
MicroVMS Workstation
Graphics Programming Guide
Order Number: AI-GIlOB-TN

May 1986

This document provides programming information about the MicroVMS Workstation
graphics software. It describes the general concepts and specific routine calls which
are used in writing application programs.

Revision/Update Information: This manual supersedes the MicroVMS
Workstation Graphics Programming Guide,
Version 2.0.

Software Version: MicroVMS Workstation Graphics Software
Version 3.0

digital equipment corporation
maynard, massachusetts

May 1986

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1986 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS lAS VAXcluster
DEC net MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~DrnDD~D DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO·

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire
03061

CANADA

Digital Equipment
of Canada Ltd.
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

INTERNATIONAL

Digital Equipment Corporation
PSG Business Manager
c/o Digital's local subsidiary
or approved distributor

• Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

ZK-3164

Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment Corporation,
Westminster, Massachusetts 01473.

This document was prepared using an in-house documentation production system. All page composition and
make-up was performed by TEX, the typesetting system developed by Donald E. Knuth at Stanford University.
TEX is a trademark of the American Mathematical SOCiety.

Contents

Preface
New and Changed Features

PART I MicroVMS Workstation
Graphics Concepts

Chapter 1 System Description
1.1

1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7

1.3
1.3.1
1.3.2
1.3.2.1
1.3.2.2
1.3.3
1.3.4

Overview

VAXstation Hardware
Processor
Monitor
Keyboard
Mouse
Tablet
Communications Board
Printer '

Software
Graphics Routine Types
Human Interface.

Terminal Emulation ..
Communication Tools

Windowing Feature .
Graphics Capabilities .

xxvii

xxxiii

1-1

1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4

1-4
1-4
1-5
1-6
1-6
1-7
1-7

iv Contents

Chapter 2 Display Management Concepts
2.1
2.1.1

2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.2
2.2.2.1
2.2.2.2

2.3

2.4

2.5

2.6
2.6.1

2.7

Overview
Summary

Coordinate Systems
Device-Independent Coordinate Systems '.' .. .

World Coordinates
Normalized Coordinates

Device-Dependent Coordinate Systems
Absolute Device Coordinates
Viewport-Relative Device Coordinates

Virtual Displays . . ',' .

Display Windows .

Display Viewports

Display Window and Viewport Scaling
Distortion of Graphic Objects

Display Lists .

2-1
2-1

2-3
2-3
2-4
2-5
2-6
2-6
2-7

2-8

2-9

2-10

2-11
2-12

2-13

2.8 Generic Encoding and VIS Metafiles 2-13

Chapter 3 Graphic Objects and Attributes
3.1

3.2

3.3

3.4
3.4.1
3.4.2
3.4.3
3.4.4

3.5
3.5.1

3.6

3.7

3.8

Overview

Summary

Text and Graphics Routines

Attributes .
General Attributes.
Text Attributes
Graphics Attributes .
Window Attribute .

Attribute Blocks .
Attribute Block 0

Segments

Viewing Transformations

Two-Dimensional Geometric Transformations

3-1

3-1

3-2

3-2
3-3
3-3
3-5
3-6

3-6
3-6

3-7

3-7

3-7

Contents v

Chapter 4 Color Concepts
4.1

4.2

4.3
4.3.1
4.3.2
4.3.3

Overview

Color Hardware Systems .

Raster Graphics Concepts.
Hardware Interpretation of Pixel Values
Color Representation Models
Color Palette .

4-1

4-1

4-1
4-2
4-6
4-6

4.4 VIS Virtual Color Maps. .. 4-7
4.4.1 Reserved Hardware Color Map Entries. 4-9

4.5 VIS Color Map Segments. .. 4-11

4.6 Shareable Virtual Color Maps .. 4-11

4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.7.5

Miscellaneous VIS Color Concepts
Standard and Preferred Colors .
Monochrome, Intensity, and Color Compatibility Features ..
Color Value Conversion .
Set Colors and Realized Colors
Color Regeneration Characteristics

Chapter 5 Input Devices
5.1
5.1.1

5.2
5.2.1
5.2.2

5.3
5.3.1

Overview
VAXstation Input Devices .

Pointers
Mouse
Tablet

Keyboards
Virtual Keyboards .

4-11
4-11
4-12
4-12
4-13
4-13

5-1
5-1

5-2
5-2
5-3

5-4
5-4

vi Contents

PART II How to Program with MicroVMS Workstation
Graphics

Chapter 6 Programming Considerations
6.1

6.2
6.2.1
6.2.1.1
6.2.1.2
6.2.1.3

6.3
6.3.1
6.3.2
6.3.2.1
6.3.3
6.3.4
6.3.4.1

6.4

6.5

6.6

Overview

Calling UIS Routines
Calling Sequences .

Call Type
Routine Name
Argument List

Argument Characteristics
VMS Usage
Type

VAX Standard Data Types .
Access
Mechanism

VAX FORTRAN Built-In Functions

UIS Constants

Condition Values Signaled .

Additional Program Components .

6-1

6-1
6-2
6-2
6-2
6-2

6-3
6-3
6-3
6-3
6-5
6-5
6-7

6-9

6-9

6-9

6.7 Notes to Programmers. .. 6-10
6.7.1 VAX C Programmers. .. 6-10
6.7.2 VAX PASCAL Programmers 6-11
6.7.3 VAX PL/I Programmers. .. 6-12

6.8 Programming Examples .. 6-12
6.8.1 Structure of Programming Tutorial 6-12

6.9 Program Execution .. 6-13
6.9.1 Compiling Your Program .. 6-13
6.9.2 Linking the Object Module .. 6-14
6.9.3 Running the Executable Image. 6-14

Contents vii

Chapter 7 Creating Basic Graphic Objects
7.1

7.2
7.2.1
7.2.2
7.2.3

7.3
7.3.1
7.3.2
7.3.3

7.4
7.4.1
7.4.2
7.4.3

Overview

Step I-Creating a Virtual Display
Specifying Coordinate Values
Programming Options .
Program Development

Step 2-Creating Graphics and Text
Graphics Drawing Operations .
Programming Options .
Program Development

Step 3-Creating a Display Window
Programming Options .
Program Development .
Calling UIS$CIRCLE, UIS$ELLIPSE, UIS$PLOT, UIS$TEXT,
and UIS$CREATE_WINDOW

Chapter 8 Display Windows and Viewports
8.1

8.2

8.3
8.3.1
8.3.2
8.3.3

8.4
8.4.1
8.4.2
8.4.3

8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5

8.5.6
8.5.7
8.5.8
8.5.9

Overview

Windowing Routines

Step I-Creating Many Display Windows
Programming Options .
Program Development
Calling UIS$CREATE_WINDOW

Step 2-Deleting and Erasing Display Windows
Programming Options .
Program Development .
Calling UIS$DELETE_WINDOW

Step 3-Manipulating Display Windows and Viewports
Programming Options .
Program Development I
Calling UIS$MOVE_WINDOW
Program Development II
Calling UIS$POP_VIEWPORT and
UIS$PUSH_VIEWPORT
Program Development III .
Requesting General Placement and No Border
Program Development IV
Calling UIS$MOVE-AREA

7-1

7-1
7-2
7-2
7-3

7-4
7-4
7-4
7-6

7-6
7-7
7-7

7-8

8-1

8-1

8-2
8-2
8-4
8-5

8-7
8-7
8-7
8-9

8-12
8-12
8-13
8-15
8-18

8-20
8-24
8-25
8-27
8-29

viii Contents

8.6 World Coordinate Transformations. 8-29
8.6.1 Programming Options ... '. .. 8-29
8.6.2 Program Development. .. 8-29
8.6.3 Calling UIS$CREATE_TRANSFORMATION 8-30

Chapter 9 General Attributes
9.1

9.2
9.2.1
9.2.2

9.3

9.4
9.4.1
9.4.1.1
9.4.1.2
9.4.1.3

9.4.1.4
9.4.1.5

Overview

Attributes-How to Use Them
Attribute Blocks .
Modifying General Attributes

Structure of Graphic Objects .

UIS Writing Modes .
Using General Attributes

Programming Options .
Program Development I .
Calling UIS$SET_BACKGROUND-INDEX,
UIS$SET_WRITING-INDEX, and
UIS$SET_WRITING-MODE
Program Development II
Using Device-Dependent Writing Modes

Chapter 10 Text Attributes

9-1

9-1
9-2
9-3

9-3

9-6
9-8
9-8
9-9

9-11
9-14
9-17

10.1 Overview................................... 10-1

10.2 Structure of Text 10-1
10.2.1 Monospaced and Proportionally Spaced Fonts. 10-2
10.2.2 Lines of Text .. 10-2
10.2.3 Character Strings 10-4
10.2.4 Character Cell .. 10-9

10.3 Using Text Attributes 10-21
10.3.1 Modifying Text Attributes 10-22

10.4 Programming Options 10-23
10.4.1 Program Development I 10-25
10.4.2 Calling UIS$SETJONT and UIS$NEW_TEXT_LINE 10-27
10.4.3 Program Development II 10-29
10.4.4 Calling UIS$SET_CHAR_SPACING 10-30
10.4.5 Program Development III 10-31
10.4.6 Calling UIS$SET-POSITION and

UIS$SET-ALIGNED-POSITION 10-32
10.4.7 Program Development IV 10-33

10.4.8
10.4.9
10.4.10
10.4.11
10.4.12
10.4.13
10.4.14

Chapter 11

Contents ix

Calling UIS$SET_CHAR_SLANT 10-34
Program Development V 10-35
Calling UIS$SET_TEXT_SLOPE 10-36
Program Development VI 10-36
Calling UIS$SET_CHAR-ROTATION 10-37
Program Development VII 10-39
Calling UIS$SET_CHAR_SIZE 10-41

Graphics and Windowing Attributes
11.1 Overview................................... 11-1

11.2 Using Graphics Attributes 11-1
11.2.1 Modifying Graphics and Windowing Attributes 11-1
11.2.2 Programming Options .. 11-2
11.2.2.1 Program Development I .. 11-4
11.2.2.2 Calling UIS$SET-ARC_TYPE and Using Fill Patterns. . .. 11-5
11.2.2.3 Program Development II .. 11-8
11.2.2.4 Calling UIS$SET_LINE_WIDTH 11-9
11.2.2.5 Program Development III 11-10
11.2.2.6 Calling UIS$SET_LINE_WIDTH and

11.2.2.7
11.2.2.8
11.2.3
11.2.3.1
11.2.3.2
11.2.3.3

Chapter 12

UIS$SET_LINE_STYLE 11-11
Program Development IV . 11-11
Calling UIS$SETJ'ONT and UIS$SET_FILLJATTERN .. 11-14

Using the Windowing Attribute 11-14
Programming Options 11-14
Program Development 11-14
Calling UIS$SET_CLIP 11-17

Inquiry Routines
12.1 Overview................................... 12-1

12.2 Inquiry Routines-How to Use Them 12-1
12.2.1 Using Inquiry Routines. .. 12-1
12.2.1.1 Programming Options 12-2
12.2.1.2 Program Development I 12-5
12.2.1.3 Invoking UIS$GETJ'ONT_SIZE, UIS$GET_DISPLAY_SIZE,

and UIS$GET_VIEWPORT_SIZE 12-7
12.2.1.4 Program Development II .. 12-8
12.2.1.5 Invoking UIS$GET-ARC_TYPE,

UIS$GETJ'ILLJATTERN, and UIS$GETJ'ONT 12-10

x Contents

Chapter 13 Display Lists and Segmentation
13.1 Overview................................... 13-1

13.2 Display Lists. .. 13-1

13.3 Segments................................... 13-2
13.3.1 Identifiers and Object Types .. 13-3
13.3.2 Programming Options .. 13-5
13.3.3 Program Development I .. 13-7
13.3.3.1 Calling UIS$DISABLE_DISPLAY_LIST and

UIS$ENABLE_DISPLAY_LIST. 13-8
13.3.3.2 Program Development II. .. 13-9
13.3.3.3 Calling UIS$GET-NEXT_OBJECT,

UIS$GET_OBJECT-ATTRIBUTES, and
UIS$GET-ROOT_SEGMENT . 13-13

13.3.3.4 Program Development III 13-15
13.3.3.5 Calling UIS$GETJARENT_SEGMENT 13-19

13.4 More About Segments 13-21
13.4.1 Programming Options 13-21
13.4.2 Program Development I 13-22
13.4.2.1 Calling UIS$SET-INSERTIONJOSITION . : 13-26
13.4.2.2 Program Development II 13-29
13.4.2.3 Calling UIS$BEGIN_SEGMENT and

UIS$END_SEGMENT . 13-31

Chapter 14 Geometric and Attribute Transformations
14.1 Overview '............... 14-1

14.2 Geometric Transformations. .. 14-1
14.2.1 Translating Graphic Objects 14-1
14.2.2 Scaling Graphic Objects .. 14-3
14.2.2.1 Uniformly Scaled Graphic Objects. 14-6
14.2.2.2 Differentially Scaled Graphic Objects. 14-7
14.2.3 Rotating Graphic Objects .. 14-8
14.2.4 Programming Options 14-10
14.2.5 Program Development I 14-10
14.2.6 Calling UIS$TRANSFORMATION_OBJECT 14-12
14.2.7 Program Development II 14-12
14.2.8 Calling UIS$COPY_OBJECT 14-15

14.3 Attribute Transformations 14-17
14.3.1 Programming Options 14-17
14.3.2 Program Development 14-17
14.3.3 Requesting Attribute Transformations 14-18

Contents xi

Chapter 15 Metafiles and Private Data
15.1 Overview................................... 15-1

15.2 Display Lists and UIS Metafiles .. 15-1
15.2.1 Generic Encoding of Graphics and Attribute Routines 15-2
15.2.1.1 Normalized Coordinates. .. 15-2
15.2.1.2 Interpreting the User Buffer. 15-3
15.2.2 Creating UIS Metafiles . 15-11
15.2.3 Structure of a UIS Metafile 15-12
15.2.4 Programming Options 15-14
15.2.5 Program Development I 15-14
15.2.5.1 Calling UIS$EXTRACT-HEADER, UIS$EXTRACT-REGION,

and UIS$EXTRACT_ TRAILER 15-17

15.3 Display Lists and Private Data. 15-19
15.3.1 Using Private Data 15-19
15.3.2 Programming Options 15-20
15.3.3 Program Development II 15-20
15.3.3.1 Calling UIS$PRIVATE and UIS$EXTRACT_PRIVATE 15-25

Chapter 16 Programming in Color
16.1 Overview................................... 16-1

16.2 Color and Intensity Routines-How to Use Them 16-1
16.2.1 Step I-Creating a Virtual Color Map. 16-2
16.2.2 Step 2-Setting Virtual Color Map Attributes 16-2
16.2.3 Step 3-Setting Entries in the Virtual Color Map. 16-3
16.2.4 Programming Options .. 16-3
16.2.5 Program Development I .. 16-4
16.2.6 Program Development II 16-6
16.2.6.1 Program Development III .. 16-7

16.3 Color Map Segments. .. 16-9
16.3.1 Programming Options 16-10
16.3.2 Program Development 16-10
16.3.3 Calling UIS$CREATE_COLOR-MAP_SEG 16-11

16.4 Color and Intensity Inquiry Routines 16-11
16.4.1 Programming Options 16-11
16.4.2 Program Development I 16-12
16.4.2.1 Calling UISGET_COLORS, UISGET-HW_COLOR-INFO,

UIS$GET_WRITING-INDEX 16-14
16.4.3 Program II-Creating an HSV Color Wheel 16-15

xii Contents

Chapter 17 Asynchronous System Trap Routines
17.1 Overview................................... 17-1
17.1.1 Using AST Routines 17-1
17.1.2 AST-Enabling Routines 17-2

17.2 Using Keyboard and Pointer Devices 17-3
17-3
17-3

17.2.1 Using AST Routines with Virtual Keyboards
17.2.1.1 Step I-Creating a Virtual Keyboard ... ,
17.2.1.2 Step 2-Binding the Virtual Keyboard to the Display

17.2.1.3
17.2.2
17.2.3
17.2.4
17.2.5
17.2.5.1
17.2.5.2
17.2.5.3
17.2.5.4
17.2.6
17.2.7
17.2.8 ,

Window
Step 3-Enabling Virtual Keyboard AST Routines

Programming Options .
Program Development
Calling Keyboard Routines .
Using AST Routines with Pointer Devices

Mouse , -
Tablet

17-3
17-4
17-4
17-5
17-7
17-8
17-8
17-8

Step I-Create an AST Routine. 17-9
Step 2-Enable the AST Routine 17-9

Programming Options .. 17-9
Program Development 17-10
Calling UIS$SETJOINTER-AST and
UIS$SET_POINTERJATTERN 17-12

17.3 Manipulating Display Windows and Viewports 17-13
17.3.1 Using AST Routines to Modify the Window Options Menu .. 17-14
17.3.1.1 Step I-Create an AST Routine 17-14
17.3.1.2 Step 2-Enable the AST Routine 17-14
17.3.2 Programming Options 17-15
17.3.3 Program Development 17-16
17.3.4 Calling UIS$SET-RESIZE-AST 17-20
17.3.5 Calling UIS$SET_SHRINK_TO-ICON-AST 17-21
17.3.6 Calling UIS$SET_CLOSE-AST 17-22

Contents xiii

PART III UIS Routines

Chapter 18 UIS Routine Descriptions
18.1 Overview................................... 18-1
18.1.1 Format Heading. .. 18-3
18.1.2 Returns Heading. .. 18-5
18.1.3 Arguments Heading 18-6

18.2 Functional Organization of UIS Routines 18-6
UIS$BEGIN_SEGMENT 18-9
UIS$CIRCLE . 18-11
UIS$CLOSE_WINDOW 18-14
UIS$COPY_OBJECT . 18-15
UIS$CREATE_COLOR-MAP 18-20
UIS$CREATE_COLOR-MAP_SEG 18-23
UIS$CREATE_DISPLAY 18-26
UIS$CREATE-KB 18-28
UIS$CREATE _ TB . 18-31
UIS$CREATE_TERMINAL 18-32
UIS$CREATE_TRANSFORMATION 18-34
UIS$CREATE_WINDOW 18-37
UIS$DELETE_COLOR-MAP 18-46
UIS$DELETE_COLOR-MAP_SEG 18-47
UIS$DELETE_DISPLAY 18-48
UIS$DELETE-KB 18-49
UIS$DELETE_OBJECT 18-50
UIS$DELETEJRIVATE 18-51
UIS$DELETE_TB 18-52
UIS$DELETE_TRANSFORMATION 18-53
UIS$DELETE_WINDOW 18-54
UIS$DISABLE_DISPLAY_LIST 18-55
UIS$DISABLE_KB 18-58
UIS$DISABLE_TB 18-59
UIS$DISABLE_ VIEWPORT-KB 18-60
UIS$ELLIPSE . 18-61
UIS$ENABLE_DISPLAY_LIST 18-65
UIS$ENABLE-KB 18-68
UIS$ENABLE_TB 18-70
UIS$ENABLE_ VIEWPORT-KB 18-71
UIS$END_SEGMENT 18-72
UIS$ERASE 18-73
UIS$EXECUTE . 18-75
UIS$EXECUTE_DISPLAY " 18-77

xiv Contents

UIS$EXPAND-ICON 18-78
UIS$EXTRACTJfEADER ... ' 18-81
UIS$EXTRACT_OBJECT 18-83
UIS$EXTRACTJRIVATE 18-85
UIS$EXTRACT-REGION 18-88
UIS$EXTRACT_TRAILER 18-91
UIS$FINDJRIMITIVE 18-93
UIS$FIND_SEGMENT 18-95
UIS$GET-ABS_POINTERJOS 18-97
UIS$GET-ALIGNEDJOSITION 18-98
UIS$GET-ARC_TYPE 18-100
UIS$GET_BACKGROUND-INDEX 18-102
UIS$GET_BUTTONS 18-103
UIS$GET_CHAR-ROTATION 18-105
UIS$GET_CHAR_SIZE 18-106
UIS$GET_CHAR_SLANT 18-108
UIS$GET_CHAR_SPACING 18-110
UIS$GET_CLIP 18-112
UIS$GET_COLOR 18-115
UIS$GET_COLORS 18-118
UIS$GET_CURRENT_OBJECT 18-121
UIS$GET_DISPLAY_SIZE 18-123
UIS$GETJILL_PATTERN 18-126
UIS$GETJONT 18-129
UIS$GETJONT-ATTRIBUTES 18-131
UIS$GETJONT_SIZE 18-135
UIS$GETJfW_COLOR-INFO 18-137
UIS$GET-INTENSITIES . 18-141
UIS$GET-INTENSITY . 18-144
UIS$GET-KB-ATTRIBUTES 18-146
UIS$GET_LINE_STYLE 18-148
UIS$GET_LINE_WIDTH 18-150
UIS$GET~EXT_OBJECT 18-153
UIS$GET_OBJECT-ATTRIBUTES 18-155
UIS$GETJARENT_SEGMENT 18-158
UIS$GETJOINTERJOSITION 18-160
UIS$GETJOSITION 18-162
UIS$GETJREVIOUS_OBJECT 18-164
UIS$GET-ROOT_SEGMENT 18-167
UIS$GET_ TB-INFO 18-169
UIS$GET_TBJOSITION 18-172
UIS$GET_TEXTJORMATTING 18-173
UIS$GET_TEXT~ARGINS 18-175
UIS$GET_TEXTJATH 18-177

Contents xv

UIS$GET_ TEXT_SLOPE . 18-179
UIS$GET_VCM-ID 18-181
UIS$GET_VIEWPORT-ICON 18-182
UIS$GET_VIEWPORTJOSITION 18-184
UIS$GET_VIEWPORT_SIZE 18-186
UIS$GET_ VISIBILITY 18-188
UIS$GET_ WINDOW-ATTRIBUTES 18-190
UIS$GET_WINDOW_SIZE 18-191
UIS$GET_WRITING-INDEX 18-192
UIS$GET_WRITING--MODE 18-194
UIS$GET_WS_COLOR 18-195
UIS$GET_WS-INTENSITY 18-198
UIS$HLS_TO-RGB 18-200
UIS$HSV_TO-RGB 18-202
UIS$IMAGE 18-204
UIS$INSERT_OBJECT 18-209
UIS$LINE 18-210
UIS$LINE-ARRAY . 18-213
UIS$MEASURE_TEXT 18-215
UIS$MOVE-AREA 18-221
UIS$MOVE_ VIEWPORT 18-224
UIS$MOVE_WINDOW 18-226
UIS$NEW_TEXT_LINE 18-228
UIS$PLOT 18-229
UIS$PLOT-ARRAY 18-232
UIS$POP_VIEWPORT 18-234
UIS$PRESENT 18-236
UIS$PRIVATE 18-237
UIS$PUSH_ VIEWPORT 18-239
UIS$READ_CHAR 18-241
UIS$RESIZE_WINDOW 18-243
UIS$RESTORE_CMS_COLORS 18-246
UIS$RGB_TO-HLS 18-247
UIS$RGB_TO-HSV 18-249
UIS$SET-ADDOPT-AST 18-251
UIS$SET-ALIGNEDJOSITION 18-253
UIS$SET-ARC_TYPE 18-255
UIS$SET_BACKGROUND-INDEX 18-258
UIS$SET_BUTTON-AST 18-260
UIS$SET_CHAR-ROTATION 18-264
UIS$SET_CHAR_SIZE 18-267
UIS$SET_CHAR_SLANT 18-271
UIS$SET_CHAR_SPACING 18-273
UIS$SET_CLIP 18-278

xvi Contents

UIS$SET_CLOSE-.AST 18-281
UIS$SET_COLOR 18-283
UIS$SET_COLORS 18-286
UIS$SET-EXP AND.JCON -.AST 18-289
UIS$SETJILL_PATTERN 18-291
UIS$SETJONT 18-295
UIS$SET_GAIN JB-.AST 18-297
UIS$SET.JNSERTION JOSITION 18-299
UIS$SET.JNTENSITIES 18-302
UIS$SET.JNTENSITY . 18-304
UIS$SETJB-.AST 18-306
UIS$SETJB-.ATTRIBUTES 18-308
UIS$SETJB_COMPOSE2 18-311
UIS$SETJB_COMPOSE3 18-313
UIS$SETJBJEYTABLE 18-315
UIS$SET_LINE_STYLE 18-317
UIS$SET_LINE_WIDTH · 18-320
UIS$SET_LOSE JB-.AST 18-324
UIS$SET~OVE.JNFO-.AST 18-326
UIS$SETJOINTER-.AST 18-328
UIS$SETJOINTERJ ATTERN 18-332
UIS$SETJOINTERJOSITION 18-335
UIS$SETJOSITION 18-337
UIS$SET-RESIZE-.AST 18-339
UIS$SET_SHRINK_ TO-ICON -.AST 18-344
UIS$SET_ TB-.AST 18-346
UIS$SET_TEXT_FORMATTING 18-349
UIS$SET_TEXT_MARGINS 18-353
UIS$SET_TEXT_PATH 18-355
UIS$SET_ TEXT_SLOPE . 18-358
UIS$SET_WRITING.JNDEX 18-361
UIS$SET_WRITING~ODE 18-363
UIS$SHRINK_TO.JCON 18-365
UIS$SOUND_BELL. 18-369
UIS$SOUND_CLICK 18-370
UIS$TESTJB 18-371
UIS$TEXT 18-372
UIS$TRANSFORM_OBJECT 18-376

Contents xvii

PART IV UIS Devjce Coordinate (UISDC) Routines

Chapter 19 UIS Device Coordinate Graphics Routines
19.1 Overview................................... 19-1

19.2 UISDC Routines-How to Use Them 19-1
UISDC$ALLOCATE_DOP 19-3
UISDC$CIRCLE . 19-5
UISDC$ELLIPSE . 19-7
UISDC$ERASE 19-10
UISDC$EXECUTE_DOP-ASYNCH 19-11
UISDC$EXECUTE_DOP_SYNCH 19-13
UISDC$GET-ALIGNED-POSITION 19-14
UISDC$GET_CHAR_SIZE 19-16
UISDC$GET_CLIP . 19-18
UISDC$GET-POINTER-POSITION 19-20
UISDC$GETJOSITION 19-22
UISDC$GET_TEXT--MARGINS 19-23
UISDC$GET_ VISIBILITY 19-25
UISDC$IMAGE 19-27
UISDC$LINE 19-31
UISDC$LINE-ARRAY 19-33
UISDC$LOAD_BITMAP 19-35
UISDC$MEASURE_TEXT 19-37
UISDC$MOVE-AREA 19-39
UISDC$NEW_TEXT_LINE 19-41
UISDC$PLOT 19-42
UISDC$PLOT-ARRAY 19-44
UISDC$QUEUE_DOP 19-46
UISDC$READ-IMAGE 19-47
UISDC$SET-ALIGNEDJOSITION 19-50
UISDC$SET_BUTTON -AST 19-52
UISDC$SET_CHAR_SIZE 19-54
UISDC$SET_CLIP. 19-56
UISDC$SETJOINTER-AST 19-58
UISDC$SETJOINTERJATTERN 19-61
UISDC$SETJOINTERJOSITION 19-64
UISDC$SETJOSITION 19-65
UISDC$SET_ TEXT-MARGINS 19-66
UISDC$TEXT . 19-68

xviii Contents

A Summary of UIS Calling Sequences
A.1 VIS Calling Sequences

B Summary of UISDC Calling Sequences
B.1

C UIS Fonts
C.1

C.2
C.2.1

C.3
C.3.1

VISDC Calling Sequences

Overview'.

VIS Multinational Character Set Fonts
VIS Multinational Character Set Font
Specifications

VIS Technical Character Set Fonts
VIS Technical Character Set Font
Specifications

o UIS Fill Patterns

E Error Messages

F Obsolete Routines

Glossary

Index

Figures
1-1
2-1

2-2

2-3
2-4

2-5
2-6
2-7
4-1

4-2
4-3

Typical MicroVMS Workstation Hardware
Virtual Display, Display Window, and Display
Viewport
World Coordinate System and Virtual
Display
Absolute Device Coordinates
Mapping a Display Window to a Display
Viewport
Display Window in a Virtual Display
Displaying a Graphic Object
Display List Extraction
Bitplane Configuration in Single- and Multiplane
Systems
Direct Color Values
Hardware Color Map

A-I

B-1

C-1

C-1

C-5

C-10

C-14

1-2

2-3

2-5
2-7

2-8
2-10
2-11
2-14

4-2
4-3
4-4

4-4
4-5

4-6
4-7

6-1
7-1
7-2
8-1

8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11

8-12
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
10-1
10-2

10-3
10-4
10-5
10-6
10-7
10-8

Contents xix

Mapped Color Values in Four-Plane System. . .
RGB and Intensity Color Values as Hardware
Color Map Entries
Swapping Virtual Color Maps
Reserved Hardware Color Map Entries in a
4-Plane Color System
Passing Arguments.
Mapping a Bitmap to a Raster
Display Viewport and Graphic Objects
Aspect Ratios of the Display Window and
Display Viewport
Four Display Viewports
Objects Within Different Windows
Display Window Deletion
Before Panning the Virtual Display
Panning the Virtual Display
Occluding a Display Viewport.
Popping a Display Viewport
Pushing a Display Viewport
General Placement and No Border
Moving Graphic Objects Within the Virtual
Display
World Coordinate Transformations
Structure of Graphic Objects. . :
VIS Device-Independent Writing Modes
Bit Set Mode .
Bit Clear Mode .
Bit Set Negate Mode.
Bit Clear Negate Mode
Copy Mode
Copy Negate Mode
Character Cell .
Monospaced and Proportionally Spaced
Characters .
Text Path
Text Slope
Character Spacing
Simple Character Rotation
Character Rotation with Slope Manipulation ..
Text Path Manipulation Without Character
Rotation

4-5

4-6
4-8

4-10
6-8
7-5
7-8

8-3
8-6

8-10
8-11
8-15
8-17
8-21
8-22
8-23
8-26

8-28
8-31
9-5

9-12
9-18
9-19
9-20
9-21
9-22
9-23
10-2

10-3
10-3
10-5
10-7

10-10
10-11

10-13

xx Contents

10-9
10-10

10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
11-1
11-2
11-3
11-4
11-5
11-6
12-1
12-2
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10

13-11
13-12
13-13
13-14
13-15
14-1
14-2
14-3
14-4
14-5

Character Slanting
Ch-aracter Slanting and Rotation with Slope
Manipulation
Character Scaling .
UIS Fonts
Character and Line Spacing
Baseline and Top of Character Cell
Character Slanting
Manipulating the Text Baseline
Character Rotation Without Slanting
Character Rotation with Slanting
Manipulating Character Size
Closing an Arc
Filling a Closed Arc
Line Width
Modifying Line Width and Style
Vertical Bar Graph
Clipping rectangles
Centering Text
Pie Graph
Binary Encoded Instruction.
Nested Segments
Disabling a Display List.
After Display List Execution
Tree Diagram-Program WALK
Display List Elements
Contents of the Display List
Traversing Upward Along the Segment Path ..
Searching Downward Through a Segment
Contents of the Display List Drawn in the
Virtual Display .
Before Display List Modification
Executing the Modified Display List
Verifying the Contents of the Display List
Text Output During Execution
Final Text Output
Translating a Graphic Object
Simple Scaling
Complex Scaling .
Uniformly Scaling a Graphic Object
Differentially Scaling a Graphic Object

10-18

10-19
10-21
10-28
10-31
10-33
10-34
10-36
10-38
10-39
10-41
11-6
11-7
11-9

11-11
11-15
11-17
12-7

12-11
13-2
13-3
13-8
13-9

13-10
13-13
13-14
13-19
13-19

13-20
13-27
13-28
13-29
13-31
13-32
14-2
14-4
14-5
14-6
14-7

14-6
14-7
14-8
14-9
14-10
15-1
15-2
15-3
15-4

15-5
15-6

15-7
15-8
15-9

15-10
16-1

17-1
17-2
17-3
17-4
17-5
17-6
18-1
C-l
C-2
C-3
C-4
C-5
C-6
C-7
C-8
C-9
C-I0
C-ll
C-12
C-13
C-14

Contents xxi

Simple Rotation of a Graphic Object.
Complex Rotation of a Rectangle
Complex Rotation of a Triangle
Modifying Attributes with a Transformation .
Modifying Attributes with a Copy
Binary Encoded Instruction.
Extended Binary Encoded Instruction . . .
Format of Attribute-Related Argument
Format of Graphics- and Text-Related
Argument.
Structure of VIS Metafile
Original Objects Drawn in the Virtual
Display
After Buffer Execution
Private Data .
Verifying the Contents of the Temporary Array
and V ser Buffer
Hot Air Balloon
Different Types of Information Returned from
Inquiry Routines·
Writing Characters to a Display Viewport
Default Pointer Pattern
New Pointer Pattern.
Vnresized Window and Viewport
Resized Window and Viewport
Icon
Functional Categories of VIS Routines
Font 1
Font 2
Font 3
Font 4
Font 5
Font 6
Font 7
Font 8
Font 9
Font 10
Font 11
Font 12
Font 13
Font 14

14-9
14-13
14-16
14-19
14-20

15-2
15-2
15-5

15-5
15-13

15-18
15-19
15-25

15-26
15-27

16-15
17-8

17-12
17-13
17-20
17-21
17-21

18-7
C-l
C-l
C-2
C-2
C-2
C-3
C-3
C-3
C-4
C-4
C-4
C-5
C-5
C-5

xxii Contents

C-15
C-16
C-17
C-18
C-19
C-20
C-21
C-22
C-23
C-24
C-25
C-26
0-1
0-2
0-3
0-4
0-5

0-6

0-7

0-8

0-9
0-10

0-11

0-12

0-13

0-14

0-15

0-16

0-17

0-18

Font 15
Font 16
Font 17
Font 18
Font 19
Font 20
Font 21
Font 22
Font 23
Font 24
Font 25
Font 26
P ATT$C_ VERTl_l and P ATT$C_ VERT 1_3
P ATT$C_ VERT2_2 and P ATT$C_ VERT3_1
P ATT$C_ VERTl_7 and P ATT$C_ VERT2 __ 6
PATT$C_ VERT4_4 and PATT$C_ VERT6_2
P ATT$CJfORIZl_l and
P ATT$CJfORIZl_3 ~ ..
P ATT$CJfORIZ2_2 and
P ATT$CJfORIZ3_1
P ATT$CJfORIZl_7 and
P ATT$CJfORIZ2_6
PATT$CJfORIZ4_4 and
PATT$CJfORIZ6_2
P ATT$C_GRI04 and P ATT$C_GRI08
PATT$C_UPOIAGl_3 and
PATT$C_UPOIAG2_2
PATT$C_UPOIAGS_l and
PATT$C_UPOIAGl_7
P ATT$C_UPOIAG2_6 and
PATT$C_UPOIAG4_4
P ATT$C_UPOIAG6_2 and
PATT$C_OOWNOIAGl_3
PATT$C_OOWNOIAG2_2 and
PATT$C_OOWNOIAG3_1
PATT$C_OOWNOIAGl_7 and
PATT$C_OOWNOIAG2_6
PATT$C_OOWNOIAG4_4 and
PATT$C_OOWNOIAG6_2
P ATT$C_BRICK_HORIZ and
PATT$C_BRICK_VERT
PATT$C_BRICK_OOWNOIAG and
P ATT$C_BRICK_UPOIAG

C-I0
C-ll
C-ll
C-ll
C-ll
C-12
C-12
C-12
C-13
C-13
C-13
C-14
0-1
0-2
0-2
0-2

0-3

0-3

0-3

0-4
0-4

0-4

0-5

0-5

0-5

0-6

0-6

0-6

0-7

0-7

D-19

D-20

D-21

D-22

D-23

D-24

D-25

D-26

D-27

D-28

D-29

Tables
4-1
4-2
6-1
6-2
7-1
8-1
9-1
9-2
9-3
10-1

11-1

12-1
15-1
15-2
15-3

Contents xxiii

PATT$C_GREY4_16D and
PATT$C_GREYI2_16D
PATT$C_BASKET_WEAVEand
PATT$C_SCALE_DOWN
PATT$C-SCALE_VP and
PATT$C_SCALE-RIGHT
P ATT$C_SCALE_LEFT and
PATT$C_GREY1_16
P ATT$C_GREY2_16 and
PATT$C_GREY3_16
PATT$C_GREY4_16 and
PATT$C-GREY5_16
PATT$C_GREY6_16 and
PATT$C_GREY7_16
PATT$C_GREY8_16 and
PATT$C-GREY9_16
PATT$C_GREYI0_16 and
PATT$C_GREYll_16
PATT$C_GREY12_16 and
PATT$C_GREYI3_16
PATT$C_GREYI4_16 and
PATT$C_GREY15_16

Hardware Color Map Characteristics
Color Palette
VAX Standard Data Types
Entry Point and Symbol Definition Files
Types of Coordinates
VIS Windowing Routines
Attribute Block 0 .
Default Settings of General Attributes
VIS Writing Modes
Default Settings of Text Attributes in Attribute
Block 0
Default Settings of Graphics and Windowing
Attributes
Inquiry Routines .
Generic Encoding Symbols and Opcodes
Arguments of Binary Encoded Instructions .. .
Structure of VIS Metafiles

D-7

D-8

D-8

D-8

D-9

D-9

D-9

D-I0

D-I0

D-I0

D-ll

4-4
4-7
6-4

6-10
7-2
8-2
9-2
9-3
9-6

10-22

11-2
12-2
15-3
15-6

15-11

xxiv Contents

16-1
16-3
17-1
17-2

17-3

18-1
18-2
A-I
B-1
C-l

C-2

C-3

C-4

C-5

C-6

C-7

C-8

C-9

C-I0

C-ll

C-12

C-13

C-14

C-15

C-16

Color and Intensity Routines
Color and Intensity Inquiry Routines
AST -Enabling Routines
Connecting Physical Keyboards and Virtual
Keyboards
Disconnecting Physical Keyboards and Virtual
Keyboards
Main Headings in the Routine Template
General Rules of Syntax
Summary of UIS Calling Sequences
Summary of UISDC Calling Sequences
Font 1-
DTABER0003WKOOPGOOOI UZZZZ02AOOO
Font 2-
DTABEROI03WKOOGGOOOI UZZZZ02AOOO
Font 3-
DTABEROM03CKOOGGOOOI UZZZZ02AOOO
Font 4-
DTABEROR03WKOOGGOOOI UZZZZ02AOOO
Font 5-
DTABEROR07SKOOGGOOOI UZZZZ02AOOO ...
Font 6-
DTERMING03CKOOPGOOOI UZZZZ02AOOO
Font 7-
DTERMINM060KOOPGOOOI UZZZZ02AOOO
Font 8-
DTABER0003WKOOGGOOOI UZZZZ02AOOO
Font 9-
DTABEROG03CKOOGGOOOI UZZZZ02AOOO
Font 10-
DTABEROI03WKOOPGOOOI UZZZZ02AOOO ...
Font 11-
DTABEROM060KOOGGOOOI UZZZZ02AOOO ..
Font 12-
DTABEROR03WKOOPGOOOI UZZZZ02AOOO . . .
Font 13-
DTABEROR07SKOOPGOOOI UZZZZ02AOOO
Font 14-
DTERMINM03CKOOPGOOI UZZZZ02AOOO
Font 15-
DVWSVTOG03CKOOGGOOOI QZZZZ02AOOO
Font 16-
DVWSVTOG03CKOOPGOOOI QZZZZ02AOOO

16-3
16-11

17-2

17-4

17-4
18-1
18-4
A-I
B-1

C-6

C-6

C-6

C-7

C-7

C-7

C-8

C-8

C-8

C-9

C-9

C-9

C-I0

C-10

C-14

C-15

Contents xxv

C-17 Font 17-
DVWSVTOI03WKOOGGOOO 1 QZZZZ02AOOO C-15

C-18 Font 18-
DVWSVTOI03WKOOPGOOOI QZZZZ02AOOO C-15

C-19 Font 19-
DVWSVTON03CKOOGGOOOI QZZZZ02AOOO C-16

C-20 Font 20-
DVWSVTON03CKOOPGOOOI QZZZZ02AOOO C-16

C-21 Font 21-
DVWSVTON060KOOGGOOOI QZZZZ02AOOO C-16

C-22 Font 22-
DVWSVTON060KOOPGOOOI QZZZZ02AOOO C-17

C-23 Font 23-
DVWSVTOR03WKOOGGOOOI QZZZZ02AOOO C-17

C-24 Font 24-
DVWSVTOR03WKOOPGOOOI QZZZZ02AOOO C-17

C-25 Font 25-
DVWSVTOR07SKOOGGOOOI QZZZZ02AOOO C-18

C-26 Font 26-
DVWSVTOR07SKOOGGOOOI QZZZZ02AOOO C-18

Preface

This programming guide describes the MicroVMS workstation graphics software.
It contains general information about basic Micro VMS graphics concepts, a tutorial
for learning to program with Micro VMS graphics, and complete descriptions and
reference information about the system routines for all callable functions.

Intended Audience

This guide is intended for general users and programmers who want to learn the
concepts and use appropriate routines in graphics application programs.

Structure of This Document

This guide is divided into four major sections, MicroVMS Workstation Graphics
Concepts, How to Program with MicroVMS Workstation Graphics, VIS Routine
Descriptions, and VIS Device Coordinate (VISDC) Routines. These sections are
briefly described in the following paragraphs.

Part I - MicroVMS Workstation Graphics Concepts

This section contains five chapters which provide a general overview of the basic
concepts of MicroVMS workstation graphics.

• Chapter 1 - System Description

This chapter briefly describes the hardware, software, and options that are parts
of the Micro VMS workstation system.

• Chapter 2 - Display Management Concepts

This chapter discusses the concepts of world coordinates, device coordinates,
virtual displays, windows, viewports, window and viewport scaling, and
distortion of graphic objects.

• Chapter 3 - Graphic Objects and Attributes

This chapter describes and shows the relationship between graphics routines,
attribute blocks, text attributes, graphics attributes, and segments.

xxviii Preface

• Chapter 4 - Color Concepts

This chapter discusses the various color and intensity environments supported by
the VAXstation color systems.

• Chapter 5 - Input Devices

This chapter shows how the workstation input devices relate to the workstation
graphics system.

Part II - How to Program with MicroVMS Workstation Graphics

This section contains step-by-step tutorial information about writing application
programs using Micro VMS graphics. Practical programming examples are provided
throughout this section. It is divided according to routine functions into the following
chapters:

• Chapter 6 - Programming Considerations

This chapter describes the programming interface and topics relating to program
execution. •

• Chapter 7 - Creating Basic Graphic Objects

This chapter describes the underlying structures and shows how to create graphic
objects.

• Chapter 8 - Display Windows and Viewports

This chapter shows how to create and manipulate display windows and display
viewports.

• Chapter 9 - General Attributes

This chapter describes writing modes, display background and foreground, and
the writing index.

• Chapter 10 - Text Attributes

This chapter describes how attributes may be used to enhance and modify text.

• Chapter 11 - Graphics Attributes

This chapter describes how attributes may be used to enhance and modify the
appearance of graphic objects.

• Chapter 12 - Inquiry Routines

This chapter discusses how information can be returned to the application
program.

• Chapter 13 - Display Lists and Segmentation

This chapter describes how to create and manipulate display lists and segments.

Preface xxix

• Chapter 14 - Geometric and Attribute Transformations

This chapter describes the various ways graphic objects and components of
graphic objects can be manipulated with the respect to the coordinate space.

• Chapter 15 - Metafiles and Private Data

This chapter discusses how to extract the contents of a display list and store the
data in a buffer or external file. There is additional information about how to
associate private data with a graphics display.

• Chapter 16 - Programming in Color

The chapter describes how to create and display graphic objects in color.

• Chapter 17 - Asynchronous System Trap Routines

This chapter discusses how to make use of program-related events to increase
the interactive nature of your applications.

Part III - UIS Routine Descriptions

This section contains reference material about the device-independent Micro VMS
workstation graphics routines.

• Chapter 18 - VIS Routines Descriptions

• VIS Routine Descriptions

Part IV - UIS Device Coordinate (UISDC) Routines

This section contains reference material about device-dependent Micro VMS
workstation graphics routines.

• Chapter 19 - VIS Device Coordinate Graphics Routines

• VISDC Routines

Appendix A - Summary of UIS Calling Sequences

Appendix B - Summary of UISDC Calling Sequences

Appendix C - UIS Fonts

Appendix D - UIS Fill Patterns

Appendix E - Error Messages

Appendix F - Obsolete Routines

Glossary

NOTE: For documentation on VMS data types, see Appendix A of the Micro VMS
Workstation Version 3.0 Release Notes.

xxx Preface

How To Use This Guide

This guide is designed so that it can be used in two different ways:

• It can be used as a learning tool by general users and programmers new to
graphics software and Micro VMS workstation graphics.

• It can be used as a reference tool by programmers already familiar with graphics
software in general and/or Micro VMS workstation graphics.

Inexperienced User

If you are unfamiliar with the Micro VMS workstation graphics system, you should
begin by reading Part I of this guide. It gives you an overview of the graphics
concepts discussed in subsequent sections of the book.

The programming tutorial in Part II provides a step-by-step approach for learning
how to write applications that take advantage of the graphics capabilities of the
Micro VMS workstation.

Part III provides you with reference information about all of the UIS routines used in
MicroVMS workstation graphics. It is easier to use after you have read Part II of this
guide.

Part IV contains appendices that provide reference material about UISDC graphics
routines, and error messages.

Experienced User

Once you have become familiar with MicroVMS workstation graphics, you will
seldom need to refer to Part I of this guide, except when reviewing basic concepts.

Refer to Part II for examples and suggestions on the proper use of Micro VMS
workstation graphics routines.

Part III is an alphabetically arranged reference section that you can use to get detailed
descriptions of Micro VMS workstation graphics routines. Before using this section,
you should already be familiar with Parts I and II of this guide.

Part IV contains appendices that provide reference material about UISDC graphics
routines and error messages.

Preface xxxi

Associated Documents

The following Micro VMS manuals are related to this guide:

• MicroVMS Workstation User's Guide

• MicroVMS Workstation Video Device Driver Manual

• MicroVMS Workstation Guide to Printing Graphics

• MicroVMS User's Manual

• MicroVMS User's Primer

• Micro VMS Programmer's Manual

• MicroVMS FORTRAN Programmer's Primer

• Micro VMS Programming Pocket Reference

• Installing or Upgrading MicroVMS From Diskettes

• Installing or Upgrading MicroVMS From a Tape Cartridge

Conventions Used in This Document

This manual uses the following conventions:

Convention

$ SHOW TIME
05-JUN-198611:55:22

$ TYPE MYFILE.DAT

file-spec, ...

Meaning

A symbol with a one- to six-character abbreviation
indicates that you press a key on the terminat for example,
IRETI.
The phrase CTRL/x indicates that you must press the key
labeled CTRL while you simultaneously press another key,
for example, CTRL/C CTRL/Y, CTRL/O.

Command examples show all output lines or prompting
characters that the system prints or displays in black
letters. All user-entered commands are shown in red
letters.

Vertical series of periods, or ellipsis, mean either that not
all the data that the system would display in response to
the particular command is shown or that not all the data a
user would enter is shown.

Horizontal ellipsis indicates that additional parameters,
values, or information can be entered.

xxxii Preface

Convention

[logical-name]

quotation marks
apostrophes

Meaning

Square brackets indicate that the enclosed item is optional.
(Square brackets are not, however, optional in the syntax
of a directory name in a file specification or in the syntax
of a substring specification in an assignment statement.)

The term quotation marks is used to refer to double
quotation marks (1/). The term apostrophe (') is used to
refer to a single quotation mark.

New and Changed Features

The following sections describes changes to the programming interface since VIS
Version 2.0.

New UIS Routines

The following VIS routines were added.

Function

AST -enabling

Color

Routine

UIS$SET-ADDOPT-AST
UIS$SET-EXP AND-ICON -AST
UIS$SET_ TB-AST
UIS$SET_SHRINK_ TO-ICON -AST

UIS$CREATE_COLOR-MAP
UIS$CREATE_COLOR-MAP _SEG
UIS$DELETE_COLOR-MAP
UIS$DELETE_COLOR-MAP_SEG
UIS$GET_COLORS
UIS$GETJfW_COLOR-INFO
UIS$GET-INTENSITIES
UIS$GET_ VCM-ID
UIS$HLS_TO-RGB
UIS$HSV_TO-RGB
UIS$RESTORE_CMS_COLORS
UIS$RGB_ TOJfLS
UIS$RGB_ TOJfSV
UIS$SET-INTENSITIES

xxxiv New and Changed Features

Function Routine

Display list

Graphics

Keyboard and pointer

UIS$COPY_OBJECT
UIS$DELETE_OBJECT
UIS$DELETEJRIVATE
UIS$EXECUTE
UIS$EXECUTE_DISPLAY
UIS$EXTRACTJiEADER
UIS$EXTRACT_OBJECT
UIS$EXTRACT_PRIVATE
UIS$EXTRACT-REGION
UIS$EXTRACT_ TRAILER
UIS$FINDJRIMITIVE
UIS$FIND_SEGMENT
UIS$GET_CURRENT_OBJECT
UIS$GET-NEXT_OBJECT
UIS$GET_OBJECT-ATTRIBUTES
UIS$GETJ ARENT-SEGMENT
UIS$GET_PREVIOUS_OBJECT
UIS$GET-ROOT_SEGMENT
UIS$INSERT_OBJECT
UIS$PRIVATE
UIS$SET_INSERTION _POSITION
UIS$TRANSFORM_OBJECT

UIS$LINE
UIS$LINE -ARRAY

UIS$CREATE_TB
UIS$DELETE_TB
UIS$DISABLE_TB
UIS$ENABLE_TB
UIS$GET_ TB-INFO
UIS$GET_ TB_POSITION

New and Changed Features xxxv

Function Routine

Text . UIS$GET_CHAR-ROTATION
UIS$GET_CHAR_SIZE
UIS$GET_CHAR_SLANT
UIS$GETJONT-ATTRIBUTES
UIS$GET_TEXTJORMATTING
UIS$GET_ TEXT-MARGINS
UIS$GET_TEXTJ ATH
UIS$GET_ TEXT_SLOPE
UIS$SET_CHAR-ROTATION
UIS$SET_CHAR_SIZE
UIS$SET_CHAR_SLANT
UIS$SET_TEXTJORMATTING
UIS$SET_ TEXT-MARGINS
UIS$SET_TEXTJ ATH
UIS$SET_ TEXT_SLOPE

Windowing UIS$EXP AND-ICON
UIS$GET_ VIEWPORT_ICON
UIS$GET_WINDOW_SIZE
UIS$SHRINK_ TO-ICON

New UISDC Routines

The following UISDC routines are new for Version 3.0.

• UISDC$ALLOCATE_DOP

• UISDC$EXECUTE_DOP-ASYNCH

• UISDC$EXECUTE_DOP_SYNCH

• UISDC$GET_CHAR_SIZE

• UISDC$GET_ TEXT--MARGINS

• UISDC$LINE

• UISDC$LINE-ARRAY

• UISDC$LOAD_BITMAP

• UISDC$QUEUE_DOP

• UISDC$SET_CHAR_SIZE ., UISDC$SET_ TEXT--MARGINS

xxxvi New and Changed Features

New Chapters

Three new chapters describing color concepts and color programming considerations
have been added since Version 2.0.

• Color Concepts

• Geometric and Attribute Transformations

• Programming in Color

New UIS Writing Modes

Five new writing modes have been added since Version 2.0.

• UIS$C-MODE_BIC

• UIS$C-MODE_BICN

• UIS$C-MODE_BIS

• UIS$C-MODE_BISN

• UIS$C-MODE_COPYN

New Technical Character Set Fonts

Twelve new technical character set fonts have been added since Version 2.0.

New Text Attributes

The following new text attributes have been added to the programming interface.

• Character rotation

• Character scaling

• Character slant

• Text formatting

• Text margins

• Text path

• Text slope

New and Changed Features xxxvii

Changes to Existing UIS Routines
UIS$BEGIN_SEGMENT

UIS$BEGIN _SEGMENT now returns segment identifier that can be referenced by
other display list routines. For example, this allows traversing segments and segment
paths.

UIS$MEASURE_ TEXT and UIS$TEXT

You can now use control lists with UIS$TEXT and UIS$MEASURE_TEXT.

UIS$DISABLE_DISPLA Y _LIST and UIS$ENABLE_DISPLA Y _LIST

Additional arguments have been included that control display screen and display list
updates.

UIS$SET_POINTER_PATTERN and UISDC$SET_POINTEFLPATTERN

If you are using a color system, you can now specify a pointer pattern outline.

Display Lists and Segmentation

The chapter on display lists and segmentation has been expanded with more
examples.

UIS Metafiles

You can create and store meta files of generically encoded instructions as files and
reexecute the file.

Shrinking Viewports and Expanding Icons

Applications can now shrink display viewports and expand icons.

xxxviii New and Changed Features

Obsolete Version 2.0 UIS Routines

The following routines are obsolete.

• UIS$GET_LEFT--MARGIN

• UIS$SET_LEFT--MARGIN

• UISDC$GET_LEFT--MARGIN

• UISDC$SET_LEFT--MARGIN

PART I MicroVMS Workstation
Graphics Concepts

Chapter 1

System Description

1.1 Overview

This chapter introduces the Micro VMS workstation graphics system. It is divided
into two parts:

• A summary of typical workstation hardware

• A description of the graphics software

1.2 VAXstation Hardware

The Micro VMS workstation can be used as a standalone system. It has all the
components necessary to run programs and perform tasks without being connected
to a host computer. It can also be connected to a host computer and used as a part
of a network in a larger system.

The Micro VMS workstation typically consists of a configuration of the following
hardware:

• Processor

• Display monitor

• Keyboard

• Three-button mouse or a tablet

• Communications board

• Printer

An illustration of the typical Micro VMS workstation hardware is provided in
Figure 1-1.

1-2 System Description

Figure 1-1 Typical MicroVMS Workstation Hardware

Display Monitor

Processor ~
printer

" /;,s "\,
1"-- _ ="'

f\
'----

'lJ 'IJ

ZK-4616-85

1.2.1 Processor
The processor is the heart of the Micro VMS workstation system. The processor
contains the disk drives, all of the memory, any options, and communications
hardware for the system. Usually, it houses both fixed and flexible disk drives. The
amount of memory it has can vary, depending upon the options installed.

1.2.2 Monitor
The monitor displays text and graphics information. It is a high-resolution bitmap
device that can be used to display black-and-white, grey scale, or color graphics.

System Description 1-3

1.2.3 Keyboard
The keyboard used with the workstation is the DIGITAL LK201, a standard low
profile style keyboard. This keyboard consists of:

• A top row of function keys which are user-definable

• A numeric keypad which is also user definable

• A special keypad which has arrow keys and function keys

• A standard alphanumeric keypad

Some of the top row of function keys are control keys that enable the user to:

• Hold the screen

• Display the operator window

• Switch the windowing system

• Change the active window

In this row, there are also keys that call functions such as cancel, exit, help, and
provide aid in editing.

The function keys and numeric keypad keys can be defined by an application
program to perform functions suited to a particular application. The arrow keys can
be used to move the keyboard cursor within applications. The alphanumeric keypad
is similar in function to a typewriter keyboard.

1.2.4 Mouse
The three-button mouse is a medium-resolution, relative pointing device. It is the
primary means for a user to point to an object on the screen. When the mouse is
rolled on a flat surface, the pointer on the screen moves in a similar fashion. The
buttons are used to make selections.

1.2.5 Tablet
The tablet is a high-resolution, absolute positioning device. It consists of a flat tablet,
a puck with buttons, and a pen with buttons. When the puck or pen are moved
on the tablet, the pointer on the display screen moves in an identical fashion. The
buttons are used for selection.

1-4 System Description

1.2.6 Communications Board

The communications board allows the system to be connected with and communicate
with other computers.

1.2.7 Printer

The MicroVMS workstation can have a printer connected to the processor's console
port or can access printers located at remote location through the network. You can
print any rectangular portion of display screen.

1.3 Software

The MicroVMS workstation graphics software is a versatile graphics and windowing
interface. It is designed to be used on any of the Micro VAX family of workstation
products (such as VAXstations). This graphics interface allows the user to write
application programs in VAX MACRO, VAX BLISS, and many other high-level
languages. Application programs written to take advantage of this software will be
able to create and manipulate windows, display multiple styles of text and sizes,
receive input, and draw graphic objects in the created windows.

1.3.1 Graphics Routine Types

The Micro VMS workstation graphics software is composed of callable routines that
can be accessed from a high-level programming language. An application program
can perform graphics and windowing functions by making calls to the appropriate
routines. This software contains routines for creating display windows, drawing lines
and text, and building graphic objects.

Routines fall into the following general categories:

• AST -enabling r~>utines

• Attribute routines

• Color routines

• Display list routines

• Graphics and text routines

• Inquiry routines

• Keyboard routines

• Pointer routines

• Sound routines

System Description 1-5

• Windowing routines

• Device coordinate routines

1.3.2 Human Interface

The Micro VMS workstation provides an interface between the graphics software and
the user. This interface is called the human interface because it acts to aid the human
operator to use the workstation.

One of the things that this interface does is make it easy for the user to create new
terminal windows on the screen. The MicroVMS workstation provides the operator
with the capability of having the equivalent of many terminals at his or her disposal.
A user can easily create emulated DIGITAL VT220 or Tektronix TEK4014 terminals
by merely selecting a menu item which creates a window on the screen.

The operator can also control the placement of windows on the screen. Windows can
be moved anywhere on the screen (or even partially off of it). They can be hidden
from view, pushed behind other windows, popped in front of other windows, and so
on. The following list shows some of the operations that are possible.

• Create a new VT220 or TEK4014 terminal window

• Move a window to a different part of the screen

• Push a window behind other windows

• Pop a window in front of other windows

• Shrink a viewport to a icon

• Change the size of a window

• Delete a window

• Switch the keyboard from one window to another

• Suspend all screen activity (hold screen)

• Print any portion (or all) of a window or the screen

• Set workstation attributes

• Get online help

1-6 System Description

1.3.2.1 Terminal Emulation
You can create emulated terminals on the Micro VMS workstation. The programming
interface and the capabilities of emulated terminals are the same as the programming
interface and capabilities of the corresponding real terminal. The appearance of an
emulated terminal on the MicroVMS workstation screen is similar to that of the
corresponding real terminal. (It will not be completely identical due to hardware
differences.)

An advantage of having several terminal windows is that a job can be started on one
terminal, and while it's left running, another terminal can be created and another job
started. The user can create as many terminals as desired and switch back and forth
between them at will.

VT220fTEK4014

The VAXstation can emulate the DIGITAL VT220 or Tektronix TEK4014 terminal.
There can be any number of VT220 or TEK4014 windows on the screen
simultaneously. However, only one window may use the keyboard at anyone
time. The keyboard is assigned to a window by the operator.

VT220 ANSI and DIGITAL private escape sequences, and TEK4014 escape sequences,
are interpreted and translated into the appropriate graphics routines.

Programs written using the VAX/VMS operating system will operate in a VT100 or
VT220 workstation window without modification.

1.3.2.2 Communication Tools
Users can communicate with the software interface through either the mouse, tablet,
or keyboard.

Mouse and Tablet

The mouse and tablet control a cursor called a pointer on the screen. When the
mouse or tablet is manipulated by the user, the pointer moves on the screen. The
pointer is used by an operator to point to things on the screen, such as an item in
a menu. The buttons associated with mouse and tablet are used to make selections.
The pointer, in combination with buttons on the mouse, can perform several tasks:

• Point to objects on the screen

• Select objects on the screen

• Move objects around on the screen

• Push and pop windows on the screen

System Description 1-7

• Call menus to the screen

• Switch the keyboard between emulated terminals or windows

• Perform application designated functions

Keyboard

You can use the keyboard to perform the following functions:

• Respond to system prompts

• Provide control keys, such as IHOLD SCREEN I and ICYCLEI

• Provide special keys, such as IHELPI

• Enter data and information into a screen window

• Move a cursor in a window on the screen

• Perform application specific functions

1.3.3 Windowing Feature

The graphics software allows a large number of windows to be created and
maintained at the same time. Graphics routines are provided to handle the creation,
deletion, and manipulation of overlapping windows. Windows can be popped to
the front of the screen, pushed to the background, moved around the screen to a
new position, and completely deleted from the screen. The amount and size of
information that appears in a window can also be controlled.

1.3.4 Graphics Capabilities

Routines are provided to create new displays and draw graphics within the created
displays. A display list, which is an encoded description of the routines used to
create the contents of a display, is kept in memory. The display list enables a
program to easily pan and zoom portions of a display without having to redraw the
entire display. Scaling of the display is done automatically by the graphics software.
A display, or a portion of a display, can be mapped into one or more windows on
the screen.

Chapter 2

Display Management Concepts

2.1 Overview

This chapter discusses the basic concepts involved in creating a graphic object and
displaying it on the workstation screen. Some of the topics covered in this chapter
are as follows:

• Virtual displays

• Display windows

• Display viewports

• World and device coordinates

• Display window and viewport scaling

2.1.1 Summary

The Micro VMS workstation graphics software enables application programs to build
graphic objects and display them on the workstation screen.

An application program that takes full advantage of the capabilities of the Micro VMS
workstation graphics can do the following things:

• Create a virtual display.

• Draw graphics and text into the virtual display.

• Open windows into the virtual display for viewing on an output device.

• Map the windows into display viewports on the workstation screen.

• Manipulate the windows and viewports to display as much or as little of the
virtual display as desired.

• Pan, zoom in and out, resize, and duplicate the display windows.

• Manipulate display lists.

2-2 Display Management Concepts

To do these things, an application program must first create a virtual display in which
to build the object. A virtual display can be thought of as a conceptual display
space that has no actual physical size or shape. This conceptual display space,
called the world coordinate system, is defined by the application program in terms of
world coordinates. World coordinates are arbitrary units of measure selected by the
application program that specify locations (or points) in the world coordinate system
using values that are convenient to the application.

World coordinates are automatically translated to normalized coordinates (by the
graphics software) before being mapped to an output device. Normalized coordinates
convert user world coordinates into a single device-independent coordinate system
so that the user does not have to deal with several coordinate systems. Normalized
coordinates are automatically mapped to the device-dependent coordinates of the
physical output device.

A graphic object constructed in a virtual display is not available for display on
an output device until a display window and display viewport are created by the
application program.

A display window defines what portion of the graphic object in a virtual display is to
be viewed. By creating the display window, the program is making the information
in the virtual display potentially visible to the user. The information in the display
window is not actually visible to a user until the display window is mapped to a
display viewport.

A display viewport is the physical region on a display device that is created by the
MicroVMS workstation software and controlled by the user. The display viewport
is the physical representation of the display window that is mapped to it. It enables
a user to view the graphic object that is inside the display window. Figure 2-1
illustrates the relationship between the virtual display, display window, and display
viewport.

Physical device coordinates are used in mapping a display window to a display
viewport. Physical device coordinates are the physical points on the display screen
that are used to locate the graphic object. The process of mapping a graphic object
from the world coordinates of the display window to the device coordinates of the
display viewport is called a viewing transformation. Viewing transformations are
handled automatically by the graphics software.

The world coordinates of the display window can be manipulated in relation to
the world coordinates of the virtual display to achieve the effects of panning and
zooming the graphic object in the display viewport.

Display Management Concepts 2-3

Figure 2-1 Virt~al Display, Display Window, and Display Viewport

Display Window

Coordmates Virtual
Display

Display Viewport

2.2 Coordinate Systems

The Micro VMS workstation graphics environment can be thought of as a two
dimensional plane. Because of this, the Cartesian coordinate system applies in
describing points within this environment. Cartesian coordinates take the form

ZK-2090-84

of x,y, where x is the horizonal axis and y is the vertical axis. A point on this plane is
specified by a coordinate pair. The area of this plane that is specified by coordinate
pairs is called the coordinate space.

The MicroVMS workstation graphics software makes use of four Cartesian coordinate
systems: world, normalized, absolute, and viewport-relative device coordinates.

2.2.1 Device-Independent Coordinate Systems

Device-independent coordinate systems mediate between the requirements of the
application program and the graphics subsystem versus those of the output device.

2-4 Display Management Concepts

2.2.1.1 World Coordinates
An application program uses world coordinates to describe a virtual display and to
build a graphic object within it. Initially, the application program creates a virtual
display and specifies a convenient world coordinate system to use when referring to
the virtual display. Next, the program specifies the size and location of objects to be
created within the virtual display, using the same coordinates.

World coordinates are device-independent Cartesian coordinates that are specified
by the application program. They provide a means of locating the points in a virtual
display. The range of world coordinate values is specified when the virtual display
is created. In this way, the virtual display can be created to any proportions that
are selected by the application program. World coordinate values are given as
floating-point numbers.

The world coordinate system can represent any unit of measure. World coordinates
enable application programs to use convenient increments of measurement when
constructing a graphic object. If the program is accessing information from a data
base, it could specify world coordinates that are meaningful for the data used. For
instance, if an application is drawing a chart showing the sales of a company's
product during a holiday season, it could use convenient measurements representing
units sold in thousands versus the time in weeks. Or, if the application program is
drawing a graphic object, it could use measurements that make sense for the object.
For example, a virtual display containing a map of the United States might logically
have world coordinates representing measurements in miles or kilometers. A floor
plan of a house might likely use world coordinates representing feet and inches, or
meters and centimeters.

Figure 2-2 shows a world coordinate system that describes a virtual display in which
an object has been constructed.

Display Management Concepts 2-5

Figure 2-2 World Coordinate System and Virtual Display

(-1,1)

f--------
I
I
I
I
I
I

-1 I

I
I
I
I

Virtual I
DiSPlay~

I
I
I
I
I
I
I
I

"--------
(-1,-2)

y

(21)

-- ---- ----- -- --1

(00)

EBEB
-1

(1,-1)

I
I
I
I
I
I
I 2

I
I
I
I
I

---------------.J -2 (2,-2)

2.2.1.2 Normalized Coordinates

x

World
Coordinates

ZK-4617-85

Normalized coordinates are device-independent coordinates that are defined by the
graphics software. They are used to describe the virtual display in physical terms
that any output device can use. An output device cannot use the arbitrary world
coordinates that an application program uses to describe a virtual display. Instead,
each kind of output device has its own device-specific coordinates that it uses to
locate and build the graphic object. Normalized coordinates can be thought of as a
way for the graphics software to normalize these different coordinate systems so that
a graphic object can be mapped from a virtual display to any output device.

2-6 Display Management Concepts

Normalized coordinates are not directly used or manipulated by application
programs. They are used internally by the graphics software. The mapping of
normalized coordinates into device-specific display coordinates is handled entirely by
the software.

Normalized coordinates provide a means of delaying the actual mapping of an
application program's world coordinates to device-specific coordinates until the
actual output device is established.

2.2.2 Device-Dependent Coordinate Systems

Output devices use device-dependent coordinate systems to map graphic objects on
the display screen or to print objects on a printer. Device-dependent coordinates are

'physical device coordinates that denote some physical unit of measure such as pixels,
centimeters, or inches. Such physical device coordinates reflect device-dependent
mapping and drawing characteristics of the output device.

2.2.2.1 Absolute Device Coordinates
Absolute device coordinates are physical device-dependent Cartesian coordinates
that specify positions on the Micro VMS workstation display screen. The position
is specified in centimeters relative to the lower-left comer of the display screen.
Typically, viewport placement, pointer position, and tablet placement use absolute
coordinates. Figure 2-3 illustrates viewport placement on the VAXstation screen
relative to the lower-left corner of the screen.

Display Management Concepts 2-7

Figure 2-3 Absolute Device Coordinates

,.

'" "
\.. -q

Uf'lM

~
"

'" " Lower-Left
Corner of Viewport ~ .. Ongln of

Display Screen

2.2.2.2 Viewport-Relative Device Coordinates

KB I

~

ZK-5429-86

Many Micro VMS workstation graphics software routines utilize a special type of
physical device coordinates called viewport relative device coordinates. Viewport
relative device coordinates are physical device coordinates that specify positions
within a display viewport. The position specified is relative to the lower-left corner
of the viewport. Viewport-relative device coordinates are always positive.

Viewport-relative device coordinates are specified in units of pixels. A pixel is the
smallest displayable unit on a display screen. The Micro VMS workstation graphics
software takes care of all mapping of display windows to the display screen.

2-8 Display Management Concepts

Viewport-relative device coordinates are used in mapping graphic objects from a
display window to a display viewport on a physical display device.

In order to display a graphic object in a display viewport on a display device, the
world coordinates of the object must be transformed to the viewport-relative device
coordinates of the display device.

Figure 2-4 shows an object in a display window being mapped to a display viewport
on a physical display device. In this illustration, the world coordinates of the display
window undergo a viewing transformation to the physical device coordinates of the
display device.

Figure 2-4 Mapping a Display Window to a Display Viewport

Display
Window

Display Terminal

Display Viewport

~--r::pe~
--- - -- -----4

I rn I to

1-- --'-----

World
Coordinates

Physical Device
Coordinates

(Pixels)

2.3 Virtual Displays

ZK-4624-85

A virtual display is a conceptual display space created by an application program. It
is used by an application program as the place where graphic objects are constructed.
All text and graphics output of the application program are written to a virtual
display.

Display Management Concepts 2-9

A virtual display has no physical size (dimensions of length and width). Therefore,
objects constructed in a virtual display also have no actual physical dimensions. You
cannot measure a virtual display or the graphic objects within it.

Instead, a virtual display and the objects within it have relative sizes and proportions.
The comparison of the relative proportions of the vertical and horizontal components
of an object in a virtual display is called the aspect ratio of the object. The aspect
ratio is used in referring to an object's relative size in a virtual display.

To create a virtual display, an application program specifies a coordinate range in
the world coordinate system. The coordinate range establishes the relative size, or
aspect ratio, of the virtual display. Objects constructed in the virtual display are also
specified in terms of world coordinates and also have an aspect ratio. The aspect
ratio will later affect how the virtual display and the objects it contains map to the
display window.

Refer back to Figure 2-2 which shows a graphic object drawn in a virtual display.
Both the virtual display and the graphics object are specified in terms of world
coordinates.

2.4 Display Windows

A display window is used to display all or a part of the contents of a virtual display.
Display windows are created by an application program. A ~isplay window is used
by the application program to control how much of a virtual display is potentially
available for the user to view. A display window can be the size of an entire virtual
display or just a small portion of it. There can be one or several display windows
active at one time in a virtual display.

The relative proporticns and location of a display window are specified by an
application program in terms of world coordinates. Therefore, the amount of the
virtual display that is encompassed by a display window is relative to the world
coordinates of the virtual display. By specifying the proportions and location of the
display window, an application program determines what portion of the graphic
object within a virtual display is viewable.

The world coordinate boundaries of a display window define what is called a clipping
rectangle. Any graphic object that lies within the clipping rectangle is potentially
visible in the display viewport. Objects that fall outside of the clipping rectangle are
not viewable and are clipped from the window as illustrated in Figure 2-5.

2-10 Display Management Concepts

Figure 2-5 Display Window in a Virtual Display

Virtual Display
Display
Window

2.5 Display Viewports

- - - -r
I
I
I

- --!--

Clipp;d - ~- - -T'
to~1 I

I
I lE I

- - - - .. - --~

World
Coordinates

ZK-4625-85

A display viewport is the area of the physical display screen to which a display
window is mapped. The display viewport is the user's means of viewing the contents
of a display window. A display viewport is always associated with a display window
and is the mechanism by which the display window is displayed on the screen.

They can vary in size and shape, and can be located anywhere on the physical
display screen. There can be as many viewports as desired on the screen at a time.
If viewports overlap each other, they will occlude in the areas that overlap. The
last viewport created will be on top and visible. However, the operator can modify
which viewport is on top at anyone time.

The display window is mapped and scaled to the display viewport automatically
by the graphics software. Normally, the display window is mapped to the display
viewport on a one-to-one basis. That is, the boundaries of the display viewport
always implicitly default to the same size and shape as that of the display window.
However, it is possible for the application program to explicitly specify that the
display window be of a size or shape that is different than that of the display'
viewport; or, that the display viewport be of a size or shape that is different from
that of the display window. The effects that are achieved when the display window
and display viewport are of a different size or shape are discussed in the following
sections of this chapter.

Display Management Concepts 2-11

Refer to Figure 2-6 for an illustration of the relationship between the virtual display,
the display window and the display viewport. This illustration shows how a graphics
object in a virtual display is clipped to the display window, scaled and mapped into
a display viewport, and displayed on a physical display device such as a terminal
screen.

Figure 2-6 Displaying a Graphic Object

Virtual Display

Uses
World

Coordinates

Uses
Physical Device

Coordinates

2.6 Display Window and Viewport Scaling

Display Terminal

Display Viewport

ZK-4618-85

Graphic objects on the display screen can be magnified or reduced in size by
manipulating the relative sizes of the display window and the display viewport.
The following list describes the various effects that can be achieved and the method
used to accomplish each effect.

Magnifying

To magnify the graphic object, use one of these two methods:

• Decrease the size of the display window without altering the viewport size.

• Increase the size of the display viewport without altering the window size.

2-12 Display Management Concepts

Reducing

To reduce the graphic object, use one of these two methods:

• Increase the size of the display window without altering the viewport size.

• Decrease the size of the display viewport without altering the window size.

Panning

To pan the graphic object, use this method:

• Move the display window within the virtual display without altering the display
viewport.

Changing View Size

You can change the area of th~ virtual display that is being viewed, without
performing scaling, in the following ways:

• To increase the area of the virtual display being viewed, expand both the display
window and the display viewport proportionately.

• To decrease the area of the virtual display being viewed, contract both the
display window and the display viewport proportionately.

2.6.1 Distortion of Graphic Objects

The aspect ratio of the virtual display, the display window, and the display viewport
are the factors that determine whether a graphic object will be distorted when it
is mapped to the display screen. The display viewport can have any proportions
width to height that is specified (within the limits of the display device). If the
proportions of the display viewport do not match the proportions of the display
window, a stretching or squeezing effect occurs with the graphic object. The exact
effect depends upon the proportional differences between the viewport and window.
This happens because the graphics software is trying to make the display window fit
the display viewport. The transformation of the graphic object affects different types
of objects in different ways:

• Straight lines remain straight, but may differ in length and slope, depending
upon the window size and the coordinate system.

• Curved lines can change somewhat in shape. The amount and nature of the
change depends upon the characteristics of the graphic object and the mapping
(transformation) from display window to viewport.

Display Management Concepts 2-13

• Arcs change their shape and size. For instance, an ellipse may change its
proportions.

• Graphics text (specifically character size and spacing) is not adjusted to fit the
required number of characters into the display viewport. The size and spacing
of text characters is fixed and will not distort. However, the starting position of
the text may change, depending upon the transformation which occurs between
window and viewport.

Distortion can be corrected in the following way:

The application program can create a display viewport whose proportions are
appropriate for a particular graphics window in world coordinate space. Because
the display window can have any proportions in world coordinate space, a
display viewport of the proper proportions for a display window that is square,
tall and narrow, short and wide, or any other proportions, can be created.

2.7 Display Lists

A display list is a device-independent encoding of the exact contents of a virtual
display. The graphics software maintains and uses display lists to achieve the
following goals:

• Allow the automatic management of panning, zooming, resizing, and duplication
of display windows.

• Allow the structuring of virtual display objects.

• Allow objects in a virtual display to be viewed simultaneously within several
display viewports.

• Allow the storage and reexecution of VIS pictures

• Allow editing of VIS pictures

2.8 Generic Encoding and UIS Metafiles

Whenever a graphic object is drawn in the virtual display or an attribute is modified,
an encoded entry of the object or attribute modification is added to the display list.

2-14 Display Management Concepts

Such entries allow any application to extract arbitrary output from a virtual display,
give it to an intelligent application or store the data as a generically encoded file or
buffer known as a metafile, and then later reexecute the generically encoded binary
stream into a new virtual display.

Generic encoding is both device independent and self describing.

When VIS routines are executed, a binary encoded packet of values is constructed
and stored as display list entries. When the binary encoded packet is extracted from
the display list used, it becomes a generically encoded VIS metafile. Such meta files
can be reexecuted to invoke the appropriate internal generic encoding routines.

Figure 2-7 Display List Extraction

UIS Routine Call

Binary Encoded Packet

Generic Encoding Primitive

ZK-5428-86

Although many VIS routines have corresponding generic encoding primitives
there is not necessarily a one-to-one mapping between VIS routines and generic
encoding routines or between the VIS routine arguments and generic encoding
routine arguments.

Chapter 3

Graphic Objects and Attributes

3.1 Overview

This chapter discusses the basic building blocks that are used in constructing graphic
objects in a virtual display. These basic components are:

• Text and graphics routines

• Attributes and attribute modification routines

• Attribute blocks

• Segments

These topics are discussed in greater detail in the following sections of this chapter.

3.2 Summary

Text and graphics routines (sometimes called output routines) are the fundamental
building blocks that an application program uses to create graphic objects. These
routines are used to specify lines, circles, text, or other graphic objects. The particular
details (or attributes) of the way a text or graphic object look wnen it is displayed is
determined by the attribute block associated with it.

An attribute block is a group, or set, of attributes. Attributes are values which specify
various things about the appearance of a text or graphic object. Every text and
graphics routine used in an application program is required to specify an attribute
block that it will use.

Attribute routines are used in an application program to specify or change the current
value of an attribute associated with an attribute block. The changed attribute value
affects subsequent text and graphics routines that use the changed attribute block. '
An attribute routine is required to specify which attribute block in the application
program it is affecting.

3-2 Graphic Objects and Attributes

Application programs are allowed to group associated attribute, graphics and text
routines together. A group of attribute, graphics and text routines is called a segment.
Segments provide the program with a convenient way of viewing several attribute,
graphics and text routines as a single unit.

An application program can associate graphics and text routines or even entire
segments with application-specific data. The application program is allowed to store
data which is application-specific in the generic encoding stream. In this way, if
a portion of a display screen is copied, stored and then later used (restored) the
program will be able to associate internal information with the graphic object.

3.3 Text and Graphics Routines

Graphics and text routines map objects directly into the virtual display. They can be
used to create new objects or modify an existing one. Application programs use text
and graphics routines to draw lines, circles, text, and other graphic objects. They can
be combined in various ways to form a desired graphic object.

Each text and graphics routine has two required arguments: one argument that
specifies the virtual display in which to draw a graphic object, and another argument
that specifies the attribute block to be used when drawing the graphic object.

The way that a text or graphics routine draws a graphic object is influenced by
several factors. One of the major factors which determines the appearance of a
graphic object is the attributes that are associated with it.

3.4 Attributes

Attributes specify the appearance characteristics of graphic objects created by text
and graphics routines. They are the factors that influence the way a graphic object
appears on a display device. Color intensity, style, mode, width, and so on, are all
characteristics that attributes can determine. Once specified, attribute values stay the
same until explicitly changed. For example, if the line width is decreased, all lines
drawn are drawn to that thickness unless the line width is changed. If the application
program increases the line width, all lines are drawn to the same increased thickness
until the line width is changed again.

Each type of graphic and text object has a set of unique attributes. For example,
attributes that affect graphics do not affect text; the opposite is also true. There are,
however, general attributes that affect all routines. For example the background has
an attribute that can be set to determine the way the background will appear. The
background can be thought of as all parts of a display that are not covered by an
object created by a text or graphics routine.

Graphic Objects and Attributes 3-3

Attributes can be divided into the following general categories:

• General attributes

• Text attributes

• Graphics attributes

• Window attribute

These categories are discussed in the following sections of this chapter.

3.4.1 General Attributes

General attributes apply to all types of text and graphics routines. General attributes
include the following kinds of attributes:

• Writing color

• Background color

• Writing mode

Writing Color

The writing color attribute assigns the writing color. This attribute is used by all text
and graphics routines (such as lines, text, etc.). It is expressed by specifying an index
into a color map.

Background Color

This attribute assigns the background color. It is expressed by specifying an index
into a color map.

Writing Mode

This attribute assigns the mode of writing text or graphics. In particular, the writing
mode determines the exact way that a text or graphics routine will use the writing
and background colors to display a graphic object. /

3.4.2 Text Attributes
Font set

The font set attribute specifies the font set that is used to define text characters. Fonts
express the size and shape of the characters in physical dimensions. This attribute
enables text to be displayed in the right size by display routines during text plotting.
You can choose from a variety of multinational character set fonts and technical
character set fonts.

3-4 Graphic Objects and Attributes

Character spacing

The character spacing attribute defines character spacing for width and height of
character sizes. It is defined as the additional unit of increment beyond the normal
character size for highly spaced characters. This attribute is specified as a floating
point number. It is multiplied by the normal character size to produce the actual
spacing distance. If zeros are specified, then no additional spacing is performed.
Negative values are also allowed. When used, the spacing is reduced instead of
increased. Negative values for this attribute can cause the characters to overlap in
some cases.

Text Path

The text path is the direction of text drawing. The text path specification consists of
two parts-the major path and the minor path. The major path refers to tIle direction
in which character are drawn on a line. The minor path refers to the direction used
for beginning a new line of text. The following table lists the major path and minor
path available.

• Left to right (default major text path)

• Right to left

• Bottom to top

• Top to bottom (default minor text path)

Text Slope

Text slope represents the angle between the actual path of text drawing and the
major text path. The actual path of text drawing connects the baseline points of each
character cell.

Text Margins

The text margins attribute specifies a starting margin and the x coordinate distance to
the ending margin.

Text Formatting

The text formatting attribute along with the text margins attribute positions text flush
against either or both margins, centered, or with no formatting at all. VIS supports
four types of text formatting modes as follows:

• Left justification

• Right justification

• Center justification

• Full justification

Graphic Objects and Attributes 3-5

Character Rotation

Individual characters are rotated counterclockwise from 0 to 360 degrees. The angle
of rotation is the angle between the baseline vector of the character cell and the
actual path of the text drawing.

Character Slant

The character slant attribute specifies the angle between the character cell's up vector
and baseline vector. The angle of character slant can be expressed as a negative or
positive value.

Character Size

Character scaling allows you to increase the height and width of characters drawn in
the virtual display.

3.4.3 Graphics Attributes

Graphics attributes, or line attributes, affect graphic objects such as lines, polylines,
polygons, rectangles, arcs, and curves. They determine the line style and width, and
control filling of objects, among other things.

Current Line Drawing Width

The current line drawing width sets the line width in terms of world or device
coordinate units. Line width is specified as a floating-point number that is either
interpreted as a world coordinate width or multiplied with the standard line width
for a device to produce the desired line width.

Line Style

The line style attribute sets the current line style of line routines. It is a bit vector that
is used to indicate the color of each pixel to be drawn. The color can be designated
to be either the same as the foreground or the background. The bit vector is repeated
as many times as necessary to draw all the pixels in the line.

Fill Pattern

The fill pattern attribute specifies the fill character to be used for filling closed figures
such as polygons, circles, and ellipses. The fill pattern is specified as a font file and
the index of a character in that font file. The pattern defined by the character is used
to fill the figure. Refer to Appendix D of this manual for further information about
fill patterns.

3-6 Graphic Objects and Attributes

Arc Type

The arc type attribute specifies the wayan open arc of a cirde or ellipse should be
dosed. This attribute can have the following values:

• Open-when specified as open, the arc is not dosed off.

• Pie-when specified as pie, two radii are drawn from the endpoints of the arc to
the centerpoint (forming a pie shape).

• Chord-when specified as chord, a line is drawn between the two endpoints of
the arc connecting them together.

3.4.4 Window Attribute
Clipping Rectangle

The dipping rectangle is the area of a virtual display that is made available for the
user to view. The dipping rectangle is specified as the comers of a world coordinate
rectangle that all drawing operations are dipped to. Objects, or parts of objects,
outside of the dipping rectangle cannot be viewed.

3.5 Attribute Blocks

An attribute block is a set of attribute values that describes the appearance of
any graphic object that is created by an application program. Each attribute block
contains attributes for graphics, text, and general display characteristics such as
writing mode and background and foreground indices.

There can be up to 256 different attribute blocks addressable at anyone time. They
are addressed by numbers ranging from 0 to 255. Application programs assign and
use attribute block numbers.

3.5.1 Attribute Block 0

Attribute block 0 is a special attribute block that is specified by the graphics software.
This attribute block contains a standard set of text and graphics attributes. The
attributes in this block cannot be modified by the application program. Attribute
block 0 is read only. There is no convention on the naming and usage of attribute
blocks, with the exception of attribute block O. This attribute block is reserved by the
graphics software as a default attribute block.

Attribute block 0 provides default attribute values that can be used by an application
program. It also serves as an attribute block template for an application programmer
to use when creating alternate attribute blocks.

Graphic Objects and Attributes 3-7

3.6 Segments

A segment is a designated group of attribute block, graphics and text objects.
Segments allow the application program to use a special attribute without the need
for knowing which particular attribute blocks are not being used by other parts of the
program. Another major use of segmentation is to implement transformations either
on a per-segment basis or on the entire segment tree. This provides convenience for
the programmer and increased modularity for the program.

Nested Segments

Segments can be nested. Each nested segment uses the current set of attribute blocks
of higher level segments. This makes it simpler to create segments without having to
redefine attribute blocks. However, modifications of attribute blocks in a segment do
not affect the attribute blocks of higher level segments.

Extracting and Reexecuting Segments

An application program can take the contents of a file containing a display list of a
virtual display and execute it into another virtual display as a segment. The attributes
of the original virtual display should not affect the virtual display segment which is
being inserted.

3.7 Viewing Transformations

The viewing transformation is the mapping of the display window to the display
viewport. The viewing transformation can affect the appearance of a graphic object
when it is viewed on a display screen. The shapes of the display window and the
display viewport will affect the way text and graphic objects look when they are
displayed.

3.8 Two-Dimensional Geometric Transformations

Geometric transformations ~an also alter the way graphic objects are displayed
through scaling, translation, and rotation. All of these methods involve manipulation
of the object's angular orientation or shape in the virtual display.

3-8 Graphic Objects and Attributes

Scaling

The term scaling applies to the proportional expansion or reduction of graphic
objects on the display screen. For example, if the display window and viewport
shapes are different in proportion, the graphics software has to squeeze or stretch the
window to fit the viewport. The distortion of the graphics window causes distortion
of the graphic objects in that window. Different graphic objects are affected in
different ways. Refer to Chapter 2 for further information about the distortion of
graphic objects.

Translation

The points that define the position of graphic object in a coordinate system are
translated when its coordinates are altered without changing its angular relationship
with other object or the implied angular relationship between the object and the
coordinate system. For example, two lines are moved in the coordinate system, and
yet remain parallel.

Rotation

When a graphic object turns on a pivotal point or axis, it is rotating. It can rotate
with respect to some point on its surface, or it can revolve around some external
point. In order to give the appearance of rotation on the display screen, you must
first translate the axis of the object to the origin or center of the coordinate system.

Chapter 4

Color Concepts

4.1 Overview

Depending on the type of VAXstation available to you, you can display graphic
objects in black-and-white, grey scale, or color. The VAXstation offers you a number
of color options. However, there are several concepts you should be aware of at the
outset. This chapter discusses these concepts and the features of the color subsystem
in the following topics:

• Color hardware systems

• VIS virtual color maps

• Miscellaneous color concepts

See Chapter 16 for more information about programming in color.

4.2 Color Hardware Systems

There are three types of VAXstation hardware systems: (1) monochrome displays
black and white only, (2) intensity displays shades of gray or achromatic color, and
(3) color displays shades, tints, hues or chromatic colors. VIS supports all three color
systems.

4.3 Raster Graphics Concepts

The VAXstation display screen consists of a set of picture elements called pixels.
Pixels are the smallest displayable unit of a graphic object. The rectangular set
of pixels on the VAXstation screen is a raster. Graphic objects are written by
illuminating the necessary pixels along the path of points that geometrically describe
the object. Each pixel has an address and a binary value associated with it. Pixel
values determine the color of graphic objects.

4-2 Color Concepts

4.3.1 Hardware Interpretation of Pixel Values

The number of possible pixel values depends on the number of bit planes or planes
of memory that the system hardware supports. You can think of a plane as an
allocation of memory where each bit on a plane maps to a pixel on the display
screen. Conversely, each pixel has an address in memory. The following table
shows the relationship between the number of planes supported in hardware and the
number of the possible pixel values.

Workstation

Monochrome

Intensity or color

Number of
Planes

1

4 or 8

Number of
Possible Values

2

16 or 256

Figure 4-1 show how pixel values are represented in single- and multiplane systems.

Figure 4-1 Bitplane Configuration in Single- and Multiplane Systems

Parallel Bit Planes

High-Order Plane

One Plane Four Planes Eight Planes

Low
Order
Plane

ZK 524286

In Figure 4-1, a pixel on the VAXstation screen is associated with four corresponding
bits in memory on each bit plane of a four-plane system. If the bit settings are
arranged as a binary value corresponding to the high- and low-order planes, they
would appear in the following order: 10112•

Color Concepts 4-3

Therefore, the pixel value would be 1110 , A pixel in a four-plane system can have a
maximum of 16 values. The pixel value can be used in two different ways, as a direct
color value or as a mapped color value.

Direct Color Value

If the pixel value were used as a direct color value, each of the possible pixel values
would directly specify a color. In other words, the pixel value would be sent directly
to system hardware, such as a digital-to-analog converter, and would be used as the
actual color value of the graphic object. For example, the VAXstation monochrome
system, which is a one-plane system, interprets pixel values as direct color values
where 0 is black and 1 is white.

Figure 4-2 Direct Color Values

Bit Setting

\
1

One Plane

Each bit maps to a
specific pixel on the

display screen.

Mapped Color Value

... - Digital-to-Analog -Converter - EJ
=

Corresponding pixel is
illuminated using the

actual bit setting.

ZK-S240-86

When pixel values are interpreted as mapped color values, they indirectly specify an
actual color value located in a hardware color look-up table or hardware color map.

The pixel value is an index to an entry in the color map.

4-4 Color Concepts

Figure 4-3 Hardware Color Map

Color Map Entry

Color Value O~Color Map Index

Color Value

Color Value 2

Color Value 3

Color Value 4

•
•
•

Color Value

Color Value

ZK-5241-86

The size of the hardware color map is identical to the number of possible pixel
values and is the maximum number of colors that can be displayed simultaneously.
Table 4-1 lists the size of the hardware color map in intensity and color systems.

Table 4-1 Hardware Color Map Characteristics

Number of Number of
System Planes Entries

Intensity Four 16
Eight 256

Color Four 16
Eight 256

Each hardware color map entry contains a color value to be displayed for each
pixel. Conversely, the value of each pixel is the hardware color map index of a color
map entry containing the actual color value. The pixel on the VAXstation screen is
illuminated using this color value.

Color Concepts 4-5

Figure 4-4 Mapped Color Values in Four-Plane System

Each bIt maps ~-----r~1
to the same
pIxel on the

display screen.

/

Four Planes

Hardware Color Map

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

Color Value

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Pixel
Value

Dlgltal-to-Analog
Converter

Corresponding pIxel
on the display screen

is illuminated using the
color value located in

the eleventh hardware color map entry.

ZK 5244-86

4-6 Color Concepts

For example, an eight-plane VAXstation intensity or color system has a hardware
color map with 256 entries. Each color map entry contains color values that are RGB
color components and that define the desired color.

4.3.2 Color Representation Models
Color values are expressed according to the requirements of the particular color
representation model used. Three well known color representation models are hue
lightness saturation (HLS), hue saturation value (HSV), and red green blue (RGB).
The VIS base color model is the RGB model. RGB color values are in the range 0.0 to
1.0, inclusive. Red, green, and blue color component values comprise a single color
value on a VAXstation color system.

Intensity values, the color values associated with shades of gray are specified as a
single value in the range 0.0 to 1.0, inclusive. Figure 4-5 shows RGB and intensity
color values as hardware color map entries.

Figure 4-5 RGB and Intensity Color Values as Hardware Color Map Entries

Blue Green Red o ~ Color Map Index

------\------_\~------- Color Component
Values

Intensity o

,------- Intensity Value

ZK-5239-86

4.3.3 Color Palette
Your color palette is the number of possible colors that you can specify. Table 4-2
show the color palette available on each color system.

Color Palette Size and Direct Color Systems

On direct color systems, the palette size is identical to the number of simultaneously
displayable colors. For example, the size of the color palette of a VAXstation
monochrome system is 2. Only two possible colors, black and white, can be
displayed simultaneously on the screen.

Color Concepts 4-7

Color Palette Size and Mapped Color Systems

On mapped color systems, the palette size is, typically, much greater than the
number of the simultaneously displayable colors. The palette size is determined by
the precision of color components' specification. For example, on VAXstation color
system, each color component can be specified with eight binary bits of precision for
each red, green, and blue color components or 224 or 16,177,216 possible colors.

Table 4-2 Color Palette

System

Monochrome

Intensity

Color

Possible
Colors

black and white

up to 224 shades of gray

up to 224 chromatic colors

4.4 UIS Virtual Color Maps

An application that uses hardware color resources, that is, the hardware color map
must be aware of the hardware system limitations. The application must know the
color characteristics of the hardware as well. Is the system direct color or mapped
color? What is the precision of the color representation values for each RGB color
component? What is the range of possible pixel values?

The hardware color map contains a finite number of entries-for example, 16 entries
in a four-plane system. Concurrent processes executing in the same display space
must somehow share system color resources.

Why Use Virtual Color Maps?

The virtualization of the hardware color map solves problems arising from individual
applications requiring large amounts of system resources. It also solves the problem
of many processes competing for finite color resources. The use of virtual color
maps is analogous to the use of virtual memory in a multiprogramming environment
where many processes must access physical memory. When concurrent processes
require collectively more color map entries than exist in the hardware color map,
the color values associated with each competing process are swapped in and out of
the hardware color map as virtual color maps. Swapping virtual color maps in and
out of the hardware color map is a means of arbitrating hardware color map use
across applications. The process of loading or writing values of the virtual color map
into the hardware lookup table is transparent to the user. Figure 4-6 illustrates the
swapping of two 16-entry virtual color maps into a 16-entry hardware color map.

4-8 Color Concepts

Figure 4-6 Swapping Virtual Color Maps

Virtual Color Map 1

o

2
~-----~

3
~-----~

4
~-----~

5
~-----~

6

7
~-----~

8
~-----~

9
~--------I

10 Hardware Color Map
~--------I

11 0
~---------I

12
1----------4

13 2
1----------4

14 3
1----------4

15 4

5

6

7

Virtual Color Map 2 8

0 9

10

2 11

3 12

4 13

5 14

6 15

7

8

9

10

11

12

13

14

15
ZK510886

Color Concepts 4-9

Applications see only a virtual color map, not the underlying hardware resources.
Each virtual display has a virtual color map associated with it.

Characteristics of Virtual Color Maps

A virtual color map is flexible enough to meet the needs of a wide range of
applications. Virtual color map size can range from 2 to 32,768 entries. If you do
not specify a virtual color map, a two-entry virtual color map is created by default.
The virtual color map size does not have to match that of the hardware color
map. Although virtual color maps are potentially shareable among applications,
they are private by default. Virtual color maps can be specified as resident, that is,
nonswappable in the hardware color map. The following table show how virtual
color map entries are initialized.

Virtual Color
Map Entry Color Value

o Default window background color

Default window foreground color

All other entries are undefined.

VIS transparently reconciles differences between the virtual color map model and the
hardware color resources. VIS manages the concurrent use of these resources across
applications.

For information about creating and using virtual color maps, see Chapter 16.

4.4.1 Reserved Hardware Color Map Entries

On mapped color systems, due to hardware limitations, the hardware color system
or the VIS window management software preallocates some of the hardware color
map entries for special purposes. For example, pointer colors, window background
and foreground colors, and display screen color are allocated reserved entries in the
hardware color map. Figure 4-7 describes reserved entries in a hardware color map
in a four-plane system.

4-10 Color Concepts

Figure 4-7 Reserved Hardware Color Map Entries in a 4-Plane Color System

reserved

reserved

reserved

reserved

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ZK-5430-86

Whenever a virtual color map exceeds the size of the hardware color map less
the reserved entries, the results are unpredictable. For more information about
obtaining the hardware color map characteristics using the programming interface,
see Chapter 16.

Color Concepts 4-11

4.5 UIS Color Map Segments

The use of color map segments represents a device-specific binding of a virtual color
map to the underlying hardware color resources, that is, the hardware color map. In
a color mapped color system, color map segments are bound to specific hardware
color map entries and swapped in and out of the hardware color map based on
system and user events. Usually, applications need not worry about color map
segments. UIS handles the device-specific binding automatically. Applications may
want to use color map segments for the following reasons:

• Applications can control explicitly the binding of the virtual color map and the
hardware color map.

• Applications are not transported to different hardware configurations, for
example, four-plane to eight-plane systems or VAXstation color and intensity
systems to VAXstation monochrome systems.

4.6 Shareable Virtual Color Maps

By default, virtual color maps are private. Yet, they may be shared among
cooperating application programs to define a uniform color regime and to conserve
hardware color map entries. Shared virtual color maps have names, an ASCII string
from 1 to 15 characters and a name space (UIC group or system). For example, UIS
uses a system-wide, shared color map to display terminal emulator windows and the
window and screen menus.

4.7 Miscellaneous UIS Color Concepts

The following sections contain additional information about the UIS color subsystem.

4.7.1 Standard and Preferred Colors

VAXstation color and intensity systems supports two sets of symbolically defined
colors. Workstation standard colors and intensity values are a set of colors used
for specific purposes within the workstation environment. For example, the default
window background and foreground, cursor background and foreground colors, and
the display screen color are the workstation standard colors.

Workstation preferred colors are a set of colors representing the user's preference
for the eight combinations of the RGB primary colors. For example, workstation
preferred colors are used to define a particular shade of red, rather than a full
intensity red. In an intensity system, preferred colors may be used to define a base
white level from which preferred shades of gray are derived. Preferred values are

4-12 Color Concepts

simply a mechanism for conveniently maintaining and communicating a user's color
preferences to an application.

Values for standard and preferred colors are set using the workstation setup
mechanism. Standard and preferred color and intensity values can be returned
using UIS$GET_WS_COLOR and UIS$GET_WS-INTENSITY.

4.7.2 Monochrome, Intensity, and Color Compatibility Features

Two types of calls are provided to change or retrieve color map entries.
UIS$SET_COLOR and UIS$SET-INTENSITY both load a single color value in a
color map entry. Both routines can be used in any of the three hardware color
environments-monochrome, intensity, or color.

Color
System

Monochrome

Intensityl

Color2

Compatibility
Feature

UIS chooses the color (black or white) closest to the color specified
by the application.

UIS$SET_COLOR converts the specified RGB values to an equivalent
gray level using an equation.
UIS$SET_INTENSITY sets the requested gray level directly.

UIS$SET_COLOR sets the requested RGB color values directly.
UIS$SET_INTENSITY converts the specified intensity value to an
equivalent RGB value using an equation.

1 The color-to-intensity equation is I = O.30R + O.S9G + O.llB. Color television broadcasts transmitted for
reception by non color television sets are processed in this manner.

2The intensity-to-color equation is R = I, G = I, B = I.

4.7.3 Color Value Conversion

Routines are provided to convert color values in applications using other color
representation models.

• Hue lightness saturation (HLS)

• Hue saturation value (HSV)

In both models, hue values are specified from 0.0 to 360.0, inclusive, where red = 0.0.
Values for lightness, saturation, and value are between 0.0 and 1.0, inclusive.

Color Concepts 4-13

4.7.4 Set Colors and Realized Colors

VIS routines that set or load color map entries in the virtual color map accept
F-Boating point values between 0.0 and 1.0, inclusive. The precision of the F-Boating
point data type is approximately seven decimal places.

The precision for the color representation for a particular device may not be enough
to represent accurately the requested F-Boating point value.

In this case, the set color value (F-Boating) differs from the realized color value
(device precision). An application can determine realized color values using
VIS$GET_COLOR(S) and including the optional parameter. See Chapter 16 for
details.

4.7.5 Color Regeneration Characteristics

Color regeneration is a hardware characteristic that specifies whether changing a
color map entry affects the color of existing graphic objects (retroactive regeneration)
or only graphic objects drawn after the color map is changed (sequential
regeneration).

The following table summarizes regeneration characteristics of direct and mapped
color systems.

System

Direct color

Mapped color

Regeneration Characteristics

Usually sequential

Usually retroactive

An application can determine the hardware color regeneration characteristics by
calling VIS$GETJlW-INFO.

Chapter 5

Input Devices

5.1 Overview

This chapter discusses the devices that enable user and application program
interaction. Some of the topics covered in this chapter are:

• Pointing devices

• Virtual keyboards

• Physical keyboards

5.1.1 VAXstation Input Devices

Application programs and users interact through input devices. The types of input
devices> that a VAXstation typically utilizes are:

• Keyboard

• Mouse

• Tablet

The keyboard allows you to initiate program interaction and respond to application
program prompts by pressing a key or entering data. The mouse and tablet let you
communicate with an application program by pointing to objects or items with a
pointer and by making selections with buttons.

5-2 Input Devices

5.2 Pointers

There are two types of pointing devices that can be used with the workstation, a
mouse and a tablet. The workstation supports the use of only one pointing device at
a time.

Application programs receive input from a pointing device by either polling or
soliciting interrupts. To do this, programs use pointer input routines. Because only
one pointer input device can be used at a time, applications use the same set of
pointer input routines to get input from either the mouse or the tablet. The actual
pointer input device being used is transparent to an application.

The programming interface lets you set the pattern or the position of the cursor that
is synchronized with the pointing device.

5.2.1 Mouse
The mouse is a small hand-held device with three buttons on the top and a roller-ball
on the bottom. Associated with the mouse, on the display screen, is an arrow-shaped
cursor (or pointer).

The user is able to manipulate items on the display screen by the combined use of
the mouse-controlled pointer and the mouse buttons. By moving the mouse in any
direction on a flat surface, the ball on the bottom is turned, causing the pointer on
the screen to move. In this way, the pointer can be moved in any direction and
placed at any desired position on the display screen. By pressing the buttons on the
mouse, the user can select items in a menu and perform a variety of other functions.

The mouse is a relative pointing device. The mouse reports only its relative movement
to the workstation. The mouse can be picked up and placed in different position
without any change in the position of the pointer on the screen. Consequently,
the workstation keeps track of the current mouse position, only when the mouse is
moved on a surface.

Some of the ways that application programs can use the pointer are as follows:

• To create menus from which the user selects items

• To read the position of the pointer and the state of the mouse buttons

The workstation human interface implements menus that allow users to create,
select, move, and delete objects on the display screen. Application programs can
create menus that do the same things. To select a menu item, the user moves the
pointer to the region of the desired item and presses one of the mouse buttons. The
application program predefines items and specifies the action to be taken when the
user selects an item.

Input Devices 5-3

Application programs can detect when the pointer is moved across the boundary of
a window or a mouse button is pressed within a window. Programs can also read
the current pointer location and current button state. When the pointer is moved to
the border, or outside, of a screen viewport, the human interface detects interrupts
from the mouse. If the pointer is positioned inside of a viewport that is mapped to
an application-created window, the application program can receive these interrupts.

5.2.2 Tablet

The tablet is an optional input device that can be used with the workstation. Tablets
operate in much the same way as a mouse. An application program uses the same
routines to receive information from a tablet as it does for the mouse. This is possible
because the actual physical input device being used is transparent to an application
program.

The tablet is an absolute pointing device. That is, it reports all movement to the
workstation. For example, if the pen or stylus is picked up and moved to another
position on the tablet, the pointer will change its position on the screen to match the
movement.

A tablet is composed of the following parts:

• Tablet

• Puck

• Stylus

Tablet

The tablet is a flat square device with a surface similar to a table top. It is used in
conjunction with a puck and/or stylus to locate points on the display screen. When
the puck and/or stylus are moved on the surface of the tablet, the pointer on the
display screen moves in an identical fashion. If you pick up the puck and place it
in different region of the tablet, the pointer on the display screen would reflect this
change. The tablet has a grid that senses a change in the position of the pen or
stylus.

Puck

The puck is a hand-held device which is moved on the tablet to locate points on the
display screen. The puck has cross-hair markings used for precision in positioning
it on the tablet. It also has four buttons which can be used for various purposes,
depending upon the application.

5-4 Input Devices

Stylus

The stylus is a hand held device which resembles a pen. It is moved on the tablet
to locate points on the display screen. The stylus has greater precision than the
puck in locating positions. The stylus can also have buttons, usually one is located
on the outside of the barrel and one on the tip. The functions of these buttons are
application specific.

5.3 Keyboards

It is important to be able to distinguish between a physical keyboard (the workstation
keyboard) and a virtual keyboard (a simulated keyboard).

The physical keyboard is the actual workstation keyboard. You can press its keys
to respond to prompts from the application program, or you can type and enter
data into the currently active display window. The workstation can have only one
physical keyboard attached to it at anyone time.

A virtual keyboard is a conceptual keyboard that does not have an actual physical
existence. Rather, a virtual keyboard is a simulated keyboard that exists in software
and is associated with a display window. Each application may have one or more
virtual keyboards attached to it. Virtual keyboards provide the means for applications
to share the single physical keyboard.

5.3.1 Virtual Keyboards

A virtual keyboard is not an actual physical keyboard; but instead can be considered
a simulated keyboard. Virtual keyboards are conceptual in nature and exist only
in software. Virtual keyboards have much the same relationship to the physical
keyboard as virtual displays have to the physical display screen.

Application programs can read from the physical (workstation) keyboard, assign the
physical keyboard to a display window, and modify the characteristics of a physical
keyboard associated with a window. Programs are able to do this by means of
virtual keyboard routines. These routines can establish one or more virtual keyboards.
They enable applications to manipulate the workstation keyboard by referring to the
established virtual keyboards.

You can think of virtual keyboards in the following way. The VAXstation supports
multiple windows with multiple processes running simultaneously. Normally, these
windows and processes require keyboard input at various times. Therefore, each
window may need to have a keyboard associated with it. Consequently, there is
a need for several keyboards (one for each window). Because there is only one
physical keyboard available, it must be shared among several windows. The way
that this is done is through the concept of virtual keyboards.

Input Devices 5-5

Virtual keyboards provide a way for each window to have its own keyboard. There
can be one, or several, display windows and virtual keyboards active on the display
screen at one time. However, the physical keyboard can be connected to only one
virtual keyboard at a time. A virtual keyboard can be attached to more than one
display window at a time; however, each display window may have only one virtual
keyboard attached to it.

The user has control over the association between the physical keyboard and the
various virtual keyboards that exist at any point in time. A user can connect the
workstation keyboard to different windows by manipulating the display viewports
to which the virtual keyboards are connected. The user determines which window
the workstation keyboard is attached to, and in that way, which process is receiving
keyboard input. In this way, the user determines which window on the screen is
currently active.

When the user switches the keyboard between windows, the workstation gives
notification of which window has the keyboard. It places a small KB icon in the
upper right comer of all windows that are able to use the keyboard. The KB icon
is highlighted in the window that is currently active. An application can restrict
windows from receiving keyboard input. Display windows that do not interact with
the keyboard will not have the KB icon.

PART II How to Program with MicroVMS
Workstation Graphics

Chapter 6

Programming Considerations

6.1 Overview

The User Interface Services (UIS) graphics software package allows you to create
application programs that call system routines. Using UIS system routines, you can
create virtual displays, display windows, viewports, graphic images, and text. These
callable routines can be accessed through high-level programming languages as well
as VAX MACRO and VAX BLISS. The programming examples used in succeeding
chapters to illustrate the capabilities of the UIS graphicS software are written in VAX
FORTRAN. This chapter discusses the following topics:

• Calling UIS routines

• Argument characteristics

• Constants

• Condition values

• Additional program components

• Program execution

Refer to the Micro VMS Programming Support Manual for additional information about
other callable routines.

6.2 Calling UIS Routines

Your application programs must contain references or calls to specific UIS system
routines to draw and manipulate graphic images and text. These CALL statements
and language-specific function declarations invoke the UIS system routines through
the VAX Procedure Calling Standard.

6-2 Programming Considerations

6.2.1 Calling Sequences

The format of a call to VIS, or the calling sequence, consists of the elements that
make up the statement and their positional order. Refer to Tables A-I and B-1 in the
appendices for s~mmaries of VIS and VISDC calling sequences, respectively.

6.2.1.1 Call Type
Calls to VIS system routines from application programs, typically specify the function
name and an argument list as follows:

vd_id=UIS$CREATE_DISPLAYC-1.0,-1.0,+1.0,+1.0,width,height)

However, some VIS routines are functions and return values to the calling program.
The preceding example shows such a call from a VAX FORTRAN program. It
also returns a value, the virtual display identifier, to the vLid argument. Such
return values are stored in variables that are often arguments (where applicable) in
subsequent routine calls.

VIS routines that are not functions must be called using an explicit VAX FORTRAN
CALL statement.

CALL UIS$PLOTCvd_id,l,-1.0,-1.0)

There is no standard call type used by all programming languages to invoke ,the
VIS system routines. This manual does not attempt to describe the ways in which
each high-level programming language calls a VIS system routine but uses VAX
FORTRAN as an example of a typical call syntax. For specific information about
calling syntax, please refer to the appropriate language user's guide.

6.2.1.2 Routine Name
You must identify the system routine you are calling by specifying its routine name,
for example, VIS$MOVE-AREA. The routine name consists of a symbol prefix
identifying the system facility (VIS$) and the symbol name indicating what operation
it performs (MOVE-AREA). The routine name is also known as the entry point name.

6.2.1.3 Argument List
The argument list is the list of parameters to be passed to the VIS routine. This
list, typically, follows the function name as a parenthetical expression containing
arguments separated by commas. You can substitute your own argument names in
place of the formal parameter names. However, whenever you invoke a VIS routine,
you must maintain the positional order of the parameters in the argument list. The
following example illustrates positional order of the parameters:

CALL UIS$CIRCLECVD_ID ,ATB ,CENTER_X , CENTER_Y , XRADIUS , START_DE G,END_DEG)

Programming Considerations 6-3

6.3 Argument Characteristics

Because the arguments in your routine call are the means of passing data to the
called routine, you should keep in mind the characteristics of arguments-VMS
Usage, type, access, mechanism.

6.3.1 VMS Usage

The VMS Usage entry contains the name of a VMS data type that has special meaning
in the VMS operating system environment.

The VMS Usage entry is NOT a traditional data type such as the VAX standard
data types byte, word, longword and so on. It is significant only within the context
of the VMS operating system environment and is intended solely to expedite data
declarations within application programs.

Refer to Appendix A in the MicroVMS Workstation Version 3.0 Release Notes for a
complete listing of VMS usage entries and implementation charts for each VAX
language supported by UIS. The implementation charts describe how to code the
VMS usage entry in the programming language of your application.

6.3.2 Type

The type characteristic refers to the standard data type of the argument, that is,
whether the argument is a word, longword, floating point number, and so forth.
Depending on the programming language you are using, you may be required to
declare certain data types locally within your program. These locally declared data
structures provide data type definitions for the arguments in subsequent calls to UIS
routines.

6.3.2.1 VAX Standard Data Types
When a calling program passes an argument to a system routine, the routine expects
the argument to be of a particular data type. The routine descriptions in Part III
indicate the expected data types for each argument.

Properly speaking, an argument does not have a data type; rather, the data specified
by an argument has a data type. The argument is merely the vehicle for the passing
of data to the called routine.

Nevertheless, the phrase "argument data type" is frequently used to describe the data
type of the data that is specified by the argument. This terminology is used because
it is simpler and more straightforward than the strictly accurate phrase "data type of
the data specified by the argument."

6-4 Programming Considerations

The following table contains the data types allowed by the VAX Procedure Calling
Standard.

Table 6-1 V AX Standard Data Types

Data Type

Absolute date and time

Byte integer (signed)

Bound label value

Bound procedure value

Byte (unsigned)

COBOL intermediate temporary

D_floating

D_floating complex

Descriptor

F_floating

F_floating complex

G_floating

G_floating complex

H_floating

H_floating complex

Longword integer (signed)

Longword (unsigned)

Numeric string, left separate sign

Numeric string, left overpunched sign

Numeric string, right separate sign

Numeric string, right overpunched sign

Numeric string, unsigned

Numeric string, zoned sign

acta word integer (signed)

Octaword (unsigned)

Packed decimal string

Quadword integer (signed)

Quadword (unsigned)

Character string

Aligned bit string

Varying character string

Symbolic Code

DSC$K_DTYPE-ADT

DSC$K_DTYPE_B

DSC$K_DTYPE_BLV

DSC$K_DTYPE_BPV

DSC$K_DTYPE_BU

DSC$K_DTYPE_CIT

DSC$K_DTYPE_D

DSC$K_DTYPE_DC

DSC$K_DTYPE_DSC

DSC$K_DTYPE_F

DSC$K_DTYPE_FC

DSC$K_DTYPE_G

DSC$K_DTYPE_GC

DSC$K_DTYPE_H

DSC$K_DTYPE_HC

DSC$K_DTYPE_L

DSC$K_DTYPE_LU

DSC$K_DTYPE_NL

DSC$K_DTYPE_NLO

DSC$K_DTYPE_NR

DSC$K_DTYPE_NRO

DSC$K_DTYPE_NU

DSC$K_DTYPE_NZ

DSC$K_DTYPE_O

DSC$K_DTYPE_OU

DSC$K_DTYPE_P

DSC$K_DTYPE_Q

DSC$K_DTYPE_QU

DSC$K_DTYPE_ T

DSC$K_DTYPE_ V

DSC$K_DTYPE_VT

Programming Considerations 6-5

Table 6-1 (Cont.) VAX Standard Data Types

Data Type

Unaligned bit string

Word integer (signed)

Word (unsigned)

Unspecified

Procedure entry mask

Sequence of instruction

Symbolic Code

DSC$K_DTYPE_ VU

DSC$K_DTYPE_W

DSC$K_DTYPE_WU

DSC$K_DTYPE-Z

DSC$K_DTYPE-ZEM

DSC$K_DTYPE -ZI

Refer to the MicroVMS Programming Support Manual for more information about VAX
standard data types.

6.3.3 Access

The access characteristic describes how a calling routine will use the data specified by
the argument. Following is a list of the most common types of argument access:

• Read only access-the VIS routine uses the data specified by the argument as
input only.

• Write only access-the VIS routine uses the argument as a location to return data
only.

• Modify access-the VIS routine uses the data specified by the argument as input
for its operation and then writes data to that argument.

6.3.4 Mechanism
VAX language extensions provide the means of reconciling the different argument
passing mechanisms within a programming language. The VAX Procedure Calling
Standard provides three ways by which all application programs may pass arguments
to a system routine.

• By value-the argument contains the actual data to be used by the routine, the
actual data is said to be passed to the routine by value.

• By reference-the argument contains the address of the location in memory of
the actual data to be used by the routine, the actual data is said to be passed to
the routine by reference.

6-6 Programming Considerations

• By descriptor-the argument contains the address of a descriptor, the actual data
is said to be passed by descriptor.

A descriptor consists of two or more longwords (depending on the type of
descriptor used) that describe the location, length, and data type of the data to be
used by the called routine.

All language processors, except VAX MACRO and VAX BLISS, pass arguments
by reference or descriptor by default. Some high-level languages including VAX
FORTRAN set up the descriptors and arrays for you.

The following list contains the passing mechanisms allowed by the VAX Procedure
Calli!lg Standard.

Passing Mechanism

By value

By reference

By reference, array reference

By descriptor

By descriptor, fixed-length

By descriptor, dynamic string

By descriptor, array

By descriptor, procedure

By descriptor, decimal string

By descriptor, noncontiguous array

By descriptor, varying string

By descriptor, varying string array

By descriptor, unaligned bit string

By descriptor, unaligned bit array

By descriptor, string with bounds

By descriptor, unaligned bit string 1 with bounds

Descriptor Code

DSC$K_CLASS_S

DSC$K_CLASS_D

DSC$K_CLASS-A

DSC$K_CLASS_P

DSC$K_CLASS_SD

DSC$K_CLASS_NCA

DSC$K_CLASS_ VS

DSC$K_CLASS_ VSA

DSC$K_CLASS_UBS

DSC$K_CLASS_UBA

DSC$K_CLASS_SB

DSC$K_CLASS_UBSB

Refer to the Micro VMS Programming Support Manual for more information about
passing mechanisms.

Programming Considerations 6-7

6.3.4.1 VAX FORTRAN Built-In Functions
VAX FORTRAN also supports explicit argument passing mechanisms, or built-in
functions that do not require formal data declarations. Built-in functions are specified
only in the argument list of the call (with one exception) and are used when data
must be passed to a subroutine written in a programming language other than VAX
FORTRAN. The four VAX FORTRAN built-in functions are as follows:

• % VAL-specifies that the argument must be passed as a value.

• %REF-specifies that the argument must be passed as the address of the actual
data.

• %DESCR-specifies that the argument must be passed as the address of a
descriptor that points to the actual data.

• %LOC-returns the virtual address of the actual data.

The built-in function %LOC can be used outside an argument list to obtain
the address of a variable. For example, %LOC can be used in an assignment
statement where a longword in a character string descriptor is assigned the
address of the actual character string.

By default, VAX FORTRAN passes numeric data by reference and character string
data by descriptor. The built-in functions override default argument passing
mechanisms. Occasionally, an external procedure is encountered that passes data
differently from the VAX FORTRAN default and, in such cases, the built-in functions
can be used in VAX FORTRAN code.

For specific information regarding similar procedure argument passing mechanisms
for other high-level programming languages, refer to the appropriate language user's
guide.

Figure 6-1 illustrates how arguments are placed on the stack and shows how
arguments are passed to the called routine.

6-8 Programming Considerations

Figure 6-1 Passing Arguments

Procedure Argument Passing Mechanisms

ARGUMENT LIST PROCEDURE ARGUMENT
PASSING MECHANISMS

N (AP) I (a) ARGUMENT PASSED BY VALUE

ARG 1

ARG 2

ACTUAL VALUE

ARG N

I N (AP)

(b) ARGUMENT PASSE D BY REFERENCE

ARG 1

ARG 2

POINTER TO
ACTUAL VALUE DATA ?ep I ACTUAL VALUE

ARG N

N (AP)

(e) ARGUMENT PASSED BY DESCRIPTOR

ARG 1

ARG 2

POINTER TO
DESCRIPTOR

ARG N

Note. ARG 1, ARG 2, ARG N
can be passed by value, by
reference, or by descriptor
In any of the above examples.

:(AP) = argument pOinter

N = number of arguments

POINTER

DATA

A

B

H

T
I

Programming Considerations 6-9

6.4 UIS Constants

UIS constants are symbolic names for values that can be passed to, or returned from,
UIS routines. UIS constants are syntactically equivalent to literal integer constants
and are used in the following ways:

• As arguments to UIS functions

• As indexes into array arguments that are passed to, or received from, the UIS
subsystem

• As literals with which you can compare a returned value from an inquiry routine

Refer to Section 6.6 for information about UIS symbol definition files.

6.5 Condition Values Signaled

Occasionally hardware- or software-related events occur indicating errors that could
jeopardize successful program execution. Instead of returning condition values to
RO (as in VAX MACRO) or to a status variable (as in high-level languages), the UIS
routines signal a condition. In such cases, unless you have explicitly arranged to
handle the signaled condition, program execution terminates.

6.6 Additional Program Components

In addition to the usual program entities, you should be aware of UIS-specific and
language-specific program components that affect program execution.

Subroutines and Functions

VAX FORTRAN application programs must declare subroutines as external
procedures with the EXTERNAL statement if the subroutine name is used as
an actual argument to other subprograms. The subprogram can then use the
corresponding dummy argument in a function reference or a CALL statement.

Entry Point and Symbol Definition Files

All UIS and UISDC routines are declared in an entry point file supplied with the
graphics software. In addition, you may need to include a file of UIS symbol
definitions depending on the language you are using. These files are also known
as data description files. See your appropriate language user's manual to determine
whether you must include these files in your program data declarations.

6-10 Programming Considerations

The following table contains a list of entry point files and symbol definition files for
each VAX programming language. All files are located in SYS$LIBRARY.

Table 6-2 Entry Point and Symbol Definitio~ Files

V AX Language Entry Point File Symbol Definition File

BLISS UISENTRY.R32 UISUSRDEF.R32

C UISENTRY.H UISUSRDEF.H

FORTRAN UISENTRY.FOR UISUSRDEF.FOR

MACRO UISUSRDEF .MAR

PASCAL UISENTRY.PAS UISUSRDEF.PAS

PL/I UISENTRY.PLI UISUSRDEF.PLI

Message Definition File

A language-specific message definition file called UISMSG is included in the directory
SYS$LIBRARY. All possible UIS error codes are defined in this file. It is similar to
the entry point file UISENTRY. For instance, to define message symbols in a VAX
FORTRAN condition handler, you would add the following line to your program.

INCLUDE 'SYS$LIBRARY:UISMSG'

The appropriate language version of UISMSG is copied to your disk during the
installation procedure depending on the programming language options you select.

All messages symbols use the prefix UIS$_.

6.7 Notes to Programmers

As a programmer, you should know about language-specific issues that might affect
program execution. It is recommended that all application programmers read this
section.

6.7.1 VAX C Programmers
Entry Point and Symbol Definition Files

The file UISENTRY.H defines all routine entry points in lowercase characters, while
UISUSRDEF.H defines all constants in uppercase characters.

Programming Considerations 6-11

6.7.2 VAX PASCAL Programmers
Entry Point Files

Because VAX PASCAL references arguments as formal parameters, your calls to UIS
must specify the same parameter names as those contained in the entry point file
UISENTRY.PAS. Therefore, specify obj-id as the argument whenever the routine
descriptions in Parts III and IV allow a choice between the obj -id and seg--id
arguments. Refer to Tables A-I and B-1 for summaries of UIS and UISDC calling
sequences.

Creating Environment Files

Before running application programs written in VAX PASCAL, you must perform the
following procedure.

1. Set your default directory to SYS$LIBRARY.
$ SET DEFAULT SYS$LIBRARY

2. Produce an environment file of symbolic definitions and type declarations
by invoking the VAX PASCAL compiler with the jENVIRONMENT and
jNOOBJECT qualifiers.
$ PASCAL/ENVIRONMENT/NOOBJECT UISENTRY

The result of the compilation is UISENTRY.PEN, an environment file.

3. Include the INHERIT attribute in the first line of the application program or
program module specifying UISENTRY.PEN.
[INHERIT('UISENTRY.PEN')]

4. Repeat this procedure for the symbol definition file UISUSRDEF.P AS.

Refer to Programming in V AX PASCAL for more information about the jENVIRONMENT
and jNOOBJECT qualifiers and the INHERIT attribute.

Drawing Lines and Polygons

VAX PASCAL application programs should use UIS$PLOT-ARRAY rather than
UIS$PLOT and UIS$LINE-ARRAY instead of UIS$LINE, when drawing lines and
polygons.

6-12 Programming Considerations

6.7.3 VAX PL/I Programmers
Entry Point Files

Because VAX PL/I references arguments as formal parameters, your calls to UIS
must specify the same parameter names as those contained in the entry point file
UISENTRY.PLI. Therefore, specify obj-id as the argument whenever the routine
descriptions in Parts III and IV allow a choice between the obj_id and seg-id
arguments. Refer to Tables A-I and B-1 for summaries of UIS and UISDC calling
sequences.

6.8 Programming Examples

The programming examples in Parts II and III of this manual use VAX FORTRAN
Version 4.4. In addition, some examples particularly in Part III include ellipses, the
standard convention for indicating portions of code that have been left out. The
ellipses are also included to point out places in the program where code could be
added at the programmer's discretion.

Many of the examples include the VAX FORTRAN PAUSE statement. The PAUSE
suspends program execution and returns the user to the DeL prompt ($). A default
message "FORTRAN PAUSE" is returned to the display screen. The graphic images
that were created on the display screen will remain. You can respond to the DCL
prompt ($) by typing one of the following commands:

• CONTINUE-Program execution resumes at the next executable statement.

• EXIT-Program execution is terminated.

• DEBUG-Program execution resumes under the control of the VAX/VMS
Symbolic Debugger.

NOTE: If your program is running in batch mode, program execution is not
suspended. All messages are written to the system output file.

6.8.1 Structure of Programming Tutorial

Part II attempts to describe UIS graphics features and programming using a tutorial
approach in each chapter. Within each chapter, after a discussion of the main topics,
you are offered two types of information under the following headings:

• Programming options - Lists the features that you can use at a given point in
time. The addition of each new group of programming options lets you progress
in an orderly fashion from simple programming tasks to relatively complex ones.

Programming Considerations 6-13

• Program development - Lists the current programming objective and the tasks
needed to successfully implement the objective.

Program - Contains the source module with embedded callouts. Each
callout refers to a programming feature that should be noted.

Program output - Displays and explains the output from the program.

Each programming example uses some or all of the programming options listed. Not
all routines are illustrated in the accompanying example.

6.9 Program Execution

Your program can run in batch mode with predefined data or it can run interactively
accepting input from you when needed. However, in order to execute your
application program successfully, you must first store it as a file using a text editor.
Invoke the text editor on your workstation using the following command sequence.
Please refer to appropriate sections of the user's manual for detailed information
about Micro VMS text editors.

$ EDIT MYPROG.FOR

Please note in the previous example that you must supply a file name, for example,
MYPROG. In addition, a VAX FORTRAN file type (FOR) is added to the file name to
identify the file as a VAX FORTRAN source file. Enter your program according to the
rules of the programming language you are using. Refer to the appropriate language
reference manual for detailed information about the language.

6.9.1 Compiling Your Program

The newly created source file MYPROG.FOR must be compiled prior to execution.
The language compiler, in our case the VAX FORTRAN compiler, checks for proper
syntax and initiates code optimization where appropriate. Invoke the language
compiler in the following manner.

$ FORTRAN/LIST MYPROG

Note that the file type need not be included. By default, the system searches for
the latest version of the file, MYPROG, with a file type of FOR. If the application
source file contains syntax errors, you will receive compile-time error messages
called diagnostics. These diagnostic messages indicate the portion of code in error as
well as an explanation. The jLIST qualifier specifies the creation of a listing file of
accounting information and diagnostics (if present).

Some language compilers return a predetermined maximum number of diagnostics
before terminating compilation. In any case, you must correct these errors and
resubmit the source program for a successful compilation. Successful compilation
produces an object module with file type of OBJ.

6-14 Programming Considerations

6.9.2 Linking the Object Module

The Linker resolves references to subroutines and allocates memory to variables
within your program. Invoke the Linker in the following manner:

$ LINK MYPROG

You need not specify the file type of the program, MYPROG. By default, the system
searches for the latest version of the file MYPROG with the file type OBI.

In addition, you can link object modules of programs written in different source code.

6.9.3 Running the Executable Image

The Linker produces an executable image with a file type of EXE. At this point, you
can run your program. However, you may receive run-time errors in which case you
must correct errors in your source code and recompile the source module and relink
the object modules. Run the executable image after receiving the $ prompt in the
following manner:

$ RUN MYPROG

Chapter 7

Creating Basic Graphic Objects

7.1 Overview

This chapter describes how to create basic graphic objects: lines, circles, ellipses, and
text. To accomplish this task you will need to know about the following topics:

• Creating a virtual display

• Creating graphics and text

• Creating a display window

You will construct an interactive program that contains the necessary components
for creating graphic objects. Later, you will manipulate these displays using other
windowing routines.

Refer to Section 6.8 for more information about the programming examples that
appear in this manual.

7.2 Step 1-Creating a Virtual Display

When an artist paints a picture, he is concerned with presenting a subject from a
particular perspective. He then wonders how he will frame his subject and how
much space he will need to accomplish this task successfully. These needs are
fulfilled by the size of the canvas he chooses. All of the objects that we will create
will use such a frame of reference or virtual display to establish the universe in which
our graphic objects will exist.

While the artist simply chooses a spot on the canvas to paint, our calls to VIS
routines must reference points within our virtual display. The VIS subsystem uses
the coordinates you specify to generate a coordinate system with which we can create
the virtual display and subsequent windows. This coordinate system, or grid, allows
us to reference points as world coordinates along two perpendicular axes labelled x
and y.

7-2 Creating Basic Graphic Objects

Unlike the artist's canvas which has finite dimensions, your virtual display is infinite
and graphic objects may be drawn anywhere in it.

7.2.1 Specifying Coordinate Values

Many routines documented in this manual require specifying coordinates to define
virtual displays, display windows, and extent rectangles. Table 7-1 lists information
about coordinate values.

Table 7-1 Types of Coordinates

Coordinate Units

Absolute em

Normalized Gutenbergs

Viewport-relative Pixels

World User-specified

Data
Type

F_floating1

F_floating1

Longword (unsigned)

F_floatingl

Origin

Lower-left corner of
display screen or tablet

Lower-left corner of
virtual display

Lower-left corner of
display viewport

Lower-left corner of
virtual display

1 F_floating point numbers may be expressed with up to approximately seven decimal digits of precision.

7.2.2 Programming Options

The following options allow you to create the basic structures used to create graphic
objects.

Creating a Virtual Display

You must use UIS$CREATE_DISPLAY to specify the world coordinate space in
which you will draw graphic objects. The world coordinate values specified in
UIS$CREATE_DISPLAY establish mapping and scaling factors that the system may
later use in viewport creation. The coordinate values should not be thought of as the
absolute boundaries of the virtual display.

You can create an unlimited number of virtual displays subject to system and process
resources.

Deleting a Virtual Display

You may delete a virtual display at any time in your program using UIS$DELETE_
DISPLAY. However, you should remember that when you delete a virtual display
you are throwing out the canvas on which you have drawn graphic objects.

Creating Basic Graphic Objects 7-3

7.2.3 Program Development
Programming Objectives

To create an executable program using the VAX FORTRAN programming language.

Programming Tasks

1. Create a virtual display.

2. Delete the virtual display.

PROGRAM IMAGES_l
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY' ~
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 49

VD_ID=UIS$CREATE_DISPLAY(+1.0.+1.0.+20.0.+20.0.10.0.10.0) ~

PAUSE e
CALL UIS$DELETE_DISPLAY(VD_ID) ~

END

At this point the program contains UIS entry points ~ and definitions 49. It also
includes a call ~ to UIS$CREATE_DISPLAY. The plus sign (+) is optional for
positive coordinates. The minus sign (-) is required for negative coordinates.

Because world coordinates are f-floating numbers, the decimal point is required
when specifying world coordinate pairs.

See Section 6.8 for information about the VAX FORTRAN PAUSE statement e.
UIS$DELETE_DISPLAY is called ~ to remove the virtual display before the program
ends. Terminating an application program with UIS$DELETE_DISPLAY is not
required.

Besides specifying the world coordinate range of the virtual display, UIS$CREATE_
DISPLAY returns the value of the virtual display identifier in vcLid. The virtual
display ID uniquely identifies this newly created virtual display and is used in
subsequent windowing routines. Typically, UIS$CREATE_DISPLAY is the first UIS
routine to be called in an application program.

If your' application program were to invoke the UIS$CREATE_DISPLAY only, you
would not notice a change in your workstation display screen.

7-4 Creating Basic Graphic Objects

7.3 Step 2-Creating Graphics and Text

You are now at a point comparable to the artist preparing to draw on the canvas.
The virtual display is an infinitely large canvas. You must choose the types of
graphic objects to be drawn there. You can draw graphic objects anywhere in the
virtual display. Three types of graphic objects can be drawn in the virtual display as
shown in the following table.

Graphic Object

Geometric shapes

Text

Raster images

Example

Point, line, polygon, circle, and ellipse

Characters

Any object constructed with a bitmap of varying size

7.3.1 Graphics Drawing Operations

The following considerations apply to graphics operations:

• All line drawing operations are symmetrical and include both end points.

• All region specifications include the borders of the region specified. This applies
in all cases to fill patterns, images, ellipses, moving windows, and so forth.

7.3.2 Programming Options

You can draw any of the graphic objects listed in this section. Read the routine
description of each routine carefully.

Creating Points, Lines, and Polygons

Depending on the number of times you repeat coordinate pairs in UIS$PLOT or
UIS$PLOT-ARRAY, you can draw a point, connected lines, or a polygon.

You can draw more than one unconnected line in single call to UIS$LINE or
UIS$LINE-ARRAY. Each pair of world coordinate pairs specified represents the
end points of a line.

NOTE: VAX PASCAL application programs should use UIS$PLOT-ARRAY or
UIS$LINE-ARRAY to draw all lines, disconnected lines, and polygons.

Creating Circles

You can create circles or circular arcs with UIS$CIRCLE.

Creating Ellipses

You can create ellipses or elliptical arcs with UIS$ELLIPSE.

Creating Basic Graphic Objects 7-5

Drawing Images

You can create a bitmap image of a graphic object and then draw the raster to the
display screen with UIS$IMAGE using the following procedure:

1. Create a data structure in your program, such as an array or record, that defines
the bitmap.

2. Set the bits in the structure to create the bitmap image by assigning values to the
elements of the structure.

3. Specify width and height of the raster image in pixels in UIS$IMAGE.

4. Specify the name of the data structure in UIS$IMAGE.

Figure 7-1 illustrates how bitmap settings are mapped to raster images.

Figure 7-1 Mapping a Bitmap to a Raster

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1°111°11111°111°111°1°1111111°111

1 ---.
1

1

0 1

0 1

1 1 0 0

0

1 0 1 0 1

\

\ Bitmap
Image

Raster
Image

ZK 4627 85

Mapping the raster image occurs from left to right and from top to bottom. See the
UIS$IMAGE routine description for more information.

Text

You can set the current position and create text anywhere within a virtual display
using UIS$TEXT. The text within a virtual display could be used for labelling
an accompanying graphic object within the window. Only UIS$TEXT can write
characters in a virtual display.

7-6 Creating Basic Graphic Objects

7.3.3 Program Development
Programming Objectives

To create an executable program using the VAX FORTRAN programming language.

Programming Tasks

1. Create a virtual display.

2. Draw four graphic objects in the virtual display.

3. Delete the virtual display.

PROGRAM IMAGES_2
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,10.0,10.0)

CALL UIS$CIRCLE(VD_ID,0,10.0,10.0,1.0) ~
CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0) ~
CALL UIS$ELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0) ..
CALL UIS$TEXT(VD_ID,O, 'This is a test. ',1.0,12.0) ~

PAUSE
CALL UIS$DELETE_DISPLAY(VD_ID)
END

In the preceding example, world coordinate pairs are specified explicitly to the VIS
graphics routines ~ ~ .. ~ describing the exact locations of the graphic objects
(circle, line, ellipse, and text) in the virtual display.

If you executed the program in its present form, the workstation display screen
would show no objects. Your calls to the VIS graphics and text routines have been
processed. However, you must create a window to view what has been drawn.

7.4 Step 3-Creating a Display Window
I

The next step is to create a display window. The display window defines the world
coordinate range of the viewable portion of the virtual display. When you create a
display window, you are also creating a display viewport, an area on the physical
screen on which the display window is mapped.

Creating Basic Graphic Objects 7-7

7.4.1 Programming Options

All the programming options available to us at this point, are provided through
UIS$CREATE_WINDOW. At this point, you do not need to know about its full
capabilities, which are discussed in more detail in the next chapter.

Creating a Display Window and Viewport

You can create a display viewport and its associated viewport with
UIS$CREATE _WINDOW.

7.4.2 Program Development
Programming Objectives

To create an executable program that draws and displays graphic objects on the
VAXstation display screen.

Programming Tasks

1. Create a virtual display.

2. Draw four graphic objects in the virtual display.

3. Create a display window and viewport.

4. Delete the virtual display.

PROGRAM IMAGES_2A
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL*4 WIDTH, HEIGHT

TYPE *,'ENTER DESIRED VIEWPORT WIDTH AND HEIGHT'
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,WIDTH,HEIGHT) ..

CALL UIS$CIRCLE(VD_ID,0,10.0,10.0,1.0) 49
CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0) ~
CALL UIS$ELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0) ~
CALL UIS$TEXT(VD_ID,O,'This is a test. ',1.0,12.0) ~

WD_ID=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION') C.
PAUSE

CALL UIS$DELETE_DISPLAY(VD_ID)

END

7-8 Creating Basic Graphic Objects

The world coordinate range of the virtual display and the default dimensions of the
display viewport are specified in a call to UIS$CREATE_DISPLAY O.

NOTE: The display viewport will not be mapped until a display window is created.

Next, the graphics and text routines are called 8 • 0 0 to draw the graphic objects.

A display window and viewport are created in a call to UIS$CREATE_WINDOW 0.
The world coordinate range of the window and the viewport width and height are
not specified. Therefore, the world coordinate space of the display window, that is,
the viewable portion of the virtual display defaults to the entire virtual display. You
will see all objects drawn in the virtual display.

7.4.3 Calling UIS$CIRCLE, UIS$ELLIPSE, UIS$PLOT, UIS$TEXT,
and UIS$CREATE_WINDOW

When you run the program IMAGES_2A, you should get a single display viewport
without a title, containing text, a circle, a line, and an ellipse as shown in Figure 7-2.

Figure 7-2 Display Viewport and Graphic Objects

o
This is a tes~

I
ZK-4533-85

Chapter 8

Display Windows and Viewports

8.1 Overview

Before you begin to manipulate graphic objects, you need to know more about
display windows and viewports. After all, display windows and viewports allow
you to see graphic objects drawn in the virtual display. This chapter discusses the
following topics:

• Creating display windows and viewports

• Moving display windows

• Manipulating display viewports

• Deleting display windows

• Erasing the virtual display

• Creating transformations

These tasks are accomplished by the VIS windowing routines.

8.2 Windowing Routines

Windowing routines are responsible for the creation and deletion of virtual displays,
display windows, and display viewports. Table 8-1 provides a list of window
routines and their functions.

8-2 Display Windows and Viewports

Table 8-1 UIS Windowing Routines

Routine

UIS$CREATE_DISPLAY

UIS$CREATE_ WINDOW

UIS$EXP AND_ICON

UIS$MOVE_AREA

UIS$MOVE_WINDOW

UIS$POP_ VIEWPORT

UIS$PUSH_ VIEWPORT

UIS$SHRINK_ TO_ICON

UIS$CREATE_ TRANSFORMATION

UIS$ERASE

UIS$DELETE_DISPLAY

UIS$DELETE_WINDOW

Description

Creates a virtual display and defines default viewport
dimensions

Creates display window and viewport

Substitutes an associated viewport for an icon

Moves a specified rectangle and its contents in the
virtual display to another part of the virtual display

Pans the display window across the virtual display

Allows an occluded viewport to be fully displayed

Places a viewport behind another viewport

Substitutes an icon for a display viewport

Alters the world coordinate space of the virtual display

Erases objects that lie completely within a specified
rectangle in the virtual display

Deletes a virtual display

Deletes a display window and viewport

These routines allow you to create and manage the display screen environment
and to perform certain housekeeping functions such as erasing and deleting virtual
displays and windows.

8.3 Step 1-Creating Many Display Windows

For every display window that you create, you are also creating a display viewport.
A one-to-one relationship exists between each display window and its associated
viewport. An application program can create an unlimited number of display
windows and viewports subject to system and process resources.

8.3.1 Programming Options

Each display window can be unique with regard to world coordinate range.
Therefore, you can create display viewports that are also unique with respect to
dimensions and position in the display screen.

Display Windows and Viewports 8-3

Display Window Size

By default, a newly created display window displays the full world coordinate space
specified when creating the virtual display. You can specify world coordinates pairs
in UIS$CREATE_WINDOW as you see fit to produce display windows of different
proportions within the virtual display.

Display Viewport Size

Similarly, the default display viewport dimensions are equal to the values specified
in the width and height arguments in the UIS$CREATE_DISPLAY call. However,
you may specify different dimensions to scale the contents of the window. Maximum
display viewport size depends on the dimensions of the display screen. If you
specify viewport dimensions that exceed the size of the display screen, UIS scales the
viewport to the size of the display screen.

Graphic Object Magnification

The world coordinate range of the display window or the dimensions of the display
viewport can be manipulated to increase or decrease magnification of the object
displayed in the viewport. This occurs when the display window area is decreased
or increased while the viewport size remains the same, or when the viewport is
decreased or increased while dimensions of the window remain the same.

Distortion

Distortion occurs whenever the aspect ratios of the display viewport and display
window are not equal. The aspect ratio of the display window is the absolute value
of the difference between y world coordinates of the upper-right and the lower-right
corners of the window divided by the absolute value of the difference between the
x world coordinates of the lower-right and lower-left corners. Figure 8-1 illustrates
how to calculate the aspect ratios of the display window and viewport.

Figure 8-1 Aspect Ratios of the Display Window and Display Viewport

I y1 - yOI

I x1 - xol

Number of Windows and Viewports

viewport height

viewport width

ZK-4579-85

You can create an unlimited number of display windows and, as a result, an
unlimited number of display viewports subject to system and process resources.
In addition, you can specify the dimensions of each display viewport.

8-4 Display Windows and Viewports

Display Banner

The display banner appears along the top border of the display viewport and
contains the menu and keyboard icons as well as the viewport title. The maximum
length of the viewport title is 63 characters.

You can suppress the generation of the display banner with the attributes argument
in UIS$CREATE_WINDOW. When the display banner is suppressed, only the
viewport border is displayed.

Display Viewport Placement

You can either explicitly place a display viewport on the workstation display screen
or you can allow UIS to choose a location for you. By default, display viewport
placement is random.

8.3.2 Program Development
Programming Objectives

To create four display windows and display viewports.

Programming Tasks

1. Create a virtual display.

2. Draw four graphic objects in the virtual display.

3. Create four display windows and viewports omitting the display window
coordinates in the calls to UIS$CREATE_WINDOW.

4. Delete the virtual display.

PROGRAM IMAGES_3
IMPLICIT INTEGER(A-Z)
INCLUDE , SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,10.0,10.0)

CALL UIS$CIRCLE(VD_ID,O,10.0,10.0,1.0)
CALL UIS$PLOT(VD_ID,O,4.0,3.0,5.0,7.0)
CALL UIS$ELLIPSE(VD_ID" 0 ,15.0,15.0,1.0,2.0)
CALL UIS$TEXT(VD_ID,O,'This is a test. ',1.0,12.0)

WD_ID1=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') ~
PAUSE
WD_ID2=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') 49
WD_ID3=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') ~
WD_ID4=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') ~

Display Windows and Viewports 8-5

PAUSE
CALL UIS$DELETE_DISPLAY(VD_ID)

END

Four calls to UIS$CREATE_WINDOW 0 •• e have been inserted to create
four windows. The world coordinate range of each window defaults to the world
coordinate range of the entire virtual display.

8.3.3 Calling UIS$CREATE_WINDOW

If you were to run this program now, your workstation screen would display the
graphic objects as shown in Figure 8-2.

8-6 Display Windows and Viewports

Figure 8-2 Four Display Viewports

o o
This is a test. is is a test. o o

I I

o o
This is a test. This is a test. o o

I I
As you can see, four display windows have been created and mapped to the
display screen as four viewports. Each of the viewports contains four objects.
Because display window world coordinate pairs were not explicitly specified in
UIS$CREATE_WINDOW, the viewports allow you to see the entire area of the

ZK·4534·85

Display Windows and Viewports 8-7

virtual display by default. In addition, because the display viewport width and
height in centimeters were not explicitly specified in the UIS$CREATE_WINDOW
call, each display viewport is, by default, 10 cm square as specified in the width and
height arguments of the UIS$CREATE_DISPLAY call.

8.4 Step 2-Deleting and Erasing Display Windows

Some windowing routines perform housekeeping functions, that is, they delete
unused display windows or erase graphic objects from the virtual displays. Such
routines are important in managing display environment, when you run complicated
applications.

8.4.1 Programming Options

You may want your application program to delete unwanted windows, viewports,
and virtual displays. This can be done by calling UIS routines for deleting and
erasing display windows and virtual displays.

Display Window Deletion

Any display window can be deleted without interfering with other windows or
viewports. Deletion of the display window does not affect the graphic objects
in the virtual display. If you delete a display window, you are also deleting the
associated display viewport. Delete any display window and its associated viewport
by specifying the appropriate display window i~entifier in UIS$DELETE_WINDOW.

Erasing the Virtual Display

Graphic objects that lie completely within a specified rectangle in the virtual display
can be deleted at any time using UIS$ERASE. If no rectangle is specified, the entire
virtual display is used.

8.4.2 Program Development
Programming Objectives

To enclose each graphic object in its own display window and then to delete a
window and its viewport.

8-8 Display Windows and Viewports

Programming Tasks

1. Create a virtual display.

2. Draw four graphic objects in the virtual display.

3. Create four display windows and viewports specifying display window regions
that enclose each of the graphic objects.

• Specify display window regions that enclose each of the graphic objects.

• Specify a viewport title identifying the graphic object.

4. Delete one of the display windows and its viewport.

PROGRAM IMAGES_4
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL WIDTH,HEIGHT

TYPE *, 'ENTER DISPLAY SIZE' ~
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,WIDTH,HEIGHT)

CALL UIS$CIRCLE(VD_ID,0,12.0,12.0,1.0)
CALL UIS$PLOT(VD_ID,O,4.0,3.0,5.0,7.0)
CALL UIS$ELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0)
CALL UIS$TEXT(VD_ID,O, 'This is a test. ',1.0,12.0)

WD_ID1=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION' ,'CIRCLE',
2 10.0,10.0,14.0,14.0,WIDTH,HEIGHT) 49
WD_ID2=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','LINE' ,
2 3.0,2.0,6.0,8.0,WIDTH,HEIGHT) 49
WD_ID3=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION' ,'TEXT',
2 1.0,12.0,10.0,10.0,WIDTH,HEIGHT) ~
WD_ID4=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION' ,'ELLIPSE',
2 13.0,13.0,17.0,18.0,WIDTH,HEIGHT) ~

PAUSE

CALL UIS$DELETE_WINDOW(WD_ID2) ~

PAUSE

END

The program now accepts input for the display viewport dimensions interactively ~.

The world coordinate space that defines each display window is specified explicitly
in the UIS$CREATE_WINDOW calls 49 49 ~ ~.

Display Windows and Viewports 8-9

UIS$CREATE_WINDOW returns the variable wd_id2, the display window identifier
• to uniquely identify the LINE window. Note that the call to delete the LINE
window 0 references this variable.

8.4.3 Calling UIS$DELETE_WINDOW

If we ran this program until the first PAUSE statement, the workstation screen would
display the graphic objects shown in Figure 8-3.

8-10 Display Windows and Viewports

Figure 8-3 Objects Within Different Windows

ELLIPSE

--

LINE TEXT

This is a test.

ZK-4535-85

By specifying explicitly a particular world coordinate range within the virtual display
for each display window, each graphic object lies within a separate window that
maps to the physical display screen as a separate display viewport.

Display Windows and Viewport's 8-11

To continue program execution, type CONTINUE at DeL prompt ($). The program
continues to execute and the screen changes as shown in Figure 8-4.

Figure 8-4 Display Window Deletion

This is a test.

ZK-4536-85

The viewport LINE and its window are deleted. However, the actual graphic
object still exists. You have simply deleted the display window that allowed you

8-12 Display Windows and Viewports

to view the portion of the virtual display that contained the line. If you called
UIS$CREATE_WINDOW again, specifying the appropriate world coordinate space
in the virtual display, the object would reappear.

8.5 Step 3-Manipulating Display Windows and Viewports

Display viewports and windows do not have to remain as static objects on your
screen. You can manipulate the newly created display windows and viewports in
many ways.

8.5.1 Programming Options

Viewport placement features and window attributes are implemented using the
optional attributes argument of UIS$CREATE_WINDOW.

NOTE: When you include the attributes argument in UIS$CREATE_WINDOW,
you are not modifying attribute block O.

Attributes and attribute block 0 are discussed in detail in the next chapter.

General and Exact Placement of Viewports

Unless you specify otherwise, your display viewports are placed randomly
throughout the screen. You can move any display viewport to any position on the
screen. When you create the window, you can specify general viewport placement,
that is, within a certain vicinity on the screen-top, left, right, or bottom.

Exact placement positions your display viewport where you want on the screen and
allows you to occlude other viewports to save space.

Panning and Zooming the Virtual Display

You can pan across the virtual display to include either the entire virtual display or
any discrete area within it.

Pushing and Popping Display Viewports

Pushing and popping display viewports is useful when you have created display
windows with the exact placement attribute. In such a case, your application may
have created two windows and purposely occluded one of the viewports. In this
instance, you know which viewport will be occluded and the use of UIS$POP_
VIEWPORT is clearly indicated.

Otherwise, the UIS subsystem places newly created windows randomly on the
display screen by default. As a result, you will not know where the viewports will
be placed. Therefore, use of UIS$POP_ VIEWPORT or UIS$PUSH_ VIEWPORT in
this instance, would be unnecessary and confusing.

Display Windows and Viewports 8-13

Moving a Display Viewport

You can move an existing display viewport anywhere on the display screen using
UIS$MOVE_ VIEWPORT.

Moving a Portion of the Virtual Display

You can draw a graphic object in a portion of the virtual display, then move that
coordinate space to another part of the same virtual display with UIS$MOVE_
AREA. The vacated source area is filled with the current background color.

8.5.2 Program Development I
Programming Objectives

To delete three display windows and viewports and then to pan the virtual display
using the remaining display window.

Programming Tasks

1. Create a virtual display.

2. Draw four graphic objects in the virtual display.

3. Create four display windows and viewports each containing a graphic object.

4. Specify a title for each viewport.

5. Delete three of the four display windows.

6. Pan the virtual display with the remaining display window using
UIS$MOVE_WINDOW.

PROGRAM IMAGES_5
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL WIDTH,HEIGHT

TYPE *, 'ENTER VIEWPORT WIDTH AND HEIGHT'
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0, 1.0,20.0,20.0,10.0,10.0)

CALL UIS$CIRCLE(VD_ID,O,12.0,12.0,l.0) ..
CALL UIS$PLOT(VD_ID,O,4.0,3.0,5.0,7.0) ..
CALL UIS$ELLIPSE(VD_ID,O,15.0,15.0,l.0,2.0) ..
CALL UIS$TEXT(VD_ID,O, 'This is a test. ',1.0,12.0) ~

8-14 Display Windows and Viewports

WD_ID1=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION' ,'CIRCLE',
2 10.0,10.0,14.0,14.0,WIDTH,HEIGHT) CD
WD_ID2=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','LINE' ,
2 3.0,2.0,6.0,8.0,WIDTH,HEIGHT) CD
WD_ID3=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION','TEXT',
2 1.0,12.0,10.0,10.0,WIDTH,HEIGHT) ~
WD_ID4=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION','ELLIPSE',
2 13.0,13.0,17.0,18.0,WIDTH,HEIGHT) ~

PAUSE CD

CALL UIS$DELETE_WINDOW(WD_ID1) GD
CALL UIS$DELETE_WINDOW(WD_ID3) ~
CALL UIS$DELETE_WINDOW(WD_ID4) 09

PAUSE •

CALL UIS$MOVE_WINDOW(VD_ID,WD_ID2,6.0,8.0,18.0,18.0) GD

PAUSE (0

CALL UIS$DELETE_DISPLAY(VD_ID)

END

The program IMAGE_S creates four graphic objects 0 • 6) e in the virtual display.

The program prompts for the viewport width and height which overrides the values
specified in UIS$CREATE_DISPLAY.

Each graphic object is contained within a newly created display window CD CD ~ ~.
Each display window is mapped to the physical screen as a display viewport with an
appropriate title describing the graphic object within the window.

Program execution is suspended 0. The display screen contains four viewports as
previously described.

Three calls to UIS$DELETE_WINDOW GD ~ 09 remove the windows and their
viewports CIRCLE, ELLIPSE, and TEXT from the display screen.

Program is suspended •. The display screen contains one display viewport LINE.

A call to UIS$MOVE_WINDOW GD has been inserted. Thus, the display window
LINE pans the virtual display.

Display Windows and Viewports 8-15

8.5.3 Calling UIS$MOVE_WINDOW

The display screen initially contains all four windows as shown in Figure 8-5.

Figure 8-5 Before Panning the Virtual Display

LINE CIRCLE

This is a test.

ZK-4537-85

8-16 Display Windows and Viewports

Three of the display windows and viewports are deleted.

The display viewport LINE remains. Originally, the viewport contained a line; now it
contains the circle and the ellipse. The display window will go to the location in the
virtual display you have specified. You may include as many calls to UIS$MOVE_
WINDOW as you see fit. Your workstation screen will display the objects shown in
Figure 8-6.

Display Windows and Viewports 8-17

Figure 8-6 Panning the Virtual Display

o
ZK-4622-85

8-18 Display Windows and Viewports

The circle and the ellipse still exist in the virtual display.

8.5.4 Program Development II
Programming Objectives

To demonstrate exact placement of the display viewport on the display screen in
order to pop and push viewports. '

Programming Tasks

1. Create a viewport attributes data structure specifying viewport placement data.

2. Create a virtual display.

3. Draw two graphic objects in the virtual display in separate viewports.

4. One viewport will occlude the other initially.

PROGRAM IMAGES_6
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL WIDTH.HEIGHT

STRUCTURE/PLACE/ ..
INTEGER*4 CODE_l
REAL*4 ABS_POS_X
INTEGER*4 CODE_2
REAL*4 ABS_POS_Y
INTEGER*4 END_OF_LIST

END STRUCTURE

RECORD /PLACE/PLACE_LIST.ON_TOP ..

PLACE_LIST.CODE_l=WDPL$C_ABS_POS_X
PLACE_LIST.ABS_POS_X=8 tD
PLACE_LIST.CODE_2=WDPL$C_ABS_POS_Y
PLACE_LIST.ABS_POS_Y=8 G)
PLACE_LIST.END_OF_LIST=WDPL$C_END_OF_LIST

ON_TOP.CODE_l=WDPL$C_ABS_POS_X
ON_TOP.ABS_POS_X=8.5 CD
ON_TOP.CODE_2=WDPL$C_ABS_POS_Y
ON_TOP.ABS_POS_Y=8.5 ~
ON_TOP.END_OF_LIST=WDPL$C_END_OF_LIST

TYPE *. 'ENTER DISPLAY SIZE'
ACCEPT *.WIDTH.HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0.1.0.20.0.20.0.10.0.10.0)

Display Windows and Viewports 8-19

CALL UIS$CIRCLE(VD_ID,O,10.0,10.0,l.0)
CALL UIS$PLOT(VD_ID,O,4.0,3.0,5.0,7.0)

WD_ID1=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','CIRCLE',
2 8.0,8.0,12.0,12.0,WIDTH,HEIGHT,PLACE_LIST) ~
WD_ID2=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','LINE',
2 3.0,2.0,6.0,8.0, "ON_TOP) 4D
PAUSE 0

CALL UIS$POP_VIEWPORT(WD_ID1) aD

PAUSE

CALL UIS$PUSH_VIEWPORT(WD_ID1) ~

PAUSE

CALL UIS$DELETE_DISPLAY(VD_ID)

END

A data structure argument 0 is created and given the symbolic name PLACE
using the STRUCTURE statement. The symbolic names for the fields were chosen
arbitrarily.

Two variables, PLACE_LIST and ON _TOP, of type PLACE are created. and
contain five longwords.

Actual values are assigned to the different fields of the record PLACE_LIST. In this
case, the absolute coordinates of the lower-left corner. e of the display viewport
LINE are assigned to the fields ON_TOP.ABS_POS-X and ON_TOP.ABSJOS_Y
CD 0. The absolute coordinates of the display viewport CIRCLE, are assigned to the
fields PLACEMENT .ABS_POS-X and PLACEMENT.ABSJOS_ Y as well.

Also, the position of your calls to UIS$CREATE_WINDOW ~ fD within your
program is important. The call to create the display viewport CIRCLE must be
executed prior to LINE.

At the first PAUSE statement 0, viewport LINE occludes viewport CIRCLE.

UIS$POP_ VIEWPORT is called aD. The display viewport CIRCLE is placed over the
viewport LINE.

A call to UIS$PUSH_ VIEWPORT ~ returns the viewports to their orginal position.

8-20 Display Windows and Viewports

8.5.5 Calling UIS$POP_VIEWPORT and UIS$PUSH_VIEWPORT

Initially, the viewport LINE is placed over CIRCLE. Note that display viewports
are placed on the physical display screen with absolute coordinates. The lower-left
corner of any viewport is the origin of the viewport rectangle. When you request
exact placement of a viewport, you are specifying where on display screen the origin
of the viewport rectangle is to be placed relative to the lower-left corner of the
display screen.

The program execution is suspended at the first PAUSE statement. The display
screen contains the graphic objects shown in Figure 8-7.

Display Windows and Viewports 8-21

Figure 8-7 Occluding a Display Viewport

I~~ LINE

I"

ZK-4539-85

8-22 Display Windows and Viewports

The display viewports LINE and CIRCLE exchange positions when the call to
UIS$POP_ VIEWPORT is executed. The viewport CIRCLE now occludes LINE as
shown in Figure 8-8.

Figure 8-8 Popping a Display Viewport

CIRCLE

ZK-4540-85

Display Windows and Viewports 8-23

In order to return the viewports to their original positions, a call to UIS$PUSH_
VIEWPORT pushes viewport CIRCLE behind viewport LINE as shown in Figure 8-9.

Figure 8-9 Pushing a Display Viewport

LINE

I"

ZK-4539-85

8-24 Display Windows and Viewports

8.5.6 Program Development III
Programming Objectives

To place a viewport in a general vicinity on the display screen and to create a display
viewport with no border.

Programming Tasks

1. Create a viewport attributes list to hold the appropriate viewport placement and
attributes data.

2. Create a virtual display.

3. Draw two graphic objects in the virtual display.

4. Create two display windows and associated viewports each containing a graphic
object.

5. Delete the virtual display.

PROGRAM IMAGES_7
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL WIDTH,HEIGHT

STRUCTURE/PLACE/ ~
INTEGER*4 CODE_5
INTEGER*4 REL_POS
INTEGER*4 CODE_6
INTEGER*4 ATTR
INTEGER*4 END_OF_LIST
END STRUCTURE

RECORD /PLACE/LOCATION(2) ..

LOCATION(1).CODE_5=WDPL$C_PLACEMENT
LOCATION(l).REL_POS=WDPL$M_TOP .OR. WDPL$M_LEFT ~
LOCATION(1).CODE_6=WDPL$C_ATTRIBUTES
LOCATION(l).ATTR=WDPL$M_NOMENU_ICON
LOCATION(l).END_OF_LIST=WDPL$C_END_OF_LIST

LOCATION(2).CODE_5=WDPL$C_PLACEMENT
LOCATION(2).REL_POS=WDPL$M_RIGHT .OR. WDPL$M_BOTTOM ~
LOCATION(2).CODE_6=WDPL$C_ATTRIBUTES
LOCATION(2).ATTR=WDPL$M_NOBORDER
LOCATION(2).END_OF_LIST=WDPL$C_END_OF_LIST

TYPE *, 'ENTER VIEWPORT WIDTH AND HEIGHT'
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,l.0,20.0,20.0,10.0, 10.0)

Display Windows and Viewports 8-25

CALL UIS$CIRCLE(VD_ID,O,12.0,12.0,l.0)
CALL UIS$ELLIPSE(VD_ID,O,15.0,15.0,l.0,2.0)

WD_ID1=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION' ,'CIRCLE',
2 10.0,10.0,14.0,14.0,WIDTH,HEIGHT,LOCATION(1))
WD_ID4=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION' ,'ELLIPSE',
2 13.0,13.0,17.0,18.0,WIDTH,HEIGHT,LOCATION(2))

PAUSE

CALL UIS$DELETE_DISPLAY(VD_ID)

PAUSE

END

The name of the data structure argument PLACE is defined using the STRUCTURE
statement O. An array LOCATION is defined to have two elements that are records
with a structure defined by the structure PLACE •. Each record LOCATION(l) and
LOCATION(2) consists of two pairs of longwords terminated by a longword equaling
the constant WDPL$C_END_OF_LIST.

We prefer to have the display viewport CIRCLE placed in the upper-left corner of
the display screen and the borderless viewport ELLIPSE in the lower-right corner.
Therefore, we must specify in each assignment two preference masks for each
viewport 8) e.
NOTE: Note that you must use the logical operator .OR. when specifying more
than one preference mask.

The array name LOCATION is added to the argument lists of the viewport CIRCLE
and ELLIPSE to invoke the optional attribute list.

8.5.7 Requesting General Placement and No Border

General display viewport placement works best on an uncluttered display screen.
Your workstation screen will display the objects shown in Figure 8-10.

8-26 Display Windows and Viewports

Figure 8-10 General Placement and No Border

ZK-4541-85

Display Windows and Viewports 8-27

8.5.8 Program Development IV
Programming Objectives

To move graphic objects within the virtual display.

Programming Tasks

1. Create a virtual display.

2. Create a display window and viewport.

3. Draw two graphic objects in the virtual display.

4. Move the coordinate space containing each graphic object to another portion of
the virtual display using UIS$MOVE-AREA.

PROGRAM AREA
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE ' SYS$LIJ

VD_ID=UIS$CREATE_DISPLAY(O.O.O.O.50.0.50.0.15.0.15.0)
WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION'.'MOVE AREA')

CALL UIS$PLOT(VD_ID.O.l.0.25.0.16.0.25.0.9.0.42.0.1.0.25.0) t»
CALL UIS$CIRCLE(VD_ID.O.35.0.35.0.10.0) 49

PAUSE
CALL UIS$MOVE_AREA(VD_ID.O.O.22.0.20.0.42.0.30.0.1.0) ~
CALL UIS$MOVE_AREA(VD_ID.25.0.25.0.50.0.50.0.1.0.1.0) ~

PAUSE

END

A triangle and a circle are drawn in the upper half of the virtual display using
UIS$PLOT and UIS$CIRCLE t» 49.

A rectangular area containing the triangle is moved to the lower-right area of the
virtual display~. A rectangular area containing the circle is moved to the lower-left
region in the virtual display ~.

8-28 Display Windows and Viewports

Figure 8-11 Moving Graphic Objects Within the Virtual Display

1l10Ve <lTea
- - - =-- -=------=-- --::-:;:::--- -=--- ------==-----=----===----=--=:--~-~-

2K462385

Display Windows and Viewports 8-29

8.5.9 Calling UIS$MOVE-AREA

Figure 8-11 shows how areas within the virtual display containing graphic objects
can be moved to other parts of the same virtual display.

8.6 World Coordinate Transformations

Certain applications may require that you create more than one virtual display, or
world coordinate space. Depending on the requirements of the program, you might
have to map graphic objects in one virtual display to another virtual display.

8.6.1 Programming Options

To illustrate the advantages of world coordinate transformations, we will construct
a program that creates a virtual display. We will then create a circle in a virtual
display. The circle will be written to new world coordinate space or transformation
space.

Two-Dimensional Transformation and Scaling

Depending on the values supplied to UIS$CREATE_TRANSFORMATION, graphic
objects mapped to other coordinate spaces may be scaled. If the coordinates of the
new transformation space are the same as those of the original virtual display, no
scaling occurs.

8.6.2 Program Development
Programming Objectives

To transform a world coordinate space by altering its mapping and scaling factors.

Programming Tasks

1. Create a virtual display.

2. Create a display window and viewport.

3. Draw a graphic object in the virtual display.

4. Create a new coordinate space using UIS$CREATE_TRANSFORMATION.

5. Redraw the graphic object substituting the transformation identifier of the new
coordinate space returned by UIS$CREATE_TRANSFORMATION for the virtual
display identifier of the old coordinate space.

8-30 Display Windows and Viewports

PROGRAM TRANS
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'

VD_ID=UIS$CREATE_DISPLAY(-5.0,-5.0,25.0,25.0,10.0, 10.0) tt
WD_ID=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION','TRANSFORMATION')
CALL UIS$CIRCLE(VD_ID,O,6.0,6.0,7.0) ~

TR_ID=UIS$CREATE_TRANSFORMATION(VD_ID,-5.0,-5.0,
2 17.5,17.5) 4D
CALL UIS$CIRCLE(TR_ID,O,6.0,6.0,7.0) C)

PAUSE
END

The virtual display tt and the new transformation space 4D specify different
coordinate ranges. The circles are created in calls to UIS$CIRCLE ~ C) where
the tr-id argument is substituted for vd-id in the second call. The same circle is
redrawn with the same world coordinates in the new transformation space.

8.6.3 Calling UIS$CREATE_ TRANSFORMATION

The graphic objects appear to be superimposed one over the other. If the vdxl and
vdyl arguments are manipulated, the size of the arc can increase or decrease relative
to the size of the first circle. In any case, the arc is mapped to the transformation
space eliminating the need for additional computation and coding on the part of the
programmer.

Display Windows and Viewports 8-31

Figure 8-12 World Coordinate Transformations

TRANSFORMATION
- -- - - -- ~--~ -=-------~~-=----=-~-

~~~-

TRANSFORMATION 
- - - ---- - - - - - ----=-- -=- ~--==-

ZK-4542-85 





Chapter 9 

General Attributes 

9.1 Overview 

Until the information presented in this manual has been concerned with VIS output 
routines that create the basic structures needed to produce graphic objects. However, 
there are other types of routines. This chapter discusses the following topics: 

• Understanding general attributes 

• Using general attributes 

The attribute routines place a great deal of control over the quality of graphic objects 
and text in the hands of the programmer. 

9.2 Attributes-How to Use Them 

As the canvas gradually fills with various shapes and figures, the artist is concerned 
not only with the shapes of the subjects-a line, a circle, an ellipse, and text but also 
with whether their appearance conveys the intended meaning. What our artist would 
regard as an aesthetic consideration, we will call an attribute. Attributes control the 
appearance of graphic objects and text. You will use attributes whenever you need 
to enhance some element on the display screen. Attributes can be modified at any 
time within your program. 



9-2 General Attributes 

9.2.1 Attribute Blocks 

All VIS attributes are grouped in a data structure called an attribute block. One or 
more attributes may be modified within a given attribute block. Default attribute 
settings reside in attribute block O. Table 9-1 lists the categories of attributes within 
attribute block O. 

Table 9-1 Attribute Block 0 

Type 

General 

Text 

Graphics 

Windowing 

Attribute 

Writing mode 

Writing color index 

Background color 

Character rotation 

Character spacing 

Character slant 

Character size 

Text path 

Text slope 

Text formatting 

Left margin 

Right margin 

Font 

Line width 

Line style 

Fill pattern 

Arc type 

Clipping rectangle 

The default attribute settings in attribute block 0 can never be modified. 



General Attributes 9-3 

9.2.2 Modifying General Attributes 

When you modify general attributes, you do not change the default attribute settings 
within attribute block 0 itself. You should think of attribute block 0 as a template 
of default settings and you are modifying a copy of this attribute block for use 
within your program. Attribute modification routines contain two arguments-the 
input attribute block number (iatb) and the output attribute block number (oatb). 
Table 9-2 lists the default settings of general attributes. 

Table 9-2 Default Settings of General Attributes 

General Default Modification 
Attribute Setting Routine 

Background index 1 Index 0 UIS$SET_BACKGROUND-INDEX 

Writing index2 Index 1 UIS$SET_WRITING _INDEX 

Writing mode Overlay UIS$SET_WRITING_MODE 

1 Index of the background color in the virtual color map. 

2Index of the foreground color in the virtual color map. 

Perform attribute modification using the following procedure: 

1. Choose an appropriate attribute modification routine to modify the attribute. 

2. Specify 0 as the iatb argument to obtain a copy of attribute block O. 

3. Specify a number from 1 to 255 as the oatb argument. The attribute block can 
then be referenced in subsequent UIS graphics and text routines or in any other 
attribute modification routine. 

Graphics and text routines as well as UIS$MEASURE_TEXT, UIS$NEW_TEXT_ 
LINE, and VIS$SET-ALIGNEDJOSITION reference attribute blocks in the atb 
argument. 

9.3 Structure of Graphic Objects 

There are three types of graphic objects: (1) geometric shapes such as circles, 
ellipses, points, lines, and polygons, (2) text, and (3) raster images. Graphic objects 
consist of a pattern. In memory, the pattern represents one or more bit settings to 0 
or 1 that comprise the actual graphic object. 

When these entities are written in the virtual display, the VIS writing modes interpret 
the bit settings that comprise these objects in different ways. 



9-4 General Attributes 

Text 

In the case of text, a standard character within the default font displayed on the 
workstation screen represents the bitmap image of a cell in memory. The size of the 
cell varies and depends on the type of font. VIS draws monospaced and proportionally 
spaced text. Monospaced fonts use a standard cell size for all letters within the font. 
However, the standard cell size varies depending on the monospaced font you are 
using. 

Proportionally spaced fonts use character cells that vary in width according to the 
letter used. The height of the character cell remains constant for all characters within 
the font. 

The character cell contains the pattern. The remaining bits in the cell are set to O. 
All bits within the character cell are significant to VIS writing modes. 

Geometric Shapes 

In the case of geometric shapes, only the bit settings that actually comprise the 
pattern are significant. Bit settings in the pattern may be 0 or 1. For example, a 
dotted line represents bit settings of 0 and 1 in a pattern. All bit settings both 0 and 
1 within this pattern are significant to VIS writing modes. 

Raster Images 

When you draw a raster image, you set bits in a bitmap to create text characters or 
geometric shapes. For example, VIS$IMAGE and VIS$SETJOINTERJ ATTERN 
use bitmaps to map rasters to the display screen. All bits in the bitmap are significant 
to the VIS writing modes. The following table shows the underlying structures from 
which graphic objects are created. 

Graphic Object 

Text 

Geometric shapes 

Raster Image 

Structure 

Character cell 

Pattern 

Bitmap image of varying size 

For a given graphic object, the current writing mode determines how the bit settings 
in the appropriate structure are displayed. All bit settings of a particular structure are 
significant to VIS writing modes. Figure 9-1 shows graphic objects as structures that 
VIS writing modes recognize: (1) the letter E within a character cell, (2) a square as 
a pattern, and (3) a bitmap containing the letter E, a square, and a vertical dashed 
line of double thickness. 



Figure 9-1 Structure of Graphic Objects 

0 0 '0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 1 t- o 0 

0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 0 0 0 

0 o '1 0 0 0 0 0 

0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1 

0 0 

0 0 

0 0 

General Attributes 9-5 

11111111 
1 

1111111 

0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 1 

0 0 1 

0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

1 1 0 0 1 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 

0 0 

0 0 

0 0 

0 0 0 

0 0 

0 0 

0 0 

() 0 0 

1 0 0 

0 0 

0 0 

0 0 0 

0 0 0 

0 0 0 

ZK-4621-85 



9-6 General Attributes 

9.4 UIS Writing Modes 

There are 14 UIS writing modes: transparent, complement, copy, copy negate, 
overlay, overlay negate, erase, erase negate, replace, replace negate, bit set, bit set 
negate, bit clear, and bit clear negate. The writing mode controls how graphics and 
text routines use foreground and background colors to display graphic objects. The 
default writing mode is overlay. 

Table 9-3 lists how each writing mode functions. 

Table 9-3 UIS Writing Modes 

UIS Writing Modes 

Device-Independent 

UIS$C-MODE-ERAS 

UIS$C-MODE_ERASN 

UIS$C-MODE_OVER 

UIS$C_MODE_REPL 

Function 

Displays the current background color for each bit position no 
matter what the bit settings are in the character cell, pattern, 
or bitmap image. 

Displays the current writing color for each bit position no 
matter what the bit settings are in the character cell, pattern, 
or bitmap image. 

Displays the current writing color for bits set to 1 in the 
character cell, pattern, or bitmap image. All bits set to 0 have 
no effect on the existing graphic object. This is the default 
writing mode attribute setting. 

Bitwise complements the character cell, pattern, or bitmap 
image that is, bits originally set to 0 are now set to 1 and vice 
versa. 

The bits now set to 1 in the character cell, pattern, or bitmap 
image display the current writing color. The bits that are now 
set to 0 in the character cell have no effect on any existing 
graphic object. 

Displays the current writing color for bits set to 1 in the 
character cell, pattern, or bitmap image. Bits set to 0 in the 
character cell, pattern, or bitmap image display the current 
background color. 



General Attributes 9-7 

Table 9-3 (Cont.) UIS Writing Modes 

VIS Writing Modes 

Device-Independent 

UIS$C_MODE_REPLN 

Device-Dependentl 

Function 

Bitwise complements the character cell, pattern, or bitmap 
image. The bits now set to 1 in the character cell, pattern, or 
bitmap image now display the current writing color. Bits now 
set to 0 in the character cell, pattern, or bitmap image now 
display the current background color. 

Where the two graphic objects intersect, the bits in the 
character cell, pattern, or bitmap image are exclusive .ORed 
with the existing graphic object. 

Does not alter the display screen. 

The bitwise complement of the character cell, pattern, or 
bitmap image is logically .AND.ed with the existing graphic 
object and background. On mapped color systems, where the 
two graphic objects intersect, the bitwise complement of the 
writing index of the character cell, pattern, or bitmap image is 
logically .AND.ed with the pixel values of the existing graphic 
object and background. 

On monochrome systems, the bits in the character cell, 
pattern, or bitmap image are logically .AND.ed with the 
existing graphic object and background. On mapped color 
systems, the writing index of the character cell, pattern, or 
bitmap image is logically .AND.ed with the pixel values of 
the existing graphic object and background. 

The bits in the character cell, pattern, or bitmap image 
are logically .ORed with the existing graphic object and 
background. On mapped color systems, the writing index 
of the character cell, pattern, or bitmap image is logically 
.ORed with the pixel values of the existing graphic object and 
background. 

1 These VIS writing modes produce device-dependent results. Depending on the specific operation, 
graphic objects drawn using these writing modes may appear differently on VAXstation monochrome and 
color systems. 



9-8 General Attributes 

Table 9-3 (Cont.) UIS Writing Modes 

UIS Writing Modes 

Device-Dependentl 
Function 

On monochrome systems, the bitwise complement of the 
character cell, pattern, or bitmap image is logically .OR.ed 
with the existing graphic object and background. On color 
systems, the bitwise complement of the writing index of the 
character cell, pattern, or bitmap image is logically .OR.ed 
with the pixel values of the existing graphic object and 
background. 

Displays the character cell, pattern, or bitmap image without 
regard to current background and writing color. On a 
VAXstation monochrome system, bits set to 0 are black, 
and bits set to 1 are white. On mapped color systems, the 
writing index of the character cell, pattern, or bitmap is used 
directly as an index. 

Displays the character cell, pattern, or bitmap image 
without regard to current background and writing color. 
On monochrome systems, bits set to 0 are white and bits 
set to 1 are black. On mapped color systems, the bitwise 
complement of the writing index of the character cell, pattern, 
or bitmap image is used directly as an index. 

1 These UIS writing modes produce device-dependent results. Depending on the specific operation, 
graphic objects drawn using these writing modes may appear differently on VAXstation monochrome and 
color systems. 

9.4.1 Using General Attributes 

General attributes affect all graphics images displayed on the screen. These attributes 
are background color, writing color (foreground), and writing mode. 

9.4.1.1 Programming Options 
A program can set different background and writing colors for different display 
viewports for application-specific reasons or, simply, for variety. 

Setting the Background Color 

Modifying the background color attribute sets the value of an index into the color 
map. Modifying the background color affects how the current writing mode 
interprets the bits that comprise background color of the graphic object. You can 
set the background color attribute with UIS$SET_BACKGROUND-INDEX. 



General Attributes 9-9 

Setting the Writing Color 

Modifying the writing color attribute sets the value of an index into the color map. 
Writing color affects the color of the graphic object. You can set the writing color 
with UIS$SET_WRITING-INDEX. 

Setting the Writing Mode 

The writing mode controls how background and foreground colors are used to 
draw graphic objects in the virtual display. You can specify the writing mode using 
UIS$SET_WRITING-MODE. 

9.4.1.2 Program Development I 
Programming Objective 

To draw a graphic object in each of the UIS device-independent writing modes using 
the default background and writing color attribute settings. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and associated viewport. 

3. Draw a line using the default overlay writing mode in the virtual display. 

4. Draw a character at same location in each of the UIS writing modes. 

5. Erase graphic objects in the virtual display using UIS$ERASE and delete the 
window using UIS$DELETE_WINDOW. 

6. Repeat steps 3 through 5. 

The font name MYJONT_5 is a logical name. 

PROGRAM MODE 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

VD_ID=UIS$CREATE_DISPLAYCO.O.O.O.3.0.3.0.6.0.5.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION') 

CALL UIS$PLOT(VD_ID.O.O.5.1.0.2.0.2.5) 

PAUSE 

C Erase the object in the virtual display and delete the window 
C Display window is deleted in order to change viewport title 

CALL UIS$ERASECVD_ID.O.O.O.O.3.0.3.0) 
CALL UIS$DELETE_WINDOW(WD_ID) 

PAUSE 



9-10 General Attributes 

\ 

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','OVERLAY') 
CALL UIS$SET_FONT(VD_ID,O,1,'MY_FONT_5') 
CALL UIS$PLOT(VD_ID,O,O.5,1.0.2.0.2.5) 
CALL UIS$TEXT(VD_ID.1.'D'.1.0.2.0) 

PAUSE 

CALL UIS$ERASE(VD_ID.O.O.O.O.3.0.3.0) 
CALL UIS$DELETE_WINDOW(WD_ID) 

PAUSE 

WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION'.'OVERLAY NEGATE') 
CALL UIS$SET_WRITING_MODE(VD_ID.1.2.UIS$C_MODE_OVERN) 
CALL UIS$PLOT(VD_ID.O.O.5.1.0.2.0.2.5) 
CALL UIS$TEXT(VD_ID.2.'D'.1.0.2.0) 

PAUSE 

CALL UIS$ERASE(VD_ID.O.O.O.O.3.0.3.0) 
CALL UIS$DELETE_WINDOW(WDLID) 

PAUSE 

WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION'.'REPLACE') 
CALL UIS$SET_WRITING_MODE(VD_ID.2.3.UIS$C_MODE_REPL) 
CALL UIS$PLOT(VD_ID.O.O.5.1.0.2.0.2.5) 
CALL UIS$TEXT(VD_ID.3.'D'.1.0.2.0) 

PAUSE 

CALL UIS$ERASE(VD_ID.O.O.O.O.3.0.3.0) 
CALL UIS$DELETE_WINDOW(WD_ID) 

PAUSE 

WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION'.'REPLACE NEGATE') 
CALL UIS$SET_WRITING_MODE(VD_ID.3.4.UIS$C_MODE_REPLN) 
CALL UIS$PLOT(VD_ID.O.O.5.1.0.2.0.2.5) 
CALL UIS$TEXT(VD_ID.4.'D'.1.0.2.0) 

PAUSE 

CALL UIS$ERASE(VD_ID.O.O.O.O.3.0.3.0) 
CALL UIS$DELETE_WINDOW(WD_ID) 

PAUSE 

WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION'.'ERASE') 
CALL UIS$SET_WRITING_MODE(VD_ID.4.5.UIS$C_MODE_ERAS) 
CALL UIS$PLOT(VD_ID.O.O.5.1.0.2.0.2.5) 
CALL UIS$TEXT<VD_ID.5.'D'.1.0.2.0) 

PAUSE 



CALL UIS$ERASE(VD_ID,O.O,O.O,3.0,3.0) 
CALL UIS$DELETE_WINDOW(WD_ID) 

PAUSE 

General Attributes 9-11 

WD_ID=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION', 'ERASE NEGATE') 
CALL UIS$SET_WRITING_MODE(VD_ID,5,6,UIS$C_MODE_ERASN) 

CALL UIS$PLOT(VD_ID,O,O.5,1.0,2.0,2.5) 
CALL UIS$TEXT(VD_ID,6,'D',1.0,2.0) 

PAUSE 

CALL UIS$ERASE(VD_ID,O.O,O.O,3.0,3.0) 
CALL UIS$DELETE_WINDOW(WD_ID) 

PAUSE 

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','TRANSPARENT') 
CALL UIS$SET_WRITING_MODE(VD_ID,6,7,UIS$C_MODE_TRAN) 

CALL UIS$PLOT(VD_ID,O,O.5,1.0,2.0,2.5) 
CALL UIS$TEXT(VD_ID,7,'D',1.0,2.0) 

PAUSE 

CALL UIS$ERASE(VD_ID,O.O,O.O,3.0,3.0) 
CALL UIS$DELETE_WINDOW(WD_ID) 

PAUSE 

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION', 'COMPLEMENT') 
CALL UIS$SET_WRITING_MODE(VD_ID,7,8,UIS$C_MODE_COMP) 

CALL UIS$PLOT(VD_ID,O,O.5,1.0,2.0,2.5) 
CALL UIS$TEXT(VD_ID,8, 'D',1.0,2.0) 

PAUSE 

END 

The program MODE sets the writing mode attribute ten times. The letter D is placed 
over the line. Table 9-3 describes the behavior of the VIS writing modes when text 
or geometric shapes such as circles are placed on top of an existing graphic object. 
Remember character cells refer to text, while patterns refer to geometric shapes. 

9.4.1.3 Calling UIS$SET _BACKGROUND_INDEX, UIS$SET _WRITING_INDEX, 
and UIS$SET_WRITING_MODE 

To illustrate the effects of the writing modes, imagine that the character cell is 
slowly lowered onto the virtual display containing an existing graphic object drawn 
in OVERLAY mode-a line. As it approaches the plane of the virtual display, the 
writing mode of the character cell determines the final appearance of the graphic 
object. See Table 9-3 for a description of each writing mode. 

The default background and writing color are in effect as shown in Figure 9-2. 



9-12 General Attributes 

Figure 9-2 UIS Device-Independent Writing Modes 

I~~ conlplenlent 

ovet'lay ovet'lay_negate 

D 

ZK-4543-85 

(Continued on next page) 



General Attributes 9-13 

Figure 9-2 (Cont.) VIS Device-Independent Writing Modes 

ef'ase negate 

/ 
/ 

f'eplace f'eplace negate 

I D 

ZK-4544-85 

(Continued on next page) 



9-14 General Attributes 

Figure 9-2 (Cont.) UIS Device-Independent Writing Modes 

9.4.1.4 Program Development II 
Programming Objective 

ZK-4545-85 

To illustrate the behavior of the device-dependent writing modes. 

Programming Tasks 

1. Create an eight-entry virtual color map containing intensity values. 

2. Draw three overlapping circles-one in overlay mode and two in bit set mode. 

3. Redraw the same circles-one in overlay mode, one in bit clear mode, and one 
in bit set mode. 

4. Redraw two of the circles in the remaining device-dependent writing modes. 
One circle is always drawn in OVERLAY mode. Both are drawn using the same 
writing index. 

PROGRAM PLANE_MODES 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
REAL*4 I_VECTOR(8) «» 
DATA I_VECTOR/O.O,O.125,O.25,O.375,O.50,O.625,O.75,1.0/ ~ 
DATA VCM_SIZE/8/ 4D 
DATA INDEX2/2/ ~ 
DATA INDEX4/4/ CD 



General Attributes 9-15 

VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE) 
VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,40.0,40.0,15.0.15.0,VCM_ID) 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') 
CALL UIS$SET_INTENSITIES(VD_ID,O,8,I_VECTOR) 

CALL'UIS$SET_FONT(VD_ID,O,1,'UIS$FILL_PATTERNS') 
CALL UIS$SET_FILL_PATTERN(VD_ID,1, 1,PATT$C_FOREGROUND) 

CALL UIS$SET_FONT(VD_ID,O,2,'UIS$FILL_PATTERNS') 
CALL UIS$SET_WRITING_INDEX(VD_ID.2,2,INDEX2) a. 
CALL UIS$SET_WRITING_MODE(VD_ID,2,2.UIS$C_MODE_BIS) 
CALL UIS$SET_FILL_PATTERN(VD_ID,2,2,PATT$C_FOREGROUND) 
CALL UIS$SET_WRITING_INDEX(VD_ID.2,4,INDEX4) .. 

CALL UIS$CIRCLE(VD_ID.1,15.0,20.0,10.0) ~ 
CALL UIS$CIRCLE(VD_ID,2,25.0,20.0,10.0) CD 
CALL UIS$CIRCLE(VD_ID,4,20.0,30.0,10.0) ~ 

PAUSE 

CALL UIS$SET_WRITING_MODE(VD_ID,4,4,UIS$C_MODE_BIC) ~ 
CALL UIS$CIRCLE(VD_ID,4,20.0,30.0,10.0) 

PAUSE 

CALL UIS$ERASE(VD_ID) 
CALL UIS$DELETE_WINDOW(WD_ID) 

PAUSE 

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') 
CALL UIS$SET_WRITING_MODE(VD_ID,2,2,UIS$C_MODE_BICN) 
CALL UIS$CIRCLE(VD_ID.1,15.0,25.0,10.0) G9 
CALL UIS$CIRCLE(VD_ID,2.25.0,25.0,10.0) GD 

PAUSE 

CALL UIS$ERASE(VD_ID) 
CALL UIS$DELETE_WINDOW(WD_ID) 

PAUSE 

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') 
CALL UIS$SET_WRITING_MODE(VD_ID,2,2,UIS$C_MODE_BISN) 
CALL UIS$CIRCLE(VD_ID,1.15.0,25.0,10.0) GD 
CALL UIS$CIRCLE(VD_ID,2,25.0,25.0,10.0) GD 

PAUSE 

CALL UIS$ERASE(VD_ID) 
CALL UIS$DELETE_WINDOW(WD_ID) 

PAUSE 



9-16 General Attributes 

WD_ID=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION') 
CALL UIS$SET_WRITING_MODE(VD_ID,2,2,UIS$C_MODE_COPY) 
CALL UIS$CIRCLE(VD_ID,1,15.0,20.0,10.0) ~ 
CALL UIS$CIRCLE(VD_ID,2,25.0,20.0,10.0) (D 

PAUSE 

CALL UIS$ERASE(VD_ID) 
CALL UIS$DELETE_WINDOW(WD_ID) 

PAUSE 

WD_ID=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION') 
CALL UIS$SET_WRITING_MODE(VD_ID,2,2,UIS$C_MODE_COPYN) 
CALL UIS$CIRCLE(VD_ID,1,15.0,20.0,10.0) 
CALL UIS$CIRCLE(VD_ID,2,25.0,20.0,10.0) 

PAUSE 
END 

An array I_VECTOR is declared to hold the intensity values O. Each location in the 
array element is initialized with an intensity value.. The color map size variable is 
initialized to the number of color map entries •. Color index variables index2 and 
index4 are initialized e 0. 

Three circles are drawn 0 0 ~ using three different indices in the virtual color 
map-index 1 (the default), index 2, and index 4 0 e. The circles are filled with the 
current foreground color. The following table lists the circles, their writing modes 
and indices and corresponding intensity values. 

Writing Writing Intensity 
Circle Mode Index Value 

1 Overlay 1 0.0 

2 Bit Set 2 0.125 

3 Bit Set 4 0.375 

The three circles are redrawn with circle 3 drawn in Bit Clear mode •. 

In subsequent drawings, only overlapping circles 1 and 2 are redrawn. Circle one is 
always drawn in overlay mode 0 4B • ~ 4D while circle 2 is drawn in the remaining 
writing modes 0 •• (D 41>. 



General Attributes 9-17 

9.4.1.5 Using Device-Dependent Writing Modes 
The preceding program PLANE-MODES produced Figures 9-3 through 9-8. In 
each of the figures, the circle on the left (circle 1) was drawn in overlay mode and 
writing index 1. The circle on the right (circle 2) was drawn in a different writing 
mode with a writing index 2. The circle on top (circle 3) was drawn with writing 
index 4 and is drawn in Figures 9-3 and 9-4 only. The following table lists the 
writing indices, their binary value and binary bitwise complements. 

Writing Binary Bitwise 
Object Index Value Complement 

Background 0 0002 0002 
Circle 1 1 0012 1102 
Circle 2 2 0102 1012 
Circle 3 4 1002 0112 

In Figure 9-3, whenever the circles I, 2, and 3 intersect! their writing indices 0012, 

0102, and 1002, are logically .OR.ed with the pixel values of the existing graphic 
objects and the background. The bit set writing mode has the effect of combining 
the value of the bit plane settings of each object. Therefore, the intersections of the 
circles are lighter than the rest of the circles. 



9-18 General Attributes 

Figure 9-3 Bit Set Mode 

ZK·548586 



General Attributes 9-19 

In Figure 9-4, circle 3 is drawn in bit clear mode with a writing index of 4 or 1002, 
Circle 2 is drawn in bit set mode in writing index 2 or 0102' The binary bitwise 
complement of the writing index of circle 3 is 1012, It is logically .AND.ed with the 
pixel values of the existing graphic objects-circle 1, circle 2, and the background. In 
bit clear mode the appropriate bit plane settings are now changed such that, circle 3 
appears to blend into the background and circles 1 and 2. 

Figure 9-4 Bit Clear Mode 

ZK 548686 



9-20 General Attributes 

In Figure 9-5 the binary bitwise complement of the writing index of the circle 2 is 
1012 , It is logically .OR.ed with the pixel values of the existing graphic object and 
background which are oof2 and 0002, In bit set negate mode the appropriate bit 
plane settings are now changed such that all of circle 2 is drawn in writing index 5. 

Figure 9-5 Bit Set Negate Mode 

ZK 5487 86 



General Attributes 9-21 

In Figure 9-6, the writing index of the circle 2 0102 is logically .AND.ed with the 
pixel values of the existing circle 0012 and the background 0002 to produce the pixel 
value 0002, The appropriate bit plane settings are now changed such that all of circle 
2 including the area of intersection with circle 1 match the background. 

Figure 9-6 Bit Clear Negate Mode 

ZK 5488 86 



9-22 General Attributes 

In figure 9-7 the writing index of circle 2 is used as the index in the virtual color 
map to draw the circle regardless of existing graphic objects or background. 

Figure 9-7 Copy Mode 

ZK 5489 86 



General Attributes 9-23 

In Figure 9-8, the binary bitwise complement of the writing index of circle 2 1012 
was used as the index into the virtual color map to draw the circle regardless of 
existing graphic objects or background. 

Figure 9-8 Copy Negate Mode 

ZK 5490 86 





Chapter 10 

Text Attributes 

10.1 Overview 

UIS draws characters in the virtual display according to the specifications of the 
particular font. The appearance or shape of characters remains unaltered unless an 
appropriate text attribute is changed. Likewise, UIS draws characters and character 
strings at user-specified locations within the coordinate space. This orientation within 
the coordinate space does not change unless an appropriate attribute modification 
routine is executed. 

The orientation and shape of characters and character strings defines spatially how 
UIS draws these objects on the display screen. Text attribute modification routines 
allow you to alter the appearance of characters and character strings and redefine the 
spatial relationship of a character to other characters in significant ways. This chapter 
discusses the following topics: 

• Structure of text 

• Using text attributes 

Refer to Section 10.3.1 for information about how to modify the default text attribute 
settings of attribute block O. 

10.2 Structure of Text 

The underlying structure of a single character is a character cell. Every character 
drawn on the display screen is containe<;i within a character cell. Figure 10-1 
describes a character cell and its reference points. 



10-2 Text Attributes 

Figure 10-1 Character Cell 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

Baseline Point 0 0 0 0 0 0 0 0 

Top of Character Cell 

/ 

Up Vector 

Baseline Vector 

ZK·5279-86 

10.2.1 Monospaced and Proportionally Spaced Fonts 

For text drawing purposes fonts are either monospaced or proportionally spaced. 
Monospaced fonts use a standard character cell size for each characters within 
the font. The character cells of proportionally spaced fonts vary in width for each 
character within the font, although the height of each cell is the same for each 
character in the font. Figure 10-2 shows the two types of fonts. 

The character cell is a bitmap whose settings are mapped to the display screen as a 
character. 

10.2.2 Lines of Text 

Lines of text share a spatial relationship with other lines of text-for example, a line 
of text within a paragraph. Ordinarily, lines of English text are read from left to 
right. Your eyes trace an imaginary path across the page from the left margin to the 
right margin. By default UIS draws lines of text in this left-to-right direction known 
as the default major path. Normally, when you reach the end of the line, you would 
start reading the next line below this one. When UIS finishes drawing a line of text, 
the secondary downward movement to begin a new line of text drawing is known as 
the default minor path of text drawing. This is the normal relationship between lines 
of English text and the direction in which they are drawn. Figure 10-3 illustrates the 
two default paths that UIS uses to draw text. 



Text Attributes 10-3 

Figure 10-2 Monospaced and Proportionally Spaced Characters 

Character Cells 

o 0 0 0 000 0 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 0 000 000 0 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

o 000 0 0 0 0 0 0 000 0 0 0 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 

Top of 
Character Cell 

o 0 0 0 0 

Baseline Vector 
Monospaced Font Proportionally Spaced Font 

ZK-5280-86 

Figure 10-3 Text Path 

Default 
Major Path .. 

Defau~ I a night at the opera 
Minor 
Path a day at the zoo 

ZK-5467-86 



10-4 Text Attributes 

10.2.3 Character Strings 

Characters within character strings also share a spatial relationship with other 
members of the string. 

Text Slope 

VIS draws all characters of a character string at the same angle with the respect to 
the major path. The actual path of text drawing is a line containing the baseline 
points of all the character cells in a character string. The angle between the actual 
path and the major path, measured counterclockwise is called the angle of text slope. 
VIS can draw text at any angle from 0 to 360 degrees. Figure 10-4 describes how 
text slope can be manipulated. 



Figure 10-4 Text Slope 

o 0 0 

La - PosItIve Text 
Slope 

Actual Path -
Default Major Path 

La-D· 

\ 

() () () () () () 

(} () () (} 

() () 

() () 

() () 

() () () () 

() () 

o () "'''{) 
(1 () 0 () () (J () 

() () () () () 

() (J () () () 

() (] () (J (} 

() (J (J () 0 

() () 

() () () () () () 

(J () () (J () 

La - NegatIve Text Slope 

() () () () () 

() () () 

() (J () () () 

() () 

() () 

() (} (J 

() () () 

() () () 

" o (/ 
I) I) 

I) 1/ I) 

o I) I) 1/ 
o 1;1 1/ 0 

I) 0 (/ (j 

I) 1/ (; 0 

Text Attributes 

Actual Path 

\ 

\ 
Default Major 

Path 

" I) I) 

(/ 0 
1/ (; I') 

% 0 °
0

1/ 0 
I) I) I) Q 1/ 

o 0 I) 1;1 I) (; 

I) I) 

10-5 



10-6 Text Attributes 

Text Margins 

Character strings are drawn along the actual path of text drawing within certain 
explicit or implicit boundaries called margins. The implied text margin for all 
text output is the minor text path when the angle of text slope is 0 degrees. The 
programming interface lets you set explicit text margins that are always parallel to 
the implied margins. 

Character Spacing 

Spacing between characters and lines can be increased uniformly throughout the 
character string through the use of x and y spacing factors. The size of the characters 
remains constant space between them diminishes or increases. 

Figure 10-5 shows how text path affects character spacing. 



Figure 10-5 Character Spacing 

Default 
Minor Pa\ 

o 0 0 0 0 0 

o 0 0 0 0 0 

o 0 0 0 0 000 

000 0 0 000 

o 0 0 0 0 0 0 0 

0 0 o 0 0 0 0 

0 0 o 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 

0 0 o 0 

0 0 o 0 

000 0 0 0 0 0 

o 0 0 0 0 0 0 0"<--__ --__ _ 

o 0 0 0 000 

o 0 0 0 000 

000 0 0 000 

o 0 0 0 0 000 

000 0 0 000 

0 0 0 

o 0 

0 0 

0 

0 0 

0 0 

0 0 

o 0 

000 

000 

0 0 o 0 0 

o 0 

0 

0 0 

0 0 

o 0 

0 

000 0 

o 0 0 0 

x Spacing 

y Spacing 

Text Attributes 10-7 

0 0 0 0 0 0 o 0 

0 0 o 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 o 0 0 0 000 

000 0 0 0 o 0 

0 0 0 0 0 o 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

o 0 o 0 0 0 

Default 
Actual = Major 
Path Path 

o 0 0 0 000 

0 0 0 0 0 0 o 0 

0 o 0 0 0 0 o 0 

o 0 0 0 0 0 0 

0 0 0 0 0 0 o 0 

0 0 0 0 0 0 o 0 

0 0 0 0 o 0 

0 0 0 o 0 

0 0 0 0 0 o 0 

0 0 0 0 0 o 0 

0 0 0 0 0 o 0 

o 0 0 0 0 o 0 

0 0 o 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 000 

ZK·5356-86 

(Continued on next page) 



10-8 Text Attributes 

Figure 10-5 (Cont.) Character Spacing 

Major 
Path 

/ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 

0 0 

0 0 

0 

0 0 

0 

0 0 

0 0 

0 0 

0 

0 0 

0 

0 0 

0 0 

0 0 

0 

0 0 

0 0 

0 0 

0 

o 0 

0 0 

0 0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 

o 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 

0 0 

0 0 

0 

0 0 

0 0 

0 

0 

o 0 

o 0 

0 

o 0 

o 0 

0 

y Spacing 

Baseline 
Point 

x Spacing 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 

o 0 0 0 0 a a a 
a a a a a a a a 
a 0 a a a a a a 

a a a a a a a 
00"- 00000 

a a 
o a 

a 0 a a 
a a a a a 

a a a a a a a 
o a a a a a a 
a a a a a a a 
a a a 0 

a a 0 a a 0 a a 
a a a 0 a a a a 

a a a a a a a 
a a a a 0 a a 
a a a a a a a 0 

a a a a a a a 
a a a a a a a a 

a a a a a a a 

a a t\~~t)~~'~i~~ a a 
a a 
a a 
a a 
a a 
a a 

a a 
a a a 

a a a 
a O~~O~O~~~~~O~O~~~ 

a a a 000 a a 
a a a 000 a a 

o a a a a a a a 
a a a a a a a a 

\ Minor 
Path 

ZK 5357-86 



Text Attributes 10-9 

Text Formatting 

Character strings can be arranged on a line in many ways through justification. 
Formatted character strings are drawn as follows: (1) flush against the left margin, 
( 2) flush against the right margin, (3) centered between the margins, and ( 4) both 
right and left justified or fully justified. 

10.2.4 Character Cell 

The components of a character cell share a spatial relationship with each other. 
The orientation and shape of a single character cell in the virtual display can be 
altered through character rotation, slanting, and scaling. These attributes when 
modified alter the character cell with respect to its baseline vector. For example a 
scaled character may have its height modified changing the height-relationship. The 
resulting letter may appear "squat" or vertically elongated. 

Rotating Characters 

An individual character is rotated about its baseline point. The angle of character 
rotation is the angle between the baseline vector and the actual path of text drawing 
measured counterclockwise. Figure 10-6 describes simple character cell rotation 
about the baseline point. 



10-10 Text Attributes 

Figure 10-6 Simple Character Rotation 

o 
o 

Baseline Point 

o 

0 

0 
0 

0 

0 
0 

0 

0 
0 

0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

0 
0 

0 

o 
o 

0 
0 

0 o 0 o 
0 

0 
0 

o 0 o o 

o 

0 
0 0 

0 
0 0 

0 
0 0 o 

o o 0 o o 0 
o o o o o o o o 

o o o o o o o o 
0 

0 0 0 
0 0 

0 0 0 
0 0 

0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 
0 0 

0 
0 

L /3 = Negative Character Rotation 

Baseline Vector 

o 0 
000 0 

000 0 
o 0 0 0 

000 0 
o 0 

o 0 o 000 
o 0 0 0 

o 0 0 0 
o 0 

o 0 0 0 o 0 
o 0 

o 0 

o 0 

o 0 

o 0 0 0 
o 0 0 0 

o 0 0 0 
o 0 0 0 

o 0 

o 0 

o 0 

o 0 0 0 
o 0 0 0 
o 0 0 0 

o 0 
o 

o 0 0 0 
o 0 0 0 
000 

o 0 
o 0 0 0 

0
00

0
0 

0 
0 

0 

Actual Path 

/ 

L (:J = Positive Character Rotation 

ZK 5277 86 



Text Attributes 10-11 

Figure 10-7 describes character rotation and text slope manipulation performed 
simultaneously. 

Figure 10-7 Character Rotation with Slope Manipulation 

Baseline POint 

o 0 0 0 0 0 0 0 

o 0 000 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

000 0 0 0 0 0 

o 000 0 0 0 0 

o 000 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

00000000

0

/ 

OOOOOOO/, 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

000 0 0 0 0 0 

o 0 0 0 0 000 

o 0 0 0 000 0 00000000 00000000 .. 

00000000/00000000 o 0 0 0 000 0 

o 0 0 0 000 0 

o 0 0 0 0 000 

o 000 0 0 0 0 

o 0 0 0 0 000 

00000 000 

000 000 0 0 

000 000 0 0 

o 0 0 000 0 0 

o 0 0 0 0 0 0 0 /0 0 0 0 0 0 0 0 .. 

o 0 0 0 0 0 0 0 ~ 0 0 0 0 0 0 0 0 

o 000 0 000 0 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 000 000 0 

o 0 0 0 0 0 0 0 

o 0 0 0 000 0 

o 000 0 000 

o 000 0 000 

Default Major Path 

o 0 0 0 0 0 0 0 

ZK·527&86 

(Continued on next page) 



10-12 Text Attributes 

Figure 10-7 (Cont.) Character Rotation with Slope Manipulation 

Baseline Point 

Actual Path 

La = Angle of Text Slope 
L /3 = Angle of Rotation 

\ 
Baseline Vector 

of Character Cell 

Default Major Path 

ZK 5273-s6 

When the character rotation attribute is set to 0 and text slope is 0 degrees, the angle 
of character rotation behaves in the following manner: 

Slope Major Rotation 
(degrees) Path (degrees) 

0 Left to right (default) 0 

0 Bottom to top -90 

0 Right to left -180 

0 Top to bottom -270 

Figure 10-8 describes the appearance of the angle of rotation after text path 
modification when default character rotation is in effect. 



Text Attributes 10-13 

Figure 10-8 Text Path Manipulation Without Character Rotation 

o 0 000 000 o 0 0 0 0 0 0 0 

o 0 0 0 o 0 o 0 o 0 0 0 0 0 0 0 

o 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 

o 0 0 0 o 0 0 0 o 0 0 0 0 000 

000 o 0 000 o 0 0 0 0 0 0 0 

000 o 0 000 o 0 0 0 0 0 0 0 

Baseline Point 0 

\: 
'-"-~""-----I~Angle of Slope = La = 00 

000 o 0 o 0 0 o 0 0 0 0 0 

Baseline Vector 

Actual Path = Default Major Path 

LEFT 

I 
Baseline Vector = Actual Path 

L(3 = 00 

RIGHT 

ZK·5355-86 

(Continued on next page) 



10-14 Text Attributes 

Figure 10-8 (Cont.) Text Path Manipulation Without Character Rotation 

TOP 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 

0 0 

Baseline 

P~"t\: 0 

a a 
a a 
a a 
a a 
a a 

Actual Path = 
Major Path 

o 0 0 0 0 0 a 0 

o 0 0 a 0 000 

o 0 0 a 0 0 a 0 

o a 0 0 a a 0 a 
o a 0 a 0 0 0 0 

o 0 a a a a a a 
a a a a a a a a 
a a a a a a a a 

a a 
a a a a a a a 
a a a a a a 0 

a a a a a a a 
a a a a a a a 
a a a a a a a 
a a a a a a a 
a a a a a a a a 
a a a a a a a a 

BOTTOM 

Angle of Slope = (l = 00 

Actual Path = 

MaJOO'path\ 

Baseline Point 

\p 

Baseline Vector . ..L Actual Path 
L {J= -900 

\ 
Baseline Vector 

~--~----------~~ 

ZK 536186 

(Continued on next page) 



Text Attributes 10-15 

Figure 10-8 (Cont.) Text Path Manipulation Without Character Rotation 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 

o 0 

o 0 0 0 0 0 0 0 

Angle of Slope = L a = 0° 

LEFT 

• 

o 0 0 0 0 0 0 0 

o 0 0 0 0 000 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 000 

011 •••• 0 0 

000 000 0 

000 0 000 

000 0 0 0 0 

000 0 0 0 0 

o 0 0 0 0 0 0 0 

Actual Path = Major Path 

L fj= -180° 

RIGHT 

ZK·5358-86 

(Continued on next page) 



10-16 Text Attributes 

Figure 10-8 (Cont.) Text Path Manipulation Without Character Rotation 

000 0 0 000 

o 0 0 0 000 0 

o 000 000 0 

000 0 0 000 

o 0 0 0 000 0 

000 0 000 0 

o 0 

000 000 0 

TOP 

Baseline Vector 
000 

000 000 00000 / 

000 000 0 

000 000 0 

000 000 0 

Actual Path = 

"~"'P.th \ 

~"'~-\ 

000 0 000 0 

000 0 000 0 

o 0 0 0 0 000 

o 0 0 0 0 000 

000 0 0 000 

000 0 0 000 

o 0 0 0 000 0 

o 0 0 0 0 000 

o 0 o 0 

o 0 o 0 

o 0 o 0 

o 0 o 0 

0 0 o 0 

0 0 o 0 

0 0 o 0 

000 0 0 000 

o 0 0 0 000 0 

Angle of Slope = L Q = 0° 

BOTTOM 

Baseline Vector ..L Actual Path 
L{3= -270° 

ZK·5359-86 



Text Attributes 10-17 

Slanting Characters 

Character slant is a measure of the angle between the up vector of the character cell 
and baseline vector. Character slant is 0.0 when this angle is 90 degrees. As slant 
increases, the up vector rotates clockwise toward the baseline vector, until at a slant 
of 90 degrees, the two vectors coincide. Figure 10-9 show a slanted character cell 
where the actual path and the default major path form an angle of 0 degrees. 



10-18 Text Attributes 

Figure 10-9 Character Slanting 

0 0 

0 0 

0 0 

0 

0 

Up Vector 
0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

Baseline Vector 

0 0 

o 0 

0 0 

0 0 

0 0 

0 0 

0 

o 0 

o 0 

0 

0 0 

0 0 

o 0 

0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

o 0 

o 0 

0 0 

0 0 

0 0 

0 0 

o 0 

o 0 

0 0 

0 0 

0 

0 0 

0 0 

o 0 

o 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

o 0 0 0 0 0 0 0 

000 0 000 0 

L 8 = Negative Character Slant 

o 0 0 0 0 000 

o 0 0 0 0 0 0 0 

000 0 000 0 

o 0 0 0 000 

o 0 0 0 0 0 0 0 

o 0 0 0 0 000 

o 0 0 0 0 0 0 0 

000 0 0 0 0 0 

000 0 0 0 0 0 

o 0 000 

o 0 0 0 0 0 

o 0 0 0 0 

o 0 0 0 

00000 

o 0 0 0 0 000 L 8 = Positive Character Slant 
ZK-5275-86 



Text Attributes 10-19 

Figure 10-10 shows character slanting, character rotation, and text slope operations 
performed simultaneously on two character cells. 

Figure 10-10 Character Slanting and Rotation with Slope Manipulation 

_.,P.1h \ 

00000000\ 

o 0 0 0 000 0 

000 0 0 0 0 0 
Up Vector 

o 0 0 0 000 0 

o 0 0 0 0 0 0 O} __ ----''--______ ---. 

000 000 0 0 

00000 000 Baseline Vector 

Default Major Path 

ZK-5272-86 

(Continued on next page) 



10-20 Text Attributes 

Figure 10-10 (Cont.) Character Slanting and Rotation with Slope Manipulation 

L 0/ = Angle of Text Slope 
L {3 = Angle of Character Rotation 
L e = Angle of Character Slant 

Scaling Characters 

"'" Oefau. Majo, Path 

ZK·5274-86 

Character scaling involves increasing or diminishing the size of the character cell. 
Scaling factors specify the world coordinate space in which the scaled character is 
drawn. The character cell is expanded or contracted to fill the specified space. 



Figure 10-11 Character Scaling 

o 
o 
a 

a 
00000 

o 0 0 0 0 

Text Attributes 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

o 0 

000 0 0 0 0 0 

000 0 0 000 

ZK·5360-86 

10-21 

10.3 Using Text Attributes 

As you can see, there are several attributes associated with text output. You are not 
limited to simply choosing from a library of fonts. For example, you can modify the 
appearance of any font through scaling and slanting and also alter the way in which 
the system draws the text in the virtual display using formatting modes and paths. 

The following routines are not attribute modification routines but included here to 
illustrates other types of text manipulation. 

Routine 

UIS$SET-ALIGNED_POSITION 

UIS$SET_POSITION 

Function 

Moves the current text position along the minor text 
path 

Sets the current text position at the upper-left corner 
of the character cell 

Sets the current text position at the baseline point of 
the character cell 

These routines contain an alb argument which indicates that appropriate text 
attribute settings can modify their behavior. 



10-22 Text Attributes 

10.3.1 Modifying Text Attributes 

When you modify text attributes, you do not change the default attribute settings 
within attribute block 0 itself. You should think of attribute block 0 as a template 
of default settings and you are modifying a copy of this attribute block for use 
within your program. Attribute modification routines contain two arguments-the 
input attribute block number (iatb) and the output attribute block number (oatb). 
Table 10-1 lists all text attributes and their default settings. 

Table 10-1 Default Settings of Text Attributes in Attribute Block 0 

Text 
Attribute 

Character rotation 

Character size 

Character slant 

Character spacing 

Text formatting 

Text margins 

Text path 

Text slope 

Font 

Default 
Setting 

0.0 

Specified by the font 

0.0 

0.0,0.0 

Normal 

0.0,0.0 

Left to right (default 
major path) 
top to bottom (default 
minor path) 

0.0 

Multinational ASCII, 
14-point, fixed pitch 

Modification 
Routine 

UIS$SET_CHAR-ROTATION 

UIS$SET_CHAR_SIZE 

UIS$SET_CHAR_SLANT 

UIS$SET_CHAR_SP ACING 

UIS$SET_ TEXTJ'ORMATTING 

UIS$SET_ TEXT_MARGINS 

UIS$SET_ TEXTJ ATH 

UIS$SET_ TEXT_SLOPE 

UIS$SET_FONT 

Perform attribute modification using the following procedure: 

1. Choose an appropriate attribute routine to modify the attribute. 

2. Specify 0 as the iatb argument to obtain a copy of attribute block O. 

3. Specify a number from 1 to 255 as the oatb argument. The attribute block can 
then be referenced in subsequent UIS graphics and text routines or in any other 
attribute modification routine. 

Graphics and text routines as well as UIS$MEASURE_TEXT, UIS$NEW_TEXT_ 
LINE, and UIS$SET-ALIGNED_POSITION reference modified attribute blocks in 
the atb argument. These routines are discussed later in this chapter. 



Text Attributes 10-23 

10.4 Programming Options 

You can modify text attributes within your application to change the font type, 
margin settings, and character spacing. 

Fonts 

You can change the font type of a line of text using VIS$SETJONT. You must 
specify the desired font file name in the font.-id argument. Font files reside in the 
directory SYS$FONT. The directory contains one file of fill patterns (VIS$FILL_ 
PATTERNS) and 26 font files. You can choose between two types of fonts. 

• Multinational character fonts - Contain international alphanumeric characters, 
including characters with diacritical marks. 

• Technical fonts - Include scientific and mathematical symbols. 

Font File Names 

A standard 31-character file name identifies each font file as follows: 

DTERMINM060KOOPG0001UZZZZ02AOOO 

The first 16 bytes of this sample file name (representing unique font specifications) 
are explained in the following table. 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type family ID TERMIN Terminal 

8 Spacing M36 13 pitch (monospaced) 

9-11 Type size 06036 24 points (240 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight P Bold 

16 Proportion G Regular 

Refer to Appendix C for more information about VIS fonts. 

NOTE: You can define logical names to represent font file names. 



10-24 Text Attributes 

Font File Types 

The following table lists sample font file names and their device-dependent font file 
types. 

System Font File Name 

Mutinational Character Set Fonts 

Monochrome 

Intensity or color 

Technical Character Set Fonts 

Monochrome 

Intensity or color 

DTERMINM060KOOPGOOOI UZZZZ02AOOO.VWS$FONT 

DTERMINM060KOOPGOOOI UZZZZ02AOOO.VWS$VAFONT 

DVWSVTOG03CKOOGGOOOI QZZZZ02AOOO.VWS$FONT 

DVWSVTOG03CKOOGGOOOI QZZZZ02AOOO.VWS$VAFONT 

NOTE: Whenever you reference a font file name as in UIS$SETJONT, you should 
not specify the directory SYS$FONT or the file type. 

Setting the Text Margins 

You can set the left and right margins with UIS$SET_ TEXT~ARGINS. 

Setting the Text Formatting Mode 

There are four text formatting modes-left justification, right justification, center 
justification, and full justification. The text formatting modes are set using 
UIS$SET_TEXTJORMATTING. 

NOTE: UIS$SET_TEXTJORMATTING does not automatically wrap long lines of 
text. 

Setting the Character Spacing 

You can alter the spacing between character, or kerning, or the spacing between lines, 
also known as leading, with UIS$SET_CHAR_SP ACING. 

New Text Lines 

When you are writing text and you need to move to a new line, use 
UIS$NEW_TEXT_LINE. When you create a new line of text, the current position 
becomes the beginning of the new line. When used in conjunction with 
UIS$SET_CHAR_SP ACING, you can manipulate the spacing between lines, or 
leading. 

Character Rotation 

You can rotate characters about a pivotal point called the baseline point from 0 to 
360 degrees using UIS$SET_CHAR-ROTATION. 



Text Attributes 10-25 

Aligning Text Along the Baseline and Top of Chararcter Cell 

You can align text along the baseline vector using UIS$SETJOSITION or along the 
upper-left corner of the character cell using UIS$SET-ALIGNEDJOSITION. 

Specifying Character Slant 

You can specify the angle relative to the text baseline vector by which text is to be 
slanted using UIS$SET_CHAR_SLANT. 

Specifying Character Scaling 

You can specify the width and height for characters in a font using 
UIS$SET_CHAR_SIZE. 

Specifying Slope of the Text Baseline 

You can specify the angle of the actual path of text drawing relative to the major 
path using UIS$SET_ TEXT_SLOPE. 

Specifying the Text Path 

You can specify the direction of text drawing with UIS$SET_TEXTJATH. There are 
four directions in which text can be drawn: (1) left to right, (2) right to left, (3) 
bottom to top, and (4) top to bottom. You must use these direction in the context 
of a major text drawing path and a minor text drawing path. The major path of 
text drawing is the relationship between letters; the minor path is the relationship 
between lines. 

10.4.1 Program Development I 
Programming Objective 

To draw the multinational character set fonts available in the directory SYS$FONT 
and to show how to move to a new text line. 

Programming Task 

1. Create a virtual display. 

2. Create a display window and viewport. 

3. Modify the font attribute in attribute block O. 

4. Move to the beginning of a new line using UIS$NEW_TEXT_LINE and the 
appropriate attribute setting. 

s. Draw a line of text. 

6. Repeat steps 3 through 5. 



10-26 Text Attributes 

Note that font file names used in the program TEXT_l are logical names. Some 
examples of a font occupy two lines. 

PROGRAM TEXT_l 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,30.0,30.0,20.0,10.0) 
WD_ID1=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION' ,'FONTS') 

CALL UIS$SET_FONT(VD_ID,O,l,'MY_FONT_l') .. 
CALL UIS$TEXT(VD_ID,l,'The quality of mercy is not strained', 
2 1.0,30.0) 49 

CALL UIS$SET_FONT(VD_ID,0,2,'MY_FONT_2') 
CALL UIS$NEW_TEXT_LINE(VD_ID,2) .. 
CALL UIS$TEXT(VD_ID,2,'Long visits bring short compliments') 

CALL UIS$SET_FONT(VD_ID,O,3,'MY_FONT_3') 
CALL UIS$NEW_TEXT_LINE(VD_ID,3) 
CALL UIS$TEXT(VD_ID,3,'Wise men make proverbs and fools') 
CALL UIS$NEW_TEXT_LINE(VD_ID,3) 
CALL UIS$TEXT(VD_ID,3,'repeat them') 

CALL UIS$SET_FONT(VD_ID,O,4,'MY_FONT_4') 
CALL UIS$NEW_TEXT_LINE(VD_ID,4) 
CALL UIS$TEXT(VD_ID,4,'Je pense done je suis') 

CALL UIS$SET_FONT(VD_ID,0,5,'MY_FONT_5') 
CALL UIS$NEW_TEXT_LINE(VD_ID,5) 
CALL UIS$TEXT(VD_ID,5,'Do well and have well') 

CALL UIS$SET_FONT(VD_ID,0,6,'MY_FONT_6') 
CAL~ UIS$NEW_TEXT_LINE(VD_ID,6) 
CALL UIS$TEXT(VD_ID,6,'You cannot make a crab walk straight') 

CALL UIS$SET_FONT(VD_ID,0,7,'MY_FONT_7') 
CALL UIS$NEW_TEXT_LINE(VD_ID,7) 
CALL UIS$TEXT(VD_ID,7,'Great minds think alike') 

CALL UIS$SET_FONT(VD_ID,O,8,'MY_FONT_8') 
CALL UIS$NEW_TEXT_LINE(VD_ID,8) 
CALL UIS$TEXT(VD_ID,8,'One today is worth two tomorrows') 

CALL UIS$SET_FONT(VD_ID,O,9,'MY_FONT_9') 
CALL UIS$NEW_TEXT_LINE(VD_ID,9) 
CALL UIS$TEXT(VD_ID,9,'With Latin, a horse, and money, you may') 
CALL UIS$NEW_TEXT_LINE(VD_ID,9) 
CALL UIS$TEXT(VD_ID,9, 'travel the world') 



Text Attributes 

CALL UIS$SET_FONT(VD_ID.O.10.'MY_FONT_10') 
CALL UIS$NEW_TEXT_LINE(VD_ID.10) 
CALL UIS$TEXT(VD_ID.10.'Whispered words are heard afar') 

CALL UIS$SET_FONT(VD_ID.O.11.'MY_FONT_11') 
CALL UIS$NEW_TEXT_LINE(VD_ID.11) 
CALL UIS$TEXT(VD_ID.ll.'Et tu. Brute?') 
CALL UIS$NEW_TEXT_LINE(VD_ID.ll) 
CALL UIS$TEXT(VD_ID.11.'Per ardua astra') 

CALL UIS$SET_FONT(VD_ID.O.12.'MY_FONT_12') 
CALL UIS$NEW_TEXT_LINE(VD_ID.12) 
CALL UIS$TEXT(VD_ID.12. 'Velut arbor aevo') 

CALL UIS$SET_FONT(VD_ID.O.13.'MY_FONT_13') 
CALL UIS$NEW_TEXT_LINE(VD_ID.13) 
CALL UIS$TEXT(VD_ID.13.'One mule scrubs another') 

CALL UIS$SET_FONT(VD_ID.O.14.'MY_FONT_14') 
CALL UIS$NEW_TEXT_LINE(VD_ID.14) 
CALL UIS$TEXT(VD_ID.14.'Life is just a bowl of cherries') 

PAUSE 

END 

10-27 

The font attribute in attribute block 0 is modified in fourteen calls to UIS$SETJONT 
O. There now exists an attribute block containing a modified font attribute for each 
font in SYS$FONT. These attribute blocks are identified by their output attribute 
block number when they were created. 

The atb argument of UIS$TEXT • uses the appropriate attribute block number to 
generate text in the desired font. 

A call to UIS$NEW_TEXT_LINE • causes each new line of text to begin on a new 
line at the left margin. 

10.4.2 Calling UIS$SET_FONT and UIS$NEW_TEXT_LINE 

Once again, note the positional order of the attribute routines. Attribute routines 
modify the attribute block used by the routine creating the graphic object and, 
therefore, must precede that routine. The attribute routine and the output routine 
must reference the same attribute block. Figure 10-12 contains examples of each of 
the UIS fonts. 



10-28 Text Attributes 

Figure 10-12 UIS Fonts 

FONTS 

Tbe quality of mercy is not strained 
Long visits bring short compliments 
Wise men mail<..e proverbs arid, -Fools 
repeat them 
3e pense done 3e suis 

Do well and have well 
ou cannot make a crab ~lk straight 

Great Minds think alike 
One today is worth two tomorrows 
With Latin, a horse, and money you may 
travel the world 
Whispered words are beard afar 

Et tu... Brute? 
Per ardua ast-ra 
Ve1ut a.rbor aevo 

One mule scrubs another 
L~~e ~s ·ust a bo~l o~ cherr~es 

ZK-4546-85 

Refer to Appendix C for a listing of VIS fonts. 



Text Attributes 10-29 

10.4.3 Program Development II 
Programming Objective 

To increase character and line spacing in two lines of text. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport with a title. 

3. Draw a line of text using the default character spacing factor. 

4. Modify the character and line spacing factors using UIS$SET_CHAR_SP ACING. 

5. Draw a line of text using the modified spacing attribute. 

6. Move to the beginning of a new line using UIS$NEW_ TEXT_LINE with the 
modified spacing attribute. 

7. Repeat steps 3 through 5. 

PROGRAM SPACE_1 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,40.0,40.0,18.0,6.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION' ,'KERNING AND LEADING') 

CALL UIS$SET_FONT(VD_ID,O,15,'MY_FONT_1') ~ 

CALL UIS$TEXT(VD_ID,15,'The best mirror is an old friend',O.O,40.0) 49 

CALL UIS$NEW_TEXT_LINE(VD_ID,15) .. 
CALL UIS$SET_CHAR_SPACING(VD_ID,15,16,3.0,3.0) ~ 
CALL UIS$TEXT(VD_ID,16, 'The best mirror is an old friend') CD 

CALL UIS$NEW_TEXT_LINE(VD_ID,16) CD 
CALL UIS$TEXT(VD_ID,15,'In the coldest flint there is hot fire') 

CALL UIS$NEW_TEXT_LINE(VD_ID,15) 
CALL UIS$TEXT(VD_ID,16,'In the coldest flint there is hot fire') 

PAUSE 

END 

A call to UIS$SETJONT ~ sets the font attribute. The attribute block containing 
the newly modified font attribute is assigned the number 15. The logical name 
MYJONT_l denotes a font that is used throughout the program. 

The first line of text is drawn in the appropriate font 49. The text is drawn at the 
location in the virtual display specified in UIS$TEXT. 



10-30 Text Attributes 

When the next line of text is written, UIS$NEW_ TEXT_LINE references attribute 
block number 15 e. UIS$NEW_TEXT_LINE uses the characteristics of the new 
font to determine proper line spacing. If you had used attribute block number 0, 
UIS$NEW_ TEXT_LINE would use the characteristics of the default font. In that 
case, the descenders of letters in the previous line and the ascenders of the letters of 
the new line might crash into each other or obscure portions of letters in either line. 
Therefore, you should call UIS$NEW_ TEXT_LINE using the appropriate attribute 
block number. 

Attribute block 15 is further modified in a call to UIS$SET_CHAR_SPACING e. 
Attribute block 15 containing the previously modified font attribute and now the 
newly modified character spacing attribute is assigned the number 16. 

NOTE: Attribute block 15 still exists and can be referenced. 

The character and line spacing attributes are set to a factor of 3. Characters are 
placed apart by a factor of 3 times their width. Lines of text are placed apart by a 
factor of 3 times the height of the character. 

Text is drawn and spaced, character by character, according to the values specified 
in font attribute and the character spacing attribute in attribute block 16 •. The 
character spacing component of the character spacing attribute, or x factor determines 
spacing between characters for left-to-right and right-to-Ieft text paths. 

A call to UIS$NEW_ TEXT_LINE 0 creates a new text line using attribute block 
number 16. UIS$NEW_TEXT_LINE uses the line spacing component of the character 
spacing attribute, or y factor to determine spacing between lines. The y factor is used 
for top-to-bottom and bottom-to-top text paths. 

10.4.4 Calling UIS$SET _CHAR_SPACING 

You can call character spacing in one line of the previous example by calling 
UIS$SET_CHAR_SP ACING as shown here. 

UIS$SET_CHAR_SP ACING specified a spacing factor of 3. If you ran this program 
with the changes described above, your workstation screen would display the graphic 
objects shown in Figure 10-13. 



Text Attributes 10-31 

Figure 10-13 Character and Line Spacing 

The best mirror is an old friend 
The b est m i r r o r 

n the coldest flint there is hot fire 
I nth e col d e t 

ZK-4547-85 

The line now extends beyond the right margin of the display viewport. 

10.4.5 Program Development III 
Programming Objective 

To alignment along the top of the character cell and along the baseline vector. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport with title. 

3. Draw a horizontal line the width of the viewport. 

4. Set the current position for text output at the leftmost point on the line using 
UIS$SET-ALIGNEDJOSITION. 

5. Choose a font and modify the font attribute block in attribute block O. 

6. Draw a line of text using the new font. 



10-32 Text Attributes 

7. Repeat step 4 using UIS$SETJOSITION. 

8. Repeat steps 5 and 6. 

PROGRAM SET_POS 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,40.O.40.O,18.0,5.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION'. 'TEXT ALIGNMENT') 

CALL UIS$PLOT(VD_ID.O.O.O.35.0,40.O,35.0) «t 
CALL UIS$SET_FONT(VD_ID.O.1.'MY_FONT_7') 
CALL UIS$SET_ALIGNED_POSITION(VD_ID,1,O.O.35.0) 49 

CALL UIS$TEXT(VD_ID.l, 'Never refuse a good offer') .. 

CALL UIS$PLOT(VD_ID.O.O.O,20.0.40.0,20.0) Ct 

CALL UIS$SET_POSITION(VD_ID,O.O,20.0) CD 

CALL UIS$SET_FONT(VD_ID,O,2,'MY_FONT_5') 
CALL UIS$TEXT(VD_ID.2.'Weigh justly and sell dearly') CD 

PAUSE 

END 

Two horizontal and parallel lines are drawn with UIS$PLOT «t Ct. 

Both calls to UIS$SET-ALIGNEDJOSITION and UIS$SETJOSITION 49 CD use 
the starting points of the respective lines to establish the current position for new text 
output unless the current position is specified in UIS$TEXT. 

Text creation" CD begins by default at the current position established in 
UIS$SET-ALIGNEDJOSITION and UIS$SET_POSITION. 

10.4.6 Calling UIS$SET _POSITION and 
UIS$SET -ALIGNED_POSITION 

The first sentence shown in Figure 10-14 illustrates the alignment of text along the 
top of the character cell. The second sentence is aligned on the baseline vector. 



Text Attributes 

Figure 10-14 Baseline and Top of Character Cell 

10.4.7 Program Development IV 
Programming Objective 

To draw characters at three different angles relative to the baseline vector. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and a viewport with a title. 

3. Choose a font and modify the font attribute in attribute block O. 

4. Draw a character string at the default angle 0 degrees. 

5. Modify the character slant attribute using UIS$SET_CHAR_SLANT. 

6. Draw the character string again using the modified attribute block. 

7. Repeat step 5 specify negative degrees. 

The file name MYJONT_12 is a logical name for a font in SYS$FONT. 

PROGRAM SLANT 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

10-33 

ZK-4548-85 

VD_ID=UIS$CREATE_DISPLAY(0.O,O.O,20.0,5.0, 18.0,4.5) 
WD_ID=UIS$CREATE_WINDOW(VD_ID. 'SYS$WORKSTATION','CHARACTER SLANTING') 

CALL UIS$SET_FONT(VD_ID,O,l,'MY_FONT_12') .. 

CALL UIS$TEXT(VD_ID,l,'Unslanted characters do not lean',O.l,5.0) ~ 



10-34 Text Attributes 

PAUSE 

CALL UIS$SET_CHAR_SLANT(VD_ID,1,2,25.0) tt 
CALL UIS$TEXT(VD_ID,2,'Slanted characters lean forward',O.5,3.0) 

PAUSE 

CALL UIS$SET_CHAR_SLANT(VD_ID,1,3,-25.0) ~ 
CALL UIS$TEXT(VD_ID,3,'Slanted characters lean backward',O.5,1.0) 

PAUSE 
END 

A font is selected using UIS$SETJONT O. A text string is drawn using the default 
attribute setting in attribute block 0 •. 

Next, the character slant attribute is modified tt to specify a 25 degree shift to the 
right of a line perpendicular to the text baseline. 

The character slant attribute is further modified ~ to specify a 25 degree shift to the 
left of a line perpendicular to the text baseline. 

10.4.8 Calling UIS$SET_CHAR_SLANT 

First, the character string is drawn at the default slant-O degrees. Next, the 
character string is drawn twice slanting each character 25 degrees to the right of 
a line perpendicular to the text baseline and then 25 degrees to the left of that line. 

Figure 10-15 Character Slanting 

chat"actet" slanting 
--============------------------- ----

Uns1anted characters do not 1ean 

~an'l::ed charac'l::ers ~ean rorward 

ZK543286 



Text Attributes 10-35 

10.4.9 Program Development V 
Programming Objective 

To draw a character string whose actual path increases at 20-degree increments from 
o to 340 degrees. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport. 

3. Create DO loop that increases from 0 to-360 degrees by 20-degree increments. 

• Place the slope attribute modification routine UIS$SET_TEXT_SLOPE within 
the DO loop. 

• Place the text drawing routine UIS$TEXT within the DO loop. 

The font file name MYJONT_13 is a logical name for a font in SYS$FONT. 

PROGRAM SLOPE 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

VD_ID=UIS$CREATE_DISPLAY(0.O,O.O,50.0,50.0,10.0,10.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','text slope') 

CALL UIS$SET_FONT(VD_ID,O,1,'MY_FONT_13') t» 

DO 1=0,340,20 ~ 
CALL UIS$SET_TEXT_SLOPE(VD_ID,1,2,FLOAT(I» 4D 
CALL UIS$TEXT(VD_ID,2,' Slope!',25.0,25.0) ~ 
~oo 0 

PAUSE 

END 

A font is selected and the default font attribute setting is modified using UIS$SET_ 
FONTt». 

A DO loop is established ~ 0. The counter I is initialized to 0 and will increase by 
increments of 20. The angle argument in UIS$SET_ TEXT_SLOPE uses the value of 
I as the new text baseline attribute setting 4D. The VAX FORTRAN function FLOAT 
changes the integer counter I to a real number 4D. 

Using UIS$TEXT, text strings are drawn from a central point (25.0,25.0) at 20-degree 
intervals ~. 



10-36 Text Attributes 

10.4.10 Calling UIS$SET _TEXT_SLOPE 

Text strings are drawn at 20-degree intervals from 0 degrees to 360 degrees. The 
angle of each new text baseline increases by a multiple of 20. Text is drawn in a 
counterclockwise direction from the default horizontal baseline. 

Figure 10-16 Manipulating the Text Baseline 

~-- -------- -~---~- -------------- -- --

text slope 
- -- ~-_. -- ----

ZK-5422-86 

10.4.11 Program Development VI 
Programming Objective 

To rotate each character in order to offset text slope. 



Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport. 

3. Create a DO loop. 

4. Modify the attributes within the DO loop. 

PROGRAM SLOPE_ROTATE 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

Text Attributes 

VD_ID=UIS$CREATE_DISPLAY(0.O,O.O,50.0,51.0,10.0,10.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION', 
2 'TEXT SLOPE AND CHARACTER ROTATION') 

CALL UIS$SET_FONT(VD_ID,O,l,'MY_FONT_13') 

DO 1=0,340,20 
CALL UIS$SET_TEXT_SLOPE(VD_ID,l,2,FLOAT(I)) .. 
CALL UIS$SET_CHAR_ROTATION(VD_ID,2,2,FLOAT(-I)) .. 
CALL UIS$TEXT(VD_ID,2,' Rotate!' ,24.0,28.5) 
ENDDO 

PAUSE 

END 

10-37 

This program is identical to the previous program SLOPE except that in addition to 
the text slope attribute we have modified the character rotation attribute. 

Within the DO loop, both attribute modification calls use the value of the counter I 
to increase the angles of text slope and character rotation for different purposes" •. 

For every 20-degree increase in the angle of text slope, the angle of character 
rotation of each character must be decremented by -20 degrees. Consequently, 
each character's baseline vector remains parallel with the default major path. 

10.4.12 Calling UIS$SET _CHAR_ROTATION 

The program SLOPE-ROTATE draws a series of character strings from a center point 
from 0 to 360 degrees at 20-degree intervals. Because the angle of character rotation 
offsets exactly the angle of text slope, character maintain a readable orientation. 



10-38 Text Attributes 

Figure 10-17 Character Rotation Without Slanting 

text slope and character rotation 

ZK·5423·86 

If you add a singe call to modify the character slanting attribute, your viewport will 
display character rotation and slanting as the text slope from 0 to 360 degrees at 
20-degree intervals as shown in Figure 10-18. 



Text Attributes 10-39 

Figure 10-18 Character Rotation with Slanting 

slant ... slope ... and rotation 

ZK-5424-86 

10.4.13 Program Development VII 
Programming Objective 

To manipulate the width and height of character through scaling. 



10-40 Text Attributes 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport with title. 

3. Draw a character string. 

4. Increase the character size for width and height by 1. 

5. Repeat steps 3 and 4. 

Font names used in this program are logical names. 

PROGRAM CHARSIZE 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
REAL*4 WIDTH,HEIGHT 

VD_ID=UIS$CREATE_DISPLAY(0.O,O.O,70.0,90.0,12.0,16.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','CHARACTER SCALING') 

CALL UIS$SET_FONT(VD_ID,O,l, 'MY_FONT_1') .. 

CALL UIS$TEXT(VD_ID,l,'Great scott!',O.O,90.0) 49 
CALL UIS$SET_CHAR_SIZE(VD_ID,l,2,,2.0,2.0) ~ 
CALL UIS$TEXT(VD_ID,2,'Great scott! ',0.0,80.0) ~ 
CALL UIS$SET_CHAR_SIZE(VD_ID,l,2,,3.0,3.0) 
CALL UIS$TEXT(VD_ID,2,'Great scott! ',0.0,70.0) 
CALL UIS$SET_CHAR_SIZE(VD_ID,l,2,,4.0,4.0) 
CALL UIS$TEXT(VD_ID,2,'Great scott! ',0.0,60.0) 
CALL UIS$SET_CHAR_SIZE(VD_ID,l,2,,5.0,5.0) 
CALL UIS$TEXT(VD_ID,2,'Great scott! ',0.0,50.0) 

CALL UIS$SET_CHAR_SIZE(VD_ID,l,2,,6.0,6.0) 
CALL UIS$TEXT(VD_ID,2,'Great scott! ',0.0,40.0) 
CALL UIS$SET_CHAR_SIZE(VD_ID,l,2,,7.0,7.0) 
CALL UIS$TEXT(VD_ID,2,'Great scott! ',0.0,30.0) 
CALL UIS$SET_CHAR_SIZE(VD_ID,l,2,,8.0,8.0) 
CALL UIS$TEXT(VD_ID,2,'Great scott!' ,0.0,20.0) 
CALL UIS$SET_CHAR_SIZE(VD_ID,l,2,,9.0,9.0) 
CALL UIS$TEXT(VD_ID,2,'Great scott!' ,0.0,10.0) 

PAUSE 
END 

A font is selected". 

The unsealed character string Great scott! is drawn in the virtual display 49. 

The character string is redrawn as scaled text. The scale factors for the width and 
height are incremented ~ each time the character string is drawn ~. 



Text Attributes 10-41 

10.4.14 Calling UIS$SET_CHAR_SIZE 

Figure 10-19 shows the character string increasing in height and width as the scale 
factors are incremented. 

Figure 10-19 Manipulating Character Size 

character scaling 

G"'eat scott! 

ne.\!l.t: :!lie at:t:! 

G t"ea-t scott:! 

G .... eat :scott! 

Great scott! 

Gt"leat scott! 

Great seo t.t.! 

Gr'eat :seD t.t.! 

ZK 542186 





. Chapter 11 

Graphics and Windowing Attributes 

11.1 Overview 

This chapter discusses the following topics: 

• Creating dashed lines 

• Creating lines of varying widths 

• Using fill patterns 

• Using clipping rectangles 

11.2 Using Graphics Attributes 

Graphics attributes affect arc type, line width, line style, and the use of fill patterns. 

11.2.1 Modifying Graphics and Windowing Attributes 

When you modify graphics and windowing attributes, you do not change the default 
attribute settings within attribute block 0 itself. You should think of attribute block 
o as a template of default settings and you are modifying a copy of this attribute 
block for use within your program. Attribute modification routines contain two 
arguments-the input attribute block number (iatb) and the output attribute block 
number (oatb). Table 11-1 lists the default settings of graphics and windowing 
attributes. 



11-2 Graphics and Windowing Attributes 

Table 11-1 Default Settings of Graphics and Windowing Attributes 

Default Modification 
Attribute Setting Routine 

Are type Open UIS$SET-ARC_ TYPE 

Fill pattern Off UIS$SETJILLJ ATTERN 

Line style Solid UIS$SET_LINE_STYLE 

Line width 1.0 (unsealed) UIS$SET_LINE_WIDTH 

Clipping rectangle Off UIS$SET_CLIP 

Perform attribute modification using the following procedure: 

1. Choose an appropriate attribute routine to modify the attribute. 

2. Specify 0 as the iatb argument to obtain a copy of attribute block O. 

3. Specify a number from 1 to 255 as the oatb argument. The attribute block can 
then be referenced in subsequent VIS graphics and text routines or in any other 
attribute modification routine. 

Graphics and text routines reference modified attribute blocks in the atb argument as 
well as VIS$MEASVRE_TEXT, VIS$NEW_TEXT_LINE, and 
VIS$SET-ALIGNEDJOSITION. 

11.2.2 Programming Options 

Depending on the graphic object to be created-a line, a polygon, an ellipse, or 
circle-there are several attributes to choose from. 

Fill Patterns 

Fill patterns are used to add shading to geometric figures displayed on the 
workstation screen. Fill patterns are most often used to accentuate portions of a 
pie graph. Fill patterns range in coloration from light to heavy. Typically, light fill 
patterns connote light activity or minimal density in graphs. Heavy fill patterns 
connote the opposite meaning-heavy activity or maximum density. 

You can also create your own fill pattern by selecting a character from any VIS font 
to serve as a fill pattern glyph. 

All fill patterns are stored together in a font file in the directory SYS$FONT. For your 
convenience, this file name has been converted to a logical name 
VIS$FILL J ATTERNS. 



Graphics and Windowing Attributes 11-3 

Select a fill pattern in the following manner: 

1. Using UIS$SETJONT, specify 0 to select a copy of attribute block 0 to modify 
or specify the number of a previously modified attribute block as the input 
attribute block. 

2. Assign an output attribute block number to this newly modified attribute block 
in UIS$SETJONT. This attribute block number allows you to keep track of 
attributes. You can also modify some other element in this attribute block later 
on. 

3. Specify the name of the fill pattern file in UIS$SETJONT. Use the predefined 
logical name for the fill pattern file is UIS$FILL J ATTERNS. 

If you wish to use a character from a font other than the default fill pattern file 
as fill pattern glyph, specify the appropriate font name. 

4. Using UIS$SETJILLJATTERN, specify the actual fill pattern using a UIS 
symbol in the argument index. A UIS symbol in the form P ATT$C-xxxx exists 
for each fill pattern and serves an index of each fill pattern in the file. The 
symbolic constant represents a hexadecimal offset indicating the fill pattern's 
position in the font file. 

If you are creating a fill pattern from a UIS font other than the default fill pattern 
file, specify the ASCII code of the desired character in the index of UIS$SET_ 
FILLJATTERN. 

NOTE: To disable fill patterns without modifying the fill pattern attribute, do not 
specify the index argument in UIS$SETJILLJATTERN. 

Refer to Section 6.4 for more information about UIS constants. 

Setting the Arc Type 

Perhaps you want to draw a pie chart. You can draw chords or request that no chord 
be drawn using UIS$SET-ARC_TYPE and by specifying one of the constants shown 
in the following table. 

Arc Type Description 

UIS$C-ARC_OPEN Does not draw any chords 

UIS$C-ARC_PIE Draws a line from both end points of the arc to the center position 

UIS$C-ARC_CHORD Draws a line connecting the end points of the arc 

Remember that fill patterns are not drawn in the arc when the arc type attribute is 
specified as OPEN. 



11-4 Graphics and Windowing Attributes 

Line Width 

You can increase the apparent thickness of lines displayed on the workstation screen 
with UIS$SET_LINE_WIDTH. Note that this routine affects the thickness of lines 
created with UIS$LINE, UIS$LINE-ARRAY, UIS$PLOT, UIS$PLOT-ARRAY, and 
UIS$ELLIPSE only. 

Line Style 

Occasionally, a solid line is not exactly what you need. You can create dots, hyphens, 
and dashes with UIS$SET_LINE_STYLE. 

11.2.2.1 Program Development I 
Programming Objective 

To draw the different arc types and to demonstrate their use with fill patterns. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport with title. 

3. Modify the arc type attribute using the chord arc type in the attribute block O. 

4. Draw an arc using UIS$CIRCLE with the modified attribute block. 

5. Repeat steps 3 and 4. 

6. Erase the virtual display and delete the display window. 

7. Create a display window and viewport with an identifying title. 

8. Modify the arc type attribute. Select the pie arc type. 

9. Select a fill pattern. 

• Modify the font attribute in attribute block O. 

• Modify the fill pattern attribute block O. 

10. Draw an arc using the modified arc type, font, and fill pattern attribute blocks. 

PROGRAM ARC 
IMPLICIT INTEGER(A-Z) 
INCLUDE JSYS$LIBRARY:UISENTRYJ 
INCLUDE JSYS$LIBRARY:UISUSRDEF J 

VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,40.0,40.0,15.0,15.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID,JSYS$WORKSTATIONJ,JCHORD AND PIE J) 

CALL UIS$SET_ARC_TYPE(VD_ID,O,6,UIS$C_ARC_CHORD) t» 
CALL UIS$CIRCLE(VD_ID,6,5.0,20.0,15.0,O.O,150.0) 



Graphics and Windowing Attributes 11-5 

CALL UIS$SET_ARC_TYPE(VD_ID.O.l.UIS$C_ARC_PIE) ~ 
CALL UIS$CIRCLE(VD_ID.l.23.0.20.0.15.0.0.0.150.0) 

PAUSE 

CALL UIS$DELETE_WINDOW(WD_ID) 4a 
CALL ijIS$ERASE(VD_ID) ~ 

PAUSE 

WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION'.'FILLED PIE') 4D 
CALL UIS$SET_ARC_TYPE(VD_ID.O.l.UIS$C_ARC_PIE) 
CALL UIS$SET_FONT(VD_ID.l.2.'UIS$FILL_PATTERNS') 
CALL UIS$SET_FILL_PATTERN(VD_ID.2.3.PATT$C_HORIZ2_6) ct 
CALL UIS$CIRCLE(VD_ID.3.18.0.20.0.15.0.0.0.150.0) 

PAUSE 

END 

The program ARC creates two arcs and specifies two ways of closing those arcs 0 ~. 

In order to change the window caption, we delete the display window and its 
associated viewport 4a. Because the second part of the program draws a new graphic 
object, we need to erase existing graphic objects ~. 

A new display window is created and its viewport bears a new title. 4D. 

The new graphic object is another arc with a pie arc type and containing a fill 
pattern ct. 
'11.2.2.2 Calling UIS$SET -ARC_TYPE and Using Fill Patterns 
Figure 11-1 describes two ways of closing an arc. 



11-6 Graphics and Windowing Attributes 

Figure 11-1 Closing an Arc 

CHORD AND PIE 

ZK-4550-85 



Graphics and Windowing Attributes 11-7 

Finally, the second part of the program ARC executes and the fill pattern is drawn in 
the pie as shown in Figure 11-2. 

Figure 11-2 Filling a Closed Arc 

fIllED PIE 

ZK-4551-85 



11-8 Graphics and Windowing Attributes 

11.2.2.3 Program Development II 
Programming Objective 

To draw thickened lines. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport with a title. 

3. Draw two horizontal lines the width of the viewport-one near the bottom of 
the viewport and one near the top of the viewport. 

4. Draw a vertical line connecting the horizontal lines. 

5. Modify the line width attribute in attribute block 0 by a factor of 2. 

6. Repeat steps 4 and 5. 

PROGRAM LINE_WIDTH 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

VD_ID=UIS$CREATE_DISPLAY(1.0.1.0.60.0.30.0.15.0.15.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION'.'LINE WIDTH') 

CALL UIS$PLOT(VD_ID.O.l.0.25.0.60.0.25.0) t» 
CALL UIS$PLOT(VD_ID.O.1.0.5.0.60:0.5.0) • 

CALL UIS$PLOT(VD_ID.O.5.0.5.0.5.0.25.0) ~ 

CALL UIS$SET_LINE_WIDTH(VD_ID.O.l.2.0) .. 
CALL UIS$PLOT(VD_ID.l.l0.0.5.0.10.0.25.0) CD 

CALL UIS$SET_LINE_WIDTH(VD_ID.O.l.4.0) 
CALL UIS$PLOT(VD_ID.l.15.0.5.0.15.0.25.0) 

CALL UIS$SET_LINE_WIDTH(VD_ID.O.l.6.0) 
CALL UIS$PLOT(VD_ID.l.20.0.5.0.20.0.25.0) 

CALL UIS$SET_LINE_WIDTH(VD_ID.O.l.8.0) 
CALL UIS$PLOT(VD_ID.l.25.0.5.0.25.0.25.0) 

CALL UIS$SET_LINE_WIDTH(VD_ID.O.l.l0.0) 
CALL UIS$PLOT(VD_ID.l.30.0.5.0.30.0.25.0) 

CALL UIS$SET_LINE_WIDTH(VD_ID.O.l.12.0) 
CALL UIS$PLOT(VD_ID.l.35.0.5.0.35.0.25.0) 

CALL UIS$SET_LINE_WIDTH(VD_ID.O.l.14.0) 
CALL UIS$PLOT(VD_ID.l.40.0.5.0.40.0.25.0) 



Graphics and Windowing Attributes 11-9 

CALL UIS$SET_LINE_WIDTH(VD_ID.O.1.16.0) 
CALL UIS$PLOT(VD_ID.1.45.0.5.0.45.0.25.0) 

CALL UIS$SET_LINE_WIDTH(VD_ID.O.1.18.0) 
CALL UIS$PLOT(VD_ID.1.50.0.5.0.50.0.25.0) 

CALL UIS$SET_LINE_WIDTH(VD_ID.O.1.20.0) 
CALL UIS$PLOT(VD_ID.1.55.0.5.0.55.0.25.0) 

PAUSE 

END 

Two parallel lines are drawn with normal thickness the width of the display window 
using UIS$PLOT G •. 

A vertical line of normal thickness is drawn •. 

Subsequent calls modify the line width attribute e and draw the resulting line. 
from the line in the lower half of the display window to the line in the upper half of 
the display screen. 

11.2.2.4 Calling UIS$SET_LlNE_WIDTH 
Figure 11-3 shows lines are drawn from point to point with increasing thickness. 

Figure 11-3 Line Width 
~~------

line whUh 
- -------

NOTE: Extremely thick lines should be drawn using UIS$PLOT or UIS$PLOT_ 
ARRAY to and UIS$SETJILLJATTERN construct filled rectangles. 



11-10 Graphics and Windowing Attributes 

11.2.2.5 Program Development III 
Programming Objective 

To draw various patterns of thickened dots and dashes. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport with title. 

3. Modify the line width attribute to a thickness of 5 pixels. 

4. Draw a solid thick line. 

5. Modify the line style attribute. 

6. Draw the dashed line. 

7. Repeat steps 5 and 6. 

PROGRAM LINE_STYLE 
IMPLICIT INTEGER(A-Z) 
INCLUDE , SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

VD_ID=UIS$CREATE_DISPLAY(O.O.O.O.20.0.20.0.15.0.6.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION'.'LINE STYLE AND WIDTH') 

CALL UIS$SET_LINE_WIDTH(VD_ID.O.1.5.0) t» 
CALL UIS$PLOT(VD_ID.1.1.0.18.0.18.0.10.0) 

CALL UIS$SET_LINE_STYLE(VD_ID.1.1. 'FFFFFFFO'X) ~ 
CALL UIS$PLOT(VD_ID.1.1.0.14.0.18.0.10.0) 

CALL UIS$SET_LINE_STYLE(VD_ID.1.2.'FOFOFOFO'X) 4& 
CALL UIS$PLOT(VD_ID.2.1.0.10.0.18.0.10.0) 

CALL UIS$SET_LINE_STYLE(VD_ID.2.3.'90909090'X) Ct 
CALL UIS$PLOT(VD_ID.3.1.0,6.0.18.0.10.0) 

CALL UIS$SET_LINE_STYLE(VD_ID.3.4. '10010010'X) CD 
CALL UIS$PLOT(VD_ID.4.1.0.2.0.18.0.10.0) 

PAUSE 

END 

Different line styles are created by selecting different hexadecimal values in the calls 
to UIS$SET_LINE_STYLE t» ~ 4& Ct. The hexadecimal values set bits in the line 
style bit vector, which, in tum, generate a pattern. 



Graphics and Windowing Attributes 11-11 

11.2.2.6 Calling UIS$SET _LINE_WIDTH and UIS$SET _LINE_STYLE 
When the program LINE_STYLE executes, five lines are drawn. Each line is drawn 
with the same width but different style. The pattern of dots and dashes is determined 
by the value supplied to the line style longword bit vector as shown in Figure 11-4. 

Figure 11-4 Modifying Line Width and Style 

--------------------------

line style and width 
------------------

.. _-------••••••••••••••••••••••••••••••••••• I 
111111111111 

111111111111111111 I I I I 
1111111111111111 I II 

1111111111111111 I II 
II 111111 I I I 

I I I 
I I I I I 

I I 
I I I 

11.2.2.7 Program Development IV 
Programming Objective 

To construct a vertical bar graph. 

Programming Tasks 

1. Load arrays from DATA statements. 

2. Create a virtual display. 

3. Create a display window and viewport with a title. 

4. Draw the x and y axes. 

5. Draw the legend. 

6. Draw the information along the x axis. 

7. Draw the information along the y axis. 

8. Modify the font and fill pattern attributes. 

ZK-4552-85 



11-12 Graphics and Windowing Attributes 

9. Draw the vertical bars using the appropriate fill patterns to their proper heights 
using the arrays. 

PROGRAM GRAPH 
IMPLICIT INTEGER(A-Z) 
CHARACTER*4 STRING 
REAL ARRAY1(B),ARRAY2(B),X,X2,HEIGHT,Y ~ 
DATA ARRAYl /5.0,10.0,12.0,13.0,15.0,20.0,25.0,30.0/ 
DATA ARRAY2 /0.0, 1.0, 2.0, 1.0, 4.0, 9.0,15.0,21.0/ 

INCLUDE , SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

VD_ID=UIS$CREATE_DISPLAY(-5.0,-5.0,50.0,50.0,20.0,20.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','GRAPH') 

CALL UIS$SET_LINE_WIDTH(VD_ID,O,16,5.0) .. 
CALL UIS$PLOT(VD_ID,16,O,O,O,35.0) .. 
CALL UIS$PLOT(VD_ID,16,O,O,45.0,O) ~ 

CALL UIS$TEXT(VD_ID,O,'U.S. ADULT POPULATION VS. CAR OWNERSHIP', 
2 10.0,-3.0) CD 

c Information along the y axis 

DO 20 I = 1,7 
Y = 5.0 * FLOAT (I) ~ 
N = 25 * I • 
ENCODE (3,10,STRING) N Ct 

10 FORMAT (13) 
20 CALL UIS$TEXT(VD_ID,O,STRING,-3.0,Y) CD 

CALL UIS$TEXT(VD_ID,O,'(in millions)',-3.0,37.0) 

c Information along the x axis 

DO 40 I = l,B 
Y = 5.0 * FLOAT (I) 
N = 1900 + (10 * I) 
ENCODE (4,30,string) N 

30 FORMAT (14) 
40 CALL UIS$TEXT(VD_ID,O,string,Y,-1.0) 

CALL UIS$SET_FONT(VD_ID,O,l,'UIS$FILL_PATTERNS') GD 
CALL UIS$SET_FILL_PATTERN(VD_ID,1, l,PATT$C_HORIZ4_4) ~ 
CALL UIS$SET_FILL_PATTERN(VD_ID,l,2,PATT$C_GREY12_16} ~ 

C PLOT POPULATION RECTANGLE 

DO 100 I = 1,8 



x = 5.0 * FLOAT(I) 
X2 = X + 2.0 

Graphics and Windowing Attributes 

HEIGHT = ARRAY1(I) GD 
CALL UIS$PLOT (VD_ID.l. X.O.O. X.HEIGHT. X2.HEIGHT. X2.0.0) 

C PLOT CAR RECTANGLE 

X = X + 1.0 
X2 = X + 2.0 
HEIGHT = ARRAY2(I) GO 
CALL UIS$PLOT (VD_ID.2. X.O.O. X.HEIGHT. X2.HEIGHT. X2.0.0) 

100 CONTINUE 

PAUSE 
END 

11-13 

Two arrays, ARRAYl and ARRAY2 are declared 0 to store the height of each vertical 
bar in the graph. 

The x and y axes are drawn ••. However, a previous call to UIS$SET_LINE_ 
WIDTH. has modified the attribute block controlling the appearance of lines. We 
have indicated that we want the width of the lines (x and y axes) to be five times 
wider than normal. 

The legend of the graph is created in a call to UIS$TEXT •. 

The y world coordinate values are computed 0 as multiples of 5 where I represents 
the number of passes through the DO loop. The adult population numbers will be 
written at these intervals. 

The numbers along the y axis are computed and stored in the variable N • and then 
returned to the variable string as character string constants • CD. 

Before you create the rectangles to represent the eight vertical bars in the graph, 
you must specify the fill pattern-either an existing one or a new pattern. Because 
the font attribute has not been modified in our program, UIS$SETJONT uses a 
copy of attribute block 0 to set the font attribute ~. In this case, specify a font 10 
UIS$FILL J ATTERNS to indicate that you want the file of fill patterns. 

Now we must set the fill pattern attribute using UIS$SETJILLJATTERN. The 
program must use two different fill patterns to contrast adult population vertical bars 
from automobile vertical bars 48 CD. 

The values previously assigned to each element of ARRAYl and ARRAY2 control the 
height of the vertical bars GD GO. 



11-14 Graphics and Windowing Attributes 

11.2.2.8 Calling UIS$SET_FONT and UIS$SET_FILL_PATTERN 
If you ran the program GRAPH now it would produce the vertical bar graph as 
shown in Figure 11-5. 

Whenever you create a fill pattern, you must include UIS$SETJONT and UIS$SET_ 
FILL-PATTERN. The positional order of the calls is important. Calls to UIS routines 
that modify an attribute block must precede the call that creates the graphic object. 

In order to produce the desired change in the resulting graphic object, the 
accompanying call to UIS$PLOT must reference the same output attribute block 
number. 

11.2.3 Using the Windowing Attribute 

The clipping rectangle attribute modifies the size of the viewable portion of the 
virtual display. It does not resize the display window or display viewport. 

11.2.3.1 Programming Options 
There is only one attribute, namely the clipping attribute, that controls what is visible 
through the display window and viewport. 

Clipping Rectangle 

Maybe you need to restrict drawing in the virtual display to a specified rectangle. 
You can create clipping rectangles that view a portion of your original display 
window using UIS$SET_CLIP. These rectangles are not display windows, but they 
can be used to partition your virtual display into discrete areas. They create an 
environment within your virtual display that can be visited whenever you reference 
the appropriate attribute block that contains a modified clipping rectangle attribute. 
Note that the clipping rectangle merely restricts drawing to an area. It does not 
change mapping between the virtual display and the display window. 

11.2.3.2 Program Development 
Programming Objective 

To construct three clipping rectangles. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport with a title. 

3. Choose a font and modify the font attribute. 

4. Specify a clipping rectangle and modify the clipping attribute. 

5. Draw a line of text using the modified font attribute with clipping disabled. 

6. Draw a line of text using the modified font attribute with clipping enabled. 



Graphics and Windowing Attributes 11-15 

Figure 11-5 Vertical Bar Graph 

--~~---------------------------------------------------------

GRAPH 
- -=------==--=----=-=-~---==-~-===-.=:::::=::==:::===============~-

(in millions) 

175 

150 

125 

100 

75 

50 

25 ------
1910 

---- -- -- -- -- ------
1920 1930 

U.S. ADULT 

-------- -- -- -- -- --------- -- -- - -- - -- - -- -- -- -- -- -- -- ---
1940 1950 1960 1970 1980 

POPULATION VS. CAR OWNERSHIP 

ZK-4553-85 



11-16 Graphics and Windowing Attributes 

7. Repeat steps 3 through 6 two more times. 

Logical names have been defined for font file names. 

PROGRAM CLIP 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,45.0,45.0,15.0,5.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','CLIPPING') 

CALL UIS$SET_FONT(VD_ID,O,l,'MY_FONT_5') .. 
CALL UIS$SET_CLIP(VD_ID,l,5,l.0,l.0,10.0,40.0) .. 
CALL UIS$TEXT(VD_ID,l,'Still waters run deep',O.O,40.0) 
CALL UIS$NEW_TEXT_LINE(VD_ID,l) 
CALL UIS$TEXT(VD_ID,5,'Still waters run deep') 

CALL UIS$SET_FONT(VD_ID,O,2,'MY_FONT_6') tt 
CALL UIS$NEW_TEXT_LINE(VD_ID,2) 
CALL UIS$SET_CLIP(VD_ID,2,6,15.0,15.0,35.0,40.0) .. 
CALL UIS$TEXT(VD_ID,2,'The sleepy fox has seldom feathered breakfasts') 
CALL UIS$NEW_TEXT_LINE(VD_ID,2) 
CALL UIS$TEXT(VD_ID,6,'The sleepy fox has seldom feathered breakfasts') 

CALL UIS$SET_FONT(VD_ID,O,3,'MY_FONT_l0') ca 
CALL UIS$NEW_TEXT_LINE(VD_ID,3) 
CALL UIS$SET_CLIP(VD_ID,3,7,7.0,5.0,30.0,40.0) Gt 
CALL UIS$TEXT(VD_ID,3,'When the wind is west, the fish bite best') 
CALL UIS$NEW_TEXT_LINE(VD_ID,3) 
CALL UIS$TEXT(VD_ID,7,'When the wind is west, the fish bite best') 

PAUSE 

END 

Three fonts .. tt ca are used to illustrate clipping rectangles. The call to UIS$SET_ 
CLIP modifies the attribute block that controls clipping rectangle size. Each call to 
UIS$SET_CLIP .... Gt specifies a different clipping rectangle size. Although, only 
one display viewport has been specified in this program, UIS$SET_CLIP creates 
many compartments within the display window. 



Graphics and Windowing Attributes 11-17 

11.2.3.3 Calling UIS$SET _CLIP 

Your workstation screen would display the graphic objects shown in Figure 11-6. 

Figure 11-6 Clipping rectangles 

clipping 

Still waters run deep 
;till 
e sleep! fox has seldom feathered breakfasts 

.dom feathered breakfasts 
When tbe wind is west~ the fish bite best 

wind is west~ the fish t 

ZK-4554-85 

As you can see, UIS$SET_CLIP has altered the display window of the last three 
lines. Only portions of each lines are now visible. 





Chapter 12 

Inquiry Routines 

12.1 Overview 

Inquiry routines return program-specific information to the application; in this way, 
they behave like functions. However, unlike functions which return a single value 
through a return variable, certain UIS inquiry routines return data in two or more 
parameters in the argument list. This data can range from current attribute settings 
to current state of the pointer buttons. Your application program can use this data to 
establish context during program execution, to check for true or false conditions, or 
to verify that requested operation has been performed. 

12.2 Inquiry Routines-How to Use Them 

Many common graphics application program rely on program-specific data such as 
the position of point~r devices or the font size and so forth. Inquiry routines return 
such data to the program. The data can be used as input to the application as you 
see fit. Such routines are more properly termed functions when used with high-level 
programming languages. 

12.2.1 Using Inquiry Routines 

Generally, UIS routines in the form UIS$GET-,<xxx return information to the 
application program. Some of these routines behave like functions and return 
a single value to the program, while others return more than one value in the 
argument list. In any case, these routines obtain data about text and font size, 
windows, keyboard attributes, pointer position, and attribute settings. Such data can 
be used as input to subsequent routines. 



12-2 Inquiry Routines 

12.2.1.1 Programming Options 
Your application program can request the following types of application-specific 
information: 

• Color information 

• Display list information 

• Graphics and text attributes 

• Keyboard and pointer characteristics 

• Windowing information 

The inquiry routines are grouped functionally in Table 12-1. 

Table 12-1 Inquiry Routines 

Inquiry 

UIS$GET_BACKGROUND_INDEX 

UIS$GET_COLOR 

UIS$GET_COLORS 

UIS$GET_HW_COLOR_INFO 

UIS$GET_INTENSITIES 

UIS$GET_INTENSITY 

UIS$GET_ VCM_ID 

UIS$GET_ WRITING _INDEX 

UIS$GET_WRITING_MODE 

UIS$GET_WS_COLOR 

UIS$GET_WS_INTENSITY 

Color Conversion2 

UIS$HLS_TO_RGB 

UIS$HSV_ TO_RGB 

UIS$RGB_TO_HLS 

UIS$RGB_ TO_HSV 

Information Returned 

Background color index 

Single RGB color value in a color map entry 

RGB color values 

Hardware color map characteristics 

Intensity values in virtual color map 

Single intensity value in a virtual color map entry 

Virtual color map identifier 

Writing color index 

Writing mode 

Workstation standard color 

Workstation standard color intensity 

Converts HLS values to RGB color values 

Converts HSV values to RGB color values 

Converts RGB values to HLS color values 

Converts RGB values to HSV color values 

lSee Chapter 16 for more information about color and intensity inquiry routines. 

2See Chapter 16 for more information about color conversion routines. 



Inquiry Routines 12-3 

Table 12-1 (Cont.) Inquiry Routines 

Inquiry 

Display List 

UIS$FIND_PRIMITIVE 

UIS$FIND_SEGMENT 

UIS$GET_CURRENT_OBJECT 

UIS$GET-NEXT_OBJECT 

UIS$GET_OBJECT-A TTRIBUTES 

UIS$GET_PARENT_SEGMENT 

UIS$GETJREVIOUS_OBJECT 

UIS$GET_ROOT_SEGMENT 

Graphics 

UIS$GET-ARC_ TYPE 

UIS$GET_FILL _P ATTERN 

UIS$GET_LINE_STYLE 

UIS$GET_LINE_ WIDTH 

Keyboard and Pointer 

UIS$GET-ABS_POINTER_POS 

UIS$GET_BUTTONS 

UIS$GET_KB-A TTRIBUTES 

UIS$GET_POINTER_POSITION 

UIS$GET_ TB_INFO 

UIS$GET_ TB_POSITION 

UIS$TEST-KB 

Text 

UIS$GET-ALIGNEDJOSITION 

UIS$GET_CHAR_ROT 

UIS$GET_CHAR_SIZE 

Information Returned 

Identifier of the next primitive in the specified 
rectangle 

Segment identifier of the next segment that contains 
objects in a specified rectangle 

Identifier of last object drawn in virtual display 

Identifier of next object 

Object type 

Parent segment identifier 

Identifier of the previous object 

Root segment identifier 

Arc type used to close arc 

Fill pattern index and status 

Line style vector 

Line width in pixels or as a world coordinate x
coordinate width 

Absolute position of the pointer 

State of the pointer device buttons 

Keyboard characteristics 

Position of pointer in world coordinates 

Returns the characteristics of the tablet 

Position on tablet in centimeters 

Successful or unsuccessful connection between virtual 
and physical keyboard 

World coordinates along the x-height of the current 
position of the next character 

Angle of character rotation in degrees 

If character scaling is enabled and the scaling factors 
used 



12-4 Inquiry Routines 

Table 12-1 (Cont.) Inquiry Routines 

Inquiry 

Text 

UIS$GET_CHAR_SLANT 

UIS$GET_CHAR_SPACING 

UIS$GET_FONT 

UIS$GET_FONT-A TTRIBUTES 

UIS$GET_FONT_SIZE 

UIS$GET_LEFT_MARGIN 

UIS$GET_POSITION 

UIS$GET_ TEXT_FORMATTING 

UIS$GET_ TEXT_MARGINS 

UIS$GET_ TEXT_P ATH 

UIS$GET_ TEXT_SLOPE 

UIS$MEASURE_TEXT 

Windowing 

UIS$GET_CLIP 

UIS$GET_DISPLAY_SIZE 

UIS$GET_ VIEWPORT_ICON 

UIS$GET_ VIEWPORT_POSITION 

UIS$GET_ VIEWPORT_SIZE 

UIS$GET_ VISIBILITY 

UIS$GET_ WINDOW-A TTRIBUTES 

UIS$GET_ WINDOW_SIZE 

Information Returned 

Angle of character slant in degrees 

Character and line spacing factor 

Font name 

All font character characteristics 

Font size in centimeters 

World coordinate of left margin 

World coordinates of text baseline 

Formatting mode 

Text margin settings for a line of text 

Direction of text drawing 

Angle of the text baseline in degrees 

Proportions of text in world coordinates 

Clipping rectangle 

Display screen dimensions in centimeters 

Whether or not the icon is occluded 

Absolute position of display viewport on display 
screen 

Dimensions of the display viewport in centimeters 

Whether or not viewport is occluded 

Window and viewport attributes 

Dimensions of the display window in world 
coordinates 



12.2.1.2 Program Development I 
Programming Objective 

Inquiry Routines 12-5 

To return font and viewport information in order to center text. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport with a title. 

3. Obtain the font size for a particular character string, viewport size, and display 
screen size. 

4. Choose a font and modify the font attribute block. 

5. Draw a line of centered text in the viewport using the modified font attribute and 
the information from the inquiry routines. 

6. Print the inquiry information in the terminal emulation window. 

7. Repeat steps 3 through 6. 

The font file names used in this program are logical names. 

PROGRAM CENTER 
IMPLICIT INTEGER(a-z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
REAL F_WIDTH,F_HEIGHT,D_WIDTH,D_HEIGHT 
REAL V_WIDTH , V_HEIGHT 

VD_ID1=UIS$CREATE_DISPLAY(1.0, 1.0,15.0,2.0,15.0,2.0) 
WD_ID1=UIS$CREATE_WINDOW(VD_ID1,'SYS$WORKSTATION','CENTERED TEXT') 

CALL UIS$GET_FONT_SIZE('MY_FONT_7','Time has wings', 
2 F_WIDTH,F_HEIGHT) t» 
CALL UIS$GET_DISPLAY_SIZE('SYS$WORKSTATION',D_WIDTH,D_HEIGHT) ~ 
CALL UIS$GET_VIEWPORT_SIZE(WD_ID1,V_WIDTH,V_HEIGHT) ~ 

CALL UIS$SET_FONT(VD_ID1,O,7,'MY_FONT_7') G) 
CALL UIS$TEXT(VD_ID1,7,'Time has wings', 
2 (V_WIDTH-F_WIDTH)/2, 
2 V_HEIGHT) 0 

PAUSE 

PRINT 50 
50 FORMAT(T10, 'FIRST LINE',T39, 'WIDTH',T51,'HEIGHT') 

PRINT 75 
75 FORMAT(T2,'-----------------------------------------------------', 

2 '------') 



12-6 Inquiry Routines 

.PRINT 100. F_WIDTH. F_HEIGHT 
100 FORMAT(T2.'The dimensions of the font are:'. 

2 T39.f5.2.T46.'cm.'.T51.f5.2,T58,'cm.') 

PRINT 150.D_WIDTH,D_HEIGHT 
150 FORMAT(T2,'The dimensions of the display are:'. 

2 T39.f6.2,T46.'cm.'.T51,f6.2,T58,'cm.') 

PRINT 200,V_WIDTH.V_HEIGHT 
200 FORMAT(T2.'The dimensions of the viewport are:'. 

2 T39.f6.2.T46.'cm.'.T51.f6.2.T58,'cm.') 

CALL UIS$SET_FONT(VD_ID1.7.8.'MY_FONT_5') ct 
CALL UIS$MEASURE_TEXT(VD_ID1.8.'four seasons'. 
2 F_WIDTH,F_HEIGHT) 
CALL UIS$NEW_TEXT_LINE(VD_ID1.8) 
CALL UIS$TEXT(VD_ID1.8.'four seasons'. 
2 (V_WIDTH-F_WIDTH)/2.(V_HEIGHT-F_HEIGHT» tt 

TYPE *,' , 

PRINT 550 
550 FORMAT(Tl0.'SECOND LINE'.T39,'WIDTH'.T51.'HEIGHT') 

PRINT 575 
575 FORMAT(T2,'-----------------------------------------------------'. 

2 '------') 

PRINT 610, F_WIDTH. F_HEIGHT 
610 FORMAT(T2.'THE DIMENSIONS OF THE FONT ARE:'. 

2 T39.f5.2,T46,'cm.',T51,f5.2.T58.'cm.') 

PRINT 700.D_WIDTH.D_HEIGHT 
700 FORMAT(T2,'The dimensions of the display are:'. 

2 T39.f6.2.T46,'cm.'.T51.f6.2,T58,'cm.') 

PRINT 800.V_WIDTH.V_HEIGHT 
800 FORMAT(T2.'The dimensions of the viewport are:', 

2 T39.f6.2,T46,'cm.',T51,f6.2,T58, 'cm.') 

PAUSE 
END 

The three inquiry functions UIS$GETJONT_SIZE, UIS$GET_DISPLAY_SIZE, 
and UIS$GET_ VIEWPORT_SIZE are called 0 • •. Each function returns data to 
uniquely specified variables within its argument list. 

A logical name is defined e ct to represent the 31-character font file name. The 
first call to UIS$TEXT • places a text string in the window. The starting position for 
creating text is calculated from the expression in the argument list. VAX FORTRAN 
allow arithmetic expressions as arguments.tt If your application is written in a 
programming language other than VAX FORTRAN, please refer to the appropriate 
language reference manual. 



Inquiry Routines 12-7 

In order to center the text in this window, we subtracted the length of the text from 
the total width of the viewport and divided the result by 2. The distance of the text 
from the lower border of the window (the y coordinate) is equal to the value of the 
variable v_height, the height of the display viewport. 

12.2.1.3 Invoking UIS$GET _FONT_SIZE, UIS$GET _DISPLAY_SIZE, and 
UIS$GET _VIEWPORT_SIZE 

If you ran this program now, your workstation screen would display graphic objects 
as shown in Figure 12-1. 

Figure 12-1 Centering Text 

CENTERED TEXT 

TiMe has UJings 
For ive and for et 

$ for/lis center 
$ link center 
$ run center 
FORTRAN 'PAUSE 
$ continue 

FIRST LINE 

VT100 Tenninal 

WIDTH HEIGHT 
-----------------------------------------------------------
The dimensions of the font are: 6.46 em. 0.85 em. 
The dimensions of the display are: 36.90 em. 28.34 em. 
The dimensions of the viewport are: 14.99 em. 1. 97 em. 

SECOND LINE WIDTH HEIGHT 

The dimensions of the font are: 10.33 em. 0.49 em. 
The dimensions of the display are: 36.90 em. 28.34 em. 
The dimensions of the viewport are: 14.99 em. 1. 97 em. 
FORTRAN PAUSE 
$ 

ZK-4555-85 



12-8 Inquiry Routines 

Note that output from the FORTRAN PRINT or TYPE statement is not displayed in 
the window we have created. The TYPE and PRINT statements are equivalent to 
the logical names FOR$TYPE and FOR$PRINT which translate to the logical name 
SYS$OUTPUT. Only UIS$TEXT can write text to a virtual display. 

12.2.1.4 Program Development II 
Programming Objective 

To construct a pie graph illustrating the operating budget of a small New England 
town. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport with a title. 

3. Choose a font and modify the font attribute. 

4. Print the title of the graph using the modified font attribute. 

5. Obtain font information. 

6. Modify the arc type attribute. 

7. Choose a fill pattern and modify the font attribute and the fill pattern attribute. 

8. Draw an arc using the modified fill pattern attribute. 

9. Draw part of the legend to appear below the pie graph. 

10. Obtain and print arc type and fill pattern information. 

11. Repeat steps 6 through 9. 

PROGRAM PIE_GRAPH 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
CHARACTER*32 BUFFERDESC 
LOGICAL*4 FILL_ENABLED 

VD_ID=UIS$CREATE_DISPLAY(-3.0,-3.0,25.0,25.0,15.0,15.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION' ,'PIE GRAPH') 

CALL UIS$SET_FONT(VD_ID,O,9, 'MY_FONT_10') 
CALL UIS$TEXT(VD_ID,9,'OPERATING BUDGET' ,6.0,24.0) 
CALL UIS$TEXT(VD_ID,9,'TOWN OF GREENWICH, MASS. ',4.0,22.0) 
CALL UIS$GET_FONT(VD_ID,9,BUFFERDESC,LENGTH) .. 

PRINT 10,BUFFERDESC 
10 FORMAT(T2,'THE FONT NAME IS' ,T20,A31) 49 



Inquiry Routines 12-9 

PRINT 11.LENGTH 
11 FORMAT(T2.'THE LENGTH OF THE FONT NAME IS '.T33.I3.T37.'CHARACTERS') 

15 

CALL UIS$SET_ARC_TYPE(VD_ID.O.l.UIS$C_ARC_PIE) ~ 
CALL UIS$SET_FONT(VD_ID.l.l.'UIS$FILL_PATTERNS') 
CALL UIS$SET_FILL_PATTERN(VD_ID.l.1.PATT$C_BRICK_DOWNDIAG) 
CALL UIS$CIRCLE(VD_ID.l.l0.0.l0.0.8.0.0.0.50.0) 
call uis$plot(vd_id.l.0.0.0.0.2.0.0.0.2.0.-1.0. 
2 0.0.-1.0.0.0.0.0) 
call uis$text(vd_id.0.'Fire'.3.0.0.0) 
ARC_TYPE=UIS$GET_ARC_TYPE(VD_ID.l) ~ 
FILL_ENABLED=UIS$GET_FILL_PATTERN(VD_ID.1.INDEX) ~ 

PRINT 15.ARC_TYPE 
FORMAT(T2.'THE ARC TYPE IS' .T25.I1) 

PRINT 20.FILL_ENABLED 
20 FORMAT(T2.'IS THE FILL PATTERN ENABLED?'.T32.L1) 

CALL UIS$SET_FONT(VD_ID.l.2.'UIS$FILL_PATTERNS') 
CALL UIS$SET_FILL_PATTERN(VD_ID.2.2.PATT$C_DOWNDIAG4_4) 
CALL UIS$CIRCLE(VD_ID.2.10.0.10.0.8.0.50.0.95.0) 
CALL UIS$PLOT(VD_ID.2.10.0.0.0.12.0.0.0.12.0.-1.0. 
2 10.0.-1.0.10.0.0.0) 
CALL UIS$TEXT(VD_ID.O. 'Sanitation'.14.0.0.0) 

CALL UIS$SET_FONT(VD_ID.2.3.'UIS$FILL_PATTERNS') 
CALL UIS$SET_FILL_PATTERN(VD_ID.3.3.PATT$C_HORIZ2_6) 
CALL UIS$CIRCLE(VD_ID.3.10.0.10.0.8.0.95.0.165.0) 
CALL UIS$PLOT(VD_ID.3.0.0.-2.0.2.0.-2.0.2.0.-3.0. 
2 0.0.-3.0.0.0.-2.0) 
CALL UIS$TEXT(VD_ID.O.'Police' .3.0.-2.0) 

CALL UIS$SET_FONT(VD_ID.3.4.'UIS$FILL_PATTERNS') 
CALL UIS$SET_FILL_PATTERN(VD_ID.4.4.PATT$C_GREY4_16D) 
CALL UIS$CIRCLE(VD_ID.4.10.0.10.0.8.0.165.0.360.0) 
CALL UIS$PLOT(VD_ID.4.10.0.-2.0.12.0.-2.0.12.0.-3.0. 
2 10.0.-3.0.10.0.-2.0) 
CALL UIS$TEXT(VD_ID.O. 'Schools'.14.0.-2.0) 

PAUSE 
END 

The program PIE_GRAPH returns information about the heading of the graph. A 
call to UIS$GETJONT 0 identifies the font and its length.. The font 
MYJONT_IO is a logical name for a 31-character font file name. 

Attribute block 1 contains the modified arc type attribute~. When a new section of 
the arc is drawn, it will have a pie arc type which enables fill pattern. 



12-10 Inquiry Routines 

Arc type information is returned in the variable arc_type O. 

A call to UIS$GETJILLJATTERN • tests whether fill patterns are enabled. Fill 
pattern information is returned in the variable fill_enabled Cit as a Boolean value. 

12.2.1.5 Invoking UIS$GET-ARC_TYPE, UIS$GET_FILL_PATTERN, and 
UIS$GET _FONT 

The program PIE_GRAPH draws a pie graph containing four fill patterns and 
requests and displays certain program-specific information as shown in Figure 12-2. 



Inquiry Routines 

Figure 12-2 Pie Graph 

PIE GRAPH 

OPERATING BUDGET 

TOWN OF GREENWICH# MASS. 

~ Fire Sanitation 

Police Schools 

VT100 Tenllinal 

$ for/lis pie_graph 
$ link pie_graph 
$ run pie_graph 
THE FONT NAME IS MY_FONT_10 
THE LENGTH OF THE FONT NAME IS 10 CHARACTERS 
THE ARC TYPE IS 1 
IS THE FILL PATTERN ENABLED? T 
FORTRAN PAUSE 
$ I 

ZK-4556-85 

12-11 





Chapter 13 

Display Lists and Segmentation 

13.1 Overview 

As you have seen so far, you can use your applications to construct different types 
of graphic objects. Programs containing code for complex graphic objects can pose a 
problem because of their sheer size. In any case, the increasing complexity of your 
displays will require that you understand display list concepts. This chapter discusses 
the following topics: 

• Creating and searching segments 

• Editing and walking the display list 

• Disabling display lists 

• Creating VIS metafiles 

• Attaching private data to graphic objects 

You can view creating complex objects as an opportunity to reduce the complexity of 
your graphic object and to modularize your coding through the use of segmentation. 

13.2 Display Lists 

VIS constructs a display list of encoded commands for graphics. These display lists 
remain resident in memory for use by VIS routines. Figure 13-1 shows the format of 
an entry in the display list. 



13-2 Display Lists and Segmentation 

Figure 13-1 Binary Encoded Instruction 

Opcode Length Arguments 

ZK-5436-86 

UIS signals an error if it encounters an invalid opcode. 

Whenever you call UIS routines to create graphic objects or modify attribute blocks, 
you have added an entry to a display list. Only one display list exists for each virtual 
display. 

A display list is a device-independent encoding of the exact contents of the virtual 
display. VIS maintains display lists for the following purposes: 

• Automatic management of panning, zooming, resizing, and duplication of display 
windows 

• High resolution printing of physical and virtual displays 

• Structuring and manipulation of graphic objects in the virtual display 

• Storing the contents of the virtual display in a buffer for later reexecution 

13.3 Segments 

A segment consists of calls to UIS graphics and text routines and any nested 
segments. Segments are created explicitly with a call to UIS$BEGIN_SEGMENT, 
and are terminated with a call to UIS$END_SEGMENT. A cOll\plex display list is a 
hierarchy of nested segments. 

Any segment or output (graphic and text) routine not contained in an explicitly 
created segment is part of a top-level root segment. 

The primary purpose of segmentation of graphics routines is to facilitate 
transformations-scaling, rotation, and translation. Segmentation also modularizes 
attributes. Complex graphic objects can be constructed in parts where each logical 
grouping of display list entries is contained within a segment. Such segments could 
be transformed or displayed individually and independently of the rest of the object. 
Changing attributes within a segment will not affect the attribute settings of a 
higher-level segment. 



Display Lists and Segmentation 13-3 

For example, a house, a barn, and landscape are constructed as three logical 
groupings, or subpictures of a complex display. Each subpicture is a segment of 
appropriate VIS routines. You could manipulate all three subpictures independently 
of each other. 

Figure 13-2 shows a tree diagram of a display list containing nested segments. The 
diagram should be read from left to right and downward whenever a segment is 
encountered until there are no more segments. Read each level to the right and 
move upward to the next level where you left off. 

Figure 13-2 Nested Segments 

Root 

I 
Level 0 Circle Segment 1 Plot 

Level 1 Plot Segment 2 Image 

Level 2 Circle Segment 3 Plot Circle 

Level 3 Plot Ellipse Plot Text Line 

ZK-5459-86 

13.3.1 Identifiers and Object Types 

There are many types of VIS identifiers-for example, virtual display identifier, 
virtual keyboard identifier, transformation identifier, and so on. Identifiers allow 
your application to reference and manipulate internal objects. Managing the display 
list involves ( 1 ) traversing the display list downward object by object, (2) searching 
a segment, and (3) traversing upward through the segment path. 



13-4 Display Lists and Segmentation 

Segments 

Each segment has a unique identifier returned by UIS$BEGIN_SEGMENT. If no 
segments were explicitly declared using UIS$BEGIN_SEGMENT, then the root 
segment has a unique identifier that can be used to manipulate the display list. 

Objects 

Every object in the virtual display has an object identifier. However, not all routines 
return identifier explicitly. Object and segment identifiers are useful in walking and 
editing the display list. They are used as reference points within complex display 
lists. 

The identifier may not always be part of the calling sequence and sometimes must 
be returned using another UIS routine. For example, none of the graphics and text 
routines return identifiers explicitly. You can obtain the identifier using one of the 
routines listed in the table. The following table lists identifiers and the UIS routines 
that return them. 

Graphic Object Identifier Routine 

Segment seg.-id UIS$BEGIN _SEGMENT} 

Root segment root.-id UIS$GET_ROOT_SEGMENT 

Parent segment parent.-id UIS$GET_P ARENT_SEGMENT 

Graphic objects prev.-id UIS$GET_PREVIOUS_OBJECT 
current_id UIS$GET_CURRENT_OBJECT 
next.-id UIS$GET_NEXT_OBJECT 

1 UIS$BEGIN_SEGMENT returns the segment identifier in a return variable, seg_id. 

Object Types 

Even though you can manipulate the display list using segment and object identifiers, 
you still need to further identify those objects within a segment. You need to know 
exactly what type of object the display list entry is. The object type refers to the way 
UIS categorizes graphic objects and segments. There are six object types represented 
by the symbols listed here. 



Symbol 

UIS$C_OBJECT_SEGMENT 

UIS$C_OBJECT_PLOT 

UIS$C_OBJECT_ TEXT 

UIS$C_OBJECT_ELLIPSE 

UIS$C_OBJECT-IMAGE 

UIS$C_OBJECT_LINE 

Display Lists and Segmentation 13-5 

Graphic Object 

New segment 

Point, line, or polygon 

Text 

Ellipse or circle 

Raster image 

Unconnected lines 

UIS$GET_OBJECT-ATTRIBUTES returns object type information. 

13.3.2 Programming Options 

The behavior of display lists and segmentation can best be described separately. 
From the options available below, we will construct two programs. The first program 
illustrates disabling display lists, while- the second demonstrates walking the display 
list. 

Creating Segments 

You can create an unlimited number of segments explicitly with UIS$BEGIN_ 
SEGMENT and UIS$END_SEGMENT. UIS returns a unique identifier for each 
newly created segment that can be used by appropriate UIS routines to locate and 
edit segments. In addition, you can nest segments within segments. 

NOTE: If UIS$BEGIN _SEGMENT is called and no graphics and text routines 
are called before UIS$END_SEGMENT is called, the segment is deleted and the 
identifier returned is no longer valid. If you wish to create an empty segment, call 
UIS$BEGIN_SEGMENT followed by UIS$PRIVATE. This sequence places private 
data in the segment and UIS$END_SEGMENT will not consider the segment empty. 

Enabling and Disabling Display Lists 

Disabling a display list prevents new additions from being added to the list. Display 
lists are enabled and disabled explicitly with UIS$ENABLE_DISPLAY_LIST and 
UIS$DISABLE_DISPLAY_LIST. You can enable and disable a display list any 
number of times within a program. However, to see the results of disabling a display 
list, you must execute the display list. UIS$EXECUTE can be used to execute the 
display list. The following routines may also cause the display list to be executed. 



13-6 Display Lists and Segmentation 

Routine Function 

UIS$CREATE_WINDOW 

UIS$ DELETE _OBJECT 1,5 

UIS$EXECUTE2,5 

UIS$MOVE_AREA 3,5 

UIS$MOVE_WINDOW4,5 

Creates a display window and viewport 

Deletes an object in the virtual display 

Executes the display list 

Moves a portion of the virtual display another part of the 
virtual display 

Redefines the display window coordinate space. 

1 UIS$DELETE_OBJECT executes the display list only when the object to be deleted occluded another 
object. 

2UIS$EXECUTE executes the entire display list, if buflen and bufaddr are not specified. 

3UIS$MOVE_AREA executes the display list only if the specified source and destination rectangles lie 
within a display window. 

4UIS$MOVE_WINDOW executes the display list only if the window size is changed. 

5This routine checks display list flags. 

The position of UIS$DISABLE_DISPLAY_LIST and UIS$ENABLE_DISPLAY_ 
LIST in your program is important. If the display list is disabled after the display 
list is executed, the viewport displays all the graphic objects drawn in the virtual 
display. If the display list is disabled before one of the routines listed above is 
called, the viewport displays none of the graphic objects created between calls to 
UIS$DISABLE_DISPLAY_LIST and UIS$ENABLE_DISPLAY_LIST. No binary 
instructions were added to the display list. 

Walking the Display List 

You can traverse, or walk the entire display list from top to bottom and from object 
to object using UIS$GET_ROOT_SEGMENT and UIS$GET_NEXT_OBJECT. 

Searching a Segment 

If the display list contains segments, you can search the contents of any segment in 
the display list with UIS$GET~EXT_OBJECT. 

Traversing the Segment Path 

Because the root segment is the ultimate parent segment, every nested segment has 
a parent segment. The root segment acts as the parent for all level-one segments. 
See Figure 13-2. A segment identifier identifies the beginning of each segment in 
a display list. The segment identifiers within a display list comprise its segment 
path. You can traverse the segment path from the innermost segment outward with 
UIS$GETJ ARENT_SEGMENT. 



Display Lists and Segmentation 13-7 

13.3.3 Program Development I 
Programming Objective 

To disable a display list. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport. 

3. Disable the display list. 

4. Draw some graphic objects in the virtual display. 

5. Reenable the display list. 

6. Draw some graphic objects in the virtual display. 

7. Create a second display window and viewport. 

PROGRAM LIST 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

VD_ID=UIS$CREATE_DISPLAY(-1.0,-1.0,50.0,50.0,10.0,10.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','MORE') «» 

c Disable the display list 

CALL UIS$DISABLE_DISPLAY_LIST(VD_ID) 49 
c Draw the graphic objects 

CALL UIS$CIRCLE(VD_ID,O, 15.0,15.0,5.0) 
CALL UIS$CIRCLE(VD_ID,O,5.0,5.0,5.0) 
CALL UIS$PLOT(VD_ID,O,27.0,17.0,35.0,17.0,35.0,24.0,27.0,24.0, 
2 27.0,17.0) 
CALL UIS$CIRCLE(VD_ID,O,35.0,35.0,8.0) 
CALL UIS$PLOT(VD_ID,O,5.0,30.0,15.0,30.0,10.0,40.0,5.0,30.0) 

PAUSE 

c Reenable the display list 

CALL UIS$ENABLE_DISPLAY_LIST(VD_ID) 4D 
c Draw circle and triangle 

CALL UIS$CIRCLE(VD_ID,O,33.0,35.0,8.0) Ct 
CALL UIS$PLOT(VD_ID,O,7.0,31.0,17.0,31.0,12.0,41.0,7.0,31.0) CD 

WD_ID1=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','LESS') CD 

PAUSE 
END 



13-8 Display Lists and Segmentation 

Initially, a display window and viewport labelled MORE are created O. The world 
coordinate range of the window defaults to that of the virtual display. 

The display list is disabled •. 

Five graphic objects are drawn in the virtual display-three circles, a triangle, and a 
square. Even though all five objects appear in the viewport MORE, no entries are 
added to the display list. 

After the PAUSE statement, the display list is reenabled • and a triangle and another 
circle are drawn e 0. 

Remember the first call to UIS$CREATE_WINDOW was executed before the display 
list was disabled. Therefore, objects drawn in the virtual display and within the 
display window are displayed in the viewport, but are not added to the display list. 

Finally, the second display window and viewport labelled LESS are created 0. The 
display list is executed and all objects except those included within the disable-enable 
request appear in the viewport LESS. 

13.3.3.1 Calling UIS$DISABLE_DISPLA Y _LIST and UIS$ENABLE_DISPLA Y _LIST 
When the program executes, the viewport MORE is displayed first as shown in 
Figure 13-3. 

Figure 13-3 Disabling a Display List 

o 
D 

ZK-4557-85 



Display Lists and Segm~ntation 13-9 

Type CONTINUE at the dollar sign prompt ($). Figure 13-4 shows both viewports 
MORE and LESS. Note that the second call to UIS$CREATE_WINDOW executes the 
display list. 

Figure 13-4 After Display List Execution 

o o 
13.3.3.2 Program Development II 
Programming Objective 

To traverse the entire display list and examine each object type. 

Programming Tasks 

1. Create a virtual display. 

2. Draw graphic objects in the virtual display. 

3. Print headings for the output in the emulation window. 

4. Obtain the identifier of the root segment. 

5. Walk downward through the display list. 

6. Examine each object type and place its identifier in one of five arrays. 

ZK-4558-85 



13-10 Display Lists and Segmentation 

Figure 13-5 Tree Diagram-Program WALK 

Root 

Level 0 I 
I I 

Ellipse Plot Plot Plot Text Text 

ZK-5464-86 

The program WALK draws objects in a virtual display and then identifies each object 
by walking the entire display list and examining the various object type values. 
The program also shows how you can collect and store object identifiers according 
to object type. If you intend to run program WALK, the subroutine DETERMINE 
should be compiled as a separate module and linked with WALK. 

PROGRAM WALK 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
COMMON NEXT_ID1,TYPE1 .. 

VD_ID1=UIS$CREATE_DISPLAY(0.O,O.O,40.0,40.0,20.0,20.0) 49 

C Draw objects in virtual display 

CALL UIS$CIRCLE(VD_ID1,O,15.0,15.0,6.0) 
CALL UIS$PLOT(VD_ID1,O,l.0,l.0,20.0,l.0,20.0,8.0,l.0,l.0) 
CALL UIS$PLOT(VD_ID1,O,20.0,20.0,40.0,20.0,30.0,35.0,20.0, 
2 20.0) 
CALL UIS$PLOT(VD_ID1,O,3.0,25.0,13.0,25.0,13.0,35.0, 
2 3.0,35.0,3.0,25.0) 
CALL UIS$TEXT(VD_ID1,O,'The footsteps of fortune are slippery', 
2 0.0,38.0) 
CALL UIS$NEW_TEXT_LINE(VD_ID1,O) 
CALL UIS$TEXT(VD_ID1,O,'Mirth without measure is madness') 

PRINT 10 
10 FORMAT(T2,'DISPLAY LIST ELEMENTS') 

PRINT 20 
20 FORMAT(T1,'------------------------------') 

PRINT 30 
30 FORMAT(T2,'IDENTIFIER',T17, 'OBJECT TYPE') 

ROOT_ID1=UIS$GET_ROOT_SEGMENT(VD_ID1) .. 
NEXT_ID1 = ROOT_ID1 

c Walk the display list 



Display Lists and Segmentation 13-11 

DO WHILE (NEXT_IDl .NE. 0) ~ 
TYPE1=UIS$GET_OBJECT_ATTRIBUTES(NEXT_ID1) ~ 
CALL DETERMINE ~ 
NEXT_ID1=UIS$GET_NEXT_OBJECT(NEXT_ID1) tt 
ENDDO (& 

WD_ID1=UIS$CREATE_WINDOW(VD_ID1. 'SYS$WORKSTATION') CD 

PAUSE 
END 

SUBROUTINE DETERMINE GD 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
INTEGER*4 SEG_ARRAY(6).PLOT_ARRAY(6).TEXT_ARRAY(6).ELLIP_ARRAY(6) ~ 
INTEGER*4 LINE(6).IMAGE(6) G9 
DATA H.I.J.K.L.M/l.l.l.l.l.l/ GD 
COMMON NEXT_ID1.TYPEl GD 

IF (TYPEl .EQ. UIS$C_OBJECT_SEGMENT) THEN ~ 
SEG_ARRAY(H)= NEXT_IDl 
PRINT 40.SEG_ARRAY(H).TYPEl 

40 FORMAT(T2.I6.T19.Il.T24.'SEGMENT') 

50 

H = H + 1 
ENDIF 

IF (TYPEl .EQ. UIS$C_OBJECT_PLOT) THEN 
PLOT_ARRAY(I) = NEXT_IDl 
PRINT 50.PLOT_ARRAY(I).TYPEl 
FORMAT(T2.I6.T19.Il.T24.'PLOT') 
I = I + 1 
ENDIF 

IF (TYPEl .EQ. UIS$C_OBJECT_TEXT) THEN 
TEXT_ARRAY(J) = NEXT_IDl 
PRINT 55.TEXT_ARRAY(J) .TYPEl 

55 FORMAT(T2.I6.T19.Il.T24.'TEXT') 

60 

J = J + 1 
ENDIF 

IF (TYPEl .EQ. UIS$C_OBJECT_ELLIPSE) THEN 
ELLIP_ARRAY(K) = NEXT_IDl 
PRINT 60.ELLIP_ARRAY(K).TYPEl 
FORMAT(T2.I6.T19.Il.T24.'ELLIPSE') 
K = K + 1 
ENDIF 



13-12 Display Lists and Segmentation 

IF (TYPEl .EQ. UIS$C_OBJECT_LINE) THEN GD 
LINE(L) = NEXT_IDl 
PRINT 70.TEXT_LINE(L).TYPEl 

70 FORMAT(T2.16.T19.Il.T24.'NEW TEXT LINE') 
L = L + 1 
ENDIF 

IF (TYPEl .EQ. UIS$C_OBJECT_IMAGE) THEN ~ 
lMAGE(M) = NEXT_IDl 
PRINT 80.IMAGE(M).TYPEl 

80 FORMAT(T2.16.T19.Il.T24. 'IMAGE') 
M = M + 1 
ENDIF 

RETURN 
END 

The variables next _idl and typel are used in both the main program and the 
subroutine DETERMINE. The COMMON statement ensures access to data stored 
in both locations by both the main program and the subroutine 0 •. 

A virtual display is created 8. As objects are drawn in the virtual display, display 
list entries in the form of encoded binary data identifying the particular objects are 
added to the display list. Only one display list is created for each virtual display. 

Because the entire display list is to be traversed, the root segment will be the starting 
point and its identifier must be returned 6). 

A DOWHILE loop e 0 implements traversing the display list through successive 
calls to UIS$GET~EXT_OBJECT 8. 

An object type for each display list entry is returned •. 

Within the DOWHILE loop the subroutine DETERMINE is called 0 4D which 
sorts each object identifier according to its object type. 4D 48 4D GD~. For 
more information about object type symbols such as UIS$C_OBJECT_PLOT, see 
UIS$GET_OBJECT-ATTRIBUTES. 

Five arrays for each object type represented in the display list are declared. «B. 
Each object identifier is stored in one of these arrays. All counter variables have 
been initialized to the value 1 41). 

A call to UIS$CREATE_WINDOW creates a display window and viewport and 
executes the contents of the display list in the virtual displayO. 



Display Lists and Segmentation 13-13 

13.3.3.3 Calling UIS$GET _NEXT_OBJECT, UIS$GET _OBJECT -ATTRIBUTES, 
and UIS$GET _ROOT _SEGMENT 

The program WALK walks the display list and identifies each object in the display 
list. Information about each object is returned in the terminal emulation window as 
shown in Figure 13-6. 

Figure 13-6 Display List Elements 

:$: run \ ... 'alk 
DISPLAY LIST ELEMENTS 

IDENTIFIER 
113992 
115328 
115575 
115822 
116069 
116:316 
116810 
117057 
FORTRAN PAUSE 

OBJECT TYPE 
UIS$C_OBJECT_SEGMENT 
UIS$C_OBJECT_ELLIPSE 
UIS$C_OBJECT_PLOT 
UIS$C_OBJECT_PLOT 
UIS$C_OBJECT_PLOT 
UIS$C_OBJECT_TEXT 
UIS$C_OBJECT_TEXT 
UIS$C_OBJECT_LINE 

ZK-5255-86 

The program WALK also creates a display window and viewport containing the 
objects in the virtual display. 



13-14 Display Lists and Segmentation 

Figure 13-7 Contents of the Display List 

The footsteps of fortune are slippery 
irth without measure is madness 

ZK·5259·86 



13.3.3.4 Program Development III 
Programming Objective 

Display Lists and Segmentation 13-15 

To create a display list with nested segment, traverse upward through the segment 
path, and then search downward through a specified segment. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport. 

3. Create five levels of nested segments. 

4. Print the headings of the output to appear in the emulation window. 

5. Beginning at the innermost nested segment, obtain and print the parent segment 
identifier using UIS$GETJ ARENT_SEGMENT. 

6. Print the headings of the output to appear in the emulation window. 

7. Choose a segment to search. 

8. Walk downward through the segment using UIS$GET-NEXT_OBJECT. 

9. Call the subroutine DETERMINE to examine and store the objects in arrays by 
object type. 

The following figure shows the structure of the display list in the program HOP. 



13-16 Display Lists and Segmentation 

Root 

I 
Level 0 Segment 1 

rl 
Level 1 Plot Segment 2 

I 
Level 2 Ellipse Segment 3 Plot Ellipse 

I 
Level 3 Ellipse Segment 4 Text 

rl 
Level 4 Text Segment 5 

I 
Level 5 Text Text 

ZK-5460-86 

If you intend to run program HOP I the subroutine DETERMINE from the preceding 
program WALK should be compiled as a separate module and linked with HOP. 

PROGRAM HOP 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
COMMON NEXT_ID1,TYPEl 

VD_ID2=UIS$CREATE_DISPLAY(-1.0,-1.0,40.0,40.0,15.0,15.0) 



Display Lists and Segmentation 13-17 

SEG_ID1=UIS$BEGIN_SEGMENT(VD_ID2) 
CALL UIS$PLOT(VD_ID2,0,0.0,12.0,5.0,12.0,7.5,17.0,10.0, 

2 12.0,15.0,12.0, 
2 12.5,7.5,15.0,0.0,7.5,5.0,0.0,0.0,2.5,7.5,0.0,12.0) 

SEG_ID2=UIS$BEGIN_SEGMENT(VD_ID2) ~ 
CALL UIS$CIRCLE(VD_ID2,0,7.5,8.0,8.0) 

SEG_ID3=UIS$BEGIN_SEGMENT(VD_ID2) 
CALL UIS$ELLIPSE(VD_ID2,0,25.0,8.0,5.0,8.0) 

SEG_ID4=UIS$BEGIN_SEGMENT(VD_ID2) 
CALL UIS$TEXT(VD_ID2,0,'MISERY LOVES COMPANY', 

2 17.0,24.0) 
SEG_ID5=UIS$BEGIN_SEGMENT(VD_ID2) 
CALL UIS$TEXT(VD_ID2,0,'ONE SLUMBER INVITES ANOTHER', 

2 1.0,39.0) 
CALL UIS$NEW_TEXT_LINE(VD_ID2,0) 
CALL UIS$TEXT(VD_ID2,0,'LIVING WELL IS THE BEST REVENGE') 
CALL UIS$END_SEGMENT(VD_ID2) 

CALL UIS$END_SEGMENT(VD_ID2) 
CALL UIS$TEXT(VD_ID2,0,'SUCCESS MAKES A FOOL SEEM WISE', 

2 1.0,19.0) 
CALL UIS$END_SEGMENT(VD_ID2) 

CALL UIS$PLOT(VD_ID2,0,20.0,25.0,35.0,25.0,35.0,35.0,20.0,35.0, 
2 20.0,25.0) 
CALL UIS$CIRCLE(VD_ID2,0,10.0,28.0,8.0) 
CALL UIS$END_SEGMENT(VD_ID2) t9 
CALL UIS$END_SEGMENT(VD_ID2) 

C HOPPING UPWARD ALONG THE SEGMENT PATH 
PRINT 45 

45 FORMAT(T2,'SEGMENT PATH') 
PRINT 55 

55 FORMAT(T1,'------------------------------') 
PRINT 56 

56 FORMAT(T2,'IDENTIFIER',T17,'LEVEL') 

60 

SEG_ID=SEG_ID5 
1=5 
PRINT 60,SEG_ID5,I 

DO 1=4,1,-1 
PARENT_ID=UIS$GET_PARENT_SEGMENT(SEG_ID) 
SEG_ID=PARENT_ID 
PRINT 60,PARENT_ID,I 
FORMAT(T2,I10,T18,I2) 
ENDDO 



13-18 Display Lists and Segmentation 

C SEARCHING DOWNWARD THROUGH A NESTED SEGMENT 
PRINT 65 

65 FORMAT(T2,'SEGMENT') 
PRINT 70 

70 FORMAT(Tl, '---------------------,--------') 
PRINT 75 

75 FORMAT(T2,'IDENTIFIER',T17,'OBJECT TYPE') 

NEXT_ID1=UIS$GET_NEXT_OBJECT(SEG_ID2) ~ 

DO WHILE(NEXT_IDl .NE. 0) CD 
TYPE1=UIS$GET_OBJECT_ATTRIBUTES(NEXT_ID1) 
CALL DETERMINE ~ 
NEXT_ID1=UIS$GET_NEXT_OBJECT(NEXT_ID1,UIS$M_DL_SAME_SEGMENT) ~ 
ENDDO •. 

WD_ID2=UIS$CREATE_WINDOW(VD_ID2,'SYS$WORKSTATION') 

PAUSE 

END 

The program HOP contains five levels of nesting excluding the root segment. In 
order to walk the segment path, you must start at the innermost segment 8. The 
counter I is initialized to 5 e indicating the level of nesting from which you are 
starting. 

A DO loop is declared 0 • containing the call to UIS$GETJ ARENT_SEGMENT 
0. The se~d argument in UIS$GETJARENT_SEGMENT is initialized with the 
segment identifier of segment 5 O. The counter is decremented as each new parent 
segment identifier is returned and, in turn, is used as the se~d argument in the 
next iteration of the loop. 

The second purpose of the program is to search a specified segment. Segments 
are searched using both parameters in UIS$GET-NEXT_OBJECT. To start at the 
beginning of a segment, initialize the se~d to the value of the segment identifier 
you wish to search~. By specifying the segment identifier of the segment you wish 
to search, UIS$GET-NEXT_OBJECT returns the identifier of the next object in the 
segment. In this example, the second segment is chosen O. 

Another DO loop is established CD • containing a call to the subroutine 
DETERMINE. ~ Note that UIS$GET-NEXT_OBJECT • now specifies both 
arguments. The search will be performed on the specified segment only. If the 
flag UIS$M_DL_SAME_SEGMENT were not specified, the search would proceed 
down to the innermost nested segment. 



Display Lists and Segmentation 13-19 

13.3.3.5 Calling UIS$GET _PARENT_SEGMENT 
Segment identifiers are returned beginning with the innermost nested segment as 
shown in Figure 13-8. 

Figure 13-8 Traversing Upward Along the Segment Path 

$ RUN HOP 
S EGf'.'lEN T PA TH 

IDENTIFIER LEVEL 
122664 5 
121576 4 
120488 3 
119400 2 
115592 1 

ZK-5295-86 

Object identifiers within the second-level segment are displayed as shown in 
Figure 13-9. 

Figure 13-9 Searching Downward Through a Segment 

SEGMENT 

IDENTIFIER 
117175 
120488 
118904 
119151 

FORTRAN PAUSE 
$ 

OBJ ECT TYPE 
UIS~C_OBJECT_ELLIPSE 

UIS$C_OBJECT_SEGMENT 
UIS$C_OBJECT_PLOT 
UIS$C_OBJECT_ELLIPSE 

All the objects drawn in the virtual display are shown in Figure 13-10. 

ZK-5296-86 



13-20 Display Lists and Segmentation 

Figure 13-10 Contents of the Display List Drawn in the Virtual Display 

ONE SLUMBER INVITES ANOTHER 
LIVING WELL IS THE BEST REVENGE 

~ 
( 1 
\ / 
\~ / f'.1IS ERY LOVES CO~·1PANY 

,/./ 

-------------".... 
SUCCESS MAKES A FOOL S E E~-1 ll.lIS E 

/A~ 

V V 
~ 

... .....---....... 
",' " 

;/ \ / 
l I 

I \ 

( ! 
\ J 
~ 

ZK 5260 86 



Display Lists and Segmentation 13-21 

13.4 More About Segments 

When you use segments in your application programs, you are creating complex 
object that can be edited or searched on a segment-by-segment basis. Segments also 
exhibit special behavior when attribute blocks are encountered. 

13.4.1 Programming Options 

Other than simply creating segments, you can manipulate them as well. 

Editing Display Lists 

You can edit a display list that contains no explicitly defined segments as well as 
display lists that contain explicitly specified segments. 

NOTE: You must use UIS$SET-INSERTIONJOSITION to insert an object 
between existing objects in a display list. 

The following routines also allow you to edit the display list. 

Routine 

UIS$COPY_OBJECT 

UIS$DELETE _OBJECT 

UIS$INSERT_OBJECT 

UIS$TRANSFORM_OBJECT 

Function 

Copies an object to another part of the display list 

Deletes an object from the display list 

Moves an object to another part of the display list 

Scales, rotates, and translates an object 

Modifying Attribute Blocks Within Segments 

As mentioned earlier, a segment consists of calls to graphics and text output routines, 
attribute routines, and nested segments. 

When the same attribute block is modified at two different levels of nesting, 
modifications to the innermost attribute block take precedence over any previous 
modifications in outer levels. Such attribute block modifications will influence 
graphics and text output (where applicable) at deeper levels of nesting. 

When you leave a lower-level nested segment, the original attributes of the parent 
segment are restored. Therefore, you can change attributes within a segment and not 
worry about affecting a higher-level segment. 



13-22 Display Lists and Segmentation 

13.4.2 Program Development I 
Programming Objective 

To edit a display list. 

Programming Tasks 

1. Create a virtual display. 

2. Create a series of nested segments containing calls to draw graphic objects. 

3. Create a display window and viewport. 

4. Delete an object in segment 1. 

5. Set the editing pointer to the end of segment 1. 

6. Print the headings of the output to appear in the emulation window. 

7. Add a line drawing call to the end of segment 1. 

8. Verify the contents of segment 1. 

9. Position the pointer to the end of segment 2. 

10. Add text to segment 2. 

11. Verify the contents of segment 2. 

Inserting an object in a specific location in the display list may not affect how the 
object is drawn but rather the order in which objects are drawn in the virtual display. 
The following diagram shows the structure of the display list before display editing 
in the program EDIT_LIST. 



Display Lists and Segmentation 13-23 

Root 

Level 0 Segment 1 

Level 1 Ellipse Plot Segment 2 Text 

I 
Level 2 Ellipse Plot 

ZK-5463-86 

If you intend to run program EDIT_LIST, the subroutine DETERMINE from the 
preceding program WALK should be compiled as a separate module and linked with 
EDIT_LIST. 

PROGRAM EDIT_LIST 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
COMMON NEXT_ID1.TYPEl 

C Create a virtual display 
VD_ID=UIS$CREATE_DISPLAY(1.0.1.0.50.0.50.0.15.0.15.0) 



13-24 Display Lists and Segmentation 

c Create a segment 
SEG_ID1=UIS$BEGIN_SEGMENT(VD_ID) ~ 

CALL UIS$CIRCLE(VD_ID.0.8.0.35.0.7.0) 49 
CURR_ID1=UIS$GET_CURRENT_OBJECT(VD_ID) 4D 
CALL UIS$PLOT(VD_ID.0.17.0.27.0.32.0.27.0.24.5.42.0.17.0.27.0) 
CURR_ID2=UIS$GET_CURRENT_OBJECT(VD_ID) 

c Create another segment 
SEG_ID2=UIS$BEGIN_SEGMENT(VD_ID) ~ 
CALL UIS$ELLIPSE(VD_ID.0.8.0.15.0.5.0.9.0) 
CURR_ID4=UIS$GET_CURRENT_OBJECT(VD_ID) 
CALL UIS$PLOT(VD_ID.0.15.0.8.0.30.0.8.0. 

2 35.0.22.0.20.0.22.0.15.0.8.0) 
CURR_ID5=UIS$GET_CURRENT_OBJECT(VD_ID) 
CALL UIS$END_SEGMENT(VD_ID) 

CALL UIS$TEXT(VD_ID.O.'The ox when weariest treads surest'. 
2 5.0.47.0) 

CURR_ID6=UIS$GET_CURRENT_OBJECT(VD_ID) 
CALL UIS$END_SEGMENT(VD_ID) 

WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION') 

PAUSE 
c Delete an object from segment 1 

CALL UIS$DELETE_OBJECT(CURR_ID1) 4D 

c Set the editing pointer at the end of segment 1 
CALL UIS$SET_INSERTION_POSITION(SEG_ID1.) ~ 

CALL UIS$PLOT(VD_ID.0.29.0.42.0.44.0.42.0.36.5.27.0.29.0.42.0) .. 

PRINT 20 
20 FORMAT(T2.'CONTENTS OF SEGMENT 1') 

PRINT 25 
25 FORMAT(T2.'IDENTIFIER' .T14.'OBJECT'.T22.'TYPE') 

PRINT 30 
30 FORMAT('----------------------------') 

c Verify the contents of segment 1 
NEXT_ID1=UIS$GET_NEXT_OBJECT(SEG_ID1) 

DO WHILE(NEXT_ID1 .NE. 0) 
TYPE1=UIS$GET_OBJECT_ATTRIBUTES(NEXT_ID1) 
CALL DETERMINE G 
NEXT_ID1=UIS$GET_NEXT_OBJECT(NEXT_ID1.UIS$M_DL_SAME_SEGMENT) 
ENDDO 

PAUSE 

c Set the editing pOinter at the end of segment 2 
CALL UIS$SET_INSERTION_POSITION(SEG_ID2) CD 
CALL UIS$TEXT(VD_ID.O. 'Old foxes want no tutors'. 
2 5.0.45.0) (D 



Display Lists and Segmentation 

PRINT 40 
40 FORMAT(T2,'CONTENTS OF SEGMENT 2') 

PRINT 45 
45 FORMAT(T2,'IDENTIFIER',T14,'OBJECT',T22,'TYPE') 

PRINT 50 
50 FORMAT('----------------------------') 

c Verify the contents of segment 2 

NEXT_ID1=UIS$GET_NEXT_OBJECT(SEG_ID2) 

DO WHILE(NEXT_IDl .NE. 0) 
TYPE1=UIS$GET_OBJECT_ATTRIBUTES(NEXT_ID1) 
CALL DETERMINE ~ 
NEXT_ID1=UIS$GET_NEXT_OBJECT(NEXT_ID1,UIS$M_DL_SAME_SEGMENT) 
ENDDO 

PAUSE 
END 

13-25 

Two segments are created 0 e. The second segment is nested within the first. 

Successive calls to UIS$GET_CURRENT_OBJECT • retrieve an object identifier for 
each object in both segments. This is useful if you need to insert an object in the 
display list later. 

A call to UIS$DELETE_OBJECT CD deletes a circle. from segment 1 in the display 
list. 

The editing pointer in the display list is set at the end of segment 1 using UIS$SET_ 
INSERTION-POSITION 0. A call to UIS$PLOT is added to segment 1 •. 

A call to the subroutine DETERMINE • verifies the addition in the display list. 

The editing pointer in the display list is set at the end of segment 2 using UIS$SET_ 
INSERTION -POSITION CD. The binary instruction resulting from a call to 
UIS$TEXT is added to segment 2 ~. 

A call to the subroutine DETERMINE ~ verifies the changes in the display list. 

The following figure shows the structure of the display list after display editing. 



13-26 Display Lists and Segmentation 

Root 

Level 0 Segment 1 

I 
Level 1 Plot Segment 2 Text Plot 

Level 2 Ellipse Plot Text -J 
New Objects 

ZK-5458-86 

13.4.2.1 Calling UIS$SET _INSERTION_POSITION 
The original objects, text, a circle, an ellipse, a triangle, and a parallelogram are 
shown in Figure 13-11. 



Display Lists and Segmentation 13-27 

Figure 13-11 Before Display List Modification 

The ox when weariest treads surest 

/ 

ZK 526186 



13-28 Display Lists and Segmentation 

A triangle and a line of text are added to the virtual display. The circle is deleted 
from the virtual display as shown in Figure 13-12. 

Figure 13-12 Executing the Modified Display List 

The ox when weariest treads surest 
Old foxes want no tutors 

ZK·5263·86 



Display Lists and Segmentation 13-29 

The contents of the segment are written to the emulation window as shown in 
Figure 13-13. 

Figure 13-13 Verifying the Contents of the Display List 

:$: run edit_list 
FORTRAN PAUSE 
:$: cClnt 
CONTENTS OF SEGMENT 1 
IDENTIFIER OBJECT TYPE 

116663 
118888 
117404 
117651 
FOR TF=~AN PAUS E 
:$: cant 

UIS$C_OBJECT_PLOT 
UIS$C_OBJECT_SEGMENT 
UIS$C_OBJECT_TEXT 
UIS$C_OBJECT_PLOT 

CONTENTS OF SEGMENT 2 
IDENTIFIER OBJECT TYPE 

116910 
117157 
116416 
FO~~ TRAN PAUS E 
$ 

13.4.2.2 Program Development II 
Programming Objective 

UIS$C_OBJECT_ELLIPSE 
UIS$C_OBJECT_PLOT 
UIS$C_OBJECT_TEXT 

To draw text at different levels of segmentation. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport. 

3. Create three levels of nested segments. 

4. Modify the font character spacing attributes for each level of nesting. 

5. Draw text at each level of nesting. 

ZK-5262-86 



13-30 Display Lists and Segmentation 

Font names specified in the program are logical names. 

PROGRAM SEGMENT 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

VD_ID=UIS$CREATE_DISPLAY(0.0.0.0.30.0.30.0.21.0.5.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION') 

CALL UIS$BEGIN_SEGMENT(VD_ID) t» 
CALL UIS$SET_FONT(VD_ID.O.l. 'MY_FONT_6') 49 
CALL UIS$SET_CHAR_SPACING(VD_ID.1.1.0.0.1.0) ~ 
CALL UIS$TEXT(VD_ID.l.'The resolved mind has no cares' .0.0.30.0) 

CALL UIS$BEGIN_SEGMENT(VD_ID) CD 
CALL UIS$SET_FONT(VD_ID.l.l. 'MY_FONT_13') CD 
CALL UIS$NEW_TEXT_LINE(VD_ID.l) 
CALL UIS$TEXT(VD_ID.l.'The camel never sees its own hump') ~ 

CALL UIS$BEGIN_SEGMENT(VD_ID) C9 
CALL UIS$SET_FONT(VD_ID.1.1.'MY_FONT_7') C) 
CALL UIS$NEW_TEXT_LINE(VD_ID.l) 
CALL UIS$TEXT(VD_ID.l.'First things first') 

CALL UIS$END_SEGMENT(VD_ID) ~ 
PAUSE 

CALL UIS$SET_CHAR_SPACING(VD_ID.1.1.0.0.0.0) ~ 
CALL UIS$NEW_TEXT_LINE(VD_ID.l) 
CALL UIS$TEXT(VD_ID.l.'A new broom sweeps clean') ~ 

CALL UIS$END_SEGMENT(VD_ID) GD 

CALL UIS$NEW_TEXT_LINE(VD_ID.l.) 
CALL UIS$TEXT(VD_ID.l. 'No sun without a shadow') GD 
CALL UIS$END_SEGMENT(VD_ID) OD 

PAUSE 

END 

The first call to UIS$BEGIN_SEGMENT t» and the final call to UIS$END_ 
SEGMENT OD establish the limits of the first-level segment. Within this segment 
there are two calls to UIS$TEXT e GD. The first call to UIS$TEXT establishes the 
current position for all text output created at the first level. 

An attribute routine UIS$SETJONT is called 49 which modifies the font attribute. 
The font MYJONT_6 is now the current font for all text output in the first-level 
segment. Text created at the first level will be drawn using MYJONT_6. 



Display Lists and Segmentation 13-31 

The calls to UIS$BEGIN _SEGMENT and UIS$END_SEGMENT •• establish the 
limits of the second-level segment nested within the first-level segment. The first 
call to UIS$SETJONT 0 in the second-level segment references the same output 
attribute block number specified in the attribute routine call in the first-level segment 
e. The modifications to attribute block 1 at the second level take precedence over 
any previous modifications of attribute block 1 at outer levels. 

The second-level' segment further modifies the font attribute 0. The font MY_ 
FONT_13 is now the current font for all text output in this second-level segment. 
The first call to UIS$TEXT within the second-level segment. establishes the current 
position for text output drawn at the second level. Calls to UIS$TEXT within this 
segment reference the same attribute block 1. 

Once again, calls to UIS$BEGIN _SEGMENT and UIS$END_SEGMENT • ~ 
establish the limits of the third level of segmentation nested within the second level. 
The font MYJONT_7 is now the current font for all text output in this segment 0. 

The line spacing component of the character spacing attribute was modified twice 
• 4D. The first call to UIS$SET_CHAR_SPACING was made to increase the line 
spacing by a factor of 1. As the program executes, the second text drawing routine 
call in levels 1 and 2 4D • require room to avoid overstriking existing lines. 

13.4.2.3 Calling UIS$BEGIN_SEGMENT and UIS$END_SEGMENT 
As the program SEGMENT executes each instruction sequentially, a text string is 
drawn in the virtual display at the first, second, and third levels of segmentation as 
shown in Figure 13-14. Please note the font used in text creation. 

Figure 13-14 Text Output During Execution 

camel never sees its own hump 

irst things ~irst 

ZK-4559-85 

Text strings are then created in the reverse order of segmentation-second level and 
then first level. Please note the font used and the order of text string creation as 
shown in Figure 13-15 as compared to the statements in the source program. 



13-32 Display Lists and Segmentation 

Figure 13-15 Final Text Output 

e camel never sees its own hump 
new broom sweeps clean 

lrst thinss first 

ZK-4560-85 



Chapter 14 

Geometric and Attribute Transformations 

14.1 Overview 

Transformations alter the appearance of graphic objects and text. In Part I, 
viewing transformations and their possibly distorting effects on graphic objects 
were discussed. Already in Part II you have seen the effects of world coordinate 
transformations when you modify the world coordinate space and then redraw 
graphic objects in the new space. This chapter describes the following two types of 
transformations: 

• Two-dimensional geometric transformations 

• Attribute transformations 

14.2 Geometric Transformations 

A two-dimensional geometric transformation of a graphic object involves changing 
the graphic object's angular orientation or its shape within the virtual display. The 
coordinate system is not modified. Graphic objects are geometrically transformed 
using the following methods: scaling, translation, and rotation. 

14.2.1 Translating Graphic Objects 

Translating a graphic object involves moving the object to another part of the 
coordinate space without altering its physical orientation with respect to the x and 
y axes. For example, a side of a triangle that was originally parallel to the y axis 
remains parallel to that axis even if the object is moved to another quadrant in the 
coordinate space. 



14-2 Geometric and Attribute Transformations 

Figure 14-1 Translating a Graphic Object 

D 

ZK540486 



Geometric and Attribute Transformations 14-3 

14.2.2 Scaling Graphic Objects 

Typically, scaling involves stretching or shrinking a graphic object. Scaling a graphic 
object can occur in two ways: (1) simple scaling of the graphic object in the virtual 
display or (2) complex scaling. 

Simple Scaling of Graphic Objects 

Simple scaling of a graphic object involves executing a single transformation. The 
position of the newly scaled graphic object in the virtual display is always different 
from its original position with one exception. If the object's center point is at the 
origin, the object will not move when scaled. 



14-4 Geometric and Attribute Transformations 

Figure 14-2 Simple Scaling 

ZK540386 



Geometric and Attribute Transformations 14-5 

Complex Scaling of Graphic Objects 

Complex scaling of graphic objects ensures that the newly scaled object maintains 
its previous position in the virtual display. The center of the object is first translated 
to the origin of the coordinate system, scaled, and finally translated to its original 
position. 

Figure 14-3 Complex Scaling 

ZK540286 



14-6 Geometric and Attribute Transformations 

14.2.2.1 Uniformly Scaled Graphic Objects 
For example, a photographic enlargement of a snapshot to poster size renders an 
object whose physical dimensions are proportional to the snapshot. In such a case, 
the scaling factor of the width of the object, Sx, equals the scaling factor of the height 
of the object, Sy. 

Figure 14-4 Uniformly Scaling a Graphic Object 

/\ 
I \ 

ZK540'86 



Geometric and Attribute Transformations 14-7 

14.2.2.2 Differentially Scaled Graphic Objects 
Scaling need not be performed uniformly. For example, the height of an object may 
be increased while its width remains constant where Sx does not equal Sy. The object 
is differentially scaled as shown in Figure 14-5. 

Figure 14-5 Differentially Scaling a Graphic Object 

ZK540086 



14-8 Geometric and Attribute Transformations 

14.2.3 Rotating Graphic Objects 

Generally speaking, rotation changes an object's angular orientation in the virtual 
display. All rotations occur about the origin of the coordinate system. Positive 
rotation is a counterclockwise movement. 

Simple Rotation of Graphic Objects 

Simple rotation of graphic objects involves executing a single transformation-no 
translation. With simple rotation, the object appears to revolve about the origin. 
Figure 14-6 shows rectangle rotating about the origin. 



Geometric and Attribute Transformations 14-9 

Figure 14-6 Simple Rotation of a Graphic Object 

---- ----- -----~-- -- -- --- ---~J 
---------~---------~---

1111111111 

--------------

1111111111 

Complex Rotation of Graphic Objects 

Complex rotation can occur when the reference or pivotal point is the center 
of the object. Complex rotation of the graphic object is accomplished by first 

ZK5399-86 



14-10 Geometric and Attribute Transformations 

translating the object to the origin so that the origin and reference point share the 
same coordinate values-(O.O,O.O). The object is rotated and translated to its original 
position in the virtual display. Figure 14-7 illustrates complex rotation of a rectangle. 

14.2.4 Programming Options 

You can perform geometric transformations of two types. 

Two-Dimensional Geometric Transformation-COPY 

You may execute a geometric transformation where the graphic object is copied using 
UIS$COPY_OBJECT. The original object remains unchanged. 

Two-Dimensional Geometric Transformations-MOVE 

You may execute a geometric transformation where the graphic object is transformed 
in the virtual display using UIS$TRANSFORM_OBJECT. The original object is 
modified. 

14.2.5 Program Development I 
Programming Objective 

To rotate a graphic object in a positive counterclockwise 45 degrees about its center. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport. 

3. Create a graphic object and obtain its identifier. 

4. Declare and load a two-dimensional array with translation values. 

5. Execute translation. 

6. 'Load array with rotation values. 

7. Execute rotation. 

S. Load array with translation values. 

9. Execute the translation where the original object is erased and redraw the object 
in its original position in the coordinate system. 



Geometric and Attribute Transformations 14-11 

PROGRAM GEO_TRANSFORM_ROT 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
REAL*4 MATRIX(2,3) .. 

VD_ID=UIS$CREATE_DISPLAY(-20.0,-20.0,20.0,20.0,10.0,10.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') 

CALL UIS$PLOT(VD_ID,O,O.O,20.0,O.O,-20.0) 49 
CALL UIS$PLOT(VD_ID,O,-20.0,O.O,20.0,O.0) ~ 

CALL UIS$PLOT(VD_ID,O,5.0,5.0,15.0,5.0,15.0,10.0,5.0,10.0, 
2 5.0,5.0) 0 

CURRENT_ID=UIS$GET_CURRENT_OBJECT(VD_ID) CD 
OBJ_ID=CURRENT_ID 

PAUSE 

MATRIX(l,l)=1.0 CD 
MATRIX(2,l)=0.0 
MATRIX(l,2)=0.0 
MATRIX(2,2)=1.0 
MATRIX(l,3)=-10.0 
MATRIX(2,3)=-7.5 
CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX) .. 

PAUSE 

MATRIX(l,l)=COSD(45.0) 4D 
MATRIX(2,l)=-SIND(45.0) 
MATRIX(l,2)=SIND(45.0) 
MATRIX(2,2)=COSD(45.0) 
MATRIX(l,3)=0.0 
MATRIX(2,3)=0.0 
CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX) C) 

PAUSE 

MATRIX(l,l)=1.0 ~ 
MATRIX(2,l)=0.0 
MATRIX(l,2)=0.0 
MATRIX(2,2)=1.0 
MATRIX(l,3)=10.0 
MATRIX(2,3)=7.5 
CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX) ~ 

PAUSE 
END 

A two-dimensional array is declared O. 



14-12 Geometric and Attribute Transformations 

The x and y axes are drawn ••. 

A rectangle is drawn using UIS$PLOT e. Call UIS$GET_CURRENT_OBJECT to 
save its object identifier 0. The object identifier is used as an argument to the 
transformation routine. 

The rectangle will be rotated about its center. 

The VAX FORTRAN intrinsic functions SIND and COSD accept degrees as arguments 
C). 

The matrix is loaded with values three times 0 C) tD to translate, rotate the rectangle 
about its center, and then translate it to its original position in the virtual display. 

Each transformation is performed as the original object is erased and redrawn in its 
new orientation. The rectangle is redrawn with each call to UIS$TRANSFORM_ 
OBJECT •••. 

14.2.6 Calling UIS$TRANSFORMATION_OBJECT 

The program GEO_ TRANSFORM-ROT translates, rotates, and translates a rectangle 
using UIS$TRANSFORM_OBJECT. With each transformation, the rectangle's 
previous position in the virtual display is erased as shown in Figure 14-7. 

14.2.7 Program Development II 
Programming Objective 

To rotate a copy of the graphic object 45 degrees about its center and place the 
rotated copy in another quadrant. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and viewport. 

3. Declare and load a two-dimensional array with translation values. 

4. Execute the COPY operation and the translation. 

5. Load the array with rotation values. 

6. Execute rotation. 

7. Load array with translation values. 

8. Execute translation. 



Geometric and Attribute Transformations 14-13 

Figure 14-7 Complex Rotation of a Rectangle 

D 

ZK~86 



14-14 Geometric and Attribute Transformations 

PROGRAM COPY_OBJECT 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
REAL*4 MATRIX(2.3) 

VD_ID=UIS$CREATE_DISPLAY(-20.0.-20.0.20.0.20.0.10.0.10.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION') 

CALL UIS$PLOT(VD_ID.0.0.0.20.0.0.0.-20.0) 
CALL UIS$PLOT(VD_ID.0.-20.0.0.0.20.0.0.0) 

CALL UIS$PLOT(VD_ID.0.5.0.5.0.15.0.5.0.10.0.10.0.5.0.5.0) 

CURRENT_ID=UIS$GET_CURRENT_OBJECT(VD_ID) 
OBJ_ID=CURRENT_ID 

PAUSE 

MATRIX(1.1)=1.0 
MATRIX(2.1)=0.0 
MATRIX(1.2)=0.0 
MATRIX(2.2)=1.0 
MATRIX(1.3)=-10.0 
MATRIX(2.3)=-7.5 
COPY_ID=UIS$COPY_OBJECT(OBJ_ID.MATRIX) ~ 

PAUSE 

MATRIX(1.1)=COSD(45.0) 4D 
MATRIX(2.1)=-SIND(45.0) 
MATRIX(1.2)=SIND(45.0) 
MATRIX(2.2)=COSD(45.0) 
MATRIX(1.3)=0.0 
MATRIX(2.3)=0.0 
CALL UIS$TRANSFORM_OBJECT(OBJ_ID.MATRIX) ~ 

PAUSE 

MATRIX (1. 1)=1.0 
MATRIX(2.1)=0.O 
MATRIX(1.2)=0.0 
MATRIX(2.2)=1.0 
MATRIX(1.3)=-10.0 CD 
MATRIX(2.3)=7.5 
CALL UIS$TRANSFORM_OBJECT(OBJ_ID.MATRIX) 

PAUSE 
END 



Geometric and Attribute Transformations 14-15 

This program is almost identical to the previous program GEO_TRANSFORM-ROT 
with a few important differences. 

The first transformation is executed O. The triangle is copied and translated to the 
origin of the coordinate space. The coordinates of the center of the triangle match 
those of the origin. The original triangle in the first quadrant remains unchanged. 

The identifier of the transformed object copy_id is assigned to the obj _id •. It will 
be used as an argument in the next transformation. 

The VAX FORTRAN intrinsic functions SIND and COSD accepts degrees as 
arguments e. 
A call to UIS$TRANSFORM_OBJECT rotates the translated triangle 45 degrees e. 
The original object is erased and redrawn in its new orientation. 

The final translation of the triangle places it in the second quadrant at a 45-degree 
angle to the original triangle 0. 

14.2.8 Calling UIS$COPY _OBJECT 

The triangle is transformed similarly to the rectangle in the previous example. 
However, the first transformation copies the triangle. Figure 14-8 shows that the 
triangle still remains in the virtual display. However, the rotated copy of the triangle 
is translated to the second quadrant. 



14-16 Geometric and Attribute Trans'formations 

Figure 14-8 Complex Rotation of a Triangle 



Geometric and Attribute Transformations 14-17 

14.3 Attribute Transformations 

Attribute transformations involve modifying graphic objects and text without having 
to know the attribute block of the original graphics or text objects. 

14.3.1 Programming Options 
Attribute Transformations 

Ordinarily, when you modify the appearance of an existing graphic object, you must 
perform the follow procedure: 

1. Obtain the object identifier. 

2. Call UIS$DELETE_OBJECT with the object identifier. 

3. Redraw the graphic object or text using the modified attribute block. 

At the very least, you must use two steps-erase the virtual display using 
UIS$ERASE and redraw the object with a modified attribute block. 

A call to UIS$COPY_OBJECT or UIS$TRANSFORM_OBJECT specifying the atb 
argument and omitting the matrix argument lets you modify the attributes of graphic 
objects and text in a single call. 

To disable attribute transformations, omit the atb argument in UIS$COPY_OBJECT 
or UIS$TRANSFORM_OBJECT. 

14.3.2 Program Development 
Programming Objective 

To modify the fill pattern of a circle as a transformation. 

Programming Tasks 

1. Create a virtual display. 

2. Create a display window and a display viewport. 

3. Draw a circle using default attributes. 

4. Obtain its object identifier. 



14-18 Geometric and Attribute Transformations 

5. Modify the fill pattern attribute. 

6. Transform the circle's attributes and draw the modified circle. 

PROGRAM ATTR_TRANS 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

VD_ID=UIS$CREATE_DISPLAY(-10.5,-10.5,10.5,10.5,10.0, 10. 0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION') 

CALL UIS$CIRCLE(VD_ID,O,O.O,O.O,10.0) 
CURRENT_ID=UIS$GET_CURRENT_OBJECT(VD_ID) 
OBJ_ID=CURRENT_ID 

CALL UIS$SET_FONT(VD_ID,O,l,'UIS$FILL_PATTERNS') ~ 
CALL UIS$SET_FILL_PATTERN(VD_ID,l,l,PATT$C_DOWNDIAG1_7) 49 

PAUSE 

CALL UIS$TRANSFORM_OBJECT(OBJ_ID"l) ~ 

PAUSE 
END 

A matrix is not declared in this program. Therefore, the position of any objects 
drawn will be the same. 

The fill pattern attribute is modified ~ 49. 

The object identifier of the original circle and attribute block number of the newly 
modified attribute block are arguments in the transformation ~. 

14.3.3 Requesting Attribute Transformations 
Because no matrix was specified in the transformation, the resulting transformation 
will not cause objects to change their positions within the virtual display. The 
original circle is erased and the modified circle is placed in its position as shown in 
Figure 14-9. 



Geometric and Attribute Transformations 14-19 

Figure 14-9 Modifying Attributes with a Transformation 

ZK5381H16 



14-20 Geometric and Attribute Transformations 

If the call to UIS$TRANSFORM_OBJECT were instead a call to UIS$COPY_OBJECT, 
the original circle would remain visible in the virtual display. The modified circle 
would still be placed in the same position. 

Figure 14-10 Modifying Attributes with a Copy 

ZK538986 



Chapter 15 

Metafiles and Private Data 

15.1 Overview 

Many of your applications produce displays that you might wish to use again. In 
order to reexecute these displays you must first store them in a VIS metafile. We 
will describe the structure of a metafile and the contents of the binary encoded 
instructions in more detail. 

An additional feature allows you to associate data with your graphics objects. You 
can specify a particular graphic object or group of objects within the display to be 
associated with the user-defined data. This chapter discusses metafiles and private 
data in the following topics: 

• Extracting data from a display list 

• Interpreting the user buffer 

• Creating a VIS metafile 

• Creating private data 

Hardcopy VIS (HCVIS) translates VIS pictures to other formats. See the MicroVMS 
Workstation Guide to Printing Graphics for more information about Hcvis. 

15.2 Display Lists and UIS Metafiles 

Generating graphic objects on the display screen is the purpose of your application 
programs. As a programmer, you are also concerned with program modularity and 
efficiency. With each new object drawn in the virtual display, a new entry is added 
to the display list. Preserving the contents of a display list as generically encoded 
binary instructions for use across many applications is highly desirable. Graphics 
output and attribute modifications can then be extracted from display lists and stored 
in user-defined buffers as metafile components and in files as metafiles. 



15-2 Metafiles and Private Data 

15.2.1 Generic Encoding of Graphics and Attribute Routines 

As mentioned earlier, whenever an object is drawn in the virtual display or an 
attribute is modified, a binary encoded instruction is added to the display list of the 
specified virtual display. Entries in the display list are variable length instructions 
and are encoded as shown in Figure 15-1. 

Figure 15-1 Binary Encoded Instruction 

Op code 
16 bits 

Length 
16 bits 

Arguments 

ZK-5472-86 

If the length of the binary encoded instruction is greater than 32,767 bytes, the length 
field should be set equal to VIS$C_LENGTH_DIFF and the extra length should be 
set equal to the total number of bytes in the instruction. Figure 15-2 describes the 
format of a display list entry, if the length field is greater than 32,767 bytes. 

Figure 15-2 Extended Binary Encoded Instruction 

Op code Length Extra Length 
Arguments 

16 bits 16 bits 32 bits 

ZK-5473-86 

15.2.1.1 Normalized Coordinates 
The coordinate system used within display lists and when creating generically 
encoded streams is normalized coordinates. Normalized coordinates are floating point 
numbers in the range (0.0,0.0) to (max-IlC-",max-Ilc-y) where (0.0,0.0) refers to 
lower-left comer of the virtual display and (max-Ilc-",max-Ilc-y) refers to the 
upper-right corner. 

Normalized coordinates are used within VIS as a means of deferring the actual 
mapping of an application's world coordinates to device-specific coordinates until the 
actual output device is known. For example, the device coordinates of a printer may 
be very different from the device coordinates of a raster display. 



Metafiles and Private Data 15-3 

15.2.1.2 Interpreting the User Buffer 
When VIS routine calls are executed, binary encoded instructions are added to the 
display list. When you extract the contents of a display list and store them in a 
buffer, you have created metafile components-header data, an encoded stream of 
binary instructions, and trailer data. Each metafile component consists of binary 
encoded instructions. If you write the contents of the buffer to a file, you have 
created a VIS metafile. A VIS metafile is a generically encoded binary stream, that 
is, all three components exist within a single file and the file is executable on any 
VAXstation system. The contents of the buffer and metafile contains values that 
describe the extracted objects. If reexecuted, these encoded instructions cause VIS 
to recreate the objects drawn in the virtual display. Note that monochrome systems 
cannot duplicate the color of extracted objects created on color systems. 

It is possible to write your own binary encoded instructions and metafiles. First, you 
must understand how to interpret the contents of the user-defined buffer containing 
the extracted data. 

Opcodes 

The portion of the binary encoded instruction that specifies the action that the 
instruction performs is the opcode. Table 15-1 lists the generic encoding symbols 
and the corresponding opcodes of binary encoded instructions. 

Table 15-1 Generic Encoding Symbols and Opcodes 

Generic Encoding Symbol Opcode 

Attribute 

GER$C_SET_WRITING_MODE 1 
GER$C_SET_WRITING_INDEX 2 
GER$C_SET_BACKGROUND_INDEX 3 
GER$C_SET_CHAR_SPACING 4 
GER$C_SET_CHAR_SLANT 5 
GER$C_SET_TEXT_SLOPE 6 
GER$C_SET_TEXT-PATH 7 
GER$C_SET_TEXT_FORMATTING 11 

GER$C_SET_CHAR_ROTATION 12 
GER$C_SET_TEXT~ARGINS 13 
GER$C_SET_LINE_ WIDTH 14 
GER$C_SET_LINE_STYLE 15 
GER$C_SET_FONT 17 
GER$C_SET-ARC_TYPE 26 



15-4 Metafiles and Private Data 

Table 15-1 (Cont.) Generic Encoding Symbols and Opcodes 

Generic Encoding Symbol 

Attribute 

GER$C_SET_FILL _P ATTERN 

GER$C_SET_CLIP 

GER$C_SET_CHAR_ENCODING 

GER$C_SET_CHAR_SIZE 

Graphics and Text 

GER$C_TEXT 

GER$C_SET_POSITION 

GER$C_PLOT 

GER$C_ELLIPSE 

GER$C_IMAGE 

GER$C-ALIGN _POSITION 

GER$C_LINE 

Application-specific Private Data 

GER$C_PRIVATE 

Display List 

GER$C_BEGIN 1 

GER$C_END1 

GER$C_BEGIN _DISPLAY 

GER$C_END_DISPLAY 1 

GER$C_ VERSION 

GER$C_IDENTIFICA nON 

GER$C_DATE 

GER$C_NOpl 

GER$C_PRIVATE_ECO 

GER$C_DISPLAY_EXTENTS 

Color 

Opcode 

37 

38 

39 

42 

19 

21 

23 
25 

29 

33 

52 

30 

31 

32 

34 

35 

36 

43 

44 

45 

49 

51 

47 



Metafiles and Private Data 15-5 

Table 15-1 (Cont.) Generic Encoding Symbols and Opcodes 

Generic Encoding Symbol 

Color 

GER$C_SET_INTENSITIES 

GER$C_CREATE_COLOR_MAP 

Arguments 

Opcode 

48 

50 

Figure 15-3 illustrates the format of an argument within a binary instruction that 
changes attribute settings. 

Figure 15-3 Format of Attribute-Related Argument 

Op code Length IATB OATB Arguments 
16 bits 16 bits 16 bits 16 bits 

ZK-5474-86 

Figure 15-4 illustrates the format of an argument within a binary encoded instruction 
that produces graphics or text. 

Figure 15-4 Format of Graphics- and Text-Related Argument 

Op code Length ATB Arguments 
16 bits 16 bits 16 bits 

ZK-547S-86 

Table 15-2 lists the possible arguments that can appear in a binary encoded 
instruction. 



15-6 Metafiles and Private Data 

Table 15-2 Arguments of Binary Encoded Instructions 

Opcode Argument3 Data Type Description 

Attributesl 

iatb word Input attribute block 
for set operations 

oatb word Output attribute block 
for set operations 

GER$C_SET-ARC_ arc_type word arc type 
TYPE 

GER$C_SET_ background-Jndex word Background index 
BACKGROUND_ 
INDEX 

GER$C_SET_ char_encoding_type word Character encoding 
CHAR_ENCODING type 

GER$C_SET_ char_size_flags word Scaling flags 
CHAR_SIZE char-size_enable bitfield mask Font ideal size for x 

char_size_def-x bitfield mask Font ideal size for y 
char_size_def_ y bitfield mask Widest char 
char_size_def_char bit field mask 

char_size_example word Example character 

char_size_ width F_floating Character width 

char_size_height F_floating Character height 

GER$C_SET_ char-slant_angle F_floating Character slant angle 
CHAR_SLANT 

GER$C_SET_ char_space_dx F_floating Delta x spacing 
CHAR_SP ACING char_space_dy F_floating Delta y spacing 

GER$C_SET_ char-1"ota tion _angle F_floating Character rotation 
CHAR_ROTATION angle 

GER$C_SET_CLIP clip_flags word Clipping rectangle 
clip_xl F_floating 
clip_yl F_floating 
clip_x2 F_floating 
clip_y2 F_floating 

1 All attribute-related encoding items start with input attribute block (IATB) and output attribute block 
(OATB) numbers and then contain attribute specific information. 

3 Arguments whose data type is word, longword, or character use the prefix GER$W_, GER$F_, or 
GER$G, respectively, EXCEPT GER$L_LINE_STYLE and GER$L_IMAGE_SIZE. For example, 
GER$W_IATB, GER$F_CHAR_SIZE_WIDTH, or GER$G_FONT_ID_STRING. 



Metafiles and Private Data 15-7 

Table 15-2 (Cont.) Arguments of Binary Encoded Instructions 

Opcode Argument3 Data Type Description 

Attributes! 

GER$C_SET_ color_count word Number of indices 
COLORS 

color-index word First index 

color_values longword array R, G, and B vectors 

GER$C_SET_FILL _ fill_flags word Flags 
PATTERN 

fill-index word Index 

GER$C_SET_FONT font -icLIength word Font name length 

font-icLstring character Font name string 

GER$C_SET_ intensity_count word Number of indices 
INTENSITIES 

intensity-index word First index 

in tensity_val ues longword array I vector 

GER$C_SET_LINE _ line-style longword 32-bit bitvector 
STYLE 

GER$C_SET_LINE _ line_width_nc F-11oating Normalized coordinates 
WIDTH 

line_width_dc F_floating Pixel coordinates 

line_width_mode word Width mode 

GER$C_SET_ TEXT_ text_format_mode word Text formatting mode 
FORMATTING 

GER$C_SET_ TEXT_ text _margin-'< F_floating Starting position 
MARGINS 

text_margin_y F_floating 

text -Illargin _distance F-11oating Ending position 

GER$C_SET_ TEXT_ text_path_major word Major path code 
PATH 

text_path_minor word Minor path code 

GER$C_SET_ TEXT_ text_slope_angle F_floating Angle of text slope 
SLOPE 

1 All attribute-related encoding items start with input attribute block (lATB) and output attribute block 
(OATB) numbers and then contain attribute specific information. 

3 Arguments whose data type is word, longword, or character use the prefix GER$W_, GER$F_, or 
GER$G, respectively, EXCEPT GER$L_LINE_STYLE and GER$L_IMAGE_SIZE. For example, 
GER$W_IATB, GER$F_CHAR_SIZE_WIDTH, or GER$G_FONT_ID_STRING. 



15-8 Metafiles and Private Data 

Table 15-2 (Cont.) Arguments of Binary Encoded Instructions 

Opcode Argument3 Data Type Description 

Attributesl 

GER$C_SET_ wri ting-Illode word Writing mode 
WRITING_MODE 

GER$C_SET_ writing-1.ndex word Writing index 
WRITING_INDEX 

Graphics and Text2 

output_atb word ATB for graphics and 
text operations 

GER$C_ELLIPSE ellipse-x F_floating Center point 

ellipse_y F_floating 

ellipse_width F_floating Radius width and 
height 

ellipse_heigh t F_floating 

elli pse_s tart _deg F_floating Starting and ending 
degrees 

ellipse_encLdeg F_floating 

GER$C_IMAGE image-xl F_floating Lower-left corner of 
raster image 

image_yl F_floating 

image-x2 FJloating Upper-right corner of 
raster image 

image_y2 F_floating 

image_width word Image width in pixels 

image_height word Image height in pixels 

image_bpp word Bits per pixel 

image_size longword N umber of bytes in 
image 

1 All attribute-related encoding items start with input attribute block (IATB) and output attribute block 
(OATB) numbers and then contain attribute spednc information. 

2 All output-related encoding items start with an attribute block (ATB) number and then followed by 
graphics and text output information. 

3 Arguments whose data type is word, longword, or character use the prefix GER$W_, GER$F_, or 
GER$G, respectively, EXCEPT GER$L_LINE_STYLE and GER$L_IMAGE_SIZE. For example, 
GER$W_IATB, GER$F_CHAR_SIZE_WIDTH, or GER$G_FONT_ID_STRING. 



Metafiles and Private Data 15-9 

Table 15-2 (Cant.) Arguments of Binary Encoded Instructions 

Opcode Argument3 Data Type Description 

Graphics and Text~ 

image_data byte array Place to store actual 
data 

GER$C_PLOT plot_count word Number of points 
plot_data longword array Points 

GER$C_TEXT text_encoding word 8- or 16-bit encoding 
text--1ength word Text length in bytes 
text_data character Text string 

GER$C_LINE line_count word Number of points 
line_data longword array Points 

Color Map 

GER$C_CREATE_ color-Illap_attributes longword Color map attributes 
COLOR-MAP color_map-I'esident bitfield mask 

color_map-Ilo_bind bitfield mask 
color_map-share bitfield mask 
color_map-system bitfield mask 

color-Illap-Ilame-size word 

color-Illap-size word 

color-Illap-Ilame character Virtual color map name 

Private Data 

GER$C_PRIVATE private_facnum word Facility number 

private_length word Length of data 

private_data byte array Data 

Metafile 

GER$C_ VERSION version -ID.a jor word Encoding version 
number 

2 All output-related encoding items start with an attribute block (ATB) number and then followed by 
graphics and text output information. 

3 Arguments whose data type is word, longword, or character use the prefix GER$W_, GER$F_, or 
GER$G, respectively, EXCEPT GER$L_LINE_STYLE and GER$L_IMAGE_SIZE. For example, 
GER$W_IATB, GER$F_CHAR_SIZE_WIDTH, or GER$G_FONT_ID_STRING. 



15-10 Metafiles and Private Data 

Table 15-2 (Cont.) Arguments of Binary Encoded Instructions 

Opcode Argument3 Data Type Description 

Metafile 

version_minor word 

version _eco word 

GER$C_ iden tifica tion --length word 
IDENTIFICATION iden tifica tion _string character 

GER$C_DATE date-Iength word File creation date 
date_string character 

GER$C_PRIVATE_ private_eco_facnum word 
ECO 

private_eco_major word 

private_eco_minor word 

private_eco_eco word 

Miscellaneous 

GER$C_DISPLAY_ extent_minx F_floating Exten t rectangle 
EXTENTS 

extent_miny F_floating 

extent_maxx F_floating 

extent_maxy F_floating 

GER$C_SET_ text_pos-x F_floating T ext position 
POSITION 

text_pos_y F_floating 

GER$C-ALIGN _ align _pos_atb word Attribute block 
POSITION 

align _pos-x F_floating Position 

align _pos_ y F_floating 

GER$C_BEGIN _ display_wc_minx f_floating Dimensions of virtual 
DISPLAY display 

display_w<:-miny f_floating 

display_wc_maxx f_floating 

display_wc-Illaxy f_floating 

display_width f_floating 

3 Arguments whose data type is word, longword, or character use the prefix GER$W_, GER$F_, or 
GER$G, respectively, EXCEPT GER$L_LINE_STYLE and GER$L_IMAGE_SIZE. For example, 
GER$W_IATB, GER$F_CHAR_SIZE_WIDTH, or GER$G_FONT_ID_STRING. 



Metafiles and Private Data 

Table 15-2 (Cont.) Arguments of Binary Encoded Instructions 

Opcode 

Miscellaneous 

GER$C_END_ 
DISPLAY 

Argument3 

display_height 

No arguments 

Data Type Description 

fJIoating 

15-11 

3 Arguments whose data type is word, longword, or character use the prefix GER$W_, GER$F_, or 
GER$G, respectively, EXCEPT GER$L_LINE_STYLE and GER$L-IMAGE_SIZE. For example, 
GER$W_IATB, GER$F_CHAR_SIZE_WIDTH, or GER$G_FONT_ID_STRING. 

15.2.2 Creating UIS Metafiles 

VIS metafiles are encoded binary instructions which when extracted from a display 
list with VIS$EXTRACT_OBJECT or VIS$EXTRACT-REGION are generically encoded. 
VIS meta files consist of the following parts: (1) header information, (2) generically 
encoded binary instructions, and (3) a trailer. The header and trailer are special 
binary instructions that indicate the beginning and end of a VIS metafile. The generic 
encoding of VIS metafiles allows you to store the extracted contents of the display list 
in a buffer or file. Table 15-3 lists the parts of a VIS metafile. 

Table 15-3 Structure of UIS Metafiles 

Generic Encoding Symbol 

Header Information 

GER$C_ VERSION 

GER$C_IDENTIFICATION 

GER$C_DATE 

GER$C_PRIVATE_EC01,2 

GER$C_CREATE_COLOR-MAP 

GER$C_SET_COLORS 

GER$C_BEGIN _DISPLAY 

1 Engineering Change Order 

Function 

Level of generic encoding syntax. The version always 
appears first. 

User-specified optional identification string. 

Optional and user-specified. 

Optional and user-specified. 

Used by UIS$EXECUTE_DISPLAY. 

Used by UIS$EXECUTE_DISPLAY. 

Dimensions of the virtual display to be created by 
UIS$EXECUTE_DISPLAY. 

2See Table 15-1 for the generic symbols in each of these categories of binary encoded instructions. 



15-12 Metafiles and Private Data 

Table 15-3 (Cont.) Structure of UIS Metafiles 

Generic Encoding Symbol 

Encoded Binary Instructions2 

Segment 

Attribute 

Graphics and text 

Application -specific 

Trailer 

Function 

Bounds of an extent rectangle used in 
UIS$EXTRACT_REGION. 

Express the hierarchical structure within a display list 
and identify the attributes associated with a segment. 

Allow the modification of any attribute in any attribute 
block. A generic encoding opcode exists for each 
attribute. 

Contain the data necessary to draw graphic objects. 

Associate data with a user-specified facility. 

Ends the UIS metafile. 

2See Table 15-1 for the generic symbols in each of these categories of binary encoded instructions. 

3Generated by UIS$EXTRACT_REGION only 

15.2.3 Structure of a UIS Metafile 

A VIS metafile consists of three parts-header information, binary instructions, and 
trailer information. Figure 15-5 illustrates the structure of a VIS metafile containing a 
single extracted graphic object. Note that attribute modification instructions precede 
the object and private data instructions follow it. Also, if the extracted object lay 
previously within a segment, segmentation instructions must surround it in the 
metafile. 



Metafiles and Private Data 15-13 

Figure 15-5 Structure of VIS Metafile 

Header 
Information 

Beginning 
Segmentation 
Instruction 

Attribute 
Modification 
Instructions 

Extracted 
Graphic Object 

Private Data 

Ending Segmentation 
Instruction 

Trailer 
Information 

GER$C_VERSION 

GER$C_IDENTIFICATION 

GER$C_DATE 

GER$C_BEGIN_DISPLAY 

GER$C_BEGIN 

GER$C_SET_FONT 

GER$C_SET _FILL_PATTERN 

GER$C_ELLIPSE 

GER$C_PRIVATE 

GER$C_PRIVATE 

GER$C_END 

GER$C_EN D_DISPLA Y 

Private data is discussed later in this chapter. 

Length Arguments 

Length Arguments 

Length Arguments 

Length Arguments 

Length No arguments 

Length IATB OATB Arguments 

Length IATB OATB Arguments 

Length ATB Arguments 

Length Arguments 

Length Arguments 

Length No Arguments 

Length No arguments 

ZK 547686 



15-14 Metafiles and Private Data 

15.2.4 Programming Options 

The ability to create UIS metafiles allows you to save display screen output in files 
for reexecution at a later time. 

Creating UIS Metafiles 

You can extract an object or the contents of a region within a virtual display using 
UIS$EXTRACTJiEADER, UIS$EXTRACT_OBJECT or UIS$EXTRACT-REGION, 
UIS$EXTRACT_TRAILER and store the data in a buffer or file as a metafile using the 
following procedure: 

1. Determine the size of the buffer needed to store the header information, binary 
encoded stream, and trailer using UIS$EXTRACTJiEADER, UIS$EXTRACT_ 
OBJECT or UIS$EXTRACT_REGION, and UIS$EXTRACT_TRAILER omitting the 
buffer length and buffer address parameters. 

2. Call UIS$EXTRACTJiEADER, UIS$EXTRACT_OBJECT or UIS$EXTRACT_ 
REGION, and UIS$EXTRACT_TRAILER again, specifying the previously omitted 
parameters to extract the header information, binary encoded instructions, and 
trailer and to store the data in three buffers. 

3. Use the VAX FORTRAN OPEN and WRITE statements to write the contents of 
the buffers to an external file. 

Executing the Metafile 

UIS metafiles extracted and stored in a buffer can be written to the same virtual 
display using UIS$EXECUTE. 

UIS$EXECUTE_DISPLAY creates a new virtual display and executes the metafile in 
the new display space. However, you must call UIS$CREATE_WINDOW to view 
the graphic object in the virtual display. 

15.2.5 Program Development I 
Programming Objective 

To extract the contents of a region in the virtual display and create a UIS metafile. 

Programming Tasks 

1. Initialize variables. 

2. Create a virtual display. 

3. Draw graphic objects in the virtual display. 

4. Create a display window and viewport. 

5. Determine the size of each part of the metafile. 



Metafiles and Private Data 15-15 

6. Allocate the space in buffers for each part of the metafile. 

7. Extract the contents of the specified region in a buffer. 

8. Write the contents of the buffer to an external file. 

PROG1W4 EXTRACT 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
DATA RETLEN1.RETLEN2.RETLEN3/3*0/ 

VD_ID=UIS$CREATE_DISPLAY(1.0.1.0.30.0.30.0.20.0.20.0) 

c Draw some objects 
CALL UIS$PLOT(VD_ID.0.7.0.10.0.16.0.10.0.7.0.15.0. 
2 7.0.10.0) 0 
CALL UIS$ELLIPSE(VD_ID.0.20.0.20.0.9.0.5.0) 49 
CALL UIS$TEXT(VD_ID.O.'Haste and wisdom are things far odd'. 
2 11.0.15.0) • 

c Create a display window 
WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION') 

PAUSE 

c Find out how much space to allocate for each part of the metafile 
CALL UIS$EXTRACT_HEADER(VD_ID .•• RETLEN1) ~ 
CALL UIS$EXTRACT_REGION(VD_ID .....•. RETLEN2) CD 
CALL UIS$EXTRACT_TRAILER(VD_ID ... RETLEN3) CD 

c Virtual memory is allocated for the buffers 
STATUS=LIB$GET_VM(RETLEN1.ENCODED1) .. 
IF (.NOT.STATUS) CALL LIB$STOP(%VAL(STATUS)) ~ 
STATUS=LIB$GET_VM(RETLEN2,ENCODED2) 49 
IF (.NOT.STATUS) CALL LIB$STOP(%VAL(STATUS)) GD 
STATUS=LIB$GET_VM(RETLEN3.ENCODED3) G) 
IF (.NOT.STATUS) CALL LIB$STOP(%VAL(STATUS)) ~ 

RETLEN=RETLEN1 +RETLEN2+RETLEN3 

TYPE *. 'HEADER DATA' .RETLEN1.' BYTES' • 
TYPE *.'BINARY INSTRUCTION',RETLEN2.' BYTES' GD 
TYPE *.' TRAILING DATA' • RETLEN3.' BYTES' • 

TYPE *.'NO. OF BYTES ALLOCATED = '.RETLEN ~ 

PAUSE 

C Extract the data and store it in a buffer 
CALL UIS$EXTRACT_HEADER(VD_ID.RETLEN1.%VAL(ENCODED1)) ~ 
CALL UIS$EXTRACT_REGION(VD_ID .•.•. RETLEN2.%VAL(ENCODED2)) ~ 
CALL UIS$EXTRACT_TRAILER(VD_ID.RETLEN3.%VAL(ENCODED3)) GD 



15-16 Metafiles and Private Data 

c Write the contents of the buffer to an external file 
OPEN(UNIT=10,FILE='$DISK: [MY_DIR]METAFILE.DAT' ,STATUS='NEW') ~ 

c Call subroutine to write the contents of the buffer 
CALL BUFFERWRITE(%VAL(ENCODED1),RETLEN1,10) ED 
CALL BUFFERWRITE(%VAL(ENCODED2),RETLEN2,10) ~ 
CALL BUFFERWRITE(%VAL(ENCODED3),RETLEN3,10) ~ 

c Close the external file 
CLOSE(UNIT=10,STATUS='SAVE') 

500 

END 

SUBROUTINE BUFFERWRITE(BUFFER,LENGTH,LUN) ~ 
IMPLICIT INTEGER(A-Z) 
BYTE BUFFER(LENGTH) 

WRITE(LUN,500)BUFFER 
FORMAT(T3,I7) 

RETURN 
END 

Calls to UIS$PLOT, UIS$ELLIPSE, and UIS$TEXT 0 8 • draw objects in the virtual 
display. 

Next, you must find out how much space must be allocated for the buffers that 
will hold the header data, binary encoded stream, and trailing data. e 0 0. The 
variables retlenl, retlen2, and retlen3 receive the length of the header data, binary 
encoded stream, and trailing data. 

Virtual memory is allocated for the buffers and the address of each buffer is stored in 
the pointers encodedl, encoded2, and encoded3 using LIB$GET_ VM. 0 CD •. A test 
for completion status of each Run-Time Library call CD ~ 48 is performed. 

The length of the header data, encoded stream, and trailing data are typed in th~ 
emulation window 41) 4D • as well as the total number of bytes allocated ~. 

The contents of the display list are extracted using UIS$EXTRACT-HEADER, 
UIS$EXTRACT-REGION, and UIS$EXTRACT_TRAILER stored at the location 
indicated by pointers encodedl, encoded2, and encoded3 • ~~. Using the VAX 
FORTRAN built-in function % VAL, the pointers encodedl, encoded2, and encoded3 are 
evaluated in terms of the actual data they store-the addresses of the starting point 
of each buffer. 

An external file is opened with the VAX FORTRAN OPEN statement for program 
output~. --

The pointer encoded was implicitly declared as a longword integer. Therefore, you 
cannot simply write the data to the file PRIVATE.DAT. 



Metafiles and Private Data 15-17 

The subroutine BUFFERWRITE is called. 0 ~ three times to perform this task. 
Three arguments are passed in the call e-buffer address, buffer size, and the VAX 
FORTRAN logical unit number of the output device. An array BUFFER is constructed 
from this data. 

The subroutine BUFFERWRITE writes the contents of BUFFER to the UIS metafile 
PRIVATE.DAT~. First the header data is stored in the metafile, then the binary 
encoded stream, and, finally, the trailing data is written to PRIVATE.DAT. 

Prior to program termination, the VAX FORTRAN CLOSE statement closes the 
file G). 

15.2.5.1 Calling UIS$EXTRACT _HEADER, UIS$EXTRACT _REGION, and 
UIS$EXTRACT _TRAILER 

A triangle, an ellipse, and text are drawn in a virtual display as shown in Figure 15-6. 



15-18 Metafiles and Private Data 

Figure 15-6 Original Objects Drawn in the Virtual Display 

Haste and wisdom are things far odd 

ZK526486 



Metafiles and Private Data 15-19 

The terminal emulation window shown in Figure 15-7 shows buffer size information 
for metafile components. 

Figure 15-7 After Buffer Execution 

:;~ l"'un e>~tl"'.9.ct 

FORTRAN PAUSE 
:~ cont 
HEADER DATA 
BINARY INSTRUCTION 

lr:)l B~"'TES 

151 
TRAILING DATA 4 BYTES 
TOTAL NO. OF BYTES ALLOCATED = 
FO~~ Tf;,~AN PAUSE 
:$: 

15.3 Display Lists and Private Data 

256 

ZK 526586 

As mentioned earlier, display lists are created when graphics routines are executed. 
Application-specific or private data can be bound to graphic objects. The binary 
encoded instructions contained in the display list points to internal buffers that 
contain the private data. 

15.3.1 Using Private Data 

Private data is used to include some application-specific information with the graphic 
objects displayed on the workstation screen. The nature of this information is 
entirely at the discretion of the user. For example, an application that draws a 
vertical bar graph and plots relative humidity over a 24-hour period could create data 
on an hourly basis. The private data, in this case, indicating temperature or wind 
speed could be associated with each vertical bar. Private data is not displayed on 
the workstation screen and is not available to users unless extracted into a buffer or 
metafile and executed. Private data can be attached to any graphic object drawn in 
the virtual display. 



15-20 Metafiles and Private Data 

15.3.2 Programming Options 

We will construct a program that reads data from an external file and uses it as 
private data. 

Creating Private Data 

You can create private data with UIS$PRIVATE. 

Extracting Private Data 

You can extract private data and store it in a buffer using UIS$EXTRACTJRIVATE 
using the following procedure: 

1. Determine the size of the buffer needed to store the header information, binary 
encoded stream, and the trailer using UIS$EXTRACT-HEADER, UIS$EXTRACT_ 
PRIVATE, and UIS$EXTRACT_TRAILER omitting the buffer length and buffer 
address parameters. 

2. Call UIS$EXTRACT-HEADER, UIS$EXTRACTJRIVATE and UIS$EXTRACT_ 
TRAILER again specifying the previously omitted parameters to extract the 
private data and store the data in a buffer. 

3. Use the VAX FORTRAN OPEN statement to write the contents of the buffer to 
an external file. 

Deleting Private Data 

You can delete private data associated with a graphic object using UIS$DELETE_ 
PRIVATE. 

15.3.3 Program Development II 
Programming Objectives 

1. To append private data to an object in the display list. 

2. To extract the private data. 

3. To create a UIS metafile containing the private data instruction. 

Programming Tasks 

1. Declare an array to receive the private data from an external file. 

2. Type out the contents of the array to verify it. 

3. Create private data and append it to the last object in the display list. 

4. Determine how large the buffers must be. 

5. Allocate memory for the buffers. 



Metafiles and Private Data 15-21 

6. Extract the private data. 

7. Write the contents of the buffers to an external file. 

Please note that in order to run this program, you should modify the file 
specifications in the OPEN statements and construct a data file similar to DATA.DAT. 

PROGRAM PRIVATE 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
BYTE PRIV(1:23) ~ 

c Construct a descriptor 
INTEGER*4 PRIV_DESC(2) 
PRIV_DESC(l) =23 
PRIV_DESC (2)=%LOC (PRIV) 

• 
e 

c Open external file containing private data 
OPEN(UNIT=8.FILE='$DISK: [MY_DIR]DATA.DAT'.STATUS='OLD') Et 

c Read data into array 
READ(8.50)PRIV 

50 FORMAT (A7) 

CLOSE(UNIT=8.STATUS='SAVE') 

VD_ID=UIS$CREATE_DISPLAY(1.0.1.0.30.0.30.0.15.0.15.0) ~ 

c draw the hot air balloon 
CALL UIS$SET_FONT(VD_ID.0.2. 'MY_FONT_5') 
INDEX=87 
CALL UIS$SET_FILL_PATTERN(VD_ID.2.2.INDEX) 

CALL UIS$CIRCLE(VD_ID.2.12.0.20.0.8.0) 
CALL UIS$LINE(VD_ID.2.10.0.12.0.10.0.8.0.14.0.12.0.14.0.8.0. 
2 10.0.10.0.14.0.10.0.10.0.8.0.14.0.8.0) 

c draw house 
CALL UIS$PLOT(VD_ID.0.15.0.8.0.29.0.8.0.22.0.13.0. 
2 15.0.8.0) 
CALL UIS$LINE(VD_ID.0.15.0.8.0.15.0.0.0.29.0.8.0.29.0.0.0) 

c draw door 
CALL UIS$PLOT(VD_ID.0.21.0.0.0.21.0.4.0.23.0.4.0.23.0.0.0) 

C create windows 
CALL UIS$PLOT(VD_ID.0.17.0.2.0.17.0.6.0.19.0.6.0.19.0.2.0. 
2 17.0.2.0) 
CALL UIS$LINE(VD_ID.0.17.0.4.0.19.0.4.0.18.0.2.0.18.0.6.0) 

CALL UIS$PLOT(VD_ID.0.25.0.2.0.25.0.6.0.27.0.6.0.27.0.2.0. 
2 25.0.2.0) 
CALL UIS$LINE(VD_ID.0.25.0.4.0.27.0.4.0.26.0.2.0.26.0.6.0) 



15-22 Metafiles and Private Data 

c create chimney 
CALL UIS$LINE(VD_ID,O,26.0,ll.0,28.0,ll.0,26.0,ll.0,26.0,10.0, 
2 28.0,11.0,28.0,9.0) 

c create smoke 
CALL UIS$ELLIPSE(VD_ID,O,27.0,13.0,2.5,l.0) 
CALL UIS$ELLIPSE(VD_ID,O,27.25,16.0,2.25,l.0) 
CALL UIS$ELLIPSE(VD_ID,O,27.5,19.0,2.0,l.0) 
CALL UIS$ELLIPSE(VD_ID,O,27.75,22.0,l.75,l.0) 
CALL UIS$ELLIPSE(VD_ID, 0,28.0,25.0, -1.5,1.0) 
CALL UIS$ELLIPSE(VD_ID,O,28.25,28.0,l.25,l.0) 
CURR_ID=UIS$GET_CURRENT_OBJECT(VD_ID) tt 

c type out buffer containing private data 
TYPE *,PRIV CD 

c Create private data 
FACNUM = 1 
CALL UIS$PRIVATE(vd_id,FACNUM,PRIV_DESC) CD 

CALL UIS$SET_LINE_WIDTH(VD_ID,O,3,15.0) 
CALL UIS$PLOT(VD_ID,3,l.0,29.0,4.0,ll.0) 

CALL UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') 

PAUSE 

c Determine size of buffer 
CALL UIS$EXTRACT_HEADER(VD_ID, "RETLEN1) GD 
CALL UIS$EXTRACT_PRIVATE(CURR_ID" ,RETLEN2) GD 
CALL UIS$EXTRACT_TRAILER(VD_ID, , ,RETLEN3) ~ 

RETLEN=RETLEN1 +RETLEN2+RETLEN3 

TYPE *,'BUFFER SIZE FOR HEADER INFO' ,RETLEN1,'BYTES' GD 
TYPE *,'BUFFER SIZE REQUIRED',RETLEN2,' BYTES' GD 
TYPE *,'BUFFER SIZE FOR TRAILING INFO' ,RETLEN3,'BYTES GD 

C Allocate the virtual memory for the buffer 

STATUS=LIB$GET_VM(RETLEN1,EXT_PRIV1) ~ 
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS» ~ 
STATUS=LIB$GET_VM(RETLEN2,EXT_PRIV2) ~ 
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS» GD 
STATUS=LIB$GET_VM(RETLEN3,EXT_PRIV3) ~ 
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS» ED 

c Extract and store private data in buffer 
CALL UIS$EXTRACT_HEADER(VD_ID,RETLEN1,%VAL(EXT_PRIV1» ~ 
CALL UIS$EXTRACT_PRIVATE(CURR_ID,RETLEN2,%VAL(EXT_PRIV2» ~ 
CALL UIS$EXTRACT_TRAILER(VD_ID,RETLEN3,%VAL(EXT_PRIV3» ~ 



Metafiles and Private Data 

CALL BUFFERTYPE(%VAL(EXT_PRIV2).RETLEN2) ~ 

C Open an external file 

15-23 

OPEN(UNIT=ll.FILE='$DISK: [MY_DIR]PRIVATE.DAT'.STATUS='NEW'. ~ 
2 FORM='UNFORMATTED') 

c Write the contents of the buffer 
CALL BUFFERWRITE(%VAL(EXT_PRIV1).RETLEN1.11) ~ 
CALL BUFFERWRITE(%VAL(EXT_PRIV2).RETLEN2.11) ~ 
CALL BUFFERWRITE(%VAL(EXT_PRIV3).RETLEN3.11) GD 

C Close the file 
CLOSE(UNIT=ll.STATUS='SAVE') 

PAUSE 

END 

SUBROUTINE BUFFERWRITE(BUFFER.LENGTH.LUN) CD 
IMPLICIT INTEGER(A-Z) 
BYTE BUFFER(LENGTH) 

WRITE(LUN.500)BUFFER CD 
500 FORMAT(T3.I7) 

RETURN 
END 

SUBROUTINE BUFFERTYPE(BUFFER.length) €D 
IMPLICIT INTEGER(A-Z) 
BYTE BUFFER(length) 

TYPE *.buffer 

RETURN 
END 

A data file DATA.DAT of private data is constructed. It consists of a sentence. 
Because each character requires a byte of storage, the total number of characters in 
the data file is specified as the upper bound of array PRIV 0 as well as the buffer 
length in the descriptor you must construct for UIS$PRIVATE e. 
An external file DATA.DAT is opened e and read into the array PRIV Ct. 

A circle, a triangle, and text are drawn in the virtual display G. 

UIS$GET_CURRENT_OBJECT retrieves the identifier of the last object drawn in the 
virtual display e. 
The array PRIV is typed out to verify its contents CD. 

UIS$PRIVATE associates the sentence contained in the array PRIV with the objects 
drawn in the virtual display 0. Note that the location of the array PRIV is passed by 
descriptor •. 



15-24 Metafiles and Private Data 

Suppose you want to extract the data and store it in a buffer as a UIS metafile. You 
must first determine how much space the header data, binary encoded private data, 
and trailing data will occupy by calling UIS$EXTRACTJfEADER, UIS$EXTRACT_ 
PRIVATE, and UIS$EXTRACT_TRAILER without specifying the buflen and bufaddr 
arguments C!) " 48. 

The variables retlenl, retlen2, and retlen3 are typed out to reveal the size of each part 
of the display list G) G) 4D. 

A call to LIB$GET_ VM allocates virtual memory for three buffers using the value 
of retlenl, retlen2, and retlen3 and stores the location of each buffer in the pointers 
ext_privl, ext_priv2, and ext_priv3, respectively ~ 4D~. A test for completion 
status is performed for each Run-Time Library call CD ~ •• 

If you did not use LIB$GET_ VM, you would have to explicitly declare an array with 
an actual length in the beginning of the program. However, at that point in the 
program, you would have no idea how large such an array would need to be. 

A call to UIS$EXTRACTJfEADER, UIS$EXTRACTJRIVATE, and UIS$EXTRACT_ 
TRAILER, specifying the omitted parameters, extracts the header data, binary 
encoded private data, and the trailing data and stores them in separate buffers 0 
~ e. Because ext_privl, ext_priv2, and ext_priv3 are pointers, you must obtain the 
actual data that they store using the VAX FORTRAN built-in function % VAL. 

Suppose you want to look at the contents of the user buffer before you write the 
contents to an external file. 

Because the pointer ext _priv was implicitly de~lared a longword integer and 
functions as a pointer, we cannot simply type the data in the user. 

A subroutine BUFFERTYPE is called referencing the pointer ext_priv2 and the size 
of the buffer fi. Two arguments are passed in the call-the pointer name and the 
size of the buffer. The subroutine BUFFERTYPE reads the data from the location to 
which ext_priv2 points. and writes the data in terminal emulation window G. 

The file PRIVATE.DAT is opened e. 
The subroutine BUFFERWRITE @D is called three times to write the header, private, 
and trailer data to the external file 0 e~. Three arguments are passed in the 
call-buffer address, buffer size, and the VAX FORTRAN logical unit number of the 
output device. An array BUFFER is declared from this data and an association with 
an external file is established. 

The subroutine BUFFERWRITE writes the contents of BUFFER to the file 
PRIVATE.DAT G. The file is closed and saved. 



Metafiles and Private Data 15-25 

15.3.3.1 Calling UIS$PRIVATE and UIS$EXTRACT_PRIVATE 
Figure 15-8 shows the sample containing character string private data in the external 
file DATA.DAT 

Figure 15-8 Private Data 

I~~. 
T 
H 
I 
S 

I 
S 

T 
H 
E 

L 
A 
:3 
T 

I] 

B 
J 
E 
C 

T 
$ I 

ZK-S4S4-86 



15-26 Metafiles and Private Data 

Figure 15-9 shows the contents of the array PRIV read from the external file 
DATA.DAT. Note that each number is an ASCII code. The required buffer size 
is also shown. In addition, the extracted generically encoded binary private data 
instruction is shown as metafile opcodes and ASCII codes. 

Figure 15-9 Verifying the Contents of the Temporary Array and User Buffer 

Contents of Array Containing Pnvate Data 

$ run private / 
84 72 73 83 32 73 83 32 84 72 69 32 76 65 83 
32 79 66 74 69 67 84 

FORTRAN PAUSE 
$ cant 
BUFFER SIZE REQUIRED 136 BYTES 

31 84 72 73 83 32 73 83 
79 66 74 69 67 84 

Op Code 
Extracted Pnvate 
Data as a Binary 

Instruction 

84 

32 

ZK548686 



Metafiles and Private Data 15-27 

The private data was appended to the last ellipse drawn-the smallest cloud of a 
smoke rising from the chimney shown in Figure 15-10. 

Figure 15-10 Hot Air Balloon 

tt\AlWWWWWwt. 
~WWWWWWWWWWW\ 

;/WWWWWWWWWWWWW\ 
"WWWWWWWWWWWWWWW 
'WWWWWWWWWWWWWWW' 
"~WWWWWWWWWWWWW~ 

"~'WWWWWWWWWWW" r 

." "WWWWWW\J"'" 

~ 

o 
o 
o 
o 
c:> 
~ 

ZK-5457-86 





Chapter 16 

Programming in Color 

16.1 Overview 

Until now we have assumed that the one way to change the appearance of graphic 
objects and text is through modification of attribute settings in attribute block O. 
However, depending on the VAXstation color system you have, you can draw 
graphic objects in over 16 million colors. This chapter discusses the following topics: 

• Using color and intensity routines 

• Setting entries in virtual color maps 

• Creating shareable color maps 

• Using color map segments 

• Using color and intensity inquiry routines 

This chapter is meaningful for VAXstation users programming in either an intensity 
or color environment. 

16.2 Color and Intensity Routines-How to Use The,m 

Color and intensity routines allow your application to draw graphic objects in either 
color or shades of gray. These routines create and load the structures known as 
virtual color maps and color map segments that hold the color values that your 
application use. Such routines perform the following tasks: 

• Create and delete virtual color maps 

• Load virtual color map entries with color values 

• Create and delete color map segments 

• Load entries in color map segments 

We will discuss color map segments later in this chapter. 



16-2 Programming in Color 

16.2.1 Step 1-Creating a Virtual Color Map 

Whether you are programming in a color or an intensity environment, you must 
create a virtual color map using UIS$CREATE_COLOR-MAP. The virtual color map 
is a storage location similar to an artist's palette. Within the color map, you can store 
color values in locations known as entries. The virtual color map can vary according 
to the needs of your application. You can specify the attributes of the virtual color 
map as you see fit. 

16.2.2 Step 2-Setting Virtual Color Map Attributes 
The attributes specified for a virtual color map are either required or optional. You 
must specify the size of the virtual color map, that is, how many color map values 
it will hold. You can also specify optionally a name for the virtual color map. Other 
optional attributes are access and residency. 

Virtual Color Map Size 

As with any storage location, size is a consideration. For every color your application 
uses, you will need an entry in the virtual color map. You can specify a maximum 
size of 32,768 entries. i'P 

Access to Virtual Color Maps 

Another important consideration involves who should have access to your virtual 
color map. What processes should you allow to have access to your virtual color 
map? Virtual color maps can be either private or shareable. If you specify that the 
virtual color map is private, no other processes have access to it. You can designate a 
virtual color map shareable for a certain group of users or shareable among all users. 

Virtual Color Map Residency 

Another attribute that you can specify explicitly, is residency. For application
specific reasons, you may wish to dedicate the color resources to the execution of 
your application. Since this precludes sharing the hardware color resources among 
applications, you should use this feature carefully. 



Programming in Color 16-3 

16.2.3 Step 3-Setting Entries in the Virtual Color Map 

At this point, depending on your color environment, your application must load 
color values into the color map entries using UIS$SET_COLOR, UIS$SET_COLORS, 
UIS$SET-INTENSITIES, or UIS$SET-INTENSITY. 

Color and intensity values are expressed as floating-point number between 0.0 and 
1.0, inclusive. The color subsystem uses the red green blue (RGB) color model. The 
colors that result from the use of color values which denote percentages of red, green, 
and blue are sometimes not readily apparent from the value chosen. Therefore, it is 
recommended that you use color setup menus of the human interface to determine 
the appropriate RGB color component values. You can use these menus as you write 
your application. 

Setting Single Entries 

If your application uses only a few colors or intensities, you may require a small 
virtual color map. In such a case, you could load each color map entry using 
UIS$SET_COLOR or UIS$SET-INTENSITY each time. 

Setting Multiple Entries 

If, on the other hand, your virtual color map is large, you can arrange your color 
map values in an array using a single call to UIS$SET_COLORS or UIS$SET_ 
INTENSITIES. 

16.2.4 Programming Options 

Whenever your application requires a range of color or intensities, you will need to 
use several of the UIS routines listed in Table 16-1. 

Table 16-1 Color and Intensity Routines 

Routine 

Virtual Color Maps 

UIS$CREATE_COLOR-MAP 

UIS$DELETE_COLOR-MAP 

Loading Virtual Color Map Entries 

UIS$SET_COLOR 

UIS$SET_COLORS 

UIS$SET-INTENSITIES 

UIS$SET_INTENSITY 

Function 

Creates a virtual color map 
Deletes a virtual color map 

Sets a single RGB color value in a virtual color map 
Sets multiple RGB color values in a virtual color map 
Sets a single intensity value in a virtual color map 
Sets multiple RGB color values in a virtual color map 



16-4 Programming in Color 

Table 16-1 (Cont.) Color and Intensity Routines 

Routine Function 

Color Map Segments 

UIS$CREATE_COLOR~AP_SEG Creates a color map segment 

UIS$DELETE_COLOR~AP_SEG Deletes a color map segment 

16.2.5 Program Development I 
Programming Objective 

To create and load a color map with single entries. 

Programming Tasks 

1. Establish a size for the virtual color map. 

2. Create the virtual color map. 

3. Create a virtual display. 

4. Create a display window and viewport. 

5. Load a single color map entry with one color value using UIS$SET_COLOR. 

PROGRAM SINGLE_ENTRY 
IMPLICIT INTEGERCA-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
REAL J.K 
DATA J/17.0/ 0 
DATA K/16/ 49 
DATA VCM_SIZE/8/ 

VCM_ID=UIS$CREATE_COLOR_MAPCVCM_SIZE) .. 
VD_ID=UIS$CREATE_DISPLAYC1.0.1.0.40.0.40.0.15.0.15.0.VCM_ID) ~ 
WD_ID=UIS$CREATE_WINDOWCVD_ID. 'SYS$WORKSTATION'.'WINDOW #1') 

CALL UIS$SET_COLORCVD_ID.0.O.40.0.30.0.0) CD 
CALL UIS$SET_COLORCVD_ID.1.0.5.0.5.0.5) CD 
CALL UIS$SET_COLORCVD_ID.2.0.5.0.25.0.5) • 
CALL UIS$SET_COLORCVD_ID.3.0.0.0.7.0.3) 4D 
CALL UIS$SET_COLORCVD_ID.4.0.25.0.25.0.9) CD 
CALL UIS$SET_COLORCVD_ID.5.0.90.0.5.0.0) GD 
CALL UIS$SET_COLORCVD_ID.6.0.80.0.30.0.0) G) 
CALL UIS$SET_COLORCVD_ID.7.0.35.0.65.0.95) G9 



Programming in Color 16-5 

CALL U1S$SET_WR1T1NG_1NDEX(VD_1D,O,9,2) GD 
CALL U1S$SET_WR1T1NG_1NDEX(VD_1D,O,10,3) GO 
CALL U1S$SET_WR1T1NG_1NDEX(VD_1D,O,ll,4) ~ 
CALL U1S$SET_WR1T1NG_1NDEX(VD_1D,O,12,5) ~ 
CALL U1S$SET_WR1T1NG_1NDEX(VD_1D,O,13,6) ~ 

DO 1=9,13,1 
CALL U1S$C1RCLE(VD_1D,1,J,20.0,10.0) GD 
J=J+2.0 
ENDDO 

PAUSE 

DO 1=9,13 
CALL U1S$C1RCLE(VD_1D,1,21.0,K,10.0) GD 
K=K+2.0 
ENDDO 

PAUSE 

END 

The counters j and k are declared and initialized 0 •. 

An eight-entry virtual color map is created with no attributes specified •. 

The virtual color map is associated with the virtual display in UIS$CREATE_ 
DISPLAye during creation of the virtual display. 

Each color value is loaded into a virtual color map using successive calls to UIS$SET_ 
COLOR. 0. c) CD G)" 4B. 

The default writing color attribute setting in attribute block 0 is modified such that 
five new default writing colors are associated with a virtual color map entry GD GO ~ 
~~. 

The atb argument in the call to UIS$CIRCLE within the DO loop references the 
modified attribute block. As a result, five circles are drawn horizontally e each with 
a different default writing color. -

Five circles are drawn vertically GD using the same colors as the horizontally drawn 
circles. 



16-6 Programming in Color 

16.2.6 Program Development II 
Programming Objective 

To create and load a color map with more than one entry at a time. 

Programming Task 

1. Load the arrays with color component values. 

2. Establish color map size. 

3. Load eight color map entries in a single call using UIS$SET_COLORS. 

PROGRAM MULTIPLE_ENTRY 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
REAL J.K 
REAL R_VECTOR(8).G_VECTOR(8).B_VECTOR(8) 
DATA J/17.0/ 
DATA K/16/ l 

o 
• 

DATA R_VECTOR/O.40,O.50.0.50,O.O,O.25.0.90,O.80,O.35/ 
DATA G_VECTOR/O.30,O.50,O.25,O.70,O.25,O.50,O.30,O.65/ 

• 
DATA B_VECTOR/O.O.O.50.0.50,O.30.0.90,O.O,O.O,O.95/ CD 
DATA VCM_SIZE/8/ 

VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE) ~ 

e 
CD 

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0.40.0.40.0,15.0.15.0,VCM_ID) 48 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','COLOR') 

CALL UIS$SET_COLORS(VD_ID,O.8,R_VECTOR,G_VECTOR,B_VECTOR) C) 

CALL UIS$SET_WRITING_INDEX(VD_ID,O.9,2) 
CALL UIS$SET_WRITING_INDEX(VD_ID.O.10,3) 
CALL UIS$SET_WRITING_INDEX(VD_ID,O, 11.4) 
CALL UIS$SET_WRITING_INDEX(VD_ID,O,12.5) 
CALL UIS$SET_WRITING_INDEX(VD_ID,O, 13,6) 

DO 1=9.13,1 
CALL UIS$CIRCLE(VD_ID,I.J.20.0,10.0) 
J=J+2.0 
ENDDO 

PAUSE 

DO 1=9.13 
CALL UIS$CIRCLE(VD_ID,I,21.0,K,10.0) 
K=K+2.0 
ENDDO 

PAUSE 

END 



Programming in Color 16-7 

Three arrays are declared 0 to hold eight R, G, and B color component values each. 

The counters j and k are declared and initialized ••. 

The arrays R_VECTOR, G_VECTOR, and B_VECTOR are loaded with color 
component values e .... 
An eight-entry virtual color map is created. and associated with a newly created 
virtual display CD. 

The R, G, and B color component values stored in the arrays are loaded in the virtual 
color map using a single call to UIS$SET_COLORS •. 

The remaining portions of the program are identical to the previous program 
SINGLE-ENTRY. 

16.2.6.1 Program Development III 
Programming Objective 

To create a shareable color map. 

Programming Task 

1. Load arrays containing color component values. 

2. Create the color map attributes list specifying the shareable attribute. 

3. Create a virtual display specifying a name for the color map. 

4. Create a display window and display viewport. 

5. Load color values into the color map. 

6. Program 2 must perform steps 2 through 4 and reference the name of the color 
map specified in Program 1. 

PROGRAM SHAREABLE_MAP 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
REAL J.K 0 
REAL R_VECTOR(8).G_VECTOR(8).B_VECTOR(8) 
INTEGER*4 VCM_ATTRIBUTES(3) • 
DATA J/17.0/ • 
DATA K/16/ e 
DATA R_VECTOR/O.40.0.50.0.50.0.0.0.25.0.90.0.80/ 
DATA G_VECTOR/O.30.0.50.0.25.0.70.0.25.0.50.0.30/ 
DATA B_VECTOR/O.O.O.50.0.50.0.30.0.90.0.0.0.0/ 
DATA VCM_SIZE/8/ 

VCM_ATTRIBUTES(l)=VCMAL$C_ATTRIBUTES 
VCM_ATTRIBUTES (2) =VCMAL$M_SHARE 
VCM_ATTRIBUTES (3) =VCMAL$C_END_OF_LIST • 



16-8 Programming in Color 

VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE,'LIVING_COLOR',VCM_ATTRIBUTES) G 
VD_ID=UIS$CREATE_DISPLAY(1.0,l.0,40.0,40.0,15.0,15.0,VCM_ID) CD 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','PROCESS #1') 

CALL UIS$SET_COLORS(VD_ID,O,8,R_VECTOR,G_VECTOR,B_VECTOR) 

CALL UIS$SET_WRITING_INDEX(VD_ID,O,9,2) GD 
CALL UIS$SET_WRITING_INDEX(VD_ID,O,10,3) 
CALL UIS$SET_WRITING_INDEX(VD_ID,O,ll,4) 
CALL UIS$SET_WRITING_INDEX(VD_ID,O,12,5) 
CALL UIS$SET_WRITING_INDEX(VD_ID,O,13,6) 

DO 1=9,13,1 
CALL UIS$CIRCLE(VD_ID,I,J,20.0,10.0) 
J=J+2.0 
ENDDO 

VD_ID2=UIS$CREATE_DISPLAY(1.0,l.0,40.0,40.0,15.0,15.0,VCM_ID) ~ 
WD_ID2=UIS$CREATE_WINDOW(VD_ID2,'SYS$WORKSTATION','WINDOW #2') 

CALL UIS$SET_WRITING_INDEX(VD_ID2,O,9,2) G9 
CALL UIS$SET_WRITING_INDEX(VD_ID2,O,10,3) 
CALL UIS$SET_WRITING_INDEX(VD_ID2,O,ll,4) 
CALL UIS$SET_WRITING_INDEX(VD_ID2,O,12,5) 
CALL UIS$SET_WRITING_INDEX(VD_ID2,O.13,6) 

DO 1=9,13,1 
CALL UIS$CIRCLE(VD_ID2,I,21.0,K,10.0) 
K=K+2.0 
ENDDO 

PAUSE 

END 

The counters j and k are declared and initialized 0 • e. 
An integer array VCM-ATTRIBUTES is declared to have three elements •. 

The array elements are assigned attribute values defined by UIS constants ., 0 
•. The structure contains an attribute code followed by a longword value for that 
attribute. The final element contains a longword 0 to terminate the list. 

An eight-entry virtual color map is created using UIS$CREATE_COLOR--MAP and 
the array VCM-ATTRIBUTES is used as an argument •. 

The newly created virtual display references the virtual color map CD. Objects drawn 
in the virtual display can use this virtual color map. 

Different default writing color are defined GD as in previous programs simply to 
highlight and differentiate the objects drawn. 



Programming in Color .16-9 

A second virtual display is created 4D. The second call to UIS$CREATE_DISPLAY 
references the same virtual color map identifier as the first. Both virtual displays will 
share the use of color value assignments in this virtual color map. 

However, you must call UIS$SET_WRITING-INDEX • again to change the default 
setting of the writing color so that objects will be drawn in colors identical to those 
drawn in the first virtual display. 

Here is a portion of a second program that uses the virtual color map that uses the 
virtual color map LIVING_COLOR in the program SHAREABLE-MAP. 

PROGRAM SECOND_PROGRAM 

INTEGER*4 VCM_ATTRIBUTES(3) tt 
DATA VCM_SIZE/8/ ~ 

VCM_ATTRIBUTES (1) =VCMAL$C_ATTRIBUTES 
VCM_ATTRIBUTES(2)=VCMAL$M_SHARE 
VCM_ATTRIBUTES(3)=VCMAL$C_END_OF_LIST 
VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE,'LIVING_COLOR',VCM_ATTRIBUTES)~ 
VD_ID2=UIS$CREATE_DISPLAY(1.0,1.0,35.0,35.0,10.0,10.0,VCM_ID) 

WD_ID2=UIS$CREATE_WINDOW(VD_ID2,'SYS$WORKSTATION','PROCESS #2) 

An array of virtual color map attributes specifying the same attributes as those 
indicated in the preceding program SHAREABLE-MAP tt. The application 
SECONDJROGRAM must declare the virtual color map size. as this is a required 
argument in UIS$CREATE_COLOR-MAP. 

The shareable color map is referenced by name in a call to UIS$CREATE_COLOR_ 
MAP~. 

16.3 Color Map Segments 

Through the use of color map segments, you can control the binding of the virtual 
color map to the hardware color map. 



16-10 Programming in Color 

16.3.1 Programming Options 
Creating and Deleting Color Map Segments 

You can create and delete color map segments using UIS$CREATE_COLOR-MAP_ 
SEC and UIS$DELETE_COLOR-MAP_SEC. 

16.3.2 Program Development 

The program COLOR_SEC is a portion of a longer program and shows how to bind 
your virtual color map to the hardware color map. 

PROGRAM COLOR_SEG 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
INTEGER*4 VCM_ATTRIBUTES(3) .. 
DATA VCM_SIZE,PLACEMENT_DATA/8,16/ 49 

VCM_ATTRIBUTES (1) =VCMAL$C_ATTRIBUTES ~ 
VCM_ATTRIBUTES (2) =VCMAL$M_NOBIND ~ 
VCM_ATTRIBUTES(3)=VCMAL$C_END_OF_LIST CD 
VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE"VCM_ATTRIBUTES) ~ 
CMS_ID=UIS$CREATE_COLOR_MAP_SEG(VCM_ID,'SYS$WORKSTATION', 
2 UIS$C_COLOR_EXACT,PLACEMENT_DATA)" 

VD_ID=UIS$CREATE_DISPLAY(1.0,l.0,30.0,30.0,10.0,10.0,VCM_ID) 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION') 

Two declarations are established-an array VCM-ATTRIBUTES is declared" and 
the virtual color map size is initialized to 8 49. 

Because the color map segment is created with exact placement, the placement_data 
argument of UIS$CREATE_COLOR-MAP_SEC must be initialized to the starting 
index in the hardware color map where binding is to occur. 

The elements of array VCM-ATTRIBUTES are assigned an attribute code ~, an 
attribute value VCMAL$M-NOBIND ~, and a terminating value CD. 

UIS$CREATE_COLOR-MAP is called before any other UIS routine. 



Programming in Color 16-11 

16.3.3 Calling UIS$CREATE_COLOR_MAP_SEG 

No special graphics effects are displayed on the VAXstation screen. 

16.4 Color and Intensity Inquiry Routines 

As mentioned previously in Chapter 12, certain routines called inquiry routines 
provide application with status information. There are several UIS color and intensity 
routines that return information to the application. Color and intensity inquiry 
routines return information about the color setup, virtual color map, and hardware 
color map. Such information can be used as direct input to your application. 

16.4.1 Programming Options 

Your application can use one or more inquiry routines, where appropriate. 
Table 16-3 lists color and intensity inquiry routines. 

Table 16-3 Color and Intensity Inquiry Routines 

Routine 

Virtual Color Map 

UIS$GET_COLOR 

UIS$GET_COLORS 

UIS$GET-INTENSITIES 

UIS$GET-INTENSITY 

Hardware Color Map 

UIS$GETJfW_COLOR-INFO 

Color Value Conversion 

UIS$HLS_ TO-RGB 

UIS$HSV_ TO-RGB 

UIS$RGB_ TOJfLS 

UIS$RGB_ TOJfSV 

Information Returned 

Single RGB value from a virtual color map 

Multiple RGB values from a virtual color map 

Multiple intensity values from a virtual color map 

Single intensity value from a virtual color map 

Device type; number of indexes; number of colors; bits 
of precision for R, G, and B values; reserved entries; 
and regeneration characteristics. 

Converts HLS color values to RGB color values 

Converts HSV color values to RGB color values 

Converts RGB color values to HLS color values 

Converts RGB color values to HSV color values 



16-12 Programming in Color 

Table 16-3 (Cont.) Color and Intensity Inquiry Routines 

Routine Information Returned 

Workstation Standard Colors 

UIS$GET_WS_COLOR 

UIS$GET_WS-INTENSITY 

Color Setup 

UIS$GET_BACKGROUND-INDEX 

UIS$GELWRITING-INDEX 

UIS$GET_WRITING-MODE 

Workstation standard RGB color value 

Workstation standard intensity value 

Window background index 

Window foreground index 

Writing mode 

16.4.2 Program Development I 
Programming Objective 

To retrieve hardware color map information. 

Programming Tasks 

1. Create a virtual color map. 

2. Create a virtual display. 

3. Create a display window and viewport. 

4. Obtain the number of color map indices, possible colors, maps, bits of precision 
for each color component, and reserved entries. 

PROGRAM GET_INFO 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
REAL J,K 
REAL R_VECTOR(8) ,G_VECTOR(8) ,B_VECTOR(8) 

REAL RETR_VECTOR(8) ,RETG_VECTOR(8) ,RETB_VECTOR(8) 
INTEGER*4 VCM_ATTRIBUTES(3) 
DATA J/17.0/ 
DATA K/16/ 
DATA R_VECTOR/O.40,O.50,O.50,O.O,O.25,O.90,O.80,O.35/ 
DATA G_VECTOR/O.30,O.50,O.25,O.70,O.25,O.50,O.30,O.65/ 
DATA B_VECTOR/O.O,O.50,O.50,O.30,O.90,O.O,O.O,O.95/ 

VCM_ATTRIBUTES (1) =VCMAL$C_ATTRIBUTES 
VCM_ATTRIBUTES (2) =VCMAL$M_SHARE 
VCM_ATTRIBUTES(3)=VCMAL$C_END_OF_LIST 



Programming in Color 16-13 

VCM_ID=UIS$CREATE_COLOR_MAP(VCM_SIZE,VCM_ATTRIBUTES) 
VD_ID=UIS$CREATE_DISPLAY(1.0,l.0,40.0,40.0,15.0,15.0,VCM_ID) 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','COLOR') 

CALL UIS$SET_COLORS(VD_ID,O,S,R_VECTOR,G_VECTOR,B_VECTOR) 

CALL UIS$SET_WRITING_INDEX(VD_ID,O,9,2) 
CALL UIS$SET_WRITING_INDEX(VD_ID,O,10,3) 
CALL UIS$SET_WRITING_INDEX(VD_ID,O,ll,4) 
CALL UIS$SET_WRITING_INDEX(VD_ID,O,12,5) 
CALL UIS$SET_WRITING_INDEX(VD_ID,O,13,6) 

CALL UIS$GET_COLORS(VD_ID,O,S,RETR_VECTOR,RETG_VECTOR,RETB_VECTOR) .. 

TYPE 50 
50 format(TS, 'RED' ,T1S, 'GREEN' ,T30, 'BLUE') 

TYPE 100,RETR_VECTOR,RETG_VECTOR,RETB_VECTOR 
100 FORMAT(Fll.3,Fll.3,Fll.3) 

CALL UIS$GET_HW_COLOR_INFO(" 
2 INDICES ,COLORS ,MAPS ,RBITS , GBITS ,BBITS, ,RES_INDICES) ~ 

TYPE 150,INDICES,COLORS 
150 FORMAT(T2,'NO. OF INDICES=',I3,T22,'NO. OF COLORS=' ,IS) 

TYPE 200,MAPS 
JO FORMAT(T2,'NO.OF MAPS=',i3) 

TYPE 225,RBITS,GBITS,BBITS 
225 FORMAT(T2,'NO. OF BITS OF PRECISION',T2S,'RED',I3,T37,'GREEN',I3, 

2 T4S,'BLUE',I3) 

TYPE 250,RES_INDICES 
250 FORMAT(T2,'NO. OF RESERVED ENTRIES' ,13) 

TYPE*,'VCM Indexes Used In Virtual Display l' 

DO 1=9,13,1 
CALL UIS$CIRCLE(VD_ID,I,J,20.0,10.0) 
INDEX=UIS$GET_WRITING_INDEX(VD_ID,I) .. 
TYPE*, INDEX 
J=J+2.0 
ENDDO 

VD_ID2=UIS$CREATE_DISPLAY(1.0,l.0,40.0,40.0,15.0, 15.0,VCM _ID) 
WD_ID2=UIS$CREATE_WINDOW(VD_ID2,'SYS$WORKSTATION','WINDOW #2') 

CALL UIS$SET_WRITING_INDEX(VD_ID2,O,9,2) 
CALL UIS$SET_WRITING_INDEX(VD_ID2,O,10,3) 
CALL UIS$SET_WRITING_INDEX(VD_ID2,O,ll,4) 
CALL UIS$SET_WRITING_INDEX(VD_ID2,O,12,5) 
CALL UIS$SET_WRITING_INDEX(VD_ID2,O,13,6) 



16-14 Programming in Color 

TYPE*.'VCM Indexes Used In Virtual Display 2' 
DO 1=9.13 
CALL UIS$CIRCLE(VD_ID2.I.21.0.K.10.0) 
INDEX=UIS$GET_WRITING_INDEX(VD_ID2.I) ~ 
TYPE*.INDEX 
K=K+2.0 
ENDDO 

PAUSE 

END 

With the inclusion of only three inquiry routines, a great deal of information is 
returned. A call to UIS$GET_COLORS 0 returns the R, G, and B color component 
values in the color map entries of the virtual color map. 

A call to UIS$GET-HW_COLOR-INFO • returns the number of binary bits of 
precision for R, G, and B color map values. In addtion, total number of hardware 
color map entries as well as the number of reserved entries. 

Writing color information must be returned from two locations in the program. 
The first call to UIS$GET_WRITING-INDEX within the DO loop. returns all the 
default writing indexes as they are being used in the first virtual display. 

The second call to UIS$GET_WRITING-INDEX ~ returns each writing index used 
to draw graphic objects in the second virtual display. 

16.4.2.1 Calling UIS$GET _COLORS, UIS$GET _HW_COLOR_INFO, 
UIS$GET _WRITING_INDEX 

Figure 16-1 shows the information returned in the user's emulation window. 



Programming in Color 16-15 

Figure 16-1 Different Types of Information Returned from Inquiry Routines 

.~ 
'T' r'un get_info 

r'ed 
0.400 
0.000 
0.800 
0.500 
0.250 
0.000 
0.500 
0.000 

green 
0.500 
0.250 
0.000 
0.250 
0.500 
0.000 
0.300 
0.000 

blue 
0.500 
0.900 
0.300 
0.700 
0.300 
0.500 
0.900 
0.000 

no. of indices=256 no. of colors=16777216 
no.of maps= 1 
no. of bits of precision red 8 green 8 
no. of reserved entries 6 
VCM Indexes Used In Virtual Display 1 

2 
3 
4 
5 
6 

FORTRAN PAUSE 

16.4.3 Program II-Creating an HSV Color Wheel 
PROGRAM COLOR_WHEEL 

c 
c This program draws a color wheel once and then continually 
c changes its 'appearance by updating the virtual color map. 
c 

IMPLICIT INTEGER*4(A-Z) 
PARAMETER DISPLAY_SIZE=4.0*2.54 
REAL*4 R,G,B,H,L,S,V,START_DEG,END_DEG 
REAL*4 R_VECTOR(O:255) ,G_VECTOR(O:255) ,B_VECTOR(O:255) 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 

blue 8 

ZK 5453-86 



16-16 Programming in Color 

c 
c Find out some information about the workstation color characteristics 
c 

CALL UIS$GET_HW_COLOR_INFO("INDICES, ,MAPS, , ",RES_INDICES,REGEN) 
c 
c Only attempt to run this program on color map hardware systems. 
c 

IF (MAPS .EQ. 0 .OR. REGEN .NE. UIS$C_DEV_RETRO) STOP 
c 
c Make the virtual color map size dependent upon the available 
c hardware, but no greater than 64 entries 
c 

MAP_SIZE=MIN(INDICES-RES_INDICES, 64) 
VCM_ID=UIS$CREATE_COLOR_MAP(MAP_SIZE) 

c 
c Create the virtual display and a single window 
c 

VD_ID=UIS$CREATE_DISPLAY(O.O, 0.0, 1.0, 1.0, 
1 DISPLAY_SIZE, DISPLAY_SIZE, VCM_ID) 
WD_ID=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION') 

c 
c Establish some attributes for drawing 
c 

CALL UIS$SET_ARC_TYPE(VD_ID, 0, 1, UIS$C_ARC_PIE) 
CALL UIS$SET_FONT(VD_ID, 1, 1, 'UIS$FILL_PATTERNS') 
CALL UIS$SET_FILL_PATTERN(VD_ID, 1, 1, PATT$C_FOREGROUND) 

c 
c Set window background to black and draw wedges of a circle. 
c The initial colors of the wedges are determined by traversing 
c 360 degrees around the HSV color model, varying H, while S and 
c V are both 1.0. 
c 

CALL UIS$SET_COLOR(VD_ID, 0, 0.0, 0.0, 0.0) 
DO I=1,MAP_SIZE-1 

START_DEG=(I-1) * (360.0/FLOAT(MAP_SIZE-1)) 
END_DEG=START_DEG+(360.0/FLOAT(MAP_SIZE-1)) 
CALL UIS$HSV_TO_RGB(START_DEG, 1.0, 1.0, R, G, B) 
CALL UIS$SET_COLOR(VD_ID, I, R, G, B) 
CALL UIS$SET_WRITING_INDEX(VD_ID, 1, 1, I) 
CALL UIS$CIRCLE(VD_ID, 1, 0.5, 0.5, 0.4, START_DEG, END_DEG) 

END DO 



Programming in Color 16-17 

c 
V=1.0 

c 
c The next set of sequential and nested loops 
c traverse the HSV color model cone. 
c 
100 CONTINUE 
c 
c Vary S from 1.0 to 0.0 in 0.01 increments 
c 

c 

c 

c 

DO IS=99,O,-1 
S=FLOAT(IS)/100.0 

DO I=l,MAP_SIZE-1 
START_DEG=(I-1)*(360.0/FLOAT(MAP_SIZE-1» 
IF (S .EQ. 0.0) START_DEG=UIS$C_COLOR_UNDEFINED 
CALL UIS$HSV_TO_RGB(START_DEG, S, V, 

1 R_VECTOR(I) , G_VECTOR(I) , B_VECTOR(I» 
END DO ! I 
CALL UIS$SET_COLORS(VD_ID, 1, MAP_SIZE-1, 
1 R_VECTOR(l) , G_VECTOR(l) , B_VECTOR(l» 

end do ! s=1. 0, O. 0 

c Vary V from 1.0 to 0.0 in 0.01 increments 
c 

c 

c 

DO IV=99,O,-1 
V=FLOAT(IV)/100.0 

DO I=l,MAP_SIZE-1 
START_DEG=(I-1)*(360.0/FLOAT(MAP_SIZE-1» 
IF (S .EQ. 0.0) START_DEG=UIS$C_COLOR_UNDEFINED 
CALL UIS$HSV_TO_RGB(START_DEG, S, V, 

1 R_VECTOR(I) , G_VECTOR(I) , B_VECTOR(I» 
END DO ! I 
CALL UIS$SET_COLORS(VD_ID, 1, MAP_SIZE-1, 
1 R_VECTOR(1), G_VECTOR(l) , B_VECTOR(l» 

END DO ! V=1.0,O.0 



16-18 Programming in Color 

c 
c Vary V from 0.0 to 1.0 in 0.01 increments 
c 

c 

c 

c 

DO IV=l,100, 1 
V=FLOAT(IV)/100.0 

DO I=l,MAP_SIZE-l 
START_DEG=(I-l)*(360.0/FLOAT(MAP_SIZE-l)) 
IF (S .EQ. 0.0) START_DEG=UIS$C_COLOR_UNDEFINED 
CALL UIS$HSV_TO_RGB(START_DEG, S, V, 

1 R_VECTOR(I), G_VECTOR(I), B_VECTOR(I)) 
END DO ! I 
CALL UIS$SET_COLORS(VD_ID, 1, MAP_SIZE-l, 
1 R_VECTOR(l), G_VECTOR(l), B_VECTOR(l)) 

END DO ! V=0.O,1.0 

c Vary S from 0.0 to 1.0 in 0.01 increments 
c 

c 

c 

c 

DO IS=l,100,l 
S=FLOAT(IS)/100.0 

DO I=l,MAP_SIZE-l 
START_DEG=(I-l)*(360.0/FLOAT(MAP_SIZE-l)) 
IF (S .EQ. 0.0) START_DEG=UIS$C_COLOR_UNDEFINED 
CALL UIS$HSV_TO_RGB(START_DEG, S, V, 

1 R_VECTOR(I), G_VECTOR(I), B_VECTOR(I)) 
END DO ! I 
CALL UIS$SET_COLORS(VD_ID, 1, MAP_SIZE-l, 
1 R_VECTOR(l), G_VECTOR(l), B_VECTOR(l)) 

END DO ! S=0.O,1.0 

c Repeat HSV color cone traversal indefinitely 
c 

GOTO 100 
c 

END 



Chapter 17 

Asynchronous System Trap Routines 

17.1 Overview 

Frequently, an application program relies on certain run-time events to trigger the 
execution of an application-specific task. Such run-time events can range from power 
failure to simply striking a key on the keyboard. Several UIS routines enable this 
type of behavior for the duration of the program or until the enabling UIS routine is 
explicitly disabled. Such routines enable the use of asynchronous system trap (AST) 
routines. This chapter discusses AST routines and how they can be used to perform 
the following tasks: 

• Creating a virtual keyboard 

• Creating a pointer pattern 

• Using a pointer 

• Resizing a display window 

• Closing a display window 

• Shrinking a display viewport to an icon 

The use of AST routines is not restricted to the tasks listed here. 

17.1.1 Using AST Routines 

Generally speaking, certain UIS routines associate or, bind, a specific run-time 
event or action to a subroutine. When that action occurs, control passes from the 
main program to a user-written subroutine. The subroutine then performs some 
application-specific task. When the subroutine completes execution, control is 
transferred to the next statement in the main program. However, the association 
between the run-time event and the execution of the subroutine remains in effect. If 
the action occurred again during program execution, the subroutine would be called 
again. The process executing the main program is suspended when the run-time 
event occurs and until the subroutine completes execution. Thus, execution of the 



17-2 Asynchronous System Trap Routines 

subroutine occurs asynchronously with respect to execution of the main program. 
The user-written subroutine is known as an asynchronous system trap routine or AST 
routine. 

As with any subprogram or subroutine, the AST routine can be coded within the 
main program according to the conventions of the particular programming language 
or separately as a module in a library. However, to make use of such modules, you 
must compile and link them with your program. 

17.1.2 AST -Enabling Routines 

Several UIS routines enable AST routine execution whenever a particular run-time 
event occurs. The actual event may involve the keyboard, pointer, or the occurrence 
of a program-related event, such as the movement or resizing of a window. Such 
AST-enabling routines reference AST routines in their argument lists. Table 17-1 lists 
each AST -enabling routine and the event that triggers AST routine execution. 

Table 17-1 AST-Enabling Routines 

Routine 

UIS$SET-ADDOPT-AST 

UIS$SET_BUTTON -AST 

UIS$SET_CLOSE-AST 

UIS$SET_ TB-AST 

UIS$SET-EXP AND-ICON -AST 

UIS$SET_GAIN -KB-AST 

UIS$SET-KB-AST 

UIS$SET_LOSE-KB-AST 

UIS$SET-MOVE-INFO-AST 

UIS$SETJOINTER-AST 

UIS$SET-RESIZE-AST 

UIS$SET_SHRINK-ICON _ TO-AST 

Event 

An additional option is chosen using the human 
interface. 

A button is depressed or released on a pointer 
device. 

A display window is deleted with the human 
interface. 

A digitizer is moved within a specified data region 
on the tablet. 

An icon is expanded to display viewport with the 
user interface. 

A virtual keyboard is bound to a physical keyboard. 

A key is struck. 

A virtual keyboard is disconnected from a physical 
keyboard. 

A window is moved in the virtual display. 

A pointer moves into or exits an area of the virtual 
display. 

A display window is resized with the human 
interface. 

A display viewport is shrunk with the human 
interface. 



Asynchronous System Trap Routines 17-3 

17.2 Using Keyboard and Pointer Devices 

The keyboard and pointer devices are resources for use within your application 
program. The keyboard and pointer are mentioned here to illustrate routines that 
can make use of input from such workstation peripheral devices during application 
program execution. An effective way of using keyboard and pointer devices is in 
conjunction with AST routines. 

17.2.1 Using AST Routines with Virtual Keyboards 

You can use your keyboard as a virtual device whose characteristics are transportable 
from virtual display to virtual display. When the keyboard is used as a virtual 
device, you can create an unlimited number of them (subject to system and process 
resources) with different characteristics and associate each with any virtual display 
you choose. 

17.2.1.1 Step 1-Creating a Virtual Keyboard 
A virtual keyboard is created using UIS$CREATE-KB. There is no limit to the 
number of virtual keyboards you can create. 

17.2.1.2 Step 2-Binding the Virtual Keyboard to the Display Window 
In addition, you must bind the virtual keyboard to a specified display window using 
UIS$ENABLE_ VIEWPORT-KB or UIS$ENABLE-KB. UIS$ENABLE_ VIEWPORT_ 
KB and UIS$ENABLE-KB also define how the physical keyboard and the virtual 
keyboard are assigned to each other. 

If your display screen contains one or more display viewports and you have 
assigned virtual keyboards to their associated display windows, you can move 
from display viewport to viewport through the assignment list using the I CYCLE I key. 
An assignment list of display windows keeps track of which viewport is active. 

A viewport is active when the KB icon background color on the viewport is 
highlighted. The physical keyboard is now assigned to a virtual keyboard. The 
virtual keyboard and all enabled characteristics can then be used with the physical 
keyboard. You can bind more than one display window to the same virtual 
keyboard. In this case, the KB icons in all display viewports are highlighted at 
the same time when the desired windows are assigned a physical keyboard. 

Table 17-2 shows how each routine performs physical-to-virtual keyboards 
assignments. 



17-4 Asynchronous System Trap Routines 

Table 17-2 Connecting Physical Keyboards and Virtual Keyboards 

Routine Function 

UIS$ENABLE_ VIEWPORT-KB Adds the display window to the assignment list. Use the 
I CYCLE I key to move from viewport to viewport. 

UIS$ENABLE_KB Places the display window at the top of the assignment 
list and is active. Use the ICYCLEI key to move to other 
viewports. 

To terminate the binding of the specified virtual keyboard to the physical keyboard, 
use UIS$DISABLE_VIEWPORT_KB or UIS$DISABLEJB. Table 17-3 shows how 
each routine terminates physical-to-virtual keyboard assignments. 

Table 17-3 Disconnecting Physical Keyboards and Virtual Keyboards 

Routine 

UIS$DISABLE_ VIEWPORT-KB 

UIS$DISABLE-KB 

Function 

Removes a display window from the assignment 
list. Invoke UIS$ENABLE_ VIEWPORT-KB or 
UIS$ENABLE-KB to make the viewport active. 

Places a display window at the bottom of the assignment 
list. Use the I CYCLE I key to make the viewport active. 

17.2.1.3 Step 3-Enabling Virtual Keyboard AST Routines 
Even though you have created a virtual keyboard and you have bound it to a 
specified display window, you still cannot write characters to that display window. 
You must associate the act of striking a key with the action taken by a subroutine 
using UIS$SETJB-AST. 

17.2.2 Programming Options 

After you have created the virtual keyboard, your application may verify successful 
connection with the physical keyboard. You may want to be notified in the event 
such connections are made or broken. These and other options are available to your 
application. 

Gaining and Losing Virtual Keyboards 

Connecting and disconnecting virtual keyboards may occur many times within your 
application program. These events may be so significant that whenever a virtual 
keyboard is disconnected or lost, you may want your program to initiate some 
action through a subroutine. For example, UIS$SET_GAIN JB-AST and UIS$SET_ 
LOSEJB-AST enable AST routines that could allow your program to perform 



Asynchronous System Trap Routines 17-5 

housekeeping functions such as deleting unused virtual keyboards, display windows, 
and display viewports when a virtual keyboard is disconnected. 

Enabling and Disabling Keyboard Characteristics 

Keyboard characteristics are assigned to specific virtual keyboards using UIS$SET_ 
KB-ATTRIBUTES. 

Testing Physical Keyboards 

You can verify the connection between a specified virtual keyboard and the physical 
keyboard with UIS$TEST-KB. 

Deleting Virtual Keyboards 

To delete a virtual keyboard, use UIS$DELETE-KB. 

17.2.3 Program Development 
Programming Objectives 

To type keyboard characters directly to the virtual display using AST routines. 

Programming Tasks 

1. Declare subroutine and the appropriate variables to be included in the 
COMMON statement. 

2. Create a virtual display. 

3. Create a virtual keyboard. 

4. Create a display window and viewport. 

5. Bind the virtual keyboard to the display window. 

6. Enable keyboard AST routines using UIS$SET-KB-AST. 

7. Create a subroutine to send each keystrike to the virtual display. 

PROGRAM AST 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
LOGICAL*l KEYBUF(4) 
EXTERNAL KEYSTRIKE .. 
COMMON KB_ID.VD_ID.KEYBUF.WD_ID.COUNT ~ 

VD_ID=UIS$CREATE_DISPLAY(1.0.1.0.31.0.31.0.20.0.5.0) 
KB_ID=UIS$CREATE_KB('SYS$WORKSTATION') 48 



17-6 Asynchronous System Trap Routines 

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','KEYBOARD AST') 
CALL UIS$ENABLE_VIEWPORT_KB(KB_ID,WD_ID) ~ 

CALL UIS$SET_ALIGNED_POSITION(VD_ID,l,l.0,30.0) 

COlJNT=O 

CALL UIS$SET_KB_AST(KB_ID,KEYSTRIKE,O,KEYBUF) CD 

CALL SYS$HIBER () • 

END 

SUBROUTINE KEYS TRIKE Ct 
IMPLICIT INTEGER(A-Z) 
INCLUDE , SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
LOGICAL*l KEYBUF(4) 
COMMON KB_ID,VD_ID,KEYBUF,WD_ID,COUNT .. 

STRUCTURE/TEXT/ CD 
INTEGER*2 BUFLEN,BUFCODE 
INTEGER*4 BUFADR 
END STRUCTURE 

RECORD/TEXT/DESC GD 

DESC.BUFLEN=l 
DESC.BUFADR=%LOC(KEYBUF) ~ 

STATUS=UIS$TEST_KB(KB_ID) ~ 

CALL UIS$SET_FONT(VD_ID,l,2, 'MY_FONT_13') 

IF «COUNT .EQ. 60) .OR. (KEYBUF(l) .EQ. 13)) THEN GD 

CALL UIS$NEW_TEXT_LINE(VD_ID,2) 

COUNT=O 

ELSE 
CALL UIS$TEXT(VD_ID,2,DESC) 
COUNT=COUNT+l 
END IF 

RETURN 

END 

The name of the AST routine KEYSTRIKE is declared 0 using the EXTERNAL 
statement. The EXTERNAL statement defines the symbolic name of the routine as an 
address. The routine name can then be used as an argument in a parameter list as in 
the astadr argument of an AST -enabling routine. 



Asynchronous System Trap Routines 17-7 

The COMMON statement allows certain variables used in both program units (the 
main program and the subroutine) to share the same storage area • •. You can use 
either the COMMON statement or the astprm argument in the AST -enabling routine 
to pass data to the AST routine. 

The virtual keyboard is created. and bound to a display window e. 
In our program the AST -enabling routine that references the subroutine KEYSTRIKE 
•• is UIS$SET-KB-AST. Note that there is no separate call to the subroutine 
KEYSTRIKE. 

Whenever a key is struck, the ASCII character code for that character is stored 
in the variable keybuf • and subroutine KEYSTRIKE is executed. The subroutine 
KEYS TRIKE is an AST routine. 

The subroutine KEYSTRIKE retrieves the character code stored in the variable keybuf. 
The data structure TEXT, a character string descriptor, is created 0. The variable 
DESC denoting a record is defined to have the same structure as TEXT 4D. The 
address of keybuf is assigned to a longword in the descriptor 4D. The subroutine 
KEYSTRIKE writes the character to the virtual display using UIS$TEXT. 

After the AST routine completes execution, control returns to the next statement in 
the main program. The next statement is a call to the SYS$HIBER system service 0. 
The SYS$HIBER allows the process to remain inactive until the next time the AST 
routine is executed, that is, when a key is struck. 

The AST routine KEYS TRIKE also verifies that the virtual and physical keyboards are 
connected CD. 

Whenever column 60 is reached or the IRETURNI key is pressed ., text output moves 
to the next line. The ASCII character code for the I RETURN I key is 13. 

17.2.4 Calling Keyboard Routines 

The program AST creates a viewport to which characters are written as shown in 
Figure 17-1. 



17-8 Asynchronous System Trap Routines 

Figure 17-1 Writing Characters to a Display Viewport 

1S program wr es ey ar 
characters to the virtual dis

lay. Each character represents 
e execution of an AST routine! 

1234567890-=!@#$%~&*()_+ 

ZK-4561-85 

17.2.5 Using AST Routines with Pointer Devices 

Pointer routines allow the pointer to act as an input device to your application 
program. Typically, application programs use such data to keep track of the location 
of the pointer device in the virtual display, or the location of a specified rectangle in 
the virtual display. An effective way of using pointers in this manner is through AST 
routines. 

17.2.5.1 Mouse 
The mouse is a relative pointing device and can be used with AST routines to return 
status information about mouse location to the application. 

17.2.5.2 Tablet 
Another pointing device that you can use is the digitizer. The tablet consists of a 
puck or stylus and a tablet. Digitizer support may be used only with a tablet. 

Digitizing with a Tablet 

Digitizing with a tablet requires that you establish a region on the tablet-the data 
rectangle. The data rectangle is the area on the tablet in which digitizing is active. If 
you do not specify a data rectangle, the whole tablet is used. 

Only one data digitizing region may be active at one time. 

The pointer position on the tablet is available to the user's digitizing AST routine, 
if desired. If the pointer is within the data rectangle, then the user's AST routine is 
executed. 



Asynchronous System Trap Routines 17-9 

Only one image may own the tablet at anyone time. When a process connects 
to the tablet, the system hardware cursor is turned off and the connected process 
receives all the input from the tablet device. The process must use a software cursor 
if it wishes to track the pointer in a window. The process owns the tablet until it 
makes a call to UIS$ENABLE_TB to disconnect itself from the tablet. 

Mouse Operation 

A mouse cannot be used as a data digitizer. The UIS routine will report an error, if 
you attempt to digitize with the mouse. 

Terminating Data Digitizing 

Only the process that issues the data digitizing request may change or cancel the 
request. If the process is deleted and the channel is deassigned, data digitizing is 
immediately canceled, if a request is still outstanding. 

Only one data digitizing region may be active at a time. Attempts by other processes 
to initiate will fail if another process has already declared a digitizing region. 

17.2.5.3 Step 1-Create an AST Routine 
You must write a program that includes an AST subroutine that performs a task. 
Typically, AST subroutines perform inquiry functions and return pointer information 
such as location to the main program. See Table 12-1 for a list of pointer routines 
that return information about the pointer. You are not restricted to using AST 
routines in this manner. For example, you can use AST routines with pointers to 
create menus. 

17.2.5.4 Step 2-Enable the AST Routine 
The AST routine will execute whenever a specific run-time event occurs. However, 
you must enable this behavior by including an AST -enabling routine in the main 
program. The following table lists pointer AST -enabling routines. 

Routine 

UIS$SET_BUTTON -AST 

UIS$SET_ TB-AST 

UIS$SETJOINTER-AST 

Run-Time Event 

The button on the pointer device is depressed. 

The digitizer is moved within a specified data region on the 
tablet. 

The pointer is moved into a specified region of virtual display. 

17.2.6 Programming Options 

Many graphics applications use the pointer position and movement as a means of 
drawing objects on the display screen. Graphics routines can use this information to 
generate objects. 



17-10 Asynchronous System Trap Routines 

Pointer Movement 

Many application programs need to know where the pointer is. For example, the 
program might need to perform some type of action whenever the pointer moves 
within certain regions of the virtual display. The AST -enabling routine UIS$SET_ 
POINTER-AST can be used whenever pointer movement plays an important role in 
program execution. 

Pointer Position 

Your application may need to establish the position of the pointer in world 
coordinates. In addition, UIS$SETJOINTERJOSITION returns a status value. 

Pointer Pattern 

You can change the appearance of the pointer cursor using UIS$SETJOINTER_ 
PATTERN. Normally, this cursor appears as an arrow on the display screen. The 
pointer cursor, or p~ttern represents bit settings within an array of 16 words. You 
can choose your own pointer pattern by assigning a value to ~ach word in the array 
that will set the desired bits for the new pattern. 

Optionally, you may request that the pointer also be bound to the region specified 
in the UIS$SETJOINTERJ ATTERN call. When this region is unoccluded, the 
pointer pattern will not be allowed to exit after it has been positioned within the 
region. The cursor may leave the bound region, if it becomes occluded. 

Tablet Information 

Currently, two routines UIS$GET_TB-INFO and UIS$GET_TB_POSITION return 
information about tablet characteristics and position, respectively. 

17.2.7 Program Development 
Programming Objective 

To change the default pointer pattern to a crosshair. 

Programming Tasks 

1. Declare the subroutine and the appropriate variables in the COMMON statement. 

2. Create a virtual display. 

3. Create a display window and viewport. 

4. Enable pointer AST routine with UIS$SETJOINTER-AST. 



Asynchronous System Trap Routines 17-11 

5. Create a subroutine that defines the new cursor pattern. 

PROGRAM PATTERN 
IMPLICIT INTEGER(A-Z) 
EXTERNAL FIGURE .. 
INCLUDE , SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
COMMON VD_ID.WD_ID 

VD_ID=UIS$CREATE_DISPLAY(-1.0.-1.0.30.0.30.0.20.0.20.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION'.'POINTER PATTERN') ~ 

CALL UIS$SET_POINTER_AST(VD_ID.WD_ID.FIGURE.O) .. 

CALL SYS$HIBER() 

END 

SUBROUTINE FIGURE 
IMPLICIT INTEGER(A-Z) 
INTEGER*2 CURSOR(16) ~ 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
COMMON VD_ID.WD_ID 

DATA CURSOR/7*896.65535.8*896/ ct 
CALL UIS$SET_POINTER_PATTERN(VD_ID.WD_ID.CURSOR •• 8.8) CD 

RETURN 
END 

In this program, no world coordinates are specified for the display window ~, so the 
display window maps the entire virtual display space. The dimensions of the display 
viewport are also not specified. As a result, the display viewport size defaults to the 
dimensions specified in UIS$CREATE_DISPLAY. 

The subroutine FIGURE is called whenever the pointer lies within the specified 
area of the display window. In the main program the subroutine is declared as an 
external procedure" in the main program. The AST -enabling routine for the pointer 
devices UIS$SETJOINTER-AST is called". Because no rectangle is specified, the 
subroutine FIGURE is executed whenever the pointer is within the display window. 

The array CURSOR is declared in the subroutine FIGURE 0 and contains 16 
elements. Each array element is declared as a word and is, therefore, 16 bits 
long. You should imagine the array as a 16 by 16-bit pattern, or matrix. Each 
array element ct is assigned a value which sets certain bits in the matrix to 1. The 
matrix represents the bitmap image of the new cursor pattern. The call to UIS$SET_ 
POINTERJ ATTERN references the new cursor pattern and the exact bit in the new 
cursor pattern used to calculate current pointer position CD. 



17-12 Asynchronous System Trap Routines 

17.2.8 Calling UIS$SET _POINTER-AST and 
UIS$SET_POINTER_PATTERN 

When, you run the program PATTERN, the display viewport is created. The pointer 
lies outside the display viewport and the default pointer pattern is in effect as shown 
in Figure 17-2. 

Figure 17-2 Default Pointer Pattern 

. POINTER PATTERN 

ZK-4614-85 

The process executing the main program is hibernating, that is, waiting for you to 
move the pointer. As you can see in Figure 17-3, when you move the pointer within 
the display window, the pointer pattern changes from an arrow to a cross. 



Asynchronous System Trap Routines 17-13 

Figure 17-3 New Pointer Pattern 

POINTER PATTERN 

+ 

ZK-4562-85 

17.3 Manipulating Display Windows and Viewports 
Default Shrinking Operation 

The shrinking of viewports is performed using the Window Options Menu by default. 
When you choose the "Shrink to an Icon" menu item, UIS$SHRINK_ TO-ICON is 
called. You can also expand icons to viewports with the user interface by placing the 
cursor in the icon and pressing the pointer button. 

Default Resizing and Closing Operations 

Resizing and closing display windows are performed using the Window Options 
Menu by default. When you choose the "Change the size" menu item, UIS$RESIZE_ 
WINDOW is called and accepts the world coordinate values of the newly resized 
window. 

Display windows are also closed using the Window Options Menu. When you 
choose the "Delete" menu item, UIS$CLOSE_WINDOW is called, which, in tum, 
calls SYS$EXIT system service. SYS$EXIT performs image rundown and deletes the 
process that owns the image. 



17-14 Asynchronous System Trap Routines 

17.3.1 Using AST Routines to Modify the Window Options Menu 

Certain VIS routines can override the default actions listed in the Window Options 
Menu and enable user-written shrinking, expanding, resizing and closing AST 
routines that are activated whenever the "Shrink to an Icon", "Change the size", 
or "Delete" menu items are chosen. In this case, AST routines override the default 
shrinking, expansion, resizing, and closing VIS behavior. 

17.3.1.1 Step 1-Create an AST Routine 
In order to override one of the default actions listed in the Window Options Menu, 
you must write a program that includes an AST routine. When you execute the 
program and initiate the action through the user interface, the default action is no 
longer performed automatically. 

You could code your AST routine so that it could perform any action. Most likely, 
you will modify the action of a menu item by adding additional actions to the default. 
If so, you must include in your AST routine a call to VIS$RESIZE_WINDOW in 
addition to code to perform any other special features you see fit. When the program 
executes, the AST routine will perform the resize as well as any other additional 
actions. The following table lists the task you wish to perform and the corresponding 
VIS routine that should be included in your subroutine. 

Task 

Close or delete a window 

Expand an icon 1 

Resize a viewport 

Shrink a viewport 

1 Not listed in the Window Options Menu. 

Routine 

UIS$CLOSE_WINDOW 

UIS$EXP AND-ICON 

UIS$RESIZE_ WINDOW 

UIS$SHRINK_ TO-ICON 

17.3.1.2 Step 2-Enable the AST Routine 
You want your AST routine to execute whenever you wish to override the default 
features listed in the Window Options Menu. In order to execute the AST routine, a 
run-time event must occur to trigger the AST routine. Therefore, you must include 
in your main program an appropriate AST -enabling routine. The following table 
lists window AST -enabling routines that trigger AST routine execution for various 
run-time events. 



Asynchronous System Trap Routines 17-15 

Routine 

UIS$SET_CLOSE-AST 

UIS$SET-EXP AND-ICON -AST 

UIS$SET-RESIZE_WINDOW-AST 

UIS$SET_SHRINK_ TO-ICON -AST 

17.3.2 Programming Options 

Run-Time Event 

The "Delete" menu itetrl is chosen using the user 
interface. 

The pointer pattern is placed on an icon and the 
pointer button is depressed. 

The "Change the size" menu item is chosen using 
the user interface 

The "Shrink to an icon" menu item is chosen using 
the user interface. 

You can enable AST routine execution for the programming options listed below. 

Shrinking Viewports to Icons 

You can override the default display viewport shrinking operation by first calling the 
AST -enabling routine UIS$SET_SHRINK_ TO-ICON -AST in your main program. 
Your AST routine will contain UIS$SHRINK_TO-ICON specifying icon attributes. 
Shrinking viewports to icons occurs as a five-step as follows: 

1. The user initiates the shrinking operation using the user interface. 

2. The viewport is moved offscreen using the invisible attribute. 

3. The subroutine creates a small virtual display and viewport with no banner, the 
actual icon. 

4. The subroutine using UIS$SHRINK_TO-ICON associates the icon name with 
the virtual display identifier of the offscreen viewport. 

Expanding Icons to Display Viewports 

You can override the default icon expansion operation by calling the AST
enabling routine UIS$SET-EXP AND-ICON -AST in your main program. Include 
UIS$EXP AND-ICON in your AST routine in order to specify viewport attributes. 

Resizing Display Windows 

You can override the default display window resize operation by first calling the 
AST -enabling routine UIS$SETJESIZE-AST in your main program. Resizing 
occurs as a three-step process as follows: 

1. The user initiates the resizing operation using the user interface. 

2. The user interface returns values to the addresses specified in 
UIS$SETJESIZE-AST. 



17-16 Asynchronous System Trap Routines 

3. The AST routine is called. 

Your AST routine will include a call to UIS$RESIZE_WINDOW. A call to 
UIS$RESIZE_WINDOW can redefine the default resize behavior in the following 
ways: 

• Absolute position - You can specify an absolute position, that is, a device 
coordinate position on the physical screen where the newly resized display 
viewport will be placed. 

• Size - You can specify the dimensions of all newly resized display viewports. 
All subsequent display viewports are created with these dimensions. 

• World coordinate space - You can specify the world coordinate space as the 
original display window. Typically, the coordinates that you specify here match 
the world coordinates of the original display window. However, this need not 
always be the case. If your original display window viewed a portion of the 
virtual display, you can view more or less of the virtual display depending on 
the world coordinate range you specify. 

Closing Display Windows 

To override the default close display window operation, you must first call the 
AST -enabling routine UIS$SET_CLOSE-.AST in your main program. 

The instructions that you include in your AST routine will override the default 
window closing behavior. Closing display windows occurs as a two-step process as 
follows: 

1. The "Delete" menu item in the Window Option menu is chosen. 

2. The AST routine is called. 

17.3.3 Program Development 
Programming Objective 

To modify the display window shrinking, expanding, resizing, and closing operations 
listed in the Window Options Menu, whenever the "Shrink to icon", "Change the 
size" or "Delete" menu item is chosen. 

Programming Tasks 

1. Declare the subroutines and the appropriate variables in the COMMON 
statement. 

2. Create a virtual display. 

3. Create a display window and viewport. 

4. Draw two ellipses and a circle. 



Asynchronous System Trap Routines 17-17 

5. Enable viewport shrinking and icon expansion AST routines using UIS$SET_ 
SHRINK_TO-ICON-AST and UIS$SET-EXPAND-ICON-AST. 

6. Enable window resizing and closing AST routines using UIS$SET-RESIZE-AST 
UIS$SET_CLOSE-AST. 

7. Create viewport shrinking and icon expansion AST routines. 

8. Create window resizing and closing AST routines. 

PROGRAM_OVERRIDE 
IMPLICIT INTEGER(A-Z) 
EXTERNAL RESIZER.SHRINKER.EXPANDER.CLOSER 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
COMMON VD_ID.VD_ID2.WD_Id.WD_ID2.NEW_ABS_X,NEW_ABS_Y 

VD_ID=UIS$CREATE_DISPLAY(O.O,O.O,50.0,50.0,10.0,10.0) 4t 
WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','USER') ~ 

CALL UIS$ELLIPSE(VD_ID,O,10.0,20.0,5.0,15.0) 

CALL UIS$SET_FONT(VD_ID,O,l,'UIS$FILL_PATTERNS') 
CALL UIS$SET_FILL_PATTERN(VD_ID,l,l,PATT$C_VERT6_2) 
CALL UIS$CIRCLE(VD_ID,l,25.0,25.0,20.0) 

CALL UIS$ELLIPSE(VD_ID,O.40.0,20.0,5.0,15.0) 

CALL UIS$SET_SHRINK_TO_ICON_AST(WD_ID,SHRINKER) .. 

CALL UIS$SET_EXPAND_ICON_AST(WD_ID,EXPANDER) Gt 
CALL UIS$SET_CLOSE_AST(WD_ID,CLOSER,O) ~ 

CALL UIS$SET_RESIZE_AST(VD_ID,WD_ID,RESIZER,O,NEW_ABS_X,NEW_ABS_Y, 
2 NEW_WIDTH,NEW_HEIGHT,NEW_WC_Xl,NEW_WC_Yl,NEW_WC_X2. 
2 NEW_WC_Y2) • 

CALL SYS$HIBER() • 
TYPE *,'DISPLAY WINDOW HAS BEEN SUCCESSFULLY CLOSED' ~ 

END 

SUBROUTINE RESIZER CD 
IMPLICIT INTEGER(A-Z) 
COMMON VD_ID,VD_ID2,WD_ID,wd_id2,NEW_ABS_X,NEW_ABS_Y 

CALL UIS$RESIZE_WINDOW(VD_ID,WD_ID,NEW_ABS_X,NEW_ABS_Y".",) ~ 

RETURN 
END 



17-18 Asynchronous System Trap Routines 

SUBROUTINE SHRINKER ~ 
IMPLICIT INTEGER(A-Z) 
INCLUDE 'SYS$LIBRARY:UISENTRY' 
INCLUDE 'SYS$LIBRARY:UISUSRDEF' 
COMMON VD_ID,VD_ID2,WD_ID,WD_ID2,NEW_ABS_X,NEW_ABS_Y 

STRUCTURE/AWAY/ (D 
INTEGER*4 CODEl 
INTEGER*4 ATTRl 
INTEGER*4 CODE2 
INTEGER*4 ATTR2 
INTEGER*4 END_LIST 
END STRUCTURE 

RECORD/AWAY/WINDOW 

WINDOW.CODE1=WDPL$C_PLACEMENT GD 
WINDOW.ATTR1=WDPL$M_INVISIBLE ~ 
WINDOW.CODE2=WDPL$C_END_OF_LIST ~ 
CALL UIS$MOVE_VIEWPORT(WD_ID,WINDOW) ~ 

WINDOW.CODE1=WDPL$C_ATTRIBUTES ~ 
WINDOW.ATTR1=WDPL$M_NOBANNER GD 
WINDOW.CODE2=WDPL$C_END_OF_LIST ~ 

VD_ID2=UIS$CREATE_DISPLAY(O.O,O.O,5.0,5.0,2.54,2.54) ~ 
WD_ID2=UIS$CREATE_WINDOW(VD_ID2,'SYS$WORKSTATION', , 
2 , , , , , , WINDOW) f) 
CALL UIS$SET_FONT(VD_ID2,O,2,'MY_FONT_5') 
CALL UIS$TEXT(VD_ID2,2,'USER',O.5,3.5) @D 

ICON_FLAGS=UIS$M_ICON_DEF_BODY ~ 
CALL UIS$SHRINK_TO_ICON(WD_ID,WD_ID2,ICON_FLAGS) 

RETURN 
END 

SUBROUTINE EXPANDER 
IMPLICIT INTEGER(A-Z) 
COMMON VD_ID,VD_ID2,WD_ID,WD_ID2,NEW_ABS_X,NEW_ABS_Y 

CALL UIS$EXPAND_ICON(WD_ID,WD_ID2) 

RETURN 
END 

SUBROUTINE CLOSER ~ 
IMPLICIT INTEGER(A-Z) 
COMMON VD_ID,VD_ID2,WD_ID,WD_ID2,NEW_ABS_X,NEW_ABS_Y 

CALL UIS$ERASE(VD_ID) 
CALL UIS$DELETE_WINDOW(WD_ID) ED 



Asynchronous System Trap Routines 17-19 

CALL UIS$DELETE_DISPLAY(VD_ID) ~ 

CALL SYS$WAKE(.) CD 

RETURN 
END 

The main program OVERRIDE creates a virtual display 0 and a display window •. 
The world coordinate space of the display window is a portion of the virtual display, 
the display window contains only those objects in the virtual display that lie 
within it. 

A circle is drawn between two ellipses in the viTtual display and appears in the 
display window and its associated display viewport. 

Four AST-enabling routines, UIS$SET_SHRINK_TO-ICON-AST, UIS$SET_ 
EXP AND-ICON -AST, UIS$SET_CLOSE-AST and UIS$SET-RESIZE-AST, • 
e 0 0 are called. The main program executes until the call to SYS$HIBER is 
reached •. 

The Window Options Menu is invoked from the MENU icon in the viewport 
WINDOW using the pointer. Assume that the menu item "Change the size" is 
chosen. Perform the following procedure: 

1. Move the pointer to one of the flashing dots on the border of the viewport. 

2. Press the button and the border of the display viewport is highlighted. 

3. Hold the button down and move the pointer until the stretchy box is the desired 
size and release the pointer button. 

The call to UIS$RESIZE_WINDOW ~ in the subroutine RESIZER CD modifies the 
default resize behavior. UIS$RESIZE_WINDOW specifies the world coordinates of 
the existing virtual display as the world coordinates for all newly resized display 
windows. Therefore, a newly resized window always displays the entire virtual 
display space. If the aspect ratios of the virtual display and the resized display 
viewport are not equal, graphic objects are scaled. 

The subroutine SHRINKER 48 modifies the default shrinking behavior. The window 
attributes data structure AWAY is created •. A record WINDOW is defined to have 
the structure of AWAY 41). The fields of record WINDOW are assigned values ~ 
~ a&. Note the use of the invisible placement attribute. A call to UIS$MOVE_ 
VIEWPORT. references the display window identifier of the existing viewport and 
the current window attributes. The viewport is moved offscreen. 

New window attribute values are assigned 4D 4D ~ to the fields of the record 
WINDOW. 



17-20 Asynchronous System Trap Routines 

A virtual display and display window are created for the icon .. #). UIS$TEXT 
draws the character string in the icon.. The flag UIS$M-ICON _DEF_BODY sets 
the appropriate in the mask icon.Jlags •. When this bit is set, the area of the icon 
becomes a button AST region (for later icon expansion). UIS$SHRINK_ TO-ICON 
• associates the display window identifiers of the existing viewport and the icon. 

The subroutine CLOSER e overrides the default window closing behavior by 
deleting the display window., display viewport, and the virtual display e. The 
process that owns the main program is awakened~. The main program continues 
execution with the next statement after the call to SYS$HIBER ., types the message 
"Display window has been successfully closed", and terminates. 

17.3.4 Calling UIS$SET_RESIZE-AST 

When the main program executes, a display window and its associated display 
viewport appear on the display screen as shown in Figure 17-4. 

Figure 17-4 Unresized Window and Viewport 

WINDOW 

ZK-4563-85 

The menu item "Change the size" is selected and the display window and viewport 
are resized as shown in Figure 17-5. 



Asynchronous System Trap Routines 17-21 

Figure 17-5 Resized Window and Viewport 

WINDOW 

ZK-4564-85 

17.3.5 Calling UIS$SET _SHRINK-TO_ICON-AST 

The menu item "Shrink to icon" is selected and the display viewport is replaced with 
a user-defined icon as shown in Figure 17-6. 

Figure 17-6 Icon 

USER 

ZK·5484·86 



17-22 Asynchronous System Trap Routines 

17.3.6 Calling UIS$SET _CLOSE-AST 

When the menu item "Delete" is chosen, the display viewport, window, and virtual 
display are deleted and the message "Display window has been successfully closed" 
is written to the terminal emulation window. 



PART III UIS Routines 





Chapter 18 

UIS Routine Descriptions 

18.1 Overview 

Each VIS and VISDC routine in Parts III and IV of this book is documented using 
a structured format. This section discusses the main headings of this format, the 
information that is presented under each heading, and the format used to present the 
information. 

The purpose of this section, therefore, is to explain where to find information and 
how to read it correctly, not how to use it. 

Some main headings in the routine template contain information that requires no 
further explanation beyond what is given in Table 18-1. However, the following 
main headings contain information that does require additional discussion; this 
discussion takes place in the remaining subsections of this section. 

• Format Heading 

• Returns Heading 

• Arguments Heading 

The following table lists the main headings in the VIS routines template. 

Table 18-1 Main Headings in the Routine Template 

Main Heading 

Routine Name 

Routine Overview 

Description 

Required. The routine entry point name is usually, though not 
always, followed by the English name of the routine. 

Required. The routine overview appears directly below the routine 
name; the overview explains, usually in one or two sentences, 
what the routine does. ' 



18-2 UIS Routine Descriptions 

Table 18-1 (Cant.) Main Headings in the Routine Template 

Main Heading Description 

Format Required. The format heading follows the routine overview. 
The format gives the routine entry point name and the routine 
argument list. 

Returns Required. The returns heading follows the routine format. It 
explains what information is returned by the routine. 

Arguments Required. The argumenfs heading follows the returns heading. 
Detailed information about each argument is provided under the 
arguments heading. If a routine takes no arguments, the word 
"None" appears. i 

Description Optional. The description heading follows the arguments heading! 

Examples 

The description section contains information about specific action~ 
taken by the routine: interaction between routine arguments, if 
any; operation of the routine within the context of VAX/VMS; 
user privileges needed to call the routine, if any; system resources 
used by the routine; and user quotas that may affect the operation 
of the routine. 

Note that any restrictions on the use of the routine are always 
discussed first in the description section; for example, any required 
user privileges or necessary system resources are explained first. 

For some simple routines, a description section is not necessary 
because the routine overview carries the needed information. 

Optional. The examples heading appears following the description 
heading. The examples section contains programming examples 
that illustrate use of the routine. Following the example, an 
explanation of the example is given. 

All examples have been tested and should run when compiled (or 
assembled) and linked. 



UIS Routine Descriptions 18-3 

Table 18-1 (Cont.) Main Headings in the Routine Template 

Main Heading 

Screen Output 

Illustration 

Description 

Optional. The screen output heading contains either an actual 
display produced by the routine or information that the routine 
would normally return to the program. Please note that in many 
instances screen output contains annotations that serve only 
to explain the information returned. For example, UIS$GET_ 
POSITION returns information about the current text position 
along the actual path. This information is displayed and described 
as an example of the kind of data that can be returned. In many 
cases such as the inquiry routines, the displayed information is 
formatted with headings and annotations for the purposes of 
presentation in this manual only. 

Optional. The illustration heading contains artwork that describes 
how to use the routine, how the routine functions, or what kind 
of information to expect from it. The illustrations mayor may not 
be annotated. 

18.1.1 Format Heading 

The following types of information can be present in the format heading. 

• Procedure call format 

• Explanatory text 

The procedure call format ensures that a routine call conforms to the procedure 
call mechanism described in the VAX Procedure Calling and Condition Handling 
Standard; for example, an entry mask is created, registers are saved, and so on. 

Procedure call formats can appear in many forms. Four examples have been provided 
to illustrate the meaning of syntactical elements such as brackets and commas. 
General rules of syntax governing how to use procedure call formats are shown in 
Table 18-2. 

Example 1 This example illustrates the standard representation of optional 
arguments and best describes the use of commas as delimiters. Arguments enclosed 
within square brackets are optional, but if an optional argument other than a trailing 
optional argument is omitted, you must include a comma as a delimiter for the 
omitted argument. 
ENTRY-POINT-NAME argl [,[arg2 [,arg3]] 

Typically, VAX RMS system routines use this format where at most three arguments 
appear in the argument list. 



18-4 UIS Routine Descriptions 

Example 2 When the argument list contains three or more optional arguments, the 
syntax does not provide enough information. If the optional arguments arg3 and 
arg4 are omitted and the trailing argument arg5 is specified, commas must be used 
to delimit the positions of the omitted arguments. 
ENTRY-POINT-NAME argl ,arg2 , [arg3] ,nullarg [,arg4] [,arg5] 

Typically, VAX/VMS system services, utility routines, and VAX Run-Time Library 
routines contain call formats with more than three arguments. 

Example 3 In the following call format example, the trailing four arguments are 
optional as a group, that is, either you specify arg2, arg3, arg4, and arg5 or none of 
them. Therefore, if the optional arguments are not specified, commas need not be 
used to delimit unoccupied positions. 

However, if a hypothetical required argument or a separate optional argument were 
specified after arg5, commas must be used when arg2, arg3, arg4, and arg5 are 
omitted. 
ENTRY-POINT-NAME argl [ , arg2 , arg3 , arg4 , arg5] 

Example 4 In the following example, you may specify arg2 and omit arg3. 
However whenever you specify arg3, you must specify arg2 
ENTRY-POINT-NAME argl [,arg2 [,arg3]] 

Explanatory Text 

Explanatory text may follow one or both of the above formats. This text is present 
only when needed to clarify the format. For example, the call format indicates that 
arguments are optional by enclosing them in brackets ([]). However, brackets alone 
cannot convey all the important information that may apply to optional arguments. 
For example, in some routines that have many optional arguments, if one optional 
argument is selected, another optional argument must also be selected. In such cases, 
text following the format clarifies this fact. 

Table 18-2 General Rules of Syntax 

Element 

Entry point names 

Argument names 

Spaces 

Braces 

Brackets ( [ ] ) 

Syntax Rule 

Entry point names are always shown in uppercase characters. 

Argument names are always shown in lowercase characters. 

One or more spaces are used between the entry point name 
and the first argument, and between each argument. 

Braces surround two or more arguments. You must choose 
one of the arguments. 

Brackets surround optional arguments. Note that commas too 
can be optional (see the comma element). 



UIS Routine Descriptions 18-5 

Table 18-2 (Cont.) General Rules of Syntax 

Element 

Commas 

Null arguments 

Syntax Rule 

Between arguments, the comma always follows the space. If 
the argument is optional, the comma may appear inside the 
brackets or outside the brackets, depending on the position 
of the argument in the list and on whether surrounding 
arguments are optional or required. 

A null argument is a place-holding argument. It is used 
for either of the following reasons: (1) to hold a place in 
the argument list for an argument that has not yet been 
implemented by DIGITAL but may be in the future or (2) 
to mark the position of an argument that was used in earlier 
versions of the routine but is not used in the latest version 
(upward compatibility is thereby ensured because arguments 
that follow the null argument in the argument list keep their 
original positions). A null argument is always given the name 
nullarg. 

In the argument list constructed on the stack when a 
procedure is called, both null arguments and omitted optional 
arguments are represented by longword argument list entries 
containing the value O. The programming language syntax 
required to produce argument list entries containing 0 differ 
from language to language, so see your language user's guide 
for language-specific syntax. 

18.1.2 Returns Heading 
Under the returns heading appears information that describes what information, 
if any, is returned by the routine to the caller. Programs written in VAX MACRO 
return information in RO. The information that is returned is a longword value. 

The high-level language programmer receives status information in the return (or 
status) variable he or she uses when making the call. The run-time environment 
established for the high-level language program allows the status information in 
RO to be moved automatically to the user's return variable. The information that is 
returned is always a longword value. 



18-6 UIS Routine Descriptions 

18.1.3 Arguments Heading 

Under the arguments heading appears detailed information about each argument 
listed in the call format. Arguments are described in the order in which they appear 
in the call format. If the routine has no arguments, the term "none" appears. 

The following format is used to describe each argument. 
argument-name 

VMS Usage: argument-VMS-data-type 
type: argument-data-type 
access: argument-access 
mechanism: argument-passing-mechanism 

One paragraph of structured text, followed by other 
paragraphs of text, as needed. 

18.2 Functional Organization of UIS Routines 

The UIS routines perform many functions within an application program. Besides, 
creating the graphic objects that you see on the display screen, there are routines 
that manage the input devices and routines that return information to the program to 
name a few. 

Figure 18-1 lists each UIS routine by functional category. 



UIS Routine Descriptions 18-7 

Figure 18-1 Functional Categories of UIS Routines 

AST -Enabling Routines 

UIS$SET-ADDOPT-AST 
UIS$SET_BUTTON -AST 
UIS$SET_CLOSE-AST 
UIS$SET-EXPAND-ICON -AST 
UIS$SET_GAIN -I<B-AST 
UIS$SET-I<B-AST 
UIS$SET_LOSE -I<B-AST 
UIS$SET-MOVE -INFO-AST 
UIS$SETJOINTER-AST 
UIS$SET-RESIZE-AST 
UIS$SET_SHRINK_ TO-ICON -AST 
UIS$SET_TB-AST 

Attribute Routines 

UIS$SET-ARC_ TYPE 
UIS$SET_BACKGROUND-INDEX 
UIS$SET_CHAR-ROTATION 
UIS$SET_CHAR_SIZE 
UIS$SET_CHAR_SLANT 
UIS$SET_CHAR_SPACING 
UIS$SET_CLIP 
UIS$SETJILL J ATTERN 
UIS$SETJONT 
UIS$SET_LINE _STYLE 
UIS$SET_LINE_ WIDTH 
UIS$SET_ TEXTJORMATTING 
UIS$SET_TEXT-MARGINS 
UIS$SET_ TEXTJ ATH 
UIS$SET_ TEXT_SLOPE 
UIS$SET_ WRITING -INDEX 
UIS$SET_WRITING-MODE 

Color Routines 

UIS$CREATE_COLOR_MAP 
UIS$CREATE_COLOR_MAP_SEG 
UIS$DELETE_COLOR_MAP 
UIS$DELETE_COLOR-MAP_SEG 
UIS$HLS_TO-RGB 
UIS$HSV_TO-RGB 
UIS$RESTORE_CMS_COLORS 
UIS$RGB_TO_HLS 
UIS$RGB_ TOJiSV 
UIS$SET_COLOR 
UIS$SET_COLORS 
UIS$SET_INTENSITIES 
UIS$SET-INTENSITY 

Display List Routines 

UIS$BEGIN _SEGMENT 
UIS$COPY_OBJECT 
UIS$DELETE_OBJECT 
UIS$DELETE_PRIVATE 
UIS$DISABLE_DISPLAY_LIST 
UIS$ENABLE_DISPLAY_LIST 
UIS$END_SEGMENT 
UIS$ERASE 
UIS$EXECUTE 
UIS$EXECUTE_DISPLAY 
UIS$EXTRACT_HEADER 
UIS$EXTRACT_OBJECT 
UIS$EXTRACTJRIVATE 
UIS$EXTRACT_REGION 
UIS$EXTRACT_TRAILER 
UIS$FIND_PRIMITIVE 
UIS$FIND_SEGMENT 
UIS$INSERT_OBJECT 
UIS$MOVE-AREA 
UIS$PRIVATE 
UIS$SET_INSERTION _POSITION 
UIS$TRANSFORM_OBJECT 

Graphics Routines 

UIS$CIRCLE 
UIS$ELLIPSE 
UIS$IMAGE 
UIS$LINE 
UIS$LINE-ARRAY 
UIS$PLOT 
UIS$PLOT-ARRAY 

Inquiry Routines 

UIS$GET-ABSJOINTER_POS 
UIS$GET-ALIGNED_POSITION 
UIS$GET-ARC_ TYPE 
UIS$GET_BACKGROUND_INDEX 
UIS$GET_BUTTONS 
UIS$GET_CHAR~OTA TION 
UIS$GET_CHAR_SIZE 
UIS$GET_CHAR_SLANT 
UIS$GET_CHAR_SPACING 
UIS$GET_CLIP 
UIS$GET_COLOR 
UIS$GET_COLORS 
UIS$GET_CURRENT_OBJECT 

ZK 4674·85 

(Continued on next page) 



18-8 UIS Routine Descriptions 

Figure 18-1 (Cont.) Functional Categories of UIS Routines 

Inquiry Routines (cont.) 

UIS$GET_DISPLAY_SIZE 
UIS$GET_FILL _P ATTERN 
UIS$GET_FONT 
UIS$GET_FONT-A TTRIBUTES 
UIS$GET_FONT_SIZE 
UIS$GET_HW_COLOR_INFO 
UIS$GET_INTENSITIES 
UIS$GET_INTENSITY 
UIS$GET_KB-A TTRIBUTES 
UIS$GET_LINE _STYLE 
UIS$GET_LINE_ WIDTH 
UIS$GET_NEXT_OBJECT 
UIS$GET_OBJECT-A TTRIBUTES 
UIS$GETJ ARENT_SEGMENT 
UIS$GET_POINTER_POSITION 
UIS$GET_POSITION 
UIS$GET_PREVIOUS_OBJECT 
UIS$GET_ROOT_SEGMENT 
UIS$GET_ TB_INFO 
UIS$GET_ TB_POSITION 
UIS$GET_ TEXT_FORMATTING 
UIS$GET_ TEXT_MARGINS 
UIS$GET_ TEXT_P ATH 
UIS$GET_ TEXT_SLOPE 
UIS$GET_ VCM_ID 
UIS$GET_ VIEWPORT_ICON 
UIS$GET_ VIEWPORT_POSITION 
UIS$GET_ VIEWPORT_SIZE 
UIS$GET_ VISIBILITY 
UIS$GET_WINDOW-A TTRIBUTES 
UIS$GET_WINDOW_SIZE 
UIS$GET_ WRITING_INDEX 
UIS$GET_WRITING_MODE 
UIS$GET_WS_COLOR 
UIS$GET_ WS_INTENSITY 

Keyboard Routines 

UIS$CREATE_KB 
UIS$DELETE_KB 
UIS$DISABLE_KB 
UIS$DISABLE_ VIEWPORT_KB 
UIS$ENABLE_KB 
UIS$ENABLE_ VIEWPORT_KB 

Keyboard Routines (cont.) 

UIS$READ_CHAR 
UIS$SET_KB-A TTRIBUTES 
UIS$SET_KB_COMPOSE2 
UIS$SET_KB_COMPOSE3 
UIS$SET_KB_KEYTABLE 
UlS$TEST_KB 

Pointer Routines 

UIS$CREATE_ TB 
UIS$DELETE_ TB 
UIS$DISABLE_TB 
UIS$ENABLE_TB 
UIS$SET_POINTER_P ATTERN 
UIS$SET_POINTER_POSITION 

Sound Routines 

UIS$SOUND_BELL 
UIS$SOUND_CLICK 

Text Routines 

UIS$MEASURE_ TEXT 
UIS$NEW_ TEXT_LINE 
UIS$SET-ALIGNED_POSITION 
UIS$SET_POSITION 
UIS$TEXT 

Windowing Routines 

UIS$CLOSE_WINDOW 
UIS$CREATE _DISPLAY 
UIS$CREATE_ TERMINAL 
UIS$CREATE_TRANSFORMATION 
UIS$CREATE_WINDOW 
UIS$DELETE_DISPLAY 
UIS$DELETE_ TRANSFORMATION 
UIS$DELETE_WINDOW 
UIS$EXP AND_ICON 
UIS$MOVE_ VIEWPORT 
UIS$MOVE_ WINDOW 
UIS$POP_ VIEWPORT 
UIS$PUSH_ VIEWPORT 
UIS$RESIZE_ WINDOW 
UIS$SHRINK_ TO_ICON 

ZK 4674/1 85 



UIS Routine Descriptions 18-9 
UIS$BEGIN_SEGMENT 

UIS$BEGIN_SEGMENT 
Begins a new segment in the virtual display. 

Format 

seg_id=UIS$BEGIN_SEGMENT vd_id 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the segment identifier in the variable seg_id or 
RO (VAX MACRO). The segment identifier uniquely identifies a segment and 
is used as an argument in other routines. 

UIS$BEGIN _SEGMENT signals all errors; no condition values are returned. 

Argument 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vcLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vcLid argument. 

Description 

All values of attribute blocks 0 to 255 are propagated to the new segment, 
but all changes to attribute blocks in this segment will be local to this 
segment only and not the parent. 

You can also nest segments. 



18-10 UIS Routine Descriptions 
UIS$BEGIN_SEGMENT 

Illustration 

First-Level Segment 
UIS$BEGIN_SEGMENT -------------------, 

Second-Level Segment 
UIS$BEGIN_SEGMENT ------------" 

UIS$END_SEGMENT 

UIS$BEGIN_SEGMENT 
Second-Level Segment 

UIS$BEGIN_SEGMENT 
Third-Level Segment 

==:J UIS$END_SEGMENT 

UIS$END_SEGMENT 

UIS$END_SEGMENT 

ZK-5371-86 



UIS$CIRCLE 

UIS Routine Descriptions 
UIS$CIRCLE 

Draws an arc along the circumference of a circle. 

Format 

UIS$CIRCLE 

Returns 

vd_id, atb, center-x, center_y, xradius 
[,start_deg ,end_degj 

UIS$CIRCLE signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

18-11 

Virtual display identifier. The v<Lid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the v<Lid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that specifies an attribute block that controls the appearance of the 
circle or arc. 

center-x, center_y 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Center position x and y world coordinates. The center-x and center_y 
arguments are the addresses of f-Iloating point numbers that define a point 
in the virtual display that is the center of the arc or circle~ 



18-12 UIS Routine Descriptions 
UIS$CIRCLE 

xradius 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Radius of the circle specified as an x world coordinate width. The xradius 
argument is the address of an f-floating point number that defines the 
distance from the center of the circle to the circumference of the circle. 

start_deg, end_deg 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Degree at which the arc starts and ·~ends. The start_deg and end-deg 
arguments are the addresses of f-floating point numbers that define the 
starting and ending point on the circumference of the circle where the arc 
or circle will be drawn. Degrees are measured clockwise from the top of the 
circle. If these arguments are not specified, 0.0 degrees and 360.0 degrees are 
assumed, respectively. 

Description 

UIS$CIRCLE draws an arc specified by a center position and a radius for the 
range of the degrees specified. 

The arc can be closed by drawing one or more lines between the endpoints. 
The arc type associated with the attribute block specifies the way in which 
the arc is closed. The arc is not closed off by default. See UIS$SET-ARC
TYPE for details. 

The points are drawn with the current line pattern and width, and filled with 
the current fill pattern if enabled. 

UIS$CIRCLE does not support the following combination of attributes: 

• Line width not equal to 1 and line style not equal to FFFFFFFF16 

• Line width not equal to 1 and complement writing mode 

Circles are distorted by differences between the aspect ratios of the display 
window and display viewport. 



UIS Routine Descriptions 18-13 
UIS$CIRCLE 

Screen Output 

ZK·5390·86 



18-14 UIS Routine Descriptions 
UIS$CLOSE_WINDOW 

UIS$CLOSE_ WINDOW 
Calls the system service SYS$EXIT to exit the current image. 

Format 

UIS$CLOSE_WINDOW wd_id 

Returns 

UIS$CLOSE_WINDOW signals all errors; no condition values are returned. 

Argument 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wc.L.id argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wc.L.id argument. 

Description 

UIS$CLOSE_WINDOW is invoked as the default action taken by the 
"Delete" menu item in the Window Options Menu. See UIS$SET_CLOSE_ 
AST for information about overriding this routine. 



UIS Routine Descriptions 18-15 
UIS$COPY _OBJECT 

UIS$COPY _OBJECT 
Copies the specified object and its private data within the virtual display. 
It may also transform the coordinates or attributes or both of the specified 
object. The original object remains unchanged in the virtual display. 

Format 

copy_id=UIS$COPY _OBJECT { obj_i~ } lmatrix]latb] 
seg_ld' , 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the copy identifier in the variable copy_id or RO 
(VAX MACRO). The copy identifier uniquely identifies a newly copied object. 

UIS$COPY_OBJECT signals all errors; no condition values are returned. 

Arguments 

obi-id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Object identifier. The obj-id argument is the address of a longword that 
uniquely identifies an object. 

seg_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Segment identifier. The ses-id argument is the address of a longword that 
uniquely identifies the segment. See UIS$BEGIN _SEGMENT for more 
information about the ses-id argument. 



18-16 UIS Routine Descriptions 
UIS$COPY _OBJECT 

matrix 
VMS Usage: vector_longword_signed 
type: f_floating 
access: read only 
mechanism: by reference 

Transformation matrix. The matrix argument is the address of a 2 x 3 matrix 
of longwords containing scaling, translation, and/or rotation data. 

Structure of a VAX FORTRAN Two-Dimensional Array 

A two-dimensional array declared as ARRAY(2,3) has the following structure. 

1,1 1,2 1,3 

2,1 2,2 2,3 

ZK·5492·86 

Different languages allocate memory for array elements in different orders. 
This description assumes the order used by VAX FORTRAN. If you call 
UIS$COPY_OBJECT from another language, make sure that the array 
elements are in the same order. 

Memory addresses of array elements range from lowest to highest in the 
following order: (1,1),(2,1), (1,2),(2,2),(1,3), and (2,3). The order of array 
element is shown in the following figure. 

3 5 

2 4 6 

ZK·5493-86 

Pairs of array elements govern how displayed objects are scaled, rotated, 
and translated. UIS computes the transformed coordinates in the following 
manner. 

Xl = A(1.1)*x + A(1.2)*y + A(1.3) 

YI = A(2.1)*x + A(2.2)*y + A(2.3) 



Translation 

U IS Routine Descriptions 
UIS$COPY _OBJECT 

When translation alone is performed, the following array elements are 
assigned values. Dx and Dy represent distances between the original 
coordinates and the new coordinates. 

o Ox 

o Oy 

ZK-5494-86 

Scaling 

18-17 

When scaling alone is performed, the following array elements are assigned 
values. 

Sx o o 

o Sy o 

ZK-5495-86 

Rotation 

When rotation alone is performed, the following array elements are assigned 
values, where "@" is the desired angle of rotation measured clockwise. The 
values returned from the VAX FORTRAN SIN and COS functions are stored 
in the appropriate array elements. 

cos (@) sin (@) 0 

-sin (@) cos (@) 0 

ZK-5496-86 

An unlimited number of transformations can be performed at one time by 
simply multiplying the matrices together into a single matrix using matrix 
multiplication. 



18-18 UIS Routine Descriptions 
UIS$COPY _OBJECT 

In order to multiply two matrices together, you must add a row to the bottom 
of each matrix. 

o o 

ZK·5461·86 

After the multiplication is performed, remove the last row of the result. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The alb argument is the address of a longword that 
identifies an attribute block whose attribute settings override current segment 
attributes. 

Description 

Either the coordinates can be transformed, or the attributes can be overridden 
or both. 

After a transformation, occluded objects may not appear correctly on the 
display screen. This can be corrected by calling UIS$EXECUTE to correctly 
refresh the display screen. 



UIS Routine Descriptions 18-19 
UIS$COPY _OBJECT 

Screen Output 



18-20 UIS Routine Descriptions 
UIS$CREATE_COLOR_MAP 

UIS$CREATE_COLOR_MAP 
Creates a virtual color map of the specified size and with the specified 
attributes. 

Format 

vcm_id=UIS$CREATE_COLOR-MAP 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

vem_size 
[, vem_name] 
[, vem_attributes] 

Longword value returned as the virtual color map identifier in the variable 
vcm_id or RO (VAX MACRO). The virtual color map identifier uniquely 
identifies the virtual color map and must be specified in UIS$CREATE_ 
DISPLAY. It is also used as an argument in other color routines. 

UIS$CREATE_COLOR--MAP signals all errors; no condition values are 
returned. 

Arguments 

vern_size 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Size of the virtual color map. The vcm-size argument is the address of a 
longword that defines the number of entries in the virtual color map. 

vern_name 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 



U IS Routine Descriptions 
UIS$CREATE_COLOR_MAP 

18-21 

Name of the virtual color map. The vem--11ame argument is the address of 
a string descriptor of the name of the virtual color map. Specify the name of 
an existing shareable color map. If your application is creating the shareable 
color map, specify a valid color map name. 

The virtual color map name should not exceed 15 characters. 

vem_attributes 
VMS Usage: item_list_pair 
type: longword (unsigned) 
access: read only 
mechanism: by descriptor 

Virtual color map attributes. The vem_attributes argument is the address of 
data structure of longword pairs that specify virtual color attributes. 

The following figure describes the structure of this argument. 

Attribute code 
(VCMAL$C-xxxx) 

Longword value for attribute 
specified in previous longword 

2nd attribute code 

2nd attribute value 

· · · 
End of list = 0 

(VCMAL$C_END_OF _LIST) 

ZK-5367-86 

All of the following virtual color map attributes are optional. 



18-22 UIS Routine Descriptions 
UIS$CREATE_COLOR_MAP 

Attributes Function 

General attributes 
Set for resident virtual color map 
Set for shareable virtual color map 

VCMAL$C-A TTRIBUTES 
VCMAL$M_RESIDENT 
VCMAL$M_SHARE 
VCMAL$M_SYSTEM 1,2 
VCMAL$M_NO_BIND 

Set for system shareable virtual color map 

1 VCMAL$M_SHARE must also be set. 

2SYSGBL privilege is required. 

Illustration 

Set to disable automatic hardware color map binding 

, Color Map Entry 

0 

1 

2 

3 

4 

5 

_____ ---J1 4 
Color Map Index 

ZK-5370-86 



UIS Routine Descriptions 
UIS$CREATE_COLOR_MAP _SEG 

18-23 

Allocates one or more hardware color map indices and binds them to a 
virtual color map. 

Format 

cms_id=UIS$CREATE_COLOR_MAP _SEG 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

vcm_id 
[,devnam] 
[,place_mode] 
[,place_data] 

Longword value returned as the color map segment identifier in the variable 
cms_id or RO (VAX MACRO). The color map segment identifier uniquely 
identifies the color map segment and is used as an argument in other 
routines. 

UIS$CREATE_COLOR~AP_SEG signals all errors; no condition values 
are returned. 

Arguments 

VCl7Lid 

VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual color map identifier. The vcm-1d argument is the address of a 
longword that uniquely identifies the virtual color map. See UIS$CREATE_ 
COLOR~AP for more information about the vcm-1d argument. 

NOTE: This routine can only be used once for each virtual color map 
identifier. 



18-24 UIS Routine Descriptions 
UIS$CREATE_COLOFLMAP _SEG 

devnam 
VMS Usage: device_name 
type: character string 
access: read only 
mechanism: by descriptor 

Device name. The devnam argument is the address of a character string 
descriptor of the workstation device name. Specify the device name 
SYS$WORKSTATION in the devnam argument. 

place_mode 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Placement mode. The place-mode argument is the address of a longword 
that specifies the placement mode, that is, which hardware color map entries 
can be allocated. The following table lists valid placement modes. 

Symbol 

UIS$C_GENERAL 

place_data 

Function 

General placement-Allocates any available entries 
in the hardware color map. 

Exact placement-Allocates map entries starting at 
the specified entry and aligned on a natural entry 
boundary. Given the size of the virtual color map, 
VIS computes a working size that is the smallest 
power of 2 greater than or equal to the requested 
size. The natural alignment of a map is a starting 
index that is a multiple of the working size. For 
example, a six-entry color map could be placed at 
indices 0, 8, 16 and so on. 

Based placement (default)-Allocates entries such 
that writing modes using Boolean logic operations on 
pixel values can correctly display color intersections. 

VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Placement data. The place_data argument is the address of a longword that 
contains the first index to be allocated. The placement_data argument is 
used with exact placement mode. 



Description 

U IS Routine Descriptions 
UIS$CREATE_COLOFLMAP _SEG 

18-25 

For hardware supporting bit plane write masks, the segment will be based 
at an index that is a power of 2 and that write operation will be performed 
using the appropriate mask. The virtual color map entry index specified in 
the place_data argument indicates the binding between the virtual color map 
and the hardware color map entries allocated by UIS$CREATE_COLOR_ 
MAP_SEG. The default value is 0, that is, the first allocated map entry is 
bound to virtual color map entry 0, the second allocated map entry is bound 
to virtual color map entry I, and so on. 

If the appropriate entries cannot be allocated, an error is signaled. In addition 
to failure due to resource depletion, a call to UIS$CREATE_COLOR-MAP_ 
SEG can fail because UIS has already issued this call for the application. 
This occurs if the flag VCMAL$M~O_BIND is not set when the virtual 
color map is created, and internal processing required a binding to hardware 
resources. For example, UIS$CREATE_WINDOW allocates and binds 
hardware color map resources when creating a display viewport. 

Conversely, if VCMAL$M~O_BIND is set, but UIS$CREATE_COLOR_ 
MAP_SEG was not called, calls to some UIS routines such as UIS$SET_ 
COLOR and UIS$SET-INTENSITY may fail. 

NOTE: The recommended procedure for using this routine is as follows: 

1. Specify the flag VCMAL$M~O_BIND when creating the virtual color 
map with UIS$CREATE_COLOR-MAP. 

2. Invoke UIS$CREATE_COLOR-MAP_SEG before calling any other UIS 
routine. 

3. Initialize the color map using UIS$SET_COLORS. By definition all colors 
are black. 



18-26 UIS Routine Descriptions 
UIS$CREATE_DISPLA Y 

UIS$CREATE_DISPLA Y 
Creates a virtual display. 

Format 

vd_id=UIS$CREATE_DISPLAY x1' Y1, x2, Y2, width, height 
[,vcm_idj 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the virtual display identifier in the variable 
vd_id or RO (VAX MACRO). The virtual display identifier uniquely identifies 
the virtual display and is used as a parameter in all output and attribute 
routines. 

UIS$CREATE_DISPLAY signals all errors; no condition values are returned. 

Arguments 

Xl' Yl' X2, Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Worl9 coordinates of the virtual display space. The xl and YI arguments are 
the addresses of f-Iloating point numbers that define the lower-left corner of 
the virtual display space. The X2 and Y2 are the addresses of f-Iloating point 
numbers that define the upper-right comer of the virtual display. 

These arguments define mapping and scaling factors and are not the 
boundaries of the virtual display. 

width, height 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 



UIS Routine Descriptions 
UIS$CREATE_DISPLA Y 

18-27 

Width and height of the display viewport. The width and height arguments 
are the addresses of LJ.loating point numbers that define both the width and 
height of the display viewport in centimeters. 

vcm_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual color map identifier. The vcm-id argument is the address of a 
longword that uniquely identifies the virtual color map. See UIS$CREATE_ 
COLOR--MAP for more information about the vcm-id argument. 

If vcm-id is not specified, a two-entry virtual color map is created for the 
virtual display by default. 

Description 

To avoid distorting the resulting graphic image, the aspect ratio of the world 
coordinate range of the display window must be equal to the aspect ratio of 
the display viewport. See UIS$CREATE_WINDOW for more information 
about aspect ratios. 



18-28 UIS Routine Descriptions 
UIS$CREATE_KB 

UIS$CREATE_KB 
Creates a virtual keyboard on the specified device. 

Format 

kb_id=UIS$CREATE_KB devnam 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the virtual keyboard identifier in the variable 
kb_id or RO (VAX MACRO). The virtual keyboard identifier uniquely 
identifies the virtual keyboard. The variable kb_id is used as an argument in 
other routines. 

UIS$CREATE-KB signals all errors; no condition values are returned. 

Argument 

devnam 
VMS Usage: device_name 
type: character string 
access: read only 
mechanism: by descriptor 

Device name string. The devnam argument is the address of a character 
string descriptor of the workstation device name. Specify the logical name 
SYS$WORKSTATION as the device name string. 

Description 

UIS$CREATE-KB generates a value for the kb-id argument which is 
referenced in subsequent routines that use kb-id as a parameter. 



Example 

UIS Routine Descriptions 
UIS$CREATE_KB 

VD_ID=UIS$CREATE_DISPLAY(-5.0.-5.0.50.0.45.0.15.0.15.0) 

KB_ID=UIS$CREATE_KB('SYS$WORKSTATION') ~ 

WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION'.'VIEWPORT TITLE'. 
2 10.0.10.0.25.0,25.0) 

CALL UIS$ENABLE_VIEWPORT_KB(KB_ID.WD_ID) ~ 

18-29 

The preceding example creates a virtual keyboard ~ and binds the virtual 
keyboard to a display window~. In order to use the virtual keyboard and 
its characteristics with the desired viewport, you must assign the physical 
keyboard to the desired virtual keyboard and viewport. Press the FS or 
ICYCLEl key until the KB icon in the appropriate viewport is highlighted. 

The call to UIS$DISABLE_ VIEWPORTJB .. explicitly disables the binding 
between the virtual keyboard and the display window. Also, the ability to 
assign the physical keyboard to the appropriate virtual keyboard, that is, to 
cycle from viewport to viewport, is disabled. 

If UIS$ENABLEJB were called after UIS$ENABLE_ VIEWPORT_KB, the 
KB icon would have been highlighted as soon as the program executed. 



18-30 UIS Routine Descriptions 
UIS$CREATE_KB 

Illustration 

Virtual 
Displays 

A 

Virtual 
Keyboards 

ZK-5452-86 



UIS Routine Descriptions 18-31 
UIS$CREATE_ TB 

UIS$CREATE_ TB 
Creates a tablet digitizer identifier that allows you to connect your process to 
the tablet. 

Format 
tb_id=UIS$CREATE_ TB devnam 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Longword value returned as the tablet identifier in the variable tb_id or RO 
(VAX MACRO). The tablet identifier uniquely identifies the tablet device and 
can be used in other routines where appropriate. 

UIS$CREATE_TB signals all errors; no condition values are returned. 

Argument 
devnam 
VMS Usage: device_name 
type: character string 
access: read only 
mechanism: by descriptor 

Device name. The devnam argument is the address of a character string 
descriptor of the workstation device name. Specify SYS$WORKSTATION as 
the default device name character string. 

Description 

UIS$CREATE_TB creates a tablet digitizer identifier. When you want 
to connect to the tablet, you must specify this identifier in a call to 
UIS$ENABLE_TB. 



18-32 UIS Routine Descriptions 
UIS$CREATE_ TERMINAL 

UIS$CREATE_ TERMINAL 
Creates a terminal emulation window of the specified type. 

Format 

UIS$CREATE_ TERMINAL 

Returns 

termtype [,title] [,attributes] 
[,devnam] [,qevlen] 

UIS$CREATE_TERMINAL signals all errors; no condition values are 
returned. 

Arguments 

termtype 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Terminal type. The termtype argument is the address of a character string 
descriptor of the terminal type. Specify either WT for a VT220 emulation 
window or TK for a TEK4010/4014 emulation window. 

title 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Window title. The title argument is the address of a descriptor of a character 
string that is the title of the terminal emulation window. 

attributes 
VMS Usage: item_list_pair 
type: longword 
access: read only 
mechanism: by reference 

Window attributes list. The attributes argument is the address of a data 
structure that contains two or more longwords. The list consists of one or 
more longword pairs, or doublets. The first longword contains an attribute 



UIS Routine Descriptions 
UIS$CREATE_TERMINAL 

18-33 

code, while the second longword holds an attribute value (which can be real 
or integer). The constant WDPL$C-END_OF_LIST terminates the list. 

The window attributes list has the same format as defined in the 
UIS$CREATE_WINDOW service. If your application program is written 
in FORTRAN, use the RECORD data type to construct the attribute list. 
Refer to UIS$CREATE_WINDOW for a description of the attribute list. 

devnam 
VMS Usage: device_name 
type: character string 
access: write only 
mechanism: by descriptor 

New terminal emulation device name. The devnam argument is the address 
of a character string descriptor of a location that receives the new terminal 
emulation device name string. 

dev/en 
VMS Usage: word_unsigned 
type: word (unsigned) 
access: write only 
mechanism: by reference 

Length of the terminal emulation device name string. The devlen argument 
is the address of a word that receives the length of the terminal device name 
character string. 

Description 

UIS$CREATE_TERMINAL creates a pseudo device in the VMS database 
and returns the device name string for the device. The window may not 
appear on the screen until a channel is assigned to the device using the 
SYS$ASSIGN system service and the first write to the device is performed. 

The pseudodevice is created without any initial owner. Once a channel is 
assigned to the device, it is owned by that process, which is usually the same 
process that issued the UIS$CREATE_TERMINAL call. After all channels 
have been deassigned, the pseudodevice will be removed automatically from 
the system. If a permanent pseudodevice is required, then the application 
should specify a process that maintains a permanent channel to the device. 



18-34 UIS Routine Descriptions 
UIS$CREATE_ TRANSFORMATION 

UIS$CREATE_ TRANSFORMATION 
Creates a two-dimensional world coordinate transformation into an existing 
virtual display's coordinate space. It provides for two-dimensional translation 
and scaling, but not rotation. 

Format 

tr _id=UIS$CREATE_ TRANSFORMATION 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

vd_id, x1, Y1' 
x2, Y2 [,Vdx1' 
vdy l' vdx 2' vdy 21 

Longword value returned as the transformation identifier in the variable 
tr _id or RO (VAX MACRO). The transformation identifier uniquely identifies 
a transformation coordinate space. See the "DESCRIPTION" section below 
for more information about tr_id. 

UIS$CREATE_TRANSFORMATION signals all errors; no condition values 
are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The v<Lid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the v<Lid argument. 

xl' Yl' X2' Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 



UIS Routine Descriptions 
UIS$CREATE_ TRANSFORMATION 

18-35 

World coordinates of the new coordinate space. The Xl and Yl arguments 
and the x2 and Y2 arguments are the addresses of f-Boating point numbers 
that define the lower-left comer and upper-right comer of the new 
transformation coordinate space, respectively. 

vdX11 VdY11 vdX21 vdY2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinates of the original virtual display space. The vdXl and VdYl 
arguments are the addresses of f-Boating point numbers that define the 
lower-left comer of the corresponding virtual display space. The vdX2 and 
VdY2 arguments are the addresses of f-Boating point numbers that define 
the upper-right comer of the corresponding virtual display space. If these 
optional arguments are not specified, the world coordinates specified in 
UIS$CREATE_DISPLAY are used. 

Description 

Once the transformation is created, it can be used in any routine that accepts 
a vd-id argument except UIS$DELETE_DISPLAY by substituting the tr-id 
argument instead. When the tr-id value is used, it indicates the same virtual 
display but that the coordinates are mapped relative to the transformation 
coordinate space, and not the original virtual display coordinate space. Each 
routine automatically performs the transformation. 



18-36 UIS Routine Descriptions 
UIS$CREATE_ TRANSFORMATION 

Illustration 

vd_id = UIS$CREATE-DISPLA Y 
.-------------------, (50,30) 

~--------'~ 
(0,0) I Original + World Coordinate 

~pace 
tr_id = UIS$CREATE-TRANSFORMATION 

.--_______ ......-l---. (30,30) 

~ New World Coordinate Space 

(0,0) ZK-5368-86 



UIS Routine Descriptions 18-37 
UIS$CREATE_WINDOW 

UIS$CREATE_WINDOW 
Creates a display window and an associated display viewport. See 
UIS$GET_WINDOW-ATTRIBUTES for information about window attributes. 

Format 

wd_id=UIS$CREATE_WINDOW 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

vd_id, devnam [, title] [,x l' 
Y1' x2' Y2] [,width, height] 
[,attributes] 

Longword value returned as the display window identifier in the variable 
wd_id or RO (VAX MACRO). The display window identifier uniquely 
identifies the display window and is used as an argument in other routines. 

UIS$CREATE_WINDOW signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The v"--id argument is the address of a longword 
value that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY 
for more information about the v"--id argument. 

devnam 
VMS Usage: device-"ame 
type: character string 
access: read only 
mechanism: by descriptor 



18-38 UIS Routine Descriptions 
UIS$CREATE_WINDOW 

Device name. The devnam argument is the address of a character string 
descriptor of the display device on which the display viewport is created. 
Specify the logical name SYS$WORKSTATION as the name of the device. 

title 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Banner title. The title argument is the address of a descriptor of the character 
string to be inserted into the banner of the display viewport. If the argument 
title is not specified, the display banner is created without a title. 

Xl' Yl X2' Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinates of the display window. The XII YI and x21 Y2 arguments 
are addresses of f-floating point numbers that define the lower-left comer 
and upper-right comer of the display window rectangle. The display 
window rectangle defines the visible portion of the virtual display. The 
world coordinate space of the display window rectangle is mapped to the 
display screen as the display viewport. 

If these coordinates are not specified, the entire world coordinate space 
specified in the UIS$CREATE_DISPLAY routine is used. 

width, height 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Initial dimensions of the display viewport. The width and height arguments 
are addresses of f-floating point numbers that define the width and height of 
the display viewport in centimeters. If the width and height arguments of 
the display viewport specified in UIS$CREATE_WINDOW are different from 
the width and height arguments specified in the UIS$CREATE_DISPLAY 
routine, the default values of UIS$CREATE_DISPLAY are overridden and 
scaling occurs. 

If the world coordinates of the display window are specified and the width 
and height arguments are not specified, the default dimensions of the 
display viewport are calculated from the ratios of the world coordinate 
values and the width and height specified in UIS$CREATE_DISPLAY. See 



U IS Routine Descriptions 
UIS$CREATE_WINDOW 

18-39 

the Description section for more information about calculating the default 
display viewport dimensions. 

Display viewports that are too large to fit on the screen are automatically 
proportionally scaled in size. 

aHributes 
VMS Usage: item-list_pair 
type: longword integer (signed) or f_floating 
access: read only 
mechanism: by reference 

Display viewport attribute list. The attributes argument is the address of a 
data structure that contains longword pairs, or doublets. The first longword 
stores an attribute ID code and the second longword holds the attribute 
value (which can be real or integer). The constant WDPL$C-END_OF_LIST 
terminates this list. FORTRAN application programs should create a record 
using the RECORD statement to construct this list. It has the following 
format. 

Attri bute I D code 
(WDPL$C_xxx) 

Longword value for attribute 
identified in previous longword 

2nd attribute ID code 

2nd attribute value 

• 

• 

• 
End of list = 0 

(WDPL$C_END_OF _LIST) 

ZK-4581-85 

Window attributes are optional and control window placement and attributes. 



18-40 UIS Routine Descriptions 
UIS$CREATE_WINDOW 

Attribute Description 

WDPL$C-ABSJOS-X 

WDPL$C-ABSJOS_ Y 

/ 

WDPL$CJLACEMENT 

Exact x placement on the screen. 

This attribute defines the x origin of the viewport relative to 
the lower-left comer of the screen. The value is expressed 
as an f-floating point number of centimeters. Note that the 
actual point WDPL$C-ABSJOS-X defines is the lower left 
comer of the display viewport without the border. Along with 
WDPL$C-ABSJOS_Y, this provides the ability to place 
exactly a new viewport at a specific position anywhere on the 
workstation screen. 

Exact y placement on the screen. 

This attribute defines the y origin of the viewport relative to 
the lower-left comer of the screen. The value is expressed 
as an f-floating point number of centimeters. Note that the 
actual point WDPL$C-ABSJOS_ Y defines is the lower-left 
comer of the display viewport without the border. Along with 
WDPL$C-ABSJOS-X, this attribute provides the ability to 
place exactly a new viewport at a specific position anywhere on 
the workstation screen. 

Display viewport placement flags. 

The attribute list is a longword bit vector providing viewport 
placement information. The preference masks (top, bottom, 
left, and right) may be combined by setting more than one bit 
in the bit vector. If the screen becomes crowded, the system 
may override the preference masks. 

• WDPL$M_TOP - The display viewport is placed near 
the top of the physical display 

• WDPL$M_BOTTOM - The display viewport is placed 
near the bottom of the physical display 

• WDPL$M_LEFT - The display viewport is placed near 
the left side of the physical display 

• WDPL$M-RIGHT - The display viewport is placed near 
the right side of the physical display 

• WDPL$M_CENTER - The display viewport is centered 
over the position specified by WDPL$C-ABSJOS-X and 
WDPL$C-ABS_POS_ Y. 



Attribute 

WDPL$C-A TTRIBUTES 

Description 

U IS Routine Descriptions 
UIS$CREATE_WINDOW 

18-41 

• WDPL$M-INVISIBLE - The display viewport is created 
invisibly, that is, off the screen and, hence, cannot be seen. 

• Other bits - The remaining bits are reserved to DIGITAL 
and must be set to zero. 

Display viewport attributes. 

This data structure argument causes the display viewport to 
be created with one or more of the following attributes. These 
attributes are specified as bits in a longword mask. 

• WDPL$M-ALIGNED-The left inner edge of the display 
viewport is to be aligned on byte boundaries. Applications, 
such as the VT220 terminal emulator, can use WDPL$M_ 
ALIGNED to take advantage of text drawing performance 
optimizations when 8-bit characters are written on byte 
boundaries. 

• WDPL$M-NOBANNER-The display viewport is created 
without a banner. If a banner title was specified, it is 
ignored. 

• WDPL$M-NOBORDER-The display viewport is 
created without a border. When you specify WDPL$M_ 
NOBORDER, the attribute WDPL$M-NOBANNER is 
implied. A viewport created without a border cannot be 
moved with the user interface. 

• WDPL$M-NOKB_ICON-The display viewport banner 
is created without a KB icon. Specify this attribute, if you 
are sure the application will never require a KB icon or 
if you wish to add more space in the banner for the title. 
Otherwise, UIS saves an extra quarter of an inch in the 
banner for the KB icon. 

• WDPL$M-NOMENU-ICON-The display viewport 
banner is created without a menu icon. Therefore, the 
Window Options Menu cannot be activated. 

• Other bits-The remaining bits are reserved to DIGITAL 
and must be zero. 



18-42 UIS Routine Descriptions 
UIS$CREATE_ WINDOW 

Attribute Description 

Terminates attributes list. 

This must be the last longword in the attribute list. It does not 
require an associated longword value. 

Description 

UIS$CREATE_WINDOW defines a portion of the virtual display that lies 
within the display window and that is mapped to the display screen as the 
display viewport. 

Default Dimensions of the Display Viewport 

Whenever the world coordinates of the display window are defined, but the 
dimensions of the display viewport are not specified, the system calculates 
the default dimensions of the display viewport using the appropriate 
arguments from each routine as shown in the following figure. The size 
of the display viewport is based on the width and height -arguments in 
UIS$CREATE_DISPLAY in the following manner: 

UIS$CREATE_DISPLA Y UIS$CREATE_WINDOW 

width new_width 

X2 - Xl X2 - Xl 

height 

Y2 - YI Y2 - YI 

ZK-5462-86 

The variables new_width and new-height represent unknown quantities, 
the default dimensions of the display viewport. All other variables are the 
parameters used in the respective routine calls. 

For example, the viewport that is created in the following example is 4 
centimeters wide and 2 centimeters high. 

vd_id=UIS$CREATE_DISPLAY(0.0.0.0.1.0.1.0.8.0.4.0) 
wd_id=UIS$CREATE_WINDOW(vd_id.'SYS$WORKSTATION'.'TEST WINDOW'. 

0.0.0.0.0.5.0.5) 

Otherwise, these values can be overridden with the optional width and 
height arguments in UIS$CREATE_WINDOW. 



Display Viewport Creation 

UIS Routine Descriptions 
UIS$CREATE_WINDOW 

18-43 

Display viewports are always created completely on or off the display screen. 

Distortion of Graphic Objects 

To avoid distortion of graphic objects, the aspect ratios of the display window 
and the display viewport must be equal. 

r----------------.., (x1 ,y1) 

Height 

(xO,yO) (x1,yO) Width 

ZK-4582-85 

In the preceding illustration, the aspect ratio of the display window on the 
left does not appear to be equal to the aspect ratio of the viewport on the 
right. 

You can compare aspect ratios using the following equation. 

I y1 - yOI 

I x1 - xO I 
viewport height 

viewport width 

ZK-4579-85 

The aspect ratio of the display viewport is the absolute value of the height 
divided by the absolute value of the width. 



18-44 UIS Routine Descriptions 
UIS$CREATE_WINDOW 

Example 

STRUCTURE/STRUCT/ .. 
INTEGER*4 CODE_l 
REAL*4 ATTRIB_l 
INTEGER*4 CODE_2 
REAL*4 ATTRIB_2 
INTEGER*4 CODE_3 
INTEGER*4 ATTRIB_3 
INTEGER*4 END 

END STRUCTURE 

RECORD/STRUCT/WINDOW ~ 

WINDOW.CODE_l=WDPL$C_ABS_POS_X 
WINDOW.ATTRIB_l=10.5 
WINDOW.CODE_2=WDPL$C_ABS_POS_Y 
WINDOW.ATTRIB_2=13.25 
WINDOW.CODE_3=WDPL$C_ATTRIBUTES 
WINDOW.ATTRIB_3=WDPL$M_NOKB_ICON .OR. WDPL$M_NOMENU_ICON 
WINDOW.END=WDPL$C_END_OF_LIST 

VD_ID=UIS$CREATE_DISPLAY(-10.0,-10.0,35.5,35.5,16.0,16.0) ~ 

WD_ID=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','LOOK' ,2.0,2.0,28.0,28.0 
2 20.0,20.0,WINDOW) ~ 

The preceding example describes how to construct the data structure 
argument used in UIS$CREATE_WINDOW to enable viewport placement 
and characteristics .. ~. In addition, the example illustrates the minimum 
number of calls used to create a display window ~ e. 



Screen Output 

/Menulcon 

title 

UIS Routine Descriptions 
UIS$CREATE-WINDOW 

18-45 

/r------------ Viewport Title 

---Banner 

__ --Border 

ZK-5278-86 



18-46 UIS Routine Descriptions 
UIS$DELETE_COLOFLMAP 

Deletes a virtual color map. 

Format 

UIS$DELETE_COLOR_MAP vcm_id 

Returns 

UIS$DELETE_COLOR--MAP signals all errors; no condition values are 
returned. 

Argument 

vcm_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual color map identifier. The vcm-id argument is the address of a 
longword that uniquely identifies the" virtual color map. See UIS$CREATE_ 
COLOR--MAP for more information about the vcm-id argument. 

Description 

An attempt to delete an active virtual color map, that is, a virtual color map 
associated with one or more virtual displays, signals an error. 

All virtual displays that reference the virtual color map should be deleted 
first using UIS$DELETE_DISPL~Y. 



UIS Routine Descriptions 
UIS$DELETE_COLOR_MAP_SEG 

Deletes the specified color map segment. 

Format 

UIS$DELETE_COLOR_MAP _SEG cms_id 

Returns 

18-47 

UIS$DELETE_COLOR--MAP_SEG signals all errors; no condition values are 
returned. 

Argument 

cms_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Color map segment identifier. The cms-id argument is the address of a 
longword that uniquely identifies the color map segment to be deleted. See 
UIS$CREATE_COLOR--MAP_SEG for more information about the cms-id 
argument. 

Description 

Color map segment deletion has no effect on the colors being mapped by 
the hardware color map. The deletion of color map segments marks the 
corresponding entries as available for allocation. 

An attempt to delete an active color map segment, that is, a color map 
segment referenced by a virtual color map, signals an error. 

The virtual color map should be deleted first using UIS$DELETE_COLOR_ 
MAP. 



18-48 UIS Routine Descriptions 
UIS$DELETE_DISPLA Y 

UIS$DELETE_DISPLA Y 
Deletes the virtual display, all associated windows, and viewports. 

Format 

UIS$DELETE_DISPLA Y vd_id 

Returns 

UIS$DELETE_DISPLAY signals all errors; no condition values are returned. 

Argument 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vd-id argument. 

Description 

You cannot substitute the tr-id argument for the virtual display identifier in 
this routine. 



UIS Routine Descriptions 18-49 
UIS$DELETE_KB 

UIS$DELETE_KB 
Deletes a virtual keyboard. If the specified virtual keyboard is bound to a 
window or to the physical keyboard, those bindings are terminated. 

Format 
UIS$DELETE_KB kb_id 

Returns 

UIS$DELETEJB signals all errors; no condition values are returned. 

Argument 
kb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual keyboard identifier. The kb-id argument is the address of a 
longword that uniquely identifies a virtual keyboard. See UIS$CREATE_ 
KB for more information about the kb-id argument. 

Description 

UIS$DELETEJB may be used to delete a virtual keyboard at any time 
within a program. 



18-50 UIS Routine Descriptions 
UIS$DELETE_OBJECT 

UIS$DELETE_OBJECT 
Deletes the specified object from the virtual display. 

Format 

UIS$DELETE_OBJECT 

Returns 

UIS$DELETE_OBJECT signals all errors; no condition values are returned. 

Arguments 

obi-id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference . 

Object identifier. The obj-id argument is the address of a longword that 
uniquely identifies the object to be deleted. 

seg_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Segment identifier. The seg-id argument is the address of a longword that 
uniquely identifies the segment. See UIS$BEGIN _SEGMENT for more 
information about the seg-id argument. 

Description 

The screen is updated immediately to reflect the new state of the virtual 
display. If it is impossible to modify only those portions which have 
changed, then the entire display may be replotted. Occluded objects are 
always refreshed. 



UIS Routine Descriptions 18-51 
UIS$DELETE_PRIVATE 

UIS$DELETE_PRIVATE 
Deletes the private data associated with the object. 

Format 

UIS$DELETE_PRIVATE 

Returns 

UIS$DELETEJRIVATE signals all errors; no condition values are returned. 

Arguments 

obj_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Object identifier. The obj-id argument is the address of a longword that 
uniquely identifies an object. 

seg_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Segment identifier. The ses-id argument is the address of a longword that 
uniquely identifies the segment. See UIS$BEGIN _SEGMENT for more 
information about the ses-id argument. 

Description 

If more than one private data item exists, all private data items are deleted. 



18-52 UIS Routine Descriptions 
UIS$DELETIL TB 

UIS$DELETE_ TB 
Deletes the tablet digitizer identifier and disconnects the application from the 
tablet. 

Format 

UIS$DELETE_ TB tb_id 

Returns 

UIS$DELETE_TB signals all errors; no condition values are returned. 

Argument 
tb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Tablet identifier. The tb.-id argument is the address of a longword that 
uniquely identifies the tablet device. See UIS$CREATE_TB for more 
information about the tb.-id argument. 

Description 

UIS$DELETE_TB deletes a tablet digitizing identifier. When your process 
has completed digitizing, you should call this routine to delete the identifier. 



UIS Routine Descriptions 18-53 
UIS$DELETE_ TRANSFORMATION 

UIS$DELETE_ TRANSFORMATION 
Deletes a world coordinate transformation of a virtual display. The 
corresponding virtual display is not affected. 

Format 

UIS$DELETE_TRANSFORMATION tr_id 

Returns 

UIS$DELETE_TRANSFORMATION signals all errors; no condition values 
are returned. 

Argument 

tr_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Transformation identifier. The tr-id argument is the address of a longword 
that uniquely identifies the transformation to be deleted. See UIS$CREATE_ 
TRANSFORMATION for more information about the tr-id argument. 



18-54 UIS Routine Descriptions 
UIS$DELETE_WINDOW 

UIS$DELETE_WINDOW 
Deletes an existing display window and viewport. 

Format 

UIS$DELETE_WINDOW wd_id 

Returns 

UIS$DELETE_WINDOW signals all errors; no condition values are returned, 

Argument 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wd-id argument is the address of a 
longword that uniquely identifies the display window to be deleted. See 
UIS$CREATE_WINDOW for more information about the argument wd-id. 

Description 

UIS$DELETE_WINDOW deletes the display window specified by the 
wLid argument. The associated viewport is removed from the screen. The 
virtual display associated with this display window is neither modified nor 
destroyed during the execution of this service. 



UIS Routine Descriptions 18-55 
UIS$DISABLE_DISPLAY _LIST 

UIS$DISABLE_DISPLA Y _LIST 
Disables specified display list functions. 

Format 

UIS$DISABLE_DISPLAY _LIST vd_id [,display_flags] 

Returns 

UIS$DISABLE_DISPLAY_LIST signals all errors; no condition values are 
returned. 

Arguments 

vcLid 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argUment is the address of a longword 
that uniquely identifies the virtual display whose display list should be 
disabled. See UIS$CREATE_DISPLAY for more information about the 
vLid argument. 

display_flags 
VMS Usage: maslLlongword 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display list flags. The display -flags argument is address of a longword 
mask that controls display screen and display list updates. 

The following table describes the flags and masks. 



18-56 UIS Routine Descriptions 
UIS$DISABLE_DISPLAY _LIST 

Flag Description 

Controls making additions to the display list. 
When disabled, no new dislay list entries 
are made. This flag is set by default when a 
virtual display is created. 

Controls display list modifications. When 
disabled, no display list editing is allowed. 
This flag is set by default when a virtual 
display is created. 

Controls drawing. When disabled, no 
drawing or update occurs. This flag is set 
by default when a virtual display is created. 

The following table lists UIS routines that check the flags. 

Flag UIS Routine 

UIS$COPY_OBJECT 
UIS$DELETE_OBJECT 
UIS$ERASE 
UIS$INSERT_OBJECT 
UIS$MOVE-AREA 
UIS$TRANSFORM_OBJECT 

UIS$CIRCLE 
UIS$ELLIPSE 
UIS$EXECUTE 
UIS$EXECUTE_DISPLAY 
UIS$IMAGE 
UIS$LINE 
UIS$LINE-ARRAY 
UIS$PLOT 
UIS$PLOT-ARRAY 
UIS$TEXT 

1 All routines listed under UIS$M_DL-ENHANCE_LlST and UIS$M_DL-MODIFY_LlST 
will also check the state of UIS$M_DL_UPDATE_WINDOW before doing any screen updates. 

If a bit is set in the mask, the corresponding function is disabled. If the bit is 
0, the corresponding function is not changed. See UIS$ENABLE_DISPLAY_ 
LIST for information on how to enable functions. 

If display-flags is not specified, UIS$M""",""DL-ENHANCE_LIST is disabled. 



UIS Routine Descriptions 18-57 
UIS$DISABLE_DISPLA Y _LIST 

Description 

UIS$DISABLE_DISLAY_LIST is useful in applications such as animation. In 
such a case, display list additions are neither necessary nor desired because 
of the additional overhead. 

Example 

At some point in your application you may wish to perform several 
modifications to the display list without seeing the screen change. 

Insert your modifications here 

CALL UIS$EXECUTE(VD_ID) ! Erases and redraws the virtual display 



18-58 UIS Routine Descriptions 
UIS$DISABLE_KB 

UIS$DISABLE_KB 
Disconnects the physical keyboard from the specified virtual keyboard. See 
the example in UIS$CREATEJCB for more information. 

Format 

UIS$DISABLE_KB kb_id 

Returns 

UIS$DISABLEJCB signals all errors; no condition values are returned. 

Argument 
kb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual keyboard identifier. The kb-id argument is the address of a 
longword that uniquely identifies the virtual keyboard to be disabled. See 
UIS$CREATEJCB for more information about the kb-id argument. 



UIS Routine Descriptions 18-59 
UIS$DISABLE_ TB 

UIS$DISABLE_ TB 
Disconnects the digitizing tablet. 

Format 
UIS$DISABLE_TB tb_id 

Returns 

UIS$DISABLE_TB signals all errors; no condition values are returned. 

Argument 
tb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Tablet identifier. The tb-id argument is the address of longword that 
uniquely identifies the tablet device. See UIS$CREATE_TB for more 
information about the tb-id argument. 

Description 

UIS$DISABLE_TB disconnects your process from the tablet. This routine 
reenables the system pointer and frees the tablet for use by another process. 



18-60 UIS Routine Descriptions 
UIS$DISABLE_ VIEWPORT _KB 

UIS$DISABLE_ VIEWPORT _KB 
Prevents the user from assigning the physical keyboard to a viewport. See 
the example in UIS$CREATE-KB for more information. 

Format 

UIS$DISABLE_ VIEWPORT _KB wd_id 

Returns 

UIS$DISABLE_ VIEWPORT-KB signals all errors; no condition values are 
returned. 

Argument 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. The associated viewport 
of the display window is disabled. See UIS$CREATE_WINDOW for more 
information about the wLid argument. 

Description 

UIS$DISABLE_ VIEWPORT-KB removes the display window from the 
assignment list. You can no longer use the ICYCLEI key to make the viewport 
active. Use UIS$ENABLE_ VIEWPORT-KB or UIS$ENABLE-KB to place 
the display window on the assignment list. 



UIS Routine Descriptions 18-61 
UIS$ELLIPSE 

UIS$ELLIPSE 
Draws an arc along the circumference of an ellipse. 

Format 

UIS$ELLIPSE 

Returns 

vd_id, atb, center-x, center_y, xradius, 
yradius {,start_deg ,end_deg] 

UIS$ELLIPSE signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about vLid argument. 

Btb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies the attribute block that will modify the ellipse. If you 
specify 0 in the atb argument, the default settings of attribute block 0 are 
used. 

center-x, center_y 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 



18-62 U IS Routine Descriptions 
UIS$ELLIPSE 

Center position x and y world coordinates. The center-x and center_y 
arguments are the addresses of f-Hoating point numbers that define a point 
in the virtual display that is the center of the ellipse or arc. 

xradius 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Radius of the ellipse specified as an x world coordinate width. The xradius 
argument is the address of an f-Hoating point number that defines the 
distance from the center of the ellipse to the circumference of the ellipse or 
arc. 

yradius 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Radius of the ellipse specified as a y world coordinate width. The yradius 
argument is the address of an f-Hoating point number that defines the 
distance from the center of the ellipse to the circumference of the ellipse or 
arc. 

start_deg, end_deg 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Degree at which the arc starts and ends. The start_deg and end-deg 
arguments are the addresses of f-Hoating numbers that define the starting 
point and ending point in degrees on the circumference of the ellipse where 
the arc or ellipse will be drawn. Degrees are measured clockwise from the 
top of the ellipse. If these arguments are not specified, 0.0 and 360.0 degrees 
are assumed. If both arguments are not specified, a complete ellipse is 
drawn. 

Description 

UIS$ELLIPSE uses center position coordinates and x and y radii to construct 
an ellipse. Along the circumference of this ellipse, UIS$ELLIPSE draws an 
arc for a specified range of degrees. 



UIS Routine Descriptions 
UIS$ELLIPSE 

18-63 

The arc is closed by drawing one or more lines between the endpoints. The 
type of arc associated with the attribute block specifies the way in which the 
arc is closed. See the UIS$SET-ARC_TYPE routine. 

The points are drawn with the current line pattern and width, and filled with 
the current fill pattern, if enabled. 

UIS$ELLIPSE does not support the following combination of attributes: 

• Line width not equal to 1 and line style not equal to FFFFFFFF16 

• Line width not equal to 1 and complement writing mode 

Ellipses are distorted by differences between the aspect ratios of the virtual 
display and display window. 



18-64 UIS Routine Descriptions 
UIS$ELLIPSE 

Screen Output 

ZK-5418-86 



UIS Routine Descriptions 18-65 
UIS$ENABLE_DISPLAY _LIST 

UIS$ENABLE_DISPLA V _LIST 
Reenables automatic additions to the display list. 

Format 

UIS$ENABLE_DISPLAY _LIST vd_id [,display_flags] 

Returns 

UIS$ENABLE_DISPLAY_LIST signals all errors; no condition values are 
returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vUd argument is the address of a longword 
that uniquely identifies the virtual display whose display list is to be 
enabled. See UIS$CREATE_DISPLAY for more information about the 
vUd argument. 

display_flags 
VMS Usage: maslLlongword 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display list flags. The display-f.l.ags argument is the address of a longword 
mask that controls display screen and display list updates. 

The following table describes the flags and masks. 



18-66 UIS Routine Descriptions 
UIS$ENABLE_DISPLA Y _LIST 

Flag Description 

Controls making additions to the display list. 
When disabled, no new dislay list entries 
are made. This flag is set by default when a 
virtual display is created. 

Controls display list modifications. When 
disabled, no display list editing is allowed. 
This flag is set by default when a virtual 
display is created. 

Controls drawing. When disabled, no 
drawing or update occurs. This flag is set 
by default when a virtual display is created. 

The following table lists UIS routines that check the flags. 

Flag UIS Routine 

UIS$COPY_OBJECT 
UIS$DELETE_OBJECT 
UIS$ERASE 
UIS$INSERT_OBJECT 
UIS$MOVE-AREA 
UIS$TRANSFORM_OBJECT 

UIS$CIRCLE 
UIS$ELLIPSE 
UIS$EXECUTE 
UIS$EXECUTE_DISPLAY 
UIS$IMAGE 
UIS$LINE 
UIS$LINE-ARRAY 
UIS$PLOT 
UIS$PLOT-ARRAY 
UIS$TEXT 

1 All routines listed under UIS$M_DL-ENHANCE_LIST and UIS$M_DL.-MODIFY_LIST 
will also check the state of UIS$M_DL_UPDATE_WINDOW before doing any screen updates. 

If a bit is set in the mask, the corresponding function is disabled. If the bit is 
0, the corresponding function is not changed. 

If display-flags is not specified, UIS$M_DL-ENHANCE_LIST is disabled. 



UIS Routine Descriptions 18-67 
UIS$ENABLE_DISPLA Y _LIST 

Example 

At some point in your application you may wish to perform several 
modifications to the display list without seeing the screen change. 

Insert your modifications here 

CALL UIS$EXECUTE(VD_ID) ! Erases and redraws the virtual display 



18-68 UIS Routine Descriptions 
UIS$ENABLE_KB 

UIS$ENABLE_KB 
Connects the physical keyboard to the specified virtual keyboard. See the 
example in UIS$CREATE-KB for more information. 

Format 
UIS$ENABLE_KB kb_id [, wd_idJ 

Returns 

UIS$ENABLE-KB signals all errors; no condition values are returned. 

Arguments 
kb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual keyboard identifier. The kb-id argument is the address of a 
longword that uniquely identifies the virtual keyboard to be connected to 
a physical keyboard. See UIS$CREATE-KB for more information about the 
kb-id argument. 

wcLid 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wud argument is the address of a 
longword that uniquely identifies the display window whose KB icon should 
be highlighted. See UIS$CREATE_WINDOW for more information about 
the wud argument. 



Description 

U IS Routine Descriptions 
UIS$ENABLE_KB 

18-69 

Because it is desirable to leave control of the keyboard to the user, it is 
recommended that you use the UIS$ENABLE-KB as little as possible. 
However, there are times when you may want to use it. 

• When you are starting up a new application. In this case, the user may 
want the workstation keyboard to be implicitly connected to a new 
application. 

• When the physical keyboard is already connected to the application (as 
determined by the UIS$TEST-KB routine). In this case, the application 
may wish to facilitate movement of the keyboard between its windows. 

Note that these are not restrictions imposed by the workstation software. 



18-70 UIS Routine Descriptions 
UIS$ENABLE_ TB 

UIS$ENABLE_ TB 
Assigns the tablet to the calling process. 

Format 

UIS$ENABLE_ TB tb_id 

Returns 

UIS$ENABLE_TB signals all errors; no condition values are returned. 

Argument 

tb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Tablet identifier. The tb-id argument is the address of a longword 
that uniquely identifies a tablet device. See UIS$CREATE_TB for more 
information about the tb-id argument. 

Description 

Only one application may own the tablet at one time. When a process 
connects to the tablet, the system hardware cursor is turned off and the 
connected process receives all the input from the tablet device. The process 
owns the tablet until it calls UIS$DISABLE_TB to disconnect itself from the 
tablet. 

The process must use a software cursor to track the pointer in a display 
window. 



UIS Routine Descriptions 18-71 
UIS$ENABLE_ VIEWPORT _KB 

UIS$ENABLE_ VIEWPORT _KB 
Allows the user to assign a virtual keyboard to the physical keyboard and 
signals binding through the KB icon in the viewport banner. See the example 
in UIS$CREATE-KB for more information. 

Format 

UIS$ENABLE_VIEWPORT_KB kb_id, wd_id 

Returns 

UIS$ENABLE_ VIEWPORT-KB signals all errors; no condition values are 
returned. 

Arguments 

kb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual keyboard identifier. The kb-id argument is the address of a 
longword that uniquely identifies the virtual keyboard. See UIS$CREATE_ 
KB for more information about the kb-id argument. 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wd-id argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wd-id argument. 

Description 

UIS$ENABLE_ VIEWPORT-KB makes the display window as a KB handle. 

The viewport contains a nonhighlighted KB icon. 



18-72 UIS Routine Descriptions 
UIS$END_SEGMENT 

UIS$END_SEGMENT 
Ends a current segment in a virtual display. 

Format 

UIS$END_SEGMENT vd_id 

Returns 

UIS$END_SEGMENT signals all errors; no condition values are returned. 

Argument 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

Description 

Context is returned to the parent segment. All values of attribute blocks 0 to 
255 are restored to the current values of the parent's attribute blocks. 



UIS$ERASE 

U IS Routine Descriptions 
UI$$ERASE 

18-73 

Erases the specified rectangle in the virtual display and removes all entities 
that lie completely within the rectangle from the display list. 

Format 

UIS$ERASE vd_id [,x1J Y1, x2, Y21 

Returns 

UIS$ERASE signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vcLid argument is the address of a longword 
that uniquely identifies the virtual display containing the specified rectangle. 
See UIS$CREATE_DISPLAY for more information about the vcLid 
argument. 

XI J YIJ x2J Y2 

VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinate pairs. The Xl and Yl arguments are the addresses of 
f-floating point numbers that define the lower-left comer of the rectangle in 
the virtual display. The x2 and Y2 arguments are the addresses of 
f-floating point numbers that define the upper-right comer of the rectangle 
in the virtual display. If no rectangle is specified, the entire virtual display is 
erased. 



18-74 UIS Routine Descriptions 
UIS$ERASE 

Description 
UIS$ERASE removes all graphics entities that lie completely within the 
rectangle from the display list as if they had never been written. Objects that 
do not lie completely within the specified rectangle are not erased. Empty 
segments are not deleted. 

Areas within the display window affected by this routine are filled with color 
specified by entry 0 in the color map of the virtual display. 



UIS$EXECUTE 

UIS Routine Descriptions 
UIS$EXECUTE 

Executes a binary encoding stream in a specified virtual display. 

Format 

UIS$EXECUTE vd_id [,buf/en] [,bufaddr] 

Returns 

UIS$EXECUTE signals all errors; no condition values are returned . 

. Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

18-75 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vud argument. 

buf/en 
VMS Usage: longword_unsigned 
type: longword (unSigned) 
access: read only 
mechanism: by reference 

Length of the binary encoding stream. The buflen argument is the address 
of longword that contains the length of the binary encoding stream. 

bufaddr 
VMS Usage: vector-longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: reference 

Binary encoding stream. The bufaddr argument is the address of an array of 
longwords that comprise the binary encoding stream. 



18-76 UIS Routine Descriptions 
UIS$EXECUTE 

Description 
If the buffer is omitted, all display windows are erased and refreshed. 

Note the effects of the display list flags. 



UIS Routine Descriptions 18-77 
UIS$EXECUTE_DISPLA Y 

UIS$EXECUTE_DISPLA Y 
Creates a virtual display from a display list. 

Format 

vd_id=UIS$EXECUTE_DISPLA Y buflen, bufaddr 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by value 

Longword value returned as the virtual display identifier in the variable 
vd_id or RO (VAX MACRO). 

UIS$EXECUTE_DISPLAY signals all errors; no condition values are returned. 

Arguments 

buflen 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Buffer length. The buflen argument is the address of a longword that defines 
the length of the buffer. 

bufaddr 
VMS Usage: vector_byte_signed 
type: byte integer (signed) 
access: read only 
mechanism: by reference 

Buffer address. The bufaddr argument is the address of an array of integer 
bytes that contains the binary encoded stream. 

The binary encoded stream is executed in the virtual display. 



18-78 UIS Routine Descriptions 
UIS$EXPAND_ICON 

UIS$EXPAND_ICON 
Replaces an icon with its associated viewport. 

Format 

UIS$EXPAND_ICON wd_id [,icon_wd_id] [,attributes] 

Returns 

UIS$EXP AND-ICON signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: 
type: 
access: 
mechanism: 

identifier 
longword (unsigned) 
read only 
by reference 

Display window identifier. The wd-id argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wd-id argument. 

icon_wd_id 
VMS Usage: identifier 
type: longword (unSigned) 
access: read only 
mechanism: by reference 

Icon window identifier. The icon_wd-id argument is the address of a 
longword that uniquely identifies the icon window. 

If the icon_wd-id argument is specified, it must match the value of the 
icon_wd-id argument specified in UIS$SHRINK_TO-ICON. 

attributes 
VMS Usage: item_list_pair 
type: longword integer (signed) or f_floating 
access: read only 
mechanism: by reference 

Viewport attributes list. The attributes argument is the address of data 
structure such as an array or record. The attributes can be used to specify 
exact placement of the display viewport. 



UIS Routine Descriptions 
UIS$EXPAND_icON 

Attribute ID code 
(WDPL$C_xxx) 

Longword value for attribute 
identified in previous longword 

2nd attribute ID code 

2nd attribute value 

• 

• 

• 
End of list = 0 

(WDPL$C_END_OF _LIST) 

ZK-4581-85 

See the attributes argument in UIS$CREATE_WINDOW for more 
information. 

18-79 



18-80 UIS Routine Descriptions 
UIS$EXPAND_ICON 

Screen Output 

USER 

USER 

ZK-5447-86 



UIS Routine Descriptions 18-81 
UIS$EXTRACT _HEADER 

UIS$EXTRACT _HEADER 
Returns the header information needed to create a UIS metafile. 

Format 

UIS$EXTRACT _HEADER vd_id, [buflen, bufaddr] [,retlen] 

Returns 

UIS$EXTRACT-HEADER signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vud argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vud argument. 

but/en 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Buffer length. The buflen argument is the address of a longword that defines 
the length of the buffer. 

butaddr 
VMS Usage: vector_byte_signed 
type: byte integer (signed) 
access: read only 
mechanism: by reference 

Buffer address. The bufaddr argument is the address of an array of bytes 
that receives the binary encoding stream. 



18-82 UIS Routine Descriptions 
UIS$EXTRACT _HEADER 

retlen 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Return length. The retIen argument is the address of a longword that 
receives the length of the buffer. 

Description 

Header information must be at the beginning of all UIS metafiles. 

Allocating Space for the Buffer 

If you want to know how much space to allocate for the buffer, specify 
obj-id and retIen only. 

Format of Header Information 

The format of header binary instructions is as follows: 

op code Length Arguments 
16 bits 16 bits 

) 

ZK-5472-86 

If the length field exceeds 32,767 bytes, an extended format is used. The 
length field should be set to UIS$C_LENGTH_DIFF and the extra length 
field should be set to the total number of bytes in the binary instruction. 

op code Length Extra Length 
Arguments 

16 bits 16 bits 32 bits 

ZK-5473-86 



UIS Routine Descriptions 18-83 
UIS$EXTRACT _OBJECT 

UIS$EXTRACT _OBJECT 
Returns the binary encoding stream for the desired object (segment or 
primitive). 

Format 

UIS$EXTRACT _OBJECT { obj_id } [,buflen ,bufaddr] 
seg_id 

[,retlen] 

Returns 

UIS$EXTRACT_OBJECT signals all errors; no condition values are returned. 

Arguments 
obj_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Object identifier. The obj.-id argument is the address of a longword that 
uniquely identifies the object. 

seg_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Segment identifier. The seg....J.d argument is the address of a longword that 
uniquely identifies the segment. See UIS$BEGIN _SEGMENT for more 
information about the seg....J.d argument. 

buf/en 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Length of buffer. The buflen argument is the address of a longword that 
specifies the length of the buffer that receives the binary encoding stream. 



18-84 UIS Routine Descriptions 
UIS$EXTRACT _OBJECT 

bufaddr 
VMS Usage: vector_byte_unsigned 
type: byte (unsigned) 
access: read only 
mechanism: by reference 

Name of an array. The bufaddr argument is the address of an array of bytes 
that receives the binary encoding stream. 

ret/en 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Length of the binary encoding stream. The retlen argument is the address of 
a longwor9- that receives the length of the binary encoding stream. 

Description 
If you want to know how much space to allocate for the buffer, specify 
obj-id and retlen only. 

If the extracted object lies within a segment, a binary instruction denoting 
the beginning of the segment precedes all binary instructions associated with 
the extracted object. A binary instruction denoting the end of the segment 
follows the binary instructions associated with the extracted object. 



UIS Routine Descriptions 18-85 
UIS$EXTRACT _PRIVATE 

UIS$EXTRACT _PRIVATE 
Returns the binary data associated with the specified object. 

Format 

UIS$EXTRACT _PRIVATE { obj_i~ } l buflen bufaddr] 
seg_ld' , 

[,ret/en] 

Returns 

UIS$EXTRACTJRIVATE signals all errors; no condition values are returned. 

Arguments 
obj_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Object identifier. The obj-id argument is the address of a longword that 
uniquely identifies an object. 

seg_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Segment identifier. The seg.....id argument is the address of a longword that 
uniquely identifies the segment. See UIS$BEGIN _SEGMENT for more 
information about the seg.....id argument. 

buflen 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Length of the buffer. The buflen argument is the address of a longword that 
contains the length of the buffer that receives th~ binary encoding stream. 



18-86 UIS Routine Descriptions 
UIS$EXTRACT _PRIVATE 

bufaddr 
VMS Usage: vector_byte_unsigned 
type: byte (unsigned) 
access: read only 
mechanism: by reference 

Buffer address. The bufaddr argument is the address of an array of bytes 
that receives the binary encoding stream. 

ret/en 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Length of the binary encoding stream. The retIen is the address of longword 
that receives the length of the binary encoding stream. 

Description 

If more than one private data item is associated with the specified object, all 
private data items are returned. The following figure describes the format of 
the data. If you want to know how much space to allocate for the returned 
encoding, specify the obj -id and retIen arguments only. 

Format of a Private Data Binary Instruction 

The format of binary encoding returned is as follows: 

Op code Length ATB Arguments 
16 bits 16 bits 16 bits 

ZK·5475·86 

If the length field exceeds 32,767 bytes, an extended format is used. The 
length field should be set to UIS$C_LENGTH_DIFF and the extra length 
field should be set to the total number of bytes in the binary instruction. 



op code Length 
16 bits 16 bits 

UIS Routine Descriptions 
UIS$EXTRACT _PRIVATE 

Extra Length 
Arguments 32 bits 

18-87 

ZK-5473-86 

Attribute modification instructions precede the binary instruction of the 
extracted object. The binary instructions of any private data associated with 
the extracted object follow the binary instruction of the extracted object. 



18-88 UIS Routine Descriptions 
UIS$EXTRACT _REGION 

UIS$EXTRACT _REGION 
Locates all output primitives and portions of output primitives that lie 
entirely within the specified rectangle, and returns the binary encoding 
stream for the selected display. 

Format 

UIS$EXTRACT _REGION 

Returns 

vd_id [,x1'Y1' x2'Y2] {,buflen 
,bufaddr] [,ret/en] 

UIS$EXTRACT-REGION signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The v"-id argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the v"-id argument. 

Xt,Yt,X2,Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinates of the specified rectangle. The Xt,Yt and X2'Y2 arguments 
are the addresses of f--floating point numbers that define the lower-left and 
upper-right comers of the specified rectangle. 

If you specify a region within the virtual display, UIS$EXTRACT-REGION 
returns the entire display list except for the following: 

• Objects that do not lie completely within the specified region 

• Segments that do not contain any objects that fall completely within the 
specified region 



UIS Routine Descriptions 
UIS$EXTRACT _REGION 

18-89 

If these arguments are not specified, the coordinates of the entire virtual 
display are used. 

but/en 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Length of a buffer. The buflen is the address of a longword that contains the 
length of the buffer that receives the binary encoding stream. 

butaddr 
VMS Usage: vector_byte_unsigned 
type: byte_unsigned 
access: read only 
mechanism: by reference 

Buffer address. The bufaddr argument is the address of an array of bytes 
that receives the binary encoding stream. 

ret/en 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Length of the binary encoding stream. The retlen argument is the address of 
a longword that receives the length of the binary encoding stream. 

Description 
If you want to know how much space to allocate for the returned encoding, 
do riot specify the buflen and bufaddr arguments. 

Format of Binary Instructions 

The format of binary instructions is as follows: 

op code 
16 bits 

Length 
16 bits 

Arguments 

ZK-5472-86 



18-90 UIS Routine Descriptions 
UIS$EXTRACT _REGION 

If the length field exceeds 32,767 bytes, an extended format is used. The 
length field should be set to UIS$<=-LENGTH_DIFF and the extra length 
field should be set to the total number of bytes in the binary instruction. 

Op code Length Extra Length 
Arguments 

16 bits 16 bits 32 bits 

ZK-5473-86 



UIS Routine Descriptions 18-91 
UIS$EXTRACT _TRAILER 

UIS$EXTRACT _ TRAILER 
Returns trailer information needed to create a VIS metafile. 

Format 

UIS$EXTRACT _TRAILER vd_id [,buf/en, bufaddr] [,retlen] 

Returns 

VIS$EXTRACT_TRAILER signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies a virtual display. See VIS$CREATE_DISPLAY for 
more information about the vLid argument. 

buflen 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Buffer length. The buflen argument is the address of a longword that defines 
the length of the buffer. 

bufaddr 
VMS Usage: vector_byte_signed 
type: byte integer (signed) 
access: read only 
mechanism: by reference 

Buffer address. The bufaddr argument is the address of an array of bytes 
that receive the binary encoded stream. 



18-92 UIS Routine Descriptions 
UIS$EXTRACT _TRAILER 

ret/en 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Return length. The retlen argument is the address of a longword that defines 
the returned length of the buffer. 

Description 

Trailer information must appear at the end of all VIS metafiles. 

Allocating Space for the Buffer 

If you want to know how much space to allocate for the buffer, specify 
obj-id and retlen only. 

Format of Trailer Information 

The format of trailer binary instructions is as follows: 

op code 
16 bits 

Length 
16 bits 

Arguments 

ZK-5472-86 

If the length field exceeds 32,767 bytes, an extended format is used. The 
length field should be set to UIS$C_LENGTH_DIFF and the extra length 
field should be set to the total number of bytes in the binary instruction. 

op code Length Extra Length 
Arguments 

16 bits 16 bits 32 bits 

ZK-5473-86 



UIS$FIND_PRIMITIVE 

U IS Routine Descriptions 
UIS$FIND_PRIMITIVE 

Locates the next output primitive that intersects the specified rectangle. 

18-93 

Format 

obj_id=UIS$FIND_PRIMITIVE vd_id, X1'Y1' x2'Y2 [,context] 
[,extent] 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the object identifier in the variable obj _id or 
RO (VAX MACRO). The object identifier uniquely identifies the object and is 
used as an argument in other routines. 

UIS$FINDJRIMITIVE signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vud argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vud argument. 

xl,Yl,x2'Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinates of the selection rectangle. The Xt,Yt and x2'Y2 are the 
addresses of f-.floating points numbers that define the lower-left and upper
right comers of the rectangle. 



18-94 UIS Routine Descriptions 
UIS$FIND_PRIMITIVE 

context 
VMS Usage: context 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

Context value. The context argument is the address of a longword that stores 
the state of the search and should not be modified if repetitive searches are 
desired. If this argument is omitted, only the first match can be found in the 
display list. 

You must initialize the context argument to 0 before starting a search 
operation. 

extent 
VMS Usage: vector_longword_unsigned 
type: longword (unsigned) 
access: wri~e only 
mechanism: by reference 

Address of the extent rectangle array. The extent argument is an array of 
four longwords that receives the world coordinate values of the lower-left 
and upper-right comer of the extent rectangle. 

Description 
When you try to locate the specified object closest to the specified location, 
the size of the rectangle controls the object or primitive matching granularity. 
Normally, when you search for the primitive nearest a position, the rectangle 
would surround the position, and have a small width and height (perhaps 
equivalent to 1 to 10 pixels), depending on the desired granularity. 

Once the primitive is located, it returns an object identifier which can be 
used later to reference the primitive, for example, UIS$EXTRACT_OBJECT or 
UIS$DELETE_OBJECT. 

Each time UIS$FIND-PRIMITIVE is called, it continues the search operation 
from where it left off, using the context longword to keep track of the current 
state. 

Generally, in order to find all matches, UIS$FIND-PRIMITIVE is called 
repeatedly with the same context longword until it returns a value of o. 



UIS Routine Descriptions 18-95 
UIS$FIND_SEGMENT 

UIS$FIND_SEGMENT 
Locates the next segment that contains any objects or primitives that intersect 
with the specified rectangle. 

Format 

seg_id=UIS$FIND_SEGMENT 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

vd_id, x1, Y1' )(2' Y2 [,context] 
[,extent] 

Longword value returned as the segment identifier in the variable seg_id or 
RO (VAX MACRO). The segment identifier uniquely identifies the segment 
and is used as an argument in other routines. 

UIS$FIND_SEGMENT signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vcLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vcLid argument. 

Xl,Yl,x2,Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinates of the selection rectangle. The xl,Yl and x2,Y2 arguments 
are the addresses of f-floating point numbers that define the lower-left and 
upper-right comers of the rectangle. 



18-96 UIS Routine Descriptions 
UIS$FIND_SEGMENT 

context 
VMS Usage: context 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

Context value. The context argument is the address of a longword that stores 
the state of the search and should not be modified if repetitive searches are 
desired. If this argument is omitted, only the first match can be found in the 
display list. 

You must initialize the context argument to 0 before starting a search 
operation. 

extent 
VMS Usage: vector_longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Address of the extent rectangle array. The extent argument is the address 
of an array of four longwords that receives the world coordinate pairs 
that define the lower-left and upper-right comers of the extent rectangle 
containing the segment. 

Description 

The size of the rectangle controls the matching granularity when trying to 
locate the primitive closest to a specific position. Normall;, when searching 
for the primitive nearest a position, the rectangle would surround the 
position, and have a small width and height (perhaps equivalent to 1 to 
10 pixels), depending on the desired granularity. 

Once the object is located, UIS$FIND_SEGMENT returns the object identifier 
for the segment containing that object. 

Each time this routine is called, it continues the search operation from where 
it left off, using the context longword to keep track of the search state. 

Generally, in order to find all matches, UIS$FIND_SEGMENT is called 
repeatedly with the same context longword until it returns a value of O. 



UIS Routine Descriptions 18-97 
UIS$GET -ABS_POINTER-POS 

UIS$GET -ABS_POINTER_POS 
Returns the current pointer position relative to the lower-left comer of the 
workstation screen. 

Format 

UIS$GET -ASS_POINTEFLPOS devnam, retx, rety 

Returns 

UIS$GET-ABSJOINTERJOS signals all errors; no condition values are 
returned. 

Arguments 

devnam 
VMS Usage: device-'1ame 
type: character string 
access: read only 
mechanism: by descriptor 

Device name string. The devnam argument is the address of a character 
string descriptor of the workstation device name. Specify the logical name 
SYS$WORKSTATION as the device name string. 

retx, rely 
VMS Usage: floatinQ-point 
type: f_floating 
access: write only 
mechanism: by reference 

Absolute device coordinate pair. The retx and rety arguments are the 
addresses of f-floating point longwords that receive the x and y coordinate 
positions of the pointer in centimeters relative to the lower-left comer of the 
display screen. 



18-98 UIS Routine Descriptions 
UIS$GET -ALIGNED_POSITION 

UIS$GET -ALIGNED_POSITION 
Returns the current position for text output which is the upper-left comer of 
the character cell. 

Format 

UIS$GET -ALIGNED_POSITION vd_id, atb, retx, rety 

Returns 

UIS$GET-ALIGNED_POSITION signals all errors; no condition values are 
returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block. The atb argument is the address of a longword integer that 
identifies an attribute block that contains the font to use in calculating the 
aligned position. 

retx, rety 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 



UIS Routine Descriptions 
UIS$GET -ALIGNED_POSITION 

18-99 

World coordinate pair. The retx and rety arguments are the addresses of 
LJloating point longwords that receive the current position as x and y world 
coordinate positions. 

Description 
UIS$GET-ALIGNEDJOSITION differs from UIS$GETJOSITION in that 
the current position refers to the upper-left comer of the character cell of the 
next character to be output. This is useful for applications that require the 
position of the upper-left comer, but do not know enough about the font 
baseline to determine the proper alignment point. The position is converted 
into the proper alignment point using the font specified in the given attribute 
block. See UIS$SET-ALIGNEDJOSITION. 

Screen Output 

$ run get_aligned 
x world coordinate = 18,19 Y world coordinate = 5,02 
FORTRAN PAUSE 
$ 

Iron with use grows bright 

Text Alignment 
Point 

Current position 
after text 
drawing 

(18.19. 5.02) 

ZK·5293·86 



18-100 UIS Routine Descriptions 
UIS$GET -ARC_TYPE 

UIS$GET -ARC_TYPE 
Returns the current arc type attribute code. See UIS$SET-ARLTYPE for 
more information about arc types. 

Format 

arc_type--UIS$GET -ARC_TYPE vd_id, atb 

Returns 

VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the current arc type code in the variable 
arc_type. The arc type code is an integer value representing one of the 
following UIS constants: UIS$C-ARC_OPEN, UIS$C-ARCJIE, and 
UIS$C-ARC_CHORD. See UIS$SET-ARC_TYPE for a description of the 
constants. 

UIS$GET-ARC_ TYPE signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vd-id argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block identifier. The atb argument is the address of a longword 
integer that identifies the attribute block from which the arc type is obtained. 



UIS Routine Descriptions 18-101 
UIS$GET -ARC_TYPE 

Description 

Refer to Section 6.6 for more information about VIS symbols and symbol 
definition files. 



18-102 UIS Routine Descriptions 
UIS$GET _BACKGROUND_INDEX 

UIS$GET _BACKGROUND_INDEX 
Returns the background color index for text and graphics output. 

Format 

index=UIS$GET _BACKGROUND_INDEX vd_id, atb 

Returns 

VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the color map index in the variable index or RO 
(VAX MACRO). 

UIS$GET_BACKGROUND-INDEX signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vd-id argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies the attribute block from which the background color 
index is obtained. 



UIS$GET _BUTTONS 

UIS Routine Descriptions 
UIS$GET _BUTTONS 

Returns the curre~t state of the pointer buttons. 

Format 

status=UIS$GET _BUTTONS wd_id, retstate 

Returns 

VMS Usage: boolean 
type: longword (unsigned) 
access: write only 
mechanism: by value 

18-103 

Boolean value is returned in the variable status or RO (VAX MACRO). A value 
of 1 is returned, if the pointer is within the visible portion of the viewport. 
If the pointer is outside the visible portion of the viewport, a value of 0 is 
returned. 

UIS$GET_BUTTONS signals all errors; no condition values are returned. 

Arguments 

wd-1d 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

retstate 
VMS Usage: maslLlongword 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

State of the pointer buttons. The retstate argument is the address of a 
longword that receives the current state of the pointer buttons. The state 
of pointer buttons is returned in a longword whose bits indicate the state 
of each pointer button, for example, 1 is up and 0 is down. The symbolic 
definitions for these bits are UIS$MJOINTER_BUTTON _1, and UIS$M_ 



18-104 UIS Routine Descriptions 
UIS$GET _BUTTONS 

POINTER_BUTTON_2, UIS$MJOINTER_BUTTON_3, and 
UIS$MJOINTER_BUTTON _4. 

Description 
The returned status value should always be tested when using this function, 
because it is always possible that the pointer could be outside the window 
when the function is called. 



UIS Routine Descriptions 18-105 
UIS$GET _CHAR-ROTATION 

UIS$GET _CHAR_ROTATION 
Returns the angle of character rotation in degrees. 

Format 

angle=UIS$GET_CHAR_ROTATION vd_id, atb 

Returns 

VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by value 

Longword value returned as the angle of character rotation in degrees in the 
variable angle or RO (VAX MACRO). The baseline vector and the actual path 
of text drawing form the angle of character rotation. The character rotates on 
its baseline point. 

UIS$GET_CHAR-ROTATION signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vc:Lid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vc:Lid argument. 

alb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a number that 
identifies an attribute block containing the character rotation attribute used to 
calculate character rotation. 



18-106 UIS Routine Descriptions 
UIS$GET _CHAR-SIZE 

Returns both a value indicating whether or not character scaling is enabled 
and the character size used. 

Format 

boolean=UIS$GET _CHAR_SIZE 

Returns 

VMS Usage: boolean 
type: longword (unsigned) 
access: write only 
mechanism: by value 

vd_id, atb 
,[charj,[widthjl,heightj 

Boolean value returned to indicate the status of character scaling in a status 
variable or RO (VAX MACRO). 

UIS$GET_CHAR_SIZE signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The v"--id argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the v"--id argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
identifies an attribute block that contains the ch~racter size attribute setting. 



char 
VMS Usage: char_string 
type: character_string 
access: write only 
mechanism: by descriptor 

UIS Routine Descriptions 
UIS$GET _CHAR_SIZE 

18-107 

Single character. The char argument is the address of a character string 
descriptor of a single char. The char is specified only for proportionally 
spaced fonts. It is used as a reference point against which other characters 
are scaled. 

width 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Character width. The width argument is the address of an fJIoating point 
longword that receives the character width in world coordinates. 

height 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Character height. The height argument is the address of an fJIoating point 
longword that receives the character height in world coordinates. 



18-108 UIS Routine Descriptions 
UIS$GET _CHAR-SLANT 

Returns the angle of character slant in degrees. 

Format 

angle=UIS$GET _CHAR_SLANT vd_id, atb 

Returns 

VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by value 

Longword value returned as the angle of character slant in degrees in the 
variable angle or RO (VAX MACRO). The character cell up vector and the 
baseline vector form the angle of character slant. 

UIS$GET_CHAR_SLANT signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The v"--id argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the v"--id argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a number that 
identifies an attribute block containing the character slant attribute setting to 
be returned. 



UIS Routine Descriptions 18-109 
UIS$GET _CHAR-SLANT 

Screen Output 

$ run get_charslant 
The angle of character slant is 
FORTRAN PAUSE 
$ 

35.00 degrees 

ZK 5290 86 



18-110 UIS Routine Descriptions , 
UIS$GET _CHAFLSPACING 

Returns the character spacing factors. 

Format 
UIS$GET _CHAR_SPACING vd_id, atb, dx, dy 

Returns 

UIS$GET_CHAR_SP ACING signals all errors; no condition values are 
returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies the attribute block from which the character spacing 
factors are obtained. 

dx 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Additional x spacing factor. The dx argument is the address of an fJloating 
point longword that receives the x spacing factor. The x spacing factor 



UIS Routine Descriptions 
UIS$GET _CHAFLSPACING 

18-111 

represents the relative width of the character cell. If 0 is returned, no 
additional spacing factor was specified. 

dy 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Additional y spacing factor. The dy argument is the address of an f-Boating 
point longword that receives the y spacing factor. The y spacing factor 
represents the relative height of the character cell. If 0 is returned, no 
additional spacing factor was specified. 

Screen Output 

:$: run get_charspace 
x spacing factor = 0.00 y spacing factor = 0.00 
x spacing factor = 3.00 y spacing factor = 5.00 
x spacing factor = 0.00 y spacing factor = 0.00 
x spacing factor = 4.00 Y spacing factor = 6.00 
FORTRAN PAUSE 
:$: 

Great wits have short memories 
rea t wit 

ever spur a willing horse 
e v e r p 

ZK 5291·86 



18-112 UIS Routine Descriptions 
UIS$GET _CLIP 

UIS$GET _CLIP 
Returns the clipping mode. 

Format 

status=UIS$GET_CLIP vd_id, atb [,Xt1 Yt1 X21 Y21 

Returns 

VMS Usage: boolean 
type: longword 
access: write only 
mechanism: by value 

Boolean'value returned as the clipping mode in a status variable or RO (VAX 
MACRO). If clipping is enabled, a boolean TRUE is returned. If clipping is 
disabled, a boolean FALSE is returned. 

UIS$GET_CLIP signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vUd argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vUd argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies the attribute block from which the clipping rectangle 
and mode are obtained. 



XII YII X21 Y2 

VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

UIS Routine Descriptions 
UIS$GET _CLIP 

18-113 

World coordinate pair. The xl and YI arguments are addresses of f-floating 
point longwords that receive the coordinates of the lower-left comer of 
the world coordina~e clipping rectangle. The x2 and Y2 arguments are the 
addresses of f-floating point longwords that receive the coordinates of the 
upper-right comer of the world coordinate clipping rectangle. 



18-114 UIS Routine Descriptions 
UIS$GET _CLIP 

Screen Output 

;$ run get_clip 
Is clipping enabled? F FALSE T TRUE 

F 
FORTRAN PAUSE 

---

-- ------- -~~~~ ---------

FORTRAN PAUSE 
;$ cont 
Is clipping enabled? F FALSE T TRUE 

T 
FORTRAN PAUSE 
;$ 

-----------------------
-------- ---- - - ----



UIS Routine Descriptions 18-115 
UIS$GET _COLOR 

UIS$GET _COLOR 
Returns a single red green blue (RGB) color value associated with an entry in 
a virtual color map. 

Format 

UIS$GET _COLOR vd_id, index, retr, retg, retb [, wd_idJ 

Returns 

UIS$GET_COLOR signals all errors; no condition values are returned. 

Arguments 

vcLid 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

index 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual color map index. The index argument is the address of a longword 
that specifies the index of the virtual color map entry to be returned. 

retr 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Red value. The retr argument is the address of an f-1loating point longword 
that receives the red value. The red value is in the range of 0.0 to 1.0, 
inclusive. 



18-116 UIS Routine Descriptions 
UIS$GET _COLOR 

retg 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Green value. The retg argument is the address of an f-floating point 
longword that receives the green value. The green value is in the range 
of 0.0 to 1.0, inclusive. 

retb 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Blue value. The retb argument is the address of an f-floating point longword 
that receives the blue value. The blue value is in the range of 0.0 to 1.0, 
inclusive. 

wd_id 
VMS Usage: object_id 
type: longword 
access: read only 
mechanism: by reference 

Display window identifier. The w<Lid argument is the address of a 
longword that uniquely identifies a display window. If this argument is 
specified, it must be a valid w<Lid associated with the virtual display. The 
colors returned are the realized colors for the specific device for which the 
window was created. See UIS$CREATE_WINDOW for more information 
about the w<Lid argument. 

If w<Lid is not specified, the set color values, that is, the actual color values 
in the specified color map entry are returned. 



UIS Routine Descriptions 18-117 
UIS$GET _COLOR 

Illustration 

. . 
Color Value - -8 

Color Value 9 0.10 Red Value 

Color Value 10 0.20 Green Value 

Color Value 11 0.30 Blue Value 

. . ~ Color Map Index 

~ Virtual Color Map 

ZK·5444·86 



18-118 UIS Routine Descriptions 
UIS$GET _COLORS 

UIS$GET _COLORS 
Returns red, green, and blue (RGB) color values associated with one or more 
entries in the virtual color map. 

Format 

UIS$GET _COLORS 

Returns 

vd_id, index, count, retr _ vector, 
retg_ vector, retb_ vector [, wd_id] 

UIS$GET_COLORS signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

index 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Starting color map index. The index argument is the address of a longword 
that specifies the index of the first color map entry to be returned. 

If the specified index exceeds the maximum index for the virtual color map, 
an error is signaled. 

count 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 



UIS Routine Descriptions 
UIS$GET _COLORS 

18-119 

Number of virtual color map indices. The count argument is the address of 
a longword that defines the total number of color map entries in the virtual 
color map to be returned including the starting index. 

If the total number of indices exceeds the maximum number of indices in the 
virtual color, an error is signaled. 

retr_vector 
VMS Usage: vector_longword_signed 
type: f_floating 
access: write only 
mechanism: by reference 

Red values. The retr_vector argument is the address of an array of 
f-Boating point longwords that receives the red color values. Each red value 
is in the range of 0.0 to 1.0, inclusive. 

ret9-vector 
VMS Usage: vector_longword_signed 
type: f_floating 
access: write only 
mechanism: by reference 

Green values. The rets-vector argument is the address of an array of 
f-Boating point longwords that receives the green color values. Each green 
value is in the range of 0.0 to 1.0, inclusive. 

retb_vector 
VMS Usage: vector_longword_signed 
type: f_floating 
access: write only 
mechanism: by reference 

Blue values. The retb_vector argument is the address of an array of 
f-Boating point longwords that receives the blue color values. Each blue 
value is in the range of 0.0 to 1.0, inclusive. 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wud argument is the address of a 
longword that uniquely identifies a display window. If specified, the wud 
argument must be a valid display window identifier associated with the 
virtual display. See UIS$CREATE_WINDOW for more information about 
the wud argument. 



18-120 UIS Routine Descriptions 
UIS$GET _COLORS 

The color values returned are the realized color values for the specific device 
for which the display window was created. 

If the wLid argument is not specified, the red, green, and blue color values 
returned are the set color values originally established by UIS$SET_COLOR 
or UIS$SET_COLORS. 

Illustration 

Color Map 
Index 

4 

5 

6 

7 

8 

9 

Red Value 

Red Value 

Red Value 

Red Value 

Red Value 

Red Value 

Red Value 

· · • 

0.10 

0.40 

0.70 

Green Value Blue Value 

Green Value Blue Value 

Green Value 

Green Value 

Green Value 

Blue Value 

Blue Value 

Blue Value 

I ~unt 
Green Value Blue Value 

Green Value Blue Value 

· · · · · · 
0.20 0.30 

0.50 0.60 

0.80 0.90 

ZK·5365·86 



UIS Routine Descriptions 18-121 
UIS$GET _CURRENT_OBJECT 

Returns the identifier of the last object drawn in the virtual display and 
added to the display list. 

Format 
current_id=UIS$GET _CURRENT_OBJECT vd_id 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the identifier of the current object in the variable 
current_id or RO (VAX MACRO). 

UIS$GET_CURRENT_OBJECT signals all errors; no condition values are 
returned. 

Argument 
vtLid 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vd-id argument. 

Description 

If there are no objects in the display list, the root segment identifier is 
returned. If UIS$GET_CURRENT_OBJECT is called after a call to UIS$SET_ 
INSERTION -POSITION, the returned identifier is based on the current 
insertion position in the segment. 



18-122 UIS Routine Descriptions 
UIS$GET _CURRENT_OBJECT 

Screen Output 

$ run get_currobj 
Identifier of current object = 114752 
FORTRAN PAUSE 
$: 

--------------------

ZK-5397-86 



UIS Routine Descriptions 18-123 
UIS$GET _DISPLAY_SIZE 

UIS$GET _DISPLA Y _SIZE 
Obtains the dimensions of the workstation display screen. 

Format 

UIS$GET _DISPLAY_SIZE devnam, retwidth, retheight 
[,retresolx, retresoly] {,retpwidth, 
retpheight] 

Returns 

UIS$GET_DISPLAY_SIZE signals all errors; no condition values are returned. 

Arguments 

devnam 
VMS Usage: device_name 
type: character string 
access: read only 
mechanism: by descriptor 

Device name string. The devnam argument is the address of a character 
string descriptor of the workstation device name. Specify SYS$WORKSTATION 
as the device name character string. 

retwidth, retheight 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

VAXstation display screen size. The retwidth and retheight arguments are 
the addresses of f-floating point longwords that receive the physical display 
screen width and height in centimeters. 

retresolx, retresoly 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 



18-124 UIS Routine Descriptions 
UIS$GET _DISPLAY_SIZE 

VAXstation display screen resolution. The retresolx and retresoly arguments 
are the addresses of f--Boating point longwords that receive the x and y 
resolution in pixels per centimeters. 

retpwidth, retpheight 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

VAXstation screen size in pixels. The retpwidth and retpheight arguments 
are the addresses of integer longwords that receive the width and height of 
the screen in pixels. 

Description 

The height and width dimensions can be used when deciding the size of a 
virtual display or viewport. The resolution values can be used when it is 
important for the application to determine the exact physical size (or world 
coordinate dimensions) that map to a single pixel. 



Screen Output 

$ run get_display 

UIS Routine Descriptions 
UIS$GET _DISPLAY_SIZE 

Display screen characteristics 
width = 33.58 em height = 28.34 em 
x resolution = 30.49 pixels/em 
y resolution = 30.49 pixels/em 
width = 1024 pixels height = 864 pixels 
FORTRAN PAUSE 
$ 

18-125 

ZK 544986 



18-126 UIS Routine Descriptions 
UIS$GET _FILL _PATTERN 

UIS$GET _FILL _PATTERN 
Returns the index of the fill pattern. 

Format 

status=UIS$GET_FILL_PATTERN vd_id, atb [,index] 

Returns 

VMS Usage: boolean 
type: longword 
access: write only 
mechanism: by value 

Boolean value returned as the filling mode in a status variable or RO (VAX 
MACRO). The boolean TRUE is returned if filling is enabled, otherwise the 
boolean value is FALSE. 

UIS$GETJILLJATTERN signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vd-id argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies the attribute block from which the fill pattern index is 
obtained. 



UIS Routine Descriptions 18-127 
UIS$GET _FILL _PATTERN 

index 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Index of the fill pattern. The index argument is the address of a longword 
that receives the value of the fill pattern symbol index. This is the index of a 
glyph in a fill pattern font. 



18-128 UIS Routine Descriptions 
UIS$GET _FILL _PATTERN 

Screen Output 

$ run get_fill 
Are fill patterns enabled? F = FALSE T = TRUE 

T 
What is the index of the current fill pattern? 

7 
FORTRAN PAUSE 
$ 

ZK-5391-86 



UIS Routine Descriptions 18-129 
UIS$GET _FONT 

UIS$GET _FONT 
Returns the name of font file. 

Format 

UIS$GET_FONT vd_id, atb, bufferdesc [,length] 

Returns 

UIS$GETJONT signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies the attribute block from which the font file name is 
obtained. 

bufferdesc 
VMS Usage: char_string 
type: character string 
access: write only 
mechanism: by descriptor 

Font file name string. The bufferdesc argument is the address of a character 
string descriptor of a location that receives the font file name character string. 



18-130 UIS Routine Descriptions 
UIS$GET _FONT 

length 
VMS Usage: word-signed 
type: word (signed) 
access: write only 
mechanism: by reference 

Length of the font file character string. The length argument is the address 
of a word that receives the length of font file name character string. 

Screen Output 

$ run get_fontname 
font name is DTABEROR07SKOOGG0001UZZZZ02AOOO 
length of font name is 
FORTRAN PAUSE 
$ 

The more the 

31 characters 

• merr1e 
ZK-5392-86 



UIS Routine Descriptions 18-131 
UIS$GET _FONT --ATTRIBUTES 

UIS$GET _FONT --ATTRIBUTES 
Returns information about the ascender, descender, height, width, and font 
parameters. 

Format 
UIS$GET _FONT --ATTRIBUTES 

Returns 

font_id, ascende~ 
descender, height 
[,maximum_width] [item_list] 

VIS$GETJONT-ATTRIBVTES signals all errors; no condition values are 
returned. 

Arguments 
font_id 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Font file name. The font-id argument is the address of a string descriptor 
of the font file name only. VIS searches the directory SYS$FONT for the 
correct file type. 

ascender 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Character ascender. The ascender argument is the address of a longword 
that receives the distance between the font baseline and the top of the 
character cell in pixels. 

descender 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 



18-132 UIS Routine Descriptions 
UIS$GET _FONT --ATTRIBUTES 

31 

Character descender. The descender argument is the address of a longword 
that receives the distance between the font baseline and the bottom of the 
character cell in pixels. 

height 
VMS Usage: longword_unsigned 
type: longowrd (unsigned) 
access: write only 
mechanism: by reference 

Height of the character cell. The height argument is the address of a 
longword that receives the height of the character cell in pixels. 

maximum_width 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Maximum width of a character cell. The average_width argument is the 
address of a longword that receives the maximum width of a character cell in 
the font in pixels. 

item_list 
VMS Usage: item_list_3 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Item list specifying additional font information to be returned. The item--1ist 
argument is the address of a list of item descriptors, each of which describes 
an item of information. A longword value of 0 terminates the list of item 
descriptors. 

The structure of the item list is described in the following figure. 

15 o 

item code I buffer length 

buffer address 

return length address 

ZK-1705-84 



UIS Routine Descriptions 
UIS$GET _FONT --ATTRIBUTES 

18-133 

The following table lists valid item codes. 

Item Code 

Character Information 

UIS$CJNTJIRST_CHAR 

UIS$CJNT_LAST_CHAR 

UIS$CJNT_GUTPERPIX -X 

UIS$CJNT_GUTPERPIX_ Y 

UIS$CJNT-A VERAGE_GUT1 

UIS$CJNT_WIDTH 

Font Flags2 

UIS$CJNTJIXED 

UIS$CJNT_CELLEQRAST 

UIS$CJNT_ VA JONT 

Font Name 

UIS$CJNTJONLJD 

Information Returned 

First character in the font 

Last defined character in the font 

x resolution of the font in gutenbergs per pixel 

y resolution of the font in gutenbergs per pixel 

Average width of a character in the font 

Width in pixels of all glyphs in the font, if the 
font is monospaced. A zero is returned, if the 
font is proportionally spaced. 

True, if the font is monospaced 
False, if the font is proportionally spaced. 

True, if the cell width of all glyphs in the font 
equals the width the glyph's raster. 

True, if this is a VA font. 

Font identifier string 

1 The font designer assigns this number. Although, the graphics subsystem copies the number, 
no interpretation is applied to it. UIS does not use the number. 

2The value 1 is returned, if TRUE, and 0, if FALSE. 



18-134 UIS Routine Descriptions 
UIS$GET _FONT --ATTRIBUTES 

Screen Output 

$ run get_fontattr 
font name is DTABEROR07SKOOGG0001UZZZZ02AOOO 
length of font name is 
FORTRAN PAUSE 
$ cont 
length of ascender 
length of descender 
eight of character cell 

FORTRAN PAUSE 
:$ 

he more the 

31 characters 

26 pixels 
4 pixels 

30 pixels 

• merr1e 

ZK·5282·86 



UIS$GET _FONT _SIZE 

UIS Routine Descriptions 
UIS$GET _FONT_SIZE 

18-135 

Obtains the size of a character or string of characters in the specified font in 
physical dimensions. 

Format 

UIS$GET _FONT _SIZE fontid, text_string, retwidth, retheight 

Returns 

UIS$GETJONT_SIZE signals all errors; no condition values are returned. 

Arguments 

fontid 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Font identifier. The fontid argument is the address of a character string 
descriptor of a font file name. Specify only the font file name. UIS searches 
the directory SYS$FONT for the correct file type. 

text_string 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Text string. The text-string argument is the address of a descriptor of a 
character or character string. 

retwidth, retheight 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

String width and height. The retwidth and retheight arguments are the 
addresses of f-Boating point longwords that receive the width and height of 
the character or character string in centimeters. 



18-136 UIS Routine Descriptions 
UIS$GET _FONT_SIZE 

Description 

UIS$GETJONT_SIZE can be used to determine the proper size of a display 
viewport based on the size of the characters in a given font. 

Screen Output 

$ run get_fontsize 
string length = 11.01970 em 
character height = 0.4919507 cm 
FORTRAN PAUSE 
$ 

news trave1s 

ZK·5283·86 



UIS Routine Descriptions 18-137 
UIS$GET _HW_COLOFLINFO 

Returns information about the hardware color map. 

Format 

UIS$GET_HW_COLOR_INFO devnam [,type] [,indices] 
[,colors] [,maps] [,rbits] [,gbits] 
[,bbits] [,ibits] [,res_indices] 
[,regen] 

Returns 

UIS$GET-HW_COLOR-INFO signals all errors; no condition values are 
returned. 

Arguments 

devnam 
VMS Usage: device_name 
type: character string 
access: read only 
mechanism: by descriptor 

Device name. The devnam argument is the address of a character string 
descriptor of the workstation device name. Specify SYS$WORKSTATION in 
the devnam argument. 

type 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Device type. The type argument is the address of a longword that receives 
the device type. The following table lists device type values. 



18-138 UIS Routine Descriptions 
UIS$GET _HW_COLOR_INFO 

Device Type 

Monochrome 

Intensity 

Color 

indices 

Value 

UIS$C_DEV--MONO 

UIS$C_DEV-INTENSITY 

UIS$C_DEV_COLOR 

VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Possible 
Colors 

Black and white 

Up to 224 gray tones 

Up to 224 chromatic colors 

Number of entries or simultaneous colors. The indices argument is the 
address of longword that receives the number of entries or simultaneous 
colors in the hardware color map. 

colors 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Number of possible colors. The colors argument is the address of a longword 
that receives the number of possible colors represented in the color map. For 
example monochrome equals 2. 

maps 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Number of hardware color maps. The maps argument is the address of a 
longword that receives the number of hardware color maps. 

rbits 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

,Number of binary bits of precision for red. The rbits argument is the address 
, of a longword that receives the number of binary bits of precision for the 
color red. 



gbits 
VMS Usage: longword_unsigned 

UIS Routine Descriptions 
UIS$GET _HW_COLOFLINFO 

type: longword (unsigned) 
access: write only 
mechanism: by reference 

18-139 

Number qf binary bits of precision for green. The gbits argument is the 
address of a longword that receives the number of binary bits of precision for 
the color green. 

bbits 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Number of binary bits of precision for blue. The bbits argument is the 
address of a longword that receives the number of binary bits of precision for 
the color blue. 

ibits 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Number of binary bits of precision for intensity. The ibits argument is the 
address of a longword that receives the number of binary bits of precision for 
intensity. 

res_indices 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Number entries in the hardware color map reserved for special use. The 
res-indices argument is the address of a longword that receives the number 
entries in the hardware color map reserved for special use. 

regen 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Color regeneration characteristics. The regen argument is the address of 
a longword that receives the color regeneration characteristics. The regen 



18-140 UIS Routine Descriptions 
UIS$GET _HW_COLOFLINFO 

argument indicates whether the color and intensity changes affect previously 
drawn display objects that specified the same color index in the hardware 
look up table. The following symbols are valid values: UIS$C_DEV-RETRO 
or UIS$C_DEV-NONRETRO. 

The following table summarizes regeneration characteristics of direct and 
mapped color systems. 

System 

Direct color 

Mapped color 

Regeneration Characteristics 

Usually sequential 

Usually retroactive 



UIS Routine Descriptions 18-141 
UIS$GET _INTENSITIES 

UIS$GET _INTENSITIES 
Returns intensity values associated with one or more entries in the virtual 
color map. 

Format 

UIS$GET _INTENSITIES 

Returns 

vd_id, index, count, reti_ vector 
[,wd_idJ 

UIS$GET.JNTENSITIES signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vud argument. 

index 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Starting color map index. The index argument is the address of a longword 
that specifies the index of the first color map entry to be returned. If the 
specified index exceeds the maximum index of the virtual color map, an error 
is signaled. 

count 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 



18-142 UIS Routine Descriptions 
UIS$GET _INTENSITIES 

Number of indices. The count argument is the address of a longword that 
specifies the total number of color map entries to be returned including the 
starting index. If the specified count exceeds the maximum number of virtual 
color map entries, an error is signaled. 

retLvector 
VMS Usage: vector_longworc:Lsigned 
type: f_floating 
access: write only 
mechanism: by reference 

Intensity values. The retLvector argument is the address of an array of 
f-floating point longwords that receives the intensity values. Each intensity 
value is in the range of 0.0 to 1.0, inclusively. 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The w"-id argument is the address of a 
longword that uniquely identifies a display window. If the w"-id argument 
is specified, it must be a valid display window identifier assodated with the 
virtual display. The returned values are the realized intensities for the specific 
device for which the display window was created. See UIS$CREATE_ 
WINDOW for more information about the wd-id argument. 

If the wd-id argument is not specified, the intensity values returned are 
set color values originally established by a call to UIS$SET-INTENSITY or 
UIS$SET-INTENSITIES. 



Illustration 

10 

11 

12 

13 

14 

15 

< 

· · 
Intensity Value 

Intensity Value 

Intensity Value 

Intensity Value 

Intensity Value 

Intensity Value 

Intensity Value 

· · 
Color Map Index 

UIS Routine Descriptions 
UIS$GET _INTENSITIES 

/count 

0.10 

0.15 

0.26 

ZK-5445-86 

18-143 



18-144 UIS Routine Descriptions 
UIS$GET _INTENSITY 

UIS$GET _INTENSITY 
Returns the intensity value associated with a single entry in the color map. 

Format 

UIS$GET _INTENSITY vd_id, index, reti, [, wd_idJ 

Returns 

UIS$GET-INTENSITY signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vd-id argument. 

index 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Color map index. The index argument is the address of a longword integer 
that identifies the index of an entry in the color map associated with the 
virtual display. If the specified index exceeds the maximum number of 
indices in the virtual color map, an error is signaled. 

reti 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Intensity value. The reti argument is the address of an fJloating point 
longword that receives the intensity value. The intensity value is in the 
range of 0.0 to 1.0, inclusive. 



wcLid 
VMS Usage: identifier 

UIS Routine Descriptions 
UIS$GET _INTENSITY 

type: longword (unsigned) 
access: read only 
mechanism: by reference 

18-145 

Display window identifier. The wLid is the address of a longword that 
uniquely identifies the display window. See UIS$CREATE_WINDOW for 
more information about the wd-id argument. If this argument is specified, it 
must be a valid wLid associated with the virtual display, and the returned 
values are the realized intensities for the specific device for which the window 
was created. 

If the wLid argument is not specified, the returned intensity values are 
set intensity originally established by a call to UIS$SET-INTENSITY or 
UIS$SET-INTENSITIES. 

Illustration 

6 

7 

8 

9 

10 

· · 
Intensity Value 

Intensity Value 

Intensity Value 

Intensity Value 

Intensity Value 

Intensity Value 
0.55 

· · 
Color Map Index 

ZK-5446-86 



18-146 UIS Routine Descriptions 
UIS$GET _KB-A TTRIBUTES 

UIS$GET _KB-A TTRIBUTES 
Returns the virtual keyboard characteristics. 

Format 
UIS$GET _KB-ATTRIBUTES kb_id [,enable_items] 

[,disable_items ][,cliclL volume] 

Returns 

UIS$GET-KB-ATTRIBUTES signals all errors; no condition values are 
returned. 

Arguments 
kb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual keyboard identifier. The kb-1d argument is the address of a 
longword that uniquely identifies the virtual keyboard. See 
UIS$CREATE-KB for more information about the kb-1d argument. 

enable_items 
VMS Usage: maslLlongword 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Enabled keyboard characteristics. The enable-1tems argument is the address 
of a longword mask that receives the bit mask of the enabled keyboard 
characteristics. 

disable_items 
VMS Usage: maslLlongword 
type: longword (unsigned) 
access: write only 
mechanism: by reference 



U IS Routine Descriptions 
UIS$GET _KB-A TTRIBUTES 

18-147 

Disabled keyboard characteristics. The disable-items argument is the 
address of a longword mask that receives the bit mask of the disabled 
keyboard characteristics. 

cliclLvolume 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Key click volume level. The click_volume argument is the address of a 
longword that receives the key click volume level. The key click volume is 
in the range of 1 to 8, inclusively, where 1 is quiet and 8 is loud. 

Description 

The enable and disable item lists are longword masks containing bits 
designating the characteristics to be enabled or disabled. The valid bits 
in the keyboard characteristics enable and disable masks are: 

Symbol 

UIS$M_KB-AUTORPT 

UIS$M-KB-KEYCLICK 

UIS$M_KB_UDF6 

UIS$M-KB_UDFll 

UIS$M-KB_UDF17 

UIS$M-KB-HELPDO 

UIS$M-KB_UDEI 

UIS$M-KB-ARROW 

UIS$M-KB-KEYPAD 

Description 1 

Enable/disable keyboard autorepeat 

Enable/disable keyboard keyclick 

Enable/disable up button transitions for!£§] to IF101 keys 

Enable/disable up button transitions for [fTI] to 
IF141 keys 

Enable/disable up button transitions for IF171 to 
IF201 keys 

Enable/disable up button transitions for IHELPI and 
[QQ] keys 

Enable/disable up button transitions for ffiTI to ~ keys 

Enable/disable up button transitions for arrow keys 

Enable/disable up button transitions for numeric 
keypad keys 

1 By default down button transitions are enabled. 



18-148 UIS Routine Descriptions 
UIS$GET _LINE_STYLE 

Returns the line style patterns. 

Format 
style=UIS$GET_LINE_STYLE vd_id, atb 

Returns 

VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the line style bit vector in the variable style or 
RO (VAX MACRO). 

UIS$GET_LINE_STYLE signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vcLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vcLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies an attribute block from which the line style pattern or 
bit vector is obtained. 



UIS Routine Descriptions 18-149 
UIS$GET _LINE_STYLE 

Screen Output 

$ run get_linestyle 
line no.i style = FOFOFOFO 
line no.2 style = FOOFOOFO 
line no.3 style = COCOCOCO 
FORTRAN PAUSE 
$ 

l 
l 

I 
I 

I 
I 

I 
I 

I /' 
I /' 

I 
I 

I 

/' 

I 
I 

I 
/ 

/' 

/' 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I /' 

I /' 
I 

/' 

/' 
/' 

/' 

/' 

,," 
/' 

/' 

/' 

/' 
/' 

/' 

/' 
/' 

/' 

ZK·5396·86 



18-150 UIS Routine Descriptions 
UIS$GET _LINE_WIDTH 

UIS$GET _LINE_WIDTH 
Returns the line width. 

Format 

width=UIS$GET_LINE_WIDTH vd_id, atb [,mode] 

Returns 

VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by value 

EJloating point value returned as the line width in the variable width or RO 
(VAX MACRO). 

UIS$GET_LINE_WIDTH signals all errors; no condition values are returned. 

Arguments 

vcLid 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vd-id argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies the attribute block from which the line width is 
obtained. 



UIS Routine Descriptions 18-151 
UIS$GET _LINE_WIDTH 

mode 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Line width mode. The optional mode argument is the address of a longword 
that receives the line width specification mode (WDPL$C-WIDTH_WORLD 
or WDPL$C_WIDTHJIXELS). If WDPL$C_WIDTH_WORLD is returned, 
the line width is interpreted as world coordinates. If WDPL$C_WIDTH_ 
PIXELS is returned, the line width is interpreted as pixels. 



18-152 UIS Routine Descriptions 
UIS$GET _LINE_WIDTH 

Screen Output 

$ run get_linewidth 
line width = 1.00 pixels 
line width = 2.00 pixels 
line width = 2.00 pixels 
line width = 3.00 pixels 
line width = 4.00 pixels 
line width = 5.00 pixels 
line width = 6.00 pixels 
FORTRAN PAUSE 
$ 

ZK·5395·86 



UIS Routine Descriptions 18-153 
UIS$GET _NEXT_OBJECT 

Returns the identifier of the next object in the display list. 

Format 

next_id=UIS$GET _NEXT_OBJECT 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Longword value returned as the next object identifier in the variable 
next _id or RO (VAX MACRO). The next object identifier uniquely identifies 
the next specified object in the display list and is used as an argument in 
other routines. 

UIS$GET-NEXT_OBJECT signals all errors; no condition values are returned. 

Arguments 

obj_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Object identifier. The obj-id argument is the address of a longword that 
uniquely identifies the object. 

seg_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Segment identifier. The ses-id argument is the address of a longword that 
uniquely identifies the segment. 



18-154 UIS Routine Descriptions 
UIS$GET _NEXT_OBJECT 

flags 
VMS Usage: maslLlongword 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Flags. The flags argument is the address of a longword that controls how 
the display list is searched. If the flags argument is set using UIS$M_DL_ 
SAME_SEGMENT, the next object in the segment containing the object 
specified is returned. 

If the flags argument is omitted, the next object in the display list, regardless 
of the segment in which it is contained, is returned. 

Description 

If a zero is returned, the next object was not found. 



UIS Routine Descriptions 
UIS$GET _OBJECT -ATTRIBUTES 

UIS$GET _OBJECT --ATTRIBUTES 
Returns the type and extent of the specified object. 

Format 

type=UIS$GET _OBJECT --ATTRIBUTES 

Returns 

VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by value 

18-155 

Longword value returned as the object type in the variable type or RO (VAX 
MACRO). An object type identifies a graphic object such as images, points 
lines, or ellipses, a display list structure such as a segment, or the occurrence 
of an event such as movement to a new text line. Possible valid objects are 
listed in the following table. 

Symbol 

UIS$C_OBJECT_SEGMENT 

UIS$C_OBJECT_PLOT 

UIS$C_OBJECT_ TEXT 

UIS$C_OBJECT_ELLIPSE 

UIS$C_OBJECT-IMAGE 

UIS$C_OBJECT_LINE 

Description 

Segment 

Point, line, connected lines, or polygon 

Characters 

Elliptical or circular arcs, circles and ellipses 

Raster image 

Unconnected lines 

UIS$GET_OBJECT-ATTRIBUTES signals all errors; no condition values are 
returned. 

Arguments 

obj_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 



18-156 UIS Routine Descriptions 
UIS$GET _OBJECT J TTRIBUTES 

Object identifier. The obj-id argument is the address of a longword that 
uniquely identifies the object. 

seg_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Segment identifier. The seg..-id argument is the address of a longword that 
uniquely identifies the segment. See UIS$BEGIN _SEGMENT for more 
information about the seg..-id argument. 

extent 
VMS Usage: vector_longword_signed 
type: f_floating 
access: write only 
mechanism: by reference 

World coordinates of the extent rectangle. The extent argument is the 
address of an array of four longwords that receives the values of the world 
coordinates of the lower-left comer and the upper-right comer of the extent 
rectangle containing the object. 



Screen Output 

:$ RUN WALK 

U IS Routine Descriptions 
UIS$GET _OBJECT --ATTRIBUTES 

DISPLAY LIST ELEMENTS 

IDENTIFIER 
113992 
115328 
115575 
115822 
116069 
116316 
116810 
117057 
FORTRAN PAUSE 
:$ 

OBJ ECT TYPE 
UIS$C_OBJECT_SEGMENT 
UIS:$C_OBJECT_ELLIPSE 
UIS:$C_OBJECT_PLOT 
UIS$C_OBJECT_PLOT 
UIS$C_OBJECT_PLOT 
UIS$C_OBJECT_TEXT 
UIS$C_OBJECT_TEXT 
UIS$C_OBJECT_LINE 

of fortune are slippery 
measure is madness 

r--------, 

ZK 530086 

18-157 



18-158 UIS Routine Descriptions 
UIS$GET _PARENT_SEGMENT 

UIS$GET _PARENT _SEGMENT 
Returns the parent segment identifier of the specified object. 

Format 

parent_id=UIS$GET _PARENT_SEGMENT 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the parent segment identifier in the variable 
parent_id or RO (VAX MACRO). The parent segment identifier uniquely 
identifies a parent segment and is used as an argument in other routines. 

UIS$GETJ ARENT_SEGMENT signals all errors; no condition values are 
returned. 

Arguments 

obj_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Object identifier. The obj-id argument is the address of a longword that 
uniquely identifies the object. 

seg_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Segment identifier. The seg--id argument is the address of a longword that 
uniquely identifies the segment. See UIS$BEGIN _SEGMENT for more 
information about the seg--id argument. 



UIS Routine Descriptions 18-159 
UIS$GET _PARENT_SEGMENT 

Description 

If the specified object is the outermost segment or root segment, its own 
object identifier is returned. 



18-160 UIS Routine Descriptions 
UIS$GET _POINTER-POSITION 

UIS$GET _POINTER_POSITION 
Returns the current pointer position in world coordinates. 

Format 

status=UIS$GET _POINTER_POSITION 

Returns 

VMS Usage: boolean 
type: longword 
access: write only 
mechanism: by value 

vd_id, wd_id, retx, 
rety 

Boolean value returned as the current position of the pointer in a status 
variable. UIS$GETJOINTERJOSITION returns the boolean TRUE value 
1 if the pointer is within the visible portion of the viewport, 0 is returned if 
the pointer is outside the visible portion of the viewport. In the latter case, 
the x and y values are returned as 0,0. 

UIS$GETJOINTERJOSITION signals all errors; no condition values are 
returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 



U IS Routine Descriptions 
UIS$GET _POINTER-POSITION 

18-161 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

retx, rety 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

World coordinate pair. The retx and rety arguments are the addresses of 
f-1loating point longwords that receives the pointer x and y world 
coordinates. 

Description 

Note that the returned status value should always be tested when using 
this routine, since it is always possible that the pointer could be outside the 
window when the service is called and the x, y values would be meaningless. 



18-162 UIS Routine Descriptions 
UIS$GET _POSITION 

UIS$GET _POSITION 
Returns the current baseline position for text output. 

Format 

UIS$GET _POSITION vd_id, retx, rety 

Returns 

UIS$GETJOSITION signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vd-id argument. 

ret x, rety 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

World coordinate pair. The retx and rety arguments are addresses of 
f-floating point longwords that receive the x and y world coordinate 
positions. 

Description 

UIS$TEXT and UIS$NEW_TEXT_LINE recognize the concept of current 
position. The position refers to the alignment point on the baseline of the 
next character to be output. 



Screen Output 

$ run get_pos 

UIS Routine Descriptions 
UIS$GET _POSITION 

18-163 

What is the current text position in world coordinates? 
x coordinate: 18.10 
y coordinate: 13.58 
What is the current text position in world coordinates? 
x coordinate: 18.10 
y coordinate: 3.54 
FORTRAN PAUSE 

Current position after 
text drawing (18.10, 13.58) 

Current position after 
text drawing (18.10, 3.54) 

Baseline Vector 

ZK-5413-86 



18-164 UIS Routine Descriptions 
UIS$GET _PREVIOUS_OBJECT 

UIS$GET _PREVIOUS_OBJECT 
Returns the identifier of the previous object in the display list. 

Format 

prev_id=UIS$GET _PREVIOUS_OBJECT 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the previous object identifier in the variable 
prev_id or RO (VAX MACRO). The previous object identifier uniquely 
identifies the previous object in the display list and is used as an argument in 
other routines. 

UIS$GETJREVIOUS_OBJECT signals all errors; no condition values are 
returned. 

Arguments 
obj_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Object identifier. The obj-id argument is the address of a longword that 
uniquely identifies an object. 

seg_id 
VMS Usage: identifier 
type: longword (unSigned) 
access: read only 
mechanism: by reference 

Segment identifier. The seg.-id argument is the address of a longword 
that uniquely identifies a segment. See UIS$BEGIN _SEGMENT for more 
information about the seg.-id argument. 



flags 
VMS Usage: maslLlongword 

U IS Routine Descriptions 
UIS$GET _PREVIOUS_OBJECT 

type: longword (unsigned) 
access: read only 
mechanism: by reference 

18-165 

Flags. The flags argument is the address of a longword that controls how the 
display list is searched. If the flags argument is specified using UIS$M_DL_ 
SAME _SEGMENT, the previous object in the segment containing the object 
specified is returned. 

If the flags argument is omitted, the previous object in the display list, 
regardless of the segment in which it is contained, is returned. 

Description 
If no previous object is found, a zero is returned. 

Illustration 

Level 0 

Level 1 

The following figure illustrates how UIS$GETJREVIOUS_OBJECT of each 
previous object within the same segment. 

Root Segment 

Plot Ellipse Text Segment Text 

Segment Image New Text Line Text Ellipse 
,~.~ ,~,~, 

prev_id prev_id prev_id prev_id current_id 

ZK-5363-86 

The following figure illustrates how UIS$GETJREVIOUS_OBJECT returns 
the object identifier of all objects in the display list. 



18-166 UIS Routine Descriptions 
UIS$GET _PREVIOUS_OBJECT 

Root Segment 

Level 0 Plot Ellipse Text Segment Text 
t~ t~ 

prev_id prev_id 
t.'----- t.,-- t. 

prev_ld prev_ld prev_ld 

I 
Level 1 Plot New Text Line Text Ellipse 

t~ t -......-t~ t 
prev_id prev_id prev_id current_id 

ZK 5364 86 



UIS Routine Descriptions 18-167 
UIS$GET _ROOT_SEGMENT 

Returns the root segment of the specified virtual display. 

Format 
root_id=UIS$GET _ROOT_SEGMENT vd_id 

Returns 
VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the root segment identifier in the variable 
root_id or RO (VAX MACRO). The root segment identifier uniquely identifies 
the root segment. 

UIS$GET-ROOT_SEGMENT signals all errors; no condition values are 
returned. 

Argument 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argUment is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

Description 
UIS$GET-ROOT_SEGMENT can be used with UIS$EXTRACT_OBJECT to 
extract an entire display list. 



18-168 UIS Routine Descriptions 
UIS$GET _ROOT_SEGMENT 

Screen Output 

$ run get_rootseg 
The root segment identifier for virtual display is 112968 
FORTRAN PAUSE 
$ 

Root Segment 

I 
I moUd 

I 
Ellipse Plot Ellipse 

ZK·5366·86 



UIS Routine Descriptions 18-169 
UIS$GET _ TB_INFO 

Returns the characteristics of the tablet device. 

Format 
status=UIS$GET _ TB_INFO devnam, retwidth, retheight, 

retresolx, retresoly [,retpwidth, 
retpheight] 

Returns 

VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Longword value returned in a status variable. If the value 1 is returned, the 
pointing device is a tablet. If the value 0 is returned, the pointing device is 
a mouse and the returned information will be zeros. A tablet is required for 
digitizing. 

UIS$GET_ TB-INFO signals all errors; no condition values are returned. 

Arguments 

devnam 
VMS Usage: device_name 
type: character string 
access: read only 
mechanism: by descriptor 

Device name. The devname argument is the address of a character string 
d~scriptor of the workstation device name. Specify the logical name 
SYS$WORKSTATION. 

retwidth 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Tablet width. The retwidth argument is the address of an f-Boating point 
longword that receives the width of the tablet in centimeters. 



18-170 UIS Routine Descriptions 
UIS$GET _ TB_INFO 

retheight 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Tablet height. The retheight argument is the address of an f.Jloating point 
longword that receives the height of the tablet in centimeters. 

retresolx 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Tablet x resolution. The retresolx argument is the address of an LJloating 
longword that receives the x resolution of the tablet in centimeters per pixel. 

retresoly 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Tablet y resolution. The retresoly argument is the address of an f.Jloating 
point longword that receives the y resolution of the tablet in centimeters per 
pixel. 

retpwidth 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Tablet width. The retpwidth argument is the address of a longword that 
receives the width of the tablet in pixels. 

retpheight 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Tablet height. The retpheight argument is the address of a longword that 
receives the height of the tablet in pixels. 



Description 

UIS Routine Descriptions 
UIS$GET _ TB_INFO 

18-171 

A call to UIS$GET_ TB-INFO is recommended prior to establishing 
digitizing. UIS$GET_ TB-INFO returns a value indicating whether the 
device is a mouse or tablet. A tablet is required for digitizing. 

Note that you may invalidate the results of this call, if you unplug the tablet 
and replace it with a mouse while running an application. 



18-172 UIS Routine Descriptions 
UIS$GET _ TB_POSITION 

UIS$GET -r TB_POSITION 
Polls for the position of the pointing device on the tablet. 

Format 

UIS$GET _ TB_POSITION tb_id ,retx ,rety 

Returns 

UIS$GET_ TBJOSITION signals all errors; no condition values are returned. 

Arguments 

tb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Tablet identifier. The tb-id argument is the address of a longword that 
uniquely identifies the tablet. See UIS$CREATE_ TB for more information 
about the tb-id argument. 

retx,rety 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Digitizer position. The retx, rety arguments are the addresses of f--floating 
numbers that define the current digitizer position. 

Description 

The digitizer's position will not be available if the pointing device is a mouse. 

If the pointer is not on the tablet, UIS$GET_ TBJOSITION returns the last 
pointer that was reported. 



UIS Routine Descriptions 
UIS$GET _TEXT_FORMATTING 

18-173 

UIS$GET _ TEXT_FORMATTING 
Returns a mask describing the enabled text formatting modes. 

Format 

formatting=UIS$GET _TEXT_FORMATTING vd_id, atb 

Returns 

VMS Usage: maslLlongword 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword mask returned as the current formatting mode in the variable 
formatting or RO (VAX MACRO). The following table lists the formatting 
modes. 

Formatting Mode 

UIS$C_ TEXTJORMAT_LEFT 

UIS$C_TEXTJORMAT-RIGHT 

UIS$C_TEXT_FORMAT_CENTER 

UIS$C_TEXTJORMAT_JUSTIFY 

UIS$C_TEXTJORMAT-NOJUSTIFY 

Function 

Left justified, ragged right (default) 

Right justified, left ragged 

Centered line between left and right 
margin 

Justified lines, space filled to right margin 

No text justification 

UIS$GET_TEXTJORMATTING signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vcLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vcLid argument. 



18-174 UIS Routine Descriptions 
UIS$GET _TEXT_FORMATTING 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
. identifies an attribute block containing the text formatting attribute setting to 
be returned. 



UIS Routine Descriptions 18-175 
UIS$GET _TEXT_MARGINS 

Returns the text margins for a line of text. 

Format 

UIS$GET _TEXT_MARGINS vd_id ,atb ,x ,y [,margin_length] 

Returns 

UIS$GET_ TEXT-MARGINS signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vd-id argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
identifies an attribute block containing the modified text margins attribute. 

x,y 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Starting margin position. The x,y arguments are the addresses of f-floating 
longwords that receive the starting margin relative to the direction of text 
drawing. 



18-176 UIS Routine Descriptions 
UIS$GET _TEXT_MARGINS 

margin_'ength 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Ending margin position. The margin-Iength is the address of an fJloating 
longword that receives the distance to the end margin. The margin is 
measured along the actual path of text drawing in the direction of the major 
text path. 

Screen Output 

$ run get_margins 
margin settings 
left margin x coordinate 5.00 
left margin y coordinate 15.00 
distance from left margin to right margin 
FORTRAN PAUSE 
$ 

- - ---~-- --- -~-------- ------- --- --------~~------==-=-=====---------

~oist your sail w'hen t'he wind is fair 
~oist your sail w'hen tile wind is fair 
~oist your sail wilen tile wind is fair 
,.,oist your sail when tile wind is fair 
~oist your sail w'hen tile wind is fair 

20.00 

ZK 528186 



UIS$GET _ TEXT _PATH 

UIS Routine Descriptions 
UIS$GET_TEXT_PATH 

18-177 

Returns text path types. See UIS$SET_TEXTJATH for information about 
valid text path types. 

Format 
UIS$GET _TEXT_PATH vd_id, atb [,major} [,minor} 

Returns 

UIS$GET_TEXTJATH signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vcLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vcLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a number that 
identifies an attribute block containing the text path attribute setting to be 
returned. 

major 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Major text path type. The major argument is the address of a code that 
identifies a major text path type. The major text path of text drawing is the 
direction of text drawing along a line. 



18-178 UIS Routine Descriptions 
UIS$GET_TEXT_PATH 

minor 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Minor text path type. The minor argument is the address of a code that 
identifies a minor text path type. The minor path of text drawing is the 
direction used for new text line creation. 

Description 

The following table contains symbols for valid character drawing directions. 

Path 

UIS$C_ TEXTJ ATH-RIGHT 

UIS$C_TEXTJ ATH_LEFT 

UIS$C_ TEXTJ ATH_UP 

UIS$C_ TEXTJ ATH_DOWN 

Direction 

Left to right (default major text path) 

Right to left 

Bottom to top 

Top to bottom (default minor text path) 



UIS$GET _ TEXT _SLOPE 

U IS Routine Descriptions 
UIS$GET _TEXT_SLOPE 

18-179 

Returns the angle of the actual path of text drawing relative to the major 
path in degrees. 

Format 
angle=UIS$GET _TEXT_SLOPE vd_id, atb 

Returns 

VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by value 

Longword value returned as the angle of the actual path of text drawing 
relative to the major path in degrees in the variable angle or RO (VAX 
MACRO). Degrees are measured counterclockwise. 

UIS$GET_ TEXT_SLOPE signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
identifies an attribute block from which the text slope attribute setting is to 
be returned. 



18-180 UIS Routine Descriptions 
UIS$GET _TEXT_SLOPE 

Screen Output 

$: run get_slope 
The angle of the text baseline 
The angle of the text baseline 
The angle of the text baseline 
The angle- of the text baseline 
The angle of the text baseline 
The angle of the text baseline 
The angle of the text baseline 
The angle of the text baseline 
The angle of the text baseline 
The angle of the text baseline 
The angle of the text baseline 
FORTRAN PAUSE 
$: 

text slope 

..... 

is 0.00 degrees 
is 34.00 degrees 
is 68.00 degrees 
is 102.00 degrees 
is 136.00 degrees 
is 170.00 degrees 
is 204.00 degrees 
is 238.00 degrees 
is 272.00 degrees 
is 306.00 degrees 
is 340.00 degrees 

ZK 5294 86 



UIS Routine Descriptions 18-181 
UIS$GET _ VCM_ID 

Re~rns the virtual color map identifier used by the specified virtual display. 

Format 

vcm_id=UIS$GET _ VCM_ID vd_id 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the virtual color map identifier in the 
variable vcm_id or RO (VAX MACRO). The virtual color map identifier 
uniquely identifies a virtual color map for a specified virtual display. See 
UIS$CREATE_COLOR-MAP for more information about the vcm-id 
argument. 

UIS$GET_ VCM-ID signals all errors; no condition values are returned. 

Argument 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 



18-182 UIS Routine Descriptions 
UIS$GET _VIEWPORT_ICON 

UIS$GET _VIEWPORT _ICON 
Returns boolean value indicating whether or not the icon is visible. 

Format 

boolean=UIS$GET _VIEWPORT_ICON wd_id [,icon_wd_idJ 

Returns 

VMS Usage: boolean 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Boolean value returned in a status variable or RO (VAX MACRO) indicating 
whether an icon has replaced a viewport, a 1 denotes a TRUE condition; a 0 
denotes a FALSE condition. 

UIS$GET_ VIEWPORT_ICON signals all errors; no condition values are 
returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wud argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wud argument. 

icon_wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Icon identifier. The icon_wud argument is the address of a longword that 
uniquely identifies the icon. 



UIS Routine Descriptions 18-183 
UIS$GET _VIEWPORT_ICON 

Screen Output 

$ run window_options 
Is the icon is visible? F = FALSE T = TRUE 

T 

• 
1COn 

ZK-5270-86 



18-184 UIS Routine Descriptions 
UIS$GET _VIEWPORT_POSITION 

UIS$GET _VIEWPORT _POSITION 
Returns the position of the" lower-left comer of the display viewport relative 
to the lower-left comer of the screen. 

Format 

UIS$GET_VIEWPORT_POSITION wd_id, retx, rety 

Returns 

UIS$GET_ VIEWPORTJOSITION signals all errors; no condition values are 
returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wc:Lid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE 
for more information about the wc:Lid argument. 

retx,rety 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Absolute device coordinate pair. The retx and rety arguments are the 
addresses of f-1loating point longwords that receive the x and y coordinates 
of the display viewport origin in centimeters. 

These coordinates refer to the inside of the viewport and do not include the 
border. 



UIS Routine Descriptions 18-185 
UIS$GET _VIEWPORT_POSITION 

Description 
UIS$GET_ VIEWPORT_POSITION is useful in the exact placement of 
windows. 

Screen Output 
See UIS$GET_ VIEWPORT_SIZE. 



18-186 UIS Routine Descriptions 
UIS$GET _VIEWPORT_SIZE 

UIS$GET _VIEWPORT _SIZE 
Returns the size of the display viewport associated with the specified display 
window. 

Format 

UIS$GET _VIEWPORT _SIZE wd_id, retwidth, retheight 

Returns 

UIS$GET_ VIEWPORT_SIZE signals all errors; no condition values are 
returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wd-id argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wd-id argument. 

retwidth, retheight 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Display viewport width and height. The retwidth and retheight arguments 
. are the addresses of f.Jloating point longwords that receive the display 
viewport width and height in centimeters. 



Screen Output 

-
$ run get_viewpos_size 

U IS Routine Descriptions 
UIS$GET _VIEWPORT_SIZE 

18-187 

The viewport position on the display screen in absolute coordinates 
x coordinate = 12.86 cm y coordinate = _1.97cm 
The physical dimensions of the display viewport 
width of viewport 9.97 cm height of viewport 9.97 cm 
FORTRAN PAUSE 
$ 

---------------------------
~ ~-- ~---=----=-----~--- --~~~---=--==:.::::::::...-~--------

I 
I 1 

ZK525186 



18-188 UIS Routine Descriptions 
UIS$GET _VISIBILITY 

UIS$GET _VISIBILITY 
Returns a boolean value that indicates whether or not the specified rectangle 
in the display window is visible. 

Format 

status=UIS$GET_VISIBILITY vd_id, wd_id [,Xt, Yt [,x2' Y211 

Returns 

VMS Usage: boolean 
type: longword 
access: write only 
mechanism: by value 

Boolean value returned in a status variable or RO (VAX MACRO). The 
returned value, the visibility status, is a boolean TRUE only if the entire area 
is visible, and a boolean FALSE if even a portion of the area is occluded or 
clipped. 

UIS$GET_ VISIBILITY signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 



Xl' YI' X2' Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

UIS Routine Descriptions 
UIS$GET _VISIBILITY 

18-189 

World coordinates of a rectangle in the display window. The xl and YI 
arguments are addresses of f-Hoating point numbers that define the lower
left comer of a rectangle in the display window. The x2 and Y2 arguments 
are addresses of f-Hoating point numbers that define the upper-right comer 
of a rectangle in the display window. 

If the coordinates of the rectangle are not specified, the dimensions of the 
entire display window are used by default. 

If only one point is specified, only that point is checked. 



18-190 UIS Routine Descriptions 
UIS$GET _WINDOW-ATTRIBUTES 

UIS$GET _WINDOW_ATTRIBUTES 
Returns the value of the mask WDPL$C-ATTRIBUTES used in the creation 
of the specified window. See UIS$CREATE_WINDOW for more information 
about window and viewport attributes. 

Format 

attributes=UIS$GET _WINDOW --ATTRIBUTES wd_id 

Returns 

VMS Usage: maslLlongword 
type: longword 
access: write only 
mechanism: by value 

Longword mask representing one or more attributes of the specified display 
window and returned in the variable attributes or RO (VAX MACRO). See 
UIS$CREATE_WINDOW for more information. 

UIS$GET_WINDOW-ATTRIBUTES signals all errors; no condition values 
are returned. 

Argument 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 



UIS$GET _WINDOW_SIZE 

UIS Routine Descriptions 
UIS$GET _WINDOW_SIZE 

Returns the dimensions of the display window. 

Format 

UIS$GET_WINDOW_SIZE vd_id, wd_id, X1' Y1, x2, Y2 

Returns 

UIS$GET_WINDOW_SIZE signals all errors; no condition values are 
returned. ' 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

18-191 

Virtual display identifier. The v<Lid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about v<Lid. 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The w<Lid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about w<Lid. 

Xl'Yl,X2,Y2 

VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

World coordinate pairs. The Xt,Yt and the x2,Y2 arguments are the addresses 
of f-floating longwords that receive the locations of the lower-left and 
upper-right corners of the display window in world coordinates. 



18-192 UIS Routine Descriptions 
UIS$GET _WRITING_INDEX 

Returns the writing color index for text and graphics output. 

Format 

index=UIS$GET_WRITING_INDEX vd_id, atb 

Returns 

VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the color map index in the variable index or RO 
(VAX MACRO). 

UIS$GET_WRITING_INDEX signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies an attribute block from which the writing color index is 
obtained. 



UIS Routine Descriptions 18-193 
UIS$GET _WRITING_INDEX 

Screen Output 

$ run get_writindex 
The current writing index is 1 
FORTRAN PAUSE 
$ 

ZK·5269·86 



18-194 UIS Routine Descriptions 
UIS$GET _WRITING_MODE 

Returns the writing mode. 

Format 

mode=UIS$GET_WRITING_MODE vd_id, atb 

Returns 

VMS Usage: long~orcLunsigned 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as a UIS writing modes in the variable mode or RO 
(VAX MACRO). See Table 9-2 for more information about writing modes. 

UIS$GET_WRITING_MODE signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The viLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the viLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies an attribute block from which the writing mode is 
obtained. 



UIS Routine Descriptions 
UIS$GET _WS_COLOR 

18-195 

Returns the R (red), G (green), and B (blue) values associated with the 
workstation standard color. 

Format 

UIS$GET _WS_COLOR 

Returns 

vd_id, c%r _id, retr, retg, retb 
[,wd_idj 

UIS$GET_WS_COLOR signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vud argument. 

COIOf_id 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Workstation standard color. The color-id argument is the address of a 
longword integer that identifies a symbolic code for the workstation standard 
color. If the color-id argument is invalid, an error is signaled. 

The following table lists possible workstation standard color symbols and 
their current values. 



18-196 UIS Routine Descriptions 
UIS$GET_WS_COLOR 

Standard 
Color Symbol 

Background UIS$C_WS_BCOLOR 

Foreground UIS$C_WSJCOLOR 

Black UIS$C_WS_BLACK 

White UIS$C_WS_WHITE 

Red UIS$C_WS-RED 

Green UIS$C_WS_GREEN 

Blue UIS$C_WS_BLUE 

Cyan UIS$C_WS_CYAN 

Yellow UIS$C_WS_ YELLOW 

Magenta UIS$C_WSjiAGENTA 

Grey (25%) UIS$C_ WS_GREY25 

Grey (50%) UIS$C_ WS_GREY50 

Grey (75%) UIS$C_ WS_GREY75 

retr 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Red value. The retr argument is the address of an f-Iloating point longword 
that receives the red value. The red value is in the range of 0.0 to 1.0, 
inclusive. 

retg 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Green value. The retg argument is the address of an f-Iloating point 
longword that receives the green value. The green value is in the range 
of 0.0 to 1.0, inclusive. 

retb 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 



UIS Routine Descriptions 
UIS$GET _WS_COLOR 

18-197 

Blue value. The retb argument is the addre~s of an f-Boating point longword 
that receives the blue value. The blue value is in the range of 0.0 to 1.0, 
inclusive. 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wd-id argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wd-id argument. If this argument 
is specified, then it must be a valid wd-id associated with the virtual display, 
and the returned values are the realized colors for the specific device for 
which the window was created. 



18-198 UIS Routine Descriptions 
UIS$GET _ WS_INTENSITY 

UIS$GET _WS_INTENSITY 
Returns the intensity values associated with a workstation standard color. 

Format 

UIS$GET_WS_INTENSITY vd_id, color_id, reti f,wd_idJ 

Returns 

UIS$GET_WS-INTENSITY signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

color_id 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Workstation standard color identifier. The color-id argument is the address 
of a longword that identifies a symbolic code for the workstation standard 
color. If the color-id argument is invalid, an error is signaled. 

The following table lists possible workstation standard color symbols. 



Standard 
Color 

Background 

Foreground 

Black 

White 

Red 

Green 

Blue 

Cyan 

Yellow 

Magenta 

Grey (25%) 

Grey (50%) 

Grey (75%) 

reti 
VMS Usage: 
type: 
access: 
mechanism: 

Symbol 

U IS Routine Descriptions 
UIS$GET _WS_INTENSITY 

UIS$C_WS_BCOLOR 

UIS$C_WSJCOLOR 

UIS$C_WS_BLACK 

UIS$C_WS_WHITE 

UIS$C_WSJED 

UIS$C_WS_GREEN 

UIS$C_ WS_BLUE 

UIS$C_WS_CYAN 

UIS$C_WS_ YELLOW 

UIS$C_WS-MAGENTA 

UIS$C_ WS_GREY25 

UIS$C_ WS_GREY50 

UIS$C_WS_GREY75 

floating_point 
f_floating 
write only 
by reference 

18-199 

Intensity value. The reti argument is the address of an f-Boating longword 
that receives the intensity value. The intensity value is in the range of 0.0 to 
1.0, inclusive. 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

If this argument is specified, then it must be a valid wLid associated with 
the virtual display, and the returned values are the realized intensities for the 
specific device for which the window was created. 



18-200 UIS Routine Descriptions 
UIS$HLS_ TO_RGB 

Converts color representation values of hue, lightness, and saturation (HLS) 
to red, green, and blue (RGB) values. 

Format 
UIS$HLS_ TO_RGB H, L, S, retr, retg, retb 

Returns 

UIS$HLS_ TO-RGB signals all errors; no condition values are returned. 

Arguments 

H 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Hue. The H argument is the address of an f-Hoating number that defines 
the hue of a color. 

L 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Lightness. The L argument is the address of an f-Hoating number that 
defines the lightness of a color. 

S 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Saturation. The S argument is the address of an f-Hoating number that 
defines color saturation. 



retr 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

UIS Routine Descriptions 
UIS$HLS_ TO_RGB 

18-201 

Red value. The retr argument is the address of an f.JJ.oating point longword 
that receives the red value. 

retg 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Green value. The retg argument is the address of an f.JJ.oating point 
, longword that receives the green value. 

retb 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Blue value. The retb argument is the address of an f.JJ.oating point longword 
that receives the blue value. 



18-202 UIS Routine Descriptions 
UIS$HSV_ TO_RGB 

Converts color representation values of hue, saturation, and value (HSV) to 
red, green, and blue (RGB) values. 

Format 

UIS$HSV_TO_RGB H, S, V, retr, retg,retb 

Returns 

UIS$HSV_ TO-RGB signals all errors; no condition values are returned. 

Arguments 

H 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Hue. The H argument is the address of an f-Hoating number that defines 
the hue of a color. 

S 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Saturation. The S argument is the address of an f-Hoating number that 
defines the saturation of a color. 

V 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Value. The V argument is the address of an f-Hoating number that defines 
the value of a color. 



retr 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mecha~ism: by reference 

UIS Routine Descriptions 
UIS$HSV_TO_RGB 

18-203 

Red value. The retr argument is the address of an f-floating longword that 
receives the red color value. 

retg 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Green value. The retg argument i3 the address of an f-floating longword 
that receives the green color value. 

retb 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Blue value. The retb argument is the address of an f-floating longword that 
receives the blue color value. 



18-204 UIS Routine Descriptions 
UIS$IMAGE 

UIS$IMAGE 
Draws a raster image in a specified rectangle in the display viewport. 

Format 

UIS$IMAGE 

Returns 

vd_id, atb, X1' Y1' x2' Y2' rasterwidth, 
rasterheight, bitsperpixel, rasteraddr 

UIS$IMAGE signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies an attribute block that modifies the image. 

Xl' Yl' X2J Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinates of the rectangle in the virtual display. The Xl and Yl 
arguments are the addresses of LJloating point numbers that define the 
lower-left comer of the rectangle in the virtual display. The x2 and Y2 



UIS Routine Descriptions 
UIS$IMAGE 

18-205 

arguments are the addresses of f-floating point numbers that define the 
upper-right comer of the rectangle in the virtual display. 

rasterwidth 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Width of the raster image. The rasterwidth argument is the address of a 
longword that defines the width of the raster image in pixels. 

rasterheight 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Height of the raster image. The rasterheight is the address of a longword 
that defines the height of the raster image in pixels. 

bitsperpixel 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Number of bits per pixel in the raster image. The bitsperpixel argument is 
the address of a longword that defines the number of bits per pixel in the 
raster image. The bifsperpixel argument is currently required to be 1 or 8. 

If the value 8 is specified for bitsperpixel on a single plane system, the 
results are unpredictable. 

rasteraddr 
VMS Usage: vector_longword_unsigned 
type: longword_unsigned 
access: read only 
mechanism: by reference 

Bitmap image. The rasteraddr argument is the address of an array that 
defines a bitmap image. You must first create a bitmap by defining a data 
structure such as a record or array. When you assign values to the field or 
array element in the data structure, you are setting the bits of the image to 
be drawn by UIS$IMAGE. See the Description section for information about 
setting bits. 



18-206 UIS Routine Descriptions 
UIS$IMAGE 

Description 

The bitmap image is drawn to the display viewport as a raster image. The 
raster image dimensions are described by the width, height, and bits per 
pixel parameters. The width and height give the number of pixels in each 
dimension, and bits per pixel represents the number of bits that makes up 
each pixel. The raster is read from memory as "height" bit vectors each of 
which is "width" pixels long and each pixel is "bits/pixel" bits long. 

If the destination rectangle is larger than the raster size by at least an 
integer multiple, the raster is automatically scaled' on a per pixel basis to the 
space available. Thus, a 1 x 1 raster can be written into an arbitrarily large 
destination rectangle, and the entire region is filled with the pattern. 

If the destination rectangle is not an exact multiple of the raster size, then 
the remaining space on the right and top will not be written. 

The procedure for mapping values in the bitmap to the raster image is as 
follows: 

1. Each bit in the raster is set from left-most bit to the right-most bit 

2. Each row is filled from the top row to the bottom row. 

NOTE: The raster image is not byte- or word-aligned. 

The following figure illustrates the setting of bits in the bitmap. 



Example 

UIS Routine Descriptions 18-207 
UIS$IMAGE 

1 
~ 

1 

1 

0 1 1 1 0 0 1 0 1 0 1 

0 1 0 

\ 
Raster 
Image 

ZK·462785 

INTEGER*2 BITMAP(20) 
DATA BITMAP/2*O.2*16380.5*12.2*1020.7*12.2*O/ 

VD_ID=UIS$CREATE_DISPLAY(O.O.O.O.40.0.40.0.10.0.10.0) 
WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION') 

CALL UIS$IMAGE(VD_ID.O.O.O.O.O.20.0.20.0.16.20.1.BITMAP) 



18-208 UIS Routine Descriptions 
UIS$IMAGE 

Screen Output 

ZK-5267-86 



UIS Routine Descriptions 18-209 
UIS$INSERT _OBJECT 

UIS$INSERT _OBJECT 
Inserts the specified object into the display list at the position specified by the 
insertion pointer. See UIS$SET-INSERTIONJOSITION for information 
about setting the pointer in the display list. 

Format 

UIS$INSERT _OBJECT 

Returns 

UIS$INSERT_OBJECT signals all errors; no condition values are returned. 

Arguments 
obj_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Object identifier. The obj-id argument is the address of a longword that 
uniquely identifies an object. 

seg_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Segment identifier. The seg....id argument is the address of a longword 
that uniquely identifies a segment. See UIS$BEGIN _SEGMENT for more 
information about the seg....id argument. 



18-210 UIS Routine Descriptions 
UIS$LINE 

UIS$LINE 
Draws an unfilled point, line, or se~ies of unconnected lines depending on 
the number of positions specified. 

Format 

UIS$LINE vd_id, atb, X1' Y1 [,x2'Y2 [, ... xn,Yn]] 

Returns 

UIS$LINE signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. . 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies an attribute block that modifies line style and line 
width or both. ' 

x, Y 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinate pair. The x and y arguments are the addresses of f-floating 
point numbers that define a point in the virtual display. If the arguments 
are repeated to specify a second position, a line is created. Up to 126 world 



U IS Routine Descriptions 
UIS$LlNE 

18-211 

coordinate pairs may be specified as arguments. See the "DESCRIPTION" 
section below for more information about this argument. 

Description 

If one position is specified, then a point is drawn. If two positions are 
specified, a single vector is drawn. If more than two positions are specified, 
unconnected lines are drawn. Up to 252 arguments can be specified, a 
maximum of a 126 unconnected lines are drawn using this routine. If a 
larger number of points must be specified in a single call, UIS$LINE-ARRAY 
should be used. 

The points or lines are drawn with the line pattern and width for the attribute 
block. UIS$LINE ignores the fill pattern attribute. 

Example 

call uis$line{vd_id,O,3.0,5.0,5.0,15.0,5.0,5.0,7.0,15.0,7.0,5.0, 
2 9.0,15.0, 
2 9.0,5.0,11.0,15.0,11.0,5.0,13.0,15.0, 
2 13.0,5.0,15.0,15.0,15.0,5.0,17.0,15.0) 

A single call to UIS$LINE draws five unconnected lines. 



18-212 UIS Routine Descriptions 
UIS$LlNE 

Screen Output 

I I I I ! 
I I I I 

, I I I 
/ ! J 

ZK·5419·86 



UIS Routine Descriptions 18-213 
UIS$LINE-ARRA Y 

UIS$LINE-ARRA V 
Draws an unfilled point, line, or series of unconnected lines depending on 
the number of positions specified. This routine performs the same functions 
as UIS$LINE except that x and y coordinates are stored in arrays. 

Format 

UIS$LINE-ARRAY vd_id, atb, count, x-vector, y_vector 

Returns 

UIS$LINE-ARRAY signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vUd argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vUd argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies an attribute block that modifies line style or line width 
or both. 

count 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 



18-214 UIS Routine Descriptions 
UIS$LlNE-ARRA Y 

Number of points. The count argument is the address of longword integer 
that denotes the number of world coordinate pairs defined in the arguments 
x_vector and y_vector. 

JLvector, y_vector 
VMS Usage: vector_longword_signed 
type: f_floating 
access: read only 
mechanism: by reference 

Array of x and y world coordinates. The x_vector argument is the address 
of an array of LJ.loating numbers whose elements are the x world coordinate 
values of points defined in the virtual display. The y_vector argument is the 
address of an array of L110ating numbers whose elements are the y world 
coordinate values of points defined in the virtual display. 

Description 

A maximum of 32,767 points can be plotted in a single call. UIS$LINE_ 
ARRAY is the same as UIS$LINE except that the x and y coordinates are 
specified using two arrays, each of length count points. 



UIS Routine Descriptions 1d-215 
UIS$MEASURE_ TEXT 

UIS$MEASURE_ TEXT 
Measures a text string as if it were output in a virtual display. 

Format 

UIS$MEASURE_ TEXT 

Returns 

vd .. : .. Jd, atb, text_string, f(~twidth, 
retheight, [,ctllist, ctllen] [,posarray] 

UIS$MEASURE_TEXT signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vud argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies an attribute block that modifies text output. 

text_string 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Text string. The text-string argument is the address of a character string 
descriptor of a text string. 



18-216 UIS Routine Descriptions 
UIS$MEASURE_ TEXT 

retwidth, retheight 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

World coordinate width. The retwidth and retheight arguments are the 
addresses of f--Boating point longwords that receive the world coordinate 
width and height of the text. 

et//ist 
VMS Usage: vector_longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Text formatting control list. The ctllist argument is the address of an array 
of longwords that describe the font, text rendition, format, and positioning of 
fragments of the text string. See UIS$TEXT for a description of the control 
list and its commands. 

The control list consists of a sequence of data elements, each two longwords 
in length. The first longword of each element is a tag. The second longword 
is either a value particular to the type of element specified or zero. Following 
is a diagram showing the structure of a text control list. 



UIS Routine Descriptions 
UIS$MEASURE_ TEXT 

18-217 

UIS$C_ TEXT --A TB 

Attribute Block Number 

UIS$C_ TEXT _SAVEPOSITION 

0 

UIS$C_ TEXT_IGNORE 

Command Value 

ZK·5426·86 

The following table describes valid formatting commands. 

Formatting Command 

Commands Without Valuesl 

UIS$C_TEXT-NOP 

UIS$C_ TEXT-RESTOREJOSITION 

UIS$C_TEXT_SAVEJOSITION 

Commands Requiring Values 

UIS$C_TEXLATB 

UIS$C_ TEXTJfPOS-ABSOLUTE 

UIS$C_TEXTJfPOS-RELATIVE 

UIS$C_ TEXT-IGNORE 

1 Second longword must be zero. 

Function 

Nil operation 

Restores the current writing position 

Saves the current writing position 

Specifies an attribute block number 

Specifies a new current x position 

Modifies the current x position by a delta 

Skips n characters 



18-218 UIS Routine Descriptions 
UIS$MEASURE_ TEXT 

Formatting Command 

Commands Requiring Values 

UIS$C_ TEXT_ TAB-ABSOLUTE 

UIS$C_ TEXT_ VPOS-ABSOLUTE 

UIS$C_ TEXT_ VPOS-RELATIVE 

UIS$C_ TEXT_WRITE 

Function 

Skips n new lines and positions at the left 
margin 

Writes white space to the new absolute 
position 

Writes white space to the new relative 
position 

Writes a new current y position 

Modifies the current y position by a delta 

Writes n characters 

Commands Not Requiring a Second Longword 

UIS$C_TEXT-END_OF_LIST Terminates the control list 

When VIS encounters illegal commands and values within the control list, it 
skips the invalid item and signals an error. 

ctllen 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Length of the text formatting control list. The ctlien argument is the address 
of a longword that specifies the length of the text formatting control list in 
longwords. 

posarray 
VMS Usage: vector_longword_signed 
type: f_floating 
access: write only 
mechanism: by reference 

Character position array. The posarray argument is the address of an array 
of longwords that receives the character positions in world coordinates, 
that is, relative offsets at which each character would have been displayed. 
Following is a diagram showing the format of the character position array. 



Relative Position Xl 

Relative Position Yl 

Relative Position X2 

Relative Position Y2 

Relative Position xn 

Relative Position Yn 

UIS Routine Descriptions 
UIS$MEASURE_ TEXT 

18-219 

> Character Cell 1 

> Character Cell 2 

> Character Cell n 

ZK-542S-86 

The width and height of the text string is calculated according to the 
formatting described in the atb and ctllist arguments. 

Description 
UIS$MEASURE_TEXT is used in justification and text positioning 
applications. The routine returns the height and width of the text string 
in world coordinates. 



18-220 UIS Routine Descriptions 
UIS$MEASURE_ TEXT 

Screen Output 

:$: run measure 
string width in world coordinates = 16,95 
string height in world coordinates = 4,92 
The contents of the character position array are 
x coordinate = 0,00 y coordinate 0,00 

x coordinate = 0,81 y coordinate 0,00 

X cClord inate = 1,61 Y coord ina.te 0,00 Positions of the 
first six characters 
including the space 

X coordinate = 2,42 Y coordinate 0,00 relative to the 
x axis 

X coordinate = 3,23 y coordinate 0,00 

x coordinate = 4,04 y coordinate 0,00 

FORTRAN PAUSE 
:$: 

aw and Ion 
ZK 5266 86 



UIS$MOVE-AREA 

UIS Routine Descriptions 
UIS$MOVE-AREA 

18-221 

Shifts a portion of a virtual display to another position in the display 
window. 

Format 

UIS$MOVE-AREA vd_id, Xt, Yt, x2, Y2' new-x, new_y 

Returns 

UIS$MOVE-AREA signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vc.Lid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vc.Lid argument. 

xl,Yt,X2,Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinates of the source rectangle. The Xl and YI arguments are the 
addresses of LJloating point numbers that define the lower-left corner of 
the source rectangle. The x2 and Y2 are the addresses of f--floating point 
numbers that define the upper-right corner of the source rectangle. 

new-x, new_y 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinate pair. The new-x and new_y arguments are the 
addresses of f--floating point numbers that define the lower-left corner of 



18-222 UIS Routine Descriptions 
UIS$MOVE-AREA 

the destination rectangle. The proportions of the coordinate space of the 
destination rectangle are the same as those of the source rectangle. 

Desc,ription 
Note that display objects that are only partially contained within the specified 
source rectangle, though partially moved within existing display windows 
will be completely moved within the display list. 

The nonoccluding portion of the source rectangle (if any) is erased after the 
operation. 

NOTE: To avoid distortion within the destination rectangle, the aspect 
ratios of the source rectangle and the display viewport must be equal. 



UIS Routine Descriptions 18-223 
UIS$MOVE-AREA 

Screen Output 

ZK5305B6 



18-224 UIS Routine Descriptions 
UIS$MOVE_ VIEWPORT 

UIS$MOVE_ VIEWPORT 
Moves the display viewport on the workstation screen. 

Format 

UIS$MOVE_VIEWPORT wd_id, attributes 

Returns 

UIS$MOVE_ VIEWPORT signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wd-id argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wd-id argument. 

attributes 
VMS Usage: item_list_pair 
type: longword 
access: read only 
mechanism: by reference 

Display viewport attribute list. The attributes argument is the address of 
data structure that contains longword pairs, or doublets. The first longword 
stores an attribute ID code and the second longword holds the attribute value 
(which can be real or integer). 

The following figure describes the structure of the window attributes list. 



UIS Routine Descriptions 
UIS$MOVE_VIEWPORT 

Attribute ID code 
(WDPL$C_xxx) 

Longword value for attribute 
identified in previous longword 

2nd attribute ID code 

2nd attribute value 

• 

• 

• 
End of list = a 

(WDPL$C_END_OF _LIST) 

ZK-4581-85 

Only positional attributes are significant. 

18-225 



18-226 UIS Routine Descriptions 
UIS$MOVE_WINDOW 

UIS$MOVE_WINDOW 
Redefines the world coordinates of the specified display window. 

Format 

UIS$MOVE_WINDOW vd_id, wd_id, x1' Y1' x2' Y2 

Returns 

UIS$MOVE_WINDOW signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

xlI Y11 X21 Y2 

VMS Usage: floatin9-point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinates of the new display window. The xl and Yl arguments 
are the addresses of f-floating point numbers that define that lower-left 
comer of the display window. The x2 and Y2 arguments are the addresses 



U IS Routine Descriptions 
UIS$MOVE_WINDOW 

18-227 

of f-Hoating point numbers that define the upper-right comer of the new 
display window. 

Description 

UIS$MOVE_WINDOW redefines the world coordinates of the specified 
display window. As a result, what is displayed in the associated display 
viewport may change. You can pan around a virtual display or scroll through 
a virtual display. If the display window rectangle changes dimensions or 
aspect ratio, then scaling is performed to map the new window size to the 
existing display viewport size. 



18-228 UIS Routine Descriptions 
UIS$NEW _TEXT_LINE 

UIS$NEW _ TEXT _LINE 
Moves the current text position along the actual path of text drawing to the 
starting margin, and then in the direction of the minor text path. Depending 
on the minor text path, the width or height of the character cell is used for 
spacing between characters and lines. 

Format 
UIS$NEW_ TEXT_LINE vd_id, atb 

Returns 

UIS$NEW_ TEXT_LINE signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vc:Lid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vc:Lid argument. 

atb 
VMS Usage: longword-unsigned 
type: longword 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies an attribute block that modifies text output. 

Description 

Font, text path, character spacing, and text slope attributes influence the 
behavior. 



UIS Routine Descriptions 18-229 
UIS$PLOT 

UIS$PLOT 
Draws a filled or unfilled point, line, or polygon depending on the number of 
positions specified. 

Format 

UIS$PLOT vd_id, atb, x 1, Y1 [,x2'Y2 [, ... xn,Yn]] 

Returns 

UIS$PLOT signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies an attribute block that modifies line style and line 
width or both. 

x, Y 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinate pair. The x and y arguments are the addresses of f--Iloating 
point numbers that define a point in the virtual display. If the arguments 
are repeated to specify a second position, a line is created. Up to 126 world 



18-230 UIS Routine Descriptions 
UIS$PLOT 

coordinate pairs may be specified as arguments. See the Description section 
below for more information about this argument. 

Description 

If one position is specified, then a point is drawn. If two positions are 
specified, a single vector is drawn. If more than two positions are specified, 
a connected polygon is drawn. Up to 252 arguments can be specified, giving 
a maximum of a 126-point polygon using this routine. If a larger number of 
points must be specified in a single call, UIS$PLOT-ARRAY should be used. 

The points or lines are drawn with the line pattern and width for the attribute 
block, and if the fill pattern attribute is enabled for the attribute block, the 
enclosed area is filled with the current fill pattern. 

NOTE: VAX PASCAL application programs should use UIS$PLOT-ARRAY 
to create lines and polygons. 

Example 

REAL*4 I 

VD_1D=U1S$CREATE_D1SPLAY(0.O,-1.1,360.0,1.1,10.0,10.0) 
WD_1D=U1S$CREATE_W1NDOW(VD_1D,'SYS$WORKSTAT10N','S1NE CURVE') 
CALL U1S$PLOT(VD_1D,O,O.O,O.O,360.0,O.0) 

DO 1=1,360 
CALL U1S$PLOT(VD_1D,O,1,S1ND(1)) 
ENDDO 

The preceding example draws a sine curve. 



Screen Output 

UIS Routine Descriptions 
UIS$PLOT 

sine curve 

.. '" 
I '" .. '" 

-:. ,.' 
... "" 

'''J 

18-231 

ZK-5257-86 



18-232 UIS Routine Descriptions 
UIS$PLOT -ARRAY 

UIS$PLOT -ARRA V 
Draws an unfilled or filled point, line or polygon depending on the 
number of positions specified. This routine performs the same functions 
as UIS$PLOT. 

Format 

UIS$PLOT-ARRAY vd_id, atb, count, )Lvector, y_vector 

Returns 

UIS$PLOT-ARRAY signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The v"--id argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the v"--id argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies an attribute block that modifies line style or line width 
or both. 

count 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 



U IS Routine Descriptions 
UIS$PLOT -ARRAY 

18-233 

Number of points. The count argument is the address of longword integer 
that denotes the number of world coordinate pairs defined in the arguments 
x_vector and y_vector. 

JLvector, y_vector 
VMS Usage: vector_longword_signed 
type: f_floating 
access: read only 
mechanism: by reference 

Array of x and y world coordinates. The x_vector argument is the address 
of an array of LJloating numbers whose elements are the x world coordinate 
values of points defined in the virtual display. The y_vector argument is the 
address of an array of f.Jloating numbers whose elements are the y world 
coordinate values of points defined in the virtual display. 

Description 
A maximum of 65,535 points can be plotted in a single call. UIS$PLOT_ 
ARRAY is the same as UIS$PLOT except that the x and y coordinates are 
specified using two arrays, each of length count points. 



18-234 UIS Routine Descriptions 
UIS$POP _VIEWPORT 

UIS$POP _VIEWPORT 
Pops the viewport associated with the display window to the forefront of the 
screen, over any other viewports that currently occlude it. 

Format 
UIS$POP_VIEWPORT wd_id 

Returns 

UIS$POP_VIEWPORT signals all errors; no condition values are returned. 

Argument 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 



UIS Routine Descriptions 18-235 
UIS$POP_VIEWPORT 

Screen Output 

ZK530486 



18-236 UIS Routine Descriptions 
UIS$PRESENT 

UIS$PRESENT 
Verifies that UIS software is installed on the system. 

Format 

status=UIS$PRESENT [major_versionj£,minor_versionj 

Returns 

VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned in the variable status or RO (VAX MACRO). A 
value of 1 TRUE indicates that UIS is installed on the system. Otherwise, the 
error status SHR$JROD~OTINS is returned if UIS$PRESENT is executed 
on a VAX/VMS system running the stub UIS shareable image. The stub 
shareable image is currently installed on non-VAXstation systems. 

Arguments 

major_version 
VMS Usage: word_unsigned 
type: word (unsigned) 
access: write only 
mechanism: by reference 

Major version number. The major_version argument is the address of a 
word that receives the major version number. For UIS Version 3.0, the major 
version number 3 is returned. 

minor_version 
VMS Usage: word-unsigned 
type: word (unsigned) 
access: write only 
mechanism: by reference 

Minor version number. The minor_version argument is the address of a 
word that receives the minor version number. For UIS Version 3.0, the minor 
version number 0 is returned. 



UIS$PRIVATE 

UIS Routine Descriptions 
UIS$PRIVATE 

18-237 

Associates application-specific data with the most recently output graphic 
information (graphics or text) or with the specified graphic object. 

Format 

UIS$PRIVATE { Obj_id} facnum buffer 
vd_id' , 

Returns 

UIS$PRIVATE signals all errors; no condition values are returned. 

Arguments 

obi-id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Object identifier. The obj-id argument is the address of a longword that 
uniquely identifies an object. 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vd-id argument. 

facnum 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Facility number. The facnum argument is the address of a longword that 
identifies the creator of the private data. 



18-238 UIS Routine Descriptions 
UIS$PRIVATE 

Values defined with the high bit set are reserved to DIGITAL. 

buffer 
VMS Usage: vector_byte_unsigned 
type: byte (unsigned) 
access: read only 
mechanism: by descriptor 

Location of the private data. The buffer argument is a descriptor of an array 
of bytes. The byte array contains the private data. 

Description 

If you select a graphic item and store it in a file, the application-specific data 
will be copied with it. If nothing has been output since the beginning of a 
segment, the data will be associated with the segment. 

Many private data items can be associated with the same graphic object. 



UIS Routine Descriptions 18-239 
UIS$PUSH_VIEWPORT 

UIS$PUSH_ VIEWPORT 
Pushes the viewport associated with the display window to the background 
of the screen, behind any other viewports it occludes. 

Format 
UIS$PUSH_VIEWPORT wd_id 

Returns 

UIS$PUSH_ VIEWPORT signals all errors; no condition values are returned . 

. Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wd-id argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wd-id argument. 



18-240 UIS Routine Descriptions 
UIS$PUSH_VIEWPORT 

Screen Output 

tt'ianQle 

squar'e 
-----

ZK53038b 



UIS$READ_CHAR 

UIS Routine Descriptions 
UIS$READ_CHAR 

Allows an application to read a single character from the keyboard. 

Format 

keybuf=UIS$READ_CHAR kb_id [,flags] 

Returns 

VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

18-241 

Longword integer returned key information in the variable keybuf or RO 
(VAX MACRO). The keybuf variable is the address of a longword buffer 
that receives the key information. The low two bytes are the key code. 
The key codes are based on the codes found in the module $SMGDEF in 
SYS$LIBRARY:STARLET.MLB. Bit <31> is set to 1 to indicate that the key 
is down. For additional information about keybuf, see the DESCRIPTION 
section. 

UIS$READ_CHAR signals all errors; no condition values are returned. 

Arguments 

kb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual keyboard identifier. The kb-id argument is the address of a 
longword that uniquely identifies a virtual keyboard. See UIS$CREATE_ 
KB for more information about the kb-id argument. 

flags 
VMS Usage: masLlongword 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Flags. The flags argument is the address of a longword mask that controls 
whether UIS$READ_CHAR executes immediat~ly or until a character is 



18-242 UIS Routine Descriptions 
UIS$READ_CHAR 

received. If bit <0> is clear, UIS$READ_CHAR waits until a character is 
typed. If bit <0> is set and no character is currently waiting, UIS$READ_ 
CHAR returns a value of o. 
Specify UIS$M.-NOWAIT to set bit <0> in the longword mask. 

Description 

The following table defines the bits in the high- and lower-order word. 

Field Symbol 

1-16 UIS$WJEY_CODE 

28 UIS$VJEY_SHIFT1 

29 UIS$VJEY_CTRL 1 

30 UIS$V_KEY_LOCK 1 

31 UIS$V_KEY_DOWN 1 

1 This symbol is returned as SET if the corresponding key on the keyboard was down when 
the input event occurred. 



UIS Routine Descriptions 18-243 
UIS$RESIZE_WINDOW 

UIS$RESIZE_ WINDOW 
Deletes the old display window and creates a new window. The routine 
reexecutes the display list of the virtual display, if it exists. 

Format 
UIS$RESIZE_WINDOW 

Returns 

vd_id, wd_id [,new_8bs_x, 
new_8bs_y] f,new_width, 
new_height] f,new_wc-x1' 
new_wc-Y1' new_wc-x2' 
new-wc-Y2'] 

UIS$RESIZE_WINDOW signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vc:Lid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vc:Lid argument. 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wc:Lid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wc:Lid argument. 



18-244 UIS Routine Descriptions 
UIS$RESIZE_WINDOW 

new_abs-x, new_abs_y 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Absolute device coordinate pair. The new_abs-x and new_abs_y 
arguments are the addresses of Ll10ating point numbers that define the 
location of the newly resized display viewport in centimeters. 

new_width, new_height 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Width and height of the newly resized display viewport. The width and 
height arguments are the addresses of f~oating point numbers that define 
the width and height of the newly resized display viewport in centimeters. 

new_WC-xt, new_wc_Yt, new_wc-x2, new_wc-Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinates of the newly resized display window. The Xl and YI 
arguments are the addresses of f~oating point numbers that define the 
location of the lower-left corner of the resized display window in world 
coordinates. The x2 and Y2 arguments are the addresses of f-Hoating point 
numbers that define the location of the upper-right corner of the resized 
display window in world coordinates. 

Description 

The viewport resize operation of the user interface uses 
UIS$RESIZE_W!NDOW by default. 

If UIS$RESIZE_WINDOW is called outside an AST routine, the value of all 
unspecified parameters defaults to those specified in 
UIS$CREATE_ WINDOW. 

If UIS$RESIZE_WINDOW is called within an AST routine, the value of all 
unspecified parameters defaults to the current values associated with the 
absolute position, dimensions, and world coordinate range of the stretchy 
box. 



UIS Routine Descriptions 18-245 
UIS$RESIZE_WINDOW 

Screen Output 

ZK 530286 



18-246 UIS Routine Descriptions 
UIS$RESTORE_CMS_COLORS 

UIS$RESTORE_CMS_COLORS 
. Resets the appropriate entries in the hardware color map to the current RGB 
values in the color map segment. 

Format 

UIS$RESTORE_CMS_COLORS cms_id 

Returns 

UIS$RESTORE_CMS_COLORS signals all errors; no condition values are 
returned. 

Argument 

cms_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Color map segment identifier. The cms-id argument is the address 
of a longword that uniquely identifies the color map segment. See 
UIS$CREATE_COLOR--MAP_SEG for more information about the 
cms-id argument. 

Description 

An application running in an unfavorable environment (where other appli
cations are sharing hardware color map entries) can use UIS$RESTORE_ 
CMS_COLORS to reestablish all its entries when it is the active application. 
Normally, this call is not required since the UIS window management 
software transparently handles the multiplexing of the hardware color map. 
If possible, the update is synchronized to the display's vertical retrace. 



UIS$RGB_ TO_HLS 

U IS Routine Descriptions 
UIS$RGB_ TO_HLS 

18-247 

Converts red, green, and blue (RGB) color representation values to hue, 
lightness, and saturation (HLS) color values. 

Format 

UIS$RGB_ TO_HLS R, G, B, reth, retl, rets 

Returns 

UIS$RGB_TO-HLS signals all errors; no condition values are returned. 

Arguments 

R 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Red value. The R argument is the address of a longword that defines the red 
color value. 

G 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Green value. The G argument is the address of a longword that defines the 
green color value. 

S 

VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Blue value. The B argument is the address of a longword that defines the 
blue color value. 



18-248 U IS Routine Descriptions 
UIS$RGB_ TO_HLS 

refh 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Hue. The reth argument is the address of an f-Hoating point longword that 
receives the hue color value. 

ref I 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Lightness. The retl argument is the address of an f-Hoating point longword 
that receives the lightness value. 

refs 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Saturation. The rets argument is the address of an f-Hoating point longword 
that receives the color saturation value. 



UIS Routine Descriptions 18-249 
UIS$RGB_ TO_HSV 

Converts color representation values of red, green, and blue (RGB) to hue, 
saturation, and value (HSV). 

Format 

UIS$RGB_ TO_HSV R, G, B, reth, rets, retv 

Returns 

UIS$RGB_TO-HSV signals all errors; no condition values are returned. 

Arguments 

R 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Red value. The R argument is the address of an f-floating number that 
defines the red color value. 

G 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Green value. The G argument is the address of an f-floating number that 
defines the green color value. 

S 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Blue value. The B argument is the address of an f-floating number that 
defines the blue color value. 



18-250 UIS Routine Descriptions 
UIS$RGB_ TO_HSV 

refh 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Hue. The reth argument is the address of an f-Hoating longword that 
receives the hue value. 

refs 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Saturation. The rets argument is the address of an f-Hoating longword that 
receives the saturation value. 

retv 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Value. The retv argument is the address of an f-Hoating longword that 
receives the value of the color. 



UIS Routine Descriptions 18-251 
UIS$SET JDDOPT JST 

UIS$SET -ACCOPT -AST 
Specifies a user-requested AST routine to be executed whenever the 
/I Additional Options" menu item is selected in the Window Options Menu. 

Format 

UIS$SET -ACCOPT -AST wd_id, [astadr [,astprm]] 

Returns 

UIS$SET-ADDOPT-AST signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wc.Lid argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wc.Lid argument. 

astadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 

AST routine. The astadr argument is the address of a procedure entry 
mask of a user-supplied subroutine that is called at AST level whenever the 
/I Additional Options" item in the Window Options Menu is selected. 

astprm 
VMS Usage: user_arg 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

AST parameter. The astprm argument is the address of a single argument 
or data structure such as an array or record to be used by the AST routine. 



18-252 UIS Routine Descriptions 
UIS$SET -ADDOPT -AST 

Calls to UIS$SET-ADDOPT-AST in VAX FORTRAN application programs 
should be coded as follows: %REF(%LOC(astprm». 

Description 
Additional options are disabled by default. 



UIS Routine Descriptions 18-253 
UIS$SET -ALIGNED_POSITION 

UIS$SET -ALIGNED_POSITION 
Sets the current position for text output at the upper-left comer of the 
character cell of the next character. See UIS$GET-ALIGNEDJOSITION for 
information about returning text alignment data. 

Format 

UIS$SET -ALIGNED_POSITION vd_id, atb, x, y 

Returns 

UIS$SET-ALIGNEDJOSITION signals all errors; no condition values are 
returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vd-id argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb is the address of a longword that identifies 
an attribute block. 

x, Y 
VMS Usage: floating_number 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinate pair. The x and y arguments are the addresses of f-floating 
point numbers that define the current position for text output. 



18-254 UIS Routine Descriptions 
UIS$SET -ALIGNED_POSITION 

Description 
UIS$SET-ALIGNEDJOSITION is useful in applications that know the 
position of the upper left comer, out also do not know enough about the font 
baseline to determine the proper alignment point. The position is converted 
into the proper alignment point using the font specified in the given attribute 
block. 

UIS maintains the current text position as a baseline position. 

Screen Output 

reason is as good fifty 

Text alignment 
along top of the 

character cell 

ZK 5384 86 



UIS$SET -ARC_ TYPE 

UIS Routine Descriptions 
UIS$SET -ARC_TYPE 

Sets the current arc type used in the UIS$ELLIPSE and UIS$CIRCLE 
routines. 

Format 

UIS$SET -ARC_TYPE vd_id, iatb, oatb, arc_type 

Returns 

18-255 

UIS$SET-ARC_ TYPE signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The v<Lid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the v<Lid argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword integer that identifies an attribute block. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
longword that identifies a newly modified attribute block that controls the 
appearance of an arc. 



18-256 UIS Routine Descriptions 
UIS$SET -ARC_TYPE 

arc_type 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Arc type code. The are-type argument is the address of a longword value 
that redefines the attribute setting of the input attribute block. Specify one 
of the following constants UIS$C-ARCJIE, UIS$C_CHORD, or UIS$C_ 
ARC_OPEN. 

The following table lists symbols for arc types and their functions. 

Symbol 

UIS$C-ARC_CHORD 

UIS$C-ARC_OPEN 

UIS$C-ARCJIE 

Function 

Draws a line connecting the end points of the arc 

Does not draw any lines (default) 

Draws radii to the end points of the arc 



UIS Routine Descriptions 18-257 
UIS$SET JRC_ TYPE 

Screen Output 

pie, open, and chot'd 

ZK-5256-86 



18-258 UIS Routine Descriptions 
UIS$SET _BACKGROUND_INDEX 

UIS$SET _BACKGROUND_INDEX 
Sets the background color index for text and graphics output. 

Format 

UIS$SET _BACKGROUND_INDEX vd_id, iatb, oatb, index 

Returns 

UIS$SET_BACKGROUND.JNDEX signals all errors; no condition values are 
returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword integer that specifies the attribute block to be modified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
.mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
longword integer that identifies the newly modified attribute block. 



UIS Routine Descriptions 18-259 
UIS$SET _BACKGROUND_INDEX 

index 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Color map index. The index argument is the address of a longword that 
specifies the color map index. If the index exceeds the maximum index for 
the associated color map, an error is signaled. 



18-260 UIS Routine Descriptions 
UIS$SET _BUTTON-AST 

UIS$SET _BUTTON-AST 
Allows an application to find out when a button on the pointing device is 
depressed or released in a given rectangle within a display viewport. 

Format 

UIS$SET _BUTTON-AST 

Returns 

vd_id, wd_id [,8stadr [,astprm] 
,keybuf] [, X1' Y1' x2' Y2] 

UIS$SET_BUTTON -AST signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

astadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 

AST routine. The astadr argument is the address of an entry mask to a 
procedure that is called at AST level whenever a pointer button is depressed 



UIS Routine Descriptions 
UIS$SET _BUTTON-AST 

18-261 

or released. To cancel the AST-enabling request of UIS$SET_BUTTON_ 
AST, specify 0 in the astadr argument. 

astprm 
VMS Usage: user-8rg 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

AST parameter. The astprm argument is the address of a single argument or 
data structure, such as a record or an array, to be passed to the AST routine. 
Calls to UIS$SET_BUTTON --AST in FORTRAN application programs should 
be coded as follows: %REF(%LOC(astprm». 

keybuf 
VMS Usage: address 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Key buffer. The keybuf argument is the address of a longword buffer 
that receives button information whenever a pointer button is depressed 
or released. The low two bytes are the key code. The buttons are 
located on the left, center, and right of the device and are defined as 
UIS$CJOINTER_BUTTON -1, UIS$CJOINTER_BUTTON _2, UIS$C_ 
POINTER_BUTTON_3, and UIS$CJOINTER_BUTTON_4 respectively. 

The bit < 31> is set to 1 if the button has been pressed, and 0 if the button 
has been released. The buffer is not overwritten with subsequent button 
transitions until the AST routine completes. 

The following table defines the bits in the high- and lower-order word. 

Field Symbol 

1-16 UIS$W_KEY_CODE 

28 UIS$V_KEY_SHIFT1 

29 UIS$V-KEY_CTRL 1 

30 UIS$V-KEY_LOCK 1 

31 UIS$V-KEY_DOWN 1 

1 This symbol is returned as SET if the corresponding key on the keyboard was down when 
the input event occurred. 



18-262 U IS Routine Descriptions 
UIS$SET _BUTTON-AST 

Xl' 11' x2' 12 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinates of a rectangle in the display window. The xl and Yl 
arguments are the addresses of f-Boating point numbers that define the 
lower-left comer of a rectangle in the display window. The x2 and Y2 
arguments are the addresses of f-Boating point numbers that define the 
upper-right comer of a rectangle in the display window. If no rectangle is 
specified, the entire display window is assumed. 

Description 
This function can be called any number of times for different rectangles 
within the same display window or many display windows. 

To disable UIS$SET_BUTTON-AST, omit the astadr, astprm, and keybuf 
arguments. 

Pointer Region Priorities 

UIS pointer regions are placed on the VAXstation screen in the order in 
which they are created. Therefore, if you create two overlapping viewports, 
and then use UIS$SETJOINTERJ ATTERN, UIS$SET_BUTTON -AST, 
or UIS$SETJOINTER-AST to define different pointer patterns for each 
viewport, the correctness of the result will depend on the order in which 
you both created the viewports and defined the cursor regions. For example, 
if you create the viewports and define the cursor patterns in the following 
manner, the viewport 1 cursor pattern will have a higher priority than 
viewport 2 cursor pattern in the overlapping region. 

1. Create viewport 1 

2. Create overlapping viewport 2 

3. Define viewport 2 cursor pattern 

4. Define viewport 1 cursor pattern 



UIS Routine Descriptions 
UIS$SET _BUTTON-AST 

18-263 

The preceding example causes the unexpected result that the viewport 1 
cursor pattern will take priority over the viewport 2 cursor pattern in the 
overlapping region. This problem can be corrected by creating the viewports 
and defining the cursor patterns in the same order. To correct the problem, 
create the viewports and define cursor patterns in the following order: 

1. Create viewport 1 

2. Define viewport 1 cursor pattern 

3. Create overlapping viewport 2 

4. Define viewport 2 cursor pattern 

The solution is for either VIS or your application to always pop the viewport 
before defining the cursor region for it. 



18-264 UIS Routine Descriptions 
UIS$SET _CHAR-ROTATION 

Sets the angle of character rotation, measured counterclockwise relative to 
the actual path of text drawing. 

Format 

UIS$SET _CHAR_ROTATION vd_id ,iatb ,oatb ,angle 

Returns 

UIS$SET_CHAR-ROTATION signals all errors; no condition values are 
returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a number 
that identifies an attribute block to be modified. ' 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
modified attribute block. 



UIS Routine Descriptions 18-265 
UIS$SET _CHAR-ROTATION 

angle 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Angle of character rotation. The angle argument is the address of an 
f-floating point number that defines the angle of character rotation in 
degrees counterclockwise about the baseline point relative to the actual path 
of text drawing. 

Description 

For example, an angle of 0 degrees (the default) means that the character's 
baseline vector and the actual path of text drawing form an angle of 0 
degrees. 

Example 

CALL U1S$SET_FONT(VD_1D,O,1, 'MY_FONT_5') 
CALLU1S$SET_TEXT_MARG1NS(VD_1D,l,l,l.0,20.0,18.0) 
CALL U1S$SET_AL1GNED_POS1T10N(VD_1D,l, 1.0,20.0) 

DO 1=0,360,40 " 
CALL U1S$TEXT(VD_1D,l,'Slow down---') 
CALL U1S$SET_CHAR_ROTAT10N(VD_1D,l,2,FLOAT(1)) 
CALL U1S$TEXT(VD_1D,2,'Avoid skidding!') 
CALL U1S$NEW_TEXT_L1NE(VD_1D,2) 
ENDDO 



18-266 UIS ·Routine Descriptions 
UIS$SET _CHAR-ROTATION 

Screen Output 

Slo\&l 
Slo\&l 
Slo\&l 
Slo\&l 
Slo\&l 
Slo\&l 
Slo\&l 
Slo\&l 
Slo\&l 
Slo\&l 

dO\&ln---Avoid skidding I 
down---N~ ~'. 
down--~>O~ ~~~e~· 

down--&7o~ ~~~~ 

down--~o~p s~~pp~09j 
down--~~~~ 6~~~~~-down--- ~.~ ~~~~ \ 

~~At~ ~~At~, 
down - - - 'X.O~Q,. tP7'4l~a;::oq. 
down---~~~~~~ 
down---Avoid skidding I 

ZK 5258 86 



UIS Routine Descriptions 18-267 
UIS$SET _CHAR-SIZE 

Sets the world coordinate size of a specified character set. 

Format 

UIS$SET _CHAR_SIZE 

Returns 

vd_id, iatb, oatb [,char] [,width] 
[,height] 

UIS$SET_CHAR_SIZE signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vUd argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vUd argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword that identifies an attribute block to be modified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
longword that identifies a modified attribute block. 



18-268 UIS Routine Descriptions 
UIS$SET _CHAFLSIZE 

char 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Single character. The char argument is the address of a descriptor of a single 
character. 

If char is not specified, the widest character in the font is chosen. 

width 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Character width. The width argument is the address of an fJIoating point 
longword that defines the character width in world coordinates. 

See DESCRIPTION section for information about omitting the width 
argument. 

height 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Character height. The height argument is the address of an fJIoating point 
longword that defines the character height in world coordinates. 

See DESCRIPTION section for information about omitting the height 
argument. 

Description 

To disable character scaling, omit all of the following arguments: char, 
width, and height. 

To scale characters to their nominal size as specified in the font, do not 
specify width and height. Scaling is only visible when you use a window 
that does not have the same aspect ratio as the virtual display. The particular 
character you specify in the argument char makes no difference in this case. 



U IS Routine Descriptions 
UIS$SET _CHAFLSIZE 

18-269 

If you specify either width or height only, characters are scaled to the size 
you specify and in the direction you specify. In the unspecified direction, 
characters are scaled so as to maintain the same ratio of width and height as 
the unsealed characters. 



18-270 UIS Routine Descriptions 
UIS$SET _CHAFLSIZE 

Screen Output 

character scaling 

oday is -tbe scbolar' of' yes-terday 

oday is tbe scbolar of' yeste 

oday is the scholat" of 

.oday is the schola 

.oday is the sch 

oday is the s 

.oday is the 
ZK-5456-86 



UIS Routine Descriptions 18-271 
UIS$SET _CHAR-SLANT 

Sets the character slant angle. 

Format 
UIS$SET _CHAR_SLANT vd_id, iatb, oatb, angle 

Returns 

UIS$SET_CHAR_SLANT signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vUd argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vUd argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a number 
that identifies an attribute block to be modified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
number that identifies a modified attribute block. 



18-272 UIS Routine Descriptions 
UIS$SET _CHAR_SLANT 

angle 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Angle of character slant. The angle argument is the address of an f-floating 
point number that defines the angle of character slant in degrees. 

The character slant angle refers to an angle formed by the character's up 
vector and baseline vector. 

For example, 0 degrees (the default) indicates that the character up vector 
is perpendicular to the baseline vector, and the character is not slanted. A 
counterclockwise movement from 0 degrees produces a negative angle of 
character slant. A clockwise movement from 0 degrees produces a positive 
angle of character slant. 

Screen Output 

chat"actet" slanting 

~~ ""1~~~~~~~~' ~ 

~"C\. "J~C~O'1:~O~%) 

en 'JictOI::ious I 
When victorious~ 
When vic~oI'ious, 

frlhen v.:ict-or.:ious,r 
/#Jen v.z'C~O.r'.zOU8J' 

,~~~~ ~""\.~~~"'-~~ '. 
%~O~~ ~\:\.~,,~\:\.~~"- \ 

snout 'R\\1.\-\~\\~R1: \. 
shout 
shou~ 

RHINEHART! 
RHINEHART! 

shout- RHINEHARTI 

ZK·5455·86 



UIS Routine Descriptions 18-273 
UIS$SET _CHAFLSPACING 

UIS$SET _CHAR_SPACING 
Sets the attribute that controls the amount of additional spacing between text 
characters (x factor) and between text lines (y facto,r) when the UIS$NEW_ 
LINE_TEXT routine is used. 

Format 

UIS$SEr _CHAR_SPACING vd_id, iatb, oatb, dx, dy 

Returns 

UIS$SET_CHAR_SP ACING signals all errors; no condition values are 
returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The v"--id argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the v"--id argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword value that identifies an attribute block to be modified. Either the 
attribute block 0 or a previously modified attribute block may be specified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 



18-274 UIS Routine Descriptions 
UIS$SET _CHAR-SPACING 

Output attribute block number. The oatb argument is the address of a 
longword value that identifies the newly modified attribute block that 
controls the spacing between characters. 

dx 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Additional x factor spacing. The dx argument is the address of an fJloating 
point longword value that defines the x spacing factor. If this argument 
is 0.0, no additional spacing is performed. Negative values are allowed, 
characters may overlap. 

dy 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Additional y factor spacing. The dy is the argument of an fJloating point 
longword value that defines the y spacing factor. If this argument is 0.0, no 
additional spacing is performed. Negative values are allowed, characters may 
overlap. 

Description 

The values of the x and y factors are multiplied by the width or height of the 
character, and the resulting value is used as the additional spacing distance. 

Proportionally spaced characters maintain their appropriate spacing. 

The default is no extra spacing. 



UIS Routine Descriptions 18-275 
UIS$SET _CHAR-SPACING 

Screen Output 

x spacing 

80 "'hat! ! 
80 "'hat! 
s 0 '" h a t 
s 0 '" h a t 
8 0 '" h a t 
8 0 '" h a t 
s 0 '" h a t 
s 0 '" h a t 
8 0 '" h a 
8 0 '" h a 

ZK-S254 86 



18-276 UIS Routine Descriptions 
UIS$SET _CHAR_SPACING 

~ spacing 

Nature does nothing in vain 
Nature does nothing in vain 

Nature does nothing in vain 

Nature does nothing in vain 

Nature does nothing in vain 

Nature does nothing in vain 

Nature does nothing in vain 

ZK 525386 



UIS Routine Descriptions 18-277 
UIS$SET _CHAFLSPACING 

x and y spacing 

atch out! 
atch out 

ate h out I 

ate h out 

a t c h out 

a t c h o u 

a t c h o 

ZK-525286 



18-278 UIS Routine Descriptions 
UIS$SET _CLIP 

UIS$SET _CLIP 
Sets a clipping rectangle in the virtual display and enables clipping for this 
attribute block. 

Format 

UIS$SET_CLIP vd_id, iatb, oatb [,X1' Y1' x2, Y21 

Returns 

UIS$SET_CLIP signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword value that identifies an attribute block to be modified. Either 
the attribute block 0 or a previously modified attribute block can be specified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
longword value that identifies a newly modified attribute block. 



Xl' Yl' X2' Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

UIS Routine Descriptions 
UIS$SEr _CLIP 

18-279 

World coordinates of the clipping rectangle. The xl and YI arguments are 
the addresses of f-floating point numbers that define the lower left corner 
of the clipping rectangle in world coordinates. The x2 and Y2 arguments are 
the addresses of f-floating point numbers that define the upper right comer 
of the clipping rectangle in world coordinates. Only graphic objects and 
portions of graphic objects drawn within the clipping rectangle are seen. 

If the world coordinates of the clipping rectangle comers are not specified, 
then clipping is disabled for this attribute block. 

Example 

WD_ID1=UIS$CREATE_WINDOW(VD_ID,'SYS$WORKSTATION','AFTER') 
CALL UIS$ERASE(VD_ID) 
CALL UIS$SET_CLIP(VD_ID,O,1,5.0,5.0,15.0,15.0) 

CALL UIS$PLOT(VD_ID,l,2.0,2.0,18.0,2.0,18.0,18.0,2.0,18.0, 
2 2.0,2.0) 
CALL UIS$PLOT(VD_ID,1,2.0,2.0,18.0,18.0,) 
CALL UIS$PLOT(VD_ID,1,2.0,18.0,18.0,2.0) 



18-280 UIS Routine Descriptions 
UIS$SET _CLIP 

Screen Output 

after" 

ZK530686 



UIS Routine Descriptions 18-281 
UIS$SET _CLOSE-AST 

UIS$SET _CLOSE-AST 
Specifies a user-requested AST routine to be executed when the "Delete" 
menu item is selected in the Window Options Menu. 

Format 
UIS$SET _CLOSE-AST wd_id [,astadr [,astprm]] 

Returns 

UIS$SET_CLOSE-AST signals all errors; no condition values are returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The w<Lid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the w<Lid argument. 

astadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 

AST routine. The astadr argument is the address of a procedure entry mask 
of a user-supplied subroutine that is called at AST level whenever the delete 
item in the Window Options Menu is selected. See the Description section 
for more information about disabling dose AST routines. 

astprm 
VMS Usage: user_arg 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

AST parameter. The astprm is the address of a single argument or data 
structure, such as an array or record, to be used by the AST routine. Calls to 



18-282 UIS Routine Descriptions 
UIS$SET _CLOSE-AST 

UIS$SET_CLOSE-AST in FORTRAN application programs should be coded 
as follows: %REF(%LOC(astprm». 

Description 
Typically, UIS$SET_CLOSE-AST is called to override the default window 
closing behavior. If a CLOSE AST routine are not specified, UIS calls 
UIS$CLOSE_WINDOW by default. If this behavior is not sufficient, the 
application program may call UIS$SET_CLOSE-AST with its own close 
routine. 

If the application has previously enabled close ASTs, but no longer needs 
to do special tasks when closing a window, it may specify UIS$CLOSE_ 
WINDOW as the astadr parameter to reenable the default UIS action. 

Closing a window may be completely disabled in any of the following ways: 

• Specify 0 in the astadr argument 

• Specify only the wLid argument. 

• Omit the astadr and astprm arguments. 

When window closing is disabled, the "Delete" menu item in the Window 
Options Menu changes from boldface to lightface. 

To reenable the default window closing behavior, specify 
UIS$C_DEFAULT_CLOSE as the astadr argument in a subsequent call to 
UIS$SET_CLOSE-AST. 



UIS$SET _COLOR 

UIS Routine Descriptions 
UIS$SET _COLOR 

18-283 

Sets a single entry in the virtual color map associated with the virtual display. 
The color map entry is an RGB value for a specific color. 

Format 

UIS$SET _COLOR vd_id, index, R, G, B 

Returns 

UIS$SET_COLOR signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vud argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vud argument. 

index 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Color map index. The index argument is the address of a longword value 
that identifies an entry in the color map. If the index exceeds the maximum 
index for the associated color map, an error is signaled. 

R 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Red value. The R argument is the address of an f-floating point number that 
defines the red value. The red value is in the range of 0.0 to 1.0, inclusive. 



18-284 UIS Routine Descriptions 
UIS$SET _COLOR 

G 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Green value. The G argument is the address of an f-Iloating point number 
that defines the green value. The green value is in the range of 0.0 to 1.0, 
inclusive. 

B 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Blue value. The B argument is the address of an f-Iloating point number 
that defines the blue value. The blue value is in the range of 0.0 to 1.0, 
inclusive. 

Description 

To maximize compatibility between monochrome and color display devices, 
UIS$SET_COLOR performs an internal transformation of the red, green, and 
blue values when the actual workstation display is monochromatic. 

A single intensity value in the range of 0.0 to 1.0 is derived using the 
following formula. 

I = (0.30*R) + (0.59*G) + (O.ll*B) 

On monochrome systems, this derived intensity value is then compared to. 
0.5. If the value is greater than or equal to 0.5, then white pixels are written. 
Otherwise, black pixels are written. 



Illustration 

· 
Color Value 

Color Value 

Color Value 

Color Value 

• 
• 

3 

4 

5 

6 

7 

8 

9 

t 

UIS Routine Descriptions 18-285 

Red 
0.10 

UIS$SET _COLOR 

Color Map Index 

ZK·5443·86 



18-286 UIS Routine Descriptions 
UIS$SET _COLORS 

UIS$SET _COLORS 
Sets more than one color entry in the virtual color map. 

Format 

UIS$SET _COLORS 

Returns 

vd_id, index, count, r _ vector, g_ vector, 
b..-vector 

UIS$SET_COLORS signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

index 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Starting color map index. The index argument is the address of a longword 
that defines the starting index in the virtual color map. 

If the index exceeds the maximum index for the virtual color map, an error is 
signaled. 

count 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 



UIS Routine Descriptions 
UIS$SET _COLORS 

18-287 

Number of indices. The count argument is the address of a longword that 
contains the number of indices including the starting index of the color map. 
If the count exceeds the maximum number of virtual color map entries, an 
error is signaled. 

r_vector 
VMS Usage: vector_longword_signed 
type: f_floating 
access: read only 
mechanism: by reference 

Red values. The r_vector argument is the address of an array of f-floating 
point numbers that define the red values. 

9_vector 
VMS Usage: vector_longword_signed 
type: f_floating 
access: read only 
mechanism: by reference 

Green values. The 8-vector argument is the address of an array of f-floating 
point numbers that define the green values. 

b_vector 
VMS Usage: vector_longword_signed 
type: f_floating 
access: read only 
mechanism: by reference 

Blue values. The b_vector argument is the address of an array of f-floating' 
point numbers that define the blue values. 

Description 

On color and intensity systems, color map updates of greater than 
approximately 80 entries cause visible screen disturbance, which appears 
as a black bar across the top inch of the display screen. This anomaly is 
caused by a hardware restriction that precludes large lookup table updates 
within the vertical blanking interval of the raster scan. 



18-288 UIS Routine Descriptions 
UIS$SET _COLORS 

Illustration 

Red Value Green Value Blue Value 

Red Value Green Value Blue Value 

Red Value Green Value Blue Value 

Red Green Blue 

0.0 0.25 
0.36 ] 

0.15 0.38 0.40 Count 

0.30 0.50 0.65 
3 

4 

5 

6 

7 

8 

9 

t 
Color Map Index 

ZK 5442·86 



UIS Routine Descriptions 18-289 
UIS$SET _EXPAND_ICON-AST 

Specifies a user-requested AST routine to be executed whenever an icon is to 
be replaced with its associated display viewport. 

Format 

UIS$SET _EXPAND_ICON-AST wd_id [,astadr [,astprmlJ 

Returns 

UIS$SET-EXP AND-ICON -AST signals all errors; no condition values are 
returned. 

Arguments 

wtLid 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more informaton about the wLid argument. 

astadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 

AST routine. The astadr argument is the address of an entry mask of a user
written procedure called at AST level whenever the "Expand Icon" menu 
item in the Window Options Menu is selected. 

To cancel the AST -enabling request of UIS$SET-EXP AND-ICON -AST, 
specify 0 in the astadr argument. 

astprm 
VMS Usage: user--8rg 
type: longword (unsigned) 
access: read only 
mechanism: by reference 



18-290 UIS Routine Descriptions 
UIS$SET _EXPAND_ICON-AST 

AST parameter. The astprm argument is the address of a single argument or 
data structure, such as an array or record, to be passed to the AST routine. 
Calls to UIS$SET-EXP AND-ICON -AST in VAX FORTRAN application 
programs should be coded as follows: %REF(%LOC(astprm». 

Description 

The user interface for replacing an icon with a display viewport can be 
disabled by calling UIS$SET-EXP AND-ICON -AST with the wLid 
argument only. 

To reenable the default behavior of UIS$SET-EXPAND-ICON -AST, specify 
the constant UIS$C_DEFAULT-EXPAND-ICON in the astadr argument. 



UIS$SET _FILL _PATTERN 

UIS Routine Descriptions 
UIS$SET _FILL _PATTERN 

Sets the current fill pattern used in area fill operations. 

Format 

UIS$SET _FILL_PATTERN vd_id, iatb, oatb [,index] 

Returns 

UIS$SETJILLJATTERN signals all errors; no condition values are 
returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

18-291 

Virtual display identifier. The v<Lid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the v<Lid argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword integer value that identifies an attribute block to be modified. 
Either the attribute block 0 or a previously modified attribute block may be 
specified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unSigned) 
access: read only 
mechanism: by reference 



18-292 UIS Routine Descriptions 
UIS$SET _FILL _PATTERN 

Output attribute block number. The oatb argument is the address of a 
longword integer value that identifies the newly modified attribute block that 
controls the fill pattern. 

index 
VMS Usage: longworcLunsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Index of the fill pattern in the current font. The index argument is the 
address of a longword value that identifies a character glyph in the current 
font. The value specified in the index argument modifies the current fill 
pattern index specified in the input attribute block. 

If the index argument is not specified, fill patterns are disabled. 

Description 

The fill pattern is expressed as a character glyph in the font currently 
associated with the same attribute block. There are usually several font 
files reserved to store fill patterns (rasters). At present, fill patterns of width 
greater than 32 bits are not supported. 

UIS provides a font file containing a variety of fill patterns. This font file is 
referenced by UIS$FILLJATTERNS. Entries in the UIS$FILLJATTERNS 
font are symbolically referenced by the symbols PATT$C-"xx. 

To get a listing of all fill pattern symbols available to application programs, 
see Section 6.6 for a list of symbol definition files. 

Refer to Appendix D for illustrations showing each UIS fill pattern. 

Example 

CALL UIS$SET_FONT(VD_ID.O.l.'UIS$FILL_PATTERNS') tt 
CALL UIS$SET_FILL_PATTERN(VD_ID.1. 1.PATT$C_VERT1_7) 49 
CALL UIS$SET_FONT(VD_ID.1.2.'UIS$FILL_PATTERNS') 
CALL UIS$SET_FILL_PATTERN(VD_ID.2.2.PATT$C_HORIZ1_7) 

CALL UIS$CIRCLE(VD_ID.1.10.0.10.0.8.0) 



UIS Routine Descriptions 18-293 
UIS$SET _FILL _PATTERN 

CALL UIS$ERASE(VD_ID) 
CALL UIS$PLOT(VD_ID,2,2.0,2.0,lS.0,2.0,lS.0,lS.0,2.0,lS.0, 
2 2.0,2.0) 

CALL UIS$CIRCLE(VD_ID,1,10.0,10.0,S.0) 
CALL UIS$PLOT(VD_ID,2,2.0,2.0,lS.0,2.0,lS.0,lS.0,2.0,lS.0, 
2 2.0,2.0) 

The preceding example fills the circle with a vertical fill pattern and a square 
with a horizontal fill pattern. Please note that enabling fill patterns for a 
single graphic object is a two-step process 0 •. 

1. Modify the font attribute specifying the fill pattern file in SYS$FONT. 
Use the logical name UIS$FILLJATTERNS. 

2. Modify the fill pattern file specifying the fill pattern to be used. 



18-294 UIS Routine Descriptions 
UIS$SET _FILL _PATTERN 

Screen Output 



UIS Routine Descriptions 18-295 
UIS$SET_FONT 

UIS$SET _FONT 
Specifies the fonts to be used in text drawing (UIS$TEXT) and area filling 
(UIS$PLOT). 

Format 

UIS$SET _FONT vd_id, iatb, oatb, font_id 

Returns 

UIS$SETJONT signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vcLid argument is the address of a longword 
value that uniquely identifies the virtual display. See UIS$CREATE_ 
DISPLAY for more information about the argument vcLid. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword value that specifies the attribute block to be modified. The font 
attribute in the input attribute block is modified to reflect the new font 
file specified in the font-id argument. Either the attribute block 0 or a 
previously modified attribute block may be specified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 



18-296 UIS Routine Descriptions 
UIS$SET _FONT 

Output attribute block number. The oatb argument is the address of a 
longword value that specifies the newly modified attribute block. 

font_id 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Font file name string. The font-id argument is the address of a character 
string descriptor pointing to a file specification that identifies the desired font. 
System font files are located in the SYS$FONT directory. Fonts should be 
specified using only the file name. You do not need to specify the file type. 

Description 

See UIS$SETJILLJATTERN. 



UIS Routine Descriptions 18-297 
UIS$SET _GAIN_KB-AST 

Specifies an AST routine to be executed when the specified virtual keyboard 
is attached to the physical keyboard. 

Format 

UIS$SET _GAIN_KB-AST kb_id [,astadr [,astprm]] 

Returns 

UIS$SET_GAIN -KB-AST signals all errors; no condition values are 
returned. 

Arguments 

kb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual keyboard identifier. The kb-id argument is the address of 
a longword value that uniquely identifies a virtual keyboard. See 
UIS$CREATE-KB for more information about the kb-id argument. 

astadr 
VMS Usage: ast_procedure 
type: procedure mask 
access: read only 
mechanism: by reference 

AST routine. The astadr argument is the address of an entry mask to a 
procedure that is called at AST level whenever a specified virtual keyboard is 
attached to the physical keyboard. 

astprm 
VMS Usage: user-arg 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

AST parameter. The astprm argument is the address of a single argument 
or data structure, such as an array or record, to be used by the AST routine. 



18-298 UIS Routine Descriptions 
UIS$SET _GAIN_KB-AST 

Calls to UIS$SET_GAIN -KB-AST in FORTRAN application programs 
should be coded as follows: %REF(%LOC(astprm». 

Description 
To disable UIS$SET_GAIN-KB-AST, omit the astadr and astprm 
arguments. 



UIS Routine Descriptions 
UIS$SET _INSERTION_POSITION 

UIS$SET _INSERTION_POSITION 
Positions the editing pointer in the display list. 

Format 

UIS$SET _INSERTION_POSITION {~~~ i~ } ,[flags] 
vd_id 

Returns 

18-299 

UIS$SET-INSERTION -POSITION signals all errors; no condition values are 
returned. 

Arguments 

obj_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Object identifier. The obj --id argument is the address of a longword that 
uniquely identifies an object. See the Description section for information 
about using this argument. 

seg_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Segment identifier. The seg-1d argument is the address of a longword 
that uniquely identifies the segment. When seg-1d is specified as the first 
argument, the second argument is not specified. See the Description section 
for information about using this argument. See also UIS$BEGIN _SEGMENT 
for more information about the seg-1d argument. 



18-300 UIS Routine Descriptions 
UIS$SET _INSERTION_POSITION 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See the Description section for 
information about using this argument. See also UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

flags 
VMS Usage: maslLlongword 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Flags. The flags argument is the address of a longword mask whose bits 
define how entries are added to the display list. 

The following table lists the flags and their functions. 

Flags 

UIS$M_DL _INSERT_BEfORE_OBJECT 

Description 

Inserts object before first object in the 
specified structure. 

Inserts object before specified object 
in the same segment as the specified 
object. 

Inserts object after specified object 
in the same segment as the specified 
object. 

See the DESCRIPTION section for more information about how these flags 
are evaluated. 

Description 

UIS$SET-INSERTION -OBJECT examines different options in the flags 
argument depending on the type of object you specify in the first argument. 
The following table lists the effect of the flags on the different types of 
objects. 



UIS Routine Descriptions 
UIS$SET _INSERTION_POSITION 

18-301 

Flags Checked 

Specifying the Virtual Display Identifier 

Specifying the Segment Identifier 

All three bits2 

Specifying the Object Identifier 

UIS$M_DL-INSERT-AFTER_OBJECT1 

UIS$M_DL-INSERT_BEFORE_OBJECT 

Effect 

If this bit is set, the editing pointer 
is placed at the beginning of the 
root segment and all new objects are 
inserted there. If this bit is not set, 
the editing pointer is placed at the 
end of the root segment and all new 
objects are appended to the end of 
the root segment. 

If any bit is set, UIS$SET_ 
INSERTIONJOSITION sets the 
editing pointer at the place directed 
by that bit. If no bits are set, the 
editing pointer is placed at the end 
of the specified segment and any 
new objects are appended to the end 
of the specified segment. 

If any bit is set, UIS$SET_ 
INSERTIONJOSITION sets the 
editing pointer at the place directed 
by that bit. If no bits are set, the 
editing pointer is placed at the 
specified object and any new objects 
are inserted before the specified 
object. 

1 If UIS$M_DL-INSERT_BEFORE_OBJECT or UIS$M_DL_INSERT-AFTER_OBJECT are 
set, the routine signals an error. 

2If two bits are set, the routine signals an error. 



18-302 UIS Routine Descriptions 
UIS$SET _INTENSITIES 

UIS$SET _INTENSITIES 
Loads one or more intensity values in the virtual color map. 

Format 

UIS$SET _INTENSITIES vd_id, index, count, i_vector 

Returns 

UIS$SET-INTENSITIES signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

index 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Starting color map index. The index argument is the address of a longword 
that identifies the starting color map index in the virtual color map. 

If an index exceeds the maximum index for the virtual color map, an error is 
signaled. 

count 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Number of indices. The count argument is the address of a longword that 
defines the number of indices in the virtual color map (including the starting 
index) whose entries are to be loaded with intensity values. 



UIS Routine Descriptions 
UIS$SET _INTENSITIES 

18-303 

If count exceeds the maximum number of virtual color map entries, an error 
is signaled. 

i_vector 
VMS Usage: vector_longword_signed 
type: f_floating 
access: read only 
mechanism: by reference 

Intensity values. The Lvector argument is the address of an array of 
f-Boating point numbers that define the intensity values of the virtual color 
map entries. 

Illustration 

Count 

. 
Intensity Value 

9 

Intensity Value 
10 

11 

12 

13 

14 
• 
• t 
• Color Map Index 

ZK-5440-86 



18-304 UIS Routine Descriptions 
UIS$SET _INTENSITY 

UIS$SET _INTENSITY 
Loads a single entry in the virtual color map with an intensity value. 

Format 

UIS$SET _INTENSITY vd_id, index, I 

Returns 

UIS$SET-INTENSITY signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The v"--id argument is the address of a longword 
value that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY 
for more information about the v"--id argument. 

index 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Color map index. The index argument is the address of a longword value 
that identifies an entry in the color map. If the index exceeds the maximum 
index for the associated color map, an error is signaled. 

I 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Intensity value. The I argument is the address of an f-floating point number 
that defines the intensity. The intensity value is in the range of 0.0 to 1.0, 
inclusive. 



UIS Routine Descriptions 18-305 
UIS$SET _INTENSITY 

Illustration 

• 
• 
• 

0.75 Intensity Value 
Intensity Value 

4~ 
5 

6 

7 

8 
• 
• 
• t 

Color Map Index 

ZK-5441-86 



18-306 UIS Routine Descriptions 
UIS$SET _KB-AST 

UIS$SET _KB-AST 
Associates a key strike with the execution of a user-written AST routine. 

Format 

UIS$SET _KB-AST kb_id [,astadr [,astprm] ,keybuf] 

Returns 

UIS$SET-KB-AST signals all errors; no condition values are returned. 

Arguments 

kb_id 
VMS Usage: 
type: 
access: 
mechanism: 

identifier 
longword (unsigned) 
read only 
by reference 

Virtual keyboard identifier. The kb-id argument is the address of 
a longword value that uniquely identifies a virtual keyboard. See 
UIS$CREATE-KB for more information about the kb-id argument. 

astadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 

AST routine. The astadr argument is the address of the entry mask to a 
procedure to be called at AST level whenever a key is struck. To cancel a 
previous AST -enabling request of UIS$SET-KB-AST, specify 0 as the astadr 
argument. 

astprm 
VMS Usage: user_arg 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

AST parameter. The astprm argument is the address of a single argument or 
data structure, such as an array or record to be passed to the AST routine. 



UIS Routine Descriptions 
UIS$SET _KB-AST 

18-307 

Calls to UIS$SET-KB-AST in FORTRAN application programs that use this 
argument should be coded as follows: %REF(%LOC(astprm». 

k,eybuf 

VMS Usage: address 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Key buffer. The keybuf argument is the address of a longword buffer that 
receives the key information with the execution of each AST routine. The 
low two bytes are the key code. The key codes are based on the codes found 
in the module $SMGDEF in SYS$LIBRARY:STARLET.MLB. Bit <31> is set 
to 1 to indicate that the key is down. The AST routine is called only on the 
downstroke of the key. The buffer is not overwritten with subsequent keys 
until the AST routine completes. . 

The following table defines the bits in the high- and lower-order word. 

Field Symbol 

1-16 UIS$W-KEY_CODE 

28 UIS$V-KEY_SHIFT1 

29 UIS$V-KEY_CTRL 1 

30 UIS$V-KEY_LOCK 1 

31 UIS$V-KEY_DOWN 1 

1 This symbol is returned as SET if the corresponding key on the keyboard was down when 
the input event occurred. 

Description 

The terminal emulators use this routine to get all keyboard input. Other 
applications that perform asynchronous single character input can also use 
UIS$SET-KB-AST. 

To disable UIS$SET-KB-AST, omit the astadr and astprm arguments. 



18-308 UIS Routine Descriptions 
UIS$SET _KB-A TTRIBUTES 

UIS$SET _KB-A TTRIBUTES 
Modifies the keyboard characteristics. 

Format 

UIS$SET_KB-ATTRIBUTES kb_id [,enable_itemsj 
[,disable_itemsj [,cliclLvolumej 

Returns 

UIS$SETJB-ATTRIBUTES signals all errors; no condition values are 
returned. 

Arguments 

kb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual keyboard identifier. The kb-id argument is the address of a 
longword that uniquely identifies a virtual keyboard. See UIS$CREATE_ 
KB for more information about the kb-id argument. 

enable_items 
VMS Usage: maslLlongword 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Keyboard characteristics to be enabled. The enable-items argument is the 
address of a longword mask that identifies the keyboard characteristics to be 
enabled. 

disable_items 
VMS Usage: maslLlongword 
type: longword (unsigned) 
access: read only 
mechanism: by reference 



UIS Routine Descriptions 
UIS$SET _KB-A TTRIBUTES 

18-309 

Keyboard characteristics to be disabled. The disable-items argument is the 
address of a longword mask that identifies the keyboard characteristics to be 
disabled. 

cliclLvolume 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Click volume level. The click_volume argument is the address of a 
longword value that modifies the keyboard click volume for keyboard 
input to this window. The value is in the range 1 to 8, where the value 
1 is the minimum volume level, and the value 8 is the maximum volume 
level. The default volume level is controlled by the workstation setup menu 
mechanism. 

Description 

All keyboard characteristics will be in effect only when the physical keyboard 
is attached to the specified virtual keyboard. Each virtual keyboard maintains 
its own keyboard characteristics and the human interface automatically 
switches the characteristics when the keyboard is associated with another 
virtual keyboard. 

The enable and disable item lists are longword masks containing bits 
designating the characteristics to be enabled or disabled. The valid bits 
in the keyboard characteristics enable and disable masks are: 

Symbol 

UIS$M_KB-AUTORPT 

UIS$M_KB_KEYCLICK 

UIS$M_KB_UDF6 

UIS$M_KB_UDFll 

Description 1 

Enable/disable keyboard autorepeat 

Enable/disable keyboard keyclick 

Enable/disable up button transitions for ~ to IF101 keys 

Enable/disable up button transitions for [IT!] to 
IF141 keys 

Enable/disable up button transitions for IF171 to 
IF201 keys 

Enable/disable up button transitions for IHELPI and 
[QQ] keys 

Enable/disable up button transitions for ffi!] to ~ keys 

1 By default down button transitions are enabled. 



18-310 U IS Routine Descriptions 
UIS$SET _KB-A TTRIBUTES 

Symbol 

UIS$M_KB-ARROW 

UIS$M_KB_KEYP AD 

Description 1 

Enable/disable up button transitions for arrow keys 

Enable/disable up button transitions for numeric 
keypad keys 

1 By default down button transitions are enabled. 

Example 

enable_items=UIS$M_KB_HELPDO .OR. UIS$M_KB_UDEl .OR. UIS$M_KB_ARROW 
disable_items=UIS$M_KB_AUTORPT .OR. UIS$M_KB_KEYCLICK 
CALL UIS$SET_KB_ATTRIBUTES(KB_ID. ENABLE_ITEMS.DISABLE_ITEMS) 

The preceding example describes how to enable and disable more than one 
keyboard characteristic at a time. 



UIS Routine Descriptions 
UIS$SET _KB_COMPOSE2 

Loads a two-stroke compose sequence table for the specified virtual 
keyboard. 

Format 

UIS$SET_KB_COMPOSE2 kb_id [,tab/e, table/en] 

Returns 

UIS$SETJB_COMPOSE2 signals all errors; no condition values are 
returned. 

Arguments 

kb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual keyboard identifier. The kb-id argument is the address of 
a longword value that uniquely identifies a virtual keyboard. See 
UIS$CREATEJB for more information about the kb-id argument. 

table 
VMS Usage: vector_longword_unsigned 
type: longword array 
access: read only 
mechanism: by reference 

18-311 

Compose table. The table argument is the address of an array that identifies 
the compose table. If no table is specified, the system default table is 
reestablished. 

tablelen 
VMS Usage: word_unsigned 
type: word 
access: read only 
mechanism: by reference 

Length of the compose table in bytes. The table~en argument is the address 
of word that defines the length of the compose table in bytes. 



18-312 UIS Routine Descriptions 
UIS$SET _KB_COMPOSE2 

Description 
You can use compose sequences to create characters that do not exist as 
standard keys on your keyboard. 

Two-stroke sequences can be used on all keyboards except the North 
American keyboard. Two-stroke sequences do not use the ICOMPOSEI key. 
Although faster to use than the three-stroke sequence, two-stroke sequences 
are limited to sequences starting with the following nonspacing diacritical 
marks: grave accent ('), acute accent ('), circumflex accent (A), tilde mark 
(--), diaresis mark ("), and the ring mark. Instead of using the ICOMPOSEI key, 
as in a three-stroke sequence, you use a nonspacing diacritical mark to 
initiate the two-stroke sequence. You then enter a standard character that, 
together with that diacritical mark, results in a valid compose sequence. 

Please refer to the MicroVMS Workstation Video Device Driver Manual for 
a description of this table and the macros to generate it. An application 
wishing to modify a table can use these macros to build a new table. 

The MicroVMS Workstation contains a copy of the DIGITAL standard two
stroke compose table residing within the driver. This can be changed by 
performing a call to the SYS$QIO system service to the QVSS device driver. 

NOTE: DIGITAL standard two-stroke compose sequences are not supported 
on the North American keyboard. 



UIS Routine Descriptions 18-313 
UIS$SET _KB_COMPOSE3 

Loads a three-stroke compose sequence for the specified virtual keyboard. 

Format 
UIS$SET_KB_COMPOSE3 kb_id [,table, tablelen] 

Returns 

UIS$SET-KB_COMPOSE3 signals all errors; no condition values are 
returned. 

Arguments 
kb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual keyboard identifier. The kb-id argument is the address of 
a longword value that uniquely identifies a virtual keyboard. See 
UIS$CREATE-KB for more information about the kb-id argument. 

table 
VMS Usage: vector_longword_unsigned 
type: longword array 
access: read only 
mechanism: by referenc,e 

Compose table. The table argument is the address of an array that identifies 
the compose table. 

table/en 
VMS Usage: word_unsigned 
type: word 
access: read only 
mechanism: by reference 

Length of the compose table in bytes. The tablelen argument is the address 
of a word that defines the length of the compose table in bytes. 



18-314 UIS Routine Descriptions 
UIS$SET _KB_COMPOSE3 

Description 

You can use compose sequences to create characters that do not exist as 
standard keys on your keyboard. There are two types of compose sequences: 
two-stroke sequences and three-stroke sequences. 

Three-stroke sequences can be used on all keyboards. They are performed 
by first pressing the ICOMPOSEI key and then pressing two standard keys. 

Please refer to the MicroVMS Workstation Video Device Driver Manual for 
a description of this table and the macros to generate it. An application 
wishing to modify a table can use these macros to build a new table. 

The MicroVMS Workstation contains a copy of the DIGITAL standard three
stroke compose tables residing within the driver. This can be changed by 
performing a call to the SYS$QIO system service to the QVSS device driver. 



UIS$SET _KB_KEYT ABLE 

UIS Routine Descriptions 
UIS$SET _KB_KEYTABLE 

Loads a keyboard equivalence table for the specified virtual keyboard. 

Format 

UIS$SET _KB_KEYTABLE kb_id [,table, tablelen] 

Returns 

18-315 

UIS$SETJBJEYTABLE signals all errors; no condition values are returrted. 

Arguments 

kb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual keyboard identifier. The kb-id argument is the address of a 
longword that uniquely identifies a virtual keyboard. See UIS$CREATE_ 
KB for more information about the kb-id argument. 

table 
VMS Usage: vector_longword_unsigned 
type: longword array 
access: read only 
mechanism: by reference 

Keyboard table. The table argument is the address of an array that contains 
the keyboard table. If no table is specified, the system default table is 
reestablished. 

table/en 
VMS Usage: word_unsigned 
type: word 
access: read only 
mechanism: by reference 

Length of the keyboard table. The tablelen argument is the address of a 
word that specifies the length of the keyboard table in bytes. 



18-316 UIS Routine Descriptions 
UIS$SET _KB_KEYTABLE 

Description 

UIS$SET-KB-KEYTABLE lets you change the ASCII character returned by a 
key on the keyboard. 

Keyboard Table Description and Macros 

Please refer to the MicroVMS Workstation Video Device Driver Manual for a 
description of the table and the macro to build it. An application wishing to 
modify a table can use these macros to build a new table. 

Keyboard Table Modification Using the Programming Interface 

The MicroVMS Workstation contains a copy of the North American table 
established as the default keyboard table. You can modify the default 
keyboard table at the driver (QVSS) level by calling the SYS$QIO system 
service. 

Keyboard Table Modification Through the User Interface 

If you want to create a keyboard table that any user can load using the 
Workstation Setup menus, see the command file DVORAK.COM in the 
directory SYS$EXAMPLES. It provides an example of how to create, compile, 
and install the DVORAK simplified keyboard. The user interface can be used 
to modify the default key table. 



Sets the line style bit vector. 

Format 

U IS Routine Descriptions 
UIS$SET _LINE_STYLE 

UIS$SET _LINE_STYLE vd_id, iatb, oatb, style 

Returns 

18-317 

UIS$SET_LINE_STYLE signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vUd argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vUd argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword integer that specifies an attribute block to be modified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
longword integer that specifies the newly modified attribute block that 
controls the line style. 



18-318 UIS Routine Descriptions 
UIS$SET _LINE_STYLE 

style 
VMS Usage: masLlongword 
type: longworct 
access: read only 
mechanism: by reference 

Line style bit vector. The style argument is the address of a longword bit 
vector that specifies whether to use foreground or background when drawing 
each pixel. It is repeated as many times as necessary to draw all the pixels in 
the line. 

Example 

CALL UIS$SET_LINE_STYLE(VD_ID,O,l,'FFFFFFFO'x) 
CALL UIS$PLOT(VD_ID,l,O.O,O.O,5.0,20.0) 

CALL UIS$SET_LINE_STYLE(VD_ID,O,2,'FFFOFFFO'x) 
CALL UIS$PLOT(VD_ID,2,O.O,O.O,10.0,20.0) 

The preceding example produces the first two dashed lines shown in the next 
section. 



UIS Routine Descriptions 18-319 
UIS$SET _LINE_STYLE 

Screen Output 

I / / 
/ 

/ / 
/ 

I / / 
/ 

/ / 
/ 

I / " / 

/ " / 

I / / 

/ 

/ / 
/ 

I / " / 

/ / 
/ '" '" 

I / / '" '" / 

'" / / '" / 
.... 

'" 

I / / '" / '" '" / / '" / '" '" 

II / 
/ '" / '" '" / '" 

/ '" '" i I // '" '" ,." 
// / '" '" 

'" /'" , "', 

ZK-5285-86 



18-320 UIS Routine Descriptions 
UIS$SET _LINE_WIDTH 

Sets the width of lines drawn on the screen. 

Format 

UIS$SET_LINE_WIDTH vd_id, iatb, oatb, width [,mode] 

Returns 

UIS$SET_LINE_WIDTH signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vc:Lid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vc:Lid argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword that specifies an attribute block to be modified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
Iongword that specifies an attribute block that controls line width. 



width 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

UIS Routine Descriptions 
~IS$SET _LINE_WIDTH 

18-321 

Width of the line. The width argument is the address of an LJloating point 
number that defines the line width. See the DESCRIPTION section for more 
information about specifying the line width with UIS$C_WIDTH_WORLD. 
The default value is 1. 

mode 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Mode. The mode argument is the address of a longword that indicates 
whether the line width should be interpreted as an absolute number of 
pixels or as an x world coordinate width. Specify the mode using one of the 
following constants: 

• UIS$C_WIDTHJIXELS 

• UIS$C_WIDTH_WORLD 

If mode is not specified, line width is interpreted as an absolute number of 
pixels (UIS$C_ WIDTHJIXELS). 

See DESCRIPTION for more information about the constant UIS$C_ 
WIDTH_WORLD. 

Description 

The line width is specified as a floating point number that is multiplied by 
the normal line width to produce line width actually drawn. 

If you specify 0.0 in the width argument when the mode argument is 
UIS$C_WIDTH_WORLD, the minimum line width is generated. 



18-322 UIS Routine Descriptions 
UIS$SET _LINE_WIDTH 

Example 

CALL UIS$SET_LINE_WIDTH(VD_ID,O,l,2.0,WDPL$C_WIDTH_WORLD) 
CALL UIS$PLOT(VD_ID,l,O.O,O.O,10.0,20.0) 

CALL UIS$SET_LINE_WIDTH(VD_ID,O,2,4.0,WDPL$C_WIDTH_WORLD) 
CALL UIS$PLOT(VD_ID,2,O.O,O.O,15.0,20.0) 

The preceding example describes how to specify line width as x world 
coordinate width. 



UIS Routine Descriptions 18-323 
UIS$SET _LINE_WIDTH 

Screen Output 

ZK-5286-86 



18-324 UIS Routine Descriptions 
UIS$SET _LOSE_KB-AST 

Enables an AST routine that is executed when the specified ~lirtual keyboard 
is detached from the physical keyboard. 

Format 

UIS$SET _LOSE_KB-AST kb_id [,astadr [,astprm]] 

Returns 

UIS$SET_LOSE-KB-AST signals all errors; no condition values are 
returned. 

Arguments 
kb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual keyboard identifier. The kb-1d argument is the address of a 
longword that uniquely identifies a virtual keyboard. See UIS$CREATE_ 
KB for more information about the kb-1d argument. 

astadr 
VMS Usage: a~_procedu~ 
type: procedure entry mask 
access: read only 
mechanism: by reference 

AST routine. The astadr argument is the address of the entry mask to 
a procedure that is called at AST level whenever the virtual keyboard is 
disconnected from the physical keyboard. 

astprm 
VMS Usage: user_arg 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

AST parameter. The astprm argument is the address of a single argument or 
data structure, such as an array or record, to be passed to the AST routine. 



UIS Routine Descriptions 18-325 
UIS$SET _LOSE_KB-AST 

Calls to UIS$SET_LOSE-KB-AST in VAX FORTRAN application programs 
should reference this argument as follows: %REF(%LOC(astprm». 

Description 
To cancel the AST -enabling request of UIS$SET_LOSE-KB-AST, specify 0 
in the astadr argument or omit the astadr and astprm arguments. 



18-326 UIS Routine Descriptions 
UIS$SET _MOVE_INFO-AST 

Enables an AST routine execution whenever the specified display viewport 
has been moved. 

Format 
UIS$SET _MOVE_INFO-AST wd_id, [,astadr [,astprm]] 

Returns 

UIS$SET~OVE-INFO-AST signals all errors; no condition values are 
returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wud argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wud argument. 

astadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 

AST routine. The astadr argument is the address of an entry mask to a 
procedure that is called at AST level whenever the specified display viewport 
is moved. 

astprm 
VMS Usage: user-8rg 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

AST parameter. The astprm argument is the address of a single argument or 
data structure, such as an array or record, that is passed to the AST routine. 



UIS Routine Descriptions 
UIS$SET _MOVE_INFO-AST 

18-327 

Calls to UIS$SET-.MOVE-INFO-AST in VAX FORTRAN application 
programs should code this argument as follows: %REF(%LOC(astprm». 

Description 
A MOVE notification AST can be used when an image needs to keep several 
display viewports in a particular arrangement. If one is moved, the AST 
routine can recreate the other display viewports in the correct positions 
around the moved viewport. 

To cancel the AST-enabling request of UIS$SET-.MOVE-INFO-AST, 
perform any of the following actions: 

• Specify the wud argument only. 

• Specify 0 in the optional astadr argument. 

• Omit the astadr and astprm arguments. 



18-328 UIS Routine Descriptions 
UIS$SET _POINTER-AST 

UIS$SET _POINTER-AST 
Allows an application to find out when the pointer is moved within, into, 
and out of a specified rectangle in the display window. 

Format 
UIS$SET _POINTER-AST 

Returns 

vd_id, wd_id [,astadr [,astprm]] 
[,Xt, Yt, x2, Y2] [,exitastadr 
[, exitastprm]] 

UIS$SETJOINTER-AST signals all errors; no condition values are 
returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

wd_id 
VMS Usage: identifier 
type: longword (unSigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

astadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 



UIS Routine Descriptions 
UIS$SET _POINTER-AST 

18-329 

AST routine. The astadr argument is the address of the entry mask to a 
procedure that is called at AST level whenever the pointer is moved within a 
rectangle in the virtual display. 

To cancel the AST -enabling request of UIS$SETJOINTER-AST for this 
argument only, specify 0 in the astadr argument and the coordinates of the 
rectangle. 

astprm 
VMS Usage: user_arg 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

AST parameter. The astprm argument is the address of a single argument or 
data structure, such as an array or record, passed to the AST routine. Calls to 
UIS$SETJOINTER-AST in VAX FORTRAN application programs should 
be coded as follows: %REF(%LOC(astprm». 

Xl' YI' X2' Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinates of the rectangle. The xl and Yl arguments are the 
addresses of f-Hoating point numbers that define the lower-left corner of 
the rectangle of the display window. The x2 and Y2 arguments are the 
addresses of f-Hoating point numbers that define the upper-right corner of 
the rectangle of the display window. 

If no rectangle is specified, the entire display window is assumed. 

To cancel an AST -enabling request, specify 0 in either the astadr or the 
exitastadr arguments or both and the coordinates of the rectangle. 

exitastadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 

Exit AST routine. The exitastadr argument is the address of the entry mask 
to a procedure that is called at AST level whenever the pointer leaves the 
rectangle. 

To cancel the AST -enabling request of UIS$SETJOINTER-AST for the 
EXIT AST routine only, specify 0 in the exitastadr argument and the 
coordinates of the rectangle. 



18-330 UIS Routine Descriptions 
UIS$SET _POINTER-AST 

exitastprm 
VMS Usage: user_arg 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Exit AST parameter. The exitastprm argument is the address of a single 
argument or data structure, such as an array or record, to be passed to the 
AST routine. Calls to UIS$SETJOINTER-AST in FORTRAN application 
programs should be coded as follows: %REF(%LOC(exitastprm». 

Description 

The Set Pointer AST routine also allows an application to keep track of the 
pointer in its own way. This routine can be called any number of times for 
different rectangles. 

Note that an application need not enable both AST routines. It may specify 
one or the other. 

UIS$SETJOINTER-AST can be used by the application to highlight the 
display or some other application-specific function, as the user moves the 
pointer over specific areas of the display window. This might be used to 
define a number of regions within a menu, and execute an AST routine 
when the pointer enters or leaves any of these regions. 

If both AST routines are enabled and the value 0 is specified in the astadr 
argument, the first AST routine is canceled. 

To disable AST -enabling behavior for pointers entering a region, omit the 
astadr and astprm arguments. 

To disable AST -enabling behavior for pointers leaving a region, omit the 
exitastadr and exitastprm arguments. 

Pointer Region Priorities 

UIS pointer regions are placed on the VAXstation screen in the order in 
which they are created. Therefore, if you create two overlapping viewports, 
and then use UIS$SETJOINTERJ ATTERN, UIS$SET_BUTTON -AST, 
or UIS$SETJOINTER-AST to define different pointer patterns for each 
viewport, the correctness of the result will depend on the order in which 
you both created the viewports and defined the cursor regions. For example, 
if you create the viewports and define the cursor patterns in the following 
manner, the viewport 1 cursor pattern will have a higher priority than 
viewport 2 cursor pattern in the overlapping region. 



1. Create viewport 1 

2. Create overlapping viewport 2 

UIS Routine Descriptions 
UIS$SET _POINTER-AST 

3. Define viewport 2 cursor pattern 

4. Define viewport 1 cursor pattern 

18-331 

The preceding example causes the unexpected result that the viewport 1 
cursor pattern will take priority over the viewport 2 cursor pattern in the 
overlapping region. This problem can be corrected by creating the viewports 
and defining the cursor patterns in the same order. To correct the problem, 
create the viewports and define cursor patterns in the following order: 

1. Create viewport 1 

2. Define viewport 1 cursor pattern 

3. Create overlapping viewport 2 

4. Define viewport 2 cursor pattern 

The solution is for either VIS or your application to always pop the viewport 
before defining the cursor region for it. 



18-332 UIS Routine Descriptions 
UIS$SET _POINTER_PATTERN 

UIS$SET _POINTER_PATTERN 
Allows an application to specify a special pointer cursor pattern for a 
specified rectangle in the virtual display. 

Format 

UIS$SET_POINTER_PATTERN 

Returns 

vd_id, wd_id 
[,pattern_array, 
pattern_count, activex, 
activey] [, X1' Y1, x2' Y2] 
[,flags] 

UIS$SETJOINTERJATTERN signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 



pattern_array 

UIS Routine Descriptions 
UIS$SET _POINTER~PA TTERN 

VMS Usage: vector_word_unsigned 
type: word_unsigned 
access: read only 
mechanism: by reference 

18-333 

16- x 16-bit cursor pattern. The pattern_array argument is the address of 
one or more 16-bit arrays of 16 words that represents a bitmap image of the 
cursor pattern. 

You can define two patterns that are executable on color and intensity 
systems using two arrays-a color plane and a mask plane. However, 
monochrome systems use a single array to specify the cursor pattern. 

If two arrays are specified in an application running on a single-plane system, 
the first array is used. 

NOTE: The bitmap image of the new pointer pattern is mapped in reverse 
order to the display screen. 

pattern_count 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Number of 16- x 16-bit cursor patterns defined. The pattern_count 
argument is the address of a longword that contains the number of cursor 
pattern arrays defined in the pattern_array argument. 

activex, activey 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

The activex and activey arguments are used to specify the actual bit in the 
cursor pattern that should be used to calculate the current pointer position. 
The arguments are expressed as bit offsets from the lower-left comer of the 
cursor pattern. 

xII YII X21 Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinates of the rectangle in the virtual display. The xl and YI 
arguments are the addresses of f-Hoating point numbers that define the 



18-334 UIS Routine Descriptions 
UIS$SET _POINTER_PATTERN 

lower-left comer of the rectangle in the display window. The x2 and Y2 
arguments are the addresses of f-Boating point numbers that define the 
upper-right comer of the rectangle in the display window. 

flags 
VMS Usage: longword_mask 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Flags. The flags argument is the address of a longword mask whose bits 
determine whether or not the cursor is confined to the display window 
rectangle. 

When specified, UIS$M_BINDJOINTER sets the appropriate bit in the 
mask. 

Description 
UIS$SETJOINTERJ ATTERN allows an application to specify a special 
pointer pattern to be used when the pointer is within the display window 
region specified by the optional rectangle. If no rectangle is given, then the 
entire display window is assumed. This function can be called any number 
of times for different rectangles. 

To disable UIS$SETJOINTERJ ATTERN, omit the pattern_array, 
pattern_count, activex, activey, and flags arguments. 



UIS Routine Descriptions 
UIS$SET _POINTER-POSITION 

UIS$SET _POINTER_POSITION 

18-335 

Specifies a new current pointer position in world coordinates. It is only 
effective if the new pointer position is within the specified display window 
and visible. 

Format 

status=UIS$SET _POINTER_POSITION vd_id, wd_id, x, Y , 

Returns 

VMS Usage: boolean 
type: longword 
access: write only 
mechanism: by value 

Boolean value returned in a status variable or RO (VAX MACRO). A status of 
1 is returned, if the operation is successful, otherwise a 0 is returned. 

UIS$SETJOINTERJOSITION signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

wd_id 
. VMS Usage: identifier 

type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 



18-336 UIS Routine Descriptions 
UIS$SET _POINTER_POSITION 

X,Y 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

World coordinates of the new pointer position. The x and y arguments 
are the addresses of f-floating point numbers that define the new pointer 
position. 



UIS$SET _POSITION 

UIS Routine Descriptions 
UIS$SET _POSITION 

18-337 

Sets the current position for text output. The current position is the point of 
alignment on the baseline of the next character to be output. 

Format 
UIS$SET _POSITION vd_id, x,y 

Returns 

UIS$SETJOSITION signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

x, Y 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

X and y world coordinate position. The x and y arguments are the addresses 
of f-.floating point numbers that define the current position for text output. 



18-338 UIS Routine Descriptions 
UIS$SET _POSITION 

Example 

REAL*4 Y 
DATA Y/4.0/ 

DO 1=1,5 
CALL U1S$SET_POS1T10N(VD_1D,FLOAT(1),Y) 
CALL U1S$PLOT(VD_1D,l,O.O,Y,FLOAT(1),Y) 
Y=Y-1.0 
CALL U1S$SET_FONT(VD_1D,l,l,'MY_FONT_ll') 
CALL U1S$TEXT(VD_1D,l,'Full speed ahead!') 
ENDDO 

Screen Output 

1,t---Fu11 3p~~d ah~ad! 

1,t---_F1I11 speed ahead! 

1,t----Fu11 speed ahead! 
:!Ipeed ahead! 

Text Baseline Current Text Position 

I 

ZK-5386-86 



UIS Routine Descriptions 18-339 
UIS$SET _RESIZE-AST 

UIS$SET _RESIZE-AST 
Specifies a user-requested AST routine to be executed when a display 
window has been resized using the user interface. 

Format 
UIS$SET _RESIZE-AST 

Returns 

vd_id, wd_id [,astadr [,astprm]] 
Lnew_abs-x,new_abs_y] 
Lnew_width, new_height] 
Lnew_wc-x1' new_wc_Y1' 
new_wc-x2, new_wc-Y2] 

UIS$SET-RESIZE-AST signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: .longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 



18-340 UIS Routine Descriptions 
UIS$SET _RESIZE-AST 

astadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 

AST routine. The astadr argument is the address of the entry mask of a 
procedure that is called at AST level whenever the "Change the size" item 
in the Window Options Menu is selected and a display window has been 
resized. 

( 

See the Description section for information about disabling 
UIS$SET-RESIZE-AST. 

astprm 
VMS Usage: user_arg 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

AST parameter. The astprm argument is the address of a single argument or 
data structure, such as an array or record, to be passed to the AST routine. 
Calls to UIS$SET-RESIZE-AST in FORTRAN application programs should 
be coded as follows: %REF(%LOC(astprm». 

new_abs-x, new_abs_y 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Absolute device coordinate pair. The new_abs-x and new_abs_y 
arguments are the addresses of f-floating point longwords that receive 
the exact location of the newly resized display window in centimeters. 

new_width, new_height 
VMS Usage: floating_point 
type:' f_floating 
access: write only 
mechanism: by reference 

Width and height of the resized window. The new_width and new-height 
arguments are the addresses of f-floating point longwords that receive the 
dimensions of the newly resized display window in centimeters. 



UIS Routine Descriptions 
UIS$SET _RESIZE-AST 

neW_WC-Xt1 new-WC-Yt1 neW_WC-X21 new_wc-Y2 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

18-341 

World coordinates of the resized window. The new_wC--Xt and 
new_wc-Yt arguments are the addresses of f-floating point longwords that 
receive the world coordinates of the lower-left corner of the newly resized 
display window. The new_wC-X2 and new_wc-Y2 arguments are the 
addresses of f-floating point longwords that receive the world coordinates of 
the upper-right corner of the newly resized display window. 

Description 

Typically, a call to UIS$SET-RESIZE-AST in an application program 
indicates that the default resizing behavior is to be overridden. 

By default, if a resize AST has not been enabled in an application program, 
UIS calls UIS$RESIZE_WINDOW. If this behavior is not sufficient, the 

,. application program may call UIS$SET-RESIZE-AST with its own resize 
routine. 

To reenable the default behavior, specify UIS$C_DEFAULT-RESIZE as the 
astadr argument in a subsequent call to UIS$SET-RESIZE-AST. 

Resizing a window may be completely disabled in the following ways: 

• By specifying the required wLid argument and a value of 0 in the 
astadr argument 

• By specifying only the required wLid argument 

• Omit the astadr and astprm arguments. 

When window resizing is disabled, the option, "Change the size" displayed 
in the Window Options Menu changes from boldface to halftone. 

The parameters for the resized window's new location, dimensions, and 
world coordinate range will not be overwritten with subsequent values until 
the AST has completed. 



18-342 UIS Routine Descriptions 
UIS$SET _RESIZE-AST 

Example 

VD_ID=UIS$CREATE_DISPLAY(l.0.1.0.40.0.40.0.15.0.15.0) .. 
WD_ID=UIS$CREATE_WINDOW(VD_ID.'SYS$WORKSTATION' .'RESIZE'. 
2 5.0.5.0.25.0.25.0) .. 

CALL UIS$SET _RES I ZE_AST (VD_ID . WD_ID . RES I ZE._ME . O. NEW_ABS_X. NEW_ABS_ Y • 
2 NEW_WIDTH.NEW_HEIGHT.NEW_WC_X1.NEW_WC_Y1. 
2 NEW_WC_X2.NEW_WC_Y2) 4D 

CALL SYS$HIBER() 

END lend of main program 

SUBROUTINE RESIZE_ME 4t 

CALL UIS$RESIZE_WINDOW(VD_ID.WD_ID.NEW_ABS_X.NEW_ABS_Y ..• 
2 1.0.1.0.40.0.40.0) 4B 

RETURN 

END 

In the preceding example, the call to UIS$CREATE_DISPLAY .. establishes 
the initial viewport size as a square. 

The coordinate space of the initial display window is defined to be a subset 
of the virtual display". When the original window is displayed it will show 
only a portion of the virt~al display. 



UIS Routine Descriptions 
UIS$SET _RESIZE-AST 

18-343 

The call to UIS$SET-RESIZE-AST • indicates that the program will 
override the default window resizing operation by enabling a user-written 
AST routine RESIZE~E e. 
The parameter list of UIS$RESIZE_WINDOW 0 indicates how the resize 
operation is redefined. The absolute position and size of all viewports will 
default as usual to the final position and dimensions of the stretchy box. 

However, the world coordinate range of the newly resized window is 
defined explicitly as the coordinate range of the virtual display. All newly 
resized windows will show the entire virtual display. If you tried to resize 
a previously,resized window, you would still see the contents of the entire 
virtual display. 

Distortion of objects displayed in the viewport will occur whenever the 
aspect ratio of the newly resized viewport does not equal the aspect ratio of 
the newly resized display window. 



18-344 UIS Routine Descriptions 
UIS$SET _SHRINK-TO_ICON-AST 

UIS$SET _SHRINIL TO_ICON-AST 
Specifies a user-requested AST routine to be executed whenever a display 
viewport is shrunk using the human interface. 

Format 

UIS$SET_SHRINILTO_ICON-AST wd_id [,astadr [,astprm]] 

Returns 

UIS$SET_SHRINK_TO-ICON-AST signals all errors; no condition values 
are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

astadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 

AST routine. The astadr argument is the address of an entry mask of a 
procedure called at AST level whenever "Shrink to Icon" item in the Window 
Options Menu is selected. 

astprm 
VMS Usage: user_arg 
type: . longword (unsigned) 
access: read only 
mechanism: by reference 

AST parameter. The astprm argument is the address of a single argument or 
data structure, such as an array or record, to be passed to the AST routine. 



UIS Routine Descriptions 18-345 
UIS$SET _SHRINK-TO_ICON-AST 

Calls to UIS$SET_SHRINK_TO-ICON-AST in VAX FORTRAN application 
programs should be coded as follows: %REF(%LOC(astprm». 

Description 
The user interface for replacing a display viewport with an icon can be 
disabled by calling UIS$SET_SHRINK_ TO_ICON -AST with the wLid 
only. 

To reenable the default behavior of UIS$SET_SHRINK_TO-ICON-AST, 
specify the constant UIS$C_DEFAULT_SHRINK_TO-ICON in the astadr 
argument. 



18-346 UIS Routine Descriptions 
UIS$SET _ TB-AST 

UIS$SET _ TB-AST 
Specifies a user-requested AST routine to be executed whenever the digitizer 
lies within a specified rectangle on the tablet. 

Format 
UIS$SET _ TB-AST 

Returns 

tb_id, [, datCLastadr, 
[data_astprm]], [,x-pos ,y_pos] 
[data-x 1 ,data_y 1,data-x2,data-Y2] 
[,button_astadr 
[,button_astprm],button_keybuf] 

UIS$SET_TB-AST signals all errors; no condition values are returned. 

Arguments 
tb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Tablet identifier. The tb-id argument is the address of a longword that 
uniquely identifies the tablet. See UIS$CREATE_ TB for more information 
about the tb-id argument. 

data_astadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 

AST routine. The datCl-astadr argument is the address of an entry mask 
of a procedure that is called at AST level for each data point whenever the 
digitizer is moved within the specified active data region defined on the 
tablet. 

See the Description section for information about disabling the digitizing 
region. 



dsts_sstprm 
VMS Usage: user_arg 

U IS Routine Descriptions 
UIS$SET _ TBJST 

type: longword (unsigned) 
access: read only 
mechanism: reference 

18-347 

AST parameter. The data......astprm is the address of a single argument or 
data structure, such as an array or record, to be passed to the AST routine. 
Calls to UIS$SET_TB-AST in VAX FORTRAN application programs should 
be coded as follows: %REF(%LOC(astprm». 

x-pos,y_pos 
VMS Usage: floating_point 
type: f_floating 
access: write only 
mechanism: by reference 

Absolute device coordinate pair. The x_pos, y_pos arguments are the 
addresses of f-Hoating longwords that receive the current x and y tablet 
positions in centimeters relative to the lower-left corner of the tablet, when a 
data AST occurs. 

dSts-xl,dsts-Yl 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Absolute device coordinate pair. The data-xltdat~Yl arguments are the 
addresses of f-Hoating point numbers that define the lower-left comer of the 
data or digitizer region specified on the tablet. The data rectangle defines an 
area on the tablet in which data should be collected. 

dSts-x2,dsts-Y2 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Absolute device coordinate pair. The data-x2,dat~Y2 arguments are the 
addresses of f-Hoating point numbers that define the upper-right corner of 
the data or digitizer region specified on the tablet. 

button_sstsdr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 



18-348 U IS Routine Descriptions 
UIS$SET _ TB-AST 

AST routine. The button_astadr argument is the address of an entry mask 
of a procedure that is called at AST level whenever a button is depressed or 
released within the specified active data region defined on the tablet. 

See the "DESCRIPTION" section for information about disabling the 
digitizing region. 

button_8stprm 
VMS Usage: user_arg 
type: longword (unsigned) 
access: read only 
mechanism: reference 

AST parameter. The button_astprm is the address of a single argument or 
data structure, such as an array or record, to be passed to the AST routine. 
Calls to UIS$SET_ TB-AST in VAX FORTRAN application programs should 
be coded as follows: %REF(%LOC(astprm». ( 

button_keybuf 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Button information. The button-keybuf argument is the address of a 
longword that receives button information. 

Description 
The data rectangle specifies the active data region on the tablet. Only points 
within this rectangle are returned to the application. The data rectangle is 
specified using a centimeter coordinate system that is based at the lower-left 
comer of the tablet. 

If no data rectangle is specified, the entire tablet is assumed. 

Button AST Routines 

To disable button AST routines, specify 0 in the button_ast-I'tn argument. 



UIS Routine Descriptions 18-349 
UIS$SET _TEXT_FORMATTING 

UIS$SET _TEXT_FORMATTING 
Sets the text formatting justification mode. 

Format 

UIS$SET_TEXT_FORMATTING vd_id, iatb, oatb, mode 

Returns 

UIS$SET_TEXTJORMATTING signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vUd argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vUd argument. 

istb 
VMS Usage: longword_unsigned 
type: longword (signed) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword that identifies an attribute block to be modified. 

,. 
ostb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
longword that identifies a newly modified attribute block. 



18-~O UIS Routine Descriptions 
UIS$SET _TEXT_FORMATTING 

mode 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Text formatting mode. The mode argument is the address of a longword 
mask that sets the text formatting mode. The following table lists valid text 
formatting modes. 

Formatting Mode 

UIS$C_ TEXT_FORMAT_LEFT 

UIS$C_ TEXT_FORMAT_RIGHT 

UIS$C_ TEXT_FORMAT_CENTER 

UIS$C_TEXT_FORMAT_JUSTIFY 

UIS$C_ TEXT_FORMAT_NOJUSTIFY 

Function 

Left justified, ragged right 

Right justified, left ragged 

Centered line between left and right 
margin 

Justified lines, space filled to right margin 

No text justification (default) 

All other values are r~served to DIGITAL for future use. 

Description 

Text justification occurs at the end of every UIS$TEXT or UIS$MEASURE_ 
TEXT call. Text justification also occurs when a UIS$C_TEXT-NEW_LINE 
item is encountered in a UIS$TEXT or UIS$MEASURE_TEXT control list. 
The formatting mode and margins that are used are based on either the 
attribute block specified in the routine call or the last attribute block specified 
before the UIS$C_ TEXT~EW_LINE item code is encountered. 

NOTE: Lines of text that do not fit completely within the margins will 
extend beyond the margin. 



Example 

UIS Routine Descriptions 18-351 
UIS$SET _TEXT_FORMATTING 

CALL UIS$SET_TEXT_MARGINS(VD~ID,O,1,3.0,27.0,24.0) 
CALL UIS$PLOT(VD_ID,O,3.0,30.0,3.0,O.O) 
CALL UIS$PLOT(VD_ID,O,27.0,30.0,27.0,O.O) 

CALL UIS$SET_TEXT_FORMATTING(VD_ID,l,l,UIS$C_TEXT_FORMAT_JUSTIFY) 
CALL UIS$SET_ALIGNED_POSITION(VD_ID,1,3.0,28.0) 

CALL UIS$SET_FONT(VD_ID,1,2,'MY_FONT_8') 

DO 1= 1,4 
CALL UIS$TEXT(VD_ID,2,'What has been, may be') 
CALL UIS$NEW_TEXT_LINE(VD_ID,2) 
ENDDO 



18-352 UIS Routine Descriptions 
UIS$SET _TEXT_FORMATTING 

Screen Output 

left justi fied 

ooner begun, sooner done 
ooner begun, sooner done 
ooner begun, sooner' done 
ooner begun, sooner done 

The bi ter is sometimes bi 
The bi ter is sometimes bi 
The bi ter is sometimes bi 
The biter is sometimes bi 

centered 

A crowd is 0 company 
A crowd is 0 company 
A crowd is 0 comp,g.ny 
A crowd is 0 company 

has been, may 
has been, may 
has been, may 
has been .. may 

ZK529786 



UIS Routine Descriptions 18-353 
UIS$SET _TEXT_MARGINS 

Sets the text margins for a line of text. 

Format 

UIS$SET _TEXT_MARGINS 

Returns 

vd_id ,iatb ,oatb ,x ,y 
,margin_length 

UIS$SET_TEXT-MARGINS signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword that identifies an attribute block to be modified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
longword that identifies an attribute block. 



18-354 UIS Routine Descriptions 
UIS$SET _TEXT_MARGINS 

X,Y 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Starting margin position. The x, y arguments are the addresses of f-1loating 
numbers that define a point on the margin. The margin is the minor text 
path when slope equals zero. 

margin_length 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Ending margin position. The margin--1ength is the address of an f-1loating 
number that defines the distance in world coordinates from the starting 
margin to the end margin. 

Description 

Lines of text do not automatically wrap to the next line. 



UIS Routine Descriptions 18-355 
UIS$SET_TEXT_PATH 

Sets the direction of text drawing and the direction of new text lines. 

Format 

UIS$SET_TEXT_PATH vd_id, iatb, oatb, major [,minorj 

Returns 

UIS$SET_TEXTJATH signal all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a number 
that identifies an attribute block to be modified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unSigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
number that identifies a modified attribute block. 



18-356 UIS Routine Descriptions 
UIS$SET_TEXT_PATH 

major 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Major text path. The major argument is the address of a symbol that 
identifies the major text path type. The major path of text drawing is the 
direction of text drawing along a line. See the Description section for more 
information. 

minor 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Minor text path. The minor argument is the address of a symbol that 
identifies the minor text path type. The minor path of text drawing refers to 
the direction of new text line creation. See the Description section for more 
information. 

Description 

The following table contains symbols for valid character drawing directions. 

Path 

UIS$C_ TEXT_PATH_RIGHT 

UIS$C_ TEXTJ ATH_LEFT 

UIS$C_ TEXTJ ATH_UP 

UIS$C_ TEXT_PATH_DOWN 

Example 

Direction 

Left to right (default major text path) 

Right to left 

Bottom to top 

Top to bottom (default minor text path) 

CALL UIS$SET_TEXT_PATH(VD_ID,O,l,UIS$C_TEXT_PATH_LEFT, 
2 UIS$C_TEXT_PATH_DOWN) 

CALL UIS$SET_FONT(VD_ID,l,l,'MY_FONT_5') 

CALL UIS$SET_ALIGNED_POSITION(VD_ID,l,38.0,38.0) 



UIS Routine Descriptions 18-357 
UIS$SET _TEXT_PATH 

CALL UIS$TEXT(VD_ID.l.'Knowledge is power!') 
CALL UIS$NEW_TEXT_LINE(VD_ID.l) 

The preceding example illustrates how to alter the default major text drawing 
path to produce the output shown in the next section. 

Screen Output 

!rewop • egdelwon 81 

!rewop • egdelwon 81 

!rewop • egdelwon 81 

!rewop • egdelwon 81 

!rewop • egdelwon 81 

ZK·5287·86 



18-358 UIS Routine Descriptions 
UIS$SET _TEXT_SLOPE 

Sets the angle of the actual path of text drawing relative to the major path. 

Format 

UIS$SET _TEXT_SLOPE vd_id ,iatb ,oatb ,angle 

Returns 

UIS$SET_TEXT_SLOPE signals all errors; no condition values are returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vd-id argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vd-id argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a number 
that identifies an attribute block to be modified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
number that identifies an attribute block. 



angle 

U IS Routine Descriptions 
UIS$SET _TEXT_SLOPE 

18-359 

VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Angle of text slope. The angle argument is the address of an f-floating point 
number that defines the angle of the actual path of text drawing relative to 
the major path measured counterclockwise in degrees. The default angle of 
text slope is 0 degrees. 

Example 

CALL U1S$SET_FONT(VD_1D.0.1.'MY_FONT_13') 
CALL U1S$SET_TEXT_SLOPE(VD_1D.1.2.45.0) 

DO 1=1.10 
CALL U1S$SET_AL1GNED_POS1T10N(VD_1D.2.0.0.Y) 
CALL U1S$TEXT(VD_1D.2.'water seeks its own level!') 
Y=Y-2.0 
ENDDO 

PAUSE 

DO 1=1.10 
CALL U1S$SET_AL1GNED_POS1T10N(VD_1D.2.X.1.0) 
CALL U1S$TEXT(VD_1D.2.'water seeks its own level! ') 
X=X+2.0 
ENDDO 



18-360 UIS Routine Descriptions 
UIS$SET _TEXT_SLOPE 

Screen Output 

ZK·5288·86 



UIS Routine Descriptions 18-361 
UIS$SET _WRITING_INDEX 

Sets the writing color index for text and graphics output. 

Format 
UIS$SET _WRITING_INDEX vd_id, iatb, oatb, index 

Returns 

UIS$SET_WRITING-INDEX signals all errors; no condition values are 
returned. 

Arguments 
vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vLid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vLid argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unSigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword integer that specifies the attribute block to be modified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
longword integer that identifies the newly modified attribute block. 



18-362 UIS Routine Descriptions 
UIS$SET _WRITING_INDEX 

index 
VMS Usage: 
type: 
access: 
mechanism: 

longword_unsigned 
longword (unsigned) 
read only 
by reference 

Color map index. The index argument is the address of a longword integer 
that specifies a color map index. If the index exceeds the maximum index for 
the associated color map, an error is signaled. 



UIS$SET _WRITING_MODE 
Sets the text and graphics mode. 

Format 

UIS Routine Descriptions 
UIS$SET _WRITING_MODE 

UIS$SET _WRITING_MODE vd_id, iatb, oatb, mode 

Returns 

18-363 

UIS$SET_WRITING~ODE signals all errors; no condition values are 
returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The vc.Lid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for 
more information about the vc.Lid argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword integer that specifies an attribute block to be modified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
longword integer that specifies a newly modified attribute block that controls 
the writing mode. 



18-364 UIS Routine Descriptions 
UIS$SET _WRITING_MODE 

mode 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Writing mode. The mode argument is the address of a longword that 
specifies the writing mode (VIS$C~ODE-"xxx). The default writing mode 
is overlay. 

Description 

Table 9-2 lists and describes all VIS writing modes. 



UIS$SHRINIL TO_ICON 

U IS Routine Descriptions 
UIS$SHRINIL TO_ICON 

Replaces a display viewport with its associated icon. 

Format 

18-365 

UIS$SHRINIL TO_ICON wd_id [,icon_ wd_id] [,icon_flags] 
[,icon_name] [,attributes] 

Returns 

UIS$SHRINK_ TO-ICON signals all errors; no condition values are returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
iongword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

icon_wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Icon window identifier. The icon_wLid argument is the address of a 
longword that uniquely identifies an icon. 

icolLflags 
VMS Usage: maslLlongword 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Icon flags. The icon-flags is the address of a longword mask of flags that 
may be used to specify whether default icon behavior should be extended to 
an application-supplied icon. By default, no modifications are made to the 
application-supplied icon. The following table lists valid icon flags. 



18-366 UIS Routine Descriptions 
UIS$SHRINIL TO_JeON 

Flag 

All other bits 

icon_name 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Function 

UIS manages keyboard ownership. If the display 
window is enabled for keyboard ownership, 
UIS$DISABLE_ VIEWPORT-KB is called during 
window shrinking and UIS$ENABLE-KB is called 
during icon expansion. 

UIS places a button AST region over the body of 
the icon window and uses that AST to trigger icon 
expansion. 

The remaining bits are set to 0 and are reserved 
to DIGITAL. 

Icon name. The icon-Ilame argument is the address of a descriptor of the 
text to be used as the icon name. 

attributes 
VMS Usage: item_list_pair 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Window attributes list. The attributes argument is the address of data 
structure, such as an array or record. The attributes argument may be used 
to specify exact placement of the icon on the display screen. 

The following figure describes the structure of the window attributes list. 



UIS Routine Descriptions 
UIS$SHRINIL TO_ICON 

Attribute 10 code 
(WOPL$C_xxx) 

Longword value for attribute 
identified in previous longword 

2nd attribute 10 code 

2nd attribute value 

· 
• 

• 
End of list ,- 0 

(WOPL$C_ENO_OF _LIST) 

ZK-4581-85 

See UIS$CREATE_WINDOW for more information. 

18-367 



18-368 UIS Routine Descriptions 
UIS$SHRINIL TO_ICON 

Screen Output 

USER 

USER 
ZK-5448-86 



UIS Routine Descriptions 18-369 
UIS$SOUND-BELL 

UIS$SOUND_BELL 
Actuates the keyboard bell to ring once. 

Format 

UIS$SOUND_BELL devnam [,bell_volume} 

Returns 

UIS$SOUND_BELL signals all errors; no condition values are returned. 

Arguments 

devnam 
VMS Usage: device--'lame 
type: character string 
access: read only 
mechanism: by descriptor 

Device name string. The devnam argument is the address of a character 
string descriptor of the workstation device name. Specify'SYS$WORKSTATION' 
as the default device name. 

bell_volume 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Bell volume level. The bell_volume argument is the address of a longword 
that specifies the bell volume. The bell_volume argument can be supplied 
explicitly as a number from 0 to 8, where 0 is the most quiet; and 8 is the 
loudest. If the bell_volume argument is not specified, the default volume 
specified in the workstation setup menu is used. 

Description 

On the LK201 keyboard, the bell sound differs from a key click sound in the 
frequency and tone. 



18-370 UIS Routine Descriptions 
UIS$SOUND_CLlCK 

UIS$SOUND_CLICK 
Actuates the keyboard click sound once. 

Format 

UIS$SOUND_CLICK devnam [,cliclLvolumej 

Returns 

UIS$SOUND_CLICK signals all errors; no condition values are returned. 

Arguments 

devnam 
VMS Usage: device_name 
type: character string 
access: read only 
mechanism: by descriptor 

Device name string. The devnam argument is the address of a character 
string descriptor of the workstation device name. Specify SYS$WORKSTATION 
as the device name. 

click-volume 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Key click volume level. The click_volume argument is the address of a 
longword that specifies the key click volume level. The click_volume 
argument is specified explicitly as a number from 0 to 8, where 0 is the most 
quiet and 8 is the loudest. If the click_volume argument is not specified, 
the default volume is used from the workstation setup menu mechanism. 

Description 

On the LK201 keyboard, the key click sound differs from a bell sound in the 
frequency and tone. 



UIS$TEST _KB 

UIS Routine Descriptions 
UIS$TEST _KB 

Returns a boolean value indicating whether the physical keyboard is 
currently bound to the specified virtual keyboard. 

Format 

status=UIS$TEST _KB kb_id 

Returns 

VMS Usage: boolean 
type: longword 
access: write only 
mechanism: by value 

18-371 

Boolean value returned in a status variable or RO (VAX MACRO). The 
boolean value TRUE is returned if the physical keyboard is bound to the 
virtual keyboard, otherwise a boolean value FALSE is returned. 

UIS$TESTJB signals all errors; no condition values are returned. 

Arguments 
kb_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual keyboard identifier. The kb-id argument is the address of a 
longword that uniquely identifies a virtual keyboard. See UIS$CREATE_ 
KB for more information about the kb-id argument. 



18-372 UIS Routine Descriptions 
UIS$TEXT 

UIS$TEXT 
Draws a series of characters. 

Format 

UIS$TEXT vd_id, atb, text_string [,x,y] [,ctl/ist ,ctl/en] 

Returns 

UIS$TEXT signals all errors; no condition values are returned. 

Arguments 

vd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The v<Lid argument is the address of a longword 
that uniquely identifies a virtual display. See UIS$CREATE_DISPLAY for . 
more information about the v<Lid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that specifies an attribute block that modifies text output. When a 
control list is specified, the atb argument defines the initial attribute settings 
of the text string. 

text_string 
VMS Usage: Char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Text string. The text-string argument is the address of a character string 
descriptor of a text string. 



x, y 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

U IS Routine Descriptions 
UIS$TEXT 

18-373 

Starting point of text output. The x and y arguments are the addresses of 
fJloa~J1g point numbers that define in world coordinates of the starting 
point of text output. The starting point is the upper-left comer of the 
character cell of the next character to be drawn. 

If this argument is not specified, the current text position is used. (See the 
UIS$SET-ALIGNEDJOSITION routine for more information.) 

When a control list is specified, the x, y arguments specify the starting 
coordinate for the first character of the character string. 

ctllist 
VMS Usage: vector._longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Text formatting control list. The ctllist argument is the address of an 
array of longwords that define the font, text rendition, text formatting, and 
positioning of fragments of the text string. When a control list is specified, 
the atb argument defines the initial attribute settings of the text string 

If ctllist is not specified, text rendition and position are the values specified 
in the arguments atb and x, y. 

The control list consists of a sequence of data elements, each two longwords 
in length. The first longword of each element is a tag. The second longword 
is either a value particular to the type of element specified or zero. Following 
is a diagram showing the structure of a text control list. 



18-374 UIS Routine Descriptions 
UIS$TEXT 

U IS$C_ TEXT -A TB 

Attribute Block Number 

UIS$C_ TEXT _SAVEPOSITION 

0 

UIS$C_ TEXT_IGNORE 

Command Value 

ZK-5426-86 

The following table describes valid formatting commands. 

Formatting Command 

Commands Without Valuesl 

UIS$C_ TEXT-NOP 

UIS$C_ TEXT-RESTORE -POSITION 

UIS$C_ TEXT_SAVE_POSITION 

Commands Requiring Values 

UIS$C_ TEXT-A TB 

UIS$C_ TEXT_HPOS-ABSOL UTE 

UIS$C_ TEXT_HPOS_RELATIVE 

UIS$C_TEXT_IGNORE 

1 Second longword must be zero 

Function 

Nil operation 

Restores the current writing position 

Saves the current writing position 

Specifies an attribute block number 

Specifies a new current x position 

Modifies the current x position by a delta 

Skips n characters 



Formatting Command 

Commands Requiring Values 

UIS$C_TEXT_TAB-ABSOLUTE 

UIS$C_ TEXT_ VPOS-ABSOLUTE 

UIS$C_ TEXT_ VPOS_RELATIVE 

UIS$C_ TEXT_WRITE 

UIS Routine Descriptions 
UIS$TEXT 

Function 

18-375 

Skips n new lines and positions at the 
left margin 

Writes white space to the new absolute 
position 

Writes white space to the new relative 
position 

Writes a new current y position 

Modifies the current y position by a delta 

Writes n characters 

Commands Not Requiring a Second Longword 

UIS$C_TEXT-END_OF_LIST Terminates the control list 

When VIS encounters illegal commands and values within the control list, it 
skips the invalid item and signals an error. 

etl/en 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Length of formatting control list. The ctllen argument is the address of a 
longword that specifies the length of the formatting control list in longwords. 

Description 

Nonprinting characters such as tab and line feed are not handled in any 
special way. The character is obtained from the font and is displayed like 
any other character. 



18-376 UIS Routine Descriptions 
UIS$TRANSFORM_OBJECT 

UIS$TRANSFORM_OBJECT 
Transforms the coordinates or attributes or both of the specified object within 
the display list. 

Format 

UIS$TRANSFORM_OBJECT 

Returns 

UIS$TRANSFORM_OBJECT signals all errors; no condition values are 
returned. 

Arguments 

obj_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Object identifier. The obj-id argument is the address of a longword that 
uniquely identifies the object. 

seg_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Segment identifier. The ses-id argument is the address of a longword that 
uniquely identifies the segment. See UIS$BEGIN _SEGMENT for more 
information about the ses-id argument. 

matrix 
VMS Usage: vector_longword_signed 
type: F _floating 
access: read only 
mechanism: by reference 

Transformation matrix. The matrix argument is the address of an array of 
longword integers that define the values to be used for scaling, rotation, 



U IS Routine Descriptions 
UIS$TRANSFORM_OBJECT 

18-377 

and/or translation. A two-dimensional array declared as ARRAY(2,3) has the 
following structure. 

1,1 1,2 1,3 
~ 

2,1 2,2 2,3 

ZK·5492-86 

VAX FORTRAN allocates memory for the array elements. Memory addresses 
of array elements range from lowest to highest in the following order: 
(1,1),(2,1), (1,2),(2,2),(1,3), and (2,3). VIS assigns values to array elements in 
the order shown in the following illustration. 

NOTE: For the purposes of assigning values to array elements, VIS treats 
all transformation matrices as VAX FORTRAN arrays regardless of the 
programming language of the application. 

3 5 

2 4 6 

ZK·5493·86 

Pairs of array elements govern how displayed objects are scaled, rotated, 
and translated. VIS computes the transformed coordinates in the following 
manner. 

Translation 

Xl = A(l.l)*x + A(1.2)*y + A(1.3) 

Yl = A(2.1)*x + A(2.2)*y + A(2.3) 

When translation alone is performed, the following array elements are 
assigned values. Dx and Dy represent distances between the original 
coordinates and the new coordinates. 



18-378 UIS Routine Descriptions 
UIS$TRANSFORM_OBJECT 

o 

Scaling 

o Ox 

Oy 

ZK-5494-86 

When scaling alone is performed, the following array elements are assigned 
values. 

Sx o o 

o Sy o 

ZK-5495-86 

Rotation 

When rotation alone is performed, the following array elements are assigned 
values, where I/@" is the desired angle of rotation. The values returne<;t from 
the FORTRAN SIN and COS functions are stored in the appropriate array 
elements. 

cos (@) sin (@) 0 

-sin (@) cos (@) 0 

ZK-5496-86 

An unlimited number of transformations can be performed at one time by 
simply multiplying the matrices together into a single matrix using matrix 
multiplication. 

In order to multiply two matrices together, you must add a row to the bottom 
of each matrix. 



o 

UIS Routine Descriptions 
UIS$TRANSFORM_OBJECT 

o 

ZK·5461·86 

18-379 

After the multiplication is performed, remove the last row of the result. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
identifies an attribute block to override current attribute settings. 

Description 
Either the coordinates can be transformed, or the attributes can be overridden 
or both. 

After a transformation, occluded objects may not appear correctly. This can 
be corrected by calling UIS$EXECUTE to refresh the display screen. 

Example 

REAL*4 MATRIX(2.3) 

CALL UIS$PLOT(VD_ID.O.5.0.5.0.15.0.5.0.10.0.15.0.5.0.5.0) 

CURRENT_ID=UIS$GET_CURRENT_OBJECT(VD_ID) 
OBJ_ID=CURRENT_ID 



18-380 UIS Routine Descriptions 
UIS$TRANSFORM_OBJECT 

CALL UIS$SET_FONT(VD_ID,O,l,'UIS$FILL_PATTERNS') 
CALL UIS$SET_FILL_PATTERN(VD_ID,1, 1,PATT$C_HORIZ1_7) 

PAUSE 
MATRIX(1,1)=1.0 
MATRIX(2,1)=0.0 
MATRIX(1,2)=0.0 
MATRIX(2,2)=1.0 
MATRIX(1,3)=-10.0 
MATRIX(2,3)=-10.0 
CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX,l) 

PAUSE 

MATRIX(1,1)=2.0 
MATRIX(2,1)=0.0 
MATRIX(1,2)=0.0 
MATRIX(2,2)=2.0 
MATRIX(1,3)=0.0 
MATRIX(2,3)=0.0 
CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX,l) 

PAUSE 

CALL UIS$SET_FONT(VD_ID,0,2,'UIS$FILL_PATTERNS') 
CALL UIS$SET_FILL_PATTERN(VD_ID,2,2,PATT$C_VERT1_7) 

MATRIX (1 ,1)=1.'0 
MATRIX(2,l)=0.0 
MATRIX(l, 2) =0'. 0 
MATRIX(2,2)=1.0 
MATRIX(l,3)=-13.0 
MATRIX(2,3)=-13.0 
CALL UIS$TRANSFORM_OBJECT(OBJ_ID,MATRIX,2) 



UIS Routine Descriptions 18-381 
UIS$TRANSFORM_OBJECT 

Screen Output 





PART IV UIS Device Coordinate (UISDC) 
Routines 





Chapter 19 

UIS Device Coordinate Graphics Routines 

19.1 Overview 

This section introduces the MicroVMS workstation UISDC (device coordinate) 
graphics system services. It contains a reference section of all UISDC routines and 
pertinent information on how they are used. 

19.2 UISDC Routines-How to Use Them 

In addition to the world coordinate interface (UIS), the MicroVMS workstation 
software provides a device-coordinate, or pixel-level, interface (UISDC) to the 
graphics system services. UISDC allows applications to create UIS windows, but 
manipulate the contents of those windows at the pixel level. 

Programming in device coordinates requires that an application make mixed use 
of UIS and UISDC routines. Only those UIS routines that use or modify world 
coordinate positions have been duplicated as UISDC routines. Most informational, 
attribute, windowing, and display routines exist only in UIS format and are shared 
by the two programming levels. 

The major differences between UISDC and UIS are: 

• The UISDC drawing surface is a display window, as opposed to a virtual display 
as it is with UIS. Therefore, the UISDC output routines utilize display window 
identifiers instead of virtual display identifiers. 

• Most UISDC positions are expressed in viewport-relative device coordinates. 

The lower-left comer of the display viewport is pixel (0,0). The upper-right 
comer is (width multiplied by x resolution, height multiplied by y resolution), 
where width and height are expressed in centimeters and resolution is expressed 
in pixels per centimeter. 



19-2 UIS Device Coordinate Graphics Routines 

• UISDC does not maintain or manage a display list. Automatic zooming, panning, 
and playback of a display are not supported. 

Mixed use of UIS and UISDC output routines is allowed. Therefore, it is possible to 
do the following UIS and UISDC operations simultaneously: 

• Draw to a virtual display that contains a window, using world coordinates. 

• Draw directly to the same window, using viewport-relative device coordinates. 

Separate current text positions, character size, text margins, and clipping rectangles 
are maintained for both coordinate systems. 

The following section of this chapter lists the UISDC routines and their arguments in 
alphabetical order. 



UISDC Routines 19-3 
UISDC$ALLOCATE_DOP' 

UISDC$ALLOCATE_DOP 
Allocates a drawing operation primitive (DOP) for a particular display 
window in VAXstation color and intensity systems. 

Format 

dop=UISDC$ALLOCATE_DOP wd_id ,size ,atb 

Returns 

VMS Usage: address 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as the address of the drawing operation primitive 
in the variable dop or RO (VAX MACRO). 

UISDC$ALLOCATE_DOP signals all errors; no condition values are 
returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

size 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

Size of the variable portion of the drawing operation primitive. The size 
argument is the address of a number that defines the size of the variable 
portion of the drawing operation primitive to allocated. 



19-4 UISDC Routines 
UISDC$ALLOCATE_DOP 

The size of the variable portion of the allocated DOP is returned in the size 
field. The size of the allocated DOP may be smaller than the requested size. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: . by reference 

Attribute block number. The atb argument is the address of an attribute 
block. 

Description 

UISDC$ALLOCATE_DOP writes the following information from the 
specified attribute block into portions of the DOP data structure and returns 
the address of the DOP. 

• Clipping rectangle 

• Writing mode 

• Writing mask 

See the MicroVMS Workstation Video Device Driver Manual for more 
information. 



UISDC Routines 19-5 
UISDC$CIRCLE 

UISDC$CIRCLE 
Draws an arc along the circumference of a circle. 

Format 

UISDC$CIRCLE 

Returns 

wd_id, atb, center-x, center_y, xradius 
[,start_deg, end_degj 

UISDC$CIRCLE signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wd-id argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wd-id argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that specifies an attribute block that"controls the appearance of the 
circle or arc. 

center-x, center_y 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Center position x and y viewport-relative device coordinates. The center-x 
and center_y arguments are the addresses of integers that define a point in 
the virtual display that is the center of the arc or circle. 



19-6 UISDC Routines 
UISDC$CIRCLE 

xradius 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Radius of the circle specified as an x viewport-relative device coordinate 
width. The xradius argument is the address of an integer that defines the 
distance from the center of the circle to the circumference of the circle. 

start_deg, end_deg 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Degree at which the arc starts. The start_deg and enLdeg arguments 
are the addresses of f-floating numbers that define the starting and ending 
point on the circumference of the circle where the arc or circle will be 
drawn. Degrees are measured clockwise from the top of the circle. If these 
arguments are not specified, 0.0 degrees and 360.0 degrees are assumed, 
respectively. 

Description 

UISDC$CIRCLE draws an arc specified by a center position and a radius for 
the range of the degrees specified. 

The arc is closed by drawing one or more lines between the endpoints. The 
arc type associated with the attribute block specifies the way in which the arc 
is closed. The arc is not closed off by default. See UIS$SET-ARC_TYPE for 
details. 

The points are drawn with the current line pattern and width, and filled with 
the current fill pattern, if enabled. 

UISPC$CIRCLE does not support the following combination of attributes: 

• Line width not equal to 1 and line style not equal to FFFFFFFF16 

• Line width not equal to 1 and complement writing mode 

Circles are distorted by virtual display / display window aspect ratio 
distortion. 



UISDC Routines 19-7 
UISDC$ELLIPSE 

UISDC$ELLIPSE 
Draws an arc at a starting position along the circumference of an ellipse. 

Format 

UISDC$ELLIPSE 

Returns 

wd_id, atb, center-x, center_y, xradius, 
yradius [,start_deg ,end_degj 

UISDC$ELLIPSE signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The wLid argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_DISPLAY for 
more information about the wLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
identifies the attribute block that will modify the ellipse. If you specify 0 in 
the atb argument, the default settings of attribute block 0 are used. 

center-x, center_y 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Center position x and y viewport-relative device coordinates. The center-x 
and center_y arguments are the addresses of integers that define a point in 
the display window that is the center of the ellipse or arc. 



19-8 UISDC Routines 
UISDC$ELLIPSE 

xradius 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Radius of the ellipse specified as an x device coordinate width. The xradius 
argument is the address of an integer that defines the distance from the 
center of the ellipse to the circumference of the ellipse or arc. 

yradius 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Radius of the ellipse specified as a y device coordinate width. The yradius 
argument is the address of a integer that defines the distance from the center 
of the ellipse to the circumference of the ellipse or arc. 

start_deg, end_deg 
VMS Usage: floating_point 
type: f_floating 
access: read only 
mechanism: by reference 

Degree at which the arc starts and ends. The start_deg and end-deg 
arguments are the addresses of f-floating numbers that define the starting 
point and ending point in degrees on the circumference of the ellipse where 
the arc or ellipse will be drawn. Degrees are measured clockwise from the 
top of the ellipse. 

If these arguments are not specified, 0.0 and 360.0 degrees are assumed. If 
both arguments are not specified, a complete ellipse is drawn. 

Description 

UISDC$ELLIPSE uses center position coordinates and x and y radii to 
construct an ellipse. Along the circumference of this ellipse, UISDC$ELLIPSE 
draws an arc for a specified range of degrees. 

The arc is closed by drawing one or more lines between the endpoints. The 
type of arc associated with the attribute block specifies the way in which the 
arc is closed. See the UIS$SET-ARC_TYPE routine for more information. 

The points are drawn with the current line pattern and width, and filled with 
the current fill pattern, if enabled. 



UISDC Routines 19-9 
UISDC$ELLIPSE 

UISDC$ELLIPSE does not create thick patterned ellipses and thick ellipses 
that are undefined in complement mode. 

UISDC$ELLIPSE does not support the following combination of attributes: 

• Line width not equal to 1 and line style not equal to FFFFFFFF16 

• Line width not equal to 1 and complement writing mode 



19-10 UISDC Routines 
UISDC$ERASE 

UISDC$ERASE 
Erases the specified rectangle in the display window. 

Format 

UISDC$ERASE wd_id [,x1' Y1' x2, Y21 

Returns 

UISDC$ERASE signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The w"--id argument is the address of a 
longword that uniquely identifies the display window containing the 
specified rectangle. See UIS$CREATE_WINDOW for more information 
about the w"--id argument. 

Xl' Yl' X2' Y2 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Viewport-relative device coordinate pairs. The xl and YI arguments are the 
addresses of integers that define the lower-left corner of the rectangle in the 
display window. The x2 and Y2 arguments are the addresses of integers that 
define the upper-right corner of the rectangle in the display window. If no 
rectangle is specified, the entire display window is erased. 

Description 

Areas within display windows affected by this call are filled with the color 
specified by entry 0 in the virtual display color map. 



UISDC Routines 19-11 
UISDC$EXECUTE_DOP -ASYNCH 

UISDC$EXECUTE_DOP -ASYNCH 
Starts the execution of the specified drawing operation primitive (DOP) in 
the specified display window of VAXstation color and intensity systems and 
returns control to the application immediately. 

Format 

UISDC$EXECUTE_DOP-ASYNCH wd_id ,dop ,iosb 

Returns 

UISDC$EXECUTE_DOP-ASYNCH signals all errors; no condition values 
are returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

dop 
VMS Usage: vector_byte_unsigned 
type: byte_unsigned 
access: read only 
mechanism: by reference 

Drawing operation primitive. The dop argument is the address of an array of 
bytes that comprise the drawing operation primitive. 

iosb 
VMS Usage: io_status_block 
type: quadword (unsigned) 
access: write only 
mechanism: by reference 



19-12 UISDC Routines 
UISDC$EXECUTE_DOP-ASYNCH 

I/O status block. The iosb argument is the address of an I/O status block 
that receives a value indicating that the drawing operation primitive is 
queued for execution. 

Description 
UISDC$EXECUTE_DOP-.ASYNCH queues the specified DOP for execution 
in the specified window. 

You may later use the SYS$SYNCH system service to determine when the 
DOP has been drawn. See the MicroVMS Workstation Video Device Driver 
Manual for more details. 



UISDC Routines 
UISDC$EXECUTE_DOP _SYNCH 

UISDC$EXECUTE_DOP _SYNCH 

19-13 

Queues the drawing operation primitive (DOP), waits for the specified DOP 
to complete execution in the specified display window, and then returns 
control to the application. 

Format 

UISDC$EXECUTE_DOP_SYNCH wd_id ,dop 

Returns 

UISDC$EXECUTE_DOP_SYNCH signals all errors; no condition values are 
returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The w"--id argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the w"--id argument. 

dop 
VMS Usage: vector_byte_unsigned 
type: byte_unsigned 
access: read only 
mechanism: by reference 

Drawing operation primitive. The dop argument is the address of an array of 
bytes that comprises the drawing operation primitive. 

Description 

UISDC$EXECUTE_DOP_SYNCH queues the specified drawing operation 
primitive for execution in the specified window and returns when the 
drawing operation is complete. 

See MicroVMS Workstation Video Device Driver Manual for more information. 



19-14 UISDC Routines 
UISDC$GET -ALIGNED_POSITION 

UISDC$GET -ALIGNED_POSITION 
Returns the current position for text output-the upper-left comer of the next 
character cell. 

Format 

UISDC$GET -ALIGNED_POSITION wd_id, atb, retx, rety 

Returns 

UISDC$GET-ALIGNEDJOSITION signals all errors; no condition values 
are returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wUd argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wUd argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block. The atb argument is the address of a longword that identifies 
an attribute block that contains a modified font attribute. 

retx, rety 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Viewport-relative device coordinate pair. The retx and rety arguments are 
the addresses of longwords that receive the current position as x and y 
viewport-relative device coordinate positions. 



Description 

UISDC Routines 
UISDC$GET -ALIGNED_POSITION 

19-15 

UISDC$GET-ALIGNEDJOSITION differs from UISDC$GETJOSITION 
in that the current position refers to the upper-left comer of the next 
character to be output using the specified attribute block. This is useful 
for applications that require the position of the upper-left comer, but do not 
have enough information about the font baseline to determine the proper 
alignment point. The position is converted into the proper alignment point 
using the font specified in the given attribute block. See UISDC$SET_ 
ALIGNEDJOSITION. 



19-16 UISDC Routines 
UISDC$GET _CHAR_SIZE 

Returns both a value indicating whether or not character scaling is enabled 
and the character size used. 

Format 

boolean=UISDC$GET _CHAR_SIZE wd_id, atb 
,[ char], [width ][, height] 

Returns 

VMS Usage: boolean 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword value returned as a Boolean to indicate the status of character 
scaling in the variable boolean or RO (VAX MACRO). 

UISDC$GET_CHAR_SIZE signals all errors; no condition values are 
returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wd-id argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wd-id argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
identifies an attribute block containing the character size attribute setting. 



char 
VMS Usage: char_string 
type: character_string 
access: write only 
mechanism: by descriptor 

UISDC Routines 
UISDC$GET _CHAFLSIZE 

19-17 

Single character. The char argument is the address of a character string 
descriptor of a single char. 

width 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Character width. The width argument is the address of a longword that 
receives the character width in viewport-relative device coordinates. 

height 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Character height. The height argument is the address of a longword that 
receives the character height in viewport-relative device coordinates. 



19-18 UISDC Routines 
UISDC$GET _CLIP 

UISDC$GET _CLIP 
Returns the clipping mode. 

Format 

status=UISDC$GET_CLIP wd_id, atb [,X1' Y1' x2, Y21 

Returns 

VMS Usage: boolean 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Boolean value returned as the clipping mode in a status variable or RO (VAX 
MACRO). If clipping is enabled, a Boolean TRUE is returned. If clipping is 
disabled, a Boolean FALSE is returned. 

UISDC$GET_CLIP signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
identifies the attribute block that modifies the clipping mode. 



Xl' Y1' X2' Y2 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

UISDC Routines 
UISDC$GET _CLIP 

19-19 

Viewport-relative device coordinate pairs. The xl and Yl arguments are the 
addresses of longwords that receive the viewport-relative device coordinates 
of the lower-left comer of the clipping rectangle. The x2 and Y2 arguments 
are the addresses of longwords that receive the viewport-relative device 
coordinates of the upper-right comer of the clipping rectangle. 



19-20 UISDC Routines 
UISDC$GET _POINTER-POSITION 

UISDC$GET _POINTER_POSITION 
Returns the current pointer position ~n viewport-relative device coordinates. 

Format 

status=UISDC$GET _POINTER_POSITION wd_id, retx, rety 

Returns 

VMS Usage: boolean 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Boolean value returned as the current position of the pointer in a status 
variable. UISDC$GETJOINTERJOSITION returns the Boolean TRUE 
value 1 if the pointer is within the visible portion of the viewport, 0 is 
returned if the pointer is outside the visible portion of the viewport. In the 
latter case, the x and y values are returned as 0,0. 

UISDC$GETJOINTERJOSITION signals all errors; no condition values 
are returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wcLid argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wcLid argument. 

ret x, rety 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Viewport-relative device coordinate pair. The retx and rety arguments are 
the addresses of longwords that receive the pointer position in viewport
relative device coordinates. 



Description 

UISDC Routines 
UISDC$GET _POINTER_POSITION 

19-21 

Note that the returned status value should always be tested when using 
this routine, since it is always possible that the pointer could be outside the 
window when the service is called and the x, y values would be meaningless. 



19-22 UISDC Routines 
UISDC$GET _POSITION 

UISDC$GET _POSITION 
Returns the current baseline position for text output. 

Format 
UISDC$GET _POSITION wd_id, retx, rety 

Returns 

UISDC$GETJOSITION signals all errors; no condition values are returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wd-id argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wd-id argument. 

retx, rety 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Viewport-relative device-coordinate pair. The retx and rety arguments are 
addresses of longwords that receive the current position of text output in 
viewport-relative device coordinate positions. 

Description 

UIS$NEW_TEXT_LINE and UIS$TEXT recognize the concept of current 
position. The position refers to the alignment point on the baseline of the 
next character to be output. (See the UIS$SETJOSITION routine.) 



UISDC Routines 19-23 
UISDC$GET _TEXT_MARGINS 

UISDC$GET _ TEXT _MARGINS 
Returns the text margins for a line of text. See UISDC$SET_ TEXT_ 
MARGINS for more information. 

Format 

UISDC$GET _TEXT _MARGINS 

Returns 

wd_id ,atb ,x ,y 
[,margin_'ength 1 

UISDC$GET_ TEXT-MARGINS signals all errors; no condition values are 
returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Virtual display identifier. The wUd argument is the address of a longword 
that uniquely identifies the virtual display. See UIS$CREATE_WINDOW for 
more information about the wUd argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
identifies an attribute block. 

X,Y 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 



19-24 UISDC Routines 
UISDC$GET _TEXT_MARGINS 

Starting margin position. The x, y arguments are the addresses of longwords 
that receive the starting margin relative to the direction of text drawing in 
viewport-relative device coordinates. 

margin_length 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Ending margin position. The margin-Iength is the address of a longword 
that receives the distance to the end margin in viewport-relative device 
coordinates. The margin is measured along the actual path of text drawing. 



UISDC$GET _VISIBILITY 

UISDC Routines 
UISDC$GET _VISIBILITY 

19-25 

Returns a Boolean value that indicates whether or not the specified rectangle 
in the display window is visible. 

Format 

Boolean=UISDC$GET_VISIBILITY wd_id [,x1' Y1 [,x2' Y2]] 

Returns 

VMS Usage: boolean 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Boolean value returned in a status variable or RO (VAX MACRO). The 
returned value, the visibility status, is a Boolean TRUE only if the entire area 
is visible, and a Boolean FALSE if even a portion of the area is occluded or 
clipped. 

UISDC$GET_ VISIBILITY signals all errors; no condition values are returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

Xl' Yl' X2' Y2 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Viewport-relative device coordinates of a rectangle in the display window. 
The Xl and Yl arguments are addresses of integers that define the lower-left 
comer of a rectangle in the display window. The x2 and Y2 arguments are 



19-26 UISDC Routines 
UISDC$GET _VISIBILITY 

addresses of integers that define the upper-right corner of a rectangle in the 
display window. 

If the coordinates of the rectangle are not specified, the dimensions of the 
entire display window are used by default. 

Description 

UIS$GET_ VISIBILITY determines if a single position is visible by specifying 
the same coordinate for both minimum and maximum values. 



UISDC$IMAGE 

UISDC Routines 
UISDC$IMAGE 

Draws a raster image into a specified display rectangle. 

Format 

UISDC$IMAGE 

Returns 

wd_id, atb, Xt, Yt, x2' Y2' rasterwidth, 
rasterheight, bitsperpixel, rasteraddr 

UISDC$IMAGE signals all errors; no condition values are returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

19-27 

Display window identifier. The wUd argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wUd argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
identifies an attribute block that modifies the writing mode. 

xI J YIJ x2J Y2 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Viewport-relative device coordinates of the rectangle in the display window. 
the xl and Yl arguments are the addresses of integers that define the lower
left comer of the rectangle in the display window. The x2 and Y2 arguments 



19-28 UISDC Routines 
UISDC$IMAGE 

are the addresses of integer pixels that define the upper-right corner of the 
rectangle in the display window. 

rasterwidth 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Width of the raster image. The rasterwidth argument is the address of a 
longword that defines the width of the raster image in pixels. 

rasterheight 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Height of the raster image. The rasterheight is the address of a longword 
that defines the height of the raster image in pixels. 

bitsperpixel 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Number of bits per pixel in the raster image. The bitsperpixel argument is 
the address of a longword that defines the number of bits per pixel in the 
raster image. The bitsperpixel argument is currently required to be either 1 
or 8. 

If bitsperpixel is specified as 8 on a single-plane system, the results are 
unpredictable. 

rasteraddr 
VMS Usage: vector_longword_unsigned 
type: longword_unsigned 
access: read only 
mechanism: by reference 

Raster image. The rasteraddr argument is the address of an array that 
defines a raster image. 



Description 

UISDC Routines 
UISDC$IMAGE 

19-29 

The raster dimensions are described by the width, height, and bits per 
pixel parameters. The width and height give the number of pixels in each 
dimension, and bits per pixel represents the number of bits that makes up 
each pixel. The raster is read from memory as "height" bit vectors each of 
which is "width" pixels long and each pixel is "bits/pixel" bits long. 

UISDC$IMAGE never scales. If the size of the destination rectangle is larger 
than the size of the raster, then the remaining space on the right and top will 
not be written. 

The procedure for assignment of bits in the bitmap is as follows: 

1. Each bit in the array is set from left-most bit to the right-most bit 

2. Each row is filled from the top row to the bottom row. 

NOTE: the bitmap is not byte- or word-aligned. 

The following figure illustrates the setting of bits in the bitmap. 



19-30 UISDC Routines 
UISDC$IMAGE 

1 

1 0 1 1 

1 0 1 0 

1 0 0 1 0 1 0 1 

\ 

\Sitmap 
Image 

Raster 
Image 

ZK-4627-85 



UISDC$LINE 
Draws a line or series of unconnected lines. 

Format 

UISDC Routines 
UISDC$LINE 

UISDC$LINE wd_id, atb, x
" 

Y, [,x2'Y2 f, ... xn,Ynll 

Returns 

UISDC$LINE signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

19-31 

Display window identifier. The wd-id argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wd-id argument. 

atb 
VMS Usage: 
type: 
access: 
mechanism: 

longword_unsigned 
longword (unsigned) 
read only 
by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies an attribute block that modifies line style and line 
width or both. 

x, Y 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Viewport-relative device coordinate pair. The x and y arguments are the 
addresses of integers that define a point in the display window. 

If the arguments are repeated to specify a second position, a line is created. 



19-32 UISDC Routines 
UISDC$LINE 

If one coordinate pair is specified, a point is drawn. If any other odd number 
of coordinate pairs is specified, the final coordinate pair is ignored. 

Up to 126 world coordinate pairs may be specified as arguments. See the 
"DESCRIPTION" section below for more information about this argument. 

Description 

If one position is specified, then a point is drawn. If two positions are 
specified, a single vector is drawn. 

Up to 252 arguments can be specified, that is, 63 urtconnected lines may 
be drawn. If a larger number of points must be specified in a single call, 
UIS$LINE-ARRAY should be used. 

The points or lines are drawn with the line pattern and width for the attribute 
block. Fill pattern attribute settings are ignored. 



UISDC$LINE-ARRA Y 

UISDC Routines 
UISDC$LINE-ARRA Y 

19-33 

Draws an unfilled point, line, or a series of unconnected lines depending on 
the number of positions specified. 

Format 

UISDC$LINE-ARRAY wd_id, atb, count, )Lvector, y_vector 

Returns 

UISDC$LINE-ARRAY signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifie~ a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword 
integer that identifies an attribute block that modifies line style or line width 
or both. 

count 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Number of points. The count argument is the address of longword integer 
that denotes the number of viewport-relative device coordinate pairs defined 
in the arguments x_vector and y_vector. 



19-34 UISDC Routines 
UISDC$LINE-ARRA Y 

JLvector, y_vector 
VMS Usage: vector_longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Array of x and y viewport-relative device coordinates. The x_vector and 
y_vector arguments are the addresses of arrays of integers whose elements 
together define in viewport-relative device coordinates the starting and end 
points of lines drawn in the display window. 

Description 

UISDC$LINE-ARRAY performs the same functions as UISDC$LINE except 
that x and y coordinates are stored in arrays. 

A maximum of 32,767 points can be plotted in a single call. UISDC$LINE_ 
ARRAY is the same as UISDC$LINE except that the x and y coordinates are 
specified using two arrays, e'!,ch of length count points. 



UISDC Routines 19-35 
UISDC$LOAD_BITMAP 

UISDC$LOAD_BITMAP 
Loads a bitmap into offscreen memory on VAXstation color and intensity 
systems. 

Format 

bitmap_id=UISDC$LOAD_BITMAP 

Returns 

VMS Usage: identifier 
type: longword (unsigned) 
access: write only 
mechanism: by value 

wd_id ,bitmap_adr 
,bitmap_len 
,bitmap_width 
,bits_per _pixel 

Longword value returned as the bitmap identifier in the variable bitmap_id 
or RO (VAX MACRO) for use in DOP$L_BITMAP-ID field of a drawing 
operation primitive (DOP). 

UISDC$LOAD_BITMAP signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The w<Lid argument is the address of a 
longword that uniquely identifies a display window. See 
UIS$CREATE_WINDOW for more information about the w<Lid. 

bitmap_adr 
VMS Usage: address 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Bitmap address. The bitmap_adr argument is the address of a bitmap. 



19-36 UISDC Routines 
UISDC$LOAD_BITMAP 

bitmap_len 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Bitmap length. The bitmap-Ien argument is the address of the number that 
defines the length of the bitmap in bytes. The length must be a multiple 
of 2. 

bitmap_width 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Width of the bitmap. The bitmap_width argument is the address of a 
number that defines the width of the bitmap in pixels. If the number of bits 
per pixel is 1, the specified width must be a multiple of 16. 

If the width of the bitmap should not exceed 1024. 

bits_peT_pixel 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

The bits_per_pixel argument is the address of a number that defines the 
number of bits per pixel. Currently, the values 1 and 8 are supported. 

Description 

See the MicroVMS Workstation Video Device Driver Manual for more 
information. 



UISDC Routines 19-37 
UISDC$MEASURE_ TEXT 

UISDC$MEASURE_ TEXT 
Measures a text string as if it were output in a display window. 

Format 

UISDC$MEASURE_ TEXT 

Returns 

wd_id, atb, text_string, retwidth, 
retheight, [,ctllist, ctllenj [,posarrayj 

UISDC$MEASURE_TEXT signals all errors; no condition values are 
returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
identifies an attribute block that modifies text output. 

text_string 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Text string. The text-string argument is the address of a character string 
descriptor of a text string. 



19-38 UISDC Routines 
UISDC$MEASURE_ TEXT 

retwidth,retheight 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Dimensions of the text string. The retwidth and retheight arguments are 
the addresses of longwords that receive the width and height of the text in 
centimeters. 

etllist 
VMS Usage: vector_longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Text formatting list. The ctllist argument is the address of an array of 
longwords that describes the font, text rendition, format, and positioning 
of text string fragments. See UIS$TEXT for a complete description of the· 
formatting control list. 

etl/en 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Length of the text formatting control list. The ctlIen argument is the address 
of a longword that defines the length of the text formatting control list. 

posarray 
VMS Usage: vector_longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Character position array. The posarray argument is the address of an 
array of longwords that receives character positions in pixels that are 
relative offsets at which each character would have been displayed. See 
UIS$MEASURE_TEXT for a complete description of the character position 
array. 

Description 

UISDC$MEASURE_TEXT is used in justification and text positioning 
applications. The routine returns the height and width of the text string 
in viewport-relative device coordinates. 



UISDC$MOVE-AREA 

UISDC Routines 
UISDC$MOVE-AREA 

19-39 

Shifts a portion of a display window to another position in the window. 

Format 

UISDC$MOVE-AREA wd_id, x1' Y1' x2' Y2' new-x, new_y 

Returns 

UISDC$MOVE-AREA signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

Xl' YI' X2' Y2 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Viewport-relative device coordinates of the source rectangle. The xl and YI 
arguments are the addresses of integers that define the lower-left comer of 
the source rectangle. The x2 and Y2 are the addresses of integers that define 
the upper-right comer of the source rectangle. 

new-x, new_y 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Viewport-relative device coordinate pair. The new-x and new_y arguments 
are the addresses of integers that define the lower-left comer of the 



19-40 UISDC Routines 
UISDC$MOVE-AREA 

destination rectangle. The height and width of the destination rectangle 
is implied from the height and width of the source rectangle. 

Description 

Note that display objects that are only partially contained within the specified 
source rectangle, though partially moved within existing display windows 
will be completely moved within the display list. 

The nonoccluding portion of the source rectangle (if any) is erased after the 
operation. 



UISDC Routines 
UISDC$NEW_ TEXT_LINE 

19-41 

Moves the current text position along the actual path of text drawing to the 
starting margin and then along the margin in the direction of the minor text 
path. Depending on the minor text path, either the width or height of the 
character cell is used for spacing between characters and lines. 

Format 

UISDC$NEW_TEXT_LINE wd_id, atb 

Returns 

UISDC$NEW_TEXT_LINE signals all errors; no condition values are 
returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
identifies an attribute block. 



19-42 UISDC Routines 
UISDC$PLOT 

UISDC$PLOT 
Draws a filled or unfilled point, line, or polygon depending on the number of 
positions specified. 

Format 

UISDC$PLOT wd_id, atb, X1' Y1 [,x2'Y2 [, ... Xn,Yn]] 

Returns 

UISDC$PLOT signals all errors; no condition values are returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
identifies an attribute block that modifies line style and line width. 

x,Y 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Viewport-relative device coordinate pair. The x and y arguments are the 
addresses of integers that define a point in the display window. If the 
argument be used to specify a second position, a line is created. Up to 126 



UISDC Routines 
UISDC$PLOT 

19-43 

viewport-relative device coordinate pairs may be specified as arguments. See 
the DESCRIPTION section below for more information about this argument. 

Description 

If one position is specified, then a point is drawn. If two positions are 
specified, a single vector is drawn. If more than two positions are specified, 
a connected polygon is drawn. Up to 252 arguments can be specified, giving 
a maximum of a 126-point polygon using this routine. If a larger number of 
points must be specified in a single call, UISDC$PLOT-ARRAY should be 
used. 

The points or lines are drawn with the line pattern and width for the attribute 
block, and if FILL is enabled for the attribute block, the enclosed area is filled 
with the current fill pattern. 

NOTE: VAX PASCAL application programs that draw lines and polygons 
should use UISDC$PLOT-ARRAY. 



19-44 UISDC Routines 
UISDC$PLOT -ARRAY 

UISDC$PLOT -ARRAY 
Draws an unfilled or filled point, line or polygon depending on the 
number of positions specified. This routine performs the same functions 
as UISDC$PLOT. 

Format 

UISDC$PLOT-ARRAY wd_id, atb, count, x_vector, y_vector 

Returns 

UISDC$PLOT-ARRAY signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
identifies an attribute block that modifies line style or line width or both. 

count 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Number of points. The count argument is the address of longword that 
denotes the number of viewport-relative device coordinate pairs defined in 
the x_vector and y_vector arguments. 



JLvector, y_vector 
VMS Usage: vector_longword_signed 
type: longword_signed 
access: read only 
mechanism: by reference 

UISDC Routines 
UISDC$PLOT -ARRAY 

19-45 

Array of x and y viewport-relative device coordinates. The x_vector 
argument is the address of an array of integers whose elements are the x 
viewport-relative device coordinate values of points defined in the window 
display. The y_vector argument is the address of an array of integers whose 
elements are the y viewport-relative device coordinate values of points 
defined in the display window. 

Description 
A maximum of 65,535 points can be plotted in a single call. 
UISDC$PLOT-ARRAY is the same as UISDC$PLOT except that the x and y 
viewport-relative device coordinates are specified using two arrays, each of 
length n points. 



19-46 UISDC Routines 
UISDC$QUEUE_DOP 

UISDC$QUEUE_DOP 
Queues the specified drawing operation primitive (DOP) for execution in the 
specified window and then returns control to the application. 

Format 

UISDC$QUEUE_DOP wd_id ,dop 

Returns 

UISDC$QUEUE_DOP signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

dop 
VMS Usage: vector_byte_unsigned 
type: byte_usigned 
access: read only 
mechanism: by reference 

Drawing operation primitive. The dop argument is the address of an array of 
bytes that contains the drawing operation primitive. 

Description 

UISDC$EXECUTE_DOP-ASYNCH queues the specified drawing operation 
primitive (DOP) for execution in the specified-window. To obtain notification 
that the DOP has completed exe~ution, see UISDC$EXECUTE_DOP_ 
ASYNCH and UISDC$EXECUTE_DOP_SYNCH. See the MicroVMS 
Workstation Video Device Driver Manual for more information about DOPs. 



UISDC$READ_IMAGE 

UISDC Routines 
UISDC$READ_IMAGE 

19-47 

Reads a raster image from within a specified rectangle contained by a display 
window. 

Format 

UISDC$READ_IMAGE 

Returns 

wd_id, X1' Yt, x2' Y2' rasterwidth, 
rasterheight, bitsperpixel, 
[rasteraddrj, rasteflen 

UISDC$READ-IMAGE signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: object_id 
type: longword 
access: read only 
mechanism: by reference 

Display window identifier. The wcLid argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the' wcLid argument. 

XII YI 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Viewport-relative device coordinates of lower-left comer of the specified 
rectangle. The xl'Yl arguments are the addresses of integers that define the 
lower-left comer of the rectangle in the display window. 

x21 Y2 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 



19-48 UISDC Routines 
UISDC$READ_IMAGE 

Viewport-relative device coordinates of the upper-right comer of the 
rectangle. The x2,Y2 arguments are the addresses of integers that define 
the upper-right comer of the specified rectangle in the display window. 

rasterwidth 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Width of the raster image in pixels. The rasterwidth argument is the address 
of a longword that receives the width of the raster image in pixels. 

rasterheight 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Height of the raster image in pixels. The rasterheight argument is the 
address of a longword that receives the height of the raster image in pixels. 

bitsperpixe/ 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Number of bits per pixel in the raster image. The bitsperpixel argument is 
the address of a longword that receives the number of bits per pixel in the 
raster image. 

rasteraddr 
VMS Usage: vector_byte_unsigned 
type: byte 
access: write only 
mechanism: by reference 

Address of buffer in which to return the raster image. The rasteraddr 
argument is the address of an array of bytes that receives the raster image. 

raster/en 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Size in bytes of the buffer. The rasterlen argument is the address of a 
longword that specifies the size in bytes of the buffer. 



Description 

UISDC Routines 
UISDC$READ_IMAGE 

19-49 

The raster image contained within the rectangle described by Xl' YI and x2' 
Y2 is returned in the specified buffer. The actual dimensions, in pixels, of 
the returned buffer is written to rasterwidth and rasterheight. The number 
of bits per pixel is written to bitsperpixel. If the size of the buffer specified 
by rasterlen is not large enough to accept the entire bitmap raster, then 
rasterwidth, rasterheight, and bitsperpixel are returned as 0 and no data is 
written to the buffer. 

If the buffer length is specified as 0, values are returned in rasterwidth, 
rasterheight, and bitsperpixel. These values can be used to calculate the 
size of the buffer needed to contain the raster image. 

You should specify a buffer length of 0 to obtain the width, height, and bits 
per pixels. Use these returned values to do the following: 

1. Calculate the correct buffer size 

2. Reissue the call with the correct data 



19-50 UISDC Routines 
UISDC$SET -ALIGNED_POSITION 

UISDC$SET -ALIGNED_POSITION 
Sets the current position for text output. This routine differs from 
UISDC$SETJOSITION in that the position refers to the upper-left comer of 
the next character to the output. 

Format 

UISDC$SET -ALIGNED_POSITION wd_id, atb, x, y 

Returns 

UISDC$SET-ALIGNEDJOSITION signals all errors; no condition values 
are returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The w"--id argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the w"--id argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb is the address of a longword that identifies 
an attribute block that contains the appropriate font attribute text attribute 
setting. 

x,Y 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 



UISDC Routines 
UISDC$SET -ALIGNED_POSITION 

19-51 

Viewport-relative device coordinate pair. The x and y arguments are the 
addresses of integers that define the current position for text output. 

Description 
UISDC$SET-ALIGNEDJOSITION is useful in applications that know the 
position of the upper-left comer, but also don't know enough about the font 
baseline to determine the proper alignment point. The position is converted 
into the proper alignment point using the font specified in the given attribute 
block. The alignment point is stored internally. 



19-52 UISDC Routines 
UISDC$SET _BUTTON-AST 

UISDC$SET _BUTTON-AST 
Allows an application to find out when a button on the pointing device is 
depressed or released in a given rectangle of the display window. 

Format 

UISDC$SET _BUTTON-AST 

Returns 

wd_id [,astadr, [astprm] ,keybuf] 
[,x1, Y1, x2, Y2] 

UISDC$SET_BUTTON-AST signals all errors; no condition values are 
returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

astadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 

AST routine. The astadr argument is the address of an entry mask to a 
procedure that is called at AST level whenever a pointer button is depressed 
or released. To cancel the AST -enabling request of UISDC$SET_BUTTON_ 
AST, specify 0 in the astadr argument. To disable UIS$SET_BUTTON -AST, 
omit the astadr argument. 



astprm 
VMS Usage: user_arg 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

UISDC Routines 
UISDC$SET _BUTTON-AST 

19-53 

AST parameter. The astprm argument is the address of a single argument or 
data structure, such as a record or an array, to be passed to the AST routine. 
Calls to UISDC$SET_BUTTON -AST in FORTRAN application programs 
should be coded as follows: %REF(%LOC(astprm». 

keybuf 
VMS Usage: address 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Key buffer. The keybuf argument is the address of a longword buffer 
that receives button information whenever a pointer button is depressed 
or released. The low two bytes are the key code. The buttons are located 
on the left, center and right of the pointing device and are defined as 
UIS$CJOINTER_BUTTON _1, UIS$CJOINTER_BUTTON _2, UIS$C_ 
POINTER_BUTTON _3, and UIS$CJOINTER_BUTTON _4 respectively. 
The bit < 31> is set to 1 if the button has been pressed, and 0 if the button 
has been released. The buffer is not overwritten with subsequent button 
transitions until the AST routine completes. 

XII YII X21 Y2 
VMS Usage: longword-unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Viewport-relative device coordinates of a rectangle in the display window. 
The Xl and YI arguments are the addresses of integers that define the lower
left comer of a rectangle in the display window. The x2 and Y2 arguments 
are the addresses of integer pixels that define the upper-right comer of a 
rectangle in the display window. 

If no rectangle is specified, the entire display window is assumed. 

Description 

This function can be called any number of times for different rectangles 
within the same display window or many display windows. 

See the DESCRIPTION section of UIS$SET_BUTTON -AST for information 
about pointer region priorities. 



19-54 UISDC Routines 
UISDC$SET _CHAR-SIZE 

UISDC$SET _CHAR_SIZE 
Sets the viewport-relative device coordinate size of the specified character. 

Format 

UISDC$SET _CHAR_SIZE 

Returns 

wd_id, iatb, oatb, [char], 
[width][, height] 

UISDC$SET_CHAR_SIZE signals all errors; no condition values are 
returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword that identifies an attribute block to be modified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
longword that identifies a modified attribute block. 



char 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

UISDC Routines 
UISDC$SET _CHAR_SIZE 

19-55 

Single character. The char argument is the address of a descriptor of a single 
character. You may specify any character in the font. Specify this argument 
when you are using proportionally spaced fonts to establish spacing and 
scaling factors among character within the font. The char has no effect on 
monos paced fonts. 

If char is not specified or if the specified character is invalid, the widest 
character in the font is chosen. 

width 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Character width. The width argument is the address of an integer that 
defines the character width in viewport-relative device coordinates. 

height 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Character height. The height argument is the address of an integer that 
defines the character height in viewport-relative device coordinates. 

Description 

To disable character scaling, omit all of the following arguments: char, 
width, and height. 

To scale characters to their nominal size as specified in the font, do not 
specify width ·or height. Scaling is only visible when you use a window that 
does not have same proportions as the virtual display. 

If you specify either width or height only, characters are scaled to the size 
you specify and in the direction you specify. In the unspecified direction, 
characters are scaled so as to maintain the same ratio of height and width as 
the unscaled character. 



19-56 UISDC Routines 
UISDC$SET _CLIP 

UISDC$SET _CLIP 
Sets a clipping rectangle within the display window. 

Format 

UISDC$SET_CLIP wd_id, iatb, oatb [,x1' Y1' x2' Y2] 

Returns 

UISDC$SET_CLIP signals all errors; no condition values are returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

iatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword value that identifies an attribute block to be modified. Either 
the attribute block 0 or a previously modified attribute block can be specified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
longword value that identifies a newly modified attribute block that controls 
the dimensions of the clipping rectangle. 



XII YII X21 Y2 

VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

UISDC Routines 
UISDC$SET _CLIP 

19-57 

Viewport-relative device coordinates of the clipping rectangle. The xl and Yl 
arguments are the addresses of integers that define the lower-left comer of 
the clipping rectangle in viewport-relative device coordinates. The x2 and Y2 
arguments are the addresses of integers that define the upper-right comer of 
the clipping rectangle in viewport-relative device coordinates. Only graphic 
objects and portions of graphic objects drawn within the clipping rectangle 
are seen. 

If the device coordinates of the clipping rectangle comers are not specified, 
then clipping is disabled for this attribute block. 



19-58 UISDC Routines 
UISDC$SET _POINTEfLAST 

UISDC$SET _POINTER-AST 
Allows an application to find out when the pointer is moved in a given 
rectangle of the display window. 

Format 

UISDC$SET _POINTER-AST 

Returns 

wd_id [,astadr [,astprm]] 
[,x1, Y1' x2, Y2] [,exitastadr 
[,exitastprm]] 

UISDC$SETJOINTER-AST signals all errors; no condition values are 
returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

astadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 

AST routine. The astadr argument is the address of the entry mask to a 
procedure that is called at AST level whenever the pointer is moved within a 
rectangle in the display window. 

To cancel the AST -enabling request of UISDC$SETJOINTER-AST for this 
argument only, specify 0 in the astadr argument and the coordinates of the 
rectangle. 



astprm 
VMS usage: user_arg 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

UISDC Routines 
UISDC$SET _POINTEILAST 

19-59 

AST parameter. The astprm argument is the address of a single argument or 
data structure, such as an array or record, passed to the AST routine. Calls 
to UISDC$SETJOINTER-AST in VAX FORTRAN application programs 
should be coded as follows: %REF(%LOC(astprm». 

Xl' Yl1 X2, Y2 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Viewport-relative device coordinates of the rectangle of the display window. 
The xl and Yl arguments are the addresses of integers that define the lower
left corner of the rectangle of the display window. The x2 and Y2 arguments 
are the addresses of integer pixels that define the upper-right corner of the 
rectangle of the display window. 

If no rectangle is specified, the entire display window is assumed. 

To cancel an AST -enabling request, specify 0 in either the astadr or the 
exitastadr arguments or both and the coordinates of the rectangle. 

exitastadr 
VMS Usage: ast_procedure 
type: procedure entry mask 
access: read only 
mechanism: by reference 

Exit AST routine. The exitastadr argument is the address of the entry mask 
to a procedure that is called at AST level whenever the pointer leaves the 
rectangle. 

To cancel the AST-enabling request of UISDC$SETJOINTER-AST for 
the EXIT AST routine only, specify 0 in the exitastadr argument and the 
coordinates of the rectangle. 

exitastprm 
VMS Usage: user_arg 
type: longword 
access: read only 
mechanism: by reference 



19-60 UISDC Routines 
UISDC$SET _POINTEILAST 

Exit AST parameter. The exitastprm argument is the address of a single 
argument or data structure, such as an array or record, to be passed to the 
AST routine. Calls to UISDC$SETJOINTER-AST in VAX FORTRAN 
application programs should be coded as follows: %REF(%LOC(exitastprm)). 

Description 

UISDC$SETJOINTER-AST also allows an application to keep track of the 
pointer in its own way. This routine can be called any number of times for 
different rectangles. 

Note that an application need not enable both AST routines. It may specify 
one or the other. 

UISDC$SETJOINTER-AST can be used by the application to highlight 
the display or some other application-specific function, as the user moves 
the pointer over specific areas of the display window. This might be used to 
define a number of regions within a menu, and execute an AST when the 
pointer enters or leaves any of these regions. 

If both AST routines are enabled and the value 0 is specified in the astadr 
argument, the first AST routine is canceled. 

See the DESCRIPTION section of UIS$SET_BUTTON -AST for information 
about pointer region priorities. 



UISDC Routines 19-61 
UISDC$SET _POINTEFLPA TTERN 

UISDC$SET _POINTER_PATTERN 
Allows an application to specify a special pointer cursor pattern. 

Format 

UISDC$SET _POINTER_PATTERN 

Returns 

wd_id f,pattern_array, 
pattern_count, activex, 
activeyJ [X1' Y1' x2' Y2] 
[flags] 

UISDC$SETJOINTERJATTERN signals all errors; no condition values are 
returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

pattern_array 
VMS Usage: vector_word_unsigned 

. type: word (unsigned) 
access: read only 
mechanism: by reference 

16 x 16 bit cursor pattern. The pattern_array argument is the address of 
one or more arrays of 16 words that represents a bitmap image of the cursor. 

Color and intensity applications can define two patterns that are also 
executable on monochrome systems. 



19-62 UISDC Routines 
UISDC$SET _POINTEfLPA TTERN 

If two arrays are specified in an application running on a single-plane system, 
the first array is used. 

NOTE: The bitmap image of the new pointer pattern is mapped in reverse 
order to display screen. 

pattern_count 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Number of 16- x 16-bit cursor pattern. The pattern_count argument is the 
address of a longword that contains the number of cursor pattern arrays 
defined in the pattern_array argument. 

activex, activer. 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

The activex and activey arguments are used to specify the actual bit in the 
cursor pattern that should be used to calculate the current pointer position. 
The arguments are expressed as bit offsets from the lower-left comer of the 
cursor pattern. 

Xl' YI' x2, Y2 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Viewport-relative device coordinates of the rectangle in the display window. 
The xl and YI arguments are the addresses of integers that define the lower
left comer of the rectangle in the display window. The x2 and Y2 arguments 
are the addresses of integer pixels that define the upper-right comer of the 
rectangle in the display window. 

flags 
VMS Usage: longword_mask 
type: longword (unsigned) 
ac~ess: read only 
mechanism: by reference 

Flags. The flags argument is the address of a longword mask whose bits 
determine whether or not the cursor is confined to the display window 
rectangle. 



UISDC Routines 19-63 
UISDC$SET _POINTEfLPA TTERN 

When specified, UIS$M_BINDJOINTER sets the appropriate bit in 
the mask. 

Description 
UISDC$SETJOINTERJ ATTERN allows an application to specify a special 
pointer pattern to be used when the pointer is within the display window 
region specified by the optional rectangle. If no rectangle is given, then the 
entire display window is assumed. This function can be called any number 
of times for different rectangles. 

To disable UISDC$SETJOINTERJ ATTERN, omit the pattern_array, 
pattern_count, adivex, and adivey arguments. 

See the DESCRIPTION section of UIS$SET_BUTTON -AST for information 
about pointer region priorities. 



19-64 UISDC Routines 
UISDC$SET _POINTER_POSITION 

UISDC$SET _POINTER_POSITION 
Specifies a new current pointer position in device coordinates. It is only 
effective if the new pointer position is within the specified display window 
and visible. 

Format 

status=UISDC$SET _POINTER_POSITION wd_id, x, Y 

Returns 

Longword value returned as boolean in the variable status or RO (VAX 
MACRO) to indicate that the position is set. 

UISDC$SETJOINTERJOSITION signals all errors; no condition values 
are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wd-id argument is the address of a 
longword that uniquely identifies a display window. See UISDC$CREATE_ 
WINDOW for more information about the wd-id argument. 

x, y 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Viewport-relative device coordinates of the new pointer position. The x 
and y arguments are the addresses of integers that define the new pointer 
position. 



UISDC$SET _POSITION 

UISDC Routines 
UISDC$SET _POSITION 

19-65 

Sets the current position for text output. The current position is the point of 
alignment on the baseline of the next character to be output. 

Format 

UISDC$SET _POSITION wd_id, x,y 

Returns 

UISDC$SETJOSITION signals all errors; no condition values are returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

x,Y 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Viewport-relative device coordinate pair. The x and y arguments are the 
addresses of integers that define the current position for text output. 



19-66 UISDC Routines 
UISDC$SET _TEXT_MARGINS 

Sets the text margins for a line of text. 

Format 

UISDC$SET _TEXT_MARGINS 

Returns 

vd_id ,iatb ,oatb ,x ,y 
,margin_length 

UISDC$SET_ TEXT--MARGINS signals all errors; no condition values are 
returned. 

Arguments 
wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies the display window. See UIS$CREATE_ 
WINDOW for more information about the vLid argument. 

iatb 
VMS Usage: 10ngworcLunsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Input attribute block number. The iatb argument is the address of a 
longword that identifies an attribute block to be modified. 

oatb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Output attribute block number. The oatb argument is the address of a 
longword that identifies an attribute block. 



x,y 
VMS Usage: longword_unsigned 

UISDC Routines 
UISDC$SET _TEXT_MARGINS 

type: longword (unsigned) 
access: read only 
mechanism: by reference 

19-&7 

Starting margin position. The x/y arguments are the addresses of integers 
that define a point on the starting margin in viewport-relative device 
coordinates. The starting margin is the minor text path when the angle 
of text slope equals 0 degrees. 

margin_length 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Ending margin position. The margin-Iength is the address of an number 
that defines the distance from the starting margin to the end margin in 
viewport-relative device coordinates. 



19-68 UISDC Routines 
UISDC$TEXT 

UISDC$TEXT 
Draws a series of encoded characters. 

Format 

UISDC$TEXT wd_id, atb, text_string [,x,y] [,etl/ist ,etl/en] 

Returns 

UISDC$TEXT signals all errors; no condition values are returned. 

Arguments 

wd_id 
VMS Usage: identifier 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Display window identifier. The wLid argument is the address of a 
longword that uniquely identifies a display window. See UIS$CREATE_ 
WINDOW for more information about the wLid argument. 

atb 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Attribute block number. The atb argument is the address of a longword that 
specifies an attribute that modifies text output. 

text_string 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Text string. The text-string argument is the address of a character string 
descriptor of a text string. 



X, Y 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

UISDC Routines 
UISDC$TEXT 

19-69 

Viewport-relative device coordinates pair. The x and y arguments are the 
addresses of integers that define the viewport-relative device coordinates of 
the starting point of text output at the upper-left comer of the character cell. 

If this argument is not specified, the current text position is used. (See the 
UISDC$SET--.ALIGNEDJOSITION routine for more information.) 

etl/ist 
VMS Usage: vector_longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Text control formatting list. The ctllist argument is the address of an array 
of longwords that describe the font, text rendition, format, and positioning of 
text string fragments. See UIS$TEXT for a complete description of the text 
formatting control list. 

etl/en 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Length of the text formatting control list. The ctllen argument is the address 
of an integer that defines the length of the text formatting control list in 
longwords. 

Description 
Nonprinting characters such as tab and linefeed are not handled in any 
special way. The character is obtained from the font and is displayed like 
any other character. 





Appendix A 

Summary of UIS Calling Sequences 

A.1 UIS Calling Sequences 

Table A-I lists return values, entry point names, and parameter lists of all VIS 
routines. 

Table A-I Summary of UIS Calling Sequences 

Return 
Value Routine Argument List 

ses-id UIS$BEGIN _SEGMENT vcLid 

UIS$CIRCLE vcLid, atb, center-x, center_y, 
xradius, [,start_deg] [,emLdeg] 

UIS$CLOSE_WINDOW wcLid 

copy--id UIS$COPY_OBJECTI { obj--id 
ses-id 

} [,matrix] [,atb] 

vcm--id UIS$CREATE_COLOR-MAP vcm-size [,vcm-Ilame] 
[, vern_attributes] 

cms--id UIS$CREATE_COLOR-MAP_SEG vcm--id, [,devnam] [,place-Illode] 
[,place_data] 

vcLid UIS$CREATE_DISPLAY xl' YI' x2' Y2' width, height 
[,vcm--id] 

kb--id UIS$CREATE-KB devnam 

UIS$CREATE_ TERMINAL termtype [,title] [,attributes] . 
[,devnam] [,devlen] 

tb--id UIS$CREATE _TB devname 

tr--id UIS$CREATE_TRANSFORMATION vcLid, xl' YI' x2' Y2 [vdxI' vdYI' 
vdx2' vdY2] 

I VAX PASCAL and VAX PL/I applications must specify the obj -id argument. 



A-2 Summary of UIS Calling Sequences 
UIS Calling Sequences 

Table A-I (Cont.) Summary of UIS Calling Sequences 

Return 
Value 

wd-id 

vd-id 

Routine 

UIS$CREATE_WINDOW 

UIS$DELETE_COLOR_MAP 

UIS$DELETE_COLOR_MAP_SEG 

UIS$DELETE_DISPLAY 

UIS$DELETE_KB 

UIS$DELETE_OBJECTI 

UIS$DELETE _PRIVATE 

UIS$DELETE_TB 

UIS$DELETE_TRANSFORMATION 

UIS$DELETE_WINDOW 

UIS$DISABLE_DISPLAY_LIST 

UIS$DISABLE_KB 

UIS$DISABLE_ TB 

UIS$DISABLE_ VIEWPORT_KB 

UIS$ELLIPSE 

UIS$ENABLE_DISPLAY_LIST 

UIS$ENABLE_KB 

UIS$ENABLE_TB 

UIS$ENABLE_ VIEWPORT_KB 

UIS$END_SEGMENT 

UIS$ERASE 

UIS$EXECUTE 

UIS$EXECUTE_DISPLAY 

UIS$EXP AND_ICON 

UIS$EXTRACTJfEADER 

UIS$EXTRACT_OBJECTI 

Argument List 

vd-id, devnam [,title] [,xl' YI' x2' 
Y2] [, width,height] [,attributes] 

vcm-id 

cms-id 

vd-id 

kb-id 

{ 
obj-id } 
seg-id 

obj-id 

tb-id 

tr-id 

wd-id 

vd-id [,display_flags] 

kb-id 

tb-id 

wd-id 

vd-id, atb, center-x, center_y, 
xradius, yradius, [,start_deg] 
[,encLdeg] 

vd-id [,displayJlags] 

kb-id [, wd-id] 

tb-id 

kb-id, wd-id 

vd-id 

vd-id [,xl YI' x2' Y2] 
vd-id [,buflen] [,bufaddr] 

buflen, bufaddr 

wd-id [,icon_wd-id] [,attributes] 

vd-id [,buflen, bufaddr] [,retlen] 

{ 
bO °d } o J~d [,buflen ,bufaddr] 

seg-I 
[,retlen] 

I VAX PASCAL and VAX PLjI applications must specify the obj -id argument. 



Summary of UIS Calling Sequences A-3 
UIS Calling Sequences 

Table A-I (Cont.) Summary of UIS Calling Sequences 

Return 
Value 

obj-id 

seg-id 

arc-type 

index 

status 

angle 

boolean 

angle 

status 

current-id 

status 

Routine 

UIS$EXTRACT_PRIVATE I 

UIS$EXTRACTJEGION 

UIS$EXTRACT_ TRAILER 

UIS$FINDJRIMITIVE 

UIS$FIND_SEGMENT 

UIS$GET-ABS_POINTERJOS 

UIS$GET-ALIGNEDJOSITION 

UIS$GET-ARC_ TYPE 

UIS$GET_BACKGROUND-INDEX 

UIS$GET_BUTTONS 

UIS$GET_CHARJOTATION 

UIS$GET_CHAR_SIZE 

UIS$GET_CHAR_SLANT 

UIS$GET_CHAR_SPACING 

UIS$GET_CLIP 

UIS$GET_COLOR 

UIS$GET_COLORS 

UIS$GET_CURRENT_OBJECT 

UIS$GET_DISPLAY_SIZE 

UIS$GETJILL J ATTERN 

UIS$GET_FONT 

UIS$GETJONT-ATTRIBUTES 

UIS$GETJONT_SIZE 

Argument List 

{ 
bO °d } ~e~d [,buflen ,bufaddr] 

[,retlen] 

vLd [,xI'YI,x2'Y2] [,buflen 
,bufaddr] [,retlen] 

vLd [,bufleI), bufaddr] [,retlen] 

vLd, xl' YI,x2'Y2 [,context] 
[,extent] 

vLd, xl' YI' x2' Y2' [,context] 
[,extent] 

devnam, retx, rety 

vLd, atb, retx, rety 

vLd/atb 

vLd, atb 

wLd, retstate 

vLd, atb 

vLd, atb [,char], [width, height] 

vLd, atb 

vLd, atb, dx, dy 

vLd, atb [,xl' YI' x2' Y2] 
vLd, index, retr, retg, retb [,wLd] 

vLd, index, count, retr_vector, 
retg_vector, retb_vector [,wLd] 

vLd 

devnam, retwidth, retheight 
[,retresolx, retresoly] [,retpwidth 
retpheight] 

vLd, atb [,index] 

vLd, atb, bufferdesc [,length] 

vLd, ascender, descender, height, 
[,maximum_width] [,item-list] 

fontid, text-string, retwidth, 
retheight 

I VAX PASCAL and VAX PL/I applications must specify the obj -id argument. 



A-4 Summary of UIS Calling Sequences 
UIS Calling Sequences 

Table A-I (Cont.) Summary of UIS Calling Sequences 

Return 
Value 

style 

width 

next-id 

type 

parent-id 

status 

prev-id 

root-id 

formatting 

angle 

vcm-id 

boolean 

status 

Routine 

UIS$GETJiW_COLOR-INFO 

UIS$GET-INTENSITIES 

UIS$GET-INTENSITY 

UIS$GET_KB-.A TTRIBUTES 

UIS$GET_LINE_STYLE 

UIS$GET_LINE_ WIDTH 

UIS$GET~EXT_OBJECTI 

UIS$GET_OBJECT-.ATTRIBUTESI 

UIS$GET_P ARENT_SEGMENT I 

UIS$GET_POINTER_POSITION 

UIS$GETJOSITION 

UIS$GET_PREVIOUS_OBJECT 1 

UIS$GET-ROOT_SEGMENT 

UIS$GET_ TB-INFO 

UIS$GET_ TBJOSITION 

UIS$GET_ TEXTJ'ORMATTING 

UIS$GET_ TEXT-MARGINS 

UIS$GET_TEXTJ i\TH 

UIS$GET_ TEXT_SLOPE 

UIS$GET_ VCM-ID 

UIS$GET_ VIEWPORT-ICON 

UIS$GET_ VIEWPORTJOSITION 

UIS$GET_ VIEWPORT_SIZE 

UIS$GET_ VISIBILITY 

Argument List 

devnam [,type] [,indices] [,colors] 
[,maps] [,rbits] [,gbits] [,bbits] [,ibits] 
[,res-indices] [,regen] 

vd-id, index, count, retLvector 
[,wd-id] 

vd-id, index, reti [, wd-id] 

kb-id [,enable-items] 
[,disable-items ] [,click_volume] 

vd-id, atb 

vd-id, atb [,mode] 

{ Obj~dd } [,flags] 
seg-I 

{ obj -id } [,extent] 
seg-id 

{ 
obj-id } 
seg-id 

vd-id, wd-id, retx, rety 

vd-id, retx, rety 

{ 
obj-id } fl 
seg-id [, ags] 

vd-id 

devnam, retwidth, retheight,retresolx, 
retresoly [,retpwidth, retpheight] 

wd-id, retx, rety 

vd-id, atb 

vd-id, atb, x, y [,margin-Iength] 

vd-id, atb [,major][,minor] 

vd-id, atb 

vd-id 

wd-id [icon_wd-id] 

wd-id, retx, rety 

wd-id, retwidth, retheight 

vd-id, wd-id [,xl' Yl [,x2' Y2]] 

1 VAX PASCAL and VAX PL/I applications must specify the obj -id argument. 



Summary of UIS Calling Sequences A-S 
UIS Calling Sequences 

Table A-I (Cont.) Summary of UIS Calling Sequences 

Return 
Value 

attributes 

index 

mode 

status 

keybuf 

Routine Argument List 

UIS$GET_WINDOW-ATTRIBUTES wrl-id 

UIS$GET_WINDOW_SIZE 

UIS$GET_WRITING-INDEX 

UIS$GET_WRITING-MODE 

UIS$GET_WS_COLOR 

UIS$GET_WS_INTENSITY 

UIS$HLS_TO_RGB 

UIS$HSV_TO-RGB 

UIS$IMAGE 

UIS$L1NE 

UIS$L1NE-ARRAY 

UIS$MEASURE_ TEXT 

UIS$MOVE-AREA 

UIS$MOVE_ VIEWPORT 

UIS~MOVE_WINDOW 

UIS$NEW_ TEXT_LINE 

UIS$PLOT 

UIS$PLOT-ARRAY 

UIS$POP_VIEWPORT 

UIS$PRESENT 

UIS$PRIVATE I 

UIS$PUSH_ VIEWPORT 

UIS$READ_CHAR 

vrl-id, wrl-id, Xl' YI' x2' Y2 
vrl-id, atb 

vrl-id, atb 

vrl-id, coIor--id, retr, retg, retb 
[,wrl-id] 

vrl-id, coIor--id, reti [, wrl-id] 

H, L, 5, retr, retg, retb 

H, 5, V, retr, retg, retb 

vrl-id, atb, Xl' YI' x2' Y2' 
rasterwidth, rasterheight, 
bitsperpixel, rasteraddr 

{ obj~d } 
seg--1d 

vrl-id, atb, Xl' YI [,X2' Y2 [, ... xn, yn]] 
vrl-id, atb, count, x_vector, 
y_vector 

vrl-id, atb, text-string, retwidth, 
retheight ,[ctllist, ctlIen] [,posarray] 

vrl-id, Xl' YI' x2' Y2' new-x, new_y 
wrl-id, attributes 

vrl-id, wrl-id, Xl' YI' x2' Y2 
vrl-id, atb 

vrl-id, atb, Xl' YI [,x2' Y2 [, ... Xn, yn]] 
vrl-id, atb, count, x_vector, 
y_vector 

wrl-id 

[major_version], [minor_version] 

{ obj --id } facnum buffer 
vrl-id' , 

wrl-id 

kb--id [,flags] 

I VAX PASCAL and VAX PL/I applications must specify the obj-id argument. 



A-6 Summary of UIS Calling Sequences 
UIS Calling Sequences 

Table A-l (Cont.) Summary of UIS Calling Sequences 

Return 
Value Routine 

UIS$RESIZE_WINDOW 

UIS$RESTORE_CMS_COLORS 

UIS$RGB_ TO_HLS 

UIS$RGB_ TO_HSV 

UIS$SET-ADDOPT-AST 

UIS$SET-ALIGNEDJOSITION 

UIS$SET-ARC_ TYPE 

UIS$SET_BACKGROUND-INDEX 

UIS$SET_BUTTON -AST 

UIS$SET_CHAR-ROTATION 

UIS$SET_CHAR_SIZE 

UIS$SET_CHAR_SLANT 

UIS$SET_CHAR_SP ACING 

UIS$SET_CLIP 

UIS$SET_CLOSE-AST 

UIS$SET_COLOR 

UIS$SET_COLORS 

UIS$SET.-EXP AND-ICON -AST 

UIS$SETJ'ILL J ATTERN 

UIS$SETJ'ONT 

UIS$SET_GAIN -KB-AST 

UIS$SET_INSERTION _POSITION I 

UIS$SET-INTENSITIES 

UIS$SET-INTENSITY 

UIS$SET-KB-AST 

Argument List 

vcLJd, wcLJd [,new_abs-", new_ 
abs_y] [,new_width new_height] 
[,new_wc-"l, new_wc-YI' new_ 
WC-X2' new_wc-Y2] 

cms--id 

R, G, B, reth, retl, rets 

R, G, B, reth, rets, retv 

vcLJd [,astadr [,astprm]] 

vcLJd, atb, x, Y 

vcLJd, iatb, oatb, arc-type 

vcLJd, iatb, oatb, index 

vcLJd, wcLJd [,astadr [,astprm] 
,keybuf] [,xl' YI' x2' Y2] 
vcLJd, iatb, oatb, angle 

vcLJd, iatb, oatb [,char] [,width][,height] 

vcLJd, iatb, oatb, angle 

vcLJd, iatb, oatb, dx, dy 

vcLJd, iatb, oatb [,xl' YI' x2' Y2] 
wcLJd [,astadr [,astprm]] 

vcLJd, index, R, G, B 

vcLJd, index, count, r_vector, 
s-vector, b_vector 

wcLJd [,astadr [,astprm]] 

vcLJd, iatb, oatb [,index] 

vcLJd, iatb, oatb, fonLJd 

kb--id [,astadr [,astprm]] 

{ ~:~~ } [,flags] 
vcLJd 

vcLJd, index, count, Lvector 

vcLJd, index, I 

kb--id [,astadr [,astprm], keybuf] 

IVAX PASCAL and VAX PL/I applications must specify the obj.-id argument. 



Summary of UIS Calling Sequences A-7 
UIS Calling Sequences 

Table A-I (Cont.) Summary of UIS Calling Sequences 

Return 
Value 

status 

Routine 

UIS$SET_KB-A TTRIBUTES 

UIS$SET_KB_COMPOSE2 

UIS$SET_KB_COMPOSE3 

UIS$SET_KB_KEYTABLE 

UIS$SET_LINE_STYLE 

UIS$SET_LINE _WIDTH 

UIS$SET_LOSE _KB-AST 

UIS$SET_MOVE_INFO-AST 

UIS$SET_POINTER-AST 

UIS$SET_POINTERJ ATTERN 

UIS$SET_POINTER_POSITION 

UIS$SET_POSITION 

UIS$SET_RESIZE-AST 

Argument List 

kb-id [,enable-items] 
[,disable-items] [click_volume] 

kb-id [,table, tablelen] 

kb-id [,table, tablelen] 

kb-id [,table, tablelen] 

vUd, iatb, oatb, style 

vUd, itab, oatb, width [,mode] 

kb-id [,astadr [,astprm]] 

wUd [,astadr [,astprm]] 

vUd, wUd [,astadr [,astprm]] [,xl' 
YI' x2' Y2] [exitastadr [,exitastprm]] 
vUd, wUd [,pattern_array, 
pattern_count, activex, activey] [,xl' 
YI' x2' Y2] [,flags] 
vUd, wUd, x, Y 

vUd,x,y 

vUd, wUd [,astadr [,astprm]] 
[,new_abs--", new_abs_y] [,new_ 
width, new_height] [,new_wC--"I' 
new_wc_YI' new_wc--"2' 
new_wc-Y2] 

UIS$SET_SHRINK_TO-ICON_AST wUd [,astadr [,astprm]] 

UIS$SET_TEXT_FORMATTING 

UIS$SET_ TEXT_MARGINS 

UIS$SET_ TEXT_P ATH 

UIS$SET_ TEXT_SLOPE 

UIS$SET_ WRITING _INDEX 

UIS$SET_ WRITING -MODE 

tb-id, [,data_astadr, [data_astprm]], 
[,x_pos,y_pos] [,data--"l' data-YI' 
data--"2' data-Y2] [,button_astadr 
[,button_astprm],button-1.<eybuf] 

vUd, iatb, oatb,mode 

vUd, iatb, oatb, x, y, 
margin-Iength 

vUd, iatb, oatb, major[,min6r] 

vUd, iatb, oatb, angle 

vUd, iatb, oatb, index 

vUd, iatb, oatb, mode 



A-a Summary of UIS Calling Sequences 
UIS Calling Sequences 

Table A-I (Cont.) Summary of UIS Calling Sequences 

Return 
Value 

status 

Routine 

UIS$SHRINK_ TO-ICON 

UIS$SOUND_BELL 

UIS$SOUND_CLICK 

UIS$TEST-KB 

UIS$TEXT 

UIS$TRANSFORM_OBJECT1 

Argument List 

wcLid [,icon_wcLid] [,icon.J.lags] 
[,icon_name] [,attributes] 

devnam [,bell_volume] 

devnam [,click_volume] 

kb-id 

vcLid, atb, text-string [,x, y], [ctllist, 
ctllen] 

{~:t:~ } [,matrix] [,atb] 

1 VAX PASCAL and VAX PL/I applications must specify the obj -id argument. 



Appendix B 

Summary of UISDC Calling Sequences 

B.1 UISDC Calling Sequences 

The following table summarizes UISDC calling sequences. 

Table B-1 Summary of VISnC Calling Sequences 

Return 
Value 

dop 

boolean 

status 

status 

status 

Routine Argument List 

UISDC$ALLOCATE_DOP wcLid, size, atb 

UISDC$CIRCLE wcLid, atb, center-x, center_y, 
xradius [,start_deg] [,encLdeg] 

UISDC$ELLIPSE wcLid, atb, center-x, center_y, 
xradius, yradius, [,start_deg] 
[,encLdeg] 

UISDC$ERASE wcLid [,xI'YI,x2' Y2] 

UISDC$EXECUTE_DOP-ASYNCH wcLid, dop, iosb 

UISDC$EXECUTE_DOP_SYNCH wcLid, dop 

UISDC$GET-ALIGNEDJOSITION 

UISDC$GET_CHAR_SIZE 

UISDC$GET_CLIP 

UISDC$GETJOINTERJOSITION 

UISDC$GETJOSITION 

UISDC$GET_ TEXT--MARGINS 

UISDC$GET_ VISIBILITY 

UISDC$IMAGE 

UISDC$LINE 

wcLid, atb, retx, rety 

wcLid, atb [,char],[width][,height] 

wcLid, atb [,xI'YI' x2,Y2] 
wcLid, retx, rety 

wcLid, retx, rety 

wcLid, atb, x, y [,margin--1ength] 

wcLid [,xI,Yt [,x2'Y2]] 

wcLid, atb, xl' YI' x2' Y2' 
rasterwidth, rasterheight, 
bitsperpixel, rasteraddr 

wcLid, atb, xI'YI' [,x2,Y2 [, ... Xn, yn]] 



B-2 Summary of UISDC Calling Sequences 
UISDC Calling Sequences 

Table B-1 (Cont.) Summary of UISDC Calling Sequences 

Return 
Value Routine 

UISDC$LINE-ARRAY 

UISDC$LOAD_BITMAP 

Argument List 

wcLid, atb, count, x_vector, 
y_vector 

wcLid, bitmap_a dr, bitmap...Jen, 
bitmap_width, bits_per_pixel 

UISDC$MEASURE_ TEXT wcLid, atb, text-string, retwidth, 
retheight [,ctllist ,ctllen] [,posarray] 

UISDC$MOVE_AREA wcLid, xI'YI,x2' Y2' new--", new_y 
UISDC$NEW_ TEXT_LINE wcLid, atb 

UISDC$PLOT wcLid, atb, xI'YI' [,x2,Y2 [, ... Xn, yn]] 

UISDC$PLOT-ARRAY wcLid, atb, count, x_vector, 
y_vector 

UISDC$QUEUE_DOP wcLid, dop 

UISDC$READ_IMAGE wcLid, xl' YI' x2' Y2' rasterwidht, 
rasterheight, bitsperpixel, rasteraddr, 
rasterlen 

UISDC$SET-ALIGNEDJOSITION wcLid, atb, x, Y 

UISDC$SET_BUTTON-AST wcLid [,astadr, [astprm], keybuf) 

[,xl' YI' x2' Y2] 
UISDC$SET_CHAR_SIZE wcLid, iatb, oatb [,char][,width][,height] 

UISDC$SET_CLIP wcLid, iatb, oatb [,xl' YI' x2' Y2] 

UISDC$SETJOINTER-AST wcLid [,astadr [astprm]] [,xl' YI' x2' 
Y 2] [,exitastadr [,exi tastprm ]] 

UISDC$SETJOINTERJ ATTERN wcLid [,pattern_array, 
pattern_count, activex, activey] 
[,xl' YI' x2' Y2][,flags] 

status UISDC$SET_POINTER_POSITION wcLid, x, Y 

UISDC$SET_POSITION 

UISDC$SET_ TEXT-MARGINS 

UISDC$TEXT 

wcLid, x, Y 

wcLid, iatb, oatb, x, Y, 
margin-Iength 

wcLid atb, text_string [,x, y] 
[,ctllist, ctllen] 



Appendix C 

UIS Fonts 

C.1 Overview 

This appendix contains figures and tables illustrating the VIS multinational character 
and technical fonts and font names contained in the directory SYS$FONT. 

C.2 UIS Multinational Character Set Fonts 

There are 14 multinational character set font files in the directory SYS$FONT. 
The figure captions below identify each VIS font with an arbitrarily assigned font 
number. For more information about font characteristics, match this number with the 
appropriate table in Section C.2.I. 

Figure C-l Font 1 

Figure C-2 Font 2 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
ab c d e fgh ijkl m n 0 p q rstuvwx y z 
1234567890-=! II"$"A&* () _ + 
< ) ~ • /? ~ II ; :" I [] {} 

ZK-4565-85 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 
1234567890-=I@~$%A&*()_+ 
< >, I 17; : ' II \ I [] {} 

ZK-4566-85 



C-2 UIS Fonts 
UIS Multinational Character Set Fonts 

Figure C-3 Font 3 

ABCDEFGHI~KLMNOPQRSTUVWXVZ 
aocceFghijklmnopqrstuvwxyz 
1234667a90-~I@#.%~&~()_+ 
< >.. . ;'?;. : ," II.... I [ ] -[ 3-

ZK-4567-85 

Figure C-4 Font 4 

ABCDEFGHI~KLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 
~234567B90-=!@#$%A&*O_+ 
< >, . /?; : ,. .. " I [] -()-

ZK-4568-85 

Figure C-5 Font 5 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 
1234567890-=!@#$%A&*()_+ 
<> ., . /?; : ' II \ I [] {} 

ZK-4569-85 



Figure C-6 Font 6 

Figure C-7 Font 7 

UIS Fonts C-3 
UIS Multinational Character Set Fonts 

RBCDEFGHllKL~OPQRSTUY~ 
abcdefghijkl~opqrstuv~z 
1234567890-=lm#~H()_+ 
<>,.I?~:'·\I[]{} 

ZK-4570-85 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcde~ghijklMnopqrstuuwxyz 
1234567B90·=lm#$1.~&*()_+ 
<),.I?::'-'I[](} 

Figure C-8 Font 8 

ABC DE F G H IJKLM N 0 paR STU U WXYZ 
ab c d e fg-h ij1<.l m n 0 p q rs t u v 'VI)( Y Z 

1234567890-= I@#$%"'&*O_+ 
<> .. . 11 Jt '11\ I [] f} 

ZK-4572-85 

ZK-4571-85 



C-4 UIS Fonts 
UIS Multinational Character Set Fonts 

Figure C-9 Font 9 

ABCDEFGHIJKLMNOPQRSTUVWXVZ 
abcdefghijklmnopqrstuvwxyz 
1234567890-=!@#$XA &*()_+ 
< > .. I I? ~ : ,PI. \ I [ ] { } 

ZK-4573-85 

Figure C-I0 Font 10 

ABCDEFGHIJKLMNOPQRSTUUWXYZ 
abcdefghijklmnopqr8tuvwx~2 

1234567890-=!@~$%Aa*()_+ 
(> ~ . /1; : ~ ", I [] {} 

ZK-4574-85 

Figure C-l1 Font 11 

ABCDEFGHIJKLMNOPQRSTUVWXVZ 
abcdefghijklmnopqrstuvwxyz 
1234567890-=I@#$%A&*()_+ 
<> .. . I?;: .. 11\ I []f} 

ZK-4575-85 



UIS Fonts C-5 
UIS Multinational Character Set Fonts 

Figure C-12 Font 12 

ABCDEPGHX~KLMNOPQRSTUVWXYZ 
abcde£ghi~k1mnopqrstuvwxyz 
1234567B90-=!~~$%~&*()_+ 
<> ... /?;:' --'I [] {} 

ZK-4576-85 

Figure C-13 Font 13 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 
1234567890-=!@#$%~&*()_+ 
<>.,. I?;: ~ 11\1 [] {} 

Figure C-14 Font 14 

ABCDEFGH~~KLMNOPQRSTUV~XYZ 
abcde~8h~jklMnopqrs~uu~xyz 
1224567B90-=lm#$X~&*()_. 
<>,_/?;:"'-'II::J(~ 

ZK-4578-85 

C.2.1 UIS Multinational Character Set Font Specifications 

ZK-4517-85 

Each font file name, included in the following table captions contains typographical 
information about a VIS font. The accompanying tables analyzes the first 16 
characters of the font file name. 



C-6 UIS Fonts 
UIS Multinational Character Set Fonts 

Table C-l Font l-DT ABEROOO3WKOOPGOOO1UZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TABERO Taber 

8 Spacing 0 Proportionally spaced 

9-11 Type size 03W36 14 points (140 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight P Bold 

16 Proportion G Regular 

Table C-2 Font 2-DTABEROI03WKOOGG0001UZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TABERO Taber 

8 Spacing 9 pitch (monospaced) 

9-11 Type size 03W36 14 points (140 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 

Table C-3 Font 3-DT ABEROM03CKOOGGOOO1UZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TABERO Taber 

8 Spacing M 13 pitch (monospaced) 

9-11 Type size 03C36 12 points (120 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 



UIS Fonts C-7 
UIS Multinational Character Set Fonts 

Table C-4 Font 4-DTABEROR03WKOOGGOOOIUZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TABERO Taber 

8 Spacing R 18 pitch (monospaced) 

9-11 Type size 03W36 14 points (140 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 

Table C-5 Font 5-DT ABEROR07SKOOGGOOOIUZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TABERO Taber 

8 Spacing R 18 pitch '(monospaced) 

9-11 Type size 07S36 28 points (280 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 

Table C-6 Font 6-DTERMING03CKOOPGOOOIUZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TERMIN Terminal 

8 Spacing G 7 pitch (monospaced) 

9-11 Type size 03C36 12 points (120 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight P Bold 

16 Proportion G Regular 



C-8 UIS Fonts 
UIS Multinational Character Set Fonts 

Table C-7 Font 7-DTERMINM060KOOPG0001UZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TERMIN Terminal 

8 Spacing M 13 pitch (monospaced) 

9-11 Type size 06036 24 points (240 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight P Bold 

16 Proportion G Regular 

Table C-8 Font 8-DT ABER0003WKOOGGOOOl UZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TABERO Taber 

8 Spacing 0 proportionally spaced 

9-11 Type size 03W36 14 points (140 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 

Table C-9 Font 9-DT ABEROG03CKOOGGOOO1UZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TABERO Taber 

8 Spacing G 7 pitch (monospaced) 

9-11 Type size 03C36 12 points (120 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 



UIS Fonts C-9 
UIS Multinational Character Set Fonts 

Table C-IO Font lO-DTABEROI03WKOOPGOOOIUZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TABERO Taber 

8 Spacing 9 (monospaced) 

9-11 Type size 03W36 14 points (140 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight P Bold 

16 Proportion G Regular 

Table C-ll Font Il-DTABEROM060KOOGGOOOIUZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TABERO Taber 

8 Spacing M 13 pitch (monospaced) 

9-11 Type size 06036 24 points (240 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 

Table C-12 Font 12-DT ABEROR03WKOOPGOOOI UZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TABERO Taber 

8 Spacing R 18 pitch (monospaced) 

9-11 Type size 03W36 14 points (140 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight P Bold 

16 Proportion G Regular 



C-10 UIS Fonts 
UIS Multinational Character Set Fonts 

Table C-13 Font 13-DT ABEROR07SKOOPGOOOI UZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TABERO Taber 

8 Spacing R 18 pitch (monospaced) 

9-11 Type size 07S36 28 points (280 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight P Bold 

16 Proportion G Regular 

Table C-14 Font 14-DTERMINM03CKOOPGOOIUZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID TERMIN Terminal 

8 Spacing M 13 pitch (monospaced) 

9-11 Type size 03C36 12 points (120 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight P Bold 

16 Proportion G Regular 

C.3 UIS Technical Character Set Fonts 

There are 12 technical character set font files in SYS$FONT. The figure captions 
below identify each VIS font with an arbitrarily assigned font number. For more 
information about font characteristics, match this number with the appropriate table 
in Section C.3.1. 

Figure C-15 Font 15 

ZK-5376-86 



UIS Fonts C-11 
UIS Technical Character Set Fonts 

Figure C-16 Font 16 

ddX'EJ~~~8~~~V~~t~.~/~ev~ 
~'\I .. ") ~l- LJ i rllU 

ZK·5375·86 

Figure C-17 Font 17 

0:: ~ ): 0 e: i,tI .r 't1 L 8 k ). '-II 1.1 "tI JT 't p ij r .f '='" 

(.oJ e \) <; " t:. 
...... / ..., ..... > ~ 1 ':/: l J { r n =- u 

ZK·5374·86 

Figure C-18 Font 18 

C( j >: , e: ~ ; .... L I 1C ). ~ lJ "b Jf "¥ p 
" • ,. I' t \tI ~ " 

~ , , ... ... > t 1 L w ;e 

J i r n :2 U 
ZK·5373·86 

Figure C-19 Font 19 

0: .n X 0 e: ~ --:r- 1'1 1..- & l:: h ~ l.J ~ 

i::t :IT 4- to .::; --c"' .F (.) ~ V 2; -=::::: ~ '-", .. --. ..... > ~ 1 =# l J ~ r II =- U 

ZK·5372·86 



C-12 UIS Fonts 
UIS Technical Character Set Fonts 

Figure C-20 Font 20 

ZK·5382·86 

Figure C-21 Font 21 

a B ~ 0 E ~ ~ ~ L 8 K n 
@ v ~ n t P 6 T J Q t U 
Z ~ L \ / ~ ~ ) } 1 ~ l 
J ~ rn:JU 

ZK·5381·86 

Figure C-22 Font 22 

66)1' EIi'l1 '-' 8k)' 
MlJ ilJli' ".'I'/t.)ev 
~~'\I"")~l-L 
Ji rnlU 

ZK·5383·86 



UIS Fonts C-13 
UIS Technical Character Set Fonts 

Figure C-23 Font 23 

ex ~ :>t 0 e: ~ Y ..., L... B 1-:: 

.:::w. ~ "l.J ~ IT .......... .p a -r .T (...) 

e u 1 J 
.::::: ......... ......- --. ---' > ~ . 

1 :;II!!: ~ r n ::::JI u 

ZK·5380·86 

Figure C-24 Font 24 

CI: .II :::w: 8 E ¢ ¥ .., L .. "'k: 

:>. .;..;. :u ..... ::n- ....... P rI/S "r .r ....... ....,. 
.e: t '" 

rill!:. ...... ,;"" --. ..... > t ...... 
1 -= J i r n :::::. u 

ZK·5379·86 

Figure C-25 Font 25 

OC .d ~ cS e: ~ ¥ 11 L 8 
k .A ~ 1) () IT '" P (5 r 

C. 
. . 

f (J e l.J ~ 1 
...... / --. 

> ~ J f 
. 

....I 1 :1= r n 
::) u 

ZK·5378·86 



C-14 UIS Fonts 
UIS Technical Character Set Fonts 

Figure C-26 Font 26 

a I :x , E ~ > 11 L a 
"Ie ,. * lJ 11 JI 't' P tS l' 
r ( ~ " 

~ , / ... 
La '" .... > t 1 L J i r n ~ 

::a u 
ZK-5377-86 

C.3.1 UIS Technical Character Set Font Specifications 

Each technical font file name, included in the following table captions contains 
typographical information about a VIS technical character set font. The accompany
ing table describes the first 16 characters of the technical font file name. 

Table C-lS Font 15-DVWSVTOG03CKOOGGOOOIQZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID VWSVTO VAXstation Technical Character Set 

8 Spacing G 7 pitch (monospaced) 

9-11 Type size 03C36 12 points (120 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 



UIS Fonts C-15 
UIS Technical Character Set Fonts 

Table C-16 Font 16-DVWSVTOG03CKOOPGOOOIQZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID VWSVTO VAXstation Technical Character Set 

8 Spacing G 7 pitch (monospaced) 

9-11 Type size 03C36 12 points (120 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight P Bold 

16 Proportion G Regular 

Table C-17 Font 17-DVWSVTOI03WKOOGGOOOIQZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID VWSVTO VAXstation Technical Character Set 

8 Spacing 9 pitch (monospaced) 

9-11 Type size 03W36 14 points (140 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 

Table C-18 Font 18-DVWSVTOI03WKOOPGOOOIQZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID VWSVTO VAXstation Technical Character Set 

8 Spacing 9 pitch (monospaced) 

9-11 Type size 03W36 14 points (140 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight P Bold 

16 Proportion G Regular 



C-16 UIS Fonts 
UIS Technical Character Set Fonts 

Table C-19 Font 19-DVWSVTON03CKOOGG0001QZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID VWSVTO VAXstation Technical Character Set 

8 Spacing N 14 pitch (monospaced) 

9-11 Type size 03C36 120 points (120 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 

Table C-20 Font 20-DVWSVTON03CKOOPGOOO1QZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID VWSVTO VAXstation Technical Character Set 

8 Spacing N 14 pitch (monospaced) 

9-11 Type size 03C36 12 points (120 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight P Bold 

16 Proportion G Regular 

Table C-21 Font 21-DVWSVTON060KOOGGOOO1QZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID VWSVTO VAXstation Technical Character Set 

8 Spacing N 14 pitch (monospaced) 

9-11 Type size 06036 24 points (240 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 



UIS Fonts C-17 
UIS Technical Character Set Fonts 

Table C-22 Font 22-DVWSVTON060KOOPGOOOIQZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID VWSVTO VAXstation Technical Character Set 

8 Spacing N 14 pitch (monospaced) 

9-11 Type size 06036 24 points (240 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight P Bold 

16 Proportion G Regular 

Table C-23 Font 23-DVWSVTOR03WKOOGGOOOIQZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID VWSVTO VAXstation Technical Character Set 

8 Spacing R 18 pitch (monospaced) 

9-11 Type size 03W36 14 points (140 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 

Table C-24 Font 24-DVWSVTOR03WKOOPGOOOIQZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID VWSVTO VAXstation Technical Character Set 

8 Spacing R 18 pitch (monospaced) 

9-11 Type size 03W36 14 points (140 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight P Bold 

16 Proportion G Regular 



C-18 UIS Fonts 
UIS Technical Character Set Fonts 

Table C-25 Font 25-DVWSVTOR07SKOOGGOOO1QZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID VWSVTO VAXstation Technical Character Set 

8 Spacing R 18 pitch (monospaced) 

9-11 Type size 07536 28 points (280 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 

Table C-26 Font 26-DVWSVTOR07SKOOGGOOO1QZZZZ02AOOO 

Field Field Name Value Meaning 

1 Registration code D Registered by DIGITAL 

2-7 Type Family ID VWSVTO VAXstation Technical Character Set 

8 Spacing R 18 pitch (monospaced) 

9-11 Type size 07536 28 points (280 decipoints) 

12 Scale factor K 1 (normal) 

13-14 Style 0036 Roman 

15 Weight G Regular 

16 Proportion G Regular 



Appendix D 

UIS Fill Patterns 

All fill patterns are located together in SYS$FONT in a separate file named 
DEUISPATAAAAAAFOOOOOOOOODA.VWS$FONT. This file can be accessed with 
the logical name UIS$FILLJATTERNS. 

The pairs of fill patterns shown in the following figures were drawn in OVERLAY 
writing mode on a white background. The figure caption contains the symbol name 
for each fill pattern. The symbol name represents an index to the appropriate fill 
pattern. 

Symbol names are located in language-specific symbol definition files in SYS$LIBRARY. 
Refer to Table 6-2 for a list of symbol definition files. 

Figure D-1 PATT$C_VERT1_1 and PATT$C_VERT1J 

ZK-4584-85 



D-2 UIS Fill Patterns 

Figure 0-2 PATT$C_VERTL2 and PATT$C_VERT3_1 

ZK-4585-85 

Figure 0-3 PATT$C_VERTl_7 and PATT$C_VERTL6 

ZK-4586-85 

Figure 0-4 PATT$C_VERTL4 and PATT$C_VERT6-2 

ZK-4587-85 



UIS Fill Patterns 0-3 

Figure 0-5 P A TT$C.JIORIZl_l and P ATT$C.JIORIZl_3 

----------------
----

ZK-4588-85 

Figure 0-6 P A TT$C.JIORIZL2 and P A TT$C.JIORIZ3_1 

ZK-4589-85 

Figure 0-7 P A TT$C.JIORIZl_7 and P A TT$C.JIORIZL6 

ZK-4590-85 



D-4 UIS Fill Patterns 

Figure D-8 P ATT$C-HORIZL4 and PATT$C-HORIZ6-2 

ZK-4591-85 

Figure D-9 P ATT$C_GRID4 and P ATT$C_GRID8 

ZK-4592-85 

Figure D-IO PATT$C_UPDIAGl-3 and PATT$C_UPDIAGL2 

I :;I'///. 

ZK-4593-85 



U IS Fill Patterns D-5 

Figure D~ll PATT$C_UPDIAG3_1 and P ATT$C_UPDIAG1_7 

ZK-4594-85 

Figure D-12 PATT$C_UPDIAGL6 and PATT$C_UPDIAGL4 

• 
~ II, ~-", .. "". lIP. '.I , 

'I'''~ 
'~ '~~~-~ , , ,,~~, 

" , '''Z''~ , 
~ ~~~'" , 

~~~ 
~ ,.

'I~ , ~ :;,.
~,~

:.; ~
:..111 ~

9~' :l1li ~ ,~~ , ~

•
~~ ~ ~ ~

• ~, ~~ :l1li ~
':..111
~ ~~:1111
~~, ,
~ ""'A11 ",. """' ...

ZK-4595-85

Figure D-13 PATT$C_UPDIAG6-2 and PATT$C_DOWNDIAG1_3

ZK-4596-85

0-6 UIS Fill Patterns

Figure D-14 PATT$C_DOWNDIAGL2 and PATT$C_DOWNDIAG3_1

ZK-4597-85

Figure D-15 PATT$C_DOWNDIAG1_7 and PATT$C_DOWNDIAGL6

ZK-4598-85

Figure D-16 PATT$C_DOWNDIAGL4 and PATT$C_DOWNDIAG6--2
...

-
" , ,

~
,~~

'" .-.

•
..
..
.... ..
"
~

ZK-4599-85

UIS Fill Patterns 0-7

Figure D-17 PATT$C_BRICKJlORIZ and PATT$C_BRICK_VERT

ZK-4600-85

Figure D-18 PATT$C_BRICK_DOWNDIAG and PATT$C_BRICK_UPDIAG
.A .A

ZK-4601-85

Figure D-19 PATT$C_GREYL16D and PATT$C_GREY1L16D

ZK-4602-85

D-8 UIS Fill Patterns

Figure 0-20 PATT$C_BASKET_WEAVE and PATT$C-SCALE-DOWN

Figure 0-21

.. :.:..

Figure 0-22

!
!
~ ?(

~ X ~

)01

ttl~ ((

.

~

. .,...

::r.: :x--..,....,..'T".,....

~.T~.

ZK·4604-85

ZK-4S0S-85

UIS Fill Patterns D-I

Figure 0-23 PATT$C_GREYL16 and PATT$C_GREY3_16

ZK-4607-85

Figure 0-24 PATT$C_GREYL16 and PATT$C_GREY5_16

ZK-4608-85

Figure 0-25 P ATT$C_GREY6_16 and PATT$C_GREY7 _16

ZK-4609-85

0-10 UIS Fill Patterns

Figure 0-26 P A TT$C_GREY8_16 and P A TT$C_GREY9_16

ZK-461 0-85

Figure 0-27 P A TT$C_GREYIO_16 and P A TT$C_GREYll_16

ZK-4611-85

Figure 0-28 P A TT$C_GREY12_16 and P ATT$C_GREY13_16

ZK-4612-85

UIS Fill Patterns 0-11

Figure 0-29 PATT$C_GREYIL16 and PATT$C_GREY15_16

ZK-4613-85

Appendix E

Error Messages

This appendix contains the messages which may be generated by the MicroVMS
workstation graphics software. Each message description consists of the message
text, a brief explanation of the message, and the possible remedy.

BAD....A TB, Illegal attempt to modify attribute block 0 (read-only).

Explanation: An attempt was made to modify an attribute in attribute block #0,
which is defined to be read-only. The modification request is ignored.

User Action: Check for a programming error.

BAD_DISP, Display list has been corrupted.

Explanation: An illegal display list type code has been encountered while
traversing a display list.

User Action: Check the validity of the VIS metafile you are executing.

BAD_KB, Illegal virtual keyboard identifier.

Explanation: An illegal virtual keyboard identifier was given to a VIS routine as
an argument.

User Action: Check for a programming error.

BADTITLE, Illegal window title string.

Explanation: An illegal window title string was passed when attempting to
create a window.

User Action: Shorten the title.

BAD_ TR, Illegal transformation identifier.

Explanation: An illegal transformation identifier was given to a VIS routine as
an argument.

User Action: Check for a programming error.

E-2 Error Messages

BAD_VD, Illegal virtual display identifier.

Explanation: An illegal virtual display identifier was given to a UIS routine as
an argument.

User Action: Check for a programming error.

BAD_VOLUME, Illegal volume level specified.

Explanation: An illegal volume level was given to the UIS$SOUND routine.
The volume must be in the range of 1 to B.

User Action: Check for a programming error.

BAD_WD, Illegal display window identifier.

Explanation: An illegal display window identifier was given to a UIS routine as
an argument.

User Action: Check for a programming error.

BADWDPL, Window placement attribute list has an invalid format.

Explanation: An illegal window attribute list was passed when attempting to
create a window.

User Action: Check for illegal item types in the window attribute list.

INSFARG, Insufficient arguments.

Explanation: A required argument was not specified.

User Action: Check for a programming error.

NO_FONT, The font cannot be found.

Explanation: An attempt was made to reference a font which could not be
satisfied, even by looking for other fonts which might be similar. All references
to the attribute block specifying this font will produce this same error. The
program may continue after this error.

User Action: Specify font contained in the SYS$FONT directory.

NOURG, Cannot disable region AST because no matching region can be found.

Explanation: An attempt was made to disable a user region AST by using
an ASTADR=O and the region boundary used in the original enable request.
However, no entry can be found with matching boundary coordinates. The
program must ensure that the boundary coordinates match exactly in order to
disable an existing request.

User Action: Check for a programming error.

Error Messages E-3

VPTOOSMALL, Requested size of the viewport is too small.

Explanation: The desired size of the viewport is too small to be displayed on the
screen.

User Action: Request larger viewport.

Appendix F

Obsolete Routines

The following routines are obsolete and will no longer be documented.

• UIS$GET_LEFT--MARGIN

• UIS$SET_LEFT--MARGIN

• UISDC$GET_LEFT--MARGIN

• UISDC$SET_LEFT--MARGIN

Glossary

array: Any organized arrangement of related elements.

address: A 32-bit VAX address positioned in a longword item.

argument list: A vector of longwords that represents a procedure
parameter list and possibly a function value.

aspect ratio: The ratio between the height and width of a graphic object.
In reference to a virtual display, the aspect ratio is a comparison of the
relative proportions of the vertical and horizontal components of objects
in the virtual display.

attribute: A quality or characteristic that determines the appearance of an
object displayed on the screen. For example, the attributes of a line are its
width, style, and color.

baseline: The side of a geometric object or drawing from which the object
is constructed or drawn.

call: The transfer of processing control to a specified subroutine.

Cartesian coordinate system: A system of measuring distances in which
the location of a point is defined as its distance from two straight lines that
intersect at right angles. It is used as the basis of coordinate measurements
in computer graphics systems.

clipping: Any graphic data outside a specified boundary that are removed
from the display or the file. It is often used in mapping applications to
remove data that would otherwise confuse the image being represented.

Clipping rectangle: The physical limit in a graphics file beyond which data
are either not visible or automatically deleted.

2-Glossary

condition value: A 32-bit value used to identify uniquely an exception
condition. A condition value may be returned to a calling program as a
function value or signaled using the VAX signaling mechanism.

current text position: The world coordinate position that defines the
current drawing location for VIS text routines.

cursor: A position indicator used on a display screen to pinpoint where
data will be displayed. The cursor is often represented by a blinking block
character.

data tablet: The name for a variety of data entry devices consisting of a
stylus (pen) or puck, and a board with a coordinate grid superimposed
on its surface. When the input object (pen or puck) touches the board,
graphic information describing the location of the point touched is
transmitted as input information. The data tablet is an absolute pointing
device.

descriptor: A mechanism for passing parameters in which the address of a
descriptor is provided in the longword argument list entry. The descriptor
contains the address of the parameter, the data type, size, and additional
information needed to describe fully the data passed.

device coordinates: The device-dependent Cartesian coordinates that
specify positions on the Micro VMS display screen. Sometimes referred to
as physica! device coordinates, these coordinates are involved in mapping
of the display window to the display screen.

display viewport: The area of the physical display screen into which
a display window is mapped. It is the physical region on the terminal
screen that is created by the MicroVMS workstation and controlled by the
user.

display window: The portion of world coordinate space mapped to the
graphics viewport. The display window is used to control how much of
the virtual display is potentially available for the user to view.

emulated terminal: A virtual I/O device whose programming interface
matches the programming interface of a specific physical terminal and
whose appearance on the Micro VMS workstation screen is similar to the
appearance of the physical terminal.

exception condition: A hardware- or software-detected event that alters
the normal flow of instruction execution.

GlossarY-3

font: A specific representation of a text character. The attributes of a font
are family (type face), type size, and rendition.

function: A procedure that returns a single value according to standard
conventions. If additional values are returned, they are returned by means
of the argument list.

graphics data tablet: An optional input device that consists of a rigid
tablet, and a puck containing a crosshair cursor and a number of buttons,
or a pen. The position of the cursor can be read by application programs.
The tablet is an absolute pointing device.

graphics display: Describes any graphics data output device that can
present an image of graphic data derived from a computer graphics
system. An example of a graphics display is a display screen or a printer.

graphic object: The graphic image constructed by an application program
using UIS routines. A graphic object could be a simple line or a complex
drawing.

graphics text: Text output primitives displayed using the UIS routines.

grey scale: The level of brightness that describes the illumination of a
cathode-ray tube screen.

image: The output form of on-line graphics data. That is, a displayed or
drawn representation of a graphics file.

language-support procedures: Procedures called implicitly to implement
high-level language constructs. They are not intended to be called
explicitly from user programs.

library procedures: Procedures called explicitly using the equivalent
of a CALL statement or function reference. They are usually language
independent.

mapping: Any process by which a graphics system translates graphic data
from one coordinate system into a form useful on another coordinate
system.

mouse: A data entry device consisting of a small control box, on rollers,
that is pushed along a surface and transmits its changing position to the
workstation. Often, function keys or buttons are mounted on the device
and can be used to enter information or make selections. This device is
the user's means for pointing to and selecting objects on the screen. The
mouse is a relative pointing device.

4-Glossary

output primitive: A part of an image created with VIS procedures, such as
a graphics object or a text string, that has a specific appearance. Values of
attributes determine some aspects of this appearance.

physical device coordinates: Device-dependent Cartesian coordinates
that specify the addressable points on a physical device.

pixel: The density of one picture element. The smallest displayable unit
on a display screen.

pointer: The cursor on the screen that tracks movements of the mouse.
The shape of the pointer depends upon its current use.

primitives: The most basic graphic entities available on a graphics system,
such as points, line segments, or characters.

procedure: A closed sequence of instructions that is entered from, and
returns control to, the calling program.

puck: A hand-held graphics device with a cross hair sight used to pinpoint
coordinates on a data tablet or digitizer.

raster: A pattern of scanning lines in a cathode-ray tube which divide the
display area into addressable points.

reference: A mechanism for passing parameters in which the address of
the parameter is provided in the longword argument list by the calling
program.

reslzmg: The process of scaling or changing the size of a graphics viewport
according to predetermined data.

stretchy box: The outline of a clipping rectangle used in the VIS
functions PRINT SCREEN and RESIZE WINDOW. This rectangle can
be manipulated to assume practically any rectangular dimensions and is
limited only by the display screen size.

subroutine: A procedure that does not return a value according to the
standard conventions. If values are returned, they are returned by means
of the argument list.

transformations: The ability of the VIS graphics system to manipulate
coordinate data. Transformations occur when mapping one coordinate
system into another coordinate system.

Glossary-5

tablet: A device which can convert a stylus position into Cartesian
coordinates. When connected to a graphic display screen, it can control
the real-time positioning of a cursor or pointer.

UIS: The graphics software called User Interface Services.

value: A mechanism for passing input parameters in which the actual
value is provided in the longword argument list entry by the calling
program.

viewport: A rectangle that maps the image defined by a window into a
virtual display onto the display screen. The user controls the visibility and
placement of viewports on the physical screen.

viewing transformation: The viewing transformation is the process of
mapping the world coordinates of a graphic object in a display window to
the device coordinates of a display viewport on a physical display device.

virtual display: The world coordinate space defined by an application
program. An application program uses a virtual display as a place in
which to build graphic images. It can be thought of as a virtual output
device that has the properties of a physical screen, but is not necessarily
visible on a physical screen.

virtual keyboard: A virtual input device associated with a window. When
users select a window into a virtual display with a virtual keyboard, input
from the physical keyboard is directed to the virtual keyboard and can be
read by an application program.

window: A defined area within a virtual display that can be used for
viewing the virtual display. A window is the area of the virtual display
that is to be mapped to a viewport.

world coordinates: Device-independent Cartesian coordinates defined by
the application program in order to describe objects to UIS.

x axis: The reference line of a rectangular coordinate system used to
determine horizontal distance and positions.

x-height: The height of lowercase characters excluding descenders and
ascenders.

&-Glossary

y axis: The reference line of a rectangular coordinate system used to
determine vertical distance and positions.

zooming: The process by which the perspective on a displayed graphics
file moves rapidly closer or farther from the operator.

Index

A
Arc type

See Attribute
Argument

characteristics of
passing mechanism, 6-3

Argument passing mechanism
%DESCR, 6-7
%LOC, 6-7
%REF, 6-7
%VAL, 6-7

Aspect ratio, 8-3
AST-enabling routine, 17-2
AST routine, 17-1
Asynchronous system trap (AST) routine,

17-1
Attribute, 3-2, 9-1

See also Attribute block
See also Attribute block 0
See also Segment
description of, 3-2
general, 3-2, 3-3, 9-8

background color index, 3-3, 9-8
modifying, 9-3, 11-1
writing color index, 3-3, 9-9
writing mode, 3-3, 9-9

graphics, 3-2, 3-5, 11-1
arc type, 3-5, 11-3
fill patterns, 3-5, 11-2
line style, 3-5, 11-4
line width, 3-5, 11-4

text, 3-2, 3-3, 10-21
centering, 10-24
character rotation, 10-24
character scaling, 10-25

Attribute
text (cont'd.)

character slant, 10-25
character spacing, 3-3, 10-24
fonts, 3-3, 10-23
formatting mode, 10-24
justification, 10-24
kerning, 10-24
leading, 10-24
left margin, 3-3
line spacing, 10-24
modifying, 10-22
path, 10-25
slope, 10-25
text margin, 10-24

window
clipping rectangle, 3-5

windowing
clipping rectangle, 11-14

Attribute block, 3-6, 9-2
See also Attribute

Attribute block 0, 3-6, 9-2
See also Attribute

Attribute routine, 9-3, 10-22, 11-1

B
Background color index

See Attribute
Baseline

See Text output
Built-in function

See Argument passing mechanism

Index-2

c
Callable routine, 6-1
.Calling sequence, 6-2

argument characteristics, 6-3
argument list, 6-2
call type, 6-2
entry point name, 6-2
routine name, 6-2
summary

UIS, A-I
UISDC, B-1

CALL statement, 6-1
Character rotation

See Attribute
Character scaling

See Attribute
Character slant

See Attribute
Chare ter spacing

See Attribute
Clipping rectangle

see Attribute
Color

See color system
Color map

See Color system
Color map segment

See Color system
Color system

color, 4-1
preferred, 4-11
standard, 4-11

color map
hardware, 4-3
segment, 4-11
virtual, 4-7

color regeneration
characteristics, 4-13

color value conversion, 4-12
compatibility feature

color, 4-12
intensity, 4-12
monochrome, 4-12

Color system (cont'd.)
hardware color map

reserved entries, 4-9
intensity, 4-1
model

color, 4-6
HLS, 4-6
HSV, 4-6
RGB, 4-6

monochrome, 4-1
palette, 4-6
palette size

direct color, 4-6
mapped color, 4-7

pixels, 4-1
planes, 4-2
realized color, 4-13
set color, 4-13
value

color, 4-6
direct color, 4-3
intensity, 4-6
mapped color, 4-3
pixel, 4-2

virtual color map, 4-7
characteristics, 4-9
initialization, 4-9
private, 4-11
shareable, 4-11
swapping, 4-7

Communication tool, 1-6
keyboard, 1-7
pointer

mouse, 1-6
tablet, 1-6

Condition value signaled, 6-9
Constant, 6-9
Coordinate

device-dependent
absolute, 2-6
viewport-relative, 2-7

device-independent
normalized, 2-5
world, 2-4

types of, 7-2

Coordinate system

D

Cartesian, 2-3
device-dependent, 2-6

absolute, 2-3
viewport-relative, 2-3

device-independent, 2-3
normalized, 2-3
world, 2-3

Data definition file
See Data description file

Data description file
entry point, 6-9
message, 6-10
symbol definition, 6-9

Display list, 2-13, 13-1
disabling, 13-5
editing, 13-21
enabling, 13-5
generic encoding, 2-13

metafile, 2-13
private data, 15-19
root segment, 13-2
segment, 13-1

creating, 13-5
modifying attributes, 13-21

walking, 13-6
Display list routine, 13-1
Display viewport, 2-10, 7-6

banner, 8-4
creating, 7-6, 8-2 to 8-5
mapping windows to, 2-10
number, 8-3
placement, 8-4, 8-12 to 8-25
popping, 8-12
pushing, 8-12
scaling, 2-11
shrinking, 17-13
size, 8-3

Display window, 2-9, 7-6
clipping rectangle, 2-9
closing, 17-13
creating, 7-6, 8-2 to 8-5
deletion, 8-7

Index-3

Display window (cont'd.)
distortion, 8-3
magnification, 8-3
number, 8-3
placement, 8-12 to 8-25
resizing, 17-13
scaling, 2-11
size, 8-3
viewing objects, 2-9

Distortion
See Distortion of graphic objects

Distortion of graphic objects, 2-12
cause of, 2-12

E

correction of, 2-12
transformations, 2-12

Error messages, E-1 to E-3

F
Fill pattern, 11-2, D-1

See also Attribute
Font

See also Attribute
font file names, 10-23
multinational, 10-23
multinational character, C-1
SYS$FONT, 10-23
technical, 10-23, C-10

Format heading
See Routine format

FORTRAN built-in function, 6-7
Function -reference, 6-1

G
General attribute

See Attribute
Generic encoding

See Display list
Graphic object, 3-2, 7-4 to 7-6

attributes, 3-2

Index-4

Graphic object (cont'd.)
creating, 7-4
geometric shapes

circle, 7-4
ellipse, 7-4
line, 7-4
point, 7-4
polygon, 7-4

raster image, 7-5
text, 7-5
viewing transformation, 3-7

Graphics attribute
See Attribute

Graphics capability, 1-7
Graphics routine, 7-4

description of, 3-2

H
Hardware color map

See Color system
Human interface, 1-5

I

See also Terminal emulation
capabilities, 1-5
interaction with user, 1-5

Inquiry routine, 12-1
invoking, 12-7

K
KB icon

See Virtual keyboard
Keyboard

See Physical keyboard
See Virtual keyboard

Keyboard routine, 17-3

L
Line spacing

See Attribute

Line style
See Attribute

Line width
See Attribute

M
Mapping

See Display viewport
Mapping display window

See Display viewport
Margin setting

See Attribute
Message definition file

See data description file
Metafile

See Display list
Mouse, 5-2

menu selection, 5-2

p

Physical keyboard, 5-4
Pixel

See Color system
Pointer, 5-2, 17-8

See also Mouse
See also Tablet
alternate pattern, 17-10

Pointer routine, 17-8
Preferred color

See Color system
Private data

See display list,
Program execution, 6-13

compiling, 6-13
invoking the editor, 6-13
linking, 6-14
running, 6-14

Programming example, 6-12
Puck, 5-3

R
Routine

inquiry
AST-enabling, 17-2
attribute, 9-3, 10-22, 11-1
display list, 13-1
graphics, 7-4
keyboard, 17-3
pointer, 17-8
windowing, 8-1

Routine format
format heading, 18-3

s
Scaling

See display viewport
See Display window

Segment, 3-7
See also Attribute
See Display list

Segmentation
See Display list

Standard color
See Color system

Stylus, 5-3
Swapping color map

See Color system
Symbol definition file

See data description file

T
Tablet, 5-3

puck, 5-3
stylus, 5-3

Terminal emulation, 1-6
TEK4014, 1-6
VT220, 1-6

Text attributes
See Attribute

Text centering
See Attribute

Text justification
See Attribute

Text output, 7-4 to 7-6
alignment, 10-25

baseline, 10-25
creating, 7-4

Text path
See Attribute

Text routine
decription of, 3-2

Text slope
See Attribute

Transformation

u

attribute, 14-17
geometric, 3-7, 14-1

complex rotation, 14-9
complex scaling, 14-5
COPY, 14-10
differential scaling, 14-7
MOVE, 14-10
rotation, 14-8
scaling, 14-3
simple rotation, 14-8
simple scaling, 14-3
translation, 14-1
uniform scaling, 14-6

viewing, 2-1, 3-7
world coordinate, 8-29

Index-5

UIS$BEGIN_SEGMENT, 18-9
UIS$CIRCLE, 18-11
UIS$CLOSE_WINDOW, 18-14
UIS$COPY_OBJECT, 18-15
UIS$CREATE_COLOR-MAP, 18-20
UIS$CREATE_COLOR-MAP_SEG, 18-23
UIS$CREATE_DISPLAY, 18-26
UIS$CREATE-KB, 18-28
UIS$CREATE_TB, 18-31
UIS$CREATE_TERMINAL, 18-32
UIS$CREATE_TRANSFORMATION, 18-34
UIS$CREATE_WINDOW, 18-37
UIS$DELETE_COLOR-MAP, 18-46
UIS$DELETE_COLOR-MAP_SEG, 18-47

Index-6

UIS$DELETE_DISPLAY, 18-48
UIS$DELETE-KB, 18-49
UIS$DELETE_OBJECT, 18-50
UIS$DELETE_PRIVATE, 18-51
UIS$DELETE_TB, 18-52
UIS$DELETE_TRANSFORMATION, 18-53
UIS$DELETE_WINDOW, 18-54
UIS$DISABLE_DISPLAY_LIST, 18-55
UIS$DISABLE_KB, 18-58
UIS$DISABLE_TB, 18-59
UIS$DISABLE_ VIEWPORT_KB, 18-60
UIS$ELLIPSE, 18-61
UIS$ENABLE_DISPLAY_LIST, 18-65
UIS$ENABLE_KB, 18-68
UIS$ENABLE_TB, 18-70
UIS$ENABLE_ VIEWPORT-KB, 18-71
UIS$END_SEGMENT, 18-72
UIS$ERASE, 18-73
UIS$EXECUTE, 18-75
UIS$EXECUTE_DISPLAY, 18-77
UIS$EXPAND_ICON, 18-78
UIS$EXTRACT_HEADER, 18-81
UIS$EXTRACT_OBJECT, 18-83
UIS$EXTRACT_PRIVATE, 18-85
UIS$EXTRACT_REGION, 18-88
UIS$EXTRACT_TRAILER, 18-91
UIS$FIND_PRIMJTIVE, 18-93
UIS$FIND_SEGMENT, 18-95
UIS$GET-ABS_POINTER_POINTER_

POS, 18-97
UIS$GET-ALIGNEDJOSITION, 18-98
UIS$GET-ARC_TYPE, 18-100
UIS$GET_BACKGROUND_INDEX, 18-102
UIS$GET_BUTTONS, 18-103
UIS$GET_CHAR_ROTATION, 18-105
UIS$GET_CHAR_SIZE, 18-106
UIS$GET_CHAR_SLANT, 18-108
UIS$GET_CLIP, 18-112
UIS$GET_COLOR, 18-115
UIS$GET_COLORS, 18-118
UIS$GET_CURRENT_OBJECT, 18-121
UIS$GET_DISPLAY_SIZE, 18-123
UIS$GET_FILL _PATTERN, 18-126
UIS$GET_FONT, 18-129
UIS$GET_FONT-A TTRIBUTES, 18-131
UIS$GET_FONT_SIZE, 18-135

UIS$GET_HW_COLOR.JNFO, 18-137
UIS$GET_INTENSITIES, 18-141
UIS$GET_INTENSITY, 18-144
UIS$GET-KB-ATTRIBUTES, 18-146
UIS$GET_LINE _STYLE, 18-148
UIS$GET_LINE_WIDTH, 18-150
UIS$GET_NEXT_OBJECT, 18-153
UIS$GET_OBJECT-ATTRIBUTES, 18-155
UIS$GET_PARENT_SEGMENT, 18-158
UIS$GETJOINTERJOSITION, 18-160
UIS$GETJOSITION, 18-162
UIS$GET_PREVIOUS_OBJECT, 18-164
UIS$GET-ROOT_SEGMENT, 18-167
UIS$GET_TB.JNFO, 18-169
UIS$GET_TBJOSITION, 18-172
UIS$GET_ TEXTJORMATTING, 18-173
UIS$GET_TEXT-MARGINS, 18-175
UIS$GET_ TEXTJ ATB, 18-177
UIS$GET_ TEXT_SLOPE, 18-179
UIS$GET_VCM.JD, 18-181
UIS$GET_ VIEWPORT.JCON, 18-182
UIS$GET_ VIEWPORTJOSITION, 18-184
UIS$GET_ VIEWPORT_SIZE, 18-186
UIS$GET_ VISIBILITY, 18-188
UIS$GET_WINDOW-ATTRIBUTES, 18-

190
UIS$GET_WINDOW_SIZE, 18-191
UIS$GET_ WRITING .JNDEX, 18-192
UIS$GET_WRITING-MODE, 18-194
UIS$GET_WS_COLOR, 18-195
UIS$GET_WS.JNTENSITY, 18-198
UIS$HLS_TO-RGB, 18-200
UIS$HSV_TO-RGB, 18-202
UIS$IMAGE, 18-204
UIS$INSERT_OBJECT, 18-209
UIS$LINE, 18-210
UIS$LINE-ARRAY, 18-213
UIS$MEASURE_TEXT, 18-215
UIS$MOVE-AREA, 18-221
UIS$MOVE_ VIEWPORT, 18-224
UIS$MOVE_WINDOW, 18-226
UIS$NEW_TEXT_LINE, 18-228
UIS$PLOT, 18-229
UIS$PLOT-ARRAY, 18-232
UIS$POP_VIEWPORT, 18-234
UIS$PRESENT, 18-236

UIS$PRIVATE, 18-237
UIS$PUSH_ VIEWPORT, 18-239
UIS$READ_CHAR, 18-241
UIS$RESIZE_WINDOW, 18-243
UIS$RESTORE_CMS_COLORS, 18-246
UIS$RGB_TO_HLS, 18-247
UIS$RGB_TO_HSV, 18-249
UIS$SET-ADDOPT-AST, 18-251
UIS$SET-ALIGNED_POSITION, 18-253
UIS$SET-ARC_TYPE, 18-255
UIS$SET_BACKGROUND_INDEX, 18-258
UIS$SET_BUTTON -AST, 18-260
UIS$SET_CHAR--.ROTATION, 18-264
UIS$SET_CHAR_SIZE, 18-267
UIS$SET_CHAR_SLANT, 18-271
UIS$SET_CHAR_SPACING, 18-273
UIS$SET_CLIP, 18-278
UIS$SET_CLOSE-AST, 18-281
UIS$SET_COLOR, 18-283
UIS$SET_COLORS, 18-286
UIS$SET_EXPAND-ICON-AST, 18-289
UIS$SET_FILL_PATTERN, 18-291
UIS$SET_FONT, 18-295
UIS$SET_GAIN_KB-AST, 18-297 .
UIS$SET_INSERTION_POSITION, 18-299
UIS$SET_INTENSITIES, 18-302
UIS$SET-INTENSItY, 18-304
UIS$SET_KB-AST, 18-306
UIS$SET--I<B-ATTRIBUTES, 18-308
UIS$SET_KB_COMPOSE2, 18-311
UIS$SET_KB_COMPOSE3, 18-313
UIS$SET_KB_KEYTABLE, 18-315
UIS$SET_LINE_STYLE, 18-317
UIS$SET_LINE_WIDTH, 18-320
UIS$SET_LOSE_KB-AST, 18-324
UIS$SET_MOVE_INFO-AST, 18-326
UIS$SET_POINTER-AST, 18-328
UIS$SET_POINTER_PATTERN, 18-332
UIS$SET_POINTER_POSITION, 18-335
UIS$SET_POSITION, 18-337
UIS$SET_RESIZE-AST, 18-339
UIS$SET_SHRINK_TO_ICON-AST,

18-344
UIS$SET_TB-AST, 18-346
UIS$SET_ TEXT_FORMATTING, 18-349
UIS$SET_TEXT_MARGINS, 18-353

Index-7

UIS$SET_ TEXT_P ATH, 18-355
UIS$SET_TEXT_SLOPE, 18-358
UIS$SET_WRITING-INDEX, 18-361
UIS$SET_ WRITING --MODE, 18-363
UIS$SHRINK_TO-ICON, 18-365
UIS$SOUND_BELL, 18-369
UIS$SOUND_CLICK, 18-370
UIS$TEST_KB, 18-371
UIS$TEXT, 18-372
UIS$TRANSFORM_OBJECT, 18-376
UISDC$ALLOCATE_DOP, 19-3
UISDC$CIRCLE, 19-5
UISDC$ELLIPSE, 19-7
UISDC$ERASE, 19-10
UISDC$EXECUTE_DOP-ASYNCH, 19-11
UISDC$EXECUTE_DOP_SYNCH, 19-13
UISDC$GET-ALIGNED_POSITION, 19-14
UISDC$GET_CHAR_SIZE, 19-16
UISDC$GET_CLIP, 19-18
UISDC$GET_POINTERJOSITION, 19-20
UISDC$GET_POSITION, 19-22
UISDC$GET_TEXT_MARGINS, 19-23
UISDC$GET_ VISIBILITY, 19-25
UISDC$IMAGE, 19-27
UISDC$LINE, 19-31
UISDC$LINE-ARRAY, 19-33
UISDC$LOAD_BITMAP, 19-35
UISDC$MEASURE_TEXT, 19-37
UISDC$MOVE-AREA, 19-39
UISDC$NEW_ TEXT_LINE, 19-41
UISDC$PLOT, 19-42
UISDC$PLOT-ARRAY, 19-44
UISDC$QUEUE_DOP, 19-46
UISDC$READ_IMAGE, 19-47
UISDC$SET-ALIGNED_POSITION, 19-50
UISDC$SET_BUTTON -AST, 19-52
UISDC$SET_CHAR_SIZE, 19-54
UISDC$SET_CLIP, 19-56
UISDC$SET_POINTER-AST, 19-58
UISDC$SET_POINTERJATTERN, 19-61
UISDC$SET_POINTERJOSITION, 19-64
UISDC$SET_POSITION, 19-65
UISDC$SET_ TEXT_MARGINS, 19-66
UISDC$TEXT, 19-68

Index-8

v
VAX Procedure Calling Standard, 6-1
Viewing object

See Display window
Viewport

See Display viewport
Virtual display, 2-8, 7-1

aspect ratio, 2-8
creating, 2-8, 7-3
description of, 2-8
panning, 8-12
world~coordinates, 2-8
zooming, 8-12

Virtual keyboard, 5-4
assignment list, 17-3
binding, 17-3
creating, 17-3
KB icon, 5-4

VMS usage, 6-3

w
Window

See Display window
Windowing

See Display window
Windowing feature, 1-7
Windowing routine, 8-1
Workstation hardware, 1-1

communications board, 1-4
keyboard, 1-3
monitor, 1-2
mouse, 1-3
printer, 1-4
processor, 1-2
tablet, 1-3

Workstation standard color
See Color system

World coordinate transformation, 8-29
scaling, 8-29
two-dimensional, 8-29

Writing color index
See Attribute

Writing mode
See Attribute

MicroVMS Workstation
Graphics Programming Guide

AI-GI1 08-TN

READER'S
COMMENTS

Note: This form is for document comments only.
DIGIT AL will use comments submitted on this form at
the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user jreader that you most nearly represent:

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specify)

Name _________________ Date __________ _

Organization __________________________ _

Street ____________________________ ___

City _______________ State _____ Zip Code ___ _

or Country

- - Do Not Tear- Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZKl-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

111"11.11.11 •••• 11 •••• 1.11.1 •• 1.1 •• 1.1 •• 11 ••••• 1.11

- DoNotTear-FoldHere - - - - - - - - - - - - - -

No Postage
Necessary

If Mailed in the
United States

MicroVMS Workstation
Graphics Programming Guide

AI-Gil 08-TN

READER'S
COMMENTS

Note: This form is for document comments only.
DIGIT AL will use comments submitted on this form at
the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specify)

Name ________ ---______ Date __________ _

Organization __________________________ _

Street ____________________________ __

City _______________ State _____ Zip Code ___ _

or Country

- - - - Do Not Tear - Fold Here and Tape -

- - - - Do Not Tear- Fold Here - -

BUSINESS REPL V MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZKl-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

1111111.11.11 •••• 11'11.1.11.1111.1 •• 1.1 •• 11"'111.11

I
- -I

No Postage I
Necessary

If Mailed in the
United States

I
- - - - - - - -I

