

2.3.2

The Beginner·s Guide to the Spit Brook Production System

Creating Paragraphs: < P >

A < P > tag creates a new paragraph l)f text formatted
according to the current context. For if th,e tag
occurs within a list, the paragraph rakes on the margins of
the list. In an example or table, the paragraphs take on the
format of the sections inside the example or table.

Notice the relationship of paragraphs created with <P> tags
in Example 2-2.

2-6

The Beginner's Guide to the Spit Brook Production System

Example 2-2 Paragraph Tags

Input Copy

<P>
Thia paragraph will have the default left margin
aince it does not occur within a list.
<ULIST>
<LE>
Liat Item t1
<LE>
Liat Item #2
<LE>
Liat Item 13
<P>
Thia paragraph has the same left margin as the list
element preceding it.
<ELS>

Output File

This paragraph will have the default left margin
since it does not occur within a list.

• List Item # 1

• List Item #2

• List Item # 3

This paragraph has the same left margin as the
list element preceding it.

2-7

2.3.3

The Beginner's Guide to the Spit Brook Production System

Creating Lists: < ULIST >' <LE> ' and <ELS>

The <ULIST> tag marks the beginning uf an unordered list.
An unordered list is a series of items preceded by bullets (or
by a user-defined character). Other types ot lists are available
in SDML:

• < NLIST > - numbered list

• < SLIST > - simple list

• < NOTEDLIST > - list with callouts

• <ALPHALIST> - list ordered by A. B. C, etc.

Each of these lists is constructed with < LE> tags and ends
with an <ELS> tag. Different types of lists represent different
types of information. For example, a numbered list indicated
a sequence of items, an unordered list indicates that the
items are merely members of a group.

is distinguished by an em dash, contains a paragraph within
it, and is followed by a full-sized paragraph.

2-8

The Beginner·s Guide to the Spit Brook Production System

Example 2-3 List Tags

Input File

<ULIST>C---)
<LE>
Li•t IteJU fl
<P>
The fir•t li•t item in an unordered list.
<LE>
Liat Item #2
<P>
The aecond list item.
<LE>
List Item #3
<P>
The third liat :tem.
<ELS>
<P>
Bullets precede list itema when no argument
follow• the < ULIST > tag

Output Copy

List Item #1

The first list item in an unordered list.

List Item #2

The second list item.

List Item #3

The third list item.

Bullets precede list items when no argument
follows the < ULIST > tag.

2-9

The Beginner·s Guide to the Spit Brook Production System

2.4 Creating Examples

Most of your text will be lists or paragraphs. identified by
a heading. But along with your text. yl'u '11 usually \Vant to
include many examples so your reader sees exactly \'\'hat
you're describing.

Just with the appearance of a page, you can show a reader
that:

• an example is signified by different text.

• the example shows the difference (perhaps a different
color or a different typeface) between computer output
and user input.

• the example is one of a series or a single illustration of a
point.

In addition, you can list the example in the table of contents
with a number and caption. This is a formal example, and
you can cross-reference it in other parts of your book. SDML
constructs formal examples similarly to tables and figures.
Since the concepts are so much the same, formal example
tags are presented in Chapter 4 along with tables and figures.
Keep in mind ... any single informal example can easily
become a formal example by adding (not changing) SDML
tags. Chapter 4 contains examples showing an input file and
an output copy.

An informal example is usually a short illustration of a point
that needn't be listed in the table of contents, or captioned,
or cross-referenced. A series of examples are also considered
informal. They are handled by a special set of SDML tags
that allow for intervening explanations. A series is not tagged
as a formal example because a reference to a series of items is
not very helpful to a_ reader.

2-10

2.4.1

The Beginner's Guide to the Spit Brook Production System

Types of Informal Examples

This section discusses the following tags for creating an
informal example:

Tag Purpose

<CODEXAMPLE> Begins a coded example.

< ENDCODEXAMPLE > Ends a coded examole.

<DISPLAY> Labels screen output

<ENDDISPLAY> Ends screen output.

<INTERACTIVE> Begins an interactive example.

< s > Indicates a system prompt or response in
an interactive example

< u > Indicates a user response or request in an
interactive example.

< ENDINTERACTIVE > Ends an- interactive example.

This section also discusses the tags that label a series of
informal examples:

Tag

<EXAMPLES>

< ENDEXAMPLES >

<EXC>

<EXI>

<S>

<U>

<EXTEXT>

Purpose

Begins a series of informal examples.

Ends a series of informal examples.

Specifies a coded example within a series
of formal or informal examples.

Specifies an interactive example within a
series of formal or informal examples.

Indicates a system prompt or response in
an interactive series.

Indicates a user response or request in an
interactive series.

Labels the explanation of the preceding
coded or interactive example.

Illustrations of each of these tags follow in this section.

2-11

2.4.2

The Beginner's Guide to the Spit Brook Production System

Creating An Informal Code Example: < CODEXAMPLE >
and < ENDCODEXAMPLE >

Code examples refer to illustrations of St ;u1 (t' code,• meaning:

• the lines of a program

• the text from a generically coded file, or

• the commands from a command procedure.

Code examples are 11ot illustrations of screen output,
formatted text, or processed files. Those items are separate
structural elements, treated in a different manner by the
typesetter, and have their own SDML tags associated with
them.

For Very Short Examples

You can pass a short code e"ample as an argument (in
parentheses) to the <CODEXAMPLE> tag.

<codexaaple>(OPEH/11.ITE OUTFILE FILE.DAT)

If you surround the argument in parentheses, you do not use
the < ENDCODEXAMPLE > tag.

For longer examples, leave the parentheses out, enter the
example exactly as you wish to see it, and end the example
with < ENDCODEXAMPLE >.

For Wide Examples

If you think the lines will not fit in the margins, use the
optional \WIDE argument illustrated in Example 2-4.

2-12

The Beginner's Guide to the Spit Brook Production System

Example 2-4 Informal Code Example

Input File

<CODEXAMPLE >(wide)
! Thia example muat be coded "wide" because it ia a very long line.
< ENDCODEXAMPLE >

Output Copy

This example must be coded •wide" because it i• a very long line.

2.4.3

2.4.4

Creating An Informal Display Example: <DISPLAY> and
<EN DD ISP LAY>

Naturally, when writing a software manual. you'll want to
show exactly what appears on the screen. Terminal output
can be tagged with the <DISPLAY> tag. This tag gives you
the freedom to enter blank lines, spaces, centered· text,
etc., exactly as it is seen on the terminal.· For accurate
results, format the display without using tab stops. Handle
wide displays by using the WIDE argument illustrated in
Example 2-4.

Creating An Interactive Example: <INTERACTIVE>, <S>,

< u >I < ENDINTERACTIVE >

Interactive examples illustrate a dialog between the
user and the system. Like the <CODEXAMPLE> and
<DISPLAY> tags, there is a beginning tag and an ending
tag. The <INTERACTIVE> tag begins the example, and the
<ENDINTERACTIVE> tag ends it. However, hvo more tags are
used within the example to differentiate between the user
and the system. These are:

• < s >-identifies the system prompt or response.

• < u >-identifies the user response or request.

2-13

The Beginner's Guide to the Spit Brook Production System

Example 2-5 Informal Display Example

Input File

<DISPLAY>

< ENDDISPLAY >

Output Copy

2-14

The <TAG>(diaplay) tag
recognizes

The <DISPLAY> tag
recognizes

apace•.

1pacee.

The Beginner's Guide to the Spit Brook Production System

Example 2-6 Informal Interactive Example

2.4.5

Input File

<INTERACTIVE>
< S >(Request?:) < U > (Hameofnode)
< S > (Uaername :) < U > (Yourname)
< S > (Pasaword:) < U > (Hoecho !)
< ENDINTERACTIVE >

Output Copy

R.eque•t?:Nameofnode
Uaername:Yourname
Paaaword:Noecho!

Creating A Series of Informal Examples: <EXAMPLES>,

< EXC >, < EXI > l < EXTEXT >' and < ENDEXAMPLES >

Creating a series of examples using the <EXAMPLES> tag
means you have a number of options:

• Numbering the example series.

• Preceding the series with a heading.

• Creating code or display examples.

• Following each example with an explanation or result.

The <EXAMPLES> tags, like the group of list tags, work
together as a team. With the group of examples tags,
however, your choices multiply. Once more, look at the
tags that you'll use to create example series:

Tag Purpose

2-15

The Beginner's Guide to the Spit Brook Production System

<EXAMPLES>

< ENDEXAMPLES >

<EXC>

<EXI>

<S>

<U>

<EXTEXT>

Begins a senes Gf informal examples.

Ends a series of informal examples.

Specifies a :oded example within a series
of formal or mformal examples.

Specifies an interactive example within a
series of formal or informal examples.

Indicates a system prompt or response in
an interactive example.

Indicates a user response or request in an
interactive example.

Labels the explanation of the preceding
coded or interactive example.

The first tag, the <EXAMPLES> tag, has two optional
arguments for heading information. These arguments specify
numbering, special headings, or default headings:

.
<EXAMPLES> ([heading-info] [\heading-info])

The brackets around each argument indicate optional
arguments. If you use the default, the examples are
numbered and preceded by an "Examples" heading.

You have the following options for Dzeading-infoJ:

• Example-Suppresses the number and causes the singular
heading "Example" to be output (when there is only one
example).

• Nonwnber-Supresses the number. Nonumber must be
passed as the second argument.

• Noheaci-Prevents the output of a heading for the section.
Examples will still be numbered.

• Heading-text-Causes the supplied heading text to replace
the default "Examples".

The following examples illustrate three example series. The
first is the default series of numbered examples preceded
by the heading "Examples. The second illustrates a single
"Example" with no numbers, and the third replaces the
heading and suppresses the numbers.

2-16

The Beginner·s Guide to the Spit Brook Production System

Example 2-7 Informal Example Series (With Numbers)

Input File

<EXAMPLES>
<EXC>
Progranaing code
<EXTEXT>
The.function performed by this code
<EXC>
Prograllllling code
<EXTEXT>
The function performed by this code ..
<EXC>
Programming code
<EXTEXT>
The function performed by this code ...
< ENDEXAMPLES >

Output Copy

EXAMPLES
D Progranaing code

The function performed by this code ...

~ Progruming code

The function performed by this code ...

Prograllllling code

The function performed by this code ...

2-17

The Beginner's Guide to the Spit Brook Production System

Example 2-7 Informal Example Series (Single Example)

EXAMPLE

Programming code

Input File

<EXAMPLES> (example)
<EXC>
Programming code
<EXTEXT>
The function performed by this code ...
< ENDEXAMPLES >

Output Copy

The function performed by this code ...

2-18

The Beginner's Guide to the Spit Brook Production System

Example 2-7 Informal Example Series (With Replaced Heading)

Input File

<EXAMPLES>CS:imple Programming Examples)
<EXC>
Programming code
<EXTEXT>
The function performed by this code ..
<EXC>
Programming code
<EXTEXT>
The function performed by this code ...
<EXC>
Programming code
<EXTEXT>
The function performed by this code ...
< ENDEXAMPLES >

Outp~t Copy

SIMPLE
PROGRAMMING
EXAMPLES

D Programming code

The function performed by this code ...

~ Progrumi.ng code

The function performed by this code ...

Progrllllllling code

The function performed by this code ...

2-19

3

3.1

Informal Lists

Types of Lists

Some lists help the reader draw associations by grouping
items in columns and rows, or by name and definition. The
following tags are for definition lists, parameter lists, qualifier
lists, and columned lists.

List Type

< TWOCOLLIST >

< THAEECOLLIST >

< FOUACOLLIST >

<DEFLIST>

< PAAAMDEFLIST >

< OUALDEFLIST >

Purpose

Begins a two column list .
Begins a three column list

Begins a four column list

Begins a definition list

Begins a parameter list

Begins a qualifier list

Each list has associated tags that mark the heading, the list
items, and the ending of the list.

3.2 Creating Columned Lists

SDML has tags that automatically line up columns and align
numerical characters. All you have to specify is:

• the type of columned list

• · the width of the column

• column headings

• column items.

The simplest columned list is nvo columns. A definition list
and a two column list are both hvo columns, but their use is
determined by the nature of the information.

3-1

3.2.1

3.2.2

Informal Lists

Three column, four column, and five column lists are created
using the same principles as the hvo column list illustrated
below. For more information and examples. refer to The
SDML Llser's Guide.

A Two Column List

This section discusses the following tags for creating
columned lists:

Tag Purpose

<TWOCOLLIST > Begins a two column list.

< TWOCOLLIST Labels column headings.
HEADS>

<TWOCOLS > Labels column items.

<ENOTWOCOLLIST> 'Ends a two column list.

Look at the following input file and output copy for an
example of a hvo column list:

A Definition List

This section discusses the following tags for creating
definition lists:

Tag

<DEFLIST>

< DEFLIST_HEADS >

<DEFITEM>

<DEFDEF>

< ENDDEFLIST >

Purpose
Begins a two column list.

Labels definition list headings.

Names the item to be defined.

Begins the definition.

Ends a definition list.

Look at the following input file and output copy for an
example of a definition list:

3-2

Informal Lists

Example 3-1 A Two Column List

Input File

< TWOCOLLIST > (26)
<TWOCOLLIST_HEADS>(Firat Colwnn\Sec:ond Column)
< TWOCOLS >Citm\Item)
<TWOCOLS >(Itaa\Item)
< TWOCOLS >(Item\ Item)
< TWOCOLS > (Item\ Item)
< TWOCOLS > (Itaa\Item)
< ENDTWOCOLLIST >

Output Copy

Second
First Column Column

Item Item

Item Item

Item Item

Item Item

Item Item

Notice that the list, though identified by headings, does not
have a reference number or a caption. It also will not be
listed in the table of contents unless you include it as formal
table. See Chapter 4 for an introduction to tags that mark a
table, example, or figure as a formal text element.

3-3

Informal Lists

Example 3-1 A Definition List

Input File

< DEFLIST>(10)
< DEFLIST HEADS >(Item\Defini tion)
<DEFITEM>(It11111 #1) <DEFDEF>Definition .. .
<DEFITEM>(Item #2) <DEFDEF>Definition .. .
<DEFITEM>(Item #3) <DEFDEF>Definition ..
<DEFITEM>(Item #4) <DEFDEF>Definition ...
< ENDDEFLIST >

Output Copy

Item Definition

Item #1 Definition ...

Item #2 Definition ...

Item #3 Definition ...

Item #4 Definition ...

3.3 For More Information

When you become proficient at creating columned lists,
you'll use them quite often since they concentrate information
tightly and without a lot of extra words.

You'll also find yourself demanding more sophisticated
control from SDML. For example, you may find that a table
extends over several pages or perhaps it is too wide for the
document type.

These instructions can be passed as arguments to the tag
that begins the list. For examples and correct syntax, see The
SDML User's Guide.

3-4

4

4.1

Introduction To Formal Examples,
Tables, and Figures

Characteristics of a Formal Text Element

Formal text elements were designed into the Spit Brook
Production System to solve a number of documentation
problems. By creating a formal example, table, or figure,
you create an easy way to reference the item, include a
separate file during processing, or reserve part of a page for
production services after typesetting.

The most obvious features of a formal text element are:

• A unique number and label (Figure 2, Table 3, etc.)

• A caption (Figure 2-4 "Fruits and Vegetables": Graphics
With The Pro 350)

• Automatic entry into the Table of Contents

4.2 The Formal Tags

In this chapter you will create a formal table, define a
symbolic name for it, and set up the columns inside. You'll
see that the process is very similar for a table, example, or
figure.

The tags you will use are listed in Table 4-1:

Table 4-1 Tags For Formal Examples, Figures, and Tables

Tag Description

4-1

Introduction To Formal Examples. Tables, and Figures

<EXAMPLE>

<EXAMPLE CAP>

< EXAMPLEFILE >

< NEXTPAGE>

< ENDEXAMPLE >

<FIGURE>

<FIGURE CAP>

< FIGUREFILE >

< FIGURESPACE >

< FULLPAGEFIG >

<NEXTPAGE>

< L!NE ART>

< ENDLINE ART>

< ENDFIGURE >

<TABLE>

<TABLECAP>

< TABLEFILE >

<FIRST VALID
BREAK>

<LAST VALID
BREAK>

<ALIGN CHAR >

<END ALIGN CHAR>

<ENOTABLE>

Begins a formal example

Labels the example

Includes a separate file

Determines page breaks in an example

Ends a formal example

Begins a figure

Labels the figure

Includes a separate file

Reserves requested space tor board art

Reserves a full page

Determines page breaks in a figure

Labels a sketch drawn at the terminal .

Ends <LINE ART>

Ends a fi_gure

Begins a table

Labels the table

Includes a separate file

Marks the first possible break

Marks the last possible break

Used to align numbers in columns

Ends <ALIGN CHAR>

Ends a table

Examples for tags not illustrated later in this chapter can be
found in The SDML User's Guide.

4-2

Introduction To Formal Examples. Tables. and Figures

4.3 Creating a Simple Formal Table

The following tags are all you need to include in your file to
create a formal table:

Table Tag

<DEFINE >(graphics_table\1)

<TABLE> (<graphics_ table>)

< TABLECAP >(Graphics
Commands)

<ENDTABLE>

Description

The <DEFINE> tag creates
the symbolic name "graphics_
table" and gives it a current
value of 1 . (See Chapter 5 for
an introduction to symbolic
names.)

The <TABLE> tag begins the
table.

The <TABLE CAP> tag labels
the table with a caption)

The <ENDTABLE> tag ends
the table.

Now, how does your information get sorted into columns
and rows? TEXMAC, the macro processor translates the tags
into a text formatter, and it is the text formatter's job to place
the information correctly on the page. You need not worry
about the end format when you use an SDML tag, however.

Remember, formal tags are solutions to documentation
obstacles. If you have a definition list or three column list
that you'd like to reference, label, and add to the table of
contents, surround it with table tags. Column list, definition
list, and parameter, qualifier, and keyword list structures can
all be used within the <TABLE> tags.

Formal Examples and Figures

Similar to a simple table, all you need to create a formal
example or figure are these tags:

Example Tags Figure Tags

4-3

Introduction To Formal Examples. Tables. and Figures

<DEFINE >(symbolic name\value)

<EXAMPLE> (symbolic name)

< EXAMPLECAP >(Caption)

< ENDEXAMPLE >

<DEFINE> (symbolic
name\value)

<FIGURE> (symbolic name)

<FIGURE CAP> (caption)

<FIGURES PACE>

< ENDFIGURE >

All informal examples (except for example series) can be
made into formal examples with the <EXAMPLE> tags.

At this stage of the Spit Brook Production System's
development, all figures are placed in the document at final
production.

Look at the following input file and output copy for an
example of a formal table:

Notice that there are two end1ng tags: one for the table and
one for the twocollist.

4.4 Summary

The formal tags create the caption, the symbolic name
for cross-referencing, and the table of contents entry.
Remember, however, that you still need to provide a logical
text element within the formal tags. For a formal table, you
can use definition lists, parameter definition lists, qualifier
definition lists, and any columned list. For an example
you can use a codexample, display example, or interactive
example. At this stage of development, the Spit Brook
Production System incorporates all art through Graphics
Services, so you must leave an adequate amount of white
space on the page when you want to incorporate a figure.

For more examples, see The SDML User's Guide.

4-4

Introduction To Formal Examples. Tables. and Figures

Example 4-1 A Formal Table Example

Input File

<TABLE>(<SAMPLE_ TABLE>)
<TABLECAP>(Sample Table--Formal)
< TWOCOLLIST > (25)
< TWOCOLLIST HEADS> (First Column \Second Column)
<TWOCOLS >(Item\ Item)
<TWOCOLS >(Item\Itam)
<TWOCOLS>(Item\Itut)
<TWOCOLS >(Item\ I tam)
< TWOCOLS > (Item\ I tam)
< ENDTWOCOLLIST >
<ENDTABLE>

Output Copy

Table 4-2 Sample Table-Formal

First Column

Item

Item

Item

Item

ttem

Second Column

Item

Item

Item

Item

Item

4-5

5 Defining Symbolic-name Tags

5.1 Why Use Symbolic-name Tags?

Most of the time as you \Nrite documentation, developers
continue to test and improve their product. A small change
in a routine name or the sequence of a procedure can cause
the well-known "rippling effect": not only have you written
the section already, you've mentioned it, cross-referenced
it, and indexed it from four other chapters in the manual. A
symbolic name is a tool to make all the necessary changes
automatic.

Example

In the following case, the writer created an example and gave
it the symbolic name "abc_ example."

<DEFINE> (abc_example\4)

<EXAMPLE> (< ABC_EXAMPLE >)
<EXAMPLE_ CAP> (Uaing The ABC Connand)

< ENDEXAMPLE>

<P>See Example <EXREF>(<abc_example>) for further information.

5-1

Defining Symbolic-name Tags

Result

The five lines in the example do the following:

• The <DEFINE> tag "legalizes,, the tag <ABC_ EXAMPLE> to
use anywhere in the document. The curtent value of the
tag is 4. Changing the value in the <DEFINE> tag changes
the value of every occurrence of <ABC_EXAMPLE>.

• The <EXAMPLE> tag begins the example and names it.

• The <EXAMPLECAP> tag supplies the caption.

• The <ENDEXAMPLE> tag ends the example.

• The < EXREF > tag labels the reference to the example from
another paragraph in the document.

When information changes, change only the definition tag,
and the changes are reflected throughout the document.

5 .2 Where To Use SymboJic-Name Tags

This chapter explains defining and using symbolic name
tags in your developing document. The procedure you use is
essentially the same for each text element; only the individual
tags differ.

Text elements that you can name and cross-reference are:

Text Element

Appendixes

Call outs

Chapter titles

Example titles

Figure titles

Glossary samples

Section titles

Tables

Reference Tag

< AXREF > (<symbolic_ name>)

<CALLOUT_ REF>(< symbolic_
name>)

< CHAPREF > (<symbolic_ name>)

< EXREF >(< symbolic_name >)

< FIGREF > (<symbolic_ name>)

< GREF > (<symbolic_ name>)

< SECREF > (<symbolic_ name>)

< TABREF > (<symbolic_ name>)

Each symbolic name must be related to an associated
<DEFINE> tag. Using a symbolic name without a definition

5-2

Defining Symbolic-name Tags

causes an error at processing. Your symbolic name appears,
with angle brackets, in your output copy.

Notice again that angle brackets enclose the symbolic-names
because the <DEFINE> tag actually defines the name as an
SDML tag.

5.3 Defining The Symbolic Name: The <DEFINE> Tag

The syntax for the <DEFINE> tag is:

<DEFINE> (symbolic-name \current value)

The first argument is the symbolic-name you choose for the
text element; the second argument is the value you believe is
current.

For example,

<DEFINE> (next_book\Beyond Fortran)

defines every occurrence of <NEXT_ BOOK> to read Beyond
Fortran.

Throughout the development of your document, you might
change that line to:

<DEFINE> (next_book\Fortran and the .lrt of Mot~rcycle Maintenance)

or,

<DEFINE> (next_book\Fortran Koana)

No matter what your decision about the upcoming title, you
can proceed to build all your references into the document
with the symbolic name, "<next_ book>".

5-3

Defining Symbolic-name Tags

5.4 Cross-referencing a Text Element With A Symbolic Name:
<AXREF>, <BOOKREF>, <CHAPREF>, (and More)

Once you create a figure, example, or chapter, you may want
to refer the reader to the text from somewhere else 'in the
document. Use the symbolic name in place of the actual
name or number to create the cross-reference.

The syntax of a cross-reference tag is:

< (XXX)REF > (<symbolic_name>)

For example, you might write:

See < BOOKREF > (<next_book>) for more examples, explanations, and wisdom.

Your currently defined value replaces the symbolic name at
processing.

5.5 Types of Symbolic-names: Local and Global

A symbolic name, and therefore its definition, is global if
referred to from another chapter or major section. It is local if
all references reside in the chapter where it originates.

Why does this matter? When you begin writing a document,
you might only have a few symbolic names, perhaps four
examples, three figures, a couple of chapters. But, your
document will mat'1!"e. Some documents have had as many
as two hundred definitions. If you divide the definitions
into several local files and one global file, you have a more
effective method of governing them.

Grouping the definitions or organizing them into separate
files centralizes all your potential "variables" and makes
updates simple.

5-4

Defining Symbolic-name Tags

5.6 Types of Definition Files: Local and Global

Once you understand the need for a central location of your
definitions, and the difference between local and glpbal
definitions, you're ready to create the local and global
definitions files.

Global Files

A global file is included only once in the document. Using
a line of code in your global file from Texmac, the text
processor, you can test to see if the global file has been
included. Including the global file only once when you
process more than one chapter makes the processing more
efficient.

<comment>(•• Include this global file only once. ••)

<define>(end_of_file\)
<ifdef>(alraady_includad\

l<ignora>(end_of_file)t\
l<define>(alraady_includad\)t)

<and_ of _file_>

Comment lines label sections of your input file to help you
remember or explain your code.

Local Files

Include the global file in your local file by using <INCLUDE>.
The following line uses the logical name GLOBALDEFS
for the file specification. (Logical names are widely used
in the Spit Brook Production System. See VaxNMS Primer,
Chapter 5 for an introduction to logical names for VMS file
specifications.)

<include>(GLDBALDEFS)

The remaining lines of your file will be <COMMENT> tags
and <DEFINE> tags for local definitions.

5-5

Defining Symbolic-name Tags

5.7 Summary

Creating and maintaining definitions may seem a little
confusing at first. It's an ongoing (rather circular) ptocess
throughout the development of the document, well worth the
effort once you master it. Once again for review, the typical
"life cycle" of a symbolic name might be like this:

Example

<DEFINE> (speca_tab\1)

<TABLE>(<SPECS_ TABLE>\multipage)
< TABLECAP >(Hardware Specifications)

<ENDTABLE>

<P>
If your configuration matches the apecif icationa in
table <TABREF>C <SPECS_ TABLE>), ...

Result

• The <DEFINE> tag "legalizes" the tag <SPECS_ TABLE> to
use anywhere in the document. The current value of the
tag is 1. Changing the value in the <DEFINE> tag changes
the value of every occurrence of <SPECS_ TABLE>.

• The <TABLE> tag begins the table and names it.

• The <TABLECAP> tag supplies the caption.

• The <ENDTABLE> tag ends the table.

• The <TABREF> tag references the table from another
paragraph in the document.

5-6

Defining Symbolic-name Tags

For More Information ...

If you are just learning SDML, you're probably more
concerned with getting an example, table, captioned figure,
or list "to process correctly than you are with processing the
document as a whole. For that reason, this section only
discusses defining and referencing symbolic-name tags ... that
is, the details you need to know to write your document.
Managing your definitions, your major sections, and your
current versions is covered in more detail in The SDML
Llser's Guide. Those tasks ·necessary for processing your entire
document are associated with what is sometimes called
"building your book."

5-7

6 Understanding Logical Structure

This chapter explains two fundamental principles of SDML:

• Documents can be divided into their component text
elements.

• Each text element can be named according to the logical
function it plays within the document.

6.1 Logical Structure Versus .Format

A document is made up of many component parts. For
example, most documents contain:

• . paragraphs

• lists

• headings

• tables

• examples.

Even finer distinctions exist in technical documentation, such
as:

• definition lists

• keyword definition lists

• parameter definition lists

• qualifier definition lists.

SDML provides a name tag for each text element within a
document. When you use SDML, you tag each text element
with its name.

When you name a text element with an SDML tag, you name
it according to its logical structure within the document.
When you name a text element, you supply no information at

6-1

6.1.1

6.1.2

Understanding Logical Structure

all about how that text element should look. You simply say
what that text element is.

Have You Ever Used Logical Structure Before? ·

Choosing an SDML tag to name a text element requires you
to think about the logical structure of the document rather
than how it might look. You choose a tag based on what the
text element is rather than how it will be displayed.

If you've written an outline for a college theme, lab report,
or thesis, you're alread familiar with logical structure. Each
of those documents a e onventional elements, such as
mtro uct10ns overviews, main body of text, various details,
and a summary or conclusion. Newspapers have a familiar
logical structure: headlines, text, advertising, and classified
adds. (Yet, the physical format between The New York Times
and the Daily Enquirer are very different.)

Thinking about logical structure rather than about format is
something that you may find difficult at first, especially if you
are familiar with controlling the format with a text formatting
language.

What Differe·nce Does It Make, Anyway?

After you have carefully distinguished each text element
within your document, you may be puzzled to find that the
formatted results of different tags are the same. In some
document types, logically distinct tags may result in the same
format - all italicized, boldfaced, or

in a particular style of type.

You may not be able to detect any difference in the text
elements by looking at your formatted results. That's OK.
You have still captured the information about logical structure
by using SDML.

In another context, your book design may call for a different
typographical representation for each element. For your
document to be truly portable to a new or different document
design, you must tag text elements according to their logical
structure, independent of any formatted results.

6-2

Understanding Logical Structure

6.2 How To Choose The Proper Tag

Choosing tags on the basis of logical structure implies that
there is a clear-cut choice of tag for each text element, but
at times you may be unsure about which tag is exactly right.
You and your editor must decide what differentiates an
argument from a parameter, for example, or a nvo-column
list from a definition list. There are three principles to follow
when you are unsure about which tag to use:

• Consult with your editor and come to an agreement.

• Use the tag consistently throughout the document.

• Use the tag consistently throughout the document set.

Table 1 explains the differences between tags for text
elements that often look the same in final output. The
"Description" column discusses the element's logical
function, not its final appearance.

Table 6-1 Explanations of Different Logical Structures

Text
Element Tag

Argument <ARGUMENT>

Key word <KEYWORD>

New term <NEWTERM>

Parameter <PARAM>

Value <VALUE>

Variable <VARIABLE>

Code Example < COOEXAMPLE >

Description

Any argument
passed to a routine

A system keyword

Newly introduced
term

A parameter to a
procedure

The contents of a
variable

The name of a
variable

The contents
of a file before
processing

6-3

Understanding Logical Structure

Table 6-1 (Cont.) Explanations of Different Logical Structures

Text
Element Tag Description

Display Example <DISPLAY> Output as it
appears on the
terminai

Interactive Example <INTERACTIVE> Dialog between
system and user

Math Example <MATH> A mathematical
example or
expression

Syntax Example <SYNTAX> Notational
convention

Sample Text < SAMPLETEXT > Text output from
text processor

Definition List <DEFLIST> Two-column list:
item and definition

Keyword Definition < KEYDEFLIST > Two-column list:
List keyword and

definition

Parameter Definition < PARAMDEFLIST > Two-column list:
List parameter and

definition

Qualifier Definition < QUALDEFUST > Two-column list:
List qualifier and

definition

6-4

A

A.1

Quick Reference

An Overview of SDML Tags

This Quick Reference is designed for those who know the
type of tag they want to use, but need to find the exact
syntax. The following lists organize SDML tags into two
classifications.

The two classifications are:

• Structural Tags. These tags label a specific text structure,
such as paragraphs, lists, or tables.

• Additional SDML Capabilities. These tags allow you to
work with the document, the text, or with SDML itself
to manipulate the text· structures or the document. For
example, you use the index tag within a paragraph or list
for the advantage of letting SDML create your index for
you.

These two classifications are divided into hvelve groups:

Structural Tags

Headings ·

Figures

Examples

Paragraphs

Notes and Footnotes

Lists

Tables

Front and Back Matter

Additional Capabilities

Emphasis

Keyboard Characters

SDML Tools

Cross-References

Special Characters

A-1

A.1.1

Quick Reference

Structural Tags

HEADINGS

Tag

<CHAPTER>

<HEAD1 >

<HEAD2>

<HEAD3>

<SUBHEAD1 >

<SUBHEAD2>

FIGURES

Tag

<FIGURE>

< FIGURECAP >

< FIGUREFILE >

< FIGURESPACE >

< FULLPAGEFIG >

<LINE ART>

<EN OLINE ART>

< ENDFIGURE >

A-2

Argument(s)

(number\title[\symbolic-name))

(head i ng-text\sym bolic
name[\GLOBAL])

(heading-text\symbolic
name[\GLOBAL])

(heading-text\symbolic
name[\GLOBAL])

(heading-text)

(heading-text)

Argument(s)

(symbolic-name[\arg-2]
[\placement-info))

(caption)

(logical-name)

(valueNext))

[(text))

Quick Reference

EXAMPLES

Tag
<CODEXAMPLE>

< ENDCODEXAMPLE >

<DISPLAY>

<ENDDISPLAY>

<INTERACTIVE>

< ENDINTERACTIVE >

<MATH>

<ENDMATH>

< SAMPLETEXT >

< ENDSAMPLETEXT >

<EXAMPLE>

<EXAMPLE CAP>

<EXAMPLES PACE>

< EXAMPLEFILE >

<NEXTPAGE>

< ENDEXAMPLE >

<EXAMPLES>

<EXC>

<EXI>

<S>

<U>

<EXTEXT>

< ENDEXAMPLES >

Argument(s)

(text)

[(WIDE)]

[(WIDE)]

(math-expression)

(symbolic-name[\arg-2)
[\placement-info))

(caption)

(value[\text))

(logical-name)

([heading-info][\heading-info-2))

(text)

(text)

(explanation)

A-3

Quick Reference

PARAGRAPHS

Tag

<P>

<CP>

NOTES AND FOOTNOTES

Tag

<FOOTNOTE>

<FOOTREF>

<NOTE>

<ENDNOTE>

<NOTES>

<ENDNOTES>

LISTS

Tag

<SLIST>

<ULIST>

< NOTEDLIST >

<NLIST>

<LE>

<ELS>

<DEFLIST>

< DEFLIST HEADS>

<DEFITEM>

A-4

Argument(s)

Argument(s)

(callout\text)

(callout)

(heading-text)

• [(alternate-head))

Argument(s)

[(character)]

((number)]

{(callout-number)]

(maxtermsize[\MUL TIPAGEj)

(col-one-head-1 \col-two-head-
1 \col-one-head-2\col-two-head-
2\col-one-head-3\col-two-head-3)

(item)

Quick Reference

Tag

<DEF ITEMS>

<DEFDEF>

< ENDDEFLIST >

<KEYDEFLIST>

<KEYITEM>

<KEYDEF>

< ENDKEYDEFLIST >

<KEY SEQUENCE>

< ENDKEY SEQUENCE>

<NOTES>

<NITEM>

<ENDNOTES>

< PAAAMDEFUST >

< PAAAMITEM >

<PAAAMDEF>

< ENDPAAAMDEFUST >

<OUAL LIST>

< QUAL_LIST_HEADS >

<OPAIA>

< ENDQUAL UST>

< QUALDEFUST >

<OUAUTEM>

<OUALDEF>

< ENDQUALDEFLIST >

Argument(s)

(item-1 \def\item-2\def\item-
3\def\i tem-4\def\item-5)

text

[(heading-text\NOblE)J

(item-1 [\item-2\item-3\item-4\item-
5\item-6])

(text)

(example)

((alternate-head)]

[(heading-text\NONE})

(item-1 [\item-2\item-3\item-4\item-
5\item-6])

text

((arg-1 \arg-2\WIDE)]

(head-1 [\head-2})

(qualifier\default)

[(heading-text\NONE) J
(positive-form\negative-form
[\positive-form\negative-
f o rm \positive-form \negative-form])

text

A-5

Quick Reference

TABLES

Tag

<TABLE>

<TABLECAP>

< TABLEFILE >

<ENDTABLE>

<FIRST VALID BREAK>

<LAST VALID BREAK>

<FIVE COLLI ST>

< FIVECOLLIST HEADS>

<FIVECOLS>

< ENDFIVECOLUST >

< FOURCOL.LIST >

< FOURCOLLIST HEADS>

<FOURCOLS>

< ENDFOURCOLLI ST>

<THREE COLLI ST>

< THREECOLLIST HEADS>

A-6

Argument(s)

(<SYMBOLIC-NAME> [\arg-
2)[\MUL TIPAGE])

(caption)

(logical-name)

(maxitemsize-1 \maxitemsize-2
\maxitemsize-3\maxitemsize-4\
[attribute\attribute\attribute])

_ (col-one-head\col-two-head\col
three-head\col-fcur-head\col-five
head)

(item-1 \item-2\item-3\item-4\item-5)

(maxitemsize-1 \maxitemsize-
2\maxitemsize-
3\[attribute\attribute\attribute])

(col-one-head\col-two-heaa\col
three-head\tol-four-head\col-one
head-2\col-two-head-2\col-three
head-2\co 1-f o u r-head-2)

(item-1 \item-2\item-3\item-4)

(maxitemsize-1 \maxitemsize-2\
[attribute\attribute\attnbute})

(col-one-head \col-two-head\col-
th ree-head\col-one-head-2\col-two
h ead-2\col-th ree-head-2\col-on e
head-3\col-two-head-3\col-two
head-3\col-three-head-3)

Quick Reference

Tag

< THREECOLS >

< ENDTHREECOLLIST>

< TWOCOLLIST >

< TWOCOLLIST _HEADS>

<TWOCOLS>

< ENDTWOCOLLIST >

<ALIGN CHARACTER>

< ENDALIGN _ CHAAACTER >

FRONT AND BACK MATTER

Tag

<FRONT MATTER>

<TITLEPAGE>

< ENDTITLEPAGE >

<ABSTRACT>

<TITLE>

<ORDER NUMBER>

< SUPERSESSION >

<REVISION INFO>

< OPSYS _vERSION >

<SOFTWARE VERSION>

<COPYPAGE>

<TRADEMARK PARA>

Argument(s)

(item-1 \item-2\item-3)

(maxitemsize\[attribute\attribute\attribute])

(col-one-head\col-two-head\col
one-head-2\col-two-head-2\col
one-head-3\col-two-head-3)

(item-1 \item-2)

(character)

Argument(s)

(number)

(information)

(information)

(arg 1 [\arg2\arg3\arg4 \arg5])

(number)

<PRINTDATE> (date)

<READERS COMMENT PARA> - -
< COPYDATE > (date)

<PROPRIETARY PARA>

A-7

Quick Reference

Tag Argument(s)

<CHANGE SUMMARY>

< ENDCOPYPAGE >

< ENDFRONT MATTER>

<PREFACE>

<ASSOCIATED DOCUMENTS>

<CONVENTIONS>

<DOCUMENT STRUCTURE>

<INTENDED AUDIENCE>

< ENDPREFACE >

<PARTPAGE>

<RUNNING TITLE> (ti tie)

< ENOPARTPAGE >

<APPENDIX>

<GLOSSARY>

<GTEAM> (term)

<GDEF> definition

< ENDGLOSSARY >

< ENDAPPENDIX >

A.1.2 Additional SDML Capabilities

A-8

Quick Reference

EMPHASIS

Tag

<ARGUMENT>

<BEGIN CALLOUTS >

<CALLOUT>

<CO>

< ENDCALLOUTS >

<BITMAP>

<EMPHASIS>

<KEYWORD>

<LOWERCASE>

<UPPERCASE>

<NEWTERM>

<PARAM>

<SYNTAX>

< ENDSYNTAX >

<TAG>

<TEX>

<UNDERLINE>

< ENDUNDERLINE >

<VALUE>

<ENDVALUE>

<VARIABLE>

< ENDVARIABLE >

KEYBOARD CHARACTERS

Tag

<ARROW>

<CTRL>

<DOUBLE_ QUOTE>

<FF>

Argument(s)

(argument)

[(callout-number\PREFIX)]

[(number)]

[(number)]

(bits)

(text[\BOLD])

(word)

(text)

(text)

(term)

• (name\OPT)

(syntax-statement)

(tag-name)

(text)

(value-of-variable)

(variable-name)

Argument(s)

(type)

(letter)

[(space))

A-9

Quick Reference

Tag

<KEYWORD>

<RET>

<TAB>

SDML TOOLS

Tag

<COMMENT>

<ENDCOMMENT>

<COND>

<CURRENT COND >

<ENDCOND>

<DEFINE>

<REDEFINE>

<UNDEFINE>

<HELP ONLY>

< ENDHELP ONLY>

<INCLUDE>

<LITERAL>

<NOHELP>

< ENDNOHELP >

<X>

<Y>

CROSS-REFERENCES

Tag

<AXREF>

<BOOKREF>

<CALLOUT REF>

A-10

Argument(s)

(word)

Argument(s)

[(text)]

(condition)

* Use <DEFINE> tag *

(tag-name\definition)

(tag-name\definition)

(tag-name\definition)

(logical-name)

(literal-text)

(index-entry\(attribute])

(index-entry\[attribute])

Argument(s)

(<SYMBOLIC-NAME>)

(<BOOK-NAME>)

(callout)

Quick Reference

Tag

<CHAPREF>

<EXREF>

<FIGREF>

<GREF>

<MATHREF>

<SECREF>

<TABREF>

SPECIAL CHARACTERS

Tag

<AMPERSAND>

<BACKSLASH>

<CDB>

<CPAREN>

<CPOS>

<DOUBLE QUOTE>

<ELLIPSIS>

< HELLIPSIS >

<MCS>

<ODB>

<OPAREN>

< PARENDCHAR >

<POWEROF>

<OUOTE>

<ENDQUOTE>

<SINGLE QUOTE>

<SUBSCRIPT>

<SUPER SCRIPT>

Argument(s)

(<SYMBOLIC-NAME>)

(<SYMBOLIC-NAME> [\Gl-OBAL])

(<SYMBOLIC-NAME> [\GLOBAL})

(term)

(<SYMBOLIC-NAME> [\GLOBAL})

(<SYMBOLIC-NAME>)

(<SYMBOLIC-NAME> (\GLOBAL})

Argument(s)

(character)

[(SPACE)]

(character)

(char)

(exponent)

(text)

[(SPACE))

(number)

(number)

A-11

Quick Reference

Tag

<TIMES>

<VBAR>

A-12

Argument(s)

Input File From Chapter 1 's Memo

< DOCTYPE >(memo)

<TO>(John Smith\Henry Wilaon\Publicationa)
<SUBJECT>(Thinga You Night Hot Fine in a Reference Manual)
<P>
Welcome to the Publications Group. As a new writer,
a new employee of Digital Equipment Corp .. and a new user
of the VAX/VMS ayatem, you are faced with many challenges
(and 15 volume• of doc:UJll9ntation).

<P>
However, there ia a variety of aourcea for information
around here, and I'd like tc introduce you to a few:

<ULIST>
<LE>Doc:uaentation
<P>Many, many more pound• waiting on-line
for you to diec:over. Look for .MEN, .DOC, or .TYP
file• ae a clue to readable text.
<LE >NOTES Filee
<P>The notH files are a rich source of information for
a peraiatent and curious mind. You can find out about eoftware
tools, buaineee trende, state-of-the-art development,
and state-of-the-mind opinions from the hundreds of contributors
to the notes files. Aek your supervisor or syatem manager
how to ace:••• them.
<LE> Internal Publications
<P>Some of these are public relations copy, some of them are
lea• the.n. formal and distributed among friends. Visit the
library and/or keep your ears open.
<LE >Experts
<P>They 1 re all around· you. You may meet them through the
network, in your group, ~r at a Woods meeting, but there'•
alwaya somebody who knows <EMPHASIS>(everything) (it eeems)
about whatever you're intereated in.
<ELS>

<P>
Have fun, and if you get frustrated, remember ... if.everything
was easy to find and understand, why would they need technical writers~

b-1

