
Using the
VAX Information Architecture

Order No. AA-GR93A-TE
Including: AD-GR93A-T1

January 1986

This volume introduces the VAX Information
Architecture family of software products and gives a
step-by-step introduction to developing applications with
the products. It also includes a documentation directory,
master glossary, and master index for documentation of
the VAX Information Architecture family of products.

OPERATING SYSTEMS: VMS

Micro VMS

digital equipment corporation, maynard, massachusetts

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA
and Puerto Rico
call 800-258-1710

In Canada
call 800-267-6146

In New Hampshire,
Alaska or Hawaii
call 603-884-6660

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1 G 4C2
Attn: P&SG Business Manage;

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
P &SG Business Manager

clo Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

*Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809-754-7575

VAX Information Architecture
Documentation Directory,
Master Glossary, and Master Index

January 1986

This manual describes the documentation available for
the VAX Information Architecture family of software
products. It also includes a master glossary and a master
index to the documentation sets.

OPERATING SYSTEMS: VMS

Micro VMS

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGIT AL or its affiliated companies.

Copyright© 1985, 1986 by Digital Equipment Corporation. All rights reserved.

The postage·paid READER'S COMMENTS form on the last page of this docu·
ment requests your critical evaluation to assist us in preparing future documenta·
tion.

The following are trademarks of Digital Equipment Corporation:

ACMS
CDD
DATATRIEVE
DEC
DECgraph
DECnet
DECslide

DEC US
MicroVAX
Micro VMS
PDP
Rdb/ELN
RdbNMS
TDMS

UNIBUS
VAX
VAXcluster
VAXinfo
VAX Information Architecture
VMS
VT

VAX Information Architecture
Summary Description

December 1985

This document describes the components of the VAX
Information Architecture.

OPERATING SYSTEM: VMS

Micro VMS

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1983. 1984. 1985 by Digital Equipment Corporation. All rights
reserved.

The following are trademarks of Digital Equipment Corporation:

ACMS
CDD
DATATRIEVE
DEC
DECgraph
DECnet
DEC slide

DEC US
MicroVAX
Micro VMS
PDP
Rdb/ELN
Rdb/VMS
TDMS

UNIBUS
VAX
VAXcluster
VAX Information Architecture
VMS
VT

~amanmo™

How to Use This Manual

1 An Overview of the VAX Information Architecture
1.1 Information Management
1.2 Information Management Tools

1.2.1 Information Resource Management.
1.2.2 DataAccess
1.2.3 Distributed Processing
1. 2. 4 Report and Graphics Generation .
1.2.5 Terminal Management
1.2.6 Database Management Systems .. .
1.2. 7 Comparison of Relational and CODASYL Databases .
1.2.8 Application Management

1.3 Planning an Information Management System . . .

1.4 What is the VAX Information Architecture?.
1. 4 .1 VAX Common Data Dictionary.
1.4.2 VAXRdbNMS ..
1.4.3 VAX DBMS .
1.4.4 VAX TDMS
1.4.5 VAXACMS
1.4.6 VAXDATATRIEVE ..

2 VAX COD
2.1 Overview of the VAX Common Data Dictionary.

2.2 Dictionary Organization

2.3 CDD Features
2.3.1 Creating and Storing Data Definitions.
2.3.2 Controlling Access to Data Definitions
2.3.3 Subdictionaries -. .
2.3.4 Tracking Changes to the CDD
2.3.5 Modifying Data Definitions
2.3.6 Locating the Correct Data Definition
2.3.7 Copying the Definition into Application Programs . .
2.3.8 Maintaining the Dictionary

Contents

vii

1-1
1-2
1-2
1-3
1-3
1-4
1-6
1-7

. .1-11
.1-12

. .1-12

.1-12

.1-13

.1-14

.1-15

.1-18
. .1-20

.1-22

. 2-1

. 2-3

. 2-8

. 2-8
.. 2-11

.2-11

.2-12

.2-13
.. 2-14
.. 2-14
.. 2-15

iii

3 VAX Rdb/VMS
3.1 OverviewofVAXRdb/VMS 3-1

3.1.1 VAX Rdb/VMS as a Database Management System. 3-1
3.1.2 WhenandWheretoUseVAXRdb/VMS .. 3-2

3.2 The Relational Model
3.2.1 Relations
3.2.2 Normalization
3.2.3 Relational Operations .

3 .2 .3 .1 Joining Relations
3.2.3.2 Selecting Fields and Records.
3.2.3.3 Reducing Data to Unique Values.

3.2.4 CreatingViews
3.3 Additional Features of VAX Rdb/VMS

3.3.1 RDO. the Interactive Rdb/VMS Utility
3.3.2 Program Interfaces
3.3.3 Multiple Databases and Remote Access.

3.4 Designing a Database ...
3.5 Database Operations
3.6 Storing Data

. . 3-3

. . 3-4
. .. 3-5

. . 3-6

.. 3-6

. . 3-9

. . 3-9
.3-10

.3-10
.. 3-10

. .. 3-12
.3-12
.3-12
.3-15
.3-16

3.7 Accessing Data.3-16
3.7.1 Transactions . .3-17
3. 7. 2 Ensuring Consistency . .3-18
3. 7.3 Read-Only Transactions (Snapshots) 3-18

3.8 RetrievingData3-18
3.8.1 Record Selection Expressions IRSE). . .3-19
3.8.2 Record Streams. . . .3-20 ·

3.9 Modifying Data3-21
3.10 Maintaining a Database
3.11 Types of VAX Rdb/VMS Product Kits.

.. 3-21

. .3-22

4 VAX DBMS

iv

4.1
4.2

Overview of VAX DBMS .
Enhancements to the CODASYL Model .

4.2.1 DBA Productivity
4.2.2 Programmer Productivity
4.2.3 Database Performance and Tuning.
4.2.4 Security Features
4.2.5 DECnetNetworkAccess
4.2.6 Operation in a VAXcluster

. 4-1

.. 4-3
. 4-4

. . 4-4

. . 4-5

. . 4-7

. . 4-7
. 4-7

4.3 Product Summary 4-8
4.3.1 Data Definition Language (DDL) 4-8
4.3.2 Database Control System (DBCS) 4-9
4.3.3 Data Manipulation Language (DML). 4-9
4.3.4 Database Query (DBQ) Utility4-10
4.3.5 Database Operator (DBO) Utility.4-11
4.3.6 Help Facilities. .4-11
4.3. 7 The Installation Verification Procedure (IVP)4-11
4.3.8 Demonstration (DEMO).4-12

4.4 Types of VAX DBMS Product Kits4-12

5 VAX TOMS
5.1 Overview of VAX TDMS 5-1
5.2 Programmer Productivity 5-1
5.3 Device Independence . 5-2
5.4 Elements of a TDMS Application 5-3

5.4.1 The Application Program 5-3
5 .4. 2 Record Definitions . 5-4
5.4.3 Form Definitions
5.4.4 Request Definitions
5.4.5 Request Library Definitions

5.5 TDMS Utility Programs and the Trace Facility
5.5.1 The TDMS Form Definition Utility
5.5.2 The TDMS Request Definition Utility
5.5.3 The Trace Facility

5.6 Types of VAX TDMS Kits

6 VAXACMS
6.1 Overview of VAX ACMS
6.2 Application Development With VAX ACMS.
6.3 Application Control with VAX ACMS .. . "
6.4 Distributed Applications with VAX ACMS
6.5 Additional VAX ACMS Utilities. ...
6.6 Types of VAX ACMS Product Kits

7 VAX DATATRIEVE
7.1 Overview of VAX DATATRIEVE .
7 .2 Comparing DATATRIEVE With Other Computer Languages ..
7 .3 Managing Information with DAT ATRIEVE.

7.3.1 DefiningData
7.3.2 Storing and Modifying Data
7 .3 .3 Data Retrieval.

. . 5-4
. 5-5
. 5-6
. 5-6

. . 5-6

. . 5-7

. . 5-8

. . 5-8

. 6-1

. 6-2

. 6-4

. 6-6
. . 6-6

. 6-7

.. 7-1
7-2
7-3
7-3
7-6
7-6

v

vi

7.4 Writing Reports With DATATRIEVE , 7-7
7.5 Producing Graphics with DATATRIEVE 7-9

Index

Figures
1-1 A Sample Report Produced by a Report Writer 1-5
1-2 A Sample Pie Chart Produced by a Graphics Generator 1-6
1-3 A Sample Form 1-7
1-4 The Hierarchical Database Model. 1-8
1-5 The Network (CODASYL) Database Model. 1-9
1-6 The Relational Database Model .1-10
1-7 VAX DBMS Subschema Display 1-17
1-8 ADD_EMPLOYEE_FORM:ASampleVAXTDMSForm 1-18
1-9 VAXACMS Menu 1-20
1-10 Sample Output of the DATATRIEVE PRINT Command1-24
1-11 A Sample Report From VAX DAT ATRIEVE1-24
1-12 A Sample Plot From VAX DATATRIEVE 1-25
2-1 CDD Directory Hierarchy 2-4
2-2 Sample Dictionary 2-5
2-3 Listing of EMPLOYEE.DDL 2-9
3-1 A Relational Table. 3-4
3-2 A Relational Join Operati0n 3-8
4-1 Currency Diagram on a VT1254-10
6-1 Multiple-Step Task Definition. 6-3
6-2 Task Access Control List. 6-5

Tables
3-1 Statistical Expressions. .3-20

How to Use This Manual

This manual describes the components of the VAX Information Architecture. You
should use it to familiarize yourself with these products.

Intended Audience

This book is intended for the DP professional who wants to become acquainted
with the components of the VAX Information Architecture. You do not need
expertise with the individual components of the VAX Information Architecture to
begin reading this book. However, you should have some familiarity with the
VMS operating system, VAX Record Management Services {RMS). If you do not,
you can read:

• The Introduction to VAX/VMS for general information about the VMS oper
ating system

• The Guide to VAX/VMS File Applications for information about VAX RMS
file handling

• The VAX Software Handbook for an overview of VAX facilities and
capabilities

To verify which versions of your operating system are compatible with these ver
sions of the VAX Information Architecture products. check the most recent copy
of the following:

• For the VMS operating system -- VAX/VMS Optional Software Cross
Reference Table. SPD 25.99.xx

• For the MicroVMS operating system -- Micro VMS Optional Software Cross
Reference Table. SPD 28.99.xx

vii

Structure

There are seven chapters in this book:

Chapter 1

Chapter 2

Chapter 3

Chapter4

Chapter 5

Chapter 6

Chapter 7

viii

Provides an introduction to the VAX Information
Architecture.

Describes the VAX Common Data Dictionary (CDD).

Describes the VAX Relational Database Management System
(Rdb/VMS).

Describes the VAX Database Management System (DBMS).

Describes the VAX Terminal Data Management System
(TDMS).

Describes the VAX Application Control and Management
System (ACMS).

Describes VAX DATATRIEVE.

An Overview of the VAX Information Architecture 1

Businesses today have to manage ever-increasing quantities of information.
Controlling inventory, tracking customer credit, filing reports with government
regulatory agencies, and analyzing business trends are all examples of managing
information. But what exactly does "information management" mean? The next
few pages provide an answer.

1.1 Information Management

Requests for information have been increasing steadily in recent years. The trend
has led managers to seek solutions outside the data processing department.
Instead of submitting all requests to a central group, department heads have
begun to hire their own programmers to develop departmental applications.

Decentralizing data processing in this way increases overall efficiency. but at the
expense of control. Traditional data processing requires that each application pro
gram describe the data and how it is used within the logic of the program.
Programs and data, therefore, can be so dependent on one another, that a change
in one requires a change in the other. Redundancy and inconsistency result when
different departments process data independently. Instead of accessing the cen
tral files, departmental programmers often duplicate data stored in the central
files for their own applications. Subsequent updates to the central files are not
included in the local copies, so that files become less and less reliable over time.

To let organizations maintain control over data processed locally by different
departments. software products have been developed that keep the definition and
management of data separate from application programs. With these information
management products. individual departments no longer need to maintain their
own data files, nor must data access originate in a central data processing depart
ment. Instead. processing can take place locally. while the software protects data
against unauthorized access, redundancy, and inconsistency.

1-1

Information management makes it possible for users outside the data processing
department to get needed information without concern for the details of its phys
ical storage. Office workers and managers can examine data and format it as use
ful information. Different departmental data processing groups can
simultaneously update the central files without interfering with one another.
Programmers can update programs without having to redefine the files in which
data is stored.

Correctly implemented, information management software can improve the over
all efficiency of an organization's data processing. Relieved of the necessity of
answering numerous ad hoc requests from users, the central data processing
department can devote full attention to designing and maintaining structured
applications. In other departments, information management tools let users
develop their own applications to answer their own information needs.

1.2 Information Management Tools

Many software tools are available for setting up efficient information manage
ment systems. These tools perform the following functions:

• Information resource management. providing central storage of data descrip
tions and record definitions

• Data access, letting you easily retrieve information

• Distributed processing, allowing you to process data stored on other comput
ers remote from your local system

• Reports and graphics generation, providing informative and attractive
reports, graphs, and charts

• Terminal management, displaying familiar business forms on the terminal
screen to make it easy to manipulate the data in your files

• Data and database management, controlling data shared by many users

• Application management, controlling large, complicated applications

1.2.1 Information Resource Management

Data in files is described by record definitions. Traditionally, these definitions
have been included in the programs that process the data. The COBOL data divi
sion, for example. contains definitions for all of the data used in a COBOL pro
gram. Information resource management helps avoid a proliferation of files
containing the same data defined differently. This approach makes data descrip
tions independent of program logic.

1-2 An Overview of the VAX Information Architecture

The principal tool of information resource management is the data dictionary.
Data dictionaries define and describe all of the data items used by an organiza
tion. Instead of creating new files and record definitions as they perceive a need,
programmers can use the data dictionary and the information resources that
already exist.

Data dictionaries can be active or passive. Passive dictionaries simply store
descriptions of data and generate listings of data definitions and available infor
mation resources. Active data dictionaries let programs extract data definitions as
program source code. With an active data dictionary, you can create new applica
tions. or modify old ones, without redefining data. Instead, you can include the
dictionary definition automatically in your application regardless of language. Use
of an active data dictionary increases efficiency and maintainability by reducing
the number of program-specific definitions.

1.2 .2 Data Access

To make it easy to retrieve data for processing, special query languages let you
use everyday English words to perform tasks that used to require application pro
grams. Query language capabilities include:

• Searching files for information based on criteria you specify

• Sorting data

• Adding data

• Modifying data

• Deleting data

• Protecting data

For example, a query language lets you use a simple command to find the names
of all your employees who earn between $25.000 and $30.000 a year:

PRINT EMPLOYEES WITH SALARY BETWEEN 25000 AND 30000

The query language finds all employees matching the criteria and displays infor
mation about them on your terminal screen.

1.2.3 Distributed Processing

Distributed processing gives you the ability to access data on remote computers
as easily as you access data stored on your local computer. With distributed pro
cessing, you can decentralize your data files without introducing redundancy or
relinquishing control.

An Overview of the VAX Information Architecture 1-3

In a distributed processing environment, the data your department uses most fre
quently is stored locally. When a user on another computer needs to access your
data, distributed processing software handles the physical data retrieval. From
the user's point of view, there is no difference between local and remote process
ing. Distributed processing helps prevent data redundancy because no new copies
of the original data files are made.

1.2.4 Report and Graphics Generation

Report writers make it easy to retrieve data from central files or databases, to
arrange and manipulate that data, and to produce informative and attractive
reports.

For example, a simple summary report might involve printing the name and
monthly revenues of each branch of a department store chain followed by the
total monthly revenue. Producing this report with a traditional programming lan
guage requires the following steps:

• Create a variable TOTAL REVENUE and set its value to 0.

• For each branch, add the monthly revenue to TOTAL_ REVENUE and then
print the values of NAME and REVENUE in the report.

• After the last branch has been processed, print the value of
TOTAL_ REVENUE in the report.

With a report writer, you do not need to calculate the total explicitly. Instead,
simple commands specifying what you want, not how to produce what you want,
are all that is required:

PRINT NAME. REVENUE
AT BOTTOM PRINT TOTAL REVENUE

In the sample report in Figure 1-1, the software displays the names of salespeople
sorted into groups based on. length of employment and performance against sales
quotas. The report writer performs all of the sorts and calculations automatically.

Most report writers let you store report formats for future use, so that once you
have defined a format. you can use it later to produce reports automatically.
Whether you need a report that is used only once or a report that the government
requires you to file each month, a report writer lets you produce the report quickly
and easily.

Graphics generators are similar to report writers, but, instead of producing
reports, they present the data stored in your files as line and scatter graphs, bar
charts. and pie charts. To allow you to create graphs without having to write pro
grams, graphics generators usually offer a simple command syntax or a menu
interface for graphic design.

1-4 An Overview of the VAX Information Architecture

SALES COMMISSION REPORT 2-Jul-1985
Page 1

COMM SALES MONTHS
RATING PCT NAME EMP AMOUNT COMMISSION

BELOW QUOTA 5%
ANNE DINNAN 3 $2,389.90 $119.50
RICK LANGHART 4 $4,999.99 $250.00
LYDIA BARNET 1 $2,598.79 $129.94
JOSEPH FREDERICK 4 $5,000.00 $250.00

NUMBER: 4 TOTAL SALES: $14,988.68 $749.53

BELOW QUOTA 7%
WILLIAM SULLIVAN 9 $8,672.99 $607 .11
LINDA REINE 7 $8,532.22 $597.26
HENRY MAILER 7 $9,999.99 $700.00

NUMBER: 3 TOTAL SALES: $27,205.20 $1,904.36

ABOVE QUOTA 10%

NANCY ROTHBLATT 2 $6,325.88 $632.59
WAYNE SMITH 5 $9,853.52 $985.35
SEYMOUR KIMMELMAN 5 $7,325.67 $732.57

NUMBER: 3 TOTAL SALES: $23,505.07 $2,350.51

ABOVE QUOTA 12%

DAN DERRICK 8 $11,456.87 $1,374.82
JAMES STORER 14 $25,876.02 $3,105.12
SANDY LEVINE 8 $10,000.01 $1, 200. 00
DENNIS MCADOO 11 $12,345.62 $1,481.47

NUMBER: 4 TOTAL SALES: $59,678.52 $7, 161. 42

** **

SALES FORCE: 14 TOTAL SALES: $125,377.47 $12,165.73

Figure 1-1: A Sample Report Produced by a Report Writer

Graphics are a dramatic way to change data into information; large quantities of
information can be grasped at once, and trends quickly become apparent.
Consider. for example. the difference between reading columns of figures and see
ing a graph of those figures over time. Graphics programs can quickly produce

An Overview of the VAX Information Architecture 1-5

sophisticated color displays of your data. For example, Figure 1-2 is a pie chart
that displays the percentage of employees in each department within a company.
The chart was produced with the command:

PLOT PIE USING DEPARTMENT OF PERSONNEL

FREQUENCY OF DEPT
------~E46

\ G20

T32

ZK-00062-00

Figure 1-2: A Sample Pie Chart Produced by a Graphics Generator

As with report writers, you can experiment with the graphs and easily make
changes until you have the graph you want.

See Chapter 7 for more information about producing reports and graphics with
VAX DAT A TRI EVE software.

1.2.5 Terminal Management

In business. most data is gathered and stored on forms. Displaying business
forms on a terminal screen provides a familiar and easy method for entering and
retrieving data.

1-6 An Overview of the VAX Information Architecture

Many forms processors check values as the data is entered and accept a value
only if it is of a specified type or within a specified range. For example, you can
direct the form to accept a value for an employee code only if that value corre
sponds to one of the values listed with the form definition. Control of this kind
leads immediately to fewer data entry errors.

Figure 1-3 is an example of a form. An employee at a terminal enters data into
the fields defined on the form or reads the information displayed there by the
forms processor.

NAtE:~

STREET: XXXXXXXXXXXXXXX
CITY:~

STATE: M
ZIP: 99999

Figure 1-3: A Sample Form

ZK-00060-00

The fields of this form are filled with characters (fl A fl. fl X fl. and fl 9") that deter
mine the field length and the types of characters allowed in that field. Thus, "A"
specifies alphabetic characters, "9" specifies numeric characters. and "X" speci
fies alphanumeric characters.

1.2.6 Database Management Systems

During the 1970s, sophisticated database management systems IDBMS) emerged
to provide greater control over data than that available with conventional file
structures.

An Overview of the VAX Information Architecture 1-7

In general terms, a database is simply stored data, but the term has a more spe
cialized meaning in the context of database management systems. Like tradi
tional files, DBMS files contain data and record definitions, but DBMS files also
contain representations of the relationships among the data items and records.
Instead of relying on traditional file access methods, DBMS software controls
access to data and data definitions. There are three basic database structures:

• Hierarchical

• Network, also called the CODASYL model because the Conference on Data
Systems Languages has been active in developing network database specifi
cations

• Relational

A hierarchical database organizes the relationships between record types as a tre~
structure. Related records are stored on the same branch of the hierarchy to
facilitate efficient data retrieval. A disadvantage of the hierarchical structure is
the lack of flexibility in navigating through the database: once you choose one of
the branches, there is no way to get to the records on the other side of the branch
without moving back up the tree to the junction of the required branch. At that
point you can begin working down the other side of the tree.

In Figure 1-4. the hierarchical relationships are clear.

ZK-00061-00

Figure 1-4: The Hierarchical Database Model

Records C and D are clearly related to Record B, which is, in turn. related to
Record A. If you want to relate Record C to Record E. however. the hierarchical
organization of the database requires you explicitly to link C to B, B to A. and A
to E when you access these records in a program.

1-8 An Overview of the VAX Information Architecture

With the network or CODASYL model, any record can be related to any other
record without the restrictions inherent in the hierarchical structure. Because
records can participate in relationships, called sets, that are not limited to records
hierarchically above and below, the network model provides flexibility in matching
database structures to your data processing needs.

In Figure 1-5, the EMPLOYEE record participates in three set relationships.

DEPARTMENT

MANAGES

CONSISTS OF

EMPLOYEE CLASS_PART,

RESPONSIBLE-FOR

PART
MK-01336-00

Figure 1-5: The Network (CODASYL) Database Model

Departments both consist of employees and are managed by them. In addition,
employees are responsible for maintaining parts. By adding record types and sets
in this way, you can use a network database to reflect the data relationships in
your organization. The advantage of predefining relationships in network
databases. especially databases containing large numbers of records. is processing
efficiency.

The relational database model provides more flexibility than either the hierarchi
cal or the network model because relationships do not exist as predefined struc
tures. Instead. data is stored in tables, and relationships between two or more

An Overview of the VAX Information Architecture 1-9

records are established by matching the values of key fields common to those
records, as shown in Figure 1-6.

STUDENT record

I STUDENLNO I NAME I ADDRESS I CITY I STATE ZIP

COURSE record

COURSE-NO SECTION_No I STUDENT-NO I GRADE I

Figure 1-6: The Relational Database Model

In Figure 1-6, no relationships between students and classes are defined. Because
the student number is common to both records, however, it is easy to associate a
class number and grade with the name and address of the student who took that
course and earned that grade.

In summary, implementation of a database management system can provide sev
eral benefits:

• Reduction in redundancy

Instead of storing several copies of the same data in each of several files, a
DBMS stores data and data definitions in central files and controls the phys
ical storage.

• Views

Individual users see only those portions of the database they need to do their
work. These subsets of the database are called logical views.

• Security

DBMS software enforces security. If some of your data is sensitive, you can
ensure that only authorized personnel can read or change it.

• Shared access

Because the database software controls access to the data. it is possible to
control shared access to files. This means that many of your employees can
update the database simultaneously without introducing errors. Database
management software is programmed to resolve any conflicts that might
arise.

1-10 An Overview of the VAX Information Architecture

• Recovery from failure

As employees process database data, their transactions are recorded in a
journal file. Therefore, the database can be restored to accuracy if hardware
or system failures corrupt or destroy a day's database activity.

Database management systems provide these benefits because they perform
many of the data handling and file control functions that must be performed by
individual programs in a conventional file management system. Conversion to a
database from a conventional file system, however. can be expensive at first, in
part because trained technical personnel are sometimes needed to design and
implement database applications.

1.2. 7 Comparison of Relational and CODASYL Databases

You use VAX DBMS for applications in which:

• Databases are large. VAX DBMS was designed to handle databases up to
several gigabytes.

• The relationships between different parts of the database range from normal
to very complex. VAX DBMS is appropriate for databases with 30 or more
record types and set relationships.

• Records and their various relationships are clearly understood during the
design phase.

• Relationships are relatively stable.

VAX DBMS requires the expertise of database designers, programmers. and
administrators. The users of VAX DBMS are usually experienced database
designers and programmers.

VAX DBMS is most efficient when the benefits of performance tuning and stable
relationships offset the additional time and effort spent planning and implement
ing database applications.

You use VAX Rdb/VMS for applications in which:

• The structure of the database is expected to change significantly over time.
An application requiring frequent prototyping, for example, benefits from the
relational structure of VAX Rdb/VMS.

• Application programmers, rather than experienced database designers and
administrators, create and use the database.

• Remote database access and distributed database workloads are desirable.

An Overview of the VAX Information Architecture 1-11

VAX RdbNMS is most efficient when changes in the database are normal and
desirable. RdbNMS makes the restructuring of relationships easy and quick.

Note that the relationship between DBMS and Rdb/VMS is not necessarily
either-or. A single application system might have some parts that are well-suited
for a relational database and other parts that are well-suited for a CODASYL
database.

1.2.8 Application Management

As your information management system grows and becomes accessible to more
and more employees. you need more control and more efficient processing of com
mon data. Application management systems answer this need. Typically, applica
tion management systems let employees with little or no computer experience
perform standardized data processing tasks by making selections from a menu
displayed on a terminal screen.

Application management systems give you broad control over which menus each
of your employees can see and use and over the tasks each employee can perform.
These systems also provide facilities for logging the work users have done. Such
data is necessary both for application security and for tuning application pro
grams. With application management systems. you gain the benefits of efficient
data processing while minimizing the risk of granting broad access to your com
pany data.

1.3 Planning an Information Management System

Each of the tools previously described provides benefits, but no business informa
tion problem has only one solution. Different tools, and groups of tools, solve dif
ferent problems. For example, a query language and report writer might provide
all of the information management needed by a company of 50 employees. On the
other hand, a company that manufactures and distributes more than 1000 prod
ucts should certainly investigate the benefits of a database management system.
To make an intelligent choice, you must evaluate the information management
products available in light of your particular business needs.

The following sections introduce DIGITAL's family of information management
products. the VAX Information Architecture. In addition to learning about the
products. you will see how they work together in different combinations to answer
different needs. Later chapters discuss individual components of the VAX
Information Architecture in greater detail.

1.4 What is the VAX Information Architecture?

The following sections describe the VAX information management products and
the information management problems they solve. The VAX Information

1-12 An Overview of the VAX Information Architecture

Architecture includes:

• VAX Common Data Dictionary, DIGITAL's central storage facility for data
definitions used by VAX Information Architecture products and a growing
number of VAX languages

• VAX RdbNMS, DIGITAL's relational database management system

• VAX DBMS, DIGITAL's CODASYL-compliant database management sys
tem

• VAX TDMS. DIGITAL's terminal management package that displays forms
and manages data using definitions stored in the CDD

• VAX ACMS, DIGITAL's software for application management and develop
ment

• VAX DATATRIEVE, DIGITAL's query and report writing language

VAX Information Architecture products work with each other. and with VAX
native-mode languages conforming to the VAX calling standard, to provide flexi
ble solutions to your information management problems.

1.4.1 VAX Common Data Dictionary

The VAX Common Data Dictionary (CDD) provides central storage for all of the
data descriptions used and shared by VAX Information Architecture products and
by most VAX high-level languages. This sharing of data descriptions provides
several benefits:

• Modifications to data definitions can be made easily because all definitions
are centrally located. For example, if the United States Postal Service
changes ZIP codes from five digits to nine, data files, forms, and data defini
tions will have to be restructured. Once the files and forms are changed, the
CDD user will need only to change those record definitions that include the
ZIP code field and to recompile the programs that use them. Programmers
using a conventional file system without shared data definitions will have to
modify every program that contains a reference to ZIP codes.

• VAX Information Architecture products can use the same data and the same
files because the definitions describing record structures can be shared. For
example, you can use a CDD record definition in VAX COBOL to read and
process a file created by VAX DATATRIEVE. You do not have to write spe
cial programs to allow the different products to work together or store
redundant copies of data files, each suited to a specific product.

• When a user or a program accesses a definition in the dictionary, you have
the option of keeping a record of that access in a history list. With the

An Overview of the VAX Information Architecture 1-13

CDD's history list feature, you can keep a record of dictionary usage. For
example, history lists could provide the names of all the programs that
included a particular record definition at compile time, and this information
would help you assess the impact of changing that definition.

• The CDD has a security mechanism that allows you to protect the definitions
in your dictionary against unauthorized access or modification.

The VAX Common Data Dictionary has a hierarchical directory structure consist
ing of one or more physical files. The CDD includes three utilities that let you
organize your dictionary and store data definitions in it:

• The Dictionary Management Utility (DMU) provides a set of commands that
let you create, back up, copy, and protect your dictionary hierarchy.

• The CDD Data Definition Language Utility (CDDL) lets you store shareable
record descriptions.

• The CDD Verify/Fix Utility (CDDV) verifies dictionary files and repairs some
file corruptions resulting from hardware failures or I/O errors. It can also
rearrange dictionary files to reduce their size and improve performance.

The VAX Common Data Dictionary can be simultaneously accessed and updated
by many concurrent users. The CDD uses the Lock Manager facility of the VMS
operating system to guarantee that users do not interfere with one another.

With the CDD and the VAX Information Architecture tools described in the fol
lowing sections, you can choose the products you need to solve your business
problems.

See Chapter 2 for more information about the CDD.

1.4.2 VAX Rdb/VMS

VAX Rdb/VMS is a relational database management system for VAX computers
using the VMS operating system. Rdb/VMS gives you the advantages of a full
featured database management system. including data security and integrity and
optimized access. Because Rdb/VMS uses the relational model of data storage,
Rdb/VMS is flexible and easy to use.

VAX Rdb/VMS provides the following features:

• Rdb/VMS makes it easy for experienced programmers to design and
restructure databases. In most cases, you do not need a professional
database administrator to create and maintain a database.

1-14 An Overview of the VAX Information Architecture

• Many users can retrieve information from the database and update it
simultaneously.

• Before- and after-image journaling ensures that the accuracy and reliability
of the database is maintained in the event of user errors and hardware or
software failures.

• The DIGITAL Standard Relational Interface (DSRI) allows programs written
for VAX Rdb/VMS to run on VAX Rdb/ELN software, a relational database
management system using the V AX/ELN operating system. Similarly, pro
grams written for VAX Rdb/ELN software run without modification on VAX
Rdb/VMS.

• Programs written for VAX Rdb/VMS can access information in local
databases and in remote Rdb/VMS or Rdb/ELN databases.

• Rdb/VMS can store its definitions in the VAX Common Data Dictionary so
that you can use VAX DAT ATRIEVE to query the database and produce
reports and graphs.

• Security mechanisms let you control access to Rdb/VMS elements and data.

• Precompilers for VAX BASIC, VAX COBOL, VAX FORTRAN. and VAX
PASCAL let you include VAX Rdb/VMS statements in programs written in
any of these languages. For languages unsupported by precompilers.
Rdb/VMS provides an interpretive call interface.

• An interactive utility, the Relational Database Operator (RDO), lets you
maintain the database, create and modify definitions of database elements,
and store and manipulate data. When you type RDO statements. Rdb/VMS
executes those statements immediately.

See Chapter 3 for more information about VAX Rdb/VMS.

1.4.3 VAX DBMS

VAX DBMS is a sophisticated CODASYL-compliant database management sys
tem that lets many users simultaneously to retrieve and update data stored in the
same database files. Typically, VAX DBMS applications involve:

• High-volume retrieval and update

• Multi-user access to the same data

• Relatively stable applications using the data

Database management software provides efficient use of a computer's processing
abilities, but it requires careful planning and implementation.

An Overview of the VAX Information Architecture 1-15

VAX DBMS provides the following features:

• VAX DBMS creates CDD definitions for the logical definition of the
database, for application program views of this logical structure, and for the
physical structure of the database on mass storage media. These data defini
tions are, therefore, kept separate from application programs.

• Security provisions let you control access to VAX DBMS data by defining
the access privileges for applications using VAX DBMS databases.

• Many users can retrieve and update the database simultaneously.

• Before- and after-image journaling ensure that the accuracy and reliability of
the database is maintained in the event of user errors and hardware or soft
ware failures.

• A high-level call interface makes the data stored in VAX DBMS databases
available to VAX DATATRIEVE.

• The interactive database query utility (DBQ) provides data manipulation
capabilities (CONNECT, DISCONNECT, ERASE, FETCH, FIND, GET,
MODIFY, RECONNECT, and STORE) and simultaneous video display of
application views of the database.

• Programmers use the VAX DBMS data manipulation language (DML) to
access a database. DML is understood by the VAX COBOL language and is
available to FORTRAN programmers through FORTRAN/DML, a VAX
DBMS preprocessor to the VAX FORTRAN compiler. VAX DBMS also has
a precompiler that lets you insert DML statements into programs written in
the following languages:

VAX BASIC
VAX BLISS
VAX C
VAX DIBOL
VAX PASCAL
VAX PL/I

• The database operator facility (DBO) lets you manage your databases
through a command language that is easy to learn and simple to use.

Figure 1-7 shows a subschema as displayed by the DBQ utility.

1-16 An Overview of the VAX Information Architecture

tMli POSITION &llMI null

I~ II mm II __ c-.-las_s __.I I e.p l~ee
I

elass_part all-farts all_parts_aeti~'e
: :

dbci> COMMIT
dbc:i>

r--'-----1

I part I
~

Figure 1-7: VAX DBMS Subschema Display

;

!

n:::;, ... t irri'n
r~·~U ·7~.H - part-;.ir..f u

ZK-00063-00

You can convert most existing applications based on a CODASYL DBMS to VAX
DBMS with relatively little effort. The basic design of the application usually
need not change. You need only:

• Convert the schema, subschemas, and storage schema

• Convert the application programs

• Move the existing data with the VAX DBMS Load Utility

Conversion from nondatabase applications, however 1 involves a great deal of
effort in database and application design. This is a major part of the cost of
acquiring a DBMS package.

An Overview of the VAX Information Architecture 1-17

See Chapter 4 for more information about VAX DBMS.

1.4.4 VAX TOMS

VAX TDMS expands the traditional concept of forms management to include
control of all input and output. With VAX TDMS, a special data structure, called
a request, associates a form definition with a record definition. Within the
request, you can include instructions (for input and output. for checking value
ranges, and for testing whether possible conditions are true) that would otherwise
have to be included in applications programs. Request, form, and record defini
tions are all stored in the CDD.

You create VAX TDMS forms by designing them directly on your terminal
screen. You do not need complex charts as an intermediate step or a special forms
design language. With VAX TDMS. you can modify forms at any time without
having to make complicated changes to your program code, and you can change
your programs without having to modify your forms.

Typical VAX TDMS applications range from database inquiry and update to the
periodic display of the status of an industrial process. TDMS forms can be used to
help clerical personnel easily enter data at the terminal. You can also use TDMS
forms to provide menus for data entry or for the selection of different program
options in an application. Figure 1-8 is an example of a form produced by VAX
TDMS.

E M P L 0 Y E E

A D D

B A S I C

EMPLOYEE NO.:
NAME:

ADDRESS:
STREET:
CITY:
STATE:
ZIP:

TEL:

SE}(: BIRTH DATE:

Figure 1-8: AOO_EMPLOYEE_FORM: A Sample VAX TOMS Form

1-18 An Overview of the VAX Information Architecture

ZK-00064-00

The following sample request is part of a personnel administration application.
The request links fields from the form in Figure 1-8 to fields in a record definition
named PERS RECORD:

CREATE REQUEST ADD_EMPLOYEE_REQUEST
FORM IS ADD_EMPLOYEE_FORM;
RECORD IS PERS_RECORD;
USE FORM ADD_EMPLOYEE_FORM;
INPUT NUMBER TO PERS_NUMBER,

FIRST TO PERS_FIRST,
INITIAL TO PERS_INITIAL,
LAST TO PERS_LAST,
STREET TO PERS_STREET,
CITY TO PERS_CITY,
STATE TO PERS_STATE,
ZIP TO PERS_ZIP_CODE,
PHONE TO PERS_TELEPHONE,
SEX TO PERS_SEX,
BIRTH TO PERS_BIRTHDATE;

END DEFINITION;

Managing information with VAX TDMS provides three major advantages:

• Lower programming costs

Creating and storing definitions outside of application programs significantly
reduces programming and maintenance costs. Because form, record, and
request definitions are not written as part of the program, it is often possible
to revise your application without changing the application program.

• Data independence

With VAX TDMS, the application program is independent of the data input/
output process. The primary functions of the program are to call and execute
requests, provide access to the database that the application uses, and han
dle errors so that no data becomes corrupted. The applications programmer
does not need to be concerned with connecting the data to the forms or the
records, because this is done entirely by the request. In many applications,
VAX TDMS can reduce the number of programming statements and errors
in the application program.

As a result. you can view the program in a VAX TDMS application as a pro
cedure that executes a series of requests (or routines) and transfers data to
and from a database. The requests and form definitions are independent of
the program. so you can change them without significant programming
costs.

An Overview of the VAX Information Architecture 1-19

• Device independence

With VAX TDMS, you do not have to include information about particular
video terminal types in application programs. Terminal manipulation (such
as cursor control, scrolling, and video highlighting) is defined by the form
and the request and is wholly independent of the application program.

See Chapter 5 for more information about VAX TDMS.

1.4.5 VAX ACMS

VAX ACMS is an information management too] that lets you manage complex,
multi-user application systems. The typical VAX ACMS application involves
simultaneous access to a common database by many users with little or no com
puter experience. Applications well suited to VAX ACMS include hotel reserva
tion systems, personnel administration systems, and funds transfer systems.

With VAX ACMS~ you can create and modify application menus that make it
easy for users to select tasks. Figure 1-9 shows a typical ACMS menu.

A C M S

P E R S 0 N N E L A D M I N I S T R A T I 0 N M E N U

1 ADD T Add Ne1A1 Er11PlO}'ee Records
2 CHANGE T Chanse Er11PlO}'ee Profile
3 DISPLAY M Display E111PlO}'ee lnformatioh (0Ptions)
4 STATUS T Chan 9e Er11Pl0Yee Status
5 LABOR T Enter Labor Data
6 EDITOR T Edit Mer11os - SUPPlY Mer110 Na111e
7 MAIL T Internal Mail Ut i 1 it>'
8 DATR T Datatrie1.1e

Selection: -

ZK-00065-00

Figure 1-9: VAX ACMS Menu

1-20 An Overview of the VAX Information Architecture

Although ACMS supplies a default menu form, you can also use VAX TDMS to
design your own menu format and have ACMS use this format for the menus it
displays.

With VAX ACMS, you can also:

• Control which users can run which tasks in an application

• Keep track of the volume of tasks run and who runs them

• Keep records of the operations of the system and the resources used by an
application

• Add new tasks to an application or new users to a task

• Distribute an application's tasks across a DECnet computer network

You can use VAX ACMS to control applications developed with any of the VAX
languages or VAX Information Architecture tools.

For example, with VAX ACMS you can:

• Use VAX TDMS to exchange data between a terminal and predefined
workspaces

• Define control fields whose values can trigger error-handling routines

• Define processing steps to specify how data is manipulated

• Ready VAX DBMS su.bschemas to take advantage of journaling and
recovery

• Call subprograms written in VAX native-mode languages to retrieve, store,
or modify data in files or in VAX DBMS databases

An Overview of the VAX Information Architecture 1-21

Traditional programming requires that a task, such as adding a record to the
database, be coded in application programs. If the nature or order of the task
changes, programs must be completely rewritten. VAX ACMS provides
straightforward syntax that lets you define an individual task separately from
application programs and to store this definition in the CDD. VAX ACMS tasks
call:

•

•

VAX TDMS requests that handle terminal VO

Subprograms that control data transfer to VAX RMS files or VAX DBMS
databases

VAX ACMS applications are easier to create, easier to understand, and easier to
change than standard application programs.

In cases where you can break your tasks down into well-defined sequences of
steps, VAX ACMS reduces the quantity of system resources, including memory,
used by the task. This savings in memory allows a system running VAX ACMS
applications to support more terminals than would be possible if the system were
running traditional programs or VAX DAT ATRIEVE procedures. VAX ACMS
lets you create, control, and monitor complex multi-user applications.

1.4.6 VAX DATATRIEVE

VAX DAT A TRI EVE is a powerful query and application development language,
but it has many additional capabilities. With DAT ATRIEVE, you can:

• Store, update, and retrieve data interactively or with a program

• Generate attractive reports and graphs from data stored in VAX RMS files
or in VAX DBMS or VAX RdbNMS databases

• Retrieve data from other computers in a computer network as easily as you
can from your own computer

• Combine data from two or more files in defined user views or by using the
CROSS clause as part of a query or report

• Prototype and test new applications

• Store often-used sequences of statements in DAT A TRI EVE procedures

The central concept in DATATRIEVE data definition is the domain, which associ
ates the data in files with the appropriate record definitions. Three
DATATRIEVE commands--DEFINE DOMAIN, DEFINE RECORD, and
DEFINE FILE--create the CDD definitions you need to set up a working
DA TATRIEVE environment. With the DAT ATRIEVE STORE statement, you
can then insert data into the files you have defined.

1-22 An Overview of the VAX Information Architecture

With VAX DATATRIEVE, English-like syntax makes data retrieval and ad hoc
queries easy to learn and easy to use. VAX DATATRIEVE's record selection
expressions (RSEs) select the records you want from a domain. Sample RSEs
include:

EMPLOYEES WITH SALARY GREATER THAN 20000

ACCOUNTS WITH UNPAID_BALANCE GREATER TtlAN 600

DONORS WITH BLOODTYPE EQUAL O_NEG

Compound RSEs are allowed, and you can sort records within an RSE as well.
For example:

ACCOUNTS WITH UNPAID_BALANCE GREATER THAN 600 AND

DUE_DATE LESS THAN 9/1/82 SORTED BY DUE_DATE

Using RSEs with VAX DATATRIEVE statements like PRINT, REPORT, or
PLOT produces the information you need in the form in which you need it. For
example, the DATATRIEVE statement in Figure 1-10 prints all of the data in a
domain named ANNUAL REPORT.

An Overview of the VAX Information Architecture 1-23

PRINT ALL OF ANNUAL_REPORT SORTED BY DATE

NET
INCOME

EQUIPMENT NET PER
DATE SALES SERVICES REVENUE INCOME SHARE RESEARCH INVENTORIES EMPLOYE:

1971 133.0 13.8 146.8 10.6 0.3 16.7 44.4
1972 166.3 21.3 187.6 15.3 0.5 20.1 62.1
1973 229.1 36.4 265.5 23.5 0.7 25.0 102.7
1974 360.8 61.1 421.9 44.4 1.3 36.6 137.4
1975 433.2 100.6 533.8 46.0 1.3 48.5 174.8
1976 586.7 149.6 736.3 73.4 2.0 58.4 218.8
1977 847.5 211.1 1058.6 108.5 2.8 79.7 375.0
1978 1128. 1 308.5 1436.6 142.2 3.4 115. 7 428.1
1979 1381.8 422.3 1804.1 178.4 4.0 138.3 513.5
1980 1779.4 588.6 2368.0 249.9 5.4 186.4 819.9

Figure 1-10: Sample Output of the DATATRIEVE PRINT Command

You can create a revenue report (see Figure 1-11) with the following simple
REPORT statement:

DTR> REPORT ANNUAL_REPORT SORTED BY DATE
RW> PRINT DATE ("Year"), EQUIPMENT_SALES ("Equipment Sales"),
RW> SERVICES ("Services"),
RW> REVENUE ("Revenue")
RW> END_REPORT

Annual Report 10-Aug-1985
1971-1980 Page 1

Year Equipment Sales Services Revenue

1971 133;0 13.8 146.8
1972 166.3 21.3 187.6
1973 229.1 36.4 265.5
1974 360.8 61.1 421.9
1975 433.2 100.6 533.8
1976 586.7 149.6 736.3
1977 847.5 211.1 1058.6
1978 1128. 1 308.5 1436.6
1979 1381. 8 422.3 1804.1
1980 1779. 4 588.6 2368.0

Figure 1-11: A Sample Report From VAX DATATRIEVE

1-24 An Overview of the VAX Information Architecture

7,420
15,430
14,226
14,393
15,033
15,442
22,738
25,868
28,835
35, 117

To display the same information graphically on a VT125 or VT240 terminal, use
this PLOT statement:

PLOT MULTI_SHADE DATE, REVENUE ("Revenue"),

EQUIPMENT_SALES ("Equipment Sales"), SERVICES ("Services") OF

ANNUAL_REPORT SORTED BY DATE

PLOT CROSS HATCH lets you display shaded areas on a graphics printer, as
shown in Figure 1-12.

2500

2000

1500

Legend
.•••...•.•. ~REVENUE

- EQUIPHENT_SALES

........... - SERVICES

1000

0
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

MK-01335-00

Figure 1-12: A Sample Plot From VAX DATATRIEVE

An Overview of the VAX Information Architecture 1-25

Three important features make VAX DAT ATRIEVE easy to use, even if you have
little or no programming experience:

• Guide Mode helps you use DAT ATRIEVE to retrieve or update data by dis
playing appropriate options at each decision point.

• The Application Design Tool (ADT) simplifies the process of defining
domains. record structures, and files. ADT asks you a series of simple ques
tions and uses the responses to build the necessary data definitions.

• The VAX DATATRIEVE Editor lets you modify your data definitions easily.
In addition, the Editor lets you correct DAT ATRIEVE statements and com
mands that you have entered incorrectly. If the statement fails because of a
typing error or because of faulty logic, you do not have to retype the entire
statement. Instead. type EDIT, and DATATRIEVE displays the statement
ready for editing. After you make the changes and exit from the Editor,
DAT A TRI EVE executes the modified commands and statements.

See Chapter 7 for more information about VAX DAT ATRIEVE.

1-26 An Overview of the VAX Information Architecture

VAX COD 2

2.1 Overview of the VAX Common Data Dictionary

In traditional programming, each program has its own individual data files.
Within a program, the programmer defines all the records in the associated data
files. This style of programming leads to data redundancy and inconsistency. For
example, if ten different programs use the same record, that record definition is
likely to appear in all ten programs. Because different programmers may choose
to define the same record in different ways, these record definitions soon become
inconsistent. Further, if the record definition changes, the source code for all
ten programs must also change. If the source code does not change to match
the changed definition, the data stored by the separate programs becomes
inconsistent.

You can combat the inconsistency resulting from unrestricted use of similar
record definitions by using a data dictionary. A data dictionary is a central
repository for data definitions. It can:

• Store data definitions

• Keep information about the location of each definition

• Provide a method of access to each definition

• Keep track of what happens to each definition

The VAX Common Data Dictionary (CDD) is a central repository for data
descriptions and definitions that can be shared by VAX languages and VAX

2-1

Information Architecture products. Using the CDD, a data administrator can:

• Create shareable definitions in a data definition language understood by
many VAX programming language compilers and VAX Information
Architecture products

• Store those definitions in the CDD database

• Modify those definitions in the dictionary without editing the programs and
procedures that use the definitions

• Document the creation and use of the definitions in the dictionary

• Specify user access to individual definitions, based on thirteen separate
access privileges and four user identification criteria

Programmers and other CDD users can:

• Copy definitions from the dictionary into programs at compile time

• Use VAX Information Architecture products to create CDD definitions
automatically

• Document the use of a definition by making an entry in the definition's
history list

• Maintain an area of the dictionary that contains data definitions for their
private use

The CDD plays a crucial role in the VAX Information Architecture because it
stores the data definitions used by VAX Information Architecture products,
including:

• VAX ACMS application, menu, task group, and task definitions

• VAX DAT ATRIEVE domain, plot, record, table, and view definitions, and
procedures

• VAX DBMS record definitions, schemas, subschemas, security schemas, and
storage schemas

• VAX Rdb/VMS relation, constraint, index, view. and field definitions

• VAX TDMS form. request, and request library definitions

VAX programming languages can access CDD record definitions at compile time.

2-2 VAX COD

The VAX languages that can use the CDD are:

VAX COBOL Version 2.0 and later

VAX BASIC Version 2.0 and later

VAX PL/I Version 2.0 and later

VAX DIBOL Version 2.0 and later

VAX C Version 2.0 and later

VAX FORTRAN Version 4.0 and later

VAX PASCAL Version 3.0 and later

VAX RPGII Version 2.0 and later

In many cases, the same CDD record definition can be used unaltered by pro
grams written in any of these VAX languages. Your definition can also specify
special characteristics of a particular language compiler without affecting other
compilers' use of the same definition.

2.2 Dictionary Organization

The CDD is organized as a hierarchy of dictionary directories and dictionary
objects. Dictionary directories are similar to VMS directories: they organize infor
mation within the hierarchy. Dictionary objects, located at the ends of the
branches in the hierarchy, are like the files in a VMS directory: they contain the
data definitions stored in the dictionary. These definitions include:

• Record descriptions that can be copied into application programs

• Definitions required by VAX Information Architecture products

The CDD's hierarchical structure is like a family tree. Dictionary directories are
the parents. and their children include other directories and dictionary objects.
Figure 2-1 illustrates the hierarchical structure of the CDD.

VAX COD 2-3

CDD$TOP

CORPORATE PERSONNEL SALES

HISTORY SALARY-RECORD ORDER-RECORD

JOBS_RECORD

MK-00680-01

Figure 2-1: COD Directory Hierarchy

The easiest way to understand the organization of the COD is to look at the sam
ple dictionary illustrated in Figure 2-2. It demonstrates the relationships that can
exist between dictionary directories and objects. The sample dictionary is
installed on your system as part of the COD installation procedure; all the exam
ples in the VAX COD documentation set are drawn from this sample dictionary
and its associated data definitions.

The numbers in Figure 2-2 correspond to the numbered explanations in the list
following the figure.

2-4 VAX COD

~
()
0
0

I\.)

cJ,

ADDRESS_
RECORD; 1

CORPORATE

EMPLOYEE_
UST; 1

PRODUCT_
INVENTORY; 1

SALARY_
RECORD; 1

Figure 2-2: Sample Dictionary

~___.....,©
CDD$TOP

~---------.® ______....~
SERVICE

.---~---.,© .---~---.,
SALARY_
RECORD; 2

SALARY_
RANGE; 1

PRODUCTION

SALARY_
RANGE; 2

CUSTOMER_
RECORD; 1

.---~---.®
SALES

JONES

LEADS
RECORD; 1

SALES_
RECORD; 1

MK-01575-00

1. All directories and objects are descendants of CDD$TOP, the root diction
ary directory. CDD$TOP is found at the top of the directory hierarchy and
is created as part of the CDD installation procedure.

2. CORPORATE, PERSONNEL, PRODUCTION, and SALES are directories
under CDD$TOP.

3. SERVICE and STANDARDS are directories under PERSONNEL.
Similarly. JONES is a directory under the directory SALES. You can have
any number of levels of directories under CDD$TOP.

4. SALARY RECORD;2 is a dictionary object. It contains a record definition
available to programs and information management products. Other dic
tionary objects. in the sample dictionary are ADDRESS RECORD;l,
EMPLOYEE LIST:l, PRODUCT INVENTORY;l, SALARY RECORD;l,
SALARY RANGE;l, SALARY RANGE;2, CUSTOMER RECORD;l
SALES_RECORD;l. and LEADS_RECORD;l. -

5. It is possible to have multiple versions of the same dictionary object.
SALARY RECORD:l is an earlier version of SALARY RECORD;2.
SALARY-RANGE;l is an earlier version of SALARY RANGE;2. Unlike
VMS, however, the CDD does not create multiple versions of a record by
default. For a more detailed explanation of multiple versions of dictionary
objects, see The VAX Common Data Dictionary User's Guide.

Because the CDD is a directory hierarchy, different users can organize their por
tions of the dictionary according to their needs. This structure allows flexibility on
several levels:

• Organizational

Once the CDD is installed, each organizational unit can be assigned an inde
pendent portion of the dictionary. Each unit can use its portion of the dic
tionary without interference from the others.

• Departmental

Different departments within organizations require shared access to some
portions of the dictionary and independent access to others. The hierarchical
structure of the CDD allows shared access.

2-6 VAX COD

Individual

Individuals can organize their own directories independently of other users,
thus controlling access to sensitive material within their portions of the
dictionary.

In the sample dictionary, for instance, the personnel, production, and sales
departments all have separate portions of the dictionary. None has access to the
data descriptions stored in the dictionary directories assigned to the others.
However, they can all share the record definitions and documentary information
stored in the CORPORATE directory.

Similarly, the definition stored in SALARY RANGE:2 should be available
throughout the whole personnel department, but not every section within the
department needs access to the SALARY RECORD;2 definition. The personnel
department has solved this security problem by storing these record definitions in
different directories with different access restrictions.

Finally, the CDD hierarchy allows users on the lowest levels to tailor the diction
ary to their individual needs. Jones is a supervisor in the sales department and so
has access to the department's record definitions and data descriptions. In addi
tion. she has been assigned the directory JONES for her own use, and in it she
has stored LEADS_ RECORD; 1, a record definition for data identifying potential
customers.

To reach a target directory or object, you travel down.a path from CDD$TOP
to the target. You specify the path name of a target by entering the names of all
the directories, starting with CDD$TOP and ending with the name of the target.
You separate each name in the path name from the others by a period. Thus,
CDD$TOP.PERSONNEL.STANDARDS.SALARY RANGE:2, is the full path
name of SALARY RANGE;2 and CDD$TOP.SALES.JONES is the full path
name of the directory JONES.

You can also use shorter forms of the path name. called relative path names and
given names, to specify a directory or object. For more information about these
forms of the path name, see the VAX CDD User's Guide.

VAX COD 2-7

2.3 COD Features

Users of a data dictionary must be able to perform such essential tasks as:

• Creating and storing data definitions

• Controlling access to definitions

• Assessing the impact of changing data definitions

• Modifying existing definitions

• Locating the correct definition for an application program

• Copying the definition into application programs

• Maintaining the dictionary files

For more complete descriptions of these features, see the manuals in the CDD
documentation, particularly the VAX Common Data Dictionary User's Guide.

2.3.1 Creating and Storing Data Definitions

The CDD Data Definition Language Utility (CDDL} provides a generic language
that lets you define records for use by many VAX programming languages and by
VAX Information Architecture products. CDDL also allows you to update these
CDD record definitions.

Note that the CDD accepts definitions from all VAX Information Architecture
products; however, these definitions are inserted into the CDD through the prod
ucts' definition utilities instead of through CDDL.

To create a CDDL record definition and insert it into the dictionary, you:

• Create a CDDL source file using VAX EDT or some other text editor

• Submit the source file to the CDDL compiler, which inserts the record defi
nition into the dictionary if the source file compiles without error

Figure 2-3 is a listing of EMPLOYEE.DDL, a typical CDDL source file.

2-8 VAX CDD

DEFINE RECORD CDD$TOP.CORPORATE.EMPLOYEE_LIST

DESCRIPTION IS

/* This record contains the master list of all
employees */.

EMPLOYEE STRUCTURE.

/* An employee's ID number is his
or her social security number */

ID

NAME STRUCTURE.

LAST_NAME

FIRST_NAME

DATATYPE IS UNSIGNED NUMERIC
SIZE IS 9 DIGITS.

DATATYPE IS TEXT
SIZE IS 15 CHARACTERS.

DATATYPE IS TEXT
SIZE IS 10 CHARACTERS.

MIDDLE_INITIAL DATATYPE IS TEXT
SIZE IS 1 CHARACTER.

END NAME STRUCTURE.

ADDRESS COPY FROM
CDD$TOP.CORPORATE.ADDRESS_RECORD.

DEPT_CODE

END EMPLOYEE STRUCTURE.

END EMPLOYEE_LIST RECORD.

DATATYPE IS UNSIGNED NUMERIC
SIZE IS 3 DIGITS.

Figure 2-3: Listing of EMPLOYEE.DDL

The DEFINE statement names the record definition. The name you enter is the
path name of the definition. The last name of the path name (in the example,
EMPLOYEE LIST) is called the given name of the definition; the rest of the path
name is the path of directories to that object. Thus, you can name an object and
specify its place in the dictionary in one step.

The DESCRIPTION statement documents a record definition. You can enter a
DESCRIPTION statement to explain the entire record definition and any individ
ual field in the record. EMPLOYEE.DDL contains an example of each type.

Field description statements describe the field characteristics of a record. They
include the names and data types of the fields, as well as other information.

VAX CDD 2-9

CDDL supports four different kinds of field statements:

• Elementary field description statements describe fields that are not divided
into other fields. The ID field in EMPLOYEE.DDL is an example of an ele
mentary field description statement.

• STRUCTURE field description statements describe fields that are divided
into one or more subordinate fields. EMPLOYEE STRUCTURE is a
STRUCTURE field description statement that includes all the other fields in
EMPLOYEE.DDL as subordinate fields.

• COPY field description statements copy the contents of an existing record
definition into a new record definition. The ADDRESS field of
EMPLOYEE.DDL is an example of a COPY field description statement.
When CDDL compiles EMPLOYEE.DDL, it copies the contents of another
definition in the dictionary, called a template record. into the ADDRESS
field. In Figure 2-3, the template record is
CDD$TOP.CORPORATE.ADDRESS RECORD. Thus, certain commonly
used fields are defined in the same way in every record definition that uses
them.

• VARIANTS field description statements provide alternative descriptions for
the same portion of a record. VARIANTS are similar to the REDEFINES
clause in VAX COBOL and VAX DATATRIEVE.

Field attribute clauses describe characteristics of the fields in a record. There are
two types of field attribute clauses: general and facility-specific. General field
attributes describe the storage of data definitions in the CDD. All language pro
cessors that use the CDD recognize these attributes. DATATYPE is an example
of a general field attribute.

Facility-specific field attributes describe characteristics of a data definition that
affect how a particular compiler or product uses it. Other languages and products
that do not support an attribute ignore its facility-specific attribute clause. Thus,
you can tailor a characteristic of a record definition to a particular language or
product without making the definition unacceptable to others. For example, the
following field definition contains a facility-specific attribute clause, BLANK
WHEN ZERO. that is useful only to VAX COBOL:

ZIP_CODE STRUCTURE.

NEW

OLD

END ZIP_CODE STRUCTURE.

2-10 VAX CDD

DATATYPE IS UNSIGNED NUMERIC
SIZE IS 4 DIGITS
BLANK WHEN ZERO.

DATATYPE IS UNSIGNED NUMERIC
SIZE IS 5 DIGITS.

When other compilers and products (like VAX PL/I or VAX DATATRIEVE)
encounter this field definition, they ignore the BLANK WHEN ZERO clause.

You can find the source file containing every record definition in the sample dic
tionary in Appendix A of the VAX Co1nmon Data Dictionary Data Definition
Language Ref ere nee Manual.

2.3.2 Controlling Access to Data Definitions

A major goal of a data dictionary is to let users share data definitions: however,
you may want to keep some definitions confidential, and you certainly need to
limit the number of people who can enter, change, or delete definitions in the dic
tionary. The CDD provides security mechanisms to protect the dictionary against
browsing or modification by unauthorized users.

You control access to any dictionary directory or object through an access control
list (ACL). When a user wants access to a particular directory or object. the CDD
checks the item's access control list to determine that user's privileges.

The CDD also provides the Dictionary Management Utility (DMU) to create and
manage the dictionary structure: it lets you copy, rename, and back up portions of
the dictionary, to restore backed-up portions, to display the contents of the dic
tionary, and to document dictionary use. DMU also has commands that can grant
or deny privileges to users.

2.3.3 Subdictionaries

The CDD installation procedure creates a file called CDD.DIC that can contain
your entire dictionary. However, you can also create other dictionary files to hold
portions of your dictionary. If you do so, DMU creates a directory in CDD.DIC
that points to a separate dictionary file with the name you specify. The directory
that points to that separate file is called a subdictionary directory or
subdictionary.

A subdictionary file can be stored anywhere; it need not be stored on the same
disk as CDD.DIC and it need not be accessible when other portions of the diction
ary are in use.

Except for its physical location, a subdictionary is just like any other directory. A
subdictionary is part of the same dictionary hierarchy and performs the same
functions as dictionary directories. Most CDD users notice no difference between
using a dictionary directory and using a subdictionary. Although they are part of a
single dictionary, subdictionaries provide you with the benefits of having multiple
dictionaries on a system.

VAX COD 2-11

Subdictionaries can be very helpful in certain situations:

• You can store sensitive material off line when it is not being used. For exam
ple, the record definitions used by the personnel department may be sensi
tive, so the data administrator can create a PERSONNEL subdictionary
directory that is stored on a separate disk.

• Creating subdictionaries lets you use VMS file protection to control access to
different dictionary files. The CDD has a protection system that lets you
control access to individual directories and objects in the dictionary. This
system protects you when you are using the CDD utilities, but it does not
protect the dictionary file. VMS file protection provides another layer of pro
tection to augment CDD access control lists.

• You can use one dictionary to serve several disti.nct organizations. as in a
time-sharing system. Each organization can have its own subdictionary on
its own disk. You can charge each organization for the amount of dictionary
space its data descriptions use.

For more information about subdictionaries, see the VAX Conunon Data
Dictionary User's Guide.

2.3.4 Tracking Changes to the COD

The CDD gives you the capability of documenting the use of dictionary objects.
For example, before modifying a record definition, the data administrator needs
to know which other definitions are affected and which programs and procedures
need to be changed as a result. Programmers using the dictionary also need to
know at a glance the purpose and the contents of a definition they are considering
copying into an application.

The CDD's history list feature lets you document and monitor the use of each dic
tionary directory, subdictionary, and object. This list of operations makes up an
audit trail for each dictionary element. A history list entry contains information
about an operation, including the action taken, the person responsible, the facility
used, and the date and time. You can create an entry in a history list for a direc
tory, subdictionary, or object when you:

• Create or modify a directory, subdictionary, or object

• Modify an access control list

• Copy a directory. subdictionary. or object to another part of the
dictionary

2-12 VAX COD

• Access an object from a VAX programming language or a VAX Information
Architecture product

For CDDL, DMU, and most of the languages and products that use the CDD, you
use the /AUDIT qualifier to create a history list entry. You can add your own text
to the information automatically stored in a history list entry.

These entries are a valuable aid to the person responsible for managing the dic
tionary. If history lists are maintained, the data administrator can assess the
impact of changing a record definition or other dictionary object. For example, if a
user wanted to change a record definition
CDD$TOP.CORPORATE.ADDRESS RECORD, she could first look at the his
tory list for that definition and see whfoh other record definitions and which appli
cation programs use it. If the definition changes, the history list shows which
application programs and other definitions must also change.

2.3.5 Modifying Data Definitions

The information needs of organizations change, so it is often necessary to change
data definitions as well. With CDDL, you can either:

• Replace an existing record definition with a new one without losing the exist
ing access control list and history list

• Create a new version of a record definition, keep the old version as a backup,
and copy the access control list and history list to the new version

CDDL/REPLACE replaces an existing record definition with a new one. All you
need to do is:

• Create a new CDDL source file that contains the path name of the record
definition you want to replace

• Compile the new source file with the command CDDL/REPLACE

The CDDL compiler processes the new source file and:

• Removes the original definition and replaces it with the new version

• Keeps the original access control list and history list

• Creates a new history list entry documenting the change

If you want to keep the old version as a backup. you can use the same source file
with the /VERSION qualifier to the CDDL command instead of /REPLACE.

VAX CDD 2-13

In this case, CDDL:

• Creates an additional new version of the record definition with a version
number one higher than the current version

• Copies the access control list and history list of the old definition to the new
version

• Creates a new entry in the new version's history list documenting the change

When you are confident of the success of the new record definition, you can
remove any backup versions of it with the DMU PURGE command.

The /RECOMPILE qualifier is useful if you have modified a template record.
Once you have examined the history list and determined which record definitions
use a template record, you need only name the record definitions in the
CDDL/RECOMPILE command. CDDL then recompiles them with the informa
tion in the modified template record. The /RECOMPILE qualifier deletes the old
definition by default. If you want to save the old definition, you can use the
/VERSION qualifier with /RECOMPILE.

2.3.6 Locating the Correct Data Definition

Programmers who want to copy record definitions need some way to find the defi
nition they want. Using meaningful names for definitions is helpful. but even so,
several definitions often have similar names. The CDD provides two methods for
programmers to check the purpose and contents of a record definition:

• You can read explanatory text that was inserted into the CDD as part of the
record definition source file. This text is always available to inform users of
the purpose of that record definition. ·

• Alternatively, you can use the DMU LIST command with the
/ITEM=SOURCE qualifier to see the source code for the record definition.

2.3.7 Copying the Definition into Application Programs

Once a programmer finds the desired definition, it can be easily included in the
program at compile time. For example, in a VAX COBOL program. you use
COBOL's COPY statement in the Data Division section of the program.

The COBOL compiler retrieves the definition from the CDD and compiles it as
COBOL object code. If you use the /AUDIT qualifier when you compile the pro
gram, the COBOL compiler also makes an entry in the history list of the record
definition to document the transaction.

The other VAX programming languages that use CDD record definitions work in
a similar manner.

2-14 VAX COD

2.3.8 Maintaining the Dictionary

Dictionary files, like any other files, can become corrupted by hardware failures or
other causes. The CDD Verify/Fix Utility (CDDV) lets you check the condition of
your dictionary and subdictionary files and to repair them if they have been cor
rupted.

If disk space is a problem, CDDV also lets you compress dictionary and
subdictionary files, returning free space to the operating system for use by other
files.

No one can use a dictionary or subdictionary file while you are using CDDV on it,
but users can work in the main dictionary file and other subdictionary files while
you use CDDV on one subdictionary file. Only a user with VMS SYSPRV or
BYPASS privilege can use CDDV in the root dictionary file, but users who own
subdictionaries can use CDDV on any subdictionary file they own.

VAX CDD 2-15

VAX Rdb/VMS 3

3.1 Overview of VAX Rdb/VMS

VAX Rdb/VMS is a relational database management system for VAX computers
that use the VMS operating system. RdbNMS gives you the advantages of a full
featured database management system, including data security, integrity, and
optimized access. Because Rdb/VMS uses the relational model of data storage. an
Rdb/VMS database is flexible and easy to use. The relational model offers several
advantages over other data models:

• The structure of the database is easy to understand and easy to explain to
users.

• The database lets you combine and compare data in a wide variety of ways.
You can define relationships between data dynamically.

• A programmer or analyst can create, modify, and maintain the database.

VAX Rdb/VMS lets you access the data in the database in several ways:

• Through VAX DATATRIEVE, DIGITAL's query and reporting language

• Through application programs

• Through RDO. a simple terminal interface language similar to
DATATRIEVE

3.1.1 VAX Rdb/VMS as a Database Management System

VAX Rdb/VMS provides the features associated with a database management

3-1

system:

• Data independence and consistency

You can remove data definitions from application programs and store them
with the data. Because RdbNMS reduces the storing of redundant data, it
helps ensure that updates do not result in inconsistent data. RdbNMS also
lets you centralize the management of data definitions, both within the
database file and within the VAX Common Data Dictionary. You can use
views to bring together data stored in separate relations in the database.

• Interactive, multi-user environment

More than one user can have access to the data at the same time. yet each
user can work from a customized view that may include only a subset of the
entire database. RdbNMS also ensures that one user's operations on the
database do not lead to inaccurate results for other users.

• Data integrity and security

Rdb/VMS maintains the integrity of the database in the event of user errors.
hardware or software failures, and concurrent use of the database.
Furthermore, the RdbNMS security mechanism prevents access to data by
unauthorized users.

• Centralized administration

A single user can handle the responsibilities of administering the database.
This centralization of database administration tasks helps ensure the consis
tency of the database. The person responsible for managing the database
uses a set of simple commands that make database maintenance and control
easy.

3.1.2 When and Where to Use VAX Rdb/VMS

The choice of a data management product depends on many factors, including the
size, number, and complexity of the data files involved, the capacity of the sys
tem, the number of concurrent users, and the types of operations users perform.
The most important consideration is the suitability of the data model for the par
ticular application. Some applications, especially those that involve complex rela
tionships and large amounts of data, run best with a CODASYL-style system
such as VAX DBMS.

3-2 VAX Rdb/VMS

In general, VAX Rdb/VMS is intended for use in applications that meet the fol
lowing criteria:

• The database structure needs to be comprehensible to nonprofessionals.

VAX Rdb/VMS uses the relational data model. which organizes data into
tables called relations. Because people often see data represented in tables,
even users without knowledge of database management systems can under.;
stand the organization of the data in a relational system. If people without
professional knowledge of database management will use your database fre
quently. Rdb/VMS may be the logical choice.

• The structure of the database changes frequently.

Rdb/VMS permits easy. interactive restructuring. As the needs of your orga
nization change, you can add indexes. fields, and relations to the database.
Similarly, you can delete outdated information. You can also build prototype
systems to test the structure of your database without committing extensive
resources to the effort.

• The system must provide a high degree of data independence.

VAX Rdb/VMS bases relationships between data on the values stored in the
database, not on predefined data structures. For this reason, your database
query can dynamically define or redefine relationships between data.

• The database administrator's job is much easier.

The database designer can translate a logical database design into a working
database with a simple set of statements, entered interactively at the termi
nal or in a command file. If and when you need to restructure the database,
you can do so with virtually no inconvenience to database users.

Because the relational model is easy to understand, Rdb/VMS is useful for quick
implementation of simple applications. However, Rdb/VMS is also sophisticated
enough to handle even complex database applications efficiently.

3.2 The Relational Model

In a relational database, data resides in tables known as relations. A relation con
sists of rows and columns. Where a row and column intersect, you can store no
more than one data item. The following sections explain these concepts.

VAX Rdb/VMS 3-3

3.2.1 Relations

You have probably seen data presented in tabular form many times. A table con
sists of a set of rows and columns. The columns, which usually have names, divide
each row into a set of fields. For a single field in a row, there can be only one piece
of data. The absence of repeating groups and group fields simplifies the structure
of the database and allows easy access to each data item.

Figure 3-1 is a representation of a typical Rdb/VMS relation that shows employee
information.

Relation -->-Employees

FIRST_NAME LAST_NAME

JaMes Adkins
Louie AMes
Ann Andriola
Jo Ann Au!tusta
Jose Ph Babbin
Beverly Barradas
Dean. Bartlett
Paul Bellivea
Nanc>· Bennett

Record-> Nancy B ro•,,rn

Figure 3-1: A Relational Table

BIRTH_DATE

11-MAR-1832
13-APR-18£11
25-JAN-1880
30-MAY-1880
12-DEC-1827

8-JUN-1852
5-MAR-1827
8-MAY-1855

lll-FEB-1855

7-0CT-18£12

Field

~
SOCIAL_SECURITY

81050818£1
330580812
73830588£1
7038l15lll10
32801822£1
358251008
288212808
087822218
0£18883280

8185£17888

In this relation, each field represents an item of data for each employee. Each
record represents the data for a single employee. To find the data stored in any
location of the relation. you need only name the relation and specify the intersec
tion of field and record.

To find Nancy Brown's social security number. for example. ask Rdb/VMS the
question like this:

FOR E IN EMPLOYEES WITH E.LAST_NAME "Brown" AND
E.FIRST_NAME = "Nancy"

PRINT
E.FIRST_NAME,
E.LAST_NAME,
E.SOCIAL_SECURITY

END_FOR

3-4 VAX Rdb/VMS

To find the answer, RdbNMS:

• Finds the record in EMPLOYEES in which the LAST NAME field is occu
pied by the name "Brown" and the FIRST_ NAME field is occupied by the
name "Nancy"

• Finds the intersection of that record and the SOCIAL SECURITY field

• Displays on the terminal screen the contents of the three fields named in the
statement

E IN EMPLOYEES declares a context variable. This variable lets you refer to the
EMPLOYEES relation unambiguously within the PRINT statement. The result
of the present query is:

Nancy Brown 818547968

The concept of the relation distinguishes the relational model from the two other
most frequently used database models: hierarchical and network.

A hierarchical database organizes the relationships between record types in a tree
structure. It stores related records on the same branch of the tree to make data
retrieval efficient.

A network database uses sets to establish relationships between records. A single
record can participate in any number of sets, so you can relate it to any other
record in the database, not only to those above and below it in a hierarchy. This
arrangement allows flexibility in setting up data relationships to match the needs
of the organization.

Both the hierarchical and network models assume that you know how data is
related. Relationships are preestablished and difficult to change once the database
is in use. In contrast, you can define relationships dynamically in a relational
database by relating a field in one relation with a field in another. Thus a rela
tional database gives greater flexibility in setting up relationships and allows for
easier restructuring than either of the other two models. On the other hand,
because relationships are not part of the database's physical definition, data
retrieval may be slower in complex or very large applications.

3.2.2 Normalization

If you think for a moment about the EMPLOYEES relation discussed previously,
you can imagine many other kinds of information to store there. For example, you
might want to keep track of the job history of the employee, including all previous
jobs and their starting and ending dates. However. there is no way to represent
repeating groups in an Rdb/VMS relation; only one data item can occupy an inter
section. Therefore, to store information about five previous jobs for an employee,

VAX Rdb/VMS 3-5

you would also have to repeat the name, address, identification number, and other
employee information five times. Then there would no longer be a one-to-one cor
respondence between records in the relation and employees in the company.

You might also want to include in the EMPLOYEES relation information about
each job an employee has held, such as the salary range associated with that job.
If you store job information in the EMPLOYEES relation, however, you would
have to store information about a particular job category many times, once for
each employee who held that job.

Storing all the information that might be relevant to employees in one relation,
then. leads to a great deal of redundancy -- the same data stored in more than one
place. Redundancy of data has two disadvantages:

• It wastes space in the database.

• It makes updating information difficult. If you store the salary range for a
particular job code with each employee in the EMPLOYEES relation, you
must find and change all the occurrences whenever the salary ranges change.
If you miss some, the database is no longer consistent.

A process known as normalization solves these two problems. Normalization
ensures that the database keeps separate concepts physically separate. Thus you
store a data item only once, and you need to perform only one update operation to
change it. When you need to bring data together from different relations -- when
you want an employee's job history, for instance -- the database lets you create
temporary relationships by joining relations together. VAX RdbNMS works best
with well-designed, normalized databases. To learn more about the process of nor
malization, see the VAX RdbNMS Guide to Database Design and Definition.

The next section describes the relational join and other operations characteristic
of a relational database.

3.2.3 Relational Operations

The main advantage of a relational database is the ease with which you can
retrieve precisely the information you want, even if you must gather the informa
tion from data stored in several relations.

3.2.3.1 Joining Relations -- Once you have normalized your data. data items
that are not directly related to each other may be separated into different rela
tions. To establish relationships between such data items, you need to bring those
separate relations together with a join operation. The relational join selects a
record from one relation, associates it with a record from another relation, and
presents them as though they were part of a single record. The join is sometimes
referred to as a cross operation.

3-6 VAX Rdb/VMS

The simplest form of join is called a cross product. The cross product associates
each record in one relation with each record in another relation. This kind of join
retrieves all the records in both relations, repeated many times, which is usually
far more data than you need.

A more useful type of join involves matching values in a field from one relation
with those in a corresponding field in another relation. This is sometimes called
an equijoin. For instance, two relations may contain a field described as a five
digit employee identification number. You can combine data from these two
relations by matching the values in the common field. This type of join lets you
establish relationships between data items in your database. If you have set up
the database correctly, you can relate an item in any relation with items in any
other relation.

For example, a second relation in the PERSONNEL database might contain
information about the departments in the corporation. This second relation has
three fields, DEPARTMENT CODE. DEPARTMENT NAME, and
MANAGER ID: - -

RDO>
cont>
cont>
cont>
cont>

ADMN
ELEL
ELGS
ELMC
ENG
MBMF
MBMN
MBMS
MCBM

FOR D IN DEPARTMENTS
PRINT D.DEPARTMENT_CODE,

D.DEPARTMENT_NAME,
D.MANAGER_ID

END_FOR

Corporate Administration
Electronics Engineering
Large Systems Engineering
Mechanical Engineering
Engineering
Board Manufacturing
Board Manufacturing North
Board Manufacturing South
Cabinet & Frame Manufacturing

00225
00397
00369
00215
00435
00287
00248
00341
00405

Assume that you want a report that includes the names of the employees and the
names of the departments in which they work. The department name is in the
DEPARTMENTS relation and the employee's name is in the EMPLOYEES rela
tion. To complete the report, you must take each EMPLOYEES record, find the
corresponding DEPARTMENTS record by matching the values in the two
DEPARTMENT CODE fields, and attach the two records. This join associates
each employee with the name of a department. To create this kind of report, you
name the two relations and the common field; RdbNMS does the rest. The result
looks like a single record; the common field. DEPARTMENT CODE, appears
only once. -

Figure 3-2 illustrates a join operation.

VAX Rdb/VMS 3-7

EMPLOYEES CROSS FOR E IN
D IN
PRINT

DEPARTMENTS OVER DEPARTMENT _CODE
E.LAST _NAME,
E.FIRST _NAME,
E.DEPARTMENT _CODE,
D.DEPARTMENT _NAME

END-FOR

EMPLOYEES

LAST FIRST DEPARTMENT
NAME NAME CODE

Toliver George ENG
Blanchett Paul MKTG
Decker Christine MKTG
Dallas Paul MNFG

r

LAST FIRST DEPARTMENT DEPARTMENT
NAME NAME CODE CODE

Toliver George ENG oE >ENG
Blanchett Paul MKTG • > MKTG
Decker Christine MKTG lllE > MKTG
Dallas Paul MNFG oE > MNFG

I DEPARTMENT
New "records" combine CODE
EMPLOYEES and DEPARTMENTS
information.

ENG
MKTG
MNFG
PERS
ADMN
SALE

DEPARTMENT
NAME

Engineering
Marketing
Marketing
Manufacturing

,

DEPARTMENT
NAME

Engineering
Marketing
Manufacturing
Personnel
Administration
Sales

DEPARTMENTS

MK-H00218-U

Figure 3-2: A Relational Join Operation

3-8 VAX Rdb/VMS

Joining two relations by matching values in a common field is the most frequent
kind of join operation. However, you can also join relations using inequalities. For
example, if you want to print the names of all employees whose salary exceeds
the maximum for their job categories, the RdbNMS statement looks like this:

RDO> FOR E IN EMPLOYEES
cont> J IN JOBS OVER JOB_CODE
cont> WITH E.SALARY_AMOUNT > J.MAXIMUM_SALARY
cont> PRINT
cont> E.LAST_NAME,
cont> J.JOB_CODE,
cont> J.MAXIMUM_SALARY,
cont> E.SALARY_AMOUNT
cont> END_FOR

The CROSS clause and the WITH clause set up two conditions for the join:

• The CROSS clause sets up the match between the EMPLOYEES relation
and the JOBS relation. This cross associates each employee with the infor
mation on his or her current job.

• The WITH clause filters out all those records where the employee's salary
falls within the prescribed range for the job.

3.2.3.2 Selecting Fields and Records -- In most cases, you do not want to
retrieve all the records in a relation. You use a record selection expression (RSE)
to select only the records you want.

An RSE is a clause in a data manipulation statement that names a set of condi
tions. An example of an RSE is the WITH clause in the previous example. When
the statement containing the RSE executes, it creates a record stream made up
of those records from the relation that satisfy the conditions set up by the RSE.
That is, the RSE filters out everything but the records that contain the informa
tion you want to see. The RSE is at the heart of VAX RdbNMS because it lets
you limit the record stream in many ways.

For a more detailed discussion of RSEs. see the VAX Rdb/VMS Guide to Data
Manipulation.

3.2.3.3 Reducing Data to Unique Values -- A relational database lets you iso
late unique values for a field. That is, you can establish a record stream that con
sists of all the records that contain a given value for a single field. with the
repeated values removed.

VAX Rdb/VMS 3-9

For example, the EMPLOYEES relation contains a field for the supervisor's
identification number. Assume that you want to compile a list of supervisors.
The REDUCED TO clause lets you make a list that includes the values in the
SUPERVISOR ID field, listing each supervisor once. The clause filters out rep
etition of the supervisor ID numbers.

This process is sometimes called the project operation. In Rdb/VMS, the
REDUCED TO clause performs the operation. It reduces the record stream to
unique values of the specified field.

Once you have reduced a field to its unique values, you can combine the project
and join operations to group records. You can also perform statistical functions on
the groups of records you isolate.

3.2.4 Creating Views

You can create a logical structure that consists of a subset of records and fields
from one or more relations in the database. To the user, this view looks exactly
like a relation, even though no data is actually stored in a view.

A view can include any combination of fields and records from a single relation or
from different relations. Views are most useful for making the result of a selection
or join look like a relation. Normalized data is often separated into many relations
and must be joined together to be useful. Once you have determined how to pull
together information from multiple relations with a join operation, you can define
a view to include that join. When users refer to the view by name, the join
executes automatically. You can then display and manipulate information from
multiple relations (with some restrictions) as though the relations were one.

3.3 Additional Features of VAX Rdb/VMS

In addition to the various features of a database management system and the
simplicity of the relational model. VAX Rdb/VMS also provides many features to
make the system easy to learn and easy to use. These features are included in the
main interfaces to Rdb/VMS, the RDO utility and the program interfaces.

3.3.1 RDO, the Interactive Rdb/VMS Utility

VAX Rdb/VMS provides the Relational Database Operator IRDO), a single inter
active environment for maintaining the database, creating and modifying defini
tions of database elements, and storing and manipulating data. When you enter
RDO statements, Rdb/VMS executes those statements immediately.

3-10 VAX Rdb/VMS

RDO includes several types of statements:

• Statements for defining database elements

The data definition statements of RDO (DEFINE, CHANGE, and DELETE)
describe the entities of the database. You can define an entire database in
one RDO session, including all the fields of all the relations, views, indexes,
constraints on values. and protection. Later, you can change these defini
tions dynamically by adding or deleting fields or by changing the database
characteristics you defined before. Therefore, restructuring the database is
easy. You can delete database elements just as easily.

• Interactive data manipulation statements

RDO includes data manipulation statements for learning and testing. These
statements let you practice retrieving, storing. and modifying data. When
you are ready to end the interactive session, you have the option either of
making the changes you entered permanent by issuing a COMMIT state
ment or of removing the changes you entered by issuing a ROLLBACK
statement.

Application programs use the same data manipulation statements. Thus, you
can use RDO to learn the principles of database management and to practice
structuring statements. Then you can test the statements before including
them in programs. This ability to test Rdb/VMS statements interactively lets
you debug Rdb/VMS queries before compiling and debugging a program that
uses them.

Although you can use RDO as a query language for interactive retrieval of
data, it is not designed for this purpose. VAX DAT ATRIEVE is more versa
tile than RDO for interactive use.

• Ease-of-use features

RDO includes the SET and EDIT statements, which let you control your ter
minal session, and the SHOW and HELP statements, which give informa
tion about Rdb/VMS to interactive users.

• Utility statements for database maintenance

You can also use RDO statements to maintain the database by:

Analyzing the database for space 'usage

Creating a backup copy of the database

Initiating database journaling and recovering transactions from the
journal

VAX Rdb/VMS 3-11

3.3.2 Program Interfaces

There are two ways to use VAX Rdb/VMS from a program:

• Precompilers

Rdb/VMS provides precompilers for several VAX languages. When a
precompiler is available for your language, you can include Rdb/VMS state
ments in your program in almost the same form as they appear in RDO. You
can refer to program variables in Rdb/VMS statements. Precompilers are
available for the following VAX high-level languages:

VAX BASIC
VAX COBOL
VAX FORTRAN
VAX PASCAL

• Callable RDO

For languages not supported by precompilers. Rdb/VMS provides the
Callable RDO utility. This utility is an interpretive call interface. a single
external routine that accepts an Rdb/VMS statement as a parameter. You
can call this routine from any language that conforms to the VAX Procedure
Calling Standard.

3.3.3 Multiple Databases and Remote Access

VAX Rdb/VMS lets you combine data from more than one database. Database
handles allow you to give a temporary name to each database you want to invoke
so that you can specify which database each relation comes from.

Similarly, you can access databases on remote nodes of a DECnet network. The
database on the remote node can be either a VAX Rdb/VMS database or a VAX
Rdb/ELN database. To access a remote database, you simply add the node name
to the file specification.

3.4 Designing a Database

The size and complexity of your organization determine how difficult it is to
design a database that meets the organization's information needs. If you are
responsible for data processing in a single department or a small company, you
may be able to design a database yourself quickly and easily. However, if you are
trying to solve information management problems for a large organization with
several departments and several types of business activity. database design is a
much more complicated and time-consuming process.

3-12 VAX Rdb/VMS

Many books describe systems for designing a database. The VAX Rdb!VMS
Guide to Database Design and Definition recommends one method. Whatever
system you choose and whatever the size of your organization or its data manage
ment needs, the goal of the design phase is the same: to define a set of logical
relations that models the data needs of your organization. Generating these logi
cal relations requires at least these steps:

• Analyze the data to determine all the data items needed by all the members
of your organization.

• Arrange data items into conceptual groups. For example, personnel
information falls into categories such as employee information, department
information, and job information.

• Simplify the groups by eliminating redundant information. As much as pos
sible, find items that you need for more than one purpose and put them in
one place. For example, if there are certain skills associated with a certain
job, group those skills with a job code, not with information about individual
employees. This is the first step in normalization.

• Remove repeating groups to separate relations. Because a relational
database cannot have repeating groups, each field in each record can contain
only one data item. The removal of repeating groups is the second step in
normalization.

• Determine index keys for relations. An index keeps track of the location of
each record in a relation so that the database system can find records
directly, without scanning. An index uses a field or combination of fields in
the record as a key.

You should decide which fields you plan to use most often for data retrieval
and join operations and make these key fields. Normally, you choose the field
or combination of fields !called a multisegment key) that uniquely identifies
records in the relation. such as the EMPLOYEE ID field in the
EMPLOYEES relation. As you use the database~ you may find that you need
more index keys or that some you have defined are unnecessary. You can
add or delete indexes at any time.

Using index keys allows Rdb/VMS to speed up data retrieval in many ways.
For example:

Rdb/VMS uses indexes to optimize data access on single relations. If
you retrieve employee information often by employee identification
number. make that number a key to the employee relation.

Rdb/VMS uses indexes to make joins faster. As previously explained,

VAX Rdb/VMS 3-13

a join operation often involves the crossing of two relations over a com
mon field. If that field is also a key in both relations, the join is faster.
Determine which relations you plan to join frequently, and make the
common field a key.

• Specify the relationships between data items by setting up common fields
between relations. For example, you might characterize the relationship
between "employee" and "department" as "is a member of." You might
express this relationship in the logical model by including the department
code as a field in the employee relation.

• Define views that correspond to those parts of the database that you have
separated for efficiency and clear structure but that must be reunited if you
are to extract information from them. For example, you may need to create a
report that combines employee information with department information.
You can define a view that includes a join operation to bring the information
together.

• Establish constraints for each field to limit the valid entries for that field.
You can specify two typ,es of constraints in VAX Rdb/VMS:

You can limit the values of that field to a certain set when you define
the characteristics of a field. For example, you may want to restrict the
sex field in the employee relation to "M" or "F."

You can define a formal constraint for the field. This constraint can use
other values in the database to check the field's value. For example, you
can check a department code against the department relation to make
sure the department code really exists before the code is entered in the
job history relation.

• Specify privileges if you want to deny some users access to parts of the
database. You can specify privileges for the database and for each relation in
it. You can also specify privileges for views.

When you finish the design phase, you have a logical model for the database. This
model specifies all the relations and data items you need. It also specifies the rela
tionships between the relations, though you may want to dynamically specify
more of these relationships at a later time. The model also points to fields in
each relation that might be made into index keys in the physical database. Using
views, you can make some of these relationships explicit and permanent.

The features of VAX Rdb/VMS make restructuring· a database easy and quick.
However, Rdb/VMS is designed to be accessed from application programs. If you
restructure your database radically, you may also have to rewrite or recompile
programs to take new structures into account. Furthermore, any restructuring of
a database consumes time and system resources. No matter what type of data

3-14 VAX Rdb/VMS

management product you use, careful analysis and planning when the database is
first set up saves maintenance time in the long run. It is especially important to
normalize the database, as Section 3.2.2 and the VAX Rdb/VMS Guide to
Database Design and Definition explain.

3.5 Database Operations

This section introduces the operations you use to create a database or to change
an existing database. The process assumes that you have completed a design for
your database and normalized the logical relations. You perform these operations
with RDO. the interactive interface to Rdb/VMS.

You set up a database and its components with DEFINE statements. Each
DEFINE statement enters a definition in the database file and, optionally, in the
VAX Common Data Dictionary. Rdb/VMS can store definitions in two places for
security and efficiency. Because the database file contains the definitions, the sys
tem can read them internally without searching the CDD each time a program
runs. Because the definitions can also be stored in the CDD, other products. such
as DAT ATRIEVE and high-level language compilers, can copy definitions from
the CDD. You use the DEFINE statement to create the following items:

• Database

When you define a database, RDO creates a database file, a snapshot file
(which provides temporary storage for read-only data retrieval), and an entry
for the database in the CDD.

• Relation

The definition of a relation includes all of the relation's field definitions.
Rdb/VMS also creates a default access control list for the newly created rela
tion.

• Field

A field definition specifies the type of data in the field and can be used in any
relation definition.

• Constraint

A constraint definition is the set of conditions that restrict the values in a
relation.

• Index

An index definition names a field or set of fields as a single or multisegment
index key for a relation.

VAX Rdb/VMS 3-15

• Protection

A protection definition creates an access control list entry for a database, a
view, or a relation. An access control list entry contains a user identifier and
a list of access rights granted to that user.

• View

A view definition logically associates fields from one or more relations.

You can use RDO's DELETE statement to remove any of the items created with
the DEFINE statement. In addition, you can use RDO's CHANGE statement to
modify an entire database, a relation, a field, or a view.

3.6 Storing Data

There are three ways to store data into an Rdb/VMS database. You can enter data
initially using:

• The STORE statement in RDO

• A program to read a data file and store the data

• VAX DAT ATRIEVE 's restructure mechanism

Thus, to load a database from VAX DBMS into VAX Rdb/VMS, you use the
DBMS UNLOAD utility to create RMS files for each record type in the DBMS
database. You then use DAT A TRI EVE to turn each record type into an Rdb/VMS
relation. Because some DBMS databases use implicit relationships, you may need
to add new fields to some Rdb/VMS relations after loading in order to make these
relationships explicit.

3. 7 Accessing Data

Once you have defined the database and loaded the data, you can begin to retrieve
and manipulate data. There are several ways to access the data in an Rdb/VMS
database:

• Through RDO, the terminal interface to Rdb/VM S

• Through VAX DATATRIEVE

• Through programs, using embedded data manipulation statements

• Through programs, using Callable RDO

3-16 VAX Rdb/VMS

Rdb/VMS is optimized for use by programs, and users will most often access an
Rdb/VMS database through application programs and DATATRIEVE. RDO is
intended as an interactive environment for learning, testing, and prototyping.
RDO data manipulation syntax is virtually identical to the syntax you include in
programs. Thus you can test queries and update operations interactively in RDO
and include the statements directly in programs.

3.7.1 Transactions

When you include Rdb/VMS statements in an application program. you need to be
aware of some additional features of Rdb/VMS. RdbiVMS supports the concepts
of transactions and record locking. These features help ensure the consistency
and accuracy of the retrieved data when two or more programs are retrieving and
updating data at the same time.

A transaction is a series of operations that must execute as a unit or not at all.
The use of transactions ensures that operations on the database are never par
tially completed.

For example, when an employee is promoted. you may run a program to change
the employee's job code and salary. The steps in the program follow:

• The program adds records for the employee's new job to a JOB_HISTORY
relation.

• The program adds records for the employee's new job to a
SALARY HISTORY relation.

• The salary figure entered in the SALARY AMOUNT field of
SALARY HISTORY exceeds the maximum salary for the new job code.
(Remember, you can define constraints for each field in a relation.) Rdb/VMS
returns an error message and does not modify the SALARY HISTORY
record. -

• At this point, the database is inconsistent; a new job record has been
entered into the JOB HISTORY relation but not to the
SALARY HISTORY-relation.

To prevent such problems and to ensure consistency, Rdb/VMS lets you group
such update operations in a single transaction. You commit or roll back that
transaction as a unit. A program does this in the following way:

• The program includes all the update operations in one transaction before
beginning the update.

• The program tests for problems (such as the validity problem mentioned pre
viously) in each part of the transaction.

VAX Rdb/VMS 3-17

• If all the updates are successful, the program commits the transaction by
entering the changes in the physical database file.

• If any of the updates are not successful, the program rolls back the entire
transaction and no update takes place.

Hardware or system failures can also interrupt Rdb/VMS transactions. In such
cases, Rdb/VMS does an automatic rollback.

3.7.2 Ensuring Consistency

Rdb/VMS lets many users concurrently read, write, and modify data in the
database. However, this feature also introduces the possibility of inconsistency.
For example, if two users read and then modify a single field. one of them may be
reading an obsolete value. In general, a program that updates a value must be
sure that the update will be complete before any other program updates the same
value.

Rdb/VMS ensures consistency by allowing your program to protect relations and
records from actions by other programs during a transaction. When you start a
transaction, you can include a list of relations and the kind of access your pro
gram allows to other programs. For example, if your program is updating a rela
tion, it might start a transaction with PROTECTED WRITE access. Such access
allows other programs to read the relation. but no other program can write data
there until your operations complete by either committing or rolling back the
transaction.

3.7.3 Read-Only Transactions (Snapshots)

A transaction can also specify READ_ ONLY access, which lets you take a
snapshot of the database. In this mode, you can retrieve data from a relation with
out locking other users out of the database. You see a version of the data that is
correct as of the moment the transaction starts. For simple reports, where the
most up-to-the-minute information is not vital, READ ONLY mode allows fast
performance and a minimum of locking conflicts. -

3.8 Retrieving Data

Retrieving data from an Rdb/VMS database is a simple and straightforward
operation. You establish a record stream (with either a FOR statement or a
ST ART STREAM statement) and specify which records are to be retrieved (with
a record- selection expression). You can use a SORTED BY clause to specify the
order in which records are to be retrieved. You then determine which fields you
want to retrieve and either display them with the PRINT statement or assign
them to program variables with the GET statement.

3-18 VAX Rdb/VMS

3.8.1 Record Selection Expressions (RSE)

The record selection expression (RSE) defines specific conditions that individual
records must meet before RdbNMS includes them in a record stream.

The following list shows the clauses of the RSE and the operations they perform:

• FIRST n

Retrieves only the number of records specified. This clause normally accom
panies the SORTED BY clause, because there is no guarantee of sort order
in record streams.

• WITH

Names a set of criteria for selection, using conditional expressions.

• CROSS

Names another relation for a join operation.

• SORTED BY

Names a key field by which to sort the record stream.

• REDUCEDTO

Names one or more fields to serve as the reduce key. The record stream con
sists of the unique values for that field or fields.

Using these clauses, alone and in combination, you can limit the record stream to
exactly the data you want, and you can combine related fields from many
relations in the database.

RSEs can also contain conditional expressions. A conditional expression
represents the relationship between two field values. The value of a conditional
expression is either true or false. RdbNMS relational operators specify the type
of comparison to perform on the pair of field values. They are:

EQ
NE <>
GT >
GE >=
LT <
LE <=

In addition, logical operators can link together multiple conditional expressions.
The RdbNMS logical operators are AND, OR. and NOT.

VAX Rdb/VMS 3-19

You use conditional expressions most often as the object of the WITH clause in
the record selection expression. By linking value expressions with relational oper
ators and linking conditional expressions with logical operators, you can specify
exactly the data you want to retrieve.

For example, to display the names of all the employees who live in Massachusetts
and work in the Engineering Department or the Manufacturing Department,
enter the following:

FUR E IN EMPLOYEES
CROSS JH IN JOB_HISTORY OVER EMPLOYEE_ID
CROSS D IN DEPARTMENTS OVER DEPARTMENT_CODE

WITH E.STATE = "MA"
AND D.DEPARTMENT_NAME = "Engineering"
OR D.DEPARTMENT_NAME = "Manufacturing"

PRINT E.LAST_NAME,
E.FIRST_NAME

END_FOR

Rdb/VMS can also display statistical expressions based on values in the database.
Table 3-1 lists the statistical expressions availabl~.

Table 3-1: Statistical Expressions

Statistical Expression Result

AVERAGE Average of nonmissing field values in current
stream

COUNT Number of records in current stream

MAX Largest value of field in current stream

MIN Smallest value of field in current stream

TOTAL Sum of values of field in current stream

3.8.2 Record Streams

Rdb/VMS provides two ways of determining the subset of records, called a record
stream. to be retrieved from the database.

In most cases, your program establishes a record stream with a FOR statement.

3-20 VAX Rdb/VMS

The beginning of a typical FOR statement looks like this:

FOR E IN EMPLOYEES WITH E.STATE = "MA"

The result of this FOR statement is a record stream consisting of all the
EMPLOYEES records with the string "MA" in the STATE field.

Once you have established a record stream with a FOR statement, the PRINT
statement retrieves a specified set of fields from each record in the stream, one
record after another.

A FOR statement works well when you want to process the records from a single
record stream one at a time. There may be times. however, when you want to
establish more than one record stream and want the processing of the streams to
interact. In such cases, you can use a ST ART STREAM statement to start each
stream. After you set up a record stream with the ST ART STREAM statement,
you must use a FETCH statement to make each successive record in the stream
available for processing.

FOR loops are easier to use than the START STREAM statement.
START_ STREAM. however. gives your program more flexibility. For example,
you can start more than one record stream, and the values returned from one
stream can affect the processing of the other.

3.9 Modifying Data

RdbNMS lets you store, modify, and erase data using the same kind of record
selection expression you use to retrieve data. Thus you can precisely specify the
records you want to change. The following list summarizes the RdbNMS state
ments that modify data:

• STORE

Stores values in the database

• MODIFY

Modifies values in the database

• ERASE

Deletes records from relations

3.10 Maintaining a Database

RDO provides a set of utility statements so you can perform common database
maintenance functions, such as backing up and restoring data, analyzing space
usage, checking database integrity, and maintaining journal files to restore a
database if there is a failure.

VAX Rdb/VMS 3-21

• Analyzing space usage

The ANALYZE statement displays the space usage for the database file.
Optional qualifiers display the number of records and the index structure for
each relation within the database. Regular analysis of database usage lets
you restructure your database to improve processing efficiency.

• Saving a copy of the database

Normally1 you use regular VMS utilities, such as COPY and BACKUP, to
save copies of the database for security against catastrophe. Rdb/VMS also
provides BACKUP and RESTORE statements that let you create a copy of
the database that you can restore on a compatible Rdb database system,
such as VAX Rdb/ELN.

• Using journal files

VAX Rdb/VMS keeps two kinds of journal files:

A before-image journal, which keeps a record of transactions in
progress. In case of an error in a program, a system failure, or a user's
ROLLBACK statement, the system can undo the changes made by the
transaction. Before-image journaling is done automatically by the
database system.

An after-image journal, which keeps a record of changes made to the
database by committed transactions. You can use an after-image journal
to rebuild a database that has been corrupted by a hardware or software
failure. You can enable and disable after-image journaling. In case of
failure, you can use the RECOVER statement to apply a journal file to a
backed-up copy of the database.

3.11 Types of VAX Rdb/VMS Product Kits

VAX Rdb/VMS provides three kits:

• VAX Rdb/VMS

VAX Rdb/VMS is the full development kit and contains all the components
needed to create and use Rdb/VMS databases.

• VAX Rdb/VMS RUN-TIME

VAX Rdb/VMS RUN-TIME is the run-time kit for VAX Rdb/VMS. It lets
you use Rdb/VMS databases built with the full development kit but does not
let you create databases.

3-22 VAX Rdb/VMS

• VAX RdbNMS REMOTE

This kit contains all the RdbNMS components needed to access a full
RdbNMS database system on a remote node.

VAX Rdb/VMS 3-23

VAX DBMS 4

4.1 Overview of VAX DBMS

A database is an organized collection of stored information that lets you separate
the description of the data from the programs that use it. VAX DBMS is a multi
user, general-purpose. CODASYL-compliant database management system that
runs on the VMS operating system.

A database management system increases the productivity of your application
development effort by letting you divide the overall task into groups of logically
related functions:

• Database administration

Includes the design, creation, and maintenance of the logical database struc
ture and the physical database management system. It also provides for the
integrity and security of the data in the database.

• Application programming

Includes the design, implementation, and maintenance of the programs that
are the primary method of database access for the user. A database manage
ment system allows programmers to focus on the data stored in the database
instead of on the physical representation of that data.

You can use VAX DBMS to access and administer databases ranging in complex
ity from simple hierarchies to complex networks with multilevel relationships.
VAX DBMS supports full concurrent access in a multi-user environment without
compromising the integrity and security of user data.

Ever since the idea of database management originated in the early 1960s,
CODASYL (the Conference on Data Systems Languages) has been active in
developing specifications for database management systems. Throughout the

4-1

1970s, the conference published several reports outlining the requirements for
such systems. VAX DBMS is based on the March 1981 Working Document of the
ANSI Data Definition Language Committee.

VAX DBMS is designed for users working in a structured application environ
ment. Such users include programmers, analysts, designers, or administrators
who use conventional planning and coding techniques to design, create, and main
tain long-term applications for corporate use. The CODASYL principles that
guided the development of VAX DBMS provide several benefits to such users:

• Data independence

Data definitions are removed from application programs and centralized in
the VAX Common Data Dictionary (CDDt. The same data definitions can be
used in high-level language programs and in VAX DATATRIEVE.
Relationships among records can be defined in terms of sets, but the physical
characteristics of these records and sets remain separate from the data defi
nitions.

VAX DBMS provides a data definition language (DDL) that lets you design a
database that is as simple or as intricate as your applications require.

• Consistent multi-user environment

Many users have concurrent access to the data, yet each user is shielded
from the effects of other users. Each user's program sees only data that has
been committed, that is, updated in a correct and consistent manner. A pro
gram cannot see data that has been incompletely or improperly updated.

A transaction is a series of operations that must execute as a unit or not at
all. The use of transactions ensures that operations on the database are
never partially completed. All user access to a VAX DBMS database is
transaction-oriented. If an update transaction is not successfully completed.
the Database Control System (DBCS) returns, or rolls back. the database to
a condition identical to the one before the start of the transaction. In addi
tion, the DBCS uses various locking techniques to let you restrict access to
update data or even process-sensitive retrieval data to only one user at a
time.

• Data integrity

The integrity of the database is maintained in the event of user errors and
hardware or software failures.

• Programmer productivity

Administration of the database is centralized in the role of the database
administrator (DBA). In addition to providing controlled allocation of the

4-2 VAX DBMS

database and improved maintainability and security, this central control
improves application programmer efficiency. For example, the database pro
grammer can access data without designing separate files for specific appli
cations. Data definitions are copied into a program from the CDD when the
program is compiled. Because programmers need to be concerned only with
application logic, application programs become easier to write and debug.

Programmers use the VAX DBMS data manipulation language (DML) to
access a database. DML is understood by the VAX COBOL language and is
available to FORTRAN programmers through FORTRAN/DML, a VAX
DBMS preprocessor to the VAX FORTRAN compiler.

VAX DBMS also has a precompiler that lets you insert DML statements
into programs written in the following languages:

VAX BASIC
VAX BLISS
VAXC
VAX DIBOL
VAX PASCAL
VAX PL/I
VAX Ada

All other programming languages that conform to the VAX calling standard
can use DML through the callable Database Query (DBQ) interface.

4.2 Enhancements to the CODASYL Model

VAX DBMS provides many features that expand the capabilities of the database
administrator and the database programmer beyond the scope of a CODASYL
database management system. These features provide a database management
system that is more complete, easier to use, and more secure.

These features provide enhancements in the following areas:

• Database administrator (DBA) productivity

• Programmer productivity

• System performance

• Security

• DECnet network access

• Operation in a VAXcluster

The following sections describe the features that relate to these areas.

VAX DBMS 4-3

4.2.1 OBA Productivity

Several VAX DBMS features and tools are available to increase the productivity
of the database administrator:

• Database Operator (DBO) utility

Online database verification in CONCURRENT, PROTECTED, and
EXCLUSIVE modes

Offline full and incremental database backup

Restoration (roll forward) of committed transactions to a backed-up
database using the after-image journal

Simple restructuring of a database without unloading and loading all the
data

• Load/Unload facility

This facility allows a DBA to load VAX RMS records into an existing
database. It can also be used to restructure a database by unloading and then
reloading the database's records.

• After-image journaling

An after-image journal contains only valid (that is, committed) changes made
to a database. This feature lets you restore your database in the event of a ·
storage device or system software failures.

• DDL compiler

The DBA can use the DDL compiler to create a default storage schema,
subschema, and security schema from a schema. By default! the DDL com
piler automatically stores successfully compiled or generated definitions in
theVAXCDD.

4.2 .2 Programmer Productivity

Programmers must make many choices in the course of developing application
programs that access the database. They must develop accessing strategies that
best suit the needs of their applications and take full advantage of the database
management system. VAX DBMS provides interactive DBQ to assist program
mers in this task.

4-4 VAX DBMS

Initially, DBQ helps programmers become acquainted with the DML environment
through interactive sessions; programmers use DBQ to test program logic by
retrieving, updating, and storing database records interactively. This capability
shortens the development time for database programs by allowing programmers
to create sound accessing strategies before incorporating these routines into a
program. In addition, DBQ can show you how to "navigate" a network database
by displaying diagrams of records and their relationships.

When the routines work correctly and are to be incorporated into a program,
DBMS creates User Work Areas (UWAs) for your program. UWAs contain the
data definitions needed to access the database.

UWAs are automatically created for database programs written in COBOL,
FORTRAN. BASIC, BLISS, C, DIBOL, PASCAL, and PL/I. For all programs
that have UW As. subschema definitions are automatically extracted from the
CDD and copied into the program at compile time.

4.2.3 Database Performance and Tuning

VAX DBMS enhances system performance with a two-fold approach:

• It supplies parameters you can set for optimum performance. These param
eters control the management of your system's routine operations.

• It provides monitoring and performance analysis tools that let you tune your
database for best performance.

You can use these monitoring tools to locate performance bottlenecks and change
parameters (for example, the size of buffers or the granularity of locks) to improve
performance.

VAX DBMS also increases performance through the use of a run-time copy of
your database data definitions. These definitions are stored in a database root file.
The database root file provides the Database Control System exclusive, immedi
ate access to all definitions pertinent to your database. This prevents conflicts
with other uses of the data definiticms stored in the CDD.

The following features help provide optimal performance of database operations:

• Space area management

The use of space area management pages (SPAMs) improves database free
space search performance, especially useful when a database is nearly full.

VAX DBMS 4-5

• Space allocation

Space allocation lets the DBA specify the exact storage space required for a
database data item. Optionally, the DBA can let the system allocate space as
needed, with the system compressing data items where possible. The system
also compresses database key (dbkey) pointers.

Other space allocation features are:

The ability to tune the system to use fragmented records properly. The
use of fragmented records means that the system need not maintain a
strict one-to-one correspondence between the size of database pages and
the size of the largest database record.

The implementation of sorted sets, which provides prefix and suffix
compression for sort keys.

The ability to separate records into area files, to specify which records
should be stored near each other, and to spread area files across disk
volumes.

• Buffer allocation

The buffer allocation management operations let the DBA specify the appro
priate number and lengths of buffers to provide maximum data flow within
the database system.

You can monitor database performance with two DBO functions:

• The DBO/ANAL YZE command

This command displays statistics for database area files. space usage for the
pages in each area requested, and space usage for records and sets. The
DBO/ANAL YZE command lets a DBA see how various buffer quantities and
lengths affect disk-read statistics.

• The DBO/SHOW commands

These commands (DBO/SHOW STATISTICS, DBO/SHOW SYSTEM, and
DBO/SHOW USERS) let you study the processing characteristics of your
database. These commands display information about the number of transac
tions attempted. verb successes and failures, database reads and writes,
database monitor activity, and active users. They can help determine the
locking characteristics of a multi-user application.

DBO also provides commands to set and adjust database parameters.

4-6 VAX DBMS

4.2.4 Security Features

Several levels of security control are available:

• Normal VMS file protection protects the database files themselves.

• CDD security features protect data definitions in the CDD.

• The security schema protects database objects (data items. records, and
setsL

• The DBO utility provides two security control commands.
DBO/PERMIT USER maps the security schema information to the User
Identification Codes (UICs) you provide. DBO/GRANT COMMAND .lets you
control which users are allowed to issue a given DBO command.

VAX DBMS uses standard VMS file security to protect database storage area
files. However. VAX DBMS restricts unprivileged users from accessing sensitive
data. even through such VMS utilities as DUMP.

Note that although a data definition language is a part of the CODASYL model,
the security schema definition is a significant enhancement to VAX DBMS DDL
that provides security functions well beyond the scope of the CODASYL model.

4.2.5 DECnet Network Access

VAX DBMS is fully supported by VAX DECnet, allowing access to databases on
remote nodes. You can bind to a database on another node from a DML program,
with callable DBQ, or from interactive DBQ.

4.2.6 Operation in a VAXcluster

VAX DBMS in a V AXcluster environment allows concurrent, multiple-processor
database access. VAX DBMS automatically recovers your database if a processor
in your VAXcluster fails, and it provides optional after-image journaling to fur
ther protect the integrity of your V AXcluster database.

In a properly configured V AXcluster environment. VAX DBMS can give you
virtually uninterrupted access to your database. The distributed lock manager
provides cluster-wide synchronization of resources. VAX DBMS uses the distrib
uted lock manager to synchronize cluster-wide access to the database root file. to
trigger the automatic recovery process when a node fails. and to coordinate con
current access to a database from processes running on different nodes.

See the VAX DBMS Database Maintenance and Per{ ormance Guide for more
information about using VAX DBMS in a VAXcluster environment.

VAX DBMS 4-7

4.3 Product Summary

The following sections summarize the features of VAX DBMS by listing and
briefly describing the major software components:

• Data Definition Language (DDL)

• Database Control System (DBCS)

• Data Manipulation Language (DML)

• Database Query (DBQ) Utility

• Database Operator (DBO) Utility

• HELP Facilities

• The Installation Verification Procedure (IVP)

• Demonstration (DEMO)

4.3.1 Data Definition Language (DDL)

DDL lets you create four types of definitions:

• The schema is a logical definition of the records, sets, and areas that make
up a database. The schema definition is the only type of definition you must
write (subschema, storage schema, and security schema definitions can be
produced automatically by DDL).

• The storage schema definition describes the physical characteristics of
database records, sets, and areas as they are stored. A storage schema also
defines the placement of records within the database, the representation of
data items within a storage record, and storage set parameters. Most
database tuning is accomplished by modifying the storage schema.

• The subschema definition describes a logical subset of the database in terms
of records, sets, and realms (a collection of one or more areas). Subschemas
provide different views of the database to allow for different user needs, spe
cial requirements of application programming languages, and limited secu
rity.

• The security schema definition describes the access rights to all database
objects. DML statement access rights can be defined for areas, records,
items, and sets.

The DDL compiler checks your definitions for errors in syntax. If your definition
is error-free, DDL stores it in the VAX CDD. You can also use DDL compiler
commands to modify your definitions.

4-8 VAX DBMS

4.3.2 Database Control System (DBCS)

The DBCS controls the operation of VAX DBMS at runtime. The DBCS is a
shareable image that is linked with any application program that accesses the
database. It provides full, concurrent access capabilities (storage, retrieval,
update. and deletion) to database records on behalf of user programs, monitors
database usage, and acts as an intermediary between VAX DBMS and the VMS
operating system.

The DBCS ensures the integrity of the data in your databases by automatically
locking records that have been modified. records represented by currency indica
tors. and records on keeplists. The DBCS uses the locking services of the VMS
lock manager.

4.3.3 Data Manipulation Language (DML)

DML lets the database programmer retrieve, update, and store records using
CODASYL-compliant commands. The specific database operations support~d are
CONNECT, DISCONNECT, ERASE, FETCH, FIND. GET. MODIFY,
RECONNECT, and STORE.

Boolean expressions with EQ, NE, LE, LT, GT, GE, AND, OR, NOT.
MATCHES, and CONTAINS operators can be used in the FIND and FETCH
statements.

FREE and KEEP operations save and delete your database context.

COMMIT, READY, and ROLLBACK operations control the permanence of all
database operations.

ALSO, EMPTY, MEMBER, OWNER, TENANT, NULL, and WITHIN condi
tions test the state of the database, currencies, and keeplists.

DML provides the following eight READY mode options that allow a programmer
to specify processing intentions:

CONCURRENT RETRIEVAL
PROTECTED RETRIEVAL
EXCLUSIVE RETRIEVAL
BATCH RETRIEVAL

CONCURRENT UPDATE
PROTECTED UPDATE
EXCLUSIVE UPDATE
BATCH UPDATE

In addition, the DML BIND operation can map your process to a local database, a
remote database, or to a mixture of such databases at the same time.

VAX DBMS 4-9

4.3.4 Database Query (DBQ) Utility

DBQ has an interactive and a callable mode of operation. Interactive DBQ pro
vides online, procedural database access capabilities by processing DML state
ments interactively. It also provides DISPLAY, IF-THEN-ELSE, INITIALIZE,
LOOP, MACRO, MOVE, PRINT, SET, SHIFT, and SHOW statements.

When used on a VTlOO, VT125, or VT200 terminal, interactive DBQ can option
ally generate split-screen terminal displays. The bottom half of the screen shows
the commands entered and a textual response. The top half of the screen graphi
cally illustrates database access paths with a currency diagram similar to a
Bachman diagram. As you navigate through the database, the current position in
a subschema is displayed. This feature is an excellent learning tool for introducing
database concepts to new users.

VTlOO- and VT200-compatible terminals show the currency diagram two
dimensionally. VT125-compatible terminals show the diagram three
dimensionally. Figure 4-1 shows a currency diagram as it would appear on a
VT 12 5 terminal.

[-[
r •• 1

......... r-.... ;..-----

-

q1 p11egt

Figure 4-1: Currency Diagram on a VT125

4-10 VAX DBMS

;;uLP.:C
-"-----'

MK-01309-00

4.3.5 Database Operator (DBO) Utility

The DBO utility performs a wide range of database functions:

• Creating. initializing, and deleting databases

• Loading and unloading databases

• Controlling access to DBO commands and to the database through security
schemas

• Reporting on VAX DBMS information stored in the CDD

• Extracting and deleting DDL information from the CDD

• · Verifying the integrity of internal database structures on line in
CONCURRENT, PROTECTED, and EXCLUSIVE modes

• Producing formatted database dumps for an after-image journal (AIJ), and
recovery journal (RUJ)

• Producing full and incremental database backup off line

• Restoring the database from backup and journal files

• Controlling and displaying the status of the DBCS monitor process

• Creating a statistical analysis of database space usage

• Displaying DBMS statistics for active databases

• Generating a user work area (UWA) for application programs

4.3.6 Help Facilities

VAX DBMS provides extensive help facilities for the interactive Database Query
(DBQ) utility, the Database Operator (DBO) utility, the DBALTER facility, and
the DDL compiler. The help files contain all necessary information on the use of
each of these facilities. They also contain complete specifications for writing DML
statements and schema, subschema, storage schema, and security schema data
definitions.

4.3. 7 The Installation Verification Procedure (IVP)

The IVP verifies the correct installation of all VAX DBMS components and builds
the PARTS database that is used in examples throughout the VAX DBMS docu
mentation. The IVP also verifies whether the correct hardware/microcode needed
to run VAX DBMS is installed.

VAX DBMS 4-11

4.3.8 Demonstration (DEMO)

VAX DBMS provides DEMO, an online, self-paced demonstration package that
uses the PARTS database. DEMO provides a quick means to become familiar
with database creation and manipulation. This demonstration is designed to help
you get started developing your own database using VAX DBMS. It is divided
into eight modules. They are:

Database Definition
Schema Definition and Compilation
Creating the Database Using the Defaults
Loading a Database
Database Query Language Retrieval
Optimizing the Database (Creating the Database Using Options)
Database Query Language Update
Using Database Manipulation Language
Securing a Database
Database Utilities

These modules are designed to follow each other but after working through them
you may want to view them selectively.

You invoke DEMO by first setting your default VMS directory to the directory to
contain your sample database. You then set your CDD default (CDD$DEFAULT)
to a CDD node to which you have write access. You then type:

©SYS$COMMON: [SYSTEST.DBM]DBMDEMO

4.4 Types of VAX DBMS Product Kits

VAX DBMS provides two types of kit:

• VAX DBMS

This .is the full development kit. It lets you create DBMS databases and the
application programs that access the databases

• VAX DBMS RUN-TIME ONLY

A run-time only version of VAX DBMS is available after the purchase of a
fully supported VAX DBMS license. The run-time only version of VAX
DBMS provides all features and facilities except the DDL compiler, the
FORTRAN/DML preprocessor, and the precompiler.

The purpose of the run-time only version is to support the execution of appli
cations on one machine that have been developed on other machines using
the application development version of the product.

4-12 VAX DBMS

VAXTDMS 5

5.1 Overview of VAX TOMS

A forms product controls input and output to and from the terminal. VAX TDMS
is a forms product that lets you use forms to collect and display information on a
terminal. It offers a wide range of features that make forms management easy
and thus let you realize significant savings in developing and maintaining forms
applications. TDMS is a fully integrated member of the VAX Information
Architecture, supported by the VMS operating system.

VAX TDMS offers two major advantages over traditional systems: ·

• TDMS reduces development and maintenance costs by using record and
form definitions that exist outside the application program.

• TDMS provides device independence by letting you write the program
without concern for the device on which the application runs.

5.2 Programmer Productivity

VAX TDMS significantly reduces the programming costs associated with devel
oping and maintaining an application by letting you replace portions of the appli
cation program with definitions that are created and stored outside the
application program. These definitions include:

• Form definitions, which define data input requirements and the appearance
of the form

• Record definitions, which define the data type, structure, order, and length of
the records used by the application

• Request definitions, which define the exchange of information between the
program and the terminal

5-1

Because these definitions are not part of the program, it is sometimes possible to
change the application without changing the application program itself.

For example, suppose you develop a personnel application that uses forms. Six
months after the application is up and running, the personnel department tells
you that employee identification numbers will change from five-digit to six-digit
numbers. If the application has been developed without TDMS, you incur the
major cost of revising, recompiling, and debugging program code. With TDMS,
however, the process is greatly simplified: because the definitions that must be
changed are outside the program, you may not need to change any program code.

TDMS definitions are described more fully in the following sections.

When you use TDMS, your application program does not control I/O to and from
the form. The application program's primary functions are to:

• Call and execute requests

• Provide access to the database used by the application

• Handle run-time errors that might otherwise cause corruption of data

The application programmer need not be concerned with mapping data between
forms and records, since this is done entirely by the request. In many applica
tions, TDMS can reduce the number of programming statements and error mes
sages from the application program, using requests to undertake these functions.

As a result, the program in a TDMS application can be viewed as a generic algo
rithm that executes a series of requests (or routines) and reads information from
and/or writes information to a database.

5.3 Device Independence

With VAX TDMS, the application program does not concern itself with the device
that the terminal operator uses. Terminal manipulation (such as cursor control,
scrolling, and video highlighting) is defined by the form and by the request. Thus,
terminal manipulation is wholly independent of the application program.

VAX TDMS applications and utilities can be run on the following terminals:

VTlOO series
VT200 series (in VTlOO mode)
DECmate
Professional

5-2 VAX TDMS

5.4 Elements of a TOMS Application

Every TDMS application includes the following elements:

• An application program

• One or more record definitions

• One or more form definitions

• One or more requests

• One or more request library definitions

• One or more request library files

The following sections describe these elements in more detail.

5.4.1 The Application Program

In a TDMS application, the program:

• Reads data from and writes data to the database (VAX DBMS, VAX
Rdb/VMS, or VAX RMS files)

• Uses the TDMS programming calls to:

Open and close request library files

Open and close I/O paths to the terminals

Execute requests

Read text from or write text to the reserved message line on the
terminal

Cancel a call in progress

Signal the return status for TDMS call errors

Activate a facility (Trace) that traces the action of a request

• Provides for error processing

In short. the program identifies the requests that are to be executed. The request
controls the flow of data between the record and the terminal, and the program
controls the flow of data between the record and the database.

VAX TOMS 5-3

A TDMS application can be written in any VAX language that conforms to the
VAX Procedure Calling and Condition Handling standard. In addition, application
programs written in VAX COBOL, VAX BASIC, VAX FORTRAN, VAX
PASCAL, VAX DIBOL, VAX C, VAX RPGII or VAX PL/I can benefit from
TDMS's ability to extract record definitions from the CDD, thus eliminating the
need to redefine records.

5.4.2 Record Definitions

A record definition identifies the data type, structure, and length of the records
used in an application. For application programs that are written in languages
that support the CDD, you need only refer to the record definition that already
exists in the CDD rather than redefine the record in your program.

You create record definitions with either the VAX CDD Data Definition Language
(CDDL), VAX DATATRIEVE, VAX DBMS, or VAX Rdb/VMS. Record defini
tions are always stored in the CDD.

5.4.3 Form Definitions

A form definition lets you specify the appearance of the terminal at run time. You
can control background text, cursor position, scrolled areas, help texts, and video
characteristics. You can also use form definitions to restrict the data that the
operator is allowed to enter.

The form definition describes the screen image displayed on the terminal when
the application executes. The form definition contains the information that
identifies:

• The screen image of the form. The screen image includes the location of
fields and background text as well as video highlighting. Background text is
text that is always displayed when the form is displayed; fields are locations
on the form where data can be collected or displayed.

• The location. length. and picture type of each field.

• A set of attributes for each field on the form. These attributes apply certain
conditions or characteristics to fields. For example, field attributes can
require that an operator complete a field in its entirety or return only upper
case data to the record. Field validators are special field attributes that you
can assign to any field on a form, requiring that the terminal operator's input
be within a specified range, that it match an item from a specified list, or
that it conform to the requirements of a check-digit algorithm.

• The location of scrolled regions. Scrolled regions let the operator enter or see

5-4 VAX TDMS

many lines of data on a few line_s of the form. TDMS lets you use vertically
scrolled regions on a form for input or output fields.

• The name of a help form, which the terminal operator can display at run
time.

The VAX TDMS Form Definition Utility (FDU) checks the syntax of form defini
tions and stores them in the CDD if it finds no errors.

5.4.4 Request Definitions

A TDMS request is the key element in a TDMS application; it controls the infor
mation that is displayed on the terminal and collected from the operator.

As the result of instructions specified by a request, TDMS can:

• Display a form

• Allow data to be entered on the form and transferred to the record (where a
program can retrieve and process it)

• Allow data to be transferred from the record (where it was stored by a pro
gram) and displayed on the form

• Conditionally perform the above operations based on a value previously
entered by the operator or returned by the program

• Allow the operator to use predefined keys that can return 11 constant 11 data to
the record

TDMS requests are created by the VAX TDMS Request Definition Utility (RDU),
which also stores the requests in the CDD.

TDMS permits data that is to be collected or displayed on a single form to be sent
to or from any number of records. More complex requests provide additional
capabilities. such as the inclusion of conditional instructions.

Note that TDMS also performs data type conversion during the execution of a
request, converting from text to the data types of receiving record fields on input
and converting the data types of record fields to text format on output.

TDMS does not require any special structure for records. nor does TDMS require
exact matches between record and form definitions. TDMS lets you map any
combination of records or parts of records to a form or part of a form. The only
requirement is that the data type and length of the mapped fields be consistent
with the mapping rules of TDMS. Thus, you do not have to restructure your
existing record definitions in order to use them in a TDMS application.

VAX TDMS 5-5

5.4.5 Request Library Definitions

A request library definition is a list of one or more requests. To use a request in
a TDMS application, you must name the request in at least one request library
definition.

The request library definition is created by the Request Definition Utility, and it
is stored in the CDD. You can use any number of request library definitions in an
a pplica ti on.

The request library is contained in a request library file, an RMS file that has a
default file type of .RLB. The RLB file includes the binary representations of:

• Any requests named in the request library definition

• Any form definitions identified in any request

• Any record information identified in any request

You use the Request Definition Utility IRDU) to build an RLB file. If you modify
a request, form definition. or record definition after an RLB file has been built,
you must rebuild the RLB file in order to incorporate the changes into the appli
cation at run time.

At run time, the program can execute a request only if the request is in an RLB
file and the RLB file has been opened by the program (with calls to TDMS
routines). When the program executes a request, the request, record information,
and form definition are retrieved from the RLB file, not from the CDD.

5.5 TOMS Utility Programs and the Trace Facility

VAX TDMS provides two utility programs to create, store, and modify defini
tions: the TDMS Form Definition Utility (FDm and the TDMS Request
Definition Utility (RDU).

In addition. TDMS provides a Trace facility that lets you monitor the action of a
TDMS application program at run time and thus aids in debugging.

5.5.1 The TOMS Form Definition Utility

The TDMS Form Definition Utility (FDU) lets you create or modify form defini
tions and store them in the CDD. Using the form editor that is included in FDU,

5-6 VAX TOMS

you can:

• Create a screen image of the form, including:

Background text

Fields

Video highlights that can be activated whenever the form is displayed
and/or when a field is available for operator input

The screen background (dark or light) and number of columns (80 or
132)

• Assign specific attributes, validation procedures, and input order to fields

5.5.2 The TOMS Request Definition Utility

The TDMS Request Definition Utility (RDU) provides all of the capabilities you
need to:

• Define and modify requests and store them in the CDD

• Define and modify request library definitions and store them in the CDD

• Build request library files

RDU includes a validation procedure to ensure that:

• The syntax used in each request is valid

• Each form definition named in the request exists in the CDD

• Each record definition named in the request exists in the CDD

• The data mappings between form and record definitions are consistent ~ith
TDMS data mapping rules

RD U also creates, validates, and stores request library definitions and verifies
that each request named in a request library definition exists in the CDD.

RDU is also used to build request library files (RLB files). To build the RLB file,
RDU retrieves the requests named in the request library definition and the form
and record information identified in each request. RDU then creates the RLB file.
When building the RLB file, RDU validates each request to make sure that form
and record definitions exist, that the request syntax adheres to RDU syntax
rules, and that all input and output mappings are legal. Of course, RDU lets you

VAX TOMS 5-7

turn off this validation mode if you are writing the request before you have writ
ten the form or record definitions. However, RDU always validates request library
files and does not build an RLB file if it detects serious errors.

5.5.3 The Trace Facility

VAX TDMS provides the Trace facility to let you monitor the action of a TDMS
program at run time. This facility describes the actions taken during the execu
tion of requests and TDMS calls. Trace is a particularly useful tool when
debugging programs that use conditional requests.

5.6 Types of VAX TOMS Kits

VAX TDMS provides two kits:

• VAX TDMS

VAX TDMS is the full development kit and contains all the components
needed to write. test. and compile TDMS applications. This includes the
RDU and FDU utilities.

• VAX TDMS RUN-TIME

VAX TDMS RUN-TIME is the run-time kit for VAX TDMS and provides
run-time support for existing TDMS applications. To run a TDMS applica
tion on a system with the run-time kit installed, you need only copy the
application and its associated request library files onto the system.

5-8 VAX TOMS

VAXACMS 6

6.1 Overview of VAX ACMS

The VAX Application Control and Management System IACMS) makes the
development, maintenance. and use of online applications easier. Examples of
online applications include:

• Operations support, such as order administration, personnel administration,
inventory control, and scheduling

• Inquiry and information retrieval, such as examining customer or employee
records for reference or for decision support

• Accounting, including accounts payable and receivable, funds transfer, for
eign exchange, and payroll

Online applications share certain characteristics. They generally have a moderate
to large number of terminal users on the system at the same time. Many of the
terminal users have little or no computer experience. The same tasks are avail
able to many of these users, and these tasks do predictable, structured work, such
as adding items to inventory, updating a reservation list, or displaying employee
records. Moreover, these tasks use the same set of data files or databases.

VAX ACMS was designed to address problems inherent in the development of
online applications:

• Complexity

Online applications often have many users performing many different tasks.
Furthermore, these applications tend to grow in the number of functions
they perform and in the number of users they serve. VAX ACMS lets you
structure your application in an understandable way, thus easing the com
plexity problem and allowing tasks to be easily added to the application.

6-1

• System availability

Online applications must have high availability lest the business activities
they support be stopped or delayed. VAX ACMS provides a way to restart an
application more quickly in the event of a system failure. Further, VAX ~
ACMS lets you specify recovery procedures that ensure data integrity;
without ACMS, these recovery procedures would have to be coded into each
program that accesses data.

• Resource sharing

Because most online applications are large, they put heavy demands on com
puter processing power and memory resources. VAX ACMS lets you share
system resources among the tasks in an application while avoiding most of
the overhead normally associated with process startup, namely the opening
and closing of files. the readying of databases, and so on.

The primary principle behind VAX ACMS is the separation of application devel
opment from application control and the user interface. In essence, VAX ACMS
provides the structural framework with which to build an online application. The
following sections discuss this structural framework in more detail.

6.2 Application Development With VAX ACMS

The goal of ACMS is to reduce application development and maintenance costs
and increase programmer productivity without sacrificing efficient use of system
resources. ACMS does this by providing a way of implementing the tasks in an
application that is different from those provided by the VMS operating system or
by the other VAX layered products.

In contrast to traditional application development tools, which require detailed
knowledge of the system on which the application is implemented. ACMS lets you
create task definitions that control what a task does and how it is processed.
These definitions. called multiple-step task definitions, replace significant parts of
program code with simple. direct statements. ACMS provides Application
Definition Utility (ADU) clauses for creating task definitions. These and other
ADU definitions are stored in the VAX Common Data Dictionary (CDD).

There are two types of steps in a multiple-step task. An exchange step handles
terminal 1/0, usually by means of a VAX TDMS request. The request uses forms
for input and output. A processing step does the computation or database work
needed by the task. It uses a subroutine or procedure written in a programming
language such as VAX COBOL or VAX BASIC, a VAX DATATRIEVE command
or procedure, a DCL command or procedure, or a VMS image. At the end of each
step, you can define one or more actions that determine what the task does next.

6-2 VAX ACMS

Figure 6-1 shows the definition for a simple task that writes a new employee
record to a file. The task first calls a TDMS request that asks the user for infor
mation about the employee. When the information is complete, the task calls a
program to write that information to a file. If an error occurs in writing the infor
mation, the task returns to the exchange step to display an error message.

CREATE TASK ADD_EMPLOYEE
WORKSPACE IS ADD_EMPLOYEE_WORKSPACE;
BLOCK WORK

EXCHANGE
REQUEST IS GET_EMPLOYEE_INFORMATION

USING ADD_EMPLOYEE_WORKSPACE;
PROCESSING

CALL PERSADD IN PERSONNEL_SERVER
USING ADD_EMPLOYEE_WORKSPACE;

ACTION
CONTROL FIELD IS PERSADD_RETURN_STATUS

"ERROR" GO TO PREVIOUS EXCHANGE;
"SUCCESS" : EXIT TASK;

END CONTROL FIELD;
END BLOCK WORK;

END DEFINITION;

Figure 6-1: Multiple-Step Task Definition

Multiple-step tasks use workspaces to pass information between steps. In the
definition shown in Figure 6-1, the workspace named
ADD EMPLOYEE WORKSPACE passes information from the exchange step to
the processing step~

Tasks developed using VAX ACMS can use VAX DBMS or VAX Rdb/VMS
databases, or VAX RMS files. If a task uses VAX DBMS or VAX Rdb/VMS,
recovery actions can be controlled by the task definition, further simplifying the
development and maintenance of the application. ACMS does not itself provide
journaling or recovery facilities.

Structuring the task into exchange (terminal 1/0) steps and processing steps
makes the task definition easier to understand and maintain. In addition, the sep
aration of terminal 1/0 from processing lets ACMS dedicate different, specialized
VMS processes to each kind of work. ACMS system processes can be used to
handle the terminal I/O for many users. Another kind of process, called a server,
can be dedicated to computation, database interaction, and other processing work.

Server processes can be used by the processing steps in many tasks without hav
ing to be started and stopped for each task. A server process can handle the pro
cessing step for one task while other tasks do terminal 1/0; the same server
process can handle processing for a second task while the first does terminal 110.
This specialization of processes can significantly reduce the resources, including
memory, that the application needs.

VAX ACMS 6-3

There are two kinds of servers:

• DCL servers handle VMS images, DCL commands, DATATRIEVE com
mands, DAT A TRIEVE procedures, and other processing work that can be
run from DCL command mode.

• Procedure servers handle subroutines written in VAX BASIC, VAX COBOL,
or other VAX languages.

Because servers can be used by many tasks, they are defined in a task group defi
nition. The task group defines resources that can be shared by many tasks. These
resources include TDMS request libraries, VMS message files, ACMS
workspaces, and servers.

In addition to the ADU clauses for defining tasks and task groups, VAX ACMS
provides a facility to help the application programmer develop ACMS applica
tions. The ACMS Task Debugger lets you debug tasks without setting up an
application and its menus. With the Task Debugger, an application programmer
can start servers and tasks. While a task is running, the programmer can set
breakpoints, examine and change workspace contents. and use the VAX Symbolic
Debugger to control processing steps. The commands and qualifiers are similar to
those of the VAX Symbolic Debugger.

In summary, the application development features of ACMS let you create an
online application using well-defined and easily-understood pieces. Further,
ACMS lets you group these pieces so that they work more efficiently with less
system overhead.

The following section describes the application control features of ACMS.

6.3 Application Control with VAX ACMS

In addition to supplying the operational environment for VAX ACMS applica
tions, VAX ACMS can also be used to monitor and control existing applications
running under the VMS operating system.

The application control features of ACMS address four different types of users:

• Application managers set up menus, define applications, control user access
to applications and tasks, and monitor and maintain applications.

• ACMS operators control and monitor the day-to-day operations of ACMS
applications.

• System managers authorize users and terminals for access to ACMS. and
ACMS applications for access to the VMS operating system.

• Terminal users select and run tasks from ACMS menus.

6-4 VAX ACMS

These terms represent roles, not job titles. In many organizations, a single person
performs more than one of these roles.

The tools that VAX ACMS provides for these users make it easy to:

• Set up or change menus that let terminal users easily select the tasks they
want to run

• Control which users and terminals have access to ACMS

• Control which users can run which tasks in an application

• Control what resources are available to process the tasks in an application

• Control the startup and shutdown of applications

• Monitor application use and performance

• Change ACMS parameters to improve performance

The Application Definition Utility supplies a set of English-like clauses for
defining menus and for defining the operational characteristics of ACMS applica
tions. For example, ADU lets you define access control lists that specify which
tasks a user is allowed to access in an application. These access control lists can
be the same for all tasks in an application or can differ from task to task. Figure
6-2 shows an access control list that makes a Display Parts List task available to
a group of users.

CREATE APPLICATION INVENTORY_CONTROL

TASK ATTRIBUTE
DISPLAY_PARTS_LIST ACCESS CONTROL LIST

END TASK ATTRIBUTE;
END DEFINITION;

ID [100,*] ACCESS EXECUTE;

Figure 6-2: Task Access Control List

Application definitions are stored in the CDD so they can be more easily main
tained and controlled.

Terminal users can use ACMS menus to select tasks. Although ACMS provides a
standard menu format, the format can be modified to suit the needs of different
terminal users. In addition, terminal users can bypass menus and select tasks by
typing entry names after the 11 Selection: 11 prompt. Certain terminal user com
mands provided as part of the terminal user interface let users display or bypass

VAX ACMS 6-5

menus. Other terminal user commands let users get help on using ACMS menus,
cancel active tasks, select tasks from undisplayed menus or distributed applica
tions, and exit from ACMS.

The separation of menu and form definitions from the procedural code is another
example of the structure ACMS imposes on the application. Because of this
separation, you need not worry about the type of terminal being used for the
application.

6.4 Distributed Applications with VAX ACMS

It is often costly to run an application in a distributed environment. Either the
network support must be implemented in application code. or the terminal user
must explicitly SET HOST to the node of the network where the application is
located. ACMS supports distributed processing. That is, a task developed with
ACMS that runs on one node of a network (either VAXcluster, local area network
or wide area network) can be selected by terminal users on other nodes. No special
programming is required. (The only restriction is that the task do all terminal I/O
in exchange steps.) Consequently, the development of distributed applications is
much easier with ACMS than with traditional methods.

Thus you might place the terminal 1/0 portion of an application on one node and
the database 1/0 portion on another. This would let you use a MicroVAX com
puter as a "terminal server" for an application whose database exists on a VAX
86_00 computer.

See the VAX A CMS Application Management Guide for more information about
creating distributed ACMS applications and for converting existing ACMS appli
cations to a distributed transaction processing environment.

6.5 Additional VAX ACMS Utilities

In addition to supplying a set of terminal user commands and various clauses for
defining applications and menus, VAX ACMS also supplies components for
managing, using. and running ACMS applications.

'fhe ACMS Operator Facility provides a set of commands for controlling applica
tions. For example, with these commands an ACMS operator can start an appli
cation, making its tasks available to users. Or the operator can stop the
applicatfon so that the tasks are not available and the application does not tie up
any system resources. Other ACMS Operator commands display information
about applications, tasks. users. and ACMS components.

A second VAX ACMS component, the Audit Trail Facility, helps ACMS operators
and application managers monitor the use of ACMS. An Audit Trail logging
facility gathers information about task selections, user logins, and other events,
and it records this information in a log file. You can then use the Audit Trail
Report Utility to format information from the log file into a report. The report

6-6 VAX ACMS

can include all information from the file; it can also be selective, including infor
mation about only one user, for example. Similarly, the information gathered by
the Audit Trail logging facility can include all applications or can be restricted to
one or more applications.

VAX ACMS provides two utilities that control access to ACMS: the User
Definition Utility and Device Definition Utility. The User Definition Utility
defines which VMS users are authorized to log in to ACMS. It also defines which
menu the user sees upon logging in to ACMS or, alternatively, defines the user as
one who sees a selection prompt rather than a menu after logging in. The Device
Definition Utility defines which terminals can access ACMS and whether those
terminals log directly in to ACMS. It also defines which task-submitting agents
can submit tasks that run under user names other than their own. With these
utilities. users and terminals can be restricted to ACMS, restricted to the VMS
operating system, or given access to both. The utilities are similar to the
AUTHORIZE Utility, the system management tool provided by the VMS operat
ing system for authorizing VMS users.

The Application Authorization Utility allows a system manager to use definitions
to authorize applications for installation and to describe allowed characteristics
for each application. For example, it describes which users are authorized to
install the application using the AC MS/INST ALL Operator command. It also
defines which user names the servers in an application can have and the user
name under which an application can run.

The sixth major component provided by VAX ACMS is the ACMSGEN utility.
This utility, similar to the VMS SYSGEN utility, lets system managers change
ACMS system parameters, such as how many users can log in, the user names
under which ACMS processes run, and the priorities of those processes.

6.6 Types of VAX ACMS Product Kits

VAX ACMS provides three kits:

• VAXACMS

(This was formerly known as the full Product Set -- VAX ACMS and VAX
ACMS/AD.) VAX ACMS is the full development kit and contains all the
components needed to create and control ACMS applications.

• VAXACMS RUN-TIME

(This was formerly known as VAX ACMS.) VAX ACMS RUN-TIME is the
run-time kit for VAX ACMS. It lets you run applications and change applica
tion attributes (for example, menu definitions) but does not allow the creation
of new applications.

VAX ACMS 6-7

• VAX ACMS REMOTE

This kit contains all the ACMS components needed to create a "front-end"
environment on one system and access an ACMS application on a remote
node.

6-8 VAX ACMS

VAX DATATRIEVE 7

7.1 Overview of VAX DATATRIEVE

VAX DAT A TRIEVE is a query language and general-purpose data management
tool. It is a versatile language with both procedural and nonprocedural character
istics. DAT A TRI EVE lets you:

• Define data in RMS files

• Store, update, retrieve, and display data from RMS files, VAX DBMS
databases, and VAX RdbNMS databases

• Query online data

• Write reports

• Display data graphically

• Format screens with either VAX TDMS or VAX FMS

• Access records from files and databases that are distributed on a DECnet
network

All these options are available in both an interactive environment (through the
DAT ATRIEVE user interface) and a programming environment (through the
DAT A TRI EVE call interface).

DATATRIEVE can be used by computer professionals and by people with little or
no computer experience. DAT A TRIEVE operates effectively in commercial, tech
nical, scientific. industrial, and educational environments.

The amount of experience you need to perform a task with DAT A TRIEVE
depends on the type of task. People with very little computer experience can
quickly learn to use DAT A TRI EVE to create reports or make ad hoc queries.

7-1

However, people also use DAT ATRIEVE to create prototypes of application pro
grams; to use DAT ATRIEVE as a prototyping tool, you need to know about files
and computer applications, that is, more than you would need to know for reports
and ad hoc queries.

DATATRIEVE's versatility is also apparent in the data it can access and in the
ways it can process that data. For example, you can use DAT ATRIEVE to query
a personnel data file to determine which employees work in a particular depart
ment. You can also use the same personnel file to produce a report with a statisti
cal analysis of employee compensation by experience level. And you could still
perform either task if the data were to reside in an Rdb/VMS or DBMS database
rather than in an RMS file.

DAT ATRIEVE can also be useful in a distribution facility with an order process
ing system. In this setting, you could extract sales data by territory and plot the
results in pie charts or bar graphs.

In manufacturing, you can use DATATRIEVE to make queries about process con
trol data. with DATATRIEVE's forms capability providing the interface for data
entry.

7.2 Comparing DATATRIEVE With Other Computer Languages

DAT A TRI EVE syntax is more English-like than that of most other computer
languages. More importantly, DATATRIEVE has nonprocedural characteristics;
thus, you can often simply tell DAT ATRIEVE what information you want,
instead of specifying how to obtain the information.

DATATRIEVE handles many programming language functions automatically,
without the need for most of the separate manipulation statements common in
programming languages. For instance, DATATRIEVE:

• Finds data files and opens them

• Performs input and output operations

• Formats data for output

• Converts data types automatically

• Handles errors and conditions such as end-of-file

As a result, you can avoid writing many lines of procedural code and thus get
applications running quickly. In addition, DATATRIEVE statements can be more
readable than the equivalent code in another programming language. For exam
ple, a typical programming language might retrieve the records of all employees

7-2 VAX DATATRIEVE

named Foster like this:

LOOP:

READ EMPLOYEE-FILE
AT END EXIT

IF LAST_NAME NOT = "FOSTER" THEN
GO TO LOOP

END IF

PRINT FIRST_NAME, LAST_NAME, ADDRESS ...
GO TO LOOP

In DATATRIEVE. all this code becomes:

PRINT EMPLOYEES WITH LAST_NAME = "FOSTER"

7.3 Managing Information with DATATRIEVE

DATATRIEVE is a tool for turning data into information. Using DATATRIEVE.
you can:

• Store and modify data

• Retrieve data and display it on a terminal, record it in a file, or print it on
paper

• Define data in a way that fits your information management needs

• Format data in reports

• Represent data in graphs

• Use VAX TDMS or VAX FMS forms to format the terminal screen for input
and display of data

• Get access to data files distributed across a network

• Call any of the information services listed above from a program written in a
high-level VAX programming language

The following sections describe these capabilities in more detail.

7.3.1 Defining Data

Creating a DAT A TRI EVE information management application is a two-phase
process. In the first phase, you define the data to be used in the application. You
need to define the data only once to establish a foundation on which to build the
application. In the second phase, you use DAT A TRI EVE statements to process

VAX DATATRIEVE 7-3

the data associated with these definitions.

The data definition phase of a DAT A TRIEVE application is usually much simpler
than that of applications in other languages because you need only point to exist
ing definitions in the CDD. These existing definitions can be record definitions
(for RMS files), schema and subschema definitions (for DBMS databases), or rela
tion and view definitions (for Rdb/VMS databases).

Of course, DAT ATRIEVE also lets you create record definitions and store them
in the CDD. When you create a record definition with DATATRIEVE, you can
use the VALID IF clause to specify the values that fields are allowed to contain.

The data definition process involves establishing DATATRIEVE constructs called
domains. Domains represent relationships between actual physical data and
descriptions of data. DAT A TRI EVE performs all data management in terms of
domains.

In its simplest form, a DATATRIEVE domain definition consists of:

• A domain name

• The name of a record definition

• The name of a data file or database

When you define a domain, the domain definition itself is inserted into the CDD,
where it can be used by a variety of DAT ATRIEVE queries and procedures.

The Application Design Tool (ADT) is a DAT ATRIEVE utility that simplifies the
process of defining domains. Operating interactively, ADT presents you with a
series of simple questions. Your responses to the questions provide ADT with
information to define a domain, define a record, and create a data file.

Domains need not match a record definition exactly; you can create a special kind
of domain, called a DATATRIEVE view, which can specify a subset of the fields in
a record definition or span several record definitions and data files. Thus you can
define a domain that provides information from other domains. A view domain
provides a logical view of data stored in one or more files. You can use a view
domain just as you use a simple domain.

Here is an example of a simple domain definition:

DEFINE DOMAIN PERSONNEL USING PERSONNEL_RECORD ON PERSONNEL.DAT;

The record definition PERSONNEL RECORD describes the data you want to
use. The data file PERSONNEL.DAT contains the data. The PERSONNEL
domain connects the description with the data.

7-4 VAX DATATRIEVE

To use a domain, you must first get access to it with the READY command:

READY PERSONNEL

After you ready a domain, you can instruct DAT ATRIEVE to display data with a
statement such as:

PRINT FIRST 2 PERSONNEL

In response to this statement, DAT ATRIEVE checks the record definition, gets
the data requested from the file, and displays the following lines on your terminal:

ID STATUS
FIRST
NAME

LAST
NAME

00012 EXPERIENCED CHARLOTTE SPIVA
00891 EXPERIENCED FRED HOWL

DEPT
START
DATE

SUP
SALARY ID

TOP 12-Sep-1972 $75,892 00012
F11 9-Apr-1976 $59,594 00012

If you want to put this information in a file, you can specify an output file:

PRINT FIRST 2 PERSONNEL ON FILE.DAT

You can also send the information to a line printer:

PRINT FIRST 2 PERSONNEL ON LP:

DATATRIEVE also has a relational facility for linking domains dynamically.
Using the DATATRIEVE CROSS'clause, you can join data from separate files in
a single statement.

If your system is part of a DECnet network, you ca·n also define domains as
remote, so that the record definition and data file can exist on one system and be
accessed from another. For example, if your computer is V AXl and you want
access to a domain on computer SYSTM2, you can use this command:

READY PERSONNEL AT SYSTM2

Now you can display data on your terminal as though the data and record defini
tion were stored on VAXl:

PRINT FIRST 2 PERSONNEL

VAX DATATRIEVE 7-5

While DAT ATRIEVE can be very simple, it can also be very powerful and versa
tile. It is possible to construct a single DAT ATRIEVE view that combines data
from an RMS file, a DBMS database, and an RdbNMS database.

7.3.2 Storing and Modifying Data

DATATRIEVE lets you, on an ad hoc basis, write data to a file or database or
change existing data. You use the DATATRIEVE STORE and MODIFY state
ments for these purposes.

Before modifying or storing data, DAT A TRIEVE performs validation checks
specified by VALID IF clauses in the DAT ATRIEVE record definition or by a
VERIFY clause in a STORE or MODIFY statement.

To store new records in a domain, you must ready the domain for WRITE access
and issue the STORE command. DATATRIEVE then prompts you for the value
of each elementary field in the new record. For example:

DTR>READY PERSONNEL WRITE
DTR>STORE PERSONNEL
Enter ID: 87422
Enter EMPLOYEE_STATUS: EXPERIENCED
Enter FIRST_NAME: GABBY
Enter LAST_NAME: WEILER
Enter DEPT: T32
Enter START_DATE: 26-AUG-1984
Enter SALARY: 18750
Enter SUP_ID: 87289
DTR>

You can modify the data in existing records with equal ease.

7.3.3 Data Retrieval

Data is used to make decisions, generate reports and graphs, and facilitate the
operation of an enterprise. DAT ATRIEVE lets you retrieve stored data with a set
of statements. You need not be concerned with the underlying data structure or
with the physical location of the data.

DAT A TRIEVE 's data retrieval statements consist of verbs modified by record
selection expressions (RSEs). An RSE specifies a subset of the data records in one
or more domains. One statement can get the answer to a casual query or produce
a detailed report.

A typical data retrieval statement is:

FIND PERSONNEL WITH START_DATE AFTER "01-Jan-1982"

7-6 VAX DATATRIEVE

This statement establishes a collection of records. It might yield a response
such as:

[50 records found.]

Subsequent FIND statements can narrow down this CURRENT collection of 50
records. For example:

FIND CURRENT WITH DEPARTMENT EQUAL "SALES" OR "MARKETING" AND
ZIP_CODE EQUAL 02138

DAT A TRIEVE might then respond:

[4 records found.]

You can then use the PRINT statement to display the information on the termi
nal screen. record it in a file, or print it on paper. For example, you can display
the data on your terminal screen by typing:

PRINT ALL NAME, ADDRESS, PHONE

If there are complex retrieval statements that you use often, you can define a pro
cedure that includes the statements. Then, each time you need that information,
you simply run the procedure instead of typing in the statements.

7 .4 Writing Reports With DATATRIEVE

One major reason for organizing and maintaining data is to make the information
available to the people who need it. DATATRIEVE's Report Writer helps you
present this information in attractive and comprehensive reports.

Managers, secretaries, and other users often need quick access to information
about a specific subject. To report this information. you must have rapid access to
the data and reliable formatting techniques. With a few simple statements and
commands, you can quickly display and accurately summarize data managed by
DATATRIEVE.

In addition to query reports. most organizations require detailed summary reports
at regular intervals to compare current performance with past performance.
These periodic reports are on subjects such as accounts receivable, inventory, and
sales. You can use the statistical functions within the Report Writer to summa
rize the information. Then you can define DAT ATRIEVE procedures to produce
such reports whenever they are needed.

The Report Writer helps you organize your data in a clear. readable format.

VAX DATATRIEVE 7-7

It can:

• Center a report name at the top of the page

• Print page numbers and the current date at the upper right of the page

• Set up column headings

• Print a detail line for each record

• Print a summary line for groups of data or for the entire report

You can use the Report Writer's statistical functions to compute values for sum
mary lines. The statistical functions are:

• COUNT

• RUNNING COUNT

• AVERAGE

• TOTAL

• RUNNING TOTAL

• Maximum value (MAX)

• Minimum value (MIN)

• Standard deviation (STD_DEV)

You create a DATATRIEVE report with a series of Report Writer statements
called a report specification. A report specification begins with a REPORT state
ment, which specifies the data for the report and the file or device to which
DAT A TRI EVE writes the report. A report specification may contain SET state
ments, which control the page format and assign heading text; the Report Writer
uses built-in defaults for the SET values you do not include. Finally. the report
specification ends with an END_REPORT statement.

See the VAX DATATRJEVE Guide to Writing Reports for more information.

7-8 VAX DATATRIEVE

7.5 Producing Graphics with DATATRIEVE

DATATRIEVE lets you produce three basic types of graphs, or plots, from data
in RMS files, VAX DBMS databases, and VAX RdbNMS databases. These types
of plots are:

• Bar charts

• Line graphs and scattergraphs

• Pie charts

In addition, DATATRIEVE gives you a variety of features that enhance the
appearance and usefulness of the three fundamental plot types.

VAX DATATRIEVE graphics can be displayed on any ReGIS device, including:

• VT125. LAIOO, VT240. and VT241 terminals

• DECwriter IV (LA34-VA). LA12, LA50, and LAIOO printers

See the VAX DAT A TRIEVE Guide to Using Graphics for more information.

VAX DATATRIEVE 7-9

In this index, a page number followed
by a "t" indicates a table reference.
A page number followed by an "f"
indicates a figure reference.

A
Access control lists, 6-5
Accessing data, 1-3

with DBMS, 4-9
with RdbNMS, 3-16

ACMS, 1-20
access control lists, 6-5
ACMSGEN Utility. 6-7
ADU. 6-2. 6-5
Application Authorization Utility.

6-7
application control, 6-4
application definitions, 6-5
Audit Trail Facility, 6-6
developing applications, 6-2
Device Definition Utility, 6-7
distributed applications, 6-6
managing complexity with, 6-1
menus, 6-5

multiple-step tasks, 6-2
Operator Facility, 6-6

Index

principles of application develop-
ment, 6-2

product kits, 6-7
server processes, 6-3
sharing resources, 6-2
structured programming, 6-3
task debugger, 6-4
task definitions, 6-2
task groups, 6-4
types of kits, 6-7
used with TDMS, 6-3
User Definition Utility, 6-7
V AXclusters, 6-6
workspaces, 6-3

ACMSGEN Utility (ACMS), 6-7
ADT, 1-25
ADU, 6-2, 6-5, 6-7
After-image journaling

with DBMS. 4-4
with RdbNMS. 3-22

Application Authorization Utility
(ACMS). 6-7

Application control with ACMS, 1-20,
6-4

Application Definition Utility (ACMS)
See ADU

Application definitions, 6-5

lndex-1

Application Design Tool
(DATATRIEVE)

SeeADT
Application management, 1-12
Application programs, used with

TDMS. 5-3
Applications

developing with ACMS, 6-2
distributed, 6-6
online, 6-1

Audit Trail Facility (ACMS), 6-6

B
Background text, 5-4
Bar charts. with DATATRIEVE, 7-9

c
CDD, 1-13, 2-1

ACMS definitions, 2-2
creating definitions with CDDL,

2-8
DATATRIEVE definitions, 2-2
DBMS definitions, 2-2
ease of changing definitions, 2-12
features, 2-8
history lists, 2-12
languages supported. 2-3
maintenance, 2-15
monitoring changes. 2-12 to 2-13
organization, 2-3 to 2-7
path names, 2-7
RdbNMS definitions, 2-2
record definitions, 2-1 to 2-2
security mechanisms, 2-11
subdictionaries, 2-11
TDMS definitions, 2-2

CDD Data Definition Utility
SeeCDDL

CDD definitions
ACMS. 2-2
copying. 2-14
DATATRIEVE, 2-2
DBMS. 2-2
locating, 2-14

lndex-2

RdbNMS, 2-2
record, 2-1
TDMS, 2-2

CDD Verify/Fix Utility
SeeCDDV

CDDL
creating definitions with, 2-8
sample definition, 2-9f

CDDV, 2-15
CODASYL databases, 4-1

See also DBMS
See also network databases
DBMS enhancements, 4-3

Complexity, managing with ACMS,
6-1

Computer networks, 1-3
Constraints, defining in RdbNMS,

3-15
Controlling applications with ACMS,

1-20
Copying data definitions, 2-14
Creating data definitions, 2-8 to 2-11
Creating views

D

in DATATRIEVE, 7-4
in RdbNMS, 3-10

Data access, 1-3
with DATATRIEVE. 7-6
with DBMS. 4-9
with RdbNMS, 3-1

Data definition language
SeeDDL

Data Definition Language Utility
SeeCDDL

Data definitions
$ee also CDD definitions
controlling access, 2-11
copying, 2-14
creating, 2-8 to 2-11
locating, 2-14
modifying, 2-13 to 2-14
storing, 2-8 to 2-11

Data dictionaries. 1-3. 2-1

See alsoCDD
Data inconsistency, reducing, 2-1
Data independence, 4-2
Data Manipulation Language

SeeDML
Data sharing, 1-13
Data validation, 7-6
Database administrator

SeeDBA
Database consistency

DBMS, 4-2.
Rdb/VMS, 3-18

Database Control System (DBCSI,
4-9

Database handles, in Rdb/VMS. 3-12
Database management systems. 1-7

DBMS, 1-15
network. 1-15
Rdb/VMS. 1-14
relational. 1-14

Database operations. 3-15
Database Operator

SeeDBO
Database Query Utility

SeeDBQ
Databases

See also DBMS
See also Rdb/VMS
CODASYL, 4-1
comparison of, 1-11
designing with Rdb/VMS, 3-12
hierarchical, 1-8
maintaining, 3-21
multiple with Rdb/VMS, 3-12
network. 1-9
performance, 4-5
relational. 1-9
tuning. 4-5

DATATRIEVE. 1-22
ADT. 1-26
bar charts. 7-9
data validation. 7-6
defining data. 7-3
domains. 7-4
editor, 1-25

graphics, 7-9
Guide mode, 1-25
in a DECnet network, 7-5
modifying data, 7-6
pie charts, 7-9
PRINT command output, 1-23f
relational facility, 7-5
Report Writer, 7-7
retrieving data, 7-6
RSEs, 7-6
sample report, 1-23f
scattergraphs, 7-9
statistical functions, 7-8
storing data, 7-6

DBA productivity, 4-4
DBCS. 4-9
DBMS. 1-15. 4-1

after-image journaling. 4-4
database consistency. 4-2
DBO, 4-6
DBQ, 4-10
DDL, 4-2, 4-8
DEMO, 4-12
DML, 4-3, 4-9
in a VAXcluster, 4-7
Load/Unload facility, 4-4
network access, 4-7
performance, 4-5
precompilers, 4-3
programmer productivity, 4-2. 4-4
remote access, 4-7
schema. 4-8
security features, 4-7
security schema, 4-8
space area management, 4-5
storage schema, 4-8
subschema, 4-8
supported languages, 4-3
transaction, 4-2
tuning. 4-5
types of kits. 4-12

DBO, 4-6, 4-11
DBO/ANALYZE. 4-6
DBO/GRANT_COMMAND, 4-7
DBO/PERMIT_USER, 4-7

lndex-3

DBO/SHOW
STATISTICS, 4-6
SYSTEM. 4-6
USERS, 4-6

DBQ, 4-5, 4-10
DDL, 4-2, 4-8
DECnet

ACMS in. 6-6
DAT A TRIEVE in, 7-5
DBMS in. 4-7
Rdb/VMS in. 3-12

Defining
applications with ACMS, 6-5
constraints with Rdb/VMS. 3-15
data with DATATRIEVE. 7-3
data with DBMS. 4-2
databases with Rdb/VMS. 3-15
fields with Rdb/VMS. 3-15
forms with TDMS, 5-4
indexes with Rdb/VMS, 3-15
protection with Rdb/VMS, 3-16
relations with Rdb/VMS. 3-15
request libraries with TDMS. 5-6
requests with TDMS, 5-5 .
schemas with DBMS, 4-8
security schemas with DBMS, 4-8
storage schemas with DBMS, 4-8
subschemas with DBMS, 4-8
task groups with ACMS, 6-4
tasks with ACMS. 6-2
views with Rdb/VMS, 3-16

Designing a database. 3-12
Device Definition Utility (ACMS) 6-7
Device independence of TDMS 5~2
Dictionaries '

See also CDD
data. 1-3

Dictionary directories, 2-3, 2-3f
Dictionary Management Utility

SeeDMU
Dictionary objects. 2-3
Distributed applications, 6-6
Distributed processing. 1-3
DML, 4-3. 4-9
DMU. 2-11

lndex-4

Domains in DATATRIEVE, 7-4

E

Enhancements to CODASYL
database model, 4-3

Equijoin in Rdb/VMS. 3-7
Exchange step. 6-2

F
FDU, 5-6
Field attribute clauses (CDD), 2-10
Field attributes, 5-4
Field description statements (CDD),

2-10
Form Definition Utility

SeeFDU
Form definitions, 5-4
Forms

sample, 1-18f
Forms processors, 1-6. 5-1

TDMS, 1-18 .
Forms, defining, 5-4
Full path names, 2-7

G

Generating graphics, 1-4, 7-9
Generating reports, 1-4, 7-8
Given names, 2-7
Graphics

creating. 1-4
using DATATRIEVE, 7-9

Guide Mode (DATATRIEVE), 1-25

H
Hierarchical databases. 1-8
History lists. 2-12

Information management, 1-1
systems. 1-12
tools. 1-2

J
Joining relations, 3-6

K
Kits

See Product kits

L
Languages supported by CDD, 2-3
Load/Unload facility in DBMS, 4-4
Locating data definitions. 2-14
Logical operators in Rdb/VMS, 3-19

M
Maintaining databases

DBMS. 4-3
Rdb/VMS. 3-21

Maintaining the CDD. 2-15
Management of applications. 1-12
Menus

ACMS, 6-5
sample, 1-20f

Modifying data
with DATATRIEVE, 7-6
with DBMS, 4-9
with Rdb/VMS, 3-21

Modifying data definitions, 2-13 to
2-14

Multiple-step tasks, 6-2

N
Network databases, 1-9

DBMS, 1-15
Networks. computer. 1-3
Normalization. 3-5

0
Online applications, 6-1
Operations

on a database, 3-15
relational. 3-6

Operator Facility (ACMS), 6-6

p

Path names, 2-7
given names, 2-7

Pie charts, 1-6
with DAT A TRI EVE, 7-9

Plots
See Graphics

Precompilers
for DBMS. 4-3
for Rdb/VMS. 3-12

Processes. server. 6-3
Processing step. 6-2
Producing graphics with

DATATRIEVE, 7-9
Product kits

ACMS. 6-7
DBMS. 4-12
Rdb/VMS, 3-22
TDMS. 5-8

Program interfaces
DBMS, 4-3
Rdb/VMS, 3-12

Programmer productivity
DBMS, 4-2, 4-4
TDMS, 5-1

Q

Query languages. 1-3, 7-1
DATATRIEVE. 1-22

R
Rdb

SeeRdb/VMS
Rdb/VMS, 1-14

access methods. 3-1
accessing data, 3-16
advantages of. 3-1
callable RDO, 3-12
creating views, 3-10
database consistency, 3-18
database handles, 3-12
database maintenance, 3-21
defining constraints. 3-15
defining databases, 3-15

lndex-5

defining fields, 3-15
defining indexes, 3-15
defining protection, 3-16
defining relations, 3-15
defining views, 3-16
features of. 3-1
logical operators, 3-19
modifying data, 3-21
multiple databases, 3-12
normalization, 3-5
precompilers, 3-12
product kits, 3-22
program interfaces, 3-12
RDO, 3-10
read-only transactions, 3-18
record selection expressions, 3-19
record streams, 3-20
reducing data, 3-9
relations, 3-4
remote access. 3-12
retrieving data, 3-18
selecting fields and records, 3-9
snapshots, 3-18
statistical expressions. 3-20
storing data, 3-16
suitable applications, 3-2
tables, 3-4
the relational model. 3-3
transactions. 3-1 7
when to use. 3-2

RDO, 3-10
callable, 3-12

RDU, 5-7
Read-only transactions, 3-18
Record definitions, 2-1 to 2-2

TDMS, 5-4
Record selection expression

SeeRSE
Record streams, 3-9, 3-20
Reducing data with RdbNMS, 3-9
Relational Database Operator

SeeRDO
Relational databases, 1-9, 3-3

compared to network model, 3-5
Rdb/VMS, 1-14

lndex-6

Relational facility, in DATATRIEVE,
7-5

Relational model, 3-3
Relational operations, 3-6
Relations, 3-4

joining. 3-6
Remote access

with DATATRIEVE. 7-5
with DBMS. 4-7
with Rdb/VMS. 3-12

Report writing. 1-4
with DATATRIEVE. 7-7

Request Definition Utility
SeeRDU

Request definitions. 5-5
Request library definitions, 5-6
Resource sharing

with ACMS, 6-2
Retrieving data

with DATATRIEVE. 7-6
with DBMS, 4-9
with RdbNMS, 3-18

RSE

s

in DATATRIEVE. 7-6
in Rdb/VMS, 3-9, 3-19

Scattergraphs, in DATATRIEVE, 7-9
Schema, 4-8
Security features in DBMS. 4-7
Security schema, 4-8
Selecting fields and records, 3-9
Server processes, 6-3

DCL, 6-4
procedure. 6-4

Sharing data, 1-13
Sharing resources with ACMS, 6-2
Snapshot in Rdb/VMS. 3-18
Space allocation in DBMS. 4-5
Space area management in DBMS,

4-5
Statistical expressions. 3-20
Statistical functions in

DATATRIEVE, 7-8

Step
exchange, 6-2
processing, 6-2

Storage schema. 4-8
Storing data

with DAT ATRIEVE. 7-6
with DBMS. 4-9
with Rdb/VMS. 3-16

Storing data definitions, 2-8 to 2-11
Structured programming. with

ACMS. 6-3
Subdictionaries. 2-11 to 2-12
Subschema. 4-8
System availability, improving, 6-2

T

Tables. 3-4
Task debugger (ACMS), 6-4
Task definitions, 6-2
Task groups. 6-4
Tasks. multiple-step, 6-2
TDMS, 1-18. 5-1

application programs. 5-3
background text. 5-4
device independence. 5-2
FDU. 5-6
field attributes, 5-4
form definitions. 5-4
programmer productivity. 5-1
RDU, 5-7
record definitions. 5-4
request definitions. 5-5
request library definitions. 5-6
sample form. 1-7f. l-18f
sample request. 1-19f
supported languages, 5-4
Trace Facility, 5-6, 5-8
types of kits, 5-8
used with ACMS. 6-3
utility programs, 5-6

Terminal management software. 1-6
Trace Facility (TDMS), 5-6, 5-8
Transaction

DBMS, 4-2
Rdb/VMS, 3-17
read-only, 3-18

Tuning DBMS databases, 4-5

u
User Definition Utility (ACMS), 6-7
User work areas in DBMS. 4-5

v
VAXACMS

SeeACMS
VAX Application Control

Management System
SeeACMS

VAXCDD
SeeCDD

VAX Common Data Dictionary
SeeCDD

VAX DATATRIEVE
See DATATRIEVE
storing Rdb/VMS data, 3-16

VAX Information Architecture, 1-12
VAX Rdb/VMS

SeeRdb!VMS
VAX TDMS

SeeTDMS
VAX Terminal Display Management

System
SeeTDMS

V AXclusters
ACMS in, 6-6
DBMS in. 4-7

Views. 3-16

w

in DATATRIEVE, 7-4
in Rdb/VMS. 3-10

Workspaces. 6-3
Writing reports, 1-4

with DATATRIEVE. 7-7

lndex-7

VAX Information Architecture
Summary Description

AA-GR93A-TE

Reader's Comments

Note: This form is for document comments only. DIGITAL will use comments submitted on this
form at the company's discretion. If you require a written reply and are eligible to receive
one under Software Performance Report (SPRJ service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions
for improvement. _______________________________ _

Did you find errors in this manual? If so, specify the error and the page number. _____ _

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer
0 Higher-level language programmer

D Occasional programmer I experienced)

0 User with little programming experience

0 Student programmer
0 Other(pleasespecifyl _________________________ ~

Name Date _______________ _

Organization---------------------------------

Street ___________________________________ _

Zip Code City __________________ State______ or
Country

I
I
I
I
I

------Do Not Tear - Fold Here and Tape-------------------------------------'

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: DISG Documentation ZK02-2/N53

DIGITAL EQUIPMENT CORPORATION

110 SPIT BROOK ROAD

NASHUA, N.H. 03062

No Postage

Necessary

if Mailed in the

United States

------Do Not Tear - Fold Here and Tape-------------------------------------

Introduction to Application
Development with the VAX
Information Architecture

December 1985

This document gives a step-by-step introduction to
developing software applications with components of the
VAX Information Architecture.

OPERATING SYSTEM: VMS

Micro VMS

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corppration; Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliablity of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1985 by Digital Equipment Corporation. All rights reserved.

The postage-paid READER'S COMMENTS form on the last page of this docu
ment requests your critical evaluation to assist us in preparing future documenta
tion.

The following are trademarks of Digital Equipment Corporation:

ACMS
CDD
DATATR.IEVE
DEC
DECgraph
DECnet
DEC slide

DECUS
MicroVAX
Micro VMS
PDP
Rdb/ELN
Rdb/VMS
TDMS

UNIBUS
VAX
VAXcluster
VAX Information Architecture
VMS
VT

mamaama™

Contents

How to Use This Manual ix

1 Overview of the VAX Information Architecture
1.1 Summary of the Sample Applications 1-1
1.2 VAX Common Data Dictionary . 1-2

1.2.1 StructureoftheCDD 1-2
1.2.2 Creating and Managing Directories in the CDD 1-4

2 Setting Up a Database
2.1 Defininga VAX RdbNMS Database 2-2

2 .1.1 Designing the A VERTZ Personnel Database 2-3
2.1.2 Defining the Database 2-5

2.1.2.1 Namingthe Database 2-5
2.1.2.2 Defining Fields 2-5
2.1.2.3 Defining Relations 2-7
2.1.2.4 Defining Views 2-8
2.1.2.5 Defining Indexes 2-8
2.1.2.6 Defining Constraints 2-9

2.1.3 Creating the Database 2-10
2.1.4 Working with an RdbNMS Database 2-13

2.1.4.1 Accessing the Database 2-13
2.1.4.2 DatabaseTransactions 2-13
2.1.4.3 Manipulating Data Within the Database 2-15

2.2 Defining a VAX DBMS Database 2-18
2.2.1 Designing the A VERTZ Car Rental Database 2-19
2.2.2 Defining the Database 2-21

2.2.2.1 Naming the Schema and Areas 2-21
2.2.2.2 Defining Records 2-22
2.2.2.3 Defining Sets 2-22

2.2.3 Compiling the Schem~L 2-24
2.2.3.1 CDD Hierarchy for a DBMS Database 2-25
2.2.3.2 Modifying the Default Schemas 2-27

2.2.4 Creating the Database 2-28
2.2.5 Working with a VAX DBMS Database 2-29

2.2.5.1 Accessing the Database 2-29
2.2.5.2 Database Transactions 2-30
2.2.5.3 Manipulating Data Within the Database 2-31

iii

3 Displaying Data on the Screen
3.1 A TDMS Personnel Application 3-2
3.2 Defining Forms 3-3

3.2.1 The Form Phase 3-4 1

3.2.2 The Layout Phase c •••• 3-4
3.2.3 The Assign Phase 3-7
3. 2. 4 The Order Phase . 3-9
3.2.5 The Exit Phase 3-9

3.3 Defining Requests. 3-10
3.3.1 Defining the Retrieval Request. 3-10

3. 3 .1.1 The Request Header.3-10
3. 3 .1. 2 The Request Base .3-11

3.3.2 Defining the Update Request 3-13
3.4 DefiningWorkspaces 3-15

3. 4 .1 Defining the Record .3-16
3.4.2 Inserting the Record Definition in the CDD. 3-17

3.5 Storing Request Definitions in the CDD 3-17
3.6 Defining and Building a Request Library 3-19
3. 7 TDMS Application Programming 3-20

4 Transaction Processing Against a Database
4.1 AnACMS Personnel Application 4-3

4.1.1 Defining an Inquiry/Update Task 4-4
4.1.1.1 Exchange Steps 4-5
4.1.1.2 Processing Steps 4-6
4.1.1.3 Completing the Task Definition 4-8
4.1.1.4 Storing the Task Definition in the CDD4-10

4.1.2 Writing the Step Procedures .4-11
4.1.2.1 The Retrieval Procedure4-12
4.1.2.2 The Update Procedure4-15

4.2 An ACMS Car Rental Application4-19
4.2.1 Defining a Task4-20

4.2.1.1 Exchange Steps4-20
4.2.1.2 Processing Steps4-22
4. 2 .1. 3 Completing the Task Definition4-2 4
4.2.1.4 Storing the Task Definition in the CDD4-25

4.2.2 Writing the R~quests.4-26
4.2.3 Writing the Step Procedures4-26

4.2.3.1 TheAVERTZRetrievalProcedure4-26
4.2.3.2 TheAVERTZ Storage Procedure4-29

iv

4.3 Defining a Task Group 4-34
4.3.1 Writing Server Procedures 4-34
4.3.2 Using Message Files 4-35
4.3.3 Debugging the Tasks in the Task Group 4-36

4.4 Defining the Application Environment .
4 .4. l Defining the Application

. 4-37
..... .4-38

4.4.2 Defining Menus 4-38

5 Querying the Database
5 .1 Accessing the Data base. 5-1
5.2 Retrieving Records 5-3
5.3 Defining Procedures. 5-5
5.4 Writing Reports 5-8

5.4.1 Creating a Record Stream for the Report 5-9
5.4.2 Formatting Detail and Summary Lines 5-9
5.4.3 Defining Report Characteristics 5-10
5.4.4 An A VERTZ Personnel Report 5-11
5.4.5 AnAVERTZCarRentalReport 5-12

5.5 Generating Graphics 5-17

A Sources for Sample Applications
A.1 A VERTZ Personnel Application . A-1

A.1.1 Personnel Database Definition A-3
A.1.2 PERS WORKSPACE Definition A-12
A.1. 3 Definitions for the Add Task . A-13

A.1.3.1 PERS ADD TASK Definition A-13
A.1.3.2 PERS ADD FORM Definition A-14
A.1.3.3 PERS_ADD_REQUEST Definition A-14
A.1.3.4 PERS ADD Procedure A-15

A.1.4 Definitions for the Display Task A-19
A.1.4.1
A.1.4.2
A.1.4.3
A.1.4.4
A.1.4.5

PERS DISPLAY TASK Definition A-19 - -
PERS DISPLAY FORM Definition A-20 - -
PERS_DISPLAY_REQUESTl Definition A-20
PERS_ DISPLAY_ REQUEST2 Definition A-21
PERS GET DISPLAY Procedure A-22

A.1.5 Definitions for the General Update Task A-24
A.1.5.1
A.1.5.2
A.1.5.3
A.1.5.4
A.1.5.5
A.1.5.6

PERS UPDATE GENERAL TASK Definition A-24 - - -
PERS UPDATE GENERAL FORM Definition A-25 - - -
PERS_UPDATE_GENERAL_REQUESTl Definition .. A-25
PERS_UPDATE_GENERAL_REQUEST2 Definition .. A-26
PERS GET EMPLOYEE Procedure A-27
PERS UPDATE EMPLOYEE Procedure A-29 - -

v

vi

A.1. 6 Definitions for the Raise/Promotion Update Task A-31
A.1.6.1
A.1.6.2
A.1.6.3
A.1.6.4
A.1.6.5
A.1.6.6

PERS UPDATE RAISEPRO TASK Definition A-31 - - -
PERS UPDATE RAISEPRO FORM Definition A-32 - - -
PERS_UPDATE_RAISEPRO_REQUESTl Definition .. A-32
PERS_UPDATE_RAISEPRO_REQUEST2 Definition .. A-33
PERS GET RAISEPRO Procedure A-34
PERS UPDATE RAISEPRO Procedure A-37 - -

A.1. 7 Definitions for the Transfer Update Task A-40
A.1.7.1 PERS UPDATE TRANSFER TASK Definition A-40 - - -
A.1.7.2 PERS UPDATE TRANSFER FORM Definition A-41 - - -
A.1.7.3 PERS_UPDATE_TRANSFER_REQUESTl Definition . A-41
A.1.7.4 PERS_UPDATE_TRANSFER_REQUEST2 Definition . A-42
A.1.7.5 PERS GET TRANSFER Procedure A-43
A.1.7.6 PERS UPDATE TRANSFER Procedure A-45 - -

A.1.8 Definitions for the Status Update Task A-49
A.1.8.1
A.1.8.2
A.1.8.3
A.1.8.4
A.1.8.5
A.1.8.6

PERS UPDATE STATUS TASK Definition A-49 - - -
PERS UPDATE STATUS FORM Definition A-50 - - -
PERS_UPDATE_STATUS_REQUESTl Definition ... A-50
PERS_UPDATE_STATUS_REQUEST2 Definition ... A-51
PERS GET STATUS Procedure A-52
PERS UPDATE STATUS Procedure A-54 - -

A.1.9 Server Procedures A-57
A.1. 9 .1 Initialization Procedure A-5 7
A.1.9.2 TerminationProcedure A-58

A.1.10 Request Library Definition . A-58
A.1.11 Task Group Definition . A-59
A.1.12 Message File A-59
A.1.13 Application Definition A-60
A.1.14 Menu Definition. A-60

A.2 AVERTZCarRentalApplication A-61
A.2.1 Car Rental Database Definition A-63

A.2.1.1 Schema Definition A-63
A.2.1.2 Subschema Definition A-65
A.2.1.3 Storage Schema Definition A-67

A.2.2 Workspace Definition A-69
A.2.3 Definitions for the Reservation Task A-69

A.2.3.1 AVERTZ RESERVE TASK Definition A-69 - -
A.2.3.2 A VERTZ RESERVE FORM Definition A-71 - -
A.2.3.3 AVERTZ_RESERVE_REQUESTl Definition A-71
A.2.3.4 AVERTZ_RESERVE_REQUEST2 Definition A-72
A.2.3.5 AVERTZ_RESERVE_REQUEST3 Definition A-73

A.2.3.6 AVERTZ GET RATES Procedure A-74
A.2.3. 7 A VERTZ RESERVE CAR Procedure A-76 - -

A.2.4 Definitions for the Checkout Task A-80
A.2.4.1 AVERTZ CHECKOUT TASK Definition A-80 - -
A.2.4.2 AVERTZ CHECKOUT FORMl Definition A-81 - -
A.2.4.3 AVERTZ CHECKOUT FORM2 Definition A-82 - -
A.2.4.4 AVERTZ_CHECKOUT_REQUESTl Definition ~A-82
A.2.4.5 AVERTZ_CHECKOUT_REQUEST2 Definition A-83
A.2.4.6 AVERTZ_ CHECKOUT_ REQUEST3 Definition A-84
A.2.4. 7 A VERTZ FIND RESERVATION Procedure A-85 - -
A.2.4.8 A VERTZ ASSIGN CAR Procedure ... , A-88 - -

A.2.5 Definitions for the Checkin Task A-94
A.2.5.l
A.2.5.2
A.2.5.3
A.2.5.4
A.2.5.5
A.2.5.6

A VERTZ CHECKIN TASK DefinitionA-94 - -
AVERTZ CHECKIN FORM DefinitionA-95 - -
AVERTZ_CHECKIN_REQUESTl Definition A-95
AVERTZ_CHECKIN_REQUEST2 Definition A-96
A VERTZ CHECKIN Procedure A-97
AVERTZ RETURN CAR Procedure A-101 - -

A.2.6 Server Procedures A-103
A.2.6.1 Initialization Procedure A-103
A.2.6.2 Termination Procedure A-104

A.2.7 RequestLibraryDefinition A-104
A.2.8 Task Group Definition A-105
A.2.9 Message File A-105
A.2.10 Application Definition A-106
A.2.11 Menu Definition A-106

Index

Examples
3-1 Retrieval Request Definition 3-13
3-2 Update Request Definition ~ 3-15
3-3 PERS WORKSPACE Definition in the CDD 3-16
3-4 Request Library Definition for Update Program 3-19
3-5 Update Program Using TDMS Calls .3-22
4-1 Inquiry/Update Task Definition . 4-9
4-2 Retrieval Step Procedure in COBOL4-12
4-3 Update Step Procedure in COBOL4-16
4-4 Reservation Task Definition .4-24
4-5 Retrieval Procedure in COBOL .4-27
4-6 Storage Procedure in COBOL .4-30
5-1 Definition of Job Changes Report . 5-11

vii

viii

5-2 Job Changes Report
5-3 Definition of Reservation Report
5-4 Reservation Report
5-5 Procedure Definition for Job Changes Pie Chart
5-6 Procedure Definition for Reservation Bar Chart

Figures
1-1 Sample CDD Directory Hierarchy
2-1 Records in the Personnel Database . . .
2-2 Illustration of the Personnel Database .
2-3 CDD HierarchyofRdbNMS Definitions ..
2-4 Set Occurrences inthe Car Rental Database ...
2-5 Bachman Diagram of the Car Rental Database .
2-6 CDD Hierarchy of DBMS Definitions
3-1 Phases of the TDMS Form Editor
3-2 Personnel Form Layout.
3-3 Attribute Assignment Form for Personnel Form .
4-1 Personnel Application Menu. . . .
4-2 Car Rental Application Menu
5-1 Pie Chart of Job Changes.
5-2 Bar Chart of Reservations for Each Location

Tables
A-1 Personnel Application Sources .
A-2 Car Rental Application Sources.

.. 5-12

.. 5-15

.. 5-16
.5-17
.5-19

1-3
2-3
2-4

... 2-12

. .. 2-19
. .2-20
.. 2-26

3-4
3-7
3-8
4-4

.4-19

.5-18
.. 5-20

. A-1
A-61

How to Use This Manual

This manual provides an introduction to developing software applications with the
products of the VAX Information Architecture.

Intended Audience

This book is intended for application programmers who are new to the VAX
Information Architecture. You do not need expertise with the individual products
to begin reading this book; however. you should have some familiarity with the
VMS operating system. VAX Record Management Services (RMS), and VAX
high-level languages. If you do not. you can read:

• The Introduction to VAX/VMS for general information about the VMS oper
ating system

• The Guide to VAXVMS File Applications for information about VAX RMS
file handling

• The VAX Software Handbook for an overview of VAX facilities and
capabilities

Operating System Information

To verify which versions of your operating system are compatible with this ver
sion of the VAX Information Architecture, check the most recent copy of the fol
lowing:

• For the VMS operating system -- VAX/VMS Optional Software Cross
Reference Table, SPD 25.99.xx

• For the MicroVMS operating system -- Micro VMS Optional Software Cross
Reference Table, SPD 28.99.xx

ix

Structure
There are five chapters and two appendixes in this book:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

'Chapter 5

Appendix A

Describes the sample applications developed in this
manual and introduces the VAX Common Data
Dictionary (CDD).

Explains how to define. create. and work with VAX
Rdb/VMS and VAX DBMS databases.

Discusses how to display data on and retrieve data from
the terminal screen in VAX Terminal Data Management
System (TDMS) applications.

Shows how to develop applications with the VAX
Application Control and Management System (ACMS)
using either a VAX DBMS or a VAX Rdb/VMS
database.

Describes how to use VAX DAT A TRIEVE software to
perform ad hoc queries and generate reports and graph
ics of either a VAX DBMS or a VAX Rdb/VMS
database.

Contains the complete sources for the sample ACMS
applications discussed in this manual.

Related Manuals
Before reading this manuaL you should read the VAX Information Architecture
Summary Description for an introduction to the functions and features of the
products in the VAX Information Architecture. This applications guide is not an
exhaustive discussion of any of these products. Therefore. as you use this manual,
you may find it helpful to refer to the documentation sets for the individual
products.

Conventions
This section explains the special symbols used in this book:

GOLD-E The hyphen in key sequences means that you press the first key
and then the second key.

Color Color in examples shows user input.

The software products discussed in this manual are often referred to by simple
names. For example, VAX DATATRIEVE software is referred to as
DATATRIEVE, and VAX Rdb/VMS software is referred to as Rdb/VMS.

x

Overview of the VAX Information Architecture 1

The VAX Information Architecture is a set of related products that work together
to solve your information management problems. These components include:

• VAX Common Data Dictionary (CDD), a central storage facility for data
definitions used by the other components of the architecture and by many
VAX high-level languages

• VAX RdbNMS, a database management system designed on the relational
model

• VAX DBMS, a database management system designed on the network
model

• VAX Terminal Data Management System (TDMS), a forms package that
manages the display of forms and the movement of data to and from the ter
minal screen

• VAX Application Control and Management System (ACMS), an application
development system for implementing and managing transaction processing
applications

• VAX DATATRIEVE, an interactive query language that includes the
capability for generating reports and graphics

Each component of the VAX Information Architecture requires definitions of the
data on which it operates and instructions for processing the data.· By using the
CDD as a central repository for data definitions, the VAX Information
Architecture components can share definitions and thus work together in complex
applications that provide you with maximum flexibility in managing your data.

1.1 Summary of the Sample Applications
This manual describes in detail the development of two transaction processing
applications for the A VERTZ Car Rental Company. This company maintains two

1-1

separate databases, one for personnel data and another for car rental data. These
databases are used in two separate transaction processing systems that permit
reservation agents and personnel clerks simultaneously to enter, display, and
update the data stored in one of the databases. In both systems, data is displayed
on a form on the user's terminal screen, and the user can enter changes directly
on the form. Users can also perform interactive ad hoc queries and generate
reports and graphics of data collected from the database.

The following chapters describe how the A VERTZ Company used the components
of the VAX Information Architecture to implement these applications. All the
components used in the sample applications store data definitions in the CDD,
which is described in Section 1.2. Appendix A contains the complete sources for
the applications, some of which are also used in Chapter 3 to describe the devel
opment of a small forms-driven application.

1.2 VAX Common Data Dictionary

The VAX Common Data Dictionary (CDD) provides a central storage location the
data definitions used in VAX Information Architecture applications. Without such
a repository, you would have to define the data in every piece of an application,
leading to redundancy and perhaps inconsistency of data definitions. With the
CDD, however, you can include the same definition in every piece of the applica
tion that uses the data. If the data changes, you need to change only one
definition in the CDD and rebuild the application; the change is automatically
reflected.

When you create and compile data definitions with VAX Information Architecture
components, they can be stored automatically in the CDD. For example, when
you compile a VAX DBMS schema definition, which defines the database records,
DBMS inserts it in the CDD. When one definition refers to another (for example,
when a TDMS request definition refers to a DBMS record definition), it expects
to find the definition it needs in the CDD. Subsequent chapters of this book
explain how VAX Information Architecture components interact with the COD.
For more information on using the CDD, see the VAX Common Data Dictionary
User's Guide.

1.2.1 Structure of the COD

The CDD is a collection of dictionary objects organized into a hierarchy of
dictionary directories. A dictionary object is a definition that belongs to a diction·
ary directory; for example, DBMS schema definitions and ACMS task definitions
are dictionary objects. A dictionary directory simply groups related objects and
identifies where they are stored. All directories and objects in a CDD dictionary
descend from a top-level directory called CDD$TOP. Figure 1-1 illustrates a pos
sible CDD directory hierarchy.

1-2 Overview of the VAX Information Architecture

CDD$TOP

BRANCHES PERSONNEL CUSTOMERS

EMPLOYEE HISTORY

JOBS-RECORD

ZK-00021-00

Figure 1-1: Sample COD Directory Hierarchy

In this figure, BRANCHES. PERSONNEL, and CUSTOMERS are directories
under CDD$TOP. Below PERSONNEL are the HISTORY directory and the
EMPLOYEE object~ below HISTORY is the JOBS RECORD object.
CREDIT_ RECORD is an object below CUSTOMERS. There are no objects stored
below the BRANCHES directory.

To refer to a definition in the CDD, you must trace the path from CDD$TOP
through any intervening directories to the object. You list the name of each direc
tory along the path. separating the names with periods and ending with the name
of the object For example, in the hierarchy shown in Figure 1-1, you refer to
CREDIT RECORD as CDD$TOP.CUSTOMERS.CREDIT RECORD. You can
abbreviate references by setting a default CDD directory. If you establish

Overview of the VAX Information Architecture 1-3

CDD$TOP.CUSTOMERS as your default directory, you can then omit that part
of the path name and refer to the object simply as CREDIT RECORD. A name
that includes no references to the directories that precede an object in the diction
ary hierarchy is called the object's given name.

Before you define an object that will be stored in the COD, you need to decide
where the definition belongs in the COD hierarchy. You should create a COD
directory specific to your application and use it to store all the definitions used in
the application. The next section shows you how to create directories in the COD
for the personnel and car rental applications.

1.2.2 Creating and Managing Directories in the COD

You create and manage CDD directories with a utility called the Dictionary
Management Utility, or DMU. To enter DMU, you should first define the follow
ing symbol at DCL level or in your login command file:

$ DMU :== $DMU

Then, to invoke DMU, simply type DMU. At the DMU> prompt, you can begin
typing DMU commands. You exit from DMU with the EXIT command or
CTRL/Z. For more information about DMU commands, type HELP at the
DMU > prompt or see the VAX Common Data Dictionary Utilities Reference
Manual.

The first time you enter DMU, your default CDD directory is CDD$TOP. You use
the CREATE command to create a directory below CDD$TOP. To define sepa
rate dictionary directories for the personnel and car rental applications, you could
create the following directories under CDD$TOP:

DMU> CREATE/AUDIT RDBPERS
DMU> CREATE/AUDIT AVERTZ

You must have certain privileges to create a COD directory. To create either of
the directories in the preceding example, you must have PASS THRU and
EXTEND privileges at CDD$TOP. If you try to create these directories and
receive error messages from DMU, ask your system manager to change your
CDD privileges.

Each directory and object in the CDD can have a history list, which contains
information about the directory's or object's creation in the CDD and later modifi
cations to the dictionary. You must use the /AUDIT qualifier with the CREATE
command if you want to record history list information about a directory, such as
the date and time of its creation.

While you are developing an application, you probably want to work most of the
time in the directory you created for the application. To establish a directory as
your default every time you use DMU, you can define the logical name

1-4 Overview of the VAX Information Architecture

CDD$DEFAULT in your login command file. The following example sets
CDD$TOP.AVERTZ as your default CDD directory:

$ DEFINE CDD$DEFAULT CDD$TOP.AVERTZ

You are thus automatically placed in CDD$TOP.AVERTZ when you enter DMU.
If you need to move to CDD$TOP.RDBPERS or another directory during a DMU
session, you can use the SET DEFAULT command. For example:

DMU> SET DEFAULT CDD$TOP.RDBPERS

To see the names of the directories and definitions stored in the CDD, you use
DMU's LIST command. Suppose you have stored the definition of your car rental
database, three task definitions, and a form definition in your default directory,
CDD$TOP.AVERTZ. The following command displays the names of the objects
stored under that directory:

DMU> LIST
AVERTZSC;1 <DBM$SCHEMA>
AVERTZ_CHECKIN_FORM;1 <CDD$FORM>
AVERTZ_CHECKIN_TASK;1 <ACMS$TASK>
AVERTZ_CHECKOUT_TASK;1 <ACMS$TASK>
AVERTZ_RESERVE_TASK;1 <ACMS$TASK>

DMU also displays the version number of the object and its type (schema defini
tion, form definition, and so forth). As you develop your application and your CDD
directory fills up with objects, you can add the /TYPE qualifier to the LIST com
mand to specify which types of objects you want to see. For example, you can list
the names of only the task definitions in your directory:

DMU> LIST/TYPE=ACMS$TASK
AVERTZ_CHECKIN_TASK;1 <ACMS$TASK>
AVERTZ_CHECKOUT_TASK;1 <ACMS$TASK>
AVERTZ_RESERVE_TASK;1 <ACMS$TASK>

When you add the /FULL qualifier to the LIST command and specify the name of
an object, DMU shows you the object's complete definition plus information about
its creation in the CDD. If you want the definition to be written to a file so that
you can print it, you can use the EXTRACT command with the name of the
object and an output file specification.

The LIST/FULL command cannot display TDMS form definitions or DBMS and
RdbNMS definitions of any type. To display a form definition, you must use the
TDMS Form Definition Utility (FDU), as described in Chapter 3. Chapter 2
describes how to locate and display a DBMS or an RdbNMS definition in the
CDD hierarchy that is created for a database.

Overview of the VAX Information Architecture 1-5

Setting Up a Database 2

The first step in solving information management problems is to organize the
data you need to process. The VAX Information Architecture offers you a choice
of two database models for structuring your data: VAX RdbNMS, for relational
databases, and VAX DBMS, for network databases. The database model you
choose depends on several factors, including the amount of data you need to
store. the complexity of the relationships among the data, and the frequency of
change in the relationships. You must weigh the advantages and disadvantages of
each model against the requirements of the data you need to store and of the
applications that use the data.

Database implementation consists of two phases, design and definition. In the
design phase, you decide which data items you need to store, what the relation
ships among the data items are, and which database model is appropriate for
organizing the data. Once you select a database model, you can proceed to the
definition phase, in which you define the necessary constructs for managing your
data.

The A VERTZ Company needs to store two kinds of data, personnel and car
rental, and wants to keep them in separate databases. Personnel data consists of:

• Personal information, such as an employee's full name, address, date of
birth, and employment status (full-time, part-time, or retired)

• Job history, such as the job code, starting and ending dates, department, and
supervisor for each job the employee has held

• Salary history, such as the salary amount and the starting and ending dates
for the period during which the salary was effective

• Education information, such as colleges at~ended and degrees awarded

2-1

Car rental data consists of:

• Address information about each of the many A VERTZ branch offices

• Information about the types of cars each branch rents

• Customer information

• Reservation information

• Corporate information for companies that have credit accounts with
AVERTZ

The AVERTZ Company has a fairly small amount of personnel data with simple
relationships but a large amount of car rental data with fairly complex relation
ships. Thus, a relational database is more suitable for organizing and processing
personnel data, while a network database is more suitable for the car rental data.
The selection of a database model is not always simple, however; the VAX
RdbNMS Guide to Database Design and Definition and the VAX DBMS
Database Design Guide can help you decide which model is appropriate for orga
nizing your data.

This chapter explains how to set up the two databases needed for the A VERTZ
Company. These databases are used in the rest of the manual to illustrate the
other components of the VAX Information Architecture.

2.1 Defining a VAX Rdb/VMS Database

A relational database organizes individual items of data into two-dimensional
tables called relations. Each row of a table, called a record, represents a logical
relationship among individual data items, or fields. The actual values of the fields
distinguish among the many records in a relation. For example, the AVERTZ
Company stores personaL job history, salary history, and educational information
for each of its employees. The personnel database uses several relations to contain
this information; among them is an employee relation whose many records have
fields with the same definition but different values. Figure 2-1 shows three
records in an employee relation and the actual values for some of the data items
in the records.

To define an RdbNMS relational database, you must first design the fields and
relations you need to organize your data, taking care to normalize your database
design. Normalization is the process of increasing the flexibility of your database
by eliminating redundant information and selecting key fields, as described in the
VAX RdbNMS Guide to Database Design and Definition.

2-2 Setting Up a Database

Data { ID Last First Middle

Items Number Name Name Initial City State

Data { 00166 Dietrich Rick Boscawen NH
Values 00169 Gray Susan 0 Etna NH

00174 Myotte Daniel v Bennington MA

ZK-00022-00

Figure 2-1: Records in the Personnel Database

2.1.1 Designing the AVERTZ Personnel Database

The personnel data can be organized into several relations: one for personal data,
one for job history data, one for education data, and so on. Each kind of data can
be stored in a distinct relation with a common field for the employee number,
allowing you to retrieve the information you need by joining the relations on the
basis of matching values in the common field.

Some information, however, is not unique to any given employee; for example,
many employees work in the same department and have the same manager.
Rather than store complete information about the department in which an
employee works, you could store a department code that corresponds to a relation
of department information, thus saving storage space in each employee's job his
tory record. One step in normalizing a database is to remove as much redundant
information as possible from a relation and store it separately where other
relations can refer to it. In the personnel database, you could remove the depart
ment information from each job history record and store it in a relation that
shares the department code field with the job history relation.

Similarly, many employees may have the same job and employment status. and
may have attended the same college. You can remove this redundant information
from the individual job history, employee, and education relations and store it in
general job, status, and college relations. The employee-specific relations can
simply contain codes that correspond to records in the more detailed company
wide relations. Then, with a simple join operation, you can retrieve the
information that allows you to interpret the code.

Figure 2-2 illustrates the relationships among the relations in the personnel
database. The names in boxes represent the relations in the personnel database.
The arrows indicate which records have common fields: the names of the common
fields appear without boxes in the figure.

Setting Up a Database 2-3

l
EMPLOYEE_ ID

~1 I
COLLEGE-CODE

EMPLOYEES DEGREES

EMPLOYEE-ID

~-l JOB HISTORY }
JOB-CODE

DEPARTMENT _CODE

EMPLOYEE_ID I 1
~ · l SALARY _HISTORY

EMPLOYEE_ID

'--------------------~------------~__./ Employee-Specific
Relations

Figure 2-2: Illustration of the Personnel Database

•

__,.. ..

+I

-,

COLLEGES

JOBS

DEPARTMENTS

WORK-STATUS

Company-Wide
Relations

ZK-0002:

The EMPLOYEES relation shares the EMPLOYEE ID field with four other rela
tions that hold more specific data about the employee's education, job history, and
salary history.

The DEGREES relation uses the COLLEGE CODE field to indicate the college
an employee attended. This field also appears-in the COLLEGES relation, which
contains the full name and address of various colleges. Similarly, the
JOB HISTORY relation uses the JOB CODE field to represent an employee's
job and the DEPARTMENT CODE field to represent his or her department.
These fields also appear in the JOBS and DEPARTMENTS relations, respec
tively, along with complete information about a particular job or department.
Thus, if you wanted to find out, for example, the manager for the department in
which employee 1 77 works, you would join EMPLOYEES with JOB HISTORY
on the EMPLOYEE ID field and JOB HISTORY with DEPARTME-NTS on the
DEPARTMENT CODE field. -

2-4 Setting Up a Database

2. 1.2 Defining the Database

Once you are satisfied with the design, you can define your RdbNMS database.
A database definition is a set of statements for the Relational Database Operator
(RDO) utility that define database elements. You can create a text file of these
statements with a text editor, such as EDT.

You can define as many as five kinds of elements in a database definition:

• Fields

• Relations

• Views

• Indexes

• Constraints

The following sections describe the definitions of these elements for the A VERTZ
Company's personnel database. Section A.1.1 contains the complete database
definition.

The VAX Rdb!VMS Guide to Database Design and Definition explains in greater
detail the subjects covered here, and the VAX Rdb!VMS Reference Manual con
tains reference information on RDO statements. Both of these manuals discuss
options that are not illustrated in this manual.

2 .1.2.1 Naming the Database -- A database definition creates a database and a
directory in the CDD where database definitions can be stored. You use the RDO
statement DEFINE DATABASE to name the database and specify its location in
the CDD. The following example shows the DEFINE DATABASE statement
that creates the personnel database in the CDD$TOP.RDBPERS directory:

DEFINE DATABASE 'PERSONNEL' IN 'CDD$TOP.RDBPERS'

This statement creates the database file and snapshot files in your default VMS
directory. (The snapshot file is used for read-only transactions.) It also creates a
database directory under CDD$TOP.RDBPERS. If you do not specify a CDD
path name for the database, RdbNMS does not create a database directory or
store database definitions in the CDD.

2.1.2.2 Defining Fields -- You define each field in your database, using the
RDO statement DEFINE FIELD to specify the field's name and data type. An
optional DESCRIPTION clause lets you document fields as you define them so
that you can keep track of what information each field contains. You enclose your

Setting Up a Database 2-5

comments within the delimiters /* and * /. You can also supply other information
with a field definition, such as:

• Missing values that are used if no other value is specified when a relation
that uses the field is stored (the MISSING VALUE clause).

• Validation clauses that define the allowable values for a field (the VALID IF
clause). If you try to store a record with an invalid value in such a field,
RdbNMS generates an error and does not store the record.

• Edit strings that specify how the field is to be displayed by a VAX
DATATRIEVE procedure (the EDIT_ STRING clause).

The following statements define the fields used in the EMPLOYEES relation:

DEFINE FIELD ID_NUMBER
DESCRIPTION IS /* Generic employee ID */
DATATYPE IS TEXT SIZE IS 5.

DEFINE FIELD LAST_NAME
DESCRIPTION IS /* Employee last name */
DATATYPE IS TEXT SIZE IS 14.

DEFINE FIELD FIRST_NAME
DESCRIPTION IS /* Employee first name */
DATATYPE IS TEXT SIZE IS 10.

DEFINE FIELD MIDDLE_INITIAL
DESCRIPTION IS /* Employee middle initial */
DATATYPE IS TEXT SIZE IS 1
EDIT_STRING FOR DATATRIEVE IS 'X.'
MISSING_ VALUE IS ' '.

DEFINE FIELD ADDRESS_DATA_1
DESCRIPTION IS /* Street name */
DATATYPE IS TEXT SIZE IS 25
MISSING_VALUE IS '

DEFINE FIELD ADDRESS_DATA_2
DESCRIPTION IS /* Mail stop, apartment number, etc. */
DATATYPE IS TEXT SIZE IS 25
MISSING_VALUE IS '

DEFINE FIELD CITY
DESCRIPTION IS /* City name */
DATATYPE IS TEXT SIZE IS 20
MISSING_VALUE IS '

DEFINE FIELD STATE
DESCRIPTION IS /* State abbrevation */
DATATYPE IS TEXT SIZE IS 2
MISSING_VALUE IS ' '

DEFINE FIELD POSTAL_CODE
DESCRIPTION IS /* Postal code (zip code in US) */
DATATYPE IS TEXT SIZE IS 9
MISSING_VALUE IS '

2-6 Setting Up a Database

DEFINE FIELD SEX ,
DESCRIPTION IS /* M or F */
DATATYPE IS TEXT SIZE IS 1
MISSING_VALUE IS 1 ?'
VALID IF SEX = 'M' OR SEX = 'F' OR SEX MISSING.

DEFINE FIELD STANDARD_DATE
DESCRIPTION IS /* Generic date field */
DATATYPE IS DATE
MISSING_VALUE IS '17-NOV-1858 00:00:00.00 1

EDIT_STRING FOR DATATRIEVE IS 'DD-MMM-YYYY'.

DEFINE FIELD STATUS_CODE
DESCRIPTION IS /* A number */
DATATYPE IS TEXT SIZE IS 1
MISSING_VALUE IS 'N'
VALID IF STATUS_CODE = 'O' OR

STATUS_CODE = '1' OR
STATUS_CODE = '2' OR
STATUS_CODE MISSING.

These statements define global fields that can subsequently appear in any of the
relations in the database. The values for all but one of these fields are character
strings of the specified lengths; the values for the STANDARD DATE field are
date-and-time stamps. -

2.1.2.3 Defining Relations -- A relation definition lists the fields that partici
pate in the relation. After you define all the fields in your database with DEFINE
FIELD statements, you can define a relation simply by using the RDO statement
DEFINE RELATION to give the relation a name and list the fields it contains.

The following example defines the EMPLOYEES relation:

DEFINE RELATION EMPLOYEES.
EMPLOYEE_ ID

BASED ON ID_NUMBER.
LAST_NAME.
FIRST_NAME.
MIDDLE_ INITIAL.
ADDRESS_DATA_1.
ADDRESS_DATA_2.
CITY.
STATE.
POSTAL_CODE.
SEX.
BIRTHDAY

BASED ON STANDARD_DATE.
STATUS_CODE.

END EMPLOYEES RELATION.

Note that two of the fields do not have names listed in previous DEFINE FIELD
statements; instead, they use the BASED ON clause to give a new name to a
previously defined field. The new name is local to the relation; that is, it can be
used only within that relation. Thus, you can define global fields, such as a date
field! for common functions and tailor them to specific relations by giving them
customized names.

Setting Up a Database 2-7

2.1.2.4 Defining Views -- When you design the relations in your database, you
normalize your design for efficiency. However, you may frequently want to work
with a group of fields that are stored in different relations. For example, you
might want to look at an employee's personal and salary information at the same
time, combining fields from the EMPLOYEES and SALARY HISTORY rela
tions. Although your application program could perform a join operation on these
two relations every time you want to use them, RdbNMS can process the fields
more efficiently if you define a view. A view is a "virtual" relation that stores no
data; instead, it combines fields from one or more relations in a permanent defini
tion that provides more efficient database access. In your application, you can use
a view in the same way that you use a relation for retrieving information, but you
cannot store data through a view.

You use the RDO statement DEFINE VIEW to name a view and list the fields it
uses. To combine two relations, you must use the CROSS clause and specify the
field that the two relations have in common. The following example shows the
definition for a view that combines employee information with the current job
history record:

DEFINE VIEW CURRENT_JOB OF JH IN JOB_HISTORY
CROSS E IN EMPLOYEES OVER EMPLOYEE_ID
WITH JH.JOB_END MISSING.

E.LAST_NAME.
E.FIRST_NAME.
E.EMPLOYEE.:..ID.
JH.JOB_CODE.
JH.DEPARTMENT_CODE.
JH.SUPERVISOR_ID.
JH.JOB_START.

END VIEW.

This view combines the LAST NAME. FIRST NAME, and EMPLOYEE ID
fields from the EMPLOYEES-relation with the JOB CODE, -
DEPARTMENT CODE, SUPERVISOR ID, and JOB START fields from the
JOB HISTORY relation. E and JH are context variabies that give temporary
names to the relations used in the statement. The CROSS clause specifies that
both relations contain the EMPLOYEE ID field, which allows RDO to locate
records in each relation based on the vafue of that field. Because the value for the
JOB END field is listed as MISSING, this view includes only the
JOB-HISTORY records that have no value supplied for the job end date (that is,
they-represent the employee's current job).

2.1.2.5 Defining Indexes -- An index is a table of field values that RdbNMS
uses to improve the speed with which it retrieves records from the database. You
can define indexes for the fields you use frequently in accessing records.
RdbNMS then adds an index key to the relation and builds an index using the

2-8 Setting Up a Database

specified field or fields. When you perform a database operation that searches for
records or joins records based on the indexed field, RdbNMS can use the index to
locate the records rather than s·earching sequentially through all the records in a
relation.

In deciding which fields in the database need to be indexed, you should choose
fields that you use frequently in search and join operations, such as fields that are
common to two or more relations. You can also use indexes to prevent a key field
from containing duplicate values in two or more records. If you attempt to store a
record with a value in the key field that already exists in the database, Rd.bNMS
generates an error and does not store the record.

To define an index, you use the RDO statement DEFINE INDEX with a name
for the index, the name of the relation to which it applies, and the name of the
key field. You can also include the DUPLICATES ARE NOT ALLOWED clause
to prohibit duplicate key values. The personnel database defines several indexes
for frequently used fields; the following example shows one such index:

DEFINE INDEX EMP_EMPLOYEE_ID FOR EMPLOYEES
DUPLICATES ARE NOT ALLOWED.

EMPLOYEE_ID.
END EMP_EMPLOYEE_ID INDEX.

This example defines the index EMP EMPLOYEE ID for the EMPLOYEES
relation, using EMPLOYEE ID as the key field. Because the index definition
specifies that duplicate values are not allowed, no two EMPLOYEES records in
the database can have the same value in the EMPLOYEE ID field. The personnel
database defines similar indexes for the other relations that contain employee
number fields.

2.1.2.6 Defining Constraints -- A constraint is a set of restrictions on the val
ues a field in an Rdb/VMS database can contain. You can place a constraint on a
field when you define it, using the VALID IF clause with a DEFINE FIELD
statement, as shown in Section 2.1.2.2. Such a constraint, however, can test field
values only against constants. A more flexible way of checking the validity of field
values is a formal constraint. with which you can test the validity of one field
value against the values of other fields in the database.

When you define a formal constraint, Rdb/VMS adds the definition to the
database and uses it to check field values that you attempt to store or modify. If
the value violates the constraint, Rdb/VMS generates an error message. You can
specify whether the constraint should be applied when you update a record (with
the STORE or MODIFY statement} or when you commit changes to the database
(with the COMMIT statement).

Setting Up a Database 2-9

To define a constraint, you use the RDO statement DEFINE CONSTRAINT with
a name for the constraint, the name of the field to which it applies, and an
expression that describes the constraint. You can also include a CHECK clause to
determine when the constraint is evaluated. The personnel database defines sev
eral constraints, two of which are shown in the following example:

DEFINE CONSTRAINT JH_EMP_ID_EXISTS
FOR JH IN JOB_HISTORY
REQUIRE ANY E IN EMPLOYEES WITH

E.EMPLOYEE_ID = JH.EMPLOYEE_ID
CHECK ON COMMIT.

DEFINE CONSTRAINT EMPLOYEE_ID_REQUIRED
FOR E IN EMPLOYEES
REQUIRE NOT E.EMPLOYEE_ID MISSING.

The JH EMP ID EXISTS constraint states that the value of the
EMPLOYEE-ID-field in the JOB HISTORY record must exist in the
EMPLOYEES relation before the JOB HISTORY record can be stored. The
CHECK ON COMMIT clause specifies-that the constraint is not applied until the
modified JOB HISTORY record is committed to the database. The
EMPLOYEE ID REQUIRED constraint stipulates that a record cannot be
stored unless -the EMPLOYEE ID field contains a value.

2.1.3 Creating the Database

When your command file contains all the RDO statements needed to define your
database, you can submit the file to RDO and create the database. To use RDO,
you should define the following symbol at DCL level or in your login command
file:

$ RDO :== $RDO

Then you can invoke RDO simply by typing RDO at DCL level. RDO responds
with the RDO > prompt, and you can begin typing RDO statements or submit an
RDO command file. For tutorial information on using RDO, see the VAX
Rdb!VMS Guide to Data Manipulation.

If RDO finds no errors when it processes your command file, it inserts the
database definitions in the COD directory you specified in the DEFINE
DATABASE statement (if you included a COD path name or given name). In
addition, it creates a database file and a snapshot file in your default VMS
directory. RdbNMS stores definitions and data in the database file. It stores tem
porary or snapshot versions of database records, used for read-only transactions,
in the snapshot file. Therefore, before you execute the command file, make sure
your default VMS directory is set to the directory in which you want to store your
database.

2-10 Setting Up a Database

The following commands create the personnel database defined in the command
file PERSDB.RDO:

$ SET DEFAULT PERS$EXE
$ RDO
RDO> ©PERSDB

Because .RDO is the default file type for RDO command files, you need not
specify it on the command line. This command creates the PERSONNEL.ROB
and PERSONN-EL.SNP files in the directory represented by the logical name
PERS$EXE. (The default file type for database files is .RDB; the default file type
for snapshot files is .SNP.)

When RdbNMS stores database definitions in the CDD, it creates a complex
structure of field, relation, view, index, and constraint definitions descending from
the database directory. When an application processes the data items stored in an
RdbNMS database, it locates the data items by using a relation definition in the
CDD. Because you must specify the CDD path names for the application to use,
you should understand how to locate relation definitions in the CDD hierarchy.

Figure 2-3 shows the CDD hierarchy under the PERSONNEL database. When
you created the database in the RDBPERS directory below CDD$TOP, RdbNMS
created a directory named RDB$RELATIONS and stored the relation definitions
below it. RDB$RELATIONS is only one of several directories that RdbNMS cre
ates in the CDD when you create a database. This figure does not show the other
directories but only the path from CDD$TOP to the relation definitions you
specify in an application.

As Figure 2-3 shows, the path name to the EMPLOYEES record definition is
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES. You
can eliminate the first two directory names if your default CDD directory is
always set to CDD$TOP.RDBPERS, but it is safer to include the complete path
name in your applications.

If you want to see the definition of an RdbNMS field or relation stored in the
CDD, you can use SHOW statements in RDO:

• SHOW FIELDS lists all the global fields and their definitions. You can
specify a field name to display the definition of a particular field, for exam
ple, SHOW FIELD SALARY AMOUNT. Alternatively, you can add the
FOR clause and the name of a relation to see the definitions of all the fields
in a particular relation, for example, SHOW FIELDS FOR JOB_HISTORY.

• SHOW RELATIONS lists all the relations in the database and notes
whether any of them are, in fact, views.

Setting Up a Database 2-11

'}>
~

I\.)

en
~-
::J

(Q

c
-0
Q>

0
Q>

5)
C'"
Q>
en
CD

CDDrOP

RDBPERS

I
PERSONNEL

I
RDB$RELATIONS

COLLEGES CURRENT _JOB DEGREES EMPLOYEES JOB_ HISTORY WORK-STATUS

CURRENT _INFO CURRENT _SALARY DEPARTMENTS JOBS SALARY _HISTORY

ZK-00024-00

Figure 2-3: COD Hierarchy of Rdb/VMS Definitions

When you have successfully defined and created your database, you are ready to
store data in it. You can use one of several methods to store your data; for
example, you can use the STORE statement in RDO, a high-level language pro
gram, or a VAX DATATRIEVE procedure. A high-level language program is the
recommended method for loading records from VAX RMS files into an RdbNMS
database. The VAX Rdb!VMS Guide to Database Administration and
Maintenance discusses load programs in detail.

2.1.4 Working with an Rdb/VMS Database

An application program processes data in an RdbNMS database by including
statements from the data manipulation language (DML). Before you actually
write a high-level language program to use with an RdbNMS database, you
should test and debug the logic of the program by using RDO in its interactive
form. With RDO you can determine whether your DML statements store,
retrieve, modify, and delete the appropriate records in the database. When you
are sure that your logic is correct, you can incorporate the DML statements into a
high-level language program. This section uses RDO examples to illustrate how
you might manipulate the data in the personnel database to perform some com
mon transactions.

RdbNMS programming is discussed in the VAX Rdb!VMS Guide to
Programming, reference information about RDO can be found in the VAX
Rdb!VMS Reference Manual.

2.1.4.1 Accessing the Database --To work with an RdbNMS database, you
must first invoke the database with the RDO statement INVOKE, indicating the
file specification of the database (.RDB) file. For example:

RDO> INVOKE DATABASE FILENAME PERSONNEL

This statement invokes the personnel database in your default VMS directory,
using the file name PERSONNEL.ROB.

When you are finished working with a database, you end access to it with the
FINISH statement:

RDO> FINISH

If the last transaction has not been completed, FINISH automatically completes
it by making permanent any changes made to the database in the transaction.
After you issue the FINISH statement, you can invoke another database and con'."
tinue working with RDO, or you can exit from RDO with the EXIT command or
CTRL/Z.

2.1.4.2 Database Transactions -- A set of DML statements that you want to
perform together is called a transaction. In a transaction, the statements must
either execute as a unit or not at all. If only some of the statements execute and
others fail, the data in your database could become inconsistent.

Setting Up a Database 2-13

You mark the beginning of a transaction with a ST ART TRANSACTION state
ment. You also indicate the type of operation you intend to perform by specifying
one of the following options:

• READ_ ONLY -- You can retrieve but not update records.

• READ_WRITE -- You can both retrieve and update records.

You can also determine the extent to which other users can access the database
by reserving relations for certain types of access. If you are performing a
READ ONLY transaction, you can reserve relations for SHARED READ access.
This access mode allows other users to read and update records from these rela
tions, but they cannot read the records you are using until your transaction is fin
ished. If you are performing a READ WRITE transaction, you can reserve
relations for the following access modes:

• SHARED READ

• SHARED WRITE -- While you are updating records in a relation, other
users can also read and update other records in the relation; however, any
changes you make are not available to other users until your transaction is
finished.

• PROTECTED READ -- While you are reading records in a relation, other
users can read the relation, but they cannot update it until your transaction
is finished.

• PROTECTED WRITE -- While you are updating records in a relation, other
users can read the relation, but they cannot update it until your transaction
is finished.

• EXCLUSIVE READ -- While you are reading records in a relation, other
users can neither read nor update the relation until your transaction is
finished.

• EXCLUSIVE WRITE -- While you are updating records in a relation, other
users can neither read nor update the relation until your transaction is
finished.

For example, if you are going to update the EMPLOYEES relation but want to
allow other users to update the relation at the same time, you use the following
statement:

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE

2-14 Setting Up a Database

If you want to reserve all the relations in a database for the same type of access,
you can omit the RESERVING clause that names specific relations. For example:

RDO> START_TRANSACTION READ_WRITE

This statement allows you to access all relations in the database for retrieval and
update. RdbNMS reserves individual relations within the database as they are
used by DML statements in your program.

When your transaction is complete, you can either save any changes you made to
the database or cancel them. If do not want to make permanent any changes you
made since the last START_TRANSACTION statement, use the ROLLBACK
statement:

RDO> ROLLBACK

If you are satisfied with your changes, use the COMMIT statement to write them
to the database:

RDO> COMMIT

After you end a transaction, the START TRANSACTION statement that was in
effect is canceled. You must enter another START TRANSACTION statement to
begin another transaction. -

2.1.4.3 Manipulating Data Within the Database -- The common operations you
perform on the data stored in a database are to add, retrieve, modify, and delete
records. The examples in this section show the DML statements that perform
such operations on the personnel database.

Suppose a new employee is hired and assigned ID number 43517. To store all the
necessary information for this employee, you must add a new record to each of
four relations: EMPLOYEES, JOB HISTORY, SALARY HISTORY, and
DEGREES. For example: - -

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES, JOB_HISTORY, SALARY_HISTORY,
cont> DEGREES FOR SHARED WRITE
RDO>
RDO> STORE E IN EMPLOYEES USING
cont> E.EMPLOYEE_ID = '43517';
cont> E.LAST_NAME = 'Marks';
cont> E.FIRST_NAME = 'Gregory',
cont> E.MIDDLE_INITIAL = 'A';
cont> E.ADDRESS_DATA_1 = '309 Park Drive';
cont> E.TOWN = 'Denver';
cont> E.STATE = 'CO';
cont> E.POSTAL_CODE = '80335';
cont> E.SEX = 'M';
cont> E.BIRTHDAY = '15-FEB-1958';
cont> E.STATUS_CODE = '1'
cont> END_STORE
RDO>

Setting Up a Database 2-15

RDO> STORE J IN JOB_HISTORY USING
cont> J.EMPLOYEE_ID = '43517';
cont> J.JOB_CODE = 'SPGM';
cont> J.JOB_START = '6-APR-1983';
cont> J.DEPARTMENT_CODE ='ENG';
cont> J.SUPERVISOR_ID = '00435'
cont> END_STORE
RDO>
RDO> STORE S IN SALARY_HISTORY USING
cont> S.EMPLOYEE_ID = '43517';
cont> S.SALARY_AMOUNT = '36500';
cont> S.SALARY_START = '6-APR-1983'
cont> END_STORE .
RDO>
RDO> STORE D IN DEGREES USING
cont> D.EMPLOYEE_ID = '43517';
cont> D.COLLEGE_CODE = 'HVDU';
cont> D.YEAR_GIVEN = 1979;
cont> D.DEGREE = 'BA';
cont> D.DEGREE_FIELD = 'Arts'
cont> END_STORE
RDO> COMMIT

To verify that the records were actually stored, you can retrieve them from the
relations, based on the employee ID number. Because RDO displays record fields
horizontally on your terminal screen, the display occupies more than 80 charac
ters. Therefore, you can specify only a few fields of each record to make the dis
play more readable. For example:

RDO> START_TRANSACTION READ_ONLY
RDO> FOR E IN EMPLOYEES
cont> CROSS J IN JOB_HISTORY
cont> CROSS S IN SALARY_HISTORY
cont> CROSS D IN DEGREES
cont> WITH E.EMPLOYEE_ID = '43517'
cont> AND E.EMPLOYEE_ID = J.EMPLOYEE_ID
cont> AND E.EMPLOYEE_ID = S.EMPLOYEE_ID
cont> AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> PRINT E~LAST_NAME, J.JOB_CODE, S.SALARY_AMOUNT, D.COLLEGE_CODE
cont> END_FOR

Marks SPGM 36500.00 HVDU
RDO> COMMIT

Note that when you are using RDO interactively, you use the PRINT statement
to display the records you retrieve. When you embed DML statements in a
high-level language program, you must change the PRINT statement to a GET
statement to assign the retrieved value to a program variable.

If this employee moves to a new address, you must modify his EMPLOYEE
record accordingly:

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE

2-16- Setting Up a Database

RDO> FORE IN EMPLOYEES WITH E.EMPLOYEE_ID = '43517'
cont> MODIFY E USING
cont> E.ADDRESS_OATA_1 = '47 Larimer Square•;
cont> E.ADDRESS_OATA_2 ='Apartment D';
cont> E.POSTAL_CODE = '80332'
cont> END_MODIFY
cont> END_FOR
RDO> COMMIT

Updating the address requires only one relation in the database. However, if this
employee is given a raise and a promotion, you must modify two relations: you
must enter a job ending date in the current JOB HISTORY record and store a
new JOB HISTORY record for the new job code; and you must enter a salary
ending date in the current SALARY HISTORY record and store a new
SALARY_ HISTORY record for the new salary. For example:

ROD> START_TRANSACTION READ_WRITE RESERVING
cont> JOB_HISTORY, SALARY_HISTORY FOR SHARED WRITE
RDO>
RDO> FOR J IN JOB_HISTORY WITH J.EMPLOYEE_ID = '43517'
cont> MODIFY J USING
cont> J.JOB_END = '14-MAY-1985'
cont> END_MODIFY
cont> END_FOR
ROD>
RDO> STORE J IN JOB_HISTORY USING
cont> J.EMPLOYEE_ID = '43517';
cont> J.JOB_CODE = 'SANL';
cont> J.JOB_START = '14-MAY-1985';
cont> J.DEPARTMENT_CODE = 'ENG';
cont> J.SUPERVISOR_ID = '00435'
cont> END_STORE
RDO>
RDO> FOR S IN SALARY_HISTORY WITH S.EMPLOYEE_ID '43517'
cont> MODIFY S USING
cont> S.SALARY_END = '14-MAY-1985'
cont> END_MODIFY
cont> END_STORE
RDO>
RDO> STORE S IN SALARY_HISTORY USING
cont> S.EMPLOYEE_ID = '43517';
cont> S.SALARY_AMOUNT = '39700';
cont> S.SALARY_START = '14-MAY-1985'
cont> END_STORE
RDO> COMMIT

The VAX Rdb!VMS Guide to Data Manipulation explains DML statements in
greater detail. The DML examples in this section illustrate the logic that will be
used to process personnel transactions in the sample application in Chapter 4. By
using RDO to construct a prototype of your application, you can locate and cor
rect logic errors in the early stages of application development.

Setting Up a Database 2-17

2.2 Defining a VAX DBMS Database

A VAX DBMS database organizes individual items of data into records that indi
cate how the data items are related. The actual values of the data items
distinguish among many occurrences of records of the same type. For example,
the AVERTZ Company needs to store, for each of its customers, the customer's
full name, home address, phone number, and driver's license information. The car
rental database contains many occurrences of customer records, all with the same
record definition but with different values for the data items.

The various types of records in a VAX DBMS database are in turn organized into
sets. In each set, one record type is designated as the set's owner and another
record type as the set's member. In the car rental database, one record type iden
tifies the company's customers and another contains information about rental car
reservations. A set in which the customer record is the owner and the reservation
record is the member represents the relationship between an AVERTZ customer
and his or her car reservations. Such a set occurs many times in the database,
once for each customer on file. Figure 2-4 shows three occurrences of the
customer-reservation set in the car rental database.

In Figure 2-4, the first set is owned by the customer Quinn and has one reserva
tion record as its member. The second set, owned by customer Waite, and the
third set, owned by customer Taylor, each have two reservation records as
members. The relationships between set owners and members are defined in the
database and cannot be. changed. DBMS stores pointers that represent the rela
tionships between record types and uses these pointers to locate record occur
rences.

2-18 Setting Up a Database

Quinn Waite Customers

Set Occurrence

Reservation Numbers

ZK-00025-00

Figure 2-4: Set Occurrences in the Car Rental Database

To set up a DBMS database, you must define the data items, records, and sets in
your database and specify the relationships among them. This information forms
the schema for the database. Because you might use one database for several dif
ferent applications, you can define one or more subschemas that specify subsets of
the database tailored to the needs of various programs in each application.

2.2.1 Designing the AVERTZ Car Rental Database

Car rental data can be organized into three general groups: customer, location,
and company data. For each A VERTZ location, the company needs to store infor
mation about the types of cars it rents (compact cars. mid-size cars, and full-size
cars) and about the actual cars of each type that it has on hand. For each
customer, AVERTZ keeps general information on file and stores a new reserva
tion record when a customer rents a car. When the customer picks up the car.
A VERTZ keeps track of which car was assigned so that it knows how many cars
have been rented at each location. In addition, some customers work for compan
ies that have credit accounts with AVERTZ, and the validity of these accounts
must be checked before a car rental can be charged to the account.

The structure of a DBMS database is frequently represented by a Bachman dia
gram that shows all the record types in the database and the set types to which
they belong. The Bachman diagram for the car rental database is shown in Figure
2-5; the names of the record types are shown in boxes, with set owners connected
to set members by an arrow. Names not in boxes are the names of the set types.

Setting Up a Database 2-19

SYSTEM SYSTEM

l COMPANY-CALC l CUSTOMER_CALC

I
EMPLOYEE

COMPANY t-: ----~)1'~1 CUSTOMER

CUSTOMER
RESERVATION

CHECKED-OUT_
CARS

CAR

SYSTEM l LOCATION-CALC

LOCATION

TYPE_
AVAILABLE

CHECKED-IN_
CARS

ZK-00026-00

Figure 2-5: Bachman Diagram of the Car Rental Database

The three sets on the top level in Figure 2-5 are called system-owned sets because
they represent entry points into the database. SYSTEM is the owner of each set;
the member record types are COMPANY in the COMPANY CALC set,
CUSTOMER in the CUSTOMER CALC set, and LOCATION in the
LOCATION CALC set. These records store information about companies with
A VERTZ credit accounts, A VERTZ customers~ and A VERTZ branch offices,
respectively.

The EMPLOYEE set has COMPANY as its owner and CUSTOMER as its mem
ber; it represents the customers who work for companies with A VERTZ accounts.
Not all customers necessarily belong to the EMPLOYEE set; customers who rent
cars as individuals (that is. who do not charge them to corporate accounts) belong
only to the CUSTOMER_CALC set.

The CUSTOMER RESERVATION set shows the car rental reservations made
by a particular customer; CUSTOMER is the owner of this set and
RESERVATION is the member. The RESERVATION record is also a member of
the LOCATION RESERVATION set (LOCATION is the owner), which indicates
the reservations-that have been made for cars at a particular A VERTZ location.

2-20 Setting Up a Database

The LOCATION record is the owner of another set, TYPE AVAILABLE, with
CAR TYPE as the member. This set describes the types of cars (compact, mid
size, and full-size) that can be rented at each branch office. CAR TYPE in turn is
the owner of the CHECKED IN CARS set, whose member is the CAR record.
The cars of each type that are presently checked in at a location are members of
this set.

Finally, a car that has been rented for a specific reservation is represented by the
CHECKED_OUT_CARS set, in which the RESERVATION record owns a CAR
record.

2.2.2 Defining the Database

Once you are satisfied with the design, you can define the schema for your DBMS
database. A schema definition is a set of clauses of the DBMS data definition lan
guage (DDL) that define database elements. You can create a text file of these
clauses with a text editor, such as EDT.

There are four sections in a schema definition:

• The schema entry

• Area entries

• Record entries

• Set entries

The following sections describe the definitions of these elements for the A VERTZ
Company's car rental database. Section A.2.1.1 contains the complete schema
definition.

The VAX DBMS Database Design Guide explains in greater detail the subjects
covered here. and the VAX DBMS Database Administration Reference Manual
contains reference information on DDL clauses. Both of these manuals discuss
options that are not illustrated in this manual.

2.2.2.1 Naming the Schema and Areas -- The schema and area entries name
the database schema and the areas it uses. An area is a subdivision of a database
that corresponds to a VAX RMS file that contains the data stored in your
database. By restricting records and sets to certain areas of the database, you can
sometimes improve database performance by controlling the areas in which
records are stored. Section 2.2.4 describes how these areas correspond to VAX
RMS files.

Setting Up a Database 2-21

This example shows the schema and area entries of the schema definition for the
car rental database:

SCHEMA NAME IS AVERTZSC

AREA NAME IS COMPANY_AREA

AREA NAME IS CUSTOMER_AREA

AREA NAME IS LOCATION_AREA

The schema entry specifies A VERTZSC as the schema name. The area entries
define three areas for the car rental database for company, customer, and location
data, respectively.

2.2.2.2 Defining Records -- You must include a record entry for every record
type in the database. A record entry specifies the name of the record type and the
areas in which it can occur. It also lists the individual data items that make up the
record type and specifies their data types.

The following record entry defines the COMP ANY record type in the car rental
database:

RECORD NAME IS COMPANY
WITHIN COMPANY_AREA

ITEM NAME IS CO_NAME
ITEM NAME IS CO_ADDR_DATA_1
ITEM NAME IS CO_ADDR_DATA_2
ITEM NAME IS CO_CITY
ITEM NAME IS CO_STATE
ITEM NAME IS CO_POSTAL_CODE
ITEM NAME IS CO_PHONE
ITEM NAME IS CO_CREDIT_CHECK
ITEM NAME IS CO_DISCOUNT

TYPE IS CHARACTER 25
TYPE IS CHARACTER 25
TYPE IS CHARACTER 25
TYPE IS CHARACTER 20
TYPE IS CHARACTER 2
TYPE IS CHARACTER 9
TYPE IS CHARACTER 10
TYPE IS CHARACTER 2
TYPE IS SIGNED LONGWORD

This entry names the record type, COMPANY, and specifies that it occurs within
the area of the database called COMPANY AREA. The COMP ANY record has
nine data items, or fields; in eight of these fields, the values are character strings
of the specified length, while the CO DISCOUNT field is stored as a signed
longword. The SIGNED LONGWORD data type lets you use the field easily in
numerical calculations.

2.2.2.3 Defining Sets -- You use a set entry to express relationships between··
records in your database and to indicate which record type is the owner of a set
and which is the member. As the Bachman diagram in Figure 2-5 shows, a record
type can participate in more than one set as either the owner or the member; the
only restriction is that it cannot be both the owner and the member of the same
set. Every set must have an owner record type, but you may want to designate
some sets as system-owned. You generally use system-owned sets as entry points
into the database.

2-22 Setting Up a Database

Besides set ownership and membership, the set entry also describes the insertion,
retention, and order of a set's member records. In VAX DBMS:

• The insertion options specify whether a member record is inserted into a set
immediately when it is stored in the database (INSERTION IS
AUTOMATIC) or inserted only by an explicit CONNECT statement in the
application program (INSERTION IS MANUAL).

• The retention options specify whether a record can be removed from a set
only if it is being deleted from the database (RETENTION IS FIXED),
cannot be removed but can be reconnected to another set occurrence
(RETENTION IS MANDATORY), or can be removed without being deleted
(RETENTION IS OPTIONAL).

• The order options specify whether a new record occurrence is inserted at the
beginning of a set (ORDER IS FIRST), at the end of a set (ORDER IS
LAST), immediately after the current record (ORDER IS NEXT), or imme
diately before the current record (ORDER IS PRIOR).

The car rental database defines three system-owned sets:

SET NAME IS COMPANY_CALC
OWNER IS SYSTEM
MEMBER IS COMPANY

INSERTION IS AUTOMATIC
RETENTION IS FIXED

SET NAME IS CUSTOMER_CALC
OWNER IS SYSTEM
MEMBER IS CUSTOMER

INSERTION IS AUTOMATIC
RETENTION IS FIXED

SET NAME IS LOCATION_CALC
OWNER IS SYSTEM
MEMBER IS LOCATION

INSERTION IS AUTOMATIC
RETENTION IS FIXED

System-owned sets. such as those shown in this example. are usually defined with
FIXED retention because they can occur only once in the database. The ability to
reconnect a record to another set occurrence, provided by MANDATORY reten
tion~ is useless because there are no other occurrences of a system-owned set. All
but one of the sets in the database have OPTIONAL retention, allowing a record
to be disconnected from a set occurrence. CUSTOMER RESERVATION is
defined with FIXED retention so that the AVERTZ Company has a record of all
the reservations made by a customer.

Setting Up a Database 2-23

Most of the sets in the database are defined with AUTOMATIC insertion. The
exceptions are the EMPLOYEE set and the CHECKED OUT CARS set. They
are defined with MANUAL insertion because not every occurrence of the member
record types is necessarily a member of these sets. In the EMPLOYEE set, a
CUSTOMER record occurrence is a member of the set only if the customer works
for a company that has an AVERTZ account. In the CHECKED OUT CARS set,
a CAR record is a member of the set only if car has been checked out to a current
reservation.

For most of the sets, the set entries specify the ORDER IS LAST option; that is,
new records are added after all existing records in the set. However, for
CUSTOMER RESERVATION, LOCATION RESERVATION, and
CHECKED OUT CARS, the ORDER IS FIRST option declares that when a new
reservation record is stored or when a car is checked out by a customer, the
record is added in front of all other records in the set. The ORDER options are
not used for the system-owned sets because they are stored as CALC sets. CALC
sets provide faster record retrieval for sets in which the order of stored records is
not important. You cannot specify the ORDER options with CALC sets; they can
be used only with CHAIN sets, in which members are accessed sequentially.

The VAX DBMS Database Design Guide contains a detailed description of these
concepts and can help you decide which choices are appropriate for your database.

2.2.3 Compiling the Schema

When your schema definition is complete, you can use the DDL compiler to com
pile the schema and store it in the CDD where an application program can locate
the database definitions. The DDL compiler generates:

• A default subschema that is identical to the schema

• A default storage schema to describe how the records and sets should be
stored in RMS files

• A default security schema to determine the operations and types of access
allowed for areas, sets, and records

These additional schemas are also stored in the CDD.

You compile your schema with the DDL/COMPILE command. If the DDL com
piler finds no syntax errors in your schema definition, it inserts the schema in
your default CDD directory. It also inserts the default subschema, storage
schema, and security schema unless you specify otherwise. It determines your
default CDD directory by translating the logical name CDD$DEFAULT.
Therefore, make sure that you have defined CDD$DEFAULT as the CDD direc
tory in which you want to store your database definitions.

2-24 Setting Up a Database

The following DDL/COMPILE command compiles the schema stored in the
source file AVERTZSC.DDL:

$ DDL/COMPILE AVERTZSC

Because .DDL is the default file type for DDL source files, you need not specify it
on the command line. This command creates the database definitions in the
default CDD directory CDD$TOP.AVERTZ. If you discover after creating a
database schema that you need to modify it, you can edit the source (.DDL) file
and recompile the schema, using the DDL/REPLACE command.

2.2.3.1 COD Hierarchy for a DBMS Database ... When the DDL compiler
inserts a schema in the CDD, it creates a complex structure of schema, area, set,
and record definitions descending from the schema directory. When an applica
tion processes the data items stored in a DBMS database, it locates them by
using record definitions within a specified subschema definition in the CDD.
Because you must specify the CDD path names for the application to use, you
should understand how to locate the record definitions within the subschema in
the CDD hierarchy.

Figure 2-6 shows the CDD hierarchy for the default subschema under the
AVERTZSC schema. When you created the database in the A VERTZ directory
below CDD$TOP, the DDL compiler created a directory named
DBM$SUBSCHEMAS and stored the subschema definitions below it.
DBM$SUBSCHEMAS is only one of several directories that the compiler creates
in the CDD when you create a database. This figure does not show the other
directories but only the path from CDD$TOP to the record definitions you specify
in an application.

As Figure 2-6 shows, the path name to the RESERVATION record definition is
CDD$TOP.AVERTZ.A VERTZSC.DBM$SUBSCHEMAS.A VERTZSS.DBM$RECORDS.
RESERVATION. You can eliminate the first two directory names if your default
CDD directory is always set to CDD$TOP.AVERTZ, but it is safer to include the
complete path name in your applications.

If you want to see the definition of a DBMS record stored in the CDD, you can
use the SHOW command in DBQ and specify the record name. You can also list
the records. sets, and realms in your database with the SHOW RECORDS,
SHOW SETS, and SHOW REALMS commands.

Setting Up a Database 2-25

I\)

"' CJ)

CJ)

~
::J

<O

c
"'O
Sl>

0
D>
D)
C"
Sl>
CJ)
CD

CDD$TOP

I
AVERTZ

I
AVERTZSC

I
DBM$SUBSCHEMAS

I
AVERTZ_SLJBSCHEMA

I
DBM$RECORDS

I 1------T-------- --T- ---- - - I- I I
CAR CAR_ TYPE COMPANY CUSTOMER LOCATION RESERVATION

ZK-00027-00

Figure 2-6: COD Hierarchy of DBMS Definitions

2.2.3.2 Modifying the Default Schemas -- The default subschema, storage
schema, and security schema are meant to serve as templates that you can tailor
to suit the needs of a particular application. You can create additional subschemas
if you want to change certain characteristics of database records or if you want to
make only a small subset of the database available to an application. You can
modify the storage schema to improve database performance and the security
schema to protect the database against unauthorized access. The VAX DBMS
Database Design Guide and the VAX DBMS Database Security Guide can help
you decide whether you need to change the default schemas.

In the subschema for the car rental database, it would be useful to define three
group fields: one for the customer's full name, one for the reservation number at a
location, and one for a customer's reservation number. The first group lets an
application program locate a customer by referring simply to the group name
rather than to all three fields. Using group fields for the location code and
reservation number lets an application program form the customer reservation
number from a combination of the location code and a number that is automati
cally incremented every time a reservation is made at that location. Group fields
can be defined only in a subschema.

To edit the default subschema and schemas, you must first extract them from the
CDD, using the Database Operator utility (DBO). The following command
extracts the default subschema for the A VERTZSC schema:

$ DBO/EXTRACT/SUBSCHEMAS/OUTPUT=AVERTZSS AVERTZSC

This command creates in your default VMS directory a source file named
AVERTZSS.DDL that contains the default subschema. Section A.2.1.2 shows the
edited subschema. When you edit a default subschema, remember to change its
name on the first line of the definition. If you named the new subschema
A VERTZSS. the first line of the subschema definition would be:

SUBSCHEMA NAME IS AVERTZSS FOR AVERTZSC SCHEMA

The following command compiles the new subschema and inserts it into the CDD:

$ DDL/COMPILE AVERTZSS

For the A VERTZ car rental database, it is also useful to modify the default stor
age schema and define the fields CU LAST NAME, CU FIRST NAME, and
CU INITIAL as the hash keys for the CUSTOMER CALC set. -By doing so, you
eliminate the possibility that duplicate records can be stored for the same cus
tomer. To edit the default storage schema for the AVERTZSC schema, you first
extract it from the CDD as follows:

$ DBO/EXTRACT/STORAGE_SCHEMAS/OUTPUT=AVERTZST AVERTZSC

Setting Up a Database 2-27

This command creates in your default VMS directory a source file named
AVERTZST.DDL that contains the default storage schema. Section A.2.1.3
shows the edited storage schema. When you edit the default storage schema,
remember to change its name; this example use~ A VERTZST for the name of the
new storage schema. ·

The following command compiles the new storage schema and inserts it in the
CDD:

$ DDL/COMPILE AVERTZST

2.2.4 Creating the Database

To create a database from your DDL definitions, you use the DBO/CREATE com
mand, which creates at least two types of files:

• A data base root file

• Database area files, one for each area defined in the schema

The root file (default file type .ROO) contains binary versions of the database defi
nitions that your application can use at run time. The area files (default file type
.DBS) contain the actual data stored in your database.

The DBO/CREATE command can also create snapshot files for each area of the
database, to use in read-only transactions, and an after-image journal file, to use
in recovering a corrupted database. By default, the DBO/CREATE command cre
ates these files using the schema you specify on the command line and the default
subschema, storage schema, and security schema stored in the CDD. If you
stored your own definitions for these schemas in the CDD, you can use qualifiers
on the DBO/CREATE command to change the default behavior. See the VAX
DBMS Introduction to Database Administration and VAX DBMS Database
Design Guide for more information.

Before creating the car rental database, you should set your default VMS direc
tory to the directory in which you want to store the root and area files. You can
then create the database with the following command:

$ SET DEFAULT AVERTZ$APPL
$ DBO/CREATE/SUBSCHEMA=AVERTZSS/STORAGE_SCHEMA=AVERTZST AVERTZSC

This command creates a root file named A VERTZSC.ROO in the directory repre
sented by the logical name AVERTZ$APPL, using the CDD definitions
AVERTZSS and AVERTZST to define a new subschema and storage schema. In
addition. it creates three area files, using the area names given in the schema for
the file names in the file specifications. Thus, the files COMPANYAR.DBS,
CUSTOMERA.DBS, and LOCATIONA.DBS are also created in the directory
represented by the logical name AVERTZ$APPL. (The DBO/CREATE command
uses only the first nine characters of the area names, excluding special characters
such as underscores.)

2-28 Setting Up a Database

When you have successfully defined, compiled, and created your database, you are
ready to store test data in it. You can use one of several methods to store your
data; for example, you can use DBMS's Load facility, a program written in a
high-level language, or VAX DATATRIEVE. The Load facility, invoked by the
DBO/LOAD command, is the recommended method for loading records from
VAX RMS files into a VAX DBMS database. See the VAX DBMS documentation
set for more information on the Load facility.

After extensive testing of your database's performance, you might decide to
modify one or more of the various schema definitions and recreate and load a new
database. During the testing phase, you can use the DBO/ANAL YZE and
DBO/SHOW STATISTICS commands to see whether the database records are
being stored and retrieved efficiently. In addition, you can poll the database users
to confirm that their applications process and manage the data correctly. See the
VAX DBMS Design Guide and the VAX DBMS Maintenance and Performance
Guide for more information about performance testing.

2.2.5 Working with a VAX DBMS Database

An application program processes data in a DBMS database by including state
ments from the data manipulation language (DML). Before you actually write a
high-level language program to use with a DBMS database, you should test and
debug the logic of the program by using the Database Query utility (DBQ). DBQ
is an interactive program you can use at your terminal to determine whether your
DML statements retrieve, store, modify, and delete the appropriate records in the
database. When you are sure that your logic is correct, you can incorporate the
DML statements into a high-level language program. This section uses DBQ
examples to illustrate how you might manipulate the data in the car rental
database to perform some common transactions.

To use DBQ, you should define the following symbol at DCL level or in your login
command file:

$ DBQ : == $DBQ

Then you can invoke DBQ simply by typing DBQ at DCL level. DBQ responds
with the dbq > prompt. and you can begin typing DBQ commands and state
ments. For tutorial information on using DBQ, see the VAX DBMS Introduction
to Data Manipulation. DBMS programming is discussed in the VAX DBMS
Programming Guide, and reference information about DBQ can be found in the
VAX DBMS Prograrnming Reference Manual.

2.2.5.1 Accessing the Database --An application accesses a DBMS database
by means of a subschema. To work with a DBMS database, you must first bind

Setting Up a Database 2-29

the database with the BIND command, indieating the root file and the subschema
you want to use. For example:

dbq> BIND AVERTZSS FOR AVERTZSC

This command binds the subschema named A VERTZSS for the A VERTZSC
database. DBQ expects to find the database root file in your default VMS direc
tory because you did not specify another location on the command line.

When you are finished working with a database, you end access to it with the
UNBIND command:

dbq> UNBIND

You must have completed the last transaction by either committing or rolling
back the database. You can then bind another database and continue working
with DBQ, or you can exit from DBQ with the EXIT command or CTRL/Z.

2.2.5.2 Database Transactions --A set of DML statements that you want to
perform together is called a transaction. In a transaction, the statements must
either execute as a unit or not at all. If only some of the statements execute and
others fail, the data in your database could become inconsistent.

You indicate the beginning of a transaction with a READY statement, which
readies realms for your transaction to use. A realm is a group of one or more
areas in the database. If you do not define realms in a subschema, each database
area is considered a separate realm.

When you ready a realm, you must also indicate the extent to which other users
may or may not access the realms you are using and the type of operation you
intend to perform. You can control other users' capabilities by specifying one of
the following options:

• CONCURRENT -- Other users can work with the same realms you are
using.

• PROTECTED -- Other users can retrieve records from the realms but
cannot update them.

• EXCLUSIVE -- Other users can neither retrieve records from nor update
the realms.

• BATCH -- If you are only retrieving from realms, other users can update
them. If you are updating realms, other users have no access at all to them.

2-30 Setting Up a Database

The options that determine the operations you can perform are:

• RETRIEVAL -- You can read but not write records.

• UPDATE -- You can both read and write records.

For example, if you are going to update the CUSTOMER_AREA realm but want
to allow other users to retrieve records from that realm while you are updating it,
you use the following statement:

dbq> READY CUSTOMER_AREA PROTECTED UPDATE

If you want to ready all the realms in the subschema with the same options, you
can omit the names of the realms. For example:

dbq> READY CONCURRENT RETRIEVAL

This statement allows other users to use the database while you are retrieving
records.

When your transaction is complete, you can either save any changes you made to
the database or cancel them. If you do not want to make permanent any changes
you made since the last READY statement, use the ROLLBACK statement:

dbq> ROLLBACK

If you are satisfied with your changes, use the COMMIT statement to write them
to the database:

dbq> COMMIT

After you end a transaction, the READY statement that was in effect is canceled.
You must enter another READY statement to begin another transaction.

2.2.5.3 Manipulating Data Within the Database -- The common operations you
perform on the data stored in a database are to add, retrieve. modify, and delete
records. The examples in this section show the DML statements that perform
such operations on the car rental database.

Suppose an existing customer named Taylor wants to reserve a car at the
A VERTZ location in Fort Collins, Colorado. To store this reservation, you must
first locate the customer record for Taylor and the location record for the Fort
Collins branch; then you can insert a new reservation within those occurrences of
the CUSTOMER RESERVATION and LOCATION RESERVATION sets. - -
dbq> READY PROTECTED UPDATE
dbq> FETCH FIRST CUSTOMER WITHIN CUSTOMER_CALC USING CU_NAME
CU_NAME

CU_LAST_NAME [CHARACTER (20)] = Taylor
CU_FIRST_NAME [CHARACTER (15)] = Jennifer
CU_INITIAL [CHARACTER (1)] = K

Setting Up a Database 2-31

CU_NAME
CU_LAST_NAME = Taylor
CU_FIRST_NAME = Jennifer
CU_INITIAL = K

CU_ADDR_DATA_1 = 264 Palm Drive
CU_ADDR_DATA_2 =
CU_CITY = Indianapolis
CU_STATE = IN
CU~POSTAL_CODE = 46222
CU_PHONE = 3179442090
CU_LICENSE_NO = 464553739
CU_LICENSE_STATE = IN
dbq>
dbq> FETCH FIRST LOCATION WITHIN LOCATION_CALC USING LO_CODE
RESERVATION_ID

LO_CODE [CHARACTER (2)] = FC
RESERVATION_ID

LO_CODE = FC
LO_RES_NUM = 426

LO_NAME = Fort Collins Avertz
LO_ADDR_DATA_1 =
LO_ADDR_DATA_2 = 732 Swift Street
LO_CITY = Fort Collins
LO_STATE = CO
LO_POSTAL_CODE = 80521
LO_PHONE = 3032987654
dbq>
dbq> STORE RESERVATION
RESERVATION_ID

R_PICKUP_LOCATION [CHARACTER (2)] = FC
RESERVATION_NUM [CHARACTER (9)] = 306725993

R_CAR_TYPE_CODE [SIGNED LONGWORD] = 2
R_PICKUP_DATE [CHARACTER (6)] = 25-MAY-1985
dbq> COMMIT

Because both sets were defined in the schema to have automatic insertion, the
RESERVATION record is automatically stored in both the
CUSTOMER RESERVATION and LOCATION RESERVATION sets. To verify
that the recor-d was actually stored, you can try to retrieve it from the
LOCATION RESERVATION set. First you must locate the correct occurrence of
the set by finding the location record for the Fort Collins location. Then, because
the schema requires a new record to be inserted in this set before all existing
records, the new reservation should be the first record in the set.

dbq> READY CONCURRENT RETRIEVAL
dbq> FETCH FIRST LOCATION WITHIN LOCATION_CALC USING LO_CODE
RESERVATION_ID

LO_CODE [CHARACTER (2)] = FC
RESERVATION_ID

LO_CODE = FC
LO_RES_NUM = 427

LO_NAME = Fort Collins Avertz
LO_ADDR_DATA_1 = 732 Swift Street
LO_ADDR_DATA_2 =
LO_CITY = Fort Collins
LO_STATE = CO

2-32 Setting Up a Database

LO_POSTAL_CODE = 80521
LO_PHONE = 3032987654
dbq>
dbq> FETCH FIRST RESERVATION WITHIN LOCATION_RESERVATION
RESERVATION_ID

R_PICKUP_LOCATION = FC
RESERVATION_NUM = 427

R_CAR_TYPE_CODE = 2
R_PICKUP _DATE = 25-.MAY-1985
dbq> COMMIT

Suppose that Taylor later calls AVERTZ and asks for a bigger car; you must
locate the appropriate reservation, based on the pickup date, and change the car
type code from 2 to 3.

dbq> READY PROTECTED UPDATE
dbq> FETCH FIRST CUSTOMER WITHIN CUSTOMER_CALC USING CU_NAME
CU_NAME ,

CU_LAST_NAME [CHARACTER (20)] = Taylor
CU_FIRST_NAME [CHARACTER (15)] = Jennifer
CU_INITIAL [CHARACTER (1)] = K

CU_NAME
CU_LAST_NAME = Taylor
CU_FIRST_NAME = Jennifer
CU_INITIAL = K

CU_ADDR_DATA_1 =
CU_ADDR_DATA_2 = 264 Palm Drive
CU_CITY = Indianapolis
CU_STATE = IN
CU_POSTAL_CODE = 46222
CU_PHONE = 3179442090
CU_LICENSE_NO = 464553739
CU_LICENSE_STATE = IN
dbq>
dbq> FETCH FIRST RESERVATION WITHIN CUSTOMER_RESERVATION USING -
dbq>_R_PICKUP_DATE
R_PICKUP_DATE [CHARACTER (6)] = 052585
RESERVATION_ID

R_PICKUP_LOCATION = FC
RESERVATION_ID = 427

R_CAR_TYPE_CODE = 2
R_PICKUP_DATE = 25-MAY-1985
dbq>
dbq> MODIFY R_CAR_TYPE_CODE
R_CAR_TYPE_CODE [SIGNED LONGWORD] 3
dbq> COMMIT

When Taylor arrives to pick up her car on the appointed date, you must find her
reservation, see what type of car she asked for, and assign her a specific car to
rent. Because CAR_TYPE records are owned by LOCATION records, once you
find her reservation, you must find the owner of that reservation within the
LOCATION RESERVATION set; you then find the requested car type at that
location and-finally a car of that type. To assign a car to the reservation, you dis
connect the CAR record from the CHECKED IN CARS set and connect it to the
CHECKED_OUT_CARS set owned by the current reservation.

Setting Up a Database 2-33

dbq> READY PROTECTED UPDATE
dbq> FETCH FIRST CUSTOMER WITHIN CUSTOMER_CALC USING CU_NAME
CU_NAME

CU_LAST_NAME [CHARACTER (20)] = Taylor
CU_FIRST_NAME [CHARACTER (15)] = Jennifer
CU_INITIAL [CHARACTER (1)] = K

CU_NAME
CU_LAST_NAME = Taylor
CU_FIRST_NAME = Jennifer
CU_INITIAL = K

CU_ADDR_DATA_1 =
CU_ADDR_DATA_2 = 264 Palm Drive
CU_CITY = Indianapolis
CU_STATE = IN
CU_POSTAL_CODE = 46222
CU_PHONE = 3179442090
CU_LICENSE_NO = 464553739
CU_LICENSE_STATE = IN
dbq>
dbq> FETCH FIRST RESERVATION WITHIN CUSTOMER_RESERVATION USING -
dbq>_R_PICKUP_DATE
R_PICKUP_DATE [CHARACTER (6)] = 052585
RESERVATION_ ID

R_PICKUP_LOCATION = FC
RESERVATION_NUM = 427

R_CAR_TYPE_CODE = 3
R_PICKUP_DATE = 25-MAY-1985
dbq>
dbq> FIND OWNER WITHIN LOCATION_RESERVATION
dbq> FETCH FIRST CAR_TYPE WITHIN 1YPE_AVAILABLE USING CAR_TYPE_CODE
CAR_TYPE_CODE [SIGNED LONGWORD] = 3
CAR_TYPE_CODE = 3
DAILY_RATE_LT_7_DAYS = 30
DAILY_RATE_GT_7_LT_30_DAYS = 25
DAILY_RATE_GT_30_DAYS = 20
DAILY_RATE_FUTURE_USE = 0
dbq>
dbq> FETCH FIRST CAR WITHIN CHECKED_IN_CARS
CAR_NUM = 14858329
CAR_TYPE_CODE = 3
~AR_MAKE = Ford
CAR_YEAR = 85
LICENSE_NUM = 50031380
LICENSE_STATE = CO
dbq>
dbq> DISCONNECT FROM CHECKED_IN_CARS
dbq> CONNECT TO CHECKED_OUT_CARS
dbq> COMMIT

The VAX DBMS Introduction to Data Manipulation explains DML statements
in greater detail. The DML examples in this section illustrate the logic that will
be used to process car rental transactions in the sample application in Chapter 4.
By using DBQ to construct a prototype of your application, you can locate and
correct logic errors in the early stages of application development.

2-34 Setting Up a Database

Displaying Data on the Screen 3

Forms-driven applications receive input from and return output to a form that is
displayed on a terminal screen. A terminal user supplies the input by typing val
ues at the keyboard to fill in the fields on the form. The output requested by.the
user is retrieved from a file or database and returned to form fields. Forms-driven
applications developed with the VAX Information Architecture components use
VAX TDMS to control input received from a terminal screen and output sent
back to the screen.

VAX TDMS handles screen input and output by means of forms, requests, and
workspaces. A form is a screen layout that contains background text and fields
for values that are either filled in by the user or displayed by the application. A
request is a list of instructions for displaying the form on the screen and moving
data to a temporary buffer called a workspace. The workspace includes fields for
all the data being input on or output to a form. An application program written in
a high-level language calls requests to display forms, retrieves information that a
request stores in a workspace, and uses that information to process records in a
master file or database. (Although you can use VAX RMS files to store the data
for a TDMS application, this manual does not discuss that option; it assumes that
your data is stored in either a VAX DBMS or VAX RdbNMS database.) You
store form, request, and workspace definitions in the CDD, where an application
program can locate them.

To implement a forms-driven application with TDMS, you write a high-level lan
guage program that includes data manipulation statements for your database and
TDMS programming calls to handle input and output. This chapter shows the
development of a VAX COBOL program that uses TDMS programming calls to
call requests, display forms, and interact with an RdbNMS database. If you were
writing a COBOL program that accesses a DBMS database, there is little differ
ence in how you would define forms, requests, and workspaces and write TOMS
programming calls. From the TDMS perspective, the only elements specific to a
database are the CDD path names to the workspaces you use in the requests.

3-1

3.1 A TOMS Personnel Application

One of the many administrative tasks that the A VERTZ Company performs reg
ularly is to record employees' promotions and salary increases in the personnel
database. This task combines two kinds of operations:

• An inquiry operation, in which the user supplies an employee number and is
then shown the employee's job history and salary history information

• An update operation, in which the user can change the relevant employee
data

When the program retrieves the current job history and salary history records
from the database, it must keep track of the employee's present job code and sal
ary. After the user updates the information displayed on the form, the program
can compare the job code and salary on the form and determine whether the
employee received a promotion, a raise, or both. If the employee received a pro
motion, the program must modify the current job history record to include an
ending date for the current job and store a new record for the new job. Similarly,
if the employee received a raise, the program must add a salary ending date to the
current salary history record and store a new record for the new salary.

The personnel program handles these operations in the following series of steps:

1. Opens the request library file, which contains binary versions of the
requests, and opens a channel to the terminal for output

2. Calls a request that displays a form on which the user can type an employee
number

3. Uses embedded DML statements to retrieve the current job history and sal
ary history records

4. Calls another request to display the form again, showing the employee
number, current department code, job code, starting date for that job,
supervisor's employee number, and present salary

5. Uses more DML statements to modify the existing job history and salary
history records and to store new records with the updated information

6. Closes the request library and the channel

The following sections describe how to define the forms, requests, workspaces,
and request library used in the update program. Section 3. 7 shows the complete
COBOL program that updates the personnel database.

3-2 Displaying Data on the Screen

3.2 Defining Forms

You define a form with the Form Definition Utility, or FDU. To create a form
definition, you use FDU's CREATE FORM command and specify a CDD path
name or given name for the form. If the form already exists and you want to
change some of its characteristics, use the MODIFY FORM command.

To enter FDU, first define FDU as a global symbol at DCL level or in your login
command file:

$ FDU :== $FDU

Then, to invoke FDU, simply type FDU. At the FDU> prompt, you can begin
typing FDU commands. For detailed information about FDU commands, type
HELP at the FDU > prompt or see the VAX TDMS Forrns Manual.

The personnel program displays a form on which the user types input for both the
inquiry and update operations. In the inquiry operation. the user types an
employee number that the program can use to retrieve job and salary history
information from the database. In the update operation, the user can type new
values for the job code, supervisor's employee number, and salary fields. The fol
lowing command creates the definition for this form:

FDU>CREATE FORM PERS_UPDATE_RAISEPRO_FORM

Unless you specify a complete CDD path name, the form definition is stored in
your default CDD directory; therefore, make sure that your default directory is
set correctly before you issue this command (or include the full CDD path name
on the command line}.

The CREATE FORM command automatically puts you into the Form Editor.
with which you define the screen layout of the form. You use the editor to create
background text and form fields and to define optional attributes for individual
fields. When you enter the form editor, you see the Phase Selection Menu. which
asks you to choose one of five editor phases. Figure 3-1 shows the Phase
Selection Menu that FDU displays when you create the inquiry/update form.

Displaying Data on the Screen 3-3

TOMS Forr,1 Editor

Phase Selection Menu

Phase choice:~¥Ji11111~

Assisn the form-wide attributes
Create or modify a form
Assisn field attributes
Modify the default field access order
End this editor session

ForM naMe: PERS_UPDATE_RAISEPRO_FORM
InPut file: New Form beins created
COD Path: PERS_UPDATE_RAISEPRO_FORM

Figure 3-1: Phases of the TOMS Form Editor

3.2.1 The Form Phase

ZK-00046-00

The Form phase of the form editor lets you assign optional attributes that apply
to the entire form, such as the width of the screen, the color of the screen back
ground. and the highlighting of input fields. This phase is optional: you can
instead begin your form definition with the required Layout phase by typing
LAYOUT (or simply Lt and pressing the RETURN key.

3.2.2 The Layout Phase

In the Layout phase, you create a screen image of the form by typing in the back
ground text and field identifiers. Background text is displayed on the screen
whenever the form is displayed; it identifies the information that the user is to
type on the form. Field identifiers show the locations of fields where data can be
displayed or entered on a form.

3-4 Displaying Data on the Screen

When you enter the Layout phase, FDU clears your screen and displays a cursor
status line on the bottom line of the screen. The status line initially looks like
this:

Cursor TXT NOR Line 1 Column 1 Modes TXT OVS

When you begin creating the form layout, the cursor is positioned at the upper
left corner of the screen, line 1, column 1. As you type, the line and column
indicators in the cursor status line change as the cursor moves. When creating a
simple form, you need not be concerned about the cursor setting. Mode settings
are described later in this section.

You can now type background text on the form and specify the contents of each
form field. You use the following field identifiers to describe the most common
types of characters a field can contain:

• A -- alphabetic characters only (the letters A-Z and a-z)

• 9 -- numeric characters only (the numbers 0-9)

• X -- any displayable character (alphabetic, numeric, and special, such as *
and%)

Use as many field identifiers as necessary to describe the length of the field. A
field can also contain certain punctuation marks, such as a decimal point or a
slash. When your program displays the form, the field identifiers do not appear;
rather, the input typed by the user (and any punctuation included in the field defi
nition) appears in the field.

The form editor must be able to distinguish between the characters you type as
background text and the characters you type to denote field identifiers. The
cursor status line shows whether you are typing background text (Text mode,
indicated by TXT) or field identifiers (Field mode, indicated by FLD). To switch
from Text to Field mode, press the GOLD key followed by 8 on the keypad (the
GOLD-keypad 8 combination); then type the field identifiers. To switch back to
Text mode, press the keypad 8 key. The mode settings on the cursor status line
change as you switch between Text and Field modes.

Like many forms, the personnel form contains a date field. TDMS provides a sim
ple way to define such a field and offers you a choice of several date formats. To
insert a date field on a form, make sure you are in Field mode and then press the

Displaying Data on the Screen 3-5

GOLD-D key combination. The cursor status line is replaced by the following four
date formats:

1. Month Day, Year (AAA 99, 9999)

2. Day-Month-Year (99-AAA-99)

3. Month/Day/Year (99/99/99)

4. Day-Month-Year (99-99-99)

You are asked to choose a format by typing the corresponding number. The form
editor automatically inserts the appropriate field identifiers on the form. When
the form is displayed as part of an application, TOMS displays the current date in
the date field by default.

To position the background text and the input fields where you want them on the
form, you can use the RETURN key, the SPACE bar, and the arrow keys to align
text and fields and put blank lines between entries. If you need to change text or
fields while in the Layout phase, you can either overstrike the characters on the
screen or insert new characters in front of existing ones. The cursor status line
shows whether you are overstriking characters (Overstrike mode, indicated by
OVS) or inserting characters (Insert mode, indicated by INS). To switch from
Overstrike to Insert mode, press the GOLD-PF3 key combination; to switch back
to Overstrike mode, press the PF3 key. The mode settings on the cursor status
line change as you switch between Overstrike and Insert modes.

Figure 3-2 shows the form layout for the personnel form. It contains the
employee number field, which the user supplies in the inquiry operation, and the
job code, supervisor's employee number, and salary fields, which the user can
modify in the update operation. It also contains the other fields in the job history
and salary history relations, since you need to store new records in these relations
when an employee receives raise or a promotion. Note that on the form shown in
Figure 3-2, the second date format is used for the starting date field.

The last line on the form is background text that reminds the user to press the
GOLD-E key combination to exit from the program without completing the
update; such a key combination is called a program request key. You define a pro
gram request key in a request to allow the user some control over a running
application (see Section 3.3.1). When you are finished creating a form layout,
press the GOLD-keypad 7 key combination. This ends the Layout phase and
returns you to the Phase Selection Menu.

3-6 Displaying Data on the Screen

U P D A T E R A I S E I P R 0 M 0 T I 0 N F 0 R M

E111PlO}'ee n1.ur1ber:

DePart1r1ent code:

>{X}-{}·{}{

vvvv
/\/\/\/\

Job code: }-000{
Supervisor ID: }{}{}{}{}{

Effective date: 88-AAA-88
New salary: 88888889.89

Press GOLD-E to exit from this tasK.

Figure 3-2: Personnel Form Layout

3.2.3 The Assign Phase

ZK-00047-00

After the Layout phase, you select the Assign phase to provide names for the
form fields and such optional information as default values and help messages. To
enter the Assign phase, type ASSIGN (or A) at the Phase Selection Menu and
press RETURN. When the Assign Phase Menu is displayed, type 2 to indicate
that you want to assign attributes to all fields, and then press RETURN. If you
forgot to switch to field mode when you typed the field identifiers, FDU reports
that the form contains no fields; in other words. the form consists entirely of
background text. To correct this error, select the Layout phase from the Phase
Selection Menu; then delete the field identifiers you typed, switch to field mode
with the GOLD-keypad 8 key combination, and retype the field identifiers.

Displaying Data on the Screen 3-7

When you enter the Assign phase, the Attribute Assignment Form is displayed,
and the field identifier for the first field in the form is shown bolded, underlined,
and blinking. In the Attributes section of the form, the field name for the first
field is F$0001. TDMS assigns this name by default to the first field, and subse
quent fields are numbered consecutively (F$0002, F$0003, and so on). Each field
must have a unique field name. You can accept the default field name if you like,
but you should instead choose a more descriptive field name. To delete the default
name, press the LINE FEED key and type the name of your choice.

Figure 3-3 shows how the Attribute Assignment Form might look after the first
field has been renamed to EMP NUMBER.

UPDATE RAISE/PROMOTION FORM

DePartMent code: XXXX
Job code: XXXX Effective date: 99-AAA-99

ATTRIBUTES for Field NaMed: EMP_NUMBER
Default Value: ---------------

Help text~

Autota.b Ri9'ht Justif» - LiPPercase Scale Factor __
No Echo Fixed DecrTJial - Must Fill Indexed (N,t.J,H) N
DisPla>' Dnl» - Zero Fill Response Reci"d - Index count 00

Zero SuPPress - Clear character
NO Validators exist for this field; do >'01.l want to enter F/V Edit <Y1N>:M

ZK-00048-00

Figure 3-3: Attribute Assignment Form for Personnel Form

You can now move to the other entries on the Attribute Assignment Form by
pressing the TAB key. The next two entries allow you to provide a default value
for a field and help text to inform the user what kind of data is required. The
remaining entries let you select restrictions on the input and display of data on

3-8 Displaying Data on the Screen

the form. If you want to accept all the defaults, press RETURN after you change
the field name. If you want to change a default, press the TAB key enough times
to position the cursor on the entry you want to change; then mark the entry with
anX.

To prevent the user from modifying a displayed field, choose the Display Only
characteristic when you assign the field's name. At run time, the cursor skips
over display-only fields, preventing the user from trying to change their contents.
For the personnel form. the job code and effective date (which is the current date)
must be displayed so that they can be stored in new job history and salary history
records. You should define these fields as display-only so that the user can see
them and they can be stored in the database but they cannot be changed.

To end the assignment of attributes for a field at any time, press RETURN.

You can give form fields any meaningful names you like: for the purposes of illus
tration in the rest of this chapter, the fields on the update form have the following
names:

• EMPNUMBER

• DEPT CODE

• JOB CODE

• JOB START

• SUPERVISOR ID

• SALARY

Field names are used in TDMS request definitions that display the form. When
you have assigned field names and any other attributes you need for all the fields
on your form, you end the Assign phase of the form editor by pressing the GOLD
keypad 7 key combination. The Phase Selection Menu reappears, and you can
select another phase.

3.2.4 The Order Phase

The next phase of form development is the Order phase, where you can change
the order in which users .enter data on the form. By default, form fields are filled
from left to right and from top to bottom. Because this order is practical for most
applications, you can usually skip the Order phase if you typed the field identifiers
in this order in the Layout phase.

3.2.5 The Exit Phase

To leave the form editor, choose the Exit phase by typing EXIT (or E) at the
Phase Selection Menu and pressing RETURN. FDU then asks whether you want
to save the form in the CDD. To save the form. press RETURN. FDU stores the

Displaying Data on the Screen 3-9

form definition in the CDD under the name you specified with the CREATE
FORM command. To leave FDU, type EXIT or press CTRL/Z at the FDU>
prompt.

To see the definition of a form stored in the CDD, you use the LIST FORM com
mand in FDU. This command shows the background text, field identifiers, and
attribute information about a form definition. You can either display the
command output on your terminal or write it to a file. For example:

FDU> LIST FORM PERS_UPDATE_RAISEPRO_FORM /OUTPUT=PERS_RP_FORM.TXT

This command writes the definition of PERS UPDATE RAISEPRO FORM in a
file named PERS_RP_FORM.TXT in your default VMS directory. -

3.3 Defining Requests

After you define the forms for your application, you can define the requests that
move the user's input from form fields to workspace fields and move the
program's output from the workspace back to the form. You define a request with
the Request Definition Utility, or RDU. The easiest way to use RDU is to create a
file of RDU instructions with a text editor, such as EDT, and then submit it as a
command file to RDU, which checks for possible errors. The VAX TDMS Request
Manual describes RDU in detail.

For the update program, you need two requests: a retrieval request to display the
form and collect an employee number and an update request to display the form
with information obtained from the database and collect the user's changes.
These requests are explained in the following sections.

3.3.1 Defining the Retrieval Request

A simple request contains two parts, a header and a base. The header identifies
the TDMS form definitions and the workspace definitions needed in the request.
The base contains mapping and usage instructions for TDMS to use whenever an
application program calls the request.

3.3.1.1 The Request Header -- In the header, you use FORM IS and RECORD
IS instructions to identify the CDD locations of your form and workspace defini
tions. You can explain the purpose of the request by including comments within
the delimiters/* and*/ in a DESCRIPTION instruction. The retrieval request
displays the personnel form, PERS UPDATE RAISEPRO FORM. It also needs
two workspaces, one to hold the employee number that the user types and one to
hold miscellaneous information that the program needs but that is not stored in
the database itself.

3-1 O Displaying Data on the Screen

A workspace must have a record definition stored in the CDD; you can usually
use a record definition that was stored in the CDD when you defined your DBMS
or RdbNMS database. To decide which definition to use for the workspace that
holds the employee number, consider which relations in the personnel database
contain that field and which are relevant to the records you need to update. The
current job and salary information is stored in two database relations,
JOB HISTORY and SALARY HISTORY, both of which contain an employee
number field. You can use either JOB HISTORY or SALARY HISTORY to
define the workspace. To define the workspace of miscellaneous information,
called PERS WORKSPACE in this application, you define a CDD record with the
CDD Data Definition Language, described in Section 3.4.

The following example shows the header of the retrieval request. Because of the
CDD hierarchy created when you define a database, you should specify the com
plete CDD path name rather than a given name if you use a DBMS or an
RdbNMS record definition for a workspace.

FORM IS CDD$TOP.RDBPERS.PERS_UPDATE_RAISEPRO_FORM;

RECORD IS CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY;
RECORD IS CDD$TOP.RDBPERS.PERS_WORKSPACE;

DESCRIPTION /* Accept the employee ID number for retrieving
job and salary information for raise/promotion
update */;

3.3.1.2 The Request Base -- The RDU instructions in the base of a request are
performed every time an application program calls the request. The instructions
can appear in any order because TDMS has a predefined order for executing
them.

The main purpose of most requests is to display a form and either collect input or
display output. In the base, you specify which form is to be displayed and which
workspace fields are to be assigned the values typed on the form. You also use the
base to define program request keys and do error handling.

The USE FORM instruction displays a form as it looked when the previous call to
the request ended; that is, the background text and any values that had been sup
plied for form fields are shown on the form. If the form was not displayed in the
previous request call, TDMS displays the form with the background text and any
defaults established in the form definition. The following instruction displays the
personnel form:

USE FORM PERS_UPDATE_RAISEPRO_FORM;

Once the form is displayed, the user can type input at the terminal. To direct
TDMS to collect input from the form and store it in a workspace, you use an
INPUT TO instruction. naming each form field and the corresponding workspace
field. When the user has filled in all the required fields, TDMS copies the value

Displaying Data on the Screen 3-11

from the form into the workspace. This INPUT TO instruction collects a value
from the EMP NUMBER field on the form and stores it in the EMPLOYEE ID
field in a workspace: -

INPUT EMP_NUMBER TO EMPLOYEE_ID;

In the personnel form shown in Figure 3-2, the last line reminds the user to press
the GOLD-E program request key to exit from the program. The user might
choose to exit if, for example, an error too severe for the user to correct occurred
during a data manipulation operation.

You define a program request key in the base of the request definition, using the
PROGRAM KEY IS instruction. You must specify a field in a workspace stored
in the CDD and state what value will be returned to the field when the user
presses the program request key. The program can then test the value of the field
and take the appropriate action. You define a program request key to exit from
the program as follows:

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

PROGRAM REQUEST KEY is a field in PERS WORKSPACE that the pro
gram tests to determine-what action the user wants to take. The NO CHECK
modifier causes TOMS to terminate the request without executing any outstand
ing instructions when the user presses the program request key.

Some errors are predictable in a database application; for example, the record
that a user wants to modify might be locked by another user, or the user might
type an employee number that does not exist in the database. When an error does
occur, you should notify the user by displaying an error message on the screen. To
do so, the program must first store an error value in a field of a workspace that
the request can access. The program then recalls the request, which tests the
value in the field and redisplays the form with an error message on the bottom
line. The user can then retry the operation or exit from the application by press
ing the program request key.

In the update program, error values are stored in a control field called
ERROR FIELD. which is contained in PERS WORKSPACE. The error values
are character strings that briefly indicate the -type of error; for example,
"LOCKED" indicates a locked record, and "NOTFND" indicates a nonexistent
employee number. In the request, you use a CONTROL FIELD IS instruction to
test whether ERROR FIELD contains either of these values. Within this instruc
tion, you use MESSAGE LINE IS instructions to associate each value with an

3-12 Displaying Data on the Screen

appropriate error message. The following example shows the CONTROL FIELD
IS instruction for the retrieval request:

CONTROL FIELD IS ERROR_FIELD
"LOCKED" MESSAGE LINE IS

"Record is locked. Try again or exit with GOLD-E. 11 ;

"NOTFND" : MESSAGE LINE IS
"Employee not found. Try another number or exit with GOLD-E.";

END CONTROL FIELD;

You complete the request with the END DEFINITION instruction.

TDMS executes CONTROL FIELD IS instructions before any other instructions
in a request. It then executes any output operations and finally any input oper
ations, including the evaluation of program request keys. Example 3-1 shows the
complete request definition for the retrieval request.

FORM IS CDD$TOP.RDBPERS.PERS_UPDATE_RAISEPRO_FORM;

RECORD IS CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY;
RECORD IS PERS_WORKSPACE;

DESCRIPTION /* Accept the employee ID number for retrieving
job and salary information for raise/promotion
update */;

USE FORM PERS_UPDATE_RAISEPRO_FORM;

INPUT EMP_NUMBER TO EMPLOYEE_ID;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ERROR_FIELD
"LOCKED" MESSAGE LINE IS

"Record is locked. Try again or cancel with GOLD-E.";
"NOTFND" : MESSAGE LINE IS

"Employee not found. Try another number or cancel with GOLD-E.";
END CONTROL ~!ELD;

EtJD DEFINITION;

Example 3-1: Retrieval Request Definition

3.3.2 Defining the Update Request

After the application program calls the retrieval request, it retrieves data from
the database and stores it in a workspace. The update request displays the
retrieved data and lets the user make any necessary changes. The program can
then update the database accordingly. Like the retrieval request, the update
request displays the personnel form and uses PERS_ WORKSPACE to store the

Displaying Data on the Screen 3-13

values of the program request key and the control field. It uses JOB HISTORY
to define a workspace for an employee's job history information and -
SALARY HISTORY to define a workspace for salary history information. Thus,
the header for the update request is:

FORM IS CDD$TOP.RDBPERS.PERS_UPDATE_RAISEPRO_FORM;

RECORD IS CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY;
RECORD IS CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY;
RECORD IS PERS_WORKSPACE;

DESCRIPTION /* Display job and salary information and accept
changes to indicate a raise and/or a promotion */;

You use a USE FORM instruction to display the form in the update request:

USE FORM PERS_UPDATE_RAISEPRO_FORM;

To transfer fields in a workspace to a form, you use an OUTPUT TO instruction.
You can then transfer the modified form fields back to the workspaces with an
INPUT TO instruction.

In some cases, you want to display the value of a field for the user's benefit but
you do not want to let the user enter data in the field. You can accomplish this in
two ways: you can display the value in an OUTPUT TO instruction but not accept
input for it in an INPUT TO instruction, or you can use the RETURN TO
instruction. The RETURN TO instruction transfers the value in a form field to a
field in a workspace without positioning the cursor in the field and thus giving the
user an opportunity to change the value. However, the value must have been
stored in the field by some default method, not by the OUTPUT TO instruction.
For example, TDMS automatically displays the current date in a field with a date
format that is not listed in an OUTPUT TO instruction. With a RETURN TO
instruction, you can transfer the current date to a field in a workspace.

The update request uses these three instructions:

OUTPUT DEPARTMENT_CODE
JOB_CODE
SUPERVISOR_ ID
SALARY_AMOUNT

TO DEPT_CODE,
TO JOB_CODE,
TO SUPERVISOR_ID,
TO SALARY;

INPUT JOB_CODE TO JOB_CODE,
SUPERVISOR_ID TO SUPERVISOR_ID,
SALARY TO SALARY_AMOUNT;

RETURN JOB_START TO JOB_START;

Because DEPT CODE is a Display Only field in the form definition, you cannot
direct TDMS to accept an input value for it; thus, the user cannot attempt to
change its value. Likewise, the value of JOB_ START is the current date, and the
user cannot attempt to change it.

3-14 Displaying Data on the Sc.reen

Like the retrieval request,· the update request should define a control field for
testing errors and a program request key to let the user exit easily from the appli
cation. Because you can expect locked record and nonexistent record errors to
occur when the program tries to update the database, you can use the same con
trol field definition in the update request as in the retrieval request. You can also
use the same program request key definition so that the terminal user can exit
from the application in the same way from both requests.

You end the update request definition with the END DEFINITION instruction.

Example 3-2 shows the complete update request definition.

FORM IS CDD$TOP.RDBPERS.PERS_UPDATE_RAISEPRO_FORM;

RECORD IS CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY;
RECORD IS CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY;
RECORD IS PERS_WORKSPACE;

DESCRIPTION /* Display job and salary information and accept
changes to indicate a raise and/or a promotion */;

USE FORM PERS_UPDATE_RAISEPRO_FORM;

OUTPUT JOB_CODE TO JOB_CODE,
DEPARTMENT_CODE TO DEPT_CODE,
SUPERVISOR_ID TO SUPERVISOR_ID,
SALARY_AMOUNT TO SALARY;

INPUT JOB_CODE TO JOB_CODE,
SUPERVISOR_ID TO SUPERVISOR_ID,
SALARY TO SALARY_AMOUNT;

RETURN JOB_START TO JOB_START;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ERROR_FIELD
"LOCKED" MESSAGE LINE IS

"Record is locked. Try again or cancel with GOLD-E.";
"NOTFND" : MESSAGE LINE IS

"Employee not found. Try another number or cancel with GOLD-E.";
END CONTROL FIELD;

END DEFINITION;

Example 3-2: Update Request Definition

3.4 Defining Workspaces
Most application programs use program request keys or control fields to control a
running application. These fields are stored not in a database but in a workspace
whose definition resides in the CDD. With the CDD Data Definition Language
Utility (CDDL), you define a record to use as a workspace and enter the definition

Displaying Data on the Screen 3-15

directly in the CDD. The easiest way to use CDDL is to create a source file of
CDDL statements with a text editor, such as EDT, and then submit the file to
the CDDL compiler, which checks for possible errors. The VAX Common Data
Dictionary Data Definition Language Reference Manual contains complete refer
ence information on CDDL.

3.4.1 Defining the Record

A record definition begins with a DEFINE statement and ends with an END
statement. The DEFINE statement gives the name of the record, which can be
either the full CDD path name, starting with CDD$TOP, or the definition's given
name. After the DEFINE statement, you can use an optional DESCRIPTION
statement to include comments in the record definition.

The body of a record definition is a field description statement that lists all the
fields in the record and describes their characteristics, including the data type and
size. Among the kinds of fields a CDD record can have are elementary fields and
STRUCTURE fields. An elementary field is not divided into subordinate fields.
while a STRUCTURE field is further subdivided. You usually define a CDD
record as a STRUCTURE field composed of elementary fields and other
STRUCTURE fields. You can describe individual fields by enclosing comments
within the delimiters/* and */.

Example 3-3 shows the definition of the workspace used in the update program.

DEFINE RECORD PERS_WORKSPACE
DESCRIPTION IS /* Miscellaneous fields */.

PERS_WORKSPACE STRUCTURE.
PROGRAM_REQUEST_KEY

ERROR_FIELD

NOT_FOUND

SAL_AMT
JOB

TEST_FIELD

END PERS_WORKSPACE STRUCTURE.

END PERS_WORKSPACE.

DATATYPE TEXT SIZE 6
INITIAL_VALUE IS "
DATATYPE TEXT SIZE 6
INITIAL_VALUE IS "
DATATYPE TEXT SIZE 1
INITIAL_VALUE IS " "·
DATATYPE SIGNED LONGWORD.

If

If

DATATYPE TEXT SIZE 4
INITIAL_VALUE IS "
DATATYPE TEXT SIZE 1
INITIAL_VALUE IS " II

"

Example 3-3: PERS_WORKSPACE Definition in the COD

Most of the fields in this workspace are defined as TEXT and initialized with a
value of spaces. The SIZE information specifies the maximum number of charac
ters that the field's value can have. The NOT FOUND field is used to indicate
that a record with the specified employee number does not exist in the database.
The SAL AMT and JOB CODE fields are used to hold an employee's present sal
ary and job code so that the update program can determine whether the employee

3-16 Displaying Data on the Screen

received a raise, a promotion, or both. JOB CODE is declared as a signed
longword for more efficient storage. TEST FIELD is defined for the ACMS per
sonnel application, which also uses this workspace; the application is described in
Section 4.1 and contained in Section A.1.

3.4.2 Inserting the Record Definition in the COD

After you define the workspace, you must submit the definition to the CDDL util
ity to be compiled. As it compiles the source file, CDDL reports any errors that it
finds. If it finds none, it inserts the definition in your default CDD directory (or in
the directory you specified in the DEFINE RECORD statement). To use the
CDDL compiler, you should first define CDDL as a global symbol in your login
command file or at DCL command level:

$ CDDL :== $CDDL

If you stored the definition for PERS WORKSPACE in a source file named
PERS_WORKSPACE.DDL, you would compile it with the following command:

$ CDDL/AUDIT PERS_WORKSPACE

Because .DDL is the default file type for CDDL source files, you need not specify
it on the command line. The /AUDIT qualifier creates a history list for
PERS WORKSPACE and records the date and time of its insertion in
CDD$TOP.RDBPERS.

If CDDL finds errors when compiling your source file, it displays error messages
on your screen. In addition, CDDL automatically creates a listing file that con
tains the source text and the error messages for any errors it found. The listing
file is created in your default VMS directory with the same file name as the
source file and the file type .LIS. If you need to correct errors or change a defini
tion already stored in the CDD, you can edit the source file and then recompile it.
using the CDDL command with the /REPLACE qualifier to insert the changed
definition in the CDD. For example:

$ CDDL/REPLACE/AUDIT PERS_WORKSPACE

This command recompiles the PERS WORKSPACE.DDL source file (which you
have presumably edited since you first created the PERS WORKSPACE defini
tion) and replaces the existing definition with your changed version.

3.5 Storing Request Definitions in the COD

After you have defined all the forms, requests, and workspaces you need, you
store the request definitions in the CDD with RDU's CREATE REQUEST or
REPLACE REQUEST command. Both commands check for syntax errors and, if
no errors are found, store the definitions in the CDD. The REPLACE REQUEST
command works exactly like CREATE REQUEST if the definition does not exist.

Displaying Data on the Screen 3-17

Just in case a request definition does not compile correctly the first time you sub
mit it to RDU, you should always use the REPLACE REQUEST command; then
you do not have to remember to change the command in your command file when
you correct the other errors.

To submit a definition to RDU, include either command as the first line in the
command file and specify the request definition's complete path name or given
name in the CDD. For example, the following command names the retrieval
request:

REPLACE REQUEST PERS_GET_RAISEPRO_REQUEST

You can name the update request with a similar command:

REPLACE REQUEST PERS_PUT_RAISEPRO_REQUEST

When RDU processes either of these commands. it checks the rest of the com
mand file and. if it finds no errors. creates the request definition in the CDD. If
your default CDD directory is set to the directory where you want to store your
definitions (in this case. CDD$TOP.RDBPERS), you can use just the given name
in the REPLACE command.

To enter RDU, first define RDU as a global symbol in your login command file or
at DCL command level:

$ RDU :== $RDU

Then. to invoke RDU, simply type RDU. At the RDU > prompt, you can submit
your command file to RDU and insert your request definition in the CDD. If you
stored the retrieval request in a file named PERS GET REQUEST.COM, you
would submit it to RDU as follows: - -

$ RDU
RDU>©PERS_GET_REQUEST

Because .COM is the default file type for RDU command files. you need not
specify it on the command line. Similarly, you would submit the update request in
a command file named PERS_PUT_REQUEST.COM as follows:

RDU>©PERS_PUT_REQUEST

RDU generates warning messages when you insert the retrieval and update
requests in the CDD because TDMS does not support the INITIAL VALUE
clause used in the definition of PERS WORKSPACE. TDMS simply ignores this
clause, so you can ignore the message. If RDU detects other errors in your
request definition. you must edit the command file and resubmit it. You must
repeat these two steps until RDU reports that it processed the file without errors.

3-18 Displaying Data on the Screen

A common error is that the form field names you use in the request do not match
the names you assigned to the fields in the form definition, or that the record field
names you use in the request do not match the names you used in the record defi
nition. Be sure that all the field names in the request definition are correct before
you submit the command file to RDU.

To exit from RDU, use the EXIT command or press CTRL/Z.

3.6 Defining and Building a Request Library
The TDMS requests you use in an application program must be stored in a
request library whose definition resides in the CDD. You define a request library
with RDU instructions, which you can submit to RDU in a command file; if RDU
finds no errors, it inserts the request library definition in the CDD.

After you define the request library, you must convert it into a request library file.
This file is a VAX RMS file that contains binary versions of the requests and
other information about the forms and records they use. At run time, TDMS
must execute the requests' instructions in their binary form rather than as RDU
source instructions.

You define the request library with REQUEST IS instructions that list program.
To submit the definition to RDU and store it in the CDD, you add the CREATE
LIBRARY or REPLACE LIBRARY command at the top of the definition, speci
fying the request library's complete path name or given name in the CDD. If your
default CDD directory is set to the correct directory (in this case,
CDD$TOP.RDBPERS), you can use just the given name.

Example 3-4 shows the request library definition for the update program.

REPLACE LIBRARY PERS_REQLIB
REQUEST IS PERS_GET_RAISEPRO_REQUEST;
REQUEST IS PERS_PUT_RAISEPRO_REQUEST;

END DEFINITION;

Example 3-4: Request Library Definition for Update Program

If you stored the request library definition in a file named PERS'"REQLIB.COM,
you would submit it to RDU as follows:

$ RDU
RDU>©PERS_REQLIB

Once the request library is stored in the CDD, you can build the request library
file with RDU's BUILD LIBRARY command. You must specify the request
library's path name or given name in the CDD and the VMS file specification you
want the library file to have. For example:

RDU>BUILD LIBRARY PERS_REQLIB PERS$EXE:PERS_REQLIB.RLB

Displaying Data on the Screen 3-19

In this example, RDU uses the request library definition PERS REQLIB to
locate the requests in your default CDD directory and place them in the new
request library file in the VMS directory referred to by the logical name
PERS$EXE. The request library file is sometimes called the .RLB file because
. RLB is the default file type.

Because TDMS does not support the INITIAL VALUE clause used in the defini
tion of PERS WORKSPACE, RDU generates warning messages when you build
the request library file for the update program. These messages appear at every
reference to PERS_WORKSPACE; you can ignore them.

Before you build a request library file, be sure that:

• All the requests in the request library definition are defined in the CDD

• All the forms and records referred to in the requests are defined in the
CDD

• Your default CDD directory is set to the directory where the request library,
request, form, and record definitions are stored if you did not specify com
plete CDD path names in the definitions

RD U issues error messages and does not build a request library file if any of these
conditions are not met. If the BUILD command fails, you must correct the errors
and resubmit the request library definition to RDU, repeating these two steps
until the definition is processed without errors.

For more information about defining and building request libraries, see the VAX
TDMS Request Manual.

3.7 TOMS Application Programming

Application programs use TDMS programming calls to handle the interactions
with the user's terminal. For most programs, the following calls are sufficient to
handle input and output requirements:

• TSS$0PEN_RLB to open the request library file

• TSS$0PEN to open a channel to the terminal

• TSS$REQUEST to call a request and execute the instructions it contains

• TSS$CLOSE _ RLB to close the request library file

• TSS$CLOSE to close the channel

• TSS$SIGNAL to signal the return status of an unsuccessful programming
call

3-20 Displaying Data on the Screen

The update program described in this chapter uses all of these calls and issues
two calls to TSS$REQUEST. The first calls the retrieval request,
PERS GET RAISEPRO REQUEST, to display the personnel form. After the
user fills in the employee number field, the program uses DML statements to
start a transaction, retrieve information from the JOB HISTORY and
SALARY_ HISTORY relations in the database, and end the transaction. It saves
the current job code and salary in two fields of PERS WORKSPACE and then
issues the second call to TSS$REQUEST, which calls the update request.

PERS PUT RAISEPRO REQUEST redisplays the form and lets the user make
changes to the job and salary data. The program then starts another transaction,
determines whether the employee received a raise, a promotion, or both, and uses
more DML statements to add ending dates (if necessary) to the current
JOB HISTORY and SALARY HISTORY records. Finally, the program stores
new records in these relations for the employee's new job and salary and commits
these changes to the database. Program control returns to the first
TSS$REQUEST call, and the user can enter another employee number or use the
program request key to exit from the program. The VAX TDMS Prograrnming
Manual explains the TDMS programming calls in detail.

Example 3-5 shows the complete program that updates the personnel database
for an employee's raise and promotion. To compile this program, you must use
the RdbNMS precompiler for COBOL. The precompiler first checks the syntax of
the DML statements in your procedure and converts these statements into equiv
alent calls to the database. It then invokes the COBOL compiler to check the
syntax of your COBOL statements and generate object code for your procedure.
The compiler generates warning messages for the use of the DATE data type in
the database definition: COBOL must convert the DATE data type into an equiv
alent numeric string. You can ignore these messages.

After you compile the program. you must link the object module with the VAX
Linker. The warning-level errors reported for the DATE data type are also
detected when you link the object module, but they do not affect the execution of
your program.

You should use the /DEBUG qualifier when you compile and link the program so
that you can debug it with the VAX Symbolic Debugger. See the VAX Rdb!VMS
Guide to Programming for information on compiling COBOL programs with
embedded DML statements. See the VAX COBOL User's Guide for information
on compiling COBOL programs and interpreting COBOL error messages.

Displaying Data on the Screen 3-21

IDENTIFICATION DIVISION.

PROGRAM-ID. RAISEPRO.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.
WORKING-STORAGE SECTION.

&RDB& INVOKE DATABASE FILENAME 'PERS$EXE:PERSONNEL'

01 CHANNEL PIC S9(5) COMP.
01 STATUS-RESULT PIC S9(5) COMP.
01 REQUEST-LIBRARY-FILE PIC X(20)

VALUE IS "PERS$EXE:PERSLIB.RLB".
01 LIBRARY-ID PIC S9(5) COMP.
01 REQUEST! PIC X(25)

VALUE IS "PERS_GET_RAISEPRO_REQUEST".
01 REQUEST2 PIC X(25)

VALUE IS "PERS_PUT_RAISEPRO_REQUEST".
01 CLEAR-SCREEN PIC S9(5) COMP

VALUE IS 1.
01 REC-LOCKED PIC X(6)

VALUE IS "LOCKED".
01 REC-NOT-FOUND PIC X(6)

VALUE IS "NOTFND".
01 RDB$_DEADLOCK PIC S9(9) COMP

VALUE IS EXTERNAL RDB$_DEADLOCK.
01 RDB$_LOCK_CONFLICT PIC S9(9) COMP

VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.
01 LIB$SIGNAL PIC S9(9) COMP

VALUE IS EXTERNAL LIB$SIGNAL.

COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY"
FROM DICTIONARY
REPLACING ==JOB_HISTORY. ==BY ==JOB_HISTORY_SCREEN. ==.

COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY"
FROM DICTIONARY
REPLACING ==SALARY_HISTORY. ==BY ==SALARY_HISTORY_SCREEN.

COPY "CDD$TOP.RDBPERS.PERS_WORKSPACE" FROM DICTIONARY.

PROCEDURE DIVISION GIVING STATUS-RESULT.

MAIN SECTION.
010-0PEN.

SET STATUS-RESULT TO SUCCESS.

CALL "TSS$0PEN_RLB" USING
BY DESCRIPTOR REQUEST-LIBRARY-FILE,

Example 3-5: Update Program Using TOMS Calls

3-22 Displaying Data on the Screen

BY REFERENCE LIBRARY-ID
GIVING STATUS-RESULT.

IF STATUS-RESULT NOT SUCCESS
CALL "TSS$SIGNAL" GIVING STATUS-RESULT.

CALL "TSS$0PEN" USING
CHANNEL
GIVING STATUS-RESULT.

IF STATUS-RESULT NOT SUCCESS
CALL "TSS$SIGNAL" GIVING STATUS-RESULT.

020-RETRIEVE-INFO.

CALL 11 TSS$REQUEST 11 USING
BY REFERENCE CHANNEL,
BY REFERENCE LIBRARY-ID,
BY DESCRIPTOR REQUEST1,
BY REFERENCE JOB_HISTORY_SCREEN,

PERS_ WORKSPACE
GIVING STATUS-RESULT.

MOVE "SUCCES" TO ERROR_FIELD.

IF STATUS-RESULT NOT SUCCESS
CALL "TSS$SIGNAL" GIVING STATUS-RESULT.

IF PROGRAM_REQUEST_KEY = "EXIT"
THEN

GO TO 040-CLEANUP.

&RDB& START_TRANSACTION READ_ONLY
&RDB& ON ERROR

PERFORM 060-ERROR-CHECK THRU 060-ERROR-CHECK-EXIT
&RDB& ROLLBACK
GO TO 020-RETRIEVE-INFO

&RDB& END_ERROR

MOVE "T" TO NOT_FOUND.

&RDB& FOR JH IN JOB_HISTORY WITH
&RDB& JH.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY_SCREEN
&RDB& AND JH.JOB_END MISSING
&RDB& ON ERROR

PERFORM 060-ERROR-CHECK THRU 060-ERROR-CHECK-EXIT
&RDB& ROLLBACK
GO TO 020-RETRIEVE-INFO

&RDB& END_ERROR

MOVE "F" TO NOT_FOUND

&RDB& GET
&RDB& ON ERROR

PERFORM 060-ERROR-CHECK THRU 060-ERROR-CHECK-EXIT

{continued on next page)

Example 3-5: Update Program Using TOMS Calls (Cont.)

Displaying Data on the Screen 3-23

&RDB& ROLLBACK
GO TO 020-RETRIEVE-INFO

&RDB& END_ERROR
&RDB& JOB_CODE IN JOB_HISTORY_SCREEN = JH.JOB_CODE;
&RDB& DEPARTMENT_CODE IN JOB_HISTORY_SCREEN = JH.DEPARTMENT_CODE;
&RDB& SUPERVISOR_ID IN JOB_HISTORY_SCREEN = JH.SUPERVISOR_ID
&RDB& END_GET
&RDB& END_FOR

IF NOT_FOUND = "T"
THEN
&:RDB& ROLLBACK

MOVE REC-NOT-FOUND TO ERROR_FIELD
GO TO 020-RETRIEVE-INFO.

MOVE JOB_CODE OF JOB_HISTORY_SCREEN TO JOB OF PERS_WORKSPACE.

MOVE "T" TO NOT_FOUND.

&RDB& FOR SH IN SALARY_HISTORY WITH
&:RDB& SH.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY_SCREEN
&:RDB& AND SH.SALARY_END MISSING
&RDB& ON ERROR

PERFORM 060-ERROR-CHECK THRU 060-ERROR-CHECK-EXIT
&RDB& ROLLBACK
GO TO 02o~RETRIEVE-INFO

&RDB& END_ERROR

MOVE "F" TO NOT_FOUND

&RDB& GET
&RDB& ON ERROR

PERFORM 060-ERROR-CHECK THRU 060-ERROR-CHECK-EXIT
&RDB& ROLLBACK
GO TO 020-RETRIEVE-INFO

&RDB& END_ERROR
&RDB& SALARY_AMOUNT IN SALARY_HISTORY_SCREEN SH.SALARY_AMOUNT
&RDB& END_GET
&RDB& END_FOR

IF NOT_FOUND = "T"
THEN
&RDB& ROLLBACK

MOVE REC-NOT-FOUND TO ERROR_FIELD
GO TO 020-RETRIEVE-INFO.

MOVE SALARY_AMOUNT OF SALARY_HISTORY_SCREEN TO
SAL_AMT OF PERS_WORKSPACE.

&RDB& COMMIT.

030-UPDATE-INFO.
CALL "TSS$REQUEST" USING

BY REFERENCE CHANNEL,
BY REFERENCE LIBRARY-ID,

Example 3-5: Update Program Using TOMS Calls (Cont.)

3-24 Displaying Data on the Screen

BY DESCRIPTOR REQUEST2,
BY REFERENCE JOB_HISTORY_SCREEN,

SALARY_HISTORY_SCREEN,
PERS_WORKSPACE

GIVING STATUS-RESULT.

IF STATUS-RESULT NOT SUCCESS
CALL "TSS$SIGNAL" GIVING STATUS-RESULT.

IF PROGRAM_REQUEST_KEY = "EXIT"
THEN

GO TO 040-CLEANUP.

&RDB& START_TRANSACTION READ_WRITE RESERVING
&RDB& JOB_HISTORY, SALARY_HISTORY, EMPLOYEES FOR SHARED WRITE
&RDB& ON ERROR

PERFORM 060-ERROR-CHECK THRU 060-ERROR-CHECK-EXIT
&RDB& ROLLBACK
GO TO 020-RETRIEVE-INFO

&RDB& END _.ERROR

MOVE "T" TO NOT_FOUND.

IF JOB OF PERS_WORKSPACE = JOB_CODE OF JOB_HISTORY_SCREEN
THEN

MOVE "F" TO NOT_FOUND
ELSE
&RDB& FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID =
&RDB& EMPLOYEE_ID IN JOB_HISTORY_SCREEN
&RDB& AND JH.JOB_END MISSING
&RDB& ON ERROR

PERFORM 060-ERROR-CHECK THRU 060-ERROR-CHECK-EXIT
&RDB& ROLLBACK
GO TO 030-UPDATE-INFO

&RDB& END_ERROR

MOVE "F" TO NOT_FOUND

&RDB& MODIFY JH USING
&ROB& ON ERROR

PERFORM 060-ERROR-CHECK THRU 060-ERROR-CHECK-EXIT
&RDB& ROLLBACK
GO TO 030-UPDATE-INFO

&ROB& END_ERROR
&ROB& JH.JOB_END = JOB_START IN JOB_HISTORY_SCREEN
&ROB& END_MODIFY
&ROB& END_FOR

IF NOT_FOUND = "T"
THEN
&ROB& ROLLBACK

MOVE REC-NOT-FOUND TO ERROR_FIELD
GO TO 030-UPDATE-INFO

END-IF

(continued on next page)

Example 3-5: Update Program Using TOMS Calls (Cont.)

Displaying Data on the Screen 3-25

&RDB& STORE JH IN JOB_HISTORY USING
&RDB& ON ERROR

PERFORM 060-ERROR-CHECK THRU 060-ERROR-CHECK-EXIT
&RDB& ROLLBACK
GO TO 030-UPDATE-INFO

&RDB& END_ERROR
&RDB& JH.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY_SCREEN;
kRDBk JH.JOB_CODE = JOB_CODE IN JOB_HISTORY_SCREEN;
&RDB& JH.DEPARTMENT_CODE = DEPARTMENT_CODE IN JOB_HISTORY_SCREEN;
&RDB& JH.JOB_START = JOB_START IN JOB_HISTORY_SCREEN;
&RDB& JH.SUPERVISOR_ID = SUPERVISOR_ID IN JOB_HISTORY_SCREEN
&RDB& END_STORE
END-IF.

MOVE "T" TO NOT_FOUND.

IF SAL_AMT OF PERS_WORKSPACE = SALARY_AMOUNT
OF SALARY_HISTORY_SCREEN

THEN
MOVE "F" TO NOT_FOUND

ELSE
&RDB& FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID =
&RDB& EMPLOYEE_ID IN JOB_HISTORY_SCREEN
&RDB& AND SH.SALARY_END MISSING
&RDB& ON ERROR

PERFORM 060-ERROR-CHECK THRU 060-ERROR-CHECK-EXIT
&RDB& ROLLBACK
GO TO 030-UPDATE-INFO

&RDB& END_ERROR

MOVE "F" TO NOT_FOUND

&RDB& MODIFY SH USING
&RDB& ON ERROR

PERFORM 060-ERROR-CHECK THRU 060-ERROR-CHECK-EXIT
&RDB& ROLLBACK
GO TO 030-UPDATE-INFO

. &RDB& END_ERROR
&RDB& SH.SALARY_END = JOB_START IN JOB_HISTORY_SCREEN
&RDB& END_MODIFY
&RDB& END_FOR

IF NOT_FOUND = "T"
THEN
&RDB& ROLLBACK

END-IF

MOVE REC-NOT-FOUND TO ERROR_FIELD
GO TO 030-UPDATE-INFO

&RDB& STORE SH IN SALARY_HISTORY USING
&RDB& ON ERROR

PERFORM 060-ERROR-CHECK THRU 060-ERROR-CHECK-EXIT
&RDB& ROLLBACK
GO TO 030-UPDATE-INFO

&RDB& END_ERROR

Example 3-5: Update Program Using TOMS Calls (Cont.)

3-26 Displaying Data on the Screen

&RDB& SH.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY_SCREEN;
&RDB& SH.SALARY_AMOUNT = SALARY_AMOUNT IN SALARY_HISTORY_SCREEN;
&RDB& SH.SALARY_START = JOB_START IN JOB_HISTORY_SCREEN
&RDB& END_STORE
END-IF.

&RDB& COMMIT.

GO TO 020-RETRIEVE-INFO.

040-CLEANUP.
&RDB& FINISH

CALL "TSS$CLOSE_RLB" USING
BY REFERENCE LIBRARY-ID
GIVING STATUS-RESULT.

IF STATUS-RESULT NOT SUCCESS
CALL "TSS$SIGNAL" GIVING STATUS-RESULT.

CALL "TSS$CLOSE" USING
BY REFERENCE CHANNEL,
BY REFERENCE CLEAR-SCREEN
GIVING STATUS-RESULT.

IF STATUS-RESULT NOT SUCCESS
CALL "TSS$SIGNAL" GIVING STATUS-RESULT.

GO TO 100-EXIT-PROGRAM.

J60-ERROR-CHECK.
IF RDB$STATUS EQUAL RDB$_DEADLuGK

OR RDB$STATUS EQUAL RDB$_LOCK_CONFLICT
THEN ,

MOVE REC-LOCKED TO ERROR_FIELD
ELSE

CALL "LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR
BY VALUE LIB$SIGNAL.

060-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Example 3-5: Update Program Using TOMS Calls (Cont.)

Displaying Data on the Screen 3-27

Transaction Processing Against a Database 4

With components of the VAX Information Architecture, and especially with VAX
ACMS. you can develop. use, and control transaction processing applications that
allow many terminal users to perform data entry, display. and update tasks at the
same time. You divide an ACMS application into units of processing work called
tasks: each task has a task definition that describes the exchange of information
between the terminal user and the application, and the processing of that infor
mation against a master file or database. (This manual assumes that your data is
stored in either a VAX DBMS or VAX Rdb/VMS database.) Thus, ACMS pro
vides a way to apply structured programming concepts, such as top-down design,
to the entire application.

A transaction processing application developed with the VAX Information
Architecture consists of the following elements:

• A file or database in which your data is stored

• VAX TDMS forms on which terminal users enter data and on which data is
displayed

• VAX TDMS requests that transfer data to workspaces where it can be
retrieved for display on a form or for storage in a database

• VAX CDD record definitions for miscellaneous workspaces and one or more
CDD directories to contain all the definitions needed in the application

• Procedures written in a VAX high-level language that store, retrieve, and
modify data in the database

• VAX ACMS tasks that control the exchange of information between the user
and the application. and the processing of that information against the
database

4-1

A terminal user enters an ACMS application by way of a selection menu that lists
the tasks contained in the application. When the user selects a task from the
menu, ACMS uses the task definition to determine the order in which it should
call requests and procedures. It uses requests to display forms on the user's ter
minal, collect input typed by the user, and store output retrieved from the
database. It uses procedures to do the actual retrieval, storage, and modification
of data in the database. ACMS uses workspaces to pass information between pro
cedures: when ACMS calls either a request or a procedure, it must pass any
workspaces used to store input and output.

An ACMS application also uses the following elements:

• One or more task groups that allow a set of tasks to share common
resources

• One or more menus that list the tasks a user can select

• An application definition that describes control characteristics for the tasks
in the application

You define tasks. task groups. menus, and applications with VAX ACMS 's
Application Definition Utility (ADU}. You can write the procedures in any VAX
high-level language or in VAX DATATRIEVE; however, application development
is much simpler if you choose a language that supports the CDD. The other ele
ments of an ACMS application are defined with the VAX Information
Architecture components described in earlier chapters of this manual.

In many respects, application development with ACMS is very similar to applica
tion development with TDMS: both use forms, requests. and high-level language
procedures to interact with a database. However, the operations you perform in
an ACMS application are divided into tasks, each of which is further divided into
steps. In an ACMS task, input and output operations are performed not by
TDMS programming calls but by exchange steps that call TDMS requests: pro
cessing against the database is performed by processing steps that call high-level
language procedures. The task definition controls the execution of exchange and
processing steps.

In addition. ACMS automatically opens the request library file and the channel to
the terminal when you start an application and closes them when you exit from an
application, removing that responsibility from the procedures. Thus, ACMS han
dles all the work that would be done with TDMS programming calls in a TDMS
application.

The task definition also specifies what action is to be taken if the user presses a
program request key or if an error occurs during processing. The high-level
language procedures in an ACMS application, then. contain little more than the
data manipulation statements needed to perform the desired operations on the
database.

4-2 Transaction Processing Against a Database

Tasks developed with ACMS can be run in a distributed environment. An ACMS
terminal user on one node of a network (that is, a V AXcluster, a local area
network, or a wide area network) can select and run tasks on other nodes of the
network. The user does not have to set host to the other node, and the task defi
nition does not have to be changed; the distribution is handled transparently by
ACMS. The VAX ACMS Application Management Guide describes how to dis
tribute ACMS applications on a network.

This chapter concentrates on the definitions of two ACMS tasks, one from the
AVERTZ Company's personnel application, which uses the Rdb/VMS database
described in Section 2.1, and one from AVERTZ's car rental application, which
uses the DBMS database described in Section 2.2. These tasks are taken from
two much larger ACMS applications, the sources for which are in Appendix A.

4.1 An ACMS Personnel Application

The A VERTZ Company uses an ACMS application to add new employees, display
current information about an employee, and update certain employee information
in the Rdb/VMS personnel database. When a user enters the personnel applica
tion, the menu shown in Figure 4-1 appears on the user's terminal screen.

When the user selects one of the tasks listed on the menu, ACMS consults the
task definition and executes the task as the definition directs. The ADD task
stores new records in the database, and the DISPLAY task retrieves information
from the database. Each of the four update tasks involves combinations of data
retrieval, storage, and update operations:

1. The user supplies the employee number for the employee whose personnel
information needs to be changed.

2. The personnel information for the corresponding employee is retrieved from
the database.

3. The information is displayed on the user's terminal screen, and the user can
change it as necessary.

4. The new information is used to modify existing data or store new records in
the database.

As explained in Chapter 3, this series of operations constitutes an inquiry/update
task. Chapter 3 showed the development of such a task as a TDMS application.
The following sections of this chapter show how the raise/promotion task could be
implemented as part of an ACMS application.

Transaction Processing Against a Database 4-3

2
3
a
5
G

ADD
DISPLAY
UPDATE_EMP
UPDATE_RSP
UPDATE_TRN
UPDATE_STS

Selection:

AVERTZ Personnel APPlication

T Add new eMPloYee
T DisPlaY current inforMation
T UPdate seneral inforMation
T Raise and/or ProMotion
T Transfer to another dePartMent
T Resisned froM coMPany

Figure 4-1: Personnel Application Menu

4.1.1 Defining an Inquiry/Update Task

A task definition is composed of three kinds of steps:

ZK-00049-00

• Exchange steps. which call TDMS requests and handle program request
keys

• Processing steps. which start database transactions, call high-level language
procedures. and handle processing errors

• Block steps. which group exchange and processing steps into a unit

4-4 Transaction Processing Against a Database

In an inquiry/update task, you need one exchange step to prompt the user for a
key value and another to display the requested record. You need one processing
step to retrieve the record from the database and another to write the record back
to the database with the user's changes.

The easiest way to define a task is to create a file of ADU commands with a text
editor, such as EDT, and then submit it as a command file to ADU, which checks
for possible errors. The VAX ACMS Application Definition Reference Manual
describes ADU in detail. For more information on defining tasks, see the VAX
ACMS Task Definition Guide.

4.1.1.1 Exchange Steps -- The first exchange step of the inquiry/update task
calls a TDMS request to display a form. This form prompts the user to type a
value for the key field (the employee number), which the request then transfers to
a workspace. A procedure can use this value to retrieve an employee record from
the database. The TDMS request in the second exchange step displays the
retrieved record on the same form. After the user changes the contents of the
form fields, the request stores the modified record in a workspace.

If an error occurs during a processing step, you need to repeat the previous
exchange step to display the form with the data that the user entered and an
error message describing the error. The user can then decide whether to try the
operation again or exit from the task. Both exchange steps should allow the user
to press a program request key to exit easily from the task.

The two requests used in this task are very similar to the requests used in the
TDMS application in Chapter 3 and use the same form. Sections A.1.6.3 and
A.1.6.4 show the complete request definitions used in the inquiry/update task.

In an ACMS application, much of a task's error handling can be done in the task
definition, using a special workspace called ACMS$PROCESSING STATUS.
The four fields in this workspace contain the following information:-

• The status value returned by a procedure

• The severity level of the status ~success, information, warning, error, or
fatal)

• The status type (good or bad)

• The error message obtained from a message file, if you choose to use one

After a procedure executes, the task definition can check the status value stored
in the workspace. If an error occured. ACMS can get the ,corresponding message
from the message file and call a request to display the message on the user's
terminal. If you want to use ACMS$PROCESSING STATUS for error handling.
you must pass this workspace to the request. Thus, the requests in the

Transaction Processing Against a Database 4-5

inquiry/update task must pass ACMS$PROCESSING STATUS, but they do not
need a separate workspace field for storing status results. Because the requests
do need to store other miscellaneous information, such as the value of a program
request key, they use PERS WORKSPACE. just as the TDMS application does.
And finally, the error messages are not included directly in the requests but are
stored in a message file, as described in Section 4.3.2.

To write an exchange step in a task definition. you begin with the ADU keyword
EXCHANGE. You then use the REQUEST clause to specify the name of the
TDMS request called in that step and list the workspaces it uses. You also need
to test the value of the field that holds the program request key to see whether
the user pressed the program request key when the request was called: if so, you
must direct ACMS to take the appropriate action. You use a CONTROL FIELD
clause in the task definition to test the field's contents and an EXIT TASK clause
to direct ACMS to exit from the task if the request stored the value "EXIT" in
the field.

The exchange steps for the inquiry/update task are:

EXCHANGE
REQUEST IS PERS_UPDATE_RAISEPRO_REQUEST1

USING ACMS$PROCESSING_STATUS, JOB_HISTORY, PERS_WORKSPACE;
CONTROL FIELD IS PROGRAM_REQUEST_KEY

"EXIT" : EXIT TASK;
END CONTROL FIELD;

EXCHANGE
REQUEST IS PERS_UPDATE_RAISEPRO_REQUEST2

USING ACMS$PROCESSING_STATUS, JOB_HISTORY, PERS_WORKSPACE,
SALARY_HISTORY;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

4.1.1.2 Processing Steps -- The first processing step of an inquiry/update task
calls the COBOL procedure that retrieves the requested record from the
database: the second processing step calls the COBOL procedure that writes the
modified record back to the database. You begin each processing step with the
ADU keyword PROCESSING. You then use a CALL clause to name the proce
dure, the procedure server in which it runs, and the workspaces passed to it. If
you write your procedure in VAX COBOL, the name you use in the CALL clause
is the PR.OGRAM-ID.

When ACMS starts a processing step. it allocates a server process to handle the
procedure in that step. A server process is a specialized VMS process with a user
name. privileges, and quotas. just like your own VMS process. Each server
process has a definition that specifies the characteristics it needs to run the pro
cedures. More than one server process can be created from the same definition.

4-6 Transaction Processing Against a Database

and more than one procedure can use a single server. The server allows the proce
dures to execute more efficiently by performing common work for them when the
server is started, rather than each time a task is selected. For example, a server
can save the system overhead involved in file processing by opening files when a
server is started and closing them when the server is stopped, rather than
opening and closing files for each task.

·when you call a procedure, you start an ACMS recovery unit that corresponds to
a DBMS or RdbNMS transaction. When you are writing an RdbNMS applica
tion, you use the phrase WITH RDB RECOVERY and an RDO
START TRANSACTION statement to indicate the type of operation you intend
to perfo;m, the relations you will use, and the extent to which other users may or
may not access those relations. This START TRANSACTION statement is no
different in form than the statement issued in the TDMS application in Chapter 3
or in the interactive use of RDO shown in Chapter 2.

The processing steps should include some means for detecting and reporting
errors. There are two common errors in a retrieval and update operation:

• The user might type a key value that does not exist in any of the records in
the database.

• The record requested by the user might be locked by another user who is
attempting to update it.

The user can recover from either of these errors by reentering the key value or by
retrying the operation. A more serious error occurs, however, if the database has
been corrupted in some way. If that happens, the user cannot correct the error
but should notify the database administrator.

Note that these procedures do not handle one situation that may arise in an
inquiry/update operation: when a user tries to replace a record in the database.
the record may have been modified since the user first saw it. In that case. the
user is attempting to modify an outdated version of the record. If this situation
seems likely to occur frequently in your application, you can handle it in one of
several ways. For example. you can store a copy of the record when the user first
retrieves it. Then. before the user's changes are written to the database, you can
compare the saved copy with the current version of the record. If the two records
do not match, you can notify the user of the discrepancy and display the current
record.

With the DML statements that retrieve a record, your procedure can use an ON
ERROR clause to test for the locked-record error and for database corruption.
You cannot detect the nonexistent-record error with an ON ERROR clause, how
ever; you must include statements in your procedure to determine whether a
record was actually retrieved from the database. If an error occurs, your
procedure should move an appropriate error value to the procedure return status.

Transaction Processing Against a Database 4-7

ACMS stores the status result and status type of any procedure call in fields of
the ACMS$PROCESSING STATUS workspace. When control returns to the
task definition, ACMS can test either field and, if an error occurred, retrieve the
appropriate error message from the message file. It can then recall the retrieval
request and display the message on the screen.

You use a CONTROL FIELD clause to test the return status or status type and
specify the action to be taken. In this case, you need to test only the status type,
because you want to take the same action for either expected error. If an error
occurs, you want to:

• Obtain the appropriate error message from the message file, using the GET
MESSAGE clause

• Roll back any changes that were made to the database before the error
occurred, using the ROLLBACK clause

• Repeat the previous exchange step, using the GOTO PREVIOUS
EXCHANGE clause, so that the message can be displayed

The user can then decide to retry the operation or exit from the task by pressing
the program request key.

The processing steps for the inquiry/update task are:

PROCESSING WITH RDB RECOVERY "START_TRANSACTION READ_ONLY"
CALL PERS_GET_RAISEPRO IN PERS_SERVER

USING JOB_HISTORY, PERS_WORKSPACE, SALARY_HISTORY;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

PROCESSING WITH RDB RECOVERY
"START_TRANSACTION READ_WRITE RESERVING EMPLOYEES, JOB_HISTORY," It
"SALARY_HISTORY FOR SHARED WRITE"
CALL PERS_UPDATE_RAISEPRO IN PERS_SERVER

USING JOB_HISTORY, PERS_WORKSPACE, SALARY_HISTORY;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

4.1.1.3 Completing the Task Definition -- Once you have defined the two
exchange steps and two processing steps, you can complete the inquiry/update
task definition by defining the block step and listing the characteristics common
to all the steps. The block step consists not only of the exchange and processing

4-8 Transaction Processing Against a Database

steps, which constitute the block work, but can also include optional block
attributes and actions. To define a simple block step, all you need to do is precede
the first step in the task definition with the keywords BLOCK WORK and follow
the last processing step with the keywords END BLOCK WORK.

You must complete the task definition with a WORKSPACES clause that lists
the CDD path names (or given names) of the workspaces used in the task. The
inquiry/update task uses JOB HISTORY, SALARY HISTORY, and
PERS WORKSPACE to pass-information between processing steps. Because of
the CDD hierarchy that Rdb/VMS creates when you define a database, the defini
tions for Rdb/VMS records are not stored in the same CDD directory as the other
requests and workspaces used in the task. Thus you should use the full CDD path
name for these definitions in the WORKSPACES clause. In the body of the task
definition. however. you can use the record definitions' given names. You do not
need to list the ACMS$PROCESSING STATUS workspace because it is always
available to an ACMS task. -

The WORKSPACES clause for the inquiry/update task definition is as follows:

WORKSPACES ARE
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY,
CDD$TOP.RDBPERS.PERS_WORKSPACE,
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY;

You complete the task definition with the END DEFINITION keywords.

Example 4-1 shows the complete task definition for the inquiry/update task.

WORKSPACES ARE
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY,
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY,
CDD$TOP.RDBPERS.PERS_WORKSPACE;

BLOCK WORK
EXCHANGE

REQUEST IS PERS_UPDATE_RAISEPRO_REQUESTl
USING ACMS$PROCESSING_STATUS, JOB_HISTORY, PERS_WORKSPACE;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH RDB RECOVERY "START_TRANSACTION READ_ONLY"
CALL PERS_GET_RAISEPRO IN PERS_SERVER

USING JOB_HISTORY, PERS_WORKSPACE, SALARY_HISTORY;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD; (continued on next page)

Example 4-1: Inquiry/Update Task Definition

Transaction Processing Against a Database 4-9

EXCHANGE
REQUEST IS PERS_UPDATE_RAISEPRO_REQUEST2

USING ACMS$PROCESSING_STATUS, JOB_HISTORY, PERS_WORKSPACE,
SALARY_HISTORY;

CONTROL FIELD lS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH RDB RECOVERY
"START_TRANSACTION READ_WRITE RESERVING EMPLOYEES, JOB_HISTORY," &
"SALARY_HISTORY FOR SHARED WRITE"
CALL PERS_UPDATE_RAISEPRO IN PERS_SERVER

USING JOB_HISTORY, PERS_WORKSPACE, SALARY_HISTORY;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

END BLOCK WORK;

END DEFINITION;

Example 4-1: Inquiry/Update Task Definition (Cont.)

4.1.1.4 Storing the Task Definition in the COD -- You should store the task
definition for the inquiry/update task in the CDD along with the other parts of
your application. You use ADU's CREATE or REPLACE command in your task
definition to direct ADU to check the source file for syntax errors and, if it finds
no errors, to store the definition in the CDD. The REPLACE command works
exactly like the CREATE command if the definition does not already exist in the
CDD. Just in case a task definition does not compile correctly the first time you
submit it to ADU, you should use the REPLACE command.

You include either command as the first line in your command file, specifying the
kind of definition (in this case. task) and the definition's complete path name or
given name in the CDD. For example. the following command names the
inquiry/update task:

REPLACE TASK PERS_UPDATE_RAISEPRO_TASK

When ADU processes this command. it checks the rest of the command file and,
if it finds no errors, creates the task definition in the CDD. If your default CDD
directory is set to the directory where you want to store your definitions (in this
case, CDD$TOP.RDBPERS), you can just use the given name in the REPLACE
command.

To enter ADU. first define ADU as a global symbol in your login command file or
at DCL command level:

$ ADU :== $ACMSADU

4-10 Transaction Processing Against a Database

Then, to invoke ADU, simply type ADU. At the ADU> prompt, you can submit
your command file to ADU and insert your task definition in the CDD. If you
stored the inquiry/update task definition in a source file called
PERS UPDATE RAISEPRO TASK.COM, you would submit it to ADU as fol-
lows: - - -

$ ADU
ADU>©PERS_UPDATE_RAISEPRO_TASK

Because .COM is the default file type for ADU command files, you do not need to
specify it on the command line. If ADU detects syntax errors in your task defini
tion, you must edit the source file and resubmit it. You must repeat these two
steps until the file is processed without errors.

To exit from ADU. use the EXIT command or CTRL/Z.

4.1.2 Writing the Step Procedures

An inquiry/update task requires two step procedures, one to retrieve a record
from the database and one to replace the modified record. The logic involved in
the two procedures is the same as that used in the TDMS application program in
Chapter 3: however. the step procedures are simpler because error handling and
TDMS programming calls are removed.

ACMS step procedures written in VAX COBOL are written as subprograms. In
the Identification Division, you give the subprogram a name; this name must be
unique among all the procedures that run in the same server, and it must be the
name you specified in the processing step of your task definition. In the
Environment Division, you do not need to use an Input-Output Section if your
data is stored in a database.

The Data Division contains two sections, the Working-Storage Section and the
Linkage Section. In the Working-Storage Section, you name the database you
want to use and define condition values to use in error handling. In the
inquiry/update task. you must define the RdbNMS condition codes for the locking
conflicts you expect to occur. If you use a message file, you must also define mes
sage symbols that correspond to the error messages you want to display on the
user's screen. Finally, the procedures in this task use a status result variable to
control how the procedures stop executing if an error occurs.

The Linkage Section lists the workspaces being passed from the request to the
procedure. You use COPY statements to indicate which CDD record definitions
correspond to the various workspaces. Be sure to list the workspaces in the
Linkage Section in the same order you listed them in the CALL clause of the pro
cessing step. Because the linkage record and the database record must not have

Transaction Processing Against a Database 4-11

the same name. the COPY statements must include the REPLACING clause to
assign different names to the workspaces. The retrieval and update procedures
also use PERS WORKSPACE for the program request key and other miscella
neous fields. You must list PERS_WORKSPACE in the Linkage Section, but,
because it is not a database record, you do not need to rename it.

In the Procedure Division header, you list the workspaces used by the procedure;
be sure to list them in the Procedure Division in the same order you listed them
in the task definition.

4.1.2.1 The Retrieval Procedure -- In the inain section of the Procedure
Division. the retrieval procedure performs the following actions:

1. Sets the STATUS-RESULT variable to success and initializes
PROGRAM_REQUEST_KEY with spaces.

2. Obtains the employee number that the user typed from the JOB_HISTORY
workspace where the retrieval request stored it.

3. Uses the JOB HISTORY and SALARY HISTORY relations in the
database to find the fields to be displayed and stores these fields in the
JOB HISTORY and SALARY HISTORY workspaces, which are passed to
the update request. If the records that contain these fields do not exist or
are already locked, the procedure stores an error value in
STATUS-RESULT and exits.

Example 4-2 shows the complete retrieval procedure for the inquiry/update task.

IDENTIFICATION DIVISION.

PROGRAM-ID. PERS_GET_RAISEPRO.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

&:RDB&: INVOKE DATABASE FILENAME "PERS$EXE:PERSONNEL"

01 REC-LOCKED PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECLOCK.

01 REC-NOT-FOUND PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECNOTFD.

Example 4-2: Retrieval Step Procedure in COBOL

4-12 Transaction Processing Against a Database

01 DB-FAILURE PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL.

01 RDB$_DEADLOCK PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_DEADLOCK.

01 RDB$_LOCK_CONFLICT PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

01 LIB$SIGNAL PIC S9(9) COMP
VALUE IS EXTERNAL LIB$SIGNAL.

01 STATUS-RESULT PIC 89(9) COMP.

LINKAGE SECTION.
COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY"

FROM DICTIONARY
REPLACING ==JOB_HISTORY. ==BY ==JOB_HISTORY_LINKAGE.

COPY "CDD$TOP.RDBPERS.PERS_WORKSPACE" FROM DICTIONARY.

COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY:.:,HISTORY"
FROM DICTIONARY
REPLACING ==SALARY_HISTORY. == BY ==SALARY_HISTORY_LINKAGE.

PROCEDURE DIVISION USING JOB_HISTORY_LINKAGE
PERS_ WORKSPACE
SALARY_HISTORY_LINKAGE

GIVING STATUS-RESULT.

MAIN SECTION.
000-MAIN-PARAGRAPH.

SET STATUS-RESULT TO SUCCESS.

MOVE "T" TO NOT_FOUND.

INITIALIZE PROGRAM_REQUEST_KEY.

&:RDB&: FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID =
&:RDB&: EMPLOYEE_ID IN JOB_HISTORY_LINKAGE AND
&:ROB&: JH.JOB_END MISSING
&:RDB&: ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&:RDB&: END_ERROR

MOVE "F" TO NOT_FOUND

&ROB&: GET
&:ROB&: ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&:RDB&: END_ERROR
&:RDB&: JOB_CODE IN JOB_HISTORY_LINKAGE = JH.JOB_CODE;
&ROB&: DEPARTMENT_CODE IN JOB_HISTORY_LINKAGE = JH.DEPARTMENT_CODE;
&:RDB&: JOB_START IN JOB_HISTORY_LINKAGE = JH.JOB_START;
&RDB&: SUPERVISOR_ID IN JOB_HISTORY_LINKAGE = JH.SUPERVISOR_ID
&:ROB& END_GET
&:RDB&: END_FOR

(continued on next page)

Example 4-2: Retrieval Step Procedure in COBOL (Cont.)

Transaction Processing Against a Database 4-13

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT
GO TO 100-EXIT-PROGRAM.

MOVE "T" TO NOT_FOUND.

MOVE JOB_CODE OF JOB_HISTORY_LINKAGE TO JOB
OF PERS_WORKSPACE.

&:RDB&: FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID =
&:RDB& EMPLOYEE_ID IN JOB_HISTORY_LINKAGE AND
&:RDB&: SH.SALARY_END MISSING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&:RDB&: END_ERROR

MOVE "F" TO NOT_FOUND

&:RDB& GET
&RDB&: ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB&: END_ERROR
&RDB&: SALARY_AMOUNT IN SALARY_HISTORY_LINKAGE = SH.SALARY_AMOUNT
&:RDB& END_GET
&RDB& END_FOR

MOVE SALARY_AMOUNT OF SALARY_HISTORY_LINKAGE TO
SAL_AMT OF PERS_WORKSPACE.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
IF RDB$STATUS EQUAL RDB$_DEADLOCK

OR RDB$STATUS EQUAL RDB$_LOCK_CONFLICT
THEN

MOVE REC-LOCKED TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR

BY VALUE LIB$SIGNAL.

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Example 4-2: Retrieval Step Procedure in COBOL (Cont.)

4-14 Transaction Processing Against a Database

You compile a step procedure with the RdbNMS precompiler for COBOL. The
precompiler first checks the syntax of the DML statements in your procedure and
converts these statements· into equivalent calls to the database. It then invokes
the COBOL compiler to check the syntax of your COBOL statements and gener
ate object code for the procedure. The compiler generates warning messages for
the use of the DATE data type in the database definition~ COBOL must convert
the DATE data type into an equivalent numeric string. You can ignore these mes
sages. You should use the /DEBUG qualifier when you compile a procedure so
that you can later debug it with the VAX Symbolic Debugger. See the VAX
RdbVMS Guide to Programming for information on compiling COBOL proce
dures with embedded DML statements. See the VAX COBOL User's Guide for
information on compiling COBOL programs and interpreting COBOL error
messages.

4.1.2.2 The Update Procedure -- Except for the PROGRAM-ID. the update
procedure is identical to the retrieval procedure until the main section of the
Procedure Division. In the Procedure Division. the update procedure performs the
following actions:

1. Sets STATUS-RESULT to success and initializes
PROGRAM_REQUEST_KEY with spaces.

2. Compares the job code in the JOB HISTORY workspace with the job code
stored in PERS WORKSPACE by- the retrieval procedure. If the job code
has changed. the procedure stores the current date in the JOB END field of
the employee's JOB HISTORY record and stores a new JOB HISTORY
record for the new job code. If the record does not exist or is already locked.
the procedure stores an error value in STATUS-RESULT and exits.

3. Compares the salary amount in the SALARY_HISTORY workspace with
the salary amount stored in PERS WORKSPACE by the retrieval proce
dure. If the salary has changed. the procedure stores the current date in the
SALARY END field of the employee's SALARY HISTORY record and
stores a new SALARY HISTORY record for the -new salary. If the record
does not exist or is already locked. the procedure stores an error value in
STATUS-RESULT and exits.

Example 4-3 shows the complete update procedure for the inquiry/update task.

Transaction Processing Against a Database 4-15

IDENTIFICATION DIVISION.

PROGRAM-ID. PERS_UPDATE_RAISEPRO.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

k:RDB&: INVOKE DATABASE FILENAME 11 PERS$EXE:PERSONNEL 11

01 REC-LOCKED PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECLOCK.

01 REC-NOT-FOUND PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECNOTFD.

01 DB-FAILURE PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL.

01 RDB$_DEADLOCK PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_DEADLOCK.

01 RDB$_LOCK_CONFLICT PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

01 LIB$SIGNAL PIC S9(9) COMP
VALUE IS EXTERNAL LIB$SIGNAL.

01 STATUS-RESULT PIC S9(9) COMP.

LINKAGE SECTION.
COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY"

FROM DICTIONARY
REPLACING ==JOB_HISTORY. ==BY ==JOB_HISTORY_LINKAGE.

COPY "CDD$TOP.RDBPERS.PERS_WORKSPACE" FROM DICTIONARY.

COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY"
FROM DICTIONARY
REPLACING ==SALARY_HISTORY. ==BY ==SALARY_HISTORY_LINKAGE.

PROCEDURE DIVISION USING JOB_HISTORY_LINKAGE
PERS_ WORKSPACE
SALARY_HISTORY_LINKAGE

GIVING STATUS-RESULT.

MAIN SECTION.
000-MAIN-PARAGRAPH.

SET STATUS-RESULT TO SUCCESS.

MOVE "T" TO NOT_FOUND.

INITIALIZE PROGRAM_REQUEST_KEY.

Example 4-3: Update Step Procedure in COBOL

4-16 Transaction Processing Against a Database

IF JOB_CODE OF JOB_HISTORY_LINKAGE NOT = JOB OF PERS_WORKSPACE
THEN
&:RDB&: FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID =
&:RDB&: EMPLOYEE_ID IN JOB_HISTORY_LINKAGE AND
&:RDB& JH.JOB_END MISSING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM
END-IF

&RDB& END_ERROR

MOVE "F" TO NOT_FOUND

&RDB& MODIFY JH USING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM
END-IF

&RDB& END_ERROR
&RDB& JH.JOB_END = JOB_START IN JOB_HISTORY_LINKAGE
&:RDB& END_MODIFY
&:RDB&: END_FOR

&:RDB&: STORE JH IN JOB_HISTORY USING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM
END-IF

&:RDB& END_ERROR
&:RDB& JH.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY_LINKAGE;
&RDB& JH.JOB_CODE = JOB_CODE IN JOB_HISTORY_LINKAGE;
&:RDB& JH.DEPARTMENT_CODE = DEPARTMENT_CODE IN JOB_HISTORY_LINKAGE;
&RDB& JH.JOB_START = JOB_START IN JOB_HISTORY_LINKAGE;
&RDB& JH.SUPERVISOR_ID = SUPERVISOR_ID IN JOB_HISTORY_LINKAGE
&:RDB&: END_STORE
END-IF.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT
GO TO 100-EXIT-PROGRAM.

MOVE "T" TO NOT_FOUND.

IF SALARY_AMOUNT OF SALARY_HISTORY_LINKAGE NOT =
SAL_AMT OF PERS_WORKSPACE

THEN
&:RDB& FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID =
&:RDB& EMPLOYEE_ID IN JOB_HISTORY_LINKAGE AND
&:RDB&: SH.SALARY_END MISSING

(continued on next pagei

Example 4-3: Update Step Procedure in COBOL (Cont.)

Transaction Processing Against a Database 4-17

&ROB&

&ROB&

ON ERROR.
PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM
END-IF

END_ERROR

MOVE "F" TO NOT_FOUND

&ROB& MODIFY SH USING
&ROB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM
END-IF

&ROB& END_ERROR
&ROB& SH.SALARY_END = JOB_START IN JOB_HISTORY_LINKAGE
&RDB& END_MODIFY
&RDB& END_FOR

&RDB& STORE SH IN SALARY_HISTORY USING
&ROB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
&ROB& END_ERROR
&ROB& SH.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY_LINKAGE;
&ROB& SH.SALARY_AMOUNT = SALARY_AMOUNT IN SALARY_HISTORY_LINKAGE;
&RDB& SH.SALARY_START = JOB_START IN JOB_HISTORY_LINKAGE
&ROB& END_STORE
END-IF.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
IF RDB$STATUS EQUAL RDB$_DEADLOCK

OR RDB$STATUS EQUAL RDB$_LOCK_CONFLICT
THEN

MOVE REC-LOCKED TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL 11 LIB$CALLG 11 USING BY REFERENCE RDB$MESSAGE_VECTOR

BY VALUE LIB$SIGNAL.

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Example 4-3: Update Step Procedure in COBOL (Cont.)

4-18 Transaction Processing Against a Database

4.2 An ACMS Car Rental Application
The A VERTZ Company uses another ACMS application to record car rental res
ervations in a DBMS database, mark cars as checked out when customers arrive
to pick up reserved cars. and check cars back in when customers return them.
When a user enters the car rental application, the menu shown in Figure 4-2
appears on the user's terminal screen.

2
3

RESERl,IE
CHECKOUT
CHECK IN

Selection:

AVERTZ Car Rental SYsteM

T Ma•\e reservation
T Check out car
T Chee•\ in car

ZK-00050-00

Figure 4-2: Car Rental Application Menu

When the user selects one of these tasks, ACMS consults the task definition and
executes the task as the definition directs. The three tasks perform the following
actions:

• The RESERVE task obtains the information needed from the user to make a
car reservation in the database. The user must specify a type of car to rent
lcompact. mid-size. or full-size) and a location at which to pick up the car.

Transaction Processing Against a Database 4-19

The AVERTZ Company needs to know the customer's name, the company
that the customer works for (if the customer is charging the rental to a cor
porate account). and the pickup date.

• The CHECKOUT task locates a customer's reservation in the database and
assigns the customer a car by disconnecting a car record from the set of
checked-in cars and connecting it to the customer's reservation.

• The CHECKIN task disconnects a car from a reservation and reconnects it
to the set of checked-in cars. It also disconnects the customer's reservation
from the pickup location to denote that the reservation has been fulfilled.

The following sections show the development of the reservation task in the car
rental application.

4.2.1 Defining a Task

The reservation task consists of the following series of operations:

1. The user supplies the car type code and pickup location for the customer
making a reservation.

2. The rental rates for that car type and complete address information for the
requested A VERTZ location are retrieved from the database.

3. This information is displayed on the user's terminal screen, and the user is
asked to supply the customer's full name, the company name (if any), and
the date on which the user wants to pick up the car (which by default is the
current date).

4. The new information is used to check the company's credit record (if this is
a business rental), store a new customer record if the customer is not
already in the database, and store the customer's reservation.

5. The user can then proceed directly to the checkout task. if the customer
wants to rent the car on the current date, or exit from the task.

Like any ACMS task that requires more than one step. the reservation task con
sists of exchange and processing steps grouped into a block step.

4.2.1.1 Exchange Steps -- The first exchange step calls a TDMS request,
A VERTZ RESERVE REQUESTl. This request displays a form that prompts
the user to supply a car type code and pickup location. It then transfers these val
ues to two workspaces where a procedure can use the information to retrieve car
type and location records from the database. To define the workspaces. the first
exchange step uses the CAR TYPE and LOCATION record definitions, which
were stored in the CDD when the DBMS database was created.

4-20 Transaction Processing Against a Database

If an error occurs during a processing step, you need to repeat the previous
exchange step to display an error message. The user can then decide to try the
operation again or exit from the task with a program request key. The GOLD-E
key combination is the program request key for this exchange step; its value is
stored in a field of a miscellaneous workspace called A VERTZ WORKSPACE.
(Section A.2.2 shows the definition for AVERTZ WORKSPACE.) In the car
rental application. as in the personnel application, tasks use the
ACMS$PROCESSING STATUS workspace to handle errors and retrieve error
messages from a message file.

The first exchange step of the reservation task is:

EXCHANGE
REQUEST IS AVERTZ_RESERVE_REQUEST1

USING ACMS$PROCESSING_STATUS, AVERTZ_WORKSPACE, CAR_TYPE,
LOCATION;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

The second exchange step calls A VERTZ RESERVE REQUEST2 to display on a
form the rental rates and location information retrieved in the previous process
ing step. The user is asked to supply a company name and the customer's full
name. If the customer is making the reservation for a future date, the user must
supply that date. The information is transferred to other workspaces that a proce
dure uses to store a new reservation record and possibly a new customer record.

But suppose that when the customer discovers the rates for the type of car he
requested, he decides to ask for a car of a different size. The user must enter a
new car type code and retrieve the corresponding rates from the database. Rather
than exit from the task completely, return to the top-level menu, and reselect the
reservation task. the user should be able to use a program request key to repeat
the task, starting with the first exchange step. Therefore, the second request
must define two program request keys, one to allow the user to exit from the task
(if the customer decides to cancel the reservation, for example) and one to repeat
the task from the beginning. This request defines the GOLD-E key combination
to let the user exit from the task and GOLD-R to repeat it.

This exchange step uses the following workspaces:

• CAR TYPE and LOCATION to display the information retrieved from the
database

• COMPANY, CUSTOMER, and RESERVATION to store the new informa
tion supplied by the user

• AVERTZ_WORKSPACE for the program request keys

• ACMS$PROCESSING_STATUS for error handling

Transaction Processing Against a Database 4-21

The following example shows the second exchange step in the reservation task:

EXCHANGE
REQUEST IS AVERTZ_RESERVE_REQUEST2

USING ACMS$PROCESSING_STATUS, AVERTZ_WORKSPACE, CAR_TYPE,
COMPANY, CUSTOMER, LOCATION, RESERVATION;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;
"REPEAT" : REPEAT TASK;

END CONTROL FIELD;

The third exchange step calls AVERTZ RESERVE REQUEST3 to redisplay the
reservation form and notify the user that the reservation was successfully stored
in the database. The user then has the option of proceeding directly to the
checkout task by pressing the program request key. This step is designed to
handle walk-in customers who reserve a car on the same day they pick it up. To
inform the user of his options, the request writes a new line of text at the bottom
of the form.

This request defines two program request keys, one to allow the user to exit from
the task (GOLD-E) and another to indicate that the user wants to chain to the
checkout task (GOLD-K). When you chain two or more related tasks together, the
user can run the tasks in the sequence you determine when you design the appli
cation; the user does not have to return to the selection menu to choose the next
task in the sequence when the previous task finishes.

This step uses the following workspaces:

• COMPANY, CUSTOMER, and RESERVATION to pass information if the
user decides to chain to the next task

• AVERTZ_WORKSPACE for the program request keys

• ACMS$PROCESSING_STATUS for error handling

The following example shows the third exchange step in the reservation task:

EXCHANGE
REQUEST IS AVERTZ_RESERVE_REQUEST3

USING ACMS$PROCESSING_STATUS, AVERTZ_WORKSPACE, COMPANY,
CUSTOMER, RESERVATION;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT II : EXIT TASK ;
"CHKOUT" : GOTO TASK AVERTZ_CHECKOUT_TASK PASSING

AVERTZ_WORKSPACE, COMPANY, CUSTOMER,
RESERVATION;

END CONTROL FIELD;

4.2.1.2 Processing Steps -- The first processing step of the reservation task
calls a COBOL procedure to retrieve the rate and location information from the
database. The second processing step calls a COBOL procedure to check a
company's credit rating. store a customer record if the customer is not already in
the database. and store a reservation record.

4-22 Transaction Processing Against a Database

When you call one of these procedures, ACMS starts a recovery unit that corre
sponds to a DBMS transaction. You use the phrase WITH DBMS RECOVERY
and a DML READY statement to indicate the type of operation you intend to
perform and the extent to which other users can access the realms used in the
recovery unit. This READY statement is no different in form than the statement
you would issue in an interactive DBQ session such as that shown in Chapter 2.

The processing steps should include some means for detecting and reporting the
following errors:

• The record requested by the user does not exist in the database (a recover
able error)

• The database is corrupted (a nonrecoverable error)

With the DML statements that retrieve records, your procedure should use the
ON ERROR clause to test for these errors. The status result and status type are
stored in fields of ACMS$PROCESSING STATUS. When control returns to the
task definition, ACMS can test the status- type and, if an error occurred. retrieve
an error message from the message file. It can then recall the previous request
and display the message on the screen.

Just as in the personnel application, you use a CONTROL FIELD clause to test
the status type and specify the action to be taken. If an error occurs, you want to
obtain an error message, roll back any changes that were made to the database
before the error occurred, and repeat the previous exchange step to display the
message. The user can then decide to retry the operation or exit from the task
with the program request key. The processing steps for the reservation task are:

PROCESSING WITH DBMS RECOVERY "READY CONCURRENT RETRIEVAL"
CALL AVERTZ_GET_RATES IN AVERTZ_SERVER
. USING AVERTZ_WORKSPACE, CAR_TYPE, LOCATION;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

PROCESSING WITH DBMS RECOVERY "READY CONCURRENT UPDATE"
CALL AVERTZ_RESERVE_CAR IN AVERTZ_SERVER

USING AVERTZ_WORKSPACE, CAR_TYPE, COMPANY, CUSTOMER,
LOCATION, RESERVATION;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

Transaction Processing Against a Database 4-23

4.2.1.3 Completing the Task Definition -- Once you define the exchange and
processing steps, you can complete the task definition by defining the block step
and listing the characteristics common to all steps. You can define the block step
by preceding the first step in the task with the BLOCK WORK keywords and by
following the last step with END BLOCK WORK.

To complete the task definition, include a WORKSPACES clause with the CDD
path names or given names of all the workspaces used in the task. As in the
personnel application. you should use the complete CDD path names of the
DBMS record definitions you use to define workspaces. You can use the defini
tions' given names in the body of the task definition.

The WORKSPACES clause for the reservation task definition is:

WORKSPACES ARE
AVERTZ_WORKSPACE,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR_TYPE,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.COMPANY,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.LOCATION,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATION;

You end the task definition with the END DEFINITION keywords.

Example 4-4 shows the complete task definition for the reservation task.

WORKSPACES ARE
AVERTZ_WORKSPACE,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR_TYPE,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.COMPANY,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.LOCATION,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATION;

BLOCK WORK
EXCHANGE

REQUEST IS AVERTZ_RESERVE_REQUEST1
USING ACMS$PROCESSING_STATUS, AVERTZ_WORKSPACE, CAR_TYPE,
LOCATION;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH DBMS RECOVERY "READY CONCURRENT RETRIEVAL"
CALL AVERTZ_GET_RATES IN AVERTZ_SERVER

USING AVERTZ_WORKSPACE, CAR_TYPE, LOCATION;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;

Example 4-4: Reservation Task Definition

4-24 Transaction Processing Against a Database

ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

EXCHANGE
REQUEST IS AVERTZ_RESERVE_REQUEST2

USING ACMS$PROCESSING_STATUS, AVERTZ_WORKSPACE, CAR_TYPE,
COMPANY, CUSTOMER, LOCATION, RESERVATION;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;
"REPEAT" : REPEAT TASK;

END CONTROL FIELD;

PROCESSING WITH DBMS RECOVERY "READY CONCURRENT UPDATE"
CALL AVERTZ_RESERVE_CAR IN AVERTZ_SERVER

USING AVERTZ_WORKSPACE, CAR_TYPE, COMPANY, CUSTOMER,
LOCATION, RESERVATION;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

EXCHANGE
REQUEST IS AVERTZ_RESERVE_REQUEST3

USING ACMS$PROCESSING_STATUS, AVERTZ_WORKSPACE, COMPANY,
CUSTOMER, RESERVATION;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;
"CHKOUT" : GOTO TASK AVERTZ_CHECKOUT_TASK

PASSING AVERTZ_WORKSPACE, COMPANY, CUSTOMER,
RESERVATION;

END CONTROL FIELD;

END BLOCK WORK;

END DEFINITION;
Example 4-4: Reservation Task Definition (Cont.)

4.2.1.4 Storing the Task Definition in the COD -- You should store the task
definition for the reservation task in the CDD along with the other parts of the
car rental application. You use ADU's REPLACE command to direct ADU to
store the definition in the CDD after checking the source file for errors. For
example, the following command names the reservation task:

REPLACE REQUEST AVERTZ_RESERVE_TASK

If you stored the task definition in a source file named
A VERTZ RESERVE TASK.COM, you can invoke ADU and submit the source
file as shown here. Make sure your default CDD directory is set to the directory
where you want to store your task definition (in this case. CDD$TOP.A VERTZ).

$ ADU
ADU>©AVERTZ_RESERVE_TASK

Transaction Processing Against a Database 4-25

If ADU detects syntax errors in your task definition, you must edit the source file
and resubmit it, repeating these two steps until the file is processed without
errors.

4.2.2 Writing the Requests

The reservation task uses three requests, all of which are similar in form and con
tent. The main purpose of the requests is to collect user input with INPUT TO
instructions and display procedure output with OUTPUT TO instructions.

All the information needed in the reservation task is entered on the same form.
But because there are three exchange steps in the task, the user needs to know
which fields to fill for each exchange step and which program request keys are
defined in each step. This information cannot be entered as background text on
the form because it changes with each exchange step. Instead, you can define two
fields on the form that can accept long alphanumeric strings. In each request, you
can use an OUTPUT TO instruction to fill these fields with character strings that
tell the user which fields require input and which program request keys are
allowed. The INFORM LINE field specifies the fields for which the request
expects input, and the PRK LINE field specifies which program request keys are
defined in each request. Sections A.2.3.3, A.2.3.4, and A.2.3.5 contain the request
definitions for the reservation task.

4.2.3 Writing the Step Procedures

The reservation task requires two step procedures, one to retrieve information
from the database and one to store new information. In the Sub-Schema Section
of each procedure, you use a DB statement to indicate the subschema you want to
use and the location of the database root file. In the Working-Storage Section.
you define the condition values used in error handling. including the DBMS con
dition code for the nonexistent-record error you expect to occur (in DBMS terms,
this error occurs when DBMS detects the end of a collection). In all other
respects. the principles involved in writing these procedures are similar to those
used to write th.e inquiry and update procedures discussed in Section 4.1.2.

4.2.3.1 The AVERTZ Retrieval Procedure -- In the main section of the
Procedure Division. the first procedure in the reservation task:

1. Sets the STATUS-RESULT variable to success and initializes
PROGRAM_ REQUEST_ KEY with spaces

2. Uses the location code typed by the user and stored in the LOCATION
workspace to fetch a LOCATION record

3. Moves the contents of the LOCATION record to the LOCATION
workspace where they can be displayed by the next request

4-26 Transaction Processing Against a Database

4. Uses the car type code supplied by the user and stored in the CAR TYPE
workspace to fetch a CAR_TYPE record -

5. Moves the rate fields of the CAR TYPE record to the CAR TYPE
workspace where they can be displayed by the next requesf

If either fetch operation fails to find the requested record. the procedure stores an
error value in STATUS-RESULT and exits.

You compile the step procedure with DCL's COBOL command. The compiler gen
erates warning messages for the use of the DATE data type in the subschema
definition; COBOL must convert the DATE data type into an equivalent numeric
string. You can ignore these messages. You should use the /DEBUG qualifier so
that you can debug the procedure with the VAX Symbolic Debugger. See the
VAX COBOL User's Guide for information on compiling COBOL programs and
interpreting COBOL error messages.

Example 4-5 shows the first procedure of the reservation task in its entirety.

IDENTIFICATION DIVISION.

PROGRAM-ID. AVERTZ_GET_RATES.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.
SUB-SCHEMA SECTION.

DB AVERTZSS WITHIN AVERTZSC FOR "AVERTZ$APPL:AVERTZSC.R00".

WORKING-STORAGE SECTION.

01 LDC-NOT-FOUND PIC S9(9) COMP
VALUE IS EXTERNAL AVZ_LOCNOTFD.

01 DB-FAILURE PIC S9(9) COMP
VALUE IS EXTERNAL AVZ_DBFAIL.

01 DBM$_END PIC S9(9) COMP
VALUE IS EXTERNAL DBM$_END.

01 STATUS-RESULT PIC S9(9) COMP.

LINKAGE SECTION.
COPY "CDD$TOP.AVERTZ.AVERTZ_WORKSPACE" FROM DICTIONARY.

COPY 11 CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR_TYPE11

FROM DICTIONARY
REPLACING ==CAR_TYPE. == BY ==CAR_TYPE_LINKAGE. ==.

(continued on next page)

Example 4-5: Retrieval Procedure in COBOL

Transaction Processing Against a Database 4-27

COPY "CDD$TOP. AVERTZ. AVERTZSC. DBM$SUBSCHEMAS. AVERTZSS. DBM$RECORDS. LOCATION''
FROM DICTIONARY
REPLACING ==LOCATION. ==BY ==LOCATION_LINKAGE.

PROCEDURE DIVISION USING AVERTZ_WORKSPACE
CAR_TYPE_LINKAGE
LOCATION_LINKAGE

GIVING STATUS-RESULT.

MAIN SECTION.
010-FIND-LOCATION.

SET STATUS-RESULT TO SUCCESS.

INITIALIZE PROGRAM_REQUEST_KEY.

* Find the pickup location and move location information to the
* linkage record for display.

MOVE LO_CODE OF LOCATION_LINKAGE TO LO_CODE OF LOCATION.

FETCH FIRST LOCATION WITHIN LOCATION_CALC
USING LO_CODE OF LOCATION

ON ERROR
PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM.

MOVE LOCATION TO LOCATION_LINKAGE.

020-FIND-CAR-TYPE.

* Find the car type and move the rental rates to the linkage
* record for display.

MOVE CAR_TYPE_CODE OF CAR_TYPE_LINKAGE TO CAR_TYPE_CODE OF CAR_TYPE.

FETCH FIRST CAR_TYPE WITHIN TYPE_AVAILABLE
USING CAR_TYPE_CODE OF CAR_TYPE

ON ERROR
PERFORM 052-ERROR-CHECK THRU 052-ERROR-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM.

030-GET-RATES.
MOVE CAR_TYPE TO CAR_TYPE_LINKAGE.

GO TO 100-EXIT-PROGRAM.

Example 4-5: Retrieval Procedure in COBOL (Cont.)

4-28 Transaction Processing Against a Database

050-ERROR-CHECK.
* If location is not found, display a message; signal any other errors

IF DB-CONDITION EQUAL DBM$_END
MOVE LDC-NOT-FOUND TO STATUS-RESULT

ELSE
MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

050-ERROR-CHECK-EXIT.
EXIT.

052-ERROR-CHECK.
* If car type is not found, signal (form definition prevents user from
* entering a car type other than 01, 02, or 03)

IF DB-CONDITION EQUAL DBM$_END
THEN

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

052-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Example 4-5: Retrieval Procedure in COBOL (Cont.)

4.2.3.2 The AVERTZ Storage Proce_dure -- In the main section of the
Procedure Division, the second procedure in the reservation task:

1. Sets STATUS-RESULT to success and initializes
PROGRAM_REQUEST_KEY with spaces

2. If the user supplied information for the company name field. uses the
company name stored in the COMPANY workspace to fetch a COMPANY
record

3. If the company's credit rating is bad, or if the company does not exist in the
database. stores an error value in STATUS-RESULT and exits

4. Uses the customer name typed by the user and stored in the CUSTOMER
workspace to see whether information for that customer is already in the
database

5. If the customer is not on file, stores a new CUSTOMER record and
connects it to the current COMPANY record if there is one

Transaction Processing Against a Database 4-29

6. Uses the location code typed by the user and stored in the LOCATION
workspace to fetch a LOCATION record and obtain the next available
reservation number

7. Uses the reservation number, the pickup location and car type code already
available. and the pickup date stored in the RESERVATION workspace to
store a RESERVATION record

Example 4-6 shows the second procedure of the reservation task in its entirety.

IDENTIFICATION DIVISION.

PROGRAM-ID. AVERTZ_RESERVE_CAR.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.
SUB-SCHEMA SECTION.

DB AVERTZSS WITHIN AVERTZSC FOR 11 AVERTZ$APPL:AVERTZSC.R00 11
•

WORKING-STORAGE SECTION.

01 COM-NOT-FOUND PIC S9(9) COMP
VALUE IS EXTERNAL AVZ_COMNOTFD.

01 CREDIT-BAD PIC S9(9) COMP
VALUE IS EXTERNAL AVZ_CREDITBD.

01 DB-FAILURE PIC S9(9) COMP
VALUE IS EXTERNAL AVZ_DBFAIL.

01 DBM$_END PIC S9(9) COMP
VALUE IS EXTERNAL DBM$_END.

01 DBM$_DUPNOTALL PIC S9(9) COMP
VALUE IS EXTERNAL DBM$_DUPNOTALL.

01 STATUS-RESULT PIC S9(9) COMP.

LINKAGE SECTION.
COPY 11 CDD$TOP.AVERTZ.AVERTZ_WORKSPACE" FROM DICTIONARY.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR_TYPE
FROM DICTIONARY
REPLACING ==CAR_TYPE. == BY ==CAR_TYPE_LINKAGE. ==.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.COMPANY"
FROM DICTIONARY
REPLACING ==COMPANY. ==BY ==COMPANY_LINKAGE ==.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER
FROM DICTIONARY
REPLACING ==CUSTOMER. == BY ==CUSTOMER_LINKAGE. ==.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.LOCATION
FROM DICTIONARY
REPLACING ==LOCATION. ==BY ==LOCATION_LINKAGE.

Example 4-6: Storage Procedure in COBOL

4-30 Transaction Processing Against a Database

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATION"
FROM DICTIONARY
REPLACING ==RESERVATION. ==BY ==RESERVATION_LINKAGE.

PROCEDURE DIVISION USING AVERTZ_WORKSPACE
CAR_TYPE_LINKAGE
COMPANY_LINKAGE
CUSTOMER_ LINKAGE
LOCATION_LINKAGE
RESERVATION_LINKAGE

MAIN SECTION.
010-COMPANY-CHECK.

GIVING STATUS-RESULT.

SET STATUS-RESULT TO SUCCESS.

INITIALIZE PROGRAM_REQUEST_KEY.

* See whether customer is using a corporate account. If so,
* check that the company's credit is OK. If the credit is not OK,
* issue a message and roll back.

IF CO_NAME OF COMPANY_LINKAGE NOT EQUAL SPACES
THEN

PERFORM 015-CREDIT-CHECK THRU 015-CREDIT-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM
ELSE

GO TO 020-CUSTOMER-CHECK.

015-CREDIT-CHECK.
MOVE CO_NAME OF COMPANY_LINKAGE TO CO_NAME OF COMPANY.

FETCH FIRST COMPANY WITHIN COMPANY_CALC
USING CO_NAME OF COMPANY

ON ERROR
PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 015-CREDIT-CHECK-EXIT.

IF CO_CREDIT_CHECK OF COMPANY = "NO"
THEN

MOVE CREDIT-BAD TO STATUS-RESULT.

015-CREDIT-CHECK-EXIT.
EXIT.

(continued on next page)

Example 4-6: Storage Procedure in COBOL (Cont.)

Transaction Processing Against a Database 4-31

020-CUSTOMER-CHECK.

* See whether customer is on file. If not, add new customer
* information. If the new customer is an employee of a company
* on file, connect the customer to the company.

MOVE CU_NAME OF CUSTOMER_LINKAGE TO CU_NAME OF CUSTOMER.

FETCH FIRST CUSTOMER WITHIN CUSTOMER_CALC USING
CU_NAME OF CUSTOMER

ON ERROR
PERFORM 025-NEW-CUSTOMER THRU 025-NEW-CUSTOMER-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

MOVE CUSTOMER TO CUSTOMER_LINKAGE.

GO TO 040-STORE-RESERVATION.

025-NEW-CUSTOMER.
IF DB-CONDITION EQUAL DBM$_END
THEN

PERFORM 028-ADD-CUSTOMER THRU 028-ADD-CUSTOMER-EXIT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

IF CO_NAME OF COMPANY_LINKAGE NOT EQUAL SPACES
THEN

CONNECT CUSTOMER TO EMPLOYEE.

025-NEW-CUSTOMER-EXIT.
EXIT.

028-ADD-CUSTOMER.
MOVE CU_NAME OF CUSTOMER_LINKAGE TO CU_NAME OF CUSTOMER.
MOVE SPACES TO CU_ADDR_DATA_1 OF CUSTOMER.
MOVE SPACES TO CU_ADDR_DATA_2 OF CUSTOMER.
MOVE SPACES TO CU_CITY OF CUSTOMER.
MOVE SPACES TO CU_STATE OF CUSTOMER.
MOVE SPACES TO CU_POSTAL_CODE OF CUSTOMER.
MOVE SPACES TO CU_PHONE OF CUSTOMER.
MOVE SPACES TO CU_LICENSE_NO OF CUSTOMER.
MOVE SPACES TO CU_LICENSE_STATE OF CUSTOMER.

STORE CUSTOMER
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

028-ADD-CUSTOMER-EXIT.
EXIT.

Example 4-6: Storage Procedure in COBOL (Cont.)

4-32 Transaction Processing Against a Database

040-STORE-RESERVATION.

* Move reservation information into the reservation record for
* display and store the reservation under the customer and under
* the requested pickup location.

SET STATUS-RESULT TO SUCCESS.

MOVE LO_CODE OF LOCATION_LINKAGE TO LO_CODE OF LOCATION,
R_PICKUP_LOCATION OF RESERVATION.

FETCH FIRST LOCATION WITHIN LOCATION_CALC USING
LO_CODE OF LOCATION

ON ERROR
MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

ADD 1 TO LO_RES_NUM OF LOCATION.

MOVE LO_RES_NUM OF LOCATION TO RESERVATION_NUM OF RESERVATION.

MODIFY LO_RES_NUM OF LOCATION
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL 11 DBM$SIGNAL 11 •

MOVE CAR_TYPE_CODE OF CAR_TYPE_LINKAGE TO R_CAR_TYPE_CODE
OF RESERVATION.

MOVE R_PICKUP_DATE OF RESERVATION_LINKAGE TO R_PICKUP_DATE
OF RESERVATION.

STORE RESERVATION
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

MOVE 'Y' TO RES_MADE OF AVERTZ_WORKSPACE.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* If company not found, display an error message; signal any other errors

IF DB-CONDITION EQUAL DBM$_END
THEN

MOVE COM-NOT-FOUND TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

(continued on next page)

Example 4-6: Storage Procedure in COBOL (Cont.)

Transaction Processing Against a Database 4-33

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Example 4-6: Storage Procedure in COBOL (Cont.)

4.3 Defining a Task Group

The tasks of an ACMS application must be combined into one or more task
groups so that they can share common resources. such as workspaces. a request
library. and a procedure server. The tasks in a task group can also share
initialization and termination procedures and a message file. as described in the
following sections.

When you define a task group, you name the tasks that belong to the group and
the server in which they run. If you use TDMS requests to get information from
the terminal user, you must also list the request library file in which those
requests are stored. You define a task group with commands and clauses of the
Application Definition Utility (ADU). You can create the definition as a source file
of ADU commands and submit it as a command file to ADU; if ADU finds no
errors, it inserts the task group definition in the CDD.

You must convert the task group definition into a database of information that
ACMS can use in running the application. Building the task group also creates an
object module for the procedure server. Eventually you link this object module
with the object modules for the step procedures to produce an executable server
image. You can run this image under the control of the VAX Symbolic Debugger
and the AiCMS Task Debugger to test the procedures and tasks in the group.
Section 4.3.3 briefly describes the ACMS Task Debugger.

For information on defining a simple task group, see Developing Applications
with VAX ACMS. The VAX ACMS Task Definition Guide contains a more
detailed discussion of defining and building task groups.

4.3.1 Writing Server Procedures

Because ACMS can use one server process to handle several step procedures, any
startup and cleanup operations can be done just once during the lifetime of a pro
cess rather than at every processing step. For example. a database must be
invoked or readied before the procedures in an application can retrieve a record,
and access to it must be finished when all transactions have been processed. You
can write an initialization procedure to perform startup actions and a termination
procedure to perform cleanup actions for all the step procedures in the server.

4-34 Transaction Processing Against a Database

In an initialization procedure, you can start a read-write transaction that makes
all records or realms in the database available to the application. The procedure
should also test the status of the operation and stop the server process if the
database was not opened successfully.

In a termination procedure, you can finish access to the database. When you stop
an application that uses the server, ACMS also stops the server process and
executes the termination procedure.

The VAX A CMS Application Progranuning Guide includes a detailed discussion
and examples of such procedures for applications that use DBMS and
Rdb/VMS databases.

4.3.2 Using Message Files

When an error occurs during a processing step. you should display a message on
the user's terminal screen to describe the error. You can obtain and display error
messages in several ways, but the best way is to set up a central message file and
use the fields of the ACMS$PROCESSING STATUS workspace to store the
return status, error message. and other pertinent information. You use the VMS
Message Utility to define the message file, which you link with the procedure
server image for a task group. The following description illustrates how the mes
sage file works with step procedures and requests to display error messages.

The personnel task illustrated in this chapter expects to get three different
errors: locked record. nonexistent record, and database failure (corruption). When
one of these errors occurs, the procedure stores an error value in
STATUS-RESULT. These values are defined in the Data Division of the proce
dure to correspond to external symbols:

01 RECORD-LOCKED

01 REC-NOT-FOUND

01 DB-FAILURE

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECLOCK.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECNOTFD.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL

These external symbols are found in the message file along with the message text
to be displayed:

RE CLOCK
RECNOTFD
DBFAIL

<Record is locked by another user; press RETURN to try again.>
<Employee not found; try another number or exit.>
<Database contains invalid data. Notify administrator.>

(The PRS prefix is specified at the top of the message file along with other file
characteristics.)

Transaction Processing Against a Database 4-35

To record errors and obtain error messages, ACMS uses the fields of the
ACMS$PROCESSING_STATUS workspace in the following way:

• ACMS$L STATUS contains the STATUS-RESULT value returned by the
step procedure. This value is either SUCCESS or a message symbol found in
the message file.

• ACMS$T SEVERITY LEVEL contains the severity level of the return sta-
tus value. - - ·

• ACMS$T STATUS TYPE contains either a B or a G, depending on the
severity level. -

• ACMS$T STATUS MESSAGE contains the message text that corresponds
in the message file to the message symbol stored in ACMS$L_STATUS.

The message text is not stored in the ACMS$T STATUS MESSAGE field
unless you use the GET MESSAGE clause in a -task definition to direct ACMS to
obtain the error message. The task definitions shown in this chapter handle errors
in the following way:

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

When the previous exchange step is repeated, the request called in that step can
test the status type and display the message that was last stored in
ACMS$T STATUS MESSAGE: - -

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

For more information about setting up message files for a task group, see the
VAX A CMS Application Progra11uning Guide. For information on the Message
Utility, see the VAXNMS Utilities Reference Volume in the VMS documentation
set.

4.3.3 Debugging the Tasks in the Task Group

Before you build an application that contains the task groups you have defined,
you should test the tasks and make sure they execute properly. Under the control
of the ACMS Task Debugger, you can simulate how a task will run as part of an
application, even though you have not yet defined the application and its menus.
You can debug only one task at a time; thus, you can test how individual tasks
work but not how several tasks work together. For example, when you run a task

4-36 Transaction Processing Against a Database

under the control of the task debugger, you cannot determine whether it properly
handles the record-locked error that occurs when two users try to update the
same record. The task debugger uses the request library file, the task group
database file, the message file (if any), and the server image file to run the tasks
in a task group. If a task does not run correctly under the debugger, you must
determine which definitions are incorrect, edit them, and recompile or rebuild
them.

As you use the task debugger to run the tasks in a server image, you can stop a
task at any time to examine and change the contents of workspaces, and then
continue running the task. You should make sure that the request obtains all the
necessary information from the form, stores it in the correct workspaces, and
passes the workspaces to the procedure. From the task debugger, you can call the
VAX Symbolic Debugger to debug step procedures and make sure that they can
handle any errors you decided were likely to occur.

For more information on testing and debugging tasks, see the VAX ACMS
Application Prograrnming Guide. For information on using the VAX Symbolic
Debugger, consult the V AXNMS Utilities Reference Volume in the VMS docu
mentation set.

4.4 Defining the Application Environment

The control of an ACMS application is provided by the definitions of the applica
tion environment and the menus displayed to the terminal user. The definitions of
an application and its menus establish an environment in which the application
can run. The application definition describes the characteristics that control the
tasks, servers, and application. The menu definition describes the contents of the
menus displayed/to users, such as menu entries and explanatory text.

After you define an application and its menus, you build an application database
and a menu database that ACMS can use at run time with the request library file
and the task group database. The VAX A CMS Application Definition Guide
describes in detail how to define applications and menus and build application and
menu databases.

Application development ends with the creation of the necessary databases. To
make an application available to users, the system manager must authorize users
and their terminals, install the application in the directory associated with the
logical name ACMS$DIRECTORY, and start the application.
Developing Applications with VAX ACMS describes a simple application installa
tion. For a more thorough discussion of installation and ACMS system manage
ment, see the VAX A CMS Application Management Guide.

Transaction Processing Against a Database 4-37

4.4.1 Defining the Application

You define an ACMS application to control one or more task groups, each of
which contains related tasks that run in a shared server. In an application defini
tion, you describe characteristics that control the application, the server, and the
individual tasks:

• Application characteristics include logical names for a process called the
application execution controller and the gathering of Audit Trail information
about the application. The controller is a VMS process that ACMS sets up to
perform exchange steps, handle servers, and assign servers to processing
steps. The ACMS Audit Trail is a tool that gathers statistics about an active
ACMS system so that you can determine how your ACMS system and its
tasks and applications are being used.

• Server characteristics include the gathering of Audit Trail information for
the server, how many active server processes are allowed for the application,
and the server's user name.

• Task characteristics include the gathering of Audit Trail information for indi
vidual tasks and an access control list that determines which users can run
which tasks.

ACMS provides defaults for most of these characteristics, but you can change
them in the application definition. You define an application with ADU commands
and clauses and submit the definition to ADU for error-checking. If ADU finds no
errors, it inserts the application definition in the CDD. You can then build the
application database with the BUILD APPLICATION command in ADU.

4.4.2 Defining Menus

You define ACMS menus to list the tasks in an application that a user can select
for execution. ACMS provides a standard menu format with fields for the follow
ing items:

• A menu title

• Task names

• The type of each entry

• Explanatory text for each entry

• A field to accept the user's selection from the menu

• A field to display a possible error message

4-38 Transaction Processing Against a Database

A menu entry can be the name of another menu, thus allowing you to create a
hierarchy of menus for an application. To define a menu, you must provide the
name of each entry and the name of the task to which it corresponds. Optional
information, such as the menu title and explanatory text, helps users decide
which tasks they should select. You define a menu with ADU commands and
clauses and submit the definition to ADU for error-checking. If ADU finds no
errors, it inserts the menu definition in the CDD. You can then build the menu
database with the BUILD command in ADU.

Transaction Processing Against a Database 4-39

Querying the Database 5

Online transaction processing applications handle structured tasks that are
performed repeatedly during the course of business operations. These applications
store and modify data in a database; you can summarize the data with online que
ries and hardcopy reports and graphics. The VAX Information Architecture
includes a query language, VAX DATATRIEVE, which you can invoke from DCL
command level or run in an ACMS application. The A VERTZ Company uses
DATATRIEVE to perform queries and produce reports and graphics on the data
stored in its personnel and car rental databases. This chapter shows several
examples of DAT A TRIEVE procedures that retrieve and format data in a variety
of ways.

To enter DAT ATRIEVE from DCL level, first define DTR32 as a global symbol in
your login command file or at DCL command level:

$ DTR32 :== $DTR32

Then, to invoke DATATRIEVE, simply type DTR32. At the DTR> prompt, you
can begin typing DAT ATRIEVE commands. For detailed information about
DAT A TRI EVE commands, type HELP at the DTR > prompt or see the VAX
DATATRIEVE Reference Manual.

To run DAT ATRIEVE in an ACMS application, you must use a DCL server to
handle the processing work. You can define a task that invokes DATATRIEVE
and then displays the DTR > prompt, or you can define tasks that execute
DAT A TRI EVE procedures. For more information about running tasks in DCL
servers. see the ·v AX A CMS Application Definition Guide.

5.1 Accessing the Database
To access data stored in either a DBMS or an RdbNMS database, DAT ATRIEVE
must be able to locate the database definitions in the CDD. When you create an
RdbNMS database, you specify a CDD path name, which you can use in
DAT ATRIEVE commands to identify the database.

5-1

For a DBMS database, however, you must create a database instance for
DATATRIEVE. You use the DATATRIEVE command DEFINE DATABASE to
give the database a DAT ATRIEVE name, identify the physical location of the
root file, and store the DATATRIEVE database definition in the CDD. In addi
tion, you identify the subschema through which you want to access data and the
schema to which that subschema belongs. The following example defines a
DATATRIEVE instance of the car rental database:

DTR> SET DICTIONARY CDD$TOP.AVERTZ
DTR> DEFINE DATABASE AVERTZ_DB
DFN> USING SUBSCHEMA AVERTZSS
DFN> OF SCHEMA CDD$TOP.AVERTZ.AVERTZSC
DFN> ON AVERTZ$APPL:AVERTZSC.ROO;
DTR>

The SET DICTIONARY command sets the default CDD directory to the correct
location for the database definitions already stored in the CDD. Note that after
you type the DEFINE DATABASE command and a database name, the DFN>
prompt appears, indicating that the subsequent clauses are part of the definition
of the database instance. You signify the end of the definition with a semicolon,
after which DATATRIEVE again displays the DTR>· prompt.

After you define a database, you can make it available for access by readying the
records or relations in it. You use the DAT ATRIEVE READY command and
specify the name of the database, as follows:

DTR> READY AVERTZ_DB

This command readies all the records in the car rental database, whose
DATATRIEVE name is AVERTZ DB.

You can also specify access modes and options when you ready a database, just as
you do with the DBMS READY statement or the RdbNMS
START TRANSACTION statement. The default access for DATATRIEVE with
a DBMS database is SHARED READ; the default access with an RdbNMS
database is READ ONLY. For queries that display but do not modify the data,
the default access mode is suitable because it minimizes the contention for
records in the database.

When you are finished working with a database, you end access to it with the
FINISH command. You can then ready the database again, specifying other
records or relations to be readied, or you can exit from DAT ATRIEVE with the
EXIT command or CTRL/Z. When you exit, DATATRIEVE automatically fin
ishes any records or relations that are still available for access.

5-2 Querying the Database

5.2 Retrieving Records

To retrieve data from a database with DATATRIEVE, you use a record selection
expression to specify the conditions that the retrieved data must meet. The group
of records that satisfy these conditions is called a record stream. DAT ATRIEVE
has many clauses that you can use to limit a record stream; for example, you can:

• Specify the number of records to be included (FIRST and ALL clauses)

• Combine records from different sources on matching values in a field
(CROSS clause)

• Retrieve only those records with. a particular value in some field (WITH
clause)

• Reduce the records in a stream to unique values of fields (REDUCED TO
clause)

• Sort the records (SORTED BY clause)

Suppose you want to combine employee and job history data for employees who
started their present jobs after July 1, 1985. The following example shows a
record selection expression that, combines records from the EMPLOYEES and
JOB HISTORY relations on the common EMPLOYEE ID field: - -

E IN EMPLOYEES CROSS
JH IN JOB_HISTORY OVER
EMPLOYEE_ID WITH
JH.JOB_START GE '01-JUL-1985' AND
JH.JOB_END MISSING SORTED BY
JH.DEPARTMENT_CODE, JH.JOB_START

Because this record selection expression is rather complicated, it uses context
variables to name each record source and simplify references to them elsewhere in
the expression. Thus, EMPLOYEES is abbreviated to E and JOB HISTORY to
JH. The CROSS clause combines these two relations on identical values in the
EMPLOYEE ID field. The WITH clause limits the record stream and a SORTED
BY clause sorts the records by department code and job starting date.

If you include this record selection expression in a PRINT statement,
DAT ATRIEVE displays all the fields in both relations on your terminal screen.
For example:

DTR> PRINT E IN EMPLOYEES CROSS
CON> JH IN JOB_HISTORY OVER
CON> EMPLOYEE_ID WITH
CON> JH.JOB_START GE '01-JUL-1985' AND
CON> JH.JOB_END MISSING SORTED BY
CON> JH.DEPARTMENT_CODE, JH.JOB_START

Querying the Database 5-3

This statement creates a record stream from the records in the EMPLOYEES
and JOB HISTORY relations that satisfy the criteria in the WITH clause. The
indentatfon simply helps you see which relations are being crossed and which
fields are used in the record selection expression; it does not affect the execution
of the statement.

When displaying information on the screen, DAT A TRIEVE arranges the fields in
columns and determines the width of each column by the size of the data stored in
the field. It also identifies each column by using the field name as the column
header. To display all the fields in the EMPLOYEES and JOB_ HISTORY rela
tions, DAT ATRIEVE needs more than the standard 80 columns on your terminal
screen. You can increase the size of the display by using.the FN$WIDTH(132)
function to change your terminal characteristics and the SET COLUMNS_PAGE
= 132 command to spread the output across a wider screen.

Instead of increasing the screen display, you might decide that you can get the
information you need from a subset of the fields. You can include a print list in
the PRINT statement so that DAT A TRI EVE prints only the specified fields of
each record in the record stream. For example, if you want to print only the
department code, job code. job starting date, and employee name, you could add a
print list to the previous PRINT statement:

DTR> PRINT JH.DEPARTMENT_CODE, JH.JOB_CODE,
CON> JH.JOB~START, E.FIRST_NAME,
CON> E.MIDDLE_INITIAL, E.LAST_NAME OF
CON> E IN EMPLOYEES CROSS
CON> JH IN JOB_HISTORY OVER
CON> EMPLOYEE_ID WITH
CON> JH.JOB_START GE '01-JUL-1985' AND
CON> JH.JOB_END MISSING SORTED BY
CON> JH.DEPARTMENT_CODE, JH.JOB_START

The output from this statement might look as follows:

DEPARTMENT JOB JOB FIRST MIDDLE LAST
CODE CODE START NAME INITIAL NAME

ADMN EENG 9-JUL-1985 Beverly s. Williams
ADMN PRSD 18-JUL-1985 Joseph R. Anderson
MBMS CLRK 7-JUL-1985 John H. O'Reilly
MSC! ADMN 21-JUL-1985 Charlotte E. Davis
PERL DMGR 1-JUL-1985 Stephen J. Sumner
SUSA ADMN 14-JUL-1985 Wendy A. Manning

The FOR statement is often a convenient way to access information from a
DBMS database through the set relationships you defined in the database. With
the FOR statement, you establish DBMS currency pointers to locate records
within a set. By nesting FOR statements, you can navigate a DBMS database to
find the set occurrence you want. You add the WITHIN clause to a record selec
tion expression to specify the set to which records belong. The following example

5-4 Querying the Database

uses nested FOR statements to display information about the cars checked in at
the A VERTZ branch office in Tucson:

DTR> FOR LDC IN LOCATION WITH LO_CODE = 'TU'
CON> FOR CT IN CAR_TYPE WITHIN TYPE_AVAILABLE
CON> FOR C IN CAR WITHIN CHECKED_IN_CARS
CON> PRINT C

The first FOR statement selects the LOCATION record with a location code of
'TU' as the current record, and the second FOR statement selects a current
CAR TYPE record in the TYPE AVAILABLE set. With the last FOR statement,
DATATRIEVE processes the CAR records owned by the current CAR TYPE
record in the CHECKED IN CARS set. The output from this statement might
appear as follows: - - ·

CAR
CAR TYPE CAR CAR LICENSE LICENSE
NUM CODE MAKE YEAR NUM STATE

47477932 2 Dodge 85 5332355072 AZ
4563498 3 Ford 85 9667972096 AZ

80080160 3 Ford 85 5656366592 AZ
71888048 3 Ford 85 3589714176 AZ

5.3 Defining Procedures

If you plan to execute a given series of DAT A TRIEVE commands or statements
fairly often, you can save typing time and reduce the likelihood of mistakes by
storing the commands and statements in a procedure. You create a procedure by
using the DEFINE PROCEDURE command to give a name to a series of
DAT A TRI EVE operations; DAT A TRIEVE stores the procedure definition in your
default CDD directory.

If you need to change a procedure definition, you can issue the EDIT command.
specifying the procedure name, to invoke the VAX EDT editor. When you exit
from the editor, DATATRIEVE stores the new version of the definition in the
CDD. See the VAX DATATRIEVE Handbook for more information on the
DATATRIEVE Editor.

For example, you could define a procedure that displays a list of all the cars
checked in at the TU location:

DTR> DEFINE PROCEDURE TU_CARS
DFN> FOR LOCATION WITH LO_CODE = 'TU'
DFN> FOR CAR_TYPE WITHIN TYPE_AVAILABLE
DFN> FOR C IN CAR WITHIN CHECKED_IN_CARS
DFN> PRINT C
DFN> END_PROCEDURE
DTR>

Querying the Database 5-5

Note that after you type the DEFINE PROCEDURE command and a procedure
name, the DFN > prompt appears, indicating that the commands and statements
you type will be included in the procedure definition. You use the
END PROCEDURE command to signify the end of the procedure, after which
DAT ATRIEVE again displays the DTR > prompt.

The TU CARS procedure, however, is limited to a very specific use because the
selection criteria (WITH LO CODE = 'TU') is specified in the record selection
expression in the FOR statement. If you wanted to produce a similar list of cars
checked in at other locations, you would have to define another procedure that
differs from TU CARS only in the value of the LO CODE field. You can make a
procedure more -flexible by prompting the user for -the selection criteria rather
than specifying it in the procedure definition. DAT A TRI EVE then inserts the
user-supplied value in the FOR statement each time it executes the procedure.

To generate a prompt with DATATRIEVE, you use a prompting value expression
that consists of an asterisk(*). a period, and a character string enclosed in quota
tion marks. DATATRIEVE translates the asterisk into the word "Enter",
appends the character string to it, and adds a colon to compose a full prompt.
Suppose you want to define a procedure like TU CARS that prompts the user to
supply a location code. You can create a prompting value expression, putting it
outside the FOR loop in an assignment statement. When DAT A TRI EVE
executes the statement, it prompts the user for input and assigns the user
supplied data to a variable. Then you can substitute the variable name for the
location code in the WITH clause.

You use the DECLARE statement in DATATRIEVE to define a variable and
specify the type of data it can contain. For a variable that stores text. you use a
picture string and specify the number of characters with As. For a two-character
location code that can contain only alphabetic characters, the picture string is PIC
AA. The following example defines a procedure called CARS ON HAND that
prompts the user for a location code: - -

DTR> DEFINE PROCEDURE CARS_ON_HAND
DFN> DECLARE LC PIC AA.
DFN> LC= *."the location code in capital letters"
DFN> FOR LDC IN LOCATION WITH LO_CODE = LC
DFN> FOR CT IN CAR_TYPE WITHIN TYPE_AVAILABLE
DFN> FOR C IN CAR WITHIN CHECKED_IN_CARS
DFN> PRINT C
DFN> END_PROCEDURE
DTR>

To execute a procedure, you type the procedure name, preceded by a colon(:), at
the DTR > prompt. When you execute the CARS ON HAND procedure,
DAT ATRIEVE displays the prompt and waits for-you- to supply input:

DTR> :CARS_ON_HAND
Enter the location code in capital letters: BA

5-6 Querying the Database

DAT ATRIEVE uses the location code you typed to establish the current
LOCATION record in the database.

To document a procedure, you can include comments either inside the procedure
definition on lines beginning with an exclamation point(!) or as character strings
in PRINT statements where they will be displayed on the terminal. The following
example modifies the CARS_ON_HAND procedure to· show both types of com
ments:

DTR> EDIT PROCEDURE CARS_ON_HAND
REDEFINE PROCEDURE CARS_ON_HAND
DECLARE LC PIC AA.
!
PRINT "This procedure prints a list of"
PRINT "the cars on hand at any location.", SKIP
!
! Prompt for location code to find current location record
!
LC= *."the location code in capital letters"
!
FOR LDC IN LOCATION WITH LO.CODE = LC

Process all car types owned by current location

FOR CT IN CAR_TYPE WITHIN TYPE_AVAILABLE

Print all car records for every car type at current location

FOR C IN CAR WITHIN CHECKED_IN_CARS
PRINT C

!
END_PROCEDURE

Although including comments makes the procedure longer. the comments dis
played on the screen explain to the user what the procedure does, and the embed
ded comments explain to a DATATRIEVE programmer how the procedure works.

You could also define a procedure that includes the personnel example shown ear
lier, prompting the user for a job starting date instead of including the date
directly in the FOR statement. The procedure would then be able to display job
information for any starting date. For example:

DTR> DEFINE PROCEDURE JOB_CHANGES
DFN>
DFN> PRINT "This procedure prints information about all employees"
DFN> PRINT "who started their current jobs on or after the date"
DFN> PRINT "you specify.", SKIP
DFN> !
DFN> ! Declare variable for job starting date and prompt user for it.
DFN> !
DFN> DECLARE STARTING_DATE USAGE DATE.
DFN> STARTING_DATE = *."the job starting date"
DFN> !
DFN> !
DFN>
DFN>

Cross EMPLOYEES and JOB_HISTORY records and select the JOB_HISTORY
records for each employee's current job (indicated by a missing
job ending date)

Querying the Database 5-7

DFN> !
DFN> FOR E IN EMPLOYEES CROSS
DFN> JH IN JOB_HISTORY OVER
DFN> EMPLOYEE_ID WITH
DFN> JH.JOB_START GE STARTING_DATE AND
DFN> JH.JOB_END MISSING SORTED BY
DFN> JH.DEPARTMENT_CODE, JH.JOB_START
DFN> PRINT JH.DEPARTMENT_CODE, JH.JOB_CODE,
DFN> JH.JOB_START, E.EMPLOYEE_ID
DFN> END_PROCEDURE
DTR>

When you execute this procedure, DAT ATRIEVE issues the prompt and waits for
you to supply a date:

DTR> :JOB_CHANGES
Enter the job starting date: 01-JAN-1985

DATATRIEVE assigns the date to the variable STARTING DATE and inserts
that value in the WITH clause that selects JOB HISTORY records for the record
stream.

5.4 Writing Reports

The previous sections have shown how DAT ATRIEVE can display information on
the terminal in response to PRINT statements in ad hoc queries and procedures.
Such displays are in fact simple reports, but DAT ATRIEVE can produce more
elaborate reports with its Report Writer, which also has built-in statistical func
tions for calculating running totals, averages, minimum and maximum values,
and other summary information. See the VAX DATATRIEVE Guide to Writing
Reports for detailed information about the DATATRIEVE Report Writer.

To create a DATATRIEVE report, you combine a series of Report Writer state
ments in a report specification, which determines the format and content of a
report. If you need to produce the same report periodically, you can simplify the
task by defining a procedure that includes the report specification; then, to
produce the report, you simply execute the procedure.

Before you can write a report specification, however, you must decide what infor
mation you need to include in your report and how you want the information to
look on the screen or on paper. Suppose you want to create a procedure that is
similar to the JOB CHANGES procedure but that produces a formatted report.
You want to sort the records by department code and job starting date, as before,
but for the report, you want to group employees within their departments and
print the department code only once. You also want to format the report attrac
tively. with centered headings and blank lines for readability. You must keep the
output format in mind as you create the report specification.

5-8 Querying the Database

5.4.1 Creating a Record Stream for the Report

A report specification must contain a REPORT statement, which creates a record
stream for the report, and an END REPORT statement. In the REPORT state
ment, you include a record selection expression to identify the records or relations
you need, optionally limiting the record stream with the clauses described in
Section 5.2.

If you want to produce a hard copy of the report. you can use the ON clause in the
record selection expression to indicate where the report is to be stored. You can
include either a file specification or a prompting value expression in the REPORT
statement; if you use a prompting value expression, the user is prompted to enter
a file specification before the report is created. To see the report on the terminal
screen. the user can type TT: at the prompt.

To define the procedure JOB CHANGES REPORT, your first step is to con
struct a REPORT statement~ as follows: -

REPORT E IN EMPLOYEES CROSS
JH IN JOB_HISTORY OVER
EMPLOYEE_ID WITH

JH.JOB_START GE STARTING_DATE AND
JH.JOB_END MISSING SORTED BY
JH.DEPARTMENT_CODE, JH.JOB_START ON

*."the file specification for the report"

The record selection expression in this REPORT statement is identical to that
used in the FOR statement in the JOB CHANGES procedure. It evaluates the
STARTING DATE variable to determine which JOB HISTORY records to
include in the record stream. Therefore. the JOB CHANGES REPORT
procedure must prompt the user for a starting date and store -the user's input in a
variable before executing the REPORT statement. The REPORT statement also
includes an ON clause, specifying that the report is to be stored in the file indi
cated by the user.

5.4.2 Formatting Detail and Summary Lines

A report specification must also include at least one output statement.
DATATRIEVE has two kinds of output statements: the PRINT statement prints
:letail lines for each record in the record stream. and the AT statement prints
mmmary lines. In the job changes report, you want to print the job starting date,
~mployee number, and full name for each employee whose job has changed since a
,pecified date. Therefore, you use a PRINT statement to list the fields you want
:lisplayed. By default, DAT A TRIEVE uses the field name as the column heading
m a report; you can supply a heading by enclosing a character string in quotation
narks and including it in parentheses following the field name. You can also use

Querying the Database 5-9

formatting elements in the PRINT statement to position the columns on the page
and leave blank lines and spaces. For example:

PRINT JOB_START ("Date"),
EMPLOYEE_ID ("ID"),
FIRST_NAMEI I IMIDDLE_INITIALI I ILAST_NAME ("Name")

This statement prints three columns of information. It prints the JOB START
field under the heading Date and the EMPLOYEE ID field under the heading ID.
The concatenation character (I) joins fields into a sillgle text string; a triple bar
(111), as used in the last line of the procedure to join FIRST_NAME,
MIDDLE INITIAL, and LAST NAME, replaces any trailing spaces contained in
a field with a single space. The concatenated fields in this example are printed
under the heading Name.

A series of sorted records that have the same value in at least one field form a
control group. When you are producing a report, you can direct DAT A TRIEVE to
stop before or after it processes each control group and perform various oper
ations on the records in the group. For example, DATATRIEVE can count the
number of records, total or average the values in a given field, print headings or
summary lines, and so on. The Report Writer provides two variations of the AT
statement--AT TOP for printing header lines and AT BOTTOM for printing sum
mary lines in a report.

The REPORT statement in the previous example produces two types of control
groups: one for each department code and one for each job starting date within a
department code. You can use an AT TOP statement to print the department
code at the top of each department control group. You can also include a column
header and formatting elements. For example:

AT TOP OF DEPARTMENT_CODE PRINT SKIP, DEPARTMENT_CODE ("Department")

This statement directs DATATRIEVE to leave a blank line before each
department control group and to print the DEPARTMENT CODE field under
the heading Department. -

5.4.3 Defining Report Characteristics

DATATRIEVE has defaults that it can use to format the pages of a report. These
defaults determine the number of columns and lines per page and the number of
lines and pages per report. They also cause the current date, a page number, and
column headings to be printed at the top of each page of a report. To change the
default characteristics, you can include SET statements within a report specifica
tion.

5-1 O Querying the Database

DAT ATRIEVE does not generate a default heading for a report, but you can pro
vide one with the SET REPORT NAME statement. For example, to give a name
to the job changes report, you could use the following SET statement:

SET REPORT_NAME = "New Jobs by Department"

5.4.4 An AVERTZ Personnel Report

Example 5-1 shows the JOB CHANGES procedure, modified to produce a report,
rather than a terminal display, of all the employees who have changed jobs since
the date specified by the user.

DTR> EDIT PROCEDURE JOB_CHANGES
DEFINE PROCEDURE JOB_CHANGES_REPORT
!
PRINT "This procedure creates a report of all employees who started"
PRINT "their current job on or after the date you specify.", SKIP
!
! Declare variable for job starting date and prompt user for it.
!
DECLARE STARTING_DATE USAGE DATE.
STARTING_DATE = *."the job starting date"
!
! Cross EMPLOYEES and JOB_HISTORY records and select the JOB_HISTORY
! records for each employee's current job (indicated by a missing
! job ending date)
!
REPORT E IN EMPLOYEES CROSS

JH IN JOB_HISTORY OVER
EMPLOYEE_ID WITH

JH.JOB_START GE STARTING_DATE AND
JH.JOB_END MISSING SORTED BY
JH.DEPARTMENT_CODE, JH.JOB_START ON

*."the file specification for the report"
!
SET REPORT_NAME = "New Jobs by Department"
!
! Create a control group for each department
!
AT TOP OF DEPARTMENT_CODE PRINT SKIP,

DEPARTMENT_CODE ("Department")
!
! Within each department, print the starting date, ID number, and
! full name of each employee
!
PRINT JOB_START ("Date"),

EMPLOYEE_ID ("ID"),
FIRST_NAMEI I IMIDDLE_INITIALI I ILAST_NAME ("Name")

END_REPORT
END_PROCEDURE

Example 5-1: Definition of Job Changes Report

Querying. the Database 5-11

Example 5-2 shows a sample report, produced by the JOB CHANGES REPORT
procedure, of all employees who have changed jobs since June 1, 1985.-

New Jobs by Department

Department Date ID

ADMN
4-Jun-1985 00264
5-Jun-1985 00290

28-Jun-1985 00279

ELEL
25-Jun-1985 00312

ELGS
17-Jun-1985 00254

MBMS
7-Jun-1985 00347

27-Jun-1985 00349

MKTG
3-Jun-1985 00397

10-Jun-1985 00218

SUSA
21-Jun-1985 00296

Example 5-2: Job Changes Report

5.4.5 An AVERTZ Car Rental Report

Name

1-Jul-198
Page 1 ~

Sarah H McCloskey
Stanley K Lambert
Edward E Cummings

Adam T Macgregor

Caroline L Winston

Elizabeth S Rockwell
Julia B Carter

Noah M Caulfield
Barney J Marino

Sonya J Cortez

Besides personnel reports, the AVERTZ Company needs reports on its car rental
data. For example. a manager might want to know how many cars of each type
have been reserved at each location for a specified period of time. Such informa
tion shows the projected activity at the various locations and helps the manager
determine how to allocate the inventory of rental cars. Using the same concepts
applied to the definition of the job changes report, you could create a reservation
report that lists the reservations at each location that will be fulfilled during an
interval specified by the user.

To prompt the user for a date, you include a prompting value expression in an
assignment statement and assign the date to a variable. The reservation report
uses two variables, START and END, to store the dates that mark the report

5-12 Querying the Database

period. You must declare these variables with DECLARE statements and specify
their data types before you assign values to them. For example:

DECLARE START USAGE DATE.
1 DECLARE END USAGE DATE.

START = *."the starting date of the report period"
END= *."the ending date of the report period"

The record selection expression used in this report creates a record stream of
LOCATION records, sorted by the value of the LO CODE field. The following
REPORT statement contains the record selection expression and a prompt for
the file specification of the finished report:

REPORT LDC IN LOCATION SORTED BY
LOC.LO_CODE ON
*."the file specification for the report"

Unlike the job changes report. the reservat10n report does not print detail lines;
that is, the report should not display any of the data contained in the record in
the record stream. Instead, it should print the total number of reservations for
each car type at each location. To do so, you can declare a variable for each car
type and indicate with a COMPUTED BY clause that the value of each variable
depends on the value of the R CAR TYPE CODE field in a RESERVATION
record. You use the COMPUTED BY clause to provide a conditional expression
that describes the variable's value. For example:

DECLARE TYPE1_COUNTER COMPUTED BY
COUNT OF R IN RESERVATION MEMBER LOCATION_RESERVATION WITH
R.R_CAR_TYPE_CODE = 1 AND
R.R_PICKUP_DATE BETWEEN START AND END.

DECLARE TYPE2_COUNTER COMPUTED BY
COUNT OF R IN RESERVATION MEMBER LOCATION_RESERVATION WITH
R.R_CAR_TYPE_CODE = 2 AND
R.R_PICKUP_DATE BETWEEN START AND END.

DECLARE TYPE3_COUNTER COMPUTED BY
COUNT OF R IN RESERVATION MEMBER LOCATION_RESERVATION WTTH
R.R_CAR_TYPE_CODE = 3 AND
R.R_PICKUP_DATE BETWEEN START AND END.

COUNT is a built-in function that counts the number of detail records that meet
the specified criteria. The COUNT statements used in these variable declarations
count the number of RES ERV A TI ON records of each car type in each occurrence
of the LOCATION RESERVATION set. RESERVATION records are further
limited by the value of the R PICKUP DATE field, which must fall between the
dates specified by the user. - -

Querying the Database 5-13

To compute the sum of all reservation counts at a location, you can declare
another variable and, in its COMPUTED BY clause, include an arithmetical
expression to add the values of the three w1riables. For example:

DECLARE TYPE_TOTAL COMPUTED BY
TYPE1_COUNTER + TYPE2_COUNTER + TYPE3_COUNTER.

To print the reservation counts at each location, you use a PRINT statement and
specify the LO CODE field and the four reservation variables. The following
PRINT statem-ent prints the values of these fields with the specified headers:

PRINT LOC.LO_CODE ("Location"),
TYPELCOUNTER ("Compacts"),
TYPE2_COUNTER ("Midsize"),
TYPE3_COUNTER ("Full-size"),
TYPE_TOTAL ("Location Total"),
SKIP

When you reach the end of the record stream, you can use the TOT AL function to
compute the total number of reservations of each type and the overall total. Then
you can print these results in a simple AT BOTTOM OF REPORT statement:

AT BOTTOM OF REPORT PRINT
"Totals",
TOTAL TYPE1_COUNTER,
TOTAL TYPE2_COUNTER,
TOTAL TYPE3_COUNTER,
TOTAL TYPE_TOTAL

Another way to distinguish among multiple reservation reports is to include in the
report header the dates for which the report applies. You cannot use the SET
REPORT NAME statement to display the values of variables; it can display only
character -strings and prompting value expressions. Instead, you can declare a
variable to contain the report title and print the title in an AT TOP OF PAGE
statement. When you declare this variable. you use the COMPUTED BY clause
to concatenate a string of text with the values of the START and END variables.
For example:

DECLARE TITLE COMPUTED BY
"Projected Activity from"l I ISTARTI I l"to"l I IEND
EDIT_STRING X(50)

The EDIT_ STRING clause defines the total length of the title string.

When you use an AT TOP OF PAGE statement, DATATRIEVE suppresses
report and column headers unless you enable them by specifying
REPORT HEADER and COLUMN HEADER. As shown in the job changes
report, you can include formatting elements such as SKIP and COL to insert

5-14 Querying the Database

blank lines and position a report header on the page. The following AT TOP
statment formats the header of the reservation report:

AT TOP OF PAGE PRINT REPORT_HEADER, SKIP,
COL 10, TITLE, SKIP,
COLUMN_HEADER, SKIP

Example 5-3 shows the complete definition of CURRENT RES REPORT, which
produces a reservation report such as that shown in Example 5:4.

DEFINE PROCEDURE CURRENT_RES_REPORT
!
PRINT "This procedure produces a report of the projected number of"
PRINT "car reservations of each type at each branch during the"
PRINT "period you specify.", SKIP
!
! Declare variables for starting and ending dates of report period
!
DECLARE START USAGE DATE.
DECLARE END USAGE DATE.

! Declare variables to count number of reservations of each type in
! each occurrence of LOCATION_RESERVATION with pickup dates in the
! report period
!
DECLARE TYPE1_COUNTER COMPUTED BY

COUNT OF R IN RESERVATION MEMBER LOCATION_RESERVATION WITH
R.R_CAR_TYPE_CODE = 1 AND
R.R_PICKUP_DATE BETWEEN START AND END.

DECLARE TYPE2_COUNTER COMPUTED BY
COUNT OF R IN RESERVATION MEMBER LOCATION_RESERVATION WITH
R.R_CAR_TYPE_CODE = 2 AND
R.R_PICKUP_DATE BETWEEN START AND END.

DECLARE TYPE3_COUNTER COMPUTED BY
COUNT OF R IN RESERVATION MEMBER LOCATION_RESERVATION WITH
R.R_CAR_TYPE_CODE = 3 AND
R.R_PICKUP_DATE BETWEEN START AND END.

DECLARE TYPE_TOTAL COMPUTED BY
TYPE1_COUNTER + TYPE2_COUNTER + TYPE3_COUNTER.

!
DECLARE TITLE COMPUTED BY

"Projected Activity from" I I ISTARTI I l"to"I I !END
EDIT_STRING X(50).

! Prompt user for the report period
!
START= *."the starting date of the report period"
END= *."the ending date of the report period"

lcontinued on next page)

Example 5-3: Definition of Reservation Report

Querying the Database 5-15

REPORT LOC IN LOCATION SORTED BY
LOC.LO_CODE ON
*."the file specification for the report"

!
AT TOP OF PAGE PRINT REPORT_HEADER, SKIP,

COL 10, TITLE, SKIP,
COLUMN_HEADER, SKIP

!

Print location code, number of reservations of each type, and
total number at each location

PRINT LOC.LO_CODE ("Location"),
TYPELCOUNTER ("Compacts"),
TYPE2_COUNTER ("Midsize"),
TYPE3_COUNTER ("Full-size"),
TYPE_TOTAL ("Location Total"), SKIP

Total the reservations of each type for all locations and compute
! overall total
!
AT BOTTOM OF REPORT PRINT

"Totals",

!

TOTAL TYPE1_COUNTER,
TOTAL TYPE2_COUNTER,
TOTAL TYPE3_COUNTER,
TOTAL TYPE_TOTAL

END_REPORT
END_PROCEDURE

Example 5-3: Definition of Reservation Report (Cont.)

Projected Activity from 1-Jul-1986 to 15-Jul-1986

Location Compacts Midsize Full-size

BA 22 19 10

DA 36 27 15

FC 28 21 16

GR 16 9 18

RU 12 11 5

TU 19 25 13

Totals 133 112 77

Example 5-4: Reservation Report

5-16 Querying the Database

20-Jun-11

Page 1

Location To·

51

78

65

43

28

57

322

5.5 Generating Graphics
For some purposes, it may be more appropriate to display information in a chart
or graph rather than in a report. DAT ATRIEVE 's graphics features let you easily
construct useful charts and graphs from the data stored in a database. To use
DAT A TRIEVE graphics, you must have the appropriate hardware, as described
in the VAX DATATRIEVE Guide to Using Graphics.

Before you can create graphic displays, you must issue the SET PLOTS com
mand to indicate where in the CDD DATATRIEVE's graphics functions are
stored. By default, they are stored in the CDD$TOP.DTR$LIB.PLOTS directory
when you install DATATRIEVE. For example:

DTR> SET PLOTS CDD$TOP.DTR$LIB.PLOTS

You can then use the PLOT command to specify a type of graphic display.
DATATRIEVE can generate bar charts, line charts, pie charts, and scatter
graphs, and can format them in a variety of ways (shaded, cross-hatched, and so
forth). In the PLOT command, you also include a record selection expression to
create the record stream you want to display on the chart or graph.

Using the record selection expression from the JOB CHANGES procedure in
Example 5-1, you can define a procedure to create a pie chart that shows the per
centage by department of employees who have changed jobs. Example 5-5 shows
the definition of such a procedure.

DTR> EDIT PROCEDURE JOB_CHANGES
DEFINE PROCEDURE JOB_CHANGES_PIE
!
PRINT "This procedure creates a pie chart that shows the percentage"
PRINT "by department of all employees who started their current job"
PRINT "on or after the date you specify.", SKIP
!
! Declare variable for job starting date and prompt user for it.
!
DECLARE START USAGE DATE.
START= *."the job starting date"
!
! Cross EMPLOYEES and JOB_HISTORY records and select the JOB_HISTORY
! records for each employee's current job (indicated by a missing
! job ending date)
!
PLOT PIE DEPARTMENT_CODE OF E IN EMPLOYEES CROSS

JH IN JOB_HISTORY OVER EMPLOYEE_ID WITH
JH.JOB_START GE START AND
JH.JOB_END MISSING

END_PROCEDURE

Example 5-5: Procedure Definition for Job Changes Pie Chart

Like the JOB CHANGES procedure, this procedure prompts the user to enter a
job starting date. It then creates a pie chart on the terminal screen that shows
how the total number of job changes breaks down by department. The PLOT

Querying the Database 5-17

command specifies that the DEPARTMENT CODE field is being plotted, so
DAT ATRIEVE labels each segment of the pie with the corresponding department
code. Figure 5-1 shows a pie chart that might result from executing this proce
dure.

FREQUENCY OF DEPARTMENT-CODE

ELEL

ZK-00028-00

Figure 5-1: Pie Chart of Job Changes

Likewise. you could modify the record selection expression in the
CURRENT RES REPORT procedure in Example 5-3 to create a multiple-bar
chart showing the number of cars reserved at each location during a specified
period. When you specify a multiple-bar chart in a PLOT statement, you must
include a record selection expression to create a record stream and specify which
fields of the records you want graphed. DATATRIEVE uses the first field you
specify to label the bars: the remaining fields specify the data to be represented as
vertical bars. To enhance the display and make the distinction between bars

5-18 Querying the Database

easier, you can include a PLOT CROSS HATCH statement. If there is room on
the chart, DATATRIEVE also includes a legend to explain which bars represent
which values.

Example 5-6 shows a procedure that conveys the same information as the report
in Example 5-3.

DTR> EDIT PROCEDURE CURRENT_RES_REPORT
DEFINE PROCEDURE CURRENT_RES_CHART
!
PRINT "This procedure produces a bar chart of the projected number of"
PRINT "car reservations of each type at each branch during the period"
PRINT "you specify.". SKIP
!
! Declare variables for starting and ending dates of the report period
!
DECLARE START USAGE DATE.
DECLARE END USAGE DATE.

! Declare variables to count the number of reservations of each type
! in each occurrence of LOCATION_RESERVATION with pickup dates in the
! report period
!
DECLARE TYPE1_COUNTER COMPUTED BY

COUNT OF R IN RESERVATION MEMBER LOCATION_RESERVATION WITH
R.R_CAR_TYPE_CODE = 1 AND
R.R_PICKUP_DATE BETWEEN START AND END.

!
DECLARE TYPE2_COUNTER COMPUTED BY

COUNT OF R IN RESERVATION MEMBER LOCATION_RESERVATION WITH
R.R_CAR_TYPE_CODE = 2 AND
R.R_PICKUP_DATE BETWEEN START AND END.

DECLARE TYPE3_COUNTER COMPUTED BY
COUNT OF R IN RESERVATION MEMBER LOCATION_RESERVATION WITH
R.R_CAR_TYPE_CODE = 3 AND
R.R_PICKUP_DATE BETWEEN START AND END.

! Prompt user for the report period
!
START= *."the starting date of the report period"
END= *."the ending date of the report period"
!
! Graph location code and number of reservations of each type at
! each location
!
PLOT MULTI_BAR LOC.LO_CODE ("Location"),

TYPELCOUNTE.R ("Compacts"),
TYPE2_COUNTER ("Mid-size"),
TYPE3_COUNTER ("Fullsize") OF
LOC IN LOCATION SORTED BY LOC.LO_CODE THEN
PLOT CROSS_HATCH

END_PROCEDURE

Example 5-6: Procedure Definition for Reservation Bar Chart

This procedure first prompts the user for starting and ending dates. The PLOT
statement specifies LO_ CODE as the first field; therefore. the location codes are

Querying the Database 5-19

printed at the bottom of each group of bars. These vertical bars represent the
number of reservations of each type made at each location. Figure 5-2 shows a
chart that might result from executing this procedure.·

40,...---

30 ·····-··-·····-·-···-

it

• DA

Legend
fB COMPACTS

- HIDSIZE
- FULLSIZE

FC GR RU

LOCATION

Figure 5-2: Bar Chart of Reservations for Each Location

5-20 Querying the Database

TU

ZK-00029-00

Sources for Sample Applications A

This appendix contains the complete sources for the sample applications devel
oped in this manual. Section A.1 includes the sources for the ACMS personnel
application, and Section A.2 includes the sources for the ACMS car rental
application.

A.1 AVERTZ Personnel Application

The personnel application is built on a VAX RdbNMS database and includes six
tasks. This section contains the complete sources for the application. Table A-1
lists each type of source definition, the sections of this appendix that contain
them. and the specific task to which each definition applies.

Table A-1: Personnel Application Sources

Object Section Related Task

Database A.1.1 All

Workspace A.1.2 All

Task Definitions A.1.3.1 Add Task

A.1.4.1 Display Task

A.1.5.1 General Update Task

A.1.6.1 Raise/Promotion
Update Task

A.1.7.1 Transfer Update Task

(continued on next page)

A-1

Table A-1: Personnel Application Sources (Cont.)

Object Section Related Task

Task Definitions A.1.8.1 Status Update Task

Form Definitions A.1.3.2 Add Task

A.1.4.2 Display Task

A.1.5.2 General Update Task

A.1.6.2 Raise/Promotion
Update Task

A.1.7.2 Transfer Update Task

A.1.8.2 Status Update Task

Request Definitions A.1.3.3 Add Task

A.1.4.3 Display Task
A.1.4.4

A.1.5.3 General Update Task
A.1.5.4

A.1.6.3 Raise/Promotion
A.1.6.4 Update Task

A.I. 7.3 Transfer Update Task
A.1.7.4

A.1.8.3 Status Update Task
A.1.8.4

Step Procedures A.1.3.4 Add Task

A.1.4.5 Display Task

A.1.5.5 General Update Task
A.1.5.6

(continued on next page)

A-2 Sources for Sample Applications

Table A-1: Personnel Application Sources (Cont.)

Object Section Related Task

Step Procedures A.1.6.5 Raise/Promotion
A.1.6.6 Update Task

A.1.7.5 Transfer Update Task
A.1.7.6

A.1.8.5 Status Update Task
A.1.8.6

Server Procedures A.1.9.1 All
A.1.9.2

Request Library A.1.10 All
Definition

Task Group Definition A.1.11 All

Message Source File A.1.12 All

Application A.1.13 All
Definition ~

Menu Definition A.1.14 All

A.1.1 Personnel Database Definition

!
!

PERSONNEL database definitions

*** Define fields for the PERSONNEL database ***

DEFINE FIELD ID_NUMBER

!
!

DESCRIPTION IS /* Generic employee ID */
DATATYPE IS TEXT SIZE IS 5.

DEFINE FIELD LAST_NAME

!

DESCRIPTION IS /* Generic last name */
DATATYPE IS TEXT SIZE IS 14.

DEFINE FIELD FIRST_NAME
DESCRIPTION IS/* Generic first name */
DATATYPE IS TEXT SIZE IS 10.

(continued on next page)

Sources for Sample Applications A-3

DEFINE FIELD MIDDLE_INITIAL

!
!

DESCRIPTION IS /* Generic middle initial */
DATATYPE IS TEXT SIZE IS 1
EDIT_STRING FOR DATATRIEVE IS 'X.'
MISSING_VALUE IS ' '.

DEFINE FIELD ADDRESS_DATA_1
DESCRIPTION IS /* Mail stops, suite addresses, street numbers, etc.*/
DATATYPE IS TEXT SIZE IS 25
MISSING_VALUE IS '

DEFINE FIELD ADDRESS_DATA_2
DESCRIPTION IS /* Street name */
DATATYPE IS·TEXT SIZE IS 25
MISSING_VALUE IS I

DEFINE FIELD CITY
DESCRIPTION IS /* City name */
DATATYPE IS TEXT SIZE IS 20
MISSING_VALUE IS '

DEFINE FIELD STATE

!
!

DESCRIPTION IS /* State abbreviation (or DISTRICT) */
DATATYPE IS TEXT SIZE IS 2
MISSING_VALUE IS I I

DEFINE FIELD POSTAL_CODE

!

DESCRIPTION IS /* Postal code (in US = ZIP)*/
DATATYPE IS TEXT SIZE IS 9
MISSING_VALUE IS I

DEFINE FIELD SEX
DESCRIPTION IS /* M, F */
DATATYPE IS TEXT SIZE IS 1
MISSING_VALUE IS '?'
VALID IF SEX = 'M' OR

SEX= 'F' OR
SEX MISSING.

DEFINE FIELD STANDARD_DATE
DESCRIPTION IS /* Generic date field */
DATATYPE IS DATE
MISSING_VALUE IS '17-NOV-1858 00:00:00.00'
EDIT_STRING FOR DATATRIEVE IS 'DD-MMM-YYYY'.

A-4 Sources for Sample Applications

DEFINE FIELD SALARY

!
!

DESCRIPTION IS /* Generic salary field */
DATATYPE IS SIGNED LONGWORD SCALE -2
VALID IF SALARY > 0 OR

SALARY MISSING
EDIT_STRING FOR DATATRIEVE IS '$$$$,$$9.99'.

DEFINE FIELD RESUME

!

DESCRIPTION IS /* Employee resume */
DATATYPE IS SEGMENTED STRING.

DEFINE FIELD DEPARTMENT_CODE
DESCRIPTION IS /* Department code or abbreviation */
DATATYPE IS TEXT 4
MISSING_VALUE IS 'None'.

DEFINE FIELD JOB_CODE

!

DESCRIPTION IS /* Generic job code */
DATATYPE IS TEXT SIZE IS 4
MISSING_VALUE IS 'None'.

DEFINE FIELD WAGE_CLASS

!

DESCRIPTION IS /* Wage class -- 1 to 4 */
DATATYPE IS TEXT SIZE IS 1
VALID IF WAGE_CLASS = '1' OR

WAGE_CLASS = '2' OR
WAGE_CLASS = '3' OR
WAGE_CLASS = '4' OR
WAGE_CLASS MISSING.

DEFINE FIELD JOB_TITLE

!
!

DESCRIPTION IS /* Generic job title */
DATATYPE IS TEXT SIZE IS 20
MISSING_VALUE IS 'None'.

DEFINE FIELD DEPARTMENT_NAME
DESCRIPTION IS /* Department name */
DATATYPE IS TEXT SIZE IS 30

!
!

MISSING_ VALUE IS 'None'.

DEFINE FIELD BUDGET
DESCRIPTION IS /* Generic budget data */
DATATYPE IS SIGNED LONGWORD SCALE 0
EDIT_STRING FOR DATATRIEVE IS '$$$,$$$,$$$'.

(continued on next page)

Sources for Sample Applications A-5

DEFINE FIELD COLLEGE_NAME
DESCRIPTION IS /* Halls of ivy */
DATATYPE IS TEXT SIZE IS 26.

!
!
DEFINE FIELD COLLEGE_CODE

DESCRIPTION IS /* Four-letter college code */
DATATYPE IS TEXT SIZE IS 4.

DEFINE FIELD YEAR_GIVEN
DESCRIPTION IS /* Year degree awarded */
DATATYPE IS SIGNED WORD.

DEFINE FIELD DEGREE

!
!

DESCRIPTION IS /* Degree awarded */
DATATYPE IS TEXT SIZE IS 3
VALID IF DEGREE = "BA • OR

DEGREE = "BS • OR
DEGREE = "MA • OR
DEGREE = "MS • OR
DEGREE = "PhD" OR
DEGREE MISSING.

DEFINE FIELD DEGREE_FIELD

!
!

DESCRIPTION IS /* Field in which degree was awarded */
DATATYPE IS TEXT SIZE IS 16
MISSING_VALUE IS "Unknown•.

DEFINE FIELD STATUS_CODE
DESCRIPTION IS /* A number */
DATATYPE IS TEXT SIZE IS 1
MISSING_VALUE IS "N"
VALID IF STATUS_CODE = •o• OR

STATUS_CODE = •1• OR
STATUS_CODE = •2• OR
STATUS_CODE MISSING.

DEFINE FIELD STATUS_NAME
DESCRIPTION IS /* Active or inactive */
DATATYPE IS TEXT SIZE IS 8
VALID IF STATUS_NAME = "ACTIVE" OR

STATUS_NAME = "INACTIVE" OR
STATUS_NAME MISSING.

DEFINE FIELD STATUS_TYPE
DESCRIPTION IS /* Full-time, part-time, or expired */
DATATYPE IS TEXT SIZE IS 14
VALID IF STATUS_TYPE = "RECORD EXPIRED" OR

STATUS_TYPE = "FULL TIME" OR
STATUS_TYPE = "PART TIME" OR
STATUS_TYPE MISSING.

A-6 Sources for Sample Applications

!
COMMIT

'**
!

*** Define Relations ***

START_TRANSACTION READ_WRITE

DEFINE RELATION EMPLOYEES.
EMPLOYEE_ ID

BASED ON ID_NUMBER.
LAST_NAME.
FIRST_NAME.
MIDDLE_ INITIAL.
ADDRESS_DATA_1.
ADDRESS_DATA_2.
CITY.
STATE.
POSTAL_CODE.
SEX.
BIRTHDAY

BASED ON STANDARD_DATE.
STATUS_CODE.

END EMPLOYEES RELATION.

!
! Job_History Relation:
!
DEFINE RELATION JOB_HISTORY.

EMPLOYEE_ID
BASED ON ID_NUMBER.

JOB_CODE.
JOB_ START

BASED ON STANDARD_DATE.
JOB_END

BASED ON STANDARD_DATE.
DEPARTMENT_CODE.
SUPERVISOR_ ID

BASED ON ID_NUMBER.
END JOB_HISTORY RELATION.
!
!
! Salary_History Relation:
!
DEFINE RELATION SALARY_HISTORY.

EMPLOYEE_ID
BASED ON ID_NUMBER.

SALARY_AMOUNT
BASED ON SALARY.

SALARY_START
BASED ON STANDARD_DATE.

SALARY_END
BASED ON STANDARD_DATE.

END SALARY_HISTORY RELATION.

(continued on next page,

Sources for Sample Applications A-7

! Jobs Relation:
!
DEFINE RELATION JOBS.

JOB_ CODE.
WAGE_CLASS.
JOB_ TITLE.
MINIMUM_ SALARY

BASED ON SALARY.
MAXIMUM_ SALARY

BASED ON SALARY.
END JOBS RELATION.

!
! Departments Relation:
!
DEFINE RELATION DEPARTMENTS.

DEPARTMENT_CODE.
DEPARTMENT_NAME.
MANAGER_ ID

BASED ON ID_NUMBER.
BUDGET_PROJECTED

BASED ON BUDGET.
BUDGET_ACTUAL

BASED ON BUDGET.
END DEPARTMENTS RELATION.

!
! Colleges Relation:
!
DEFINE RELATION COLLEGES.

COLLEGE_CODE.
COLLEGE_NAME.
CITY.
STATE.
POSTAL_CODE.

END COLLEGES RELATION.

!
! Degrees Relation:
!
DEFINE RELATION DEGREES.

EMPLOYEE_ ID
BASED ON ID_NUMBER.

COLLEGE_CODE.
YEAR_GIVEN.
DEGREE.
DEGREE_FIELD.

END DEGREES RELATION.
!
!

A-8 Sources for Sample Applications

! Work_Status Relation:
!
DEFINE RELATION WORK_STATUS.

STATUS_CODE.
STATUS_NAME.
STATUS_ TYPE.

END WORK_STATUS RELATION.
!
!
! Resumes Relation:

DEFINE RELATION RESUMES.
EMPLOYEE_ ID

BASED ON ID_NUMBER.
RESUME.

END RESUMES RELATION.

COMMIT

'**
!

*** Define three views to get current information ***

START_TRANSACTION READ_WRITE

! Current job information
!
DEFINE VIEW CURRENT_JOB OF JH IN JOB_HISTORY

CROSS E IN EMPLOYEES OVER EMPLOYEE_ID
WITH JH.JOB_END MISSING.

E.LAST_NAME.
E.FIRST_NAME.
E.EMPLOYEE_ID.
JH.JOB_CODE.
JH.DEPARTMENT_CODE.
JH.SUPERVISOR_ID.
JH.JOB_START.

END VIEW.

!
! Current salary information

DEFINE VIEW CURRENT_SALARY OF SH IN SALARY_HISTORY
CROSS E IN EMPLOYEES OVER EMPLOYEE_ID

WITH SH.SALARY_END MISSING.
E.LAST_NAME.
E.FIRST_NAME.
E.EMPLOYEE_ID.
SH.SALARY_START.
SH.SALARY_AMOUNT.

END VIEW.

(continued on next page)

Sources for Sample Applications A-9

! Current salary and job information
!
DEFINE VIEW CURRENT_INFO OF CJ IN CURRENT_JOB

CROSS D IN DEPARTMENTS OVER DEPARTMENT_CODE
CROSS J IN JOBS OVER JOB_CODE
CROSS CS IN CURRENT_SALARY OVER EMPLOYEE_ID.

LAST_NAME FROM CJ.LAST_NAME.
FIRST_NAME FROM CJ.FIRST_NAME.
ID FROM CJ.EMPLOYEE_ID.
DEPARTMENT FROM D.DEPARTMENT_NAME.
JOB FROM J.JOB_TITLE.
JSTART FROM CJ.JOB_START.
SSTART FROM CS.SALARY_START.
SALARY FROM CS.SALARY_AMOUNT.

END VIEW.
!
COMMIT

!
! *** Define indexes for PERSONNEL ***
!
START_TRANSACTION READ_WRITE
!
!
! Index for EMPLOYEES:
!
DEFINE INDEX EMP_EMPLOYEE_ID FOR EMPLOYEES

DUPLICATES ARE NOT ALLOWED.
EMPLOYEE_ID.

END EMP_EMPLOYEE_ID INDEX.
!
!
! Index for JOB_HISTORY:
!
DEFINE INDEX JH_EMPLOYEE_ID FOR JOB_HISTORY

DUPLICATES ARE ALLOWED.
EMPLOYEE_ID.

END JH_EMPLOYEE_ID INDEX.
!
!
! Index for SALARY_HISTORY:
!
DEFINE INDEX SH_EMPLOYEE_ID FOR SALARY_HISTORY

DUPLICATES ARE ALLOWED.
EMPLOYEE_ID.

END SH_EMPLOYEE_ID INDEX.
!
!
! Indexes for DEGREES:
!
DEFINE INDEX DEG_COLLEGE_CODE FOR DEGREES

DUPLICATES ARE ALLOWED.
COLLEGE_CODE.

END DEG_COLLEGE_CODE INDEX.

DEFINE INDEX DEG_EMP_ID FOR DEGREES
DUPLICATES ARE ALLOWED.

EMPLOYEE_ID.
END DEG_EMP_ID INDEX.

A-1 O Sources for Sample Applications

Index for COLLEGES:

DEFINE INDEX COLL_COLLEGE_CODE FOR COLLEGES
DUPLICATES ARE NOT ALLOWED.

COLLEGE_CODE.
END COLL_COLLEGE_CODE INDEX.
!

COMMIT

*** Define constraints to validate field values

START_TRANSACTION READ_WRITE

Employee ID from JOB_HISTORY must exist in EMPLOYEES
relation before it can be stored in JOB_HISTORY

EFINE CONSTRAINT JH_EMP_ID_EXISTS
FOR JH IN JOB_HISTORY
REQUIRE ANY E IN EMPLOYEES WITH

E.EMPLOYEE_ID = JH.EMPLOYEE_ID
CHECK ON COMMIT.

Employee ID from SALARY_HISTORY must exist in EMPLOYEES
relation before it can be stored in SALARY_HISTORY

DEFINE CONSTRAINT SH_EMP_ID_EXISTS
FOR SH IN SALARY_HISTORY
REQUIRE ANY E IN EMPLOYEES WITH

E.EMPLOYEE_ID = SH.EMPLOYEE_ID
CHECK ON COMMIT.

! There must be an EMPLOYEE_ID (primary key) for each EMPLOYEE record
!
DEFINE CONSTRAINT EMPLOYEE_ID_REQUIRED

FOR E IN EMPLOYEES
REQUIRE NOT E.EMPLOYEE_ID MISSING.

There must be a DEPARTMENT_CODE (primary key) for each DEPARTMENT record

DEFINE CONSTRAINT DEPT_CODE_REQUIRED
FOR D IN DEPARTMENTS
REQUIRE NOT D.DEPARTMENT_CODE MISSING.

There must be JOB_CODE (primary key) for each JOBS record

DEFINE CONSTRAINT JOB_CODE_REQUIRED
FOR J IN JOBS
REQUIRE NOT J.JOB_CODE MISSING.

(continued on next page)

Sources for Sample Applications A-11

There must be COLLEGE_CODE (primary key) for each COLLEGES record
!
DEFINE CONSTRAINT COLLEGE_CODE_REQUIRED

FOR C IN COLLEGES
REQUIRE NOT C.COLLEGE_CODE MISSING.

!--
! Note that these constraints assume a certain order for loading
! data. EMPLOYEES data must be loaded before JOB_HISTORY can be
! loaded, and so on.
!--
COMMIT

Store three Work Status Codes in WORK_STATUS relation
!
START_TRANSACTION READ_WRITE RESERVING WORK_STATUS FOR SHARED WRITE
STORE W IN WORK_STATUS USING
W.STATUS_CODE="O";
W.STATUS_NAME="INACTIVE";
W.STATUS_TYPE="RECORD EXPIRED";END_STORE
STORE W IN WORK_STATUS USING
W.STATUS_CODE="1 11 ;

W.STATUS_NAME="ACTIVE 11
;

W.STATUS_TYPE="FULL TIME";END_STORE
STORE W IN WORK_STATUS USING
W.STATUS_CODE="2";
W.STATUS_NAME= 11 ACTIVE 11 ;

W.STATUS_TYPE="PART TIME";END_STORE
COMMIT
!
FINISH
EXIT

A.1.2 PERS WORKSPACE Definition

DEFINE RECORD PERS_WORKSPACE
DESCRIPTION IS/* Miscellaneous fields*/.

PERS_WORKSPACE STRUCTURE.
PROGRAM_REQUEST_KEY

ERROR_FIELD

NOT_FOUND

SAL_AMT
JOB

TEST_FIELD

END PERS_WORKSPACE STRUCTURE.

END PERS_WORKSPACE.

DATATYPE TEXT SIZE 6
INITIAL_VALUE IS II

DATATYPE TEXT SIZE 6
INITIAL_vALUE IS II

DATATYPE TEXT SIZE 1
INITIAL_VALUE IS II "·

DATATYPE SIGNED LONGWORD.

II

II

DATATYPE TEXT SIZE 4
INITIAL_vALUE IS II

DATATYPE TEXT SIZE 1
INITIAL_VALUE IS II "

"

A-12 Sources for Sample Applications

A.1.3 Definitions for the Add Task

A.1.3.1 PERS ADD TASK Definition

REPLACE TASK PERS_ADD_TASK

WORKSPACES ARE
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.DEGREES,
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES,
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY,
CDD$TOP.RDBPERS.PERS_WORKSPACE,
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY;

BLOCK WORK
EXCHANGE

REQUEST IS PERS_ADD_REQUEST
USING ACMS$PROCESSING_STATUS, DEGREES, EMPLOYEES, JOB_HISTORY,
PERS_WORKSPACE, SALARY_HISTORY;

CONTROL FIELD IS PROGRAM_REQUEST_KEY.
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH RDB RECOVERY
"START_TRANSACTION READ_WRITE RESERVING EMPLOYEES, DEGREES," &:
"JOB_HISTORY, SALARY_HISTORY FOR SHARED WRITE"
CALL PERS_ADD IN PERS_SERVER

USING DEGREES, EMPLOYEES, JOB_HISTORY, PERS_WORKSPACE,
SALARY_HISTORY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

END BLOCK WORK;

END DEFINITION;

Sources for Sample Applications A-13

A.1.3.2 PERS ADD FORM Definition

N E W E M P L 0 Y E E F 0 R M

EMPioyee nuMber: XXXXX
NaMe: XXXXXXXXXX X XXXXXXXXXXXXXX
Address: XXXXXXXXXXXXXXXXXXXXXXX

xxxxxxxxxxxxxxxxxxxxxxx
City: XXXXXXXXXXXXXXXXXXXX
Sex: A

Status code: X
Startin~ date: 99-AAA-99
DePartMent code: XXXX

Salary: 9999999.99
Colle~e code: XXXX
Oe~ree: AA

State: AA ZiP: XXXXXXXX
Birthdate: 99-AAA-99

Job code: }0-00<

S•.1PerlJisor ID: }{}{}{}(}(

Year: 9999
Field: XXXXXXXXXXXXXXX

Press GOLD-E to exit froM this task.

A.1.3.3 PERS ADD REQUEST Definition

REPLACE REQUEST PERS_ADD_REQUEST

FORM IS CDD$TOP.RDBPERS.PERS_ADD_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.DEGREES;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY;

RECORD IS
CDD$TOP.RDBPERS.PERS_WORKSPACE;

A-14 Sources for Sample Applications

ZK-00051-00

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY;

DESCRIPTION /* Collect input for adding new employee to the database */;

USE FORM PERS_ADD_FORM;

INPUT EMP_NUMBER
FIRST_NAME
INITIAL
LAST_NAME
ADDRESS1
ADDRESS2
CITY
STATE
POSTAL_ CODE
SEX
BIRTHDAY
STATUS_ CODE
JOB_CODE
JOB_START
DEPT_CODE
SUPERVISOR_ ID
SALARY
COLLEGE_ CODE
YEAR
DEGREE
DEGREE_FIELD

TO EMPLOYEES.EMPLOYEE_ID,
TO FIRST_NAME,
TO MIDDLE_INITIAL,
TO LAST_NAME,
TO ADDRESS_DATA_1,
TO ADDRESS_DATA_2,
TO CITY,
TO STATE,
TO POSTAL_CODE,
TO SEX,
TO BIRTHDAY,
TO STATUS_CODE,
TO JOB_CODE,
TO JOB_START,
TO DEPARTMENT_CODE,
TO SUPERVISOR_ID,
TO SALARY_AMOUNT,
TO COLLEGE_CODE,
TO YEAR_GIVEN,
TO DEGREE,
TO DEGREE_FIELD;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" ~ MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A.1.3.4 PERS ADD Procedure

IDENTIFICATION DIVISION.

PROGRAM-ID. PERS_ADD.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

&:RDB& INVOKE DATABASE FILENAME "PERS$EXE:PERSONNEL"

(continued on next page)

Sources for Sample Applications A-15

01 DUP-EMP-NOS

01 REC-LOCKED

01 DB-FAILURE

01 RDB$_LOCK_CONFLICT

01 RDB$_DEADLOCK

01 RDB$_NO_DUP

01 LIB$SIGNAL

01 STATUS-RESULT

LINKAGE SECTION.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DUPEMPNOS.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECLOCK.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL.

PIC S9 (9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_DEADLOCK.

PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_NO_DUP.

PIC S9(9) COMP
VALUE IS EXTERNAL LIB$SIGNAL.

PIC S9(9) COMP.

COPY 11 CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.DEGREES"
FROM DICTIONARY
REPLACING ==DEGREES. == BY ==DEGREES_LINKAGE. ==.

COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES"
FROM DICTIONARY
REPLACING ==EMPLOYEES. == BY ==EMPLOYEES_LINKAGE. ==.

COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY"
FROM DICTIONARY
REPLACING ==JOB_HISTORY. == BY ==JOB_HISTORY_LINKAGE.

COPY "CDD$TOP.RDBPERS.PERS_WORKSPACE" FROM DICTIONARY.

COPY 11 CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY"
FROM DICTIONARY
REPLACING ==SALARY_HISTORY. == BY ==SALARY_HISTORY_LINKAGE.

PROCEDURE DIVISION USING DEGREES_LINKAGE
EMPLOYEES_LINKAGE
JOB_HISTORY_LINKAGE
PERS_ WORKSPACE
SALARY_HISTORY_LINKAGE

MAIN SECTION.
000-MAIN-PARAGRAPH.

GIVING STATUS-RESULT.

* This program adds employee information to the Personnel database. Each
* employee has at least three records, one in each of the following
* relations: EMPLOYEES, JOB_HISTORY, and SALARY_HISTORY. If the employee
* has attended college, he or she also has a record in the DEGREES relatio1

SET STATUS-RESULT TO SUCCESS.

INITIALIZE PROGRAM_REQUEST_KEY.

* Store the EMPLOYEES record

A-16 Sources for Sample Applications

&ROB& STORE E IN EMPLOYEES USING
&ROB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&ROB& END_ERROR
&ROB& E.EMPLOYEE_ID = EMPLOYEE_ID IN EMPLOYEES_LINKAGE;
&ROB& E.LAST_NAME = LAST_NAME IN EMPLOYEES_LINKAGE;
&ROB& E.FIRST_NAME = FIRST_NAME IN EMPLOYEES_LINKAGE;
&ROB& E.MIDDLE_INITIAL = MIOOLE_INITIAL IN EMPLOYEES_LINKAGE;
&ROB& E.ADORESS_DATA_1 = AODRESS_OATA_l IN EMPLOYEES_LINKAGE;
&ROB& E.ADORESS_DATA_2 = ADORESS_OATA_2 IN EMPLOYEES_LINKAGE;
&ROB& E.CITY = CITY IN EMPLOYEES_LINKAGE;
&ROB& E.STATE = STATE IN EMPLOYEES_LINKAGE;
&ROB& E.POSTAL_CODE = POSTAL_CODE IN EMPLOYEES_LINKAGE;
&ROB& E.SEX = SEX IN EMPLOYEES_LINKAGE;
&ROB& E.BIRTHDAY = BIRTHDAY IN EMPLOYEES_LINKAGE;
&ROB& E.STATUS_CODE = STATUS_CODE IN EMPLOYEES_LINKAGE
&ROB& ENO_STORE

* Store the JOB_HISTORY record

&RDB& STORE JH IN JOB_HISTORY USING
&ROB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&ROB& END_ERROR
&ROB& JH.EMPLOYEE_ID = EMPLOYEE_ID IN EMPLOYEES_LINKAGE;
&RDB& JH.JOB_COOE = JOB_COOE IN JOB_HISTORY_LINKAGE;
&ROB& JH.JOB_START = JOB_START IN JOB_HISTORY_LINKAGE;
&RDB& JH.DEPARTMENT_CODE = DEPARTMENT_CODE IN JOB_HISTORY_LINKAGE;
&RDB& JH.SUPERVISOR_ID = SUPERVISOR_ID IN JOB_HISTORY_LINKAGE
&ROB& END_STORE

* Store the SALARY_HISTORY record

&ROB& STORE SH IN SALARY_HISTORY USING
&RDBll: ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&ROB& ENO_ERROR
&ROB& SH.EMPLOYEE_ID = EMPLOYEE_ID IN EMPLOYEES_LINKAGE;
&ROB& SH.SALARY_AMOUNT = SALARY_AMOUNT IN SALARY_HISTORY_LINKAGE;
ll:RDBll: SH.SALARY_START = JOB_START IN JOB_HISTORY_LINKAGE
&RDBll: END_STORE

* If the employee attended college, store the DEGREES record.

IF DEGREE OF DEGREES_LINKAGE NOT = SPACES
THEN
&ROB& STORE D IN DEGREES USING
&RDBll: ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDBll: END_ERROR

(continued on next page)

Sources for Sample Applications A-17

&RDB& D.EMPLOYEE_ID = EMPLOYEE_ID IN EMPLOYEES_LINKAGE;
&RDB& D.COLLEGE_CODE = COLLEGE_CODE;
&RDB& D.YEAR_GIVEN = YEAR_GIVEN;
&RDB& D.DEGREE = DEGREE;
&RDB& D.DEGREE_FIELD = DEGREE_FIELD
&RDB& END_STORE
END-IF.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* Test for errors. Locked record and duplicate employee number are the
* expected errors. Signal any other errors.

IF RDB$STATUS EQUAL RDB$_DEADLOCK
OR RDB$STATUS EQUAL RDB$_LOCK_CONFLICT

THEN
MOVE REC-LOCKED TO STATUS-RESULT

ELSE
IF RDB$STATUS EQUAL RDB$_NO_DUP
THEN

MOVE DUP-EMP-NOS TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR

BY VALUE LIB$SIGNAL.

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

A-18 Sources for Sample Applications

A.1.4 Definitions for the Display Task

A.1.4.1 PERS DISPLAY TASK Definition - -

REPLACE TASK PERS_DISPLAY_TASK ,

WORKSPACES ARE
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.CURRENT_INFO,
CDD$TOP.RDBPERS.PERS_WORKSPACE;

BLOCK WORK
EXCHANGE

REQUEST IS PERS_DISPLAY_REQUEST1
USING ACMS$PROCESSING_STATUS, CURRENT_INFO, PERS_WORKSPACE;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH RDB RECOVERY "START_TRANSACTION READ_ONLY"
CALL PERS_GET_DISPLAY IN PERS_SERVER

USING CURRENT_INFO, PERS_WORKSPACE;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

EXCHANGE
REQUEST IS PERS_DISPLAY_REQUEST2

USING CURRENT_INFO, PERS_WORKSPACE;
CONTROL FIELD IS PROGRAM_REQUEST_KEY

"REPEAT" : REPEAT TASK;
"EXIT" : EXIT TASK;

END CONTROL FIELD;

END BLOCK WORK;

END DEFINITION;

Sources for Sample Applications A-19

A.1.4.2 PERS DISPLAY FORM Definition - -

D I S P L A Y E M P L 0 Y E E F 0 R M

EMPloYee nuMber: XXXXX

NaMe: XXXXXXXXXX X XXXXXXXXXXXXXX
DePartMent: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Job title: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Job startin~ date: 99-AAA-99

SalarY startin~ date: 99-AAA-99
SalarY: 9999999+99

Press GDLD-E to exit froM this tasK+

A.1.4.3 PERS DISPLAY REOUEST1 Definition - -

REPLACE REQUEST PERS_DISPLAY_REQUEST1

FORM IS CDD$TOP.RDBPERS.PERS_DISPLAY_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.CURRENT_INFO;

RECORD IS
CDD$TOP.RDBPERS.PERS_WORKSPACE;

DESCRIPTION /* Collect the employee ID number for retrieving
employee data for display */;

USE FORM PERS_DISPLAY_FORM;

A-20 Sources for Sample Applicauons

ZK-00052-00

INPUT EMP_NUMBER TO ID;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A.1.4.4 PERS DISPLAV REQUEST2 Definition
- -

REPLACE REQUEST PERS_DISPLAY_REQUEST2

FORM IS CDD$TOP.RDBPERS.PERS_DISPLAY_FORM;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.CURRENT_INFO;

RECORD IS
CDD$TOP.RDBPERS.PERS_WORKSPACE;

DESCRIPTION /* Display basic employee data */;

USE FORM PERS_DISPLAY_FORM;

OUTPUT ID

WAIT;

FIRST_NAME
LAST_ NAME
DEPARTMENT
CURRENT_INFO.JOB
JS TART
SST ART
SALARY

PROGRAM KEY IS GOLD "E"
NO CHECK;

TO EMP_NUMBER,
TO FIRST_NAME,
TO LAST_NAME,
TO DEPT_NAME,
TO JOB_TITLE,
TO JOB_START,
TO SALARY_START,
TO SALARY;

RETURN "EXIT" TO PROGRAM_REQUEST_KEY;
END PROGRAM KEY;

PROGRAM KEY IS GOLD "R"
NO CHECK;
RETURN "REPEAT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

END DEFINITION;

Sources for Sample Applications A-21

A.1.4.5 PERS GET DISPLAY Procedure

IDENTIFICATION DIVISION.

PROGRAM-ID. PERS_GET_DISPLAY.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

&ROB& INVOKE DATABASE FILENAME "PERS$EXE:PERSONNEL"

01 REC-LOCKED PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECLOCK.

01 REC-NOT-FOUND PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECNOTFD.

01 DB-FAILURE PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL.

01 RDB$_DEADLOCK PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_DEADLOCK.

01 RDB$_LOCK_CONFLICT PIC 89(9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

01 LIB$SIGNAL PIC S9(9) COMP
VALUE IS EXTERNAL LIB$SIGNAL.

01 STATUS-RESULT PIC S9(9) COMP.

LINKAGE SECTION.
COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.CURRENT_INFO"

FROM DICTIONARY
REPLACING ==CURRENT_INFO. == BY ==CURRENT_INFO_LINKAGE.

COPY "CDD$TOP.RDBPERS.PERS_WORKSPACE" FROM DICTIONARY.

PROCEDURE DIVISION USING CURRENT_INFO_LINKAGE
PERS_WORKSPACE

MAIN SECTION.
000-MAIN-PARAGRAPH.

GIVING STATUS-RESULT.

* This program gets information through the CURRENT_INFO view for display.

SET STATus~RESULT TO SUCCESS.

MOVE "T" TO NOT_FOUND.

INITIALIZE PROGRAM_REQUEST_KEY.

* Get a record from the CURRENT_INFO relation based on the employee ID.

&RDB& FOR C IN CURRENT_INFO WITH C.ID = ID IN CURRENT_INFO_LINKAGE
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR

A-22 Sources for Sample Applications

MOVE "F" TO NOT_FOUND

&RDB&: GET
&:RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB&: END_ERROR
&:RDB& LAST_NAME IN CURRENT_INFO_LINKAGE = C.LAST_NAME;
&:RDB&: FIRST_NAME IN CURRENT_INFO_LINKAGE = C.FIRST_NAME;
&RDB&: DEPARTMENT IN CURRENT_INFO_LINKAGE = C.DEPARTMENT;
&:RDB& JOB IN CURRENT_INFO_LINKAGE = C.JOB;
&RDB&: JSTART IN CURRENT_INFO_LINKAGE = C.JSTART;
&:RDB&: SSTART IN CURRENT_INFO_LINKAGE = C.SSTART;
&RDB& SALARY IN CURRENT_INFO_LINKAGE = C.SALARY
&:RDB& END_GET
&RDB& END_FOR

* If the employee ID is not in the CURRENT_INFO relation, return an error.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* Test for errors. Locked record is the only expected error. Signal
* any other errors.

IF RDB$STATUS EQUAL RDB$_DEADLOCK
OR RDB$STATUS EQUAL RDB$_LOCK_CONFLICT

THEN
MOVE REC-LOCKED TO STATUS-RESULT

ELSE
MOVE DB-FAILURE TO STATUS-RESULT
CALL "LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR

BY VALUE LIB$SIGNAL.

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Sources for Sample Applications A-23

A.1.5 Definitions for the General Update Task

A.1.5.1 PERS UPDATE GENERAL TASK Definition - - -

REPLACE TASK PERS_UPDATE_GENERAL_TASK

WORKSPACES ARE
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES,
CDD$TOP.RDBPERS.PERS_WORKSPACE;

BLOCK WORK
EXCHANGE

REQUEST IS PERS_UPDATE_GENERAL_REQUEST1
USING ACMS$PROCESSING_STATUS, EMPLOYEES, PERS_WORKSPACE;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH RDB RECOVERY "START_TRANSACTION READ_ONLY"
CALL PERS_GET_EMPLOYEE IN PERS_SERVER

USING EMPLOYEES, PERS_WORKSPACE;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

EXCHANGE
REQUEST IS PERS_UPDATE_GENERAL_REQUEST2

USING ACMS$PROCESSING_STATUS, EMPLOYEES, PERS_WORKSPACE;
CONTROL FIELD IS PROGRAM_REQUEST_KEY

"EXIT" : EXIT TASK;
END CONTROL FIELD;

PROCESSING WITH RDB RECOVERY
"START_TRANSACTION READ_WRITE RESERVING EMPLOYEES, JOB_HISTORY," &
"SALARY_HISTORY FOR SHARED WRITE"
CALL PERS_UPDATE_EMPLOYEE IN PERS_SERVER

USING EMPLOYEES, PERS_WORKSPACE;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

END BLOCK WORK;

END DEFINITION;

A-24 Sources for Sample Applications

A.1.5.2 PERS UPDATE GENERAL FORM Definition - - -

U P D A T E E M P L 0 Y E E D A T A

EmPloYee number: XXXXX

Name: XXXXXXXXXX X XXXXXXXXXXXXXX
Address: XXXXXXXXXXXXXXXXXXXXXXX

xxxxxxxxxxxxxxxxxxxxxxx
CitY: xxxxxxxxxxxxxxxxxxxx
State: AA zip: }·{}{}{)·{)<}{)-(}{

Press GOLD-E to exit from this task+

A.1.5.3 PERS UPDATE GENERAL REQUEST1 Definition - - -

REPLACE REQUEST PERS_UPDATE_GENERAL_REQUESTl

FORM IS CDD$TOP.RDBPERS.PERS_UPDATE_GENERAL_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES;

RECORD IS
CDD$TOP.RDBPERS.PERS_WORKSPACE;

DESCRIPTION /* Collect the employee ID number for retrieving
employee data for update */;

USE FORM PERS_UPDATE_GENERAL_FORM;
(continued on next paget

ZK-00053-00

Sources for Sample Applications A-25

INPUT EMP_NUMBER TO EMPLOYEE_ID;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A.1.5.4 PERS UPDATE GENERAL REQUEST2 Definition - - -

REPLACE REQUEST PERS_UPDATE_GENERAL_REQUEST2;

FORM IS CDD$TOP.RDBPERS.PERS_UPDATE_GENERAL_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES;

RECORD IS
CDD$TOP.RDBPERS.PERS_WORKSPACE;

DESCRIPTION /* Display general employee data and accept changes */;

USE FORM PERS_UPDATE_GENERAL_FORM;

OUTPUT LAST_NAME TO LAST_NAME,
FIRST_NAME TO FIRST_NAME,
MIDDLE_INITIAL TO INITIAL,
ADDRESS_DATA_1 TO ADDRESS1,
ADDRESS_DATA_2 TO ADDRESS2,
CITY TO CITY,
STATE TO STATE,
POSTAL_CODE TO POSTAL_CODE;

INPUT LAST_NAME
FIRST_NAME
INITIAL
ADDRESS1
ADDRESS2
CITY
STATE
POSTAL_CODE

TO LAST_NAME,
TO FIRST_NAME,
TO MIDDLE_INITIAL,
TO ADDRESS_DATA_1,
TO ADDRESS_DATA_2,
TO CITY,
TO STATE,
TO POSTAL_CODE;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A-26 Sources for Sample Applications

A.1.5.5 PERS GET EMPLOYEE Procedure

IDENTIFICATION DIVISION.

PROGRAM-ID. PERS_GET_EMPLOYEE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

&:RDB&: INVOKE DATABASE FILENAME "PERS$EXE:PERSONNEL"

01 REC-LOCKED

01 REC-NOT-FOUND

01 DB-FAILURE

01 RDB$_DEADLOCK

01 RDB$_LOCK_CONFLICT

01 LIB$SIGNAL

01 STATUS-RESULT

LINKAGE SECTION.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECLOCK.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECNOTFD.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL.

PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_DEADLOCK.

PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

PIC S9(9) COMP
VALUE IS EXTERNAL LIB$SIGNAL.

PIC 89(9) COMP.

COPY 11 CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES 11

FROM DICTIONARY
REPLACING ==EMPLOYEES. == BY ==EMPLOYEES_LINKAGE. ==.

COPY "CDD$TOP.RDBPERS.PERS_WORKSPACE" FROM DICTIONARY.

PROCEDURE DIVISION USING EMPLOYEES_LINKAGE
PERS_WORKSPACE

GIVING STATUS-RESULT.

MAIN SECTION .
000-MAIN-PARAGRAPH.

* This program retrieves an EMPLOYEES record that is then displayed on
* a form, where the user can modify the record's contents.

SET STATUS-RESULT TO SUCCESS.

MOVE "T" TO NOT_FOUND.

INITIALIZE PROGRAM_REQUEST_KEY.

(continued on next page)

Sources for Sample Applications A-27

* Get basic data on an employee.

&:RDB& FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID =
&:RDB& EMPLOYEE_ID IN EMPLOYEES_LINKAGE
&:RDB& ON ERROR

PERFORM 060-ERROR-CHECK THRU 060-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

kRDB& END_ERROR

MOVE "F" TO NOT_FOUND

&:RDB& GET
&:RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR
&RDB& LAST_NAME IN EMPLOYEES_LINKAGE = E.LAST_NAME;
&RDB& FIRST_NAME IN EMPLOYEES_LINKAGE = E.FIRST_NAME;
&ROB& MIDDLE_INITIAL IN EMPLOYEES_LINKAGE = E.MIDDLE_INITIAL;
&RDB& ADDRESS_DATA_1 IN EMPLOYEES_LINKAGE = E.ADDRESS_DATA_1;
&RDB& ADDRESS_DATA_2 IN EMPLOYEES_LINKAGE = E.ADDRESS_DATA_2;
&RDB& CITY IN EMPLOYEES_LINKAGE = E.CITY;
&RDB& STATE IN EMPLOYEES_LINKAGE = E.STATE;
&RDB& POSTAL_CODE IN EMPLOYEES_LINKAGE = E.POSTAL_CODE
&RDB& END_GET
&RDB& END_FOR

* If the employee ID was not found in the database. return an error.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* Test for errors. Locked record is the only expected error. Signal
* any other errors.

IF RDB$STATUS EQUAL RDB$_DEADLOCK
OR RDB$STATUS EQUAL RDB$_LOCK_CONFLICT

THEN
MOVE REC-LOCKED TO STATUS-RESULT

ELSE
MOVE DB-FAILURE TO STATUS-RESULT
CALL "LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR

BY VALUE LIB$SIGNAL.

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

A-28 Sources for Sample Applications

A.1.5.6 PERS UPDATE EMPLOYEE Procedure - -
IDENTIFICATION DIVISION.

PROGRAM-ID. PERS_UPDATE_EMPLOYEE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

&RDB& INVOKE DATABASE FILENAME 11 PERS$EXE:PERSONNEL"

01 REC-LOCKED PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECLOCK.

01 REC-NOT-FOUND PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECNOTFD.

01 DB-FAILURE PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL.

01 RDB$_DEADLOCK PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_DEADLOCK.

01 RDB$_LOCK_CONFLICT PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

01 LIB$SIGNAL PIC S9(9) COMP
VALUE IS EXTERNAL LIB$SIGNAL.

01 STATUS-RESULT PIC S9(9) COMP.

LINKAGE SECTION.
COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES"

FROM DICTIONARY
REPLACING ==EMPLOYEES. == BY ==EMPLOYEES_LINKAGE. ==.

COPY "CDD$TOP.RDBPERS.PERS_WORKSPACE" FROM DICTIONARY.

PROCEDURE DIVISION USING EMPLOYEES_LINKAGE
PERS_WORKSPACE

GIVING STATUS-RESULT.

MAIN SECTION .
000-MAIN-PARAGRAPH.

* This program writes a modified EMPLOYEES record to the database.

SET STATUS-RESULT TO SUCCESS.

MOVE "T" TO NOT_FOUND.

INITIALIZE PROGRAM_REQUEST~KEY.

* Modify the EMPLOYEES record

&RDB& FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID =
&RDB& EMPLOYEE_ID IN EMPLOYEES_LINKAGE
&RDB& ON ERROR

&RDB&

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

END_ERROR
(continued on next page)

Sources for Sample Applications A-29

MOVE "F" TO NOT_FOUND

&RDB& MODIFY E USING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR
&RDB& E.LAST_NAME = LAST_NAME IN EMPLOYEES_LINKAGE;
&RDB& E.FIRST_NAME = FIRST_NAME IN EMPLOYEES_LINKAGE;
&RDB& E.MIDDLE_INITIAL = MIDDLE_INITIAL IN EMPLOYEES_LINKAGE;
&RDB& E.ADDRESS_DATA_l = ADDRESS_DATA_1 IN EMPLOYEES_LINKAGE;
&RDB& E.ADDRESS_DATA_2 = ADDRESS_DATA_2 IN EMPLOYEES_LINKAGE;
&RDB& E.CITY = CITY IN EMPLOYEES_LINKAGE;
&RDB& E.STATE = STATE IN EMPLOYEES_LINKAGE;
&RDB& E.POSTAL_CODE = POSTAL_CODE IN EMPLOYEES_LINKAGE
&RDB& END_MODIFY
&RDB& END_FOR

* If the employee ID is not in the EMPLOYEES relation, return an error.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* Test for errors. Locked record is the only expected error. Signal
* any other errors.

IF RDB$STATUS EQUAL RDB$_DEADLOCK
OR RDB$STATUS EQUAL RDB$_LOCK_CONFLICT

THEN
MOVE REC-LOCKED TO STATUS-RESULT

ELSE
MOVE DB-FAILURE TO STATUS-RESULT
CALL "LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR

BY VALUE LIB$SIGNAL.

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

A-30 Sources for Sample Applications

A.1.6 Definitions for the Raise/Promotion Update Task

A.1.6.1 PERS UPDATE RAISEPRO TASK Definition - - -
REPLACE TASK PERS_UPDATE_RAISEPRO_TASK

WORKSPACES ARE
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY,
CDD$TOP.RDBPERS.PERS_WORKSPACE,
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY;

BLOCK WORK
EXCHANGE

REQUEST IS PERS_UPDATE_RAISEPRO_REQUEST1
USING ACMS$PROCESSING_STATUS, JOB_HISTORY, PERS_WORKSPACE;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH RDB RECOVERY "START_TRANSACTION READ_ONLY"
CALL PERS_GET_RAISEPRO IN PERS_SERVER

USING JOB_HISTORY, PERS_WORKSPACE, SALARY_HISTORY;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

EXCHANGE
REQUEST IS PERS_UPDATE_RAISEPRO_REQUEST2

USING ACMS$PROCESSING_STATUS, JOB_HISTORY, PERS_WORKSPACE,
SALARY_HISTORY;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH RDB RECOVERY
"START_TRANSACTION READ_WRITE RESERVING EMPLOYEES, JOB_HISTORY," ll
"SALARY_HISTORY FOR SHARED WRITE"
CALL PERS_UPDATE_RAISEPRO IN PERS_SERVER

USING JOB_HISTORY, PERS_WORKSPACE, SALARY_HISTORY;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

END BLOCK WORK;

END DEFINITION;

Sources for Sample Applications A-31

A.1.6.2 PERS UPDATE RAISEPRO FORM Definition - - -

U P D A T E R A I S E I ~ R 0 M 0 T I 0 N F 0 R M

E111Pl0Yee nu111ber:

D e p-a r t 111 e n t c o d e :
Job code: }00-0<

\1\1\/\l\I
/\l\!\l\/\

\1\1\1\I
1\1\1\l\

Supervisor ID: XXXXX
Effective date: 88-AAA-88
New salary: 88888888.88

Press GOLD-E to exit from this task.

A.1.6.3 PERS UPDATE RAISEPRO REQUEST1 Definition - - -

REPLACE REQUEST PERS_UPDATE_RAISEPRO_REQUEST1

FORM IS CDD$TOP.RDBPERS.PERS_UPDATE_RAISEPRO_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY;

RECORD IS
CDD$TOP.RDBPERS.PERS_WORKSPACE;

DESCRIPTION /* Accept the employee ID number for retrieving
job and salary information for raise/promotion
update */;

USE FORM PERS_UPDATE_RAISEPRO_FORM;

A-32 Sources for Sample Applications

ZK-00046-00

INPUT EMP_NUMBER TO EMPLOYEE_ID;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A.1.6.4 PERS UPDATE RAISEPRO REQUEST2 Definition - - -
REPLACE REQUEST PERS_UPDATE_RAISEPRO_REQUEST2

FORM IS CDD$TOP.RDBPERS.PERS_UPDATE_RAISEPRO_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY;

RECORD IS
CDD$TOP.RDBPERS.PERS_WORKSPACE;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY;

DESCRIPTION /* Display job and salary information and accept
changes to indicate a raise and/or a promotion */;

USE FORM PERS_UPDATE_RAISEPRO_FORM;

OUTPUT DEPARTMENT_CODE
JOB_CODE
SUPERVISOR_ ID
SALARY_AMOUNT

TO DEPT_CODE,
TO JOB_CODE,
TO SUPERVISOR_ID,
TO SALARY;

INPUT JOB_CODE TO JOB_CODE,
SUPERVISOR_ID TO SUPERVISOR_ID,
SALARY TO SALARY_AMOUNT;

RETURN JOB_START TO JOB_START;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

Sources for Sample Applications A-33

A.1.6.5 PERS GET RAISEPRO Procedure

IDENTIFICATION DIVISION.

PROGRAM-ID. PERS_GET_RAISEPRO.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

&:RDB&: INVOKE DATABASE FILENAME 11 PERS$EXE:PERSONNEL"

01 REC-LOCKED PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECLOCK.

01 REC-NOT-FOUND PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECNOTFD.

01 DB-FAILURE PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL.

01 RDB$_DEADLOCK PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_DEADLOCK.

01 RDB$_LOCK_CONFLICT PIC 89(9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

01 LIB$SIGNAL PIC S9(9) COMP
VALUE IS EXTERNAL LIB$SIGNAL.

01 STATUS-RESULT PIC S9(9) COMP.

LINKAGE SECTION.
COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY"

FROM DICTIONARY
REPLACING ==JOB_HISTORY. ==BY ==JOB_HISTORY_LINKAGE.

COPY "CDD$TOP.RDBPERS.PERS_WORKSPACE" FROM DICTIONARY.

COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY"
FROM DICTIONARY
REPLACING ==SALARY_HISTORY. ==BY ==SALARY_HISTORY_LINKAGE.

PROCEDURE DIVISION USING JOB_HISTORY_LINKAGE
PERS_ WORKSPACE
SALARY_HISTORY_LINKAGE

GIVING STATUS-RESULT.

MAIN SECTION.
000-MAIN-PARAGRAPH.

* This program retrieves JOB_HISTORY and SALARY_HISTORY records that are
* then displayed on a form where the user can record a raise or promotion.

SET STATUS-RESULT TO SUCCESS.

MOVE "T" TO NOT_FOUND.

INITIALIZE PROGRAM_REQUEST_KEY.

A-34 Sources for Sample Applications

* Get job history information for an employee

&ROB& FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_IO =
&ROB& EMPLOYEE_IO IN JOB_HISTORY_LINKAGE AND
&ROB& JH.JOB_ENO MISSING
&ROB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&ROB& ENO_ERROR

MOVE "F" TO NOT_FOUNO

&ROB& GET
&ROB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&ROB& ENO_ERROR
&ROB& JOB_COOE IN JOB_HISTORY_LINKAGE = JH.JOB_COOE;
&ROB& DEPARTMENT_COOE IN JOB_HISTORY_LINKAGE = JH.OEPARTMENT_CODE;
&ROB& JOB_START IN JOB_HISTORY_LINKAGE = JH.JOB_START;
&ROB& SUPERVISOR_ID IN JOB_HISTORY_LINKAGE = JH.SUPERVISOR_ID
&ROB& END_GET
&ROB& END_FOR

* If employee ID is not in the JOB_HISTORY relation, return an error.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT
GO TO 100-EXIT-PROGRAM.

* Reset the record-found flag

MOVE "T" TO NOT_FOUNO.

* Save the old job code for comparison in the update procedure.

MOVE JOB_COOE OF JOB_HISTORY_LINKAGE TO JOB
OF PERS_WORKSPACE.

* Get salary history information for an employee

&ROB& FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID =
&ROB& EMPLOYEE_ID IN JOB_HISTORY_LINKAGE AND
&ROB& SH.SALARY_ENO MISSING
kRDBk ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&ROB& END_ERROR

MOVE "F" TO NOT_FOUND

(continued on next page)

Sources for Sample Applications A-35

ctRDBct GET
&RDBct ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDBct END_ERROR
&RDBct SALARY_AMOUNT IN SALARY_HISTORY_LINKAGE = SH.SALARY_AMOUNT.
&RDBct END_GET
&RDBct END_FOR

* Save the old salary for comparison in the update procedure

MOVE SALARY_AMOUNT OF SALARY_HISTORY_LINKAGE TO
SAL_AMT OF PERS_WORKSPACE.

* If the employee ID is not in the SALARY_HISTORY relation, return an erro1

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* Test for errors. Locked record is the only expected error. Signal
* any other errors.

IF RDB$STATUS EQUAL RDB$_DEADLOCK
OR RDB$STATUS EQUAL RDB$_LOCK_CONFLICT

THEN
MOVE REC-LOCKED TO STATUS-RESULT

ELSE
MOVE DB-FAILURE TO STATUS-RESULT
CALL "LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR

BY VALUE LIB$SIGNAL.

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

A-36 Sources for Sample Applications

A.1.6.6 PERS UPDATE RAISEPRO Procedure - -

IDENTIFICATION DIVISION.

PROGRAM-ID. PERS_UPDATE_RAISEPRO.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

&:RDB&: INVOKE DATABASE FILENAME "PERS$EXE:PERSONNEL"

01 REC-LOCKED PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECLOCK.

01 REC-NOT-FOUND PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECNOTFD.

01 DB-FAILURE PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL.

01 RDB$_DEADLOCK PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_DEADLOCK.

01 RDB$_LOCK_CONFLICT PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

01 LIB$SIGNAL PIC S9(9) COMP
VALUE IS EXTERNAL LIB$SIGNAL.

01 STATUS-RESULT PIC S9(9) COMP.

LINKAGE SECTION.
COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY"

FROM DICTIONARY
REPLACING ==JOB_HISTORY. ==BY ==JOB_HISTORY_LINKAGE.

COPY "CDD$TOP.RDBPERS.PERS_WORKSPACE" FROM DICTIONARY.

COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY"
FROM DICTIONARY
REPLACING ==SALARY_HISTORY. == BY ==SALARY_HISTORY_LINKAGE.

PROCEDURE DIVISION USING JOB_HISTORY_LINKAGE
PERS_WORKSPACE
SALARY_HISTORY_LINKAGE

GIVING STATUS-RESULT.

MAIN SECTION .
000-MAIN-PARAGRAPH.

* This program writes modified JOB_HISTORY and SALARY_HISTORY records to
* the database.

SET STATUS-RESULT TO SUCCESS.

MOVE "T" TO NOT_FOUND.

INITIALIZE PROGRAM_REQUEST_KEY.
(continued on next paget

Sources for Sample Applications A-37

* If the user changed the job code, fill in the job ending date in the
* JOB_HISTORY relation and store a new JOB_HISTORY record for the new job.

IF JOB_CODE OF JOB_HISTORY_LINKAGE = JOB OF PERS_WORKSPACE
THEN

MOVE "F" TO NOT_FOUND
ELSE
kRDBk FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID =
kRDBk EMPLOYEE_ID IN JOB_HISTORY_LINKAGE AND
kRDBk JH.JOB_END MISSING
kRDBk ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR

MOVE "F" TO NOT_FOUND

&RDB& MODIFY JH USING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR
&RDB& JH.JOB_END = JOB_START IN JOB_HISTORY_LINKAGE
&RDB& END_MODIFY
&RDB& END_FOR

&RDB& STORE JH IN JOB_HISTORY USING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR
&RDB& JH.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY_LINKAGE;
&RDB& JH.JOB_CODE = JOB_CODE IN JOB_HISTORY_LINKAGE;
&RDB& JH.DEPARTMENT_CODE = DEPARTMENT_CODE IN JOB_HISTORY_LINKAGE;
&RDB& JH.JOB_START = JOB_START IN JOB_HISTORY_LINKAGE;
&RDB& JH.SUPERVISOR_ID = SUPERVISOR_ID IN JOB_HISTORY_LINKAGE
&RDB& END_STORE
END-IF.

* If the employee ID is not in the JOB_HISTORY relation, return an error.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT
GO TO 100-EXIT-PROGRAM.

* Reset the record-found flag

MOVE "T" TO NOT_FOUND.

* If the user changed the salary, fill in the salary ending date in the
* SALARY HISTORY relation and store a new SALARY_HISTORY record for the
* new salary.

IF SALARY_AMOUNT OF SALARY_HISTORY_LINKAGE =
SAL_AMT OF PERS_WORKSPACE

THEN
MOVE "F" TO NOT_FOUND

A·38 Sources for Sample Applications

ELSE
&RDB& FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID =
&RDB& EMPLOYEE_ID IN JOB_HISTORY_LINKAGE AND
&RDBk SH.SALARY_END MISSING
&RDBk ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDBk END_ERROR

MOVE "F" TO NOT_FOUND

&RDB& MODIFY SH USING
&RDBk ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDBk END_ERROR
&RDB& SH.SALARY_END = JOB_START IN JOB_HISTORY_LINKAGE
&RDB& END_MODIFY
&ROB& END_FOR

kRDB& STORE SH IN SALARY_HISTORY USING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR
&RDB& SH.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY_LINKAGE;
&ROB& SH.SALARY_AMOUNT = SALARY_AMOUNT IN SALARY_HISTORY_LINKAGE;
&RDB& SH.SALARY_START = JOB_START IN JOB_HISTORY_LINKAGE
&RDB& END_STORE
END-IF.

* If the employee ID is not in the SALARY_HISTORY relation, return an error.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* Test for errors. Locked record is the only expected error. Signal
* any other errors.

IF RDB$STATUS EQUAL RDB$_DEADLOCK
OR RDB$STATUS EQUAL RDB$_LOCK_CONFLICT

THEN
MOVE REC-LOCKED TO STATUS-RESULT

ELSE
MOVE DB-FAILURE TO STATUS-RESULT
CALL "LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR

BY VALUE LIB$SIGNAL.

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Sources for Sample Applications A-39

A.1. 7 Definitions for the Transfer Update Task

A.1. 7 .1 PERS UPDATE TRANSFER TASK Definition - - -

REPLACE TASK PERS_UPDATE_TRANSFER_TASK

WORKSPACES ARE
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY,
CDD$TOP.RDBPERS.PERS_WORKSPACE,
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY;

BLOCK WORK
EXCHANGE

REQUEST IS PERS_UPDATE_TRANSFER_REQUEST1
USING ACMS$PROCESSING_STATUS, JOB_HISTORY, PERS_WORKSPACE;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH ROB RECOVERY "START_TRANSACTION READ_ONLY"
CALL PERS_GET_TRANSFER IN PERS_SERVER

USING JOB_HISTORY, PERS_WORKSPACE, SALARY_HISTORY;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

EXCHANGE
REQUEST IS PERS_UPDATE_TRANSFER_REQUEST2

USING ACMS$PROCESSING_STATUS, JOB_HISTORY, PERS_WORKSPACE,
SALARY_HISTORY;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH RDB RECOVERY
"START_TRANSACTION READ_WRITE RESERVING EMPLOYEES, JOB_HISTORY," &
"SALARY_HISTORY FOR SHARED WRITE"
CALL PERS_UPDATE_TRANSFER IN PERS_SERVER

USING JOB_HISTORY, PERS_WORKSPACE, SALARY_HISTORY;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

END BLOCK WORK;

END DEFINITION;

A-40 Sources for Sample Applications

A.1. 7 .2 PERS UPDATE TRANSFER FORM Definition - - -

U P 0 A T E T R A N S F E R F 0 R M

EmPloYee Number: XXXXX

Job code: XXXX Effective date: 98-AAA-99
OePartment code: XX){X
New salary: 88888888.89

Press GOLD-E to exit froM this task.

A.1.7.3 PERS UPDATE TRANSFER REQUEST1 Definition - - -

REPLACE REQUEST PERS_UPDATE_TRANSFER_REQUEST1

FORM IS CDD$TOP.RDBPERS.PERS_UPDATE_TRANSFER_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY;

RECORD IS
CDD$TOP.RDBPERS.PERS_WORKSPACE;

ZK-00054-00

DESCRIPTION /* Accept the employee ID number for retrieving
job and salary information for transfer update */;

USE FORM PERS_UPDATE_TRANSFER_FORM;
(continued on next page)

Sources for Sample Applications A-41

INPUT EMP_NUMBER TO EMPLOYEE_ID;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A.1. 7 .4 PERS UPDATE TRANSFER REQUEST2 Definition - - -

REPLACE REQUEST PERS_UPDATE_TRANSFER_REQUEST2

FORM IS CDD$TOP.RDBPERS.PERS_UPDATE_TRANSFER_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY;

RECORD IS
CDD$TOP.RDBPERS.PERS_WORKSPACE;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY;

DESCRIPTION /* Display job and salary information and accept
changes to indicate a transfer */;

USE FORM PERS_UPDATE_TRANSFER_FORM;

OUTPUT DEPARTMENT_CODE
SUPERVISOR_ ID
JOB_CODE
SALARY_AMOUNT

TO DEPT_CODE,
TO SUPERVISOR_ID,
TO JOB_CODE,
TO SALARY;

INPUT DEPT_CODE TO DEPARTMENT_CODE,
SUPERVISOR_ID TO SUPERVISOR_ID,
JOB_CODE TO JOB_CODE,
SALARY TO SALARY_AMOUNT;

RETURN JOB_START TO JOB_START;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A-42 Sources for Sample Applications

A.1. 7 .5 PERS GET TRANSFER Procedure

IDENTIFICATION DIVISION.

PROGRAM-ID. PERS_GET_TRANSFER.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

&ROB& INVOKE DATABASE FILENAME "PERS$EXE:PERSONNEL"

01 REC-LOCKED PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECLOCK.

01 REC-NOT-FOUND PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECNOTFD.

01 DB-FAILURE PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL.

01 RDB$_DEADLOCK PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_DEADLOCK.

01 RDB$_LOCK_CONFLICT PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

01 LIB$SIGNAL PIC S9(9) COMP
VALUE IS EXTERNAL LIB$SIGNAL.

01 STATUS-RESULT PIC S9(9) COMP.

LINKAGE SECTION.
COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY"

FROM DICTIONARY
REPLACING ==JOB_HISTORY. ==BY ==JOB_HISTORY_LINKAGE.

COPY "CDD$TOP.RDBPERS.PERS_WORKSPACE" FROM DICTIONARY.

COPY "CDD$TOP~RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY"
FROM DICTIONARY
REPLACING ==SALARY_HISTORY. == BY ==SALARY_HISTORY_LINKAGE.

PROCEDURE DIVISION USING JOB_HISTORY_LINKAGE
PERS_ WORKSPACE
SALARY_HISTORY_LINKAGE

GIVING STATUS-RESULT.

MAIN SECTION .
000-MAIN-PARAGRAPH.

* This program retrieves JOB_HISTORY and SALARY_HISTORY records that are
* then displayed on a form where the user can record a transfer.

SET STATUS-RESULT TO SUCCESS.

MOVE "T" TO NOT_FOUND.

INITIALIZE PROGRAM_REQUEST_KEY.
(continued on next page)

Sources for Sample Applications A-43

* Get job history information for an employee

&ROB& FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID =
&RDB& EMPLOYEE_ID IN JOB_HISTORY_LINKAGE AND
&RDB& JH.JOB_END MISSING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR

MOVE "F" TO NOT_FOUND

&RDB& GET
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR
&RDB& JOB_CODE IN JOB_HISTORY_LINKAGE = JH.JOB_CODE;
&RDB& DEPARTMENT_CODE IN JOB_HISTORY_LINKAGE = JH.DEPARTMENT_CODl
&RDB& JOB_START IN JOB_HISTORY_LINKAGE = JH.JOB_START;
&RDB& SUPERVISOR_ID IN JOB_HISTORY_LINKAGE = JH.SUPERVISOR_ID
&ROB& END_GET
&RDB& END_FOR

* If employee ID is not in the JOB_HISTORY relation, return an error.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT
GO TO 100-EXIT-PROGRAM.

* Reset record-found flag

MOVE "T" TO NOT_FOUND.

* Get salary history information for an employee

&RDB& FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID =
&RDB& EMPLOYEE_ID IN JOB_HISTORY_LINKAGE AND
&RDB& SH.SALARY_END MISSING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR

MOVE "F" TO NOT_FOUND

&RDB& GET
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR
&RDB& SALARY_AMOUNT IN SALARY_HISTORY_LINKAGE = SH.SALARY_AMOUNT
&RDB& END_GET
&RDB& END_FOR

A-44 Sources for Sample Applications

* If employee ID is not in the SALARY_HISTORY relation, return an error.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT
GO TO 100-EXIT-PROGRAM.

* Save the old salary for comparison in the update procedure.

MOVE SALARY_AMOUNT OF SALARY_HISTORY_LINKAGE TO
SAL_AMT OF PERS_WORKSPACE.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* Test for errors. Locked record is the only expected error. Signal
* any other errors.

IF RDB$STATUS EQUAL RDB$_DEADLOCK
OR RDB$STATUS EQUAL RDB$_LOCK_CONFLICT

THEN
MOVE REC-LOCKED TO STATUS-RESULT

ELSE
MOVE DB-FAILURE TO STATUS-RESULT
CALL 11 LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR

BY VALUE LIB$SIGNAL.

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

A.1. 7.6 PERS UPDATE TRANSFER Procedure - -

IDENTIFICATION DIVISION.

PROGRAM-ID. PERS_UPDATE_TRANSFER.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

kRDBk INVOKE DATABASE FILENAME "PERS$EXE:PERSONNEL"

01 REC-LOCKED

01 REC-NOT-FOUND

01 DB-FAILURE

01 RDB$_DEADLOCK

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECLOCK.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECNOTFD.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL.

PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_DEADLOCK.

(continued on next page)

Sources for Sample Applications A-45

01 RDB$_LOCK_CONFLICT

01 LIB$SIGNAL

01 STATUS-RESULT

LINKAGE SECTION.

PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

PIC S9(9) COMP
VALUE IS EXTERNAL LIB$SIGNAL.

PIC S9(9) COMP.

COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY"
FROM DICTIONARY
REPLACING ==JOB_HISTORY. ==BY ==JOB_HISTORY_LINKAGE.

COPY "CDD$TOP.RDBPERS.PERS_WORKSPACE" FROM DICTIONARY.

COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.SALARY_HISTORY"
FROM DICTIONARY
REPLACING ==SALARY_HISTORY. ==BY ==SALARY_HISTORY_LINKAGE.

PROCEDURE DIVISION USING JOB_HISTORY_LINKAGE
PERS_WORKSPACE
SALARY_HISTORY_LINKAGE

GIVING STATUS-RESULT.

MAIN SECTION.
000-MAIN-PARAGRAPH.

* This program writes modified JOB_HISTORY and SALARY_HISTORY records to
* the database.

SET STATUS-RESULT TO SUCCESS.

MOVE "T" TO NOT_FOUND.

INITIALIZE PROGRAM_REQUEST_KEY.

* Fill in the job ending date in the JOB_HISTORY relation and store a new
* JOB_HISTORY record for the new job.

&RDB& FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID =
&ROB& EMPLOYEE_ID IN JOB_HISTORY_LINKAGE AND
&RDB& JH.JOB_END MISSING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&ROB& END_ERROR

MOVE "F" TO NOT_FOUND

&RDB& MODIFY JH USING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR
&RDB& JH.JOB_END = JOB_START IN JOB_HISTORY_LINKAGE
&ROB& END_MODIFY
&ROB& END_FOR

A-46 Sources for Sample Applications

&RDB& STORE JH IN JOB_HISTORY USING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR
&RDB& JH.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY_LINKAGE;
&RDB& JH.JOB_CODE = JOB_CODE IN JOB_HISTORY_LINKAGE;
&RDB& JH.JOB_START = JOB_START IN JOB_HISTORY_LINKAGE;
&RDB& JH.DEPARTMENT_CODE = DEPARTMENT_CODE IN JOB_HISTORY_LINKAGE;
&RDB& JH.SUPERVISOR_ID = SUPERVISOR_ID IN JOB_HISTORY_LINKAGE
&RDB& END_STORE

* If the employee ID is not in the JOB_HISTORY relation, return an error.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT
GO TO 100-EXIT-PROGRAM.

* Reset the record-found flag

MOVE "T" TO NOT_FOUND.

* If the user changed the salary, fill in the salary ending date in the
* SALARY_HISTORY relation and store a new SALARY_HISTORY record for the
* new salary.

IF SALARY_AMOUNT OF SALARY_HISTORY_LINKAGE =
SAL_AMT OF PERS_WORKSPACE

THEN
MOVE "F" TO NOT_FOUND

ELSE
&RDB& FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID =
&RDB& EMPLOYEE_ID IN JOB_HISTORY_LINKAGE AND
&RDB& SH.SALARY_END MISSING
&ROB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR

MOVE "F" TO NOT_FOUND

&ROB& MODIFY SH USING
&ROB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR
&RDB& SH.SALARY_END = JOB_START IN JOB_HISTORY_LINKAGE
&RDB& END_MODIFY
&RDB& END_FOR

(continued on next page}

Sources for Sample Applications A-4 7

&RDB& STORE SH IN SALARY_HISTORY USING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR
&RDB& SH.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY_LINKAGE;
&RDB& SH.SALARY_AMOUNT = SALARY_AMOUNT IN SALARY_HISTORY_LINKAGE;
&RDB& SH.SALARY_START = JOB_START IN JOB_HISTORY_LINKAGE
&RDB& END_STORE
END-IF.

* If the employee ID is not in the SALARY_HISTORY relation, return an error

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* Test for errors. Locked record is the only expected error. Signal
* any other errors.

IF RDB$STATUS EQUAL RDB$_DEADLOCK
OR RDB$STATUS EQUAL RDB$_LOCK_CONFLICT

THEN
MOVE REC-LOCKED TO STATUS-RESULT

ELSE
MOVE DB-FAILURE TO STATUS-RESULT
CALL "LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR

BY VALUE LIB$SIGNAL.

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

A-48 Sources for Sample Applications

A.1.8 Definitions for the Status Update Task

A.1.8.1 PERS UPDATE STATUS TASK Definition - - -

REPLACE TASK PERS_UPDATE_STATUS_TASK

WORKSPACES ARE
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES,
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY,
CDD$TOP.RDBPERS.PERS_WORKSPACE;

BLOCK WORK
EXCHANGE

REQUEST IS PERS_UPDATE_STATUS_REQUEST1
USING ACMS$PROCESSING_STATUS, EMPLOYEES, PERS_WORKSPACE;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH RDB RECOVERY "START_TRANSACTION READ_ONLY"
CALL PERS_GET_STATUS IN PERS_SERVER

USING EMPLOYEES, PERS_WORKSPACE;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

EXCHANGE
REQUEST IS PERS_UPDATE_STATUS_REQUEST2

USING ACMS$PROCESSING_STATUS, EMPLOYEES, JOB_HISTORY,
PERS_WORKSPACE;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH RDB RECOVERY
"START_TRANSACTION READ_WRITE RESERVING EMPLOYEES, JOB_HISTORY," &
"SALARY_HISTORY FOR SHARED WRITE"
CALL PERS_UPDATE_STATUS IN PERS_SERVER

USING EMPLOYEES, JOB_HISTORY, PERS_WORKSPACE;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

END BLOCK WORK;

END DEFINITION;

Sources for Sample Applications A-49

A.1.8.2 PERS UPDATE STATUS FORM Definition - - -

U P D A T E S T A T U S F D R M

EMPloYee nuMber: XXXXX

NaMe: XXXXXXXXXX X XXXXXXXXXXXXXX

Effective date: 99-AAA-99

Press GOLD-E to exit from this task.

A.1.8.3 PERS UPDATE STATUS REQUEST1 Definition - - -

REPLACE REQUEST PERS_UPDATE_STATUS_REQUEST1

FORM IS CDD$TOP.RDBPERS.PERS_UPDATE_STATUS_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES;

RECORD IS
CDD$TOP.RDBPERS.PERS_WORKSPACE;

DESCRIPTION /* Accept the employee ID number for retrieving
employee information for status update */;

USE FORM PERS_UPDATE_STATUS_FORM;

A-50 Sources for Sample Applications

ZK-00055-00

INPUT EMP_NUMBER TO EMPLOYEE_ID;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A.1.8.4 PERS UPDATE STATUS REQUEST2 Definition - - -

REPLACE REQUEST PERS_UPDATE_STATUS_REQUEST2

FORM IS CDD$TOP.RDBPERS.PERS_UPDATE_STATUS_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES;

RECORD IS
CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY;

RECORD IS
CDD$TOP.RDBPERS.PERS_WORKSPACE;

DESCRIPTION /* Display employee information and let user confirm
employee whose status is to be changed to inactive */;

USE FORM PERS_UPDATE_STATUS_FORM;

OUTPUT FIRST_NAME
MIDDLE_ INITIAL
LAST_NAME

TO FIRST_NAME,
TO INITIAL,
TO LAST_NAME;

OUTPUT 'Press RETURN to confirm.' to CONFIRM_FIELD;

RETURN EFF_DATE TO JOB_END;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

Sources for Sample Applications A-51

A.1.8.5 PERS GET STATUS Procedure

IDENTIFICATION DIVISION.

PROGRAM-ID. PERS_GET_STATUS.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

&ROB&: INVOKE DATABASE FILENAME "PERS$EXE:PERSONNEL"

01 REC-NOT-FOUND

01 REC-LOCKED

01 DB-FAILURE

01 RDB$_DEADLOCK

01 RDB$_LOCK_CONFLICT

01 LIB$SIGNAL

01 STATUS-RESULT

LINKAGE SECTION.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECNOTFD.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECLOCK.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL.

PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_DEADLOCK.

PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

PIC S9(9) COMP
VALUE IS EXTERNAL LIB$SIGNAL.

PIC 89(9) COMP.

COPY 11 CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES"
FROM DICTIONARY
REPLACING ==EMPLOYEES. == BY ==EMPLOYEES_LINKAGE. ==.

COPY 11 CDD$TOP.RDBPERS.PERS_WORKSPACE 11 FROM DICTIONARY.

PROCEDURE DIVISION USING EMPLOYEES_LINKAGE
PERS_WORKSPACE

MAIN SECTION.
000-MAIN-PARAGRAPH.

GIVING STATUS-RESULT.

* This program retrieves the employee name for display so that the user
* can verify the employee before changing the work status to ina.ctive.

SET STATUS-RESULT TO SUCCESS.

MOVE "T" TO NOT_FOUND.

INITIALIZE PROGRAM_REQUEST_KEY.

A-52 Sources for Sample Applications

* Get employee information

kRDBk FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID =
kRDBk EMPLOYEE_ID IN EMPLOYEES_LINKAGE
kRDBk ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

kRDBk END_ERROR

MOVE "F" TO NOT_FOUND

kRDBk GET
kRDBk ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

kRDBk END_ERROR
kRDBk LAST_NAME IN EMPLOYEES_LINKAGE = E.LAST_NAME;
&RDBk FIRST_NAME IN EMPLOYEES_LINKAGE = E.FIRST_NAME;
&RDBk MIDDLE_INITIAL IN EMPLOYEES_LINKAGE = E.MIDDLE_INITIAL
&RDBk END_GET
&RDB& END_FOR

* If the employee ID is not in the EMPLOYEES relation, return an error.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* Test for errors. Locked record is the only expected error. Signal
* any other errors.

IF RDB$STATUS EQUAL RDB$_DEADLOCK
OR RDB$STATUS EQUAL RDB$_LOCK_CONFLICT

THEN
MOVE REC-LOCKED TO STATUS-RESULT

ELSE
MOVE DB-FAILURE TO STATUS-RESULT
CALL "LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR

,BY VALUE LIB$SIGNAL.

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Sources for Sample Applications A-53

A.1.8.6 PERS UPDATE STATUS Procedure - -

IDENTIFICATION DIVISION.

PROGRAM-ID. PERS_UPDATE_STATU8.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

&RDB& INVOKE DATABASE FILENAME "PERS$EXE:PERSONNEL"

01 REC-LOCKED

01 REC-NOT-FOUND

01 DB-FAILURE

01 RDB$_DEADLOCK

01 RDB$_LOCK_CONFLICT

01 LIB$SIGNAL

01 STATUS-RESULT

LINKAGE SECTION.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECLOCK.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_RECNOTFD.

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL.

PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_DEADLOCK.

PIC 89(9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

PIC 89(9) COMP
VALUE IS EXTERNAL LIB$SIGNAL.

PIC S9(9) COMP.

COPY "CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.EMPLOYEES"
FROM DICTIONARY
REPLACING ==EMPLOYEES. == BY ==EMPLOYEES_LINKAGE. ==.

COPY 11 CDD$TOP.RDBPERS.PERSONNEL.RDB$RELATIONS.JOB_HISTORY 11

FROM DICTIONARY
REPLACING ==JOB_HISTORY. == BY ==JOB_HISTORY_LINKAGE.

COPY 11 CDD$TOP.RDBPERS.PERS_WORKSPACE 11 FROM DICTIONARY.

PROCEDURE DIVISION USING EMPLOYEES_LINKAGE
JOB_HISTORY_LINKAGE
PERS_WORKSPACE

MAIN SECTION .
000-MAIN-PARAGRAPH.

GIVING STATUS-RESULT.

* This program writes modified EMPLOYEES, JOB_HISTORY, and SALARY_HISTORY
* records to the database.

SET STATUS-RESULT TO SUCCESS.

MOVE "T" TO NOT_FOUND.

INITIALIZE PROGRAM_REQUEST_KEY.

A-54 Sources for Sample Applications

~ Change the STATUS_CODE field in the EMPLOYEES relation to 0 to
~ indicate an inactive status.

&ROB& FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID =
&ROB& EMPLOYEE_ID IN EMPLOYEES_LINKAGE
&ROB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&ROB& END_ERROR

MOVE "F" TO NOT_FOUNO

&ROB& MODIFY E USING
&ROB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&ROB& END_ERROR
&:RDB& E.STATUS_CODE = 0
&ROB&: END_MOOIFY
&:ROB&: END_FOR

* If the employee ID is not in the EMPLOYEES relation, return an error.

IF NOT_FOUNO = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT
GO TO 100-EXIT-PROGRAM.

* Reset record-found flag

MOVE "T" TO NOT_FOUNO.

* Fill in job ending date in JOB_HISTORY relation

&ROB& FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_IO =
&ROB&: EMPLOYEE_IO IN EMPLOYEES_LINKAGE
&ROB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

kRDB& END_ERROR

MOVE "F" TO NOT_FOUND

&RDB& MODIFY JH USING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&:ROB& ENO_ERROR
&RDB& JH.JOB_END = JOB_END IN JOB_HISTORY_LINKAGE
&:RDB& END_MOOIFY
&:RDB&: END_FOR

* If employee ID is not in the JOB_HISTORY relation, return an error.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT
GO TO 100-EXIT-PROGRAM.

(continued on next page)

Sources for Sample Applications A-55

* Reset record-found flag

MOVE "T" TO NOT_FOUND.

* Fill in salary ending date in SALARY_HISTORY relation

&RDB& FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID =
&RDB& EMPLOYEE_ID IN EMPLOYEES_LINKAGE
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR

MOVE "F" TO NOT_FOUND

&RDB& MODIFY SH USING
&RDB& ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT
GO TO 100-EXIT-PROGRAM

&RDB& END_ERROR
&RDB& SH.SALARY_END = JOB_END IN JOB_HISTORY_LINKAGE
&RDB& END_MODIFY
&ROB.fl END_FOR

* If employee ID is not in the SALARY_HISTORY relation, return an error.

IF NOT_FOUND = "T"
THEN

MOVE REC-NOT-FOUND TO STATUS-RESULT.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* Test for errors. Locked record is the only expected error. Signal
* any other errors.

IF RDB$STATUS EQUAL RDB$_DEADLOCK
OR RDB$STATUS EQUAL RDB$_LOCK_CONFLICT

THEN
MOVE REC-LOCKED TO STATUS-RESULT

ELSE
MOVE DB-FAILURE TO STATUS-RESULT
CALL "LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR

BY VALUE LIB$SIGNAL.

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT~PROGRAM.
EXIT PROGRAM.

A-56 Sources for Sample Applications

A.1.9 Server Procedures

A.1.9.1 Initialization Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. PERS_STARTUP.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

&:ROB&: INVOKE DATABASE FILENAME "PERS$EXE:PERSONNEL"

01 DB-FAILURE

01 LIB$SIGNAL

01 STATUS-RESULT

PIC S9(9) COMP
VALUE IS EXTERNAL PRS_DBFAIL.

PIC S9(9) COMP
VALUE IS EXTERNAL LIB$SIGNAL.

PIC S9(9) COMP.

COPY "CDD$TOP.RDBPERS.PERS_WORKSPACE" FROM DICTIONARY.

PROCEDURE DIVISION GIVING STATUS-RESULT.

MAIN SECTION.
000-START.

* Start transaction and read a WORK_STATUS record. The overhead
* associated with the first database access is thus incurred in
* the initialization procedure and not in the first selected task.

SET STATUS-RESULT TO SUCCESS.

&RDB& START_TRANSACTION READ_WRITE
&ROB& ON ERROR

CALL "LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR
BY VALUE LIB$SIGNAL

&ROB& END_ERROR

&:ROB& FOR WS IN WORK_STATUS
&ROB& GET
&:ROB& ON E,RROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL "LIB$CALLG" USING BY REFERENCE RDB$MESSAGE_VECTOR

BY VALUE LIB$SIGNAL
&:ROB& END_ERROR
&:ROB& TEST_FIELD IN PERS_WORKSPACE = WS.STATUS_CODE
&:ROB& END_GET
&:ROB& END_FOR

&:ROB&: COMMIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Sources for Sample Applications A-57

A.1.9.2 Termination Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. PERS_SHUTDOWN.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

k:RDB& INVOKE DATABASE FILENAME "PERS$EXE:PERSONNEL"

01 STATUS-RESULT PIC S9(9) COMP.

PROCEDURE DIVISION GIVING STATUS-RESULT.
MAIN SECTION .
000-START.

* Finish the database when the server is stopped.

SET STATUS-RESULT TO SUCCESS.

&:ROB& FINISH.

100-EXIT-PROGRAM.
EXIT PROGRAM.

A.1· .1 O Request Library Definition

REPLACE LIBRARY PERS_REQLIB

REQUEST IS PERS_ADD_REQUEST;
REQUEST IS PERS_DISPLAY_REQUEST1;
REQUEST IS PERS_DISPLAY_REQUEST2;
REQUEST IS PERS_UPDATE_GENERAL_REQUEST1;
REQUEST IS PERS_UPDATE_GENERAL_REQUEST2;
REQUEST IS PERS_UPDATE_RAISEPRO_REQUEST1;
REQUEST IS PERS_UPDATE_RAISEPRO_REQUEST2;
REQUEST IS PERS_UPDATE_TRANSFER_REQUEST1;
REQUEST IS PERS_UPDATE_TRANSFER_REQUEST2;
REQUEST IS PERS_UPDATE_STATUS_REQUESTl;
REQUEST IS PERS_UPDATE_STATUS_REQUEST2;

END DEFINITION;

A-58 Sources for Sample Applications

A.1.11 Task Group Definition

REPLACE GROUP PERS_TASK_GROUP

REQUEST LIBRARY IS "PERS$EXE:PERS_REQLIB.RLB";

MESSAGE FILE IS "PERS$EXE:PERSMSG.EXE";

DEFAULT TASK GROUP FILE IS "PERS$EXE:PERS_GROUP.TDB";

TASKS ARE
PERS_ADD_TASK
PERS_DISPLAY_TASK
PERS_UPDATE_GENERAL_TASK
PERS_UPDATE_RAISEPRO_TASK
PERS_UPDATE_TRANSFER_TASK
PERS_UPDATE_STATUS_TASK

TASK IS PERS_ADD_TASK;
TASK IS PERS_DISPLAY_TASK;
TASK IS PERS_UPDATE_GENERAL_TASK;
TASK IS PERS_UPDATE_RAISEPRO_TASK;
TASK IS PERS_UPDATE_TRANSFER_TASK;
TASK IS PERS_UPDATE_STATUS_TASK;

END TASKS;

SERVER IS PERS_SERVER:
PROCEDURE SERVER IMAGE IS "PERS$EXE:PERSONNEL.EXE";
PROCEDURES ARE

PERS_ADD, PERS_GET_DISPLAY, PERS_GET_EMPLOYEE,
PERS_UPDATE_EMPLOYEE, PERS_GET_RAISEPRO, PERS_UPDATE_RAISEPRO,
PERS_GET_TRANSFER, PERS_UPDATE_TRANSFER, PERS_GET_STATUS,
PERS_UPDATE_STATUS;

INITIALIZATION PROCEDURE IS PERS_STARTUP;
TERMINATION PROCEDURE IS PERS_SHUTDOWN;
DEFAULT OBJECT FILE IS "PERS$0BJ:PERSONNEL.OBJ";

END SERVER;

END DEFINITION;

A. 1.12 Message File

.TITLE PERSMSG Messages for Personnel Application

.!DENT /Version 1.0/

.FACILITY PERSONNEL,21 /PREFIX=PRS_

.SEVERITY WARNING
DUPEMPNOS <An employee with this number already exists.>
RECLOCK <Record is locked by another user; press RETURN to try again.>
RECNOTFD <Employee not found; try another number of exit.>

.SEVERITY FATAL
DBFAIL <Database contains invalid data. Notify administrator.>
.END

Sources for Sample Applications A-59

A.1.13 Application. Definition

REPLACE APPLICATION PERS_APPL

AUDIT;
APPLICATION USERNAME IS PERS$EXC;

SERVER DEFAULTS ARE
AUDIT;
USERNAME IS PERS$SERVER;
MAXIMUM SERVER PROCESSES IS 2;
MINIMUM SERVER PROCESSES IS 2;

END SERVER DEFAULTS;

TASK DEFAULTS ARE
AUDIT;

END TASK DEFAULTS;

TASK GROUP IS
PERS_TASK_GROUP TASK GROUP FILE IS "PERS$EXE:PERSGROUP.TDB";

END TASK GROUP;

END DEFINITION;

A.1.14 Menu Definition

REPLACE MENU PERS_MENU

HEADER IS "

ENTRIES ARE
ADD

DISPLAY

UPDATE_EMP

UPDATE_RSP

UPDATE_TRN

UPDATE_STS

END ENTRIES;

END DEFINITION;

AVERTZ PERSONNEL SYSTEM";

TASK IS PERS_ADD_TASK IN PERS_APPL;
TEXT IS "Add new employee";
TASK IS PERS_DISPLAY_TASK IN PERS_APPL;
TEXT IS "Display current employee information";
TASK IS PERS_UPDATE_GENERAL_TASK IN PERS_APPL;
TEXT IS "Update general employee information";
TASK IS PERS_UPDATE_RAISEPRO_TASK IN PERS_APPL;
TEXT IS "Give raise and/or promotion";
TASK IS PERS_UPDATE_TRANSFER_TASK IN PERS_APPL;
TEXT IS "Record transfer to another department";
TASK IS PERS_UPDATE_STATUS_TASK IN PERS_APPL;
TEXT IS "Change employee work status";

A-60 Sources for Sample Applications

A.2 AVERTZ Car Rental Application

The car rental application is built on a VAX DBMS database and includes three
tasks. This section contains the complete sources for the application. Table A-1
lists each type of source definition, the sections of this appendix that contain
them. and the specific task to which each definition applies.

Table A-2: Car Rental Application Sources

Object Section Related Task

Database Schema A.2.1.1 All

Database Subschema A.2.1.2 All

Database Storage A.2.1.3 All
Schema

Workspace A.2.2 All

Task Definitions A.2.3.1 Reservation Task

A.2.4.1 Checkout Task

A.2.5.1 Checkin Task

Form Definitions A.2.3.2 Reservation Task

A.2.4.2 Checkout Task
A.2.4.3

A.2.5.2 Checkin Task

Request Definitions A.2.3.3 Reservation Task
A.2.3.4
A.2.3.5

A.2.4.4 Checkout Task
A.2.4.5
A.2.4.6

A.2.5.3 Checkin Task
A.2.5.4

Step Procedures A.2.3.6 Reservation Task
A.2.3.7

(continued on next page)

Sources for Sample Applications A-61

Table A-2: Car Rental Application Sources (Cont.)

Object Section Related Task

Step Procedures A.2.3.6 Reservation Task
A.2.3.7

A.2.4.7 Checkout Task
A.2.4.8

A.2.5.5 Checkin Task
A.2.5.6

Server Procedures A.2.6.1 All
A.2.6.2

Request Library A.2.7 All
Definition

Task Group Definition A.2.8 All

Message Source File A.2.9 All

Application A.~.10 All
Definition

Menu Definition A.2.11 All

A-62 Sources for Sample Applications

A.2.1 Car Rental Database Definition

A.2.1.1 Schema Definition

* COD path to schema is 11 CDD$TOP.AVERTZ.AVERTZSC"
*--
SCHEMA NAME IS AVERTZSC

AREA NAME IS COMPANY_AREA

AREA NAME IS CUSTOMER_AREA

AREA NAME IS LOCATION_AREA

RECORD NAME IS COMPANY
WITHIN COMPANY_AREA

ITEM IS CO_NAME
ITEM IS CO_DISCOUNT
ITEM IS CO_ADDR_DATA_l
ITEM IS CO_ADDR_DATA_2
ITEM IS CO_CITY
ITEM IS CO_STATE
ITEM IS CO_POSTAL_CODE
ITEM IS CO_PHONE
ITEM IS CO_CREDIT_CHECK

RECORD NAME IS CUSTOMER
WITHIN CUSTOMER_AREA

ITEM IS CU_LAST_NAME
ITEM IS CU_FIRST_NAME
ITEM IS CU_INITIAL
ITEM IS CU_ADDR_DATA_1
ITEM IS CU_ADDR_DATA_2
ITEM IS CU_CITY
ITEM IS CU_STATE
ITEM IS CU_POSTAL_CODE
ITEM IS CU_PHONE
ITEM IS CU_LICENSE_NO
ITEM IS CU_LICENSE_STATE

RECORD NAME IS LOCATION
WITHIN LOCATION_AREA

ITEM IS LO_CODE
ITEM IS LO_RES_NUM
ITEM IS LO_NAME
ITEM IS LO_ADDR_DATA_1
ITEM IS LO_ADDR_DATA_2
ITEM IS LO_CITY
ITEM IS LO_STATE
ITEM IS LO_POSTAL_CODE
ITEM IS LO_PHONE

RECORD NAME IS RESERVATION
WITHIN CUSTOMER_AREA

ITEM IS R_PICKUP_LOCATION
ITEM IS RESERVATION_NUM
ITEM IS R_CAR_TYPE_CODE
ITEM IS R_PICKUP_DATE

TYPE IS CHARACTER 25
TYPE IS SIGNED LONGWORD
TYPE IS CHARACTER 25
TYPE IS CHARACTER 25
TYPE IS CHARACTER 20
TYPE IS CHARACTER 2
TYPE IS CHARACTER 9
TYPE IS CHARACTER 10
TYPE IS CHARACTER 2

TYPE IS CHARACTER 20
TYPE IS CHARACTER 15
TYPE IS CHARACTER 1
TYPE IS CHARACTER 25
TYPE IS CHARACTER 25
TYPE IS CHARACTER 20
TYPE IS CHARACTER 2
TYPE IS CHARACTER 9
TYPE IS CHARACTER 10
TYPE IS CHARACTER 15
TYPE IS CHARACTER 2

TYPE IS CHARACTER 2
TYPE IS SIGNED LONGWORD
TYPE IS CHARACTER 25
TYPE IS CHARACTER 25
TYPE IS CHARACTER 25
TYPE IS CHARACTER 20
TYPE IS CHARACTER 2
TYPE IS CHARACTER 9
TYPE IS CHARACTER 10

TYPE IS CHARACTER 2
TYPE IS SIGNED LONGWORD
TYPE IS SIGNED LONGWORD
TYPE IS DATE

(continued on next page)

Sources for Sample Applications A-63

RECORD NAME IS CAR_TYPE
WITHIN LOCATION_AREA

ITEM IS CAR_TYPE_CODE
ITEM IS DAILY_RATE_LT_7_DAYS
ITEM IS DAILY_RATE_GT_7_LT_30_DAYS
ITEM IS DAILY_RATE_GT_30_DAYS

TYPE IS SIGNED LONGWORD
TYPE IS SIGNED LONGWORD
TYPE IS SIGNED LONGWORD
TYPE IS SIGNED LONGWORD
TYPE IS SIGNED LONGWORD ITEM IS DAILY_RATE_FUTURE_USE

RECORD NAME IS CAR
WITHIN LOCATION_AREA

ITEM IS CAR_NUM
ITEM IS CAR_TYPE_CODE
ITEM IS CAR_MAKE
ITEM IS CAR_YEAR
ITEM IS LICENSE_NUM
ITEM IS LICENSE_STATE

SET NAME IS COMPANY_CALC
OWNER IS SYSTEM
MEMBER IS COMPANY

TYPE IS SIGNED LONGWORD
TYPE IS SIGNED LONGWORD
TYPE IS CHARACTER 8
TYPE IS CHARACTER 2
TYPE IS CHARACTER 10
TYPE IS CHARACTER 2

INSERTION IS AUTOMATIC RETENTION IS FIXED

SET NAME IS CUSTOMER_CALC
OWNER IS SYSTEM
MEMBER IS CUSTOMER

INSERTION IS AUTOMATIC RETENTION IS FIXED

SET NAME IS LOCATION_CALC
OWNER IS SYSTEM
MEMBER IS LOCATION

INSERTION IS AUTOMATIC RETENTION IS FIXED

SET NAME IS CUSTOMER_RESERVATION
OWNER IS CUSTOMER
MEMBER IS RESERVATION

INSERTION IS AUTOMATIC RETENTION IS FIXED
ORDER IS FIRST

SET NAME IS EMPLOYEE
OWNER IS COMPANY
MEMBER IS CUSTOMER

INSERTION IS MANUAL RETENTION IS OPTIONAL
ORDER IS LAST

SET NAME IS TYPE_AVAILABLE
OWNER IS LOCATION
MEMBER IS CAR_TYPE

INSERTION IS AUTOMATIC RETENTION IS FIXED
ORDER IS LAST

SET NAME IS CHECKED_IN_CARS
OWNER IS CAR_TYPE
MEMBER IS CAR

INSERTION IS AUTOMATIC RETENTION IS OPTIONAL
ORDER IS LAST

A-64 Sources for Sample Applications

SET NAME IS CHECKED_OUT_CARS
OWNER IS RESERVATION
MEMBER IS CAR

INSERTION IS MANUAL RETENTION IS OPTIONAL
ORDER IS FIRST

SET NAME IS LOCATION_RESERVATION
OWNER IS LOCATION
MEMBER IS RESERVATION

INSERTION IS AUTOMATIC RETENTION IS OPTIONAL
ORDER IS FIRST

A.2.1.2 Subschema Definition

* CDD path to schema is "CDD$TOP.AVERTZ.AVERTZSC"
*--
SUBSCHEMA NAME IS AVERTZSS FOR AVERTZSC SCHEMA

REALM COMPANY_AREA
IS COMPANY_AREA

REALM CUSTOMER_AREA
IS CUSTOMER_AREA

REALM LOCATION_AREA
IS LOCATION_AREA

RECORD NAME IS COMPANY
ITEM IS CO_NAME
ITEM IS CO_DISCOUNT
ITEM IS CO_ADDR_DATA_l
ITEM IS CO_ADDR_DATA_2
ITEM IS CO_CITY
ITEM IS CO_STATE
ITEM IS CO_POSTAL~CODE
ITEM IS CO_PHONE
ITEM IS CO_CREDIT_CHECK

RECORD NAME IS CUSTOMER
GROUP NAME IS CU_NAME

ITEM IS CU_LAST_NAME
ITEM IS CU_FIRST_NAME
ITEM IS CU_INITIAL

ENDGROUP CU_NAME
ITEM IS CU_ADDR_DATA_l
ITEM IS CU_ADDR_DATA_2
ITEM IS CU_CITY
ITEM IS CU_STATE
ITEM IS CU_POSTAL_CODE
ITEM IS CU_PHONE
ITEM IS CU_LICENSE_NO
ITEM IS CU_LICENSE_STATE

TYPE IS CHARACTER 25
TYPE IS SIGNED LONGWORD
TYPE IS CHARACTER 25
TYPE IS CHARACTER 25
TYPE IS CHARACTER 20
TYPE IS CHARACTER 2
TYPE IS CHARACTER 9
TYPE IS CHARACTER 10
TYPE IS CHARACTER 2

TYPE IS CHARACTER 20
TYPE IS CHARACTER 15
TYPE IS CHARACTER 1

TYPE IS CHARACTER 25
TYPE IS CHARACTER 25
TYPE IS CHARACTER 20
TYPE IS CHARACTER 2
TYPE IS CHARACTER 9
TYPE IS CHARACTER 10
TYPE IS CHARACTER 15
TYPE IS CHARACTER 2

(continued on next page)

Sources for Sample Applications A-65

RECORD NAME IS LOCATION
GROUP RESERVATION_ID

ITEM IS LO_CODE
ITEM IS LO_RES_NUM

ENDGROUP RESERVATION_ID
ITEM IS LO_NAME
ITEM IS LO_ADDR_DATA_1
ITEM IS LO_ADDR_DATA_2
ITEM IS LO_CITY
ITEM IS LO_STATE
ITEM IS LO_POSTAL_CODE
ITEM IS LO_PHONE

RECORD NAME IS RESERVATION
GROUP RESERVATION_ID

ITEM IS R_PICKUP_LOCATION
ITEM IS RESERVATION_NUM

ENDGROUP RESERVATION_ID
ITEM IS R_CAR_TYPE_CODE
ITEM IS R_PICKUP_DATE

RECORD NAME IS CAR_TYPE
ITEM IS CAR_TYPE_CODE
ITEM IS DAILY_RATE_LT_7_DAYS

TYPE IS CHARACTER 2
TYPE IS SIGNED LONGWORD

TYPE IS CHARACTER 25
TYPE IS CHARACTER 25
TYPE IS CHARACTER 25
TYPE IS CHARACTER 20
TYPE IS CHARACTER 2
TYPE IS CHARACTER 9
TYPE IS CHARACTER 10

TYPE IS CHARACTER 2
TYPE IS SIGNED LONGWORD

TYPE IS SIGNED LONGWORD
TYPE IS DATE

ITEM IS DAILY_RATE_GT_7_LT_30_DAYS
ITEM IS DAILY_RATE_GT_30_DAYS

TYPE IS SIGNED LONGWORD
TYPE IS SIGNED LONGWORD
TYPE IS SIGNED LONGWORD
TYPE IS SIGNED LONGWORD
TYPE IS SIGNED LONGWORD ITEM IS DAILY_RATE_FUTURE_USE

RECORD NAME IS CAR
ITEM CAR_NUM
ITEM CAR_TYPE_CODE
ITEM CAR_MAKE
ITEM CAR_YEAR
ITEM LICENSE_NUM
ITEM LICENSE_STATE

SET NAME IS COMPANY_CALC

SET NAME IS CUSTOMER_CALC

SET NAME IS LOCATION_CALC

SET NAME IS CUSTOMER_RESERVATION

SET NAME IS EMPLOYEE

SET NAME IS TYPE_AVAILABLE

SET NAME IS CHECKED_IN_CARS

SET NAME IS CHECKED_OUT_CARS

SET NAME IS LOCATION_RESERVATION

TYPE IS SIGNED LONGWORD
TYPE IS SIGNED LONGWORD
TYPE IS CHARACTER 8
TYPE IS CHARACTER 2
TYPE IS CHARACTER 10
TYPE IS CHARACTER 2

A-66 Sources for Sample Applications

A.2.1.3 Storage Schema Definition

* CDD path to schema is 11 CDD$TOP.AVERTZ.AVERTZSC 11

*--
STORAGE SCHEMA NAME IS AVERTZST FOR AVERTZSC SCHEMA

RECORD NAME IS COMPANY
PLACEMENT IS CLUSTERED VIA COMPANY_CALC
ITEM IS CO_NAME TYPE IS CHARACTER 25
ITEM IS CO_DISCOUNT TYPE IS SIGNED LONGWORD
ITEM IS CO_ADDR_DATA_1 TYPE IS CHARACTER 25
ITEM IS CO_ADDR_DATA_2 TYPE IS CHARACTER 25
ITEM IS CO_CITY TYPE IS CHARACTER 20
ITEM IS CO_STATE TYPE IS CHARACTER 2
ITEM IS CO_POSTAL_CODE TYPE IS CHARACTER 9
ITEM IS CO_PHONE TYPE IS CHARACTER 10
ITEM IS CO_CREDIT_CHECK TYPE IS CHARACTER 2

RECORD NAME IS CUSTOMER
PLACEMENT IS' CLUSTERED VIA CUSTOMER_CALC
ITEM IS CU_LAST_NAME TYPE IS CHARACTER 20
ITEM IS CU_FIRST_NAME TYPE IS CHARACTER 15
ITEM IS CU_INITIAL TYPE IS CHARACTER 1
ITEM IS CU_ADDR_DATA_1 TYPE IS CHARACTER 25
ITEM IS CU_ADDR_DATA_2 TYPE IS CHARACTER 25
ITEM IS CU_CITY TYPE IS CHARACTER 20
ITEM IS CU_STATE TYPE IS CHARACTER 2
ITEM IS CU_POSTAL_CODE TYPE IS CHARACTER 9
ITEM IS CU_PHONE TYPE IS CHARACTER 10
ITEM IS CU_LICENSE_NO TYPE IS CHARACTER 15
ITEM IS CU_LICENSE_STATE TYPE IS CHARACTER 2

RECORD NAME IS LOCATION
PLACEMENT IS CLUSTERED VIA LOCATION_CALC
ITEM IS LO_CODE TYPE IS CHARACTER 2
ITEM IS LO_RES_NUM TYPE IS SIGNED LONGWORD
ITEM IS LO_NAME TYPE IS CHARACTER 25
ITEM IS LO_ADDR_DATA_1 TYPE IS CHARACTER 25
ITEM IS LO_ADDR_DATA_2 TYPE IS CHARACTER 25
ITEM IS LO_CITY TYPE IS CHARACTER 20
ITEM IS LO_STATE TYPE IS CHARACTER 2
ITEM IS LO_POSTAL_CODE TYPE IS CHARACTER 9
ITEM IS LO_PHONE TYPE IS CHARACTER 10

RECORD NAME IS RESERVATION
PLACEMENT IS CLUSTERED VIA CUSTOMER_RESERVATION
ITEM IS R_PICKUP_LOCATION TYPE IS CHARACTER 2
ITEM IS RESERVATION_NUM TYPE IS SIGNED LONGWORD
ITEM IS R_CAR_TYPE_CODE TYPE IS SIGNED LONGWORD
ITEM IS R_PICKUP_DATE TYPE IS DATE

RECORD NAME IS CAR_TYPE
PLACEMENT IS CLUSTERED VIA TYPE_AVAILABLE
ITEM IS CAR_TYPE_CODE TYPE IS SIGNED LONGWORD
ITEM IS DAILY_RATE_LT_7_DAYS TYPE IS SIGNED LONGWORD
ITEM IS DAILY_RATE_GT_7_LT_30_DAYS TYPE IS SIGNED LONGWORD
ITEM IS DAILY_RATE_GT_30_DAYS TYPE IS SIGNED LONGWORD
ITEM IS DAILY_RATE_FUTURE_USE TYPE IS SIGNED LONGWORD

(continued on next page)

Sources for Sample Applications A-67

RECORD NAME IS CAR
PLACEMENT IS SCATTERED USING CAR_NUM
ITEM CAR_NUM TYPE IS SIGNED LONGWORD
ITEM CAR_MAKE TYPE IS CHARACTER 8
ITEM CAR_YEAR TYPE IS CHARACTER 2
ITEM LICENSE_NUM TYPE IS CHARACTER 10
ITEM LICENSE_STATE TYPE IS CHARACTER 2

SET NAME IS COMPANY_CALC
MODE IS CALC

MEMBER IS COMPANY
KEY IS CO_NAME

SET NAME IS CUSTOMER_CALC
MODE IS CALC

MEMBER IS CUSTOMER
KEY IS CU_LAST_NAME

CU_FIRST_NAME
CU_INITIAL

SET NAME IS LOCATION_CALC
MODE IS CALC

MEMBER IS LOCATION
KEY IS LO_CODE

SET NAME IS CUSTOMER_RESERVATION
MODE IS CHAIN

SET NAME IS EMPLOYEE
MODE IS CHAIN

SET NAME IS TYPE_AVAILABLE
MODE IS CHAIN

SET NAME IS CHECKED_IN_CARS
MODE IS CHAIN

SET NAME IS CHECKED_OUT_CARS
MODE IS CHAIN

SET NAME IS LOCATION_RESERVATION
MODE IS CHAIN

A-68 Sources for Sample Applications

A.2.2 Workspace Definition

DEFINE RECORD AVERTZ_WORKSPACE
DESCRIPTION IS

/* Workspace to hold miscellaneous fields */.

AVERTZ_WORKSPACE STRUCTURE.
PROGRAM_REQUEST_KEY

RES_MADE

TOTAL_ OWED

NUM_DAY
DAYS_TO_CURRENT
DAYS_TO_RENTAL
DAYS_RENTED

END AVERTZ_WORKSPACE STRUCTURE.

END AVERTZ_WORKSPACE.

II
DATATYPE TEXT SIZE 6
INITIAL_VALUE IS II

DATATYPE TEXT SIZE 1
INITIAL_VALUE IS 11 N11

•

DATATYPE UNSIGNED NUMERIC
SCALE -2.

DATATYPE SIGNED LONGWORD.
DATATYPE SIGNED LONGWORD.
DATATYPE SIGNED LONGWORD.
DATATYPE SIGNED LONGWORD.

A.2.3 Definitions for the Reservation Task

A.2.3.1 AVERTZ RESERVE TASK Definition - -

REPLACE TASK AVERTZ_RESERVE_TASK

WORKSPACES ARE

SIZE 7

AVERTZ_WORKSPACE,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR_TYPE,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.COMPANY,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.LOCATION,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATION;

BLOCK WORK
EXCHANGE

REQUEST IS AVERTZ_RESERVE_REQUEST1
USING ACMS$PROCESSING_STATUS, AVERTZ_WORKSPACE,
CAR_TYPE, LOCATION;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH DBMS RECOVERY "READY CONCURRENT RETRIEVAL"
CALL AVERTZ_GET_RATES IN AVERTZ_SERVER

USING AVERTZ_WORKSPACE, CAR_TYPE, LOCATION;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

(continued on next page)

Sources for Sample Applications A-69

EXCHANGE
REQUEST IS AVERTZ_RESERVE_REQUEST2

USING ACMS$PROCESSING_STATUS, AVERTZ_WORKSPACE, CAR_TYPE,
COMPANY, CUSTOMER, LOCATION, RESERVATION;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;
"REPEAT" : REPEAT TASK;

END CONTROL FIELD;

PROCESSING WITH DBMS RECOVERY "READY CONCURRENT UPDATE"
CALL AVERTZ_RESERVE_CAR IN AVERTZ_SERVER

USING AVERTZ_WORKSPACE, CAR_TYPE, COMPANY, CUSTOMER,
LOCATION, RESERVATION;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

EXCHANGE
REQUEST IS AVERTZ_RESERVE_REQUEST3

USING ACMS$PROCESSING_STATUS, AVERTZ_WORKSPACE, COMPANY,
CUSTOMER, RESERVATION;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;
"CHKOUT" : GOTO TASK AVERTZ_CHECKOUT_TASK

PASSING AVERTZ_WORKSPACE, COMPANY, CUSTOMER,
RESERVATION;

END CONTROL FIELD;

END BLOCK WORK;

END DEFINITION;

A-70 Sources for Sample Applications

A.2.3.2 AVERTZ RESERVE FORM Definition - -

R E S E R V A T I 0 N F 0 R M

TYPe of car: 88888
Daih rate: 888.88
Weekly rate: 888.88
Month!>• rate: 888.88

Location name: XXXXXXXXXXXXXXXXXXXX
Address: XXXXXXXXXXXXXXXXXXXXXXX

Pickup location: AA

Cit)':
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx State: AA Postal code: }0000(}00{

Phone: AAA-AAA-AAAA

ComPanY: XXXXXXXXXXXXXXXXXXXX
Customer: XXXXXXXXXXXXXXXXXXX X

Pickup date: 88-AAA-88

V\1\1\1\/\1\IVVVVVVVV
l\l\J\ /\/\/\/\I\ I\/\ I\ I\ 1\1\ I\

xx
xxx

A.2.3.3 AVERTZ RESERVE REQUEST1 Definition - -

REPLACE REQUEST AVERTZ_RESERVE_REQUEST1

FORM IS CDD$TOP.AVERTZ.AVERTZ_RESERVE_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.AVERTZ.AVERTZ_WORKSPACE;

ZK-00056-00

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR_TYPE;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.LOCATION;

DESCRIPTION /* Accept car type code and location code */;

USE FORM AVERTZ_RESERVE_FORM;

(continued on next page)

Sources for Sample Applications A-71

INPUT CAR_TYPE_CODE TO CAR_TYPE_CODE,
LO_CODE TO LO_CODE;

OUTPUT 'Enter car type code and pickup location code.• TO INFORM_LINE,
'Press GOLD-E to exit from this task.' TO PRK_LINE;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A.2 .3.4 A VERTZ RESERVE REQUEST2 Definition - -

REPLACE REQUEST AVERTZ_RESERVE_REQUEST2

FORM IS CDD$TOP.AVERTZ.AVERTZ_RESERVE_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.AVERTZ.AVERTZ_WORKSPACE;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR_TYPE

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.COMPANY;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.LOCATION

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVAT

DESCRIPTION /* Display rates and location information as output;
accept company and customer names and pickup date
as input *f;

USE FORM AVERTZ_RESERVE_FORM;

OUTPUT DAILY_RATE_LT_7_DAYS
DAILY_RATE_GT_7_LT_30_DAYS
DAILY_RATE_GT_30_DAYS
LO_NAME
LO_ADDR_DATA_1
LO_ADDR_DATA_2
LO_CITY
LO_STATE
LO_POSTAL_CODE
LO_PHONE

A-72 Sources for Sample Applications

TO DAY_RATE,
TO WEEK_RATE,
TO MONTH_RATE,
TO. LO_NAME,
TO LO_ADDRESS1,
TO LO_ADDRESS2,
TO LO_CITY,
TO LO_STATE,
TO LO_POSTAL_CODE,
TO LO_PHONE;

OUTPUT 'Enter company (if any), customer, pickup date.'
TO INFORM_LINE,

'Press GOLD-E to exit, GOLD-R to repeat this task.'
TO PRK_LINE;

INPUT COMPANY TO CO_NAME,
FIRST_NAME TO CU_FIRST_NAME,
INITIAL TO CU_INITIAL,
LAST_NAME TO CU_LAST_NAME,
PICKUP_DATE TO R_PICKUP_DATE;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

PROGRAM KEY IS GOLD "R"
NO CHECK;
RETURN "REPEAT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A.2.3.5 AVERTZ RESERVE REQUEST3 Definition - -

REPLACE REQUEST AVERTZ_RESERVE_REQUEST3

FORM IS CDD$TOP.AVERTZ.AVERTZ_RESERVE_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.AVERTZ.AVERTZ_WORKSPACE;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.COMPANY;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATION;

DESCRIPTION /* Inform the user that the reservation was
successfully entered in the database */;

USE FORM AVERTZ_RESERVE_FORM;

OUTPUT 'Reservation made.' TO INFORM_LINE,
'Press GOLD-E to exit, GOLD-K to check out.' TO PRK_LINE;

WAIT;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;
(continued on next page)

Sources for Sample Applications A-73

PROGRAM KEY IS GOLD "K"
NO CHECK;
RETURN "CHKOUT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A.2.3.6 AVERTZ GET RATES Procedure

IDENTIFICATION DIVISION.

PROGRAM- ID. AVERTZ_GET_RATES.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.
SUB-SCHEMA SECTION.

DB AVERTZSS WITHIN AVERTZSC FOR 11 AVERTZ$APPL:AVERTZSC.R00 11
•

WORKING-STORAGE SECTION.

01 LOC-NOT-FOUND PIC S9(9) COMP
VALUE IS EXTERNAL AVZ_LOCNOTFD.

01 DB-FAILURE PIC S9(9) COMP
VALUE IS EXTERNAL AVZ_DBFAIL.

Oi DBM$_END PIC S9(9) COMP
VALUE IS EXTERNAL DBM$_END.

01 STATUS-RESULT PIC S9(9) COMP.

LINKAGE SECTION.
COPY "CDD$TOP.AVERTZ.AVERTZ_WORKSPACE" FROM DICTIONARY.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR_TYPE'
FROM DICTIONARY
REPLACING ==CAR_TYPE. == BY ==CAR_TYPE_LINKAGE. ==.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.LOCATION'
FROM DICTIONARY
REPLACING ==LOCATION. ==BY ==LOCATION_LINKAGE.

PROCEDURE DIVISION USING AVERTZ_WORKSPACE
CAR_TYPE_LINKAGE
LOCATION_LINKAGE

GIVING STATUS-RESULT.

A-74 Sources for Sample Applications

MAIN SECTION .
010-FIND-LOCATION.

SET STATUS-RESULT TO SUCCESS.

INITIALIZE PROGRAM_REQUEST_KEY.

* Find the pickup location and move location information to the
* linkage record for display.

MOVE LO_CODE OF LOCATION_LINKAGE TO LO_CODE OF LOCATION.

FETCH FIRST LOCATION WITHIN LOCATION_CALC
USING LO_CODE OF LOCATION

ON ERROR
PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM.

MOVE LOCATION TO LOCATION_LINKAGE.

020-FIND-CAR-TYPE.

* Find the car type and move the rental rates to the linkage
* record for display.

MOVE CAR_TYPE_CODE OF CAR_TYPE_LINKAGE TO CAR_TYPE_CODE OF CAR_TYPE.

FETCH FIRST CAR_TYPE WITHIN TYPE_AVAILABLE
USING CAR_TYPE_CODE OF CAR_TYPE

ON ERROR
PERFORM 052-ERROR-CHECK THRU 052-ERROR-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM.

030-GET-RATES.
MOVE CAR_TYPE TO CAR_TYPE_LINKAGE.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* If location is not found, display a message; signal any other errors

IF DB-CONDITION EQUAL DBM$_END
MOVE LDC-NOT-FOUND TO STATUS-RESULT

ELSE
MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

050-ERROR-CHECK-EXIT.
EXIT.

(continued on next page)

Sources for Sample Applications A-75

052-ERROR-CHECK.
* If car type is not found, signal (form definition prevents user from
* entering a car type other than 01, 02, or 03)

IF DB-CONDITION EQUAL DBM$_END
THEN

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

052-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

A.2.3. 7 A VERTZ RESERVE CAR Procedure - -

IDENTIFICATION DIVISION.

PROGRAM-ID. AVERTZ_RESERVE_CAR.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.
SUB-SCHEMA SECTION.

DB AVERTZSS WITHIN AVERTZSC FOR "AVERTZ$APPL:AVERTZSC.R00".

WORKING-STORAGE SECTION.

01 COM-NOT-FOUND

01 CREDIT-BAD

01 DB-FAILURE

01 DBM$_END

01 DBM$_DUPNOTALL

01 STATUS-RESULT

LINKAGE SECTION .

PIC S9(9) COMP
VALUE IS EXTERNAL AVZ_COMNOTFD.

PIC S9(9) COMP
VALUE IS EXTERNAL AVZ_CREDITBD.

PIC S9(9) COMP
VALUE IS EXTERNAL AVZ_DBFAIL.

PIC S9(9) COMP
VALUE IS EXTERNAL DBM$_END.

PIC S9(9) COMP
VALUE IS EXTERNAL DBM$_DUPNOTALL.

PIC S9(9) COMP.

COPY "CDD$TOP.AVERTZ.AVERTZ_WORKSPACE" FROM DICTIONARY.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR_TYPE
FROM DICTIONARY
REPLACING ==CAR_TYPE. == BY ==CAR_TYPE_LINKAGE. ==.

COPY "CDD$TOP. AVERTZ. AVERTZSC. DBM$SUBSCHEMAS. AVERTZSS. DBM$RECORDS. COMPANY''
FROM DICTIONARY
REPLACING ==COMPANY. ==BY ==COMPANY_LINKAGE.

A-76 Sources for Sample Applications.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER"
FROM DICTIONARY
REPLACING ==CUSTOMER. == BY ==CUSTOMER_LINKAGE. ==.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.LOCATION"
FROM DICTIONARY
REPLACING ==LOCATION. ==BY ==LOCATION_LINKAGE. ==.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATION"
FROM DICTIONARY
REPLACING ==RESERVATION. == BY ==RESERVATION_LINKAGE.

PROCEDURE DIVISION USING AVERTZ_WORKSPACE
CAR_TYPE_LINKAGE
COMPANY_LINKAGE
CUSTOMER_ LINKAGE
LOCATION_LINKAGE
RESERVATION_LINKAGE

GIVING STATUS-RESULT.

MAIN SECTION.
010-COMPANY-CHECK.

SET STATUS-RESULT TO SUCCESS.

INITIALIZE PROGRAM_REQUEST_KEY.

* See whether customer is using a corporate account. If so,
* check that the company's credit is OK. If the credit is not OK,
* issue a message and roll back.

IF CO_NAME OF COMPANY_LINKAGE NOT EQUAL SPACES
THEN

PERFORM 015-CREDIT-CHECK THRU 015-CREDIT-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM
ELSE

GO TO 020-CUSTOMER-CHECK.

015-CREDIT-CHECK.
MOVE CO_NAME OF COMPANY_LINKAGE TO CO_NAME OF COMPANY.

FETCH FIRST COMPANY WITHIN COMPANY_CALC
USING CO_NAME OF COMPANY

ON ERROR
PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 015-CREDIT-CHECK-EXIT.

IF CO_CREDIT_CHECK OF COMPANY = "NO"
THEN

MOVE CREDIT-BAD TO STATUS-RESULT.

015-CREDIT-CHECK-EXIT.
EXIT.

(continued on next page)

Sources for Sample Applications A-77

020-CUSTOMER-CHECK.

* See whether customer is on file. If not, add new customer
* information. If the new customer is an employee of a company
* on file, connect the customer to the company.

MOVE CU_NAME OF CUSTOMER_LINKAGE TO CU_NAME OF CUSTOMER.

FETCH FIRST CUSTOMER WITHIN CUSTOMER_CALC USING
CU_NAME OF CUSTOMER

ON ERROR
PERFORM 025-NEW-CUSTOMER THRU 025-NEW-CUSTOMER-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

MOVE CUSTOMER TO CUSTOMER_LINKAGE.

GO TO 040-STORE-RESERVATION.

025-NEW-CUSTOMER.
IF DB-CONDITION EQUAL DBM$_END
THEN

PERFORM 028-ADD-CUSTOMER THRU 028-ADD-CUSTOMER-EXIT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

IF CO_NAME OF COMPANY_LINKAGE NOT EQUAL SPACES
THEN

CONNECT CUSTOMER TO EMPLOYEE.

025-NEW-CUSTOMER-EXIT.
EXIT.

028-ADD-CUSTOMER.
MOVE CU_NAME OF CUSTOMER_LINKAGE TO CU_NAME OF CUSTOMER.
MOVE SPACES TO CU_ADDR_DATA_t OF CUSTOMER.
MOVE SPACES TO CU_ADDR_DATA_2 OF CUSTOMER.
MOVE SPACES TO CU_CITY OF CUSTOMER.
MOVE SPACES TO CU_STATE OF CUSTOMER.
MOVE SPACES TO CU_POSTAL_CODE OF CUSTOMER.
MOVE SPACES TO CU_PHONE OF CUSTOMER.
MOVE SPACES TO CU_LICENSE_NO OF CUSTOMER.
MOVE SPACES TO CU_LICENSE_STATE OF CUSTOMER.

STORE CUSTOMER
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

028-ADD-CUSTOMER-EXIT.
EXIT.

A-78 Sources for Sample Applications

040-STORE-RESERVATION.

* Move reservation information into the reservation record for
* display and store the reservation under the customer and under
* the requested pickup location.

SET STATUS-RESULT TO SUCCESS.

MOVE LO_CODE OF LOCATION_LINKAGE TO LO_CODE OF LOCATION,
R_PICKUP_LOCATION OF RESERVATION.

FETCH FIRST LOCATION WITHIN LOCATION_CALC USING
LO_CODE OF LOCATION

ON ERROR
MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

ADD 1 TO LO_RES_NUM OF LOCATION.

MOVE LO_RES_NUM OF LOCATION TO RESERVATION_NUM OF RESERVATION.

MODIFY LO_RES_NUM OF LOCATION
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

MOVE CAR_TYPE_CODE OF CAR_TYPE_LINKAGE TO R_CAR_TYPE_CODE
OF RESERVATION.

MOVE R_PICKUP_DATE OF RESERVATION_LINKAGE TO R_PICKUP_DATE
OF RESERVATION.

STORE RESERVATION
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

MOVE •y• TO RES_MADE OF AVERTZ_WORKSPACE.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* If company not found, display an error message; signal any other errors

IF DB-CONDITION EQUAL DBM$_END
THEN

MOVE COM-NOT-FOUND TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

050-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Sources for Sample Applications A-79

A.2.4 Definitions for the Checkout Task

A.2.4.1 AVERTZ CHECKOUT TASK Definition - -

REPLACE TASK AVERTZ_CHECKOUT_TASK

WORKSPACES ARE
AVERTZ_WORKSPACE,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR_TYPE,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.COMPANY,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATION;

BLOCK WORK
EXCHANGE

NO EXCHANGE;
CONTROL FIELD IS RES_MADE

"Y" : GOTO STEP CHECK_CUSTOMER;
END CONTROL FIELD;

EXCHANGE
REQUEST IS AVERTZ_CHECKOUT_REQUEST1

USING ACMS$PROCESSING_STATUS, AVERTZ_WORKSPACE, COMPANY,
CUSTOMER, RESERVATION;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH DBMS RECOVERY "READY CONCURRENT RETRIEVAL"
CALL AVERTZ_FIND_RESERVATION IN AVERTZ_SERVER

USING AVERTZ_WORKSPACE, COMPANY, CUSTOMER, RESERVATION;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

CHECK_CUSTOMER:
EXCHANGE

REQUEST IS AVERTZ_CHECKOUT_REQUEST2
USING ACMS$PROCESSING_STATUS, AVERTZ_WORKSPACE, COMPANY,
CUSTOMER, RESERVATION;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH DBMS RECOVERY "READY CONCURRENT UPDATE"
CALL AVERTZ_ASSIGN_CAR IN AVERTZ_SERVER

USING AVERTZ_WORKSPACE, CAR, CUSTOMER, RESERVATION;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO STEP CHECK_CUSTOMER;

END CONTROL FIELD;

A-80 Sources for Sample Applications

EXCHANGE
REQUEST IS AVERTZ_CHECKOUT_REQUEST3

USING AVERTZ_WORKSPACE, CAR, RESERVATION;
CONTROL FIELD IS PROGRAM_REQUEST_KEY

"EXIT" : EXIT TASK;
END CONTROL FIELD;

END BLOCK WORK;

END DEFINITION;

A.2.4.2 AVERTZ CHECKOUT FORM1 Definition - -

C H E C K 0 U T F 0 R M
CustoMer InforMation

COMPanY: xxxxxxxxxxxxxxxxxxxx
CustoMer: XXXXXXXXXXXXXXXXXXX X XXXXXXXXXXXXXXX

Pickup date: 88-AAA-88

Address: xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

CitY: XXXXXXXXXXXXXXXXXXXXX State: AA Postal code: XXXXXXXX
Phone: XXX-XXX-XXXX
Driver's license nuMber: XXXXXXXXXXXX
State: AA

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Press GDLD-E to exit froM this task.

ZK-00057-00

Sources for Sample Applications A-81

A.2.4.3 AVERTZ CHECKOUT FORM2 Definition - -

C H E C K D U T F 0 R M
Car Inforr11ation

Reservation number: AA-888888888
Car tYPe: 989889898
Car number: 888889898
Model: AAAAAAAA Year: AA
Car license number: XXXXXXXXX State: AA

Press GOLD-E to exit from this task+

A.2.4.4 AVERTZ CHECKOUT REQUEST1 Definition - -

REPLACE REQUEST AVERTZ_CHECKOUT_REQUEST1

FORM IS CDD$TOP.AVERTZ.AVERTZ_CHECKOUT_FORM1;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.AVERTZ.AVERTZ_WORKSPACE;

ZK-00058-00

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.COMPANY;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVAT

A-82 Sources for Sample Applications

DESCRIPTION /* Accept company and customer names as input
for retrieving a reservation */;

USE FORM AVERTZ_CHECKOUT_FORM1;

OUTPUT 'Enter company (if any) and customer name. ' TO INFORM_LINE;

INPUT COMPANY TO CO_NAME,
FIRST_NAME TO CU_FIRST_NAME,
INITIAL TO CU_INITIAL,
LAST_NAME TO CU_LAST_NAME;

RETURN PICKUP_DATE TO R_PICKUP_DATE;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A.2.4.5 AVERTZ CHECKOUT REQUEST2 Definition - -
REPLACE REQUEST AVERTZ_CHECKOUT_REQUEST2

FORM IS CDD$TOP.AVERTZ.AVERTZ_CHECKOUT_FORM1;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.AVERTZ.AVERTZ_WORKSPACE;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.COMPANY;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATION;

DESCRIPTION /* Display customer data (if customer is on file) and
accept changes (or new information, if new customer */;

USE FORM AVERTZ_CHECKOUT_FORM1;

OUTPUT 'Enter or change customer data if necessary.•
TO INFORM_LINE;

OUTPUT CO_NAME
CU_FIRST_NAME
CU_INITIAL
CU_LAST_NAME
CU_ADDR_DATA_1
CU_ADDR_DATA_2
CU_CITY
CU_STATE
CU_POSTAL_CODE

TO COMPANY,
TO FIRST_NAME,
TO INITIAL,
TO LAST_NAME,
TO ADDRESS1,
TO ADDRESS2,
TO CITY,
TO STATE,
TO POSTAL_CODE,

(continued on next page)

Sources for Sample Applications A-83

CU_PHONE TO PHONE,
CU_LICENSE_NO TO LICENSE_NUMBER,
CU_LICENSE_STATE TO LICENSE_STATE;

INPUT ADDRESS! TO CU_ADDR_DATA_1,
ADDRESS2 TO CU_ADDR_DATA_2,
CITY TO CU_CITY,
STATE TO CU_STATE,
POSTAL_CODE TO CU_POSTAL_CODE,
PHONE TO CU_PHONE,
LICENSE_NUMBER TO CU_LICENSE_NO,
LICENSE_STATE TO CU_LICENSE_STATE;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

END DEFINITION;

A.2.4.6 AVERTZ CHECKOUT REQUEST3 Definition - -
REPLACE REQUEST AVERTZ_CHECKOUT_REQUEST3

FORM IS CDD$TOP.AVERTZ.AVERTZ_CHECKOUT_FORM2;

RECORD IS
CDD$TOP.AVERTZ.AVERTZ_WORKSPACE;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVAT:

DESCRIPTION /* Display information about the car checked out
to a customer */;

USE FORM AVERTZ_CHECKOUT_FORM2;

OUTPUT R_PICKUP_LOCATION TO LO_CODE,
RESERVATION_NUM TO RES_NUMBER,
CAR_TYPE_CODE TO CAR_TYPE_CODE,
CAR_NUM TO CAR_NUMBER,
CAR_MAKE TO CAR_MODEL,
CAR_YEAR TO CAR_YEAR,
LICENSE_NUM TO CAR_LICENSE,
LICENSE_STATE TO CAR_LICENSE_STATE;

WAIT;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

END DEFINITION;

A-84 Sources for Sample Applications

A.2.4.7 AVERTZ FIND RESERVATION Procedure

IDENTIFICATION DIVISION.

PROGRAM-ID. AVERTZ_FIND_RESERVATION.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.
SUB-SCHEMA SECTION.

DB AVERTZSS WITHIN AVERTZSC FOR "AVERTZ$APPL:AVERTZSC.R00".

WORKING-STORAGE SECTION.
01 COM-NOT-FOUND PIC S9(9) COMP

VALUE IS EXTERNAL AVZ_COMNOTFD.
01 CREDIT-BAD PIC S9(9) COMP

VALUE IS EXTERNAL AVZ_CREDITBD.
PIC S9(9) COMP 01 CUS-NOT-FOUND

01 RES-NOT-FOUND

01 DB-FAILURE

VALUE IS EXTERNAL AVZ_CUSNOTFD.
PIC S9(9) COMP

VALUE IS EXTERNAL AVZ_RESNOTFD.
PIC S9(9) COMP

VALUE IS EXTERNAL AVZ_DBFAIL.
01 DBM$_END PIC S9(9) COMP

VALUE IS EXTERNAL DBM$_END.
01 STATUS-RESULT PIC S9(9) COMP.

LINKAGE SECTION.
COPY "CDD$TOP.AVERTZ.AVERTZ_WORKSPACE" FROM DICTIONARY.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.COMPANY"
FROM DICTIONARY
REPLACING ==COMPANY. == BY ==COMPANY_LINKAGE. ==.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER"
FROM DICTIONARY
REPLACING ==CUSTOMER. == BY ==CUSTOMER_LINKAGE. ==.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATION"
FROM DICTIONARY
REPLACING ==RESERVATION. ==BY ==RESERVATION_LINKAGE.

PROCEDURE DIVISION USING AVERTZ_WORKSPACE
COMPANY_LINKAGE
CUSTOMER_LINKAGE
RESERVATION_LINKAGE

GIVING STATUS-RESULT.

MAIN SECTION.
010-GET-CUSTOMER-INFO.

SET STATUS-RESULT TO SUCCESS.

INITIALIZE PROGRAM_REQUEST_KEY.

(continued on next page}

Sources for Sample Applications A-85

* If customer is renting the car for a company, check the
* company's credit. If the credit is not OK, roll back.

IF CO_NAME OF COMPANY_LINKAGE NOT EQUAL SPACES
THEN

PERFORM 040-COMPANY-CHECK THRU 040-COMPANY-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM
ELSE

GO TO 030-FIND-RESERVATION.

030-FIND-RESERVATION.

* Find customer's reservation and move the customer record so it
* can be displayed.

MOVE CU_NAME OF CUSTOMER_LINKAGE TO CU_NAME OF CUSTOMER.

FETCH FIRST CUSTOMER WITHIN CUSTOMER_CALC USING
CU_NAME OF CUSTOMER

ON ERROR
PERFORM 052-ERROR-CHECK THRU 052-ERROR-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM.

MOVE R_PICKUP_DATE OF RESERVATION_LINKAGE TO R_PICKUP_DATE
OF RESERVATION.

FETCH FIRST RESERVATION WITHIN CUSTOMER_RESERVATION
USING R_PICKUP_DATE OF RESERVATION

ON ERROR
PERFORM 054-ERROR-CHECK THRU 054-ERROR-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM.

MOVE CUSTOMER TO CUSTOMER_LINKAGE.

GO TO 100-EXIT-PROGRAM.

040-COMPANY-CHECK.
MOVE CO_NAME OF COMPANY_LINKAGE TO CO_NAME OF COMPANY.

FETCH FIRST COMPANY WITHIN COMPANY_CALC
USING CO_NAME OF COMPANY

ON ERROR
PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 040-COMPANY-CHECK-EXIT.

A-86 Sources for Sample Applications

IF CO_CREDIT_CHECK OF COMPANY = "NO"
THEN

MOVE CREDIT-BAD TO STATUS-RESULT.

040-COMPANY-CHECK-EXIT.
EXIT.

050-ERROR-CHECK.
* If company is not found, return an error message; signal any
* other errors

IF DB-CONDITION EQUAL DBM$_END
THEN

MOVE COM-NOT-FOUND TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

050-ERROR-CHECK-EXIT.
EXIT.

052-ERROR-CHECK.
* If customer is not found, return an error message; signal any
* other errors

IF DB-CONDITION EQUAL DBM$_END
THEN

MOVE CUS-NOT-FOUND TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

052-ERROR-CHECK-EXIT.
EXIT.

054-ERROR-CHECK.
* If reservation is not found, return an error message; signal any
* other errors

IF DB-CONDITION EQUAL DBM$_END
THEN

MOVE RES-NOT-FOUND TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

054-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

(continued on next page)

Sources for Sample Applications A-87

A.2.4.8 AVERTZ ASSIGN CAR Procedure - -

IDENTIFICATION DIVISION.

PROGRAM-ID. AVERTZ_ASSIGN_CAR.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.
SUB-SCHEMA SECTION.

DB AVERTZSS WITHIN AVERTZSC FOR "AVERTZ$APPL:AVERTZSC.R00".

WORKING-STORAGE SECTION.

01 RECORD-LOCKED PIC S9(9) COMP
VALUE IS EXTERNAL AVZ_RECLOCK.

01 OUT-OF-CARS PIC S9(9) COMP
VALUE IS EXTERNAL AVZ_NOMORCAR.

01 DB-FAILURE PIC S9(9) COMP
VALUE IS EXTERNAL AVZ_DBFAIL.

01 DBM$_DEADLOCK PIC S9(9) COMP
VALUE IS EXTERNAL DBM$_DEADLOCK.

01 DBM$_END PIC S9(9) COMP
VALUE IS EXTERNAL DBM$_END.

01 STATUS-RESULT PIC S9(9) COMP.

LINKAGE SECTION.
COPY "CDD$TOP.AVERTZ.AVERTZ_WORKSPACE" FROM DICTIONARY.

COPY 11 CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR 11

FROM DICTIONARY
REPLACING ==CAR. == BY ==CAR_LINKAGE. ==.

COPY "CDD$TOP .AVERTZ .AVERTZSC. DBM$SUBSCHEMAS .AVERTZSS. DBM$RECORDS. CUSTOMER 11

FROM DICTIONARY
REPLACING ==CUSTOMER. == BY ==CUSTOMER_LINKAGE. ==.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATJ
FROM DICTIONARY
REPLACING ==RESERVATION. == BY ==RESERVATION_LINKAGE.

PROCEDURE DIVISION USING AVERTZ_WORKSPACE
CAR_LINKAGE
CUSTOMER_LINKAGE
RESERVATION_LINKAGE

GIVING STATUS-RESULT.

MAIN SECTION .
010-UPDATE-CUSTOMER.

SET STATUS-RESULT TO SUCCESS.

INITIALIZE PROGRAM_REQUEST_KEY.

A-88 Sources for Sample Applications

* Find the customer and modify the customer record if necessary;
* any error is fatal.

MOVE CU_NAME OF CUSTOMER_LINKAGE TO CU_NAME OF CUSTOMER.

FETCH FIRST CUSTOMER WITHIN CUSTOMER_CALC USING
CU_NAME OF CUSTOMER

ON ERROR
MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM.

MOVE CUSTOMER_LINKAGE TO CUSTOMER.

MODIFY CUSTOMER
ON ERROR

PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM.

* Find the customer's reservation (use the pickup date to distinguish,
*as customer may have several reservations). Any error is fatal.

020-FIND-RESERVATION.
MOVE R_PICKUP_DATE OF RESERVATION_LINKAGE TO R_PICKUP_DATE

OF RESERVATION.

FETCH FIRST RESERVATION WITHIN CUSTOMER_RESERVATION
USING R_PICKUP_DATE OF RESERVATION

ON ERROR
MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM.

MOVE RESERVATION_ID OF RESERVATION TO RESERVATION_ID
OF RESERVATION_LINKAGE.

* Find an available car at the pickup location. Move the car from the
* checked-in set to the checked-out set under the correct reservation.
* All errors are fatal.

030-ASSIGN-CAR.
FIND OWNER WITHIN LOCATION_RESERVATION.

MOVE R_CAR_TYPE_CODE OF RESERVATION TO CAR_TYPE_CODE OF CAR_TYPE.

FETCH FIRST CAR_TYPE WITHIN TYPE_AVAILABLE
USING CAR_TYPE_CODE OF CAR_TYPE

ON ERROR
MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

(continued on next page)

Sources for Sample Applications A-89

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM.

FETCH FIRST CAR WITHIN CHECKED_IN_CARS
ON ERROR

PERFORM 060-0UT-OF-CARS THRU 060-0UT-OF-CARS-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM.

MOVE CAR TO CAR_LINKAGE.

DISCONNECT FROM CHECKED_IN_CARS.

CONNECT TO CHECKED_OUT_CARS.

GO TO 100-EXIT-PROGRAM.

050-ERROR-CHECK.
* If customer record is locked, return an error message; signal any
* other errors

IF DB-CONDITION EQUAL DBM$_DEADLOCK
THEN

MOVE RECORD-LOCKED TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

050-ERROR-CHECK-EXIT.
EXIT.

060-0UT-OF-CARS.
* If location is out of cars of the requested type, find a car
* of another size.

IF DB-CONDITION EQUAL DBM$_END
THEN

EVALUATE CAR_TYPE_CODE OF CAR_TYPE
WHEN 1 PERFORM 070-0UT-OF-COMPACTS THRU 070-0UT-OF-COMPACTS-EXIT
WHEN 2 PERFORM 080-0UT-OF-MIDSIZE THRU 080-0UT-OF-MIDSIZE-EXIT
WHEN 3 PERFORM 090-0UT-OF-FULLSIZE THRU 090-0UT-OF-FULLSIZE-EXIT

END-EVALUATE
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

060-0UT-OF-CARS-EXIT.
EXIT.

070-0UT-OF-COMPACTS.

* Since all compact cars are checked out, try midsize cars; if midsize
* cars are all checked out, try fullsize cars. If those are gone,
* location is completely out of cars.

A-90 Sources for Sample Applications

FIND NEXT CAR_TYPE WITHIN TYPE_AVAILABLE
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

FETCH FIRST CAR WITHIN CHECKED_IN_CARS
ON ERROR

PERFORM 072-ERROR-CHECK THRU 072-ERROR-CHECK-EXIT.

070-0UT-OF-COMPACTS-EXIT.
EXIT.

072-ERROR-CHECK.
IF DB-CONDITION EQUAL DBM$_END
THEN

FIND NEXT CAR_TYPE WITHIN TYPE_AVAILABLE
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL 11 DBM$SIGNAL"

ELSE
MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL 11 •

FETCH FIRST CAR WITHIN CHECKED_IN_CARS
ON ERROR

PERFORM 074-ERROR-CHECK THRU 074-ERROR-CHECK-EXIT.

072-ERROR-CHECK-EXIT.
EXIT.

074-ERROR-CHECK.
IF DB-CONDITION EQUAL DBM$_END
THEN

MOVE OUT-OF-CARS TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL 11

•

074-ERROR-CHECK-EXIT.
EXIT.

080-0UT-OF-MIDSIZE.

* Since all midsize cars are checked out, try fullsize cars;
* if fullsize cars are all checked out, try compact cars. If
* those are gone, location is completely out of cars.

FIND NEXT CAR_TYPE WITHIN TYPE_AVAILABLE
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

FETCH FIRST CAR WITHIN CHECKED_IN_CARS
ON ERROR

PERFORM 082-ERROR-CHECK THRU 082-ERROR-CHECK-EXIT.

080-0UT-OF-MIDSIZE-EXIT.
EXIT.

(continued on next page)

Sources for Sample Applications A~91

082-ERROR-CHECK.
IF DB-CONDITION EQUAL DBM$_END
THEN

ELSE

FIND PRIOR CAR_TYPE WITHIN TYPE_AVAILABLE
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL"

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

FETCH FIRST CAR WITHIN CHECKED_IN_CARS
ON ERROR

PERFORM 084-ERROR-CHECK THRU 084-ERROR-CHECK-EXIT.

082-ERROR-CHECK-EXIT.
EXIT.

084-ERROR-CHECK.
IF DB-CONDITION EQUAL DBM$_END
THEN

MOVE OUT-OF-CARS TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

084-ERROR-CHECK-EXIT.
EXIT.

090-0UT-OF-FULLSIZE.

* Since all fullsize cars are checked out, try midsize cars; if
* rnidsize cars are all checked out, try compact cars. If those
* are gone, location is ,completely out of cars.

FIND PRIOR CAR_TYPE WITHIN TYPE_AVAILABLE
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

FETCH FIRST CAR WITHIN CHECKED_IN_CARS
ON ERROR

PERFORM 092-ERROR-CHECK THRU 092-ERROR-CHECK-EXIT.

090-0UT-OF-FULLSIZE-EXIT.
EXIT.

092-ERROR-CHECK.
IF DB-CONDITION EQUAL DBM$_END
THEN

ELSE

FIND PRIOR CAR_TYPE WITHIN TYPE_AVAILABLE
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL"

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

A-92 Sources for Sample Applications

FETCH FIRST CAR WITHIN CHECKED_IN_CARS
ON ERROR

PERFORM 094-ERROR-CHECK THRU 094-ERROR-CHECK-EXIT.

092-ERROR-CHECK-EXIT.
EXIT.

094-ERROR-CHECK.
IF DB-CONDITION EQUAL DBM$_END
THEN

MOVE OUT-OF-CARS TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL 11 DBM$SIGNAL 11 •

094-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Sources for Sample Applications A-93

A.2.5 Definitions for the Checkin Task

A.2.5.1 AVERTZ CHECKIN TASK Definition - -

REPLACE TASK AVERTZ_CHECKIN_TASK

WORKSPACES ARE
AVERTZ_WORKSPACE,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CAR_TYPE,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.COMPANY,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER,
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATION

BLOCK WORK
EXCHANGE

REQUEST IS AVERTZ_CHECKIN_REQUEST1
USING ACMS$PROCESSING_STATUS, AVERTZ_WORKSPACE, COMPANY,
CUSTOMER, RESERVATION;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH DBMS RECOVERY "READY CONCURRENT RETRIEVAL"
CALL AVERTZ_CHECKIN IN AVERTZ_SERVER

USING AVERTZ_WORKSPACE, COMPANY, CUSTOMER, RESERVATION;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

EXCHANGE
REQUEST IS AVERTZ_CHECKIN_REQUEST2

USING ACMS$PROCESSING_STATUS, AVERTZ_WORKSPACE, CUSTOMER,
RESERVATION;

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"EXIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH DBMS RECOVERY "READY CONCURRENT UPDATE"
CALL AVERTZ_RETURN_CAR IN AVERTZ_SERVER

USING AVERTZ_WORKSPACE, CUSTOMER, RESERVATION;
CONTROL FIELD IS ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
REPEAT TASK;

END CONTROL FIELD;

END BLOCK WORK;

END DEFINITION;

A-94 Sources for Sample Applications

A.2.5.2 AVERTZ CHECKIN FORM Definition - -

C H E C K I N F 0 R M

ComPanY: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Customer: XXXXXXXXXXXXXXXXXXXXX X XXXXXXXXXXXXXXXXXXXXXXX
Reservation number: AA-989898999998

Amount owed: 89889.98

xx
xxx

A.2.5.3 AVERTZ CHECKIN REQUEST1 Definition - -

REPLACE REQUEST AVERTZ_CHECKIN_REQUEST1

FORM IS CDD$TOP.AVERTZ.AVERTZ_CHECKIN_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.AVERTZ.AVERTZ_WORKSPACE;

ZK-00059-00

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.COMPANY;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATION;

(continued on next page)

Sources for Sample Applications A-95

DESCRIPTION /* Accept company and customer names and a
reservation number for a returned car */;

USE FORM AVERTZ_CHECKIN_FORM;

OUTPUT 'Enter company (if any), customer name, and reservation number.•
TO INFORM_LINE,

'Press GOLD-E to exit from this task.' TO PRK_LINE;

INPUT COMPANY
FIRST_NAME
INITIAL
LAST_NAME
LO_CODE
RES_NUMBER

TO CO_NAME,
TO CU_FIRST_NAME,
TO CU_INITIAL,
TO CU_LAST_NAME,
TO R_PICKUP_LOCATION,
TO RESERVATION_NUM;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A.2.5.4 AVERTZ CHECKIN REQUEST2 Definition - -

REPLACE REQUEST AVERTZ_CHECKIN_REQUEST2

FORM IS CDD$TOP.AVERTZ.AVERTZ_CHECKIN_FORM;

RECORD IS
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS;

RECORD IS
CDD$TOP.AVERTZ.AVERTZ_WORKSPACE;

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER

RECORD IS
CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVAT

DESCRIPTION /* Display the amount owed by the customer */;

USE FORM AVERTZ_CHECKIN_FORM;

OUTPUT ' ' TO INFORM_LINE,
'Press GOLD-E to exit, RETURN to continue.' TO PRK_LINE;

OUTPUT TOTAL_OWED TO TOTAL_OWED;

WAIT;

PROGRAM KEY IS GOLD "E"
NO CHECK;
RETURN "EXIT" TO PROGRAM_REQUEST_KEY;

END PROGRAM KEY;

A-96 Sources for Sample Applications

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : MESSAGE LINE IS ACMS$T_STATUS_MESSAGE;

END CONTROL FIELD;

END DEFINITION;

A.2.5.5 AVERTZ CHECKIN Procedure

IDENTIFICATION DIVISION.

PROGRAM-ID. AVERTZ_CHECKIN.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.
SUB-SCHEMA SECTION.

DB AVERTZSS WITHIN AVERTZSC FOR 11AVERTZ$APPL:AVERTZSC.R00 11
•

WORKING-STORAGE SECTION.
01 GUS-NOT-FOUND PIC 89(9) COMP

VALUE IS EXTERNAL AVZ_CUSNOTFD.
PIC S9(9) COMP 01 RES-NOT-FOUND

01 COM-NOT-FOUND

01 DB-FAILURE

VALUE IS EXTERNAL AVZ_RESNOTFD.
PIC 89(9) COMP

VALUE IS EXTERNAL AVZ_COMNOTFD.
PIC 89(9) COMP

VALUE IS EXTERNAL AVZ_DBFAIL.
01 DBM$_END PIC S9 (9) COMP

VALUE IS EXTERNAL DBM$_END.
01 STATUS-RESULT PIC 89(9) COMP.

LINKAGE SECTION.
COPY "CDD$TOP.AVERTZ.AVERTZ_WORKSPACE"

FROM DICTIONARY
REPLACING ==AVERTZ_WORKSPACE. == BY ==AVERTZ_WORKSPACE_LINKAGE.

COPY 11 CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.COMPANY11

FROM DICTIONARY
REPLACING ==COMPANY. ==BY ==COMPANY_LINKAGE. ==.

COPY 11 CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER11

FROM DICTIONARY
REPLACING ==CUSTOMER. == BY ==CUSTOMER_LINKAGE. ==.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATION"
FROM DICTIONARY
REPLACING ==RESERVATION. ==BY ==RESERVATION_LINKAGE.

PROCEDURE DIVISION USING AVERTZ_WORKSPACE_LINKAGE
COMPANY_LINKAGE
CUSTOMER_LINKAGE
RESERVATION_LINKAGE

GIVING STATUS-RESULT.
(continued on next page)

Sources for. Sample Applications A-97

MAIN SECTION.
010-FIND-RESERVATION.

SET STATUS-RESULT TO SUCCESS.

INITIALIZE PROGRAM_REQUEST_KEY.

* Find the customer and the reservation.

MOVE CU_NAME OF CUSTOMER_LINKAGE TO CU_NAME OF CUSTOMER.

FETCH FIRST CUSTOMER WITHIN CUSTOMER_CALC USING
CU_NAME OF CUSTOMER

ON ERROR
PERFORM 050-ERROR-CHECK THRU 050-ERROR-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM.

MOVE RESERVATION_ID OF RESERVATION_LINKAGE TO RESERVATION_ID
OF RESERVATION.

FETCH FIRST RESERVATION WITHIN CUSTOMER_RESERVATION
USING RESERVATION_ID OF RESERVATION

ON ERROR
PERFORM 052-ERROR-CHECK THRU 052-ERROR-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 100-EXIT-PROGRAM.

* Find the rates based on the car type.

FETCH FIRST CAR WITHIN CHECKED-OUT-CARS
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

* See whether you gave the customer the size of car he asked for. If
* he got a bigger car than he requested, charge him the rates for the
* type requested. If he got a smaller car, charge him the rates for
* the type he got.

IF R_CAR_TYPE_CODE OF RESERVATION GREATER THAN CAR_TYPE_CODE OF CAR
THEN

MOVE CAR_TYPE_CODE OF CAR TO CAR_TYPE_CODE OF CAR_TYPE
ELSE

MOVE R_CAR_TYPE_CODE OF RESERVATION TO CAR_TYPE_CODE OF CAR_TYPE.

FIND OWNER WITHIN LOCATION_RESERVATION.

FETCH FIRST CAR_TYPE WITHIN TYPE_AVAILABLE USING
CAR_TYPE_CODE OF CAR_TYPE

ON ERROR
MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

A-98 Sources for Sample Applications

020-COMPUTE-CHARGES.

* Call LIB$DAY to get the number of days between 17 November, 1858,
* and the current date.

CALL "LIB$DAY" USING BY REFERENCE NUM-DAY
BY VALUE 0

GIVING STATUS-RESULT.

IF STATUS-RESULT NOT SUCCESS
THEN

CALL "LIB$SIGNAL" USING STATUS-RESULT.

MOVE NUM-DAY TO DAYS_TO_CURRENT.

* Call LIB$DAY to get the number of days between 17 November, 1858,
* and the rental date.

CALL "LIB$DAY" USING BY REFERENCE NUM-DAY
R_PICKUP_DATE OF RESERVATION

GIVING STATUS-RESULT.

IF STATUS-RESULT NOT SUCCESS
THEN

CALL "LIB$SIGNAL" USING STATUS-RESULT.

MOVE NUM-DAY TO DAYS_TO_RENTAL.

SUBTRACT DAYS_TO_RENTAL FROM DAYS_TO_CURRENT GIVING DAYS_RENTED.

IF DAYS_RENTED = 0
THEN

ADD 1 TO DAYS_RENTED.

IF DAYS_RENTED GREATER THAN 30
THEN

MULTIPLY DAILY_RATE_GT_30_DAYS OF CAR_TYPE
BY DAYS_RENTED GIVING TOTAL_OWED OF AVERTZ_WORKSPACE_LINKAGE

ELSE
IF DAYS_RENTED LESS THAN 7
THEN

MULTIPLY DAILY_RATE_LT_7_DAYS OF CAR_TYPE
BY DAYS_RENTED GIVING TOTAL_OWED OF AVERTZ_WORKSPACE_LINKAGE

ELSE
MULTIPLY DAILY_RATE_GT_7_LT_30_DAYS OF CAR_TYPE
BY DAYS_RENTED GIVING TOTAL_OWED OF AVERTZ_WORKSPACE_LINKAGE

END-IF
END-IF.

* See whether this was a business rental and apply the corporate
* discount, if any.

IF CO_NAME OF COMPANY_LINKAGE NOT EQUAL SPACES
THEN

PERFORM 054-COMPANY-DISCOUNT THRU 054-COMPANY-DISCOUNT-EXIT.

GO TO 100-EXIT-PROGRAM.
(continued on next page)

Sources for Sample Applications A-99

050-ERROR-CHECK.
* If customer is not found, r~turn an error message; signal any
* other errors

IF DB-CONDITION EQUAL DBM$_END
THEN

MOVE CUS-NOT-FOUND TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

050-ERROR-CHECK-EXIT.
EXIT.

052-ERROR-CHECK.
* If reservation is not found, return an error message; signal any other
* errors

IF DB-CONDITION EQUAL DBM$_END
THEN

MOVE RES-NOT-FOUND TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

052-ERROR-CHECK-EXIT.
EXIT.

054-COMPANY-DISCOUNT.
* If this is a corporate rental, check for company discount and apply
* to rates.

MOVE CO_NAME OF COMPANY_LINKAGE TO CO_NAME OF COMPANY.

FETCH FIRST COMPANY WITHIN COMPANY_CALC
USING CO_NAME OF COMPANY

ON ERROR
PERFORM 056-ERROR-CHECK THRU 056..,.ERROR-CHECK-EXIT.

IF STATUS-RESULT NOT SUCCESS
THEN

GO TO 054-COMPANY-DISCOUNT-EXIT.

IF CO_DISCOUNT OF COMPANY NOT = ZEROS
THEN

COMPUTE TOTAL_OWED OF AVERTZ_WORKSPACE_LINKAGE =
TOTAL_OWED OF AVERTZ_WORKSPACE_LINKAGE -

(TDTAL_OWED OF AVERTZ_WORKSPACE_LINKAGE *
(CO_DISCOUNT OF COMPANY / 100))

END-IF.

054-COMPANY-DISCOUNT-EXIT.
EXIT.

A-100 Sources for Sample Applications

056-ERROR-CHECK.
* If company is not found, return an error message; signal any
* other errors

IF DB-CONDITION EQUAL DBM$_END
THEN

MOVE COM-NOT-FOUND TO STATUS-RESULT
ELSE

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

056-ERROR-CHECK-EXIT.
EXIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

A.2.5.6 AVERTZ RETURN CAR Procedure - -

IDENTIFICATION DIVISION.

PROGRAM-ID. AVERTZ_RETURN_CAR.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.
SUB-SCHEMA SECTION.

DB AVERTZSS WITHIN AVERTZSC FOR 11AVERTZ$APPL:AVERTZSC.R00 11
•

WORKING-STORAGE SECTION.
01 DB-FAILURE PIC S9(9) COMP

VALUE IS EXTERNAL AVZ_DBFAIL.
01 STATUS-RESULT PIC S9(9) COMP.

LINKAGE SECTION.
COPY 11 CDD$TOP.AVERTZ.AVERTZ_WORKSPACE 11 FROM DICTIONARY.

COPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.CUSTOMER"
FROM DICTIONARY
REPLACING ==CUSTOMER. == BY ==CUSTOMER_LINKAGE. ==.

~OPY "CDD$TOP.AVERTZ.AVERTZSC.DBM$SUBSCHEMAS.AVERTZSS.DBM$RECORDS.RESERVATION"
FROM DICTIONARY
REPLACING ==RESERVATION. ==BY ==RESERVATION_LINKAGE.

>ROCEDURE DIVISION USING AVERTZ_WORKSPACE
CUSTOMER_LINKAGE
RESERVATION_LINKAGE

GIVING STATUS_RESULT.
(continued on next page)

Sources for Sample Applications A-101

MAIN SECTION.
010-RETURN-CAR.

SET STATUS-RESULT TO SUCCESS.

INITIALIZE PROGRAM_REQUEST_KEY.

* Find customer; any error is fatal.

MOVE CU_NAME OF CUSTOMER_LINKAGE TO CU_NAME OF CUSTOMER.

FETCH FIRST CUSTOMER WITHIN CUSTOMER_CALC USING
CU_NAME OF CUSTOMER

ON ERROR
MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

* Find reservation; any error is fatal.

MOVE RESERVATION_ID OF RESERVATION_LINKAGE TO RESERVATION_ID
OF RESERVATION.

FETCH FIRST RESERVATION WITHIN CUSTOMER_RESERVATION USING
RESERVATION_ID OF RESERVATION

ON ERROR
MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL 11 •

* Find the car, the location, and the car type; disconnect the car
* from the checked-out set and connect it back to the checked-in set.
* Any errors are fatal.

FETCH FIRST CAR WITHIN CHECKED_OUT_CARS
ON ERROR

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

MOVE R_PICKUP_LOCATION OF RESERVATION TO LO_CODE OF LOCATION.

FETCH FIRST LOCATION WITHIN LOCATION_CALC USING
LO_CODE OF LOCATION

ON ERROR
MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

MOVE CAR_TYPE_CODE OF CAR TO CAR_TYPE_CODE OF CAR_TYPE.

FETCH FIRST CAR_TYPE WITHIN TYPE_AVAILABLE USING
CAR_TYPE_CODE OF CAR_TYPE

ON ERROR
MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

FIND CURRENT CAR.

DISCONNECT FROM CHECKED_OUT_CARS.

CONNECT TO CHECKED_IN_CARS.

A-102 Sources for Sample Applications

* Find customer's reservation and disconnect it.

FIND CURRENT RESERVATION.

DISCONNECT RESERVATION FROM LOCATION_RESERVATION.

GO TO 100-EXIT-PROGRAM.

100-EXIT-PROGRAM.
EXIT PROGRAM.

A.2.6 Server Procedures

A.2.6.1 Initialization Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. AVERTZ_STARTUP.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.
SUB-SCHEMA SECTION.
DB AVERTZSS WITHIN AVERTZSC FOR "AVERTZ$APPL:AVERTZSC.R00".

WORKING-STORAGE SECTION.
01 DB-FAILURE PIC S9(9) COMP

VALUE IS EXTERNAL AVZ_DBFAIL.
01 STATUS-RESULT PIC S9(9) COMP.

PROCEDURE DIVISION GIVING STATUS-RESULT.
DECLARATIVES.
DATABASE-EXCEPTIONS SECTION.

USE FOR DB-EXCEPTION.
FILE-CHECKING.

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

END DECLARATIVES.

MAIN SECTION.
000-START.

SET STATUS-RESULT TO SUCCESS.
READY CONCURRENT UPDATE.
COMMIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Sources for Sample Applications A-103

A.2.6.2 Termination Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. AVERTZ_SHUTDOWN.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.
SUB-SCHEMA SECTION.
DB AVERTZSS WITHIN AVERTZSC FOR "AVERTZ$APPL:AVERTZSC.R00".

WORKING-STORAGE SECTION.
01 DB-FAILURE PIC S9(9) COMP

VALUE IS EXTERNAL AVZ_DBFAIL.
01 STATUS-RESULT PIC S9(9) COMP.

PROCEDURE DIVISION GIVING STATUS-RESULT.
DECLARATIVES.
DATABASE-EXCEPTIONS SECTION.

USE FOR DB-EXCEPTION.
FILE-CHECKING.

MOVE DB-FAILURE TO STATUS-RESULT
CALL "DBM$SIGNAL".

END DECLARATIVES.

MAIN SECTION.
000-START.

SET STATUS-RESULT TO SUCCESS.
READY CONCURRENT UPDATE.
COMMIT.

100-EXIT-PROGRAM.
EXIT PROGRAM.

A.2. 7 Request Library Definition

REPLACE LIBRARY AVERTZ_REQLIB

REQUEST IS AVERTZ_RESERVE_REQUEST1;
REQUEST IS AVERTZ_RESERVE_REQUEST2;
REQUEST IS AVERTZ_RESERVE_REQUEST3;
REQUEST IS AVERTZ_CHECKOUT_REQUEST1;
REQUEST IS AVERTZ_CHECKOUT_REQUEST2;
REQUEST IS AVERTZ_CHECKOUT_REQUEST3;
REQUEST IS AVERTZ_CHECKIN_REQUEST1;
REQUEST IS AVERTZ_CHECKIN_REQUEST2;

END DEFINITION;

A-104 Sources for Sample Applications

A.2.8 Task Group Definition

REPLACE GROUP AVERTZ_TASK_GROUP

REQUEST LIBRARY IS "AVERTZ$APPL:AVERTZ_REQLIB.RLB";

MESSAGE FILE IS "AVERTZ$APPL:AVZMSG.EXE";

TASKS ARE
AVERTZ_RESERVE_TASK
AVERTZ_CHECKOUT_TASK
AVERTZ_CHECKIN_TASK

END TASKS;

SERVER IS AVERTZ_SERVER:

TASK IS AVERTZ_RESERVE_TASK;
TASK IS AVERTZ_CHECKOUT_TASK;
TASK IS AVERTZ_CHECKIN_TASK;

PROCEDURE SERVER IMAGE IS "AVERTZ$APPL:AVERTZ.EXE";
PROCEDURES ARE

AVERTZ~GET_RATES, AVERTZ_RESERVE_CAR, AVERTZ_FIND_RESERVATION,
AVERTZ_ASSIGN_CAR, AVERTZ_CHECKIN, AVERTZ_RETURN_CAR;

INITIALIZATION PROCEDURE IS AVERTZ_STARTUP;
TERMINATION PROCEDURE IS AVERTZ_SHUTDOWN;
DEFAULT OBJECT FILE IS "AVERTZ$0BJ:AVERTZ.OBJ";

END SERVER;

END DEFINITION;

A.2.9 Message File

.TITLE AVERTZMSG Messages for AVERTZ Application

.!DENT /Version 1.0/

.FACILITY AVERTZ,13 /PREFIX=AVZ_

.SEVERITY WARNING
COMNOTFD <No company with this name is an AVERTZ customer; please try again>
CREDITBD <Company's credit rating is bad; credit denied>
CUSNOTFD <No customer with this name is in the database; please try again>
LOCNOTFD <No AVERTZ location has this location code; please try again>
NOMORCAR <This location completely out of cars; notify management>
RECLOCK <Record locked by another user; please try again>
RESNOTFD <No reservation was found for this customer>

.SEVERITY FATAL
DBFAIL <Database contains invalid data. Notify administrator.>
.END

Sources for Sample Applications A-105

A.2.1 O Application Definition

REPLACE APPLICATION AVERTZ_APPL

AUDIT;
APPLICATION USERNAME IS AVZ$EXC;

SERVER DEFAULTS ARE
AUDIT;
USERNAME,IS AVZ$SERVER;
MAXIMUM SERVER PROCESSES IS 2;
MINIMUM SERVER PROCESSES IS O;

END SERVER DEFAULTS;

TASK DEFAULTS ARE
AUDIT;

END TASK DEFAULTS;

TASK GROUP IS
AVERTZ_TASK_GROUP TASK GROUP FILE IS

"AVERTZ$APPL:AVERTZ_TASK_GROUP.TDB";
END TASK GROUP;

END DEFINITION;

A.2.11 Menu Definition

REPLACE MENU AVERTZ_MENU

HEADER IS II

ENTRIES ARE

AVERTZ CAR RENTAL SYSTEM";

RESERVE TASK IS AVERTZ_RESERVE_TASK IN AVERTZ_APPL;
TEXT IS "Make Reservation";

CHECKOUT TASK IS AVERTZ_CHECKOUT_TASK IN AVERTZ_APPL;
TEXT IS "Check Out Car";

CHECKIN TASK IS AVERTZ_CHECKIN_TASK IN AVERTZ_APPL;
TEXT IS "Check In Car";

END ENTRIES;

END DEFINITION;

A-106 Sources for Sample Applications

In this index. a page number
followed by "t" indicates a
table reference. A page number
followed by "f" indicates a
figure reference.

A

Access modes
for DAT A TRI EVE databases. 5-2
for DBMS databases, 2-30
for Rdb/VMS databases, 2-14

ACMS, 4-1
ACMS$DIRECTORY logical name.

4-37
ACMS$PROCESSING STATUS

workspace. 4-5, 4-36
ADU

defining applications with, 4-38
defining menus with, 4-3 9
defining task groups with, 4-34
defining tasks with, 4-5
exiting from. 4-11

After-image journal files. 2-28
Application characteristics. 4-38

Application databases. 4-3 7
Application Definition Utility

See ADU

Index

Application definitions. 4-2, 4-38
Application execution controller, 4-38
Areas. 2-21

files for, 2-28
schema entries for, 2-21

Assign phase of form editor, 3-7
Assignment statements (DTR), 5-6
AT BOTTOM statement (DTR), 5-10,

5-14
AT statement (DTR.). 5-9
AT TOP statement (DTR). 5-10, 5-14
/AUDIT qualifier

on CDDL command. 3-17
on DMU CREATE command, 1-4

Audit Trail (ACMS,, 4-38
Automatic insertion of DBMS

records. 2-23

B
Bachman diagram of DBMS database,

2-20f
Background text of forms, 3-4, 3-5
Base of request, 3-10
BASED ON clause (RDO), 2-7
BIND command (DBQ), 2-30
Block steps, 4-4

lndex-1

defining, 4-9
parts of, 4-8

BLOCK WORK keywords (ADU), 4-9
BUILD LIBRARY command (RDU),

3-19
Building

c

application databases, 4-3 7
menu databases, 4-3 7
request library files, 3-19
task group databases, 4~34

CALC sets, 2-24
CALL clause (ADU), 4-6
CDD. 1-2

application definitions in, 4-38
copying definitions in procedures.

4-11
creating directories in, 1-4
DAT ATRIEVE definitions in, 5-2
DBMS database hierarchy, 2-25
DBMS definitions in, 2-24
Dictionary Management Utility

(DMU), 1-4
directories in, 1-2
directory hierarchy in, 1-3£
displaying objects in, 1-5
form definitions in, 3-9
given names in, 1-4
history lists in, 1-4
menu definitions in, 4-3 9
path names in, 1-3
plot definitions in, 5-1 7
Rdb/VMS database hierarchy, 2-11
Rdb/VMS definitions in, 2-10
request library definitions in, 3-19
setting default directory in, 1-5
storing procedure definitions in, 5-5
structure of, 1-2
task definitions in, 4-11
task group definitions in, 4-34
workspace definitions in, 3-15

CDD$DEFAULT logical name, 1-5
CDD$TOP directory, 1-2

lndex-2

CDDL, 3-15 to 3-17
CHAIN sets, 2-24
Chaining tasks, 4-22
Charts

multiple-bar, 5-18
pie, 5-17

CHECK clause (RDO), 2-10
COBOL

writing procedures in, 4-11
Comments in DAT ATRIEVE proce

dures, 5-7
COMMIT statement

in DBQ, 2-31
in RDO, 2-15

Common Data Dictionary
SeeCDD

Compiling
procedures, 4-15
schemas, 2-24
storage schemas, 2-28
subschemas, 2-27
workspace definitions, 3-1 7

COMPUTED BY clause (DTR), 5-13
Concatenating strings in

DATATRIEVE, 5-10
Conditional expressions, 5-13
CONNECT statement (DBQ), 2-33
Constraints, 2-9
Context variables

in DATATRIEVE, 5-3
in RDO, 2-8

CONTROL FIELD clause (ADU), 4-6
in exchange steps, 4-6
in processing steps, 4-8

CONTROL FIELD IS instruction
(RDU), 3-12

Control fields, 3-12
Control groups in DATATRIEVE

reports, 5-10
CREATE command

in ADU, 4-10
in DMU, 1-4

CREATE FORM command (FDU),
3-3

CREATE LIBRARY command
(RDU), 3-19

CREATE REQUEST command
(RDU), 3-17

Creating databases
DBMS, 2-28
RdbNMS, 2-10

CROSS clause

D

in DATATRIEVE, 5-3
in RDO, 2-8

Data definition language
SeeDDL

Database instances, 5-2
Database Operator utility

SeeDBO
Database Query utility

SeeDBQ
Databases

See also DBMS databases
See also RdbNMS databases
application, 4-3 7
creating DAT ATRIEVE instances

of, 5-2
DBMS, 2-18 to 2-34
ending DAT A TRI EVE access to,

5-2
menu, 4-37
network, 2-18
RdbNMS, 2-2 to 2-17
readying for DATATRIEVE, 5-2
relational, 2-2
retrieving data from with

DATATRIEVE, 5-3
task group, 4-34

DATATRIEVE, 5-1
exiting from, 5-2

Date fields on forms, 3-5
DB statement (COBOL), 4-26
DBMS, 2-1
DBMS databases. 2-18 to 2-34

accessing from DATATRIEVE, 5-2
after-image journal files, 2-28

area files, 2-28
binding, 2-29
CALC sets in, 2-24
CHAIN sets in, 2-24
committing changes to, 2-31
compiling schemas for, 2-24
connecting records in, 2-33
controlling access to, 2-30
creating, 2-28
defining, 2-21 to 2-24
designing, 2-19
disconnecting records in, 2-33
displaying record definitions in,

2-25
finishing, 2-30
hierarchy of in CDD, 2-25
inserting in CDD, 2-24
insertion options, 2-23
modifying records in, 2-33
navigating with FOR loops (DTR),

5-4
order options, 2-23
readying, 2-30
readying for DATATRIEVE, 5-2
retention options, 2-23
rolling back changes to, 2-31
root files, 2-28
snapshot files, 2-28
storing records in, 2-29, 2-31
transactions in, 2-30

DBO, 2-27
creating databases with, 2-28
extracting storage schemas with,

2-27
extracting subschemas with, 2-27

DBO/CREATE command, 2-28
DBQ

exiting from. 2-30
testing DML with, 2-29

DDL
defining areas with, 2-21
defining records with, 2-22
defining schemas with. 2-21
defining sets with, 2-22

DDL/COMPILE command. 2-24

lndex-3

DDL/REPLACE command, 2-25
ID EB U G qualifier

for compiling step procedures, 4-15
Debugging tasks, 4-36
DECLARE statement (DTR), 5-6
Default dictionary directory, 1-3
DEFINE CONSTRAINT statement

(RDO), 2-10
DEFINE DATABASE

DATATRIEVE command, 5-2
RDO statement, 2-5

DEFINE FIELD statement (RDO),
2-5

DEFINE INDEX statement (RDrn,
2-9

DEFINE PROCEDURE command
(DTR), 5-5

DEFINE RELATION statement
(RDO), 2-7

DEFINE statement (CDDL), 3-16
DEFINE VIEW statement (RDO), 2-8
Defining forms, 3-3 to 3-10
Defining request libraries, 3-19
Defining requests, 3-10 to 3-15
Defining workspaces, 3-15 to 3-1 7
DESCRIPTION

CDDL statement, 3-16
RDO clause, 2-5
RDU statement, 3-10

Dictionary. 1-2 to 1-5
directories in, 1-2
objects in, 1-2

Dictionary Management Utility
SeeDMU

DISCONNECT statement (DBQ),
2-33

Display-only fields, 3-9
Distributed environment for ACMS,

4-3
DMU, 1-4

creating directories with. 1-4
displaying objects with, 1-5
exiting from. 1-4
extracting definitions with, 1-5
setting default directory with, 1-5

lndex-4

DUPLICATES ARE NOT
ALLOWED clause (RDO), 2-9

E
EDIT command (DTR), 5-5
EDIT STRING clause

in DATATRIEVE, 5-14
in RDO, 2-6

END BLOCK WORK keywords
(ADU), 4-9

END DEFINITION
ADU keywords, 4-9
RDU instruction, 3-13

END statement (CDDL), 3-16
END PROCEDURE command

(DTR), 5-6
END REPORT statement (DTR), 5-9
Entries

area, 2-21
record, 2-22
schema, 2-21
set, 2-22

Error handling in tasks, 4-5, 4-8,
4-23, 4-35

Error messages
associating with control fields, 3-12
displaying with requests, 3-12
storing in message files, 4-35

EXCHANGE keyword (ADU), 4-6
Exchange steps, 4-2, 4-4

defining, 4-6
repeating, 4-8

Exit phase of form editor, 3-9
EXIT TASK clause (ADU), 4-6
EXTRACT command (DMU), 1-5

F
FDU

defining forms with, 3-3
exiting from. 3-10

Field identifiers, 3-5
Field mode in form editor, 3-5
Fields

defining with RDO, 2-5

displaying in RDO, 2-11
global, 2-7
group. 2-27
in CDD records, 3-16
in Rdb/VMS relations, 2-2
on TDMS forms. 3-4

FINISH command (DTR), 5-2
FINISH statement (RDO), 2-13
Fixed retention of DBMS records.

2-23
FN$WIDTH function (DTR), 5-4
FOR statement (DTR), 5-4
Form Definition Utility

SeeFDU
Form definitions

creating, 3-3
displaying. 3-10
modifying. 3-3
storing in CDD, 3-9

Form editor
Assign phase of, 3-7
defining TDMS forms with, 3-3
Exit phase of, 3-9
Form phase of, 3-4
Layout phase of, 3-4
Order phase of, 3-9

FORM IS instruction (RDU), 3-10
Form phase of form editor, 3-4
Forms, 3-1

assigning attributes for, 3-7
assigning field names for, 3-8
collecting input from, 3-11, 3-14
defining, 3-3 to 3-10
displaying in requests, 3-11
displaying output on, 3-14

/FULL qualifier (DMU), 1-5

G

GET MESSAGE clause (ADU), 4-8
Given names, 1-4
Global fields, 2-7
GOTOPRE~OUSEXCHANGE

clause (ADU). 4-8
Graphics. 5-1 7

multiple-bar charts, 5-18
pie charts, 5-17
types of, 5-17

Group fields, 2-27

H
Header of request, 3-10
History lists, 1-4

Indexes, 2-8
INITIAL VALUE clause, 3-16
Initialization procedures, 4-35
INPUT TO instruction tRDU), 3-11
Insert mode in form editor, 3-6
Insertion options, 2-23
INVOKE statement (RDO), 2-13

L
Layout phase of form editor, 3-4
Linking server images. 4-34
LIST command (DMU), 1-5
LIST FORM command (FDU), 3-10
Load facility, 2-29
Local field names, 2-7
Logical names

M

ACMS$DIRECTORY, 4-37
CDD$DEFAULT, 1-5

Mandatory retention of DBMS
records, 2-23

Manual insertion of DBMS records,
2-23

Member record in DBMS set, 2-18
Menu databases. 4-37
Menu definitions. 4-38
Menus. 4-2
Message files. 4-3 5
MESSAGE LINE IS instruction

(RDU). 3-12
Message Utility (VMS), 4-35
MISSING VALUE clause (RDO), 2-6

lndex-5

Missing values, 2-6
MODIFY

DBQ statement, 2-33
RDO statement, 2-16

MODIFY FORM command (FDU),
3-3

Modifying records
in DBMS databases, 2-33
in Rdb/VMS databases, 2-16

Multiple-bar charts, 5-18

N

Network database model. 2-18
Normalization, 2-2

0
ON clause (DTR), 5-9
ON ERROR clause (RDO), 4-7
Optional retention of DBMS records,

2-23
Order options, 2-23
Order phase of form editor, 3-9
OUTPUT TO instruction IRDU), 3-14
Overstrike mode in form editor. 3-6
Owner record in DBMS set, 2-18

p

Path names. 1-3
specifying in task definitions, 4-9

Pie charts, 5-17
PLOT command IDTR), 5-17
PLOT statement (DTR)

CROSS_HATCH, 5-19
MULTI_BAR, 5-18
PIE, 5-17

Precompiler for COBOL, 3-21
PRINT statement

in DATATRIEVE, 5-3
in RDO, 2-16
in reports. 5-9

Procedure servers
linking images for. 4-34

Procedures

lndex-6

compiling, 4-15
copying CDD definitions in, 4-11
defining DATATRIEVE, 5-5
defining reports in, 5-8
documenting. 5-7
editing in DATATRIEVE, 5-5
executing in DATATRIEVE, 5-6
initialization, 4-35
prompting for input, 5-6
storing in CDD, 5-5
termination, 4-35
writing in COBOL, 4-11

PROCESSING keyword (ADU), 4-6
Processing steps, 4-2, 4-4

defining, 4-6
PROGRAM KEY IS instruction

(RDU), 3-12
Program request keys, 3-6

defining, 3-12
Programming calls (TDMS), 3-20
Programs, precompiling, 3-21
Prompting value expressions, 5-6

R

Rdb/VMS. 2-1
Rdb/VMS databases, 2-2 to 2-17

accessing from DATATRIEVE, 5-1
committing changes to, 2-15
controlling access to, 2-14
creating, 2-10
defining, 2-5 to 2-13
designing, 2-3
finishing. 2-13
hierarchy of in CDD. 2-11
inserting in CDD. 2-10
invoking, 2-13
modifying records in, 2-16
normalizing, 2-2
readying for DATATRIEVE, 5-2
rolling back changes to, 2-15
snapshot files for, 2-10
storing records in, 2-13, 2-15
transactions in, 2-13
validity checking in, 2-6, 2-9

RDO
creating databases with, 2-10
defining constraints with, 2-10
defining databases with, 2-5
defining fields with, 2-5
defining indexes with, 2-9
defining relations with, 2-7
defining views with, 2-8
displaying fields with, 2-11
displaying relations with, 2-11
exiting from, 2-13
testing DML with, 2-13

RDU
defining request libraries with, 3-19
defining requests with, 3-10
exiting from. 3-19

READY command (DTR), 5-2
READY options for DBMS, 2-30
READY statement IDBQ), 2-30
Realms, 2-30

readying, 2-30
Record entries, 2-22
RECORD IS instruction (RDm, 3-10
Record selection expressions, 5-3
Record streams, 5-3
Records

connecting in DBMS databases,
2-33

disconnecting in DBMS databases,
2-33

in DBMS databases, 2-18
defining, 2-22
insertion of, 2-23
order of, 2-23
retention of, 2-23

in RdbNMS databases, 2-2
modifying in DBMS databases,

2-33
modifying in RdbNMS databases,

2-16
retrieving from DBMS databases,

2-32
retrieving from RdbNMS

databases, 2-16
schema entries for, 2-22

storing in DBMS databases, 2-29,
2-31

storing in RdbNMS databases,
2-13, 2-15

Recovery units, 4-7
Relational database model, 2-2
Relational Database Operator utility

SeeRDO
Relations, 2-2

accessing, 2-14
combining. 2-8
defining, 2-7
displaying in RDO, 2-11
displaying with DATATRIEVE, 5-3
reserving, 2-14

REPLACE command (ADU), 4-10
REPLACE LIBRARY command

(RDU), 3-19
/REPLACE qualifier (CDDL), 3-17
REPLACE REQUEST command

(RDU). 3-17
Report specifications, 5-8
REPORT statement (DTR), 5-9
Report Writer, 5-8
Reports

creating, 5-8
defining in procedures, 5-8
formatting, 5-9, 5-10
naming, 5-11, 5-14
writing to files, 5-9

REQUEST clause (ADU). 4-6
Request Definition Utility

SeeRDU
Request definitions

storing in CDD, 3-17
submitting to RDU, 3-18

REQUEST IS instruction (RDU) all
the requests used in your, 3-19

Request libraries, 3-19
Request library definitions

storing in CDD, 3-19
submitting to RDU, 3-19

Request library files, 3-2
building, 3-19

Requests, 3-1

lndex-7

defining, 3-10 to 3-15
defining the base of, 3-11
defining the header of, 3-10
displaying error messages with,

3-12
displaying forms with. 3-11

RESERVING clause (RDO). 2-15
Retention options, 2-23
Retrieving records

from DBMS databases, 2-32
from RdbNMS databases. 2-16

RETURN TO instruction (RDU), 3-14
ROLLBACK clause (ADU), 4-8
ROLLBACK statement

in DBQ, 2-31
in RDO, 2-15

Root files, 2-28

s
Schema entries, 2-21
Schemas. 2-19, 2-21

compiling, 2-24
entries for. 2-21
security, 2-24
storage, 2-24

Screen width, adjusting (DTR), 5-4
Security schemas. 2-24
Server characteristics. 4-38
Server procedures, 4-34
Server processes, 4-6
Servers, 4-6
SET COLUMNS PAGE command

(DTR), 5-4
SET DEFAULT command (DMU),

1-5
SET DICTIONARY command (DTR),

5-2
Set entries. 2-22
SET PLOTS command (DTR), 5-17
SET REPORT NAME statement.

5-11
Sets. 2-18

CALC. 2-24
CHAIN. 2-24

lndex-8

defining, 2-22
schema entries for. 2-22
system-owned, 2-20, 2-22

SHOW commands (DBQ), 2-25
SHOW FIELDS statement (RDO),

2-11
SHOW RELATIONS statement

(RDO), 2-11
Snapshot files

for DBMS databases. 2-28
for RdbNMS databases. 2-10

SORTED BY clause (DTR), 5-3
START TRANSACTION statement

(RDO). 2-14
Step procedures

See Procedures
Steps

block, 4-4
exchange, 4-4
processing, 4-4

Storage schemas, 2-24
compiling, 2-28
default, 2-24
modifying, 2-27

STORE statement
in DBQ, 2-31
in RDO, 2-15

Storing records
in DBMS databases, 2-29, 2-31
in RdbNMS databases, 2-13, 2-15

Subschemas. 2-19
compiling. 2-27
default, 2-24
group fields in, 2-27
modifying. 2-27
modifying default, 2-27

System-owned sets. 2-22

T

Task characteristics, 4-38
Task Debugger, 4-36

· Task definitions. 4-1
storing in CDD. 4-10
submitting to ADU. 4-11

Task groups, 4-2
debugging tasks in, 4-36
defining, 4-34

Tasks, 4-1
chaining, 4-22
debugging. 4-36
defining, 4-4 to 4-11

TDMS. 3-1
TDMS programming calls. 3-20
Termination procedures. 4-35
Text mode in form editor. 3-5
Transactions

in DBMS databases. 2-30
in Rdb/VMS databases. 2-13

/TYPE qualifier (DMU). 1-5

u
UNBIND command (DBQ). 2-30
USE FORM instruction (RDUI. 3-11

v
VALID IF clause (RDO). 2-6
Validity checking

See also Constraints
Validity checking (Rdb/VMS), 2-6
Variables (DTR), 5-6

conditional expressions for. 5-13
VAX Application Control and

Management System
SeeACMS

VAX Common Data Dictionary
SeeCDD

VAX DATATRIEVE
See DATATRIEVE

VAX DBMS
See DBMS

VAX Information Architecture, 1-1
VAX Rdb/VMS

SeeRdb/VMS
VAX Terminal Data Management

System
SeeTDMS

Views. 2-8

w
WITH clause (DTR). 5-3
WITH DBMS RECOVERY phrase

(ADDI. 4-23
WITH RDB RECOVERY phrase

(ADU). 4-7
WITHIN clause (DTR). 5-4
Workspaces. 3-1

ACMS$PROCESSING _STATUS,
4-5

compiling definitions of. 3-17
defining, 3-15 to 3-17
listing in task definitions. 4-9
replacing definitions in CDD, 3-17
storing definitions in CDD, 3-17
storing form fields in, 3-11

WORKSPACES clause (ADU). 4-9

lndex-9

Introduction to Application
Development with the

VAX Information Architecture
AA-GR93A-TE

Reader's Comments

Note: This form is for document comments only. DIGITAL will use comments submitted on this
form at the company's discretion. If you require a written reply and are eligible to receive
one under Software Performance Report (SPRJ service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions
for improvement. ______________________________ _

Did you find errors in this manual? If so, specify the error and the page number. ------

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer

D Occasional programmer <experienced)

D User with little programming experience

D Student programmer

D Other (please specify)------------------------

Name Date ______________ ~

Organization--------------------------------

Street __________________________________ _

Zip Code
City------------------State------ or

Country

- - - - - - Do Not Tear · Fold Here and Tape - - - - - •

111111

BUSINESS REPL V MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: DISG Documentation ZK02-2/N53

DIGITAL EQUIPMENT CORPORATION

110 SPIT BROOK ROAD

NASHUA, N.H. 03062

No Postage

Necessary
if Mailed in the

United States

·------Do Not Tear· Fold Here and Tape------------------------------------·

VAX Information Architecture
Documentation Directory,
Master Glossary, and Master Index

December 1985

This manual describes the documentation available for
the VAX Information Architecture family of software
products. It also includes a master glossary and a master
index to the documentation sets.

OPERATING SYSTEM: VMS

Micro VMS

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1984, 1985 by Digital Equipment Corporation. All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ACMS
CDD
DATATRIEVE
DEC
DECgraph
DECnet
DEC slide

DEC US
MicroVAX
Micro VMS
PDP
Rdb/ELN
Rdb/VMS
TDMS

UNIBUS
VAX
VAXcluster
VAX Information Architecture
VMS
VT

~amaama™

Contents

How to Use This Manual v

1 Documentation Directory
VAX Common Data Dictionary Version 3 . 1-3
VAX Rdb/VMS Version 2 . 1-4
VAX DBMS Version 3 1-6
VAX TDMS Version 1 1-11
VAXACMSVersion2 1-13
VAX DATATRIEVE Version 3 1-16

2 Master Glossary

3 Master Index

iii

How to Use This Manual

This manual describes the documentation of the VAX Information Architecture.

Intended Audience
This book is intended for all users of VAX Information Architecture products.

Operating System Information
To verify which versions of your operating system are compatible with these ver

sions of the VAX Information Architecture products. check the most recent
copy of the following:

• For the VMS operating system -- VAX/VMS Optional Software Cross
Reference Table, SPD 25.99.xx

• For the MicroVMS operating system -- MicroVMS Optional Software Cross
Reference Table, SPD 28.99.xx

Structure
There are three parts to this manual:

Chapter 1 Describes the documentation available for the VAX Information
Architecture products.

Chapter 2 Is the master glossary of VAX Information Architecture terms.

Chapter 3 Is the master index to VAX Information Architecture
documentation.

Note that the products described are often referred to by an abbreviated name.
For example. the VAX DATATRIEVE software is referred to as DATATRIEVE,
and the VAX TDMS software is referred to as TDMS.

v

Documentation Directory

Documentation Directory 1

Chapter 1 of this manual describes the documentation for the VAX
Information Architecture products. There are three manuals that describe the
VAX Information Architecture as a whole; they are grouped together in a binder
entitled "Using the VAX Information Architecture." If you are just getting
acquainted with the VAX Information Architecture, you should begin with these
manuals. They are:

VAX Information Architecture Sununary Description

Audience:

Content:

All users

This manual summarizes the features of each of the VAX
Information Architecture products and explains how they work
together.

VAX InfornwtionArchitecture Documentation Directory, Master Glossary, and
Master Index

Audience:

Content:

All users

This guide briefly describes the manuals in each of the docu
mentation sets of the VAX Information Architecture compo
nents. It includes a master glossary of terms and a master
index to all of the documentation sets.

1-1

Introduction to Application Development with the VAX Information
Architecture

Audience:

Content:

All users

This manual uses examples to show you how to create applica
tion programs using the VAX Information Architecture
products.

The following sections describe the documentation for each of the VAX
Information Architecture products.

1-2 Documentation Directory

VAX Common Data Dictionary Version 3

VAX Co1nmon Data Dictionary Release Notes

Audience:

Content:

All users

This manual includes specific information about this CDD
release as well as information included late in the development
of this release.

VAX Cornmon Data Dictionary Installation Guide

Audience:

Content:

System managers/programmers

This manual tells you how to install the CDD software and run
the Installation Verification Procedure (IVP).

VAX Conunon Data Dictionary User's Guide

Audience:

Content:

Programmers/data administrators/system managers

This manual is a task-oriented guide to the use of the CDD and
its three utilities: DMU, CDDV, and CDDL. In addition, it con
tains information useful to the data administrator or system
manager about designing, creating, protecting, and maintaining
the CDD.

VAX Comnwn Data Dictionary Utilities Reference Manual

Audience:

Content:

Programmers/data administrators

This manual explains how to use the Dictionary Management
Utility (DMU) and the Dictionary Verify/Fix Utility tCDDV).

VAX Common Data Dictionary Data Definition Language Reference M anua1

Audience:

Content:

Programmers/data administrators

This manual provides a complete description of the Common
Data Dictionary Data Definition Language Utility (CDDL). It
also contains information about CDDL compatibility with VAX
programming languages and VAX Information Architecture
products.

Documentation Directory 1-3

VAX Rdb/VMS Version 2

VAX Rdb!VMS Release Notes

Audience:

Content:

All users

This manual includes specific information about this RdbNMS
release as well as information included late in the development
of this release.

VAX Rdb!VMS Guide to Data Manipulation

Audience:

Content:

All users

This guide shows how to retrieve, modify, and delete data. Use
it as a tutorial to learn RDO, the interactive utility. The guide
shows how to write queries that retrieve the desired information
from the database.

VAX Rdb/VMS Reference Manual

Audience:

Content:

All users

This manual contains complete reference information on the
components of the RdbNMS language, including RDO:

• Language elements, such as value expressions and record
selection expressions

• Data definition statements

• Data manipulation statements

• Database maintenance utility statements

• Statements for setting up the interactive environment

It also includes a summary of the RdbNMS language arranged
by function.

VAX Rdb!VMS Pocket Guide

Audience:

Content:

All users

This book summarizes the information in the VAX Rdb!VMS
Reference Manual.

1-4 Documentation Directory

VAX RdbNMS Installation Guide

Audience: System managers

Content: This guide explains how to install Rdb/VMS.

VAX RdbNMS Guide to Progranuning

Audience:

Content:

Programmers

This manual shows how to write programs that use Rdb/VMS as
a data access method. It includes information on writing pro
grams in high-level languages that are supported by Rdb/VMS
precompilers. It also includes a section on using callable RDO, a
utility for languages without precompilers.

VAX RdblVMS Guide to Database Design and Definition

Audience:

Content:

Database designers and administrators

This manual explains how to design a database and how to set
up definitions of database entities. It explains how you can
design your database so that it is compatible with the features of
VAX Rdb/VMS. The manual guides you from the analysis of
your organization's information needs, through the process of
designing logical and physical databases. to the use of the
DEFINE statements to create the database.

VAX RdblVMS Guide to Database Maintenance and Administration

Audience:

Content:

Database administrators and operators

This guide shows how to use the database maintenance utilities
to keep the database running and to keep its data consistent. It
explains how to do backup and recovery, how to handle database
journaling. and how to optimize the database's use of system
resources.

Documentation Directory 1-5

VAX DBMS Version 3

VAX DBMS Release Notes

Audience:

Content:

All users

This manual includes specific information about this DBMS
release as well as information included late in the development
of this release.

VAX DBMS Progranuning Pocket Guide

Audience:

Content:

All users

This guide lists the syntax for the DBQ data manipulation lan
guage (DML) and the DML command, which invokes the DML
precom piler.

VAX DBMS Installation Guide

Audience:

Content:

System managers/database operators

This guide explains the VAX DBMS installation procedure and
describes the V AXNMS parameters you can reset to optimize
performance.

VAX DBMS Introduction to Data Manipulation

Audience:

Content:

Application programmers

This manual introduces the VAX DBMS data manipulation lan
guage (DML) and the Database Query (DBQ) utility. The manual
shows how to locate, retrieve, store, and modify records in a
database and explains the roles of set relationships and currency
indicators in those tasks.

VAX DBMS Programming Guide

Audience:

Content:

Application programmers

This manual takes you step-by-step through the construction of
various programs to illustrate how to use the features of VAX
DBMS DML and the generic precompiler. The appendix shows
sample bill-of-materials programs.

1-6 Documentation Directory

VAX DBMS Programming Reference Manual

Audience:

Content:

Application programmers

This manual describes the syntax and use of the VAX DBMS
data manipulation language (DML) and the DML precompiler,
the interactive use of the Database Query (DBQ) utility, and the
use of the callable system subroutines. The appendixes list the
DML and Database Control System (DBCS) monitor error mes
sages, explanations, and appropriate user actions.

VAX DBMS FDML Reference Manual

Audience:

Content:

FORTRAN application programmers

This manual describes the FORTRAN Data Manipulation
Language (FDML) syntax and semantics. It also shows how to
use FDML statements in your programs and how to compile,
link, and run those programs. The appendixes list the FDML
error messages, explanations, and appropriate user actions.

VAX DBMS FDML Pocket Guide

Audience:

Content:

FORTRAN application programmers

This guide lists the syntax for the FORTRAN data manipulation
language (FDML).

VAX DBMS Introduction to Database Administration

Audience:

Content:

Data base administrators

This manual introduces the role of database administrator and
basic database management concepts. It explains the purpose
of database structures (record types, data item types, and set
types) and data manipulation functions. This manual provides a
general introduction to the VAX DBMS data definition language
(DDL), with guidelines for producing schemas, storage schemas,
subschemas, and security schemas. In addition, it introduces the
VAX DBMS Database Operator (DBO) utility, which helps you
create and maintain your database.

Documentation Directory 1-7

VAX DBMS Database Design Guide

Audience:

Content:

Database administrators

This guide shows an experienced database administrator how to
design a VAX DBMS database once a production-level model
has been developed. It explains:

• Defining logical and physical database attributes

• Developing user views

• Controlling VAX DBMS parameters that affect memory
management

• Using the snapshot and space area management
capabilities to your advantage

The appendix contains the schema, storage schema, and
subschemas from the PARTS database, a sample database used
throughout the VAX DBMS documentation.

VAX DBMS Database Security Guide

Audience:

Content:

Database administrators

This guide describes the VAX DBMS facilities that help you
ensure the security of your database. This manual explains how
to write and compile a security schema definition, how to assign
security schemas to users, and how to control the use of DBO
commands that can retrieve or modify the contents of your
database. The appendix contains security schema definitions
from the PARTS database.

1-8 Documentation Directory

VAX DBMS Database Maintenance and Performance Guide

Audience:

Content:

Database administrators

This guide is divided into two parts: the first describes mainten
ance activities you should regularly perform, while the second
describes how to evaluate and improve performance. In addition,
this guide shows you how to ensure the integrity of your
database. This manual explains how to use the:

• DBO/ANALYZE command and DBO/SHOW commands to
monitor and evaluate your database

• DBO/MODIFY command. DDL compiler commands, and
the DBALTER facility to change many of the logical and
physical characteristics of your database

• Database backup and journaling facilities to recover and
restore your database if it has been corrupted

• DBONERIFY and DBO/DUMP commands to monitor
data integrity

• DBALTER to make low-level changes to the database

This manual also describes how to use VAX DBMS in a
V AXcluster environment.

VAX DBMS Database Load/Unload Guide

Audience:

Content:

Database administrators

This guide describes how to use the VAX DBMS load and
unload facilities to perform an initial database load. extract data
from your database, unload and reload your database, and phys
ically restructure your database.

The appendix contains format and sequence language examples
for each type of operation.

Documentation Directory 1-9

VAX DBMS Database Administration Reference Manual

Audience:

Content:

Database administrators/database operators

This manual describes the syntax and use of the data definition
language (DDL) used to write the schema, storage schema,
subschema, and security schema definitions and shows how to
use the DDL compiler to compile, generate, and modify those
definitions. It also describes the syntax for the Load Format
Language, the Load Sequence Language, and the Unload
Sequence Language definitions. It describes the syntax of each
DDL definition, DDL compiler command. and DBO utility
comand. This manual also describes the commands of the
DBALTER facility, which is a low-level patch capability for
VAX DBMS databases. The appendixes list the compile-time
and DBO error and warning messages.

VAX DBMS Database Administration Pocket Guide

Audience:

Content:

Database administrators

This guide lists the syntax for the DBO commands, the
DBALTER commands, the Load/Unload facility language, the
data definition language, and the DDL compilation utility. It
also lists the DDL reserved words.

1-1 O Documentation Directory

VAX TOMS Version 1

VAX TDMS Release Notes

Audience:

Content:

All users

This manual includes specific information about this TDMS
release as well as information included late in the development
of this release.

VAX TDMS Sample Application Manual

Audience:

Content:

All users

This manual provides commented listings of the form defini
tions, record definitions, requests, and program code for each of
the three sample applications provided with the VAX TDMS
software.

VAX TDMS Quick Ref ere nee Guide

Audience:

Content:

All users

This manual provides listings, tables, and charts for the most
frequently used TDMS features.

VAX TDMS Installation Guide

Audience:

Content:

System managers

This manual describes the VAX TDMS installation and verifica
tion procedures.

VAX TDMS Forms Manual

Audience:

Content:

Form and application designers

This manual describes how to create and use forms in a VAX
TDMS application to provide information for or collect informa
tion from the terminal operator. In addition, this manual
explains how to use the Form Definition Utility to create,
modify, and store form definitions.

Documentation Directory 1-11

VAX TDMS Request Manual

Audience:

Content:

Programmers/application designers

This manual describes how to create and use requests in VAX
TDMS applications to control the information displayed on the
terminal and collected from the terminal operator. The manual
also shows how to use the Request Definition Utility to create,
modify, and store requests and request libraries in the CDD, and
to build request library files.

VAX TDMS Application Programming Manual

Audience:

Content:

Programmers/application designers

This manual describes a program in a VAX TDMS application
and discusses the relationships between the program and
requests. It also explains how to use VAX TDMS programming
calls within an application program and how to use the
debugging facility provided by VAX TDMS. The manual
includes programming examples in VAX COBOL and VAX
BASIC. The syntax for VAX TDMS programming calls is
shown in VAX COBOL, VAX BASIC, and VAX FORTRAN.

VAX TDMS VJ .4 Docwnentation Supple1nent

Audience:

Content:

Programmers/ application designers

This manual describes the VAX TDMS asynchronous program
ming calls, which are meant for advanced VAX TDMS applica
tions. It also describes new features and performance
enhancements available in Vl .4 and later versions of VAX
TDMS.

1-12 Documentation Directory

VAX ACMS Version 2

VAX ACMS Release Notes

Audience:

Content:

All users

This manual includes specific information about this ACMS
release as well as information included late in the development
of this release.

VAX A CMS Installation Guide

Audience:

Content:

System managers

This manual describes how to install VAX ACMS. It also
describes how to run the installation verification procedures.

VAX A CMS Application Definition Guide

Audience:

Content:

Application designers/managers

This manual explains how to use the ACMS Application
Definition Utility to define task groups, applications. and
menus. It also explains how to modify the default menu
format provided by ACMS.

VAX A CMS Application Definition Reference Manual

Audience:

Content:

Application designers/managers/programmers

This manual describes all syntax and functions of the
Application Definition Utility.

VAX ACMS Application Management Guide

Audience:

Content:

System/application managers. ACMS operators

This manual explains how to authorize user and device access to
ACMS, control ACMS applications, monitor ACMS system per
formance, and run the ACMS sample applications. A reference
section describes the syntax and functions of the ACMS applica
tion management tools.

Documentation Directory 1-13

VAX ACMS Terminal User's Guide

Audience:

Content:

Terminal operators

This manual explains how to enter and exit from ACMS and
how to select and control tasks from menus.

VAX A CMS Definition Pocket Guide

Audience:

Content:

Application designers/managers/programmers

This pocket guide lists the syntax you use with the VAX ACMS
Application Definition Utility.

VAX ACMS Management Pocket Guide

Audience:

Content:

System/application managers and ACMS operators

This pocket guide lists the syntax for the VAX ACMS Operator
commands, Audit Trail Report commands, Device Definition
Utility commands, User Definition Utility commands, and
ACMSGEN Utility commands.

VAX A CMS Application Design Guide

Audience:

Content:

Application designers/programmers

This manual provides a detailed explanation of the critical prob
lems in designing ACMS applications. It describes how to
address those problems using the ACMS tools. It also discusses
other VMS tools you can use to help solve application design
problems.

VAX ACMS Application Progranuning Guide

Audience:

Content:

A pplica ti on designers/programmers

This manual explains how to write and debug programs for
ACMS applications. It also provides reference information for
the ACMS programming tools.

1-14 Documentation Directory

VAX A CMS Task Definition Guide

Audience:

Content:

Application designers/programmers

This manual explains how to create task and task group defini
tions using the Application Definition Utility.

Developing Applications with VAX ACMS

Audience:

Content:

Application designers/programmers

This manual uses a simple application and a step-by-step
approach to explain how to develop a complete ACMS
application.

VAX ACMS Demonstration Facility Card

Audience:

Content:

Application designers/programmers

This card explains how to run the ACMS Demonstration
Facility (ADF).

VAX A CMS Progranuning Pocket Guide

Audience:

Content:

Application designers/programmers

This pocket guide lists the syntax for the VAX ACMS Task
Debugger commands and application programming service.

VAX ACMS Systems Interface Programming Guide

Audience:

Content:

System designers/programmers

The ACMS Systems Interface is a group of services that an
experienced systems programmer can use to access ACMS com
ponents from outside the standard ACMS environment. The
guide describes the ACMS Systems Interface and explains the
interface services a systems programmer can use to submit
tasks to an ACMS system. It also explains how to allow commu
nication between task submitters and their tasks.

Documentation Directory 1-15

VAX DATATRIEVE Version 3

VAX DATATRIEVE Release Notes

Audience:

Content:

All users

This manual includes specific information about this
DAT ATRIEVE release as well as information included
late in the development of this release.

VAX DATATRIEVE Installation Guide

Audience:

Content:

System managers

This manual describes the installation procedure for VAX
DATATRIEVE.

VAX DATATRIEVE Handbook

Audience:

Content:

Beginning and intermediate users

This manual describes how to create VAX DAT A TRI EVE appli
cations. It includes some tutorial information on describing data
and creating procedures.

VAX DATATRIEVE Guide to Using Graphics

Audience:

Content:

Intermediate or experienced users

This manual introduces the use of VAX DATATRIEVE graphics
and contains the reference material for creating DATATRIEVE
plots.

VAX DATATRJEVE Guide to Writing Reports

Audience:

Content:

Intermediate or experienced users

This manual explains how to use the VAX DAT A TRI EVE
Report Writer.

1-16 Documentation Directory

VAX DATATRIEVE User's Guide

Audience:

Content:

Experienced users

This manual contains information about the interactive use of
VAX DATATRIEVE. It includes information on using
DATATRIEVE to manipulate data and on its use with forms
and database management systems. It also includes information
on improving performance and working with remote data.

VAX DATATRIEVE Reference Manual

Audience:

Content:

Experienced users

This manual contains reference information for VAX
DATATRIEVE.

VAX DATATRIEVE Guide to Progranuning and Customizing

Audience:

Content:

Programmers/system managers

This manual explains how to use the VAX DAT A TRIEVE Call
Interface. It also describes how to create user-defined keywords
and user-defined functions to customize DAT ATRIEVE and
how to customize DAT A TRI EVE help and message texts.

VAX DATATRIEVE Pocket Guide

Audience:

Content:

Experienced users

This guide contains quick-reference information about using
VAX DATATRIEVE.

Documentation Directory 1-17

Master Glossary

Master Glossary 2

access control list (ACL)

A table that lists which users are allowed access to an object and the kind of
access they are allowed. The COD maintains ACLs for OATATRIEVE and
TOMS. ACMS. VAX DBMS. and Rdb/VMS maintain their own ACLs.

See also privilege.

access mode

A characteristic of a transaction that describes what kind of operation you intend
to perform on data in a database.

ACL

See access control list.

ACMS

See Application Control and Management System.

ACMS Central Controller

The ACMS process that serves as the central control point for the ACMS run
time system.

ACMS Operator

An ACMS user authorized to control the daily operations of ACMS and/or its
components with the ACMS Operator commands.

Glossary-1

ACMS Operator command

One of a number of DCL commands provided by ACMS to control the operations
of the ACMS system software and ACMS applications. Many ACMS Operator
commands require the VMS OPER privilege.

active form

The TDMS form, referred to in a request, that is used during a single program
ming request call. A conditional request can refer to more than one form, but only

_ one form can be active at any one time.

ADB

See application database.

ADT

See Application Design Tool.

ADU

See Application Definition Utility.

after-image journal

A file that contains copies of records after they have been updated. You can use
the after-image journal to reconstruct a restored database up to the last success
fully completed transaction. After-image journaling is also called long-term
journaling.

agent

A VMS process through which one or more ACMS task submitters access the
ACMS run-time system. All ACMS users submit tasks through an agent. ACMS
provides one agent, called the command process, that acts for all task submitters.

See also command process.

AIJ

See after-image journal.

Glossary-2

allow mode

A characteristic of a transaction that describes the type of access to data that you
allow other users.

ancestor'

A preceding dictionary or subdictionary directory in the CDD hierarchy.
Ancestors have as descendants all related dictionary directories and objects
below them in the hierarchy.

application

• A logically related set of data processing operations that support a particular
business activity.

• In ACMS. a set of tasks that are related by the business activity they sup
port and that are controlled as a single unit. An ACMS application is defined
with the ACMS Application Definition Utility (ADU) and runs under the con
trol of the ACMS run-time system. An application definition specifies oper
ational characteristics for the tasks and servers of the task groups that make
up the application.

Application Control and Management System (ACMS)

A software product, layered on VMS, used to define, run, and control online appli
cations. You can use ACMS to control existing applications and applications
developed with ACMS. It provides a task implementation method that uses high
level definitions to replace complex application code. These definitions reduce the
programming time and maintenance costs of traditional application programs
that do comparable work.

application database (ADB)

In ACMS, a database accessed at run-time that contains information derived
from application and task group definitions. An application database is generated
by building an application definition with the Application Definition Utility
(ADU). The ACMS run-time system uses application databases to determine
which processes to start, when to start them, and which users have access to
which tasks.

Glossary-3

Application Definition Utility (ADU)

The primary tool for creating ACMS applications. The Application Definition
Utility provides the commands and clauses for defining tasks, task groups, appli
cations, and menus.

Application Design Tool (ADT)

A DATATRIEVE utility that aids you in creating domains, record definitions. and
files. For, users who have not created record definitions or data files before, ADT
provides a fast way to create a database by prompting with questions at each step
in the process.

application execution controller (EXC)

The ACMS component that controls task execution for all the tasks in an applica
tion. Each application has its own application execution controller. Application
execution controllers start up and control the server processes needed to handle
processing work for tasks. They also handle exchange steps, step actions, and the
sequencing of steps for tasks defined with ACMS. Application execution control
lers refer to application databases, task databases, request libraries, and message
files.

application program

A sequence of instructions and routines, not part of the basic operating system,
designed to serve the specific needs of a user. An application program can use a
database system to access data.

See also run unit.

application specification

A specification for an ACMS application that can consist of an application name,
a logical name, a node name and file name, or a logical name and file name. You
use application specifications in ADU clauses to identify applications on single
node or multiple-node (distributed) ACMS systems.

area

In VAX DBMS, a subdivision of the database, named in the schema, that corre
sponds to an RMS file. An area file, also known as a storage file, contains the
data stored in that portion of the VAX DBMS database. Any number of record

Glossary-4

types can be stored within an area. One or more areas make up a subschema
realm.

See also realm.

array

A data structure consisting of more than one element, in which all elements have
the same data types and are referred to by the same variable name.

In a TDMS form or record, an array is a field that contains several elements
referred to by the same name in a request and that have the same characteristics
(length, data type, and so on).

ascending order

An order of sorting that starts with the lowest value of a key and proceeds to the
highest value, in accordance with the rules for comparing data items.

See also sort key, descending order.

asynchronous call

A call to a TDMS subroutine that begins. but does not necessarily complete, the
requested operation before letting your program continue execution. At some
later time. the requested operation finishes and notifies the program.

See also synchronous call.

attribute

See field attribute.

audit trail

In ACMS, a monitoring tool that has a recording facility and a utility for generat
ing reports. The recording facility gathers information about a running ACMS
system, including information about system and application starts and stops.
user logins and logouts, processing errors, user task selections, task completions,
and task cancellations. The report utility generates summary reports of this
information.

In CDD, a collection of the history list entries for a dictionary directory,
subdictionary. or object. created with the /AUDIT qualifier.

See also history list.

Glossary-5

AUTOMATIC member

In VAX DBMS, a record that is automatically inserted into a specified set when
the record is stored in the database. AUTOMATIC set membership is specified in
the schema definition.

See also MANUAL member.

Bachman diagram

A graphic representation of the set relationships between owner and member
records that is used to analyze and document a DBMS database design.

The VAX DBMS Database Query (DBQ) Utility displays Bachman diagrams.

background text

The text on a TDMS form that is displayed whenever the form is displayed.
Background text often includes the names of fields, the name of the form, and
instructions to the user.

bar chart

A chart that uses rectangular bars to compare values in fields or expressions.
The height of the bars is proportional to the size of the fields or expressions
represented.

See also line graph, pie chart, and scattergraph.

batch processing

A mode of computer operation in which the commands and data that control the
actions of the computer are entered by a programmed script rather than by a per
son at a terminal.

before-image journal

A file that contains copies of records before they have been updated. VAX DBMS
and Rdb/VMS use before-image journaling to automatically undo updates to a
database when a transaction is rolled back. Before-image journaling is also called
recovery-unit journaling or short-term journaling.

Glossary-6

block step

One of three kinds of steps used to define the work of a multiple-step ACMS
task. A block step has three parts: attributes. work, and action.

Boolean expression

A string that specifies a condition that is either true or false. For example:

PRINT PERSONNEL WITH STATUS = 'TRAINEE' AND AGE LT 30

Here, the Boolean expression is STATUS= 'TRAINEE' AND AGE LT 30. The
PRINT statement displays only those records for which the value of this expres
sion is true.

See aiso Boolean opernl.,ur, curnlil-iurn1l t::X}Jtt~~iu1J..

Boolean operator

A symbol or word that lets you join two or more Boolean expressions. Boolean
operators are AND. OR, and NOT. For example, the expression STATUS=
'TRAINEE' AND SALARY > 10000 contains the Boolean operator AND.

broadcast message

A text line that lets you know of a system event, such as a system shutdown or
the receipt of mail.

build operation

In TOMS, the execution of the BUILD LIBRARY command in the Request
Definition Utility (RDU). This operation places the requests named in the request
library definition and their associated form and record information in a request
library file. The program accesses this file at run time to execute a request. RDU
creates this library file in your default directory with an .RLB file type.

In ACMS, the execution of the BUILD command in the Application Definition
Utility (ADU). After you create a definition, you use the ADU BUILD command
to create a binary form of the definition for use at run time.

CALC mode

In VAX DBMS, a way to calculate a record's storage address in the database by
hashing the value of one or more data items in the record. CALC mode is declared
in the storage schema and can be used only with SYSTEM-owned sets.

Glossary-7

call interface

A mechanism for a program to access components of a software product.
For example, the VAX DAT ATRIEVE Call Interface is the part of VAX
DATATRIEVE that provides access to DATATRIEVE's data management
services. There are three modes of access to DATATRIEVE's call interface:

• Through the terminal server

• Through the remote server

• From a calling program

callable DBQ

In VAX DBMS, a data manipulation interface to the Database Control System
that lets programs written in any VAX language that conforms to the VAX
Calling Standard access a database.

See also Database Query, interactive DBQ.

Callable RDO

A single external routine that accepts an RdbNMS statement as a parameter.
You can call this routine from any language that adheres to the VAX Calling
Standard. Callable RDO lets a program use RdbNMS even if no precompiler
exists for the language.

calling program

A program that issues calls to other programs or subprograms to execute certain
operations.

In VAX DATATRIEVE, for example, a high-level language program that
contains calls to callable DAT ATRIEVE routines is referred to as the calling
program.

cancel action

A procedure or image called by an ACMS task when the task is canceled. The
cancel action does cleanup work for the task, such as recovering from incomplete
operations; it does not release locks or perform other work specific to a server.

Glossary-8

cancel procedure

A procedure called by an ACMS task when the task is canceled if, at the time of
the cancellation, the task is processing in or keeping server context in a procedure
server process. The cancel procedure does cleanup work for the server process,
such as releasing record locks, so that the server process can be reused without
being restarted. When a cancel procedure is called, it runs in the server process
allocated to the task, whether or not the task is using the server process at the
time of the cancellation.

candidate key

A field or set of fields that uniquely identifies the individual records of a relation.
For example, in a relation of employee information, the empioyee identification
number is a candidate key.

case value

A literal value in a TDMS request that determines whether a conditional instruc
tion executes at run time. TDMS checks that the case value matches the value in
a control field. If there is a match, TDMS executes the request instructions asso
ciated with the case value.

COD

See Common Data Dictionary.

COOL

See Data Definition Language Utility.

COOL source file

A file in which you define CDD records. The CDDLcompiler inserts the defini
tions in a CDDL source file into the CDD directory hierarchy.

CDDV

See Dictionary Verify/Fix Utility.

Glossary-9

CHAIN mode

In VAX DBMS, a way to link records sequentially using NEXT, PRIOR, and
OWNER pointers. CHAIN mode is declared in the storage schema and cannot
be used with CALC sets.

character string

A string of characters (bytes) that is identified by an address and a length.

child

A way of describing a dictionary directory, subdictionary, or object in the CDD
that immediately follows another directory or subdictionary in the CDD hierar
chy. For example, given CDD$TOP and CDD$TOP.MANUFACTURING,
CDD$TOP is the parent and CDD$TOP.MANUFACTURING is the child.

See also ancestor, descendant, and parent.

cluster

See VAXcluster.

CLUSTERED VIA set option

In VAX DBMS. a record placement option in which the Database Control System
(DBCS) stores records on or near the page that contains the owner of the set. The
CLUSTERED VIA option is declared in the storage schema definition.

CODASYL

An acronym for the Conference on Data Systems Languages. the committee that
designed the COBOL language and provided the guidelines used in the develop
ment of DBMS. VAX DBMS is CODASYL compliant.

CODASYL-compliant

Any database system that conforms to the guidelines set by the Conference on
Data Systems Languages.

collating sequence

The sequence in which characters are ordered for sorting, merging, and
comparing.

Glossary-1 O

collection

• In VAX DATATRIEVE, a type of record stream formed with the FIND
statement. You can name a collection in order to have several collections
available at once.

• In VAX DBMS, all occurrences of records that belong to a specific record
type. Record types are defined in schema and subschema entries.

See also CURRENT.

column

A relational database term used interchangeably with field.

See also field.

column headers

The heading that labels the columns of data in a DAT A TRIEVE report or in the
output of a DAT ATRIEVE PRINT statement.

command process (CP)

The process in the ACMS terminal control subsystem that handles user logins
and the interaction between terminals and ACMS.

See agent.

comment character

A character that begins a line of descriptive text in a program or procedure; it
does not affect program or procedure execution. Comment fields begin with a
comment character reserved by the language you are using. Some typical com
ment characters are the exclamation point (!), the asterisk (*), and the letter C.
Comment fields end with a carriage return.

COMMIT

• In VAX DBMS, a statement that ends a transaction. making permanent all
database updates temporarily stored by the recovery unit journal file.

• In Rdb/VMS, a statement that ends a transaction, entering all database
changes in the physical database file.

Glossary-11

• In ACMS, the function that ends a recovery unit and makes permanent
database operations performed in the recovery unit. Also an Application
Definition Utility keyword used in defining ACMS tasks with database
recovery.

• In DATATRIEVE, a statement that makes permanent all changes to
RdbNMS and VAX DBMS databases since the most recent COMMIT or
ROLLBACK statement or since the first READY command if you have not
issued a COMMIT or ROLLBACK statement.

See also RETAINING and ROLLBACK.

Common Data Dictionary (COD)

A central storage facility consisting of a hierarchy of directories that contain defi
nitions used by VAX Information Architecture components. The CDD contains
descriptions of data. not the data itself. CDD objects are stored hierarchically and
are accessed by reference to dictionary path names.

CDD directories and subdictionaries contain directories and objects such as:

• ACMS application, menu, task, and task group definitions

• DAT A TRI EVE domain, record, plot, procedure and table definitions

• VAX DBMS schema, subschema, storage schema, and security schema
definitions

• TDMS record and form definitions. requests, and request library definitions

• RdbNMS database, relation, field, index, and constraint definitions

COMPUTED BY fields

Virtual fields that appear in a DATATRIEVE record definition or an RdbNMS
relation or view definition, but not in the physical record. Because the value of a
COMPUTED BY field is computed as part of a statement, it occupies no space in
the record.

concurrency

The simultaneous use of a database by more than one user.

Glossary-12

conditional expression

A string that can be evaluated as true or false. For example, in the statement
FORE IN EMPLOYEES WITHE.STATE= "MA", the conditional expression
is E.STATE = "MA". A conditional expression can also use the Boolean opera
tors AND, OR, and NOT.

See also Boolean expression.

conditional instruction

A TDMS request instruction that executes only if certain conditions are true.
TDMS executes a conditional instruction if the value in a control field matches
the case value specified within the conditional instruction.

conditional request

A request containing one or more conditional instructions.

constraint

A set of criteria that restricts the values in a field. In RdbNMS, you set up con
straints using the DEFINE CONSTRAINT statement.

context variable

A temporary name that identifies a record stream to RdbNMS and
DATATRIEVE.

Once you have associated a context variable with a relation or a domain, you use
only that context variable to refer to records from that relation in the record
stream or loop you created. In this DAT A TRIEVE statement, D is a context
variable:

FOR D IN PERSONNEL PRINT D.DEPT

You can also use context variables in DAT ATRIEVE to resolve context
ambiguity.

control field

A program record field specified in a TDMS request whose value determines
whether or not TDMS executes a conditional instruction.

Glossary-13

See also conditional instruction.

cross operation

See join operation.

cross product

A relation that is the result of performing a join operation to combine every row
in one relation with every row in another.

currency indicators

VAX DBMS pointers that serve as place markers in the database for the
Database Control System (DBCS~ and your run unit.

CURRENT

• In VAX DBMS, identifies the most recently retrieved or updated database
records, sets. and realms.

• In DAT A TRI EVE, identifies the most recently formed collection.

Data Definition Language Utility (CDDL)

The VAX CDD utility that lets you insert record definitions into the CDD. You
create the data descriptions in a CDDL source file, and you compile the source file
with the CDDL compiler.

data definition language (DDL)

In VAX DBMS, a language used to describe schemas, subschemas, storage
schemas, and security schemas.

In VAX Rdb/VMS, a set of statements that let you define the structure and char
acteristics of stored data. You use the data definition language to describe fields,
relations, views, indexes, and constraints. The Rdb/VMS data definition language
is part of RDO, the interactive Rdb/VMS utility.

data item

In Rdb/VMS. the smallest unit of data. A data item occupies a single field in a
record.

Glossary-14

data item occurrence

In VAX DBMS. one occurrence of a data item type.

See also data item type and record occurrence.

data item type

In VAX DBMS, the smallest unit of named data in a record type. A data item can
be a single value or an array of one or more values.

See also data item occurrence and record type.

Data Manipulation Facility (DMF)

The part of DATATRIEVE that parses, optimizes, and executes all commands
and statements passed to DAT ATRIEVE.

data manipulation language (DML)

In VAX DBMS, the statements that let programs written in VAX languages
access the database.

In Rdb/VMS, a set of statements that lets you store. retrieve, modify, and erase
data from a database. RdbNMS provides two methods of manipulating data:

• Embed the data manipulation statements in a high-level language, such as
COBOL.

• Issue the data manipulation statements directly, using the RDO utility.

data type

A characteristic assigned to a field that determines the kind of data the field can
contain.

data value

A user-assigned value of a data item occurrence.

See also data item occurrence and data item type.

Glossary-15

database

A collection of interrelated data on one or more mass storage devices. The collec
tion is organized to facilitate efficient and accurate inquiry and update.

In a database, more than one user can access the data at the same time. Data
integrity and security are provided by the database.

See also hierarchical database, network database, and relational database.

Database Control System (DBCS)

The VAX DBMS or RdbNMS component that, together with the VMS operating
system, provides run-time control of database processing.

database handle

A name given to an RdbNMS database to distinguish it from other currently
active databases in a program.

database key (dbkey)

In VAX DBMS and RdbNMS, a unique value that identifies the address of a
record in a database. The Database Control System assigns the value when a
record is stored in the database.

In VAX DBMS, database keys are used by the Database Control System when
ever you store, retrieve, or manipulate a record.

In Rdb/VMS, your program can retrieve the database key and use it to access a
record.

database management system

A system for creating, maintaining, and accessing a collection of interrelated data
records that may be processed by one or more applications without regard to
physical storage. Data is described independently of application programs~ provid
ing ease in application development, data security, and data visibility.

The VAX Information Architecture includes two database management systems:

• VAX DBMS, a database management system that complies with the stan
dards established by CODASYL.

• Rdb/VMS, a database management system based on the relational data
model

Glossary-16

See also database and relational database.

database pages

The structures used to store and locate data in a VAX DBMS or Rdb/VMS
database. Database pages consist of one or more disk blocks of 512 bytes each.

VAX DBMS uses page-clustered I/O. a technique that retrieves groups of
physically-related database pages, rather than an individual page. in response
to a run unit's request for data.

Database Query (DBQ) Utility

In VAX DBMS, a data manipulation utility that interprets data manipulation lan
guage (DiviLJ statements. DBQ prov1cies access to ciata through t>oth mteractive
and callable modes. Interactive DBQ lets you test the logic of DML statements
before including the statements in a program. Callable DBQ provides access to
the database for programs written in high-level languages.

See also callable DBQ and interactive DBQ.

DATATRIEVE

AV AX query language and data management tool for manipulating, storing, and
modifying records from RMS data files, VAX DBMS databases, and Rdb/VMS
databases. DATATRIEVE also generates reports and graphs from data stored in
RMS files, VAX DBMS databases, and Rdb/VMS databases. DATATRIEVE is
callable from a variety of high-level languages.

DATATRIEVE procedure

See procedure.

DBCS

See Database Control System.

dbkey

See database key.

Glossary-17

DBMS
Used generically, DBMS can refer to any database management system. In VAX
Information Architecture documentation, DBMS usually refers to VAX DBMS, a
DIGITAL software product that complies with the standards for database man
agement systems established by CODASYL.

See also CODASYL, database management system.

DBQ
See Database Query Utility.

DBR
In VAX DBMS, the name of the process that performs database recovery. It is
called by the DBMS monitor.

DCL

DIGITAL Command Language.

DCL command procedure

A sequence of DIGITAL Command Language (DCL) commands stored in a file;
sometimes referred to as a DCL procedure.

DCL server

One of two types of servers 4sed to handle processing work for ACMS tasks. A
DCL server handles images, DATATRIEVE commands, and DCL commands and
command procedures.

See also server, DCL server image, and procedure server.

DCL server image

The image, provided by ACMS, that is loaded into a DCL server process when the
process is started by the application execution controller. The DCL server image
lets you use images, DATATRIEVE commands, and DCL commands and proce
dures to implement processing for tasks.

See also procedure server image.

Glossary-18

DCL server process

See server process.

DDL

See data definition language.

DOU
See Device Definition Utility.

deadlock

A situation in which two or more processes request the same set of resources and
there is no method for resolving the conflict. For example, if process A has record
I locked and requests record 2 while process B has record 2 locked and is request
ing record 1, a deadlock occurs between processes A and B.

DECnet

The DIGITAL software facility that lets a user access information on a remote
computer through telecommunications lines.DECnet/VAX enables a VMS oper
ating system to function as a network node.

default

A value that is assumed unless or until you specifically indicate another choice.

default dictionary directory

The CDD directory assigned to you when you invoke an image that uses the
CDD. This directory becomes the starting directory for path names. You can
define a directory as the default by assigning a path name to the logical name
CDD$DEFAULT. If you do not, the default directory is CDD$TOP. The CDD
Dictionary Management Utility and some command qualifiers let you set tempo
rary default directories. You can also set the default directory with the
DATATRIEVE SET DICTIONARY command.

default directory

The directory from which the VMS system reads and to which it writes all files
that you create unless you explicitly name a directory.

Glossary-19

degree (of a relation)

The number of fields in a relation definition.

descendant

A dictionary directory, subdictionary, or object in the CDD below another direc
tory or subdictionary in the CDD hierarchy.

See also ancestor, child, and parent.

descending order

A method of sorting that starts with the highest value of a key and proceeds to
the lowest value, in accordance with the rules for comparing data items.

See also ascending order.

detail lines

The formatted data lines in a DAT A TRI EVE report or PRINT statement.

Device Definition Utility (DOU)

The ACMS tool for defining which terminals have access to ACMS.

Device Utility

See Device Definition Utility.

dictionary

In the most general sense: an overall hierarchical storage facility that includes
dictionary directories, subdictionaries, and objects. In the VAX Information
Architecture documentation, dictionary refers to the VAX Common Data
Dictionary ICDD).

As a keyword used with the DATATRIEVE or RDO SET and SHOW commands,
"dictionary" has the more limited meaning of the current location within the
CDD.

See also Common Data Dictionary.

Glossary-20

dictionary directory

The structure for organizing data descriptions stored in the CDD. Dictionary
directories are similar in function to VMS directories. They "own" other diction
ary directories or dictionary objects.

See also default dictionary directory.

Dictionary Management Utility (DMU)

The Common Data Dictionary (CDD) man;.gement utility that lets you create and
maintain the CDD directory hierarchy and its associated access control and his
tory lists.

dictionary object

A data definition stored in the Common Data Dictionary (CDD). Examples of
objects include:

• VAX DATATRIEVE domains, records, procedures, plots, and tables

• VAX DBMS schemas, areas, sets, and records

• VAX CDD record definitions

• VAX TDMS forms, requests, and request library definitions

• VAX Rdb/VMS relation, view, and field definitions

See also Common Data Dictionary.

Dictionary Verify/Fix Utility (CDDV)

A Common Data Dictionary (CDD) utility that detects damaged dictionary files
and repairs them. CDDV also compresses the data in dictionary files for more
efficient use of storage.

directory

A file that briefly catalogs a set of files stored on disk or tape. The directory
includes the name, type~ and version number of each file in the set.

See also default directory.

Glossary-21

directory hierarchy

The structure of CDD directories. The hierarchy of dictionary directories,
subdictionaries, and objects is a tree structure. Each dictionary directory in the
CDD tree may become a parent by owning other dictionary directories or diction
ary objects. Dictionary objects are the terminal points of the hierarchy; they can
not be parents.

See also ancestor, child, descendant. and parent.

distributed transaction processing

The processing of ACMS tasks or applications on remote nodes. An ACMS user
or task submitter on one node can select tasks or applications from an ACMS
system on another node.

DML

See Data Manipulation Language.

DMU

See Dictionary Management Utility.

domain

A DAT ATRIEVE data structure that associates a name with the relationship
between a file and a record definition. Using the domain name gives access to
information in the data file as interpreted by the record definition. For example,
the domain PERSONNEL associates the file PERSON.DAT and the record defi
nition PERSONNEL REC.

DYNAMIC allocation

In VAX DBMS, an option that tells the Database Control System to perform data
compression on an item occurrence in the database. DYNAMIC allocation is
declared in the storage schema.

edit string

A character or group of characters that controls how DAT ATRIEVE displays data
in a field. Edit strings can differ from record definition picture clauses. Picture
clauses control how DAT ATRIEVE stores data in a field.

Glossary-22

elementary field

A record segment containing one item of information. It might contain a depart
ment number, a last name, or any other information you want to define as a single
item.

See also field.

exchange step

One of three kinds of steps that define the work of a VAX ACMS multiple-step
task. An exchange step handles input and output between the task and the task
submitter.

See also processing step and block step.

execution controller

See application execution controller.

explicit mapping

The TDMS request instructions (COPY TO, INPUT TO, OUTPUT TO, and
RETURN TO) that you use to map data between form and record fields.

See also implicit mapping.

external file

A file opened in a main procedure that is accessed from an external subroutine.

external subroutine

A procedure that can be compiled separately from a main procedure.

field

A single division within a record where a data item is stored. You define a field's
name and data type, along with other characteristics, using a data definition
language.

See also elementary field and group field.

Glossary-23

field attribute

A condition or characteristic of a field in a record.

See also form field attribute.

field constant

See form field constant.

field description statement

The statement that defines field characteristics in CDDL source files. The four
types of field description statements are ELEMENTARY, STRUCTURE, COPY,
and VARIANT.

field identifiers

See picture characters.

field name

The name given to a particular field in a record or form.

field picture

See picture string.

file
A collection of related records.

file name

The name you choose to identify a file. The file name can have from 1 to 39 char
acters selected from the letters A through Z, the numbers 0 through 9, and an
underscore U or a dollar sign($). When you name files, you can use any names
that are meaningful to you.

file specification

A name that uniquely identifies a file. A full file specification identifies the node,
device, directory name, file name, type, and version number under which a file is
stored.

Glossary-24

file type

The part of a file specification that describes the nature or class of file. The file
type follows a period after the file name and consists of from 1 to 39 characters.
VMS recognizes many default file types used for special purposes. For example,
.RDB is the default file type for an Rdb/VMS database.

FIXED member

In VAX DBMS, a record occurrence that, upon becoming a member of a set
occurrence of a set type, must remain a member of that set until the record occur
rence is erased from the database. Fixed set membership is specified in a schema
DDL entry.

See aiso iviANDATORY member anci. OPTiONAi., member.

foreign key

In Rdb/VMS, a key that does not uniquely identify records in its own relation
but is used as a link to matching fields in other relations. For example,
DEPARTMENT CODE is included in the JOB HISTORY relation in order to
link it to the DEPARTMENTS relation. -

form

A terminal screen image used to display and collect information.

See also form definition.

form attributes

Characteristics assigned to an entire form. Examples of form attributes are
screen background and screen width.

form definition

A description of a form, created with the TDMS Form Definition Utility (FDU)
and stored in the CDD. A form definition can contain information that identifies:

• The screen image of the form, including the location of background text,
fields. and video highlighting

• The length or size, data type, and edit type of each field

• A set of attributes for each field on the form

Glossary-25

Form Definition Utility (FDU)

The TDMS utility used to process (create, modify, replace, or copy) form defini
tions and to store them in the CDD. You also use this utility to provide a listing
of form definitions used in an application.

form field attribute

In TDMS, a condition or characteristic applied to a form field during form defini
tion. Requests can override some TDMS form field attributes. Examples of form
field attributes are video characteristics and requirements for filling a field.

form field constant
A character or embedded space that is displayed in a field on a TDMS form at run
time. For example, you can use a hyphen as a field constant in a field that repre
sents a telephone number.

free space

In VAX DBMS, the sections of the database page that are not used.

See also database pages.

full path name

A name that uniquely identifies a dictionary directory, subdictionary, or object in
the CDD hierarchy. The full path name is a concatenation of the given names of
directories and objects, beginning with CDD$TOP, ending with the given name of
the object or directory you want to specify, and including the given names of the
intermediate subdictionaries and directories. The names of the directories and
objects are separated by periods.

CDD$TOP.DEPT32.EMPLOYEE is a full path name that uniquely identifies the
object EMPLOYEES.

See also path name, relative path name, and given name.

given name

The name assigned to a dictionary directory, subdictionary. or object in the
Common Data Dictionary (CDD). A given name contains up to 31 characters from
the set A-Z, 0-9, , and$. The first character must be a letter from A-Z, and the
last character cannot be or $. If you are using a VT200-family terminal, you can
use 8-bit alphabetic characters.

Glossary-26

The root directory, having only descendants but no ancestor, has the given name
CDD$TOP. The given names of all other directories and objects are assigned by
the user creating them. The given name of a dictionary directory, subdictionary,
or object is separated from the name of its parent by a period.

In the path name CDD$TOP.DEPT32.EMPLOYEE, EMPLOYEE is the given
name of a CDD object and DEPT32 is the given name of a dictionary directory.

global aggregate

In RdbNMS, an expression that uses field values from one relation to group
records from another. A statistical expression is then used to calculate a value for
the group. For example, you can group salary records in a SALARY HISTORY
relation according to the DEPARTMENT CODE field in the DEPARTMENT
relation. Then you can use the AVERAGE function to find the average salary for
each department.

GOLD key

The PFl key on the numeric keypad that you use in combination with some of the
other keypad and arrow keys.

group data item

In VAX DBMS, a named entity that contains one or more data item types. Group
data items are declared in a subschema definition.

group field

A field in a record containing other fields. A group field can contain one or more
elementary fields or other group fields.

A group field in DATATRIEVE is equivalent to a group data item in DBMS and a
STRUCTURE field description in CDDL.

See also field, group data item, and STRUCTURE field description statement.

group record array

In TDMS, a record array whose elements contain other fields. Each of these fields
has the same characteristics (length, data type, and so on), and each field is
referred to in a request by the same name, but with a unique subscript. In request
instructions, you can include the group array field name to make each field name
unique.

Glossary-27

group workspace

A workspace that holds information needed by many tasks in an ACMS task
group. A group workspace is made available when the first task in a group that
uses that workspace is selected by a terminal user. Once allocated, a group
workspace remains available to all tasks in the group until the application stops.

See also task workspace, user workspace.

hashing

In VAX DBMS. the conversion of a data item value (for example, a key value)
into a fixed-length numeric value using a special algorithm. Hashed key values
are used as pointers to database record occurrences.

hierarchical database

A type of database that organizes the relationships between record types as a tree
structure. A hierarchical database stores related records on the same branch of
the tree to make data retrieval efficient.

See also database. network database. relational database.

history list

An optional audit trail maintained by the CDD to monitor the processing and use
of dictionary directories. subdictionaries, and objects.

See also audit trail.

image

A file consisting of procedures and data that have been bound together by the
linker. There are three types of VMS images: executable. shareable, and system.
When not otherwise stated, image refers to an executable image.

implicit mapping

Using the TDMS mapping instructions INPUT. OUTPUT. and RETURN with
the %ALL parameter to map data between all identically named form and record
fields. You can include implicit mapping instructions in requests to map data
without naming individual fields. If the Request Definition Utility finds an error
when mapping with the %ALL parameter, it does not include that mapping when
it stores the request in the CDD. At run time, TDMS performs only the correct
mappings.

Glossary-28

See also explicit mapping.

index

A structure within a file or database that lets you locate particular records based
on key field values.

index key

A field of a record in an indexed file or database that determines the order of
search and retrieval.

• An RMS indexed file has one primary key and optionally one or more alter
native keys.

• In DATATRIEVE, you declare an index key for RMS files in the DEFINE
FILE command, by naming a field from a record definition.

• In Rdb/VMS, you can use any field or combination of fields from a record as
an index key. You can also define more than one key for a given relation.

• In VAX DBMS, you can use any field or combination of fields from a record
as an index key for a sorted set.

INDEX mode set

In VAX DBMS, a sorted set in which a hierachical index data structure is used to
speed access to a specified record occurrence. INDEX mode is specified in a stor
age schema DDL entry.

See also index node.

index node

In VAX DBMS, the index data structure for an INDEX mode set.

See also INDEX mode set.

indexed file

An RMS file that has a primary key and optionally one or more alternative keys.

indexed form array

See group record array.

Glossary-29

initialization procedure

In ACMS, a procedure that runs when a procedure server process starts and that 1

opens files or readies a database for the server process.

INSERTION class

In VAX DBMS, an attribute of member record types that describes how and
when member record occurrences are added to set occurrences.

See also AUTOMATIC member and MANUAL member.

Installation Verification Procedure (IVP)

A command file that tests whether a software product has been installed
correctly.

integrity

The correctness of information in an RdbNMS or VAX DBMS database. There
are three general types of integrity control:

• Integrity constraints make sure that database information remains correct
when users try to modify it incorrectly.

• Concurrency control lets only one user at a time update a file while allowing
many users simultaneous access to the database.

• Recovery restores a database to a the state it was in before a system failure.

interactive DBO

In VAX DBMS~ a data manipulation interface to the Database Control System
that allows low-volume, interactive access to a database. You can use interactive
DBQ as a tool to test and debug program logic. When used on a VTlOO- or
VT200-series terminal, interactive DBQ uses a split screen to show your current
position in a subschema after each DML statement is executed.

See also callable DBQ, Database Query Utility.

interactive processing

A mode of computer operation in which the commands and data that control the
actions of the computer are entered by a person at a terminal.

Glossary-30

interpretive call interface

See Callable RDO.

join operation

A procedure that selects a record from one relation, associates it with a record
from another relation. and presents them as though they were part of a single
record.

journal file

In VAX DBMS and R.db/VMS, a file that contains all records modified by a run
unit or transaction. The journal file allows reconstruction of the database in the
event of corruption due to system or program failures.

journaling

The process of recording on a recoverable resource information about operations
on a database. The type of information recorded depends on the type of journal
being created.

See also after-image journal and before-image journal.

junction record

In VAX DBMS. a record that relates two records to each other. You can use a
junction record to define a recursive or many-to-many relationship between two
records.

keeplist

In VAX DBMS, a list of database keys used to recall their associated records.
Database keys are placed on and removed from keeplists at the direction of a
DML operation.

key

In R.db/VMS, a field in a record that you use to define an index. Using index keys,
Rdb/VMS can locate records in the relation directly, without searching sequen
tially. Defining index keys increases the speed of some database operations.

Glossary-31

In VAX DBMS, a field or combination of fields in a record that defines a sort key
for an INDEX mode set or a hashing key for a CALC mode set.

See also candidate key, foreign key, index key, key value, and primary key.

key value

In VAX DBMS, the values supplied in a DML operation to identify a specific
record for access.

keyword

A word reserved for use in certain specified syntax formats, usually in a command
or a statement.

line graph

Line graphs and scattergraphs compare values in fields and expressions by plot
ting values as points on X and Y axes. Line graphs connect the points;
scattergraphs plot only the points.

See also bar chart and pie chart.

line index

In VAX DBMS, a dynamic section of a database page that acts as a directory to
data on the page.

See also database pages.

linker

A program that creates an executable program, called an image, from one or more
object modules produced by a language compiler or assembler. Programs must be
linked before they can be executed.

literal

A value expression representing a constant. A literal is either a character string
enclosed in quotation marks, or a number.

load file

In VAX DBMS, an RMS file containing data and set-significant information used
by the database load facility.

Glossary-32

locking

In VAX DBMS and Rdb/VMS, the facility that controls the allocation and
deallocation of a resource. such as a record or a process. VAX DBMS allows locks
on individual records and entire realms.

logical operator

See Boolean operator.

logical path name

A logical name that uniquely identifies a dictionary directory. subdictionary, or
object in the Common Data Dictionary (CDD) hierarchy. The logical path name is
a name you define for a full or relative path name. For example you may define a
logical path name using the DCL DEFINE command:

$ DEFINE EMP CDD$TOP.DEPT32.EMPLOYEE

Then. within the current process, EMP is equivalent to the full path name
CDD$TOP.DEPT32.EMPLOYEE.

MANDATORY member

In VAX DBMS, a record occurrence that, upon becoming a member of a set
occurrence of a particular set type, must remain a member of that or some
other occurence of that set type until the record is erased from the database.
MANDATORY set membership is specified in a schema entry. A MANDATORY
member can be moved from one set occurrence to another within the same set
type.

See also FIXED member and OPTIONAL member.

MANUAL member

In VAX DBMS. a record occurrence that becomes a member of a specific set
occurrence by direction of an application program. MANUAL set membership is
specified in a schema entry.

See also AUTO MA TIC member.

mapping

The description of the exchange of data between a TDMS form and a program'
record.

Glossary-33

See also explicit mapping, implicit mapping.

MOB

See menu database.

member record

In VAX DBMS, a record, other than an owner record, included in a set. There
may be one or more member record types in a set, and zero or more member
record occurrences. A member record must be accessed through its owner record
occurrence or the SYSTEM record.

See also owner record and nonsingular set type.

menu

A list of tasks, from which a user selects one for processing. A menu can also
direct users to other menus.

In ACMS, you define the list of items on a menu and other menu characteristics
using the Application Definition Utility (ADU).

menu database (MOB)

A run-time database containing information derived from menu definitions.
ACMS uses the information in the menu database for displaying menus. A menu
database is created by building menu definitions with the Application Definition
Utility (ADU).

message file

A file that contains a table of message symbols and their associated text.

metadata

Data that is used to describe other data. Data definitions are sometimes referred
to as metadata.

multiple-step task

An ACMS task defined in terms of a block step that contains one or more
exchange and processing steps.

Glossary-34

See also block step, exchange step, processing step, and step action.

navigation

In VAX DBMS, the process of traversing database records along a hierarchical
path.

network database

A database model that establishes relationships between records using sets. A
single record can participate in any number of sets, so you can relate it to any
other record in. the database, not just those above and below it in a hierarchy.

Network databases are also called CODASYL databases.

See aiso ciataoase. hierarchicai database. relational database.

nonsingular set type

In VAX DBMS, a set type owned by a user-defined record type, not by the
SYSTEM record.

See also member record. owner record, and SYSTEM-owned set type.

normalization

The process that reduces a database structure to its simplest form and eliminates
data redundancy. Normalization physically separates related concepts in the
database into separate relations or records. A data item is stored only once and
requires only one update operation to change it.

Novalidate mode

The mode in the TDMS Request Definition Utility that lets you create and store a
request without checking for correct mappings and references. You create a
request in Novalidate mode by using the SET NOVALIDATE command. Validate
mode is the default.

See also validation.

numeric data type

A characteristic assigned to a field that indicates field values are to be considered
numbers rather than text.

Glossary-35

object

See dictionary object.

operator command

See ACMS Operator command.

OPTIONAL member

In VAX DBMS, a record occurrence that can be removed from all set occurrences.
You can change its set membership without deleting it from the database.
OPTIONAL set membership is specified in a schema entry.

See also FIXED member and MANDATORY member.

owner record

In VAX DBMS, the owner records serve as access entry points to set occur
rences. Only one record type can be the owner for each set type, and only one
owner record occurrence can be the owner of each set occurrence.

See also member record, nonsingular set type, and SYSTEM-owned set type.

page header

In VAX DBMS. a fixed-length section at the beginning of the database page that
contains page and storage area information.

See also database pages.

parent

The dictionary directory or subdictionary in the CDD that immediately precedes
a directory. subdictionary, or object in the CDD hierarchy. A parent can have
many children. but each dictionary directory, subdictionary, and object in the
CDD can have only one parent. For example. CDD$TOP is the parent of
CDD$TOP.MANUFACTURING. CDD$TOP.MANUFACTURING is owned by
CDD$TOP.

See also ancestor. child, and descendant.

partial path name

See relative path name.

Glossary-36

path name

A unique designation that identifies a dictionary directory, subdictionary, or
object in the CDD hierarchy. The full path name combines the given names of
directories and objects, beginning with CDD$TOP, ending with the given name of
the object or directory you want to specify, and including the given names of the
intermediate subdictionaries and directories. The names of the directories and
objects are separated by periods.

You can have full, logical and relative path names.

See also full path name, given name, logical path name, and relative path name.

-=-·· ·-- _,.. ... """"'_ ... __ _
"""''""'"' "I IQI ... "'"'' >;>

The characters specified in a record or form definition that determine the length
and type of a field. For example, a C in the form definition of a TDMS form
field indicates that only an alphanumeric character (A-Z, a-z. 0-9, space) can be
entered in that field. The group of picture characters that make up a field is called
the picture string.

picture clause

A clause in a record definition that describes how data for a field should be stored.
For example, the following DAT ATRIEVE field definition contains a picture
clause specifying that values of no more than 20 characters of alphanumeric data
can be stored in ADD RE SS:

10 ADDRESS PIC X(20).

picture string

A group of one or more picture characters in a record or form definition that
determines the location, length, and type of a field. In TDMS for example. 99999
is a picture string that indicates that up to five numeric characters can be entered
in that form field.

pie chart

Pie charts compare values in fields or expressions by representing quantities as
wedge-shaped percentages of a whole pie.

See also bar chart, line graph, and scattergraph.

Glossary-37

PLACEMENT mode

In VAX DBMS, a storage method by which the Database Control System deter
mines the database key values associated with record occurrences based on user
specified set options. PLACEMENT mode is declared in the storage schema.

See also SCATTERED set option and CLUSTERED VIA set option.

plot

A graphic representation of data using DATATRIEVE's graphics capability. You
can create three basic kinds of plots using DATATRIEVE:

• Bar charts

• Line graphs and scattergraphs

• Pie charts

pointer

In VAX DBMS, a place marker that identifies a record's address in a storage
area.

See also database key.

precompiler

A utility that reads data manipulation language statements in a high-level lan
guage program and translates those statements into calls to low-level database
routines. Rdb/VMS and VAX DBMS have separate utilities that perform this
function.

primary key

In an RMS indexed file. the index key whose value determines the order of
records. You cannot modify or erase the value in a primary key field of a
DAT ATRIEVE record.

print list

One or more value expressions (including the names of elementary and group
fields) whose values you want DATATRIEVE or Rdb/VMS to display. A
DAT A TRI EVE print list can also include optional formatting specifications.

Glossary-38

privilege

The ability to access a file or other resource for a certain purpose. Thirteen privi
leges have been defined to control access to the CDD. Four of these privileges
are specific to VAX DATATRIEVE; the remaining nine are VAX CDD access
privileges.

See also access control list.

procedure

• A general purpose routine, entered by means of a call instruction, that uses
an argument list passed by a calling program and uses only local variables for
data storage. A procedure is entered from and returns control to the calling
program.

• A fixed sequence of DAT A TRI EVE commands, statements, clauses, or argu
ments that you create, name, and store in the Common Data Dictionary.

• A series of RdbNMS RDO statements stored in a VMS file. These can be
executed with the execute (@) directive.

See also step procedure, initialization procedure, and termination procedure.

procedure server

One of two types of servers that handle processing work for ACMS tasks.
Procedure servers do processing work for step procedures called in tasks defined
with ACMS.

See also server, DCL server, and procedure server image.

procedure server image

The image that is loaded into a procedure server process when the process is
started by the ACMS application execution controller. The procedure server
image is created when all the procedures handled by the server are· linked
together with the procedure server transfer module for that server.

See also DCL server image and procedure server transfer module.

procedure server process

See server process.

Glossary-39

procedure server transfer module

The object module created for a procedure server as a result of building an ACMS
task group definition. When a task group is built, the Application Definition
Utility produces a procedure server transfer module for each server defined in the
task group. The procedure server transfer module is linked together with all the
procedures handled by the server to produce the procedure server image.

process

The entity scheduled by the VMS system software that provides the context in
which an image runs. A process consists of an address space and both hardware
and software context.

process context

See server context.

processing step

One of three kinds of steps that define the work of a task defined with ACMS.
The work of a processing step is handled by a server and can consist of computa
tions, data modification, and file and database access.

See also block step and exchange step.

program request key (PAK)

In TDMS, a key or combination of keys that let the terminal operator communi
cate with the application program at run time. You define the program request
key in a request.

A PRK can be defined by either:

• The keyword KEYPAD followed by one key (0-9, hyphen, period, or comma)

• The keyword GOLD followed by one printable key from the main keyboard
(including the space bar, but not the tab key)

project operation

See reduction operation.

Glossary-40

prompting expression

An expression that directs DAT A TRIEVE to ask the user to supply a value when
a statement is executed.

qualifier

A portion of a command string that modifies a command verb or command
parameter. A qualifier follows the command verb or parameter to which it applies
and has the following format: /qualifier[=option].

query header

A substitute column header that you define to replace the field name when
DAT A TRIEVE displays values from a field. For example, you may want to define
the query header "Status" to appear at the top of the column of values from the
field EMPLOYEE STATUS.

query name

A synonym you give to a DAT A TRI EVE field name in order to make input easier
to type and remember. For example, to make it easier to write DATATRIEVE
statements about the field SECTION NUMBER, you can define the query name
NUM and substitute it for the full fieid name.

quiet point

In VAX DBMS, a time when a run unit is not accessing any database areas. Quiet
points occur between transactions.

See also transaction.

Rdb/VMS

VAX Rdb/VMS is a DIGITAL relational database management product, layered
on VMS, that uses the relational model of database organization.

RDO

See Relational Database Operator.

Glossary-41

RDU

See Request Definition Utility.

RDU commands

The commands you issue to operate the TDMS Request Definition Utility, includ
ing commands to process (create, modify, copy, delete, and so on) a request or a
request library definition.

realm

In VAX DBMS, one or more areas grouped to allow subschema access. Realms
are specified in a subschema entry.

See also area.

record

A body of related information that is the basic unit for storing data.

See also field, member record, owner record, record occurrence, and record type.

record definition

The description of a record's structure that includes the name, data type, and
length of each field. CDDL, DATATRIEVE, and DBMS all store record defini
tions in the CDD. ACMS, TDMS, COBOL, BASIC, DIBOL, FORTRAN, PL/I,
and RPG II access record definitions stored in the CDD.

record locking

A process by which a database management system reserves a record or set of
records for use by one user, at the exclusion of other users. Record locking helps
guarantee the consistency of data.

Record Management Services (RMS)

A set of VMS operating system procedures that programs can call to process files
and records within files. VAX RMS lets programs issue GET and PUT requests
at the record level (record 1/0) as well as read and write blocks (block I/0). RMS
is an integral part of the VMS system software and is used by high-level lan
guages, such as VAX COBOL and BASIC, to implement their input and output
statements.

Glossary-42

DAT ATRIEVE uses VAX RMS to create, define, store, and maintain files and
records within files.

record occurrence

In VAX DBMS, an instance of a record type. A record occurrence is the physical
representation of a record; a record type is the logical definition of a record.

See also data item occurrence and record type.

record selection expression (RSE)

A phrase that defines specific conditions that individual records must meet before
RdbNMS, VAX DBMS, or DATATRIEVE includes them in a record stream. The
RSE lets you determine the subset of records to be selected from a set of domains
or a database.

record stream

A group of records formed by a record selection expression.

In RdbNMS, you form a record stream with either a FOR statement or a
ST ART STREAM statement. Streams are used in an application program or
RDO to-retrieve one record at a time for manipulation.

In DATATRIEVE, you form a record stream by including an RSE in a
DATATRIEVE statement.

See also record selection expression (RSE).

record type

In VAX DBMS, the logical definition of a record. Record types are declared in the
schema data definition.

See also data item type and record occurrence.

recovery

In VAX DBMS and RdbNMS, the process of restoring a database to a known
condition after a system or program failure.

In ACMS, you can define recovery as a characteristic for a multiple-step task that
uses VAX DBMS.

Glossary-43

See also after-image journal, before-image journal, journal file, journaling, and
transaction.

recovery-unit journal

See before-image journal

reduction operation

In Rdb/VMS and DATATRIEVE, an operation that finds the unique values for a
field or group of fields and eliminates repeated records. Reduction is sometimes
called the project operation. You use the REDUCED TO clause to perform the
operation.

reflexive join

An operation that joins a relation to itself.

See also join.

relation

A method of presenting related data that consists of a set of rows and columns.
The columns have names and divide each row into fields. For a single field in a
row. there is only one data item. In VAX Rdb/VMS, columns are referred to as
fields. and rows are called records. A relation is sometimes called a table.

relational database

A database model that represents data as a set of independent tables. Within a
table, data is organized in columns and rows, with at most one data item occupy
ing each intersection. Relationships between tables depend on values within the
relations. In VAX Rdb/VMS, these tables are called relations.

Relational Database Operator (RDO)

A single interactive utility for maintaining the database, creating and modifying
definitions of database elements, and storing and manipulating data.

See also Callable RDO.

relational join operation

See join operation.

Glossary-44

relational operator

A symbol, keyword, or phrase you can use to compare values. For example, the
DATATRIEVE statement FIND PERSONNEL WITH SALARY> 10000 con
tains the relational operator > (greater than).

relative path name

The shortened form of a dictionary path name. It includes only the parts of the
path name that follow the default CDD directory name. You can use either the
full path name or the relative path name to refer to directories, subdictionaries,
and objects in the CDD.

See also given name and path name.

remote server

The part of ACMS, DATATRIEVK DBMS and RdbNMS that lets you access
data on other computers. If, for example, you are' using the computer VACKSl
and you type READY PERSONNEL AT VACKS2, DATATRIEVE logs on to an
account on VACKS2. The remote server processes your statements at the remote
computer VACKS2.

report header

The heading of a DAT A TRI EVE Report Writer report, consisting of these
optional elements: a centered report-name and, at the top-right corner of the
report, a date and a page number.

report specification

A series of DATATRIEVE Report Writer statements that create a report and
specify its format.

Report Writer

A subsystem of DATATRIEVE that lets you create reports displaying data in an
easy-to-read format.

request

A set of TDMS instructions, created in the Request Definition Utility and stored
in the CDD, that describes an exchange of data between a program record and a
form. A request includes references to one or more form and record definitions

Glossary-45

and instructions for mapping data between a form and a program record. The
name of a request is passed as a parameter in the TSS$REQUEST call.

ACMS tasks use requests to display forms on a terminal and gather information
from a terminal user.

request call

The call in a TDMS application program that executes a request.

Request Definition Utility (RDU)

The TDMS utility used to process (create, modify, replace, and so on) requests
and request library definitions and to store them in the CDD. You also use this
utility to build request library files, which are accessed by an application program
at run time.

request instructions

The statements in a TDMS request that describe the exchange of data between a
program record and a form.

These statements can:

• Identify the record definitions and the associated forms for data transfer

• Provide instructions for transferring the data

The request instructions are executed when the TDMS application program
issues a TSS$REQUEST call.

request library definition

A definition, stored in the CDD, that lists the names of related requests to use in
a particular TDMS application. A request must be named in a request library defi
nition before you can build a request library file. The program uses the request
library file to access requests.

request library file

A VMS file that contains TDMS requests and the form and record information
necessary to execute those requests. When you use the Request Definition Utility
to build a request library file. RDU reads the definitions in the CDD and puts
information in the request library file so that the program can execute the
requests. A request library file that contains a request named in a TDMS call
must be opened before a program can use the request. Request library files take
the default file type .RLB.

Glossary-46

request library instructions

The statements in a TDMS request library definition that identify the requests
used in a TDMS application. These instructions also give the name of the request
library file where these requests and their associated form and record definitions
are to be stored.

restore

In RdbNMS or VAX DBMS, an operation that rebuilds a database from a saved
copy after a hardware or software failure.

restrict

See select operation.

restriction clause

A phrase in the DAT ATRIEVE record selection expression that lets you specify
the maximum number of records making up a record stream.

RETAINING

In VAX DBMS, an option on the DML COMMIT statement. The COMMIT
RETAINING statement:

• Does not empty keeplists

• Retains all currency indicators

• Does not release realm locks

• Releases all record locks

RETENTION class

In VAX DBMS, an attribute of member record types that describes when and
how a member record occurrence can be removed from a set.

See also FIXED member, MANDATORY member, and OPTIONAL member.

RLB

See request library file.

Glossary-47

RMS
See Record Management Services.

ROLLBACK

• In VAX DBMS or RdbNMS, the statement that restores a database to an
earlier known state using a before-image journal. The rollback process
negates updates to the database made by the transaction or recovery unit
being rolled back.

• In ACMS, an Application Definition Utility keyword used when defining
multiple-step tasks with database recovery.

rollforward

In VAX DBMS and RdbNMS, the process of using an after-image journal
to restore a database to a known state. This process replaces updates to the
database that were lost because a system or program failure required the installa
tion of backup media.

See also recovery.

root dictionary directory

The directory at the top of the VAX CDD hierarchy. The root directory is named
CDD$TOP. Every dictionary directory, subdictionary, and object in the CDD is a
descendant of CDD$TbP.

row (of a table)

See record, relation.

RSE

See record selection expression.

run unit

In VAX DBMS, an execution of a single program that accesses a database.

Glossary-48

SCATTERED set option

In VAX DBMS, a record placement option in which records are evenly distributed
throughout database pages, based upon data values in the record. SCATTERED
mode is specified in a storage schema entry.

scattergraph

Scattergraphs and line graphs compare values in fields and expressions by plot
ting values as points on X and Y coordinates. Scattergraphs plot only the points;
line graphs connect the points.

See also bar chart and pie chart.

schema

In VAX DBMS. the logical description of a database, including data definitions
and data relationships. The schema is written using the schema data definition
language (schema DDL).

scientific notation

A way of expressing very large or very small numbers as a constant multiplied by
the appropriate power of 10. For example:

.000000009
9000000.

.9E-8 (9 times 10 to the power of -8)

.9E 7 (9 times 10 to the power of 7)

scrolled form array

A list of elements in a scrolled region on a TDMS form. all of which have the
same name and the same length and data type. The number of elements in the
scrolled region is undefined, and the request can map up to 32,767 elements of
data.

scrolled region

An area. specified in the TDMS form definition. that permits the operator to
move through many lines on a field and view or enter data, although only a few
lines appear at one time on the screen.

Glossary-49

security

The protection of the information stored in a database against unauthorized read
ing, writing, or deletion.

security schema

In VAX DBMS, a definition that describes the data you want to secure.

select operation

In DATATRIEVE and RdbNMS, an operation that chooses from domains or rela
tions those records that satisfy a conditional expression. For example, if you want
to display employees with salaries greater than $20,000, a selection operation pre
vents employees records with salaries less than or equal to $20,000 from appear
ing in the output.

In DATATRIEVE. select operation more commonly applies to using the SELECT
statement to select a target record in a collection.

See also record selection expression.

selected record

The record chosen for display or modification by the DATATRIEVE SELECT
statement.

sequential file

A RMS file whose records appear in the order in which they were originally writ
ten. A sequential file does not have an index. In DAT ATRIEVE, you cannot
delete records from a sequential file.

server

In ACMS, the component that handles processing work for a task. There are two
types of servers: DCL servers and procedure servers. The implementation charac
teristics for a server are defined in a task group definition. The operational char
acteristics for a server are defined in an application definition.

See also DCL server and procedure server.

Glossary-50

server command

The string passed by an ACMS application execution controller to a server pro
cess at the start of a processing step. The string identifies what work the server is
to perform.

server context

In ACMS. information local to a server process, such as record locks and file
pointers. Server process context can be retained from one step to another in a
b1ock step but cannot be passed between servers or tasks.

server image

A VMS image that the ACMS run-time system loads into a server process. There
are two types of server images: DCL server images and procedure server images.

server process

A VMS process created according to the characteristics defined for a server in an
ACMS application and task group definition. Server processes are started and
stopped as needed by ACMS application execution controllers.

set

A defined relationship among records in a VAX DBMS database. A set contains
an owner record and one or more member records.

See also set occurrence and set type.

set occurrence

In VAX DBMS. a logical occurrence of a set type. A set occurrence consists of
one owner record occurrence and zero or more member record occurrences.

set type

In VAX DBMS, a logical definition of a relationship among record types in a
database. A set type contains an owner record type, and one or more member
record types.

Glossary-51

simple record array

See array.

single-step task

An ACMS task that has only a single processing step. Single-step tasks can be
defined in a task group or a separate task definition.

See also multiple-step task.

singular set

See SYSTEM-owned set type.

size validators

A field validator on a TDMS form definition that determines the field data type
and sets a predefined range for numeric fields. At run time, size validators pre
vent the operator from entering data that is not within that range.

software event logger (SWL)

The process that records ACMS and TDMS software events that occur during the
running of an application program. In order to see the events logged by the SWL,
you must use the Software Event Logger Utility Program.

Software Event Logger Utility Program (SWLUP)

The ACMS utility you use to list selected ACMS or TDMS events that were
logged by the software event logger.

sort key

A field that forms the basis for sorting. For example, you can rearrange the
records in DATATRIEVE's sample domain PERSONNEL according to seniority
by typing PRINT PERSONNEL SORTED BY START_DATE.

sorted set

See INDEX mode set.

Glossary-52

STATIC allocation

In VAX DBMS, the default allocation option of the ITEM statement of the stor
age schema entry. Use it to specify the amount of physical storage you want to
dedicate to a particular data item type. You make the specification during the
definition of the database, but the actual allocation does not occur until the cre
ation of the database.

See also DYNAMIC allocation and storage schema.

statistical expression

• In RdbNMS, an expression that takes values from multiple rows of a rela
tion and combines them into a single result. Statistical expressions include
AVERAGE, MAX, MIN, COUNT, and TOTAL.

• In DATATRIEVE, statistical expressions let you summarize and calculate
statistical values from fields in records. DAT ATRIEVE statistical expres
sions include AVERAGE, MAX, MIN, COUNT, RUNNING COUNT,
TOTAL, RUNNING TOTAL, and STD_ DEV (standard deviation).

step

A part of an ACMS task definition that identifies one or more operations to be
performed. Task definitions can have three kinds of steps: block steps, processing
steps, and exchange steps. Each step contains clauses that describe the work to
be done in that step and the action that follows the work.

See also block step. exchange step, processing step, step action, step work,
single-step task, and multiple-step task.

step action

The part of a step definition that tells ACMS what to do after completing the
work for that step. These instructions can consist of a single unconditional action
or a series of conditional actions based on the value of a field in a workspace.

step label

A name assigned to a step in a multiple-step ACMS task.

Glossary-53

step procedure

A type of procedure called in a processing step of an ACMS task. Step procedures
handle computations, data modification, and file and database access for process
ing steps that use procedure servers. Normally, step procedures do not handle
input from or output to a terminal.

step work

The part of an ACMS step definition that describes terminal interactions, pro
cessing. or both.

storage schema

In VAX DBMS, a description of the physical storage of data in a database. The
storage schema is written using the storage schema data definition entry.

stream

In VAX DBMS, an independent access channel between a run unit and a
database. Streams let you access multiple subschemas or databases in a single
process.

string descriptor

A data structure that specifies the address, length, and data type of a string.
String descriptors are passed as arguments to subroutines.

STRUCTURE field description statement

In CDDL, a statement defining fields that are subdivided into one or more subor
dinate fields. The top-level field description statement for a record is ordinarily a
STRUCTURE field description statement.

subdictionary

A dictionary file physically separate from the main dictionary file that functions
almost exactly like a dictionary directory. With a subdictionary, you can augment
CDD protection with VMS file protection.

Glossary-54

subdirectory

A list of files that is grouped one or more levels below the top-level or main VMS
directory.

subschema

In VAX DBMS, a user-oriented view of a database. You can tailor a view to meet
the needs of a particular programming language or to focus the extent of data a
program can access. The subschema can include everything in the corresponding
schema or any part of the schema. The subschema is written using the subschema
data definition entry.

suoscnpt

A positive integer that indicates the position of an element in a form or record
array. For example, in a TDMS request instruction, to refer to the third element
of an array LAST_NAME, you use the array field name and the number 3 (indi-
cating the third elementl: LAST_NAME[3]. ·

substitution directive

An expression in a command or statement passed to DATATRIEVE from a call
ing program. The substitution directive is replaced by parameters given in the
program.

summary lines

Information you can display in a DAT ATRIEVE report with the AT TOP and AT
BOTTOM statements.

SWL

See software event logger.

SWLUP

See Software Event Logger Utility Program.

synchronous call

A call to a TDMS subroutine that performs the entire requested action before
your program can continue running. Thus, your program continues only after the
completion of the called subroutine.

Glossary-55

See also asynchronous call.

system manager

A VMS user responsible for the overall operation of a VMS system.
Responsibilities of the system manager include authorizing all users of the sys
tem, setting access requirements for all system resources, and running all proce
dures necessary to ensure the correct and timely operation of the system.

system workspace

A task workspace whose record definition is provided by ACMS. ACMS provides
three system workspaces. At run-time, ACMS fills in the contents of the system
workspaces for each task selected by a terminal user. These workspaces, like
other task workspaces, last only for the duration of a task instance.

See also group workspace, task workspace, user workspace, workspace.

SYSTEM-owned set type

In VAX DBMS, a set owned by a SYSTEM record rather than by a record type
you have created. Each SYSTEM-owned record has only one occurrence in the
database but can be the owner of many member record types. It allows
unassociated record types to be used as entry points to the database.

See also member record and owner record.

table

See relation.

tag variable

An optional variable in CDDL VARIANTS field description statements. The run
time value of the tag variable determines the current VARIANT.

See also VARIANTS field description statement.

task

In ACMS, a unit of work that performs a specific function and that a terminal
user can select for processing. Every task belongs to a task group. Some tasks
are defined in the task group they belong to~ other tasks have separate task defi
nitions. In either case, they are defined with the ACMS Application Definition
Utility. The work of a task can be defined as a single processing step or a block
step, which consists of a series of exchange and processing steps.

G lossary-56

See also single-step task and multiple-step task.

task debugger

An ACMS debugging tool that is primarily for debugging multiple-step tasks that
use procedure servers. The task debugger uses task group databases and proce
dure server images; it does not require application definitions, menu definitions,
or a running ACMS system.

task group

One or more ACMS tasks that have similar processing requirements and that are
gathered together so they can share resources. A task group definition, created
with the Application Definition Utility, defines the servers used by the tasks that
belong to the group. It also defines other characteristics and requirements for the
tasks in the group, such as workspaces, request libraries, and message files.

task group database (TDB)

In ACMS, a run-time database containing information derived from task and task
group definitions. The Task Debugger uses the TDB when debugging tasks; the
Application Definition Utility uses the TDB when building an application
database. ACMS also uses the TDB when a terminal user selects a task. The
TDB is created as a result of building a task group definition with the Application
Definition Utility.

task instance

In ACMS, the occurrence of the processing of a task. Each selection of a task is a
task instance. Every task instance is given a unique ID by the ACMS run-time
system.

task 1/0

In ACMS, the communication between a user and a task instance. This communi
cation can consist of VMS terminal 1/0 or TDMS requests.

task selection string

In ACMS, the string of characters a terminal user types, in addition to the selec
tion keyword or number, when making a selection from a menu.

Glossary-57

task submitter

Any authorized ACMS user who selects tasks for processing, provides input for ~
that processing, and receives the results of that processing. Task submitters must
also be authorized VMS users.

task workspace

A workspace used mainly to pass information between steps in a multiple-step
ACMS task. A task workspace is allocated when a terminal user starts a task and
keeps its contents only for the duration of the task instance.

TDB

See task group database.

TOMS

See Terminal Data Management System.

tenant record

Any VAX DBMS record that participates in a set, whether a member or owner.

terminal control subsystem

A set of ACMS-controlled processes that control terminal user access to ACMS.
The terminal control subsystem includes two types of processes: the command
process or processes and the terminal subsystem controller.

Terminal Data Management System (TOMS)

A VAX product that uses forms to collect and display information on the termi
nal. TDMS provides data independence by allowing data used in an application to
be separated from the application program. ACMS multiple-step tasks use TDMS
services to manage terminal input and output.

terminal server

The part of DATATRIEVE that gives you access to DATATRIEVE's interactive
data management services.

Glossary-58

terminal subsystem controller

The process in the terminal control subsystem that controls which terminals have
access to ACMS.

termination procedure

An ACMS procedure that runs when a procedure server process stops and that
closes files or releases databases.

Trace facility

The facility that helps you to debug a TDMS application by letting yon monitor
the action of a TDMS application program at run time.

transaction

An exchange of information between a database user and a database. The oper
ations in a transaction are treated as a group; either all of them are completed at
once, or none of them is completed.

In VAX DBMS and RdbNMS, a transaction groups a series of statements that
perform a task.

• In VAX DBMS, a transaction normally begins with a READY statement and
ends with a COMMIT or ROLLBACK statement. However, a transaction
may begin with any DML statement, other than READY, if the previous
transaction in the run unit ended with a COMMIT statement that contained
a RETAINING clause. VAX DBMS transactions include only data manipula
tion operations.

• In RdbNMS, a transaction normally begins with START_TRANSACTION .
and ends with COMMIT or ROLLBACK. RdbNMS transactions can include
data manipulation or data definition statements.

See also COMMIT, quiet point, recovery, and ROLLBACK.

tuple

Relational database terminology for a record or row.

Glossary-59

type

A characteristic of each element in the CDD. Directories and subdictionaries are
directory types, and there are several types of dictionary objects (for example,
CDD$RECORD and DTR$DOMAIN).

UDU

See User Definition Utility.

UIC

See user identification code.

unique name

A designation assigned to a component, such as a task, that is used to identify
that component within and across definitions.

usage mode

In VAX DBMS, the combination of the DML READY statement's allow mode
and the access mode. It describes how a realm or realms you have readied can be
used. The eight usage mode combinations are:

BATCH UPDATE BATCH RETRIEVAL

PROTECTED UPDATE PROTECTED RETRIEVAL (default)

CONCURRENT UPDATE CONCURRENT RETRIEVAL

EXCLUSIVE UPDATE EXCLUSIVE RETRIEVAL

See also access mode and allow mode.

user definition file

A file, created and maintained with the ACMS User Definition Utility, that con
tains a list of users authorized to access ACMS.

User Definition Utility (UDU)

The ACMS tool for authorizing ACMS users and defining characteristics of those
users.

Glossary-60

user identification code

A code identifying a user by a group number or name and a member number or
name. Both numbers or names are enclosed in brackets.

user name

A designation assigned to a VMS user to identify that user. Also the name a ter
minal user types to log into VMS and ACMS.

user utility

See User Definition Utility.

user work area (UWA)

In VAX DBMS, a portion of memory assigned to your run unit that holds data to
be transferred between your run unit and the Database Control System. It holds
data that is either going from your run unit to the database or is coming from the
database to your run unit. The UW A also contains definitions of external
Database Control System functions.

user workspace

In ACMS, a workspace, defined as an attribute of a task group, that holds infor
mation about a terminal user. A user workspace is created the first time a termi
nal user starts a task that refers to it. ACMS keeps a separate copy of a user
workspace for each user and saves the contents of the workspace until the user
exits from ACMS.

UWA

See user work area.

valid request

A TDMS request in the Common Data Dictionary (CDD) with the following
characteristics:

• The form and record definitions named in the request are stored in the
CDD.

Glossary-61

• The record field and form field names used in mapping instructions are the
same as those contained in the form and record definitions.

• The data types, lengths, and structures of the fields are compatible according
to TDMS mapping rules.

validation

The process of checking data on entry to ensure that it meets preestablished
requirements.

In DATATRIEVE and RdbNMS. for example, the VALID IF clause in the record
definition sets criteria for validation of values entered for storage.

When the definition utilities of TDMS and ACMS are in Validate mode, they
check that references to external definitions are correct before storing a definition
in the CDD.

See also valid request.

value expression

A symbol or string of symbols that you use to calculate a string or numeric value.
When you use a value expression in a statement, RdbNMS or DAT A TRI EVE cal
culates the value associated with the expression and uses that value when execut
ing the statement.

variable

A name associated with an expression whose value can change.

In DATATRIEVE. you use the DECLARE statement to create a variable. For
example, the following statement creates a variable, X, that can be assigned any
two-digit numeric value: DECLARE X PIC 99.

VARIANTS field description statement

A CDDL statement defining a set of two or more fields that provide alternative
descriptions for the same portion of a record. The function of the VARIANTS
field description is similar to that of the REDEFINES clause in VAX COBOL and
VAX DATATRIEVE.

Glossary-62

VAXcluster

A highly integrated organization of VMS systems that communicate over a high
speed communications path. V AXclusters have all the functions of single node
VMS systems, plus the ability to share CPU resources, queues, and disk storage.
Like a single-node system. the V AXcluster organization provides a single security
and management environment. Member nodes may share the same operating
environment or serve specialized needs.

video attribute

A characteristic of a TDMS form that provides one or more of the following spe
cial visual effects to an area of a form:

• Reverse video

• Bolding

• Blinking

• Underlining

• Double-height characters

• Double-width characters

view

A subset of an RdbNMS database that includes any combination of fields and
records from a single relation or from different relations. You form a view using a
record selection expression. To the user, the results look like a single relation.

In DATATRIEVE. the term view is used to refer to a view domain.

view domain

A special type of DATATRIEVE domain that lets you select some lor alH fields in
some (or all) records from one or more domains. You can use a view domain to
refer to fields and field values in the same or different domains without having to
duplicate the data in those domains.

virtual field

A field that does not occupy any space in storage. The DAT A TRIEVE
COMPUTED BY clause defines a virtual field. The value of the field is calculated
when you access it with a DAT ATRIEVE statement.

Glossary-63

VMS

The operating system on a VAX computer.

VMS image

See image.

VMS process

See process.

VMS user

A person or account authorized by a VMS system manager to acces~ a VMS
system. A VMS user is assigned a user name, a password, a user identification
code (UIC), a default directory, a default command language, quotas, limits, and
privileges.

wildcard character

A symbol. such as the asterisk or percent sign, that you use in place of all or part
of a file specification.

workspace

In ACMS, a buffer used to save variable context between steps and tasks. whose
description is stored in the CDD. A workspace can also hold application param
eters and status information. Workspaces are passed to step procedures as
parameters. ACMS provides record descriptions for three task workspaces, which
are referred to as the system workspaces.

See also group workspace, system workspace, task workspace, and user
workspace.

workspace symbol module

An object module, produced as a result of building a task group definition, that
contains a main routine and debug symbol table used by the ACMS Task
Debugger to examine workspaces. The object module must be converted into an
executable image by the LINK command before the Task Debugger can use it.

Glossary-64

Master Index

Master Index Book List

ACADG VAX A CMS Application Definition Guide DBMPG VAX DBMS Maintenance and Performance Guide

ACADR VAX A CMS Application Definition Reference Manual DBPRG VAX DBMS Programming Guide

ACAM G VAX A CMS Application Management Guide DBPRM VAX DBMS Programming Reference Manual

ACAPG VAX A CMS Application Programming Guide DTGGR VAX DATATRIEVE Guide to Using Graphics

ACDAP Developing Applications with VAX ACMS DTGPG VAX DATATRIEVE Guide to Programming and

ACDPG VAX ACMS Developrnent Pocket Guide
Customizing

DTHB VAXDATATRIEVEHandbook
AC DSG VAX A CMS Application Design Guide

DTREF VAX DATATRIEVE Reference Manual
ACTDG VAX ACMS Task Definition Guide

DTRPT VAX DATATRIEVE Guide to Writing Reports
ACTUG VAX A CMS Terminal User's Guide

DTUG VAX DATATRIEVE User's Guide
CDDDL VAX Common Data Dictionary Data Definition

Language Reference Manual RDDBD VAX Rdb/VMS Guide to Database Design and

CDDUG VAX CommonDataDictionary User's Guide
Definition

RDGAM VAX Rdb/VMS Guide to Database Administration
CDUTL VAX Comnwn Data Dictionary Utilitjes Reference Manual and Maintenance

DBDBA VAX DBMS Database Administration Reference Manual RDGDM VAX Rdb/VMS Guide to Data Manipulation

DBDGD VAX DBMS Database Design Guide RDGP VAX Rdb/VMS Guide to Programming

DB DSG VAX DBMS Database Security Guide RD REF VAX Rdb/VMS Reference Manual

DBFDM VAXDBMSFDMLReferenceManual TDAPG VAX TDMS Application Programming Manual

DB IDA VAX DBMS Introduction to Database Administration TDFRM VAX TDMSFormsManual

DBIDM VAX DBMS Introduction to Database Manipulation TDREQ VAX TDMS Request Manual

DBLGD VAX DBMS Load/Unload Guide TD SAM VAX TDMS Sample Application Manual

TD SUP VAX TDMS VJ .4 Documentation Supplement

In this index, a page number followed
by a "t" indicates a table reference.
A page number followed by an "f"
indicates a figure reference. A page
number followed by an 11 e 11 indicates
an example reference.

A
ABORT statement, DTREF7-18,

DTUG 7-7, 8-10
ACCEPT command (DBQ), DBPRM

1-2
Access

restricting users to ACMS, ACDSG
3-9

Access control list editor (CDD),
CDUTL2-80

Access control lists, CDDDL l-4,
CDDUG 3-2, 4-1, CDUTL 1-4,
DTHB 7-14, DTREF
2-1, RDDBD 3-2, 3-8

ACMS/INSTALL checks, ACAMG
5-2

creating, RDDBD 3-8

Master Index 3

defining for ACMS tasks, ACDSG
3-10

determining order, RDDBD 3-12
editing, CDDUG 4-18
example, CDDUG 4-2
in application definitions, ACADG

2-5
relations, RDDBD 3-14
summary of results, CDDUG 4-18

Access privileges (CDD), CDUTL l-4
checking, CDDUG 3-2

Access privileges (RdbNMS),
RDDBD3-4

Access rights (RdbNMS), RDDBD
3-4

CHANGE PROTECTION state
ment, RDREF 6-25

ACCESS subclause (ADU), ACADR
5-54

Access/allow modes (DBMS)
securing, DBDSG 2-5

Accessing a database (RdbNMS)
programs, RDGP 1-3
user identification code (UIC),

RDREF6-27
Accessing data. DTUG 2- l

DMBS. DTUG 14-5
in RMS files, DTHB 13-1
Rdb, DTUG 15-4
remote. DTUG 16-1

lndex-1

Accessing databases (DBMS)
binding, DBIDM 3-1
ending access, DBIDM 3-9
invoking interactive DBQ, DBIDM

2-5
manipulating currency indicators,

DBIDM5-l6
overview, DBIDM 3-1
record locking, DBPRG 8-6

. steps in, DEIDA 5-1
using interactive DBQ, DBJDM 2-l
using READY statement, DBIDM

3-4
ACMS

Application Definition Utility,
ACDAP2-6

application design and develop
ment. ACDPG 2f

checklist, A CDPG 3
authorizing applications, ACAMG

4-1
canceling tasks, A CAMG 9-3
canceling users, ACAMG 9-3
changing parameter values,

ACAMG7-1
databases used by, ACDAP 5-18f
displaying application information,

ACAMG8-l
distributed processing, ACAMG

10-1
entering, ACTUG 2-2
entering an application, ACDAP

5-17
errors. ACAMG A-1
exiting, ACTUG 2-4
exiting from, A CDAP 5-19
how components fit together,

ACTDG 1-1
monitoring, A CAMG 6-1
requirements for successful logins,

ACAMGD-l
sample application source files,

ACAMGB-l
summary of application develop

ment, A CDAP 6-l t

lndex-2

terminal user HELP, ACTUG 2-5
ACMS application programming,

ACAPG 1-1
DBMS procedures, ACAPG 5-1
programming facilities, ACAPG 1-4
RdbNMS procedures, ACAPG 6-1
suggestions, ACAPG 3-1
using RMS files, A CAPG 4-5

ACMS applications
changing, ACDPG 6t
debugging, ACDPG llt

ACMS Operator commands (OPR)
ACMS/CANCEL TASK, ACAMG

16-5
ACMS/CANCEL USER, ACAMG

16-8
ACMS/ENTER, AC1,MG 16-11
ACMS/INSTALL, ACAMG 16-13
ACMS/RESET AUDIT, ACAMG

16-16
ACMS/RESET TERMINALS,

ACAMG 16-17
ACMS/SET SYSTEM, ACAMG

16-18
ACMS/SHOW APPLICATION,

ACAMG 16-20
ACMS/SHOW APPLICATION/

CONTINUOUS, ACAMG
16-21

ACMS/SHOW SYSTEM, ACAMG
16-23

ACMSlSHOW TASK, ACAMG
16-24

ACMS/SHOW USER, ACAMG
16-26

ACMS/START APPLICATION,
ACAMG 16-28

ACMS/START SYSTEM, ACAMG
16-30

ACMS/START TERMINALS,
ACAMG 16-32

ACMS/STOP APPLICATION,
ACAMG 16-34

ACMS/STOP SYSTEM, ACAMG
16-36

ACMS/STOP TERMINALS,
ACAMG 16-38

ACMS Sample Applications
source files for, ACADR A-1

ACMS Task Debugger, ACAPG 1-4,
ACDAP4-l5

ACMS$DIRECTORY logical name
storing applications, ACADG 2-17

ACMS$PROCESSING _STATUS
workspace

handling errors, ACTDG 8-2
ACMS$SELECTION STRING

workspace, ACAPG 8-6, ACTDG
8-6

ACiviSiAD Task Deuugger, ACAFG
9-1

ACMS/AD Task Debugger commands
ASSIGN command. ACAPG 11-7
At sign(@) command. ACAPG

11-6
CANCEL BREAK command,

ACAPG 11-9
CANCEL TASK command,

ACAPG 11-11
DEPOSIT command, ACAPG

11-12
EXAMINE command, ACAPG

11-13
EXIT command, ACAPG 11-14
GO command. A CAPG 11-15
HELP command. ACAPG 11-16
INTERRUPT command, ACAPG

11-17
SELECT command. ACAPG 11-18
SET BREAK command. ACAPG

11-19
SET SERVER command. ACAPG

11-20
SHOW BREAK command. ACAPG

11-21
SHOW SERVERS command.

ACAPG 11-22
SHOW VERSION command,

ACAPG 11-23
START command, ACAPG 11-24

STEP command, ACAPG 11-26
STOP command, ACAPG 11-27

ACMS/CANCEL command (OPR),
ACAMG 16-5

ACMS/CANCEL USER command
(OPR), ACAMG 16-8

ACMS/ENTER command (OPR),
ACAMG 16-11

ACMS/INSTALL command (QPR).
ACAMG 16-13

ACMS/RESET AUDIT command
mPR), ACAMG 16-16

ACMS/RESET TERMINALS com
mand (QPR), ACAMG 16-17

• ,...,,., 1•-r-.. lt""'IT'."~ ,....,,Tr"\f'"TH""."'ll_K _ --·-,---.- --- -1
J-\.\..,1\1.Li:>I ,;:,c, .L ;;::, .l .:::> .L DlV.L cvuu.uauu

(QPR). ACAMG 16-18
ACMS/SHOW APPLICATION com

mand (QPR), ACAMG 16-20
ACMS/SHOW APPLICATION/

CONTINUOUS command
(QPR), ACAMG 16-21

ACMS/SHOW SYSTEM command
(OPR), ACAMG 16-23

ACMS/SHOW TASK command
(QPR), ACAMG 16-24

ACMS/SHOW USER command
(QPR). ACAMG 16-26

ACMS/START APPLICATION com
mand (QPR). ACAMG 16-28

ACMS/START SYSTEM command
(QPR). ACAMG 16-30

ACMS/START TERMINALS com
mand (QPR). ACAMG 16-32

ACMS/STOP APPLICATION com
mand (QPR)~ ACAMG 16-34

ACMS/STOP SYSTEM command
(OPR). ACAMG 16-36

ACMS/STOP TERMINALS com
mand (QPR), ACAMG 16-38

ACMSAAF.DAT database file
storing authorizations, ACAMG

4-2
ACMSAD$REQ CANCEL program

ming service. A CAPG 1-4

lndex-3

ACMSAD$REQ CANCEL service,
ACAPG 10:3

ACMSDDF.DAT database file
in SYS$SYSTEM, ACAMG 3-1

ACMSGEN Utility, ACAMG 7-1
ACMSGEN Utility commands

EXIT, ACAMG 15-5
HELP, ACAMG 15-6
SET, ACAMG 15-7
SHOW, ACAMG 15-8
USE, ACAMG 15-10
USE ACTIVE, ACAMG 15-12
USE CURRENT, ACAMG 15-14
USE DEFAULT, ACAMG 15-16
WRITE, ACAMG 15-17
WRITEACTIVE, ACAMG 15-18
WRITE CURRENT, ACAMG

15-19'
ACMSUDF.DAT database file·

contents of, ACAMG 2-1
Ada

Callable DBQ (DBMS), DBPRM
5-2

examples, DBPRM5-13
using DML precompiler (DBMS),

DBPRG 2-1, DBPRM 3-1
.ADB files

installing, ACAMG 5-2
location for, ACAMG 4-1
removing, ACAMG 5-2

ADD command (AAU), ACAMG 13-4
ADD command (DOU), ACAMG 12-3
ADD command (UDU), ACAMG 11-3
Adding records (DBMS)

overview, DBIDM6-l, 6-3
ADF

running, ACAMG E-1
ADT command, DTREF 7-23
ADU

building application databases with,
ACDAP&.-5

building menu databases with,
ACDAP5-9

command summary, ACTDG 2-11

lndex-4

defining applications with, ACDAP
5-1

defining menus with, A CDAP 5-6
defining task groups with, A CDAP

4-10
defining tasks with, ACDAP 2-6
preparing to use, A CTDG 2-1
processing definitions, A CADG 1-8
storing definitions in COD,

ACTDG 2-4
using ADU, ACTDG 2-1

After-image journaling (DBMS),
DBMPG5-8

dumping, DBDBA 9-62
for database recovery, DBDBA

9-113
After-image journaling (RdbNMS),

RDGAM 3-4, 4-38
CLOSE statement, RD REF 6-3 7
recovery, RDGAM 3-7

Agents
authorizing, ACAMG 2-4

.AIJ file
See After-image journal

Aliases, DTUG 7-13
using to generalize procedures,

DTUG 7-13
using to restructure domains,

DTUG 10-2. 10-6
%ALL syntax, TDAPG 4-4, TDREQ

6-3, 6-16
mapping arrays, TDREQ 11-6,

12-4
ALLOCATION clause, DTREF 7-25
ALSO current test (FDML), DBFDM

3-79
ALSO keeplist test (FDML), DBFDM

3-80
Altering corrupt databases (DBMS),

DBMPG9-5
Altering databases (DBMS), DBDBA

9-8
pages, DBMFG 9-6

ANALYZE command (RDBNMS),
RDGAM4-3l

ANALYZE statement (RDO)
gathering statistics, RDREF 6-2

Analyzing space use, DBDBA 9-10
ANY relational operator, RDGDM

4-29
Application

node, ACAMG 10-1
Application Authorization Utility

(AAU), ACDAP 5-14
authorizing applications, ACAMG

4-1
installing applications, ACAMG 5-2

Application Authorization utiiity
commands (AAU)

ADD, ACAMG 13-4
COPY, ACAMG 13:-9
DEFAULT, ACAMG 13-15
EXIT. ACAMG 13-21
HELP, ACAMG 13-22
LIST, ACAMG 13-23
MODIFY, ACAMG 13-25
REMOVE, ACAMG 13-30
RENAME, ACAMG 13-31
SHOW, ACAMG 13-36

Application control
defining. ACADG 2-1, 3-1

Application databases. ACDAP 5-5
building, ACADG 6-3
errors when building. ACADG 3-35
in ACMS$DIRECTORY, ACDSG

3-8
information in, A CADG 6-1
installing in ACMS$DIRECTORY.

ACADG2-l7
location for, ACAMG 4-1

APPLICATION DEFAULT
DIRECTORY clause (ADU),
ACADR5-5

Application Definition Utility (ADU)
application definition clauses

(ADU), ACADR 5-1
ACCESS subclause, ACADR

5-54
APPLICATION DEFAULT

DIRECTORY, ACADR 5-5
APPLICATION LOGICALS

clause, ACADR 5-7
APPLICATION USERNAME

clause, ACADR 5-9
AUDIT clause, ACADR 5-11
AUDIT subclause, ACADR 5-36,,.

5-56
CREATION DELAY subclause,

ACADR5-38
CREATION INTERVAL

subclause, ACADR 5-38.2
DEFAuLT APPL1CAT1GN

FILE clause, ACADR 5-12
DEFAULT DIRECTORY

subclause, ACADR 5-38.4
definition syntax, ACADR 5-2f
DELAY subdause, ACADR 5-57 ~-!
DELETION DELAY subclause,

ACADR5-40
DELETION INTERVAL

subclause, ACADR 5-40.2
DYNAMIC USERNAME

subclause, ACADR 5-40.4
FIXED USERNAME ~J.Ibclause ..

ACADR5-42
LOGICALS subclause, ACADR

5-43
MAXIMUM SERVER

PROCESSES clause.
ACADR5-l4

MAXIMUM SERVER
PROCESSE~ subclause,
ACADR5-46

MAXIMUM TASK
INSTANCES clause,
ACADR5-l6

~MINIMUM SERVER
PROCESSES subclause,
ACADR5-48

SERVER ATTRIBUTES,
ACADR5-l8

lndex-5

SERVER DEFAULTS, ACADR
5-22

SERVER MONITORING
INTERVAL, ACADR 5-24

SERVER subclauses, ACADR
5-32

summary of application clauses,
ACADR 5-4.lt

summary of task clauses,
ACADR 5-52t

TASK ATTRIBUTES, ACADR
5-24.2

TASK DEFAULTS clause,
ACADR 5-27

TASK GROUPS, ACADR 5-29
USERNAME subclause.

ACADR 5-50
WAIT subclause, A CADR 5-59

block step clauses (ADU). ACADR
8-1

Block phrases, ACADR 8-4
CALL clause, ACADR 8-46
CANCEL ACTION phrase.

ACADR8-7
CANCEL TASK clause, ACADR

8-81
COMMIT clause. ACADR 8-84
CONTROL FIELD clause.

ACADR 8-24. 8-48. 8-86
DATATRIEVE COMMAND

clause, A CADR 8-50
DBMS RECOVERY phrase,

ACADR 8-9, 8-52
DCL COMMAND clause.

ACADR8-54
default recovery actions, ACADR

8-lOt, 8-13t
exchange step clauses, A CADR

8-21
EXIT BLOCK clause, ACADR

8-90
EXIT TASK clause, ACADR

8-91
GET ERROR MESSAGE

clause, ACADR 8-92

lndex-6

GOTO STEP clause, ACADR
8-95

GOTO TASK clause, ACADR
8-97

IMAGE clause, A CADR 8-5 7
NO EXCHANGE clause,

ACADR8-27
NO PROCESSING clause,

ACADRB-59
NO RECOVERY UNIT

ACTION clause, ACADR
8-99

NO SERVER CONTEXT
ACTION clause, ACADR
8-101

NO TERMINAL 1/0 phrase.
ACADR 8-12, 8-60

RDB RECOVERY phrase,
ACADR 8-13, 8-62

READ clause, ACADR 8-28
RELEASE SERVER

CONTEXT clause, ACADR
8-103

REPEAT STEP clause, ACADR
8-105

REPEAT TASK clause, ACADR
8-106

REQUEST clause, ACADR 8-30
REQUEST 1/0 phrase, ACADR

8-16.1, 8-65
RETAIN RECOVERY UNIT

clause. A CADR 8-108
RETAIN SERVER CONTEXT

clause, A CADR 8-110
ROLLBACK clause, ACADR

8-112
SELECT FIRST clause, ACADR

8-32, 8-66, 8-114
SERVER CONTEXT phrase,

ACADR 8-17
STREAM I/O phrase, ACADR

8-20
summary of action clauses,

ACADR8-76t
summary of block phrases,

ACADR8-5t
summary of processing clauses,

ACADR 8-42t
TERMINAL 1/0 phrase, ACADR

8-74
WRITE clause, ACADR 8-40

commands (ADU)
ATTACH, ACADR 2-2.1
BUILD, ACADR 2-3
COPY, ACADR 2-10
CREATE, ACADR 2-14
DELETE. ACADR 2-19
DUMP. ACADR 2-21
EDIT, ACADR 2-23
EX!T, ACADR !-3. 2-2'3
HELP, ACADR 2-27
LIST, ACADR 2-29
MQDIFY, ACADR 2-33
REPLACE, ACADR 2-39
SA VE, ACADR 2-44
SET DEFAULT, ACADR 2-46
SET LOG, ACADR 2-48
SET VERIFY. ACADR 2-51
SHOW DEFAULT, ACADR

2-53
SHOW LOG, ACADR 2-54
SHOW VERSION, ACADR 2-56
SPAWN, ACADR 2-57
summary of ADU commands,

ACADR2-2t
using qualifiers, ACADR 1-13

error messages
examples and references.

ACADRB-1
leaving ADU temporarily, ACADR

1-14
menu definition clauses (ADU).

ACADR4-1
DEFAULT APPLICATION

FILE. ACADR 4-5
DEFAULT MENU FILE.

ACADR4-7
ENTRIES, ACADR 4-9
ENTRIES clause, ACADR 4-15,

4-15t

HEADER, ACADR 4-12
MENU subclause, ACADR 4-17
REQUEST, ACADR 4-14
summary of menu clauses,

ACADR4-4t
TASK subclause, ACADR 4-19
TEXT subclause, ACADR 4-22

starting, ACADR 1-2
startup qualifiers, ACADR 1-3t
stopping, ACADR 1-3
system workspaces, ACADR C-1
task clauses (ADU), ACADR 7-1

BLOCK clause,ACADR 7-7
block phrases, ACADR 7-7
DEFAULT REQUEST

LIBRARY clause, ACADR
7-10

DEFAULT SERVER clause,
ACADR 7-12

DELAY clause, ACADR 7-14
PROCESSING clause, ACADR

7-15
summary of task clauses,

ACADR7-2t
USE WORKSPACE clause,

ACADR 7-17
WAIT clause, ACADR 7-20
WORKSPACES clause, ACADR

7-21
task group clauses (ADU), ACADR

6-1
CALL subclause. A C'ADR 6-26
CANCEL PROCEDURE

subclause. ACADR 6-37
DATATRIEVE COMMAND

subclause, ACADR 6-28
DCL COMMAND subclause,

ACADR6-30
DCL PROCESS subclause,

ACADR6-39
DEFAULT OBJECT FILE

subclause, ACADR 6-40
DEFAULT TASK GROUP

FILE, ACADR 6-7
DYNAMIC USERNAME

lndex-7

subclause, ACADR 6-42
FIXED USERNAME subclause,

ACADR6-44
IMAGE subclause, ACADR 6-32
INITIALIZATION

PROCEDURE subclause,
ACADR6-45

MESSAGE FILES clause,
ACADR6-9

PROCEDURE SERVER
IMAGE subclause, ACADR
6-47

PROCEDURES subclause.
ACADR6-49

processing subclauses, ACADR
6-24

REQUEST LIBRARY clause,
ACADR6-ll

REUSABLE subclause, ACADR
6-51

RUNDOWN ON CANCEL
subclause, ACADR 6-53

SERVERS clause, ACADR 6-13
SERVERS subclauses, ACADR

6-34
summary of processing

subclauses, ACADR 6-24t
summary of server subclauses,

ACADR6-35t
summary of task group clauses.

ACADR6-2t
TASKS clause, ACADR 6-15
TERMINATION PROCEDURE

subclause, ACADR 6-55
USERNAME subclause,

ACADR6-57
WORKSPACES clause, ACADR

6-19
Application definitions, ACDAP 5-1

errors when creating, ACADG 3-34
naming task groups in, ACADG

2-4
processing, ACADG 1-8, 2-7

Application Demonstration Facility
(ADF), ACAMG E-1

lndex-8

Application design, ACDSG 1-4, 2-3,
5-5

allocating servers, ACDSG 5-3
data design, ACDSG 2-2
major considerations, ACDSG 1-7
performance, ACDSG 5-6
recovery,ACDSG 2-7

Application design and development,
ACDPG2f

checklist. ACDPG 3
Application Design Tool (ADT),

DTHB 1-15
customizing, DTGPG 9-2

Application development
dividing the work of, ACADG 1-2,

1-2t
steps in, A CADG 1-3

Application environment
describing, ACADG 2-2

Application execution controller
assigning user names, A CADG 2-4
control characteristics of, ACADG

1-7
quotas and privileges for, A CADG

2-4
APPLICATION LOGICALS clause

(ADU), ACADR 5-7
Application programming

with ACMS, ACAPG 1-1
Application programming services,

ACDSG 4-15
Application programs

at run time, TDAPG 1-4
compiling, TDAPG 3-8
controlling, TDREQ 10-6
debugging, TDAPG 9-1
linking, TDAPG 3-8
running sample, TDAPG 2-2,

TDREQ2-l
Application specifications, ACADG

4-6, ACADR 1-10, 4-5
APPLICATION USERNAME clause

(ADU), ACADR 5-9
Applications

ACMS, ACDSG 1-1

authorizing, ACAMG 4-1
building databases for, A CDAP 5-5
checklist for developing, ACDAP

6-lt
control characteristics of, A CADG

1-4, 1-8, 2-2
controlling, ACADG 1-1
creating with ADF, ACAMG E-1
defining, ACDAP 5~1
describing work for in task group

definitions, A CADG 7-1
designing a simple application,

ACADG2-1
displaying information about,

ACAM-08-!
ease of developing ACMS, ACDSG

1-2
implementing, ACADG 1-1, 2-1
including existing tasks, A CADG

7-1
installing, ACAMG 5-2, ACDAP

5-15
limit for task groups in, A CDSG

5-1
monitoring with ACCOUNTING,

ACDSG5-5
naming task groups, ACADG 3-1,

7-9
online, A CDSG 1-1
problems developing, ACDSG 1-2
running, ACADG 2-17
running ACMS Sample. ACAMG

C-1
running tasks in, A CDAP 5-1 7
saving resources in ACMS, ACDSG

1-2
separating implementation. and

control, ACADG 1-2
setting up, ACAPG 9-36
source files for ACMS Sample,

ACAMGB-1
specification, ACAMG 10-3
starting. ACDAP 5-15
steps in defining, ACADG 1-1, 2-3f
stopping, ACDAP 5-15

AREA ... PAGE command
(DBALTER), DBDBA 10-3

Arithmetic expressions, RDREF 3-16
ARRAY field attribute clause (CDDL),

CDDDL2-5
Arrays

as control fields, TDAPG 6-5,
TDREQ 13-1

horizontally-indexed scrolled,
TDREQ 12-1

indexed, TDREQ 11-10
mapping, TDAPG 4-14, TDREQ

11-1
scrolled, TDREQ 11-10
t~:u0-di!!!e!!sfo!!~!, TDRPQ 1 ?-?.

AS clause, DTUG 10-6
ASSIGN command (ACMSDBG),

ACAPG 11-7
Assign Phase

introduction, TDFRM 6-2
Assigning security attributes,

DBDSG2-5
Assignment statement, DTREF 7-27
Associating a form with a

DATATRIEVE domain, DTUG
13-2

Asterisk(*)
wildcard character, RDGDM 3-7

Asynchronous function keys, TDSUP
2-6

Asynchronous programming calls.
TDSUP3-1

AT BOTTOM statement (DTR Report
Writer), DTRPT6-7

AT END clause (RdbNMS)
error handling, RDREF 6-8

At sign(@) command (ACMSDBG),
ACAPG 11-6

At sign(@) command (FDU). TDFRM
Ref-2

At sign(@) command (RdbNMS)
execute statement, RDREF6-116

At sign(@) comm"and (RDU), TDREQ
Refa-3

lndex-9

At sign(@) command (SWLUP),
ACAMG 17-5

AT Statements (DTR Report Writer),
DTREF7-36

AT TOP statement (DTR Report
Writer), DTRPT 6-3

ATTACH command (ADU), ACADR
2-2.1

Attributes
DBMS security, DBDSG 2-5

AUDIT clause (ADU). ACADR 5-11
AUDIT subclause (ADU), ACADR

5-36, 5-56
Audit Trail log. ACAMG 6-1

authentication of distributed task
selections. ACAMG 6-7

Audit Trail Report Utility (ATRU),
ACAMG6-1

running, ACAMG 6-9
Audit Trail Report Utility commands

(ATRU)
EXIT, ACAMG 14-3
HELP, ACAMG 14-4
LIST. ACAMG 14-5

Au then ti ca ti on
auditing of distributed task selec

tions, ACAMG 6-7
Authorize utility

remote database access (DBMS)
creating common account.

DBDGD8-3
Authorizing

ACMS terminals, A CAMG 3-1
ACMS users, ACAMG 2-1.

ACDAP5-11
agents, ACAMG 2-4
applications, ACAMG 4-1
command process (CP), ACAMG

2-4
local ACMS terminals, ACAMG

3-2
remote terminals, ACAMG 3-2
terminals for ACMS, ACDAP 5-12
users to install applications,

ACDAP5-14

lndex-10

B
Bachman diagrams

PARTS sample database, DBIDM
A-1

Backing up databases (DBMS),
DBDBA 9-18, DBMPG 4-1

full, DBMPG 4-2
incremental, DBMPG 4-4

Backing up databases (Rdb/VMS)
example, RDGAM 3-9
using VMS BACKUP, RDGAM 3-3

Backup and restore example (DBMS),
DBMPG4-10

BACKUP command (DMU), CDUTL
2-2

BACKUP statement (RDO)
copying a database. RDREF 6-9

Base instructions, TDREQ 4-5
BASIC

Callable DBQ (DBMS), DBPRM
5-3

examples, DBPRM5-16
calling DAT ATRIEVE from,

DTGPG 2-16, 5-2, 5-6
data manipulation statements

(Rdb/VMS), RDGP 5-4
record definitions, TDAPG 8-1
using DML precompiler (DBMS),

DBPRG 2-1, DBPRM3-1
examples, DBPRG 3-l, 3-5, 4-1,

5-1. 6-1. 7-1, 8-1
BEGIN-END statement, DTREF

7-45
BIND command (DBALTER),

DBDBA 10-5
BIND command (DBQ), DBIDM3-1.

DBPRMl-3
BIND statement (DML), DBPRM 2-2
Binding remotely (DBMS)

using DECnet and DBMSERVER.
DBDGDB-1

Binding to a database (Rdb/VMS)
INVOKE DATABASE statement,

RDREF6-143

Binding to databases (DBMS)
overview, DBIDM 3-1

BLANK WHEN ZERO field attribute
clause (CDDL), CDDDL 2-7

BLINK FIELD instruction (RDU),
TDREQ Refb-3

BLISS
Callable DBQ (DBMS), DBPRM

5-3
examples, DBPRM5-19

using DML precompiler (DBMS),
DBPRG 2-1, DBPRM3-1

BLOCK clause (ADU), ACADR 7-7
Block phrases (ADU)

in BLOCK ciause, A.CA.DR 7-7
Block steps, A CDAP 2-6

attributes of, ACADR 8-4
BOLD FIELD instruction (RDU),

TDREQ Refb-4
Boolean expressions, DTREF 3-1

compound, DTUG 12-22
Bugcheck dumps (DBMS), DBMPG

10-1
when to report, DBMPG 10-2

BUILD command (ADU). ACADR 2-3
producing task group databases,

ACTDG 7-10
BUILD LIBRARY command (RDU),

TDREQ 5-6, Refa-5
Building databases

application, ACADG 6-3, ACDAP
5-5

menu, ACADG 2-16. 4-12. 6-4
possible errors, ACADG 6-6, 7-8
task group, ACADG 7-8, ACDAP

4-13
task groups, ACTDG 7-9

Building request library files. ACDAP
4-9

BYPASS privilege
effect on DBMS security, DBDSG

1-2

c
c

Callable DBQ (DBMS), DBPRM
5-4

examples, DBPRM 5-21
using DML precompiler (DBMS),

DBPRG 2-1, DBPRM3-1
CALL clause (ADU), ACADR 8-46
CALL subclause (ADU), ACADR 6-26
Callable Database Query (DBQ) utility

Ada
compiling, DBPRM 5-2
examples, DBPRM 5-13

BASIC
compiling. DBPRM 5-3
examples, DBPRM5-16

BLISS
compiling, DBPRM 5-3
examples, DBPRM 5-19

c
compiling, DBPRM 5-4
examples, DBPRM 5-21

Callable routines, DBPRM 5-5
COBOL

compiling. DBPRM 5-4
compiling a program, DBPRM 5-2
DBQ$COMPILE routine, DBPRM

5-6
DBQ$COMPILE STREAM rou

tine, DBPRM 5-9
DBQ$EXECUTE routine. DBPRM

5-10
DBQ$EXECUT~STREAMro~

tine, DBPRM 5-12
DBQ$INTERPRET routine,

DBPRM5-13
DBQ$INTERPRET_STREAM rou

tine. DBPRM 5-29
DBQ$RELEASE routine, DBPRM

5-33
DBQ$RELEASESTREAMro~

tine, DBPRM 5-34
DIBOL

compiling, DBPRM 5-4

lndex-11

examples, DBPRM 5-23
linking programs, DBPRM 5-5
MACRO

compiling, DBPRM 5-4
examples, DBPRM 5-24

PASCAL
compiling, DBPRM 5-4
examples, DBPRM 5-25

PL/I
compiling, DBPRM 5-5
examples, DBPRM 5-27

program
compiling. DBPRM 5-2
linking, DBPRM 5-5
running, DBPRM 5-5

running a program, DBPRM 5-5
user work area (UWA)

creating, DBPRM 5-2
Callable DAT ATRIEVE

basic steps in, DTGPG 2-13
DAB, DTGPG 2-2

BASIC, DTGPG A-5
COBOL, DTGPG A-3
FORTRAN, DTGPG A-1
PASCAL, DTGPG A-6

data types
atomic. DTGPG C-1
miscellaneous, DTGPG C-4
string, DTGPG C-4

DATA TRIEVE Access Block,
DTGPG2-2

BASIC. DTGPG A-5
COBOL, DTGPG A-3
FORTRAN, DTGPG A-1
PASCAL, DTGPG A-6

error messages
list of error, DTGPG B-3
list of informational. DTGPG

B-49
list of severe, DTGPG B-1
list of warning, DTGPG B-44
listed by number, DTGPG B-60

how to read call format, DTGPG
2-25

introduction, DTGPG 1-1

lndex-12

overview, DTGPG 2-1
reference section, DTGPG 2-25
sample BASIC programs, DTGPG

5-2, 5-6
sample COBOL programs, DTGPG

4-2, 4-7' 4-13
sample FORTRAN programs,

DTGPG 3-2, 3-22
sample program outlines, DTGPG

2-16
stall points, DTGPG 2-10
using ports, DTGPG 4-2

Callable RDO, RDGP 7-1
compiling programs, RDGP 2-2
data definition statements, RDGP

7-31
data manipulation statements,

RDGP7-9
embedded in PASCAL programs,

RDGP6-28
error handling, RDGP 8-40
linking programs, RDGP 2-9
using in precompiled BASIC pro-

grams, RDGP 5-33
using in precompiled COBOL pro

grams, RDGP 5-33
using in precompiled FORTRAN

programs, RDGP 5-33
CANCEL ACTION phrase (ADU),

ACADRS-7
CANCEL BREAK command

(ACMSDBG), ACAPG 11-9
CANCEL PROCEDURE subclause

(ADU), ACADR 6-37
Cancel procedures, A CDAP 4-2

relationship to cancel action,
ACDSG 4-14

writing, ACAPG 8-24
CANCEL TASK clause (ADU),

ACADR8-8l
CANCEL TASK command, ACAPG

11-11
Canceling

requests, TDAPG 7-3
Canceling tasks, ACDAP 4-2

ACMSAD$REQ_CANCEL pro
gramming service, A CAPG
10-3

CDD
ACMS default menu definitions,

ACADG 5-3t
including definitions in programs

(Rdb/VMS), RDGP 3-10
storing definitions in, ACADG 7-7
storing Rdb/VMS definitions,

RDDBD2-2
using V AXclusters (Rdb/VMS),

RDGAM5-l0
workspace definitions in, ACDAP

2-1
CDD utilities, CDUTL l-4

command lines, CDDUG 2-5
Data Definition Language Utility

(CDDL), CDDDL l-4.
CDDUG 1-10

Dictionary Management Utility
(DMU), CDDUG 1-10,
CDUTL l-4

Dictionary Verify/Fix Utility
(CDDV), CDDUG 1-10,
CDUTL 1-4, 3-1

exiting from DMU, CDDUG 3-21
invoking, CDDUG 2-1

CDD$DEFAULT, CDDUG 2-19
CDDL (Common Data Dictionary

Data Definition Language),
DTREF6-9

CDDL compiler, CDDDL 3-1
CDDL compiler commands

CDDL. CDDDL 3-3
CDDL/RECOMPILE, CDDDL

3-12
CDDL source files, CDDDL 2-1,

CDDUG 5-1
compiling record definitions,

CDDUG6-l
creating. CDDUG 5-1
creating record definitions,

CDDUG5-3
DEFINE statements, CDDUG 5-4

END statement, CDDUG 5-4
sample, CDDUG 5-3
using record definitions, CDDUG

6-5
CDDL/RECOMPILE command,

CDDDL3-l2
CDDV utility, CDDUG 7-18
Chaining tasks, ACTDG 8-19
CHANGE DATABASE statement

(Rdb/VMS)
Modifying database parameters,

RDREF6-ll
CHANGE FIELD statement

(Rdb/VMS), RDDBD 4-2
changmg t1eld det1mt1ons, ltl.Jlt.b'.F

6-16
CHANGE PROTECTION statement

(Rdb/VMS), RDDBD 3-16
modifying access rights, RDREF

6-25
CHANGE RELATION statement

(Rdb/VMS), RDDBD 4-l
modifying fields, RDREF 6-29

Changing (Rdb/VMS)
access control lists, RDDBD 3-16
fields, RDDBD 4-2
protection, RDDBD 3-16
relations, RDDBD 4-l

Changing ACMS applications.
ACDPG6t

Changing database attributes.
DBDBA 9-88

Changing record definitions. DTUG
10-1

Changing records
DBMS. DTUG 14-35

Checking validity of data, DTUG 4-17
CHOICE statement, DTREF 7-50
Clauses (DATATRIEVE)

summary of, DTHB A-l
CLEAR SCREEN instruction (RDU),

TDREQ Refb-5
CLOSE command, DTREF 7-54
CLOSE statement (RDO)

closing a journal file, RD REF 6-3 7

lndex-13

Closing
request library files, TDAPG 3-4
TDMS at run time, TDAPG 3-5

Closing databases (DBMS), DBMPG
3-7

Cluster
See VAX cluster

Clusters
installing first dictionary on cluster

disk, CDDUG 8-2
merging dictionaries onto cluster

disk, CDDUG 8-3
moving dictionary into, CDDUG

8-2
organizing your dictionary on,

CDDUG8-l
planning hierarchy of cluster dic

tionary, CDDUG 8-9
COBOL

Callable DBQ (DBMS), DBPRM
5-4

calling DAT A TRIEVE from,
DTGPG 2-16, 4-2, 4-7, 4-13

data manipulation statements
(Rdb/VMS), RDGP 5-4

record definitions, TDAPG 8-8
Collections, DTHB 14-1

DBMS records, DTUG 14-16
disadvantages of, DTHB 14-16
joining records in, DTHB 14-13
selecting records in, DTHB 14-7
sorting records in, DTHB 14-12

Combining data, DTUG 10-5
Combining domains in a view, DTUG

5-5
Command authorization list (CAL),

DBDSG 1-1
adding entries, DBDSG 4-8
contents, DBDSG 4-5
controlling, DBDBA 9-70, DBDSG

1-5
deleting entries, DBDSG 4-9
initial condition, DBDSG 1-5, 4-4,

4-8
listing entries, DBDSG 4-7

lndex-14

location, DBDSG 4-4
purpose, DBDSG 1-5, 4-1
structure, DBDSG 4-4

Command files, DTHB 2-25, DTUG
8-1

aborting, DTUG 8-10
creating, DTUG 8-3
DTRSTART.COM, DTUG 1-17
editing, DTUG 8-3
invoking, DTUG 8-4
maintaining, DTUG 8-10
nesting, DTUG 8-9
using in DATATRIEVE, DTREF

1-7
Commands (ADU)

CREATE. ACADG 7-7
HELP, ACTDG 2-10
MODIFY, ACADG 6-8
REPLACE, ACADG 6-7
summary of, ACTDG 2-11

Commands (DATATRIEVE)
summary of, DTHB A-1

Comments
in DATATRIEVE input lines,

DTREFl-11
in DATATRIEVE procedures,

DTREFl-11
COMMIT clause (ADU), ACADR 8-84
COMMIT command (DBALTER),

DBDBA 10-6
COMMIT statement, DTREF 7-55,

DTUG 15-13
COMMIT statement (DML), DBIDM

3-9, DBPRM 2-3
COMMIT statement (FDML),

DBFDM3-3
COMMIT statement (Rdb/VMS)

updating the database, RDGDM
5-2

writing changes to a database,
RDREF6-38

Command files
protecting. DTUG 8-10

Common Data Dictionary, CDDDL
1-1, DTHB 7-1

creating subdirectories, DTHB
1-13

how RDU uses, TDREQ 3-1
path names, DTHB 1-4
security, DBDSG 1-5, DTREF 2-1
utilities, DTHB 7-18
VAXcluster access, DBMPG 15-12

COMPARE function (FDML),
DBFDM3-91

COMPARE STREAM function
(FDML), DBFDM 3-92

Compiler
CDDL. CDDDL 3-1

Compiling
::irrli~::it.inn rrner::ims: TDA PG :-l-8
Callable RDO programs, RDGP 2-2
message files, ACAPG 7-8

Compiling (FDML), DBFDM 2-5
Compiling DDL source files, DBDBA

5-2
Compound statements, DTHB 15-1

using procedures in, DTUG 7-12
COMPRESS command (CDDV),

CDUTL3-3
COMPUTED BY clause, DTREF

7-57
COMPUTED BY DATATRIEVE field

attribute clause (CDDL).
CDDDL2-8

COMPUTED BY fields, DTUG 11-11
Concatenate operator (I) (RDO),

RDGDM3-1
Concatenated expressions, RDREF

3-19
Condition handlers (Rdb/VMS), RDGP

8-1
CONDITION NAME field attribute

clause (CDDL), CDDDL 2-10
Condition tests (FDML), DBFDM

3-78
Conditional expressions (Rdb/VMS).

RDGDM 3-22, RDREF 3-25
Conditional expressions used in

DBMS. DBDBA 8-1

Conditional instructions, TDAPG 5-1,
TDREQ9-1

creating, TDREQ 9-5
how TDMS performs, TDREQ 9-3,

13-2
returning values, TDAPG 6-1

Conditionals (FDML), DBFDMl-2
CONNECT statement, DTREF 1-60,

DTUG 14-36
CONNECT statement (DML),

DBPRM2-5
using. DBIDM6-3. DBPRG 6-8

CONNECT statement (FDML),
DBFDM3-5

Consistency (Rdb/VMS)
locking, RDGAM 4-8

Constraint definitions (Rdb/VMS)
DEFINE CONSTRAINT state

ment, RDREF 6-49
DELETE CONSTRAINT state

ment, RDREF 6-90
Constraints

defining, RDDBD 2-21
Context

errors, DTUG 4-12
Context Searcher

SET SEARCH command, DTUG
6-20

Context variables, RDGDM 3-5.
RDREF4-3

Contiguous moves (DBMS)
using, DBDGD 2-6

Continuation characters in
DATATRIEVE, DTREF 1-10

Control
application control characteristics,

ACADG 1-4, 1-7, 1-8, 3-1
task control characteristics,

ACADG3-2
CONTROL FIELD clause (ADU),

ACADR 8-24. 8-48, 8-86
CONTROL FIELD IS instruction

(RDUI. TDAPG 5-1, TDREQ
9-1. 13-1. Refb-6

Control fields, TDREQ 9-1

lndex-15

arrays, TDAPG 6-5, TDREQ 13-1
rules, TDREQ 13-4

Control groups, DTHB 20-11
Controlling DBMS user access,

DBDSG 1-1
Controlling output, DTUG 1-10
Controlling remote database access

(DBMS), DBDGD 8-1
Controlling the application

using program request keys,
TDREQ 10-6

COPY command (AAU), ACAMG
13-9

COPY command (ADU), ACADR
2-10

COPY command (DDU), ACAMG
12-6

COPY command (DMUl, CDUTL 2-9
COPY command (UDU). ACAMG

11-6
COPY field description statement

(CDDL), CDDDL 2-14
COPY FORM command (FDU),

TDFRMRef-3
COPY LIBRARY command (RDU),

TDREQ Refa-10
COPY REQUEST command (RDU),

TDREQ 5-2, Refa-12
Copying a database (Rdb/VMS)

BACKUP statement, RDREF 6-9
Correcting errors, TDREQ 4-1 7, 8-5
Corruption flag (DBMS)

clearing, DBMPG 9-21
CREATE command (ADU), ACADR

2-14
storing definitions in CDD,

ACADG7-7
CREATE command (DMU), CDUTL

2-17
CREATE FORM command (FDU),

TDFRMRef-6
CREATE LIBRARY command

(RDU), TDREQ 5-5, Refa-14
CREATE REQUEST command

(RDU). TDREQ 4-3, Refa-18

lndex-16

CREATE SEGMENTED STRING
statement (Rdb/VMS)

segmented strings, RDREF 6-43
Creating

access control lists, RDDBD 3-8
relations, RDDBD 3-14

background text and fields,
TDFRM5-6

data files, DTHB 11-1
procedures. DTHB 17-1
requests. TDREQ 1-4
views, DTHB 15-13

Creating databases (DBMS), DBDGD
5-1

DBO/CREATE command, DBDBA
9-29

defining buffers, DBDGD 5-8
sizing areas, DBDGD 5-13
snapshot storage areas, DBDGD

5-15
using space management, DBDGD

5-2
V AXcluster environment, DBMPG

15-13. 15-17
CREATION DELAY subclause

(ADU), ACADR 5-38
CREATION INTERVAL subclause

(ADU). ACADR 5-38.2
CROSS. DTUG 5-6
CROSS clause, DTUG 2-14, 6-23

of record selection expression,
RDREF4-8

CROSS clause (Rdb/VMS), RDGDM
4-2

Crossing relations, RDGDM 4-2
CTRL/C command (FDU), TDFRM

Ref-9
CTRL/C command (RDU), TDREQ

Refa-22
CTRL/Y command (FDU), TDFRM

Ref-10
CTRL/Y command (RDU), TDREQ

Refa-23
CTRL/Z command (RDU), TDREQ

Refa-24

Currency indicators (DBMS), DBIDM
5-16

manipulating, DBIDM 5-1
Customizing DAT ATRIEVE

adding functions, DTGPG 6-1
description, DTGPG 6-2
example, DTGPG 6-3

adding help text, DTGPG 7-5
Application Design Tool (ADT),

DTGPG9-2

D

changing error messages, DTGPG
8-1

examples, DTGPG 8-3
changing help text, DTGPG 7-1
changing other text elements,

DTGPG 10-1
examples, DTGPG 10-4

Guide Mode, DTGPG 9-6
introduction, DTGPG 1-4
screen displays, DTHB 19-1
translations

examples, DTGPG 11-3
planning, DTGPG 11-2

user-defined keywords, DTGPG
3-22

DAB, DTGPG 2-2
BASIC, DTGPG A-5
COBOL. DTGPG A-3
FORTRAN, DTGPGA-1
PASCAL, DTGPGA-6

Data
accessing, DTHB 13-1
accessing DBMS, DTUG 14-5
combining from two domains,

DTUG 10-5
ending access to, DTHB 13-5
entering DBMS, DTUG 14-36
entering Rdb data, DTUG 15-11
maintaining Rdb data. DTUG

15-11
modifying DBMS, DTUG 14-36

retrieving with FIND statement,
DTHB 14-1

using forms to display and collect
data, DTUG 13-15

Data (RdbNMS)
items. RDDBD 1-2
normalizing, RDDBD 1-13
redundant, RDGAM 4-5
types, RDDBD 2-6
values. RDDBD 1-2

Data definition language (DBMS
DDL)

compiler, DBDBA 5-1
DDL/COMPILE command,

DBDBA5-2
DDL/GENERATE command,

DBDBA5-7
DDL/MODIFY command,

DBDBA 5-11
modifying databases, DBMPG 6-1

schemas, DBMPG 6-2
security schemas, DBMPG 6-7
storage schemas, DBMPG 6-5
subschemas, DBMPG 6-7

schemas
using contiguous moves,

DBDGD2-6
steps in developing databases,

DEIDA 4-1
storage schemas

defaults, DBDGD 3-1
optimizing, DBDGD 3-3

writing s<;hemas, DBDBA 1-1,
DBDGD2-1

AREA entry, DBDBA 1-3
RECORD entry, DBDBA 1-4
SET entry, DBDBA 1-9

writing security schemas, DBDBA
4-1

AREA entry, DBDBA 4-6
RECORD entry, DBDBA 4-8
SET entry, DBDBA 4-11

writing storage schemas. DBDBA
2-1. DBDGD 3-1

RECORD entry, DBDBA 2-4

lndex-17

SET entry, DEDEA 2-8
writing subschemas, DEDEA 3-1,

DEDGD4-1
ALIAS entry, DEDEA 3-4
defaults, DEDGD 4-1
REALM entry, DEDEA 3-6
RECORD entry, DEDEA 3-8
SET entry, DEDEA 3-15

Data definition statements (RdbNMS)
Callable RDO programs, RDGP

7-31
summary. RDREF 2-2

Data definitions (DBMS)
overview. DEIDA 2-2

Data design. ACDSG 2-2, 2-3
choosing data management system.

ACDSG 2-2
preliminary questions, ACDSG 2-1
recovery, ACDSG 2-7
using DBMS, ACDSG 2-5
using RdbNMS, ACDSG 2-6
using RMS, ACDSG 2-2

Data entry tasks
designing, ACDSG 4-14
form definitions for, ACDAP 2-14
procedure design, ACDSG 4-17
procedures for, ACDAP 2-24
request definitions for, ACDAP

2-19
storing definitions in CDD, ACDAP

2-12
task definitions for, A CDAP 2-6

Data entry tasks (DBMS)
analysis of structure, ACTDG 6-2
readying realms for, A CTDG 6-8

Data entry tasks mMS)
analysis of the structure, A CTDG

3-1
defining block steps. ACTDG 3-25
handling errors, ACTDG 3-16

Data management
using DAT A TRI EVE graphics.

DTGGR 2-1, 2-2
Data Management Utility (DMU)

commands

lndex-18

BACKUP, CDUTL 2-2
COPY, CDUTL 2-9
CREATE, CDUTL 2-17
DELETE, CDUTL 2-22
DELETE/HISTORY, CDUTL 2-26
DELETE/PROTECTION, CDUTL

2-28
EXIT, CDUTL 2-32
EXTRACT, CDUTL 2-33
general format, CDUTL 2-1
HELP, CDUTL 2-39
LIST, CDUTL 2-40
MEMO, CDUTL 2-49
PURGE, CDUTL 2-51
RENAME, CDUTL 2-53
RENAME/SUBDICTIONARY,

CDUTL2-59
RESTORE, CDUTL 2-64
SET ABORT, CDUTL 2-71
SET DEFAULT. CDUTL 2-72
SET PROTECTION, CDUTL 2-73
SET/PROTECTION/EDIT,

CDUTL2-80
SHOW DEFAULT, CDUTL 2-100
SHOW PROTECTION, CDUTL

2-101
SHOW VERSION, CDUTL 2-103

Data manipulation (DBMS)
components, DEIDA 2-5
examples, DEIDA 2-12
overview, DEIDA 2-8, DEIDM 1-1
transactions defined. DEIDM l-3

Data manipulation language (DBMS
DML)

access permission, DEDSG 1-1
BIND statement. DEPRM 2-2
COMMIT statement, DEIDM 3-9,

DEPRM2-3
CONNECT statement, DEPRM

2-5
examples. DEPRG 6-8
using, DEIDM6-l, 6-3

currency, DEPRG 6-1
DISCONNECT statement,

DEPRG 6-8, DEPRM 2-8

examples, DBIDM 6-11
using, DBIDM6-1

effects of modifying data, DBDGD
7-1

ERASE statement, DBPRM 2-10
examples, DBIDM 6-11,

DBPRG6-11
FETCH statement, DBPRM 2-13

currency, DBIDM5-16
FIND statement, DBPRM 2-25

currency, DBIDM5-16
FREE CURRENT statement.

DBPRG 6-13
FREE statement, DBPRM 2-39
GET st?t~!D~T'lt, nRPRM ?-.U

handling exception conditions,
DBPRG 7-1

IF tests. DBPRM 1-31, 2-46
examples, DBPRG 3-1, 3-4, 4-1,

5-1
INVOKE statement, DBPRM

2-57.1
remote database access, DBDGD

8-6
KEEP statement, DBPRM 2-58
keeplists

examples, DBPRG 5-1
locking records, DBPRG 8-2
MODIFY statement, DBPRM 2-63

using, DBIDM 6-1
optimizing programs, DBPRG 8-1
PLACE statement, DBPRM 2-65
precompiler

developing programs, DBPRG
2-2. DBPRM3-1

DML command, DBPRG 2-3,
DBPRM3-1

handling errors, DBPRG 2-13,
DBPRM3-11

using statements, DBPRG 2-10,
DBPRM3-7

READY statement, DBIDM 3-4,
DBPRM2-68

locking. DBPRG 8-2

RECONNECT statement, DBPRM
2-71

examples, DBIDM 6-11,
DBPRG6-8

using. DBIDM6-1
RETAINING clause, DBPRM 2-7 4
ROLLBACK statement, DBIDM

3-9, DBPRM 2-76
securing verbs, DBDSG 2-1
SHOW command. DBIDM3-7
STORE statement, DBPRM 2-77

using. DBIDM6-l, 6-3
testing for logic errors, DBPRG 7-1
using junction records, DBPRG 3-5

P.x::implP.s; DRPRG fi-fi
using the precompiler, DBPRG 2-1,

DBPRM3-1
languages supported, DBPRG

2-1, DBPRM 3-1
verb permission, DBDSG 2-5
WHERE clause, DBPRM 2-80
writing programs

preliminaries, DBPRG 1-2
testing logic, DBPRG 1-6

Data manipulation statements
(RdbNMS)

BASIC programs. RDGP 5-4
Callable RDO programs. RDGP 7-9
COBOL programs, RDGP 5-4
FORTRAN programs, RDGP 5-4
PASCAL programs. RDGP 6-4
summary, RDREF 2-4

Data types
CDD and DATATRIEVE. DTREF

6-9
in field mappings. TDAPG 4-17,

TDREQ 7-3
VAX. DTGPG C-1

Data types (FDML), DBFDM 1-5
Data types (Rdb/VMS). RD REF 5-4

Conversions. RDGP 3-3
host language equivalents, RDGP

3-5
segmented string, RDGP 3-2

lndex-19

Data validation (Rdb/VMS), RDGAM
4-39. RDREF 5-9

Database (Rdb/VMS)
attaching

INVOKE DATABASE state
ment, RDREF 6-143

detaching
FINISH statement, RDREF

6-124
Database administration (DBMS)

concepts, DBIDA 1-1
concepts and components, DBIDA

2-1
function, DBIDA 1-2
programming interface, DBIDA

1-3
using the documentation, DBIDA

1-5
Database characteristics (DBMS),

DBMPG2-9
Database Control System (DBCS)

function calls
DBM$ACCEPT STREAM rou

tine, DBPRM 4-5
DBM$PLACE routine, DBPRM

4-6
DBM$PLACE STREAM rou

tine, DBPRM 4-8
DBM$SIGNAL routine,

DBPRM4-9
DBM$SIGNAL STREAM rou

tine. DBPRM 4-12
DBM$STATS routine, DBPRM

4-14
DBM$STATS STREAM rou

tine, DBPRM 4-19
Database Control System (DBMS

DBCS)
function calls

DBM$ACCEPT routine,
DBPRM4-3

moving items contiguously,
DBDGD2-6

Database definitions (Rdb/VMS)

lndex-20

CHANGE DATABASE statement,
RDREF6-ll

DEFINE DATABASE statement,
RDREF6-53

DELETE DATABASE, RDREF
6-92

Database design, DTHB 8-4, 8-6
Database information (Rdb/VMS)

SHOW statement, RDREF 6-180
Database keys (Rdb/VMS), RDREF

3-23
Database maintenance (DBMS)

overview, DBMPG 1-1
Database maintenance statements

(RdbNMS)
summary, RDREF 2-5

Database management systems,
ACTDG 6-1, RDDBD 1-1

Database monitor process (DBMS),
DBMPG2-1

Database Operator utility (DBO),
DBDBA 9-1

DBO/ALTER command, DBDBA
9-8

examples, DBMPG 9-6
DBO/ANAL YZE command,

DBDBA 9-10
examples. DBMPG 12-2

DBO/BACKUP command, DBDBA
9-17' 9-18

DBOIBACKU~AFTERJOURNAL
command, DBDBA 9-20

DBO/CLOSE command
examples, DBMPG 3-7

DBO/CREATE command, DBDBA
9-29

DBO/DELETE command, DBDBA
9-43

examples, DBMPG 7-2
DBO/DELETE/INSTANCE com

mand, DBDBA 9-54
DBO/DELETE/SCHEMA com

mand, DBDBA 9-46

DBO/DELETE/SECURITY SCHEMA
command, DBDBA 9-52

DBO/DELETE/STORAGE SCHEMA
command, DBDBA 9-48

DBO/DELETE/SUBSCHEMA
command, DBDBA 9-50

DBO/DUMP command, DBDBA
9-56

examples, DBMPG 13-1
DBWDUM~AFTERJOURNAL

command, DBDBA 9-62
DBO/DUMP/RECOVERY JOURNAL

command, DBDBA 9:64
DBO/EXTRACT command,

nRnRA Q-RR

DBO/GRANT COMMAND com
mand, DBDBA 9-70

DBO/INITIALIZE command,
DBDBA9-80

DBO/INTEGRATE command,
DBDBA 9-82

DBO/LOAD command, DBDBA
9-84

DBO/LOAD/CONTINUE com
mand, DBDBA 9-87

DBO/MODIFY command, DBDBA
9-88

examples, DBMPG 6-5
DBO/MONITOR command,

DBDBA9-99
DBO/OPEN command, DBDBA

9-101
examples, DBMPG 3-2

DBO/PERMIT_USER command,
DBDBA 9-102

DBO/RECOVER command,
DBDBA 9-113

DBO/REPORT command, DBDBA
9-115

DBO/RESTORE command,
DBDBA 9-117

DBO/RESTORE/INCREMENTAL
command. DBDBA 9-123

DBO/SHOW command, DBDBA
9-126

DBO/SHOW STATISTICS com
mand, DBDBA 9-128

examples, DBMPG 14-2
DBO/SHOW SYSTEM command,

DBDBA 9-131
DBO/SHOW USERS command,

DBDBA 9-132
DBO/UNLOAD command,

DBDBA 9-134
DBO/UNLOAD/CONTINUE com

mand, DBDBA 9-137
DBONERIFY command, DBDBA

Q-189
DBO/WORK_AREA command,

DBDBA 9-142
examples, DBPRM 5-2

indirect command files, DBDBA
9-6

main keywords, DBDBA 9-4
Database pages (DBMS)

examples, DBMPG 8-1
Database performance (DBMS)

overview, DBMPG 1-3
Database protection (RdbNMS)

DEFINE PROTECTION state
ment, RDREF 6-68

DELETE PROTECTION state
ment, RDREF 6-99

Database Query (DBQ) utility
ACCEPT command, DBPRM 1-2
advanced features, DBPRM 1-30
BIND command, DBIDM3-1,

DBPRMl-3
command line continuation,

DBPRMl-38
COMMIT statement, DBIDM3-9
DCL command issuing, DBPRM

1-38
DISPLAY command, DBPRMl-6
EDIT command, DBPRM 1-8
EXIT command, DBPRM 1-10

lndex-21

HARDCOPY command, DBPRM
1-11

HELP command, DEPRM 1-12
IF tests

loops in, DEPRM 1-36
indirect command files, DEPRM

1-32
DBQINI files, DEPRM 1-34
executing, DEPRM 1-34

INITIALIZE command, DEPRM
1-14

interactive
exiting, DEIDM 2-6
invoking, DEIDM 2-5
using, DEIDM2-1

LOOP command, DEPRM 1-34
conditional tests. DEPRM 1-35
nesting loops, DEPRM 1-37

MACRO command, DEPRM 1-33
MOVE command, DEPRMl-16
PRINT command, DEPRM 1-18
ROLLBACK statement, DEIDM

3-9
SET command (DBQ), DEPRM

1-20
SHIFT command, DEPRM 1-25
SHOW command, DEIDM 3-7,

DEPRMl-26
examples, DEIDM 6-3

testing DML logic, DEPRG 1-6,
2-1

UNBIND command, DEIDM3-9,
DEPRMl-30

using comments, DEPRM 1-30
Database records (DBMS)

storage structures, DEMPG 8-1
Database records (RdbNMS)

adding
STORE statement, RDREF

6-212
erasing

ERASE statement, RDREF
6-112

Database statistics (RdbNMS)
ANALYZE statement, RDREF 6-2

lndex-22

Databases
accessed by DATATRIEVE, DTHE

1-1
application, A CDAP 5-5
binding, A CAPG 2-1
checking contents of, ACADG 6-9
DBMS. DTUG 14-1
defining DBMS, DTUG 14-4
menu. ACDAP 5-9
Rdb. DTUG 15-1
task group, ACDAP 4-13
unbinding. ACAPG 2-38

Databases (DBMS~
See also VAXcluster environment

(DBMS)
access paths, DEIDM 2-l

invoking DBQ, DEIDM 2-5
accessing

binding, DEIDM3-1
overview, DEIDM 3-1
using READY statement,

DEIDM3-4
accessing data, DEIDA 5-1
adding items, DEMPG 6-2
adding records, DBMPG 6-2
adding sets, DEMPG 6-2
altering. DEDEA 9-8
altering corrupt. DEMPG 9-5
altering database pages, DEMPG

9-6
analyzing, DEDEA 9-10
analyzing data. DEIDA 3-2
analyzing data usage, DEIDA 3-12
Bachman diagrams

PARTS sample database,
DEIDM A-1

backing up. DEDEA 9-18, DEMPG
4-2

backup and restore example,
DEMPG4-10

Callable DBQ, DEPRM 5-2
compiling programs, DEPRM

5-2
linking programs, DBPRM 5-5
routines, DEPRM 5-5

running programs, DEPRM 5-5
clearing corruption flag, DEMPG

9-21
closing, DEMPG 3-5, 3-7
concepts and components, DEIDA

2-1
controlling access, DBDBA 9-102
creating, DBDBA 9-29, DBDGD

5-1
creating user work areas, DBDBA

9-142
currency, DEIDM 1-2, DEPRG 6-1
data manipulation

overview, DBIDM 1-1
ual,et l,n::1usfor, DEDGD 5-6
defining buffers, DBDGD 5-8
defining logical model, DEIDA

3-16
deleting, DBDEA 9-43, DEMPG

7-2
instance information, DEDBA

9-54
overview, DEIDA 5-8
root files, DBDBA 9-44
schemas, DBDBA 9-46,

DBMPG 7-4
security schemas, DBDEA 9-52
storage schemas, DBDBA 9-48
subschema, DBDBA 9-50

design concepts, DBDGD 1-1
creation parameters, DEDGD

5-1
data transfer, DBDGD 5-6
defining area limits, DEDGD 2-4
defining buffers, DEDGD 5-8
defining sets, DEDGD 2-9
defining validity checks,

DEDGD2-26
logical definitions, DEDGD 2-1
physical definitions. DBDGD 3-1
sizing areas. DBDGD 5-13
snapshot storage areas, DBDGD

5-15
user views, DEDGD 4-1

developing, DEIDA 3-1, 4-1

displaying CDD information,
DBDBA 9-115

displaying database information
overview, DEIDM 3-7

displaying database pages,
DEMPG9-ll

displaying information, DBDBA
9-126

displaying user information,
DEMPG2-7

DML statements
IF tests, DEPRG 3-1, 3-4, 4-1,

5-1
keeplists, DEPRG 5-1

effects oi mociiiying ciata, DBD(;i.J
7-1

ending access. DBIDM 3-9
ending transactions

overview, DEIDM3-9
establishing remote access,

DEDGD8-1
evaluating performance, DBMPG

11-1. 12-2
database changes. DEMPG 11-7
database statistics, DEMPG

11-4
hardware resources. DEMPG

11-3
locking, DEMPG 11-4
operating system resources,

DBMPGll-3
operating system utilities,

DEMPGll-5
overview. DEIDA 5-4
sample procedure, DBMPG 11-7
space usage, DEMPG 11-4
V AXcluster environment,

DBMPGll-5
extracting information, DEDBA

9-66
FORTRAN programming, DBFDM

1-1
examples, DEFDM 2-1

granting DBO commands, DBDBA
9-70

lndex-23

handling bugcheck dumps,
DEMPG 10-1

handling exception conditions,
DEPRG7-1

logic errors, DBPRG 7-1
improving retrieval performance,

DEDGD2-6
initializing, DEDEA 9-80
insertion modes, DEIDM 6-3
integrating, DBDEA 9-82
internal page structures, DBMPG

8-1
junction records

using. DBPRG 5-5
using to navigate, DEPRG 3-5

listing AIJ file, DEDBA 9-62
listing information, DEDEA 9-56
listing RUJ file, DEDBA 9-64
loading, DELGD 2-1

language syntax, DEDEA 6-1
overview, DELGD 1-4
PARTS sample database,

DBLGD4-1
SCHOOL sample database,

DELGD5-l
strategy, DELGD 2-24
tips and suggestions, DBLGD

2-22
tools, DBLGD 2-3

loading from RMS files, DBDEA
9-84

locating and retrieving records,
DEIDM4-l.

best methods. DBIDM 4-9
using data item values. DBIDM

4-1
locking

guidelines, DBDGD 6-13
levels of. DEDGD 6-l
optimizing. DEDGD 6-12

locking records. DEPRG 8-2
types of locks. DBPRG 8-2

maintaining. DEIDA 5-l
managing AIJ files, DEDBA 9-20
modifying. DBDBA 9-88

lndex-24

overview, DEIDA 5-6
modifying records, DEIDM 6-l
monitoring, DEDEA 9-99
monitoring use, DEMPG 2-l
moving,-DEMPG4-l3
moving CDD information, DBMPG

4-13
navigating, DEIDM 4-5, 5-1
opening, DBDBA 9-101, DBMPG

3-2
optimizing DML programs,

DEPRGB-1
performance evaluating, DBMPG

12-2
precom piler

developing programs. DEPRG
2-2, DEPRM3-l

DML command, DEPRG 2-3,
DEPRM3-1

handling errors. DEPRG 2-13,
DEPRM3-ll

languages supported, DEPRG
2-1, DBPRM 3-l

reference information, DEPRM
3-1

using, DEPRG 2-1
using DML statements. DBPRG

2-10. DEPRM3-7
programming

Callable routines, DEPRM 5-5
FORTRAN language, DEFDM

1-1
programming examples

FORTRAN language, DEFDM
2-1

protecting against data corruption,
DEIDA 5-2

query language tool
exiting, DEIDM 2-6
invoking. DEIDM 2-5
overview, DEIDM 2-l

reconstructing, DEDEA 9-113
recovering. DEMPG 5-14

V AXcluster environment,
DBMPG 15-9

recovery-unit journal (.RUJ) file,
DBMPG5-2

remote access, DBDGD 8-1
removing records, DBIDM 6-11
reporting bugcheck dumps,

DBMPGI0-2
restoring. DBDBA 9-117, DBMPG

4-6
resuming an interrupted load,

DBDBA9-87
resuming interrupted unload,

DBDBA 9-137
retrieving records, DBIDM 5-16
schema area definitions, DBDGD

2-:i
securing, DBDSG 1-1

overview, DEIDA 5-8
security

remote database access, DBDGD
8-1

set membership characteristics,
DBIDM6-l6t

sizing areas, DBDGD 5-13
snapshot storage areas, DBDGD

5-15
sorted sets

modifying member records,
DBPRG6-9

space usage
analyzing, DBMPG 12-2

statistics, DBMPG 14-2
storage area structures, DBMPG

8-1
transactions defined. DBIDM 1-3
unloading

as part of unload/load operation,
DBLGD3-21

extracting data, DBLGD 3-16
language syntax, DBDBA 6-1
overview, DBLGD 1-5
PARTS sample database,

DBLGD4-ll
restructuring PARTS sample

database, DBLGD 4-15
tips and suggestions, DBLGD

3-20
using buffers, DBLGD 3-18

unloading to RMS files, DBDBA
9-134

updating records, DBIDM 6-1
usage statistics, DBMPG 14-2
user work area (UW A) creating,

DBPRM5-2
using space management, DBDGD

5-2
verifying integrity, DBDBA 9-139
writing DML programs

preliminary steps, DBPRG 1-2
testing DML logic, DBPRG l-6

Databases IRdoiE:L.i~I
converting to Rdb/VMS database,

RDGAM2·19
Databases (Rdb/VMS)

active records, RDGAM 4-38
adjusting parameters. RDGAM

4-42
analyzing performance, RDGAM

4-31
backing up. RDGAM 3-3
backing up in V AXcluster,

RDGAM5-22
converting to V AXclusters,

RDGAM5-l7
creating in V AXclusters, RDGAM

5-12
defining, RDDBD 2-3
deleting, RDDBD 4-8
inactive records, RDGAM 4-38
integrity, RDGAM 4-39
invoking, RDGDM 2-1
journaling in V AXclusters,

RDGAM5-21
loading. RDDBD 2-33, RDGAM

4-54
loading from Rdb/ELN databases,

RDGAM2-19
loading from RMS files, RDGAM

2-1
loading with DATATRIEVE,

RDGAM2-13

lndex-25

monitoring in VAXcluster,
RDGAM5-21

optimizer, RDGAM 4-6
parameters, RDGAM 4-42
performance, RDGAM 4-3
problems with redundancy,

RDGAM4-5
protecting, RDGAM3-2, 4-37
recovery, RDGAM3-7
recovery in V AXclusters, RDGAM

5-2.0
redundant data, RDGAM 4-5
remote. RDGDM 2-4
resource locking, RDGAM 4-8
restoring in V AXcluster, RDGAM

5-22
storing definitions, RDDBD 2-2
system relations, RDREF 7-1
using DATATRIEVE, RDGAM

4-54
using V AXclusters, RDGAM 5-12

DATATRIEVE
accessing Rdb/VMS database,

RDGAM4-54
AT Statements (DTR Report

Writer), DTREF 7-36
character set, DTREF 1-3
command files, DTUG 8-1
compared to other languages,

DTUG 1-8
continuation characters, DTREF

1-10
defining procedures as tasks,

ACADG 7-4
differences from other languages.

DTHB 1-27
edit string characters, DTHB E-1
exiting. DTHB 1-13, 5-3, DTREF

1-7, DTUG 1-1
FOR. DTREF 7-184
invoking. DTREF 1-7, DTUG 1-1
key words, DTREF 1-5
keywords, DTHB B-1
loading Rdb/VMS databases,

RDGAM2-13

lndex-26

naming conventions, DTREF 1-5
online assistance, DTHB 6-1
procedures, DTREF 1-6, DTUG

7-1
samples, DTUG 7-8

prompts, DTUG 4-15
record definitions, DTUG 11-1
sample command files, DTUG 8-5
sample data, domains, records,

DTUG 1-9
sort order, DTHB D-1
starting. DTHB 1-5. 5-1
startup command file, DTUG 1-17
tables, DTUG 11-10
termination characters, DTREF

1-10
terminology. DTUG 1-3
using to access DBMS data, DTUG

14-1
using to access Rdb data, DTUG

15-1
using VMS command files in,

DTREFl-7
variables, DTUG 9-1

DAT ATRIEVE Access Block,
DTGPG 2-2

BASIC. DTGPG A-5
COBOL. DTGPG A-3
FORTRAN, DTGPG A-1
PASCAL. DTGPG A-6

DATATRIEVE clauses. DTREF 1-1,
7-1

ALLOCATION. DTREF 7-25
COMPUTED BY. DTREF 7-57
CROSS. DTUG 2-14
DEFAULT VALUE, DTREF 7-71
EDIT STRING. DTREF 7-151
MISSING VALUE, DTREF 7-205
OCCURS, DTREF7-224, DTUG

6-3
PICTURE, DTREF 7-236
QUERY_ HEADER, DTREF 7-262
QUERY NAME. DTREF 7-265
REDEFINES, DTREF 7-292
SIGN, DTREF 7-351

SYNCHRONIZED, DTREF 7-371
USAGE, DTREF 7-375
VALID IF, DTREF 7-381, DTUG

4-17
DATATRIEVE COMMAND clause

(ADUl, ACADR 8-50
DATATRIEVE COMMAND

subclause (ADU), ACADR 6-28
defining processing, ACADG 7-4

DATATRIEVE commands, DTREF
1-1, 7-1

ADT, DTREF 7-23
CLOSE, DTREF 7-54
DECLARESYNONYM,DTREF

7-fi8

DEFINE DATABASE, DTREF
7-73, DTUG 14-4

DEFINE DICTIONARY, DTREF
7-75

DEFINE DOMAIN, DTREF7-79,
DTUG 5-1

DEFINE FILE, DTREF 7-95
DEFINE PORT, DTREF 7-102
DEFINE PROCEDURE, DTREF

7-105
DEFINE RECORD, DTREF 7-109
DEFINE TABLE, DTREF 7-113
DEFINEP, DTREF 7-122
DELETE, DTREF7-129
DELETEP, DTREF 7-132
EDIT. DTREF 7-146
EXIT. DTREF 7-171
EXTRACT, DTREF 7-173
FINISH. DTREF 7-181
HELP, DTREF 7-189
@ (Invoke Command File), DTREF

7-16
OPEN. DTREF 7-233
PURGE. DTREF 7-260
READY. DTREF 7-267
REDEFINE, DTREF 7-289
RELEASE. DTREF 7-299
RELEASESYNONYM,DTREF

7-303
Restructure. DTUG 10-2

SET, DTREF 7-328, DTUG 1-10
SET SEARCH, DTUG 6-20
SHOW, DTREF 7-342
SHOWP. DTREF 7-349

DAT A TRIEVE customizing
adding functions, DTGPG 6-1

description, DTGPG 6-2
example, DTGPG 6-3

adding help text, DTGPG 7-5
Application Design Tool (ADT),

DTGPG 9-2
changing error messages, DTGPG

8-1
examples, DTGPG 8-3

~h~ngi!'!g help text, DTGPG 7-1
changing other text elements,

DTGPG 10-1
examples, DTGPG 10-4

Guide Mode, DTGPG 9-6
introduction. DTGPG 1-4
translations

examples, DTGPG 11-3
planning, DTGPG 11-2

user-defined keywords. DTGPG
3-22

DAT ATRIEVE definitions
moving inside CDD. CDDUG 8-15

DAT ATRIEVE domains
associating a form with a

DATATRIEVE domain,
DTUG 13-2

restructuring. DTUG 10-2
DAT A TRIEVE graphics

choosing correct plot, DTGGR 5-1
converting data to information,

DTGGR2-2
data vs. information. DTGGR 2-1
enabling. DTGGR 1-10
general plot syntax, DTGGR 5-4
introduction. DTGGR 1-1
optional equipmenL DTGGR 1-1
PRINT vs. PLOT, DTGGR 2-2
required equipment, DTGGR 1-1
sample application

DBMS, DTGGR 4-3

lndex-27

reporting, DTGGR 4-1
summary of plots, DTGGR 5-4
types of plots

bar charts, DTGGR 3-1
line graphs. DTGGR 3-1
pie charts, DTGGR 3-1
using, DTGGR 3-6

using for decision support, DTGGR
2-5

DAT A TRIEVE programming calls
basic steps in, DTGPG 2-13
DAB. DTGPG 2-2

BASIC. DTGPG A-5
COBOL, DTGPG A-3
FORTRAN, DTGPGA-1
PASCAL, DTGPGA-6

data types
atomic. DTGPG C-1
miscellaneous, DTGPG C-4
string, DTGPG C-4

DATATRIEVE Access Block,
DTGPG2-2

BASIC, DTGPG A-5
COBOL, DTGPG A-3
FORTRAN, DTGPG A-1
PASCAL, DTGPGA-6

error messages
list of error, DTGPO-B-3
list of informational. DTGPG

B-49
list of severe, DTGPG B-1
list of warning, DTGPG B-44
listed by number, DTGPG B-60

how to read format, DTGPG 2-25
introduction. DTGPG 1-1
overview. DTGPG 2-1
reference section, DTGPG 2-25
sample BASIC programs, DTGPG

5-2. 5..;6
sample COBOL programs, DTGPG

4-2. 4-7, 4-13
sample FORTRAN programs,

DTGPG 3-2, 3-22
sample program outlines. DTGPG

2-16

lndex-28

stallpoints, DTGPG 2-10
using ports, DTGPG 4-2

DAT A TRIEVE prompts, DTREF 1-8
DAT ATRIEVE Report Writer

capabilities, DTRPT 1-2
complex examples, DTRPT 3-1,

3-9, 3-14, 3-19, 3-22, 3-24,
3-29

conditional detail lines, DTRPT
3-29

correcting mistakes, DTRPT 2-3
DBMS reports, DTRPT4-1

complex example, DTRPT 4-4,
4-5

multiple record sources, DTRPT
4-4

simple example, DTRPT 4-2
using control groups, DTRPT

4-5
embedding reports in procedures,

DTRPT5-14
exiting. DTRPT 2-3
headings formatting, DTRPT 2-9
introduction. DTRPT 1-1
invoking, DTRPT 2-2
output options, DTRPT 2-5
page formatting, DTRPT 2-7
printing column headers. DTRPT

2-12
printing detail lines, DTRPT 2-12
printing special headings, DTRPT

3-19
printing title pages. DTRPT 3-19
printing totals of rows, DTRPT

3-22
Rdb reports. DTRPT 5-1

complex examples, DTRPT 5"'.6,
5-14

embedding in procedures,
DTRPT5-14

multiple record sources, DTRPT
5-6

multiple relations, DTRPT 5-6
simple example. DTRPT 5-4

reporting hierarchical records,
DTRPT3-24

simple examples, DTRPT 1-3
statements

AT BOTTOM, DTRPT6-7
AT TOP, DTRPT6-3
END_ REPORT, DTRPT6-11
PRINT, DTRPT6-12
REPORT, DTRPT6-16
SET, DTRPT6-19

summarizing data, DTRPT 2-21,
3-1

summarizing data by date, DTRPT
3-9

11<.:ino- Nmt.rnl o-rnnn<.: nrR PT ~-1 -- - - ~ - - - --· - o- - --,1.- - ' - --- - --- -

using multiple record sources,
DTRPT3-14

DAT A TRI EVE samples
restructure operation, DTUG 10-2

DATATRIEVE statements, DTREF
1-1, 7-1

ABORT, DTREF 7-18, DTUG 7-7,
8-10

Assignment, DTREF 7-27
BEGIN-END, DTREF 7-45
CHOICE, DTREF 7-50
COMMIT, DTREF 7-55, DTUG

15-13
CONNECT, DTREF7-60, DTUG

14-36
DECLARE, DTREF7-62, DTUG

9-1
DECLARE PORT. DTREF 7-66
DISCONNECT, DTREF 7-135,

DTUG 14-36
DISPLAY. DTREF 7-136
DISPLAY FORM, DTREF7-139
DROP. DTREF 7-142
END REPORT (DTR Report

Writer~. DTREF 7-167
ERASE, DTREF 7-168
FIND, DTREF 7-179, DTUG

14-16
IF-THEN-ELSE. DTREF 7-192
LIST. DTREF 7-195

MATCH, DTREF7-201
MODIFY, DTREF7-208, DTUG

4-8
ON, DTREF 7-229
PLOT, DTREF 7-241
PLOT AVERAGE, DTGGR 5-10
PLOT BAR, DTGGR 5-6
PLOT BAR_AVERAGE, DTGGR

5-8
PLOT CONNECT. DTGGR 5-12
PLOT CROSS_HATCH, DTGGR

5-14
PLOT DATE_LOGY, DTGGR 5-16
PLOT DATE Y, DTGGR 5-18
PI.OT HARDCOPY, DTGGH 5-20
PLOT HISTO. DTGGB 5-22
PLOT LEGEND, DTGGR 5-24
PLOT LOGX LOGY. DTGGR 5-26
PLOT LOGX-Y. DTGGR 5-28
PLOT LR, DTGGR 5-30
PLOT MONITOR, DTGGR 5-32
PLOT MULTI BAR, DTGGR 5-34
PLOT MULTfBAR GROUP,

DTGGR 5-36 -
PLOT MULTI_LINE, DTGGR

5-38
PLOT MULTI LR. DTGGR 5-40
PLOT MULT(SHADE, DTGGR

5-42
PLOT NEXT BAR, DTGGR 5-44
PLOT PAUSE, DTGGR 5-46
PLOT PIE. DTGGR 5-48
PLOT RAW BAR, DTGGR 5-50
PLOT RAW-PIE, DTGGR 5-52
PLOT RE_PAINT, DTGGR 5-54
PLOT SHADK DTGGR 5-56
PLOT SORT BAR, DTGGR 5-58
PLOT STACKED_BAR, DTGGR

5-60
PLOT VALUE_PIE, DTGGR 5-62
PLOT WOMBAT, DTGGR 5-64
PLOT X LOGY. DTGGR 5-66
PLOT X-Y. DTGGR 5-68
PRINT, DTREF 7-243

lndex-29

PRINT (DTR Report Writer),
DTREF7-256

RECONNECT. DTREF 7-287
REDUCE, DTREF 7-294
REPEAT, DTREF7-305
REPORT, DTREF 7-309
Restructure, DTREF 7-313, DTUG

11-4
ROLLBACK, DTREF7-3l8,

DTUG 15-15
SELECT, DTREF7-32l, DTUG

14-17
SET (DTR Report Writer), DTREF

7-337
SORT, DTREF 7-353
STORE, DTREF 7-356, DTUG 3-1
SUM, DTREF 7-368
THEN, DTREF 7-373
WHILE. DTREF 7-383

DAT A TRI EVE support clauses
(RdbNMS), RDREF 5-13

DAT A TYPE field attribute clause
(CDDL), CDDDL 2-16

Date fields, DTHE 18-20
DBALTER (DBMS) facility com-

mands, DEDEA 10-1
AREA ... PAGE, DEDEA 10-3
BIND, DEDEA 10-5
COMMIT. DEDEA 10-6
DEPOSIT, DEDEA 10-7
DEPOSIT FILE, DEDEA 10-9
DEPOSIT ROOT. DBDEA 10-10
DISPLAY. DBDEA 10-11
DISPLAY FILE, DBDEA 10-14
DISPLAY ROOT, DEDBA 10-15
EXIT. DEDEA 10-16
HELP. DBDEAlO-l 7
LOG. DEDBA 10-18
MOVE. DBDBA 10-19
NOLOG. DBDEA 10-20
PAGE. DBDBA 10-21
RADIX. DBDEA 10-22
ROLLBACK. DEDEA 10-23
UNBIND. DEDBA 10-24
UNCORRUPT. DEDEA 10-25

lndex-30

VERIFY, DEDEA 10-26
DBM$ACCEPT routine (DBCS),

DEPRM4-3
DBM$ACCEPT STREAM routine

(DBCS), DBPRM 4-5
DBM$PLACE routine (DBCS),

DEPRM4-6
DBM$PLACE STREAM routine

(DBCS), DEPRM 4-8
DBM$SIGNAL routine (DBCS),

DEPRM4-9
DBM$SIGNAL STREAM routine

(DBCS). DBPRM 4-12
DBM$STATS routine (DBCS),

DEPRM4-l4
DBM$STATS STREAM routine

(DBCS), DEPRM 4-19
DBMS

accessing databases. DEIDA 5-l
binding. DEIDM3-l
overview, DEIDM 3-l
using READY statement,

DBIDM3-4
analyzing data, DEIDA 3-2
analyzing data usage, DEIDA 3-12
Bachman diagrams

PARTS sample database.
DEIDM A-1

components, DEIDA 2-5
concepts. DEIDA 2-l
creating databases, DEDGD 5-1
currency. DEPRG 6-l
data definitions. DEIDA 2-2
data manipulation, DEIDA 2-8

overview. DBIDM 1-1
data transfer. DBDGD 5-6
defining buffers, DBDGD 5-8
defining logical model, DEIDA

3-16
defining schemas, DEIDA 2-2
deleting databases

overview. DEIDA 5-8
design concepts, DEDGD 1-1

creation parameters, DEDGD
5-1

defining area limits, DBDGD 2-4
defining sets, DBDGD 2-9
defining validity checks,

DBDGD2-26
logical definitions, DEDGD 2-1
physical definitions, DBDGD 3-l
user views, DEDGD 4-1

displaying database information
overview, DEIDM 3-7

DML statements
IF tests. DBPRG 3-1, 3-4, 4-1,

5-1
keeplists, DEPRG 5-1

effects of modifying data, DEDGD
7-:i

ending transactions
overview, DBIDM 3-9

evaluating database performance,
DEIDA 5-4

example update procedure, A CAPG
5-8

handling exception conditions,
DBPRG7-l

logic errors, DEPRG 7-1
inquiry procedures, A CAPG 5-1
insertion modes, DEIDM 6-3
interactive DBQ

exiting, DEIDM 2-6
invoking, DBIDM 2-5
using, DBIDM2-l

junction records
using, DBPRG 5-5
using to navigate, DEPRG 3-5

loading databases, DBLGD 2-1
overview, DELGD 1-4
PARTS sample database.

DBLGD4-l
SCHOOL sample database.

DBLGD5-l
strategy, DELGD 2-24
tips and suggestions, DELGD

2-22
tools. DELGD 2-3

locating and retrieving records,
DBIDM4-l

best methods, DEIDM 4-9
using data item values, DEIDM

4-1
locking

guidelines, DBDGD 6-13
levels of, DBDGD 6- l
optimizing, DBDGD 6-12

locking records, DEPRG 8-2
types of locks, DEPRG 8-2

maintaining databases, DEIDA 5-1
manipulating currency indicators,

DBIDM5-l
modifying databases, IJ.EIDA 5-6
modifying records, DBIDM6-l

_ •_._1• ___ T"\~Tr-\'J,,4",.- "'1

11dV1!:)dl-111b' .J..J.lJ.L.J..J.J.V.L trJ..

navigating through databases,
DBIDM4-5

optimizing DML programs,
DBPRG8-l

PARTS sample database. DEIDM
A-1

overview. DEIDA 3-l
performance considerations with

ACMS, ACDSG 2-7
precompiler

developing programs, DEPRG
2-2. DEPRM3-l

DML command. DEPRG 2-3,
DBPRM3-l

handling errors. DBPRG 2-13,
DBPRM3-11

languages supported. DEPRG
2-1. DEPRM 3-1

reference information. DEPRM
3-1

using. DEPRG 2-1
using DML statements, DEPRG

2-10. DBPRAf 3-7
protecting against data corruption,

DEIDA 5-2
removing records, DEIDM6-ll
schema area definition. DEDGD

2-1
securing databases

overview, DEIDA 5-8

lndex-31

set membership characteristics,
DBIDM6-l6t

set relationships
overview, DBIDM 4-9

sets
navigating, DBPRG 3-4e

sizing areas, DBDGD 5-13
snapshot storage areas, DBDGD

5-15
sorted sets

modifying member records,
DBPRG6-9

steps in developing databases,
DEIDA 4-1

transactions defined, DBIDM l -3
unloading databases

as part of unload/load operation,
DBLGD3-21

extracting data, DBLGD 3-16
overview, DBLGD 1-5
PARTS sample database,

DBLGD4-ll
restructuring PARTS sample

database, DBLGD 4-15
tips and suggestions, DBLGD

3-20
using buffers, DBLGD 3-18

update procedures, ACAPG 5-3
updating records, DBIDM 6- l
using space management, DBDGD

5-2
using with DAT ATRIEVE

graphics, DTGGR 4-3
writing reports, DTRPT 4-1, 4-2.

4-4. 4-5
writing DML programs

preliminary steps, DBPRG 1-2
testing DML logic, DBPRG 1-6

DBMS RECOVERY phrase (ADU),
ACADR 8-9. 8-52

DBMSERVER image (DBMS)
used for remote database access,

DBDGDB-1
DBO commands

indirect command file. DBDBA 9-6

lndex-32

parameters, DBDBA 9-1
qualifiers, DBDBA 9-2
reference format descriptions,

DBDBA 9-1
unsecurable, DBDSG 4-1

DBO/ALTER command, DBDBA 9-8
examples, DBMPG 9-6

DBO/ANAL YZE command. DBDBA
9-10

examples. DBMPG 12-2
interpreting output of, DBMPG

12-2
DBO/BACKUP command. DBDBA

9-17. 9-18
backing up databases. DBDBA

9-18
DBO/CLOSE command

examples, DBMPG 3-7
. DBO/CREATE command. DBDBA

9-29, DEIDA 2-6
handling security schemas,

DBDSG3-l
using, DBDGD 5-1

DBO/DELETE command, DBDBA
9-43

examples, DBMPG 7-2
DBO/DUMP command

/AFTER_.JOURNAL. format,
DBDBA 9-62

evaluating performance. DBMPG
13-1

examples. DBMPG 13-1
format. DBDBA 9-56
/RECOVERY_JOURNAL, format,

DBDBA 9-64
DBO/EXTRACT command, DBDBA

9-66
default security schema, DBDSG

2-3
DBO/GRANT COMMAND com

mand. DBDBA 9-70, DBDSG
1-5

controlling CAL contents, DBDSG
1-1

DBO/INITIALIZE command,
DBDBA 9-80

DBO/INTEGRATE command,
DBDBA9-82

DBO/LOAD command, DBDBA 9-84
DBO/LOAD/CONTINUE command,

DBDBA 9-87
DBO/MODIFY command, DBDBA

9-88
examples, DBMPG 6-5
handling security schemas,

DBDSG3-1
DBO/MONITOR command, DBDBA

9-99
,,......,~,.....1,-..,,.T"T'.""l'T __ -- __ --- _l T\~~Tl A
LJDV/Vr Dl" t.;UUUUCl..UU, .LJ.L.J.LJ.L>Fl.

9-101
examples, DBMPG 3-2

DBO/PERMIT USER command,
DBDBA 9-102, DBDSG 1-4

controlling UEL contents, DBDSG
1-1

DBO/RECOVER command, DBDBA
9-113

DBO/REPORT command, DBDBA
9-115

security schema information,
DBDSG2-2

DBO/RESTORE command, DBDBA
9-117

DBO/RESTORE/INCREMENTAL
command, DBDBA 9-123

DBO/SHOW command, DBDBA
9-126

DBO/SHOW STATISTICS command,
DBDBA 9-128

examples. DBMPG 14-2
DBO/SHOW SYSTEM command,

DBDBA 9-131
DBO/SHOW USERS command,

DBDBA 9-132
DBO/UNLOAD command, DBDBA

9-134
DBO/UNLOAD/CONTINUE com

mand, DBDBA 9-137

DBO/VERIFY command, DBDBA
9-139

DBO/WORK_AREA command,
DBDBA 9-142

examples, DBPRM 5-2
DBQ$COMPILE routine (DBQ),

DBPRM5-6
DBQ$COMPILE _STREAM routine

(DBQ), DBPRM 5-9
DBQ$EXECUTE routine (DBQ),

DBPRM5-l0
DBQ$EXECUTE_STREAM routine

(DBQ). DBPRM5-l2
DBQ$INTERPRET routine (DBQ),

TlDTJD711'" t:::. 1 ')
..L../~...L .L\t..Lf'..&. V ..L.V

DBQ$INTERPRET STREAM rou
tine IDBQ), DBPRM 5-29

DBQ$RELEASE routine (DBQ),
DBPRM5-33

DBQ$RELEASE_STREAM routine
(DBQ), DBPRM 5-34

DCL
defining procedures as tasks,

ACADG 7-3
DCL COMMAND clause (ADU),

ACADR8-54
DCL COMMAND subclause (ADU),

ACADR 6-30
defining processing, ACADG 7-3

DCL invoke statement($) (Rdb/VMS)
accessing DCL. RDREF 6-48

DCL PROCESS subclause (ADU),
ACADR6-39

DCL servers. ACDSG 4-2
nonreusable, ACDSG 4-2
reusable, ACDSG 4-2

DDL compiler commands (DBMS),
DBDBA 5-1

DDL/COMPILE command (DBMS),
DBDBA 5-2

DDL/GENERATE command
(DBMS), DBDBA 5-7

DDL/MODIFY command (DBMS),
DBDBA 5-11

Debugging

lndex-33

ACMS multiple-step tasks,
ACAPG9-1

application programs, TDAPG 9-1
Debugging ACMS applications,

ACDPG llt
Debugging applications (Rdb/VMS).

RDGP2-9
Debugging tasks, ACDAP 4-15
Decision support

using DATATRIEVE graphics.
DTGGR2-5

DECLARE PORT statement. DTREF
7-66

DECLARE statement. DTREF 7-62,
DTUG9-1

DECLARE SYNONYM command,
DTREF7-68

Declaring variables, DTUG 9-1
DECnet access to databases IDBMS)

establishing, DBDGD 8-l
DEFAULT APPLICATION FILE

clause (ADU), ACADR 4-5, 5-12
DEFAULT command (AAU),

ACAMG 13-15
DEFAULT command (DDUL

ACAMG 12-8
DEFAULT command (UDU).

ACAMGll-9
Default dictionary directory. CDDUG

2-19
DEFAULT DIRECTORY subclause

(ADU). ACADR 5-38.4
Default field access order. TDFRM

7-2
DEFAULT FIELD instruction (RDU).

TDREQ Refb-11
DEFAULT MENU FILE clause

(ADU). ACADR 4-7
menu clause, A CADG 4-11

DEFAULT OBJECT FILE subclause
(ADU), ACADR 6-40

DEFAULT REQUEST LIBRARY
clause (ADU), ACADR 7-10

DEFAULT SERVER clause (ADU).
ACADR 7-12

lndex-34

DEFAULT TASK GROUP FILE
clause (ADU), ACADR 6-7

DEFAULT VALUE clause, DTREF
7-71

DEFAULT VALUE field attribute
clause -(CDDL), CDDDL 2-24

DEFINE
CDDL source file statement,

CDDDL2-26
DESCRIPTION clause, CDDDL

2-29
DEFINE CONSTRAINT statement

(Rdb/VMS). RDDBD 2-21
restricting values. RDREF 6-49

DEFINE DATABASE command.
DTREF 7-73, DTUG 14-4

DEFINE DATABASE statement
(Rdb/VMS), RDDBD 2-3

creating a database, RDREF 6-53
DEFINE DICTIONARY command.

DTHB 7-12. DTREF 7-75
DEFINE DOMAIN command,

DTREF 7-79, DTUG 5-1
DEFINE FIELD statement

(Rdb/VMS), RDDBD 2-6
creating field definitions. RDREF

6-59
DEFINE FILE command. DTHB

11-1. DTREF 7-95
DEFINE INDEX statement

(Rdb/VMS). RDDBD 2-23
creating index definitions, RDREF

6-65
DEFINE PORT command, DTREF

7-102
DEFINE PROCEDURE command,

DTREF7-105
DEFINE PROTECTION statement

(Rdb/VMS)
accessing the database, RDREF

6-68
DEFINE RECORD command,

DTREF7-109
DEFINE RELATION statement

(Rdb/VMS), RDDBD 2-18

creating relation definitions,
RDREF6-78

DEFINE TABLE command. DTREF
7-113

DEFINE VIEW statement
(Rdb/VMS), RDDBD 2-26.
RDGDM3-46. 4-15

creating view definitions, RDREF
6-84

DEFINEP command, DTREF 7-122
Defining

asynchronous function keys.
TDSUP2-6

keys, TDREQ 10-2
requests, 1 VJtb'fc/ 4-o
the RDU symbol, TDREQ 4-2

Defining (Rdb/VMS)
constraints. RDDBD 2-21
data definition statements, RDREF

2-2
database, RDDBD 2-3
fields, RDDBD 1-19, 2-6
indexes, RDDBD 2-23
relations, RDDBD l-23, 2-18
views, RDDBD 2-26, RDGDM

3-46. 4-15
Defining a DBMS DDL schema,

DBDBA 1-1
Defining procedures. DTUG 7-1
Defining records, DTHB 9-l
Defining servers, ACADG 7-5
Defining tables, DTHB 12-1
Defining views, DTUG 5-1
Definitions (ACMS)

editing with MODIFY command,
ACADG6-8

errors when building. ACADG 2-8.
2-9

%INCLUDE. ACADR 3-2
storing task definitions in CDD.

ACTDG4-l3
submitting, ACTDG 2-4
writing, ACADR 1-4

DELAY clause (ADU), ACADR 7-14

DELAY subclause (ADU), ACADR
5-57

DELETE command, DTHB 7-10,
DTREF7-l29

DMU, DTHB 7-13
DELETE command (ADU), ACADR

2-19
DELETE command (DMU), CDUTL

2-22
DELETE CONSTRAINT statement

(Rdb/VMS)
Constraint definitions, RDREF

6-90
DELETE DATABASE statement

Utdb/V M:S). lt.UfJ.HlJ 4-8
database definitions, RDREF 6-92

DELETE FIELD statement
(Rdb/VMS). RDDBD 4-7

field definitions, RDREF 6-94
DELETE FORM command (FDU),

TDFRMRef-ll
DELETE INDEX statement

(Rdb/VMS)
index definitions, RDREF 6-96

DELETE LIBRARY command
(RDU), TDREQ Refa-25

DELETE PROTECTION statement
(Rdb/VMS), RDDBD 3-16

database protection, RDREF 6-99
DELETE RELATION statement

(Rdb/VMS). RDDBD 4-6
relation definitions. RDREF 6-102

DELETE REQUEST command
(RDU), TDREQ Refa-27

DELETE VIEW statement
(Rdb/VMS)

View defjnitions, RD REF 6-l 04
DELETE/HISTORY command . .

(DMU), CDUTL 2-26
DELETE/PROTECTION command

(DMUI. CDUTL 2-28
DELETEP command, DTREF 7-132
Deleting

instance information, DBDBA 9-54
root file, DBDBA 9-44

lndex-35

schemas, DBDBA 9-46
security schemas, DBDBA 9-52
storage schemas, DBDBA 9-48
subschemas, DBDBA 9-50

Deleting (Rdb/VMS)
access control lists, RDDBD 3-16
data, RDGDM 5-20
databases, RDDBD 4-8
fields, RDDBD 4-7
protection, RDDBD 3-16
relations, RDDBD 4-6

Deleting databases (DBMS), DBMPG
7-2

overview, DEIDA 5-8
schemas. DBMPG 7-4

DELETION DELAY subclause
(ADU), ACADR 5-40

DELETION INTERVAL subclause
(ADU). ACADR 5-40.2

Dependent names, TDREQ 13-1
Dependent ranges, TDREQ 13-1
DEPOSIT command (ACMSDBG),

ACAPG 11-12
DEPOSIT command (DBALTER),

DBDBA 10-7
DEPOSIT FILE command

(DBALTER). DBDBA 10-9
DEPOSIT ROOT command

(DBALTER), DBDBA 10-10
DESCRIPTION

CDDL clause. CDDDL 2-29
DESCRIPTION instruction (RDU),

TDREQ Refb-12
Designing databases (DBMS)

concepts. DBDGD 1-1
creation parameters, DBDGD 5-1
data transfer, DBDGD 5-6
defining area limits, DBDGD 2-4
defining buffers. DBDGD 5-8
defining sets. DBDGD 2-9
defining validity checks, DBDGD

2-26
developing user views, DBDGD 4-1

defaults. DBDGD 4-1
logical definitions. DBDGD 2-1

lndex-36

schema records, DBDGD 2-3
physical definitions, DBDGD 3-1

defaults, DBDGD 3-1
optimizing, DBDGD 3-3

schema area definitions, DBDGD
2-1

sizing areas, DBDGD 5-13
snapshot storage areas, DBDGD

5-15
Designing files. DTUG 12-3
Designing records, DTUG 11-1
Developing DML programs (DBMS)

using precompiler, DBPRG 2-2,
DBPRM3-1

DML command. DBPRG 2-3.
DBPRM3-1

Developing Rdb/VMS programs
BASIC. RDGP 4-1
Callable RDO. RDGP 4-1
COBOL. RDGP4-1
FORTRAN, RDGP 4-1
PASCAL, RDGP4-1

Device Definition Utility (DDU),
ACDAP5-12

Device Definition Utility commands
(DDU)

ADD. ACAMG 12-3
COPY. ACAMG 12-6
DEFAULT. ACAMG 12-8
EXIT. ACAMG 12-10
HELP, ACAMG 12-11
LIST. ACAMG 12-12
MODIFY. ACAMG 12-14
REMOVE. ACAMG 12-16
RENAME. ACAMG 12-18
SHOW. ACAMG 12-20

Device Utility (DDU)
ACMSDDF.DAT file, ACAMG 3-1
authorizing terminals, ACAMG 3-1

DIBOL
Callable DBQ (DBMS), DBPRM

5-4
examples. DBPRM 5-23

using DML precompiler (DBMS),
DBPRG 2-1, DBPRM 3-1

Dictionaries
merging, CDDUG 8-3

Dictionary directories, CDDUG 1-1,
CDUTL 1-1

copying, CDDUG 3-3
creating a sample hierarchy,

CDDUG7-13
default directory, CDDUG 2-19

changing, CDDUG 3-5
directory hierarchy, CDDDL 1-1,

CDDUG7-2
organizing, CDDUG 7-1
reorganizing in merged dictionaries,

CDDUG8-9
----L- .. -! ____ ,..,.T'\T"\TTr"fO ~,...

lt~LUllll~, \J.l.JLJUU .:>-.LU

Dictionary files
maintaining with CDDV, CDDUG

7-18
Dictionary objects, CDDUG 1-1,

CDUTL 1-1
creating multiple versions, CDDUG

3-18
listing contents, CDDUG 3-8
restoring, CDDUG 3-15

Dictionary path names, CDDUG 1-7
specifying, CDDUG 2-8

Dictionary performance
improving, CDDUG 7-9

Dictionary types, CDUTL 1-3
Dictionary Verify/Compress Utility

(CDDV) commands
EXIT, CDUTL 3-5
FIX. CYJUTL 3-6
HELP, CDUTL 3-10
SHOW VERSION. CDUTL 3-11
VERIFY, CDUTL3-12

Dictionary Verify/Fix Utility (CDDV)
commands

COMPRESS, CDUTL 3-3
Digital Command Language (DCL),

DTHB2-l
messages, DTHB 2-7

DISCONNECT statement. DTREF
7-135. DTUG 14-36

DISCONNECT statement (DML),
DBPRM2-8

examples. DBIDM 6-11
limitations. DBPRG 6-8

DISCONNECT statement (FDML),
DBFDM3-8

Disk devices
dual pathing, DBMPG 15-6
V AXcluster naming conventions,

DBMPG 15-6
V AXcluster pathing options,

DBMPG 15-10
DISPLAY command (DBALTER),

DBDBA 10-11, 10-14
DISPLAY cummauu \DBQI, DBFR2v1

1-6
DISPLAY FORM instruction (RDU).

TDREQ Refb-13
DISPLAY ROOT command

(DBALTER), DBDBA 10-15
DISPLAY statement, DTREF 7-136
DISPLAY_FORM statement, DTREF

7-139. DTUG 13-5
Displaying

scrolled arrays, TDREQ 14-2
Displaying database pages (DBMS).

DBMPG9-11
Displaying definitions (Rdb/VMS),

RDDBD2-33
Distributed applications, ACADG 4-6

application specifications, ACADR
1-10

I/O restrictions, ACADG 4-10,
ACADR8-5

menu definitions, A CADR 4-3
Distributed data. DTUG 16-1
Distributed processing

ACMS. ACAMG 10-1
application specification, ACAMG

10-3
assigning proxy accounts, A CAMG

10-7
authorizing remote access,

ACAMG 10-7
failover. ACAMG 10-5

lndex-37

logical name translation, ACAMG
10-5

preparing for, ACAMG 10-2
search lists, ACAMG 10-5
site-specific, ACAMG 10-14

DMU commands
using, CDDUG 3-1

Dollar sign command ($) (Rdb/VMS)
invoking DCL, RDREF 6-48

Domains
defining, DTHB 10-1
network, DTUG 16-1
remote, DTUG 16-1
rules for naming, DTHB 10-2

DROP statement, DTREF' 7-142
DUMP command (ADU), ACADG

6-9, ACADR 2-21
DYNAMIC USERNAME subclause

(ADU), ACADR 5-40.4, 6-42

E

E(EXECUTE), DTREF 7-12
EDIT command, DTREF7-146
EDIT command (ADU), ACADR 2-23
EDIT command (DBQ), DBPRM 1-8
EDIT command (FDU), TDFRM

Ref-13
EDIT command (RDU), TDREQ 4-1 7,

Refa-29
EDIT command (SWLUP), ACAMG

17-6
EDIT statement (RDO)

editing command lines, RDREF
6-106

Edit string characters
DATATRIEVE, DTHB E-1

EDIT CODE field attribute clause
ICDDU, CDDDL 2-31

EDIT STRING clause, DTREF 7-151
EDIT-STRING field attribute clause

(CDDL). CDDDL 2-33
EDIT WORD field attribute clause

{CDDL). CDDDL 2-35
Editing

lndex-38

procedures, DTUG 7-5
record definitions, DTHB 9-22

Editing your text. TDFRM 5-12
EDT, DTHB 3-2

advanced features, DTHB 3-20
Embedded Callable RDO

PASCAL programs, RDGP 6-28
Employee sample

running, TDSAMl-1
EMPTY function (FDML), DBFDM

3-93
EMPTY_ STREAM function (FDML),

DBFDM3-94
END clause (FDML), DBFDM3-71
END DEFINITION instruction

(RDU). TDREQ 4-6, Refb-15
END REPORT statement (DTR

Report Writer), DTREF 7-167.
DTRPT6-ll

END SEGMENTED STRING state
ment (Rdb/VMS-)

closing a segmented string,
RDREF6-l10

END STREAM statement
(Rdb/VMS)

closing an open stream, RDREF
6-111

Ending transactions (Rdb/VMS)
COMMIT statement, RDREF 6-38
ROLLBACK statement, RDREF

6-173
Entering data. DTUG 3-1, RDGDM

5-2
DBMS, DTUG 14-36

ENTRIES clause (ADU), ACADR 4-9
<:fc,ENTRY keyword, TDREQ 13-1
ERASE statement. DTREF 7-168
ERASE statement (DML), DBPRM

2-10
examples. DBIDM6-ll
using. DBPRG 6-11

ERASE statement (FDML), DBFDM
3-10

ERASE statement (Rdb/VMS),
RDGDM5-20

deleting records from a database,
RDREF6-112

Erasing data, RDGDM 5-20
Erasing records, DTHB 16-5
ERR clause (FDML). DBFDM 3-72
Error handling (ACMS). ACAPG 3-8

ACMSAD$REQ CANCEL pro
gramming service, A CAPG
10-3

returning status in workspaces.
ACAPG 8-1

using
ACMS$SELCTION STRING.
ACAPG 8-6 -

Error handling (FDMLI. DBFDM 1-3
Error handling (Rdb/VMS)

AT END clause. RDREF6-8
Callable RDO, RDGP 8-40
ON ERROR clause. RDREF 6-157
precompiled programs, RDGP 8-3

Error messages
DATATRIEVE

changing, DTGPG 8-1. 8-3
list of error, DTGPG B-3
list of informational, DTGPG

B-49
list of severe. DTGPG B-1
list of warning. DTGPG B-44
listed by number. DTGPG B-60

Error messages (ADU)
examples and references. A CADR

B-1
Errors

ACMS$PROCESSING STATUS,
ACTDG8-2 -

application databases
errors when building. ACADG

3-35
application definitions

errors when creating. ACADG
3-34

building definitions. ACADG 7-8
correcting. TDREQ 4-17. 8-5

correcting with MODIFY command
(ADU), ACTDG 7-16

correcting with REPLACE com
mand (ADU), ACTDG 7-15

creating a task group definition,
ACADG 7-7

files containing ACMS utility,
ACAMGA-1

handling, ACDSG 4-10
handling errors from building task

group databases, ACTDG 7-13
handling with

ACMSAD$REQ_CANCEL,
ACDSG4-15

workspaces, ACTDG 8-2
mapping. TDREQ 8-3
monitoring ACMS. ACAMG 6-1
not detected by BUILD command,

ACADG6-9
signaling, TDAPG 3-6
syntax, TDREQ 8-1
trapping with procedures. DTUG

7-6
using message files for handling,

ACDSG 4-11
when building databases. ACADG

6-6
when modifying records. DTUG

4-12
Establishing remote access (DBMS),

DBDGD8-l
creating proxy logins. DBDGD 8-5
using security schemas, DBDGD

8-7
Evaluating databases !DBMS)

performance. DBMPG 11-1, 12-2
using statistics. DBMPG 14-2

EXAMINE command (ACMSDBG),
ACAPG 11-13

Exception conditions (DBMS)
handling, DBPRG 7.;1
testing for logic errors, DBPRG 7-1

Exchange clauses (ADU), ACADR
8-21

lndex-39

Exchange steps, ACDAP 2-6
terminal 1/0 in, ACDSG 3-2

Execute statement(@) (Rdb/VMS)
running command files, RDREF

6-116
: (EXECUTE). DTREF 7-12
Executing procedures, DTUG 7-2
EXIT BLOCK clause (ADU), ACADR

8-90
EXIT command, DTREF 7-171
EXIT command (AAU), ACAMG

13-21
EXIT command (ACMSDBG).

ACAPG 11-14
EXIT command (ACMSGEN).

ACAMG15-5
EXIT command (ADU), ACADR 2-26
EXIT command (ATRU), ACAMG

14-3
EXIT command (CDDV), CDUTL 3-5
EXIT command (DBALTER),

DBDBA 10-16
EXIT command (DBQ), DBPRM 1-10
EXIT command (DDU), ACAMG

12-10
EXIT command (DMU), CDUTL 2-32
EXIT command (FDU), TDFRM

Ref-14
EXIT command (RDU), TDREQ 4-18.

Refa-31
EXIT command (SWLUP), ACAMG

17-8
EXIT command (UDU), ACAMG

11-11
EXIT TASK clause (ADU), ACADR

8-91
Explicit syntax, TDREQ 6-7, 6-16

mapping arrays, TDREQ 11-6
Expressions

arithmetic. RDREF 3-16
Boolean. DTHB 18-1
concatenated, RDREF 3-19
conditional. RDREF 3-25
segmented string, RDREF 3-24

lndex-40

statistical, RDGDM 3-52, 4-35,
RDREF3-10

value, DTHB 18-1, RDGDM 3-52,
RDREF3-1

EXTRACT command, DTREF 7-173
EXTRACT command (DMU),

ACADG 6-7, CDUTL 2-33
Extracting source from CDD,

DBDBA9-66

F

Fail over
in ACMS distributed processing,

ACAMGl0-5
FDU

entering, TDFRM3-1
issuing commands at DCL leveL

TDFRM3-8
using features of, TDFRM 3-6

FETCH statement (DML), DBPRM
2-13

FETCH statement (FDML), DBFDM
3-13

FETCH statement (Rdb/VMS),
RDGDM5-15

advancing in a stream. RDREF
6-119

Field attribute clauses (CDDLI
ALIGNED, CDDDL 2-3
ARRAY. CDDDL2-5
BLANK WHEN ZERO, CDDDL

2-7
COMPUTED BY DATATRIEVE,

CDDDL2-8
CONDITION NAME. CDDDL

2-W
DATATYPE, CDDDL 2-16
DEFAULTVALUE, CDDDL2-24
EDIT CODE. CDDDL 2-31
EDIT-STRING. CDDDL 2-33
EDIT-WORD. CDDDL 2-35
INITIAL VALUE. CDDDL2-40
JUSTIFIED RIGHT. CDDDL 2-43

MISSING VALUE, CDDDL 2-44
NAME. CDDDL 2-46
OCCURS. CDDDL 2-48
OCCURS ... DEPENDING,

CDDDL2-50
PICTURE. CDDDL 2-53
QUERY HEADER, CDDDL 2-55
QUERY-NAME, CDDDL 2-57
VALID FOR DATATRIEVE IF,

CDDDL2-62
with COBOL, CDDDL 2-43
with VAX BASIC, CDDDL 2-46
with VAX COBOL, CDDDL 2-10.

2-53
m1~'h '1 A Y nA'"rA'"rRTJ;'Vli' rinnn1 ··---- . ---- ------------.-.~---. --, "-"--------~

2-24, 2-33, 2-44, 2-53, 2-55,
2-57' 2-62

with VAX PL/I, CDDDL 2-53
Field attributes, TDFRM 6-7
Field attributes (Rdb/VMS). RDREF

5-1
Field attributes and validators

uses of, TDFRM 6-l
Field definition

PICTURE clause, DTHB 9-9
USAGE clause, DTHB 9-12
VALID IF clause, DTHB 9-20

Field definition clauses, DTREF 6-6
Field definitions, DTREF 6-2

formatting field values in. DTHB
9-18

Field definitions (Rdb/VMS)
CHANGE FIELD statement.

RDREF6-16
CHANGE RELATION statement.

RDREF6-29
DEFINE FIELD statement,

RDREF6-59
DELETE FIELD statement,

RDREF6-94
Field description statements (CDDL)

COPY, CDDDL 2-14
elementary. CDDDL 2-3 7
STRUCTURE. CDDDL 2-59

VARIANTS, CDDDL 2-64
Field levels, DTHB 9-3
Field mapping, TDAPG 4-2, TDREQ

6-2
arrays, TDAPG 4-14, TDREQ

11-1. 12-3
data types, TDREQ 7-3
datatype conversion, TDAPG 4-1 7
errors. TDREQ 8-3
group fields. TDREQ 6-1 7
lengths. TDREQ 7-3
making fields compatible, TDREQ

7-2
rules, TDREQ 7-1, 11-8, 12-4
.,..,;,,..,.. (lf, AT T 'PnA Dr! A .. A 'PnPvn
-'-'.&.A.66 ,1,1,1,..a,.......,.._.,~ .&.~.IL.&.~'-"' ,&. ,&.' ..._....._,.,~..,........,q

6-3
using explicit syntax, TDREQ 6-7
using mixed syntax, TDREQ 6-16

Field validators. TDFRM 6-18
Fields

COMPUTED BY. DTUG 11-11
elementary, DTREF 6-2
group, DTREF6-2
initializing values in, DTHB 9-20

Fields (Rdb/VMS)
changing, RDDBD 4-2
defining, RDDBD 1-19, 2-6
deleting. RDDBD 4-7

FILE IS instruction IRDU), TDREQ
Refb-16

File management. DTHB 2-9
File protection

using VMS, CDDUG 4-29
File specifications (ACMS), ACADR

1-8
Files

ACMS error message, ACAMG
A-1

closing. ACAPG 2-38
designing data, ACDSG 2-2
message. ACAPG 7-1, ACDSG

4-11
opening. ACAPG 2-1
request library, TDREQ 5-6

lndex-41

sequential vs. indexed, DTUG 12-1
FIND statement, DTREF 7-179,

DTUG 14-16
FIND statement (DML), DBPRM

2-25
FIND statement (FDML), DBFDM

3-26
FINISH command. DTREF 7-181
FINISH statement (Rdb/VMS)

closing a database. RDREF 6-124
Finishing domains, DTHB 13-5
FIRST clause

of record selection expression.
RDREF4-2

FIRST FROM expression (Rdb/VMS),
RDREF3-22

FIX command (CDDV). CDUTL 3-6
FIXED USERNAME subclause

(ADU). ACADR 5-42, 6-44
FOR statement, DTREF 7-184,

DTUG6-3
FOR statement (Rdb/VMS)

loops, RDREF 6-126
segmented strings, RDREF 6-130

FOR statements (Rdb/VMS)
nested, RDGDM 4-23

Foreign keys (Rdb/VMS), RDGAM
4-5

Form Definition Utility, ACDAP 2-14
Form Definition Utility commands

(FDU)
At sign(@). TDFRMRef-2
COPY FORM. TDFRM Ref-3
CREATE FORM. TDFRMRef-6
CRTL/Y, TDFRMRef-10
CTRL/C. TDFRM Ref-9
DELETE FORM. TDFRMRef-ll
EDIT, TDFRMRef-13
EXIT. TDFRM Ref-14
HELP, TDFRMRef-15
LIST FORM. TDFRM Ref-16
MODIFY FORM. TDFRM Ref-18
REPLACE FORM. TDFRMRef-21
SET [NO]LOG. TDFRM Ref-26

lndex-42

SET [NO]VERIFY, TDFRM
Ref-28

SET DEFAULT, TDFRMRef-25
SHOW, TDFRM Ref-29

Form definitions, TDSAM 1-3
creating, TDFRM 2-2
for data entry tasks, ACDAP 2-14
for inquiry/update tasks, ACDAP

3-8
saving. TDFRM 8-l
using. TDFRM 1-2

Form design
performance considerations,

ACDSG3-4
using TDMS requests, ACDSG 3-6

Form editor
using, TDFRM 3-2

FORM IS instruction (RDU), TDREQ
4-7. Refb-17

Form Phase
introduction, TDFRM 4-1
leaving, TDFRM 4-6
using, TDFRM 4-2

FORMAT language (DBMS)
Load/Unload facility, DBDBA 6-l

FORMAT value expression, DTVG
13-26

Forming record streams, RDGDM 3-3
Forms

associating a form with a
DATATRIEVE domain,
DTUG 13-2

converting TDMS to FMS, DTUG
13-7

defining. DTUG 13-7
defining for data entry tasks,

ACDAP2-14
defining for inquiry/update tasks,

ACDAP3-8
designing, A CDSG 3-3
displaying and collecting data,

DTUG 13-15
in ACMS applications, ACDSG 3-1
inserting in libraries, DTUG 13-14

modifying definitions, A CADG 5-5
used by menu request, A CADG 5-5

FORTRAN
calling DATATRIEVE from,

DTGPG 2-16, 3-2, 3-22
data manipulation statements

(RdbNMS), RDGP 5-4
record structures, DBFDM 1-5

FORTRAN Data Manipulation
Language (FDML)

ALSO current test, DBFDM 3-79
ALSO keeplist test, DBFDM 3-80
COMMIT statement, DBFDM 3-3
COMPARE function, DBFDM3-9l
COMPARE STREA!\i! £1..!~~t!~~-

DBFDM3-92
compiling programs, DBFDM 2-5
condition tests, DBFDM 3-78
conditionals, DBFDM l-2
CONNECT statement. DBFDM

3-5
data types, DBFDM 1-5
DISCONNECT statement,

DBFDM3-8
EMPTY function, DBFDM 3-93
EMPTY STREAM function,

DBFDM3-94
END clause, DBFDM3-7l
ERASE statement, DBFDM 3-10
ERR clause, DBFDM 3-72
error handling, DBFDM 1-3
examples, DBFDM 2-1
FETCH statement, DBFDM 3-13
FIND statement, DBFDM 3-26
FREE statement. DBFDM 3-39
GET statement, DBFDM 3-45
INVOKE statement, DBFDM 3-4 7
KEEP statement. DBFDM 3-49
linking programs, DBFDM 2-5
MEMBER function. DBFDM3-96
MEMBER_ STREAM function,

DBFDM3-97
MODIFY statement, DBFDM 3-54
NULL current test, DBFDM 3-82

NULL keeplist test, DBFDM 3-84
overview, DBFDM 1-1
OWNER function, DBFDM 3-99
OWNER_ STREAM function,

DBFDM3-100
READY statement, DBFDM3-57
RECONNECT statement, DBFDM

3-60
RETAINING clause, DBFDM3-73
ROLLBACK statement, DBFDM

3-63
running programs, DBFDM 2-5
status registers, DBFDM l-2,

3-104

TENANT function, DBFDM3-l02
TEN ANT_ STREAM function,

DBFDM3-l03
USE statement, DBFDM 3-67
WHERE clause, DBFDM 3-75
WITHIN current test, DBFDM

3-86
WITHIN keeplist test, DBFDM

3-88
FORTRAN programming (DBMS)

overview, DBFDM 1-1
FORTRAN record definitions,

TDAPG8-14
FREE CURRENT statement (DML)

using. DBPRG 6-13
FREE statement (DML), DBPRM

2-39
FREE statement (FDML), DBFDM

3-39
Function keys, A CTUG A-1

asynchronous, TDSUP 2-6
using to move the cursor, TDFRM

5-5
Functions. DTREF 4-19

value expressions, DTREF 4-l

G

Generalizing procedures, DTUG 7-13

lndex-43

Generating DBMS DDL default
metadata, DBDBA 5-7

GET ERROR MESSAGE clause
(ADU), ACADR 8-92

GET statement (DML), DBPRM2-44
GET statement (FDML), DBFDM

3-45
GET statement (Rdb/VMS)

retrieving records from a stream,
RDREF6-l33

Global aggregates, RDGDM 4-3 5
Global attributes, RDREF 5-1
GO command (ACMSDBG). ACAPG

11-15
GOTO STEP clause (ADU). ACADR

8-95
GOTO TASK clause (ADU), ACADR

8-97
Graphics

DATATRIEVE
bar charts, DTGGR 3-1
choosing correct plot, DTGGR

5-1
converting data to information,

DTGGR2-2
data vs. information. DTGGR

2-1
enabling, DTGGR 1-10
general plot syntax, DTGGR 5-4
introduction, DTGGR 1-1
line graphs, DTGGR 3-1
optional equipment. DTGGR 1-1
pie charts, DTGGR 3-1
PRINT vs. PLOT, DTGGR 2-2
required equipment. DTGGR 1-1
sample DBMS application.

DTGGR4-3
sample reporting application.

DTGGR4-l
summary of plots. DTGGR 5-4
using for decision support,

DTGGR2-5
using plots, DTGGR 3-6

Group fields
mapping. TDREQ 6-17

lndex-44

Group workspaces, ACTDG 8-10
Guide Mode, DTHB 6-3

customizing, DTGPG 9-6

H

Handling exception conditions
(DBMS), DBPRG 7-1

testing for logic errors, DBPRG 7-1
HARDCOPY command (DBQ),

DBPRMl-ll
HEADER clause (ADU), ACADR

4-12
Header instructions, TDREQ 4-5
Help

for error messages, DTHB 6-2
HELP command, DTREF 7-189
HELP command (AAU), ACAMG

13-22
HELP command (ACMSDBG),

ACAPG 11-16
HELP command (ACMSGEN),

ACAMG 15-6
HELP command (ADU), ACADR

2-27
HELP command (ATRU), ACAMG

14-4
HELP command (CDDV), CDUTL

3-10
HELP command (DBALTER),

DBDBA 10-17
HELP command (DBQ), DBPRM

1-12
HELP command (DDU), ACAMG

12-11
HELP command (DMU), CDUTL

2-39
HELP command (FDU). TDFRM

Ref-15
HELP command (RDU), TDREQ

Refa-32
HELP command (SWLUP~, ACAMG

17-9
HELP command (UDU), ACAMG

11-12

Help forms, TDFRM 4-4
HELP statement (RdbNMS),

RDDBD2-33
HELP statement (RDO)

assistance on RDO topics, RDREF
6-138

Help text
adding, DTGPG 7-5
changing, DTGPG 7-1
modifying ACMS, ACDSG 4-11
returning from tasks, ACDSG 4-11

Hierarchical records, DTUG 6-3
Hierarchies

flattening, DTUG 6-21, 11-4
TT.!_.J....~-~-- 1~-..t...~ l'"'T'\T""\.\ ,,...,.T"\T"\T'\T "1 A
.1..1..l;:)LV.l.Y .l.l;:)L;:) \V..lJ..lJf, \J.LJ.lJ.IJ.LJ ..1.-"±,

CDUTL 1-3
creating entries, CDDUG 3-6

Horizontally-indexed scrolled arrays,
TDREQ 12-1

Host variables (RdbNMS), RDREF
3-4

HSC50, DBMPG 15-2

1/0
terminal channels, ACAPG 8-30

Identifiers
ACMS, ACADR 1-7
general, RDDBD 3-3
system-defined, RDDBD 3-3
UIC, RDDBD 3-3

Identifying data items, RDDBD 1-12
Identifying objects, RDDBD 1-12
IF tests (DML), DBPRM 1-31, 2-46
IF-THEN-ELSE statement, DTREF

7-192
IMAGE clause (ADU), ACADR 8-57
IMAGE subclause (ADU), ACADR

6-32
defining processing. A CADG 7-3

Improving performance. DTUG 12-1
summary of rules, DTUG 12-24

%INCLUDE (ADU), ACADR 3-2

%INCLUDE instruction (RDU),
TDREQ Refb-20

Including CDD definitions (RdbNMS)
programs, RDGP 3-10

Index definitions (RdbNMS)
DEFINE INDEX statement,

RDREF6-65
DELETE INDEX statement,

RDREF6-96
Indexed arrays. TDREQ 11-10
Indexed files

defining, DTHB 11-2
Indexes

defining, RDDBD 2-23
T. __ 1• __ -.1... - ------- -·- _l £.'1- _
.1..l.lUU t;\.,L L-VUU.l.laUU Ult;>:)

DBO, DBDBA 9-6
Information management

using DAT A TRI EVE graphics,
DTGGR 2-1, 2-2

INITIAL VALUE field attribute
clause (CDDL), CDDDL 2-40

INITIALIZATION PROCEDURE
subclause (ADU). ACADR 6-45

Initialization procedures, ACAPG 2-1,
ACDAP4-2

INITIALIZE command IDBQ),
DBPRMl-14

Initializing
workspaces. ACAPG 8-19

INPUT TO instruction (RDU).
TDREQ Refb-22

Inquiry tasks
DBMS. ACTDG 6-10

structure, ACTDG 6-11
designing, ACDSG 4-18
RMS

analysis of the structure,
ACTDG 4-1

defining block steps, ACTDG
4-11

displaying information, A CTDG
4-9. 4-19

displaying many records,
ACTDG 4-15, 4-20

step procedures, A CTDG 4-1 7

lndex-45

Inquiry/update tasks
form definitions for, ACDAP 3-8
procedures for, ACDAP 3-16
request definitions for. ACDAP

3-11
task definitions for, ACDAP 3-2

Insertion modes (DBMS), DBIDM 6-3
INSTALL command (AAU)

storing application database files,
ACADG 2-17

Installing applications, A CDAP 5-15
Instance information

deleting, DBDBA 9-54
Instructions. TDREQ 1-3

conditional. TDREQ 9-1
Integrating root file to CDD. DBDBA

9-82
Integrity (Rdb/VMS)

database, RDGAM 4-39
Interactive control statements (RDO)

summary, RDREF 2-7
Internal database structures (DBMS),

DBMPG8-l
Internationalization

DATATRIEVE, DTGPG 11-2
INTERRUPT command

(ACMSDBG). ACAPG 11-17
@(Invoke Command File) command,

l)TREF7-l6
INVOKE DATABASE statement

(Rdb/VMS). RDGDM2-1
connecting to a database, RDREF

6-143
remote access, RDGDM 2-4

INVOKE statement (DML). DBPRM
2-57.1

INVOKE statement (FDML).
DBFDM3-47

Invoking
RDU, TDREQ 4-2
requests. TDAPG 3-3
the trace facility. TDAPG 9-1

Invoking (Rdb/VMS)
databases, RDGDM 2-1
remote databases, RDGDM 2-4

lndex-46

Invoking procedures, DTUG 7-2

J
Joining records, DTHB 14-13, DTUG

2-14
Joining relations, RDGDM 4-1, 4-2
Journal files (DBMS)

protecting, DBDSG 4-3
Journaling (Rdb/VMS), RDGAM 4-38

after-image journals, RDGAM 3-4,
4-38

RECOVER statement, RDREF
6-165

enabling, RDGAM3-4
example. RDGAM 3-9
in VAXclusters, RDGAM 5-21
planning strategies, RDGAM 3-2

Journaling and Recovery, ACAPG
3-17

Junction records (DBMS)
using. DBPRG 5-5

JUSTIFIED RIGHT field attribute
clause (CDDL), CDDDL 2-43

K
KEEP statement (DML), DBPRM

2-58
KEEP statement (FDML), DBFDM

3-49
KEYPAD MODE IS instruction

(RDU). TDREQ Refb-25
Keys

ACMS function. ACTUG A-1
asynchronous function keys,

TDSUP2-6
program request keys, TDREQ

10-1
Keys (Rdb/VMS)

foreign. RDGAM 4-5
primary, RDGAM 4-5

Keywords, DTHB B-1

L
Layout Phase

assigning field attributes from.
TDFRM5-30

creating indexed fields in. TDFRM
5-29

entering, TDFRM 5-l
keypad and function keys, TDFRM

5-4
leaving, TDFRM 5-30
screen, TDFRM 5-1

LIGHT LIST instruction (RDU).
TDREQ Refb-27

%LINE keyword. TDREQ 13-1
Linking

application programs, TDAPG 3-8
T .inlrinO' tVnl\/fl .1 nnvn'A!f 9_r:, ---------l:> ,_ - ~ -, .. __.__,,-...- •..&. - "'

Linking (Rdb/VMS)
programs, RDGP 2-9

Linking a Callable DBQ program
(DBMS), DBPRM 5-5

LIST command (AAU), ACAMG
13-23

LIST command (ADU), ACADR 2-29
LIST command (ATRU), ACAMG

14-5
LIST command (DDU), ACAMG

12-12
LIST command (DMU), CDUTL 2-40
LIST command (UDU). ACAMG

11-13
LIST EVENTS command (SWLUP).

ACAMG 17-11
List fields. DTUG 6-4
LIST FORM command (FDU),

TDFRMRef-16
LIST LIBRARY command (RDU).

TDREQ Refa-3 4
LIST REQUEST command (RDU).

TDREQ 5-4, Refa-36
LIST statement, DTREF 7-195
Listing

sample TDMS applications.
TDREQ2-10

Literals, RDREF 3-8
Load facility (DBMS)

components, DBLGD 2-3

format language, DBDBA 6-2
ITEM entry, DBDBA 6-4
RECORD entry, DBDBA 6-3
SET entry, DBDBA 6-5

language syntax, DBDBA 6-l
P ARTS sample database

examples, DBLGD 4-l
SCHOOL sample database

examples, DBLGD 5-l
sequence language, DBDBA 6-l 0

LOOP entry, DBDBA 6-12
record entry, DBDBA 6-13
SEQUENCE NAME entry,

DBDBA 6-11

tips and suggestions, DBLGD 2-22
Loading (Rdb/VMS)

databases, RDDBD 2-33, RDGAM
4-54

from Rdb/ELN databases, RDGAM
2-19

from RMS files, RDGAM 2-l
using DATATRIEVE, RDGAM

2-13
Loading databases (DBMS), DBLGD

2-1
from RMS files. DBDBA 9-84
language syntax, DBDBA 6-l
overview. DBLGD l-4
PARTS sample database

examples, DBLGD 4-l
SCHOOL sample database

examples, DBLGD 5-l
strategy. DBLGD 2-24
tips and suggestions, DBLGD 2-22
tools. DBLGD 2-3

Local attributes, RDREF 5-l
Locating database records (DBMS)

best methods, DBIDM 4-9
overview. DBIDM 4-l
using data item values, DBIDM 4-l

Locking (DBMS)
guidelines, DBDGD 6-13
levels, DBDGD 6-l
optimizing, DBDGD 6-12

lndex-47

optimizing programs, DEPRG 8-1
READY statement (DML), DEPRG

8-2
record access, DEPRG 8-6
types of locks, DEPRG 8-2

Locking (RdbNMS)
consistency, RDGAM 4-8
records, RDGDM 2-6, 2-8

Locking information
databases (DBMS), DBMPG 11-4

LOG command (DBALTER). DEDEA
10-18

Log Reports
contents of ACMS, ACAMG 6-10

Logging in to ACMS
control of. ACDSG 3-9

Logical database design (DBMS)
concepts, DEDGD 1-1
defining area limits. DEDGD 2-4
defining sets, DEDGD 2-9
defining validity checks. DBDGD

2-26
subschemas

defaults, DBDGD 4-1
using schemas, DEDGD 2-1

record definition, DBDGD 2-3
writing subschemas. DEDGD 4-1

Logical database design (RdbNMS),
RDDBDl-2

Logical database model, RDDBD 1-7,
2-2

Logical names. DTHB 2-22
default, DTHE 2-23
DTR$STARTUP, DTUG 1-17

Logical operators, RDREF 3-34
LOGICALS subclause (ADU),

ACADR 5-43
Logins

requirements for ACMS. ACAMG
D-1

LOOP command (DBQ), DBPRM
1-34

Loops. DTHB 15-8
Loops (RdbNMS)

FOR statement. RDREF6-126

lndex-48

M
MACRO

Callable DBQ (DBMS), DBPRM
5-4

examples, DBPRM 5-24
MACRO command (DBQ), DBPRM

1-33
Maintaining

command files, DTUG 8-10
procedures, DTUG 7-15

Maintaining databases (DBMS)
accessing data, DBIDA 5-1
deleting databases

overview, DEIDA 5-8
evaluating database performance,

DBIDA 5-4
modifying definitions

overview, DBIDA 5-6
overview. DEIDA 5-1
protecting against data corruption,

DBIDA 5-2
securing

overview. DEIDA 5-8
V AXcluster environment, DBMPG

15-23
Managing remote database access

(DBMS). DBDGD 8-l
Mapping fields. TDAPG 4-2, TDREQ

6-2
arrays, TDAPG 4-14, TDREQ

11-1.12-3
data types, TDREQ 7-3
datatype conversiqn, TDAPG 4-17
errors, TDREQ 8-3
group fields, TDREQ 6-1 7
lengths. TDREQ 7-3
making fields compatible, TDREQ

7-2
rules, TDREQ 7-1, 11-8, 12-4
using %1ALL, TDAPG 4-4, TDREQ

6-3
using explicit syntax, TDREQ 6-7
using mixed syntax, TDREQ 6-16

Mass Storage Control Protocol
(MSCP), DBMPG 15-6

MATCH statement, DTREF 7-201
MAXIMUM SERVER PROCESSES

clause (ADU), ACADR 5-14
MAXIMUM SERVER PROCESSES

subclause (ADU), ACADR 5-46
MAXIMUM TASK INSTANCES

clause (ADU), ACADR 5-16
MEMBER function (FDML), DBFDM

3-96
MEMBER STREAM function

(FDML), DBFDM 3-97
MEMO command (DMU), CDUTL

Menu databases, ACDAP 5-9
building, ACADG 6-1, 6-4, ACDAP

5-9
naming, ACADG 4-11

Menu definitions, ACDAP 5-6
clauses, A CADR 4-1
default menu definitions, A CADG

5-3t
parts of, A CADG 4-4
processing, ACADG 2-15, 4-12
structure of, A CA{JG 1-10
writing, ACADG 2-10. 2-12,

ACADR4-l
Menu design, A CDSG 3-6

guidelines for ACMS. ACDSG 3-7
using separate applications,

ACDSG 5-6
Menu entries

ACMS default limits. ACADG 5-16
defining characteristics of, ACADR

4-15
Menu format

ACMS standard, ACADG 2-10
modifying. ACADG 5-2

Menu forms
modifying. A CADG 5-5

Menu request library
modifying. A CADG 5-18

Menu requests
defining, ACADG 4-10, 5-3

modifying, ACADG 5-2, 5-13
Menu structure

planning. ACADG 2-10
MENU subclause (ADU), ACADR

4-17
Menu tree, ACTUG 2-10
Menus

ACMS, ACDSG 3-1
assigning menu displays, ACAMG

2-6
building databases for, ACDAP 5-9
changing requests for, A CADG 5-3
command. ACTUG 2-17
default. ACTUG 2-10
..J~.c:~:.~~ Arin An i::. ~
U.V.1.J.J.J.J..1.J..fS 1111 .L .l. \..../..L./J.. .&...I.. V v

defining entries, ACADG 2-13
displaying menu and prompt,

ACAMG2-4
entries displayed on. ACTUG 1-2
modifying. A CADG 5-1
sample format for ACMS, ACDSG

3-6
selecting entries, ACTUG 1-2, 2-13
structure of, A CADG 1-10

MESSAGE command, ACAPG 7-8
Message files, ACAPG 7-1

compiling, ACAPG 7-8
naming for task groups, ACTDG

7-8
MESSAGE FILES clause (ADU),

ACADR6-9
Message line

reading from. TDAPG 7-2
writing to. TDAPG 7-2. TDSUP

2-15
MESSAGE LINE IS instruction

(RDU), TDAPG4-l7, TDREQ
Refb-28

Metadata (Rdb/VMS), RDREF7-1
MINIMUM SERVER PROCESSES

subclause (ADU), ACADR 5-48
MISSING VALUE clause, DTHB

9-21
MISSING VALUE statement,

DTREF7-205

lndex-49

Missing values, RDREF 3-20. 3-31,
5-10

MISSING_Y ALUE clause (Rdb/VMS),
RDREF5-10

MISSING VALUE field attribute
clause (CDDL), CDDDL 2-44

Modifiers
in RDU instructions, TDREQ 4-6

MODIFY command (AAU), ACAMG
13-25

MODIFY command (ADU), ACADR
2-33

correcting definitions with. A CADG
6-8, ACTDG 7-16

MODIFY command (DDU), ACAMG
12-14

MODIFY command (UDU), ACAMG
11-15

MODIFY FORM command (FDU).
TDFRMRef-18

MODIFY LIBRARY command
(RDU). TDREQ Refa-38

MODIFY REQUEST command
(RDU). TDREQ 5-3, Refa-41

MODIFY statement, DTREF 7-208,
DTUG 4-8

MODIFY statement (DML), DBPRM
2-63

MODIFY statement (FDML).
DBFDM3-54

MODIFY statement (Rdb/VMS).
RDGDM5-11

changing record values. RDREF
6-149

Modifying IRdb/VMS)
data. RDGDM 5-11

Modifying a record definition.
CDDUG 6-7

Modifying data. DTUG 4-1
DBMS. DTUG 14-36
in repeating fields. DTUG 6-29

Modifying databases (DBMS)
attributes. DBDBA 9-88
data in records. DBIDM 6-1

examples. DBIDM 6-1

lndex-50

DDL metadata, DBDBA 5-11
overview. DEIDA 5-6

Modifying menus
effect on system performance,

ACADG 5-16
number of entries. ACADG 5-15
rebuilding request libraries,

ACADG 5-18
requests, ACADG 5-15

Modifying Rdb relations, DTUG
15-31

Modifying records, DTHB 16-10,
DTUG4-5

in collections, DTUG 4-5
using FOR statement, DTUG 4-8
using record selection expressions.

DTUG 4-8
Monitor

control, DBDBA 9-99
Monitor process (DBMS). DBMPG

2-1
Monitoring

ACCOUNTING utility. ACDSG 5-5
ACMS, ACAMG 6-l

Monitoring databases (DBMS)
V AXcluster environment. DBM PG

15-25
MOVE command (DBAL TERI.

DBDBA 10-19
MOVE command (DBQ). DBPRM

1-16
Moving databases (DBMS)

using DBALTER, DBMPG 15-21
V AXcluster environment. DBMPG

15-21
Moving records (DBMS)

overview. DBIDM 6-l
MSCP. DBMPG 15-6
Multi-user access (Rdb/VMS)

locking. RDGAM 4-8
Multiple-step tasks, ACDSG 1-2

advantages of. A CTDG 1-8
designing. ACDSG 4-10
dividing tasks into steps, A CTDG

3-4

N

inquiry tasks, ACDSG 4-18
passing the terminal, ACDSG 4-7
requests in, ACDSG 3-6. 4-31
serial reuse of procedur~s, ACDSG

4-33
server context, ACDSG 4-12
terminal 1/0 design, A CDSG 4-1
update tasks, ACDSG 4-21
using multiple-step tasks, A CTDG

1-6

NAME field attribute clause (CDDL).
r'l~~~T 0 A I"
v.LJ.LJ.Lf.LJ 4--"±v

Naming
requests, TDREQ 3-4

Nested FOR statements, RDGDM
4-23

Nesting procedures. DTUG 7-10
Network Control Program (NCP)

using for remote database access
(DBMS), DBDGD 8-2

Network storage interface (DBMS
NSI)

using, DBDGD 8-1
Networks

accessing remote Rdb/VMS
database, RDGAM 4-55

NEWUSER program, DTHB 1-8
NO EXCHANGE clause (ADU),

ACADR8-27
NO PROCESSING clause (ADU).

ACADR8-59
NO RECOVERY UNIT ACTION

clause (ADU), ACADR 8-99
NO SERVER CONTEXT ACTION

clause (ADU), ACADR 8-101
NO TERMINAL I/O phrase (ADU).

ACADR 8-12, 8-60
Node

application, ACAMG 10-1
submitter, ACAMG 10-1

NOLOG command (DBALTER).
DBDBAl0-20

Normalization (Rdb/VMS), RDDBD
1-13. RDGDM 1-1

affects on performance, RDGAM
4-3

NOT ANY relational operator,
RDGDM4-29

NULL current test (FDML), DBFDM
3-82

NULL keeplist test WDML), DBFDM
3-84

Numbers
using with ADU, ACADR 1-7

0
OCCURS ... DEPENDING field

attribute clause (CDDL),
CDDDL2-50

OCCURS clause, DTREF 7-224.
DTUG6-3 ,

OCCURS field attribute clause
(CDDL), CDDDL 2-48

ON ERROR clause (Rdb/VMS)
handling an error, RD REF 6-15 7

ON statement, DTREF 7-229
Online assistance, DTHB 6-l

DCL, DTHB 2-3
OPEN command. DTREF 7-233
OPEN statement (RDO). RDREF

6-160
Opening

request library files, TDAPG 3-2
TDMS at run time, TDAPG 3-2

Opening an Rdb/VMS database
RDGDM2-l '

Opening databases (DBMS), DBDBA
9-lOL DBMPG 3-2

Optimizer (Rdb/VMS), RDGAM 4-6
using RDMS$DEBUG FLAGS.

RDGAM 4-22 -
Optimizing DML programs (DBMS),

DBPRG8-l
Optimizing performance, DTUG 12-1

summary of rules, DTUG 12-24

lndex-51

Optimizing storage schema definitions
(DBMS), DEDGD 3-3

Order Phase
introduction, TDFRM 7-2

Output
formatting. DTHE 19-1

OUTPUT TO instruction tRDU).
TDREQ Refb-30

OWNER function (FDML), DEFDM
3-99

OWNER_ STREAM function IFDML),
DEFDM3-100

p

PAGE command (DBALTER),
DEDEA 10-21

Parameters
changing, A CAMG 7-1

Parameters (Rdb/VMS)
database, RDGAM 4-42
sysgen, RDGAM 4-55

PARTS sample database (DBMS)
analyzing data, DEIDA 3-2
analyzing data usage, DEIDA 3-12
Bachman diagram, DBIDM A-1
background, DEIDA 3-1
defining logical model. DEIDA

3-16
loading

examples, DELGD 4-1
unloading

examples, DELGD 4-11
restructuring, DELGD 4-15

PASCAL
Callable DBQ (DBMS). DEPRM

5-4
examples, DEPRM 5-25

calling DATATRIEVE from.
DTGPG2-l6

using DML precompiler (DBMS).
DEPRG 2-1. DBPRM 3-1

PASCAL programs (Rdb/VMS)
data manipulation statements.

RDGP6-4

lndex-52

Passing database values (Rdb/YMS)
Data type conversion, RDGP 3-3

Patching corrupt databases (DBMS),
DBMPG9-5

Path names (CDD), CDDUG 1-7
specifying, CDDUG 2-8

Performance
application design, A CDSG 5-6
changing ACMS parameter values,

ACAMG7-l
data design, ACDSG 2-7
design of data entry tasks. A CDSG

4-15
evaluating database (DBMS),

DBMPG 12-2
evaluating databases (DBMS),

DEMPG 11-1
database changes. DEMPG 11-7
operating system utilities,

DBMPG 11-5
sample procedure. DEMPG 11-7
V AXcluster environment.

DBMPG 11-5
form design, A CDSG 3-4
improving, DTUG 12-1
optimizing queries, DTUG 12-15
programming languages and

DBMS. ACDSG 4-32
record contention, ACDSG 4-18
releasing server context. A CDSG

4-11
task design. ACDSG 4-1
workspace design. A CDSG 2-6,

4-27
Performance (Rdb/VMS)

analyzing the database, RDGAM
4-31

degree of normalization, RDGAM
4-3

using the optimizer. RDGAM 4-6
PERSONNEL database (Rdb/VMS)

using VAXclusters. RDGAM 5-13
Physical database design (DBMS)

concepts. DBDGD 1-2
creating, DBDGD 3-1

optimizing, DBDGD 3-3
using defaults, DBDGD 3-1
using storage schemas. DBDGD

3-1
defaults, DBDGD 3-1
optimizing, DBDGD 3-3

PICTURE clause, DTREF 7-236
PICTURE field attribute clause

(CDDL), CDDDL 2-53
PL/I

Callable DBQ (DBMS), DBPRM
5-5

examples, DBPRM 5-27
using DML precompiler fDBMS),

T"\T')7"'T'l,-..-O., T'\T\Tl~"lrn '1

.LJ.IJI ..LlU "--i, .LJ.lJI ..LUY..L t.J-i

PLACE statement (DML), DBPRM
2-65

PLOT statement, DTGGR 5-4,
DTREF7-241

AVERAGE, DTGGR 5-10
BAR, DTGGR 5-6
BAR AVERAGE, DTGGR 5-8
CONNECT, DTGGR 5-12
CROSS HATCH, DTGGR 5-14
DATE_LOGY, DTGGR 5-16
DATE Y, DTGGR 5-18
HARDCOPY, DTGGR 5-20
HISTO, DTGGR 5-22
LEGEND, DTGGR 5-24
LOGX LOGY, DTGGR 5-26
LOGX-Y, DTGGR 5-28
LR DTGGR 5-30
MONITOR, DTGGR 5-32
MULTI BAR, DTGGR 5-34
MULT(BAR GROUP, DTGGR

5-36
MULTI LINE. DTGGR 5-38
MULT(LR, DTGGR 5-40
MULT(SHADE, DTGGR 5-42
NEXT BAR. DTGGR 5-44
PAUSE. DTGGR 5-46
PIE. DTGGR 5-48
RAW BAR, DTGGR 5-50
RAW-PIE. DTGGR 5-52
RE PAINT. DTGGR 5-54

SHADE, DTGGR 5-56
SORT BAR. DTGGR 5-58
STACKED_BAR, DTGGR 5-60
VALUE PIE. DTGGR 5-62
WOMBAT, DTGGR 5-64
X LOGY, DTGGR 5-66
X-Y, DTGGR 5-68

Plotting data with DATATRIEVE,
DTGGR3-1

Precompiled programs (RdbNMS)
error handling, RDGP 8-3
linking, RDGP 2-9

Precompiler (DBMS)
BASIC examples, DBPRG 3-1, 4-1,

,.,.. ... n""
u- i. o-_i

handling exception conditions,
DBPRG 7-1

testing for logic errors, DBPRG
7-1

developing programs, DBPRG 2-2,
DBPRM3-1

DML command. DBPRG 2-3,
DBPRM3-1

handling errors. DBPRG 2-13,
{JBPRM3-11

languages supported, DBPRG 2-l,
DBPRAf3-1

overview. DBPRG 2-l
reference information, DBPRM 3-l
using DML statements, DBPRG

2-10. DBPRM3-7
Precompiler (Rdb/VMS)

PASCAL. RDGP6-1
RDBPRE. RDGP 5-1

Precompiling tRdb/VMS)
BASIC. COBOL, FORTRAN,

RDGP2-2
Preparing definitions for use, ACADG

2-3f. ACADR 1-4
applications. ACADG 2-7, 2-9
menu. ACADG 2-16. 4-12
menu request libraries, A CADG

5-18
task groups. ACADG 7-8, ACTDG

7-1

lndex-53

Preparing precompiled programs
(Rdb/VMS). RDGP 2-2

Primary keys (Rdb/VMS), RDOAM
4-5

PRINT command (DBQ), DBPRM
1-18

PRINT statement, DTREF 7-243
options, DTHB 19-8

PRINT statement (DTR Report
Writer), DTREF7-256, DTRPT
6-12

PRINT statement (RDO)
retrieving records from a stream.

RDREF6-l6l
Printing a copy of run-time forms.

TDFRM3-8
Privileges

for starting applications. A CADO
2-17

Privileges (Rdb/VMS)
access, RDDBD 3-4

Procedure design, A CDSO 4-32
restrictions, ACDSO 4-34

PROCEDURE SERVER IMAGE
subclause (ADU), ACADR 6-47

Procedure servers. ACDSO 4-2
advantages of, ACDSG 1-2
restrictions on. A CDSO 4-6
reusing. A CDSG 4-4
terminal I/O. ACAPG 8-30

Procedures, DTUO 7-1
aborting. DTUG 7-7
accessing DBMS databases,

ACAPO 5-1
accessing Rdb/VMS databases,

ACAP06-l
accessing RMS files. A CAPO 4-5
cancel, ACAPG 8-24. ACDAP 4-2
creating. DTHB 17-1
DBMS update procedure, A CAPO

5-8
debugging. A CAPO 9- l
defining. DTUO 7-1
editing. DTUO 7-5
executing. DTHB 17-1. DTUG 7-2

lndex-54

for data entry tasks, ACDAP 2-24
for inquiry/update tasks, ACDAP

3-16
generalizing, DTUO 7-13
guidelines for writing, ACAPG 3-1
handling errors, A CAPO 3-8
in multiple-step tasks, A CDSO

4-10
initialization, ACDAP 4-2
initializing workspaces, ACAPO

8-19
locking records, ACAPO 3-17
maintaining, DTUO 7-15
nesting, DTUO 7-10
protecting. DTUO 7-16
querying RMS files. A CAPO 4-5
Rdb/VMS inquiry procedure,

ACAPG 6-7
Rdb/VMS update procedure,

ACAPG6-28
Rdb/VMS update procedures,

ACAPG6-3
releasing server context. A CAPO

4-35
termination. A CDAP 4-2
timing to improve efficiency,

DTUO 12-21
updating RMS files, A CAPO 4-27
using DBMS domains. DTUO

14-33
using in compound statements,

DTUG 7-12
using to trap errors, DTUO 7-6

PROCEDURES subclause (ADU),
ACADR6-49

PROCESSING clause (ADU),
ACADR7-l5

Processing steps, A CDAP 2-6
server context in, ACDSO 4-13

Production
setting up applications for, A CAPO

9-36
Program design (Rdb/VMS)

BASIC, RDOP 4-l
Callable RDO, RDOP 4-l

COBOL. RDGP 4-1
FORTRAN, RDGP4-1
PASCAL. RDGP4-1

Program interface (Rdb/VMS)
Callable RDO. RDGP 7-1
PASCAL precompiler, RDGP 6-1
RDBPRE precompiler, RDGP 5-1

PROGRAM KEY IS instruction
(RDU), TDREQ 10-3, Refb-35

Program request keys, TDREQ 10-1
controlling the application, TDREQ

10-6
Programming

BASIC record definitions. TDAPG
0 ,
v .L

COBOL record definitions. TDAPG
8-8

debugging, TDAPG 9-1
FORTRAN record definitions.

TDAPG 8-14
Programming examples (DBMS)

FORTRAN language, DBFDM2-1
Programming languages

for ACMS programming, A CDSG
4-32

optimizing DML programs
(DBMS), DBPRG 8-1

used with DML precompiler
(DBMS), DBPRG 2-1.
DBPRM3-1

BASIC examples, DBPRG 3-1.
4-1, 5-1, 6-1, 7-1

Programs. TDSAM 1-27
using Rdb/VMS, RDGDM 1-29

accessing a database, RDGP 1-3
Prompting for input, DTUG 3-4, 4-15
Prompting value expressions, DTUG

3-4
Prompts

DATATRIEVE. DTREF 1-8
Protecting

command files, DTUG 8-10
Protecting DBMS journal files.

DBDSG 4-3
Protecting procedures, DTUG 7-16

Protection (Rdb/VMS), RDGAM 3-2
multi-user access, RDGAM 4-3 7
security, RDGAM 4-37

Protection definition (Rdb/VMS)
CHANGE PROTECTION state

ment, RDREF 6-25
Proxy accounts, ACAMG 10-7
Proxy logins

remote database access (DBMS)
creating, DBDGD 8-5

PURGE command, DTREF 7-260
PURGE command (DMU), CDUTL

2-51

Q

QUERY_HEADER clause, DTREF
7-262

QUERY HEADER field attribute
clause (CDDL), CDDDL 2-55

QUERY_NAME clause, DTREF
7-265

QUERY_NAME field attribute clause
(CDDL), CDDDL 2-57

Quotas and privileges
for application user names.

ACADG 2-4

R

RADIX command (DBALTER),
DBDBA 10-22

RDB RECOVERY phrase (ADU),
ACADR 8-13. 8-62

Rdb relations. DTUG 15-1
RDB$CONSTRAINT RELATIONS

system relation. RDREF 7-5
RDB$CONSTRAINTS system rela

tion. RDREF 7-4
RDB$DATABASE system relation,

RDREF7-6
RDB$FIELD_YERIONS system rela

tion. RDREF 7-7
RDB$FIELDS system relation,

RDREF7-9

lndex-55

RDB$INDEX_SEGMENTS system
relation, RDREF 7-11

RDB$INDICES system relations,
RDREF7-12

RDB$RELATION _FIELDS system
relation, RDREF 7-13

RDB$RELATIONS system relation,
RDREF7-14

RDB$VIEW_RELATIONS system
relation, RDREF 7-16

Rdb/ELN databases
transferring data

RESTORE statement. RDREF
6-169

RdbNMS
example inquiry procedure, ACAPG

6-7
example update procedure. A CAPG

6-3. 6-28
sysgen parameters. RDGAM 4-55
using RdbNMS recovery in tasks,

ACTDG6-23
using V AXclusters, RDGAM 5-2,

5-7
using with DATATRIEVE

writing reports. DTRPT 5-1, 5-4.
5-6. 5-14

V AXcluster file placement.
RDGAM5-8

RdbNMS procedures. A CAPG 6-1
RDMS$DEBUG FLAGS. RDGAM

4-22
RDO, RDREF 1-1
RDU

defining as a symbol. TDREQ 4-2
instructions, TDREQ 4-5
invoking. TDREQ 4-2

READ clause (ADU), ACADR 8-28
READY command. DTREF 7-267
READY statement (DMLI. DBIDM

3-4. DBPRM 2-68
READY statement (FDML). DBFDM

3-57
Readying domains. DTHB 13-3

lndex-56

RECONNECT statement, DTREF
7-287

RECONNECT statement (DML),
DBPRM2-71

examples, DBIDM6-11
using, DBPRG 6-8

RECONNECT statement (FDML),
DBFDM3-60

Record definitions, DTREF 6-1,
TDSAMl-20

BASIC, TDAPG 8-1
changing. DTUG 10-1
COBOL. TDAPG 8-8
compiling, CDDUG 6-1
creating. CDDUG 5-3
flat vs. hierarchical records, DTUG

11-1
formatting field values in, DTHB

9-18
FORTRAN, TDAPG 8-14
modifying, CDDVG 6-7
naming, DTHB 9-5, 10-3
using, CDDUG 6-5

Record design, ACDSG 2-6
RECORD IS instruction (RDU),

TDREQ 4-8. Refb-40
Record locking, ACAPG 3-17,

RDGDM2-6, 2-8
Record locks

effect on performance, A CDSG
4-18

releasing. ACDSG 4-21
Record selection expressions. DTHB

18-1. DTREF 5-1. DTUG 2-1,
RDREF 4-1. RDGDM 3-5

accessing DBMS data. DTUG
14-15

conditional expressions, RDGDM
3-22

creating. DTHB 15-7
creating hierarchies with, DTVG

6-36
CROSS clause, RDREF 4-8
FIND statement. DTHB 14-3

FIRST clause. RDREF 4-2
format, DTREF 5-2
optional elements. DTREF 5-6
REDUCED clause, RDREF 4-7
REDUCED TO clause, DTUG 2-19
relation clause, RDREF 4-3
SORTED BY clause, DTUG 2-21.

RDGDM3-l4
SORTED clause, RDREF 4-6
WITH clause. RDREF 4-6

Record streams
reducing to unique field values,

DTUG 2-19
Record streams (Rdb/VMS), RDGDM

3-3
advancing

FETCH statement. RDREF
6-119

closing
END_ STREAM statement,

RDREF6-lll
FOR statement, RDREF 6-126
START_STREAM statement,

RDREF6-196
Record structures

FORTRAN, DBFDM 1-5
Record values (Rdb/VMS)

modifying
MODIFY statement. RDREF

6-149
retrieving

GET statement. RDREF 6-133
PRINT statement. RDREF

6-161
Records

alternatives for designing. DTUG
11-1

converting large records to small,
DTUG 11-7

defining file and database. A CDSG
2-6

displaying. DTUG 2-3
erasing. DTHB 16-5
flat. DTUG 11-1

hierarchical, DTUG 6-3, 11-1
joining, DTUG 2-14
modifying, DTHB 16-10, DTUG

4-5
sample, DTHB C-1
samples in installation kit, DTUG

1-9
selecting, DTUG 2-1
selecting DBMS, DTUG 14-17
sorting. DTUG 2-21
sources of, DTREF 5-2
storing. DTHB 16-1

Records (Rdb/VMS)
active and inactive. RDGAM 4-38
"+-'""~"""'" Pnnn-,.,,r r:.._9
~--'-'~···o· ~~~ ~~·£ ~ -

RECOVER statement (RDO)
reentering lost transactions,

RDREF6-165
Recovering databases (DBMS)

V AXcluster environment, DBM PG
15-9. 15-22

Recovery
designing for, ACDSG 4-13
relationship to server context,

ACDSG 4-13
Recovery (Rdb/VMS)

in VAXclusters. RDGAM 5-20
using after-image journals.

RDGAM3-7
using run-unit journals, RDGAM

3-8
Recovery journal

dumping. DBDBA 9-64
Recovery units

declared at task level. ACTDG 6-13
REDEFINE command. DTREF 7-289
REDEFINES clause. DTREF 7-292
REDUCE statement. DTREF 7-294
REDUCED clause

of record selection expression,
RDREF4-7

REDUCED TO clause. DTUG 2-19
Reflexive joins. RDGDM 4-20
Relation Database Operator (RDO)

lndex-57

RECOVER statement, RDREF
6-165

Relation definitions (Rdb/VMS)
DEFINE RELATION statement,

RDREF6-78
DELETE RELATION statement,

RDREF6-102
Relational database model, RDDBD

1-1
Relational Database Operator (RDO),

RDGDM 1-13, RDREF 1-1, 1-3
ANALYZE statement, RDREF 6-2
BACKUP statement, RDREF 6-9
CLOSE statement, RDREF6-37
EDIT statement, RDREF 6-106
HELP statement, RDREF 6-138
language elements, RDREF 1-3
OPEN statement, RDREF 6-160
PRINT statement, RDREF 6-161
prompts. RDREF 1-3
RESTORE statement, RDREF

6-169
SET statement, RDREF6-176
SHOW statement, RDREF 6-180

Relational Database Operator (RDO)
statements, RDREF 2-7

Relational databases, ACTDG 6-23
Relational joins, RDGDM 4-1

more than two relations, RDGDM
4-11

reflexive joins, RDGDM 4-20
two relations, RDGDM 4-2

Relational model, RDGDM 1-1
Relational operations, RDGDM 1-1
Relational operators, RDGDM 4-29.

RDREF3-28
Relational terminology, RDDBD l-2
Relations (Rdb/VMS)

changing, RDDBD 4-1
defining. RDDBD 1-23. 2-18
deleting. RDDBD 4-6
system, RDREF 7-1

RELEASE command. DTREF 7-299
RELEASE SERVER CONTEXT

clause (ADU), ACADR 8-103

lndex-58

RELEASE SYNONYM command,
DTREF7-303

Releasing vs. retaining server context,
ACTDG6-3

Remote access (Rdb/VMS), RDGAM
4-55

Remote database access (DBMS)
establishing. DBDGD 8-1

Remote tasks, ACADG 4-6
examples, A CADG 4-1 Of
restrictions, ACADG 4-10
writing menu definitions, ACADR

4-3
REMOVE command (AAU), ACAMG

13-30
REMOVE command (DDU), ACAMG

12-16
REMOVE command (UDU), ACAMG

11-17
Removing records (DBMS), DBIDM

6-11
overview, DBIDM6-1

RENAME command (AAU), ACAMG
13-31

RENAME command (DDU), ACAMG
12-18

RENAME command (DMU), CDUTL
2-53

RENAME command (UDU), ACAMG
11-18

RENAME/SUBDICTIONARY com
mand (DMU). CDUTL 2-59

RENEW command (SWLUP),
ACAMG 17-14

REPEAT statement, DTREF 7-305
REPEAT STEP clause (ADU),

ACADR8-l05
REPEAT TASK clause (ADU),

ACADR8-106
Repeating fields, RDDBD 1-13
REPLACE command (ADU), ACADR

2-39
correcting definitions with, ACADG

6-7, ACTDG 7-15

REPLACE FORM command (FDU).
TDFRMRef-21

REPLACE LIBRARY command
(RDU). TDREQ Refa-44

REPLACE REQUEST command
(RDU), TDREQ Refa-48

REPORT statement (DTR Report
Writer), DTREF 7-309, DTRPT
6-16

Report Writer, DTHB 20-l
Report writing

DATATRIEVE
capabilities. DTRPT l-2
conditional detail lines. DTRPT

correcting mistakes, DTRPT 2-3
embedding in procedures,

DTRPT5-l4
exiting. DTRPT 2-3
headings formatting, DTRPT 2-9
introduction, DTRPT 1-1
invoking, DTRPT 2-2
output options. DTRPT 2-5
page formatting, DTRPT2-7
printing column headers,

DTRPT2-l2
printing detail lines, DTRPT

2-12
printing special headings.

DTRPT3-19
printing title pages, DTRPT 3-19
printing totals of rows, DTRPT

3-22
reporting hierarchical records.

DTRPT3-24
simple examples. DTRPT 1-3
summarizing data. DTRPT 2-21.

3-1
summarizing data by date,

DTRPT3-9
using control groups. DTRPT

3-1. 4-5
using multiple record sources.

DTRPT3-14
using with DBMS data. DTRPT

4-1, 4-2, 4-4
using with Rdb data, DTRPT

5-1, 5-4, 5-6
using DATATRIEVE graphics,

DTGGR 4-1
Reports

controlling settings, DTHB 20-5
creating

title pages for, DTHB 20-14
creating with DATATRIEVE,

DTHB 20-1
REQUEST clause (ADU). Ae-ADR

4-14. 8-30
customized menus. ACADG 5-15
rlpfining ~ mPnn fnrmM, A r'A nr;

4-10
naming requests for menus,

ACADG 5-16
Request Definition Utility, ACDAP

2-19
Request Definition Utility (RDU)

commands
At sign (@), TDREQ Refa-3
BUILD LIBRARY, TDREQ 5-6,

Refa-5
COPY LIBRARY. TDREQ Refa-10
COPY REQUEST, TDREQ 5-2,

Refa-12
CREATE LIBRARY, TDREQ 5-5,

Refa-14
CREATE REQUEST, TDREQ 4-3,

Refa-18
CTRL/C. TDREQ Refa-22
CTRL/Y. TDREQ Refa-23
CTRL/Z. TDREQ Refa-24
DELETE LIBRARY, TDREQ

Refa-25
DELETE REQUEST, TDREQ

Refa-27
EDIT, TDREQ 4-17, Refa-29
EXIT. TDREQ 4-18, Refa-31
HELP. TDREQ Refa-32
LIST LIBRARY, TDREQ Refa-34
LIST REQUEST, TDREQ 5-4,

Refa-36

lndex-59

MODIFY LIBRARY, TDREQ
Refa-38

MODIFY REQUEST, TDREQ 5-3.
Refa-41

REPLACE LIBRARY, TDREQ
Refa-44

REPLACE REQUEST. TDREQ
Refa-48

SAVE, TDREQ Refa-52
SET DEFAULT, TDREQ 3-4,

Refa-53
SET LOG. TDREQ Refa-55
SET VALIDATE. TDREQ 8-7.

Refa-57
SET VERIFY. TDREQ Refa-59
SHOW DEFAULT. TDREQ 3-4,

Refa-60
SHOW LOG. TDREQ Refa-61
SHOW VERSION. TDREQ

Refa-62
VALIDATE LIBRARY, TDREQ

Refa-63
VALIDATE REQUEST, TDREQ

Refa-65
Request Definition Utility (RDU)

instructions. TDREQ 1-3, 4-5
BLINK FIELD, TDREQ Refb-3
BOLD FIELD. TDREQ Refb-4
CLEAR SCREEN. TDREQ Refb-5
CONTROL FIELD IS. TDAPG

5-1, TDREQ 9-1. 13-1. Refb-6
DEFAULT FIELD. TDREQ

Refb-11
DESCRIPTION. TDREQ Refb-12
DISPLAY FORM. TDREQ

Refb-13
END DEFINITION, TDREQ 4-6.

Refb-15
FILE IS. TDREQ Refb-16
FORM IS. TDREQ 4-7, Refb-17
%INCLUDE. TDREQ Refb-20
INPUT TO. TDREQ Refb-22
KEYPAD MODE IS, TDREQ

Refb-25
LIGHT LIST. TDREQ Refb-27

lndex-60

MESSAGE LINE IS, TDAPG
4-17, TDREQ Refb-28

OUTPUT TO, TDREQ Refb-30
PROGRAM KEY IS, TDREQ 10-3,

Refb-35
RECORD IS, TDREQ 4-8, Refb-40
REQUEST IS, TDREQ Refb-42
RESET FIELD, TDREQ Refb-44
RETURN TO, TDREQ Refb-45
REVERSE FIELD, TDREQ

Refb-49
RING BELL, TDREQ Refb-51
SIGNAL MODE IS, TDREQ

Refb-52
SIGNAL OPERATOR, TDREQ

Refb-53
UNDERLINE FIELD, TDREQ

Refb-54
USE FORM, TDREQ Refb-55
WAIT. TDREQ Refb-5 7

Request definitions
for data entry tasks, ACDAP 2-19
for inquiry/update tasks, ACDAP

3-11
Request design, A CDSG 4-31
REQUEST 1/0 phrase (ADU),

ACADR 8-16.1, 8-65
Request instructions, TDREQ 1-3
REQUEST IS instruction (RDU),

TDREQ Refb-42
Request libraries

building. TDREQ 5-6
closing, TDAPG 3-4
creating, TDREQ 5-5
defining, ACDAP 4-8
naming for task groups, A CTDG

7-7
opening, TDAPG 3-2
rebuilding, ACADG 5-18

REQUEST LIBRARIES clause
(ADU), ACADR 6-11

Request library files
building, A CDAP 4-9

Requests, TDREQ 1-1, TDSAM 1-21

at run time, TDAPG 1-4. TDREQ
1-5

canceling, TDAPG 7-3
changing menu formats with,

ACADG 5-15
conditional, TDAPG 5-3. TDREQ

9-1
copying, TDREQ 5-2
correcting errors. TDREQ 4- l 7
creating. TDREQ l-4
creating new menus with, A CADG

5-3
defining. TDREQ 4-5
defining for data entry tasks,

ACDAP2-!9
defining for inquiry/update tasks.

ACDAP3-ll
format, TDREQ l-3. 4-5
invoking. TDAPG 3-3
listing, TDREQ 5-4
modifying, TDREQ 5-3
naming. TDREQ 3-4
storing in the CDD, TDREQ 3-1
storing request binary structures.

TDSUPl-2
using program request keys,

TDREQ 10-3
validating, TDREQ8-7, TDSUP

1-2
RESET FIELD instruction jRDU),

TDREQ Refb-44
RESTORE command (DMD}. CDUTL

2-64
RESTORE statement (RDO)

backup function. RDREF 6-169
Restoring a database (DBMS),

DBMPG4-6
Restricting DBMS DML access.

DBDSG 2-1
Restrictions

on remote tasks. ACADG 4-10
Restructure statement. DTREF

7-313. DTUG 10-2. 11-4
Restructuring data. DTUG 10-1

RETAIN RECOVERY UNIT clause
(ADU), ACADR 8-108

RETAIN SERVER CONTEXT clause
(ADU), ACADR 8-110

RETAINING clause (FDML),
DBFDM3-73

Retrieval process (DBMS)
improving performance of, DBDGD

2-6
Retrieving database records (DBMS)

best methods, DBJDM 4-9
overview, DBIDM 4-l
using data item values. DBIDM 4-l

Retrieving records (Rdb/VMS)
,.i.,,.,.1,..; ,... ,.,.._i.,,. ,._1 +-;,,."",... P nn n Jiff
"-./.&..A.'""''-".&.:i..L.a.o '-"V.&..&.'-'.&. .&.V.A.t.At.J.1.'-'.l.. ... i...1' ..L&,...LJ'-"..JL.-'...LY~

4-29
conditional expressions, RDGDM

3-22
eliminating duplicates. RDGDM

3-22
in a relation. RDGDM 3-5
selecting fields, RDGDM 3-7
sorted order, RDGDM 3-14

RETURN TO instruction (RDU),
TDREQ Refb-45

REUSABLE subclause (ADU),
ACADR6-5l

REVERSE FIELD instruction (RDU).
TDREQ Refb-49

RING BELL instruction (RDU),
TDREQ Refb-51

RMS
in ACMS applications. ACDSG 2-4
performance considerations with

ACMS. ACDSG 2-7
recovery with ACMS. ACDSG 4-18

ROLLBACK clause (ADU), ACADR
8-112

ROLLBACK command (DBALTER),
DBDBA 10-23

ROLLBACK statement. DTREF
7-318. DTUG 15-15

ROLLBACK statement (DML),
DBIDM 3-9. DBPRM 2-76

lndex-61

ROLLBACK statement (FDML),
DBFDM3-63

ROLLBACK statement (RdbNMS)
undoing changes to a database,

RDREF6-173
Root file

deleting, DBDBA 9-44
Run-time errors (RdbNMS)

handling, RDGP 8-1
Run-unit journaling (Rdb/VMS),

RDGAM3-8
RUNDOWN ON CANCEL subclause

(ADU), ACADR 6-53
Running (FDML), DBFDM 2-5
Running a DML program (DBMS),

DBPRM5-5
Running a TDMS Sample

Application. TDFRM 2-2

s
Sample applications, ACADG 2-1,

DTHB 1-15, 8-1
extended, TDSAM 2-1
listing, TDREQ 2-10
running, ACAMG C-1, TDREQ 2-1
source files for, ACAMG B-1

Sample command files, DTUG 8-5
Sample data, domains, records.

DTUG 1-9
Sample database (DBMS)

creating. DBMPG 1-4
Sample dictionary, CDUTL 1-1
Sample procedures. DTUG 7-8. 14-33
Sample TDMS applications

running, TDAPG 2-2
SAVE command (ADU). ACADR 2-44
SAVE command (RDU). TDREQ

Refa-52
SAVE command (SWLUP). ACAMG

17-15
Schemas (DBMS)

AREA entry. DBDBA 1-3
compiling into CDD. DBDBA 5-2
deleting, DBDBA 9-46, DBMPG

7-4

lndex-62

logical database design, DBDGD
2-1

area limits, DBDGD 2-4
set definitions, DBDGD 2-9
validity checks, DBDGD 2-26

modifying, DBMPG 6-2
record definition, DBDGD 2-3
RECORD entry, DBDBA 1-4
records

using contiguous moves,
DBDGD2-6

SCHEMA entry. DBDBA 1-1
SET entry, DBDBA 1-9

SCHOOL sample database (DBMS)
Bachman diagram, DBLGD 5-2
loading

examples, DBLGD 5-1
Scrolled arrays, TDREQ 11-10

displaying, TDREQ 14-2
horizontally-indexed, TDREQ 12-1

Scrolled regions
creating, TDFRM 5-22

Search lists
in ACMS distributed processing,

ACAMG 10-5
Securing databases (DBMS), DBDSG

1-1
overview. DEIDA 5-8
protecting against data corruption,

DEIDA 5-2
Securing DBMS commands

DBO/GRANT_COMMAND,
DBDSG4-3

DBO/PERMIT_USER, DBDSG
4-3

Securing DBO commands, DBDSG
4-1

Security
ACMS. ACDSG 3-8
authentication of distributed task

selections, A CAMG 6-7
for menu databases, ACAMG 2-7
Rdb domains, DTUG 15-31
using AAU, ACAMG 4-1

Security (Rdb/VMS), RDDBD 3-2
backing up databases, RDGAM 3-3

database protection. RDGAM 4-3 7
database recovery, RDGAM 3-7
defining protection. RDDBD 3-2
planning, RDGAM 3-2
planning after-image journaling,

RDGAM3-2
Security schemas (DBMS)

defining, DBDBA 4-1
AREA entry, DBDBA 4-6
RECORD entry. DBDBA 4-8
SET entry. DBDBA 4-11

deleting. DBDBA 9-52
developing. DBDSG 1-3. 2-1
mapping users, DBDSG 1-3
1'.TT TT T 17~-~-·~··..J n nncin t) r::
i'I V.L.J.L.J n.c_y VVVJ.U, ..L/.Ll..L/U\J v-v

protecting, DBDSG 1-2
purpose, DBDSG 2-l
source file, DBDSG 2-3
structure, DBDSG 2-5

Segmented strings (Rdb/VMS).
RDREF3-24

creating
CREATE SEGMENTED STRING - -

statement. RDREF 6-43
data type, RDGP 3-2
END SEGMENTED STRING - -

statement. RD REF 6-110
retrieving

START_ SEGMENTED_ STRING,
RDREF6-19l

retrieving values
FOR statement. RDREF 6-130

storing
CREATE SEGMENTED STRING - -

statement. RDREF 6-43
STORE statement, RDREF

6-218
SELECT command

selecting tasks with. ACTUG 3-1
SELECT command (ACMSDBG),

ACAPG 11-18
SELECT FIRST clause (ADU).

ACADR 8-32. 8-66. 8-114
SELECT statement. DTREF 7-321.

DTUG 14-17

Selecting fields to be displayed,
RDGDM3-7

Selection string, ACTUG 2-12
in SELECT command, ACTUG 3-2

Selection strings
passing parameters in, A CDSG 4-4

SEQUENCE language (DBMS)
Load/Unload facility, DBDBA 6-l

SERVER ATTRIBUTES clause
(ADU), ACADR 5-18

summary of subclauses, ACADR
5-32t

Server context, ACDSG 4-2
relationship to recovery, ACDSG

A 1 t)
-r- .LU

releasing vs. retaining server con
text, ACTDG 6-3, 6-16, 6-23

SERVER CONTEXT phrase (ADU),
ACADR 8-17

SERVER DEFAULTS clause (ADU),
ACADR 5-22

summary of subclauses, ACADR
5-32t

Server design. ACDSG 4-4, 5-2
allocating to task groups, ACDSG

5-2
performance considerations,

ACDSG 4-5
serial reuse of procedures, ACDSG

4-33
Server images. ACDAP 4-15
SERVER MONITORING

INTERVAL clause (ADU),
ACADR 5-24

Server processes. ACDSG 4-2
for reusable servers, ACDSG 4-2
releasing. ACDSG 4-11

Server subclause (ADU), ACADR
6-34

Servers. ACDSG 4-2, 4-4, ACTDG
1-9

control characteristics, ACADG
1-5. 2-5

ensuring reusability, ACDSG 4-34
initializing. ACAPG 2-l
linking images for, A CDAP 4-15

lndex-63

locking records, ACAPG 3-17
naming in task groups, ACTDG 7-4
quotas and privileges, ACAPG 9-36
reusability of. A CDSG 4-2
running cancel procedures, ACAPG

8-24
running images in. ACADG 7-5
terminating, ACAPG 2-38
using procedure servers, ACTDG

1-10
SERVERS clause (ADU), ACADR

6-13
SET [NO]LOG command (FDU).

TDFRMRef-26
SET [NO]LOG command (SWLUPI,

ACAMG 17-16
SET [NO]VERIFY command (FDUI.

TDFRMRef-28
SET [NO]VERIFY command

(SWLUP), ACAMG 17-17
SET ABORT command (DMU),

CDUTL2-71
SET BREAK command (ACMSDBG),

ACAPG 11-19
SET command, DTREF 7-328
SET command (ACMSGEN),

ACAMG 15-7
SET command (DBQ), DBPRM 1-20
SET DEFAULT command (ADU),

ACADR 2-46
SET DEFAULT command (DMU),

CDUTL2-72
SET DEFAULT command (FDU),

TDFRMRef-25
SET DEFAULT command (RDU},

TDREQ 3-4, Refa-53
SET DICTIONARY command.

DTHB7-9
SET LOG command (ADDI. ACADR

2-48
SET LOG command (RDUI. TDREQ

Refa-55
SET PROTECTION command

(DMU), CDUTL 2-73

lndex-64

SET PROTECTION/EDIT command
(DMU), CDUTL 2-80

SET SEARCH command, DTUG
6-20

SET SERVER command
(ACMSDBG), ACAPG 11-20

SET statement (DTR Report Writer),
DTREF7-337, DTRPT6-19

SET statement (RDO)
changing RDO parameters,

RDREF6-176
SET VALIDA TE command (RDU),

TDREQ 8-7, Refa-57
SET VERIFY command (ADU).

ACADR2-51
SET VEfUFY command (RDU),

TDREQ Refa-59
SETPRV privilege

effect on DBMS security, DBDSG
1-2

Sets (DBMS)
defining, DBDGD 2-9
membership characteristics,

DBIDM6-16t
navigating, DBIDM 5-1

SHIFT command (DBQI. DBPRM
1-25

SHOW BREAK command
(ACMSDBG). ACAPG 11-21

SHOW command, DTHB 7-9,
DTREF7-342

SHOW command (AAUI. ACAMG
13-36

SHOW command (ACMSGEN),
ACAMG 15-8

SHOW command (DBQI. DBIDM
3-7. DBPRM 1-26

SHOW command (DDU), ACAMG
12-20

SHOW command (FDU), TDFRM
Ref-29

SHOW command (UDU), ACAMG
11-20

SHOW CURRENT command
(SWLUP), ACAMG 17-18

SHOW DEFAULT command (ADU),
ACADR2-53

SHOW DEFAULT command (DMU),
CDUTL2-100

SHOW DEFAULT command (RDU),
TDREQ 3-4. Refa-60

SHOW LOG command (ADU),
ACADR2-54

SHOW LOG command (RDU),
TDREQ Refa-61

SHOW LOG command (SWLUP),
ACAMG 17-19

l""tTT,......,,,T! ~~,....,,,,,,-.,T"""\'""mTr"\..'-'T 1
.::>.n.v VY r nv 1.D\J11V1'1 CUHHlldHU

(DMU), CDUTL 2-101
SHOW SERVERS command

(ACMSDBG), ACAPG 11-22
SHOW statement (Rdb/VMS),

RDDBD2-33
SHOW statement (RDO)

displaying information about a
database, RDREF 6-180

SHOW VERSION command
(ACMSDBG), ACAPG 11-23

SHOW VERSION command (ADU),
ACADR2-56

SHOW VERSION command (CDDV),
CDUTL3-11

SHOW VERSION command (DMU).
CDUTL2-103

SHOW VERSION command (RDU),
TDREQ Refa-62

SHOW VERSION command
(SWLUP), ACAMG 17-20

SHOWP command. DTREF 7-349
SIGN clause. DTREF 7-351
SIGNAL MODE IS instruction

(RDU). TDREQ Refb-52
SIGNAL OPERATOR instruction

(RDU). TDREQ Refb-53
Signaling

errors at run time. TDAPG 3-6
the operator, TDAPG 4-17. 7-2

Single-step tasks
server context, ACDSG 4-12

Sizing database areas (DBMS),
DBDGD5-13

Snapshots (DBMS)
using, DBDGD 5-15

Software Event Logger (SWL)
monitoring ACMS errors, ACAMG

6-1
Software Event Logger Utility

Program commands (SWLUP)
At sign(@). ACAMG 17-5
EDIT. ACAMG 17-6
EXIT. ACAMG 17-8

LIST EVENTS, ACAMG 17-11
RENEW. ACAMG 17-14
SAVE. ACAMG 17-15
SET [NO]LOG, ACAMG 17-16
SET [NO]VERIFY, ACAMG 17-17
SHOW CURRENT, ACAMG 17-18
SHOW LOG, ACAMG 17-19
SHOW VERSION, ACAMG 17-20
STOP. ACAMG 17-21

Software Performance Report
submitting. DBMPG 10-4

Sort order
DATATRIEVE, DTHB D-1

SORT statement. DTREF 7-353
SORTED BY clause. DTUG 2-21
SORTED clause

of record selection expression,
RDREF4-6

Sorting records. DTUG 2-21,
RDGDM3-14. RDREF4-6

Source files
CDDL. CDDDL 2-1

Space
analyzing usage of (DBMS),

DBMPG 12-2
Space area management pages

(SPAMs)
in DBMS. DBDGD 5-2

Space usage

lndex-65

databases (DBMS), DBMPG 11-4
SPAWN command (ADU), ACADR

2-57
SPOOL statement (Rdb/VMS)

copying AIJ file to magtape,
RDREF6-l88

START command (ACMSDBG),
ACAPG 11-24

START SEGMENTED STRING - -
statement (Rdb/VMS)

retrieving segmented strings,
RDREF6-l9l

ST ART STREAM statement
(Rclb/VMS), RDGDM 5-15

record stream. RDREF 6-196
START TRANSACTION statement

(Rdb/VMSI. RDGDM 2-5, 2-8,
5-2

accessing records. RDREF 6-200
examples, RDGDM 2-34

Starting ADU
RUN command, ACADR 1-2

Starting applications, ACDAP 5-15
privileges necessary for, A CADG

2-17
Starting transactions (Rdb/VMS),

RDGDM2-5
Statement format

in Relational Database Operator
(RDO). RDREF 1-3

Statements (DATATRIEVEI
compound. DTHB 17-4
summary of. DTHB A-1

Statements (Rdb/VMSI
data definition. RDREF 2-2
data manipulation. RDREF 2-4
database maintenance. RDREF 2-5

Statements (RDO l
interactive control, RDREF 2-7

Statistical expressions. RDGDM
3-52. 4-35. RDREF 3-10

Statistical functions. DTHB 18-15
Statistics

database process (DBMS). DBDBA
9-128

lndex-66

database usage (DBMS), DBMPG
14-2

databases (DBMS), DBMPG 11-4
Status

returning in
ACMS$SELECTION_STRING,
ACAPG 8-6

returning in workspaces, ACAPG
8-1

Status registers (FDML), DBFDM
1-2, 3-104

STEP command (ACMSDBG),
ACAPG 11-26

Step procedures. ACAPG 1-1
initial conditions. A CDSG 4-34
record definition in, A CDSG 2-6

Steps
block. ACDAP 2-6, ACTDG 3-13
exchange. A CDAP 2-6
processing, ACDAP 2-6

STOP command (ACMSDBG),
ACAPG 11-27

STOP command (SWLUP), ACAMG
17-21

Stopping applications, A CDAP 5-15
Storage area structures (DBMS),

DBMPG8-l
Storage RECORD entry (DBMS

DDL). DBDBA 2-4
STORAGE SCHEMA entry (DBMS

DDL). DBDBA 2-l
Storage schemas (DBMS)

deleting. DBDBA 9-48
optimizing, DBDGD 3-3
physical database design, DBDGD

3-1
defaults, DBDGD 3-1

Storage SET entry (DBMS DDL),
DBDBA2-8

STORE statement, DTREF 7-356,
DTUG3-1

STORE statement (DML), DBPRM
2-77

using, DBIDM 6-3

STORE statement (FDML). DBFDM
3-64

STORE statement (Rdb/VMSI.
RDGDM5-2

adding database records, RDREF
6-212

storing segmented strings. RDREF
6-218

Storing
records. DTHB 16-1

Storing Rdb/VMS database defini
tions. RDDBD 2-2

Storing records (DBMS)
overview, DBIDM6-1. 6-3

A> .. •. ____ ,.1_·---·-~--- rnr.0TTTl-1 ()
0t,U1111~ ltlj_Ut;~t. U11lcli1t;~ • .LJJIJV.1. i-"'
STREAM 1/0 phrase (ADUI. ACADR

8-20
Structure

security schema (DBMS). DBDSG
2-5

STRUCTURE field description state
ment (CDDL), CDDDL 2-59

Structured programming (Rdb/VMS)
BASIC programs, RDGP 5-29
COBOL programs, RDGP 5-29
FORTRAN programs, RDGP 5-29
PASCAL programs, RDGP 6-25

Subclauses (ADU)
processing, ACADR 6-24

Submitter node. ACAMG 10-1
Subschemas {DBMSI

defining, DBDBA 3-1
ALIAS entry. DBDBA 3-4
REALM entry, DBDBA 3-6
RECORD entry. DBDBA 3-8
SET entry. DBDBA 3-15

deleting from CDD. DBDBA 9-50
developing, DBDGD 4-1

SUM statement, DTREF 7-368
Symbols

creating logical. DTHB 2-24
defining a symbol for ADU,

ACADR 1-2
SYNCHRONIZED clause. DTREF

7-371

Syntax diagrams, DTHB 4-2
Syntax errors, TDREQ 8-l
Sysgen parameters

Rdb/VMS, RDGAM 4-55
System relations, RDREF 7-1

RDB$CONSTRAINT_RELATIONS,
RDREF7-5

RDB$CONSTRAINTS, RDREF
7-4

RDB$DATABASE, RDREF7-6
RDB$FIELD_YERSIONS,

RDREF7-7
RDB$FIELDS, RDREF 7-9
RDB$INDEX SEGMENTS,

T)TYC)DD '7 11
-'-"'..LJ-'- ll..L....i'..L • - .1..

RDB$INDICES, RDREF 7-12
RDB$RELATION FIELDS,

RDREF7-13-
RDB$RELATIONS, RDREF 7-14
RDB$VIEW_ RELATIONS,

RDREF7-16
System resources

effect of customized menus on,
ACADG5-13

releasing vs. retaining server con
text, A CTDG 6-3

System workspaces

T

location in the CDD, ACADR C-l,
ACAPGD-1

Tables
defining. DTHB 12-1

dictionary. DTHB 12-2
domain. DTHB 12-3

sample, DTHB C-l
using to save storage space, DTUG

11-10
TASK ATTRIBUTES clause (ADU),

ACADR 5-24.2
Task clauses {ADU), ACADR 7-1
TASK DEFAULTS clause (ADU),

ACADR 5-27
Task definitions

lndex-67

for data entry tasks, ACDAP 2-6
for inquiry/update tasks, ACDAP

3-2
steps in, A CDAP 2-6
storing in CDD, ACDAP 2-12

Task design
complex tasks. ACDSG 4-24
considerations in, ACDSG 4-10
converting existing applications,

ACDSG 4-8
effect on application development,

ACDSG 4-1
handling terminal 1/0. ACDSG 4-7
inquiry tasks. ACDSG 4-18
multiple-step tasks, A CDSG 4-10
recovery, ACDSG 4-13
reusable servers in. A CDSG 4-3
update tasks, ACDSG 4-21

Task group clauses (ADU). ACADR
6-1

Task group databases
building, ACDAP 4-13

Task group definitions
describing work of an application,

ACADG 7-1
errors encountered when creating,

ACADG7 .. '7
naming in applications. A CADG

7-9
storing in CDD. ACADG 7-7

Task group design, A CDSG 5-1
Task groups

building, ACADG 7-8. ACTDG
7-10

handling errors. ACTDG 7-13
building databases for. A CDAP

4-13
debugging tasks in. A CDAP 4-15
defining. ACDAP 4-10. ACTDG

7-1
initialization procedures for,

ACDAP4-2
maximum for application. ACDSG

5-1

lndex-68

naming in application definitions,
ACADG2-4

naming in applications, ACADG
3-1

naming message files, ACTDG 7-8
naming request libraries for,

ACTDG 7-7
naming servers for, A CTDG 7-4
termination procedures for,

ACDAP4-2
TASK GROUPS clause (ADU),

ACADR 5-29
TASK subclause (ADU), ACADR 4-19
Task workspaces

designing. ACDSG 4-27
Tasks

access to. A CADG 2-5
accessing DBMS databases,

ACAPG 5-1
accessing RdbNMS databases,

ACAPG 6-1
accessing RMS files, ACAPG 4-5
allocating to task groups, ACDSG

5-1
canceling, ACAPG 3-8, ACDAP

4-2. ACTUG 2-19
chaining. A CTDG 8-19
control characteristics, A CADG

1-4. 2-5. 3-2
data entry tasks (DBMS)

analysis of structure, A CTDG
6-2

readying realms for, ACTDG 6-8
data entry tasks (RMS)

analysis of the structure,
ACTDG 3-1

debugging, ACAPG 9-1, ACDAP
4-15

defining characteristics for,
ACTDG 3-13, 4-13, 4-21, 5-16

defining data entry, ACDAP 2-6
defining DAT A TRlEVE procedures

as, ACADG 7-4

defining DCL procedures as,
ACADG 7-3

defining inquiry/update, A CDAP
3-2

defining VMS images as, A CADG
7-3

definitions. ACTDG 1-6
including existing in applications,

ACADG 7-1
inquiry tasks !DBMS), ACTDG

6-10
structure. A CTDG 6-11

inquiry tasks (RMS)
analysis of the structure,

defining block steps. A CTDG
4-11

displaying information. A CTDG
4-9, 4-19

displaying many records.
ACTDG 4-15. 4-20

step procedures, ACTDG 4-17
multiple-step tasks. ACDSG 1-2

advantages of. ACTDG 1-8
dividing tasks into steps,

ACTDG 3-4
using multiple-step tasks,

ACTDG 1-6
preparing for production, A CAPG

9-36
procedures for data entry, ACDAP

2-24
procedures for inquiry/update,

ACDAP3-16
reading from RMS files, ACTDG

4-7
reasons for canceling. ACAMG 9-3
returning messages. A CAPG 3-8
returning status values, ACAPG

3-8
running under ACMS. ACAPG

9-36
selecting, ACTUG 2-13

selecting with SELECT command,
ACTUG3-1

server context with RMS files,
ACAPG4-35

storing definitions in CDD,
ACTDG 3-14, 4-13

update tasks (DBMS)
recovery actions, ACTDG 6-5
recovery units, ACTDG 6-2,

6-16. 6-20
structure, ACTDG 6-16

update tasks (Rdb/VMS)
recovery actions, ACTDG 6-28
recovery units, ACTDG 6-27
"'""'"'l<";V'\,.... 'lTC" .,-a+-~;nlnrre C'.'0~'170¥
4 '-' 4 '-' U•••b 'U• 4 '-'~-444444b U'-'• ''-' 4

context. ACTDG 6-23
starting recovery units, ACTDG

6-23
update tasks (RMS)

analysis of structure, A CTDG
5-1

defining block steps for handling
errors. ACTDG 5-14

getting data from users, ACTDG
5-4

reading from RMS files, ACTDG
5-7. 5-18

releasing server context,
ACTDG5-18

updating an Rdb/VMS database,
ACAPG 6-3. 6-28

updating RMS files, ACTDG 5-19
TASKS clause (ADU), ACADR 6-15
TDMS

designing forms. ACAPG 1-7
displaying forms, A CAPG 1-7
in ACMS application programming,

ACAPG 1-7
modifying menus with, A CADG

5-1, 5-2
requests, ACAPG 1-7
requests in multiple-step tasks,

ACDSG4-31
TDMS programming calls

lndex-69

TSS$CANCEL, TDAPG 7-3, Ref-3
TSS$CLOSE, TDAPG 3-5. Ref-5
TSS$CLOSE A, TDSUP 3-3
TSS$CLOSE~RLB, TDAPG 3-4,

Ref-7
TSS$COPY_SCREEN, TDSUP2-2
TSS$COPY_SCREEN_A, TDSUP

3-8
TSS$DECL_AFK, TDSUP2-6
TSS$DECL AFK A, TDSUP 3-13
TSS$0PEN~ TDAPG 3-2, Ref-9
TSS$0PEN A. TDSUP 3-21
TSS$0PEN~RLB, TDAPG 3-2.

Ref-11
TSS$READ MSG LINE, TDAPG

7-2, Ref-13 -
TSS$READ MSG LINE A

TDSUP 3-26 - -
TSS$REQUEST, TDAPG 3-3.

Ref-16
TSS$REQUEST A, TDSUP 3-31
TSS$SIGNAL, TDAPG 3-6,

Ref-19
TSS$TRACE OFF, TDAPG 9-1,

Ref-20 -
TSS$TRACE ON, TDAPG 9-1.

Ref-21 -
TSS$UNDECL AFK, TDSUP 2-12
TSS$UNDECL-AFK A TDSUP

3-38 - -
TSS$WRITE BRKTHRU. TDSUP

2-15
TSS$WRITE BRKTHRU A,

- -
TDSUP3-42

TSS$WRITE MSG LINE, - -
TDAPG 7-2, Ref-23

TSS$WRITE MSG LINE A.
- - -

TDSUP3-47
TENANT function (FDML). DBFDM

3-102
TENANT STREAM function

(FDML). DBFDM 3-103
Terminal I/0. ACAPG 8-30
Terminal I/O design. ACDSG 3-1

access definition, ACDSG 3-8

lndex-70

multiple-step tasks, ACDSG 4-1
restrictions on, ACDSG 3-2

TERMINAL I/O phrase (ADU),
ACADR 8-74

Terminal management systems
ACMS, ACDSG 3-1

Terminals
authorizing, ACAMG 3-1
authorizing local, ACAMG 3-2
authorizing remote, ACAMG 3-2
disabling operators', ACAMG 9-2
enabling operators'. ACAMG 9-1
logging in. ACTUG 2-1
logging out. A CTUG 2-4

Termination characters in
DATATRIEVE, DTREF 1-10

TERMINATION PROCEDURE
subclause (ADU), ACADR 6-55

Termination procedures, A CAPG
2-38. ACDAP4-2

Terminology (ACMS), ACADR 1-7
application specifications. ACADR

1-10
file specifications, A CADR 1-8
identifiers. ACADR 1-7
text strings. ACADR 1-9
workspaces. ACADR 1-8

Text strings. A CADR 1-9
TEXT subclause (ADU). ACADR 4-22
THEN statement. DTREF 7-373
Trace facility. TDAPG 9-1
Transactions (DBMS)

defined. DBIDM 1-3
effects of modifying data, DBDGD

7-1
ending

COMMIT statement, DBIDM
3-9

ROLLBACK statement, DBIDM
3-9

Transactions (RdbNMS), RDGDM
2-5

access modes, RDGDM 2-8
COMMIT statement, RDREF 6-38

in after-image journals, RDGAM
3-4

ROLLBACK statement, RDREF
6-173

share modes. RDGDM 2-8
START TRANSACTION state

ment. RDREF 6-200
Translating DATATRIEVE. DTGPG

11-2
TSS$CANCEL programming call

(TDMS), TDAPG 7-3, Ref-3
TSS$CLOSE programming call

(TDMS). TDAPG 3-5. Ref-5
TSS$CLOSE A programming call

/IT'T).l\./f01 fT!T'\CTTn () 'l
I .I. JJ.l.Y.1.IJ/, .J. .J.JVV.£ 0-0

TSS$CLOSE RLB programming call
(TDMS),- TDAPG 3-4. Ref-7

TSS$COPY SCREEN programming
call (TOMS). TDSUP 2-2

TSS$COPY SCREEN A program
ming call (TDMS). TDSUP 3-8

TSS$DECL AFK programming call
(TDMS\ TDSUP 2-6

TSS$DECL AFK A programming
call (TDMS),- TDSUP 3-13

TSS$0PEN programming call
(TDMS), TDAPG 3-2, Ref-9

TSS$0PEN A programming call
(TDMS), TDSUP 3-21

TS S$0PEN RLB programming call
(TDMS), TDAPG 3-2, Ref-11

TSS$READ MSG LINE program
ming call (TD-MS). TDAPG 7-2.
Ref-13

TSS$READ MSG LINE A program
ming call (T6MS). TDSUP 3-26

TSS$REQUEST programming call
(TDMS). TDAPG 3-3. Ref-16

TSS$REQUEST_A programming call
(TDMS). TDSUP3-31

TSS$SIGNAL programming call
(TDMS). TDAPG 3-6. Ref-19

TSS$TRACE OFF programming call
(TDMS).-TDAPG 9-1. Ref-20

TSS$TRACE ON programming call
(TDMS),-TDAPG 9-1, Ref-21

TSS$UNDECL AFK programming
call (TDMS), TDSUP 2-12

TSS$UNDECL AFK A programming
call (TDMS), TDSUP 3-38

TSS$WRITE BRKTHRU program
ming call (TDMS), TDSUP 2-15

TSS$WRITE BRKTHRU A pro
gramming call (TDMS), TDSUP
3-42

TSS$WRITE MSG LINE program
ming call (TDMS), TDAPG 7-2,
Ref-23

~C-.,,C'\ltl'1~TT"\TrnT:"\ lllf"n6' T T T~ A -
.1 OO<)H'Y .1\,.1.1 D lV.1.::>U .L.J.ll'ilD rt p1u-

gramming cal((TDMS), TDSUP
3-47

Tuning databases (DBMS)
optimizing programs. DBPRG 8-1

Two-dimensional arrays. TDREQ
12-2

u

as control fields, TDREQ 13-10
mapping. TDREQ 12-3

UNBIND command (DBALTER),
DBDBA 10-24

UNBIND command (DBQ), DBIDM
3-9. DBPRM l-30

UNCORRUPT command
{DBALTER), DBDBA 10-25

UNDERLINE FIELD instruction
(RDU). TDREQ Refb-54

UNIQUE relational operator,
RDGDM4-29

Unload facility (DBMS)
as part of unload/load operation,

DBLGD3-2l
extracting data, DBLGD 3-16
format language, DBDBA 6-2

ITEM entry, DBDBA 6-4
RECORD entry, DBDBA 6-3
SET entry, DBDBA 6-5

language syntax, DBDBA 6-l

lndex-71

overview, DBL GD 1-5
PARTS sample database

examples, DBLGD 4-11
restructuring, DBLGD 4-15

sequence language, DBDBA 6-10
LOOP entry, DBDBA 6-12
record entry, DBDBA 6-15
SEQUENCE NAME entry,

DBDBA 6-11
tips and suggestions, DBLGD 3-20
using buffers, DBLGD 3-18

Unloading databases (DBMS)
as part of unload/load operation.

DBLGD3-21
extracting data, DBLGD 3-16
language syntax, DBDBA 6-1
overview, DBLGD 1-5
PARTS sample database

examples, DBLGD 4-11
restructuring, DBLGD 4-15

tips and suggestions, DBLGD 3-20
to RMS files, DBDBA 9-134,

DBLGD3-1
using buffers, DBLGD 3-18

Unsecured DBO commands, DBDSG
1-5

Update tasks (DBMS)
recovery actions, ACTDG 6-5
recovery units, ACTDG 6-2, 6-16,

6-20
structure, ACTDG 6-16

Update tasks (Rdb/VMS}
recovery actions, A CTDG 6-28
recovery units, ACTDG 6-27
releasing vs. retaining server con-

text, ACTDG 6-23
starting recovery units, ACTDG

6-23
Update tasks (RMS}

analysis of structure, A CTDG 5-1
defining block steps for handling

errors. ACTDG 5-14
getting data from users, A CTDG

5-4

lndex-72

reading from RMS files, ACTDG
5-7' 5-18

releasing server context, ACTDG
5-18

Updating (Rdb/VMS)
data. RDGDM 5-11
databases, RDGDM 5-2
problems, RDGAM 4-5
with START_STREAM, RDGDM

5-15
Updating records (DBMS)

overview. DBIDM 6-1
USAGE clause. DTREF 7-375
USE ACTIVE command

(ACMSGEN), ACAMG 15-12
USE command (ACMSGEN),

ACAMG 15-10
USE CURRENT command

(ACMSGEN}, ACAMG 15-14
USE DEFAULT command

(ACMSGEN), ACAMG 15-16
USE FORM instruction (RDU),

TDREQ Refb-55
USE statement (FDML), DBFDM

3-67
USE WORKSPACES clause (ADU),

ACADR7-17
User Definition Utility (UDU),

ACDAP5-11
User Definition Utility commands

ADD. ACAMG 11-3
COPY, ACAMG 11-6
DEFAULT. ACAMG 11-9
EXIT. ACAMG 11-11
HELP. ACAMG 11-12
LIST. ACAMG 11-13
MODIFY. ACAMG 11-15
REMOVE. ACAMG 11-17
RENAME, ACAMG 11-18
SHOW. ACAMG 11-20

User execution list (UEL), DBDBA
9-52. 9-102, DBDSG 1-1

accessing. DBDSG 1-4
adding entries, DBDSG 3-4, 3-6

confirming deletions, DBDSG 3-10
controlling. DBDSG 1-4
deleting entries. DBDSG 3-4, 3-9
description, DBDSG 3-2
listing entries. DBDSG 3-4, 3-5
mapping users to security schemas,

DBDSG3-2
purpose, DBDSG 1-3, 2-1

User identification code (Rdb/VMS)
accessing databases, RDREF 6-27

User identification code (UIC).
DBDSG 1-1

User identifiers. RDDBD 3-3
User Utility (UDU). ACAMG 2-1

"£"'11\.lrOTT"'"'T':' "'""Al'T'I £!1- A,.., A -.;rn n ..
I'\.VH'.hJU.J.J'.1' ,.J.J'I'\.J. J..HC, .r1v.r1.Ll'.LU .:..-.1.

assigning menu path names,
ACAMG2-5

User work area (UW Al
DBMS

creating, DBDBA 9-142,
DBPRM5-2

User workspaces, ACTDG 8-15
User-defined workspaces

handling errors, ACTDG 8-2
USERNAME subclause (ADU),

ACADR 5-50, 6-57
USING clause

in STORE statement, DTUG 3-2
Using Rdb/VMS in programs.

RDGDMl-29

v
VALID FOR DAT A TRI EVE IF field

attribute clause (CDDL).
CDDDL2-62

VALID IF clause. DTREF 7-381
VALID IF clause (Rdb/VMS), RDREF

5-9
VALIDATE LIBRARY command

(RDUI. TDREQ Refa-63
Validate mode, TDSU? 1-2
VALIDATE REQUEST command

(RDUI. TDREQ Refa-65

Validating data, DTHB 9-20
Validating requests, TDREQ 8-7,

TDSUPl-2
Validation, RDREF 5-9
Value expressions, DTREF 3-1

functions, DTREF 4-1
Value expressions (RdbNMS),

RDGDM3-52, RDREF3-1
Variables, DTREF3-6, DTUG 9-1

declaring, DTUG 9-1
global, DTUG 9-3
local, DTUG 9-3
using to enter data, DTUG 9-4
using to modify data. DTUG 9-4

'TTA.T"'lTA.~TrTiC'\ r•_l 1 .1 _ _ • ,• i 1

v rl.1\,l . .t"_l'I 1 ..::> HtlU Ut:::sc11pt..1u11 :SLC::tt..t:!-

ment (CDDL), CDDDL 2-64
VAX data types, DTGPG C-1

supported by DBMS, DBDBA 7-1
VAX symbolic debugger, A CAPO 9-1
VAX TOMS Form Definition,

TDFRMl-l
VAXcluster

cluster-accessible disks. DBMPG
15-5

definition, DBMPG 15-2
disk device types, DBMPG 15-5
disk naming conventions. DBMPG

15-6
dual-pathing disks, DBMPG 15-6
forming, DBMPG 15-3
restricted access disks, DBMPG

15-5
sample hardware configuration,

, DBMPG 15-15
types of nodes. DBMPG 15-2
typical configurations, DBMPG

15-2
VAXcluster environment (DBMS),

DBMPG15-4
after-image journal, DBMPG

15-20. 15-23
automatic recovery procedure,

DBMPGl5-22

lndex-73

Common Data Dictionary require
ments, DBMPG 15-12

common system disk, DBMPG
15-7

converting single-node database,
DBMPG 15-19

creating a database, DBMPG 15-13
DBO/BACKUP command.

DBMPG 15-19
DBO/CREATE command, DBMPG

15-17
DBO/DUMP/USERS command.

DBMPG 15-25
DBO/RESTORE command,

DBMPG 15-19
DBO/SHOW command restriction.

DBMPG 15-25
deciding where to place files,

DBMPG 15-11
distributed lock manager, DB MPG

15-7
distributed root file access,

DBMPGl5-10
ensuring database access, DBMPG

15-14
ensuring database availability,

DBMPG 15-14
joining additional nodes. DBMPG

15-8
listing database users, DBMPG

15-25
maintaining databases, DBMPG

15-23
monitoring databases, DBMPG

15-23. 15-24
moving files, DBMPG 15-21
multiple monitor processes,

DBMPG 15-9
overview. DB MPG 1-4
performance in a, DBMPG 11-5
placing

CDD.DIC file, DBMPG 15-13
database files, DBMPG 15-10
deciding where. DBMPG 15-11
device pathing options, DBMPG

lndex-74

15-10
root file, DBMPG 15-10

recovering databases, DBMPG
15-9

recovering from node failure,
DBMPG 15-22

recovery-unit journal, DBMPG
15-20

requirements for using, DBMPG
15-8

rolling back transactions, DBMPG
15-22

sample configuration, DBMPG
15-15

sharing disk files, DBMPG 15-5
terms and concepts, DBMPG 15-1
types of configuration, DBMPG

15-9
VAXclusters (Rdb/VMS), RDGAM

5-7
after-image journals, RDGAM 5-21
backing up database, RDGAM 5-22
concepts, RDGAM 5-2
converting from single-node,

RDGAM5-17
creating PERSONNEL database,

RDGAM5-13
creating the database, RDGAM

5-12
dictionary requirements. RDGAM

5-10
file placement, RDGAM 5-8
monitoring the database, RDGAM

5-21
recovery. RDGAM 5-20
restoring database, RDGAM 5-22
sharable images, RDGAM 5-7
terms. RDGAM 5-2

VERIFY clause
MODIFY statement, DTUG 4-17

VERIFY command (CDDV), CDUTL
3-12

VERIFY command (DBALTER),
DBDBA 10-26

Video features

creating, TDFRM 5-1 7
View definitions (Rdb/VMS)

DEFINE VIEW statement,
RDREF6-84

DELETE VIEW statement,
RDREF6-104

View domains, DTUG 5-1, 6-3, 6-3 7
defining, DTHB 15-1

Viewing
scrolled arrays. TDREQ 14-4

Views
access privileges for. DTHB 15-18
combining domains, DTUG 5-5
creating, DTHB 15-13

Views (Rdb/VMS)
defining, RDDBD 2-26, RDGDM

3-46, 4-15
record selection expressions,

RDREF4-10
VMS directories, DTHB 2-16

creating, DTHB 1-2
VMS file protection, CDDUG 4-29

overriding, CDDUG 4-36
VMS images

defining as tasks, A CADG 7-3

w
WAIT clause (ADU), ACADR 7-20
WAIT instruction (RDU), TDREQ

Refb-57
WAIT subclause (ADU), ACADR 5-59
WHERE clause (DML), DBPRM 2-80
WHERE clause (FDML), DBFDM

3-75
WHILE statement, DTREF 7-383
Wildcard character(*), RDGDM 3-7
WITH clause

of record selection expression,
RDREF4-6

WITHIN current test (FDML),
DBFDM3-86

WITHIN keeplist test (FDML).
DBFDM3-88

Workspaces, ACADR 1-8, ACDSG
4-4

ACMS$SELECTION STRING,
ACAPG 8-6, ACTDG 8-6

data entry tasks, ACTDG 3-10
defining, ACDAP 2-1, ACDSG 2-6,

4-27
design performance, ACDSG 2-6
designing, ACDSG 4-25
group, ACDSG 4-28, ACTDG 8-10
in multiple-step tasks, ACDSG

4-10
initializing, ACAPG 8-19
passing between tasks, ACDSG

A 1 (\
-y- .L '-'

restricting access to, ACDSG 4-29
system, ACAPG D-1, ACDSG 4-27
user, ACDSG 4-29, ACTDG 8-15
user-defined. A CAPO 8-1

WORKSPACES clause (ADU),
ACADR 6-19, 7-21

WRITE ACTIVE command
(ACMSGEN). ACAMG 15-18

WRITE clause (ADU), ACADR 8-40
WRITE command (ACMSGEN),

ACAMG 15-17
WRITE CURRENT command

(ACMSGEN). ACAMG 15-19
Writing menu definitions (ACMS),

ACADR4-1
Writing reports

DATATRIEVE
capabilities. DTRPT 1-2
conditional detail lines, DTRPT

3-29
correcting mistakes, DTRPT 2-3
embedding in procedures,

DTRPT5-14
exiting. DTRPT2-3
headings formatting, DTRPT 2-9
introduction. DTRPT 1-1
invoking, DTRPT 2-2
output options, DTRPT 2-5
page formatting, DTRPT 2-7
printing column headers,

lndex-75

DTRPT2-12
printing detail lines, DTRPT

2-12
printing special headings,

DTRPT3-19
printing title pages, DTRPT 3-19
printing totals of rows, DTRPT

3-22
reporting hierarchical records,

DTRPT3-24
simple examples, DTRPT 1-3
summarizing data, DTRPT 2-21,

lndex-76

3-1
summarizing data by date,

DTRPT3-9
using control groups, DTRPT

3-1, 4-5
using multiple record sources,

DTRPT3-14
using with DBMS data, DTRPT

4-1, 4-2, 4-4
using with Rdb data, DTRPT

5-1, 5-4, 5-6

