LIBRARY

 DEGLIT
an
CROSS

V ST e . WL T e e

VA X mate

Technical
Reference Manual
Volume 1

First Printing, February 1987
© Digital Equipment Corporation 1987. All Rights Reserved.

The material in this document is for informational purposes and is subject to change
without notice; it should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Digital.

MS-DOS, MS-WINDOWS, and MS-NET are trademarks of Microsoft Corporation.
Topview is a trademark of International Business Corporation.

Motorola is a registered trademark of Motorola, Inc.

IBM PC AT is a trademark of International Business Machines Corporation.

The following are trademarks of Digital EQuipment Corporation.

alilgli[a1} IAS Professional

DEC MASSBUS Rainbow
DECmate MicroPDP RSTS

DECnet MicroVAX RSX
DECsystem-10 MINC-11 ThinWire
DECSYSTEM-20 OMNIBUS VAX

DECUS 0s/8 VAXmate
DECwriter PDP VMS

DIBOL PDT vT

EduSystem P/OS Work Processor

Printed in U.S.A.

Contents

Preface xxxiii
VOLUME 1
Chapter 1 VAXmate Workstation Overview. 1-1
BaseSystem 1-1
Optional Components, 1-3
Chapter 2 VAXmate Microprocessor. 2-1
OVerview. i it e e e e e e e e 2-1
Real AddressMode 2-1
Protected Virtual Address Mode. 2-1
COProcesSSOr. . . v v v v v i i e i e e e e e e e e e 2-2
Additional Sources of Information 2-2
Memory Map i it i e e e e 2-3
Input/OQutput AddressMap 2-4
Interrupt VectorMap 2-6
Bus Timing and Structure. 29
Expansion Box Technical Specifications 2-10
Expansion Box Operating Ranges 2-10
Chapter 3 Interrupt Controllers 3-1
OVErVIEW. i it e e e e e e e e e e e e e e 3-1
Additional Source of Information. 3-3
Read/Write Control 3-3

Contents iii

Initialization Command Words

Initialization Command
Initialization Command
Initialization Command
ICW3 (Master) . .
ICW3 (Slave) . ..
Initialization Command
Operation Command Words

Wordl
Word2
Word3

......................

Word4

......................

Operation CommandWord 1.
Operation CommandWord 2.

Priority Rotation. . . .

......................

Operation CommandWord 3.
Interrupt Request and In-Service Registers
Interrupt Request Register

In-Service Register

Poll Command
Poll Data Register

Interrupt Sequence.
Programming Example . .

......................

......................

......................

......................

Constant Values and Data Structures.

Initialization Data . . .

oooooooooooooooooooooo

Initializing the Peripheral Interrupt Controller
Issuing an End-of-Interrupt Command

Masking Interrupts . .

Chapter 4 DMA Controller

Overview.

......................

oooooooooooooooooooooo

Additional Source of Information.

Operation
IdleCycle
Active Cycle

......................

oooooooooooooooooooooo

......................

Single Transfer Mode.
Block Transfer Modeo ...
Demand TransferMode

Cascade Mode . . .
Data Transfers

Priority
Address Generation

iv Contents

......................

......................

oooooooooooooooooooooo

3-10
3-11
3-11
3-12
3-13
3-15
3-16
3-16
3-16
3-17
3-17
3-18
3-21
3-22
3-22
3-24
3-26
3-26

4-5

Registers. i i it e e e 4-7

Base and Current Address Register. 4-7
Base and Current Word Register e e e e e e e 4-8
Command Register 4-9
Write Single Mask Bit. 4-11
Write AllMaskBits 4-11
Mode Registert 4-12
Request Register. 4-13
Status Register. oL 4-14
Temporary Register 4-14
Programming Example 4-15
Constant Values, 4-15
Data Structures 0., 4-17
Initializing the DMA Controller 4-18
Openinga DMAChannel 4-19
Preparing a Channel for Data Transfer 4-20
Disablinga DMA Channel 4-22
Chapter 5 Real-Time Clock and CMOS RAM. 5-1
OVEIVIEW. v ot e e e e e e e e 5-1
Additional Source of Information. 5-2
Battery-Backup Considerations. 5-2
Addressing the Real-TimeClock 5-2
Real-Time Clock Registers 5-3
Register A. i e e e 5-4
Register B. i 5-6
Register C. i e 5-8
Register D i 59
Real-Time Clock Data Registers. 5-10
Alarms L L L e e e e e e 5-12
UpdateCycle i i e 5-13
Interrupts e e 5-14
Update-Ended Interrupt 5-14
Alarm Interrupt e e 5-14
Programming Example 5-15
Constant Values, 5-16
Data Structures 5-18
Reading the Registersand RAM. 5-20
Writing the Registersand RAM 5-21
Calculating the Checksum 5-22
Converting Binary-Coded Data. 5-23
Reading the Date. e e e e e e e e e e e e e 5-24

Contents v

Readingthe Time
DisplayingtheDate
Displaying the Time
Displaying the Diskette Drive Type.
Displaying the Hard Disk Type
Handling the Clock Interrupts
Interpreting the RAM Contents
Initializing the Real-Time Clock
Restoring the Interrupt Vectors
Real-Time Clock Example

oooooooooo

..........

..........

..........

Chapter 6 Three-Channel Counter and Speaker

vi

Overview. i v it e i

Block Diagram
Counter Description
Mode Definitions,
Mode 0 (Interrupt on Terminal Count) . . .
Initializing Mode 0
ModeOCycle.

Mode 1 (Hardware Retriggerable One-Shot)
Initializing Mode 1
Mode1Cycle.

Mode 2 (Rate Generator)
Initializing Mode 2
Mode2Cycle.

<Mode 3 (Square Wave Mode)
Initializing Mode 3
Mode3Cycle.

Mode 4 (Software Triggered Strobe).
Initializing Mode 4
Mode4Cycle.

Mode 5 (Hardware Triggered Strobe)
Initializing Mode 5

Mode 5Cycle.
Registers.,
System Register
Control Word Register

..........

..........

..........

..........

..........

..........

..........

..........

..........

oooooooooo

..........

..........

..........

..........

...........

..........

Counter-Latch Command (Control Word Register)
Read-Back Command (Control Word Register)

Status Response (Read-back Command)

Contents

5-26
5-26
5-27
5-28
5-29
5-30
5-32
5-34
5-35
5-36

6-11
6-12
6-13
6-14

Programming Example 6-16

Constant Values 6-16
WritingaCounter 6-18
MakingaBellSound 6-18
Counter and Speaker Example. 6-20
Chapter 7 Video Controller. 7-1
Introduction. 7-1
Industry-Standard Text and Graphics Features. 7-1
Enhancements to Industry-Standard Features 7-2
Industry-Standard Features Not Available 7-2
ExtraFeatures 7-2
Block Diagram, 7-3
Additional Sources of Information 7-4
VideoModes 7-5
Text Modes i 7-6
Character Buffer Format 7-6
Character Position to Memory Location Mapping 7-7
Programmable Cursor 7-8
Programmable Character Generator (Font RAM) 7-9
Graphics Mode i 7-10
Mapping the Display to Address 7-10
Video Look-UpTable 7-18
Video System Registers 7-22
Special Purpose Register 7-23
CRTCRegisters 7-25
Index Register. 7-25
DataRegister 7-25
Register RO 7-28
Register R1, . 7-28
Register R2 7-29
Register R3, 7-29
Register R4 7-30
Register R6 7-30
Register R6 7-31
Register R7T i... 7-31
Register R8 7-32
Register RO 7-33
Register R10 7-33
Register R11 7-34
Register R12 7-34
Register R13 7-34

Contents vii

Register R14
Register R156
Register R16
Register R17

Status Register A

Status Register B
Write Data Register
Color Select Register
Control Register A.
Control Register B.
Monitor Interface
Monitor Specification Summary
Programming Example

.........

.........

.........

.........

Chapter 8 Keyboard-Interface Controller and Keyboard. .

viii

Introduction.
Keyboard-Interface Controller
Physical Interface tothe CPU
Physical Interface to the Keyboard
Logical Interface.
Control Functions
Keyboard-Interface Controller Diagnostics
Keyboard-Interface Controller Registers
Data Register.
Command Register
Status Register.
Command Register
Read Command Byte
Write Command Byte.
SelfTest
InterfaceTest
Disable Keyboard
Enable Keyboard
ReadPort1.
ReadPort1.
ReadPort2.
WritePort2
Read TestInputs
Write Status Register.
Pulse OutputPort.
Keyboard-Interface Controller Error Handling

Contents

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

7-35
7-35
7-36
7-36
7-37
7-38
7-39
7-39
7-41
7-43
7-44
7-44
7-45

8-10
8-10
8-12
8-12
8-12
8-12
8-12
8-12
8-13
8-13
8-13
8-13
8-13
8-14

LK250Keyboardt eennnns 8-15

ScanCodes i e e e e 8-15
LK250 Keyboard Command Codes 8-22
Invalid Commands 8-23
Request KeyboardID 8-23

Enter DIGITAL Extended Scan Code Mode. 8-23

Exit DIGITAL Extended Scan Code Mode 8-23

Set Keyboard LED 8-23

Reset Keyboard LED 8-24

Set Keyclick Volume 8-24

Enable Autorepeat. 8-24
Disable Autorepeat 8-24
Keyboard Mode Lock 8-26
Keyboard Mode Unlock. 8-25
Reserved i i 8-25
LEDsOn/Off., 8-26

Echo. e 8-26
Reserved it 8-26

Set Autorepeat Delay and Rate 8-27

Enable Key Scanning 8-28
Disable Key Scanning and Restore to Defaults 8-28
Restore ToDefaults. 8-28
Reserved 8-29
Resend, 8-29

Reset e 8-29

LK250 Keyboard Responses 8-30
Bufferoverrun. 8-30
Self-testsuccess. 8-30

ECHO. e e 8-30
Release Prefix 8-31
Acknowledge (ACK)., 8-31
Self-Test Failure. 8-31
Resend ieii.. 8-31

LK250 Keyboard Error Handling 8-31
U.S. and Foreign Keyboards 8-31
Programming Example 8-46
Chapter 9 Serial Communications. 9-1
OVerview. o o it e e e e e e e 9-1

Contents ix

Additional Sources of Information 9-1

Receive Buffer Register/Transmitter Holding Register. . . . 9-3
Interrupt Enable Register. 9-4
Interrupt Identification Register. 9-6
Line Control Register 9-7
Modem Control Register 9-9
Diagnostic Loopback 9-10

Line Status Register. 9-11
Modem Status Register. 9-13
Divisor Latches. 9-15
Modem Control Programming Exceptions 9-17
Special Purpose Register 9-18
Communications Connector Signals 9-19
Printer Connector Signals. 9-20
Modem Connector Signals. 9-21
Programming Example 9-22
Program Description 9-23
Chapter 10 Mouse Information. 10-1
Introduction. o 10-1
Communication Requirements 10-2
Additional Source of Information. 10-2
MouseCommandsot 10-2
Prompt Mode Incremental Stream Mode. 10-3
Request Mouse Position. 10-3
Invoke Self-Test 10-3
Vendor Reserved Function 10-3
Mouse Reports ittt 10-4
Position Report-Byte 1. 10-4
Position Report-Byte 2. 10-5
Position Report-Byte3. 10-5
Self-Test Report-Byte1 10-6
Self-Test Report-Byte2 10-6
Self-Test Report-Byte3 10-7
Self-Test Report-Byte4 10-7
Serial Interface e 10-8
Transmit Holding Register and Receive Buffer 10-8
Status Register. 10-9
Mode Register 1, 10-10
Mode Register 2 10-11
Command Register 10-12
Programming Example 10-14

x Contents

Chapter 11 Diskette Drive Controller, .. 11-1

Introduction. 11-1
Diskette Drive Controller Registers 11-2
Control Register 11-3
Main Status Register, 11-4
Data Register. 11-5
Data Transfer Rate Register 11-6
Change Register, 11-6
Diskette Drive Controller Internal Registers 11-7
Internal Register - Command. 11-7
Internal Register - Head/Unit Select 11-8
Internal Register - Status Register 0 11-9
Internal Register - Status Register 1 11-10
Internal Register - Status Register 2 11-12
Internal Register - Status Register 3 11-13
Internal Register - SRT/HUT 11-14
Internal Register-HLT/ND 11-15
Internal Register-C. 11-15
Internal Register - H. 11-15
Internal Register-R. 11-15
Internal Register-N 11-16
Internal Register -EOT. 11-16
Internal Register -GPL.. 11-16
Internal Register -DTL 11-16
Internal Register-SC. 11-16
Internal Register-D. 11-17
Internal Register -STP 11-17
Internal Register -PCN. 11-17
Internal Registers-NCN 11-17
Diskette Drive Controller Programming 11-18
Command State 11-18
Execution State L. 11-20
Result State 11-20
Command and Result Register Sets. 11-20
Programming Example 11-27
Chapter 12 Hard Disk Drive Controller. 12-1
Introduction. o oo 12-1

Contents xi

Hard Disk Controller Registers. 12-1

Data Register. i, 12-3
Write Precompensation Register. 12-4
Error Register, 12-5
Sector Count Register. 12-7
Sector Number Register 12-7
Cylinder Number Low Register 12-8
Cylinder Number High Register 12-8
SDHRegister. 12-9
Command Register 12-10
Restore Command 12-11
SeekCommand0.uueoen 12-12

Read SectorCommand 12-13

Write Sector Command. 12-15
Format Track Command 12-17

Read Verify Command 12-19
Diagnose Command. 12-21

Set Parameters Command 12-22

Status Register. e e e 12-23
Alternate Status Register. 12-25
Hard Disk Register, 12-25
Digital Input Register 12-26
Programming Example 12-27
Chapter 13 Network Hardware Interface 13-1
Introduction tothe LANCE 13-1
Additional Source of Information. 13-2
Functional Description of the Network Hardware Interface . . . 13-2
The Coax Transceiver Interface 13-2
The Serial Interface Adapter . . , 13-2
The Local Area Network Controller 13-2
Programmingthe LANCE, 13-3
Initialization Block 13-4
Receive and Transmit Descriptor Rings 13-4
DataBuffers 13-4
Programming Sequencec.. ... 13-4
Register Description. 13-5
Register Data Port (RDP) 13-6
Register Address Port (RAP) 13-7
Control And Status Register 0. e e 13-8
Control And Status Register 1. 13-13
Control And Status Register 2. 13-14

xii Contents

Control And Status Register3. 13-15

NICSR e 13-17
InitializationBlock. 13-18
ModeField 13-19
Physical Address Field 13-22
Logical Address Filter Field 13-22
Receive Descriptor Ring Pointer Field 13-23
Transmit Descriptor Ring Pointer Field 13-25
Buffer Management 13-27
Descriptor RingsinMemory 13-28
Receive DescriptorRings 13-29
Receive Message Descriptor 0(RMDO) 13-29
Receive Message Descriptor 1(RMD1) 13-30
Receive Message Descriptor 2(RMD2) 13-32
Receive Message Descriptor 3(RMD3) 13-33
Transmit DescriptorRing. 13-34
Transmit Message Descriptor 0 (TMDO) 13-34
Transmit Message Descriptor 1 (TMD1) 13-35
Transmit Message Descriptor 2 (TMD2) 13-37
Transmit Message Descriptor 3(TMD3) 13-38
Network Interface External Interconnect 13-40
Network Interface System Bus Interconnect. 13-40
Index
VOLUME 2
Chapter 14 System Startup 14-1
OVervIEW. e e e e e e e e e 14-1
PowerupTest e e 14-1
Initialization 14-9
Real Mode Versus Virtual Protected Mode 14-9
Extended Self-Test., 14-10
Configuration List 14-11
Soft Reset 14-12
HardReset 14-13
Hardware Jumper Configuration. 14-14
Chapter I5ROMBIOS 15-1
Interrupt 02H: Nonmaskable Interrupt e 15-3
Interrupt O5H: Print Screen 15-4
Interrupt 08H: Clock Tick. 15-5
Interrupt 09H: Keyboard 15-5

Contents xiii

Interrupt OBH: COM2 /Modem
Interrupt OCH: COM1 /Serial
Interrupt OEH: Floppy Disk.
Interrupt 10H: Video Input/Qutput
Function O00H: Set VideoMode.
Function 01H: Set Cursor Type
Function 02H: Set Cursor Position
Function 03H: Read Cursor Position
Function 04H: Read Light-Pen Position
Function 05H: Set Page Function.
Function 06H: Scroll Active PageUp.
Function 07H: Scroll Active PageDown
Function 08H: Read Character and Attribute at Cursor
Position e e e e
Function 09H: Write Character and Attribute at Cursor
Position e e e
Function 0AH: Write Character at Cursor Position.
Function OBH: Set Color Palette
Function OCH: Write Pixel
Function ODH: Read Pixel
Function OEH: Write Character Using Terminal Emulation .
Function OFH: Read Current Video State
Function 13H: TTY Write String
Function DOH: Enable/Disable 256 Character Graphic Font.
Function D1H: Font RAM and Color Map Support
Font RAMFunctions
Color Map Functions e e e e e
Interrupt 11H: Read Configuration
Interrupt 12H: Return Memory Size.
Interrupt 13H: Disk Input/Output(l/O)
Hard Disk Functions
Hard Disk Errorso.....
Hard Disk Parameter Tables.
Function 00H: Initialize Entire Disk Subsystem.
Function 01H: Return Status Code of Last I/O Request . . .
Function 02H: Read One or More Disk Sectors
Function 03H: Write One Or More Disk Sectors
Function 04H: Verify One or More Disk Sectors
Function 05H: FormataTrack.
Function 08H: Return Current Drive Parameters.
Function 09H: Initialize Drive Characteristics.
Function 0OAH: ReadLong

xiv Contents

15-20
156-21
15-22
15-23
15-24
15-26

156-27

15-28
15-30
15-31
15-31
15-32
15-35
156-37
15-38
15-40
15-40
15-41
15-42
15-43
15-44
15-45
15-46
15-47
15-48
15-49
15-50

Function OBH: WriteLong 15-51

Function OCH: Seek to Specific Cylinder. 15-52
Function 0ODH: Hard Disk Reset. 15-53
Function 10H: Test Drive Ready. 15-54
Function 11H: Recalibrate Drive. 15-55
Function 14H: Execute Controller Internal Diagnostics . . . 15-56
Function 15H: Return Drive Type. 15-57
Function DOH: Read Long 256 Byte Sector 15-568
Diskette Functions. 15-569
Diskette Errors oo 15-59
Diskette Parameter Tables. 15-59
Function 00H: Initialize Diskette Subsystem 15-61
Function 01H: Return Status Code of Last I/O Request . . . 15-62
Function 02H: Read One or More Track Sectors 15-63
Function 03H: Write One or More Track Sectors 15-64
Function 04H: Verify One or More Track Sectors. 15-65
Function 05H: Formata Track. 15-66
Function 15H: Return Drive Type. 15-67
Function 16H: Return Change Line Status. 15-68
Function 17H: Set Drive and Media Type for Format 15-69
Interrupt 14H: Asynchronous Communications 15-70
Function 00H: Initialize Asynchronous Port 15-72
Function 01H: Transmit Character 15-73
Buffer Mode Enabled 15-73
Function 02H: Receive Character 15-74
Buffer Mode Enabled 15-74
Function 03H: Return Asynchronous Port Status. 15-75
Buffer Mode Enabled 15-76
Function DOH: Extended Mode 15-77
Buffering Enabled. 15-80
Notification Enabled 15-81
Error Codes Returned 15-83
Function D1H: Send Break. 15-84
Function D2H: Set Modem Control 15-85
Function D3H: Retry on Timeout Error 15-86
Function D4H: Set BaudRate 15-87
Interrupt 15H: Cassette Input/Qutput. 15-88
Function 80H: Open Device 15-89
Function 81H: Close Device 15-89
Function 82H: Termination. 15-90
Function 83H: Set a Wait Interval. 15-90
Function 84H: Joystick Support. 15-91

Contents xv

xvi

Function 85H: Service System Request Key.
Function 86H: Wait (No ReturntoUser).
Function 87H: Move a Block of Memory
Function 88H: Return Memory Size Above One Megabyte .

Function 89H: Begin Virtual Mode .
Function 90H: Device Is Busy

oooooooooooooo

oooooooooooooo

Function 91H: Interrupt Completion Handler
Function DOH: Return DIGITAL Configuration Word

Interrupt 16H: Keyboard Input.
Table of Returned Scan Codes
Combination Keys

System Reset
System Request Key (Sys Req) .
Extended Self-test.
Break
Pause
Print Screen
Automatic LED Control.
Function 00H: Keyboard Input. . . .
Function 01H: Keyboard Status . . .
Function 02H: Keyboard State. . . .
Function DOH: Key Notification . . .
Key Stroke Notification Enabled

..............

..............

..............

..............

..............

..............

..............

oooooooooooooo

..............

..............

..............

..............

..............

..............

Key Buffering Notification Enabled.

Function D1H: Character Count. . .
Function D2H: Keyboard Buffer. . .

..............

..............

Function D3H: Extended Codes And Functions.

Function D4H: Request Keyboard ID
Function D5H: Send to Keyboard . .

oooooooooooooo

..............

Function D6H: Keyboard Table Pointers e
Keyboard Translation Table Formats And Usage.

Interrupt 17H: Printer Qutput
Function 00H: Transmit Character .
Function 01H: Initialize Printer . . .
Function 02H: Return Printer Status

..............

.............

Function DOH: Redirect Parallel Printer

Function D1H: Printer Type
Function D2H: Parallel Port Retry .
Interrupt 18H: Basic.
Interrupt 19H: Bootstrap
DIGITAL Hard Disk Boot Block

Contents

..............

..............

..............

15-91

15-92

15-93

15-95

15-96

15-98

15-98

15-99
15-101
15-102
15-107
15-107
15-107
15-108
15-108
15-108
15-108
15-108
15-109
15-109
15-110
15-111
15-112
15-113
15-114
15-115
15-116
156-118
15-119
15-120
15-121
15-123
15-124
156-125
15-126
15-127
156-129
156-131
15-132
15-133
15-134

Interrupt 1AH: Time-ofday. 15-135

Function 00H: Read System Clock 15-136
Function 01H: Set SystemClock 15-136
Function 02H: Read Real-TimeClock. 15-137
Function 03H: Set Real-Time Clock. 15-138
Function 04H: Return RTCDate 15-138
Function 05H: Set RTCDate 15-139
Function O6H: Set Alarm. 15-139
Function 07H: Cancel Alarm 15-140
Function DOH: Return Days-Since-Read Counter 15-140
Interrupt 1BH: Keyboard Break 15-141
Interrupt 1ICH: Timer Tick 15-141
Interrupt 1DH: Video Parameters 15-142
Interrupt 1EH: Diskette Parameter Tables. 15-143
Interrupt 1FH: Graphics Character Table Pointer. 15-145
Interrupt 40H: Revector of Interrupt 13H 15-145
Interrupt 41H and 46H: Hard Disk Parameter Tables 15-146
Interrupt 4AH: RTC Alarm 15-148
Interrupt 70H: Real-TimeClock 15-148
Interrupt 71H: Redirect to Interrupt OAH 15-148
Interrupt 72H: Local Area Network Controller (LANCE). 15-149
Interrupt 73H: Serial Printer Port 15-150
Interrupt 74H: Mouse Port, 15-150
Interrupt 756H: 80287 Error. 15-151
Interrupt 76H: Hard Disk 15-151
Interrupt 77H: Available (IRQ15) 15-151

Chapter 16 Programming the VAXmate Under MS-DOS

... 16-1
Overview. e e e e e e 16-1
MS-DOS Operating System Versions. 16-2
Loading MS-DOS Operating System 16-2
MS-DOSMemoryMap vvv v i i v 16-2
MS-DOS Interrupt 21H Digital Specific Functions 16-3
Function 30H Get MS-DOS OEM Number 16-3
Function 38H Get/Set Country Code 16-3
Loadable MS-DOS Device Drivers 16-5
ANSLSYS e 16-5
Installing ANSI.SYS 16-5
Cursor Control Functions. 16-56
Erase Functions 16-7
Set Graphics Rendition 16-8

Contents xvii

Set Mode Function.
Reset Mode Function
Keyboard Key Reassignment Function

MouseDriver

xviii

Detecting the Mouse Driver
Video Support
Function 0000H: Mouse Initialization
Function 0001H: Show Cursor
Function 0002H: Hide Cursor

.............

.............

.............

.............

.............

Function 0003H: Get Mouse Position and Button Status .
Function 0004H: Set Mouse Cursor Position
Function 0005H: Get Button Press Information
Function 0006H: Get Button Release Information
Function 0007H: Set Minimum and Maximum X-Axis

Position

.............

Function 0008H: Set Minimum and Maximum Y-Axis

Position

Function 0009H: Define Graphics Cursor

Function 000AH: Define Text Cusor .

.............

Function 000BH: Read Mouse Motion Counters
Function 000CH: Define Event Handler
Function 000DH: Enable Light-Pen Emulation
Function 000EH: Disable Light-Pen Emulation
Function 000FH: Set Mouse Motion/Pixel Ratio
Function 0010H: Conditional Hide Cursor

Function 0013H: Set Speed Threshold
Function 001CH: Get Driver Version .
Function 0024H: Get Configuration .
Function 0025H: Set Configuration .

.............

.............

.............

Enhanced Graphics Adapter (EGA) Functions

Function FOH: Read EGA Register

Function F1H: Write EGA Register
Function F2H: Read EGA Register Group
Function F3H: Write EGA Register Group
Function F4H: Read EGA Register List

Function F5H: Write EGA Register List
Function FAH: EGA Functions Installed
MS-DOS Media ID Tables
Disk Parameters,

Contents

......................

.........

16-10
16-11
16-12
16-13
16-14
16-14
16-16
16-17
16-17
16-18
16-19
16-20
16-21

16-22

16-23
16-24
16-26
16-27
16-28
16-30
16-30
16-31
16-31
16-32
16-32
16-33
16-33
16-34
16-35
16-35
16-36
16-36
16-37
16-38
16-38
16-39
16-40

MS-DOS International Support
FONTand GRAFTABL.
FONT.COM. it et
GRAFTABL.COM. it i
Descriptionof Fonts.
How FONT.COM Affects KEYB.COM and SORT.EXE . . .
Font File Structures.
Loading Font Files.

KEYB e
Keyboard Remapping
Creating Keyboard Map Tables for International Countries .
How Compose Sequences Are Recognized
How Dead Diacritical Keys Are Recognized
Format and Use of the Compose Sequence Pointer Table . .
Format and Use of the Compose Sequence Translation

Changing to STDUS.KEY and Back Again
Keyboard Map File Structure
LCOUNTRY e et e
Country File Structure

" Case ConversionTables.
SORT . . . e e
Format for Sorting Order.
Creating Sort Tables for Character Sets

Chapter 17 MS-Windows on the VAXmate

Introduction. oo oL
Overview i e
Keyboard Driver for the LK250 Keyboard
Numeric and Edit Keypads
Keyboard LEDs for the VAXmate LK250
VAXmate Compose Handling
Reserved Keys Under MS-Windows.
DIGITAL MS-Windows Keyboard Extensions.
DecSetLockState (lock)
DecSetKClickVol (vol).
DecSetAutorep (repeat)
DecGetKbdCountry ():Result.
DecSetComposeState (compose mode).
DecSetNumlockMode (numlock mode).

16-41
16-41
16-41
16-42
16-42
16-42
16-42
16-45
16-45
16-45
16-47
16-49
16-49
16-49

16-50
16-560
16-50
16-52
16-52
16-54
16-55
16-566
16-566

17-1
17-1
17-1
17-2
17-3
17-4
17-4
17-56
17-5
17-6
17-7
17-7
17-8
17-9
17-10

Contents xix

Windows Keyboard Processing Anomalies
Repeating Key Allowed to Change Focus.
Illogical Set of Keyboard Messages

Key Mappings for VAXmate’s LK250.
AnsiToOem, OemToAnsio v v v v v v v oo

ANSItoOEMTable
OEMtoANSITable
Mouse i e e

LAT Support Through the Windows Asynchronous Serial
Communications Interface
OpenComm0tituuunenneneon
WriteComm ev....
TransmitCommChar
ReadComm.o
CloseComm nneeeon
SetCommStateoovi....
GetCommState
EscapeCommFunction
SetCommBreak0.0....
ClearCommBreak,
SetCommEventMask
GetCommEventMask
FlushComm iunee.n
GetCommError
Custom LAT Application Interface Under Windows
OpenLat (IpServiceName, lpNodeName, lpPortName) :
Latid. e e,
CloseLat (Latid): Result
ReadLat (Latid): Result.
WriteLat (Latid,ch): Result
GetLatStatus (Latid): Result
SendLatBreak (Latid) : Result
InquireLatServices () : LResult
GetLatService (lpServiceName) : Result
Displayonthe VAXmate
Standard Applications Support
Keyboard Handling
Keyboard Handling Inside an MS-Windows Window . . .
Keyboard Handling Outside an MS-Windows Window . .
ANSI Support Inside an MS-Windows Window

xx Contents

17-11
17-11
17-12
17-13
17-65
17-65
17-58
17-61
17-61

17-62
17-63
17-63
17-64
17-64
17-64
17-65
17-65
17-65
17-65
17-65
17-65
17-65
17-65
17-66
17-66

17-67
17-68
17-68
17-69
17-69
17-70
17-70
17-71
17-73
17-74
17-75
17-75
17-78
17-79

Video Modes Handled Inside an MS-Windows Window. . . . 17-79

Interrupt 11h Support 17-82
Interrupt 12h Support 17-82
Interrupt 15h Support 17-83
UniqueIcons, 17-83
Printers e 17-83
DECWIN.HFileListing. 17-85
Chapter 18 VAXmate Network Software. 18-1
Introduction. e 18-1
Documentation List 18-4
Datalink e 18-5
Common Definition Formats. 18-6
Multicast Address Format 18-7
Software Capabilities 18-8
Datalink Functions 18-11
Datalink ReturnCodes 18-13
Function 00H: Initialization (dll_init). 18-16
Function 01H: Open a Datalink Portal (dll_open). 18-18
Function 02H: Close a Datalink Portal (dll_close). 18-21
Function 03H: Enable Multicast Addresses
(dll enable mul) 0L, 18-22
Function 04H: Disable Multicast Addresses
(dll_disable mul). 18-24
Function 05H: Transmit (dll_transmit). 18-25
Function 06H: Request Transmit Buffer Function
(dll_request xmit). 18-27
Function 07H: Deallocate Buffer (dll_deallocate) 18-28
Function 08H: Read Channel Status (dll_read chan). . . 18-29
Function 09H: Read the Portal List (dll_read plist) . . . 18-31
Functions 0AH: Read the Portal Status
(dll read portal). 18-32
Function 0BH: Read the Datalink Counters
(dll read count), 18-34
Function 0CH: Network Boot Request
(dll_network boot). 18-38
Function 0DH: Enabling a Channel Function
(ddl enable chan) 18-39
Function OEH: Disabling a Channel (dll_disable_chan). . 18-40
Function 11H: Read Decparm String Address
(dll readecparm). 0 L 18-41

Contents xxi

xxii

Function 12H: Set Decparm String Address
(dll_setdecparm).
Function 13H: External Loopback (dll_ext_loopback) . .
Maintenance Operation Functions.
Data Link Interface to the MOP Process e
Function OFH: Mop Start and Send System ID
(dll_start mop).,
Function 10H: Mop Stop (dll_mop_stop).
Sample Datalink Session
Local Area Transportvvvo...
LAT Services. i i ittt ie e
LAT Command Line
Data Structures
LAT Functionso
Function 03H: LAT Get Status
Function DOH: Open Session
Function DOH: Close LAT Session
Function 02HRead Data.
Function 01H: Send Data
Function D5H: Get Next LAT Service Name
Function D6H: LAT Service Table Reset
Function D1H: Send Break Signal
Sample Terminal Program
Session. e e
Software Capabilities
MS-Network Session Control Block.
DIGITAL-Specific Session Control Block.
Synchronous Requests
Asynchronous Requests.
Asynchronous Notification Routine
Network Addressing.
Session Level Services
MS-Network Compatible Session Level Services
MS-Network Session Level Return Codes
Function 00H and Function B8OOH: Check for Presence
of MS-Network Session
Function 35H: Cancel (synchronous)
Function 32H: Reset (synchronous).
Function 33H: Status (synchronous)
Function B3H: Status (asynchronous)
Function 30H: Add Name (synchronous).
Function BOH: Add Name (asynchronous).

Contents

18-42
18-43
18-44
18-47

18-47
18-47
18-48
18-56
18-57
18-57
18-60
18-66
18-67
18-68
18-69
18-70
18-71
18-72
18-73
18-74
18-76
18-84
18-86
18-86
18-89
18-90
18-90
18-91
18-91
18-92
18-93
18-94

18-97
18-98
18-99
18-100
18-100
18-103
18-103

Function 31H: Delete Name (synchronous) 18-104

Function B1H: Delete Name (asynchronous) 18-104
Function 34H: Name Status (synchronous) 18-105
Function B4H: Name Status (asynchronous) 18-105
Function 10H: Call (synchronous). 18-107
Function 90H: Call (asynchronous) 18-107
Function 11H: Listen (synchronous) 18-109
Function 91H: Listen (asynchronous). 18-109
Function 12H: Hangup (synchronous) 18-110
Function 92H: Hangup (asynchronous). 18-110
Function 14H: Send (synchronous) 18-111
Function 94H: Send (asynchronous) 18-111
Function 17H: Send Double (synchronous). 18-112
Function 97H: Send Double (asynchronous) 18-112
Function 15H: Receive (synchronous). 18-113
Function 95H: Receive (asynchronous). 18-113
Function 16H: Receive Any (synchronous). 18-114
Function 96H: Receive Any (asynchronous) 18-114
Datagram Commands 18-115
Function 20H: Send Datagram (synchronous). 18-116
Function AOH: Send Datagram (asynchronous). 18-116
Function 21H: Receive Datagram (synchronous) 18-117
Function A1H: Receive Datagram (asynchronous) 18-117
Function 22H: Send Broadcast (synchronous). 18-118
Function A2H: Send Broadcast (asynchronous). 18-118
Function 23H: Receive Broadcast (synchronous) 18-119
Function A3H: Receive Broadcast (asynchronous) 18-119
DIGITAL-Specific Session Level Services 18-120
Function 00H: DIGITAL Function Check
(decfunccheck) 18-121
Function 01H: Add a Node (decfuncadd) 18-122
Function 02H: Delete Entry Given the Node Number
(decfuncdelnum) L o L 18-123
Function 03H: Delete Entry Given Node Name
(decfuncdelname) oo oL 18-124
Function 04H: Read Node Entry Given Node Number
(decfuncreadnum) Lo oL, 18-125
Function 05H: Read Node Entry Given Node Name
(decfuncreadname). o 18-126
Function 06H: Read Node Entry Given Index
(decfuncreadindex)., 18-127
Function 07H: Delete All Node Entries (decfuncdelall). . 18-128

Contents xxiii

Server Message Block (SMB) Protocol 18-129

Extended Function DOH: Get Current Date and Time 18-130
Appendix A Support Code for Examples A-1
File: SUPPORT.ASM i ittt i e et i e o A-l
File: EXAMPLE.H. it i it i A9
File: KYB.H. e it ene o A-10
File: RB.H. et i e e i e i e A-11
File: VECTORS.C ittt o e A-12
File: RB.C. i e i e A-16
Fil: DEMO.C. i et e e e A-18
Appendix B 80286 Instruction Set B-1
Appendix C VT220 and VT240 Terminal Emulators. . . . C-1
VT220 Emulator and VT220 Terminal Differences C-2
Saving and Restoring Set-Up Selections C-2
Video Differences PSP C-2
Scrolling e C-2
Blinking Characters Remapped C-2
No Control Representation Mode C-2
Font Selection0..... C-2
Communications Differences. C-3
LAT Protocol Support (Network Terminal Services) . . . C-3
NoSplitBaudRate C-3
SessionLogging C-3
Autotyping Characters C-3
Keyboard Differences C-4
Keyboard LEDs e e e e e e e e e e e C-4
Alternate Characters C-4
Keyclick. i e e e C-4
Autorepeat Selection C-4
Character Sets i .n.. C-5
DEC MCS to ISO Latin-1 8-bit Transition C-5
Language Selection C-5
Compose Sequences. v i C-5
Additional VT220 Emulator Escape Sequences C-6
Assign User-Preference Supplemental Character Set

(DECAUPSS) i i e s e e e C-6

Request User-Preference Supplemental Character Set
(DECRQUPSS) ittt i C-6

Select User-Preference Supplemental Coded Character
Set(SCS).o e e C-6

xxiv' Contents

Select DEC Supplemental Coded Character Set (SCS) . C-7
Select ISO Latin-1 Supplemental Coded Character Set

(SCS) . . i e e e e C-7
Primary Device Attribute (DA) C-8
Secondary Device Attribute (DA) C-8
Announcing ANSI Conformance Levels C-8
Printing C-9
Printer Options C-9
Print Terminator C-9
Print Size. e C-9
VT240 Emulator and VT240 Terminal Differences C-10
Saving and Restoring Set-Up Selections C-10
Video Differences C-10
VideoModes, C-10
Automatic Video Mode Switching. C-10
Scrolling i C-10
No Control Representation Mode C-10
Underlined Characters C-11
Line Attributes C-11
Double Width Lines for Fast TextOnly C-11
Double Height/Double Width Lines for Fast Text Only . C-11
Communications Differences. C-12
LAT Protocol Support (Network Terminal Services) . . . C-12
Session Logging C-12
Autotyping Characters C-12
Keyboard Differences C-12
Keyboard LEDs C-12
Alternate Characters C-12
No “Printerto Host" Mode. . ., C-12
Character Sets C-13
DEC MCS to ISO Latin-1 8-bit Transition C-13
Compose Sequences. v v v v e e C-13
Additional VT240 Emulator Escape Sequences C-13
User-Preference Supplemental Character Set
(DECAUPSS) oot e e e e C-13
Request User-Preference Supplemental Character Set
(DECRQUPSS) i i i, C-14
Select User-Preference Supplemental Coded Character
Set (SCS). e C-14
Select DEC Supplemental Coded Character Set (SCS) . C-15
Select ISO Latin-1 Supplemental Coded Character Set
(SCS) . . . o e C-15

Contents xxv

Primary Device Attribute (DA) -15
Secondary Device Attribute (DA) C-16
Announcing ANSI Conformance Levels C-16
Bibliography
Index
Tables
Table 2-1 Physical Memory Map 2-3
Table 2-2 Input/Output AddressMap 2-4
Table 2-3 InterruptVectorMap 2-7
Table 2-4 8-Bit Expansion Bus Transfer Times 2-10
Table 2-5 Expansion Slot Power Ratings 2-10
Table 3-1 Interrupt RequestLines 3-2
Table 3-2 Master and Slave I/O Addresses 3-3
Table 3-3 Accessing the Interrupt Controller Registers. 3-4
Table 4-1 DMA Request Line Assignments. 4-2
Table 4-2 DMA Controller States 4-2
Table 4-3 DMA Controller and Page Register Address Map . . 4-6
Table 5-1 Real-Time Clock AddressMap 5-3
Table 5-2 Rate SelectionBits. 5-5
Table 5-3 RTC Data Register Ranges 5-11
Table 5-4 RTC Automatic AlarmCycles. 5-12
Table 6-1 Counter Signals. 6-3
Table 6-2 Modes Used by the Three Counters 6-3
Table 6-3 8254 and System Register Addresses 6-8
Table 7-1 Available VideoModes 7-5
Table 7-2 Attribute Byte Bit Definitions 7-6
Table 7-3 Text Mode Display Pages (ROM BIOS) 7-8
Table 7-4 Default VLT Contents 7-20
Table 7-56 VLT Contents for Video Modes D1H and D2H. . . . 7-21
Table 7-6 Video Processor I/O Registers. 7-22
Table 7-7 CRTC Internal Registers 7-26
Table 7-8 CRTC Register Values. 7-27
Table 7-9 Color Select Register Bit Assignments 7-40
Table 7-10 Color Palettes Selected by CPS and SIC. 7-40
Table 7-11 Selecting VideoModes 7-42
Table 7-12 Monitor Interface Signals 7-44
Table 8-1 Port 1 Bit Definitions 8-3
Table 8-2 Port 2 Bit Definitions 8-4
Table 8-3 Keyboard-Interface Controller Commands 89
Table 8-4 Command Byte Bit Definitions. 8-10

xxvi Contents

Table 8-5 LK250 Scan Codes and Industry-standard
Equivalent Values

Table 8-6
Table 8-7
Table 8-8
Table 9-1
Table 9-2
Table 9-3
Table 9-4
Table 9-5
Table 9-6
Table 9-7
Table 10-1
Table 10-2
Table 10-3
Table 11-1
Table 11-2
Table 11-3
Table 11-4
Table 11-5
Table 11-6
Table 11-7
Table 11-8
Table 11-9
Table 11-10
Table 11-11
Table 11-12
Table 11-13
Table 11-14
Command .
Table 11-15
Table 11-16
Table 11-17
Table 12-1
Table 12-2
Table 12-3
Table 12-4
Table 13-1
Table 13-2
Workstation

Scan Codes Translated But Not Used
LK250 Keyboard Command Codes.
LK250 Keyboard Responses.
8250 UART Register Addresses
Interrupt Identification
Baud Rate Table
Communications Connector Signals
Printer Connector Signals.
Modem Telephone Line Connector Signals
Handset Connector Signals

Mouse Command Summary
Serial Interface Registers
Baud Rate Table.
Diskette Drive Controller Registers
Diskette Drive Controller Commands
Register Sets for Read Data Command
Register Sets for Write Data Command
Register Sets for Read Deleted Data Command . .
Register Sets for Write Deleted Data Command . .
Register Sets for Read Track Command.
Register Sets for Read ID Command.
Register Sets for Format Track Command
Register Sets for Scan Equal Command
Register Sets for Scan Low or Equal Command. .
Register Sets for Scan High or Equal Command .
Register Sets for Recalibrate Command
Register Sets for Sense Interrupt Status
Register Sets for Specify Command
Register Sets for Sense Drive Status Command .
Register Sets for Seek Command
Hard Disk Controller Registers
Hard Disk Controller Diagnostic Result Codes . .
Memory Image of a Sector Interleave Table.
Hard Disk Controller Diagnostic Result Codes . .
Network Interface Registers.
LANCE CSR3 Required Values for the VAXmate

...............................

Table 14-1 VAXmate Powerup and Self-Test Error Codes . .

Table 14-2

VAXmate Processor Board Jumpers

8-17
8-21
8-22
8-30
9-2
9-6
9-16
9-19
9-20
9-21
9-21
10-2
10-8
10-11
11-2
11-19
11-21
11-21
11-22
11-22
11-23
11-23
11-24
11-24
11-25
11-26
11-26

11-26
11-26
11-27
11-27
12-2
12-6
12-18
12-21
13-56

13-16
14-8
14-14

Contents xxvii

Table 15-1 ROM BIOS Interrupt Vectors. e
Table 15-2 Interrupt 10H: Video I/O Functions
Table 15-3 VideoModes
Table 15-4 Mode Dependent Values for Set Cursor Type
Table 15-5 DefaultColorMap.
Table 15-6 Color Map for Video Modes D1H and D2H

Table 15-7
Table 15-8
Table 15-9
Table 15-10
Table 15-11
Description
Table 15-12
Table 15-13

Table 15-14
Table 15-15
Table 16-1
Table 16-2
Table 16-3
Table 16-4
Table 16-5
Table 16-6
Table 16-7
Table 16-8
Table 16-9

Hard Disk Error Codes.
Hard Disk Parameter Table Descrnptlon
Diskette Error Codes e e e e e e e e
Diskette Parameter Table Deseription
Communications Control Block (CCB)
CCB Buffer Structure Description
Keyboard Scan Codes Returned by The ROM
Diskette Parameter Table Description
Hard Disk Parameter Table Description
Cursor Control Functions . . .,
Erase Function e e e e e e e e e e e
Set Graphics Rendition Function ,
Set Mode Function
Reset Mode Function.
Keyboard Key Reassignment Function.
Standard Mouse Drive Functions
Extended Mouse Driver Functions
Video Sytems and Modes Supported by

MOUSE.SYS i

Table 16-10
Table 16-11
Table 16-12
Table 16-13
Table 16-14
Table 16-15
Table 16-16
Table 16-17
Table 16-18

Extensions to Interrupt 10H EGA Functions . . .
EGA Register Groups and Associated Registers .
Hard Disk Types.
BIOS Parameter Block Data.
FNT File Structure
.GRF File Structure
KeyboardTables
Keyboard Map File Structure
Characters Causing Problems for

COMMAND.COM i e

xxviii

Table 16-19 Sort Order for Industry-Standard Character Set

Table 16-20 Sort Order for DIGITAL Multinational Character
Set (MCS) . . . v o e e e e e

Contents

Table 16-21 Sort Order for International Standards

Organization Character Set(ISO) 16-58
Table 16-22 Sort Order for French 7-Bit National

Replacement Character Set (FR7) e e 16-59
Table 16-23 Sort Order for German 7-Bit Natlonal

Replacement Character Set (GR7) 16-60
Table 17-1 Keyboard Messages Transmitted by MS-Windows . 17-12
Table 17-2 US to ASCII TranslationTable 17-15
Table 17-3 Danish to ASCII Translation Table. 17-21
Table 17-4 Finnish to ASCII Translation Table 17-23
Table 17-5 French to ASCII Translation Table. 17-27
Table 17-6 French Canadian and Bilingual Canadian to ASCII

Translation Table., 17-30
Table 17-7 German to ASCII Translation Table 17-33
Table 17-8 Italian to ASCII Translation Table 17-36
Table 17-9 Norwegian to ASCII Translation Table. 17-39
Table 17-10 Spanish to ASCII Translation Table 17-42
Table 17-11 Swedish to ASCII Translation Table 17-45
Table 17-12 Swiss French to ASCII Translation Table 17-48
Table 17-13 Swiss German to ASCII Translation Table. 17-51
Table 17-14 Translation of ANSI Set to OEM Set. 17-55
Table 17-15 Translation of OEM Set to ANSI Set. 17-58
Table 17-16 INT 10H Functions 17-80
Table 17-17 Supported VideoModes. 17-82
Table 17-17 Character Sets Supported by Each Printer. 17-84
Table 18-1 Interrupt 6D: Datalink Functions. 18-12
Table 18-2 Datalink ReturnCodes 18-13
Table 18-3 Recommended Values for Datalink Parameters. . . . 18-17
Table 18-4 LAT Call Back Routine. 18-62
Table 18-5 Interrupt 6A: LAT Functions 18-66
Table 18-6 Session Control Block Fields. 18-87
Table 18-7 DIGITAL Session Control Block Fields 18-89
Table 18-8 Interrupt 2A: MS-Network Compatible Services . . . 18-92
Table 18-9 Interrupt 2A: DIGITAL Specific Session Extensions 18-92
Table 18-10 Error Codes Returned by Session 18-94
Table 18-11 Session Status Buffer 18-100
Table C-1 DEC MCS - ASCII Graphics Set (0-7). C-18
Table C-2 DEC MCS - Supplemental Graphics Set C-19
Table C-3 ISO Latin-1 Character Set (0-7) C-20
Table C-4 ISO Latin-1 Character Set (8-15). C-21
Table C-5 DEC Special Graphics Character Set C-22

Contents xxix

Figures
Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 2-1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 6-1
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5

Mode

Figure 7-6
Figure 7-7
Figure 7-8

Mode

Figure 7-9
Figure 7-10
Figure 7-11

Mode

Figure 7-12
Figure 7-13

Mode

Figure 7-14
Figure 7-15

Mode

Figure 7-16
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9

xxx Contents

Base Configuration Workstation
Workstation With Installed Expansion Box
Optional 80287 Coprocessor
Optional Two Megabyte DRAM Module
Optional Modem Module
Block Diagram of Workstation Components.
8-Bit And 16-Bit Bus Connectors
Priority Before Rotation
Priority After Rotation
Interrupt Sequence,
Three Channel Counter/Timer Block Diagram . . .
Block Diagram of the VAXmate Video Controller. .
Character Buffer Format.
Memory Organization for 320 x 200 4-Color Mode .
Pixel to Bit-Field Map for 4-Color Mode
Memory Organization for 320 x 200 16-Color
Pixel to Bit-Field Map for 16-Color Mode
Memory Organization for 640 x 200 2-Color Mode .
Pixel to Bit-Field Map for 2-Color (Monochrome)
Memory Organization for 640 x 200 4-Color Mode .
Pixel to Bit-Field Map for 4-Color Mode
Memory Organization for 640 x 400 2-Color
Pixel to Bit-Field Map for 2-Color Mode
Memory Organization for 640 x 400 4-Color
Pixel to Bit-Field Map for 4-Color Mode
Memory Organization for 800 x 252 4-Color
Pixel to Bit-Field Map for 4-Color Mode
Keyboard Position Labels.
US./UK. Keyboard
Canadian/English Keyboard
DanishKeyboard
FinnishKeyboard
French/Canadian Keyboard
FrenchKeyboard
German/Austrian Keyboard
Hebrew Keyboard

2-11
3-14
3-14
3-20
6-2
7-3
7-6
7-11
7-11

7-12
7-12
7-13

7-13
7-14
7-14

7-15
7-156

7-16
7-16

7-17
7-17
8-16
8-32
8-33
8-34
8-36
8-36
8-37
8-38
8-39

Figure 8-10 ItalianKeyboard 8-40
Figure 8-11 Norwegian Keyboard 8-41
Figure 8-12 SpanishKeyboard 8-42
Figure 8-13 SwedishKeyboard 8-43
Figure 8-14 Swiss/FrenchKeyboard. 8-44
Figure 8-15 Swiss/German Keyboard 8-45
Figure 10-1 VAXmate Mouse (Part Number VSXXX) 10-1
Figure 13-1 DescriptorRings. 13-28
Figure 14-1 Test Sequence - Processor Board 14-2
Figure 14-2 Test Sequence-1/OBoard 14-4
Figure 14-3 Test Sequence-Options 14-5
Figure 14-4 Test Sequence - Initialization and Bootstrap. . . . 14-6
Figure 14-5 VAXmate Configuration Screen. 14-12
Figure 14-6 VAXmate Processor Board Jumper Configuration 14-14
Figure 15-1 LK250 Keyboard Layout 15-103
Figure 16-1 MS-DOS Date and Time Structure 16-4
Figure 17-1 Keyboard Position Labels. 17-14
Figure 18-1 VAXmate Network Components. 18-2
Figure 18-2 Multicast Address Format 18-7
Figure 18-3 Session Interface Implementation. 18-85

......

Contents xxxi

Preface

Audience

This manual provides reference material about the VAXmate workstation. It
covers all programmable components, the firmware, and several MS-DOS re-
lated environments. The material and its presentation are directed to expe-
rienced programmers or software designers.

Manual Organization

This manual is divided into four parts and appendixes:

Chapter 1 provides an overview of the VAXmate workstation and optional
equipment.

Chapters 2 through 13 introduce the VAXmate workstation
programmable hardware devices. Each chapter discusses a single hard-
ware programming task, such as video input/output (I/O), external inter-
rupt processing, or serial communications and includes the following
information:

A brief device description

A list of additional references

- A description of the programmable hardware registers
- A programming example

- A discussion of the example

The examples are written in the C programming language to reduce the
size of the examples and focus on the task rather than the detail required
by the language.

Chapter 14 describes the power-up diagnostics and system startup.

Chapter 15 describes the read-only memory basic input/output system
(ROM BIOS).

The appendixes contain additional information, including a bibliography of
other useful publications.

Preface xxxiii

Terminology

The following terms are used throughout this manual and are defined as
follows:

Term Definition

Industry-standard ~ The computer industry recognizes two open architectures
as industry standards, the IBM PC AT bus structure and
the Microsoft disk operating system (MS-DOS). Moreover,
supporting MS-DOS requires a defined set of ROM BIOS
services. The term industry-standard refers to compatibil-
ity with these architectures.

Reserved To avoid confusion and incompatibility, the use of certain
Available items such as memory space, I/O space, interrupt vectors,
Unassigned and ROM BIOS parameters or return values must be

clearly defined. These three categories define those items
that do not have a specific use.

Reserved In future hardware or software releases,
DIGITAL may define a specific use for this
item. Hardware or software applications
that use this item may not work with
future releases.

Available Hardware or software applications can use
this item. DIGITAL has defined the spe-
cific use of this item as available for
applications.

Unassigned Hardware or software applications can use
this item. However, there remains some
risk that DIGITAL may define a specific
use for this item.

xxxiv Preface

Federal Communications Commission
Radio Frequency Interference

Class A Computing Devices

This equipment generates, uses, and may emit radio frequency energy. The
equipment has been tested and found to comply with the limits for a Class A
computing device pursuant to Sub-part J of Part 15 of FCC Rules, which are
designed to provide reasonable protection against such radio frequency interfer-
ence when operated in a commercial environment. Operation of this equipment
in a residential area may cause interference in which case the user at his own
expense may be required to take measures to correct the interference.

If this equipment does cause interference to radio or television reception, which
can be determined by turning the equipment off and on, the user is encouraged
to try to correct the interference by one or more of the following methods:

* re-orient the receiving antenna
* relocate the computer with respect to the receiver
* move the computer away from the receiver

e plug the computer into a different outlet so that computer and receiver
are on different branch circuits.

If necessary, the user should consult the dealer or an experienced radio

and television technician for additional suggestions. The user may find the
booklet, How to Identify and Resolve Radio/TV Interference Problems,
prepared by the Federal Communications Commission helpful. This booklet is
available from the U.S. Government Printing Office, Washington, DC 20402,
Stock No. 004-000-00398-5.

NOTE

Shielded cables are provided for use with this device. Should any
cables be replaced or added for any reason, these cables should
be the same as, or with higher shielding capabilities, than those
provided by Digital Equipment Corporation.

Preface xxxv

Chapter 1
VAXmate Workstation Overview

This chapter describes the VAXmate workstations physical appearance, base
configuration, optional components, and the logical relationship of the
components.

The VAXmate workstation is a high-performance, standalone, desktop personal
computer that executes industry-standard software. The integral Ethernet inter-
face allows the VAXmate workstation to communicate on a network. The hard
disk storage, provided in the optional expansion box, allows the VAXmate
workstation to be a server on a network.

Base System

In the base configuration, the VAXmate workstation has three units:

* System unit
e Keyboard
* Mouse

Figure 1-1 shows a base configuration workstation.

VAXmate Workstation Overview 1-1

Figure 1-1 Base Configuration Workstation

In the base configuration, the system unit contains the following major
components:

1-2

80286 microprocessor

One megabyte of dynamic random-access memory (DRAM)
Video monitor and controller
Diskette drive and controller
Ethernet controller
Keyboard interface controller
Event timer

Real time clock and calendar
Serial communications port
Serial printer port

Serial mouse port

Speaker

Power supply

VAXmate Workstation Overview

Optional Components

The workstation provides for the following optional components:

An expansion box, part number RCD31-EA, that attaches to the bottom
of the system unit. Figure 1-2 shows the system unit with the expansion
box attached. The expansion box contains an additional power supply, a

battery, a 20 megabyte hard disk drive and controller, and two industry-
standard expansion slots.

An 80287 coprocessor, part number FP287, that installs in the system
unit. Figure 1-3 shows the 80287 coprocessor.

A two megabyte DRAM module, part number PC50X-AA, that installs in
the system unit. Figure 1-4 shows the two megabyte DRAM module.

A modem module, part number PC50X-MA, that installs in the system
unit. Figure 1-5 shows the modem module.

Figure 1-2 Workstation With Installed Expansion Box

VAXmate Workstation Overview 1-3

L0725

Figure 1-3 Optional 80287 Coprocessor

0, 19]

0 [(DolJo(JolJ
o e i o i o o |
= [DJo—DolJo3
[Do[JoJol3
=Tnn [(DoJo@Dde™X
[(DJoJodo0(3
0 = @eee™
oo Jo@d [
0 DDGDDDDD

o o o o

Cla oo o
o o]

=

Figure 1-4 Optional Two Megabyte DRAM Module

%lz[jziL:JE

s s} s [i S—

Figure 1-6 Optional Modem Module

VAXmate Workstation Overview

Figure 1-6 shows the relationship of the workstation components. The battery
is present only when an expansion box is installed.

KEYBOARD

WORKSTATION,

———CGSPEAKER

CPU MODULE
f——————y
180287 }
JCOPROCESSOR |
|(0PT|0N)]

l.T_.....T.l

(] L]

SPEAKER &
KEYBOARD

LOG!C

Lﬂ MOUSE

LOGIC

O

MOUSE

80286 CPU, BUS
ARBITRATOR,

& TiminG
LoGIC

)

M BYTE
MEMORY &
SYSTEM ROMS

N
V]

1/0 MODULE

VIDEO
CONTROL

MONITOR MODULE

CRT
LOGIC

LOGIC

SERIAL

PRINTER
PORT

N7

LOGIC

SERIAL

1

SERIAL PRINTER

COMM
PORT

LOGIC

NETWORK

INTERFACE

SERIAL COMM

THINWIRE

/\ﬁ/\
v

REAL

TIME BAT

CLOCK

2MBYTE
MEMORY
(OPTIONAL)

BACK UP
FRO
EXPANSION
BOX

[———
rZ-M BYTE MEMORY MODUL-E'l

1

TERY

M

POWER SUPPLY MODULE

POWER

SUPPLY

HI
DC

LOGIC

FLOPPY DISK
CONTROL

LOGIC

P p——
[ree

RAL MODEM MODUL?
INTEGRAL

ETHERNET

MODEM

TELEPHONE
TELEPHONE

LOGIC
{OPTION) '

I |

1.2MBYTE
DISKETTE

DRIVE

WALL JACK

— T — — S— — —
I-EXPANSION BOX OPTION

Fm———————

POWER REGULATOR MODULE

EXPANSION

POWER

REGULATOR

EXPANSION
sLoT

EXPANSION
SLOT

t——————s DC

i e—
K=

HARD DISK CONTROLLER

CONTROLLER
LOGIC

R t
EXPANSION SLOT #3
.

Ln BATTERY BACK-UP[,:: a

FOR REAL TIME CLOCK =
— — c— C— G— — — —

Figure 1-6 Block Diagram of Workstation Components

VAXmate Workstation Overview

1-5

Chapter 2
VAXmate Microprocessor

Overview

The VAXmate microprocessor is an Intel 80286 central processing unit (CPU).
The CPU is a high-performance, 8 MHz microprocessor with a 16-bit external
data path and a 24-bit address path. The CPU provides two modes of opera-
tion, real address mode and protected virtual address mode.

Real Address Mode

On powerup, the CPU operates in real address mode. In real address mode, the
80286 CPU behaves as though it is a fast 8086 CPU. It is limited to the 1
Mbyte address range of the 8086 CPU. In real address mode, the ROM is ac-
cessed in the address range 0F0000H-OFFFFFH.

Protected Virtual Address Mode

In protected virtual address mode, the 80286 CPU can access 16 Mbytes of
physical memory and 1 gigabyte of virtual memory.

The ROM is redundantly mapped to two physical address ranges, 0FO000H-
OFFFFFH and FFOOOOH-FFFFFFH. Therefore, in protected virtual address
mode, the 80286 CPU can access the ROM at either physical address range.
However, the majority of the ROM BIOS code is not valid in protected virtual
address mode.

The CPU uses the keyboard interface controller or a double exception fault to
reset to real address mode from protected virtual address mode. The keyboard
interface controller is discussed in Chapter 8.

VAXmate Microprocessor 2-1

Coprocessor

The optional coprocessor for the VAXmate workstation is an Intel 80287 proc-
essor extension chip. It is a high-performance, numeric processor that extends
the CPU data types to include floating-point, extended-integer, and binary-
coded decimal (BCD).

Additional Sources of Information

The following Intel Corporation documents provide additional information on
the CPU and coprocessor:

Introduction to the iAPX 286 (Publication Number 210308)

iAPX 286 Hardware Reference Manual (Publication Number 210760)
iAPX 286 Programmer’s Reference Manual (Publication Number 210498)
Microsystem Components Handbook (Publication Number 230843)

2-2 VAXmate Microprocessor

Memory Map

The base configuration workstation has 1 Mbyte of RAM and 64 Kbytes of
ROM. An optional memory module can be added without an expansion box.

Table 2-1 describes the VAXmate workstation’s physical memory map. The 1
Mbyte of RAM is divided into three, noncontiguous blocks. In Table 2-1, these
blocks are labeled BLOCK1, BLOCK2, and BLOCKS3.

Table 2-1 Physical Memory Map

From To Size Description
(Bytes)

000000H 09FFFFH 640K System RAM (BLOCK1)

0A0000H OAFFFFH 64K Reserved

0B0000OH OBFFFFH 64K Video RAM
During video mode setup, the video
RAM is dynamically mapped. Only
the video RAM required by the cur-
rent video mode is accessible.

0C0000H OCFFFFH 64K Available for options with expansion
ROM

0D0000H OEFFFFH 128K DIGITAL private RAM (BLOCK2)

0F0000H OFFFFFH 64K System ROM

100000H EFFFFFH 14336K Optional RAM space

F00000H F1FFFFH 128K Reserved RAM space

F20000H F5FFFFH 256K DIGITAL private RAM (BLOCKS3)

F60000H F7FFFFH 128K Reserved RAM space

F80000H FEFFFFH 448K Reserved ROM space

FF0000H FFFFFFH 64K System ROM (redundantly mapped

from OF0000H)

VAXmate Microprocessor 2-3

Input/Output Address Map

Table 2-2 describes the VAXmate workstation’s I/O address map. Many of the
I/0 ports have an industry-standard assignment. Recognition of that assign-
ment does not indicate that the device is present in the workstation.

Table 2-2 Input/Output Address Map

From To Device Description

0000H 001FH 8237A-5 DMA controller

0020H 003FH 8259A Interrupt controller #1

0040H 005FH 8254-2 Timer

0060H 006FH 8042 Keyboard interface controller
0070H Bit 7 controls the NMI mask register
0070H 0077H MC146818 Real-time clock and CMOS RAM
0078H 007FH Reserved

0080H 009FH 74LS670 DMA page registers

00AOH 00BFH 8259A Interrupt controller #2

00COH 00DFH —— Reserved

00EOH 00EFH —— Unassigned

00FOH Clear math coprocessor busy
00F1H Reset math coprocessor

00F2H 00FTH —w Unassigned

00F8H 00FFH 80287 Math coprocessor

0100H 01EFH Unassigned

01FO0H 01F8H WD2010 Hard disk controller

01F9H 01FFH Unassigned

0200H 0207H _— Game port I/O

0208H 0277H _— Unassigned

0278H 027FH ——— Parallel printer port #2

0280H 02F7H —_— Unassigned

02F8H 02FFH 8250 Serial port #2 (Integral modem option)
2-4 VAXmate Microprocessor

Table 2-2

Input/Output Address Map (cont.)

From To Device Description

0300H 031FH — Reserved

0320H 0356FH —— Unassigned

0360H 036FH — Reserved

0370H 0377H _— Unassigned

0378H 037FH —— Parallel printer port #1

0380H 038FH _ Reserved

0390H 039FH —— Unassigned

03A0H 03AFH —— Reserved

03BOH O03BFH —— Reserved

03COH 03CFH Reserved

03DOH 03DFH 6845 Graphics video controller

03EOH 03EFH Unassigned

03FO0H 03F5H PD765A Diskette controller

03F6H 03F7H Hard disk and diskette controllers

03F8H 03FFH 8250 Serial port #1

0400H OBFFH ——— Unassigned *

0COOH O0ClIFH — System CSR 1

0C20H 0C3FH Ethernet ROM

0C40H 0C5FH 2661 Universal Asynchronous Receiver/
Transmitter (UART) for mouse port

0C60H 0C7FH @ —— Network Controller and Interface

0C80H Special purpose register

0C81H 0C9FH Reserved

0CAOH O0CA7TH 8250 Integral serial printer port

0CA8H ODFFH — Reserved

0EOOH FFFFH ——— Unassigned *

* Industry-standard, processor-board, I/O ports in the address range 0000H-
00FFH respond to these 1/0 addresses. Therefore, 1/O to the expansion
box in this address range is undefined.

VAXmate Microprocessor 2-b6

Interrupt Vector Map
Table 2-3 shows the VAXmate workstation’s interrupts. The four columns in
Table 2-3 provide the following information:
e The interrupt column identifies the interrupt number in hexadecimal.
e The type column is interpreted as follows:
- The letter F indicates a processor exception interrupt.
- The letter H indicates a hardware interrupt.
- The letter S indicates a software interrupt.

- The letter P indicates that the interrupt vector space contains a
pointer to a parameter table or an application routine.

- The letter N indicates that the vector has no assignment.

e The description column identifies the specific assignment of the interrupt
vector.

* The service column indicates whether or not the ROM BIOS services the
interrupt. During system startup. interrupt vectors that are not serviced
by the ROM BIOS are initialized to point to an interrupt return (IRET)
instruction, indicated by IRET. For information on ROM BIOS-serviced
software interrupts, see Chapter 15.

2-6 VAXmate Microprocessor

Table 2-3 Interrupt Vector Map

Interrupt Type Description Service
00H E Divide by zero IRET

01H E Single step IRET

02H H NMI ROM BIOS
03H S Breakpoint (Used by DEBUG) IRET

04H E Overflow IRET

05H S Print Screen function ROM BIOS
06H-07H N Reserved IRET

08H H Timer interrupt service (IRQO) ROM BIOS
09H H Keyboard interrupt service (IRQ1) ROM BIOS
0AH H Reserved (IRQ2 interrupt from controller #2) IRET

0BH H Serial port #2 (Asynchronous) (modem IRET

option) (IRQ3)

0CH H Serial port #1 (Asynchronous) (IRQ4) ROM BIOS
ODH H Unassigned (IRQ5) IRET

OEH H Diskette interrupt service (IRQ6) ROM BIOS
OFH H Parallel printer port #1 (IRQ7) IRET

10H S Video 1/O ROM BIOS
11H S Return configuration ROM BIOS
12H S Return memory size ROM BIOS
13H S Diskette and hard disk 1/O ROM BIOS
14H S Asynchronous communications I/O ROM BIOS
15H S Extended ROM BIOS functions ROM BIOS
16H S Keyboard 1/O ROM BIOS
17H S Printer Output ROM BIOS
18H S Invoke network boot/Maintenance Operation ROM BIOS

Protocol (MOP)
19H S Bootstrap ROM BIOS

VAXmate Microprocessor 2-7

Table 2-3 Interrupt Vector Map (cont.)

Interrupt Type Description Service

1AH S Time of day ROM BIOS

1BH P Keyboard BREAK vector IRET

1CH P Timer tick vector IRET

1DH P Video parameter table ROM BIOS

1EH P Diskette parameter table ROM BIOS

1FH P Graphics character table (Character codes ROM BIOS
80H-FFH)

20H-3FH S Reserved for MS-DOS IRET

40H P INT 13H redirect when hard disk in use ROM BIOS

41H P Parameter table pointer for hard disk 0 ROM BIOS

42H-45H N Reserved IRET

46H P Parameter table pointer for hard disk 1 ROM BIOS

47H-5FH N Reserved IRET

60H-67H N :Available for application or user program IRET
Interrupts

68H-6FH N Reserved for DECnet software IRET

70H H Real time clock interrupt (IRQ8) ROM BIOS

71H H Redirect to interrupt 0AH - Old IRQ2 IRET
(IRQ9)

72H H Ethernet controller (IRQ10) ROM BIOS

73H H Serial printer port (IRQ11) ROM BIOS

74H H Mouse port (IRQ12) IRET

75H H 80287 error (IRQ13) ROM BIOS

76H H Hard disk controller (IRQ14) ROM BIOS

77TH H Unassigned (IRQ15) IRET

78H-7FH N Unassigned IRET

80H-FOH N Reserved IRET

F1H-FFH N Unassigned

2-8 VAXmate Microprocessor

Bus Timing and Structure

The 8 MHz clock rate results in a 125 ns processor cycle. Normal operation of
the 80286 CPU requires two processor cycles. With zero wait states, a read or
write cycle requires 250 ns.

There are three data bus structures:

e A 16-bit local bus
* An 8-bit expansion bus
e A 16-bit expansion bus

16-Bit Local Bus

The local bus connects the CPU to on-board memory and on-board peripherals.
One wait state is added to local bus memory transfers, resulting in a 375 ns
bus cycle. Two wait states are added to local bus input/output (I/O) transfers,
resulting in a 500 ns bus cycle.

The RAM access time is 150 ns. The ROM access time is 250 ns.

NOTE

In assembly language programming, directing two or more con-
tiguous 1/O instructions at the same device may not provide
enough time for the device to respond. This is possible because
peripheral devices respond more slowly than the 80286 proces-
sor executes. A jump instruction consumes processor cycles and
clears the processor pre-fetch queue. Thus, jumps to successive
I/O instructions provide the required response time. The C lan-
guage I/O functions, commonly named in() and out() or inp() and
outs(), provide enough response time because they contain suf-
ficient overhead in the calling sequence.

16-Bit Expansion Bus

The 16-bit expansion bus supports word transfers to memory and 1/0. One wait
state is automatically added, resulting in a 375 ns bus cycle.

8-Bit Expansion Bus

The 8-bit expansion bus supports byte and word transfers to memory and 1/0.
Word transfers are controlled by hardware, which issues two sequential byte
transfers (low byte first and high byte second). Table 2-4 describes the bus
cycle times for all transfer types on the 8-bit expansion bus.

VAXmate Microprocessor 2-9

Table 2-4 8-Bit Expansion Bus Transfer Times

Type Size Time Wait States
Memory Byte 750 ns

Memory Word (two, 8-bit transfers) 1500 ns

I/0 Byte 1125 ns

1/0 Word (two, 8-bit transfers) 2250 ns 14

Expansion Box Technical Specifications

The VAXmate expansion box provides two expansion module slots. Each slot
accommodates a single expansion module. If a mother-daughter board is used
in one of the slots, then both slot areas will be used and it will not be possible
to add a second module. Table 2-5 shows the amperage (current) and wattage
values available for each slot. Each slot has an 8-bit and a 16-bit bus connector.
Figure 2-1 shows the pin numbers and signal names for the 8-bit and 16-bit
bus connector.

Table 2-5 Expansion Slot Power Ratings

Slot +5.1V +12.1V 120V 5.0V Watts
OPT-1 1.300 0.100 0.100 0.100 9.640
OPT-2 1.300 0.100 0.100 0.100 9.5640

Expansion Box Operating Ranges
Ambient Operating Temperature: 15 C (59 F) to 32 C (90 F)

Relative Humidity: 8% to 80%

2-10 VAXmate Microprocessor

8-Bit Bus Connector

GROUND
RESET H
+5v
IRQ9 H
-5v
DRQ2 H
-12v
OWS L
+12V
GROUND
MEMV L
MEMR L
IOV L
IOR L
DACK3 L
DRQ3 H
DACK1 L
DRQ1 H
REFRESH L
CLOCK H
IRQ7 H
IRQ6 H
IRQ5 H
IRQ4 H
TIRQ3 H
DACK2 L
T/C H
ALE H
+5V

0SC H
GROUND

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31

Al

A2

A3

A4

A5

A6

A7

A8

A9

Al0
All
Al12
Al3
Al4
Al5
Al6
Al7
A18
Al9
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31

1/0
SD7
SDé6
SD5
SD4
SD3
SD2
SDh1
SDO
I/0
AEN
SA19
SA18
SAl17
SA16
SA15
SAl4
SA13
SA12
SAl11
SA10
SA9
SA8
SA7
SA6
SAS5
SA4
SA3
SA2
SAl
SAO

mgmmnmmmumo
=-l--N----N-- - -l -~ -~

[=-N--l--N--N--l--]--] --] --) - -}

R

]
=

16-Bit Bus Connector

MEM16
1/016
IRQ10
TRQ11
IRQ12
IRQ15
TRQ14
DACKO
DRQO H
DACKS L
DRQ5 H
DACK6 L
DRQ6 H
DACK7 L
DRQ7 H
+5V
MASTER L
GROUND

[l --I--R -l -- -l

*%
*%k
*k
*%k

*%

X%

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18

C1
Cc2
Cc3
C4
C5
Cc6
c7
Cc8
c9
C10
Cl11
Ci2
C13
Cl4
C15
C16
C17
C18

SBHE
UA23
UA22
UA21
UA20
UA19
UA18
UA17
EMEMR L
EMEMV L
SDO8
SDO9
SD10
SDh11
SD12
SD13
SD14
SD15

--J--N--N--N--N--N--N

=-J--N--N--N--N--N----

Not

Figure 2-1 8-Bit and 16-Bit Bus Connectors

VAXmate Microprocessor

Implemented

2-11

Chapter 3
Interrupt Controllers

Overview

The VAXmate 80286 central processing unit (CPU) has two interrupt input
lines, the Non-Maskable Interrupt (NMI) and the Interrupt Request (INTR).
When these hardware inputs are active, the CPU suspends execution of the
current program and begins execution of an interrupt handler. An interrupt
handler is a program or program segment that responds to a specific event.
This allows an immediate response to asynchronous external events and the
segregation of program responsibility for handling those events.

The interrupt input lines are assigned to different classes of events. The NMI
is dedicated to two catastrophic events, memory parity errors and I/O bus
errors. The INTR is assigned all other external interrupt sources, such as
diskette and hard disk controllers, serial and parallel ports, and clocks. The
reason for this division is the way the CPU implements the two interrupts:

e The NMI has a higher priority than the INTR.

e The CPU has no way to disable the NMI input.

* The CPU provides handshaking protocol during INTR processing, but not
during NMI processing.

* The NMI generates only one interrupt vector, which is fixed.

Because the CPU does not provide handshaking during NMI processing, the
CPU cannot communicate with an interrupt controller. Therefore, the NMI
sources are connected directly to the NMI input. To determine the source of
the interrupt, the NMI interrupt handler must read the status output of the
sources.

Interrupt Controllers - Hardware Description 3-1

The INTR input is buffered by two, 8259A interrupt controllers. The interrupt
controllers reduce the CPU interrupt processing overhead in the following
ways:

They resolve the priority of simultaneous or overlapping interrupts.
e They concentrate multiple interrupts into one source.
e They provide the vector number of the interrupt handler.

Each interrupt controller is capable of handling eight interrupt requests. The
16 inputs are labeled IRQ0-IRQ15. Controller 1 buffers IRQ0-IRQ7 and control-
ler 2 buffers IRQ8-IRQ15. Although they are physically identical, the interrupt
controllers have a master/slave relationship. The output of controller 2 (the
slave) is connected to the IRQ2 input of controller 1 (the master). The output
of the master is connected to the INTR input of the CPU. Table 3-1 shows all
of the IRQ inputs.

Table 3-1 Interrupt Request Lines

Priority Controller Controller Source
#1 MASTER #2 SLAVE

1 IRQO Event timer output 0
2 IRQ1 Keyboard controller
3 IRQ2 Slave interrupt controller
3.1 IRQS8 Real-time clock
3.2 IRQ9 Software redirection to IRQ2
3.3 IRQ10 LANCE (Ethernet)
3.4 IRQ11 Serial printer port
3.5 IRQ12 Mouse port
3.6 IRQ13 Coprocessor error
3.7 IRQ14 Hard disk drive controller
3.8 IRQ15 Available, 16-bit bus
4 IRQ3 Reserved, integral modem option
5 IRQ4 Asynchronous communications port
6 IRQ5 Available, 8-bit bus
7 IRQ6 Diskette drive controller
8 IRQ7 Available, 8-bit bus

3-2 Interrupt Controllers - Hardware Description

Additional Source of Information

The following Intel Corporation document provides additional information:

® Microsystem Components Handbook (Publication Number 230843)

Read/Write Control

The 8259A interrupt controller has the following registers:

Initialization Command Words (ICW) - There are four initialization com-
mand words (ICW1-ICW4). They establish the operating conditions of the
interrupt controller and are written only during system initialization.

Operation Command Words (OCW) - There are three operational command
words (OCW1-OCW3). These registers select access to internal controller
registers and control the run-time aspects of the interrupt controller.

Interrupt Mask Register (IMR) - The IMR selectively enables and disables
the interrupt controller’s interrupt input lines. In this manual, IMR refers to
the physical register and OCW1 refers to the command to read or write the
interrupt mask register.

Interrupt Request Register (IRR) - Following a CPU interrupt acknowledge,
each bit in the IRR reflects the state of the corresponding interrupt input.

In-Service Register (ISR) - The ISR register indicates the interrupt input
lines that the CPU is currently servicing.

Poll data - The poll data indicates whether any enabled interrupt inputs are
active. If any enabled interrupt inputs are active, it also contains the inter-
rupt input number of the highest priority input requesting service.

Although the 8259A interrupt controller has many registers, it has only two
input/output (I/O) ports. Table 3-2 shows the master and slave I/O port ad-
dresses. Table 3-3 shows the registers and the requirements to access them.

Table 3-2 Master and Slave I/0O Addresses

Port Master Slave
0 0020H 00AOH
1 0021H 00A1H

Interrupt Controllers - Hardware Description 3-3

Table 3-3 Accessing the Interrupt Controller Registers

Register

R/W Port

Access Method

ICW1

ICW2
ICW3

ICW4

OCW1

OCW2

OCW3

IRR

ISR

w

w

RIW

Poll Data R

0

When bit 4 of the value written to port 0 equals 1,
ICW1 is selected.

Must be the next byte written after ICW1.

The interrupt controller expects ICW3 only if ICW1,
bit 1 equals 1. If written, ICW3 must be the next
byte written after ICW2,

The interrupt controller expects ICW4 only if ICW1,
bit 0 equals 1. If ICW4 is written and ICW3 is not,
ICW4 must be the next byte written after ICW2, If
ICW3 and ICW4 are written, ICW4 must be the
next byte written after ICW3.

Reading or writing OCW1 requires only that the in-
itialization process be complete. Reading or writing
OCW1 accesses the interrupt mask register.

Writing OCW2 requires that the initialization proc-
ess be complete and OCW2 bits 4-3 are equal to 0.

Writing OCW3 requires that the initialization proc-
ess be complete, OCW3 bit 4 equals 0, and OCW3
bit 3 equals 1.

Reading the IRR is a two-step process. First, issue
the read IRR command (write OCW3 with OCW3
bit 1 equals 1 and OCW3 bit 0 equals 0). Then, read
the IRR through port 0. Until another command is
written to OCW3, subsequent reads of port 0 return
the IRR.

Reading the ISR is a two-step process. First. issue
the read ISR command (write OCW3 with OCW3
bit 1 equals 1 and OCW3 bit 0 equals 1). Then, read
the ISR through port 0. Until another command is
written to OCW3, subsequent reads of port 0 return
the ISR.

Reading the poll data is a two-step process. First,
issue the read poll data command (write OCW3 with
OCW3 bit 2 equals 1). Then, read the poll data
through port 0. The OCW3 poll command must
always be written prior to reading the poll data.

3-4

Interrupt Controllers - Hardware Description

Initialization Command Words

The 8259A interrupt controllers do not have a hardware reset. After power is
applied to the system and until they are initialized, the interrupt controllers are
in an undefined state. The VAXmate startup code initializes the interrupt
controllers.

Initializing the 8259A interrupt controller requires from two to four initializa-
tion command words written in sequence.

The interrupt controller recognizes ICW1 as the start of an initialization se-
quence. An ICW1 resets the interrupt controller as follows:

1.

S g ok ®

The trigger mode is cleared to edge-triggered mode and the edge sense
circuit is reset. After initialization, an interrupt request input must make
a low-to-high transition to generate an interrupt.

All bits in the IMR are cleared (enabled). Because the initialization se-
quence enables interrupt inputs, on completion of the initialization se-
quence, the interrupt controllers can immediately issue interrupt
requests. Therefore, the interrupt vectors and handlers should be in-
itialized prior to initializing the interrupt controllers.

The IRQ7 input is assigned priority 7.
The slave mode address is set to 7.
If ICW1 bit 0 equals 0, all bits in ICW4 are cleared (0).

In the OCW3 register, the special mask mode is cleared (disabled) and
status read bits are set to read the IRR.

The interrupt controller enters fully nested mode. All other modes of op-
eration are variations of this mode. In fully nested mode, the interrupt
inputs have a fixed order of decreasing priority and the priority of an
input corresponds to its input number 0 (highest) - 7 (lowest). While the
CPU is servicing an interrupt (until the interrupt controller receives an
end-of-interrupt command), the controller inhibits interrupts of equal or
lower priority. However, the current interrupt service can be nested in
favor of a higher priority interrupt as follows:

- The higher priority interrupt input must be unmasked (enabled).
- The CPU INTR input must be enabled (STI instruction).

NOTE

The 8259A interrupt controller is compatible with two
microprocessor families, 8080/8085 and 8088/8086/80286.
Because the VAXmate CPU is an 80286, this manual describes
only the 80286 application. Those bits dedicated to the 8080/
8085 family are unused and described only as belonging to the
8080/8085 family.

Interrupt Controllers - Hardware Description 3-5

The 8259A interrupt controller has the following mutually exclusive methods of
indicating whether an interrupt controller is a master or a slave:

e The initialization sequence selects nonbuffered mode in
ICW4. In nonbuffered mode, a hardware connection to the
SP/EN pin determines whether the controller is a master
or a slave. In this mode, a high level at the SP/EN pin
indicates a master and a low level at the SP/EN pin indi-
cates a slave. The VAXmate workstation uses this method.

e The initialization sequence selects a buffered master or a
buffered slave in ICW4,

3-6 Interrupt Controllers - Hardware Description

Initialization Command Word 1 (0020H/00A0H)

6 5 4 3 2 1 0

TRIGGER SINGLE/ |ICW4
MODE CASCADE | REQUEST

Bit

R/W Description

7-5

W
w

g =

Always 0 (These bits are used only by the 8080/8085 CPU family.)

Always 1

For values written to port 0, this bit distinguishes an ICW1 from
operational command words 2 and 3. For additional information,
see Table 3-3.

TRIGGER MODE
= Edge-triggered mode
1 = Level-triggered mode

For either trigger mode, a low-to-high transition at an interrupt
input generates an interrupt request. In edge-triggered mode, to
generate another interrupt request at the same input, the input
must change from high to low and back to high. In level-triggered
mode, while that interrupt input remains high, the controller can
generate additional interrupt requests for that input. The
VAXmate startup code initializes the interrupt controllers to edge-
triggered mode.

Always 0 (This bit is used only by the 8080/8085 CPU family.)

SINGLE/CASCADE
0 = Cascade mode
1 = Single mode

Single mode indicates that this is the only interrupt controller in
the system. Therefore, it is neither a master nor a slave and ICW3
is not written. Cascade mode indicates that there is more than one
interrupt controller in the system. Therefore, it is either a master
or a slave and ICW3 is required. The VAXmate workstation uses
cascade mode.

ICW4 REQUEST
0 = ICW4 is not required
1 = ICW4 is required

This bit indicates whether ICW4 is required in the initialization se-

quence. The VAXmate workstation requires ICW4.

For the master ICW1 and the slave ICW1, use 11H.

Interrupt Controllers - Hardware Description 3-7

Initialization Command Word 2 (0021H/00A1H)
7 6 5 4 3 2 1 0

T?7 T6 TS5 T4 T3

Bit R/W Description

73 W Bits 7-3 of the interrupt number for interrupt input 0.

This value corresponds to the address of the interrupt vector di-
vided by four. The interrupt controller generates a sequential inter-
rupt number for each of the interrupt inputs by ORing the
interrupt input number and ICW2. Because the interrupt input
number is ORed to the value in ICW2, there is no carry involved.
Therefore, the value in ICW2 must be evenly divisible by 8
(modulo 8).

20 W Always 0

For the master ICW2, use 08H. For the slave ICW2, use 70H.

3-8 Interrupt Controllers - Hardware Description

Initialization Command Word 3 (0021H/00A1H)

When there are two or more interrupt controllers in the system, an ICW3 is
used in the initialization sequence. The VAXmate workstation has two interrupt
controllers and requires ICW3. The meaning and use of ICW3 depends on
whether the interrupt controller is a master or a slave.

ICW3 (Master)

6 5 4 3

s7

S6 S5 S4 S3 S2 s1 SO

Bit

R/W Description

7-0

w

For each master interrupt input that is connected to a slave, the
corresponding ICW3 bit is set (1). The master interrupt controller
can then determine which interrupt inputs require a slave identifi-
cation on the cascade lines. For the master ICW3, use 04H.

ICW3 (Slave)

7 6 5 4 3 2 1 0
T 1
SLAVE 1ID
0 0 0 0 0
1 1
Bit R/W Description
7-3 W Always 0
2-0 W SLAVE ID - Slave Identification

The slave identification is the master interrupt input (7-0) to which
the slave is connected. During the CPU interrupt acknowledge se-
quence, the slave compares its cascade input to these bits. If they
are equal, the slave places the interrupt vector number on the 1/0
data bus. For the slave ICW3, use 02H.

Interrupt Controllers - Hardware Description 3-9

Initialization Command Word 4 (0021H/00A1H)

7 6 5 4 3 2 1 0
SPECIAL
FULLY |BUFFER |MASTER/ EOI CPU
NESTED |MODE SLAVE MODE MODE
0 0 0 MODE
Bit R/W Description
7-5 W Always 0
W SPECIAL-FULLY-NESTED MODE *
0 = Disable special-fully-nested mode
1 = Enable special-fully-nested mode
3-2 W BUFFERED MODE and MASTER/SLAVE
0X = Nonbuffered mode - In nonbuffered mode, a hardware con-

nection to the SP/EN pin determines whether the control-

ler is a master or a slave and bit 2, the master/slave

selection, has no effect. In this mode, a high level at the
SP/EN pin indicates a master and a low level at the SP/
EN pin indicates a slave. The VAXmate workstation uses

this mode.

10 = Buffered mode slave - The VAXmate workstation is incapa-

ble of operating in this mode.

11 = Buffered mode master - The VAXmate workstation is inca-

pable of operating in this mode.
1 w EOI MODE - End-of-interrupt Mode

0 = Normal EOI - In this mode, the CPU must write an EOI
command to the interrupt controller. The VAXmate startup
code initializes the interrupt controller to normal EQI mode.
The EOI command is explained in the operation command

word 2 description.

1 = Automatic EOI - In automatic EOI mode, the interrupt con-
troller generates its own EOI on the second acknowledge

pulse.

0 W CPU MODE
0 = 8080/8085 microprocessor family
1 = 8088/8086/80286 microprocessor family

The VAXmate workstation uses the 80286 CPU mode.

Special-fully-nested mode is for master interrupt controllers. For the

master interrupt controller, each slave controller is a single interrupt
input. Thus, the master controller cannot resolve the priority of the slave
controller interrupt inputs. If a slave controller has an active, low prior-
ity interrupt that is nested in favor of a higher priority interrupt, the
master inhibits the new slave interrupt request. This effectively disables

3-10 Interrupt Controllers - Hardware Description

nesting of slave interrupts. In special-fully-nested mode, the master inter-
rupt controller acts on all slave interrupt requests, which allows the slave
to nest interrupts. The VAXmate workstation startup code disables the
special-fully-nested mode.

For the master ICW4 and the slave ICW4, use 01H.

Operation Command Words

The interrupt controller provides three operation command words (1-3) that are
programmed after the initialization sequence is complete. The operation com-
mand words select various modes or operations as follows:

Read or write the interrupt mask register

Accept specific or nonspecific end-of-interrupt commands
Enable or disable various automatic priority rotation schemes
Set a specific priority level

Set or reset the special mask

Read poll data

Read the interrupt request register

Read the in-service register

Operation Command Word 1 (0021H/00A1H)
7 6 5 4 3 2 1)

] 1] L L] LI}]

MASK BITS

Bit R/W Description

7-0 R/W Interrupt mask register bits
0 = Corresponding interrupt inputs are unmasked (enabled)
1 = Corresponding interrupt inputs are masked (disabled)

OCW1 reads or writes the interrupt mask register (IMR). Each bit in the IMR
enables or disables the corresponding interrupt input.

Interrupt Controllers - Hardware Description 3-11

Operation Command Word 2 (0020H/00A0H)
7 6 5 4 3 2 i 0

ROTATE SL EOI INTERRUPT LEVEL

Bit R/W Description

7-5 W ROTATE/SL/EOI

000 = Disable rotation in automatic EOI mode
001 = Nonspecific end-of-interrupt (EOI)

010 = No operation

011 = Specific end-of-interrupt

100 = Enable priority rotation in automatic EOI mode

101 = Rotate priority on nonspecific EOI
110 = Rotate priority to specific interrupt input
111 = Rotate priority on specific EOI

4 W Always 0
For values written to port 0, this bit distinguishes operational com-
mand words 2 and 3 from an ICW1. See Table 3-3.

3 W Always 0
This bit distinguishes OCW2 from OCW3. See Table 3-3.

2-0 W INTERRUPT LEVEL
For interrupt-specific operations, these bits contain the interrupt
input number (0-7) to act on. For nonspecific operations, these bits
are ignored.

OCW?2 issues an end-of-interrupt command or sets a priority rotation mode.
Some OCW?2 operations are nonspecific. (They act on the interrupt input that
has the highest priority, whichever one that may be.) Non-specific commands
do not use INTERRUPT LEVEL (OCW2 bits 2-0). Specific OCW2 operations
require the interrupt input number (0-7) in INTERRUPT LEVEL.

For the master OCW2 and the slave OCW2, use 20H (nonspecific EOI
command).

3-12 Interrupt Controllers - Hardware Description

Priority Rotation

In nonspecific or automatic EOI mode, priority rotation has the effect of
assigning equal priorities to all interrupt inputs. On receipt of an EOI com-
mand, the interrupt controller assumes that the active interrupt input with the
highest priority is the interrupt just completed. The priority bits are rotated
until the just completed interrupt has the lowest priority (7). If that interrupt
input requires further service, it must wait until it is again the highest priority
interrupt or until all interrupts of higher priority are inactive.

In Figure 3-1, interrupt inputs 2, 5, and 6 are requesting service and interrupt
input 2 has a higher priority than interrupt inputs 5 and 6. After interrupt
input 2 is serviced, the interrupt controller rotates the priority as shown in
Figure 3-2. In Figure 3-2, interrupt input 3 has the highest priority, but it is
inactive. Because interrupt input 5 has the highest priority of the active inter-
rupts, it is the next interrupt input serviced.

Rotating priorities to a specific interrupt input is another method of priority
rotation. In this method, the lowest priority is set, thereby fixing all other
priorities. For example, if interrupt input 2 is programmed as the lowest prior-
ity, then interrupt input 3 becomes the highest. OCW2 bits 2-0 define the in-
terrupt input number that is assigned the lowest priority. This method is not
used in the VAXmate workstation startup code.

Interrupt Controllers - Hardware Description 3-13

In-Service Bits

7 6 5 4 3 2

0 1 1 0 0 1
Priority Status

7 6 5 4 3 2

7 6 5 4 3 2

In-Service Bits

Figure 3-1 Priority Before Rotation

7 6 5 4 3 2

0 1 1 0 0 0
Priority Status

7 6 5 4 3 2

4 3 2 1 0 7

Figure 3-2 Priority After Rotation

3-14 Interrupt Controllers - Hardware Description

Operation Command Word 3 (0020H/00AO0H)

7 6 5 4 3 2 1 0
ENABLE |SPECIAL
SPECIAL|MASK POLL READ READ
MASK MODE IR REG| IS REG
0 MODE 0 1

Bit R/W Description

7 W Always 0
6-6 W ENABLE SPECIAL MASK MODE/SPECIAL MASK MODE

00 = No action
01 = No action
10 = Disable special mask mode
11 = Enable special mask mode

Some operations require that an interrupt service routine dynami-
cally change the priority structure. Masking an interrupt input in
the special mask inhibits that priority level and enables all other
priority levels (lower and higher) that are unmasked. After enabling
special mask mode, the special mask is read or written to the
IMR.

4 W Always 0
For values written to port 0, this bit distinguishes operational com-
mand words 2 and 3 from an ICW1. See Table 3-3.

3 W Always 1
This bit distinguishes OCW3 from OCW2, See Table 3-5.

2-0 W POLL/READ IR REG/READ IS REG

000 = No action

001 = No action

010 = Read the IRR. *

011 = Read the ISR. *

100 = Read the poll data. **
101 = Read the poll data. **
110 = Read the poll data. **
111 = Read the poll data. **

* See Table 3-3 and the IRR/ISR description.
** See Table 3-3 and the poll command description.

For standard operation of the VAXmate workstation, neither the master nor
the slave use OCW3.

Interrupt Controllers - Hardware Description 3-156

Interrupt Request and In-Service Registers

Interrupt Request Register

7 6 5 4 3 2 1 0
IRQ7 TRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 IRQO
In-Service Register
7 6 5 4 3 2 1 0
IS7 IS6 IS5 IS4 IS3 ISs2 Is1 IS0

The Interrupt Request Register (IRR) and the In-Service Register (ISR) main-
tain the state of the interrupt controller. During the first interrupt acknowledge
of the CPU interrupt acknowledge sequence, the IRR latches the state of the
interrupt input lines. The internal output of the Interrupt Mask Register (IMR)
gates the output of the IRR to the priority encoder. Assuming that one or
more IRR bits are set (active) and unmasked (enabled), the priority encoder de-
termines which one has the highest priority. During the second interrupt ac-
knowledge, that IRR bit is strobed into the corresponding ISR bit, the edge
sense circuitry for that interrupt input is reset, and the interrupt vector
number is placed on the 1/0O data bus.

Because the interrupt controller can nest interrupts, the ISR can contain one,
two, or more bits that are set. This shows that another interrupt was acknowl-
edged before other interrupt processing was completed. A specific end-of-
interrupt (EOI) clears the indicated ISR bit. A nonspecific EOI clears the
highest-priority ISR bit.

If an IRR bit is set (active) and masked (disabled), unmasking (enabling) that
active IRR bit creates an interrupt.

3-16 Interrupt Controllers - Hardware Description

Poll Command

When issued, the poll command performs steps similar to those described in
the IRR/ISR description. The poll command replaces the function of the CPU
interrupt acknowledge sequence. Instead of placing the interrupt vector number
on the I/O data bus, the poll command connects the output of the poll data
register to the port 0 output buffer. The polling interrupt handler then reads
the poll data to determine if an interrupt input is active and, if so, which one.
To complete the interrupt sequence, the polling interrupt handler must issue an
EOL

Poll Data Register

7 6 5 4 3 2 1 0
T T
INT
ACTIVE INTERRUPT INPUT
FLAG NUMBER
0 0 0 0 | |

Bit Description

7 R INT ACTIVE FLAG - Interrupt active flag
0 = No active interrupt inputs
1 = At least one interrupt input is active

6-3 R Always 0
20 R INTERRUPT INPUT NUMBER

If bit 7 equals 1, these bits contain the interrupt input number (0-
7) of the highest priority interrupt input that is active. If bit 7
equals 0, these bits have no meaning.

Interrupt Controllers - Hardware Description 3-17

Interrupt Sequence

The following list describes interrupt processing. Each item in the list describes
a system state or event. After a discussion of the state or event, the descrip-
tion indicates the next state or event. For the following interrupt processing
description, it is assumed that the interrupt controllers are initialized as pre-
viously described. Later, Figure 3-3 shows the same logic in the form of a flow
chart.

1.

Until one or more interrupt controller input lines become active, the con-
troller is idle. If one or more inputs are active, go to 2.

If any of the newly active inputs are unmasked (enabled), go to 4.
Otherwise, go to 3.

If other interrupt inputs are pending, go to 5. Otherwise, go to 1.
If no other interrupt inputs are pending, go to 7. Otherwise, go to 6.

If the controller is waiting for an end-of-interrupt command, go to 6.
Otherwise, go to 7.

If any interrupt has a priority higher than the one being processed by
the CPU, nest the interrupts and go to 7. Otherwise, go to 8.

The controller activates its interrupt output line and waits for an ac-
knowledge signal from the CPU.

If the interrupt controller input is a slave input, then the slave interrupt
output line activates the master interrupt controller IRQ2 interrupt
input. The master interrupt process starts at step 2. Eventually, the
master IRQ2 input becomes the highest priority master interrupt that is
active and the master controller arrives at this step. At that time, both
controllers are waiting for the CPU acknowledge signal.

In either case, the master interrupt controller activates its interrupt
output line, which triggers an external latch. The external latch drives
the CPU INTR input.

NOTE

This external latch, between the master interrupt controller in-
terrupt output and the CPU INTR input, was incorporated due
to an advisory on an 80286 CPU design flaw.

Disabling the CPU INTR input before disabling an interrupt
controller input or initializing the interrupt controllers can leave
the latch set. On reenabling the CPU INTR input, the latch
could indicate an interrupt request when none exists.

To avoid this situation, disable the interrupt controller input or
write the first master interrupt controller initialization command
before disabling the CPU INTR input.

3-18 Interrupt Controllers - Hardware Description

If the CPU INTR input is disabled, the interrupt controller continues to
wait. If other interrupt controller inputs become active during this waiting
period, go to 2. When the CPU INTR input is enabled, the CPU recog-
nizes the interrupt request and responds with an acknowledge signal.

On receiving the acknowledge, the interrupt controller sets the highest
priority bit in the in-service register and resets the corresponding bit in
the interrupt request register. This allows the controller to recognize an-
other interrupt request at that interrupt controller input.

The CPU issues a second acknowledge signal. When the master interrupt
controller recognizes the second acknowledge signal, it determines
whether the interrupt input source is a slave interrupt controller. If the
interrupt input source is not a slave, the master controller places a
preprogrammed 8-bit interrupt vector on the input/output (I/0) data bus.
If the interrupt input source is a slave, the master controller places the
slave address (master interrupt input number 0-7) on the cascade lines.
When enabled by the slave address on the cascade lines, the slave places
the preprogrammed 8-bit interrupt vector on the input/output (I/0) data
bus. In either case, the CPU reads the 8-bit interrupt vector, stacks the
current state and begins executing the interrupt handler that is pointed
to by the contents of the interrupt vector.

. The interrupt controller(s) are waiting for an end-of-interrupt (EOI) com-
mand. When a slave interrupt is processed, an EOI command is required
by both the slave and the master.

If an interrupt occurs during this waiting period, go to step 2. When the
CPU writes the end-of-interrupt command, go to step 1.

Interrupt Controllers - Hardware Description 3-19

3-20

INTERRUPT

CONTROLLER
IS IDLE

IRR
ANY
ACTIVE

INPUTS?

NO WAITING

v QEOI?

ISR

YES
MR ISR
ANY
UNMASKED y_NO WAITING
INPUTS? wson
NO
WAITING
ON EOI?
ISR & IRR
ACTIVATE
NEST —»| INTERRUPT
INTERRUPTS U
NO
ISR & IRR
SET ISR YES NO
HAVE FIRST >
RESET IRR W
s ISR & IRR SP/EN & ICW4 Icw3
SLAVE
WAITING AM 1A NO RESPONDS
ON SECOND MASTER? TO CASCADE
ACK? ADDRESS
1cw3 Lsn & ICW2
MASTER PUTS SLAVE PUTS
8-BIT VECTOR
ADDRESS ON
CASCADE LINES| |ON /0 BUS
ISR & ICW2 l l
MASTER PUTS MASTER IS SLAVE IS
8-BIT VECTOR] WAITING WAITING
ON 1/0 BUS FOR EOI FOR EOI

Figure 3-3 Interrupt Sequence

Interrupt Controllers - Hardware Description

LJ-1309

Programming Example

The following programming examples demonstrate:
e [Initializing a master or slave 8259A peripheral interrupt controller (PIC)

* Programming the PIC interrupt mask register
¢ Issuing end-of-interrupt commands to a master or slave PIC

The example provides routines as described in the following:

pic_init Initializes the master and slave PICs.
imask Masks or unmasks the specified bit in the interrupt mask
register.
eoi Issues an end-of-interrupt command to the appropriate PICs.
CAUTION

Improper programming or improper operation of this device can
cause the VAXmate workstation to malfunction. The scope of
the programming example is limited to the context provided in
this manual. No other use is intended.

Interrupt Controllers - Programming Example 3-21

Constant Values and Data Structures

The constant value NPIC defines the number of peripheral interrupt controllers
in the VAXmate workstation.

The constant value EOI defines the bit value that must be issued to OCW2 to
establish an end-of-interrupt condition.

The structure type PIC defines the input/output ports of the 8259A peripheral
interrupt controller (PIC). These two ports access the PIC registers. The bit
values written to registers and the read or write sequence determine the ac-
cessed register.

The structure type PIC_DAT defines the type of data required to initialize a
PIC.

Initialization Data

The array of structures allpics provides the actual data for initializing the
master and slave PICs. Later, references to the PIC number refer to the posi-
tion of an element in the array allpics.

3-22 Interrupt Controllers - Programming Example

/***#*******************/

/* define constants and structures used in 8259 PIC example »/
/***#*/

#define NPIC 2 /* number of pics in system */
#define EOI 0x20 /* bit value of EOI command */
typedef struct /* define pic I/0 structure */
{
unsigned char portO; /* when address line AO = 0 */
unsigned char porti; /% when address line A0 = 1 */
} PIC;
typedef struct
{
PIC #base; /% base I/0 address of pic */
char icw2; /* modulo 8 base int vector */
char icw3; /* ir has a slave or slave id */
char icw4; /* icw4d mode data */
} PIC_DAT;

/***/,

/* define pic initialization data */
/***/

PIC_DAT allpics[NPIC] = /* device data tables */
{
{ (PIC *)0x0020, 0x08, 0x04, O0x01 }, /* pic 0 is the master */
{ (PIC *)0x00a0, 0x70, 0x02, 0x01 }, /* pic 1 is the slave */
};

Interrupt Controllers - Programming Example 3-23

Initializing the Peripheral Interrupt Controller

The function pic_init initializes the master and slave PICs. Because the ROM
BIOS startup sequence initializes the peripheral interrupt controllers (PIC), in-
itialization of the PICs is not normally required.

Because the initialization sequence clears the interrupt mask register, the CPU
interrupt flag is cleared after the initialization is started and before the initiali-
zation is complete. Thus, no interrupts are pending when the initialization is
started and the CPU will not respond to any interrupts that become active
during the initialization sequence.

The first two instructions write a value to port 0 of the indicated PIC. The
value of bit 4 is key to this operation. Writing a value to port 0, with bit 4 set,
selects the ICW1 register and indicates a reset sequence. The PIC stores the
remaining ICW1 bits in the ICW1 register, which starts the initialization
sequence.

* Bit 0 is set, indicating that the initialization sequence includes ICW4.

* Bit 1 is clear, indicating that the addressed PIC is involved in a cascade
(master/slave) arrangement and that ICW3 must be written during the in-
itialization sequence. That is, the PIC is not operating in a standalone
environment.

e Bit 3 is clear, indicating that the PIC is operating in edge-triggered mode.

e All other ICW1 bits apply to the 8085 mode of operation and are not
used.

Because two'PICs must be initialized, the rest of the initialization sequence is
performed within a for loop as follows:

1. The first instruction initializes a pointer to the required data.
2. The second instruction initializes a pointer to the port 0 I/O address.

3. The third instruction writes the base interrupt vector to port 1. Because
this is the second value written in the sequence, the PIC routes the
value to ICW2.

This base interrupt vector refers to the interrupt vector for interrupt
input zero. To generate a unique interrupt vector number for each inter-
rupt input, the PIC ORs the interrupt input number (0-7) and the base
interrupt vector number. Therefore, the base interrupt vector must be
modulo 8.

4. The fourth instruction is dependent upon whether the PIC is a master or
a slave. Because this is the third value written in the sequence and
ICW1 indicated a cascade mode, the PIC routes the value to ICW3.

3-24 Interrupt Controllers - Programming Example

e If the PIC is a master, each bit set in the value indicates that the
corresponding interrupt input is connected to a slave PIC. For the

VAXmate, only bit 2 is set.
e If the PIC is a slave, the value is the slave identification. The slave

identification is a value between 0 and 7 inclusive, and corresponds to
the master interrupt input to which it is connected.

/***/

/* pic_init() - initialize master and slave pics
/s ok ok ok Kook o ok ok sk ok o ko R K o o kK o sk ok

void pic_init()
{

int i;

int intr_f£flg;

register PIC_DAT *ppd;
register PIC *pps;

outp(allpics[0] .base, O0x11);
outp(allpics[1].base, Ox11);
intr_flg = int_off();
for(i = 0; i < NPIC; i++)
{
ppd = &allpics[i];
Pp8s = ppd->base;
outp (&¢pps->porti, ppd->icw2);
outp (&pps->portl, ppd->icw3);
outp(&pps->portl, ppd->icwd);
outp (&pps->portl, Oxff);
}
int_on(intr_£flg);

/* initialize all pics

/* variable for loop control
/* to hold CPU IF state
/* pointer to PIC data
/* pointer PIC I/0 structure

/* write master ICW1 is cascade
/* write slave ICW1 is cascade
/* turn CPU interrupts off

/* assign pointer to PIC data
/* assign pointer to I/0 ports
/* write ICW2

/* write ICW3

/* write ICW4

/* mask all interrupts

/% turn CPU interrupts on

5. The fifth instruction writes the ICW4 value to port 1.
e Bit 0 determines the microprocessor family. In this case, it is set and

indicates the 8086/80286 mode.

*/

*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/

*/

* Bit 1 is clear, indicating that the interrupt handling routine issues an
end-of-interrupt command after the interrupt is processed.

e Bits 2 and 3 are clear, indicating the nonbuffered mode of operation.
For the VAXmate, a permanent hardware connection determines the

master/slave relationship.

¢ Bit 4 is clear, indicating that the PIC is not in special-fully-nested

mode.

¢ All other bits are not used and are clear.

Interrupt Controllers - Programming Example

3-25

6. The sixth instruction masks (disables) all interrupts. The interrupt inputs
must be unmasked before the PIC can generate an interrupt to the CPU.

To complete the initialization, the last instruction enables CPU interrupts.
Because the PIC interrupt mask is cleared during initialization, it is possible
that the PIC will recognize an active interrupt input between instructions 5 and
6. Before a PIC interrupt input is unmasked, an interrupt handler must be
available and the appropriate interrupt vector initialized.

A PIC interrupt input that is not active long enough to be latched is considered
a glitch. If a glitch occurs, the PIC generates an interrupt for IRQ7 (master) or
IRQ15 (slave). To determine whether an interrupt for IRQ7 or IRQ15 is a
glitch, test ISR bit 7 of the appropriate controller. If the ISR bit 7 is set, the
interrupt is a valid interrupt. If the ISR bit 7 is clear, the interrupt is a glitch.

Issuing an End-of-Interrupt Command

In fully nested mode (default mode), the PIC processes the highest priority in-
terrupt that is pending. When the PIC receives a nonspecific end-of-interrupt
(EOI), it clears the highest priority bit that is set in the in-service register.
Until no interrupts are pending, the PIC continues by processing the highest
priority interrupt that is pending.

To allow the PIC to process the same interrupt or an interrupt of lower prior-
ity, the eoi function is called at the end of an interrupt handling sequence. The
calling parameter indicates which PIC issued the interrupt. If an interrupt is
issued by the slave PIC, an EOI must be issued to the slave and then to the
master.

During interrupt processing, it is possible for a higher priority interrupt to
become active. If this happens, the PIC attempts nesting the interrupts. For
the PIC to nest interrupts, the CPU interrupt request input must be enabled.
Otherwise, the CPU will not issue the required acknowledge sequence. During
the interrupt processing, the CPU automatically stacks its current state and
clears the interrupt enable flag. Because none of the interrupt handlers, in
these examples, enable the CPU interrupt request input, nesting of interrupts
is effectively disabled.

Masking Interrupts

The function imask masks or unmasks a bit in the interrupt mask register
(OCW1). The calling parameters indicate the PIC number, the bit number (0-7),
and whether the bit should be masked or unmasked.

3-26 Interrupt Controllers - Programming Example

/***/

/* eoi() - establish End-Of-Interrupt for pic(s)
[t s o o o ks o R ook R o ook Rk ks sk o R sk kR ok Sk Kk ko

void eoi(pic)
int pic;

{

outp(&(allpics[pic].base)->port0, EOI);

if (pic)

outp(&(allpics[0] .base)->port0, EOI);

*/

/* send nonspecific EO0I */

/* which pic handled interrupt

/* write eoi as indicated
/* was it the slave pic 7?7
/* write eoi to master

*/

*/
*/
*/

/***/

/* imask() - mask or unmask desired bit in pic mask register
/***/

void imask(pic, bitno, enable)

int pic;
int bitno;
int enable;

{

unsigned char current;
unsigned char mask;
register PIC *pps;

pps = allpics[pic] .base;
current = inp(&pps->portil);
mask = 1 << bitno;

if (enable) current &= " mask;
else current |= mask;
outp(&pps->portl, current);

Interrupt Controllers - Programming Example

/* set or clear bit in mask
/* register of desired pic
/* which pic ?

/* which bit ?

/* enable or disable 7

/* current contents of MR
/* the mask to write
/* pointer PIC I/0 structure

/* assign pointer to I/0 ports
/* read current mask

/* set up correct bit

/* clear the bit

/* or set it

/* write the resulting mask

*/

*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/

3-27

Overview

Chapter 4
DMA Controller

The direct-memory-access (DMA) controller is an Intel 8237A-5, programmable,
DMA controller operating at 4 MHz. The DMA controller allows the direct
transfer of 8-bit data between DMA-capable, input/output (I/0) devices and
memory. The DMA controller has four, independent DMA channels. Table 4-1
lists the assignment of the four DMA request lines. Each channel has 16 ad-
dress lines and an external 8-bit page register. Thus, each channel can transfer
a maximum of 64 Kbytes anywhere in the 16 Mbyte address range.

The following list shows the operational modes and restrictions of the DMA

controller.

Single transfer

Block transfer

Demand transfer

Cascade
Compressed timing
Memory to memory

Extended write cycle

This is the suggested mode of operation.

To prevent interference with DRAM refresh cycles,
limit block transfers to 8 transfers per block.

To prevent interference with the DRAM refresh
cycle, limit demand transfers to 8 transfers per
demand.

As bus master, the slave DMA controller should re-
lease the bus after 10 us.

Compressed timing is not supported by the processor
board hardware.

Memory-to-memory transfers are not supported by
the processor hardware.

The extended-write cycle does not provide sufficient
data setup time. Use the normal DMA write cycle.

DMA Controller - Hardware Description 4-1

Table 41 DMA Request Line Assignments

Channel Request Line

0 Available

1 Available

2 Diskette Controller
3 Available

Additional Source of Information

The following Intel Corporation document provides additional information:

* Microsystem Components Handbook (Publication Number 230843)

Operation

When the DMA controller receives a DMA request from a peripheral device,
the DMA controller sends a hold request signal to the CPU. When the CPU
responds with a hold acknowledge signal, the DMA controller takes control of
the I/O data bus, the system address bus, and the control bus. The controller
then generates a 16-bit memory address and activates the corresponding DMA
acknowledge line, the 1/0 read or write line, and the memory read or write line.
On seeing the DMA acknowledge, the DMA-capable 1/O device transfers (reads
or writes) the data on the data bus. Thus, the data is transferred directly be-
tween the 1/0 device and memory.

The DMA controller operates in two major cycles, idle and active. Each DMA
cycle can assume seven, separate states. Each state is composed of one full,
clock period. Table 4-2 describes the various controller states.

Table 42 DMA Controller States

State Description

SI This is the inactive state. No valid DMA requests are pending and the
CPU can program the DMA controller.
SO This is the first active state of DMA service. The controller has re-

quested a CPU hold, but the CPU has not acknowledged a hold.
Programming of the DMA controller can continue until the acknowl-
edge is received.

S1-S4 These are the DMA working states.

Sw When more time is required to complete a transfer, wait states are
inserted between S2 and S3, or S3 and S4.

4-2 DMA Controller - Hardware Description

Idle Cycle

When none of the I/O channels is requesting DMA service, the DMA controller
enters the idle cycle and performs SI states. At each clock cycle in the idle
cycle, the DMA controller samples the DMA request lines and the chip select
line.

If a DMA request line becomes active, the DMA controller goes to the active
state. Otherwise, if CPU has selected the DMA controller and the CPU has
control of the bus, the CPU can read or write the DMA controller internal
registers.

Active Cycle

When the DMA controller is in the idle cycle and a nonmasked channel
requests DMA service, the controller issues a hold request to the CPU and
enters the active cycle. The DMA service will then occur in one of the four
following modes.

Single Transfer Mode

The DMA controller is programmed to perform only one transfer in this mode.
After the transfer, the word count is decremented and the address is either
decremented or incremented. When the word count goes from 0000H to
FFFFH, a terminal count (TC) signal is generated, and will auto-initialize the
channel to its original condition if it had been programmed to do so.

The ROM BIOS uses this mode for data transfers between the diskette control-
ler and memory.

Block Transfer Mode

In this mode, the DMA controller is activated by a DMA request to.continue
making transfers until a TC (word count has reached FFFFH) or an external
end-of-process (EOP) signal occurs. If the channel has been programmed for
auto-initialization, the auto-initialization occurs at TC or EOP. This mode
should be limited to eight transfers (assuming no additional wait states) to pre-
vent interference with refresh cycles.

Demand Transfer Mode

The DMA controller performs transfers until a TC or external EOP occurs, or
until there is no DMA request. Transfers may continue until the 1/0O device has
exhausted its data capacity. Once the 1/O device has caught up, DMA service is
reestablished by means of a DMA request. The intermediate values of address
and word count are stored in DMA controller internal registers between serv-
ices while the CPU is running. At the end of the service, only an EOP can
cause auto-initialization to occur. This mode should be limited to eight transfers
per demand to prevent interference with refresh cycles.

DMA Controller - Hardware Description 4-3

Cascade Mode

This mode is used when DMA controllers are cascaded for system expansion.
In this configuration, the initial controller determines the priority of the addi-
tional controllers. Each of the additional controllers establish priority within
themselves and make the DMA request to the initial controller. The initial con-
troller does not output any address or control signals, since they could conflict
with the outputs of the added controller.

Data Transfers

The DMA controller can perform read, write, or verify operations in each
transfer mode. Read transfers move data from memory to an 1/O device; write
transfers move data from an 1/O device to memory; and verify transfers are
pseudo data transfers. In verify mode, the controller operates as if in read or
write mode, however the memory and I/O control lines are not active.

Memory-to-memory transfers are a special case of DMA transfer. Channel 0 is
the source and channel 1 is the target. In memory-to-memory transfers, chan-
nel 0 uses one cycle to read the data byte and store it in the temporary regis-
ter. On the following cycle, channel 1 writes the value in the temporary
register to the target location.

Auto-Initialize

Restores the DMA channel to its original condition following an EOP. Auto-
initialization is accomplished by restoring the original values of the Current
Address and Current Word Count registers from the Base Address and Base
Word Count registers. The CPU loads the current registers and base registers
which do not change during the DMA service. When the channel is in auto-
initialize mode, the mask bit is not set. After auto-initialization and a receipt of
a DMA request, the channel can perform DMA service without CPU
intervention.

4- 4 DMA Controller - Hardware Description

Priority
The two types of priority, fixed and rotating, are defined as follows:

Fixed Priority In fixed priority, the channels are placed in order based
on the descending value of their assigned number. The
assigned number range is from zero to three (0-3), with
zero as the highest priority.

Rotating Priority The channel being serviced is assigned lowest priority
value, and all others rotate to the next higher value.

Address Generation

The eight, high-order address bits (15-8) are multiplexed on the 1/O data lines.
At the S1 state, the high-order 8-bits are output to an external latch and
placed on the system address bus. The low-order bits are output directly from
the DMA controller to the system address bus. For multiple transfers, such as
block and demand transfers, the addresses are generated sequentially. The data
in the external latch (high-order byte) can remain the same for many transfers,
and have to be changed only when a borrow or carry takes place in the normal
sequence of addresses. The controller executes S1 states only when updating of
the high-order byte is required.

DMA Controller - Hardware Description 4-5

Table 4-3 DMA Controller and Page Register Address Map

Port R/W Channel Register
0000H W 0 Base and Current address
R 0 Current address
000lH W 0 Base and Current word count
R 0 Current word count
0002H W 1 Base and Current address
R 1 Current address
0003H W 1 Base and Current word count
R 1 Current word count
0004dH W 2 Base and Current address
R 2 Current address
0005 H W 2 Base and Current word count
R 2 Current word count
0006H W 3 Base and Current address
R 3 Current address
0007TH W 3 Base and Current word count
R 3 Current word count
0008H W - Command
R Status
0009H W - Request
000AH W - Write single mask register bit
000BH W - Mode register
000CH W - Clear byte pointer flip/flop
R - Temporary
000DH W - Master clear
000OEH W - Clear mask register
000FH W - Write all mask register bits
0080H W 1 Channel 1 page register
0081H W 2 Channel 2 page register
0082H W 3 Channel 3 page register
0083H W 0 Channel 0 page register
4- 6 DMA Controller - Hardware Description

Registers

The DMA controller has 16 1/0 ports to access 26 internal registers.
Additionally, the DMA circuitry has four I/O ports to access four page regis-
ters. Table 4-3 lists the I/O ports and the registers accessed.

Base and Current Address Register
(0000H/0002H/0004H/0006H)
7 6 5 4 3 2 1 0

1 T] 1 T 1 1

LOW BYTE OF ADDRESS
READ OR WRITTEN FIRST

| 1 1 1 | 1 |

15 14 13 12 11 10 9 8

T 1 1] | T I

HIGH BYTE OF ADDRESS
READ OR VWRITTEN SECOND

1 | 1 1 | 1 |

Each DMA channel has a 16-bit base address register and a 16-bit current ad-
dress register. The base address register contains the initial value. Writing a
value to the base address register initializes the current address register to the
same value. The current address register is incremented or decremented after
each transfer. When the required number of transfers have occurred and if
auto-initialize (see the mode register) is enabled, the current register is in-
itialized from the base register.

Before performing a 16-bit read or write, clear the byte pointer flip/flop.

To write a base register, write two, 8-bit bytes in succession to the same port.
To read a current register, read two, 8-bit bytes in succession to the same port.
In either case, the low byte is accessed first and then the high byte.

DMA Controller - Hardware Description 4-7

Base and Current Word Register
{0001 H/0003H/0005H/0007H)
7 6 5 4 3 2 1 0

T T T ¥ | 1 I

LOW BYTE OF CURRENT WORD
READ OR WRITTEN FIRST

1 1 | 1 | | 1

15 14 13 12 11 10 9 8

] T 1 I 1] I

HIGH BYTE OF CURRENT WORD
READ OR WRITTEN SECOND

1 1 1 1 1 | |

Each DMA channel has a 16-bit base word count register and a 16-bit current
word count register. The value written to this register determines the number
of transfers performed. The number of transfers is the programmed value plus
one. The current word count is decremented after each transfer. When the cur-
rent word count is decremented below zero (FFFFH), a terminal count is gener-
ated. When the required number of transfers have occurred and if auto-initialize
(see the mode register) is enabled, the current register is initialized from the
base register.

Before performing a 16-bit read or write, clear the byte pointer flip/flop.

To write a base register, write two, 8-bit bytes in succession to the same port.
To read a current register, read two, 8-bit bytes in succession to the same port.
In either case, the low byte is accessed first and then the high byte.

4- 8 DMA Controller - Hardware Description

Command Register (0008H)

7 6 5 4 3 2 1 0
CHANNEL | MEMORY
DACK DREQ WVRITE PR TIMING CE 0 TO
SENSE | SENSE | SELECT ADDRESS | MEMORY
HOLD

Bit R/W Description

7 w
6 w
5 w
4 w

DACK SENSE - DMA Acknowledge Sense
0 DACK sense active low
1 DACK sense active high

DREQ SENSE - DMA Request Sense
0 DREQ sense active high
1 DREQ sense active low

WRITE SELECT
0 Late write selected
1 Extended write selected

For the VAXmate workstation, the extended write mode does not
provide an adequate write cycle. Use only the late write mode.

If bit 3 equals 1 (compressed mode), bit 5 is a don’t care value.
However, the VAXmate workstation is not capable of using com-
pressed mode.

PR - Priority
0 = Fixed priority 0 (highest), 1, 2, and 3 (lowest)
1 = Rotating priority

Initially, the priority is the same order as in fixed priority. In the
rotating priority scheme. the currently serviced DMA channel be-
comes the lowest priority channel. However, the channels always
maintain their priority in numeric order. That is, the priority de-
creases as the channel number increases and wraps between chan-
nels 3 and 0.

DMA Controller - Hardware Description 4-9

Bit R/W Description (Command Register - cont.)

3 W TIMING
0 = Normal read/write timing - A read/write cycle requires a
minimum of three clock cycles and is subject to wait states.
The VAXmate workstation uses this mode.
1 = Compressed read/write timing - A read/write cycle occurs in
two clock cycles. The VAXmate workstation is not capable of
using compressed mode.

If bit 0 equals 1 (memory-to-memory enabled), bit 3 (timing) is a
don’t care value.

2 w CE Controller Enable
Controller disabled
1 Controller enabled

1 w CHANNEL 0 ADDRESS HOLD
0 Disable channel 0 address hold
1 Enable channel 0 address hold

Channel 0 address hold causes the DMA controller to copy a single
byte to the specified number of destination bytes.

] II

If bit 0 equals 0 (memory-to-memory disabled), bit 1 (channel 0 ad-
dress hold) is a don’t care value.

0 W MEMORY-TO-MEMORY
0 Memory-to-memory transfers disabled
1 Memory-to-memory transfers enabled

The VAXmate workstation does not support memory-to-memory
transfers.

This 8-bit register controls the operation of the DMA controller. It is cleared by
a hardware reset or a master clear instruction.

4-10 DMA Controller - Hardware Description

Write Single Mask Bit (000AH)

7 6 5 4 3 2 1 0
T T T T T
MASK
DON’T CARE BIT CHANNEL SELECT
| 1 1 1 1

Bit R/W Description

7-3 W DON’'T CARE (any value)

2 w MASK BIT
0 = Enable the selected channel
1 = Disable the selected channel

1-0 W CHANNEL SELECT

00 = Select channel 0 mask bit
01 = Select channel 1 mask bit
10 = Select channel 2 mask bit
11 = Select channel 3 mask bit

Each channel has a mask bit, which can be set to disable the incoming DMA
request. These bits are set if their associated channel produces an EOP and
auto-initialize is not enabled.

Write All Mask Bits (000FH)

7 6 5 4 3 2 1 0
T T T T T T
DON’T CARE MASK BITS
CHANNEL CHANNEL CHANNEL CHANNEL
| 1 i 3 L 2 | ! | °

Bit R/W Description

7-4 W DON'T CARE (any value)

3.0 W MASK BITS
0 Enable the indicated channel (CHANNEL 3-0)
1 Disable the indicated channel (CHANNEL 3-0)

DMA Controller - Hardware Description 4-11

Mode Register (000BH)

7

6 5 4 3 2 1 0

Ll !

OPERATION INCR/ | AUTO TRANSFER TYPE |CHANNEL SELECT

MODE DECR INIT
SELECT
1 1 1
Bit R/W Description
76 W OPERATION MODE
00 = Demand mode
01 = Single mode
10 = Block mode
11 = Cascade mode
5 w INCR/DECR SELECT - Increment/Decrement selection
0 = Increment selected
1 = Decrement selected
4 w AUTO INIT - Auto-initialization enable
0 = Disable auto-initialization
1 = Enable auto-initialization
32 W TRANSFER TYPE
00 = Verify
01 = Write
10 = Read
11 = Invalid value
A read transfer moves data from memory to the I/O device. A
write transfer moves data from the I/O device to memory. That is,
the orientation is from the 1/O device, not the CPU.
If bits 7-6 equal 11, then the transfer type is a don’t care value.
1-0 W CHANNEL SELECT
00 = Channel 0 selected
01 = Channel 1 selected
10 = Channel 2 selected
11 = Channel 3 selected
Each DMA channel has a 6-bit mode register. Register selection is
determined by bits 1 and 0.
4-12 DMA Controller - Hardware Description

Request Register (0009H)
7 6 5 4 3 2 1 0
] T T 1 1
DON’T CARE REQUEST | CHANNEL SELECT
BIT

1 1] 1 1
Bit R/W Description
73 W DON’'T CARE (any value)
2 w REQUEST BIT

= Reset the indicated request bit
1 = Set the indicated request bit

1-0 W CHANNEL SELECT

00 = Channel 0
01 = Channel 1
10 = Channel 2
11 = Channel 3

The DMA controller responds to requests for DMA service from both software
and the DMA request signal. Each channel has a request bit that can be set or
reset as determined by the Request register. These bits are not maskable and

are subject to prioritization.

DMA Controller - Hardware Description 4-13

Status Register (0008H)

7 6 5 4 3 2 1 0
T T LI T T T
DMA REQUEST PENDING TERMINAL COUNT REACHED
CHANNEL CHANNEL CHANNEL CHANNEL|CHANNEL CHANNEL CHANNEL CHANNEL
3 | 2 r 1 | 0 3 | 2 | 1 . 0

Bit R/W Description

7-4 R DMA REQUEST PENDING
0 = Indicated channel does not have a request pending
(CHANNEL 3-0)
1 = Indicated channel has a request pending (CHANNEL 3-0)

30 R TERMINAL COUNT REACHED

0 = Indicated channel has not reached the terminal count
(CHANNEL 3-0)
1 = Indicated channel has reached the terminal count or external

EOP applied (CHANNEL 3-0)

Temporary Register (000CH)
7 6 5 4 3 2 1 0

DATA

1 | 1 1 1 1 1

Bit R/W Description

70 R Last data byte transferred in a memory-to-memory transfer

Between the read and write cycles of a memory-to-memory transfer, the DMA
controller stores the source byte in this register. This register is cleared by a
hardware reset or a master clear.

4- 14 DMA Controller - Hardware Description

Programming Example

The following programming example demonstrates:

Initializing the 8237A DMA controller
* Enabling and disabling a channel

e Preparing a channel for data transfer

The example provides routines as described in the following list:

dma_init

dma_open
dma_transfer

dma_close

Resets the DMA controller.
Enables the indicated DMA channel.

Prepares the indicated channel for data transfer.

CAUTION
Improper programming or improper operation of this device can
cause the VAXmate workstation to malfunction. The scope of

the programming example is limited to the context provided in
this manual. No other use is intended.

Constant Values

The constant values DMA PAGEOQ through DMA_PAGES3 define the 1/0 ad-
dress of the indicated page register. The values CHANNELO through
CHANNELI define the channel select bit values for the mode, mask, and
request reg'nsters The values MTM ENA through BIT SET define the bit
values for various conditions of the command, status, mode, and request

registers.

Disables the indicated channel.

/***/

/* define constants used in 8237 DMA example

*/

/***/

#define
#define
#define
#define

#define
#define
#define
#define

DMA_PAGEO 0x83
DMA_PAGE1 0x80
DMA_PAGE2 0x81
DMA_PAGE3 0x82

CHANNELO 0x00
CHANNEL1 0x01
CHANNEL2 0x02
CHANNEL3 0x03

/*
/*
/*
/*

DMA Controller - Programming Example

DMA page register O
DMA page register 1
DMA page register 2
DMA page register 3

/*
/*
/*
/*

select
select
select
select

channel
channel
channel
channel

I/0 address
I/0 address
I/0 address
I/0 address

0 bit value
1 bit value
2 bit value
3 bit value

*/
*/
*/
*/

*/
*/
*/
*/

4-16

/* command register bit definitions */

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

/* mode
#define
#define
#tdefine
#define
#define
#define
#define
#define

MTM_ENA 0xO01 /* Memory-to-memory enable
HOLD_ENA 0x02 /* channel 0 hold address enable
DMA_DIS 0x04 /* dma controller disable
C_TIME 0x08 /* compressed timing
ROT_PRI 0x10 /* rotating priority
EXTD_WR 0x20 /* extended write
DREQ_LO 0x40 /* DREQ active when low
DACK_HI 0x80 /* DACK active when high
/* status register bit definitions */

CHO_TC OxOi /* channel O has reached terminal count
CH1_TC 0x02 /* channel 2 has reached terminal count
CH2_TC 0x04 /* channel 3 has reached terminal count
CH3_TC 0x08 /* channel 4 has reached terminal count
CHO_REQ 0x10 /* channel O requesting service
CH1_REQ 0x20 /* channel 1 requesting service
CH2_REQ 0x40 /* channel 2 requesting service
CH3_REQ 0x80 /* channel 3 requesting service
register bit definitions */

TRAN_VR 0x00 /* verify transfer
TRAN_WR 0x04 /* write transfer
TRAN_RD 0x08 /* read transfer
AUTO_IE 0x10 /* auto-initialize enable
ADR_DEC 0x20 /* address decrement
MODE_DM 0x00 /* demand mode
MODE_SI 0x40 /* single mode
MODE_BK 0x80 /* block mode
MODE_CS 0xCO /* cascade mode

#define

/* request register bits */

#tdefine BIT_SET 0x04

4- 16

/* set selected mask bit

DMA Controller - Programming Example

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

Data Structures

The structure DMA_CHANNEL resembles the 1/0 space of the address and
word count registers for a channel. Multiple instances of this structure are used
in the declaration of the DMA_CONTROLLER structure. The
DMA_CONTROLLER structure defines the 1/0O space of DMA controller inter-
nal registers. The value DMA_BASE defines the base address for referencing
the structure DMA_CONTROLLER.

/***/

/* declare structures used in 8237 DMA example */
/***/

typedef struct /* define dma channel I/0 structure */
{
unsigned char bc_addr; /* write base address, read current address */
unsigned char bc_word; /* write base word, read current word */

} DMA_CHANNEL;

typedef struct /* define dma controller I/0 structure */

{
DMA_CHANNEL chO; /* channel zero registers */
DMA_CHANNEL chi; /* channel one registers */
DMA_CHANNEL ch2; /* channel two registers */
DMA_CHANNEL ch3; /* channel three registers */
unsigned char csr; /* write control, read status */
unsigned char req; /* write request register */
unsigned char wsmb; /* write single mask bit */
unsigned char mode; /* write mode register */
unsigned char temp;/* write clears byte pointer flip-flop, read temp */
unsigned char master_clr; /* write master clear/reset */
unsigned char clr_mask; /* clear all mask bits */
unsigned char wr_mask; /* write all mask bits */

} DMA_CONTROLLER;

#define DMA_BASE (DMA_CONTROLLER #*)0x0000 /* base address */

DMA Controller - Programming Example 4-17

Initializing the DMA Controller

The DMA controller is initialized by issuing a MASTER CLEAR instruction.
This clears all bits in the command register and effectively disables the control-
ler. The second instruction, which explicitly clears the control register, ensures
that the controller is disabled.

/***/

/* dma_init() - initialize the 8237 DMA controller */
/***/

dma_init ()

{ .

DMA_CONTROLLER *pdc = DMA_BASE; /* point to DMA controller */
outp (&pdc->master_clr, 0); /* reset DMA controller */
outp(&pdc->csr, 0); /* all command register bits to 0 */

}

4-18 DMA Controller - Programming Example

Opening a DMA Channel

The dma_open function assumes that the channel is currently disabled. It
writes valid values to the registers that control the indicated channel.

For this C compiler, offset 0 in the data segment is used only for monitoring
NULL pointers. With a zero word count, an inadvertent data transfer can move
only one byte before expiring.

The last instruction enables the indicated channel.
/***/

/* dma_open() - open a DMA channel */
JRR AR kR Rk Rk ok ok ok ook ok Rk KR sk kR sk ok sk ok bk ok

dma_open(channel)

int channel; /* which DMA channel to open */
{

DMA_CONTROLLER *pdc = DMA_BASE; /* point to DMA controller */
DMA_CHANNEL *pch; /* pointer to a channel structure */
int i; /* loop control */

for(i = channel, pch = &pdc->chO; i; i--) /* discover which channel */

pch++; /* point to next channel */
outp(&pdc->mode, channel); /* clear mode register for this channel */
outp(&pdc->req, channel); /# clear channel request for this channel */
outp(&pdc->temp, 0); /* clear first/last flip-flop */
outp (&pch->bc_addr, 0); /* write O to low byte */
outp(&pch->bc_addr, 0); /* write O to high byte */
outp(&pdc->temp, 0); /% clear first/last flip-flop */
outp(&pch->bc_word, 0); /* write O to low byte */
outp (&pch->bc_word, 0); /* write O to high byte */
outp(&pdc->wsmb, channel); /* clear mask bit for this channel */

DMA Controller - Programming Example 4-19

Preparing a Channel for Data Transfer

The dma_transfer function prepares a channel for-data transfer. Next, the func-
tion disables the channel. It then initializes the page, address, word count, and

mode registers.

NOTE

Before writing a 16-bit register, the byte pointer flip/flop must
be cleared. This sequence loads the two sequential bytes in the
correct locations. Because interrupt processing could disrupt the
process, the dma_transfer function disables CPU interrupts
before clearing the byte pointer flip/flop. Interrupts are not
enabled until after the 16-bit registers have been written.

/***/

/* dma_transfer() - set parameters for a DMA transfer
/***/

dma_transfer (channel, page_val

int channel;

int page_val;
unsigned char *addr;
unsigned int count;
int ttype;

{

DMA_CONTROLLER *pdc = DMA_BASE
DMA_CHANNEL *pch;

unsigned int page_reg;

int ch_mode;

int intr_flag;

switch(channel)
{
case O:
pch = &pdc->chO;
page_reg = DMA_PAGEO;
ch_mode = 0;
break;

, addr, count, ttype)

/* transfer on which DMA channel ?
/* page register contents

/* transfer address

/* count to transfer

/* transfer type

; /* point to DMA controller
/* pointer to a channel structure

/* which page register to write

/* channels mode

/* to hold CPU IF state

/* which channel ?

/* channel 0 ?

/* point to channel O registers

/* set page register address

/* auto-initialize & increment/decrement

4-20 DMA Controller - Programming Example

*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/

case 1: /* channel 1 ? %/
pch = &pdc->chi; /* point to channel 1 registers */
page_reg = DMA_PAGE1; /* set page register address */
ch_mode = 0; /* auto-initialize & increment/decrement */

break;
case 2: /* channel 2 ? */
pch = &pdc->ch2; /* point to channel 2 registers */
page_reg = DMA_PAGE2; /* set page register address */
ch_mode = MODE_SI; /* auto-initialize & increment/decrement */

break;
case 3: /* channel 3 7 */
pch = &pdc->ch3; /* point to channel 3 registers */
page_reg = DMA_PAGE3; /* set page register address */
ch_mode = 0; /* auto-initialize & increment/decrement */

break;

}

outp(&pdc->wsmb, BIT_SET | channel);/* set mask bit for this channel */
outp(&pdc->req, channel); /* clear channel request for this channel */
outp(&pdc->mode, ttype | ch_mode | channel); /* set mode register */
intr_flag = int_off(); /* no interrupts please */
outp(&pdc->temp, 0); /* clear first/last flip-flop */
outp(&pch->bc_addr, (unsigned int)addr & Oxff); /* write low byte */
outp(&pch->bc_addr, (unsigned int)addr >> 8); /* write high byte */
outp (&pch->bc_word, count & Oxff); /* write low byte */
outp(&pch->bc_word, count >> 8); /* write high byte */
int_on(intr_flag); /* allow interrupts */
outp(page_reg, page_val); /* write the page register */
outp(&pdc->wsmb, channel); /* clear mask bit for this channel */
DMA Controller - Programming Example 4-21

Disabling a DMA Channel

The dma_close function closes the channel by masking (disabling) that chan-
nel’s request input line.

/***/

/* dma_close() - close a DMA channel */
/***/

dma_close(channel)

unsigned char channel; /* which DMA channel to close */
{
DMA_CONTROLLER *pdc = DMA_BASE; /* point to DMA controller */

outp(&pdc->wsmb, BIT_SET | channel);/* set mask bit for this channel */
}

4- 22 DMA Controller - Programming Example

Chapter 5
Real-Time Clock
and CMOS RAM

Overview

The VAXmate processor board contains an MC146818 real-time clock. The real-
time clock has the following features:

Time-of-day clock with alarm and 100-year calendar
Counts seconds, minutes, and hours of the day

Counts days of the week, days of the month, month, and year with auto-
matic end-of-month and leap year recognition

Binary or binary-coded-decimal (BCD) representation of date, time, and
alarm (the ROM BIOS and MS-DOS use BCD).

24-hour clock or 12-hour clock with a.m./p.m. indication
Daylight savings time option

Internal time base and oscillator

External time base 32.768 KHz crystal

64 byte, low-power, static RAM (14 bytes of registers and 50 bytes of
general purpose RAM)

Square wave generator
Programmable interrupts

- Time-of-day alarm, once-per-second to once-per-day
- Periodic interrupt rates from 30.5 us to 500 ms
- End-of-update interrupt

Real-time Clock and CMOS RAM - Hardware Description 5b-1

Additional Source of Information

The following Motorola Inc. document provides additional information on pro-
gramming the real-time clock.

* 8-Bit Microprocessor & Peripheral Data

Battery-Backup Considerations

To keep time and maintain RAM when system power is off, the real-time clock
requires a battery-backup source. The two lithium batteries in the VAXmate
expansion box provide the only battery power source.

NOTE

The lithium battery used in the VAXmate expansion box has an
operational life expectancy of 6 years and a shelf life of 10
years.

Addressing the Real-Time Clock

The real-time clock (RTC) is addressed by the contents of an 8-bit latch at I/O
port 0070H and the RTC data is read or written through I/O port 0071H.

NOTE

The RTC address latch is write only. Bit 7 of the RTC address
latch (I/O port 0070H) is the nonmaskable interrupt (NMI) mask
register. If bit 7 equals zero, the NMI is enabled. Otherwise, the
NMI is disabled. For more information about the nonmaskable
interrupt, see Chapters 3 and 15.

The RTC dedicates the first 14 bytes of RAM (00H through ODH) as registers
for the real-time clock functions. The remaining 50 bytes of RAM (0OEH
through 3FH) are not dedicated to the RTC. Table 5-1 describes the RTC ad-
dress map.

5-2 Real-time Clock and CMOS RAM - Hardware Description

Table 5-1 Real-Time Clock Address Map

Latch Value R/W Location Accessed
00H R/W Seconds register

01H R/IW Seconds alarm register
02H R/W Minutes register

03H R/IW Minutes alarm register
04H R/W Hours register

05H R/W Hours alarm

06H RIW Day-of-week register
07H RIW Day-of-month register
08H R/W Month register

09H R/W Year register

0AH R/W Register A

0BH R/W Register B

0CH R/W Register C

ODH R/W Register D

0EH-3FH R/W Remaining 50 bytes of RTC RAM *

* See the definition of the structure RTC in the programming example.

Real-Time Clock Registers

The real-time clock (RTC) has two types of registers:

e Data (locations 00H through 09H)
e Control and status (locations 0AH through O0DH)

Data registers are valid only when the RTC is not updating. During clock up-
dates, the RTC disconnects the data registers from the RTC bus. The specifics
of data register processing are discussed later.

The control and status registers are available at all times.

Real-time Clock and CMOS RAM - Hardware Description 5-3

Register A

Addressing - Write 0AH to address latch at 0070H.
Data - Read or write data at address 0071H.

7

6 5 4 3 2 1 0

UIp

T I I T]

DIVIDER SELECTION BITS RATE SELECTION BITS

DS2 I DS1 I DSO RS3 | RS2 | RS1 I RSO

Bit R/W

Description

7 R/W

6-4 R/W

3-0 R/W

UIP - Update In Progress

0 = For all time bases, at least 244 us remain before the update
cycle begins. The data registers are available for reading.

1 = Update cycle is in progress or begins in less then 244 us.

The UIP bit is a read-only bit. For the 32.768 KHz time base, the
update cycle time is 1984 us. Writing a 1 to the Register B SET
bit inhibits the update cycle and clears the UIP status bit. A hard-
ware reset does not modify the UIP bit.

DIVIDER SELECTION BITS

These bits identify the time base to use. Writing 111 to these bits
resets the divider. One second after removing the divider reset, the
first update cycle begins. For the VAXmate workstation time base
of 32.768 KHz, set these bits to 010. A hardware reset does not
modify the DIVIDER SELECTION bits.

RATE SELECTION BITS

These bits select one of 15 taps on a 22-stage divider or disable
the divider. Table 5-2 shows the bit values for the possible inter-
rupt rates. A hardware reset does not modify the RATE
SELECTION bits. On powerup, the ROM BIOS sets these bits to
0.

5-4 Real-time Clock and CMOS RAM - Hardware Description

Table 5-2 Rate Selection Bits

RS3 RS2 RS1 RS0 Periodic Interrupt Rate

None (divider disabled)
3.90625 us
7.8125 us

122.070 us

244.141 us

488.281 us

976.562 us
1.953125 ms
3.90625 ms
7.8125 ms

15.625 ms
31.250 ms
62.5 ms

125.0 ms

250.0 ms

500.0 ms

bt e e e e e e = O O O O O 0O OO O
[l T R — B B T - B R S L = I = B = =)
o O O H O O OO MK OQ
O O O O H O O MO QO

Real-time Clock and CMOS RAM - Hardware Description 6-5

Register B

Addressing - Write 0BH to address latch at 0070H.
Data - Read or write data at address 0071H.

7 6 5 4 3 2 1 0

SET PIE AIE UIE SQVE DM HM DSE

Bit R/W Description

7 R/W SET
0
1

Allow update cycles to occur once per second

Abort any update cycle in progress and inhibit update cycles
until cleared. (This allows initialization of the date, time, and
alarm registers.)

A hardware reset does not modify the SET bit.
6 R/W PIE - Periodic Interrupt Enable

i

0 = Disable periodic interrupts (default value)
1 = Enable periodic interrupts at the rate specified by RS3-RS0
in Register A

A hardware reset clears the PIE bit to 0.

5 R/W AIE - Alarm Interrupt Enable
0 Disable alarm interrupts (default value)
1 Enable alarm interrupts. (The interrupt frequency depends on
the contents of the alarm registers.)

A hardware reset clears the AIE bit to 0.

4 R/W UIE - Update-ended Interrupt Enable
0 = Disable the update-ended interrupt (default value)
1 = Enable the update-ended interrupt

A hardware reset or setting the register B SET bit clears the UIE
bit to 0.

3 R/W SQWE - Square Wave Enable
0 = Disable the square-wave output (default value)
1 Enable the square-wave output

The square-wave output is not connected to anything, so the
SQWE bit should always be written as 0. A hardware reset clears
the SQWE bit to 0.

5-6 Real-time Clock and CMOS RAM - Hardware Description

Bit R/W Description (Register B - cont.)
2 R/W DM - Data Mode
0 = Binary-coded-decimal (BCD) data format used for date, time,
and alarm registers
1 = Binary data format used for date, time, and alarm registers
A hardware reset does not modify the DM bit. However, the ROM
BIOS clears DM to 0.
1 R/W HM - Hour Mode
0 = Hours register and hours alarm register use a 12-hour clock
with a.m. or p.m. indication
1 = Hours register and hours alarm register use a 24-hour clock
A hardware reset does not modify the HM bit. However, the ROM
BIOS sets HM equal to 1.
0 R/W DSE - Daylight Savings Enable

1 =

Disable daylight savings

Enable daylight savings. Daylight savings changes occur at 2
a.m. on the last Sunday in April and the last Sunday in
October.

A hardware reset does not modify the DSE bit. However, the
ROM BIOS clears DSE to 0.

Real-time Clock and CMOS RAM - Hardware Description 5-7

Register C

Addressing - Write OCH to address latch at 0070H.
Data - Read or write data at address 0071H.

7 6 5 4 3 2 1 0

IRQF PIF ATF UIF

Bit R/W Description

7 R/W IRQF - Interrupt Request Flag

When one or more of the following conditions are true, the RTC
sets the IRQF bit to 1:

PIF = PIE = 1
AIF = AIE =1
UIF = UIE =1

6 R/W PIF - Periodic Interrupt Flag

When register B, bit PIE equals 1, the PIF bit indicates the state
of the periodic interrupt. If PIF equals 1, the RTC sets IRQF.
Register A bits RS3-RS0 establish the rate of this interrupt.

5 R/W AIF - Alarm Interrupt Flag

When register B, bit AIE equals 1, the AIF indicates the state of
the alarm interrupt. When AIF equals 1, the current time matches
the alarm time and the RTC sets IRQF.

4 R/W UIF - Update-ended Interrupt Flag

When register B, bit AIE equals 1, the UIF bit indicates the state
of the update-ended interrupt. At the end of each update cycle, the
RTC sets this bit to 1 and sets IRQF.

3-0 R/W Always 0

Resetting hardware or reading register C clears all bits in register C. Writing
to Register B does not modify the bits in Register C.

5-8 Real-time Clock and CMOS RAM - Hardware Description

Register D

Addressing - Write 0DH to address latch at 0070H.
Data - Read or write data at address 0071H.

7 6 5 4 3 2 1 0

VRT

Bit R/W Description

7 R/W VRT - Valid RAM and Time
0 = Since the last time this register was read, the power-sense
circuitry detected a loss of power to the RTC. The RTC reg-
isters and RAM contain invalid data.
1 = Since the last time this register was read, power to the RTC
has remained stable.

Reading this register sets the VRT bit. It is the only way to set
the VRT bit. After setting the date, time, or alarm, read this regis-
ter so that the VRT bit indicates that the registers are valid.

A hardware reset does not modify the VRT bit.
6-0 R/W Always 0

Real-time Clock and CMOS RAM - Hardware Description 5-9

Real-Time Clock Data Registers

The real-time clock (RTC) formats the date and time in either binary or binary-
coded-decimal (BCD). All data registers (00H through 09H) must use the same
format. If the data format is changed, the data registers must be initialized in
the new format. The ROM BIOS uses the BCD data format. Bit 2 of register
B controls the format.

The HOUR MODE bit in Register B controls the range of the hour and hour
alarm registers. When the HOUR MODE bit is set (1), the hour and hour
alarm registers have the range 0-23. When the HOUR MODE bit is clear (0),
the hour and hour alarm registers have the ranges 1-12 (a.m.) and 129-140
(p.m.).

The hours, minutes, and seconds alarm registers have an additional range of
COH-FFH. This is an alarm register don’t care code. For more information, see
the alarm description. Table 5-3 shows the format and ranges of the data
registers.

5-10 Real-time Clock and CMOS RAM - Hardware Description

Table 5-3 RTC Data Register Ranges

Latch Register Function Binary Range BCD Range

Value

00H Seconds All modes 0-59 00H-59H

01H Seconds Specific time 0-59 00H-59H
Alarm

Each second 192-255 COH-FFH
02H Minutes All modes 0-59 00H-59H
03H Minutes Specific time 0-59 00H-59H

Alarm

Each minute 192-255 COH-FFH
04H Hours 24-hour mode 0-23 00H-23H

12-hour mode a.m. 1-12 01H-12H

12-hour mode p.m. 129-140 81H-92H
05H Hours Alarm Specific time 0-23 00H-23H

(24-hour mode)

Specific time (12-hour 1-12 01H-12H

mode a.m.)

Specific time (12-hour 129-140 81H-92H

mode p.m.)

Each hour (all modes) 192-255 COH-FFH
06H Day-of-Week 1-7 01H-07H
07H Day-of-Month 1-31 01H-31H
08H Month 1-12 01H-12H
09H Year 0-99 00H-99H

Real-time Clock and CMOS RAM - Hardware Description 5-11

Alarms

During each real-time clock (RTC) update cycle, the RTC compares the hour,
minute, and second registers to the corresponding alarm registers. If all of the
time registers match all of the alarm registers, the RTC sets the register C
AIF. If, when this occurs, the register B alarm interrupt enable (AIE) bit is
enabled, the alarm interrupt triggers IRQ8.

An alarm register value in the range COH-FFH is a don’t care code. When an
alarm register contains a don’t care code, that alarm register matches any
value in the corresponding time register.

Table 5-4 shows the eight different types of automatic alarm cycles provided by
the real-time clock (RTC).

Table 54 RTC Automatic Alarm Cycles

Cycle Description Hour Alarm Minute Alarm Second
Alarm

Once per second every second COH-FFH COH-FFH COH-FFH

Once per second for a COH-FFH Specified COH-FFH
one-minute span every hour

Once per second for a one- Specified Specified COH-FFH
minute span every 24 hours

Once per second for a one-hour Specified COH-FFH COH-FFH
span every 24 hours

Once per minute every minute = COH-FFH COH-FFH Specified
Once per minute for a one-hour Specified COH-FFH Specified
span every 24 hours

Once per hour every hour COH-FFH Specified Specified
Once every 24 hours Specified Specified Specified

Also, there is a nonautomatic way to use the alarm function. To use this
method, set a specific alarm time. At each subsequent alarm interrupt, set the
next specific alarm time.

5-12 Real-time Clock and CMOS RAM - Hardware Description

Update Cycle

Once per second, the real-time clock (RTC) performs an update cycle. With a
32.768 KHz time base, the update cycle requires 1948 us. The update cycle
comprises the following steps:

The RTC sets (1) the register A UIP bit.

After 244 us, the RTC disconnects the data registers from the external
bus and connects them to the internal bus.

The RTC increments the seconds register.

The RTC checks for an overflow condition. If no overflow condition exists,
the RTC goes to the next step. Otherwise, the RTC zeros the register
and increments the next register in the series.

The RTC compares the hour, minute, and seconds registers to the cor-
responding alarm registers. If a match occurs for all three registers, the
RTC sets (1) the register C alarm flag (AIF).

The RTC disconnects the data registers from the internal bus and con-
nects them to the external bus.

The RTC clears (0) the register A UIP bit.
The RTC sets (1) the register C update-ended interrupt flag (UIF)

During an update cycle, the data registers are disconnected from the external
bus. Therefore, while an update is in progress, reading or writing a data regis-
ter produces invalid results. Use one of the following methods to avoid update
cycles:

Monitor the register A update-in-progress (UIP) bit. The update cycle
begins 244 us after the RTC sets the UIP bit. Thus, if the UIP bit is
clear, the data registers will remain valid for at least 244 us.

Enable the update-ended interrupt. This interrupt occurs after every
update cycle. The date and time registers remain valid for over 999 ms
after the RTC sets the UIF. If the processor must handle an excessive
amount of interrupts, the interrupt handler for the RTC should also moni-
tor the UIP bit.

Monitor the register C periodic interrupt flag (PIF). The periodic interrupt
is synchronized with the update cycle. For any given periodic interrupt,
there is a time after the interrupt when the data registers are valid. For a
32.768 KHz time base, use only the rates between 3.90625 ms and 500
ms. Use the following formula to calculate the valid time span:

Time Span = 244 us + (RATE / 2)

Real-time Clock and CMOS RAM - Hardware Description 5-13

Interrupts

Periodic Interrupt

If the PIE bit is set (1), the periodic interrupt triggers IRQ8 at the rate speci-
fied by the RATE SELECT bits in register A.

Update-Ended Interrupt

If the UIE bit is set (1), the update-ended interrupt triggers IRQ8 once per
second. The next RTC update cycle starts 1000 ms after the update-ended
interrupt.

Alarm Interrupt

During each RTC update cycle, the RTC compares the hour, minute, and
second registers to the corresponding alarm register. If the time and alarm reg-
isters match and if the AIE bit is set (1), the alarm interrupt triggers IRQ8.

5-14 Real-time Clock and CMOS RAM - Hardware Description

Programming Example

The real-time clock (RTC) programming example demonstrates:

Reading and writing the RTC registers and RAM
Handling RTC interrupts

Interpreting the data stored in the RTC RAM
Calculating the checksum that ensures data integrity

The next programming example provides the following routines:

rd_rtc
wr_rtc
rtc_cksum
btb

bed
rd_date
rd_time

shw_date
shw_time
shw_ddtyp
shw_hdtyp
rtc_int_hand
shw_hdw
rtc_init

rtc_rest

rtc

Reads the indicated RTC register or RAM location
Writes the indicated RTC register or RAM location
Returns the calculated RTC RAM checksum

Returns the binary equivalent of a binary-coded decimal
(BCD) value

Returns the binary-coded decimal (BCD) equivalent of a
binary value

Reads the date-related registers and stores the results in
the indicated structure

Reads the time-related registers and stores the results in
the indicated structure

Displays the current date at location 0,0
Displays the current time at location 0,72
Displays the diskette drive types

Displays the hard disk drive types

Handles hardware interrupts from the RTC
Displays the hardware setup from RTC RAM

Initializes the RTC interrupt vector (70H) and the RTC
alarm registers

Restores the RTC interrupt vector (70H) and disables clock
interrupts

Provides menu selection of the examples and executes the
examples

Real-time Clock and CMOS RAM - Programming Example 5-15

CAUTION ‘
Improper programming or improper operation of this device can
cause the VAXmate workstation to malfunction. The scope of
the next programming example is limited to the context pro-
vided in this manual. No other use is intended.

Constant Values

The file (kyb.h) that is included defines constant values for function keys. See
Chapter 8 for information about keyboard programming.

The file (example.h) that is included defines the structure type MESSAGE that
is used to display the menu.

The constant values CKSUM_START and CKSUM _ END define the start and
end offsets of the RTC RAM that is under checksum control. If any value in
this range is changed, a new checksum must be written to reflect this change.

The constant values UIP through VRT define bit values for registers A through
D. The value DIVIDE_SEL defines the divider that divides the base input fre-
quency for the. mternaT RTC operation. This value is related to the VAXmate
hardware design and should be considered a fixed value.

5-16 Real-time Clock and CMOS RAM - Programming Example

#include "kyb.h" /* reference function key constants */
#include "example.h" /* reference menu structure */

/***/

/* define constants used in RTC example */
/***/

#define CKSUM_START 0x10 /* offset of start of checksum area */
#define CKSUM_END 0x20 /* offset of end of checksum area */

/* define register A bit values */

#define UIP 0x80 /* update in progress bit */
fidefine DIVIDE_SEL 0x20 /* FIXED VALUE - Hardware related */
#define RATE_SEL 0x0d /* Programmer defined interrupt rate */

/* define register B bit values %/

#define SET_UPD 0x80 /* disable updating of date & time */
#define PIE 0x40 /* Periodic Interrupt Enable */
#define AIE 0x20 /* Alarm Interrupt Enable */
#define UIE 0x10 /* Update-Ended Interrupt Enable */
#define SQWE 0x08 /* Square Wave Enable */
#define DAT_MOD 0x04 /* Data mode (BCD = O, Binary = 1) */
#tdefine CLK24 0x02 /* 12-hour clock = 0, 24 hour = 1 */
#define DSE 0x01 /* Daylight Sayings Enable */

/* define register C bit values */

#define IRQF 0x80 /* Interrupt Request Flag */
#define PIF 0x40 /* Periodic Interrupt Flag */
#define AIF 0x20 /* Alarm Interrupt Flag */
#define UIF 0x10 /* Update-Ended Flag */

/* define register D bit values */

#define VRT 0x80 /* Valid Ram & Time bit */

Real-time Clock and CMOS RAM - Programming Example 5-17

Data Structures

The structure type RTC defines the I/O space that accesses the real-time clock.
The offset within the real-time clock (00H-3FH) is written to an 8-bit latch that
addresses the real-time clock. This latch is located at 1/0 address 0070H. Data
is read or written through I/O address 0071H.

The structure type CMOS defines how each RAM location is used within the
real- time clock. The real-time clock dedicates the first 14 locations as regis-
ters. The remaining 50 bytes of RAM are defined according to industry-
standard usage.

The structure type DATIM provides a consistent format for moving date and
time information.

/***/
/* declare structures used in RTC example */

/***/

typedef struct

{
unsigned char addr_port; /* write RTC/CMOS address to this port */
unsigned char data_port; /* read/write data through this port */

} RTC;

typedef struct

{
unsigned char seconds; /* seconds (0-59) current time */
unsigned char alr_sec; /* seconds alarm */
unsigned char minutes; /* minutes (0-59) current time */
unsigned char alr_min; /* minutes alarm */
unsigned char hours; /* hours (0-11/23) current time */
unsigned char alr_hr; /* hours alarm */
unsigned char dow; /* day-of-week (1-7) */
unsigned char dom; /* day-of-month (1-28/29/30/31) */
unsigned char month; /* month (1-12) current date */
unsigned char year; /* year (0-99) current date %/
unsigned char rega; /* register A */
unsigned char regb; /* register B */
unsigned char regc; /* register C */
unsigned char regd; /* register D %/
unsigned char diag; - /* diagnostics byte */
unsigned char reset; /* reason for reset */
unsigned char ddtyp; /* diskette drive type */
unsigned char reservi; /* reserved byte */
unsigned char hdtyp; /* hard disk type */
unsigned char reserv2; /* reserved byte */

5-18 Real-time Clock and CMOS RAM - Programming Example

unsigned char syscfg; /* system configuration byte
unsigned char bmeml; /* base memory size low byte
unsigned char bmemh; /* base memory size high byte
unsigned char lememl; /* expansion memory size low byte
unsigned char lememh; /* expansion memory size high byte
unsigned char reserv3[0x2e - 0x19]; /* reserved
unsigned char cksumh; /* high byte of checksum (always 0)
unsigned char cksuml; /* low byte of checksum
unsigned char hememl; /* expansion memory size low byte
unsigned char hememh; /* expansion memory size high byte
unsigned char century; /* century byte of date (19 from 1986)
unsigned char info; /* information flag
unsigned char reserv4[0x40 - 0x34]; /* reserved

} cMos;

typedef struct

{
int seconds; /* seconds (0-59)
int minutes; /* minutes (0-59)
int hours; /* hours (0-11/23)
int dow; /* day-of-week (1-7)
int dom; /* day-of-month (1-28/29/30/31)
int month; /* month (1-12)
int year; /* year (century * 100 + year register)

} DATIM;

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

Real-time Clock and CMOS RAM - Programming Example 5-19

Reading the Registers and RAM

The function rd_rtc reads the indicated byte of real-time clock RAM. Before
accessing the byte, the offset is compared to the range 00H-09H. This is the
offset range of the data registers, which are invalid during update cycles. If the
offset falls within this range, the read is synchronized with the update-in-

progress bit.

/**#**********************/

/* rd_rtc() - read an RTC byte (if date or time, monitor UIP bit)
/***/

*/

int rd_rtc(offset) /* read RTC byte */
int offset; /* byte offset to read */
{
RTC *prtc; /* ptr to address & data ports */
CMOS *pcmos; /* ptr to RTC/CMOS structure */
unsigned int intr_flg; /* CPU IF state %/
unsigned char retval; /* value to return */
prtc = (RTC *)0x70; /* assign I/0 address */
pcmos = O; /* structure offset is zero */
if (offset < (int) (&pcmos->rega)) /* need to monitor UIP ? */
{
while(1) /* break out when ready */
{
intr_flg = int_off(); /* no interrupts allowed */
outp (&prtc->addr_port, &pcmos->rega); /* set to reg A */
if (inp(&prtc->data_port) & UIP) /* test UIP bit */
_int_on(intr_£lg); /* allow interrupts */
else break;
}
}
else intr_flg = int_off(); /* no interrupts allowed */
outp(&prtc->addr_port, offset); /* set to desired offset */
retval = inp(&prtc->data_port); /* read data */
int_on(intr_£flg); /* allow interrupts */
return(retval); /* return data byte */
}
5-20 Real-time Clock and CMOS RAM - Programming Example

Writing the Registers and RAM

The function wr_rtc writes the indicated byte of real-time clock RAM. Before
accessing the byte, the offset is compared to the range 00H-09H. This is the

offset range of the data registers, which are invalid during update cycles. If the

offset falls within this range, the write is synchronized with the update-in-
progress bit.

/***/

/* wr_rtc() - write an RTC byte

*/

/***/

void wr_rtc(offset, value) /* write RTC byte
int offset; /% offset to write
unsigned char value; /* byte value to write
{
RTC *prtc; /* ptr to address & data ports
CMOS *pcmos; /* ptr to RTC/CMOS structure
unsigned int intr_flg; /* CPU IF state
prtc = (RTC *)Ox70; /* assign I/0 address
pcmos = O; /* structure offset is zero
if (offset < (int) (&pcmos->rega)) /* need to monitor UIP ?
{
while(1) /* break out when ready
{
intr_flg = int_off(); /* no interrupts allowed
outp(&prtc->addr_port, &pcmos->rega); /* set to reg A
if (inp(&prtc->data_port) & UIP) /* test UIP bit
int_on(intr_£f1g); /* allow interrupts
else break;
}
}
else intr_flg = int_off(); /* no interrupts allowed
outp(&prtc->addr_port, offset); /* set to desired offset
outp(&prtc->data_port, value); /* write data
int_on(intr_flg); /* allow interrupts
}

*/

*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

Real-time Clock and CMOS RAM - Programming Example 5-21

Calculating the Checksum

The function rtc_cksum calculates the checksum and returns the result to the
caller. The checksum is the sum, modulo 256, of all bytes in the range
CKSUM_START through CKSUM_END.

/***/

/* rtc_cksum() - calculate the CMOS checksum and return its value */
/***/

unsigned char rtc_cksum() /* calculate the CMOS checksum */

{
int i; /* loop control */
unsigned char sum; /% accumulates the checksum */
sum = O0; /* sum starts out zero */
for(i = CKSUM_START; i <= CKSUM_END; i++) /* all checksum bytes */
sum += rd_rtc(i); /* read data and add to sum */
return(sum) ; /* return calculated checksum */

}

5- 22 Real-time Clock and CMOS RAM - Programming Example

Converting Binary-Coded Data

The ROM BIOS defines the data mode as binary-coded decimal (BCD) and
therefore, so does this example. This requires converting between BCD and
binary. The function bzb converts a BCD value to its binary equivalent. The
function bed converts a binary value to its BCD equivalent.

/***/

/* btb - convert bcd value to binary integer value */
/***/

btb(bcd_val) /* bcd to binary integer */
unsigned char bcd_val; /* bcd value */
{ /* assume valid bcd value */

return(((bcd_val >> 4) * 10) + (bcd_val & Ox0f));
}

/***/

/* bcd - convert binary value to bcd value */
/***/

unsigned char bcd(val) /* binary to bcd */
unsigned char val; /* binary value */
{ /* assume valid bcd value */

unsigned char tmp;

tmp = (val / 10) << 4; /* tens in upper nibble */
tmp |= val % 10; /* ones in lower nibble */
return(tmp) ; /* return BCD value */

}

Real-time Clock and CMOS RAM - Programming Example 5-23

Reading the Date

The function rd_date reads all of the date-related registers and stores the
results in the DATIM structure pointed to by the calling parameter. It can be
called at any time without restriction.

The century byte is not a real-time clock register. The century byte is an
industry-standard location that overcomes the 100-year calendar limitation. It
must be updated manually or by software.

/***/

/* rd_date() - read date and write to DATIM structure */
/***/

void rd_date(pd) /* read the date */

DATIM *pd; /* where to store data */

{

CMOS *pcmos; /* ptr to RTC/CMOS structure */
pcmos = O; /* structure offset is zero */
pd->dow = btb(rd_rtc(&pcmos->dow)) ; /* day-of-week */
pd->dom = btb(rd_rtc(&pcmos->dom)) ; /* day-of-month */
pd->month = btb(rd_rtc(&pcmos->month)); /* month */
pd->year = btb(rd_rtc(&pcmos->century)) * 100; /* century */
pd->year += btb(rd_rtc(&pcmos->year)); /* year */

}

5-24 Real-time Clock and CMOS RAM - Programming Example

Reading the Time

The function rd_time reads all of the time-related registers and stores the

results in the DATIM structure pointed to by the calling parameter. This func-

tion assumes the use of the 24-hour clock mode. It can be called at any time
without restriction.

/***/

/* rd_time() - read time and write to DATIM structure

*/

/***#*************************/

void rd_time(pd) /* read the time

DATIM xpd; /* where to store data

{

CMOS *pcmos; /* ptr to RTC/CMOS structure
pcmos = O; /* structure offset is zero
pd->seconds = btb(rd_rtc(&pcmos->seconds)); /* seconds
pd->minutes = btb(rd_rtc(&pcmos->minutes)) ; /* minutes
pd->hours = btb(rd_rtc(&pcmos->hours)); /* hours

*/
*/

*/

*/
*/
*/
*/

Real-time Clock and CMOS RAM - Programming Example 5-25

Displaying the Date

The function shw_date displays the current date starting at row 0 and column
0. It can be called at any time without restriction.

/***/

/* define some day and month names */
/***/

char day_name[8][10] =

{
"Invalid" , /* rtc is 1 based */
"Sunday" , "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"
}
char month_name[13] [10] =
{
"Invalid", /* rtc is 1 based */
"January" , "February", "March") "April",
"May" , L) June " , " July" , " Ausust " ,
"September", "October" , "November", "December"
}

/***/

/* shw_date - show date starting at row O column O */
] e sk ks o s ke ok sk ok ke ksl ok sk s e ks o ok s ok o ok s ok ok ke sk ok ok s ok ke sk o ok sk o o sk sk ok sk s s ok ko ok ok ok ok sk ok ok ko /

shw_date()

{

DATIM dt; /* date and time structure */

char sdate[50]; /* place to store output */
rd_date (&dt) ; /* read current date */

sprintf (sdate, "%9s %9s %2d, %04d", &day_name[dt.dow][0],
&month_name [dt.month] [0], dt.dom, dt.year);
disp_str(0, O, sdate); /* display it */
}

5- 26 Real-time Clock and CMOS RAM - Programming Example

Displaying the Time

The function shw_time displays the current time starting at row 0 and column
72. 1t can be called at any time without restriction.

/***/

/* shw_time - show time on row O column (last_column - 7) */
/***/

shw_time ()

{

DATIM dt; /* date and time structure */

char stime[50]; /* place to store output */
rd_time(&dt) ; /* read current time */
sprintf (stime, "%2d:%02d:%02d", dt.hours, dt.minutes, dt.seconds);
disp_str(0, 72, stime); /* display it */

}

Real-time Clock and CMOS RAM - Programming Example 5-27

Displaying the Diskette Drive Type

The function shw_ddtyp is a text-formatting subroutine that generates the

diskette drive type according to the calling parameters. It is only called by the

function shw_hdw.

/***/

/* shw_ddtyp - show diskette drive type

*/

/***/

void shw_ddtyp(pc, ddtyp, drive) /* show diskette drive type
char *pc; /* buffer to write to
char ddtyp; /* diskette drive type
char drive; /* drive letter
{
int i; /* temp for index
i = sprintf(pc, "Diskette drive %c is ", drive); /* general opening
switch(ddtyp)
{
case O: /* no drive
sprintf (&pc[i], "non-existent");
break;
case 1: /* 48 tpi dsdd
sprintf (&pc[i], "48-TPI double sided");
break;
case 2: /* 96 tpi dsdd hc
sprintf(&pc[i], "an RX33 96-TPI double-sided, high-capacity");
break;
default: /* unknown type
sprintf(&pc[i], "an unknown type");
break;
}
}

5- 28 Real-time Clock and CMOS RAM - Programming Example

*/
*/

*/
*/

*/

Displaying the Hard Disk Type
The function shw_hdtyp is a text-formatting subroutine that generates the hard

disk drive type according to the calling parameters. It is only called by the
function shw_hdw.

/***/

/* shw_hdtyp - show hard disk type */
/e s s ek s ke ke s ek ks s ks s s ke ks e ke ks s ks ok ke ks sk ok koo s ok ook ook ok ok ook ook /

void shw_hdtyp(pc, hdtyp, drive) /* show hard disk type */
char *pc;

char hdtyp; /* hard disk type */
char drive; /* drive letter */
{

int i;

i = sprintf(pc, "Hard disk drive %c is ", drive);
if (hdtyp) sprintf(&pc[il, "type %d", hdtyp); /* drive type */
else sprintf(&pc[i], "non-existent"); /* no drive */

}

Real-time Clock and CMOS RAM - Programming Example 5-29

Handling the Clock Interrupts

The function rtc_int_hand is the real-time clock interrupt handler. It checks for
all of the three possible interrupts, update-ended flag (UIF), alarm flag (AF),
and periodic interrupt flag (PIF). After handling the interrupts, the interrupt
handler notifies the interrupt controller.

The update-ended interrupt occurs once per second. At each interrupt, the in-
terrupt handler increments the global flag, time flag, to indicate that at least
one second has elapsed.

The alarm interrupt is initialized to the first second of every day. At each inter-
rupt, the interrupt handler increments the global flag, date flag, to indicate
that at least one day has elapsed.

The periodic interrupt is initialized to a rate of 125 ms. At each interrupt, the
interrupt handler increments the global counter, metronome. The 8254 timer
and speaker example in Chapter 6 uses this counter for output timing. Also,
the periodic interrupt handler calls unbeep. If required, unbeep turns off the
bell (beep sound). The example programs use the speaker to generate a bell
(beep sound).

5-30 Real-time Clock and CMOS RAM - Programming Example

/***/

/* rtc_int_hand() - real-time clock interrupt handler

*/

/***/

int time_flag; /* 1 second update flag
int date_flag; /* 1 day update flag
unsigned int metronome; /* timer for sound output
int motor_flag; /* timer for diskette drive motors
int head_settle; /* head settle timer for diskette drives
void rtc_int_hand() /* rtc int handler
{

CMOS *pcmos; /% ptr to RTC/CMOS structure
unsigned char tmp; /* temp to read in reg C
pcmos = 0; /* structure offset is zero
tmp = rd_rtc(&pcmos->regc) ; /* read current interrupt requests
if (tmp & UIF) time_flag++; /* time updates once per second
if (tmp & AIF) date_flag++; /* alarm set for once per day at 00:00:00
if (tmp & PIF) /* periodic interrupt ?

{
metronome++; /* increment timing for speaker demo
unbeep() ; /* unbeep turns off speaker if bell
if (motor_flag) /* if timing diskette drive motors
if (--motor_flag == 0) /* if timed out
motor_off(); /* call routine to turn motors off
if (head_settle) /* if timing head settle
head_settle--; /* reduce count

}
eoi(1); /* end of interrupt for interrupt controller

}

*/
*/
*/
*/
*/

*/

*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/

Real-time Clock and CMOS RAM - Programming Example 5-31

Interpreting the RAM Contents

The function shw_hdw interprets the industry-standard locations in the real-
time clock RAM and displays the results. The ROM BIOS interprets this data
in the same manner.

/***/

/* sh_hdw() - show hardware setup in CMOS */
/***/

sh_hdw()

{

unsigned char tmp; /* to hold CMOS byte read */
unsigned int ui; /* to hold memory size */
CMOS *pcmos; /* ptr to RTC/CMOS structure */
char *pc;

char line[512];

#define ROW 16
#define COL 17

pcmos = O; /* structure offset is zero */
tmp = rd_rtc(&pcmos->syscfg); /* read system config */
sprintf(line, "%d diskette drive(s) present", (tmp >> 6) + 1);
disp_str(ROW, COL, line);

switch((tmp & 0x30) >> 4) /* check video type */
{
case O: /* not a valid type */
pc = "Invalid video type";
break;
case 1:
pc = "40 column color graphics";
break;
case 2:
pc = "80 column color graphics";
break;
case 3:
pc = "Monochrome adapter with parallel port";
break;
}
disp_str(ROW + 1, COL, pc); /* display video type */
tmp = rd_rtc(&pcmos->ddtyp); /* read diskette drive types */

5- 32 Real-time Clock and CMOS RAM - Programming Example

shw_ddtyp(line, tmp >> 4, °'A’); /* get drive a type */

disp_str(ROW + 2, COL, line); /* display drive a type */
shw_ddtyp(line, tmp & OxOf, °'B'); /* get drive b type */
disp_str(ROW + 3, COL, line); /* display drive b type */
tmp = rd_rtc(&pcmos->hdtyp); /* read hard disk types */
shw_hdtyp(line, tmp >> 4, 'C’); /* get drive c type */
disp_str(ROW + 4, COL, line); /* display drive c type */
shw_hdtyp(line, tmp & 0x0f, °D’'); /* get drive d type */
disp_str(ROW + 5, COL, line); /* display drive d type */
tmp = rd_rtc(&pcmos->bmemh) ; /* base memory high byte */
ui = (unsigned int)tmp << 8; /* shift and assign */
tmp = rd_rtc(&pcmos->bmenml) ; /* base memory low byte */
ui |= (unsigned int)tmp; /* add low byte */
sprintf(line, "Base memory = %dK bytes", ui);

disp_str(ROW + 5, COL, line); /* display base memory */
tmp = rd_rtc(&pcmos->lememh) ; /* expanded memory high byte */
ui = (unsigned int)tmp << 8; /* shift and assign */
tmp = rd_rtc(&pcmos->lememl); /* expanded memory low byte */
ui |= (unsigned int)tmp; /* add low byte */
sprintf(line, "Expansion memory = %dK bytes", ui);

disp_str(ROW + 6, COL, line); /* display expanded memory */
tmp = rd_rtc(&pcmos->hememh) ; /* expanded memory high byte */
ui = (unsigned int)tmp << 8; /* shift and assign */
tmp = rd_rtc(&pcmos->hememl) ; /* expanded memory low byte */
ui |= (unsigned int)tmp; /* add low byte */
sprintf(line, "Expansion memory = %dK bytes", ui);

disp_str(ROW + 7, COL, line); /* display expanded memory */

Real-time Clock and CMOS RAM - Programming Example 5-33

Initializing the Real-Time Clock

To start up real-time clock interrupt processing, the rtc_init function:

¢ Disables real-time clock interrupts and update cycles

Initializes the processor interrupt vector, the real-time clock control, and

alarm registers; and unmasks the interrupt controller input
e Enables the real-time clock interrupts and update cycles

/] e sk sk st st ket ok ke ke s s sk ok ok ok ke ok sk sk ok ok ok ke sk sk ok ok ok ok o o s ook ook ok ok ook ok ok ok sk o s sk ok sk s o s ok st ok sk ke s sk sk ke s sk ot e ke ok /

/* rtc_init() - initialize alarms and vectors

*/

/***/

rtc_init ()

{

CMOS *pcmos; /* ptr to RTC/CMOS structure
pcmos = O; /* structure offset is zero
wr_rtc(&pcmos->regb, SET_UPD | CLK24); /* prepare to init
imask(1, 0, 0); /* disable PIC interrupt
iv_init (0x70); /* initialize RTC interrupt vector
wr_rtc(&pcmos->rega, DIVIDE_SEL | RATE_SEL); /% set pi rate
wr_rtc(&pcmos->alr_hr, 0x00); /* write hours alarm
wr_rtc(&pcmos->alr_min, 0x00); /* write minutes alarm
wr_rtc (&pcmos->alr_sec, 0x00); /* write seconds alarm
wr_rtc(&pcmos->regb, AIE | UIE | PIE | CLK24); /* enable clock
imask(1, 0, 1); /* enable PIC interrupt

5-34 Real-time Clock and CMOS RAM - Programming Example

*/
*/
*/
*/
*/
*/

*/
*/
*/

Restoring the Interrupt Vectors

To shut down real-time clock interrupt processing, the rtc_rest function:

Disables the real-time clock interrupts
e Masks the interrupt controller input
* Restores the interrupt vector to its previous condition

NOTE
Update cycles remain enabled. If update cycles are disabled, the
clock stops.

/***/

/* rtc_rest() - disable interrupts and restore vectors */
/] e sk s sk s s s s s sk s se s sk s sk sk sk ok ok ok o o o o ok ok ok ok ok o ok ok ok ok ok ok ok ok sk ok sk sk sk sk sk sk sk sk skok o o ok ok sk sk sk sk ok ok ok sk sk ok ok /

rtc_rest()

{

CMOS *pcmos; /* ptr to RTC/CMOS structure */
pcmos = O; /% structure offset is zero */
wr_rtc (&pcmos->regb, CLK24); /* disable clock interrupts */
imask(1, 0, 0); /* disable PIC interrupt */
iv_rest (0x70) ; /* restore interrupt vector */

}

Real-time Clock and CMOS RAM - Programming Example 5-35

Real-Time Clock Example

The function rtc displays the menu, accepts input, and executes the examples.

/*#***/

/* rtc() - execute RTC examples
/**********%**/

rtc()
{
static MESSAGE mrtc(] = /* rtc menu
{
{ 3, 24, "Real-time Clock and CMOS Example" },
{ 5, 24, "F1. Display CMOS hardware setup" },
{ 6, 24, "F2. Display CMOS checksum" },
{ 7, 24, "F3. Display calculated CMOS checksum" },
{ 8, 24, "F4. Set CMOS checksum" },
{ 9, 24, "F5. Set date" },
{ 10, 24, "F6. Set time" },
{ 11, 24, "F7. Set day-of-week" },
{ 12, 24, "F10. Return to Main menu" },
{ o o0, 01},
};

unsigned char tmp;
unsigned char sum;
char line[512];
int i;

int r;

DATIM dt;

CMOS *pcmos;

#define ROW 16
f##define COL 17

/* to hold CMOS byte read

/* to hold calculated checksum
/* to hold input line

/* to hold menu selection

/* temp value

/* place to store date & time
/* ptr to RTC/CMOS structure

pcmos = 0; /* structure offset is zero
line[0] = 0; /* null terminated
while(1) /* forever (see F10)
{
disp_menu(mrtc) ; /* display the rtc menu
switch(line[0]) /* determine menu selection
{
case F1: /* show CMOS hardware
sh_hdw() ;
break;

5- 36 Real-time

Clock and CMOS RAM - Programming Example

*/

*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/

*/

case F2: /* get curremt checksum */
sprintf(line, "CMOS checksum = %02x",
rd_rtc (&pcmos->cksuml)) ;
disp_str(ROW, COL, line);
break;

case F3: /* calculate checksum */
sprintf(line, "Calculated checksum = %02x", rtc_cksum());
disp_str (ROW, COL, line);
break;

case F4:
sum = rtc_cksum(); /* write calculated checksum */
wr_rtc(&pcmos->cksuml, sum);
sprintf(line, "Checksum byte set to %02xH", sum);
disp_str(ROW, COL, line);

break;
case F5: /* set new date */
while(1)
{
disp_str (ROW , COL,"Enter date as MM/DD/YYYY");

disp_str(ROW + 1, COL, "Where MM represents the month (1 - 12)");
disp_str(ROW + 2, COL, "Where DD represents the day (1 - 31)");
disp_str(ROW + 3, COL, "Where YYYY represents the year (0000 -
9999) ") ;
disp_str(ROW + 4, COL, "Date: ");
get_keys(ROW + 4, COL + 6, line);
r = sscanf(line, "%2d/%2d/%4d", &dt.month,

&dt.dom, &dt.year);

if(r !'= 3) continue;

else break;
} : /* note: no limit check */
wr_rtc (&pcmos->month, bcd(dt.month)); /* write month */
wr_rtc (&pcmos->dom, bcd(dt.dom)); /* write day-of-month */
wr_rtc(&pcmos->year, bcd(dt.year % 100)); /* write year */
wr_rtc (&pcmos->century, bcd(dt.year / 100)); /* write century */
rd_rtc(&pcmos->regd) ; /* make date valid, set the VRT bit */
shw_date();
disp_menu(mrtc) ;
break;

case F6: /* set new time */

while(1)
{

disp_str (ROW , COL, "Enter time as HH:MM:SS");

Real-time Clock and CMOS RAM - Programming Example 5-37

disp_str(ROW + 1, COL, "Where HH represents the hour (0 - 23)");
disp_str(ROW + 2, COL, "Where MM represents the minutes (0 - 59)");
disp_str(ROW + 3, COL, "Where SS represents the seconds (0 - 59)");
disp_str(ROW + 4, COL, "Time: ");

get_keys(ROW + 4, COL + 6, line);
r = sscanf(line, "%2d:%2d:%2d", &dt.hours, &dt.minutes,
&dt.seconds) ;

if(r != 3) continue;
else break;
} /* note: no limit check #*/
wr_rtc(&pcmos->hours, bcd(dt.hours)); /* write hours */
wr_rtc(&pcmos->minutes, bcd(dt.minutes)); /* write minutes */
wr_rtc(&pcmos->seconds, bcd(dt.seconds)); /* write seconds */
rd_rtc(&pcmos->regd) ; /* make time valid, set the VRT bit */
shw_time() ;
disp_menu(mrtc) ;
break;
case F7:
while(1)
{
disp_str(ROW, COL, "Enter day-of-week (1 - 7): ");
get_keys(ROW, COL + 27, line);
r = sscanf(line, "%d", &dt.dow);
if(r !'= 1) continue;
else break;
} /* note: no limit check */
wr_rtc(&pcmos->dow, bcd(dt.dow)); /* write day-of-week */
rd_rtc(&pcmos->regd) ; /* make DOW valid, set the VRT bit */
shw_date() ;
disp_menu(mrtc) ;
break;
case F10: /* return to caller (main menu) */
return;
}
line[0] = get_fkey(); /* get a function key for menu selection */

}
}

5- 38 Real-time Clock and CMOS RAM - Programming Example

Chapter 6
Three-Channel Counter
and Speaker

Overview

The VAXmate processor board has an 8254 programmable interval timer that
provides three independent 16-bit counters for counting or timing. All three
counters have a 1.1931816 MHz clock input. The counters are programmable
and are used by the ROM BIOS as follows:

¢ Counter 0 is a general purpose timer to provide:

- A time-of-day clock
- A diskette drive motor timer
- A screen blanking timer

Its output goes to IRQO of the interrupt logic.
CAUTION: Reprogramming this counter can destroy the timing.

* Counter 1 provides the dynamic RAM refresh timing. The ROM BIOS
programs it for a 15 us cycle time. Its output is connected to the refresh
counter.

CAUTION: Reprogramming this counter can destroy the refresh cycle.

¢ Counter 2 provides a frequency-modulated square wave output for the
speaker interface.

Additional Source of Information

The following Intel Corporation document provides additional information on
the 8254 three-channel counter/timer.

® Microsystems Components Handbook (Publication Number 230843)

Three-Channel Counter and Speaker - Hardware Description 6-1

Block Diagram

Figure 6-1 shows the block diagram of an 8254. The data bus buffer interfaces
the 1/0 data bus, and the read/write logic interfaces the address bus on the

Time of

Day Clock

CPU module.

I/0 Data

Data Bus

Bus : Buffer

RD — Read/

WR — Vrite

A —— Logic

Al ——

CS - 1
Control

Vord

Register

naw P22

Counter 0

1

Refresh

Timing

Counter 1

I

Speaker
Waveform

Counter 2

]

Clk O
Gate O

Out 0
(IRQO)
Clk 1
Gate 1
Out 1
(Refresh)
Clk 2
Gate 2

Out 2
(Speaker)

Figure 6-1 Three-Channel Counter/Timer Block Diagram

Counter Description

The three 16-bit synchronous down counters are identical in operation, but fully
independent. Each counter has two 8-bit input latches (count registers), two 8-
bit output latches, and a counting element. The counter control logic enables
only one latch at a time. Therefore, writing a 16-bit count requires two 8-bit
writes to the same register and reading a 16-bit count requires two 8-bit reads
from the same register.

The control word register provides for 8-bit and 16-bit counts. The 8-bit count
can be written to either the least significant byte (LSB) or the most significant
byte (MSB). Loading one 8-bit count register of a 16-bit pair clears the other
count register. That is, writing an 8-bit count to the LSB clears the MSB and
writing an 8-bit count to the MSB clears the LSB.

6-2

Three-Channel Counter and Speaker - Hardware Description

The signals CLK, GATE, and OUT are all connected to control logic on the
CPU module. A 14.31818 MHz signal divided by 12 provides a 1.1931816 MHz
clock to all three counters.

A high level (1) at the GATE input enables counting and a low level (0) at the
GATE input disables counting.

Table 6-1 shows the CLK input frequency, the GATE source, and the destina-
tion of the OUT signal.

Table 6-1 Counter Signals

Counter CLK Frequency GATE Source OUT Destination
0 1.1931816 MHz Tied high IRQO

1 1.1931816 MHz Tied high Refresh timer

2 1.1931816 MHz System CSR (bit 0) Speaker driver

Mode Definitions

The three-channel counter/timer has six modes of operation:

Mode 0 Interrupt on Terminal Count

Mode 1 Hardware Retriggerable One-Shot (not used)
Mode 2 Rate Generator

Mode 3 Square Wave Mode

Mode 4 Software Triggered Strobe

Mode 5 Hardware Triggered Strobe (retriggerable)

Table 6-2 lists the default mode and function of each counter in the VAXmate
workstation (as established by the ROM BIOS).

Table 6-2 Modes Used by the Three Counters

Counter Function Mode Description Output
0 Time-of-day clock 5 Hardware trig- IRQO
gered strobe
Refresh timing 2 Rate generator Refresh counter
2 Speaker waveform 3 Square wave Speaker driver

Three-Channel Counter and Speaker - Hardware Description 6-3

Mode 0 (Interrupt on Terminal Count)

Mode 0 is used for one-shot event counting.

Initializing Mode 0
Programming the control word for mode 0 causes OUT to go low. The GATE
input has no effect on the OUT signal.

If a new count is written during counting, the new count is loaded on the next
CLK pulse and counting continues from the new count.

Mode 0 Cycle

Writing a new count starts the cycle. Where n equals the count, the mode 0
cycle is n + 1 CLK pulses long. During the start of the cycle, the OUT signal
is low for n CLK pulses (while the counter decrements from »n to 0.) On the
next CLK pulse, the OUT signal makes a transition from low-to-high. The OUT
signal remains high until the control word is written or until a new count is
written.

Mode 1 (Hardware Retriggerable One-Shot)

Mode 1 is used for one-shot event counting. Because the GATE input is the
trigger, mode 1 is viable only on counter 2 (the GATE input of counters 0 and
1 are tied high.) Mode 1 could be used for sound generation, but it is not nor-
mally used on the VAXmate workstation.

Initializing Mode 1

Programming the control word for mode 1 and writing a new count causes
OUT to go high and arms the trigger. The GATE input has no effect on the
OUT signal.

Writing a new count during counting has no effect on the current count.
However, .if the GATE input is triggered, the cycle restarts with the new count.

Mode 1 Cycle

With the trigger armed, a low-to-high transition at the GATE input triggers
the cycle. On the next CLK pulse, the count is loaded and the OUT signal
makes a high-to-low transition. Where n equals the count, the OUT signal re-
mains low for n CLK pulses. That is, when the count decrements to 0, the
OUT signal goes high.

After the trigger is armed for the first time, the trigger remains armed until
the control word is reprogrammed. Thus, after a count has decremented to 0,
triggering the GATE input restarts the cycle. The count is reloaded

6-4 Three-Channel Counter and Speaker - Hardware Description

automatically.

Triggering the GATE input before a count decrements to 0 restarts the cycle
on the next CLK pulse. The count is reloaded automatically. Because the count
did not expire, the OUT signal remains low.

Mode 2 (Rate Generator)

Where n equals the initial count, mode 2 functions like a divide by » counter.
It generates pulses at a rate equal to the input frequency divided by the initial
count (n). Mode 2 is periodic, repeating the cycle every n CLK pulses.

The ROM BIOS uses counter 1 in mode 2 to provide the refresh timing signal.

Initializing Mode 2

Programming the control word for mode 2 causes OUT to go high. Providing
that the GATE input is high, the cycle starts 1 CLK pulse after the initial
count is written.

If the GATE input goes low, the OUT signal goes high immediately. On the
CLK pulse following a low-to-high transition at the GATE input, the counter
reloads the initial count. Thus, the GATE input can synchronize the count to
an external event.

Writing a new count during counting has no effect on the count for the current
cycle. When the cycle repeats, the count is reloaded with the new count.
However, if the GATE input is triggered, the new count is loaded on the next
CLK pulse and cycle restarts. '

Mode 2 Cycle

Where n is the initial count, the mode 2 cycle is n CLK pulses long. During
the start of the cycle, the OUT signal is high. The OUT signal remains high
until the count decrements to 1. When the count decrements to 1, the OUT
signal makes a high-to-low transition and the counter reloads the initial count.
The OUT signal is low only for that CLK pulse. On the next CLK pulse, the
OUT signal goes high and the cycle repeats.

NOTE
In mode 2, a count of 1 is invalid.

Mode 3 (Square Wave Mode)

Mode 3 generates a square wave at the OUT signal. Where n is the count, the
OUT signal has a frequency equal to CLK / n. When n is an even number, the
OUT signal is high for n / 2 CLK pulses and then low for n / 2 CLK pulses.
When 7 is an odd number, the OUT signal is high for (n + 1) / 2 CLK pulses
and then low for (n - 1) / 2 CLK pulses.

Three-Channel Counter and Speaker - Hardware Description 6-5

Initializing Mode 3

Programming the control word for mode 3 causes OUT to go high. Providing
that the GATE input is high, the cycle starts 1 clock pulse after the initial
count is written.

If the GATE input goes low, the OUT signal goes high immediately. On the
CLK pulse following a low-to-high transition at the GATE input, the counter
reloads the initial count. Thus, the GATE input can synchronize the count to
an external event.

Writing a new count during counting has no effect on the count for the current
cycle. When the cycle repeats, the count is reloaded with the new count.
However, if the GATE input is triggered, the new count is loaded on the next
CLK pulse and cycle restarts.

Mode 3 Cycle
In the first CLK pulse, the initial count is loaded. If the count is odd, then
count - 1 is loaded. The cycle starts with the next CLK pulse.

With each succeeding CLK pulse, the count is decremented by two. When the
count decrements to 0, the initial count is tested for an odd or even value. If
the initial count was even, the OUT signal makes an immediate transition from
high-to-low. If the initial count was odd, the counter waits one more CLK pulse
and then makes a high-to-low transition. The initial count is reloaded and dec-
remented by two, which starts the second half of the cycle. With each succeed-
ing CLK pulse, the count is decremented by two. When the count decrements
to 0, the OUT signal makes an immediate transition from low-to-high; the in-
itial count is reloaded and decremented by two, which starts a new cycle.

Mode 4 (Software Triggered Strobe)

In mode 4, the count cycle is triggered by writing a new count. Where n equals
the initial count, the OUT signal is high for n + 1 CLK pulses, low for 1 CLK
pulse, and then high until a new count is written.

Initializing Mode 4
Programming the control word for mode 4 causes OUT to go high. The GATE
input has no effect on the OUT signal.

If a new count is written during counting, the new count is loaded on the next
CLK pulse and counting continues from the new count.

For a 2-byte count, writing the first byte has no effect on counting. Writing the
second byte allows the count to be loaded on the next CLK pulse.

Writing a new count while the original count is counting allows the new count
to be loaded on the next CLK pulse.

6-6 Three-Channel Counter and Speaker - Hardware Description

Mode 4 Cycle

The mode 4 cycle is triggered by writing a new count. The new count is loaded
on the next CLK pulse, but not decremented. With each successive CLK pulse,
the count is decremented.. When the count decrements to 0, the OUT signal
goes low. It remains low for 1 CLK pulse. When the count decrements to
FFFFH, the OUT signal goes high. Until a new count is written, the OUT
signal remains high, which restarts the cycle.

Mode 5 (Hardware Triggered Strobe)

Because the GATE input is the trigger, mode 5 is viable only on counter 2 (the
GATE input of counters 0 and 1 are tied high.) Where n equals the initial
count, the OUT signal is high for n + 1 CLK pulses, low for 1 CLK pulse,
and then high until the GATE input triggers another cycle.

Initializing Mode 5

Programming the control word for mode 1 and writing a new count causes
OUT to go high and arms the trigger. The GATE input has no effect on the
OUT signal.

Writing a new count during counting has no effect on the current count.
However, if the GATE input is triggered, the cycle restarts with the new count.

Mode 5 Cycle

With the trigger armed, a low-to-high transition at the GATE input triggers
the cycle. The new count is loaded on the next CLK pulse, but not decre-
mented. With each successive CLK pulse, the count is decremented. When the
count decrements to 0, the OUT signal goes low. It remains low for 1 CLK
pulse. When the count decrements to FFFFH, the OUT signal goes high.

After the trigger is armed for the first time, the trigger remains armed until
the control word is reprogrammed. Thus, after a count has decremented to 0,
triggering the GATE input restarts the cycle.

Triggering the GATE input before a count decrements to 0 restarts the cycle
on the next CLK pulse. The count is reloaded automatically. Because the count
did not expire, the OUT signal remains high.

Three-Channel Counter and Speaker - Hardware Description 6-7

Registers

This section discusses the 8254 registers. Because bit 0 controls the GATE
input of counter 2 and bit 1 controls the output to the speaker, the system
register is also discussed here. Table 6-3 shows the addresses of the 8254 regis-
ters and the system register.

Table 6-3 8254 and System Register Addresses

Register R/W Address
8254 - Counter 0 RIW 0040H
8254 - Counter 1 R/W 0041H
8254 - Counter 2 R/IW 0042H
8254 - Command Word W 0043H
System R/W 0061H

6-8 Three-Channel Counter and Speaker - Hardware Description

System Register (0061H)

7 6 5 4 3 2 1 0
RAM I/0 COUNTER | REFRESH | ENABLE |ENABLE |SPEAKER |COUNTER
PARITY |CHECK |2 OUT |REQUEST|I/0 RAM DATA 2
CHECK SIGNAL CHECK PARITY GATE

INPUT
Bit R/W Description
7 R RAM PARITY CHECK
0 = Processor board RAM parity good
1 = Processor board RAM parity error
W Always 0
6 R I/0 CHECK
0 = No bus I/O error or option RAM parity error
1 = Bus /O or option RAM parity error exists
W Always 0
5 R COUNTER 2 OUT SIGNAL
0 = Counter 2 OUT signal is low
1 = Counter 2 OUT signal is high
W Always 0
4 R REFRESH REQUEST
0 = Refresh request not active
1 = Refresh request active
The diagnostic software uses this bit to check the operation of the
DRAM refresh circuitry.
W Always 0
3 R/W ENABLE I/O CHECK
0 = Enables checking of the bus I/O check line and option RAM
parity (enabled by ROM BIOS)
1 = Disable bus I/O error checking
2 R/W ENABLE RAM PARITY CHECK

0 = Enable processor board RAM parity checking (enabled by
ROM BIOS)

1 = Disable processor board RAM parity checking

Three-Channel Counter and Speaker - Hardware Description 6-9

Bit

R/W

Description (System Register - cont.)

1 R/W SPEAKER DATA
0 = No sound output from speaker
1 = Sound output from speaker (Counter 2 OUT signal must be

high or generating a frequency)

The output of this bit is ANDed with the Counter 2 OUT
SIGNAL. Assuming that the counter 2 OUT signal is high, tog-
gling this bit generates a pulse train to the speaker driver.
Otherwise, to enable sound output to the speaker, this bit must
equal 1.

0 R/W COUNTER 2 GATE INPUT
0 = Counter 2 GATE input is low
I = Counter 2 GATE input is high

6-10 Three-Channel Counter and Speaker - Hardware Description

Control Word Register (0043H)

7 6 5 4 3 2 1 0
T T T T
BINARY
SELECT READ/ MODE CODED
COUNTER WVRITE SELECT DECIMAL
| | | 1

Bit R/W Description

76 W
54 W
31 W
0 W

SELECT COUNTER

00 = Select counter 0

01 = Select counter 1

10 Select counter 2

11 Read-back command

READ/WRITE

o

00 = Counter-latch command
01 = Read/Write LSB

10 = Read/Write MSB

11 = Read/Write LSB first, then MSB *
MODE SELECT

000 = Mode 0

001 = Mode 1

X10 = Mode 2

X11 = Mode 3

100 = Mode 4

101 = Mode 5

BINARY CODED DECIMAL
0 = Binary counter 16 bits .
1 = Binary-coded-decimal (BCD) counter (4 decades)

* The counter does not start counting until the second byte of the 2-byte
pair is written to the counter latch.

Three-Channel Counter and Speaker - Hardware Description

6-11

Counter-Latch Command (Control Word Register)

7 6 5 4 3 2 1 0
T
SELECT
COUNTER 0 0 0 0 0 0
1

Bit R/W Description

76 W SELECT COUNTER
00 = Select Counter 0

01 = Select Counter 1
10 = Select Counter 2
11 = Undefined

5-0 W Always 0 for counter-latch command

Counter-latch commands do not affect the programmed mode of the counter.
The counter-latch command latches the contents of the counters without affect-
ing the count in progress. When the 8254 receives a counter-latch command, it
latches the selected counter into the counters output latch. The latched count
is held until read by the CPU (or until the counter is reprogrammed). After the
latched count is read, the output latch follows the count in the counter.

When a counter-latch command is issued for more than one counter, each
counter output latch holds the count until read. When any given counter is
latched two or more times without an intervening read, only the first latch
command is effective. When read, the count is the count latched by the first
counter-latch command.

The latched count must be read according to the programmed format (LSB,
MSB, or LSB and MSB).

6-12 Three-Channel Counter and Speaker - Hardware Description

Read-Back Command (Control Word Register)

7 6 5 4 3 2 1
LATCH LATCH COUNTER | COUNTER | COUNTER
COUNT |STATUS 2 1 0
SELECT |SELECT |SELECT
1 1 0
Bit R/W Description
76 W Always 11
54 W LATCH COUNT and LATCH STATUS
00 = Latch status and count of selected counter(s)
01 = Latch count of selected counter(s)
10 = Latch status of selected counter(s)
11 = Undefined
3 W COUNTER 2 SELECT
0 = Counter 2 not selected
1 = Counter 2 selected
2 w COUNTER 1 SELECT
0 = Counter 1 not selected
1 = Counter 1 selected
1 W COUNTER 0 SELECT
0 = Counter 0 not selected
1 = Counter 0 selected
0 w Always 0

The read-back command is written to the control word register. For the se-
lected counters, the read-back command latches a status byte and/or the cur-
rent count.

The status byte format is described under Status Response. The status byte is
read from the indicated counter register as a single 8-bit byte. When the read-
back command latches both status and count, the status byte is read first and
then the count. Thereafter, any read returns an unlatched count.

The latched count follows the format described under Counter-Latch Command.

If multiple read-back commands are issued without intervening reads, all but
the first are ignored. The status read is the status at the time of the first
read-back command.

Three-Channel Counter and Speaker - Hardware Description 6-13

Status Response (Read-back Command)

7 6 5 4 3 2 1 0
‘ T T T
BINARY
ouT NULL READ/ SELECTED CODED
PIN COUNT WRITE MODE DECIMAL
1 1 1

Bit R/W Description

OUT PIN
1 OUT pin is high (1)
0 OUT pin is low (0)

NULL COUNT
0 New count is loaded and is available for reading.
1 Null count

i

A write to the control word register has occurred, which sets the
null count bit of specified counter. If the counter is programmed
for 2-byte counts, when the second byte is written, the null count

goes to 1.

READ/WRITE

00 = Counter-latch command

01 Read/Write LSB

10 Read/Write MSB

11 Read/Write LSB first, then MSB.

SELECTED MODE
000 = Mode 0
001 = Mode 1
X10 Mode 2
X11 Mode 3
100 Mode 4
101 Mode 5

BINARY CODED DECIMAL
0 = Binary counter 16 bits
1 = Binary-coded-decimal (BCD) counter (4 decades)

6-14

Three-Channel Counter and Speaker - Hardware Description

This page is intentionally blank.

Three-Channel Counter and Speaker - Hardware Description 6- 15

Programming Example

The three channel counter/timer and speaker programming example
demonstrates:

e Writing the counter/timer registers
e Enabling and disabling the output to the speaker
e Setting the output frequency to the speaker

The example provides routines as described in the following list:

wr_cntl6 Writes a 16-bit value to the indicated counter

beep Enables the bell (beep) at the speaker

unbeep Disables the bell (beep) at the speaker

tim_spk Initializes the counter, displays the menu, and executes the ex-

ample program

CAUTION

Improper programming or improper operation of this device can
cause the VAXmate workstation to malfunction. The scope of
the programming example is limited to the context provided in
this manual. No other use is intended.

Constant Values

The included file kyb.h defines constant values for function keys. For informa-
tion about keyboard programming, see Chapter 8. For a listing of the file
kyb.h, see Appendix A.

The included file example.h defines the structure type MESSAGE that is used
to display the menu. For a listing of the file example.h, see Appendix A.

The constant value systat defines the offset of the system status register in
I/O space.

The constant values cwrdreg through count2 define the offset of the 8254
counter/timer registers in I/O space.

The constant values selcnt0 through rbent2 define the bit values of various
8254 counter/timer commands.

The constant value inpfreq defines the input frequency to all three counter/
timers.

6-16 Three-Channel Counter and Speaker - Programming Example

#include "kyb.h" /* reference function key constants */
#include "example.h" /* reference menu structure */

/***/

/* define constants used to program 8254 timer */
/***/

#define SYSTAT Ox61 /* system status register in I/0 space */
#define CWRDREG 0x43 /* control word register in I/0 space */
#define COUNTO 0x40 /* counter O register in I/0 space */
#define COUNT1 Ox41 /* counter 1 register in I/0 space */
#define COUNT2 0x42 /* counter 2 register in I/0 space */
#define SELCNTO 0x00 /* select counter 0 */
#define SELCNT1 0x40 /* select counter 1 */
#define SELCNT2 0x80 /* select counter 2 */
#define SELRDBK 0xCO /* select read back */
#define LATCOM 0x00 /* select latch command */
#define RWLSB 0x10 /* read/write LSB */
#define RWMSB 0x20 /* read/write MSB */
#define RWLSMS 0x30 /* read/write LSB then MSB */
#define TMODEO 0x00 /* select timer mode 0 */
#define TMODE1 0x02 /* select timer mode 1 */
#define TMODE2 0x04 /* select timer mode 2 */
#define TMODE3 0x06 /* select timer mode 3 */
#define TMODE4 0x08 /* select timer mode 4 */
#define TMODES 0x09 /* select timer mode 5 */
#define BINDAT 0x00 /* binary count data */
#define BCDDAT 0x01 /* binary coded decimal count data */
#define LATCNT 0x20 /* read back cmd latch count */
#define LATSTA 0x10 /* read back cmd latch status */
#define RBCNTO 0x02 /* read back counter 0 */
#define RBCNT1 0x04 /* read back counter 1 */
#define RBCNT2 0x08 /* read back counter 2 */
#define INPFREQ 1193181L /% 14.31818 Mhz / 12 = 1.1931816 Mhz */

Three-Channel Counter and Speaker - Programming Example 6-17

Writing a Counter

The function wr_cnt16 writes a 16-bit value to the indicated counter. A 16-bit
value is written 8-bits at a time (low byte first) to the same port.

Making a Bell Sound

The function beep enables the speaker output at 1000 Hz. It provides the bell
(beep sound) for the ASCII character BEL (07H). This function can be called at
any time. The speaker output is automatically disabled by the function unbeep.

The function unbeep monitors the variable beep flag. If required, it disables the
speaker. This function is called from within the real time clock interrupt han-
dler. It tracks the number of 125 ms periods that the speaker has been on for
a bell (beep sound). After 500 ms total, the speaker output is disabled. If the
real time clock interrupts are not enabled, the speaker output will not be
disabled automatically.

6- 18 Three-Channel Counter and Speaker - Programming Example

/***/

/* wr_cnt16() - write 16-bit value to counter */
/***/

wr_cnti6(counter, value)

unsigned char counter; /* which counter to set */
unsigned int value; /* 16-bit value */
{
unsigned int intr_flag; /* to hold current IF state */
intr_flag = int_off(); /* disable interrupts */
outp(counter | COUNTO, value & Oxff); /* write counter low byte ¥/
outp(counter | COUNTO, value >> 8); /* write counter high byte */
int_on(intr_flag); /* enable interrupts */
}
/***/
/* beep() - start up beep sound at speaker */
/***/
int beep_flag; /* true while beeping */
beep()
{
wr_cnt16(2, (int) (INPFREQ / 1000L)); /* set desired frequency */
outp (SYSTAT, 0x03); /* turn speaker on */
beep_flag = 1; /* set flag, speaker is on */
}

/***/

/* unbeep() - time to stop beep sound at speaker ? */
[ke s skt ks ok ok sk ok ks ok sk ko sk ok sk ok ok sk ok ok sk ok ok ok sk ok ok ok sk ok ook ok ok ok sk ook ok ok ok ok /

unbeep ()
{
if (beep_flag) /* are we making a beep sound */
if (++beep_flag > 3) /* has it been on long enough */
{
outp (SYSTAT, 0x00); /* turn it off */
beep_flag = 0; /* reset flag */
}
}

Three-Channel Counter and Speaker - Programming Example 6-19

Counter and Speaker Example

The function tim_spk initializes the counter, displays the-menu, and executes
the example.

/***/

/* tim_spk() - execute timer and speaker examples */
/***/

tim_spk()

{

static MESSAGE mtim_spk[] = /* menu for timer/speaker example */
{

24, "8254 Timer and Speaker Example" },
, 24, "F1. Set frequency to speaker" },
, 24, "F2. Speaker on" },

24, "F3. Speaker off" },

24, "F4. DO-RE-MI" },

24, "F10. Return to Main menu" },

0, 013},

-

-

-

o W W Wan N Wan Nan)
QOO ~NOOMW

};

static int tone[8] = /* frequencies for notes to do-re-mi */
{ 2281, 2032, 1810, 1709, 1524, 1366, 1209, 1140 };

char line[512]; /* to hold input line */
unsigned int freq; /* to remember frequency */
unsigned int tval; /* general temporary */
unsigned int i; /* iteration control */
extern unsigned int metronome; /* defined in clock example */

/* maintains beat of do-re-mi */
#define ROW 16
#define COL 17

line[0] = O;
freq = 1000; /* default frequency */
/* initialize counter mode */
outp (CWRDREG, SELCNT2 | RWLSMS | TMODE3 | BINDAT);
while(1)
{
disp_menu(mtim_spk) ;
switch(line[0])
{
case F1: /* set output frequency */
disp_str(ROW, COL, "Enter new frequency (19Hz - 20000Hz):");

6-20 Three-Channel Counter and Speaker - Programming Example

}

}

get_keys(ROW, COL + 37, line);
sscanf (line, "%d", &freq);

if (freq < 18) freq = 19;

else if (freq > 20000) freq = 20000;
tval = (int) (INPFREQ / (long)freq):
wr_cnt16(2, tval);
disp_menu(mtim_spk) ;

break;
case F2: /* turn speaker on */
outp (SYSTAT, 0x03);
break;
case F3: /* turn speaker off */
outp (SYSTAT, 0x00);
break;
case F4: /* play do-re-mi */
i=0; /% iteration count = 0 */
metronome = Oxffff; /* prepare counter to overflow */
while(metronome) ; /* wait until it overflows */
wr_cnt16(2, tonel[i++]); /* start first note */
outp (SYSTAT, 0x03); /* enable speaker */
while(i < 9) /* do all notes */
{
if (metronome > 3) /* hold note for 500 ms */
{
wr_cnt16(2, tonel[it++]); /* next note */
metronome = O; /* reset counter */
}
chk_dt(); /* redisplay time for menu 7 */
}
outp (SYSTAT, 0x00); /* turn speaker off */
tval = (int) (INPFREQ / (long)freq); /* reset frequency */
wr_cnt16(2, tval);
break;
case F10: /* return to caller */
return;
}
line[0] = get_fkey(); /* get function key */

Three-Channel Counter and Speaker - Programming Example 6-21

Chapter 7
Video Controller

Introduction

The VAXmate video controller is on the 1/O board and drives a monochrome
monitor. The video controller can process 16 colors or shades of gray. In this
chapter, the term color also means shades of gray or intensity levels.

Industry-Standard Text and Graphics Features
The VAXmate video controller has the following industry-standard text and
graphics features:

. 80 x 25 and 40 x 25 text display

. 8 x 8 graphics character cell

. character attributes:

- 16 foreground colors
- 16 background colors or 8 background colors plus blink

. bit map graphics with industry-standard color palettes

- 320 x 200 4 colors
- 640 x 200 2 colors

Video Controller - Hardware Description 7-1

Enhancements to Industry-Standard Features
The video controller has the following enhancements to industry-standard

features:

The screen resolution is 640 horizontal pixels by 400 scan lines.
Industry-standard graphics (200 scan lines) is accomplished by
displaying each scan line twice.

The character pattern is 8 horizontal pixels by 16 scan lines, result-
ing in higher quality characters in text modes.

The 256-character font RAM provides flexibility in terminal emula-
tion and multilingual applications.

The dual-port video memory eliminates annoying screen flicker (dis-
abling the screen before accessing video memory is unnecessary).

The 16-bit data path to video memory, coupled with the dual-port
access results in faster screen updates.

Industry-Standard Features Not Available

The video controller does not support these features:

160 x 100 16-color graphics mode
15.75 KHz monitor support
Border color support

Light pen support

Extra Features

The video controller has the following additional graphic features:

7-2

640 x 400 2-color graphics
640 x 400 4-color graphics
640 x 200 4-color graphics
800 x 252 4-color graphics
320 x 200 16-color graphics
256-character soft font

Video Controller - Hardware Description

Block Diagram

The video controller consists of a display processor and video memory that
reside on the I/O board. As shown in Figure 7-1, the display processor includes
a translation ROM, a 6845 CRT controller, text video logic, graphics video
logic, a video look-up table, and status and control registers.

VIDEO GATE ARRAY

16- 64 KBYTE VIDEO RAMH |TEXT VIDEO LOGIC

BIT

DATA

BUS 4 KBYTE FONT RAM [|GRAPHICS VIDEO LOGIC

TRANSLATION ROM|— 6845 CRT CONTROLLER

)|

8 STATUS REGISTERS VIDEO LOOK-UP TABLE
BIT

I/0 :
BUS CONTROL REGISTZRS

MONITOR INTERFACE

Figure 7-1 Block Diagram of the VAXmate Video Controller

The translation ROM translates industry-standard color graphic adapter data to
data that is correct for the DIGITAL video controller.

The 6845 CRT Controller (CRTC) internal registers control horizontal and ver-
tical positioning, synchronization, video and cursor starting addresses, and
width of video display.

Two status registers monitor vertical synchronization, video blanking time, and
various modes in the control registers.

The two control registers enable the various text and graphics modes, enable
and disable the display, select the font RAM, select the video look-up table
(VLT), and provide screen saver support.

Video Controller - Hardware Description 7-3

64K bytes of dual-ported memory, which maps into the address space of the
VAXmate CPU.

The display processor converts memory data into various raster formats. The
display processor generates IRGB outputs that drive the monochrome monitor.
The VAXmate monitor displays the color information as different levels of in-
tensity (shades of gray).

Additional Sources of Information

The following documents provide additional information on the video controller:

Device Company Document

6845-1 Motorola 8-Bit Microprocessor & Peripheral Data
HD46505S Hitachi 8/16-Bit Multi-Chip Microcomputer Data Book

7-4 Video Controller - Hardware Description

Video Modes

The video controller has several modes, some of which have a mode number
assigned indicating that the ROM BIOS supports these modes. For modes not
supported by the ROM BIOS, the hardware must be programmed directly.
Table 7-1 shows the available video modes.

For industry-standard color graphic adapters, the difference between a color
and a monochrome mode is the presence (color) or absence {monochrome) of the
color burst signal in the composite video output. Because the VAXmate video
controller does not provide a composite video output, there is no difference be-
tween the color and the monochrome modes.

On powerup or system reset, the video system is initialized to mode 03H.

Table 7-1 Available Video Modes

Mode Size Description

00H 40x 25 text mode monochrome (industry-standard)
0l1H 40x 25 text mode color (industry-standard)

02h 80x 25 text mode monochrome (industry-standard)
03h 80 x 25 Text mode color (industry-standard)

04H 320 x 200 4-color graphics mode (industry-standard)

05h 320 x 200 monochrome graphics (industry-standard)

06h 640 x 200 monochrome graphics mode (industry-standard)
- 320 x 200 16-color graphics mode (digital extended) *
dOh 640 x 400 2-color graphics mode (digital extended)

dlh 640 x 400 4-color graphics mode (digital extended)

d2h 800 x 252 4-color graphics mode (digital extended) **

- 640 x 200 4-color graphics mode (DIGITAL extended) *

* No ROM BIOS support
** Limited ROM BIOS support

Video Controller - Hardware Description 7-6

Text Modes

The video controller has a 16 Kbyte text buffer in the address range B80OOH-
BBFFFH. Video modes 00H, 01H, 02H, and 03H use the text buffer.

For modes 00H and 01H, the text buffer provides 8 display pages of 2048
bytes each. For modes 02H and 03H, the text buffer provides 4 display pages
of 4096 bytes each.

Character Buffer Format

A displayed character is represented by two consecutive bytes. The first byte,
of the 2-byte pair, is the character code. The character code is stored at an
even address. The second byte, of the 2-byte pair, is the attribute byte. The
attribute byte is stored at the odd address following the character code. Figure
7-2 shows the character code and attribute byte addressing. Table 7-2 defines
the meaning of each bit within the attribute byte.

B8OOOH B8OO1H B8002H BS8OO3H BBFFEH BBFFFH
Even 0dd Even 0dd Even 0dd
Char Attr Char Attr Char Attr
Code Code Code

Figure 7-2 Character Buffer Format

Table 7-2 Attribute Byte Bit Definitions

Bit Symbol Definition

7 Ib Background intensity / Blink *

6 Rb Red contribution to background color

5 Gb Green contribution to background color
4 Bb Blue contribution to background color
3 If Foreground intensity

2 Rf Red contribution to foreground color

1 Gf Green contribution to foreground color
0 Bf Blue contribution to foreground color

* The selection of background intensity or blink is determined by bit 7 of
control register A. Control register A is described later in this chapter.
When blink is enabled, the blink frequency is 1.9 Hz.

7-6 Video Controller - Hardware Description

Character Position to Memory Location Mapping

Character positions on the screen are identified as row (vertical) and column
(horizontal) locations. The first character is displayed in the upper-left corner of
the screen, which is location 0,0. To translate between screen positions and the
address within the text buffer, use the following formula:

Character code address = start_address + (row * 2 * Y) + (column * 2)

Attribute address = Character code address + 1

Where:
start_address = Display page start address (see Table 7-3)
row = 0 to 24
column = 0 to 79 (80 X 25 modes)
0 to 39 (40 X 25 modes)
Y = 80 (80 X 25 modes)

40 (40 X 25 modes)

In text modes, the video processor supports multiple display pages. For direct
programming, registers R12 and R13 (described later in this chapter) control
the display-page start address. Each displayed character requires 2 bytes (char-
acter code and attribute byte). Therefore, the 80 x 25 modes require 4000
bytes (80 x 25 x 2) and the 40 x 25 modes require 2000 bytes

(40 x 25 x 2). The ROM BIOS also supports multiple display pages and
rounds the memory requirements to 4096 bytes and 2048 bytes respectively.
Table 7-3 shows the display page addresses as defined by the ROM BIOS.

Video Controller - Hardware Description 7-7

Table 7-3 Text Mode Display Pages (ROM BIOS)

Address 80 x 25 40 x 25
Display Page Display Page
B8000H 0 0
B880OH 1
B9000H 1 2
B9800H 3
BAOOOH 2 4
BA8(OOH 5
BB00OH 3 6
BB80OH 7

Programmable Cursor

For text modes only, the video controller provides a programmable cursor blink
rate and cursor block size. The cursor blink is determined by bits 6-5 of regis-
ter R10. The cursor blinks with alternate foreground and background color of
the character at the cursor position. The cursor block size is controlled by bits
4-0 of registers R10 and R11. Registers R10 and R11 are discussed later in
this chapter.

7-8 Video Controller - Hardware Description

Programmable Character Generator (Font RAM)

The video controller has a 4 Kbyte programmable font RAM. The font RAM
can store patterns for 256 characters. Normally, the font RAM is accessible
only to the video controller. That is, the font RAM is not mapped into the
normal CPU address space. Accessing the font RAM requires that the video
mode be one of the text modes 00H, 01H, 02H, or 03H. Bit 4 of control regis-
ter B (described later in this chapter) controls access to the font RAM. When
bit 4 of control register B equals 1, access to the video text buffer is disabled
and access to the font RAM is enabled. Only even text buffer addresses are
connected to the font RAM. The text buffer to font RAM mapping appears as
follows:

Text Buffer Offset Font Ram Offset

B8000H 0000H (first byte of font RAM)

B8001H

B8002H 0001H (second byte of font RAM)

B8003H

B8004H 0002H (third byte of font RAM)

B8005H

B9FFDH

B9FFEH OFFFH (last byte of font RAM)
NOTE

The ROM BIOS does not support the use of the font RAM in
any graphics video mode.

A character pattern consists of 16 bytes of pixel information. Each byte repre-
sents 8 consecutive pixels of a horizontal scan line for the character. The most
significant bit (bit 7) corresponds to the left-most pixel (pixel 0). The least sig-
nificant bit (bit 0) corresponds to pixel 7. Each byte of the character pattern is
read or written to an even address. Thus, each character pattern requires 32
bytes of address space and an entire 256-character font requires 8K bytes. To
calculate the address of the first byte of a character pattern, use the following
formula:

Character pattern start address = B800OOH + (character code * 32)

Video Controller - Hardware Description 7-9

Graphics Mode

Each pixel on the screen is mapped into a bit-field of the corresponding byte in
the display buffer. The width of the bit-field can be of 1, 2 or 4 bits depending
on whether a 2-color, 4-color, or 16-color format is chosen.

Mapping the Display to Address

The logical display consists of a rectangular array of 200, 252, or 400 scan
lines of pixels. For 200 scan line mode, the hardware generates two physical
scan lines for each logical scan line. Each scan line is represented by

(M / 8) * n consecutive bytes, where:

M = Number of pixels per scan line

n = 1, for 1-bit per pixel (2-color display)
n = 2, for 2-bits per pixel (4-color display)
n = 4, for 4-bits per pixel (16-color display)

The memory maps for various graphic formats are shown on the following
pages. Each memory map shows two or more blocks of memory that refer to:

(LMOD P =R
Where:

L is the desired scan line
P is the number of memory blocks for the current video mode
R is the remainder of the division L/ P

The remainder, R, specifies the memory block for a particular scan line.

7-10 Video Controller - Hardware Description

320 x 200 4-Color Mode
ROM BIOS Video Modes: 04H and 05H - Industry-Standard

In 4-color mode, a single byte corresponds to 4 consecutive pixels on the screen
with the most significant bit of the byte corresponding to the left of the screen.
See Figure 7-3 for the memory organization. See Figure 7-4 for the pixel to

bit-field map.
|

80 BYTES PER SCAN LINE

B800OH B804FH
D
I
G (L MOD 2) =
I
T
A |B9FOOH B9F3FH
L
BAOOOH BAO9FH
v
I
D
E (L MOD 2) =
0
BBFOOH BBF3FH
L = SCAN LINE O TO 199
Figure 7-3 Memory Organization for 320 x 200 4-Color Mode
7 6 5 4 3 2 1 0
T T T
CB1 CBO CB1 CBO CB1 CBO CB1 CBO

LEFT MOST PIXEL

RIGHT MOST PIXEL

Figure 7-4 Pixel to Bit-Field Map for 4-Color Mode

Video Controller - Hardware Description

7-11

320 x 200 16-Color Mode
No ROM BIOS Support - DIGITAL Extended

In 16-color mode, a single byte corresponds to 2 consecutive pixels on the
screen with the most significant bit of the byte corresponding to the left of the
screen, See Figure 7-5 for the memory organization. See Figure 7-6 for the
pixel to bit-field map.

} 160 BYTES PER SCAN LINE i

B800OH | BSO9FH
(L MOD 4) = 0

D |B9FOOH BI9F3FH
I
G
I |BAOOOH BAO9FH
T (L MOD 4) = 1
A |BBEAOH BBF3FH
L :

BCOOOH BCO9FH
v (L MOD 4) = 2
I |BDEAOH BDF3FH
D
E
0 |BEOOOH BEO9FH

(L MOD 4) = 3
BFEAOH BFF3FH
L = SCAN LINE O TO 199
Figure 7-5 Memory Organization for 320 x 200 16-Color Mode

7 6 5 4 3 2 1 0

CB3 CB2 CB1 CBO CB3 CB2 CB1 CBO
1 1 1 1 1]

LEFT PIXEL RIGHT PIXEL

Figure 7-6 Pixel to Bit-Field Map for 16-Color Mode

7-12 Video Controller - Hardware Description

640 x 200 2-Color Mode

ROM BIOS Video Mode: 06H - Industry-Standard

In 2-color mode, a single byte corresponds to 8 consecutive pixels on the screen
with the most significant bit of the byte corresponding to the left of the screen.
See Figure 7-7 for the memory organization. See Figure 7-8 for the pixel to

bit-field map.

80 BYTES PER SCAN LINE

B80OOH BBO4FH
D
I
G (L MOD 2) =
I
T
A |B9FOOH B9F3FH
L
BAOOOH BAO9FH
v
I
D
E (L MOD 2) =
0
BBFOOH BBF3FH
L = SCAN LINE O TO 199
Figure 7-7 Memory Organization for 640 x 200 2-Color Mode
7 6 5 4 3 2 1 0
CBO CBO CBO CBO CBO CBO CBO CBO
LEFT RIGHT
MOST MOST
PIXEL PIXEL

Figure 7-8 Pixel to Bit-Field Map for 2-Color (Monochrome) Mode

Video Controller - Hardware Description 7-13

640 x 200 4-Color Mode
No ROM BIOS Support - DIGITAL Extended

In 4-color mode, a single byte corresponds to 4 consecutive pixels on the screen
with the most significant bit of the byte corresponding to the left of the screen.
See Figure 7-9 for the memory organization. See Figure 7-10 for the pixel to
bit-field map.

} 160 BYTES PER SCAN LINE |

B800OH B80O9FH
D
I (L MOD 2) = O
G
I
T
A |BBDEOH BBE7FH
L
BCOOOH BCO9FH
v
I
D (L MOD 2) =1
E
0
BFDEOH BFE7FH
L = SCAN LINE O TO 199
Figure 79 Memory Organization for 640 x 200 4-Color Mode
7 6 5 4 3 2 1 0
T T I 1
CB1 CBO CB1 CBO CB1 CBO CB1 CBO
1 1
LEFT MOST PIXEL RIGHT MOST PIXEL

Figure 7-10 Pixel to Bit-Field Map for 4-Color Mode

7-14 Video Controller - Hardware Description

640 x 400 2-Color Mode

ROM BIOS Video Mode: DOH - DIGITAL Extended

In 2-color mode, a single byte corresponds to 8 consecutive pixels on the screen
with the most significant bit of the byte corresponding to the left of the screen.
See Figure 7-11 for the memory organization. See Figure 7-12 for the pixel to

bit-field map.
} 80 BYTES PER SCAN LINE]
B800OH B8O9FH
(L MOD 4) =
D |B9FOOH BIF3FH
1
G
I |BAOOOH BAO9FH
T (L MOD 4) =
A |BBFOOH BBF3FH
L
BCOOOH BCO9FH
v (L MOD 4) =
I |BDFOOH BDF3FH
D
E
0 |BEOOOH BEO9FH
(L MOD 4) =
BFFOOH BFF3FH

L = SCAN LINE O TO 399

Figure 7-11 Memory Organization for 640 x 400 2-Color Mode

7 6 5 4 3 2 1 0
CBO CBO CBO CBO CBO CBO CBO CBO
LEFT RIGHT

MOST MOST
PIXEL PIXEL

Figure 7-12 Pixel to Bit-Field Map for 2-Color Mode

Video Controller - Hardware Description 7-156

640 x 400 4-Color Mode
ROM BIOS Video Mode: DIH - DIGITAL Extended

In 4-color mode, a single byte corresponds to 4 consecutive pixels on the screen

with the most significant bit of the byte corresponding to the left of the screen.
See Figure 7-13 for the memory organization. See Figure 7-14 for the pixel to
bit-field map.

160 BYTES PER SCAN LINE

BOOOOH BOO9FH
(L MOD 4) = O
D |B3DEOH B3E7FH
I
G
I |B4000OH B409FH
T (L MOD 4) = 1
A |B7DEOH B7E7FH
L
B800OH B8O9FH
v (L MOD 4) = 2
I BBDEOH BBE7FH
D
E
0 |BCOOOH BCO9FH
(L MOD 4) = 3
BFDEOH BFE7FH
L = SCAN LINE O TO 399
Figure 7-13 Memory Organization for 640 x 400 4-Color Mode
7 6 5 4 3 2 1 0
T 1 I 1
CB1 CBO CB1 CBO CB1 CBO CB1 CBO

LEFT MOST PIXEL

7-16

RIGHT MOST PIXEL

Figure 7-14 Pixel to Bit-Field Map for 4-Color Mode

Video Controller - Hardware Description

800 x 252 4-Color Mode

ROM BIOS Video Mode: D2H (Limited ROM BIOS Support) - DIGITAL
Extended

In 4-color mode, a single byte corresponds to 4 consecutive pixels on the screen
with the most significant bit of the byte corresponding to the left of the screen.
See Figure 7-15 for the memory organization. See Figure 7-16 for the pixel to

bit-field map.

200 BYTES PER SCAN LINE

BO0OOH BOOC7H
(L MOD 4) =0
D |B3070H B3137H
I .
G
I |B4000OH B40C7H
T (L MOD 4) = 1
A |B7070H B7137H
L
B800OH B80OC7H
\/ (L MOD 4) = 2
I |BBO70H BB137H
D
E
0 |BCOOOH BCOC7H
(L MOD 4) = 3
BFO70H BF137H
L = SCAN LINE 0 TO 251
Figure 7-15 Memory Organization for 800 x 252 4-Color Mode
7 6 5 4 3 2 1 0
T T T '
CB1 CBO CB1 CBO CB1 CBO CB1 CBO

LEFT MOST PIXEL

RIGHT MOST PIXEL

Figure 7-16 Pixel to Bit-Field Map for 4-Color Mode

Video Controller - Hardware Description 7-17

Video Look-Up Table

The video processor has a video look-up table (VLT) that translates attribute or
graphic color data. The VLT is arranged as 16 words of IRGB output data.
Each location corresponds to one of the 16 possible colors. When the video con-
troller accesses video memory, the attributes or graphic data are used as an
offset into the VLT. The contents of that location in the VLT are sent to the
video output circuit. Because the VLT has only 16 entries, the VLT can alter
the color interpretation of the bit map without rewriting every pixel.

For 2-color mode graphics (640 x 400 or 640 x 200), the foreground color (pixel
equals 1) is determined by the color-select register bits 3-0. The background
color (pixel equals 0) is determined by the contents of VLT entry 0. The color
select register is described later in this chapter.

Normally, the VLT is accessible only to the video controller. That is, the VLT
is not mapped into the normal CPU address space. Accessing the VLT requires
that the video mode be one of the text modes 00H, 01H, 02H, or 03H. Bit 2 of
control register B (described later in this chapter) controls access to the VLT.
When bit 2 of control register B equals 1, access to the video text buffer is
disabled and access to the VLT is enabled.

NOTE

Only write access to the VLT is enabled. To read the VLT in-
directly, program the video processor for 320 x 200 16-color
mode. For each of the 16 possible colors (00H-0FH):

Write the same color value to each pixel.

Wait until the display is inactive (register B bit 7
equals 1)

Disable CPU interrupts (CLI instruction)
Wait until the display is active (register B bit 7 equals 0)

Status register A bits 7-4 (IRGB) are equal to the con-
tents of the VLT location specified by the color value.

6. Enable CPU interrupts (STI instruction)

7-18 Video Controller - Hardware Description

Only even-text buffer addresses are connected to the VLT. The text buffer to
VLT mapping appears as follows:

Text VLT Text VLT
Buffer Offset Buffer Offset
Offset Offset

B80OOH 0000H B8010H 0008H
B80O1H B8011H

B8002H 00018 B8012H 0009H
B8003H B8013H

B8004H 0002H B8014H 000AH
B80O5SH B8015H

B8006H 0003H B8016H O0OBH
B8007H B8017H

B8008H 0004H B8018H 000CH
B8009H B8019H

B80OAH 0005H B801AH 000DH
B8OOBH B801BH

B800CH 0006H B801CH 00OEH
B8OODH B8O1DH

B8OOEH 0007H B80O1EH 00OFH
B8OOFH B8O1FH

Text mode attributes are referenced in the order IRGB, but the VLT ad-
dressing and contents are referenced in the order RGBI. To calculate the offset
accessed by any IRGB value, use the following bit values:

Bit Value Attribute

0 I (Intensity)
1 B (Blue)

2 G (Green)

3 R (Red)

Thus, a text attribute of intensified red (IRGB = COH) accesses location 09H
of the 16 locations in the VLT.

On power-up or system reset, the VLT is initialized to the values in Table 7-4.
The VLT values defined in Table 7-4 support video modes 00H, 01H, 02H,
03H, 04H, 05H, 06H and DOH. When changing from any of these modes to
video mode D1H or D2H, initialize the VLT to the values defined in Table 7-5.

Video Controller - Hardware Description 7-19

Table 7-4 Default VLT Contents

Offset Covntents" ’ Color Intensity
A3 A2 Al A0 D3 D2 D1 DO

R G B 1 R G B 1

0 0 0 0 0 0 0 0 Black 0
o 0 0 1 o 0 o0 1 Gray 1
00 0 1 0 o 0 1 o Blue 2
O 0 1 1 o 0 1 1 Light blue 3
O 1 0 0 0o 1 0 O Green 4
0O 1 0 1 o 1 0 1 Light green 5
00 1 1 0 o 1 1 o0 Cyan 6
o 1 1 1 1 1 1 0 White 14
1 0 0 0 r 0 0 o Red 8
1 0 0 1 1 0 0 1 Light red 9
1 0 1 0 1 0 1 O Magenta 10
1 0 1 1 i1 0 1 1 Light magenta 11
1 1 0 O 1 1 0 O Brown 12
1 1 0 1 1 1 0 1 Yellow 13
1 1 1 0 0 1 1 1 Light cyan 7
1 1 1 1 1 1 1 1 Intense white 15
7- 20 - Video Controller - Hardware Description

Table 7-5 VLT Contents for Video Modes D1H and D2H

Offset

A3 A2 Al A0

R

G

B

I

Contents

D3 D2 D1 DO

R G

B

I

Color

Intensity

Pk et e e e e e - O O O O O O O O

o e e O O O O o o OO0 O O

L T = B)

oo O = - O O - - O O

- O - o

= O = O O MO O O

0
0
1
0

0
1
0
1

o O Q

Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used

-0 O Q@

Black
Green

Red

Light cyan

5 ® » O

Video Controller - Hardware Description

7-21

Video System Registers

Table 7-6 lists the video processor input/output (I/O) registers.

Table 7-6 Video Processor 1/0 Registers

Address

Register Name

Compatibility

03DOH
03D1H

03D4H
03D5H

03D8H
03D9H

03DAH
03DDH
03DEH
03DFH
0C80H

Width R/W
4-0 w
7-0 R/W
4-0 w
7-0 R/IW
7-0 W
7-0 w
7-0 R
7-0 R
7-0 R
7-0 w
7-0 R/W

CRTC Index Register
CRTC Data Register

CRTC Index Register
CRTC Data Register

Control Register A
Color Select Register

Status Register A
Status Register B
Write Data Register
Control Register B

DIGITAL Extended
DIGITAL Extended

Industry-Standard
Industry-Standard

Industry-Standard
Industry-Standard

Industry-Standard

DIGITAL Extended
DIGITAL Extended
DIGITAL Extended

Special Purpose Register DIGITAL Extended

7- 22

Video Controller - Hardware Description

Special Purpose Register (0CS0H)

7 6 5 4 3 2 1 0
WRITE |TRACK O|INDEX |SPEED |DISABLE|SPLIT |DISABLE |SPEED
PROTECT VIDEO |BAUD COMM SELECT

Bit R/W Description

7 R
6 R
5 R
4 R
3 R/W
2 R/W
1 R/W
0 RIW

Write protect

0 = Selected diskette drive is not write protected

1 = Selected diskette drive is write protected

Track 0

0 = Head of selected diskette drive is not at track 0

1 = Head of selected diskette drive is at track 0

Index

0 = Index hole not in position for selected diskette drive
1 = Index hole in position for selected diskette drive

Speed Indicator

= Video controller disabled
= Video controller enabled

0
1
Split Baud Rates
0
1

D
0=

space
1 —

space
Speed Select
0
1

isable Communications
Integral communications ports connected to 1/O address

= Speed select asserted
= Speed select not asserted

= Modem control speed select asserted
= Modem control speed select not asserted

isable Video

(Receive = Transmit = programmed)
(Receive = 1200) (Transmit = programmed)

Integral communications ports disconnected from I/O address

Video Controller - Hardware Description

7-23

The special purpose register is located at I/O address 0C80H. When bit 3
equals 0, the entire DIGITAL video system is disconnected from the memory
and 1/0 address space. This allows the installation and use of industry-standard
video adapters in the VAXmate workstation.

If the ROM BIOS finds an industry-standard video adapter during the power-
up sequence, the ROM BIOS clears bit 3 of the special purpose register. This
allows the industry-standard video adapter to function without conflict.

7-24 Video Controller - Hardware Description

CRTC Registers

The CRT controller (CRTC) has two registers, the index and data registers,
that are accessible in the CPU 1/O space. Writing a value to the index register
selects one of the 18 internal registers R0-R17. The selected register is read or
written through the data register.

Index Register (03DOH/03D4H)
7 6 5 4 3 2 1 0

REGISTER SELECT

RS4 RS3 RS2 RS1 RSO
1 1 1 1

Bit R/W Description

7-5 W Always 0
4-0 W REGISTER SELECT (RS4-RS0)

A value between 0 and 17 written to this register selects one of
the corresponding internal registers (R0-R17).

Data Register (03D1H/03D5H)
7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 DO

Bit R/W Description

7-0 R/W Data and width are dependent upon the register selected by the
index register. To determine if the data register can be read or
written, see the description of the register selected by the index
register.

Video Controller - Hardware Description 7-26

The index and data registers can be accessed through two sets of 1/O ports.
The industry-standard set is 03D4H (index) and 03D5H (data). The DIGITAL
extended set is 03DOH (index) and 03D1H (data). Data written to the industry-
standard set pass through a translation ROM and then go to the CRTC. Data
written to the DIGITAL extended set go directly to the CRTC.

The translation ROM converts CRTC parameters, for an industry-standard
color graphics adapter, to values that are correct for the extended capabilities
of the DIGITAL video system. Thus, applications that directly program the
CRTC of an industry-standard color graphics adapter function correctly.

Table 7-7 lists the CRTC internal registers and their functions. Table 7-8 lists
the corresponding parameters for the video modes defined in Table 7-1. The
parameters listed in Table 7-8 are written to the CRTC through the DIGITAL
extended I/O ports 03DOH (index) and 03D1H (data).

Table 7-7 CRTC Internal Registers

Register Index R/W Description

RO 00H W Horizontal total

R1 01H W Horizontal displayed

R2 02H W Horiz sync position

R3 03H W Sync width

R4 04H W Vertical total

R5 05H W Vertical total adjust

R6 06H W Vertical displayed

R7 07H W Vertical sync position

RS 08H W Interlace/Skew

R9 09H W Max scan line address
R10 0AH W Cursor start

R11 0BH W Cursor end

R12 0CH R/W Start address (High byte)
R13 ODH R/W Start address (Low byte)
R14 OEH R/W Cursor address (High byte)
R15 OFH R/W Cursor address (Low byte)
R16 10H R Light pen (High byte) *
R17 11H R Light pen (Low byte) *

* The DIGITAL video system does not support light pens.

7- 26 Video Controller - Hardware Description

Table 7-8 CRTC Register Values

320 x
200
4-color
640 x 640 x
400 200
4-color 2-color
320 x 800 x 640 x 640 x
200 252 200 400
16-color 4-color 4-color 2-color 80x25 40 x25
Register Graphics Graphics Graphics Graphics Text Text
RO 69H 83H 69H 34H 69H 34H
R1 50H 64H 50H 28H 50H 28H
R2 58H 6DH 58H 2CH 58H 2DH
R3 58H 5AH 58H 54H 58H 54H
R4 36H 6DH 6DH 6DH 1AH 1AH
R5 00H 01H 00H 00H 08H 08H
R6 32H 3FH 64H 64H 19H 19H
R7 33H 53H 66H 66H 19H 19H
R8 40H 40H 42H 40H 40H 40H
R9 07H 03H 03H 03H OFH OFH
R10 00H 00H 00H 00H 00H 00H
R11 OFH OFH OFH OFH OFH OFH
R12 00H 00H 00H 00H 00H 00H
R13 00H 00H 00H 00H 00H 00H
R14 00H 00H 00H 00H 00H 00H
R15 00H 00H 00H 00H 00H 00H

Video Controller - Hardware Description

7-27

Register RO
7 6 5 4 3 2 1 0

1 1 | 1 1 | 1

Bit R/W Description

7-0 W HORIZONTAL TOTAL

This register determines the horizontal synchronization frequency.
It is the number of displayed characters (R1) plus the retrace (in
character times) minus one.

Register R1
7 6 5 4 3 2 1 0

HORIZONTAL DISPLAYED

| 1 1 1 | 1 1

Bit R/W Description

7-0 W HORIZONTAL DISPLAYED

This register determines the number of displayed characters on a
line. The value in R1 must be less than the value in RO.

7- 28 Video Controller - Hardware Description

Register R2
7 6 5 4 3 2 1 0

HORIZONTAL SYNCHRONIZATION POSITION

1 1 1 1 1 1 |

Bit R/W Description

7-0 W HORIZONTAL SYNCHRONIZATION POSITION

This register determines the position of the horizontal synchroniza-
tion delay and the horizontal scan delay. When this value is in-
creased, the display shifts left. When this value is decreased, the
display shifts right.

Register R3

7 6 5 4 3 2 1 0
VERTICAL SYNCHRONIZATION HORIZONTAL SYNCHRONIZATION
PULSE WIDTH PULSE VWIDTH

Vs3 | Vs2 | Vs1 | Vso HS3 | HS2 ; HS1 | HSO

Bit R/W Description

7-4 W VERTICAL SYNCHRONIZATION PULSE WIDTH

A value of 1-15 produces a pulse width of the indicated number of
scan-line periods. A value of zero produces a pulse width of 16
scan-line periods.

3-0 W HORIZONTAL SYNCHRONIZATION PULSE WIDTH

A value of 1-15 produces a pulse width of the indicated number of
character periods. If the value equals 0, then a horizontal synchro-
nization pulse is not provided.

Video Controller - Hardware Description 7-29

Register R4
7 6 5 4 3 2 1 0

Bit R/W Description

7 W Always 0
6-0 W VERTICAL TOTAL

This value determines the vertical synchronization frequency. It is
the number of displayed character lines plus the retrace (in charac-
ter line times) minus one.

Register R5
7 6 5 4 3 2 1 0

VERTICAL TOTAL ADJUST

Bit R/W Description

7-56 W Always 0
4-0 W VERTICAL TOTAL ADJUST

This value is the number of scan-line periods required, in addition
to R4, to produce a vertical synchronization frequency of exactly
50Hz or 60Hz.

7-30 Video Controller - Hardware Description

Register R6
7 6 5 4 3 2 1 0

Bit R/W Description

7 W Always 0
6-0 W VERTICAL DISPLAYED

This value specifies the number of displayed character lines. It
must be less than the value in R4.

Register R7
7 6 5 4 3 2 1 0

1 1 | 1 | 1

Bit R/W Description

7 W Always 0
6-0 W VERTICAL SYNCHRONIZATION POSITION

This value determines the position of the vertical synchronization
delay and the vertical scan delay. When this value is increased, the
display shifts up. When this value is decreased, the display shifts
down.

Video Controller - Hardware Description 7-31

Register RS

7 6 5 4 3 1 0

' DISPLAY ENABLE '
CURSOR SKEV SKEV INTERLACE MODE
cs1 csO DSL | DSO 0 ML | INO

Bit R/W Description

76 W CURSOR SKEW
00 = No skew
01 = One character skew
10 = Two character skew
11 = Invalid value
54 W DISPLAY ENABLE SKEW
00 = No skew
01 = One character skew
10 = Two character skew
11 = Invalid value
32 W Always 0
1-0 W INTERLACE MODE
00 = Normal mode
01 = Interlace synchronization mode
10 = Normal mode
11 = Interlace synchronization and video mode

7-32 Video Controller - Hardware Description

Register R9

7 6 5 4 3 2 1 0
T T T T
MAXTMUM SCAN LINE
0 0 0
1] 1 1
Bit R/W Description
7-56 W Always 0
40 W MAXIMUM SCAN LINE

This value specifies one less than the number of scan lines per

character line including spacing.

Register R10

7

6

L))

CURSOR DISPLAY
MODE

R/W Description

Always 0

CURSOR DISPLAY MODE

00 = Nonblinking cursor

01 Cursor not displayed

10 Blinking cursor (3.75 Hz)
11 Blinking cursor (1.875 Hz)

CURSOR START

This value specifies the scan line, within the character cell, on
which the cursor starts. A value of 0 starts the cursor at the top

of the character cell.

This register is meaningful only in text video modes.

Video Controller - Hardware Description

7-33

Register R11
7 6 5 4 3 2 1 0

Bit R/W Description

7-5 W Always 0
40 W CURSOR END

This value specifies the scan line, within the character cell, on
which the cursor ends. A value of 15 ends the cursor at the
bottom of the character cell.

This register is meaningful only in text video modes.

Register R12
7 6 5 4 3 2 1 0

START ADDRESS

HIGH BYTE

0 0

1 1 1 1 1
Register R13

7 6 5 4 3 2 1 0
T 1 1 1 I) 1
START ADDRESS
LOV BYTE
1 1 1 1 1 1 1

R12 and R13 are a write-only register pair that determine which part of the
video RAM is used to generate the display. The address in R12 and R13 must
be an even value. This address points to the first character position.

7-34 Video Controller - Hardware Description

Register R14
7 6 5 4 3 2 1 0

CURSOR ADDRESS

HIGH BYTE
0 0
1 1 L 1 1
Register R15
7 6 5 4 3 2 1 0
! T T ¥ Al] L
CURSOR ADDRESS
LOW BYTE
1 1 1 1 1 | 1

R14 and R15 are a read/write register pair that determine the location of the
cursor as an offset from the beginning of vidleo RAM. The address in R14 and
R15 must be an even value. The address points to the character byte of a char-
acter byte/attribute byte pair.

Video Controller - Hardware Description 7-35

Register R16
7 6 5 4 3

LIGHT PEN POSITION

HIGH BYTE
0 0
1 1 1
Register R17
7 6 5 4 3

]] L I 1

LIGHT PEN POSITION
LOW BYTE

R16 and R17 are a read only register pair that capture the CRTC refresh ad-

dress when the light pen strobe pin is pulsed.
NOTE

The VAXmate workstation does not support the use of light

pens.

7- 36 Video Controller - Hardware Description

Statl;s Regiszer A (035DAH)

4 3 2 1 0
]
VIDEO | VIDEO | VIDEO | VIDEO | VSINC LIGHT PEN RETRACE
I R G B
1

Bit R/W Description
7 R VIDEO I - Video Intensity Signal

0 = Video intensity signal inactive

1 = Video intensity signal active
6 R VIDEO R - Video Red Signal

0 = Video red signal inactive

1 = Video red signal active
5 R VIDEO G - Video Green Signal

0 = Video green signal inactive

1 = Video green signa: active
4 R VIDEO B - Video Blue Signal

0 = Video blue signal inactive

1 = Video blue signal active
3 R VSYNC - Vertical Synchronization

0 = Vertical synchronization inactive

1 = Vertical synchronization active
2.1 R LIGHT PEN (Contents undefined)
0 R RETRACE (Horizontal or vertical)

0 Display active
1 Retrace period

Because the dual-port RAM eliminates display interference caused
by accessing video memory, checking this bit is not required. For
those programs that do check, this bit flips with each read.
Because a retrace period appears to be in effect every other time it
is checked, this has the effect of speeding up video memory
accesses.

Video Controller - Hardware Description 7-37

Status Register B (03DDH)

7

6 5 4 3 2 1 0

VIDEO

CR-B3 | CR-B5 | CR-A4 | CR-A1l | CR-AO | WVRITE | PORT
CHECK | CHECK

Bit R/W

Description

VIDEO BLANK
0 = Video is in an active display state
1 = Video is in a blanking state

CR-B3
Control Register B bit 3 (Display enabled)

CR-B5
Control Register B bit 5 (Control register A bit 3 enable)

CR-A4
Control Register A bit 4 (Mode bit 2)

CR-Al
Control Register A bit 1 (Mode bit 1)

CR-A0
Control Register A bit 0 (Mode bit 0)

WRITE CHECK

0 = Since the write data register (0J3DEH) was last read, an 1/O
write to port 03D4H or 03D5H has not occurred.

1 = Since the write data register (03DEH) was last read, an 1/O
write to port 03D4H or 03D5H has occurred. This bit is
cleared by reading the write data register (03DEH).

PORT CHECK

0 = Of the pair, 03D4H and 03D5H, 03D4H was the last port
written.

1 = Of the pair, 03D4H and 03D5H, 03D5H was the last port
written.

This bit is used in conjunction with bit 1.

7- 38 Video Controller - Hardware Description

Write Data Register (03DEH)

7

6

5

4 3 2 1 0

Bit

R/W Description

7-0

R

Contains the last data written into the CRTC through register
03D4H or 03D5H. Status register B bits 1-0 indicate which port
the data was written to. Reading this register clears status register

B bit 1.

Color Select Register (03D9)

7 6 5 4 3 2 1 0
1 T]
CPS SIC I R G B
0 0
]] 1
Bit R/W Description
7-6 W Always 0, always ignored
5 W CPS - Color Palette Select (See Table 7-9 and Table 7-10)
4 W SIC - Select Intensified Colors (See Table 7-9 and Table 7-10)
3 w I - Intensity (See Table 7-9)
2 W R - Red (See Table 7-9)
1 W G - Green (See Table 7-9)
0 \\ B - Blue (See Table 7-9)

Video Controller - Hardware Description 7-39

The use of the color select register bits depends on the current video mode.
Table 7-9 describes the bit meanings for the affected modes. Table 7-10
describes the color palettes selected by bits 5-4 (CPS and SIC).

Table 7-9 Color Select Register Bit Assignments

320 x 200 640 x 200 x 2-Color
4-Color 640 x 400 x 2-Color

Bit Text Modes Graphics Graphics

7 Ignored Ignored Ignored

6 Ignored Ignored Ignored

5 Ignored CPS Ignored

4 Ignored SIC Ignored

3-0 Border color Border and Foreground color
background
color

NOTE

For the VAXmate workstation, the border color is always black.

Table 7-10 Color Palettes Selected by CPS and SIC

Color Bit CPS =0 CPS =1 CPS =0 CPS =1

cbl cb0 SIC =0 SIC=0 SIC =1 SIC =1

0 0 Background Background Background Background

0 1 Green Cyan Light green = White

1 0 Red Magenta Light red Light magenta
1 1 Brown Light cyan Light yellow Intense white

The color bits (cb1/cb0) in Table 7-10 are any 2 bits that describe a pixel color
in the 320 x 200 4-color video mode.

7- 40

Video Controller - Hardware Description

Control Register A (03D8H)

7

6

5

4

BLINK
ENABLE

MODE
BIT 2

DISPLAY
ENABLE

MODE
BIT 1

MODE
BIT O

Bit

R/W Description

7-6

w
w

g =

T EE

Always 0

BLINK ENABLE
Text mode background intensity bit (I) remains in effect
Text mode background intensity bit (I) becomes blink bit

MODE BIT 2 (See Table 7-11)
DISPLAY ENABLE

If control register B (03DFH) bit 5 equals 0, this bit is ignored. If
control register B bit 5 equals 1, the following is true:
Display disabled
Display enabled

Always 0 (Reserved)
MODE BIT 1 (See Table 7-11)
MODE BIT 0 (See Table 7-11)

1=

0=
1 =

Video Controller - Hardware Description

7-41

Table 7-11 lists the video modes selected by the mode bits in control registers
A and B.

Table 7-11 Selecting Video Modes

Control Control

Register A Register B

Mode Bits Bit

210 7 Mode Compatibility

000 0 40 x 25 Text Industry-standard
0 01 0 80 x 25 Text Industry-standard
010 0

320 x 200 x 4 Industry-standard
color graphics

011 0 320 x 200 x 16 DIGITAL extended
color graphics

100 0 640 x 400 x 2 DIGITAL extended
color graphics

1 01 640 x 200 x 4 DIGITAL extended
color graphics

110 0 640 x 200 x 2 Industry-standard
color graphics

111 0 640 x 400 x 4 DIGITAL extended
color graphics

111 1 800 x 2562 x 4 DIGITAL extended

color graphics

7-42 Video Controller - Hardware Description

Control Register B (03DFH)

7 6 5 4 3 2 0
FONT
MONITOR | SCREEN |[CR-A5 |RAM DISPLAY|VLT
MODE SAVER |ENABLE |ENABLE |ENABLE |ENABLE
0

Bit R/W Description

7 w MONTIOR MODE
0 = 400 scan lines

1 = 252 scan lines
SCREEN SAVER

Toggling this bit to 0 and then back to 1 blanks the display. The
next memory or 1/O access to the video address space reenables
the display. Program to 1 for normal operation.

CR-A5 ENABLE
0 Control register A bit 5 ignored
1 Control register A bit 5 enabled

FONT RAM ENABLE
0 Access to font RAM disabled
1 Access to font RAM enabled

DISPLAY ENABLE
0 Display blanked
1 Display enabled

VLT ENABLE
0 = Access to video look-up table disabled
1 = Access to video look-up table enabled

Always 0

Video Controller - Hardware Description

Monitor Interface

Table 7-12 lists the monitor interface signals. These signals are applicable to
both a monochrome or a color monitor.

Table 7-12 Monitor Interface Signals

Pin No. Signal Description

Horizontal synchronization (active low)

Vertical synchronization (active low)

Intensity Video (active high)

Red Video (active high)

Green Video (active high)

Blue Video (active high)

400/252 select (low for 400 scans; high for 252 scans)

(reserved)

© 000 3 & O b W N e

Signal ground

[y
(=

+5 return
+5V dc (200 mA max.)

[S
DN =

(spare)

Monitor Specification Summary

The following are specifications for the monochrome monitor on the VAXmate
workstation:

CRT 340 mm (14 in) diagonal, amber or green phosphor
Active Display 240 mm horizontal by 150 mm vertical (9.5 x 6 in)
Resolution 640 pixels horizontal by 400 pixels vertical

800 pixels horizontal by 252 pixels vertical

Horizontal scan rate 26.40 kHz (640 x 400)
26.49 kHz (800 x 252)

Vertical scan rate 60 Hz noninterlaced

Video Bandwidth 22.384 MHz (640 x 400)
27.984 MHz (800 x 252)

7-4 Video Controller - Hardware Description

Programming Example

The following programming example demonstrates:

. Programming the video controller for a specific mode
o Writing the video look-up table

. Reading and writing the font RAM

. Displaying characters in text and graphics modes
NOTE

Whenever possible, ROM BIOS Interrupt 10H video calls are
preferred over direct programming of the video hardware.

Do not mix ROM BIOS calls and direct programming of the
hardware.

Before directly programming the hardware, use ROM BIOS calls
to determine the state of the video system. On exit, use the
ROM BIOS to restore the previous state.

CAUTION

Improper programming or improper operation of this device can
cause the VAXmate workstation to malfunction. The scope of
the programming example is limited to the context provided in
this manual. No other use is intended.

Video Controller - Programming Example 7-45

The example provides routines as described in the following list:

get_mode p
get_mess p

w_vit
r_w_font

mode_init

mv_cursor
cursor_on
cursor_off

set_mode

screen_on

clear_vid_mem

do_border

disp g

disp t

video

Returns a pointer to a table of data about the indicated mode.

Returns a pointer to character string that describes the indi-
cated mode.

Writes the video look-up table.
Reads or writes the font ram.

Initializes the video controller and mode registers from a table
of data.

Positions the cursor to the indicated row and column position.
Positions the cursor and makes it visible.
Makes the cursor invisible.

Sets the current mode, clears video memory and enables the
display.

Enables or disables the display.

Clears the screen by writing the appropriate values to video
memory.

Forms a border around the screen (like a picture frame), by
displaying the letter E at the extreme positions of the screen.
It also displays a message, in the center of the screen, that
describes the current mode.

Displays, in graphics mode, the pixel representation of a
character.

Displays characters for text mode.
Sets up the conditions and executes the examples.

7-46 Video Controller - Programming Example

This page is intentionally blank.

Video Controller - Programming Example 7-47

The constants defined in this example are in the include file VIDEO.H.
The other include files, EXAMPLE.H and KYB.H, support the example, but
are not pertinent to the video section.

The constant values TRUE and FALSE are used as calling parameters for sev-
eral routines.

The constant values CRTC_INDEX through CTRL_REGB define the ad-
dresses, in input/output space, of the reglsters used to control the video mode
and attributes. These registers are described in Table 7-7.

The constant value VB8 defines the industry-standard start address for color
graphics video memory. The constant value VB0 defines the VAXmate ex-
tended start address for color graphics video memory. These values are far
pointers expressed as long integers.

The structure type VLT defines the organization of the video look-up table.
When access is enabled, the first byte of the video look-up table is written at
B800H:0000H (segment:offset). The next byte is written at BSOOH:0002H (seg-
ment:offset). Thus, the video look-up table can be defined as an array of 16
structures of type VLT. Notice that this organization should be used only for
accessing the video look-up table. It should not be used when reserving space,
because 50 percent of the space would be wasted.

The structure type FONT defines the organization of the font RAM. When
access is enabled, the first byte of the font RAM is read or written at
B800H:0000H (segment:offset). The next byte is read or written at
B800H:0002H (segment:offset). Each character font requires 16 bytes. The font
for each of the possible 256 characters can be defined. Thus, the font RAM can
be defined as a two-dimensional array of structures of type FONT, where the
first subscript is 256 and the second subscript is 16. Notice that this organiza-
tion should be used only for accessing the font RAM. It should not be used
when reserving space, because half the space would be wasted.

The structure type M_TABLE defines data or pointers to data that is required
to program the various video modes. Later in the example, an array of struc-
tures of type M_TABLE is defined. The values used are gathered from infor-
mation provided earlier in this chapter.

7- 48 Video Controller - Programming Example

#include "video.h"
#include "example.h"
#include "kyb.h"

/***/

/* Declare constants and structures used in examples */
/***/
#define TRUE Oxffff /* True is nonzero */
#define FALSE 0x0000 /* Falge is zero */
#define CRTC_INDEX 0x03d0 /* crtc index register in i/o space */
#define CRTC_DATA 0x03d1 /* crtc data register in i/o space */
#define CTRL_REGA 0x03d8 /* control register A in i/o space */
#define COLR_SELC 0x03d9 /* color select register in i/o space */
#define STAT_REGA 0x03da /* status register A in i/o space */
#define STAT_REGB 0x03dd /* status register B in i/o space */
#define CTRL_REGB 0x03df /* control register B in i/o space */
#define VB8 0xb800000OL /* normal base address of video memory */
#define VBO 0xb0000000L /* extended base address */
typedef struct
{
unsigned char vlt_byte; /* vlt entries at even address */
unsigned char skip_byte; /* skip byte at odd address */
} VLT;
typedef struct
{
unsigned char font_byte; /* font entries at even address */
unsigned char skip_byte; /* skip byte at odd address */
} FONT;
typedef struct
{
unsigned char *ct; /* pointer into crtc_table */
unsigned char *vt; /* pointer into vlt_table */
unsigned char cra; /* control register A value (Table 7-11) */
unsigned char crb; /* control register B value */
unsigned char csr; /* color select register value (Table 7-10) */
long base; /* segment:offset base address */
unsigned int nsp; /* number of scan pages */
unsigned int sps; /* scan page size */
unsigned int cb; /* color bits per pixel */
unsigned int width<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>