
VAX Rdb/VMS
Guide to Database
Design and Definition

Order No. AA-N034B-TE

VAX Rdb/VMS
Guide to Database
Design and Definition

Order No. AA-N034B-TE

December 1985

This manual shows how to design a logical database
compatible with the relational data model. It then
demonstrates how to build a physical database using
VAX Rdb/VMS data definition statements. The material
in this manual is tutorial in nature.

OPERATING SYSTEM: VMS

MicroVMS

SOFTWARE VERSION: VAX Rdb/VMS V2.0

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1984, 1985 by Digital Equipment Corporation. All rights reserved.

The postage-paid READER'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

ACMS
CDD
DATATRIEVE
DEC
DECgraph
DECnet
DECslide

DEC US
MicroVAX
Micro VMS
PDP
Rdb/ELN
RdbNMS
TOMS

UNIBUS
VAX
VAXcluster
VAX Information Architecture
VMS
VT

I

\.

Contents

How to Use This Manual vii

1 Data Organization
1.1 Database Management Systems 1-1

1.1.1 Relational Database Model 1-1
1.2 Data. 1-2
1.3 Defining a Logical Database Model 1-4

1.3.1 IdentifyingFunctions 1-7
1.3.2 Listing Objects 1-12
1.3.3 Listing Data Items 1-12
1.3.4 Normalizing Data 1-13

1.3.4.1 Eliminating Repeating Fields 1-14
1.3.5 Identifying Primary Keys l-16

1. 3. 5 .1 Checking Dependencies on the Key Field.1-18
1.3.5.2 Inserting Foreign Keys 1-19

1.3.6 DefiningFields 1-19
1.3.6.1 Defining Field Names1-20
1.3.6.2 Defining Field Data Types1-21
1.3.6.3 Defining Field Sizes 1-21
1.3.6.4 Field Definition Examples 1-21

1.3.7 DefiningRelations 1-23

2 Creating a Database
2.1 The Logical Database 2-2
2 .2 Storage of Database Entity Definitions. 2-2
2 .3 Defining the Database . 2-3

2.3.1 NamingtheDatabaseFiles. 2-3
2.3.2 Database Size. 2-5

2.4 Defining Fields. 2-6
2.4.1 Global Attributes. 2-6

2.4.1.1 Global Name 2-7
2.4.1.2 Data Type. 2-7
2.4.1.3 VALID IF Clause 2-7
2.4.1.4 MISSING VALUE Clause 2-8
2.4.1.5 DATATRIEVE Support Clauses 2-8

2 .4. 2 Local Attributes. 2-9
2.4.2.l Local Field Names 2-9
2.4.2.2 Local DATATRIEVE Support Clauses 2-9
2.4.2.3 COMPUTED BY Clause 2-10

iii

2.4.3 Using the DEFINE FIELD Statement 2-10
2.4.4 CreatingFieldNames .2-11
2.4.5 Specifying Data Types.2-12 /
2.4.6 Field Definition Options2-15 r\"

2.4.6.1 DATATRIEVE Support Clauses2-15
2.4.6.2 MISSING VALUE Clause 2-16
2.4.6.3 VALIDIFClause 2-17

2.5 Defining Relations. ... 2-18
2.6 Defining Constraints 2-21
2. 7 Defining Indexes. .2-23
2.8 Defining Views 2-26

2.8.1 CreatingtheGUESTView 2-27
2.8.2 CreatingtheCURRENT_JOBView.2-29
2.8.3 Creating the CURRENT_SALARYView 2-31
2.8.4 CreatingtheCURRENT_INFOView 2-32

2.9 Loading the Database 2-33

2.10 Verifying the Definition Phase 2-33

3 Defining Database Protection
3.1 The Access Control List 3-2
3.2 Creating Access Control List Entries 3-2 /

3.2.1 User Identifiers 3-3
3.2.2 RdbNMS Access Rights 3-4
3.2.3 Using the DEFINE PROTECTION Statement 3-6

3.2.3.1 Specifying the Target of the DEFINE PROTECTION
Statement . 3-6

3.2.3.2 Specifying the Location of the Entry 3-6
3.2.3.3 The IDENTIFIER Clause 3-7
3.2.3.4 The ACCESS Clause 3-7

3.3 Building Access Control Lists 3-8
3.4 Putting the Access Control List in Order 3-12
3.5 Building an Access Control List for a Relation 3·14
3.6 Defining Protection for Views 3-14
3. 7 Invoking the Database 3-16
3.8 Changing and Deleting Protection 3-16

3.8.1 Changing an Access Control Entry (ACEl 3-16
3.8.2 Deleting an Entry from an ACL. 3-17

3.9 VerifyingtheACLsforaDatabase 3-18

iv

4 Restructuring a Database
4 .1 Changing Relations . . .
4.2 Changing Fields
4.3 Changing the Database .
4.4 Deleting Relations ...
4. 5 Deleting Fields
4.6 Deleting the Database

A Definitions for the OVERNITE Database

Index

Figures

. 4-1

. 4-2
4-4

. 4-6
4-7

. 4-8

1-1 Reservation System Flowchart Showing Data Flow .1-10
1-2 Functions Share Data.1-11
1-3 Objects in the Hotel Reservation System1-12
1-4 Data Items Logically Related by Object1-13
1-5 Removing Repeating Fields from the HOTEL Relation .1-14
1-6 Normalizing the HOTEL Relation Creates the RATES Relation. .1-15
1-7 Identifying Keys in the HOTEL and GUEST Relations1-16
1-8 Identifying Keys in the BILLING and RES ERV A TI ON Relations. .1-1 7
1-9 Normalizing the HOTEL Relation Creates New Relations. .1-18
1-10 Normalized HOTEL Relation1-18
1-11 Relations in the Overnite Hotel Reservation System . .1-23

Tables
1-1
1-2
1-3
1-4
1-5
1-6
2-1
2-2
3-1
3-2
3-3

3-4

Traditional and Relational Terminology .
Many Functions Using the Same Object .
Data Items Required by Functions
Three Possible Records in the RATES Relation.
Data Items Become Field Names
Field Names Described with Sample Data Values.
Rdb/VMS Data Types
Options in the DEFINE RELATION Statement.
Rdb/VMS Data Manipulation Access Rights ...

1-3
1-3
1-4

.1-15

.1-20

.1-22

.2-13

.2-18
3-4

Data Definitions Statements Controlled by Database ACL . 3-4
Data Definitions Statements Controlled by ACL for Each Relation

or View in Statement . 3-5
Rdb/VMS Utility Statement Access Rights 3-5

v

How to Use This Manual

VAX Rdb/VMS is a general purpose database management system based on the
relational data model.

Purpose of This Manual

This manual demonstrates how to:

• Design a database that is compatible with the relational data model.

• Use the data definition statements of RDO, the interactive VAX Rdb/VMS
utility. to translate a logical database model into a physical database.

Intended Audience

If you have not designed a database before, this book provides guidance on how to
analyze an information management problem. You can use your analysis to design
a database.

This book shows all users how to use the data definition statements of RDO to
implement a database design.

To get the most out of this manual, you should be familiar with data processing
procedures. basic database management concepts and terminology, and the VMS
operating system.

vii

Operating System Information
To verify which versions of your operating system are compatible with this ver
sion of VAX RdbNMS, check the most recent copy of the following:

• For the VMS operating system -- VAX/VMS Optional Software Cross
Reference Table, SPD 25.99.xx

• For the MicroVMS operating system -- Micro VMS Optional Software Cross
Reference Table. SPD 28.99.xx

Structure

This manual contains four chapters. one appendix, and an index.

Chapter 1

Chapter 2

Chapter3

Chapter4

Appendix A

Index

viii

Introduces concepts of data management, data organiza
tion, and the relational data model. This chapter also
shows you how to design a logical database.

Describes how to translate the logical database into a
physical database using DEFINE statements.

Shows how to define protection for your database using
the DEFINE PROTECTION statement. This chapter
includes a discussion of access control lists (ACLs).

Tells how to change or delete an existing database or
elements within an existing database.

Provides sample command files for building your own
version of the sample database.

Related Manuals

For more information on VAX Rdb/VMS, see the other manuals in this documen
tation set:

VAX RdbNMS Reference Manual

A complete description of the statements and syntax of VAX Rdb/VMS

VAX Rdb/VMS Guide to Data Manipulation

A tutorial on how to use the components of VAX Rdb/VMS to retrieve, store,
change, and erase data

VAX Rdb/VMS Guide to Programming

A tutorial on how to write high-level language programs that use VAX
Rdb/VMS for database access

VAX RdbNMS Guide to Database Administration and Maintenance

A tutorial that explains how to use the database maintenance utilities to perform
such operations as backup. recovery. restoring journals, and analyzing the
database

The following books provide information about the VMS operating system. VAX
DATATRIEVE, and the VAX Common Data Dictionary:

The VAX DAT ATRIEVE Documentation Set

The VAX Common Data Dictionary Documentation Set

VAX Architecture Handbook

Detailed information about VAX computers and VAX data types

VAX Information Architecture Summary Description

A description of VAX Information Architecture component software
products

ix

Conventions
In examples, an implied carriage return occurs at the end of each line, unless oth
erwise noted. You must press the RETURN key at the end of a line of input.

Conventions used in this manual are:

< CTRL/x > This symbol tells you to press the CTRL lcontroll key and hold
it down while pressing a letter key.

Color

x

Color in examples shows user input.

Vertical ellipsis in an example means that information not directly
related to the example has been omitted.

' '

(

\

Data Organization 1

As you design a database to manage. control. and disseminate information, you
should consider incorporating the following points in your design goals:

• The logical data model you define reflects the data relationships in your
organization and the way your users view these relationships.

• The database you create from your logical model supports the needs of your
users to deliver the correct information at the right time.

• Data is available to all authorized users.

• The database management system is flexible enough to permit restructuring
without inconveniencing people who are using the database.

• The database design balances user needs with the most common types of
database activity for efficient performance. Such database activity includes
update and retrieval.

Each chapter of this book concerns itself with a specific point from the preceding
list.

1.1 Database Management Systems

A database management system is a set of software tools that provides a single
environment for storing. retrieving. changing. and protecting data. By using a
database management system together with application programs and other soft
ware tools. you can turn large amounts of data into usable information.

1.1.1 Relational Database Model

VAX Rdb/VMS is a relational database management product that uses the rela
tional model of database organization. The relational model maintains data in
two-dimensional tabular format similar to hard copy tables and "flat" computer

1-1

files. This tabular format keeps data organization simple and easy to understand.
Other DIGITAL software products, such as DATATRIEVE, can take advantage
of the features of Rdb/VMS.

1.2 Data
Data is the general term used to describe a collection of facts. A data item is a
type of fact. For example, such categories as age. height, and price are data
items. A data value is the specific instance of a data item, for example, 26 years
old. 5 feet 11 inches. or $26.95. You can record data values directly from a busi
ness transaction or an observation. or compute them from the values of other
data items.

Data items are the smallest meaningful units of information. You can manipulate
data items by:

• Grouping them with other data items to create unique descriptions of
objects

• Changing their values to reflect a current state or condition

• Erasing values of data items if they are invalid or become obsolete

• Adding new values for data items to develop a complete picture of your busi-
ness activity

To be useful. data items must be organized into logical groups. For instance. when
you want to describe an employee, you assemble data items such as age, address,
and telephone number. Each data item is a label for the type of value you assign
to it. You can group data items together to identify one particular individual, the
employee. The more data items you assemble. the more accurately and uniquely
you can describe that person. Each item that describes an employee shares a
logical relationship with the other data items associated with that employee.

The following example shows data values for six data items. Each row describes a
different employee.

Data
Items Name Address

Zip Telephone
code number Height Weight

Data Smith 10 Main Street 00111 (619) 555-1323 6' 155
Values Jones 234 Elm Street 00112 (619) 555-4321 5'10" 162

Different departments in an organization might view the employee in different
ways. The payroll department might see the employee in terms of annual salary,
employee identification number, social security number. and number of depen
dents. Management might view the employee as an individual who performs spe
cific jobs, with special skills and responsibilities. You must organize the data
items in your system to accommodate such differing views.

1-2 Data Organization

Different terminology is used to describe the various elements of databases. Table
1-1 shows the correspondences between different sets of terminology.

Table 1-1: Traditional and Relational Terminology

Database Relational File Systems VAXRdbNMS
Entity Jargon

Table Relation File Relation

Column Attribute Field Field

Row Tuple Record Record

The data items you collect and the way you arrange them in the database depend
on what information your organization needs for its day-to-day operations and
planning. To determine the data items you need, identify an object, such as an
employee. an inventory item, or a discount value. in the organization and list the
organizational functions that use it. Table 1-2 lists some of the objects and the
organizational functions that use them.

Table 1-2: Many Functions Using the Same Object

Object Organizational Function

A Product Inventory
Sales
Warehousing
Advertising
Marketing

A Service Customer
Cost, Pricing
Personnel, Staff
Materials

An Employee Personnel
Payroll
Management
Security

Data Organization 1-3

In addition to sharing certain data items with other functions, each organizational
function needs its own set of data items to describe the object. Table 1-3 lists all
of the data items needed by each function.

Table 1-3: Data Items Required by Functions

Organizational Object Data Items Describing the
Function Described Object

Personnel Employee Name
Address
Social security number
Sex
Birthday

Payroll Employee Job classification
Social security number
Name
Department name
Job title
Salary
Dependents

Management Employee Job title
Name
Department name
Job history
Skills
Education

Security Employee Badge number
Social security number
Department number
Auto license number
Office telephone number

1.3 Defining a Logical Database Model

This chapter shows you how to define a logical database model identifying all
necessary data items. the flow of data from one department to another, and the
logical relationships among the data items. To define an Rdb/VMS database, you
need to perform the following procedures.

1-4 Data Organization

• Identify functions

List organizational functions, or departments, to be included in the proposed
system.

• List objects

Within each function, identify all objects about which you need to maintain
data. Objects include such things as employees. parts, vendors, and build
ings.

• List data items

Under each object. list every data item that describes it, as in Table 1-3.

• Normalize your model

Take maximum advantage of the flexibility of the RdbNMS relational
model by normalizing the design of your logical database. The process of
normalization includes the following procedures:

Eliminating duplicates

If several functions list the same data item (for example, Employee
Name) under an object, include it only once. Table 1-3 shows that
Personnel, Payroll, and Security list the social security number as a
required data item. Decide what department or function has primary
responsibility for collecting values for this data item and list it under
that function. In this case, Personnel might record values for social
security numbers and let other departments share that data. Use a list
similar to the one in Table 1-3 to locate and eliminate duplicate data
items.

After testing a working version of your database, you might discover
that duplicating certain fields in more than one relation gives you added
convenience in retrieving data. For some types of routine database
activity. such controlled data redundancy can be beneficial. See Chapter
4 of the VAX RdbNMS Guide to Database Administration and
Maintenance for a discussion of the benefits and penalties of controlled
redundancy.

Identifying primary and foreign keys

The relational database model relies on both primary and foreign key
values to determine relationships among data elements. Both primary
and foreign keys have special characteristics that allow them to function

Data Organization 1-5

as identifiers and links in the database. Refer to Chapter 4 of the
Database Administration and Maintenance Guide for a description of
primary and foreign key characteristics.

To determine which data items (fields) can serve as primary or foreign \,
keys, examine data items that uniquely identify the object or provide a
link with another logical function. You can use an employee identifica-
tion number to locate an individual employee in a list of all employees in
the organization. Therefore, even when two employees share the same
last name, for example, you can isolate a single employee record by
using the value of the employee identification number.

Eliminating repeating fields

Some fields have a characteristic called indexed, repeating, or group
field types. For example, a field called Child can have several values,
each representing individual children of an employee. If an employee
has three children, the Child field is actually a list of three children. The
relational model permits only elementary fields. or single-valued facts.
One field can have only one value. Section 1.3.4.1 shows how you can
remove repeating fields and use those fields to create a new relation.

Checking functional dependencies

Examine each data item for functional dependency on the key field or
fields you use to identify a single instance of an object. Every data item
in each object group should depend explicitly on a key field (or combina
tion of fields that make up the key) that uniquely identifies a record.

For example, if you use a badge number in an employee record to iden
tify an individual employee, the employee's name depends on the value
of the badge number. The employee's name provides some information
about the key field. badge number, and each badge number identifies
one employee. On the other hand, an employee's department code does
not provide any information about his or her badge number and there
fore is not functionally dependent on the field, badge number.

• Defining fields

Specify field characteristics such as field name, data type, and field size.

• Defining relations

Name each relation, or function, and specify all the data items that each will
include. Arranging the data items, or fields, into logical groups simplifies the
work of defining such database entities as relations. A relation is merely the

1-6 Data Organization

/

(

relational term for a group of data items, called fields, that are logically
related. When you define a relation, you are actually defining a record and its
component fields.

1.3.1 Identifying Functions

Most organizations are divided into several departments or groups performing
specific tasks. These specialized functions often work with the same objects. For
example, if the company markets a service that repairs or maintains computer
terminals, one function maintains information about replacement parts inventory.
Another keeps outstanding customer service requests and schedules of available
service technicians. A third function supports payroll and personnel data about
the employees.

Each of these functions collects and maintains data for its own tasks and shares
some of this data with otherfunctions in the organization. You can best describe
your organization by listing all of the functions, or departments, and the tasks
each performs. The complete description, or business model. of your organization

. is useful in selecting that part of the model you plan to include in your database.
Start with parts of the logical model to build and test a manageable database.
Later, when you have tested your working database, you can add more
departments or functions to that database, or you can create another database for
the additional parts.

To illustrate the steps in defining your logical database model. the following sam
ple application is used throughout the rest of this book.

The Design Problem

The Overnite Hotel has approximately four hundred rooms. Its room types
include singles, doubles, and suites. The hotel often books rooms a year in
advance. Rates vary according to the category of guest. There are different rates
for group. government. and standard categories.

Business has increased dramatically in the past few years. The hotel's reservation
procedures are inefficient, and the present paper system can no longer handle the
volume of reservations. Many rooms remain unsold because of cumbersome cross
referencing methods. The Overnite Hotel, therefore, needs a system to manage
and control its resources.

Data Organization 1-7

A system that handles the hotel's reservations must support the following tasks:

• Controlling rooms inventory

The hotel must know at all times which rooms are reserved and which are \
available. This might be a requirement of the Reservation function.

• Managing and controlling billing

The hotel must be able to compute charges and bill guests for services effi
ciently and accurately. This might be a requirement from a Billing function.

• Determining effectiveness of advertising and sales force

By analyzing the types of rooms sold and the types of guests reserving them,
the sales force can determine the correct sales emphasis. A Billing function
might record data for this output.

• Identifying established customers

Keeping track of past transactions shows which customers are likely to
return for repeat business. This data might be available from a Guest func
tion.

• Identifying market mix

The hotel studies the ratios of government, commercial, and regular guests
to determine its attractions and future sales approaches. Information about
such hotel transactions might come from a Reservation function.

• Determining effective and attractive room type mix

The Reservation or Guest function supplies information about relative
demand for each room type and its appeal. This information will help deter
mine room upgrades and possible conversion of some rooms to another room
type.

The hotel can retrieve all of this information from the data gathered in the
reservation system by summarizing combinations of data elements from different
functions, deriving new values from other data items, or simply displaying indi
vidual items directly from the database itself.

The routine for reserving a room at the Overnite Hotel identifies some of the data
items collected by the hotel. When a guest reserves a room. a transaction takes
place. This transaction collects several pieces of data. These data items support
the previously listed tasks.

1-8 Data Organization

(

With the new system, the reservation process involves the following steps:

1. A guest calls the Overnite Hotel to reserve a room on a specific date.

2. The hotel requests such information as:

• Date

• Name

• Address

• Type of room desired

• Length of the stay

• Type of rate to which the guest is entitled

3. The reservation clerk checks the inventory of rooms of the specified type
that are available for the specified dates.

4. If an appropriate room is available, the clerk tells the guest the rate.

5. If the rate is acceptable, the hotel confirms the reservation.

6. The clerk creates a record containing information collected from the guest.

7. The clerk starts a billing record to store all charges incurred during the
stay.

8. The clerk reserves the hotel room. He marks the room to indicate that it is
no longer in the inventory of hotel rooms available during the time of the
guest's stay.

You can now identify four functions that make up the reservation system. These
functions provide information for the transaction. and the transaction supplies
input data to the functions:

• Maintaining an inventory of rooms (HOTELI

• Tracking guest charges for billing (BILLING)

• Maintaining guest data {GUEST)

• Assigning rooms to guests (RESERVATION)

Figure 1-1 shows the sequence of steps for reserving a room at the hotel in a sys
tem flowchart.

Data Organization 1-9

Room request

Guest data input

Room search

Rate declared

Guest record created

Billing record created

Hotel room reserved

• HOTEL
...._..RESERVATION

>---N-'-0 - Stop

-----HOTEL

No
">----Stop

1------GUEST

>------BILLING

t------RESERVATION

MK-H00220-U

Figure 1-1: Reservation System Flowchart Showing Data Flow

1-10 Data Organization

(

\,

This database model consists of the four basic functions shown in Figure 1-2. The
arrows connecting each function indicate relationships and data flow among them.

The Reservation function collects most of the data about the reservation transac
tion, but also collects data for the Billing and Guest functions. Likewise, the
Billing function accumulates data about guest charges and shares it with the
Guest function when the total bill is computed. The Hotel function supplies data
to the Reservation and Guest functions about the rooms available and their
attributes.

Hotel .. Guest

l i
J

1
Reservations I -·I Billing

MK-H00221-U

Figure 1-2: Functions Share Data

Each function is responsible for collecting data about its primary object.

• The Hotel function

Maintains data about the rooms in the hotel.

• The Reservation function

Records the transaction that sells a room to a guest for specified dates.

• The Billing function

Accumulates internal transactions about hotel services a guest receives dur
ing the stay as well as the cost of the room.

• The Guest function

Brings together data about the guest for billing and marketing information.

Although the hotel can identify many objects about which it needs to keep
information, such as staffing, function rooms, and auxilary services, these four
primary functions serve the hotel's reservation system.

Data Organization 1-11

1.3.2 Listing Objects

Each function in the hotel maintains data about its primary object, and each func
tion can share data items from other objects. Figure 1-3 shows the objects the
reservation system needs to carry out its tasks.

Object: Hotel Room Object: Guest

Object: Bill Object: Reservation

MK-H00223-U

Figure 1-3: Objects in the Hotel Reservation System

1.3.3 Listing Data Items

For each object, the Reservation system collects a number of facts, either by
recording them in one function or by gathering them from other functions. After
grouping these facts together into some logical relationships, they might look like
those in Figure 1-4. These first groupings in Figure 1-4 need not be in their final
form. Further testing and refinement might indicate regrouping, eliminating, or
adding some items.

1-12 Data Organization

/

\

/

[Hotel Room

[Bill

Room number
Room type
Number of beds
Standard rate
Government rate
Commercial rate
Telephone
Television
Air conditioning

Name
Room number
Service code
Service

description
Service charge
Transaction date

[Guest

Name
Address
Room number
Total charge
Total room charge
Total service charge

[Reservation

Name
Room number
Reservation date
Length of stay
Party size
Reservation confirmed
Arrival date
Address
Room rate

MK-H00224-U

Figure 1-4: Data Items Logically Related by Object

These logical relationships of data correspond to the relations of an RdbNMS
database. A relation is a set of related data that consists of rows and columns.
The columns divide each row for recordl into a set of fields. For a single field in a
row, there is only one data item.

For example. the Bill function becomes the BILLING relation. The elements
listed under the Bill function become the fields in the relation. The Room number
element becomes the ROOM NUMBER field. Each billing transaction is a record
in the database. -

1.3.4 Normalizing Data

Once the hotel establishes the logical relationships among the data elements, the
database model allows simple information retrieval and update. By normalizing

Data Organization 1-13

your database, you can benefit from improved performance, efficient data storage,
and update consistency. The following steps show you how to refine your database
model to enjoy these advantages.

• Eliminate repeating fields .

• Identify primary key fields.

• Check field dependencies.

• Insert foreign keys

Normalizing the Hotel database model results in further changes to the current
relation definitions. Such factors as the type of users accessing the database, the
number of relations already defined, and the applications that use the database
affect the degree to which you normalize your database.

1.3.4.1 Eliminating Repeating Fields -- One step in normalization is to exam
ine the record for possible inefficiencies in the way data is stored and updated.
Because the room rate in the HOTEL relation can have three possible values,
depending on the type of guest (standard rate, government rate, or group rate),
the rate field is really a list of values. Such field types can be efficiently stored in
a separate relation and linked to any room number by a foreign key, in this case,
room type.

If the hotel keeps three room rates in each of the 400 room records, it must store
400 rooms times three room rates, or about 1200 numeric values. Much of the
room rate data is redundant. That is, it is duplicated many times for each room
type. These fields are removed from HOTEL in Figure 1-5.

HOTEL

Room number
Room type
Number of beds

Telephone
Television
Air conditioning

Standard rate
Government rate
Commercial rate

MK-H00225-U

Figure 1-5: Removing Repeating Fields from the HOTEL Relation

1-14 Data Organization

\

(

Because each of the three room types has a specific room rate, only three records
are actually needed to provide the necessary room rate information. Table 1-4
shows sample rates for each of the three room types.

Table 1-4: Three Possible Records in the RATES Relation

Room Type Standard Group Rate Government
Rate Rate

1 $50.00 $40.00 $45.00

2 $60.00 $50.00 $55.00

3 $70.00 $60.00 $65.00

The hotel can remove room rate data from the HOTEL relation and create a new
relation called RATES. containing three records and a foreign key field called
Rate code linking it to the HOTEL relation.

Substitute a Rate code in the HOTEL relation for the list of rate values for each
Room type. The Rate code then serves as the link between the HOTEL and
RATES relations as illustrated in Figure 1-6.

[RATES [HOTEL

Rate code Room number

l Standard rate Room type
Government rate P"" Rate code
Commercial rate Number of beds

Telephone
Television
Air conditioning

MK-H00226-U

Figure 1-6: Normalizing the HOTEL Relation Creates the RATES Relation

Building two relations from one provides an increase in efficiency. Each record in
the RATES relation corresponds to one set of room rates for a room type. When
the hotel chooses to change the rates, it at most changes only the three records in
the RATES relation instead of many records in the HOTEL relation. Creating
two relations from one might appear to require more storage space, but, in fact, it
requires less space.

Data Organization 1-15

1.3.5 Identifying Primary Keys

Every record you store in the database has at least one field that you can use to
locate a single record. Such a field is called a primary key. A primary key must
have certain features that allow it to locate one record from all of the records in
the database. Two very important characteristics of a primary key follow.

A primary key field:

• Must not contain duplicate values

When the primary key field in each record contains a unique value, you can
always use it to locate a single record in the database. You can ensure that
the fields you designate as primary key fields have unique values using the
DUPLICATES ARE NOT ALLOWED clause of the DEFINE INDEX state
ment described in Chapter 2.

• Must not contain null values

RdbNMS determines relationships among different fields in a database when
you supply the fields and their values at query time. Because the relation
ships are value-based, RdbNMS cannot determine a relationship based on a
nonexistent value. That is, if the primary key field value is allowed to be
missing, its relationship to the rest of the fields in the record is unknown.

Each record in the HOTEL relation contains two fields: room number and room
type. To locate a single record in this relation, you need only the room number.
For every room number there is only one room. Therefore, room number uniquely
identifies one record and is the primary key for the HOTEL relation. Figure 1-7
shows key fields in both the HOTEL and GUEST relations.

Key

HOTEL

Room number
Room type

l GUEST

Key-+
Key---..

Name
Room number
Address
Total charge
Total room charge
Total service charge

MK-H00229-U

Figure 1-7: Identifying Keys in the HOTEL and GUEST Relations

Sometimes you can identify a single record only by combining two or more fields
in a relation to specify a unique key value. Locating a record in the GUEST rela
tion works this way. This relation contains six fields: Name, Room number,

1-16 Data Organization

Address, and three totals fields. You cannot use the Name field alone to locate a
single guest record, because another guest staying in the hotel might have the
same name.

One solution is to consider another field along with the Name field to serve as the
key. A good candidate is Room number because only one party can stay in any
one room at a given time. Searching for "Smith" in room 214, for example, is
likely to locate a single record. This solution depends on the assumption that,
once a guest checks out of the hotel, all records belonging to that guest are
archived or erased. Otherwise, if Smith uses the Overnite Hotel often and likes to
stay in his favorite room, records from previous visits will show up in searches for
the current record.

The Room number field, already included in another relation, is now used as part
of the key in the GUEST relation too. The whole key for the GUEST relation is
the combination of Name and Room number. Depending on the type of query, you
can use fields other than key fields to locate specific records in a relation.

Figure 1-8 shows that similar analyses identify keys in the BILLING and
RESERVATION relations. Using the Name, Transaction date, and Room number
fields in the BILLING relation locates all of the records belonging to a specific
guest. This information is needed to compute the total service charge for the
guest's bill.

[BILLING

Key~ Name
Key___. Room number

Service code
Service

description
Service charge

Key____. Transaction date

[RESERVATION

Key-. Name
Key-. Room number

Reservation date
Length of stay
Party size
Reservation confirmed

Key--. Arrival date
Address
Room rate

MK-H00230-U

Figure 1-8: Identifying Keys in the BILLING and RESERVATION Relations

You can find records belonging to a guest name, but if more than one guest has
the same name, adding the room number to the key locates a specific guest in the
hotel. Adding Arrival date pinpoints the day that a particular guest will begin
occupying the room.

Data Organization 1-17

1.3.5.1 Checking Dependencies on the Key Field -- Each field in a relation
should depend on the key field for its meaning. For example, the number of beds
in a room of the hotel depends on the room type assigned to that room, not on the
room number itself. Similarly, the rate code varies according to the type of each (
room rather than the room number. Therefore, you can remove these fields from 1"'-

the HOTEL relation and create a new relation, TYPES, that actually holds only
one record for each of the three room types in the hotel. The new TYPES relation
appears in Figure 1-9.

l RATES

Rate code
Standard rate
Government rate
Commercial rate

HOTEL

Room number
Room type

[TYPES

....
Room type
Rate code
Number of beds
Telephone
Television
Air conditioning

MK-H00227-U

Figure 1-9: Normalizing the HOTEL Relation Creates New Relations

Because each room type has its own rate schedule. removing the Rate code from
the HOTEL relation and including it in the TYPES relation further reduces stor
age space. The original HOTEL relation, then, now becomes the three relations
shown in Figure 1-10.

l HOTEL l TYPES l RATES

Room number
Room type • > Room type

Rate code ... > Rate code
Number of beds Standard rate
Telephone Government rate
Television Group rate
Air conditioning

MK-H00228-U

Figure 1-10: Normalized HOTEL Relation

1-18 Data Organization

(

\

The Room type field appears in both the HOTEL and TYPES relations and pro
vides the link between the two. Similarly, the Rate code field provides the link
between the TYPES and RATES relations.

Again, three relations result in increased accuracy, reduced storage space, and
efficient and consistent updates. Each record has one field as a primary key that
uniquely locates one specific record.

1.3.5.2 Inserting Foreign Keys -- After you have developed a normalized set of
logical relations for your database, you should ensure that links exist among
them. Each logical relation should have a primary key field (or fieldsl and each
field should contain a single-valued fact about that key. Select two relations that
have such a link. Include the name of the primary key of one relation as the for
eign key in the second relation. For example, the primary key in the TYPES rela
tion is Room type. To create a link between the TYPES relation and the HOTEL
relation, include the Room type in the HOTEL relation as the foreign key.

When you have identified all foreign keys, you should define indexes for them.
Indexes allow Rdb/VMS to locate individual records directly rather than sequen
tially. Your index definition can include the DUPLICATES ALLOWED clause.
The field definition can include a VALID IF NOT MISSING clause so that all for
eign key fields will contain a value. Furthermore, because the foreign key links
one relation with another, you might want to ensure that, for every value stored
in a foreign key field of one relation, there is a matching value in a primary key
field in another relation. You can do this by defining a constraint that causes
Rdb/VMS to check any new foreign key values against the existing primary key
values in the other relation before allowing the value to be stored in the database.

Refer to Chapter 2 for descriptions and examples of defining indexes and con
straints.

1.3.6 Defining Fields

You can now formally identify the data items you named in previous steps as
fields in your database model. A field is a data item with a name and a specific
data type.

Field definitions require at least three basic elements:

• Field name

• Field data type

• Field size

Data Organization 1-19

1.3.6.1 Defining Field Names -- Before the hotel can define a relation, each
data item, or field. needs a name. Choosing a name for each field is important,
because all users, procedures, and programs call that field by the name it has in
the database. Unlike traditional applications, which often create different names
for the same data elements, the name of a field in the database is the field's only
label. To be useful, field names, like other database entities, should be meaningful
and tell as much as possible about the values or facts they represent.

Table 1-5 shows how you can derive field names from your planning information.

Table 1-5: Data Items Become Field Names

Data Item Field Name

Room Number ROOM NUMBER -

Room Type ROOM TYPE -

Number of Beds BEDS

Standard Rate STANDARD RA TE -

Government Rate GOV RATE

Group Rate GROUP RATE -

Name NAME

Service Code SERVICE CODE -

Service Charge SERVICE CHARGE -

Transaction Date TX DATE -

Arrival Date ARRIVAL DATE -

Address. ADDRESS

Number in Party PARTY SIZE

Reservation Date RESERVE DATE -

Total Charge TOTAL CHARGE

Length of Stay LENGTH OF STAY

1-20 Data Organization

1.3.6.2 Defining Field Data Types -- Each field in the database can contain
only one type of data. Data types include TEXT, NUMERIC, SIGNED WORD,
and DATE. For example, guest names consist of letters, so the data type for the
GUEST_ NAME field is TEXT. The number of beds is always recorded as digits,
so the data type for the BEDS field is SIGNED WORD.

1.3.6.3 Defining Field Sizes -- Finally, each field must have a size limit. This
characteristic specifies the number of characters that are needed to hold all possi
ble values adequately. Although GUEST_NAME could mean the guest's first and
last names as well as middle initial, the hotel might only require this field to hold
the guest's last name. A quick examination of past guest records reveals that no
guest's last name was longer than 15 letters. Should a guest arrive whose last
name has more than 15 letters, the first 15 are more than enough to identify the
person.

Although Rdb/VMS uses data compression to permit efficient storage in the
database of repeating characters of field values. specifying a field size that is too
large results in moving many blank characters from the database to programs
that can waste storage space. Thus. the field labeled GUEST_ NAME is given an
adequate field size of 15 characters.

1.3.6.4 Field Definition Examples -- For the GUEST_NAME field, the full
description includes the following information:

• Name: GUEST NAME

• Data type: TEXT

• Size: 15

This information is all you need to specify the field definition for GUEST_ NAME.

Table 1-6 lists the field names with their data types. sizes, and sample values.

Data Organization 1-21

Table 1-6: Field Names Described with Sample Data Values

Field Name Data Type Size Sample
Value

ROOM NUMBER Numeric 3 207

ROOM TYPE Text 2 s

BEDS Numeric 1 2

GUEST NAME Text 15 Smith

SERVICE CODE Text 2 BR(eakfast)

SERVICE CHARGE Numeric 6 27.50

TX DATE Date 11 27-JUL-1983 -

ADDRESS Text 25 Boston, MA

ARRIVE DATE Date 11 29-JUL-1983

RESERVE DATE Date 11 27-JUL-1983

PART SIZE Numeric 1 3 -

ROOM RATE Numeric 6 48.50 -

SERVICE DESCR Text 20 Room
Service

RATE CODE Text 1 c -

GROUP RATE Numeric 5 32.50

GOV RATE Numeric 5 29.95

STD RATE Numeric 5 36.50 -

TELEPHONE Text 1 Y(es)

TV Text 1 N(o)

AC Text 1 Y(es)

1-22 Data Organization

1.3.7 Defining Relations

Once you define all of the functions of the reservation system, each function
becomes a relation, that is, a logical group of data items. The name of the relation
can be the name of the function. The relation includes all fields necessary to make
it complete and meaningful. The process of normalization helps to ensure that
there is as little repetition of fields as possible and that updating the database is
consistent and direct.

Figure 1-11 shows the relations that make up the reservation system for the
Overnite Hotel. Key fields are marked with asterisks (*).

HOTEL RATES

ROOM_NUMBER * RATE_CODE *

ROOM_ TYPE STD_RATE

GOV _RATE

GROUP _RATE

TYPES

ROOM_ TYPE*

RATE_CODE GUEST

BEDS GUEST _NAME*

TELEPHONE ROOM_ NUMBER *

TV ADDRESS

AC TOTAL_ CHARGE

TOTAL_ ROOM_ CHARGE

* = Key fields TOTAL_ SERVICE_ CHARGE

(continued on next page)

Figure 1-11: Relations in the Overnite Hotel Reservation System

Data Organization 1-23

RESERVATION BILLING

GUEST_ NAME * GUEST_ NAME *

ROOM_ NUMBER * TX_DATE *

RESERVE_DATE SERVICE_ CHARGE

LENGTH_OF _STAY SERVICE_ DESCRIP

PARTY _SIZE SERVICE_ CODE

CONFIRMED
ZK-00031-00

ADDRESS

ARRIVE_DATE *

DEPART _DATE

ROOM_RATE

* = Key fields

Figure 1-11: Relations in the Overnite Hotel Reservation System (Cont.)

An informal inspection of the GUEST relation shows that three fields are already
contained in the RESERVATION relation. The other three fields can be com
puted from information contained in the BILLING relation. In cases where data
items are redundant. you might want to use another RdbNMS feature, the view.
instead of a relation.

Views use fields that already exist in other relations, or create special new fields
containing computed values from existing fields. Because views do not them
selves store actual values, a view can save storage space. Another advantage of
using views is security. You can create views that allow users to see only portions
of the data stored in relations.

Views are especially useful in helping end users access parts of several different
relations without having to issue complex queries repeatedly. In these cases the
view definitions are based on complex record selection expressions (RSEs). For
information on creating view, see Chapter 2, Section 2.8.

1-24 Data Organization

Creating a Database 2

This chapter shows you how to define the entities of a typical database, except
protection. Defining protection is explained in Chapter 3. The elements discussed
here include:

• The database itself. including the database files and the storage
requirements

• The characteristics of the fields that make up the database's relations

• Relations, which combine fields into logical units

• Views, which combine data from one or more relations into "virtual" rela
tions

• Constraints, which establish the limits for field values

In this chapter. you learn how to use RDO statements to define the database.
There are three ways you can enter the RDO statements:

• Use an editor to create a command file that has an RDO file type (for exam
ple, HOTELCOM.RDO). Such a command file can contain all the definition
statements required to create the database. This method is efficient if you
know that there are no problems with the database definitions.

You can execute the RDO command procedure at the RDO > prompt.
Simply type an at sign (@) followed by the name of the command procedure
file:

ROD> ©REPORT

2-1

• Run RDO and use the EDIT statement editor within RDO. Enter the state
ments in the editing buffer. If you use this method, you can enter the state
ments one at a time and check each one for successful execution. If a
statement fails, you can simply type EDIT to correct your errors. This
method is useful if you are less familiar with the syntax of the statements.

• You can type the definition statements directly at the RDO > prompt. This
method is perhaps the least useful because it is harder to verify and correct
the statements you have typed.

2.1 The Logical Database
Chapter 1 describes how to define a logical database by determining:

• The necessary data items

• The characteristics of these data items, including the type of data (numeric,
text) and the range of values

• How the data items can be divided into relations

After you finish this process you have a model of your database in the form of
logical relations. Figure 1-11 contains the logical model for the OVERNITE
database.

Each of the following sections uses these relations as an example to show how the
OVERNITE database might be built in VAX Rdb/VMS. Complete Rdb/VMS defi
nitions for the database appear in Appendix A.

2.2 Storage of Database Entity Definitions
There are two options for storing database entity definitions:

• In the database only

• In both the database and the VAX Common Data Dictionary ICDD)

If you plan to use VAX DAT ATRIEVE or any other VAX information manage
ment product for your database access tasks, you must include the database
definitions in the CDD by specifying a path name.

When you store definitions for fields, relations, views. and constraints in the
database only. you specify a file specification in the DEFINE DATABASE state
ment (see Section 2.3).

If the Common Data Dictionary is not installed on your system, Rdb/VMS stores
data definitions only in the database file. However. Rdb/VMS automatically stores
the name of the database in the CDD if the CDD is installed.

2-2 Creating a Database

(

(
I
\

Storing database definitions in the COD provides a central source of definitions
and allows you to use other VAX information management products with your
RdbNMS database. To avoid data definition inconsistencies, you should always
invoke the database using the COD path name. In this way, the database defini
tions are always available to other DIGITAL products that use the COD. For
example, host language programs containing embedded RdbNMS data manipula
tion statements can copy record definitions from the COD with corresponding
compatible data types. Then, whenever data definitions change, the host language
programs require little or no modification.

2.3 Defining the Database

The first step in defining a database is to allocate resources using the DEFINE
DATABASE statement. This statement performs the following operations:

• Names the database

• Creates a database file

• Creates a snapshot file

• Creates a directory in the Common Data Dictionary if the CDD is installed
on your system

• Allows you to determine the physical storage parameters for the database
file or to use adequate default values

2.3.1 Naming the Database Files

By default. the name of the database determines the names of the database file,
snapshot file, and CDD directory for your database. Assume that the current
default directory is DISK2:[BOOKKEEP] and the current default COD directory
is CDD$TOP.BOOKKEEP. The shortest form for the DEFINE DATABASE
statement is:

DEFINE DATABASE "OVERNITE".

Note that all DEFINE statements must end with a period. Also. you should put
quotation marks around the database name and the COD path name whenever
you use DEFINE or INVOKE DATABASE statements in RDO.

This DEFINE DATABASE statement creates the following entities:

• DISK2:[BOOKKEEP]OVERNITE.RDB -- the database file where RdbNMS
stores database definitions and data.

Creating a Database 2-3

• DISK2:[BOOKKEEP]OVERNITE.SNP -- the snapshot file where RdbNMS
stores certain versions of records in the database. This file is used by
READ ONLY transactions.

• CDD$TOP.BOOKKEEP.OVERNITE -- the CDD directory where RdbNMS
stores copies of data definitions if the CDD is installed on your system.

If you want Rdb/VMS to create your database in a directory other than the cur
rent default VMS directory, use a full file specification for the database name. For
example, suppose the current default directory is DISK2:[WORK] and the current
default CDD directory is CDD$TOP.BOOKKEEP. The following statement uses
an expanded file specification to store the database in another VMS directory:

DEFINE DATABASE "DISK2: [DEPT4.ACCOUNT]OVERNITE".

This statement creates the following entities:

• DISK2:[DEPT4.ACCOUNT]OVERNITE.RDB - the database file

• DISK2:[DEPT4.ACCOUNT]OVERNITE.SNP - the snapshot file

• CDD$TOP.BOOKKEEP.OVERNITE - the CDD directory

By default, Rdb/VMS stores the database definitions in the current default CDD
directory. You determine this directory either by defining the logical name
CDD$DEFAULT or by explicitly naming a dictionary using the SET
DICTIONARY statement in RDO.

If you use an RDO command file to define your database in other VMS directo
ries, the default CDD directory might be different each time you execute the com
mand file. You can use the SET DICTIONARY path-name statement in the
command file to name the CDD directory explicitly. This statement prevents the
command file from depending on the CDD default of the process that invokes it.

The IN path-name clause or the DEFINE DATABASE statement causes
Rdb/VMS to store definitions in the specified CDD directory. If the CDD direc
tory does not exist. Rdb/VMS creates it. Assume your VMS default directory is
DISK2:[BOOKKEEP. TEST] and your CDD default directory is
CDD$TOP.BOOKKEEP. The following statement shows how to use the IN
clause to specify a different CDD directory for this test database:

DEFINE DATABASE "OVERNITE" IN 11 CDD$TOP.BOOKKEEP.TEST 11 •

This statement creates the following entities:

• DISK2:[BOOKKEEP.TEST]OVERNITE.RDB -- the test database file

• DISK2:[BOOKKEEP.TEST]OVERNITE.SNP -- the test snapshot file

• CDD$TOP.BOOKKEEP.TEST -- the CDD directory

2-4 Creating a Database

When you use this test database for data manipulation, you can invoke it even if
your default CDD or VMS directories use the FILENAME clause:

INVOKE DATABASE FILENAME "DISK2:[BOOKKEEP.TEST]OVERNITE"

If you intend to change the de(initions of the test database using a CHANGE.
DELETE, or DEFINE statement, you should always invoke the database with
the PATHNAME clause:

INVOKE DATABASE PATHNAME 11 CDD$TOP.BOOKKEEP.TEST 11

In this case. Rdb/VMS finds the correct database file name by checking the CDD
definition for the database. Any changes you make to data definitions are then
entered in the CDD.

2.3.2 Database Size

Several clauses of the DEFINE DATABASE statement let you determine how
your database uses mass storage and memory. In most cases. the default settings
for these parameters are adequate. Furthermore, Rdb/VMS includes the multidisk
database capability. You can distribute a large database across several disks and
let Rdb/VMS maintain how and where new database growth is placed among the
disks. The VAX Rdb!VMS Guide to Database Administration and Maintenance
explains how to determine the values to specify for many of the DEFINE
DAT ABASE parameters.

If you do not specify any size parameters with the DEFINE DATABASE state
ment, Rdb/VMS uses the following defaults:

• Number of database pages -- 400

• Number of page blocks -- 2 (1024 bytes)

• Number of users -- 50

• Number of buffer blocks -- 6 ~three times the number of page blocksl

Creating a Database 2-5

2.4 Defining Fields

A VAX Rdb/VMS database consists of a set of one or more relations. A relation
definition simply gives a name to a list of field definitions.

There are two ways to define a field for an Rdb/VMS relation:

• With a DEFINE FIELD statement

The DEFINE FIELD statement adds a field definition to the database file
and to the CDD when you use the INVOKE-DATABASE PATHNAME
statement. Once you have defined the field, you can include it in any relation
definition simply by naming it. This is the recommended method of defining
a field.

• Inside a DEFINE RELATION1 statement

You can define a field within a relation definition by naming it and specifying
its characteristics.

A field definition consists of a series of field attributes. Attributes can be global or
local.

2.4.1 Global Attributes

Global attributes are associated with a global field name. You can include a global
field name in any relation definition. When a relation refers to a globaj field name,
the named field in the relation carries with it all the global attributes of the field.
Global attributes are:

• Global name (requiredl

• Data type (required)

• VALID IF clause (optional)

• MISSING_Y ALUE clause (optional)

• DAT A TRIEVE support clauses (optional)

When you include any one of these global attributes as part of a definition.
whether you define the field with a DEFINE FIELD statement or within a
DEFINE RELATION statement, you are defining the field globally. Rdb/VMS
checks the list of global definitions for the database. If no existing field has the
same name. the new field definition is added to the list of global fields.

2-6 Creating a Database

I
I I"

\
'-

2.4.1.1 Global Name --A global name must be unique among field names in
the database. Once you define the field, any relation can refer to the field defini
tion by this name. For example, the following field definition establishes
ROOM_NUMBER as a global field name:

DEFINE FIELD ROOM_NUMBER
DESCRIPTION IS

/* (Primary key for HOTEL) Hotel room number */
DATATYPE IS TEXT SIZE IS 3

VALID IF
(ROOM_NUMBER GT "100" AND
ROOM_NUMBER LT "500" AND
ROOM_NUMBER NE "200" AND
ROOM_NUMBER NE "300" AND
ROOM_NUMBER NE "400") AND
ROOM_NUMBER NOT MISSING

EDIT _STRING FOR DATATRIEVE IS "XXX".

Now the HOTEL. RESERVATION, and BILLING relations can include the glo
bal field ROOM NUMBER. ROOM NUMBER will have the same name and
attributes in all three relations.

DEFINE RELATION HOTEL.
ROOM_NUMBER.
ROOM_ TYPE.

END HOTEL RELATION.

Note that the global name attribute is required for all global fields.

2.4.1.2 Data Type -- Rdb/VMS uses a number of data types. These include
signed integers, floating point numbers, dates. and ASCII text. See Table 2-1 for
the complete list of VAX Rdb/VMS data types.

Nate that all global field definitions must include data types.

2.4.1.3 VALID IF Clause -- The VALID IF clause. which is optional. specifies a
domain of values for that particular field. Any value that you intend to add for
that field must lie within that domain in order to be stored in the database. The
VALID IF clause is used to check that a value is within a specified range or that it
exactly matches a list of values. When you specify a VALID IF clause for a global
field, you ensure that all values assigned to that field in every applicable relation
are checked consistently.

For example, you can add a VALID IF clause to the ROOM_TYPE field to ensure
that only specific values are assigned to it. Because the HOTEL and TYPES rela
tions include both the ROOM _TYPE field, Rdb/VMS checks values for
ROOM TYPE in both relations.

Creating a Database 2-7

DEFINE FIELD ROOM_TYPE
DESCRIPTION IS /* Hotel room type code */

DATATYPE IS TEXT SIZE IS 2
VALID IF

ROOM_TYPE EQ "S"
OR ROOM_TYPE EQ "D"
OR ROOM_TYPE EQ "SS"
OR ROOM_TYPE MISSING
MISSING_VALUE IS "??"
EDIT_STRING FOR DATATRIEVE IS "XX".

Remember that VALID IF clauses are optional.

2.4.1.4 MISSING VALUE Clause --A missing value allows you to account for
fields in which no explicit value is stored. When you do not store a specific value
in a field, or you store the value defined as the missing value, RdbNMS marks
this field value as missing. The MISSING operator is used because the value in
the field is unknown and cannot be used in relational comparisons. RdbNMS also
ignores missing values when calculating aggregates. Refer to Chapter 3 of the
VAX Rdb!VMS Reference Manual for more details on missing values.

When you identify a primary key for each relation, you can ensure that it never
contains null values by including the VALID IF NOT MISSING clause in the
DEFINE FIELD statement.

The following example uses November 18, 1858 as the missing value for the arri
val date field:

DEFINE FIELD ARRIVE_DATE
DESCRIPTION IS /* Date of arrival */
DATATYPE IS DATE
MISSING_VALUE IS
"18-NOV-1858 00:00:00:00".

To find records with missing value fields, use the MISSING operator:

FOR R IN RESERVATION WITH R.ARRIVE_DATE MISSING
PRINT R.GUEST_NAME,

R.ROOM_NUMBER,
R.RESERVE_DATE

END_FOR

MISSING VALUE clauses are optional.

2.4.1.5 DATATRIEVE Support Clauses -- If you intend to access the database
with VAX DATATRIEVE, you might want to specify DATATRIEVE clauses,
such as a default value and an edit string. DAT ATRIEVE uses these characteris
tics when retrieving the value from the RdbNMS database. For example, if no
value has been stored in a field, DATATRIEVE displays the default value on a
PRINT statement. For more details, see the VAX DATATRIEVE Reference
Manual. Note that DATATRIEVE support clauses are optional.

2-8 Creating a Database

\

(
\

2.4.2 Local Attributes

Local attributes are defined only within a DEFINE RELATION statement and
apply only to that relation's version of the field definition. Local attributes are:

• Local field name, when you use the BASED ON clause

• DAT ATRIEVE support clauses

• COMPUTED BY clause

2.4.2.1 Local Field Names -- The local field name allows you to give a name to
a field that is recognized only within the relation. When you use the BASED ON
clause, the field name is not entered in the list of field names for the database,
and other relations cannot refer to the field definition by that name.

You might want to assign local field names because these names are only needed
by persons accessing the relation through DATATRIEVE. Assigning the attribute
to the global field definition would be unnecessary.

The following relation definition shows the BASED ON clause for two fields,
SERVICE_CHARGE and TX_DATE. The other fields have global names.

DEFINE RELATION BILLING.

ROOM_NUMBER.
SERVICE_ CHARGE

BASED ON STANDARD_RATE
QUERLHEADER FOR DATATRIEVE IS "SERVICE"/"CHARGE"

QUERY_NAME FOR DATATRIEVE IS "S_CHG".
TX_DATE

BASED ON STANDARD_DATE
QUERY_HEADER FOR DATATRIEVE

IS "TRANSACTION 11 / 11 DATE 11 •

SERVICE_DESCRIP.
SERVICE_CODE.

END BILLING RELATION.

2.4.2.2 Local DATATRIEVE Support Clauses -- If you supply a DATATRIEVE
support clause as a local attribute, it overrides the global DAT A TRI EVE support
clause for that field.

Creating a Database 2-9

2.4.2.3 COMPUTED BY Clause -- The COMPUTED BY clause allows you to
name a field containing a value that represents the result of a value expression.
For example, if the GOV RA TE for a room is 10 percent less than the standard
room rate and the GROUP RATE is 14 percent less than the standard rate, you
can define GOV RATE and-GROUP RATE fields like this: - -
DEFINE RELATION RATES.

RATE_ CODE.
STD_RATE BASED ON STANDARD_RATE

QUERY_HEADER FOR DATATRIEVE IS 11 STANDARD 11 / 11 RATE 11

QUERY_NAME FOR DATATRIEVE IS "ST_RATE".

GOV_RATE
COMPUTED BY (STD_RATE * 0.90)
QUERY_HEADER FOR DATATRIEVE IS 11 GOVERNMENT 11 / 11 RATE 11

QUERY_NAME FOR DATATRIEVE IS 11 G_RATE 11 •

GROUP_RATE
COMPUTED BY (STD_RATE * 0.86)
QUERY_HEADER FOR DATATRIEVE IS "GROUP"/"RATE"
QUERY_NAME FOR DATATRIEVE IS "GRP_RATE".

END RATES RELATION.

Using this type of definition means that you have to store values only in the
STD RATE field. The GOV RATE and GROUP RATE fields are computed auto-
matically. - -

If you want to use a floating point number in a COMPUTED BY clause, you must
always have at least one digit before the decimal point and one digit after the
decimal point. Otherwise, RdbNMS interprets the decimal point as a period that
terminates the data definition statement.

2.4.3 Using the DEFINE FIELD Statement

You should use the DEFINE FIELD statement to set up definitions for all the
data items in the database before issuing any DEFINE RELATION statements.
This procedure simplifies the defining of relations by letting you keep a central
ized list of global field definitions. Then your relation definitions can simply list
the names of the global fields, or you can customize the relation definitions by
using local names and local attributes.

Fields that are defined with DEFINE FIELD statements are global fields. The
field can be included in any relation. If you should delete a relation. the global
fields associated with that relation remain in the database.

2-10 Creating a Database

/

(

\

When you use global fields, any changes that need to be made in the field defini
tion are made only once. All relations that include that global field automatically
reflect the change. For example, if the hotel put on a huge addition, it might need
to change the definition of the ROOM NUMBER field to accommodate 4-digit
room numbers. A single change to the-field definition would immediately affect
the HOTEL, RESERVATION, and BILLING relations.

Once you define a global field with a DEFINE FIELD statement, that field exists
as an entity in the database. If you define a relation based on global fields and for
some reason the relation definition fails, the global field definitions remain in tact.
If you define all your fields locally through a DEFINE RELATION statement and
the transaction fails to commit, all work is lost.

Of course. there are reasons to define fields locally as part of the DEFINE
RELATION statement. But wherever possible, you should consider using the
DEFINE FIELD statement to create global fields.

2.4.4 Creating Field Names

Because you are defining global fields that can be used in more than one relation.
you should make field names as general as possible. For example, there are sev
eral fields that contain date values. These fields use identical definitions. The
DEFINE FIELD statement. then. might give these fields a generic name. like
STANDARD DATE:

DEFINE FIELD STANDARD_DATE
DESCRIPTION IS /* Standard date field */

DATATYPE IS DATE
MISSING_VALUE IS "18-NOV-1858 00:00:00.00"
EDIT_STRING FOR DATATRIEVE IS "MM/DD/YY".

When you define the relation itself, you can use the BASED ON clause and give
the fields local names. The global definition is still in effect. The following exam
ple shows the list of field names that constitute the RESERVATION relation.
The global field definitions appear elsewhere in the database definition file.

Creating a Database 2-11

The following local field definitions in the RESERVATION relation include
BASED ON clauses:

DEFINE RELATION RESERVATION.
GUEST_NAME.
CITY.
STATE.
POSTAL_CODE.
ROOM_NUMBER.
LENGTH_OF_STAY.
PARTY_SIZE.
RESERVE_DATE

BASED ON STANDARD_DATE
QUERLHEADER FOR DATATRIEVE IS "RESERVATION"/"DATE"
QUERY_NAME FOR DATATRIEVE IS "RESRV_DATE".

ARRIVE_DATE
BASED ON STANDARD_DATE
QUERY_HEADER FOR DATATRIEVE IS "ARRIVAL"/"DATE"
QUERY_NAME FOR DATATRIEVE IS 11 A_DATE".

DEPART_DATE
BASED ON STANDARD_DATE
QUERY_HEADER FOR DATATRIEVE IS "DEPARTURE"/"DATE"
QUERY_NAME FOR DATATRIEVE IS "D_DATE".

CONFIRMED
BASED ON STANDARD_FLAG
QUERY_HEADER FOR DATATRIEVE IS "RESERVATION"/"CONFIRMED"
QUERY_NAME FOR DATATRIEVE IS "RESRV_CONF".

CHECK_OUT
BASED ON STANDARD_FLAG
QUERY_HEADER FOR DATATRIEVE IS "CHECKED"/"OUT"
QUERY_NAME FOR DATATRIEVE IS "CHK_OUT".

ROOM_RATE
BASED ON STANDARD_RATE
QUERY_HEADER FOR DATATRIEVE IS "ROOM"/"RATE"
QUERY_NAME FOR DATATRIEVE IS "R_RAT".

END RESERVATION RELATION.

2.4.5 Specifying Data Types

You must specify a data type with each global field you name. Table 2-1 lists the
characteristics for each data type.

2-12 Creating a Database

Table 2-1: Rdb/VMS Data Types

VAX Rdb/VMS Corresponding Range/ Other
Data Type VAX Data Type Size Precision Parameters

SIGNED Signed word 16 bits -32768 to 32767 n = scale factor
WORD integer

SIGNED Signed longword 32 bits -2**31 to n = scale factor
LONGWORD integer (2**31l-1

SIGNED Signed quadword 64 bits -2**63 to n = scale factor
QUADWORD integer (2**63)-1

F_FLOATING F_floating 32 bits Approximately None
Single precision seven decimal
floating point digits
number

G_FLOATING G_floating 64 bits Approximately None
Extended preci- 15 decimal
sion floating digits
point number

DATE Absolute date 64 bits Not applicable None
and time

TEXT ASCII text n bytes 0 to 16383 char- n = number of
acters characters

(unsigned integer)

VARYING Varying length Varies 0 to 16383 char- n =maximum
STRING ASCII text acters number of charac-

ters (unsigned in-
teger)

SEGMENTED None Varies 0 to 64k bytes None
STRING per segment

Creating a Database 2-13

The OVERNITE database uses four data types:

• TEXT

You use the TEXT data type for names and labels. TEXT is also useful for
identification numbers that are not used in calculations, for example, room
numbers. The size of the field should be sufficient to hold the longest string
of text characters.

DEFINE FIELD GUEST_NAME

• DATE

DESCRIPTION IS /* Guest name */
DATATYPE IS TEXT SIZE IS 15

VALID IF
GUEST_NAME NOT MISSING.

The VAX DA TE data type is a quadword value giving the time since a base
date (17-NOV-1858 00:00:00.00). Many VAX languages and utilities, includ
ing DATATRIEVE. use the DATE data type for specifying dates.

DEFINE FIELD STANDARD_DATE
DESCRIPTION IS /* Standard date field */

DATATYPE IS DATE

• SIGNED WORD

MISSING_VALUE IS "18-NOV-1858 00:00:00.00"
EDIT_STRING FOR DATATRIEVE IS "MM/DD/YY".

The OVERNITE database uses word integers for unscaled numeric informa
tion. If the field requires more than four digits, you must use the SIGNED
LONGWORD data type.

DEFINE FIELD LENGTH_OF_STAY
DESCRIPTION IS

/* Number of days guest stays in hotel */
DATATYPE IS SIGNED WORD

VALID IF
LENGTH_OF_STAY GT 0

OR LENGTH_OF_STAY MISSING
MISSING_VALUE IS -1

QUERY_HEADER FOR DATATRIEVE IS "LENGTH"/"OF STAY"
QUERLNAME FOR DATATRIEVE IS "STAY".

2-14 Creating a Database

• SIGNED LONGWORD

The OVERNITE database uses the SIGNED LONGWORD data type for
money values. SIGNED LONGWORD allows for scaling. For example, the
SERVICE CHARGE field might contain a value like $29.95. You should use
the SIGNED LONGWORD SCALE -2 data type to store this kind of data.

DEFINE FIELD STANDARD_RATE
DESCRIPTION IS /* Standard money field */

DATATYPE IS SIGNED LONGWORD SCALE -2
EDIT_STRING FOR DATATRIEVE IS 11 $$$$.$$ 11 •

SERVICE_ CHARGE
BASED ON STANDARD_RATE
QUERY_HEADER FOR DATATRIEVE IS "SERVICE"/"CHARGE"
QUERLNAME FOR DATATRIEVE IS "S_CHG".

2.4.6 Field Definition Options

Appendix A shows a procedure that defines all of the OVERNITE fields and
relations for the OVERNITE database. Each field definition uses some optional
components of the DEFINE FIELD statement. You can add the following
optional clauses to the field definitions:

1. DATATRIEVE support clause

2. MISSING VALUE clause

3. VALID IF clause

2.4.6.1 DATATRIEVE Support Clauses -- You can use DATATRIEVE to dis
play Rdb/VMS data on the terminal and to create reports from Rdb/VMS
databases. Therefore, Rdb/VMS lets you define display characteristics for
DAT ATRIEVE in the field definitions.

For example, you might want to format dates in a standard format such as
"11/1 7 /83". To do this, you include a DAT ATRIEVE edit string clause in the
STANDARD DATE field definition:

DEFINE FIELD STANDARD_DATE
DESCRIPTION IS /* Standard date field */

DATATYPE IS DATE
MISSING VALUE IS "18-NOV-1858 00:00:00.00"
EDIT_STRING FOR DATATRIEVE IS "MM/DD/YY".

The local fields that depend on the STANDARD DATE field inherit all the field
attributes of the global field. Added to these are the local field attributes that are
defined within relations. For example, the BILLING relation defines transaction
date in terms of the STANDARD DATE field and includes a DATATRIEVE sup-
port clause. -

Creating a Database 2-15

TX_DATE BASED ON STANDARD_DATE
QUERY_HEADER FOR DATATRIEVE IS

"TRANSACTION"/"DATE".

Local fields in the RESERVATION relation are defined similarly:

RESERVE_DATE BASED ON STANDARD_DATE
QUERY_HEADER FOR DATATRIEVE

IS "RESERVATION"/"DATE"
QUERY_NAME FOR DATATRIEVE

IS "RESRV_DATE".
ARRIVE_DATE BASED ON STANDARD_DATE

QUERY_HEADER FOR DATATRIEVE
IS "ARRIVAL"/"DATE"

QUERY_NAME FOR DATATRIEVE
IS "A_DATE".

DEPART_DATE BASED ON STANDARD_DATE
QUERY_HEADER FOR DATATRIEVE

IS "DEPARTURE"/"DATE"
QUERY_NAME FOR DATATRIEVE

IS "D_DATE".

The VAX DATATRIEVE Reference Manual provides more information on
DATATRIEVE edit strings.

2.4.6.2 MISSING VALUE Clause -- Including a missing value clause in the field
definition enables you to handle situations when you do not have the information
you need to enter a valid data value. The clause specifies what character(s) you
enter to indicate lack of information.

It is important to remember that Rdb/VMS always checks the VALID IF clause in
the DEFINE FIELD statement. Therefore, if you have defined any fields for
which you might not have explicit values, be sure to extend the VALID IF clause
to include VALID IF MISSING. Whenever your database is backed up and
restored using the RDO BACKUP and RESTORE statements. Rdb/VMS checks
all the data when it is reapplied to the database. If no value is available for a spe
cific field in a record, and you have not included the VALID IF MISSING clause,
Rdb/VMS returns an error; your database could now be inconsistent.

In the OVERNITE database, the field TELEPHONE can have two normal values,
"Y" or "N". When the hotel assigns values to the characteristics of a room and
information is unavailable about the presence or absence of a telephone. the hotel
can ignore this field or store the missing value "?" during data entry. Because no
legal value is stored in that field, DATATRIEVE signals Rdb/VMS to flag that
field as having the missing value, "?". Notice that the VALID IF clause confirms
the fact that it is acceptable and valid for this field to be null.

2-16 Creating a Database

DEFINE FIELD TELEPHONE
DESCRIPTION IS /* Is telephone in the hotel room */

DATATYPE IS TEXT SIZE IS 1
VALID IF

TELEPHONE EQ "Y"
OR TELEPHONE EQ "N"
OR TELEPHONE MISSING

MISSING_VALUE IS "?"
QUERY_HEADER FOR DATATRIEVE IS "TELEPHONE"

QUERY_NAME FOR DATATRIEVE IS "PHONE".

2.4.6.3 VALID IF Clause -- Several data items are restricted to a range of val
ues. Ranges are best enforced with the VALID IF clause. For example, room
numbers in the hotel range from 101 to 499, but they exclude certain values: 200,
300. and 400. If someone tries to enter either a number outside this range, or one
of the excluded number values, Rdb/VMS returns an error and prevents the incor
rect value from being stored. The VALID IF clause performs this function.

DEFINE FIELD ROOM_NUMBER
DESCRIPTION IS /* (PK for HOTEL) Hotel room number */

DATATYPE IS TEXT SIZE IS 3
VALID IF
(ROOM_NUMBER GT "100" AND
ROOM_NUMBER LT "600" AND
ROOM_NUMBER NE "200" AND
ROOM_NUMBER NE "300" AND
ROOM_NUMBER NE 11 400 11) AND
ROOM_NUMBER NOT MISSING

EDIT_STRING FOR DATATRIEVE IS "XXX".

As mentioned in Section 2.4.6.2. you can also use the VALID IF clause to allow a
missing value for the field. For example, a missing value for departure date might
be acceptable. but not allowed as an arrival date value. In defining the departure
date field, you might want to include a VALID IF MISSING clause.

If your tasks require checking fields in other relations in the database. Rdb/VMS
allows you to define a constraint for this purpose. Section 2.6 shows you how to
use the DEFINE CONSTRAINT statement to add a formal constraint to a field.
You can define optional characteristics for all the fields in the sample database.
See Appendix A for complete definitions.

Creating a Database 2-17

2.5 Defining Relations
A relation definition is composed of the following components:

• Field names

• Local field names

• DAT A TRIEVE support options

The simplest way to define a relation is to list existing field names. If you use this
method, you need only choose the name for the relation. You can also add local
field names (using BASED ON clauses) and local DATATRIEVE support options
(QUERY NAME and QUERY HEADER clauses) in the DEFINE RELATION
statement. Of course, some of-these same features can be part of a global field.
You can either include them when you create the field with a DEFINE FIELD
statement, or you can add them later on using the CHANGE FIELD statement.

Table 2-2 lists some of the different was to use the DEFINE RELATION state
ment.

Table 2-2: Options in the DEFINE RELATION Statement

Contents of DEFINE RELATION Result
Statement

Existing field name Copies existing field name and
definition.

Existing field name, Copies existing field name and
DATATRIEVE clauses definition. adds DATATRIEVE

query header and/or query
name.

New field name. new field Creates new definition.
definitions. with or without
DAT ATRIEVE clauses

New field name. BASED ON Copies existing field
clause, with or without definition, gives field new
DAT ATRIEVE clauses name.

New field name, COMPUTED BY Creates new field definition
clause, with or without based on a value expression.
DAT ATRIEVE clauses

2-18 Creating a Database

The following example shows the procedure that defines the five relations for the
Overnite Hotel. Once these definitions are stable, you can include them in a com
mand file similar to the one shown in Appendix A.

Define HOTEL relation

DEFINE RELATION HOTEL.
ROOM_ NUMBER

QUERY_HEADER FOR DATATRIEVE IS "ROOM"/"NUMBER"
QUERLNAME FOR DATATRIEVE IS "RNUM".

ROOM_ TYPE
QUERLHEADER FOR DATATRIEVE IS "ROOM"/"TYPE"
QUERLNAME FOR DATATRIEVE IS "RTYPE".

END HOTEL RELATION.

Define TYPE relation

DEFINE RELATION TYPE.
ROOM_ TYPE

QUERY_HEADER FOR DATATRIEVE IS "ROOM"/"TYPE"
QUERY_NAME FOR DATATRIEVE IS "RTYPE".

RATE_ CODE

BEDS

QUERLHEADER FOR DATATRIEVE IS "RATE"/"CODE"
QUERLNAME FOR DATATRIEVE IS "RATCOD".

QUERY_HEADER FOR DATATRIEVE IS "NUMBER"/"OF BEDS"
QUERY_NAME FOR DATATRIEVE IS "NUM_BED".

TELEPHONE

TV

AC

QUERLHEADER FOR DATATRIEVE IS "TELEPHONE"
QUERY_NAME FOR DATATRIEVE IS "PHONE".

QUERY_HEADER FOR DATATRIEVE IS "TELEVISION"
QUERY_NAME FOR DATATRIEVE IS "TV".

QUERLHEADER FOR DATATRIEVE IS "AIR"/"CONDITIONING"
QUERLNAME FOR DATATRIEVE IS "AIR".

END TYPE RELATION.

Define RATES relation

DEFINE RELATION RATES.
RATE_ CODE

QUERY_HEADER FOR DATATRIEVE IS "RATE"/"CODE"
QUERY_NAME FOR DATATRIEVE IS "R_CODE".

STD_RATE BASED ON STANDARD_RATE
QUERY_HEADER FOR DATATRIEVE IS "STANDARD"/"RATE"
QUERY_NAME FOR DATATRIEVE IS "ST_RATE".

GOV_RATE
COMPUTED BY (STD_RATE * 0.90)

QUERY_HEADER FOR DATATRIEVE IS "GOVERNMENT"/"RATE"
QUERY_NAME FOR DATATRIEVE IS "G_RATE".

GROUP_RATE
COMPUTED BY (STD_RATE * 0.86)

QUERLHEADER FOR DATATRIEVE IS "GROUP"/"RATE"
QUERLNAME FOR DATATRIEVE IS "GRP_RATE".

END RATES RELATION.
(continued on next page)

Creating a Database 2-19

Define RESERVATION relation

DEFINE RELATION RESERVATION.
GUEST_ NAME

CITY

STATE

QUERLHEADER FOR DATATRIEVE IS "GUEST"/"NAME"
QUERY_NAME FOR DATATRIEVE IS "NAME".

QUERY_HEADER FOR DATATRIEVE IS "CITY".

QUERY_HEADER FOR DATATRIEVE IS "STATE".
POSTAL_ CODE

QUERY_HEADER FOR DATATRIEVE IS "POSTAL"/"CODE".
RESERVE_DATE BASED ON STANDARD_DATE

QUERY_HEADER FOR DATATRIEVE IS "RESERVATION"/"DATE"
QUERY_NAME FOR DATATRIEVE IS "RESRV_DATE".

ARRIVE_DATE BASED ON STANDARD_DATE
QUERY_HEADER FOR DATATRIEVE IS "ARRIVAL"/"DATE"
QUERLNAME FOR DATATRIEVE IS "A_DATE".

DEPART_DATE BASED ON STANDARD_DATE
QUERY_HEADER FOR DATATRIEVE IS "DEPARTURE"/"DATE"
QUERY_NAME FOR DATATRIEVE IS "D_DATE".

LENGTH_OF_STAY
QUERY_HEADER FOR DATATRIEVE IS "LENGTH"/"OF STAY"
QUERY_NAME FOR DATATRIEVE IS "STAY".

PARTY_SIZE
QUERY_HEADER FOR DATATRIEVE IS "PARTY"/"SIZE"
QUERY_NAME FOR DATATRIEVE IS "P_SIZE".

CONFIRMED BASED ON STANDARD_FLAG
QUERY_HEADER FDR DATATRIEVE IS "RESERVATION"/"CONFIRMED"
QUERY_NAME FDR DATATRIEVE IS "RESRV_CONF".

CHECK_OUT BASED ON STANDARD_FLAG
QUERY_HEADER FOR DATATRIEVE IS "CHECKED"/"OUT"
QUERY_NAME FOR DATATRIEVE IS 11 CHK_OUT 11 •

ROOM_NUMBER
QUERY_HEADER. FOR DATATRIEVE IS "RDOM"/"NUMBER"
QUER.Y_NAME FOR DATATRIEVE IS "RNUMB".

ROOM_RATE BASED ON STANDARD_RATE
QUER.Y_HEADER. FDR DATATRIEVE IS "RODM"/"RATE"
QUERY_NAME FDR DATATRIEVE IS "R_RAT".

END RESERVATION RELATION.

2-20 Creating a Database

! Define BILLING relation

DEFINE RELATION BILLING.
ROOM_ NUMBER

QUERLHEADER FOR DATATRIEVE IS "ROOM"/"NUMBER"
QUERY_NAME FOR DATATRIEVE IS "RNUMB".

SERVICE_CHARGE BASED ON STANDARD_RATE
QUERY_HEADER FOR DATATRIEVE IS "SERVICE"/"CHARGE"
QUERY_NAME FOR DATATRIEVE IS "S_CHG".

TX_DATE BASED ON STANDARD_DATE
QUERY_HEADER FOR DATATRIEVE IS "TRANSACTION"/"DATE".

SERVICE_DESCRIP
QUERY_HEADER FOR DATATRIEVE IS "SERVICE"/"DESCRIPTION"
QUERY_NAME FOR DATATRIEVE IS 11 S_DESCR".

SERVICE_ CODE
QUERLHEADER FOR DATATRIEVE IS "SERVICE"/"CODE"
QUERLNAME FOR DATATRIEVE IS "S_CODE".

END BILLING RELATION.

The logical model used to create the physical database definition also included an
entity called GUEST. When you examine the field and relation definitions, you
see that the GUEST relation includes fields from relations already defined.
Defining a GUEST relation could lead to inconsistencies and other udpate prob
lems. A GUEST relation. therefore, is not the best solution. You can make the
same data available by defining a GUEST view.

You can create a query containing an RSE that refers to all fields in other rela
tions necesary to describe a GUEST. Using the RdbNMS view feature, you can
make such a query a permanent part of the database.

Section 2.8 shows you how to define a view called GUEST. Since all the fields in
the GUEST view are actually in other relations, the GUEST view can use these
existing fields and values rather than storing its own.

2.6 Defining Constraints

RdbNMS provides you with a feature that helps the database to maintain refer
ential integrity. That is, for every value of a foreign key in a relation, you want a
matching value in the primary key field of another relation. When no such con
straint checking is performed, it is possible to add a value to the foreign key field
in one relation that does not refer to the primary key value in another relation.
Therefore, even though your database design is normalized, you want to ensure
that the links between the foreign key in a relation and a primary key in another
are secure. You use the RdbNMS constraint feature to check another relation for
the presence of specific values.

Creating a Database 2-21

You can place constraints on fields in VAX RdbNMS in two ways:

• With the VALID IF clause in the DEFINE FIELD statement

VALID IF is intended primarily to allow RdbNMS to check the range of a \.
value when it is entered or stored.

• With the DEFINE CONSTRAINT statement

DEFINE CONSTRAINT allows you more flexibility than VALID IF. A for
mal constraint checks the validity of one field in terms of others in the
database.

This section shows how to use DEFINE CONSTRAINT. See Section 2.4.1.3 for
information about the VALID IF clause.

The DEFINE CONSTRAINT statement consists of three parts:

• A name

• A FOR clause, which specifies a record selection expression

The record selection expression determines which records will be checked to
see if they meet the conditions of the constraint.

• A REQUIRE clause, which specifies a conditional expression

The conditional expression sets up the conditions a record must meet to be
entered in the database.

For example. when someone enters a RATE CODE, the foreign key in the
TYPES relation, you want to be sure that the rate code already is valid. If the
rate code exists in the RATES relation, then it is valid. To check the value by
looking it up in a relation, define the constraint like this:

DEFINE CONSTRAINT RATE_CODE_EXISTS
FOR T IN TYPES

REQUIRE (ANY R IN RATES
WITH R.RATE_CODE = T.RATE_CODE).

In the following example, the constraint checks to see if the billing transaction
matches an actual guest staying in the hotel:

DEFINE CONSTRAINT SERVICE_CHECK
FOR B IN BILLING

REQUIRE (ANY R IN RESERVATION
WITH R.ROOM_NUMBER = B.ROOM_NUMBER
AND R.CONFIRMED = "Y").

2-22 Creating a Database

It is important to remember that using constraints affects performance in certain
ways. Rdb/VMS must place locks on one or more relations to check field values.
This means that Rdb/VMS might have to perform several join operations for a
complex constraint evaluation. To ensure maximum performance for constraint
evaluation, you should define indexes for primary and foreign keys. In general,
avoid very complex constraint definitions that refer to many relations.

2.7 Defining Indexes
Indexes are special tables added to the database internally to speed searching
relations for selected records. When you use the DEFINE INDEX statement to
add an index key to a relation, Rdb/VMS builds an index using the field you
specify. When you perform an operation that requires searching or joining by the
indexed field, Rdb/VMS uses the index to find records directly, without a sequen
tial scan of the records in the relation.

Index keys are especially important in a relational database. because you are join
ing records from different relations frequently. Index keys make it easier for join
operations to retrieve data quickly and directly.

On the other hand, index nodes might have to be updated to reflect changes in
the data. When values change in the database, Rdb/VMS must update the corre
sponding index nodes automatically to reflect these changes. Some update pro
cesses can create a large number of changes to indexed fields. Updating indexed
fields can take up valuable time and resources, such as locks. The nature of your
database activity can determine when to use indexes to your advantage and when
to avoid them.

The following guidelines can help you decide where to use indexed fields. Define
an index for a field when you:

• Identify primary and foreign keys

• Retrieve data often from the relation

If you specify READ ONLY in your START TRANSACTION statement,
using indexed fields fo locate records results in fast and efficient retrieval.

• Use complex queries that contain a CROSS clause to combine several rela
tions

When the join operation uses common (primary and foreign key) fields that
are also indexed, retrieval time improves.

• Use statistical functions

You should use indexed fields when finding values from MAX, MIN,
AVERAGE, and TOTAL.

Creating a Database 2-23

Avoid indexes when you:

• Store large numbers of records in a single transaction

• Delete many records from the database

Picking a successful strategy for defining indexes is a complex task. You should
always define indexes for primary and foreign keys. Such a policy ensures that
primary key fields cannot contain duplicate values but that foreign key fields can
hold duplicate values.

Primary and foreign keys tend to be relatively stable. You are less likely to modify
key values than other fields in the record. You should be concerned with the over
head required for tasks that update the index nodes only when you store or erase
large numbers of records. Indexed primary and foreign key fields normally pro
vide an efficient and dependable search path to the desired records.

Often you can tell which fields, other than primary and foreign key fields, should
be indexed only after you monitor the usage of the database for some time. If ~()U
notice that someJields are used for joins and retrievals, you can defineindexes for
them. On the other hand, if you see that a relation is frequently updated, you
rrl.ightdecide todelete indexes for those fields in that relation. Note that using
~indexed fields to locate records containing other, nonindexed, fields does not
impair update performance.

When you are updating a large relation. either by storigg_m.an_ynewrecQrds o~
erasing them. performance might be improved if you delete indexes for fields in
that relation, run the update procedure, and then redefine the index when the
task is finished. In this way. Rdb/VMS rebuilds the index structure only once,
rather than once for each update operation.

As a rule of thumb, however, you should define all the indexes you believe will
improve the performance of retrievals. Here are some additional guidelines for
determining which fields to index:

• Choose those fields in the relation you use frequently to locate records.
Primary key fields are almost always used to select one or more records.

• Include fields common to two or more relations, because these are the fields
used in CROSS operations. A foreign key field in one relation forms the link
to the primary key field in another relation. It is good practice to define
indexes for all primary and foreign key fields in the database.

• Decide whether or not that field can store duplicate values. Primary key
fields must have unique values; they cannot allow duplicate values. On the
other hand, foreign keys often contain identical values.

2-24 Creating a Database

Sometimes a primary key field actually consists of two fields. Each of these
fields by itself could hold duplicate values, but when used in combination,
they form a primary key field that contains only unique values. Q_filining an
index for such a primary key field is called a multisegment index. RdbNMS
lets you name the index, include the names of the fields used in the key, and
specify whether the index is allowed to store duplicate values.

The RESERVATION relation is one that lends itself to multisegment indexes. It
contains the following fields:

GUEST_NAME
CITY
STATE
POSTAL_ CODE
RESERVE_DATE
ARRIVE_DATE
DEPART_DATE
LENGTH_OF_STAY
PARTLSIZE
CONFIRMED
CHECK_OUT
ROOM_ NUMBER
ROOM_RATE

No single field value for any of these fields can guarantee retrieval of a unique
record. For example, the GUEST NAME field in one record can contain the same
value as other occurrences of that field in other records. The various date fields
are not unique. Even the address information could be duplicated.

By selecting a combination of two fields, however, you can create an index value
that is unique. The combination of the two fields, GUEST NAME and
POSTAL CODE, might result in a unique value. Therefore, you might select the
following-combinations of fields to create an index that can satisfy the NO
DUPLICATES ALLOWED clause of the DEFINE INDEX statement.

GUEST_NAME and POSTAL_CODE
GUEST_NAME and ARRIVE_DATE
GUEST_NAME and PARTY_SIZE
GUEST_NAME and ROOM_NUMBER

Refer to Chapter 4 of the VAX RdbNMS Guide to Database Administration and
Maintenance for a complete description of indexes and how you can use them.

The following examples define indexes for some fields in the OVERNITE
relations: -

DEFINE INDEX HOTEL_ROOM_NUMBER
DESCRIPTION IS /* Primary key for the HOTEL relation */
FOR HOTEL
DUPLICATES ARE NOT ALLOWED.

ROOM_NUMBER.
END HOTEL_ROOM_NUMBER INDEX.

(continued on next page)

Creating a Database 2-25

DEFINE INDEX HOTEL_ROOM_TYPE
DESCRIPTION IS /* foreign key for the HOTEL relation */
FOR HOTEL
DUPLICATES ARE ALLOWED.

ROOM_ TYPE.
END HOTEL_ROOM_TYPE.INDEX.

DEFINE INDEX CODE_RATE
DESCRIPTION IS /* Primary key for the RATES relation */
FOR RATES
DUPLICATES ARE NOT ALLOWED.

RATE_CODE.
END CODE_RATE INDEX.

2.8 Defining Views
The definition of the OVERNITE database separated the hotel's data into logi
cally related groups. Because the normalization process often results in defining
additional relations. the task of gathering data from these relations can be cum
bersome. Accessing data that occurs in several different relations might mean
entering the same complex queries repeatedly. However. Rdb/VMS provides an
efficient method to make these queries "permanent." You can create views to
combine different portions of many relations in the database.

You can think of a view as a "virtual relation." To the user who is not familiar
with the database definitions. a view looks just the same as a relation: it has a
name, a set of fields. and a number of records. Because a view, like a query, is cre
ated from a record selection expression. it simply refers to the fields contained in
the existing relations by naming them in an RSE. It stores no data of its own.
Views have the following advantages:

• Security

You can prevent unauthorized users from accessing sensitive data by speci
fying only those records and fields you want certain users to see.

• Easy access

Queries using complex selection criteria can be formalized in a view defini
tion to make access to selected portions of the database easy.

• Easy update

You can update views that are based on a single relation.

• Organization

You can assemble different groups of fields from existing relations for host
language program access or for DAT ATRIEVE users. Defining views for
programs can significantly reduce complex RSEs embedded in the program
source code.

2-26 Creating a Database

As the examples in the following sections show, joining relations can be complex.
If you frequently form the same RSE to retrieve records from several relations,
you might consider creating a view definition. A view can bring together fields
from one or more relations based on an RSE specified in the view definition. A
user can refer to the view definition as if it were a single relation and use RDO
statements to display or manipulate field values. Thus. a user who might not
readily understand the syntax for a complex join can still access data from such a
join when it is defined in a view.

If you use such a complex query frequently, you can create a view definition to
refer to that restricted record stream from several relations. The DEFINE VIEW
statement uses an RSE to specify the record stream you want to establish. You
also must indicate which fields from the stream you want included in the view.
You can use the resulting view definition instead of the query itself.

When Rdb/VMS is installed on your system, a sample PERSONNEL database is
available to try the examples shown in the Rdb/VMS documentation. The
PERSONNEL database contains three view definitions. Two of these views.
CURRENT JOB and CURRENT SALARY are similar to the GUEST view: each
refers to two relations in a databa-se. The third PERSONNEL view.
CURRENT INFO, is more complex than the others because it refers to both rela
tions and views in its definition. The examples in the following sections illustrate
how to create the GUEST view first and then the three PERSONNEL database
views.

Before defining a view, you can join two, three, or more relations and issue a
query to be sure that you are accessing the correct data. Once you have deter
mined that the data is correct, you can use the same fields from the join to create
a view. The PERSONNEL database examples first create joins and then define
the views.

2.8.1 Creating the GUEST View

Chapter 1 showed you how to create five relations for the OVERNITE database.
Because a GUEST relation would include only fields that other relations already
contained. defining a relation called GUEST would invite inconsistencies and
unnecessary duplication of data. The hotel finds it convenient to assemble this
special group of fields for routine queries. Defining a GUEST view. therefore,
solves the problems of inconsistency and redundancy while providing the hotel
reservation system with a relation-like entity called a view.

The first three fields (GUEST NAME. ROOM NUMBER. and ADDRESSt
appear in the RESERVATION relation. The last three fields (TOTAL_CHARGE,
TOTAL ROOM CHARGE, and TOTAL SERVICE CHARGEt can be computed
from informatio-n contained in the BILLING relation.

Creating a Database 2-27

A GUEST view can better serve the hotel than a GUEST relation. For example,
it might be a good idea for the cashier to have access only to total charge informa
tion, rather than be able to see itemized charges in the BILLING relation. In
addition to specifying certain fields in a view definition to restrict access to sensi
tive or confidential data, you can also specify view access rights that precisely
identify which tasks authorized users can perform with that view.

The GUEST view definition uses the CROSS clause to join the RESERVATION
and BILLING relations using the ROOM NUMBER field from each relation. The
view includes the three global field definitions from the RESERVATION relation.
The remaining three fields in the view are created using COMPUTED BY clauses
that access information from the BILLING relation.

The GUEST view definition looks like this:

DEFINE VIEW GUEST OF R IN RESERVATION
CROSS B IN BILLING OVER ROOM_NUMBER.

R.GUEST_NAME.
R.ROOM_NUMBER.
R.ADDRESS.
TOTAL_ROOM

COMPUTED BY
(R.LENGTH_OF_STAY * R.ROOM_RATE).

TOTAL_SERVICE
COMPUTED BY

TOTAL X.SERVICE_CHARGE OF X IN BILLING
WITH X.ROOM_NUMBER = R.ROOM_NUMBER.

TOTAL_BILL
COMPUTED BY

((R.LENGTH_OF_STAY * R.ROOM_RATE) +
(TOTAL X.SERVICE_CHARGE OF X IN BILLING

WITH X.ROOM_NUMBER = R.ROOM_NUMBER)).

END VIEW.

You refer to this view by its defined name, GUEST. The definition gives new,
convenient names to the total charges fields. When users refer to this view, they
use context variables and the new field names as though the view were a relation
in the database. The database still maintains the same information.

The following example shows how you can retrieve information from the GUEST
view:

FOR G IN GUEST WITH G.ROOM_NUMBER = "204"
PRINT

G.ROOM_NUMBER,
G.GUEST_NAME,
G.ADDRESS,
G.TOTAL_ROOM,
G.TOTAL_SERVICE,
G.TOTAL_BILL

END_FOR

2-28 Creating a Database

Views also provide performance enhancements. Performing a join that involves
many relations could be time-consuming. You can improve performance by
defining a view that includes the join operation. Note that although you can define
a view based on one or more existing views, in most cases it is more efficient to
base all view definitions on the database relations themselves.

2.8.2 Creating the CURRENT_JOB View

The definitions for the relations in the PERSONNEL database do not provide a
simple procedure to retrieve only information about an employee's current job.
The necessary data for such a query is distributed between two relations:
EMPLOYEES and JOB_ HISTORY. To access the data you require, you need to
include the following fields from the two relations:

• EMPLOYEES relation (basic data on an employee and supervisor)

EMPLOYEE ID

FIRST NAME

LAST NAME

• JOB_HISTORY relation (all jobs held by an employee)

JOB START

JOB CODE

SUPERVISOR ID

DEPARTMENT CODE

Now you can form a query that joins these two relations. Because both the rela
tions contain the EMPLOYEE ID field. you can use this field as the join term in
your record selection expression (RSE):

FOR JH IN JOB_HISTORY
CROSS E IN EMPLOYEES OVER EMPLOYEE_ID

PRINT
E.LAST_NAME,
E.FIRST_NAME,
E.EMPLOYEE_ID,
JH.JOB_CODE,
JH.DEPARTMENT_CODE,
JH.SUPERVISOR_ID,
JH.JOB_START

END_FOR

Creating a Database 2-29

Remember that the JOB HISTORY relation can contain many job history
records for an employee. -This query then retrieves all job history records for every
employee. You can restrict the record stream further by requiring only the cur
rent job history record for each employee. No data value is stored in the
JOB END field for a current job history record; that is, the value is missing.
Therefore you can find a current job history record by selecting records in the
JOB HISTORY relation where the JOB END field is missing. The following
query adds this clause to the RSE to inClude only current job history records with
records from the EMPLOYEES relation.

FOR JH IN HOB_HISTORY
CROSS E IN EMPLOYEES OVER EMPLOYEE_ID

WITH JH.JOB_END MISSING
PRINT

E.LAST_NAME,
E.FIRST_NAME,
E.EMPLOYEE_ID,
JH.JOB_CODE,
JH.DEPARTMENT_CODE,
JH.SUPERVISOR_ID,
JH.JOB_START

END_FOR

This query brings together just the fields you need from both relations and
restricts the record stream to only current job history information. You can now
turn this query into a view definition and add it to other database entity defini
tions in the database.

DEFINE VIEW CURRENT_JOB OF JH IN JOB_HISTORY
CROSS E IN EMPLOYEES OVER EMPLOYEE_ID

WITH JH.JOB_END MISSING
E.LAST_NAME,
E.FIRST_NAME,
E.EMPLOYEE_ID,
JH.JOB_CODE,
JH.DEPARTMENT_CODE,
JH.SUPERVISOR_ID,

END VIEW.

The following example shows how you can use the CURRENT JOB view to find
the current job history record for an individual employee: -

FOR CJ IN CURRENT_JOB WITH CH.EMPLOYEE_ID = "00164"
PRINT

CJ.*
END_FOR

2-30 Creating a Database

2.8.3 Creating the CURRENT SALARY View

You can follow the same steps to create the CURRENT SALARY view as are
shown in the previous example. CURRENT SALARY joins the EMPLOYEES
relation with the SALARY HISTORY relatiOn. First determine which fields you
need from each relation: -

• LAST NAME from the EMPLOYEES relation

• FIRST NAME from the EMPLOYEES relation

• EMPLOYEE ID from the EMPLOYEES relation

• SALARY ST ART from the SALARY HISTORY relation

• SALARY AMOUNT from the SALARY HISTORY relation

You use the following query to ensure that you are retrieving the current data:

FOR SH IN SALARY_HISTORY
CROSS E IN EMPLOYEES OVER EMPLOYEE_ID

WITH SH.SALARY_END MISSING
PRINT

E.LAST_NAME,
E.FIRST_NAME,
E.EMPLOYEE_ID,
SH.SALARY_START,
SH.SALARY_AMOUNT

END_FOR

Now that you see the join works successfully, you can create the
CURRENT SALARY view:

DEFINE VIEW CURRENT_SALARY OF SH IN SALARY_HISTORY
CROSS E IN EMPLOYEES OVER EMPLOYEE_ID

WITH SH.SALARY_END MISSING.
E.LAST_NAME,
E.FIRST_NAME,
E.EMPLOYEE_ID,
SH.SALARY_START,
SH.SALARY_AMOUNT

END VIEW.

Creating a Database 2-31

2.8.4 Creating the CURRENT_INFO View

The third PERSONNEL database view uses the first two views and two other
relations in the database. Although this approach is not recommended when per
formance is a critical factor in your routine database tasks, it provides conve
nience to database users who need to assemble data values from fields distributed
among several relations in the database. Again, you start by selecting the list of
fields you need from each of these database entities:

• LAST NAME from CURRENT JOB view

• FIRST NAME from CURRENT JOB view

• EMPLOYEE ID from CURRENT JOB view

• DEPARTMENT NAME from DEPARTMENTS relation

• JOB TITLE from JOBS reiation

• JOB START from CURRENT JOB view

• SALARY START from CURRENT SALARY view

• SALARY AMOUNT from CURRENT SALARY view

Views offer another feature that allows you to create customized field names from
the fields in the referenced relations and views. You name a new, local field name
using the FROM clause in the view definition and specify the name of the field in
the relation or view on which it is based.

The view definition for CURRENT-INFO includes an RSE to join the two views
and the two relations and specifies the new field names to refer to the original
field names:

DEFINE VIEW CURRENT_INFO OF CJ IN CURRENT_JOB
CROSS D IN DEPARTMENTS OVER DEPARTMENT_CODE
CROSS J IN JOBS OVER JOB_CODE
CROSS CS IN CURRENT_SALARY OVER EMPLOYEE_ID.

LAST FROM CJ.LAST_NAME.
FIRSTNAME FROM CJ.FIRST_NAME
ID FROM CJ.EMPLOYEE_ID.
DEPARTMENT FROM D.DEPARTMENT_NAME.
JOB FROM J.JOB_TITLE.
JSTART FROM CJ.JOB_START.
SSTART FROM CS.SALARY_START.
SALARY FROM CS.SALARY_AMOUNT.

END VIEW.

2-32 Creating a Database

The new fields you name in the view definition have the same field attributes as
the fields in the original relations. Furthermore, you can add DAT A TRIEVE
QUERY HEADER and QUERY NAME characteristics for fields in the view that
do not aii-eady have such characteristics in the base relations. In addition, you
might want to include a COMPUTED BY field, WEEKLY. for the weekly salary
rate. The following modification of the CURRENT_INFO view definition shows
the new field characteristics for the field in the CURRENT INFO view called
WEEKLY:

DEFINE VIEW CURRENT_INFO OF CJ IN CURRENT_JOB
CROSS D IN DEPARTMENTS OVER DEPARTMENT_CODE
CROSS J IN JOBS OVER JOB_CODE
CROSS CS IN CURRENT_SALARY OVER EMPLOYEE_ID.

LAST FROM CJ.LAST_NAME.
FIRSTNAME FROM CJ.FIRST_NAME
ID FROM CJ.EMPLOYEE_ID.
DEPARTMENT FROM D.DEPARTMENT_NAME.
JOB FROM J.JOB_TITLE.
JSTART FROM CJ.JOB_START.
SSTART FROM CS.SALARY_START.
SALARY FROM CS.SALARY_AMOUNT.
WEEKLY

QUERLHEADER FOR DATATRIEVE IS "WEEKLY"/"SALARY"
QUERY_NAME FOR DATATRIEVE IS "WEEK"

COMPUTED BY (CS.SALARY_AMOUNT/52).
END VIEW.

2.9 Loading the Database

There are three ways to enter data into your database:

• Use the STORE statement to add individual records.

• Use DATATRIEVE to load an existing RMS file.

• Write a high-level language program to load an existing file.

See the VAX Rdb/VMS Guide to Database Administration and Maintenance for
information on loading the database.

2.10 Verifying the Definition Phase

Once you have defined the database. fields. and relations. you can verify that each
step has been successful by using the RDO SHOW statement. If you do not know
what a certain statement is supposed to do or cannot remember the proper syntax
of a statement. you can use the HELP statement. Both statements provide online
assistance that allows you to continue your interactive sessions without interrup
tion. For further details about the SHOW and HELP statements. see the VAX
Rdb!VMS Reference Manual.

Creating a Database 2-33

Defining Database Protection 3

VAX Rdb/VMS provides a security mechanism to protect your database against
browsing or modification by unauthorized users. The Rdb/VMS security mecha
nism applies specifically to Rdb/VMS operations and is independent of the secu
rity defined by the VAX Common Data Dictionary (CDD) and the VMS operating
system. You should always use Rdb/VMS protection statements to manage the
security of your database. (Note that although Rdb/VMS security is separate from
VMS security, the Rdb/VMS security mechanism is based on the VMS security
mechanism.)

Rdb/VMS security depends on access control lists (ACLs) attached to databases
and relations. These lists define which users can access database entities and
what operations they can perform. You can create these lists interactively by
issuing DEFINE PROTECTION statements RDO. You can also build a command
file of DEFINE PROTECTION statements and them process these after invok
ing the database.

When you first create an access control list. it is generally easier to build a com
mand file so that you can edit your entries and put them in the optimum order.
The first part of this chapter describes access control lists and then shows how to
create entries and organize them.

You must invoke the database in order to process the command file or to
interactively issue DEFINE PROTECTION statements. Section 3. 7 discusses
invoking the database.

You must also invoke the database to modify or delete ACL entries, as well as to
verify the access control lists. Section 3.8 covers the CHANGE PROTECTION
and DELETE PROTECTION statements for modifying or deleting entires. The
SHOW PROTECTION statement, which enables you to verify ACLs, is covered
in Section 3. 9.

3-1

The access control lists maintained by the CDD apply only to the copies of the
Rdb/VMS definitions stored in the CDD. You can use the CDD protection mecha
nism to protect the copies of the data definitions in the CDD from unauthorized
access. You should not use the CDD Data Management Utility (DMU) to change
protection for Rdb/VMS database entities.

3.1 The Access Control List
Each access control entry (ACE) consists of an identifier and the Rdb/VMS access
rights assigned to the identifier. You must have control over the database or rela
tion in order to create access control entries for that entity. When you create a
database, Rdb/VMS automatically creates an ACL granting you CONTROL
rights to that database. When you create a relation. Rdb/VMS automatically
grants you the CONTROL privilege for that relation. Relation access control is
not a privilege that depends on the database ACL.

When a user tries to perform an Rdb/VMS operation on a database or relation,
Rdb/VMS reads the associated access control list from top to bottom. comparing
the user's identifier with each entry. As soon as Rdb/VMS finds the first match, it
grants the rights listed in that entry. For this reason. both the ACEs themselves
and their order in the list are important.

To see the access control list for a database or relation, use the SHOW
PROTECTION statement. SHOW PROTECTION displays the access control list
in its correct order so you can see where to place new entries.

To define protection for a database or relation. you perform the following steps:

1. Decide what access rights you want to grant certain users and create a set
of access control entries {ACEs).

2. Arrange these entries in the proper order.

3. Build the access control list using a series of DEFINE PROTECTION
statements.

3.2 Creating Access Control List Entries
Each entry in an access control list contains:

• An identifier that specifies a user or set of users.

• A set of access rights to specify what operations that user or user group can
perform on the database or database entity. Tables 3-1, 3-2, and 3-3 list the
access rights.

You create ACEs with the DEFINE PROTECTION statement, using the
IDENTIFIER and ACCESS clauses.

3-2 Defining Database Protection

3.2.1 User Identifiers

The user identifier consists of the standard VMS identifier. There are three types
of identifiers:

• UIC identifiers

UIC identifiers depend on the user identification codes (UICsl that uniquely
identify each user on the system. The UIC can be in either numeric format
or alphanumeric format. The following are all valid UIC identifiers:

[SYSTEM3, K_JONES]
K_JONES
[341,311]

• General identifiers

General identifiers are defined by the VAX/VMS system manager in the sys
tem rights database to identify groups of users on the system. The following
are possible general identifiers:

DATAENTRY
SECRETARIES
MANAGERS

• System-defined identifiers

System-defined identifiers are automatically defined by the system when the
rights database is created at system installation time. System-defined identi
fiers are assigned depending on the type of login you execute. The following
are all valid system-defined identifiers:

BATCH
NETWORK
INTERACTIVE
LOCAL
DIALUP
REMOTE

You can specify more than one identifier. However, you should regard the six
system-defined identifiers as mutually exclusive. You can combine them with
other identifiers (UICs and general identifiers), but when you specify two or more
identifiers. separate them with plus signs (+). The following is a multiple identi
fier that specifies all users who are associated with the general identifier
DAT AENTRY and use RDO interactively:

DATAENTRY+INTERACTIVE

Defining Database Protection 3-3

For more information about these types of identifiers, see the Guide to VAX/VMS
System Security or the VAX/VMS DCL Dictionary.

3.2.2 Rdb/VMS Access Rights

Tables 3-1, 3-2, and 3-3 show you the access rights you can grant or deny
Rdb/VMS users. Each access right corresponds to a set of Rdb/VMS statements.
For example, if you did not specify DEFINE in a user's ACE for the database,
Rdb/VMS returns an error message when the user tries to execute the DEFINE
FIELD statement.

Users must have privileges both to the database and to any relations or views
they need to perform data manipulation tasks. When you use a view to access the
database, Rdb/VMS determines your access rights from that view's ACL, not
from the ACLs of the underlying relations or views.

Table 3-1: Rdb/VMS Data Manipulation Access Rights

Access Right To Grant To Deny

Readdata READ NO READ
Store data WRITE NOWRITE
Modify data MODIFY NO MODIFY
Erase data ERASE NO ERASE

Table 3-2: Data Definitions Statements Controlled by Database ACL

Access Right To Grant To Deny

Define global field DEFINE NODEFINE
or relation

Change global field CHANGE NOCHANGE
or database

Delete global field DELETE NODELETE

Define. change, delete CONTROL NOCONTROL
protection for database

[Reserved for future SHOW NOSH OW
versions]

3-4 Defining Database Protection

Table 3-3: Data Definitions Statements Controlled by ACL for Each Relation or
View in Statement

Access Right To Grant To Deny

Define view, index, DEFINE NODEFINE
or constraint

Change relation CHANGE NOCHANGE

Delete relation. index, DELETE NODELETE
view. or constraint

Define. change, delete CONTROL NOCONTROL
protection for relation

[Reserved for future SHOW NOSH OW
versions]

Table 3-4: Rdb/VMS Utility Statement Access Rights

Access Right To Grant To Deny

CHANGE PROTECTION CONTROL NOCONTROL
DEFINE PROTECTION
DELETE PROTECTION

[Reserved for OPERATOR NOOPERATOR
future versions]

[Reserved for ADMINISTRATOR NOADMINISTRATOR
future versions]

Note that database users must have OPERATOR privilege in order to use
ANALYZE statements. Include OPERATOR access for any users who are
responsible for analyzing the database.

Defining Database Protection 3-5

3.2.3 Using the DEFINE PROTECTION Statement

You use a DEFINE PROTECTION statement to create each ACE for a database
or relation. The statement specifies the following parameters for an entry:

• Whether the ACL you are building is for a database or relation. If the entry
is for a relation, you must specify the name of the relation.

• The position of the entry within the ACL. You can use the POSITION clause
to place the entry at a given sequence number or you can use the AFTER
clause to place the entry after an entry associated with another identifier.

• The identifier of the user or user group to which the entry applies.

• The list of access rights to be granted or denied to the user or user group. If
you want to grant all access rights to a user, you can specify the keyword
ALL in the ACCESS clause.

After you have entered the DEFINE PROTECTION statements, you can use the
SHOW PROTECTION statement to review the access control entries.

3.2.3.1 Specifying the Target of the DEFINE PROTECTION Statement -- You
must specify whether the DEFINE PROTECTION statement applies to a
database or a relation. If the target is the database, the statement operates on the
most recently invoked database. If you are in doubt about which database is the
target of the DEFINE PROTECTION statement, enter a FINISH statement for
all other databases. If the target is a relation, you must include the relation name
with the DEFINE PROTECTION statement.

DEFINE PROTECTION FOR DATABASE

DEFINE PROTECTION FOR RELATION HOTEL

The keyword FOR is optional.

3.2.3.2 Specifying the Location of the Entry -- Next you can specify the posi
tion of the entry. You can use either the AFTER or POSITION clause. If you do
not include either clause, RdbNMS places the entry at the top of the list.

You include a user identifier with the AFTER clause to show which entry you
want your entry to follow. For example:

DEFINE PROTECTION FOR DATABASE
AFTER [42,350]

3-6 Defining Database Protection

When you use the POSITION clause, you must specify the exact position you
want your entry to have in the list:

DEFINE PROTECTION FOR DATABASE
POSITION 5

If you specify a position when there are fewer than that number of entries in the
list, Rdb/VMS places the entry last. For example. if you specify position 12 and
there are only 10 entries in the list, the new entry is placed in position 11 and
given that position number.

In general, when you are adding ACEs to an existing list, you know what position
you want the entry to have. If you are creating a new ACL, you might need to
organize your list before you can determine the position for each entry. Section
3.4 discusses ordering ACEs.

3.2.3.3 The IDENTIFIER Clause -- The IDENTIFIER clause contains the user
identifier for the entry you are creating. You can use the UIC number or an iden
tifier name.

DEFINE PROTECTION FOR DATABASE
POSITION 6
IDENTIFIER [42,360]

DEFINE PROTECTION FOR DATABASE
AFTER [42, 350]
IDENTIFIER [ADMIN,FORD]

General and system-defined identifiers are also allowed. If you specify two or
more identfiers for an entry. separate them with plus signs (+).

DEFINE PROTECTION FOR DATABASE
POSITION 10
IDENTIFIER SECRETARIES + DIALUP

You can use the asterisk(*) wildcard character as part of a UIC identifier. For
example, if you want to specify all users in a group, you can enter [42,*] as the
identifier. When Rdb/VMS creates a database, it automatically creates an ACE
with the identifier [*. *]. which grants all privileges, except CONTROL. to any
user.

3.2.3.4 The ACCESS Clause -- You include the various privileges you want to
grant in the ACCESS clause. Most access rights have a NO version tfor example,
CONTROL and NOCONTROL) so that you can specifically deny a privilege. You
can use the keyword ALL to grant all privileges to a user. A combination of ALL
and one or more NO accesses is often easier to enter than listing a large number
of access rights.

Defining Database Protection 3-7

You use plus signs (+) to separate the access rights. If you have too many access
rights to fit on one line, you can use the hyphen (-) to continue the list on the next
line. The list of access rights must be enclosed in quotation marks(").

The following examples show different elements of the ACCESS clause:

DEFINE PROTECTION FOR DATABASE
POSITION 7
IDENTIFIER [BOARD.ROBERTS]
ACCESS "ALL+NOCONTROL"

DEFINE PROTECTION FOR DATABASE
POSITION 8
IDENTIFIER [ADMIN, FORD]
ACCESS "READ+WRITE+MODIFY+ERASE+DEFINE+CHANGE -

+DELETE"

3.3 Building Access Control Lists

When you define a database. Rdb/VMS automatically creates a default ACL for
the database at database creation time. Rdb/VMS creates a default ACL for each
relation when you enter a DEFINE RELATION statement. All of these ACLs
have two entries:

• The owner's. which grants all access rights. These rights include the
CONTROL privilege, which lets you change ACLs. If you have the
CONTROL access right, there is no way for you to deny yourself that
privilege.

• An entry with the identifier[*,*], which grants all users all rights except
CONTROL. If you. as owner, want to make use of the Rdb/VMS security
mechanism, you should delete or change this entry as part of the process of
defining protection.

If you issue SHOW PROTECTION statements just after the database has been
created. the results look like this:

RDO> SHOW PROTECTION FOR DATABASE
(IDENTIFIER=[GROUP2,JONES],ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+

DEFINE+CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[*,*] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+

DEFINE+CHANGE+DELETE+OPERATOR+ADMINISTRATOR)
RDO> !
RDO> !
RDO> SHOW PROTECTION FOR RELATION BILLING

(IDENTIFIER=[GROUP2,JONES] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+
DEFINE+CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)

(IDENTIFIER=[*,*] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+
DEFINE+CHANGE+DELETE+OPERATOR+ADMINISTRATOR)

RDO>

3-8 Defining Database Protection

As part of defining the database, you probably want to restrict access more than
the default protection does, both for the database and for some or all of the rela
tions.

Rdb/VMS uses two ACLs for each data manipulation access to a relation: one for
the database and one for the relation. For a particular user, Rdb/VMS allows a
data manipulation access right to a relation only if that right is granted in both
the database ACL and the relation ACL. That is. a user has WRITE privilege to
the EMPLOYEES relation only if that user has WRITE privilege to both the
PERSONNEL database and the EMPLOYEES relation. Thus, the database ACL
should grant to each user or group of users all the data manipulation privileges
they might need for any relation. Privileges can then be denied at the relation
level.

If you wish to grant users the privilege to define indexes. views, or constraints for
a relation. you must grant them DEFINE privilege for that particular relation.
However. you do not need to grant users DEFINE privilege for the database
itself.

See Tables 3-2 and 3-3 for additional information about which operations can be
controlled by the AC Ls of the database or relation.

To create an ACL, you can enter the individual DEFINE PROTECTION state
ments interactively at the RDO prompt. In general. however. it is easier to use a
text editor to build a command file that defines protection for the whole database.
The command file method is also useful when you are adding a number of ACEs
to a database and its relations. You can use the interactive method when you
want to add a few new entries to an existing ACL.

You start building the command file by creating the ACL for the database. Then
you add the relation ACLs. The steps for creating a relation ACL are the same as
for a database ACL.

1. Type the identifier and access privileges for each user or group you want to
have access to the database or relation.

2. Arrange the entries in the order you want them in the ACL.

3. Edit the entries to create the DEFINE PROTECTION FOR DATABASE
statements.

The following discussion shows the first step in creating a command file to add
ACEs to the database. Assume that you are the owner and your UIC is
[GROUP2.JONES]. There is no need to include your own ACL, because it is first
on the list by default and it grants you all privileges. You can use comment fields
to make your restrictions clear.

Defining Database Protection 3-9

An analysis shows user classes and their associated privileges. The examples in
the following list include the comments, IDENTIFIER clauses, and ACCESS
clauses. The initial DEFINE PROTECTION portion of the statement as well as
the POSITION and/or AFTER clauses are added later.

• You are the owner, user [GROUP2,JONES]. Protection for the owner is
defined by default to have all privileges and is placed in position 1 of the
ACL.

• User [ADMIN,SMITH] is the manager of your department. She wants clear
access to all data at all times. However, you do not want to grant her data
definition or database maintenance privileges.

Manager -- needs to be able to use all data manipulation
statements.

IDENTIFIER [ADMIN,SMITH]
ACCESS "READ+WRITE+MODIFY+ERASE"

• User [GROUP2,CLARK] is going to help you with restructuring databases.
Therefore, she must have the right to use DEFINE, CHANGE, and
DELETE in the ACLs for any relations she may be restructuring. To per
form data definition statements, she must also have READ access to system
relations. However, she should not be able to change data in the database.
Deny her access to update statements and to CONTROL. OPERATOR, and
ADMINISTRATOR statements:

Assistant -- needs to be able to use data
definition statements.

IDENTIFIER [GROUP2,CLARK]
ACCESS "READ+DEFINE+CHANGE+DELETE"

• User [GROUP2.LAWRENCE] is the nighttime operator. He performs main
tenance functions. like backup and restore. The BACKUP statement requires
READ access to the database and to every relation. Grant him READ
access:

Operator -- needs to be able to perform database
maintenance tasks.

IDENTIFIER [GROUP2,LAWRENCE]
ACCESS "READ"

3-10 Defining Database Protection

• Programmers are defined with the general identifier "PROGRAMMERS" in
the system rights database. They must be able to modify database defini
tions and check the results. Grant them all the rights except those associ
ated with database maintenance:

Programmers -- need to perform data
definition and data manipulation on some
relations to test application programs.

IDENTIFIER PROGRAMMERS
ACCESS "READ+WRITE+MDDIFY+ERASE+DEFINE+CHANGE+DELETE"

• Users in ADMIN are clerks who are only allowed to generate reports. They
cannot run programs that modify information in the database. Grant them
access only to the READ statement:

Clerks -- need to be able only to read
data. No access to modify, erase, store, data
definition, or maintenance statements.

IDENTIFIER [ADMIN,*]
ACCESS "READ"

• User [ADMIN,FORD] is a secretary who runs programs that update the
database. He needs to be able to read, write, and delete information in the
database. Grant him access only to the data manipulation statements:

Secretary -- needs to be able to read,
write, and delete data. No access to data
definition or maintenance.

IDENTIFIER [ADMIN,FORD]
ACCESS "READ+WRITE+MDDIFY+ERASE"

• You want to deny database access to all other users. The final entry in the
default list grants all users all rights except CONTROL access. Therefore,
you need to delete the final entry, identified by [*. *].

You can review the contents of a command file by issuing the VMS TYPE com
mand with the command file's specification:

$TYPE DEFINEPRO.RDD

Defining Database Protection 3-11

3.4 Putting the Access Control List in Order
The next step is to place the entries in order in the ACL for the database.

When a user tries to perform an RdbNMS operation on a database or relation.
RdbNMS reads the access control list for the database entity from top to bottom,
comparing the user's identifier with the identifier(s) listed in each entry. When
RdbNMS finds the first match, it grants the rights listed in that entry and stops
the search.

All UICs that do not match a previous entry "fall through" to the entry[*,*], if it
exists. If there is no entry with the UIC [*, *]. then unmatched UICs are denied all
access to the database or relation.

Assume user [GROUP2,JONES] has the numeric UIC [250.210]. He would also
match any of the following UICs from an access control list:

[250, 210]
[250, *]
[*,JONES]
[GROUP2,*]
[*,210]
[*. *]

Here are two general guidelines for ordering access control entries:

• The less restrictive the user identifier, the lower on the list that ACL should
go.

• The more powerful the privilege, the higher on the list that ACL should go.

Because RdbNMS reads the list from top to bottom, you should place entries
with more specific identifiers earlier and those with more general ones later. For
example, if you place the entry with the most general UIC identifier [*, *], first in
the list, all users match it, and RdbNMS grants or denies all the access rights
specified there to all users.

Similarly, if you place the general entry [ADMIN,*] before the specific entry
[AD MIN .FORD]. Rdb/VMS matches user [AD MIN ,FORD] with [AD MIN,*] and
denies the access rights WRITE. MODIFY, and ERASE. which user
[ADMIN,FORD] needs.

3-12 Defining Database Protection

Using the sample file from Section 3.3, you might put the entries in the following
order:

Owner -- already defined, i~ position 1 of the
ACL, with all privileges

[GROUP2,JONES]

Assistant -- needs to be able to use data
definition statements.

[GROUP2, CLARK]

Operator -- needs to perform database maintenance
tasks.

[GROUP2,LAWRENCE]

Manager -- needs to be able to use all data
manipulation statements.

[ADMIN, SMITH]

Secretary -- needs to be able to read,
write, and delete data. No access to data
definition or maintenance.

[ADMIN ,FORD]

Programmers -- need to be able to perform data
definition and data manipulation on some
relations to test application programs.

PROGRAMMERS

Clerks -- need to be able only to read
data. No access to modify, erase, store, data
definition, or maintenance statements.

[ADMIN, *]

Deny access to all users not explicitly granted
access to the database.

Defining Database Protection 3-13

3.5 Building an Access Control List for a Relation
The list you have compiled grants database access to all the users who need it.
However, you might want to put additional restrictions on certain relations in the
database.

For example, the BILLING relation contains sensitive information. Only the
department manager should have the privileges to run the programs that read,
write, and modify the BILLING relation. Therefore. you must deny all other users
access to BILLING.

By default. you receive all privileges. Delete the[*,*] entry to restrict access to
the relation. Then. specify the rights you want the manager to have.

Manager -- needs to be able to use all data manipulation
statements.

IDENTIFIER [ADMIN,SMITH]
ACCESS "READ+WRITE+MODIFY+ERASE"

3.6 Defining Protection for Views

The discussion of views in Chapter 2 mentioned security as one of the advantages
to creating these "virtual" relations. You can use a view to restrict access to spe
cific fields of one or more relations or views. You can also apply precise database
access rights to those fields in the view definition to maintain the required level of
security for your database.

You can define a view based on:

• One or more relations

• One or more views

• A combination of views and relations

Rdb/VMS allows you to specify access rights for every relation. However, grant
ing a user READ access to a relation makes every field in the record available for
retrieval by that user. You cannot restrict access to specific fields in that record
with relation level protection. Your intention. however, might be to allow that
user to access only two fields in each of two relations.

The first step is to secure the fields in the base relations by denying at the rela
tion level certain access rights for that group of users.

Next, you can define a view that includes only four fields. two from each relation.
You can then define protection for the view that allows certain users read access
to the four fields from the two base relations.

3-14 Defining Database Protection

In this way, you can make a subset of a relation's fields, records, or a subset of
both fields and records available to authorized users. Views, therefore, provide
field level protection for your database.

Remember, however, that, if you grant any user-restricted access to the data in a
relation. you should not include the DEFINE privilege at the same time. In that
case. a user may define his or her own views to access a relation's data and defeat
the original restrictions.

When you grant or deny access rights for a particular view. Rdb/VMS evaluates
only the ACLs for that view, but does not evaluate the ACLs from the underlying
relations or views. For example. the following view definition provides the front
desk with the records only of the hotel's guests who have not yet left. From those
records. the desk clerk can access only four fields. Those fields have new names in
the view definition. The desk clerk needs to be able to update one or more of those
fields to indicate that the guest has either checked out or extended his or her
stay.

Now you can restrict access rights to the base relation and grant them for the
subset of fields and records defined in the view.

DEFINE VIEW GUEST_EXIT
OF R IN RESERVATION
WITH R.DEPART_DATE GT "01-SEP-1985".

GUEST FROM GUEST_NAME.
ROOM FROM ROOM_NUMBER.
EXIT_DAY FROM DEPART_DATE.
GONE FROM CHECK_OUT.

END GUEST_EXIT VIEW.

The following example shows how you can restrict access by the front desk to the
fields in the RES ERV A TI ON relation while specifying update access for the
GUEST EXIT view. Remember. you can update views defined on a single base
relation.-

DEFINE PROTECTION FOR RELATION RESERVATION
IDENTIFIER DESK
ACCESS "NOREAD+NOWRITE+NOMODIFY+NOCONTROL+NODEFINE+NODELETE+ -

NOERASE+NOCHANGE"

DEFINE PROTECTION FOR VIEW GUEST_EXIT
IDENTIFIER DESK
ACCESS "READ+WRITE+MODIFY"

You can provide other views based on the same relation to allow other groups of
users only the access rights they require. In this way. you can control the update
of an entire relation by one or more groups responsible for the data in that rela
tion while maintaining security for all of the data in the database.

Refer to Chapter 2 for details about defining views.

Defining Database Protection 3-15

3. 7 Invoking the Database

You must invoke the database in order to process an ACL command file or to
issue any of the following RDO statements:

DEFINE PROTECTION
SHOW PROTECTION
CHANGE PROTECTION
DELETE PROTECTION

After you call up RDO. you use the INVOKE DAT ABASE statement at the RDO
prompt and supply the filename of the database:

$ROD
RDO> INVOKE DATABASE
cont> FILENAME 'DISK2: [ACCOUNTING]OVERNITE
ROD>

You can include the filename on the same line as the INVOKE DATABASE
statement.

When you want Rdb/VMS to process a command file, first invoke the database
and then use the execute procedure (@file-spec) at the next RDO prompt.

For example, suppose the ACL command file is called DEFINEPRO.RDO. You
first issue the RDO command at the DCL prompt. Then you use the INVOKE
DATABASE statement to invoke the database. Once the database is invoked, you
can execute the command file:

$ RDO
RDO> INVOKE DATABASE 'DISK2: [ACCOUNTING]OVERNITE
RDO> ©DEFINEPRO

3.8 Changing and Deleting Protection

The mechanism for changing the protection on a database or relation is nearly
identical to defining protection. Of course, you can change protection by adding
entries to an ACL. You can also change protection by modifying or deleting exist
ing entries. Remember to invoke the database before issuing CHANGE
PROTECTION and DELETE PROTECTION statements.

This section describes modifying and deleting existing ACEs from the list.

3.8.1 Changing an Access Control Entry (ACE)

The CHANGE PROTECTION statement has the following clauses:

• An identifier that points to the target entry in the ACL

• An access clause that specifies a new set of access rights for that entry

3-16 Defining Database Protection

When you use the CHANGE PROTECTION statement, the user's ACE inherits
all the rights from the ACE that you are replacing. Therefore, to modify an entry,
you must specify only the rights you want changed.

Suppose you want to upgrade the rights of your clerks so they can add records to
the database as well as read data. They need to use the STORE statement. for
which WRITE privilege is required. Currently, their access to OVERNITE is
limited by the following entry in the ACL:

IDENTIFIER=[ADMIN,*] ,ACCESS=READ

To add WRITE access. issue the folJowing statement:

CHANGE PROTECTION FOR DATABASE
[ADMIN,*]
ACCESS "WRITE".

If you know the position in the ACL of the target entry. you can use that number
instead of the identifier. The SHOW PROTECTION statement shows you the
sequence of the ACL. The following example is equivalent to the previous one.
because the group UIC [ADMIN,*] is in position 7 on the ACL:

CHANGE PROTECTION FOR DATABASE
7
ACCESS "WRITE".

If you change the protection for an ACE that was defined with multiple identifi
ers, specify the identifiers in the same order in which they appeared in the
DEFINE PROTECTION statement. For example, assume the identifier clause
for an entry looks like this:

IDENTIFIER [250,*]+MANAGER~INTERACTIVE

In the CHANGE PROTECTION statement. make sure the identifiers are in the
same order:

CHANGE PROTECTION FOR DATABASE
[250 *]+MANAGER+INTERACTIVE
ACCESS "NOCHANGE+NODELETE+NODEFINE".

3.8.2 Deleting an Entry from an ACL

To delete a protection restriction. use the DELETE PROTECTION statement.
This statement is similar to CHANGE PROTECTION. You specify a database
entity and a sequence number or an identifier, and Rdb/VMS deletes the corre
sponding ACE.

Defining Database Protection 3-17

The command file that defined the ACL for the OVERNITE database used this
statement to delete the final entry, [*, *]:

DELETE PROTECTION FOR DATABASE[*,*].

If you specify a sequence number in the DELETE PROTECTION statement and
Rdb/VMS does not find an entry for that position, no entry is deleted. Instead,
Rdb/VMS returns an error message indicating that it did not find a matching
access control list entry.

The effect of the deletion depends on the entry. For example, if you delete an
entry that refers to a specific user, that user might fall through to a more general
level of restriction when Rdb/VMS tries to match the user's identifier with other
entries. Thus. if you deleted the entry for the secretary who runs update pro
grams (UIC=[ADMIN,FORD]l, he would match the following entry in the ACL
([ADMIN,*]l and would still have the right to run report programs. The following
example shows this operation:

DELETE PROTECTION FOR DATABASE [ADMIN,FORD].

3.9 Verifying the ACLs for a Database

You can use the SHOW PROTECTION statements to verify the ACLs for
databases and relations. You must issue a separate SHOW PROTECTION state
ment for each ACL. Before issuing any statements, be sure you have invoked the
database. You must specify whether you want to verify the database ACL or a
relation ACL. If you want to look at a relation ACL, you must include the name of
the relation in the statement.

$ RDO
RDO> INVOKE DATABASE 'DISK2[ACCOUNTING]OVERNITE'
RDO> SHOW PROTECTION FOR DATABASE

(IDENTIFIER=[GROUP2,JONES] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+
DEFINE+CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)

(IDENTIFIER=[GROUP2,CLARK] ,ACCESS=READ+DEFINE+CHANGE+DELETE)
(IDENTIFIER=[GROUP2,LAWRENCE],ACCESS=READ)
(IDENTIFIER=[ADMIN,SMITH],ACCESS=READ+WRITE+MODIFY+ERASE)
(IDENTIFIER=[ADMIN,FORD] ,ACCESS=READ+WRITE+MODIFY+ERASE)
(IDENTIFIER=PROGRAMMERS,ACCESS=READ+WRITE+MODIFY+ERASE+

DEFINE+CHANGE+DELETE)
(IDENTIFIER=[ADMIN,*] ,ACCESS=READ)

RDO>
RDO> SHOW PROTECTION FOR RELATION BILLING

(IDENTIFIER=[GROUP2,JONES],ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+
DEFINE+CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)

(IDENTIFIER=[ADMIN,SMITH] ,ACCESS=READ+WRITE+MODIFY+ERASE)

3-18 Defining Database Protection

To see just your access rights, use the SHOW PRIVILEGES statement. The
SHOW PRIVILEGES statement displays your ACE when RdbNMS matches
your identifier with the identifier specified in the ACE. Remember that RdbNMS
reads the list from top to bottom. Although your identifier might match many
ACEs. RdbNMS grants you access rights when it finds the first match between
your identifier and an identifier in the ACE.

RDO> SHOW PRIVILEGES FOR DATABASE
(IDENTIFIER=[GROUP2,JONES] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+

DEFINE+CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)

Defining Database Protection 3-19

Restructuring a Database 4

VAX RdbNMS allows you to restructure your database dynamically. That is, as
the needs of your organization change. or as you improve your understanding of
those needs, you can easily change the design of your database. You can add,
delete, and modify the database elements that make up that design. The more
care and thought you put into the initial design of the database, the better. but if
changes are required, you can often make them without disturbing users and
without making major changes to application programs.

This chapter uses the OVERNITE database to demonstrate how to use the
CHANGE and DELETE statements for relations. fields. and the database itself.
A full description of these statements appears in the VAX RdbNMS Reference
Manual.

4.1 Changing Relations

As the OVERNITE database grows and the requirements for the application
become clearer. you want to add new fields to provide more information. The fol
lowing examples demonstrate how to do this.

Example 1

The TYPES relation might need a description field that tells how large the room
is. The current definition for the TYPES relation looks like this:

DEFINE RELATION TYPES.
ROOM_ TYPE.
RATE_CODE.
BEDS.
TELEPHONE.
TV.
AC.

END TYPES RELATION.

4-1

You want to add a new field, called ROOM SIZE, to indicate the size of the room.
The easiest way to add a field to a relation -is to define a global field and simply
name that field in the CHANGE RELATION statement. You can create an indi
rect command file containing both statements:

DEFINE FIELD ROOM_SIZE
DESCRIPTION IS /* Size in square feet */
DATATYPE SIGNED WORD.

CHANGE RELATION TYPES.
DEFINE ROOM_SIZE.

END TYPES RELATION.

After you execute this command file, each record in the TYPES relation has an
added field that can contain up to four digits. To store data in those fields, you
can write a program or procedure to modify each existing record with the new
data.

Example 2

The RESERVATION relation needs a field to indicate whether a guest has
checked out of the hotel or has extended his or her stay. This field is useful when
attempting to reserve that room for another guest. Two possible values for this
field are "Y" and "N".

Because the OVERNITE database already contains a global field called
STANDARD FLAG with the required characteristics, the hotel can use this field
to create the new field using the BASED ON clause:

CHANGE RELATION RESERVATION.
DEFINE CHECKED_OUT BASED ON STANDARD_FLAG.

END RESERVATION RELATION.

4.2 Changing Fields

As your understanding of your database grows, you might want to add new char
acteristics to your fields. For example. users of VAX DAT A TRI EVE might want
to access the data in the database, and you can add VAX DAT ATRIEVE charac
teristics to your fields. Furthermore, you may also want to take advantage of the
BASED ON qualifier to declare local names for globally defined fields.

The following examples show how to use the the CHANGE FIELD and
CHANGE RELATION statements to add details to the field definitions.

4-2 Restructuring a Database

Example 1

You added a global field called ROOM_ SIZE to the database, with this definition:

DEFINE FIELD ROOM_SIZE
DESCRIPTION IS /* Size in square feet */
DATATYPE SIGNED WORD

You can add characteristics to this global field with the CHANGE FIELD state
ment. To add a DATATRIEVE EDIT STRING clause. use the CHANGE FIELD
statement:

CHANGE FIELD ROOM_SIZE
EDIT_STRING FOR DATATRIEVE IS "9999".

Example 2

This example adds characteristics to both global and local field definitions. In the
first part. the CHANGE FIELD statement adds a MISSING_Y ALUE clause to
the global field ROOM_ NUMBER. This field was previously defined with data
type TEXT and a VALID IF clause.

In the second part of the example you must use the CHANGE RELATION state
ment to add two local DATATRIEVE support clauses. The QUERY HEADER
and QUERY NAME clauses are only in effect for the ROOM NUMBER field in
this particular relation, HOTEL. -

CHANGE FIELD ROOM_NUMBER
MISSING_VALUE IS "---"

CHANGE RELATION HOTEL.
CHANGE ROOM_NUMBER

QUERY _HEADER FOR DATATRIEVE IS "ROOM"----®
QUERY_NAME FOR DATATRIEVE IS "ROOM".

END HOTEL RELATION.

Example 3

The global field definitions for the OVERNITE database include a field called
STANDARD RATE. All local fields in the database that contain money values
can base their definitions on this field definition.

If the OVERNITE database did not have the STANDARD_RATE generic money
field. you could use the following commands to provide this kind of data type con
sistency. You could specify DATATRIEVE support clauses in the local field defi
nition to further distinguish one local money field from another.

Restructuring a Database 4-3

DEFINE FIELD STANDARD_RATE
DESCRIPTION IS /* Standard money field */

DATATYPE IS SIGNED LONGWORD SCALE -2
EDIT_STRING FOR DATATRIEVE IS 11 $$$$.$$11 •

CHANGE RELATION RATES.
CHANGE GOV_RATE BASED ON STANDARD_RATE

QUERY_HEADER FOR DATATRIEVE IS 11 GOVERNMENT 11 / 11 RATE 11 •

CHANGE GROUP_RATE BASED ON STANDARD_RATE
QUERY_HEADER FOR DATATRIEVE IS 11 GROUP 11 / 11 RATE 11 •

CHANGE STD_RATE BASED ON STANDARD_RATE
QUERY_HEADER FOR DATATRIEVE IS 11 STANDARD11 / 11 RATE 11 •

END RATES RELATION.

CHANGE RELATION BILLING.
CHANGE SERVICE_CHARGE BASED ON STANDARD_RATE.

END BILLING RELATION.

This process requires the following steps:

1. Define a new field, STANDARD_RATE. with the generic characteristics

2. Change the local definition of each money field to refer to the global
STANDARD RA TE field definition

3. Add local characteristics to the fields (for DATATRIEVE support). Here,
you add QUERY_HEADER information to make the fields more "local".

Data stored in any of these relations would not be affected by the
change. All you have done is change certain characteristics associated
with the field definition. If the old and new fields have different data
types, RdbNMS performs the data type conversion automatically.

4.3 Changing the Database

The CHANGE DATABASE statement takes the same clauses and parameters as
the DEFINE DATABASE statement. In addition, you must use the CHANGE
DATABASE statement to enable the RdbNMS after-image journaling feature.

In most cases, RdbNMS manages the allocation of database pages automatically
to allow more space for the database. You can experience acceptable performance
using all the default database parameter values.

4-4 Restructuring a Database

However, you can use the CHANGE DATABASE statement to increase or
decrease the following database parameters:

• The size of the EXTENT by which the database can grow on disk using the
DATABASE EXTENT clause.

• The size of the SNAPSHOT file that is created by default with the DEFINE
DATABASE statement using the SNAPSHOT ALLOCATION clause.

• The size of the EXTENT by which the SNAPSHOT file can expand using
the SNAPSHOT EXTENT clause.

• The size of the EXTENT by which the database expands on a multidisk vol
ume. Although RdbNMS creates a single file database, you can specify that
it reside on a multidisk volume and you can control how the database file is
distributed across each disk of the multidisk volume. Use the multivolume
extent clause of the CHANGE DATABASE statement.

You can also use the CHANGE DATABASE statement to change the filename or
pathname of the database.

For complete details about changing database parameters, see Chapter 4 of the
VAX Rdb/VMS Guide to Database Administration and Maintenance.

In addition. you can use the CHANGE DATABASE statement to access the
after-image journaling feature of RdbNMS. Once you have defined the database
and its entities, stored data in the database relations, and tested the system, the
database is ready for use. At this point you can use the CHANGE DATABASE
statement to turn on the after-image journaling feature.

When after-image jounraling is in effect. RdbNMS records all committed
database updates in a special file called the after-image journal file. You can main
tain this file on a regular basis by storing daily or weekly copies on another
backup medium, such as tape. In the event that a software or hardware failure
causes your database to become corrupt. you can use the journal file to recover
the database to a known, uncorrupted state. You can then resume normal
database access.

To create an after-image journal file and start the process of journaling all com
mitted changes to the database, you use the JOURNAL FILE IS clause with
CHANGE DATABASE statement. The following example starts an after-image
journal file for the OVERNITE database.

CHANGE DATABASE PATHNAME 'CDD$TOP.HOTEL.OVERNITE'
JOURNAL FILE IS DISK2: [JOURNAL]OVERNITE.

Restructuring a Database 4-5

The first transaction that attaches to the database automatically opens the jour
nal file. You have the option of issuing an OPEN statement to open the after
image journal file. The OPEN statement permits Rdb/VMS to map certain data
structures automatically for all users of the database. Opening the journal file
with the OPEN statement results in some performance improvement when the
database is invoked.

You can use the NOJOURNAL clause of the CHANGE DATABASE statement
to turn off journaling.

For complete details about the after-image journaling feature. see Chapter 3 of
the VAX Rdb/VMS Guide to Database Administration and Maintenance.

4.4 Deleting Relations
If you have sufficient access privileges, deleting relations is easy. You simply
name the relation you want to delete in the DELETE RELATION statement.
However. you cannot delete a relation if other relations depend on it for:

• View definitions

• COMPUTED BY fields

• Constraint definitions

If you try to delete a relation with such dependencies, Rdb/VMS returns an error
message.

Suppose you decide you no longer want to store information about individual
rooms in the TYPES relation. The number of types has increased until there are
nearly as many types as there are rooms. Therefore. you decide to eliminate the
TYPES relation and store all the room information in the HOTEL relation.

If you have not yet stored data in the database. deleting a relation is simple. You
merely name the relation in a delete statement. If there is data. deleting relations
becomes more complicated, since you will lose the data in the TYPES relation if
you delete it. If data is present, you must transfer the data to an existing relation
before deleting the old one. Perform the following steps:

1. Change the HOTEL relation to add new fields (derived from TYPES I.

CHANGE RELATION HOTEL.
DEFINE RATE_CODE.
DEFINE BEDS.
DEFINE TELEPHONE.
DEFINE TV.
DEFINE AC.
DEFINE ROOM_SIZE.

END HOTEL RELATION.

4-6 Restructuring a Database

2. Using a CROSS and a MODIFY statement, copy the data from the TYPES
relation to the HOTEL relation.

FOR H IN HOTEL
CROSS T IN TYPES OVER ROOM_TYPE

MODIFY H USING
H.RATE_CODE
H.BEDS
H.TELEPHONE
H.TV

END_MODIFY
END_FOR

H.AC
H.ROOM_SIZE

T.RATE_CODE;
T.BEDS;
T.TELEPHONE;
T.TV;
T.AC;
T.ROOM_SIZE

3. Delete the TYPES relation. The TYPES relation is used in the constraint
definition RATE CODE EXISTS. Therefore. you must delete that con-
straint first. - -

DELETE CONSTRAINT RATE_CODE_EXISTS.
DELETE RELATION TYPES.

4. Moreover, you may no longer need the ROOM_TYPE field in HOTEL,
because it was there only to allow joins with TYPES. Delete the
ROOM_TYPE field from HOTEL. However. since you defined
ROOM TYPE as an index in HOTEL, you must delete the index before you
can delete the field from the relation.

DELETE INDEX HOTEL_ROOM_TYPE.

CHANGE RELATION HOTEL.
DELETE ROOM_TYPE.

END.

4.5 Deleting Fields

To delete a field. you issue the DELETE FIELD statement at the RDO > prompt.
If a field is referred to in a relation definition, you must use the CHANGE
RELATION statement to delete the field from the relation. If a field is referred to
in a constraint or index definition, you must first delete the constraint or index.

For example. if you performed the steps in the previous section. you see that the
ROOM TYPE field is now obsolete. This field served as a link between the
HOTEL and TYPES relation. The field has already been deleted from the both
relations. You can now delete the ROOM TYPE field from the database:

DELETE FIELD ROOM_TYPE.

Restructuring a Database 4-7

4.6 Deleting the Database
You can delete the entire database by simply typing:

DELETE DATABASE PATHNAME 'OVERNITE'.

This statement deletes the database file, the snapshot file, and the COD defini
tions. Do not use the INVOKE statement first.

You can delete the COD definitions only with the following statement:

DELETE PATHNAME 'CDD$TOP.BOOKEEP.OVERNITE'.

This statement deletes the COD directory and all its descendants. However, it
does not delete the database file or the snapshot file. If you need to recreate the
COD definitions from the metadata in the database file, you can use the following
statement:

INTEGRATE DATABASE 'OVERNITE' IN 'CDD$TOP.BOOKEEP.OVERNITE'

The preceding statement copies the metadata from the system relations in the
OVERNITE database file into the COD. If a database already exists with the
same COD path name. you will receive an error message. Do not use the
INVOKE statement before you issue the INTEGRATE statement. The
INTEGRATE statement automatically invokes the database after the database
definitions are successfully entered into the COD.

You can use the INTEGRATE statement if a COD definition is corrupt; that is, if
the COD definitions no longer match the definitions in the database file. You can
also use the INTEGRATE statement if the COD was not installed when you
defined the database, or if you neglected to put all the data definitions in the
COD.

4-8 Restructuring a Database

Definitions for the OVERNITE Database A

The definitions shown in the following command file create the OVERNITE
database used thoughout this book. Included are the relation. field, and view defi
nitions for the OVERNITE database.

SET VERIFY

SET OUTPUT CREATE_OVERNITE.LOG

Define OVERNITE database

DEFINE DATABASE "DISK4: [NEWDB] OVERNITE"
IN "CDD$TOP.ACCOUNTING.HOTEL".

! Global field definitions for OVERNITE database
!

DEFINE FIELD STANDARD_DATE
DESCRIPTION IS /* Standard date field */

DATATYPE IS DATE
MISSING VALUE IS "18-NOV-1858 00:00:00.00"
EDIT_STRING FOR DATATRIEVE IS "MM/DD/YY".

DEFINE FIELD STANDARD_RATE
DESCRIPTION IS /* Standard money field */

DATATYPE IS SIGNED LONGWORD SCALE -2
EDIT_STRING FOR DATATRIEVE IS 11 $$$$.$$ 11 •

DEFINE FIELD STANDARD_FLAG
DESCRIPTION IS /* Standard flag field for any use */

DATATYPE IS TEXT SIZE IS 1
MISSING_VALUE IS "?".

(continued on next page)

A-1

DEFINE FIELD ROOM_NUMBER
DESCRIPTION IS /* (PK for HOTEL) Hotel room number */

DATATYPE IS TEXT SIZE IS 3
VALID IF
(ROOM_NUMBER GT "100" AND
ROOM_NUMBER LT "500" AND
ROOM_NUMBER NE "200" AND
ROOM_NUMBER NE "300" AND
ROOM_NUMBER NE "400") AND
ROOM_NUMBER NOT MISSING

EDIT_STRING FOR DATATRIEVE IS "XXX"
QUERY_HEADER FOR DATATRIEVE IS "ROOM"/"NUMBER"

QUERY_NAME FOR DATATRIEVE IS "RNUM".

DEFINE FIELD ROOM_TYPE
DESCRIPTION IS /* Hotel room type code */

DATATYPE IS TEXT SIZE IS 2
VALID IF

ROOM_TYPE EQ "S"
OR ROOM_TYPE EQ "D"
OR ROOM_TYPE EQ "SS"
OR ROOM_TYPE MISSING
MISSING_VALUE IS "?7"

EDIT_STRING FOR DATATRIEVE IS "XX"
QUERY_HEADER FOR DATATRIEVE IS "ROOM"/"TYPE"

QUERy_NAME FOR DATATRIEVE IS "RTYPE".

DEFINE FIELD RATE_CODE
DESCRIPTION IS /* Hotel room rate code */

DATATYPE IS TEXT SIZE IS 2
VALID IF

RATE_CODE EQ "A"
OR RATE_CODE EQ "B"
OR RATE_CODE EQ "C"
OR RATE_CODE MISSING

MISSING_VALUE IS "?"
EDIT_STRING FOR DATATRIEVE IS "XX"

QUERY_HEADER FOR DATATRIEVE IS "RATE"/"CODE"
QUERY_NAME FOR DATATRIEVE IS "RATCOD".

DEFINE FIELD GUEST_NAME
DESCRIPTION IS /* Guest name */

DATATYPE IS TEXT SIZE IS 15
VALID IF

, GUEST_NAME NOT MISSING
QUERY_HEADER FOR DATATRIEVE IS "GUEST"/"NAME"

QUERY_NAME FOR DATATRIEVE IS "NAME".

DEFINE FIELD CITY
DESCRIPTION IS /* City of Hotel Guest */

DATATYPE IS TEXT SIZE IS 10
VALID IF

CITY NOT MISSING
QUERY_HEADER FOR DATATRIEVE IS "CITY".

A-2 Definitions for the OVERNITE Database

DEFINE FIELD STATE
DESCRIPTION IS /* State of hotel guest */

DATATYPE IS TEXT SIZE IS 2
VALID IF

STATE NOT MISSING
QUERY_HEADER FOR DATATRIEVE IS "STATE".

DEFINE FIELD POSTAL_CODE
DESCRIPTION IS /* Postal code of hotel guest */

DATATYPE IS TEXT SIZE IS 5
VALID IF

POSTAL_CODE NOT MISSING
QUER¥_HEADER FOR DATATRIEVE IS "POSTAL"/"CODE".

DEFINE FIELD LENGTH_OF_STAY
DESCRIPTION IS /* Number of days guest stays in hotel */

DATATYPE IS SIGNED WORD
VALID IF

LENGTH_OF_STAY GT 0
OR LENGTH_OF_STAY MISSING

MISSING_VALUE IS -1
QUER¥_HEADER FDR DATATRIEVE IS "LENGTH"/"OF STAY"

QUER¥_NAME FOR DATATRIEVE IS "STAY".

DEFINE FIELD PARTY_SIZE
DESCRIPTION IS /* Number of people in guest party */

DATATYPE IS SIGNED WORD
VALID IF

PARTLSIZE GT 0
AND PARTY_SIZE NOT MISSING

QUERLHEADER FOR DATATRIEVE IS 11 PARTY11 / 11 SIZE"
QUER¥_NAME FOR DATATRIEVE IS "P_SIZE".

DEFINE FIELD SERVICE_DESCRIP
DESCRIPTION IS /* Description of service rendered */

DATATYPE IS TEXT SIZE IS 20
MISSING_VALUE IS "MISCELLANEOUS"

QUERY_HEADER FOR DATATRIEVE IS "SERVICE"/"DESCRIPTION"
QUERY_NAME FDR DATATRIEVE IS "S_DESCR".

DEFINE FIELD SERVICE_CODE
DESCRIPTION IS /* Service code of service rendered */

DATATYPE IS TEXT SIZE IS 2
VALID IF

SERVICE_CODE NOT MISSING
QUERY_HEADER FOR DATATRIEVE IS "SERVICE"/"CODE"

QUERY_NAME FOR DATATRIEVE IS "S_CODE".

DEFINE FIELD TELEPHONE
DESCRIPTION IS /* Is telephone in the hotel room */

DATATYPE IS TEXT SIZE IS 1
VALID IF

TELEPHONE EQ "Y"
OR TELEPHONE EQ "N"
OR TELEPHONE MISSING

MISSING_VALUE IS "?"
QUERLHEADER FOR DATATRIEVE IS "TELEPHONE"

QUERLNAME FOR DATATRIEVE IS "PHONE".
(continued on next page)

Definitions for the OVERNITE Database A-3

DEFINE FIELD TV
DESCRIPTION IS /* Is TV in the hotel room */

DATATYPE IS TEXT SIZE IS 1
VALID IF

TV EQ "Y"
OR TV EQ "N"
OR TV MISSING

MISSING_VALUE "?"
QUERY_HEADER FOR DATATRIEVE IS "TELEVISION"

QUERY_NAME FOR DATATRIEVE IS "TV".

DEFINE FIELD AC
DESCRIPTION IS /* Does room have air conditioning */

DATATYPE IS TEXT SIZE IS 1
VALID IF

AC EQ "Y"
OR AC EQ "N"
OR AC MISSING

MISSING_VALUE "?"
QUERY_HEADER FOR DATATRIEVE IS "AIR"/"CONDITIONING"

QUERLNAME FOR DATATRIEVE IS "AIR".

DEFINE FIELD BEDS
DESCRIPTION IS /* Number of beds in hotel room */

DATATYPE IS SIGNED WORD
VALID IF

BEDS GT 0
QUERY_HEADER FOR DATATRIEVE IS "NUMBER"/"OF BEDS"

QUERY_NAME FOR DATATRIEVE IS "NUM_BED".

'**
! Define Relations in OVERNITE Database
'**
!

Define HOTEL relation

DEFINE RELATION HOTEL.
ROOM_NUMBER.
ROOM_ TYPE.

END HOTEL RELATION.

Define TYPE relation

DEFINE RELATION TYPE.
ROOM_ TYPE.
RATE_CODE.
BEDS.
TELEPHONE.
TV.
AC.

END TYPE RELATION.

A-4 Definitions for the OVERNITE Database

Define RESERVATION relation

DEFINE RELATION RESERVATION.
GUEST_NAME.
CITY.
STATE.
POSTAL_CODE.
ROOM_NUMBER.
LENGTH_OF_STAY.
PARTY_SIZE.
RESERVE_DATE

BASED ON STANDARD_DATE
QUERY_HEADER FOR DATATRIEVE IS "RESERVATION"/"DATE"
QUERLNAME FOR DATATRIEVE IS "RESRV_DATE".

ARRIVE_DATE
BASED ON STANDARD_DATE
QUERY_HEADER FOR DATATRIEVE IS "ARRIVAL"/"DATE"
QUERLNAME FOR DATATRIEVE IS "A_DATE".

DEPART_DATE
BASED ON STANDARD_DATE
QUERLHEADER FOR DATATRIEVE IS 11 DEPARTURE 11 / 11 DATE 11

QUERY_NAME FOR DATATRIEVE IS "D_DATE".
CONFIRMED

BASED ON STANDARD_FLAG
QUERY_HEADER FOR DATATRIEVE IS "RESERVATION"/"CONFIRMED"
QUERLNAME FOR DATATRIEVE IS "RESRV_CONF".

CHECK OUT
BASED ON STANDARD_FLAG
QUERLHEADER FOR DATATRIEVE IS "CHECKED"/"OUT"
QUERLNAME FOR DATATRIEVE IS "CHK_OUT".

ROOM_RATE
BASED ON STANDARD_RATE
QUERLHEADER FOR DATATRIEVE IS "ROOM"/"RATE"
QUERLNAME FOR DATATRIEVE IS "R_RAT".

END RESERVATION RELATION.

Define RATES relation

DEFINE RELATION RATES.
RATE_CODE.
STD_RATE

BASED ON STANDARD_RATE
QUERLHEADER FOR DATATRIEVE IS "STANDARD"/"RATE"
QUERY_NAME FOR DATATRIEVE IS "ST_RATE".

GOV_RATE
COMPUTED BY (STD_RATE * 0.90)

QUERLHEADER FOR DATATRIEVE IS "GOVERNMENT"/"RATE"
QUERY_NAME FOR DATATRIEVE IS "G_RATE".

GROUP RATE
COMPUTED BY (STD_RATE * 0.86)

QUERLHEADER FOR DATATRIEVE IS "GROUP"/"RATE"
QUERLNAME FOR DATATRIEVE IS "GRP_RATE".

END RATES RELATION.
(continued on next page)

Definitions for the OVERNITE Database A-5

Define BILLING relation

DEFINE RELATION BILLING.
ROOM_NUMBER.
SERVICE_ CHARGE

BASED ON STANDARD_RATE
QUERY_HEADER FOR DATATRIEVE IS "SERVICE"/"CHARGE"
QUERY_NAME FOR DATATRIEVE IS 11 S_CHG"

TX_DATE
BASED ON STANDARD_DATE
QUERY_HEADER FOR DATATRIEVE IS "TRANSACTION"/"DATE".

SERVICE_DESCRIP.
SERVICE_CODE.

END BILLING RELATION.

Define GUEST View

DEFINE VIEW GUEST OF R IN RESERVATION
CROSS B IN BILLING OVER ROOM_NUMBER.

R.GUEST_NAME.
R.ROOM_NUMBER.
TOTAL_ROOM

COMPUTED BY
(R.LENGTH_OF_STAY * R.ROOM_RATE).

TOT AL_ SERVICE
COMPUTED BY

TOTAL X.SERVICE_CHARGE OF X IN BILLING
WITH X.ROOM_NUMBER = R.ROOM_NUMBER.

TOTAL_BILL
COMPUTED BY

END VIEW.

SET NOOUTPUT

((R.LENGTH_OF_STAY * R.ROOM_RATE) +
(TOTAL X.SERVICE_CHARGE OF X IN BILLING

WITH X.ROOM_NUMBER = R.ROOM_NUMBER)).

A-6 Definitions for the OVERNITE Database

A
Access control list

SeeACL
Access rights

changing. 3-16
data definition. 3-4
data manipulation, 3-4
deleting. 3-16
denying, 3-4
determining. 3-2
granting. 3-4
user. 3-8
utility, 3-5
with CONTROL, 3-8

ACL, 3-2

8

building. 3-8
changing ACEs. 3-16
creating, 3-2
deleting ACEs, 3-17
ordering. 3-12
relations

building, 3-14
verifying, 3-18

BASED ON clause, 2-9

c
CDD

storing definitions, 2-2
CDD$DEFAULT

Index

SET DICTIONARY statement, 2-4
CHANGE FIELD statement, 4-2

local definitions, 4-4
CHANGE PROTECTION statement

modifying access rights, 3-16
CHANGE RELATION statement, 4-2
Changing databases, 4-4
Changing fields, 4-2
Changing relatiQns, 4-1
Command files

for database definition, 2-1
Common Data Dictionary

SeeCDD
Constraints

DEFINE CONSTRAINT state
ment, 2-21

Creating a database
DEFINE DATABASE statement,

2-3
Creating field definitions

DEFINE FIELD statement, 2-6

D

Data definition access rights, 3-4
databases, 3-4t
relations and views. 3-5t

Data items, 1-2

lndex-1

Data manipulation access rights, 3-4,
3-4t

Data types
DATE. 2-14
Rdb/VMS, 2-12
SIGNED LONGWORD, 2-15
SIGNED WORD, 2-14
TEXT, 2-14
user-defined. 2-16

Data values, 1-2
Databases

changing. 4-4
files. 2-3
loading. 2-33
relational model, 1-1
restructuring, 4-1

DATATRIEVE support clauses
DEFAULT VALUE. 2-8
EDIT STRING. 2-8, 2-15
QUERY_HEADER, 2-9
QUERY_NAME, 2-9

DATE
data type. 2-14

DEFAULT_YALUE clause, 2-8
DEFINE CONSTRAINT statement.

2-21
restricting values, 2-22

DEFINE DATABASE statement
allocating resources, 2-3
creating a database, 2-3
path name qualifier, 2-4

DEFINE FIELD statement
creating field definitions. 2-6, 2-15
DATATRIEVE support clauses.

2-8, 2-15
DEFINE INDEX statement. 2-23 to

2-25
example. 2-25

DEFINE PROTECTION statement
identifiers. 3-2
UIC. 3-2

DEFINE RELATION statement
creating relation definitions, 2-6.

2-18
DEFINE VIEW statement. 2-26

lndex-2

Defining
fields, 1-19
protection, 3-1. 3-2

views, 3-14
relations, 1-23

DELETE DATABASE statement,
4-8

DELETE FIELD statement, 4-7
DELETE PROTECTION statement

deleting access rights, 3-1 7
DELETE RELATION statement, 4-6
Deleting

access rights. 3-1 7
databases, 4-8
fields. 4-7
relations, 4-6

Dependencies
normalization, 1-18

Directories
COD default. 2-3
VMS default. 2-3

Displaying the access control list
SHOW PROTECTION statement,

3-2
DML access rights, 3-4

E

EDIT statement
editing command lines. 2-2

EDIT STRING clause. 2-8

F

Field attributes
global. 2-6
local. 2-6

Field definitions
BASED ON clause. 2-9
COMPUTED BY clause, 2-10
DAT ATRIEVE support clauses, 2-8
DEFAULT_YALUE clause, 2-8
DEFINE FIELD statement; 2-15
EDIT STRING clause, 2-8
field names, 2-11

MISSING_YALUE clause, 2-8,
2-16

QUERY_HEADER clause, 2-9
QUERY_NAME clause, 2-9
VALID IF clause. 2-7, 2-17

Fields
changing, 4-2
common. 2-23
data types, 1-21
definition. 1-19, 2-17
deleting, 4-7
global

defining. 2-6
naming. 1-19
repeating. 1-14
type. 1-21

Files
database (.RDB), 2-3
snapshot (.SNP), 2-3

Foreign keys, 1-5. 1-19
identifying. 1-5

Format
HELP statement. 2-33

G

General identifiers, 3-3
Global fields

defining. 2-6

H
HELP statement. 2-33

format. 2-33

Identifiers
general, 3-3
system-defined. 3-3
UIC. 3-3

Identifying keys. 1-16
foreign. 1-5
primary, 1-5

Index keys, 2-23
Indexes

DEFINE INDEX statement, 2-23
to 2-25

guidelines, 2-24

K
Keys

foreign, 1-5, 1-19
identifying, 1-16
index, 2-23
primary. 1-5
uniquely identifying records, 1-16

L
Loading

storing data, 2-33
Local attributes. 2-9
Logical database model. 1-4. 2-2
Logical relationships. 1-2

M
MISSING_YALUE clause, 2-8

field definition. 2-16
Modifying access rights

CHANGE PROTECTION state
ment. 3-16

N
Normalization

0

checking dependencies. 1-6, 1-18
eliminating duplicates. 1-5
steps. 1-5. 1-13

Organizing data
logical relationships, 1-12

p

Path name qualifier
DEFINE DATABASE statement,

2-4
Primary keys, 1-5

identifying. 1-5

lndex-3

Procedures
using RDO, 2-1

a
QUERY_NAME clause. 2-9

R
RD B file type

See Databases
RDO

procedures. 2-1
Redundancy

controlled. 1-6
Relational Database Operator

SeeRDO
Relational model, 1-1
Relational terminology. 1-3
Relations

changing. 4-1
DEFINE RELATION statement,

2-18
defining, 1-23
definitions, 1-6
deleting. 4-6
from logical data groups. 1-23

Repeating fields, 1-14
Restricting values

s

DEFINE CONSTRAINT state
ment. 2-22

VALID IF clause, 2-1 7

Security
views. 3-14

SET DICTIONARY statement. 2-4
SHOW PROTECTION statement

lndex-4

displaying the access control list,
3-2

SHOW statement
verifying definitions, 2-33

SIGNED LONGWORD
data type, 2-15

SIGNED WORD
data type. 2-14

Storing database definitions, 2-2
Syntax

HELP statement, 2-33
System-defined identifiers. 3-3

T
TEXT data type, 2-14
Transactions. 1-8

collection of facts. 1-8

u
UIC, 3-3
Updating

checking constraints. 2-22
Utility access rights

databases. 3-5t

v
VALID IF clause, 2-1 7
Validation

constraints. 2-22
in field definitions. 2-17
VALID IF clause. 2-1 7

Views, 1-24, 2-21
defining, 2-26
defining protection, 3-14
security, 3-14

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA
and Puerto Rico
call 80~258-171 O

In Canada
call 80~267-6146

In New Hampshire,
Alaska or Hawaii
call 603-884-6660

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1 G 4C2
Attn: P&SG Business Manager

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
P&SG Business Manager

c/o Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

*Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809--754-7575

Reader's Comments

VAX Rdb/VMS
Guide to Database

Design and Definition
AA-N034B-TE

Note: This form is for document comments only. DIGITAL will use comments submitted on this
form at the company's discretion. If you require a written reply and are eligible to receive
one under Software Performance Report (SPRl service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions
for improvement. _______________________________ _

Did you find errors in this manual? If so, specify the error and the page number. ______ _

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer

D Higher-level language programmer

D Occasional programmer (experienced)

D User with little programming experience

D Student programmer
D Other(pleasespecify) _______________________ _

Name Date----------------

Organization----------------------------------

Street ____________________________________ _

Zip Code City ___________________ State______ or
Country

I
I
I
I
I
I

-------Do Not Tear - Fold Here and Tape-------------------------------------' ,

111111

BUSINESS REPL V MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: DISG Documentation ZK02-2/N53

DIGITAL EQUIPMENT CORPORATION

110 SPIT BROOK ROAD

NASHUA, N.H. 03062

No Postage

Necessary

if Mailed in the

United States

-------Do Not Tear - Fold Here and Tape-------------------------------------

.
I
I

