

*PROMPT ECHO TYPE(5), NUM PROMPT ECHO,
* ERROR_STATUS, PROMPT_RETURN_SIZE,-
* RECORD_BUFFER_LENGTH, RECORD_SIZE

REAL ECHO AREA(4), DATA RECORD(1
DATA WS_ID I 1 /, DEVICE_NUM I 1 I

CALL GKS$0PEN_GKS('SYS$ERROR:')

C Initialize the modifiable argument ..•
RECORD_BUFFER_LENGTH = 4

(continued on next page)

Inquiry Functions 11-49

Workstation Description Table Inquiries
INQUIRE DEFAULT PICK DEVICE DATA

Example 11-4 (Cont.): Determining the Default Pick Input Values

C You can obtain this information as long as GKS is open.
CALL GKS$INQ DEF PICK DATA(GKS$K VT240, DEVICE NUM,

* ERROR STATUS, NUM PROMPT ECHO, - -
* %DESCR(PROMPT ECHO TYPE-), ECHO AREA, DATA RECORD,
* PROMPT RETURN SIZE,-RECORD BUFFER LENGTH, -
* RECORD=SIZE)- - -

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ',ERROR STATUS
WRITE(6, *) 'The number of prompt/echo types: '

* NUM PROMPT ECHO
WRITE(6, *)-'The prompt/echo types: ',

* PROMPT ECHO TYPE
WRITE(6; *)'The echo area: ',ECHO AREA
WRITE(6, *) 'The pick data record: I, DATA RECORD
WRITE(6, *) 'The prompt/echo list return size: '

* PROMPT RETURN SIZE
WRITE(6; *) 'The data record buffer size: ',

* RECORD BUFFER LENGTH
WRITE(6; *) 'The data record size: ', RECORD_SIZE
CALL GKS$CLOSE_GKS()
END

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_ 4 I RETURN I
$ LINK EXAMPLE_ 4 I RETURN I
$ RUN EXAMPLE_ 4 I RETURN I
The error status: 0
The number of prompt/echo types: 0
The prompt/echo types: 1 2 3 0

0
The echo area: O.OOOOOOOE+OO 479.0000 O.OOOOOOOE+OO 479.0000
The pick data record: 4.790000
The prompt/echo list return size: 3
The data record buffer size: 4
The data record size: 4
$

To review the functionality of INQUIRE DEFAULT PICK DEVICE DATA
within a larger program, refer to the pick input programs in Chapter 7,
Input Functions.

11-50 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

INQUIRE DEFAULT STRING DEVICE DATA

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE DEFAULT STRING DEVICE DATA returns the
default values for the string logical input device on a specified workstation.

The default values for the string input device are available when DEC
GKS is in any operating state except GKS$K_GKCL, and if the following
conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_INPUT or GKS$K_
WSCAT_OUTIN.

• The input device exists on the specified workstation.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning.input, refer to Chapter 7, Input Functions.

GKS$1NQ_DEF _STRING_DATA (workstation_type,
device_number, error_status,
num_prompLecho_types,
prompLecho_types, echo_area,
data_ record,
num_returned_prompts,
record_buffer_length,
record_size)

Inquiry Functions 11-51

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

GQDST (workstation_type, device_number, element, dim_dr,
error_status, max_buf, num_types, relement, echo_area,
len_buf, len_dr, dr)

ginqdefstring (workstation_type, device_number, bufsize,
data_size, data, error_status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

device_number

data type: integer
access: read-only
mechanism: by reference
This argument is the device number that differentiates between logical
input devices of the same class, operating on the same workstation. For
more information, refer to Chapter 7, Input Functions.

error_status

data type: integer
access: \Vl'ite-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

11-52 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

buffer_size

data type: integer
access: '\Vrite-only
mechanism: by reference
This argument is the maximum allowable size of the buffer, in bytes, that
eventually determines the size of the input string.

num_prompt_echo_types

data type: integer
access: '\Vrite-only
mechanism: by reference
This argument is the number of string prompt and echo types available on a
specified workstation.

prompt_echo_types

data type: array (integer)
access: '\Vrite-only
mechanism: by descriptor
This argument is an array that contains the available string prompt and
echo types on the specified workstation.

echo_area

data type: array (real)
access: '\Vrite-only
mechanism: by reference
This argument is a 4-element array containing the device coordinate values
that designate the input echo area on the workstation surface, in the order
XMIN, XM.AX, YMIN, YMAX. For more information concerning the DEC
GKS coordinate systems, refer to Chapter 6, Transformation Functions.

data_record

data type: address (record)
access: '\Vrite-only
mechanism: by reference
This argument is a pointer to the default string input data record for the
specified device.

Inquiry Functions 11-53

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

num_returnecl_prompts

data type: integer
access: write-only
mechanism: by reference
This argument is the number of prompt and echo types actually returned
to this function. Compare this number with the actual number of available
prompt and echo types to see if you had defined an array large enough to
hold all available values.

record_buffer_length

data type:
access:

integer
modifiable

mechanism: by reference
On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data_record. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record_size is larger than record_buffer _length after
the function call, then you know that the graphics handler truncated the
data record when writing it to the buffer and data was lost.

record_size

data type: integer
access: write-only
mechanism: by reference
This argument is the total size, in bytes, of the data record.

11-54 Inquiry Functions

Error Messages

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_l9

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$_ERROR_NEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

38 GKS$_ERROR_38

140 GKS$_ERROR_140

Program Example

Message

Invalid error status parameter specified
in routine ****

GKS not in proper state: GKS in the
error state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in,
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of cate
gory INPUT nor of category OUTIN in
routine ****

Specified input device is not present on
the workstation in routine ****

Example 11-5 illustrates the use of the function INQUIRE DEFAULT
STRING DEVICE DATA.

Inquiry Functions 11-55

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

Example 11-5: Determining the Default String Input Values

C This program writes the return values of the function
C GKS$INQ_DEF_STRING_DATA to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS ID, DATA RECORD(2), DEVICE NUM,

*LIST PROMPT TYPES(-5), NUM PROMPT ECHO, ERROR STATUS,
* PROMPT RETURN SIZE, RECORD BUFFER LENGTH, RECORD SIZE,
* BUFFER-LENGTH; CUR POSITION - -

REAL ECHO AREA(4)-
DATA WS_ID I 1 /, DEVICE_NUM I 1 I

EQUIVALENCE(DATA_RECORD(1), BUFFER_LENGTH)
EQUIVALENCE(DATA_RECORD(2), CUR_POSITION)

CALL GKS$0PEN_GKS('SYS$ERROR:')

C Initialize the modifiable argument •.•
RECORD_BUFFER_LENGTH = 8

C You can obtain this information as long as GKS is open.
CALL GKS$INQ_DEF_STRING_DATA(GKS$K_VT240, DEVICE_NUM,

* ERROR STATUS, BUFFER LENGTH, NUM PROMPT ECHO,
* %DESCR(LIST PROMPT TYPES), ECHO AREA,-DATA RECORD,
* PROMPT_RETURN_SIZE,-RECORD_BUFFER=LENGTH, -
* RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ', ERROR_STATUS
WRITE(6, *) 'The atring buffer size: ',BUFFER LENGTH
WRITE(6, *) 'The number of prompt/echo types: I,

* NUM PROMPT ECHO
WRITE(6, *)-'The list of prompt/echo types: ',

* LIST PROMPT TYPES
WRITE(6, *) TThe echo area: ',ECHO AREA
WRITE(6, *) 'The string data record7 ', DATA RECORD
WRITE(6, *) 'The prompt/echo list return size: '

* PROMPT RETURN SIZE
WRITE(6; *) 'The data record buffer size: '

* RECORD_BUFFER_LENGTH
WRITE(6, *) 'The data record size: '

* RECORD SIZE
CALL GKS$CLOSE_GKS()
END

11-56 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_S l RETURN I
$ LINK EXAMPLE_S l RETURN I
$ RUN EXAMPLE_ 5 l RETURN I
The error status: 0
The string buffer size: 20
The number of prompt/echo types:
The list of prompt/echo types: 1

0
The echo area: 533.0000
The string data record:
The prompt/echo list return size:
The data record buffer size:
The data record size:
$

799.0000
20

8
8

3
2

1

3

O.OOOOOOOE+OO
0

0

479.0000

To review the functionality of INQUIRE DEFAULT STRING DEVICE DATA
within a larger program, refer to the string input programs in Chapter 7,
Input Functions.

Inquiry Functions 11-57

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

INQUIRE DEFAULT STROKE DEVICE DATA

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE DEFAULT STROKE DEVICE DATA returns the
default values for the stroke logical input device on a specified workstation.

The default values for the stroke input device are available when DEC
GKS is in any operating state except GKS$K_GKCL, and if the following
conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_INPUT or GKS$K_
WSCAT_OUTIN.

• The input device exists on the specified workstation.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning input, refer to Chapter 7, Input Functions.

GKS$1NQ_DEF _STROKE_DATA (workstation_type,
device_number, error_status,
buffer size,
num_prompt_ echo_types,
prompt_echo_types,
echo_area, data_record,
num_returned_prompts,

11-58 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

record_buffer_length,
record_size)

GQDSK (workstation_type, device_number, element, dim_dr,
error_status, max_buf, num_types, relement, echo_area,
len_buf, len_dr, dr)

ginqdefstroke (workstation_type, device_number, bufsize,
data_size, data, error_status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

device_number

data type: integer
access: read-only
mechanism: by reference
This argument is the device number that differentiates between logical
input devices of the same class, operating on the same workstation. For
more information, refer to Chapter 7, Input Functions.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

Inquiry Functions 11-59

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

buffer_size

data type: integer
access: write-only
mechanism: by reference
This argument is the maximum allowable size of the buffer, in bytes, that
determines the maximum number of points accepted as part of the stroke.
The buffer holds one point per byte.

num_prompt_echo_types

data type: integer
access: write-only
mechanism: by reference
This argument is the number of stroke prompt and echo types available on a
specified workstation.

prompt_echo_types

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is an array that contains the available stroke prompt and
echo types on the specified workstation.

echo_area

data type: array (real)
access: write-only
mechanism: by reference
This argument is a 4-element array containing the device coordinate values
that designate the input echo area on the workstation surface, in the order
XMIN, XMAX, YMIN, YMAX. For more information concerning the DEC
GKS coordinate systems, refer to Chapter 6, Transformation Functions.

data_record

data type: address (record)
access: write-only
mechanism: by reference
This argument is a pointer to the default stroke input record for the specified
device.

11-60 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

num_returned_prompts

data type: integer
access: write-only
mechanism: by reference
This argument is the number of prompt and echo types actually returned
to this function. Compare this number with the actual number of available
prompt and echo types to see if you had defined an array large enough to
hold all available values.

record_buffer_length

data type: integer
access: modifiable
mechanism: by reference
On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument dataJecord. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record_size is larger than record_buffer _length after
the function call, then you know that the graphics handler truncated the
data record when writing it to the buffer and data was lost.

record_size

data type: integer
access: write-only
mechanism: by reference
This argument is the total size, in bytes, of the data record.

Inquiry Functions 11-61

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$_ERROR_NEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

38 GKS$_ERROR_38

140 GKS$_ERROR_140

Program Example

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
Array descriptor is not acceptable in
routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory INPUT nor of category OUTIN in
routine ****
Specified input device is not present on
the workstation in routine ****

Example 11-6 illustrates the use of the function INQUIRE DEFAULT
STROKE DEVICE DATA.

11-62 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

Example 11-6: Determining the Default Stroke Input Values

C This program writes the return values of the function
C GKS$INQ DEF STROKE DATA to the workstation surface.

IMPLICIT NONE -
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS ID, DATA RECORD(13), DEVICE NUM,

* LIST PROMPT TYPES(-5), NUM PROMPT ECHO; ERROR STATUS,
* PROMPT RETURN SIZE, RECORD BUFFER LENGTH, -
* RECORD=SIZE, BUFFER_LENGTH- -

REAL ECHO AREA(4)
DATA WS_ID / 1 /, DEVICE_NUM I 1 I

EQUIVALENCE(DATA_RECORD(1), BUFFER LENGTH

CALL GKS$0PEN_GKS('SYS$ERROR:')

C Initialize the modifiable argument .••
RECORD_BUFFER_LENGTH = 52

C You can obtain this information as long as GKS is open.
CALL GKS$INQ DEF STROKE DATA(GKS$K VT240, DEVICE NUM,

* ERROR STATUS, BUFFER LENGTH, NUM PROMPT ECHO, -
* %DESCR(LIST PROMPT TYPES), ECHO AREA,-DATA RECORD,
* PROMPT RETURN SIZE,-RECORD BUFFER-LENGTH, -
* RECORD=SIZE)- - -

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ',ERROR STATUS
WRITE(6, *) 'The stroke buffer size: ',-BUFFER LENGTH
WRITE(6, *) 'The number of prompt/echo types: I,

* NUM PROMPT ECHO
WRITE(6, *)-'The list of prompt/echo types: ',

* LIST PROMPT TYPES
WRITE(6, *)'The echo area: ',ECHO AREA
WRITE(6, *) 'The stroke data record: ', DATA RECORD
WRITE(6, *) 'The prompt/echo list return size: ',

* PROMPT RETURN SIZE - -WRITE(6, *) 'The data record buffer size: '
* RECORD BUFFER LENGTH
WRITE(6; *) 'The data record size: '

* RECORD SIZE
CALL GKS$CLOSE_GKS()
END

Inquiry Functions 11-63

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_6 I RETURN t
$ LINK EXAMPLE_ 6 I RETURN I
$ RUN EXAMPLE_ 6 I RETURN I
The error status: 0
The stroke buffer size: 80
The number of prompt/echo types:
The list of prompt/echo types: 1

Q
The echo area: O.OOOOOOOE+OO
The stroke data record:

0 0
0 0

479.0000
80
0
0

2

The prompt/echo list return size: 2
The data record buffer size: 20
The data record size: 20
$

4 0 0

O.OOOOOOOE+OO 479.0000
0 -780059640 -780059640

0 0 0

To review the functionality of INQUIRE DEFAULT STROKE DEVICE DATA
within a larger program, refer to the stroke input programs in Chapter 7,
Input Functions.

11-64 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

INQUIRE DEFAULT VALUATOR DEVICE DATA

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE DEFAULT VALUATOR DEVICE DATA returns
the default values for the valuator logical input device on a specified
workstation.

The default values for the valuator input device are available when DEC
GKS is in any operating state except GKS$K_GKCL, and if the following
conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_INPUT or GKS$K_
WSCAT_OUTIN.

• The input device exists on the specified workstation.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning input, refer to Chapter 7, Input Functions.

GKS$1NQ_DEF _ VALUATOR_DATA (workstation_type,
device_number,
error_ status, initiaL value,
num_prompt_echo_types,
prompt_echo_types,
echo_area, data_record,
num_returned_prompts,

Inquiry Functions 11-65

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

record_buffer_length,
record_size)

GQDVL (workstation_type, device_number, element, dim_dr,
error_status, def_ value, num_types, relement,
echo_area, low_val, high_val, len_dr, dr)

ginqdefval (workstation_type, device_number, bufsize, data_size,
data, error _status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

device_number

data type: integer
access: read-only
mechanism: by reference
This argument is the device number that differentiates between logical
input devices of the same class, operating on the same workstation. For
more information, refer to Chapter 7, Input Functions.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

11-66 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

initial value

data type: real
access: write-only
mechanism: by reference
This argument is the default initial value.

num_prompt_echo_types

data type: integer
access: write-only
mechanism: by reference
This argument is the number of valuator prompt and echo types available
on a specified workstation.

prompLecho_types

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is an array that contains the available valuator prompt and
echo types on the specified workstation.

echo_area

data type: array (real)
access: write-only
mechanism: by reference
This argument is a 4-element array containing the device coordinate values
that designate the input echo area on the workstation surface, in the order
XMIN, XMAX, YMIN, YMAX. For more information concerning the DEC
GKS coordinate systems, refer to Chapter 6, Transformation Functions.

data_record

data type: address (record)
access: write-only
mechanism: by reference
This argument is a pointer to the default valuator input record for the
specified device.

Inquiry Functions 11-67

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

num_returned_prompts

data type: integer
access: write-only
mechanism: by reference
This argument is the number of prompt and echo types actually returned
to this function. Compare this number with the actual number of available
prompt and echo types to see if you had defined an array large enough to
hold all available values.

record_buffer_length

data type: integer
access: modifiable
mechanism: by reference
On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data_record. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record_size is larger than record_buffer _length after
the function call, then you know that the graphics handler truncated the
data record when writing it to the buffer and data was lost.

record_size

data type: integer
access: write-only
mechanism: by reference
This argument is the total size, in bytes, of the data record.

11-68 Inquiry Functions

Error Messages

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_l9

-20 DECGKS$~ERROR_NEG_20

-33 DECGKS$_ERROR_NEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

38 GKS$_ERROR_38

140 GKS$_ERROR_l40

, Program Example

Message

Invalid error status parameter specified
in routine ****

GKS not in proper state: GKS in the
error state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of cate
gory INPUT nor of category OUTIN in
routine ****

Specified input device is not present on
the workstation in routine ****

Example 11-7 illustrates the use of the function INQUIRE DEFAULT
VALUATOR DEVICE DATA.

Inquiry Functions 11-69

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

Example 11-7: Determining the Default Valuator Input Values

C This program writes the return values of the function
C GKS$INQ DEF VALUATOR DATA to the workstation surface.

IMPLICIT NONE -
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS ID, DEVICE NUM,

* LIST_PROMPT_TYPES(5-), NUM_PROMPT_ECHO, ERROR_STATUS,
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH, RECORD_SIZE

REAL ECHO AREA(4), INIT VALUE, DATA RECORD(2)
DATA WS_ID I 1 /, DEVICE_NUM I 1 I -

CALL GKS$0PEN_GKS('SYS$ERROR:')

C Initialize the modifiable argument •••
RECORD_BUFFER_LENGTH = 8

C You can obtain this information as long as GKS is open.
CALL GKS$INQ DEF VALUATOR DATA(GKS$K VT240, DEVICE NUM,

* ERROR STATUS, INIT VALUE~ NUM PROMPT-ECHO, -
* %DESCR(LIST PROMPT TYPES), ECHO AREA, DATA RECORD,
* PROMPT_RETURN_SIZE,-RECORD_BUFFER=LENGTH, RECORD_SIZE

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ',ERROR STATUS
WRITE(6, *) 'The initial value: ', INIT-VALUE
WRITE(6, *) 'The number of prompt/echo types: ',

* NUM PROMPT ECHO
WRITE(6, *)-'The list of prompt/echo types: '

* LIST PROMPT TYPES
WRITE(6, *) IThe echo area: ', ECHO AREA
WRITE(6, *) 'The valuator data record:', DATA_RECORD
WRITE(6, *) 'The prompt/echo list return size: ',

* PROMPT RETURN SIZE
WRITE(6~ *) 'The data record buffer size: ',

* RECORD BUFFER LENGTH
WRITE(6~ *) 'The data record size:', RECORD_SIZE
CALL GKS$CLOSE_GKS()
END

11-70 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_ 7 I RETURN I
$ LINK EXAMPLE_ 7 I RETURN I
$ RUN EXAMPLE_ 7 I RETURN I
The error status: 0
The initial value: 0.5000000
The number of prompt/echo types:
The list of prompt/echo types:

0
1

The echo area: 533.0000 799.0000
The valuator data record: O.OOOOOOOE+OO
The prompt/echo list return size:
The data record buffer size: 8
The data record size: 8
$

3
2 3 0

O.OOOOOOOE+OO 479.0000
1.000000

3

To review the functionality of INQUIRE DEFAULT VALUATOR DEVICE
DATA within a larger program, refer to the valuator input programs in
Chapter 7, Input Functions.

Inquiry Functions 11-71

Workstation Description Table Inquiries
INQUIRE DISPLAY SPACE SIZE

INQUIRE DISPLAY SPACE SIZE

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE DISPLAY SPACE SIZE returns, for a specified
workstation type, a flag specifying whether the device coordinate units
are in meters or in some other form of measurement, the units for the
workstation-specific device coordinates, and the display surface size in raster
units.

The maximum display surface size is available when DEC GKS is in any
operating state except GKS$K_GKCL, and ifthe following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is not of category GKS$K_ WSCAT_MO or GKS$K_
WSCAT_MI (refer to Chapter 9, Metafile Functions), or of category
GKS$K_ WSCAT_ WISS (refer to Chapter 3, Control Functions).

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the use of this function, refer to SET
WORKSTATION VIEWPORT in Chapter 6, Transformation Functions.

GKS$1NQ_MAX_DS_SIZE (workstation_type, error_status,
meters, device_ coordinates·, x,
device_coordinates_y, raster_units_x,
raster_units_y)

GQDSP (workstation_type, error_status, units, px, py, ras_x,
ras_y)

11-72 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DISPLAY SPACE SIZE

ginqdisplaysize (workstation_type, dspsz, error_status)

Arguments

workstatlon_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

meters

data type: integer
access: write-only
mechanism: by reference
This argument is the flag that specifies whether or not the device coordinate
units are measured in meters or in some device-determined unit of
measurement. The argument can be any of the following values or
constants:

Value Constant Description

0 GKS$K_METERS Meters

1 GKS$K_OTHER_UNITS Some other unit

Inquiry Functions 11-73

Workstation Description Table Inquiries
INQUIRE DISPLAY SPACE SIZE

device_coordinates_x
device_coordinates_y

data type: real
access: write-only
mechanism: by refe:fence
These arguments are the maximum X and Y values of the workstation
surface, in device coordinates.

raster_units_x
raster_units_y

data type: integer
access: write-only
mechanism: by reference
These arguments are the workstation's raster units, or its pixel count.
By comparing a workstation's raster units with its maximum display
coordinates, you can determine the resolution of the workstation surface,
and how the device coordinates are mapped onto the pixels of the device.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine****

22 GKS$_ERROR_22 Specified workstation type is invalid in
routine ****

11-74 Inquiry Functions

Error
Number

23

31

33

36

38

Workstation Description Table Inquiries
INQUIRE DISPLAY SPACE SIZE

Completion Status Code

GKS$_ERROR_23

GKS$_ERROR_31

GKS$_ERROR_33

GKS$_ERROR_36

GKS$_ERROR_38

Message

Specified workstation type does not exist
in routine ****
Specified workstation is of category MO
in routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****
Specified workstation is neither of cate
gory INPUT nor of category OUTIN in
routine ****

Inquiry Functions 11-75

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES

INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function INQUIRE DYNAMIC MODIFICATION OF SEGMENT
ATTRIBUTES returns information concerning the ability of the workstation
to dynamically generate segment transformations, visibility changes,
highlighting changes, priority changes, content, and the effects of a segment
deletion. If the workstation can dynamically change the surface, DEC GKS
generates the segment changes immediately. If the workstation cannot
dynamically change the surface, DEC GKS waits until the next update of
the surface to regenerate only the output primitives contained in segments
(implicit regeneration).

NOTE

If an implicit regeneration is required, all output primitives not
contained in a segment· are lost.

The flags determining the ability to dynamically alter segment attributes are
available when DEC GKS is in any operating state except GKS$K_GKCL,
and if the following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning segments, refer to Chapter 8, Segment
Functions.

11-76 Inquiry Functions

Syntax

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES

GKS$1NQ_DYN_MOD_SEG_ATTB (workstation_type,
error_ status,
transformation_ change,
visible_to_invisible,
invisible_ to_ visible,
highlighL change,
priority_ change,
add_primitives,
segmenL deletion)

GQDSGA (workstation_type, error_status, xform, vis_on_off,
vis_off_on, highlight, priority, add_prim, delete)

ginqmodsegattr (workstation_type, dyn, error_status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to

Inquiry Functions 11-77

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES

one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

transformation_ change

data type: integer
access: write-only
mechanism: by reference
This argument indicates whether GKS can dynamically implement a
segment transformation change, or whether GKS must implicitly regenerate
the segment at the next surface update. The argument can be any of the
following values or constants:

Value Constant

0 GKS$K_IRG

1 GKS$K_IMM

visible_to_invisible
invisible_to_ visible

data type: integer
access: write-only
mechanism: by reference

Description

Implicitly regenerated.

Dynamically implemented.

These arguments indicate whether DEC GKS can dynamically implement
a visibility change, or whether DEC GKS must implicitly regenerate the
segment at the next surface update. (Some workstations may be able to
make an invisible segment visible, but may not be sophisticated enough to
make a visible segment invisible, forcing the workstation to redraw what is
located behind the now invisible segment.) The argument can be any of the
following values or constants:

Value Constant

0 GKS$K_IRG

1 GKS$K_IMM

11-78 Inquiry Functions

Description

Implicitly regenerated.

Dynamically implemented.

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES

highlight_ change

data type: integer
access: write-only
mechanism: by reference
This argument indicates whether GKS can dynamically implement a
highlighting change, or whether GKS must implicitly regenerate the
segment at the next surface update. The argument can be any of the
following values or constants:

Value Constant

0 GKS$KIRG

1 GKS$K_IMM

priority_change

data type: integer
access: write-only
mechanism: by reference

Description

Implicitly regenerated.

Dynamically implemented.

This argument indicates whether GKS can dynamically implement a priority
change, or whether GKS must implicitly regenerate the segment at the
next surface update. The argument can be any of the following values or
constants:

Value Constant

0 GKS$K_IRG

1 GKS$K .. JMM

add_primitives

data type: integer
access: write-only
mechanism: by reference

Description

Implicitly regenerated.

Dynamically implemented.

This argument indicates whether GKS can dynamically add output
primitives, to an open segment, or whether GKS must implicitly regenerate
the segment at the next surface update. The argument can. be any of the
following values or constants:

Inquiry Functions 11-79

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES

Value Constant

0 GKS$K_IRG

1 GKS$K .. _IMM

segment_ deletion

data type: integer
access: \Vrite-only
mechanism: by reference

Description

Implicitly regenerated.

Dynamically implemented.

This argument indicates whether GKS can dynamically delete a segment,
or whether GKS must implicitly regenerate the remaining segments at the
next surface update. The argument can be any of the following values or
constants:

Value Constant

0 GKS$K .. JRG

1 GKS$K .. _IMM

Error Messages

Description

Implicitly regenerated.

Dynamically implemented.

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine****

11-80 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES

Error
Number Completion Status Code

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

Message

Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Inquiry Functions 11-81

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES

INQUIRE DYNAMIC MODIFICATION OF WORKSTATION
ATTRIBUTES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function INQUIRE DYNAMIC MODIFICATION OF WORKSTATION
ATTRIBUTES returns information concerning the ability of the workstation
to dynamically implement a change in the definition of a representation
index value. If the workstation can dynamically change the surface, DEC
GKS generates the attribute changes immediately. If the workstation cannot
dynamically change the surface, DEC GKS waits until the next update of
the surface to regenerate only the output primitives contained in segments
(implicit regeneration).

NOTE

If an implicit regeneration is required, all output primitives not
contained in a segment are lost.

The flags determining the ability to dynamically alter output attributes are
available when DEC GKS is in any operating state except GKS$K_GKCL,
and if the following conditions exist:

• The specified workstation type exists and is valid.
• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_

WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section. ·

For more information concerning output attributes, refer to Chapter 5,
Output Attribute Functions. For more information concerning implicit
regeneration, dynamic alteration, and operating states, refer to Chapter 3,
Control Functions.

11-82 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES

Syntax

GKS$1NQ_DYN_MOD_WS_ATTB (workstation_type,
error_ status,
polyline_representation,
polymarker_representation,
text_ representation,
fi/Lrepresentation,
pattern_representation,
color_representation,
workstation_transformations)

GQDWKA (workstation_type, error_status, pLrep, pm_rep, t_rep,
fa_rep, pat_rep, c_rep, ws_xforms)

ginqmodwsattr (workstation_type, dyn, error_status)

Arguments

workstation_ type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: \Vrite-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of

Inquiry Functions 11-83

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES

the error messages listed in the Error Messages section, and all remaining
output arguments are invalid.

polyline_representation

data type: integer
access: write-only
mechanism: by reference
This argument indicates whether GKS can dynamically implement a
change in the definition of a polyline representation index value. (For more
information, refer to SET POLYLINE REPRESENTATION in Chapter 5,
Output Attribute Functions.) The argument can be any of the following
values or constants:

Value Constant

0 GKS$K_IRG

1 GKS$K._IMM

polymarker_representation

data type: integer
access: write-only
mechanism: by reference

Description

Implicitly regenerated.

Dynamically implemented.

This argument indicates whether GKS can dynamically implement a change
in the definition of a polymarker representation index value. (For more
information, refer to SET POLYMARKER REPRESENTATION in Chapter
5, Output Attribute Functions.) The argument can be any of the following
values or constants:

Value Constant

0 GKS$K_IRG

1 GKS$K._IMM

11-84 Inquiry Functions

Description

Implicitly regenerated.

Dynamically implemented.

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES

text_ representation

data type: integer
access: write-only
mechanism: by reference
This argument indicates whether GKS can dynamically implement a change
in the definition of a text representation index value. (For more information,
refer to SET TEXT REPRESENTATION in Chapter 5, Output Attribute
Functions.) The argument can be any of the following values or constants:

Value Constant

0 GKS$K_IRG

1 GKS$K_IMM

fill_ representation

data type: integer
access: write-only
mechanism: by reference

Description

Implicitly regenerated.

Dynamically implemented.

This argument indicates whether GKS can dynamically implement a change
in the definition of a fill representation index value. (For more information,
refer to SET FILL AREA REPRESENTATION in Chapter 5, Output
Attribute Functions.) The argument can be any of the following values or
constants:

Value Constant

0 GKS$K_IRG

1 GKS$K_IMM

pattern_representation

data type: integer
access: write-only
mechanism: by reference

Description

Implicitly regenerated.

Dynamically implemented.

This argument indicates whether GKS can dynamically implement a
change in the definition of a pattern representation index value. (For more
information, refer to SET PATTERN REPRESENTATION in Chapter 5,
Output Attribute Functions.) The argument can be any of the following
values or constants:

loquiry Functions 11-85

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES

Value Constant

0 GKS$It_IRG

1 GKS$It_IMM

color_representation

data type: integer
access: write-only
mechanism: by reference

Description

Implicitly regenerated.

Dynamically implemented.

This argument indicates whether GKS can dynamically implement a
change in the definition of a color representation index value. (For more
information, refer to SET COLOR REPRESENTATION in Chapter 5, Output
Attribute Functions.) The argument can be any of the following values or
constants:

Value Constant

0 GKS$It_IRG

1 GKS$It_IMM

workstatlon_transformatlons

data type: integer
access: write-only
mechanism: by reference

Description

Implicitly regenerated.

Dynamically implemented.

This argument indicates whether GKS can dynamically implement a change
in the workstation window or workstation viewport. (For more information,
refer to Chapter 6, Transformation Functions.) The argument can be any of
the following values or constants:

Value Constant

0 GKS$It_IRG

1 GKS$It_IMM

11-86 Inquiry Functions

Description

Implicitly regenerated.

Dynamically implemented.

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Inquiry Functions 11-87

Workstation Description Table Inquiries
INQUIRE FILL AREA FACILITIES

INQUIRE FILL AREA FACILITIES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE FILL AREA FACILITIES returns the number of
available interior styles, the list of available interior styles, the number of
hatching styles, the list of available hatching styles, and the number of fill
area indexes available for a given workstation type.

The fill area facility information is available when DEC GKS is in any
operating state except GKS$K_GKCL, and ifthe following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the fill area attributes, refer to Chapter 5,
Output Attribute Functions.

GKS$1NQ_FILL_FAC (workstation_type, error_status,
num_interior _styles, interior_ style_list,
num_hatch_styles, hatch_style_list,
num_fi/Lindexes, hatch_return_size)

GQFAF (workstation_type, selement, helement, error_status,
num_int, r_selement, num_hatch, r_helement,
num_index)

11-88 Inquiry. Functions

Workstation Description Table Inquiries
INQUIRE FILL AREA FACILITIES

ginqfillfacil (workstation_type, bufsize, fac_size, tac,
error_status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: '\Vl"ite-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed: in the Error Messages section, and all the
remaining output arguments are invalid.

num_interior_styles

data type: integer
access: '\Vl"ite-only
mechanism: by reference .
This argument is the number of interior styles available to workstations of
the specified type.

interior_style_list

data type: array (integer)
access: '\Vl"ite-only
mechanism: by reference
This argument is a 4-element array whose elements correspond to the four
interior fill area styles. If the graphics handler supports the style, it writes
the style's constant value to the array element. If the graphics handler does

Inquiry Functions 11-89

Workstation Description Table Inquiries
INQUIRE FILL AREA FACILITIES

not support the style, it writes a -1 to the array element. The possible fill
area style indexes are as follows:

Value Constant

0 GKS$K_INTSTYLE_HOLLOW

1 GKS$K_INTSTYLE_SOLID

2 GKS$K...INTSTYLE_PATrERN

3 GKS$K...INTSTYLE_HATCH

num_hatch_styles

data type: integer
access: write-only
mechanism: by reference

Description

Hollow

Solid

Pattern

Hatched

This argument is the number of hatch styles available to workstations of the
specified type.

hatch_style_llst

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the list of hatch styles available to workstations of the
specified type.

num_fll/_lndexes

data type: integer
access: write-only
mechanism: by reference
This argument is the number of predefined fill index values available on the
workstations of the specified type.

11-90 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE FILL AREA FACILITIES

hatch_return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the number of hatch styles returned to the hatch style
list. By comparing this argument to the actual list, you can determine if you
defined an array large enough to hold all the returned values.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$_ERROR_NEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
Array descriptor is not acceptable in
routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in rou~ ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Inquiry Functions 11-91

Workstation Description Table Inquiries
INQUIRE GENERALIZED DRAWING PRIMITIVE

INQUIRE GENERALIZED DRAWING PRIMITIVE

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE GENERALIZED DRAWING PRIMITIVE returns
the number of attribute sets, and the list of those attribute sets that are
associated with the specified generalized drawing primitive (GDP) identifier
for a given workstation type.

The GDP information is available when DEC GKS is in any operating state
except GKS$K_GKCL, and ifthe following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

• The workstation supports the GDP associated with the specified
identifier.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning GENERALIZED DRAWING PRIMITIVE,
refer to Chapter 4, Output Functions. For more information concerning
supported GDPs, refer to Appendix I, DEC GKS GDPs and Escapes.

GKS$1NQ_GDP (workstation_type, gdp_id, error_status,
num_attribute_sets, attribute_list, return_size)

GQGDP (workstation_id, gdp_id, error_status, num_atts, list_atts)

ginqgdp (workstation_type, function_id, tac, error_status)

11-92 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE GENERALIZED DRAWING PRIMITIVE

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

gdp_id

data type: integer
access: read-only
mechanism: by reference
This argument is the GDP identifier.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_attribute_sets

data type: integer
access: write-only
mechanism: by reference
This argument is the number of attribute sets applicable to the specified
GDP on the specified workstation type.

Inquiry Functions 11-93

Workstation Description Table Inquiries
INQUIRE GENERALIZED DRAWING PRIMITIVE

attribute_list

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is an array containing the list of attribute sets associated
with the specified GDP identifier. The argument can be any of the following
values or constants:

Value Constant

0 GKS$K._POLYLN_ATTRI

1 GKS$K_POLYMR_ATTRI

2 GKS$K_TEXT_ATTRI

3 GKS$K_FILLAR_ATTRI

return_slze

data type: integer
access: write-only
mechanism: by reference

Description

GDP polyline attributes

GDP polymarker attributes

GDP text attributes

GDP fill area attributes

This argument is the number of attributes returned to the attribute list.
You can use this argument to see if you specified an array that was large
enough to hold all the returned GDPs.

11-94 Inquiry Functions

Error Messages

Workstation Description Table Inquiries
INQUIRE GENERALIZED DRAWING PRIMITIVE

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$_ERROR_NEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

41 GKS$_ERROR_41

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
Array descriptor is not acceptable in
routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****
Specified workstation type is not able
to generate the specified generalized
drawing primitive in routine ****

Inquiry Functions 11-95

Workstation Description Table Inquiries
INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES

INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING
PRIMITIVES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING
PRIMITIVES returns the number of available generalized drawing prim
itives (GDPs) and a list of the GDP identifiers for a given workstation
type. For more information concerning GDPs, refer to Chapter 4, Output
Functions.

The list of available GDPs is available when DEC GKS is in any operating
state except GKS$K_GKCL, and ifthe following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN (for more information concerning supported GDPs, refer
to Appendix I, DEC GKS GDPs and Escapes).

• The specified workstation can generate the given GDP.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

GKS$1NQ_AVAIL_ GDP (workstation_type, error _status,
num.;....gdps, gdp_/ist, return_size)

GQEGDP (workstation_type, element, error_status, num_gdp,
relement)

11-96 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES

ginqavailgdp (workstation_type, max_gdps, start, gdps,
actuaLgdps, error_status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_gdps

data type: integer
access: write-only
mechanism: by reference
This argument is the number of different GDP types.

gdp_list

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the array that contains the integers representing the
various supported GDPs for the specified workstation. For a list of the
supported GDP types, refer to Appendix I, DEC GKS GDPs and Escapes.

Inquiry Functions 11-97

Workstation Description Table Inquiries
INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES

return_slze

data type: integer
access: write-only
mechanism: by reference
This argument is the actual number of GDPs passed back to the array.
You can check this number to see if INQUIRE LIST OF AVAILABLE
GENERALIZED DRAWING PRIMITIVE returned fewer values than spaces
allocated in the array.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number

-19

-20

-33

8

22

23

39

11-98 Inquiry Functions

Completion Status Code

DECGKS$_ERROR_NEG_l9

DECGKS$_ERROR_NEG_20

DECGKS$_ERROR_NEG_33

GKS$_ERROR_8

GKS$_ERROR_22

GKS$_ERROR_23

GKS$_ERROR_S9

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
Array descriptor is not acceptable in
routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Workstation Description Table Inquiries
INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE TABLES

INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE
TABLES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE
TABLES returns, for a specified workstation type, the maximum number
of polyline bundles, polymarker bundles, text bundles, fill area bundles,
pattern indexes, and color indexes. The maximum workstation state table
size is available when DEC GKS is in any operating state except GKS$K_
GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_WSCAT_OUTPUT or of category
GKS$K_ WSCAT_OUTIN.

If these conditions are not met, the output arguments· are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the use of this function, refer to Chapter 5,
Output Attribute Functions.

GKS$MAX_WS_STATE_TABLE (workstation_type, error_status,
max_pline, max_pmark,
max_text, max_fi/Larea,
max_pattern, max_color)

GQLWK (workstation_type, error_status, m_pline, m_pmark,
m_text, m_fill, m_patt, m_color)

Inquiry Functions 11-99

Workstation Description Table Inquiries
INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE TABLES

ginqmaxwssttables (workstation_type, tables, error_status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

max_pline
max_pmark
max_text
max_fil/_area
max_pattern
max_color

data type: integer
access: write-only
mechanism: by reference
These arguments are the maximum number of bundle indexes that the
workstation state list can hold for each type of bundled index.

11-100 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE TABLES

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is of category MO
in routine ****

Inquiry Functions 11-101

Workstation Description Table Inquiries
INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES

INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT
DEVICES returns the number of logical input devices in each class for a
given workstation type.

The numbers of logical input devices in each class are available when DEC
GKS is in any operating state except GKS$K_GKCL, and if the following
conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_INPUT or GKS$K_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning input, refer to Chapter 7, Input Functions.

GKS$1NQ_INPUT _DEV (workstation_type, error_status,
num_locator_ devices,
num_stroke_devices,
num_ valuator_devices,
num _choice_ devices,
num_pick_devices, num_string_devices)

GQLI (workstation_type, error_status, num_loc, num_stk,
num_val, num_ch, num_pi, num_stri)

11-102 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES

ginqnumavailinput (workstation_type, num, error_status)

Arguments

workstatlon_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_locator_devlces

data type: integer
access: write-only
mechanism: by reference
This argument is the number of locator logical input devices supported by
the specified workstation type.

num_stroke_devices

data type: integer
access: write-only
mechanism: by reference
This argument is the number of stroke logical input devices supported by
the specified workstation type.

Inquiry Functions 11-103

Workstation Description Table Inquiries
INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES

num_ valuator_devices

data type: integer
access: write-only
mechanism: by reference
This argument is the number of valuator logical input devices supported by
the specified workstation type.

num_choice_devices

data type: integer
access: write-only
mechanism: by reference
This argument is the number of choice logical input devices supported by
the specified workstation type.

num_pick_devices

data type: integer
access: write-only
mechanism: by reference
This argument is the number of pick logical input devices supported by the
specified workstation type.

num_string_devices

data type: integer
access: write-only
mechanism: by reference
This argument is the number of string logical input devices supported by the
specified workstation type.

11-104 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

38 GKS$_ERROR_38

Message

Invalid error status parameter specified
in routine ****

GKS not in proper state: GKS in the
error state in routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of cate
gory INPUT nor of category OUTIN in
routine ****

Inquiry Functions 11-105

Workstation Description Table Inquiries
INQUIRE NUMBER OF SEGMENT PRIORITIES SUPPORTED

INQUIRE NUMBER OF SEGMENT PRIORITIES SUPPORTED

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE NUMBER OF SEGMENT PRIORITIES
SUPPORTED returns the number of supported segment priorities for a
specified workstation type.

The number of supported segment priorities is available when DEC GKS is
in any operating state except GKS$K_GKCL, and if the following conditions
exist:

• The specified workstation identifier exists and is valid.

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument'to the number of one of the errors .
listed in the Error Messages section.

For more information concerning segments, refer to Chapter 8, Segment
Functions.

GKS$1NQ_SEG_PRIORITY (workstation_type, error_status,
num_priorities)

GQSGP (workstation_type, error_status, num_pri)

ginqnumsegpri (workstation_type, numpri, error_status)

11-106 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE NUMBER OF SEGMENT PRIORITIES SUPPORTED

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_priorities

data type: integer
access: write-only
mechanism: by reference
This argument is the number of segment priorities supported on a specified
workstation type. If this function writes zero (0) to this argument, the
device supports an infinite number of priorities.

Inquiry Functions 11-107

Workstation Description Table Inquiries
INQUIRE NUMBER OF SEGMENT PRIORITIES SUPPORTED

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

11-108 Inquiry Functions

Message

GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Workstation Description Table Inquiries
INQUIRE PATTERN FACILITIES

INQUIRE PATTERN FACILITIES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE PATTERN FACILITIES returns the number of
pattern indexes available for a specified workstation type.

The number of available pattern indexes is available when DEC GKS is in
any operating state except GKS$K_GKCL, and if the following conditions
exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_ OUTPUT or GKS$K_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning pattern representation and the other fill
area attributes, refer to Chapter 5, Output Attribute Functions.

GKS$1NQ_PAT _FAC (workstation_type, error_status,
num_pattern_indexes)

GQPAF (workstation_type, error_ status, nindexes)

ginqpatfacil (workstation_type, bufsize, fac_size, tac,
error_ status)

Inquiry Functions 11-109

Workstation Description Table Inquiries
INQUIRE PATTERN FACILITIES

Arguments

workstation_type

data typ~: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type:· integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_pattern_indexes

data type: integer
access: write-only
mechanism: by reference
This argument is the number of predefined pattern indexes supported on the
specified workstation type.

11-110 Inquiry Functions

Error Messages

Workstation Description Table Inquiries
INQUIRE PATTERN FACILITIES

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

Message

GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Inquiry Functions 11-111

Workstation Description Table Inquiries
INQUIRE POLYLINE FACILITIES

INQUIRE POLYLINE FACILITIES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE POLYLINE FACILITIES returns the number of line
types and line widths, the representation for each type and width, and the
number of polyline indexes available for a specified workstation type.

The polyline facilities are available when DEC GKS is in any operating state
except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the polyline attributes, refer to Chapter 5,
Output Attribute Functions.

GKS$1NQ_PLINE_FAC (workstation_type, error_status,
num_Jine_types, line_types,
num_line_widths, nominaLline_width,
line_width_min, line_width_max,
num_indexes, line_type_return_size)

GQPLF (workstation_type, element, error_status, num_types,
relement, num_widths, nom_width, min_width,
max_width, nindexes)

11-112 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE POLYLINE FACILITIES

ginqlinefacil (workstation_type, bufsize, fac_size, tac,
error_ status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_line_types

data type: integer
access: write-only
mechanism: by reference
This argument is the number of available line types on the specified
workstation type.

line_types

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the array containing line types available on the specified
workstation type. The defined values are as follows:

Inquiry Functions 11-113

Workstation Description Table Inquiries
INQUIRE POLYLINE FACILITIES

Value Constant

<= 0

1 GKS$K_LINETYPE_SOLID

2 GKS$K._LINETYPE_DASHED

3 GKS$K_LINETYPE_DOTTED

4 GKS$K_LINETYPE_DASHED_DOTTED

>= 5

num_line_widths

data type: integer
access: write-only
mechanism: by reference

Description

Reserved for implementation
specific use

Solid line

Dashed line

Dotted line

Solid line

Reserved for future
standardization

This argument is the number of line widths available on the specified
workstation type.

nomina/_line_width

data type: real
access: write-only
mechanism: by reference
This argument is the default line width specified in device coordinates.

line_width_min
line_wldth_max

data type: real
access: write-only
mechanism: by reference
These arguments are the minimum and maximum line widths, specified in
device coordinates, that the workstation type can produce.

num_indexes

data type: integer
access: write-only
mechanism: by reference
This argument is the number of predefined polyline bundle indexes
supported by the specified workstation type.

11-114 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE POLYLINE FACILITIES

line_type_return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the number of line types returned to the line type list. By
comparing this argument to the actual list, you can determine if you defined
an array large enough to hold all the returned values.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$_ERROR_NEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

Message

GKS not in proper state: GKS in the
error state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Inquiry Functions 11-115

Workstation Description Table Inquiries
INQUIRE POLYMARKER FACILITIES

INQUIRE POLYMARKER FACILITIES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE POLYMARKER FACILITIES returns the number of
marker types and marker sizes, the representation for each type and size,
and the number of polymarker indexes available for a given workstation
type.

The polymarker facilities are available when DEC GKS is in any operating
state except GKS$K_GKCL, and ifthe following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the polymarker attributes, refer to Chapter
5, Output Attribute Functions.

GKS$1NQ_PMARK_FAC (workstation_type, error_status,
num_marker_types, marker_types,
num_marker_sizes,
nominaLmarker_size,
marker_size_min,
marker_size_max, marker_indexes,
marker_type_return_size)

11-116 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE POLYMARKER FACILITIES

GQPMF (workstation_type, element, error_status, num_types,
relement, num_sizes, nom_size, min_size, max_size,
nindexes)

ginqmarkerfacil (workstation_type, bufsize, fac_size, tac,
error_ status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes· any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_marker_types

data type: integer
access: write-only
mechanism: by reference
This argument is the number of marker types available on the specified
workstation type.

Inquiry Functions 11-117

Workstation Description Table Inquiries
INQUIRE POLYMARKER FACILITIES

marker_types

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is an array containing marker types supported by the
specified workstation type. The defined values are as follows:

Value Constant Description

<= 0 Reserved for
implementation-
specific use

1 GKS$K_MARKERTYPE_DOT A dot(.)

2 GKS$K_MARKERTYPE_PLUS A plus sign (+)

3 GKS$K,_MARKERTYPE_ASTERISK An asterisk (*)

4 GKS$K_MARKERTYPE_CIRCLE A circle (o)

5 GKS$K_MARKERTYPE_DIAGONAL_ A cross (X)
CROSS

>= 6 Reserved for future
standardization

num_marker_sizes

data type: integer
access: write-only
mechanism: by reference
This argument is the number of marker sizes available on the specified
workstation type.

nominal_marker_size

data type: F _:float
access: write-only
mechanism: by reference
This argument is the default. size in device coordinates.

11-118 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE POLYMARKER FACILITIES

marker_size_min
marker_size_max

data type: real
access: write-only
mechanism: by reference
These arguments are the minimum and maximum marker sizes, in device
coordinates, that the specified workstation type can produce.

num_marker_indexes

data type: integer
access: write-only
mechanism: by reference
This argument is the number of predefined marker indexes supported by the
workstation ·type.

marker_type_return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the number of marker types returned to the marker list.
By comparing this argument to the actual list, you can determine if you
defined an array large enough to hold all the returned values.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-20 DECGKS$_ERROR_NEG_20

Message

GKS not in proper state: GKS in the
error state in routine ****

-33 DECGKS$_ERROR_NEG_33 Array descriptor is not acceptable in
routine ****

Inquiry Functions 11-119

Workstation Description Table Inquiries
INQUIRE POLVMARKER FACILITIES

Error
Number Completion Status Code

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

11-120 Inquiry Functions

Message

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Workstation Description Table Inquiries
INQUIRE PREDEFINED COLOR REPRESENTATION

INQUIRE PREDEFINED COLOR REPRESENTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE PREDEFINED COLOR REPRESENTATION returns
the predefined red, green, and blue intensities associated with a specific
color index for a given workstation type.

The predefined color representation for a color index value is available
when DEC GKS is in any operating state except GKS$K_GKCL, and if the
following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

• The color index is valid.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning color representation, refer to SET COLOR
REPRESENTATION in Chapter 5, Output Attribute Functions.

GKS$1NQ_PREDEF _COLOR_REP (workstation_type,
color _index, error_ status,
red_intensity,
green_intensity,
blue_intensity)

Inquiry Functions 11-121

Workstation Description Table Inquiries
INQUIRE PREDEFINED COLOR REPRESENTATION

GQPCR (workstation_type, cindex, error_status, red_i, green_i,
blue_i)

ginqpredcolourrep (workstation_type, index, rep, error_status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

color_index

data type: integer
access: read-only
mechanism: by reference
This argument is a predefined color index value that must be valid for the
specified workstation type.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the r~maining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

red_intensity
green_intensity
blue_intensity

11-122 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED COLOR REPRESENTATION

data type: real
access: \Vl"ite-only
mechanism: by reference
These arguments are the predefined red, green, and blue intensities that
comprise the color associated with the specified color index value.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

93 GKS$_ERROR_93

95 GKS$_ERROR_95

Message

GKS not in proper state: GKS in the
error state in routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Specified color index is invalid in
routine ****

A representation for the specified color
index has not been predefined on this
workstation in routine ****

Inquiry Functions 11-123

Workstation Description Table Inquiries
INQUIRE PREDEFINED FILL AREA REPRESENTATION

INQUIRE PREDEFINED FILL AREA REPRESENTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE PREDEFINED FILL AREA REPRESENTATION
returns the interior style, style index, and fill area color index associated
with a specific fill area index for a given workstation type.

The predefined representation for a fill index value is available when DEC
GKS is in any operating state except GKS$K_GKCL, and if the following
conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

• The fill index value is valid.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning fill representation, refer to SET FILL
AREA REPRESENTATION in Chapter 5, Output Attribute Functions.

GKS$1NQ_PREDEF _FILL_REP (workstation_type, fi/Lindex,
error_status, interior_style,
style_index, color_index)

GQPFAR (workstation_type, findex, error_status, int_style,
sindex, cindex)

ginqpredfillrep (workstation_type, index, rep, error_status)

11-124 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED FILL AREA REPRESENTATION

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

fill_ index

data type: integer
access: read-only
mechanism: by reference
This argument is a predefined fill index value that must be valid for the
specified workstation type.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

Inquiry Functions 11-125

Workstation Description Table Inquiries
INQUIRE PREDEFINED FILL AREA REPRESENTATION

interior_style

data type: integer
access: \Vlite-only
mechanism: by reference
This argument is the predefined interior style associated with the fill index
value. The defined values are as follows:

Value Constant

0 GKS$K_INTSTYLE_HOLLOW

1 GKS$K_INTSTYLE_SOLID

2 GKS$K, . ..INTSTYLE_PATTERN

3 GKS$K_INTSTYLE_HATCH

style_index

data type: integer
access: \Vlite-only
mechanism: by reference

Description

Hollow interior

Solid interior

Pattern interior

Hatched interior

This argument is the style index associated with the specified fill index
value. For more information concerning the style index, refer to SET FILL
AREA STYLE INDEX in Chapter 5, Output Attribute Functions.

color_index

data type: integer
access: \Vlite-only
mechanism: by reference
This argument is the color index associated with the specified fill index
value. For more information concerning the color index, refer to SET
COLOR REPRESENTATION in Chapter 5, Output Attribute Functions.

11-126 Inquiry Functions

Error Messages

Workstation Description Table Inquiries
INQUIRE PREDEFINED FILL AREA REPRESENTATION

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

80 GKS$_ERROR_80

82 GKS$_ERROR_82

Message

GKS not in proper state: GKS in the
error state in routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Fill area index is invalid in routine ****

A representation for the specified fill
area index has not been predefined on
this workstation in routine ****

Inquiry Functions 11-127

Workstation Description Table Inquiries
INQUIRE PREDEFINED PATTERN REPRESENTATION

INQUIRE PREDEFINED PATTERN REPRESENTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE PREDEFINED PATTERN REPRESENTATION
returns a description of a specific pattern by pattern size, and the array of
color indexes that comprises the pattern.

The predefined representation for a pattern index value is available when
DEC GKS is in any operating state except GKS$K_GKCL, and if the
following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

• The workstation supports pattern fill areas.

• The specified pattern index is valid.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning patterns, refer to Chapter 5, Output
Attribute Functions.

GKS$1NQ_PREDEF _PAT_REP (workstation_type, pattem_index,
error_status, height,
width, color_indexes,
color_columns_retum_size,
color:_rows_retum_size)

11-128 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED PATTERN REPRESENTATION

GQPPAR (workstation_type, pindex, max_x_dim, max_y_dim,
error_status, dim_x, dim_y, carray)

ginqpredpatrep (workstation_type, index, rep, error_status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

pattern_index

data type: integer
access: read-only
mechanism: by reference
This argument is a predefined pattern index value that must be valid for the
specified workstation type.

error_status

data type: integer
access: \Vrite-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

Inquiry Functions 11-129

Workstation Description Table Inquiries
INQUIRE PREDEFINED PATTERN REPRESENTATION

height
width

data type: integer
access: write-only
mechanism: by reference
These arguments are the number of rows and columns contained in the color
index array used to create the pattern.

color_indexes

data type: 2-D array (integer)
access: write-only
mechanism: by descriptor
This argument is the two-dimensional array of color indexes that designate
how DEC GKS colors the pattern.

color_columns_return_size
color_rows_return_size

data type: integer
access: write-only
mechanism: by reference
These arguments are the dimensions of the color array to which GKS
returned index values. You can use these values to traverse only the
elements of the array that contain valid color index values.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-20 DECGKS$_ERROR_NEG_20

Message

GKS not in proper state: GKS in the
error state in routine ****

-33 DECGKS$_ERROR_NEG_33 Array descriptor is not acceptable in
routine ****

11-130 Inquiry Functions

Error
Number

8

22

23

39

85

89

90

Workstation Description Table Inquiries
INQUIRE PREDEFINED PATTERN REPRESENTATION

Completion Status Code

GKS$_ERROR_8

GKS$_ERROR_22

GKS$_ERROR_23

GKS$_ERROR_39

GKS$_ERROR_85

GKS$_ERROR_89

GKS$_ERROR_90

Message

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****
Specified pattern index is invalid in
routine ****
A representation for the specified pattern
index has not been predefined on this
workstation in routine ****
Interior style PATTERN is not supported
on this workstation in routine ****

Inquiry Functions 11-131

Workstation Description Table Inquiries
INQUIRE PREDEFINED POLYLINE REPRESENTATION

INQUIRE PREDEFINED POLYLINE REPRESENTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE PREDEFINED POLYLINE REPRESENTATION
returns the line type, color index, and line width associated with a specific
polyline index for a given workstation type.

The predefined representation for a polyline index value is available when
DEC GKS is in any operating state except GKS$K_GKCL, and if the
following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the polyline attributes, refer to Chapter 5,
Output Attribute Functions.

GKS$1NQ_PREDEF _PLINE_REP (workstation_type,
polyline_index, error_ status,
line_type, color_index,
line_ width_scale_factor)

GQPPLR (workstation_type, pindex, error_status, /type, /width,
cindex)

ginqpredlinerep (workstation_type, index, rep, error_status)

11-132 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED POLYLINE REPRESENTATION

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

polyline_index

data type: integer
access: read-only
mechanism: by reference
This argument is a predefined polyline index value that must be valid for
the specified workstation type.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

Inquiry Functions 11-133

Workstation Description Table Inquiries
INQUIRE PREDEFINED POLYLINE REPRESENTATION

line_type

data type: integer
access: write-only
mechanism: by reference
This argument is the line type. The defined values are as follows:

Value Constant

<=0

1 GKS$K,_LINETYPE_SOLID

2 GKS$K,_LINETYPE_DASHED

3 GKS$K_LINETYPE_DO'ITED

4 GKS$K,_LINETYPE_DASHED_DOTTED

>=5

color_index

data type: integer
access: write-only
mechanism: by reference

Description

Reserved for implementation
specific use

Solid line

Dashed line

Dotted line

Solid line

Reserved for future
standardization

This argument is the color index associated with the given polyline index
value.

line_ width_scale_factor

data type: real
access: write-only
mechanism: by reference
This argument is the line width scale factor. DEC GKS calculates line width
by multiplying the scale factor by the nominal width.

11-134 Inquiry Functions

Error Messages

Workstation Description Table Inquiries
INQUIRE PREDEFINED POLYLINE REPRESENTATION

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

60 GKS$_ERROR_60

62 GKS$_ERROR_62

Message

GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****
Polyline index is not valid in routine ****
A representation for the specified poly
line index has not been predefined on
this workstation in routine ****

Inquiry Functions 11-135

Workstation Description Table Inquiries
INQUIRE PREDEFINED POLYMARKER REPRESENTATION

INQUIRE PREDEFINED POLYMARKER REPRESENTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE PREDEFINED POLYMARKER REPRESENTATION
returns the marker type, color index, and marker size scale factor associated
with a specific polymarker index for a given workstation type.

The predefined representation of the polymarker index value is available
when DEC GKS is in any operating state except GKS$K_GKCL, and if the
following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the polymarker attributes, refer to Chapter
5, Output Attribute Functions.

GKS$1NQ_PREDEF _PMARK_REP (workstation_type,
polymarker_index,
error_ status,
marker_type, color_index,
marker_size_scale_factor)

GQPPMR (workstation_type, pindex, error_status, mtype, msize,
cindex)

11-136 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED POLYMARKER REPRESENTATION

ginqpredmarkerrep (workstation_type, index, rep, error_status)

Arguments

workstation_ type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

polymarker_index

data type: integer
access: read-only
mechanism: by reference
This argument is a predefined polymarker index value that must be valid
for the specified workstation type.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

Inquiry Functions 11-137

Workstation Description Table Inquiries
INQUIRE PREDEFINED POLYMARKER REPRESENTATION

marker_type

data type: integer
access: write-only
mechanism: by reference
This argument is the marker type associated with the specified polymarker
bundle index value. The defined values are as follows:

Value Constant Description

<=0 Reserved for
implementation-
specific use

1 GKS$K_MARKERTYPE_DOT A dot(.)

2 GKS$K_MARKERTYPE_PLUS A plus sign (+)

3 GKS$K_MARKERTYPE_ASTERISK An asterisk (*)

4 GKS$K....MARKERTYPE_CIRCLE A circle (o)

5 GKS$K_MARKERTYPE_DIAGONAL_CROSS A cross (X)

>=6 Reserved for future
standardization

color_index

data type: integer
access: write-only
mechanism: by reference
This argument is the color index associated with the specified polymarker
index value.

marker_size_scale_factor

data type: real
access: write-only
mechanism: by reference
This argument is the marker size scale factor. DEC GKS calculates the
marker size by multiplying the scale factor by the nominal size.

11-138 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED POLYMARKER REPRESENTATION

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

66 GKS$_ERROR_66

68 GKS$_ERROR_68

Message

GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****
Polymarker index is invalid in routine

A representation for the specified poly
marker index has not been predefined on
this workstation in routine ****

Inquiry Functions 11-139

Workstation Description Table Inquiries
INQUIRE PREDEFINED TEXT REPRESENTATION

INQUIRE PREDEFINED TEXT REPRESENTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE PREDEFINED TEXT REPRESENTATION returns
the text font and precision, character expansion factor, character spacing,
and text color index associated with a specific text index for a given
workstation type.

The predefined representation for a text index value is available when DEC
GKS is in any operating state except GKS$K_GKCL, and if the following
conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the text attributes, refer to Chapter 5,
Output Attribute Functions.

GKS$1NQ_PREDEF _TEXT _REP (workstation_type,
texLindex, error_status,
fonLnumber, precision,
character_expansion_factor,
character_spacing, color_index)

11-140 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED TEXT REPRESENTATION

GQPTXR (workstation_type, tindex, error_status, font, precision,
exp_factor, spacing, cindex)

ginqpredtextrep (workstation_type, index, rep, error_status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

text_ index

data type: integer
access: read-only
mechanism: by reference
This argument is a predefined text index value that must be valid for the
specified workstation type.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

font_ number

data type: integer
access: write-only
mechanism: by reference
This argument is the hardware or software font number. For information
concerning the hardware fonts available on your workstation, refer to the

Inquiry Functions 11-141

Workstation Description Table Inquiries
INQUIRE PREDEFINED TEXT REPRESENTATION

appropriate device-specific appendix in this manual. For more information
concerning the software fonts available, refer to the appropriate appendix in
this manual.

precision

data type: integer
access: write-only
mechanism: by reference
This argument is the text precision. The defined values are as follows:

Value Constant

0 GKS$K_TEXT_PRECISION_STRING

1 GKS$K_TEXT_PRECISION_CHAR

2 GKS$K_TEXT_PRECISION_STROKE

character_expansion_factor

data type: real
access: write-only
mechanism: by reference

Description

String precision

Character precision

Stroke precision

This argument is the character expansion factor. The character expansion
factor multiplied by the width-to-height ratio in the original font design
determines the character width. The character expansion factor does not
affect the height of the characters.

character_spacing

data type: real
access: write-only
mechanism: by reference
This argument is the character spacing. Positive values increase the space
between characters. Negative values decrease the space between characters.
The value 0 places the character bodies adjacent to one another.

11-142 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED TEXT REPRESENTATION

color_index

data type: integer
access: write-only
mechanism: by reference
This argument is the color index associated with the specified text index
value.

Inquiry Functions 11-143

Workstation Description Table Inquiries
INQUIRE PREDEFINED TEXT REPRESENTATION

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers .in the following list:

En-or
Number Completion Status Code

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

72 GKS$_ERROR_72

74 GKS$_ERROR_ 74

11-144 Inquiry Functions

Message

GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****
Text index is invalid in routine ****
A representation for the specified text
index has not been predefined on this
workstation in routine ****

Workstation Description Table Inquiries
INQUIRE TEXT FACILITIES

INQUIRE TEXT FACILITIES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE TEXT FACILITIES returns the number and list
of available fonts, a list of precisions, the number of available character
heights, the minimum and maxi.mum character heights in device coordi
nates, the number of available character expansion factors, the minimum
and maximum character expansion factors, and the number of text indexes
available for a specified workstation type.

The text facilities are available when DEC GKS is in any operating state
except GKS$K_GKCL, and ifthe following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning text attributes, refer to Chapter 5, Output
Attribute Functions.

GKS$1NQ_ TEXT _FAC (workstation_type, error:_status,
num_fonts, fonLlist, precision_list,
num_heights, heighLmin, heighLmax,
num_character_exp, character_exp_min,
character_exp_max, num_indexes,
precision_return_size, fonLreturn_size)

Inquiry Functions 11-145

Workstation Description Table Inquiries
INQUIRE TEXT FACILITIES

GQTXF (workstation_type, element, error_status, num_font,
relement_f, relement_p, num_height, min_height,
max_height, num_exp, min_exp, max_exp, nindexes)

ginqtexHacil (workstation_type, bufsize, fac_size, tac,
error_ status)

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_fonts

data type: integer
access: write-only
mechanism: by reference
This argument is the number of hardware and software fonts available on
the specified workstation type.

11-146 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE TEXT FACILITIES

font_ list
precision_list

data type: array (integer)
access: write-only
mechanism: by descriptor
These arguments are arrays containing the available hardware and software
font numbers, and the available precisions. The precision_list argument can
contain any of the following values or constants:

Value

0

1

2

Constant

GKS$K_TEXT_PRECISION_STRING

GKS$K_TEXT_PRECISION_CHAR

GKS$K_TEXT_PRECISION_
STROKE

num_heights

data type: integer
access: write-only
mechanism: by reference

Description

Lowest precision

Moderate precision

Highest precision

This argument is the number of character heights available for the specified
workstation type.

height_ min
height_ max

data type: real
access: write-only
mechanism: by reference
These arguments are the minimum and maximum character heights
available for the specified workstation type, in device coordinates. For more
information concerning the DEC GKS coordinate systems, refer to Chapter
6, Transformation Functions.

Inquiry Functions 11-147

Workstation Description Table Inquiries
INQUIRE TEXT FACILITIES

num_character_exp

data type: integer
access: write-only
mechanism: by reference
This argument is the number of character expansion values available for the
specified workstation type. Character expansion values affect the character
width. For more information, refer to the text attributes section in Chapter
5, Output Attribute Functions.

character_exp_min
character_exp_max

data type: real
access: write-only
mechanism: by reference
These arguments are the minumum and maximum character expansion
values available for the specified workstation types.

num_indexes

data type: integer
access: write-only
mechanism: by reference
This argument is the number of predefined index values associated with the
specified workstation type.

preclslon_return_slze
font_ return_ size

data type: integer
access: write-only
mechanism: by reference
These arguments are the number of the elements in the precision and font
arrays. You can use these values to make sure that you declared arrays
large enough to hold all the font and precision types.

11-148 Inquiry Functions

Error Messages

Workstation Description Table Inquiries
INQUIRE TEXT FACILITIES

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$_ERROR_NEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

Message

GKS not in proper state: GKS in the
error state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Inquiry Functions 11-149

Workstation Description Table Inquiries
INQUIRE WORKSTATION CATEGORY

INQUIRE WORKSTATION CATEGORY

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE WORKSTATION CATEGORY returns the worksta
tion category for a specified workstation type.

The workstation category is available when DEC GKS is in any operating
state except GKS$K_GKCL, and ifthe specified workstation identifier exists
and is valid. If these conditions are not met, the output arguments are
undefined, and the function sets the error status argument to the number of
one of the errors listed in the Error Messages section.

For more information concerning workstation categories and operating
states, refer to Chapter 3, Control Functions.

GKS$1NQ_WS_CATEGORV (workstation_type, error_status,
workstation_ category)

GQWKCA (workstation_type, error_status, category)

ginqwscategory (workstation_type, cat, error_status)

11-150 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE WORKSTATION CATEGORY

Arguments

workstation_type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

workstation_category

data type: integer
access: write-only
mechanism: by reference
This argument is the category of the specified workstation type. The defined
values are as follows:

Value Constant Description

0 GKS$K_WSCAT_OUTPUT Output category

1 GKS$K_ WSCAT_INPUT Input category

2 GKS$K_ WSCAT_OUTIN Output/Input category

3 GKS$K_ WSCAT_ WISS Workstation independent segment
storage

4 GKS$K_ WSCAT_MO Metafile Output category

5 GKS$K_ WSCAT_MI Metafile Input category

Inquiry Functions 11-151

Workstation Description Table Inquiries
INQUIRE WORKSTATION CATEGORY

For more information concerning segments, refer to Chapter 8, Segment
Functions. For more information concerning metafiles, refer to Chapter 9,
Metafile Functions.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine****

22 GKS$_ERROR_22 Specified workstation type is invalid in
routine ****

23 GKS$_ERROR_23 Specified workstation type does not exist
in routine ****

11-152 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE WORKSTATION CLASSIFICATION

INQUIRE WORKSTATION CLASSIFICATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE WORKSTATION CLASSIFICATION returns the
type of display surface hardware for a specified workstation type.

The workstation classification is available when DEC GKS is in any
operating state except GKS$K_GKCL, and ifthe following conditions exist:

• The specified workstation type exists and is valid.

• The workstation is not of category GKS$K_ WSCAT_ WISS, GKS$K_
WSCAT_MO, or GKS$K_WSCAT_MI.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning workstation categories and DEC GKS
operating states, refer to Chapter 3, Control Functions.

GKS$WS_CLASSIFICATION (workstation_type, error_status,
classification)

GQWKCL (workstation_type, error_status, class)

ginqwsclass (workstation_type, class, error_status)

Inquiry Functions 11-153

Workstation Description Table Inquiries
INQUIRE WORKSTATION CLASSIFICATION

Arguments

workstation_ type

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that specifies the workstation type. For
a list of the supported workstation types, refer to the appropriate appendix
in this manual.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

classification

data type: integer
access: write-only
mechanism: by reference
This argument is the classification of the device associated with the specified
workstation type. You can use the workstation classification to determine
the validity of other GKS return values. For instance, if you are working on
a device other than one which uses raster units to define pixel dimensions,
the function INQUIRE DISPLAY SPACE SIZE will not return valid values
to the raster unit arguments.

11-154 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE WORKSTATION CLASSIFICATION

The defined values are as follows:

Value Constant Description

0 GKS$1<.... WSCLASS_ VECTOR Vector device

1 GKS$K_ WSCLASS_RASTER Raster device

2 GKS$K_ WSCLASS_OTHERD Other device

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

31 GKS$_ERROR_31

33 GKS$_ERROR_33

36 GKS$_ERROR_36

Message

GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is of category MO
in routine ****
Specified workstation is of category MI in
routine ****
Specified Workstation Independent
Segment Storage in routine ****

Inquiry Functions 11-155

GKS State List Inquiries

GKS State List Inquiries

This section describes the DEC GKS state list inquiries. (For more infor
mation concerning the DEC GKS state list, refer to Chapter 3, Control
Functions.) You use these functions if you are not aware of the current DEC
GKS operating state, of the current normalization transformation number,
of the current individual output attribute values, of the current clipping
indicator, or of the list of currently open or active workstations.

11-156 Inquiry Functions

GKS State List Inquiries
INQUIRE CLIPPING

INQUIRE CLIPPING

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE CLIPPING returns the current value of the world
viewport clipping flag.

The clipping indicator is available when DEC GKS is in any operating state
except GKS$K_GKCL. If this condition is not met, the output arguments are
undefined, and the function sets the error status argument to the number of
one of the errors listed in the Error Messages section.

For more information concerning clipping, refer to Chapter 6,
Transformation Functions.

GKS$1NQ_ CLIP (error _status, clipping_indicator,
clipping_ rectangle)

GQCLIP (error_status, cflag, crec)

ginqclip (clipping, error_status)

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to

Inquiry Functions 11-157

GKS State List Inquiries
INQUIRE CLIPPING

one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

clipping_ Indicator

data type: integer
access: write-only
mechanism: by reference
This argument is the current setting of the clipping flag. The defined values
are as follows:

Value Constant

0 GKS$K....NOCLIP

1 GKS$K_CLIP

clipping_ rectangle

data type: array (real)
access: write-only
mechanism: by reference

Description

Clipping is off.

Clipping is on.

This argument is the 4-element array that contains the dimensions of the
current clipping rectangle, in normalized device coordinates. DEC GKS
stores the minimum X value in the first element, the maximum X value in
the second element, the minimum Y value in the third element, and the
maximum Y value in the last element of the array.

11-158 Inquiry Functions

Error Messages

GKS State List Inquiries
INQUIRE CLIPPING

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_l9

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****

Inquiry Functions 11-159

GKS State List Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

Operating States: GKOP, WSOP, WSAC, SGOP

FORTRAN Functions: GQLN, GQLWSC, GQPLCI, GQMK, GQMKSC,
GQPMCI, GQTXFP, GQCHXP, GQCHSP, GQTXCI, GQFAIS, GQFASI,
GQFACI, GQASF

C Functions: ginqindivattr, ginqlinetype, ginqlinewidth, ginqlinecolour,
ginqmarkertype, ginqmarkersize, ginqmarkercolour, ginqtextfontprec,
ginqcharexpan, ginqcharspace, ginqtextcolourind, ginqfillintstype,
ginqfillstyleind, ginqfillcolourind, ginqasf

Description

Syntax

The function INQUIRE CURRENT INDMDUAL ATTRIBUTE VALUES
returns the current values for each of the nongeometric output attributes.

The current individual output attributes are available when DEC GKS is
in any operating state except GKS$K_GKCL. If this condition is not met,
the output arguments are undefined, and the function sets the error status
argument to the number of one of the errors listed in the Error Messages
section.

For more information concerning output attributes, refer to Chapter 5,
Output Attribute Functions.

GKS$1NQ_INDIV _ATTB (error_status, polyline_type,
po/yline_width,polyline_color_index,
polymarker_type, polymarker_size,
polymarker_ color_index,
text_font, text_precision,
character_ expansion_factor,

11-160 Inquiry Functions

GKS State List Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

character_spacing, text_ color_index,
interior_style, style_index,
fi/L color_index, aspect_source_flags)

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

polyline_type

data type: integer
access: write-only
mechanism: by reference
This argument is the current line type. The defined values are as follows:

Value Constant Description

<= 0 Reserved for implementation-
specific use

1 GKS$K_LINETYPE_SOLID Solid line

2 GKS$K_LINETYPE_DASHED Dashed line

3 GKS$K_LINETYPE_DOTTED Dotted line

4 GKS$K_LINETYPE_DASHED_ Solid line
DOTTED

>= 5 Reserved for future standardization

Inquiry Functions 11-161

GKS State List Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

polyline_ width

data type: real
access: write-only
mechanism: by reference
This argument is the current line width scale factor. DEC GKS calculates
line width by multiplying the scale factor by the nominal width.

polyline_ color_index

data type: integer
access: write-only
mechanism: by reference
This argument is the current polyline color index.

polymarker_type

data type: integer
access: write-only
mechanism: by reference
This argument is the current marker type. The defined values are as
follows:

Value Constant Description

<= 0 Reserved for implementation-
specific use

1 GKS$K_MARKERTYPE_DOT A dot(.)

2 GKS$K_MARKERTYPE_PLUS A plus sign (+)

3 GKS$K_MARKERTYPE_ASTERISK An asterisk (*)

4 GKS$K_MARKERTYPE_CIRCLE A circle (o)

5 GKS$K_MARKERTYPE_DIAGONAL_ A cross (X)
CROSS

>=6 Reserved for future
standardization

11-162 Inquiry Functions

GKS State List Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

polymarker_size

data type: real
access: write-only
mechanism: by reference
This argument is the current marker size scale factor. DEC GKS calculates
the marker size by multiplying the scale factor by the nominal size.

polymarker_color_index

data type: integer
access: write-only
mechanism: by reference
This argument is the current polymarker color index.

text_ font
text_precision

data type: integer
access: write-only
mechanism: by reference
The first argument is the current hardware or software font number. For
information concerning the hardware fonts available on your workstation,
refer to the appropriate device-specific appendix in this manual. For more
information concerning the software fonts available, refer to the appropriate
appendix in this manual.

The second argument is the current text precision. The defined values are
as follows:

Value Constant

0 GKS$K_TEXT_PRECISION_STRING

1 GKS$K_TEXT_PRECISION_CHAR

2 GKS$K_TEXT_PRECISION_STROKE

character_expansion_factor

data type: real
access: write-only
mechanism: by reference

Description

String precision

Character precision

Stroke precision

This argument is the current character expansion factor. The character
expansion factor multiplied by the width to height ratio in the original font

Inquiry Functions 11-163

GKS State List Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

design determines the character width. The character expansion factor does
not affect the height of the characters.

character_spacing

data type: real
access: write-only
mechanism: by reference
This argument is the current character spacing. Positive values increase
the space between characters. Negative values decrease the space between
characters. The value 0 places the character bodies adjacent to one another.

text_color_index

data type: integer
access: write-only
mechanism: by reference
This argument is the current text color index.

interior_style

data type: integer
access: write-only
mechanism: by reference
This argument is the current fill area interior style. The defined values are
as follows:

Value Constant Description

0 GKS$K_INTSTYLE_HOLLOW Hollow interior

1 GKS$K_INTSTYLE_SOLID Solid interior

2 GKS$K_INTSTYLE_PA'ITERN Pattern interior

3 GKS$K_INTSTYLE_HATCH Hatched interior

style_index

data type: integer
access: write-only
mechanism: by reference
This argument is the current style index. For more information concerning
the style index, refer to SET FILL AREA STYLE INDEX in Chapter 5,
Output Attribute Functions.

11-164 Inquiry Functions

GKS State List Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

fill_ color_index

data type: integer
access: write-only
mechanism: by reference
This argument is the current :fill area color index. For more information
concerning the color index, refer to SET COLOR REPRESENTATION in
Chapter 5, Output Attribute Functions.

aspect_source_flags

data type: array (integer)
access: write-olily
mechanism: by reference
This argument is a 13-element array containing the aspect source :flag for
each of the nongeometric output attributes. The aspect source :flag deter
mines whether DEC GKS uses the individual or bundled attribute value
for each of the nongeometric output attributes. (For detailed information
concerning the aspect source :flags, refer to Chapter 5, Output Attribute
Functions.)

The defined values are as follows:

Value

0

1

Constant

GKS$K_ASF_BUNDLED

GKS$K_ASF _INDIVIDUAL

Description

Use the bundled attribute values.

Use the individual attribute values.

Inquiry Functions 11-165

GKS State List Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine****

11-166 Inquiry Functions

GKS State List Inquiries
INQUIRE CURRENT NORMALIZATION TRANSFORMATION NUMBER

INQUIRE CURRENT NORMALIZATION TRANSFORMATION
NUMBER

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQillRE CURRENT NORMALIZATION TRANSFORMATION
NUMBER returns the number of the normalization transformation number
currently in effect.

The current normalization transformation number is available when DEC
GKS is in any operating state except GKS$K_GKCL. If this condition is
not met, the output arguments are undefined, and the function sets the
error status argument to the number of one of the errors listed in the Error
Messages section.

For more information concerning normalization transformations, refer to
Chapter 6, Transformation Functions.

GKS$1NQ_CURRENT_XFORMNO (error_status,
transformation_ number)

GQCNTN (error_status, xform)

ginqcurntrannum (tran, error_status)

Inquiry Functions 11-167

GKS State List Inquiries
INQUIRE CURRENT NORMALIZATION TRANSFORMATION NUMBER

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

transformation_number

data type: integer 2it

access: write-only
mechanism: by reference
This argument is the number of the normalization transformation currently
in effect.

Error Messages

If this inquiry function cannot return valid values, the number in the error·
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

11-168 Inquiry Functions

GKS State List Inquiries
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES
returns the current bundle index for each output function and the current
value for each of the geometric output attributes.

The current bundle indexes and geometric attributes are available when
DEC GKS is in any operating state except GKS$K_GKCL. If this condition
is not met, the output arguments are undefined, and the function sets the
error status argument to the number of one of the errors listed in the Error
Messages section.

For more information concerning output attributes, refer to Chapter 5,
Output Attribute Functions.

GKS$1NQ_PRIM_ATTB (error_status, list_bundle_indexes,
character_height, character:_up_ vector,
character_ width, text_base_ vector,
character:_path, character_alignment,
pattern_ width, pattern_height,
pattern_reference_point)

ginqprimattr (primattr, error_status)

Inquiry Functions 11-169

GKS State List Inquiries
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

lisLbundle_indexes

data type: array (integer)
access: write-only
mechanism: by reference
This argument is a 4-element array containing the current bundle indexes.
The order of the bundle indexes is as follows:

1. Polyline index

2. Polymarker index

3. Text index

4. Fill area index

character_height

data type: real
access: write-only
mechanism: by reference
This argument is the current character height specified by a world coordi
nate value.

11-170 Inquiry Functions

GKS State List Inquiries
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

character_up_ vector

data type: array (real)
access: write-only
mechanism: by reference
This argument is an array with two elements that contains the X and Y
world coordinates comprising the current character-up vector. The character
up vector, in conjunction with the text string starting point, establishes an
upward direction for the characters in a text string. For more information,
refer to Chapter 5, Output Attribute Functions.

character_width

data type: real
access: write-only
mechanism: by reference
This argument is the current character width in world coordinate units.

text_ base_ vector

data type: array (real)
access: write-only
mechanism: by reference
This argument is an array with two elements containing the text base
vectors. Using the starting point and the base vectors, you can calculate the
line on which the text extent rectangle is positioned.

character_path

data type: integer
access: write-only
mechanism: by reference
This argument is the current character path. The character path determines
in which direction along the imaginary text line GKS writes the characters.
The defined values are as follows:

Inquiry Functions 11-171

GKS State List Inquiries
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

Value Constant

0 GKS$K_TEXT_PATH_RIGHT

1 GKS$K_TEXT_PATH_LEFT

2 GKS$K_TEXT_PATH_UP

3 GKS$K_TEXT_PATH_DOWN

character_alignment

data type: integer
access: write-only
mechanism: by reference

Description

From left to right

From right to left

From the bottom to the top along
the character-up vector

From the top to the bottom along
the character-up vector

This argument is a 2-element array containing the horizontal (in the first
element) and vertical values of the current character alignment (in the
second element). The character alignment designates how GKS positions the
text extent rectangle along the imaginary text line. The defined horizontal
values are as follows:

Value Constant Description

0 GKS$K_TEXT_HALIGN_NORMAL Default value

1 GKS$K_TEXT_HALIGN_LEFT Left

2 GKS$K_TEXT_HALIGN_CENTER Center

3 GKS$K_TEXT_HALIGN_RIGHT Right

11-172 Inquiry Functions

GKS State List Inquiries
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

The defined vertical values are as follows:

Value Constant

0 GKS$K_TEXT_ VALIGN_NORMAL
1 GKS$K_TEXT_VALIGN_TOP
2 GKS$K_TEXT_VALIGN_CAP
3 GKS$K_TEXT_VALIGN_HALF
4 GKS$K_TEXT_VALIGN_BASE
5 GKS$K_TEXT_ VALIGN_BOTTOM

Description

Default value

Top

Cap

Half

Base

Bottom

For more information, refer to the figures in Chapter 5, Output Attribute
Functions.

pattern_ width

data type: array (real)
access: write-only ·
mechanism: by reference
This argument is a 2-element array containing the pattern width vector.
The first element contains the X vector in world coordinates and the second
element contains the Y vector in world coordinates.

pattern_height

data type: array (real)
access: write-only
mechanism: by reference
This argument is a 2-element array containing the pattern height vector.
The first element contains the X vector in world coordinates and the second
element contains the Y vector in world coordinates.

Inquiry Functions 11-173

GKS State List Inquiries
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

pattern_reference_polnt

data type: array (real)
access: write-only
mechanisxn: by reference
This argument is a 2-element array that contains the world coordinate
values designating the pattern reference point. None of the DEC GKS
supported workstations support this feature, so the returned values will
always be zero.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_l9 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

11-174 Inquiry Functions

GKS State List Inquiries
INQUIRE INPUT QUEUE OVERFLOW

INQUIRE INPUT QUEUE OVERFLOW

Operating States: WSOP, WSAC, SGOP

Description

Syntax

If the input queue is overflowed, and if information about the cause of the
overflow is available, the function INQUIRE INPUT QUEUE OVERFLOW
returns a zero (0) to the error status argument and writes valid values to
its remaining arguments. Otherwise, this function returns an error to the
error status argument that explains why information is not available.

GKS$1NQ_INPUT _QUEUE_ OVERFLOW (error_status,
workstation_id,
input_ class,
device_number)

GQIQOV (error_status, workstation_id, in_class, device_number)

ginqinputoverflow (overflow, error_status)

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, the input queue overflowed and all the remaining output
arguments are valid. If the function writes any other number to this
argument, the number corresponds to one of the error messages listed in
the Error Messages section, and all the remaining output arguments are

Inquiry Functions 11-175

GKS State List Inquiries
INQUIRE INPUT QUEUE OVERFLOW

invalid; the error message explains why information about the overflow is
not available.

workstation_id

data type: integer
access: write-only
mechanism: by reference
This argument is the workstation identifier of the workstation whose input
device caused the queue to overflow.

input_ class

data type: integer
access: write-only
mechanism: by reference
This argument is the input class of the device that generated the event that
caused the input queue to overflow.

device_number

data type: integer
access: write-only
mechanism: by reference
This argument is the number of the input device that generated the event
that caused the input queue to overflow.

11-176 Inquiry Functions

Error Messages

GKS State List Inquiries
INQUIRE INPUT QUEUE OVERFLOW

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

7

148

149

DECGKS$_ERROR_7

DECGKS$_ERROR_NEG_
148

GKS$_ERROR_149

Message

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Input queue has not overflowed since
GKS was opened or the last invocation of
INQUIRE INPUT QUEUE OVERFLOW
in routine ****
Input queue has overflowed, but asso
ciated workstation has been closed in
routine ****

Inquiry Functions 11-177

GKS State List Inquiries
INQUIRE LIST OF NORMALIZATION TRANSFORMATION NUMBERS

INQUIRE LIST OF NORMALIZATION TRANSFORMATION
NUMBERS

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE LIST OF NORMALIZATION TRANSFORMATION
NUMBERS returns the list of all defined normalization transformations in
order of input viewport priority.

The list of normalization transformations is available when DEC GKS is in
any operating state except GKS$K_GKCL. If these conditions are not met,
the output arguments are undefined, and the function sets the error status
argument to the number of one of the errors listed in the Error Messages
section.

For more information concerning transformations, refer to Chapter 6,
Transformation Functions.

GKS$1NQ_XFORM_LIST (error_status, num_transformations,
list_ transformations, return_ size)

GQENTN (element, error_status, num_xforms, relement)

ginqntrannum (max_ntrans, start, ntrans, actuaLntrans,
error _status)

11-178 Inquiry Functions

GKS State List Inquiries
INQUIRE LIST OF NORMALIZATION TRANSFORMATION NUMBERS

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error ~essages section, and all the
remaining output arguments are invalid.

num_transformations

data type: integer
access: write-only
mechanism: by reference
This argument is the number of currently defined normalization
transformations.

list_ transformations

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the list of all the currently defined normalization
transformation numbers in order of input viewport priority.

return_ size

data type: integer
access: write-only
mechanism: by reference
This argument is the number of normalization transformation numbers
returned to the list. By comparing this argument to the number of returned
transformations, you can determine if you defined an array large enough to
hold all the returned values.

Inquiry Functions 11-179

GKS State List Inquiries
INQUIRE LIST OF NORMALIZATION TRANSFORMATION NUMBERS

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_l9 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

11-180 Inquiry Functions

GKS State List Inquiries
INQUIRE MORE SIMULTANEOUS EVENTS

INQUIRE MORE SIMULTANEOUS EVENTS

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE MORE SIMULTANEOUS EVENTS checks to see if
there are more events on the event input queue that were entered by the
user firing a single trigger.

GKS$1NQ_MORE_SIMUL_EVENTS (error_status,
more_ events_ flag)

GQSIM (error_status, flag)

ginqmoreevents (events, error_status)

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to the
error message listed in the Error Messages section, and all the remaining
output arguments are invalid.

Inquiry Functions 11-181

GKS State List Inquiries
INQUIRE MORE SIMULTANEOUS EVENTS

more_events_flag

data type: integer
access: write-only
mechanism: by reference
This argument is the flag that specifies whether there exist more simulta
neously generated events on the event input queue. This argument can be
either of the following values:

Value Constant

0 GKS$K....NOMORE_EVENTS

1 GKS$K....MORE_EVENTS

Error Messages

Description

There are no more simultaneously
generated events on the queue.

There are more simultaneously
generated events on the queue.

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to the number in the following list:

Error
Number Completion Status Code

7 DECGKS$_ERROR_ 7

11-182 Inquiry Functions

Message

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

GKS State List Inquiries
INQUIRE NAME OF OPEN SEGMENT

INQUIRE NAME OF OPEN SEGMENT

Operating States: SGOP

Description

Syntax

The function INQUIRE NAME OF OPEN SEGMENT returns the identifica
tion number of a currently open segment.

The name of the open segment is available only when DEC GKS is in the
operating state GKS$K_SGOP. If this condition is not met, the output
arguments are undefined, and the function sets the error status argument to
the number of one of the errors listed in the Error Messages section.

For more information concerning segments, refer to Chapter 8, Segment
Functions.

GKS$1NQ_NAME_OPEN_SEG (error_status, segment_name)

GQOPSG (error_status, segment_name)

ginqnameopenseg (segment_name error_status)

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

Inquiry Functions 11-183

GKS State List Inquiries
INQUIRE NAME OF OPEN SEGMENT

segment_ name

data type: integer
access: write-only
mechanism: by reference
This argument is the integer identifier known as the segment name.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

4 GKS$_ERROR_4 GKS not in proper state: GKS shall be in
the state SGOP in routine****

11-184 Inquiry Functions

GKS State List Inquiries
INQUIRE NORMALIZATION TRANSFORMATION

INQUIRE NORMALIZATION TRANSFORMATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE NORMALIZATION TRANSFORMATION returns
the boundaries of a world window and world viewport, associated with a
specified normalization transformation number.

The world window and viewport values are available when DEC GKS is in
any operating state except GKS$K_GKCL, and if the given normalization
transformation number is valid. If these conditions are not met, the output
arguments are undefined, and the function sets the error status argument to
the number of one of the errors listed in the Error Messages section.

For more information concerning transformations, refer to Chapter 6,
Transformation Functions.

GKS$1NQ_XFORM (transformation_number, error_status,
world_window_boundaries,
world_ viewport_boundaries)

GQNT (xform, error_status, window, vport)

ginqntran (num, tran, error_status)

Inquiry Functions 11-185

GKS State List Inquiries
INQUIRE NORMALIZATION TRANSFORMATION

Arguments

transformation_number

data type: integer
access: read-only
mechanism: by reference
This argument is the specified normalization transformation.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

world_window_boundaries
world_ viewport_boundarles

data type: array (real)
access: write-only
mechanism: by reference
These arguments are 4-element arrays containing coordinate points in the
order XMIN, XMAX, YMIN, YMAX. These arguments are the boundaries of
the world window and world viewport, in world coordinates and normalized
device coordinates, respectively, associated with the specified normalization
transformation number.

11-186 Inquiry Functions

Error Messages

GKS State List Inquiries
INQUIRE NORMALIZATION TRANSFORMATION

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

50 GKS$_ERROR_50 Transformation number is invalid in
routine ****

Inquiry Functions 11-187

GKS State List Inquiries
INQUIRE OPERATING STATE VALUE

INQUIRE OPERATING STATE VALUE

Operating States: GKCL, GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE OPERATING STATE VALUE returns the current
GKS operating state.

The DEC GKS operating state is always available to this inquiry function.

GKS$1NQ_OPERATING_STATE (operating_state)

GQOPS (op_state)

ginqopst (state)

11-188 Inquiry Functions

Arguments

operating_ state

data type: integer
access: write-only
mechanism: by reference

GKS State List Inquiries
INQUIRE OPERATING STATE VALUE

This argument is the current GKS operating state. The defined values are
as follows:

Value Constant Description

0 GKS$K_GKCL GKS is closed.

1 GKS$K_GKOP GKS is open.

2 GKS$K_WSOP At least one workstation is open.

3 GKS$K_WSAC At least one workstation is active.

4 GKS$K_SGOP A segment is being created.

Error Messages

This inquiry function never returns an error status.

Inquiry Functions 11-189

GKS State List Inquiries
INQUIRE PICK ID~NTIFIER VALUE

INQUIRE PICK IDENTIFIER VALUE

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE PICK IDENTIFIER VALUE returns the current pick
identifier.

The current pick identifier is available when DEC GKS is in any operating
state except GKS$K_GKCL. If this condition is not met, the output
arguments are undefined, and the function sets the error status argument to
the number of one of the errors listed in the Error Messages section.

For more information concerning pick identification, refer to Chapter 8,
Segment Functions.

GKS$1NQ_PICK_ID (error_status, pick_identifier)

GQPKID (error_status, pick_id)

ginqcurpickid (pickid, error_status)

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

11-190 Inquiry Functions

pick_identifier

data type: integer
access: write-only
mechanism: by reference

GKS State List Inquiries
INQUIRE PICK IDENTIFIER VALUE

This argument is the current integer value that you use to identify a portion
of a segment.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****

Inquiry Functions 11-191

GKS State List Inquiries
INQUIRE SET OF ACTIVE WORKSTATIONS

INQUIRE SET OF ACTIVE WORKSTATIONS

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE SET OF ACTIVE WORKSTATIONS returns the
number and the list of active workstations.

The list of active workstations is available when DEC GKS is in any
operating state except GKS$K_GKCL. If this condition is not met, the
output arguments are undefined, and the function sets the error status
argument to the number of.one of the errors listed in the Error Messages
section.

GKS$1NQ_ACTIVE_WS (error:_status, num_workstations,
workstation_list, return_size)

GQACWK (member, error_status, num_active, rmember)

ginqactivews (max_ids, start, wsids, actuaLids, error_status)

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

11-192 Inquiry Functions

GKS State List Inquiries
INQUIRE SET OF ACTIVE WORKSTATIONS

num_workstations

data type: integer
access: write-only
mechanism: by reference
This argument is the number of workstations currently active.

workstation_list

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the array containing the identifiers associated with the
currently active workstations.

return_ size

data type: integer
access: write-only
mechanism: by reference
This argument is the number of workstation identifiers returned to the
active workstation list. By comparing this argument to the actual list, you
can determine if you defined an array large enough to hold all the returned
values.

Inquiry Functions 11-193

GKS State List Inquiries
INQUIRE SET OF ACTIVE WORKSTATIONS

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine****

11-194 Inquiry Functions

GKS State List Inquiries
INQUIRE SET OF OPEN WORKSTATIONS

INQUIRE SET OF OPEN WORKSTATIONS

Operating States: GKOP, WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE SET OF OPEN WORKSTATIONS returns the
current set of identifiers associated with open workstations.

The current list of open workstations is available when DEC GKS is in
any operating state except GKS$K_GKCL. If this condition is not met, the
output arguments are undefined, and the function sets the error status
argument to the number of one of the errors listed in the Error Messages
section.

GKS$1NQ_OPEN_WS (error_status, num_open_workstations,
workstation_Jist, return_size)

GQOPWK (member, error_status, num_open, rmember)

ginqopenws (max_ids, start, wsids, actuaLids, error_status)

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

Inquiry Functions 11-195

GKS State List Inquiries
INQUIRE SET OF OPEN WORKSTATIONS

num_open_workstations

data type: integer
access: write-only
mechanism: by reference
This argument is the number of workstations currently open.

workstation_list

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the array containing the identifiers associated with the
currently open workstations.

return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the number of workstation identifiers returned to the
open workstation list. By comparing this argument to the actual list, you
can determine if you defined an array large enough to hold all the returned
values.

11-196 Inquiry Functions

Error Messages

GKS State List Inquiries
INQUIRE SET OF OPEN WORKSTATIONS

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****

Inquiry Functions 11-197

GKS State List Inquiries
INQUIRE SET OF SEGMENT NAMES IN USE

INQUIRE SET OF SEGMENT NAMES IN USE

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE SET OF SEGMENT NAMES IN USE returns the
number and the list of all existing segments.

The list of segment names is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP. If this condition is not met,
the output arguments are undefined, and the function sets the error status
argument to the number of one of the errors listed in the Error Messages
section.

For more information concerning segments, refer to Chapter 8, Segment
Functions.

GKS$1NQ_SEG_NAMES (error_status, num_segments,
lisLsegments, return_size)

GQSGUS (member, error_status, num_seg, rmember)

ginqsegnames (max_segnames, start, segnames,
actuaLsegnames, error_status)

11-198 Inquiry Functions

GKS State List Inquiries
INQUIRE SET OF SEGMENT NAMES IN USE

Arguments

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_segments

data type: integer
access: write-only
mechanism: by reference
This argument is the number of currently existing segments.

list_ segments

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the array containing segment names that correspond to all
the currently existing segments.

return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the number of segment names returned to the list of stored
segments. By comparing this argument to the actual list, you can determine
if you defined an array large enough to hold all the returned values.

Inquiry Functions 11-199

GKS State List Inquiries
INQUIRE SET OF SEGMENT NAMES IN USE

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

7 GKS$_ERROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

11-200 Inquiry Functions

Workstation State List Inquiries

Workstation State List Inquiries

This section describes the workstation state list inquiries. (For more infor
mation concerning the workstation state list, refer to Chapter 3, Control
Functions.) You use these functions if you need information about the state
of a single workstation, which is identified by a numeric workstation identi
fier, or if you are not aware of the current workstation transformation, the
locator device state, the current segment priority, or the workstation update
state.

Inquiry Functions 11-201

Workstation State List Inquiries
INQUIRE CHOICE DEVICE STATE

INQUIRE CHOICE DEVICE STATE

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE CHOICE DEVICE STATE returns initialization
values for the choice logical input device, and the input operating mode.

The choice logical input device state is available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and if the following
conditions exist:

• The specified workstation identifier is valid and the associated worksta
tion open.

• The workstation is of category GKS$K_ WSCAT_INPUT or GKS$K_
WSCAT_OUTIN.

• The device supports the choice logical input device.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning input, refer to Chapter 7, Input Functions.

GKS$1NQ_CHOICE_STATE (workstation_id, device_number,
error_status, operating_mode,
echo_f/ag, initiaLchoice_status,
initiaLchoice_number,
prompLecho_type, echo_area,
data_record, record_buffer_length,
record_size)

11-202 Inquiry Functions

Workstation State List Inquiries
INQUIRE CHOICE DEVICE STATE

GQCHS (workstation_id, device_number, dim_dr, error_status,
operating_mode, echo_flag, in_status, in_choice,
p_e_type, echo_area, len_dr, dr)

ginqchoicest (workstation_id, device_number, bufsize,
state_size, state, error_status)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

device_number

data type: integer
access: read-only
mechanism: by reference
This argument is the device number that differentiates between logical
input devices of the same class, operating on the same workstation. For
more information, refer to Chapter 7, Input Functions.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

Inquiry Functions 11-203

Workstation State List Inquiries
INQUIRE CHOICE DEVICE STATE

operating_ mode

data type: integer
access: write-only
mechanism: by reference
This argument is the current input operating mode for the specified logical
input device. The defined values are as follows:

Value Constant

0 GKS$K_INPUT_MODE_REQUEST

1 GKS$K_INPUT_MODE_SAMPLE

2 GKS$K_INPUT_MODE_EVENT

Description

Request input mode

Sample input mode

Event input mode

For more information concerning the input operating modes, refer to
Chapter 7, Input Functions.

echo_flag

data type: integer
access: write-only
mechanism: by reference
This argument is the echo flag specifying whether or not input is echoed on
the workstation surface. The defined values are as follows:

Value Constant

0 GKS$K_NOECHO

1 GKS$K_ECHO

initiaLchoice_status

data type: integer
access: write-only
mechanism: by reference

Description

Do not echo input.

Echo input.

This argument determines if the user can return a measure value of "No
Choice." If No Choice can be returned, then the user can press RETURN
as soon as the menu appears, without returning the value corresponding
with the initial choice. This action returns the value 0 as the logical input
device's measure. If the user cannot return No Choice, then pressing

11-204 Inquiry Functions

Workstation State List Inquiries
INQUIRE CHOICE DEVICE STATE

RETURN when the menu appears returns the value of the highlighted
initial choice.

The defined values are as follows:

Value Constant

1 GKS$K._STATUS_OK

2 GKS$K._STATUS_NOCHOICE

initial_choice_number

data type: integer
access: \Vrite-only
mechanism: by reference

Description

Return the initial number.

Return No Choice.

This argument is the current choice measure that represents one of the
current choices, expressed as an integer.

prompt_echo_type

data type: integer
access: \Vrite-only
mechanism: by reference
This argument is the current prompt and echo type value.

echo_area

data type: array (real)
access: \Vrite-only
mechanism: by reference
This argument is a 4-element array containing coordinates in the order
XMIN, XMAX, YMIN, YMAX. The points designate the input echo area on
the workstation surface. For more information concerning the DEC GKS
coordinate systems, refer to Chapter 6, Transformation Functions.

data_record

data type: address (record)
access: \Vrite-only
mechanism: by reference
INQUIRE CHOICE DEVICE STATE returns a different amount of infor
mation depending on the value contained in the first component of the
data record. If you pass the address of an integer with the value 0 as this

Inquiry Functions 11-205

Workstation State List Inquiries
INQUIRE CHOICE DEVICE STATE

argument, and the value 4 as the record_buffer _length argument, then this
function only returns the default number of choices. This functionality
allows you to see if your declared string buffers are large enough to hold all
the current strings.

Once you obtain the current number of choices, you must initialize the
arrays containing string sizes, string addresses, and strings, and then call
INQUIRE CHOICE DEVICE STATE a second time. In the second call,
pass the number of choices obtained in the first call to INQUIRE CHOICE
DEVICE STATE and pass the record_buffer _length value that specifies the
whole data record. Then the function writes all the current values to its
write-only arguments.

To understand the process of calling INQUIRE CHOICE DEVICE STATE
twice, refer to the program example in this function description.

record_buffer_length

data type: integer
access: modifiable
mechanism: by reference
On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data_record. On output, the graphics
handler writes the amount of the buffer, in bytes, :filled by the written data
record. If the argument record_size is larger than record_buffer _length after
the function call, then you know that the graphics handler truncated the
data record when writing it to the buffer and data was lost.

record_size

data type: integer
access: write-only
mechanism: by reference
This argument is the total size, in bytes, of the data record.

11-206 Inquiry Functions

Error Messages

Workstation State List Inquiries
INQUIRE CHOICE DEVICE STATE

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_l9

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

38 GKS$_ERROR_38

140 GKS$_ERROR_l40

Program Example

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SOOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is neither of cate
gory INPUT nor of category OUTIN in
routine ****
Specified input device is not present on
workstation in routine ****

Example 11-8 illustrates the use of the function INQUIRE CHOICE
DEVICE STATE. .

Inquiry Functions 11-207

Workstation State List Inquiries
INQUIRE CHOICE DEVICE STATE

Example 11-8: Determining the State of the Choice Logical Input Device

C This program writes the return values of the function
C GKS$INQ_CHOICE_STATE to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, DATA_RECORD(3), NUM_CHOICES,

* PROMPT ECHO TYPE, ERROR STATUS, DEVICE NUM,
* INPUT MODE,-ECHO FLAG, RECORD BUFFER LENGTH,
*RECORD SIZE, STRING SIZES(10-), -
* STRING=POINTERS(10-), INIT_STATUS, INIT_CHOICE,
* I

CHARACTER*80 STRINGS(lO)

REAL ECHO AREA(4)
DATA WS_ID I 1 /, DEVICE_NUM I 1 I

C First element in the data record is the number of choices.
EQUIVALENCE(DATA_RECORD(1), NUM_CHOICES)

CALL GKS$0PEN GKS('SYS$ERROR:')
CALL GKS$0PEN=WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)

C Specifying zero as this argument forces GKS$INQ CHOICE STATE to
C only return the current number of choices. - -

NUM_CHOICES = 0

C Tell the handler the size of the record buffer (do not include
C the array addresses in this call).

RECORD_BUFFER_LENGTH = 4

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ CHOICE STATE(WS ID, DEVICE NUM,
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INIT_STATUS,
* INIT CHOICE, PROMPT ECHO TYPE, ECHO AREA,
* DATA=RECORD, RECORD=BUFFER_LENGTH, RECORD_SIZE)

C Tell the handler where to write current addresses ...
DATA_RECORD(2) = %LOC(STRING_SIZES)
DATA_RECORD(3) = %LOC(STRING_POINTERS

C Initialize the string pointers •..
DO 100 I = 1, NUM CHOICES

STRING POINTERS(I) = %LOC(STRINGS(!)
STRING=SIZES(I) = 80

100 CONTINUE

11-208 Inquiry Functions

(continued on next page)

Workstation State List Inquiries
INQUIRE CHOICE DEVICE STATE

Example 11-8 (Cont.): Determining the State of the Choice Logical Input
Device

C Initialize the size of the data record .•.
RECORD_BUFFER_LENGTH = 12

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ CHOICE STATE(WS ID, DEVICE NUM,
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INIT_STATUS,
* INIT_CHOICE, PROMPT_ECHO_TYPE, ECHO_AREA,
* DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ',ERROR STATUS
WRITE(6, *) 'The input operating mode: 1 , INPUT_MODE
WRITE(6, *) 'The echo flag: ',ECHO FLAG
WRITE(6, *) 'The initial choice status: ', INIT_STATUS
WRITE(6, *) 'The initial choice value: ' INIT_CHOICE
WRITE(6, *) 'The prompt and echo type: ',

* PROMPT ECHO TYPE
WRITE(6~ *) 1 The echo area: ', ECHO AREA
WRITE(6, *) 'The data record: ',DATA RECORD
WRITE(6, *) 'The maximum data length:-',

* RECORD BUFFER LENGTH
WRITE(6~ *) 'Size of returned data record: ' RECORD_SIZE

C STRINGS holds the current choice strings ..•
WRITE(6,*) 'The current choice strings are as follows:'
DO 200 i = 1, NUM CHOICES

WRITE(6,*) STRINGS(!)
200 CONTINUE

CALL GKS$CLOSE WS(WS ID
CALL GKS$CLOs(::GKS () -
END

Inquiry Functions 11-209

Workstation State List Inquiries
INQUIRE CHOICE DEVICE STATE

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_ a I RETURN I
$ LINK EXAMPLE_ a I RETURN I
$ RUN EXAMPLE_ a I RETURN I
The error status: 0
The input operating mode: 0
The echo flag: 1
The initial choice status: 1
The initial choice value: 1
The prompt and echo type: 1
The echo area: 533.0000 799.0000
The data record: 5 1036
The maximum data length: 12
Size of returned data record: 12
The current choice strings are as follows:
CHOICEl
CHOICE2
CHOICE3
CHOICE4
CHOICES
$

11-210 Inquiry Functions

O.OOOOOOOE+OO 479.0000
1076

Workstation State List Inquiries
INQUIRE COLOR REPRESENTATION

INQUIRE COLOR REPRESENTATION

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE COLOR REPRESENTATION returns the red, green,
and blue intensities associated with a given color index, on a specified
workstation.

The color representation is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated worksta
tion open.

• The workstation is not of category GKS$K_ WSCAT_MI, GKS$K_
WSCAT_INPUT, or GKS$K_ WSCAT_ WISS.

• The color index is valid and defined.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning color representation, refer to Chapter 5,
Output Attribute Functions.

GKS$1NQ_COLOR_REP (workstation_id, color_index,
value_type, error_status, red_intensity,
green_intensity, blue_intensity)

GQCR (workstation_id, cindex, type, error_status, red_i, green_i,
blue_i)

Inquiry Functions 11-211

Workstation State List Inquiries
INQUIRE COLOR REPRESENTATION

ginqcolourrep (workstation_id, index, type, rep, error_status)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

color_index

data type: integer
access: read-only
mechanism: by reference
This argument is a color index value defined on the specified workstation.

value_type

data type: integer
access: read-only
mechanism: by reference
This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 11.1.2 for more information concerning this
argument.) The defined values are as follows:

Value Constant Description

0 GKS$K_VALUE_SET Use the exact state list values.

1 GKS$K_ VALUE_REALIZED Use the values approximated by the graph-
ics handler.

11-212 Inquiry Functions

error_status

data type: integer
access: write-only
mechanism: by reference

Workstation State List Inquiries
INQUIRE COLOR REPRESENTATION

This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

red_intensity
green_intensity
blue_intensity

data type: real
access: write-only
mechanism: by reference
These arguments are the red, green, and blue intensities associated with the
specified color index.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-17 DECGKS$_ERROR_NEG_l 7 Inquired device values not set or realized
in routine ****

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

7 GKS$_ERROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

Inquiry Functions 11-213

Workstation State List Inquiries
INQUIRE COLOR REPRESENTATION

Error
Number Completion Status Code

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

93 GKS$_ERROR_93

94 GKS$_ERROR_94

11-214 Inquiry Functions

Message

Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****
Color index is invalid in routine ****
A representation for the specified color
index has not been defined on this work
station in routine ****

Workstation State List Inquiries
INQUIRE FILL AREA REPRESENTATION

INQUIRE FILL AREA REPRESENTATION

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE FILL AREA REPRESENTATION returns the values
associated with the given fill area index, on the specified workstation.

The fill area representation is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated worksta
tion open.

• The workstation is not of category GKSK_WSCAT_MI, GKSK_
WSCAT_INPUT, or GKS$K_WSCAT_WISS.

• The fill area index is valid and defined.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the fill area representation, refer to
Chapter 5, Output Attribute Functions.

GKS$1NQ_FILL_REP (workstation_id, fi/Larea_index,
value_type, error_status, interior_style,
style_index, color_index)

GQFAR (workstation_id, findex, type, error_status, int_style,
sindex, cindex)

ginqfillrep (workstation_id, index, type, rep, error_status)

Inquiry Functions 11-215

Workstation State List Inquiries
INQUIRE FILL AREA REPRESENTATION

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

fill_area_index

data type: integer
access: read-only
mechanism: by reference
This argument is the defined fill area index on the specified workstation.

value_type

data type: integer
access: read-only
mechanism: by reference
This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 11.1.2 for more information concerning this
argument.) The defined values are as follows:

Value Constant

0 GKS$K_VALUE_SET

1 GKS$K_ VALUE_REALIZED

error_status

data type: integer
access: write-only
mechanism: by reference

Description

Use the exact state list values.

Use the values approximated by the
graphics handler.

This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to

11-216 Inquiry Functions

Workstation State List Inquiries
INQUIRE FILL AREA REPRESENTATION

one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

interior_style

data type: integer
access: write-only
mechanism: by reference
This argument is the interior style associated with the specified fill area
index. The defined values are as follows:

Value Constant Description

0 GKS$K_INTSTYLE_HOLLOW Hollow

1 GKS$K_INTSTYLE_SOLID Solid

2 GKS$K_INTSTYLE_PATTERN Pattern

3 GKS$K_INTSTYLE_HATCH Hatched

style_index

data type: integer
access: write-only
mechanism: by reference
This argument is the style index value associated with the specified fill area
index value.

color_index

data type: integer
access: write-only
mechanism: by reference
This argument is the color index value associated with the specified fill area
index value.

Inquiry Functions 11-217

Workstation State List Inquiries
INQUIRE FILL AREA REPRESENTATION

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

80 GKS$_ERROR_80

81 GKS$_ERROR_81

11-218 Inquiry Functions

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****
Fill area index is invalid in routine ****
A representation for the specified fill
area index has not been defined on this
workstation in routine ****

Workstation State List Inquiries
INQUIRE LIST OF COLOR INDICES

INQUIRE LIST OF COLOR INDICES

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE LIST OF COLOR INDICES returns the number and
the list of defined color indexes.

The list of color indexes is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is not of category GKS$K_ WSCAT_MI, GKS$K_
WSCAT_INPUT, or GKS$K_WSCAT_WISS.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning color indexes, refer to Chapter 5, Output
Attribute Functions.

GKS$1NQ_COLOR_INDEXES (workstation_id, error_status,
num_indexes, list_indexes,
return_ size)

GQECI (workstation_id, element, error_status, num_color,
relement)

ginqcolourindices (workstation_id, max_indices, start, indices,
actuaLindices, error_status)

Inquiry Functions 11-219

Workstation State List Inquiries
INQUIRE LIST OF COLOR INDICES

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid~

num_indexes

data type: integer
access: write-only
mechanism: by reference
This argument is the number of currently defined color indexes.

list_ indexes

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the array that contains the currently defined color index
values.

return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the number of indexes returned to the color index list. You
can use this argument to see if you specified an array that was large enough
to hold all the returned values.

11-220 Inquiry Functions

Error Messages

Workstation State List Inquiries
INQUIRE LIST OF COLOR INDICES

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_l9

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR..,;.25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Inquiry Functions 11-221

Workstation State List Inquiries
INQUIRE LIST OF FILL AREA INDICES

INQUIRE LIST OF FILL AREA INDICES

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE LIST OF FILL AREA INDICES returns the number
and list of defined fill area index values.

The list of fill area indexes is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and ifthe following conditions
exist:

• The specified workstation identifier is valid and the associated worksta
tion open.

• The workstation is not of category GKS$K_ WSCAT_MI, GKS$K_
WSCAT_INPUT, or GKS$K_ WSCAT_ WISS.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the fill area indexes, refer to Chapter 5,
Output Attribute Functions.

GKS$1NQ_FILL_INDEXES (workstation_id, error_status,
num_indexes, list_indexes,
return_size)

GQEFAI (workstation_id, element, error_status, num_fill,
relement)

ginqfillindices (workstation_id, max_indices, start, indices,
actuaLindices, error_status)

11-222 Inquiry Functions

Workstation State List Inquiries
INQUIRE LIST OF FILL AREA INDICES

Arguments

workstatlon_ld

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_lndexes

data type: integer
access: write-only
mechanism: by reference
This argument is the number of defined fill area index values for the
specified workstation.

list_ Indexes

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the array containing defined fill area index values.

return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the number of indexes returned to the fill area index list.
You can use this argument to see if you specified an array that was large
enough to hold all the returned values. ·

Inquiry Functions 11-223

Workstation State List Inquiries
INQUIRE LIST OF FILL AREA INDICES

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

11-224 Inquiry Functions

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Workstation State List Inquiries
INQUIRE LIST OF PATTERN INDICES

INQUIRE LIST OF PATTERN INDICES

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE LIST OF PATTERN INDICES returns the number
and the list of defined pattern indexes on the specified workstation.

The list pattern indexes is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is not of category GKSK_WSCAT_MI, GKSK_
WSCAT_INPUT, GKS$K_WSCAT_WISS.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning patterns, refer to Chapter 5, Output
Attribute Functions.

GKS$1NQ_PAT_INDEXES (workstation_id, error_status,
num_indexes, list_indexes,
return_size)

GQEPAI (workstation_id, element, error_status, num_patt,
relement)

ginqpatindices (workstation_id, max_indices, start, indices,
actuaLindices, error:_status)

Inquiry Functions 11-225

Workstation State List Inquiries
INQUIRE LIST OF PATTERN INDICES

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_indexes

data type: integer
access: write-only
mechanism: by reference
This argument is the number of defined pattern index values for the
specified workstation.

lisLindexes

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the array containing defined pattern i_ndex values.

return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the number of indexes returned to the pattern index list.
You can use this argument to see if you specified an array that was large
enough to hold all the returned values.

11-226 Inquiry Functions

Error Messages

Workstation State List Inquiries
INQUIRE LIST OF PATTERN INDICES

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

Message

Invalid error status parameter specified
in routine ****

GKS not in proper state: GKS in the
error state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open· in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Inquiry Functions 11-227

Workstation State List Inquiries
INQUIRE LIST OF POLYLINE INDICES

INQUIRE LIST OF POLYLINE INDICES

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE LIST OF POLYLINE INDICES returns the number
and list of defined polyline indexes.

The list of polyline indexes is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and ifthe following conditions
exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is not of category GKSK_WSCAT_MI, GKSK_
WSCAT_INPUT, or GKS$K_WSCAT_WISS.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning polyline indexes, refer to Chapter 5,
Output Attribute Functions.

GKS$1NQ_PLINE_INDEXES (workstation_id, error_status,
num_indexes, /ist_indexes,
return_ size)

GQEPLI (workstation_id, element, error_status, num_line,
relement)

ginqlineindices (workstation_id, max_indices, start, indices,
actuaLindices, error_status)

11-228 Inquiry Functions

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference

Workstation State List Inquiries
INQUIRE LIST OF POLYLINE INDICES

This argument is the integer value that identifies an open workstation.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_indexes

data type: integer
access: write-only
mechanism: by reference
This argument is the number of defined polyline index values for the
specified workstation.

list_ indexes

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the array containing defined polyline index values.

return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the number of indexes returned to the polyline index list.
You can use this argument to see if you specified an array that was large
enough to hold all the returned values.

Inquiry Functions 11-229

Workstation State List Inquiries
INQUIRE LIST OF POLYLINE INDICES

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 :DECGKS$_ERROR_NEG_l9

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

11-230 Inquiry Functions

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Workstation State List Inquiries
INQUIRE LIST OF POLYMARKER INDICES

INQUIRE LIST OF POLYMARKER INDICES

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE LIST OF POLYMARKER INDICES returns the
number and list of defined polymarker indexes.

The list of polymarker indexes is available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and if the following
conditions exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is not of category GKS$K_ WSCAT_MI, GKS$K_
WSCAT_INPUT, or GKS$K_WSCAT_WISS.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning polymarker indexes, refer to Chapter 5,
Output Attribute Functions.

GKS$1NQ_PMARK_INDEXES (workstation_id, error_status,
num_indexes, list_indexes,
return_size)

GQEPMI (workstation_id, element, error_status, num_mark,
relement)

ginqmarkerindices (workstation_id, max_indices, start, indices,
actuaLindices, error_status)

Inquiry Functions 11-231

Workstation State List Inquiries
INQUIRE LIST OF POLYMARKER INDICES

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

error_status

data type: integer
access: \Vl'ite-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_indexes

data type: integer
access: \Vl'ite-only
mechanism: by reference
This argument is the number of defined polymarker index values for the
specified workstation.

list_ indexes

data type: array (integer)
access: \Vl'ite-only
mechanism: by descriptor
This argument is the array containing defined polymarker index values.

return_size

data type: integer
access: \Vl'ite-only
mechanism: by reference
This argument is the number of indexes returned to the polymarker index
list. You can use this argument to see if you specified an array that was
large enough to hold all the returned values.

11-232 Inquiry Functions

Error Messages

Workstation State List Inquiries
INQUIRE LIST OF POLYMARKER INDICES

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SOOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Inquiry Functions 11-233

Workstation State List Inquiries
INQUIRE LIST OF TEXT INDICES

INQUIRE LIST OF TEXT INDICES

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The list of available text indexes is available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and if the following
conditions exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is not of category GKS$K_ WSCAT_MI, GKS$K_
WSCAT_INPUT, or GKS$K_WSCAT_WISS.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning text indexes, refer to Chapter 5, Output
Attribute Functions.

GKS$1NQ_ TEXT _INDEXES (workstation_id, error_status,
num_indexes, lisLindexes,
return_size)

GQETXI (workstation_id, element, error_status, num_text,
relement)

ginqtextindices (workstation_id, max_indices, start, indices,
actuaLindices, error:_ status)

11-234 Inquiry Functions

Arguments

worlcstation_id

data type: integer
access: read-only
mechanism: by reference

Workstation State List Inquiries
INQUIRE LIST OF TEXT INDICES

This argument is the integer value that identifies an open workstation.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_indexes

data type: integer
access: write-only
mechanism: by reference
This argument is the number of text index values for the specified worksta
tion.

list_ indexes

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the array containing defined text index values.

Inquiry Functions 11-235

Workstation State List Inquiries
INQUIRE LIST OF TEXT INDICES

return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the number of indexes returned to the text index list. You
can use this argument to see if you specified an array that was large enough
to hold all the returned values.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresp.onds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_l9

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

11-236 Inquiry Functions

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

INQUIRE LOCATOR DEVICE STATE

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE LOCATOR DEVICE STATE returns the initializa
tion values for the specified locator logical input device, and the current
input operating mode.

The locator logical input values are available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and if the following
conditions exist:

• The specified workstation identifier is valid and the associated worksta
tion open.

• The workstation is of category GKS$K_ WSCAT_INPUT or GKS$K_
WSCAT_OUTIN.

• The locator logical input device is present on the specified workstation.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning input, refer to Chapter 7, Input Functions.

GKS$1NQ_LOCATOR_STATE (workstation_id, device_number,
value_type, error_status,
operating_mode, echo_flag,
transformation_number,
world_Jocator_x, world_locator_y,
prompLecho_type, echo_area,

Inquiry Functions 11-237

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

data_record, record_buffer_/ength,
record_size)

GQLCS (workstation_id, device_number, type, dim_dr,
error_status, operating_mode, echo_flag, in_xform,
in_px, in_py, p_e_type, echo_area, len_dr, dr)

ginqlocst (workstation_id, device_number, workstation_type,
bufsize, state_size, state, error_status)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

device_number

data type: integer
access: read-only
mechanism: by reference
This argument is the device number that differentiates between logical
input devices of the same class, operating on the same workstation. For
more information, refer to Chapter 7, Input Functions.

value_type

data type: integer
access: read-only
mechanism: by reference
This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 11.1.2 for more information concerning this
argument.) The defined values are as follows:

11-238 Inquiry Functions

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

Value Constant

0 GKS$K_VALUE_SET

1 GKS$K_ VALUE_REALIZED

error_status

data type: integer
access: write-only
mechanism: by reference

Description

Use the exact state list values.

Use the values approximated by the
graphics handler.

This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

operating_ mode

data type: integer
access: write-only
mechanism: by reference
This argument is the current input operating mode for the specified logical
input device. The defined values are as follows:

Value Constant

0 GKS$K_INPUT_MODE_REQUEST

1 GKS$K_INPUT_MODE_SAMPLE

2 GKS$K...INPUT_MODE_EVENT

Description

Request input mode

Sample input mode

Event input mode

For more information concerning the input operating modes, refer to
Chapter 7, Input Functions.

Inquiry Functions 11-239

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

echo_flag

data type: integer
access: write-only
mechanism: by reference
This argument is the echo flag specifying whether input is echoed on the
workstation surface. The defined values are as follows:

Value Constant

0 GKS$K_NOECHO

1 GKS$K_ECHO

transformation_number

data type: integer
access: write-only
mechanism: by reference

Description

Do not echo input.

Echo input.

This argument is the normalization transformation used to translate the
initial input data point to device coordinates.

world_locator_x
world_locator_y

data type: real
access: write-only
mechanism: by reference
These arguments designate the initial locator position, in world coordinates.

prompLecho_type

data type: integer
access: write-only
mechanism: by reference
This argument is the current prompt and echo type value.

echo_area

data type: array (real)
access: write-only
mechanism: by reference
This argument is a 4-element array containing echo area device coordinate
points in the following order XMIN, XMAX, YMIN, YMAX. For more

11-240 Inquiry Functions

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

information concerning the DEC GKS coordinate systems, refer to Chapter
6, Transformation Functions.

data_record

data type: address (record)
access: write-only
mechanism: by reference
This argument is a pointer to the current locator input data record for the
specified device.

record_buffer_length

data type: integer
access: modifiable
mechanism: by reference
On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data_record. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record_size is larger than record_buffer _length after
the function call, then you know that the graphics handler truncated the
data record when writing it to the buffer and data was lost.

record_size ·

data type: integer
access: write-only
mechanism: by reference
This argument is the total size, in bytes, of the data record.

Inquiry Functions 11-241

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

38 GKS$_ERROR_38

140 GKS$_ERROR_140

Program Example

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is neither of cate
gory INPUT nor of category OUTIN in
routine ****
Specified input device is not present on
workstation in routine ****

Example 11-9 illustrates the use of the function GKS$INQ_LOCATOR_
STATE.

11-242 Inquiry Functions

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

Example 11-9: Determining the Current Locator State

C This program writes the return values of the function
C GKS$INQ_LOCATOR_STATE to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, DATA_RECORD(1), PROMPT_ECHO_TYPE,

* ERROR STATUS, INPUT MODE, ECHO FLAG, TRANSFRM NUMBER,
* RECORD_BUFFER_LENGTH, RECORD_SIZE, DEVICE_NUM-

REAL ECHO AREA(4), WORLD X, WORLD Y
DATA WS_ID I 1 /, DEVICE_NUM I 1 I -

CALL GKS$0PEN GKS('SYS$ERROR:')
CALL GKS$0PEN=WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240

C Initialize the modifiable argument .••
RECORD_BUFFER_LENGTH = 4

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ LOCATOR STATE(WS ID, DEVICE NUM,
* GKS$K_VALUE=REALIZED, ERROR_STATUS, INPUT_MODE,
* ECHO FLAG, TRANSFRM NUMBER, WORLD X, WORLD Y,
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA=RECORD, -
* RECORD_BUFFER_LENGTH, RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ',ERROR STATUS
WRITE(6, *) 'The input operating mode: T, INPUT_MODE
WRITE(6, *) 'The echo flag: ',ECHO FLAG
WRITE(6, *) 'The transformation number: '

* TRANSFRM_NUMBER
WRITE(6, *) 'The X world coordinate: ',WORLD X
WRITE(6, *) 'The Y world coordinate: ', WORLD-Y
WRITE(6, *) 'The prompt and echo type: ', -

* PROMPT ECHO TYPE
WRITE(6~ *) TThe echo area: ', ECHO_AREA
WRITE(6, *) 'The data record: ', DATA_RECORD
WRITE(6, *) 'The record buffer length: ',

* RECORD_BUFFER_LENGTH
WRITE(6, *) 'The record size: ', RECORD_SIZE

CALL GKS$CLOSE WS(WS ID
CALL GKS$CLOSE=GKS() -
END

Inquiry Functions 11-243

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_9 I RETURN t
$ LINK EXAMPLE_9 I RETURN t
$ RUN EXAMPLE_ 9 I RETURN t
The error status: 0
The input operating mode: 0
The echo flag: 1
The transformation number: 0
The X world coordinate: 0.5000000
The Y world coordinate: 0.5000000
The prompt and echo type: 1
The echo area: O.OOOOOOOE+OO 479.0000
The data record: 0
The record buffer length: 0
The record size: 0
$

11-244 Inquiry Functions

O.OOOOOOOE+OO 479.0000

Workstation State List Inquiries
INQUIRE PATTERN REPRESENTATION

INQUIRE PATTERN REPRESENTATION

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE PATTERN REPRESENTATION returns the values
associated with a defined pattern index on a specified workstation.

The pattern representation is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and ifthe following conditions
exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is not of category GKS$K_ WSCAT_MI, GKS$K_
WSCAT_INPUT, or GKS$K_WSCAT_WISS.

• The pattern index is valid and defined.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning patterns, refer to Chapter 5, Output
Attribute Functions.

GKS$1NQ_PAT_REP (workstation_id, pattern_index,
value_type, error_status, pattern_width,
pattern_height, list_ color_indexes,
color_ columns_return_size,
color_rows_return_size)

Inquiry Functions 11-245

Workstation State List Inquiries
INQUIRE PATTERN REPRESENTATION

GQPAR (workstation_id, pindex, type, max_x_dim, max_y_dim,
error_status, x_dim, y_dim, carray)

ginqpatrep (workstation_id, index, type, rep, error_status)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

pattern_index

data type: integer
access: read-only
mechanism: by reference
This argument is the defined pattern index on the specified workstation.

value_type

data type: integer
access: read-only
mechanism: by reference
This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 11.1.2 for more information concerning this
argument.) The defined values are as follows:

Value Constant

0 GKS$K_VALUE_SET

1 GKS$K.... VALUE_REALIZED

11-246 Inquiry Functions

Description

Use the exact ~tate list values.

Use the values approximated by the
graphics handler.

Workstation State List Inquiries
INQUIRE PATTERN REPRESENTATION

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

pattern_ width
pattern_height

data type: integer
access: write-only
mechanism: by reference
These arguments are the number of columns (width) and rows (height),
within the color index array, for use when you create the pattern.

list_color_indexes

data type: 2-D array (integer)
access: write-only
mechanism: by descriptor
This argument is the two-dimensional array containing the list of color
indexes to use to create the pattern.

color_columns_return_size
color_rows_return_size

data type: integer
access: write-only
mechanism: by reference
These arguments are the dimensions of the elements in the color array
to which DEC GKS returned index values. You can use these values to
traverse only the elements of the array that contain valid color index values.

Inquiry Functions 11-247

Workstation State List Inquiries
INQUIRE PATTERN REPRESENTATION

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one .of the numbers in the following list:

Error
Number Completion Status Code

-17 DECGKS$_ERROR_NEG_l 7

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$~ERROR_NEG_20

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

85 GKS$_ERROR_85

88 GKS$_ERROR_88

90 GKS$_ERROR_90

11-248 Inquiry Functions

Message

Inquired device values not set or realized
in routine ****

Invalid error status parameter specified
in routine ****

GKS not in proper state: GKS in the
error state in routine****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Specified pattern index is invalid in
routine ****

A representation .for the specified pat
tern index has not been defined on this
workstation in routine ****

Interior style PATTERN is not supported
on this workstation in routine ****

Workstation State List Inquiries
INQUIRE PICK DEVICE STATE

INQUIRE PICK DEVICE STATE

Operating States: WSOP, WSAC, SGOP

Description

The function INQUIRE PICK DEVICE STATE returns the initialization
values for the specified pick logical input device, and the current input
operating mode.

The pick logical input initialization values are available when DEC GKS is
in any operating state except GKS$K_GKCL or GKS$K_GKOP, and if the
following conditions exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is of category GKS$K_ WSCAT_INPUT or GKS$K_
WSCAT_OUTIN.

• The pick logical input device is present on the specified workstation.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

NOTE

The DEC GKS FORTRAN binding does not return the data
record for this function. This restriction conforms with the GKS
Standard. Use the GKS$ function with FORTRAN if you want the
data record returned.

For more information concerning pick input, refer to Chapter 7, Input
Functions.

Inquiry Functions 11-249

Workstation State List Inquiries
INQUIRE PICK DEVICE STATE

Syntax

GKS$1NQ_PICK_STATE (workstation_id, device_number,
value_type, error_status,
operating_mode, echo_flag,
initia/_pick_status, initiaLsegment,
initia/_pick_id, prompt_echo_type,
echo_area, data_record,
record_buffer_length, record_size)

GQPKS (workstation_id, device_number, type, dim_dr,
error_status, operating_mode, echo_flag, in_status,
in_seg, in_pick_id, p_e_type, echo_area, len_dr, dr)

ginqpickst (workstation_id, device_number, type, bufsize,
state_size, state, error_status)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

device_number

data type: integer
access: read-only
mechanism: by reference
This argument is the device number that differentiates between logical
input devices of the same class, operating on the same workstation. For
more information, refer to Chapter 7, Input Functions.

11-250 Inquiry Functions

Workstation State List Inquiries
INQUIRE PICK DEVICE STATE

va/ue_type

data type: integer
access: read-only
mechanism: by reference
This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 11.1.2 for more information concerning this
argument.) The defined values are as follows:

Value Constant

0 GKS$ICVALUE_SET

1 GKS$1C VALUE_REALIZED

error_status

data type: integer
access: write-only
mechanism: by reference

Description

Use the exact state list values.

Use the values approximated by the
graphics handler.

This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

operating_ mode

data type: integer
access: write-only
mechanism: by reference
This argument is the current input operating mode for the specified logical
input device. The defined values are as follows:

Value Constant

0 GKS$K_INPUT_MODE_REQUEST

1 GKS$K_INPUT_MODE_SAMPLE

Description

Request input mode

Sample input mode

Inquiry Functions 11-251

Workstation State List Inquiries
INQUIRE PICK DEVICE STATE

Value Constant Description

2 GKS$K.JNPUT_MODE_EVENT Event input mode

For more information concerning the input operating modes, refer to
Chapter 7, Input Functions.

echo_flag

data type: integer
access: write-only
mechanism: by reference
This argument is the echo flag specifying whether input is echoed on the
workstation surface. The defined values are as follows:

Value Constant

0 GKS$K....NOECHO

1 GKS$K,_ECHO

inltial_plck_status

data type: integer
access: write-only
mechanism: by reference

Description

Do not echo input.

Echo input.

This argument determines whether the user can return a measure value of
"No Pick." If the user can return No Pick, then the user can trigger the end
of input without returning the value corresponding to the initial segment.
This action returns the value 0 as the logical input device's measure. If the
user cannot return No Pick, then triggering the end of input as soon as the
initial picked segment is highlighted returns the identifier associated with
that segment.

The defined values are as follows:

Value Constant

1 GKS$K_STATUS_OK

2 GKS$K_STATUS_NOPICK

11-252 Inquiry Functions

Description

Return the initial measure.

Return No Pick.

initial_ segment

data type: integer
access: write-only
mechanism: by reference

Workstation State List Inquiries
INQUIRE PICK DEVICE STATE

This argument is the name of the segment that is initially highlighted as
soon as you request the pick logical input device.

initia/_pick_id

data type: integer
access: write-only
mechanism: by reference
This argument is the pick identifier that is associated with a portion of
the initially highlighted segment. For more information concerning pick
identifiers, refer to Chapter 7, Input Functions, or Chapter 8, Segment
Functions.

prompt_echo_type

data type: integer
access: write-only
mechanism: by reference
This argument is the current prompt and echo type value.

echo_area

data type: array (real)
access: write-only
mechanism: by reference
This argument contains coordinate values in the following order X:MIN,
XMAX, YMIN, YMAX. For more information concerning the DEC GKS
coordinate systems, refer to Chapter 6, Transformation Functions.

data_record

data type: address (record)
access: write-only
mechanism: by reference
This argument is a pointer to the current pick input data record for the
specified device.

Inquiry Functions 11-253

Workstation State List Inquiries
INQUIRE PICK DEVICE STATE

record_buffer_length

data type: integer
access: DlOdifiable
mechanism: by reference
On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data_record. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record_size is larger than record_buffer _length after
the function call, then you know that the graphics handler truncated the
data record when writing it to the buffer and data was lost.

record_size

data type: integer
access: \Vl'ite-only
mechanism: by reference
This argument is the total size, in bytes, of the data record.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Nwnber CoDlpletion Status Code Message

-17 DECGKS$_ERROR_NEG_l 7 Inquired device values not set or realized
in routine ****

-19 DECGKS$_ERROR_NEG_l9 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

7 GKS$_ERROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SOOP
in routine ****

20 GKS$_ERROR_20 Specified workstation identifier is invalid
in routine ****

11-254 Inquiry Functions

Error

Workstation State List Inquiries
INQUIRE PICK DEVICE STATE

Number Completion Status Code Message

25 GKS$_ERROR_25

37 GKS$_ERROR_37

140 GKS$_ERROR_l40

Program Example

Specified workstation is not open in
routine ****
Specified workstation is not of category
OUTIN in routine ****
Specified input device is not present on
workstation in routine ****

Example 11-10 illustrates the use of the function GKS$1NQ_PICK_STATE.

Inquiry Functions 11-255

Workstation State List Inquiries
INQUIRE PICK DEVICE STATE

Example 11-10: Determining the Values Associated with the Current Pick
State

C This program writes the return values of the function
C GKS$INQ_PICK_STATE to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, INITIAL_STATUS, SEGMENT,

* PICK_ID, PROMPT_ECHO_TYPE, ERROR_STATUS, DEVICE NUM,
* INPUT~MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH,
* RECORD_SIZE

REAL ECHO_AREA(4), DATA_RECORD(1)

DATA WS_ID / 1 /, DEVICE_NUM / 1 /

CALL GKS$0PEN GKS('SYS$ERROR:')
CALL GKS$0PEN=WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240

C Initialize the modifiable argument •.•
RECORD_BUFFER_LENGTH = 4

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ PICK STATE(WS ID, DEVICE NUM,
* GKS$K VALUE-REALIZED, ERROR STATUS, INPUT MODE,
* ECHO_FLAG, INITIAL_STATUS, SEGMENT, PICK_ID,
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD,
* RECORD_BUFFER_LENGTH, RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ',ERROR STATUS
WRITE(6, *) 'The input operating mode: 1 , INPUT MODE
WRITE(6, *) 'The echo flag: ', ECHO FLAG -
WRITE(6, *) 'The initial pick status: ', INITIAL STATUS
WRITE(6, *) 'The picked segment identifier: ', -

* SEGMENT
WRITE(6, *) 'The initial pick identifier: '

* PICK ID
WRITE(6, *) 'The prompt and echo type: ',

* PROMPT_ECHO_TYPE
WRITE(6, *) 'The echo area: ', ECHO_AREA
WRITE(6, *) 'The data record: ' DATA_RECORD

11-256 Inquiry Functions

(continued on next page)

Workstation State List Inquiries
INQUIRE PICK DEVICE STATE

Example 11-10 (Cont.): Determining the Values Associated with the
Current Pick State

WRITE(6, *) 'The record buffer length: '
* RECORD BUFFER LENGTH
WRITE(6~ *) 'The record size: ', RECORD_SIZE

CALL GKS$CLOSE WS(WS ID
CALL GKS$CLOSE=GKS () -
END

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_lO~
$ LINK EXAMPLE 10 RETURN
$ RUN EXAMPLE~)O RETURN
The error status: 0
The input operating mode: 0
The echo flag: 1
The initial pick status: 2
The picked segment identifier: 1
The initial pick identifier: 1
The prompt and echo type: 1
The echo area: O.OOOOOOOE+OO 479.0000 O.OOOOOOOE+OO 479.0000
The data record: 4.790000
The record buffer length: 4
The record size: 4
$

Inquiry Functions 11-257

Workstation State List Inquiries
INQUIRE POLYLINE REPRESENTATION

INQUIRE POLYLINE REPRESENTATION

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE POLYLINE REPRESENTATION returns the values
associated with the given polyline index value.

The polyline index values are available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and ifthe following conditions
exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is not of category GKS$K_ WSCAT_MI, GKS$K_
WSCAT_INPUT, or GKS$K_ WSCAT_ WISS.

• The polyline index is valid and defined.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the polyline attributes, refer to Chapter 5,
Output Attribute Functions.

GKS$1NQ_PLINE_REP (workstation_id, polylirie_index,
value_type, error_status, line_type,
line_ width_scale_factor, co/or_index)

GQPLR (workstation_id, pindex, type, error_status, /type, /width,
cindex)

ginqlinerep (workstation_id, index, type, rep, error_status)

11-258 Inquiry Functions

Workstation State List Inquiries
INQUIRE POLYLINE REPRESENTATION

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

polyline_index

data type: integer
access: read-only
mechanism: by reference
This argument is the defined polyline index on the specified workstation.

value_type

data type: integer
access: read-only
mechanism: by reference
This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 11.1.2 for more information concerning this
argument.) The defined values are as follows:

Value Constant

0 GKS$K_ VALUE_SET

1 GKS$K.... VALUE_REALIZED

error_status

data type: integer
access: write-only
mechanism: by reference

Description

Use the exact state list values.

Use the values approximated by the
graphics handler.

This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to

Inquiry Functions 11-259

Workstation State List Inquiries
INQUIRE POLYLINE REPRESENTATION

one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

line_type

data type: integer
access: write-only
mechanism: by reference
This argument is the line type associated with the specified polyline bundle
index. The defined values are as follows:

Value Constant Description

<=0 Reserved for implementation-
specific use

1 GKS$K._LINETYPE_SOLID Solid line

2 GKS$K._LINETYPE_DASHED Dashed line

3 GKS$K_LINETYPE_DOTTED Dotted line

4 GKS$K_LINETYPE_DASHED_DOTTED Solid line

>=5 Reserved for future
standardization

line_width_scale_factor

data type: real
access: write-only
mechanism: by reference
This argument is the line width scale factor associated with the specified
polyline bundle index. DEC GKS calculates line width by multiplying the
scale factor by the nominal width.

color_index

data type: integer
access: write-only
mechanism: by reference
This argument is the color index associated with the given polyline index
value.

11-260 Inquiry Functions

Error Messages

Workstation State List Inquiries
INQUIRE POLYLINE REPRESENTATION

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-17 DECGKS$_ERROR_NEG_l 7

-19 DECGKS$_ERROR_NEG_l 9

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

60 GKS$_ERROR_60

61 GKS$_ERROR_61

Message

Inquired device values not set or realized
in routine ****
Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SOOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****
Polyline index is invalid in routine ****
A representation for the specified poly
line index has not been defined on this
workstation in routine ****

Inquiry Functions 11-261

Workstation State List Inquiries
INQUIRE POLYMARKER REPRESENTATION

INQUIRE POLYMARKER REPRESENTATION

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE POLYMARKER REPRESENTATION returns the
values associated with the given polymarker index value.

The polymarker index values are available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and if the following
conditions exist:

• The specified workstation identifier is valid and the associated worksta
tion open.

• The workstation is not of category GKS$K_ WSCAT_MI, GKS$K_
WSCAT_INPUT, or GKS$K_WSCAT_WISS.

• The polymarker index is valid and defined.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the polymarker attributes, refer to Chapter
5, Output Attribute Functions.

GKS$1NQ_PMARK_REP (workstation_id, polymarker:_index,
value_type, error_status, marker_type,
marker_size_scale_factor, color_index)

GQPMR (workstation_id, pindex, type, error:_status, mtype,
msize, cindex)

ginqmarkerrep (workstation_id, index, type, rep, error_status)

11-262 Inquiry Functions

Workstation State List Inquiries
INQUIRE POLYMARKER REPRESENTATION

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

polymarker_index

data type: integer
access: read-only
mechanism: by reference
This argument is the defined polymarker index on the specified workstation.

value_type

data type: integer
access: read-only
mechanism: by reference
This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 11.1.2 for more information concerning this
argument.) The defined values are as follows:

Value Constant

0 GKS$K_ VALUE_SET

1 GKS$K:.... VALUE_REALIZED

error_status

data type: integer
access: write-only
mechanism: by reference

Description

Use the exact state list values.

Use the values approximated by the
graphics handler.

This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to

Inquiry Functions 11-263

Workstation State List Inquiries
INQUIRE POLYMARKER REPRESENTATION

one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

marker_type

data type: integer
access: write-only
mechanism: by reference
This argument is the marker type associated with the specified polymarker
bundle index value. The defined values are as follows:

Value Constant

<=0

1 GKS$K._MARKERTYPE_DOT

2 GKS$K_MARKERTYPE_PLUS

3 GKS$K_MARKERTYPE_ASTERISK

4 GKS$K_MARKERTYPE_CIRCLE

5 GKS$K_MARKERTYPE_DIAGONAL_
CROSS

>=6

marker_size_scale_factor

data type: ·real
access: write-only
mechanism: by reference

Description

Reserved for implementation
specific use

A dot(.)

A plus sign (+)

An asterisk (*)
A circle (o)

A cross (X)

Reserved for future
standardization

This argument is the marker size scale factor associated with the poly
marker bundle index. DEC GKS calculates the marker size by multiplying
the scale factor by the nominal size.

color_index

data type: integer
access: write-only
mechanism: by reference
This argument is the color index associated with the specified polymarker
index value.

11-264 Inquiry Functions

Error Messages

Workstation State List Inquiries
INQUIRE POLYMARKER REPRESENTATION

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-17 DECGKS$_ERROR_NEG_l 7

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

66 GKS$_ERROR_66

67 GKS$_ERROR_67

Message

Inquired device values not set or realized
in routine ****
Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****
Polymarker index· is invalid in routine

A representation for the specified poly
marker index has not been defined on
this workstation in routine ****

Inquiry Functions 11-265

Workstation State List Inquiries
INQUIRE SET OF SEGMENT NAMES ON WORKSTATION

INQUIRE SET OF SEGMENT NAMES ON WORKSTATION

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE SET OF SEGMENT NAMES ON WORKSTATION
returns the number and list of segment names stored on the given worksta
tion.

The list segment names are available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is not of category GKS$K_ WSCAT_MI or GKS$K_
WSCAT_INPUT.

If these conditions are not met, the output arguments are und~fined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning segments, refer to Chapter 8, Segment
Functions.

GKS$1NQ_SEG_NAMES_ON_WS (workstation_id, error:_status,
num_segment_names,
lisLsegmenLnames,
return_ size)

GQSGWK (workstation_id, member, error_status, num_names,
rmember)

11-266 Inquiry Functions

Workstation State List Inquiries
INQUIRE SET OF SEGMENT NAMES ON WORKSTATION

ginqsegnamesws (workstation_id, max_segnames, start,
segnames, actuaLsegnames, error_status)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.·

num_segment_names

data type: integer
access: write-only
mechanism: by reference
This argument is the number of defined segment names for the specified
workstation.

list_ segment_ names

data type: array (integer)
access: write-only
mechanism: by descriptor
This argument is the array containing defined segment names.

Inquiry Functions 11-267

Workstation State List Inquiries
INQUIRE SET OF SEGMENT NAMES ON WORKSTATION

return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the number of names returned to the segment list. You
can use this argument to see if you specified an array that was large enough
to hold all the returned values.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

11-268 Inquiry Functions

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****

Workstation State List Inquiries
INQUIRE STRING DEVICE STATE

INQUIRE STRING DEVICE STATE

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE STRING DEVICE STATE returns the initialization
values for the specified string logical input device and the current input
operating mode.

The string logical device state is available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and if the following
conditions exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is of category GKS$K_ WSCAT_INPUT or GKS$K_
WSCAT_OUTIN.

• The string logical input device is present on the specified workstation.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the string logical input device, refer to
Chapter 7, Input Functions.

GKS$1NQ_STRING_STATE (workstation_id, device_number,
error_status, operating_mode,
echo_flag, default_ string,
string_return_size,
prompt_echo_type, echo_area,

Inquiry Functions 11-269

Workstation State List Inquiries
INQUIRE STRING DEVICE STATE

data_record, record_buffer_/ength,
record_size)

GQSTS (workstation_id, device_number, dim_dr, error_status,
operating_mode, echo_flag, num_chars, in_string,
p_e_type, echo_area, buf_size, i_cur_pos, len_dr, dr)

ginqstringst (workstation_id, device_number, bufsize, state_size,
state, error_status)

Arguments

workstatlon_ld

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

device_number

data type: integer
access: read-only
mechanism: by reference
This argument is the device number that differentiates between logical
input devices of the same class, operating on the same workstation. For
more information, refer to Chapter 7, Input Functions.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

11-270 Inquiry Functions

operating_ mode

data type: integer
access: 'Write-only
mechanism: by reference

Workstation State List Inquiries
INQUIRE STRING DEVICE STATE

This argument is the current input operating mode for the specified logical
input device. The defined values are as follows:

Value Constant Description

0 GKS$K •. JNPUT_MODE_REQUEST Request input mode

1 GKS$K_INPUT_MODE_SAMPLE Sample input mode

2 GKS$K....INPUT_MODE_EVENT Event input mode

For more information concerning the input operating modes, refer to
Chapter 7, Input Functions.

echo_flag

data type: integer
access: 'Write-only
mechanism: by reference
This argument is the echo ftag specifying whether input is echoed on the
workstation surface. The defined values are as follows:

Value Constant

0 GKS$K_NOECHO

1 GKS$K_ECHO

defaulLstrlng

data type: string
access: 'Write-only
mechanism: by descriptor

Description

Do not echo input.

Echo input.

This argument is the default input string value.

Inquiry Functions 11-271

Workstation State List Inquiries
INQUIRE STRING DEVICE STATE

string_return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the return size, in bytes, of the default string value.

prompLecho_type

data type: integer
access: write-only
mechanism: by reference
This argument is the current prompt and echo type value.

echo_area

data type: array (real)
access: write-only
mechanism: by reference
This 4-element array contains coordinate values in the order XMIN, XMAX,
YMIN, YMAX. This argument is an array containing the device coordinate
values that designate the input echo area on the workstation surface. For
more information concerning the DEC GKS coordinate systems, refer to
Chapter 6, Transformation Functions.

data_record

data type: address (record)
access: write-only
mechanism: by reference
This argument is a pointer to the current string input data record for the
specified device.

record_buffer_length

data type: integer
access: modifiable
mechanism: by reference
On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument dataJecord. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record_size is larger than record_buffer _length after
the function call, then you know that the graphics handler truncated the
data record when writing it to the buffer and data was lost.

11-272 Inquiry Functions

Workstation State List Inquiries
INQUIRE STRING DEVICE STATE

record_size

data type: integer
access: write-only
mechanism: by reference
This argument is the total size, in bytes, of the data record.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

38 GKS$_ERROR_38

140 GKS$_ERROR_140

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is neither of cate
gory INPUT nor of category OUTIN in
routine ****
Specified input device is not present on
workstation in routine ****

Inquiry Functions 11-273

Workstation State List Inquiries
INQUIRE STRING DEVICE STATE

Program Example

Example 11-11 illustrates the use of the function INQUIRE STRING
DEVICE STATE.

Example 11-11: Determining the lnltlal String Logical Input Device Values

C This program writes the return values of the function
C GKS$INQ_STRING_STATE to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS ID, DATA RECORD(2), PROMPT ECHO TYPE,

* ERROR STATUS, INPUT MODE, ECHO FLAG, - -
* RECORD BUFFER LENGTH, RECORD SIZE, INPUT STATUS,
* DEVICE=NUM, STRING_SIZE - -

REAL ECHO AREA(4)
CHARACTER*ao INITIAL STRING
DATA WS_ID I 1 /, DEVICE_NUM I 1 I

CALL GKS$0PEN GKS('SYS$ERROR:')
CALL GKS$0PEN=WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240

C Initialize the modifiable argument •••
RECORD_BUFFER_LENGTH = 8

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ STRING STATE(WS ID, DEVICE NUM,
* ERROR STATUS, INPUT MODE, - -
*ECHO FLAG, %DESCR(INITIAL STRING), STRING SIZE,
* PROMPT ECHO TYPE, ECHO AREA, DATA RECORD, -
* RECORD=BUFFER_LENGTH, RECORD_SIZE-)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ',ERROR STATUS
WRITE(6, *) 'The input mode: ', INPUT MODE
WRITE(6, *) 'The echo flag: ',ECHO FLAG
WRITE(6, *) 'The ~nitial string: ',-INITIAL_STRING
WRITE(6, *) 'The initial string size: ', STRING SIZE
WRITE(6, *) 'The prompt and echo type: ', -

* PROMPT ECHO TYPE
WRITE(6~ *)'The echo area: ',ECHO AREA
WRITE(6, *) 'The data record: ', DATA_RECORD

11-274 Inquiry Functions

(continued on next page)

Workstation State List Inquiries
INQUIRE STRING DEVICE STATE

Example 11-11 (Cont.): Determining the Initial String Logical Input
Device Values

WRITE(6, *) 'The record buffer length: '
* RECORD BUFFER LENGTH

WRITE(6; *) 'The record size: ', RECORD_SIZE

CALL GKS$CLOSE WS(WS ID
CALL GKS$CLOSE-GKS () -
END -

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE 11 RETURN
$ LINK EXAMPLE -11 RETURN
$ RUN EXAMPLE~)l RETURN
The error status: 0
The input mode: 0
The echo flag: 1
The initial string:

The initial string size:
The prompt and echo type:
The echo area: 533.0000
The data record: 20
The record buffer length:
The record size: 8
$

0
1

799.0000
0

8

O.OOOOOOOE+OO 479.0000

Inquiry Functions 11-275

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

INQUIRE STROKE DEVICE STATE

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE STROKE DEVICE STATE returns the initialization
values for the specified stroke logical input device and the current input
operating mode.

The stroke logical devic~ state is available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and if the following
conditions exist:

• The specified workstation identifier is valid and the· associated worksta
tion open.

• The workstation is of category GKS$K_ WSCAT_INPUT or GKS$K_
WSCAT_OUTIN.

• The stroke logical input device is present on the specified workstation.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the stroke logical input device, refer to
Chapter 7, Input Functions.

GKS$1NQ_STROKE_STATE (workstation_id, device_number,
value_type, num_e/ements,
error_status, operating_mode,
echo_flag, transformation_number,
tota/_points, world_x_points,
world_y_points, prompt_echo_type,

11-276 Inquiry Functions

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

echo_area, data_record,
record_buffer_/ength, record_size)

GQSKS (workstation_id, device_number, type, max_pts, dim_dr,
error_status, operating_mode, echo_flag, xform,
num_pts, px, py, p_e_type, echo_area, buf_size, len_dr,
dr)

ginqstrokest (workstation_id, device_number, type, bufsize,
state_size, state, error_status)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

device_number

data type: integer
access: read-only
mechanism: by reference
This argument is the device number that differentiates between logical
input devices of the same class, operating on the same workstation. For
more information, refer to Chapter 7, Input Functions.

value_type

data type: integer
access: read-only
mechanism: by reference
This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they

Inquiry Functions 11-277

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 11.1.2 for more information.) The defined
values are as follows:

Value Constant

0 GKS$K.._VALUE_SET

1 GKS$K_ VALUE_REALIZED

num_elements

data type: integer
access: modifiable
mechanism: by reference

Description

Use the exact state list values.

Use the values approximated by the
graphics handler.

On input, this argument contains the number of elements in the declared
array buffer. On output, this argument contains the number of elements
containing returned stroke points.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

11-278 Inquiry Functions

operating_ mode

data type: integer
access: write-only
mechanism: by reference

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

This argument is the current input operating mode for the specified logical
input device. The defined values are as follows:

Value Constant Description

0 GKS$K_INPUT_MODE_REQUEST Request input mode

Sample input mode

Event input mode

1 GKS$K_INPUT_MODE_SAMPLE

2 GKS$K_INPUT_MODE_EVENT

For more information concerning the input operating modes, refer to
Chapter 7, Input Functions.

echo_flag

data type: integer
access: write-only
mechanism: by reference
This argument is the echo flag specifying whether input is echoed on the
workstation surface. The defined values are as follows:

Value Constant

0 GKS$K_NOECHO

1 GKS$K_ECHO

Description

Do not echo input.

Echo input.

Inquiry Functions 11-279

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

transformation_number

data type: integer
access: write-only
mechanism: by reference
This argument is the normalization transformation number used to translate
the points in the initial stroke from world coordinates to device coordinates.
For more information concerning the DEC GKS coordinate systems, refer to
Chapter 6, Transformation Functions.

tota/_points

data type: integer
access: write-only
mechanism: by reference
This argument is the total number of world coordinate points in the initial
stroke. If total_points is more than num_elements, DEC GKS truncated the
stroke point list so that it fits into your declared buffer.

world_x_points
world_y_points

data type: array (real)
access: write-only
mechanism: by reference
These arguments are the world coordinate points that comprise the initial
stroke.

prompt_echo_type

data type: integer
access: write-only
mechanism: by reference
This argument is the current prompt and echo type value.

11-280 Inquiry Functions

echo_srea

data type: array (real)
access: write-only
mechanism: by reference

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

This argument is a 4-element array containing echo area device coordinate
points in the order XMIN, XMAX, YMIN, YMAX. For more informa-
tion concerning the DEC GKS coordinate systems, refer to Chapter 6,
Transformation Functions.

dsta_record

data type: address (record)
access: write-only
mechanism: by reference
This argument is a pointer to the current stroke input data record for the
specified device.

record_buffer_length

data type: integer
access: modifiable
mechanism: by reference
On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data_record. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record_size is larger than record_buffer _length after
the function call, then you know that the graphics handler truncated the
data record when writing it to the buffer and data was lost.

record_ size

data type: integer
access: write-only
mechanism: by reference
This argument is the total size, in bytes, of the data record.

Inquiry Functions 11-281

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-17 DECGKS$_ERROR_NEG_l 7

-19 DECGKS$_ERROR_NEG_l9

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

38 GKS$_ERROR_38

140 GKS$_ERROR_140

Program Example

Message

Inquired device values not set or realized
in routine ****
Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is neither of cate
gory INPUT nor of category OUTIN in
routine ****
Specified input device is not present on
workstation in routine ****

Example 11-12 illustrates the use of the function INQtJIRE STROKE
DEVICE STATE.

11-282 Inquiry Functions

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

Example 11-12: Determining the Initial Stroke Logical Input Device
Values

C This program writes the return values of the function
C GKS$INQ_STROKE_STATE to the workstation surface.

c

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS ID, DATA RECORD(13), BUFFER SIZE,

* DIMENSION; PROMPT ECHO TYPE, ERROR STATUS,
* TRANSFRM, NUM POINTS, INPUT MODE, ECHO FLAG,
* INPUT STATUS,-DEVICE NUM, RET SIZE X, RET SIZE Y,
*RECORD BUFFER LENGTH; RECORD SIZE,-EDIT POSITION,
* ATT_FLAG - - -

REAL ECHO_AREA(4), STROKE_X(5),
*STROKE Y(5), X INT, Y INT, TIME INT

DATA WS=ID / 1 /,-DEVICE=NUM / 1 ;; DIMENSION / 5 /

Clarify the components of the data record .•.
EQUIVALENCE (DATA_RECORD(1) ' BUFFER_ SIZE)
EQUIVALENCE(DATA_RECORD(2) ' EDIT_POSITION)
EQUIVALENCE(DATA RECORD(3) ' X_INT)
EQUIVALENCE(DATA=RECORD(4) ' Y_INT)
EQUIVALENCE(DATA_RECORD(5) ' TIME_INT)
EQUIVALENCE (DATA_RECORD(6) ' ATT_FLAG)

CALL GKS$0PEN GKS('SYS$ERROR:')
CALL GKS$0PEN-WS(WS ID, GKS$K CONID DEFAULT, GKS$K_VT240

c Initialize the modifiable argument •• ~
RECORD_BUFFER_LENGTH = 52

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ STROKE STATE(WS ID, DEVICE NUM,
* GKS$K VALUE-REALIZED, DIMENSION, ERROR STATUS,
* INPUT-MODE,-ECHO FLAG, TRANSFRM, NUM POINTS, STROKE X,
* STROKE Y, PROMPT-ECHO TYPE, ECHO AREA, DATA RECORD,-
* RECORD=BUFFER_LENGTH,-RECORD_SIZE) -

(continued on next page)

Inquiry Functions 11-283

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

Example 11-12 {Cont.): Determining the Initial Stroke Logical Input
Device Values

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ',ERROR STATUS
WRITE(6, *) 'The input mode: ', INPUT_MODE
WRITE(6, *) 'The echo flag: ', ECHO FLAG
WRITE(6, *) 'The transformation number: ', TRANSFRM
WRITE(6, *) 'The number of points: ', NUM_POINTS
WRITE(6, *) 'The X values of the initial'
WRITE(6, *) 'stroke: ', STROKE X
WRITE(6, *) 'The Y values of the initial'
WRITE(6, *) 'stroke: ', STROKE_Y
WRITE(6, *) 'The prompt and echo type: ',

* PROMPT ECHO TYPE
WRITE(6~ *) 7 The echo area: ', ECHO_AREA
WRITE(6, *) 'The data record: ', DATA RECORD
WRITE(6, *) 'The maximum data length:-,

* RECORD BUFFER LENGTH
WRITE(6~ *) 'The data return size:

* RECORD_SIZE

CALL GKS$CLOSE WS(WS ID
CALL GKS$CLOs(::GKS () -
END

11-284 Inquiry Functions

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_12 I RETURN I
$ LINK EXAMPLE_12 I RETURN I
$ RUN EXAMPLE_12 I RETURN I
The error status: 0
The input mode: O
The echo flag: 1
The transformation number: 0
The number of points: 0
The X values of the initial
stroke: O.OOOOOOOE+OO O.OOOOOOOE+OO O.OOOOOOOE+OO O.OOOOOOOE+OO

O.OOOOOOOE+OO
The Y values of the initial
stroke: O.OOOOOOOE+OO O.OOOOOOOE+OO O.OOOOOOOE+OO O.OOOOOOOE+OO

O.OOOOOOOE+OO
The prompt and echo type:
The echo area: O.OOOOOOOE+OO
The data record: 80

0 0
0 0

The maximum data length:
The data return size:
$

1
479.0000

0
0

20
20

O.OOOOOOOE+OO 479.0000
-780059640 -780059640 0

0 0 0

Inquiry Functions 11-285

Workstation State List Inquiries
INQUIRE TEXT EXTENT

INQUIRE TEXT EXTENT

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The text extent information is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

• The string is valid.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning text attributes, refer to Chapter 5, Output
Attribute Functions.

GKS$1NQ_ TEXT _EXTENT (workstation_id, string_position_x,
string_position_y, string,
error_status, concatenation_x,
concatenation_y, extent_rectangle_x,
extent_rectangle_y)

GQTXX (workstation_id, px, py, cstring, error_status, con_pt_x,
con_pt_y, ext_x, ext_y)

11-286 Inquiry Functions

Workstation State List Inquiries
INQUIRE TEXT EXTENT

ginqtextextent (workstation_id, position, string, extent,
error_ status)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

string_position_x
string_position_y

data type: real
access: read-only
mechanism: by reference
These arguments are the X and Y world coordinate points that designate the
starting point of the specified string.

string

data type: string
access: read-only
mechanism: by descriptor
This argument is the output text string about which you need information.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

Inquiry Functions 11-287

Workstation State List Inquiries
INQUIRE TEXT EXTENT

concatenation_x
concatenation_y

data type: real
access: \Vl"ite-only
mechanism: by reference
These arguments are the X and Y world coordinate points that you can use
as a starting point for a new output string or as a concatenation point at the
end of the specified string.

extent_rectangle_x
extent_rectangle_y

data type: array (real)
access: \Vl"ite-only
mechanism: by reference
These arguments are 4-element arrays containing the four world coordinate
X and Y values comprising the text extent rectangle. Point order starts with
the lower left comer and moves in a counter-clockwise direction. DEC GKS
computes the text extent rectangle using the current values for the text
font and precision, the character expansion factor, the character-up vector,
the character spacing, text path, text alignment, and character width. The
extent rectangle encloses the character bodies of the specified string.

11-288 Inquiry Functions

Error Messages

Workstation State List Inquiries
INQUIRE TEXT EXTENT

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number

-19

-20

7

20

25

33

38

101

Completion Status Code

DECGKS$_ERROR_NEG_19

DECGKS$_ERROR_NEG_20

GKS$_ERROR_7

GKS$_ERROR_20

GKS$_ERROR_25

GKS$_ERROR_33

GKS$_ERROR_ 39

GKS$_ERROR_101

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****
Invalid code in string in routine ****

Inquiry Functions 11-289

Workstation State List Inquiries
INQUIRE TEXT REPRESENTATION

INQUIRE TEXT REPRESENTATION

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE TEXT REPRESENTATION returns the values
currently associated with the specified text index value.

The current text representation values are available when DEC GKS is
in any operating state except GKS$K_GKCL or GKS$K_GKOP, and if the
following conditions exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is not of category GKSK_WSCAT_MI, GKSK_
WSCAT_INPUT, or GKS$K_WSCAT_WISS.

• The text index is valid and defined.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning text indexes, refer to Chapter 5, Output
Attribute Functions.

GKS$1NQ_ TEXT _REP (workstation_id, texLindex, value_type,
error_status, texLfont, text_precision,
character_expansion_factor,
character_spacing, color_index)

GQTXR (workstation_id, tindex, type, error_status, font, precision,
ex_fac, spacing, cindex)

11-290 Inquiry Functions

Workstation State List Inquiries
INQUIRE TEXT REPRESENTATION

ginqtextrep (workstation_id, index, type, rep, error_status)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

text_ index

data type: integer
access: read-only
mechanism: by reference
This argument is the defined text index on the specified workstation.

value_type

data type: integer
access: read-only
mechanism: by reference
This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 11.1.2 for more information concerning this
argument.) The defined values are as follows:

Value Constant

0 GKS$K_VALUE_SET

1 GKS$K_ VALUE_REALIZED

Description

Use the exact state list values.

Use the values approximated by the
graphics handler.

Inquiry Functions 11-291

Workstation State List Inquiries
INQUIRE TEXT REPRESENTATION

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

text_ font
text_precision

data type: integer
access: write-only
mechanism: by reference
The first argument is the current hardware or software font number
associated with the specified text bundle index. For information concerning
the hardware fonts available on your workstation, refer to the appropriate
device-specific appendix in this manual. For more information concerning
the software fonts available, refer to the appropriate appendix in this
manual.

The second argument is the current text precision associated with the
specified text bundle index. The defined values are as follows:

Value Constant Description

0 GKS$K_TEXT_PRECISION_STRING String precision

1 GKS$K_TEXT_PRECISION_CHAR Character precision

2 GKS$K_TEXT_PRECISION_STROKE Stroke precision

character_expansion_factor

data type: real
access: write-only
mechanism: by reference
This argument is the current character expansion factor associated with the
specified text bundle index. The character expansion factor multiplied by
the width-to-height ratio in the original font design determines the character

11-292 Inquiry Functions

Workstation State List Inquiries
INQUIRE TEXT REPRESENTATION

width. The character expansion factor does not affect the height of the
characters.

character_spacing

data type: real
access: write-oilly
mechanism: by reference
This argument is the current character spacing associated with the specified
text bundle index. Positive values increase the space between characters.
Negative values decrease the space between characters. The value 0 places
the character bodies adjacent to one another.

color_index

data type: integer
access: write-only
mechanism: by reference
This argument is the color index associated with the specified text index
value.

Error Messages ·

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-17 DECGKS$_ERROR_NEG_l 7 Inquired device values not set or realized
in routine ****

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

7 GKS$_ERROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

Inquiry Functions 11-293

Workstation State List Inquiries
INQUIRE TEXT REPRESENTATION

Error
Number Completion Status Code

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

72 GKS$_ERROR_72

73 GKS$_ERROR_73

11-294 Inquiry Functions

Message

Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****
Text index is invalid in routine ****
A representation for the specified text
index has not been defined on this work
station in routine ****

Workstation State List Inquiries
INQUIRE VALUATOR DEVICE STATE

INQUIRE VALUATOR DEVICE STATE

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE VALUATOR DEVICE STATE returns the initializa
tion values for the specified valuator logical input device, and the current
input operating mode.

The valuator device state is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

• The valuator logical input device is present on the specified workstation.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning input, refer to Chapter 7, Input Functions.

GKS$1NQ_ VALUATOR_STATE (workstation_id, device_number,
error_status, operating_mode,
echo_flag, default_ value,
prompt_echo_type,
echo_area, data_record,

Inquiry Functions 11-295

Workstation State List Inquiries
INQUIRE VALUATOR DEVICE STATE

record_buffer_length,
record_size)

GQVLS (workstation_id, dev_num, dim_dr, error_status,
operating_mode, echo_flag, in_value, p_e_type,
echo_area, low_val, high_val,
len_dr, dr)

ginqvalst (workstation_id, device_number, bufsize, state_size,
state, error_status)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

device_number

data type: integer
access: read-only
mechanism: by reference
This argument is the device number that differentiates between logical
input devices of the same class, operating on the same workstation. For
more information, refer to Chapter 7, Input Functions.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

11-296 Inquiry Functions

operating_ mode

data type: integer
access: write-only
mechanism: by reference

Workstation State List Inquiries
INQUIRE VALUATOR DEVICE STATE

This argument is the current input operating mode for the specified logical
input device. The defined values are as follows:

Value Constant Description

0 GKS$K;_INPUT_MODE_REQUEST Request input mode

1 GKS$K;_INPUT_MODE_SAMPLE Sample input mode

2 GKS$K;_INPUT_MODE_EVENT Event input mode

For more information concerning the input operating modes, refer to
Chapter 7, Input Functions.

echo_flag

data type: integer
access: write-only
mechanism: by reference
This argument is the echo :flag specifying whether input is echoed on the
workstation surface. The defined values are as follows:

Value Constant

0 GKS$K;_NOECHO

1 GKS$K;_ECHO

default_ value

data type: real
access: write-only
mechanism: by reference

Description

Do not echo input.

Echo input.

This argument is the default real value of the valuator input device.

Inquiry Functions 11-297

Workstation State List Inquiries
INQUIRE VALUATOR DEVICE STATE

prompLecho_type

data type: integer
access: write-only
mechanism: by reference
This argument is the current prompt and echo type value.

echo_area

data type: array (real)
access: write-only
mechanism: by reference
This argument is a 4-element array containing the echo area device
coordinate points in the order XMIN, XMAX, YMIN, YMAX. For more
information concerning the DEC GKS coordinate systems, refer to Chapter
6, Transformation Functions.

data_record

data type: address (record)
access: write-only
mechanism: by reference
This argument is a pointer to the current valuator input data record for the
specified device.

record_buffer_length

data type: integer
access: modifiable
mechanism: by reference
On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data_record. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record_size is larger than record_buffer _length after
the function call, then you know that the graphics handler truncated the
data record when writing it to the buffer and data was lost.

11-298 Inquiry Functions

Workstation State List Inquiries
INQUIRE VALUATOR DEVICE STATE

record_size

data type: integer
access: write-only
mechanism: by reference
This argument is the total size, in bytes, of the data record.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_,25

38 GKS$_ERROR_38

140 GKS$_ERROR_l40

Program Example

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is neither of cate
gory INPUT nor of category OUTIN in
routine ****
Specified input device is not present on
workstation in routine ****

Example 11-13 illustrates the use of the function INQUIRE VALUATOR
DEVICE STATE.

Inquiry Functions 11-299

Workstation State List Inquiries
INQUIRE VALUATOR DEVICE STATE

Example 11-13: Determining the Current Valuator State

C This program writes the return values of the function
C GKS$INQ VALUATOR STATE to the workstation surface.

IMPLICIT NONE -
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS ID, PROMPT ECHO TYPE, ERROR STATUS,

* INPUT MODE, ECHO FLAG, INPUT STATUS, DEVICE NUM,
* RECORD BUFFER LENGTH, RECORD-SIZE -

REAL ECHO_AREA(4), DATA_RECORD(2), UPPER_LIMIT,
* LOWER LIMIT, VALUE

DATA WS_ID I 1 /, DEVICE_NUM / 1 /

C The elements in the data record are the upper and lower limits.
EQUIVALENCE(DATA RECORD(1), LOWER LIMIT)
EQUIVALENCE(DATA=RECORD(2), UPPER=LIMIT)

CALL GKS$0PEN GKS('SYS$ERROR:')
CALL GKS$0PEN=WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240

C Initialize the modifiable argument ..•
RECORD_BUFFER_LENGTH = 8

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ_VALUATOR_STATE(ws_ID, DEVICE_NUM,
* ERROR STATUS, INPUT MODE, ECHO FLAG, VALUE,
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD,
* RECORD_BUFFER_LENGTH, RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ',ERROR STATUS
WRITE(6, *) 'The input operating mode: ', INPUT MODE
WRITE(6, *) 'The echo flag: ',ECHO FLAG -
WRITE(6, *) 'The initial value: ',VALUE
WRITE(6, *) 'The prompt and echo type: ',

* PROMPT ECHO TYPE
WRITE(6~ *) 1 The echo area: ',ECHO AREA
WRITE(6, *) 'The data record: ', DATA_RECORD
WRITE(6, *) 'The maximum data length: ',

* RECORD BUFFER LENGTH
WRITE(6~ *) 'The return size: ', RECORD_SIZE

CALL GKS$CLOSE WS(WS ID
CALL GKS$CLOSE=GKS () -
END

11-300 Inquiry Functions

Workstation State List Inquiries
INQUIRE VALUATOR DEVICE STATE

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_13IRETURNI
$ LINK EXAMPLE_ 13 I RETURN I
$ RUN EXAMPLE_13 l RETURN I
The error status: 0
The input operating mode:
The echo flag: 1
The initial value: 0.5000000
The prompt and echo type:
The echo area: 533.0000
The data record: O.OOOOOOOE+OO
The maximum data length:
The return size: 8
$

0

1
799.0000

1.000000
8

O.OOOOOOOE+OO 479.0000

Inquiry Functions 11-301

Workstation State List Inquiries
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES

INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE WORKSTATION DEFERRAL AND UPDATE
STATES returns the current deferral state, implicit regeneration mode,
workstation surface status, and whether a new frame is necessary to update
the screen.

The deferral and update information is available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and ifthe following
conditions exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is not of category GKSK_WSCAT_MI, GKSK_
WSCAT_INPUT, or GKS$K_ WSCAT_ WISS.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning surface update or operating states, refer to
Chapter 3, Control Functions.

GKS$1NQ_WS_DEFER_AND_UPDATE (workstation_id,
error _status,
deferral mode,
regeneration_mode,
surface __ empty,
new_frame_necessary)

11-302 Inquiry Functions

Workstation State List Inquiries
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES

GQWKDU (workstation_id, error_status, def_mode, reg_mode,
surface, new_frame)

ginqwsdeferupdatest (workstation_id, du, error_status)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

deferral_ mode

data type: integer
access: write-only
mechanism: by reference
This argument is the current deferral mode associated with the specified
workstation. The defined values are as follows:

Value Constant

0 GKS$K...ASAP

1 GKS$K_BNIG

Description

Generate images as soon as possible.

Generate images before input is requested
globally.

Inquiry Functions 11-303

Workstation State List Inquiries
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES

Value Constant

2 GKS$K_BNIL

3 GKS$K....ASTI

regeneration_mode

data type: integer
access: write-only
mechanism: by reference

Description

Generate images before input is requested
locally.

Generate images some time. Exact time is
not guaranteed.

This argument is the current implicit regeneration mode associated with the
specified workstation. The defined values are as follows:

Value Constant

0 GKS$K_IRG_SUPPRESSED

1 GKS$K_IRG....ALLOWED

surface_empty

data type: integer
access: write-only
mechanism: by reference

Description

Image regeneration is suppressed.

Image regeneration is allowed.

This argument is the flag that specifies whether the workstation surface is
empty (refer to Chapter 3, Control Functions). The defined values are as
follows:

Value Constant

0 GKS$K....EMPTY

1 GKS$K_NOTEMPTY

11-304 Inquiry Functions

Description

Surface is "empty."

Surface is "not empty."

Workstation State List Inquiries
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES

new_frame_necessary

data type: integer
access: write-only
mechanism: by reference
This argument is the flag that specifies whether DEC GKS needs to clear
the surface before making the next update to the screen. The defined values
are as follows:

Value Constant Description

0 GKS$K_NEWFRAME_NOTNECESSARY Do not clear surface at next
update.

1 GKS$K;_NEWFRAME_NECESSARY Clear the surface at next
update.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Err0r
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_l9

Message

Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

7 GKS$_ERROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

20 GKS$_ERROR_20 Specified workstation identifier is invalid
in routine ****

Inquiry Functions 11-305

Workstation State List Inquiries
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES

Error
Number Completion Status Code

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

11-306 Inquiry Functions

Message

Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Workstation State List Inquiries
INQUIRE WORKSTATION CONNECTION AND TYPE

INQUIRE WORKSTATION CONNECTION AND TYPE

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE WORKSTATION CONNECTION AND TYPE
returns the logical name associated with the physical device connection
running from the host computer to the workstation, and returns the type of
workstation with which you are working.

The workstation connection and type are available when DEC GKS is in
any operating state except GKS$K_GKCL or GKS$K_GKOP, if the specified
workstation identifier is valid, and if the associated workstation is open.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning workstation connections, workstation
types, and operating states, refer to Chapter 3, Control Functions.

GKS$1NQ_WS_TYPE (workstation_id, error_status,
connection_logicaLname,
workstation_type, logicaLreturn_size)

GQWKC (workstation_id, error_status, con_id, workstation_type)

ginqwsconntype (workstation_id, bufsize, ct_size, ct,
error_ status)

Inquiry Functions 11-307

Workstation State List Inquiries
INQUIRE WORKSTATION CONNECTION AND TYPE

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

connection_logical_name

data type: string
access: write-only
mechanism: by descriptor
This argument is the logical name associated with the physical device
connection running from the host computer to the workstation.

workstation_type

data type: integer
access: write-only
mechanism: by reference
This argument is the integer value that is associated with the open
workstation. For the list of all DEC GKS valid workstation types, refer to
the appropriate appendix in this manual.

11-308 Inquiry Functions

Workstation State List Inquiries
INQUIRE WORKSTATION CONNECTION AND TYPE

logica/_return_size

data type: integer
access: write-only
mechanism: by reference
This argument is the return size, in bytes, of the string specifying the
connection logical name.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

-68 DECGKS$_ERROR_NEG_68

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
Invalid descriptor ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****

Inquiry Functions 11-309

Workstation State List Inquiries
INQUIRE WORKSTATION STATE

INQUIRE WORKSTATION STATE

Operating States: WS9P, WSAC, SGOP

Description

Syntax

The function INQUIRE WORKSTATION STATE returns the state of the
active or inactive workstation.

The state of the workstation is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and ifthe following conditions
exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is not of category GKS$K_ WSCAT_MI or GKS$K_
WSCAT_INPUT.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning open workstations or operating states,
refer to Chapter 3, Control Functions.

GKS$1NQ_WS_STATE (workstation_id, error_status,
workstation_state)

GQWKS (workstation_id, error_status, state)

ginqwsst (workstation_id, state, error_status)

11-310 Inquiry Functions

Arguments

workstation_ld

data type: integer
access: read-only
mechanism: by reference

Workstation State List Inquiries
INQUIRE WORKSTATION STATE

This argument is the integer value that identifies an open workstation.

error_status

data type: integer
access: \Vl"ite-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

workstation_state

data type: integer
access: \Vl"ite-only
mechanism: by reference
This argument specifies whether the currently open workstation is active.
The defined values are as follows:

Value Constant

0 GKS$K_WS_INACTIVE

1 GKS$K_WS_ACTIVE

Description

Workstation is not active.

Workstation is active.

Inquiry Functions 11-311

Workstation State List Inquiries
INQUIRE WORKSTATION STATE

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

11-312 Inquiry Functions

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SOOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****

Workstation State List Inquiries
INQUIRE WORKSTATION TRANSFORMATION

INQUIRE WORKSTATION TRANSFORMATION

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE WORKSTATION TRANSFORMATION returns
the flag that determines whether or not a workstation transformation is
pending, the current workstation window and viewport, and the pending
workstation window and viewport.

The workstation transformation information is available when DEC GKS is
in any operating state except GKS$K_GKCL or GKS$K_GKOP, and if the
following conditions exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is not of category GKS$K_ WSCAT_MI or GKS$K_
WSCAT_ WISS.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning workstation transformations, refer to
Chapter 6, Transformation Functions.

GKS$1NQ_WS_XFORM (workstation_id, error_status,
transformation_pending,
requested_window, current_window,
requested_ viewport, current_ viewport)

GQWKT (workstation_id, error_status, state, r_win, c_win, r_view,
c_view)

Inquiry Functions 11-313

Workstation State List Inquiries
INQUIRE WORKSTATION TRANSFORMATION

ginqwstran (workstation_id, wstran, error_status)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

transformation_pending

data type: integer
access: write-only
mechanism: by reference
This argument is the flag that designates whether a workstation transfor
mation is pending. The defined values are as follows:

Value Constant Description

0 GKS$K_NOTPENDING A workstation transformation is not pending.

1 GKS$K_PENDING A workstation transformation is pending.

11-314 Inquiry Functions

Workstation State List Inquiries
INQUIRE WORKSTATION TRANSFORMATION

requested_ window
current_ window

data type: array (real)
access: write-only
mechanism: by reference
These arguments are 4-element arrays that contain the requested and
current workstation window dimensions, in normalized device coordinates.
DEC GKS stores the dimensions in the following order:

1. X minimum value

2. X maximum value

3. Y minimum value

4. Y maximum value

requested_ viewport
current_ viewport

data type: array (real)
access: write-only
mechanism: by reference
These arguments are 4-element arrays that contain the requested and
current workstation viewport dimensions, in device coordinates. GKS stores
the dimensions in the following order:

1. X minimum value

2. X maximum value

3. Y minimum value

4. Y maximum value

Inquiry Functions 11-315

Workstation State List Inquiries
INQUIRE WORKSTATION TRANSFORMATION

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_l9

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

11-316 Inquiry Functions

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SOOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Segment State List Inquiries

Segment State List Inquiries

This section describes the segment state list inquiries. (For more informa
tion concerning the segment state list, refer to Chapter 3, Control Functions,
and to Chapter 8, Segment Functions.) You use these functions if you need
information about the state of a single segment, which is identified by a nu
meric segment name, or if you are not aware of the current list of segment
attributes or the set of workstations associated with a segment.

Inquiry Functions 11-317

Segment State List Inquiries
INQUIRE SEGMENT ATTRIBUTES

INQUIRE SEGMENT ATTRIBUTES

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQ SEGMENT ATTRIBUTES returns the segment transfor
mation matrix, visibility, highlighting, priority, and detectability.

The list of segment attributes is available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and if the segment
exists and its name is valid. If these conditions are not met, the output
arguments are undefined, and the function sets the error status argument to
the number of one of the errors listed in the Error Messages section.

For more information concerning segments, refer to Chapter 8, Segment
Functions.

GKS$1NQ_SEG_ATTB (segment_name, error_status,
transformation_matrix, visibility,
highlighting, priority, detectability)

GQSGA (segment_name, error_status, matrix, visible, highlight,
priority, detect)

ginqsegattr (segment_name segattr, error_status)

11-318 Inquiry Functions

Arguments

segment_ name

data type: integer
access: read-only
mechanism: by reference

Segment State List Inquiries
INQUIRE SEGMENT ATTRIBUTES

This argument is the integer value that identifies an existing segment.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

transformation_matrix

data type: array (real)
access: write-only
mechanism: by reference
This argument is a 6-element array containing the translation, scaling,
and rotation components of the segment transformation matrix. For more
information concerning the transformation matrix, refer to ACCUMULATE
TRANSFORMATION MATRIX, EVALUATE TRANSFORMATION MATRIX,
and SET SEGMENT TRANSFORMATION in Chapter 8, Segment Functions.

Inquiry Functions 11-319

Segment State List Inquiries
INQUIRE SEGMENT ATTRIBUTES

visibility

data type: integer
access: write-only
mechanism: by reference
This argument is the segment's visibility on the workstation surface. The
defined values are as follows:

Value Constant

0 GKS$K_INVISIBLE

1 GKS$K_ VISIBLE

highlighting

data type: integer
access: write-only
mechanism: by reference

Description

The segment is not visible on the surface.

The segment is visible on the surface.

This argument specifies whether GKS highlights the specified segment on
the workstation surface. The defined values are as follows:

Value Constant

0 GKS$K_NORMAL

1 GKS$K_HIGHLIGHTED

priority

data type: real
access: write-only
mechanism: by reference

Description

The segment is not highlighted on the
surface.

The segment is highlighted on the sur
face.

This argument specifies the priority of the specified segment. DEC GKS
checks the priority of a segment when two segments· overlap on the
workstation surface, for all hardware devices that support this feature.
Segment priorities range from 0.0 to 1.0, and each device supports a finite
number of priorities (for more information, refer to the device-specific
appendix in this manual).

11-320 Inquiry Functions

detectability

data type: integer
access: write-only
mechanism: by reference

Segment State List Inquiries
INQUIRE SEGMENT ATTRIBUTES

This argument determines whether the specified segment is detectable
during pick input. The defined values are as follows:

Value Constant

0 GKS$K_UNDETECTABLE

1 GKS$I<.._DETECTABLE

Error Messages

Description

You cannot pick this segment.

You can pick this segment.

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

7 GKS$_ERROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

120 GKS$_ERROR_120 Specified segment name is invalid in
routine ****

122 GKS$_ERROR_122 Specified segment does not exist in
routine ****

Inquiry Functions 11-321

Segment State List Inquiries
INQUIRE SET OF ASSOCIATED WORKSTATIONS

INQUIRE SET OF ASSOCIATED WORKSTATIONS

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE SET OF ASSOCIATED WORKSTATIONS returns
the number and list of workstations associated with the specified segment.

The list of associated workstations is available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and if the segment
exists and its name is valid. If these conditions are not met, the output
arguments are undefined, and the function sets the error status argument to
the number of one of the errors listed in the Error Messages section.

For more information concerning segments, refer to Chapter 8, Segment
Functions.

GKS$1NQ_SET_ASSOC_WS (segment_name, error_status,
num_ workstations,
list_ workstations, retum_size)

GQASWK (segment_name, member, error_status, num_ws,
rm ember)

ginqassocws (segment_name, max, start, actual, assocws,
error_ status)

11-322 Inquiry Functions

Segment State List Inquiries
INQUIRE SET OF ASSOCIATED WORKSTATIONS

Arguments

segment_ name

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an existing segment.

error_status

data type: integer
access: '\Vr.ite-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

num_workstations

data type: integer
access: '\Vr.ite-only
mechanism: by reference
This argument is the number of workstations associated with the specified
segment.

list_ workstations

data type: array (integer)
access: '\Vr.ite-only
mechanism: by descriptor
This argument is the array containing the workstation identifiers corre
sponding to all the workstations associated with the specified segment.

return_size

data type: integer
access: '\Vr.ite-only
mechanism: by reference
This argument is the number of workstation identifiers returned to the
workstation list. You can use this argument to see if you specified an array

Inquiry Functions 11-323

Segment State List Inquiries
INQUIRE SET OF ASSOCIATED WORKSTATIONS

that was large enough to hold all the returned values.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

7 GKS$_ERROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

120 GKS$_ERROR_120 Specified segment name is invalid in
routine ****

122 GKS$_ERROR_122 Specified segment does not exist in
routine ****

11-324 Inquiry Functions

Pixel Inquiries

Pixel Inquiries

This section describes the pixel inquiries. Pixel inquiries return the color of
an individual pixel or the color of a rectangular region of pixels on the device
that supports this type of graphic output. These functions can be used to
check a rectangular cell array region currently displayed on the workstation
surface.

Inquiry Functions 11-325

Pixel Inquiries
INQUIRE PIXEL

INQUIRE PIXEL

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE PIXEL returns the color of an individual pixel on
the display surface.

The color of a pixel is available when DEC GKS is in any operating state
except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is of category GKS$K_ WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

• The workstation has the ability to return information about pixels.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the capabilities of a workstation type, refer
to the device-specific appendix in this manual.

GKS$1NQ_PIXEL (workstation_id, world_x, world_y, error_status,
color_index)

GQPX (workstation_id, px,. py, error_status, cindex)

ginqpixel (workstation_id, ppoint, pix, error_status)

11-326 Inquiry Functions

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference

Pixel Inquiries
INQUIRE PIXEL

This argument is the integer value that identifies an open workstation.

world_x
world_y

data type: real
access: read-only
mechanism: by reference
These arguments are the X and Y world coordinates of the pixel about which
you are inquiring.

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

color_index

data type: integer
access: write-only
mechanism: by reference
This argument is the color index corresponding to the color of the specified
device coordinate. If the device coordinate does not translate to a valid pixel
on the display surface, DEC GKS returns the value -1 to this argument to
signal an invalid coordinate.

Inquiry Functions 11-327

Pixel Inquiries
INQUIRE PIXEL

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_l 9

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

39 GKS$_ERROR_39

40 GKS$_ERROR_40

11-328 Inquiry Functions

Message

Invalid error status parameter specified
in routine ****
GKS not in proper state: GKS in the
error state in routine ****
GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****
Specified workstation has no pixel store
readback capability in routine ****

INQUIRE PIXEL ARRAY

Operating States: WSOP, WSAC, SGOP

Description

Pixel Inquiries
INQUIRE PIXEL ARRAY

The function INQUIRE PIXEL ARRAY returns the color of pixels in a
rectangular region on the screen.

DEC GKS determines the starting point within the color index array, de
termines the number of remaining elements, and then maps the remaining
columns and rows, one for one, onto a rectangular portion of pixels on the
display screen.

Next, DEC GKS translates a row of pixels to color indexes, fills the first
dimension of the remaining array elements with the translated index values,
and continues until all pixels are translated and the color index is full. (The
first "dimension" of the array is either the row or the column, depending on
whether your programming language supports row-major or column-major
arrays.)

The list of color indexes corresponding to a pixel array is available when
DEC GKS is in any operating state except GKS$K_GKCL or GKS$K_GKOP,
and if the following conditions exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K._
WSCAT_OUTIN.

• The workstation has the ability to return information about pixels.

• The dimensions specified for the color array are valid.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

Inquiry Functions 11-329

Pixel Inquiries
INQUIRE PIXEL ARRAY

Syntax

For more information concerning column-major arrays, row-major arrays,
and color index arrays, refer to CELL ARRAY in Chapter 4, Output
Functions. For more information concerning the capabilities of your device,
refer to the device-specific appendix in this manual.

GKS$1NQ_PIXEL_ARRAV (workstation_id, column_number,
row_number, max_columns,
max_rows, world_x, wor/d_y,
error:_statlis, invalid _indexes_flag,
co/or_index_array)

GQPXA (workstation_id, comer_x, comer_y, dim_x, dim_y, scol,
srow, pcols, prows, error_status, in_vals, carray)

ginqpixelarray (workstation_id, point, dimen, bufsize, covalid,
pxarray, actuaL size, error:_ status)

Arguments

workstatlon_ld

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

column_nu.mber
row_number

data type: integer
access: read-only
mechanism: by reference
These arguments are the numbers of the column and row that designate the
starting element in the color index array. DEC GKS begins placing color
index values at this array element.

11-330 Inquiry Functions

max_ columns
max_rows

data type: integer
access: read-only
mechanism: by reference

Pixel Inquiries
INQUIRE PIXEL ARRAY

These arguments specify the numbers of columns and rows of pixels about
which you inquire. The values must be less than or equal to the size of
the buffer, from column_number and row_number to the last element of
color _index_array.

world_x
world_y

data type: real
access: read-only
mechanism: by reference
These arguments are the values specifying the upper left comer of the pixel
array to be translated to color index values. You pass these arguments
as a world coordinate value, and DEC GKS translates the point to device
coordinates according to the current normalization and workstation
transformations. (For more information concerning transformations, refer to
Chapter 6, Transformation Functions.)

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

invalid_lndexes_flag

data type: integer
access: write-only
mechanism: by reference
This argument is the flag that specifies whether there exist any invalid color
index values. (GKS returns an invalid index value of-1 if a pixel is outside

Inquiry Functions 11-331

Pixel Inquiries
INQUIRE PIXEL ARRAY

the display surface, possibly due to a transformation). The defined values
are as follows:

Value Constant

0 GKS$K_INVALID_ABSENT

1 GKS$K_INVALID_PRESENT

color_index_array

data type: 2-D array (integer)
access: write-only
mechanism: by descriptor

Description

Color array contains no invalid
indexes.

Color array contains invalid in
dexes.

This argument is the two-dimensional color index array. If DEC GKS cannot
translate a pixel color to a color index value, DEC GKS fills the array
element with the value-1.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

7 GKS$_ERROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

20 GKS$_ERROR_20 Specified workstation identifier is invalid
in routine ****

11-332 Inquiry Functions

Error
Number Completion Status Code

25 GKS$_ERROR_25

39 GKS$_ERROR_39

40 GKS$_ERROR_40

91 GKS$_ERROR_91

Message

Pixel Inquiries
INQUIRE PIXEL ARRAY

Specified workstation is not open in
routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****
Specified workstation has no pixel store
readback capability in routine ****
Dimensions of color array are invalid in
routine ****

Inquiry Functions 11-333

Pixel Inquiries
INQUIRE PIXEL ARRAY DIMENSIONS

INQUIRE PIXEL ARRAY DIMENSIONS

Operating States: WSOP, WSAC, SGOP

Description

Syntax

The function INQUIRE PIXEL ARRAY DIMENSIONS returns the number
of pixels in the X and Y axis of a rectangular portion of the display surface.

The dimensions of a pixel array are available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and if the following
conditions exist:

• The specified workstation identifier is valid and the associated worksta
tion is open.

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning the dimensions of your workstation
surface, refer to the device-specific appendix in this manual.

GKS$1NQ_PIXEL_ARRAY _DIM (workstation_id, starting_poinLx,
starting_point_y,
diagonal_poinLx,
diagonal_point_y, error_ status,
dimension_device_x,
dimension_ device_y)

11-334 Inquiry Functions

· Pixel Inquiries
INQUIRE PIXEL ARRAY DIMENSIONS

GQPXAD (workstation_id, px, py, dx, dy, error:_status, pa_cols,
pa_ rows)

ginqpixelarraydim (workstation_id, rect, dim, error_status)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference
This argument is the integer value that identifies an open workstation.

starting_point_x
starting_point_y

data type: real
access: read-only
mechanism: by reference
These arguments are the X and Y values designating a comer of a rectangu
lar area to be mapped onto the display surface. You pass these arguments
as world coordinate values, and DEC GKS translates the point to device
coordinates according to the current normalization and workstation trans
formations. (For more information concerning transformations, refer to
Chapter 6, Transformation Functions.)

diagonal_point_x
diagonal_point_y

data type: real
access: read-only
mechanism: by reference
These arguments are the X and Y values of the point diagonal to the
starting point that form the rectangle to be mapped onto the display
surface. You pass these arguments as world coordinate values, and DEC
GKS translates the point to device coordinates according to the current
normalization and workstation transformations. (For more information
concerning transformations, refer to Chapter 6, Transformation Functions.)

Inquiry Functions 11-335

Pixel Inquiries
INQUIRE PIXEL ARRAY DIMENSIONS

error_status

data type: integer
access: write-only
mechanism: by reference
This argument is the error indicator. If the function writes the value 0 to
this argument, all the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to
one of the error messages listed in the Error Messages section, and all the
remaining output arguments are invalid.

dlmenslon_devlce_x
dlmenslon_devlce_y

data type: integer
access: write-only
mechanism: by reference
These arguments are the dimensions of the pixel array.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code

-19 DECGKS$_ERROR_NEG_19

Message

Invalid error status parameter specified
in routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
error state in routine ****

7 GKS$_ERROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

20 GKS$_ERROR_20 Specified workstation identifier is invalid
in routine ****

11-336 Inquiry Functions

Pixel Inquiries
INQUIRE PIXEL ARRAY DIMENSIONS

Error
Number Completion Status Code Message

25 GKS$_ERROR_25

39 GKS$_ERROR_39

40 GKS$_ERROR_ 40

91 GKS$_ERROR_91

Specified workstation is not open in
routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****
Specified workstation has no pixel store
readback capability in routine ****
Dimensions of color array are invalid in
routine ****

Program Example

Example 11-14 illustrates the use of the function INQUIRE PIXEL ARRAY
DIMENSIO~S.

Example 11-14: Determining the Dimensions of a Pixel Array

C This program writes the return values of the functions
C GKS$INQ_PIXEL_ARRAY_DIM to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS ID, ERROR STATUS, BEGIN COL, COLORS(2, 2),

* BEGIN ROW~ NUM COLUMNS, NUM ROWS,-NUM PIXEL COLUMNS,
* NUM_PIXEL_ROWS- - - -

REAL DEVICE_X, DEVICE_Y, WORLD_START_X, WORLD_START_Y,
* WORLD DIAG X, WORLD DIAG Y

DATA ws ID 7 1 I I - -

* BEGIN COL / 1 /, BEGIN ROW / 1 /, NUM COLUMNS / 2 /,
* NUM ROWS I 2 /, WORLD START x I 0.1 /~
* WORLD START y I 0.2 /~WORLD DIAG x I 0.2 /,
* WORLD-DIAG Y I 0.1 I - -

DATA COLORS-/ 2,3, 1,0 I

(continued on next page)

Inquiry Functions 11-337

Pixel Inquiries
INQUIRE PIXEL ARRAY DIMENSIONS

Example 11-14 (Cont.): Determining the Dimensions of a Pixel Array

CALL GKS$0PEN GKS('SYS$ERROR:')
CALL GKS$0PEN-WS(WS ID, GKS$K CONID DEFAULT, GKS$K_VT240
CALL GKS$ACTIVATE_ws(WS_ID) - -

C Color a small section of the screen with cell array.
CALL GKS$CELL_ARRAY(WORLD_START_X, WORLD_START_Y,

* WORLD DIAG X, WORLD DIAG Y, BEGIN COL, BEGIN ROW,
* NUM_COLUMNS, NUM_ROWS, %DESCR(COLORS)) -

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ_PIXEL_ARRAY_DIM(WS_ID, WORLD_START_X,
* WORLD START Y, WORLD DIAG X, WORLD DIAG Y, ERROR STATUS,
* NUM_PIXEL_COLUMNS, NUM_PIXEL_ROWS)- - -

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ',ERROR STATUS
WRITE(6, *) 'The number of columns of pixels: '

* NUM PIXEL COLUMNS
WRITE(6, *) 'The number of rows of pixels: '

* NUM PIXEL ROWS
CALL-GKS$DEACTIVATE WS(WS ID
CALL GKS$CLOSE WS(WS ID)
CALL GKS$CLOSE=GKS() -
END

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE 14 RETURN
$ LINK EXAMPLE 14 RETURN

$ RUN EXAMPLE=14 I RETURN I
The error status: 0
The number of columns of pixels:
The number of rows of pixels:
$

11-338 Inquiry Functions

47
48

Appendix A

DEC GKS-Supported Workstations

This appendix lists the devices that DEC GKS supports and the defined
workstation type of each device. You use the workstation type constants or
values in calls to the function OPEN WORKSTATION (refer to Chapter 3,
Control Functions). You can also compare the workstation type or value
with the values written to INQUIRE WORKSTATION CONNECTION AND
TYPE or INQUIRE LIST OF AVAILABLE WORKSTATION TYPES (refer to
Chapter 11, Inquiry Functions).

If you are using a language binding and you wish to determine the
corresponding workstation-type constants, refer to Appendix B, DEC GKS
Constants.

For detailed information concerning each of the devices, refer to the DEC
GKS Device Specifics Reference Manual.

A.1 Supported Workstation Types

Table A-1 lists the workstation types defined by DEC GKS.

Table A-1: DEC GKS-Supported Workstation Types

Value Constant Description

0 GKS$K_ WSTYPE_DEFAULT Default workstation type

2 GKS$K_GKSM_OUTPUT GKSM output metafile

3 GKS$K_GKSM_INPUT GKSM input metafile

(continued on next page)

DEC GKS-Supported Workstations A-1

Table A-1 (Cont.): DEC GKS-Supported Workstation Types

Value Constant Description

5 GKS$K.._W'STYPE_'WISS W'orkstation independent segment storage

7 GKS$K:.._CGM_OUTPUT CGM output metafile

10 GKS$K_ VT_ OUTPUT DIGITAL VT125 black and white output
only

11 GKS$K.._ VT125 DIGITAL VT125 with color option

12 GKS$K_VT125BW' DIGITAL VT125 (black and white)

13 GKS$K_ VT240 DIGITAL VT240 with color option

14 GKS$K_VT240BW' DIGITAL VT240 (black and white)

15 GKS$K:.._LCP01 DIGITAL LCGOl printer

15 GKS$K:.._LCG01 DIGITAL LCGOl printer

16 GKS$K:.._VT330 DIGITAL VT330 (black and white)

17 GKS$K.._ VT340 DIGITAL VT340 with color

31 GKS$K:.._LA34 DIGITAL LA34 with graphics option

31 GKS$K:.._LA100 DIGITAL LAlOO

32 GKS$K:.._LA50 DIGITAL LA50 with 2:1 aspect ratio

34 GKS$K.._LA210 DIGITAL LA210

35 GKS$K.._LA75 DIGITAL LA75

38 GKS$K.._LN03_PLUS DIGITAL LN03 PLUS

41 GKS$K:.._VSII DIGITAL VAXstation II (black and white)

41 GKS$K:.._VSII_GPX DIGITAL VAXstation 11/GPX (color), and
II/RC

41 GKS$K.._ VS2000 DIGITAL VAXstation 2000

51 GKS$K.._LVP16A DIGITAL LVP16 color graphics plotter
(with 81/2by11 paper size)

51 GKS$K.._HP7 4 75 HP7 4 75 pen plotter

52 GKS$K_LVP16B DIGITAL LVP16 color graphics plotter
(with 11 by 17 paper size)

53 GKS$K.._HP7550 HP7550 pen plotter

54 GKS$K.._HP7580 HP7580 pen plotter

55 GKS$K.._LG_MPS-2000 MPS-2000 film recorder

(continued on next page)

A-2 DEC GKS-Supported Workstations

Table A-1 (Cont.): DEC GKS-Supported Workstation Types

Value Constant Description

56

61

70

72

80

82

210

211

212

213

GKS$K:.._HP7585

GKS$K_POSTSCRIPr

GKS$K_TEK4014_0UTPUT

GKS$K_TEK4014

GKS$K_TEK4107 _0UTPUT

GKS$K_TEK4107

GKS$K_DECWINDOWS_
OUTPUT

GKS$K_DECWINDOWS

GKS$K..,.DECWINDOWS_
DRAWABLE

GKS$K_DECWINDOWS_
WIDGET

HP7585 pen plotter

DIGITAL LPS40 and PostScript graphics
handler

Tektronix-4014 output only

Tektronix-4014

Tektronix-4107 output only

Tektronix-4107

DECwindows-output only

DECwindows-input/output device

DECwindows-an application window,
output only

DECwindows-input/output within an
application widget

NOTE

In some languages, GKS$K_CONID_DEFAULT may not be
the number 0. For more information, refer to your language's
definition file.

The DIGITAL LA34 and LAlOO use the same DEC GKS graphics handler.
Thus, the workstation type value is the same for both workstations. The
same is true for the VSII, the VSil/GPX, the VSII/RC, the VS2000, the
LVP16, and the HP7475.

Note that to specify a 2:1 aspect ratio on the LA50, SWl-5 must be left open.
See the LA50 Printer Programmer Reference Manual for more information.

A.2 Default Workstation Types

The default workstation type for the DEC GKS products running on the
VAX systems is the black and white VT240 workstation (14). The default
workstation type for the DEC GKS products running on the VAXstations is
the VSII workstation (41).

DEC GKS-Supported Workstations A-3

If you specify the value 0 or the constant GKS$K_ WSTYPE_DEFAULT in
a call to a function that accepts a workstation type as an argument, DEC
GKS translates the logical name GKS$WSTYPE at run time and uses the
translation as the type. In this manner, you can define GKS$WSTYPE to
be a different workstation type value each time you execute your program,
and each time the program accepts the newly defined workstation type. For
more information, refer to Chapter 1, Introduction to DEC GKS.

A.3 Output-Only Devices

When you use the workstation types designated output only, you can specify
the appropriate output-only workstation type and pass a file specification as
the second argument to OPEN WORKSTATION (connection identifier), as
follows:

INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'

CALL GKS$0PEN WS(1, 'FILE NAME.DAT', GKS$K_VT_OUTPUT)
CALL GKS$ACTIVATE_WS(1) -

C Generate output .•.

After the program executes, you can type or print the file at your work
station. The default file type for the connection identifier is file_name.LIS;
otherwise, DEC GKS uses the file extension that you provide. For in
formation concerning accessing allocated devices as workstations using
GKS$CONID and GKS$WSTYPE, refer to Chapter 1, Introduction to DEC
G'.KS.

A.4 Using Bit Masks for Workstation Types

You can take advantage of device-dependent features of certain workstations
by specifying a hexadecimal bit mask representation as the workstation
type. For instance, by specifying different hexadecimal values as the
workstation type, you can tell some graphics handlers to use different sizes
of paper.

Figure A-1 illustrates the format of a hexadecimal representation of the
workstation type. The bit mask in the first part of the workstation type
value tells the graphics handler which feature to manipulate. The second
part of the workstation type value specifies the hexadecimal representation
of the workstation type. For instance, the value d (whose decimal equivalen1

A-4 DEC GKS-Supported Workstations

is the number 13) tells DEC GKS that the workstation type is a color
VT240.

Figure A-1: Hexadecimal Bit Masks as Workstation Type Values

Note:

$DEFINE GKS$WSTYPE workstation_type

workstation _type
longword value

0001

Word 2=

bit mask value

OOOD

Word 1=

workstation value type

$ DEFINE GKS$WSTYPE %x0001 OOOD

D = %d 13, the workstation type constant for the VT241.

ZK-5137-86

For specific information concerning the supported bit masks for any given
device, refer to the appropriate device-specific appendix in this manual.

A.4.1 An Alternative to Defining Bit Masks

In some instances, you may wish to take advantage of device-dependent
features by using code within your programs instead of bit mask definitions
at the DIGITAL Command Line.

For use within programs, DEC GKS defines a series of constants. By
performing a bitwise OR operation on certain constants, you can control
device-dependent features such as paper size. To use these constants, you
must include the definition file for your programming language. (For more
information about definition files, refer to Chapter 1, Introduction to DEC
GKS.)

DEC GKS-Supported Workstations A-5

For example, if you wanted to use the LVP16 with landscape orientation and
a paper size of A3, you can call OPEN WORKSTATION as follows:

INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'

CALL GKS$0PEN WS(1, GKS$K CONID DEFAULT,
* GKS$K_LVP16~.0R. GKS$M_LANDSCAPE-.OR. GKS$M_PAPERSIZE_A3

The DEC GKS constants used as bit masks begin with the prefix GKS$M.

For more information concerning bit mask constants and your particular
device, refer to the appropriate device-specific appendix in this manual. For
a complete list of the available bit mask constants, refer to Appendix B,
DEC GKS Constants.

A-6 DEC GKS-Supported Workstations

Appendix B

DEC GKS Constants

This appendix lists the defined DEC GKS constants for the GKS$ interface.
Using constants in your DEC GKS programs makes your code easier to read.

To use constants in your program, you must include a definitions file in your
code. The language definition files located in SYS$LIBRARY are as follows:

• GKSDEFS.ADA for VAX Ada

• GKSDEFS.BAS for VAX BASIC

• GKSDEFS.R32 for VAX BLISS

• GKSDEFS.H for VAX C

• GKSDEFS.LIB for VAX COBOL

• GKSDEFS.FOR for VAX FORTRAN using the GKS$ functions

• GKSDEFS.PAS for VAX Pascal

• GKSDEFS.PLI for VAX PUI routines declared as procedures (no value
returns)

• GKSDEFS.PL2 for VAX PUI routines declared as functions

Table B-1 lists the DEC GKS constant names, their values, and a brief
description of each.

DEC GKS Constants B-1

Table B-1: GKS$ Constants

Constant Value Description

Action Pending States:

GKS$K.._NOTPENDING 0 Not pending·

GKS$K.._PENDING 1 Pending

Arc Types:

GKS$K.._ARC_TYPE_OPEN 1 Arc type open

GKS$K.._ARC_TYPE_PIE 2 Arc type pie

GKS$K._ARC_TYPE_CHORD 3 Arc type chord

ASFMasks:

GKS$M_LINETYPE 1 Line type

GKS$M_LINEWIDTH 2 Line width

GKS$M_PLINE_COLOR 4 Polyline color

GKS$M_MARKERTYPE 8 Marker type

GKS$M_MARKERSIZE 16 Marker size

GKS$M_PMARK.._COLOR 32 Polymarker color

GKS$M_TEXT~FONT_PREC 64 Text precision

GKS$M_CHAR_EXPAN_FAC 128 Expansion factor

GKS$M_CHAR_SPACE 256 Character spacing

GKS$M_TEXT_COLOR 512 Text color

GKS$M_FILL_INTER_STYLE 1024 Interior style

GKS$M_FILL_STYLE 2048 Fill style

GKS$M_FILL_COLOR 4096 Fill color

GKS$M_UNCHANGE_PLINE 8192 Unchanged polyline

GKS$M_UNCHANGE_PMARK 16384 Unchanged polymarker

GKS$M_UNCHANGE_TEXT 32768 Unchanged text

GKS$M_UNCHANGE_FILL 65536 Unchanged fill area

GKS$M_EDGETYPE 131072 Edge type

GKS$M_EDGEWIDTH 262144 Edge width

(continued on next page)

B-2 DEC GKS Constants

Table B-1 (Cont.): GKS$ Constants

Constant Value Description

GKS$M_EDGE_COLOR 524288 Edge color

GKS$M_EDGE_CONTROL 1048576 Edge control

GKS$M_SIMULATION 1073741824 Simulation

Attribute Control Function Types:

GKS$K....ACF _CURRENT 0 Input data record current values

GKS$K....ACF _SPECIFIED 1 Input data record specified values

Attribute Control Flags:

GKS$K....ACF _POLYLINE 0 Data record polyline control flag

GKS$K....ACF _FILL_AREA 1 Data record fill area control flag

Attribute Source States:

GKS$K....ASF _BUNDLED 0 Bundled

GKS$K....ASF _INDMDUAL 1 Individual

CGM Encoding Bit Masks:
GKS$M_CHARACTER_ENCODING 131072 Character

GKS$M_BINARY_ENCODING 196608 Binary

GKS$M_CLEAR_TEXT_ENCODING 262144 Clear text

Choice Data Record Flags:

GKS$K....CHOICE_PROMPr_OFF 0 Choice data record prompt off

GKS$K....CHOICE_PROMPr_ON 1 Choice data record prompt on

Clear Screen States:

GKS$K:_CLEAR_CONDITIONALLY 0 Clear conditionally

GKS$K....CLEAR_ALWAYS 1 Clear always

(continued on next page)

DEC GKS Constants B-3

Table B-1 (Cont.): GKS$ Constants

Constant

Clipping States:

GKS$K_NOCLIP

GKS$K_CLIP

Color Mapping Bit Masks:

GKS$M_COLOR_MAP_VIRTUAL

GKS$M_COLOR_MAP _PHYSICAL

Color Table Size:

GKS$M_COLOR_MAP _256

GKS$M_COLOR_MAP_2

GKS$M_COLOR_MAP_8

GKS$M_COLOR_MAP_16

Connection Identifier:

GKS$K_CONID_DEFAULT

Coordinate Switch:

GKS$K_COORDINATES_WC

GKS$K_COORDINATES_NDC

Deferral State Types:

GKS$K_ASAP

GKS$K_BNIG

GKS$K_BNIL

GKS$K_ASTI

B-4 DEC GKS Constants

Value Description

0 Clipping off

1 Clipping on

0 Use the virtual color indexes

16777216 Use the physical color indexes

0 256 entries in the color table

67108864 2 entries in the color table

134217728 8 entries in the color table

201326592 16 entries in the color table

0

0

1

0

1

2

3

Default connection
identifier

World coordinates

Normalized device coordinates

As soon as possible

Before the next global interaction

Before the next local interaction

At some time

(continued on next page)

Table B-1 (Cont.): GKS$ Constants

Constant

Detectability Flags:

GKS$K.._UNDETECTABLE

GKS$K_DETECTABLE

Device Coordinate States:

GKS$K.._METERS

GKS$K....OTHER_UNITS

Display Surface States:

GKS$K_NOTEMPTY

GKS$K_EMPTY

Dots Per Inch (DPI):

GKS$M_DPI_ 72

GKS$M_DPI_90

GKS$M_DPI_144

GKS$M_DPI_l80

Dynamic Modification States:

GKS$K_IRG

GKS$K_IMM

Echo States:

GKS$K_NOECHO

GKS$K.._ECHO

Edge Types:

GKS$K_EDGE_SOLID

GKS$K....EDGE_DASHED

Value

0

1

0

1

0

1

16777216

0

2097152

50331648

0

1

0

1

1

2

Description

Set to undetectable

Set to detectable

Meters

Other units

Display surface not empty

Display surface empty

72 dots per inch

90 dots per inch

144 dots per inch

180 dots per inch

Implicit regeneration necessary

Immediate

Echo disabled

Echo enabled

Edge type solid

Edge type dashed

(continued on next page)

DEC GKS Constants B-5

Table B-1 (Cont.): GKS$ Constants

Constant Value Description

GKS$K._EDGE_DOTrED 3 Edge type dotted

GKS$K,_EDGE_DASHED_DOTrED 4 Edge type dashed-dotted

GKS$K,_EDGE_DASH_2_DOT -1 Edge type dash-2-dots

GKS$K,_EDGE_DASH_3_DOT -2 Edge type dash-3-dots

GKS$K._EDGE_LONG_DASH -3 Edge type long-dash

GKS$K,_EDGE_LONG_SHORT_DASH -4 Edge type long-short-dash

GKS$K_EDGE_SPACED_DASH -5 Edge type spaced-dash

GKS$K_EDGE_SPACED_DOT -6 Edge type spaced-dot

GKS$K_EDGE_DOUBLE_DOT -7 Edge type double dots

GKS$K_EDGE_TRIPLE_DOT -8 Edge type triple dots

Error Handling Modes:

GKS$K_ERROR_OFF 0 No error handling

GKS$K,_ERROR_ON 1 Error handling

Escapes:

GKS$K,_ESC_SET_SPEED -100 Set speed

GKS$K._ESC_PRINT -101 Print

GKS$K_ESC_PRINT_VTP -102 Print viewport

GKS$K._ESC_BEEP -103 Beep

GKS$K_ESC_CLEAR_REGION -104 Clear region

GKS$K_ESC_CLEAR_INPUT -105 Clear input

GKS$K,_ESC_POP _WORKSTATION -106 Pop workstation

GKS$K_ESC_PUSH_ WORKSTATION -107 Push workstation

GKS$K,_ESC_SET_ERR_HANDLING_MODE -108 Set Error Handling Mode

GKS$K,_ESC_SET_ VIEWPORT_EVENT -109 Set viewport event

GKS$K,_ESC...ASSOC_WSTYPE_CONID -110 Associate a connection identifier
with a wor~tation

GKS$K_ESC_SET_SOFT_CLIP -111 Soft clipping

(continued on next page)

B-6 DEC GKS Constants

Table B-1 (Cont.): G~S$ Constants

Constant Value Description

GKS$K_ESC_SET_WRITING_MODE -150 Set writing mode

GKS$K_ESC_SET_LINE_CAP -151 Set line cap

GKS$K_ESC_SET_LINE_JOIN -152 Set line join

GKS$K_ESC_SET_EDGE_CTL -153 Set edge control flag in GKS state
list

GKS$K_ESC_SET_EDGE_TYPE -154 Set edge type in GKS state list

GKS$K_ESC_SET_EDGE_ WIDTH -155 Set edge width scale factor in GKS
state list

GKS$K_ESC_SET_EDGE_COLOR_INDEX -156 Set edge color index in GKS state
list

GKS$K_ESC_SET_EDGE_INDEX -157 Set edge index in GKS state list

GKS$K_ESC_SET_EDGE_ASF -158 Set aspect source flag entries in
GKS state list

GKS$K_ESC_SET_CURSOR -159 Set cursor

GKS$K_ESC_BEGIN_TRANS_BLOCK -160 Begin transformation block

GKS$K_ESC_END_TRANS_BLOCK -161 End transformation block

GKS$K_ESC_SET_SEG_HIGH_METHOD -162 Set segment highlighting method

GKS$K_ESC_SET_HIGH_METHOD -163 Set highlighting method

GKS$K_ESC_SET_EDGE_REP -200 Set edge representation

GKS$K_ESC_SET_FONT_NAME -201 Set font name

GKS$K_ESC_SET_ WINDOW _TITLE -202 Set window title

GKS$K_ESC_SET_RESET_STRING -203 Set reset string

GKS$K_ESC_SET_CANCEL_STRING -204 Set cancel string

GKS$K_ESC_SET_ENTER_STRING -205 Set enter string

GKS$K_ESC_SET_ICON_BITMAPS -206 Set icon bitmaps

GKS$K_ESC_PCMCMDS -207 PCM (buttons,dials) commands

GKS$K_ESC_INQ_CURSOR -250 Inquire cursor

GKS$K_ESC_INQ_ WRITING_MODE -251 Inquire writing mode

GKS$K_ESC_INQ_LINE_CAP -252 Inquire line cap

GKS$K_ESC_INQ_LINE_JOIN -253 Inquire line join

(continued on next page)

DEC GKS Constants B-7

Table B-1 (Cont.): GKS$ Constants

Constant Value Description

GKS$K_ESC_INQ_EDGE_ATTR -254 Inquire current edge attributes

GKS$K_ESC_INQ_ VIEWPORT_DATA -255 Inquire viewport data

GKS$K_ESC_INQ_SPEED -300 Inquire speed

GKS$K_ESC_INQ_LIST_FONT_NAMES -301 Inquire list of font names

GKS$K_ESC_INQ_LIST_EDGE_INDEXES -302 Inquire list of edge indices

GKS$K_ESC_INQ_SEGMENT_EXTENT -303 Inquire segment extent

GKS$K_ESC_INQ_ WINDOW _IDS -304 Inquire window identifiers

GKS$K_ESC_INQ_SEG_HIGH_METHOD -305 Inquire segment highlighting

GKS$K_ESC_INQ_HIGH_METHOD -306 Inquire highlighting method

GKS$K_ESC_INQ_PASTEBOARD_ID -307 Inquire pasteboard identifier

GKS$K_ESC_INQ_MENU_BAR_ID -308 Inquire menu bar identifier

GKS$K_ESC_INQ_SHELL_ID -309 Inquire shell identifier

GKS$K_ESC_INQ_LIST_ESC -350 Inquire list of escapes

GKS$K_ESC_INQ_DEF _SPEED -351 Inquire default display speed

GKS$K_ESC_INQ_LINE_CAP _JOIN_FAC -352 Inquire cap join facility

GKS$K_ESC_INQ_FONT_NAME_FAC -353 Inquire font name facility

GKS$K_ESC_INQ_EDGE_FAC -354 Inquire edge facilities

GKS$K_ESC_INQ_PREDEF _EDGE_REP -355 Inquire predefined edge representa-
tion for workstation type and edge
index

GKS$K_ESC_INQ_MAX_EDGE_BUNDLE -356 Inquire maximum number of edge
bundle entries

GKS$K_ESC_INQ_CURSOR_SIZE -357 Inquire cursor size

GKS$K_ESC_INQ_LIST_HIGH -358 Inquire list highlighting

GKS$K_ESC_INQ_EDGE_REP -359 Inquire edge representation

GKS$K_ESC_MAP_NDC_OF_WC -400 MapWCtoNDC

GKS$K_ESC_MAP_DC_OF_NDC -401 MapNDC to DC

GKS$K_ESC_MAP _ WC_OF _NDC -402 MapNDCtoWC

GKS$K_ESC_MAP_NDC_OF_DC -403 Map DCtoNDC

GKS$K_ESC_INQ_GDP _EXTENT -404 Inquire GDP extent

(continued on next page)

B-8 DEC GKS Constants

Table B-1 (Cont.): GKS$ Constants

Constant Value Description

GKS$K_ESC_DOUBLE_BUFFER -500 Set double buffering mode

GKS$K_ESC_SET_BCKGRND -501 Set background pixmap

GKS$K_ESC_INQ_DBUFFER_PIXMAP -502 Inquire double buffer pixmap

GKS$K_ESC_INQ_BCKGRND_PIXMAP -503 Inquire background pixmap

Fill Area Types:

GKS$K_INTSTYLE_HOLLOW 0 Interior style hollow

GKS$K_INTSTYLE_SOLID 1 Interior style solid

GKS$K_INTSTYLE_PATTERN 2 Interior style pattern

GKS$K_INTSTYLE_HATCH 3 Interior style hatched

GDP Bundle Types:

GKS$K_POLYLN_ATTRI 0 GDP polyline bundle

GKS$K_POLYMR_ATTRI 1 GDP polymarker bundle

GKS$K_TEXT_ATTRI 2 GDP text bundle

GKS$K....FILLAR~ATTRI 3 GDP fill area bundle

GDPs:

GKS$K_GDP _DISJOINT_PLINE -100 Disjoint polyline

GKS$K_GDP _CIRCLE_CTR_PT -101 Center and point on circle

GKS$K_GDP _CIRCLE_3PT -102 3 points on circle

GKS$K_GDP _CIRCLE_CTR_RAD -103 Center and radius of circle

GKS$K_GDP _CIRCLE_2PT_RAD -104 2 points and radius of circle

GKS$K_GDP_ARC_CTR_2PT -106 Center and 2 points of the arc

GKS$K....GDP _ARC_3PT -107 3 points of arc

GKS$K....GDP_ARC_CTR_2VEC_RAD -108 Center and 2 vector radius of arc

GKS$K....GDP _ARC_2PT_RAD -109 2 points and radius of the arc

GKS$K....GDP_ARC_CTR_PT_ANG -110 Center point and angle for arc

GKS$K....GDP_ELLIPSE_CTR_AXES -111 Center and axes of ellipse

(continued on next page)

DEC GKS Constants B-9

Table B-1 (Cont.): GKS$ Constants

Constant

GKS$K....GDP _ELLIPSE_CTR_3PT

GKS$K....GDP _ELLIPSE_FOCil_PT

GKS$K....GDP_ELIARC_CTR_AXES_2VEC

GKS$K_GDP _ELIARC_FOCII_2PT

GKS$K....GDP _RECT_2PT

GKS$K.._GDP_RESTRICTED_TEXT

GKS$K_GDP _FILL_AREA_SET

GKS$K....GDP _FCIRCLE_CTR_PT

GKS$K_GDP _FCIRCLE_3PT

GKS$K....GDP _FCIRCLE_CTR_RAD

GKS$K_GDP _FCIRCLE_2PT_RAD

GKS$K_GDP_FARC_CTR_2PT

GKS$K....GDP _FARC_3PT

GKS$K_GDP_FARC_CTR_2VEC_RAD

GKS$K_GDP _FARC_2PT_RAD

GKS$K_GDP _FARC_CTR_PT_ANG

GKS$K_GDP_FELLIPSE_CTR_AXES

GKS$K....GDP _FELLIPSE_CTR_3PT

GKS$K....GDP _FELLIPSE_FOCII_PT

GKS$K_GDP _FELIARC_CTR_AXES_2VEC

GKS$K....GDP _FELIARC_FOCil_2PT

GKS$K_GDP_FRECT_2PT

GKS$K....GDP_IMAGE_ARRAY

GKS Level Types:

GKS$K....LEVEL_MA

GKS$K....LEVEL_MB

B-10 DEC GKS Constants

Value

-112

-113

-114

-116

-125

-231

-332

-333

-334

-335

-336

-338

-339

-340

-341

-342

-343

-344

-345

-346

-348

-349

-400

-3

-2

Description

Center and 3 points of ellipse

Foci and point of ellipse

Center, 2 vectors of elliptic arc

Foci, 2 points on elliptic arc

Rectangle by 2 points

Restricted text

Fill area set

Fill circle using center point

Fill circle using 3 points

Fill circle using center and radius

Fill circle using 2 points and radius

Fill arc using center and 2 points of
the arc

Fill arc using 3 points

Fill arc using 2 vectors and radius

Fill arc using 2 points and radius
of the arc

Fill arc using center, point, angle

Fill ellipse using center, axes

Fill ellipse with center, 3 points

Fill ellipse using foci, point

Fill elliptic arc using center, axes, 2
vectors

Fill elliptic arc using foci, 2 points

Fill rectangle using 2 points

Packed cell array GDP

Minimal output, no input

Minimal output, request input

(continued on next page)

Table B-1 (Cont.):

Constant

GKS$K....LEVEL_MC

GKS$K....LEVEL_OA

GKS$K....LEVEL_OB

GKS$K....LEVEL_OC

GKS$K....LEVEL_1A

GKS$K....LEVEL_1B

GKS$K....LEVEL_1C

GKS$K....LEVEL_2A

GKS$K....LEVEL_2B

GKS$K....LEVEL_2C

GKS Status Types:

GKS$K....GKCL

GKS$K....GKOP

GKS$K....WSOP

GKS$K....WSAC

GKS$K....SGOP

Highlighting Flags:

GKS$ Constants

GKS$K....NORMAL

GKS$K....HIGHLIGHTED

Value

-1

0

1

2

3

4

5

6

7

8

0

1

2

3

4

0

1

Description

Minimal output, full input

All primitives and attributes, no
input

All primitives and attributes,
request input

All primitives and attributes, full
input

Basic segmentation with full
output, no input

Basic segmentation with full
output, request input

Basic segmentation with full
output, full input

Workstation independent and
segment storage, no input

Workstation independent and
segment storage, request input

Workstation independent and
segment storage, full input

GKS closed

GKSopen

At least one workstation open

At least one workstation active

At least one segment open

Primitives are not highlighted

Primitives are highlighted

(continued on next page)

DEC GKS Constants B-11

Table B-1 (Cont.): GKS$ Constants

Constant Value Description

Highlighting Methods:

GKS$K_HIGH_METHOD_DEFAULT 0 Default highlighting

GKS$K_HIGH_METHOD_COMP 1 Highlight with complement mode

GKS$K_HIGH_METHOD_COLOR 2 Highlight with color

GKS$K_HIGH_METHOD_LINE 3 Highlight with extent line box

GKS$K_HIGH_METHOD_FILL 4 Highlight with extent fill area

GKS$K_HIGH_METHOD_DUAL 5 Highlight with extent line box and
fill area

Implicit Regeneration States:

GKS$K_IRG_SUPPRESSED 0 Implicit regeneration suppressed

GKS$K_IRG_ALLOWED 1 Implicit regeneration allowed

Input Classes:

GKS$K_INPUT_CLASS_NONE 0 No input class

GKS$K_INPUT_CLASS_LOCATOR 1 Locator input class

GKS$K_INPUT_CLASS_STROKE 2 Stroke input class

GKS$K_INPUT_CLASS_ VALUATOR 3 Valuator input class

GKS$K_INPUT_CLASS_CHOICE 4 Choice input class

GKS$K_INPUT_CLASS_PICK 5 Pick input class

GKS$K_INPUT_CLASS_STRING 6 String input class

GKS$K_INPUT_CLASS_ VIEWPORT 7 Viewport input class

Input Device Type:

GKS$K_INPUT_DEV _DEFAULT 0 Default input device

Input Mode Types:

GKS$K_INPUT_MODE_REQUEST 0 Request mode

GKS$K_INPUT_MODE_SAMPLE 1 Sample mode

(continued on next page)

B-12 DEC GKS Constants

Table B-1 (Cont.): GKS$ Constants

Constant

GKS$K_INPUT_MODE_EVENT

Input on Device Handler:

GKS$K_CURSOR_MOVEMENT

GKS$K_CHARACTER

GKS$K_POINT_TRIGGER

GKS$K_TERMINATION_TRIGGER

GKS$K_DELETE_KEY

GKS$K_BREAK

GKS$K_CHOICE_NUMBER

GKS$K_CYCLE

GKS$K_NOCYCLE

GKS$K_STROKE_MEASURE

GKS$K_TOGGLE_INSERT

GKS$K_RESTORE_INITIAL

GKS$K_BUFFER_BEGINNING

GKS$K_BUFFER_END

GKS$K_VALUATOR_VALUE

GKS$K_SIGNAL

GKS$K_LOG_ERROR

Input on Device Handler:

GKS$K_RELATIVE

GKS$K_ABSOLUTE

Input Priority States:

GKS$K_INPUT_PRIORITY_HIGHER

GKS$K_INPUT_PRIORITY_LOWER

Value

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0

1

0

1

Description

Event mode

Input key is a cursor movement

Input key is a character

Input key is a point trigger

Input key is a termination trigger

Input key is· delete

Input key is break

Input key is a choice number

Input key is cycle

Input key is no cycle

Input key is a stroke measure

Input key is insert toggle

Input key is to restore initial string

Input key is move to beginning

Input key is move to end

Input key is a valuator measure

Input signal occurred

Input error occurred

Relative movement

Absolute movement

Relative input priority higher

Relative input priority lower

(continued on next page)

DEC GKS Constants B-13

Table B-1 (Cont.): GKS$ Constants

Constant

Input Status Types:

GKS$K_STATUS_NONE

GKS$K_STATUS_OK

GKS$K_STATUS_NOCHOICE

GKS$K_STATUS_NOPICK

Line Cap Types:

GKS$K_LINE_CAP_BUTT

GKS$K_LINE_CAP _ROUND

GKS$K_LINE_CAP_SQUARE

Line Join Types:

GKS$K_LINE_JOIN_MITRE

GKS$K_LINE_JOIN_ROUND

GKS$K_LINE_JOIN_BEVEL

Line Types (standard):

GKS$K_LINETYPE_SOLID

GKS$K_LINETYPE_DASHED

GKS$K_LINETYPE_DOTTED

GKS$K_LINETYPE_DASHED_DOTTED

Value

0

1

2

2

2

3

4

2

3

4

1

2

3

4

Line Types (DEC GKS Implementation Specific):

GKS$K_LINETYPE_DASH_2_DOT -1

GKS$K_LINETYPE_DASH_3_DOT -2

GKS$K_LINETYPE_LONG_DASH

GKS$K_LINETYPE_LONG_SHORT_DASH

GKS$K_LINETYPE_SPACED_DASH

GKS$K_LINETYPE_SPACED_DOT

B-14 DEC GKS Constants

-3

-4

-5

-6

Description

No input obtained

Input obtained

Input is NOCHOICE

Input is NOPICK

Line cap type butted

Line cap type rounded

Line cap type square

Line join type mitre

Line join type round

Line join type bevel

Line type solid

Line type dashed

Line type dotted

Line type dash-dotted

Line type dash-2-dots

Line type dash-3-dots

Line type long-dash

Line type long-short-dash

Line type spaced-dash

Line type spaced-dot

(continued on next page)

Table B-1 (Cont.): GKS$ Constants

Constant Value

GKS$K_LINETYPE_DOUBLE_DOT -7

GKS$K_LINETYPE_TRIPLE_DOT -8

Logical Types:

GKS$K_FALSE 0

GKS$K_TRUE 1

Marker Types (standard):

GKS$K_MARKERTYPE_DOT 1

GKS$K_MARKERTYPE_PLUS 2

GKS$K_MARKERTYPE_ASTERISK 3

GKS$K_MARKERTYPE_CIRCLE 4

GKS$K_MARKERTYPE_DIAGONAL_CROSS 5

Marker Types (DEC GKS Implementation Specific):

GKS$K_MARKERTYPE_SOLID_CIRCLE -1

GKS$K_MARKERTYPE_TRIANGLE_UP -2
GKS$K_MARKERTYPE_SOLID_TRl_UP -3

GKS$K_MARKERTYPE_TRIANGLE_DOWN -4

GKS$K_MARKERTYPE_SOLID_TRl_DOWN -5

GKS$K_MARKERTYPE_SQUARE -6

GKS$K_MARKERTYPE_SOLID_SQUARE -7
GKS$K_MARKERTYPE_BOWTIE -8

GKS$K_MARKERTYPE_SOLID_BOWTIE -9
GKS$K_MARKERTYPE_HOURGLASS -10
GKS$K_MARKERTYPE_SOLID_HGLASS -11
GKS$K_MARKERTYPE_DIAMOND -12

GKS$K_MARKERTYPE_SOLID_DIAMOND -13

Description

Line type double dots

Line type triple dots

Logical FALSE

Logical TRUE

Marker type dot (.)

Marker type plus (+)

Marker type asterisk (*)

Marker type circle (o)

Marker type diagonal cross (X)

Marker type solid circle

Marker type hollow up triangle

Marker type solid up triangle

Marker type hollow down triangle

Marker type solid down triangle

Marker type hollow square

Marker type solid square

Marker type hollow bow tie

Marker type solid bow tie

Marker type hollow hourglass

Marker type solid hourglass

Marker type hollow
diamond

Marker type solid diamond

(continued on next page)

DEC GKS Constants B-15

Table B-1 (Cont.): GKS$ Constants

Constant

New Frame Action States:

GKS$K_NEWFRAME_NOTNECESSARY

GKS$K_.NEWFRAME_NECESSARY

Paper Size Bit Masks:

GKS$M_PAPERSIZE_A

GKS$M_PAPERSIZE_LEGAL

GKS$M_PAPERSIZE_B

GKS$M_PAPERSIZE_C

GKS$M_PAPERSIZE_D

GKS$M_PAPERSIZE_E

GKS$M_PAPERSIZE_AO

GKS$M_PAPERSIZE_Al

GKS$M_PAPERSIZE_A2

GKS$M_PAPERSIZE_A3

GKS$M_PAPERSIZE_A4

GKS$M_PAPERSIZE_A5

GKS$M_PAPERSIZE_B4

GKS$M_PAPERSIZE_B5

Paper Orientation Bit Masks:

GKS$M_LANDSCAPE

GKS$M_PORTRAIT

Regeneration Flag States:

GKS$K_POSTPONE_FLAG

GKS$K_PERFORM_FLAG

B-16 DEC GKS Constants

Value

0

1

0

65536

131072

196608

262144

327680

1048576

2097152

3145728

4194304

5242880

6291456

7340032

8388608

Description

No new frame action on update

New frame action on update

8.5xll inches

8.5x14 inches

11 xl 7 inches

17 x22 inches

22x34 inches

34 x44 inches

84.1 x118.9 centimeters

59.4x84.1 centimeters

42 x59.4 centimeters

29.7x42.0 centimeters

21.0x29.7 centimeters

14.8x21.0 centimeters

25. 7 x36.4 centimeters

18.2x25.7 centimeters

0 Landscape orientation

268435456 Portrait orientation

0 Implicit regeneration postponed

1 Implicit regeneration performed

(continued on next page)

Table B-1 {Cont.): GKS$ Constants

Constant Value Description

ReGIS Bit Masks:

GKS$M_ VT125_0UTPUT 1048576 VT125 color, output only

GKS$M_ VT125BW _OUTPUT 2097152 VT125 black/white, output only

GKS$M_ VT240_0UTPUT 3145728 VT240 color, output only

GKS$M_ VT240BW _OUTPUT 4194304 VT240 black/white, output only

GKS$M_VT330BW_OUTPUT 5242880 VT330 black/while, output only

GKS$M_ VT340_ 0UTPUT 6291456 VT340 color, output only

Returned Type Values:

GKS$K_ VALUE_SET 0 Type ofreturned value is set

GKS$K_ VALUE_REALIZED 1 Type ofreturned value is realized

Simultaneous Events Flag:

GKS$K_NOMORE_EVENTS 0 No more simultaneously generated
events

GKS$K_MORE_EVENTS 1 More simultaneously generated
events

Text Horizontal Alignment Types:

GKS$K_TEXT_HALIGN_NORMAL 0 Horizontal align normal

GKS$K_TEXT_HALIGN_LEFT 1 Horizontal align left

GKS$K_TEXT_HALIGN_CENTER 2 Horizontal align center

GKS$K_TEXT_HALIGN_RIGHT 3 Horizontal align right

Text Path Types:

GKS$K_TEXT_PATH_RIGHT 0 Path right

GKS$K_TEXT_PATH_LEFT 1 Path left

GKS$K_TEXT_PATH_UP 2 Path up

GKS$K_TEXT_PATH_DOWN 3 Path down

(continued on next page)

DEC GKS Constants B-17

Table B-1 {Cont.): GKS$ Constants

·Constant

Text Precision Types:

GKS$K_TEXT_PRECISION_STRING

GKS$K_TEXT_PRECISION_CHAR

GKS$K_TEXT_PRECISION_STROKE

Text Vertical Alignment Types:

GKS$K_TEXT_ VALIGN_NORMAL

GKS$K_TEXT_ VALIGN_TOP

GKS$K_TEXT_ VALIGN_CAP

GKS$K_TEXT_VALIGN_HALF

GKS$K_TEXT_ VALIGN_BASE

GKS$K_TEXT_ VALIGN_BOTTOM

Valid Values Flags:

GKS$K_INVALID_ABSENT

GKS$K_INVALID_PRESENT

Visibility Flags:

GKS$K_INVISIBLE

GKS$K_ VISIBLE

VT3xx: Masks:

GKS$M_NOPOINTER

GKS$M_COLOR_MAP_RESET

Workstation Category Types:

B-18 DEC GKS Constants

Value

0

1

2

0

1

2

3

4

5

0

1

0

1

65536

16777216

Description

'Thxt precision string

'Thxt precision character

'Thxt precision stroke

Vertical align normal

Vertical align top

Vertical align cap

Vertical align half

Vertical align base

Vertical align bottom

Invalid values absent

Invalid values present

Set to invisible

Set to visible

VT330 or VT340 that does not have
a mouse

VT330 or VT340 that saves the
colormap

(continued on next page)

Table B-1 (Cont.): GKS$ Constants

Constant Value Description

GKS$K_WSCAT_OUTPUT 0 Output

GKS$K._ WSCAT_INPUT 1 Input

GKS$K._ WSCAT_OUTIN 2 Out/In

GKS$K....WSCAT_WISS 3 Workstation independent segment
storage

GKS$K_WSCAT_MO 4 Metafile output

GKS$K._ WSCAT_MI 5 Metafile input

Workstation Class Types:

GKS$K_WSCLASS_VECTOR 0 Vector

GKS$K_ WSCLASS_RASTER 1 Raster

GKS$K._WSCLASS_OTHERD 2 Other device

Workstation Color States:

GKS$K._MONOCHROME 0 Monochrome

GKS$K....COLOR 1 Color

Workstation States:

GKS$K_ WS_INACTIVE 0 Inactive

GKS$K.... WS_ACTIVE 1 Active

Workstation Types:

GKS$K._WSTYPE_DEFAULT 0 Default workstation type

GKS$K....GKSM_OUTPUT 2 GKS output metafile

GKS$K....GKSM_INPUT 3 GKS input metafile

GKS$K....W'STYPE_WISS 5 GKS workstation independent
segment storage

GKS$K_CGM_OUTPUT 7 CGM output metafile

GKS$K_ VT_OUTPUT 10 DIGITAL VT125 (output only)

(continued on next page)

DEC GKS Constants B-19

Table B-1 (Cont.): GKS$ Constants

Constant Value Description

GKS$K_ VT125BW _OUTPUT 10 Black and white DIGITAL VT125

GKS$K_ VT125 11 DIGITAL VT125 with color option

GKS$K_VT125BW 12 Black and white DIGITAL VT125

GKS$K_ VT240 13 DIGITAL VT240 with color option

GKS$K_VT240BW 14 Black and white DIGITAL VT240

GKS$K_LCP01 15 DIGITAL LCPOl printer

GKS$K_LCG01 15 DIGITAL LCGOl printer

GKS$K_ VT330 16 DIGITAL VT330 (black and white)

GKS$K_ VT340 17 DIGITAL VT340 (color)

GKS$K_LA34 31 DIGITAL LA34 with graphics
option

GKS$K_LA100 31 DIGITAL LAlOO

GKS$K_LA50 32 DIGITAL LA50 with 2:1 aspect
ratio

GKS$K_LA210 34 DIGITAL LA210

GKS$K_LA75 35 DIGITAL LA75

GKS$K_LN03_PLUS 38 DIGITAL LN03 PLUS

GKS$K_VSII 41 DIGITAL VAXstation II

GKS$K_VSII_GPX 41 DIGITAL VAXstation 11/GPX

GKS$K_ VS2000 41 DIGITAL VAXstation 2000

GKS$K_ VS3200 41 DIGITAL VAXstation 3200

GKS$K_ VS3500 41 DIGITAL VAXstation 3500

GKS$K_LVP16A 51 DIGITAL LVP16 color plotter
(8.5xll)

GKS$K_HP7475 51 Hewlett Packard HP7475

GKS$K_LVP16B 52 DIGITAL LVPl 6 color plotter
(llxl 7)

GKS$K_HP7550 53 HP7550 pen plotter

GKS$K_HP7580 54 HP7580 pen plotter

GKS$K_LG_MPS2000 55 Lasergraphics film recorder

(continued on next page)

B-20 DEC GKS Constants

Table B-1 (Cont.): GKS$ Constants

Constant Value Description

GKS$K...HP7585 56 HP7585 pen plotter

GKS$K...POSTSCRIPT 61 PostScript graphics handler

GKS$K...COLOR_POSTSCRIPT 62 Color PostScript graphics handler

GKS$K...TEK4014_0UTPUT 70 Tektronix-4014 (output only)

GKS$K...TEK4014 72 Tektronix-4014

GKS$K...TEK4107_0UTPUT 80 Tektronix-4107 (output only)

GKS$K...TEK4107 82 Tektronix-4107

GKS$K._TEK4207_0UTPUT 83 Tektronix 4207 (output only)

GKS$K...TEK4207 84 Tektronix 4207

GKS$K...TEK4128_0UTPUT 85 Tektronix 4128 (output only)

GKS$K_TEK4128 86 Tektronix 4128

GKS$K...TEK4129_0UTPUT 87 Tektronix 4129 (output only)

GKS$K.... VS500_0UTPUT 87 VS500 (output only)

GKS$K....TEK4129 88 Tektronix 4129

GKS$K._ VS500 88 VS500 interactive

GKS$K....LJ250 91 DIGITAL LJ250 90 DPI

GKS$K._LJ250_180DPI 92 DIGITAL LJ250180 DPI

GKS$K._DECWINDOWS_OUTPUT 210 DECwindows output

GKS$K....DECWINDOWS 211 DECwindows

GKS$K._DECWINDOWS_DRAWABLE 212 DECwindows drawable

GKS$K....DECWINDOWS_ WIDGET 213 DECwindows widget

GKS$K._DDIF 250 DDIF

Writing Modes:

GKS$K._ WRT_MODE_COMPLEMENT 2 Complement writing mode

GKS$K._ WRT_MODE_ERASE 3 Erase writing mode

GKS$K....WRT_MODE_OVERLAY 4 Overlay writing mode

DEC GKS Constants B-21

Appendix C

DEC GKS Attribute Values

This appendix lists the initial values of all output attributes and
normalization transformation settings according to the following categories:

• Polyline attributes

• Polymarker attributes

• Text attributes

• Fill area attributes

• Segment attributes

• Normalization transformation settings

This appendix also lists the following DEC GKS specific attribute types:

• Line types

• Marker types

C.1 Initial Polyline Attributes

This section lists the initial values for the polyline attributes.

Attribute Initial Value Description

Polyline index 1 Polyline bundle number 1

Line type GKS$K_LINETYPE_SOLID Solid line

Line width 1.0 Minimum width

Color index 1 Workstation-dependent value

Line type ASF GKS$K_ASF _INDIVIDUAL Use current line type

DEC GKS Attribute Values ~ 1

Attribute

Line width ASF

Color index ASF

Initial Value

GKS$K....ASF _INDMDUAL

GKS$K....ASF _INDMDUAL

C.2 Initial Polymarker Attributes

Description

Use current line width

Use current iine coior index

This section lists the initial values for the polymarker attributes.

Attribute Initial Value Description

Polymarker index 1 Polymarker bundle
number 1

Marker type GKS$K_MARKERTYPE_ASTERISK Asterisk for marker

Marker size 1.0 Nominal size

Color index 1 VVorkstation-dependent
value

Marker type ASF GKS$K....ASF _INDMDUAL Use current marker
type

Marker size ASF GKS$}LASF _INDMDUAL Use current marker
size

Marker color index ASF GKS$K._ASF _INDMDUAL Use current marker
color index

C-2 DEC GKS Attribute Values

C.3 Initial Text Attributes

This section lists the initial values for the text attributes.

Attribute Initial Value Description

Text index 1 Text bundle number 1

Text font and precision 1 Hardware font 1, string
GKS$K:_TEXT_PRECISION_STRING precision

Character expansion 1.0 Width-to-height ratio
factor from font file

Character spacing 0.0 Adjacent character
bodies

Color index 1 VVorkstation-dependent
value

Text font and precision GKS$K_ASF _INDMDUAL Use current font and
ASF precision

Character expansion GKS$K:_ASF _INDMDUAL Use current width and
factorASF height ratio

Character spacing ASF GKS$K:_ASF _INDMDUAL Use current character
space

Text color index ASF GKS$1t.ASF _INDMDUAL Use current text color
index

Character height 0.01 Capital letters at 0.01
world coordinate units

Character up vector 0,1 Up vector parallel to y-
axis in world coordinate
units

Text path GKS$K:_TEXT_PATH_RIGHT Right angle clockwise
from up vector

Text alignment GKS$K:_TEXT_HALIGN_NORMAL Natural alignment with
GKS$K_TEXT_ VALIGN_NORMAL respect to text path

DEC GKS Attribute Values C-3

C.4 Initial Fill Area Attributes

This section lists the initial values for the fill area attributes.

Attribute Initial Value Description

Fill area index 1 Fill area bundle number 1

Interior style GKS$K_INTSTYLE_HOLLOW Boundary of polygonal area

Style index 1 Workstation-dependent pattern or hatch
style

Color index 1 Workstation-dependent value

Interior style ASF GKS$K_ASF _INDIVIDUAL Use current interior style

Style index ASF GKS$K_ASF _INDIVIDUAL Use current pattern or hatch style

Color index ASF GKS$K_ASF _INDIVIDUAL Use current fill area color index

Pattern size 1.0,1.0 Unit square in world coordinates

Pattern reference 0.0,0.0 Pattern starting point in world
point coordinates

C.5 Initial Segment Attributes

This section lists the initial segment attributes.

Attribute

Transformation
number

Visibility

Highlighting

Segment priority

Detectability

Initial Value

0

GKS$K_ VISIBLE

GKS$K_NORMAL

0.0

GKS$K_UNDETECTABLE

Description

The identity transformation presents the
segment as stored in NDC space.

The segment is visible.

The segment is not highlighted.

The segment has the lowest priority.

The segment is undetectable.

The default segment transformation is called the identity transformation.
The identity transformation uses a 2 x 3 matrix whose first row is composed
of the values 1.0, 0.0, 0.0, and whose second row is composed of the values
0.0, 1.0, 0.0.

C-4 DEC GKS Attribute Values

C.6 Initial Normalization Transformation Settings

The initial normalization transformation number is the value 0.

The initial viewport input priority is in sequential order from the value 0
through the value 255, with transformation number 0 the highest and 255
the lowest.

The default normalization window and viewport limits are rectangular,
begin with a lower left corner point of (0.0, 0.0), and extend to the value 1.0
on both the X and Y axes.

Initially, clipping is enabled (GKS$K_CLIP) at the normalization viewport
limit.

C.7 DEC GKS-Specific Line Types

The following list presents the DEC GKS-supported line types. To see which
types your device supports, refer to the appropriate device-specific appendix.

Value Constant Description

-1 GKS$K_LINETYPE_DASH_2_DOT Use a sequence of one dash
followed by two dots.

-2 GKS$K_LINETYPE_DASH_3_DOT Use a sequence of one dash
followed by three dots.

-3 GKS$K_LINETYPE_LONG_DASH Use a sequence of long
dashes.

-4 GKS$K_LINETYPE_LONG_SHORT_ Use a sequence of a long dash
DASH followed by a short dash.

-5 GKS$K_LINETYPE_SPACED_DASH Use a sequence of dashes
double spaced.

-6 GKS$K_LINETYPE_SPACED_DOT Use a sequence of dots double
spaced.

-7 GKS$K_LINETYPE_DOUBLE_DOT Use a sequence of pairs of
dots.

-8 GKS$K_LINETYPE_TRIPLE_DOT Use a sequence of groups of
three dots.

DEC GKS Attribute Values C-5

C.8 DEC GKS-Specific Marker Types

The follovving list presents the DEC G¥'...S~suppor+...ed marker types. To see
which types your device supports, refer to the appropriate device-specific
appendix.

Value Constant Description

-1 GKS$K_MARKERTYPE_SOLID_CIRCLE Use a filled circle.

-2 GKS$K....MARKERTYPE_TRIANGLE_UP Use a hollow triangle point-
ing upward.

-3 GKS$K....MARKERTYPE_SOLID_TRl_UP Use a filled triangle point-
ing upward.

-4 GKS$K_MARKERTYPE_TRIANGLE_ Use a hollow triangle point-
DOWN ing downward.

-5 GKS$K....MARKERTYPE_SOLID_TRI_ Use a filled triangle point-
DOWN ing downward.

-6 GKS$K._MARKERTYPE_SQUARE Use a hollow square.

-7 GKS$K....MARKERTYPE_SOLID_SQUARE Use a filled square.

-8 GKS$K....MARKERTYPE_BOWTIE Use a hollow bow tie.

-9 GKS$K_MARKERTYPE_SOLID_BOWTIE Use a filled bow tie.

-10 GKS$K....MARKERTYPE_HGLASS Use a hollow
hourglass.

-11 GKS$K_MARKERTYPE_SOLID_HGLASS Use a filled hourglass.

-12 GKS$K....MARKERTYPE_DIAMOND Use a hollow diamond.

-13 GKS$K_MARKERTYPE_SOLID_DIAMOND Use a filled diamond.

NOTE

For all solidly filled markers, DEC GKS uses the current marker
color index.

C-6 DEC GKS Attribute Values

Appendix D

DEC GKS Error Messages

This appendix lists each of the DEC GKS error messages, the DEC GKS
error numbers, and the VMS completion status codes.

The VMS completion status codes correspond to the longword condition
value returned by each DEC GKS function. You can compare the completion
status codes directly to the function return values. In this way, you do not
have to directly access the individual bits of the returned longword condition
value to determine the cause of the error. Consider the following example:

C Include the error symbol definitions file.
INCLUDE 'SYS$LIBRARY:GKSMSGS.FOR'

C Check for success.
IF (GKS$_SUCCESS = GKS$0PEN_WS(WS_ID, CON_ID, WS_TYPE)) THEN

C Check for an invalid workstation identifier.
IF (GKS$_ERROR_20 = GKS$ACTIVATE_WS(WS_ID)) THEN

The DEC GKS completion success status code symbol defined in the DEC
GKS image library file is GKS$_SUCCESS. The remaining codes begin with
the prefix DECGKS$_ERROR_NEG or GKS$_ERROR, and end with the
number of the generated error.

Each of the condition status codes corresponds to the number of the
appropriate DEC GKS error message. The GKS$_SUCCESS code is of
severity success; all the codes with positive numbers are of severity error;
and all negative errors are implementation-specific messages of severity
error or fatal error.

DEC GKS Error Messages D-1

If you choose, you can perform the normal VMS processing of the returned
longword condition value by using LIB$SIGNAL, $GETMSG, or $PUTMSG.
For detailed information concerning this type of processing, refer to the
VMS Run-'lime Library Routines Reference Manual.

Some of the DEC GKS-specific error messages substitute program
information in the message text. In this appendix, the portion of the text to
be substituted is shown as ****.
The following sections describe the DEC GKS error messages by category.

D.1 Implementation-Specific Errors

All the DEC GKS-specific errors are negative in number; their condition
status codes read DECGKS$_ERROR_NEG_number. These errors are either
errors or fatal errors as described.

-2 Requested color map could not be created as specified in
routine ****
DECGKS$_ERROR_NEG_2:

Error: Specified color map is too large.

User Action: Check to make sure that you specified the correct
color map size and type (either physical or virtual). Remember the
limitations of your VAXstation when reserving color indexes.

-3 Invalid data in workstation description file in routine ****
DECGKS$_ERROR_NEG_3:

Error: Workstation description file contains invalid data.

User Action: Make sure that the format of your description file is
valid for your particular workstation.

-4 Invalid bit mask in workstation type in routine ****
DECGKS$_ERROR_NEG_4:

Error: Bit mask of the workstation type value is invalid.

User Action: Check to make sure that you specified a bit mask
workstation type value that is valid for your workstation, and that
you are running your program on the expected type of workstation.

D-2 DEC GKS Error Messages

-5 Bad string addresses found writing choice data record in
routine ****
DECGKS$_ERROR_NEG_5:

Error: Illegal array of string pointers passed to the choice data
record in routine ****
User Action: Make sure that you properly initialized the arrays
containing string addresses and string lengths. Also, make sure
that you have declared a buffer to hold choice strings, and that
your string address array contains addresses of the elements
in your choice string array. For more information, refer to the
program example for INQUIRE DEFAULT CHOICE DEVICE
DATA in Chapter 11, Inquiry Functions, in the DEC GKS Reference
Manual.

-6 Echo area is too narrow for data in routine ****
DECGKS$_ERROR_NEG_6:

Error: The specified input echo area minimum and maximum X
values are too close in proximity.

User Action: Make sure that you did not swap X and Y values,
and that your specified X values are of a greater distance from each
other.

-7 Maximum number of representable choices exceeded in routine ****
DECGKS$_ERROR_NEG_7:

Error: The number of requested choices is too large for the work
station type.

User Action: You can use INQUIRE DEFAULT CHOICE DEVICE
DATA to obtain the maximum choices available for your worksta
tions, and then break your menu into two smaller menus.

--8 Echo area is too short for data in routine ****
DECGKS$_ERROR_NEG_8:

Error: The specified input echo area minimum and maximum Y
values are too close·in proximity.

User Action: Make sure that you did not swap X and Y values,
and that your specified Y values are of a greater distance from each
other.

DEC GKS Error Messages D-3

-9 Binary format and integer number representation not supported in
this implementation of GKS in routine ****

DECGKS$_ERROR_NEG_9:

Error: You opened a metafile of an incompatible type.

User Action: Check the metafile type.

-10 Invalid value specified for ASF in routine****

DECGKS$_ERROR_NEG_10:

Error: You specified an incorrect value within the aspect source
flag array.

User Action: Check the array to make sure that it has 13 ele
ments and that its elements only contain the value GKS$K_ASF _
BUNDLED (0) or GKS$K_ASF _INDIVIDUAL (1).

-11 Invalid value specified for fill area interior style in routine****

DECGKS$_ERROR_NEG_ll:

Error: You did not specify a proper integer value for an interior
style argument.

l

User Action: Make sure that you passed one of the values
GKS$K_INTSTYLE_HOLLOW (0), GKS$K_INTSTYLE_SOLID
(1), GKS$K_INTSTYLE_PATTERN (2), . or GKS$K_INTSTYLE_
HATCH (3).

-12 Invalid value specified for horizontal component of text alignment
in routine ****
DECGKS$_ERROR_NEG_12:

Error: You did not specify a proper integer value for a horizontal
text alignment argument.

User Action: Make sure that you passed one of the values
GKS$K_TEXT_HALIGN_NORMAL (0), GKS$K_TEXT_HALIGN_
LEFT (1), GKS$K_TEXT_HALIGN_CENTER (2), or GKS$K_
TEXT_HALIGN_RIGHT (3).

D-4 DEC GKS Error Messages

-13 Invalid value specified for vertical component of text alignment in
routine ****

DECGKS$_ERROR_NEG_13:

Error: You did not specify a proper integer value for a vertical text
alignment argument.

User Action: Make sure that you passed one of the values
GKS$K_TEXT_ VALIGN_NORMAL (0), GKS$K_TEXT_ VALIGN_
TOP (1), GKS$K_TEXT_ VALIGN_CAP (2), GKS$K_TEXT_
VALIGN_HALF (3), GKS$K_TEXT_ VALIGN_BASE (4), or
GKS$K_TEXT_ VALIGN_BOTTOM (5).

-14 Invalid value specified for text precision in routine****

DECGKS$_ERROR_NEG_14:

Error: You did not specify a proper integer value for a text preci
sion argument.

User Action: Make sure that you passed one of the values
GKS$K_TEXT_PRECISION_STRING (0), GKS$K_TEXT_
PRECISION_ CHAR (1), or GKS$K_TEXT_PRECISION_
STROKE (2).

-15 Invalid value specified for text path in routine****

DECGKS$_ERROR_NEG_15:

Error: You did not specify a proper integer value for a text path
argument.

User Action: Make sure that you passed one of the values
GKS$K_TEXT_PATH_RIGHT (0), GKS$K_TEXT_PATH_LEFT
(1), GKS$K_TEXT_PATH_UP (2), or GKS$K_TEXT_PATH_DOWN
(3).

-16 Echo switch is invalid in routine****

DECGKS$_ERROR_NEG_16:

Error: You did not specify a proper integer value for an echo
switch in one of the arguments to the SET MODE input functions.

User ActiOn: Make sure that you passed GKS$K_NOECHO (0) or
GKS$K_ECHO (1). Also, if you used an inquiry function to obtain
the echo switch, check to see that the arguments to the inquiry
function are specified in the correct order.

DEC GKS Error Messages D-5

-1 7 Inquired device values not set or realized in routine ****
DECGKS$_ERROR_NEG_17:

Error: You neglected to specify GKS$K_ VALUE_SET or GKS$K_
VALUE_REALIZED when calling an inquiry function.

User Action: Check the value type argument to make sure that it
is either GKS$K_ VALUE_SET or GKS$K_ VALUE_REALIZED.

-18 The following error occurred when GKS was interpreting an item

DECGKS$_ERROR_NEG_18:

Error: An error occurred while interpreting a metafile item.

User Action: DEC GKS follows this error message with another
message that signals the appropriate action.

-19 Invalid error status parameter specified in routine ****
DECGKS$_ERROR_NEG_19:

Error: You passed an illegal error code to ERROR LOGGING.

User Action: Make sure that the error code passed to ERROR
LOGGING is one of the codes described in this appendix.

-20 GKS not in proper state: GKS in the ERROR state in routine ****
DECGKS$_ERROR_NEG_20:

Error: You attempted to execute a DEC GKS function other than
an error-handling or inquiry function.

User Action: Remove all calls to DEC GKS functions, other than
inquiry and error-handling function calls, from your error-handling
code.

-21 Function is not supported in this level of GKS in routine ****
DECGKS$_ERROR_NEG_21:

User Action: Remove the call to the unsupported function.

D-6 DEC GKS Error Messages

-22 Invalid segment transformation in routine ****
DECGKS$_ERROR_NEG_22:

Error: You specified an invalid transformation matrix.

User Action: Check your calls to EVALUATE TRANSFORMATION
MATRIX and to ACCUMULATE TRANSFORMATION MATRIX to
make sure that you passed valid transformation components. Also,
make sure that you specified a transformation matrix to SET
SEGMENT TRANSFORMATION or to INSERT SEGI\IJENT.

-23 Invalid value specified for clipping flag in routine****

DECGKS$_ERROR_NEG_23:

User Action: Make sure that you passed either the value GKS$K_
NOCLIP (0) or GKS$K_CLIP (1).

-24 Invalid value specified for viewport priority flag in routine ****

DECGKS$_ERROR_NEG_24:

User Action: Make sure that you passed either the value GKS$K_
INPUT_PRIORITY_IDGHER (0) or GKS$ICINPUT_PRIORITY_
LOWER (1).

-25 Invalid value specified for update workstation flag in routine ****

DECGKS$_ERROR_NEG_25:

User Action: Make sure that you passed either the value GKS$K_
POSTPONE_FLAG (0) or GKS$K_PERFORM_FLAG (1).

-26 Invalid value specified for deferral mode in routine ****

DECGKS$_ERROR_NEG_26:

User Action: Make sure that you passed one of the values
GKS$K_ASAP (0), GKS$K_BNIG (1), GKS$K_BNIL (2), or
GKS$K_ASTI (3).

-27 Invalid value specified for regeneration mode in routine ****

DECGKS$_ERROR_NEG_27:

User Action: Make sure that you passed either the value GKS$K_
IRG_SUPPRESSED (0) or GKS$K_IRG_ALLOWED (1).

DEC GKS Error Messages D-7

-28 Invalid value specified for expansion factor in routine ****
DECGKS$_ERROR_NEG_28:

User Action: Check to make sure that you specified a real num
ber value greater than the value 0.0. The value 1.0 causes no
expansion.

-29 Invalid data record size for specified prompt and echo type in
routine ****
DECGKS$_ERROR_NEG_29:

User Action: Check to make sure that you specified a data record
of the correct size as determined by your chosen prompt and echo
type.

-30 Cannot load workstation handler: error during image activation in
routine ****
DECGKS$_ERROR_NEG_30:

Error: DEC GKS could not activate your workstation handler's
shareable image.

User Action: Make sure that your workstation handler is a valid,
shareable image.

-31 Cannot load graphics handler: invalid DFT in routine ****
DECGKS$_ERROR_NEG_31:

Error: Your device function tables are incompatible.

User Action: You need to build your device function table again
using the appropriate macro. For more information, refer to
Building a DEC GKS Workstation Handler System or Building
a DEC GKS Device Handler System.

-32 Font file for stroke precision text not found or unusable in
routine ****
DECGKS$_ERROR_NEG_32:

Error: DEC GKS could not locate the specified stroke font.

User Action: Refer to the appropriate device-specific appendix
in this manual to determine if the specified font is supported on
your device. If you are not using a DEC GKS supported graphics
handler, make sure that your handler defines the proper logical
names, and that the logicals reference a valid file.

D-8 DEC GKS Error Messages

-33 Array descriptor is not acceptable in routine ****
DECGKS$_ERROR_NEG_33:

Error: An item in the array descriptor is either invalid or
inconsistent.

User Action: Make sure that you have passed the array by de
scriptor and that you fill the descriptor with valid values. If
you have, and you use an inquiry function to initialize the ar-
ray variable, make sure that all the arguments are specified to the
inquiry function in the correct order. Also, if the array is passed
to the CELL ARRAY function, make sure that you have declared a
two-dimensional array.

-34 String length less than or equal to 0 in routine ****
DECGKS$_ERROR_NEG_34:

Error: You specified an invalid character string.

User Action: Check the declaration, definition, or assignment
statements involving the character variable.

-35 Kernel has detected an unexpected error from a device handler in
routine ****
DECGKS$_ERROR_NEG_35:

Error: The device handler encountered an error.

User Action: DEC GKS follows this error message with another
message that signals the appropriate action.

-36 Cannot load device handler: error during image activation in
routine ****
DECGKS$_ERROR_NEG_36:

Error: DEC GKS could no~ activate your device handler's share
able image

User Action: Make sure that your device handler is a valid,
shareable image. This error message is specific to handlers that
affect a device (VAXstations) as opposed to a graphics language
(PostScript).

DEC GKS Error Messages D-9

-37 Error in device handler during event flag allocation in routine****

DECGKS$_ERROR_NEG_37:

Error: A graphics handler was unable to acquire all of its needed
event flags.

User Action: The application must release event flags for use by
the graphics handler.

-38 Error in device handler, cannot allocate device in routine ****

DECGKS$_ERROR_NEG_38:

Error: You used your graphics handler with an invalid physical
device.

User Action: Make sure that you use the proper physical device
or that you specify the correct workstation type value to OPEN
WORKSTATION.

-39 Descriptor is not acceptable in routine ****

DECGKS$_ERROR_NEG_39:

User Action: Make sure that you have passed the variable by
descriptor. If you have, and you use an inquiry function to initialize
the variable, make sure that all the arguments are specified to the
inquiry function in the correct order.

-40 Illegal device pointer, in routine ****

DECGKS$_ERROR_NEG_40:

User Action: Check your handler code for null pointers or other
wise invalid pointers.

-41 Driver handler WDT is invalid in routine ****

DECGKS$_ERROR_NEG_41:

Error: You illegally defined a workstation description table entry.

User Action: Check your workstation description table definitions
for your graphics handler.

D-10 DEC GKS Error Messages

-42 Logical name for the list of workstation types, GKS$LIST_TYPES,
could not be translated in routine ****
DECGKS$_ERROR_NEG_42:

Error: You improperly defined the logical name.

User Action: Make sure that the translation of GKS$LIST_TYPES
is as expected.

-43 VAX Workstation Software is not present, workstation type is
invalid in routine ****
DECGKS$_ERROR_NEG_43:

Explanation: Check to make sure either that you specify the cor
rect workstation type when opening a non-VAXstation workstation,
or that you passed a correct workstation type value to one of the
workstation description table or state list inquiry functions. If
you are working on a MicroVAX, make sure that you install the
VAXstation Windowing Software.

-44 Error trying to save or restore VT340 color map in routine ****
DECGKS$_ERROR_NEG_44:

User Action: Submit an SPR.

-45 Unable to decompose fill area or fill area set in routine ****
DECGKS$_ERROR_NEG_45:

User Action: Simplify the fill area by breaking it up into smaller
fill areas until the error does not occur.

-46 No default connection identifier for specified workstation type in
routine ****
DECGKS$_ERROR_NEG_46:

User Action: Define the logical GKS$CONID to be a valid GKS
connection identifier.

The following errors are fatal errors. Should one occur, submit a Software
Performance Report (SPR) indicating the error number, corresponding
message, and any relevant particulars. For more information concerning
SPRs, refer to the DEC GKS Installation Guide.

DEC GKS Error Messages D-11

-90 Internal GKS error: Bad memory address freed in routine****

DECGKS$_ERROR_NEG_90:

Fatal: DEC GKS memory data structures were corrupted.

User Action: Submit an SPR.

-91 Internal GKS error: Invalid function pointer parameter in error
handler in routine ****

DECGKS$_ERROR_NEG_91:

Fatal: A DEC GKS internal data structure was corrupted.

User Action: Submit an SPR.

-92 Internal GKS error: Insufficient virtual memory in routine ****

DECGKS$_ERROR_NEG_92:

Fatal: DEC GKS was unable to allocate enough virtual memory.

User Action: Check to make sure that the problem is not caused
by storing too much in segment storage or by defining a very large
cell array. If you cannot reduce storage by checking segments and
cell arrays, submit an SPR.

-93 Internal GKS error: Prompt and echo type not supported in routine

DECGKS$_ERROR_NEG_93:

Fatal: Internal error.

User Action: Submit an SPR.

-94 Internal GKS error: Corrupted segment memory in routine****

DECGKS$_ERROR_NEG_94:

Fatal: Internal error.

User Action: Submit an SPR.

D-12 DEC GKS Error Messages

-95 Internal GKS error: Negative size passed to allocate memory in
routine ****
DECGKS$_ERROR_NEG_95:

Fatal: An invalid size was passed to the DEC GKS memory alloca
tion routines.

User Action: If you generate this error using a user-written
graphics handler, make sure that the value of the local storage area
is a valid value.

-96 Internal GKS error: Illegal number of points to device handler for
rectangular polygon in routine ****
DECGKS$_ERROR_NEG_96:

Fatal: Internal error.

User Action: Submit an SPR.

-97 Internal GKS error: Insufficient buffer size for translated logical
name in routine ****
DECGKS$_ERROR_NEG_97:

Fatal: Internal error.

User Action: Submit an SPR.

-98 Internal GKS error: Too many translations of logical name in
routine ****
DECGKS$_ERROR_NEG_98:

Fatal: You may have recursively defined a logical name.

User Action: Check the currently defined logical names to see if
all are properly defined. If you cannot locate an error, submit an
SPR.

-99 Internal GKS error: Unable to reduce number of points in fill area
to requested limit in routine ****
DECGKS$_ERROR_NEG_99:

Fatal: Internal error.

User Action: Submit an SPR.

DEC GKS Error Messages D-13

-100 Internal GKS error: Device handler received unexpected input
access in routine ****

DECGKS$_ERROR_NEG_100:

Fatal: Internal error.

User Action: Submit an SPR.

-150 Edge index is less than zero in routine****

DECGKS$_ERROR_NEG_l50:

User Action: Make sure the edge index passed in the escape
function GKS$K_ESC_SET_EDGE_INDEX is valid.

-151 Edge width scale factor is less than zero ****

DECGKS$_ERROR_NEG_151:

User Action: Make sure the edge width scale factor passed in the
escape function GKS$K_ESC_SET_EDGE_ WIDTH is valid.

-154 A representation for the specified edge index has not been prede
fined on this workstation in routine ****

DECGKS$_ERROR_NEG_154:

User Action: Check the index of the edge being inquired about to
make sure it is predefined.

-155 Display speed is less than zero in routine****

DECGKS$_ERROR_NEG_155:

User Action: Pass a positive real value to GKS$K_ESC_SET_
SPEED.

-156 Loudness is outside range [0,1] in routine****

DECGKS$_ERROR_NEG_156:

User Action: Pass a valid value to GKS$K_ESC_BEEP.

-157 Duration is less than zero in routine****

DECGKS$_ERROR_NEG_157:

User Action: Make sure that your duration value is greater than
or equal to zero.

D-14 DEC GKS Error Messages

-158 GDP primitive is not defined by the supplied data in routine****

DECGKS$_ERROR_NEG_158:

Error: DEC GKS is unable to form the desired primitive.

User Action: Refer to the error message listing in the description
of the GDP that generated the error (Appendix I, DEC GKS GDPs
and Escapes, in the DEC GKS Reference Manual). This listing
gives specific information concerning the primitive you attempted
to draw.

-159 Arc type is invalid in routine****

DECGKS$_ERROR_NEG_159:

User Action: Refer to the error message listing in the description
of the GDP that generated the error (Appendix I, DEC GKS GDPs
and Escapes, in the DEC GKS Reference Manual). This listing
gives specific information concerning the primitive you attempted
to draw.

-160 Insufficient space in escape output data record arrays in
routine ****

DECGKS$_ERROR_NEG_160:

Error: You passed addresses of arrays that were too small to
contain the data to be written to them.

User Action: Pass addresses of larger array buffers in the last
four components of the escape data record.

-161 Specified bounding box is too small in routine****

DECGKS$....ERROR_NEG_161:

Error: You specified text attributes that were too large to fill the
text in the bounding box (the extent rectangle).

User Action: Use a larger bounding box, or reduce the text height
or the character expansion factor.

-162 Edge index is invalid in routine****

DECGKS$_ERROR_NEG_162:

User Action: Make sure you use a valid edge iiidex.

DEC GKS Error Messages D-15

-163 Specified edge type is not supported on this workstation in
routine ****
DECGKS$_ERROR_NEG_163:

User Action: Make sure you use a valid edge type.

-300 Invalid value specified for highlighting in routine ****
DECGKS$_ERROR_NEG_300:

User Action: Make sure that you specify either GKS$K_NORMAL
(0) or GKS$K_HIGHLIGHTED (1).

-301 Invalid value specified for visibility in routine ****
DECGKS$_ERROR_NEG_301:

User Action: Make sure that you specify either GKS$K_
INVISIBLE (0) or GKS$K_ VISIBLE (1).

-302 Invalid value specified for detectability in routine ****
DECGKS$_ERROR_NEG_302:

User Action: Make sure that you specify either GKS$K_
UNDETECTABLE (0) or GKS$K_DETECTABLE (1).

-303 Input device cannot be activated due to conflict with another input
device that is currently active in routine ****
DECGKS$_ERROR_NEG_303:

-304 Cannot set input device echo on due to conflict with other input
devices active in the same echo area in routine ****
DECGKS$_ERROR_NEG_304:

-305 Error parsing GKS$[wstype]_INPUT_DEVICES logical name die to
syntax error in routine ****
GKS$_ERROR_NEG_305:

User Action: Check the definition of the logical name with the
syntax description in the Tektronix 41xx chapter in the DEC GKS
Device Specifics Reference Manual.

D-16 DEC GKS Error Messages

-306 The definition of GKS$HPGL_THRESHOLD is invalid (contains
nonnumeric values in routine) ****
DECGKS$_ERROR_NEG_306:

User Action: Check the definition of GKS$HPGL_THRESHOLD
and redefine to range 0 to 1023.

D.2 Operating State Errors

This section lists the errors that result when you call a function that is not
permitted in the current operating state. For a list of the functions that you
can or cannot call in a given DEC GKS operating state, refer to Chapter 3,
Control Functions, in the DEC GKS Reference Manual.

1 GKS not in proper state: GKS shall be in the state GKCL in
routine ****
GKS$_ERROR_l:

Error: You called a function unsupported in the current operating
state.

User Action: Call the appropriate DEC GKS control function to
change the current state. (You must call CLOSE GKS before the
current DEC GKS state changes to GKS$K_GKCL.)

2 GKS not in proper state: GKS shall be in the state GKOP in
routine ****
GKS$_ERROR_2:

Error: You called a function unsupported in the current operating
state.

User Action: Call the appropriate DEC GKS control function
to change the current state. (You must call either the function
OPEN GKS or CLOSE WORKSTATION before the DEC GKS state
changes to GKS$K_GKOP.)

DEC GKS Error Messages D-17

3 GKS not in proper state: GKS shall be in the state WSAC in
routine ****
GKS$_ERROR_3:

Error: You called a function unsupported in the current state.

User Action: Call the appropriate DEC GKS control function
to change the current state. (You must call either the function
ACTIVATE WORKSTATION or CLOSE SEGMENT before the DEC
GKS state changes to GKS$K_ WSAC.)

4 GKS not in proper state: GKS shall be in the state SGOP in
routine ****
GKS$_ERROR_4:

Error: You called a function unsupported in the current state.

User Action: Call the appropriate DEC GKS control function to
change the current state. (You must call the function CREATE
SEGMENT before the DEC GKS state changes to GKS$K_SGOP.)

5 GKS not in proper state: GKS shall be either in the state WSAC or
in the state SGOP in routine ****
GKS$_ERROR_5:

Error: You called a function unsupported in the current state.

User Action: Call the appropriate DEC GKS control function to
change the current state. (You must call the function ACTIVATE
WORKSTATION before the DEC GKS state changes to GKS$K....
WSAC.)

6 GKS not in proper state: GKS shall be in the state WSOP or in the
state WSAC in routine ****
GKS$_ERROR_6:

Error: You called a function unsupported in the current state.

User Action: Call the appropriate DEC GKS control function
to change the current state. (You must call the function OPEN
WORKSTATION before the DEC GKS state changes to GKS$K_
WSOP.)

D-18 DEC GKS Error Messages

7 GKS not in proper state: GKS shall be in one of the states WSOP,
WSAC, or SGOP in routine ****
GKS$_ERROR_7:

Error: You called a function unsupported in the current state.

User Action: Call the appropriate DEC GKS control function
to change the current state. (You must call the function OPEN
WORKSTATION before the DEC GKS state changes to GKS$K:...
WSOP.)

8 GKS not in proper state: GKS shall be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine ****
GKS$_ERROR_8:

Error: You called a function unsupported in the current state.

User Action: Call the appropriate DEC GKS control function
to change the current state. (You must call the function OPEN
WORKSTATION before the DEC GKS state changes to GKS$K:...
WSOP.)

D.3 Workstation Errors

This section lists the errors that result when you call a DEC GKS function
with invalid or undefined arguments pertaining to workstations.

20 Specified workstation identifier is invalid in routine ****
GKS$_ERROR_20:

User Action: Make sure that you have opened a workstation
associated with that identifier, that you are not trying to generate
output to an inactive workstation, that the arguments are pre
sented in the right order, and if you are using a variable to specify
the workstation identifier, that the variable is declared to be an
integer.

DEC GKS Error Messages D-19

21 Specified connection identifier is invalid in routine ****
GKS$_ERROR_21:

User Action: Make sure that the specified connection exists
and is allocated to your process (by typing SHOW DEVICES at
the DCL command line), that the workstation type supports the
specified connection identifier (especially in the case of output-only
workstations that write information to files, such as
GKS$K_VT_OUTPUT), and that the arguments are specified in the
correct order.

22 Specified workstation type is invalid in routine ****
GKS$_ERROR_22:

User Action: Check to make sure that you passed either a DEC
GKS constant (GKS$K_WSTYPE_DEFAULT, GKS$K_VT241) or
the corresponding integer values.

23 Specified workstation type does not exist in routine ****
GKS$_ERROR_23:

Error: The implementation of GKS does not support a device
handler associated with the identifier you passed.

User Action: Pass an identifier associated with a supported
device. If you are using the constant GKS$K_ WSTYPE_DEFAULT,
you should use INQUIRE WORKSTATION CONNECTION AND
TYPE to check to see if DEC GKS supports the currently defined
workstation type.

24 Specified workstation is open in routine ****
GKS$_ERROR_24:

Error: You tried to reopen a workstation.

User Action: Either remove the function call to OPEN
WORKSTATION, or replace the incorrect workstation-type ar
gument.

D-20 DEC GKS Error Messages

25 Specified workstation is not open in· routine ****
GKS$_ERROR_25:

Error: You tried to input or generate output on a closed
workstation.

User Action: Call OPEN WORKSTATION and pass the appropri
ate workstation identifier.

26 Specified workstation cannot be opened in routine ****
GKS$_ERROR_26:

User Action: Make sure that you specify valid workstation
types, bit masks, or logical name definitions (GKS$CONID and
GKS$WSTYPE), and make sure that the information corresponds
to a supported, functional physical device.

27 Workstation Independent Segment Storage is not open in
routine ****
GKS$_ERROR_27:

Error: You tried to copy, associate, or insert a segment from WISS
to another workstation.

User Action: Make sure that you have opened WISS in a call to
OPEN WORKSTATION, passing GKS$K_WSTYPE_WISS as an
argument.

28 Workstation Independent Segment Storage is already open in
routine ****
GKS$_ERROR_28:

User Action: Either remove the function call to OPEN
WORKSTATION, or replace the incorrect workstation-type ar
gument.

29 Specified workstation is active in routine ****
GKS$_ERROR_29:

Error: You tried to activate a workstation twice.

User Action: Either remove the function call to ACTIVATE
WORKSTATION, or replace the incorrect workstation-type ar
gument.

DEC GKS Error Messages D-21

30 Specified workstation is not active in routine ****
GKS$_ERROR_30:

Error: You tried to generate output on an inactive workstation.

User Action: Call ACTIVATE WORKSTATION passing the appro
priate workstation.

31 Specified workstation is of category MO in routine ****
GKS$_ERROR_31:

Error: You attempted to perform an operation that is not permissi
ble on MO workstations.

User Action: Either remove the function call, change the state
of the MO workstation, or check to see if you passed the correct
arguments to OPEN WORKSTATION.

32 Specified workstation is not of category MO in routine ****
GKS$_ERROR_32:

User Action: Open and activate an MO workstation.

33 Specified workstation is of category MI in routine ****
GKS$_ERROR_33:

Error: You attempted to perform an operation that is not permissi
ble on MI workstations.

User Action: Either remove the function call, change the state
of the MI workstation, or check to see if you passed the correct
arguments to OPEN WORKSTATION.

34 Specified workstation is not of category MI in routine ****
GKS$_ERROR_34:

Error: You tried to interpret a file that was not associated with an
MI workstation.

User Action: Open a workstation of category MI.

D-22 DEC GKS Error Messages

35 Specified workstation is of category INPUT in routine ****
GKS$_ERROR_35:

Error: You attempted to perform an operation that is not per
missible on workstations of category INPUT, such as generating
output.

User Action: Either remove the function call, change the state of
the INPUT workstation, or check to see if you passed the correct
arguments to OPEN WORKSTATION.

36 Specified workstation is Workstation Independent Segment Storage
in routine ****
GKS$_ERROR_36:

Error: You attempted to perform an operation that is not per
missible on workstations of category WISS, such as requesting
input.

User Action: Either remove the function workstation identifier
or check to see if you passed the correct arguments to OPEN
WORKSTATION.

37 Specified workstation is not of category OUTIN in routine ****
GKS$_ERROR_37:

Error: You attempted to perform an operation that is only permis
sible on workstations of category OUTIN.

User Action: Either remove the function call, open and activate
an OUTIN workstation, or check to see if you passed the correct
arguments to OPEN WORKSTATION.

38 Specified workstation is neither of category INPUT nor of category
OUTIN in routine ****
GKS$_ERROR_38:

Error: You attempted to perform an operation that is only per
missible on workstations of category INPUT and OUTIN, such as
requesting input.

User Action: Either remove the function call, change the state of
the INPUT workstation, or check to see if you passed the correct
arguments to OPEN WORKSTATION.

DEC GKS Error Messages D-23

39 Specified workstation is neither of category OUTPUT nor of cate
gory OUTIN in routine ****
GKS$_ERROR_39:

Error: You attempted to perform an operation that is only per
missible on workstations of category OUTPUT or OUTIN, such as
generating output.

User Action: Either remove the function call, open and activate a
workstation of the correct category, or check to see if you passed the
correct arguments to OPEN WORKSTATION.

40 Specified workstation has no pixel store readback capability in
routine ****
GKS$_ERROR_40:

Error: You called one of the pixel inquiry functions for a device
incapable of returning such information.

User Action: Either remove the function call, or make sure that
you passed the correct workstation identifier.

41 Specified workstation type is not able to generate the specified
generalized drawing primitive in routine ****
GKS$_ERROR_41:

User Action: Either remove the function call to GENERALIZED
DRAWING PRIMITIVE, or make sure that you passed the correct
GDP identifier.

42 Maximum number of simultaneously open workstations would be
exceeded in routine ****
GKS$_ERROR_42:

User Action: You must remove the function call to OPEN
WORKSTATION. You can use INQUIRE WORKSTATION
MAXIMUM NUMBERS to determine the maximum number of
open workstations that DEC GKS supports.

D-24 DEC GKS Error Messages

43 Maximum number of simultaneously active workstations would be
exceeded in routine ****
GKS$_ERROR_43:

User Action: You must remove the function call to ACTIVATE
WORKSTATION. You can use INQUIRE WORKSTATION
MAXIMUM NUMBERS to determine the maximum number of
active workstations that DEC GKS supports.

D.4 Transformation Function Errors

This section lists the errors that result when you call a DEC GKS transfor
mation function with invalid or undefined arguments.

50 Transformation number is invalid in routine ****
GKS$_ERROR_50:

User Action: Make sure either that the arguments are specified in
the correct order, that the transformation number is not negative,
or that the tran~formation number is an integer.

51 Rectangle definition is invalid in routine ****
GKS$_ERROR_51:

Error: Either the normalization window or viewport is invalid.

User Action: Make sure either that you have not reversed the
order of the X and Y argument values, that your coordinate val:ues
form a valid rectangle, and that your coordinate values are real
numbers.

52 Viewport is not within the Normalized Device Coordinate unit
square in routine ****
GKS$_ERROR_52:

Error: DEC GKS allows unclipped primitives to exceed the NDC
unit square ([0,1] x [0,1]), but does not allow you to define a nor
malization viewport whose boundaries exceed this square.

User Action: Redefine the function normalization viewport.

DEC GKS Error Messages D-25

53 Workstation window is not within the Normalized Device
Coordinate unit square in routine ****

GKS$_ERROR_53:

User Action: Redefine the function normalization viewport to be
within the NDC square ([0,1] x [0,1]).

54 Workstation viewport is not within the display space in
routine ****

GKS$_ERROR_54:

User Action: Make sure either that you have not reversed the
order of the X and Y argument values, that your coordinate values
form a valid rectangle, and that your coordinate values are real
numbers. You can use the function INQUIRE DISPLAY SPACE
SIZE to determine the maximum X and Y values of the device
coordinate plane.

D.5 Output Attribute Errors

This section lists the errors that result when you call the DEC GKS output
attribute functions with invalid or undefined arguments.

60 Polyline index is invalid in routine ****

GKS$_ERROR_60:

User Action: Make sure that the arguments are specified in the
correct order and that the index is an integer.

61 A representation for the specified polyline index has not been
defined on this workstation in routine ****

GKS$_ERROR_61:

User Action: Use SET POLYLINE REPRESENTATION to define
a representation for the index, or use another, defined index value.

62 A representation for the specified polyline index has not been
predefined on this workstation in routine****

GKS$_ERROR_62:

User Action: Use SET POLYLINE REPRESENTATION to define
a representation for the index, or use another, predefined index
value.

D-26 DEC GKS Error Messages

63 Specified linetype is equal to zero in routine ****
GKS$_ERROR_63:

User Action: Make sure that the order and the number of the
arguments is correct. If you used an inquiry function to obtain a
default line type, check the order of the arguments passed to the
inquiry function.

64 Specified linetype is not supported on this workstation in
routine ****
GKS$_ERROR_64:

Error: You specified a line type value that is workstation depen
dent but is not supported by the specified workstation.

User Action: Change the line type specification. You can use
the function INQUIRE POLYLINE FACILITIES to obtain a list of
supported line types for a given workstation.

65 Linewidth scale factor is less than zero in routine ****
GKS$_ERROR_65:

User Action: Either change the scale factor, or check the order
and the number of the specified arguments.

66 Polymarker index is invalid in routine ****
GKS$_ERROR_66:

User Action: Make sure that the arguments are specified in the
correct order and that the index is an integer.

67 A representation for the specified polymarker index has not been
defined on this workstation in routine ****
GKS$_ERROR_67:

User Action: Use SET POLYMARKER REPRESENTATION to
define a representation for a given index or use another, defined
index value.

DEC GKS Error Messages D-27

68 A representation for the specified polymarker index has not been
predefined on this workstation in routine ****
GKS$_ERROR_68:

User Action: Use SET POLYMARKER REPRESENTATION to
define a representation for a given index or use another, predefined
index value.

69 Specified marker type is equal to zero in routine ****
GKS$_ERROR_69:

User Action: Make sure that the order of the arguments is correct.
If you used an inquiry function to obtain a default marker type,
check the order of the arguments passed to the inquiry function.

70 Specified marker type is not supported on this workstation in
routine ****
GKS$_ERROR_70:

Error: You specified a marker type value that is workstation
dependent but is not supported by the specified workstation.

User Action: Change the marker type specification. You can use
the function INQUIRE POLYMARKER FACILITIES to obtain a list
of supported line types for a given workstation.

71 Marker size scale factor is less than zero in routine ****
GKS$_ERROR_71:

User Action: Either change the scale factor, or check the order
and the number of the specified arguments.

72 Text index is invalid in routine ****
GKS$_ERROR_72:

User Action: Make sure that the arguments are specified in the
correct order and that the index is an integer.

73 A representation for the specified text index has not been defined
on this workstation in routine ****
GKS$_ERROR_73:

User Action: Use SET TEXT REPRESENTATION to define a
representation for the index value or use another, defined index
value.

D-28 DEC GKS Error Messages

7 4 A representation for the specified text index has not been prede
fined on this workstation in routine ****

GKS$_ERROR_74:

User Action: Use SET TEXT REPRESENTATION to define a
representation for the index value or use another, predefined index
value.

75 Text font is equal to zero in routine****

GKS$_ERROR_75:

User Action: Either change the font number, or check the order
and the number of the specified arguments. If you used an inquiry
function to obtain a default value, check the order and the number
of the arguments passed to the inquiry function.

76 Requested text font is not supported for the specified precision on
this workstation in routine ****
GKS$_ERROR_76:

User Action: Lower the precision or change the font number.

77 Character expansion factor is less than or equal to zero in
routine ****
GKS$_ERROR_77:

User Action: Either change the expansion factor value or check
the order and the number of the arguments. If you used an inquiry
function to obtain a default value, check the order and the number
of the arguments passed to the inquiry function.

78 Character height is less than or equal to zero in routine ****
GKS$_ERROR_78:

User Action: Either change the height value, or check the order
and the number of the arguments. If you used an inquiry function
to obtain a default value, check the order and the number of the
arguments passed to the inquiry function.

DEC GKS Error Messages D-29

79 Length of character up vector is zero in routine ****

GKS$_ERROR_79:

User Action: Change the character up vector, or check the order
and the number of the arguments. If you used an inquiry function
to obtain a default value, check the order and the number of the
arguments passed to the inquiry function.

80 Fill area index is invalid in routine ****

GKS$_ERROR_80:

User Action: Make sure that the arguments are specified in the
correct order and that the index is an integer.

81 A representation for the specified fill area index has not been
defined on this workstation in routine ****

GKS$_ERROR_81:

User Action: Use SET FILL AREA REPRESENTATION to define
a representation for the given index value or pass another, defined
index value.

82 A representation for the specified fill area index has not been
predefined on this workstation in routine ****

GKS$_ERROR_82:

User Action: Use SET FILL AREA REPRESENTATION to de
fine a representation for the given index value or pass another,
predefined index value.

83 Specified fill area interior style is not supported on this workstation
in routine ****

GKS$_ERROR_83:

Error: You specified a fill area interior style value that is
workstation-dependent but is not supported by the specified
workstation.

User Action: Change the interior style specification. You can use
the function INQUIRE FILL AREA FACILITIES to obtain a list of
supported interior styles for a given workStation.

D-30 DEC GKS Error Messages

84 Style (pattern or hatch) index is equal to zero in routine ****
GKS$_ERROR_84:

User Action: Either change the style index, or check the order
and the number of the specified arguments. If you used an inquiry
function to obtain a style index, check the order and the number of
the arguments passed to the inquiry function.

85 Specified pattern index is invalid in routine ****
GKS$_ERROR_85:

User Action: Make sure that the arguments are specified in the
correct order and that the index is an integer.

86 Specified hatch style is not supported on this workstation in
routine ****
GKS$_ERROR_86:

User Action: Either replace the hatch style index, or check the
order and the number of the arguments. The inquiry function
INQUIRE FILL AREA FACILITIES returns the list of available
hatch style indexes.

87 Pattern size value is not positive in routine ****
GKS$_ERROR_87:

User Action: Either alter the size of the pattern, or check the
order and the number of the arguments. If you used an inquiry
function to obtain the size of the pattern, check the order and the
number of the arguments passed to the inquiry function.

88 A representation for the specified pattern index has not been
defined on this workstation in routine ****
GKS$_ERROR_88:

User Action: Use SET PATTERN REPRESENTATION to define a
representation for the pattern index or pass another, defined index
to the function.

DEC GKS Error Messages D-31

89 A representation for the specified pattern index has not been
predefined on this workstation in routine ****
GKS$_ERROR_89:

User Action: Use SET PATTERN REPRESENTATION to defiile
a representation for the pattern index or pass another, predefined
index to the function.

90 Interior style PATTERN is not supported on this workstation in
routine ****
GKS$_ERROR_90:

User Action: Specify another interior style to SET FILL AREA
INTERIOR STYLE.

91 Dimensions of color array are invalid in routine ****
GKS$_ERROR_91:

Error: One or more of the arguments passed to CELL ARRAY are
invalid.

User Action: Make sure that the color array is a two-dimensional
array. Also, make sure that you have not specified more rows and
columns in the cell array that exist from the offset point to the end
of the array. Also, make sure that the cell array contains integers
representing colors supported on that workstation.

92 Color index is less than zero in routine ****
GKS$_ERROR_92:

User Action: Either remove the index, or check the order and the
number of the arguments. If you used an inquiry function to obtain
the index value, check the order and the number of the arguments
passed to the inquiry function.

93 Color index is invalid in routine ****
GKS$_ERROR_93:

User Action: Make sure that the arguments are specified in the
correct order and that the index is an integer.

D-32 DEC GKS Error Messages

94 A representation for the specified color index has not been defined
on this workstation in routine ****

GKS$_ERROR_94:

User Action: Use SET COLOR REPRESENTATION to define a
color representation for the index value, or pass another, defined
index value.

95 A representation for the specified color index has not been prede
fined on this workstation in routine ****

GKS$_ERROR_95:

User Action: Use SET COLOR REPRESENTATION to define a
color representation for the index value, or pass another, defined
index value.

96 Color index is outside range [0,1] in routine****

GKS$_ERROR_96:

User Action: Specify either the value 0 or 1 for the color index
value.

97 Pick identifier is invalid in routine ****

GKS$_ERROR_97:

User Action: Either remove the call to SET PICK IDENTIFIER or
make sure that the pick identifier is an integer. If you obtained the
pick identifier from an inquiry function, check the order and the
number of the arguments passed to the inquiry function.

D.6 Output Function Errors

This section lists the errors that result when you call a DEC GKS output
function with invalid or undefined arguments.

100 Number of points is invalid in routine ****

GKS$_ERROR_100:

Error: The number of points specified does not match the number
of coordinate points passed.

User Action: Either alter the specified number of points, or alter
the number of coordinate values contained in the arrays passed as
arguments.

DEC GKS Error Messages D-33

101 Invalid code in string in routine ****
GKS$_ERROR_101:

Error: Your text string contained characters that cannot be
printed.

User Action: Remove the characters.

102 Generalized drawing primitive identifier is invalid in routine ****
GKS$_ERROR_102:

User Action: Specify another identifier or check to see if the
identifier is an integer value.

103 Content of generalized drawing primitive data record is invalid in
routine ****
GKS$_ERROR_103:

User Action: Make sure that you passed a correct size as the data
record size.

104 At least one active workstation is not able to generate the specified
generalized drawing primitive in routine ****
GKS$_ERROR_104:

User Action: Deactivate the workstations that do not generate the
GDPs, or redefine the GDP data record so that all the workstations
can generate the primitive.

105 At least one active workstation is not able to generate the specified
generalized drawing primitive under the current transformation
and clipping rectangle in routine ****
GKS$_ERROR_105:

User Action: Either redefine the current normalization transfor
mation (creating a different clipping rectangle), or supply different
world coordinate points so that the GDP falls within the current
clipping rectangle.

D.7 Segment Function Errors

This section lists the errors that result when you call a DEC GKS segment
function with invalid or undefined arguments.

D-34 DEC GKS Error Messages

120 Specified segment name is invalid in routine ****

GKS$_ERROR_120:

User Action: Either check the number and the order of the ar
guments or make sure that the segment name is an integer value.
If you obtained the segment name from an inquiry function, check
the order and the number of the arguments passed to the inquiry
function.

121 Specified segment name is already in use in routine ****

GKS$_ERROR_121:

User Action: Either remove the call to CREATE SEGMENT or
check to make sure that you specified the correct segment name.

122 Specified segment does not exist in routine ****

GKS$_ERROR_122:

User Action: Either check the order and the number of the ar
guments or make sure that you specified an integer value as a
segment name. If you used an inquiry function to obtain the seg
ment name, check the order and the number of the arguments
passed to the inquiry function.

123 Specified segment does not exist on specified workstation in
routine ****

GKS$_ERROR_123:

User Action: Either remove the function call, or if the segment
exists in WISS, associate the segment with the appropriate
workstation.

124 Specified segment does not exist on Workstation Independent
Segment Storage in routine ****

GKS$_ERROR_124:

User Action: You attempted to copy, associate, or insert a segment
that is not stored in WISS. Either remove the function call or check
to see that you specified the correct segment name.

125 Specified segment is open in routine****

GKS$_ERROR_125:

User Action: Either remove the call to CREATE SEGMENT or
specify another segment name.

DEC GKS Error Messages D-35

126 Segment priority is outside the range [0,1] in routine****

GKS$_ERROR_l26:

User Action: Change the specified segment priority. If you used
an inquiry function to obtain the segment priority value, check
the order and the number of the arguments passed to the inquiry
function.

D.8 Input Function Errors

This section lists the errors that result when you call a DEC GKS input
function with invalid or undefined arguments.

140 Specified input device is not present on workstation in routine****

GKS$_ERROR_140:

User Action: Make sure that you specified the function that ap
plies to the correct logical input device and the correct workstation
identifier.

141 Input device is not in REQUEST mode in routine ****

GKS$_ERROR_141:

User Action: Use one of the SET MODE input functions to set
request mode before using this logical input device.

142 Input device is not in SAMPLE mode in routine ****

GKS$_ERROR_142:

User Action: Use one of the SET MODE input functions to set to
sample mode before using this logical input device.

143 EVENT and SAMPLE input mode are not available at this level of
GKS in routine ****

GKS$_ERROR_143:

User Action: DEC GKS does not generate this error.

D-36 DEC GKS Error Messages

144 Specified prompt and echo type is not supported on this workstation
in routine ****
GKS$_ERROR_l44:

User Action: Make sure that the order of the arguments is correct
or change the prompt and echo value. If you obtained the prompt
and echo type from an inquiry function, check the order and the
number of the arguments passed to the inquiry function.

145 Echo area is outside display space in routine ****
GKS$_ERROR_145:

User Action: Make sure that the specified coordinate points are
real values that specify a valid rectangle on the display surface.
If you used an inquiry function to obtain the echo area, check
the order and the number of the arguments passed to the inquiry
function.

146 Contents of input data record are invalid in routine ****
GKS$_ERROR_146:

User Action: Make sure that you specified the correct size of the
data record, that the elements of the data record are of the correct
data type, and that you have chosen the correct corresponding
prompt and echo type. If you used an inquiry function to obtain the
data record, check the order and number of the arguments passed
to the inquiry function. Also, make sure that you have not specified
input values that are not accepted by the particular device; you
can check the device's capabilities by calling one of the DEFAULT
DATA inquiry functions.

14 7 Input queue has overflowed in routine ****
GKS$_ERROR_147:

User Action: Check the input queue with greater frequency or
flush the input queue.

DEC GKS Error Messages D-37

148 Input queue has not overflowed since GKS was opened or the last
invocation of INQUIRE INPUT QUEUE OVERFLOW in
routine ****

GKS$_ERROR_148:

Error: You called INQUIRE INPUT QUEUE OVERFLOW when
the queue was not full, and had not been filled since the beginning
of your application.

User Action: Continue to generate events, if your application still
requires input.

149 Input queue has overflowed, but associated workstation has been
closed in routine ****

GKS$_ERROR_149:

Error: You called INQUIRE INPUT QUEUE OVERFLOW when
the queue was full, but since the workstation is closed, information
about the overflow is not available.

User Action: You can set the devices to request mode (removing
their prompts from the workstation surface), and then either you
can process reports from the queue until empty or :flush the queue
of all reports.

150 No input value of the correct class is in the current event report in
routine ****

GKS$_ERROR_150:

User Action: Make sure that you check the input class argument
passed to AWAIT EVENT before you try to call the appropriate
GET function.

151 Timeout is invalid in routine****

GKS$_ERROR_151:

User Action: Make sure that the timer argument in AWAIT
EVENT is a real value between 0.0 and 356, 400, specified in the
format described in the AWAIT EVENT function description in
Chapter 7, Input Functions, in the DEC GKS Reference Manual.

D-38 DEC GKS Error Messages

152 Initial value is invalid in routine ****

GKS$_ERROR_152:

User Action: Either check to make sure that you specified the
correct value, or check the capabilities of the device to see if you
requested a value unsupported by the device. If you obtained the
value from an inquiry function, check the order and number of
arguments specified to the inquiry function.

153 Number of points in the initial stroke is greater than the buffer size
in routine ****

GKS$_ERROR_153:

User Action: Either increase the size of the buffer or reduce the
number of points in the initial stroke.

154 Length of initial string is greater than the buffer size in
routine ****

GKS$_ERROR_154:

User Action: Either increase the size of the buffer or decrease the
size of the initial string.

D.9 Metafile Function Errors

This section lists the errors that result when you call a DEC GKS metafile
function with invalid or undefined arguments.

160 Item type is not allowed for user items in routine****

GKS$_ERROR_160:

Error: You used an item type less than 101 to write to a GKSM.

User Action: Use an item type greater than or equal to 101.

161 Item length is invalid in routine****

GKS$_ERROR_161:

Error: The length of the data item was shorter than necessary for
its type.

User Action: Make sure that DEC GKS does not truncate your
record when reading the item from a GKSM.

DEC GKS Error Messages D-39

162 No item is left in GKS Metafile input in routine****

GKS$_ERROR_162:

Error: You tried to read past the end of the GKSM.

User Action: Do not attempt to read items past the item of type 0.

163 Metafile item is invalid in routine****

GKS$_ERROR_163:

Error: Your item data was incorrect.

User Action: Make sure that DEC GKS did not truncate the item
while reading from a GKSM and that you specified correct sizes and
types. Make sure that you are not trying to interpret a user-defined
record type. User-defined records have item numbers greater
than 100.

164 Item type is not a valid GKS item in routine****

GKS$_ERROR_l64:

Error: You tried to interpret an item of type less than 0 or greater
than 100.

User Action: Make sure that DEC GKS did not truncate the item
while reading from a GKSM and that you specified correct sizes
and types.

165 Content of item data record is invalid for the specified item type in
routine ****

GKS$_ERROR_165:

Error: There was unexpected or incorrect information in the data
record.

User Action: Make sure that you pass the correct storage area.

166 Maximum item data record length is invalid in routine ****

GKS$_ERROR_166:

User Action: Make sure that the data length is not negative.

167 User item cannot be interpreted in routine****

GKS$_ERROR_167:

User Action: Do not pass user items to DEC GKS for
interpretation.

D-40 DEC GKS Error Messages

168 Specified function is not supported in this level of GKS in
routine ****

GKS$_ERROR_168:

This error code is required by the standard, but DEC GKS
will never generate this error~

D.1 O Escape Function Errors

This section lists the errors that result when you call a DEC GKS escape
function with invalid or undefined arguments.

180 Specified escape function is not supported in routine ****

GKS$_ERROR_180:

User Action: Check the escape function identifier to make sure
that it is a valid integer representing an escape function, and make
~ure that you specified the correct workstation· identifier.

181 Specified escape function identifier is invalid in routine****

GKS$_ERROR_181:

User Action: Make sure that the escape function identifier is a
valid integer value.

182 Contents of escape data record are invalid in routine ****

GKS$_ERROR_182:

User Action: Make sure that you specified the correct size of the
data record. Also, make sure that the elements of the data record
are declared to be the correct data type.

D.11 Miscellaneous Errors

This section lists the DEC GKS miscellaneous errors.

200 Specified error file is invalid in routine ****

GKS$_ERROR_200:

User Action: Make sure that your specified error handler exists
and that it includes the three required parameters in its definition.

DEC GKS Error Messages D-41

D.12 System Errors

This section lists implementation-dependent errors.

300 Storage overflow has occurred in GKS ****
GKS$_ERROR_300:

User Action: Either remove the index, or check the order and the
number of the arguments. If you used an inquiry function to obtain
the index value, check the order and the number of the arguments
passed to the inquiry function.

301 Storage overflow has occurred in segment storage ****
GKS$_ERROR_301:

User Action: Either remove the index, or check the order and the
number of the arguments. If you used an inquiry function to obtain
the index value, check the order and the number of the arguments
passed to the inquiry function.

302 Input/Output error has occurred while reading in routine ****
GKS$_ERROR_302:

Error: You specified an illegal metafile for a metafile input
workstation.

User Action: Make sure that you work with a valid GKSM
metafile and that you correctly specify the connection identifier.

303 Input/Output error has occurred while writing in routine ****
GKS$_ERROR_303:

Error: You specified an illegal metafile for a metafile output
workstation.

User Action: Make sure that you work with a valid GKSM
Metafile and that you correctly specify the connection identifier.

304 Input/Output error has occurred while sending data to a
workstation ****
GKS$_ERROR_304:

User Action: Submit an SPR.

D-42 DEC GKS Error Messages

305 Input/Output error has occurred while receiving data from a
workstation ****
GKS$_ERROR_305:

User Action: Submit an SPR.

306 Input/Output error has occurred during program library
management ****
GKS$_ERROR_306:

User Action: Submit an SPR.

307 Input/Output error has occurred while reading workstation descrip
tion table ****
GKS$_ERROR_307:

User Action: Submit an SPR.

308 Arithmetic error has occurred in routine ****
GKS$_ERROR_308:

Error: You either divided by zero or caused data overft.ow.

User Action: Check the arguments passed in the function call.

DEC GKS Error Messages D-43

Appendix E

DEC GKS Metafile Structures (GKSM, CGM)

This appendix provides a brief overview of the internal format of GKSM
and CGM metafiles. DEC GKS defines the workstations GKS$K_GKSM_
OUTPUT and GKS$K_CGM_OUTPUT to use when creating metafiles. DEC
GKS defines the workstation GKS$K_GKSM_INPUT to use when reading
metafiles. Remember that DEC GKS can create, but cannot interpret, CGM
metafiles.

If you need to understand the GKSM metafile format in detail, refer to the
GKS ANSI standard document. If you need to understand the CGM metafile
encoding formats in detail, refer to the CGM standard ANSI X3.122-1986.
All references to the CGM standard in this appendix refer to this standard
document.

The following sections briefly describe GKSM and CGM metafiles.

E.1 GKSM Metafiles

The GKS standard defined the GKS metafile (GKSM) for the purpose of
storing and retrieving information about the generation of a picture. The
metafile can contain information about GKS output function calls from level
0 to level 2.

The design of the GKSM metafile structure defines a sequence of logical
data items. The data items include information in both a clear text encoding
and an unspecified binary format. The following sections describe the format
and coding of the GKSM logical data items.

DEC GKS Metafile Structures (GKSM, CGM) E-1

E.1.1 Data Format Information

The proposed standard ISO 6093 will describe the representation of integer
and real number representations. This standard is not likely to be completed
for quite some time. There is a movement for ISO 6093 to support use of a
comma rather than a period in floating-point numbers. DEC GKS does not
support this use of commas.

Integers are formatted in decimal ASCII characters in the output metafile.
Floating-point numbers are formatted in the standard F- or E-Floating
formats, decimal ASCII characters, depending upon their value.

The GKSM metafile allows four possible ways to represent integers and
floating-point numbers, as follows:

• Both integer and floating-point numbers are specified by their character
representations.

• Integer numbers are specified by their character representations.
Floating-point numbers are represented as scaled integers.

• Both integer and floating-point numbers are specified by their internal
binary representations.

• Integer numbers are specified by their internal binary representations.
Floating-point numbers are represented as scaled integers.

Remember that both integer and floating-point numbers are specified by
their character representations.

GKSM metafiles also allow differing field length specifications for different
fields of the metafile. The input workstation recognizes all the different field
length specifications.

E.1.2 GKSM Structure

A GKSM metafile consists of a metafile header followed by metafile items.
Each metafi.le item consists of an item header followed by item data.
Figure E-1 illustrates this structure.

E-2 DEC GKS Metafile Structures (GKSM, · CGM)

Figure E-1: GKSM Metafile Structure

Metafile Header Metafile Item Metafile Item

ZK-5220-86

E.1.2.1 Metafile Header Structure

The metafile header contains 90 bytes. The bytes are divided into 13 fields
as follows. Figure E-2 illustrates this structure.

Figure E-2: GKSM Metafile Header Structure

I GKSM I
ZK-5221-86

Table E-1 describes the fields within the metafile header.

Table E-1: GKSM Metafile Header Fields

Field Size

GKSM 4 bytes

N 40 bytes

D 8 bytes

V 2 bytes

H 2 bytes

T 2bytes

Description

Containing string "GKSM".

Containing name of author/installation. In DEC GKS,
author is the process name at the· time of metafile
creation (16 bytes) and installation is "DEC GKS Version
2.0".

Containing date (yy/mm/dd).

Version number (01).

Integer specifying how many bytes of the string "GKSM"
occupy the beginning of each record (04).

Length of item type indicator field (03).

(continued on next page)

DEC GKS Metafile Structures (GKSM, CGM) E-3

E.1.2.2

Table E-1 (Cont.): GKSM Metafile Header Fields

Field

L

I

R

F

RI

ZERO

ONE

Size

2 bytes

2 bytes

2 bytes

2 bytes

2 bytes

11 bytes

11 bytes

Description

Length of item data record length indicator field (08).

Length of field for each integer in the item data record
(08).

Length of field for each real number in the item data
record (14).

Flag indicating if numbers are formatted as characters (1)
or are stored in an internal binary format (2). DEC GKS
value is 01.

Flag indicating if real numbers are stored as real num
bers (01) or as scaled integers (02). DEC GKS value is
01.

Scaling information. Not used.

Scaling information. Not used.

Metafile Item Structure

There are several different types of metafile items. Each item consists of an
item header and an item data record. The item header format is the same
for all types of metafile items, but the item data record varies in length and
format for each type of metafile item. Figure E--3 illustrates the structure of
a metafile item.

Figure E-3: GKSM Metafile Item Structure

Item Header Item Data Record

ZK-5222-86

E.1.2.3 Item Header Structure

Each item header contains 15 bytes, divided in three fields. Figure E-4
illustrates the item header structure.

E-4 DEC GKS Metafile Structures (GKSM, CGM)

Figure E-4: GKSM Metafile Item Header Structure

I GKSM I item Number Item Data Length

ZK-5223-86

Table E-2 presents the item header fields.

Table E-2: GKSM Metafile Item Header Fields

Field Size

GKSM 4 bytes

Item Number 3 bytes

Item Data 8 bytes
Length

E.1.2.4 Layout of Item Data Records

Description

Contains the string 11GKSM11
•

Contains an integer identifying the item.

Contains an integer specifying the length, in bytes,
of the item data record.

Each item data type, identified by a unique item number (an integer), has a
specific format associated with it. Table E-3 lists the possible item numbers
and their associated formats.

Table E-3: GKSM Metafile Data Record Fields

Number Format

0 END ITEM-Last item of the metafile. No data record.

1 CLEAR WORKSTATION-For all active workstations. a) Integer, 0 =
CONDITIONALLY or 1 = ALWAYS.

2 REDRAW ALL SEGMENTS ON WORKSTATION-No data record.

3 UPDATE WORKSTATION-For all active workstations. a) Integer, 0 =
POSTPONE, 1 = PERFORM.

4 SET DEFERRAL STATE-a) Integer = deferral mode, 0 = ASAP, 1
= BNIG, 2 = BNIL, 3 = ASTI; b) Integer= regeneration mode, 0 =
ALLOWED, 1 = SUPPRESSED.

(continued on next page)

DEC GKS Metafile Structures (GKSM, CGM) E-5

Table E-3 (Cont.): GKSM Metafile Data Record Fields

Number Format

5 MESSAGE-a) Integer = number of characters in string; b) string with
specified number of characters.

6 ESCAPE-For all active workstations. a) Integer= function id, b)
Integer = bytes of integer array d, c) Integer = bytes of real number
array e, d) integer argument array, e) real argument array.

11 POLYLINE-a) Integer= N, Number ofpolymarkers, b) N pairs of real
numbers. Each pair specifies the X and Y coordinates of a point as real
numbers.

12 POLYMARKER-a) Integer= N, Number of points of the fill area, b) N
pairs of real numbers. Each pair specifies the X and Y coordinates of a
point as real numbers.

13 TEXT-a) Two real numbers specifying the starting position of string, b)
Number N of characters in the string and c) N characters of the string.

14 FILL AREA-a) Integer= N, Number of points of the polyline, b) N
pairs of real numbers. Each pair specifies the X and Y coordinates of a
point as real numbers.

15 CELL ARRAY-a) Three pairs ofX-Y coordinates points. First two
points are specified in the function call, the third one is another comer,
b) Integer= number of rows in array, c) Integer= number of columns in
array, d) Integer array of color indexes stored row by row.

16 GDP-a) Integer= GDP identifier, b) Integer N =Number of points,
c) Number of bytes of the integer array f, d) Number of bytes of the
real array g, e) Array containing coordinate points, f) Array containing
integer data, g) Array containing real data.

21 POLYLINE INDEX-a) Integer= polyline index.

22 LINETYPE-a) Integer = line type.

23 LINEWIDTH SCALE FACTOR-a) Real number = line width scale
factor.

24 POLYLINE COLOR INDEX-a) Integer = polyline color index.

25 POLYMARKER INDEX-a) Integer= polymarker index.

26 MARKER TYPE-a) Integer = marker type.

27 MARKER SIZE SCALE FACTOR-a) Real number = marker size scale
factor.

28 POLYMARKER COLOR INDEX-a) Integer = polymarker color index.

(continued on next page)

E-6 DEC GKS Metafile Structures (GKSM, CGM)

Table E-3 (Cont.): GKSM Metafile Data Record Fields

Number Format

29 TEXT INDEX-a) Integer = text index.

30 TEXT FONT AND PRECISION-a) Integer = text font, b) Integer, 0 =
STRING, 1 = CHAR, 2 = STROKE.

31 CHARACTER EXPANSION FACTOR-a) Real number = character
expansion factor.

32 CHARACTER SPACING-a) Real number = character spacing.

33 TEXT COLOR INDEX-a) Integer = text color index.

34 CHARACTER VECTORS-a) Two real numbers specifying character
height vector, b) Two real numbers specifying character width vector.

35 TEXT PATH-a) Integer 0 = RIGHT, 1 = LEFT, 2 = UP, 3 = DOWN.

36 TEXT ALIGNMENT-a) Integer= Horizontal component, 0 =NORMAL,
1=LEFT,2 =CENTER, 3 =RIGHT, b) Integer= Vertical component, 0
= NORMAL, 1 = TOP, 2 = CAP, 3 = HALF, 4 = BASE, 5 = BOTTOM.

37 FILL AREA INDEX-a) Integer = fill area index.

38 FILL AREA INTERIOR STYLE-a) Integer, 0 = HOLLOW, 1 = SOLID,
2 =PATTERN, 3 = HATCH.

39 FILL AREA STYLE INDEX-a) Integer = fill area style index.

40 FILL AREA COLOR INDEX-a) Integer= fill area color index.

41 PATTERN SIZE-a) Two real numbers specifying pattern width as X
and Y components, b) Two real numbers specifying pattern height as X
and Y components.

42 PATTERN REFERENCE POINT-a) Two real numbers specifying
pattern reference point.

43 ASPECT SOURCE FLAGS-a) 13 integers specifying aspect source
flags. 0 = BUNDLED, 1 = INDIVIDUAL.

44 PICK IDENTIFIER-a) Integer = pick identifier.

51 POLYLINE REPRESENTATION-a) Integer = polyline index; b) Integer
=line type; c) Real= line width scale factor; d) polyline color index.

52 POLYMARKER REPRESENTATION-a) Integer = polymarker index; b)
Integer = marker type; c) Real = marker size scale factor; d) polymarker
color index.

(continued on next page)

DEC GKS Metafile Structures (GKSM, CGM) E-7

Table E-3 (Cont.): GKSM Metafile Data.Record Fields

Number Format

53 TEXT REPRESENTATION-a) Integer = text index; b) Integer = text
font; c) Integer, text precision, 0=STRING,1=CHAR,2 =STROKE;
d) Real= character expansion factor; e) Real= character spacing; f) text
color index.

54 FILL AREA REPRESENTATION-a) Integer = fill area index; b) Integer
= interior style, 0 = HOLLOW, 1 = SOLID, 2 = PATTERN, 3 = HATCH;
c) Integer= style index; d) Integer= fill area color index.

55 PATTERN REPRESENTATION-a) Integer= pattern index; b) Integer
= number of columns in color array; c) Integer = number of rows; d)
Integer array of the number of columns and rows specified containing
color index values.

56 COLOR REPRESENTATION-a) Integer= color index, b) Three real
numbers specifying red, green, and blue intensities, respectively.

61 CLIPPING RECTANGLE-a) Four real numbers specifying XMIN,
XMAX, YMIN, and YMAX, respectively.

71 WORKSTATION WINDOW-a) Four real numbers specifying XMIN,
XMAX, YMIN, and YMAX, respectively.

72 WORKSTATION VIEWPORT-a) Four real numbers specifying XMIN,
XMAX, YMIN, and YMAX, respectively.

81 CREATE SEGMENT-a) Integer = segment name.

82 CLOSE SEGMENT-No data record.

83 RENAME SEGMENT-a) Integer = old name; b) Integer = new name.

84 DELETE SEGMENT-a) Integer = segment name.

91 SET SEGMENT TRANSFORMATION-a) Integer = segment name; b)
Six real numbers specifying the transformation matrix values.

(continued on next page)

E-8 DEC GKS Metafile Structures (GKSM, CGM)

Table E-3 (Cont.): GKSM Metafile Data Record Fields

Number Format

92 SET VISIBILITY-a) Integer = segment name; b) Integer = visibility, 0
= VISIBLE, 1 = INVISIBLE.

93 SET HIGHLIGHTING-a) Integer = segment name; b) Integer, high
lighting, 0 = NORMAL, 1 = HIGHLIGHTED.

94 SET SEGMENT PRIORITY-a) Integer= segment name; b) Real=
priority.

95 SET SEGMENT DETECTABILITY-a) Integer = segment name; b)
Integer, detectability, 0 = UNDETECTABLE, 1 = DETECTABLE.

> 100 User Item-User-defined number of bytes.

E.1.3 GKSM Physical File Organization

The GKSM metafile has varying length record format, with a limit on the
maximum record size of 4096 bytes. This file is of sequential organization.

Each metafile item occupies two or more RMS records: one for the item
header and one or more for the item data record. The metafile header
occupies one RMS record. The record item data record occupies at least one
RMS record. If the item data record has a length greater than 4096 bytes,
then the data record is split into two or more RMS records.

E.2 Computer Graphics Metafiles {CGM)

DEC GKS supports the Computer Graphics Metafile (CGM) format for
use in creating metafiles. To create a CGM metafile, open and activate a
workstation of type GKS$K_CGM_OUTPUT. (Remember that DEC GKS
cannot interpret CGM metafiles.)

The CGM standard defines a metafile as being the capture of static picture
definitions for many types of graphical applications, including DEC GKS
programs. Since the CGM standard provides functionality for many types of
graphics applications (not just GKS), certain GKS functionalities may not be
supported by the CGM format and certain CGM capabilities cannot be used
by a GKS program. When you create a CGM metafile using DEC GKS, CGM
records only those features supported by the CGM format. See Section E.2.2
for detailed information concerning the relationship between DEC GKS and
CGM picture storage.

DEC GKS Metafile Structures (GKSM, CGM) E-9

The CGM standard defines three encodings. Encodings are formats used
to store data within the metafile. The data types and values used to store
information within the CGM metafile vary depending on the encoding
you use to create the metafile. The following list presents the three CGM
encodings:

• Character encoding-A format whose physical file takes a minimal
amount of storage

• Binary encoding-A format easily stored and read by many types of
machine architectures and applications

• Clear text encoding-A format that can easily be read or edited by
application programmers who wish to use the metafile

DEC GKS supports two of the three formats: the character and clear text
encodings. The following bit mask is valid for use with the GKS$K_CGM_
OUTPUT workstation:

%x000n0007

The value in the first part (OOOn) specifies the desired encoding. The value
in the second part is the hexadecimal value of the GKS$K_CGM_OUTPUT
workstation type (%d7).

The possible values for n include the following:

n Encoding

2 Character encoding.

4 Clear text encoding.

If you choose, you can use bitmask constant values within your program to
specify an encoding, as follows:

CALL GKS$0PEN WS(WS ID, 'CGM METAFILE.TXT',
* GKS$K_CGM_OUTPUT .OR. GKS$M_CHARACTER_ENCODING)

C or,

CALL GKS$0PEN WS(WS ID, 'CGM METAFILE.TXT',
* GKS$K_CGM_OUTPUT .OR. GKS$M_CLEAR_TEXT_ENCODING)

E-10 DEC GKS Metafile Structures (GKSM, CGM)

For more information concerning constants, refer to Appendix B, DEC GKS
Constants.

The following subsections describe the following topics:

• CGM structure

• Supported encodings

• Element descriptions

• Differences between CGM and DEC GKS graphical facilities

• CGM physical file organization

E.2.1 CGM Structure

The CGM standard defines three components within a metafile, as shown in
Figure E-5.

Figure E-5: CGM Components

Metafile Metafile Metafile
Descriptor Defaults Picture • • •

ZK 5847 HC.

The metafile descriptor component contains data relevant to the functional
capabilities required to interpret that metafile. For instance, this component
can contain data such as a metafile descriptive string or title, the version
number of the CGM standard used by the implemented CGM interpreter,
the date of the metafile creation, and so forth. (Remember that the format
of this data depends on the encoding you choose.)

The metafile defaults component contains data relevant to all the picture
definitions contained in the metafile. For instance, this component can
contain data such as the virtual display coordinate (VDC) boundary (this
corresponds to the DEC GKS normalized device coordinate plane), attribute
settings, and so forth.

DEC GKS Metafile Structures (GKSM, CGM) E-11

Each metafile picture component contains data relevant to pictures created
by a DEC GKS program. Since the DEC GKS standard does not define its
graphical output in terms of pictures, the CGM interpreter must use the
display surface empty and new frame necessary at update entries in the DEC
GKS state list to determine when a picture ends and when a new picture
begins. (See Section E.2.2 for more information concerning the differences in
terminology between DEC GKS and CGM.)

CGM files contain components called elements. Each element serves a
distinct purpose, and depending on its functionality, includes applicable
data. CGM specifies an element by providing the encoding-dependent opcode
and argument data. The opcode is a character or series of characters that
specify the beginning of a distinct element.

The following list describes the types of elements in a CGM metafile:

Category

Delimiter Elements

Metafile Descriptor Elements

Picture Descriptor Elements

Control Elements

Graphical Primitive Elements

Attribute Elements

Escape Elements

External Elements

Description

Separate components within the metafile.

Describe the functional content and unique
characteristics of the CGM metafile.

Define the limits of the virtual device coordi
nates (VDCs) and the parameter modes for the
attribute elements.

Specify size and precision of VDC coordinates,
and format descriptions of the CGM elements.

Describe the geometric objects in the picture.

Describe the various appearances of the graphi
cal elements.

Describe device- and system-specific
functionality.

Pass information not needed for the creation of a
picture (for instance, a message sent to the user
of the metafile).

Although CGM defines many data types that correspond to graphical data
(for instance, an index data type for bundle index specifications), there are a
few data types from which all others are derived. The following list presents
all the basic data types of information contained in a CGM metafile:

E-12 DEC GKS Metafile Structures (GKSM, CGM}

Data Type

Integer

Real

String

Point List

Description

Integer values such as bundle indexes, integer data, and so forth.

Real values such as VDC distance values; red, green, and blue
color intensities; coordinate points; and so forth.

Character strings such as metafile description titles and string
data.

Lists of points such as polyline points, polymarker points, and so
forth.

The characters used to specify an opcode and its data are encoding specific.
The following subsections provide a brief overview of the two supported
encodings.

E.2.2 Differences Between GKS and CGM

Since CGM is designed to format files for many types of graphical applica
tions, there is no unique relationship between CGM and GKS. If CGM does
not support a graphical facility of DEC GKS, the CGM metafile does not
attempt to simulate such a facility. If the CGM metafile structure supports
a graphical facility unsupported by DEC GKS, then a DEC GKS program
will not generate those unsupported CGM elements.

As mentioned, DEC GKS does not define its graphical output in terms of
pictures, as does CGM. Consequently, the CGM interpreter must determine
what constitutes a new CGM picture definition.

The following list presents the DEC GKS graphical facilities unsupported by
CGM:

• CGM does not support the changing of workstation transformations.
Workstation transformations cause the CGM interpreter to start a new
picture definition.

• A call to CLEAR WORKSTATION causes the CGM interpreter to start a
new picture definition.

• CGM has no elements that correspond to the DEC GKS SET_primitive_
REPRESENTATION functions.

• CGM does not support the DEC GKS segment functions.

The following list presents the CGM facilities that are unsupported by DEC
GKS:

• DEC GKS does not support the disjoint polyline or the polygon set as
primitives.

DEC GKS Metafile Structures (GKSM, CGM) E-13

• DEC GKS does not support the CGM higher-level primitives (circle,
rectangle, ellipse) as primitives, but can store them as generalized
drawing primitives instead.

• DEC GKS does not support the extended text processing facilities of
CGM (such as named fonts, changing character sets, appended text,
restricted text).

• DEC GKS does not support the fill area edge, auxiliary color, and direct
color specification CGM facilities.

E.2.3 Character Encoding

The CGM character encoding provides a character code for each of the
element opcodes, and provides storage-saving methods for storing argument
data. This is the most storage-efficient encoding.

The CGM character encoding specifies either one or two 7-bit ASCII
characters that correspond to each element opcode. For instance, for the
BEGIN METAFILE opcode, CGM places the two ASCII characters 3/0 and
2/0 into the metafile. (Table E-4 lists the ASCII notations that correspond
to each of the element opcodes.)

To translate the opcode notation into an ASCII value that corresponds to a
character, multiply the first number by the value 16, and add the product to
the number after the slash character (I). So, the notation 3/0 corresponds to
ASCII value 48. For many 7-bit ASCII charts, the first number specifies the
chart column and the number following the slash indicates the chart row.
So, to find the ASCII character that corresponds to 3/0, look in column 3,
rowO.

To encode data, the CGM character encoding uses a basic format. The basic
format applies to the following CGM data types:

• Enumerated types

• Color, indexes

• Indexes other than color indexes

• Integers

• Real numbers

E-14 DEC GKS Metafile Structures (GKSM, CGM)

Figure E-6 presents the CGM character encoding basic format.

Figure E-6: CGM Basic Data Encoding Format

Bit Bit
8 1

lxl1 lel•lbl bl blbl Fi~tByte

I xi 1 I el bl bl bl bl bl All~he~
7K-5848-HC

CGM encodes each type of data in one or more bytes. Each byte contains
bits that specify data values. In Figure E-6, bit X is the value 0. Bit e
(the sixth bit) is the extension flag. This flag contains the value 1 in all
bytes except the last byte in the data specification. In the last byte, the flag
contains the value 0. Bits (the fifth bit of the first byte) is the sign bit (the
value 0 for nonnegative numbers; the value 1 for negative numbers). Bits
labeled b specify the numeric value in binary. The most significant bits are
in the first byte and the least significant bits are in the last byte.

CGM encodes each real number as an integer mantissa followed by an
exponent. The exponent is the power of 2 by which the integer mantissa is
to be multiplied. Figure E-7 illustrates how CGM uses the basic format to
encode real numbers.

DEC GKS Metafile Structures (GKSM, ,CGM) E-15

Figure E-7: CGM Basic Encoding Format for Real Numbers

Bit
8

•
•
•

Bit
1

I X I 1 I 9 I b I b I b I b I b I All rnhers

ZK·5849·HC

Bit e is the extension bit and bit s is the sign bit. Bit p is the "exponent
follows" bit, which is always the value 1. The last three bits in the first byte
contain the exponent; the remaining bits are the mantissa.

The DEC GKS CGM character encoding scheme uses the displacement mode
to encode point list data. Displacement mode specifies pairs of VDC values
that are the X and Y delta values relative to the last specified point.

CGM codes character strings as sequences of bytes starting with the desig
nated OPEN CHARACTER STRING character and ending with the STRING
TERMINATOR character.

The CGM encoding scheme defines many ways to encode data. For complete
information concerning character encoding, refer to the CGM standard
documentation.

E.2.4 Clear Text Encoding

The CGM clear text encoding provides a character string for each of the
element opcodes, and numbers and delimiters to specify argument data.
Using this type of encoding, you can easily type or edit the metafile.

For example, this encoding represents the BEGIN METAFILE opcode as
the character string BEGMF. DEC GKS uses the semicolon (;) to separate
element opcodes. (Table E-4 lists the character strings that correspond to
each of the element opcodes.)

E-16 DEC GKS Metafile Structures (GKSM, CGM)

DEC GKS specifies integers as numbers and separates the decimal portion
of real numbers using a period (.). If you edit a clear text encoded metafile,
you can insert comments delimited by percent signs (%). DEC GKS uses
the single quote character to delimit strings ('). The DEC GKS CGM clear
text encoding mechanism for point lists is as follows:

• DEC GKS encloses each pair of points in parentheses (()).

• DEC GKS separates each point specification, within a pair, using a
comma(,).

• DEC GKS separates the parenthetical point groupings using spaces.

For more information concerning clear text encoding, refer to the CGM
standard documentation.

E.2.5 CGM Element Descriptions

Table E-4 lists the opco~es required for each of the CGM elements. In the
column labeled Opcode, the first opcode listed is the 7-bit ASCII notation
of the character(s) used by the character encoding, and the second opcode
listed is the character string used by the clear text encoding.

Table E-4: CGM·Element Descriptions

Element
Name Opcode

BEGIN METAFILE 3/0 2/0
BEG MF

END METAFILE 3/0 211
END MF

BEGIN PICTURE 3/0 212
BEGPIC

BEGIN PICTURE 3/0 2/3
BODY BEGPICBODY

END PICTURE 3/0 2/4
ENDPIC

METAFILE VERSION 3/1 2/0
MFVERSION

Argument Data Description

A string value specifying the metafile identifier.

No data required.

A string value that is the picture identifier.

No data required.

No data required.

An integer value corresponding to the version of
the CGM standard being used.

(continued on next page)

DEC GKS Metafile Structures (GKSM, CGM) E-17

Table E-4 {Cont.): CGM Element Descriptions

Element
Name

METAFILE
DESCRIPTION

VDCTYPE

INTEGER PRECISION

REAL PRECISION

INDEX PRECISION

COLOR PRECISION

COLOR INDEX
PRECISION

MAX COLOR INDEX

COLOR VALUE
EXTENT

METAFILE
ELEMENT
LIST

BEGIN DEFAULTS
REPLACEMENT

END DEFAULTS
REPLACEMENT

FONT LIST

Opcode

3/1 2/1
MFDESC

3/1 2/2
VDCTYPE

3/1 2/3
INTEGERPREC

3/1 2/4
REALPREC

3/1 2/5
INDEXPREC

3/1 2/6
COLRPREC

3/1 2/7
COLRINDEXPREC

3/1 2/8
MAXCOLRINDEX

3/1 2/9
COLRVALUEEXT

3/1 2/10
MFELEMLIST

3/1 2/11
BEGMFDEFAULTS

3/1 2/12
ENDMFDEFAULTS

3/1 2/13
FONTLIST

Argument Data Description

A string value that is a description of the metafile
contents.

An enumerated type specifying the virtual display
coordinate type, which corresponds to the DEC
GKS NDC plane (INTEGER, REAL).

A value (of an encoding-dependent data type) that
specifies the integer precision.

A value or values (of an encoding-dependent data
type) that specify the subfields of the real number
precision.

A value (of an encoding-dependent data type) that
specifies the precision of an index into a bundle
table.

A value (of an encoding-dependent data type)
that specifies the subfields of the precision of red,
green, and blue color intensity values.

A value (of an encoding-dependent data type) that
specifies the precision of an index into a color
table.

A positive nonzero integer that is. the maximum
color index value.

Two sets of red, green, and blue intensity real
values that are the minimum and maximum color
values.

A value (of an encoding-dependent data type)
containing a list of all application-specific elements
contained in this metafile.

Control, picture descriptor, and attribute element
list of the same format as described for the
corresponding elements.

No data required.

A list of strings that assigns a font index value,
beginning with the value 1, to each font in the list.

(continued on next page)

E-18 DEC GKS Metafile Structures (GKSM, CGM)

Table E-4 (Cont.): CGM Element Descriptions

Element
Name

CHARACTER SET
LIST

CHARACTER
CODING
ANNOUNCER

SCALING MODE

COLOR SELECT
MODE

LINE WIDTH SPEC
MODE

MARKER SIZE
SPEC MODE

EDGE WIDTH
SPEC MODE

Opcode

3/1 2/14
CHARSETLIST

3/1 2/15
CHARCODING

3/2 2/0
SCALEMODE

3/2 211
COLRMODE

3/2 2/2
LINEWIDTHMODE

Argument Data Description

A list of information that specifies up to five of the
supported character sets (from ISO 2022). Each
pair consists of an enumerated value (such as
<94-character>) followed by a short string describ
ing the "tail end" of designating escape sequences
for that set (such as 4/1).

An enumerated type specifying the code exten
sion technique assumed by the metafile creator
(BASIC 7-BIT, BASIC 8-BIT, EXTENDED 7-BIT,
EXTENDED 8-BIT).

An enumerated type value and a real value. The
enumerated value specifies either ABSTRACT or
METRIC. If ABSTRACT, then the VDC space is
correctly displayed at any size. If METRIC, then
the real value is the workstation surface distance
in millimeters that corresponds to a single VDC
point.

An enumerated type that specifies color selection
support (INDEXED, DIRECT); DIRECT specifies
that color selections are by red, green, and blue
intensity value.

An enumerated type specifying line width.
ABSOLUTE specifies a measurement in VDC
points; SCALED specifies a scale factor to be
applied to a workstation-dependent nominal
width.

3/2 2/3 An enumerated type specifying marker size.
MARKERSIZEMODE ABSOLUTE specifies a measurement in VDC

points; SCALED specifies a scale factor to be
applied to a workstation-dependent nominal size.

3/2 2/4 An enumerated type specifying edge width.
EDGEWIDTHMODE ABSOLUTE specifies a measurement in VDC

points; SCALED specifies a scale factor to be
applied to a workstation-dependent nominal
width.

(continued on next page)

DEC GKS Metafile Structures (GKSM, CGM) E-19

Table E-4 (Cont.): CGM Element Descriptions

Element
Name

VDCEXTENT

BACKGROUND
COLOR

\TDC INTEGER PREC

VDC REAL PREC

AUXILIARY COLOR

TRANSPARENCY

CLIP RECTANGLE

CLIP INDICATOR

POLYLINE

DISJOINT POLYLINE

POLYMARKER

TEXT

Opcode

3/2 2/5
VDCEXT

3/2 2/6
BACKCOLR

3/3 2/0
VDCINTEGERPREC

3/3 211
VDCREALPREC

3/3 2/2
AUXCOLR

3/3 2/3
TRANSPARENCY

3/3 2/4
CLIPRECT

3/3 2/5
CLIP

2/0
INCRLINE

211
INCRDISJTLINE

2/2
INCRMARKER

2/3
TEXT

Argument Data Description

Two sets of points that define opposite corners of
a rectangular area of the VDC. This establishes
the positive and negative directions for the VDC
plane.

A set of red, green, and blue intensity values for
the background color.

A value (of an encoding-dependent data type)
containing the precision for integers used to
designate VDC points.

A value (of an encoding-dependent data type)
containing the precision for real numbers used to
designate VDC points.

An integer auxiliary color index used to color a
primitive in transparency mode.

An enumerated type that specifies whether the
transparency color is used to draw subsequent
primitives (OFF, ON).

Two VDC point values specifying the clipping
rectangle range.

An enumerated type specifying the clipping status
(OFF, ON).

A set of points, each consecutive point connected
to the last by a line.

A set of points, the first connected to the second,
the third connected to the fourth, and so forth,
leaving spaces in the line.

A set of points, a special character drawn at each
point.

A VDC starting point, an enumerated flag, and a
string. If the :flag is NOT FINAL, then you can
specify elements to change the text attributes
between this element and the APPEND TEXT
element. If the :flag is FINAL, then the string is
the entire string to be displayed.

(continued on next page)

E-20 DEC GKS Metafile Structures (GKSM, CGM)

Table E-4 (Cont.): CGM Element Descriptions

Element
Name

RESTRICTED TEXT

APPEND TEXT

POLYGON

POLYGON SET

CELL ARRAY

GDP

RECTANGLE

CIRCLE

CIRCLE ARC
3 POINT

CIRCLE ARC
3 POINT CLOSE

Opcode Argument Data Description

214 Two VDC values that are the height and width
RESTRTEXT vectors, a VDC starting point, an enumerated

flag (as described in TEXT), and a string. The
text must be contained within the parallelogram
created using the starting point and height and
width vectors.

215 An enumerated flag value (as described in TEXT)
APNDTEXT and a string. The flag value determines whether

you can specify other elements between this
element and a subsequent APPEND element.

216 A series of VDC points specifying a polygon.
INCRPOLYGON

217 A flagged point list, each list item containing
INCRPOLYGONSET a point and an enumerated flag. Each point

is connected to the subsequent point or to the
current closure point, but not to both. The flag can
be one of the edge values INVISIBLE, VISIBLE,
CLOSE INVISIBLE, CLOSE VISIBLE.

218 Two diagonal VDC comer points, a third comer
CELLARRAY point clockwise between the starting point and

diagonal points, a two-dimensional list of either
color indexes or intensity values, and local color
precision (format determined by the encoding).

219
GDP

2110
RECT

3/4 210
CIRCLE

3/4 211
ARC3PT

3/4 2/2
ARC3PTCLOSE

An integer GDP identifier, a point list, and a data
record (used in an interpreter-dependent manner).

Two VDC points specifying the starting point and
the diagonal point of the rectangle.

A VDC center point and a VDC distance vector
used as the radius.

A starting point, an intermediate point, and an
end point.

A starting point, an intermediate point, an
end point, and an enumerated close flag (PIE,
CHORD).

(continued on next page)

DEC GKS Metafile Structures (GKSM, CGM) E-21

Table E-4 (Cont.): CGM Element Descriptions

Element
Name

CIRCULAR ARC
CENTER

CIRCULAR ARC
CENTER CLOSE

ELLIPSE

ELLIPTICAL ARC

ELLIPTICAL ARC
CLOSE

LINEBUNDLE
INDEX

LINE TYPE

LINE WIDTH

LINE COLOR

MARKER BUNDLE
INDEX

MARKERTYPE

MARKER SIZE

MARKER COLOR

Opcode

3/4 2/3
ARC CTR

3/4 2/4
ARCCTRCLOSE

3/4 2/5
ELLIPSE

3/4 2/6
ELLIPARC

3/4 217
ELLIPARCCLOSE

3/5 2/0
LINEINDEX

3/5 2/1
LINE TYPE

3/5 2/2
LINE WIDTH

3/5 2/3
LINECOLR

3/5 2/4
MARKERINDEX

3/5 2/5
MARKERTYPE

3/5 2/6
MARKERSIZE

3/5 2/7
MARKERCOLR

Argument Data Description

A center point, a distance X and Y vector for the
starting point, a distance X and Y vector for the
end point, and a VDC radius distance vector.

A center point, a distance X and Y vector for the
starting point, a distance X and Y vector for the
end point, a VDC radius distance vector, and an
enumerated close flag (PIE, CHORD).

A center point and an endpoint for each conjugate
diameter. ·

A center point, two endpoints on each conjugate
diameter, a distance X and Y vector for the
starting point, and a distance X and Y vector for
the end point.

A center point, two endpoints on each conjugate
diameter, a distance X and Y vector for the
starting point, a distance X and Y vector for the
end point, and an enumerated close flag
(PIE, CHORD).

Integer index value into the line bundle table.

Integer line type value.

Either a VDC absolute value or a real scale
specification.

Either an integer index value or a set of red,
green, and blue real values.

An integer index value into the polymarker bundle
table.

An integer value specifying a marker type.

Either a VDC absolute value or a real scale
specification.

Either an integer index value or a set of red,
green, and blue real values.

(continued on next page)

E-22 DEC GKS Metafile Structures (GKSM, CGM)

Table E-4 {Cont.): CGM Element Descriptions

Element
Name

TEXT BUNDLE
INDEX

TEXT FONT
INDEX

TEXT PRECISION

CHARACTER
EXPANSION FACTOR

CHARACTER
SPACING

TEXT COLOR

CHARACTER
HEIGHT

CHARACTER
ORIENTATION

TEXT PATH

TEXT ALIGNMENT

CHARACTER SET
INDEX

ALTERNATE
CHARACTER
SET INDEX

Opcode

3/5 3/0
TEXTINDEX

3/5 3/1
TEXTFONTINDEX

3/5 3/2
TEXTPREC

3/5 3/3
CHAREXPAN

3/5 3/4
CHARSPACE

3/5 3/5
TEXTCOLR

3/5 3/6
CHARHEIGHT

3/5 3/7
CHARO RI

3/5 3/8
TEXTPATH

3/5 3/9
TEXTALIGN

3/5 3/10
CHARSETINDEX

Argument Data Description

An integer value that is a pointer into the text
bundle table.

An integer index value associated with a previ
ously specified font.

An enumerated type (STRING, CHARACTER,
STROKE).

A nonnegative real number specifying the height
to-width ratio.

A real value specifying character spacing.

Either a color index integer or a set of red, green,
and blue intensity values.

A VDC value specifying character height.

A pair ofX and Y directional vector values (VDC)
that define which way is up, and a pair of X and
Y directional vector values (VDC) that define the
text base.

An enumerated type value that determines the
text path (RIGHT, LEFT, UP, DOWN).

An enumerated type specifying horizontal align
ment (NORMAL HORIZONTAL, LEFT, CENTRE,
RIGHT, CONTINUOUS HORIZONTAL), an
enumerated type specifying vertical alignment
(NORMAL VERTICAL, TOP, CAP, HALF, BASE,
BOTTOM, CONTINUOUS VERTICAL), and two
real values specifying continuous horizontal and
vertical alignments, that align the string with a
coordinate outside its text extent.

An integer index value that chooses a previously
specified character set.

3/5 3/11 An integer index value that chooses a previously
ALTCHARSETINDEX specified character set.

(continued on next page)

DEC GKS Metafile Structures (GKSM, CGM) E-23

Table E-4 (Cont.): CGM Element Descriptions

Element
Name

FILL BUNDLE
INDEX

INTERIOR STYLE

FILL COLOR

HATCH INDEX

PATrERN INDEX

EDGE BUNDLE
INDEX

EDGE TYPE

EDGE WIDTH

EDGE COLOR

EDGE VISIBILITY

FILL REFERENCE
POINT

PATrERN TABLE

PATrERN SIZE

Opcode

3/6 2/0
FILLINDEX

3/6 211
INTSTYLE

3/6 2/2
FILLCOLR

3/6 2/3
HATCHINDEX

3/6 2/4
PATINDEX

3/6 2/5
EDGEINDEX

3/6 2/6
EDGETYPE

3/6 2/7
EDGEWIDTH

3/6 2/8
EDGECOLR

3/6 2/9
EDGEVIS

3/6 2110
FILLREFPI'

3/6 2111
PATrABLE

3/6 2112
PATSIZE

Argument Data Description

An integer value that points into the fill area·
bundle table.

An enumerated type that specifies interior fill
area style (HOLLOW, SOLID, PATrERN, HATCH,
EMPI'Y).

Either an integer color index value or a set of red,
green, and blue intensity values.

An integer value that specifies a hatch style.

An integer value that specifies a pattern type.

An integer value that points into the edge bundle
table.

An integer value that specifies the edge type.

Either an absolute edge width specified in a VDC
value, or an edge width scale factor.

Either an integer color index value or a set of red,
green, and blue intensity values.

An enumerated value specifying edge visibility
(OFF, ON).

A real value specifying the fill area reference
point.

An integer value specifying the placement of this
pattern in the pattern table, a two-dimensional
list of either color indexes or intensity values, and
local color precision (format determined by the
encoding).

Two VDC values that specify the X and Y compo
nents of the height distance vector, and two VDC
values that specify the X and Y components of the
width distance vector.

(continued on next page)

E-24 DEC GKS Metafile Structures (GKSM, CGM)

Table E-4 (Cont.): CGM Element Descriptions

Element
Name Opcode

COLOR TABLE 3/6 3/0
COLRTABLE

ASPECT SOURCE 3/6 3/1
FLAGS ASF

ESCAPE 3/7 2/0
ESCAPE

MESSAGE 3/9 211
MESSAGE

APPLICATION DATA 3/7 211
APPLDATA

OPEN CHARACTER 1/11 5/8
STRING

STRING TERMINATOR 1/11 5/12

E.2.5.1 CGM Encoding Examples

Argument Data Description

An integer that specifies a pointer into the bundle
table where the first color value is placed, and a
list of sets of red, green, and blue intensity values
used to fill the table.

A list of pairs of enumerated ASF type values and
ASF values (INDMDUAL, BUNDLED).

An integer function identifier, and a data record
(implementation-dependent use).

An enumerated type specifying the action flag that
determines whether the application requires some
action by the user before resuming application
execution (NO ACTION, ACTION), and the text
string containing the message.

An integer identifier, and a data record, both to
be used in an application-dependent manner that
does not affect the picture being generated.

A character that signifies the beginning of a
character string. NOTE: This character is not an .
opcode. It usually follows an opcode that requires
string data.
A character that signifies the end of a character
string. NOTE: This character is not an opcode.
It usually follows an opcode that requires string
data.

Example E--1 presents a simple DEC GKS program.

DEC GKS Metafile Structures (GKSM, CGM) E-25

Example E-1: CGM Metafile Creation

IMPLICIT NONE
INTEGER WS ID, GKS$K VT240, GKS$K CONID DEFAULT
REAL x ARRAY (2) ' y-ARRAY (2) - -
DATA X-ARRAY /O.O, 1:0;
DATA Y-ARRAY /0.5, 0.5/
DATA WS ID / 1 /, GKS$K VT240 / 13 /,

* GKS$K_CONID_DEFAULT I 0 I

CALL GKS$0PEN GKS('SYS$ERROR:')
CALL GKS$0PEN-WS(WS ID, GKS$K CONID DEFAULT, GKS$K_VT240
CALL GKS$ACTIVATE_ws(WS_ID) - -

CALL GKS$POLYLINE(2, X_ARRAY, Y_ARRAY

CALL GKS$DEACTIVATE WS(WS ID
CALL GKS$CLOSE WS(WS ID)-
CALL GKS$CLOSE=GKS () -
END

The following listing presents the clear text encoded CGM file produced
by Example E-1 (you need to define the logical GKS$WSTYPE to be
%x00040007 to specify the clear text encoding).

BEGMF 'CGM_OUTPUT_FILE.CGM';
MFVERSION 1;
MFDESC 'DEC GKS output 11/19/86';
MFELEMLIST 'DRAWINGPLUS';
VDCTYPE REAL;
BEGMFDEFAULTS;
ALTCHARSETINDEX 2;
ENDMFDEFAULTS;
FONTLIST 'DEC GKS Stroke -1' 'DEC GKS Stroke -2' 'DEC GKS Stroke -3'
'DEC GKS Stroke -4' 'DEC GKS Stroke -5' 'DEC GKS Stroke -6'
'DEC GKS Stroke -7' 'DEC GKS Stroke -8' 'DEC GKS Stroke -9'
'DEC GKS Stroke -11' 'DEC GKS Stroke -12' 'DEC GKS Stroke -13'
'DEC GKS Stroke -14' 'DEC GKS Stroke -15' 'DEC GKS Stroke -16'
'DEC GKS Stroke -17' 'DEC GKS Stroke -18' 'DEC GKS Stroke -19'
'DEC GKS Stroke -20' 'DEC GKS Stroke -21' 'DEC GKS Stroke -22'
'DEC GKS Stroke -23';
CHARSETLIST STD94 'B';
CHARCODING BASIC8BIT;
INTEGERPREC -221646135 1870427260;
REALPREC -99999.992188 99999.992188 7;
INDEXPREC -221646135 1870427260;
COLRPREC 31;
COLRINDEXPREC 31;
BEGPIC '10:54:34.93';
SCALEMODE ABSTRACT 0.000000;
COLRMODE INDEXED;
LINEWIDTHMODE SCALED;
MARKERSIZEMODE SCALED;

E-26 DEC GKS Metafile Structures (GKSM, CGM)

EDGEWIDTHMODE SCALED;
VDCEXT (0.000000,0.000000) (1.000000,1.000000);
BACKC OLR 0 0 0;
BEGPICBODY;
CLIPRECT (0.000000,0.000000) (1.000000,1.000000);
CHARHEIGHT 0.000000;
CHARORI 0.000000 0.000000 0.000000 0.000000;
PATSIZE 0.000000 0.000000 0.000000 0.000000;
FILLREFPT (0.000000,0.000000);
CLIPRECT (0.000000,0.000000) (1.000000,1.000000);
ASF LINETYPE INDIV LINEWIDTH INDIV LINECOLR INDIV MARKERTYPE
INDIV MARKERSIZE INDIV MARKERCOLR INDIV TEXTPREC
INDIV TEXTFONTINDEX INDIV CHAREXP INDIV CHARSPACE INDIV TEXTCOLR INDIV
INTSTYLE INDIV PATINDEX INDIV HATCHINDEX INDIV FILLCOLR IN DIV;
LINE INDEX 1;
LINETYPE 1;
LINEWIDTH 1.000000;
LINECOLR 1;
INCRLINE (0.000000,0.500000) (1.000000,0.000000);
TEXTINDEX 1;
CHARSETINDEX 1;
TEXTFONTINDEX 1;
TEXTPREC STRING;
CHAREXPAN 1.000000;
TEXTCOLR 1;
CHARHEIGHT 0.010000;
CHARORI 0.000000 0.010000 0.010000 O.QOOOOO;
MARKERINDEX 1;
MARKERTYPE 3;
MARKERSIZE 1.000000;
MARKERCOLR 1;
FILLINDEX 1;
FILLCOLR 1;
PATSIZE 0.000000 1.000000 1.000000 0.000000;
ENDPIC;
ENDMF;

The following listing presents the character-encoded CGM file produced
by Example E--1 (you need to define the logical GKS$WSTYPE to be
%x00020007 to specify the character encoding). The question marks (?)
in the data represent the ASCII escape character.

0 ?\?XZ.CGM CHAR?\1 Al!?XDEC GKS output 11/19/86?\l*?XA?\l"A1+5;Bl,1-
?XDEC GKS Stroke -1?\?XDEC GKS Stroke -2?\XDEC GKS Stroke -3?\
?XDEC GKS Stroke -4?\?XDEC GKS Stroke -5?\?XDEC GKS Stroke -6?\
?XDEC GKS Stroke -7?\?XDEC GKS Stroke -8?\?XDEC GKS Stroke -9?\
?XDEC GKS Stroke -11?\?XDEC GKS Stroke -12?\?XDEC GKS Stroke -13?\
?XDEC GKS Stroke -14?\?XDEC GKS Stroke -15?\?XDEC GKS Stroke -16?\
?XDEC GKS Stroke -17?\?XDEC GKS Stroke -18?\?XDEC GKS Stroke -19?\
?XDEC GKS Stroke -20?\?XDEC GKS Stroke -21?\?XDEC GKS Stroke -22?\
?XDEC GKS Stroke -23?\1.@?XB?\@?X<?\1/AUa@1$'XXX@1%' 1&' 1'' 0"
?Xl0:57:33.35?\2 @ltA2!@2"A2iA2$A2%ltAltA1@1@2&0i3$ltAltAl@l -

.@56ltA57ltAltAltAltA6,ltAltAltAltA6*ltAltA3$ltAltA1@1@61@'?GA'?GB'
?GC'?GD'?GE'?GG'?GF'?GH'?GI'?GJ'?GK'?GN'?GM'?GL'?GS A5!A5"1@5iA ltAhQl
@ltA50A5:A51A52@531@55A56mczlEW57ltAmczlEWmczlEWltA5$A5%C5&1@5'A6 A6
"A6,ltAl@l@ltA0$0!

DEC GKS Metafile Structures (GKSM, CGM) E-27

E.2.6 CGM Physical File Organization

The DEC GKS CGM metafile outputs 512 byte records. Using the clear text
encoding, the DEC GKS CGM metafile separates element opcodes with a
semicolon (;), a line-feed, and a carriage return character.

E-28 DEC GKS Metafile Structures (GKSM, CGM)

Appendix F

Language-Specific Programming Information

This appendix contains information specific to the DEC GKS-supported
languages. For a general overview of DEC GKS programming information
(such as call sequences, including definition files, and so forth), refer to
Chapter 1, Introduction to DEC GKS.

NOTE

When you use languages that need to declare DEC GKS functions
as external functions, you should print the language definition
file to determine the function's parameter names. The various
language definition files are described in Chapter l, Introduction
to DEC GKS.

F.1 Passing Arguments by Descriptor

DEC GKS requires array descriptors of class A or NCA, which include a
bounds block for two-dimensional arrays. Array descriptors of class NCA
must be contiguous.

Using languages that do not provide methods of creating such array
descriptors, you can construct your own descriptor according to the
specifications in the Introduction to VMS System Routines. If you choose,
you can use the BUILDESC routine described in Section F.4 to build the
required descriptor.

The following is a list of DEC GKS functions that require arguments passed
by array descriptor:

• CELLARRAY

• INQUIRE SET OF ACTIVE WORKSTATIONS

• INQ_AVAILABLE GENERALIZED DRAWING PRIMITIVES

Language-Specific Programming Information F-1

• INQ_COLOR_INDEXES
• INQ_DEF_CHOICE_DATA
• INQ_DEF _LOCATOR_DATA
• INQ_DEF _PICK_DATA
• INQ_DEF _STRING_DATA
• INQ_DEF _STROKE_DATA
• INQ_DEF _ VALUATOR_DATA
• INQ_FILL_FAC

• INQ_FILL_INDEXES

• INQ_GDP
• INQ_OPEN_WS
• INQ_PAT_INDEXES
• INQ_PAT_REP
• INQ_PIXEL_ARRAY
• INQ_PLINE_FAC

• INQ_PLINE_INDEXES
• INQ_PMARK_FAC

• INQ_PMARK •. ..INDEXES
• INQ_PREDEF _PAT_REP
• INQ_SEG_NAMES_ON_WS

• INQ_SET_ASSOC_WS
• INQ_TEXT_FAC

• INQ_TEXT_INDEXES

• INQ_ WSTYPE_LIST
• INQ_XFORM_LIST
• REQUEST_STROKE

• SET PATTERN REPRESENTATION

F-2 Language-Specific Programming Information

F.2 Programming in BASIC

When you declare string variables to be passed to DEC GKS functions as
write-only or modifiable arguments, you must declare the variable to be the
length of the largest string that can be returned by the function. In addition,
you should use the string length returned by the DEC GKS function instead
of values obtained by the LEN built-in function to determine this size. For
more information, refer to BASIC on VMS Systems.

F.3 Programming in VAX C

In order to use the DEC GKS functions that require passing arguments
by descriptor, you must build an array descriptor. To build an array
descriptor, refer to the Introduction to VMS System Routines. For VAX C
specific information concerning descriptors, refer to the mixed-language
programming chapter in Guide to VAX C. As another option, you can use the
BUILDESC routine described in Section F.4. Section F.1 lists the DEC GKS
functions that require passing arguments by descriptor.

F.4 Programming in VAX COBOL

VAX COBOL variables passed to DEC GKS as integers, real numbers, or
character strings must be declared in Working Storage as, respectively,
COMPUTATIONAL, COMPUTATIONAL-1, or DISPLAY to obtain the
correct internal representation. COMPUTATIONAL variables up to
89(9) are represented internally as 32-bit words. COMP-1 variables are
represented in single-precision floating-point format. DISPLAY character
strings can be any length desired.

Integer and real numeric arguments to DEC GKS functions are passed by
reference. Character or text strings are passed by descriptor.

The current VAX COBOL compiler does not produce class A array descrip
tors. However, certain DEC GKS functions require these descriptors. See
Section F.1 for a list of the DEC GKS functions that require arrays passed
by descriptor.

The following MACRO subroutine, named BUILDESC, can serve as a
temporary tool to allow VAX COBOL programs that use the above functions
to generate Class A array descriptors. The subroutine is needed only for
programs that call any of the functions listed in Section F.1. Example F~l
shows how to build a descriptor.

Language-Specific Programming Information F-3

Example F-1: Macro Subroutine Used to Build Array Descriptors

.TITLE BUILDESC Subroutine to build VMS array descriptor

.IDENT /01/

.ENTRY BUILDESC,AM<R2>
$SSDEF ; Define SS$ symbols
$DSCDEF ; Define DSC$ symbols

Fill in first two longwords of descriptor

MOVL 8(AP),RO
MOVL 4(AP),Rl
MOVW DSC$W LENGTH(R0),DSC$W LENGTH(Rl)
MOVB DSC$B-DTYPE(RO),DSC$B DTYPE(Rl)
MOVB #DSC$K CLASS A,DSC$B CLASS(Rl)
MOVL DSC$A_POINTER(R0),DSC$A_POINTER(Rl)

Fill in Block 1 - Prototype

CLRB
CLRB
MOVB

DSC$B SCALE(Rl)
DSC$B~)IGITS (Rl)

#<<l@DSC$V FL COEFF>!<l@DSC$V FL BOUNDS>>,DSC$B AFLAGS(Rl)
SUBB3 #2~(AP),DSC$B DIMCT(Rl) - -

·MOVL 12(AP),DSC$L ARSIZE(Rl)
MOVL #1,RO -
MOVL #4,R2
CMPB #1,DSC$B DIMCT(Rl)
BEQL 10$ -
MULL2 16(AP),DSC$L ARSIZE(Rl)
ADDL2 16(AP),RO -
INCL RO

Fill Blocks 2 and 3 (Multipliers, Bounds) for 2nd dim. (if present)

MOVL
MOVL
MOVL
ADDL2

16(AP),DSC$L M2(Rl)
#l,DSC$L M2+l2(Rl)
16(AP),DSC$L M2+16(Rl)
#4,R2 -

Fill in Blocks 2 (Multipliers) and 3 (Bounds) for 1st dimension

10$: MULW2
SUBL3
MOVL
ADDL2
MOVL
MOVL
MOVZWL
RET
.END

DSC$W LENGTH(Rl),RO
RO,DSC$A POINTER(Rl),DSC$A AO(Rl)
12(AP),DSC$L Ml(Rl) -
R2,Rl -
#1,DSC$L Ml(Rl)
12(AP),DSC$L M1+4(Rl)
#SS$_NORMAL,RO

F-4 Language-Specific Programming Information

The subroutine builds an array descriptor from the arguments it is passed.
For information on descriptor formats, refer to the VAX Procedure Calling
and Condition Handling Standard in the VMS Run-'lime Library Routines
Reference Manual.

You can use MACRO to assemble the subroutine and then call it from the
VAX COBOL program. The following is a sample VAX COBOL calling se
quence for two-dimensional arrays (assuming BUILDESC as the subroutine
name):

CALL "BUILDESC" USING
BY REFERENCE descriptor-buffer,
BY DESCRIPTOR array(l,1),
BY VALUE number-of-rows,
BY VALUE number-of-columns.

For a one-dimensional array, the COBOL calling sequence is as follows:

CALL "BUILDESC" USING
BY REFERENCE descriptor-buffer,
BY DESCRIPTOR array(l),
BY VALUE number-of-elements.

The descriptor buffer is an area of storage into which BUILDESC builds the
class A descriptor. This should be at least 44 bytes in length. The descriptor
buffer is filled with the information required to make it a class A descriptor.

The argument array(1, 1) should always be the first element of the array.

Example F-2 shows a COBOL program using the function CELL ARRAY.

Language-Specific Programming Information F-5

Example F-2: A Sample COBOL Program Using the Subroutine
BUILDESC

IDENTIFICATION DIVISION.
PROGRAM-ID.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
DATA DIVISION.

WORKING-STORAGE SECTION.

C09.

VAX-11.
VAX-11.

01 valthree PIC S9(9) COMP VALUE 3.
01 valfour PIC S9(9)
COMP VALUE 4.
01 valone PIC S9(9)
COMP VALUE 1.
01 valzero PIC S9(9)
COMP VALUE 0.
01 valpointl USAGE IS COMP-1 VALUE 0.1.
01 valpoint5 USAGE IS COMP-1 VALUE 0.5.
01 colidx.

05 diml OCCURS 3 TIMES.
/n 10 colia OCCURS 4 TIMES

PIC S9(9) COMP.
01 colidx d.

05 desc OCCURS 11 TIMES PIC S9(9) COMP.

PROCEDURE DIVISION.
0000-COB9.

MOVE 1 TO colia(l,1).
MOVE 0 TO colia(l,2).
MOVE 1 TO colia(l,3).
MOVE 2 TO colia(l,4).
MOVE 0 TO colia(2,1).
MOVE 1 TO colia(2,2).
MOVE 2 TO colia(2,3).
MOVE 1 TO colia(2,4).
MOVE 1 TO colia(3,1).
MOVE 2 TO colia(3,2).
MOVE 1 TO colia(3,3).
MOVE 0 TO colia(3,4).

CALL "GKS$0PEN GKS" USING
BY DESCRIPTOR 'GKS.ERR'.

CALL "GKS$0PEN WS" USING
BY REFERENCE valone,valzero,valzero.

CALL "GKS$ACTIVATE WS" USING
BY REFERENCE valone.

F-6 Language-Specific Programming Information

(continued on next page)

Example F-2 (Cont.): A Sample COBOL Program Using the Subroutine
BUILDESC .

CALL "BUILDESC" USING
BY REFERENCE colidx d,
BY DESCRIPTOR colia(l,l),
BY VALUE valthree, valfour.

CALL "GKS$CELL ARRAY" USING
BY REFERENCE valpointl,valpointl,valpointS,valpointS,
BY REFERENCE valone,valone,
BY REFERENCE valthree,valfour,
BY REFERENCE colidx_d.

CALL "GKS$DEACTIVATE_WS" USING
BY REFERENCE valone.

CALL "GKS$CLOSE WS" USING
BY REFERENCE valone.

CALL GKS$CLOSE GKS".
EXIT PROGRAM. -
END PROGRAM C09.

To use the subroutine, type it in, assemble it, compile your VAX COBOL
program that calls the subroutine, and then link the VAX COBOL program
with the subroutine, as follows:

$ MACRO BUILD~
$ COBOL ARRAY RETURN
$ LINK ARRAY,BUILDESClRETURNj

DEC GKS calls can be written with or without a status return. When used,
the status code is defined as PIC 89(6) COMP, which yields a 32-bit integer
internal representation.

F.5 Programming in VAX Pascal

DEC GKS functions called from a VAX Pascal program must be declared as
external functions in the program. The variables passed to these functions
and the way they are to be passed must also be described, and the type of
the return specified. To gather these declarations, perform the following
tasks:

1. Copy SYS$LIBRARY:GKSDEFS.PAS to your local directory.

2. Use the following command to compile.the file:

$ PASCAL/ENVIRONMENT GKSDEFS.PAS~

Language-Specific Programming Information F-7

3. Place the following code before the PROGRAM or MODULE statement:

[INHERIT ('gksdefs')]

Variables passed to DEC GKS by a VAX Pascal program must be declared
as types INTEGER, REAL, or an array of these types. Metafile items are
declared as packed arrays of characters because the length of a metafile item
may exceed the allowable length for a variable-length string. Data records
for the input functions are declared as arrays of integers. Where a REAL
data item is called for in a data record, the type cast operator must be used
to force the variable to be placed properly. Addresses for data records may
be generated using the ADDRESS function and the type cast operator to
override the type of integer.

Character strings are declared as VARYING OF CHAR. When you declare
string variables to be passed to DEC GKS functions as write-only or
modifiable arguments, you must declare the variable to be the length of the
largest string that can be returned by the function. In addition, you should
use the string length returned by the DEC GKS function instead of values
obtained by the LEN built-in function to determine this size. Strings should
be padded with spaces to their greatest length using the VAX PASCAL PAD
function. For more information, see the Programming in VAX PASCAL
manual.

The following type definitions have changed in the GKSDEFS.PAS include
file.

Table F-1 : Type Definitions

Definition

Asf_Flag_Array

Coord_limit_Array

Up_ Vector_Array

Two_real

Indices_Array

Twointeger

GKS$Asf_Flag_Array

GKS$Coord_limit_Array

Data Type

Array [1 ... 13] of Integer

Array [1 ... 4] of Real

Array [1 ... 2] of Real

Array [1 ... 2] of Real

Array [1 .. .4] of Integer

Array [1 ... 2] of Integer

Array [1. .. 13] oflnteger

Array [1 ... 4] of Real

F-8 Language-Specific Programming Information

(continued on next page)

Table F-1 (Cont.): Type Definitions

Definition

GKS$Up_ Vector_Array

GKS$Two_real

GKS$Indices_Array

GKS$Twointeger

Data Type

Array [1 ... 2] of Real

Array [1 ... 2] of Real

Array [1 .. .4] of Integer

Array [1 ... 2] of Integer

Language-Specific Programming Information F-9

Appendix G

DEC GKS Device-Independent Fonts

This appendix provides additional information about the fonts which can be
accessed from the DEC GKS software in stroke-precision text.

One font is used as the standard DEC GKS font for stroke precision text.
Figure G-2 illustrates the DEC GKS multinational font. It is a monospaced
font; all characters are the same size. DEC GKS uses this as the default
font.

Other fonts, known as the Hershey fonts, are also available. These character
fonts were digitized by Dr. A. V. Hershey of the Naval Surface Weapons
Laboratory, and have been supplied by the National Bureau of Standards.
The character information for these fonts has been organized into 22 fonts,
as shown in Figures G-3 through Figure G-24. The Hershey fonts are
not monospaced; each character box is a different size. The character box
for each character is not necessarily the same size as the character. In
most cases, the character box is larger than the character, although for
some characters (for example, those with descenders) the character may go
outside of its box.

G.1 Font File Formats

The center line for all fonts lies exactly halfway between the left and. right
lines of each character.

Similarly, the half line lies exactly halfway between the base line and the
cap line.

DEC GKS Device-Independent Fonts G-1

Figure G-1 illustrate the font lines:

Figure G-1: DEC GKS Font Lines

- ---------- - TOP LINE
CAP LINE----

HALF LINE

- ---------- -BOTTOM LINE

ZK-1449-GE

This restriction applies to the font file formats because the center line and
the halfilne are calculated by DEC GKS and are not data items in the
font file. DIGITAL reserves the right to change font file formats in future
releases.

G.2 Font Design

The stroke font is designed as follows.

G-2 DEC GKS Device-Independent Fonts

TOP One

CAP line

BASEiine

BOTIOMline

Left Right

**

**
**

**

**
**

** X• ...
1

co. oi

~ Left .I~ Character width ~ ~
Kem ---------

Maximum character width

X is the origin of this coordinate.
ZK-1582A-GE

The character shapes are drawn using a coordinate system in which the
base line is Y = 0, and the left line is X = 0.

Each glyph in a font file is stored as one or more polylines. The origin for
these polylines is the left base point of the character. The points of the
polylines are specified in integer numbers.

In DEC GKS, the X and Y coordinates of a glyph are normalized by the
distance between the CAP and BASE lines. The value of the distance
between CAP and BASE defines the precision of the glyph design. That is, if
this value is large, you can make a more detailed design for a polyline.

DEC GKS Device-Independent Fonts G-3

G.3 Stroke Font File

OFFSET 1.. .J
(bytes) --r.__-_-_-:__4_B_yt_es __ __.1

: rfi~_id iT
T T

unprintable (= A)

A

B

c

num_chars
offsets [O] (= B)

:;: :;:

offsets [N-1] (= C)

~F Character Descriptor =::
of Unprintable Character

~F Character Descriptor
of the First Character *

~F *
.. ~Character Descriptor ... T of the Last Character

Header

Character
Descriptor

ZK-1583A-GE

The stroke font file has the structure shown in the preceding figure. This
structure is divided into two parts; the header and a set of character
descriptors.

The header structure has common information for all glyphs in a stroke font
file and control data. Each character descriptor contains the data for each
glyph. To point to each character descriptor, there are offset arrays in the
header structure. The index of an offset array is calculated by subtracting
the first character from the output character code. Each offset array has the
number of bytes from the top of the stroke font file.

G-4 DEC GKS Device-Independent Fonts

A character descriptor has all the information to make a glyph. This
includes the number of polylines in a glyph, the character width, and the
data set of each polyline, which contains the number of points in the polyline
and the set of X and Y point coordinates.

G.3.1 Stroke Font File Header

The header of the stroke font file has the following structure.

DEC GKS Device-Independent Fonts G-5

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

--~-- 4 Bytes----~
file_id

filesize

version_number

proportional

outline _font

xy_datasize

max_width

left_kern

reserved_1

cap_base

top_cap

bottom_base

reserved_2

first_ char

unprintable

num_chars

offsets [O]

:;: *
offsets[num_chars-1]

G-6 DEC GKS Device-Independent Fonts

Identifier with value -1

Size of font file

Version number of font file (= 2)
Flag to indicate whether

proportionally or monospaced font
Flag to indicate whether outlined or
filled font

Flag to indicate whether X and Y
coordinates are BYTE, or WORD

Maximum width of font in this file

Width of left kern

Reserved area for future use

Distance between CAP and BASE

Distance between TOP and CAP

Distance between BOTIOM and BASE

Reserved for future use

The first character code

Offset to the character descriptor
of the unprintable character

Number of characters in this file

Offset to the character descriptor
of the first character

Offset to the character descriptor
of the NUM_CHARSth character

ZK-1584A-GE

The header contains the following elements:

• file_id

This element helps identify the file as a DEC GKS font file. In DEC
GKS, this identifier is a 32-bit integer with the value -1.

• :filesize

This element specifies the size of the font file, in bytes. This is used to
map the font file into virtual memory. It is stored as an integer value.

• version_number

This element specifies the version number of the stroke font file. This
identifier is a 32-bit integer with the value 2.

• proportional

This element indicates whether or not the font is proportionally spaced.
This integer is 1 if the font is proportionally spaced, and 0 if it is
monospaced. Proportionally spaced means that different characters
have different widths. Monospaced means that every character has the
same width.

• outline_font

This element is an integer flag that indicates if the font is stored as
outline. If the value of this element is not equal to zero, then the font is
assumed to be stored as outline. This means that the polylines specified
are filled instead of being drawn.

• xy_datasize

This element indicates whether X and Y coordinates are stored as a byte
signed integer (byte) or as a 2-byte signed integer (word). If this element
is 1, then the X and Y coordinates are stored as a byte. If this element
is 2, the coordinates are stored as a word.

• max_width

This element specifies the width of the font characters. This is an
integer. If the font is proportionally spaced, this number specifies the
maximum width of the font.

• left_kern

This element specifies the maximum length of the negative direction for
the X coordinate of the glyph in the stroke font file. This is an integer.

• reserved_l

Reserved for future use.

DEC GKS Device-Independent Fonts G-7

• cap_base

This element specifies the distance of the cap line above the base line.
This is an integer.

• top_cap

This element specifies the distance of the top line above the cap line.
This is an integer.

• bottom_base

This element specifies the distance of the bottom line below the base
line. This is an integer.

• reserved_2

Reserved for future use.

• first_char

This element specifies the numeric value of the first character in the
font. ("First" here refers to an ascending order. For example, for the
ASCII character set, the first non-control character is a space which has
the numeric value of 32. The corresponding entry in the font file would
contain the number 32.) This element is an integer.

• unprintable

This element specifies the offset to the character descriptor of the
unprintable character. This is an integer.

• num_chars

This element specifies the number of characters supported in the font
file. There should be no gaps in the number of characters supported.
If there are characters which should not be displayed, they should be
indicated by the number of polylines = 0, which generates a space. This
is an integer.

• offsets

This element is an array of num_chars entry points. This array contains
the offsets to the character descriptor of each glyph to be displayed.

G-8 DEC GKS Device-Independent Fonts

G.3.2 Character Descriptor

The character descriptor has the following structure:

1st
polyline

Nth
polyline

xy_datasize = 1

num_plines

width

num_points

y1 x1

y2 x2

y3 x3

y4 x4
... ...

"II" .,.

num_points

y1 x1

y2 x2

y3 x3

y4 x4

...

1 J

short

short

short

char

1st
polyline

Nth
polyline

xy_datasize = 2

...

"II"

Jo.

1

num_plines

width

num_points

x1

y1

x2

y2

...

.,.

num_points

x1

y1

x2

y2 ..
J

short

short

short

short

short

ZK-1585A-GE

DEC GKS Device-Independent Fonts G-9

The character descriptor contains the following elements:

• num_plines

This element specifies the number of polylines making up a glyph. This
is a word .

• width

This element specifies the width of a glyph. This is a word. This element
is ignored for monospaced fonts.

• num_points
This element specifies the number of points in a polyline. This is a word.

• x andy
These elements specify the X and Y coordinate values of a point. If
xy _datasize in the header is 1, these values are 1-byte signed integers. If
xy _datasize is 2, these values are 2-byte signed integers.

This section presents the DEC GKS device-independent fonts. These figures
represent the ASCII characters 33 through 126, beginning in the upper
left corner and incrementing horizontally to the lower right corner. Not all
characters are present in all the fonts. Fonts 1 and -1 specify the same font.

Example G-1 presents a program that you can execute if you want to see
the ASCII value next to the corresponding font character on the workstation
surface.

Example G-1: Printing the ASCII Values of Font Characters

c

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, ASCVAL, FONT, COL, ROW, MAXROW, MAXCOL,

* DUMMY_INTEGER, WS_TYPE, ERROR_STATUS

*

REAL
CHARACTER*l
CHARACTER*4
CHARACTER*3
CHARACTER*40
DATA

MAXX, MAXY, RATIO, HEIGHT, Xl, Yl
TXT
FONT TYPE
ASCSTR

HEADER, DUMMY STRING
WS ID /1/, HEIGHT /0.66/, MAXROW /19/,
MAXCOL /5/

Set up the DEC GKS and the workstation environment.
CALL GKS$0PEN GKS('SYS$ERROR:')
CALL GKS$0PEN-WS(WS ID, GKS$K CONID DEFAULT, GKS$K_VT240
CALL GKS$ACTIVATE_ws(ws_ID) - -

(continued on next page)

G-10 DEC GKS Device-Independent Fonts

Example G-1 (Cont.): Printing the ASCII Values of Font Characters

C Inquire about workstation and set up transformations.
CALL GKS$INQ WS TYPE(WS ID, ERROR STATUS, DUMMY STRING,

* WS_TYPE, DUMMY=INTEGER T - -
CALL GKS$INQ_MAX_DS_SIZE(WS_TYPE, ERROR STATUS, DUMMY_INTEGER,

* MAXX, MAXY, DUMMY_INTEGER, DUMMY_INTEGER)

RATIO = MAXY I MAXX
CALL GKS$SET WINDOW(1, 0.0, 15.0, 0.0, 23.0)
CALL GKS$SET-VIEWPORT(1, 0.0, 1.0, 0.0, RATIO
CALL GKS$SELECT XFORM(1)
CALL GKS$SET WS-WINDOW(1, 0.0, 1.0, 0.0, RATIO)
CALL GKS$SET=WS=VIEWPORT(1, 0.0, MAXX, 0.0, MAXY

C Get the font number.
WRITE(5, *) 'Enter Font Number (-1 to -23): '
READ(5, *) FONT
CALL GKS$CLEAR_WS(WS_ID, GKS$K_CLEAR_ALWAYS

C Draw headings.
CALL GKS$SET TEXT ~IGHT(0.75 *HEIGHT)
CALL GKS$SET-TEXT-SPACING(-0.1)
CALL GKS$SET-TEXT-ALIGN(GKS$K TEXT HALIGN CENTER,

* GKS$K-TEXT-VALIGN HALF T - -
CALL GKS$SET-TEXT-FONTPREC(1, GKS$K TEXT PRECISION STROKE
WRITE< FONTTYPE, Io > FONT - - -

10 FORMAT(I4)
HEADER= 'ASCII VALUES FOR CHARACTERS OF FONT ' II FONTTYPE
CALL GKS$TEXT (7.5, 22.0, HEADER)

C Draw ascii numbers.
CALL GKS$SET TEXT FONTPREC(1, GKS$K TEXT PRECISION STROKE
CALL GKS$SET-TEXT-HEIGHT(HEIGHT) - - -
CALL GKS$SET-TEXT-SPACING(-0.4)
DO COL = 1, S -

Xl = COL * 3.0 - 2.5
DO ROW = 1, MAXROW

Yl = 2 0. 0 - ROW
ASCVAL = (COL - 1) * MAXROW + ROW + 31
WRITE(ASCSTR, 20) ASCVAL

20 FORMAT(I3)
CALL GKS$TEXT (Xl, Yl, ASCSTR)

END DO
END DO

(continued on next page)

DEC GKS Device-Independent Fonts G-11

Example G-1 {Cont.): Printing the ASCII Values of Font Characters

C Draw font characters.
CALL GKS$SET_TEXT_FONTPREC(FONT, GKS$K_TEXT_PRECISION_STROKE
DO COL = 1, 5

Xl = COL * 3.0 - 1.25
DO ROW = 1, MAXROW

Y1 = 2 0 . 0 - ROW
ASCVAL = (COL - 1) * MAXROW + ROW + 31
TXT = CHAR (ASCVAL)
CALL GKS$TEXT (Xl, Yl, TXT)

END DO
END DO

CALL GKS$DEACTIVATE WS(WS ID
CALL GKS$CLOSE WS(WS ID -
CALL GKS$CLOSE = GKS () -
END

G-12 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts
Each figure includes a name that describes the font. Simplex means that
the characters are made up of one line. Duplex means that the characters
are made up of two lines. Complex means that the characters are made up
of more than two lines.

Figure G-2: DEC GKS Default Font Number 1
ISO Standard Character Set

0 @ p ' p ~
0 A

! 1 A a a q 6 ± A
II 2 B R b r cj; 2 A
3 c s c s i 3 A
$ 4 D T d t ~ ~ A
1. s E u e u ¥ JJ A
& 6 F v f v ~ <J [_

I 7 G w g w § . ~
(8 H x h x):(~ E
) 9 I y i ~ e 1 E

*
. J z j z Q Q t .

+ . K [k { « » ~ ~

~ < L \ 1 I ~ x t
- - M J m } ~ Yz f -

> N /\ "' ~ ~ i . n
I ? 0 0 - ~ ~ l I

~ a ~
N 6 n
0 a 0
6 a 6
0 a 0
0 a 0
0 ~ 0
(E y re
0 e 0

0 e u
0 e u
0 e Q

0 I u
y f ~
~ I ~
p I ~

ZK-1574-84

DEC GKS Device-Independent Fonts G-13

DEC GKS Device-Independent Fonts

Figure G-3: DEC GKS Font Number -2
Small Unlplex Simplex Roman and Greek

45 6 7 8 9:; ·=~?&ABC DE FG

HIJK LMNOPQRSTUVW XYZ (

/)I- 'ABI ~E ZH81K/\MN :::o

ZK-1575-84

G-14 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-4: DEC GKS Font Number -3
Large Simplex Uniplex Roman

!"#$%&'0*+,-./0123

456789:;<=>?@ABCDEFG

HIJKLMNOPQRSTUVWXYZJ:l

-!---+ t+- 'a be def ghijklmno

pqrstuvwxyzxl·-+

ZK-1576-84

DEC GKS Device-Independent Fonts G-15

DEC GKS Device-Independent Fonts

Figure G-5: DEC GKS Font Number -4 .
Large Uniplex Simplex Greek

!"#$%&'0*+,-./0123

456789:;<=>?@ABl~EZH

01K/\MN:::onPL:TTQ>X"'Oe6a

npaTvcpx'l/Jw\/¢ x I·-+
ZK-1577-84

G-16 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-6: DEC GKS Font Number -5
Large Simplex Uniplex Script

!"#$%&'0*+,-./0123

456 789:; < = > ?@AfBCoBeYh

~xi·~

ZK-1578-84

DEC GKS Device-Independent Fonts G-17

DEC GKS Device-Independent Fonts

Figure G-7: DEC GKS Font Number-6
Medium Complex Duplex Roman

! ''#$%&'()*+ ,- ./0123

456789:; < = >?@ABCDEFG

HIJKLMNOPQRSTUVWXYZ[

']- ~'abcdefghijklmno

pqrstuvwxyzlll~

ZK-1579-84

G-18 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-8: DEC GKS Font Number -7
Medium Complex Duplex Greek

! ''#$%&'()*+' - ./0123

456789:; < = >?@ABr4EZH

@IKAMN:::onP~TTtl»X+O~B[

ZK-1580-84

DEC GKS Device-Independent Fonts G-19

DEC GKS Device-Independent Fonts

Figure G-9: DEC GKS Font Number -8
Medium Complex Duplex Italic

! "#$%&' ()*+' - ./0123

456789:; < = >?@ABCDEFG

HIJKLMNOPQRSTUVWXYZ[

']-~'a be def ghijklrnno

pqrstuvwxyz I I lr-.1

ZK-1581-84

G-20 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-10: DEC GKS Font Number-9
Large Complex Duplex Roman

!"#$%&'()*+,-./0123

456789:; < = > ?@ABCDEFG

HIJKLMNOPQRSTUVWXYZ[

]-~'a bcdef ghijklmno

pqrstuvwxyzl 11"'

ZK-1582-84

DEC GKS Device-Independent Fonts G-21

DEC GKS Device-Independent Fonts

Figure G-11: DEC GKS Font Number-10
Large Complex Duplex Greek

!"#$%&'()*+,-./0123

456789:;<=>?@ABr~EZH

0IKAMNEOilPETT4>X+Oe8[

ZK-1583-84

G-22 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-12: DEC GKS Font N~mber-11
Large Complex Duplex Italic

.'"#$%&'(}*+, -./0123

456789:;<=>?@ABCDEFC

HIJKLMNOPQRSTUVWXYZ'

0-~ 'abcdefghijklmno

pqrstuvwxyzl l"'
ZK-1584-84

DEC GKS Device-Independent Fonts G-23

DEC GKS Devi,ce-lndependent Fonts

Figure G-13: DEC GKS Font Number-12
Large Simplex Duplex Roman

!"#$%&'()•+,-./0123

456789:; < = > ?@ABCDEFG

HIJKLMNOPQRSTUVWXYZ'

0-~'abcdefghiiklmno

pq rstuvwxyz{l)"'

ZK-1585-84

G-24 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-14: DEC GKS Font Number -13
Large Complex Duplex Script

!"#$%&'()*+, -./0123

456789:;< = > ?@.A4:B'f5:JJCfJ'&

0-~'~

ZK-1586-84

DEC GKS Device-Independent Fonts G-25

DEC GKS Device-Independent Fonts

Figure G-15: DEC GKS Font Number-14
Large Complex Duplex Cyrillic

!" #$%&'()*+ ' - ./0123

456789:;10=sr?@ABBf,QEiK

311MKnMHOTIPCTY<l>XQqnn.Q'h

hlh3I051a6Br~e:>K3HHKnMHO

ZK-1587-84

G-26 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-16: DEC GKS Font Number -15
Large Complex Triplex Roman

!''#$%&'()•+,-./0123

456789:;'= 0 ?@ABCDEFG

HIJKLMNOPQRSTUVWXYZ[

]-+-'abcdefghijklmno

pq rstuvwxyz 111"'
ZK-1588-84

DEC GKS Device-Independent Fonts G-27

DEC GKS Device-Independent Fonts

Figure G-17: DEC GKS Font Number-16
Large Complex Triplex Italic

!"#$%&'()*+, -./0123

456789:;<=> ?@ABCDEFG

HIJKLMNOPQRSTUVWXYZ'

0-~ 'abcdefghijklrnno

pqrstuvwxyzl•~

ZK-1589-84

G-28 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-18: DEC GKS Font Number-17
Large Gothic Triplex German

!''#$%&'()•+. -./0123

456 789:; '= 0?@lCJB<tD~B~

m.a[]-J 'a&cbtfgf)ijflmno

ZK-1590-84

DEC GKS Device-Independent Fonts G-29

DEC GKS Device-Independent Fonts

Figure G-19: DEC GKS Font Number-18
Large Gothic Triplex English

!''#$%&:'()•+ ,- ./0123

456789:; '= 0 ?@Al10lll£.J'<I

]-~ 'abrbefglfijklmno

pqrstuuwxyzlll"'

G-30 DEC GKS Device-Independent .Fonts

ZK-1591-84

DEC GKS Device-Independent Fonts

Figure G-20: DEC GKS Font Number-19
Large Gothic Triplex Italian

!"#$%&'()*+ t - ./0123

456789:;'= 0 ?@8fi00886

~a[]-~ 'ubrbtfg~ijklmno

pqrstuuwxy3ll~~

ZK-1592-84

DEC GKS Device-Independent Fonts G-31

DEC GKS Device-Independent Fonts

Figure G-21: DEC GKS Font Number -20
Medium Complex Duplex Special Characters

c; ¢ ff fi fl ffi. ffi u: 8 ff ft.ft ffi /ft 'L

i 110 () 111 ± =f X • ..;- :;t:. = ~ ~ oc"v' ~

-=<>,..,,!*/O[]BO-"

ZK-1593-84

0-32 DEC GKS Device-Independent .Fonts

DEC GKS Device-Independent Fonts

Figure G-22: DEC GKS Font Number -21
Music, Astronomy, and Business

©· .. ¢fffiflffifH1.fJfiftffiffii§tt•·.

Jcca~
•• .IJ,~

ZK-1594-84

DEC GKS Device-Independent Fonts G-33

DEC GKS Device-Independent Fonts

Figure G-23: DEC GKS Font Number -22
Large Uniplex Special Characters

~'cl••#'.r:t

G-34 DEC GKS Device-Independent Fonts

ZK-1595-84

DEC GKS Device-Independent Fonts

Figure G-24: DEC GKS Font Number -23
Large Special Characters

'VV .Q aa \ ~~ 11111
I

0 cu::) n ¢ j> E

33lllll1111L()<>=~=~~~~-

-+±TX·7.'.··U"' Ji f y..j..j~
. l:Lrrrr()[JHH~l)(

ZK-1596-84

DEC GKS Device-Independent Fonts G-35

Appendix H

DEC GKS Color Chart

This appendix presents a chart of 64 colors and their corresponding red,
green, and blue intensity values. If you are working with a color VT125, a
VT241, or a VAXstation 11/GPX, you can use this color chart as a guide when
calling the function SET COLOR REPRESENTATION. The colors presented
are the 64 colors supported by the VT125 and the VT241. For information
concerning the availability and use of colors on these workstations, refer to
the appropriate device-specific appendix in this manual.

You should use this color chart as a guide. You should not expect your
monitor to display the colors exactly as shown. Colors can vary from monitor
to monitor depending on the following factors:

• The current background color (affects lighter shades)

• The current brightness and contrast control settings

• The available room light

• The proximity of the primitive to other colors on the display

DEC GKS Color Chart H-1

Table H-1 : DEC GKS Color Chart

Red Green Blue Red Green Blue

0.0000 0.0000 0.0000 0.6133 0.4200 1.0000

0.0000 0.0000 0.5600 0.5700 0;1400 1.0000 -

0.3300 0.3300 0.3300 0.5600 0.0000 0.8400

0.2142 0.2142 0.6258 0.6646 0.2862 0.8538

0.0000 0.0000 0.8400 0.5600 0.0000 0.5600

0.2862 0.2862 0.8538 0.7119 0.4281 0.7119

0.1400 0.1400 1.0000 1.0000 0.1400 1.0000

0.6700 0.6700 0.6700 1.0000 0.4200 1.0000

0.5679 0.5679 0.8521 0.9235 0.7765 0.9235

1.0000 1.0000 1.00001 ~ ---~ 1.0000 0.7000 1.0000

(continued on next page)

H-2 DEC GKS Color Chart

Table H-1 (Cont.): DEC GKS Color Chart

Red Green Blue Red Green Blue

0.8400 0.0000 0.5600 1.0000 0.6133 0.4200

0.8538 0.2862 0.6646 1.0000 0.5700 0.1400

1.0000 0.1400 0.5700 0.8400 0.5600 0.0000

1.0000 0.4200 0.6133 0.8538 0.6646 0.2862

0.5600 0.0000 0.0000 0.5600 0.5600 0.0000

0.6258 0.2142 0.2142 0.7119 0.7119 0.4281

0.8400 0.0000 0.0000 1.0000 1.0000 0.1400

0.8538 0.2862 0.2862 1.0000 1.0000 0.4200

1.0000 0.1400 0.1400 0.9235 0.9235 0.7765

0.8521 0.5679 0.5679 1.0000 1.0000 0.7000

(continued on next page)

DEC GKS Color Chart H-3

Table H-1 (Cont.): DEC GKS Color Chart

Red Green Blue Red Green Blue

0.5600 0.8400 0.0000 - 0.4200 1.0000 0.6133'

0.6646 0.8538 0.2862 0.1400 1.0000 0.5700

0.5700 1.0000 0.1400 0.0000 0.8400 0.5600

0.6133 1.0000 0.4200 0.2862 0.8538 0.6646

0.0000 0.5600 0.0000 0.0000 0.5600 0.5600 -

0.2142 0.6258 0.2142 0.4281 0.7119 0.7119

0.0000 0.8400 0.0000 0.1400 1.0000 1.0000

0.2862 0.8538 0.2862 0.4200 1.0000 1.0000 -

0.1400 1.0000 0.1400 0.7765 0.9235 0.9235

0.5679 0.8521 0.5679 0.7000 1.0000 1.0000

(continued on next page)

H-4 DEC GKS Color Chart

Table H-1 (Cont.): DEC GKS Color Chart

Red Green Blue Red Green Blue

0.0000 0.5600 0.8400 0.1400 0.5700 1.0000

0.2862 0.6646 0.8538 - 0.4200 0.6133 1.0000

DEC GKS Color Chart H-5

Appendix I

DEC GKS GDPs and Escapes

This appendix describes all the DEC GKS-supported generalized drawing
primitives (GDPs) and escapes. Most of the GDPs and escapes are
supported by all the DEC GKS workstations. If all DEC GKS-supported
workstations do not support a particular GDP or escape, this appendix flags
the corresponding description.

All GDPs and escapes have negative values as identification numbers.
(You pass the identification numbers to either GENERALIZED DRAWING
PRIMITIVE or ESCAPE.) DEC GKS defines GDP and escape constants
in the definition file for your particular programming language. For more
information concerning the definition files, refer to Chapter 1, Introduction
to DEC GKS.

For further information concerning the use of GDPs, refer to
GENERALIZED DRAWING PRIMITIVE in Chapter 4, Output Functions.
For further information concerning the use of escapes, refer to ESCAPE in
Chapter 3, Control Functions. The function descriptions for GENERALIZED
DRAWING PRIMITIVE· and ESCAPE list the error messages that may be
generated by using any GDP or escape.

Some of the GDPs and escapes require additional information contained in
a data record. All required data records must be passed to GENERALIZED
DRAWING PRIMITIVE and ESCAPE in the DEC GKS GDP/escape
standard data record format. For all GDPs and escapes, you must pass the
exact data record size as specified in the descriptions in this appendix. If
you do not, the call to either GENERALIZED DRAWING PRIMITIVE or
ESCAPE generates an error message. For a complete description of the
standard GDP/escape data record format, refer to Chapter 1, Introduction to
DECGKS. ,

DEC GKS GDPs and Escapes 1-1

Data Record Format Used in This Appendix

Data Record Format Used in This Appendix

Since this appendix uses a short notation to describe the required contents
of a GDP/escape data record, you may wish to read the description of the
GDP/escape data record format in Chapter 1, Introduction to DEC GKS,
before reading further.

In this appendix, the descriptions of the first three components of the data
record are the values actually contained in the data record. The descriptions
of the last four components do not describe the contents of the last four
components; they describe the contents of the arrays whose addresses
occupy the last four components of the data record.

Consider the following list of arguments:

Argument

number_of_points

x_coordinates
y_coordinates

gdp_id

data_record

data_record_size

Required Value

3

Three points on the circumference.

-10
(4 components)
2
0
0
(address of) int_ value_l, int_ value_2

16 bytes

The data record portion of this GENERALIZED DRAWING PRIMITIVE
description (data_record) specifies that the data record has four components.
The first component is an integer value (2), specifying the number of valid
elements in the integer array.

The next two components of the data record contain zeros (0), specifying
the number of valid elements in the real and string arrays whose addresses
occupy the last three components of the data record. Since the arrays
contain no valid elements, you do not have to include room for these array
addresses in your data record.

1-2 DEC GKS GDPs and Escapes

Data Record Format Used in This Appendix

The fourth component specifies the address of an array; the array itself
contains identifiers int_value_l and int_value_2. The GDP description in
this appendix describes the purpose of these integers. GENERALIZED
DRAWING PRIMITIVE uses the address provided in the fourth component
to locate the integer array.

NOTE

To place array addresses in the fourth, fifth, sixth, and seventh
components of the data record, you need to use a technique
specific to your programming language. For instance, using
VAX FORTRAN, you can use the %LOC built-in function. For
more information concerning addresses and pointers, refer to the
documentation set for your programming language. For more
information concerning the use of %LOC and data records, refer to
the choice input examples in Chapter 7, Input Functions.

DEC GKS GDPs and Escapes 1-3

Generalized Drawing Primitives {GDPs)

Generalized Drawing Primitives (GDPs)

The following sections describe the DEC GKS-supported Generalized
Drawing Primitives (GDPs). The sections identify each GDP by the fol
lowing:

• The numeric identifier that you pass to GENERALIZED DRAWING
PRIMITIVE.

• The title of the primitive (for instance, "Circle").

• The constant equivalent of the numeric identifier.

• The list of supporting workstations.

• The description of the primitive.

• The list of the arguments passed to GENERALIZED DRAWING
PRIMITIVE and the contents of the data record, if applicable. The
names of the arguments are identical to the argument descriptions
of GENERALIZED DRAWING PRIMITIVE in Chapter 4, Output
Functions.

• The list of GDP-specific error messages, if applicable.

If you specify points to GENERALIZED DRAWING PRIMITIVE that can
not be used to uniquely define a primitive, you generate error number
DECGKS$_ERROR_NEG_158. For more information concerning error
DECGKS$_ERROR_NEG_l58, refer to the individual escape or GDP de
scription in this appendix.

Most of the DEC GKS GDPs are capable of generating error number GKS$_
ERROR_lOO (Number of points is invalid in routine ****). If it is not clear
how a GDP can generate this error message, the description of the individual
GDP provides additional information.

The following information applies to all DEC GKS GDPs:

• DEC GKS applies normalization transformations to the world coordi
nates of a specified GDP, but draws the GDP on the NDC plane. This
will sometimes cause unexpected results. For instance, if you include a
rectangular GDP in a segment and then rotate the segment, DEC GKS
alters the coordinate points but still draws the sides of the rectangle
parallel to the X and Y axes. Also, when specifying coordinate values for

1-4 DEC GKS GDPs and Escapes

Generalized Drawing Primitives (GDPs)

circles, the current normalization transformation affects only the size of
the circle, and does not alter the shape.

• All radius specifications constitute vector values. The only significance
of the radius vector is its length in world coordinates.

• You specify angles in radians. (To calculate radians, use the formula 360
degrees= 2*pi radians.) Positive rotation is counterclockwise; negative
rotation is clockwise.

• Some GDPs require vector values in the X and Y coordinate arrays
passed to GENERALIZED DRAWING PRIMITIVE.,:When you specify a
vector value, you pass two sets of world coordinate points. DEC GKS
calculates the distance, the angle, or both values, using the two specified
points.

Using a GDP, you calculate all vectors from a single vector origin point.
The vector origin point is the first point in a vector specification; you
specify the second point of the vector specification in the X and Y coordi
nate array that you pass to GENERALIZED DRAWING PRIMITIVE.

For instance, the GDP GKS$K...GDP_ARC_CTR_2VEC_RAD requires, in
the X and Y coordinate array, the following values:

• The center point of the circular arc

• The vector origin point

• The second point in a vector whose angle determines an endpoint of
the arc

• The second point in another vector whose angle determines another
endpoint of the arc

• The second point in a third vector that specifies the distance used for
the circular arc's radius

DEC GKS calculates the vector values from the vector origin point to
specified second points, and then applies those values to the center point
of the circular arc.

Two useful vector origin points would be the center point of the arc or the
origin of the world coordinate plane (0.0, 0.0). Using the center point of
the arc would allow you to specify vector values in direct relation to the
coordinates used to form the arc; using the origin of the world coordinate
plane can make it easier for you to calculate vector values without tying
them to the actual coordinate values of the arc (for instance, the center
of the arc may inove due to altered normalization transformations,

DEC GKS GDPs and Escapes 1-5

Generalized Drawing Primitives (GDPs)

forcing you to keep altering your vector origin point according to the
new position of the arc's center). Figure I-1 illustrates the use of two
different vector origin points.

The following information applies to specific types of GDPs:

• Arcs-When forming arcs, the DEC GDPs begin at the first specified arc
point and move towards the second point in a counterclockwise direction.

• Ellipses-You can form ellipses in two ways. First, you can provide
GENERALIZED DRAWING PRIMITIVE with the center point, and two
axis vectors. DEC GKS calculates which vector specifies the greater
distance, and uses both the distance and angle values to form the major
axis. Then, DEC GKS calculates the distance specified by the second
vector and uses the distance for the minor axis.

To form ellipses a second way, you can provide GENERALIZED
DRAWING PRIMITIVE with the two focal points, and one point on
the circumference of the ellipse. If you provide the focal points to
GENERALIZED DRAWING PRIMITIVE, DEC GKS uses the following
formula to form the ellipse:

I focal_l point I + I focal_2 point I = 2a

The letter a equals the distance from the center point to the circumfer
ence along the major axis. Figure I-2 illustrates the formation of an
ellipse.

1-6 DEC GKS GDPs and Escapes

Generalized Drawing Primitives (GDPs)

Figure 1-1 : Using Vector Origin Points

0,0

0,0

Vector Origin

Center,
Vector Origin

I
I
I

' I ,,._ ____ _
Center

Radius

Radius

ZK-5929-HC

DEC GKS GDPs and Escapes 1-7

Generalized Drawing Primitives (GDPs)

Figure 1-2: Forming an Ellipse

Center point, and
major and minor axes. Sum of distances from focal points

to any point equals 2a.

ZK-5788-HC

The following sections describe the DEC GKS-specific GDPs, by category.

1-8 DEC GKS GDPs and Escapes

Generalized Drawing Primitives {GDPs)
Unfilled GDPs

Unfilled GDPs

This section describes all unfilled GDPs. Unfilled GDPs use the current
polyline attributes. You should make sure that the attributes are set to the
requirements of your application before you generate these GDPs.

-100 Disjoint Polyline

Constant: GKS$K_GDP _DISJOINT_PLINE
Supporting workstations: All DEC GKS-supported workstations.

This GDP creates a series of line segments connecting the first and second
specified points, the third and fourth specified points, and so forth.

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

gdp_id

data_record

data_record_size

Error Messages:

Error Completion
Number Status Code

Required Value

n points (Two for each requested line segment.)

n x and y coordinate values.

-100
null

0 bytes

l\lessage/l\leaning

100 DECGKS$_ERROR_100 Number of points is invalid in routine
****. (Either n is not an even number or
n< 2.)

DEC GKS GDPs and Escapes 1-9

Generalized Drawing Primitives (GDPs)
Unfilled GDPs

-101 Circle: Center and Point on Circumference

Constant: GKS$K_GDP _CIRCLE_CTR_PT
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms a circle from the specified center point and a single point on
the circle's circumference.

GKS$GDP Arguments:

Argument Required Value

2 num.ber_of_points

x_coordinates Center and circumference point.
y _coordinates

gdp_id

data_record

data_record_size

Error Messages:

Error Completion
Number Status Code

-101
null

0 bytes

-158 DECGKS$_ERROR_NEG_
158

Message/Meaning

GDP primitive is not defined by the sup
plied data in routine **** (For instance,
if the center point and the point on the
circumference are the same point, DEC
GKS cannot form a circle.)

-102 Circle: 3 Points on Circumference

Constant: GKS$K_GDP _CIRCLE_3PT
Supporting workstations: All DEC GKS-supported workstations.

This GDP draws the circle whose circumference includes the three specified
points.

1-10 DEC GKS GDPs and Escapes

Generalized Drawing Primitives (GDPs)
Unfilled GDPs

GKS$GDP Arguments:

Argument Required Value

3 nUID.ber_of_points

x_coordinates Three circumference points.
y _coordinates

gdp_id

data_record

data_record_size

Error Messages:

Error Completion
Number Status Code

-102

null

0 bytes

-158 DECGKS$_ERROR_NEG_
158

-103 Circle: Center and Radius

Message/Meaning

GDP primitive is not defined by the
supplied data. (For instance, if the three
points form a straight line, DEC GKS
cannot generate a corresponding circle.)

Constant: GKS$K_GDP _CIRCLE_CTR_RAD
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms a circle from the specified center point and radius vector
value.

GKS$GDP Arguments:

Argument

nUID.ber_of_points

x_coordinates
y _coordinates

Required Value

3

Center point, vector origin point, and radius vector point.

DEC GKS GDPs and Escapes 1-11

Generalized Drawing Primitives (GDPs)
Unfilled GDPs

Argument

gdp_id

data_record

data_record_size

Error Messages:

Error Completion
Number Status Code

Required Value

-103
null

0 bytes

-158 DECGKS$_ERROR_NEG_
158

J.W:essage/1\t:eaning

GDP primitive is not defined by the
supplied data. (For instance, if the
radius vector specifies a distance ·of
0, then DEC GKS cannot generate a
corresponding circle.)

-104 Circle: 2 Points on Circumference, and Radius

Constant: GKS$K_GDP _CIRCLE_2PT_RAD
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms a circle from the specified circumference points and the
radius vector point. The circle is drawn so that the circumference, clockwise
from the first point to the second, is no greater than pi radians (half of the
circle).

GKS$GDP Arguments:

Argument

nUinber_of_points

x_coordinates
y_coordinates

1-12 DEC GKS GDPs and Escapes

Required Value

4

Two points, vector origin point, and radius vector point.

Generalized Drawing Primitives (GDPs)
Unfilled GDPs

Argument

gdp_id

data_record

data_record_size

Error Messages:

Error Completion
Number Status Code

Required Value

--104

null

0 bytes

-158 DECGKS$_ERROR_NEG_
158

l\t:essage/l\t:eaning

GDP primitive is not defined by the
supplied data **** (For instance, if the
distance between points is more than
twice the specified radius, then DEC
GKS cannot form the circle.)

-106 Arc: Center and 2 Points on Arc

Constant: GKS$K_GDP _ARC_CTR_2PT
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms a circular arc using the center point, the second point as a
starting point of the arc, and the third point as one of the following
components:

• The second point, located on the arc

• The second point of a ray (the first point is the center point), whose
intersection with the circular path of the arc determines the second
point of the arc

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

Required Value

3

Center point and the beginning and end points of the arc.

DEC GKS GDPs and Escapes 1-13

Generalized Drawing Primitives (GDPs)
Unfilled GDPs

Argument

gdp_id

data_ record

Required Value

-106
(4 components)
1
0
0
(address of) arc_type

data_record_size 16 bytes

The integer array contains the single element arc_type, which can be any of
the following values:

Value Constant

1 GKS$K_ARC_TYPE_OPEN

2 GKS$K_ARC_TYPE_PIE

3 GKS$K_ARC_TYPE_CHORD

Error Messages:

Error Completion
Number Status Code

-158 DECGKS$_ERROR_NEG_

-159

158

DECGKS$_ERROR_NEG_
159

1-14 DEC GKS GDPs and Escapes

Description

Form an arcing line.

Connect both ends of the arc to
its center.

Connect the beginning and end
points of the arc.

l\lessage/l\f eaning

GDP primitive is not defined by the sup
plied data in routine **** (For instance,
the center point and one of the points
on the circumference may be the same
point.)

Arc_type is invalid in routine **** (For
instance, if you specify a value other
than 1, 2, or 3.)

Generalized Drawing Primitives (GDPs)
Unfilled GDPs

-107 Arc: 3 Points on Circumference

Constant: GKS$K_GDP _ARC_3PT
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms the circular arc using a line beginning at the first point,
running through the second point, and connecting to the third point.

GKS$GDP Arguments:

Argument Required Value

3 nUID.ber_of_points

x_coordinates Three points on the circUID.ference.
y _coordinates

gdp_id

data_record

data_record_size

-107
(4 components)
1
0
0
(address of) arc_type

16 bytes

The integer array contains the single element arc_type, which can be any of
the following values:

Value Constant

1 GKS$K_ARC_TYPE_OPEN

2 GKS$K_ARC_TYPE_PIE

3 GKS$K_ARC_TYPE_CHORD

Description

Form an arcing line.

Connect both ends of the arc to
its center.

Connect the beginning and end
points of the arc.

DEC GKS GDPs and Escapes 1-15

Generalized Drawing Primitives (GDPs)
Unfilled GDPs

Error Messages:

Error Completion
Number Status Code l\f essage/l.\leaning

-158 DECGKS$_ERROR_NEG_ GDP primitive is not defined by the sup
plied data in routine **** (For instance,
the three points may form a straight
line.)

158

-159 DECGKS$_ERROR_NEG_
159

Arc_type is invalid in routine **** (For
instance, if you specify a value other
than 1, 2, or 3.)

-108 Arc: Center, 2 Vectors, and a Radius

Constant: GKS$K_GDP _ARC_CTR_2VEC_RAD
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms a circular arc by using the two vectors to calculate
directions from the center point. DEC GKS uses the vector direction to form
rays whose angles, along with the radius value, determine the starting and
ending points of the arc.

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

gdp_id

data_record

data_record_size

1-16 DEC GKS GDPs and Escapes

Required Value

5

Center, vector origin point, two vectors points, and the
radius vector point

-108
(4 components)
1
0
0
(address of) arc_type

16 bytes

Generalized Drawing Primitives (GDPs)
Unfilled GDPs

The integer array contains the single element arc_type, which can be any of
the following values:

Value

1

2

3

Constant

GKS$K_ARC_TYPE_OPEN
GKS$K_ARC_TYPE_PIE

GKS$}LARC_TYPE_CHORD

Error Messages:

Description

Form an arc.

Connect both ends of the arc to its
center.

Connect the beginning and end
points of the arc.

Error Completion
Number Status Code l\lessage!M:eaning

-159 DECGKS$_ERROR_NEG_
159

Arc type is invalid in routine ****

-109 Arc: 2 Points on Arc and Radius

Constant: GKS$K_GDP _ARC_2PT_RAD
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms an arc from the specified beginning and end points, and
forms the radius vector point. The arc is drawn so that the circumference,
clockwise from the first point to the second, is no greater than 1r radians
(half a circle).

GKS$GDP Arguments:

Argument

nUJDber_of_points

x_coordinates y _
coordinates

gdp_id

Required Value

4

Two points, vector origin point, and radius vector point

-109

DEC GKS GDPs and Escapes 1-17

Generalized Drawing Primitives {GDPs)
Unfilled GDPs

.Argument Required Value

data_record (4 components)
1
0
0
(address of) arc_type

data_record_size 16 bytes

The integer array contains the single element arc_type, which can be any of
the following values:

Value

1

2

a

Constant

GKS$K_ARC_TYPE_OPEN

GKS$K_ARC_TYPE_PIE

GKS$K._ARC_TYPE_CHORD

Error Messages:

Error Completion
Number Status Code

-158 DECGKS$_ERROR_NEG_
158

-159 DECGKS$_ERROR_NEG_
159

Description

Form an arc.

Connect both ends of the arc to its
center.

Connect the beginning and end
points of the arc.

l\lessage/l\leaning

GDP primitive is not defined by the
supplied data in routine ****
Arc type is invalid in routine ****

-110 Arc: Center, Starting Point, and Angle

Constant: GKS$K_GDP _ARC_CTR_PT_ANG
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms an arc by using the distance between the center point and
the arc starting point as the radius, and using the angle value to determine
the endpoint of the arc.

1-18 DEC GKS GDPs and Escapes

Generalized Drawing Primitives (GDPs)
Unfilled GDPs

GKS$GDP Arguments:

Argument Required Value

2 number_of_points

x_coordinates Center and starting point
y _coordinates

gdp_id

data_record

-110

(5 components)
1
1
0
(address of) arc_type
(address of) angle in radians

data_record_size 20 bytes

The integer array contains the single element arc_type, which can be any of
the following values:

Value

1

2

3

Constant

GKS$K_ARC_TYPE_OPEN

GKS$K_ARC_TYPE_PIE

GKS$K_ARC_TYPE_CHORD

Error Messages:

Error Completion
Number Status Code

-159 DECGKS$_ERROR_NEG_
159

Description

Form an arc.

Connect both ends of the arc to its
center.

Connect the beginning and end
points of the arc.

Message/Meaning

Arc type is invalid in routine ****

DEC GKS GDPs and Escapes 1-19

Generalized Drawing Primitives {GDPs)
Unfilled GDPs

-111 Ellipse: Center, and 2 Axis Vectors

Constant: GKS$K_GDP _ELLIPSE_CTR_AXES
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms the ellipse using a center point, one vector to establish the
distance and direction of the first axis, and a second vector to establish the
distance of the second axis.

GKS$GDP Arguments:

.Argument

number_of_points

x_coordinates
y _coordinates

gdp_id

data_record

data_record_size

Error Messages:

Error Completion
Number Status Code

Required Value

4

Center point, vector origin point, minor and major axis
vectors.

-111

null

0 bytes

l\t:essage/l\leaning

-158 DECGKS$_ERROR_NEG_ GDP primitive is not defined by the sup
plied data in routine **** (For instance,
one of the vectors may have a length
ofO.)

158

-113 Ellipse: Focal Points and Point on Circumference

Constant: GKS$K_GDP _ELLIPSE_FOCII_PT
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms the ellipse using the two focal points and a single point on
the circumference.

1-20 DEC GKS GDPs and Escapes

Generalized Drawing Primitives (GDPs)
Unfilled GDPs

GKS$GDP Arguments:

Argument Required Value

3 nUDlber_of_points

x_coord.inates Two focal points and the point on the circUDlference.
y _coord.inates

gdp_id

data_record

data_record_size

Error Messages:

Error Completion
Number Status Code

-113

null

0 bytes

-158 DECGKS$_ERROR_NEG_
158

l\t:essage/JM:eaning

GDP primitive is not defined by the sup
plied data in routine **** (For instance,
the point may be on the line segment
between the focal points.)

-114 Elliptic Arc: Center, 2 Axis Vectors, and 2 Vectors

Constant: GKS$K_GDP _ELIARC_CTR_AXES_2VEC
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms the elliptic arc using a center point, one axis vector (the
largest of the two) to establish the distance and direction of the major axis,
a second axis vector to establish the distance of the minor axis, and two
vectors whose directions are used to determine the arc end points. The
largest axis vector determines both the distance and the direction of the
major axis of the elliptic arc.

DEC GKS GDPs and Escapes 1-21

Generalized Drawing Primitives {GDPs)
Unfilled GDPs

GKS$GDP Arguments:

Argument Required Value

6 nUID.ber_of_points

x_coordinates
y _coordinates

Center point, vector origin point, two directional axis
vectors, and two end point vectors.

gdp_id

data_record

data_record_size

-114

(4 components)
1
0
0
(address of) arc_type

16 bytes

The integer array contains the single element arc_type, which can be any of
the following values:

Value Constant

1 GKS$K_ARC_TYPE_OPEN

2 GKS$K_ARC_TYPE_PIE

3 GKS$K.._ARC_TYPE_CHORD

1-22 DEC GKS GDPs and Escapes

Description

Form an arcing line.

Connect both ends of the arc to
its center.

Connect the beginning and end
points of the arc.

Generalized Drawing Primitives (GDPs)
Unfilled GDPs

Error Messages:

Error Completion
Number Status Code

-158 DECGKS$_ERROR_NEG_

-159

158

DECGKS$_ERROR_NEG_
159

Message/Meaning

GDP primitive is not defined by the sup
plied data in routine **** (For instance,
due to the vector values, DEC GKS may
attempt to form a straight line.)

Arc_type is invalid in routine **** (For
instance, if you specify a value other
than 1, 2, or 3.)

-116 Elliptic Arc: Focal Points and 2 Points on Circumference

Constant: GKS$K_GDP _ELIARC_FOCII_2PT
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms an elliptic arc using two focal points, the beginning point of
the elliptic arc, and the end point as one of the following components:

• The end point, located on the arc

• The second point of a ray (the first point is the first specified focus
point of the ellipse), whose intersection with the elliptic path of the arc
determines the end point of the arc

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

gdp_id

Required Value

4

Two focal points and two points on the circumference.

-116

DEC GKS GDPs and Escapes 1-23

Generalized Drawing Primitives (GDPs)
Unfilled GDPs

Argument

data_record

Required Value

(4 components)
1
0
0
(address of) arc_type

data_record_size 16 bytes

The integer array contains the single element arc_type, which can be any of
the following values:

Value Constant

1 GKS$K_ARC_TYPE_OPEN

2 GKS$K_ARC_TYPE_PIE

3 GKS$K_ARC_TYPE_CHORD

Error Messages:

Error Completion
Number Status Code

-158

-159

DECGKS$_ERROR_NEG_
158

DECGKS$_ERROR_NEG_
159

-125 Rectangle: 2 Corners

Constant: GKS$K_GDP _RECT_2PT

Description

Form an arcing line.

Connect both ends of the arc to
its center.

Connect the beginning and end
points of the arc.

lWessage/l\leaning

GDP primitive is not defined by the sup
plied data in routine **** (For instance,
due to the specified values, DEC GKS
may attempt to form a straight line.)

Arc_type is invalid in routine **** (For
instance, if you specify a value other
than 1, 2, or 3.)

Supporting workstations: All DEC GKS-supported workstations.

1-24 DEC GKS GDPs and Escapes

Generalized Drawing Primitives {GDPs)
Unfilled GDPs

This GDP forms the rectangle from the specified diagonal comer points. The
sides of the rectangle are parallel to the X and Y axes.

GKS$GDP Arguments:

Argument Required Value

2 number_of_points

x_coordinates Diagonal comer points.
y _coordinates

gdp_id

data_record

data_record_size

Error Messages:

Error Completion
Number Status Code

-125
null

0 bytes

-158 DECGKS$_ERROR_NEG_
158

Message/Meaning

GDP primitive is not defined by the sup
plied data in routine **** (For instance,
if the specified points have the same
X or Y value, DEC GKS cannot fop:n a
rectangle.)

DEC GKS GDPs and Escapes 1-25

Generalized Drawing Primitives {GDPs)
Filled GDPs

Filled GDPs

This section describes all filled GDPs. Filled GDPs use the current fill
area attributes. You should make sure that the attributes are set to the
requirements of your application before you generate these GDPs.

-332 Fill Area Set

Constant: GKS$K_GDP _FILL_AREA_SET
Supporting workstations: All DEC GKS-supported workstations.

This GDP contains at least three points that together define at least one fill
area.

A fill area set consists of one or more fill areas, each consisting of three or
more points that may intersect. A fill area set has both interior and edge
attributes. Interior attributes are similar to regular fill areas, and edge
attributes are similar to polylines. These attributes are set with various
GKS escape functions.

The filled regions of a fill area set are determined by the even-odd rule,
which considers the entire fill area set as a single primitive. It is therefore
possible to create donut-like objects, where the area surrounding the hole is
filled.

For more information about fill area and polyline attributes, see Appendix C,
DEC GKS Attribute.Values.

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

1-26 DEC GKS GDPs and Escapes

Required Value

>=3

x and y points.

Generalized Drawing Primitives {GDPs)
Filled GDPs

Argument

gdp_id

data_record

data_record_size

Error Messages:

Error Completion
Number Status Code

Required Value

-332
(4 components)
number of fill areas (>=1)
0
0
(array of integers (number of points in each fill area))

16 bytes

Message/Meaning

-158 DECGKS$_ERROR_NEG_ GDP primitive is not defined by the sup
plied data in routine **** (For instance,
if the specified points have. the same

158

X or Y value, DEC GKS cannot form a
rectangle.)

-333 Filled Circle: Center and Point on Circumference

Constant: GKS$K_GDP _FCIRCLE_CTR_PT
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms a circle from the specified center point and a single point on
the circle's circumference.

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

Required Value

2

Center point and a point on the circumference.

DEC GKS GDPs and Escapes 1-27

Generalized Drawing Primitives (GDPs)
Fiiied GDPs

Argument

gdpjd

data_record

data_record_size

Error Messages:

Error Completion
Number Status Code

Required Value

-333
null

0 bytes

-158 DECGKS$_ERROR_NEG_
158

l\f essage/l\leaning

GDP primitive is not defined by the sup
plied data in routine **** (For instance,
if the center point and the point on the
circumference are the same point, DEC
GKS cannot form a circle.)

-334 Filled Circle: 3 Points on Circumference

Constant: GKS$K...GDP _FCIRCLE_3PT
Supporting workstations: All DEC GKS-supported workstations.

This GDP draws the circle whose circumference includes the three specified
points.

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

gdpjd

data_record

data_record_size

1-28 DEC GKS GDPs and Escapes

Required Value

3

Three circumference points.

-334
null

0 bytes

Generalized Drawing Primitives (GDPs)
Filled GDPs

Error Messages:

Error Completion
Number Status Code

-158 DECGKS$_ERROR_NEG_
158

Message/Meaning

GDP primitive is not defined by the
supplied data. (For instance, if the three
points form a straight line, DEC GKS
cannot generate a corresponding circle.)

-335 Filled Circle: Center and Radius

Constant: GKS$K_GDP _FCIRCLE_CTR_RAD
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms a circle from the specified center point and radius vector
value.

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

gdp_id

data_record

data_record_size

Required Value

3

Center point, vector origin point, and radius vector point.

-335

null

0 bytes

DEC GKS GDPs and Escapes 1-29

Generalized Drawing Primitives (GDPs)
Filled GDPs

Error Messages:

Error Completion
Number Status Code

-158 DECGKS$_ERROR_NEG_
158

l.\lessage/l\t:eaning

GDP primitive is not defined by the
supplied data. (For instance, if the
radius vector specifies a distance of
0, then DEC GKS cannot generate a
corresponding circle.)

-336 Filled Circle: 2 Points on Circumference, and Radius

Constant: GKS$K_GDP _FCIRCLE_2PT_RAD
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms a circle from the specified circumference points and the
radius vector point. The circle is drawn so that the circumference, clockwise
from the first point to the second, is no greater than pi radians (half of the
circle).

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

gdpjd

data_record

data_record_size

1-30 DEC GKS · GDPs and Escapes

Required Value

4

Two points, vector origin point, and the radius vector point.

-336

null

0 bytes

Generalized Drawing Primitives (GDPs)
Filled GDPs

Error Messages:

Error Completion
Number Status Code Message/Meaning

-158 DECGKS$_ERROR_NEG_ GDP primitive is not defined by the
supplied data **** (For instance, if the
distance between points is more than
twice the specified radius, then DEC
GKS cannot form the circle.)

158

-338 Filled Arc: Center and 2 Points on Arc

Constant: GKS$K_GDP _FARC_CTR_2PT
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms a filled circular arc using the center point, the second point
as a starting point of the arc, and the third point as one of the following
components:

• The second point, located on the arc

• The second point of a ray (the center point), whose intersection with the
circular path of the arc determines the second point of the arc

GKS$GDP Arguments:

Argument

nUDl.ber_of_points

x_coordinates
y _coordinates

gdp_id

data_record

data_record_size

Required Value

3

Center point and beginning and end points of the arc.

-338
(4 components)
1
0
0
(address of) arc_type

16 bytes

DEC GKS GDPs and Escapes 1-31

Generalized Drawing Primitives (GDPs)
Filled GDPs

The integer array contains the single element arc_type, which can be any of
the following values:

Value Constant

2 GKS$K_ARC_TYPE_PIE

3 GKS$K_ARC_TYPE_CHORD

Error Messages:

Error Completion
Number Status Code

-158'

-159

DECGKS$_ERROR_NEG_
158

DECGKS$_ERROR_NEG_
159

Description

Connect both ends of the arc to
its center.

Connect the beginning and end
points of the arc.

Message/Meaning

GDP primitive is not defined by the sup
plied data in routine **** (For instance,
the center point and one of the points
on the circumference may be the same
point.)

Arc_type is invalid in routine **** (For
instance, if you specify a value other
than 2 or 3.)

-339 Filled Arc: 3 Points on Circumference

Constant: GKS$K_GDP _FARC_3PT
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms the arc beginning at the first point, running through the
second point, and connecting to the third point.

1-32 DEC GKS GDPs and Escapes

Generalized Drawing Primitives {GDPs)
Filled GDPs

GKS$GDP Arguments:

Argument Required Value

3 number_of_points

x_coordinates Three points on the circumference.
y _coordinates

gdp_id

data_record

-339

(4 components)
1
0
0
(address of) arc_type

data_record_size 16 bytes

The integer array contains the single element arc_type, which can be any of
the following values:

Value Constant

2 GKS$K....ARC_TYPE_PIE

3 GKS$K_ARC_TYPE_CHORD

Error Messages:

Error Completion
Number Status Code

-158 DECGKS$_ERROR_NEG.-

-159

158

DECGKS$_ERROR_NEG_
159

Description

Connect both ends of the arc to
its center.

Fill the area formed by con
necting the beginning and end
points of the arc.

Message/Meaning

GDP primitive is not defined by the sup
plied data in routine **** (For instance,
the three points may form a straight
line.)

Arc_type is invalid in routine**** (For
instance, if you specify any value other
than 2 or 3.)

DEC GKS GDPs and Escapes 1-33

Generalized Drawing Primitives (GDPs)
Filled GDPs

-340 Filled Arc: Center, 2 Vectors, and a Radius

Constant: GKS$K_GDP _FARC_CTR_2VEC_RAD
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms the arc by using the two vectors to calculate directions from
the center point. DEC GKS uses the vector directions to form rays that
determine the starting and ending points of the arc.

GKS$GDP Arguments:

Argument Required Value

5 number_of_points

x_coordinates
y _coordinates

Center, vector origin point, two vectors, and the radius
vector point.

gdp_id

data_record

data_record_size

-340

(4 components)
1
0
0
(address of) arc_type

16 bytes

The integer array contains the single element arc_type, which can be any of
the following values:

Value Constant

2 GKS$K_ARC_TYPE_PIE

3 GKS$K_ARC_TYPE_CHORD

1-34 DEC GKS GDPs and Escapes

Description

Connect both ends of the arc to
its center.

Fill the area formed by con
necting the beginning and end
points of the arc.

Generalized Drawing Primitives (GDPs)
Filled GDPs

Error Messages:

Error Completion
Number Status Code

-159 DECGKS$_ERROR_NEG_
159

Message/Meaning

Arc_type is invalid in routine **** (For
instance, if you specify any value other
than 2 or 3.)

-341 Filled Arc: 2 Points on Arc, and Radius

Constant: GKS$K_GDP _FARC_2PT_RAD
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms an arc from the specified beginning and end points, and
from the radius vector point. The arc is drawn so that the circumference,
clockwise from the first point to the second, is no greater than pi radians
(half of a circle).

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

gdp_id

data_record

data_record_size

Required Value

4

Two points, vector origin point, and radius vector point.

-341

(4 components)
1
0
0
(address of) arc_type

16 bytes

The integer array contains the single element arc_type, which can be any of
the following values:

DEC GKS GDPs and Escapes 1-35

Generalized Drawing Primitives (GDPs)
Filled GDPs

Value Constant

1 GKS$K_ARC_TYPE_OPEN

2 GKS$K_ARC_TYPE_PIE

3 GKS$K_ARC_TYPE_CHORD

Error Messages:

Error Completion
Number Status Code

-158 DECGKS$_ERROR_NEG_

-159

158

DECGKS$_ERROR_NEG_
159

Description

Form an arcing line.

Connect both ends of the arc to
its center.

Connect the beginning and end
points of the arc.

Message/Meaning

GDP primitive is not defined by the
supplied data **** (For instance, if the
distance between the points is more than
twice the specified radius, then DEC
GKS cannot form the arc.)

Arc_type is invalid in routine **** (For
instance, if you specify a value other
than 1, 2, or 3.)

-342 Filled Arc: Center, Starting Point, and Angle

Constant: GKS$K_GDP _FARC_CTR_PT_ANG
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms the filled, circular arc by using the distance between the
center point and the arc starting point as a radius, and by using the angle
value to determine the endpoint of the arc.

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

1-36 DEC GKS GDPs and Escapes

Required Value

2

Center and starting point.

Generalized Drawing Primitives {GDPs)
Filled GDPs

Argument

gdp_id

data_record

Required Value

-342
(5 components)
1
1
0
(address of) arc_type
(address of) angle-in radians

data_record_size 20 bytes

The integer array contains the single element arc_type, which can be any of
the following values:

Value Constant

2 GKS$K_ARC_TYPE_PIE

3 GKS$K._ARC_TYPE_CHORD

Error Messages:

Error Completion
Number Status Code

-159 DECGKS$_ERROR_NEG_
159

Description

Connect both ends of the arc to
its center.

Fill the area formed by con
necting the beginning and end
points of the arc.

Message/Meaning

Arc_type is invalid in routine **** (For
instance, if you specify any value other
than 2 or 3.)

-343 Filled Ellipse: Center, and 2 Axis Vectors

Constant: GKS$K_GDP _FELLIPSE_CTR_AXES
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms the ellipse using a center point, one axis vector (the largest
of the two) to establish the distance and direction of the major axis, and a
second axis vector to establish the distance of the minor axis.

DEC GKS GDPs and Escapes 1-37

Generalized Drawing Primitives (GDPs)
Filled GDPs

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

gdp_id

data_record

data_record_size

Error Messages:

Error Completion
Number Status Code

Required Value

4

Center point, vector origin point, and minor and major axis
vectors.

-343
null

0 bytes

l.Vlessage/l\leaning

-158 DECGKS$_ERROR_NEG_ GDP primitive is not defined by the sup
plied data in routine **** (For instance,
one of the vectors may have a length
ofO.)

158

-345 Filled Ellipse: Focal Points and Point on Circumference

Constant: GKS$K_GDP _FELLIPSE_FOCil_PT
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms the ellipse using the two focal points and a single point on
the circumference.

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

1-38 DEC GKS GDPs and Escapes

Required Value

3

Two focal points and the point on the circumference.

Generalized Drawing Primitives (GDPs)
Filled GDPs

Argument

gdp_id

data_record

data_record_size

Error Messages:

Error Completion
Number Status Code

Required Value

-345

null

0 bytes

Message/Meaning

-158 DECGKS$_ERROR_NEG_ GDP primitive is not defined by the sup
plied data in routine **** (For instance,
the point may be on the line segment
between the focal points.)

158

-346 Filled Elliptic Arc: Center, 2 Axis Vectors, and 2 Vectors

Constant: GKS$K_GDP _FELIARC_CTR_AXES_2VEC
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms the elliptic arc using a center point, one axis vector (the
largest of the two) to establish the distance and direction of the major axis,
a second axis vector to establish the distance of the minor axis, and two
vectors whose directions are used to determine the arc end points.

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

gdp_id

Required Value

6

The center point, vector origin point, two directional axis
vectors, and two end point vectors.

-346

DEC GKS GDPs and Escapes 1-39

Generalized Drawing Primitives (GDPs)
Filled GDPs

Argument

data_record

Required Value

(4 components)
1
0
0
(address of) arc_type

data_record_size 16 bytes

The integer array contains the single element arc_type, which can be any of
the following values:

Value Constant

2 GKS$K_ARC_TYPE_PIE

3 GKS$K.._ARC_TYPE_CHORD

Error Messages:

Error Completion
Number Status Code

-158 DECGKS$_ERROR_NEG_

-159

158

DECGKS$_ERROR_NEG_
159

Description

Connect both ends of the arc to
its center.

Fill the area formed by con
necting the beginning and end
points of the arc.

Message/Meaning

GDP primitive is not defined by the sup
plied data in routine **** (For instance,
due to the vector values, DEC GKS may
attempt to form a straight line.)

Arc_type is invalid in routine **** (For
instance, if you specify any value other
than 2 or 3.)

-348 Filled Elliptic Arc: Focal Points and 2 Points on
Circumference

Constant: GKS$K_GDP _FELIARC_FOCII_2PT
Supporting workstations: All DEC GKS-supported workstations.

1-40 DEC GKS GDPs and Escapes

Generalized Drawing Primitives (GDPs)
Filled GDPs

This GDP forms the elliptic arc using two focal points, the beginning point
of the elliptic arc, and the end point as one of the following components:

• The end point, located on the arc

• The second point of a ray (the first point is the first specified focus
point of the ellipse), whose intersection with the elliptic path of the arc
determines the end point of the arc

GKS$GDP Arguments:

Argument Required Value

4 number_of_points

x_coordinates Two focal points and two points on the circumference.
y _coordinates

gdp_id

data_record

data_record_size

-348

(4 components)
1
0
0
(address of) arc_type

16 bytes

The integer array contains the single element arc_type, which can be any of
the following values:

Value Constant

2 GKS$K...ARC_TYPE_PIE

3 GKS$K...ARC_TYPE_CHORD

Description

Connect both ends of the arc to
its center.

Fill the area formed by con
necting the beginning and end
points of the arc.

DEC GKS GDPs and Escapes 1-41

Generalized Drawing Primitives {GDPs)
Filled GDPs

Error Messages:

Error Completion
Number Status Code

-158 DECGKS$_ERROR_NEG_

-159

158

DECGKS$_ERROR_NEG_
159

-349 Filled Rectangle: Two Corners

Constant: GKS$K_GDP _FRECT_2PT

Message/Meaning

GDP primitive is not defined by the i;Jup
plied data in routine **** (For instance,
due to the specified values, DEC GKS
may attempt to form a straight line.)

Arc_type is invalid in routine **** (For
instance, if you specify any value other
than 2 or 3.)

Supporting workstations: All DEC GKS-supported workstations.

This GDP forms the rectangle from the specified diagonal comer points. The
sides of the rectangle are parallel to the X and Y axes.

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

gdp_id

data_record

data_record_size

1-42 DEC GKS GDPs and Escapes

Required Value

2

Diagonal comer points.

-349

null

Obytes

Generalized Drawing Primitives (GDPs)
Filled GDPs

Error Messages:

Error Completion
Number Status Code

-158 DECGKS$_ERROR_NEG_
158

Message/Meaning

GDP primitive is not defined by the sup
plied data in routine **** (For instance,
if the specified points have the same
X or Y value, DEC GKS cannot form a
rectangle.)

DEC GKS GDPs and Escapes 1-43

Generalized Drawing Primitives {GDPs)
Cell Array GDPs

Cell Array GDPs

This section describes all cell array GDPs. You need to pass the following
points to the cell array GDPs:

• Starting point.

• Diagonal point.

• Point R, which is the third point in the parallelogram moving the start
ing point to the diagonal point along the X axis. To form a rectangular
cell array, make sure that point R has the X value of the diagonal point
and the Y value of the starting point.

For more information concerning cell arrays, refer to Chapter 4, Output
Functions.

-400 Packed Cell Array

Constant: GKS$K._GDP _IMAGE_ARRAY
Supporting workstations: All DEC GKS-supported workstations except
for the PostScript workstations.

This GDP forms a cell array from the starting point, diagonal point, point
R, and the contents of a data record. The data record includes an array
that contains color indexes specified in 1, 8, or 16 bits. When you specify
the color indexes in increments less than a longword, the array uses less
memory and DEC GKS can read the data quicker.

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

1-44 DEC GKS GDPs and Escapes

Required Value

3

Starting point, diagonal point, and point R.

Argument

gdp_id

data_record

data_record_size

Generalized Drawing Primitives (GDPs)
Cell Array GDPs

Req:Wred Value

-400

(4 components)
3 + n_longwords
0
0
(address of) rows, columns, bits_per_index, and color_indexes

16 bytes

The following list describes the contents of the integer array:

Component

Rows

Columns

Bits_per_index

Color_indexes

Description

This element is the number of rows in the cell array.

This element is the number of columns in the cell array.

This element is the number of bits used, within color _indexes,
to store a single color index value. (DEC GKS uses the color
index value to color the corresponding cell in the cell array.)
This value may be 1, 8, or 16.

These components are the contiguous bit increments that
specify color indexes. These elements are n_longwords in size
and contain the color indexes in row-major order.

Color indexes should be specified in row-major order.

You can calculate the value n_longwords using the following formula:

INT((Rows * Columns * Bits__per_index + 31) I 32)

Error Messages:

Error Completion
Number Status Code

-158 DECGKS$_ERROR_NEG_
158

Message/Meaning

GDP primitive is not defined by the sup
plied data in routine **** (For instance,
if the starting and diagonal points have
the same X or Y value, DEC GKS cannot
form a cell array rectangle.)

DEC GKS GDPs and Escapes 1-45

Generalized Drawing Primitives (GDPs)
Text GDPs

TextGDPs

The following sections describe the text GDPs. Text GDPs use the text
attributes. For complete information concerning text, refer to Chapter 4,
Output Functions.

-231 Text: Restricted Text Extent Rectangle

Constant: GKS$K_GDP _RESTRICTED_TEXT
Supporting workstations: All DEC GKS-supported workstations.

This GDP forms the text string within the extent rectangle formed by the
specified width and height vectors, and by the text starting point. (This GDP
only uses the vectors to determine distance.) This GDP uses the current
text height, character spacing, and character expansion factor only if the
resulting text string fits within the specified extent rectangle. Otherwise,
this GDP chooses the text attributes that form a string that fits within
the text extent rectangle. Note that this GDP does not change any of the
current text attributes.

GKS$GDP Arguments:

Argument

number_of_points

x_coordinates
y _coordinates

gdp_id

data_record

data_record_size

1-46 DEC GKS GDPs and Escapes

Required Value

4

Starting point, vector origin point, width vector, and height
vector.

-231

(7 components)
0
0
1
null address
null address
(address of) string_length
(address of) string_address

28 bytes

Generalized Drawing Primitives {GDPs)
Text GDPs

The string length array contains the single element string_length, which is
the length of your text string. The string address array contains the single
element string_address, which is the address of your text string.

Error Messages:

EITor Completion
Number Status Code

-158 DECGKS$_ERROR_NEG_
158

Message/Meaning

GDP primitive is not defined by the
supplied data in routine **** (For in
stance, if the distances of the height and
width vectors do not form a valid extent
rectangle.)

DEC GKS GDPs and Escapes 1-47

Escape Functions

Escape Functions

The following sections describe the DEC GKS-supported escape functions.
The sections identify each escape by the following:

• The numeric identifier that you pass to ESCAPE.

• The title of the escape (for instance, "Set Display Speed").

• The valid DEC GKS operating states during which you can use the
escape.

• The constant equivalent of the numeric identifier.

• The list of supporting workstations.

• The description of the escape.

• The list of the arguments passed to ESCAPE and the contents of the
input and output data records, if applicable. The names of the argu;..
ments are identical to the argument descriptions of ESCAPE in Chapter
3, Control Functions.

• The list of escape-specific error messages, if applicable.

Many of the escape data records require that you pass a workstation iden
tifier. In all the data record descriptions that follow, the identifier ws_id
specifies the workstation identifier component of the record.

Some of the escapes require that you pass a coordinate range as part of
the input data record. In all the data record descriptions that follow, the
identifier coord_range is a set of four real numbers in the following order:
([XMIN,XMAX] x [YMIN,YMAX]). For more information concerning this
coordinate range notation, refer to Chapter 1, Introduction to DEC GKS.

The following sections describe the DEC GKS-specific escape functions, by
category.

1-48 DEC GKS GDPs and Escapes

Control Escape Functions

Escape functions
Control Escape Functions

This section describes all the escape functions that affect the workstation
as do the DEC GKS control functions. For more information concerning the
DEC GKS data structures and control functions, refer to Chapter 3, Control
Functions.

-100 Set Display Speed

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_SPEED
Supporting workstations: The LVP16 and all HPGL protocol plotter
workstations.

This escape controls the speed of output generation. DEC GKS measures
the speed in device coordinate vector/second measurements.

The DEC GKS-supported plotters have pen speeds that are within the
range 0.38 cm/second to 38.1 cm/second. The graphics handlers round your
increment values to the nearest multiple of 0.38. You can specify the value
0.0 to obtain the default speed of 0.38 cm/second. If you are using one of the
plotters to produce acetate slides, the recommended speed is 10 cm/second.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

Required Value

-100
(5 components)
1
1
0
(address of) ws_id
(address of) display_speed

DEC GKS GDPs and Escapes 1-49

Escape functions
Control Escape Functions

Argument Required Value

in_data_size

out_buffer

record_buffer_length

record_size

20 bytes

null

NA

0

The real array contains the single element display _speed, which is expressed
in device coordinate vectors/second. This value must be greater than, or
equal to, 0.

Error Messages:

Error Completion
Number Status Code

-155 DECGKS$_ERROR_NEG_
155

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

Message/Meaning

Display speed is less than zero in
routine ****
GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

-101 Generate Hardcopy of Workstation Surface

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_PRINT

1-50 DEC GKS GDPs and Escapes

Escape functions
Control Escape Functions

Supporting workstations: The ReGIS devices and Tektronix-4014
workstations. All DEC GKS GKS$K_WSCAT_OUTIN workstations
(terminals).

This escape generates a hardcopy of the currently displayed picture on a
printer attached to the workstation.

GKS$ESCAPE Arguments:

Argument Required Value

function_id

in_ data

-101

(4 components)
1
0
0
(address of) ws_id

in_data_size

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

16 bytes

null

NA

0 bytes

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SOOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

DEC GKS GDPs and Escapes 1-51

Escape functions
Control Escape Functions

Error Completion
Number Status Code

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

-103 Beep

l\lessage/l\leaning

Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_BEEP
Supporting workstations: The VAXstation, ReGIS, VT output-only,
Tektronix-4014, and Tektronix-4107 workstations.

This escape signals the application user by ringing a bell or by using some
other sound generator.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_ size

Required Value

-103
(5 components)
1
2
0
(address of) ws_id
(address of) rel_loudness, sound_duration

20 bytes

null

NA

0 bytes

The real array contains the element rel_loudness, which is the relative
loudness of the sound on a scale from 0.0(silent)to1.0 (loudest possible for

1-62 DEC GKS GDPs and Escapes

Escape functions
Control Escape Functions

the device) and contains the element sound_duration, which is the number
of seconds to maintain the sound; this value must be greater than or equal
to 0.

Error Messages:

Error Completion
Number Status Code

-156

-157

7

20

25

33

35

36

DECGKS$_ERROR_NEG_
156

DECGKS$_ERROR_NEG_
157

GKS$_ERROR_7

GKS$_ERROR_20

GKS$_ERROR_25

GKS$_ERROR_33

GKS$_ERROR_35

GKS$_ERROR_36

-106 Pop Workstation

Message/Meaning

Loudness is outside the range [0,1] in
routine ****
Duration is less than zero in routine ****

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_POP _WORKSTATION
Supporting workstations: The VAXstation workstations.

This escape places the display window containing the specified work
station in front of all other display windows. Remember that if you pop
a workstation window, you pop all input windows associated with that
workstation.

DEC GKS GDPs and Escapes 1-63

Escape functions
Control Escape Functions

GKS$ESCAPE Arguments:

Argument Required Value

function_id

in_ data

-106
(4 components)
1
0
0
(address of) ws_id

in_data_size

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

16 bytes

null

NA

0 bytes

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

-107 Push Workstation

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in routine

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_PUSH:... WORKSTATION
Supporting workstations: The VAXstation workstations.

1-54 DEC GKS GDPs and Escapes

Escape functions
Control Escape Functions

This escape places the display window containing the specified workstation
behind all other display windows. Remember that if you push a workstation
window, you push all input windows associated with that workstation.

GKS$ESCAPE Arguments:

Argument Required Value

function_id

in_ data

-107
(4 components)
1
0
0
(address of) ws_id

in_data_size

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

16 bytes

null

NA

0 bytes

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

DEC GKS GDPs and Escapes 1-55

Escape functions
Control Escape Functions

-108 Set Error Handling Mode

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_ERR_HANDLING_MODE
Supporting workstations: All workstations.

This escape allows you to suppress as much error checking as possible if set
to GKS$K_ERROR_OFF. Otherwise, GKS executes normally and logs errors
as necessary, returning those errors specified by standard and internal
errors.

GKS$ESCAPE Arguments:

Argument

functionjd

in_ data

in_data_size

out_ buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

Required Value

-108
(4 components)
1
0
0
error_mode (GKS$K...ERROR_OFF) or
(GKS$It_ERROR_ON)

16 bytes

null

NA

0 bytes

Message/Meaning

7 GKS$_ERROR_7 GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SOOP
in routine ****

20 GKS$_ERROR_20

1-56 DEC GKS GDPs and Escapes

Specified workstation identifier is invalid
in routine ****

Error Completion
Number Status Code

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

-109 Set Viewport Event

Escape functions
Control Escape Functions

l\f essage/l\leaning

Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_ VIEWPORT_EVENT
Supporting workstations: The VAXstation workstations.

This escape allows an application to receive events that the workstation
viewport has changed in some way. These events are reported through the
input event queue with the input class constant GKS$K;_INPUT_CLASS_
VIEWPORT. There is no corresponding GET INPUT function or escape.
The event simply indicates that something in the workstation viewport has
changed.

The application can use the appropriate workstation inquiry functions
to determine what values have actually changed. This type of event
is normally reported where the GKS workstation is implemented in a
windowing environment. The user may change the workstation viewport
through the window system. The DEC GKS VAXstation (UIS) workstation
type and the DECwindows series of workstation types are windowing
environments where this event can be reported.

DEC GKS GDPs and Escapes 1-57

Escape functions
Control Escape Functions

GKS$ESCAPE Arguments:

Argument Required Value

function_id

in_ data

-109
(4 components)
2
0
0
(address of) ws_id, on_off

in_data_size

out_buffer

record_buffer_length

record_size

16 bytes

null

NA

0 bytes

The integer array contains the elements ws_id, the workstation identifier
for which the value should be set, and on_off, used to tum on or off the
reporting of the change in the workstation viewport. GKS$K_TRUE turns it
on; GKS$K_FALSE turns it off.

Error Messages:

Error Completion
Number Status Code

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

1-58 DEC GKS GDPs and Escapes

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Escape functions
Control Escape Functions

-110 Associated Workstation Type Connection ID

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_ASSOC_ WSTYPE_CONID
Supporting workstations: All workstations.

This escape establishes a connection identifier for a specified workstation
type. When an inquiry function references the workstation after this
connection identifier is set, the workstation returns the workstation type
and the connection identifier, treating them as a pair, where this pairing is
possible and relevant. In addition, this escape may cancel an association
rather than set one.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

-110

(7 components)
2
0
1
(address of) ws_type, set
0
(address of) length conid
(address of) conid

16 bytes

null

NA

0 bytes

DEC GKS GDPs and Escapes t-;59

Escape functions
Control Escape Functions

Error Messages:

Error Completion
Number Status Code

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

-111 Software Clipping

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_SOFT_CLIP
Supporting workstations: All workstations.

Because some hardware may not correctly clip very large primitives, you
can force GKS to use software clipping, in some cases. GKS uses hardware
clipping by default if the graphics device has this capability.

The second integer parameter (flag) controls this behavior. If it is set to
GKS$K_TRUE, software clipping is always used. If it is set to GKS$K_
FALSE, software clipping is used only if hardware clipping is unavailable.

1-60 DEC GKS GDPs and Escapes

GKS$ESCAPE Arguments:

Escape functions
Control Escape Functions

Argument Required Value

function_id

in_ data

-111

(4 components)
2
0
0
(address of) ws_id, flag

in_data_size

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

16 bytes

null

NA

0 bytes

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

DEC GKS GDPs and Escapes 1-61

Escape functions
Output, Attribute, and Transformation Escape Functions

Output, Attribute, and Transformation Escape Functions

This section describes all the escape functions that affect the generation
of specific output primitives. For more information concerning DEC GKS
output and the corresponding output attributes, refer to Chapter 3, Control
Functions, and to Chapter 5, Output Attribute Functions.

Some of the escape functions described in this section refer to "entries."
In all instances, these refer to DEC GKS state list entries. For more in
formation concerning the DEC GKS state list, refer to Chapter 3, Control
Functions.

-150 Set Writing Mode

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_ WRITING_MODE
Supporting workstations: The VAXstations, ReGIS, VT output-only, and
LCGOl workstations.

This escape sets the current writing mode entry for all subsequently
drawn primitives that use this facility. An example of a writing mode is
complement mode, which reverses the foreground and background colors
when text is generated.

The initial writing mode is mode 1, which is workstation dependent. If a
workstation cannot implement a specified writing mode, DEC GKS uses
mode number 1.

GKS$ESCAPE Arguments:

Argument

function_ id

in_ data

1-62 DEC GKS GDPs and Escapes

Required Value

-150
(4 components)
1
0
0
(address of) wr_mode

Escape functions
Output, Attribute, and Transformation Escape Functions

Argument

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

16 bytes

null

NA

0 bytes

The integer array contains the single element wr _mode, which can be one of
the following values:

Mode Description

<=1 Workstation dependent.

2 Complement mode (GKS$~ WRT_MODE_COMPLEMENT).

3 Erase underlying characters (GKS$K_ WRT_MODE_ERASE).

4 Overlay on underlying characters (GKS$K_ WRT_MODE_OVERLAY).

>=5 Reserved for future use.

-151 Set Line Cap Style

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_LINE_CAP
Supporting workstations: The PostScript workstations.

This escape sets the current line cap style entry for all subsequently drawn
polylines that use this facility. The line cap style determines the appearance
of the polyline endpoints.

The initial line cap style is style 1, which is workstation dependent. If
a workstation cannot implement a specified style, DEC GKS uses style
number 1.

DEC GKS GDPs and Escapes 1-63

Escape functions
Output, Attribute, and Transformation Escape Functions

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

-151
(4 components)
1
0
0
(address of) cap_style

16 bytes

null

NA

0 bytes

The integer array contains the single element cap_style, which can be one of
the following values:

Style Description

<=1 Workstation dependent.

2 Butt, squared at the endpoint (GKS$K_LINE_CAP _BU'.rr).

3 Round, semicircular arc (GKS$K_LINE_CAP_ROUND).

4 Square, projecting square cap (GKS$K_LINE_CAP _SQUARE).

>=5 Reserved for future use.

-152 Set Line Join Style

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_LINE_JOIN
Supporting workstations: The PostScript workstations.

This escape sets the current line join style entry for all subsequently drawn
polylines that use this facility. The line join style determines the appearance
of the polyline vertices.

1-64 DEC GKS GDPs and Escapes

Escape functions
Output, Attribute, and Transformation Escape Functions

The initial line join style is style 1, which is workstation dependent. If
a workstation cannot implement a specified style, DEC GKS uses style
number 1.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

Required Value

-152
(4 components)
1
0
0
(address of) join_style

in_data_size

out_buffer

record_buffer_length

record_size

16 bytes

null

NA

0 bytes

The integer array contains the single elementjoin_style, which can be one of
the following values:

Style Description

<=1 Workstation dependent.

2 Mitre, outer edges meet at a sharp point (GKS$K._LINE_JOIN_MITRE).

3 Round, circular arc at point (GKS$K_LINE_JOIN_ROUND).

4 Beveled, a short, third line connecting lines not joined at ninety degrees
(GKS$K_LINE_JOIN_BEVEL).

>=5 Reserved for future use.

-153 Set Edge Control Flag

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$ICESC_SET_EDGE_CTL
Supporting workstations: All DEC GKS-supported workstations.

DEC GKS GDPs and Escapes 1-65

Escape functions
Output, Attribute, and Transformation Escape Functions

This escape sets the current edge control flag entry. If the current edge
control flag ASF is set to GKS$K_ASF_INDIVIDUAL, then the Fill Area
Set GDP (see the GDP description in the previous section) uses an edge for
subsequently generated fill areas.

The initial edge control setting is GKS$K_EDGE. (For more information
concerning ASFs, refer to Chapter 5, Output Attribute Functions.)

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

-153
(4 components)
1
0
0
(address of) edge_flag

16 bytes

null

NA

0 bytes

The integer array contains the single element edge_flag, which can be one of
the .following values:

Style Description

0 Fill Area Set does not use an edge (GKS$K_NOEDGE).

1 Fill Area Set uses an edge if the current edge control flag ASF is GKS$K_
ASF _INDIVIDUAL (GKS$K_EDGE).

Error Messages:

Error Completion
Number Status Code

8 GKS$_ERROR_8

1-66 DEC GKS GDPs and Escapes

Message/Meaning

GKS not in proper state: GKS must be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Escape functions
Output, Attribute, and Transformation Escape Functions

-154 Set Edge Type

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_EDGE_TYPE
Supporting workstations: All DEC GKS-supported workstations.

This escape sets the current edge type flag entry. If the current edge type flag
ASF is set to GKS$K_ASF _INDIVIDUAL, then the Fill Area Set GDP (see
the GDP description in the previous section) uses the current edge type for
subsequently generated edges.

The initial edge type is type 1, which is a solid line. If a workstation cannot
implement a specified type, DEC GKS uses type number 1.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

-154
(4 components)
1
0
0
(address of) edge_type

16 bytes

null

NA

0 bytes

The integer array contains the single element edge_type, which can be one of
the following values:

Style Description

<=0 Workstation dependent.

1 Solid edge (GKS$K._EDGE_SOLID).

2 Dashed edge (GKS$K_EDGE_DASHED).

DEC GKS GDPs and Escapes 1-67

Escape functions
Output, Attribute, and Transformation Escape Functions

Style Description

3 Dotted edge (GKS$K_EDGE_DOTI'ED).

4 Dashed-dotted edge (GKS$K_EDGE_DASHED_DOTI'ED).

>=5 Reserved for future use.

Error Mess~ges:

Error Completion
Number Status Code

8 GKS$_ERROR_8

-155 Set Edge Width Scale Factor

!Wessage/l\leaning

GKS not in proper state: GKS must be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine****

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_EDGE_ WIDTH
Supporting workstations: All DEC GKS-supported workstations.

This escape sets the current edge width factor flag entry. If the current edge
width scale factor flag ASF is set to GKS$K_ASF_INDIVIDUAL, then the
Fill Area Set GDP (seethe GDP description in the previous section) uses the
current edge scale factor for subsequently generated edges.

The initial edge width is 1.0. An edge width scale factor of 0.0 produces the
thinnest edge available on a workstation. DEC GKS multiplies the edge
width scale factor with the nominal edge width and rounds to the nearest
width available on the workstation.

1-68 DEC GKS GDPs and Escapes

Escape functions
Output, Attribute, and Transformation Escape Functions

GKS$ESCAPE Arguments:

Argument Required Value

function_id

in_ data

-155

(5 components)
0
1
0
0
(address of) scale_factor

in_data_size

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

20 bytes

null

NA

Obytes

8 GKS$_ERROR_8

-156 Set Edge Color Index

Message/Meaning

GKS not in proper state: GKS must be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_EDGE_COLOR_INDEX
Supporting workstations: All DEC GKS-supported workstations.

This escape sets the current edge color index entry. If the current edge color
index ASF is set to GKS$K_ASF _INDIVIDUAL, then the Fill Area Set GDP
(see the GDP description in the previous section) uses the current edge color
index for subsequently generated edges.

The initial edge color index is 1. If a workstation cannot implement a
specified color index, the device handler uses a workstation-dependent color.

DEC GKS GDPs and Escapes 1-69

Escape functions
Output, Attribute, and Transformation Escape Functions

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

Required Value

-156

(4 components)
1
0
0
(address of) color_index

16 bytes

null

NA

0 bytes

Message/Meaning

8 GKS$_ERROR_8 GKS not in proper state: GKS must be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****

-157 Set Edge Index

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_EDGE_INDEX
Supporting workstations: All DEC GKS-supported workstations.

This escape sets the current edge index entry. The Fill Area Set GDP uses
the index as a pointer into the edge bundle table whenever an edge attribute
ASF is set to GKS$K_ASF_BUNDLED. All device handlers must provide at
least five edge bundle indexes. (To review your device's edge bundle table,
refer to the device-specific appendixes in this manual.)

The initial edge index is 1. If a workstation cannot locate a specified edge
index in the edge bundle table, the device handler uses a workstation
dependent index number.

1-70 DEC GKS GDPs and Escapes

Escape functions
Output, Attribute, and Transformation Escape Functions

GKS$ESCAPE Arguments:

Argument Required Value

function_id

in_ data

-157
(4 components)
1
0
0
(address of) bundle_index

in_data_size

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

16 bytes

null

NA

0 bytes

8 GKS$_ERROR_8

Message/Meaning

GKS not in proper state: GKS must be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine****

-158 Set Edge Aspect Source Flag (ASF)

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_EDGE_ASF
Supporting workstations: All DEC GKS-supported workstations.

This escape establishes the aspect source :flag (ASF) setting for each of the
edge attributes. Each :flag can either be GKS$K_ASF _BUNDLED (value
0-use the bundled attributes), or GKS$K_ASF_INDIVIDUAL (value 1-use
the individual attributes). All initial ASF :flags are set to GKS$K_ASF _
INDIVIDUAL.

DEC GKS GDPs and Escapes 1-71

r
Escape functions
Output, Attribute, and Transformation Escape Functions

GKS$ESCAPE Arguments:

Argument

fu.nction_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

-158
(4 components)
4
0
0
(address of) asf_fiags

16 bytes

null

NA

0 bytes

The integer array contains the elements asf _array, each of which contain
either GKS$K_ASF _BUNDLED or GKS$K_ASF _INDIVIDUAL for each of
the edge attribute settings, in the following order:

1. Edge control flag (see the Set Edge Control Flag escape in this section)

2. Edge type flag (see the Set Edge Type escape in this section)

3. Edge width scale factor flag (see the Set Edge Width Scale Factor escape
in this section)

4. Edge color index flag (see the Set Edge Color Index escape in this
section)

Error Messages:

Error Completion
Number Status Code

8 GKS$_ERROR_8

1-72 DEC GKS GDPs and Escapes

l\lessage/l\leaning

GKS not in proper state: GKS must be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Escape functions
Output, Attribute, and Transformation Escape Functions

-160 Begin Transformation Block

Operating states: WSOP, WSAC
Constant: GKS$K_ESC_BEGIN_TRANS_BLOCK
Supporting workstations: All DEC GKS-supported workstations.

This escape applies the specified transformation to all subsequently drawn
primitives not contained in segments. The transformation continues until
you call the End Transformation Block escape function (see the escape
description is this section) or until you open a segment.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

-160

(5 components)
1
6
0
(address of) ws_id
(address of) xform

20 bytes

null

NA

0 bytes

The real array contains the elements xform, which are the values for
the segment transformation matrix. For more information, refer to the
description of GKS$EVAL_XFORM_MATRIX in Chapter 8, Segment
Functions.

DEC GKS GDPs and Escapes 1-73

r
Escape functions
Output, Attribute, and Transformation Escape Functions

Error Messages:

Error Completion
Number Status Code

6 GKS$_ERROR_6

20 GKS$_ERROR_20

33 GKS$_ERROR_33

36 GKS$_ERROR_36

-161 End Transformation Block

Operating states: WSOP, WSAC

Message/Meaning

GKS not in proper state: GKS shall be
either in the state WSOP or in the state
WSAC in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Constant: GKS$K_ESC_END_TRANS_BLOCK
Supporting workstations: All DEC GKS-supported workstations.

This escape ends the transformation process initiated by the call to the
Begin Transformation Block escape function (see the escape description in
this section).

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

J.;-74 DEC GKS GDPs and Escapes

Required Value

-161

(4 components)
1
0
0
(address of) ws_id

Escape functions
Output, Attribute, and Transformation Escape Functions

Argument Required Value

in_data_size

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

0 bytes

null

NA

0 bytes

6 GKS$_ERROR_6

20 GKS$_ERROR_20

33 GKS$_ERROR_33

36 GKS$_ERROR_36

Message/Meaning

GKS not in proper state: GKS shall be
either in the state WSOP or in the state
WSAC in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

-162 Set Segment Highlighting Method

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_SEG_HIGH_METHOD
Supporting workstations: All DEC GKS-supported workstations.

This escape sets the segment highlighting method, but it does not change
the highlighted state of a segment. Use the SET HIGHLIGHTING function
to change the segment highlighted state. If the segment is currently
highlighted when this escape is called, and the segment highlighting
method or attributes are different, the segment is unhighlighted and then
highlighted again with the new attributes. This function may also cause
a regeneration of the workstation display, depending on the workstation
regeneration mode.

DEC GKS GDPs and Escapes 1-75

Escape functions
Output, Attribute, and Transformation Escape Functions

Constant

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_ buffer

record_buffer_length

record_size

Required Value

-162
(5 components)
6
2
0
(address of) segment name, highlighting method, high
lighting_color_index, highlighting_line_type, highlight
ing_fill_style, highlighting_fill_index
(address of) highlighting_line_ width, expand_extent_
factor

20 bytes

null

NA

0 bytes

The integer array contains the element segment_name, which is the name
of the segment for which the highlighting attributes are to be set. The
highlighting_method element is also part of this integer array, and is one of
the following constants:

Value Description

GKS$K_HIGH_METHOD_DEFAULT 0 Use the workstation-dependent default
highlighting method.

GKS$K....HIGH_METHOD_COMP

GKS$K....HIGH_METHOD_COLOR

1-76 DEC GKS GDPs and Escapes

1

2

Highlight the segment by drawing it in
complement mode.

Highlight the segment by drawing it
using the color index specified in the
integer array.

Escape functions
Output, Attribute, and Transformation Escape Functions

Constant

GKS$K._HIGH_METHOD_LINE

GKS$K._HIGH_METHOD_FILL

GKS$K._HIGH_METHOD_DUAL

Error Messages:

Error Completion
Number Status Code

7 GKS$_ERROR_7

120 GKS$_ERROR_l20

Value

3

4

5

Description

Highlight the segment by drawing an
extent box around it, using the line
attributes specified in the integer and
float arrays. The extent box is norm.ally
drawn using complement mode. The
extent will be expanded by expand_
extentJactor times the nominal line
width.

Highlight the segment by drawing a
complement mode fill area around it,
using the fill area attributes specified in
the integer array. The extent box will be
expanded by expand_extentJactor times
the nominal line width.

Highlight the segment by drawing both
a line and fill area around it, using the
attributes specified. The extent box will
be expanded by expand_extentJactor
times the nominal line width.
If the highlighting method is not avail
able on the workstation on which the
segment is displayed, the default value
ofl is used.

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified segment name is invalid in
routine ****

DEC GKS GDPs and Escapes 1-77

Escape functions
Output, Attribute, and Transformation Escape Functions

-163 Set Highlighting Method

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_HIGH_METHOD
Supporting workstations: All DEC GKS-supported workstations.

This escape sets the primitive highlighting method to be used for pick high
lighting. This information is meaningful only on an OUTIN workstation. All
subsequent primitives until the next usage of this escape are highlighted in
the manner specified.

If you use pick prompt and echo type 1, the information applies to each
primitive and is stored when they are created. If you use pick prompt and
echo type 2, the information applies to the group of primitives with the same
pick identifier. The information is stored the first time a primitive with a
different pick identifier than any other primitive in a particular segment
is stored. If you use pick prompt and echo type, the information is stored
when a segment is created and applies to all primitives within a particular
segment.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

1-78 DEC GKS GDPs and Escapes

Required Value

-163
(5 components)
5
2
0
(address of) highlighting method, higblighting_color_
index, higblighting_line_type, higblighting_fill_style,
higblighting_fill_index
(address of) higblighting_line_ width, expand_extent_
factor

20 bytes

null

NA

0 bytes

Escape functions
Output, Attribute, and Transformation Escape Functions

The integer array contains the element highlighting_method, which is the
method to use for highlighting all subsequently stored primitives, and is one
of the following constants:

Constant Value

GKS$K_HIGH_METHOD_DEFAULT 0

GKS$K_HIGH_METHOD_COMP 1

GKS$K_HIGH_METHOD_COLOR 2

GKS$K_HIGH_METHOD_LINE 3

GKS$K_HIGH_METHOD_FILL 4

GKS$K_HIGH_METHOD_DUAL 5

Description

Use the workstation-dependent default
highlighting method.

Highlight the primitive by drawing it in
complement mode.

Highlight the primitive by drawing it
using the color index specified in the
integer array.

Highlight the primitive by drawing an
extent box around it, using the line
attributes specified in the integer and
:float arrays. The extent box is normally
drawn using complement mode. The
extent will be expanded by expand_
extentJactor times the nominal line
width.

Highlight the primitive by drawing a
complement mode fill area around it,
using the fill area attributes specified in
the integer array. The extent box will be
expanded by expand_extentJactor times
the nominal line width.

Highlight the primitive by drawing both
a line and fill area around it, using the
attributes specified. The extent box will
be expanded by expand_extentJactor
times the nominal line width.
If the highlighting·method is not avail
able on the workstation on which the
primitive is displayed, the default value
ofl is used.

DEC GKS GDPs and Escapes 1-79

Escape functions
Output, Attribute, and Transformation Escape Functions

Error Messages:

Error Completion
Number Status Code Message/Meaning

8 GKS$_ERROR_8 GKS not in proper state: GKS must be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****

-200 Set Edge Representation

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_EDGE_REP
Supporting workstations: All DEC GKS-supported workstations.

This escape function sets or resets the representation for a given edge
bundle index. For more information concerning representations, refer to
Chapter 5, Output Attribute Functions.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

-200
(5 components)
5
1
0
(address of) ws_id, edge_index, edge_atts
(address of) scale_factor

20 bytes

null

NA

0 bytes

The real array contains the single element scaleJactor, which is the edge
width scale factor to be associated with the specified edge bundle index.

1-80 DEC GKS GDPs and Escapes

Escape functions
Output, Attribute, and Transformation Escape Functions

The integer array contains the element edge_index, which is the bundle
index that you wish to define or redefine; the element scaleJactor, which is
the edge width scale factor to be associated with the bundle index; and the
elements edge_atts, which must contain the following:

1. Edge control flag (see the Set Edge Control Flag escape in this section)

2. Edge type flag (see the Set Edge Type escape in this section)

3. Edge color index flag (see the Set Edge Color Index escape in this
section)

Error Messages:

Error Completion
Number Status Code

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

92 DECGKS$_ERROR_NEG_92

l\t:essage/l\leaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in routine

Color index is less than zero in routine

DEC GKS GDPs and Escapes 1-81

Escape functions
Output, Attribute, and Transformation Escape Functions

Error Completion
Number Status Code

-150

-151

-162

-163

DECGKS$_ERROR_NEG_
150
DECGKS$_ERROR_NEG_
151
DECGKS$_ERROR_NEG_
162

DECGKS$_ERROR_NEG_
163

1-82 DEC GKS GDPs and Escapes

l\lessagellWeaning

Edge index is less than 1 in routine ****

Edge width scale factor is less than zero
in routine ****
Edge index is invalid in routine ****

Specified edge type is not supported on
this workstation in routine ****

Escape functions
DEC GKS DECwindows Escape Functions

DEC GKS DECwindows Escape Functions

This section describes all the escape functions that affect the DECwindows
device. For more information concerning DEC GKS and DECwindows, refer
to Chapter 12, DECwindows Workstation Specifics, in the DEC GKS Device
Specifics Reference Manual.

-202 Set Window Title

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K._ESC_SET_ WINDOW _TITLE
Supporting workstations: All workstations.

This escape changes the string displayed in the title bar. This change
applies to workstation types 210 and 211.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

-202

(7 components)
1
0
1
(address of) ws_id
0
(address of) length of new title
(address of) new title

28 bytes

null

NIA

0 bytes

DEC GKS GDPs and Escapes 1-83

Escape functions
DEC GKS DECwindows Escape Functions

Error Messages:

Error Completion
Number Status Code

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

-203 Set Reset String

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_RESET_STRING
Supporting workstations: All workstations.

This escape changes the string displayed in the reset button on the menu
bar, and applies only to workstation types 210 and 211.

1-84 DEC GKS GDPs and Escapes

Escape functions
DEC GKS DECwindows Escape Functions

GKS$ESCAPE Arguments:

Argument Required Value

function_id

in_ data

-203

(7 components)
1
0
1
(address of) ws_id
0
(address of) length of new string
(address of) new string for reset button

in_data_size

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

28 bytes

null

NIA

0 bytes

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

DEC GKS GDPs and Escapes 1-85

Escape functions
DEC GKS DECwindows Escape Functions

-204 Set Cancel String

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_CANCEL_STRING
Supporting workstations: All workstations.

This escape sets the string used by the cancel buttons of input devices.
It has no effect on input devices presently displayed, and applies only to
workstation type 211.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

Required Value

-204

(7 components)
1
0
1
(address of) ws_id
0
(address of) length of new string
(address of) new string for cancel buttons

28 bytes

null

NIA

Obytes

Message/Meaning

7 GKS$_ERROR_7 GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

20 GKS$_ERROR_20

1-86 DEC GKS GDPs and Escapes

Specified workstation identifier is invalid
in routine ****

Error Completion
Number Status Code

Escape functions
DEC GKS DECwindows Escape Functions

l\lessage/IWeaning

25 GKS$_ERROR_25 Specified workstation is not open in
routine ****

33 GKS$_ERROR_33 Specified workstation is of category MI in
routine ****

36 GKS$_ERROR_36 Specified workstation is Workstation
Independent Segment Storage in
routine ****

-205 Set Enter String

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_ENTER_STRING
Supporting workstations: All workstations.

This escape sets the string used by the enter buttons of input devices.
It has no effect on input devices presently displayed, and applies only to
workstation type 211.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

Required Value

-205

(7 components)
1
0
1
(address of) ws_id
0
(address of) length of new string
(address of) new string for enter buttons

DEC GKS GDPs and Escapes 1-87

Escape functions
DEC GKS DECwindows Escape Functions

Argument Required Value

in_data_size

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

28 bytes

null

NIA

0 bytes

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

-206 Set Icon Bitmaps

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_ICON_BITMAPS
Supporting workstations: DECwindows Workstations 210 and 211.

Icon bitmaps are defined one integer per pixel. The integer values are used
in a device-dependent manner to determine the icon appearance. Where
possible, the integers will specify the GKS color indexes to be used for each
pixel. The pixels are specified in row-major order, with pixel (0,0) being the
upper left comer of the icon (left-to-right, then top-to-bottom).

1-88 DEC GKS GDPs and Escapes

Escape functions
DEC GKS DECwindows Escape Functions

If the icon height and width are specified as 0, then the default icon bitmap
will be used instead, and the Bitmap Definition string for that icon must not
be specified.

Some devices may not need more than one icon bitmap, in which case only
the Small Icon should be specified. The Large Icon Height and Large Icon
Width parameters should be set to 0.

This escape is currently supported on DECwindows workstations only. For
the DECwindows workstations, the normal bitmap sizes are 1 7xl 7 and
32x32. Pixels specified with color 0 appear in the icon background color.
Pixels specified as non-zero appear in the icon foreground color.

GKS$ESCAPE Arguments:

Argument

function_id

int_data

in_data_size

out_buffer

Required Value

-206
(4 components)
5 + Small_lcon_ Width * Small_Icon_Height +
Large_Icon_ Width * Large_Icon_Height
0
0
(address of) ws_id,

Small_Icon_ Width (in pixels),

Small_Icon_Height (in pixels),

Large_Icon_ Width (in pixels),

Large_lcon_Height (in pixels),

Small_Icon_Data (Small_Icon_ Width *
Small_Icon_Height integers),

Large_Icon_Data (Large_Icon_ Width *
Large_Icon_Height integers)

16 bytes

null

DEC GKS GDPs and Escapes 1-89

Escape functions
DEC GKS DECwindows Escape Functions

Argument Required Value

record_buffer_length

record_size

NA

0

Error Messages:

Error Completion
Number Status Code

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

-304 Inquire Window Identifiers

l\lessage/l\leaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SOOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Operating state,: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_ WINDOW _IDS
Supporting workstations: All workstations.

This escape returns the display and window identifiers of the GKS output
window.

1-90 DEC GKS GDPs and Escapes

Escape functions
DEC GKS DECwindows Escape Functions

GKS$ESCAPE .Arguments:

Argument Required Value

function_id

in_ data

-304

(4 components)
1
0
0
(address of) ws_id

in_data_size

out_buffer

16 bytes

(4 components)
2
0
0
(address of) X Display id, X Window id

record_buffer_length

record_size

16 bytes

16 bytes

Error Messages:

Error Completion
Number Status Code

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

l\f essage/l\f eaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

DEC GKS GDPs and Escapes 1-91

Escape functions
DEC GKS DECwindows Escape Functions

-307 Inquire Pasteboard Identifier

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_PASTEBOARD_ID
Supporting workstations: DECwindows Workstations 210 and 211.

This escape is for VMS only.

This escape returns the widget identifier of the GKS pasteboard widget. The
pasteboard is a dialog box that contains the GKS output window widget and
all input widgets. You should not change the size of this widget. This escape
applies only to workstation types 210 and 211.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

1-92 DEC GKS GDPs and Escapes

Required Value

-307
(4 components)
1
0
0
(address of) ws_id

16 bytes

(4 components)
1
0
0
(address of) Pasteboard Widget id

16 bytes

16 bytes

Escape functions
DEC GKS DECwindows Escape Functions

Error Messages:

Error Completion
Number Status Code

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

-308 Inquire Menu Bar Identifier

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_MENU_BAR_ID
Supporting workstations: DECwindows Workstations 210 and 211.

This escape is for VMS only.

This escape returns the widget identifier of the menu bar widget, and it
applies only to workstation types 210 and 211.

DEC GKS GDPs and Escapes 1-93

Escape functions
DEC GKS DECwindows Escape Functions

GKS$ESCAPE Arguments:

Argument Required Value

function_id

in_ data

-308

(4 components)
1
0
0
(address of) ws_id

in_data_size

out_buffer

16 bytes

(4 components)
1
0
0
(address of) Menu Bar Widget id

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

16 bytes

16 bytes

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

1-94 DEC GKS GDPs and Escapes

l\'lessage/l\f eaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Escape functions
DEC GKS DECwindows Escape Functions

-309 Inquire Shell Identifier

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_SHELL_ID
Supporting workstations: DECwindows Workstations 210 and 211.

This escape is for VMS only.

This escape returns the widget identifier of the GKS application shell
widget, and it applies only to workstation types 210 and 211.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_ size

Required Value

-309

(4 components)
1
0
0
(address of) ws_id

16 bytes

(4 components)
1
0
0
(address of) Shell Widget id

16 bytes

16 bytes

DEC GKS GDPs and Escapes 1-95

Escape functions
DEC GKS DECwindows Escape Functions

Error Messages:

Error Completion
Number Status Code

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

36 GKS$_ERROR_36

-500 Set Double Buffering

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_DOUBLE_BUFFER
Supporting Workstations: DECwindows workstations.

This escape sets the double buffering state to either ON or OFF.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

1-96 DEC GKS GDPs and Escapes

Required Value

-500

(4 components)
2
0
0
(address of) wsid, control_flag

16 bytes

Argument

out_buffer

return_buffer_length

record_size

Escape functions
DEC GKS DECwindows Escape Functions

Required Value

null

NA

0 bytes

The following list describes the integer array contents:

Element

wsid

control_:flag

Error Messages:

Error Completion
Number Status Code

Description

This element is the workstation identifier.

This element is the double buffering control :flag. If it
is GKS$1(_TRUE(l), double buffering is enabled. If it is
GKS$K_FALSE(0), double buffering is disabled.

Message/Meaning

7 GKS$_ERROR_ 7 GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SOOP
in routine ****

-501 Set Background Pixmap

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_SET_BCKGRND_PIXMAP
Supporting Workstations: DECwindows workstations.

For DECwindows workstations, the pixmap is defined as the background
image. When you specify a background pixmap, GKS creates its own pixmap
and copies the application-specified background pixmap to its own pixmap.
After this call, GKS never references the application pixmap.

To modify the background pixmap, inquire the GKS background pixmap
identifier (GKS$K_ESC_INQ_BCKGRND_PIXMAP) and then modify it.

DEC GKS GDPs and Escapes 1-97

Escape functions
DEC GKS DECwindows Escape Functions

GKS$ESCAPE Arguments:

Argument Required Value

function_id

in_ data

-501

(4 components)
2
0
0
(address of) wsid, pixmap_id

in_data_size

out_buffer

return_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

16 bytes

null

NA

0 bytes

7 GKS$_ERROR_ 7

-502 Inquire Double Buffer Pixmap

!Wessage/1\leaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_DBUFFER_PIXMAP
Supporting Workstations: DECwindows workstations.

For the DECwindows workstations, when double buffering is enabled, GKS
writes to a pixmap. This escape queries the X pixmap ID so the application
can write to that pixmap.

1-98 DEC GKS GDPs and Escapes

Escape functions
DEC GKS DECwindows Escape Functions

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

return_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

Required Value

-502

(4 components)
1
0
0
(address of) wsid

16 bytes

(4 components)
1
0
0
(address of) pixmap_id

20 bytes

20 bytes

Message/Meaning

7 GKS$_ERROR_ 7 GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

-503 Inquire Background Pixmap

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_BCKGRND_PIXMAP
Supporting Workstations: DECwindows workstations.

For the DECwindows workstations, when double buffering is enabled and a
background pixmap is defined, this escape allows the application to query
the pixmap identifier.

DEC GKS GDPs and Escapes 1-99

Escape functions
DEC GKS DECwindows Escape Functions

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

return_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

Required Value

-503
(4 components)
1
0
0
(address of) wsid

16 bytes

(4 components)
1
0
0
(address of) pixmap_id

20 bytes

20 bytes

Message/Meaning

7 GKS$_ERROR_7 GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SOOP
in routine ****

1-100 DEC GKS GDPs and Escapes

Escape functions
DEC GKS State List Inquiry Escape Functions

DEC GKS State List Inquiry Escape Functions

This section describes all the escape functions that inquire about information
in the DEC GKS state list. All the inquiry functions in this section write an
integer value called error _status to the output data record. If error _status is
the value 0, then the rest of the output data record is valid. If error _status
is not the value 0, then the rest of the output data. record is invalid.

For more information concerning the DEC GKS state list, refer to Chapter 3,
Control Functions. For more information concerning the DEC GKS inquiry
functions and the error _status argument, refer to Chapter 11, Inquiry
Functions.

-251 Inquire Current Writing Mode

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_ WRITING_MODE
Supporting workstations: All DEC GKS-supported workstations.

This escape writes the value of the current writing mode (see the Set
Writing Mode escape description in this chapter) to its output data record.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

-251
null

0 bytes

(4 components)
2
0
0
(address of) error_status, writing_mode

16 bytes

16 bytes

DEC GKS GDPs and Escapes 1-101

Escape functions
DEC GKS State List Inquiry Escape Functions

Error Messages:

Error Completion
Number Status Code

8 GKS$_ERROR_8

-252 Inquire Current Line Cap Style

Message/Meaning

GKS not in proper state: GKS must be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine****

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_LINE_CAP
Supporting workstations: All DEC GKS-supported workstations.

This escape writes the value of the current line cap style (see the Set Line
Cap Style escape description in this chapter) to its output data record.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

1-102 DEC GKS GDPs and Escapes

Required Value

-252
null

0 bytes

(4 components)
2
0
0
(address of) error_status, cap_style

16 bytes

16 bytes

Escape functions
DEC GKS State List Inquiry Escape Functions

Error Messages:

Error Completion
Number Status Code

8 GKS$_ERROR_8

-253 Inquire Current Line Join Style

Message/Meaning

GKS not in proper state: GKS must be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine****

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_LINE_JOIN
Supporting workstations: All DEC GKS-supported workstations.

This escape writes the value of the current line join style (see the Set Line
Join Style escape description in this chapter) to its output data record.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

-253
null

0 bytes

(4 components)
2
0
0
(address of) error_status, join_style

16 bytes

16 bytes

DEC GKS GDPs and Escapes 1-103

Escape functions
DEC GKS State List Inquiry Escape Functions

Error Messages:

Error Completion
Number Status Code l\lessage/.M:eaning

8 GKS$_ERROR_8 GKS not in proper state: GKS must be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****

-254 Inquire Current Edge Attributes

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_EDGE_ATTR
Supporting workstations: All DEC GKS-supported workstations.

This escape writes all the value of the current edge attributes to its output
data record.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

1-104 DEC GKS GDPs and Escapes

Required Value

-254
null

0 bytes

(5 components)
9
1
0
(address of) error_status, edge_atts
(address of) scale_factor

20 bytes

20 bytes

Escape functions
DEC GKS State List Inquiry Escape Functions

The real array contains the single element scaleJactor, which is the current
edge width scale factor. The integer array contains the elements edge_atts,
which must contain the following:

1. Current edge index (see the Set Edge Index escape in this chapter)

2. Current edge control flag (see the Set Edge Control Flag escape in this
chapter)

3. Current edge type flag (see the Set Edge Type escape in this chapter)

4. Current edge color index flag (see the Set Edge Color Index escape in
this chapter)

Error Messages:

Error Completion
Number Status Code

8

-160

GKS$_ERROR_8

DECGKS$_ERROR_NEG_
160

Message/Meaning

GKS not in proper state: GKS must be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine ****
Insufficient space in escape output data
record arrays in routine ****

DEC GKS GDPs and Escapes 1-105

Escape functions
Workstation State List Inquiry Escape Functions

Workstation State List Inquiry Escape Functions

This section describes all the escape functions that inquire about information
in the workstation state list. All the inquiry functions in this section write
an integer value called error _status to the output data record. If error _status
is the value 0, then the rest of the output data record is valid. If error _status
is not the value 0, then the rest of the output data record is invalid.

For more information concerning the workstation state list, refer to Chapter
3, Control Functions. For more information concerning the DEC GKS in
quiry functions and the error _status argument, refer to Chapter 11, Inquiry
Functions.

-255 Inquire Viewport Data

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_ VIEWPORT_DATA, GEIVD (FORTRAN)
Supporting workstations: DECwindows workstations.

This escape returns the region of the workstation that has been changed or
exposed since the last time this escape was called.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

1-106 DEC GKS GDPs and Escapes

Required Value

-255
(4 components)
1
0
0
(address of) ws_id

16 bytes

Escape functions
Workstation State List Inquiry Escape Functions

Argument Required Value

out_buffer (5 components)
1
4
0
(address of) error_status
(address of) viewport

record_buffer_length

record_size

20

20 bytes

The input integer array contains the single element ws_id, which is the
workstation identifier.

The following list describes the contents of the output integer array:

Component Description

error_status

viewport

This element is the inquiry error status.

This element is the viewport defining the region changed or
exposed, in device coordinates (XMIN, XMAX, YMIN, YMAX).

Error Messages:

Error Completion
Number Status Code

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

182 GKS$_ERROR_182

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Contents of escape data record are
invalid in routine ****

DEC GKS GDPs and Escapes 1-107

Escape functions
Workstation State List Inquiry Escape Functions

-300 Inquire Current Display Speed

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_SPEED
Supporting workstations: All DEC GKS-supported workstations.

This escape writes the current display speed to the output data record. (See
the Set Display Speed escape in this chapter.)

GKS$ESCAPE Arguments:

Argument

functionjd

in_ data

in_data_size

out_buffer

record_buffer_length

record_ size

1-108 DEC GKS GDPs and Escapes

Required Value

-300

(4 components)
1
0
0
(address of) ws_id

16 bytes

(5 components)
1
1
0
(address of) error_status
(address of) display_speed

20

20 bytes

Escape functions
Workstation State List Inquiry Escape Functions

Error Messages:

Error Completion
Number Status Code

7 GKS$_ERROR_ 7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

-302 Inquire List of Edge Indexes

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_LIST_EDGE_INDEXES
Supporting workstations: All DEC GKS-supported workstations.

This escape returns the list of indexes supported by a given workstation.
(See the Set Edge Index escape in this chapter.)

DEC GKS GDPs and Escapes 1-109

Escape functions
Workstation State List Inquiry Escape Functions

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_ buffer

record_buffer_length

record_size

Required Value

-302
(4 components)
1
0
0
(address of) ws_id

16 bytes

(4 components)
3 + num_indexes
0
0
(address of) error_status, totaljndexes, returned_
indexes, index_list

16 bytes

16 bytes

The following list describes the integer array contents:

Component

error_status

total_indexes

returned_indexes

index_list

Description

This element is the inquiry error status.

This element is the total number of edge indexes supported by
the workstation.

This element is the number of edge indexes written to the
remaining elements of the output data record's integer array.

These elements are the edge indexes.

1-110 DEC GKS GDPs and Escapes

Escape functions
Workstation State List Inquiry Escape Functions

Error Messages:

Error
Number

7

20

25

33

35

36

-160

Completion
Status Code

GKS$_ERROR_ 7

GKS$_ERROR_20

GKS$_ERROR_25

GKS$_ERROR_33

GKS$_ERROR_35

GKS$_ERROR_36

DECGKS$_ERROR_NEG_
160

-303 Inquire Segment Extent

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****
Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in routine

Insufficient space in escape output data
record arrays in routine ****

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_SEGMENT_EXTENT
Supporting workstations: All DEC GKS-supported workstations.

This escape writes the coordinate range of the segment extent rectangle
corresponding to the specified segment name. For more information
concerning segment names, refer to Chapter 8, Segment Functions.

This escape will not report correct values if the segment is off the display
surface. This is a design restriction.

DEC GKS GDPs and Escapes 1-111

Escape functions
Workstation State List Inquiry Escape Functions

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

-303
(4 components)
2
0
0
(address of) ws_id, segment_id

16 bytes

(5 components)
1
4
0
(address of) error_status
(address of) coord_range

20

20 bytes

The real array contains the elements coord_range, which are the four world
coordinate values of the segment's extent rectangle, using the current
transformation values.

Error Messages:

Error Completion
Number Status Code

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

1-112 DEC GKS GDPs and Escapes

l\lessage/l\leaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Escape functions
Workstation State List Inquiry Escape Functions

Error Completion
Number Status Code

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

Message/Meaning

Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in
routine ****

-305 Inquire Segment Highlighting Method

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_INQ_SEG_HIGH_METHOD
Supporting workstations: All DEC GKS-supported workstations.

This escape writes the values of the segment highlighting method and
attributes to its output data record.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

Required Value

-305

(4 components)
1
0
0
(address of) segment name

16 bytes

DEC GKS GDPs and Escapes 1-113

Escape functions
Workstation State List Inquiry Escape Functions

Argument

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

Required Value

(5 components)
6
2
0
(address of) error_status, highlighting method, highlight
ing_color_index, highlighting_line_type, highlighting_fill_
style, highlighting_fill_index
(address of) highlighting_line_ width, expand_extent_
factor

20

20 bytes

Message/Meaning

7 GKS$_ERROR_7 GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

120 GKS$_ERROR_120

-306 Inquire Highlighting Method

Specified segment name is invalid in
routine ****

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_INQ_HIGH_METHOD
Supporting workstations: All DEC GKS-supported workstations.

This escape writes the values of the current primitive highlighting method
and attributes to its output data record.

1-114 DEC GKS GDPs and Escapes

Escape functions
Workstation State List Inquiry Escape Functions

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

Required Value

-306

null

0 bytes

(5 components)
6
2
0
(address of) error_status, highlighting method, highlight
ing_color_index, highlighting_line_type, highlighting_fill_
style, highlighting_fill_index
(address of) highlighting_line_ width, expand_extent_
factor

20

20 bytes

l\f essage/l\f eaning

8 GKS$_ERROR_8 GKS not in proper state: GKS must be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine****

-358 Inquire List of Highlighting Method

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_INQ_LIST_HIGH
Supporting workstations: All DEC GKS-supported workstations.

This escape returns the list of supported segment and primitive highlighting
methods.

DEC GKS GDPs and Escapes 1-115

Escape functions
Workstation State List Inquiry Escape Functions

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

. out_buffer

record_buffer_length

record_size

Required Value

-358

(4 components)
1
0
0
(address of) ws_type

16 bytes

(4 components)
3 + total_num_high_methods
0
0
(address of) error_status, total_num_high_methods,
returned_high_methods, high_methods_list

16

16 bytes

The following list describes the integer array contents:

Component

error_status

total_num_high_methods

return_high_methods

hig_methods_list

1-116 DEC GKS GDPs and Escapes

Description

This element is the inquiry error status.

This element is the total number of highlighting meth
ods supported by the workstation type.

This element is the number of highlighting methods
written to the remaining elements of the output data
record's integer array

These elements are the highlighting methods.

Escape functions
Workstation State List Inquiry Escape Functions

Error Messages:

Error Completion
Number Status Code 1.Wessage/l\leaning

8 GKS$_ERROR_8 GKS not in proper state: GKS must be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

-359 Inquire Edge Representation

Operating states: WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_EDGE_REP
Supporting workstations: All DEC GKS-supported workstations.

This escape returns the edge bundle representation for a given workstation.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

return_buffer_length

record_size

Required Value

-359

(4 components)
3
0
0
(address of) ws_id, bundle_index, set_realized

16 bytes

(5 components)
4
1
0
(address of) error_status, control_flag, edge_type, color_
index

(address of) edge_ width

20 bytes

20 bytes

DEC GKS GDPs and Escapes 1-117

Escape functions
Workstation State List Inquiry Escape Functions

The following list describes the integer array contents:

Component

wsid

bundle_index

set_realized

error_status

control_fiag

edge_type

color_index

Description

This element is the workstation identifier.

This element is the edge bundle index.

This element determines the return type of the values. It
can be either GKS$K_ VALUE_SET or GKS$K_ VALUE_
REALIZED.

This element is the inquire error status.

This element is the edge control.

This element is the edge type.

This element is the edge color index.

The following list describes the float array contents:

Component Description

edge_ width This element is the edge width scale factor.

Error Messages:

Error Completion
Number Status Code l\t:essage/l\t:eaning

7 GKS$_ERROR_7 GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

20 GKS$_ERROR_20 Specified workstation identifier is invalid
in routine****

25 GKS$_ERROR_25 Specified workstation is not open in
routine ****

33 GKS$_ERROR_33 Specified workstation is of category MI in
routine ****

1-118 DEC GKS GDPs and Escapes

Escape functions
Workstation State List Inquiry Escape Functions

Error Completion
Number Status Code

35 GKS$_ERROR_35

36 GKS$_ERROR_36

92 GKS$_ERROR_92

-90 DECGKS$_ERROR_NEG_92

-154 DECGKS$_ERROR_NEG_
154

-162 DECGKS$_ERROR_NEG_
162

-404 Inquire Extent of a GDP

lWessage/l\leaning

Specified workstation is of category
INPUT in routine ****
Specified workstation is Workstation
Independent Segment Storage in routine

Color index is less than zero in routine

Internal GKS error: Bad memory ad
dress freed in routine ****
Length of initial string is greater than
the buffer size in routine ****
Edge index is invalid in routine ****

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_GDP _EXTENT
Supporting workstations: All DEC GKS-supported workstations.

This escape writes the coordinate range, representing the GDP extent
rectangle, to its output data record.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

Required Value

-404

(4 components)
7
0
0
(address of) in_data

DEC GKS GDPs and Escapes 1-119

Escape functions
Workstation State List Inquiry Escape Functions

Argument

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

16 bytes

(5 components)
1
4
0
(address of) error_status
(address of) coord_range

20 bytes

20 bytes

The real array contains the elements coord_range, which are the four world
coordinate values of the segment's extent rectangle, using the current
transformation values.

The following list describes the integer array contents of in_data:

Component

ws_id

num_points

x_points

y_points

GDP_id

d_r_size

d_r_address

Error Messages:

Description

This element is the workstation identifier.

This element is the number of points that define the GDP.

This element is the address of the array containing the GDP
X point values.

This element is the address of the array containing the GDP
Y point values.

This element is the GDP identifier.

This element is the size of the GDP data record in bytes.

This element is the address of the GDP data record.

Error Completion
Number Status Code l\lessage/l\f eaning

7 GKS$_ERROR_ 7

1-120 DEC GKS GDPs and Escapes

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SOOP
in routine ****

Error
Number

20

25

33

35

Escape functions
Workstation State List Inquiry Escape Functions

Completion
Status Code Message/Meaning

GKS$_ERROR_20 Specified workstation identifier is invalid
in routine ****

GKS$_ERROR_25 Specified workstation is not open in
routine ****

GKS$_ERROR_33 Specified workstation is of category MI in
routine ****

GKS$_ERROR_35 Specified workstation is of category
INPUT in routine ****

DEC GKS GDPs and Escapes 1-121

Escape functions
Workstation Description Table Inquiry Escape Functions

Workstation Description Table Inquiry Escape Functions

This section describes all the escape functions that inquire about information
in the workstation description table. All the inquiry functions in this section
write an integer value called error _status to the output data record. If error_
status is the value 0, then the rest of the output data record is valid. If
error _status is not the value 0, then the rest of the output data record is
invalid.

The escapes in this section require a workstation type (ws_type) instead
of a workstation identifier (ws_id). For more information concerning the
workstation type value, refer to Chapter 3, Control Functions.

For more information concerning the workstation description table, refer to
Chapter 3, Control Functions. For more information concerning the DEC
GKS inquiry functions and the error _status argument, refer to Chapter 11,
Inquiry Functions.

-350 Inquire List of Available Escapes

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_LIST_ESC
Supporting workstations: All DEC GKS-supported workstations.

This escape returns the list of escapes supported by a specified workstation.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

1-122 DEC GKS GDPs and Escapes

Required Value

-350

(4 components)
1
0
0
(address of) ws_type

Escape functions
Workstation Description Table Inquiry Escape Functions

Argument

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

16 bytes

(4 components)
3 +num_escapes
0
0
(address of) error_status, total_escapes, returned_
escapes,escape_list

16 bytes

16 bytes

The following list describes the integer array contents:

Component

error_status

total_ escapes

returned_ escapes

escape_list

Error Messages:

Description

This element is the inquiry error status.

This element is the total number of escapes supported by the
workstation type.

This element is the number of escape identifiers written to the
remaining elements of the output data record's integer array.

These elements are the identifiers of the supported escapes.

Error Completion
Number Status Code l\lessage/l\f eaning

22 GKS$_ERROR_22

23 GKS$_ERROR_23

-351 Inquire Default Display Speed

Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_DEF _SPEED
Supporting workstations: All DEC GKS-supported workstations.

DEC GKS GDPs and Escapes 1-123

Escape functions
Workstation Description Table Inquiry Escape Functions

This escape writes the default speed, for the specified workstation type, to
its output data record. (See the Set Display Speed escape description in this
chapter.)

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Error·Messages:

Error Completion
Number Status Code

Required Value

-351

(4 components)
1
0
0
(address of) ws_type

16 bytes

(5 components)
1
1
0
(address of) error_status
(address of) def_speed

20 bytes

20 bytes

l\f essage/l\leaning

22 GKS$_ERROR_22 Specified workstation type is invalid in
routine ****

23 GKS$_ERROR_23

39 GKS$_ERROR_39

1-124 DEC GKS GDPs and Escapes

Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Escape functions
Workstation Description Table Inquiry Escape Functions

-352 Inquire Line Cap and Join Facilities

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_LINE_CAP _JOIN_FAC
Supporting workstations: All DEC OKS-supported workstations.

This escape writes the line cap and line join facilities, for the specified
workstation type, to the output data record. (See the Set Line Cap Style and
Set Line Join Style escapes in this chapter.) ·

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Required Value

-352
(4 components)
1
0
0
(address of) ws_type

16 bytes

(4 components)
5 + ret_cap_styles + retjoin_styles
0
0
(address of) error_status, capjoin_data

16

16 bytes

The following list describes the integer array contents of cap.Join_data:

Component

num_cap_styles

ret_cap_styles

Description

This element is the total number of line cap styles supported
by the workstation type.

This element is the number of cap styles written to the
elements cap_style_list.

DEC GKS GDPs and Escapes 1-125

Escape functions
Workstation Description Table Inquiry Escape Functions

Component Description

num.Join_styles This element is the total number of line join styles supported
by the workstation type.

ret_join_styles This element is the number of join styles written to the
elements join_style_list.

cap_list

join_list

These elements are the list of supported cap styles.

These elements are the list of supported join styles.

Error Messages:

Error Completion
Number Status Code

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

-354 Inquire Edge Facilities

Message/Meaning

Specified workstation type is invalid in
routine ****
Specified workstation type does not exist
in routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_EDGE_FAC
Supporting workstations: All DEC GKS-supported workstations.

This escape writes the edge facilities available, for the specified workstation
type, to the output data record.

1-126 DEC GKS GDPs and Escapes

Escape functions
Workstation Description Table Inquiry Escape Functions

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

return_buffer_length

record_size

Required Value

-354
(4 components)
1
0
0
(address of) ws_type

16 bytes

(5 components)
5 + number_edge_types
3
0
(address of) error_status,total_edge_types, number_edge_
types,number_edge_widths,number_indices
(address of) nominal_edge_width, minimum_edge_width,
maximum_ edge_ width

20 bytes

20 bytes

The following list describes the integer array contents:

Component

ws_type

error_status

total_edge_types

number_edge_types

number_edge_
widths

number_indices

Description

This element is the workstation type.

This element is the inquire error status.

This element is the total number of edge types available.

This element is the number of edge types returned.

This element is the number of edge widths available.

This element is the number of predefined edge bundle table
entries.

DEC GKS GDPs and Escapes 1-127

Escape functions
Workstation Description Table Inquiry Escape Functions

The following list describes the float array contents:

Component Description

nominal_ edge_
width

This element is the nom.imal edge width.

minimum_ edge_
width

This element is the minimum edge width.

maximum_ edge_
width

This element is the maximum edge width.

Error Messages:

Error Completion
Number Status Code Message/Meaning

8 GKS$_ERROR_8 GKS not in proper state: GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SOOP in routine****

22 GKS$_ERROR_22 Specified workstation type is invalid in
routine ****

23 GKS$_ERROR_22 Specified workstation type does not exist
in routine ****

39 GKS$_ERROR_39 Specified workstation is neither of cate-
gory OUTPUT nor of category OUTIN in
routine ****

-160 DECGKS$_ERROR_NEG_ Insufficient space in escape output data
160 record arrays in routine ****

-355 Inquire Predefined Edge Representation

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_PREDEF _EDGE_REP
Supporting workstations: All DEC GKS-supported workstations.

This escape writes the predefined edge bundle information, for the specified
workstation type, to the output data record.

1-128 DEC GKS GDPs and Escapes

Escape functions
Workstation Description Table Inquiry Escape Functions

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

return_buffer_length

record_size

Required Value

-355

(4 components)
2
0
0
(address of) ws_type, bundle_index

16 bytes

(5 components)
4
1
0
(address of) error_status, control_:flag, edge_type, color_
index
(address of) edge_ width

20 bytes

20 bytes

The following list describes the integer array contents:

Component

ws_type

bundle_index

error_status

control_:flag

edge_type

color_index

Description

This element is the workstation type.

This element is the edge bundle index.

This element is the inquire error status.

This element is the edge control.

This element is the edge type.

This element is the edge color index.

The following list describes the float array contents:

Component Description

edge_ width This element is the edge width scale factor.

DEC GKS GDPs and Escapes 1-129

Escape functions
Workstation Description Table Inquiry Escape Functions

Error Messages:

Error Completion
Number Status Code

8 GKS$_ERROR_8

22 GKS$_ERROR_22

39

-150

-160

GKS$_ERROR_39

DECGKS$_ERROR_NEG_
150
DECGKS$_ERROR_NEG_
160

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****
Specified workstation type is invalid in
routine ****
Specified workstation is neither of cate
gory OUTPUT nor of category OUTIN in
routine ****
Edge index is less than zero in
routine ****
Insufficient space in escape output data
record arrays in routine ****

-356 Inquire Maximum Number of Edge Bundles

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_INQ_MAX_EDGE_BUNDLE
Supporting workstations: All DEC GKS-supported workstations.

This escape writes the maximum number of edge bundle table entries, for
the specified workstation type, to the output data record.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

1-130 DEC GKS GDPs and Escapes

Required Value

-356
(4 components)
1
0
0
(address of) ws_type

Escape functions
Workstation Description Table Inquiry Escape Functions

Argument Required Value

in_data_size

out_buffer

16 bytes

(4 components)
2
0
0
(address of) error_status, max_number_bundles

return_buffer_length

record_size

16 bytes

16 bytes

The following list describes the integer array contents:

Component Description

ws_type

error_status

max_number_
bundles

This element is the workstation type.

This element is the inquire error status.

This element is the maximum number of edge bundle table
entries.

Error Messages:

Error Completion
Number Status Code l\t:essage/:M:eaning

8 GKS$_ERROR_8 GKS not in proper state: GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

22 GKS$_ERROR_22 Specified workstation type is invalid in
routine ****

23 GKS$_ERROR_23 Specified workstation type does not exist
in routine ****

39 GKS$_ERROR_39 Specified workstation is neither of cate-
gory OUTPUT nor of category OUTIN in
routine ****

-160 DECGKS$_ERROR_NEG_ Insufficient space in escape output data
160 record arrays in routine ****

DEC GKS GDPs and Escapes 1-131

Escape functions
Utility Escape Functions

Utility Escape Functions

This section describes all the escape functions that provide you with utilities
to assist you in programming. For instance, many of the utility functions
translate the mapping of a point from one of the DEC GKS coordinate
planes to another. (For more information concerning transformations, refer
to Chapter 6, Transformation Functions.)

-400 Evaluate NOC Mapping of a WC Point

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_MAP _NDC_OF _WC
Supporting workstations: All DEC GKS-supported workstations.

This escape accepts a world coordinate point and a normalization transfor-·
mation number, and writes the corresponding normalized device coordinate
(NDC) point value to the output data record.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

1-132 DEC GKS GDPs and Escapes

Required Value

-400
(5 components)
1
2
0
(address of) norm_xform
(address of) world_x_value, world_y_value

20 bytes

Argument

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

Escape functions
Utility Escape Functions

Required Value

(5 components)
0
2
0
null address
(address of) NDC_x_value, NDC_y_value

20 bytes

20 bytes

Message/Meaning

50 GKS$_ERROR_50 Transformation number is invalid in
routine ****

-401 Evaluate DC Mapping of an NOC Point

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_MAP _DC_OF _NDC
Supporting workstations: All DEC GKS-supported workstations.

This escape accepts a normalized device coordinate (NDC) point, calculates
the corresponding device coordinate point using the current workstation
transformatiOn, and writes the device coordinate value to the output data
record.

DEC GKS GDPs and Escapes 1-133

Escape functions
Utility Escape Functions

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

Required Value

-401

(5 components)
1
2
0
(address of) ws_id
(address of) NDC_x_value, NDC_y_value

20 bytes

(5 components)
0
2
0
null address
(address of) DC_x_value, DC_y_value

20 bytes

20 bytes

l.\fessage/l\leaning

7 GKS$_ERROR_7 GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****

20 GKS$_ERROR_20

25 GKS$_ERROR_25

1-134 DEC GKS GDPs and Escapes

Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****

Error Completion
Number Status Code

33 GKS$_ERROR_33

35 GKS$_ERROR_35

Escape functions
Utility Escape Functions

Message/Meaning

Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****

-402 Evaluate WC Mapping of NOC Point

Operatipg states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_MAP _ WC_OF _NDC
Supporting workstations: All DEC GKS-supported workstations.

This escape accepts a normalized device coordinate (NDC) point and a
normalization transformation number, calculates the corresponding world
coordinate point, and writes the world coordinate value to the output data
record.

GKS$ESCAPE Arguments:

Argument

function_id

in_ data

in_data_size

Required Value

-402

(5 components)
1
2
0
(address of) norm_xform
(address of) NDC_x_value, NDC_y_value

20 bytes

DEC GKS GDPs and Escapes 1-135

Escape functions
Utility Escape Functions

Argument

out_buffer

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

Required Value

(5 components)
0
2
0
null address
(address of) world_x_ value, world_y _value

20 bytes

20 bytes

JMessage/lWeaning

50 GKS$_ERROR_50 Transformation number is invalid in
routine ****

-403 Evaluate NOC Mapping of DC Point

Operating states: GKOP, WSOP, WSAC, SGOP
Constant: GKS$K_ESC_MAP _NDC_OF _DC
Supporting workstations: All DEC GKS-supported workstations.

This escape accepts a device coordinate point, calculates the corresponding
normalized device coordinate (NDC) point using the current workstation
transformation, and writes the device coordinate value to the output data
record.

1-136 DEC GKS GDPs and Escapes

GKS$ESCAPE Arguments:

Escape functions
Utility Escape Functions

Argument Required Value

function_id

in_ data

-403
(5 components)
1
2
0
(address of) ws_id
(address of) DC_x_value, DC_y_value

in_data_size

out_buffer

20 bytes

(5 components)
0
2
0
null address
(address of) NDC_x_ value, NDC_y _value

record_buffer_length

record_size

Error Messages:

Error Completion
Number Status Code

20 bytes

20 bytes

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

Message/Meaning

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC, or SGOP
in routine ****
Specified workstation identifier is invalid
in routine ****
Specified workstation is not open in
routine ****

DEC GKS GDPs and Escapes 1-137

Escape functions
Utility Escape Functions

Error Completion
Number Status Code

33 GKS$_ERROR_33

35 GKS$_ERROR_35

1-138 DEC GKS GDPs and Escapes

Message/Meaning

Specified workstation is of category MI in
routine ****
Specified workstation is of category
INPUT in routine ****

Appendix J

DEC GKS-Specific Input Values

This appendix provides input information that is applicable to all the
DEC GKS GKS$K_WSCAT_OUTIN workstations. You should review this
appendix before working with the DEC GKS input functions. If you need
further workstation-specific input information, refer to the device-specific
appendixes in this manual.

This appendix describes the following input values that are available for all
DEC GKS-supported devices:

• Input devices

• Prompt and echo types

• Data records

• Keypad functionality

DEC GKS-Specific Input Values J-1

Logical Input Device Numbers

Logical Input Device Numbers

The following section specifies which DEC GKS-supported workstations
implement which logical input devices. Logical input device numbers deter
mine the physical device (such as a keypad or a mouse) used to control the
DEC GKS logical input devices. You pass the device numbers described in
this section to the DEC GKS input functions, as follows:

C Declare the device number ...
INTEGER DEVICE_NUM

DATA DEVICE_NUM / 3 /

C Request input from the device ...
CALL GKS$REQUEST CHOICE(WS ID, DEVICE NUM, INPUT_STATUS,

* INPUT_CHOICE) - - -

DEC GKS defines at least four logical input device numbers for each input
class (some workstations support eight choice devices). If the workstation
does not support the device number you specify, the workstation implements
the device in the same manner as it implements device number 1.

Several of the input devices use special sections of the keyboard available to
users of specific workstations. If you use these devices, you should remember
that you need to provide the user with the information necessary to operate
them. For further information concerning input keypad functionality, refer
to the Keypad Functionality section in this appendix.

J-2 DEC GKS-Specific Input Values

Logical Input Device Numbers

To allow you to use several logical input devices of the same class during
sample or event mode, DEC GKS defines different echo areas for devices of
a single class. The appropriate chapters in the DEC GKS Device Specifics
Reference Manual list the default echo area for the default logical input
device of a given class. To determine the default echo area for other devices
of the same class, call one of the INQ_DEF _class_DATA inquiry functions
and pass it the appropriate device number. For more information, refer to
Chapter 11, Inquiry Functions.

For complete information concerning logical input devices, physical in
put devices, and the DEC GKS input process, refer to Chapter 7, Input
Functions.

DEC GKS-Specific Input Values J-3

Logical Input Devices
Choice Devices

Choice Devices

Choice 1

Choice 2

The following sections describe the choice logical input devices and specify
which DEC GKS workstations support each device.

VAXstations: Using one of the VAXstations, you can use the LOCK Key
feature for any of the choice logical input devices. For more information,
refer to the Keypad Functionality section in this appendix.

Supporting Workstations: All DEC GKS-supported GKS$K_ WSCAT_
OUTIN workstations.

For workstations that do not have a mouse or puck, this device requires
that the user press the arrow keys to highlight various choices. 'lb trigger
this device, the user must press the RETURN key. 'lb cause a break during
request mode, the user must press CTRUU.

For workstations that do have a mouse or puck, this device requires that
the user move the tracking device to highlight various choices. 'lb trigger
this device, the user must press the left button. To cause a break during
request mode, the user must press the middle button on the mouse and the
top button on the puck.

Supporting Workstations: The VAXstation, VT125, VT240, VT330,
VT340, and Tektronix-4107 workstations.

This device activates both the arrow keys and the numeric keypad keys to
highlight the various choices. (For more information concerning the numeric
keypad, refer to the Keypad Functionality section in this appendix.) By
pressing any of the arrow or numeric keys, the user immediately triggers
the device and the measure corresponds to the number assigned to the
pressed key. 'lb break input during request mode, the user must press
CTRUU.

J-4 DEC GKS-Specific Input Values

Choice 3

Choice 4

NOTE

Logical Input Devices
Choice Devices

For all other DEC GKS workstations, the handlers accept this
input device number, but they implement the device in the same
manner as they implement choice device 1.

Supporting Workstations: The VAXstation, VT240, VT330, and VT340
workstations.

This device activates the top six keys of the auxiliary keypad and the
keys F7 to F20 to highlight choices 1 through 20. (For more information
concerning the auxiliary keypad or the keys F7 through F20, refer to the
Keypad Functionality section.) By pressing any of the arrow ~r numeric
keys, the user immediately triggers the device and the measure corresponds
to the number assigned to the pressed key. To break input during request
mode, the user must press CTRUU.

NOTE

For all other DEC GKS workstations, the handlers accept this
input device number, but they implement the device in the same
manner as they implement choice device 1.

Supporting Workstations: All DEC GKS-supported GKS$K_ WSCAT_
OUTIN workstations.

This device is implemented in the same manner as choice device number 1.

VAXstations/VT330/VT340 (with mouse): This device can display only
up to four choices and does not react to the tracking device of the mouse or
puck. (If you use a mouse, you should initialize the device for three choices;
if you use a puck, you should initialize it for four choices.) The user triggers
the device by depressing a mouse or puck button.

DEC GKS-Specific Input Values U

Logical Input Devices
Choice Devices

Choice 5

The measure is the choice number corresponding to the button pushed. The
left button corresponds to choice 1; the middle button corresponds to choice
2; the right button corresponds to choice 3. If you use a puck, the bottom
button corresponds to choice 4.

Supporting Workstations: All DEC GKS-supported GKS$K_ WSCAT_
OUTIN workstations.

This device is implemented in the same manner as choice device number 1.

VAXstations/VT330/VT340 (with mouse): This device can display only
up to four choices and does not react to the tracking device of the mouse or
puck. (If you use a mouse, you should initialize the device for three choices;
if you use a puck, you should initialize it for four choices.) The user triggers
the device by releasing a mouse or puck button.

The measure is the choice number corresponding to the button pushed. The
left button corresponds to choice 1; the middle button corresponds to choice
2; the right button corresponds to choice 3. If you use a puck, the bottom
button corresponds to choice 4.

Choice 6, 7, and 8

Supporting Workstations: All DEC GKS-supported GKS$K_ WSCAT_
OUTIN workstations.

These devices are implemented in the same manner as choice device
number 1.

J-6 DEC GKS-Specific Input Values

Locator Devices

Logical Input Devices
Locator Devices

The following subsection describes the locator logical input devices and
specifies which DEC GKS workstations support each device.

VAXstations: Using one of the VAXstations, you can use the LOCK Key
feature for any of the locator logical input devices. For more information,
refer to the Keypad Functionality section in this appendix.

Locator 1, 2, 3, and 4

Supporting Workstations: All DEC GKS-supported GKS$K_ WSCAT_
OUTIN workstations.

For workstations that do not have a mouse or puck, these devices require
that the user press the arrow keys to move the locator prompt. To trigger
the device, the user must press the RETURN key. To cause a break during
request mode, the user must press CTRUU.

For workstations that do have a mouse or puck, these devices require that
the user move the tracking device to move the locator prompt. To trigger
the device, the user must press the left button. To cause a break during
request mode, the user must press the middle button on the mouse and the
top button on the puck.

VT125/240/330/340 and Tektronix---4107: Using these workstations, you
can use the numeric keypad as a zoning mechanism using device numbers
1 and 2. (For more information concerning the numeric keypad, refer to the
Keypad Functionality section in this appendix.)

DEC GKS-Specific Input Values J-7

Logical Input Devices
Pick Devices

Pick Devices

The following subsection describes the pick logical input devices and specifies
which DEC GKS workstations support each device.

Pick 1, 2, 3, and 4

Supporting Workstations: All DEC GKS-supported GKS$K_ WSCAT_
OUTIN workstations.

For workstations that do not have a mouse or puck, these devices require
that the user press the arrow keys to move the pick aperture. The
workstation marks the currently picked segments (or portions of segments)
by outlining the extent rectangle of all or part of the segment .. To trigger
the device, the user must press the RETURN key. To cause a break during
request mode, the user must press CTRIJU.

For workstations that do have a mouse or puck, these devices require that
the user move the tracking device to move the pick aperture. To trigger the
device, the user must press the left button. To cause a break during request
mode, the user must press the middle button on the mouse and the top
button on the puck.

VT125/240 and Tektronix-4107: Using a VT240 or a VT125, you can use
the numeric keypad as a zoning mechanism using device numbers 1 and 2.
(For more information concerning the numeric keypad, refer to the Keypad
Functionality section inthis appendix.)

J-8 DEC GKS-Specific Input Values

Logical Input Devices
String Devices

String Devices

The following sections describe the string logical input devices and specify
which DEC GKS workstations support each device.

String 1 and 4

String 2

Supporting Workstations: All DEC GKS-supported GKS$K.. WSCAT_
OUTIN workstations.

This device returns a DEC multinational text string to the calling program.
The device requires the user to enter the text string using the keyboard. To
trigger this device, the user must press the RETURN key. To cause a break
during request mode, the user must press CTRUU.

To edit the string while entering input (on all workstations except the
Tektronix-4014), the user can use the following keys:

• DELETE, to delete the last character of the input string.

• CTRIJH, to move the cursor to the beginning of the string.

• CTRUE, to move the cursor to the end of the string.

• CTRUB, to recall only the initial string.

• CTRUA, to toggle insert and overstrike modes.

• Left arrow, to move the cursor to the left.

• Right arrow, to move the cursor to the right.

Supporting Workstations: The VAXstation workstations.

This device returns an SMG Encoded Key value. DEC GKS ignores any
prompt and echo type specified for this device. By pressing a key, you
trigger the device; the measure of the device is the single character. For
information concerning this type of text string, refer to the VMS Run-Ti,me
Library Routines Reference Manual.

DEC GKS-Specific Input Values J-9

Logical Input Devices
String Devices

String 3

NOTE

For all other DEC GKS-supported devices, the handlers accept
this device number, but they implement the device in the same
manner as they implement string devices 1and4.

Supporting Workstations: The VT240, VT125, and Tektronix--4107
workstations.

This device returns the ASCII value associated with the specified character.
This device requires that the user press a single key on the keyboard. When
the user presses a key, the device accepts the keystroke without a trigger.
To cause a break during request mode, the user must press CTRUU. DEC
GKS ignores any prompt and echo type specified for this device.

NOTE

For all other DEC GKS-supported devices, the handlers accept
this device number, but they implement the device in the same
manner as they implement string devices 1 and 4.

J-10 DEC GKS-Specific Input Values

Stroke Devices

Logical Input Devices
Stroke Devices

The following subsection describes the stroke logical input devices and
specifies which DEC GKS workstations support each device.

VAXstations: Using one of the VAXstations, you can use the LOCK Key
feature for any of the stroke logical input devices. For more information,
refer to the Keypad Functionality section in this appendix.

Stroke 1, 2, 3, and 4

Supporting Workstations: All DEC GKS-supported GKS$K._ WSCAT_
OUTIN workstations.

For workstations that do not have a mouse or puck, these devices require
that the user press the arrow keys to move the stroke prompt. To trigger
the device, the user must press the RETURN key. To cause a break during
request mode, the user must press CTRUU.

For workstations that do have a mouse or puck, these devices require that
the user move the tracking device to move the stroke prompt. To trigger
the device, the user must press the left button. To cause a break during
request mode, the user must press the middle button on the mouse and the
top button on the puck.

VT125/240/330/340 and Tektronix-4107: Using these workstations, you
can use the numeric keypad as a zoning mechanism when using device
numbers 1 and 2. (For more information concerning the numeric keypad,
refer to the Keypad Functionality section in this appendix.)

VT330/340: Using these workstations, you use the right mouse button to
trigger a point in the stroke.

DEC GKS-Specific Input Values J-11

Logical Input Devices
Valuator Devices

Valuator Devices

The following subsection describes the valuator logical input devices and
specifies which DEC GKS workstations support each device.

VAXstations: Using one of the VAXstations, you can use the LOCK Key
feature for any of the valuator logical input devices. For more information,
refer to the Keypad Functionality section in this appendix.

Valuator 1, 2, 3, and 4

Supporting Workstations: All DEC GKS-supported GKS$K_ WSCAT_
OUTIN workstations.

For workstations that do not have a mouse or puck, these devices require
that the user press the arrow keys to move the valuator prompt. To trigger
the device, the user must press the RETURN key. To cause a break during ·
request mode, the user must press CTRUU.

For workstations that do have a mouse or puck, these devices require that
the user move the tracking device to move the valuator prompt. To trigger
the device, the user must press the left button. To cause a break during
request mode, the user must press the middle button on the mouse and the
top button on the puck.

J-12 DEC GKS-Specific Input Values

Logical Input Devices
Input Devices and Echo Area Titles

Input Devices and Echo Area Titles

For all choice, string, and valuator devices, and for locator devices using
prompt and echo type 6, you can specify a character string that the work
station places at the top of the echo area. In this manner, you can place an
application-specific title at the top of the echo area.

To take advantage of this feature, allow for two extra longwords at the end
of your input data record. For instance, if you use a string device with a
prompt and echo type of 1, you normally declare the data record as follows:

C String data record.
INTEGER DATA_RECORD(2)

C Enter the buffer size and cursor position ••.
DATA_RECORD(1) = 30
DATA_RECORD(2) = 0

C Specify the size of the data record •••
RECORD_BUFFER_LENGTH = 8

CALL GKS$INIT STRING(WS ID, DEVICE NUM, ' '
* PROMPT ECHO TYPE, ECHO AREA, DATA RECORD,
* RECORD ~)UFFER _LENGTH) - -

If you want to place a title at the top of the string echo area, you can declare
the data record as follows:

C String data record.
INTEGER DATA_RECORD(4)

C Enter the buffer size and cursor position •••
DATA RECORD(1) = 30
DATA=RECORD(2) = 0

C In the last two longwords, enter the address and length of
C the string to be used as a title for the echo area ••.

DATA RECORD(3) = %LOC('Enter Your Name')
DATA=RECORD(4) = LEN('Enter Your Name')

C Specify the NEW size of the data record •.•
RECORD_BUFFER_LENGTH = 16

DEC GKS-Specific Input Values J-13

Logical Input Devices
Input Devices and Echo Area Titles

CALL GKS$INIT STRING(WS ID, DEVICE NUM, ' '
* PROMPT ECHO TYPE, ECHO AREA, DATA_RECORD,
* RECORD~)UFFER_LENGTH) -

VAXstations: If you do not pass the extra components of the data record,
DEC GKS always places a banner at the top of the input window; in this
case, you cannot eliminate the banner. If you want to create an input win
dow that does not contain a banner, pass a title length of 0 to the first of the
extra components of the input data record. For more information concerning
the VAXstation window banners and borders, refer to the Programming
Consideration section in Chapter 1, VAXstation Workstation Specifics, in the
DEC GKS Device Specifics Reference Manual.

J-14 DEC GKS-Specific Input Values

Prompt and Echo Types, and Data Records

Prompt and Echo Types, and Data Records

The following sections describe the DEC GKS-supported prompt and echo
types for each class of logical input device. After describing the available
prompt and echo types, these sections describe the DEC GKS required input
data records for each prompt and echo type. These data records are for
GKS$ functions only. See the FORTRAN and C Bindings for information
about FORTRAN and C data records.

DEC GKS-Specific Input Values J-15

Prompt and Echo Types, and Data Records
Choice Input Class

Choice Input Class

The choice class input devices support the following equivalent prompt and
echo types:

Echo Type
Number

-1

1

3

Description

Highlight the current choice using a hollow rectangle.

Display the list of choice strings within the echo area.

Display the list of choice strings within the echo area.

Choice Data Records

The DEC GKS workstations require the following data records for the
specified prompt and echo types. The introduction at the beginning of each
subsection specifies the data record size requirements. The column marked
Used specifies whether the handler uses (U) or ignores (I) the data record
component.

For more information about specifying a character string at the top of the
workstation echo area, see Input Devices and Echo Area Titles.

J-16 DEC GKS-Specific Input Values

Prompt and Echo Types, and Data Records
Choice Input Class

Choice Class: All Prompt and Echo Types

If you specify either of these prompt and echo types, the workstations expect
a data record of size 12. If you call INITIALIZE CHOICE, the record_buffer _
length argument must be the value 12.

Position Data Type Used Description

1 Integer u Number of choice strings.

2 Integer u Address of array containing choice string
lengths.

3 Integer u Address of array containing addresses of
choice string lengths.

DEC GKS-Specific Input Values J-17

Prompt and Echo Types, and Data Records
Locator Input Class

Locator Input Class

The locator class input devices support the following prompt and echo types:

Echo Type
Number

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

1

2

3

Description

Mark the current location using an ellipse centered at the ini
tial point and the current location at the comer of the bounding
rectangle.

Mark the current location with the world coordinate translation of
the device coordinate position.

Mark the current location using a circle centered at the midpoint of
the initial position and the current location.

Mark the current location using a circle centered at the initial
position, with the current location on the circumference.

Mark the current location using an open type arc defined by the
current location and two points supplied in the data record.

Mark the current location using a pie type arc defined by the
current location and two points supplied in the data record.

Mark the current location using a chord type arc defined by the
current location and two points supplied in the data record.

Mark the current location using a horizontal line drawn from the
initial position to the current location.

Mark the current location using a vertical line drawn from the
initial position to the current location.

Mark the current location using two lines connected to two fixed
points supplied in the data record.

Milrk the current location using a rectangle that is centered at the
initial points and has a comer at the current location.

Mark the current location with a marker shaped like a box.

Mark the current location with a tracking plus sign.

Mark the current location by using a vertical and a horizontal line
as a crosshair.

Mark the current location using a tracking cross.

J-18 DEC GKS-Specific Input Values

Echo Type
Number

4

5

6

Prompt and Echo Types, and Data Records
Locator Input Class

Description

Mark the current location using a line connecting the current
location to the initial location (rubber-band line).

Mark the current location using a rectangle whose diagonal is the
current location and the initial location (rubber-band box).

Mark the current location by displaying a digital representation of
the location.

Locator Data Records

The DEC GKS workstations require the following data records for the
specified prompt and echQ types. The introduction at the beginning of each
subsection specifies the data record size requirements. The column marked
Used specifies whether the handler uses (U) or ignores (I) the data record
component.

For more information about specifying a character string at the top of the
workstation echo area for locator devices using prompt and echo type 6, see
Input Devices and Echo Area Titles.

Locator Class: Prompt and Echo Types -1

If you specify this prompt and echo type, the workstations expect a data
record of size 8 bytes. If you call INITIALIZE LOCATOR, the record_buffer _
length argument must be the value 8.

Position Data Type Used Description

1 Real u X dimension of the box in world
coordinates.

2 Real u Y dimension of the box in world
coordinates.

DEC GKS-Specific Input Values J-19

Prompt and Echo Types, and Data Records
Locator Input Class

NOTE

Since you express the X and Y dimensions of the box, the current
normalization transformation affects the size and shape of this
cursor. DEC GKS centers this box around the initial position.

Locator Class: Prompt and Echo Types 1, 2, 3, 6, and -11

If you specify any of these prompt and echo types, the workstations expect
a null data record of size 0 bytes. If you call INITIALIZE LOCATOR, the
record_buffer _length argument must be the value 0.

Locator Class: Prompt and Echo Type 4, -12, -10, -9, -5,
and-4

If you specify this prompt and echo type, the workstations expect a data
record of size 4 or 32 bytes, depending on the value of the attribute control
flag. If you call INITIALIZE LOCATOR, the record_buffer _length argument
must be the value 4 or 32.

Position Data Type Used

1 Integer u
Description

Attribute control flag. GKS$I<...ACF _CURRENT
(0) or GKS$K._ACF _SPECIFIED (1). Use the
currently set output attributes or specify new
attributes in this data record.

If component 1 is GKS$K_ACF _SPECIFIED, you must pass the following
components:

Position Data Type

2 Integer

J-20 DEC GKS-Specific Input Values

Used

I

Description

Line type aspect source flag. GKS$K_ASF _
BUNDLED (0) or GKS$K_ASF _INDIVIDUAL
(1).

Position

3

4

5

6

7

5

Prompt and Echo Types, and Data Records
Locator Input Class

Data Type Used Description

Integer I Line width scale factor aspect source flag.
GKS$K_ASF _BUNDLED (0) or GKS$K_ASF _
INDMDUAL (1).

Integer I Polyline color index aspect source flag.
GKS$K_ASF _BUNDLED (0) or GKS$!LASF _
INDMDUAL (1).

Integer I Polyline index.

Integer u Line type index.

Real u Line width scale factor.

Integer I Polyline color index.

Locator Class: Prompt and Echo Type 5 and -2

If you specify either of these prompt and echo types, the workstations expect
a data recor<;I of size 8 or 36 bytes, depending on the value of the attribute
control flag. If you call INITIALIZE LOCATOR, the record_buffer _length
argument must be the value 8 or 36.

Position Data Type Used

1 Integer I

2 Integer u

Description

Polyline/fill area control flag. GKS$K_ACF _
POLYLINE (0) or GKS$K_ACF _FILL_AREA
(1). Use a polyline or a filled area to draw the
rectangle whose diagonal connects the current
and initial points.

Attribute control flag. GKS$K_ACF _CURRENT
(0) or GKS$K_ACF_SPECIFIED (1). Use the
currently set output attributes or specify new
attributes in this data record.

If component 1 is GKS$K_ACF _POLYLINE and component 2 is GKS$K_
ACF _SPECIFIED, then you must pass the following data record components:

DEC GKS-Specific Input Values J-21

Prompt and Echo Types, and Data Records
Locator Input Class

Position Data Type Used Description

3 Integer I Line type aspect source flag. GKS$K_ASF _
BUNDLED (0) or GKS$K_ASF _INDIVIDUAL
(1).

4 Integer I Line width scale factor aspect source flag.
GKS$K_ASF _BUNDLED (0) or GKS$K_ASF _
INDIVIDUAL (1).

5 Integer I Polyline color index aspect source flag.
GKS$K_ASF _BUNDLED (0) or GKS$K_ASF _
INDIVIDUAL (1).

6 Integer I Polyline index.

7 Integer u Line type index.

8 Real u Line width scale factor.

9 Integer I Polyline color index.

If component 1 is GKS$K_ACF _FILL_AREA and component 2 is GKS$K_
ACF _SPECIFIED, then you must pass the following record components:

Position Data Type Used Description

3 Integer I Fill area interior style aspect source flag.
GKS$K_ASF _BUNDLED (0) or GKS$K_ASF _
INDIVIDUAL (1).

4 Integer I Fill area style index aspect source flag.
GKS$K_ASF _BUNDLED (0) or GKS$K_ASF _
INDIVIDUAL (1).

5 Integer I Fill area color index aspect source flag.
GKS$K_ASF _BUNDLED (0) or GKS$K....ASF _
INDIVIDUAL (1).

6 Integer I Fill area index.

J-22 DEC GKS-Specific Input Values

Prompt and Echo Types, and Data Records
Locator Input Class

Position Data Type Used

7

8

9

Integer

Integer

Integer

I

I

I

Description

Fill area interior style. GKS$K_INTSTYLE_
HOLLOW (0), GKS$K_INTSTYLE_SOLID (1),
GKS$K _INTSTYLE_PATTERN (2), or GKS$K_
INTSTYLE_HATCH (3).

Fill area style index.

Fill area color index.

Locator Class: Prompt and Echo Type -8, -7, -6, and -3

If you· specify any of these prompt and echo types, the workstations expect
a data record of size 20 or 48 bytes, depending on the value of the attribute
control flag. If you call INITIALIZE LOCATOR, the record_buffer _length
argument must be the value 20 or 48.

Position Data Type Used

1 Integer u
Description

Attribute control flag. GKS$K_ACF _
CURRENT(O) or GKS$K_ACF _SPECIFIED. Use
the currently set output attributes or specify
new attributes in the data record.

If component 1 is GKS$K_ACF_CURRENT, then you must pass the
following data record components:

Position Data Type Used Description

2 Real u X component of the first world coordinate point.

3 Real u Y component of the first world coordinate point.

4 Real u X component of the second world coordinate
point.

5 Real u Y component of the second world coordinate
point.

If component 1 is GKS$K_ACF _SPECIFIED, then you must pass the
following record components:

DEC GKS-Specific Input Values J-23

Prompt and Echo Types, and Data Records
Locator Input Class

Position Data Type Used Description

2 Integer I Line type aspect source flag. GKS$K._ASF _
BUNDLED (0) or GKS$K._ASF _INDIVIDUAL
(1).

3 Integer I Line width scale factor aspect source flag.
GKS$K._ASF _BUNDLED (0) or GKS$K._ASF _
INDIVIDUAL (1).

4 Integer I Polyline color aspect source flag. GKS$K...ASF _
BUNDLED (0) or GKS$K._ASF _INDIVIDUAL
(1).

5 Integer I Polyline bundle index. GKS$K...ASF _BUNDLED
(0) or GKS$K._ASF _INDIVIDUAL (1).

6 Integer u Line type index.

7 Real u Line width scale factor.

8 Integer I Polyline color index.

9 Real u X component of the first world coordinate point.

10 Real u Y component of the first world coordinate point.

11 Real u X component of the second world coordinate
point.

12 Real u Y component of the second world coordinate
point.

Additionally, the data record fields described as line_type_index and
line_ width_scale_factor are now used by some workstations, primarily
VAXstations running UIS.

J-24 DEC GKS-Specific Input Values

Pick Input Class

Prompt and Echo Types, and Data Records
Pick Input Class

The pick logical input devices support the following prompt and echo types:

Echo Type
Number

1

2

3

Pick Data Records

Description

Highlight the extent rectangle of the picked output primitive.

Highlight the extent rectangle of all the output primitives that
share the pick identifier of the picked primitive.

Highlight the extent rectangle of the picked segment.

The DEC GKS workstations require the following data records for the
specified prompt and echo types. The introduction at the beginning of each
subsection specifies the data record size requirements. The column marked
Used specifies whether the handler uses (U) or ignores (I) the data record
component.

Pick Class: All Prompt and Echo Types

If you specify any of these prompt and echo types, the workstations expect a
data record of size 4. If you call INITIALIZE PICK, the record_buffer _length
argument must be the value 4.

Position Data Type Used

1 Real u
Description

Size of the pick aperture (prompt) in device
coordinates.

DEC GKS-Specific Input Values J-25

Prompt and Echo Types, and Data Records
String Input Class

String Input Class

The string logical input devices support the following prompt and echo type:

Echo Type
Number Description

1 Display the current string value in the echo area.

String Data Records

The DEC GKS workstations require the following data records for the
specified prompt and echo types. The introduction at the beginning of each
subsection specifies the data record size requirements. The column marked
Used specifies whether the handler uses (U) or ignores (I) the data record
component.

For more information about specifying a character string at the top of the
workstation echo area, see Input Devices and Echo Area Titles.

String Class: Prompt and Echo Type 1

If you specify this prompt and echo type, the workstations expect a data
record of size 8 bytes, depending on the value of the attribute control flag. If
you call INITIALIZE STRING, the record_buffer_length argument must be
the value 8.

Position Data Type Used Description

1 Integer U Input buffer size in number of characters.

2 Integer I Initial cursor position within the string. The
initial position must follow the formula:
1 <= initial_position <= length_initial_string

J-26 DEC GKS-Specific Input Values

Stroke Input Class

Prompt and Echo Types, and Data Records
Stroke Input Class

The stroke class input devices support the following equivalent prompt and
echo type values:

Echo Type
Number Description

1

3

4

Display a line joining successive points of the current stroke.

Display a polymarker at each successive stroke point.

Display a line joining successive points of the current stroke.

Stroke Data Records

The DEC GKS workstations require the following data records for the
specified prompt and echo types. The introduction at the beginning of each
subsection specifies the data record size requirements. The column marked
Used specifies whether the handler uses (U) or ignores (I) the data record
component.

Stroke Class: Prompt and Echo Type 1

If you specify this prompt and echo type, the workstations expect a data
record of size 20 bytes. If you call INITIALIZE STROKE, the record_buffer _
length argument must be the value 20.

Position Data Type Used Description

1 Integer u Input buffer size, in number of stroke points.

2 Integer I Editing position expressed as a stroke point.

3 Real u X world coordinate change vector.

DEC GKS-Specific Input Values J-27

Prompt and Echo Types, and Data Records
Stroke Input Class

Position Data Type Used

4

5

Real

Real

u
I

Description

Y world coordinate change vector.

Time interval, in seconds.

Stroke Class: Prompt and Echo Type 3

If you specify this prompt and echo type, the workstations expect a data
record of size 24 or 52 bytes, depending on the value of the attribute control
flag. If you call INITIALIZE STROKE, the record_buffer _length argument
must be the value 24 or 52.

Position Data Type Used Description

1 Integer u Input buffer size, in number of stroke points.

2 Integer I Editing position expressed as a stroke point.

3 Real u X world coordinate change vector.

4 Real u Y world coordinate change vector.

5 Real I Time interval, in seconds.

6 Integer u Attribute control flag. GKS$K_ACF _CURRENT
(0) or GKS$K_ACF _SPECIFIED (1). Use the
currently set output attributes or specify new
attributes in this data record.

If component 6 is GKS$K_ACF _SPECIFIED, you must pass the following
components:

Position Data Type Used Description

7 Integer I Polymarker type aspect source flag. GKS$K....
ASF _BUNDLED (0) or GKS$K....ASF _
INDMDUAL (1).

8 Integer I Polymarker size factor aspect source flag.
GKS$K_ASF _BUNDLED (0) or GKS$K._ASF _
INDMDUAL (1).

J-28 DEC GKS-Specific Input Values

Position

9

10

11

12

13

Prompt and Echo Types, and Data Records
Stroke Input Class

Data Type Used Description

Integer I Polymarker color aspect source flag. GKS$K.....
ASF _BUNDLED (0) or GKS$K_ASF _
INDIVIDUAL (1).

Integer I Polymarker bundle index.

Integer u Polymarker type index.

Real u Polymarker scale factor.

Integer I Polymarker color index.

Stroke Class: Prompt and Echo Type 4

If you specify this prompt and echo type, the workstations expect a data
record of size 24 or 52 bytes, depending on the value of the attribute control
fl.ag. If you call INITIALIZE STROKE, the record_buffer _length argument
must be the value 24 or 52.

Position Data Type Used Description

1 Integer u Input buffer size, in number of stroke points.

2 Integer I Editing position expressed as a stroke point.

3 Real u X world coordinate change vector.

4 Real u Y world coordinate change vector.

5 Real I Time interval, in seconds.

6 Integer u Attribute control flag. GKS$K.....ACF _CURRENT
(0) or GKS$K.....ACF _SPECIFIED (1). Use the
currently set output attributes or specify new
attributes in this data record.

DEC GKS-Specific Input Values J-29

Prompt and Echo Types, and Data Records
Stroke Input Class

If component 6 is GKS$K_ACF _SPECIFIED, you must pass the following
components:

Position Data Type Used Description

7 Integer I Line type aspect source flag. GKS$K_ASF _
BUNDLED (0) or GKS$K_ASF _INDIVIDUAL
(1).

8 Integer I Line width scale factor aspect source flag.
GKS$K_ASF _BUNDLED (0) or GKS$K_ASF _
INDIVIDUAL (1).

9 Integer I Polyline color index aspect source flag.
GKS$K_ASF _BUNDLED (0) or GKS$K_ASF _
INDIVIDUAL (1).

10 Integer I Polyline index.

11 Integer u Line type index.

12 Real u Line width scale factor.

13 Integer I Polyline color index.

J-30 DEC GKS-Specific Input Values

Valuator Input Class

Prompt and Echo Types, and Data Records
Valuator Input Class

The valuator class input devices support the following prompt and echo
types:

Echo Type
Number

-3

-2

-1

1

2

3

Description

Display the range of values in a circular dial (for use only with the
VAXstations).

Display the range of values on a horizontal sliding scale (for use
only with the VAXstations).

Display the range of values on a vertical sliding scale (for use only
with the VAXstations).

Display a graphical representation of the current value (such as a
dial or a pointer).

Display a graphical representation of the current value (such as a
dial or a pointer).

Display a digital representation of the current value.

Valuator Data Records

The DEC GKS workstations require the following data records for the
specified prompt and echo types. The introduction at the beginning of each
subsection specifies the data record size requirements. The column marked
Used specifies whether the handler uses (U) or ignores (I) the data record
component.

For more information about specifying a character string at the top of the
workstation echo area, see Input Devices and Echo Area Titles.

DEC GKS-Specific Input Values J-31

Prompt and Echo Types, and Data Records
Valuator Input Class

Valuator Class: Prompt and Echo Types -1, -2, and -3

These prompt and echo types are only for use with the VAXstation
workstations.

If you specify any of these prompt and echo types, the workstations expect
a data record of size 8 bytes. If you call INITIALIZE VALUATOR, the
record_buffer _length argument must be the value 8.

Position

1

2

Data Type Used

Real U

Real u

Description

Low value of the numeric range.

High value of the numeric range.

Valuator Class: Prompt and Echo Types 1, 2, and 3

If you specify any of these prompt and echo types, the workstations expect
a data record of size 8 bytes. If you call INITIALIZE VALUATOR, the
record_buffer _length argument must be the value 8.

Position

1

2

Data Type Used

Real u
Real u

J-32 DEC GKS-Specific Input Values

Description

Low value of the numeric range.

High value of the numeric range.

Keypad Functionality

Keypad Functionality

DEC GKS allows the user to press keys other than the arrow keys to
control the input prompt. This section describes how the user can use the
various keypad tablets during input. If you use logical input devices that
take advantage of these keypads, remember to provide the user with the
information necessary to operate the device.

DEC GKS-Specific Input Values J-33

Keypad Functionality
Cycling Logical Input Devices

Cycling Logical Input Devices

Supporting Devices: All logical input devices used on a single workstation.

Supporting Workstations: The VT125, VT240, VT330, VT340, Tektronix-
4014, and the Tektronix-4107 workstations.

111100
DODD
DODD
0000 DD
The shaded key to the left is the PFl key. This key cycles through the
devices present on a single workstation, in a workstation-determined order.
The shaded key to the right is the PF2 key. This key ends the cycling
process and activates the prompts of all logical input devices present on a
workstation. (If you are using the Tektronix-4107 terminal, these keys are
labeled F5 and F6.)

When you use more than one logical input device at a time, the workstations
change the measures of all devices that use a physical device, by default.
For instance, if you simultaneously use two devices that use the arrow keys
to alter the prompt, the user moves both prompts when pressing the arrow
keys.

In order to provide the user with the ability to choose which device's measure
to alter, the workstations allow the user to activate the prompts of each
device individually, in a workstation-specific cycle. In this way, the user can
change the measure of only one device at a time.

The only restriction placed on the cycling of logical input devices is that
cycling only affects those devices whose prompts are enabled. If you use
a device on a workstation whose prompt is disabled (by setting the value
GKS$K_NOECHO in one of the SET_class_MODE functions), that device's
prompt is always active. You cannot cycle past a device whose echo is
disabled.

J-34 DEC GKS-Specific Input Values

Keypad Functionality
Numeric Keypad {Zoning Mechanism}

Numeric Keypad (Zoning Mechanism)

Supporting Devices: Locator, pick, and stroke device numbers 1 and 2.

Supporting Workstations: VT125, VT240, VT330, VT340, and the
Tektronix-4107 workstations.

DODD
1111110
1111110
1111110 DD
The workstations move the cursor to the position on the rectangular input
echo area that corresponds to the position of the pressed key within the
rectangular set of shaded keys. For instance, if the user presses the shaded
key in the upper left corner, the cursor moves to the upper left corner of the
current echo area. If the user presses the shaded key in the exact center,
the cursor moves to the center of the echo area. If the user presses the
rightmost shaded key in the second shaded row of keys, the cursor moves to
the middle of the right border of the rectangular echo area.

DEC GKS-Specific Input Values J-35

Keypad Functionality
Numeric Keypad (Choice)

Numeric Keypad {Choice)

Supporting Devices: Choice device number 2.

Supporting Workstations: The VAXstation, VT125, VT240, VT330,
VT340, and Tektronix-4107 workstations.

Key Set 1

DODD
1111110
1111110
1111110 DD
Key Set 2

11111111
DDDll
DDDll
DODI
•11
Key Set 3

DOD
DOD

II
111111
The workstations trigger the choice that corresponds to the number assigned
to the shaded keys. The number assignments are as follows:

J-36 DEC GKS-Specific Input Values

Key Set

Key Set 1

Key Set 2

Key Set 3

Numbering Assignments

Keypad Functionality
Numeric Keypad (Choice)

On most supporting workstations, the numbers on these shaded keys
correspond to the choice numbers 1 through 9. Incrementing from
left to right, the bottom row contains keys 1, 2, and 3; the middle row
contains keys 4, 5, and 6; and, the top row contains keys 7, 8, and 9.

Beginning with the shaded key in the lower left comer, the corre
sponding choice numbers increment as you move clockwise around the
key set. The shaded key in the lower left corner corresponds to choice
number 1 O; the key in the upper left comer corresponds to choice
number 11, the next key (moving clockwise) in the top row corresponds
to choice number 12, and so forth. The middle key on the bottom row
·corresponds to choice number 18.

These shaded keys are the arrow keys. The up arrow key corresponds
to choice number 19; the down arrow key corresponds to choice number
20; the left arrow key corresponds to choice number 21; and, the right
arrow key corresponds to choice number 22.

Tektronix-4107: The keys Fl through F4 and the joydisk return
valid choice numbers when using this device.

VT125: The arrow keys are located in a row in the top right portion of
the keyboard.

DEC GKS-Specific Input Values J-37

Keypad Functionality
Auxiliary Keypad (Choice}

Auxiliary Keypad {Choice)

Supporting Devices: Choice device number 3.

Supporting Workstations: The VAXstation, VT240, VT330, and VT340
workstations.

111111
111111

D
DOD
These keys operate in the same manner as the numeric keypad for choice
input. The upper left shaded key is equivalent to choice prompt 1, the upper
right to choice prompt 3, the lower left to choice prompt 4, and the lower
right to choice· prompt 6.

In addition, the keys located at the top of the keyboard labeled F7 through
F20 correspond to the equivalent choice prompt. The workstation triggers
the choice prompt of the number pressed by the user. You can use this
keypad (choice device number 3 on the VT240) if you have up to 20 choices.
If you have nine or less choices, you can use the numeric keypad, for choice
device number 2, on either the VT125 or the VT240.

J-38 DEC GKS-Specific Input Values

The LOCK Key

Keypad Functionality
The LOCK Key

Supporting Devices: Choice, locator, stroke, and valuator.

Supporting Workstations: The VAXstation workstations.

When you use several logical input devices at one time, the measure of a
device can change if the user moves the mouse's tracking cursor across the
device. If the device is in sample mode and if the application happens to
sample from that device as the user moves the tracking cursor across the
device's echo area, inappropriate values may be returned to the application
program.

DEC GKS allows the user to lock a logical input device so that its measure
cannot be altered until the user unlocks the device. If a device is locked,
the user can still trigger the device (if in request or event mode), but the
measure cannot be altered by moving the tracking cursor across the device's
echo area.

To lock a device, depress the LOCK key (this activates the red LOCK light
at the top of the keyboard), move the cursor into the device's echo area, and
press any mouse button. Once the device is locked, press the LOCK key
again (the LOCK light turns off) and continue to enter input values in other
devices. The locked device always returns the same measure.

To unlock the device, depress the LOCK key (activating the LOCK light),
move the cursor into the locked device's echo area, and press any mouse
button. Once the device is unlocked, press the LOCK key again (the LOCK
light turns off), and you can now change the measure of the device.

DEC GKS-Specific Input Values J-39

A
Addresses

GDP and escape .data records, 1-2
Angles

GDPs, 1-5
ANSI

CGM standard, E-1
GKSM standard, E-1

Applications
programming information, F-1

Arcs
direction of formation, 1-6

Arguments
See also Inquiry functions
inquiry error status, 11-5
inquiry value type argument, 11-6
passing by descriptor, F-1

Arrays
descriptors, F-1

ASCII
VT125/240 string input, J-1 o

Attributes
color chart, H-1
DEC GKS specific line types, C-5
initial values, C-1 to C-4
output

list of errors, D-26 to D-33
Auxiliary keypad

choice input, J-38

B
Base line, G-1

See also Fonts
BASIC programming information, F-3

Index

Binding
list of GKS$ constants, B-1 to B-21

Bit masks
See also Workstations
constants, A-5
workstation types, A-4

Bottom line, G-1
See also Fonts

Bundles
See also Attributes

c
Calling sequences, F-3
Cap line, G-1

See also Fonts
CGM

ANSI standard, E-1
CGM metafiles, E-9
Character descriptor, G-9

elements, G-1 O
Characters

fonts, G-1
Choice

data records required, J-16
keypad functionality, J-36, J-38
logical input device numbers, J-4
prompt and echo types supported, J-16

Circumference
See also GDPs
ellipses, 1-6

Clipping flag
initial value, C-5

COBOL programming information, F-3 to F-7

lndex-1

Colors

chart, H-1 to H-5
reservation

VSll/GPX, A-4
Completion status codes, D-1
Components

GDP and escape data records, 1-2
Conditions

error, D-.1 to D-43
Connection identifiers

file specifications, A-4
hardcopy workstation types, A-4

Constants
See also Workstations
bit masks, A-5
for supported workstations, A-1 to A-6
GDPs and escapes, 1-1
GKS$ binding, B-1
list of, B-1 to B-21

Coordinates
See also Escapes
escapes, 1-48
range translation, 1-132

C programming information, F-3
Cycling

logical input devices, J-34

D
Data records

See also Escapes
See also GDPs
GDPs and escapes, 1-2 to 1-3
input

echo area titles, J-13
required, J-15 to J-32

internal metafile structure, E-4
DEC GKS

fonts, G-1 to G-35
input values, J-1

Declaring
GKS functions

externally, F-1
DECwindows

workstation type constant, A-3
DECwindows-drawable

workstation type constant, A-3
DECwindows-output only

workstation type constant, A-3
Defaults

GKS$K_WSTYPE_DEFAULT, A-1, A-3

lndex-2

Definition files
declaring external functions, F-1
list of, B-1

Description tables
GKS, 11-1
workstation, 11-1

Descriptors
passing arguments, F-1
problems passing, F-3 to F-7

Device independent, 11-1
fonts, G-1

Device numbers
DEC GKS logical input, J-2

Devices

E

See also Workstations
constants, A-1 to A-6
DEC GKS available logical input, J-2
DEC GKS specific input values, J-1 to J-39
hardcopy, A-4
output-only workstation types, A-4

Echo
cycling with disabled input echoing, J-34

Echo area
titles, J-13

Echo types
DEC GKS suppported, J-15 to J-32

Ellipses
focus points, 1-6
formation, 1-6

Errors
GDPs, 1-4
inquiry error status argument, 11-5
messages, D-1 to D-43

escape functions, D-41
implementation-specific, D-2 to D-14
input, D-36 to D-39
metafiles, D-39 to D-41
miscellaneous, D-41
operating state, D-17 to D-19
output, D-33 to D-34
output attributes, D-26 to D-33
segments, D-34 to D-36
system, D-42 to D-43
transformations, D-25 to D-26
workstation, D-19 to D-25

Escape functions
list of errors, D-41

Escapes, 1-48 to 1-138.

Escapes (Cont.)
control, 1-49 to 1-61

GKS$K_ESC_ASSOC_WSTYPE_CONID,
1-59

GKS$K_ESC_BEEP, 1-52
GKS$K_ESC_POP _WORKSTATION, 1-53
GKS$K_ESC_PRINT, 1-50
GKS$K_ESC_PUSH_WORKSTATION, 1-54
GKS$K_ESC_SET _ERR_HANDLING_MODE,

1-56
GKS$K_ESC_SET_SPEED, 1-49
GKS$K_ESC_SET _ VIEWPORT _EVENT,

1-57
GKS$K_SET _ICON_BITMAPS, 1-88
GKS$K_SET_SOFT_CLIP, 1-60

coordinate ranges, 1-48
coordinate range translation, 1-132 to 1-138
data records, 1-2 to 1-3
DECwindows, 1-83 to 1-100

GKS$K_ESC_DOUBLE_BUFFER, 1-96
GKS$K_ESC_INQ_BCKGRND_PIXMAP, 1-99
GKS$K_ESC_INQ_DBUFFER_PIXMAP, 1-98
GKS$K_ESC_INQ_MENU_BAR_ID, 1-93
GKS$K_ESC_INQ_PASTEBOARD_ID, 1-92
GKS$K_ESC_INQ_SHELL_ID, 1-95
GKS$K_ESC_INQ_WINDOW_IDS, 1-90
GKS$K_ESC_SET _BCKGRND_PIXMAP,

1-97
GKS$K_ESC_SET_CANCEL_STRING, 1-86
GKS$K_ESC_SET _ENTER_STRING, 1-87
GKS$K_ESC_SET_RESET_STRING, 1-84
GKS$K_ESC_SET _WINDOW_ TITLE, 1-83

GKS state list inquiries, 1-101 to 1-105
GKS$K_ESC_INQ_EDGE_ATTR, 1-104
GKS$K_ESC_INQ_LINE_CAP, 1-102
GKS$K_ESC_INQ_LINE_JOIN, 1-103
GKS$K_ESC_INQ_WRITING_MODE, 1-101

output related, 1-62 to 1-82
GK~$K_ESC_BEGIN_ TRANS_BLOCK, 1-73
GKS$K_ESC_END_TRANS_BLOCK, 1-74
GKS$K_ESC_SET_EDGE_ASF, 1-71
GKS$K_ESC_SET _EDGE_COLOR_INDEX,

1-69
GKS$K_ESC_SET _EDGE_CTL, 1-65
GKS$K_ESC_SET _EDGE_INDEX, 1-70
GKS$K_ESC_SET_EDGE_REP, 1-80
GKS$K_ESC_SET_EDGE_TYPE, 1-67
GKS$K_ESC_SET _EDGE_WIDTH, 1-68
GKS$K_ESC_SET _HIGH_METHOD, 1-78
GKS$K_ESC_SET_LINE_CAP, 1-63
GKS$K_ESC_SET_LINE_JOIN, 1-64

Escapes
output related (Cont.)

GKS$K_ESC_SET_SEG_HIGH_METHOD,
1-75

GKS$K_ESC_SET _WRITING_MODE, 1-62
utility, 1-132 to 1-138

GKS$K_ESC_MAP _DC_OF _NDC, 1-133
GKS$K_ESC_MAP _NDC_OF _DC, 1-136
GKS$K_ESC_MAP _NDC_OF _WC, 1-132
GKS$K_ESC_MAP _wc_OF _NDC, 1-135

WS description table inquiries, 1-122 to 1-131
GKS$K_ESC_INQ_DEF _SPEED, 1-123
GKS$K_ESC_INQ_EDGE_FAC, 1-126
GKS$K_ESC_INQ_LINE_CAP _JOIN_FAC,

1-125
GKS$K_ESC_INQ_LIST_ESC, 1-122
GKS$K_ESC_INQ_MAX_EDGE_BUNDLE,

1-130
GKS$K_ESC_INQ_PREDEF _EDGE_REP,

1-128
WS state list inquiries, 1-106 to l-121

GEIVD, 1-106
GKS$K_ESC_INQ_EDGE_REP, 1-117
GKS$K_ESC_INQ_GDP _EXTENT, 1-119
GKS$K_ESC_INQ_LIST_EDGE_INDEXES,

1-109
GKS$K_ESC_INQ_SEGMENT_EXTENT,

1-111
GKS$K_ESC_INQ_SPEED, 1-108
GKS$K_ESC_INQ_ VIEWPORT _DATA, 1-106
GKS$K_INQ_HIGH_METHOD, 1-114
GKS$K_lNQ_LIST_HIGH, 1-115
GKS$K_INQ_SEG_HIGH_METHOD, 1-113

External functions
declaring GKS functions, F-1

F
Fields

metafile structure, E-2
Files

connection identifiers, A-4
definition

list of, B-1
Fill areas

See also Attributes
initial attributes, C-4

Focus points, 1-6
See also GDPs

Fonts
designing, G-2

lndex-3

Fonts (Cont.)
GKS multinational, G-1
lines, G-1
list of, G-10 to G-35
monospaced, G-1
software, G-1
stroke font file, G-4
Stroke font file

character descriptor, G-9
header, G-5

supported by DEC GKS, G-1 to G-35
Format

font file, G-1
metafiles, E-1

Functions

G

arguments passed by descriptor, F-1
declaring GKS functions, F-1
inquiry, 11-1

GDPs, 1-4 to 1-47
additional

GKS$K_GDP _DISJOINT_PLINE, 1-9
angles, 1-5
arcs

direction of formation, 1-6
GKS$K_GDP _ARC_2PT_RAD, 1-17
GKS$K_GDP _ARC_3PT, 1-15
GKS$K_GDP _ARC_CTR_2PT, 1-13
GKS$K_GDP _ARC_CTR_2VEC_RAD, 1-16
GKS$K_GDP _ARC_CTR_PT_ANG, 1-18
GKS$K_GDP _FARC_2PT_RAD, 1-35
GKS$K_GDP _FARC_3PT, 1-32
GKS$K_GDP _FARC_CTR_2PT, 1-31
GKS$K_GDP _FARC_CTR_2VEC_RAD, 1-34
GKS$K_GDP _FARC_CTR_PT_ANG, 1-36

cell arrays, 1-44 to 1-45
GKS$K_GDP _IMAGE_ARRAY, 1-44

circles
GKS$K_GDP _CIRCLE_2PT_RAD, 1-12
GKS$K_GDP _CIRCLE_3PT, 1-10
GKS$K_GDP _CIRCLE_CTR_PT, 1-10
GKS$K_GDP _CIRCLE_CTR_RAD, 1-11
GKS$K_GDP _FCIRCLE_2PT_RAD, 1-30
GKS$K_GDP _FCIRCLE_3PT, 1-28
GKS$K_GDP _FCIRCLE_CTR_PT, 1-27
GKS$K_GDP _FCIRCLE_CTR_RAD, 1-29

data records, 1-2 to 1-3
ellipses

formation, 1-6

lndex-4

GDPs
ellipses (Cont.)

GKS$K_GDP _ELLIPSE_CTR_AXES, 1-20
GKS$K_GDP _ELLIPSE_FOCll_PT, 1-20
GKS$K_GDP _FELLIPSE_CTR_AXES, 1-37
GKS$K_GDP _FELLIPSE_FQCll_PT, 1-38

elliptic arcs
GKS$K_GDP _ELIARC_CTR_AXES_2VEC,

1-21
GKS$K_GDP _ELIARC_FOCll_2PT, 1-23
GKS$K_GDP _FELIARC_CTR_AXES_2VEC,

1-39
GKS$K_GDP _FELIARC_FOCll_2PT, 1-40

fill area sets
GKS$K_GDP _FILL_AREA_SET, 1-26

filled, 1-26 to 1-43
radians, 1-5
radius specifications, 1-5
rectangles

GKS$K_GDP _FRECT_2PT, 1-42
GKS$K_GDP _RECT_2PT, 1-24

rotation, 1-4, 1-5
text, 1-46 to 1-47

GKS$K_GDP _RESTRICTED_TEXT, 1-46
transformations, 1-4
unfilled, 1-9 to 1-25
vector origin point, 1-5
vectors, 1-5

GKS
functions

declared as external, F-1
multinational font, G-1
operating state

errors, D-17 to D-19
GKS$ binding

list of constants, B-1 to B-21
GKS$CONID

hardcopy workstation types, A-4
GKS$1NQ_ACTIVE_WS, 11-192 to 11-194
GKS$1NQ_AVAIL_GDP, 11-96 to 11-98
GKS$1NQ_CHOICE_STATE, 11-202 to 11-210
GKS$1NQ_CLIP, 11-157 to 11-159
GKS$1NQ_COLOR_FAC, 11-22 to 11-25
GKS$1NQ_COLOR_INDEXES, 11-219 to 11-221
GKS$1NQ_ COLOR_REP, 11-211 to 11-214
GKS$1NQ_CURRENT_XFORMNO, 11-167 to 11-168
GKS$1NQ_DEF _CHOICE_DATA, 11-26 to 11-34
GKS$1NQ_DEF _DEFER_STATE, 11-35 to 11-37
GKS$1NQ_DEF _LOCATOR_DATA, 11-38 to 11-44
GKS$1NQ_DEF _PICK_DATA, 11-45 to 11-50
GKS$1NQ_DEF _STRING_DATA, 11-51 to 11-57

GKS$1NQ_DEF _STROKE_DATA, 11-58 to 11-64
GKS$1NQ_DEF _VALUATOR_DATA, 11-65 to 11-71
GKS$1NQ_DYN_MOD_SEG_AITB, 11-76 to 11-81
GKS$1NQ_DYN_MOD_WS_AITB, 11-82 to 11-87
GKS$1NQ_FILL_FAC, 11-88 to 11-91
GKS$1NQ_FILL_INDEXES, 11-222 to 11-224
GKS$1NQ_FILL_REP, 11-215 to 11-218
GKS$1NQ_GDP, 11-92 to 11-95
GKS$1NQ_INDIV_AITB, 11-160 to 11-166
GKS$1NQ_INPUT_DEV, 11-102 to 11-105
GKS$1NQ_INPUT_QUEUE_OVERFLOW, 11-175 to

11-177
GKS$1NQ_LEVEL, 11-10 to 11-12
GKS$1NQ_LOCATOR_STATE, 11-237 to 11-244
GKS$1NQ_MAX_DS_SIZE, 11-72 to 11-75
GKS$1NQ_MAX_WS_STATE_TABLE, 11-99 to

11-101
GKS$1NQ_MAX_XFORM, 11-16 to 11-17
GKS$1NQ_MORE_SIMUL_EVENTS, 11-181 to

11-182
GKS$1NQ_NAME_OPEN_SEG, 11-183 to 11-184
GKS$1NQ_OPEN_WS, 11-195 to 11-197
GKS$1NQ_OPERATING_STATE, 11-188 to 11-189
GKS$1NQ_PAT_FAC, 11-109 to 11-111
GKS$1NQ_PAT_INDEXES, 11-225 to 11-227
GKS$1NQ_PAT_REP, 11-245 to 11-248
GKS$1NQ_PICK_ID, 11-190 to 11-191
GKS$1NQ_PICK_STATE, 11-249 to 11-257
GKS$1NQ_PIXEL, 11-326 to 11-328
GKS$1NQ_PIXEL_ARRAY, 11-329 to 11-333
GKS$1NQ_PIXEL_ARRAY_DIM, 11-334 to 11-338
GKS$1NQ_PLINE_FAC, 11-112 to 11-115
GKS$1NQ_PLINE_INDEXES, 11-228 to 11-230
GKS$1NQ_PLINE_REP, 11-258 to 11-261
GKS$1NQ_PMARK_FAC, 11-116 to 11-120
GKS$1NQ_PMARK_INDEXES, 11-231 to 11-233
GKS$1NQ_PMARK_REP, 11-262 to 11-265
GKS$1NQ_PREDEF_COLOR_REP, 11-121 to

11-123
GKS$1NQ_PREDEF _FILL_REP, 11-124 to 11-127
GKS$1NQ_PREDEF _PAT_REP, 11-128 to 11-131
GKS$1NQ_PREDEF _PLINE_REP, 11-132 to 11-135
GKS$1NQ_PREDEF _PMARK_REP, 11-136 to

11-139
GKS$1NQ_PREDEF _TEXT_REP, 11-140 to 11-144
GKS$1NQ_PRIM_AITB, 11-169 to 11-174
GKS$1NQ_SEG_AITB, 11-318 to 11-321
GKS$1NQ_SEG_NAMES, 11-198 to 11-200
GKS$1NQ_SEG_NAMES_ON_WS, 11-266 to 11-268
GKS$1NQ_SEG_PRIORITY, 11-106 to 11-108
GKS$1NQ_SET ASSOC_WS, 11-322 to 11-324

GKS$1NQ_STRING_STATE, 11-269 to 11-275
GKS$1NQ_STROKE_STATE, 11-276 to 11-285
GKS$1NQ_TEXT_EXTENT, 11-286 to 11-289
GKS$1NQ_TEXT_FAC, 11-145 to 11-149
GKS$1NQ_TEXT_INDEXES, 11-234 to 11-236
GKS$1NQ_TEXT_REP, 11-290 to 11-294
GKS$1NQ_VALUATOR_STATE, 11-295 to 11-301
GKS$1NQ_WSTYPE_LIST, 11-13 to 11-15, A-1
GKS$1NQ_WS_CATEGORY, 11-150 to 11-152
GKS$1NQ_WS_CLASSIFICATION, 11-153 to 11-155
GKS$1NQ_WS_DEFER_AND_UPDATE, 11-302 to

11-306
GKS$1NQ_WS_MAX_NUM, 11-18 to 11-20
GKS$1NQ_WS_STATE, 11-310 to 11-312
GKS$1NQ_WS_TYPE, 11-307 to 11-309, A-1
GKS$1NQ_WS_XFORM, 11-313 to 11-316
GKS$1NQ_XFORM, 11-185 to 11-187
GKS$1NQ_XFORM_LIST, 11-178 to 11-180
GKS$0PEN_WS, A-1
GKS$WSTYPE, A-3
GKSM

ANSI standard, E-1
GKSM metafiles, E-1

H
Half line, G-1

See also Fonts
Handlers

See also Devices
See also Inquiry functions

See also Workstations
set and realized values, 11-6

Hardcopy
workstation types, A-4

Hatches
See also Attributes

Header
metafile structure, E-3

Hershey fonts

See Fonts
HP7475

workstation type constant, A-2
HP7550

workstation type constant, A-2
HP7580

workstation type constant, A-2
HP7585

workstation type constant, A-2

lndex-5

I
Implementation specific errors

list of, D-2 to D-14
Initial position

string input cursor, J-26
Input

data records required, J-15 to J-32
DEC GKS logical input device numbers, J-2 to

J-14
DEC GKS specific values, J-1 to J-39
echo area titles, J-13
inquiry functions, 11-4
keypad functionality, J-33 to J-39
keypad zoning mechanism, J-11
list of errors, D-36 to D-39
LOCK key, J-39
string input control characters, J-9
zoning mechanism, J-35

Input priority
initial value, C-5

INQUIRE CHOICE DEVICE STATE, 11-202
INQUIRE CLIPPING, 11-157
INQUIRE COLOR FACILITIES, 11-22
INQUIRE COLOR REPRESENTATION, 11-211
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE

VALUES, 11-160
INQUIRE CURRENT NORMALIZATION

TRANSFORMATION NUMBER, 11-167
INQUIRE CURRENT PRIMITIVE ATTRIBUTE

VALUES, 11-169
INQUIRE DEFAULT CHOICE DEVICE DATA, 11-26
INQUIRE DEFAULT DEFERRAL STATE VALUES,

11-35
INQUIRE DEFAULT LOCATOR DEVICE DATA, 11-38
INQUIRE DEFAULT PICK DEVICE DATA, 11-45
INQUIRE DEFAULT STRING DEVICE DATA, 11-51
INQUIRE DEFAULT STROKE DEVICE DATA, 11-58
INQUIRE DEFAULT VALUATOR DEVICE DATA,

11-65
INQUIRE DISPLAY SPACE SIZE, 11-72
INQUIRE DYNAMIC MODIFICATION OF SEGMENT

ATTRIBUTES, 11-76
INQUIRE DYNAMIC MODIFICATION OF

WORKSTATION ATTRIBUTES, 11-82
INQUIRE FILL AREA FACILITIES, 11-88
INQUIRE FILL AREA REPRESENTATION, 11-215
INQUIRE GENERALIZED DRAWING PRIMITIVE,

11-92
INQUIRE INPUT QUEUE OVERFLOW, 11-175
INQUIRE LEVEL OF GKS, 11-10

lndex-6

INQUIRE LIST OF AVAILABLE GENERALIZED
DRAWING PRIMITIVES, 11-96

INQUIRE LIST OF AVAILABLE WORKSTATION
TYPES, 11-13

INQUIRE LIST OF COLOR INDICES, 11-219
INQUIRE LIST OF FILL AREA INDICES, 11-222
INQUIRE LIST OF NORMALIZATION

TRANSFORMATION NUMBERS, 11-178
INQUIRE LIST OF PATTERN INDICES, 11-225
INQUIRE LIST OF POLYLINE INDICES, 11-228
INQUIRE LIST OF POLYMARKER INDICES, 11-231
INQUIRE LIST OF TEXT INDICES, 11-234
INQUIRE LOCATOR DEVICE STATE, 11-237
INQUIRE MAXIMUM LENGTH OF WORKSTATION

STATE TABLES, 11-99
INQUIRE MAXIMUM NORMALIZATION

TRANSFORMATION NUMBER, 11-16
INQUIRE MORE SIMULTANEOUS EVENTS, 11-181
INQUIRE NAME OF OPEN SEGMENT, 11-183
INQUIRE NORMALIZATION TRANSFORMATION,

11-185
INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT

DEVICES, 11-102
INQUIRE NUMBER OF SEGMENT PRIORITIES

SUPPORTED, 11-106
INQUIRE OPERATING STATE VALUE, 11-188
INQUIRE PATTERN FACILITIES, 11-109
INQUIRE PATTERN REPRESENTATION, 11-245
INQUIRE PICK DEVICE STATE, 11-249
INQUIRE PICK IDENTIFIER VALUE, 11-190
INQUIRE PIXEL, 11-326
INQUIRE PIXEL ARRAY, 11-329
INQUIRE PIXEL ARRAY DIMENSIONS, 11-334
INQUIRE POLYLINE FACILITIES, 11-112
INQUIRE POLYLINE REPRESENTATION, 11-258
INQUIRE POLYMARKER FACILITIES, 11-116
INQUIRE POLYMARKER REPRESENTATION,

11-262
INQUIRE PREDEFINED COLOR REPRESENTATION,

.11-121
INQUIRE PREDEFINED FILL AREA

REPRESENTATION, 11-124
INQUIRE PREDEFINED PATTERN

REPRESENTATION, 11-128
INQUIRE PREDEFINED POLYLINE

REPRESENTATION, 11-132
INQUIRE PREDEFINED POLYMARKER

REPRESENTATION, 11-136
INQUIRE PREDEFINED TEXT REPRESENTATION,

11-140
INQUIRE SEGMENT ATTRIBUTES, 11-318

INQUIRE SET OF ACTIVE WORKSTATIONS, 11-192
INQUIRE SET OF ASSOCIATED WORKSTATIONS,

11-322
INQUIRE SET OF OPEN WORKSTATIONS, 11-195
INQUIRE SET OF SEGMENT NAMES IN USE,

11-198
INQUIRE SET OF SEGMENT NAMES ON

WORKSTATION, 11-266
INQUIRE STRING DEVICE STATE, 11-269
INQUIRE STROKE DEVICE STATE, 11-276
INQUIRE TEXT EXTENT, 11-286
INQUIRE TEXT FACILITIES, 11-145
INQUIRE TEXT REPRESENTATION, 11-290
INQUIRE VALUATOR DEVICE STATE, 11-295
INQUIRE WORKSTATION CATEGORY, 11-150
INQUIRE WORKSTATION CLASSIFICATION, 11-153
INQUIRE WORKSTATION CONNECTION AND TYPE,

11-307
INQUIRE WORKSTATION DEFERRAL AND UPDATE

STATES, 11-302
INQUIRE WORKSTATION MAXIMUM NUMBERS,

11-18
INQUIRE WORKSTATION STATE, 11-310
INQUIRE WORKSTATION TRANSFORMATION,

11-313
Inquiry functions, 11-1 to 11-338

GKS description table, 11-9 to 11-20
GKS state list, 11-156 to 11-200
introduction to, 11-1 to 11-8
list of, 11-8 to 11-338
pixels, 11-325 to 11-338
segment state list, 11-317 to 11-324
workstation description table, 11-21 to 11-155
workstation state list, 11-201 to 11-316

Intensities
color chart, H-2

Internal structure
of metafiles, E-1

ISO standardization>6093 (GKSM metafiles), E-1
Items

metafile internal structure, E-1

K
Keypad functionality

choice input, J-36, J-38
cycling, J-34
input, J-33 to J-39
input zoning, J-35

Keypad input functionality
zoning mechanism, J-11

Keys
input keypad functionality, J-33

L
o/oLOC

GDP and escape data records, 1-3
LA100

workstation type constant, A-2
LA210

workstation type constant, A-2
LA34

workstation type constant, A-2
LA50

aspect ratio, A-3
workstation type constant, A-2

Languages
BASIC, F-3
C, F-3
COBOL, F-3
declaring external functions, F-1
Pascal, F-7
programming information, F-1 to F-8

Layout
metafile structure, E-4

LCG01
workstation type constant, A-2

Lengths
metafile items, E-4

Lines
of fonts, G-1

Line types
DEC GKS specific, C-5

Lists
GKS state, 11-1
segment state, 11-1
workstation state, 11-1

Locator
data records required, J-18
keypad zoning of cursor, J-35
logical input device numbers, J-7
prompt and echo types supported, J-18

LOCK key
input on VAXstations, J-39

Logical input devices
DEC GKS available numbers, J-2 to J-14
keypad functionality, J-33

LVP16
workstation type constants, A-2

lndex-7

M
Marker types

DEC GKS specific, C-6
Messages

error, D-1 to D-43
Metafiles

CGM, E-9 to E-28
CGM RMS format, E-28
GKSM, E-1 to E-9
Internal structure, E-1
list of errors, D-39 to D-41
RMS format, E-9
workstation type constants, A-1

MicroVAX
workstation type constants, A-2

Monospaced fonts, G-1
MPS-2000 workstation type constant, A-2

N
Normalization transformations

See Transformations
Numbers

error, D-1
Numeric Keypad

choice input, J-36

0
Operating states

list of errors, D-17 to D-19
Output

list of errors, D-33 to D-34
Output attributes

See Attributes
Output-only workstations, A-4

p
Paper sizes, A-4
Pascal programming information, F-7
Passing by descriptor, F-3

problems, F-1
Pick

data records required, J-25
keypad zoning of cursor, J-35
logical input device numbers, J-8
prompt and echo types supported, J-25

Polylines

See also Attributes

lndex-8

Polylines (Cont.)

DEC GKS specific, C-5
initial attributes, C-1

Poly markers

See also Attributes
DEC GKS specific, C-6
initial attributes, C-2

Postscript workstation type constant, A-3
Precision

See also Fonts
Precision text fonts, G-1
Programming

BASIC, F-3
C, F-3
language-specific information, F-1
Pascal, F-7

Programming COBOL, F-3
Prompts

See Echo area

R
Radians

GDPs, 1-5
Radius

GDPs, 1-5
Ranges

escapes, 1-48
Realized values, 11-6

See also Inquiry Functions
Representations

See also Attributes
color chart, H-2

RMS
CGM metafile structure, E-28
metafile structure, E-9

Rotation
GDPs, 1-4, 1-5

s
Segments

initial attributes, C-4
list of errors, D-34 to D-36

Set values, 11-6
Sizes

paper, A-4
SMG encoded key

VAXstation string input, J-9
Software fonts, G-1

Standards

metafile structure, E-1
State lists

GKS, 11-1
segments, 11-1
workstation, 11-1

Status
inquiry error status argument, 11-5
values

VMS, D-1
String

data records required, J-26
prompt and echo types supported, J-26 ·

Strings
control characters for input, J-9
initial position of input cursor, J-26
logical input device numbers, J-9
toggling overstrike/insert input, J-9

Stroke
data records required, J-27
keypad zoning mechanism, J-11
keypad zoning of cursor, J-35
logical input device numbers, J-11
prompt and echo types supported, J-27

Stroke font file, G-4
character descriptor, G-4, G-9

elements, G-1 O
header, G-4, G-5

elements, G-7
Stroke font file header, G-5

elements, G-7
Structure

metafiles, E-1
System errors

list of, D-42 to D-43

T
Tables

GKS description, 11-1
workstation description, 11-1

Tektronix-4014
workstation type constant, A-3

Tektronix-4107
cycling logical input devices, J-34
workstation type constant, A-3

Text
fonts, G-1
initial attributes, C-3

Toggling
logical input devices, J-34

Toggling (Cont.)

overstrike/insert string input, J-9
Top line, G-1

See also Fonts
Transformations

See also Escapes
coordinate range translation, 1-132
GDPs, 1-4
list of errors, D-25 to D-26
normalization

initial attributes, C-5
translating DC to NOC points, 1-136
translating NOC to DC points, 1-133
translating NOC to WC points, 1-135
translating WC to NOC points, 1-132
vector origin points, 1-5

Types

v

hardcopy workstations, A-4
inquiry value type argument, 11-6
workstation, A-1

Valuator
data records required, J-31
logical input device numbers, J-12
prompt and echo types supported, J-31

Values
DEC GKS specific line types, C-5
DEC GKS specific marker types, C-6
initial attribute, C-1 to C-5
of constants, B-1 to B-21

VAX Languages, F-1
VAXstation

choice input device numbers, J-4, J-5
VAXstations

color chart, H-1
LOCK key, J-39
SMG encoded input string, J-9
string input device numbers, J-9
workstation type constants, A-2

Vector origin point, 1-5

See also GDPs
Vector origin points

transformations, 1-5
Vectors

GDPs, 1-5
Viewports

normalization
initial value, C-5

lndex-9

VT125
choice input device numbers, J-4
choice keypad functionality, J-36
color chart, H-1
keypad zoning during input, J-35
keypad zoning mechanism, J-11
string input device numbers, J-1 O
workstation type constants, A-2

VT240
choice input device numbers, J-4, J-5
choice keypad functionality, J-36, J-38
color chart, H-1
keypad zoning during input, J-35
keypad zoning mechanism, J-11
string input device numbers, J-10
workstation type constants, A-2

VT330
workstation type constant, A-2

VT340
workstation type constant, A-2

lndex-10

w
Windows

normalization
initial value, C-5

WISS
workstation type constant, A-2

Workstations

z

DEC GKS specific input values, J-1 to J-39
hardcopy types, A-4
list of errors, D-19 to D-25
output-only types, A-4
supported devices, A-1 to A-6
types

as bit masks, A-4
bit mask constants, A-5

Zoning
input cursor, J-35

Reader's Comments DEC GKS Reference Manual
Part 2

AA-HW44D-TE

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor
Accuracy (software works as manual says) D D 0 0
Completeness (enough information) D D 0 0
Clarity (easy to understand) 0 0 0 D
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 D
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

I am using Version --- of the software this manual describes.
Nametritle Dept.

Company Date

Mailing Address

Phone

I
I
I
I
I

Do Not Tear - Fold Here and Tape ---------------------------------------'

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 •• 1.1 .. 1 .. 1.1 ... 1.11 .. 1

No Postage
Necessary
if Mailed

in the
United States

- Do Not Tear - Fold Here --

Reader's Comments DEC GKS Reference Manual
Part 2

AA-HW44D-TE

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.
Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) D D D D
Completeness (enough information) D D D D
Clarity (easy to understand) D D D D
Organization (structure of subject matter) D D D D
Figures (useful) D D D D
Examples (useful) D D D D
Index (ability to find topic) D D 0 D
Page layout (easy to find information) D D D D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

I am using Version --- of the software this manual describes.
Nametritle Dept.

Company Date

Mailing Address

Phone

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ... 1.11 .. 1

No Postage
Necessary
if Mailed

in the
United States

Do Not Tear - Fold Here --

t. ,. ,.
I~

!

