
VAX Rdb/VMS
Guide to Data Manipulation

Order No. AA-N036C-TE

VAX Rdb/VMS
Guide to Data Manipulation

Order No. AA-N036C-TE

November 1987

This manual provides information about retrieving,
modifying and erasing data in a database· using the
VAX RdbNMS interactive Relational Database Operator.

OPERATING SYSTEM: VMS

Micro VMS

SOFTWARE VERSION: VAX Rdb/VMS V2.3

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright© 1984, 1985, 1987 by Digital Equipment Corporation. All Rights
Reserved.

The postage-paid READER'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

ACMS
CDD
DATATRIEVE
DEC
DECnet
DEC US
MicroVAX
Micro VMS

PDP
RALLY
Rdb/ELN
RdbNMS
ReGIS
TDMS
TEAMDATA
UNIBUS

VAX
VAXcluster
VAXinfo
VAX Information Architecture
VIDA
VMS
VT

How to Use This Manual

Technical Changes and New Features

1 Introduction to VAX Rdb/VMS Data Manipulation

Contents
vii

xi

1.1 What Is a Relational Database? . 1·2
1.1.1 Using Normalization to Eliminate Data Redundancy. 1-4

1.2 Using RDO • . 1-4
1.2.1 Beginning an RDO Session . 1-4
1.2.2 Writing a Simple Record Selection Expression. 1-6
1.2.3 Getting Online Help in RDO. 1-7
1.2.4 Using Multiline Statements in RDO. • 1-7
1.2.5 Exiting from RDO. • • . . . • 1-7

1.3 Using RdbNMS Statements in Programs 1-8

2 Accessing a Database and Using Transactions
2.1 Invoking a Database . 2-1

2.1.1 AccessingtheDatabasebyFileName................ 2-1
2.1.2 Accessing the Database by Path Name 2-2

2.2 Accessing the Database from a Remote Node 2-3
2.2.1 Accessing Data. 2-4

2.3 Using Transactions. • 2-4
2.4 START_TRANSACTION Modes: READ_ONLY, READ_ WRITE

andBATCH_UPDATE 2-6
2.4.1 READ_ONLYTransactions. • 2-8
2.4.2 READ_ WRITE Transactions . 2-8
2.4.3 BATCH_ UPDATE Transactions. 2-9
2.4.4 Reserving Options. 2-11

2.4.4.1 SHARED READ Reserving Option 2-12
2.4.4.2 SHARED WRITE Reserving Option 2-12
2.4.4.3 PROTECTED READ Reserving Option 2-13
2.4.4.4 PROTECTED WRITE Reserving Option 2-13
2.4.4.5 EXCLUSIVE READ Reserving Option 2-13
2.4.4.6 EXCLUSIVE WRITE Reserving Option 2-14

2.4.5 Other START_TRANSACTION Options •.......•..... 2-17
2.4.5.1 EVALUATING AT VERB_ TIME Constraint ..•..... 2-18
2.4.5.2 EVALUATING AT COMMIT_TIME Constraint 2-18
2.4.5.3 WAITorNOWAITQualifiers 2-19
2.4.5.4 CONSISTENCY or CONCURRENCY Qualifiers 2-20

2.4.6 Indexes . • . . . • 2-21
2.4. 7 Transaction Scope••..•... ~ . 2-22
2.4.8 Ending a Transaction. • 2-22

iii

2.5 The Optimizer. • • • • . • . . . 2-25
2.6 Sample Interactive Session Using the START_TRANSACTION

Statement•.••...•..••.•.......•.•• 2-27

3 Using Record Selection Expressions
3 .1 Forming Streams of Records • • • 3-1
3.2 Retrieving All the Records in a Relation • 3-2
3.3 Displaying Records in Sorted Order. • 3-5

3.3.1 Indicating Ascending or Descending Sort Order. . . • 3-6
3.3.2 Using Value Expressions as Sort Keys. 3-7

3.4 Restricting the Number of Records: The FIRST Clause . . • 3-8
3.5 Specifying Conditions to Retrieve Records: Relational and Logical

Operators . • 3-9
3.5.1 Using the WITH Clause as a Conditional Expression •...... 3-12
3.5.2 Retrieving Records That Satisfy a Single Condition 3-12
3.5.3 Specifying Compound Conditions for Records 3-12

3.5.3.1 Retrieving Records That Satisfy Two or More Conditions. 3-12
3.5.3.2 Retrieving Records That Satisfy One of Several

Conditions•............•......•.... 3-14
3.5.3.3 Retrieving Records That Do Not Satisfy a Condition 3-15

3.5.4 Retrieving Records That Match a Pattern•... 3-18
3.5.5 Retrieving Records That Do Not Match a Pattern. 3-20
3.5.6 Retrieving Records by Partial Matches 3-21
3.5. 7 Retrieving Records by Range Retrieval . • 3-22
3.5.8 Retrieving Segmented Strings . . . • . • • 3-23

3.6 Eliminating Duplicate Values•............. 3-24
3. 7 Testing for a Unique Record Occurrence 3-27

4 Retrieving Records and Joining Relations
4.1 UsingtheCROSSClausetoCombineData 4-1

4.1.1 Joining Records from Two Relations. • 4-1
4.1.2 Joining Records from More Than Two Relations. . . • 4-7
4.1.3 Joining One Relation on Itself. • 4-9

4.2 UsingNestedFORLoops 4-11

5 Using Views and View Definitions

iv

5.1 Using Views for Queries . • 5-1
5.2 Creating a View Definition for a Join • 5-4

6 Using Value, Arithmetic and Statistical Expressions
6.1 Literals. • . 6-1

6.1.1 Character String Literals . 6-2
6.1.2 Numeric Literals. 6-3

6.2 Arithmetic Expressions . 6-4
6.3 Statistical Expressions . 6-6

6.3.1 Statistical Expressions with Groups of Records 6-7
6.3.2 Arithmetic and Statistical Expressions Based on Field Values 6-13

7 Updating Databases
7.1 Storing Data in an RdbNMS Database. 7-1

7 .1.1 Storing Values in One Relation . 7-1
7.1.2 StoringValuesinMultipleRelations................. 7-2

7.2 UsingRDB$MISSINGforMissingValues................. 7-4
7 .2.1 Retrieving Records with a Missing Field Value. 7-4

7.2.1.1 Using Nested FOR Loops, Outer Joins and the
MISSING Clause . 7-6

7.2.2 StoringMissingValues. 7-7
7.2.3 Storing Segmented Strings • 7-7

7 .3 Modifying Values . 7-8
7.3.1 UsingOneRelationtoModifyValues 7-8
7.3.2 UsingMoreThanOneRelationtoModifyValues 7-10
7 .3.3 Modifying Missing Values . 7-11

7.4 Updating with the START_STREAM Statement 7-12
7.4.1 Using a View to Modify a Database 7-15

7.5 ErasingDatainaRelation 7-16
7.6 Summary 7-17

A Definitions for the PERSONNEL Database

B Using a VMS Text Editor for Program Development

Index

Figures
1-1 A Typical RdbNMS Relation in Table Form 1-3
2-1 Transaction Modes of a ST ART_ TRANSACTION Statement 2-7
2-2 Share Modes and Lock Types for the START_TRANSACTION

Statement 2-15
2-3 Run-Unit Journal File During an Update Transaction 2-23
2-4 Run-Unit Journal File with COMMIT 2-24
2-5 Run-UnitJournalFilewithROLLBACK 2-25

v

vi

3-1 Finding Unique Values from Field Values 3-26
4· 1 Joining Two Relations on a Common Key Field • 4-3
4·2 Joining Relations on a Key Field . . . • • 4-6
4·3 Joining a Relation on Itself {Reflexive Join) 4·11
6-1 Using a Statistical Expression to Group Records. 6-9
6-2 A Statistical Expression Across Three Relations . . • 6-12

Tables
2-1 Database Access Conflicts for Relations 2-16
3·1 Default Sort Order of Major and Minor Sort Keys. 3·7
3-2 RDO Relational Operators 3-10
3-3 AND Logical Operator. 3· 13
3-4 OR Logical Operator 3·15
3-5 NOT Logical Operator •.....•...................... 3-16
3-6 Testing for the Existence of Records with ANY and UNIQUE

Operators•.............................. 3-28
6-1 Embedding Quotation Marks in Literal Expressions. 6·3
7-1 Effects of COMMIT and ROLLBACK on Databases and

Transactions••......................•...... 7·15

How to Use This Manual

VAX RdbNMS software, referred to as RdbNMS in this manual, is a general pur
pose database management system based on the relational data model.

Purpose of This Manual
This manual introduces the syntax and semantics of RdbNMS data manipulation
statements, which retrieve, store, and modify data in an RdbNMS database. This
book demonstrates these statements using the Relational Database Operator
(RDO) utility for RdbNMS, and provides examples using a demonstration
database. You can use RDO for data definition, data manipulation, and database
maintenance functions.

Intended Audience
To get the most out of this manual, you should be familiar with data processing
procedures, basic database management concepts and terminology, and the VMS
operating system.

Operating System Information

Information about the versions of the operating system and related software that
are compatible with this version of RdbNMS is included in the RdbNMS media
kit, in either the VAX Rdb!VMS Installation Guide or the Before You Install
letter.

Contact your DIGITAL representative if you have questions about the compatibil
ity of other software products with this version of RdbNMS. You can request the
most recent copy of VAX System Software Order Table/Optional Software Cross
Reference Table, SPD 28.98.XX, which will verify which versions of your operat
ing system are compatible with this version of RdbNMS.

vii

Structure

This manual is divided into seven chapters, two appendixes, and an index:

Chapter 1

Chapter 2

Chapter3

Chapter4

Chapter5

Chapter6

Chapter7

Appendix A

AppendixB

Index

Introduces the concepts of data organization and the relational
database model. It demonstrates how to use RDO and
describes how RdbNMS statements can be used in programs.

Introduces RdbNMS data manipulation statements. It demon
strates how to access a database and explains how to use
transactions.

Describes RDO and record selection expressions (RSEs).

Describes the process of retrieving data from one or more
relations.

Describes how to define views and how to use them in queries.

Introduces the value expressions used for queries in RDO.

Describes the RdbNMS data manipulation statements used to
update databases.

Presents database definitions for the sample PERSONNEL
database.

Shows how to use a text editor for program development.

Provides page references for topics and commands covered in
the manual.

Related Manuals

For more information on RdbNMS, see other manuals in this documentation set:

• VAX Rdb/VMS Ref ere nee Manual

A complete description of the statements and syntax of RdbNMS

• RDML Reference Manual

A complete description of the components of the Relational Data
Manipulation Language (RDML)

• VAX Rdb/VMS Guide to Programming

viii

A complete description of how to write programs in high-level languages that
use RdbNMS as a database access method

• VAX Rdb1VMS Guide to Database Design and Definition

A tutorial that explains how to design a logical database and how to translate
that design into a physical database using RdbNMS data definition state
ments

• VAX RdbNMS Guide to Database Administration and Maintenance

A tutorial that provides guidelines for good performance and explains how to
use the database maintenance utilities to perform such operations as backup,
recovery, restoring journals, and analyzing the database

Conventions

In examples, an implied carriage return occurs at the end of each line, unless oth
erwise noted. You must press the RETURN key at the end of a line of input.

This section explains the special symbols used in this book:

< CTRL/x > This symbol tells you to press the CTRL (control) key and hold it
down while pressing a letter key.

Color

Vertical ellipsis in an example means that information not directly
related to the example has been omitted.

Color in examples shows user input.

References to Products

RdbNMS is a member of the VAX Information Architecture, a group of products
that work with each other and with VAX languages conforming to the VAX call
ing standard to provide flexible solutions for information management problems.

VAX Information Architecture documentation explaining how these products
interrelate is included with VAX Common Data Dictionary documentation. VAX
Information Architecture documentation is also available separately. Contact your
DIGITAL representative.

ix

The RdbNMS documentation to which this document belongs often refers to
these products by their abbreviated names:

• VAX BASIC is referred to as BASIC.

• VAX C is referred to as C.

• VAX Common Data Dictionary software is referred to as CDD.

• VAX COBOL software is referred to as COBOL.

• VAX DATATRIEVE software is referred to as DATATRIEVE.

• VAX EDT software is referred to as EDT.

• VAX RdbNMS software is referred to as RdbNMS.

x

Technical Changes and New Features

This section presents a list of the new RdbNMS Version 2.3 features that are cov·
ered in this manual. See the VAX Rdb!VMS Release Notes for information about
all the new Version 2.3 features and for reports of current limitations or
restrictions.

Version 2.3

Command Recall

RdbNMS now allows you to use the up and down arrow keys to recall RDO com·
mands. You can recall up to the last 20 commands you issued while using RDO.
This feature works just like the command recall feature at the DCL command
level. See Chapter 1 for details.

BATCH_UPDATE No Longer Permits Rollback

BATCH_UPDATE transactions no longer allow you to issue an explicit
ROLLBACK statement. Because BATCH_UPDATE works without a run-unit
journal file (generally, to speed initial load operations), a ROLLBACK perma
nently corrupts the database file.

Instead of permitting the ROLLBACK, RdbNMS issues an
RDB-E-NO_ROLLBACK error message and does not end the transaction. See
Chapter 3 of this manual for more information.

xi

Introduction to VAX Rdb/VMS Data Manipulation 1

This chapter introduces RdbNMS data manipulation concepts. It is divided into
three sections:

• What Is a Relational Database (Section 1.1)

Introduces the concepts that are the basis for relational database manage
ment systems.

• Using RDO (Section 1.2)

Explains how to use the Relational Database Operator (RDO) utility, the
interactive environment for RdbNMS.

• Using RdbNMS Statements in Programs (Section 1.3)

Shows how to include RDO statements in high-level language programs.
Programmers can read this section as an introduction to programming with
RdbNMS.

The examples throughout this guide use the PERSONNEL database. You can
create your own copy of the PERSONNEL database using the files provided in
the RdbNMS installation kit. To do so, enter the following:

$ ©RDM$DEMO:PERSONNEL

1-1

This procedure displays:

• Informational messages and prompts you for information about the Common
Data Dictionary (COD).

• A message reminding you to look in the file BUILDPERS.LOG to determine
whether or not creation of the database was successful.

• Several messages while loading the database, including a display of statistics
about the number of records loaded.

When the PERSONNEL database has been successfully created, you can use any
of the examples presented in this manual.

1.1 What Is a Relational Database?

In a relational database, data resides in two-dimensional tables known as rela
tions. A relation consists of rows and columns. The columns, which usually have
names, divide each row into a set of fields. For a single field within a row, there is
only one data item.

If you are familiar with VAX COBOL or VAX DAT ATRIEVE, you have probably
used a COBOL File Description or a DATATRIEVE record definition. Imagine a
record definition with no group fields or OCCURS clauses. Such a record defini
tion is similar to a relation. In fact, the rows in an RdbNMS relation are called
records, and the columns are called fields. An RdbNMS record, however, differs
from a COBOL record in two ways:

• An RdbNMS relation cannot have repeating groups (lists). A maximum of
one data item occupies a single named field in the record.

• An RdbNMS record cannot have group fields. A name within an RdbNMS
relation refers to only one field.

Without repeating groups and group fields, the structure of the database is simpli
fied so you may easily access each data item.

Figure 1-1 represents a typical RdbNMS relation that shows employee informa
tion. This relation is a subset of PERSONNEL, the sample database.

1-2 Introduction to VAX Rdb/VMS Data Manipulation

Relation - EMPLOYEES Field
(Column)

l
FIRST _NAME LAST-NAME BIRTH_DATE EMPLO''EE_ID

James Adkins 11-MAR-1932 00242
Louie Ames 13-APR-1941 00259
Ann Andriola 25-JAN-1960 00267
Jo Ann Augusta 30-MA',-1960 00279
Joseph Babbin 12-DEC-1927 00342
Beverly Barradas 8-JUN-1953 00353
Dean Bartlett 5-MAR-1927 00354
Paul Bel live au 9-MA',-1955 00360
Nancy Bennett 14-FEB-1955 00364

Record - l Nancy Brown 7-0CT-1942 00385
(Row)

ZK-00380-00

Figure 1-1: A Typical Rdb/VMS Relation in Table Form

In this relation, each field represents a particular item of data for each employee.
Like relations, fields also have names. Each record represents the data on a single
employee. To find the data stored in any location of the relation, you need only
name the relation and specify the intersection of field and record.

For example, to find the employee ID for Nancy Brown, you need to specify the
EMPLOYEES relation and the fields, LAST_NAME and FIRST_NAME.

Then RdbNMS:

• Finds the record in EMPLOYEES in which the LAST_NAME field is occu
pied by the name Brown and the FIRST_NAME field is occupied by the
name Nancy

• Returns to the terminal the contents of the three fields named in the PRINT
statement

The result of this query is:

Nancy Brown 00385

Introduction to VAX. Rdb/VMS Data Manipulation 1-3

1.1.1 Using Normalization to Eliminate Data Redundancy

There is no way to represent repeating groups in an RdbNMS relation; only one
data item can occupy an intersection. Therefore, if you wanted to store informa
tion about five previous jobs for an employee, you would have to repeat the name,
address, identification number, and other employee information five times. There
would no longer be a one-to-one correspondence between records in the relation
and employees in the company.

Storing all the information that might be relevant to employees in one relation
means storing the same data in more than one place. Redundancy of data has two
disadvantages:

• It wastes space in the database.

• It makes updating information difficult. For example, if you store the salary
ranges for five previous jobs for an employee in the EMPLOYEES relation,
you must find and change all the occurrences whenever the salary ranges
change. If you miss some, the database is no longer consistent.

A process known as normalization solves these two problems. Normalization
ensures that the database keeps separate concepts physically separate and elimi
nates data redundancy. Thus you store a data item only once, and you need to per
form only one update operation to change it. When you need to bring data
together from different relations (if you want an employee's job history, for
instance), the database allows you to create temporary relationships by joining
relations together. RdbNMS works best with well-designed, normalized
databases.

1.2 Using RDO

You can define and access an RdbNMS database using RDO. When you run RDO
and type statements at the RDO > prompt, RdbNMS executes the statements
immediately. This section shows you how to start using RDO and gives a brief
introduction to elements of the RDO utility.

1.2.1 Beginning an RDO Session

To invoke RDO, type at the DCL prompt:

$ RUN SYS$SYSTEM:RDO

RDO responds with the following prompt:

RDO>

1-4 Introduction to VAX Rdb/VMS Data Manipulation

Prompts help you keep track of your status during an interactive RDO session.
The RDO prompts are:

RDO>

cont>

RDO command level prompt. This prompt tells you that you
are typing commands to RDO and may enter any RDO state
ment.

The statement continuation prompt. This prompt indicates
you have not yet entered a complete statement.

In addition to prompts, RDO incorporates many features to make working with
RdbNMS easy. These features include:

• HELP

Provides information about RdbNMS statements and concepts.

• SHOW

Displays information about the database users, including the names and
attributes of fields, the structure of relations, and the definitions of indexes
and constraints. The SHOW command also displays information about the
version of RdbNMS you are using.

• SET

Determines the characteristics of the terminal session and the default direc
tory in the Common Data Dictionary (CDD).

• Command recall

The up and down arrow keys let you recall RDO commands. Recalls up to the
last 20 commands you issued. This feature works just like the command
recall feature at the DCL command level.

• Indirect command file

Lets you store RDO statements and execute them later by using the at sign
(@).The default file type is .RDO.

• A DCL invoke command

Lets you access DIGITAL Control Language (DCL) commands from RDO by
using the dollar sign ($). You do not have to leave your RDO session to
answer mail or to see a directory.

• EDIT

Calls the VAX EDT or VAXTPU editors. Type EDIT followed by an integer

Introduction to VAX Rdb/VMS Data Manipulation 1-5

to edit up to 20 of your previous commands. You also can use EDT or V AXTPU
from inside RDO to insert successful RDO statements into command files
and programs. Appendix B of this manual explains how to use RDO and text
editors together to test and debug data manipulation statements.

• RDOINI.RDO

A startup file that you create. When you enter RDO, the commands in your
RDOINI.RDO file take effect. You may create RDOINI files in many directo
ries, or define a logical name RDOINI to point to a central startup file.

1.2.2 Writing a Simple Record Selection Expression

The following is an example of a record selection expression:

FOR E IN EMPLOYEES WITH E.LAST_NAME = 'Brown' AND
E.FIRST_NAME = 'Nancy'

PRINT
E.FIRST_NAME,
E.LAST_NAME,
E.EMPLOYEE_id

END_FOR

In this example, "WITH E.LAST_NAME ='Brown' AND E.FIRST_NAME =
'Nancy'" is a record selection expression (RSE).

RDO statements use a group of records, called a record stream, that you retrieve
from one or more relations in an RdbNMS database. You determine the records
in the stream by including an RSE as part of your data manipulation statements.
The clauses of the RSE determine which records from a relation are included in
the stream. In this case, only records in which the employee's last name is Brown
and the first name is Nancy are included in the record stream. You can include all
the records of a relation, or you can restrict the record stream to a selected group
of records.

Once you form the stream, you can enter statements to display, store, modify, or
erase the data in the stream, one record at a time. To display the results of a
record selection expression, use the PRINT statement. The PRINT statement
uses values from the record stream that you identify in the RSE.

The character E in the expression E IN EMPLOYEES is a context variable. This
variable lets you refer to the EMPLOYEES relation specifically in the record
selection expressions and in the PRINT statement. Context variables are particu
larly important when you are working with more than one relation. If two rela
tions have fields with the same name, a context variable helps you refer to each of
them unambiguously.

1-6 Introduction to VAX RdbNMS Data Manipulation

\

1.2.3 Getting Online Help in ADO

If you need an explanation of any RDO statement or concept while using RDO,
type HELP to see a list of available topics, or type HELP and the name of a topic:

RDO> HELP DEFINE FIELD

The help function contains several levels. For example, if you ask for help on
DEFINE FIELD, you will see a brief description, an example, and a set of
choices, including one called Format. Format shows the syntax of the DEFINE
FIELD command.

Once you have located the relevant piece of information in the help files, you can
exit from help by pressing RETURN until you come back to the RDO> prompt.

1.2.4 Using Multiline Statements in ADO

RDO can read enough lines in a multiline statement to detect a syntactically com
plete statement. If you end each line of an RSE with a keyword that belongs with
the next line, RDO will wait for the entire sequence of statement lines before it
executes them, as in the following example:

PRINT TOTAL SH.SALARY OF SH IN SALARY_HISTORY CROSS
JH IN JOB_HISTORY OVER EMPLOYEE_ID WITH
JH.JOB_CODE = "MENG" AND
JH.JOB_END MISSING

You can also end each line of a multiline statement with the hyphen(-) continu
ation character to ensure that RDO reads the whole statement before execution.
The continuation character must be the last character on the line to be continued.
See the VAX RdbNMS Reference Manual for a full explanation of the type of
input RDO accepts.

1.2.5 Exiting from RDO

You end an RDO session by entering one of the following:

• EXIT

• CTRL/Z

Entering either of these ends a session and normally returns you to the DCL
prompt. For example:

RDO> EXIT
$

Introduction to VAX RdbNMS Data Manipulation 1-7

If you have changed the database without finishing the transaction, you cannot
exit from RDO. If you try to exit, RDO responds with the following prompt:

RDO> EXIT
There are uncommitted changes to this database.
Would you like a chance to COMMIT these changes (No)?

If you type YES, RDO returns the RDO> prompt. Then you can type COMMIT,
ROLLBACK, or any other RDO statement. For an explanation of COMMIT and
ROLLBACK, see the section on ending a transaction in Chapter 2. If you type
NO, you will leave the RDO session and return to the DCL prompt without saving
any changes you may have made to the database.

Try the following statements to see how these features work. The text does not
show the output:

RDO> HELP
RDO> HELP SET
RDO> HELP RDOINI
RDO> HELP DEFINE DATABASE
(Press return to leave the help facility)
RDO> $ DIRECTORY
RDO> $ MAIL
(Type EXIT to leave the mail facility)
RDO> EDIT *

1.3 Using Rdb/VMS Statements in Programs
As a programming tool, RdbNMS has several advantages:

• The versatility of the data manipulation statements means that the database
system itself can perform many of the tasks you once needed to code in a
high-level language.

• The interactive environment, RDO, lets you prototype your application
before you start writing a program. With some modification, you can include
the RdbNMS data manipulation statements in your programs.

Although the RSE you saw in the previous section was processed by interactive
RDO, RdbNMS is intended to be used in programs.

RdbNMS includes a set of precompilers that let you include data manipulation
statements in programs, as if they were part of the language. A precompiler
translates the RdbNMS statements into subroutine calls and includes them in the
compiled language code.

RDO provides an EDIT statement that makes developing these programs easy.
Most often, you will use RDO to test queries and other data manipulation state
ments to make sure they produce the desired results. The EDIT command lets
you modify a statement you previously entered in RDO.

1-8 Introduction to VAX Rdb/VMS Data Manipulation

RdbNMS saves that statement in an editing buffer, so you may use VMS text
editors, such as VAX EDT and VAXTPU, to change any portion of the editing
buffer. Use the EDIT statement to open the edit buffer. You may repeat this pro
cess as many times as you wish, editing up to 20 of your previous commands.
When you have the desired results, save the query by issuing a WRITE or EXIT
command. You may then incorporate the query into your high-level language pro
gram.

The following examples show how RDO statements can be used in a program.

The first example is a COBOL program that performs a store operation. This pro
gram reads the values for the database from the data file and stores them.

The second example is a COBOL program fragment that retrieves database val
ues and assigns them to program variables. This example shows how to convert
the RDO PRINT statement into a GET statement. The GET statement retrieves
a value from the database and assigns it to a variable in the program. The GET
statement uses the same kind of record selection expression as the PRINT state
ment. Note that the GET statement is specific to VAX BASIC. VAX COBOL and
VAX FORTRAN programs use the RDBPRE precompiler. Languages supported
by the Relational Data Manipulation Language (RDML) preprocessor (VAX C and
VAX PASCAL) use a simple host language assignment statement instead.

Examples

Example 1

IDENTIFICATION DIVISION.
PROGRAM-ID. STORE-REC.
* *First, identify the input data file. The program will
* read this file and store its records in the database.
* ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT EMPLOYEES-FILE ASSIGN TO "EMP.DAT"
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

* * Instead of an explicit declaration, you can declare the
* record structure by copying a definition from the
* Common Data Dictionary. Then you declare the database
* file to the COBOL precompiler with the DATABASE
* statement.
* DATA DIVISION.
FILE SECTION.
FD EMPLOYEES-FILE.

COPY "CDD$TOP . FORESTER. PERSONNEL. RDB$RELATIONS . EMPLOYEES"
FROM DICTONARY.

Introduction to VAX Rdb/VMS Data Manipulation 1-9

WORKING-STORAGE SECTION.

&RDB& INVOKE DATABASE FILENAME 'PERSONNEL'

PROCEDURE DIVISION.
* * The PROCEDURE DIVISION consists simply of a database
* transaction in a loop. Note the three steps:
* * 1. Open the input file and start a transaction.
* The RESERVING clause locks other users out of the
* EMPLOYEES relation.
* BEGIN.

*

OPEN INPUT EMPLOYEES-FILE.
&RDB& START_TRANSACTION READ_WRITE

RESERVING EMPLOYEES FOR EXCLUSIVE WRITE.

* 2. Read the file one record at a time and store
* fields from the file into fields in the database relation:
* READ-EMPLOYEES.

*

READ EMPLOYEES-FILE AT END GO TO STORE-DONE.
&RDB& STORE E IN EMPLOYEES

USING
E.EMPLOYEE_ID = id;
E.LAST_NAME = LAST_NAME;
E.FIRST_NAME = FIRST_NAME;
E.MIDDLE_INITIAL = INITIAL;
E.ADDRESS = ADDRESS;
E.CITY = CITY;
E.STATE = STATE;
E.POSTAL_CODE = ZIP;

END_STORE
GO TO READ-EMPLOYEES.

* 3. Commit the transaction. This makes the storage
* operation complete. The EXCLUSIVE lock on the
* relation is released. The FINISH statement tells
* Rdb/VMS that you are done working with the
* database.
* STORE-DONE.

&RDB&t COMMIT
&ROB& FINISH

CLOSE EMPLOYEES-FILE.
STOP RUN.

1-10 Introduction to VAX Rdb/VMS Data Manipulation

Example 2

DISPLAY "FIRST_NAME

&RDB& FDR E IN EMPLOYEES
GET FIRST = E.FIRST_NAME;

LAST = E.LAST_NAME;
id= E.EMPLDYEE_id:

&RDB& END_GET

LAST_NAME

DISPLAY FIRST, " " LAST, "

&RDB& END_FOR

id"

" id

Introduction to VAX Rdb/VMS Data Manipulation 1-11

Accessing a Database and Using Transactions 2

This chapter shows you how to use RDO to manipulate data. It describes how to
use:

• The INVOKE DATABASE statement to tell RDO which database(s) you
want to use

• The START_TRANSACTION statement to specify how and when transac
tions affect the database

• The COMMIT or ROLLBACK statement to end a transaction

2.1 Invoking a Database

Before you can access data managed by RdbNMS, you must name the database
or databases you want to use. You use the INVOKE DATABASE statement,
which identifies your process to the database(sl you name.

Rdb/VMS stores definitions of database elements in the database file itself and,
optionally, in the VAX Common Data Dictionary (CDD), if it is installed. You can
invoke the database by naming either its VMS file specification or its CDD path
name. If you intend to retrieve or update the data itself, access the database by
file name. If you intend to change data definitions, access the database by using
the CDD path name. When you access the database using the CDD path name,
any changes you make to database data definitions are entered in both the CDD
and the physical database file.

2.1.1 Accessing the Database by File Name

Depending on where you set your current default directory, you can access an
Rdb/VMS database by specifying either a partial or a full file specification. For
more information, see the instructions on the next page.

2-1

• Supply a partial file specification if you use the DCL SET DEF AULT com
mand to set your current default directory to the device and directory that
contain the database. For example:

$SET DEFAULT DISK1: [RDBDEMO.STAFF]

Your INVOKE DATABASE statement needs only the file name:

RDO> INVOKE DATABASE FILENAME 'PERSONNEL'

• Supply the full file specification in the INVOKE DATABASE statement
when your default directory is set to another directory:

RDO> INVOKE DATABASE FILENAME
cont> 'DISK!: [RDBDEMO.STAFF]PERSONNEL'

2.1.2 Accessing the Database by Path Name

Access an RdbNMS database by specifying a relative CDD path name or a full
CDD path name. DCL and RDO provide commands to identify the correct direc
tory in the CDD. For example:

• Supply a relative CDD path name if you use the DCL DEFINE command to
identify the CDD directory where the database resides.

$ DEFINE CDD$DEFAULT 'CDD$TOP.RDB$DEMO.STAFF'

The INVOKE DATABASE statement then requires only the relative path
name of the database:

RDO> INVOKE DATABASE PATHNAME 'PERSONNEL'

• Supply a full CDD path name in the INVOKE DATABASE statement if
your CDD$DEFAULT logical name is defined as another directory.

RDO> INVOKE DATABASE PATHNAME
cont> 'CDD$TOP.RDB$DEMO.STAFF.PERSONNEL'

2-2 Accessing a Database and Using Transactions

You can also use the SET DICTIONARY command in RDO to change your
CDD$DEFAULT directory. You need then supply only the relative path name of
the database:

RDO> SET DICTIONARY CDD$TOP.RDB$DEMO.STAFF
RDO> INVOKE DATABASE PATHNAME 'PERSONNEL'

Place quotation marks around file names and COD path names to avoid
ambiguity. The precompilers require either single or double quotes
around file names and path names. See the VAX Rdb!VMS Guide to
Programming for exact usage. RDO accepts either quoted or unquoted
file specifications. However, if you do not use quotation marks,
RdbNMS may not interpret file names or path names correctly.

2.2 Accessing the Database from a Remote Node

You can access an RdbNMS database from a remote node in a network using a
full file specification in your INVOKE DATABASE statement. Assume you are
logged on to node REM4 and the RdbNMS PERSONNEL database is located on
the network node CENT in the DISKl:[COMPANY.STAFF] directory. The fol
lowing INVOKE DAT ABASE statement gives you access to the PERSONNEL
database:

RDO> INVOKE DATABASE FILENAME
cont> 'CENT: :DISKl: [COMPANY.STAFF]PERSDNNEL'

In the preceding example, CENT is the remote node name. By default, the
RdbNMS supplied account, RDB$REMOTE, is used on the remote VAX node.
For details on RDB$REMOTE, see Chapter 3 of the VAX Rdb!VMS Installation
Guide.

To improve performance over the network, modify your login command file on the
remote node to allow faster processing. For example, if you define logical names
for your databases, do so at the beginning of LOGIN.COM. Then include a DCL
command such as:

$ IF 'F$MODE0' .EQS. "NETWORK" THEN $EXIT

Accessing a Database and Using Transactions 2-3

2.2.1 Accessing Data

Once you have invoked a database, you can access the data in it. There are two
types of files RdbNMS uses. Use the DIRECTORY command at the DCL level to
look at the files created when you ran @RDM$DEMO:PERSONNEL:

$ DIRECTORY DISK1: [RDBDEMO.STAFF]PERSONNEL.*

PERSONNEL.RDB;1 PERSONNEL.SNP;1

The PERSONNEL.RDB file contains two types of information:

• Data values stored since its creation.

• Metadata that describes the fields, relations, and indexes as they are defined
in the database. You can think of metadata as a set of templates that
describe the format, structure, and characteristics of database elements. The
field, relation, and index definitions from the PERSONNEL database you
created with @RDM$DEMO:PERSONNEL are examples of metadata.

The PERSONNEL.SNP file is called a snapshot file. It contains copies of data
that are used for READ_ONLY transactions. The section on using transactions
explains the different transaction types, including the READ_ONLY transaction.

2.3 Using Transactions

RdbNMS allows many users access to a database at the same time, and it con
trols that access to avoid conflicts and data inconsistencies. RdbNMS, therefore,
requires each user to identify a unit of database activity, called a transaction.

A transaction is an operation on the database that must complete as a unit or it
will not complete at all. If, for example, you wanted to transfer an employee from
one department to another, you would want the changes to all of that employee's
records to be made at the same time. If a software error or hardware failure
occurred before all operations in several transactions completed, the database
might show that the employee belonged to two departments or had two salaries;
thus the database would no longer be consistent. To avoid such inconsistencies,
you include all such update tasks in a single transaction.

Transactions can have many characteristics, which you control with the
START_ TRANSACTION statement. A START_ TRANSACTION statement
signals the beginning of a transaction. The START_ TRANSACTION statement
options let you determine:

2-4 Accessing a Database and Using Transactions

• Whether you want to work with the snapshot of the database or with the
database itself

• Whether you intend to read or modify data in the relations

• What kind of access you allow other users to have to the database resources
you are using

• When you want RdbNMS to consider specific conditions that must be satis
fied before a record is stored or retrieved

In a START_TRANSACTION statement, you state:

• The transaction mode you need

READ_ONLY

If your transaction only retrieves data values from the database, but
does not change them

READ_ WRITE

If your transaction changes values in the database

BATCH_ UPDATE

For initial loads of new databases

• The names of the relations you want to access

You can retrieve records from a single relation or from several relations
joined together_

• The control you want over the access other users have to the relations you
reserve for your transactions

When you access a specific record in a transaction, RdbNMS prevents other users
from certain kinds of access to that record by locking the record. The kind of
record locking specified in a START_TRANSACTION statement begins when
you enter a query. The records identified by the record selection expression (RSE)
remain locked until you terminate your transaction. The record locks are then
released and other users may access those records. Refer to the section of the
VAX Rdb!VMS Guide to Database Administration and Maintenance on perfor
mance considerations for a complete description of how RdbNMS uses the lock
ing mechanism.

The following sections explain how to use the READ_ONLY and READ_ WRITE
transaction modes and their options, and how these affect database performance.

Accessing a Database and Using Transactions 2-5

2.4 START_ TRANSACTION Modes: READ_ONLY, READ_WRITE
and BATCH UPDATE

The START_TRANSACTION statement allows different types of access to rela
tions in a database. You establish restrictions on other users' access and declare
your work intentions by naming:

• The transaction mode you intend to use

• One or more relations you intend to use

• The type of control over the actions of other users and applications

Every statement you enter with RDO requires a specific transaction mode to
determine the type of access to the database. Whether you plan to change data
values, modify current database definitions, create new ones, or simply retrieve
values from the database, the type of statement you enter determines how
RdbNMS lets you do that task. If you do not enter a START_TRANSACTION
statement to begin your database task, RdbNMS provides you with a default
transaction mode depending on the first statement you issue in your interactive
session.

RdbNMS considers all statements to be one of two types and assigns a default
transaction mode to each, depending on its type. The two types of statements are:

• Data manipulation statements

You use data manipulation statements to access data. If you do not specify a
transaction mode, RdbNMS starts a READ_ONLY transaction. For exam
ple, if your first query after the DATABASE statement displays data from
the database, RdbNMS allows this task to execute. If, however, the first
statement modifies or updates data, RdbNMS returns an error because a
READ_ WRITE transaction is required.

• Data definition language statements

You use data definition statements to define, change, or delete database
entity definitions. For example, if you need to change the data type of a field,
or to define a new relation, you need update access to the database to make
these changes. By default, RdbNMS provides a READ_ WRITE transaction
after you issue a data definition statement.

Relying on the default transaction mode can present a risk and confusion in multi
ple database access. While testing some queries on database entity definitions for
errors, you may decide to roll back some data definitions or manipulation state
ments and make others permanent. Unless you provide a specific transaction
mode, RdbNMS considers all statements between the START_ TRANSACTION

2-6 Accessing a Database and Using Transactions

statement and COMMIT or ROLLBACK statements as one transaction. Even if
you do not enter an explicit START_TRANSACTION statement, RdbNMS
begins one for you and you must end this transaction with a COMMIT or
ROLLBACK statement before you can begin another task. If you enter a
COMMIT statement, you make all changes to the database permanent. If you
enter a ROLLBACK statement, the database returns to its pre-transaction state
and any uncommitted changes are lost.

Even though RdbNMS supplies defaults, you should always use the
START_TRANSACTION statement to declare a specific transaction mode.
Figure 2-1 shows three transaction modes.

RDO > ST ART TRANSACTION< transaction mode>

l
READ - ONLY All relations are available for data

retrieval. Data values are those at
the moment you entered your
ST ART_ TRANSACTION statement.
Updates made by other users while
READ ONLY is in effect are not
visible by you. You may read any
record in any relation to which you have
authorized access via Rdb/VMS access
rights.

READ - WRITE Rdb/VMS reserves each relation as you
refer to it. You may update any record
in any relation to which you have
authorized access via Rdb /VMS access
rights.

BATCH - UPDATE Reduces overhead in large load opera-
tions. To speed update operations,
Rdb/VMS does not write any journal
files in BATCH_UPDATE. Therefore,
you cannot roll back a batch update
transaction; if the load fails, you must
recreate the database. When you
specify the BATCH_UPDATE mode in
your ST ART_ TRANSACTION state-
ment, the load or update task results
in access to the entire database. It is
the most efficient mode you can choose
when loading the entire database for
the first time, or when you batch data-
base updates in a data file that you
intend to apply to the database at one
time.

ZK-00385-00

Figure 2-1: Transaction Modes of a START_TRANSACTION Statement

Accessing a Database and Using Transactions 2-7

2.4.1 READ_ONL Y Transactions

When you are updating values, you change them in the database file itself (.RDB).
If you only want to read values, however, you can read them from the snapshot
file (.SNP). This type of access is called a READ_ONLY transaction. When you
use a READ_ONLY transaction, you read current versions of records not locked
by any other user and previous versions of records that are locked. Because many
transactions can share read locks that RdbNMS places on records in the snap
shot file, your transaction does not conflict with others.

In most cases, the previous version, sometimes referred to as a before-image of
the record, is adequate. When the update transaction finishes and you begin a new
transaction, the updated version of the record is available to you. However, if your
READ_ONLY transaction requires an absolutely current picture of the database,
you can reserve the relations that you need to read in the database itself, rather
than accessing the snapshot version. _St_art a_RE;\])_ WRITE transaction, anci use
!he EXCLUSIVE share mode to deny other users access to the relations that you
need to read. In this way, you can ensure that no records can change during your
data retrieval. The next section contains more information on READ_ WRITE
transactions.

Specify READ_ONLY in your START_TRANSACTION statement when:

• You do not intend to add new records or to change existing values in the
database.

• You do not require absolute accuracy.

• You need to create a report. Generating a report, however, is a more exten
sive task than browsing for individual records. See the next section on
READ_ WRITE transactions for additional information.

2.4.2 READ_WRITE Transactions

Specify READ_ WRITE in your START_TRANSACTION statement when you
want to perform read-only tasks together with additions, deletions, or changes to
the database that use the STORE, ERASE, or MODIFY statements. When you
need READ_ WRITE access to the database, you can use several formats.

One format of the START_TRANSACTION statement requires only the
READ_ WRITE transaction to allow update operations in the database:

RDO> START_TRANSACTION READ_WRITE

This format does not name a specific relation or relations for database updates.
RdbNMS reserves the relations as you name them in your statements and,
depending on the type of operation you perform in your transaction, places write
locks on selected records to complete an update task.

2-8 Accessing a Database and Using Transactions

For example, the first data manipulation statements in your transaction might
retrieve data from the EMPLOYEES relation. RdbNMS locks the records neces
sary to make an update. Later in the transaction you might modify values in
selected records in the EMPLOYEES relation. RdbNMS, using only the neces
sary locks to complete the transaction, would promote the level of record locking.

You can enter a START_TRANSACTION statement that names the relations
you need to read and that specifies what you will allow other users to do when
they access the same relations. To get the higher locking you need for certain
read operations, specify READ_ WRITE with the correct share mode for your
transaction. See the section on reserving options for information.

2.4.3 BATCH_UPDATE Transactions

You can reduce overhead in large load operations by using the BATCH_UPDATE
mode. To speed update operations, RdbNMS does not write to any journal files in
BATCH_ UPDATE mode. Therefore, you cannot roll back a batch update transac
tion; if the load fails, you must recreate the database. For example, if you need a
large test database for development purposes, BATCH_UPDATE mode loads the
database, but bypasses the journaling facilities.

When you can specify the BATCH_UPDATE mode in your
START_TRANSACTION statement, the load or update task results in access to
the entire database. The BATCH_UPDATE mode, for example, requires your
transaction to be the only transaction accessing the database. It is the most effi
cient mode you can choose when loadillg the entire database for the first time, or
when you batch database updates in a data file that you intend to apply to the
database at one time.

In addition to requiring the fewest locks on the database, the BATCH_ UPDATE
mode permits updates to the database without creating a run-unit journal file.
Therefore, any records changed or added during the BATCH_UPDATE transac
tion cannot be rolled back because RdbNMS does not maintain before-images of
the changed records.

Before you begin a BATCH_ UPDATE transaction in your programs, you should
create a backup copy of the database using the VMS Backup utility.

When you start a BATCH_ UPDATE transaction, you cannot roll it back; that is,
issuing a ROLLBACK statement will generate an error message and your trans
action will not be rolled back. The following is a sample session that shows the
effects of issuing a ROLLBACK statement:

First, the user backs up the database:

$"BACKUP /LOG PERSONNEL.* PERSBACKUP. BCK/SAVE_SET
%BACKUP-S-COPIED, copied DISKl:[CORP.DBS]PERSONNEL.RDB;l
%BACKUP-S-COPIED, copied DISKl:[CORP.DBS]PERSONNEL.SNP;l

Accessing a Database and Using Transactions 2-9

Then, the user invokes RDO:

$RDO
RDO> INVOKE DATABASE FILENAME PERSONNEL
RDO> START_TRANSACTION BATCH_UPDATE
RDO> STORE E IN EMPLOYEES USING
cont> E.EMPLOYEE_ID = "15399";
cont> E.LAST_NAME = "NORTH";
cont> E.FIRST_NAME = "OSCAR";
cont> END_STORE
RDO> ! At this point, assume the user doesn't know that
RDO> ! rolling back a BATCH_UPDATE transaction will corrupt the
RDO> ! database. This user now enters a rollback:

RDO> ROLLBACK
%RDB-E-NOROLLBACK, no rollback is allowed with the recovery mechanism disabl1

At this point, the user's BATCH_UPDATE transaction is still active:

RDO> SHOW TRANSACTION
All Transactions in Database with filename PERSONNEL
a read-write transaction is in progress

- updates have been performed
- transaction sequence number (TSN) is 152
- snapshot space for TSNs less than 152 can be reclaimed
- session ID number is 55

If you receive the RDB$NO_ROLLBACK error during a BATCH_UPDATE
transaction, you have two choices:

1. Manually undo any changes you made (or fix the problem you were having)
and then commit the transaction. For example, if you stored a record, erase
that record and then issue a COMMIT statement:

RDO> FOR E IN EMPLOYEES WITH E.EMPLOYEE ID
cont> ERASE E
cont> END_FOR
RDO> COMMIT
RDO> FINI
RDO> EXIT

"15231"

Or, if invalid input caused a constraint to fail, enter the correct, valid data
an then issue a COMMIT statement.

2. Exit the program or RDO session, which will corrupt the database.

The second option assumes that you made a backup copy of the database prior to
starting the BATCH_UPDATE transaction. After restoring the database files
from the .BCK backup file, you can correct the situation that led to the error and
then reenter the update program or RDO session.

2-1 O Accessing a Database and Using Transactions

2.4.4 Reserving Options

Another format of the START_TRANSACTION statement lets you name more
than one relation in the same START_ TRANSACTION statement for different
database tasks. However, if you use a single transaction to modify fields in more
than one relation, you may encounter unpredictable results. See the chapter on
updating databases for more information. Every lock RdbNMS places on a
database, relation, page, or index node reduces the lock resources available to
other processes on your particular system. By using more than one relation in the
same START_TRANSACTION statement, you lock only those database
resources necessary to complete each task. You can do this by using the
RESERVING clause.

For example, you can name one relation, EMPLOYEES, from which you intend
only to retrieve data, while naming other relations, COLLEGES and DEGREES,
for update activities:

RDO> START_ TRANSACTION READ __ WRITE RESF.RVJNG
cont> EMPLOYEES FOR SHARED READ,
cont> COLLEGES FOR SHARED WRITE,
cont> DEGREES FOR EXCLUSIVE WRITE

You can specify the following share modes and lock types in the RESERVING
clause of your ST ART_ TRANSACTION statement for update transactions:

• SHARED READ

• SHARED WRITE

• PROTECTED READ

• PROTECTED WRITE

• EXCLUSIVE READ

• EXCLUSIVE WRITE

Some database operations in a READ_ WRITE transaction may require a higher
level of record locking than the shared level. In such cases, RdbNMS automati
cally promotes locking to PROTECTED READ or PROTECTED WRITE to com
plete the task. Although the level of locking may often be higher than that which
you specified, it is never lower than the level specified in the
START_ TRANSACTION statement.

Accessing a Database and Using Transactions 2-11

You can use the different modes with the multiple database access feature. For
example, within a single transaction, you can access one database in
READ_ WRITE ... RESERVING <rel-list> PROTECTED WRITE mode and a
second database in READ_ WRITE ... RESERVING <rel-list> SHARED READ
mode.

RDO> INVOKE DATABASE DBl = FILENAME 'PERSONAL$DISK:PERSONNEL'
RDO> INVOKE DATABASE DB2 = FILENAME 'PERSONAL$DISK:BENEFITS'
RDO> START_TRANSACTION ON DBl USING
cont> (READ_WRITE RESERVING EMPLOYEES FOR PROT WRITE) AND
cont> ON DB2 USING (READ_WRITE RESERVING JOB_INFO FOR SHARED READ)
RDO>

The following sections discuss these reserving options.

2.4.4.1 SHARED READ Reserving Option -- The SHARED READ option lets
other users' transactions retrieve records from the same relation you have
accessed. It also allows transactions to update records within the same relation,
except if those transactions are in an EXCLUSIVE share mode, which is a special
mode described below. However, as you retrieve individual records from the rela
tion, those individual records become unavailable for update by other users until
you terminate your transaction. You can specify more than one relation for update
within the same START_TRANSACTION statement.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED READ,
cont> COLLEGES FOR SHARED WRITE

2.4.4.2 SHARED WRITE Reserving Option -- The SHARED WRITE option
lets other transactions retrieve or update records in the ~ion-y{)tl-have
accessed, but not the particular records you.ha:v:e.Jucked. Updated versions of
records from other transactions are not available to you during your current
transaction. Both your transaction and the updating transactions must terminate
with either a COMMIT or a ROLLBACK statement. Also, any updated versions
of the records you change are not available to other users until you terminate your
update transaction with a COMMIT or ROLLBACK statement and other users
begin new transactions.

Because many users can access the same relation, many records may be locked.
Such record locking can result in access conflicts that can affect the performance
and the level of concurrent access to database resources. Only one transaction can
update a record at one time. If another user has locked a record for update or has
placed a write lock on a record for retrieval, you cannot access that record for
update until the record is released by the locking transaction.

2-12 Accessing a Database and Using Transactions

\

Transactions that access the snapshot file do not intend to update the database.
Therefore, READ_ONLY transactions can access records in the database with no
conflict.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE

2.4.4.3 PROTECTED READ Reserving Option -- The PROTECTED READ
option lets you read records from the same relation that other transactions are
accessing. However, PROTECTED READ ensures that no other users can write
to the relation that your transaction reserves in this manner. For example,
assume you retrieve a record to generate a report. RdbNMS must keep the record
stable while the read operation is performed. PROTECTED READ, unlike
SHARED READ, prevents other users from changing any records included in the
report until the report is finished.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR PROTECTED READ

2.4.4.4 PROTECTED WRITE Reserving Option -- The PROTECTED WRITE
option lets your transaction update the relation but prevents other transactions
from updating that relation. Other users can only retrieve data from the relation.
Therefore, a transaction with extensive updates may execute faster using
PROTECTED WRITE rather than using SHARED WRITE because RdbNMS
does not have to check for as many conflicting locks as in the SHARED WRITE
transaction. Wherever possible, use indexed fields in your RSE to lock only those
database resources required by your transaction. Otherwise, RdbNMS will lock
the entire relation.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR PROTECTED WRITE

2.4.4.5 EXCLUSIVE READ Reserving Option -- The EXCLUSIVE READ
option allows only your transaction access to the specified relation. Other users
cannot read or update this relation. This reserving option uses the fewest locks
because RdbNMS locks the resource at the relation level. Because there is no con
flict with other users, the EXCLUSIVE share mode retrieves data faster than
SHARED or PROTECTED share modes. Use the EXCLUSIVE share mode if
your read transaction requires an absolutely current picture of the database for
retrieval. Because the EXCLUSIVE READ option denies other users access to
the relation, you can ensure that no records can change during your data retrieval.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR EXCLUSIVE READ

Accessing a Database and Using Transactions 2-13

2.4.4.6 EXCLUSIVE WRITE Reserving Option -- The EXCLUSIVE WRITE
option lets only your transaction have access to the relation to read or update a
record. This reserving option prevents all other transactions from reading or
updating any record in the relation. Include the EXCLUSIVE WRITE option in
your ST ART_ TRANSACTION statement when you are doing updates to one or
more relations and the transaction is fairly short.

When your transaction includes a MODIFY or ERASE statement, RdbNMS
checks to see if another user has a lock on the record or records you need. If the
record has no lock, RdbNMS locks it by putting an EXCLUSIVE share mode on
the record and executes the update statement. Your transaction holds the lock on
this record until you commit the change to the database with COMMIT or undo
the change with ROLLBACK.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR EXCLUSIVE WRITE

If you omit the explicit reserving options, RdbNMS assumes the defaults.

Figure 2-2 shows the START_TRANSACTION RESERVING syntax and
explains the share modes and lock types that make up the reserving option.

2-14 Accessing a Database and Using Transactions

RDO > ST ART_ TRANSACTION READ_ WRITE

SHARED

RESERVING <relation name> FOR L__J L__J

(share mode)

I
(lock type)

READ: You plan to retrieve
records from relations
without changing any
of those records or
storing new ones.

WRITE: You plan to retrieve
records and change
or store new ones.

Other users can work with the same relation
as you do. Depending on the option those users
choose, they can have read-only or read and
write access to the relation.

PROTECTED Other users can read records from the same
relations as you, but cannot have WRITE access.

EXCLUSIVE Other users cannot even read records from your
relation. If another user tries to access the same
relation, Rdb/VMS denies the request.

ZK-00383-00

Figure 2-2: Share Modes and Lock Types for the START_TRANSACTION
Statement

The reserving options you can choose in your START_TRANSACTION state
ment depend on the options other users currently accessing the database have
already specified. Your options are more limited during multi-user database access
than when you are the only user of the database.

Accessing a Database and Using Transactions 2-15

Once RdbNMS grants the reserving option(s) specified in your
START_ TRANSACTION statement, it locks records identified by the record
selection expression (RSE) according to the kind of task, or verb, your transaction
executes. For example, when you retrieve a record to display the values for cer
tain fields, RdbNMS places read locks on them. However, when you issue a
MODIFY statement, RdbNMS places a more restrictive write lock on the record,
or records, so that no other transaction may intervene and change the values you
intend to change.

When you lock a record for a read or write operation, you affect other users. Table
2-1 shows that other users must either wait for record locks to be released (when
WAIT is specified) or must terminate the active transactions and begin again.

Table 2-1: Database Access Conflicts for Relations

SECOND USER ----------~

F
I
R
s
T

u
s
E
R

l

READ_ WRITE
EXCLUSIVE
READ

READ_ WRITE
SHARED
WRITE

See Note 2

READ WRITE
PROTECTED
WRITE

READ_ WRITE
EXCLUSIVE
WRITE

See Note 3

READ_ONLY
(Snapshot)

Conflict

No conflict

No conflict

Conflict

READ_WRITE READ_WRITE
SHARED PROTECTED

READ READ

Conflict Conflict

No conflict No conflict

No conflict Conflict

Conflict Conflict

READ_WRITE READ_WRITE READ WRITE READ_WRITE
EXCLUSIVE SHARED PROTECTED EXCLUSIVE

READ WRITE WRITE WRITE

Conflict Conflict Conflict Conflict

Conflict No conflict Conflict Conflict

See Note 1

Conflict Conflict Conflict Conflict

Conflict Conflict Conflict Conflict

ZK-00376-00

Note 1:
Note 2:

If index is used. If index is not used, may lock entire relation.
Updates are written to .SNP file.

Note 3: Updates are not written to .SNP file.

2-16 Accessing a Database and Using Transactions

Because RdbNMS uses adjustable locking granularity, records may
become locked. See the VAX Rdb!VMS Guide to Database
Administration and Maintenance for information.

Note that BATCH_ UPDATE works just like EXCLUSIVE UPDATE. However,
because there is no .RU J file you must be careful not to corrupt the database by
issuing a ROLLBACK. BATCH_ UPDATE is most useful for the initial loading of
the database.

In all update cases, RdbNMS does not allow other transactions to read changed
records until the updating transaction executes a COMMIT or a ROLLBACK.
Because RdbNMS locks your records against access by other users, you can dis
play the changes you have made to those records. This record locking assures the
consistency and integrity of database records.

2.4.5 Other START_TRANSACTION Options

In addition to the reserving options of the START_TRANSACTION statement
described in the previous section, you can specify other constraints or qualifiers
that affect how RdbNMS handles your transactions. These options are:

• Constraints

EVALUATING AT VERB_ TIME

EVALUATING AT COMMIT_TIME

• Qualifiers

WAIT

NOWAIT

CONSISTENCY

CONCURRENCY

The following sections discuss these options.

Accessing a Database and Using Transactions 2-17

2.4.5:1 EVALUATING AT VERB_TIME Constraint -- You can define constraints
to check for values you want to store in the database. You can then specify when
Rdb/VMS should evaluate the constraints. By specifying VERB_ TIME, you indi
cate that Rdb/VMS should evaluate the constraint when the STORE statement
executes. By default, Rdb/VMS evaluates each user-defined constraint at the time
specified in its DEFINE CONSTRAINT definition. If the constraint definition
does not specify when the constraint should be checked, the definition default is
CHECK ON UPDATE.

Each time Rdb/VMS executes a STORE or MODIFY statement, the record
stream your RSE identifies may contain one record or many records. When the
record stream contains only one record, and an error occurs, you can handle that
error by displaying the offending record or writing it to an exception file. On the
other hand, if the record stream identifies more than one record in a FOR ...
END_FOR block containing a STORE or MODIFY statement, and an error
occurs, you want to be sure which record in the record stream has violated the
constraint definition. So, for each execution of the STORE or MODIFY state
ment in the FOR ... END_FOR block, you can specify that Rdb/VMS check the
constraint by including the EVALUATING AT VERB_TIME clause.

Additionally, when you include update tasks in a host language program, you can
handle errors with the ON ERROR clause. Specifying constraint evaluation at
VERB_ TIME causes control to pass immediately to the error handling state
ments. If your transaction waits until COMMIT_TIME to evaluate the constraint,
Rdb/VMS may not signal the error at the verb level because the STORE or
MODIFY statement will have completed. Refer to the VAX Rdb!VMS Guide to
Programming for more details on error trapping and error handling using
constraints.

If your transactions contain several update operations using both STORE and
MODIFY statements, you may need to evaluate constraints at VERB_ TIME to
detect which operation or constraint caused the violation. Evaluating constraints
at COMMIT_TIME may direct the entire transaction to roll back if error handling
is not included at the verb level.

2.4.5.2 EVALUATING AT COMMIT_TIME Constraint -- If you have exclusive
access to all referenced relations, you can evaluate constraints at
COMMIT_TIME. You can defer constraint evaluation until you are ready toter
minate your transaction. Rdb/VMS then checks each value against the defined
constraint before allowing the record to be stored. When you specify constraints
to be evaluated at COMMIT_TIME, you defer the expense of evaluation time
until you enter the COMMIT statement. For example, assume you need to modify
most of the records in a specific relation. You can specify EXCLUSIVE WRITE
to avoid access conflicts with other users, reduce the use of lock resources, and
complete your task efficiently. Because your transaction works with most of the

2-18 Accessing a Database and Using Transactions

records in the relation, you do not need to evaluate one or more constraints every
time a record in the record stream is updated. You can defer the cost of constraint
evaluation until the transaction terminates. If the update transaction results in
many constraint violations, you can roll back the transaction, correct the errone
ous values, and retry the update operation.

If your tasks include batch updates to the database in a scheduled production
mode, there may be very little conflict with other users accessing the database. In
such cases, you can experiment with both VERB_ TIME and COMMIT_TIME
constraints to see which meets your needs. You can enhance performance by
ensuring that fields used in the constraint definition are indexed fields. Indexes
allow RdbNMS to locate specific records efficiently. See the VAX RdbNMS
Guide to Database Administration and Maintenance for information on
enhanced performance with index fields.

The following START_TRANSACTION statement specifies a constraint in the
PERSONNEL database definitions called SH_EMP _ID_EXISTS to be evaluated
for any new data stored in the database:

DEFINE CONSTRAINT SH_EMP_ID_EXISTS
FOR SH IN SALARY_HISTORY
REQUIRE ANY E IN EMPLOYEES WITH

E.EMPLOYEE_ID = SH.EMPLOYEE_ID
CHECK ON UPDATE.

The following constraint verifies that an EMPLOYEE_ID value exists in the
EMPLOYEES relation before a SALARY _HISTORY record can be stored. The
EVALUATING clause in the START_TRANSACTION statement overrides the
CHECK ON UPDATE clause.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR EXCLUSIVE WRITE,
cont> SALARY_HISTORY FDR EXCLUSIVE WRITE EVALUATING
cont> SH_EMP_ID_EXISTS AT COMMIT_TIME

2.4.5.3 WAIT or NOWAIT Qualifiers -- You can specify how RdbNMS is to han
dle your transactions when you attempt to retrieve or update a record in a rela
tion locked by another user. You can elect to wait for the record to be released by
specifying WAIT in your ST ART_ TRANSACTION statement, or you can specify
that RdbNMS return an error message that the record is unavailable. You can
then terminate the current transaction and reenter your
START_TRANSACTION statement or access another database.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR PROTECTED WRITE,
cont> JOB_HISTORY FOR PROTECTED WRITE,
cont> SALARY_HISTORY FOR SHARED READ NOWAIT

Accessing a Database and Using Transactions 2-19

If you decide to include the WAIT clause in your START_TRANSACTION state
ment, you should consider the possibility of encountering incompatible transac
tion modes.

In the following series of steps, User A starts a transaction and reserves a
relation for EXCLUSIVE WRITE. When RdbNMS grants a transaction
EXCLUSIVE WRITE, other transactions started after the EXCLUSIVE WRITE
transaction cannot gain snapshot access to the database resources held by the
exclusive lock until the exclusive transaction is terminated. User A must first ter
minate the EXCLUSIVE WRITE transaction. User B's snapshot request, there
fore, is not compatible with an EXCLUSIVE WRITE lock. RdbNMS immediately
suspends User B from waiting.

1. User A reserves a relation for EXCLUSIVE WRITE, and fetches a collec
tion of records.

2. User B then accesses the same relation for READ_ONLY and includes the
WAIT clause.

3. When User B attempts to access the records in a FOR ... END_FOR block
to display certain values, RdbNMS returns a resource lock NOWAIT error,
and disregards the WAIT.

4. Although User A could terminate the current transaction, release all locks,
and exit RDO and User B could begin the FOR ... END_FOR block again
within the same transaction, RdbNMS will still return the resource lock
error.

In this case, a NO WAIT error results and RdbNMS rejects the WAIT lock
requested by User B because such a WAIT state can never be resolved for a
READ_ONLY transaction against an EXCLUSIVE WRITE transaction.
Therefore, RdbNMS overrides the WAIT qualifier and issues a NOWAIT rather
than allow the READ_ONLY request to wait forever.

A transaction that specifies EXCLUSIVE WRITE does not write data to the
snapshot file; it is always incompatible with READ_ONLY access requests.
RdbNMS defines READ~ONL Y transactions in such a way that all data commit
ted to the database prior to its execution must be available to the transaction
requesting access to the snapshot file. Because it is impossible for RdbNMS to
determine whether the EXCLUSIVE WRITE transaction may have written data
to the database, it cannot satisfy the READ_ONLY transaction's requirements.

2.4.5.4 CONSISTENCY or CONCURRENCY Qualifiers -- The CONSISTENCY
and CONCURRENCY qualifiers are provided for compatibility with other
DIGITAL relational database products, such as VAX Rdb/ELN. In RdbNMS
alone, the distinction is not meaningful. RdbNMS always guarantees degree 3

2-20 Accessing a Database and Using Transactions

consistency. Degree 3 consistency means that the database system guarantees
that data you have read will not be changed by another user before you issue a
COMMIT statement.

In other relational systems that you might access using the remote feature of
RdbNMS, this option specifies the degree to which you want to control the consis
tency of the database. In such systems, the CONCURRENCY qualifier sacrifices
some consistency protection for improved performance with many users.

2.4.6 Indexes

RdbNMS can use indexes to locate specific records using the database key for
those records. A database key or DBKEY, is a pointer or address that indicates a
specific record in the database. There is a separate index structure or B-Tree
structure for each index (system or user) defined in the database. Each B-Tree
structure is created by linking index nodes together in a balanced hierarchical
structure. These nodes are also horizontally linked in "low to high" key value. The
links between the nodes are created by using the database keys. Thus, updating
records containing indexed fields means updating index nodes as well. During the
database design phase, the database administrator or owner of the database
should identify certain fields in each relation as primary keys and foreign keys.

A primary key is the key you select to be the principal identifier of each row in a
relation. It is best if the field you select as a primary key is unique and stable,
because the number of input/output operations necessary to update an index are
high and thus costly. Therefore, you can use the primary field to locate a specific
record or record, and update other, non-indexed fields, in those records. In this
way, you benefit from the efficient access methods RdbNMS uses to locate the
records you need, but you do not suffer the overhead penalty of updating the
index nodes. A foreign key is an attribute or group of attributes in one relation
that is a primary key of another relation. You can use foreign keys for joins.

You should decide which fields are important to index to reduce the number of
write locks on the records in the relation. For example, you can start a transac
tion specifying the share mode, SHARED, and the lock type, WRITE. Another
user can enter an identical START_TRANSACTION statement to read or update
records in the same relation you have accessed. If no indexes are defined for the
key field, RdbNMS must physically scan each record in the database itself,
placing write locks on all of the records it touches. The other transaction attempts
to select records from the same relation and conflicts with your transaction
because your transaction has already placed locks on those records. Your transac
tion may even promote the locking to the EXCLUSIVE level, and allow no other
user to access any of the records in the relation. Other users must terminate their
transactions and reenter the START_TRANSACTION statement to select the
records or wait until the records in that relation are available again.

Accessing a Database and Using Transactions 2-21

If the fields you use to select records for your transaction are indexed, RdbNMS
can refer to the index tables to locate only the records you need. RdbNMS will
also place write locks on the index nodes that contain the database keys to those
records and thus allow other users to access the remaining records in the relation.
Use an index to locate records, and increase database concurrency by reducing
possible deadlocks and making more resources available to other database oper
ations. For further information on primary and foreign keys and indexes, see the
VAX Rdb!VMS Guide to Database Administration and Maintenance.

2.4.7 Transaction Scope

Remember, a transaction is a unit of database activity you perform with one state
ment or many statements. The START_TRANSACTION statement that marks
the start of a transaction and the COMMIT or ROLLBACK statement that termi
nates the transaction identify the scope of the transaction. RdbNMS executes
either all of the statements in the scope of the transaction or none of them.
Before you begin your transaction, you should determine the tasks you want to
accomplish. Some of these tasks might be:

• Data retrievals from the database

• Changes you want to make to existing records in the database

• Changes to the database entity definitions

If you mix tasks in a transaction, you may want to undo some tasks and keep oth
ers. By restricting each transaction to a specific task, you can roll back certain
operations and make others permanent.

RDO>
RDO>
ROD>
RDO>
RDO>

START_TRANSACTION]
Scope

of
Transactions

COMMIT

2.4.8 Ending a Transaction

(Transaction begins, transaction
mode granted)

(Transaction ends, transaction
mode returns to default)

An update transaction can physically change the values in the database. In the
following example, the PERSONNEL file is invoked and a
START_TRANSACTION statement reserves the EMPLOYEES relation for an
update transaction.

RDO> INVOKE DATABASE FILENAME PERSONNEL

RDO> START_TRANSACTION READ_WRITE
cont> RESERVING EMPLOYEES FOR SHARED WRITE

RDO>

2-22 Accessing a Database and Using Transactions

Before each update is flushed to disk, the original record is written to the run-unit
journal file (file type .RUJ). Each user who performs an update has an .RUJ file in
his or her SYS$LOGIN for the life of a transaction. After all the updated records
have been flushed to disk, the EMPLOYEES relation has new records added to it.
Figure 2-3 shows the effect of an update on a database.

Original
Record 1

Updated
Record 1

PERSONNEL.RUJ

Original Record 1
Original Record 2
Original Record 3

PERSONNEL Database

COLLEGES Relation

EMPLOYEES Relation

DEGREES Relation

ZK-00035-00

Figure 2-3: Run-Unit Journal File During an Update Transaction

You can terminate an RdbNMS transaction in two ways:

• COMMIT

Use the COMMIT statement to make your changes permanent. This causes
RdbNMS to invalidate the run-unit journal file and to make it ready for fur
ther transactions.

RDO> COMMIT
RDO>

Accessing a Database and Using Transactions 2-23

Figure 2-4 shows the effect of a COMMIT statement on a database.

PERSONNEL. RUJ

(Original records cleared
by "COMMIT")

PERSONNEL Database

COLLEGES Relation

Updated Record 1
Updated Record 2 EMPLOYEES Relation
Updated Record 3

DEGREES Relation

ZK-00034-00

Figure 2-4: Run-Unit Journal File with COMMIT

• ROLLBACK

Use the ROLLBACK statement to undo the changes you have made to the
database within the scope of a transaction. The ROLLBACK statement uses
the run-urtit journal file to bring the database back to its pre-transaction
state.

RDO> ROLLBACK
RDO>

Figure 2-5 shows the effect a ROLLBACK statement has on the database.
Because the updates actually change the state of the database, the run-unit jour
nal file is used to return the database to its pre-transaction state by writing the
original records back to the database. When the transaction terminates, the
EMPLOYEES relation is unchanged.

2-24 Accessing a Database and Using Transactions

PERSONNEL.RUJ

Original Record 1
Original Record 2
Original Record 3

PERSONNEL Database

COLLEGES Relation

Original Record 1
Original Record 2 EMPLOYEES Relation
Original Record 3

DEGREES Relation

ZK-00033-00

Figure 2-5: Run-Unit Journal File with ROLLBACK

2.5 The Optimizer

Because a relational database model represents the user's view of the data stored
in the database, determining the best way to retrieve that data can be a very com
plex task. RdbNMS contains an optimizer that automatically analyzes every
query to determine the most efficient method of access to the data. Efficiency can
be measured as the number of disk accesses required to retrieve data values in
the database.

The optimizer is a sophisticated component of RdbNMS that uses a combination
of algorithms to evaluate the query and arrive at a low-cost solution to retrieve
the data in the database. The order in which you specify joins and the order of the
clauses in the RSE does not, in most cases, influence the order the optimizer uses
to satisfy your query. You can, however, provide the optimizer with optional
access methods by defining indexes for fields you use frequently in your queries.
Database performance is directly affected by the ability of the system to access
the record or records stored on disk through input/output U/Ol operations. The
greater the number of 1/0 operations, the longer it takes to find and retrieve
records that satisfy a query. To keep I/Os to a minimum, RdbNMS uses the
optimizer.

Accessing a Database and Using Transactions 2-25

To evaluate a query, the optimizer:

• Develops alternative solutions for retrieving data

• Affixes a cost factor to each solution based on estimated 110

• Chooses the most cost-effective solution in terms of the least number of I/Os
required to fetch the record

The optimizer evaluates every query in terms of an efficient access, so you do not
have to be overly concerned about how to construct your queries. As a database
designer, however, you can assist the optimizer by extending its access options.
For example, if your query includes only those fields for which indexes are
defined, you are providing the optimizer with an option to retrieve data directly
from the index without scanning the relation sequentially.

However, the algorithms the optimizer uses may result in its not using the index
on that field at all, if the data can be retrieved directly from the relation with
fewer I/Os than by using the index(es).

The following list describes some of the tasks the optimizer performs to find the
best solution for a query that contains one or more CROSS clauses.
The optimizer:

• Breaks down a query into alternative sequences of two relational joins

• Finds the best way to perform each join based on the relative, estimated
costs of each access method

• Estimates cardinality (number of records to be retrieved) of each join based
on a join predicate, which is the RSE supplied by the user, and the presence
of indexes for specific fields

• Determines overall cost of each strategy

• Selects minimum cost strategy

• May use only the index if it contains all of the data necessary to satisfy the
query, or if the index provides a useful ordering of records. For example,
when a query names one field in the RSE and two other fields in the print
list, all three fields must have indexes defined for them in order for the opti
mizer to choose an access method that uses only the index.

The optimizer chooses one of the following methods for retrieving data from a
relation:

2-26 Accessing a Database and Using Transactions

• Sequential retrieval

Accesses the database pages for a relation sequentially, and searches for the
field values of the records directly on the page.

• Index retrieval

Accesses a determined index structure and retrieves the DBKEY of a record.
RdbNMS then uses the DBKEY to directly access the data record to which
it belongs.

• Index-only retrieval

Accesses only the index data. If the desired data is located in an index key,
RdbNMS can obtain the data without going to the relation itself.

• DB KEY retrieval

Accesses the relation's data directly through the DBKEY (logical address)
record pointer.

2.6 Sample Interactive Session Using the
START_ TRANSACTION Statement

The following sample command file shows the READ_ONLY and READ_ WRITE
versions of the basic START_ TRANSACTION statement.

!

The statements in the scope of
this transaction only examine
the database. The transaction does not
change any values.

RDO> START_TRANSACTION READ_ONLY

!

Display the number of records in
the EMPLOYEES relation.

RDO> PRINT COUNT OF E IN EMPLOYEES
101

! How many employees live in Rochester?
!
RDO> PRINT COUNT OF E IN EMPLOYEES WITH E.CITY = "Rochester"

7

If you attempt to change the database
by erasing all 'Rochester' records

Accessing a Database and Using Transactions 2-27

with the ERASE statement:
!
RDO> FOR E IN EMPLOYEES WITH E.CITY "Rochester"
cont> ERASE E
cont> END_FOR

!

You are attempting to update
the database.
RDO returns an error message:

!
%RDB-F-READ_ONLY_TRANS,
!

attempt to update from a read_only transaction

!
!

Display the records
of employees who live in Rochester.

RDO> FOR E IN EMPLOYEES WITH E.CITY
cont> PRINT

= "Rochester"

cont> E.LAST_NAME,
cont> E.FIRST_NAME,
cont> E.EMPLOYEE_ID,
cont> E.CITY
cont> END_FOR
Vormelker
Edwards
Orlando
DuBois
Chase
Boudreau
Stornelli

Daniel
Keith
Johanna
Alvin
Stan
Wes
Franklin

00242
00254
00269
00275
00336
00346
00437

Rochester
Rochester
Rochester
Rochester
Rochester
Rochester
Rochester

Terminate the READ_ONLY transaction scope with a
COMMIT or ROLLBACK statement. Then issue a new START_TRANSACTION

! statement with update, READ_WRITE, access.
!
RDO> COMMIT

!

Start a new transaction allowing
changes to be written to the database.

RDO> START_TRANSACTION READ_WRITE

!

Display all records where the field
CITY contains the value 'Rochester'.

RDO> FOR E IN EMPLOYEES WITH E. CITY = "Rochester"
cont> PRINT
cont> E.EMPLOYEE_ID,
cont> E.CITY,
cont> E.POSTAL_CODE
cont> END_FOR
00242 Rochester 03867
00254 Rochester 03867

2-28 Accessing a Database and Using Transactions

00269
00275
00336
00346
00437

Rochester
Rochester
Rochester
Rochester
Rochester

03867
03867
03867
03867
03867

Change the value of the POSTAL_CODE field for
all the 'Rochester' records.

!
RDO> FOR E IN EMPLOYEES WITH E.CITY
cont> MODIFY E USING
cont> E.POSTAL_CODE = "03801"
cont> END_MODIFY
cont> END_FOR

! ! Verify the change. !

RDO> FOR E IN EMPLOYEES
cont> PRINT
cont> E.EMPLOYEE_ID,
cont> E.CITY,
cont> E.POSTAL_CODE
cont> END_FOR
00242 Rochester
00254 Rochester
00269 Rochester
00275 Rochester
00336 Rochester
00346 Rochester
00437 Rochester

WITH E. CITY

03801
03801
03801
03801
03801
03801
03801

Delete the 'Rochester' records.

RDO> FOR E IN EMPLOYEES WITH E.CITY
cont> ERASE E
cont> END_FOR

"Rochester"

"Rochester"

"Rochester"

! Are there any 'Rochester' records remaining?
!
RDO> PRINT COUNT OF E IN EMPLOYEES WITH E. CITY "Rochester"

0

Check to see that records are deleted.
(No records are displayed)

!
RDO> FOR E IN EMPLOYEES WITH E.CITY
cont> PRINT
cont> E. CITY
cont> END_FOR

"Rochester"

Accessing a Database and Using Transactions 2-29

Add a new record.

RDO> STORE E IN EMPLOYEES
cont> USING
cont> E.EMPLOYEE_ID = "00502";
cont> E.LAST_NAME = "Towne";
cont> E.CITY = "Manchester";
cont> E.POSTAL_CODE = "03103"
cont> END_STORE

Verify the store.

RDO> FORE IN EMPLOYEES WITH E.LAST_NAME
cont> PRINT

"Towne"

cont> E.EMPLOYEE_ID,
cont> E.LAST_NAME,
cont> E.CITY,
cont> E.POSTAL_CODE
cont> END_FOR

!

00502 Towne Manchester

If you want to make the changes
to the database permanent, enter
the COMMIT statement.

If you do not want the changes
applied to the database, enter
the ROLLBACK statement.
Entering ROLLBACK causes the
'Rochester' records
to be retained in the database
with no changes
and the 'Manchester' record is not added.

RDO> COMMIT
RDO> FINISH (optional)
RDO> EXIT

2-30 Accessing a Database and Using Transactions

03103

Using Record Selection Expressions 3

This chapter shows you how to use record selection expressions (RSEs) to select
and display values from a database. You use an RSE to select a group of records
and then to manipulate the data from those records. Note that RdbNMS also lets
you include database queries that use either embedded data manipulation state
ments or Callable RDO in your application programs.

Before you try to access large numbers of records, be certain that your query
accurately performs the operations you request. Use RDO to make sure you are
retrieving only the data you want. You can test each of the queries interactively to
see examples of the output.

The next several sections describe how to:

• Restrict the number of records retrieved, using the FIRST clause

• Retrieve records that satisfy a particular set of conditions, using the
WITH clause

• Sort records in a specified order, using the SORTED BY clause

• Eliminate duplicate values for fields, using the REDUCED TO clause

3.1 Forming Streams of Records

A record stream can consist of all the records in a relation, or selected records.
You can form a record stream:

• With a FOR statement

• With a ST ART _STREAM statement

In both statements, an RSE identifies the records that form the record stream.

3-1

Having chosen the records you wish to retrieve, you enter a PRINT statement in
RDO to specify what fields you want displayed. The PRINT statement displays
data on the terminal so you can be certain you have selected the correct records.
Once you have tested your query and want to include it in a program, this display
feature is no longer necessary. If you want to assign database values to variables
in a BASIC, COBOL, or FORTRAN RDBPRE program, change PRINT to GET
and name a host language variable. (In C and PASCAL programs, use a simple
assignment statement.) RdbNMS assigns the database value to the variable
instead of displaying the value. Then you can display or manipulate that value
using the host language verbs. See the VAX Rdb/VMS Guide to Programming for
details about converting your RDO queries to host language application programs.

3.2 Retrieving All the Records in a Relation

One of the simplest operations in RdbNMS is selecting all the records in a
relation.

The following FOR statement contains an RSE that forms a record stream con
sisting of all the records in the EMPLOYEES relation:

FOR E IN EMPLOYEES

The expression E IN EMPLOYEES is a record selection expression that selects
records from the EMPLOYEES relation. This RSE includes every record of the
EMPLOYEES relation in the record stream.

The character E in the first line of the RSE is a context variable. A context vari
able is a temporary name you assign to the record stream created by the RSE. In
subsequent lines of the RSE, the context variable and a period (.) appear before
each field name. By qualifying each field name with the context variable and a
period, you indicate clearly to RDO to which relation each field belongs. If an RSE
statement refers to more than one relation, you assign a unique context variable
to each relation.

Context variables can be up to 31 characters long. Try to choose a context vari
able that you can easily associate with the relation. Using the first letter or two of
a relation's name is a good idea.

The RDO statement FOR ... END_FOR includes the RSE and identifies a record
stream. Other statements included in the FOR ... END_FOR statement operate
on each record in this record stream. For example, to display data about all
employees in the EMPLOYEES relation, you use the PRINT statement. The
complete query is shown in the example that follows.

3-2 Using Record Selection Expressions

Examples

Example 1

FOR E IN EMPLOYEES
PRINT

E.LAST_NAME,
E.FIRST_NAME,
E.EMPLOYEE_ID

END_FOR

Example 1 displays three fields from each record in the EMPLOYEES relation.
Note two important rules about using RDO PRINT statements:

• Qualify each of the field names with the context variable associated with the
field's relation.

• Use commas to separate the expressions in the list.

The RSE selects records for inclusion in the record stream. The PRINT state
ment retrieves one record at a time and specifies fields from those records to be
displayed.

You can also display data for all of the fields in the relation by using a special for
mat of the PRINT statement. Instead of specifying each field name individually,
substitute an asterisk(*) for the list of field names. RDO prints each of the field
names in the relation as the first line of the display.

Example 2

FOR FIRST 5 E IN EMPLOYEES
PRINT
E. *

END_FOR

When a relation such as EMPLOYEES contains many fields, RDO wraps the
remainder of a long record onto the next line of your terminal. The resulting dis
play can be difficult to read.

For a more readable display of records with many field values, create a command
file with the extension .RDO; for example, REPORTl.RDO. In this file, you can
include a query such as the one in example 2, and specify an output file with the
SET OUTPUT <file-spec> command. Before you issue the SET OUTPUT com
mand, use the SET NOVERIFY command. This suppresses duplicate lines ofter
minal output in the log file from each RDO statement you enter on the terminal,
or from statements executed in an indirect command file. To close the output log
file, enter SET NOOUTPUT or type SET OUTPUT without specifying a
destination file name as shown on the next page.

Using Record Selection Expressions 3-3

SET NOVERIFY
SET OUTPUT REPORTl.LOG
FOR E IN EMPLOYEES

PRINT
E. *

END_FOR
SET NOOUTPUT

You can execute the indirect command file by typing an at sign(@), followed by
the name of the command file:

RDO> ©REPORT!

You can then print the file, REPORTl.LOG, containing the results of an indirect
command file, REPORTl.RDO, using the wide-line printer format instead of the
SO-character limit of an interactive terminal; or you can use the SET
TERMINAL/WIDTH= 132. You can direct RDO to display special character
strings or literal expressions by using the PRINT statement and quotation marks
to enclose the string. You can combine literals with value expressions such as the
statistical expression COUNT, separating each element with a comma. See
Chapter 6 for a discussion of statistical expressions. The following query displays
literal expressions and value expressions:

RDO> PRINT "Number of records in EMPLOYEES
Number of records in EMPLOYEES = 101

" COUNT OF E IN EMPLOYEES

Example 3 shows you how to use a command file to format and display a simple
report that shows the number of records in each relation of the PERSONNEL
database.

Example 3

SET NOVERIFY
SET OUTPUT COUNT.LOG
PRINT II II

PRINT "Statistics for database PERSONNEL follow: "
PRINT II II

PRINT "Count of
PRINT "Count of
PRINT "Count of
PRINT "Count of
PRINT "Count of
PRINT "Count of
PRINT "Count of
PRINT "Count of
PRINT II II

Employees -------> "
Jobs ------------> "
Degrees ---------> n

Salary_History --> 11

Job_History -----> "
Work_Status -----> 11

Departments -----> 11

Colleges --------> "

COUNT OF E IN EMPLOYEES
COUNT OF J IN JOBS
COUNT OF D IN DEGREES
COUNT OF SH IN SALARY_HISTORY
COUNT OF JH IN JOB_HISTORY
COUNT OF W IN WORK_STATUS
COUNT OF D IN DEPARTMENTS
COUNT OF C IN COLLEGES

PRINT "Statistics Complete for Database: PERSONNEL"
PRINT II II

3-4 Using Record Selection Expressions

3.3 Displaying Records in Sorted Order

Use the SORTED BY clause of the RSE to signal RDO to arrange the records in
any order you choose. The default is ascending order.

Assume you must arrange the EMPLOYEES records in alphabetical order by
state:

Examples

Example 1

FOR E IN EMPLOYEES SORTED BY E.STATE
PRINT
E.STATE,
E.CITY,
E.EMPLOYEE ID

END_FOR

A field name that indicates the field on which the sort order of records is based, is
called a sort key. In example 1, the single sort key is STATE.

Because the query in example 1 has only one sort key, it does not specify how
RDO should arrange two or more records that have the same value for ST ATE. If
you want to include cities in alphabetical order (A to Z) within the same state, use
two sort keys, STATE and CITY.

Example 2

FORE IN EMPLOYEES SORTED BYE.STATE, E.C.ITY
PRINT
E.STATE,
E. CITY,
E.EMPLOYEE ID

END_FOR

Specifying CITY as a second sort key ensures that RdbNMS arranges records
with different values for CITY alphabetically within the same state. When you use
more than one sort key, the first key is the major sort key and all other keys are
minor sort keys. In the preceding example, STATE is the major sort key and
CITY is a minor sort key.

RdbNMS does not guarantee the sort order of the records unless you
specify a sort key. You cannot assume that RdbNMS arranges records
according to the values for any index key field of the relation. To con
trol the arrangement of the records that RdbNMS displays, specify one
or more sort keys.

Using Record Selection Expressions 3-5

3.3.1 Indicating Ascending or Descending Sort Order

When you use a sort key, RDO arranges the records in ascending order by that
key according to the standard ASCII collating sequence; that is, RdbNMS
arranges numeric values in numerical order and character fields in alphabetical
order. To reverse the order, use the keyword DESCENDING. However, if you are
using an indexed field as a sort key, the query may not be very efficient. This is
because the optimizer must go to VMS and use the VMS Sort utility to do the
job, thus resulting in increased costs in 1/0 operations.

You can sort a record stream by ascending values for one field and descending
values for another field. To arrange the records in alphabetical order for the major
sort key (STATE) and in reverse alphabetical order for the minor sort key (CITY),
specify an explicit order for each field.

FOR E IN EMPLOYEES
SORTED BY ASCENDING E.STATE,

DESCENDING E.CITY

END_FOR

PRINT
E.STATE,
E.CITY,
E.EMPLOYEE_ID

Now the records are in alphabetical order according to the major sort key,
ST ATE. Therefore, if more than one record with the same ST ATE occurs, the
records are ordered by DESCENDING CITY (Z to A). Note the minor sort key,
CITY, specifies the keyword DESCENDING.

Unless you explicitly specify the sort order for each minor sort key, the
default sort order of any minor key is the same as the order for the last
explicit or default sort key. The following table illustrates the default
sort order for major and minor sort keys.

3-6 Using Record Selection Expressions

Table 3-1: Default Sort Order of Major and Minor Sort Keys

Major Key Minor Key Minor Key

ASCENDING ASCENDING ASCENDING
(default) (default) (default)

DESCENDING DESCENDING DESCENDING
(explicitl (default) (default)

ASCENDING ASCENDING ASCENDING
(explicit) (default) (default)

ASCENDING DESCENDING DESCENDING
(explicit) (explicit) (default)

DESCENDING ASCENDING ASCENDING
(explicit) (explicit) (default)

DESCENDING DESCENDING DESCENDING
(explicit) (explicit) (explicit)

Because the following RSE specifies a DESCENDING sort order for the major
sort key, E.CITY, RDO sorts the other two minor sort keys, E.STATE and
E.POSTAL_CODE, in descending order also:

FOR E IN EMPLOYEES
SORTED BY DESCENDING E.CITY, E.STATE, E.POSTAL_CODE

3.3.2 Using Value Expressions as Sort Keys

FOR R IN .• ;R•e' .IQ~~:·:.·; •. · ..
S.OfHE~ \ · A$CENOING

·:, -<'~.·. ·, '~:

A sort key can also be a value expression that refers to one or more fields in a
relation. Briefly, a value expression is a symbol or string of symbols used to calcu
late a value. When you use a value expression in a statement, RdbNMS calculates
the value associated with the expression and uses that value when executing the
statement. See Chapter 6 for more information on value expressions.

The RSE in the following example finds the job codes with the greatest salary
range. In this example, the sort key consists of a value expression that calculates
the salary range for each job code. The query sorts the records of JOBS by range
value, beginning with the smallest range.

Using Record Selection Expressions 3-7

Examples

Example 1

FOR J IN JOBS SORTED BY
(J.MAXIMUM_SALARY - J.MINIMUM_SALARY)
PRINT
(J.MAXIMUM_SALARY - J.MINIMUM_SALARY),
J.JOB_CODE,
J.MAXIMUM_SALARY,
J.MINIMUM_SALARY

END_FOR

To reverse the order of displayed values, include the explicit sort qualifier,
DESCENDING.

Example 2

FOR J IN JOBS SORTED BY
DESCENDING (J.MAXIMUM_SALARY - J.MINIMUM_SALARY)
PRINT
(J.MAXIMUM_SALARY - J.MINIMUM_SALARY),
J.JOB_CODE,
J.MAXIMUM_SALARY,
J.MINIMUM_SALARY

END_FOR

3.4 Restricting the Number of Records: The FIRST Clause

Remember that RDO allows you to experiment with different queries to find the
ones best suited to your programming needs. For example, you need not display
all of the records of the database to see whether your queries work correctly. RDO
has a special clause, FIRST n, that limits the number of records you display. The
integer In) in the FIRST n clause tells RDO how many records to retrieve.

Assume you must display the first ten records from the EMPLOYEES relation,
and need to look at only three fields, STATE, CITY, and EMPLOYEE_ID, from
each record. The records retrieved by RDO are not in any specific order. As you
update the contents of the EMPLOYEES relation by adding, erasing, or modify
ing records, the order of records stored in the database changes. Therefore, unless
you specify to RDO the order you want the records displayed, the FIRST 10
clause retrieves what might appear to be ten random records. See the earlier sec
tion of this chapter for details on the SORTED BY clause.

FOR FIRST 10 E IN EMPLOYEES
PRINT
E.STATE,
E.CITY,
E . EMPLOYEE ID

END_FOR

3-8 Using Record Selection Expressions

If the RSE does not specify a sort order, you cannot predict which ten
records RDO will display. When you use the SORTED BY clause in the
RSE, the FIRST n clause takes the specified number of records from
the sorted records. RDO does the sort first, then displays the number
of records specified in the FIRST n clause from this sorted order.
Remember to use a SORTED BY clause when you begin an RSE with a
FIRST n clause.

3.5 Specifying Conditions to Retrieve Records: Relational
and Logical Operators

Assume you want to find all employees in the PERSONNEL database whose last
name is "Toliver."

FOR E IN EMPLOYEES WITH E.LAST_NAME "Toliver"
PRINT
E.FIRST_NAME,
E.LAST_NAME,
E.EMPLOYEE_ID

END_FOR

The clause, WITH E.LAST_NAME = "Toliver", is a conditional expression. It is
equivalent to:

If LAST_NAME = "Toliver"

The value of this conditional test for a record is either true or false, depending on
whether the field value in that record satisfies the condition (true), or does not sat
isfy the condition (falsel. A conditional expression restricts the record stream to
those records that satisfy the condition. If a conditional expression for a record is
false, RDO will not include that record in the record stream.

The equal sign (= l is a relational operator because it links a data value of a field
or other value expression to a value. The relational operator EQUAL (=) is case
sensitive. This means that RDO reads "Toliver" and "toliver" as two different
character strings. In this case, if you specify a value "toliver" for an employee
record stored in the database as "Toliver", RDO does not find the record
you want.

Using Record Selection Expressions 3-9

In a program, the following conditional expression tests a database field value and
the value of a host variable:

FOR E IN EMPLOYEES WITH E.LAST_NAME = LAST-NAME

Here, the value of the conditional expression depends on the current value
of the host variable LAST_NAME. Table 3-2 summarizes most of the relational
operators.

Table 3-2: RDO Relational Operators

Permitted Relational Operation
Symbols

EQ = True if the two value expressions are equal.

NE <> True if the two value expressions are not
equal.

GT > True if the first value expression is greater
than the second.

GE >= True if the first value expression is greater
than or equal to the second.

LT < True if the first value expression is less than
the second.

LE <= True if the first value expression is less than
or equal to the second.

BETWEEN True if the first value expression is equal to
or between the second and third value
expressions.

ANY True if the record stream specified by the RSE
includes at least one record. If you add NOT,
the condition is true if there are no records
in the record stream.

MATCHING True if the second expression matches a
substring of the first value expression.

MATCHING uses these special characters:

3-10 Using Record Selection Expressions

MISSING

UNIQUE

* Matches any string in that position
% Matches any character in that position

True if the value expression is null. See
Chapter 7 for information on missing values.

True if the record stream specified by the RSE
includes only one record. If you add NOT, the
condition is true if there is more than one
record in the record stream or the record
stream is empty.

CONTAINING True if the string specified by the second
string expression is found within the string
specified by the first. Not case sensitive.

STARTING WITH True if the first characters of the first
string expression match the second string
expression. Case sensitive.

In all cases except the MISSING operator, if either value expression is
null, the value of the condition is null.

You can combine several conditional expressions by using a logical operator to
form a compound conditional expression. A logical operator joins two or more con
ditional expressions together. The logical operators are:

• AND - Evaluates to true if two or more conditions linked by the AND opera
tor are satisfied.

• OR - Evaluates to true if at least one of several conditions linked by the OR
operator is satisfied.

• NOT - Returns all other records in the record stream except those identified
by the conditional expression following the NOT operator. Therefore, you
retrieve the complement of the record stream identified by the RSE.

For information on using logical operators, see the section in this chapter on
specifying compound conditions for records.

Using Record Selection Expressions 3-11

3.5.1 Using the WITH Clause as a Conditional Expression

Previous examples used the FIRST n clause to limit the number of records to be
displayed. This is useful when you want to see a sample of all the records you
intend to retrieve. But most queries ask to see only a limited number of the
records, qualified in some way. There are several ways to restrict the record
stream. One way is to use the WITH clause to test records of a relation based on
field values. For example:

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00246"

Here, the WITH clause tests whether or not an employee's ID is 00246. The fol
lowing sections illustrate further uses of the WITH clause.

3.5.2 Retrieving Records That Satisfy a Single Condition

To select only those records with a particular field value, specify a value for that
field by including the WITH clause in the RSE. RDO retrieves only those records
with the specified field value.

For example, you can request RDO to display the records of the EMPLOYEES
relation that have a specific value for the CITY field. The field value is the basis
of the test that determines which records RDO retrieves. RDO limits the record
stream to the records that meet your test. In this case, RDO retrieves only the
records of employees living in a specific city. You can include more than one con
ditional test in the same RSE.

3.5.3 Specifying Compound Conditions for Records

The preceding section describes an RSE that includes a single conditional expres
sion to test records. The. following sections show how to retrieve those records
that satisfy a compound condition.

3.5.3.1 Retrieving Records That Satisfy Two or More Conditions

When you want each record in the stream to satisfy two or more conditions, you
can combine conditional expressions together with the AND logical operator. The
record stream contains only those records that satisfy all the conditions within
the compound conditional expression.

3-12 Using Record Selection Expressions

For example, to retrieve all part-time employees who live in Portsmouth,
New Hampshire:

FOR E IN EMPLOYEES
WITHE.CITY= "Portsmouth"

AND E.STATE = "NH"
AND E.STATUS_CODE = "2"

PRINT
E.EMPLOYEE_ID,
E.CITY,
E.LAST_NAME,
E.STATUS_CODE

END_FOR

Table 3-3 shows how RdbNMS evaluates a compound conditional expression
formed with the AND logical operator. A and B stand for simple conditional
expressions that are components of the compound conditional expression,
AANDB.

Table 3-3: AND Logical Operator

A B A AND B

True False False

True True True

False False False

True Missing Missing

False Missing False

Missing Missing Missing

The next sections discuss two other logical operators: OR and NOT.

Using Record Selection Expressions 3-13

3.5.3.2 Retrieving Records That Satisfy One of Several Conditions

You may want to retrieve records that meet at least one of a series of conditions.
To set up such a test, form a compound conditional expression with the OR logi
cal operator. If any one of the component conditional expressions is true for a
record, RdbNMS includes that record in the record stream.

The following compound conditional expression that uses the OR logical operator,
retrieves information about all employees who have received graduate degrees:

FOR D IN DEGREES WITH
(D.DEGREE = "MA") OR
(D.DEGREE = "PhD")

PRINT
D.DEGREE,
D.EMPLOYEE_ID,
D.COLLEGE_CODE,
D. DEGREE_FIELD

END_FOR

To find the records for employees with either an MA degree or a PhD, specify two
conditions linked by the logical operator OR. This means that RDO includes a
record in the stream if either or both of the two conditions are true.

Table 3-4 illustrates how RdbNMS evaluates a compound conditional expression
formed with the logical operator OR. A and B stand for simple conditional expres
sions in the compound conditional expression, A OR B.

You should enclose each conditional expression in parentheses and nest
them to any level necessary to make the compound expression clear.
RdbNMS evaluates the innermost expressions first and the outermost
expressions last.

3-14 Using Record Selection Expressions

Table 3-4: OR Logical Operator

A B AORB

True False True

True True True

False False False

True Missing True

False Missing Missing

Missing Missing Missing

3.5.3.3 Retrieving Records That Do Not Satisfy a Condition

The third logical operator, NOT, enables you to retrieve records that are not iden
tified by the conditional expression. You can include the NOT operator in a simple
or compound conditional expression. RDO restricts the record stream to those
records that do not satisfy the conditional expression following the NOT logical
operator.

Combining the NOT logical operator with the ANY relational operator allows you
to refer to the records of a second relation. Records from the first relation
I EMPLOYEES) appear in the stream only when no record in the second relation
IDEGREES) meets the condition you specify. In other words, the first WITH
clause of the RSE in the FOR statement contains a second WITH clause to test
and restrict the stream, as in the following example.

Examples

Example 1

FOR E IN EMPLOYEES
WITH NOT ANY D IN DEGREES
WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

PRINT
E.EMPLOYEE_ID,
E.LAST_NAME,
E.FIRST_NAME

END_FOR

Using Record Selection Expressions 3-15

To access data about employees without college degrees, you need to access the
EMPLOYEES and DEGREES relations. But you do not want to match related
records from the two relations. You select each record from the EMPLOYEES
relation and check the DEGREES relation to see if that employee's ID appears.
(This means that the employee has a degree from some college.) If an employee's
ID does not appear even once in the DEGREES relation, you want to include the
corresponding record from EMPLOYEES in the stream. In the preceding exam
ple, the first WITH clause of the RSE is:

WITH NOT ANY D IN DEGREES

The second clause is:

WITH D.EMPLOYEE_ID ~ E.EMPLOYEE_ID

In evaluating this query, RdbNMS examines a record of the EMPLOYEES rela
tion and compares the value of EMPLOYEE_ID with every record of the
DEGREES relation. An EMPLOYEES record is included in the stream only if no
record of the DEGREES relation has a matching value for EMPLOYEE_ID.

For each record of the EMPLOYEES relation, RDO may have to check
every record of DEGREES to guarantee there is no matching record on
EMPLOYEE_ID. As soon as a match occurs, the specified condition fails, and the
search through the DEGREES relation ends. RDO does not include that record
from EMPLOYEES in the stream.

Table 3-5 illustrates how RdbNMS evaluates a compound conditional expression
formed with the logical operator NOT. In this table, the first column represents a
conditional expression A; the second column is the complement of A, or a condi
tion identifying all other records not identified by A.

Table 3-5: NOT Logical Operator

A NOTA

True False

False True

Missing Missing

3-16 Using Record Selection Expressions

You cannot use the NOT operator with the following relational operators:

• EQ(=)

• NE(<>)

• GT(>)

• GE(>=)

• LT(<)

• LE(<=)

When writing a query with a conditional expression that uses one of the relational
operators listed, you can express inequality as follows:

WITH NOT (S.SALARY_AMOUNT = 30000)
WITH S.SALARY_AMOUNT NE 30000
WITH S.SALARY_AMOUNT <> 30000

The converse of the NOT ANY statement is the ANY statement which tests
whether another stream is not empty. The following example shows a situation in
which the ANY relational operator is useful.

Assume you must identify the records in the EMPLOYEES relation for employ
ees who have a PhD. You would use the following RSE:

Example 2

FOR E IN EMPLOYEES WITH ANY D IN DEGREES WITH
D.EMPLOYEE_ID = E.EMPLOYEE_ID

AND D.DEGREE = "PhD"
PRINT

E. EMPLOYEE_ ID,
E.LAST_NAME,
E.FIRSLNAME

END_FOR

Once again, the query checks the DEGREES relation for each record of the
EMPLOYEES relation. But this time you need a record in DEGREES with a
value of PhD for the DEGREE field and a matching EMPLOYEE_ID.

In evaluating this query, RdbNMS examines each record of the EMPLOYEES
relation, and compares the value of EMPLOYEE_ID with every record of the
DEGREES relation. The EMPLOYEES record appears in the record stream only
if there is a record in the DEGREES relation that matches on EMPLOYEE_ID
and also has a value of PhD for the DEGREE field.

Using Record Selection Expressions 3-17

The ANY relational operator allows you to refer to the records of a second rela
tion, in this case, the DEGREES relation. Records from the first relation
(EMPLOYEES) appear in the stream only when there is at least one record in the
second relation (DEGREES) that meets the condition you specify.

3.5.4 Retrieving Records That Match a Pattern

A commonly used query asks which records have field values exactly matching a
specific value. This type of query would help you find all the Massachusetts
employees (WITHE.STATE = "MA"), or all the employees who are part-time
(WITH E.STATUS_CODE = "2").

Recall the example in which you retrieved the records of all those employees
whose last name is "Toliver".

FOR E IN EMPLOYEES WITH E.LAST NAME "Toliver"
PRINT
E.FIRST_NAME,
E.LAST_NAME,
E.EMPLOYEE_ID

END_FOR

Notice the example uses a WITH clause to request a specific EMPLOYEES
record. In this case, you supply the value "Toliver" for the exact match. You can
test for exact substring matches using the MATCHING operator.

The MATCHING operator does true pattern matching. Like the CONTAINING
operator, which is discussed in the section on retrieving records by partial
matches, the MATCHING operator allows you to find a substring within a source
string. In addition, the MATCHING operator lets you specify the position of the
substring.

The following sample log file from an RDO terminal session, shows you the
results of combinations of substrings and matching characters.

Find the names in which the letters "on" come last
in the name. Note that the last "*" is necessary because
the field ends in an unknown number of spaces.

The statement using the MATCHING operator in the following example
is equivalent to using the CONTAINING operator.

Notice MATCHING uses two special characters for matching patterns:

* Matches any string of zero or more characters.
% Matches any single character.

3-18 Using Record Selection Expressions

FOR FIRST 5 E IN EMPLOYEES WITH
E.LAST_NAME MATCHING "*on *"
REDUCED TO E.LAST_NAME

PRINT
E.LAST_NAME
END_FOR

Aaron
Burton
Clinton
Dixon
Ferguson

Find the names in which the letters "on" come
after the first character in the name.

FOR FIRST 5 E IN EMPLOYEES WITH
E.LAST_NAME MATCHING "%on*"
REDUCED TO E.LAST_NAME

PRINT
E.LAST_NAME
END_FOR

Connolly
Jones
Lonergan

MATCHING is not case sensitive.

FOR FIRST 5 E IN EMPLOYEES WITH
E.LAST_NAME MATCHING "%ON*"
REDUCED TO E.LAST_NAME

PRINT
E.LAST_NAME
END_FOR

Connolly
Jones
Lonergan

MATCHING also works with numeric data types. Find
the salaries that begin with the number 3. This
is another way to find all the salaries in the
range BETWEEN 30000 AND 39999.

FOR FIRST 5 S IN SALARY_HISTORY WITH
S.SALARY_AMOUNT MATCHING "3*"

PRINT S.SALARY_AMOUNT
END_FOR

32254.00
30598.00

Using Record Selection Expressions 3-19

30880.00
32589.00
33944.00

! Find the salaries where the number 87 follows the
! first digit.
!

FOR FIRST 5 S IN SALARY_HISTORY WITH
S.SALARLAMOUNT MATCHING "%87*"

PRINT S.SALARY_AMOUNT
END_FOR

48797.00

18705.00
18778.00
18778.00
18746.00

3.5.5 Retrieving Records That Do Not Match a Pattern

Sometimes you want to retrieve the records that do not match a pattern. Use the
NOT EQUAL (NE) relational operator to include only those records with values
for the field that do not match the specified value expression. You can use the
symbol < > or NE to indicate that the values are not equal.

To find the employees who have earned a degree at a college other than the
Massachusetts Institute of Technology, use this RSE:

FOR D IN DEGREES WITH D.COLLEGE_CODE <> "MIT"
PRINT
D.EMPLOYEE_ID,
D.COLLEGE_CODE,
D.DEGREE

END_FOR

This query retrieves all the records in the DEGREES relation that do not have a
value of MIT for the COLLEGE_CODE field.

Note that NE (< >),like EQUAL, is case sensitive. RDO does not treat "MIT"
and "mit" or "Mit" in the same way.

If COLLEGE_CODE is missing, then the value of the conditional expression is
neither true nor false, but missing. The record stream does not include such a
record. See Chapter 6 for an explanation of missing values.

3-20 Using Record Selection Expressions

3.5.6 Retrieving Records by Partial Matches

You can search for records in which a field value contains a specific sequence of
characters. Two relational operators perform this type of search:

• STARTING WITH (case sensitive)

• CONTAINING (not case sensitive)

For example, assume you do not remember how to spell an employee's name, but
you do know that the name begins with "Tol". To find and display the record for
that employee, you could use the following query:

Examples

Example 1

FORE IN EMPLOYEES WITH E.LAST_NAME STARTING WITH "Tol"
PRINT
E. FIRST_NAME,
E.LAST_NAME,
E.EMPLOYEE_ID

END_FOR

Use the STARTING WITH relational operator to search for records in the
EMPLOYEES relation with a last name beginning with "Tol". The STARTING
WITH relational operator, like EQUAL and NE, is case sensitive. If you ask for
employees whose last names start with "TOL", RDO does not retrieve the record
because the database stores the field value as "Tol", not "TOL".

Use the CONTAINING relational operator for searches that are not case sensi
tive. If you substitute CONTAINING for STARTING WITH in example 1, RDO
will retrieve the Toliver records.

Using Record Selection Expressions 3-21

Example 2

FOR E IN EMPLOYEES WITH E.LAST_NAME CONTAINING "TOL"
PRINT
E. FIRST_NAME,
E.LAST_NAME,
E.EMPLOYEE_ID

END_FOR

You can use the CONTAINING operator for searches on any part of a field value,
not just the beginning. Example 3 shows another query that retrieves the Toliver
records.

Example 3

FOR E IN EMPLOYEES WITH E. LAST_NAME CONTAINING "IVER"
PRINT
E.FIRST_NAME,
E.LAST_NAME,
E.EMPLOYEE_ID

END_FOR

The CONTAINING relational operator allows you to search through the relation,
specifying only as much of the field value as you know. In most cases, the
CONTAINING operator is more useful than the EQUAL operator because it
ignores the uppercase or lowercase form in which the data value is stored. Only
the characters themselves determine the match.

RdbNMS does not use the index tables for indexed fields to evaluate
conditional expressions that use CONTAINING. If you are searching
on the initial substring of a field value, use STARTING WITH instead
of CONTAINING. To get better performance, use the STARTING
WITH clause or conditional expressions that contain indexed fields.

3.5. 7 Retrieving Records by Range Retrieval

You may wish to retrieve records on the basis of a range of values in a specific
field. The next example displays the supervisor ID and employee ID for all
employees who started their jobs after December 10, 1982.

3-22 Using Record Selection Expressions

FOR JH IN JOB_HISTORY WITH JH.JOB_START GT "10-DEC-1982"
PRINT
JH.SUPERVISOR_ID,
JH.EMPLOYEE_ID,
JH.JOB_START

END_FOR

The JOB_HISTORY relation in the PERSONNEL database contains the required
data. This query is a range retrieval because it specifies records with a range of
field values for JOB_START that are greater than (after) a certain date. You need
to specify a WITH clause that includes the GREATER THAN (GT) relational
operator.

3.5.8 Retrieving Segmented Strings

The segmented string is a special RdbNMS data type designed to handle large
pieces of data with a segmented internal structure. The maximum size of a string
segment is 64K bytes. Except for the length of the string's segments, RdbNMS
does not know anything about the type of data contained in a segmented string.
In a segmented string, you can store large amounts of text, long strings of binary
input from a data collecting device, or graphic data. A program can then retrieve
the data from the database and handle it in the appropriate way.

Because RdbNMS does not know what kind of data is contained in a segmented
string, you cannot perform many of the standard data manipulation functions on
it. You cannot use relational operators, such as EQUAL and CONTAINING, to
compare segmented strings. RdbNMS does not perform any data type conversion
on data that is transferred into or out of a segmented string.

RdbNMS defines a special name to refer to the segments of a segmented string.
This name is equivalent to a field name; it names the "fields" or segments of the
string. Furthermore, because segments can vary in length, RdbNMS also defines
a name for the length of a segment. You must use these names in the value
expressions that you use to retrieve the length and value of a segment.

Using Record Selection Expressions 3-23

These names are:

• RDB$VALUE

The value stored in a segment of a segmented string

• RDB$LENGTH

The length in bytes of a segment

Because a single segmented string field value is made up of multiple segments,
you must manipulate the segments one .at a time. Therefore, segmented string
operations require an internal looping mechanism, much like the record stream
set up by a FOR or START_STREAM statement. The following example
retrieves and prints two segmented strings:

FOR R IN RESUMES WITH R.EMPLOYEE_ID = '00164'
FOR S IN R.RESUME

PRINT S.RDB$LENGTH, S.RDB$VALUE
END_FOR

END_FOR

3.6 Eliminating Duplicate Values

Many records in a database contain fields that hold duplicate values. For example,
the field in the EMPLOYEES relation called CITY can have any number of val
ues assigned to it (the names of all cities in Massachusetts), or every occurrence
of CITY can have the same value (Boston). Some queries look for unique values
for one or more fields in a record. For example, assume you want a list of the
cities in which employees live. If a city occurs more than once, you want the city
included only once.

The RSE in example 1 finds the cities in which all current employees live.
Because many employees live in the same city, this query uses the REDUCED
TO clause to rest.rict the final output to a unique value for the city field.

Examples

Example 1

FOR E IN EMPLOYEES REDUCED TO E.CITY
PRINT E.CITY,
PRINT E.STATE

END_FOR

3-24 Using Record Selection Expressions

Example 1 forms a record stream from the EMPLOYEES relation, using an RSE
with a REDUCED TO clause. The field named in the REDUCED TO clause
(E.CITY) is called the reduce key. This clause eliminates any duplicate values for
the field or combination of fields specified as reduce keys. Of the records retrieved
in example l, the CITY field is the only reduce key; the STATE field is not
reduced to unique name values, but it is reasonable to display the E.ST ATE field
with E.CITY because both fields are in the same relation.

Assume you want to collect information about the educational experience of com
pany employees. You need to display data about each college attended and the
degree granted by that college. If several employees attended the same college,
display the individual college and degree data only once.

You want to restrict the stream to unique combinations of values for the college
code and the degree. Example 2 requires two reduce keys: COLLEGE_CODE and
DEGREE.

Example 2

FOR D IN DEGREES REDUCED TO D.COLLEGE_CODE, D.DEGREE
PRINT
D.COLLEGE_CODE,
D.DEGREE

END_FOR

A query that specifies a REDUCED TO clause restricts the record stream by
excluding duplicate records. The record stream contains only unique values or
combinations of values for the reduce keys.

You can include more than one field when looking for unique values. In general,
limit your display to those fields specified in the REDUCED TO clause.
Displaying values of fields not specified in the REDUCED TO clause may yield
unpredictable results. For example, if you want to display employee identification
numbers as well, the results can be misleading.

Example 3

FOR E IN EMPLOYEES REDUCED TO E.CITY
PRINT
E.CITY,
E.EMPLOYEE_ID

END_FOR

RdbNMS lists the unique occurrences of CITY, such as Boston, but it does not
know which EMPLOYEE_ID you want, 00123 or 00127. Whichever
EMPLOYEE_ID RDO displays depends on how RdbNMS searches the records in
the relation and selects a value for use. That search sequence can be different
each time you execute the query.

Using Record Selection Expressions 3-25

Refer to Figure 3-1. The left side of the figure shows values for just three fields of
a record as they actually occur in the EMPLOYEES relation: CITY, STATE, and
EMPLOYEE_ID. The selected values on the right side are all unique occurrences
for the CITY and ST ATE fields if RdbNMS searched sequentially from the begin
ning of the file. However, as records are added, deleted, or modified, unique values
are likely to occur in a much different sequence. For this reason, attempts to asso
ciate the values in the EMPLOYEE_ID field with a corresponding unique value
will almost always produce meaningless results.

CITY STATE EMPLOYEE

Boston MA 00123
Portsmouth NH 00124
New Bedford MA 00125
Manchester NH 00126
Boston MA 00127
Portsmouth RI 00128

Field Values in Database

Reduced to
CITY

Reduced to
STATE

Boston ~

~~P-or-ts_m_o_u_t_h~ 1H New Bedford
Manchester

Reduced to CITY STATE

Boston MA
Portsmouth NH
New Bedford MA
Manchester NH
Portsmouth RI

ID

ZK-00378-00

Figure 3-1: Finding Unique Values from Field Values

3-26 Using Record Selection Expressions

3. 7 Testing for a Unique Record Occurrence

You can also test a relation to determine the uniqueness of a record occurrence. A
record is unique if there is exactly one record meeting the record selection expres
sion. You can find a unique record by specifying a field whose value makes that
record unique. For example, if a value in the CITY field of the EMPLOYEES rela
tion occurs only once in the database, the record containing that field value is
unique. To retrieve a record based on its unique characteristics, include the
UNIQUE operator as part of your RSE.

Assume the company wishes to locate any city in which only one employee lives.

Examples

Example 1

FOR E IN EMPLOYEES
WITH UNIQUE EMP IN EMPLOYEES
WITH E.CITY = EMP.CITY

PRINT E. CITY I

E.LAST_NAME,
E. FIRST_NAME

END_FOR

A record is not unique if there is more than one record in the relation that meets
the record selection expression. Use the NOT UNIQUE operator to find the
records in a relation that are not unique and do not match the record selection
expression.

Example 2

FOR E IN EMPLOYEES
WITH NOT UNIQUE EMP IN EMPLOYEES
WITHE.CITY= EMP.CITY

PRINT E. CITY I

E.LAST_NAME,
E.FIRST_NAME

END_FOR

The UNIQUE operator differs from the REDUCED TO clause in one important
way. When you use the REDUCED TO clause, you can display only the values of
the fields named in that clause. Displaying other field values will produce
unanticipated results. The UNIQUE operator locates an entire record whose field
value makes the record unique and allows you to display any or all fields from the
qualifying record.

Using Record Selection Expressions 3-27

The following table summarizes the effects of the ANY, NOT ANY, UNIQUE,
and NOT UNIQUE operators.

Table 3-6: Testing for the Existence of Records with ANY and UNIQUE
Operators

Operator True, if

ANYRSE At least one record
found

NOTANYRSE No records found

UNIQUERSE Only one record found

NOT UNIQUE RSE Records matching the
RSE is not one

3-28 Using Record Selection Expressions

Retrieving Records and Joining Relations 4

You can use relational operators and conditional expressions to retrieve records
from a single relation, or from several relations joined together. This chapter illus
trates how to join relations to retrieve information contained in more than one
relation.

4.1 Using the CROSS Clause to Combine Data

Although the answers to some queries come from just one relation, you must
sometimes look at two or more relations to find the information you need.

When you design a relational database, you try to divide groups of data elements
into separate relations. See the VAX Rdb/VMS Guide to Database Design and
Definition for details and examples of normalization. Common fields in each rela
tion link one relation with another. Using separate relations helps you avoid stor
ing redundant data.

For example, you need not store information about each job an employee has held
in the company with employee information. You can store employee information
in an EMPLOYEES relation and job history information in a JOB_HISTORY
relation. The relations share a common field: EMPLOYEE_ID. When you need to
retrieve information about a worker and his or her job history, you join the two
relations on the EMPLOYEE_ID field.

You can join one relation with another, or you can join one relation with itself. The
following sections describe each variation.

4.1.1 Joining Records from Two Relations

The simplest type of join combines records from two relations that have a match
ing value for a common field. When you need to access data from two relations,
you can either access each relation separately or join related records from the two
relations. The following examples represent typical problems and show you how to
use Relational Database Operator (RDO) queries to solve them.

4-1

The first problem is to find the job history and related job information for a spe
cific employee.

You first look at the JOB_HISTORY relation and find that it has six fields:

• EMPLOYEE_ID (the employee's identification number)

• DEPARTMENT_CODE (the employee's department)

• JOB_ CODE (an employee's job code)

• JOB_START (an employee's starting date)

• JOB_END (the date an employee ended the job)

• SUPERVISOR_ID (the supervisor's identification number)

If you wanted to know all of the jobs held by the employee whose identification
number is 00164, you would need to identify the record in the JOB_HISTORY
relation for EMPLOYEE_ID = "00164".

Examples

Example 1

FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID = "00164"
PRINT

END_FOR

JH.EMPLOYEE_ID,
JH.DEPARTMENT_CODE,
JH.JOB_START,
JH.JOB_END,
JH.JOB_CODE

But the data in each record of this relation does not tell you all you want to know
about an employee's job. You may want to know the job title, the wage class, mini
mum salary, and maximum salary data from the JOBS relation. Because many
employees can hold the same job, and the data about the job applies to them all,
the desired information resides in a separate relation.

Consult the JOBS relation for this information using a JOB_CODE value
("MENG" for Mechanical Engineer) with the following query.

Example 2

FOR J IN JOBS WITH J.JOB_CODE = "MENG"
PRINT

END_FOR

J.WAGE_CLASS,
J.JOB_TITLE,
J.MINIMUM_SALARY,
J.MAXIMUM_SALARY

4-2 Retrieving Records and Joining Relations

\

You can combine both types of information with one query, displaying all the data
as though it were one record. To do this, join a record from the JOB_HISTORY
relation with a corresponding record from the JOBS relation. The CROSS clause
of the record selection expression IRSE) enables you to "cross" or join records
using a field common to both relations, JOB_CODE. The WITH clause specifies
that only those records with a JOB_CODE value in one relation that matches a
JOB_CODE value in the other relation are joined. Those records in one relation
with JOB_CODE values that do not match JOB_CODE values in the other rela
tion are excluded from the join. Because this clause joins related records from two
relations, it is a relational join.

Example 3

FOR JH IN JOB_HISTORY
CROSS J IN JOBS
WITH JH.JOB_CODE = J.JOB_CODE

PRINT
JH.EMPLOYEE_ID,
JH.DEPARTMENT_CODE,
JH.JOB_CODE,
J.WAGE_CLASS,
J.JOB_TITLE,
J.MINIMUM_SALARY,
J.MAXIMUM_SALARY

END_FOR

When you join two or more relations in this way, you form an expanded output
record containing data from several associated relations. Figure 4-1 illustrates the
joining of two relations on a common field; in this case, JOB_ CODE is the field
common to both the JOBS and the JOB_HISTORY relations.

JOBS JOB HISTORY

JOB TITLE JOB CODE ~ JOB CODE EMPLOYEE ID

JIN JOBS CROSS JH IN JOB_HISTORY WITH J.JOB_CODE = JH.JOB_CODE

JOB TITLE JOB CODE EMPLOYEE ID

ZK-00377-00

Figure 4-1: Joining Two Relations on a Common Key Field

Retrieving Records and Joining Relations 4-3

You join two relations using a value of a field common to both relations. The field
linking two relations may have the same name, or it may contain the same type of
information but may have a different name. For example, the PERSONNEL
database contains the fields: EMPLOYEE_ID, MANAGER_ID, and
SUPERVISOR_ID. All of these fields contain employee identification numbers,
but some identification numbers serve different purposes. However, any of these
fields can serve as a join term, linking two relations together. As long as the join
term contains logically identical data, you can use it to link two relations in a join.

You can use an OVER clause with the CROSS clause to specify the join term.

Example 4

FOR JH IN JOB_HISTORY
CROSS J IN JOBS OVER JOB_CODE

PRINT
JH.EMPLOYEE_ID,
JH.DEPARTMENT_CODE,
JH.JOB_CODE,
J.WAGE_CLASS,
J.JOB_TITLE,
J.MINIMUM_SALARY,
J.MAXIMUM_SALARY

END_FOR

The following RSE uses CROSS and OVER clauses to join three relations. In
many cases, using the OVER clause with a CROSS clause, as opposed to a clause
using WITH (for example, WITH JH.JOB_CODE = J.JOB_CODE), results in
reduced 1/0 overhead.

FOR E IN EMPLOYEES
CROSS JH IN JOB_HISTORY OVER EMPLOYEE_ID
CROSS J IN JOBS OVER JOB_CODE

In this RSE, RdbNMS joins the EMPLOYEES relation with the JOB_HISTORY
relation using the EMPLOYEE_ID field to link the relations together. The second
CROSS clause joins two relations, but you need to know which two relations con
tain the join term, JOB_ CODE. Because JOB_HISTORY and JOBS both share
the field, JOB_CODE, RdbNMS joins these two relations, not EMPLOYEES and
JOBS. Each resulting virtual, or expanded, record has all the fields from JOBS
and JOB_HISTORY.

You can use the OVER clause when you join two relations sharing a common
field. More information about the OVER clause is contained in the section on cre
ating queries in Chapter 5.

4-4 Retrieving Records and Joining Relations

Using a WITH or OVER clause to qualify or limit a join lets you link related
records from two relations. Although RdbNMS can process queries without the
WITH or OVER clauses, the results are not very meaningful. You should include
either clause in every join. If you do not specify a WITH or OVER clause, RDO
joins each record of one relation with every record of the other relation, giving you
a cross product. Such a join can be disastrous to your system's performance.

If you join the EMPLOYEES relation and the JOB_HISTORY relation without
qualifying the relationship, RdbNMS joins every record in the EMPLOYEES
relation with every record in the JOB_HISTORY relation. If there were 101
records in the EMPLOYEES relation and 277 records in the JOB_HISTORY
relation, the cross product would contain 27 ,977 records.

If one relation contains unique key values for each record, you can easily join this
relation with another relation that contains either similar unique key values for
each record or multiple records with the same key value. Such a relationship is
either one-to-one or one-to-many.

In the EMPLOYEES relation, EMPLOYEE_ID is a key field that contains a
unique value for each record in the relation. The JOB_HISTORY and
SALARY _HISTORY relations each contain many records belonging to an individ
ual employee, because one employee can have many JOB_HISTORY records and
many SALARY _HISTORY records. You can join the EMPLOYEES relation with
the JOB_HISTORY relation to find all records belonging to a single employee.

You can also join the EMPLOYEES relation with the SALARY _HISTORY rela
tion to retrieve all salary history records for that employee. The results of such
joins are illustrated in Figure 4-2 on the next page; you assemble employee infor
mation with every JOB_HISTORY record or with every SALARY _HISTORY
record.

Retrieving Records and Joining Relations 4-5

EMPLOYEES SALARY_ HISTORY

[Employee_ID Employee_ID

Salary_ Start

Salary_End

Salary_ Amount

EMPLOYEES JOB HISTORY

l Employee_ID Employee_ID

Job_Start

Job - End

Job - Code

Dept_Code

ZK-00379-00

Figure 4-2: Joining Relations on a Key Field

However, joining the JOB_HISTORY relation with the SALARY _HISTORY rela
tion presents a special situation. Each of these relations contains multiple records
for an employee; such a relationship is a many-to-many relationship.

When you attempt a join with a many-to-many relationship, the cross product is
likely to be meaningless. If you join JOB_HISTORY with SALARY _HISTORY
using the join term, EMPLOYEE_ID, RdbNMS joins every record from
JOB_HISTORY for an employee with every record from the SALARY _HISTORY
relation. Thus every JOB_HISTORY record is associated with every
SALARY _HISTORY record for a particular employee. But the relationship you
need should be qualified further by checking date values in these records to link a
JOB_HISTORY record with the salary history for that particular job.

4-6 Retrieving Records and Joining Relations

To ensure that your join produces the correct results, include additional WITH
clauses to qualify the join terms precisely. The following query contains a CROSS
clause that joins the JOB_HISTORY relation with the SALARY _HISTORY rela
tion and qualifies the join by including several WITH clauses.

Example 5

FOR JH IN JOB_HISTORY
CROSS SH IN SALARY_HISTORY

WITH JH.EMPLOYEE_ID = SH.EMPLOYEE_ID
AND JH.JOB_END MISSING
AND SH.SALARY_END MISSING
AND JH.EMPLOYEE_ID = "00164"

PRINT

END_FOR

JH.EMPLOYEE_ID,
JH.JOB_CODE,
JH.JOB_START,
SH.SALARY_START,
SH.SALARY_AMOUNT,
SH.SALARY_END

00164 DMGR 21-SEP-1981 21-SEP-1981 50000.00 17-NOV-1858

The results of this query restrict the records retrieved from JOB_HISTORY and
SALARY _HISTORY to those meeting the following qualifiers:

• EMPLOYEE_ID is 00164.

• Only records from both relations belonging to 00164 are retrieved.

• Only current records from the JOB_HISTORY and SALARY _HISTORY
relations are needed; that is, the fields JOB_END and SALARY _END are
missing because you are looking for employees who have not terminated
their employment.

In some instances, it may be useful to add a condition that contains obvious infor
mation but is helpful to the RdbNMS optimizer. If you added the condition
DEPT _CODE NOT MISSING to the above RSE, and DEPT _CODE were an
indexed field, the optimizer would process the query more efficiently. Rather than
go to the relation itself, which generates costs in 110, the optimizer would go
directly to the index table and look at cardinality. For more information about this
process, see the VAX RdbNMS Guide to Database Adminstration and
Maintenance.

4.1.2 Joining Records from More Than Two Relations

When you join two relations at a time, you need a CROSS clause for each pair
of relations in the join. If you need to retrieve data from three relations, first
join records from two relations on one field (join term). Then join one relation of
the first pair with the third relation, using either the same join term or a
different one.

Retrieving Records and Joining Relations 4-7

Previously, you saw a query that joined two relations, JOB_HISTORY and JOBS,
to retrieve all information about a specific job. But assume you need to find the
full name of an employee, as well as his or her job history. To associate an
employee with this type of information, you expand the query with another
CROSS clause to access the EMPLOYEES relation and to supply an employee
identification number.

FOR JR IN JOB_HISTORY
CROSS J IN JOBS OVER JOB_CODE
CROSS E IN EMPLOYEES OVER EMPLOYEE_ID
WITH E.EMPLOYEE_ID = "00164"

PRINT
JH.EMPLOYEE_ID,
E.FIRST_NAME,
E.LAST_NAME,
J.JOB_TITLE,
JH.DEPARTMENT_CODE,
J.WAGE_CLASS

END_FOR

This query adds a second CROSS clause to get the information from the
EMPLOYEES relation that you need. With this query, you access the following
three relations:

• JOBS (data about each type of job)

• JOB_HISTORY (data about each job held by each employee)

• EMPLOYEES (personal data about each employee)

You join the JOB_HISTORY and JOBS relations on the JOB_CODE field to get
complete job information. Then, to include the employee data associated with each
set of job history records, you join the JOB_HISTORY relation with the
EMPLOYEES relation. To ensure that job data corresponds to the correct
employee, you perform this second join on the EMPLOYEE_ID field.

To join related records from three relations, RdbNMS:

• Forms a stream combining records from the JOBS and JOB_HISTORY rela
tions that have matching values for JOB_ CODE.

• Adds records from the EMPLOYEES relation that restrict values to that of
EMPLOYEE_ID = "00164" for the records in the record stream of the
first join. Now, the complete join operation includes only those records
belonging to employee 00164.

Each resulting output record has fields from the three relations: JOBS,
JOB_HISTORY, and EMPLOYEES. Each CROSS clause uses a join term com
mon to two relations:

4-8 Retrieving Records and Joining Relations

• JOB_CODE is the join term for the JOB_HISTORY and JOBS relations.

• EMPLOYEE_ID is the join term for the EMPLOYEES and JOB_HISTORY
relations.

To improve the efficiency of complex joins, you can define an index for each fre
quently used join term. See the VAX RdbNMS Guide to Database Design and
Definition for information on defining indexes.

When your query requires joins of two or more relations, you must include
the names of the relations in your START_TRANSACTION statements. For
example, the last query refers to three relations: EMPLOYEES, JOBS, and
JOB_HISTORY. Your START_TRANSACTION statement might look like
the following:

RDO> START_TRANSACTION READ_ONLY RESERVING
cont> EMPLOYEES FOR SHARED READ,
cont> JOBS FOR SHARED READ,
cont> JOB_HISTORY FOR SHARED READ

4.1.3 Joining One Relation on Itself

Another type of query, called a reflexive join, allows you to join records from one
relation with other records in the same relation. You treat the relation as if it
were actually two relations, supplying two different context variables in the join.
Perform a reflexive join when you wish to match values from fields of the same
relation.

For example, you might want to list all job classifications of staff employees
whose maximum salaries are greater than the minimum salaries of company
executives. The JOBS relation contains information about jobs in all wage classes.
Staff members are identified as wage class 2 and executives as wage class 4.

You could access the JOBS relation two separate times, first retrieving all maxi
mum salaries for wage class 2, and then retrieving all minimum salaries for wage
class 4. Finally, you compare them to find where they overlap. All of these steps
are not necessary because RdbNMS lets you access the relation twice in the same
query by means of a reflexive join.

The following query finds the salary ranges in different wage classes and locates
staff salaries that are greater than the minimum executive salaries:

FOR EXEC IN JOBS
CROSS STAFF IN JOBS

WITH EXEC.WAGE_CLASS = "4"
AND STAFF.WAGE_CLASS = "2"
AND STAFF.MAXIMUM_SALARY > EXEC.MINIMUM_SALARY

PRINT

Retrieving Records and Joining Relations 4-9

END_FOR

STAFF.JOB_CODE,
STAFF.MAXIMUM_SALARY,
EXEC.JOB_CODE,
EXEC.MINIMUM_SALARY

When you use descriptive context variables like STAFF and EXEC,
you are more likely to refer to the field names correctly. You know at a
glance the stream to which you are referring.

The preceding RDO query joins the JOBS relation on itself. The query specifies
two different context variables, STAFF and EXEC, for the same relation,
EMPLOYEES. These statements instruct RDO to form a stream that includes
records containing data on pairs of employees, STAFF and EXEC. For records of
the STAFF and EXEC streams to be combined, they must meet two conditions:

• The wage class of a staff member is equal to 2, and the wage class of the
executive is equal to 4.

• The staff member's maximum salary amount is greater than the minimum
salary amount of the executive.

To process this query, RdbNMS:

• Takes the first record in STAFF (wage class = 2) and compares the maxi
mum salary amount with the minimum salary amount of the first record in
EXEC (wage class = 4).

• Compares the first record in STAFF with the next record of EXEC until
all EXEC records have been compared. RdbNMS makes one pass through
EXEC for each record in STAFF.

• Takes the second record in STAFF and compares it to the first record
in EXEC.

• Compares the second record in STAFF with the second record of EXEC, and
so on.

• Includes in the resulting record stream only those records that meet the
specified conditions.

4-10 Retrieving Records and Joining Relations

As Figure 4-3 illustrates, the JOBS relation appears as two relations: STAFF and
EXEC. To distinguish the fields of one group from the other, this example uses
STAFF and EXEC as the context variables.

JOBS relation JOBS relation

JOBS (EXEC) JOBS (STAFF)

CLASS MAx_SAL MIN_SAL CLASS MAX_ SAL MIN_SAL

RSE

STAFF IN JOBS CROSS EXEC IN JOBS
WITH STAFF.MAXIMUM-SALARY> EXEC.MINIMUM-SALARY

RESULT

STAFF.JOB-CODE STAFF.MAXIMUM-SALARY EXEC.JOB_ CODE EXEC.MINIMUM_SALARY

ZK-00384-00

Figure 4-3: Joining a Relation on Itself (Reflexive Join)

4.2 Using Nested FOR Loops

When you use the CROSS clause to join two relations in a one-to-many relation
ship, RdbNMS links the record in the first relation to each record in the second
relation. All values from the first relation are present in the resulting cross, but
only the values common to both the first and second relation are included from
the second relation.

Retrieving Records and Joining Relations 4-11

Examples

Example 1

FOR E IN EMPLOYEES
CROSS JH IN JOB_HISTORY

WITH E.EMPLOYEE_ID = JH.EMPLOYEE_ID
AND E.EMPLOYEE_ID = "00201"

PRINT
E.EMPLOYEE_ID,
JH.JOB_CODE,
JH.JOB_START,
JH.JOB_END

END_FOR

00201
00201
00201
00201

APGM
APGM
APGM
APGM

15-APR-1979 00:00:00.00
28-MAY-1980 00:00:00.00

1-JUL-1975 00:00:00.00
4-JUN-1977 00:00:00.00

27-MAY-1980 00:00:00.00
17-NOV-1858 00:00:00.00

3-JUN-1977 00:00:00.00
14-APR-1979 00:00:00.00

You can suppress these repeating values by using nested FOR loops.

Example 2

FOR E IN EMPLOYEES
WITH E. EMPLOYEE_ID = "00201"

PRINT E.EMPLOYEE_ID

FOR JH IN JOB_HISTORY
WITH JH.EMPLOYEE_ID = E.EMPLOYEE_ID

PRINT
JH.JOB_CODE,
JH.JOB_START,
JH.JOB_END

END_FOR

END_FOR

00201
APGM
APGM
APGM
APGM

1-JUL-1975 00:00:00.00
28-MAY-1980 00:00:00.00
15-APR-1979 00:00:00.00
4-JUN-1977 00:00:00.00

The process works as follows:

3-JUN-1977 00:00:00.00
17-NOV-1858 00:00:00.00
27-MAY-1980 00:00:00.00
14-APR-1979 00:00:00.00

• RDO retrieves the first record in the stream formed by the outer loop and
displays any expressions listed in the PRINT statement.

• RDO then processes the inner loop for each record specified by the inner
loop's RSE. ,

• Control returns to the outer loop, and the cycle continues until there are no
more records in the outer loop's stream.

4-12 Retrieving Records and Joining Relations

Nesting FOR loops means entering one FOR statement (the outer loop) followed
by a second FOR statement (the inner loop). The inner loop is part of the main
FOR statement that controls it. Each loop has an RSE to bring the two record
streams together in the same statement.

One date value that appears in the display, l 7-NOV-1858, is the VMS base date
used here to indicate a missing value for fields with a DATE data type.

With a nested FOR format, you can suppress the repeating values for
EMPLOYEE_ID and display only the values from the JOB_HISTORY relation
that change. In example 2, EMPLOYEE_ID 00201 appears only once, while the
values from the records in the JOB_HISTORY relation are displayed for each sep
arate record belonging to that employee. The results look like control breaks in
routine reports. The nested FOR loop makes the resulting report more readable
than reports that include duplicate employee identification numbers. Nested FOR
loops are convenient for this type of display because you can show a one-to-many
relationship: one EMPLOYEES record to many JOB_HISTORY records.

You can also use nested FOR loops to establish relationships for outer joins. See
Chapter 7 for more information.

Retrieving Records and Joining Relations 4-13

Using Views and View Definitions 5

This chapter introduces views and view definitions. A view is a query that you
have named and stored. With a view, you can take a set of fields from a relation or
a combination of fields from different relations that you use often and give them a
name. Thus, you can treat those combinations as you would a relation, and use
them in other record selection expressions (RSEs).

5.1 Using Views for Queries

After some experience using your database, you may discover that you often enter
the same query and display the same field. Or you may enter the same record
selection expression, but each time, you use different fields from that relation.
You can take advantage of a feature in RdbNMS that allows you to make those
queries permanent by using a view.

You may discover that you often use some fields in the EMPLOYEES relation
more than you use others. You can define a view to create a more restricted ver
sion of the EMPLOYEES relation using fields from that relation. For example,
you may find a view helpful if you frequently enter queries that use RDO to get
the last name, first name, and employee identification number, as in example 1:

Examples

Example 1

FOR E IN EMPLOYEES
PRINT

E.LAST_NAME,
E. FIRST_NAME,
E . EMPLOYEE_ ID,

END_FOR

5-1

Turn this query into a view by using the following view definition. Because you
are defining a new database entity definition, you need to include write access to
the database in your ST ART_ TRANSACTION statement.

Example 2

START_TRANSACTION READ_WRITE

DEFINE VIEW EMP_ID OF E IN EMPLOYEES.
E.LAST_NAME.
E.FIRST_NAME.
E.EMPLOYEE_ID.

END VIEW.

COMMIT

Now you can refer to the view just as you refer to a relation, using the same field
names as in the EMPLOYEES relation.

Example 3

FOR E IN EMP _ID
PRINT E.*

END_FOR

You can also include an RSE when you refer to a view to restrict the records you
display.

Example 4

FORE IN EMP_ID WITH E.EMPLOYEE_ID = "00164"
PRINT E. *

END_FOR

Example 4 displays four fields for the employee with
EMPLOYEE_ID ="00164". If you forget which fields are included in the view
definition, use the SHOW RELATIONS command. RDO displays all relations and
indicates which definitions are views. For information on other parameters you
can use with the SHOW statement, see the reference manual for RdbNMS.

RDO> SHOW RELATIONS

User Relations in Database
CANDIDATES
COLLEGES
CURRENT_INFO
CURRENT_JOB
CURRENT_SALARY
DEGREES
DEPARTMENTS
EMPLOYEES
JOBS
JOB_HISTORY
RESUMES
SALARY_HISTORY
WORK_STATUS

with filename personnel

A view.
A view.
A view.

5-2 Using Views and View Definitions

Use the SHOW FIELDS FOR CURRENT_INFO to display the names of the
fields in this view definition:

RDO> SHOW FIELDS FOR CURRENT_INFO

Fields for relation CURRENT_INFO
LAST_NAME text size is 14
FIRST NAME text size is 10
ID text size is 5

based on global field ID NUMBER
DEPARTMENT text size is 30

based on global field DEPARTMENT_NAME
JOB text size is 20

based on global field JOB_ TITLE
JSTART Date

based on global field STANDARD_DATE
SSTART Date

based on global field STANDARD_DATE
SALARY signed longword scale -2

You can use views that contain selected records from a larger relation like the fol
lowing view definition.

Example 5

DEFINE VIEW ACTIVE_EMP OF E IN EMPLOYEES
WITHE.STATUS-CODE ttl".

E.EMPLOYEE_ID.
E.LAST_NAME.
E. FIRST_NAME.
E.MIDDLE_INITIAL.
E.ADDRESS_DATA_l.
E.ADDRESS_DATA_2.
E. CITY.
E.STATE.
E.POSTAL_CODE.
E.SEX.
E. BIRTHDAY.
E.STATUS_CODE.

END VIEW.

You can use the view in example 5 to refer to all full-time employees. The view
contains every field defined for the EMPLOYEES relation.

Using Views and View Definitions 5-3

You can also define a view that selects a few fields from all records in a relation.
For example, to list only employee names and addresses for a mailing list, define
the following view:

Example 6

DEFINE VIEW EMP_MAIL OF E IN EMPLOYEES.
E.LAST_NAME.
E.FIRST_NAME.
E.MIDDLE_INITIAL.
E.ADDRESS_DATA_l.
E.ADDRESS_DATA_2.
E. CITY.
E.STATE.
E.POSTAL_CODE.

END VIEW.

To see a list of the values in each field without naming every field, use the follow
ing PRINT format:

Example 7

FORM IN EMP_MAIL
SORTED BY M.LAST NAME

PRINT
M.*

END_FOR

5.2 Creating a View Definition for a Join

The design of the PERSONNEL database includes ten relations, each shows a dif
ferent aspect of the employees in a company. Other applications may require
another view of the database, that combines fields from many relations. RdbNMS
lets you create new relationships from the nine basic relations in the database,
forming virtual relations. You do this by defining views using a join statement.
Views have the following advantages:

• View definitions can prevent unauthorized users from accessing sensitive
data by not including them in the view definition, while still allowing users to
access the data they need. This is done by omitting the fields that contain
sensitive information from the view definition.

• Queries that use complex selection criteria can be formalized in a view defini
tion to make access easy.

• Updates can be made to views that are defined by using a single relation.

• Views let you assemble groups of fields from the original database relations.

5-4 Using Views and View Definitions

As the previous examples show, joining relations sometimes can be quite complex.
If you must often form the same RSE to retrieve records from several relations,
you might consider creating a view definition. A view brings together fields from
several relations based on an RSE specified in the view definition. A user can
refer to the view definition as if it were a single relation and request RDO to dis
play field values. Thus, a user who may not understand the syntax for a complex
join can still access data from such a join when it is contained in a view.

To create a view definition that refers to a restricted record stream from three
relations:

• Use the DEFINE VIEW statement that includes an RSE for specifying the
record stream you wish to establish.

• Indicate which fields you want included from the record stream.

You can use the following view definition in place of a query. Use this view
definiton just as you would a new relation that contains the fields you need.

Examples

Example 1

DEFINE VIEW EMP_HISTORY
OF JH IN JOB_HISTORY

CROSS J IN JOBS
CROSS E IN EMPLOYEES
WITH J.JOB_CODE = JH.JOB_CODE AND

JH.EMPLOYEE_ID = E.EMPLOYEE_ID.

END VIEW.

JH.EMPLOYEE_ID.
E. FIRST_NAME.
E.LAST_NAME.
J. JOB_ TITLE.
JH.DEPARTMENT_CODE.
J.WAGE_CLASS.

You can now use the view definition EMP _HISTORY with a record selection
expression (RSE) to retrieve employee history data for a particular employee.
However, you must include the name of the view in a START_TRANSACTION
statement. RdbNMS implicitly reserves the referenced relations according to the
reserving option you specify.

Example 2

START_TRANSACTION READ_ONLY RESERVING EMP_HISTORY FOR SHARED READ

FORE IN EMP_HISTORY WITH E.EMPLOYEE_ID = "00164"
PRINT E.*

END_FOR

Using Views and View Definitions 5-5

To form a query that joins four relations, consider the following

You need to compile a report for each employee in the EMPLOYEES relation.
The report should include:

• Each employee's identification number

• Each employee's first and last name

• The title of the job he or she currently holds

• The code of the department where the employee works

• Current salary information

• The wage class of the job the employee holds

The SALARY _HISTORY relation contains current salary information as well as
the salary start date and salary amount for a particular job. The JOB_HISTORY
relation holds data about each job an employee has held, including the department
and job code. The JOBS relation contains information about each job in the com
pany. The EMPLOYEES relation describes each employee in the company. Each
of these relations supplies some data for the report. To get the necessary fields
from each, you must join four relations.

Example 3

FOR SH IN SALARY_HISTORY

END_FOR

CROSS J IN JOBS
CROSS E IN EMPLOYEES
CROSS JH IN JOB_HISTORY

PRINT

WITH SH.SALARY_END MISSING
AND SH.EMPLOYEE_ID = E.EMPLOYEE_ID
AND JH.EMPLOYEE_ID = E.EMPLOYEE_ID
AND JH.JOB_END MISSING
AND JH.JOB_CODE = J.JOB_CODE

SH.EMPLOYEE_ID,
E.FIRST_NAME,
E.LAST_NAME,
J.JOB_TITLE,
JH.DEPARTMENT_CODE,
J.WAGE_CLASS,
SH.SALARY_AMOUNT,
SH.SALARY_START

5-6 Using Views and View Definitions

@

To access the salary history data and the associated job and employee data, join
the following four relations:

• JOB_HISTORY (each job ever held by each employee)

• JOBS (each type of job an employee can hold)

• EMPLOYEES (personal information on each employee)

• SALARY _HISTORY (each salary level held by an employee for each job held
by each employee)

To join the four relations in the preceding query, use the CROSS clause three
times. The following list refers to the numbered items in example 3:

1. Identify the four relations with enough CROSS clauses to specify those rela
tions containing the fields you want to compare or display.

2. Add the WITH clauses to link each pair of relations sharing a common field
or meeting a specific condition.

One relation can be associated with more than one other relation:

• JOB_HISTORY links with SALARY_HISTORY in the JOB_START
field.

• Records with JOB_END MISSING are current jobs. JOB_HISTORY
also links with JOBS on the JOB_CODE field.

• SALARY _HISTORY links with the EMPLOYEES relation on
EMPLOYEE_ID but only for those records in SALARY _HISTORY
whose SALARY _END date field contains the value MISSING for the
job held currently.

You can use any field in one relation that is common to any other rela
tions. Each WITH clause links a field in one relation with a field in
another and further restricts the records included in your record
stream.

3. Display only those fields you need. Qualify each field with its context
variable.

Using Views and View Definitions 5-7

Using Value, Arithmetic and Statistical
Expressions 6

A value expression is a string of symbols that specifies a value RdbNMS can use
when executing statements. This chapter describes:

• Literals as value expressions

• Arithmetic expressions, such as (100 * SH.SALARYI

• Statistical expressions, such as AVERAGE SH.SALARY OF SH IN
SALARY _HISTORY

6.1 Literals

A literal is either a character string or a numeric literal. You can use a literal as a
value expression. For example:

FOR E IN EMPLOYEES WITH E. LAST_NAME = ,>·<•.v,.&:.,1'·Y
PRINT E.EMPLOYEE_ID

END_FOR
character string literal

:::~~6~~ ~~i~~ro~~~~~~y WITH S. SALARY _AMOUNT > K~,(1>()

numeric literal

6-1

6.1.1 Character String Literals

A character string literal is a string of printable characters that must be enclosed
in quotation marks. The maximum length of a character string is 65,536 charac
ters. The printable characters consist of:

• Uppercase alphabetic characters:

A-Z

• Lowercase alphabetic characters:

a-z

• Numerals:

0-9

• Special characters:

© # $ % ~ k * () + • -

[] { } ' " \ I I ? > <

Use a pair of single or double quotation marks to enclose a character string literal.
When using quotation marks, follow these rules:

• Begin and end a character string literal with the same type of quotation
mark.

• To include a quotation mark of one type in a character string literal, enclose
the literal in quotation marks of the other type. For example, to include dou
ble quotation marks in a character string literal, enclose the character string
in single quotation marks.

• If a quotation mark appears in a character string literal enclosed by quota
tion marks of the same type, use two consecutive quotation marks for every
one you want to include in the literal. This technique is necessary if you want
to include quotation marks of both types in a single quoted string.

Table 6-1 shows how to use quotation marks in character string literals.

6-2 Using Value, Arithmetic and Statistical Expressions

Table 6-1: Embedding Quotation Marks in Literal Expressions

Character String
Value Expression Value

"JONES" JONES

'JONES' JONES

"JONES' [invalid]

11III111 . '''
ft I I I I I [invalid]

'My name is "Lefty". . My name is "Lefty".

'My ''handle'' is "Lefty".' My 'handle' is "Lefty".

RdbNMS usually treats uppercase and lowercase forms of the same letter as the
same character. However, RdbNMS preserves the case distinction when compar
ing character strings. That is, NAME= "JONES" and NAME= "Jones" yield
different results. See the previous chapter on specifying conditions for an explana
tion of case-sensitive expressions. Note that these rules apply only to RDO. For
language specific rules, refer to the VAX Rdb/VMS Guide to Programming, or
your programming language manual.

6.1.2 Numeric Literals

A numeric literal is a string of digits that RdbNMS interprets as a decimal num
ber. A numeric literal may be:

• A decimal string consisting of digits and an optional decimal point. The
maximum length, not counting the decimal point, is 19 digits.

• A decimal number in scientific notation IE-format), consisting of a decimal
string mantissa and a signed integer exponent, separated by the letter E, or
D for G_FLOATING.

RdbNMS allows great flexibility in numeric expressions. You can use unary plus
and minus, any form of decimal notation, and embedded spaces in E notation. The
following are valid numeric strings:

123
34.9
-123
.25
123.
0.33889909
6.03 E+23
6.03 E -23

Using Value, Arithmetic and Statistical Expressions 6-3

If you use a numeric literal to assign a value to a field or a variable, the data type
of the field or variable determines the maximum size value you can assign.

See Table 5-1 in the VAX RdbNMS Reference Manual for the maximum size
allowed for a numeric literal assigned to each RdbNMS data type.

Because a period at the end of a data definition statement line terminates the
line, do not use a decimal point to terminate a number if you want to include more
data definition clauses in the statement. The period terminates the line in the fol
lowing data definition statement:

COMPUTED BY X*2.

If you want to include more data definition clauses, include a zero after the deci
mal point, or place the value expression in parentheses:

COMPUTED BY X*2.0
COMPUTED BY (X*2.)

6.2 Arithmetic Expressions
An arithmetic expression combines value expressions and arithmetic operators.
When you use an arithmetic expression in a statement, RdbNMS calculates the
value associated with the expression and uses that value when executing the
statement. Therefore, an arithmetic expression must be reducible to a value.
However, RdbNMS does not permit arithmetic operations on fields defined with
the DATE or text data type.

If either operand of an arithmetic expression is a null value, the resulting value is
also null.

The arithmetic operators and their functions are:

+ Add
- Subtract
* Multiply
/ Divide

You do not have to use spaces to separate arithmetic operators from value expres
sions, except in one case: if an RdbNMS name precedes a minus sign, you must
separate the name and the minus sign by a space.

You can use parentheses to control the order in which RdbNMS performs
arithmetic operations. RdbNMS follows the normal rules of precedence. That is, it
evaluates arithmetic expressions in the following order:

1. Value expressions in parentheses

2. Multiplication and division, from left to right

3. Addition and subtraction, from left to right

6-4 Using Value, Arithmetic and Statistical Expressions

An arithmetic expression can be used in a data definition statement:

DEFINE VIEW DEDUCT OF
E IN EMPLOYEES CROSS
S IN SALARY_HISTORY OVER EMPLOYEE_ID WITH
S.SALARY_

END MISSING.
E.LAST_NAME.
E.FIRST-NAME.
AMOUNT COMPUTED BY

((S.SALARY_AMOUNT I 52) * 0.05).
END DEDUCT VIEW.

FOR FIRST 5 D
LAST_NAME
Toliver
Smith
Dietrich
Kilpatrick
Nash

IN DEDUCT PRINT D.* END_FOR
FIRST_NAME AMOUNT
Alvin 4.972307692307692E+001
Terry 1.122692307692308E+001
Rick 1.778557692307692E+001
Janet 1.683653846153846E+001
Norman 3.101346153846154E+001

This example defines a view that calculates a payroll deduction for health
insurance:

• The record selection expression limits the records in the view to current
salary records.

• The view fields include the employee's name and a weekly deduction field,
calculated using an arithmetic expression from the annual salary for each
employee (5% of the weekly salary).

In addition to using literal expressions, you can combine other value expressions
in PRINT statements and definition statements to create new entities. You do
this by creating value expressions and linking them with the concatenate operator
(I) to form a concatenated expression.

A concatenated expression is a value expression that combines two other value
expressions by joining the second to the end of the first. You can use the concat
enate operator to concatenate expressions and combine value expressions of any
kind, including numeric expressions, string expressions, and literals.

You can use concatenated expressions to simulate group fields and edit strings.
The following examples show you how to use the concatenate operator.

You can use a concatenated expression as a field in a view:

DEFINE VIEW MAIL OF
E IN EMPLOYEES.

NAME COMPUTED BY
E.FIRST_NAME I •• I E.MIDDLE_INITIAL I •• I E.LAST_NAME.

E.ADDRESS_DATA_2.
E.CITY.
E.POSTAL_CODE.

END MAIL VIEW.

Using Value, Arithmetic and Statistical Expressions 6-5

This statement creates a field for the view by combining the three name fields
from EMPLOYEES.

A concatenated expression can simulate an edit string:

DEFINE VIEW DOLLARS OF S IN SALARY_HISTORY.
S.EMPLOYEE_ID.
S.SALAR¥_START.
S.SALARY_END.
SAL COMPUTED BY 11 $11 IS.SALARY_AMOUNT.

END.

When you display the fields of DOLLARS, a dollar sign appears in front of the
salary amount.

6.3 Statistical Expressions
Statistical expressions are a kind of value expression that calculate a value for all
the records in a record stream. Statistical expressions are sometimes called
aggregate expressions because they calculate a single value for a collection of
records. When you use a statistical expression (with the exception of COUNT),
you specify a value expression and an RSE. RdbNMS first evaluates the value
expression for each record in the record stream formed by the RSE. Then it calcu
lates a single value based on the results of the first step.

The following list describes queries and shows examples using statistical expres
sions in RDO statements:

• AVERAGE

Print average salary from SALARY _HISTORY relation:

PRINT AVERAGE SH.SALARY_AMOUNT OF SH IN SALARY_HISTORY

• COUNT

Print number of employees from EMPLOYEES relation:

PRINT COUNT OF E IN EMPLOYEES

• MAXIMUM

Print highest value of salary amount from SALARY _HISTORY relation:

PRINT MAX SH.SALARY_AMOUNT OF SH IN SALARY_HISTORY

6-6 Using Value, Arithmetic and Statistical Expressions

• MINIMUM

Print lowest value in the MINIMUM_SALARY field in the JOBS relation:

PRINT MIN J.MINIMUM_SALARY OF J IN JOBS

• TOTAL

Display a total of all salaries for current mechanical engineers, where the
JOB_CODE value equals "MENG":

PRINT TOTAL SH.SALARY_AMOUNT OF SH IN SALARY_HISTORY CROSS
JH IN JOB_HISTORY OVER EMPLOYEE_ID WITH
JH.JOB_CODE = "MENG" AND
JH.JOB_END MISSING

While the COUNT expression includes missing values in the number of records,
the TOT AL expression does not. Missing values are null fields and therefore can
not be included in a sum.

6.3.1 Statistical Expressions with Groups of Records

A statistical expression can operate on a group of records within a record stream.
This operation is often called a global aggregate function because you can group
records by a value in any relation in the database. For example, you can use the
DEPARTMENT_CODE field in the DEPARTMENTS relation to group records
in another relation, SALARY_HISTORY, in order to get the average salary for
each department.

If you need to find the average salary for all employees in a corporation, you could
use the RDO statements in the following example:

Examples

Example 1

PRINT AVERAGE SH.SALARY_AMOUNT OF SH IN SALARY_HISTORY WITH
SH.SALARY_END MISSING

Using Value, Arithmetic and Statistical Expressions 6-7

Here, the AVERAGE function operates on all the records in the record stream
formed by the RSE. However, a statistical function also can operate on groups of
records within the record stream.

To find out how many employees currently work in each department:

Example 2

FOR D IN DEPARTMENTS
PRINT D.DEPARTMENT_NAME,

END_FOR

COUNT OF JH IN JOB_HISTORY WITH
JH.DEPARTMENT_CODE = D.DEPARTMENT_CODE AND
JH.JOB_END MISSING

Here, instead of returning a value for each record in the record stream, a global
aggregate function returns only a single value for the whole group.

Figure 6-1 illustrates how the global aggregate function works, using a simplified
subset of the two relations.

6-8 Using Value, Arithmetic and Statistical Expressions

DEPARTMENTS:

Corporate Administration

Electronics Engineering

Large Systems Engineering

Corporate Administration
Electronics Engineering
Large Systems Engineering

JOB_ HISTORY:

ADMN
ADMN
ADMN
ADMN
ADMN

ADMN - ADMN
ADMN
ADMN
ADMN
ADMN
ADMN

ELEL
ELEL
ELEL

ELEL - ELEL
ELEL
ELEL
ELEL

ELGS
ELGS
ELGS
ELGS

ELGS - ELGS
ELGS
ELGS
ELGS
ELGS

11
7
9

00188
00228
00190
00225
00204
00488 COUNT = 11
00494
00415
00471
00472
00438

00296
00273
00377
00393 COUNT= 7
00461
00489
00458

00220
00474
00417
00432
00441 COUNT= 9
00436
00373
00355
00401

ZK-00381-00

Figure 6-1: Using a Statistical Expression to Group Records

Using Value, Arithmetic and Statistical Expressions 6-9

In example 2:

• FOR D IN DEPARTMENTS sets up an outer loop. The query performs a
PRINT statement for each record in the DEPARTMENTS relation.

• The COUNT statistical expression is the object of the PRINT statement.
The statistical expression includes its own looping function: it loops through
the records specified by the RSE and counts them.

• The RSE links the inner loop, formed by the COUNT function, to the outer
loop, formed by the FOR statement. The following steps take place:

RdbNMS finds the first record in DEPARTMENTS and reads the
DEPARTMENT_CODE field. Assume that this value is ADMN.

RdbNMS finds the records in JOB_HISTORY where the
DEPARMENT_CODE is ADMN. For each record in JOB_HISTORY
where DEPARTMENT_CODE is ADMN, it adds one to the count.

When RdbNMS has found all the matches in JOB_HISTORY for
ADMN, it displays the DEPARTMENT_NAME value that goes with
ADMN and the count of JOB_HISTORY records.

Then RdbNMS returns to the outer loop of the query and finds the next
DEPARTMENT_CODE value.

This type of query always has the following three features:

• The outer loop establishes the value by which to group records.

• The statistical expression creates the inner loop.

• The WITH clause binds the two together.

Note ------------

The WITH clause in the inner loop must refer to the context variable
established in the outer loop.

You can also use a conditional expression to place a restriction on the outer loop.

6-10 Using Value, Arithmetic and Statistical Expressions

Example 3

The next example counts the number of employees in each job code group:

FOR J IN JOBS
PRINT J.JOB_TITLE,

COUNT OF JH IN JOB_HISTORY WITH
J.JOB_CODE = JH.JOB_CODE AND
JH.JOB_END MISSING

END_FOR

Example 3 works in a similiar fashion to the previous example:

• FOR JIN JOBS forms the outer loop.

• The COUNT statistical expression forms the inner loop.

• The WITH clause links the inner loop with the outer loop.

Example 4

To find the total payroll for each department:

FOR D IN DEPARTMENTS
PRINT D.DEPARTMENT_NAME,

TOTAL SH.SALARY_AMOUNT OF

END_FOR

SH IN SALARY_HISTORY CROSS
JH IN JOB_HISTORY OVER EMPLOYEE_ID WITH

JH.DEPARTMENT_CODE = D.DEPARTMENT_CODE AND
JH.JOB_END MISSING AND
SH.SALARY_END MISSING

Example 4 is complicated by having no direct link between the department infor
mation in DEPARTMENTS and the salary information in SALARY_HISTORY.
The query uses JOB_HISTORY as the link because it contains the common
fields, DEPARTMENT_CODE and EMPLOYEE_ID, and is interpreted
as follows:

• FORD IN DEPARTMENTS sets up the outer loop.

• The TOT AL statistical function starts the inner loop.

• In this case, the query requires an extra join to link the salary information
in SALARY_HISTORY through JOB_HISTORY to DEPARTMENTS.
SALARY_HISTORY and JOB_HISTORY share only one field:
EMPLOYEE_ID.

• JH.DEPARTMENT_CODE = D.DEPARTMENT_CODE links the inner
loop to the outer loop.

Using Value, Arithmetic and Statistical Expressions 6-11

• The final two elements in the WITH clause limit the record stream to only
those records that correspond to current SALARY _HISTORY and
JOB_HISTORY records. They are both necessary. If you simply limit the
record stream to current SALARY _HISTORY records, there is one current
salary record for each JOB_HISTORY record with a matching
EMPLOYEE_ID. The result looks correct but is actually inflated.

Figure 6-2 shows how the preceding query works with a subset of the data.

From
DEPARTMENTS

Corporate Administration

Electronics Engineering

ADMN

ELEL

From
JOB_HISTORY

I I
ADMN
ADMN
ADMN
ADMN
ADMN

ELEL
ELEL
ELEL

00188
00228
00190
00225
00204

00296
00273
00377

From
SALARY_ HISTORY

I I
I

00188
00228
00190
00225
00204

00296
00273
00377

21093
85150
34976
8687
87143

l
TOTAL

20770
44264
15646

l
TOTAL

ZK-00382-00

Figure 6-2: A Statistical Expression Across Three Relations

Example 5

In the next example, the PRINT statement includes two value expressions:

• The field D.DEPARTMENT_NAME

• The arithmetic expression, which includes two statistical expressions

Otherwise, this query is identical to previous examples in this chapter.

6-12 Using Value, Arithmetic and Statistical Expressions

FOR D IN DEPARTMENTS
PRINT D.DEPARTMENT_NAME, ((TOTAL SH.SALARY_AMOUNT OF

SH IN SALARY_HISTORY CROSS

END_FOR

JH IN JOB_HISTORY OVER EMPLOYEE_ID WITH
JH.DEPARTMENT_CODE = D.DEPARTMENT_CODE AND
JH.JOB_END MISSING AND
SH.SALARY_END MISSING) / TOTAL SH SALARY_AMOUNT OF

SH IN SALARY_HISTORY WITH
SH.SALARY_END MISSING) * 100

The preceding example is limited by the fact that SALARY _AMOUNT is defined
as a longword integer. This means that the precision of the arithmetic expression
is limited to whole numbers. If you include this query in a program, you can
remove the calculation of the percentage from the RdbNMS query and use your
program's host language calculation instead. For example, you can retrieve
SALARY _AMOUNT, insert it into your program, and convert it to
F _FLOATING before you calculate the percentage.

6.3.2 Arithmetic and Statistical Expressions Based on Field Values

: .. '~M§~~~~ ~.l='J!St.:P.A······.OF•·.•.i::i•··•··.IN·····•··RELATION ... A········

:.981;.1t>JmA: ···········>····.········iX PF··· .. ••·11··•••'N<f1E~Ar10N_A
:M~tM.~.M \ ~.rr:1~µ()3~ PF••.·.··R··•ilf\J BsLArroN._p..
.•.... ·M.lf>JI~~·.~·. R.FIE·~(PJ1 OF• •. · .. R· .. ilf>JiiJiELATION_p..
·,l~JP.,~·..... FtFIE40JJ OF•·· .. R·•·•···IN.JRELATlQN~A

You can use arithmetic or statistical expressions with field names in the PRINT
statement. For example, to find the average minimum salary of all jobs in a par
ticular wage class, use the following query:

PRINT AVERAGE J.MINIMUM_SALARY OF J IN JOBS WITH
J.WAGE_CLASS = 11 311

In this example the statistical expression is:

AVERAGE J.MINIMUM_SALARY OF J IN JOBS

RDO checks all the records identified by the record selection expression, sums
the minimum salaries, and divides by the number of records that satisfy the con
ditional expression WITH J.WAGE_CLASS = "3" to give the average value of
MINIMUM_SALARY. The definition of the MINIMUM_SALARY field allows
the value to be missing. That is, the field does not have to contain a value. When
RdbNMS calculates the average minimum salary, it ignores records where
MINIMUM_SALARY is missing.

Using Value, Arithmetic and Statistical Expressions 6-13

Updating Databases 7

This chapter shows you how to use RDO to store, modify, and erase data in an
RdbNMS database. After you become familiar with the statements that perform
these operations, you can include them in your host language programs. See
Appendix B for some examples of this procedure using the EDT editor in RDO.
Other examples can be found in the VAX RdbNMS Guide to Programming.

7.1 Storing Data in an Rdb/VMS Database

After you define your database and the entity definitions, you can store data in
each relation using one of the following methods:

• Use the RDO STORE statement.

• Embed your store operations in a host language program to load data into
your database interactively or from disk files.

• Use VAX DATATRIEVE to load data from VAX DATATRIEVE files or a
VAX DBMS database.

7.1.1 Storing Values in One Relation

Entering and maintaining data in a database is an ongoing task. For example,
every time a new employee joins a particular company, the Personnel department
adds a record to a relation like the EMPLOYEES relation described throughout
this guide.

Adding a new record to a relation in the database does not present a record-level
conflict to other users of the database because they cannot access a record that
does not yet exist. The START_ TRANSACTION statement that precedes the
STORE statement should specify SHARED share mode and WRITE lock type:

ROD> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE

7-1

Setting the share mode to SHARED ensures that you are able to store several
records in a session while other users access the same relation. However, other
users can specify transaction modes in their START_TRANSACTION state
ments that conflict with your intentions. When such conflicts occur, RDO might
not allow other users access to the relation until you terminate your transaction.
Refer to Chapter 2 for details on access conflicts.

When an employee joins the company, you should have enough information to
store values for each field in a record of the EMPLOYEES relation. In RdbNMS,
you insert a record into a relation with the STORE statement. This statement
usually includes a series of assignments that specify the values for each field of
the record.

START_TRANSACTION READ_WRITE RESERVING EMPLOYEES FOR SHARED WRITE

STORE E IN EMPLOYEES USING
E.EMPLOYEE_ID = "00502";
E.FIRST_NAME = "Paul";
E.LAST_NAME = "Chris";
E.CITY = "Boston"

END_STORE

COMMIT

7.1.2 Storing Values in Multiple Relations

You can store values in more than one relation within the same FOR statement in
RDO. However, you need a STORE statement for each relation. For example,
after you have entered all the records for new employees in the EMPLOYEES
relation, you may want to add corresponding employee records in the
JOB_HISTORY and SALARY _HISTORY relations. No field in the
EMPLOYEES relation distinguishes a new employee record from existing
employee records. You can, however, use the EMPLOYEES relation to compare
existing EMPLOYEE_ID values with those already stored in the other two rela
tions. The JOB_HISTORY and SALARY _HISTORY relations should have at
least one corresponding record for every employee currently working in the com
pany. Therefore, those records in the EMPLOYEES relation with no records in
the JOB_HISTORY or SALARY _HISTORY relations must be newly hired
employees.

You can perform a join across these three relations to check for the existence of
corresponding records. If there are no matching records in the history relations,
you can store new records in the history relations using values from the
EMPLOYEES relation.

Before you can store new values in the database, you must specify the necessary
relations in your START_TRANSACTION statement and indicate the correct
share mode and lock type. Notice you need write access for JOB_HISTORY and
SALARY _HISTORY, but only read access to the EMPLOYEES relation.

7-2 Updating Databases

START_TRANSACTION READ_WRITE RESERVING
EMPLOYEES FOR SHARED READ,
JOB_HISTORY FOR SHARED WRITE,
SALARY_HISTORY FOR SHARED WRITE

Using the NOT ANY operator here allows you to check that no corresponding
records exist in the history relations. RDO executes the STORE statement only
when there is no such correspondence. Example 1 uses a nested FOR construc
tion to check for correspondence and to store data in the JOB_HISTORY and
SALARY _HISTORY relations. It also prints each EMPLOYEE_ID value that
represents each new employee.

Examples

Example 1

FOR E IN EMPLOYEES
WITH NOT ANY JX IN JOB_HISTORY
WITH JX.EMPLOYEE_ID = E.EMPLOYEE_ID

PRINT E.EMPLOYEE_ID

FOR EX IN EMPLOYEES
WITH NOT ANY SX IN SALARY_HISTORY
WITH SX.EMPLOYEE_ID = EX.EMPLOYEE_ID

STORE JH IN JOB_HISTORY
USING

JH.EMPLOYEE_ID = EX.EMPLOYEE_ID;
JH.JOB_START = "19-APR-1985"

END_STORE

STORE SH IN SALARY_HISTORY
USING

SH.EMPLOYEE_ID = EX.EMPLOYEE_ID;
SH.SALARY_START = "19-APR-1985"

END_STORE

END_FOR
END_FOR

COMMIT

Example 2 performs the same store operation as example 1, using one FOR state
ment and a more complex WITH clause:

Example 2

FOR E IN EMPLOYEES
WITH

(NOT ANY JX IN JOB_HISTORY
WITH JX.EMPLOYEE_ID = E.EMPLOYEE_ID)

AND
(NOT ANY SX IN SALARY_HISTORY

WITH SX.EMPLOYEE_ID = E.EMPLOYEE_ID)

Updating Databases 7-3

END_FOR

STORE JH IN JOB_HISTORY USING
JH.EMPLOYEE_ID = E.EMPLOYEE_ID;
JH.JOB_START = "19-APR-1985"

END-STORE

STORE SH IN SALARY_HISTORY USING
SH.EMPLOYEE_ID = E.EMPLOYEE_ID;
SH.SALARY_START = "19-APR-1985"

END-STORE

Since you can include STORE statements like these in a single transaction, it is
good practice to keep related updates together in one transaction.

7.2 Using RDB$MISSING for Missing Values

Sometimes you may not have information for every field when you are storing
information for a record. When a field in a record is left blank, RdbNMS auto
matically marks the field as missing. You have the option to define a missing
value for a field in its field definition. If you do not define a missing value and the
field is left blank, RdbNMS supplies default missing values to the field in the
form of zeros for numeric fields and spaces for text fields.

When a field is defined as missing, RdbNMS marks the field and returns the
defined missing value when you include the field in display statements. You can
think of a missing field as empty. Retrieve missing fields by using the MISSING
relational operator, or by using the PRINT statement with an asterisk (such as
with PRINT E.*) to print all the field values including the missing value.

To define a missing value for the field MIDDLE_INITIAL, use the following
definition:

DEFINE FIELD MIDDLE_INITIAL
DESCRIPTION IS /* Employee's middle initial */
DATATYPE IS TEXT SIZE IS 1
MISSING_VALUE IS II "·

7 .2 .1 Retrieving Records with a Missing Field Value

When you do not explicitly store a value in a field, the value for that field is con
sidered missing. You can retrieve records in which a field value is missing using
the MISSING relational operator. You can also define a MISSING VALUE for
any field. When you retrieve a missing field, RdbNMS returns the missing value
as though it were actually stored in the field.

7-4 Updating Databases

To display any employee records whose birth date is missing, use the following:

FOR E IN EMPLOYEES WITH E.BIRTHDAY MISSING
PRINT

E.EMPLOYEE_ID,
E.LAST_NAME,
E. FIRST _NAME,
E.STATUS_CODE

END_FOR

RdbNMS finds all the records containing fields where no birth date is assigned
and prints a space for BIRTHDAY in those records.

You can use the MISSING operator to retrieve a segmented string.
When relational operators are used, RdbNMS does not include fields
whose values are missing in the record stream. Therefore, when using
relational operators to make comparisons of fields in the database, be
sure to write the RSE clearly to include records whose values are miss
ing. For example, if MIDDLE_INITIAL is missing in some records, you
could use one of the following RS Es to find those records:

FOR E IN EMPLOYEES WITH E.MIDDLE_INITIAL > 'M'

or

FOR E IN EMPLOYEES WITH E.MIDDLE_INITIAL MISSING

If a field has a specific missing value defined for it, the missing value is included
in the field values displayed. Missing values are assigned the highest value in the
ASCII collating sequence. Records sorted by a field with a defined missing value
appear first when the sort order is DESCENDING and last when the sort order is
ASCENDING.

If the field has no missing value in its definition, and the value is blank, RdbNMS
assigns either spaces to a text field or zeros to a numeric field or segmented
string. Moreover, if the MIDDLE_INITIAL field in the EMPLOYEES relation,
for example, has no missing value defined for it, you cannot locate records using
the MISSING relational operator for this field. The following example displays all
of the stored values for MIDDLE_INITIAL using the GE (greater than or equal
to) relational operator.

FOR E IN EMPLOYEES
WITH E.MIDDLE_INITIAL GE " "

SORTED BY ASCENDING E.MIDDLE_INITIAL
PRINT

E. MIDDLE_ INITIAL
END_FOR

Updating Databases 7-5

Because spaces precede alphabetic characters in the ASCII collating sequence, all
records with spaces in the MIDDLE._INITIAL field are displayed first, followed by
valid middle initials from A to Z.

7.2.1.1 Using Nested FOR Loops, Outer Joins and the MISSING Clause
You can use nested FOR loops to establish relationships for outer joins. In a com
mon type of join, such as an equijoin, RdbNMS matches certain values in a field
from one relation with a corresponding field in another relation. Values that do
not match are not included in the join. An outer join also establishes relationships
between data items by matching fields, but it includes the unmatched values by
adding them to the result of the equijoin.

To allow RdbNMS to optimize queries, use nested FOR loops only
when you want to reference more than one database or to perform outer
joins.

To accomplish an outer join using RdbNMS, you must include an
RDB$MISSING clause in the RSE so the unmatched values are added at the end
of the join. The RDB$MISSING clause denotes the value of a field has been
defined as absent. The following example shows how you use the RDB$MISSING
clause in a nested FOR loop to find all employees and show what degrees they
have. The employees' last names are sorted in alphabetic order.

FOR E IN EMPLOYEES SORTED BY E.LAST_NAME
FOR D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

PRINT
E.LAST_NAME,
E. FIRST_NAME,
D.DEGREE,
D.DEGREE_FIELD

END_FOR

FOR FIRST 1 D IN DEGREES
WITH NOT ANY Dl IN DEGREES

WITH Dl.EMPLOYEE_ID = E.EMPLOYEE_ID

PRINT
E.LAST_NAME,
E.FIRST_NAME,
RDB$MISSING(D.DEGREE),
RDB$MISSING(D.DEGREE_FIELD)

END_FOR

END_FOR

7-6 Updating Databases

This query prints information for all employees. If they have degrees, it prints
each degree they have. If an employee has no degrees, the missing value for the
degree field is printed (in this case, the value is the word UNKNOWN). Because
the outer FOR loop sorts the employees by last name, all employees without
degrees are included along with the employees that have degrees.

7.2.2 Storing Missing Values

When a field has a defined missing value, you can store a missing value with the
STORE statement or you can store a new record and not supply a value for the
field you want to have a missing value. The following example shows how to use
the STORE statement to store a missing value in the E.MIDDLE_INITIAL field:

STORE E IN EMPLOYEES
USING

E.MIDDLE_INITIAL RDB$MISSING(E.MIDDLE_INITIAL)
END_STDRE

7.2.3 Storing Segmented Strings

You can use the RdbNMS segmented string data type to store large blocks of
data in a database. Using the segmented string data type, you can store
unstructured data such as text, graphics, voice, telemetry, or bit streams. Any
data type can be stored in and retrieved from a segmented string. The data is
stored in unstructured bytes; you could store character data in a segmented string
and then retrieve it as hexadecimal data.

The segmented string is stored as a field in a relation. In fact, what you actually
store is a pointer to the segmented string, called a segmented string handle, in
the field that "contains" the segmented string. Because you are storing a pointer
to the segmented string, rather than the string itself, the segmented string is not
constrained by the RdbNMS record size limit. See the VAX Rdb!VMS Guide to
Programming for more information on segmented strings.

The following is an example of storing a segmented string:

START_TRANSACTION READ_WRITE RESERVING RESUMES
FOR SHARED WRITE

CREATE_SEGMENTED_STRING RESUME_HANDLE
STORE SEG IN RESUME_HANDLE USING

SEG.RDB$VALUE = "This is the first segment"
END_STORE

STORE SEG IN RESUME_HANDLE USING
SEG.RDB$VALUE = "This is the second segment"

END_STORE

STORE R IN RESUMES USING

Updating Databases 7-7

R.EMPLOYEE_ID= "00164";
R.RESUME = RESUME_HANDLE

END_STORE
END_SEGMENTED_STRING RESUME_HANDLE

COMMIT

7.3 Modifying Values
When you update data in a relation, you first must identify the record stream con
taining the record or records you want to change. You can assign new values, use
existing values in fields from other relations, or specify value expressions to calcu
late the new value for each.field in the selected records of the record stream.

In a single transaction, you can modify data in more than one relation. If the
changes to records in these relations depend on the values of fields in another
relation (such as the EMPLOYEE relation), you must specify the record stream
containing the records of the other relation (in this case, EMPLOYEE).

When you are modifying relations, you can choose to let other users access those
same relations. But once you select a record to change, RdbNMS locks that
record. Other users cannot access that record until you release it. The lock
ensures that only current data is available to all users. The changes you make are
available to other users only after you make your changes permanent with the
COMMIT statement. If you decide that the changes you make should not apply to
the database at this time, you can undo the updates with the ROLLBACK
statement.

7.3.1 Using One Relation to Modify Values

You can select records in the relation you want to modify, by using only the rela
tion itself. After you create a record stream, RdbNMS executes the MODIFY
statement to change the values of the specified field or fields for every record in
the stream.

The next example uses an RSE that identifies all people currently employed in
the Engineering department. It finds the records of all current employees in the
JOB_HISTORY relation using the JOB_END MISSING expression. When the
records are selected, the RSE uses the MODIFY statement to change all the
supervisor identification numbers in Engineering to 00348.

Examples

Example 1

START_TRANSACTION READ_WRITE RESERVING JOB_HISTORY
FOR SHARED WRITE

FOR JH IN JOB_HISTORY
WITH JH.DEPARTMENT_CODE = "ENG "
AND JH.JOB_END MISSING

7-8 Updating Databases

MODIFY JH USING
JH.SUPERVISOR_ID = "00348"

END_MODIFY

END_FOR
COMMIT

Example 2

The following example verifies the changes just made to the JOB_HISTORY
relation.

FOR JH IN JOB_HISTORY
WITH JH.DEPARTMENT_CODE = "ENG"
AND JH.JOB_END MISSING

PRINT

END_FOR

JH.EMPLOYEE_ID,
JH.DEPARTMENT_CODE,
JH.SUPERVISOR_ID

You can modify values in a field by including a value expression. Any valid
arithmetic operation can be used in your value expression to assign new values to
a field or fields. You can also refer to values from other fields within the same
relation.

For example, if you define a new field in the SALARY _HISTORY relation called
WEEKLY, you can assign values to that field for every current record in the
SALARY_HISTORY relation. The current record in the SALARY_HISTORY
relation, like the current record in the JOB_HISTORY relation, is identified by
the MISSING relational operator.

Use the MODIFY statement to modify the new WEEKLY field and replace miss
ing values in the WEEKLY field with new values.

Example 3

START_TRANSACTION READ_WRITE RESERVING
SALARY_HISTORY FOR SHARED WRITE

FOR SH IN SALARY_HISTORY
WITH SH.SALARY_END MISSING

MODIFY SH
USING

SH.WEEKLY = (SH.SALARY_AMOUNT/52)
END_MODIFY

END_FOR

The MODIFY statement in example 3 includes a reference to another field,
SALARY_AMOUNT, in the same relation and uses it in an arithmetic operation
to compute a weekly salary amount for every current employee in the
SALARY _HISTORY relation.

Updating Databases 7-9

7.3.2 Using More Than One Relation to Modify Values

This section shows you how to modify the data in two relations. The transaction
updates every record in the record stream identified by the RSE in the FOR
statement. Each MODIFY statement operates on a separate relation.

Assume that because information was unavailable, records in JOB_HISTORY and
SALARY _HISTORY were stored with missing values for job code, department
code, and salary amount. When the information becomes known, you can locate
these records and supply valid data, changing their definitions from MISSING to
actual values.

Here are the steps to modify the fields in the JOB_HISTORY and
SALARY _HISTORY relations:

1. Form a record selection expression that selects employee records from
EMPLOYEES, the current SALARY _HISTORY records, and the current
JOB_HISTORY records.

2. Change the field or fields of the SALARY _HISTORY record with a
MODIFY statement.

3. Modify the fields of the JOB_HISTORY record.

4. Commit the changes to the database.

You specify three relations, EMPLOYEES, JOB_HISTORY, and
SALARY_HISTORY and link them with the CROSS clause. The complete RSE
identifies the current record from each of the relations.

Use caution when you modify records in a relation and refer to more
than one relation in the RSE. If you attempt to modify a join term in
the record selection expression, RdbNMS cannot ensure predictable
results. Changing such a value might change the contents of the record
stream. Therefore, do not attempt to modify any field used in your
record selection expression. If your changes to one database are com
mitted, there is no way to roll them back. If you use this method of
modifying values, your application must be useable if changes are made
to one database but not to the others specified in your
START_TRANSACTION statement.

7-10 Updating Databases

The following command file changes values in two relations. Note that none of the
fields in the record selection expression is modified.

START_TRANSACTION READ_WRITE RESERVING
EMPLOYEES FOR SHARED READ,
JOB_HISTORY FOR SHARED WRITE,
SALARY_HISTORY FOR SHARED WRITE

FOR E IN EMPLOYEES WITH
E. EMPLOYEE_ ID GE "00502"

FOR JH IN JOB_HISTORY
WITH E.EMPLOYEE_ID = JH.EMPLOYEE_ID
AND JH.JOB_END MISSING

MODIFY JH USING
JH.JOB_CODE = "MENG";
JH. DEPARTMENT_ CODE = "ENG II;

END_MODIFY
END_FOR

FOR SH IN SALARY_HISTORY
WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID
AND SH.SALARY_END MISSING

MODIFY SH USING
SH.SALARY_AMOUNT =

(SH.SALARY_AMOUNT * 1.1)
END_MODIFY

END_FOR
END_FOR

COMMIT

Start transaction with
write access

Begin outer loop
selecting new employees

Begin first inner loop
selecting their current
job history records

Modify two fields

Terminate first inner loop

Begin second inner loop
selecting their current
salary history records

Modify salary amount

Terminate second inner loop
Terminate outer loop

Some update tasks require features, such as extensive arithmetic functions and
character manipulation, that a host language program can provide. RDO performs
limited queries of the database. It helps you to build logically and syntactically
correct statements that you can then embed in a host language program. For
extensive and complex interactive updates or reports, you can use
VAX DATATRIEVE.

7.3.3 Modifying Missing Values

If a field has a value stored in it from a previous STORE statement, you can
change that value to a missing value with the MODIFY statement:

FOR E IN EMPLOYEES WITH E.MIDDLE_INITIAL MATCHING "%"
MODIFY E USING E.MIDDLE_INITIAL= RDB$MISSING(E.MIDDLE_INITIAL)
END_MODIFY
END_FOR

Updating Databases 7-11

7.4 Updating with the START_STREAM Statement

Unlike the FOR statement, which works with every record identified in the RSE
until all records are processed, the ST ART _STREAM statement makes records
available but does not automatically retrieve any record in a record stream. In
order to see the records in a particular record stream, you must retrieve each one
with the FETCH statement. After FETCHing a record, you can test values of
fields and process some records while passing over others. The START_STREAM
statement is especially useful for conditionally processing the records in a record
stream in programs.

The next example performs an update to the JOB_HISTORY and
SALARY _HISTORY relations similar to the STORE operation you read about
earlier. Follow these steps for the update procedure:

1. Identify and name a group of selected records from EMPLOYEES (new
employees) using the START_STREAM statement and the new
EMPLOYEE_ID values.

2. Locate the record for the first new employee record using the FETCH
statement.

3. For each new employee record, add a record in the JOB_HISTORY and the
SALARY _HISTORY relations.

4. Repeat steps two and three until there are no more records in the record
stream.

5. Close the stream.

6. Commit the transaction to the database.

You create and name a record stream with the START_STREAM statement. The
collection of records included in the stream is identified by its record selection
expression.

START_STREAM NEW_STAFF
USING E IN EMPLOYEES WITH

E. EMPLOYEE_ ID > "00501"

The previous statement identifies the records you want to test. To locate a record
for use, you issue a FETCH statement that finds the first record from the record
stream NEW _STAFF.

FETCH NEW_STAFF

You can now use any other RDO statements to manipulate the values in the
record during your update operation. Because no record exists in either history
relation for the new employees, you use the STORE statement to add a record in
both relations for each new employee.

7-12 Updating Databases

Examples

Example 1

START_TRANSACTION READ_WRITE RESERVING
JOB_HISTORY FOR SHARED WRITE,
SALARY_HISTORY FOR SHARED WRITE,
EMPLOYEES FOR SHARED READ

START_STREAM NEW_STAFF USING
E IN EMPLOYEES WITH
E.EMPLOYEE_ID = "00502"

FETCH NEW_STAFF

STORE JH IN JOB_HISTORY USING
JH.EMPLOYEE_ID = E.EMPLOYEE_ID;
JH.JOB_START = "01-APR-1985"

END_STORE

STORE SH IN SALARY_HISTORY USING
SH.EMPLOYEE_ID = E.EMPLOYEE_ID;
SH.SALARLSTART = "01-APR-1985"

END_STORE

END_STREAM NEW_STAFF

COMMIT

The preceding statements add only those records belonging to the first new
employee to the JOB_HISTORY and SALARY _HISTORY relations. But there
are six new employee records to process.

To solve the problem of processing all six records in the stream interactively, you
could repeat the FETCH and STORE statements six times. Clearly, using RDO
interactively to perform these updates can be time-consuming. Remember that
when you need to do the same operation several times, you can enter the state
ments in a command file using your VMS text editor. Then, you can type the
name of the command file preceded by the at sign(@) and have RDO execute the
statements in the command file in the order you entered them.

To complete the six update operations with the least effort, break down the opera
tion into three steps:

1. Form the record stream with the ST ART _STREAM statement.

2. Execute the update procedure the required number of times.

3. End the stream and commit the transactions to the database.

Updating Databases 7-13

RdbNMS considers any line or portion of a line preceded by an exclamation point
to be a comment and ignores any text after it. The following example contains
comments to explain each statement. You can include a comment in any RDO
statement, either on a separate line or on the same line following an RDO state
ment. The statements that appear in UPDATE.RDO follow.

Example 2

FETCH NEW_STAFF

STORE JH IN JOB_HISTORY USING
JH.EMPLOYEE_ID = E.EMPLOYEE_ID;
JH.JOB_START = "01-APR-1985"

END_STORE

STORE SH IN SALARY_HISTORY USING
SH.EMPLOYEE_ID = E.EMPLOYEE_ID;
SH.SALARY_START = "01-APR-1985"

END_STORE

The update process using UPDATE.RDO as the command file appears in the
next example.

Example 3

RDO> PRINT COUNT OF E IN EMPLOYEES WITH
cont> E.EMPLOYEE_ID > "00502"

6 Stream has six records

RDO> START_STREAM NEW_STAFF USING
cont> E IN EMPLOYEES WITH
cont> E.EMPLOYEE_ID GE "00502"
RDO> ©UPDATE
RDO> ©UPDATE
RDO> ©UPDATE
RDO> ©UPDATE
RDO> ©UPDATE
RDO> ©UPDATE
RDO> END_STREAM NEW_STAFF
RDO> COMMIT

Start stream NEW_STAFF

Update - repeat six times

Close the stream
Write changes to database

When a query like UPDATE.RDO attempts to execute again and there are no
more records in the record stream, RdbNMS responds with this message:

RDO> ©UPDATE
%RDB-E-STREAM_EOF, attempt to fetch past end of stream.

Remember to terminate your transactions with either the COMMIT or the
ROLLBACK statement. Table 7-1 illustrates the effects of these statements on
databases and transactions.

7-14 Updating Databases

Table 7-1: Effects of COMMIT and ROLLBACK on Databases and Transactions

Items COMMIT ROLLBACK

Scope of Includes all Includes all
Statement invoked databases invoked databases

Database Writes to disk Does not write
all changes to to disk changes
a database and its to a database and its
data definitions data definitions

Open Streams Closes all Closes all
open streams as in open streams as in
STREAM_END STREAM_END

Position in No record is No record is
Stream available available

Record Locks Releases all locks Releases all locks

7.4.1 Using a View to Modify a Database

You can use a view to modify data. But if you are using a view definition that
refers to more than one relation, there is a restriction. If you define a view using a
CROSS or REDUCED TO clause, you cannot update your database with that
view. This restriction is necessary because the effects of modifying some records
in one relation and other records in a second relation can be unpredictable. Fields
selected and modified in the virtual record may change relationships in other
records.

For example, you define a view using the JOB_HISTORY and DEPARTMENTS
relations with a CROSS clause.

Examples

Example 1

DEFINE VIEW WORKER_DEPARTMENTS
OF JH IN JOB_HISTORY

CROSS D IN DEPARTMENTS OVER DEPARTMENT_CODE.
ID FROM JH.EMPLOYEE_ID.
J_CODE FROM JH.JOB_CODE.
DEPT_CODE FROM JH.DEPARTMENT_CODE.
DEPT FROM D.DEPARTMENT_NAME.

END WORKER_DEPARTMENTS VIEW.

Updating Databases 7-15

Suppose you want to change a department code for an employee in a specific
department. If you use this view to retrieve those records, your query looks like
example 2.

Example 2

FOR W IN WORKER_DEPARTMENTS
WITH W.DEPT_CODE = "ENG"
AND W.ID = "00201"

PRINT
W.ID,
W.J_CODE,
W.DEPT_CODE,
W.DEPT

END_FOR

Each record listed in the display contains some unique fields from the
JOB_HISTORY relation and common fields, DEPARTMENT_CODE and
DEPARTMENT_NAME, from the DEPARTMENTS relation. Many employees
in the company work in the same department. If you try to use this view to
change the department code, your update would fail because you cannot update
data in a view derived from more than one relation.

Use a view that refers to records in only one relation to find and update records in
the record stream and ensure data integrity.

7 .5 Erasing Data in a Relation
This section shows you how to delete one or many records in a relation identified
by the RSE using the ERASE statement. Because you are updating the database,
you begin the update transaction with the START_TRANSACTION statement
and in the READ_ WRITE transaction mode. When you terminate the transac
tion, use the COMMIT statement to make the deletions permanent or enter the
ROLLBACK statement to restore the database to the state it was in before you
made any modifications.

To erase the employee record in the EMPLOYEES relation with the employee
identification number of 00502, use the query shown in example 1:

Examples

Example 1

START_TRANSACTION READ_WRITE RESERVING
EMPLOYEES FOR SHARED WRITE

FOR E IN EMPLOYEES
WITH E.EMPLOYEE_ID = "00602"

ERASE E
END_FOR

COMMIT

7-16 Updating Databases

To test that the record for the employee whose identification number is 00502 no
longer exists in the EMPLOYEES relation, you can try the following query.

Example 2

FOR E IN EMPLOYEES WITH E. EMPLOYEE ID "00502"
PRINT

E.EMPLOYEE_ID,
E.FIRSLNAME,
E.LASLNAME

END_FOR

RDO does not display any data, indicating that the record with the identification
number of 00502 has been erased from the EMPLOYEES relation. Of course,
there still might be records for the number in the JOB_HISTORY and
SALARY_HISTORY relations and perhaps in the DEGREES relation. You can
write similar statements to erase these records from these relations. There can be
many records belonging to the employee identification number 00502 in each of
these three relations. (In other words, EMPLOYEE_ID is not a unique key for
some of the relations as it is for EMPLOYEES.)

Before you erase the record in the EMPLOYEES relation, you can use the RSE
to find records that should be deleted first in the other relations.

After you erase all records associated with employee 00502, you can verify that
the employee's record has been deleted from the EMPLOYEES relation using the
query in example 2.

7.6 Summary

The following session demonstrates a sequence of RDO statements updating the
database.

!
! Invoke the PERSONNEL database.

ROD> INVOKE DATABASE PATHNAME 'PERSONNEL'

Signal your access (update) intentions to Rdb/VMS.

ROD> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE

Store a new EMPLOYEE record.

ROD> STORE E IN EMPLOYEES USING

Updating Databases 7-17

cont> E.EMPLOYEE_ID"' "00503";
cont> E.FIRST_NAME = "PAUL";
cont> E.LAST_NAME = "CHRIS"
cont> END_STORE

Make the update permanent.

RDO> COMMIT

Store a new SALARY_HISTORY record.

RDO> 8TAR.T_ TRANSACTION READ_WRITE RESERVING
cont> SALARY_HISTORY FOR SHARED WRITE,

RDO> STORE SH IN SALARY_HISTORY USING
cont> SH.EMPLOYEE_ID = "00503"
cont>END_STORE

Make the update permanent.

RDO> COMMIT

Request a transaction mode to modify or erase.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE,
cont> SALARY_HISTORY FOR SHARED WRITE

Make first change.

RDO>
cont>
cont>
cont>
cont>
cont>
cont>

7-18

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00503"
CROSS SH.SALARY_HISTORY OVER EMPLOYEE_ID
WITH SH.SALARY_END MISSING

MODIFY SH USING
SH.SALARY_AMOUNT = SH.SALARY_AMOUNT * 1.9

END_MODIFY
END_FOR

Updating Databases

Mistake! Percent raise is incorrect; undo change.

RDO> ROLLBACK

Reset transaction mode and control options.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE,
cont> SALARY_HISTORY FDR SHARED WRITE

Specify correct percent raise.

RDO>
cont>
cont>
cont>
cont>
cont>
cont>

FOR E IN EMPLOYEES WITH E.EMPLOYEE_II.l "00503"
CROSS SALARY_HISTORY OVER EMPLOYEE_ID
WITH SH.SALARY_END MISSING

MODIFY SH USING
SH.SALARY_AMOUNT = SH.SALARY_AMOUNT * 1.1

END_MODIFY
END._FOR

Erase Employee and Salary History records with ID 00503.

RDO> FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00503"
cont> ERASE E
cont> END_FOR
RDO> FDR SH IN SALARY.HISTORY WITH SH.EMPLOYEE_ID = "00503"
cont> ERASE SH
cont> END FOR

Make the change and the deletion permanent.

RDO> COMMIT
RDO>

Updating Databases 7-19

Definitions for the PERSONNEL Database A

The definitions shown here create the PERSONNEL database used thoughout
this book. Included are the relation names and field names for the PERSONNEL
database. Set your default directory to RDM$DEMO and look at the
PERSONNEL.COM command file for the definitions.

SET DICTIONARY CDD$HOME
!
! *** Define the database ***
!
DEFINE DATABASE 'RDB$HOME:PERSONNEL'

IN 'CDD$HOME.PERSONNEL'.

*** Define fields for the PERSONNEL database ***

DEFINE FIELD ID_NUMBER
DESCRIPTION IS /* Generic employee ID */
DATATYPE IS TEXT SIZE IS 5.

DEFINE FIELD LAST_NAME
DESCRIPTION IS /* Generic last name */
DATATYPE IS TEXT SIZE IS 14.

DEFINE FIELD FIRST_NAME
DESCRIPTION IS /* Generic first name */
DATATYPE IS TEXT SIZE IS 10.

DEFINE FIELD MIDDLE_INITIAL
DESCRIPTION IS /* Generic middle initial */
DATATYPE IS TEXT SIZE IS 1
EDIT_STRING FOR DATATRIEVE IS 'X.'
MISSING_VALUE IS ' '

A-1

DEFINE FIELD ADDRESS_DATA_l
DESCRIPTION IS /* Street name */
DATATYPE IS TEXT SIZE IS 25
MISSING_VALUE IS '

DEFINE FIELD ADDRESS_DATA_2
DESCRIPTION IS /* Mail stops, suite addresses,

street numbers, etc.*/
DATATYPE IS TEXT SIZE IS 20
MISSING_VALUE IS '

DEFINE FIELD CITY
DESCRIPTION IS /* City name */
DATATYPE IS TEXT SIZE IS 20
MISSING_VALUE IS I

DEFINE FIELD STATE
DESCRIPTION IS /* State abbreviation (or DISTRICT)*/
DATATYPE IS TEXT SIZE IS 2
MISSING_VALUE IS ' '

DEFINE FIELD POSTAL_CODE

!

DESCRIPTION IS /* Postal Code (in US ZIP) */
DATATYPE IS TEXT SIZE IS 5
MISSING VALUE IS ' '

DEFINE FIELD SEX
DESCRIPTION IS /* M, F */

DATATYPE IS TEXT SIZE IS 1
VALID IF SEX= 'M' OR SEX = 'F' OR
SEX MISSING
MISSING_VALUE IS '?'.

DEFINE FIELD STANDARD_DATE
DESCRIPTION IS /* Generic date field */
DATATYPE IS DATE
MISSING_VALUE IS '17-NOV-1858 00:00:00.00'
EDIT_STRING FOR DATATRIEVE IS 'DD-MMM-YYYY'.

DEFINE FIELD SALARY
DESCRIPTION IS /* Generic salary field */
DATATYPE IS SIGNED LONGWORD SCALE -2
VALID IF SALARY > 0 OR
SALARY MISSING
EDIT_STRING FOR DATATRIEVE IS '$$$$,$$9.99'.

DEFINE FIELD RESUME
DESCRIPTION IS /* Employee resume */
DATATYPE IS SEGMENTED STRING.

A-2 Definitions for the PERSONNEL Database

DEFINE FIELD DEPARTMENT_CODE
DESCRIPTION IS /* Department code or abbreviation */
DATATYPE IS TEXT SIZE IS 4
MISSING_ VALUE IS 'None'.

DEFINE FIELD JOB_CODE
DESCRIPTION IS /* Generic job code */
DATATYPE IS TEXT SIZE IS 4
MISSING_VALUE IS 'None'.

DEFINE FIELD WAGE_CLASS
DESCRIPTION IS /* Wage class -- 1 to 4 */
DATATYPE IS TEXT SIZE IS 1
VALID IF WAGE_CLASS = '1' OR

WAGE_CLASS = '2' OR
WAGE_CLASS = '3' OR
WAGE_CLASS = '4' OR
WAGE_CLASS MISSING.

DEFINE FIELD JOB_TITLE
DESCRIPTION IS /* Generic job title */
DATATYPE IS TEXT SIZE IS 20
MISSING_ VALUE IS 'None'.

DEFINE FIELD DEPARTMENT_NAME
DESCRIPTION IS /* Department name */
DATATYPE IS TEXT SIZE IS 30
MISSING_ VALUE IS 'None'.

DEFINE FIELD BUDGET

!

DESCRIPTION IS /* Generic budget data */
DATATYPE IS SIGNED LONGWORD SCALE 0
EDIT_STRING FOR DATATRIEVE IS '$$$,$$$,$$$'.

DEFINE FIELD COLLEGE_NAME
DESCRIPTION IS /* Halls of ivy */
DATATYPE IS TEXT SIZE IS 25.

DEFINE FIELD COLLEGE_CODE

!

DESCRIPTION IS /* Four-letter college code */
DATATYPE IS TEXT SIZE IS 4.

DEFINE FIELD YEAR_GIVEN
DESCRIPTION IS /* Year degree awarded */
DATATYPE IS SIGNED WORD.

DEFINE FIELD DEGREE
DESCRIPTION IS /* Degree awarded */
DATATYPE IS TEXT SIZE IS 3
VALID IF DEGREE = 'BA ' OR

Definitions for the PERSONNEL Database A-3

DEGREE 'BS ' OR
DEGREE 'MA ' OR
DEGREE 'MS ' OR
DEGREE 'AA ' OR
DEGREE 'PhD' OR
DEGREE MISSING.

DEFINE FIELD DEGREE_FIELD
DESCRIPTION IS /* Field in which

degree was awarded */
DATATYPE IS TEXT SIZE IS 15
MISSING_VALUE IS 'Unknown'.

DEFINE FIELD STATUS_CODE
DESCRIPTION IS /* A number */
DATATYPE IS TEXT SIZE IS 1
MISSING_VALUE IS 'N'
VALID IF STATUS_CODE = 'O' OR

STATUS_CODE = '1' OR
STATUS_CODE = '2' OR
STATUS_CODE MISSING.

DEFINE FIELD STATUS_NAME
DESCRIPTION IS /* Active or inactive */
DATATYPE IS TEXT SIZE IS 8
VALID IF STATUS_NAME = 'ACTIVE' OR

STATUS_NAME = 'INACTIVE' OR
STATUS_NAME NOT MISSING.

DEFINE FIELD STATUS_TYPE
DESCRIPTION IS /* Full-time,

part-time, or expired */
DATATYPE IS TEXT SIZE IS 14
VALID IF STATUS_TYPE = 'RECORD EXPIRED' OR

STATUS_TYPE = 'FULL TIME' OR
STATUS_TYPE = 'PART TIME' OR
STATUS_TYPE MISSING.

'**
!
!
! *** Define Relations ***
!
DEFINE RELATION EMPLOYEES.

EMPLOYEE_ ID
BASED ON ID_NUMBER.

LAST_NAME.
FIRST_NAME.
MIDDLE_INITIAL.
ADDRESS_DATA_l.
ADDRESS_DATA_2.
CITY.
STATE.
POSTAL_CODE.
SEX.

A-4 Definitions for the PERSONNEL Database

BIRTHDAY
BASED ON STANDARD_DATE.

STATUS_CODE.
END EMPLOYEES RELATION.

!
! Job_History Relation:
!
DEFINE RELATION JOB_HISTORY.

EMPLOYEE_ ID
BASED ON ID_NUMBER.

JOB_CODE.
JOB_START

BASED ON STANDARD_DATE.
JOB_END

BASED ON STANDARD_DATE.
DEPARTMENT_CODE.
SUPERVISOR_ ID

BASED ON ID_NUMBER.
END JOB_HISTORY RELATION.

!
! Salary_History Relation:
!
DEFINE RELATION SALARY_HISTORY.

EMPLOYEE_ ID
BASED ON ID_NUMBER.

SALARY_AMOUNT
BASED ON SALARY.

SALARY_START
BASED ON STANDARD_DATE.

SALARY_END
BASED ON STANDARD_DATE.

END SALARY_HISTORY RELATION.
!
!
! Jobs Relation:

DEFINE RELATION JOBS.
JOB_CODE.
WAGE_CLASS.
JOB_ TITLE.
MINIMUM_SALARY

BASED ON SALARY.
MAXIMUM_SALARY

BASED ON SALARY.
END JOBS RELATION.

!
! Departments Relation:
!
DEFINE RELATION DEPARTMENTS.

DEPARTMENT_CODE.
DEPARTMENT_NAME.
MANAGER_ ID

BASED ON ID_NUMBER.
BUDGET_PROJECTED

BASED ON BUDGET.
BUDGET_ACTUAL

BASED ON BUDGET.

Definitions for the PERSONNEL Database A-5

END DEPARTMENTS RELATION.

!
! Colleges Relation:
!
DEFINE RELATION COLLEGES.

COLLEGE_CODE.
COLLEGE_NAME.
CITY.
STATE.
POSTAL_CODE.

END COLLEGES RELATION.
!
!
! Degrees Relation:
!
DEFINE RELATION DEGREES.

EMPLOYEE_ ID
BASED ON ID_NUMBER.

COLLEGE_CODE.
YEAR_GIVEN.
DEGREE.
DEGREE_FIELD.

END DEGREES RELATION.

!
! Work_Status Relation:
!
DEFINE RELATION WORK_STATUS.

STATUS_CODE.
STATUS_NAME.
STATUS_ TYPE.

END WORK_STATUS RELATION.

DEFINE RELATION RESUMES.
EMPLOYEE_ ID

BASED ON ID_NUMBER.
RESUME.

END RESUMES RELATION.

COMMIT

**

*** Define three views to get current information ***

Current job information

DEFINE VIEW CURRENT_JOB OF JH IN JOB_HISTORY
CROSS E IN EMPLOYEES OVER EMPLOYEE_ID

WITH JH.JOB_END MISSING.
E.LAST_NAME.
E.FIRST_NAME.
E.EMPLOYEE_ID.
JH.JOB_CODE.
JH.DEPARTMENT_CODE.
JH.SUPERVISOR_ID.

A-6 Definitions for the PERSONNEL Database

JH.JOB_START.
END VIEW.

! Current salary information
!
DEFINE VIEW CURRENT_SALARY OF SH IN SALARY_HISTORY

CROSS E IN EMPLOYEES OVER EMPLOYEE_ID
WITH SH.SALARY_END MISSING.

E.LAST_NAME.
E.FIRST_NAME.
E.EMPLOYEE_ID.
SH.SALARY_START.
SH.SALARY_AMOUNT.

END VIEW.

!
! Current salary and job information
!
DEFINE VIEW CURRENT_INFO OF CJ IN CURRENT_JOB

CROSS D IN DEPARTMENTS OVER DEPARTMENT_CODE
CROSS J IN JOBS OVER JOB_CODE
CROSS CS IN CURRENT_SALARY OVER EMPLOYEE_ID.

LAST FROM CJ.LAST_NAME.
FIRST FROM CJ.FIRST_NAME.
ID FROM CJ.EMPLOYEE_ID.
DEPARTMENT FROM D.DEPARTMENT_NAME.
JOB FROM J.JOB_TITLE.
JSTART FROM CJ.JOB_START.
SSTART FROM CS.SALARY_START.
SALARY FROM CS.SALARY_AMOUNT.

END VIEW.
!
COMMIT

Store three Work Status Codes in WORK_STATUS relation
!
START_TRANSACTION READ_WRITE RESERVING WORK_STATUS FOR SHARED WRITE
STORE W IN WORK_STATUS USING
W.STATUS_CODE="O";
W.STATUS_NAME="INACTIVE";
W.STATUS_TYPE="RECORD EXPIRED";END_STORE
STORE W IN WORK_STATUS USING
W.STATUS_CODE="l";
W.STATUS_NAME="ACTIVE";
W.STATUS_TYPE="FULL TIME";END_STORE
STORE W IN WORK_STATUS USING
W.STATUS_CODE="2";
W.STATUS_NAME="ACTIVE";
W.STATUS_TYPE="PART TIME";END_STORE
COMMIT

FINISH
EXIT

!
INVOKE DATABASE PATHNAME 'CDD$HOME:PERSONNEL'

Display statistics for PERSONNEL

Definitions for the PERSONNEL Database A-7

SET NOVERIFY
SET OUTPUT COUNT.LOG
PRINT II II

PRINT "Statistics for PERSONNEL, the sample Rdb/VMS database:"
PRINT II II

PRINT "Count of Employees -------> 11 ,

COUNT OF E IN EMPLOYEES
PRINT "Count

PRINT "Count

PRINT "Count

PRINT "Count

PRINT "Count

PRINT "Count

PRINT "Count

PRINT "Count

PRINT " "
PRINT " "
EXIT

of Jobs ------------> 11 ,

COUNT OF J IN JOBS
of Degrees ---------> 11 ,

COUNT OF D IN DEGREES
of Salary_History --> 11 ,

COUNT OF SH IN SALARY_HISTORY
of Job_History -----> 11 ,

COUNT OF JH IN JOB_HISTORY
of Work_Status -----> 11 ,

COUNT OF W IN WORK_STATUS
of Departments-----> ",

COUNT OF D IN DEPARTMENTS
of Colleges --------> ",

COUNT OF C IN COLLEGES
of Resumes ---------> 11 ,

COUNT OF R IN RESUMES

A-8 Definitions for the PERSONNEL Database

Using a VMS Text Editor for Program Development B

This appendix shows how you can use the Relational Database Operator (RDO)
and the VAX EDT or V AXTPU text editors to test and debug data manipulation
statements to be included in application programs.

RDO and the VAX text editors provide a single environment for developing
database applications. RDO lets you try on the terminal almost every operation
you can use in a program. You can type a command and see the results immedi
ately. The EDIT command lets you use EDT or V AXTPU to modify an RDO
statement, so that you can continuously refine that statement until it does
exactly what you want it to do.

The EDIT command is suited to the structure of the RdbNMS data manipulation
statements. Each clause of the record selection expression defines the record
stream more specifically. Thus you can use the EDIT command to add clauses,
until you have the data you need. When the results are what you want, you can
use VAX EDT or V AXTPU to write the RDO statement that writes to an exter
nal file. Then you can include that file in the source code for your program.

When you type the EDIT command, you place that last complete RDO statement
in the editing buffer. RDO keeps every command and statement you enter in your
terminal session in a separate buffer. You can retrieve any complete statement or
all of them for editing by using the following VAX EDT or VAXTPU options from
RDO:

• EDIT

This command places the last complete command or statement you typed
into the editing buffer. You can execute the query again by exiting from VAX
EDT or V AXTPU with the VAX EDT or V AXTPU EXIT command or you
can direct RDO not to execute it by entering the VAX EDT or V AXTPU
QUIT command.

B-1

• EDIT 0

This command invokes EDT or VAXTPU with an empty editing buffer. You
can enter a query in the editing buffer and write it to a file for later execution
without exiting from RDO. When you finish entering the query, you can also
test it immediately by exiting from VAX EDT or VAXTPU with the VAX EDT
or V AXTPU EXIT command.

• EDIT n

This command replaces n with an integer, places the last n commands in the
editing buffer.

• EDIT*

This command places every command or statement you have entered during
your current interactive session in the editing buffer. This method allows you
to change the order of your statements or to include only specific, correct
statements in a single transaction. You can then write these statements to a
file and use them again.

You cannot edit a command file with the EDIT command in RDO. Specifying a
file name after the EDIT command returns a syntax error. To modify an existing
command file, you can:

• Exit from RDO, edit the file, and return to RDO

• Type EDIT 0 and use the VAX EDT or VAXTPU INCLUDE <file-name>
command to place the command file in the empty buffer

Depending on the command you use to exit from the editor, RDO responds in dif
ferent ways. When you type:

• EXIT

RDO automatically executes the contents of the editing buffer and the
RDO > prompt appears on completion of the edited statements.

• QUIT

RDO does not attempt to execute the contents of your editing buffer. RDO
ignores the changes you made during the edit session. The RDO > prompt
appears immediately.

The sequence that follows demonstrates the technique of progressively specifying
a query and reproduces a log file of an RDO terminal session. Each statement is
modified using EDIT.

B-2 Using a VMS Text Editor for Program Development

Suppose you must retrieve the current employees from a particular department.
List last name, first name, job title, and department name.

SET OUTPUT QUERY.LOG
START_TRANS READ_ONLY
!
! Print the employees.
!

FOR FIRST 5 E IN EMPLOYEES
PRINT

E.LAST_NAME,
E.FIRST_NAME

END_FOR
Toliver
Smith
Dietrich
Kilpatrick
Nash

EDIT
!

Alvin
Terry
Rick
Janet
Norman

! Join EMPLOYEES to JOB_HISTORY to get JOB_CODE.

FOR FIRST 5 E IN EMPLOYEES CROSS
J IN JOB_HISTORY OVER EMPLOYEE_ID

PRINT
E.LAST_NAME,
E.FIRST_NAME,
J.JOB_CODE

END_FOR
Toliver
Toliver
Toliver
Smith
Smith

EDIT

Alvin
Alvin
Alvin
Terry
Terry

DMGR
SPGM
MENG
DGFR
DGFR

! Join JOB_HISTORY to DEPARTMENTS to get DEPARTMENT_NAME.
!
FOR FIRST 5 E IN EMPLOYEES CROSS

J IN JOB_HISTORY OVER EMPLOYEE_ID CROSS
D IN DEPARTMENTS OVER DEPARTMENT_CODE

PRINT
E.LAST_NAME,
E.FIRST_NAME,
J.JOB_CODE,
D.DEPARTMENT_NAME

END_FOR
Toliver
Toliver
Toliver
Smith
Smith

EDIT

Alvin
Alvin
Alvin
Terry
Terry

SPGM
DMGR
MENG
DGFR
DGFR

Cabinet and Frame Manufacturing
Board Manufacturing North
Board Manufacturing North
Board Manufacturing
Telecommunications Industries

Join JOB_HISTORY to JOBS to get JOB_TITLE.

Using a VMS Text Editor for Program Development B-3

FOR FIRST 5 E IN EMPLOYEES CROSS
J IN JOB_HISTORY OVER EMPLOYEE_ID CROSS
D IN DEPARTMENTS OVER DEPARTMENT_CODE CROSS
JO IN JOBS WITH JO.JOB_CODE = J.JOB_CODE

PRINT
E.LAST_NAME,
JO.JOB_TITLE,
D.DEPARTMENT_NAME

END_FOR
Toliver
Toliver
Toliver
Smith
Smith

Systems Programmer
Department Manager
Mechanical Engineer
Deputy
Deputy

Cabinet & Frame Manufacturing
Board Manufacturing North
Board Manufacturing North
Large Systems Engineering
Telecommunications Industries

EDIT
!
! Specify JOB_END MISSING to limit stream to current jobs.
!
FOR FIRST 5 E IN EMPLOYEES CROSS

J IN JOB_HISTORY OVER EMPLOYEE_ID CROSS
D IN DEPARTMENTS OVER DEPARTMENT_CODE CROSS
JO IN JOBS WITH JO.JOB_CODE = J.JOB_CODE AND
J.JOB_END MISSING

PRINT
E.LAST_NAME,
JO.JOB_TITLE,
D.DEPARTMENT_NAME

END_FOR
Williams
O'Sullivan
Gramby
Wilkins
Myotte

EDIT
!

Janitor
Mechanical Engineer
Electrical Engineer
Mechanical Engineer
Vice President

! Specify a particular department.
!
FOR FIRST 5 E IN EMPLOYEES CROSS

Corporate
Corporate
Corporate
Corporate
Corporate

J IN JOB_HISTORY OVER EMPLOYEE_ID CROSS
D IN DEPARTMENTS OVER DEPARTMENT_CODE CROSS
JO IN JOBS WITH JO.JOB_CODE = J.JOB_CODE AND
J.JOB_END MISSING AND
D.DEPARTMENT_CODE = "ELEL"

PRINT
E.LAST_NAME,
JO.JOB_TITLE,
D.DEPARTMENT_NAME

Administration
Administration
Administration
Administration
Administration

END_FOR
Iacobone
Lobdell
Siciliano
Leger
Jones

Systems Analyst
Associate Programmer
Mechanical Engineer
Mechanical Engineer
Programmer

Electronics Engineering
Electronics Engineering
Electronics Engineering
Electronics Engineering
Electronics Engineering

EDIT
!
! Sort the records by LAST_NAME.
!
FOR FIRST 5 E IN EMPLOYEES CROSS

J IN JOB_HISTORY OVER EMPLOYEE_ID CROSS

B-4 Using a VMS Text Editor for Program Development

D IN DEPARTMENTS OVER DEPARTMENT_CODE CROSS
JO IN JOBS WITH JO.JOB CODE J.JOB CODE AND
J.JOB_END MISSING AND
D.DEPARTMENT_CODE = "ELEL"
SORTED BY E.LAST_NAME

PRINT
E.LAST_NAME,
E. FIRST_ NAME,
JO. JOB_ TITLE,

D.DEPARTMENT_NAME
END_FOR

Augusta
Boutin
Clairmont
Flynn
Gutierrez

Thomas
George
Rick
Peter
Ernest

Electrical Engineer
Clerk
Clerk
Electrical Engineer
Systems Analyst

Electronics Engineering
Electronics Engineering
Electronics Engineering
Electronics Engineering
Electronics Engineering

Now that you have arrived at the correct form of the query, you can write the
results to a file:

RDO> EDIT
* WRITE QUERY.RDO
* QUIT

RDO> ROLLBACK
RDO> FINISH
RDO> EXIT

Now you can use VAX EDT or VAXTPU to create the program.

$ EDIT QUERY.REA
* INCLUDE QUERY.RDO
* CHANGE

Sort the records by LAST_NAME.

FOR FIRST 5 E IN EMPLOYEES CROSS
J IN JOB_HISTORY OVER EMPLOYEE_ID CROSS
D IN DEPARTMENTS OVER DEPARTMENT_CODE CROSS
JO IN JOBS WITH JO.JOB CODE J.JOB CODE AND
J.JOB_END MISSING AND
D.DEPARTMENT_CODE = "ELEL"
SORTED BY E.LAST_NAME

PRINT
E.LAST_NAME,
E. FIRST _NAME,
JO.JOB_TITLE,
D.DEPARTMENT_NAME

END_FOR
[EOB]

Using a VMS Text Editor for Program Development B-5

At this point, you have the central logic for a VAX BASIC report program. Now
you can add the rest of the required and optional elements. The final program
might look like the following (with no error checking).

1 DECLARE STRING LAST_NAME, FIRST_NAME, JOB_TITLE, &
DEPARTMENT_NAME, DEPARTMENT_CODE

&RDB&
&RDB&

&RDB&
&RDB&
&RDB&
&RDB&
&RDB&

&RDB&
&RDB&
&RDB&
cl!RDB&
&RDB&
&RDB&
&RDB&
&RDB&
&RDB&
&RDB&
&RDB&
&RDB&

&RDB&
&RDB&
&RDB&

32767

B-6

INVOKE DATABASE FILENAME "DISK2: [DEPT3]PERSONNEL"
START_TRANSACTION READ_ONLY

INPUT "Department code"; DEPARTMENT_CODE

FOR D IN DEPARTMENTS
WITH D.DEPARTMENT_CODE = DEPARTMENT_CODE

GET DEPARTMENT_NAME = D.DEPARTMENT_NAME
END_GET

END_FOR

PRINT II "

PRINT "Employee list for "; DEPARTMENT_NAME
PRINT " "
PRINT "Last name", ,"First name", "Job"
PRINT II "

GET

FOR E IN EMPLOYEES CROSS
J IN JOB_HISTORY OVER EMPLOYEE_ID CROSS
D IN DEPARTMENTS OVER DEPARTMENT_CODE CROSS
JO IN JOBS WITH JO.JOB_CODE = J.JOB_CODE AND
J.JOB_END MISSING AND
D.DEPARTMENT_CODE = DEPARTMENT_CODE
SORTED BY E.LAST_NAME

LAST_NAME = E.LAST_NAME;
FIRST_NAME = E.FIRST_NAME;
JOB_TITLE = JO.JOB_TITLE;

END_GET

PRINT LAST_NAME, FIRST_NAME, JOB_TITLE

END_FOR
COMMIT
FINISH

END

Using a VMS Text Editor for Program Development

In this index, a page number followed
by a "t" indicates a table reference.
A page number followed by an "f"
indicates a figure reference.

! (comment character)
See Exclamation point (!)

$(dollar sign)
See Dollar sign ($)

- (continuation character)
See Continuation character (-)

I (concatenate operator)
See Concatenate operator (I)

A
Access

conflicts
deadlocking, 2-21
START_TRANSACTION state

ment, 2-11
mode

defaults, 2-6
updates, 2-8

options
ST ART_ TRANSACTION state

ment, 7-2

using the optimizer, 2-26
Accessing a database

See INVOKE DATABASE
statement

Aggregate expressions
See Statistical expressions

Alphabetic characters, 6-2

Index

AND logical operator, 3-12 to 3-13
ANY relational operator, 3-17 to 3-18
Arithmetic expressions, 6-4

order of evaluation, 6-4
AVERAGE statistical expression, 6-6

8
BATCH_ UPDATE transactions

function, 2-5, 2-6, 2-9

c
Callable RDO, 3-1
Case sensitivity, 3-9, 3-20
CDD

See Common Data Dictionary
Character string literals, 6-2
Command files, 1-5

RDOINI, 1-6
startup, 1-6

Comment character(!), 7-14
Comment lines

in a command file, 7-14

lndex-1

COMMIT statement
updating the database, 7-1, 7-8
writing changes to the database,

2-24
Common Data Dictionary (CDD), 2-2
Common fields

using in joins, 4-3
Concatenate operator (I), 6-5
Concatenated expressions, 6-5
Conditional expressions

compound, 3-11
logical operators, 3-11 to 3-18
relational operators, 3-10

Conflicts
with other users, 2-15

Constraints, 2-5
EVALUATING AT

COMMIT_ TIME, 2-18
EVALUATING AT VERB_TIME,

2-18
CONTAINING relational operator,

3-22
pattern matching, 3-21

Context variables, 1-3
descriptive, 4-9
using, 3-2

Continuation character H
statement continuation, 6-7

Continuation prompt (cont> l, 1-5
COUNT statistical expression, 6-6
CROSS clause, 4-1 to 4-11

reflexive join, 4-11
Cross product, 4-5
CTRL/Z

leaving RDO, 1-7

D

Data manipulation language
embedded, 3-1

Database files (.RDB), 2-4
Databases

access conflicts, 7 -1
file types, 2-4
journal files (.RUJ), 2-22

lndex-2

normalization, 4-1
snapshot files (.SNP), 2-4
update of, 2-8, 7-1

DATATRIEVE
record definitions, 1-2

DCL
DEFINE CDD$DEFAULTcom

mand, 2-2
invoke command($), 1-5
SET DEFAULT command, 2-2

Deadlocking
access conflicts, 2-21

Default access mode
data manipulation statements, 2-6

Default values
MISSING VALUE clause, 7-4

DEFINE CDD$DEFAULT command
(DCL), 2-2

DEFINE VIEW statement, 5-4
Deleting data

See ERASE statement
Dictionaries

defining default, 2-2
Displaying records

See Retrieving records
Dollar sign ($)

DCL invoke command, 1-5
Duplicate records

eliminating, 3-24

E

EDIT statement, 1-5, 1-8
Eliminating duplicate records, 3-24
Ending a transaction

COMMIT statement, 2-24
ROLLBACK statement, 2-24

Entering data, 7-1 to 7-4
EQ (equaH relational operator

WITH clause, 3-10
ERASE statement, 7-16 to 7-17
Erasing data, 7-16 to 7-17
Errors

software, 2-4
using EDIT, B-2

Exclamation point I!)
comment character, 7-14

EXCLUSIVE share mode, 2-14
START_TRANSACTION state

ment, 2-11
EXIT statement

leaving RDO, 1-7
Expressions

F

arithmetic, 6-13
order of evaluation, 6-4

compound conditional, 3-11
concatenated, 6-5
conditional, 3-10 to 3-18
literal, 3-4
record selection, 1-6, 3-1
statistical, 6-13
value, 3-3, 3-4, 3-7, 6-13

Failures
hardware, 2-4
inconsistencies, 2-4

FETCH statement, 7-12 to 7-14
File types

database (.RDB), 2-4
journal (.RUJ), 2-22
snapshot (.SNP), 2-4

Files
command, 1-5, 1-6
output, 3-3

FIRST n clause, 3-8
FOR statement

loops, 4-11
nested, 4-11 to 4-13, 7-6

Foreign keys, 2-21

G

GE (greater than or equal to) rela
tional operator

WITH clause, 3-10
Global aggregates, 6-7 to 6-13
GT (greater than) relational operator

WITH clause, 3-10

H
HELP command, 1-5
HELP statement, 1-7

Indexes
with record Jocking, 2-13

INVOKE DATABASE statement, 2-1
opening a database, 2-1
remote access, 2-3
with CDD path name, 2-2
with file specification, 2-1, 2-4

J
Join terms

indexed, 4-9
Joining

join terms, 4-9
more than two relations, 4-7
on common field, 4-3
outer join, 7-7
reflexive join, 4-11
relations

See Relational joins
Journal files (.RUJ)

transactions, 2-25
updating database, 2-22

L
LE (less than or equal to) relational

operator
WITH clause, 3-10

Literals, 6-1 to 6-4
character string, 6-2
numeric, 6-3
printing, 3-4

Locking records
See Record locking

Logical operators, 3-11 to 3-18
AND, 3-12 to 3-13
NOT, 3-15 to 3-18
OR, 3-14 to 3-15

Loops

lndex-3

FOR statement, 4-11
LT (less than) relational operator

WITH clause, 3-10

M
MATCHING operator, 3-18
MAXIMUM statistical expression, 6-6
Metadata, 2-4
MINIMUM statistical expression, 6-7
MISSING relational operator, 7-4
MISSING VALUE clause

default values, 7-4
missing values

retrieving, 7-4
MODIFY statement, 7-8 to 7-9
Modifying

data, 7-8 to 7-9
one relation, 1-8 to 7-9
queries, 1-8

Multi-user access
START_ TRANSACTION state

ment, 2-4
Multiline statements

N

with continuation character, 1-7,
6-7

NE (not equal to) relational operator,
3-20

WITH clause, 3-10
Nested FOR loops, 4-11 to 4-13, 7-6
Normalization, 1-4
NOT ANY relational operator, 3-15 to

3-16
NOT logical operator, 3-15 to 3-18
Numeric literals, 6-3

0
Opening a database

See INVOKE DATABASE
statement

Operators
logical

lndex-4

See Logical operators
relational

See Relational operators
Optimizer, 2-25 to 2-27

access strategies of, 2-26
join predicate, 2-26
processing queries, 2-25
tasks, 2-26

OR logical operator, 3-14 to 3-15
Outer joins, 7-7

p

Pattern matching, 3-18 to 3-22
case sensitivity, 3-20

Precompilers, 1-8
Primary keys, 2-21
PRINT statement, 3-3

literals, 3-4
Promoting locking, 2-9
Prompts, 1-5
PROTECTED share mode, 2-13

a
Queries

in application programs, 3-1
modifying, 1-8
testing, 3-1

Query execution
using the optimizer, 2-25

Quotation marks
in character strings, 6-2

Quoted strings, 6-2

R
ROB file type

See Database files
RDO

Callable, 3-1
command recall, 1-5
EDIT, B-2
exiting, 1-7
invoking, 1-4
prompt, 1-5

RDOINI
logical name, 1-6
startup file, 1-6

READ_ONLY transactions
function, 2-8

READ_ WRITE transaction
START_TRANSACTION state

ment, 2-11
READ_ WRITE transactions

function, 2-8
Record

definitions, 1-2
snapshot file versions, 2-8
streams, 3-1 to 3-26, 7-12 to 7-14
unique records, 3-27

Record locking, 2-14
consistency, 2-1 7
EXCLUSIVE share mode, 2-14
lock promotion, 2-9
PROTECTED share mode, 2-13
read locks, 2-5
SHARED share mode, 2-12
updating the database, 7-8
using indexes, 2-13
waiting, 2-16

Record selection expression
CROSS clause, 4-1 to 4-11
FIRST n clause, 3-8
REDUCED TO clause, 3-24
SORTED BY clause, 3-5
using, 1-6, 3-1
WITH clause, 3-12 to 3-18

Reduce keys
using, 3-25

REDUCED TO clause, 3-24
compared to UNIQUE operator,

3-27
Redundancy

disadvantages, 1-4
Reflexive joins, 4-9 to 4-11

defined, 4-9, 4-11
Relational Database Operator

See RDO
Relational joins, 4-1 to 4-11

more than two relations, 4-7 to 5-7

reflexive join, 4-9 to 4-11
two relations, 4-1 to 4-5

Relational operators, 3-10 to 6-7
WITH clause, 3-10

Relations, 1-2
Remote access

INVOKE DATABASE statement,
2-3

Reserving options, 2-11
Retrieving records

all records, 3-2
checking other relations, 3-28
eliminating duplicates, 3-24 to 3-26
exact matches, 3-18
joining relations, 4-1 to 4-11
limited number, 3-8
no match, 3-20
not satisfying a condition, 3-15 to

3-18
range of values, 3-22
satisfying one of several conditions,

3-14 to 3-15
satisfying several conditions, 3-12

to 3-13
selecting fields, 3-8
sorted order, 3-5 to 3-7
substring matches, 3-21
using data item values, 3-12 to 6-7
value-based, 3-12 to 6-7
with missing values, 7-4

ROLLBACK statement
discarding changes, 2-22
undoing transaction updates, 2-24
updating the database, 7-8

RSE
See Record selection expression

RUJ file type
See Journal files

s
SET command, 1-5

DEFAULT (DCL), 2-2

lndex-5

DICTIONARY, 2-3
NOOUTPUT qualifier, 3-3
OUTPUT qualifier, 3-3
VERIFY qualifier, 3-3

Share modes
EXCLUSIVE, 2-14
PROTECTED, 2-13
SHARED, 2-12, 2-21

SHARED share mode
START_ TRANSACTION state

ment, 2-11
Sharing data

conflicts with, 2-15
SHOW command, 1-5
Snapshot files (.SNP)

access intentions, 2-5
read only, 2-8
record versions, 2-8

SNP file type
See Snapshot files

Sort keys, 3-5 to 3-7
major, 3-5
minor, 3-5
using value expressions, 3-7

SORTED BY clause, 3-5
ASCENDING, 3-6
DESCENDING, 3-6
sort keys, 3-5

Sorting records
alphabetical order, 3-6
numerical order, 3-6

Special characters, 6-2
START_STREAM statement, 7-12 to

7-14
START_TRANSACTION statement,

2-4, 2-30
access conflicts, 2-11
access modes, 2-15
access options, 2-6
BATCH_UPDATE transaction, 2-9
conflicts with other users, 2-15
EXCLUSIVE mode, 2-11
for multi-user access, 2-4
for update transactions, 7-1
formats, 2-8

lndex-6

NOWAIT option, 2-19
PROTECTED share mode, 2-11
READ_ONLY transaction, 2-8
READ_ WRITE transaction, 2-8,

2-11
SHARED share mode, 2-11
updating the database, 7-1
using views, 5-5
WAIT option, 2-19
WRITE transaction, 2-11

Starting RDO, 1-4
STARTING WITH relational opera

tor, 3-21
pattern matching, 3-21

Statements
multiline, 6-7

Statistical expressions, 6-6 to 6-13,
6-13

AVERAGE, 6-6
COUNT, 6-6
MAXIMUM, 6-6
MINIMUM, 6-7
TOTAL, 6-7

STORE statement, 7-1 to 7-4
MISSING VALUE clause, 7-7
updating several relations, 7-2

Storing
segmented strings, 7-7

Storing missing values, 7-7
Strategies

optimizer, 2-26

T

Tables
See Relations

Testing queries, 3-1
TOTAL statistical expression, 6-7
Transaction modes

ST ART_ TRANSACTION state-
ment, 7-2

Transactions, 2-4
access modes, 2-5, 2-6
default access modes, 2-6
defined, 2-6

u

ending, 2-24
journal file, 2-25
process intentions, 2-6
read only, 2-8
scope, 2-22
snapshot, 2-8
ST ART_ TRANSACTION state

ment, 7-1
write access, 2-8

Undoing updates
ROLLBACK statement, 2-24

UNIQUE operator, 3-27
compared to REDUCED TO clause,

3-27
Updating

several relations, 7-8 to 7-17
write access, 2-8

Updating the database
COMMIT statement, 2-24, 7-8
record locking, 7-8
ROLLBACK statement, 7-8
START_TRANSACTION state-

ment, 7-8

v

using a view, 7-15
verifying changes, 7-9

Value expressions, 6-13
arithmetic, 6-4
as a sort key, 3-7
literals, 6-1 to 6-4
statistical expression, 6-6

Value-based retrieval, 3-12 to 3-28, 6-7
View definitions

of a relational join, 5-4, 7-15 to 7-16
Views

w

update restrictions, 7-15
with START_TRANSACTION

statement, 5-5

WITH clause
relational operators, 3-10

WRITE transaction
ST ART_ TRANSACTION state

ment, 2-11

lndex-7

How to Order Additional Documentation

If you live in:

New Hampshire,
Alaska

Continental USA,
Puerto Rico, Hawaii

Canada
(Ottawa-Hull)

Canada
(British Columbia)

Canada
(All other)

All other areas

Call:

603-884-6660

1-800-258-1710

613-234-7726

1-800-267-6146

112-800-267-6146

or Write:

Digital Equipment Corp.
P.O. Box CS2008
Nashua, NH 03061-2698

Same as above.

Digital Equipment Corp.
940 Belfast Road
Ottawa, Ontario KlG 4C2
Attn: P&SG Business
Manager or approved
distributor

Same as above.

Same as above.

Digital Equipment Corp.
Peripherals & Supplies
Centers
P&SG Business Manager
c/o DIGITAL's local
subsidiary

Note: Place prepaid orders from Puerto Rico with the local DIGITAL subsid
iary (phone 809-754-7575).

Place internal orders with the Software Distribution Center, Digital Drive,
Westminster, MA 01473-0471.

Reader's Comments VAX Rdb/VMS
Guide to Data Manipulation

AA-N036C-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

Good

D
D
D
D
D
D
D
D

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Dept.

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

- Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

No Postage
Necessary
if Mailed

in the
United States

- Do Not Tear - Fold Here --

Q)

l.S
1..;i
I "Cl

I~
1c
I i=l\
I~
l..s!
1<
I~
1u
I
I

Reader's Comments VAX Rdb/VMS
Guide to Data Manipulation

AA-N036C-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

Good

D
D
D
D
D
D
D
D

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Dept.

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

I
I
I
I
I
I
I Do Not Tear - Fold Here and Tape ---------------------------------------1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 •• 1

No Postage
Necessary
if Mailed

in the
United States

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-- Do Not Tear - Fold Here --:

I
I
I
I
I
I
I
I
I

...
:I u

