
(

(-.

VAX DEC/Code Management System
Callable Routines Reference Manual
Order Number: AI-Z340C-TE

April 1988

This manual describes and provides reference information on the set of callable
routines for the VAX DEC/Code Management System.

Revision/Update Information: This document supersedes the VAX
DEC/Code Management System Callable
Routines Reference Manual (Order No.
AI-Z3408-TE).

Operating System and Version: VMS Version 4.6 or higher

Software Version:

digital equipment corporation
maynard, massachusetts

VAX DEC/CMS Version 3.0

First Printing, November 1984
Revised, April 1987
Revised, April 1988

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1984, 1987, 1988 by Digital Equipment Corporation.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request
the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-lO
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
lAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

~DmDDmDTM
ZK4573

I

~

(Contents
PREFACE ix

SUMMARY OF TECHNICAL CHANGES xiii

CHAPTER 1 USING CMS CALLABLE ROUTINES 1-1

1.1 CALLING CMS ROUTINES 1-2

1.2 RULES FOR WRITING PROGRAMS THAT CALL CMS ROUTINES 1-4

1.3 PASSING ARGUMENTS TO CMS ROUTINES 1-4
1.3.1 Data Types 1-6
1.3.2 The library Data Block 1-8
1.3.3 The Fetch Data Block 1-10
1.3.4 Specifying Flags as Arguments 1-11

(CC~, 1.3.5 Masks 1-12

1.4 CONDITION VALUES RETURNED 1-14
1.4.1 CMS$_EOF Condition Value 1-14
1.4.2 CMS$_INUSE, CMS$_WAITING, and

CMS$_PROCEEDING Messages 1-15

1.5 USING CALLBACK ROUTINES 1-15
1.5.1 Rules for Writing Callback Routines 1-16
1.5.2 Callback Routines Used by CMS$CMS 1-17

1.5.2.1 The Confirmation Routine • 1-17
1.5.2.2 The Prompt Routine • 1-18
1.5.2.3 The Output Routine. 1-18

1.5.3 Passing Strings Between CMS and Callback Routines 1-19
1.5.3.1 Specifying End of Input • 1-20
1.5.3.2 Determining End of Output • 1-20

1.5.4 Callback Return Codes 1-20

iii

1.6 HANDLING ERROR CONDITIONS

1.7 WRITING AN ERROR MESSAGE HANDLER 1-22

1.8 LINKING WITH THE CMS IMAGE 1-25

CHAPTER 2 CMS ROUTINE DESCRIPTIONS 2-1

CMS$ANNOTATE 2-3

CMS$ASYNCH_ TERMINATE 2-11

CMS$CMS 2-12

CMS$COPY_ELEMENT 2-17

CMS$CREAT~CLASS 2-22

CMS$CREATE_ELEMENT 2-24

CMS$CREATE_GROUP 2-32

CMS$CREAT~LlBRARY 2-34

CMS$DELET~CLASS 2-38

CMS$DELETE_ELEMENT 2-40
\

CMS$DELETE_GENERATION 2-43 ~

CMS$DELET~GROUP 2-47

CMS$DELETE_HISTORY 2-49

CMS$DIFFERENCES 2-56

CMS$FETCH 2-76

CMS$FETCH_CLOSE 2-83

CMS$FETCH_GET 2-85

CMS$FETCH_OPEN 2-89

CMS$GELSTRING 2-92

CMS$INSERT _ELEMENT 2-93

CMS$JNSERT _GENERATION 2-96

CMS$INSERT _GROUP 2-100

CMS$MODIFY _CLASS 2-103

CMS$MODIFY _ELEMENT 2-107

CMS$MODIFY _GENERATION 2-112

/

iv ~/

(='
CMS$MODIFY _GROUP 2-115

CMS$MODIFY _LIBRARY 2-118

CMS$PUT _STRING 2-120

CMS$REMARK 2-122

CMS$REMOVE_ELEMENT 2-124

CMS$REMOV~GENERATION 2-127

CMS$REMOVE_GROUP 2-130

CMS$REPLACE 2-133

CMS$RETRIEVE_ARCHIVE 2-141

CMS$REVIEW_GENERATION 2-143

CMS$SELACL 2-147

CMS$SELLIBRARY 2-151

CMS$SET _NOLIBRARY 2-155

CMS$SHOW_ACL 2-157

CMS$SHOW--4RCHIVE 2-161

CMS$SHOW_CLASS 2-167

(\ CMS$SHOW_ELEMENT 2-171

CMS$SHOW_GENERATION 2-177

CMS$SHOW _GROUP 2-186

CMS$SHOW_HISTORY 2-191

CMS$SHOW_LlBRARY 2-199

CMS$SHOW_RESERVATIONS 2-204

CMS$SHOW _REVIEWS_PENDING 2-211

CMS$SHOW_ VERSION 2-217

CMS$UNRESERVE 2-219

CMS$VERIFY 2-223

APPENDIX A SUMMARY OF eMS ENTRY POINTS A-1

v

APPENDIX B

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

INDEX

EXAMPLES

1-1

1-2

1-3

1-4

8-1

8-2

8-3

8-4

vi

EXAMPLES OF CALLING CMS

CALLING CMS FROM ADA

CALLING CMS FROM 8ASIC

CALLING CMS FROM 8L1SS

CALLING CMS FROM C

CALLING CMS FROM C080L

CALLING CMS FROM DI80L

CALLING CMS FROM FORT~AN

CALLING CMS FROM PASCAL

CALLING CMS FROM PlI1

CALLING CMS FROM SCAN

Calling CMS Routines

Passing the Concurrent Flag to CMS$CREATE ELEMENT

Using a 8itmask

Using a Message Handler Routine

Ada Example

Calling CMS$SHOW_ELEMENT from 8ASIC

Calling CMS$SHOW _ELEMENT from 8L1SS

Calling CMS$SHOW _ELEMENT from C

B·1

8·2

8·10

8-12

8-14

8-16

8-19

8-22

8-24

8-27

8-29

1-2

1-11

1-13

1-24

8-2

8-10

8-12

8-14

,/-\
I

\'-/

\,

\~!

(
8-5 Calling CMS$SHOW_ELEMENT from C080L 8-16

8-6 DI80L Example 8-19

8-7 Calling CMS$SHOW_ELEMENT from FORTRAN 8-22

8-8 Calling CMS$SHOW_ELEMENT from Pascal 8-24

8-9 Calling CMS$SHOW_ELEMENT from PLl1 8-27

8-10 SCAN Example 8-29

FIGURES

1-1 A CMS Library Data 810ck 1-9

1-2 A String Indentifier 1-19

2-1 Statistics Array 2-200

TABLES

1-1 Data Types of Objects Passed to CMS Routines 1-7

1-2 Passing Concurrent Flag Values 1-12

(' 1-3 Accessing CMS Symbols for Defined Condition Codes 1-14

2-1 Confirm_Routine Return Status 2-14

vii

(
Preface

This manual describes the set of callable routines for the V AX
DEC/Code Management System (CMS). CMS is an online library
system that helps track software development and maintenance. This
manual provides reference information on how to use the CMS callable
routines.

Intended Audience

This manual is intended for programmers who have a working knowl
edge of CMS, the VMS operating system, and the language used to call
CMS.

Document Structure

This document contains two chapters and two appendixes.

•

•

•

Chapter 1, Using CMS Callable Routines, provides an overview,
general rules, and other information that you need to know to use
the routines.

Chapter 2, CMS Routine Descriptions, contains detailed descrip
tions of each routine. The routines are listed in alphabetical order
with the routine name at the top of every page of each routine
description.

Appendix A, Summary of CMS Entry Points, lists each routine
name and the arguments that you can pass to the routine.

ix

• Appendix B, Examples of Calling CMS, provides examples of
calling CMS from different languages.

This manual does not contain tutorial information about CMS. For
more information about CMS and CMS concepts, see the Guide to VAX
DEC/Code Management System.

Associated Documents

Conventions

x

The following documents give additional information on CMS:

• The Guide to VAX DEC/Code Management System contains introductory
and conceptual information, and reference material about CMS.

• The VAX DEC/Code Management System Installation Guide supplies
instructions for installing CMS on a VMS system.

• The VAX DEC/Code Management System Quick Reference Guide pro
vides concise information about CMS commands and callable
routines.

The following conventions are used in this manual:

Convention

HELP command-name

[]

Description

UPPERCASE words and letters used in examples
indicate that you should type the word or letter
exactly as shown. Lowercase words and letters
used in examples indicate that you should substitute
a word or value of your choice.

Square brackets indicate that the enclosed item is
optional.

(

('

Convention

{}

generation

user-param

Description

Braces indicate a list from which one item must be
chosen.

An ellipsis indicates that the preceding items can be
repeated one or more times.

Italicized words introduce new terms.

Boldface words indicate arguments or parameters.

Unless otherwise noted, all numeric values are represented in decimal
notation.

xi

(

~-

(/

Summary of Technical Changes

The following routines are new in Version 3.0 of CMS:

CMS$DELETE_GENERA TION
CMS$MODIFY_GENERATION
CMS$RETRIEVE~RCHIVE
CMS$REVIEW _GENERATION
CMS$SET~CL
CMS$SET~OLIBRARY
CMS$SHOW~CL
CMS$SHOW _ARCHIVE
CMS$SHOW ~EVIEWS_PENDING

The following table shows the new routine parameters in routines for
Version 3.0 of CMS:

Routine

CMS$ANNOTATE

CMS$CREATE-ELEMENT

CMS$CREATLLIBRARY

CMS$DIFFERENCES

Parameter

format

review

position, positionaLdicspec

begiILsentinel, en~sentinel, page_break,
skip_lines

xiii

Routine

CMS$FETCH

CMS$MODIFLELEMENT

CMS$REMARK

Parameter

history, nooutput, notes, position

review

unusual

CMS$REMOVE_GENERATION generation

CMS$REPLACE generatio~expression, if_changed,
identificatio~number

CMS$SELLIBRARY

CMS$SHOW _GROUP

CMS$SHOW _LIBRARY

position, positionaLdiLspec

contents, member~ist

outputJoutine, useLarg, verify

CMS$SHOW _RESERVATIONS identificatio~number

CMS$SHOW3ERSION

CMS$UNRESERVE

absolute

deleteJile_spec, generatio~expression,
identificatio~number

The following list describes changes and additions to CMS Version 3.0
features:

• CMS handles files with undefined record attributes. Storage of any
type of file within a CMS library (with the exception of directory
files) is permitted.

• Many command line parameters include comma lists, allowing you
to specify multiple entities in a single command.

• You can operate on a search list of libraries (specified with the
CMS$CREATE_LIBRARY or CMS$SET_LIBRARY routine).

• All new_element callback routine parameter values have changed from
0, 1, and 3 to 0, 1, and 2.

• Generation expressions have been expanded to include positive and
negative integer offsets.

• Multiple reservations of the same element and the same generation
by a single user are allowed (provided that concurrent reservations
are allowed).

(~
xiv ~

(

• Automatic library recovery is provided.

• Access control lists (ACLs) can be used on many CMS commands
and entities.

• CMS can notify you through the VMS Mail Utility of certain library
events, and you can set up your own event handling.

• eMS provides a review mechanism for monitoring changes made to
elements.

• Reference copy handling is enhanced.

• You can delete generations of an element and optionally archive
them into a file.

• If you have privileges to do so, you can unreserve and replace
another user's reservations.

For more information on new features, see the Guide to VAX DEC/Code
Management System.

xv

(-

(

Chapter 1

Using CMS Callable Routines

The VAX DEC/Code Management System (CMS) provides a set of rou
tines that you can use to access and manipulate CMS libraries from
your programs. You should have an understanding of the basic CMS
concepts and syntax before you use these routines.

To use the CMS routines, follow these steps:

1. Include in your program the appropriate declarations and calls to
the routines.

2. Compile the program.

3. Link the compiled code with the CMS image.

4. Run the executable image.

As with the DCL-Ievel interface, you can use files for input to and
output from the CMS routines. You can also write routines that process
input, output, and messages. The symbols for status condition codes
are defined in the CMS image and are available for use in your
program.

This chapter provides the basic information you need to know to call
CMS routines. For descriptions of each routine, see Chapter 2. The
examples in Chapters 1 and 2 of this manual are written in FORTRAN;
Appendix B shows examples of calling CMS from FORTRAN and other
languages. For more detailed information about using CMS, see the
Guide to VAX DEC/Code Management System.

Using CMS Callable Routines 1-1

1.1 Calling CMS Routines

There is an entry point into CMS for each DCL-level command. In
general, routines have the same names as the DCL-level commands.
(An exception is the CMS RESERVE command, for which there is no
corresponding CMS$RESERVE routine. To reserve an element in the
CMS callable interface, you must specify the reserve argument in a call
to the CMS$FETCH routine.)

When your program calls a CMS routine, it must pass arguments that
provide CMS with information about elements, the library history, or
whatever part of the CMS library you want to access. In addition to
providing this information, your program must also allocate space for a
library data block (LDB). An LDB is a user-allocated structure which CMS
uses to maintain basic information about the library being accessed. For
more information about the LDB, see Section 1.3.2.

Example 1-1 shows two calls to CMS from a FORTRAN program. The
first call creates a library; the second creates a library element from a
file named LUCY.DIAMONDS. In this case, CMS searches for
LUCY.DIAMONDS in the current (default) directory at the time of the
calls to CMS.

Example 1-1: Calling CMS Routines

INTEGER*4 LDB(50)
INTEGER*4 STATUS
CHARACTER*14 DIR m
CHARACTER*13 ELEMENT

INTEGER*4 CMS$CREATE-LIBHARY ~
INTEGER*4 CMS$CREATE-ELEMENT

DIR = '[LENNON. SONGS] , 81
ELEMENT = 'LUCY.DIAMONDS'

Example 1-1 Cont'd. on next page

1-2 Using CMS Callable Routines

/ '\

(

(- \

Example 1-1 (Cont.): Calling CMS Routines

STATUS = CMS$CREATE~IBRARY(LDB,DIR) II
IF (.NOT. STATUS) GO TO 50
STATUS = CMS$CREATE-ELEMENT(LDB,ELEMENT) m

END

$ CREATE/DIRECTORY [LENNON.SONGS]
$ FORTRAN cmsprogram
$ LINK cmsprogram ~
$ RUN cmsprogram

Key to Example 1-1:

D

I!I
Ii]

II

m

The LOB is declared as an integer array; the library directory and
element name variables are declared as character strings.

The CMS routines are declared as routines returning integer values.

The directory and element names are assigned to the character
string variables.

The call to the CMS$CREATE_LIBRARY routine includes arguments
for the LOB and the empty directory that is to be used for the
library.

The call to the CMS$CREATE.-ELEMENT routine includes arguments
for the LOB and the element name. Because the element is being
created in the library referenced in the CMS$CREA TE_LIBRARY
call, it is not necessary to use CMS$SET_LIBRARY.

The execution sequence includes OCL commands that create the
library directory and compile, link, and run the program.

Using CMS Callable Routines 1-3

1.2 Rules for Writing Programs That Call CMS Routines

The following list describes rules to follow when you write programs
that call CMS routines.

• Most of the CMS routines are not AST -reentrant; therefore, you
should not call a CMS routine (except CMS$ASYNClL
TERMINATE) from an AST routine that may currently be interrupt
ing the execution of a CMS routine.

• If your program uses event flags, you must use the VMS Run-Time
Library routines that are provided for this purpose (Lffi$RESERVE_
EF, LIB$GET ~F and LIB$FREE~F). These routines coordinate the use
of the event flags between your program and CMS.

• Do not modify the contents of the LDB (see Section 1.3.2).

• Except for the CMS$ASYNClLTERMINATE, CMS$GET_STRING,
and CMS$PUT_STRING routines, do not call CMS from within call
back or message handler routines. Doing so may result in a dead
lock condition, where the latest call waits to lock the library that the
earlier call is holding locked. See Section 1.7 for information about
message routines and Section 1.5 for information about callback
routines.

1.3 Passing Arguments to CMS Routines

The VAX Procedure Calling and Condition Handling Standard specifies
three methods of passing arguments to routines:

• By reference

• By descriptor
• By immediate value

CMS accepts arguments that are passed by reference or by descriptor,
as defined for each routine. CMS returns status codes by immediate
value. For information about the arguments for each call, see the
individual routine descriptions in Chapter 2.

When you pass an argument by reference, you specify that the address
of the argument's storage location is passed to the CMS routine. CMS
expects objects such as the LDB, user-supplied routines, and flag values
to be passed by reference.

1-4 Using CMS Callable Routines

(

(

When you pass an argument by descriptor, you specify that the
address of a descriptor data structure is passed to the CMS routine.
CMS expects character strings to be passed by descriptor.

If you are using callback routines (see Section 1.5), you must use the
CMS$GET_STRING and CMS$PULSTRING routines to pass strings
between the callback routine and CMS.

Each argument in a call to a CMS routine is evaluated according to the
position that it occupies in the argument list. Therefore, you must be
sure to specify null arguments correctly. If you omit an argument and
do not include a placeholder in the call, CMS cannot correctly interpret
the arguments that follow.

For example, the format of a call to the CMS$CREATE_ELEMENT
routine is as follows (see Chapter 2 for a complete description of the
CMS$CREATLELEMENT routine):

CMS$CREATE_ELEMENT(library_dat~block,

elementJlame,
[remark],
[history] ,
[notes],
[position] ,
[keep],
[reserve],
[concurrent],
[reference_copy],
[input3i1e],
[input~outine],

[user_arg],
[msg~outine],

[review])

The arguments for the LOB and the element name are required; the
other arguments, shown in brackets ([]), are optional. For example, the
following routine call passes only the required arguments:

CALL CMS$CREATE-ELEMENT(LDB,ELEMENT)

In this case, CMS searches the current default directory for a file with
the name specified in the ELEMENT argument. Instead of using an
existing file to create an element, you might want to write a routine to
provide input for CMS$CREA TE_ELEMENT. The following example
shows a call that uses an input routine:

CALL CMS$CREATE-ELEMENT(LDB,ELEMENT"""""INPUT)

Using CMS Callable Routines 1-5

This call creates an element with the name specified in the ELEMENT
argument and uses data supplied by the INPUT routine. You must
include the intervening commas as placeholders. For example, if you
had used only one comma, CMS would interpret the input routine
parameter as the remark argument.

Note that trailing null arguments are not included in the previous
examples. If the language you are using allows, you can omit null argu
ments when they occur at the end of the argument list. For instance,
the CMS$CREATE_CLASS routine can accept four arguments, but it may
not be necessary to include placeholders for the optional (unused) argu
ments in the call. For example, the following calls from FORTRAN have
the same result:

CALL CMS$CREATE-CLASS(LDB,CLASS,,)
CALL CMS$CREATE_CLASS(LDB,CLASS)

To omit arguments in a language that does not allow variable-length
argument lists, you must pass the placeholder 0 by value, which CMS
treats as a null argument.

1.3.1 Data Types

The routine descriptions in Chapter 2 indicate the data type of each
argument (or object) you pass to CMS (such as an LDB or an element
name). Table 1-1 describes the different data types for these objects.

All objects except character strings are passed by reference. Programs
that call CMS routines must use the descriptor mechanism to pass
character strings to CMS. CMS uses a string identifier to pass character
strings to callback routines. See Section 1.5 for information about call
back routines, and Section 1.5.3 for information about string identifiers.

1-6 Using CMS Callable Routines

(

(

(-

Table 1-1: Data Types of Objects Passed to eMS Routines

Data Type

address

chacstring

cntrlblk

procedure

10ngworcL
signed

masL
longword

undefined

vector_
10ngworcL
unsigned

Description

Indicates a location in memory containing either data or code.
String identifiers are addresses of string descriptors. CMS uses
string identifiers to pass character strings to callback routines.
For information about string identifiers, see Section 1.5.3. For
information about callback routines, see Section 1.5.

Indicates a character-coded string. Character strings are passed
by descriptor.

Indicates a control block. A control block is a structure that is
interpreted by CMS. The LDB and the FDB are control blocks.
For information about control blocks, see Sections 1.3.2 and
1.3.3.

Indicates a procedure (or routine) that you pass to a CMS
routine. You pass callback routines and message routines to
CMS by specifying the entry mask of the routine in the call.
When you pass routines to CMS, the argument list must
contain a pointer to the entry mask. (A compiler normally
generates the entry mask as the first word of the routine.)
Usually, you pass routines by reference; for examples of
passing routine addresses to CMS, see Appendix B. For infor
mation about message routines, see Section 1.7. For informa
tion about callback routines, see Section 1.5.

Indicates a 32-bit value. Flags (see Section 1.3.4) and signed
integer counts are passed as signed longwords.

Indicates a longword mask. A mask is a group of flags or
a bitmask to be interpreted by CMS. For example, you
can use a mask to specify the IGNORE values for the
CMS$DIFFERENCES routine.

Indicates a quadword system time value. The date_time data
type specifies a time value in the 64-bit system time format.
T l'ansaction times and file creation or revision times are
expressed in the date_time data type.

Indicates an argument that CMS does not modify. These are
intended for your use only; CMS passes these arguments to
callback routines. For more information about user-defined
arguments, see Section 1.5.

Indicates a one-dimensional longword array. The signal and
mechanism arrays that CMS passes to message routines are of
type vectorJongworcLunsigned. For information about message
routines, see Section 1.7.

Using CMS Callable Routines 1-7

1.3.2 The Library Data Block

The library data block (LOB) is a data structure that CMS uses to maintain
information about the state of a particular CMS library. It is a required
argument for most routine calls that access a library.

You must declare an integer array of 50 longwords to be used for an
LOB. Then, use either the CMS$CREATE_LIBRARY or CMS$SET_
LIBRARY routine to associate the LOB with one or more CMS libraries.
When you specify the LOB in a call to a CMS routine, CMS accesses
that corresponding library or list of libraries.

The CMS$CREATE_LIBRARY and CMS$SET_LIBRARY commands allo
cate virtual memory to maintain the CMS library context. To free virtual
memory before your program exits CMS or before you initialize a
library data block with another CMS$CREATE_LIBRARYor
CMS$SET_LffiRARY routine, you should call CMS$SET~OLIBRARY.
The CMS$SET~OLIBRARY routine ensures that any virtual memory is
deallocated.

CAUTION

The LOB is designed to be filled by CMS. You should not
modify the contents of the LOB (except for the fifth long
word; see the following discussion). Use of an LOB that you
have modified may corrupt your library.

Figure 1-1 shows an LOB.

1-8 Using eMS Callable Routines

(

(-

Figure 1-1: A eMS Library Data Block

32 o
LENGTH

RETURN STATUS

LIBRARY DIRECTORY SPECIFICATION

(DESCRIPTOR)

USER PARAMETER

OCCLUSION MASK

RESERVED
FOR eMS

· · •

ZK-1902-84

The first longword in the LDB contains a count of the total number of
longwords used in the LDB. Although this count may be less than the
total space allocated for the data block, you should not use any part of
the LDB for your own purposes (except the fifth longword, which you
can use to pass arguments to callback routines). The second longword
contains the return status for the call to CMS (the same value that is
placed in RO). The third and fourth longwords contain a character
string descriptor that points to the library directory specification for the
entire search list of libraries. You can use the fifth longword to pass
arguments to your callback routines. You should do this after issuing
CMS$SET_LIBRARY, which initializes the library. If the value you want to
pass cannot be represented by a longword, then the fifth longword in
the LDB should contain a pointer to the value, rather than the value
itself. The sixth longword contains an occlusion mask containing four

Using CMS Callable Routines 1-9

occlusion flags. By default, the occlusion mask is set to 0, enabling
occlusion for all CMS objects. You specify occlusion on the CMS
command line with the /OCCLUOE qualifier. You specify occlusion in a
callable routine by setting the bit position in the occlusion mask. The
following table shows the symbols that are defined for the occlusion
mask:

Symbol Bit Position Mask Value

CMS$~OCCNOCLASS 0 1

CMS$~OCC~OELEMENT 1 2

CMS$~OCC~OGROUP 2 4

CMS$~OCC~OOTHER 3 8

See the Guide to VAX DEC/Code Management System for more information
on occlusion.

The remaining entries in the LOB are reserved for CMS.

1.3.3 The Fetch Data Block

The fetch data block (FOB) contains status information about the library.
It is used as an argument only in calls to the CMS$FETCH_OPEN,
CMS$FETClLGET, and CMS$FETClLCLOSE routines. You use these rou
tines when you want to fetch an element from the library one line at a
time. For the descriptions of these routines, see Chapter 2.

Each element generation that you fetch with the line-by-line fetch rou
tines requires a separate FOB. You must declare an array of five long
words to be used for each FOB.

CAUTION

The FOB is designed to be filled by CMS. You should not
modify the contents of the FOB. Use of an FDB that you
have modified may corrupt your library.

1-10 Using CMS Callable Routines

(

(

(

1.3.4 Specifying Flags as Arguments

Some CMS routines recognize flags that specify certain actions. For
example, to reserve an element, you specify a flag in a call to
CMS$FETCH. A flag is a longword integer variable that is set to true
(1) or false (0). You can set these flags to 1 or 0 as necessary and then
pass the address of the flag as an argument to the CMS routine. CMS
checks the low-order bit to determine the value of the flag.

Example 1-2 shows a call to CMS$CREATE_ELEMENTfromFORTRAN.
The call contains a flag that directs CMS to create an element that does
not allow concurrent access.

Example 1-2: Passing the Concurrent Flag to CMS$CREATE_
ELEMENT

INTEGER*4 LDB(50)
CHARACTER*10 ELEMENT
INTEGER*4 CONCURRENT B

STATUS = CMS$SET-LIBRARY(LDB,DlRECTORY)

CONCURRENT = 0 ~
STATUS = CMS$CREATE~LEMENT(LDB,ELEMENT""",CONCURRENT) ~

Key to Example 1-2:

The concurrent flag is declared as type INTEGER.

The flag is later set to o.
The concurrent flag is then passed by reference to the
CMS$CREA TE_ELEMENT routine. (In FORTRAN, variables of type
INTEGER are passed by reference.)

Using CMS Callable Routines 1-11

1.3.5 Masks

In Example 1-2, when the CMS$CREATE~LEMENT routine is called,
the position in the argument list corresponding to the concurrent flag
contains an address of a location containing the value o. CMS interprets
the concurrent flag as follows: a value of 1 indicates concurrent access
and a value of 0 indicates noconcurrent access. Thus, CMS creates an
element that cannot be concurrently reserved.

You must pass flag values by reference for CMS to interpret them cor
rectly. If you use the immediate value mechanism to pass the value 0
to a CMS routine, CMS interprets the argument list entry of 0 to mean
an unspecified argument. An unspecified, or default, argument may
have a different meaning than you intend; therefore, you must use the
correct syntax for the calling language to ensure the correct representa
tion on the argument stack.

Table 1-2 shows the effects of using different methods to pass the con
current flag in a call to CMS$CREATE~LEMENT.

Table 1-2: Passing Concurrent Flag Values

Call Semantics Argument List Result

Unspecified argument a Concurrency
allowed

Passing a by value a Concurrency
allowed

Passing a by reference Address pointing to location Concurrency not
containing the value a allowed

Passing 1 by value 1 Probable access
violation

Passing 1 by reference Address pointing to location Concurrency
containing the value 1 allowed

Some routines (for example, CMS$ANNOTATE, CMS$DIFFERENCES,
and CMS$DELETEJIISTORY) accept some of their arguments in the form
of masks. A mask is a longword value that is interpreted as a bitmask.
A bitmask is an integer value that is interpreted as a set of bits, some of .
them "on" and some "off." For each of the masks, CMS recognizes
specific values that determine the action of the routine. Each of these
values is defined as a universal symbol; thus, you have access to them
when you link with the CMS image.

1-12 Using CMS Callable Routines

(

(-

Example 1-3 shows a call to CMS$SHOW_HISTORYfromFORTRAN.
The call contains a transaction mask that directs CMS to produce only
reservation and replacement transactions for a particular element.

Example 1-3: Using a Bitmask

CHARACTER*16 LIBNAME
CHARACTER*10 ELEMENT

INTEGER*4 LDB(50)
INTEGER*4 TRANSACTIONS D
EXTERNAL CMS$H-CMD~ESERVE ~
EXTERNAL CMS$H-CMD~EPLACE
EXTERNAL OUTPUT~OUTINE

TRANSACTIONS = IOR(%LOC(CMS$H-CMD~ESERVE),%LOC(CMS$H-CMD~EPLACE» ~

LIBNAME = '[HARRISON.SONGS]'
ELEMENT = 'BROWN.SHOE'
CALL CMS$SET_LIBRARY(LDB,LIBNAME)
CALL CMS$SHOW-HISTORY(LDB,OUTPUT-HOUTINE"ELEMENT""TRANSACTIONS) m

Key to Example 1-3:

D TRANSACTIONS is declared as type (longword) INTEGER for the
bitmask argument to be passed to CMS$SHOW_HISTORY.

S External symbols for the bitmask (CMS$~CMD_RESERVE and
CMS$~CMD~EPLACE) are declared.

The lOR intrinsic function is used to set the bits in the
TRANSACTIONS mask.

CMS is called; CMS calls OUTPUT_ROUTINE once for each reserva
tion and replacement of the specified element.

Using CMS Callable Routines 1-13

1.4 Condition Values Returned

The return value of a call to a CMS routine is a standard 32-bit VMS
condition code. CMS returns the condition code value in register 0, and
also places it in the second longword of the LDB (see Section 1.3.2.)

The CMS condition codes are declared as universal symbols; therefore,
you have access to these symbols when you link your program with
the CMS image. Table 1-3 shows the statements and functions in
several languages that you use to access the defined symbols.

Table 1-3: Accessing CMS Symbols for Defined Condition
Codes

Language Statement

Ada X: CONSTANT

BASIC

BLISS

C

COBOL

DIBOL

: = SYSTEM.IMPORLV ALUE(-EXTERNALSYMBOL -);

EXTERNAL LONG CONSTANT

EXTERNAL LITERAL

GLOBALVALUEINT

COMP VALUE EXTERNAL

EXTERNAL CMS$-'<XX

%LOqCMS$-'<XX)

FORTRAN %LOC

Pascal IADDRESS

PLiI GLOBALREFIV ALUE

SCAN CONSTANT CMS$-'<XX EXTERNAL INTEGER;

Section 1.7 describes how to write routines to handle messages gener
ated by CMS. See the Guide to VAX DEC/Code Management System for a
complete listing of eMS diagnostic messages.

1.4.1 CMS$_EOF Condition Value

When you provide a routine to handle input or output, the return
value CMS$J;OF is used to indicate end-of-file. For information about
writing routines for input and output, see Section 1.5.

1-14 Using eMS Callable Routines

\.

/ '\

(

(

1.4.2 CMS$_INUSE, CMS$_WAITING, and CMS$_PROCEEDING
Messages

1.5

If another user is accessing a library when your program calls CMS to
access the same library, CMS issues the CMS$JNUSE message and
waits until the library is unlocked before executing your transaction.
During this time, CMS periodically issues the CMS$_ WAITING message.
When the library is available, CMS issues the CMS$YROCEEDING
message and then executes your transaction.

If, instead of waiting, you prefer to abort the transaction from the mes
sage routine, you should have the message routine call CMS$ASYNCrL
TERMINATE and return control to CMS to allow CMS to clean up
resources and exit properly.

Using Callback Routines

Typically, CMS uses files for input and output. For example, when you
pass an element name to the CMS$CREATE-ELEMENTroutine, CMS
searches your default directory for a file that has the same name as the
given element. However, you can provide callback routines to handle
input and output.

A callback routine is a routine that you specify in a call to CMS, and
which in turn is invoked by CMS. You pass callback routines by speci
fying the entry mask of the routine in the call to the CMS routine; as a
result, the argument list contains the address of the entry mask for the
routine (CMS uses the CALLG and CALLS procedure call instructions
to invoke callback routines). Usually, you pass routines by reference,
but the method that you use to pass the routine address is dependent
on the language that you are using. For examples of programs that
pass routine addresses to CMS routines, see Appendix B.

In most cases, you cannot specify both an input file and an input
routine (or an output file and an output routine) in a single call. (An
exception is that you can specify both files and routines in a single call
to CMS$DIFFERENCES.) CMS routines that allow you to provide input
routines are as follows:

•
•
•

CMS$CREATE-ELEMENT

CMS$DIFFERENCES

CMS$REPLACE

Using CMS Callable Routines 1-15

CMS routines that allow you to provide output routines are as follows:

• CMS$ANNOTATE

• CMS$DELETEJ-IISTORY

• CMS$DIFFERENCES

• CMS$SHOW --.keyword

Also, the CMS$CMS routine allows you to specify input, output,
confirm, and prompt routines. See the description of the CMS$CMS
routine in Chapter 2 for more information.

1.5.1 Rules for Writing Callback Routines

The following list describes rules to follow when you write callback
routines:

• Every callback routine must return control to CMS. If your routine
does not return control to CMS, CMS cannot finish the transaction
and the library remains locked. (If your library becomes locked, you
must use the VERIFY/RECOVER command to unlock it.) In addi
tion, any resources used to process the command are not released.

• Callback routines must return a defined condition value to CMS.
You can use CMS$_NORMAL, CMS$~XCLUDE, and CMS$_
STOPPED to indicate successful completion of the callback routine,
or you can return a condition code from a VMS system service or
other system software. CMS checks for the CMS$~XCLUDE and
CMS$_STOPPED values, and also checks the low-order bit to deter
mine if the status code indicates success. For information about call
back return codes, see Section 1.5.4. If the callback routine returns
a failure code, CMS exits with a primary status of CMS$_USERERR.

• CMS$ASYNClLTERMINATE, CMS$GET_STRING and CMS$PUT_
STRING are the only CMS routines that you can use within a call
back routine (see Section 1.5.3).

• When writing callback routines for CMS$DIFFERENCES, you
cannot depend on the order in which CMS calls these callback
routines. The calling sequence is not synchronous.

1-16 Using CMS Callable Routines

1.5.2

(
1.5.2.1

(

All routines that allow you to use callback input or output routines also
provide an argument in the call syntax for your own use. CMS does
not modify this value; it passes this value to the callback routine. This
argument is labeled usecarg in the syntax of a call to CMS and usecparam
in the syntax of a call to a callback routine. (The term argument is used
to identify an object that you pass to a CMS routine. The term
parameter is used to identify an object that a CMS routine passes to a
callback routine.) When you do not specify usecarg in the call to CMS,
the call frame entry for usecparam points to a location containing the
value o. In this case, usecparamis allocated as read-only storage. You
receive an access violation error if you attempt to modify usecparam
under these circumstances. Also, CMS allows you to pass arguments to
callback routines by supplying a value in the fifth longword of the
LDB. See Section 1.3.2 for more information.

Callback Routines Used by CMSSCMS

The CMS$CMS routine provides a full command-line level interface
into CMS; however, it performs no I/O to the terminal other than error
messages. To perform confirmations, prompting, or display output, you
must supply callback routines. The following sections describe these
callback routines.

The Confirmation Routine
The CMS$CMS routine uses a caller-supplied callback routine for con
firmation messages (for example, the results of a /CONFIRM qualifier,
or when a module is being reserved or replaced with concurrent reser
vations in effect).

There are two ways you can set this callback routine:

• By specifying the confirlllJoutine argument to CMS$CMS, which
affects the command being parsed and executed

• By specifying the confirlllJoutine argument to CMS$CREA TE_
LIBRARY or CMS$SET_LIBRARY, which affects all operations per
formed using that LDB (until you reinitialize the LDB by performing
another CMS$CREATE_LIBRARY or CMS$SET _LIBRARY operation)

If you do not specify a confirm callback, CMS does not request confir
mation. It operates as if a callback had been specified and had returned
the string "YES". CMS then proceeds with the operation.

Using CMS Callable Routines 1-17

r-.~.

For more information on confirmation routines, see the description of '\._../'
the CMS$CMS routine in Chapter 2.

1.5.2.2 The Prompt Routine
The CMS$CMS routine uses a caller-supplied callback routine to
prompt when CMS encounters an incomplete command line.

You set the address of the prompt routine by specifying the
promptJoutine argument to CMS$CMS.

If you do not specify a prompt callback, CMS does not prompt you,
but operates as if a callback had been specified and had returned the
status RMS$~OF (except in the case of prompting for a CMS remark,
where the status is RMS$....NORMAL). The RMS$~OF return status
causes termination of command parsing (as if the user had pressed
CTRLlZ at the DCL prompt).

For more information on command line prompting, see the description
of the CMS$CMS routine in Chapter 2.

1.5.2.3 The Output Routine
The CMS$CMS routine uses a caller-supplied callback routine for all
terminal output (for example, the results of a SHOW or HELP
command, or the listing of concurrent reservations for REPLACE and
RESERVE).

There are two ways you can specify this routine:

• By specifying the outputJoutine argument to CMS$CMS, which
affects the command being parsed and executed

• By specifying the outputJoutine argument to CMS$CREATE_
LIBRARY or CMS$SET_LIBRARY, which affects all operations per
formed using that LDB (until you reinitialize the LDB by performing
another CMS$CREA TE_LIBRARY or CMS$SET_LIBRARY operation)

CMS directs output to SYS$OUTPUT if the message or output callback
routines are not specified.

Note also that if IOUTPUT is specified to redirect terminal output to a
file, CMS opens, writes to, and closes the file normally and does not
use the output callback routine.

For more information on output routines, see the description of the
CMS$CMS routine in Chapter 2.

1-18 Using CMS Callable Routines

(

(

1.5.3 Passing Strings Between CMS and Callback Routines

CMS provides routines for passing strings between a callback routine
and a CMS routine. CMS passes a string (such as an element name) to
a callback routine by using a string identifier. A string identifier is the
address of a string descriptor. CMS passes string identifiers by reference.
Figure 1-2 shows the relationship between the string identifier and the
passed string.

Figure 1-2: A String Identifier

CALL FRAME

STRING IDENTIFIER
STRING

DESCRIPTOR

STRING

ZK-200S-84

Within callback routines, you use the CMS$GELSTRING routine to
process an output string from CMS, and the CMS$PUT_STRING
routine to provide a string for input to CMS. You can manipulate the
descriptors directly if the language allows it (as BLISS or C does, for
example). See the descriptions of CMS$GET_STRING and
CMS$PUT_STRING for more information.

Using CMS Callable Routines 1-19

1.5.3.1 Specifying End of Input
CMS passes an eoLstatus parameter to the input callback routines
invoked by the CMS$CREATE~LEMENT and CMS$REPLACE routines.
Every time an input callback routine returns control to CMS, CMS
checks the eoLstatus parameter for a value of true (1). When CMS encoun
ters a true value in eoLstatus, the current input record (passed by
CMS$PUT_STRING) is assumed to be insignificant. Thus, when you pass
the last input record to CMS, you must wait until the next invocation
of the callback routine to set eoLstatus to true (1).

It is important to specify a true status at the appropriate time during a
wildcard or group CMS$REPLACE transaction. For more information
about CMS$REPLACE, see Chapter 2.

1.5.3.2 Determining End of Output
CMS sets the eoLstatus parameter to true after the last record has been
passed to the callback routine. CMS does not set eoLstatus to true until
the next invocation of the callback routine. Thus, when the callback
routine encounters the end of output, the contents of outputJecord are
undefined.

1.5.4 Callback Return Codes

Each time a callback routine returns control to CMS, CMS checks the
low-order bit of the callback return code to determine success or failure.
A success code directs CMS to continue processing; if there is more
data for processing, CMS calls the callback routine again. Under certain
circumstances, CMS also checks for CMS$~XCLUDE and CMS$_
STOPPED. CMS$~XCLUDE directs CMS to continue processing, but it
also indicates that the current record does not meet some requirement
established by the callback routine. CMS$_STOPPED is used to halt a
wildcard tr~msaction.

For example, the CMS$DELETEJllSTORY routine calls the output
callback routine once for each record to be deleted. The callback routine
must return one of two values, CMS$.-NORMAL to direct CMS to delete
the record from the history file, or CMS$~XCLUDE to prevent CMS
from deleting the history record.

1-20 Using CMS Callable Routines

/'

(

The CMS$SHOW JfISTORY routine provides another example of using
CMS$jjXCLUDE. CMS passes a parameter to the callback routine that
indicates whether the transaction is unusual. If the callback routine
checks only for unusual transactions and there are none, it returns
CMS$jjXCLUDE each time control is transferred to CMS. As a result, the
CMS$SHOW JfISTORY routine returns CMS$-.NOHIS (no history records
found).

If the callback routine encounters an error during processing, it should
abort the CMS call by returning an error status. This causes the CMS
call to exit using CMS$_USERERR. To abort the transaction from the
message routine without returning an error status, you should have the
message routine call CMS$ASYNCH_TERMINATE to allow CMS to clean
up resources.

For a list of the primary return codes, see the description of each
routine in Chapter 2.

1.6 Handling Error Conditions

CMS handles error conditions in one of two ways:

• If the condition is not fatal, CMS calls a message handler. You can
provide a message routine to handle messages (see Section 1.7), or,
if you do not provide a message routine, CMS calls its own
message handler.

• If the condition is fatal, CMS signals the error. Fatal conditions are
those situations where execution cannot continue. CMS does not
call the message routine (if supplied) under these circumstances.

If you have established a condition handler in the calling program and
the condition handler encounters a fatal return value, do not return a
value of SS$_CONTINUE from the condition handler or resignal SS$_
CONTINUE, and do not issue additional calls to CMS until you have
exited and reentered the image. The fatal error indicates that CMS
cannot continue with the current invocation of the image.

If you supply a routine for input or output (see Section 1.5) and you
establish a condition handler within this routine, do not exit from the
image (through either the condition handler or the routine itself). Also,
do not unwind the stack beyond the call to the user-supplied routine.

Using CMS Callable Routines 1-21

To exit the image, you should return an error (any status with the low
bit clear) from your routine, causing CMS to terminate with CMS$_
USERERR status. CMS$_USERERR status indicates that a callback routine
returned an error.

1.7 Writing an Error Message Handler

By default, CMS directs all diagnostic messages to SYS$OUTPUT and
SYS$ERROR. However, you can write your own routine to handle mes
sages. When you specify the mSgJoutine argument to any CMS routine,
CMS passes control to your message handler instead of using the
default handler. CMS does not call your message handler routine if a
fatal condition occurs, but instead notifies you by signaling the condi
tion. If you receive a fatal error message, you should exit and reenter
CMS-do not attempt to re-call CMS within the same image invocation
if CMS detected a fatal error.

You pass a message routine by specifying the entry mask of the routine
in the call to the CMS routine; this places the address of the routine
entry mask in the argument list (CMS uses the CALLG and CALLS
procedure call instructions to invoke message routines). In general, you
pass message routines by reference, but the method you use to pass
the routine address depends on the language you are using. For exam
ples of programs that pass routine addresses to CMS routines, see
Appendix B.

CMS passes the following parameters in the order shown with each call
to mSgJoutine:

(signa1-array, mechanis~array, library_datR-block)

signaLarray
Type:
Access:
Mechanism:

vectoclongword_unsigned
read
by reference

Specifies a standard VMS signal array.

mechanism_array
Type: vectoclongword_unsigned
Access: read
Mechanism: by reference

Specifies a standard VMS mechanism array.

1-22 Using CMS Callable Routines

/ .. "

(

(

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies a valid LOB. Although the LOB can be modified, you should
not change its contents. If you do so, you may corrupt your CMS
library.

The following list describes rules to follow when you write message
handling routines:

• Do not invoke any CMS routines from a message routine (except
CMS$ASYNCfLTERMINATE, CMS$GET_STRING, or CMS$PUT_
STRING).

• Do not unwind the stack, as this may corrupt your library.

• Do not use the LIB$ESTABLISH Run-Time Library routine to enable
the message routine as the exception handler for a CMS call. CMS
uses its own exception handlers and calls the user-supplied
message routine under the correct circumstances. (The message
routine is only for handling messages, not for general exception
handling during the execution of a CMS routine.)

Example 1-4 shows a FORTRAN program that specifies a message
handling routine in the call to the CMS$MOOIFY_CLASS routine.

Using CMS Callable Routines 1-23

Example 1-4: Using a Message Handler Routine

10 INTEGER*4 LDB(50)
INTEGER*4 STATUS
CHARACTER*14 DIR
CHARACTER*8 CLASS,NEWNAME

C

C

INTEGER*4 CMS$MODIFY_CLASS
INTEGER*4 CMS$SET-LIBRARY
EXTERNAL MSG m

100 DIR = '[LENNON.SONGS],
CLASS = 'PRE_1968,

C

C

C

NEWNAME = 'PRE_1970'

STATUS = CMS$SET-LIBRARY(LDB,DIR)
IF (.NOT. STATUS) THEN
RETURN
STATUS = CMS$MODIFY_CLASS(LDB,CLASS"NEWNAME",MSG) ~
IF (.NOT. STATUS) THEN
RETURN

;END

INTEGER*4 FUNCTION MSG(SIGNAL,MECH,LIBDB)
INTEGER*4 SIGNAL(16),SIGNAt-COPY(16),MECH(5)
INTEGER*4 LIBDB(50) ~
EXTERNAL CMS$~ODIFIED
EXTERNAL SYS$PUTMSG

IF (.NOT. SIGNAL(2» THEN
DO 1=1,16

ENDIF
MSG = 1
RETURN
END

SIGNAt-COPY(I) = SIGNAL(I)
END DO
SIGNAL_COPY (1) = SIGNAL_COPY(l) - 2
CALL SYS$PUTMSG(SIGNAt-COPY)

Key to Example 1-4:

m The message routine is declared as an external routine.

~ The call to CMS$MODIFY _CLASS includes the address of the
message routine.

1-24 Using CMS Callable Routines

./ '\

(

1.8

(

(

If] The message routine is written as a function so that it will return a
value to CMS. In this case, 16 longwords are declared for the signal
array; however, the size required is dependent on the number of
messages that are generated. An additional array is declared in
order to make a copy of the signal array. The mechanism array
requires five longwords.

II The message handler routine checks the signal array for an error. If
the test fails, the message routine returns control to CMS. If the
test is successful, the signal array is copied, and the longword
count of the copied signal array is altered (in effect removing the
PC and PSL at the end of the array). The array is then in a form
that is compatible with the SYS$PUTMSG routine, which displays
the message on the terminal.

~ The return value is set to 1 (true), and control is returned to CMS.

Linking with the eMS Image

You do not have to specify the CMS shareable image in your LINK com
mand because the installation procedure inserts CMSSHR.EXE into the
default system shareable image library (SYS$LIBRARY:IMAGELIB.OLB),
which is automatically searched by the linker.

Use the following LINK command syntax to link your program with
CMS:

LINK filename[, •.•]

You can explicitly reference the CMS shareable image (SYS$SHARE:
CMSSHR.EXE) by specifying the ISHAREABLE linker option as
follows:

$ LINK filename[, ...],SYS$INPUT/OPTIONS
CMSSHR/SHAREABLE
I CTRUZ I

USing CMS Callable Routines 1-25

(~ ..

(-

(

Chapter 2

eMS Routine Descriptions

This chapter describes the function of each eMS routine, the arguments
and parameters used in routine calls, and the return status. For more
information about diagnostic messages, see the Guide to VAX DEC/Code
Management System.

An argument in the call syntax represents the object that you pass to
a eMS routine. A parameter in the call syntax represents an object
that a eMS routine passes to a callback routine. A comma list on an
object indicates that you can specify more than one of the indicated
objects by separating each object with a comma. Each argument and
parameter description lists the data type, the access to the object, and
the passing mechanism. The data types are standard VMS data types
(see Section 1.3.1). The access to an object is defined from the perspec
tive of the called routine. The different types of access to the object are
as follows:

Read access

Modify access

Write access

The routine can only read data.

The routine can both read from and write to the address.

The routine writes into the address without reading the
contents.

The passing mechanism indicates how the argument list is interpreted.
The reference mechanism indicates that the argument list entry is the
address of the object. The descriptor mechanism indicates that the
argument list entry is an address that points to a descriptor containing
the address of the object.

eMS Routine Descriptions 2-1

Each argument is evaluated according to the position that it occupies in
the argument list. Therefore, you must be sure that you specify null
arguments correctly. If you omit an argument and do not include a
placeholder in the call, eMS cannot correctly interpret the arguments
that follow. For more information about specifying null arguments, see
Section 1.3.

Brackets ([]) surrounding arguments indicate that the enclosed item is
optional.

2-2 eMS Routine Descriptions

CMS$ANNOTATE

(CMSSANNOTATE

Format

(

Arguments

Creates a line-by-line file listing the changes made in each specified
element generation.

CMS$ANNOTATE (library_dataJJlock,
elemenLexpression,
[generation_expression),
[merge....generation_expression},
[append},
[full},
[outpuLfile },
[outputJoutine},
[usecarg},
[msgJoutine},
[format])

Iibrary_datCLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

elemenLexpression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies one or more elements or groups of elements to be annotated.
Wildcards and a comma list are allowed. CMS creates one output file
for each annotated element unless you also specify the append
argument.

eMS Routine Descriptions 2-3

CMS$ANNOTATE

You must include a period (.) in the element expression to select one or
more elements from the complete list of elements in the library. If you
do not include a period, eMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that are
established in the library.

generation_expression
Type: char_string
Access: read
Mechanism: by descriptor

Specifies the generation to be annotated. If you do not provide a gener
ation number or a class name, eMS annotates the latest generation on
the main line of descent.

merge_gene ration_expression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies the element generation to be merged into the annotated
generation.

append
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs eMS to append the output to a file. If you
set the flag to I, eMS appends the output to a file. If you set the flag
to 0, eMS creates as many new output files as necessary. eMS ignores
this argument if you provide an output routine.

When you set the append flag to I, eMS appends the output to an
existing file indicated by the outputJile argument. If you do not specify
an output file, eMS appends the output to a file with the same file
name as the element file and a file type of .ANN. If no such file exists,
eMS creates one.

full
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs eMS to produce an annotated listing that
indicates the file creation time, file revision time, and record format for
the file used to create each generation, and shows the deletion history

2-4 eMS Routine Descriptions

(

(

CMS$ANNOTATE

of the element. If you set the flag to I, CMS produces a full listing. If
you set the flag to 0, CMS produces a normal annotated listing.

outpuLfile
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the name of the output file. By default, the file name is the
element file name and the file type is .ANN. Use this argument if you
want the output file to have a different name, or if you want CMS to
put the file in a directory other than your current default directory.
Wildcards are allowed.

If you provide an output file specification and do not set the append
flag to I, CMS creates one output file for each element that is anno
tated. If more than one element is annotated, and you do not include
wildcards in the output file specification, CMS creates successive ver
sions of the specified output file. (Note that if you provide a directory
specification, but no file name or file type, CMS creates one output file
for each element that is annotated and places each output file in the
specified directory. In this case, each output file is named according to
the default naming convention.) If you specify an output file, you
cannot also specify an output routine.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies a callback routine that processes data output by CMS$
ANNOTATE. CMS calls the output routine once for each line of data.
If you specify an output routine, you cannot also specify an output file.
See the callback routines section for information about the parameters
that CMS passes to the callback routine.

user_arg
Type:
Access:
Mechanism:

undefined
read
undefined

Specifies a value that you supply and that CMS passes to the outpuL
routine argument, using the same mechanism that you used to pass it
to CMS.

eMS Routine Descriptions 2-5

CMS$ANNOTATE

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

format
Type:
Access:
Mechanism:

maskJongword
read
by reference

Specifies the type of formatting that is to be performed on the data
before it is placed into the output file. You must specify either the
outpuLfile or outpuLroutine arguments with this argument. By default,
the flag is set to 1, indicating ASCII output.

The format argument specifies a data format and a data partition size.
The following table lists recognized data formats:

Bit Mask
Data Format Position Value Action

CMS$M-ASCII a 1 Specifies that data be pre-
sented as if each byte repre-
sents a value in the ASCII
character set. This option is
most useful when files
contain text. If no data parti-
tion is specified, data is
partitioned into records. This
option is the default.

CMS$M_DECIMAL 1 2 Specifies that each value be
displayed as a decimal nu-
meral. If no data partition is
specified, data is partitioned
into longwords. You cannot
specify both DECIMAL and
RECORDS.

2-6 eMS Routine Descriptions

/' \
/

(

(

(

Bit
Data Format Position

CMS$MJIEXADECIMAL 2

CMS$~OCTAL 3

Mask
Value

4

8

CMS$ANNOTATE

Action

Specifies that each value
be displayed as a hexadec
imal numeral. If no data
partition is specified, data is
partitioned into longwords.
You cannot specify both
HEXADECIMAL and
RECORDS.

Specifies that each value be
displayed as an octal nu
meral. If no data partition is
specified, data is partitioned
into longwords. You cannot
specify both OCTAL and
RECORDS.

A data partition is the size that data in each record is to be broken into
before it is formatted. The following table lists recognized data
partitions:

Data Partition

CMS$~BYTE

CMS$~
LONGWORD

Bit
Position

16

17

Mask
Value

65,536

131,072

Action

Specifies that the data displayed is
to be partitioned into bytes. By
default, records are not partitioned
further unless the data format
option indicates otherwise.

Specifies that the data displayed
is to be partitioned into long
word values. This is the de-
fault partitioning for DECIMAL,
HEXADECIMAL, and OCTAL.

eMS Routine Descriptions 2-7

CMS$ANNOTATE

Data Partition

CMS$~
RECORDS

Bit
Position

18

19

Callback Routine Parameters

Mask
Value

262,144

524,288

Action

Specifies that no further partition
ing of data is to occur beyond the
record partitioning already in the
file. This partitioning is most
useful when the files contain text.
You can only specify RECORDS
by itself or in conjunction with
ASCII. It cannot be used with any
other options. This qualifier is the
default.

Specifies that the data displayed
be partitioned into word values.
By default, data records are not
partitioned further unless the data
format indicates otherwise.

When you provide an output routine to process the output of
CMS$ANNOTATE, CMS passes the following parameters in the order
shown with each call to outputJoutine:

(first_call, library_data_block, user_param, element_id,
output-recor~id, eOf_status)

The callback routine must return a value to CMS. CMSchecks the
low-order bit of that value for success (1) or failure (0) status. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

firsLcali
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates whether the current call to the output
routine is the first call. CMS sets the flag to 1 if the current call is the
first call and to 0 if it is not.

library _datCLblock
Type: cntrlblk
Access: read
Mechanism: by reference

2-8 eMS Routine Descriptions

.r\.
\ /

(

(

(

Specifies the LDB for the current library.

user_param
Type:
Access:
Mechanism:

undefined
modify
undefined

CMS$ANNOTATE

Specifies the user argument as it was passed to CMS$ANNOTATE. If
you did not specify a user argument in the call syntax, this parameter
points to a read-only storage location containing the value O. CMS
passes usecparam to your routine using the same mechanism that you
used to pass it to CMS$ANNOTATE.

elemenUd
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the element name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

outpuLrecord_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the line of data produced by
CMS$ANNOTATE. Use the CMS$GELSTRINGroutinetotranslate
the string identifier. For information about string identifiers, see Section
1.5.3

eoLstatus
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies the end-of-file status. CMS changes the value of eoLstatus
from false (0) to true (1) after the last record has been passed to the
output routine. When eoLstatus is true, the contents of outpuLrecordJd
are undefined. See Section 1.5.3.2 for more information on determining
the end of output.

eMS Routine Descriptions 2-9

CMS$ANNOTATE

Description
The CMS$ANNOTA TE routine documents the development of an
element. This routine creates an output file that contains an annotated
listing. By default, the file name is the same as the element name and
the file type is .ANN. The annotated listing file contains two parts:

• A history
• A source file listing

The history includes the generation number, date, time, user, and
remark of the transaction that created each generation of the element.
In addition, if you specify the FULL argument, the history also includes
information about file creation and revision times and record format
and attributes. Element generations are listed in reverse chronological
order. The generation numbers of the specified generation and its
ancestors are marked with an asterisk (*).

The source file listing contains all the lines inserted or modified from
generation 1 to the specified generation. The listing does not show lines
deleted from the file. CMS inserts consecutive line numbers in the
listing unless editor-assigned line numbers already exist. (The line
numbers start with 1 for the first line and increase by 1 for each line.)
The generation field starts at the first character position of each line. It
contains the generation number of the most recent generation in which
the line was inserted or modified. The generation field is blank if a line
is unchanged since generation 1.

Return Code Description Status

CMS$-ANNOTATED CMS annotated the element. Success

CMS$-ANNOTATIONS CMS annotated one or more Success
elements.

CMS$~RRANNOTA TIONS CMS annotated zero or more Error
elements and encountered
errors during the transaction.

CMS$.-NOANNOTATE CMS did not annotate the Error
specified element.

CMS$.-NOREF Error accessing library. Error

CMS$_USERERR User routine returned an error Error
to CMS.

2-10 eMS Routine Descriptions

(

(

(

CMS$ASYNCH_ TERMINATE

CMSSASYNCH_ TERMINATE

Format

Arguments

Description

Simulates a keyboard CTRLlC (cancel). The CMS$ASYNCH_
TERMINATE routine allows calling programs to specify to the CMS
function currently in progress that cancelation has been requested.

CMS$ASYNCH_TERMINATE

None.

The CMS$ASYNCH_TERMINATE routine requests CMS to terminate
processing at the next convenient point, just as when the user presses
CTRLlC during command execution. This termination may not occur
immediately and in fact may not occur at all, depending on the
operation.

You can call CMS$ASYNCH_TERMINATE from your own CTRLlC
handler, from anywhere else in your program, from callback routines,
and from AST routines.

CMS$ASYNCH_ TERMINATE sets a flag so that CMS can recognize it at a
convenient time. This flag is usable with both CMS$CMS and other
lower-level callable CMS routines. CMS clears this flag on entry to a
top-level callable routine.

eMS Routine Descriptions 2-11

CMS$CMS

CMSSCMS

Format

Arguments

CMS$CMS is a high-level entry point that allows calling programs to
pass a DCL command line to CMS for processing. CMS$CMS parses
and executes the command line, and then returns to the calling
program.

CMS$CMS (fcommand-'ineI,
[msgJoutineI,
[promptJoutine I,
[confirmJoutineI,
[outputJoutine I,
[width])

command_line
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the address of a string descriptor that contains a command
line. If you specify 0, CMS uses the prompLroutine argument to prompt
you for a command line. If you do not specify this argument or a
prompt routine, CMS returns the error RMS$~OF (end offile detected).

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

2-12 eMS Routine Descriptions

<.

(

(

CMS$CMS

prompLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies the address of a callback routine that is used instead of direct
terminal input when a response is required from the user. This routine
is used to handle missing command parameters and missing command
continuation lines.

If this parameter is not specified, CMS does not prompt for missing
command line components (CMS returns RMS$~OF). RMS$_EOF then
causes the CLI (command language interpreter) to terminate command
processing.

The prompt callback routine is called with two parameters:

string_id

Specifies a string identifier passed by reference for the prompt
string, which can then be displayed to the user. Use CMS$GET_
STRING to retrieve the string value.

flag

Specifies a longword passed by reference, which designates the
specific type of information being requested: 0 indicates a command
line, 1 indicates a missing parameter, and 2 indicates a remark. The
caller must determine what to do in each situation.

The prompLroutine argument must use CMS$PUT_STRING to return
user input to CMS. Note that this convention is not compatible with
direct use of LIB$GETJNPUT; however, it serves the same purpose as in
other callable CMS routines in that it prevents difficulties due to the
differing string descriptor support of various languages.

confirm_routine
Type: procedure
Access: read
Mechanism: by reference

Specifies the address of a callback routine that is used rather than
direct terminal input when either the ICONFIRM qualifier is specified,
or a module is being reserved, unreserved, or replaced with concurrent
reservations in effect.

eMS Routine Descriptions 2-13

CMS$CMS

This routine may work in either of two modes. It may return a string
or the status of whatever operation it used to obtain the string (for
example, LIB$GETjNPUT or $QIO status) as in Table 2-1.

Table 2-1: Confirm_Routine Return Status

String

YES, 1, true

ALL

NO, 0, false

QUIT

Meaning

Indicates positive confirmation

Indicates positive confirmation and that future actions of
the current call to CMS should be carried out without
confirmation

Indicates negative confirmation

Indicates negative confirmation and that CMS performs
no further actions

Or it may instead return a CMS confirmation status code as in the
following list:

Return Code Meaning

CMS$_CONFIRM Yes

CMS$~OCONFIRM No

CMS$-ALL All

CMS$_STOPPED Quit

If the callback routine returns one of these codes, any string supplied
through CMS$PUT_STRING is ignored.

For confirmations where ALL and QUIT are not meaningful (such as to
confirm a concurrent reservation), ALL is equivalent to YES and QUIT
is equivalent to NO.

If an invalid response is given, CMS reprompts you. Note that any
response can be abbreviated to a single character. If a null string is
returned, CMS defaults to NO. If a confirm routine is not specified,
CMS does not prompt you; instead, it assumes positive confirmation
(YES).

The confirm callback routine is called with the stringJd parameter:

2-14 eMS Routine Descriptions

'\
)

~-

CMS$CMS

string_id

Specifies a string identifier passed by reference for the prompt
string, which can then be displayed to the user. Use CMS$GET_
STRING to retrieve the string value.

Confirl11Joutine should use CMS$PUT _STRING to return the user input
string (if any) to CMS. Note that this convention is not compatible with
direct use of LIB$GETJNPUT; however, it serves the same purpose as in
other callable CMS routines in that it prevents difficulties due to the
differing string descriptor support of various languages.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies the address of a callback routine to handle output usually sent
to SYS$OUTPUT. For example, all output from a SHOW command is
directed to SYS$OUTPUT by default (in the absence of an overriding
IOUTPUT qualifier), and the reporting of concurrent reservations or
replacements (for FETCH, RESERVE, REPLACE, and UNRESERVE
commands) is always to SYS$OUTPUT. This callback also receives the
output for the commands FETCH/OUTPUT=SYS$OUTPUT:,
DIFFERENCE/OUTPUT=SYS$OUTPUT:, and so forth.

If outputJoutine is not specified, CMS writes all output to SYS$OUTPUT.

The output callback routine is called with two parameters:

string_id

Specifies a string identifier passed by reference for the output
string, which can then be displayed to the user. Use CMS$GET_
STRING to retrieve the string value.

flag

Specifies a longword passed by reference, which is set to - 1 on the
first invocation of the callback routine for a sequence of output. The
flag is 0 for each following record of the sequence. After the final
record of data in the output sequence, a final invocation of the call
back has the flag set to I, indicating the output sequence is com
plete; in this case, the string_jd argument is invalid because the final
record has already been processed. Strin~d is valid when the flag is
either -lor O.

eMS Routine Descriptions 2-15

CMSSCMS

Description

For any call to a CMS entry point, it is possible to have more than C-\
one output sequence. For example, in a call to CMS$CMS with the 0

,/

command string FETCH/OUTPUT=TT: *.*, the text of each file is a
separate output segment. In addition, the listing of concurrent
reservations and replacements for each file is a separate output
segment.

width
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies the maximum width of text that can be sent to the output call
back routine. If this argument is not specified, the terminal width is
used. If this is unavailable, the width defaults to the translation of
CMS$WIDTH (if defined) or to 132 characters.

CMS$CMS can return all CMS return codes and CLI$ errors.

2-16 eMS Routine Descriptions

CMS$COPY _ELEMENT

(CMSSCOPY _ELEMENT

Format

Arguments

(

Copies an existing element to form a new element. The CMS$COPY_
ELEMENT transaction preserves all element data and history.

CMS$COPY _ELEMENT (library_dataJJ/ock,
inpuLelemenLexpression,
outpuLelement,

Iibrary_datlLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

[remark},
[sourceJibrary _dataJJ/ock},
[msgJoutine j)

Specifies an initialized LOB for the library in which the copy is to be
placed.

inpuLelemenLexpression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the element or group of elements to be copied. Wildcards and
a comma list are allowed.

You must include a period (.) in the element expression to select one or
more elements from the complete list of elements in the library. If you
do not include a period, CMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that are
established in the library.

eMS Routine Descriptions 2-17

CMS$COPY _ELEMENT

outpuLelement
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies the element name for the new element. The outpuLelement
name cannot be the same as any existing element name in the output
library.

The outpuLelement name can be the same as inpuLelemenLexpression
only if you also specify a source library data block that points to a
different library than the library data block.

You cannot use OOCMS as the file name component of an element
name because it is reserved for CMS. If a comma list or wildcard was
used in the inpuLelemenLexpression, a wildcard must be used in the
outpuLelement.

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

source_library _datLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB for the library from which the element is to
be copied. By default, CMS searches the library associated with
library _dat~block.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

2-18 eMS Routine Descriptions

\.

/

(- Description

(

CMS$COPY _ELEMENT

The CMS$COPY _ELEMENT routine uses an existing library element to
create a new element in the same library or in another library. The
original element is left unchanged. The generation history, file charac
teristics, and element attributes are copied in full.

CMS must be able to create one new element for each old element.
When you use wildcards or a group name in the input element specifi
cation, CMS builds a list of elements to be copied. CMS uses this list as
the point of reference during the copy transactions. If the output
element specification does not allow CMS to create a new element for
each element in the input list, the results may not be what you intend.
For example, the following combination of wildcard expressions
produces only one new element:

input element specification - *.FOR
output element specification - NDATA.*

The first element that matches the input specification (* .FOR) produces
one new element named NDATA.FOR. Each successive element that
matches the input specification generates an error message because
CMS can create only one unique element name from the given combi
nation of wildcard expressions.

If the existing library element has the reference copy attribute enabled
and the target library has a reference copy directory, CMS creates a
reference copy for the new element and assigns the reference copy
attribute to the new element. If there is no reference copy directory for
the target library, the new element will not have the reference copy
attribute, even if the existing element does.

eMS Routine Descriptions 2-19

CMSSCOPY _ELEMENT

Example

Return Code

CMS$_ERRCOPIES

CHARACTER*10 DIR,SOURCE-DIR

Description

CMS copied the specified
element.

CMS copied one or more
elements.

CMS copied zero or more ele
ments but encountered errors
during the transaction.

CMS was unable to copy the
specified element.

Error accessing library.

CHARACTER*10 ELEMENT 0
CHARACTER*26 REMARK

INTEGER*4 LDB(50) m
INTEGER*4 SOURCE-LDB(50)
INTEGER*4 STATUS

INTEGER*4 CMS$SET-LIBRARY
INTEGER*4 CMS$COPLELEMENT

DIR = '[COMP • LIB] ,
SOURCE-DIR = '[BASE.LIB]'
ELEMENT = 'TSTDAT.FOR'
REMARK = 'Transrer rrom base ~ibrary'
STATUS = CMS$SET-LIBRARY(LDB,DIR) ~
IF (.NOT. STATUS) THEN
RETURN
STATUS = CMS$SET-LIBRARY(SOURCE-LDB,SOURCE-DIR}
IF (.NOT. STATUS) THEN
RETURN
STATUS = CMS$COPLELEMENT(LDB,ELEMENT"REMARK,SOURCE;-LDB} (g
IF (.NOT. STATUS) THEN
RETURN
END

Key to Example:

Status

Success

Success

Error

Error

Error

o Character string variables are declared for the directory specifica
tions, the element name, and the remark.

S The LDBs are declared as 50-word integer arrays.

2-20 CMS Routine Descriptions

(

(

CMS$COPY _ELEMENT

I!I The CMS routines are declared external to the program.

II The character string variables are assigned the appropriate values.

Ii! The CMS$SELLIBRARY routine is called once for each library
to be accessed.

m The destination LDB, element name, remark, and source LDB
are passed to the CMS$COPY_ELEMENTroutine.

Two commas are specified between the ELEMENT and the
REMARK arguments; the second comma is required as a place
holder for the omitted argument (the output element name). In
this case, it is not necessary to provide an output element name.
Because the source and destination libraries are different, CMS
creates a new element with the same name (as long as the des
tination library does not already contain an element with that
name).

eMS Routine Descriptions 2-21

CMS$CREATE_CLASS

CMSSCREATE_CLASS

Format

Arguments

Creates an empty class in a CMS library or in the first library of a
search list, if one was specified.

CMS$CREATE_CLASS (library _dataJJ/ock,
classJ7ame,
[remark),
[msgJoutinej)

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

class_name
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the class to be created. Class and group names must be
unique; CMS returns an error if you specify a name that is currently
in use for an existing class or group. If a previously used class or
group name has been removed with the CMS$DELETE_CLASS or
CMS$DELETE_GROUP routine, you can use that name again with
CMS$CREATE_CLASS. Wildcards are not allowed. A comma list is
allowed.

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the remark string that is to be logged in the history file and
associated with the class.

2-22 eMS Routine Descriptions

,/ ",

(".
I
~

Description

(

(

mSQ_routine
Type:
Access:
Mechanism:

procedure
read
by reference

CMS$CREATE_CLASS

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$CREATE_CLASS routine establishes a class. Once a class is
established, you can place any set of element generations into
that class by using the CMS$INSERT_GENERATION routine. The
CMS$CREATE_CLASS routine does not place any generations in the
created class.

Return Code Description Status

CMS$_CREATED CMS created the class. Success

CMS$_CREATES CMS created one or more Success
classes.

CMS$-..ERRCREATES CMS created zero or more Error
classes and encountered errors
during the transaction.

CMS$~OCREATE CMS did not create the speci- Error
fied class.

CMS$~OREF Error accessing library. Error

eMS Routine Descriptions 2-23

CMS$CREATE_ELEMENT

CMSSCREATE_ELEMENT

Creates a new element in a CMS library or in the first library of a
search list, if one was specified.

Format CMS$CREATE_ELEMENT (library_dataJJlock,

Arguments
library _datCLblock
Type: cntrJblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

2-24 eMS Routine Descriptions

elementJ]ame,
[remark],
[history],
[notes],
[position],
[keep],
[reserve],
[concurrent],
[reference_copy],
[inpuLfile],
[inputJoutine],
[user_arg],
[msgJoutine],
[review])

/ " (,

\
\ ,/

(

CMS$CREATE_ELEMENT

elemenLname
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies the new element to be created. The elemenLname argument is
required. Wildcards and a comma list are allowed; however, you
cannot use wildcards if you specify inpuLroutine.

If you do not specify the inputJile argument, the element name must
correspond to an existing file in your current default directory. The
name cannot be the same as any existing element name in the library.
You may not use the file name OOCMS because it is reserved for CMS.

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the creation remark string that is to be logged in the history
file and associated with the element and the first generation of the
element.

history
Type:
Access:
Mechanism:

char_string
read
by descriptor

Specifies the history string. If you include the history argument in the
call, CMS establishes or changes the history attribute for the element. If
an element has a history attribute, its history is included in the file
when it is retrieved by the CMS$FETCH routine. To disable the history
attribute, specify a zero-length string. For a detailed explanation of the
history element attribute, see the Guide to VAX DEC/Code Management
System.

notes
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the notes string. If you include the notes argument in the call,
CMS establishes or changes the notes attribute for the element. If an
element has a notes attribute, notes are embedded in the lines of the file
when it is retrieved by the CMS$FETCH routine. To disable the notes
attribute, specify a zero-length string. Any element that has the notes

eMS Routine Descriptions 2-25

CMS$CREATE_ELEMENT
(~\

attribute must have the position attribute. For a detailed explanation of \",_/
the notes attribute, see the Guide to VAX DEC/Code Management System.

position
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies the position value to be used with the notes attribute. The
position attribute determines the character position at which the note is
to begin on the line. The position value must be an integer greater than
zero. Any element that has the position attribute must have the notes
attribute. For a detailed explanation of the position attribute, see the
Guide to VAX DEC/Code Management System.

keep
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that prevents eMS from deleting copies of the input file
after the element is created. By default, the flag is set to 0, indicating
that eMS should delete the copies of the file in your default directory
(or the area indicated by the inpuLfile argument) after creating the new
element. Set the flag to 1 to prevent eMS from deleting the copies of " /
the input file.

reserve
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs eMS to establish a reservation for the new
element. By default, the flag is set to 0, and eMS does not mark the
element as reserved. Set the reserve flag to 1 to reserve the element. In
this case, eMS ignores the value of the keep flag and does not delete
the file used to create the element.

concurrent
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag indicating the access to the element. By default, the flag
is set to I, and eMS allows concurrent reservations of the element. Set
the concurrent flag to 0 to prohibit concurrent reservations.

2-26 eMS Routine Descriptions

(-

(

(

CMS$CREATE_ELEMENT

reference_copy
Type: longword_signed
Access: read
Mechanism: by reference

Specifies a flag indicating whether CMS is to maintain a reference copy
of the element when a new main line generation is created.

If you do not specify this argument and a reference copy directory is
already established, CMS enables the reference copy attribute for the
element, and creates the reference copy.

If you specify a 0, or if you do not specify this argument and a reference
copy directory is not established, CMS creates the element but does not
enable the reference_copy attribute for the element, and does not create
the reference copy.

If you specify a 1 for this argument and the reference copy directory is
not established, you get an error.

inpuLfile
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the name of the file to be used to create the element. If you
specify an input file, you cannot also specify an input routine. Wild
cards are allowed but must match the wildcards specified in
elemenLname.

Use this argument if you want the element to be created from a file with
a different name from that specified by the elemenLname argument.
You can also use this argument to direct CMS to search a different
location other than your current default directory. When you specify
an input file in an alternative directory, CMS deletes the file from the
alternative directory (unless you specify the keep or reserve argument).

inpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies a callback routine that provides data for the CMS$CREATE_
ELEMENT transaction. CMS calls this routine once for each line of data
until the callback routine indicates the end-of-file. If you specify an
input routine, you cannot also specify an input file, nor can you specify
wildcards in the elemenLname argument. See the callback routines

eMS Routine Descriptions 2-27

CMS$CREATE_ELEMENT

section for information about the parameters that CMS passes to the
input routine.

useLarg
Type:
Access:
Mechanism:

undefined
read
undefined

Specifies a value that you supply and that CMS passes to the inpuL
routine argument, using the same mechanism that you used to pass it
to CMS.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

review
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag indicating whether CMS is to automatically mark new
generations as pending review. By default, the flag is set to 0, and CMS
marks new generations of the element as pending review only if the
reserved generation either was rejected or has a review pending. Set
the flag to 1 to indicate that new generations should be marked for
review.

Callback Routine Parameters

When you write an input routine to provide data for CMS$CREATE_
ELEMENT, CMS passes the following parameters in the order shown
with each call to inputJoutine:

(first_call, library_data_black, user_param, element_id, eaf_status,
sequence_flag, sequence-uumber)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

2-28 eMS Routrne Descrrptions

(

(

CMS$CREATE_ELEMENT

firsLcall
Type: longword_signed
Access: read
Mechanism: by reference
Specifies a flag that indicates whether the current call to the input
routine is the first call. CMS sets the flag to 1 if the current call is the
first call and to 0 if it is not.

library_data_block
Type: cntrlblk
Access: read
Mechanism: by reference

Specifies the LDB for the current library.

usecparam
Type: undefined
Access: modify
Mechanism: undefined

Specifies the user argument as it was passed to CMS$CREATE_
ELEMENT. If you did not specify a user argument, this parameter
points to a read-only storage location containing the value O. CMS
passes usecparam to your routine using the same mechanism that you
used to pass it to CMS$CREA TE~LEMENT.

elemenUd
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the element name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

eoLstatus
Type:
Access:
Mechanism:

longword_signed
modify
by reference

Specifies the end-of-file status. The input routine must change the value
of eoLstatus from false (0) to true (1) to indicate to eMS that input
is terminated. When eoLstatus is true (1), CMS ignores the contents
of the current input record (passed by CMS$PUT_STRING). Therefore,
you must set eoLstatus to true (1) in the call following the last significant
input record. See Section 1.5.3.1 for more information on specifying the
end of input.

eMS Routine DescriptUlns 2-29

CMS$CREATE_ELEMENT

Description

sequence_flag
Type: longword_signed
Access: write
Mechanism: by reference
Specifies a flag that directs CMS to create a sequenced element file. By
default, the flag is set to 0, indicating that the input is not sequenced.
Set the flag to 1 to direct CMS to create a sequenced element file.

sequence_number
Type: longword_signed
Access: write
Mechanism: by reference
Specifies a signed integer that indicates the sequence number of the
input line. A value in the range of 1 to 65,536 characters indicates the
sequence number.

When you use a callback routine to provide input for CMS$CREA TE_
ELEMENT, CMS uses the time of the CMS$CREATE-ELEMENT trans
action as the file creation and revision times associated with generation
1 of the new element. CMS also uses the following record format and
record attributes when you use a callback input routine. If you provide
unsequenced input, generation 1 of the new element has variable
length records with the carriage return record attribute. If you provide
sequenced input, the element generation has VFC 2-byte records with
the carriage return record attribute.

The CMS$CREATE_ELEMENT routine creates the first generation of a new
element from a file in your current default directory or from the file
specified by the inpuLfile argument. After the element is created, CMS
deletes the file used to create the new element (and any earlier versions
of the file in the same directory or the entire search list if the file was
located in a search list). If you specify either the keep or the reserve
argument, CMS does not delete the file. When you create an element,
you can also define the attributes (history, notes, position, concurrent
access, reference copy, and review) for the element or establish a
reservation.

CMS stores the creation date and time, the format, the revision date
and time, the file revision number, file characteristics, and any attributes
of the file used to create the new element. When you fetch or reserve
an element generation, CMS restores the times and file revision number
associated with the file used to create the element generation. You can

2-30 eMS Routine Descriptions

~.

\j

(

(

CMS$CREATE_ELEMENT

also obtain this information by using the CMS$SHOW_GENERATION
routine.

Return Code Description Status

CMS$_CREATED CMS created the specified new Success
element.

CMS$_CREATES CMS created one or more Success
elements.

CMS$~RRCREATES CMS created zero or more ele- Error
ments and encountered errors
during the transaction.

CMS$~OCREATE CMS did not create the speci- Error
fied element.

CMS$~OREF Error accessing library. Error

CMS$_USERERR User routine returned an error Error
to CMS.

eMS Routine Descriptions 2-31

CMS$CREATE_GROUP

CMS$CREATE_GROUP

Format

Arguments

Creates an empty group in a CMS library or in the first library of a
search list, if one was specified.

CMS$CREATE_GROUP (library_dataJJlock,

library _datCLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LOB.

group_name
Type:
Access:
Mechanism:

chacstring
read
by descriptor

groupJ1ame,
{remark},
[msgJoutinej)

Specifies the group to be created. Group and class names must be
unique; CMS returns an error if you specify a name that is currently
in use for an existing group or class. However, if a previously used
group or class name has been removed with the CMS$OELETE_GROUP
or CMS$OELETE_CLASS routine, you can use that name again with
CMS$CREATE_GROUP. Wildcards are not allowed. A comma list is
allowed.

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the remark string that is to be logged in the history file and
associated with the group.

2-32 eMS Routine Descriptions

(-

Description

(

(

msg30utine
Type:
Access:
Mechanism:

procedure
read
by reference

CMS$CREATE_GROUP

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$CREATE_GROUP routine establishes a group. (For more infor
mation about groups, see the Guide to VAX DEC/Code Management
System.) Once a group is established, you can place elements or
groups into that group by using the CMS$INSERT_ELEMENT or
CMS$INSERT_GROUProutine. The CMS$CREATE_GROUProutine
does not place any elements or groups in the created group.

Return Code Description Status

CMS$_CREATED CMS created the specified Success
group.

CMS$_CREA TES CMS created one or more Success
groups.

CMS$J:RRCREATES CMS created zero or more Error
groups and encountered errors
during the transaction.

CMS$~OCREATE CMS did not create the group. Error

CMS$~OREF Error accessing library. Error

eMS Routine Descriptions 2-33

CMS$CREATE_LlBRARY

CMS$CREATE_LIBRARY

Format

Arguments

Creates a new CMS library in an existing empty directory, and adds
that library to the passed library search list context.

CMS$CREATE_LlBRARY (library _dataJJ/ock,
directory,

Iibrary_datLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

[remark],
[reference_copy _dir],
[msgJoutine],
[confirmJoutine],
[outputJoutine],
[width],
[position],
[positionaLdir _spec])

Specifies a valid LDB. The LDB mayor may not be initialized, depend
ing on whether you also specify the position and positionaLdicspec
arguments.

If the position and positionaLdicspec arguments are specified, the
library data block must have already been initialized by a previous call
to CMS$CREATE_LIBRARY or CMS$SET _LIBRARY. If the position and
positionaLdicspec arguments are not specified, the library data block is
initialized by this call and points to the specified directory.

2-34 eMS Routine Descriptions

(

(

(

directory
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

CMS$CREATE_LlBRARY

Specifies an existing directory. The directory must not contain any files
or subdirectories, or be an eighth-level directory. A directory that is to
be used as a CMS library cannot be your current default directory.
Wildcards are not allowed. A comma list is allowed.

remark
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

reference_copy_dir
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies a valid VMS directory to be used for reference copies of ele
ments. The directory cannot be a CMS library. Wildcards are not
allowed.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

confirm_routine
Type: procedure
Access: read
Mechanism: by reference

Specifies the address of the entry mask of a confirmation callback
routine. For information about callback routines, see Section 1.5.

eMS Routine Descriptions 2-35

CMS$CREA IE_LIBRARY

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies the address of the entry mask of a terminal output callback
routine. For information about callback routines, see Section 1.5.

width
Type:
Access:

longword---.:signed
read

Mechanism: by reference

Specifies the maximum width of text that can be sent to the output call
back routine. If this argument is not specified, the terminal width is
used. If this is unavailable, the width defaults to the translation of
CMS$WIDTH (if defined) or to 132 characters.

position
Type:
Access:

longword_signed
read

Mechanism: by reference

Specifies the position value to be used with the positionaLdicspec
argument. The position value determines the position in the library
search list at which the new library or libraries are to be inserted, or
whether the new library or libraries are to supersede the existing library
search list.

The following table shows the possible values and corresponding
results. You can specify only one of the following values.

Value

o

1

2

2-36 eMS Routine Descriptions

Result

Indicates that a new library or libraries should supersede the exist
ing library list. This is the default.

Indicates that the new library or libraries should be inserted after an
existing library in the library search list specified with the
positionaLdicspec argument.

Specifies that the new library or libraries should be inserted before
an existing library in the library search list specified with the
positionaLdicspec argument.

(-\

'_-~

(

Description

(

(

CMS$CREATE_LlBRARY

positionaLdir _spec
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the name of a library in the current library search list before
or after which the new library or libraries are to be inserted (depending
on the value of the position argument).

If you omit the positionaLdicspec argument and specify a value of 1 for
the position argument, new libraries are appended to the existing
library search list. If you omit the positionaLdicspec argument and
specify a value of 2 for the position argument, new libraries are inserted
at the beginning of the existing library search list. If the position argu
ment is specified as a or is omitted, the positionaLdicspec argument is
ignored.

The CMS$CREA TE_LIBRARY routine builds CMS control files in a direc
tory so that it can be used as a CMS library. Once you have established
a library with the CMS$CREATE_LIBRARY routine, you can call other
CMS routines to manipulate the library using the same LDB which
should now be initialized and can be used by other routines. Your
CMS library is set to the library directory specified in the directory
argument.

The CMS$CREATE_LIBRARY routine establishes a CMS library search list
context with one or more CMS library directories. Once the search list
context has been established, you can use the resulting LDB in calls to
other CMS routines.

Return Code

CMS$_CREATED

CMS$_NOCREATE

Description Status

CMS created the library. Success

CMS did not create the library. Error

eMS Routine Descriptions 2-37

CMS$DELETE_CLASS

CMSSDELETE_CLASS

Format

Arguments

Deletes one or more classes from a eMS library. There cannot be any
element generations in the class when it is deleted.

CMS$DELETE_CLASS (library _dataJJ/ock,
class_expression,
[remark),
[msgJoutinej)

Iibrary_datCLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LOB.

class_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies one or more classes to be deleted. Wildcards and a comma list
are allowed.

remark
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

2-38 eMS Routine Descriptions

, ,

\,_/

(

Description

(

(

mag_routine
Type:
Access:
Mechanism:

procedure
read
by reference

CMS$DELETE_CLASS

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$DELETE_CLASS routine deletes one or more classes from a CMS
library. If any generations belong to the class, CMS issues an error
message and does not delete the class. You cannot delete a class that is
set to READ_ONLY. (See the CMS$REMOVE_GENERATION and
CMS$MODIFY _CLASS routines for more information.)

Even though a class is deleted, records of transactions that created and
used the class are retained in the project history. You can reuse the
deleted class name to create a new class. However, there is no distinc
tion between the two classes in the project history, except that their
transactions are separated by entries for DELETE CLASS and CREATE
CLASS commands.

Return Code Description Status

CMS$_DELETED CMS deleted the class. Success

CMS$_DELETIONS CMS deleted one or more Success
classes.

CMS$_ERRDELETIONS CMS deleted zero or more Error
classes and encountered errors
during the transaction.

CMS$~ODELETE CMS did not delete the class. Error

CMS$_NOREF Error accessing library. Error

eMS Routine Descriptions 2-39

CMS$DELETE_ELEMENT

CMS$DELETE_ELEMENT

Format

Arguments

Deletes one or more elements from a eMS library. The element cannot
be in any groups, have current reservations or reviews pending, and
there can be no generations of it in any classes.

CMS$DELETE_ELEMENT (/ibrary_dataJJlock,

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

elemenLexpression
Type: chaLstring
Access: read
Mechanism: by descriptor

elemenLexpression,
/remark],
/msgJoutineJ)

Specifies one or more elements or groups of elements to be deleted.
Wildcards and a comma list are allowed.

remark
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

2-40 eMS Routine Descriptions

(\

Description

(

(

mS9_routine
Type:
Access:
Mechanism:

procedure
read
by reference

CMS$DELETE_ELEMENT

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$DELETE_ELEMENT routine deletes one or more elements
from a CMS library. If the element is set to IREFERENCE_COPYand
there is a current reference copy directory for the CMS library, CMS
deletes the corresponding file (if it exists) from the reference copy
directory. There cannot be any existing reservations for the element,
and the element cannot have any generations with reviews pending.
The element cannot be a member of a group, nor can one of its
generations belong to a class. If it is reserved, you must cancel the
reservation (using the CMS$UNRESERVE routine) or replace the
element in the library (using the CMS$REPLACE routine) before you
can delete the element. If the element belongs to any groups or classes,
use the CMS$REMOVE.-ELEMENT or CMS$REMOVE_GENERATION
routine to remove it. If the element has a review pending, use the
CMS$REVIEW _GENERATION routine to resolve the review pending
status.

Even though an element is deleted, records of transactions that created
and used the element are retained in the project history. You can reuse
the deleted element name to create a new element. However, there is
no distinction between the two elements in the project history, except
that their transactions are separated by entries for DELETE ELEMENT
and CREATE ELEMENT commands.

You cannot restore a deleted element.

eMS Routine Descriptions 2-41

CMS$DELETE_ELEMENT

Return Code

CMS$_DELETED

CMS$_DELETIONS

CMS$~RRDELETIONS

CMS$~ODELETE

CMS$~OREF

2-42 eMS Routine Descriptions

Description Status

CMS deleted the element. Success

CMS deleted one or more Success
elements.

CMS deleted zero or more ele- Error
ments and encountered errors
during the transaction.

CMS did not delete the Error
element.

Error accessing library. Error

(-
CMS$DELETE_GENERA TlON

CMSSDELETE_GENERATION

Format

Arguments

Deletes one or more generations of one or more elements.

CMS$DELETE_GENERATION (library_dataJJ/ock,

Iibrary_datCLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

elemenLexpression
Type: chacstring
Access: read
Mechanism: by descriptor

e/emenLexpression,
/remark),
/generation_expression},1

latter --fJeneration}, 1

/before--fJeneration},1
/from--fJeneration},1
/to--fJeneration},1
/archive_file},
/msgJoutineJ)

Specifies one or more elements or groups of elements whose genera
tions are to be deleted. Wildcards and a comma list are allowed.

1 A generation or range of generations must be specified with a combination of one or more of these
arguments.

eMS Routine Descriptions 2-43

CMS$DELETE_GENERATION

remark
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

generation_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the particular generation to be deleted. If you do not spec
ify this argument and do not specify either froIILgeneration or to_
generation, the most recent generation on the main line of descent
(1 +) is deleted. You cannot combine generatioD-expression with any
of the following arguments: froIILgeneration, to_generation, aftec
generation, and before_generation.

afteLgeneration
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the start of a range of generations that are to be deleted,
excluding the specified generation. You cannot combine both
aftecgeneration and froIILgeneration, or both aftecgeneration and
generatioD-expression. You must specify the end of the range with either
the before_generation or the to_generation argument.

before_generation
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the end of a range of generations to be deleted, excluding the
specified generation. You cannot combine both before_generation and
to_generation, or both before_generation and generatioD-expression. You
must specify the start of the range with either the aftecgeneration or
the froIILgeneration argument.

2-44 eMS Routine Descriptions

,/ " I '

(

CMS$DELETE_GENERATION

from_generation
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies the start of a range of generations that are to be deleted,
including the specified generation. You cannot combine both froIlL
generation and aftecgeneration, or both froIlLgeneration and
generatioILexpression. You must specify the end of the range with
either the before_generation or the to_generation argument.

to_generation
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies the end of a range of generations to be deleted, including the
specified generation. You cannot combine both to_generation and
before_generation, or both to_generation and generatioILexpression. You
must specify the start of the range with either the aftecgeneration or
the froIlLgeneration argument.

archive_file
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies that an archive file is to be created for every element specified
in the elemenLexpression argument. A new file is created for each
element. If you do not specify the elemenLexpression argument or if
you specify a wildcard, by default, CMS creates an output file with the
same name as the element and the file type .CMS~RCHIVE, and
places the file in your default directory.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

eMS Routine Descriptions 2-45

CMSSDELETE_GENERATION

Description
The CMS$DELETE_GENERA nON routine removes information about
one or more generations of elements from the library. Once a genera
tion is deleted, it cannot be restored to the CMS library. If the genera
tion or range of generations to be deleted has a direct descendant
generation (that is, a descendant generation on the same line of
descent), then the changes associated with those generations are com
bined, and then those changes are combined with the changes in the
descendant generation. If there is no descendant generation, that is, the
generation or range of generations to be deleted is at the end of the
line of descent, then the changes associated with those generations are
discarded.

You can specify a single generation with the generatiolLexpression
argument. You can also specify a range of generations with either the
afiecgeneration or fro1tL.generation arguments to delimit the beginning of
a range, and either the before~enerationorto~enerationargumentsto
delimit the end of a range. These sets of arguments can be paired to
specify ranges with inclusive or exclusive endpoints.

If you delete the latest generation on the main line of descent of an
element that has the reference copy attribute, CMS deletes the genera
tion's reference copy and creates a new reference copy that corresponds
to the generation that is now the latest generation on the main line of
descent.

Return Code Description Status

CMS$_GENDELETED CMS deleted the generation. Success

CMS$_GENDELETIONS CMS deleted one or more Success
generations.

CMS$~RRGENDELETIONS CMS deleted zero or more Error
generations and encountered
errors during the transaction.

CMS$~OGENDELETED CMS did not delete the speci- Error
fied generation.

CMS$~OREF Error accessing library. Error

2-46 eMS Routine Descriptions

/ '\

/ '\

(

(

(

CMS$DELETE_GROUP

CMS$DELETE_GROUP

Format

Arguments

Deletes one or more groups from a eMS library. There can be no ele
ments or groups in the group, nor can the group be a member of any
other groups.

CMS$DELETE_GROUP (library_dataJJ/ock,

Iibrary_datLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LOB.

group_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

group_expression,
[remark),
[msgJoutinej)

Specifies one or more groups to be deleted. Wildcards and a comma list
are allowed.

remark
Type:
Access:
Mechanism:

Char_string
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

eMS Routine Descriptions 2-47

CMS$DELETE_GROUP

Description

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$DELETE_GROUP routine deletes a group or groups from
a CMS library. If the group is not empty, or if it belongs to another
group, CMS returns an error and does not delete the group. You
cannot delete a group that is set to READ_ONLY. For information
on changing the READ_ONLY attribute, see the description of the
CMS$MODIFY_GROUP routine. If the group is not empty, use the
CMS$REMOVE_ELEMENT routine to remove any elements from the
group, or use the CMS$REMOVE_GROUP routine to remove any other
groups from the group. If the group belongs to any other groups, use
the CMS$REMOVE_GROUP routine to remove it.

Even though a group is deleted, records of transactions that created
and used the group are retained in the project history. You can reuse
the deleted group name to create a new group. However, there is no
distinction between the two groups in the project history, except that
their transactions are separated by entries for DELETE GROUP and
CREATE GROUP commands.

Return Code Description Status

CMS$_DELETED CMS deleted the group. Success

CMS$_DELETIONS CMS deleted one or more Success
groups.

CMS$_ERRDELETIONS CMS deleted zero or more Error
groups and encountered errors
during the transaction.

CMS$~ODELETE CMS did not delete the group. Error

CMS$_NOREF Error accessing library. Error

2-48 eMS Routine Descriptions

CMS$DELETE_HISTORY

(CMS$DELETE_HISTORY

Format

Arguments

(

Deletes all or part of the library history.

CMS$DELETE_HISTORY (library_dataJJlock,

library _datLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LOB.

remark
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

[remark],
before,
[transactionJT7ask],
[outputJoutine],
[use,-arg],
[msgJoutinej)

Specifies the remark string that is to be logged in the history file with
the command.

before
Type:
Access:
Mechanism:

date_time
read
by reference

Specifies a binary date and time value that· eMS uses when deleting
the library history. This argument is required.

eMS Routine Descriptions 2-49

CMS$DELETE_HISTORY

transaction_mask
Type: maslLiongword
Access: read
Mechanism: by reference

Specifies one or more transaction records to be passed to outpuL
routine. When you provide the transaction mask argument, eMS
passes only the history records for the indicated commands. The
following table shows the symbols that are defined for the transactiolL
mask argument.

Symbol

CMS$M_CMD_COPY

CMS$1LCMD_CREATE

CMS$1LCMDYETCH

CMS$1LCMDjNSERT

CMS$1LCMD--.MODIFY

CMS$1LCMDJlliMARK

CMS$1LCMDJlliMOVE

2-50 eMS Routine Descriptions

Bit Mask
Position Value

o 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

Command

COpy ELEMENT

CREATE CLASS

CREATE ELEMENT

CREATE GROUP

CREATE LIBRARY

DELETE CLASS

DELETE ELEMENT

DELETE GENERATION

DELETE GROUP

DELETE HISTORY

FETCH

INSERT ELEMENT

INSERT GENERATION

INSERT GROUP

MODIFY CLASS

MODIFY ELEMENT

MODIFY GENERATION

MODIFY GROUP

MODIFY LIBRARY

REMARK

REMOVE ELEMENT

REMOVE GENERATION

'\
,/

/ " I

~-j

(

(

Symbol

CMS$M_CMD~EPLACE

CMS$M_CMD~ESERVE

CMS$M_CMD_
UNRESERVE

CMS$M_CMD_ VERIFY

CMS$M_CMD_SET

CMS$~CMD-ACCEPT

CMS$~CMD_CANCEL

CMS$~CMD~ARK

CMS$~CMD~EJECT

CMS$~CMD~EVIEW

CMS$DELETE_HISTORY

Bit Mask
Position Value Command

REMOVE GROUP

8 256 REPLACE

9 512 RESERVE

10 1024 UNRESERVE

11 2048 VERIFY

14 16,384 SET ACL

16 65,536 ACCEPT GENERATION

17 131,072 CANCEL REVIEW

18 262,144 MARK GENERA nON

19 524,288 REJECT GENERATION

20 1,048,576 REVIEW GENERATION

The mask values are defined as universal symbols in the CMS image.
These values can be ORed together to allow combinations of the values.
This transaction mask is the same as the transaction mask used for the
CMS$SHOW J-IISTORY routine.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies a callback routine that processes data output by CMS$DELETE_
HISTORY. CMS calls the output routine once for each record to be
deleted from the library history. See the callback routines section for
information about the parameters that CMS passes to the callback
routine.

usecarg
Type:
Access:
Mechanism:

undefined
read
undefined

Specifies a value that you supply and that CMS passes to the outpuL
routine argument, using the same mechanism that you used to pass it
to CMS.

eMS Routine Descriptions 2-51

CMS$DELETE_HISTORY

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

Callback Routine Parameters

When you provide an output routine to process the output of
CMS$OELETEJIISTORY, CMS passes the following parameters in the
order shown with each call to outputJoutine:

(first_call, library_dat~block, user_param, time, user_id, comman~id,
object_id, remark-id, unusual)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

firsLcall
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates whether the current call to the output
routine is the first call. CMS sets the flag to 1 if the current call is the
first call and to 0 if it is not.

library_data_block
Type: cntrlblk
Access: read
Mechanism: by reference

Specifies the LOB for the current library.

useLparam
Type:
Access:
Mechanism:

undefined
modify
undefined

Specifies the user argument as it was passed to CMS$OELETE_
HISTORY. If you did not specify a user argument, this parameter
points to a read-only storage location containing the value O. CMS
passes usecparam to your routine using the same mechanism that you
used to pass it to CMS$OELETEJIISTORY.

2-52 eMS Routine Descriptions

(

(

time
Type:
Access:
Mechanism:

date_time
read
by reference

CMS$DELETE_HISTORY

Specifies a quadword binary date and time value for the time of the
transaction.

usecid
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the user name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

command_id
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the command name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

objecUd
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the element, group, or class involved in
the transaction. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section
1.5.3.

remarlLid
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.5.3.

eMS Routine Descriptions 2-53

CMS$DELETE_HISTORY

Description

unusual
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates whether the transaction is unusual. CMS
sets the flag to 1 if the transaction is unusual and to 0 if it is not.

The CMS$DELETEJ-IISTORY routine deletes all or part of the library
history. Whenever you delete part of the library history, CMS records
two transactions. As with other commands that modify the contents of
the library, CMS records the DELETE HISTORY transaction. In addi
tion, CMS logs a REMARK transaction at the point in the library that
corresponds to the before value. The REMARK transaction record
includes the remark text: "PREVIOUS HISTORY DELETED". Both the
REMARK and the DELETE HISTORY transactions are unusual transac
tions. When you use the SHOW HISTORY command, CMS identifies
unusual transactions by displaying an asterisk (*) in the first column of
the transaction record.

You use a callback routine to control the action of the CMS$DELETE_ (
HISTORY routine. To delete a history record, the callback routine must \" /
return a value of CMS$~ORMAL. To prevent CMS from deleting a
history record, the callback routine must return a value of CMS$_
EXCLUDE. In addition, you can use the transactioILmask argument that
directs CMS to select for deletion only a specified set of transaction
records. Thus, you can exert considerable control over the deletion
transaction by filtering each history record, or by filtering a specified set
of transaction records.

If you do not provide a callback routine, CMS deletes all history
records prior to the specified before value.

To delete the history record, the callback routine must return a value of
CMS$~ORMAL. To prevent CMS from deleting the history record, the
callback routine must return a value of CMS$~XCLUDE.

2-54 eMS Routine Descriptions

(

(-

Return Code

CMS$JHSTDEL

CMS$~ODELETE

CMS$~OREF

CMS$_USERERR

CMS$DELETE_HISTORY

Description

CMS deleted the indicated
number of records.

Status

Success

CMS did not delete any history Error
records.

Error accessing library. Error

User routine returned an error Error
to CMS.

eMS Routine Descriptions 2-55

CMSSDlFFERENCES

CMSSDIFFERENCES

Format

Compares two files, two generations of elements, or a file and a gen
eration. If the files are different, CMS$DIFFERENCES creates a file
containing the lines that differ between the two files. If the files are the
same, it issues a message to that effect and does not create a differences
file.

CMS$DlFFERENCES (library_data....block,1
[user_argj,
[inpuLfile 1 j,
[inputJoutine 1 j,
[generation_expression_1 j,
[inputJile2j,
[inputJoutine2j,
[generation_expression...2j,
[outpuLfile j,
[outputJoutine j,
[appendj,
[ignoreJT1askj,
[nooutputj,
[parallelj,
[fullj,
[formatj,
[widthj,
[msgJoutinej,
[page....breakj,

1 This is a required parameter only if you also specify a generatiolLexpression parameter.

2-56 eMS Routine Descriptions

(

Arguments

(

(

library_data_block
Type: cntrlblk
Access: modify

{skipjines],
(begin_sentinel],
(end_sentinel])

Mechanism: by reference

CMS$DlFFERENCES

Specifies the LDB for the library to be used in the differences transac
tion. You specify this argument only if you specify one or both of the
generation_expressio"-l or generatio"-expressio"-2 arguments.

useLarg
Type:
Access:
Mechanism:

undefined
read
undefined

Specifies a value that you supply and that CMS passes to a callback
routine (inpuLroutinel, inpuLroutine2, or outpuLroutine) each time the
routine is called by CMS. CMS passes the value to the routine using
the same mechanism that you used to pass it to CMS.

inpuLfile1
Type: chaLstring
Access: read
Mechanism: by descriptor
Specifies the primary input file to be used in the CMS$DIFFERENCES
transaction. You can specify both an input routine and an input file
(see the callback routines section). If you do not specify a primary input
file, you must provide a primary input routine (using the inpuLroutinel
argument) and either a secondary input file (inpuLfile2) orroutine
(inpuLroutine2). You cannot specify wildcards or a comma list.

inpuLroutine1
Type: procedure
Access: read
Mechanism: by reference
Specifies a callback routine that provides records for the
CMS$DIFFERENCES transaction. You must provide the inpuLroutinel
argument if you do not provide the inpuLfilel argument. See the callback

eMS Routine Descriptions 2-57

CMS$DIFFERENCES

routines section for information about the parameters that eMS passes
to the input routine.

generation_expression_1
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies an element generation or a class name in the eMS library indi
cated by the library_datCLblock argument. If you specify this argument,
eMS searches for an element with the name specified by inpuLfile1.

inpuLfile2
Type:
Access:
Mechanism:

char_string
read
by descriptor

Specifies a secondary input file for comparison against the contents of
inpuLfilel or input provided by inpuLroutinel. You cannot specify
wildcards or a comma list.

If you do not specify either inpuLfile2 or inpuLroutine2, eMS uses
the next lower version of the primary input file. If you do not specify
inpuLfile2 but you specify generatioILexpressionl, eMS uses the latest
version of inpuLfilel in your current default directory.

If you specify inpuL.routine2 and you want eMS to use the next lower
version of the primary input file, specify empty brackets ([]) as inpuL
file2.

inpuLroutine2
Type: procedure
Access: read
Mechanism: by reference

Specifies a secondary callback routine that provides records for com
parison with the contents of inpuLfilel or input provided by inpuL
routinel. See the callback routines section for information about the
parameters that CMS passes to the input routine.

generation_expression_2
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies an element generation or a class name in the eMS library
indicated by the library _datCLblock parameter. If you specify this

2-58 eMS Routine Descriptions

/' '\

,/

(

(

(

CMS$DIFFERENCES

argument, CMS searches for an element with the name specified by
inpuLfile2.

outpuLfile
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the name of the output file. Use this argument if you want to
specify a particular name for the output file, or if you want CMS to put
the file in a directory other than your current default directory. If you
do not specify outputJile, nooutput, or outputJoutine, CMS creates a
new file with the file name from inputJilel and the file type. DIF.
Wildcards are not allowed.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies a callback routine that processes the output of
CMS$DIFFERENCES. If you do not specify any input files, you must
provide an output routine. See the callback routines section for infor
mation about the parameters that CMS passes to the callback routine.

append
Type: longword_signed
Access: read
Mechanism: by reference

Specifies a flag that directs CMS to append the output to a file. If you
set the flag to 1, CMS appends the output to a file. If you set the flag to
0, CMS creates a new file (inputJilel.DIF). CMS ignores this argument
if you provide an output routine.

When you set the append flag to 1, CMS appends the output to an
existing file indicated by the outputJile argument. If you do not specify
an output file, CMS appends the output to the default file (inpuL
filel.DIF). If no such file exists, CMS creates one.

ignore_mask
Type: maslLiongword
Access: read
Mechanism: by reference

Specifies one or more values for /IGNORE. You can specify up to
five different actions by setting the appropriate bits in the mask. The

eMS Routine Descriptions 2-59

CMS$DlFFERENCES

following table shows the symbols that are defined for the ignore_mask
argument.

Bit
Symbol Position

CMS$MjGNORE_ 0
FORM

CMS$MjGNORLLEAD 1

CMS$MjGNORE_TRAIL 2

CMS$MjGNORE_ 3
SPACE

CMS$MjGNORE_CASE 4

CMS$MjGNORL 5
HISTORY

CMS$MjGNORE_ 6
NOTES

Mask
Value

1

2

Action

Ignore form feed charac
ters.

Ignore blank or tab char
acters at the beginning of
nonblank lines.

4 Ignore blank or tab
characters at the end of
nonblank lines.

8 Compress all multiple
spaces, tabs, or combina
tions of spaces or tabs to
single spaces.

16 Ignore differences in case
for characters A-Z.

32

64

Ignore history records
found in the compared
files.

Ignore notes text found in
the compared files.

The mask values are defined as universal symbols in the CMS image.
These values can be ORed together to allow combinations of the values.
If you omit the ignoreJIlask argument, CMS does not ignore any fields
during the differences transaction.

nooutput
Type: longword_signed
Access: read
Mechanism: by reference

Specifies a flag that prohibits CMS$DIFFERENCES output. By default,
the flag is set to 0, and CMS produces output as designated by the
other arguments. If you set the flag to 1, CMS executes a fast form of
the comparison. In this case, CMS exits when it encounters the first
difference and returns CMS$_DIFFERENT. If there are no differences,
CMS returns CMS$JDENTICAL.

2-60 eMS Routine Descriptions

(

(

(

parallel
Type:
Access:
Mechanism:

longword_signed
read
by reference

CMSSDIFFERENCES

Specifies a flag indicating whether the output is in parallel format. By
default, the flag is set to 0, and eMS does not display the output in
parallel format. If you set the flag to I, the differences from the first
file (or input routine) are displayed on the left and differences from the
second file (or input routine) are displayed on the right.

full
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs CMS to generate an extended listing that
includes identical lines as well as lines that are different between the
two input streams. If you set the flag to I, eMS generates an extended
listing. If you do not specify this argument or if you set the flag to 0,
the output includes only the differences.

format
Type:
Access:
Mechanism:

maslUongword
read
by reference

Specifies the type of formatting that is to be performed on the data
before it is placed into the output file. You must specify either the
outputjile or outputJoutine arguments with this argument. By default,
the flag is set to I, indicating formatted output. If you set the flag to 0,
eMS produces unformatted output.

The format argument specifies a data format, a data partition size, and
whether a list of generation differences should be included in the
output. The following table lists recognized data formats:

eMS Routine Descriptions 2-61

CMS$DIFFERENCES

Data Format

CMS$~SCII

CMS$M.J)EClMAL

Bit
Position

o

1

CMS$M.HEXADEClMAL 2

CMS$~OCTAL 3

Mask
Value

1

2

4

8

Action

Specifies that data be pre
sented as if each byte repre
sents a value in the ASCII
character set. This option
is most useful when files
contain text. If no data
partition is specified, data is
partitioned into records. This
option is the default.

Specifies that each value be
displayed as a decimal nu
meral. If no data partition is
specified, data is partitioned
into longwords. You cannot
specify both DECIMAL and
RECORDS.

Specifies that each value be
displayed as a hexadec
imal numeral. If no data
partition is specified, data
is partitioned into long
words. You cannot specify
both HEXADEClMAL and
RECORDS.

Specifies that each value be
displayed as an octal nu
meral. If no data partition is
specified, data is partitioned
into longwords. You cannot
specify both OCTAL and
RECORDS.

A data partition is the size that data in each record is to be broken
into before it is formatted. The following table lists recognized data
partitions:

2-62 eMS Routine Descriptions

\.
/

(~

(

(

CMS$DIFFERENCES

Bit Mask
Data Partition Position Value Action

CMS$M_BYTE 16 65,536 Specifies that the data displayed is
to be partitioned into bytes. By
default, records are not partitioned
further unless the data format
option indicates otherwise.

CMS$~ 17 131,072 Specifies that the data displayed
LONGWORD is to be partitioned into long-

word values. This is the de-
fault partitioning for DECIMAL,
HEXADECIMAL, and OCTAL.

CMS$M_ 18 262,144 Specifies that no further parti-
RECORDS tioning of data is to occur beyond

the record partitioning already in
the file. This partitioning is most
useful when the files contain text.
You can only specify RECORDS
by itself or in conjunction with
ASCII. It cannot be used with any
other options. This qualifier is the
default.

CMS$~WORD 19 524,288 Specifies that the data displayed
be partitioned into word values.
By default, data records are not
partitioned further unless the data
format indicates otherwise.

The format argument also contains a bit flag indicating that a list of
generation differences is to be included in the output file. By default,
the flag is set to 0, indicating that generation differences are not to be
included. Set the flag to 1 to include generation differences in the
output file. You specify the flag as follows:

Generation Differences

CMS$M_GENERA TION_
DIF

Bit
Position

23

Mask
Value Action

8,388,608 Specifies that a list of gen
eration differences is to
be displayed. By default,
generation differences are
not displayed.

eMS Routine Descriptions 2-63

CMS$DIFFERENCES

width
Type: longword_signed
Access: read
Mechanism: by reference

Specifies the page width value for CMS$DIFFERENCES output. The
value can be from 48 to 500. By default, the default value is the same
as the device page width for terminal devices and 132 otherwise.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

page_break
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag indicating that page breaks are to be included in the
output file. By default, the flag is set to 0, indicating that page breaks
are converted to the string "<PAGE>" in the' output file. Set the flag
to 1 to include page breaks in the output file.

skip_lines
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a positive integer value indicating the number of lines at the
beginning of each file that are to be ignored during the comparison. By
default, no lines are skipped.

begin_sentinel
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies a string that is used to delimit a section of text which is to be
ignored during the comparison. The string must be shorter than 65,536
characters, must be contained within a single record, and cannot be the
same string as end_sentinel. If this argument is specified, en<Lsentinel
must also be specified.

2-64 eMS Routine Descriptions

(

(

end_sentinel
Type:
Access:
Mechanism:

char_string
read
by descriptor

CMS$DIFFERENCES

Specifies a string that is used to delimit a section of text which is to be
ignored during the comparison. The string must be shorter than 65,536
characters, must be contained within a single record, and cannot be
the same string as begiILsentinel. If this argument is specified, begiIL
sentinel must also be specified.

Callback Routine Parameters

If you write input routines to provide input data to CMS$DIFFERENCES,
CMS passes the following parameters in the order shown with each call
to inpuLroutinel or inpuLroutine2:

(first_call, library_dat~block, user_param, input~ecord_id, eof_flag,
file-Dame_id, generatioO-id, action, sequence_flag, sequence-Dumber)

The action parameter allows you to control the flow of data from the
input file to CMS. The callback routine must return a defined condition
code to CMS. The following parameter descriptions define the access to
the object from the perspective of the callback routine.

firsLcall
Type:
Access:

longword_signed
read

Mechanism: by reference

Specifies a flag that indicates whether the current call to the input
routine is the first call. CMS sets the flag to 1 if the current call is the
first call and to 0 if it is not.

library _datCLblock
Type: cntrlblk
Access: read
Mechanism: by reference

Specifies the LOB for the current library. This parameter does not
contain any significant information if input is not being taken from a
CMS library.

user_param
Type:
Access:
Mechanism:

undefined
modify
undefined

GMS Routine Descriptions 2-65

CMS$DIFFERENCES

/
Specifies the user argument as it was passed to CMS$DIFFERENCES. ""
If you did not specify a user argument, this parameter points to a read-
only storage location containing the value O. CMS passes useLparam to
your routine using the same mechanism that you used to pass it to
CMS$DIFFERENCES.

inpuLrecord_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the line of data being passed to
CMS$DIFFERENCES. Use the CMS$GET_STRING routine to trans
late the string identifier. For information about string identifiers, see
Section 1.5.3.

eoLflag
Type:
Access:
Mechanism:

longword_signed
modify
by reference

Specifies a flag that indicates the end-of-file status. If there is no input
file for this input stream, CMS sets eoLflag to false (0). The callback
routine must set this flag to true (1) when input is finished.

If there is an input file for this input stream, that is, this input rou
tine is being used as an input filter, CMS changes the value of eoL
flag from false (0) to true (1) when it encounters the end of the input
file. Optionally, the input (filter) routine can change the value to true
(1) before the end of the input file is reached to terminate input
prematurely.

When eoLflag is set to true (1), CMS ignores the contents of the current
input record (inpuLrecord_id or the string passed by CMS$PUT_
STRING). Therefore, the input routine must set eoLflag to true (1) in the
call following the last significant input record.

file_name_id
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the input file name. If you do not specify
an input file for the data stream, fileJ\ame_id does not contain any
meaningful data.

2-66 eMS Routine Descriptions

(

CMS$DIFFERENCES

generation_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the generation number. The string
identifier points to a descriptor for a null string if the input is not
coming from a eMS library.

action
Type:
Access:
Mechanism:

longword_signed
modify
by reference

Specifies a value that controls the flow of data to eMS. It does not
contain any lTIeaningful information if the input routine is the only
source of data for that input stream (that is, if no input file is specified).

The value of this argument affects the status of the line of data passed
in inputJecord. The following table shows the possible values and cor
responding results.

Value Result

o Directs CMS to reject the current line of data. If you specify 0, you
cannot modify inpuL.record.

1 Directs CMS to accept the current line of data. In this case, you can
modify the input record by using CMS$PULSTRING to pass a new
string to CMS.

2 Directs CMS to add data to the input stream before including the
current line. You must use CMS$PUT_STRING to pass a new string
descriptor to CMS in order to insert new data lines. (Note that you
can call CMS$PUT_STRING only once during a single execution of the
callback routine.) The current data line (inpuL.record) is saved and
passed again with the next call to the user routine.

sequence_flag
Type: longword_signed
Access: modify
Mechanism: by reference

Specifies a flag that directs eMS to create a sequenced element file. By
default, the flag is set to 0, indicating that input is not sequenced. Set
the flag to 1 to direct eMS to create a sequenced element file. If there
is no input file, the callback routine can set this flag. If there is no
input file, the input is unsequenced.

eMS Routine Descriptions 2-67

CMS$DIFFERENCES

sequence_number
Type: longword_signed
Access: write
Mechanism: by reference

Specifies a signed integer that indicates the sequence number of the
input line. A value in the range of 1 to 65,536 characters indicates the
sequence number.

Formatted Output Callback Routine Parameters

When you provide an output routine to process output text from
CMS$DIFFERENCES, CMS passes different parameters depending on
the value of the format argument. You must specify either the out
puLfile or outputJoutine arguments with the format argument. By
default, format is set to I, indicating formatted output. If you set the
flag to 0, CMS produces unformatted output.

When you do not specify the format argument in the original call to
CMS$DIFFERENCES, CMS produces formatted output as records of
ASCII text. CMS passes the following parameters in the order shown
with each call to outputJoutine:

(first_call, library_dat&-block, user-param, output~ecord_id,-eof_flag,
file-name_id, action)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

firsLcall
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates whether the current call to the output
routine is the first call. CMS sets the flag to 1 if the current call is the
first call and to 0 if it is not.

library _datLblock
Type: cntrlblk
Access: read
Mechanism: by reference

Specifies the LDB for the current library. This parameter does not
contain any significant information if input is not being taken from a
CMS library.

2-68 eMS Routine Descriptions

,~
(

\,

'\
j

(-

CMS$DIFFERENCES

usecparam
Type: undefined
Access: modify
Mechanism: undefined

Specifies the user argument as it was passed to CMS$DIFFERENCES.
If you did not specify a user argument, this parameter points to a read
only storage location containing the value O. CMS passes useLparam
to your routine using the same mechanism that you used to pass it to
CMS$DIFFERENCES.

outpuLrecord_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the line of data being passed from
CMS$DIFFERENCES. Use the CMS$GET_STRING routine to trans
late the string identifier. For information about string identifiers, see
Section 1.5.3.

eoLflag
Type: longword_signed
Access: read
Mechanism: by reference

Specifies the end-of-file status. CMS changes the value of eoLflagfrom
false (0) to true (1) after the last record has been passed to the output
routine. When eoLflag is true (i), the contents of outpuLrecorcLid are
undefined. See Section 1.5.3.2 for more information on determining the
end of output.

file_name_id
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the output file name. Use the
CMS$GET _STRING routine to translate the string identifier. For in
formation about string identifiers, see Section 1.5.3.

action
Type:
Access:
Mechanism:

longword_signed
modify
by reference

Specifies a value that controls the flow of data from CMS. The value
of this argument affects the status of the line of data referenced by

eMS Routine Descriptions 2-69

CMS$DIFFERENCES

outpuLrecordJd. The following table shows the possible values and cor
responding results.

Value

o

1

2

Result

Directs CMS to reject the current line of data. If you specify 0, you
cannot modify the outputJecord.

Directs CMS to accept the current line of data. In this case, you
can modify the output record by using CMS$PULSTRING to pass a
new string to CMS.

Directs CMS to add data to the output stream before including
the current line. You must use CMS$PUT_STRINGtopassanew
string to CMS in order to insert new data lines. (Note that you can
call CMS$PUT_STRING only once during a single execution of the
callback routine.) The current data line (outpuuecord) is saved and
passed again with the next call to the user routine.

Unformatted Output Callback Routine Parameters

When you specify the format argument in the original call to
CMS$DIFFERENCES by setting format to 0, CMS produces unfor
matted output. CMS passes the following parameters in the order
shown with each call to outputJoutine:

(first_call, library_dat~block, user_param, output~ecor~id, eof_flag,
line-oumberl, line-oumber2)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

firsLcall
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates whether the current call to the output
routine is the first call. CMS sets the flag to 1 if the current call is the
first call and to 0 if it is not.

library _data_block
Type: cntrlblk
Access: read
Mechanism: by reference

2-70 eMS Routine Descriptions

'1
j

(

CMS$DIFFERENCES

Specifies the LDB for the current library. This parameter does not
contain any significant information if input is not being taken from a
CMS library.

useLparam
Type:
Access:
Mechanism:

undefined
modify
undefined

Specifies the user argument as it was passed to CMS$DIFFERENCES.
If you did not specify a user argument, this parameter points to a read
only storage location containing the value O. CMS passes usecparam
to your routine using the same mechanism that you used to pass it to
CMS$DIFFERENCES.

outpuLrecord_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the line of data being passed from
CMS$DIFFERENCES. Use the CMS$GET_STRING routine to trans
late the string identifier. For information about string identifiers, see
Section 1.5.3.

eoLflag
Type: longword_signed
Access: read
Mechanism: by reference

Specifies the end-of-file status. CMS changes the value of eoLflag from
false (0) to true (1) after the last record has been passed to the output
routine. When eoLflag is true (1), the contents of outpuLrecordJd are
undefined. See Section 1.5.3.2 for more information on determining the
end of output.

line_number1
Type: longword_signed
Access: read
Mechanism: by reference

Specifies the sequence number (if the input is sequenced) or the record
number if the line originated from the first input stream (inpuLfilelor
inpuLroutinel). The value is -1 if the line did not originate in the first
input stream.

eMS Routine Descriptions 2-71

CMS$DIFFERENCES

Description

line_number2
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies the sequence number (if the .input is sequenced) or the record
number if the line originated from the second input stream (inpuLfile2
or inpuLroutine2). The value is -1 if the line did not originate in the
second input stream.

The CMS$DIFFERENCES routine compares the contents of two files.
If CMS finds differences, it creates a file containing a listing of those
differences. If the files are the same, it issues a message to that effect
and does not create a differences file. By default, CMS compares two
files that are not located in a CMS library. However, you can direct
CMS to use element generations from a CMS library.

A difference is defined as one of the following:

• A line or lines that are in one file and not in the other.

• N lines in one file that replace M lines in the other file. Nand M
mayor may not be equal.

CMS outputs only the lines that differ, unless you set the full argument
to 1.

There is a heading at the beginning of the differences file that includes
the name of the user that issued the command, the date and time the
command was issued, and the file specifications of the two files being
compared. If you direct CMS to use element generations and if you
set the CMS$~GENERATION_DIF flag bit in the format argument
to 1, the differences listing contains a section labeled "Generation
Differences" that contains the replacement history for the element.
Each generation used in the comparison is identified by an asterisk (*)
in the first column of the transaction record. The differences between
the files are contained in a section labeled "Text Differences." By
default, each difference is formatted with the line or lines from the first
file followed by the differing line or lines from the second file. If a
difference consists of a line or lines that exist in one file but not in the
other, only the lines from the file containing the additional text are
displayed.

2-72 eMS Routine Descriptions

'\

/'

(

CMS$DIFFERENCES

CMS$DIFFERENCES establishes two input streams for comparison of
data. You can use any combination of input files and input routines to
provide data for the CMS$DIFFERENCES routine:

• You can use input files to provide data for one or both input
streams.

• You can use input routines to provide data for one or both input
streams.

• You can use input routines to filter one or both of the input streams
coming from files. When you use an input routine to filter data from
an input file, CMS provides a means of specifying the action to be
taken for each line of input data.

In addition, you can use an output routine to process the output of the
differences transaction.

NOTE

If you supply two input routines, CMS does not necessarily
call them in a synchronous fashion. Therefore, you cannot
rely on any established order for the calls to the input rou
tines. Also, if you supply an output routine, you cannot rely
on a particular sequence of calls to the output routine relative
to the calls to the input routines.

eMS Routine Descriptions 2-73

CMS$DIFFERENCES

Examples

Return Code

CMS$_BADFORMAT

CMS$_DIFFERENT

CMS$-1DENTICAL

CMS$-.NOACCESS

CMS$-.NOFILE

CMS$-.NOREF

CMS$_OPENINl

CMS$_OPENOUT

CMS$_QUALCONFLICT

CMS$-READIN

CMS$_UNFOUT

1. CHARACTER*12 FILEl
EXTERNAL CMS$DIFFERENCES

FILEl = 'COMTRANS.COM'

Description Status

Invalid format specification. Error

Input streams are different. Informational

Input streams are identical. Success

User does not have the re- Error
quired access to the library.

No input file found. Error

Error accessing library. Error

Error opening first input Error
file.

Error opening second input Error
file.

Error opening output file. Error

Cannot specify both output file Error
and nooutput.

Error reading input stream.

Cannot specify unformatted
output.

Error appending to file of this
format.

User routine returned an error
to CMS.

Error

Error

Error

Error

CALL CMS$DIFFERENCES("FILE1)
END

This call to CMS$DIFFERENCES includes one file specification;
CMS searches for the latest two versions of COMTRANS.COM
in the current default directory. Note that the placeholders are
required for the optional LDB and user-defined arguments.

2-74 eMS Routine Descriptions

(\
\ I
,,-j

(
CMS$FETCH

2. ALL CMS$DIFFERENCES(LDB"FlLE1"GEN1)

This example shows a call to CMS$DIFFERENCES that uses a
library element and the corresponding file in the current default
directory. Because a second file is not provided, CMS uses the
latest version of the file specified by FILEl in the default directory.

eMS Routine Descriptions 2-75

CMS$FETCH

CMSSFETCH

Format

Arguments

Retrieves a copy of an element from a CMS library. You can also
specify the reserve argument to direct CMS to establish a reservation
for a generation of the element.

CMS$FETCH (library _dataJJ/ock,
elemenLexpression,
[remark],
[generation_expression],
[merge-f}eneration_expression],
[reserve],
[nohistoryJ,
[nonotes],
[concurrent],
[outpuLfile],
[msgJoutine],
[nooutput],
[history],
[notes],
[position)),

library _datCLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

2-76 eMS Routine Descriptions

(

(

CMS$FETCH

elemenLexpression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies one or more elements or groups of elements to be fetched (or
reserved). Wildcards and a comma list are allowed.

You must include a period (.) in the element expression to select one
or more elements from the complete list of elements in the library. If
you do not include a period, eMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that are
established in the library.

remark
Type: chaLstring
Access: read '
Mechanism: by descriptor

Specifies the remark string that is to be logged in the history file with
the command. If you do not specify a remark and you do not establish a
reservation, eMS does not record the transaction in the library history.

generation_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the generation to be retrieved. If you do not specify a genera
tion number or a class name, eMS fetches the latest generation on the
main line of descent.

merge_gene ration_expression
Type: char_string
Access: read
Mechanism: by descriptor

Specifies the element generation to be merged into the fetched genera
tion. This argument can be a generation number or a class name.

reserve
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs eMS to establish a reservation for the
fetched element. By default, the flag is set to 0, and eMS fetches the

eMS Routine Descriptions 2-77

CMS$FETCH

element without establishing a reservation. Set the reserve flag to 1 to
reserve the element.

nohistory
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs eMS to suppress the element history. By
default, the flag is set to 0, and eMS provides the element history in
the output file only if the history attribute is established for the
element. If you set this flag to a value of I, eMS does not include the
element history in the output file.

nonotes
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs eMS to suppress generation notes. By
default, the flag is set to 0, and the file contains generation notes only if
the notes attribute is established for the element. If you set this flag to
a value of I, eMS does not include generation notes in the output file.

concurrent
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag indicating the access to the element. By default, the flag
is set to I, and eMS allows concurrent reservations of the element. Set
the concurrent flag to 0 to prohibit concurrent reservations.

outpuLfile
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies the name of the output file. Use this argument if you want the
output file to have a different name from the element, or if you want
eMS to put the file in a directory other than your default directory.
Wildcards are allowed. If you do not specify an output file name, eMS
gives the file the same name as the element. This parameter is ignored
if nooutput is specified as true.

2-78 eMS Routine Descriptions

(

CMS$FETCH

Use caution when providing output file specifications. For example,
if you fetch a group of elements and you provide an output file spec
ification that does not allow CMS to assign a unique name to each
fetched element file, CMS creates as many files with the same name as
necessary.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

nooutput
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates that CMS should execute the fetch or
reserve operation without creating an output file. By default, the flag
is set to 0 and CMS creates an output file. When you specify this
argument, CMS does not perform file I/O; this causes CMS to operate
faster than if you specify the null device (NLAO: or NL:) as the output
file. The nooutput argument is useful for reserving an element that you
will not use as the replacement file.

history
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the history string. If you include the history argument in the
call, CMS includes the history in the retrieved file. If you specify history
and reserve, CMS establishes the history string for the reservation. If
you do not specify history, CMS uses the value of the element's current
history attribute. This argument is useful to temporarily override an
existing history format string. If an element has a history attribute, its
history is included in the file when it is retrieved by CMS$FETCH. To
disable the history attribute, specify a zero-length string. For a detailed
explanation of the history attribute, see the Guide to VAX DEC/Code
Management System.

eMS Routine Descriptions 2-79

CMS$FETCH

Description

notes
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the notes string. If you include the notes argument in the
call, CMS includes the notes in the retrieved file. If you specify notes
and reserve, CMS establishes the notes string for the reservation. If
you do not specify notes, CMS uses the value of the element's current
notes attribute. This argument is useful to temporarily override an
existing notes format string. If an element has a notes attribute, notes
are added to the ends of the lines of the file when it is retrieved by
CMS$FETCH. To disable the riotes attribute, specify a zero-length
string. Any element that has the notes attribute must have the position
attribute. For a detailed explanation of the notes attribute, see the Guide
to VAX DEC/Code Management System.

position
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies the position value to be used with the notes attribute. The
position attribute determines the character position at which the note
is to begin on the line. The position value must be an integer greater
than zero. If you specify notes and the element does not already have
the position attribute established, you must also specify the position
argument. For a detailed explanation of the position attribute, see the
Guide to VAX DEC/Code Management System.

The CMS$FETCH routine delivers a copy of the specified element
generation to your current default directory or to the file specified in
the outpuLfile parameter. If you did not specify a value of 1 for the reserve
argument, CMS does not allow you to replace a fetched element.

The presence or absence of a remark determines whether the CMS
FETCH transaction is recorded in the library history. If you do not
specify a remark and you do not establish a reservation, CMS does not
record the transaction.

2-80 eMS Routine Descriptions

---.. /

(

(

CMS$FETCH

When you retrieve an element from a CMS library, CMS restores the
file creation and revision times. The file that is placed in your directory
has the same creation and revision times as the file that was used to
create the generation that you are fetching. CMS does not restore the
file expiration date or the file backup date.

If you specify the reserve argument, each element indicated by the ele
rnenLexpression argument is marked reserved in the library database.
Usually, after you have modified the element, you return a reserved
element to the library with the CMS$REPLACE routine. Alternatively,
you can cancel the reservation with the CMS$UNRESERVE routine.

CMS marks the reserved generation as a predecessor generation.
This information is used to determine the generation number of the
successor created by the REPLACE command. For more information
on creating successive generations with the RESERVE and REPLACE
commands, see the Guide to VAX DEC/Code Management System.

If a version of the element file already exists in your default directory
when you call CMS$FETCH, CMS creates a new version with the next
higher version number.

If CMS encounters an element data file that has a bad checksum or was
not closed by CMS, it retrieves the file, but changes the success status
to a warning status. If you want to know only if the file was retrieved,
use the LIB$MATCfLCOND routine to compare the returned status to
the CMS return codes.

eMS Routine Descriptions 2-81

~~--.-,-~--- -_.- .. --~-------- -

CMS$FETCH
r--\
"

Return Code Description Status "'~
CMS$JETCHED CMS fetched the element. Success

CMS$JETCHES CMS fetched one or more Success
elements.

CMS$~RRFETCHES CMS fetched zero or more Error
elements and encountered
errors during the transaction.

CMS$~RRESERVATIONS CMS reserved zero or more Error
elements and encountered
errors during the transaction.

CMS$~OFETCH CMS did not fetch the element. Error

CMS$~OREF Error accessing library. Error

CMS$~ORESERVATION CMS did not reserve the Error
element.

CMS$J{ESERVATIONS CMS reserved one or more Success
elements.

CMS$~ESERVED CMS reserved the element. Success

",

2-82 eMS Routine Descriptions

CMS$FETCH_CLOSE

(CMSSFETCH_CLOSE

Format

Arguments

(

Description

(

Terminates a fetch transaction initiated by CMS$FETCfLOPEN. Use
the CMS$FETCfLCLOSE routine with the CMS$FETCfLGET and
CMS$FETCH_OPEN routines.

CMS$FETCH_CLOSE (fetch_dataJJ/ock,
lfJ1sgJoutinej)

fetch_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an open FOB.

mS9_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$FETCH_CLOSE routine terminates a line-by-line fetch transac
tion. You use this routine after a combination of CMS$FETCH_OPEN
and CMS$FETCH_GET calls. If you do not end the fetch transaction with a
call to CMS$FETCfLCLOSE, the library is left in a locked state.

For an example of a line-by-line fetch transaction, see the description of
the CMS$FETCfLGET routine.

eMS Routine Descriptions 2-83

CMS$FETCH.;....CLOSE

Return Code Description Status

CMS$jNVFETDB Invalid fetch data block. Error

\." - //

2-84 eMS Routine Descriptions

(

(

CMS$FETCH_GET

CMSSFETCH_GET

Format

Arguments

Retrieves one line of data from an element. Use the CMS$FETCI-LGET
routine with the CMS$FETCH_OPEN and CMS$FETCH_CLOSE
routines.

CMS$FETCH_G ET (fetch_dataJJ/ock,
outputJecord,
[sequenceJlumberj,
[generationJlumberj,
[msgJoutinej)

fetch_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an open FDB.

outpuLrecord
Type: chaLstring
Access: write
Mechanism: by descriptor

Specifies a string descriptor that CMS fills in with the line of data
that is retrieved from the library element. If the notes attribute is
established for the element and you do not suppress notes in the call to
CMS$FETCH_OPEN, the output record includes the notes string.

sequence_number
Type: longword_signed
Access: write
Mechanism: by reference

Specifies a location that CMS fills in with the sequence number of the
data line, if any. CMS sets the value to -1 if there is no sequencing. If
the value is in the range of a to 65,535, it is the sequence number of the

eMS Routine Descriptions 2-85

CMS$FETCH_GET

/
data line. By default, CMS does not attempt to provide any sequence I",j

information.

Description

generation_number
Type: chacstring
Access: write
Mechanism: by descriptor

Specifies a string descriptor to be filled in by CMS. eMS uses this
argument to provide the generation number associated with the line of
data. By default, CMS does not provide the generation information.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$FETCfLGET routine retrieves a single line of data from an
element that you have opened with a call to CMS$FETCfLOPEN. After
you have completed the series of CMS$FETCfLGET calls required to
retrieve the entire element, you must end the fetch transaction with a
call to CMS$FETCfLCLOSE.

CMS returns RMS$~OF after the last record of the element has been
fetched. When CMS$FETCfLGET returns RMS$~OF, the contents of
outputJecord are undetermined. You must invoke CMS$FETCfLGET as
a function in order to determine end-of-file.

You should call CMS$FETCfLGET using the exact same FDB that was
previously used by the last call to CMS$FETCfLGET.

When you execute a line-by-line transaction, you cannot reserve an
element, and CMS does not enter the transaction in the library history.

Return Code

CMS$JNVFETDB

RMS$-EOF

Description

Invalid fetch data block.

End-of-file.

Status

Error

Warning

2-86 eMS Routine Descriptions

(Example

(

CHARACTER*ll LIBNAME
CHARACTER*9 ELE1,ELE2
CHARACTER*80 LINE
INTEGER STATUS,STATUS1,STATUS2
INTEGER*4 CMS$FETCH-GET
INTEGER*4 CMS$FETCH-OPEN
INTEGER*4 CMS$FETCH-CLOSE
EXTERNAL CMS$_EOF

DIMENSION FDB1(5),FDB2(5)

LIBNAME = '[DBASE.LIB],
ELEl = 'TEST1.TST'
ELE2 = 'TEST2.TST'

STATUS = CMS$FETCH-OPEN(FDB1,LIBNAME,ELE1)

CMS$FETCH_GET

IF (.NOT. STATUS) GOTO 60 0

30

40

STATUS = CMS$FETCH-OPEN(FDB2,LIBNAME,ELE2)
IF (.NOT. STATUS) GOTO 60

STATUSl = CMS$FETCH-GET(FDB1,LINE)
IF (STATUS1) CALL PRINTLINE(LINE)

IF (STATUS2) THEN
STATUS2 = CMS$FETCH-GET(FDB2,LINE)
IF (STATUS2) CALL PRINTLINE(LINE)
ENDIF

IF (STATUS1) GOTO 30 m
IF (STATUS2) GOTO 40

STATUS = CMS$FETCH-CLOSE(FDB1)
STATUS = CMS$FETCH-CLOSE(FDB2)

60 END

C Routine to handle output string

INTEGER FUNCTION PRINTLINE(STRING)
CHARACTER*80 STRING
PRINT 90,STRING
RETURN

90 FORMAT(" ,A)
END

Key to Example:

o CMS$FETCfLOPEN is called once for each file to be fetched. Because the
program uses two FDBs, it can fetch parallel lines from the elements
without reinitializing the FDB each time the element is changed.

eMS Routine Descriptions 2-87

CMS$FETCH_GET

Ii CMS$FETClLGET is called for the first element. The fetched data line
is displayed until CMS returns RMS$_EOF (severity level warning).

If] CMS$FETClLGET is called for the second element, until end-of-file is
encountered.

19 The tests for end-of-file transfer control.

~ Once end-of-file is encountered for both elements, CMS$FETClL
CLOSE is called for each element.

2-88 eMS Routine Descriptions

CMSSFETCH_OPEN

CMSSFETCH_OPEN

Format

(Arguments

(

Begins a line-by-line fetch transaction. Use the CMS$FETCH_OPEN
routine with the CMS$FETCILGET and CMS$FETCH_CLOSE routines.

CMS$FETCH_OPEN (fetch_data....block,

fetch_data_block
Type: cntrlblk
Access: modify

directory,
elemenLname,
[generation_expression j,
[nohistoryj,
[nonotesj,
[actuaLgeneration j,
[msgJoutinej)

Mechanism: by reference

Specifies an open FDB.

directory
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies an existing directory that contains the CMS library where the
element is located. Wildcards and comma lists are not allowed.

elemenLname
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the element to be fetched. Wildcards are not allowed.

eMS Routine Descriptions 2-89

CMS$FETCH_OPEN

generation_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the generation of the element to be fetched. By default, CMS
fetches the latest generation on the main line of descent.

nohistory
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs CMS to suppress the element history. By
default, the flag is set to 0, and CMS provides the element history in
the output file only if the history attribute is established for the element.
If you set this flag to a value of 1, CMS does not include the element
history in the output file.

nonotes
Type:
Access:
Mechanism:

longword_signed
read
by reference

/\

j

Specifies a flag that directs CMS to suppress generation notes. By <, 7/

default, the flag is set to 0, and the file contains generation notes only if
the notes attribute is established for the element. If you set this flag to
a value of 1, CMS does not include generation notes in the output file.

actuaLgeneration
Type: chaLstring
Access: write
Mechanism: by descriptor

Specifies a string descriptor to be filled in by CMS. CMS uses this
argument to provide the number of the generation accessed by calls to
CMS$FETClLGET (this is useful when you use a class name as the genera
tion expression and want to know the generation number).

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

2-90 eMS Routine Descriptions

'\
/'

(-
Description

(--'

CMS$FETCH_OPEN

The CMS$FETCH_OPEN routine initiates a line-by-line fetch transaction.
You use this routine with CMS$FETClLCLOSE and CMS$FETClLGET
calls. You can execute concurrent fetch transactions by issuing multiple
calls to CMS$FETClLOPEN. You must define a unique FDB for each call to
CMS$FETCH_OPEN. The FDB identifies the data stream that is to be
processed by CMS$FETClLGET.

When you execute a line-by-line fetch transaction, you cannot reserve
an element or merge element generations and CMS does not enter the
transaction in the library history.

The CMS$FETClLOPEN routine locks the CMS library for read access.
This lock is held until CMS$FETClLCLOSE is called or your program
exits. Therefore, to prevent CMS from locking your library longer than
necessary, you should call CMS$FETClLOPEN in your source program
as close as possible to the calls to CMS$FETClLGET. Similarly, you
should call CMS$FETClLCLOSE as soon as possible after the calls to
CMS$FETClLGET.

For an example of a line-by-line fetch transaction, see the description of
the CMS$FETClLGETroutine.

Return Code Description Status

CMS$JNVFETDB Invalid fetch data block. Error

CMS$~OFETCH CMS could not fetch the Error
element.

CMS$~OREF Error accessing library. Error

CMS$_SEQUENCED The retrieved element is Success
sequenced.

eMS Routine Descriptions 2-91

CMS$GET _STRING

CMSSGET _STRING

Format

Arguments

Description

Translates a string identifier.

CMS$GET _STRING (stringJd,
string)

string_id

Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier, and is the address of the string descriptor
containing the string that CMS passes to the callback routine.

string
Type:
Access:
Mechanism:

chaLstring
write
by descriptor

Specifies a string descriptor that CMS fills in with the character string
indicated by string_jd. The method that you use to provide this argument
depends on the language from which you are calling CMS. For exam
ples of calling CMS from different languages, see Appendix B.

The CMS$GELSTRING routine translates a string_id that CMS passes to a
callback routine. To use CMS$GELSTRING, you supply a character
string variable, which is then filled by CMS. CMS$GET_STRING can
return the same condition codes as the STR$COPY_DXfunction. For
information about the STR$ condition codes, see the description of
the STR$COPY -'<X routines in the VAXNMS Run-Time Library Routines
Reference Manual. For examples of programs that contain calls to the
CMS$GET_STRING routine, see Appendix B.

2-92 eMS Routine Descriptions

(
CMS$INSERT _ELEMENT

CMSSINSERT _ELEMENT

Format

Arguments

Places one or more elements in the specified group or groups.

CMS$INSERT _ELEMENT (library _dataJJ/ock,
elemenLexpression,
group_expression,
[remark),
[if_absent},
[msgJoutinej)

library _datCLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LOB.

elemenLexpression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the name of the element or group of elements to be inserted
into group_name. Wildcards and a comma list are allowed.

You must include a period (.) in the element expression to select one or
more elements from the complete list of elements in the library. If you
do not include a period, eMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that are
established in the library.

group_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

eMS Routine Descriptions 2-93

CMS$INSERT _ELEMENT

Description

Specifies one or more groups into which the elements (indicated by
elemenLexpression) are being inserted. Wildcards and a comma list are
allowed.

remark
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

iLabsent
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs CMS to insert the element only if that
element does not already belong to the group. If you do not specify
this argument and the group already contains the element, CMS
returns an error. Set the flag to 1 to direct CMS to insert the element
only if it is absent. If the element is already in the group, CMS takes
no action and returns CMS$_NORMAL.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$INSERT_ELEMENT routine places one or more elements into
one or more existing groups (see the description of the CMS$CREATE_
GROUP routine). If you use the CMS$INSERT_ELEMENTroutineto
insert group A into group B, group B will contain all the elements that
belong to group A when the insertion transaction completes. If the con
tents of group A change at a later time, the contents of group B are not
affected.

2-94 eMS Routine Descriptions

\.

(

CMS$INSERT _ELEMENT

You cannot insert any elements into a group that has the READ_ONLY
attribute. For information on the READ_ONLY and NOREAD_ONLY
attributes, see the description of the CMS$MODIFY_GROUProutine.

Return Code Description Status

CMS$_ERRINSERTIONS CMS inserted zero or more ele- Error
ments and encountered errors
during the transaction.

CMS$JNSERTED CMS inserted the element. Success

CMS$JNSERTIONS CMS inserted one or more Success
elements.

CMS$.-NOINSERT CMS did not insert the Error
element.

CMS$.-NOREF Error accessing library. Error

eMS Routine Descriptions 2-95

CMS$INSERT _GENERA nON

CMS$INSERT _GENERATION

Format

Arguments

Places one or more element generations in the specified class or classes.

CMS$INSERT _GENERATION (library _dataJJlock,
elemenLexpression,
class_expression,
{remark],
{generation_expression],
{always],

library _datLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LOB.

elemenLexpression
Type: chacstring
Access: read
Mechanism: by descriptor

{supersede],
{iLabsent],
{msgJoutinej)

Specifies one or more elements or groups of elements whose genera
tions are to be inserted into the class or classes. Only one generation of
a given element can belong to a specific class. Wildcards and a comma
list are allowed.

2-96 eMS Routine Descriptions

'\
)

;
/' \
, , /

(

(

CMS$INSERT _GENERATION

You must include a period (.) in the element expression to select one or
more elements from the complete list of elements in the library. If you
do not include a period, eMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that are
established in the library.

class_expression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies one or more classes into which the element generation is to be
inserted. Wildcards and a comma list are allowed.

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

generation_expression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies the generation expression indicating which generation of the
element is to be inserted into the class or classes. By default, eMS
inserts the latest generation on the main line of descent.

always
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs eMS to insert the element generation into
the class whether it already belongs to the class or not. To always
insert the element generation, set the value of the flag to 1. By default,
(and if you do not specify other arguments that affect the insertion
transaction), eMS inserts the element generation only if the class does
not already contain a generation from that element.

When you specify always, and the class already contains a generation
of the given element, the existing element generation is removed from
the class and the new generation takes its place.

eMS Routine Descriptions 2-97

CMS$INSERT _GENERATION

Description

supersede
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag indicating whether CMS inserts the element generation
if the class already contains another generation of that element. By
default, the flag is set to 0, and CMS does not supersede any existing
class association for the element. If you set the flag to 1, CMS super
sedes the previous class association for that element. When you set this
flag, and the class does not contain a generation from the specified
element, CMS returns an error.

iLabsent
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs CMS to insert the generation only if a
generation of the element does not already belong to the class. If you
do not specify this argument and the class already contains a genera
tion from that element, CMS returns an error. Set the flag to 1 to direct
CMS to insert the generation only. if it is absent. If the generation is
already in the class, CMS takes no action and returns CMS$~ORMAL.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$INSERT_GENERATION routine places one-or more specified
element generations into one or more classes. The class or classes must
already exist. (See the description of the CMS$CREATE_CLASS
routine.) A class can contain only one generation of an element. You
cannot insert any generations into a class that has the READ_ONLY
attribute. For information on the READ_ONLY and NOREAD_ONLY
attributes, see the description of the CMS$MODIFY_CLASS routine.

2-98 eMS Routine Descriptions

/

j

CMS$INSERT _GENERATION

(Return Code Description Status

CMS$_ERRINSERTIONS CMS inserted zero or more Error
generations and encountered
errors during the transaction.

CMS$_GENINSERTED CMS inserted the generation. Success

CMS$_GENNOINSERT CMS did not insert the Error
generation.

CMS$jNSERTIONS CMS inserted one or more Success
generations.

CMS$~OREF Error accessing library. Error

(

(eMS Routine Descriptions 2-99

CMS$INSERT _GROUP

CMSSINSERT _GROUP

Format

Arguments

Places one or more groups into the specified group or groups.

CMS$INSERT _GROUP (library _dataJJ/ock,
sub-oroup_expression,
group_expression,
[remark},

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

sub_group_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

[itabsent},
[msgJoutinej)

Specifies one or more groups to be inserted into group_expression.
Wildcards and a comma list are allowed.

group_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies one or more groups into which sub~roup_expression is to be
inserted. Wildcards and a comma list are allowed.

2-100 eMS Routine Descriptions

(

(

Description

remark
Type:
Access:
Mechanism:

char_string
read
by descriptor

CMS$INSERT _GROUP

Specifies the remark string that is to be logged in the history file with
the command.

iLabsent
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs CMS to insert the group only if that group
does not already belong to the group. If you do not specify this argu
ment and the group already contains the group, CMS returns an error.
Set the flag to 1 to direct CMS to insert the group only if it is absent.
If the group is already in the group, CMS takes no action and returns
CMS$~ORMAL.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$INSERT_GROUP routine inserts one or more existing groups
into one or more other existing groups. (See the description of the
CMS$CREATE_GROUP routine.) When you use the CMS$INSERT_
GROUP routine to insert group A into group B, the elements that can
be accessed through group B change as the contents of group A change.
CMS does not allow you to define recursive groups. For example, you
cannot insert group A into group B if group A already contains group B.

You cannot insert any groups into a group that has the READ_ONLY
attribute. For information on the READ_ONLY and NOREAD_ONLY
attributes, see the description of the CMS$MODIFY_GROUProutine.

eMS Routine Descriptions 2-101

CMS$INSERT _GROUP

Return Code

CMS$~RRINSERTIONS

CMS$jNSERTED

CMS$jNSERTIONS

CMS$~OINSERT

CMS$~OREF

2-102 eMS Routine Descriptions

Description Status

CMS inserted zero or more Error
groups and encountered one or
more errors during the
transaction.

CMS inserted the groups. Success

CMS inserted one or more Success
groups.

CMS did not insert the group. Error

Error accessing library. Error

CMS$MODIFY _CLASS

CMSSMODIFY _CLASS

Format

Arguments

Changes the characteristics of the specified class or classes.

CMS$MODIFY _CLASS (library _dataJJlock,
class_expression,
[remark],
[newJ1ame],1
[newJemark],1
[read_only],1
[msgJoutineJ)

IibrarY_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

class_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies one or more classes to be modified. Wildcards and a comma
list are allowed, unless you specify new_name.

remark
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

1 At least one of these arguments is required.

eMS Routine Descriptions 2-103

CMS$MODIFY _CLASS

new_name
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the new class name. Gass names and group names must be
unique; CMS returns an error if you specify a name that is already used
for an existing class or group. H a previously used class or group name
has been removed by a DELETE CLASS or DELETE GROUP transac
tion, you can use that name again. Ybu cannot specify wildcards or a
comma list. Also, if you specify the neWJ1ame argument, you cannot
specify wildcards or a comma list in the class_expression argument.

new_remark
Type:
Access:
Mechanism:

char_string
read
by descriptor

Specifies a new remark to be substituted for the existing creation
remark for the class.

read_only
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that changes the access to the class. If you set the flag
to 1, CMS sets the class to READ_ONLY. If you setthe flag to 0, CMS
sets the class to NOREAD_ONLY. By default, the existing access is not
changed.

If you want to change the attributes of a READ_ONLY class, you can set
the rea~only flag to 0 in the same call that you use to change other attrib
utes. Also, you can change the attributes of a NOREAD_ONLY class
and set the class to READ_ONLY in the same call.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

2-104 eMS Routine Descriptions

'\

./

\
./

(Description

(

Example

CMS$MODIFY _CLASS

The CMS$MODIFY_CLASS routine changes the characteristics of one or
more classes. You can change the following characteristics:

• The name of the class.

• The remark that is associated with the CMS CREATE CLASS
command for the specified class.

• The access to the class (READ_ONLY or NOREAD_ONLY). You
cannot change the contents or the name of a class that has been set
to READ_ONLY.

You must specify one or more of the new_name, newJemark, or
reatLonly arguments in the call to CMS$MODIFY_CLASS. If a class is set to
READ_ONLY, you must change it to NOREAD_ONL Y to change any other
characteristics.

Return Code

CMS$_ERRMODIFIES

CMS$.-MODIFICA nONS

CMS$.-MODIFIED

CMS$~OMODIFY

CMS$~OREF

CHARACTER*14 DIR
CHARACTER*8 CLASS D
CHARACTER*8 NEWNAME

INTEGER*4 READONLY ~
INTEGER*4 LDB(50) m
INTEGER*4 CMS$SET-LIBRARY
INTEGER*4 CMS$MODIFY_CLASS

Description Status

CMS modified zero or more Error
classes and encountered one or
more errors during the
transaction.

CMS modified one or more Success
classes.

CMS modified the class.

CMS did not modify the class.

Error accessing library.

II

Success

Error

Error

eMS Routine Descriptions 2-105

CMS$MODIFY _CLASS

DIR = '[LENNON.SONGS]'
CLASS = 'PRE-1968,
NEWNAME = 'PRE-1970'
READONLY = 1

STATUS = CMS$SET-LIBRARY(LDB,DIR)
IF (.NOT. STATUS) THEN
RETURN
STATUS = CMS$MODIFY_CLASS(LDB,CLASS"NEWNAME"READONLY) 6
IF (.NOT. STATUS) THEN
RETURN
END

Key to Example:

D Character string variables are declared for the directory specifica-
tion, the existing class name, and the new class name.

(g A longword integer variable is declared for the read_only flag.

lfl The LDB is declared as a 50-word integer array.

II The CMS routines are declared external to the program.

~ The character string variables are assigned values and the read_only
flag is set to change the access to the class.

til CMS$SET_LIBRARY is called to initialize the LDB.

6 CMS$MODIFY_CLASS is called with the library_dahLblock, class
name, new_clasLname, and read_only arguments. Extra commas are
used as placeholders for the omitted arguments. Note that you can
change the access to the class in the same call that you use to
change the characteristics (in this case, the class name).

2-106 eMS Routine Descriptions

/ '\

(

(-

(

CMS$MODIFY _ELEMENT

CMSSMODIFY _ELEMENT

Format

Arguments

Changes the characteristics of each specified element.

CMS$MODIFY _ELEMENT (library_dataJJlock,
elemenLexpression,
/remark},
/newJ1ame},1

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

elemenLexpression
Type: chaLstring
Access: read
Mechanism: by descriptor

/new Jemark}, 1

/historY},1
/notes},1
/position},1
/concurrent},1
/reference_copY},1
/ msgJoutine},
/review} 1)

Specifies one or more elements or groups of elements to be modified.
Wildcards and a comma list are allowed, unless you specify new_name.

1 At least one of these arguments is required.

eMS Routine Descriptions 2-107

CMS$MODIFY _ELEMENT

You must include a period (.) in the element expression to select one
or more elements from the complete list of elements in the library. If
you do not include a period, CMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that are
established in the library.

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

new_name
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the new element name. You cannot use OOCMS as the file
name component of an element name because it is reserved for CMS.
If you specify this argument, you cannot specify wildcards or a comma
list in the elemenLexpression argument.

new_remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies a new remark to be substituted for the existing creation remark
for the element. If you change this remark, the remark associated
with generation 1 of the element is not altered. To change the remark
associated with generation 1 of the element, use CMS$MODIFY_
GENERATION.

history
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the history string. If you include the history argument in the
call, CMS establishes or changes the history attribute for the element.
By default, CMS does not alter the existing history attribute (if any).
If an element has a history attribute, its history is included in the file
when it is retrieved by the CMS$FETCH routine. To disable the history
attribute, specify a zero-length string. For a detailed explanation of the
history attribute, see the Guide to VAX DEC/Code Management System.

2-108 eMS Routine Descriptions

(notes
Type:
Access:
Mechanism:

char_string
read
by descriptor

CMS$MODIFY _ELEMENT

Specifies the notes string. If you include the notes argument in the call,
CMS establishes or changes the notes attribute for the element. By
default, CMS does not alter the existing notes attribute (if any). If an
element has a notes attribute, notes are added to the ends of the lines
of the file when it is retrieved by the CMS$FETCH routine. To disable
the notes attribute, specify a zero-length string. Any element that has
the notes attribute must have the position attribute. For a detailed
explanation of the notes attribute, see the Guide to VAX DEC/Code
Management System.

position
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies the position value to be used with the notes attribute. The
position attribute determines the character position at which the note is
to begin on the line. The position value must be an integer greater than
zero. Any element that has the position attribute must have the notes
attribute. For a detailed explanation of the position attribute, see the
Guide to VAX DEC/Code Management System.

concurrent
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag indicating the access to the element. Set the flag to
1 to allow concurrent reservations of the element. Set the concurrent
flag to 0 to prohibit concurrent reservations. By default, the existing
concurrency characteristic is not changed.

reference_copy
Type: longword_signed
Access: read
Mechanism: by reference

Specifies a flag indicating whether CMS is to maintain a reference copy
of the element when a new main line generation is created. If you
set the flag to 1, CMS creates a reference copy for the element and
enables the reference_copy attribute for the element. If you set the flag

eMS Routine Descriptions 2-109

CMS$MODIFY _ELEMENT
(

to 0, CMS deletes the reference copy and disables the reference copy ~~. J
attribute from the element.

Description

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

review
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag indicating whether CMS is to automatically mark new
generations as pending review. By default, the flag is set to 0, and CMS
marks new generations of the element as pending review only if the
reviewed generation was either rejected or has a review pending. Set
the flag to 1 to indicate that new generations should be marked for
review.

The CMS$MODIFY~LEMENT routine changes the characteristics of one
or more elements. You can alter the following characteristics:

• Concurrent access to the element

• The history string that is inserted in the element history when the
element is reserved or fetched

• The notes string and related position attribute

• The element name
• The creation remark stored in the library history

• The reference copy attribute of the element

• The review attribute of the element

You must specify one or more of the neWJlame, newJemark, concur
rent, history, notes, position, reference_copy, or review arguments in
the call to CMS$MODIFY~LEMENT. If a generation of the element is
currently reserved, you can change only the remark, reference copy,
and review attributes of the element.

2-110 eMS Routine Descriptions

(
I

(

(

<:

CMS$MODIFY _ELEMENT

If you specify the neWJame, notes and position, or history arguments,
the reference copy directory is updated (provided the reference copy
attribute is set).

Return Code

CMS$--"ERRMODIFIES

CMS$~ODIFICA TIONS

CMS$~ODIFIED

CMS$~OMODIFY

CMS$~OREF

Description

CMS modified zero or more
elements and encountered
one or more errors during the
transaction.

CMS modified one or more
elements.

CMS modified the element.

CMS did not modify the
element.

Error accessing library.

Status

Error

Success

Success

Error

Error

eMS Routine Descriptions 2-111

CMS$MODIFY _GENERATION

CMS$MODIFY _GENERATION

Format

Arguments

Alters information associated with one or more generations of an
element.

CMS$MODIFY _GENERATION (library_dataJJlock,
elemenLexpression,
[remark],
[generation_expression],
newJemark,
[msgJoutinej)

Iibrary_datCLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

elemenLexpression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies one or more elements or groups of elements whose genera
tions are to be modified. Wildcards and a comma list are allowed.

remark
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

2-112 eMS Routine Descriptions

'\
J

(

Description

(-

CMS$MODIFY _GENERATION

generation_expression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies the particular generation to be modified. By default, the most
recent generation on the main line of descent is modified.

new_remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies a new remark that is to be stored with the generation being
modified. You must specify this argument. The remark associated
with the element is not altered, even if you modify the remark for
generation 1. To change the remark associated with the element, use
the CMS$MODIFY~LEMENT routine. If you change this remark, the
remark associated with the element is not altered. To change the remark
associated with the element, use CMS$MODIFY~LEMENT.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$MODIFY_GENERATION routine allows you to change the
remark associated with each generation of an element in the library.

eMS Routine Descriptions 2-113

CMS$MODIFY _GENERATION

Return Code

CMS$~RRMODIFIES

CMS$...MODIFICA TIONS

CMS$...MODIFIED

CMS$~OMODIFY

CMS$~OREF

2-114 eMS Routine Descriptions

Description

CMS modified zero or more
generations and encountered
errors during the transaction.

CMS modified one or more
generations.

CMS modified the generation.

CMS did not modify the
specified generation.

Error accessing library.

Status

Error

Success

Success

Error

Error

CMS$MODIFY _GROUP

(CMSSMODIFY _GROUP

(

Format

Arguments

Alters the information associated with one or more groups.

CMS$MODIFY _GROUP (library_dataJJ/ock,
group_expression,
[remark],
[newJ1ame],1
[newJemark],1
[read_only],1
[msgJoutinej)

library _data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LOB.

group_expression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies one or more groups to be modified. Wildcards and a comma
list are allowed, unless you specify new~ame.

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

1 At least one of these arguments is required.

eMS Routine Descriptions 2-115

CMS$MODIFY _GROUP

new_name
Type:
Access:
Mechanism:

char_string
read
by descriptor

Specifies the new name of the group. You cannot specify wildcards or a
comma list. If you specify this argument, you cannot specify wildcards
or a comma list in the groupJlame argument.

new3emark
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies a new remark to be substituted for the existing creation remark
for the group.

read_only
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that changes the access to the group. If you set the flag
to I, CMS sets the group to READ_ONLY. If yousetthe flag to 0, CMS
sets the group to NOREAD_ONL Y. By default, the existing access is not
changed.

If you want to change the attributes of a READ_ONLY group, you can
set the read_only flag to 0 in the same call that you use to change other
attributes. Also, you can change the attributes of a NOREAD_ONLY
group and set the group to READ_ONLY in the same call.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7. ~

2-116 eMS Routine Descriptions

/
~- /

,/ "

Description

(-

CMS$MODIFY _GROUP

The CMS$MODIFY _GROUP routine changes the characteristics of one
or more groups. You can alter the following characteristics:

• The name of the group.

• The remark that is associated with the CREATE GROUP command
for the specified group.

• The access to the group (READ_ONLY or NOREAD_ONLY). You
cannot change the contents of a group set to READ_ONLY access.

You must specify one or more of the new_name, newJemark, or read_
only arguments in the call to CMS$MODIFY_GROUP. If a group is set
to NOREAD_ONLY, you must change it to READ_ONLY to change any
other characteristics.

Return Code

CMS$~RRMODIFIES

CMS$~ODIFICATIONS

CMS$~ODIFIED

CMS$~OMODIFY

CMS$~OREF

Description Status

CMS modified zero or more Error
groups and encountered one or
more errors during the
transaction.

CMS modified one or more
groups.

CMS modified the group.

Success

Success

CMS did not modify the group. Error

Error accessing library. Error

eMS Routine Descriptions 2-117

CMS$MODIFY _LIBRARY

CMSSMODIFY _LIBRARY

Format

Arguments

Changes the characteristics of a CMS library.

CMS$MODIFY _LIBRARY (library_dataJJ/ock,
[remark),
reference_copy _dir,
[msgJoutinej)

Iibrary_datLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

remark
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

reference_copy_dir
Type: char_string
Access: read
Mechanism: by descriptor

Specifies a valid VMS directory to be used for reference copies of
elements, or a zero-length string to disable the reference copy directory.
The directory cannot be a CMS library. Wildcards are not allowed. The
reference_copy _dir argument is required.

2-118 eMS Routine Descriptions

/\

(

Description

(

mS9_routine
Type:
Access:
Mechanism:

procedure
read
by reference

CMS$MODIFY _LIBRARY

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$MODIFY _LIBRARY routine alters the connection between the
reference copy directory and the CMS library.

Return Code Description Status

CMS$~ODIFIED CMS modified the library. Success

CMS$_NOMODIFY CMS did not modify the Error
library.

CMS$_NOREF Error accessing library. Error

eMS Routine Descriptions 2-119

CMS$PUT _STRING

CMSSPUT _STRING

Format

Arguments

Description

Passes a string from a callback routine to CMS.

CMS$PUT _STRING (string)

string
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies a string to be passed to CMS.

The CMS$PULSTRING routine provides the method of passing strings
to CMS from within a callback routine. You must use this routine
within the callback routines that provide input for the CMS$CREATE_
ELEMENT, CMS$DIFFERENCES, and CMS$REPLACE routines.

CMS accepts only one input string during a single execution of an
input callback routine. Thus, you should call CMS$PULSTRING only
once during a single execution of a callback routine. CMS returns
CMS$~ORMAL after the first call to CMS$PUT _STRING. If you call
CMS$PUT_STRING again before the callback routine returns control to
CMS, the string buffer is overwritten with the new string. In this case,
CMS returns CMS$~ULTCALL with a warning severity level.

Return Code

CMS$~ULTCALL

Description

You have called CMS$PUL
STRING more than once
during a single invocation of
an input callback routine.

Status

Warning

2-120 eMS Routine Descriptions

)

(
Example

(

(

100

CMS$PUT _STRING

INTEGER*4 FUNCTION INPUT-ROUTINE (FIRST_CALL,LIBDB,USER-PARAM,
1 ELEMENT_ID,EOF_STATUS,SEQUENCE-FLAG,SEQUENCE-NUM)

IMPLICIT INTEGER*4 (A-Z)
EXTERNAL CMS$PUT~TRING
INTEGER*4 LIBDB(50)
CHARACTER*80 DATA-LINE
LOGICAL FIRST_CALL

IF (FIRST_CALL) CALL OPEN-FILE 0
READ (1,END=100) DATA-LINE
CALL CMS$PUT~TRING(DATA-LINE) ~
INPUT-ROUTINE = 1
RETURN

EOF_STATUS = %LOC(CMS$-EOF)
CALL CLOSE-FILE
INPUT-ROUTINE = 1
RETURN
END

Key to Example:

o During the first invocation of the input routine, a routine is
called to open the input file.

~ The string supplied by the READ statement is passed to CMS with
the CMS$PUT_STRING routine.

!Sl When end-of-file is encountered by the READ statement, eoL
status is set, the input file is closed, and control is transferred
back to CMS.

For additional examples of programs that contain calls to the
CMS$PUT_STRING routine, see Appendix B.

eMS Routine Descriptions 2-121

CMS$REMARK

CMSSREMARK

Format

Arguments

Places a remark in the library history.

CMS$REMARK (library _dataJJlock,
remark,
{msgJoutinej,
(unusual])

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command. The remark argument is required.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

unusual
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates whether the transaction is unusual, and
marks it as an unusual occurrence in the history file with the command.

2-122 eMS Routine Descriptions

/
I

(

Description

CMS$REMARK

Set the flag to 1 if the transaction is unusual and to 0 if it is not. By
default, the remark is not an unusual occurrence.

The CMS$REMARK routine adds a remark to the library history. You
can include up to 65,535 characters in a remark string. The remark is
recorded in the library history in the following format:

date time username REMARK "remark"

Return Code

CMS$~OREF

CMS$~OREMARK

CMS$-.REMARK

Description Status

Error accessing library. Error

CMS did not enter the remark Error
in the library history.

CMS entered the remark in the Success
library history.

eMS Routine Descriptions 2-123

CMS$REMOVE_ELEMENT

CMSSREMOVE_ELEMENT

Format

Arguments

Removes one or more elements from each specified group.

CMS$REMOVE_ELEMENT (library _dataJJ/ock,
elemenLexpression,
group_expression,
{remarkJ,
(itpresentJ,
(msgJoutinej)

Iibrary_datELblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

elemenLexpression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies one or more elements or groups of elements to be removed.
Wildcards and a comma list are allowed.

You must include a period (.) in the element expression to select one
or more elements from the complete list of elements in the library. If
you do not include a period, eMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that are
established in the library.

2-124 eMS Routine Descriptions

/ '\

(

(

(-

CMS$REMOVE_ELEMENT

group_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies one or more groups from which the elements (indicated by
elemenLexpression) are to be removed. Wildcards and a comma list
are allowed.

remark
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

iLpresent
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs CMS to remove the element from the group
only if it already belongs to the group. If you set the flag to 1 and the
element does not belong to the group, CMS returns CMS$~ORMAL.
If you use wildcards in the elemenLexpression argument, CMS ignores
the value of the iLpresent flag and assumes the value to be 1. If you
specify a single element, do not specify iLpresent (or if you set the flag
to 0), and the element does not belong to the group, CMS returns an
error.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

eMS Routine Descriptions 2-125

CMS$REMOVE_ELEMENT

Description
The CMS$REMOVE-ELEMENT routine removes one or more elements
from each specified group. The routine does not delete the elements
from the library, but there is no longer any association between the
elements and the groups. You cannot remove any elements from a
group that has the READ_ONLY attribute. For information on the
READ_ONLY and NOREAD_ONLY attributes, see the description of the
CMS$MODIFY_GROUP routine.

Return Code

CMS$~RREMOVALS

CMS$~OREF

CMS$~OREMOVAL

CMS$-.REMOVALS

CMS$~EMOVED

Description Status

CMS removed zero or more Error
elements and encountered one
or more errors during the
transaction.

Error accessing library. Error

CMS did not remove the Error
element.

CMS removed one or more Success
elements.

CMS removed the element. Success

2-126 eMS Routine Descriptions

(

(

CMS$REMOVE_GENERATION

CMSSREMOVE_GENERATION

Format

Arguments

Removes one or more element generations from each specified class.

CMS$REMOVE_GEN ERATION (library _dataJJlock,
elemenLexpression
class_expression,
[remarkj,
[itpresentj,
[msgJoutinej,
[generation])

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LOB.

elemenLexpression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies one or more elements or groups of elements whose genera
tions are to be removed. Wildcards and a comma list are allowed.

You must include a period (.) in the element expression to select one
or more elements from the complete list of elements in the library. If
you do not include a period, eMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that are
established in the library.

eMS Routine Descriptions 2-127

CMS$REMOVE_GENERATION

class_expression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies one or more classes from which the element generation is to
be removed. Wildcards and a comma list are allowed.

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

iLpresent
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs CMS to remove the element generation
from the class only if it already belongs to the class. If you set the
flag to 1 and the class does not contain a generation from the element, ('
CMS returns CMS$~ORMAL. If you use wildcards in the elemenL \ j
expression argument, CMS ignores the value of the iLpresent flag
and assumes the value to be 1. If you specify a single element, do not
specify iLpresent (or if you set the flag to 0), and the element does not
belong to the class, CMS returns an error.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

generation
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies a string descriptor containing the generation to be removed.
CMS returns an error if the generation is not located in the class, and if
the elemenLexpression argument does not contain a wildcard or a group.

2-128 eMS Routine Descriptions

(Description

CMS$REMOVE_GENERATION

The CMS$REMOVE_GENERA TION routine removes one or more ele
ment generations from each specified class. The routine does not delete
the element or the generation from the library, but the generation is no
longer associated with the class. You cannot remove any generations
from a class that has the READ_ONLY attribute. For information on the
READ_ONLY and NOREAD_ONL Y attributes, see the description of
the CMS$MODIFY_CLASS routine.

To remove one element generation from a class and replace it with
another generation of the same element, specify the supersede argument
to the CMS$INSERT_GENERATION routine.

Return Code

CMS$J:RREMOV ALS

CMS$_GENNOREMOVE

CMS$_GENREMOVED

CMS$~OREF

CMS$j{EMOVALS

Description

CMS removed zero or more
generations and encountered
one or more errors during the
transaction.

CMS did not remove the
generation.

CMS removed the generation.

Error accessing library.

CMS removed one or more
generations.

Status

Error

Error

Success

Error

Success

eMS Routine Descriptions 2-129

CMS$REMOVE_GROUP

CMSSREMOVE_GROUP

Format

Arguments

Removes one or more groups from another group or groups.

CMS$REMOVE_GROUP (library _dataJJ/ock,
sub-uroup_expression,
group_expression,
[remark),

library _data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

sub_group_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

[itpresent},
[msgJoutinej)

Specifies one or more groups to be removed from group_expression.
Wildcards and a comma list are allowed.

group_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies one or more groups from which sub_group_expression is to
be removed. Wildcards and a comma list are allowed.

2-130 eMS Routine Descriptions

/ '\

j

(

(

Description

(

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

CMS$REMOVE_GROUP

Specifies the remark string that is to be logged in the history file with
the command.

iLpresent
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs CMS to remove sub_group_expression from
group_expression only if it belongs to the group. If you set the flag to
1 and group_expression does not contain sub-gt'oup_expression, CMS
returns CMS$~ORMAL. When either group name contains wildcards,
CMS ignores the value of the iLpresent flag and assumes the value to
be 1. If you specify a single group, do not specify iLpresent (or if you
set the iLpresent flag to 0), and sub_group_expression does not belong
to group_expression, CMS returns an error.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$REMOVE_GROUP routine removes one or more groups
from another group or groups. The routine does not delete the group
from the library, but there is no longer any association between the
respective groups. You cannot remove any groups from a group that has
the READ_ONLY attribute. For information on the READ_ONLY and
NOREAD_ONLYattributes, see the description of the CMS$MODIFY_
GROUP routine.

eMS Routine Descriptions 2-131

CMS$REMOVE_GROUP

Return Code

CMS$~RREMOVALS

CMS$~OREF

CMS$~OREMOVAL

CMS$-REMOV ALS

CMS$-REMOVED

2-132 eMS Routine Descriptions

Description

CMS removed zero or more
groups and encountered one or
more errors during the
transaction.

Error accessing library.

CMS did not remove the
group.

CMS removed one or more
groups.

CMS removed the group.

Status

Error

Error

Error

Success

Success

('\

l\.~

('\
'"j

CMS$REPLACE

(- CMSSREPLACE

Format

Arguments

(.

Returns one or more reserved generations to the library and creates a
new generation of one or more elements to identify the changes.

CMS$REPLACE (library _dataJJlock,
elemenLexpression,
[remark],
[variant],
[reserve],
[keep],
[inpuLfile],
[inputJoutine],
[usecarg],
[msgJoutine],
[if_changed],
[generation_expression],
ljdentification~umber])

Iibrary_datiLblock
Type: . cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

elemenLexpression
Type: char_string
Access: read
Mechanism: by descriptor

eMS Routine Descriptions 2-133

CMSSREPLACE

Specifies one or more reserved elements or groups of elements to be
replaced. Wildcards and a comma list are allowed.

You must include a period (.) in the element expression to select one or
more elements from the complete list of elements in the library. If you
do not include a period, eMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that are
established in the library.

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

variant
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies an alphabetic character that is used to label the variant line
of descent. If you specify this argument, eMS starts a variant line of
descent. The number of the new generation is the predecessor's
number, followed by the variant letter, followed by the numeral 1.

If an element generation is reserved more than once, the replaced
generations cannot be on the same line of descent. Thus, one can be
replaced as a direct descendant of the reserved generation and the rest
must be replaced as variants.

reserve
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs eMS to extend the reservation that is estab
lished for the generation. By default, the flag is set to 0, and eMS does
not reserve the new generation. Set the reserve flag to 1 to extend the
reservation. In this case, eMS ignores the value of the keep flag and
does not delete the file used to create the new generation.

2-134 eMS Routine Descriptions

(

(-'

(

keep
Type:
Access:
Mechanism:

longword_sig ned
read
by reference

CMS$REPLACE

Specifies a flag that prevents CMS from deleting the input files. If you
set the value of the flag to 1, CMS does not delete the files. By default,
the flag is set to a and CMS deletes the files.

Note that if you set the reserve flag to 1, CMS does not delete the file,
regardless of the value of the keep flag.

inpuLfile
Type:
Access:
Mechanism:

char_string
read
by descriptor

Specifies the location of the file whose contents are used to create a
new generation of the element whose reservation is being replaced. If
you specify an input file, you cannot also specify an input routine.
Wildcards are allowed.

Use this argument if the input file name is different from the name of
the reserved generation's element, or if the file is in some directory
other than your current default directory. If you provide a directory
specification, but no file name or file type, CMS searches the specified
directory for a file with the same name as the element whose genera
tion is being replaced. When you specify an input file in an alternative
directory, CMS deletes the file from the alternative location (unless you
specify the keep or reserve argument).

inpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies a callback routine that provides data for the CMS$REPLACE
transaction. CMS calls this routine once for each line of data until the
callback routine indicates the end of the file. If you specify an input
routine, you cannot also specify an input file. See the callback routines
section for information about the parameters that CMS passes to the
input routine.

useLarg
Type:
Access:
Mechanism:

undefined
read
undefined

eMS Routine Descriptions 2-135

CMS$REPLACE

Specifies a value that you supply and that eMS passes to the
inputJoutine argument, using the same mechanism that you used to pass
it to eMS.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

iLchanged
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies that a new generation is to be created only if the input file is
different from the generation that was reserved. If there are no changes,
the reservation is canceled (the generation is unreserved), and the input
file is not deleted. By default, a new generation is created, regardless of
the existence of any differences.

generation_expression
Type: char_string
Access: read
Mechanism: by descriptor

Specifies the reserved generation of the element that is to be replaced
into the library. This argument can be used when you have multiple
reservations on the same element, but not on the same generation of
the same element. If multiple reservations exist for the element genera
tion, you must specify the identification number of the exact reserva
tion to be unreserved (canceled).

identification_number
Type: longword_signed
Access: read
Mechanism: by reference

Specifies the reserved generation of the element that is to be replaced
into the library. eMS assigns a unique reservation identification num
ber to each element when it is reserved. If an element generation has
only one reservation, you can replace that reservation by specifying
the generation expression. However, if multiple reservations exist

2-136 eMS Routine Descriptions

"'--

(.

(

CMS$REPLACE

for the element generation, you must specify the identification number
of the exact reservation to be replaced. Use the CMS$SHOW_
RESERVATIONS routine to determine the reservation number of a
generation.

Callback Routine Parameters

When you write an input routine to provide data for CMS$REPLACE,
CMS passes the following parameters in the order shown with each call
to inputJoutine:

(first_call, library_dat~block, user_param, element_id, eof_status,
sequence-flag, sequence~umber)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

firsLcall
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates whether the current call to the input
routine is the first call. CMS sets the flag to 1 if it is the first call and to
o if it is not.

library _data_block
Type: cntrlblk
Access: read
Mechanism: by reference

Specifies the LDB for the current library.

usecparam
Type:
Access:
Mechanism:

undefined
modify
undefined

Specifies the user argument as it was passed to CMS$REPLACE. If you
did not specify a user argument, this parameter points to a read-only
storage location containing the value O. CMS passes usecparam to your
routine using the same mechanism that you used to pass it to
CMS$REPLACE.

eMS Routine Descriptions 2-137

CMS$REPLACE

elemenUd
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the element name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

When you use a callback routine to replace. an element, CMS passes
the name of the element in this parameter. If you are replacing more
than one element (by specifying a group name, wildcards, or a comma
list in the elemenLexpression argument in the call to CMS$REPLACE),
CMS advances to the next reservation each time you set the eoLstatus
parameter to true (1).

eoLstatus
Type:
Access:
Mechanism:

longword_signed
modify
by reference

Specifies the end-of-file status. The input routine must change the
value of eoLstatus from false (0) to true (1) to indicate to CMS that input is
terminated. When eoLstatus is true (1), CMS ignores the contents of the
current input record (passed by CMS$PUT_STRING). Therefore, you
must set eoLstatus to true (1) in the call following the last significant input
record. See Section 1.5.3.1 for more information on specifying the end
of input.

When you indicate that you are replacing more than one element (by
using a group name or a wildcard expression), CMS builds the list of
elements to be replaced by comparing the element expression with the
list of elements that you have reserved. As the transaction progresses,
you must set eoLstatus at the appropriate time to direct CMS to finish the
current element replacement and continue to the next element on the
list.

sequence_flag
Type: longword_signed
Access: write
Mechanism: by reference

Specifies a flag that directs CMS to create a sequenced element gen
eration. By default, the flag is set to 0, indicating that input is not
sequenced. Set the flag to 1 to direct CMS to create a sequenced
element generation.

2-138 eMS Routine Descriptions

/\

\
'-

-"

f

Description

(

(

CMS$REPLACE

sequence_number
Type: longword_signed
Access: write
Mechanism: by reference

Specifies a location that you fill in with a signed integer that indicates
the sequence number of the line being replaced. A value in the range
of 1 to 65,536 characters indicates the sequence number.

The CMS$REPLACE routine transfers the latest version of a file cor
responding to a reserved element generation from your current default
directory to your CMS library, thus creating a new generation. You can
direct CMS to use a file in a different location by specifying the
inpuLfile argument. After the reservation is replaced, CMS deletes the file
used to create the new generation (and any earlier versions of the file
in the same directory). If you specify either the keep or the reserve
argument, CMS does not delete the file. The element must have been
reserved by the user who is replacing it, unless you have BYPASS
access to the element (see the Guide to VAX DEC/Code Management
System). After the replace transaction is completed, the reservation is
ended. CMS stores the creation date and time, the revision date and
time, and the file revision number of the file used to create the new
generation. When you fetch or reserve an element generation, CMS
restores the times and file revision number associated with the file used
to create the element generation. You can also obtain this information
by using the CMS$SHOW_GENERATIONroutine.

By default, the number of the new generation is the number of its
predecessor with the rightmost level number increased by 1.

When making a concurrent replacement, you must specify the confirllL
routine argument in the call to CMS$SET_LIBRARY (before calling
CMS$REPLACE), or you are not warned of any concurrent reserva
tions, and the replace transaction continues. To receive a confirmation
prompt when there are existing concurrent reservations, you must
specify the routine in the call to CMS$SELLIBRARY.

When you use a callback routine to provide input for CMS$REPLACE,
CMS uses the time of the replacement transaction as the file creation
and revision times associated with the new generation of the element.
CMS also uses the following record format and record attributes when
you use a callback input routine. If you provide unsequenced input,
the new generation of the element has variable-length records with the

eMS Routine Descriptions 2-139

CMS$REPLACE

carriage return record attribute. If you provide sequenced input, the
element generation has VFC 2-byte records with the carriage return
record attribute.

If the element you are replacing has the reference copy attribute
enabled, CMS updates the reference copy for the element in the refer
ence copy directory.

Replacing an Element Generation with the History or Notes Attribute

If you reserve a generation of an element with the history attribute and
then replace it, the REPLACE command strips the history records from
the input file before creating the new generation. That is, it does not
copy the history into your CMS library. If you add text to the file in or
above the history (relative to #B), or in or below the history (relative to
#H), the REPLACE command issues an error message and the command
is not executed.

If you reserve a file with embedded notes and then replace it, the
REPLACE command does not copy the notes to the CMS library. If,
while editing the file, you insert text that looks like an embedded note,
it is deleted when the file is replaced.

/ ".
j

For more information about concurrent reservations and replacements
and also for information on embedded histories and notes, see the / \.
Guide to VAX DEC/Code Management System.

Return Code Description Status

CMS$~RREPLACEMENTS CMS replaced zero or more Error
elements and encountered one
or more errors during the
transaction.

CMS$_GENCREATED CMS replaced the element. Success

CMS$flOREF Error accessing library. Error

CMS$flOREPLACE CMS did not replace the Error
element.

CMS$JlliPLACEMENTS CMS replaced one or more Success
elements.

CMS$_USERERR User routine returned an error Error
to CMS.

,/ "\

2-140 eMS Routine Descriptions

(

(

CMS$RETRIEVE_ARCHIVE

CMS$RETRIEVE_ARCHIVE

Format

Arguments

Retrieves one or more generations from one or more archive files.

CMS$RETRI EVE~RCH IVE ([library _dataJJ/ockj,
archiveji/e_spec,
[generation_spec j,
[outputjile_spec j,
[msgJoutinej)

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies the LDB for the current library. You do not need to specify
this argument.

archive_file_spec
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies the address of a string descriptor containing the name of the
archive file. Wildcards and a comma list are allowed.

generation_spec
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies the address of a string descriptor containing the number of
the generation to be retrieved from the archive file. Wildcards are
allowed. By default, if you do not specify a generation number on this
argument, eMS retrieves the latest generation of the archived element.

eMS Routine Descriptions 2-141

CMS$RETRIEVEjRCHIVE

Description

outpuLfile_spec
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies the address of a string descriptor containing the file specifica
tion of an output file into which CMS retrieves the archived genera
tions. Wildcards are allowed. One version of the output file specification
is created for each generation that is retrieved.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$RETRIEVE~RCHIVE routine retrieves one or more generations

/ " I

of an element from one or more archive files. By default, CMS restores (
tChMe slatest gehneration o~ an. existinfPI e~ement tdhaft hlasd~een archivded.. \'.c ./

puts t e generation mto a I e m your e au t Irectory an gives
it the same name as the element from which it was archived. You can
override this default behavior by using the outputJile_spec argument.

Return Code Description Status

CMS$-.ERRETRIEV ALS CMS retrieved zero or more Error
generations and one or more
errors occurred.

CMS$~ORETRIEVE Error retrieving generation. Error

CMS$~OTFOUND CMS could not find the speci- Error
fied object.

CMS$YETRIEV ALS CMS retrieved one or more Success
generations.

CMS$YETRIEVED Generation retrieved from Success
archive file.

2-142 eMS Routine Descriptions

(
CMS$REVIEW_GENERATION

CMSSREVIEW _GENERATION

Format

Arguments

Associates a review comment with each specified element generation
that is currently under review, and allows you to change the review
status of each specified generation.

CMS$REVIEW_GENERATION (library_data_block,

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

elemenLexpression
Type: char_string
Access: read
Mechanism: by descriptor

elemenLexpression,
action,
/remark},
/ generation_expression},
/msgJoutineJ)

Specifies one or more elements or groups of elements whose genera
tions are to be reviewed. Wildcards and a comma list are allowed.

action
Type:
Access:
Mechanism:

longword_signed
read .
by reference

Specifies the review action to be taken. You must specify one of the
following actions:

eMS Routine Descriptions 2-143

CMS$REVIEW_GENERATION

Action

CMS$I<-ACCEPT = 0

CMS$K...CANCEL = 1

CMS$K...MARK = 2

CMS$K...REJECT = 3

CMS$K...REVIEW = 4

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Description

Specifies that the generation, which must
currently have a review pending, is to be
accepted and removed from the pending
review list.

Specifies that the pending review for this
generation is to be canceled.

Specifies that this generation is to be marked
as pending review and to be placed on the
review pending list.

Specifies that the generation, which must cur
rently have a review pending, is to be rejected
and removed from the review pending list.

Specifies that the remark be associated as a
review remark with the specified generation,
which must currently have a review pending.

Specifies the remark string that is to be logged in the history file, and,
if you specified CMS$I<-REVIEW as the action argument, the remark
string is also associated with the generation.

generation_expression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies which generation is to be reviewed. If you do not specify this
argument, the element's most recently created generation that has a
review pending will be reviewed, unless the action was CMS$ICMARK,
in which case the most recent generation on the main line of descent
(1 +) is marked.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

2-144 eMS Routine Descriptions

,/ "'-

(
Description

(-

(-

CMS$REVIEW_GENERATION

The CMS$REVIEW _GENERATION routine causes a generation of an
element to undergo review, to be placed on the library's r€view pending
list, or to be removed from the list and marked as accepted or rejected.

Return Code

CMS$-ACCEPTANCES

CMS$-ACCEPTED

CMS$_CANCELA nONS

CMS$_CANCELED

CMS$J:RRACCEPTANCES

CMS$J:RRCANCELA nONS

CMS$J:RRMARKS

CMS$J:RRREJECnONS

CMS$J:RRREVIEWS

CMS$JLLACT

CMS$~RKED

CMS$~ARKS

CMS$~OACCEPT

CMS$~OCANCEL

Description Status

CMS accepted one or more Success
generations.

CMS accepted the generation. Success

CMS canceled one or more Success
reviews.

CMS canceled the review. Success

CMS accepted zero or more Error
generations and encountered
errors during the transaction.

CMS canceled zero or more Error
reviews and encountered
errors during the transaction.

CMS marked zero or more Error
generations and encountered
errors during the transaction.

CMS rejected zero or more Error
generations and encountered
errors during the transaction.

CMS associated the review Error
remark with zero or more
generations and encountered
errors during the transaction.

Illegal review action specified. Error

CMS marked the generation Success
for review.

CMS marked one or more Success
generations for review.

CMS did not accept the Error
specified generation.

CMS did not cancel the speci- Error
fied review.

eMS Routine Descriptions 2-145

CMS$REVIEW_GENERA liON

Return Code

CMS$.-NOMARK

CMS$.-NOREF

CMS$.-NOREJECT

CMS$.-NOREVIEW

CMS$-REJECTED

CMS$-REJECTIONS

CMS$-REVIEWED

CMS$-REVIEWS

2-146 eMS Routine Descriptions

Description

CMS did not mark the
specified generation.

Error accessing library.

CMS did not reject the
specified generation.

CMS did not associate the
review remark with the
generation.

CMS rejected the generation.

CMS rejected one or more
generations.

CMS associated the review
remark with the generation.

CMS associated the review
remark with one or more
generations.

/' '\ :

Status '--- /

Error

Error

Error

Error

Success

Success

Success

Success

/

\,,-

(-

(

CMS$SET _ACL

CMSSSET _ACL

Format

Arguments

Manipulates the access control list (ACL) on various objects in the CMS
library.

CMS$SET ~CL (library _dataJJ/ock,
objecLtype,
objecLexpression,
[remark],
[acl],
[after],
[default],
[delete],
[like],
[new],
[replace],
[msgJoutinej)

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

objecLtype
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a value indicating what type of object is represented by objecL
expression. There is no default type. The object type must be one of
the following:

eMS Routine Descriptions 2-147

CMS$SET .-ACL

• CMS$KACLELEMENT = 1

• CMS$KACLCLASS = 2

• CMS$KACLGROUP = 3
• CMS$KACL_LIBRARY = 4

• CMS$KACLCOMMAND = 5

objecLexpression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies one or more objects whose ACLs are to be modified.
Wildcards and a comma list are allowed.

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

acl
Type:
Access:
Mechanism:

char_string
read
by descriptor

Specifies an ACL to be associated with the object.

after
Type:
Access:
Mechanism:

char_string
read
by descriptor

A string specifying the ACL in the existing access control list after
which this new list (specified by the ad argument) is to be added.

default
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates that the ACL to be placed on the object is
the default for objects of that type. By default, the flag is set to O. You
must set the flag to 1 to place the default ACL on the objects.

2-148 eMS Routine Descriptions

(-

(

(

delete
Type:
Access:
Mechanism:

longword_signed
read
by reference

CMS$SETJCL

Specifies a flag that indicates that the ACL entry or entries (specified by
the ad argument) are to be removed from the object. If the ad argu
ment is not specified and delete is set to 1, the entire ACL is deleted.
By default, the flag is set to 0, indicating that the ACL entry remains
on the object. You must set the flag to 1 to remove the ACL from the
object.

like
Type:
Access:
Mechanism:

char_string
read
by descriptor

A string specifying the object whose ACL is to be copied to this object.
You do not need to pass the ad argument if a value for like is passed.
The object specified by the like argument must be the same type as the
object being modified.

new
Type: longword_signed
Access: read
Mechanism: by reference

Specifies a flag that indicates that the ACL (specified by the ad argu
ment) is to supersede any existing access control list on the object.

replace
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

A string specifying the ACL entry or entries that should replace the
access control entries (ACEs) specified on the ACL argument. Any
ACEs specified on the ACL argument must be listed in the order in
which they appear in the ACL.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

eMS Routine Descriptions 2-149

CMS$SETJCL

Description
The CMS$SET~CL routine manipulates the ACL associated with the
specified object. The action taken on the ACL depends on the
parameters specified. The after, default, delete, like, new, and replace
arguments cannot be specified in the same call.

Return Code Description Status

CMS$J:RRMODACLS CMS modified zero or more Error
ACLs and encountered errors
during the transaction.

CMS$~ODACL CMS modified the ACL. Success

CMS$~ODACLS CMS modified one or more Success
ACLs.

CMS$~OMODACL CMS did not modify the Error
specified ACL.

CMS$~OREF Error accessing library. Error

2-150 eMS Routine Descriptions
('\
''''"-/

(

(

CMS$SET _LIBRARY

CMSSSET _LIBRARY

Format

Arguments

Enables access to an existing CMS library. This routine initializes a
library data block for use with other CMS callable routines.

CMS$SET _LI BRARY (library _dataJJlock,
directory,
{msgJoutine},
{verify},
{confirmJoutine},
{outputJoutine },
{width},

Iibrary_datLblock
Type: cntrlblk
Access: modify

{position},
{positionaLdir _spec])

Mechanism: by reference

Specifies a valid LDB. The LDB mayor may not be initialized, depend
ing on whether you also specify the position and positionaLdicspec
arguments.

If the position and positionaLdicspec arguments are specified, the
library data block must have already been initialized by a previous call
to CMS$CREATE_LIBRARY or CMS$SELLIBRARY. If the position and
positionaLdicspec arguments are not specified, the library data block is
initialized by this call and points to the specified directory.

directory
Type:
Access:
Mechanism:

chacstring
read
by descriptor

eMS Routine Descriptions 2-151

CMS$SET _LIBRARY

Specifies a single directory or a list of directories separated by commas. \,
Each must contain a valid eMS library. If the directory argument speci-
fies a logical name, it must translate into one or more library directory
specifications. Wildcards are not allowed.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

verify
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that causes eMS to perform validity checking on the
eMS library. If you do not specify this argument, the flag is set to I,
and eMS performs validity checking. If you set the flag to 0, eMS sup
presses validity checking (which improves performance and avoids the
possibility of waiting for a locked library).

confirm_routine
Type: procedure
Access: read
Mechanism: by reference

Specifies the address of the entry mask of a confirmation callback
routine. Specify confirllLloutine to confirm an action such as a delete or
replace transaction.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies the address of the entry mask of a terminal output callback
routine.

width
Type:
Access:
Mechanism:

2-152 eMS Routine Descriptions

longword_signed
read
by reference

(

(

CMS$SET _LIBRARY

Specifies the maximum width of text that can be sent to the output
callback routine. If this argument is not specified, the terminal width is
used. If this is unavailable, the width defaults to the translation of
CMS$WIDTH (if defined) or to 132 characters.

position
Type:
Access:

longword_signed
read

Mechanism: by reference

Specifies the position value to be used with the positionaLdicspec
argument. The position value determines the position in the library
search list at which the new library or libraries are to be inserted, or
whether the new library or libraries are to supersede the existing library
search list.

The following table shows the possible values and corresponding
results. You can specify only one of the following values.

Value
o

1

2

Result
Indicates that a new library or libraries should supersede the exist
ing library list. This is the default.

Indicates that the new library or libraries should be inserted after
an existing library in the library search list specified with the
positionaLdiLspec argument.

Specifies that the new library or libraries should be inserted before
an existing library in the library search list specified with the
positionaLdiLspec argument.

positionaLdicspec
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies the name of a library in the current library search list before
or after which the new library or libraries are to be inserted (depending
on the value of the position argument).

If you omit the positionaLdicspec argument and specify a value of 1 for
the position argument, new libraries are appended to the existing library
search list. If you omit the positionaLdicspec argument and specify a
value of 2 for the position argument, new libraries are inserted at the
beginning of the existing library search list. If the position argument

eMS Routine Descriptions 2-153

CMS$SET _LIBRARY

Description

is omitted or has the value of 0, the positionaLdicspec argument is
ignored.

The CMS$SET _LIBRARY routine establishes a CMS library search list
context with one or more CMS library directories. You should call
CMS$SET_LIBRARY before you make calls to any other routines. Once the
search list context has been established, you can use the resulting LOB
in calls to other CMS routines. The specified directories must contain
valid CMS libraries that were created with the CMS$CREA TE_LIBRARY
routine.

Return Code

CMS$~OREF

Description

CTRLlC interrupt has been
handled.

Successful completion. (This
message is not passed to the
message handler.)

Error accessing library.

Status

Warning

Success

Error

2-154 eMS Routine Descriptions

(

(

CMS$SET _NOLIBRARY

CMS$SET _NOLIBRARY

Format

Arguments

Description

Removes one or more libraries from the current library search list.

CMS$SET _NOLIBRARY (library _dataJJlock,
[directory])

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

directory
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies a single directory or a list of directories separated by commas.
Each must contain a valid CMS library. If the directory argument speci
fies a logical name, it must translate into one or more library directory
specifications. Wildcards are not allowed.

The CMS$SET _NO LIBRARY routine removes one or more libraries
from the current library search list (see the Guide to VAX DEC/Code
Management System for more information on library search lists). This
routine should be called after all other calls to CMS routines have been
made to deallocate the virtual memory used to store the CMS library
search list context.

If you do not specify a directory, all the libraries in the library search
list are removed from the search list and the LDB becomes invalid. In
this case, you must reinitialize the LDB with a CMS$CREATE_LIBRARY
or CMS$SET_LIBRARY command before reusing it in subsequent calls to
other CMS routines.

eMS Routine Descriptions 2-155

CMS$SET _NOLIBRARY

Return Code Description Status

One or more libraries have Informational
been removed from the library
list.

CMS$_LIBLISNOTMOD One or more libraries have not Informational
been removed from the library
list.

('\
\,,--)

('\
\

2-156 eMS Routine Descriptions ~/

CMS$SHOWJCL

(CMSSSHOW_ACL

Format

Arguments

Displays the ACL associated with one or more specified objects.

CMS$SHOW_ACL (library_dataJJlock,

library_data_block
Type: cntrlblk
Access: modify

outputJoutine,
objecLtype,
{user_argj,
{objecLexpressionj,
(msgJoutinej)

Mechanism: by reference

Specifies an initialized LDB.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies a callback routine to process the output of CMS$SHOW ~CL.
You must specify this routine. See the callback routines section for
information about the parameters that CMS passes to the output
routine.

objecLtype
Type:
Access:
Mechanism:

longword_signed
read
by reference

A value indicating what type of object is represented by object_
expression. There is no default type. The object type must be one of
the following:

• CMS$I<-ACL_ELEMENT = 1

eMS Routine Descriptions 2-157

CMS$SHOW~CL

• CMS$ICACL_CLASS = 2

• CMS$ICACLGROUP = 3

• CMS$ICACLLIBRARY = 4

• CMS$ICACL_COMMAND = 5

user_arg
Type:
Access:
Mechanism:

undefined
read
undefined

Specifies a value that you supply and that CMS passes to the oulpuL
routine argument, using the same mechanism you used to pass it to
CMS.

objecLexpression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies one or more objects whose ACLs are to be displayed.
Wildcards and a comma list are allowed.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

Callback Routine Parameters

You must provide an output routine to process the output of
CMS$SHOW ~CL. CMS passes the following parameters in the order
shown with each call to oulpulJoutine:

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

2-158 eMS Routine Descriptions

/'
I

(

(

firsLcall
Type:
Access:
Mechanism:

longword_unsigned
read
by reference

CMSSSHOW-'lCL

Indicates whether the current call to the output routine contains infor
mation about a new ACL. The value of this parameter also indicates
whether it is the first call to the output routine. The following table
shows the possible values of firsLcall.

Value Result

o Indicates that the call contains the first ACE of a new ACL (after the
first call).

1 Indicates the first call to the output routine. The acejd argument
contains the first ACE of the first ACL.

2 Indicates that the call contains the next ACE in the current ACL.

library _datCLblock
Type: cntrlblk
Access: read
Mechanism: by reference

Specifies the LDB for the current library.

user_param
Type:
Access:
Mechanism:

undefined
modify
undefined

Specifies the user argument as it was passed to CMS$SHOW.-ACL. If
you did not specify a user argument, this parameter points to a read
only storage location containing the value o. CMS passes usecparam to
your routine using the same mechanism that you used to pass it to
CMS$SHOW.-ACL.

objecUd
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the object name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

eMS Routine Descriptions 2-159

CMS$SHOWjCL

Description

ace_id
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the object's ACL entry. Use the
CMS$GET _STRING routine to translate the string identifier.

The CMS$SHOW ~CL routine retrieves and passes the ACL for the
specified object to the output routine one ACE at a time.

Return Code Description Status

CMS$-ERRP AREXP Error parsing element Error
expression.

CMS$JLLOB}TYP megal object type. Error

CMS$~OeLS No classes found. Warning

eMS$~OeMD No commands found. Warning

eMS$~OELE No elements found. Warning

eMS$~OGRP No groups found. Warning

eMS$~OOBJ No objects found. Warning

eMS$~OREF Error accessing library. Error

eMS$~ORMAL Normal successful completion. Success

eMS$~OTFOUND eMS could not find the Error
specified object.

eMS$~OWLDeARD Wildcards not allowed in Error
generation expressions.

2-160 eMS Routine Descriptions

(\
~. /

("
i
" / "-

(

(

(

CMS$SHOW_ARCHIVE

CMS$SHOW_ARCHIVE

Format

Arguments

Displays information about the contents of one or more archive files.

CMS$SHOW ~RCH IVE (archive_tile_spec,
outputJoutine,
[user_argl,
[msgJoutinej)

archive_file_spec
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the address of a string descriptor containing the name of one
or more archive files. Wildcards and a comma list are allowed.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies a callback routine to process the output of CMS$SHOW_
ARCHIVE.

useLarg
Type:
Access:
Mechanism:

undefined
read
undefined

Specifies a value that you supply and that CMS passes to the outpuL
routine argument, using the same mechanism you used to pass it to
CMS.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

eMS Routine Descriptions 2-161

CMS$SHOW~RCHIVE

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

Callback Routine Parameters

You must provide an output routine to process the output of
CMS$SHOW -.ARCHIVE. CMS passes the following parameters in the
order shown with each call to oulpulJoutine:

(newfile, userParam, archivenistoryid, generationid,
usernameid, transiime, creationiime, revisioniime,
remarkid, format, attributes, revisionnumber, recordsize,
reviewstatus)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

new_file
Type:
Access:

longword_signed
read

Mechanism: by reference

Indicates whether the current call to the output routine contains infor
mation about a new archive file. The value of this parameter also indi
cates whether it is the first call to the output routine. The following
table shows the possible values of new_file.

Value

o

1

2

Result

Indicates that the call contains generation information about a new
archive file (after the first call).

Indicates the first call to the output routine.

Indicates that the call contains information about the same file as the
previous call.

usecparam
Type: undefined

modify
undefined

Access:
Mechanism:

Specifies the user argument as it was passed to CMS$SHOW_
ARCHIVE. If you did not specify a user argument, this parameter
points to a read-only storage location containing the value o. CMS

2-162 eMS Routine Descriptions

(

f·

(

CMS$SHOWJRCHIVE

passes usecparam to your routine using the same mechanism that you
used to pass it to CMS$SHOW~RCHIVE.

archive_history_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the archive history line, which contains
the element and date the archive file was created. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

generation_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the generation number. Use the
CMS$GET_STRING routine to translate the string identifier. For infor
mation about string identifiers, see Section 1.5.3.

usecname_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the name of the user who created the
element generation. Use the CMS$GET_STRING routine to translate
the string identifier. For information about string identifiers, see
Section 1.5.3.

trans_time
Type:
Access:
Mechanism:

date_time
read
by reference

Specifies a quadword containing the date and time of the transaction
that created the generation.

creation_time
Type: date_time
Access: read
Mechanism: by reference

Specifies a quadword containing the creation date and time of the file
that was used to create the generation.

eMS Routine Descriptions 2-163

CMS$SHOWjRCHIVE

revision_time
Type: date_time
Access: read
Mechanism: by reference

Specifies a quadword containing the date and time the file used to
create the generation was revised.

remarlLid
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.5.3.

format
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies the record format of the file that was used to create the
element generation. The value of the longword corresponds to the (\
record format field (F AB$B~FM) in the file access block. The value is con- ",
tained in the low-order byte of the passed longword. For more informa-
tion about the RFM field, see the VAX Record Management Services
Reference Manual.

attributes
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies the record attributes of the file that was used to create the
element generation. The value of the longword corresponds to the
record attributes field (F AB$B~ T) in the file access block. The value is
contained in the low-order byte. For more information about the RAT
field, see the VAX Record Management Services Reference Manual.

revision_number
Type: longword_signed
Access: read
Mechanism: by reference

Specifies the revision number of the file that was used to create the
element generation.

2-164 eMS Routine Descriptions

(

(

Description

(

record_size
Type:
Access:
Mechanism:

longword_signed
read
by reference

CMS$SHOWJRCHIVE

Specifies the record size for files with fixed-length records. The low
order two bytes of this parameter contain the maximum record size for
the generation (regardless of record format). This value corresponds to
the F AB$W ~RS field in the file access block. A record size of zero indi
cates that no maximum record size was stored when this generation
was created.

review_status
Type: longword_signed
Access: read
Mechanism: by reference

Specifies a flag that indicates the review status for the element genera
tion. The following table shows the possible values of review_status.

Value

0

1

2

3

Result

Indicates that the generation has been accepted.

Indicates that the generation does not have a review pending.

Indicates that the generation does have a review pending.

Indicates that the generation was rejected.

The CMS$SHOW...ARCHIVE routine provides information about one or
more specified archive files.

eMS Routine Descriptions 2-165

CMS$SHOWJRCHIVE

Return Code

CMS$~ORMAL

CMS$~OTFOUND

CMS$~LLSTR

CMS$_OPENARC

CMS$-READERR

CMS$_USERERR

2-166 eMS Routine Descriptions

Description

Normal successful completion.

CMS could not find the speci
fied object.

Null string not allowed.

Error opening archive file.

Error reading archive file.

User routine returned an error
to CMS.

Status

Success

Error

Error

Error

Error

Error

(
\

\--...

(

(

CMS$SHOW_CLASS

CMSSSHOW_CLASS

Format

Arguments

Provides information about one or more classes in a CMS library.

CMS$SHOW_CLASS (/ibrary_dataJJ/ock,
outputJoutine,
/user_argj,
/ class_expression j,
/msgJoutinej)

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LOB.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies a callback routine to process the output of CMS$SHOW_
CLASS. CMS calls this routine once for each class that matches the
class argument. See the callback routines section for information about
the parameters that CMS passes to the output routine.

useLarg
Type:
Access:
Mechanism:

undefined
read
undefined

Specifies a value that you supply and that CMS passes to the outpuL
routine argument, using the same mechanism that you used to pass it
to CMS.

eMS Routine Descriptions 2-167

CMSSSHOW_CLASS

class_expression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies one or more classes to be displayed. Wildcards and a comma
list are allowed. By default, CMS produces a list of all classes in the
library.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

Callback Routine Parameters

You must provide an output routine to process the output of
CMS$SHOW _CLASS. CMS passes the following parameters in the order
shown with each call to outpuLl'outine:

(first_call, library_dat~block, user_param, class_id, remark-id, read-only)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

firsLcaII
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates whether the current call to the output
routine is the first call. CMS sets the flag to 1 if the current call is the
first call and to 0 if it is not.

library _datLblock
Type: cntrlblk
Access: read
Mechanism: by reference

Specifies the LOB for the current library.

2-168 eMS Routine Descriptions

(

(

(

user_param
Type:
Access:
Mechanism:

undefined
modify
undefined

CMS$SHOW_CLASS

Specifies the user argument as it was passed to CMS$SHOW _CLASS. If
you did not specify a user argument, this parameter points to a read
only storage location containing the value O. CMS passes usecparam to
your routine using the same mechanism that you used to pass it to
CMS$SHOW_CLASS.

class_id
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the class name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
interpreting strings passed to callback routines, see Section 1.5.3.

remarlLid
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.5.3.

read_only
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag indicating whether the contents of the class list can be
modified. CMS sets the flag to 1 if the class list is set to READ_ONLY
access. If the flag is set to 0, the class list can be modified.

eMS Routine Descriptions 2-169

CMS$SHOW_CLASS

Description
The CMS$SHOW _CLASS routine provides information about one or more
established classes. If you specify more than one class, CMS processes
the class list in alphabetical order. CMS calls the output routine once
for each class that you specify. The following information is passed in
each call to the output routine:

• Class name

• Creation remark

• Read-only status

Return Code

CMS$~RRPAREXP

CMS$~OCLS

CMS$~ORMAL

CMS$~OTFOUND

Description

Error parsing class.

No classes found.

Normal successful completion.

CMS could not find the speci
fied class.

User routine returned an error
to CMS.

Status

Error

Warning

Success

Error

Error

2-170 eMS Routine Descriptions

(

CMS$SHOW_ELEMENT

CMSSSHOW_ELEMENT

Format

Arguments

Provides information about one or more elements in a CMS library.

CMS$SHOW _ELEM ENT (library _data~/ock,
outputJoutine,
[user_argj,
[elemenLexpressionj,
[member Jistj,
[msgJoutinej)

Iibrary_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies a callback routine that processes the output of CMS$SHOW_
ELEMENT. CMS calls this routine once for each element described by
the elemenLexpression argument. See the callback routines section for
information about the parameters that CMS passes to the output
routine.

usecarg
Type: undefined
Access: read
Mechanism: undefined

Specifies a value that you supply and that CMS passes to the outpuL
routine argument, using the same mechanism that you used to pass it
to CMS.

eMS Routine Descriptions 2-171

CMS$SHOW_ELEMENT

elemenLexpression
Type: char_string
Access: read
Mechanism: by descriptor

Specifies one or more elements or groups of elements. Wildcards and a
comma list are allowed. If you do not explicitly specify one or more ele
ments, CMS produces a list of all elements in the library.

You must include a period (.) in the element expression to select one or
more elements from the complete list of elements in the library. If you
do not include a period, CMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that are
established in the library.

membeLlist
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs CMS to produce a list of the groups to which
the element belongs (see the description of the groupJisLid callback
parameter). If you set the flag to 0, CMS does not generate a group
list. Set the flag to 1 to direct CMS to generate the list.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

Callback Routine Parameters

You must provide an output routine to process the output of
CMS$SHOW --.ELEMENT. CMS passes the following parameters in the
order shown with each call to outputJoutine:

(first_call, library_dat~block, user_param, element_id, remark-id,
history_string_id, notes_string_id, position, concurrent,
reference_copy, group-1ist_id, review)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

2-172 eMS Routine Descriptions

('\

,:

\ '"

(

(

firsLcall
Type:
Access:
Mechanism:

longword_signed
read
by reference

CMSSSHOW_ELEMENT

Specifies a flag that indicates whether the current call to the output
routine is the first call. CMS sets the flag to 1 if the current call is the
first call and to 0 if it is not.

library _data_block
Type: cntrlblk
Access: read
Mechanism: by reference

Specifies the LDB for the current library.

user_param
Type:
Access:
Mechanism:

undefined
modify
undefined

Specifies the user argument as it was passed to CMS$SHOW_
ELEMENT. If you did not specify a user argument, this parameter
points to a read-only storage location containing the value O. CMS
passes usecparam to your routine using the same mechanism that you
used to pass it to CMS$SHOW~LEMENT.

elemenLid
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the element name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

remarlUd
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.5.3.

eMS Routine Descriptions 2-173

CMS$SHOW_ELEMENT

history_string_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the history string. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

notes_string_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the notes string. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

position
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies the position value for the generation notes.

concurrent
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates the concurrent access to the element.
CMS sets the flag to 1 if concurrent reservations of the element are
allowed, and to a if they are not.

reference_copy
Type: longword_signed
Access: read
Mechanism: by reference

Specifies a flag that indicates the reference copy attribute. CMS sets the
flag to 1 if a reference copy is being maintained in the current reference
copy directory (if any) and to a if it is not.

2-174 eMS Routine Descriptions

'\
)

(-

Description

(

CMS$SHOW_ELEMENT

group_lisUd
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the list of groups to which the element
belongs. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.5.3.

This parameter is significant only if you specify the membeclist
argument in the call to CMS$SHOW~LEMENT. If you do not specify the
membeclist argument, the group list is a null string.

review
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag indicating whether CMS is to automatically mark new
generations as pending review. CMS sets the flag to 1 if newly created
generations are automatically marked for review, and to 0 if they are
not.

The CMS$SHOW _ELEMENT routine provides information about one or
more elements. If you specify more than one element, CMS processes
the element list in alphabetical order. CMS calls the output routine
once for each element that you specify. The following information is
passed in each call to the output routine:

• Element name

• Creation remark

• Member list

• History

• Notes

• Position

• Concurrent attribute

• Reference copy attribute

• Review attribute

eMS Routine Descriptions 2-175

CMS$SHOW_ELEMENT

Return Code

CMS$.-ERRP AREXP

CMS$~OELE

CMS$~OREF

CMS$~ORMAL

CMS$~OTFOUND

2-176 eMS Routine Descriptions

Description

Error parsing element
expression.

No elements found.

Error accessing library.

Normal successful completion.

CMS could not find the speci
fied element.

User routine returned an error
to CMS.

Status

Error

Warning

Error

Success

Error

Error

/ " , '
\ '

~/

CMS$SHOW_GENERA TlON

CMSSSHOW_GENERATION

Format

Arguments

Displays information about one or more element generations in a CMS
library.

CMS$SHOW_GENERATION (library _dataj)lock,
outputJoutine,
[usecargJ,
[elemenLexpressionJ,
[generation_expression J,
[from....generation_
expressionJ,

Iibrary_datiLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

[ancestors J,
[descendants J,
[member JistJ,
[msgJoutinej)

Specifies a callback routine that processes output of CMS$SHOW_
GENERATION. CMS calls this routine once for each generation indi
cated in the call to CMS$SHOW_GENERATION. When you specify
ancestors or descendants, CMS calls the output routine once for each
generation included in the specified range of ancestors or descen
dants for the particular element. See the callback routines section

eMS Routine Descriptions 2-177

CMS$SHOW_GENERATION

for information about the parameters that CMS passes to the output
routine.

usecarg
Type:
Access:
Mechanism:

undefined
read
undefined

Specifies a value that you supply and that CMS passes to the outpuL
routine argument, using the same mechanism that you used to pass it
to CMS.

elemenLexpression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies one or more elements or groups of elements. Wildcards and a
comma list are allowed. If you do not explicitly specify one or more ele
ments, CMS produces generation information about all elements in the
library.

You must include a period (.) in the element expression to select one or
more elements from the complete list of elements in the library. If you
do not include a period, CMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that are
established in the library.

generation_expression
Type: char_string
Access: read
Mechanism: by descriptor

Specifies the particular generation of the element that is to be displayed.
By default, CMS displays information about the latest generation (1 +)
on the main line of descent.

from_generation_expression
Type: Char_string
Access: read
Mechanism: by descriptor

Specifies the generation that begins the list of ancestors. If you specify
this argument in a call to CMS$SHOW_GENERATION, you must also
specify the ancestors argument in the same call.

2-178 eMS Routine Descriptions

(..•

(

ancestors
Type:
Access:
Mechanism:

longword_signed
read
by reference

CMS$SHOW_GENERATION

Specifies a flag that directs eMS to output information about the ances
tors of the specified generation. By default, the flag is set to 0, and
eMS outputs information only about the specified generation. If you
set the flag to I, eMS outputs information about the ancestors of the
specified generation in addition to the specified generation. You cannot
specify both ancestors and descendants in the same call.

descendants
Type: longword_signed
Access: read
Mechanism: by reference

Specifies a flag that directs eMS to output information about the
descendants of the specified generation. By default, the flag is set to 0,
and eMS outputs information about only the specified generations. If
you set the flag to I, eMS outputs information about both the genera
tion and the descendants of the specified generation. In this case, the
default for generatiolLexpression is generation 1. You cannot specify both
descendants and ancestors in the same call.

member_list
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs eMS to produce a list of the classes to
which the element generation belongs. By default, the flag is set to 0,
and eMS does not generate the list. If you set the flag to I, eMS
generates the list (see the callback routines section for information
about the classJisLid parameter).

msg30utine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

eMS Routine Descriptions 2-179

CMS$SHOW_GENERATION

Callback Routine Parameters

You must provide an output routine to process the output of
CMS$SHOW _GENERATION; CMS passes the following parameters in the
order shown with each call to outputJoutine:

(new_element, library_datB-block, user_param, element_id,
generatio~id, user~ame_id, trans_time, creatio~time,
revisio~time, remark-id, class-1ist_id, format, attributes,
revision~umber, reservations, recor~size, review_status)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

new_element
Type: longword_signed
Access: read
Mechanism: by reference

Indicates whether the current call to the output routine contains infor
mation about a generation of a new element. When you specify ancestors
or descendants in the call to CMS$SHOW_GENERATION, CMScallsthe
output routine once for each generation included in the specified range
of ancestors or descendants for the particular element. The value of this
parameter also indicates whether it is the first call to the output routine.
The following table shows the possible values of new_element.

Value

o

1

2

Result

Indicates that the call contains generation information about a new
element (after the first call).

Indicates the first call to the output routine.

Indicates that the call contains information about the same element
as the previous call.

library _data_block
Type: cntrlblk
Access: read
Mechanism: by reference

Specifies the LDB for the current library.

2-180 eMS Routine Descriptions

(

(

usecparam
Type:
Access:
Mechanism:

undefined
modify
undefined

CMS$SHOW_GENERATION

Specifies the user argument as it was passed to CMS$SHOW_
GENERATION. If you did not specify a user argument, this parameter
points to a read-only storage location containing the value o. CMS
passes usecparam to your routine using the same mechanism that you
used to pass it to CMS$SHOW_GENERATION.

elemenUd
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the element name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

generation_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the generation number. Use the
CMS$GET_STRING routine to translate the string identifier. For infor
mation about string identifiers, see Section 1.5.3.

usecname_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the name of the user who created the
element generation. Use the CMS$GET_STRING routine to translate
the string identifier. For information about string identifiers, see
Section 1.5.3.

trans_time
Type:
Access:
Mechanism:

date_time
read
by reference

Specifies a quadword containing the date and time of the transaction
that created the element generation.

eMS Routine Descriptions 2-181

CMS$SHOW_GENERATION

creation_time
Type: date_time
Access: read
Mechanism: by reference

Specifies a quadword containing the creation date and time of the file
used to create the element generation.

revision_time
Type: date_time
Access: read
Mechanism: by reference

Specifies a quadword containing the revision date and time of the file
used to create the element generation.

remark...id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.5.3.

class_lisUd
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the list of classes to which the genera
tion belongs. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.5.3.

This parameter is significant only if you specify the memberJist argu
ment in the call to CMS$SHOW_GENERATION. If you do not specify
memberJist, the c1assJisLid parameter is a null string.

format
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies the record format of the file that was used to create the
element generation. The value of the longword corresponds to the
record format field (F AB$B~FM) in the file access block. The value is
contained in the low-order byte of the passed longword. For more

2-182 eMS Routine Descriptions

(

(

CMS$SHOW_GENERATION

information about the RFM field, see the V AX Record Management
Services Reference Manual.

attributes
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies the record attributes of the file that was used to create the
element generation. The value of the longword corresponds to the
record attributes field (FAB$B~ T) in the file access block. The value is
contained in the low-order byte. For more information about the RAT
field, see the VAX Record Management Services Reference Manual.

revision_number
Type: longword_signed
Access: read
Mechanism: by reference

Specifies the revision number of the file that was used to create the
element generation.

reservations
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates whether any current reservations are
established for the element generation. If the flag is set to 1, the
element generation is reserved.

record_size
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies the record size for files with fixed-length records. The low
order two bytes of this parameter contain the maximum record size for
the generation (regardless of record format). This value corresponds to
the F AB$W -.MRS field in the file access block. A record size of zero indi
cates that no maximum record size was stored when this generation
was created.

eMS Routine Descriptions 2-183

CMS$SHOW _GENERATION

Description

review_status
Type: longword_signed
Access: read

Mechanism: by reference

Specifies a flag that indicates the review status for the element genera
tion. The following table shows the possible values of review_status.

Value Result

o
1

2

3

Indicates that the generation has been accepted.

Indicates that the generation does not have a review pending.

Indicates that the generation does have a review pending.

Indicates that the generation has been rejected.

The CMS$SHOW _GENERATION routine provides information about one
or more element generations. If you specify more than one element,
CMS processes the element list in alphabetical order. CMS calls the
output routine once for each element that you specify. When you (
specify ancestors or descendants, CMS produces a list of generations in \'"
reverse chronological order. (In this case, CMS calls the output routine
once for each generation included in the specified range of ancestors or
descendants for the particular element.) The following information is
passed in each call to the output routine:

• Element name

• Generation number

• User name
• Transaction date and time (quadword)

• Creation date and time of the file used in the replace transaction
(quadword)

• Revision date and time of the file used in the replace transaction
(quadword)

• Creation remark

• Class list

• Reservation status

• File characteristics

• Review status

2-184 eMS Routine Descriptions
"
./

CMS$SHOW_GENERATION

(
Return Code Description Status

CMS$_GENNOTFOUND Specified generation not found. Error

CMS$_ERRP AREXP Error parsing element Error
expression.

CMS$JLLCHAR Illegal character in generation Error
expression.

CMS$~OELE No elements found. Warning

CMS$_NOREF Error accessing library. Error

CMS$~ORMAL Normal successful completion. Success

CMS$_NOTFOUND CMS could not find the speci- Error
fied element.

CMS$_NOWLDCARD Wildcards not allowed in Error
generation expressions.

CMS$_USERERR User routine returned an error Error
to CMS.

(

(eMS Routine Descriptions 2-185

CMS$SHOW_GROUP

CMSSSHOW_GROUP

Format

Arguments

Provides information about one or more groups in a CMS library.

CMS$SHOW_GROUP (/ibrary_dataJJ/ock,

library _datCLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

outputJoutine,
[user_arg],
[group_expression],
[msgJoutine],
[contents])

Specifies an initialized LDB.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies a callback routine that processes output of CMS$SHOW_
GENERATION. CMS calls this routine once for each group indicated in
the call to CMS$SHOW _GROUP. See the callback routines section for
information about the parameters that CMS passes to the output
routine.

usecarg
Type: undefined
Access: read
Mechanism: undefined

Specifies a value that you supply and that CMS passes to the outpuL
routine argument, using the same mechanism that you used to pass it
to CMS.

2-186 eMS Routine Descriptions

(

(

(-

CMS$SHOW_GROUP

group_expression
Type: chacstring
Access: read
Mechanism: by descriptor

Specifies one or more groups. Wildcards and a comma list are allowed.
If you do not explicitly specify one or more groups, CMS produces a
list of all groups in the library.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

contents
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs CMS to produce a list of the elements and
groups contained in this group. You can specify an integer value (n)
that directs CMS to display nested groups down to and including the
level indicated by n. For instance, a value of 1 displays one nested level
of contents; a value of 2 displays two nested levels of contents. You
can also specify a value of - 1 to display all levels of contained groups
or elements.

Callback Routine Parameters

You must provide an output routine to process the output of
CMS$SHOW _GROUP. CMS passes the following parameters in the order
shown with each call to oulpulJoutine:

(first_call, library_dat~block, user_param, group_id, remark-id,
rea~only, level, contents_id)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

eMS Routine Descriptions 2-187

CMS$SHOW_GROUP

firsLcall
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates whether the current call to the output
routine is the first call. CMS sets the flag to 1 if the current call is the
first call and to 0 if it is not.

library _data_block
Type: cntrlblk
Access: read
Mechanism: by reference

Specifies the LDB for the current library.

useLparam
Type:
Access:
Mechanism:

undefined
modify
undefined

Specifies the user argument as it was passed to CMS$SHOW_GROUP.
If you did not specify a user argument, this parameter points to a read
only storage location containing the value o. CMS passes usecparam to
your routine using the same mechanism that you used to pass it to
CMS$SHOW _GROUP.

group_id
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the group name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

remarlLid
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.5.3.

2-188 eMS Routine Descriptions

(

~ ..)

Description

(

read_only
Type:
Access:
Mechanism:

longword_signed
read
by reference

CMS$SHOW_GROUP

Specifies a flag indicating whether the contents of the group list can be
modified. CMS sets the flag to 1 if the group list is set to READ_ONLY
access. If the flag is set to 0, the group list can be modified.

level
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a value indicating the current level of contents information
passed through the contents_id parameter. The level argument is
significant only if you also specified the contents argument in the call
to CMS$SHOW_GROUP.

contents_id
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the list of elements or groups of ele
ments contained in this group. Use the CMS$GET_STRING routine to
translate the string identifier. For information about string identifiers,
see Section 1.5.3. This parameter is significant only if you specified the
contents argument in the call to CMS$SHOW _GROUP; otherwise, this
parameter points to a null descriptor.

The CMS$SHOW _GROUP routine provides information about one or
more established groups. If you specify more than one group, CMS
processes the group list in alphabetical order. CMS calls the output
routine once for each group that you specify. The following information
is passed in each call to the output routine:

• Group name

• Creation remark

• Read-only status

• Contents

• Member list

eMS Routine Descriptions 2-189

CMS$SHOW_GROUP

Return Code Description Status

CMS$J:RRP AREXP Error parsing group. Error

CMS$~OGRP No groups found. Warning

CMS$~OREF Error accessing library. Error

CMS$_NORMAL Normal successful completion. Success

CMS$~OTFOUND CMS could not find the speci- Error
fied class.

CMS$_USERERR User routine returned an error Error
to CMS.

2-190 eMS Routine Descriptions ./

CMS$SHOW_HISTORY

(CMSSSHOW_HISTORY

Format

(
Arguments

(

Provides (in chronological order) records of transactions performed on a
CMS library.

CMS$SHOW_HISTORY (/ibrary_dataJ)/ock,

library_data-.block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

outputJoutine,
[user_arg],
[objecLname],
[user],
[before],
[since],
[transactionJT1ask],
[msgJoutineJ)

Specifies a callback routine that processes output of CMS$SHOW_
HISTORY. CMS calls this routine once for each history record that
meets the criteria imposed by the arguments passed to CMS$SHOW_
HISTORY. See the callback routines section for information about the
parameters that CMS passes to the output routine.

eMS Routine Descriptions 2-191

CMS$SHOW_HISTORY

usecarg
Type:
Access:
Mechanism:

undefined
read
undefined

Specifies a value that you supply and that eMS passes to the
outputJoutine argument, using the same mechanism that you used to pass
it to eMS.

objecLname
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the name of the element, group, or class. Wildcards and a
comma list are allowed.

If you include a period (.) in the objecLname string, eMS selects history
records based on the element or class names that match the string. If
you do not include a period, eMS selects history records based on
group or class names that match the objecLname string.

user
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the name of the user about whom eMS is to output informa
tion. By default, eMS outputs information about all library users.

before
Type:
Access:
Mechanism:

date_time
read
by reference

Specifies the quadword binary date and time value that eMS uses to
select transactions for output. eMS outputs information about transac
tions that occurred before the specified date and time. You must specify
this argument in the absolute time value format. If you specify a date
and time value of 0, eMS outputs a list of transactions up to the
present day and time.

since
Type:
Access:
Mechanism:

2-192 eMS Routine Descriptions

date_time
read
by reference

(

(

CMS$SHOW_HISTORY

Specifies the quadword binary date and time value that eMS uses to
select transactions for output. eMS outputs information about transac
tions that occurred after the specified date and time. You must specify
this argument in the absolute time value format. If you specify a date
and time value of 0, eMS outputs a list of transactions up to the
present day and time.

transaction_mask
Type: maslLlongword
Access: read
Mechanism: by reference

Specifies one or more transactions records to be passed to outpuL
routine. When you provide the transactioILmask argument, eMS passes
only the history records for the indicated commands. The following
table shows the symbols that are defined for the transaction mask
argument.

Symbol
Bit
Position

o
CMS$~CMD_CREATE 1

CMS$~CMD_DELETE

CMS$~CMDYETCH

CMS$M_CMDJNSERT

2

3

4

CMS$~CMD~ODIFY 5

Mask
Value

1

2

4

8

16

32

Command

COPY ELEMENT

CREATE CLASS

CREATE ELEMENT

CREATE GROUP

CREATE LIBRARY

DELETE CLASS

DELETE ELEMENT

DELETE GROUP

DELETE HISTORY

FETCH

INSERT ELEMENT

INSERT GENERATION

INSERT GROUP

MODIFY CLASS

MODIFY ELEMENT

MODIFY GROUP

eMS Routine Descriptions 2-193

CMS$SHOW_HISTORY

Bit Mask
Symbol Position Value Command

MODIFY LIBRARY

CMS$1LCMD-REMARK 6 64 REMARK

CMS$1LCMD-REMOVE 7 128 REMOVE ELEMENT

REMOVE GENERATION

REMOVE GROUP

CMS$~CMD-REPLACE 8 256 REPLACE

CMS$M_CMD-RESERVE 9 512 RESERVE

CMS$~CMD_ 10 1024 UNRESERVE
UNRESERVE

CMS$M_CMD_ VERIFY 11 2048 VERIFY

CMS$~CMD_SET 14 16,384 SET ACL

CMS$~CMD~CCEPT 16 65,536 ACCEPT GENERATION

CMS$M_CMD_CANCEL 17 131,072 CANCEL REVIEW

CMS$~CMD--.MARK 18 262,144 MARK GENERATION

CMS$~CMD-REJECT 19 524,288 REJECT GENERATION

CMS$1LCMD-REVIEW 20 1,048,576 REVIEW GENERATION

The mask values are defined as universal symbols in the CMS image.
These values can be ORed together to allow combinations of the values.
This transaction mask is the same as the transaction mask used by the
CMS$DELETEJHSTORY routine.

mS9_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. Fot information about writing a
message handler routine, see Section 1.7.

2-194 eMS Routine Descriptions

/ "
\'<..~/

i

/'
i
I ,
\"

"'./

(-

(

CMS$SHOW_HISTORY

Callback Routine Parameters

You must provide an output routine to process the output of
CMS$SHOW JIISTORY. CMS passes the following parameters in the
order shown with each call to outputJoutine:

(first_call, library_data_block, user_param, time, user_id, comman~id,
object_id, remar~id, unusual)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

firsLcall
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates whether the current call to the output
routine is the first call. CMS sets the flag to 1 if the current call is the
first call and to 0 if it is not.

library _data_block
Type: cntrlblk
Access: read
Mechanism: by reference

Specifies the LDB for the current library.

useLparam
Type:
Access:
Mechanism:

undefined
modify
undefined

Specifies the user argument as it was passed to CMS$SHOW_
HISTORY. If you did not specify a user argument, this parameter
points to a read-only storage location containing the value o. CMS
passes usecparam to your routine using the same mechanism that you
used to pass it to CMS$SHOW JIISTORY.

time
Type:
Access:
Mechanism:

date_time
read
by reference

Specifies a quadword binary date and time value for the time of the
transaction.

eMS Routine Descriptions 2-195

CMS$SHOW_HISTORY

user_id
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the user name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

command_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the command name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

objecUd
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the element, group, or class involved
in the transaction. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see
Section 1.5.3.

remarlLid
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.5.3.

unusual
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates whether the transaction is unusual. CMS
sets the flag to 1 if the transaction is unusual and to a if it is not.

2-196 eMS Routine Descriptions

/ '\

Description

(

Example

(

CMS$SHOW_HISTORY

The CMS$SHOW _HISTORY routine provides information about library
transactions. CMS calls the output routine once for each transaction
record. The following information is passed in each call to the output
routine:

• Transaction time

• User name associated with the transaction

• Command as entered (command name, subcommand name, option,
qualifiers, and parameters)

• Remark entered with the command

• Unusual status

Return Code Description

CMS$-ABSTIM Absolute date-time value
required.

CMS$~OHlS No history records found.

CMS$~OREF Error accessing library.

CMS$~ORMAL Normal successful completion.

CMS$~OSINCE Error executing since operation.

CMS$3IMEORDER BEFORE and since time values
cannot be resolved.

CMS$_USERERR User routine returned an error
to CMS.

IMPLICIT INTEGER*4 (A-Z)
INTEGER*4 LO~(50)
CHARACTER*14 OIR

EXTERNAL CMS$~OHIS

INTEGER*4 CMS$SET-LIBRARY
INTEGER*4 CMS$SHOW~ISTORY
INTEGER*4 OUTPUT-ROUTINE

OIR = '[LENNON.SONGS],

Status

Error

Warning

Error

Success

Error

Error

Error

eMS Routine Descriptions 2-197

CMS$SHOW_HISTORY

STATUS = CMS$SET-LIBRARY(LDB,DIR)
IF (.NOT. STATUS) GO TO 1000
STATUS = CMS$SHOV-HISTORY(LDB,OUTPUT-ROUTINE)
IF (STATUS .EQ. %LOC(CMS$~OHIS» GO TO 150

1000 END
C

INTEGER*4 FUNCTION OUTPUT-ROUTINE (FIRST_CALL,LIBDB,USER-PARAM,
1 TIME,USER-ID,COMMAND_ID,
2 OBJECT_ID,REMARK-ID,UNUSUAL)

INTEGER*4 UNUSUAL
EXTERNAL CMS$~ORMAL
EXTERNAL CMS$-EXCLUDE
OUTPUT-ROUTINE = %LOC(CMS$~ORMAL)
IF (.NOT. UNUSUAL) THEN

OUTPUT-ROUTINE = %LOC(CMS$-EXCLUDE)
ENDIF

RETURN
END

This checks only for unusual transactions; if there are no unusual
transactions, the callback routine returns CMS$~XCLUDE each time
control is transferred to CMS. As a result, the CMS$SHOW_
HISTORY routine returns CMS$~OHIS (no history records found)
and the routine transfers control elsewhere.

2-198 eMS Routine Descriptions

CMS$SHOW_LlBRARY

(CMSSSHOW_LIBRARY

Format

Arguments

(~ /

Provides information about the current library.

CMS$SHOW_LlBRARY (Iibrary_dataJJ/ock,

library _datCLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

reference_copy _dir
Type: chaLstring
Access: write
Mechanism: by descriptor

[reference_copy _dir],
[statistics],
[msgJoutine],
[verify],
[outputJoutine],
[usecargj)

Specifies a descriptor that CMS fills in with the specification for the
reference copy directory (if any).

statistics
Type:
Access:
Mechanism:

vectoLlongword_u nsigned
write
by reference

Specifies an array of 10 longwords that CMS fills in with information
about the library. Figure 2-1 shows the content of the statistics array.
Each entry in the array is an integer count of the number of indicated
objects (elements, groups, classes, and so on).

eMS Routine Descriptions 2-199

CMS$SHOW_LlBRARY

Figure 2-1: Statistics Array

msg_routine
Type:
Access:
Mechanism:

Elements

Groups

Classes

Reservations

Concurrent Replacements

procedure
read
by reference

Reviews Pending

Reserved for CMS

· · ·
ZK-2006-84

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

verify
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that causes CMS to lock the library as part of the
CMS$SHOW _LIBRARY routine. By default, the flag is set to I, indicat
ing that locking is performed. The library must be locked for eMS to

2-200 eMS Routine Descriptions

(-:

(

CMS$SHOW_LlBRARY

fill in the reference_copy _dir and statistics parameters. If verify is speci
fied as 0, CMS returns zeros in these parameters. Library locking is
also necessary for CMS to determine basic library integrity. If recovery
is necessary, it is not detected until another operation is performed.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies a callback routine that processes output of CMS$SHOW_
LIBRARY. See the callback routines section for information about the
parameters that CMS passes to the output routine.

usecarg
Type:
Access:
Mechanism:

undefined
read
undefined

Specifies a value that you supply and that CMS passes to the outpuL
routine argument, using the same mechanism that you used to pass it
to CMS.

Callback Routine Parameters

You must provide an output routine to process the output of
CMS$SHOW _LIBRARY. CMS passes the following parameters in the order
shown with each call to output...routine:

(verify, first_call, user_param, library_spec_id,
reference_copy_id, statistics_block)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

verify
Type:
Access:

longword_signed
read

Mechanism: by reference

Specifies the value that is passed to the CMS$SHOW_LIBRARYroutine.
This value is passed to the output routine to determine if the reference_
copyjd and statistics_block contents are valid.

eMS Routine Descriptions 2-201

CMS$SHOW_LlBRARY

firsLcall
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that indicates whether the current call to the output
routine is the first call. CMS sets the flag to 1 if the current call is the
first call and to 0 if it is not.

useLparam
Type:
Access:
Mechanism:

undefined
modify
undefined

Specifies the user argument as it was passed to CMS$SHOW_
RESERVATIONS. If you did not specify a user argument, this param
eter points to a read-only storage location containing the value O. CMS
passes usecparam to your routine using the same mechanism that you
used to pass it to CMS$SHOW~ESERVATIONS.

library _spec_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for a library directory specification. If the
current library search list consists of more than one library, successive
calls to outpuLroutine return all individual library directory specifications,
one at a time. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.5.3.

reference_copy_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the reference copy directory specification.
If there is no reference copy directory, the length of the string is O.

statistics_block
Type: vectoLlongword_unsigned
Access: read
Mechanism: by reference

Specifies an array of 10 longwords that CMS fills with information about
the library. See Figure 2-1 for information about the content of the

2-202 eMS Routine Descriptions

(

Description

(

CMS$SHOW_LlBRARY

statistics array. Each entry in the array is an integer count of the
number of indicated objects (elements, groups, classes, and so on).

The CMS$SHOW _LIBRARY routine identifies the reference copy directory
(if any) for the current library. This routine also provides information
about the number of elements, current reservations, concurrent replace
ments, reviews pending, and classes and groups in the library.

Return Code

CMS$.-NOREF

CMS$.-NORMAL

Description

Error accessing library.

Normal successful completion.

Status

Error

Success

eMS Routine Descriptions 2-203

CMSSSHOW_RESERVATIONS

CMSSSHOW_RESERVATIONS

Format

Arguments

Provides information about all current reservations and concurrent replace
ments in effect at the time the routine is called.

CMS$SHOW_RESERVATIONS (library _data...block,
outputJoutine,
[user_arg],
[elemenLexpression]
[generation_expression],
[user],

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LOB.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

[msgJoutine],
vdentification~umber])

Specifies a callback routine that processes output of CMS$SHOW_
RESERVATIONS. CMS calls this routine once for each reservation or
concurrent replacement that is in effect for each element generation
indicated in the call to CMS$SHOW_RESERVATIONS. You must
specify this routine. See the callback routines section for information
about the parameters that CMS passes to the output routine.

2-204 eMS Routine Descriptions

I ". ,/

.. /

(

(

(

useLarg
Type:
Access:
Mechanism:

undefined
read
undefined

CMS$SHOW_RESERVATIONS

Specifies a value that you supply and that eMS passes to the outpuL
routine argument, using the same mechanism that you used to pass
it to eMS. See the callback routines section for information about the
parameters that eMS passes to the output routine.

elemenLexpression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies one or more elements or groups of elements. Wildcards and a
comma list are allowed. By default, eMS outputs information about any
existing reservations for generations of all elements in the library.

You must include a period (.) in the element expression to select one
or more elements from the complete list of elements in the library. If
you do not include a period, eMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that .In'
established in the library.

generation_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the particular generation of the element that is to be displayed.
By default, eMS displays information about any existing reservations
for all generations of the elements indicated by elemenLexpression.

user
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies the user name that eMS uses to select reservation information
for output. By default, eMS outputs information about any existing
reservations for all library users.

eMS Routine Descriptions 2-205

CMS$SHOW_RESERVATIONS

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

identification_number
Type: longword_signed
Access: read
Mechanism: by reference

Specifies the reserved generation of the element that is to be displayed.
CMS assigns a unique reservation identification number to each element
when it is reserved.

Callback Routine Parameters

You must provide an output routine to process the output of
CMS$SHOW _RESERV A nONS. CMS passes the following parameters in
the order shown with each call to outputJoutine:

(new_element, library_dat~block, user_param, element_id,
generatio~id, time, user_id, remark-id, concurrent,
merge~eneratio~id, nonotes, nohistory, access)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

new_element
Type: longword_signed
Access: read
Mechanism: by reference

Indicates whether the current call to the output routine contains infor
mation about a generation of a new element. If there are any concurrent
reservations or concurrent replacements for a given element, CMS calls
the output routine once for each concurrent reservation and replace
ment. The value of this parameter also indicates whether it is the first
call to the output routine. The following table shows the possible values
of new_element.

2-206 eMS Routine Descriptions

(

(

CMS$SHOW_RESERVA liONS

Value Result

o Indicates that the call contains reservation information about the
next element in the list of elements specified by the elemenL
expression argument (after the first call).

1 Indicates the first call to the output routine.

2 Indicates that the call contains information about the same element
as the previous call.

library _data_block
Type: cntrlblk
Access: read
Mechanism: by reference

Specifies the LOB for the current library.

usecparam
Type:
Access:
Mechanism:

undefined
modify
undefined

Specifies the user argument as it was passed to CMS$SHOW __
RESERVATIONS. If you did not specify a user argument, this pa
rameter points to a read-only storage location containing the value O.
CMS passes usecparam to your routine using the same mechanism that
you used to pass it to CMS$SHOW-.RESERVATIONS.

elemenUd
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the element name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

generation_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the generation number. Use the
CMS$GET_STRING routine to translate the string identifier. For in
formation about string identifiers, see Section 1.5.3.

eMS Routine Descriptions 2-207

CMSSSHOW_RESERVA TlONS

time
Type:
Access:
Mechanism:

date_time
read
by reference

Specifies a quadword binary date and time value for the time of the
transaction.

user_id
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the user name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

remarlLid
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.5.3. /'

concurrent
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a value that indicates the status of the transaction. The follow
ing table shows the possible values for concurrent.

Value

-1

o
1

Result

Concurrent replacement

Current reservation

Concurrent reservation

merge_generation_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the merge generation. Use the
CMS$GET_STRING routine to translate the string identifier. If there

2-208 eMS Routine Descriptions

(

Description

(-

CMS$SHOW_RESERVATIONS

is no merge generation, the length of the string is O. For information
about string identifiers, see Section 1.5.3.

nonotes
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag indicating whether CMS suppressed notes in the reser
vation transaction. If the flag is set to 1, notes were suppressed; if the
flag is set to 0, notes were not suppressed.

nohistory
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag indicating whether CMS suppressed the element history
in the reservation transaction. If the flag is set to 1, the history was not
included in the output file; if the flag is set to 0, the element history was
included.

access
Type:
Access:

longword_signed
read

Mechanism: by reference

Specifies a flag that indicates the access allowed to the element. The
following table shows the possible values for access.

Value

a
1

2

Result

Concurrent reservations are allowed.

Concurrent reservations are not allowed.

The existing reservation does not allow other reservations.

The CMS$SHOW....RESERV ATIONS routine provides information about
the reservations and concurrent replacements that are in effect for one
or more elements in a library. If you specify more than one element,
CMS processes the element list in alphabetical order. CMS calls the
output routine once for each reservation. The following reservation
information is passed in each call to the output routine:

eMS Routine Descriptions 2-209

CMS$SHOW_RESERVATIONS

• Element name

• Generation number

• Time of reservation or replacement

• User name

• Remark
• Concurrent status

Return Code Description Status

CMS$~RRP AREXP Error parsing element Error
expression.

CMS$-1LLCHAR Illegal character in generation Error
expression.

CMS$~OREF Error accessing library. Error

CMS$~ORES No reservations found. Warning

CMS$~ORMAL Normal successful completion. Success

CMS$~OTFOUND CMS could not find the speci- Error
fied element. /

CMS$~OWLDCARD Wildcard not allowed in Error
generation expression.

CMS$_USERERR User routine returned an error Error
to CMS.

2-210 eMS Routine Descriptions

Format

(
Arguments

(

CMS$SHOW_REVIEWS_PENDING

Displays a list of element generations that currently have review pend
ing status. This routine also displays any review remarks that have
been associated with the generation currently under review.

CMS$SHOW _REVI EWS_PEN DI NG (library _dataJJ/ock,
outputJoutine,
[user_arg),
[e/emenLexpression},
[generation_expression},
[user},
[msgJoutineJ)

library _datLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

outpuLroutine
Type: procedure
Access: read
Mechanism: by reference

Specifies a callback routine to process the output of CMS$SHOW_
REVIEWS_PENDING. You must specify this routine. See the callback
routines section for information about the parameters that CMS passes
to the output routine.

usecarg
Type:
Access:
Mechanism:

undefined
read
undefined

eMS Routine Descriptions 2-211

Specifies a value that you supply and that eMS passes to the outpuL
routine argument, using the same mechanism that you used to pass
it to eMS. See the callback routines section for information about.the
parameters that eMS passes to the output routine.

elemenLexpression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies one or more elements or groups of elements whose gen
erations with reviews pending are to be displayed. Wildcards and a
comma list are allowed. If you do not specify this argument, all element
generations pending review in the library are displayed.

generation_expression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the particular generation of the element that is to be displayed.
By default, reviews that are pending for all of the element's generations
are displayed.

user
Type:
Access:
Mechanism:

chaLstring
read
by descriptor

Specifies the name of the user whose generations with pending reviews
are to be displayed. By default, pending reviews for generations created
by all users are displayed.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

2-212 eMS Routine Descriptions

(Callback Routine Parameters

You must provide an output routine to process the output of
CMS$SHOW --.REVIEWSYENDING. CMS passes the following pa
rameters in the order shown with each call to outpuLroutine:

(new_element, library_data_block, user_param, element_id, generation_id,
generation_time, generation_user_id, generatio~emar~id,
review_time, review_user_id, revlew~emark_ld)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from
the perspective of the callback routine.

new_element
Type: longword_unsigned
Access: read
Mechanism: by reference

Indicates whether the current call to the output routine contains informa
tion about a generation of a new element. If more than one generation
of an element has a review pending, CMS calls the output routine for
each pending review. If the CMS$SHOW--.REVIEWSYENDING routine
is called multiple times with information about the same generation of
the same element, these calls contain review remark information. The
following table shows the possible values of new_element.

Value
o

1

2

3

Result
Indicates that the call contains information about a different element
than the previous call.

Indicates the first call to the output routine.

Indicates that the call contains information about a different
generation of the same element as the previous call.

Indicates that the call contains information about the same genera
tion of the same element as the previous call.

Iibrary_data_block
Type: cntrlblk
Access: read
Mechanism: by reference

Specifies the LDB for the current library.

eMS Routine Descriptions 2-213

useLparam
Type:
Access:
Mechanism:

undefined
modify
undefined

Specifies the user argument as it was passed to CMS$SHOW_
REVIEWSYENDING. If you did not specify a user argument, this
parameter points to a read~only storage location containing the value O.
CMS passes useLparam to your routine using the same mechanism that
you used to pass it to CMS$SHOW~EVIEWSYENDING.

elemenUd
Type:
Access:
Mechanism:

address
read
by reference

Specifies a string identifier for the element name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.5.3.

generation_id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the generation number. Use the
CMS$GET _STRING routine to translate the string identifier. For in
formation about string identifiers, see Section 1.5.3.

generation_time
Type: date_time
Access: read
Mechanism: by reference

Specifies a binary quadword date-time value representing the time the
generation was created.

generation_user _id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the name of the user who created the
generation.

2-214 eMS Routine Descriptions

(

(

generation_remarlLid
Type: address
Access: read
Mechanism: by reference

Specifies the remark entered when the generation was replaced. Use
the CMS$GET _STRING routine to translate the string identifier. For
information about string identifiers, see Section 1.5.3.

review_time
Type:
Access:
Mechanism:

date_time
read
by reference

Specifies a binary quadword date-time value representing the time the
generation was placed under review or the date and time the review
remark was entered.

review_user _id
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the name of the user who marked the
generation for review or the user who entered the review remark. Use
the CMS$GET_STRING routine to translate the string identifier. For
information about string identifiers, see Section 1.5.3.

review_remark.Jd
Type: address
Access: read
Mechanism: by reference

Specifies a string identifier for the remark that was entered when the
generation or the review of the generation was marked. Use the
CMS$GELSTRING routine to translate the string identifier. For
information about string identifiers, see Section 1.5.3.

eMS Routine Descriptions 2-215

Description
The CMS$SHOW ~EVIEWSYENDING routine retrieves information
about generations with reviews pending and passes that information
to the output routine. If this routine is called multiple times with
information about the same generation of the same element, these calls
contain review remark information.

Return Code Description Status

CMS$~RRP AREXP Error parsing element Error
expression.

CMS$jLLCHAR Illegal character in generation Error
expression.

CMS$.-NOREF Error accessing library. Error

CMS$.-NOREV No pending reviews were Error
found for the generations.

CMS$.-NORMAL Normal successful completion. Success

CMS$.-NOTFOUND CMS could not find the speci- Error
fied element.

CMS$.-NOWLDCARD Wildcard not allowed in gener- Error
ation expression.

CMS$_USERERR User routine returned an error Error
to CMS.

2-216 eMS Routine Descriptions

,/

/
'"

"- /

(

(

(--

CMSSSHOW_ VERSION

CMSSSHOW_ VERSION

Format

Arguments

Provides version identification of the eMS system currently in use.

CMS$SHOW_VERSION ([full],1

full
Type:
Access:
Mechanism:

chacstring
write
by descriptor

{brief],1
{absolute] 1)

Specifies a descriptor to be filled in by eMS. The full form of the
version identification includes the product identification string and the
version number.

brief
Type:
Access:
Mechanism:

chacstring
write
by descriptor

Specifies a descriptor to be filled in by eMS. The brief form of version
identification includes only the version number.

absolute
Type:
Access:
Mechanism:

longword_unsigned
write
by reference

Specifies a longword to receive the monotonic version number for the
current version of eMS. This value will be higher with each successive
release of eMS.

1 At least one of these arguments is required.

eMS Routine Descriptions 2-217

CMS$SHOW_ VERSION

Description

Example

The CMS$SHOW _VERSION routine identifies the version of CMS
currently in use.

CHARACTER*8 SHORTVER
EXTERNAL CMS$SHOW_VERSION
CALL CMS$SHOW_VERSION(,SHORTVER)
PRINT 50,SHORTv,ER

50 FORMAT (, ',A)

END

This passes only the argument for the brief form of version
identification.

2-218 eMS Routine Descriptions

/ \

,,/

CMS$UNRESERVE

(- CMS$UNRESERVE

Format

(Arguments

(

Cancels a reservation for one or more generations.

CMS$U N RESERVE (library _dataJJlock,
elemenLexpression,
[remark],
0,
[delete_file],
[msgJoutine],
[generation_expression],
PdenUficaUon~umberh

[delete_file_spec])

library _datCLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LOB.

elemenLexpression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies one or more elements or groups of elements with a reservation
to be canceled.

You must include a period (.) in the element expression to select one
or more elements from the complete list of elements in the library. If
you do not include a period, CMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that are
established in the library. Wildcards and a comma list are allowed.

eMS Routine Descriptions 2-219

CMS$UNRESERVE

remark
Type:
Access:
Mechanism:

chacstring
read
by descriptor

Specifies the remark string that is to be logged in the history file with
the command.

o
Type:
Access:
Mechanism:

reserved for CMS
reserved for CMS
by value

Specifies a required argument that is reserved for use by CMS. You
must either pass 0 by value or include a placeholder for this argument
in the call to the CMS$UNRESERVE routine, so that the call frame entry
for this argument contains a O.

delete_file
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs CMS to delete the files with the same file
name and file type in your default directory (unless you specify another
location by also specifying the deleteJile_spec argument). By default, the
flag is set to 0, and CMS does not delete any files. If you set the flag
to 1, CMS deletes the corresponding files from your default directory.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

generation_expression
Type: char_string
Access: read
Mechanism: by descriptor

Specifies the reserved generation of the element that is to be unre
served. This argument can be used when you have multiple reserva
tions on the same element, but not on the same generation of the same
element. If multiple reservations exist for the element generation, you
must specify the identification number of the exact reservation to be
unreserved (canceled).

2-220 eMS Routine Descriptions

/
.7

/\

(

(

Description

(

CMS$UNRESERVE

identification_number
Type: longword_signed
Access: read
Mechanism: by reference

Specifies the reserved generation of the element that is to be unre
served. CMS assigns a unique reservation identification number to
each element when it is reserved. If an element generation has only
one reservation, you can unreserve (cancel) that reservation by spec
ifying the generation expression. However, if multiple reservations
exist for the element generation, you must specify the identification
number of the exact reservation to be unreserved (canceled). Use the
CMS$SHOW ~ESERV ATIONS routine to determine the reservation
number of a generation.

delete_file_spec
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies the files to be deleted and their location. All the versions of
the specified file are deleted. Any valid VMS file specification can be
used; however, it cannot contain a node name or file version number.
By default, CMS uses the current default device and directory. If the
delete_file_spec argument is omitted or contains a zero, CMS uses the
delete_file argument (if specified) to determine what files should be
deleted. If the deleteJile_spec argument contains a file specification, the
deleteJile argument is ignored. If none of these arguments is specified, no
files are deleted.

The CMS$UNRESERVE routine cancels an existing reservation.

Each reservation of an element is assigned a unique reservation iden
tification number. If an element generation has only one reservation,
you can unreserve (cancel) that reservation by specifying the generation
expression. If multiple reservations exist for the element generation,
you must specify the identification number of the reservation to be
unreserved (canceled).

eMS Routine Descriptions 2-221

CMS$UNRESERVE

Return Code

CMS$-.ERRUNRESERVES

CMS$-.NOREF

CMS$-.NORMAL

CMS$-.NOUNRESERVE

CMS$_UNRESERVED

CMS$_UNRESERVES

2-222 eMS Routine Descriptions

Description

CMS canceled zero or more
reservations and encountered
one or more errors during the
transaction.

Error accessing library.

Normal successful completion.

CMS did not cancel the
reservation.

CMS canceled the reservation.

CMS canceled one or more
reservations.

Status

Error

Error

Success

Error

Success

Success

,/

I

\"

\.

(

(

(

CMS$VERIFY

CMSSVERIFY

Format

Arguments

Performs a series of checks on your CMS library to confirm that the
library structure and library files are in a valid form.

CMS$VERIFY (Iibrary_dataJJ/ock,
[elemenLexpression],
[remark],
[recover],
[repair],
[msgJoutinej)

Iibrary_datLblock
Type: cntrlblk
Access: modify
Mechanism: by reference

Specifies an initialized LDB.

elemenLexpression
Type: chaLstring
Access: read
Mechanism: by descriptor

Specifies one or more elements or groups of elements to be verified.

You must include a period (.) in the element expression to select one
or more elements from the complete list of elements in the library. If
you do not include a period, CMS interprets the parameter as a group
name and therefore selects elements based on the list of groups that are
established in the library. Wildcards and a comma list are allowed.

remark
Type:
Access:
Mechanism:

chaLstring
read
by reference

eMS Routine Descriptions 2-223

CMS$VERIFY

Description

Specifies the remark string that is to be logged in the history file with
the command.

recover
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs CMS to execute a recovery transaction. By
default, the flag is set to 0, and CMS does not execute the recovery
procedure. Set the flag to 1 to recover the library. You cannot use both
the recover and the repair arguments in the same call to CMS$VERIFY.

repair
Type:
Access:
Mechanism:

longword_signed
read
by reference

Specifies a flag that directs CMS to execute a repair transaction. By
default, the flag is set to 0, and CMS does not execute the repair proce
dure. Set the flag to 1 to repair the library or the elements indicated by
the elemenLexpression argument. You cannot use both the recover and
the repair arguments in the same call to CMS$VERIFY.

msg_routine
Type:
Access:
Mechanism:

procedure
read
by reference

Specifies a message handler routine. For information about writing a
message handler routine, see Section 1.7.

The CMS$VERIFY routine performs a series of consistency checks on
your library. If you call CMS$VERIFY under normal conditions, the
routine executes successfully, indicating that the information in your
library is correct. However, if the data in the library is invalid, the
routine returns an error message saying that there is an error in the
verification of the library. In this case, you must recover or repair the
library as indicated by the error message. You cannot use both the
recover and the repair arguments in the same call to CMS$VERIFY.

2-224 eMS Routine Descriptions

(:

/'
! \

~,j

(

(

(

CMS$VERIFY

Recovery and repair transactions are marked as unusual occurrences in
the library history. For more information about the verify transaction,
see the Guide to VAX DEC/Code Management System.

Return Code Description Status

CMS$~ORECOVER CMS did not recover the Error
library.

CMS$~OREF Error accessing library. Error

CMS$_NOREPAIR CMS did not repair the library. Error

CMS$~OVERIFY CMS did not verify the library. Error

CMS$.-RECOVERED CMS recovered the library. Success

CMS$.-REP AIRED CMS repaired the library. Success

CMS$_ VERIFIED CMS verified the library. Success

eMS Routine Descriptions 2-225

(

(

(

Appendix A

Summary of eMS Entry Points

This appendix summarizes the arguments and parameters of each eMS
routine.

CMS$ANNOTATE(library_data_block,
element_expression,
[generat iOD-express ion] ,
[merge~eneration_expression],

[append],
[full] ,
[output_file],
[output-xoutine],
[user_arg],
[msg-xoutine],
[format])

CMS$ASYNCH-TERMINATE

This routine has no arguments.

Summary of eMS Entry Points A-1

CMS$CMS([command-1ine],
[msgJ'outine] ,
[promptJ'outine],
[confirIDJ'outine],
[outputJ'outine],
[width])

CMS$COPY_ELEMENT(library_dat8-block,
input_eleMent_expression,
output_element,
[remark],
[source_library_dat8-block],
[msgJ'outine])

CMS$CREATR-CLASS(library_data_block,
classJlame,
[remark],
[msgJ'outine])

CMS$CREATE-ELEMENT(library_data_block,
elementJlame,
[remark],
[history],
[notes],
[position] ,
[keep],
[reserve],
[concurrent],
[reference_copy],
[inputJile] ,
[inputJ'outine],
[user_arg],
[msgJ'outine],
[review])

CMS$CREATR-GROUP(library_dat8-block,
groupJlame,
[remark],
[msgJ'outine])

CMS$CREA~IBRARY(library_data_block,
directory,
[remark],
[reference_copy_dir],
[msgJ'outine],
[confirIDJ'outine],
[outputJ'outine],
[width],
[position] ,
[positiona1-dir_spec])

CMS$DELETR-CLASS(library_data_block,
class_expression,
[remark],
[msgJ'outine])

A-2 Summary of eMS Entry Points

(

CMS$DELETE~LEMENT(library_dat~block,
element_expression,
[remark],
[msgJ'outine])

CMS$DELETK-GENERATION(library_dat~block,
element_expression,
[remark],
[generatio~expression],

[after~eneration],

[before~eneration],

[fro~eneration],

[to~eneration],

[archive_file],
[msgJ'outine])

A generation or range of generations must be specified with a combina
tion of one or more of the aftecgeneration, before~eneration,
fronLgeneration, or to~eneration arguments.

CMS$DELETK-GROUP(library_data_block,
group_expression,
[remark],
[msgJ'outine])

CMS$DELETR-HISTORY(library_dat~block,
[remark],
before,
[transactio~ask],

[outputJ'outine],
[user_arg],
[msgJ'outine])

CMS$DIFFERENCES([library_data_block],
[user_arg],
[input3ilel] ,
[inputJ'outinel],
[generatio~expressioD-1],

[inpuLfile2],
[inputJ'outine2],
[generatio~expressio~],

[output3ile] ,
[outputJ'outine],
[append],
[ignoreJlask],
[nooutput],
[parallel],
[full],
[format],
[width],
[msgJ'outine],
[page_break] ,
[skipJines],
[begi~sentinel],

[entLsentinel])

Summary of eMS Entry Points A-3

The library _datCLblock argument is a required parameter only if you also
specify a generatiolLexpression parameter.

CMS$FETCH(library_data_block,
element_expression,
[remark],
[generatioD-expression],
[merge~eneratioD-expression],
[reserve],
[nohistory],
[nonotes],
[concurrent],
[output3ile],
[msgJ'outine],
[nooutput],
[history],
[notes],
[position])

CMS$FETCH-CLOSE(fetc~dat~block,
[msgJ'outine])

CMS$FETCH-GET(fetc~dat~block,
outputJ'ecord,
[sequence-Dumber],
[generatioD-Dumber],
[msgJ'Outine])

CMS$FETCH-OPEN(fetc~dat~block,
directory,
element-Dame,
[generatioD-expression],
[nohistory],
[nonotes],
[actua~eneration],

[msgJ'outine])

CMS$GET_STRING(string_id,
string)

CMS$INSERT-ELEMENT(library_dat~block,
element_expression,
group_expression,
[remark],
[if_absent],
[msgJ'outine])

CMS$INSERT_GENERATION(library_data_block,
element_expression,
class_expression,
[remark],
[generatioD-expression],
[always],

A-4 Summary of eMS Entry Points

./,\

/

(

(

[supersede],
[if_absent],
[msgJ'outine])

CMS$INSERT_GROUP(library_dat~block,
sub~roup_expression,

group_expression,
[remark],
[if_absent],
[msgJ'outine])

CMS$MODIFY_CLASS(library_data_block,
class_expression,
[remark],
[newJlame],
[newJ'emark],
[read_only],
[msgJ'outine])

At least one of the new_name, newJemark, orrealLonly arguments is
required.

CMS$MODIFY-ELEMENT(library_data_block,
element_expression,
[remark],
[newJlame],
[newJ'emark],
[history],
[notes],
[position],
[concurrent],
[reference_copy],
[msgJ'outine],
[review])

At least one of the new_name, newJemark, history, notes, position,
concurrent, reference_copy, or review arguments is required.

CMS$MODIFY_GENERATION(library_dat~block,
element_expression,
[remark],
[generatiou-expression],
newJ'emark,
[msgJ'outine])

CMS$MODIFY_GROUP(library_data_block,
group_expression,
[remark],
[newJlame] ,
[newJ'emark],
[reacLonly],
[msgJ'outine])

Summary of eMS Entry Points A-5

At least one of the neWJame, newJemark, orreacLonly arguments is
required.

CMS$MODIFY-LIBRARY(library_dats-block,
[remark],
reference_copy_dir,
[msgJ'Outine])

CMS$PUT~TRING(string)

CMS$REMARK(library_data_block,
remark,
[msgJ'outine],
[unusual])

CMS$REMOVE~LEMENT(library_dats-block,
element_expression,
group_expression,
[remark],
[if_present],
[msgJ'outine])

CMS$REMOVE-GENERATION(library_dats-block,
element_expression,
class_expression,
[remark],
[if_present],
[msgJ'outine],
[generation])

CMS$REMOVE-GROUP(library_dats-block,
sub~roup_expression,

group_expression,
[remark],
[if_present],
[msgJ'outine])

CMS$REPLACE(library_dats-block,
element_expression,
[remark],
[variant],
[reserve],
[keep],
[input_file],
[inputJ'Outine],
[user_arg],
[msgJ'outine],
[iCchanged],
[generatio~expression],

[identificatio~umber])

A-6 Summary of eMS Entry Points

(

(

(

CMS$RETRIEVE_ARCHIVE([library_dats-block],
archive_file_spec,
[generatio~spec],

[output_file_Spec],
[msgJ'outine])

CMS$REVIEW_GENERATION(library_dats-block,
element_expression,
action,
[remark],
[generatio~expression],

[msgJ'outine])

CMS$SET-ACL(library_dats-block,
object_type,
object_expression,
[remark],
[acl] ,
[after],
[default],
[delete],
[like],
[new],
[replace],
[msgJ'outine])

CMS$SET~IBRARY(library_dats-block,
directory,
[msgJ'outine],
[verify],
[confirmJ'outine],
[outputJ'outine],
[width],
[position] ,
[positiona1-dir_spec])

CMS$SET~OLIBRARY(library_dats-block,
[directory])

CMS$SHOW-ACL(library_data_block,
outputJ'outine,
Object_type,
[user_arg],
[object_expression],
[msg_routine])

CMS$SHOW-ARCHIVE(archive_file_spec,
outputJ'outine,
[user_arg],
[msgJ'outine])

CMS$SHOW_CLASS(library_dat~block,
outputJ'outine,
[user_arg],
[class_expression],
[msgJ'outine])

Summary of eMS Entry Points A-7

CMS$SHOW-ELEMENT(library_dat~block,
outputJoutine,
[user_arg],
[element_expression],
[memberJist],
[msgJoutine])

CMS$SHOW_GENERATION(library_dat~block,
outputJoutine,
[user_arg],
[element_expression],
[generatio~expression],

[froIDLgeneratio~expression],

[ancestors],
[descendants],
[memberJist],
[msgJoutine])

CMS$SHOW_GROUP(library_dat~block,
outputJoutine,
[user_arg],
[group_expression],
[msgJoutine],
[contents],
[member_list])

CMS$SHOW-HISTORY(library_dat~block,
outputJoutine,
[user_arg],
[objectJlame],
[user] ,
[before],
[since],
[transactio~ask],

[msgJoutine])

CMS$SHOW-LIBRARY(library_dat~block,
[reference_copy_dir],
[statistics] ,
[msgJOutine],
[verify] ,
[outputJQutine],
[user_arg])

CMS$SHOW-RESERVATIONS(library_dat~block,
outputJoutine,
[user_arg],
[element_expression],
[generatio~expression],
[user],

A-8 Summary of eMS Entry Points

[msgJoutine],
[identificationJlumber])

(

CMS$SHOW-REVIEWS~ENDING(library_dat~block,
outputJ'outine,
[user_arg],
[element_expression],
[generatioD-expression],
[user],
[msgJ'outine])

CMS$SHOW_VERSION([full],
[brief],
[absolute])

At least one of these arguments is required.

CMS$UNRESERVE(library_dat~block,
element_expression,
[remark],
0,
[delete_file],
[msgJ'outine],
[generatioD-expression],
[identificatioD-number],
[delete_file_spec])

CMS$VERIFY(library_dat~block,
[element_expression],
[remark],
[recover],
[repair],
[msgJoutine])

Summary of eMS Entry Points A-9

(

(

Appendix B

Examples of Calling eMS

This appendix shows examples of calling the CMS$SHOW _ELEMENT
routine from the Ada, BASIC, BLISS, C, COBOL, DIBOL, FORTRAN,
Pascal, PUI, and SCAN languages. Each program uses an output
routine to display a list of the library elements and the groups to which
each element belongs.

Examples of Calling CMS B-1

B.1 Calling CMS from Ada

Example B-1 shows a call to CMS$SHOW _ELEMENT from Ada.

Example B-1: Ada Example

with SYSTEM;
use SYSTEM;
package CONDITION~NDLING_UTILITIES is

type COUNT is new INTEGER;

type STATUS_TYPE is
record

SEVERITY
CODE
FAC~P

FAC--.NO
INHIB~SG
FILLERJ

end record;

COUNT range 0 .• 2**3-1;
COUNT range 0 •. 2**12-1;
BOOLEAN;
COUNT range 0 .• 2**12-1;
BOOLEAN;
COUNT range 0 .. 2**3-1;

function SS--.NORMAL return STATUS_TYPE;
pragma INLINE(SS--.NORMAL);

type SIGARG_TYPE(ARGS : NATURAL) is
record

NAME : STATUS_TYPE;
ARGn : UNSIGNED-LONGWORD~RRAY(2 •• ARGS);

end record;

package MCHARG-PKG is

type COUNT is new INTEGER;

D

subtype COUNT--.NATURAL is COUNT range O .. COUNT'last;
subtype COUNT-POSITIVE is COUNT range 1 .• COUNT'last;

FRAME
DEPTH
SAVRO
SAVR1

constant COUNT := COUNT~ATURAL'first;
constant COUNT := FRAME + 1;
constant COUNT := DEPTH + 1;
constant COUNT := SAVRO + 1;

type MCHARG_COMPONENT~RRAY is
array(COUNT-POSITIVE range <» of SYSTEM.UNSIGNED-LQNGWORD;

Example B-1 Cont'd. on next page

B-2 Examples of Calling CMS

.".

(

(

Example B-1 (Cont.): Ada Example

type MCHARG_TYPE(ARGS : COUNT-RATURAL) is
record

ARGn : MCHARG_COMPONENT-ARRAY(l .• ARGS);
end record;

private

end;

for MCHARG_TYPE use
record

ARGS at 0 range 0 •• 31;
-- ARGn at 4 range 0 ••• ;
end record;

subtype MCHARG_TYPE is MCHARG-PKG.MCHARG_TYPE;

procedure PUTMSG (
MSGVEC in SIGARG_TYPE;
ACTRTN in SYSTEM.ADDRESS
FACNAM in STRING
ACTPRM in SYSTEM.UNSIGNED-tONGWORD

private
for STATUS_TYPE use
record

SEVERITY at 0 range 0 .. 2;
CODE at 0 range 3 .. 14;
FAC-BP at 0 range 15 .• 15;
FAC-RO at 0 range 16 •• 27;
INHIB-HSG at 0 range 28 .• 28;
FILLER~ at 0 range 29 •• 31;

end record;

for SIGARG_TYPE use
record

ARGS at 0 range 0 .• 31;
NAME at 4 range 0 .• 31;

-- ARGn at 8 range 0 ••• ;
end record;

pragma INTERFACE(SYS, PUTMSG);
pragma IMPORT-PROCEDURE(PUTMSG,

external => "SYS$PUTMSG",
mechanism => (REFERENCE,

VALUE,

end;

DESCRIPTOR(S),
VALUE» ;

Example B-1 Cont'd. on next page

: = ADDRESSJ;ERO;
:= STRING'NULL-PARAMETER;
.- 0);

Examples of Calling CMS 8-3

Example B-1 (Cont.): Ada· Example

package body CONDITION-HANDLING_UTILITIES is

function SS~ORMAL return STATUS_TYPE is
begin
return STATUS_TYPE'(SEVERITY => 1, CODE => 0, FAC~P => FALSE,

FAC~O => 0, INHIB-HSG => FALSE, FILLER-! => 0);
end;

end;

with CONDITION-HANDLING_UTILITIES, SYSTEM;
use CONDITION-HANDLING_UTILITIES, SYSTEM;
package CMS is

type LDB_TYPE is
limited private;

type FDB_TYPE is
limited private;

type FLAG_TYPE is
new BOOLEAN;

procedure GET~TRING(
STATUS out STATUS_TYPE;
STRING_ID : in ADDRESS;
STRING : out STANDARD. STRING) ;

out STATUS_TYPE;
in out LDB_TYPE;
in STRING;

procedure SET-LIBRARY(
STATUS
LIBRARY~ATA-BLOCK

DIRECTORY
MSG-ROUTINE in ADDRESS := ADDRESS-ZERO);

procedure "SHOW-ELEMENT(
STATUS
LIBRARY~ATA-BLOCK

OUTPUT-ROUTINE
USElLARG
ELEMENT-EXPRESSION
MEMBEILFLAG
MSG-ROUTINE

out STATUS_TYPE;
in out LOB_TYPE;
in ADDRESS;
in UNSIGNED-LONGWORD
in STRING
in FLAG_TYPE
in ADDRESS

Example B-1 Cont'd. on next page

8-4 Examples of Calling CMS

:= 0;
:= "*-*";
:= FALSE;
:= ADDRESS-ZERO);

(

(

(

Example B-1 (Cont.): Ada Example

-- Examples of OUTPUT-ROUTINE and MESSAGE-ROUTINE declarations

-- procedure OUTPUT-ROUTINE(
STATUS out STATUS_TYPE;
FIRST_CALL in FLAG_TYPE;
LOB in out LDB_TYPE;
USER-PARAM in UNSIGNED~ONGWORD;
ELEMENLID in ADDRESS;
REMARK-ID in ADDRESS;
HISTORY~TRING_ID in ADDRESS;
NOTES~TRING_ID in ADDRESS;
POSITION in INTEGER;
CONCURRENT in FLAG_TYPE;
REFERENCE-COPY in FLAG_TYPE;
GROUP~IST_ID in ADDRESS
REVIEW : in FLAG_TYPE);

-- pragma EXPORT_VALUED-PROCEDURE(OUTPUT-ROUTINE,
external => "<some unique symbol>");

-- procedure MSG-ROUTINE(
STATUS out STATUS_TYPE;
SIGNAL-ARRAY : in SIGARG_TYPE;
MECHANISM-ARRAY : in MCHARG_TYPE;
LIB...DB : in out LDB_TYPE) ;

-- pragma EXPORT_VALUED-PROCEDURE(MSG-ROUTINE,
external => "<some unique symbol>");

private
-- Library Data Block

type LDB_TYPE is
record

LENGTH
RETURN~TATUS

LIB...DI~EN

LIB...DIR...DTYPE
LIB...DIILCLASS
LIB...DIILADDRESS
PRIVATE-PART

end record;

INTEGER;
STATUS_TYPE;
NATURAL range 0 .• 65_535;
UNSIGNEDJ3YTE;
UNSIGNEDJ3YTE;
ADDRESS;
UNSIGNED~ONGWORD-ARRAY(l .. 46);

Example B-1 Cont'd. on next page

Examples of Calling CMS B-5

Example B-1 (Cont.): Ada Example

for LDB_TYPE use
record

LENGTH at 0 range o •. 31;
RETURN~TATUS at 4 range 0 .• 31;
LIB-DIR-LEN at 8 range 0 •• 15;
LIB-DIR-DTYPE at 10 range 0 .. 7;
LIB-DIR-CLASS at 11 range 0 .. 7;
LIB-DIR-ADDRESS at 12 range 0 •. 31;
PRIVAtE-PART at 16 range 0 .• 46*32-1;

end record;

for LDB_TYPE'size use 32*50;

-- Fetch Data Block

type FDB_TYPE is
new SYSTEM.UNSIGNED-LONGWORD-ARRAY(1 .• 5);

for FDB_TYPE'size use 32*5;

-- The FLAG_TYPE must occupy a whole longword

for FLAG_TYPE'size use 32;

-- Routines

pragma INTERFACE(CMS, GET~TRING);
pragma IMPORT_VALUED-PROCEDURE(GET~TRING,

external => "CMS$GET~TRING",
mechanism => (VALUE,

REFERENCE,
DESCRIPTOR(S»);

pragma INTERFACE(CMS, SET-LIBRARY);
pragma IMPORT_VALUED-PROCEDURE(SET-LIBRARY,

external => "CMS$SET-LIBRARY",
mechanism => (VALUE,

REFERENCE,
DESCRIPTOR(S),
VALUE»;

Example B-1 Cont'd. on next page

8-6 Examples of Calling CMS

Example B-1 (Cont.): Ada Example

pragma INTERFACE(CMS, SHOW-ELEMENT);
pragma IMPORT_VALUED-PROCEDURE(SHOW-ELEMENT,

external => "CMS$SHOW-ELEMENT",
mechanism => (VALUE,

end;

REFERENCE,
VALUE,
REFERENCE,
DESCRIPTOR(S),
REFERENCE,
VALUE»;

function LAST~ON-BLANK(STRING STANDARD.STRING) return NATURAL is
L : NATURAL := STRING'last;
begin

loop
exit when L < STRING'first or else STRING(L) /= ' ';
L := L - 1;
end loop;

return L;
end;

with LAST~ON-BLANK;
function TRIM(STRING : STANDARD.STRING) return STANDARD.STRING is ~

begin
return STRING(STRING'first .. LAST~ON-BLANK(STRING»;
end;

with CMS, CONDITION-RANDLING_UTILITIES, SYSTEM, TEXT_IO, TRIM;
use CMS, CONDITION-RANDLING_UTILITIES, SYSTEM, TEXT_IO; m
procedure OUTPUT-ROUTINE(

STATUS out STATUS_TYPE;
FIRST_CALL in FLAG_TYPE;
LDB in out LDB_TYPE;
USER-PARAM in UNSIGNED_LONGWORD;
ELEMENT_ID in ADDRESS;
REMARK-ID in ADDRESS;
HISTORY_STRING_ID in ADDRESS;
NOTES-BTRING_ID in ADDRESS;
POSITION in INTEGER;
CONCURRENT in FLAG_TYPE;
REFERENCE_COPY in FLAG_TYPE;
GROUP-LIST_ID in ADDRESS;

Example B-1 Cont'd. on next page

Examples of Calling CMS B-7

Example B-1 (Cont.): Ada Example

REVIEW in FLAG_TYPE)
is GET~TATUS

STRING
begin

: STATUS_TYPE;
: STANDARD.STRING(1 •• 65_535);

GET_STRING(GET~TATUS, ELEMENT_ID, STRING);
PUT-LINE(TRIM(STRING»;
GET~TRING(GET~TATUS, GROUP-LIST_ID, STRING);
PUT-LINE(TRIM(STRING»;
STATUS := SS~ORMAL;
end;

pragma EXPORT_VALUED-PROCEDURE(OUTPUT-ROUTINE,
external=>"OUTPUT-ROUTINE");

with CMS, CONDITION-HANDLING_UTILITIES, STARLET, SYSTEM;
use CMS, CONDITION-HANDLING_UTILITIES, STARLET, SYSTEM;
procedure MSG-ROUTINE (~

STATUS out STATUS_TYPE;
SIGNAL-ARRAY in SIGARG_TYPE;
MECHANISM-ARRAY in MCHARG_TYPE;
LIBj)B in out LDB_TYPE)
is
begin
case SIGNAL-ARRAY.NAME.SEVERITY is
when STS-K-WARNING I STS-K-ERROR I STS-K-SEVERE =>

declare
COPY: SIGARG_TYPE(SIGNAL-ARRAY.ARGS) := SIGNAL-ARRAY;
begin
COPY. NAME. SEVERITY :=·STS-K-INFO;
PUTMSG(COPY);
end;

when others =>
null;

end case;
STATUS := CONDITION-HANDLING_UTILITIES.SS~ORMAL;
end;

pragma EXPORT_VALUED-PROCEDURE(MSG-ROUTINE,
external=>"MSG-ROUTINE");

with CMS, CONDITION~ANDLING_UTILITIES, MSG-ROUTINE, OUTPUT-ROUTINE, TRIM;
use CMS, CONDITION-HANDLING_UTILITIES;
procedure SHOW-ELEMENT-EXAMPLE is

LDB LDB_TYPE;
STATUS : STATUS_TYPE;

Example B-1 Cont'd. on next page

8-8 Examples of Calling CMS

./ '\

(

(/

Example B-1 (Cont.): Ada Example

begin

SELLIBRARY(STATUS, LOB, "CMS$LIB",
MSG~OUTINE => MSG~OUTINE'address);

SHOW-ELEMENT(STATUS, LDB, OUTPUT~OUTINE'address,

end;

MEMBER-FLAG => TRUE, MSG-ROUTINE => MSG-ROUTINE'address);

Key to Example B-1:

D This section sets up and establishes the message handling package.

~ This section sets up and establishes the CMS interface package.

81 The TRIM routine is created, which trims blank spaces off the ends
of strings.

II The callback output routine (which will get passed to CMS$SHOW_
ELEMENT) is declared.

m The callback message routine is declared.

Examples of Calling CMS 8-9

B.2 Calling CMS from BASIC

Example B-2 shows a call to CMS$SHOW -ELEMENT from BASIC.

Example B-2: Calling CMS$SHOW_ELEMENT from BASIC

DIM LONG LIB-DB(50) I Declaration for the library data block

I EXTERNAL declarations for CMS routines and the output routine

EXTERNAL LONG FUNCTION CMS$SET-LIBRARY (LONG, STRING)
EXTERNAL LONG FUNCTION CMS$SHOW~LEMENT (LONG, LONG, STRING, STRING, LONG, LONG)
EXTERNAL LONG OUTPUT~OUTINE Declare OUTPUT~OUTINE as an external long

I integer, so the starting aqdress of the routine
! can be passed as a parameter.

DECLARE LONG RETURN~TATUS, MEMBEILFLAG

RETURN~TATUS = CMS$SET-LIBRARY (LIB-DB(O), "CMS$LIB")
MEMBEILFLAG = 1
RETURN~TATUS = CMS$SHOW-ELEMENT (LIB-DB(O), OUTPUT~OUTINE, , , MEMBElLFLAG,)

END

! The output routine
I
SUB OUTPUT~OUTINE (LONG F-FIRST,

RFA LDB,
LONG ELEMENT_ID,

NOTES_ID,
REF_COPY,

USILPARAM,
REMARILID,
POSITION,
GROUP-LIST_ID,

&
&

HISTORLID, &
CONCURRENT, &
REVIEW)

DECLARE STRING ELEMENT-HAME, GROUP-LIST-HAMES, LONG RETURN_STATUS

! EXTERNAL declaration for CMS$GET~TRING (used to translate string identifiers
! into a form that BASIC can understand)

EXTERNAL LONG FUNCTION CMS$GET~TRING (LONG, STRING)

Example B-2 Cont'd. on next page

8-10 Examples of Calling CMS

\

/

(Example B-2 (Cont.): Calling CMS$SHOW_ELEMENT from BASIC

(

I Display the results
!
RETURN_STATUS = CMS$GET-BTRING (ELEMENT_ID, ELEMENT-RAME)
RETURN-BTATUS = CMS$GET-BTRING (GROUP-LIST_ID, GROUP-LIST-RAMES)
PRINT ,ELEMENT-RAME
PRINT ,GROUP -LIST-RAMES

END SUB

Examples of Calling CMS 8-11

B.3 Calling CMS from BLISS

Example B-3 shows a call to CMS$SHOW_ELEMENTfromBLISS.

Example B-3: Calling CMS$SHOW_ELEMENT from BLISS

MODULE SHOWELE (MAIN = MAIN, ADDRESSING-HODE (EXTERNAL = GENERAL)) =
BEGIN

FORWARD ROUTINE
MAIN,
OUTPUT~OUTINE;

EXTERNAL ROUTINE
CMS$SET~IBRARY,

CMS$SHOW-ELEMENT,
LIB$PUT_OUTPUT;

GLOBAL ROUTINE .MAIN =
BEGIN

LOCAL
LDB : VECTOR[50],
STATUS;

EXTERNAL declarations for CMS routines
and LIB$ routine for output

! Declaration for library data block and
! a variable for return value from calls

STATUS = CMS$SET~IBRARY (LDB, %ASCID 'CMS$LIB');
IF NOT .STATUS
THEN ! Exit with error code if

RETURN .STATUS; ! unable to set library

STATUS = CMS$SHOW-ELEMENT (LDB, OUTPUT~OUTINE, 0, 0, %REF(1»; D
IF NOT .STATUS
THEN Exit with error code if call

RETURN . STATUS; to CMS$SHOW-ELEMENT fails

RETURN 1; Exit with success value

END;

Example B-3 Cont'd. on next page

8-12 Examples of Calling CMS

/

("-

(".
~ ..

./

(

(

(

Example B-3 (Cont.): Calling CMS$SHOW_ELEMENT from BLISS

ROUTINE OUTPUT~OUTINE (FIRST_CALL, LIBDB, USER-PARAM, ELEMENT_ID, REMARK_ID,
HISTORY_ID, NOTES_ID, POSITION, ACCESS, REF_COPY,
GROUP-LIST_ID, REVIEW) =

BEGIN

BIND
ELEMENT-NAME = •• ELEMENT_ID,
GROUP-LIST-NAME = •. GROUP-LIST_IDj

! BIND declaration for
string identifiers

LIB$PUT_OUTPUT (ELEMENT-NAME)j
LIB$PUT_OUTPUT (GROUP-LIST-NAME)j

RETURN 1j

ENDj

END
ELUDOM

Key to Example B-3:

D The member list flag is set to true (1) in the call to CMS$SHOW_
ELEMENT. By using the %REF function, the call frame contains the
address of a temporary data segment containing the value 1.

I!l Within the callback routine it is not necessary to use the CMS$GET_
STRING routine to manipulate string identifiers. BLISS allows you
to use the dot operator to specify the address path. The BIND
declaration is used as a more concise method of handling the string
identifiers that CMS passes to the output routine.

Examples of Calling CMS 8-13

8.4 Calling CMS from C

Example B-4 shows a call to CMS$SHOW ~LEMENT from C.

Example 8-4: Calling CMS$SHOW_ELEMENT from C

#include stdio
#include descrip 1* VMS DESCRIPTOR DEFINITIONS *1

1* DESCRIPTOR MACROS *1
#define builddesc(name) \
struct dsc$descriptor name = {o, DSC$K-DTYPE-T, DSC$K-CLASS~, o}
#define filldesc(name, str) \

name.dsc$w~ength = strlen(str); \
name.dsc$~pointer = str

main 0
{

}

int lib_db [50] ;
int outputJ"outine 0;
int f-Member~ist = 1;
char *libJlame = "CMS$LIB";

builddesc (~ib); 1* BUILD A DESCRIPTOR FOR THE LIBRARY NAME *1
filldesc (~ib, libJlame); 1* FILL IN THE DESCRIPTOR *1
1* PASS THE LIBRARY DATA BLOCK AND THE LIBRARY NAME DESCR. BY REFERENCE *1
cms$set_library (&lib_db, &~lib);

1* PASS THE LDB, entry point, AND FLAG FOR THE MEMBER LIST BY REFERENCE *1
cms$show_element (&lib_db, outputJ"outine, 0, 0, &f-Member_list, 0);

1* THE OUTPUT ROUTINE *1
outputJ"outine (Lf first_call, ~lib_db, ~user_param, element_id, remark_id,

history_string_id, notes_string_id, position, concurrent,
ref_copy, group~ist_id, review)

Example B-4 Cont'd. on next page

B-14 Examples of Calling CMS

/\
I i

"-- .. ~

I
~j

(Example 8-4 (Cont.): Calling CMS$SHOW_ELEMENT from C

int *a_f_first_call, *a_lib_db, *R-user_param, **remark-id, **history_string_id,
**notes_string_id, *posit ion , *concurrent, *ref_copy, *review;

struct dsc$descriptor **element_id, **group_list_id; m
{

}

char *string_froffi-cms; 1* TO HOLD STRING EXTRACTED FROM DESCRIPTOR *1
struct dsc$descriptor_s *descriptor; 1* VARIABLE TO HANDLE STRING IDs *1
char *calloc();
descriptor = *element_id; I!I
string_froffi-cms = calloc (1, descriptor -> dsc$w-Iength + 1);
strncpy (strin~froffi-cms, descriptor -> dsc$a_pointer, §

descriptor -> dsc$w_length);
printf ("%s\n", string_froffi-cms);
descriptor = *group_list_id;
string_from_cms = calloc (1, descriptor -> dsc$w-Iength + 1);
strncpy (string_froffi-cms, descriptor -> dsc$a_pointer, B

descriptor -> dsc$w-Iength);
printf ("%s\n", string_froffi-cms);

return (1);

Because C allows you to manipulate addresses directly, it is not neces
sary to use the CMS$GET_STRING routine when you are calling CMS
from the C language. The following steps describe one way of handling
the string identifiers.

Key to Example B-4:

m The strings containing the element name and the group list are
passed by string identifier. To handle the extra level of indirection,
the elemenLid and group_lisLid parameters are declared with two
asterisk operators.

I!I The address of the element name descriptor is put in the contents
of descriptor.

§ Descriptor is then used as an argument to the calloc and strncpy
functions to provide the string for output.

II The same steps are used to handle the group list string.

Examples of Calling CMS 8-15

B.5 Calling CMS from COBOL

Example B-S shows a call to CMS$SHOW ~LEMENT from COBOL.

Example B-5: Calling CMS$SHOW_ELEMENT from COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. SHOELE.

* * SHOW ELEMENT

* ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

PIC X(200). 01 LIBJlB
01 LIBRARY PIC X(21) VALUE "CMS$LIB".

* The flag signaling fMEMBER

* 01 MEM PIC S9 VALUE 1.

* The user-supplied output routine.

* 01 OUT-ROUT PIC S9(9) COMP VALUE EXTERNAL OUTP.

f
PROCEDURE DIVISION.
O.

CALL "CMS$SETJ,IBRARY" USING BY REFERENCE LIBJlB
BY DESCRIPTOR LIBRARY.

CALL "CMS$SHOWJ;LEMENT" USING BY REFERENCE LIBJlB
BY VALUE OUT-ROUT
BY VALUE 0
BY VALUE 0
BY REFERENCE MEM.

EXIT PROGRAM.

The program SHOELE contains a declaration for the callback routine
(named OUTP) that handles output from CMS$SHOW ~LEMENT. The
following example shows this subroutine. You must compile OUTP
separately to pass the address of the routine to CMS.

In the following example, the callback routine OUTP must be located in
a separate module to allow the main program SHOELE to reference its
address.

Examples of Calling CMS 8-16

./ "

(j

IDENTIFICATION DIVISION.
PROGRAM-ID. OUTP.

* * Output subroutine for SHOW ELEMENT

* ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Strings to hold the data extracted from the descriptors;
* Status to be returned to CMS.

* 01 ELEMENT-HAME PIC X(15).
01 GROUP-LIST-HAMES PIC X(100).
01 CALL-STATUS_VAL COMP PIC 9(9).
01 RET_STATUS_VAL COMP PIC 9(9).
LINKAGE SECTION.

01 FJIRST_CALL
01 LIB-PAT~LOCK
01 USEILPARAM
01 ELEMENT_ID
01 REMARJLID
01 HISTORLID
01 NOTES_ID
01 POSITION_VAL
01 CONCURRENTJLAG
01 REF_COPY
01 GROUP-LIST_ID

PIC 99.
PIC X(200).

PIC 99.
PIC 9(9).

PIC 9(9).
PIC 9(9).

PIC 9(9).
PIC 9(9).

PIC 9(9).
PIC 9(9).
PIC 9(9).

01 REVIEW PIC 9(9).
/
PROCEDURE DIVISION USING FJIRST_CALL

LIB-PATAJlLOCK
USERJ'ARAM
ELEMENT_ID
REMARILID
HISTORLID
NOTES_ID
POSITION_VAL
CONCURRENTJLAG

REVIEW
GIVING RET-ZTATUS_VAL.

O.
* Extract the string data from the descriptors.

* MOVE 1 to CALL-ZTATUS_VAL.
CALL "CMS$GET_STRING" USING ELEMENLID

BY DESCRIPTOR ELEMENT-HAME
GIVING CALL-STATUS_VAL.

Examples of Calling CMS 8-17

IF (CALL-STATUS_VAL = 1)
DISPLAY ELEMENTJAME
CALL "CMS$GET--.STRING" USING GROUPJ,IST_ID

BY DESCRIPTOR GROUPJ,ISTJAMES
GIVING CALL-STATUS_VAL

IF (CALL-STATUS_VAL = 1)
DISPLAY GROUPJ,ISTJAMES

END-IF

END-IF

* Return the call status to CMS.

* MOVE CALL-STATUS_VAL TO RET--.STATUS_VAL.

EXIT PROGRAM.

8-18 Examples of Calling CMS

\.

(

(

(

8.6 Calling CMS from DI80L

Example B-6 shows calls to CMS routines from DIBOL. The subroutine
CALL_CMS_OUT is an external subroutine that must be compiled
separately from the main routine, CALL_CMS.

Example B-6: DIBOL Example

. TITLE "Example to call a CMS routine from DIBOL."

.IDENT "CALLCMS"

Program sets the CMS library pointed to by the CMS$LIB logical, then
displays all the elements in the library, and the groups those elements
belong in.

EXTERNAL LITERAL
CMS$_LIBLISMOD
CMS$JlORMAL
CALL_CMS_OUT

',I
,I
,I

Status of sucessfully setting a CMS library.
Sucessful status returned by SHOW~EMENT.
Stores address of DIBOL output routine.

EXTERNAL FUNCTION
CMS$SET-LIBRARY ,%VAL
CMS$SHOW-ELEMENT ,%VAL

GLOBAL COMMON CMS-PBL_VARS
CMS-LDB , [50]I4 CMS Library Data Block.
CMS-ZTATUS ,I4 Status returned from call to CMS routines.

RECORD

PROC

CMS~EMBER ,I4,1 Show member status of an element.

OPEN (1, O:C, 'SYS$OUTPUT') ; Open default output device.

Set CMS library. Stop program if library isn't set.

CMS-ZTATUS = %CMS$SET-LIBRARY (%REF(CMS-LDB), %DESCR("CMS$LIB")
IF (CMS-ZTATUS .NE. CMS$-LIBLISMOD) STOP CMS-ZTATUS

Example B-6 Cont'd. on next page

Examples of Calling CMS 8-19

Example B-6 (Cont.): DIBOL Example

Display every element (and group(s) element belongs to) in library.
Stop program, displaying status if program ended abnormally.

&
&
&

CMS-BTATUS = %CMS$SHOW-ELEMENT (%REF(CMS-LDB),
%VAL(CALL_CMS_OUT),
%REF(CMS-HEMBER)

, ,

)
IF (CMS-BTATUS .NE. CMS$~ORMAL)
THEN STOP CMS_STATUS Error, display error at STOP message.
ELSE

END

BEGIN
CLOSE 1
STOP
END

Close output device.
Stop program.

.TITLE "Display output from a call to a CMS routine."
• IDENT "CALkCMS_OUT"

SUBROUTINE CALL_CMS_OUT

%REF
%REF
%REF
%REF
%REF
%REF
%REF
%REF
%REF
%REF
%REF
%REF

(FIRST_CALL)
(LDB)
(USER)
(ELELID)
(RElLID)
(HIST_ID)
(NOTES_ID)
(POSIT_ID)
(CONCURRENT)
(REF_COPY)
(GROUP_ID)
(REVIEW)

EXTERNAL FUNCTION

,14
,14
,14
,14
,14
,14
,14
,14
,14
,14
,14
,14

CMS$GET_STRING ,%VAL

EXTERNAL COMMON CMS-DB4-VARS
CMS-LDB ,[50]14 CMS Library Data Block.
CMS-BTATUS ,14 Status returned from call to CMS routines.

RECORD

ELE~AME

GROUPJAME

PROC

,A30
,A27

Element name.
Group to Which element belongs.

Example B-6 Cont'd. on next page

8-20 Examples of Calling CMS

/

\ j

/

(

f

Example B-6 (Cont.): DIBOL Example

Get name of an element. Return to calling program if an error occurs.

CMS~TATUS = %CMS$GET~TRING (%REF(ELEM_ID), %DESCR(ELEMLNAME))
IF (CMS~TATUS .NE. 1) XRETURN

Get list of all groups the element belongs in. Return to calling program
if an error occurs.

CMS~TATUS = %CMS$GET_STRING (%REF(GROUP_ID), %DESCR(GROUP-HAME))
IF (CMS_STATUS .NE. 1) XRETURN

Show element and groups.

DISPLAY (1, 13, 10, "Element:
DISPLAY (1, 13, 10, "Group(s):

XRETURN
END

", ELEMLNAME)
", GROUP-HAME)

Examples of Calling CMS 8-21

B.7 Calling CMS from FORTRAN

Example B-7 shows a call to CMS$SHOW~LEMENTfromFORTRAN.

Example B-7: Calling CMS$SHOW_ELEMENT from FORTRAN

IMPLICIT INTEGER*4 (A-Z)
INTEGER*4 CMS$SET-LIBRARY,
1 CMS$SHOW-ELEMENT,
1 LDB(50) ,
1 MEMBER....FLAG
EXTERNAL OUTPUTJtOUTINE

STATUS = CMS$SET-LIBRARY (LDB, 'CMS$LIB')
IF (STATUS) THEN

MEMBEILFLAG = 1

..

iii

STATUS = CMS$SHOW-ELEMENT (LDB, OUTPUTJtOUTINE, , , MEMBEILFLAG)
END IF

END

INTEGER*4 FUNCTION OUTPUTJtOUTINE (FIRST_CALL, LIBDB, USEH-PARAM, ~
1 ELEMENT_ID, REMARK-ID, HISTORY_ID,
1 NOTES_ID, POSITION, ACCESS,
1 REF_COPY, GROUP-LIST_ID, REVIEW)
IMPLICIT INTEGER*4 (A-Z)
INTEGER*4 LIBDB(50)
CHARACTER ELEMENT~AME*80,

1 GROUP-LIST~AMES*80

EXTERNAL CMS$GET~TRING

CALL CMS$GET~TRING (ELEMENT_ID, ELEMENT~AME) m
CALL CMS$GET_STRING (GROUP-LIST_ID, GROUP-LIST~AMES)
PRINT *, ELEMENT~AME
PRINT *, GROUP-LIST~AMES

OUTPUTJtOUTINE = 1
RETURN
END

8-22 Examples of Calling CMS)

(-

(/

Key to Example B-7:

D The CMS routines are declared as INTEGER*4 so that the return
status is available for error checking.

m The output routine is declared EXTERNAL to pass the address of
the routine to CMS.

If] The output routine is written as a function because it must return a
value to CMS.

II CMS$GET_STRING is used to translate the string identifier and to
provide access to the element name and group list strings.

Examples of Calling CMS 8-23

B.8 Calling CMS from Pascal

Example B-8 shows a call to CMS$SHOW ~LEMENT from Pascal.

Example 8-8: Calling CMS$SHOW_ELEMENT from Pascal

PROGRAM SHOELE (INPUT, OUTPUT); (* SHOW ELEMENT *)

TYPE

VAR

LDB = ARRAY [1 •. 50] OF INTEGER;
STRING = VARYING [256] OF CHAR;

LIB.J)B
LIBNAM
MEMBERJ'LAG

LDB;
STRING;
INTEGER;

(* External CMS routines *)

PROCEDURE CMS$SET-LIBRARY
(%REF LIB.J)B LDB;

%DESCR LIBDIR : STRING);
EXTERNAL;

PROCEDURE CMS$SHOW-ELEMENT
(%REF LIB.J)B : LDB;
FUNCTION OUTPUT-ROUTINE

(VAR FIRST
VAR LIB
VAR PARAM
VAR ELEMENT
VAR REMARK
VAR HISTORY
VAR NOTES
VAR POSTION
VAR CONCURRENT
VAR REF_COPY
VAR GROUP-LIST
VAR REVIEW

%IMMED USER-PARAM
%IMMED ELEMENT-EXP
%REF MEMBERJ'LAG
%IMMED MSG-ROUTINE

EXTERNAL;

INTEGER;
LDB;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER) : INTEGER;
INTEGER := 0;
INTEGER := 0;
INTEGER;
INTEGER := 0);

Example 8-8 Cont'd. on next page

8-24 Examples of Calling CMS

o

/ '\

(

(j

Example 8-8 (Cont.): Calling CMS$SHOW_ELEMENT from Pascal

PROCEDURE CMS$GET-ZTRING
(%REF DATA : INTEGER;

%DESCR DEST : STRING);
EXTERNAL;'

(* The output routine *)

FUNCTION OUTPUT-ROUTINE

VAR

(VAR FIRST
VAR LIB
VAR PARAM_ID
VAR ELEMENT_ID
VAR REMARILID
VAR HISTORLID
VAR NOTES_ID
VAR POSITION
VAR CONCURRENT
VAR REF_COPY
VAR GROUP-LIST_ID
VAR REVIEW

INTEGER;
LDB;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER)

ELEMENT~AME STRING;
GROUP-LIST~AMES STRING;

BEGIN

INTEGER;

(* NOTE: this routine must return a value equivalent to
true, or CMS will assume the user is returning an error. *)

(* write out the actual data *)

CMS$GET-ZTRING (ELEMENT_ID, ELEMENT~AME);
WRITELN (ELEMENT~AME);
CMS$GET-ZTRING (GROUP-LIST_ID, GROUP-LIST~AMES);
WRITELN (GROUP-LIST~AMES);
OUTPUT-ROUTINE : = 1;

END; (* end of output routine *)

Example 8-8 Cont'd. on next page

Examples of Calling CMS 8-25

Example B-8 (Cont.): Calling CMS$SHOW_ELEMENT from Pascal

(* Main program body - Set the CMS library, set the member flag to true,
and call CMS$SHOW-ELEMENT *)

BEGIN

LIBNAM := 'CMS$LIB';
CMS$SET-LIBRARY (LIB-DB, LIBNAM);
MEMBER-FLAG := 1;
CMS$SHOW-ELEMENT (LIB-DB, %IMMED OUTPUT~OUTINE, , ,MEMBER-FLAG); ~

END.

Key to Example B-8:

D The formal parameter list for the CMS$SHOW _ELEMENT routine
includes declarations for all of the actual parameters that you can
pass to the routine. The list includes several %IMMED declarations
that assign a value of zero to the parameter. Because the actual
parameter list does not override these declarations, the call frame
contains a zero in the position allocated for each of these unused
parameters. The zero serves as a placeholder; thus, the member
flag argument is interpreted as being in the correct position.

~ Note that the actual parameter list in the call to CMS$SHOW_
ELEMENT specifies the %IMMED passing mechanism for the
callback routine argument. This is necessary to generate the address
of the entry point in the call frame.

8-26 Examples of Calling CMS

(

(

B.D Calling CMS from PLII

Example B-9 shows a call to CMS$SHOW _ELEMENT from PLII.

Example 8-9: Calling CMS$SHOW_ELEMENT from PLiI

SHOELMEM: PROCEDURE OPTIONS (MAIN);

/* SHOW ELEMENT/MEMBER */

DECLARE MEMBER_FLAG FIXED BINARY (31);
DECLARE LIB-DB(50) FIXED BINARY (31);
DECLARE LIBDIR CHARACTER(50) VARYING;

DECLARE CMS$SET-LIBRARY ENTRY «50) FIXED BINARY (31),
CHARACTER(*) VARYING);

DECLARE CMS$SHOW-ELEMENT ENTRY «50) FIXED BINARY (31),
ENTRY VALUE, m
FIXED BINARY (31),
CHARACTER (*),
FIXED BINARY (31),
ENTRY VALUE)

OPTIONS (VARIABLE); ~

DECLARE CMS$GET~TRING ENTRY (FIXED BINARY(31),
CHARACTER(*) VARYING);

LIBDIR = 'CMS$LIB';
MEMBER~LAG = 1;

CALL CMS$SET_LIBRARY (LIB-DB, LIBDIR);

/* ldb */
/* routine */

/* user param */
/* elem-expr */
/* group-list flag */
/* msg routine */

CALL CMS$SHOW-ELEMENT (LIB-DB, OUTPUT~OUTINE, , ,MEMBER~LAG); ~

/* the output routine */

OUTPUT~OUTINE : PROCEDURE (FIRST, LDB, PARAM, ELEMENT, COMM, HIST, NOTES, POS,
CONC, REFCOP, GROUP-LIST, REVIEW)

RETURNS (FIXED BINARY(31) VALUE);

DECLARE FIRST FIXED BINARY(l),
10B (50) FIXED BINARY(31),
(PARAM, ELEMENT, COMM, HIST, NOTES, POS, CONC, REFCOP, GROUP-LIST,
REVIEW) FIXED BINARY(31);

DECLARE ELEMENT-HAME CHARACTER (79) VARYING;
DECLARE GROUP-LIST-HAMES CHARACTER(120) VARYING;

Example 8-9 Cont'd. on next page

Examples of Calling CMS 8-27

Example 8-9: Calling CMS$SHOW_ELEMENT from PL/I

END;

/* write the lines of data */

CALL CMS$GET_STRING (ELEMENT, ELEMENT~AME);
PUT SKIP LIST (ELEMENT~AME);
CALL CMS$GET_STRING (GROUP~IST, GROUP~IST~AMES);
PUT SKIP LIST (GROUP~IST~AMES);
RETURN (1);

END OUTPUT~OUTINE;

Key to Example B-9:

D The output routine must be passed by value to place the address of
the entry point in the call frame.

~ If you specify the OPTIONS(V ARIABLE) attribute in the routine
declaration, you can omit unnecessary arguments from the call to
the eMS routine.

!l Although the OPTIONS (V ARIABLE) attribute is used, you must
use commas as placeholders for intermediate arguments. You do
not need to include placeholders for trailing default arguments.

8-28 Examples of Calling CMS

(

(

B.10 Calling CMS from SCAN

Example B-10 shows the use of CMS$FETCH_OPEN, CMS$FETCH_
GET, and CMS$FETCfLCLOSE to retrieve the latest generation of an
element and replace all white space with a single space. The file is then
written to SYS$OUTPUT.

Example B-10: SCAN Example

MODULE cms_example;

!+
! This example program accesses the CMS library pointed to by the CMS$LIB
! logical name. It prompts for an element name, and then displays its
! contents.
!-

!+
! Declarations.
1-
TYPE cms_fdb : FILL (20);

CONSTANT cms$-Dormal EXTERNAL INTEGER;
CONSTANT rms$_eof EXTERNAL INTEGER;
CONSTANT scn$_endinpstm EXTERNAL INTEGER;
CONSTANT ss$-Dormal EXTERNAL INTEGER;

EXTERNAL PROCEDURE cms$fetch-open
(REFERENCE cms_fdb,

DESCRIPTOR DYNAMIC STRING,
DESCRIPTOR DYNAMIC STRING,
DESCRIPTOR DYNAMIC STRING,
REFERENCE BOOLEAN,
REFERENCE BOOLEAN,
DESCRIPTOR DYNAMIC STRING,
REFERENCE INTEGER) OF INTEGER;

EXTERNAL PROCEDURE cms$fetch-get
(REFERENCE cms_fdb,

DESCRIPTOR DYNAMIC STRING,
REFERENCE INTEGER,
DESCRIPTOR DYNAMIC STRING,
REFERENCE INTEGER) OF INTEGER;

EXTERNAL PROCEDURE cms$fetCh-close
(REFERENCE cms_fdb,

REFERENCE INTEGER) OF INTEGER;

Example B-10 Cont'd. on next page

I

Examples of Calling CMS 8-29

Example B-10 (Cont.): SCAN Example

1+
Global values shared between the procedures.

1-
DECLARE fdb : cms_fdb;
DECLARE status INTEGER;
DECLARE buffer : DYNAMIC STRING;

1+
1 Simple token and macro to compress a sequence of blanks and tabs

to a single blank.
1-
TOKEN space { { , , I s'ht' } ..• }
MACRO compress TRIGGER { space }

ANSWER' ';
END MACRO 1* compress *1;

1+
1 Input procedure to read the lines of the CMS element.
1-
PROCEDURE read~ine

1+

1-

(buffer_length : INTEGER, ~
buffer_ptr : POINTER TO FIXED STRING (132)) OF INTEGER;

status = cms$fetc~et(fdb, buffer, *, *, *);
IF status = rms$_eof m
THEN

RETURN scn$_endinpstm;
ELSE

buffer_length = LENGTH(buffer);
buffer_ptr -> = buffer;
RETURN ss$~ormal;

END IF;

END PROCEDURE 1* rea~ine *1;

Main procedure that "opens" the cms element, scans the input
stream, and "closes" the cms element.

PROCEDURE main MAIN;

DECLARE element~ame : DYNAMIC STRING;

READ PROMPT ('element name: ,) element~ame; m
status = cms$fetch-open (fdb, 'CMS$LIB', element~ame,

*, TRUE, TRUE, *, *); m

Example B-10 Cont'd. on next page

8-30 Examples of Calling CMS
\
'-,

(

(

Example B-10 (Cont.): SCAN Example

START SCAN
INPUT PROCEDURE read_line
OUTPUT FILE 'sys$output';

status = ems$feteh-elose(fdb, *);
END PROCEDURE /* main */;

END MODULE /* ems_example */;

Key to Example 8-10:

D

Ial
If]

II

~

m

A fetch data block of 20 bytes (5 longwords) is declared.

The compress macro performs the space compression.

Procedure read_line calls CMS$FETCH_GET to read the lines.

At the end of the input, the program returns SCN$_ENDINPSTM to
indicate that there is no more data.

This line prompts the user to provide an element name.

Asterisks mean that these parameters are being omitted.

Examples of Calling eMS 8-31

(

A
Access control list • 2·147
Access types • 2·1
Address data type • 1·7
ANNOTATE • 2·3 to 2·10
Argument

data type • 1·6
flag. 1·11
history • 2·25

FETCH • 2·79
MODIFY_ELEMENT· 2·108

notes
CREATE_ELEMENT· 2·25
FETCH • 2·80
MODIFY_ELEMENT· 2·109

null • 1·6
passing • 1·4 to 1·7
placeholder • 1·6
position

CREATE_ELEMENT. 2·26
FETCH • 2·80
MODIFLELEMENT· 2·109

user·defined • 1·17
ASYNCH_TERMINATE·2·11
Attribute

B

notes • 2·25, 2·80, 2·109
position • 2·26, 2·80, 2·109
reference copy • 2·19, 2·27, 2·110

Bitmasks • 1·12
By descriptor passing mechanism • 1·5

INDEX

By immediate value passing mechanism • 1·4
By reference passing mechanism. 1·4

c
Callback routine • 1·15 to 1·21

command line • 1·18
confirmation • 1·17
output • 1·18
prompt. 1·18
writing • 1·16

Calling CMS routines • 1·2 to 1·4
Char_string data type. 1·7
Class

creating • 2·22
deleting • 2·38
modifying • 2·103
showing • 2·167

CMS$ANNOTATE • 2·3 to 2·10
CMS$ASYNCH_ TERMINATE • 2·11
CMS$CMS • 2·12 to 2·16
CMS$COPY _ELEMENT • 2·17 to 2·21
CMS$CREATE_CLASS • 2·22 to 2·23
CMS$CREATE_ELEMENT. 2·24 to 2·31
CMS$CREATLGROUP • 2·32 to 2·33
CMS$CREATLLlBRARY. 2·34 to 2·37
CMS$DELETE_CLASS • 2·38 to 2·39
CMS$DELETE_ELEMENT • 2·40 to 2·42
CMS$DELETE_GENERATION • 2·43 to 2·46
CMS$DELETE_GROUP • 2·47 to 2·48
CMS$DELETE_HISTORY • 2·49 to 2·55
CMS$DIFFERENCES • 2·56 to 2·75
CMS$FETCH • 2·76 to 2·82
CMS$FETCH_CLOSE • 2·83 to 2·84

Index-1

CMS$FETCH_GET • 2-85 to 2-88
CMS$FETCH_OPEN • 2-89 to 2-91
CMS$GELSTRING • 2-92
CMS$INSERLELEMENT • 2-93 to 2-95
CMS$INSERLGENERATION • 2-96 to 2-99
CMS$INSERLGROUP • 2-100 to 2-102
CMS$MODIFY _CLASS • 2-103 to 2-106
CMS$MODIFY _ELEMENT. 2-107to 2-111
CMS$MODIFY _GENERATION • 2-112 t02-114
CMS$MODIFY _GROUP. 2-115 to 2-117
CMS$MODIFY _LIBRARY· 2-118 to 2-119
CMS$PULSTRING • 2-120 to 2-121
CMS$REMARK • 2-122 to 2-123
CMS$REMOVE_ELEM ENT • 2-124 to 2-126
CMS$REMOVE_GENERATION • 2-127 to 2-129
CMS$REMOVE_GROUP. 2-130 to 2-132
CMS$REPLACE • 2-133 to 2-140
CMS$RETRIEVE..ARCHIVE. 2-141 to 2-142
CMS$REVIEW_GENERATION. 2-143 to 2-146
CMS$SET..ACL· 2-147 to 2-150
CMS$SELLIBRARY. 2-151 to 2-154
CMS$SELNOLIBRARY· 2-155 to 2-156
CMS$SHOW..ACL. 2-157to 2-160
CMS$SHOW..ARCHIVE· 2-161 to 2-166
CMS$SHOW_CLASS. 2-167 to 2-170
CMS$SHOW_ELEMENT. 2-171 to 176
CMS$SHOW_GENERATION • 2-177 to 2-185
CMS$SHOW_GROUP. 2-186to 2-190
CMS$SHOW_HISTORY. 2-191 to 2-198
CMS$SHOW_LlBRARY • 2-199 to 2-203
CMS$SHOW_RESERVATIONS. 2-204 to 2-210
CMS$SHOW_REVIEWS_PENDING • 2-211 to 2-216
CMS$SHOW_VERSION • 2-217 to 2-218
CMS$UNRESERVE • 2-219 to 2-222
CMS$VERIFY • 2-223 to 2-225
CMS$WIDTH • 2-16, 2-36, 2-153
CMSLEOF· 1-14, 1-20
CMSLEXCLUDE • 1-20
CMSLEXCLUDE return code • 2-54
CMS$_INUSE. 1-15
CMS$_NORMAL • 1-20
CMS$_PROCEEDING .1-15
CMS$_STOPPED .1-20
CMS$_WAITING. 1-15
CMS image • 1-25

2-lndex

CMS routines
See individual routines

CMSSHR.EXE shareable image • 1-25
Cntrlblk data type • 1-7
Command line routine • 1-18
Concurrent flag example • 1-11
Condition values • 1-14
Confirmation callback routine • 1-17
Confirmation prompts • 1-18
COPY_ELEMENT • 2-17 to 2-21
CREATE_CLASS· 2-22 to 2-23
CREATE_ELEMENT. 2-24 to 2-31
CREATE_GROUP· 2-32 to 2-33
CREATE_LIBRARY· 2-34 to 2-37

D
Data block

fetch • 1-10
library • 1-8 to 1-10

Data types • 1-6 to 1-7
Date_time data type· 1-7
DELETE_CLASS • 2-38 to 2-39
DELETLELEMENT • 2-40 to 2-42
DELETE_GENERATION • 2-43 to 2-46
DELETE_GROUP • 2-47 to 2-48
DELETE_HISTORY • 2-49 to 2-55
DIFFERENCES • 2-56 to 2-75

E
Element

copying • 2-17
creati ng • 2-24
deleting • 2-40
inserting • 2-93
modifying • 2-107
removing • 2-124
showing • 2-171

Entry points
See individual routines

Error conditions • 1-21
Error message handler writing • 1-21

/'

(
F L
FDB LBD

See Fetch data block See Library data block
FETCH • 2-76 to 2-82 LlB$ESTABLISH routine • 1-23
Fetch data block • 1-10 Library
FETCH_CLOSE • 2-83 to 2-84 creating • 2-34
FETCH_GET • 2-85 to 2-88 modifying • 2-118
FETCH_OPEN • 2-89 to 2-91 removing • 2-155
Flag • 1-11 to 1-12 setting • 2-151

show • 2-199

G Library data block • 1-8 to 1-10
content • 1-10

Generation definition • 1-2

deleting • 2-43 size • 1-8

inserting • 2-96 Library selection • 2-151, 2-154

modifying • 2-112 Linking with the CMS image • 1-25

removing • 2-127 Longword_signed data type· 1-7

reviewing • 2-143
M showing • 2-177

GELSTRING • 2-92
Group Masks • 1-12

creating • 2-32 MaslUongword data type. 1-7

(deleting • 2-47 Mechanism array • 1-22
inserting • 2-100 Message handler routine • 1-22 to 1-23
modifying • 2-115 MODIFY_CLASS • 2-103 to 2-1 06
naming • 2-32 MODIFY_ELEMENT. 2-107to 2-111
removing • 2-130 MODIFY_GENERATION. 2-112t02-114
showing • 2-186 MODIFY_GROUP. 2-115 to 2-117

MODIFY_LIBRARY • 2-118 to 2-119

H
N

History
argument • 2-25, 2-79, 2-108 Notes attribute • 2-25
deleting • 2-49 Null argument· 1-6
list • 2-25, 2-79, 2-108
showing • 2-191 0

I Output routine • 1-18

Image p
CMS • 1-25

INSERLELEMENT • 2-93 to 2-95 Passing arguments to eMS routines • 1-4
INSERLGENERATION • 2-96 to 2-99 Passing mechanisms • 1-4
INSERLGROUP· 2-100t02-102 Passing string descriptors • 1-5

Passing string indentifiers • 1-19

« Index-3

Placeholder argument • 1-6
Position attribute • 2-26
Predecessor • 2-81
Procedure data type • 1-7
Prompt routine • 1-18
PULSTRING. 2-120 to 2-121

R
Reference copy attribute • 2-27
REMARK • 2-122 to 2-123
REMOVE_ELEMENT. 2-124 to 2-126
REMOVE_GENERATION. 2-127 to 2-129
REMOVE_GROUP. 2-130 to 2-132
REPLACE • 2-133 to 2-140
Reserving an element • 2-76
RETRIEVE-.ARCHIVE· 2-141 to 2-142
Return codes • 1-14

CMSLEOF· 1-14, 1-20
CMS$_EXCLUDE. 1-20,2-54
CMSLINUSE. 1-15
CMS$_NORMAL • 1-20
CMSLPROCEEDING. 1-15
CMS$_STOPPED • 1-20
CMSLWAITING ·1-15

REVIEW_GENERATION • 2-143 to 2-146
Routines

See individual routines

s
SET -.ACL· 2-147 to 2-150
SET_LIBRARY. 2-151 to 2-154
SELNOLIBRARY· 2-155 to 2-156
Shareable image • 1-25
SHOW-.ACL. 2-157 to 2-160
SHOW-.ARCHIVE • 2-161 to 2-166
SHOW_CLASS· 2-167 to 2-170
SHOW_ELEMENT • 2-171 to 2-176
SHOW_GENERATION. 2-177 to 2-185
SHOW_GROUP. 2-186 to 2-190
SHOW_HISTORY. 2-191 to 2-198
SHOW_LIBRARY • 2-199 to 2-203
SHOW_RESERVATIONS· 2-204 to 2-210
SHOW_REVIEWS_PENDING • 2-211 to 2-216
SHOW_VERSION. 2-217 to 2-218
Signal array • 1-22

4-lndex

String descriptor • 1-5
String identifier • 1-19
SYS$SHARE:CMSSHR.EXE shareable image.
1-25

u
Undefined data type • 1-7
Universal symbol • 1-14
UNRESERVE • 2-219 to 2-222
User-defined argument • 1-17

v
Value

condition • 1-14
VectoUongword_unsigned data type. 1-7
VERIFY • 2-223 to 2-225

w
Writing callback routines • 1-16
Writing message handler routines • 1-23

)

(

(~

Reader's Comments VAX DEC/Code Management System
Callable Routines Reference Manual

AI-Z340C-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) 0
Completeness (enough information) 0
Clarity (easy to understand) 0
Organization (structure of subject matter) 0
Figures (useful) 0
Examples (useful) 0
Index (ability to find topic) 0
Page layout (easy to find information) 0

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

Good

o
o
o
o
o
o
o
o

I am using Version ___ of the software this manual describes.

Name/Title Dept.

Company

Mailing Address

Phone

Fair Poor

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Date

-- Do Not Tear - Fold Here and Tape ---------------------------------------

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

11111 ••• 11.1111 •• 1111.,1.11.1111.1111 •• 1.1,"1.11111

No Postage
Necessary
if Mailed

in the
United States

-- Do Not Tear - Fold Here --

