
Getting Started
with VAXlab
Order Number: AA-KN96B-TE

August 1988

This document describes the VAXlab system and the VAXlab Software Library.
It provides a conceptual overview of VAXlab, describes the utility for performing
system management tasks, and presents programming language-specific
information helpful when developing application programs using the VAXlab
Software Library.

Revision/Update Information: This is a revised document.

Operating System and Version: VMS Version 5.0

Software Version:

digital equipment corporation
maynard, massachusetts

VAXlab Software Library Version 1 .3

First Printing, December 1987
Revised, August 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1987, 1988 Digital Equipment Corporation

All Rights ReseNed.
Printed in U.S.A.

The Reader's Comments form on the last page of this document requests the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC MicroVAX VAXstation
DECnet Q-bus VMS
DRB32 VAX VT
LN03 VAXcluster
LN03 Plus VAX GKS
LN03R VAXlab mnmnomo™

This document was prepared using VAX DOCUMENT, Version 1.0.

Contents

PREFACE ix

CHAPTER 1 OVERVIEW OF THE VAXlab SYSTEM AND THE VAXlab
SOFTWARE LIBRARY 1-1

1.1 OVERVIEW OF THE VAXlab SYSTEM 1-1

1.2 VAXlab HARDWARE COMPONENTS 1-2

1.3 VAXlab SOFTWARE COMPONENTS 1-5
1.3.1 VAX GKS Graphics Software 1-5
1.3.2 VAXlab Software Library 1-5

~HAPTER 2 VAXlab SYSTEM MANAGEMENT 2-1

2.1 PLANNING YOUR VAXlab SYSTEM 2-1

2.2 OVERVIEW OF THE MANAGER UTILITY 2-2

2.3 RUNNING MANAGER 2-4

2.4 USING THE MANAGER FUNCTION KEYS 2-4

2.5 SYSTEM MANAGEMENT TASKS 2-6

2.6 VMS MANAGEMENT TASKS 2-8
2.6.1 Adding a User Account 2-8
2.6.2 Displaying a List of User Accounts 2-10
2.6.3 Deleting a User Account 2-11
2.6.4 Modifying a User Account 2-13

iii

2.6.5 Changing Account Passwords 2-1~
2.6.6 Entering a DCL Command 2-14

2.7 QUEUE MANAGEMENT TASKS 2-14
2.7.1 Setting Up a Print Queue 2-14
2.7.2 Restarting a Print Queue 2-16
2.7.3 Stopping and Deleting a Print Queue 2-17
2.7.4 Setting Up a Batch Queue 2-19
2.7.5 Restarting a Batch Queue 2-21
2.7.6 Stopping and Deleting a Batch Queue 2-22
2.7.7 Showing Queue Status 2-24

2.8 DECnet MANAGEMENT TASKS 2-25
2.8.1 Configuring DECnet 2-25
2.8.2 Adding a Node to DECnet 2-27
2.8.3 Removing a Node from DECnet 2-29
2.8.4 Turning DECnet On or Off 2-30
2.8.5 Listing DECnet Nodes 2-31

2.9 DEVICE MANAGEMENT TASKS 2-32
2.9.1 Mounting a Device 2-3~
2.9.2 Initializing a Device 2-34
2.9.3 Dismounting a Device 2-36
2.9.4 Allocating a Device 2-38
2.9.5 Deallocating a Device 2-40
2.9.6 Showing Device Status 2-41

2.10 MAINTENANCE UTILITIES 2-43
2.10.1 Using the Backup Utility 2-43
2.10.2 Using the Restore Utility 2-45

iv

CHAPTER 3 PROGRAM DEVELOPMENT

3.1 STEPS IN PROGRAM DEVELOPMENT

3.2 PROGRAMMING LANGUAGE CONSIDERATIONS
3.2.1 Developing Programs in VAX Ada

3.2.1 .1 Including Symbolic Definition Files • 3-4
3.2.1 .2 Declaring Data Types and Variables • 3-6
3.2.1.3 Declaring and Dimensioning Arrays • 3-7
3.2.1.4 Declaring External Routines • 3-9
3.2.1 .5 Defaulting Routine Call Arguments • 3-10
3.2.1.6 Checking Routine Call Status • 3-11
3.2.1 . 7 Using AST Routines • 3-12

3.2.2 Developing Programs in VAX BASIC
3.2.2.1 Including Symbolic Definition Files • 3-22
3.2.2.2 Declaring Data Types and Data Items • 3-23
3.2.2.3 Declaring and Dimensioning Arrays • 3-24
3.2.2.4 Declaring External Routines • 3-25
3.2.2.5 Defaulting Routine Call Arguments • 3-26
3.2.2.6 Checking Routine Call Status • 3-28
3.2.2.7 Using AST Routines • 3-29

3.2.3 Developing Programs in VAX C
3.2.3.1 Including Symbolic Definition Flies • 3-34
3.2.3.2 Declaring Data Types and Variables • 3-35
3.2.3.3 Declaring and Dimensioning Arrays • 3-37
3.2.3.4 Declaring External Routines • 3-38
3.2.3.5 Defaulting Routine Call Arguments • 3-38
3.2.3.6 Checking Routine Call Status • 3-40
3.2.3. 7 Using AST Routines • 3-41

3.2.4 Developing Programs in VAX FORTRAN
3.2.4.1 Including Symbolic Definition Files • 3-46
3.2.4.2 Declaring Data Types and Data Items • 3-47
3.2.4.3 Declaring and Dimensioning Arrays • 3-48
3.2.4.4 Declaring External Routines • 3-50
3.2.4.5 Defaulting Routine Call Arguments • 3-50
3.2.4.6 Checking Routine Call Status • 3-52
3.2.4. 7 Using AST Routines • 3-52

3-1

3-1

3-3
3-4

3-21

3-33

3-45

v

3.2.5 Developing Programs in VAX PASCAL 3-51
3.2.5.1 Including Symbolic Definition Files • 3-57
3.2.5.2 Declaring Data Types and Data Jtems • 3-59
3.2.5.3 Declaring and Dimensioning Arrays • 3-61
3.2.5.4 Declaring External Procedures and Functions • 3-62
3.2.5.5 Defaulting Routine Call Arguments • 3-62
3.2.5.6 Checking Routine Call Status • 3-64
3.2.5. 7 Using AST Routines • 3-64

3.3 ACCESSING THE VSL SAMPLE PROGRAMS

INDEX

EXAMPLES

3-1 An AST Routine Written in VAX Ada

3-2 Sample VAX Ada Program Using the VSL Routines

3-3 An AST Routine Written in VAX BASIC

3-4 Sample VAX BASIC Program Using the VSL Routines

3-5 An AST Routine Written in VAX C

3-6 Sample VAX C Program Using the VSL Routines

3-7 An AST Routine Written in VAX FORTRAN

3-8 Sample VAX FORTRAN Program Using the VSL Routines

3-9 An AST Routine Written in VAX PASCAL

3-10 Sample VAX PASCAL Program Using the VSL Routines

FIGURES

2-1 MANAGER Menus

2-2 MANAGER Function Key Layout

2-3 Add a User Account Screen

2-4 Display List of User Accounts Screen

2-5 Delete a User Account Screen

2-6 Modify a User Account Screen

2-7 Set Up a Print Queue Screen

2-8 Restart a Print Queue Screen

vi

3-70

3-13
3-16
3-29
3-31
3-41
3-43
3-53
3-55

3-65
3-67

2-3
2-5

2-9

2-10
2-12
2-13
2-15
2-16

2-9 Stop/Delete a Print Queue Screen 2-18
2-10 Set Up a Batch Queue Screen 2-20
2-11 Restart a Batch Queue Screen 2-21
2-12 Stop/Delete a Batch Queue Screen 2-23
2-13 Show Queue Status Screen 2-24
2-14 Configure DECnet Screen 2-26

2-15 Add a Node to DECnet Screen 2-28.

2-16 Remove a Node from DECnet Screen 2-29
2-17 Turn DECnet On or Off Screen 2-30
2-18 List DECnet Nodes Screen 2-31
2-19 Mount a Device Screen 2-33
2-20 Initialize a Device Screen 2-35
2-21 Dismount a Device Screen 2-37
2-22 Allocate a Device Screen 2-39
2-23 Deallocate a Device Screen 2-40
2-24 Show Device Status Screen 2-42

2-25 Backup Utility Screen 2-44
2-26 Restore Utility Screen 2-46
3-1 VAX Ada Array Indexing System 3-9
3-2 VAX BASIC Array Indexing System 3-25
3-3 VAX C Array Indexing System 3-38
3-4 VAX FORTRAN Array Indexing System 3-49
3-5 VAX PASCAL Array Indexing System 3-61

TABLES
2-1 MANAGER Function Keys 2-5
2-2 System Management Tasks 2-7
3-1 VAX Ada Symbolic Definition Files 3-5
3-2 VAX BASIC Symbolic Definition Files 3-22
3-3 VAX C Symbolic Definition Files 3-34
3-4 VAX FORTRAN Symbolic Definition Files 3-46
3-5 VAX PASCAL Symbolic Definition Files 3-58
3-6 VSL Online Sample Program Directories 3-71

vii

Preface

Intended Audience
Getting Started with V AXlab is intended for scientists and engineers who
are unfamiliar with V AXlab, and who may or may not be familiar with
VMS system management tasks and procedures.

This document assumes a basic understanding of computer concepts
and a working knowledge of at least one high-level programming
language.

Document Structure
Getting Started with V AXlab descdbes the V AXlab system and the V AXlab
Software Library. It provides a conceptual overview of V AXlab, de
scribes the utility for performing system management tasks, and
presents language-specific information helpful when developing ap
plication programs using the VAXlab Software Library.

ix

The document is divided into three chapters:

Chapter Number

Chapter 1

Chapter 2

Chapter 3

Contents

Describes the components of the V AXlab system and the
capabilities of the V AXlab Software Library.

Explains the Manager Utility and the V AXlab system
management tasks you can perform using this utility.

Describes how to develop programs using the V AXlab
Software Library, and provides information specific
to programming languages you need to consider when
writing V AXlab application programs.

Associated Documents

x

In addition to this guide, the VAXlab documentation set includes the
following guides:

• The V AXlab Master Index contains index entries from all documents
in the V AXlab documentation set.

• The V AXlab Installation Guide details how to install the V AXlab
software.

• The Guide to the V AXlab Laboratory 110 Routines describes how to
initiate, set up, control, and terminate I/O to and from VAXlab 1/0
devices.

• The Guide to the V AXlab Interactive Data Acquisition Tool describes
how to communicate with VAXlab through the Interactive Data
Acquisition Tool (IDA T) to establish parameters for data acquisition
and to initiate, control, obtain, analyze, and plot real-time data.

• The Guide to the V AXlab Laboratory Graphics Package describes how
to specify plotting attributes, and how to plot real-time data or data
produced by calculations in two dimensions, three dimensions, and
two-dimensional contours from a three-dimensional view.

• The Guide to the V AXlab Signal-Processing Routines describes how to
use the signal-processing routines to perform Fourier transforms,
correlation functions, data filtering, and spectral windowing.

The following is a list of associated software documents that you should
reference for additional information about programming concepts and
techniques not covered in this guide.

• The Laboratory Interfacing Handbook presents detailed descriptions of
laboratory 1/0 concepts. If you are unfamiliar with laboratory data
acquistion and control techniques, such as instruments, signals, and
interfaces, or if you require additional information about computers,
1/0 hardware, or applications, read this handbook before you begin
using the V AXlab system.

• The VAX Realtime User's Guide describes those features of VAX
systems which pertain to real-time applications in scientific and
industrial settings. If you are unfamiliar with VAX systems, read this
guide before you begin using the V AXlab system.

Conventions
Getting Started with V AXlab uses the following documentation conven
tions:

Convention

Italics

Bold

I RETURN I
Ellipses

"Double quotes"

[Q]

Meaning

Words or phrases appearing in italics indicate referencing
of an associated document.

A boldface word or phrase indicates emphasis on an
important concept or word, or indicates a subroutine
argument appearing in text.

Press the key labeled Return on the terminal keyboard.

Vertical ellipses indicate that portions of a display or
programming example are excluded for presentation
purposes.

Double quotes enclose screen prompts appearing in text.

Press the key labeled 0 on the auxiliary keypad on the
terminal keyboard.

xi

Chapter 1

Overview of the V AXlab System and
the VAXlab Software Library

This chapter describes the VAXlab system components and presents an
overview of the V AXlab Software Library (VSL).

1.1 Overview of the VAXlab System

The V AXlab system is a combination of hardware and software com
ponents that create the environment that the V AXlab Software Library
requires, and that includes the V AXlab Software Library. The V AXlab
hardware components are described in Section 1.2, VAX Hardware
Components. The V AXlab software components are described in
Section 1.3, VAX Software Components.

The core of the V AXlab system is the VAXlab Software Library (VSL),
which consists of:

• Libraries of subroutines you can use to perform real-time 1/0, math
ematical and statistical analysis, signal-processing, peak-processing,
and plotting operations.

• Interactive, menu-driven utilities through which you can perform
system management operations and access the interactive data
acquisition tool to acquire, process, store, retrieve, output, and plot
data.

Overview of the VAXlab System and the VAXlab Software Library 1-1

Using the V AXlab system, you can:

• Control the real-time I/O devices, which consist of analog-to-digital
converters, digital-to-analog converters, parallel boards, clocks, disk
files, and virtual memory

• Perform digital filtering of data and signal-processing operations,
such as fast Fourier tranforms (FFTs)

• Perform mathematical and statistical analysis of data
• Perform peak-processing of data
• Produce multidimensional graphical representations of data
• Perform system management tasks

1.2 VAXlab Hardware Components

The V AXlab system can run on any of the following processors:

• MicroVAX II
• MicroVAX 2000-series
• MicroVAX 3000-series
• VAX 6000-series
• VAX 8000-series

• V AXstations (except for the V AXstation I)

The basic system hardware includes:

• One RD53-A or RA-series disk
• One TK50 or TK70 cartridge tape drive
• Five MB RAM
• One console graphics terminal
• One KWVll-C real-time clock board
• One Universal Data Interface Panel, UDIP-KA1

1 In the basic configuration, this panel is connected to the real-time dock board. With this panel, you
can access the dock without opening the system cabinet.

1-2 Overview of the VAXlab System and the VAXlab Software Library

The optional hardware consists of:

• Analog options:
AAVll-D, a digital-to-analog converter, using a UDIP-DA
ADQ32, a high-speed, analog-to-digital converter with an on
board clock
ADVll-D, an analog-to-digital converter, using a UDIP-AA
AXVll-C, an analog I/O board, using a UDIP-AX
Preston GMAD-series, high-speed analog-to-digital converters

• Digital options:
DRB32, a 32-bit, DMA parallel I/O port for the V AXBI bus

DRB32W, a DRllW-compatible port for the VAXBI bus
DRQ3B, a high-speed, 16-bit DMA parallel I/O board
DRVll-J, a 16-bit parallel I/O board
DRVll-WA, a 16-bit DMA parallel I/O board

• IEQll-A, the IEEE-488 bus controller
• Plotter, printer, and terminal options:

HP7550™ pen plotter
LA12, LA34, LASO, LA75, LAlOO, and LA210 line printers
LCPOl ink jet plotter
LN03 PLUS laser printer
LN03R laser printer
LSP40 iaser printer
L VP16 pen plotters
TEKTRONIX™ 4014 and TEKTRONIX 4107

V AXstation II and V AXstation II/GPX workstations
VT125, VT240, VT241, VT330, and VT340 terminals

"' HP7550 is a registered trademark of Hewlett Packard.
"' TEKTRONIX is a registered trademark of TEKTRONIX, Inc.

Overview of the VAXtab System and the VAXlab Software Library 1-3

• Serial line options:
DHl 1, a 16-line asynchronous serial terminal multiplexer
DHVl 1, an 8-line asynchronous serial terminal multiplexer
DMB32, an 8-line asynchronous serial terminal multiplexer

DMF32, an 8-line asynchronous serial terminal multiplexer

DSlOO, an 8-line asynchronous serial terminal multiplexer
DS200, an 8-line asynchronous serial terminal multiplexer

DZl 1, an 8-line asynchronous serial terminal multiplexer

DZQl 1, a 4-line asynchronous serial terminal multiplexer

DZVll, a 4-line asynchronous serial terminal multiplexer

Serial lines on a MicroVAX 2000
Any other serial line device supported by the VMS terminal
driver

• -Additional memory

When you want to connect your laboratory devices to the system,
the connection information you need varies, depending on how you
connect the devices. If you plan to use the Universal Data Interface
Panel (UDIP), you can connect and disconnect the laboratory devices
without having to open up the system cabinet. The Universal Data
Interface Panel Reference Card provides diagrams of the panel connectors
to the real-time modules so you can see how to connect to the panel.

If you plan to connect the laboratory devices by using the distribution
panel connector kit for the appropriate module, the V AXlab Hardware
Information Kit contains information for making connections to the
modules. The connector kits are installed in the 1/0 distribution panel
in the rear of the system cabinet. They provide a 25-pin D-connector for
easy access to the real-time modules.

1-4 Overview of the VAXlab System and the VAXlab Software Library

1.3 VAXlab Software Components

The V AXlab software runs layered on the VMS operating system. It
consists of:

• VAX GKS, the graphics software
• V AXlab Software Library (VSL) application software
• For V AXstations only: the standard V AXstation software (VWS)

The next sections describe several of these software components in
detail.

1.3.1 VAX GKS Graphics Sof.tware

The VAX GKS graphics software is DIGITAL' s implementation of
the Graphical Kernel System (GKS). VAX GKS provides an interface
between an application program and conventional hardware graphics.
The V AXlab Laboratory Graphics Package (LGP) is a set of subroutines
that use the VAX GKS software to plot laboratory data in the form of
charts, graphs, and histograms. You can also use VAX GKS routines
directly. For specific information about VAX GKS, see the VAX GKS
Reference Manual, Volumes I and II.

1.3.2 VAXlab Software Library

The V AXlab Software Library consists of the following sets of routines
and utilities:

• The Manager Utility, a menu-driven, interactive system manage
ment tool you can use to perform system management tasks, such
as adding new accounts or copying files to permanent offline
storage media, by selecting options from a menu. The Manager
Utility is described in Chapter 2, VAX System Management, of this
document.

• The Laboratory 1/0 Routines (LIO), a set of routine calls that can
communicate with real-time input/output devices. The routines are
described in the Guide to the VAXlab Laboratory 110 Routines.

Overview of the VAXlab System and the VAXlab Software Library 1-5

• The Interactive Data Acquisition Tool (IDAT), a simple menu
driven utility you can use to acquire, store, retrieve, process,
and plot data. This utility is described in the Guide to the V AXlab
Interactive Data Acquisition Tool.

• The Laboratory Signal-Processing Routines (LSP), a set of routine
calls that include Fourier transform routines derived from the fast
Fourier transform (FFT) algorithm, a histogram routine for multi
channel analysis, routines for four types of digital filters, spectral
windowing routines, power spectra routines, cross-correlation and
auto-correlation routines, and phase angle-amplitude routines. The
routines are described in the Guide to the V AXlab Signal-Processing
Routines.

• The Mathematics and Statistics Routines, a set of routine calls for
performing calculations. The routines are described in Appendix
A, Mathematics and Statistics Routines, of the Guide to the VAXlab
Signal-Processing Routines.

• The Peak-Processing Routine, one routine you can use to perform
peak analysis of data. This routine is described in Appendix B, The
Peak-Processing Routine, of the Guide to the V AXlab Signal-Processing
Routines.

• The Laboratory Graphics Package (LGP), a set of routine calls that
can plot both real-time data and data produced by calculations.
Using the graphics routines, you can produce two- and three
dimensional plots, as well as contour plots from a three-dimensional
view. The graphics routines are described in the Guide to the VAXlab
Laboratory Graphics Package.

1-6 Overview of the VAXlab System and the VAXlab Software Library

Chapter 2

VAXlab System Management

Managing the V AXlab system includes planning, maintaining, and
monitoring system performance. This chapter provides an overview
of topics to consider during the planning phase, lists the maintenance
and monitoring tasks, and describes how to use the Manager Utility to
accomplish these tasks.

2.1 Planning Your VAXlab System

This section presents a summary of topics to consider as you plan
to integrate the VAXlab system into your laboratory. Taking time to
write down your plans and goals for the following topics can help to
ensure the smooth integration of the V AXlab system into your overall
laboratory operations.

Carefully consider the following topics as you plan your V AXlab system:

• The specific purpose and goals of the system.
• The devices to which V AXlab will be connected.
• Networking requirements, and the security of connections made

through DECnet or dialup service.

• The expected growth of the system in terms of users, devices, and
number of nodes on the network.

• The access protections for system data.

• The procedures for protecting system .data by periodic backups,
offline storage, and emergency procedures.

VAXlab System Management 2-1

• The physical security of the processors.
• In multiuser environments, the number of users; their tasks and

system requirements; their level of understanding; the configuration
of their accounts; the information they need, such as names for
printers and devices; and where they are physically located.

Once you have planned your V AXlab system, you are ready to begin
using it.

2.2 Overview of the Manager Utility

The Manager Utility provides an interactive, menu-driven interface
to many of the DCL commands normally used to perform system
management tasks. The utility is designed to assist users who are not
familiar with system management tasks in identifying and performing
these tasks easily.

The Manager Utility consists of menu screens and data entry screens.
Manager Utility menu screens consist of options, or choices, from
which you select one option. The MANAGER Main Menu displays a
list of the five main categories or types of system management you can
perform using this utility. The Manager Utility also contains a menu
for each of the main categories of system management. These menus
list the individual system management tasks associated with each main
category. Figure 2-1 lists the MANAGER menus and the individual
system management tasks associated with each menu.

2-2 VAXlab System Management

Figure 2-1: MANAGER Menus

VMS Management

ADD Add a User Account
DISP Display List of User Account(s)

r KILL Delete a User Account
MOD Modify a User Account
PASS Change Account Password
CMD Enter a DCL Command

Queue Management

PSET Set Up a Print Queue
PUP Restart a Print Queue

r-- PDIE · Stop/Delete a Print Queue
BSET Set Up a Batch Queue
BUP Restart a Batch Queue
BOIE Stop/Delete a Batch Queue
SQUE Show Queue Status

Main Menu

VMS VMS Management
DECnet Management

QUEUE Queue Management t-- CONF Configure DECnet

1-t
DADD Add a Node to DECnet DECNET DECnet Management REMV Remove a Node from DECnet
TURN Turn DECnet On or Off DEVICE Device Management LNET List DECnet Nodes

UTIL Maintenance Utilities

-
Device Management

MNT Mount a Device
INIT Initialize a Device

r-- DISM Dismount a Device
ADEV Allocate a Device
DDEV Deallocate a Device
SHOW Show Device Status

Maintenance Utilities,
BCK Backup Utility
RST Restore Utility

MR-1367-GE

VAXlab System Management 2-3

You perform the individual system management tasks through data
entry screens. Data entry screens consist of prompts and data entry
fields. A prompt is a label that describes the type of information you
enter in the data entry field after the prompt. Some data entry fields
contain default values supplied by MANAGER that are used if you do
not supply values in place of the default values. The default values
satisfy most situations.

Be careful when you change default values, because in some cases you
can adversely affect the performance of the system. For that reason,
although any user account can access MANAGER, only SYSTEM or
privileged accounts can perform certain tasks. Be sure to log in to a
SYSTEM or privileged account before you run the Manager Utility.
In addition, limit SYSTEM or privileged accounts to the user or users
responsible for system management.

2.3 Running MANAGER

To run the Manager Utility, enter the following command after the DCL
($)prompt:

• MANAGER I RETURN I

The Manager Utility displays the MANAGER Main Menu and is ready
to begin accepting information. Enter the menu option you want after
the "Select option:" prompt and press IRETURNI. You can enter any
menu option, even if the option is not listed on the menu currently
displayed on the terminal screen.

2.4 Using the MANAGER Function Keys

This section describes the established conventions for entering and edit
ing data on MANAGER screens, accepting default values supplied by
MANAGER, getting help information about MANAGER, and signaling
system management tasks to begin.

2-4 VAXlab System Management

You can use the following four function keys with the Manager Utility:

Table 2-1: MANAGER Function Keys
Key Location on the terminal keyboard

I ENTER I
@]
[ill]
I RETURN I

Auxiliary keypad

Auxiliary keypad

Auxiliary keypad

Main keypad

Figure 2-2 shows the layout of the LK201 keyboard with the MANAGER
function keys highlighted so that you can locate them easily on your
terminal keyboard.

Figure 2-2: MANAGER Function Key Layout

l!:=I ==' ====~:::::!.Ill 1'-=11 ~~~II lDDDDnE31 Do Ir 10000

MR-1368-GE

When you press the I RETURN I key, the cursor moves from one field to
the next and signals MANAGER to accept either the default value or
the data you entered in the data entry field. When you enter data in
a data entry field, press I RETURN I before you press any of the other
function keys. When you press !RETURN I after the last data entry field on
a screen, the task begins to execute.

VAXlab System Management 2-5

If you are unsure about how to respond to a prompt, you can press the
(!.>Ffil key to get help information. Make sure that the cursor is located
in the data entry field after the prompt about which you require help
information. Then, press the IPF21 key, and MANAGER displays a full
screen help message about the type of information you need to enter
and the appropriate format in which to enter the information.

To exit or quit a data entry screen without executing the task, you can
press the [Q] key. If you make an error as you enter data in a field or if
you want to edit data you have already entered, quit the screen using
the [Q] key, and then select that screen again.

You signal the management task to begin by pressing the [@r_@ key
when the values on a data entry screen are exactly the way you want
them.

2.5 System Management Tasks

Table 2-2 lists the system management tasks associated with the V AXlab
system, including the corresponding menu options you need to select to
perform each task.

See the Guide to V AXNMS System Management and Daily Operations
for further information about the management tasks described in this
chapter.

2-6 VAXlab System Management

Table 2-2: System Management Tasks
Management Task

VMS MANAGEMENT:

Add a user account

Display list of user account(s)

Delete a user account

Modify a user account

Change account password1

Enter a DCL command2

QUEUE MANAGEMENT:

Set up a print queue

Restart a print queue

Stop/delete a print queue

Set up a batch queue

Restart a batch queue

Stop/ delete a batch queue

Show queue status

DECnet MANAGEMENT:

Configure DECnet

Add a node to DECnet

Remove a node from DECnet

Turn DECnet on or off

List DECnet nodes

Menu Option

ADD

DISP

KILL

MOD

PASS

CMD

PSET

PUP

PDIE

BSET

BUP

BOIE

SQUE

CONF

DADD

REMV

TURN

LNET

1The PASS option does not display a screen. Instead, it displays the prompts for the
old password and the new password. After you enter the passwords, MANAGER
redisplays the menu from which you called the PASS option.

2Use the CMD option to access the DCL prompt ($) from within the Manager Utility.
After you execute a DCL command, MANAGER redisplays the menu from which you
called the CMD option.

VAXlab System Management 2-7

Table 2-2 (Cont.): System Management Tasks
Management Task

DEVICE MANAGEMENT:

Mount a device

Initialize a device

Dismount a device

.Allocate a device

Deallocate a device

Show device status

MAINTENANCE UTILITIES:

Backup Utility

Restore Utility

2.6 VMS Management Tasks

Menu Option

MNT

INIT

DISM

ADEV

DDEV

SHOW

BCK

RST

The following sections describe how to perform each of the VMS
management tasks.

2.6.1 Adding a User Account

To add a user account, select the ADD option from the VMS
Management menu. MANAGER displays the Add a User Account
screen shown in Figure 2-3.

Use this screen from a SYSTEM account to add a user account to the
system and to create the first, top-level directory for the account.

To complete the screen, supply the new account with a user name, a
User Identification Code (UIC) for the user of the account, a default
device and directory for the new account's files, and a password. You
can accept the default values as they are displayed on the screen, or
you can substitute new values. Use the default account type, NORMAL,
for most accounts. SYSTEM accounts have system-wide privileges and
should be restricted to users responsible for system management.

2-8 VAXlab System Management

You can get a list of the UICs currently assigned by pressing I PF2 I while
the cursor is at the UIC prompt. This list is the same as that displayed
by the DISP screen. When you supply a UIC, supply the brackets as
well, for example, [LABl,04).

Figure 2-3: Add a User Account Screen

Userna11te:

UIC:

Default Device:

Default Director~:

Password:

Is this a NORHAL or
a SYSTEH account?

Add a User Account

sysssySDEVICE:

Press <PF2> for Help, <Enter> to Execute, <Keypad O> to quit

VAXlab System Management 2-9

2.6.2 Displaying a List of User Accounts

To display a list of user accounts, select the DISP option from the
VMS Management menu. MANAGER displays the Display List of User
Accounts screen shown in Figure 2-4.

Use this screen from a SYSTEM account to display information about a
user account.

Figure 2-4: Display List of User Accounts Screen

User Na~e, or "*"
to list all users

rLILL displa~?

Displa~ List of User Account<s>

Press <PF2> for Help, <Enter> to Execute, <Ke~pad O> to quit

2-10 VAXlab System Management

· 2.6.3 Deleting a User Account

To delete a user account, select the KILL option from the VMS
Management menu. MANAGER displays the Delete a User Account
screen shown in Figure 2-5.

Use this screen from a SYSTEM account to delete a user name from the
system. You can also remove the user's directory structure.

If you answer Y (yes) to the ''Do you wish to delete the directory
structure associated with this username ?'' prompt, you delete the user
name and all the user's files and directories from the system. If you
answer N (no), you leave the files on the system, but disassociate the
user name from them.

VAXlab System Management 2-11

Figure 2-5: Delete a User Account Screen

Userna111e:

Do !:fOU llfish to
delete the director!:f
structure associated

Delete a User Account

with this userna111e?: l

Press <PF2> for Help, <Enter> to Execute, <Ke!:fpad O> to quit

2-12 VAXlab System Management

2.6.4 Modifying a User Account

To modify a user account, select the MOD option from the VMS
Management menu. MANAGER displays the Modify a User Account
screen shown in Figure 2-6.

Use this screen from a SYSTEM account to modify up to three parame
ters for an account.

For information about user-account parameters, see the system tuning
information in your system-specific installation guide.

Figure 2-6: Modify a User Account Screen

Hodif~ a User Account

Userna111e:

Para111eter 1: New Value:

Para111eter 2: New Value: --------

Para111eter 3: New Value:

Press <PF2> for Help, <Enter> to Execute, <Ke~pad O> to quit

VAXlab System Management 2-13

2.6.5 Changing Account Passwords

To change the password of a user account, select the PASS option
from the VMS Management menu. MANAGER does not display a data
entry screen in this case. Instead, MANAGER displays prompts for the
old password and the new password. Enter both the old and the new
passwords, and press [RETURN]. MANAGER then redisplays the VMS
Management menu.

2.6.6 Entering a DCL Command

To enter a DCL command from within the Manager Utility, select the
CMD option from the VMS Management menu. MANAGER does not
display a data entry screen in this case. Instead, MANAGER displays
the DCL prompt. Enter the DCL command after the prompt, and
press I RETURN I. When the command completes execution, MANAGER
redisplays the VMS Management menu.

2. 7 Queue Management Tasks ,

The following sections describe the Queue Management tasks.

2. 7. 1' Setting Up a Print Queue

To set up a print queue, select the PSET option from the Queue
Management menu. MANAGER displays the Set Up a Print Queue
screen shown in Figure 2-7.

Use this screen from a SYSTEM account to set up the characteristics of
a print queue and to start the queue.

For further information about setting up a print queue, including op
tional INITIALIZE/QUEUE qualifiers, see the Guide to V AXNMS System
Management and Daily Operations.

2-14 VAXlab System Management

Figure 2-7: Set Up a Print Queue Screen

Queue Na111e:
SPRINTER

Device which printer
is connected to:
TXAJ:

Printer's Device T~pe
J.W.2_

Printer's Page Width:
lliL

Set up a Print Queue

Device to Spool Printer to:
sysssySDEVICE:

Printer's Baud Rate:
.tiilil..

Printer's Page Length:
iL

Press <PF2> for Help, <Enter> to Execute, <Ke~pad O> to quit

VAXlab System Management 2-15

2. 7 .2 Restarting a Print Queue

To restart a print queue, select the PUP option from the Queue
Management menu. MANAGER displays the Restart a Print Queue
screen shown in Figure 2-8.

Use this screen from a SYSTEM account to restart a stalled print queue.

After the "Queue Name:" prompt, supply the logical name of the print
queue.

Figure 2-8: Restart a Print Queue Screen

Restart a Print Queue

Queue Na111e:
SPRINTER

Press <PF2> for Help, <Enter> to Execute, <Keypad O> to quit

2-16 VAXlab System Management

2. 7 .3 Stopping and Deleting a Print Queue

To stop or delete a print queue, select the PDIE option from the Queue
Management menu. MANAGER displays the Stop/Delete a Print Queue
screen shown in Figure 2-9.

Use this screen from a SYSTEM account to stop or delete a print queue.

After the "Queue Name:" prompt, enter the logical name of the print
queue. After the "Delete Queue?" prompt, enter Y (yes) to delete the
queue from the list of valid system queues. Enter N (no) to stop the
queue. Stopping the queue does not delete entries from the queue and
does not delete the queue from the system.

VAXlab System Management 2-17

Figure 2-9: Stop/Delete a Print Queue Screen

Queue Na11te:
tpRJNTER

Delete Queue?
ti

Stop/Delete a Print Queue

Press <PF2> for Help, <Enter> to Execute, <Keypad O> to quit

2-18 VAXlab System Management

2. 7 .4 Setting Up a Batch Queue

To set up a batch queue, select the BSET option from the Queue
Management menu. MANAGER displays the Set Up a Batch Queue
screen shown in Figure 2-10.

Use this screen from a SYSTEM account to set up the characteristics for
a batch queue, and to start the queue.

NOTE

The screen contains default values. DO NOT change the
numerical values unless you are sure of what you are doing.
Changing these values can have a severe impact on system
performance.

For further information about managing batch queues, see the Guide to
V AXNMS System Management and Daily Operations.

VAXlab System Management 2-19

Figure 2-10: Set Up a Batch Queue Screen

Queue Na11te:
$BATCH1

Queue Priority:
J_

Working Set Default:
512...

Working Set Extent:
JJ2Z!

Working Set Quota:
JJ2Z!

Job LiP1it:
L

Set Up a Batch Queue

Press <PF2> for Help, <Enter> to Execute, <Keypad O> to quit

2-20 VAXlab System Management

2. 7 .5 Restarting a Batch Queue

To restart a batch queue, select the BUP option from the Queue
Management menu. MANAGER displays the Restart a Batch Queue
screen shown in Figure 2-11.

Using this screen from a SYSTEM account, you can restart a stalled
batch queue.

After the "Queue Name:" prompt, supply the logical name of the batch
queue.

Figure 2-11: Restart a Batch Queue Screen

Restart a Batch Queue

Queue Na111e:
SYSIBATCH

Press <PF2> for Help, <Enter> to Execute, <Ke~pad O> to quit

VAXlab System Management 2-21

2. 7 .6 Stopping and Deleting a Batch Queue

To stop or delete a batch queue, select the BDIE option from the Queue
Management menu. MANAGER displays the Stop/Delete a Batch
Queue screen shown in Figure 2-12.

Use this screen from a SYSTEM account to stop or delete a batch queue.

After the "Queue Name:" prompt, enter the logical name of the batch
queue. After the "Delete Queue?" prompt, enter Y (yes) to delete the
queue from the list of valid system queues. Enter N (no) to stop the
qu~ue. Stopping the queue does not delete entries from the queue, and
does not delete the queue from the system.

2-22 VAXlab System. Management

Figure 2-12: Stop/Delete a Batch Queue Screen

Queue Na11ae:
SBATCH1

Delete Queue?
ti

Stop/Delete a Batch Queue

Press <PF2> for Help, <Enter> to Execute, <Keypad O> to quit

VAXlab System Management 2-23

2. 7. 7 Showing Queue Status

To show the status of a queue, select the SQUE option from the Queue
Management menu. MANAGER displays the Show Queue Status
screen shown in Figure 2-13.

Use this screen to display information about a print or batch queue, or
all print or batch queues.

Figure 2-13: Show Queue Status Screen

Do HOU want to show
PRINT queues, BATCH
queues, or ALL?

Show Queue Status

Press <PF2> for Help, <Enter> to Execute, <Ke~pad O> to quit

2-24 VAXlab System Management

2.8 DECnet Management Tasks

The following sections describe the DECnet management tasks.

2.8. 1 Configuring DECnet

To configure DECnet, select the CONF option from the DECnet
Management menu. MANAGER displays the Configure DECnet screen
shown in Figure 2-14.

Use this screen from a SYSTEM account to configure a network
database in accordance with the VMS-supplied command file
NETCONFIG.COM, which is located in the SYS$MANAGER directory.

After the "DECnet Node Address:" prompt, enter both the area
number and the node number separated by a period, for example, 5.12.
After the prompt ''Start DECnet with new Configuration?'', enter Y (yes)
to start DECnet with the new configuration. Entering N (no) does not
make the connection to DECnet.

VAXlab System Management 2-25

Figure 2-14: Configure DECnet Screen

Configure DECnet

DECnet Node Na~e:

DECnet Node Address:

Start DECnet Mith
ne• Configuration? H

Press <PF2> for Help, <Enter> to Execute, <Ke~pad O> to quit

2-26 VAXlab System Management

2.8.2 Adding a Node to DECnet

To add a node to DECnet, select the DADD option from the DECnet
Management menu. MANAGER displays the Add a Node to DECnet
screen shown in Figure 2-15.

Use this screen from a SYSTEM account to add an existing DECnet
node to your system's permanent or volatile DECnet database. When
you add the node address to the permanent database, that node is
always on your system's network. If you add the node address to the
volatile database, the node is on your system's network only until your
system is turned off or your connection to the network is turned off.

VAXlab System Management 2-27

Figure 2-15: Add a Node to DECnet Screen

Add a Node to DECnet

DECnet Node Na~e:

DECnet Node Address:

Is this a Per~anent
node? l.

Press <PF2> for Help, <Enter> to Execute, <Ke~pad O> to quit

2-28 VAXlab System Management

2.8.3 Removing a Node from DECnet

To remove a node from DECnet, select the REMV option from the
DECnet Management menu. MANAGER displays the Remove a Node
from DECnet screen shown in Figure 2-16.

Use this screen from a SYSTEM account to remove a specific DECnet
node from your system's volatile or permanent network files.

After the "Remove from the Permanent DECnet Database?" prompt,
enter Y (yes) to remove the node from the permanent and volatile
database. Enter N (no) to remove it from the volatile database only.

Figure 2-16: Remove a Node from DECnet Screen

DECnet Node Na~e:

Re111ove fro~ the
Per~anent DECnet
Database?

Re~ove a Node fro~ DECnet

Press <PF2> for Help, <Enter> to Execute, <Ke~pad O> to quit

VAXlab System Management 2-29

2.8.4 Turning DECnet On or Off

To tum DECnet on or off, select the TURN option from the DECnet
Management menu. MANAGER displays the Tum DECnet On or Off
screen shown in Figure 2-17. ·

Use this screen from a SYSTEM account to start up or shut down your
system's connection to DECnet.

Figure 2-17: Turn DECnet On or Off Screen

Turn DECnet On or Off

Turn DECnet ON or OFF: .lltL.

Press <PF2> for Help, <Enter> to Execute, <Ke~pad O> to quit

2-30 VAXlab System Management

2.8.5 Listing DECnet Nodes

To list DECnet nodes, select the LNET option from the DECnet
Management menu. MANAGER displays the List DECnet Nodes
screen shown in Figure 2-18.

Use this screen to display a list of the DECnet nodes your system has in
either its permanent or volatile database.

Figure 2-18: List DECnet Nodes Screen

Which database do ~ou
'9Jant to list?
CP = Per111anent
V = Volatile f

List DECnet Nodes

Press <Pf2> for Help, <Enter> to Execute, <Ke~pad O> to quit

VAXlab System Management 2-31

2.9 Device Management Tasks

The following sections describe the Device Management tasks.

2.9.1 Mounting a Device

To mount a device, select the MNT option from the Device
Management menu. MANAGER displays the Mount a Device screen
shown in Figure 2-19.

Use this screen from a SYSTEM account to mount a device, that is, to
make the disk or tape on that device available for processing.

The "Device Name:" prompt accepts either the· device's physical or
logical name.

After the "Volume Label:" prompt, you can provide a label or leave
the field blank. If you leave it blank, you must use either the override
option or the foreign option. Use the override· option when you do not
know the tape label. Use the foreign option when the disk or tape is
not in standard format.

Mount the device as read-only to protect the material on the disk or
tape, and to ensure that the material is not overwritten.

For further information about mounting a device, including optional
MOUNT qualifiers, see the Guide to VAXNMS System Management and
Daily Operations.

2-32 VAXlab System Management

Figure 2--19: Mount a Device Screen

Device NaP1e:

Volu11te Label: -----

Logical Na11ae
<Optional>:

Additional HOUNT Qualifiers:
<Optional>

Hount a Device

Override ID? H
Mount Foreign? tJ

Haunt Read-Onl~? H

Press <PF'2> for Help, <Enter> to Execute, <Ke~pad O> to quit

VAXlab System Management 2-33

2.1.2 Initializing a Device

To initialize a device, select the INIT option from the Device
Management menu. MANAGER displays the Initialize a Device screen
sh.own in Figure 2-20.

Use this screen to initialize a disk or tape, that is, to erase everything on
the disk or tape. Then, prepare the disk or tape for use by formatting it
and writing a label for it.

When you initialize a disk or tape, the recommended procedure is to
allocate the device first.

For further information about initializing a device, including optional
INITIALIZE qualifiers, see the Guide to VAX/VMS System Management and
Daily· Operations.

2-34 VAXlab System Management

Figure 2-20: Initialize a Device Screen

Device Na.e:

Valullle Lallel:

Addi tiona 1 INITIALIZE
Co11t111and Qualifiers:
<Optienal >

Initialize a Device

Press <PF2> fer Help, <Enter> ts Execute, <Ketff'ad O> ta ClfUit

VAXtab Syst-ern Manatement 2-35

2.9.3 Dismounting a Device

To dismount a devi~e, select the DISM option from the Device
Management menu. MANAGER displays the Dismount a Device screen
shown in Figure 2-21.

Use this scJ;'een to dismount a device, that is, to release the disk drive
or tape drive that was previously mounted.

To unload a device means to make the device ready for u~ by other
users, for example, to unload the tape from a tape drive. A Y (yes)
response to the "Unload the Device?" prompt means that the device is
dismounted and made ready. An N (no) response means the device is
dismounted, but not physically unloaded.

For further information ab~ut dismounting a device, including optional
DISMOUNT qualifiers, see the Guide to V AXNMS System Management
and Daily Operations.

2-36 VAXlab System Management

Figure 2-21: Dismount a Device Screen

Device Nallle:

Unload the Device?

Additional DISMOUNT
Co~llland Qualifiers:
<Optional>

Disl!lount a Device

Press <PF2> for Help, <Enter> to Execute, <Ke~pad O> to quit

VAXlab System Management 2-37

2.1.4 Allocating a Device

To allocate a device, select the ADEV option from the Device
Management menu. MANAGER displays the Allocate a Device screen
shown in Figure 2-22.

Use this screen to allocate a device to the process you are currently
logged in to. When you allocate a device, you provide your process
with exclusive access to the device.

For further information about allocating a device, including optional
ALLOCATE qualifiers, see the Guide to V AXNMS System Management and
Daily Operations.

2-38 VAXlab System Management

Figure 2-22: AHecate a Device Screen

Device NMe:

Logical Naae to Assign
to this Device
< Optional> :

Additional ALLOCATE
Ceattand Qualifiers:
<Optional>

Press <PF2> for Hel19, <Enter> te Exeeute, <Ke~atl 6> te ctdt

VAXlab System Management 2-31

2.9.5 Deallocating a Device

To deallocate a device, select the DDEV option from the Device
Management menu. MANAGER displays the Deallocate a Device
screen shown in Figure 2-23.

Use this screen to deallocate a device, that is, to make the device
available to other users.

Figure 2-23: Deatlocate a Device Screen

Deallocate a Device

Device Na111e
C* = all devices):

Press <Pr2> for Help, <Enter> to Execute, <Ke!:fpad O> to quit

2-40 VAXlab System Management

2.9.6 Showing Device Status

To show the status ofa device, select the SHOW option from the
Device Management menu. MANAGER displays the Show Device
Status screen shown in Figure 2-24.

Use this screen to display on your terminal screen information about
a device or all devices. You may want to use this screen to check the
device status before and after using other device screens.

After the "Device Name:" prompt, you can enter the name of a single
device or an asterisk(*} to display all devices. After the "Full Display?"
prompt, enter Y (yes) to display all the status information for that device
or devices. Press I RETURN I or enter N (no) to display just the standard
information.

VAXlab System Management 2-41

Figure 2-24: Show Device Status Screen

ShoM Device Status

Device Na111e:

FULL Display? H

Press <PF2> for Help, <Enter> to Execute, <Keypad O> to quit

2-42 VAXlab System Management

2.10 Maintenance Utilities

The following sections describe the Maintenance Utilities.

2.10.1 Using the Backup Utility

To use the Backup Utility, select the BCK option from the Maintenance
Utilities menu. MANAGER displays the Backup Utility screen shown in
Figure 2-25.

Use this screen to copy files to permanent offline storage. You can copy
an entire user account, or a directory tree that begins with the directory
you specify.

Before using this screen, be sure that the backup device is prepared to
receive the data.

This screen is a companion to the Restore Utility screen.

VAXlab System Management 2-43

Figure 2-25: Backup Utility Screen

Backup Operation: 1
1 = User Account
2 = Director!:f

Backup Utilit!:f

Device to Backup to: ...,nm_a .. o ... : _______ _

Tape label <tape onl1:t>: ----------

Fill in the Option Field Corresponding to Your Choice Above

I
Option 1 -> Userna~e: I

I
Option 2 -> Director!:f Na~e: I

I Device Na~e: I

'---' Press <PF2> for Help, <Enter> to Execute, <Ke!:fpad O> to quit

2-44 VAXlab System Management

2.10.2 Using the Restore Utility

To use the Restore Utility, select the RST option from the Maintenance
Utilities menu. MANAGER displays the Restore Utility screen shown in
Figure 2-26.

Use this screen to put back on line the files were put on tape or disk for
offline storage.

This screen is a companion to the Backup Utility screen.

VAXlab System Management 2-45

Figure 2-26: Restore Utility Screen

Restore Operation: 1
1 = User Account
2 = Director~

Res tore Uti Ii tH

Device to restore fro111: _mu .. a .. o..,,: _______ _

fill in the "Restore To" Option Corresponding to Your Choice Above

Option 1 -> Userna111e: I
I

Option 2 -> DirectorH Na~e: I
I Device Na111e: I
'---'
Save Set Na111e:

Press <PF2> for Help, <Enter> to Execute, <KeHpad O> to quit

2-46 VAXlab System Management

Chapter 3

Program Development

This chapter provides an overview of the procedures you use to create,
compile, link, and run application programs on a VAXlab system. This
chapter also pr~sents information specific to programming languages
helpful when developing programs using the VAXlab Software Library
(VSL).

Each language section contains sample programs showing how to
use the various VSL application routines. The sample programs are
shipped with the VSL software and are installed on the system during
the installation procedure. Section 3.3, Accessing the VSL Sample
Programs, explains how to access and execute the sample programs
presented in this document.

3.1 Steps in Program Development

Take the following steps to create and run a VSL application program:

1. Create the program source code.

You can write a VSL application program using any program-
ming language that supports the V AXNMS Calling Standard. See
the language-specific reference manual for information about the
VAX/VMS Calling Standard. You can use any VMS editing utility on
your V AXlab system when you create your source code files.

When you create a source code file, be sure to supply the file name
with an extension that appropriately identifies the programming
language used in the file. If you supply the appropriate file exten
sion when you create the file, you can omit it when you enter the
command that compiles the program.

Program Development 3-1

2. Compile or assemble the source program to produce an object file,
a file with an OBJ extension.

MACRO source code uses the VAX MACRO assembler. Each
of the other programming languages uses its own compiler to
create the object files. Object files are not executable, but they
contain references to other programs and subroutines that are
required to run the program. Compiling a program generally
involves establishing these workable references to other programs
or to other routines so that they can be combined, or linked, with
the program before it is executed.

In the following command line, the FORTRAN compiler is ac
cessed to compile the program source code in two FORTRAN
files, MAIN.FOR and SUBl.FOR. In this example, the subroutine,
SUBl.FOR, is contained in a file separate from the main calling
program, MAIN .FOR.

• FOR.WR MAIN. SUB 1 I RETURN I

The FORTRAN compiler creates an object file (filename.OBJ) for
each source code file. The files MAIN.OBJ and SUBl.OBJ are
created during the compilation. These object files must be linked
together and then linked to the VSL routines before the program is
ready to run. The linking is accomplished in step 3.

3. Link the object files to the VSL libraries to produce an executable
image, a file with an EXE extension.

You do not have to specify the routine libraries; they are defined
during the installation procedure. The LINK command accesses
them automatically, as needed.

You use the LINK command to link together all object files, regard
less of the programming language in which the source code files are
written.

Continuing the FORTRAN example, the following command links
MAIN.OBJ and SUBl.OBJ with any routines needed from the
installed VSL libraries.

• LINK MAIN. SUB 1 I RETURN I

The LINK command creates a single executable image file. The file
name is the name of the first file specified in the LINK command,
and the file extension is EXE. The LINK command shown creates
MAIN.EXE.

3-2 Program Development

4. Execute the image, using the RUN command with the executable
file you created.

• RUN NA IN I RETURN I

If your program does not run satisfactorily, review and revise your
source code file, as necessary. Then, recompile, relink, and rerun
the program. This process is known as debugging your program.

You can also debug a program using the Debugger Utility, which lets
you debug interactively. See the V AXNMS Debugger Reference Manual
for information about using the Debugger Utility. In addition, each
language-specific reference manual contains a section about using
the debugger with that language. Be familiar with the material
before using the debugger. Then, recompile your source code file
with the /DEBUG/NOOPTIMIZE qualifiers, and relink with the
/DEBUG qualifier, as follows:

• FORTRAN/DEBUG/NOOPTINIZE NAIN,SUB1 IRETURNI
• LINK/DEBUG MAIN I SUB1 I RETURN I

Now, when you run the MAIN program, the debugger takes control.
You can use debugging commands to stop the execution of the
program at a particular statement, and then examine or modify data
items.

3.2 Programming Language Considerations

The following sections describe certain programming language-specific
information helpful when developing programs using the VSL. These
sections are not intended to be read sequentially. You need to read
only those sections relevant to the programming language you are
using.

Information is presented for the following programming languages:

• VAX Ada
• VAX BASIC
• VAXC
• VAX FORTRAN
• VAX PASCAL

Program Development 3-3

You may, in fact, be using a programming language that is not described
here. If this is the case, see the reference manual for your language,
and become familiar with the appropriate conventions used to:

• Include symbolic definition files
• Declare data types and variables
• Declare and dimension arrays
• Declare external routines
• Default routine call arguments
• Check routine call status
• Use AST routines

3.2.1 Developing Programs in VAX Ada

Be familiar with the information contained in the following sections
before you begin developing VSL application programs using VAX Ada.
For further information about VAX Ada programming concepts and
techniques not covered in this guide, see the VAX Ada Language Reference
Manual.

3.2.1.1 Including Symbolic Definition Files

The VSL symbolic definition files define the Laboratory 1/0 (LIO),
Laboratory Signal-Processing (LSP), and Laboratory Graphics Package
(LGP) error code symbols, the LGP plotting attribute symbols, the LIO
set parameter code symbols, the LSP spectral window types, and the
entry points containing language-specific interface constructs for the
VSL routines. You need to include symbolic definition files in your VSL
application programs so that these symbols can be recognized by the
programming language you are using.

Table 3-1 lists the symbolic definition files provided for use with VAX
Ada.

3-4 Program Development

Table 3-1: VAX Ada Symbolic Definition Files
File Name

LGPATTDEF.ADA

LGPDEF.ADA

UOERRS.ADA

UOSET.ADA

LSPDEF.ADA

LSPSET.ADA

VSL.ADA

Defines:

LGP plotting attribute symbols

LGP error code symbols

UO error code symbols

LIO set parameter code symbols

LSP error code symbols

LSP spectral window types

Entry points containing Ada pragma interface constructs
for the VSL routines1

1Include this symbolic definition file in all VSL application programs written in VAX
Ada.

You use the following routine line to include a symbolic definition file
in a user program:

with filename;

where

filename is one of the files listed in Table 3-1.

The files you must include in a user program depend on the VSL
facilities the program is designed to use. The file VSL.ADA must be
included in all VAX Ada VSL application programs because it defines
entry points to VAX Ada pragma interface constructs for the VSL
routines.

If your program is designed to use only the LIO routines, then you
also need to include those files that define LIO symbolic values. If a
program, such as the one presented in Example 3-2, uses routines from
all the VSL facilities, then you need to include many of the files listed in
Table 3-1. If your application programs use routines from all the VSL
facilities, it is advisable to in'clude all the files listed in Table 3-1.

Program Development 3-5

3.2.1.2 Declaring Data Types and Variables

Every VAX Ada data item is associated with a particular data type.
A data type is a set of values which share certain characteristics. A
data type detemines both the range of values a data item can assume
and the operations that can be performed on it. In addition, the type
determines the storage space required for all the possible values of the
data item.

Some data items are used to pass information from a user program
to a device that is to perform some function with the information.
Other data items are used to return information from a device to a user
program. The VSL application routine reference descriptions explain
the functions, syntax, and appropriate usage of the VSL routines. Each
routine reference description also explains the routine arguments, their
data types, and whether an argument is used to pass information to a
device, to return information from the device to the user program, or,
in some cases, both.

The VSL application routines use INTEGER, FLOAT, and STRING data
types. The INTEGER data type can be broken down further into the
SHORT_INTEGER (word) subtype. String literals are basic operations
applicable to the data type STRING and to any other one-dimensional
array type whose component type is a CHARACTER type. Characters
are used to form messages and text. The allowed characters and their
ordering are those defined for the ASCII character set. Single character
literals are enclosed by single quotes. Strings of characters are enclosed
by double quotes.

To explicitly type data items, you use a declarative statement to specify
the type, range, and precision of your program values. The following
program segment shows how to define some of the data types used in
Example 3-2.

3-6 Program Development

-- Defina data types --

-- Defina davspac argument of the LIO$ATTACH routine as a character
string 6 characters in length

Davica_to_usa : STARLET.DEVICE_NANE_TYPE(1 .. 6) := "AXA0: 11 ;

-- Defina the range of the A/D data - 12-bit A/D

AtoD_data = -2048 .. 2047 - 12-bit A/D

-- Defina the title argument of the LGP$PLOT routine as a constant
character string

titla_string : constant string := "ADA_EXAMPLE 11 ;

Defina local variables

STATUS : CONDITION_HANDLING.COND_VALUE_TYPE;
-- STATUS returned by LIO calls

AXV_ID : INTEGER: -- LIO-assigned device ID
AX_DATA_LENGTH : INTEGER; -- Number of data bytes to read
AX_BUFFER_LENGTH: INTEGER: -- Buffer size
AX_PARAN_VALUE1 : INTEGER; -- Parameter value
AX_DEVICE_SPECIFIC : VSL.INTEGER_ARRAY(1 .. 2): -
AX_PARAN_CODE : INTEGER; -- LIO$K_X parameter code to set
AX_N_VALUES : INTEGER; -- Number of parameter values to set
AX_RUNDOWN : INTEGER; -- LIO$DETACH rundown argument
AX_IO_TYPE : INTEGER; -- I/O.type
WS_NUNBER : INTEGER; -- work station number for plotting
LGP_N : VSL.INTEGER_ARRAY(1 .. 3); -- number of points to plot
LGP_ILINE : INTEGER; -- Plotting line type
DUNNY_STRING : STRING(1 .. 266);
CHAR_COUNT : NATURAL;

3.2.1.3 Declaring and Dimensioning Arrays

An array is a composite object consisting of components that have the
same subtype. The name for a component of an array uses one or more
index values belonging to specified discrete types. The value of an array
is a composite value consisting of the values of its components.

An array is characterized by the number of indices (the dimensionality
of the array), the type and position of each index, the lower and upper
bounds for each index, and the type and possible constraints of the
components. The order of the indices is significant.

Program Development 3-7

A one-dimensional array has a distinct component for each possible
index value. A multidimensional array has a distinct component for
each possible sequence of index values that can be formed by selecting
one value for each index position (in the given order). The possible
values for a given index are all the values between the lower and upper
bounds, inclusive. This range of values is called the index range.

Array definitions can be named in a type declaration. When you declare
the array, the lower and upper bounds follow the type declaration in
parentheses and define the maximum size of the array, for example:

-- Define the A/D buffer as a 100-elament word array of data in the
-- range of -2048 to 2047.

AtoD_buffer : VSL.SHDRT_INTEGER_ARRAY(1 .. 100);

-- Define the voltage array as a 100-element single-precision,
-- floating-point (real) array ·

plot_buffer : VSL.FLOAT_ARRAY(1 .. 100); -- data in volts

This program segment defines and dimensions the two arrays that
are used in Example 3-2. The first array is a short (word or two-byte)
integer array of length 100 that is used to contain the 100 raw data
values obtained from the analog-to-digital converter on the AXVl 1-C
device. The second array is a single-precision, floating-point (real)
array of length 100 that is used to contain the 100 voltages obtained by
converting the 100 raw data points to voltages using the LSP routine
LSP$FORMAT_ TRANSLATE_ADC.

Certain high-level languages have different ways of storing the values
associated with two-dimensional arrays. You need to be aware of
the way in which VAX Ada stores the values associated with two
dimensional arrays when you declare and dimension arrays in your
programs.

VAX Ada stores the values associated with a 2-by-3 two-dimensional
array, called BUFF, as a linear one-dimensional array of length six with
the storage allocated according to the following indexing system:

3-8 Program Development

Figure 3-1: VAX Ada Array Indexing System

entry 1 entry 2 entry 3 entry 4 entry 5 entry 6

BUFF(1, 1) I BUFF(1,2) BUFF(2, 1) BUFF(2,2) I BUFF(3, 1) BUFF(3,2)

MR-1369-GE

When using two-dimensional arrays in a VAX Ada VSL application
program, the leftmost index usually references the buffer number. The
rightmost index, which varies faster, can reference consecutive values
read from an analog-to-digital converter, or values passed to a multiline
plotting routine call.

3.2.1.4 Declaring External Routines

The symbolic definition file VSL.ADA defines the entry points contain
ing the Ada interface pragma constructs for the VSL routines. Including
this file in your VSL application programs ensures that the VSL routines
are declared external and that their respective . arguments are typed
appropriately. See Section 3.2.1.1, Including Symbolic Definition Files,
for information about including VSL.ADA, as well as other required
symbolic definition files, in your VSL application programs.

Program Development 3-9

3.2.1.5 Defaulting Routine Call Arguments

The reference descriptions of the VSL routines describe each routine's
syntax and argument list in detail. Some VSL routine arguments are
required. A required argument must always be included in the routine's
argument list. Some VSL routine arguments are optional. Optional
arguments can be included in the routine's argument list at the pro
grammer's discretion. These arguments pass or return information that
may or may not be useful to a particular application program. Some
optional arguments are useful only with certain V AXlab devices.

Most VSL routine call arguments are assigned default values that are
used if a user-supplied value is not included in a routine call argument
list. To use a default value supplied by VSL, or to signal the omission of
an optional argument in a routine call argument list, you must account
for the argument in the routine call argument list by specifying the
argument type and appending the 'NULL_P ARAMETER attribute to it,
for example:

VSL.LGP_PLOT (STATUS => STATUS,
IS_NUMBER => IS_NUNBER,
NODE_STRING => NODE_STRING,
XARRAY => VSL.FLOAT_ARRAY'NULL_PARANETER,
YARRAY => PLOT_BUFFER,
N => LGP_N,
XLABEL => XLABEL_STRING,
YLABEL => YLABEL_STRING,
STATUS => STATUS,
ILINE => LGP_ILINE,
IGRID => INTEGER'NULL_PARANETER,
XCONTROL => VSL.FLOAT_ARRAY'NULL_PARANETER,
YCONTROL => VSL.FLOAT_ARRAY'NULL_PARANETER,
COLOR => VSL.FLOAT_ARRAY'NULL_PARANETER,
TITLE => TITLE_STRING,
NETAFLAG => INTEGER'NULL_PARANETER,
NETAFILE_NANE => STRING'NULL_PARANETER);

3-1 O Program Development

In the LGP$PLOT routine call argument list above, the arguments are
passed as shown in the following table.

Argument

ws_number

mode_string

xarray

yarray

n

xlabel

ylabel

status

iline

igrid

xcontrol

ycontrol

color

title

metaflag

metafile_name

1Uses default value.

Value

WS_NUMBER

MODE_STRING

VSL.FLOAT_ARRAY'NULL_P ARAMETER1

PLOT _BUFFER

LGP_N

XLABEL_STRING

YLABEL_STRING

STATUS

LGP_ILINE

INTEGER'NULL_P ARAMETER1

VSL.FLOAT _ARRAY'NULL_P ARAMETER1

VSL.FLOAT_ARRAY'NULL_P ARAMETER 1

VSL.FLOAT_ARRAY'NULL_PARAMETER1

TITLE_STRING

INTEGER'NULL_PARAMETER

STRING'NULL_P ARAMETER

3.2.1.6 Checking Routine Call Status

You use the VMS Run-Time Library routine LIB$SIGNAL to signal the
status of VSL routine calls. LIB$SIGNAL generates a signal indicating
that an exception has occurred in your program. If a condition handler
does not take corrective action and the condition is severe, then your
program exits.

The following program segment calls the LIO$READ routine which
returns the status of the operation in the variable STATUS.

Program Development 3-11

VSL.LIO_READ (STATUS => STATUS,
DEVICE_ID => AXV_ID,
BUFFER => AtoD_buffer,
BUFFER_LENGTH => AX_BUFFER_LENGTH,
DATA_LENGTH => AX_DATA_LENGTH,
DEVICE_SPECIFIC => AX_DEVICE_SPEC-IFIC);

if NOT SUCCESS (STATUS) then
STOP (STATUS) ;

end if;

The NOT SUCCESS function tests whether STATUS is true or false.
If the function returns true, then STATUS is odd (bit zero set to one),
and program execution continues. If the function returns false, then
STATUS is even (bit zero set to zero), and the condition is signaled.

The error-handling mechanisms used by the LIO, LSP, and LGP rou
tines are documented in the Guide to the VAXlab Laboratory 110 Routines,
the Guide to the V AXlab Laboratory Signal-Processing Routines, and the Guide
to the VAXlab Laboratory Graphics Package, respectively. See the appropri
ate document for complete information about the ways in which each
VSL facility performs error handling. These documents also contain
detailed information about the error codes returned by each facility and
suggested user actions to recover from errors.

3.2.1. 7 Using AST Routines

Before you attempt to set up and use AST routines within the context
of your VSL applications, be familiar with the information about AST
routines discussed in the Guide to the VAXlab Laboratory 110 Routines.
Once you are familiar with that material, read the remainder of this
section carefully to become familiar with the way in which you write
your VAX Ada programs to include the use of AST routines.

Example 3-1 contains:

1. Part of a program header that defines the external AST routine.
2. Part of a program header that redefines the LI0$SET routine and

the LIO$K_AST _RTN parameter to pass the address of the AST
routine by value.

3. The actual AST routine.

3-12 Program Development

Example 3-1: An AST Routine Written in VAX Ada

-- Define AST Routine (must reside in your ADA library)

procedure EXAMPLE_ADA_AST(
STATUS
AX_DEVICE_ID
AX_BUFFER
AX_BUFFER_LENGTH
AX_DATA_LENGTH
AX_BUFFER_INDEX
AX_DEVICE_SPECIFIC

in CONDITION_HANDLING.COND_VALUE_TYPE;
in INTEGER;
in VSL.SHORT_INTEGER_ARRAY;
in INTEGER;
in INTEGER;
in INTEGER;
in out VSL.INTEGER_ARRAY);

pragma INTERFACE (ADA, EXAMPLE_ADA_AST);

pragma IMPORT_PROCEDURE (
INTERNAL => EXAMPLE_ADA_AST, -- ADA NAME OF PROC
PARAMETER_TYPES => (CONDITION_HANDLING.COND_VALUE_TYPE,

INTEGER,
VSL.SHORT_INTEGER_ARRAY,
INTEGER,
INTEGER,
INTEGER,
VSL.INTEGER_ARRAY),

MECHANISM => (reference, reference,reference,
reference, reference,
reference, reference));

-- Redefine LIO_SET_AST to pass the AST routine address by value

procedure LIO_SET_AST (
STATUS
DEVICE_ ID
PARAM_CODE
N_VALUES
PARAM_VALUE1
PARAPI_ VALUE2
PARAM_VALUE3
PARAM_VALUE4
PARAM_VALUE6
PARAM_VALUE6
PARAM_VALUE7
PARAM_VALUE8

out CONDITION_HANDLING.COND_VALUE_TYPE;
in INTEGER;
in INTEGER;
in INTEGER;
in INTEGER
in INTEGER
in INTEGER
in INTEGER
in
in
in
in

INTEGER
INTEGER
INTEGER
INTEGER

pragma INTERFACE (ADA, LIO_SET_AST);

Example 3-1 Cont'd. on next page

:= INTEGER 1HULL_PARANETER;
:= INTEGER 1HULL_PARAMETER;
·= INTEGER 1NULL_PARAMETER;
:= INTEGER'HULL_PARANETER;
·=
·=
:=
:=

INTEGER 1HULL_PARANETER;
INTEGER 1HULL_PARANETE&;
INTEGER'NULL_PARAMETE&;
INTEGER 1 HULL_PA&ANETE&);

Program Development 3-13

Example 3-1 (Cont.): An AST Routine Written in VAX Ada

pragma INPORT_VALUED_PROCEDURE (LIO_SET_AST, 11LIO.SET_I 11 ,

(CONDITION_HANDLING.COND_VALUE_TYPE, INTEGER, INTEGER, INTEGER.,
INTEGER., INTEGER, INTEGER, INTEGER., INTEGER, INTEGER, INTEGER.,

INTEGER.),
(VALUE, REFER.ENCE, REFER.ENCE, REFER.ENCE, VALUE, REFER.ENCE,
REFER.ENCE, REFER.ENCE, REFER.ElfCE, REFER.ENCE, REFER.ENCE, REFER.ENCE));

-- Code fragment to •sET• AST routine
-- SIGNAL COMPLETION VIA AST

AX_PAR.AN_CODE := LIOSET.LIO_K_AST_RTN;
AX_N_ VALUES : • 1 ;

LIO_SET_AST (STATUS => STATUS,
DEVICE_ID => AXV_ID,
PARAN_CODE => AX_PARAN_CODE,
N_VALUES => AX_N_VALUES,

PA&AN_VALUE1 => SYSTEN.TO_INTEGER(EXANPLE_ADA_AST 1addre1e));

if not SUCCESS (etatue) then
STOP (1tatu1) ;

end if;

--++ FILE: EXANPLE_ADA_AST.ADA

with TEXT_IO; u1e TEXT_IO;
with SYSTEN,STARLET;
with INTEOER._TEXT_IO; uae INTEGER._TEXT_IO;
with CONDITION_HANDLING; UH CONDITION_HANDLING;
with VSL:
with LIOSET;
with LIOEUS;
with LSPDEF:
with LGPDEF;

-- AST ROUTINE

Example 3-1 Cont'd. on next page

3-14 Program Development

Example 3-1 {Cont.):

procedure EXANPLE_ADA_AST
STATUS
AX_DEVICE_ID
AX_BUFFER
AX_BUFFER_LENGTH
AX_DATA_LENGTH
AX_BUFFER_IHDEX
AX_DEVICE_SPECIFIC

begin

AX_STATUS
AX_EFN
AX_FIR.ST_POINT

-- STATUS

An AST Routine Written in VAX Ada

in COHDITION_HAHDLING.COHD_VALUE_TYPE;
in INTEGER.;
in VSL.SHOR.T_INTEGER_ARRAY;
in INTEGER;
in INTEGER;
in INTEGER;
in out VSL.INTEGER_ARRAY) is

COHDITION_HANDLIHG.COND_VALUE_TYPE;
INTEGER;
SHOR.T_INTEGER;

if not SUCCESS (STATUS) then
STOP (STATUS);

end if;

--- DO SOMETHING

end EXANPLE_ADA_AST;

pragma EXPORT_PROCEDUR.E (EXANPLE_ADA_AST);

Program Development 3-15

Example 3-2: Sample VAX Ada Program Using the VSL Routines

--++ FILE: ADA_EXAMPLE.ADA

with TEXT_ID: use TEXT_ID;
with SYSTEM,STARLET:
with INTEGER_TEXT_ID: use INTEGER_TEXT_ID;
with CDNDITIDN_HANDLING: use CDNDITION_HANDLING;
with VSL:
with LIDSET:
with LIDERRS;
with LSPDEF;
with LGPDEF:

procedure ADA_EXAMPLE is

Thia program reads 100 values from channel 2 of the AIV11-C then
displays the data in a graph on the screen.

This is a simple application using the VSL libraries.

Thia program can be compiled, linked, and run as follows:

ACS SET LIBRARY [.YDUR_ADA_LIBRARY_Dil\ECTORY]
COPY VSL, LID, LSP, and LGP include files from

SYS$LIBRARY to your local directory.
ADA VSL
ADA LIDSET
ADA LIDERRS
ADA LGPDEF
ADA LSPDEF
ADA ADA_EXAMPLE
ACS LINK ADA_EXANPLE
RUN ADA_EXAMPLE

Define data types --

Define devapec argument of the LID$ATTACH routine aa a character
string 2 character• in length

Device_to_uae : STARLET.DEVICE_NANE_TYPE(1 .. 2) := •11•:

Define the range of the A/D data - 12-bit A/D

AtoD_data = -2048 .. 2047 - 12-bit A/D

-- Define the A/D buffer as a 100-element word array of data in the
range of -2048 to 2047.

AtoD_buffer : VSL.SHDRT_INTEGER_ARRAY(1 .. 100);

Define the voltage array as a 100-element single-precision,
floating-point (real) array

Example 3-2 Cont'd. on next page

3-16 Program Development

Example 3-2 (Cont.): Sample VAX Ada Program Using the VSL
Routines

plot_buffer : VSL.FLOAT_ARAAY(1 .. 100): -- data in volts

Define the range array as a 2-element single-precision,
floating point Creal) array

range_array: ARAAY(1 .. 2) OF FLOAT;

Define the mode_string argument of the LOP.PLOT routine as a
constant character string

moda_string : constant string : = "IXSY" :

Define the xlabel argument of the LGP.PLOT routine as a
constant character string

xlabal_string : constant string := "Time";

Define the ylabel argument of the LOP.PLOT routine as a
eonstant character string

ylabel_string : constant string := "Voltage";

Define the title argument of the LOP.PLOT routine as a
constant character string

title_string : constant string := "ADA_EXANPLE";

Define local variables

STATUS : CONDITION_HANDLING.COND_VALUE_TYPE;
-- STATUS returned by LIO calls

AXV_ID : INTEGER; -- LIO-assigned device ID
AX_DATA_LENGTH INTEGER; -- Number of data bytes to read
AX_BUFFER_LENGTH: INTEGER; -- Buffer size
AX_PARAN_VALUE1 : INTEGER; -- Parameter value
AX_DEVICE_SPECIFIC : VSL.INTEGER_AR.llAY(1 .. 2): -
AX_PARAN_CODE : INTEGER; -- LIO.K_X parameter code to sat
AX_N_VALUES : INTEGER; -- Number of parameter values to set
AX_RUNDOWN : INTEGER; -- LIO.DETACH rundown argument
AX_IO_TYPE : INTEGER; -- I/O type
WS_NUNBER : INTEGER: -- work station number for plotting
LGP_N : VSL.INTEGER_ARRAY(1 .. 3); -- number of points to plot
LGP_ILINE : INTEGER: -- Plotting line type
DUNNY_STRING : STRING(1 .. 266);
CHAR_COUNT : NATURAL;

Type pretty message

put_line ("ADA_EXANPLE Read data, convert it, plot it"):

Example 3-2 Cont'd. on next page

Program Development 3-17

Example 3-2 (Cont.): Sample VAX Ada Program Using the VSL
Routines

Attach the AXV11-C to use mapped (polled) I/O. This routine
returns the LIO-assigned device ID for the device.

AX_IO_TYPE := LIOSET.LIO_K_NAP:

VSL.LIO_ATTACH (STATUS => STATUS,
DEVICE_ID => AXV_ID,
DEVSPEC => Device_to_use,
IO_TYPE => AX_IO_TYPE);

if NOT SUCCESS (STATUS) then
STOP (STATUS);

end if;

Set up the AXV11-C to use the synchronous I/O interface:

AX_PARAN_CODE := LIOSET.LIO_K_SYNCH;
AX_N_VALUES := O;
AX_PARAN_VALUE1 := O;

VSL.LIO_SET_I STATUS => STATUS,
DEVICE_ID => AXV_ID,
PARAN_CODE => AX_PARAN_CODE,
N_VALUES => AX_N_VALUES,
PARAN_VALUE1 => AX_PARAN_VALUE1);

if NOT SUCCESS (STATUS) then
STOP (STATUS);

end if;

Set up AXV11-C channel 2 for input:

AX_PARAN_CODE := LIOSET.LIO_K_AD_CHAN:
AX_N_VALUES := 1;
AX_PARAN_VALUE1 := 2;

VSL.LIO_SET_I STATUS => STATUS,
DEVICE_ID => AXV_ID,
PARAN_CODE => AX_PARAM_CODE,
N_VALUES => AX_N_VALUES,
PARAN_VALUE1 => AX_PARAN_VALUE1);

if NOT SUCCESS (STATUS) then
STOP (STATUS);

end if;

-- Set up a channel gain of 1:

Example 3-2 Cont'd. on next page

3-18 Program Development

Example 3-2 (Cont.): Sample VAX Ada Program Using the VSL
Routines

AX_PARAM_CODE := LIOSET.LIO_K_AD_GAIN;
AX_N_VALUES := 1;
AX_PARAM_VALUE1 := 1;

VSL.LIO_SET_I STATUS => STATUS,
DEVICE_ID => AXV_ID,
PARAM_CODE => AX_PARAM_CODE,
N_VALUES => AX_N_VALUES,
PARAM_VALUE1 => AX_PARAM_VALUE1);

if NOT SUCCESS (STATUS) then
STOP (STATUS);

end if;

Trigger on LIO$READ and fill buffer as fast as poss~ble:

AX_PARAM_CODE := LIDSET.LIO_K_TRIG;
AX_N_VALUES := 1;
AX_PARAM_VALUE1 := LIDSET.LIO_K_IMM_BURST;

VSL.LIO_SET_I STATUS => STATUS,
DEVICE_ID => AXV_ID,
PARAM_CODE => AX_PARAM_CODE,
N_VALUES => AX_N_VALUES,
PARAM_VALUE1 => AX_PARAM_VALUE1);

if NOT SUCCESS (STATUS) then
STOP (STATUS);

end if;

Get a raw_data buffer of 100 values. Use LIO$READ to read the 100
A/D values. Note that the length of the buffer is specified in
bytes as is the returned data length.

AX_BUFFER_LENGTH := 100;

VSL. LIO_READ STATUS => STATUS,
DEVICE_ID => AXV_ID,
BUFFER => AtoD_buffer,
BUFFER_LENGTH => AX_BUFFER_LENGTH,
DATA_LENGTH => AX_DATA_LENGTH,
DEVICE_SPECIFIC => AX_DEVICE_SPECIFIC);

if NOT SUCCESS (STATUS) then
STOP (STATUS);

end if;

Detach from the A/D

AX_RUNDOWN := O;

Example 3-2 Cont'd. on next page

Program Development 3-19

Example 3-2 (Cont.): Sample VAX Ada Program Using the VSL
Routines

VSL.LIO_DETACH (STATUS => STATUS,
DEVICE_ID => AXV_ID,
RUNDOWN => AX_RUNDOIN);

if NOT SUCCESS (STATUS) then
STOP (STATUS);

end if;

-- Convert the raw data to voltages using LSP$FORMAT_TRANSLATE_ADC

VSL.LSP_FORMAT_TRANSLATE_ADC (STATUS => STATUS,
I => AtoD_buffer,
OU => plot_buffer,
N => AX_BUFFER_LENGTH,
CONTROL_! => VSL.INTEGER_ARRAY'NULL_PARAMETER,
RANG => VSL.FLOAT_ARRAY 1 NULL_PARAMETER,
OPT_STATUS =>STATUS);

if NOT SUCCESS (STATUS) then

end if;

put_line ("problem in LSP_FORMAT_TRANSLATE_ADC 11);

STOP (STATUS);

-- Plot the data using LGP$PLOT to plot the voltages on the
terminal screen.

IS_NUMBER : = 1 ;

LGP_N(1) := AX_DATA_LENGTH;
LGP_N(2) := O;
LGP_N(3) := O;
LGP_ILINE := 1;

Example 3-2 Cont'd. on next page

3-20 Program Development

Example 3-2 (Cont.): Sample VAX Ada Program Using the VSL
Routines

VSL.LGP_PLOT (STATUS => STATUS,
WS_NUMBER => WS_NUMBER,
NODE_STRING => NODE_STRING,
XARRAY => VSL.FLOAT_ARRAY'NULL_PARANETER,
YARRAY => PLOT_BUFFER,
N => LGP_N,
XLABEL => XLABEL_STRING,
YLABEL => YLABEL_STRING,
OPT_STATUS => STATUS,
ILINE => LGP_ILINE,
!GRID => INTEGER'NULL_PARANETER,
XCONTROL => VSL.FLOAT_ARRAY 1NULL_PARANETER,
YCONTROL => VSL.FLOAT_ARRAY 1NULL_PARANETER,
COLOR => VSL.FLOAT_ARRAY 1 NULL_PARANETER,
TITLE => TITLE_STRING,
NETAFLAG => INTEGER'NULL_PARANETER,
NETAFILE_NANE => STRING'NULL_PARANETER);

if NOT SUCCESS (STATUS) then
STOP (STATUS);

end if;

-- Wait for a carriage return before deleting plot.

put_line("Type carriage return to exit");
get_line(DUNNY_STRING, CHAR_COUNT);

Terminate the plot.

VSL.LGP_TERNINATE_PLOT (STATUS => STATUS,
WS_NUNBER => WS_NUNBER);

if NOT SUCCESS (STATUS) then
STOP (STATUS) ;

end if;

end ADA_EXANPLE;

3.2.2 Developing Programs in VAX BASIC

Be familiar with the information contained in the following sections be
fore you begin developing VSL application programs using VAX BASIC.
For further information about VAX BASIC programming concepts and
techniques not covered in this guide, see the VAX BASIC Reference
Manual.

Program Development 3-21

3.2.2.1 Including Symbolic Definition Files

The VSL symbolic definition files define the Laboratory 1/0 (LIO),
Laboratory Signal-Processing (LSP), and Laboratory Graphics Package
(LGP) error code symbols, the LGP plotting attribute symbols, the LIO
set parameter code symbols, the LSP spectral window types, and the
entry points containing language-specific interface constructs for the
VSL routines. You need to include symbolic definition files in your VSL
application programs so that these symbols can be recognized by the
programming language you are using.

Table 3-2 lists the symbolic definition files provided for use with VAX
BASIC.

Table 3-2: VAX BASIC Symbolic Definition Files
File Name

LGPATTDEF.BAS

LGPDEF.BAS

UOERRS.BAS

LIOSET.BAS

LSPDEF.BAS

LSPSET.BAS

VSL.BAS

Defines:

LGP plotting attribute symbols

LGP error code symbols

LIO error code symbols

LIO set parameter code symbols

LSP error code symbols

LSP spectral window types

Entry points containing BASIC interface constructs for
the VSL routines1

1 Include this symbolic definition file in all VSL application programs written in VAX
BASIC.

You use the following routine· line to include a symbolic definition file
in a user program:

%INCLUDE "SYS$LIBRARY:filanama.BAS11

where

filename is one of the files listed in Table 3-2.

The files you must include in a user program depend on the VSL
facilities the program is designed to use. The file VSL.BAS must be
included in all VAX BASIC VSL application programs because it defines
entry points containing VAX BASIC interface constructs for the VSL
routines.

3-22 Program Development

If your program is designed to use only the LIO routines, then you
also need to include those files that define LIO symbolic values. If a
program, such as the one presented in Example 3-4, uses routines from
all the VSL facilities, then you need to include many of the files listed in
Table 3-2. If your application programs use routines from all the VSL
facilities, it is advisable to include all the files listed in Table 3-2.

3.2.2.2 Declaring Data Types and Data Items

All data in a VAX BASIC program has a specific data type that de
termines how many bits of storage to consider as a unit and how to
interpret and manipulate the unit. Data items are named quantities
whose values can change during program execution. Each data item
name refers to a location in the program's storage area.

Some data items are used to pass information from a user program
to a device that is to perform some function with the information.
Other data items are used to return information from a device to a user
program. The VSL application routine reference descriptions explain
the functions, syntax, and appropriate usage of the VSL routines. Each
routine reference description also explains the routine arguments, their
data types, and whether an argument is used to pass information to a
device, to return information from the device to the user program, or,
in some cases, both.

The VSL application routines use INTEGER, REAL, and STRING data
types. The INTEGER data type can be broken down further into the
BYTE, WORD, and LONG subtypes. You can specify data-type defaults
in a program module using the OPTION TYPE = EXPLICIT statement.
This statement means that any program value not explicitly declared
causes VAX BASIC to signal an error. Explicit data typing makes
programs easier to understand and maintain because the data type of
all program values is explicitly spelled out in the program and is not
dependent upon compilation defaults that may change.

To explicitly type data items, you use a declarative statement to specify
the type, range, and precision of your program values, for example:

DATA_ITEM_DECLARATIONS:

I Declare dwmny data item to be a character string:
DECLARE !The DECLARE statement! t

STRING !Data type = string! t
dwmny !Data item to accept carriage return!

Program Development 3-23

Declare local data items to ba longword integers:
DECLARE !The DECLARE statement!

LONG
S_STATUS
AXV_ID
DATA_LENGTH

!Data type = Longword integer!
!STATUS returned by LIO calla!
!LIO-assigned device ID!
!Mum.bar of data bytes to read!

Ir
Ir
Ir
Ir

This program segment is excerpted from Example 3-4 and shows the
explicitly typed data items used in that sample program.

If a variable or an array is to be shared by the main program and a
subroutine or an AST routine, use a COMMON statement to declare
them. The COMMON statement defines a named, shared storage area
called a COMMON block or program segment (PSECT). All BASIC
program modules can access the values stored in the COMMON
block by specifying a COMMON statement with the same name. See
Section 3.2.2.7, Using AST Routines for further information.

3.2.2.3 Declaring and Dimensioning Arrays

An array is a set of data ordered in any number of dimensions. A
one-dimensional array, such as BUFFER(9), is called a list or vector.
A two-dimensional array, such as BUFFER(9,9) is called a matrix.
VAX BASIC always allocates element zero, so specify the bounds of
your array to be one less than the actual number you require. For
example, BUFFER(9) contains 10 elements, and BUFFER(9,9) contains
100 elements.

Dimensioning an array means to specify the name, data type, and
maximum size of the array. Subscripts follow the data item name in
parentheses and define its position in the array. When you create an
array, bounds follow the array name in parentheses and define the
maximum size of the array, for example:

!Declare data buffers:
DIMENSION

WORD

REAL
RAl_DATA(99) !100 point raw data buffer!

VOLTAGES(99) !100 voltages to plot!

This program segment dimensions the two arrays that are used in
Example 3-4. The first array, RAW_DATA (99), is a word (two-byte)
integer array of length 100 that is used to contain 100 raw data values
obtained from the analog-to-digital converter on the AXVll-C device.
The second array, VOLTAGES(99), is a single-precision, floating-point

3-24 Program Development

(real) array of length 100 that is used to contain the 100 voltages ob
tained by converting the 100 raw data points to voltages using the LSP
routine LSP$FORMAT _ TRANSLATE_ADC.

Certain high-level languages have different ways of storing the values
associated with two-dimensional arrays. You need to be aware of
the way in which VAX BASIC stores the values associated with two
dimensional arrays when you declare and dimension arrays in your
programs. For example, suppose you need to declare a 2-by-3 two
dimensional array, called BUFF. You declare the array as follows:

DECLARE LONG BUFF(1,2)

VAX BASIC stores the values associated with the 2-by-3 two
dimensional array called BUFF, as a linear one-dimensional array of
length six with the storage allocated according to the following indexing
system:

Figure 3-2: VAX BASIC Array Indexing System

entry 1 entry 2 entry 3 entry 4 entry 5 entry 6

BUFF(0,0) I BUFF(0,1) I BUFF(0,2) I BUFF(1,0) BUFF(1, 1) I BUFF(1,2)

MR-1370-GE

When using two-dimensional arrays in a VAX BASIC VSL application
program, the leftmost index usually references the buffer number. The
rightmost index, which varies faster, can reference consecutive values
read from an analog-to-digital converter, or values passed to a multiline
plotting routine call.

3.2.2.4 Declaring External Routines

The symbolic definition file VSL.BAS defines the entry points con
taining the BASIC interface language constructs for the VSL routines.
Including this file in your VSL application programs ensures that the
VSL routines are declared external and that their respective argu
ments are typed appropriately. See Section 3.2.2.1, Including Symbolic
Definition Files for information about including VSL.BAS, as well
as other required symbolic definition files, in your VSL application
programs.

Program Development 3-25

If your VSL application programs use VMS library routines, such as
LIB$SIGNAL, these routines must be declared external within the
program context. The following program segment, excerpted from
Example 3-4 declares the VMS Run-Time Library routine, LIB$SIGNAL,
as an external longword function. This routine and other VMS routines
are declared as functions because they return a status value that a
program needs to check.

I Declare the VMS routine as an external longword function

EXTERNAL LONG FUNCTION LIB$SIGNAL

See Section 3.2.2.6, Checking Routine Call Status for information about
how the LIB$SIGNAL routine is used to check routine call status.

3.2.2.5 Defaulting Routine Call Arguments

The reference descriptions of the VSL routines describe each routine's
syntax and argument list in detail. Some VSL routine arguments are
required. A required argument must always be included in the routine's
argument list. Some VSL routine arguments are optional. Optional
arguments can be included in the routine's argument list at the pro
grammer's discretion. These arguments pass or return information that
may or may not be useful to a particular application program. Some
optional arguments are useful only with certain VSL devices.

Most VSL routine call arguments are assigned default values that are
used if a user-supplied value is not included in a routine call argument
list. To use a default value supplied by VSL, or to signal the omission of
an optional argument in a routine call argument list, you must account
for the argument in the routine call argument list by including a comma
in place of the actual argument, for example:

CALL LGP$PLOT(il, 11 IXSY 11 , , VOLTAGES() BY REF, 1001, "Time", t
"Voltage", , 11, , , , , 11BASIC_EXANPLE11)

In the LGP$PLOT routine call argument list above, the arguments are
passed as shown in the following table.

3-26 Program Development

Argument Value

ws_number 1%

mode_string 11 IXSY11

xarray Comma1

yarray VOLTAGES() BY REF

n 100%

xlabel 11 Time11

ylabel 11Voltage11

status Comma1

iline 1%

igrid Comma1

xcontrol Comma1

ycontrol Comma1

color Comma1

title II BASIC_EXAMPLE11

metaflag Omitted

metafile_name Omitted

1Uses default value.

For LSP and LGP routine calls, you can omit optional arguments at the
end of a routine call argument list. You can terminate the list after the
last user-supplied value of an optional argument is specified.

For LIO routine calls, you must explicitly specify or explicitly default
optional arguments regardless of the argument's place in the routine call
argument list. You cannot terminate the list after the last user-supplied
value of an optional argument is specified.

Program Development 3-27

3.2.2.6 Checking Routine Call Status

You use the VMS Run-Time Library routine LIB$SIGNAL to signal
the status of VSL routine calls. LIB$SIGNAL generates a signal that
indicates that an exception condition has occurred in your program. If
a condition handler does not take corrective action and the condition is
severe, then your program exits.

The following program segment calls the LIO$READ routine as a
function which returns the status of the operation in the variable
S_STATUS.

S_STATUS = LIO$READ(AXV_ID, RAW_DATA() BY REF, 200%, DATA_LEHGTH,)
CALL LIB$SIGNAL BY VALUE (S_STATUS) IF (S_STATUS AND 11) = OI

The value of S_STATUS is ANDed with 1. If this logical operation
produces a 1, then status is odd (bit zero set to one), and program
execution continues. If this operation does not produce a 1, then status
is even (bit zero set to zero), and the condition is signaled.

NOTE

When using the bitwise AND, as is the case here when
checking routine call status, the value of both bits must be 1
for the result to be 1.

The error-handling mechanisms used by the LIO, LSP, and LGP rou
tines are documented in the Guide to the VAXlab Laboratory 110 Routines,
the Guide to the V AXlab Laboratory Signal-Processing Routines, and the Guide
to the VAXlab Laboratory Graphics Package, respectively. See the appropri
ate document for complete information about the ways in which each
VSL facility performs error handling. These documents also contain
detailed information about the error codes returned by each facility and
suggested user actions to recover from errors.

3-28 Program Development

3.2.2. 7 Using AST Routines

Before you attempt to set up and use AST routines within the context
of your VSL applications, be familiar with the information about AST
routines discussed in the Guide to the VAXlab Laboratory 110 Routines.
Once you are familiar with that material, read the remainder of this
section carefully to become familiar with the way in which you write
your VAX BASIC programs to include the use of AST routines.

Example 3-3 is an AST routine written in VAX BASIC that receives
completed buffers from a device, processes them, and requeues them
to the device. See the online sample program LIO~ADV_AST.BAS
for a complete VAX BASIC VSL application program that uses this
subroutine.

Example 3-3: An AST Routine Written in VAX BASIC

!Main program aeta up the AST routine
!Declare the conmon used to conanunicate with the AST routine.
CONNON (aat) LONG done_flag !AST routine done flag! •

LONG buffer_count !Numbers of buffer processed! •
LONG aat_atatua !AST routine atatual

EXTERNAL LONG adv_aat Declare the AST routine aa an external
longword procedure

I Supply an AST routine to be called when a buff er ia complete
a_atatua = LIO$SET_I(DEVICE_ID, LIO$K_AST_RTN, 11, ADV_AST)

The AST routine ia called by LIO when a buffer completes.

Thia subroutine receives completed buffers from the ADV11-D
device. Each buffer ia processed by the AST routine as it is
received from the ADV11-D device and is then requeued to the
device for further use. A total of five buffers are received

I and processed by this AST routine.

Example 3-3 Cont'd. on next page

Program Development 3-29

Example 3-3 (Cont.): An AST Routine Written in VAX BASIC

6000 SUB adv_ast(LDNG a_status, LONG device_id, buffer() BY REF, t
LONG buffer_length, LONG data_length, LONG buffer_index, t
LONG device_specific)

I

Note that the AST routine dummy arguments are similar to the
arguments to the LID$DEQUEUE routine. These arguments are:

a_atatus
device_id

buffer

buffer_length
data_length
buffer_index

Returns the status of the I/D operation.
Specifies the LID-assigned device ID of

the ADV11-D.
The actual buffer, NOT the buffer address

aa in the LID$DEQUEUE routine call.
The length of the buffer, in bytes.
The length of the data in the buffer, in bytes.
The buffer index, if one ia supplied in the

LID.ENQUEUE routine call.
device_apecific A dummy argument here. The ADV11-D device

doea not support a device-specific argument.
Declare the conmon used to communicate with the main program.
These COMMON definitions muat also be declared in the main program.

COMMON (ast) LONG done_flag
LONG buffer_count
LONG aat_atatus

!AST routine done flag! t
!Numbers of buffer processed! t
!AST routine status!

6000 FUNCTI OHS:
I Declare the VMS functions
I
EXTERNAL LONG FUNCTION LIB.SIGNAL

7000 EXECUTE:
I Save the I/O status where the main program can check if an
I error condition occura.

aat_status = a_status

I Increment the buffer count

buffer_count = buffer_count +
! If the buffer count is leas than 6, and if no error condition
I haa occured, requeue the buffer to the ADV11-D. Dtherwiae,
I set the I/D done flag and exit.

IF (buffer_count < %6) AND (s_status and 1%) THEN
status = LID.ENQUEUE(device_id, buffer() BY REF, buffer_length, t . ' .)

CALL LIB.SIGNAL BY VALUE (s_statua) IF (s_status AND 1%) = OI

Example 3-3 Cont'd. on next page

3-30 Program Development

Example 3-3 (Cont.): An AST Routine Written in VAX BASIC

ELSE
done_flag 1l

END IF

END SUB

Example 3-4: Sample VAX BASIC Program Using the VSL Routines

10 REM BASIC_EXAMPLE.BAS
Thia program reads 100 values from channel 2 of the AXV11-C then
displays the data in a graph on the screen.

This is a simple application using the VSL libraries.

This program can be compiled, linked, and run as follows:
BASIC BASIC_EXAMPLE
LINK BASIC_EXAMPLE
RUN BASIC_EXAMPLE

1000 BEGINNING:

OPTION
TYPE = EXPLICIT

%INCLUDE 11SYS$LIBRARY:LIOSET.BAS11

l!NCLUDE 11SYS$LIBRARY:LIOERRS.BAS 11

%INCLUDE 11SYS$LIBRARY:LSPDEF.BAS11

%INCLUDE 11SYS$LIBRARY:LGPDEF.BAS11

l!NCLUDE "SYS$LIBRARY:VSL.BAS"

DATA_ITEM_DECLARATIONS:

Declare dwmny data item
DECLARE t

STRING t
dwmny !Variable to accept carriage return!

Declare local data items
DECLARE

LONG
S_STATUS,
AXV_ID,
DATA_LENGTH,

!STATUS returned by LIO calls!
!LIO-assigned device ID!
!Number of data bytes to read!

Example 3-4 Cont'd. on next page

• • • •

Program Development 3-31

Example 3-4 (Cont.): Sample VAX BASIC Program Using the VSL Routines

Declare data buff era
DINERS ION

WORD

:UAL
RAl_DATA(99),

t
t

1100 pt raw data buffer! t
t

VOLTAGES(99) 1100 voltages to plot!

I Declare the LIO routines
EXTERNAL LONG FUNCTION LIB$SIGNAL

SET_UP_THE_AXV:

Type pretty me11age

PRINT "BASIC_EXAMPLE: Read data, convert it, plot it"
PRilfT

Attach the AXV11-C to use mapped (polled) I/O. Thi• routine
call returns an LIO-a11igned device ID for the device.

S_STATUS = LIO$ATTACH (AXV_ID, "AXAO:", LIO.K_NAP)
CALL LIB$SIGNAL BY VALUE (S_STATUS) IF (S_STATUS AND 11) = OI

I Set up the AXV11-C to use the 1ynchronou1 I/O interface:
S_STATUS = LIO$SET_I (AXV_ID, LIO$K_SYNCH, OI)
CALL LIB$SIGNAL BY VALUE (S_STATUS) IF (S_STATUS AND 11) = OI

I Set up AXV11-C channel 2 for input:
S_STATUS = LIO$SET_I (AXV_ID, LIO$K_AD_CHAN, 11, 21)
CALL LIB$SIGNAL BY VALUE (S_STATUS) IF (S_STATUS AND 11) = OI

Set up a channel gain of 1:
S_STATUS = LIO$SET_I (AXV_ID, LIO$K_AD_GAIN, 11, 11)
CALL LIB$SIGNAL BY VALUE (S_STATUS) IF (S_STATUS AND 11) = OI

Trigger on LIO$:UAD and fill buffer a1 fast a1 po11ible:
S_STATUS = LIO$SET_I (AXV_ID, LIO$K_TRIG, 11, LI0$K_INM_BURST)
CALL LIB$SIGNAL BY VALUE (S_STATUS) IF (S_STATUS AND 11) = OI

· Example 3-4 Cont'd. on next page

3-32 Program Development

Example 3-4 (Cont.): Sample VAX BASIC Program Using the VSL Routines

GET_AND_DISPLAY_DATA:

Get a RAl_DATA buffer of 100 values.
I This program uses LIO$READ to read the 100 A/D values.

Note that the length of the buffer is in bytes, as is the
returned data_length.

S_STATUS = LIO$READ(AXV_ID, RAl_DATA() BY REF, 200%, t
DATA_LENGTH,)

CALL LIB$SIGNAL BY VALUE (S_STATUS) IF (S_STATUS AND 1%) = 0%

Detach from the A/D:
S_STATUS = LIO$DETACH(AXV_ID, 0%)
CALL LIB$SIGNAL BY VALUE (S_STATUS) IF (S_STATUS AND 1%) = 0%

Convert the raw data to voltages using LSP$FORNAT_TRANSLATE_ADC:
CALL LSP$FORNAT_TRANSLATE_ADC(RAl_DATA() BY REF, t

VOLTAGES() BY REF, 100%, , ,)

Plot the data using LGP$PLOT to plot the voltages on the
I terminal screen:

CALL LGP$PLOT(1%, 11 IXSY 11
, , VOLTAGES() BY REF, 100%, t

"Time", "Voltage", , 1%, , , , , 11BASIC_EXANPLE11
)

Wait for a carriage return before deleting plot:
PRINT "Type carriage return to exit";
INPUT dummy

Terminate the plot:
CALL LGP$TERNINATE_PLOT(1%)

END

3.2.3 Developing Programs in VAX C

Be familiar with the information contained in the following sections
before you begin developing VSL application programs using VAX
C. For further information about VAX C programming concepts and
techniques not covered in this guide, see the Guide to VAX C.

Program Development 3-33

3.2.3.1 Including Symbolic Definition Files

The VSL symbolic definition files define the Laboratory 1/0 (LIO),
Laboratory Signal-Processing (LSP), and Laboratory Graphics Package
(LGP) error code symbols, the LGP plotting attribute symbols, the- LIO
set parameter code symbols, the LSP spectral window types, and the
entry points containing language-specific interface constructs for the
VSL routines. You need to include symbolic definition files in your VSL
application programs so that these symbols can be recognized by the
programming language you are using.

Table 3-3 lists the symbolic definition files provided for use with VAX
c.

Table 3-3: VAX C Symbolic Definition Files
File Name

LGPATTDEF.H

LGPDEF.H

LIOERRS.H

LIOSET.H

LSPDEF.H

LSPSET.H

VSL.H

Defines:

LGP plotting attribute symbols

LGP error code symbols

LIO error code symbols

LIO set parameter code symbols

LSP error code symbols

LSP spectral window types

Entry points containing C interface constructs for the
VSL routines1

1Include this symbolic definition in all VSL application programs written in VAX C.

You use the following routine line to include a symbolic definition file
in a user program:

#INCLUDE <filename •"H>

where

filename is one of the files listed in Table 3-3.

The files you must include in a user program depend on the VSL
facilities the pr,ogram is designed to use. The file VSL.H must be
included in all VAX C VSL application programs because it defines
entry points containing VAX C interface constructs for the VSL routines.

3-34 Program Development

If your program is designed to use only the LIO routines, then you
also need to include those files that define LIO symbolic values. If a
program, such as the one presented in Example 3-6, uses routines from
all the VSL facilities, then you need to include many of the files listed in
Table 3-3. If your application programs use routines from all the VSL
facilities, it is advisable to include all the files listed in Table 3-3.

3.2.3.2 Declaring Data Types and Variables

You can represent data in a VAX C program using constants. A constant
is a primary expression with a defined value that does not change
during program execution. You can represent a constant in a literal
form, which contains the explicit numbers, letters, and operators that
comprise the constant. Or, you can define a symbol to represent the
constant value. Constants have data types, as do all data in VAX C.
The data type determines the amount of storage needed and how to
interpret the stored constant value. The compiler determines the data
type of constants by the way in which their values are represented in
the program source code.

You can also represent data in VAX C using variables, whose values
can change during program execution. You must explicitly declare all
variables used in a program. When you declare a variable, you specify
the data type of the stored object. In VAX C, an object is a value
requiring storage.

Some data items are used to pass information from a user program
to a device that is to perform some function with the information.
Other data items are used to return information from a device to a user
program. The VSL application routine reference descriptions explain
the functions, syntax, and appropriate usage of the VSL routines. Each
routine reference description also explains the routine arguments, their
data types, and whether an argument is used to pass information to a
device, to return information from the device to the user program, or,
in some cases, both.

Integer variables are declared with the keywords int (longword), long
(longword), short (word), and char (byte). Single-precision, floating
point variables are declared with the keyword float. The following
code segment shows how to declare some of the local variables used in
Example 3-6.

Program Development 3-35

main()
{
/• Declare local variables •/

int STATUS /• STATUS returned by LIO routine calls •/
,axv_id /* LIO-assigned device ID •/
,data_length /* number of data bytes to read •/

All VAX C character strings are passed by descriptor. You must declare
the string descriptors for character:-string values. For the purposes of
string descriptor initialization, VAX C provides a simple preprocessor
macro in the #include text library module descrip. This macro is named
$DESCRIPTOR. It takes two arguments, which it uses in a standard VAX
C structure declaration. The first argument is an identifier specifying
the name of the descriptor to be declared and initialized. The second
argument is a pointer to the data byte to be used as the value of the
descriptor.

The following code segment shows how to declare the string descriptors
for the character-string constant values used in Example 3-6.

#include descrip

$DESCRIPTOR(dev_type, 11 AXAO:) ;
$DESCRIPTOR(mode_string, 11 ISXY 11)

$DESCRIPTOR(xlabel, 11 Time 11) ;

$DESCli.IPTOR(ylabel, "Voltage") ;
$DESCRIPTOR(title, 11 C_EXAMPLE 11);

/•Define the $DESCRIPTOR macro•/

I• AXV11-C device type •/
I• LGP$PLOT mode string value •/
/* LGP$PLOT x-axis label •/
/• LGP$PLOT y-axis label •/
/* LGP$PLOT graph title */

The VSL application routines expect most arguments to be passed by
reference. This means that the argument list contains the address of the
argument rather than its value. In VAX C, you can use the ampersand
(&) operator to pass an argument by reference, that is, the ampersand
operator causes the argument's address to be passed. Note that an
array name in an argument list always results in passing the address of
the array.

3-36 Program Development

3.2.3.3 Declaring and Dimensioning Arrays

VAX C arrays are data structures composed of identically typed mem
bers called elements. Declaring an array means to specify the name,
data type, and maximum size of the array. VAX C supports both one
dimensional and multidimensional arrays. Subscripts follow the array
name in square brackets and define an element's position in the array.

The following code segment shows how to declare the arrays used in
Example 3-6.

I•
Declare data buffer for raw data in LSP.FORMAT_TRANSLATE_ADC. Thia
ia a word (16-bit) array containing 100 elements.
•I

short int raw_data[100];
I•
Declare data buffer for voltages in LSP.FORMAT_TRANSLATE_ADC and
LOP.PLOT routines. Thia ia a single-precision, floating-point
array containing 100 elements.
•I

float voltagea[100];

The first array, raw_data[lOO], is a word (16-bit) integer array of length
100 used to contain the 100 raw data values obtained from the analog
to- digital converter on the AXVll-C. The second array, voltages[lOO],
is a single-precision, floating-point array of length 100 that is used to
contain the 100 voltages obtained by converting the 100 raw data points
to vo~tages using the LSP ro1:1tine LSP$FORMAT_TRANSLATE_ADC.

Certain high-level languages have different ways of storing the values
associated with two-dimensional arrays. You need to be aware of the
way in which VAX C stores the values associated with two-dimensional
arrays when you declare and dimension arrays in your programs. For
example, suppose you need to declare a 2-by-3 two-dimensional array,
called BUFF. You declare the array as follows:

int buff [2] [3]

Program Development 3-37

VAX C stores the values associated with the 2-by-3 two-dimensional
array, called BUFF, as a linear one-dimensional array of length .six with
the storage allocated according to the following indexing system:

Figure 3-3: VAX C Array Indexing System

entry 1 entry 2 entry 3 entry 4 entry 5 entry 6

I BUFF(0,0) BUFF(0, 1) BUFF(0.2) I BUFF(l,0) BUFF(1.1) I BUFF(1,2)

MR-1371-GE

When using two-dimensional arrays in a VAX C VSL application pro
gram, the leftmost index usually references the buffer number. The
rightmost index, which varies faster, can reference consecutive values
read from an analog-to-digital converter, or values passed to a multiline
plotting routine call.

3.2.3.4 Declaring External Routines

The symbolic definition file VSL.H defines the entry points containing
the C interface language constructs for the VSL routines. Including this
file in your VSL application programs ensures that the VSL routines
are declared external and that their respective arguments are typed
appropriately. See Section 3.2.3.1, Including Symbolic Definition
Files, for information about including VSL.H, as well as other required
symbolic definition files, in your VSL application programs.

3.2.3.5 Defaulting Routine Call Arguments

The reference descriptions of the VSL routines describe each routine's
syntax and argument list in detail. Some VSL routine arguments are
required. A required argument must always be included in the routine's
argument list. Some VSL routine arguments are optional. Optional
arguments can be included in the routine's argument list at the pro
grammer's discretion. These arguments pass or return information that
may or may not be useful to a particular application program. Some
optional arguments are useful only with certain VSL devices.

3-38 Program Development

Most VSL routine call arguments are assigned default values that are
used if a user-supplied value is not included in a routine call argument
list. To use a default value supplied by VSL, or to signal the omission of
an optional argument in a routine call argument list, you must account
for the argument in the routine call argument list by including a 0 in
place of the actual argument, for example:

LGP$PLOT(t1, lnnode_atring, 0, voltages, t100, txlabel, tylabel, 0,
t1, 0, 0, 0, 0, ttitle);

In the LGP$PLOT routine call argument list above, the arguments are
passed as shown in the following table.

Argument Value

ws_number &l

mode_string &mode_string

xarray 01

yarray voltages

n &100

xlabel &xlabel

ylabel &ylabel

status 01

iline &l

igrid 01

xcontrol 01

ycontrol 01

color 01

title &title

metaflag Omitted

metafile_name Omitted

1Uses the default value.

For LSP and LGP routine calls, you can omit optional arguments at the
end of a routine call argument list. You can terminate the list after the
last user-supplied value of an optional argument is specified.

Program Development 3-39

For LIO routine calls, you must explicitly specify or explicitly default
optional arguments regardless of the argument's place in the routine call
argument list. You cannot terminate the list after the last user-supplied
value of an optional argument is specified.

3.2.3.6 Checking Routine Call Status

You use the VMS Run-Time Library routine LIB$SIGNAL to signal the
status of VSL routine calls. LIB$SIGNAL generates a signal indicating
that an exception condition has occurred in your program. If a condition
handler does not take corrective action and the condition is severe, then
your program exits.

The following program segment calls the LIO$READ routine as a func
tion which returns the status of the operation in the variable STATUS.

STATUS = LIO$READ(taxv_id, raw_data, t200, tdata_length, O);
if (!(STATUS t STS$M_SUCCESS)) LIB$SIGNAL(STATUS);

The value of STATUS is ANDed with the value STS$M_SUCCESS,
which is a 1. If this operation produces a 1, then status is odd (bit zero
set to one), and program execution continues. If this operation does not
produce a 1, then status is even (bit zero set to zero), and the condition
is signaled.

NOTE

When using the bitwise AND(&), as is the case here when
checking routine call status, the value of both compared bits
must be 1 for the result to be 1.

The error-handling mechanisms used by the LIO, LSP, and LGP rou
tines are documented in the Guide to the VAXlab Laboratory 110 Routines,
the Guide to the VAXlab Laboratory Signal-Processing Routines, and the Guide
to the VAXlab Laboratory Graphics Package, respectively. See the appropri
ate document for complete information ~bout the ways in which each
VSL facility performs error handling. These documents also contain
detailed information about the error codes returned by each facility and
suggested user actions to recover from errors.

3-40 Program Development

3.2.3. 7 Using AST Routines

Before you attempt to set up and use AST routines within the context
of your VSL applications, be familiar with the information about AST
routines discussed in the Guide to the VA.Xlab Laboratory 110 Routines.
Once you are familiar with that material, read the remainder of this
section carefully to become familiar with the way in which you write
your VAX C programs to include the use of AST routines.

Example 3-5 is an AST routine written in VAX C that receives com
pleted buffers from a device, processes them, and requeues them to
the device. See the online sample program LIO_ADV_AST.C for a
complete VAX C VSL application program that uses this subroutine.

Example 3-5: An AST Routine Written in VAX C

main() I• Main program aeta up the AST routine •/

I• Declare the external AST routine •/
int adv_aat ();

I• Supply an AST routine to be called when a buff er ia complete •/

status= LIDtSET_I(tdevice_id, tLIDtK_AST_RTN, t1, adv_aat):

/• Enqueue the buffer. This buffer will be passed to the

I•

•I

AST routine when it completes. •/

Thia subroutine receives completed buffers from the ADV11-D
device. Each buffer ia processed by the AST routine as it ia
received from the ADV11-D device and ia then requeued to the
device for further use. A total of five buffers are received
and processed by this AST routine.

adv_aat(atatua_ptr, device_id_ptr, buffer, buffer_length_ptr,
data_length_ptr, buffer_index_ptr, device_apecific_ptr)

Example 3-5 Cont'd. on next page

Program Development 3-41

Example 3-5 (Cont.): An AST Routine Written in VAX C

Note that the AST routine dummy arguments are similar to the
arguments to the LIO.DEQUEUE routine. These arguments are:

*' int •status_ptr
,•device_id_ptr

, buffer[]

,•buffer_length_ptr
,•data_length_ptr

,•buffer_index_ptr

/* Returns the status of the I/O operation. •/
/• Specifies the LIO-assigned device ID of

the ADV11-D. •/
I• The actual buffer, NOT the buffer address

as in the LIO$DEQUEUE routine call. •/
/• The length of the buffer, in bytes.
/• The length of the data in the buffer,

in bytes. •/
I• The buffer index, if one is supplied in the

LIO.ENQUEUE routine call. •/
,•device_specific_ptr /• A dummy argument here. The ADV11-D device

does not support this argument. */

{
I• Declare the conanon used to conanunication with the main program •/
extern int

done_flag
,buffer_count
,ast_status

/* execution •/
I•

I• AST routine done flag •/
I• Numbers of buffer processed •/
I• AST routine status •/

Save the I/O status where the main program can check if an
error condition occurs.
•I

ast_statua = •atatua_ptr;

/• Increment the buffer count •/

buffer_count++;

'* If the buffer count is leas than 6, and if no error condition
has occurred, requeue the buffer to the ADV11-D. Otherwise,
set the I/O done flag and exit.

•I

Example 3-5 Cont'd. on next page

3-42 Program Development

Example 3-5 (Cont.): An AST Routine Written in VAX C

if (buffer_count < 6 tt (•atatua_ptr t STS$N_SUCCESS))
{

else

}

aat_atatua = LIO$ENQUEUE(device_id_ptr, buffer,
buffer_length_ptr, 0, 0, 0, O);

if (!(status t STS$N_SUCCESS)) LIB$SIGNAL(ast_atatua);
}

done_f lag = 1 ;

Example 3-6: Sample VAX C Program Using the VSL Routines

I•
C_EXANPLE.C

Thia program reads 100 values from channel 2 of the AXV11-C then
displays the data in a graph on the screen.

Thia is a simple application using the VSL libraries.

Thia program can be compiled, linked, and run as follows:
$ CC C_EXANPLE
$ LINK C_EXANPLE, SYS$INPUT/OPT
SYS$LIBRARY:VAXCRTL.EXE/SHARE
<CTRL-Z>
$ RUN C_EXANPLE

#include <lioaet.h>
#include <val.h>
#include deacrip
#include atadef

I• LIO set parameter definitions •/
/• VSL routine definitions •/
I• string descriptor definitions •/
I• STATUS value bit definitions •/

main()
{
I• Declare local variables •/

int STATUS /• STATUS returned by LIO routine calla •/
,axv_id /• LIO-assigned device ID •/
,data_length /• number of data bytes to read •/

Example 3-6 Cont'd. on next page

Program Development 3-43

Example 3-6 (Cont.): Sample VAX C Program Using the VSL Routines

I• Declare the string descriptors for the
•DESCRIPTOR(dev_type, "AXAO:) ;
$DESCRIPTOR(mode_atring, 11 ISXY 11)

$DESCRIPTOR(xlabel, "Time") :
•DESCRIPTOR(ylabel, "Voltage") ;
$DESCRIPTOR(title, "C_EXANPLE");

I•

string constants •/
I• AXV11-C device type •/
I• LGP$PLOT mode string value •/
/• LGP$PLOT x-axis label •/
/• LGP$PLDT y-axis label •/
/• LGP$PLOT graph title •/

Declare data buffer for raw data in LSP$FORMAT_TRANSLATE_ADC. Thia
is a word (16-bit) array containing 100 elements.
•I

short int raw_data[100];

Declare data buffer for voltages in LSP$FDRMAT_TRANSLATE_ADC and
LGP$PLDT routines. Thia ia a. single-precision, floating-point
array containing 100 elements.
•I

float voltagea[100];

I• Program execution •/

/• Set up the AXV11-C •/

printf("C_EXAMPLE, Read data, convert it, plot it\n\n");

I•
Attach the AXV11-C and set up for mapped (polled) I/O. Thia routine
call returns an LIO-assigned device ID for the device.
•I

STATUS= LIO$ATTACH C•axv_id, •dev_type, •LIO$K_NAP);
if(l(STATUS • STS$N_SUCCESS)) LIB$SIGNAL(STATUS);

I• Set up the AXV11-C to use the 1ynchronou1 I/O interface. •/

STATUS= LID$SET_I C•axv_id, •LIO$K_SYNCH, •o);
if(l(STATUS • STS$N_SUCCESS)) LIB$SIGNAL(STATUS);

I• Set up AXV11-C channel 2 for input. •/

STATUS= LIO$SET_I C•axv_id, tLIO$K_AD_CHAN, •1, •2);
if(l(STATUS • STS$N_SUCCESS)) LIB$SIGNAL(STATUS);

I• Set up a channel gain of 1. •/

STATUS= LIO$SET_I (taxv_id, •LIO$K_AD_GAIN, •1, •1);
if(l(STATUS. STS.N_SUCCESS)) LIB$SIGNAL(STATUS);

I• Trigger on LID.READ and fill buffer a1 fast as possible. •/

STATUS= LIO$SET_I C•axv_id, •LID$K_TRIG, •1, •LIO$K_INN_BURST);
if (I (STATUS • STS.N_SUCCESS)) LIB$SIGNAL (STATUS) ;

Example 3-6 Cont'd. on next page

3-44 Program Development

Example 3-6 (Cont.): Sample VAX C Program Using the VSL Routines

I•
Get a raw_data buffer of 100 values using LID$READ to read the A/D values.
Please note that the length of raw_data is specified in bytes and is the
returned data_length. Arrays are automatically passed by reference, other
arguments were previously specified to be passed by reference. A zero
(passed by value) defaults an argument in the routine call argument list.
•I

STATUS= LIO$READ(taxv_id, raw_data, t200, tdata_length, O);
if (!(STATUS t STS$N_SUCCESS)) LIB$SIGNAL(STATUS);

I• Detach from the A/D. •/
STATUS= LID$DETACH(taxv_id, O);

if(l(STATUS t STS$N_SUCCESS)) LIB$SIGNAL(STATUS);

/• Convert raw data to voltages using LSP$FDRNAT_TRANSLATE_ADC •/
LSP$FORNAT_TRANSLATE_ADC(raw_data, voltages, t100, 0, 0, O);

I•
Plot the data using LGP$PLOT to plot the voltages on the terminal screen.
•I
LGP$PLOT(t1, tmode_string, 0, voltages, t100, txlabel, tylabel, 0,

ti, 0, 0, 0, ttitle);

/• Wait for a carriage return before deleting plot. •/
printf(11 Type carriage return to exit");
while(getchar() != 1 \n 1

); /•loop till get carriage return •/

I• Terminate the plot. •/
LGP$TERNINATE_PLOT(t1);

}

3.2.4 Developing Programs in VAX FORTRAN

Be familiar with the information contained in the following sections
before you begin developing VSL application programs using VAX
FORTRAN. For further information about VAX FORTRAN programming
concepts and techniques not covered in this guide, see Programming in
VAX FORTRAN.

Program Development 3-45

3.2.4.1 Including Symbolic Definition Files

The VSL symbolic definition files define the Laboratory 1/0 (LIO),
Laboratory Signal-Processing (LSP), and Laboratory Graphics Package
(LGP) error code symbols, the LGP plotting attribute symbols, the LIO
set parameter code symbols, the LSP spectral window types, and the
entry points containing language-specific interface constructs for the
VSL routines. You need to include symbolic definition files in your VSL
application programs so that these symbols can be recognized by the
programming language you are using.

Table 3-4 lists the symbolic definition files provided for use with VAX
FORTRAN.

Table 3-4: VAX FORTRAN Symbolic Definition Files
File Name

LGPATTDEF.FOR

LGPDEF.FOR

LIOERRS.FOR

LIOSET.FOR

LSPDEF.FOR

LSPSET.FOR

VSL.FOR

Defines:

LGP plotting attribute symb9ls

LGP error code symbols

LIO error code symbols

LIO set parameter code symbols

LSP error code symbols

LSP spectral window types

Entry points containing FORTRAN interface constructs
for the VSL routines1

1Include this symbolic definition file in all VSL application routines written in VAX
FORTRAN.

You use the following routine line to include a symbolic definition file
in a user program:

INCLUDE 1SYS.LIBRARY:filename.FOR 1

where

filename is one of the files listed in Table 3-4.

The files you must include in a user program depend on the VSL
facilities the program is designed to use. The file VSL.FOR must be
included in all VAX FORTRAN VSL application programs because it
defines entry points containing VAX FORTRAN interface constructs for
the VSL routines.

3-46 Program Development

If your program is designed to use only the LIO routines, then you
also need to include those files that define LIO symbolic values. If a
program, such as the one presented in Example 3-8, uses routines from
all the VSL facilities, then you need to include many of the files listed in
Table 3-4. If your application programs use routines from all the VSL
facilities, it is advisable to include all the files listed in Table 3-4.

3.2.4.2 Declaring Data Types and Data Items

All data in a VAX FORTRAN program has a specific data type that
determines how many bits of storage to consider as a unit and how
to interpret and manipulate the unit. In VAX FORTRAN, a numeric
storage unit generally corresponds to four bytes of memory. In some
cases, a numeric storage unit can correspond to two bytes of memory.
A character storage unit corresponds to one byte of memory. Data
items are named quantities whose values can change during program
execution. Each data item name refers to a location in the program's
storage area.

Some data items are used to pass information from a user program
to a device that is to perform some function with the information.
Other data items are used to return information from a device to a user
program. The VSL application .routine reference descriptions explain
the functions, syntax, and appropriate usage of the VSL routines. Each
routine reference description also explains the routine arguments, their
data types, and whether an argument is used to pass information to a
device, to return information from the device to the user program, or,
in some cases, both.

The VSL application routines use BYTE, INTEGER, REAL* 4,
COMPLEX*B, and CHARACTER*len data types. The INTEGER data
type can be broken down further into the INTEGER *2 (two-byte or
word) and INTEGER *4 (four-byte or longword) quantities. The default
is INTEGER*4. Single-precision, floating-point data items are declared
as REAL*4. Complex single-precision, floating-point data items are
declared as COMPLEX*B: a pair of REAL*4 values that represent
a complex number. The first value represents the real part of that
number, and the second represents the imaginary part of that number.1

1 Complex numbers are used only with certain VSL signal-processing routines. See the Guide to the
VAXlab Signal-Processing Routines for more information.

Program Development 3-47

You can specify data-type defaults in a program module using data-type
declaration statements to explicitly type data items. Explicit data typing
makes programs easier to understand and maintain because the data
type of all program values is explicitly spelled out in the program and is
not as dependent upon compilation defaults that may change.

To explicitly type data items, you use declaration statements to specify
the type, range, and precision of your program values, for example:

C Declare local data items:

INTEGER•4 STATUS
INTEGER*4 axv_id
INTEGER•4 data_length
BYTE dunmy

!STATUS returned by LIO calls
!LIO-assigned device ID
!Number of bytes of data to read
!Variable to accept carriage return

This program segment is excerpted from Example 3-8 and shows the
explicitly typed data items used in that sample program.

3.2.4.3 Declaring and Dimensioning Arrays

An array is a group of contiguous storage locations associated with a
single symbolic name, the array name. The individual storage locations,
called array elements, are referred to by a subscript appended to the
array name. A one-dimensional array, such as BUFFER(lO), contains a
single column of figures. An array containing more than one column of
figures, such as BUFFER(l0,10), is called a two-dimensional array. The
array BUFFER(lO) contains 10 array elements; the array BUFFER(l0, 10)
contains 100 array elements.

Dimensioning an array means to specify the name, data type, and max
imum size of the array. When programming in VAX FORTRAN, you
can use data-type declaration statements, the DIMENSION statement,
and the COMMON statement to declare arrays.2 These statements
contain array declarators that define the name of the array, the number
of dimensions in the array, and the number of array elements in each
dimension, for example:

C Declare data buffers:
INTEGER•2 raw_data(100) !100 point raw data buffer
REAL•4 voltages(100) 1100 voltages to plot

2 The nature of your application program may determine which method is most appropriate.

3-48 Program Development

This program segment uses data-type declaration statements to di
mension the two arrays that are used in Example 3-8. The first array,
raw_data(lOO}, is a word (two-byte) integer array of length 100 that is
used to contain 100 raw data values obtained from the analog-to-digital
converter on the AXVll-C. The second array, voltages(lOO}, is a single
precision, floating-point (real) array of length 100 that is used to contain
the 100 voltages obtained by converting the 100 raw data points to
voltages using the LSP routine LSP$FORMAT_TRANSLATE_ADC.

Certain high-level languages have different ways of storing the values
associated with two-dimensional arrays. You need to be aware of
the way in which VAX FORTRAN stores the values associated with
two-dimensional arrays when you declare and dimension arrays in
your programs. For example, suppose you need to declare a 2-by-3
two-dimensional array, called BUFF. You declare the array as follows:

INTEGER•2 BUFF(3,2)

VAX FORTRAN stores the values associated mth the 2-by-3 two
dimensional array, called BUFF, as a linear one-dimensional array of
length six with the storage allocated according to the following indexing
system:

Figure 3-4: VAX FORTRAN Array Indexing System

entry 1 entry 2 entry 3 entry 4 entry 5 entry 6

BUFF(1.1} BUFF(2, 1} BUFF(l,2} BUFF(2,2} I BUFF(1.3) BUFF(2,3)

MR-1372-GE

When using two-dimensional arrays in a VAX FORTRAN VSL appli
cation program, the leftmost index, which varies faster, can reference
consecutive values read from an analog-to-digital converter, or val
ues passed to a multiline plotting routine call. The rightmost index
references the buffer number.

Program Development 3-49

3.2.4.4 Declaring External Routines

The symbolic definition file VSL.FOR defines the entry points contain
ing the FORTRAN interface language constructs for the VSL routines.
Including this file in your VSL application programs ensures that the
VSL routines are declared external and that their respective argu
ments are typed appropriately. See Section 3.2.4.1, Including Symbolic
Definition Files, for information about including VSL.FOR, as well
as other required symbolic definition files, in your VSL application
programs. ·

3.2.4.5 Defaulting Routine Call Arguments

The reference descriptions of the VSL routines describe each routine's
syntax and argument list in detail. Some VSL routine arguments are
required. A required argument must always be included in the routine's
argument list. Some VSL routine arguments are optional. Optional
arguments can be included in the routine's argument list at the pro
grammer's discretion. These arguments pass or return information that
may or may not be useful to a particular application program. Some
optional arguments are useful only with certain VSL devices.

Most VSL routine call arguments are assigned default values that are
used if a user-supplied value is not included in a routine call argument
list. To use a default value supplied by VSL, or to signal the omission of
an optional argument in a routine call argument list, you must account
for the argument in the routine call argument list by including a comma
in place of the actual argument, for example:

CALL LGPtPLOT(1, 'IXSY', , VOLTAGES, 100, 'Time', 'Voltage',
1 STATUS, 1, , , , , 'FORTRAN_EXANPLE')

In the LGP$PLOT routine call argument list above, the arguments are
passed as shown in the following table.

3-50 Program Development

Argument Value

ws_number 1

mode_string 1 IXSY 1

xarray Comma1

yarray VOLTAGES

n 100

xlabel •Time•

ylabel •Voltage•

status STATUS

iline 1

igrid Comma1

xcontrol Comma1

ycontrol Comma1

color Comma1

title I FORTRAN_EXAMPLE I

metaflag Omitted

metafile_name Omitted

1Uses default value.

For LSP and LGP routine calls, you can omit optional arguments at the
end of a routine call argument list. You can terminate the list after the
last user-supplied value of an optional argument is specified.

For LIO routine calls, you must explicitly specify or explicitly default
optional arguments regardless of the argument's place in the routine call
argument list. You cannot terminate the list after the last user-supplied
value of an optional argument is specified.

Program Development 3-51

3.2.4.6 Checking Routine Call Status

You use the VMS Run-Time Library routine LIB$SIGNAL to signal the
status of VSL routine calls. LIB$SIGNAL generates a signal indicating
that a exception condition has occurred in your program. If a condition
handler does not take corrective action and the condition is severe, then
your program exits.

The following program segment calls the LIO$READ routine as a func
tion which returns the status of the operation in the variable STATUS.

STATUS = LIO.READ(axv_id, raw_data, 200, data_length,)
IF(.HOT. STATUS) CALL LIB.SIGNAL(IVAL(STATUS)

The .NOT. logical operator tests whether STATUS is true or false. If
the operation returns true, then STATUS is odd (bit zero set to one),
and program execution continues. If the function returns false, then
STATUS is even (bit zero set to zero), and the condition is signaled.

The error-handling mechanisms used by the LIO, LSP, and LGP rou
tines are documented in the Guide to the V AXlab Laboratory 110 Routines,
the Guide to the V AXlab Laboratory Signal-Processing Routines, and the Guide
to the VAXlab Laboratory Graphics Package, respectively. See the appropri
ate document for complete information about the ways in which each
VSL facility performs error handling. These documents also contain
detailed information about the error codes returned by each facility and
suggested user actions to recover from errors.

3.2.4.7 Using AST Routines

Before you attempt to set up and use AST routines within the context
of your VSL applications, be familiar with the information about AST
routines discussed in the Guide to the V AXlab Laboratory 110 Routines.
Once you are familiar With that material, read the remainder of this
section carefully to become familiar with the way in which you write
your VAX FORTRAN programs to include the use of AST routines.

Example 3-7 is an AST routine written in VAX FORTRAN that receives
completed buffers from a device, processes them, and requeues them
to the device. See the online sample program LIO_ADV_AST.FOR for
a complete VAX FORTRAN VSL application program that uses this
subroutine.

3-52 Program Development

Example 3-7: An AST Routine Written in VAX FORTRAN

PROGRAM MAIN_PRDGRAM
C Declare COMMON definitions

COMMON /a1t/done_flag,buffer_count,ast_1tatus
LOGICAL * 1 done_flag ! Set to .TRUE. when done
INTEGER buffer_count Increment on each buffer until 6
INTEGER ast_status AST routine status

EXTERNAL ADV_AST I Declare the AST routine as external

C Supply an AST routine to be called when a buff er is complete

1tatu1 = LID.SET_I(device_id, LID$K_AST_RTN, 1, ADV_AST)

C This subroutine receives completed buffers from the ADV11-D
C device. Each buffer is proce11ed by the AST routine as it i•
C received from the ADV11-D device and i1 then requeued to the
C devi.ce for further UH. A total of five buffers are received
C and proce1sed by this AST routine.

SUBROUTINE ADV_AST(statu1, device_id, buffer, buffer_length,
1 data_length, buffer_index, device_specific)

C Note that the AST routine dummy arguments are similar to the
C arguments to the LID$DEQUEUE routine. These argument• are:
c

status
device_id

Returns the status of the I/D operation.
Specifie1 the LID-assigned device ID of

the ADV11-D.
buffer The actual buffer, NOT the buffer addre11

buffer_length
data_length
buffer_index

device_1pecific

a1 in the LID$DEQUEUE routine call.
The length of the buffer, in byte1.
The length of the data in the buffer, in bytes.
The buffer index, if one is 1upplied in the

LID$ENQUEUE routine call.
A dummy argument here. The ADV11-D device

does not support a device-specific argument.

Example 3-7 Cont'd. on next page

Program Development 3-53

Example 3-7 (Cont.): An AST Routine Written in VAX FORTRAN

C Declare the comnon used to comnunicate with the main program.
C These COMMON definitions must also be declared in the main program.

COMMON /ast/done_flag,buffer_count,aat_status
LOGICAL* 1 done_flag ! Set to .TRUE. when done
INTEGER buffer_count ! Increment on each buff er until 6
INTEGER ast_status AST routine status

C Save the I/O status where the ma.in program can check if an
C error condition occurs.

aat_statua = status

C Increment the buffer count

buffer_count = buffer_count + 1

'c If the buffer count is leas than 6, and if no error condition
C has occured, requeue the buffer to the ADV11-D. Otherwise,
C set the I/O done flag and exit.

IF ((buffer_count .LT. 6) .AND. (status .AND. 1) THEN

ELSE

END IF

RETURN
END

status = LIO$ENQUEUE(device_id, buffer, buffer_length, , , ,)
IF (.NOT. status) CALL LIB$SIGNAL(%VAL(status)

done_flag = .TRUE.

3-54 Program Development

Example 3-8: Sample VAX FORTRAN Program Using the VSL Routines

PROGRAM FDRTRAN_EXAMPLE
C This program reads 100 values from channel 2 of the AXV11-C then
C displays the data in a graph on the screen.
c
C This
c
C This
c
c
c
c

is a simple application using the VSL libraries.

program can be compiled, linked, and run as follows:
FORTRAN FORTRAN_EXAMPLE
LINK FDRTRAN_EXAMPLE
RUN FORTRAN_EXAMPLE

INCLUDE 1 SYS$LIBRARY:LIDSET.FDR 1

INCLUDE 1SYS$LIBRARY:LIDERRS.FDR 1

INCLUDE 1 SYS$LIBRARY:LSPDEF.FDR 1

INCLUDE 1 SYS$LIBRARY:LGPDEF.FOR 1

INCLUDE 1SYS.LIBRARY:VSL.FDR 1

C Declare local data items:

!STATUS returned by LIO calls
!LID-assigned device ID

INTEGER•4 STATUS
INTEGER•4 axv_id
INTEGER•4 data_length
BYTE dwmny

!Number of data bytes to read
!Variable to accept carriage return

C Declare data buffers:

INTEGER•2 raw_data(100) 1100 point raw data buffer
REAL voltages (100) 1100 voltages to plot

C Type pretty message
c

TYPE •, 1 FDRTRAN_EXAMPLE, Read data, convert it, plot it'
TYPE *

C Attach the AXV11-C to use mapped (polled) I/D. This routine
C returns the LID-assigned device ID for the device.
c

STATUS= LID$ATTACH (axv_id, 1 AXA0 1 , LID$K_MAP)
IF(.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

C Set up the AXV11-C to use the synchronous I/D interface:
c

STATUS = LIO$SET_I (axv_id, LID$K_SYNCH, 0)
IF(.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

Example 3-8 Cont'd. on next page

Program Development 3-55

Example 3-8 (Cont.): Sample VAX FORTRAN Program Using the VSL Routines

C Set up AXV11-C channel 2 for input:
c

STATUS = LIDtSET_I (axv_id, LIDtK_AD_CHAN, 1, 2)
IF(.NOT. STATUS) CALL LIBtSIGNAL(IVAL(STATUS))

C Set up a channel gain of 1 :
c

STATUS = LIOtSET_I (axv_id, LIO.K_AD_GAIN, 1, 1)
IF(.NOT. STATUS) CALL LIB.SIGNAL(IVAL(STATUS))

C Trigger on LIO.READ and fill buffer a• fast as possible:
c

STATUS = LIO.SET_! (~_id, LIOtK_TRIO, 1, LIO.K_INN_BURST)
IF(.NOT. STATUS) CALL LIB.SIGNAL(XVAL(STATUS))

C Get a raw_data buffer of 100 values:
C Thi• program us•• LIO.READ to read the 100 A/D values.
C Note that the length of the buffer is in bytes, as i• the
C returned data_length.
c

STATUS = LIO.READ(axv_id, raw_data, 200, data_length,)
IF(.NOT. STATUS) CALL LIB.SIGNAL(IVAL(STATUS))

C Detach from the A/D:
c

STATUS = LIO.DETACH(axv_id,)
IF(.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

C Convert the raw data to voltages using LSP.FORMAT_TRANSLATE_ADC:
c

CALL LSP.FORNAT_TRAHSLATE_ADC(raw_data, VOLTAGES, 100,
IF(.NOT. STATUS) CALL LIB.SIGNAL(IVAL(STATUS))

C Plot the data using LOP$PLOT to plot the voltages on the
C terminal screen:
c

CALL LGP.PLDT(1, 1 IXSY 1 , , VOLTAGES, 100, 'Time•, 'Voltage•,
1 STATUS, 1, , , , 1 FORTRAH_EXANPLE 1

)

IF(.NOT. STATUS) CALL LIB.SIGNAL(XVAL(STATUS))

C Wait for a carriage return before deleting plot:
c

TYPE 1000
1000 FORNAT(1X, 1 Typ• carriage return to exit 1 t)

ACCEPT 1010,dummy
1010 FDRMAT(A1)

Example 3-8 Cont'd. on next page

3-56 Program Development

Example 3-8 (Cont.): Sample VAX FORTRAN Program Using the VSL Routines

C Terminate the plot:
c

CALL LGP$TERNINATE_PLOT(1)

STOP 'Done'
END

3.2.5 Developing Programs in VAX PASCAL

Be familiar with the information contained in the following sections
before you begin developing VSL application programs using VAX
PASCAL. For further information about VAX PASCAL programming
concepts and techniques not covered in this guide, see the VAX PASCAL
Reference Manual.

3.2.5.1 Including Symbolic Definition Files

The VSL symbolic definition files define the Laboratory 1/0 (LIO),
Laboratory Signal-Processing (LSP), and Laboratory Graphics Package
(LGP) error code symbols, the LGP plotting attribute symbols, the LIO
set parameter code symbols, the LSP spectral window types, and the
entry points containing language-specific interface constructs for the
VSL routines. You need to include symbolic definition files in your VSL
application programs so that these symbols can be recognized by the
programming language you are using.

Program Development 3-57

Table 3-5 lists the symbolic definition files provided for use with VAX
PASCAL

Table 3-5: VAX PASCAL Symbolic Definition Files
File Name

LGPATTDEF.PAS

LGPDEF.PAS

LIOERRS.PAS

LIOSET.PAS

LSPDEF.PAS

LSPSET.PAS

VSL.PAS

Defines:

LGP plotting attribute symbols

LGP error code symbols

LIO error code symbols

LIO set parameter code symbols

LSP error code symbols

LSP spectral window types

Entry points containing PASCAL interface constructs for
the VSL routines1

1 Include this symbolic definition file in all VSL application routines written in VAX
PASCAL.

Before the files listed in Table 3-5 can be inherited into a PASCAL
program, they must be compiled into environment files. Take the
following steps to create the appropriate environment files:

1. Log in to a privileged account, such as the system manager's
account.

2. Set default to SYS$LIBRARY.
3. Enter the following command lines:

$ PASCAL/ENVIRDNNENT/NDOBJECT LIDERRS, LIDSET
$ PASCAL/ENVIRDNNENT/NODBJECT LSPDEF, LSPSET
$ PASCAL/ENVIRONNENT/NDOBJECT LGPDEF, LGPATTDEF
$ PASCAL/ENVIRONNENT/NDDBJECT VSL
$ SET PRDT=(W:RE) •.PEN

The PASCAL compiler creates an environment file (filename.PEN)
for each of these symbolic definition files.

3-58 Program Development

Then, when you code an application program using PASCAL, you use
the following routine line to include a symbolic definition (environment)
file in a user program:

[INHERIT ('SYStLIBRARY:filename')]

where

filename is one of the files listed in Table 3-5.

The files you must include in a user program depend on the VSL
facilities the program is designed to use. The file VSL.P AS must be
included in all VAX PASCAL VSL application programs because it
defines entry points containing VAX PASCAL interface constructs for
the VSL routines.

If your program is designed to use only the LIO. routines, then you
also need to include those files that define LIO symbolic values. If a
program, such as the one presented in Example 3-10, uses routines
from all the VSL facilities, then you need to include many of the files
listed in Table 3-5. If your programs use routines from all the VSL
facilities, it is advisable to include all the files listed in Table 3-5.

3.2.5.2 Declaring Data Types and Data Items

Every PASCAL data item is associated with a particular data type.
A data type is a set of values which share certain characteristics. A
data type detemines both the range of values a data item can assume
and the operations that can be performed on it. In addition, the type
determines the storage space required for all the data item's possible
values.

Some data items are used to pass information from a user program
to a device that is to perform some function with the information.
Other data items are used to return information from a device to a user
program. The VSL application routine reference descriptions explain
the functions, syntax, and appropriate usage of the VSL routines. Each
routine reference description also explains the routine arguments, their
data types, and whether an argument is used to pass information to a
device, to return information from the device to the user program, or,
in some cases, both.

The VSL application routines use WORD, INTEGER, REAL, and
PACKED ARRAY [] OF CHAR data types. A fixed-length character
string is defined as a packed array of characters with a lower bound of
1. The length of the string is established by the array's upper bound.

Program Development 3-59

To explicitly type data items, you use a declarative statement to specify
the type, range, and precision of your program values. The following
program segment shows how to define some of the data types used in
Example 3-10.

{ Define data types }
TYPE
{ Define devspec argument of the LIO$ATTACH routine as a character

string a maximum of 2 characters in length }

name_string =PACKED ARRAY [1 .. 2] OF CHAR; {'AX' }

{ Define the range of the A/D data - 12-bit A/D }

AtoD_data = -2048 .. 2047 { 12-bit A/D }

{ Define the A/D buffer as a 100-element word array of data in the
range of -2048 to 2047. }

AtoD_buffer =ARRAY [1 .. 100] OF [WORD] AtoD_data; {A/Draw data}

{ Define the voltage array as a 100-element single-precision,
floating-point (real) array }

plot_buffer =ARRAY [1 .. 100] OF REAL; {data in volts}

{ Define the title argument of the LGP$PLOT routine as a character
string a maximum of 14 characters in length }

title_string =PACKED ARRAY [1 .. 14] OF CHAR; { 1PASCAL_EXAMPLE 1 }

{ Define local variables }

VAR STATUS : INTEGER; { STATUS returned by Lin calls }
axv_id : INTEGER; { LIO-assigned device ID }
data_length : INTEGER; { Number of data bytes to read }

3-60 Program Development

3.2.5.3 Declaring and Dimensioning Arrays

An array is a group of components in which all elements have the same
data type and share a common identifier. An individual element of an
array is referred to by an integer index, or subscript, that designates the
element's position or order in the array.

The definition of an array type specifies its dimensions, the bounds of
each dimension, and the types of its indexes and components. The
arrays used in Example 3-10 were typed in the previous section. The
following program segment shows how to declare the arrays used in
Example 3-10. The actual allocation or dimensioning of the arrays does
not take place until they are declared as shown below.

{ Declare data buffers }

raw_data : AtoD_buffer; { 100 point raw data buffer }
voltage : plot_buffer; { 100 voltages to plot }

Certain high-level languages have different ways of storing the values
associated with two-dimensional arrays. You need to be aware of
the way in which VAX PASCAL stores the values associated with
two-dimensional arrays when you declare and dimension arrays in
your programs. For example, suppose you need to declare a 2-by-3
two-dimensional array, called BUFF. You declare the array as follows:

buff= array [0 .. 1) of array [0 .. 2] of [word] AtoD_data;

VAX PASCAL stores the value~ associated with the 2-by-3 two
dimensional array, called buff, as a linear one-dimensional array of
length six with the storage allocated according to the following indexing
system:

Figure 3-5: VAX PASCAL Array Indexing System

entry 1 entry 2 entry 3 entry 4 entry 5 entry 6

BUFF(0,0) BUFF(0, 1) BUFF(0,2) BUFF(l,0) I BUFF(l,1) BUFF(l,2)

MR-1373-GE

Program Development 3-61

When using two-dimensional arrays in a VAX PASCAL VSL application
program, the leftmost index usually references the buffer number. The
rightmost index, which varies faster, can reference consecutive values
read from an analog-to-digital converter, or values passed to a multiline
plotting routine call.

3.2.5.4 Declaring External Procedures and Functions

The symbolic definition file VSL.P AS defines the entry points contain
ing the PASCAL interface language constructs for the VSL routines.
Including this file in your VSL application programs ensures that the
VSL routines are declared external apd that their respective argu
ments are typed appropriately. See Section 3.2.5.1, Including Symbolic
Definition :e'iles, for information about including VSL.P AS, as well
as other·required symbolic definition files, in your VSL application
programs.

If your VSL application programs use VMS library routines, such
as LIB$SIGNAL, these routines must be declared external with the
program context. The following program segment, excerpted from
Example 3-10 shows how to declare an external routine as a function
within the program context.

{Define VMS library routine}

[EXTERNAL] FUNCTION LIB$SIGNAL
(
%INNED STATUS : INTEGER

) : INTEGER; EXTERNAL;

See Section 3.2.5.6, Checking Routine Call Status, for information about
how the LIB$SIGNAL routine is used to check routine call status.

3.2.5.5 Defaulting Routine Call Arguments

The reference descriptions of the VSL routines describe each routine's
syntax and argument list in detail. Some VSL routine arguments are
required. A required argument must always be included in the routine's
argument list. Some VSL routine arguments are optional. Optional
arguments can be included in the routine's argument list at the pro
grammer's discretion. These arguments pass or return information that
may or may not be useful to a particular application program. Some
optional arguments are useful only with certain VSL devices.

3-62 Program Development

Most VSL routine call arguments are assigned default values that are
used if a user-supplied value is not included in a routine call argument
list. To use a default value supplied by VSL, or to signal the omission of
an optional argument in a routine call argument list, you must account
for the argument in the routine call argument list by including a comma
in place of the actual argument. To use routine argument default
values, you need to declare the arguments you want to default using the
%IMMED foreign mechanism specifier. See Section 3.2.5.4, Declaring
External Procedures and Functions for further information.

LGP$PLOT (1, 1 IXSY 1
, , VOLTAGES, 100, 1 Time 1

,
1Voltage 1

, STATUS,
1, I I I I 'PASCAL_EXANPLE 1);

In the LGP$PLOT routine call argument list above, the arguments are
passed as shown in the following table.

Argument Value

ws_number 1

mode_string 1 IXSY 1

xarray Comma1

yarray VOLTAGES

n 100

xlabel •Time•

ylabel •Voltage•

status STATUS

iline 1

igrid Comma1

xcontrol Comma1

ycontrol Comma1

color Comma1

title I PASCAL_EXAMPLE I

metaflag Omitted

metafile_name Omitted

1Uses default value.

For LSP and LGP routine calls, you can omit optional arguments at the
end of a routine call argument list. You can terminate the list after the
last user-supplied value of an optional argument is specified.

Program Development 3-63

For LIO routine calls, you must explicitly specify or explicitly default
optional arguments regardless of the argument's place in the routine call
argument list. You cannot terminate the list after the last user-supplied
value of an optional argument is specified.

3.2.5.6 Checking Routine Call Status

You use the VMS Run-Time Library routine LIB$SIGNAL to signal the
status of VSL routine calls. LIB$SIGNAL generates a signal indicating
that an exception has occurred in your program. If a condition handler
does not take corrective action and the condition is severe, then your
program exits.

The following program segment calls the LIO$READ routine as a func
tion which returns the status of the operation in the variable STATUS.

STATUS := LIOtREAD(axv_id, raw_data, 200, data_length,);
IF NOT ODD (STATUS) THEN LIBtSIGNAL (STATUS);

The NOT ODD function tests whether the low bit of STATUS is odd
or even. If the function returns true, then STATUS is odd (bit zero
set to one), and program execution continues. If the function returns
false, then STATUS is even (bit zero set to one), and the condition is
signaled.

The error-handling mechanisms used by the LIO, LSP, and LGP rou
tines are documented in the Guide to the V AXlab Laboratory 110 Routines,
the Guide to the VAXlab Laboratory Signal-Processing Routines, and the Guide
to the VAXlab Laboratory Graphics Package, respectively. See the appropri
ate document for complete information about the ways in which each
VSL facility performs error handling. These documents also contain
detailed information about the error codes returned by each facility and
suggested user actions to recover from errors.

3.2.5. 7 Using AST Routines

Before you attempt to set up and use AST routines within the context
of your VSL applications, be familiar with the information about AST
routines discussed in the Guide to the VAXlab Laboratory 110 Routines.
Once you are familiar with that material, read the remainder of this
section carefully to become familiar with the way in which you write
your VAX PASCAL programs to include the use of AST routines.

3-64 Program Development

Example 3-9 segment is an AST routine written in VAX PASCAL that re
ceives completed buffers from a device, processes them, and requeues
them to the device. See the online sample program LIO_ADV_AST.PAS
for a complete VAX PASCAL VSL application program that uses this
subroutine.

Example 3-9: An AST Routine Written in VAX PASCAL

{Define the AST Routine }

[ASYHCHR.OHOUS, UNBOUND] PROCEDURE ADV_AST(VAR status, devica_id : INTEGER;
buffer: AtoD_buffer; buffer_length, data_length, buffer_index,
devica_apecific : INTEGER);

{
Thi• subroutine receives completed buffers from the ADV11-D device.
Each buffer i• proc••••d by the AST routine as it is received from the
ADV11-D device and i• then requeued to the device for further use. A
total of five buffer• are received and processed by this AST routine.
Thie AST routine must be declared ASYNCHRONOUS and UNBOUND.

Note that the AST routine dummy argument• are similar to the
argument• to the LIO.DEQUEUE routine. These argument• are:

status
device_id

buffer

Returns the status of the I/O operation.
Specifies the LIO-assigned device ID of

the ADV11-D .
The actual buffer, NOT the buffer addr•••

as in the LIO.DEQUEUE routine call.
The length of the buffer, in bytes. buffer_length

data_length
buffer_index

The length of the data in the buffer, in bytes.
The buffer index, if one i• supplied in the

LIO.ENQUEUE routine call.
device_apecific A dummy argument hare. The ADV11-D device

does not support a device-specific argument.

The following variables are declared in the main routine and are
referenced here a• globals:

}

done_f lag : BOOLEAN
buffer_count : INTEGER
a•t_etatua : INTEGER

AST routine done flag
Number of buffers
AST routine statue

Example 3-9 Cont'd. on next page

Program Development 3-65

Example 3-9 (Cont.): An AST Routine Written in VAX PASCAL

BEGIN

{
Save the I/O status where the main program can check if an
error condition occurs.
}

ast_status := status;

{
Increment the buff er count
}
buffer_count := buffer_count + 1;

{
If the buffer count is lass than 6, and if no error condition
has occured, requaua the buffer to the ADV11-D. Otherwise,
set the I/O done flag and exit.
}

IF((buffar_count < 6) AND (ODD (status))) THEN
BEGIN

ELSE

END;

ast_status LIO$ENQUEUE(device_id, buffer, buffar_length, , , ,)
IF NOT ODD (ast_status) THEN LIB$SIGNAL (ast_status)

END

dona.flag := TRUE;

{ Define the routine that sets up the AST routine }

FUNCTION SET_AST(device_id : INTEGER;

{

[UNBOUND] PROCEDURE ADV_AST(VAR status, davice_id INTEGER;
buffer : AtoD_buffer, buffer_length, data_length, buffer_index,
davice_spacific : INTEGER)) : INTEGER;

This function exists purely to get around PASCAL• s strong typing rules.
Its purpose it to create a version of the LIO$SET_I routine call that
sets up the AST routine. The LIO$SET_I called is declared to accept
integer arguments (this declaration is made in the include file VSL.PAS).
This use of the LIO$SET_I routine call requires it to accept a routine as
an argument, so you need a special declaration of the LIO$SET_I routine
to enable it.
}

Example 3-9 Cont'd. on next page

3-66 Program Development

Example 3-9 (Cont.): An AST Routine Written in VAX PASCAL

{ Declare special version of the LIO$SET_I routine call }
[~XTERNAL] FUNCTION LIO$SET_I

(
lREF device_id : INTEGER; { LIO-assigned device ID }
lREF param_code : INTEGER; { Set parameter code }
lREF param_val : INTEGER; { Set parameter coda value }

{ AST routine }
lINMED [UNBOUND] PROCEDURE ADV_AST(VAR status, device_id INTEGER,

buffer : AtoD_buffer, buffar_langth, data_langth,
buffar_indax, davica_spacific : INTEGER)

) : INTEGER; EXTERNAL;

{ Supply AST routine }

BEGIN
sat_ast := LIO$SET_I(davica_id, LIO$K_AST_RTN, 1, ADV~AST)

END;

Example 3-10: Sample VAX PASCAL Program Using the VSL Routines

(INHERIT (1 SYS$LIBRARY:LIOSET 1 ,

1SYS$LIBRARY:LIOERRS 1
,

1SYS$LIBRARY:LSPDEF 1 ,

1SYS$LIBRARY:LGPDEF 1 ,

1 SYS$LIBRARY:VSL 1
)]

{ Defines LIO sat paraJQ.atar codes }
{ Defines LIO error codes }
{ Daf inas LSP error codas }
{ Defines LGP error codas }
{ Defines VSL routines }

PROGRAM PASCAL_EXANPLE (INPUT, OUTPUT);
{

}

This program reads 100 values from channel 2 of the AXV11-C than
displays the data in a graph on the screen.

Thia is a simple application using the VSL libraries.

Thia program can be compiled, linked, and run as follows:
PASCAL PASCAL_EXAMPLE
LINK PASCAL_EXANPLE
RUN PASCAL_EXANPLE

Example 3-10 Cont'd. on next page

Program Development 3-67

Example 3-10 (Cont.): Sample VAX PASCAL Program Using the VSL Routines

{ Define data type• }

TYPE
{ Define dev•pec argwnent of the LID.ATTACH routine a• a character

•tring a maximum of 2 characters in length }

name_string =PACKED ARRAY (1 .. 2] OF CHAR; { 1 AX 1 }

{ Define the range of the A/D data - 12-bit A/D }

AtoD_data = -2048 .. 2041 { 12-bit A/D}

{ Define the A/D buff er as a 100-element word array of data in the
range of -2048 to 2041. }

AtoD_buffer =ARRAY (1 .. 100] OF [WORD] AtoD_data: {A/Draw data}
{ Define the voltage array a• a 100-element single-precision,

floating-point (real) array }

plot_buffer =ARRAY [1 .. 100] OF REAL; {data in volt•}

{ Define the range array a• a 2-element single-precision,
floating point (real) array }

range_ array = ARRAY [1 .. 2] OF REAL;

{ Define the mode_string argument of the LOP.PLOT routine a• a
character string a maximwn of 4 characters in length }

mode_Btring =PACKED ARRAY [1 .. 4] OF CHAR; { 'IXSY' }

{ Define the xlabel argwnent of the LOP.PLOT routine as a character
string a maximum of 4 characters in length }

xlabel_Btring =PACKED ARRAY (1 .. 4] OF CHAR; {'Time' }

{ Define the ylabel argwnent of the LOP$PLOT routine as a character
1tring a maximum of 1 characters in length }

ylabel_string =PACKED ARRAY (1 .. 1] OF CHAR; { 'Voltage' }

{ Define the title argument of the LOP.PLOT routine as a character
•tring a maximum of 14 characters in length }

title_string =PACKED ARRAY (1 .. 14] OF CHAR; { 'PASCAL_EXAMPLE' }

Example 3-10 Cont'd. on next page

3-68 Program Development

Example 3-10 (Cont.): Sample VAX PASCAL Program Using the VSL Routines

{ Define local variables }

VAR STATUS : INTEGER; { STATUS returned by LIO calla }
axv_id : INTEGER; { LIO-aaaigned device ID }
data_length : INTEGER; { Number of data bytes to read }

{ Declare data buff era }

raw_data AtoD_buffer;
voltages : plot_buffer;

{Define VMS library routines}

{ 100 point raw data buff er }
{ 100 voltages to plot }

[EXTERNAL] FUNCTION LIB$SIGNAL { Define LIB$SIGNAL aa an external function }
(

%INNED STATUS : INTEGER { %INNED defaults STATUS argument }
) : INTEGER; EXTERNAL;

BEGIN
{ Type pretty meaaage }

WRITELN(1 PASCAL_EXANPLE, Read data, convert it, plot it');
WRITELN;

{ Attach the AXV11-C to uae mapped (polled) I/O. This routine
returns the LIO-assigned device ID for the device. }

STATUS := LIO$ATTACH (axv_id, 1 AX 1 , LIO$K_MAP);
IF NOT ODD (STATUS) THEN LIB$SIGNAL(STATUS);

{ Set up the AXV11-C to uae the synchronous I/O interface: }

STATUS := LIO$SET_I (axv_id, LIO$K_SYNCH, O);
IF NOT ODD (STATUS) THEN LIB$SIGNAL(STATUS);

{ Set up AXV11-C channel 2 for input: }

STATUS := LIO$SET_I (axv_id, LIO$K_AD_CHAN, 1, 2);
IF NOT ODD (STATUS) THEN LIB$SIGNAL(STATUS);

{ Set up a channel gain of 1: }

STATUS := LIO$SET_I (axv_id, LIO$K_AD_GAIN, 1, 1);
IF NOT ODD (STATUS) THEN LIB$SIGNAL(STATUS);

{ Trigger on LIO$READ and fill buffer aa fast aa poaaible: }

STATUS := LIO$SET_I (axv_id, LIO$K_TRIG, 1, LIO$K_IMM_BURST);
IF NOT ODD (STATUS) THEN LIB$SIGNAL(STATUS);

Example 3-10 Cont'd. on next page

Program Development 3-69

Example 3-10 (Cont.): Sample VAX PASCAL Program Using the VSL Routines

{ Get. a raw_data buffer of 100 values. UH LIOtREAD to read the 100
A/D values. Note that the length of the buffer is specified in
bytes as is the returned data length. }

STATUS := LIOtREAD(axv_id, raw_data, 200, data_length,);
IF NOT ODD (STATUS) THEN LIBtSIGNAL(STATUS);

{ Detach frOJll the A/D }

STATUS := LIOtDETACH(axv_id, O);
IF NOT ODD (STATUS) THEN LIBtSIGNAL(STATUS);

{ Convert the raw data to voltages using LSPtFORNAT_TRANSLATE_ADC }

LSPtFORNAT_TRANSLATE_ADC(raw_data, voltages, 100, , ,);

{ Plot the data using LGPtPLOT to plot the voltages on the
terminal screen. }

LGPtPLOT(1, 'IXSY', , voltages, 100, 'Time', 'Voltage', , 1, , , , ,
'PASCAL_EXANPLE');

{ Wait for a carriage return before deleting plot. }

VRITE('Type carriage return to exit');
READLN;

{ Terminate the plot. }

LGP$TERNINATE_PLOT(1);
END.

3.3 Accessing the VSL Sample Programs

The VSL s.'1mple programs are shipped with the VSL software and are
put on line during the VSL installation procedure in a directory with the
logical name VSL$EXAMPLES.

To copy a sample program file, in this case ADA_EXAMPLE.ADA, to
your directory, enter the following command line:

$COPY VSL$EXANPLES:ADA_EXANPLE.ADA •.•IRETURNI

Once you copy a sample file to your directory, follow the procedures
for compiling, linking, and running the program.

3-70 Program Development

The Guide to the VAX/ab Laboratory 110 Routines, the Guide to the VAX/ab
Signal-Processing Routines, and the Guide to the V AXlab Laboratory Graphics
Package each contains several sample programs showing how to use
the routines associated with that VSL facility to acquire, process, and
plot data. These programs, as well as many other sample programs
which do not appear in the hardcopy documentation, are also shipped
with the VSL software, and are put on line during the VSL installation
procedure.

Table 3-6 lists the sample program directories created during the
installation procedure and the contents of each directory. The logical
names of these directories are also defined during the installation
procedure by commands in the appropriate startup command file.

Table 3-6: VSL Online Sample Program Directories
Directory

LIO$EXAMPLES

LSP$EXAMPLES

LGP$EXAMPLES

Contains:

LIO sample programs

LSP sample programs

LGP sample programs

See the Guide to the V AXlab Laboratory 110 Routines for a complete
description of the sample programs contained in the LIO$EXAMPLES
directory.

See the Guide to the VAX/ab Laboratory Signal-Processing Routines for
a complete description of the sample programs contained in the
LSP$EXAMPLES directory.

See the Guide to the V AXlab Laboratory Graphics Package for a complete
description of the sample programs contained in the LGP$EXAMPLES
directory.

Program Development 3-71

A
Ada program development • 3-4

checking routine call status • 3-11
declaring and dimensioning arrays • 3-7
declaring data types and variables • 3-6
declaring external routines • 3-9
defaulting routine call arguments • 3-10
including symbolic definition files • 3-4

Adding a node to DECnet • 2-27
Adding a user account• 2-8
Allocating a device • 2-38
AST routines

declaring global variables • 3-24

B
Backup Utility • 2-43
BASIC program development• 3-21

checking routine call status • 3-28
declaring and dimensioning arrays • 3-24
declaring data types and variables • 3-23
declaring external routines • 3-25
defaulting routine call arguments • 3-26
including symbolic definition files • 3-22
using COMMON statements • 3-24

Batch queues
deleting • 2-22
restarting • 2-21
setting up • 2-19
showing status • 2-24
stopping • 2-22

Index

c
Changing account passwords• 2-14
Checking routine call status

in Ada programs• 3-11
in BASIC programs • 3-28
in C programs • 3-40
in FORTRAN programs • 3-52
in PASCAL programs• 3-64

Compiling program source code • 3-2
Configuring DECnet • 2-25
C program development • 3-33

checking routine call status • 3-40
declaring and dimensioning arrays • 3-37
declaring data types and variables • 3-35
declaring external routines • 3-38
defaulting routine call arguments • 3-38
including symbolic definition files • 3-34

Creating program source code • 3-1

D
Deallocating a device • 2-40
Debugging programs • 3-3
Declaring and dimensioning arrays

in Ada programs• 3-7
in BASIC programs • 3-24
in C programs• 3-37
in FORTRAN programs • 3-48
in PASCAL programs• 3-61

Declaring data types and variables
in Ada programs • 3-6
in BASIC programs • 3-23
in C programs • 3-35

lndex-1

Declaring data types and variables (cont'd.)
in FORTRAN programs• 3-47
in PASCAL programs• 3-59

Declaring external routines
in Ada programs • 3-9
in BASIC programs • 3-25
in C programs • 3-38
in FORTRAN programs • 3-50
in PASCAL programs• 3-62

DECnet management tasks
adding a node to DECnet • 2-27
configuring DECnet • 2-25
listing DECnet ·nodes • 2-31
removing a node from DECnet • 2...;29
turning DECnet on or off • 2...,30

Defaulting routine call arguments
in Ada programs • 3-10
in BASIC programs • 3-26
in C programs • 3-38
in FORTRAN programs • 3-50
in PASCAL programs• 3-62

Deleting a batch queue • 2-22
Deleting a print queue • 2-H
Deleting a user account• 2-11
Device management tasks

allocating a device • 2-38
deallocating a device • 2-40
dismounting a device• 2-36
initializing a device • 2-34
mounting a device • 2-32
showing device status • 2-41

Dismounting a device • 2-36
Displaying a list of user accounts • 2-1 O

E
Entering a DCL command from MANAGER • 2-14
Environment files • 3-58
Executing programs• 3-3

F
FORTRAN program development • 3-45

checking routine call status • 3-52
declaring and dimensioning arrays • 3-48
declaring data types and variables• 3-47
declaring external routines • 3-50

2-lndex

FORTRAN program development (cont'd.)
defaulting routine call arguments • 3-50
including symbolic definition files • 3-46

Including symbolic definition files
in Ada programs • 3-4
in BASIC programs • 3-22
in C programs • 3-34
in FORTRAN programs• 3-46
in PASCAL programs• 3-57

Initializing a device • 2-34

L
Linking object files • 3-2
Listing DECnet nodes • 2-31

M
Maintenance Utilities

using the Backup Utility• 2-43
using the Restore Utility• 2-45

Manager Utility
management tasks • 2-6
overview • 2-2
running MANAGER • 2-4
using the function keys• 2-4

Modifying a user account • 2-13
Mounting a device • 2-32

p

PASCAL program development• 3-57
checking routine call status • 3-64
creating environment files • 3-58
declaring and dimensioning arrays• 3-61
declaring data types and variables • 3-59
declaring external routines • 3-62
defaulting routine call arguments • 3-62
including symbolic definition files • 3-57

Print queues
deleting • 2-17
restarting • 2-16
setting up • 2-14

Print queues (cont'd.)
showing status • 2-24
stopping • 2-17

Program development

Q

compiling program source code • 3-2
creating program source code • 3-1
debugging programs • 3-3
executing programs • 3-3
linking object files • 3-2
overview • 3-1
using VAX Ada • 3-4
using VAX BASIC• 3-21
using VAX C • 3-33
using VAX FORTRAN• 3-45
using VAX PASCAL• 3-5.7

Queue management tasks

R

deleting a batch queue • 2-22
deleting a print queue • 2-17
restarting a batch queue • 2-21
restarting a print queue • 2-16
setting up a batch queue • 2-19
setting up a print queue • 2-14
showing queue status • 2-24
stopping a batch queue • 2-22
stopping a print queue • 2-17

Removing a node from DECnet • 2-29
Restarting a stalled batch queue• 2-21
Restarting a stalled print queue• 2-16
Restore Utility • 2-45
Running the Manager Utility • 2-4

s
Setting up a batch queue• 2-19
Setting up a print queue • 2-14
Showing device status • 2-41
Showing queue status • 2-24
Stopping a batch queue • 2-22
Stopping a print queue • 2-17
System management

DECnet management tasks • 2-25

System management (cont'd.)
device management tasks • 2-32
maintenance utilities • 2-43
queue management tasks • 2-14
system planning • 2-1
using the Manager Utility • 2-2
VMS management tasks • 2-8

System Management
tasks• 2-6

T
Turning DECnet on or off • 2-30

v
VAX GKS • 1-5
VAXlab

hardware overview • 1-2
software overview • 1-5
system overview • 1-1

VAXlab Software Library
components • 1-5
overview • 1-1

VMS management tasks • 2-8
adding a user account • 2-8
changing account passwords • 2-14
deleting a user account • 2-11
displaying a list of user accounts • 2-1 O
modifying a user account• 2-13

lndex-3

READER'S COMMENTS

Getting Started
with VAXlab

AA-KN96B-TE

Your comments and suggestions help us to improve the quality of our publications.

For which tasks did you use this manual? (Circle your responses.)

(a) Installation (c) Maintenance (e) Training
(b) Operation/use (d) Programming (f) Other (Please specify.) __ _

Did the-manual meet your needs? Yes D No D Why?----------

Please rate the manual in the following categories. (Orcle your responses.)

Accuracy (product works as described)
Clarity (easy to understand)
Completeness (enough information)
Organization (structure of subject
matter)
Table of Contents, Index (ability to
find topic)
Illustrations, examples (useful)
Overall ease of use
Page Layout (easy to find information)
Print Quality (easy to read)

Excellent Good Fair Poor
5 4 3 2
5 4 3 2
5 4 3 2
5 4 3 2

5

5
5
5
5

4

4
4
4
4

3

3
3
3
3

2

2
2
2
2

Unacceptable
1
1
1
1

1

1
1
1
1

What things did you like most about this manual? ______________ _

What things did you like least about this manual? ______________ _

Please list and describe any errors you found in the manual.
Page Description/Location of Error

Additional comments or suggestions for improving this manual:

Name ______________ _
Job Title------------

Street ______________ _ Company ___________ _
City ______________ _ Department __________ _

State/Country ------------ Telephone Number --------
Postal (ZIP) Code _________ _ Date ____________ _

----------~~~~ ---------

DIGITAL EQUIPMENT CORPORATION

CORPORATE USER PUBLICATIONS

200 FOREST STREET MR01-2/L 12

MARLBOROUGH, MA 01752-9101

- - - - - - - - - - - Fold Here

Affix
Stamp
Here

