
1: E P 0 P.,E R 1\ T I "1 G S Y S T E M

T~BLE OF CONTENTS

PAGE

1 • EXECUTIVE .••.•....•••..••••...••.•......•.•.•...• -.•.•... 1

1.1 Rect ..•.......••.•••••....•....••..••....•...•..... 1

1.1.1 Basic Services •......•..............•.•..... 1

1 • 1 .1. 1
1 • 1 . 1 .·2
1.1.1.3
1.1.1.4
1.1.1.5

Task Management ••..••••.••...••.... 2
Message Rcutine .•......••...•...... 2
Terminal Service•..... 4
I/O Interrupt Services ••.•...•.•... 5
~iscellaneous Services •..•.•••..... 6
I

1.1.2 Executive Debugguer ..•.•••..•.•........••.•. 7
1.1.3 Switch In~erface .•..•....•.•....••....•..... 8

1.1.3.1
1.1.3.2
1.1.3.3 ~.

ernel Inbound T8sk (KT) ..•........ 9
ernel Outbound Task (KO) •.....•... 9
equest File Task (RF) ..•...•••..• 10

1.2 File Manager .•..•.•••.......•.•••...•..••..•.•...• 11

1 • 2 • 1 Dis k F 0 rrrl pt •••.•.•..••.•.•.••.....•...••.•• 11

1 .2. 1 • 1
1.2.1.2
1.2.1.3 ~

i 1 e Form at ...••......•.•....•...• 1 1
irectory Format •...•••.••..••••.. 13
itmap & Reserved Section

(: F 0 rrn at •....•...............•...• 1 R

1.2.2 Basic Fi~~ Management Rcutlnes ..•.......... 19

1.2.2.1
1.2.2.2
1 .2. 2 .3
1.2.2.4
1.2.2.5
1.2.2.6
1.2.2.7
1.2.2.8

~
btain .•••....•••.•••..•....•....• 19
ockup ••••••• ~ •••••••••••••••••••• 19
ogon 19

.. nter•....•...•.....• 19
~ t'\ddufd .•..•...•...•••.•••..••..... 19
:Release ..•..•........•.••..•...... 1<)
peletefile•••••....... 19
R e n·am e f i 1 e • • . . . • • • . • • . . . • . .•... 20

1.2.3 Executiv',Interface .••.•....••....••..•••.•. 20

1.2.3.1
1.2.3.2
1.2.3.3
1.2.3. LI
1.2.3.5

~
xecutive Open .•..•.•.•....•.•.... 22
xecutive Close .•..•..••••...•.••• 23
~xecutive Rea~/Write •••••..•..•.•• 24
Executive Obtain .••.•.•••..•.••... 24
Executi ve Logen •..•..•.••...••.•... 21l

1

1 .2.4

1 .2.5

Rcsident
1.2.l~.1
1.2.4.2
1 • 2 • It • 3
1 . 2 • 1t • 1~
1.2.4.5

Operator

HEP OPERATING SYSTEM

TABLE OF CONTENTS

Supervisor Intcrface •..•••........ 25
The R~sident OPEN 27
Resident CLO:::;E •.•.......•.....•...• 27
Resident READ/WRITE •.............. ?7
Resident OBT'\T'~ ..•......•...•..... 27
Resident LOGO~•.........• 27

Interface••.••........ 27

1.3 PASCAL Runtime Library•............... 29

1 • 3 • 1
1 • 3.2
1 ft 3. 3

PASCAL Interface ••.....•.•••...•..........• 29
PASCAL Runtime Environment .•.•...•........ o32
Files and File Variables 34

1.3.3.1
1.3.3.2
1.3.3.3
1.3.3.4

Non-Text Files •...•....•......... _14
Text Files •.•••••..•...•.•...•..•• 35
rile Varinbles ..••.....••....•...• i6
File Descriptcr Blcck •..•.•......• 3S

1.3.4 Miscellaneous Runtime Support
Ro utines 38

1.3.4.1 FIN.IT ..•.......................... 38
1.3.4.2 LOGO~I .••..••••..•••...••.•....•..• 39
1.3.4.3 LINLEN •...•.••..•..•...••..•...... 39
1.3.4.LI SETID•............... 39
1.3.1~.5 GE·fTSK•••....•.....•.... 39
1 .3.4.6 ERB 39
1 • 3 . J~ • 1 G E: T L 0 C • 4 a
1.3.4.8 SETLOC ..•....................... & .40

1.4 Tape Mi1nager .. 41

1.4.1 Overview 41
1.1i.2 Tape Format •..........•..•.•••.........••.• ~1

1 • 4 • 2 • 1 R ~ c c r d t~ 0 de. . • • • . . . • • 4 1
1.4.2.2 Dump Mode•••...•.•........•...• 41

1.1t.2.2.1
1.4.2.2.2
1.4.2.2.3

Word Files •••....•..... 42
UFO Dumps ••••••..•..... 42
End of Volume• 43

2

HEP OPERATING SYSTE~

Tt\BLE OF COI~TENTS

1.4.3 Ccmrnnnds ...•......•......................•.. ll3

1 . H . 3 . 1 T () peP 0 sit i c n i n g II 3
1.4.3.2 Writing n Tape•..•.....•. ~ ... 44
1.4.3.3 Reading a Tape •.....•.....••...... 45
1 • It • 3 • 4 1 n d ire c t C c m rn Cl n d F i 1 e. • • • • • • • • • • • • H 6
1.4.3.5 Terminating Command

Processing••.......•.. 46
1 • It • 1t Fun c tic n a 1 0 esc rip t ion • • . 4 5
1 • 4 • ') Err cr' M e s sag e s • It 7

1 • 5 HE P D (~ b ug g e r ... 4 R

1 • 5 . 1 C 0 en en and Fer mat • • • • . • I, 8

1.6 Maintenance Process (Net Completed Yet)
1.7 Editor .. 50

1.7.1 Overview ...•....•.............•.•.......... 50
1.7.2 Comrnands •..••.•...••...•.•.••...•..•...•... 50

1.7.2.1 Log On/Off Commands•....... 51

1 . 1 . 2 • 1 . 1 Log On........... ..•... 5 1
1.7.2.1.2 Log Off••..•.•••... 51
1.7.2.1.3 Assistance •••.....•.... 51

1.7.2.2 File Utility Commands •........•... 51

1.7.2.2.1
1.1.2.2.2
1.7.2.2.3
1.7.2.2.4
1.7.2.2.5
1.7.2.2.6

List Directory ...•.... e51
Copy a Filc•...... S2-
Delete a File ..•....•• o52
List a File •.•..•...... 52
Rename a File •..•....• o52
Submit a Job •••••..••• o52

1.1.2.3 Edit Commands •...•.•.•.•••.•...•. ~53

1.7.2.3.1
1.7.2.3.2
1.7.2.3.3
1 • 7 .2. 3. !l

1.7.2.3.5

1.7.2.3.6
1.7.2.3.7

Edit a File •••......•.. 53
Copy Lines .•.••....•••• ')3
Move Lines .••......•.•. 53
Insert a Sequence

of Lines .•...••...••. 53
Reolace a Text

S· t . r. 11 rlng •..•..•..•.••.. :J-

Delete Lines ••...•••••. ')4
Direct Insert •..••.••.. 54

3

HEP OPERATING SYSTEM

TABLE 0F COf.!TENTS

1.7.2.3.8
1.7.2.3.9

Direct Dclete•... 5t1
Find a Text

String •............... 54
1.7.2.3.10 List Lines ••.•...••...• 55
1.1.2.3.11 Renumber the

File 55
1.1.2.3.12 Save the Changed

File 55
1.1.2.3."3 End the Edit

Session .•............ ')6
1.1.2.3.14 Cancel the Edit 56

1.7.3 Functional Description ..•...•.............. 56
1.1.4 Running a Job From the Editor 51

1.8 Batct1 Monitor ••.....•••..••....•.••..•.••........ $58

1.S.1 ·:)vervie\..J 5<3
1.8.2 Commands 5'3

1.8.2.1 Job Related Commands•••....... 5S

1.8.2.1.1

1.R.2.1.2
1.8.2.1.3
1.8.2.1.4

~ove tJob to Top
of Queue •..•••...••.. 5R

Suspend Job Execution .. 59
Resume Job Execution ... 59
Cancel a Jeb ..•••.••... 59

1.8.2.2 System Related Cornmanris 059

1.8.2.2.1 Set HEP Partition
Sizes ..•.•........••• 59

1.8.2.2.2 Set Contrcl Card
Processor•.•••..• 60

1.8.2.2.3 Display the Job Queue •• 60
1.8.2.2.4 Display the Jobs in

Execution •••.•••..... 60
1.8.2.2.5 Quiesce the System 61
1.8.2.2.6 R~sume Normal System

Operaticn•.• 61

1.8.3 Inter-Task Messages •••••....•.•.•••.•..•••. fi1

1 • 8 • 3 . 1 H E P 1,1 e s sag e s • 6 1

1.8.4 Summary of Batch ~onitor
Commands 63

4

HEP OPERATING SYSTEM

T~BLE OF CONTENT~

1.9 Reactor (Not Completed YP.t)
1.10 Writer (Not Completed Yet)
1.11 Dist< Builder ••....••••...••.•••.••.••.•••...•.•.... 66

1.11.1
1.11.2
1.11.3
1.11.4
1.11.5
1.11.6
1.11.7
1.11.8
1.11.9
1.11.10
1 • 1 1 • 1 1
1.11.12

FcrmClt Di s\< •••••••••••••••••••••••••••••••• 65
Initialize Dis1< ••........•••...•...••....•. I)f)

Create User File Directory •••.••....•...... 66
Logon •....••.........•.....•...•........... 66
B u i 1 d. 80 0 t s t rap Se c to r s •...•...•••......•.. 66
Set Date ..•................................ ~7
Set Tirne 67
Ma~e Distribution Tape •••.••••••••.•..••... 67
Read Absolute S~ctor ..•....•..••.•..•....•. 67
Set Indirect File •.•.•••...••.•••...•...... 6~
Shut Down 68
Disk Build Procedure •••••....•.••••.......• 68

H E POP ERA T I ~J G S Y S T E r·,

TABLE OF CONTENTS

2. RESIDENT SUPE RVISOR •...•....•.•......•....•............. 1

2.1 I<ernel · 2

2.1.1 Kernel Data Structures
and Initialization 2

2.1.1.1 Memory Management Dat~
Structures ...••....•..•.......... 3

2.1 . 1.2 Task Hanagcloent Data
Structures •..........•........... 4

2.1.1.3 Communications Data
Structure••.•..•••.......•... S

2.1.1.4 Tnitializaticn ..•...............•.. 6

2.1.2 Inbound K~rnel ••••....••••.•..•••..•......... ')

2.1.2.1 Examine Directive -
Type 21 (16)•................ 7

2.1.2.2 Modify Directive -
Type 1 (16) •••••••••••••••••••••• 1

2.1.2.3 Cancel Directive -
Type 2 (16)•...........•... 7

2.1.2.4 suspend Directive -
Type 3 (16) •••••••••••••••••••••• R

2.1.2.5 Resume Directive -
Type 4 (16) •••••••••••••••••••••• R

2.1.2.6 Load Directive -
Type 5 (16) and
Type 1 (16) ...•••.••...•..•...... 8

2.1.2.7 Miscellaneous Examine
Directive - Type 22 (16) •........ 9

2.1.2.8 Set Partitions Directive -
Type 23 (16) ••••••••••••••••••••• 9

2.1.2.9 Set Task Directive -
Type 24 (16) 10

2.1.2.10 Create/Precess Directive - .
Type 6 (16) ••••••••••••••••••••• 10

2.1.2.11 Dump Directive -
Type 25 (.16) •••••••••••••••••••• 10

2.1.2.12 Set Process Directive -
Type 26 (16) •..• ___ •••....•....... 10

2.1.3 Outbound Kernel ...•...........•..••...•.... 11

2.1.3.1
2.1.3.2

SVC Precessing •.....••.....•...•.. 11
Error Prcc~ssing ••.•....•.•.....•. 12

6

2.2

2.3

2.4

2 . 1 . It

Loader

2 .2. 1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6

HE? OPER~TI~G SYSTE~

TABLE OF COt-ITENTS

Create Fault H3ndler•......... 12

.
Initialization ..•...
Header and Checksum
Task Record ..
Start Record
Data R~cord .•......
Loader Termination.

Records.

.' . ••• 1 J

· 11
.. 1]
• • 1 3

• 11~
• 1 4

• • • • 1 J l

IIO Services • .. 16

2 • 3. 1 SVCts. 16

Error Hand ler •.•••.••••••.•••••..•.•...••..••....• 20

7

HEP OPERATING SYSTEM

TABLE OF COHTE~T~

3 • S Y S fOr E i·1 SO F TW l\ R E. • • • • • • • .' • 1

3 • 1 Contrel Card Processor
Overview •••••••••••••••••••••••••••••••••••• · ••.•• 1

3.1.1 Control Card Command
Processor Syntnx•........... 2

3.1.1.1
3.1.1~2
3.1.1.3

3.1.1.4
3.1.1.5
3.1.1.6

Job Record Synt~x •......•.•...•.... 2
Assign Commend Syntax 2
Conditional Dump Command

Syntax '3
Run Commend Syntax ..•.........••... ~
End of Job Record Syntrix ~ .6
Comment Reccrd•................ 6

3.1.2 Runtime Environment (Not Completed Yet)

3.2 Dump Formatter •................................... 11
3.3 FORTRAN Compiler (Not Completed Yet)
3.4 FORTRAN Runtime (Not Completed Yet)

3.4.1 Math Library (Not Completed Yet)
3.4.2 IIO Formatter ••.•.•......••••......•....•... 15

3.5 Assembler (Not Completed Yet)
3.6 Linker (Not Completed Yet)
3.7 PASCAL Compiler (Not Completed Yet)
3.8 PASCAL Pcode Assembler (Not Completed Yet)

HEP OPERATING SYSTE~"1

TABLE OF CONTE~TS

1. EXECUTIVE

1 . 1 R'J'Jt

1.1.1 Basic Services

1.1.1.1
1.1.1.2
1.1.1.3
1.1.1.4
1.1.1.5

T a s 1< M;'1 n ;:) IS em e !1 t
~1essa~0 Routing
Terminal Service
IIO Interrupt Services
Miscellaneous Services

1.1.~ Ex~cut~ve Debu~~er
1.1.3 Switch Interf~ce

1.1.3.1
1.1.3.2
1.1.3.3

1.2 File Man8~er

Kernel Inboun~ Tas~ (KI)
Kernel Outbound Task (KO)
Request File Task (R~)

1.2.1 Disk Format

1.2.1.1
1.2.1.2
1.2.1.3

Fil~ Formr:lt
Directory Format
Bitmap & Reserved Section Format

1.2.? 8asic File Management Routines

1.e!.?'.1
1.? .. ~.2
1.2.2.'3
1 • 2 • 2 • II
1.2.2.5
1.2.2.6
1.2.2.7
1.2.2 . .3

Obt::lin
Lool{up
Lo~on
~ntcr

A.ddufd
Release
Del~tcfile
Hen~mefile

1.2.1 Sxecutiv~ Int~rf~ce

1.2.3.1
1.2.3.2
1.2.3.3
1 • 2 • 3. it
1.2.3.5

Exc:cutive Op~n
Executi.ve Close
Executive R~ad/Writc
Sxccutive 0btnin
Ex~cutive Logon

1

HE? OPERnTING SYST~~

T~nLE OF COMTENTS

1.2.4 Resident Supervisor Int~rf~c~

1.2.4.1 The Resident OPEN
1.2.4.2 Resident CLOSE
1.2.4.3' Resident R~AD/WR~TE
1.2.4.4 Resident OBTAIN
1.2.4.5 Resident LOGON

1.2.5 Operator Interface

1.3 PASCAL Runtime Library

1 • 3 . 1
1 • 3 . 2
1 . 3 . 3

PASCAL Interface
PASCAL RU1tirne Environment
Files and File Variables

1.3.3.1
1.3.3.2
1.3.3.3
1.3.3.4

Non-T~xt Fil~s
Text Files
File V8riables
File Descripto; Block

1.:;.4 '1iscellaneous Runtim,= Support Routines

1.3.4.1
1.3.1~.2
1 • j . 1,1 • 3
1 • 3 • l~ • 4
1 • '3. 11 • 5
1 • 3 . II • 6
1 • 1 . JI • '"(
1 • 3 • 11 • B

1.11 Tape ~.:lna~er

1.1~.1 'JvcrVi0h7

FINIT
LOGOI'J
LINLEN
SETLD
GETTSK
ERR
GETLOC
3ETLOC

1 • LI • 2 T :) P e For m 8 t

1.4.2.1 Rccor1 Mode
1.11.2.2 Dump :4od0

1 • II • ? . ? . 1
1.J~.2.2.?
1 • II • ? . 2 • 3

'."'or'; Fi 1 cs
IJPD Dumas
Enri .J f Vo 1. u'ne

2

1.4.3 SO!"ll'n8ntjs

1.1~.3.1

1.4.3.2
1.4.3.3'
1.4.3.4
1.4.3.5

HE? OPERATI~G SYSTE~

T~BLE OF CONTE~TS

Tape Positioning
ilriting a Tape
Reacting a Trlpe
Indirect Command File
Termina~ing Command Proc~ssing

1 • Ii • It Fun c t ion::11 Des c rip t ion
1 • I~ • S Err 0 r M ~ s sag e s

1.5 HEP Debu~~er.

1.5.1 Command Format

1.6 ~~intcnAnce Proc~ss
1.7 Edit0r

1.7.1 Overview
1.7.2 Com:nands

1.7.2.1 Log On/Off Commands

1.7.?'.1.1
1.7.2.1.2
1. 7 • 2 • 1 • 3

Log On
Log orr
Assistanc0

1.7.2.2 File Utility Cornrnanct~

1.7.2.2.1
1.'7.2.??.
1.7.2.2.'3
1 • 7 • ? . ? • II
1.7.2.2.'5
1.7.2.2.6

List Dir0.ctory
Cl.) PY r:l Fi l(~
Del~te a File
Li!>t Cl File
11 e n ·3m e cj F i 1 e
Submit a Job

1.7.2.3 Edit Commands

1.7.?.3.1
1.7.2.3.2
1 • '{ • ? .] .' '3
1 • 7 . 2 • 1 . tl
1.7.?.1.S
1.7.2.1.6
1 • 't . ? . 3 . 7
1.7.?1.Q
1 • '(• 2 • 'L ()
1.7.~.).10

Edit a Fil~

Copy Lin~s
:~OVA Lines
Insert 8 S~qu~~cc of Li~es
Renln~~ 4 T~xt Strin~
D~lp.te Lin~~~
Dir0ct Insert
f)ir('\ct D/110.t~

~tn~ ~ T~xt ~trin1
Li3t Lines

3

H S POP E R !\ T I q G S Y S T r:: t-1

T~BLE OF CONTE~TS

1.7.2.3.11 Ren~mbcr t~e File
1.7.2.3.12 Save th~ Chan~ed File
1.7.?.3.13 Eni the E1it Session
1.7.?.3.14 Canc21 the Edit

1.7.3 Fu~ctional Description
1.7.11 RU:1ning n .Job From th,~ Editor

1.1 3Qtch Monitor
1.9 Reader
1 • 1 0 ':.Jr it e r
1.11 9isk Builder

1.11.1
1.11.2
1.11.3
1 • 1 1 • 1\
1.11.5
1.11.6
1.11.7
1.11.8
1.11.0
1.11.10
1.11.11
1 ., 1 1 • 1 2

Format Dis,-<
Initialize Disl<
Create User File Directory
Logon
Build Bootstr~p Sectors
Set Dat~
Set Time
~ak~ Distribution Tape
R~ad Absolute Sector
Set Indirect File
Sh ut D(H~n
Disk Bui11 Procedur~

4

H S P () P ~ RAT 1 n G S Y S T E :-1

TABLE OF CONTSNTS

2. RESIDEnT SUPERVISOR

2.1 :<ernel

2.1.1 ~ernel Data Structures and Initialization

2.1.1.1
2.1.1.2
2.1.1.3

.2.1.1.4

M~mory ~v1a nag eml~n t D·q ta St ruc tur es
T ask ;·1 a nag em en t D a t a S t r u c t u res
Communications Data Structure
Initialization

2.1.~ Inb0un~ Kernel

2.1.2.1
2.1.2.2
2.1.2.3
2.1.2.1~
2.1.2.5
2.1.2.6
2.1.2.7
2.1.2.8
2.1.2.9
2.1.2.10
2.1.2.11
2.1.2.12

Examine Directive - Type 21 (16)
rv10dify Directive - Typ~ 1 (16)
Cancel Directive - Typ~ 2 (16)
Suspend Directive - Type 5 (16)
Resume Directive ~ Type 4 (16)
Load Directive - Type 5 (16) and Type 1 (15)
Miscellaneous Examine Directive - Type 22 (16)
Set Partitions Directive - Type 2] (16)
Set Task Directive - Type 24 (16)
Create/Process Directive - Type 5 (16)
Dump Directive - Type 25 (10)
Set Process Directive - Type 26 (1~)

2.1.3 Outbound Kernel

2.1.j.1 SVC Processin~
2.1.3.2 Error Proccssi.ng

2 • 1 • Il C; e 8 t e F nul t H.1 n d 1 e r

2.2 Loader

2.2.1 Initializ~tion
2.2.2 He8d·er <lnd Chccksll:1l Records
2.2.3 T~sk Record
2.2.11 Start R~corrl
2.2.5 ~ata R~corrl

2.2.6 Loader Ter~in8tion

2.3 1/0 Servic~s

2 • ') . l' S'l C ' ~

5

HEP OP~R~TI~G SYSTE~

TABLE OF CONTE~TS

3. SYSTE~ SOFTWAR~

3.1 Sontrol C~rrt Processor Overview

3.1.1 Control Car~ Co~mnnd P~oc~ssor Syntax

3.1.1.1
3.1.1.2
3.1.1.3
3.1.1.4
3.1.1.5
3.1.1.6

Job Record Synt3x
Assign Command Syntax
Conditional Dump Command Syntax
Run Command Syntax
End of Job Record Syntax
Comment Record

3.1.2 Rllntirn·:; Environment

3.2 Dump Fo~~atter
3.3 FORTRI\t1 Compiler
3.4 FORTRAN Runtime

3.4.1 M~th Library
3 • II • 2 I /0 For ~ at t e r

3 . 5 ,1\ sse ~n b 1 c r
.1 • G Lin '<e r
3.7 PAS~~L Compiler
3.8 PASC'L Pcode Assembler

HEP OPERATING SYSTEM

1. EXECUTIVE

Trie HEP Executive resides on a Digital Equipment Corporation
PDP-l1 computer. It provides operating system services associated
witri physical IIO, jcb preparation, maintenance and debugging. In
general, any operating system function whose execution time is not
critical is prov.ided by the Executive.

Executive services are provided by Executive tasks, which are
described in mere detail later in this section. These tasks are
coordinated by a mini-operating system in the PDP-l1. Tnis mini-OS,
called the ROOT, manages memory for the Executive tasks, protects
tnem from each other, and provides certain services to the Executive
tasks.

1.'1 Root

The Root is the only Executive module written directly in
assembly language. The Root is loaded into low PDP-ll memory by
the boot-strap process. Other Executive tasks exist as
independent disk files, and are loaded by toe Root as part of the
system initialization. Thus, Executive tasks are separately
compiled, and may be changed without rebuilding the entire
operating system. Initialization of the disk for system boot is
handled by a specialized task - the Disk Builder (DB) and is
discussed later under that heading.

1. 1. 1 Basic Services

Once all Executive tasks are loaded, the Root provides
basic operating system services to the tasks. Tnese services
are described cn the next page.

HEP OPERATING SYSTEM

1.1.1.1. Task Management

Each Executive task is allocated a certain amount
of memory fer execution. The address space of each task
is allooated by the Root as follows:

0-8K

8-16K

. 16-2 4K

24-32K

32-40K

40-48K

48-56K

56-64K

Code-Read Access

Code-Read Access

Code-Read Access

Code-Read Access

Data-Read/Write Access

Message-Read/Write Access
(only 128 bytes used)

Message-Read/Write Access
(only 128 bytes used)

I/O Page-Read/Write Access

The physical memory associated with this 64K byte
address spaoe is fixed by the Root at IPL time, and
remains allocated forever. Task context switching is
nandled by the Root, and involves the manipul~tion of
toe PDP-l1 memory management registers to protect and
isolate taBks from each other.

Executive tasks are dispatched str1c"tly in
priority order. The priorities are determined by the
order of tasks at Disk Build time. Root task management
routines always dispatch the highest priority ready
task. While there is considerable latitude in the
dispatching order of task~, inappropriate dispatching
priorities can re~ult in sy~tem failure.

1 • 1 • 1 • 2 t-1 e s sag e Ro uti n p;

Terminal and inter-t8sk communicaticn~ are h~ndled
by mes~age8 passed from to~k to task by the Root. In
order to Rvcid copying of mAs,aee text, memory mapping
registers 5(40 - 48K) and 6(4RK - 56K) are used. A ta,k
wisning to send ~ message executes Trap 0, and upon
return, tne R~ot has s~t up mappin~ regi~ter 5 to point

2

HE? OPERATING SYSTEM

to an available message buffer and general regi8t~r a
to address the buffer. The message buffer is a 128 byte
area with the following fermat:

Byte a
Byte 2
Byte 4
Byte 6
Byte 8

10-127

Link
Source Destination
Priority
Length
Type

Data

Tne message is transmitted by placing word 0 of
to~ message in general register 0 and is~uing Trap 1.
Tne Reot locates the destination task u~ing the DEST
field of the message.

Tasks 0 - 31 are dummy terminal tasks.
Trrtnsmitting to these tasks causes the message to enter
toe terminal service routines. These are described in
the next section. Tasks 32 and greater and are actual
tasks. Task numbers for these tasks are determined by
Disk Build. All real ta~k~ have an input queue into
which all messages sent to them are placed. Messages in
the queue are maintained in priority orner using tne
priority field of the message buffer. Wnen a task
wisnes to precess A message, it issues Trap 2. If a
message is waiting, mapping register 6 and general
}' e g i s t e r 0 are set u p top 0 i n t tot hem e s sag e and the
task continues. If no messnge is waiting, the task
ent~rs Mes,aee Wait state nnd the Root dispatches the
next ready task. After a task processes rt message, it
places the link field of the messagA in general
reg.Lster 0 and executes Trap 4. This r'elerrses th~

meSSAge ~nd places it in a list of available message
buffers maintained by the Root.

All me~sage buffers are in the first 56K of rpal
memory. The link field of a mes3age is the actu~l
memory address ~f the message and is used by the Reot
to manipulate it. No error checking is performed by the
Root in message nandling. If Executive task violates
toe message protocol, a complete system cr~8h will
eventually result. Mc~t mess~ge h~ndling 1s performed
by Executive tRsk runtime librRry routines. but ~ome
t~sk~ manipulate meSS~Res directly. This is Rcceptnbl~.
hut requires extrRmp carc.

HEP OPERATING SYSTEM

1.1.1.3 Terminal Service

ASCII terminals connected to the Executive
computer are handled by terminal service routines in
the Root. Input to these terminals is assembled into
messages and sent to appropriate tasks.' Input messages
are type 1 (Command). Output messages from Executive
tasks which address tasks less than 32 are routed to
the terminal service routines. Output messages should
be type 3 (Display Text). The association between task
numbers and terminals is compiled into the Root. By
convention, task 0 is the console terminal.

To a task, terminals loek just like any other
task, however, terminal service routines handle
messages differently than regular tasks. When a message
i sin put to a t ~ l-m ina 1, the des tin a t ion 0 f t hat me 8 sag e
is taken as the first task which sent a message to that
terminal. Thus tasks must output at at least one
message to a terminal before expecting input. An
exception to this is the console terminal. On the
console terminal. input may be preceded by a two
cnaracter task ID and one or two colons. Every task has
a task TO assigned by the Disk Builder and console
messages are routed using the task ID. If the task ID
is followed by a single colon, only the current input.
is routed to the specified task. If two colons are
used, all subsequent input with no specified task is
sent to the named task, until a new task ID and two
colons is entered.

Since a task can generate lines of output much
faster tnan a terminal can print them, the terminal
output routines maintain a count of messages queued for
printing by each task. Wnen a task has more than two
messages waiting for printing, it is placed in Output
Wait state. Thi5 is required to prevent a task doing
multi-line output from consuming all the message
buffers in toe sy~tem. As messages are printed, the
sending tasks are re-activated to generate further
output.

Certain terminAl interfnces (07.-11) are capable of
programmed baud rate selection. This is controlled by
t09 use of Control-S and Control-Q characters in output
me~9ages. If a task sends Contral-S to a terminal, the
next cnaracter is used to set the baud rate, and tne
terminal is placed in single-enar~cter input mode. Each
character typed is sent directly t~ the controlling

4

HEP OPERATING SYSTEM

task as a separate message. Normal mode is entered when
a Control-Q character is sent to the terminal.

The terminal service input routines interpret
several characters for control functions. These are:

Contral-H - Delete Last Character Typed

Tab - Insert Spaces to Next Multiple
of 8 Columns

B~ckslash - Delete Last Line Typed

Control-S - Suspend Output

Control-Q - Resume Output

Carriage Return - Terminate Input Message

All othe: control characters are ignored.

1.1.1.4 I/O Interrupt Services

Non-terminal I/O is performed directly by each
Executive task. When device latency is short, tasks
normally 'busy wait' cn I/O completion. Where latency
is long, the Root provides I/O interrupt support to
en~ble a task to reli~quisn the processor until I/O is
complete. A ta~k waits for I/O by placing the CSR
address of the device being used in general register 0
and executing Trap 6. This causes the task to enter I/O
Wnit ~tate until I/O 18 complete.

Th e Roo t
for interrupt.

supports
These are:

Disk (CSR 176700)
Tape (CSR 172522)

a specific set of I/O devices

Line Prin~er (CSR 177514)

Other
except as
Interface.

devices must
described

be
in

used without interrupts,
Section 1.1.3 - Switch

Tne interrupt ~~rvicp. mecortnism in the RQot
r'eccrd s the occu!'"e!'1ce of interrupt, en tn() supported
deVices, evp.n if no ta~k is in I/O wnit for tnem. Thu s
a ta~k may start I/O on a device, en~bling its

5

HEP OPERATING SYSTEM

interrupt, and subsequently issue Trap 6. If the devic~
has already interrupted, the task will immediately
continue, otherwise it will wait. There is no timing
requirement en the task's issuance of Trap 6 in order
to detect the I/O complete.

1.1.1.5 Miscellaneous Services

The Root supports sever~l other Trap codes and
features associated with inter-task communication.
These are:

Trap 3

Trap 5

Trap 7

Trap 8

Trap 9

Send and get buffer,
(Trap 2 followed by Trap 0).

Free a buffer and wait for next buffer,
(Trap 4 followed by Trap 2).

Test for input buffer waiting.
General register 0 set to 0 if no buffer, .
set to non-zero if buffer waiting.

Wait for next tick of the 60 cycle clock
(0-16 m~).

Get task number of task whose two character
10 is in general register O. Task ID is
returned in the low byte of register O. The
high byte contain~ the task issuing Tr~p 9.

In order to allow tasks to coordinate, if the high
byte of the mes~age type of a message is non-zero, the
sending task is placed in Reply Wait statu~. instead of
continUing execution. In order to resume toe task, the
receiving task must load register 0 with the link field
oft her e c e i v e d m P. s sag e and iss u e Tr a p 10. Th i s wi 11
make the original sender ready. The two tasks may pass
information back and forth through the message.
Finally, one of. the tasks must release the message
using Trap 4. If a task issing Trap 10 wishes to
continue, it must clear tne nigh byte of the message
before issuing Trap 10, otrierwise it will itself enter
Reply Wait state.

6

HEP OPERATING SYSTEM

1.1.2. Executive Debugger

The Executive Debugger is a standard Executive task
written in PASCAL. It differs from other task, only in that
it is linked as part 'of the Root, rather than being loaded
from disk like normal ta9k~. The task 10 for the Executive
Debugger is 'XD'.

The Executive Debugger may be used to examine and modify
the memory of other tasks and may 8~t breakpoints in other
tasks. It is also used by the Root to pri~t error messages
caused by Ex~cutive task malfunctions. The Executive Debugger
is accessed from the operator's console using a standardized
command sequence. Command line syntax is as follows:

{TYPE ID} {RANGE} {TASK ID} (:VALUE>

If the u=VALUE" suffix is omitted, the specified item is
printed, otherwise it is set to the entered value.

Type 10 is a single character describing the item to be
examined or modified. Valid types are shown below.

TYPE

Blank or omitted

A

B

c

F

p

From

Q

R

s

RANGE

0-177776

0-6

0-7

0-7

7

MEANING

Computer Memory Address

Memory Address Mapping
Rp.gisters

Breakpoint Locations

Count of Waiting Output
Terminal Messages

Fla~ Showing Dispatching
St ate

Examine on 1 y, Continues

Bre3kpoint

Head of Input Message Queue

Genernl Purpose Registers

Processor Status Word

HEP OPERATING SYSTEM

Range is entered as a single octal integer or pair of
integers separated by a comma. For modify operati~ns only the
first range value is used; fer examine operations, all
locations between the two values are displayed.

Task ID selects the task whose data 'is referred to.
TasK 10 may be emitted when examining computer memcry, and
absolute locations are when referred to. Only locations in
the first 40K of real memory may be accessed this way, and
only for examine.

Tne Ex~cutive Debugger is also used to print messages
generated by error traps from other Executive tasks. These
messages include the trap type, task 10, PC and status word
of the trapping task. Trap types are:

RS - Privileged Instruction (usually HALT)
IL - Illegal Instruction ot Nonexistent Memory
00 - Odd Address
MM - Memory Management Violation
BP - Breakpoint
EM - Emulator Trap (not used by this system)
FP - Floating Point
IO - lOT Trap (not used by this system)
PF - Page Fault - Memory Management Error

1.1.3 Switch Interface

A major communications path between the HEP and
Executive t~5ks is the 5wltch interface. Tnis interfnce
appears to the HEP as a set of 16 memory locations, of which
tnree are presently used. A HEP memory access is broken into
two parts - a request and A responsa. Tn~ switch interface
generate3 a Root interrupt when a request is received, but
does not generate a response. Responses are generated under
software control of the responsible Executive task.

In ~rder to facilitate use of the switch interface,
tnree small Executive .tasks are incorporated into the Root.
These tasks are activated by Reot interrupt code when a
switch request is received. They/read the contents of the
switch request and send it to toe apprcprinte Executive task.
These Root task3 are described on the next page.

8

HEP OPERATING SYSTEM

1.1.3.1. Kernel Inbound Task (KI)

The Kernel Inbound Task is used by all Executive
tasks wisnlng to send messages to the HE? Kernel.
During HEP IPL, each PEM sends to KI the address of its
communications area. This information is saved by KI.
After saving its addres~, the ?EM then attempts to read
a word from the switch interface. KI holds this request
and issues no response. After receiving the read
request, KI enters Message W~it state via Trap 2. When
an Executive Task wishes to send a message to a HEP
proces~or. it begins by sending a Seize with Reply
message (Type 13) to KI. KI places the communications
area address for that processor in the message and
is~ues Trap 10 (Reply). This places KI in Reply Wait
and activates the originnl sender. Tne sender writes
data to the communications area and sends an
Activate-W~th-Reply (message type 14) to KI via Trap
10. This causes KI to respond to the outstanding read
from the PEM, using the contents of the message as the
response data. The PEM process receiving the data uses
it to control message processing. After precessing, the
PEM issues another read request. This causes a Root
interrupt wnlcn activates KI. KT generates anothp.r
Reply message to the original sender and enters Reply
Wait. This process continues until the transaction is
completed. At this pvint, the sender generates a
Release (message type 15) with no r'eply and sends it to
KI via Trap 10. KI frees the message with Trap 4 and
issues Trap 2 to get its next input message. Tne reply
mechanism causes KI and a HE? Executive task to run as
co-routines during HEP mes~age transmission, and
provides an interlock allowing sharing of the switcn
interface without conflict between multiple senders.

1 . 1 • 3 • 2 K ern e 1 Ou t b 0 u n d T ~ s k (K 0)

The Kernel Outboun~ Task handles unsolicited
me~sages from the Kernel to the Batch Monitor Executive
T3sk. During initialization, it enables interrupt~ on
tne switcn location used for tni~ purpose. Wnen an
interrupt is received" it assembles tne switch data
int0 a message and forward~ it as a Switch Message with
Reply (message ty~e 12) to the Bntcn Monitor. When the
Batch Monitor completes messnge processing, it replies
to KO, and KO genArates a swltcn response. frees the
buffer and reenables interrupts for the next
unsolicited me~sage.

9

HEP OPERATING SYSTEM

1.1.3.3 Request File T~sk (RF)

The Request File Task is similar to the KO task
(in fact, most of the code is common) except that a
different switch location is used and me~sages are sent
ta the File Manager rather than the Batch Monitor. The
RF task is used for commu~ication8 between HEP
supervisor tasks and the file system.

10

HEP OPERATING SYSTEM

1.2 File Manager

All di~k
performed by
Manager are:

IIO in the HEP System (except during IPL) i~
the File Manager. Oper~tions supported by the File

Logon - Validate User ID

File Open - Locate an Old File or Create a New One

Read a-Physical Record

W:ite a Physical Record

Obtain the Address of an Unused Physical Record

File Close - Close, Delete or Rename a File

In addition, operator commands exi~t to:

Enter Debug Mode

L~Clve Debug Mode

Add a Use: ID

Snut Down the File Manager

Fo: reCld/\rlf'ite ()p~:atl()ns, the File Manager merely perform,~
disk control functions and data transfer on behalf of requesting
Executive T~skg or HE? 3upervi~or processes. For other
cperat~cng, the File Manager performs directory search/update
functions and s~arch/update of the disk free section tRbles.

1.2.1 Disk Format

Tne ~ystem di~k i~ J fixed s~ctored 300Mb movinR head
disk wltn a 1.2 Mbyte/second transfer rate. Sectors are 512
bytes (6q HEP words) lon~.

1.2.1.1 File Fermat

Files
of physical
uf linkar,e
Tne link8ge

in the HEP system Rre a doubly-linked list
records. ERCh record contains two HEP worrls
information, followed by 62 words of data.
info:mation is part cf the record and i~

1 I

HEP OPERATING SYSTEM

made available to and supplied
interfacing to the File Manager.
pnY3ical record is shown in Figure A.

by
The

all softw:are
format of a

THIS THIS THIS NEXT NEXT NEXT
WORD 0

CYLINDER TRACK SECTOR CYLINDER TRACK SEGTOR

FILE
RELATIVE

LAST LAST LAST USER NO.
\~ORD 1· RECORD NO.

CYLINDER TRAaCK SECTOR NO. WITHIN
IN FILE

USER

--: DATA -HORD 2-6

Figure A - DISK RECORD FORMAT

Tn~ cylinder, track and sector information is u~ed
to chain records together. Mainten~nce of this
information is the responsibility of Executive and
supervisor tasks calling the File Manager - it is n~t
c n (~ c ked 0 t' m c d i fie d b Y t n e F i 1 eM;) n il g ~ r~ e x c e p t d u 1'" i n g
file accesses for internal File Manager purposes.

Tne "next" fields of the last record in a file
contain all zeroes; similarly, the "last" fields of the
first record of a file contain all zeroes.

The user number, file number and record number
fields are used for file consistency checking and
system debug. .They should be maintained by all
Executive tnsks and HEP supervisors.

Ine format I~f tne "this" t "next" and "last" fields
is referred to as a Itdiskaddres~tf and is the standard
fvrmat for representine disk locations. Each
diskaddres8 occupies 32 bits (1/2 HEP word).

12

HEP OPERATING SYSTEM

1.2.1.2 Directory Format

In the HEP system t files are accessed via a
tree-structured directory system. At the- leaves of the
tree are disk file headers. Each file header occupies
one record, and contains complete information about a
single file. The format of a file header is shown in
Figure B.

\-lORD

o THIS ADR. PREV. ADR.

USER FILE RECORD
NEXT ADR.

NO. NO. NO.

2 LENI CKSUH OCOUNT 1 MOD.-

3 DATE DATE

. I A C DA TE

5 FREG LREC

6 UFD FHP

7 REGSIZE I ACPRIV EOF\'1 I FLEN

FILENAME

Figure B - FILE HEADER FORMAT

The format of wc)rd 0 and word 1 of a file header
is standard. These words are used to link all file
headers for a particular user into a file named
'HEADER'. Tois file is automatically maintained by the
File Manager. By reading this file, a u,er p;ogram may
obtain the n8m~ and ~ll pertinAnt ch~racteristics of
311 of its files. The remaining field~ in the flle
o e a d e r per t a i n t f) the s pee i fie f i 1 e ::j n dar e dis c u sse d
beloH.

HE? OPERATING SYSTEM

LEN - Tne length of toe file name in bytes.

CKS U!'1 - Toe exclusive OR of all to~ character pairs
in toe file name.

OCOUNT Tne number of users whc have this file open.
If negative, one user has the file open, and
additional opens are not allowed.

MODDATE - A 48 bit field containing the date and time
this file was last closed by a user with
write access. The date is in standard system
date format, described in Section 1.11 -
Disk Builder.

CRDA TE

ACDA TE

FREe

LREG

- Date this file was created, in standard
format.

Date this file was last accessed.

The diskaddress of the first record in the
file. All files have at least one record,
which may contain no data.

- The diskaddress of toe last record of toe
fi Ie.

UFD - Toe diskaddress of the UFD record pointing

FN?

REGSIZE

to this file. UFO records are discussed on
the next page. This pointer is used during
file deletc/ren8me operations.

- Tne diskaddress of the
this user. Used for
operations.

file 'HEADER' for
file delete/rename

The record size in HE? words of the records
in this file. This informaton is not used by
the File Manager, who neals in physical
records only.

ACPRIV

EOFW

FLEN

HEP OPERATING SYSTEM

- Access privileges for this file. The high
byte of the field controls public access
privileges, while the low byte controls the
users own access privileges. Bits in each
byte are defined as follows:

• •••••• 1 Read Access

• ••••• 1 • Write Access

• •••• 1 •• Extend Access

• ••• 1 ••• Exclusive Access

• •• 1 •••• Semaphored Access (not used)

• • 1 ••••• Delete/Rename Access

• 1 •••••• Execute Access (not used)

1 ••••••• Access Change Access

- End of file word. The word number of the
first free ward in the l~st r~cord of the
file. All files must be an integral number
of words long. All file8 must contain at
least one word; for an empty file.
FREC ~ LREC and EOFW: O. If a file is an
integl'al number of physical records long, an
extra record ie pr~sent at the end of the
file, and EOFW z O.

- Tne record number of the last record 1n the
file (zero relative).

FILENAME - The 1 to 448 character name of the file. The
filen~me is stored in a byte-swapped format
within each word. Character~ are in the
order ehown below:

f 1 I 0 I 3 I. 2 I 5 I 11 7 I 6 I
Tnis is
Executive
bytes.

~ consequence of the
computer (a PDP_l1)

15

way the
addresses

HEP OPERATING SYSTEM

In order to speed up searching the file
directories, an indexing file, called the User File
Directory, or UFD, is maintRined for each user. This
file resides in the directory of the distinguished user
whose ID is '000000000000'. The name of this file is
UFD. XXXXXX, where XXXXXX is the ID of the user in
question. The format of the records in th~ UFD file is
snown in Figure C(a) and Figure C(h).

HORD 0 THIS NEXT

\O/ORD LAST COUNTS

t-l OR D 2 LEN CKSUfv1 FHA

\-/OR D 3 LEN CKSUH FHA

· · ·
\IOR D 63 LEN CKSUM FHA

Figure C(a) - UFD ENTRY FORMAT

TRACK
LEN CKS lJM CYLINDER SECTOR

FHA

Figure C(b) - UFD ENTRY FORMAT

The LEN and CKSUM fields in a UFD entry are
~uplicatQs of tne corr~3ponding fi~ld3 in the file
neader to Hnj.cn it refers. The FHA field is the
diskaddress of tne fileheader for the file. When
searching for a file, the File Mana~er need only read
tne file ne~ders of files with corresponding length and
check~um fields. Since 62 files mRY he'referred to per
U F D r e c I) r d, a con 3 ide r A b I P. S a v i n r. i n 0 pen tim ere :3 U Its •
Tne UFD is automatically maintained by the File
Manager, and i~ net visible or accessible to th~ user.

16

HEP OPERATING SYSTEM

In order to permit access to files from multiple
users, the User File Direct6ries are pointed to by a
higher level directory called the Master File Directory
or MFD. This file is also held under the distinguished
ID '000000000000'. Toe format of an MFD record and MFD
entry is shown in Figure DCa) and Figure" DCb).

WORD 0 THIS NEXT

WORD LAST COUNTS

HORD 2 USER

WORD 3 ID UFDA

·
·
·

WORD 62 USER

\-10 R D 63 ID UFDA

Figure DCa) - MFD RECORD FORMAT

USER IO

I CYLINDER I TRACK
UFDA I

Figure ·D(b) - MFD ENTRY FaRHAT

SECTOR

The u~er 1D is a 12 cnaracter (padded with blanks)
character string in byte-~wopp~d format ~s described
for file na~e8. The diskaddress points to toe first
dnta record cf the corrAsponding UFD. Eacn u~er in the
system nas a sin~le MFD entry.

17

HEP OPERATING SYSTEM

The UFO's and MFD are maintained as files by t~e
File Manager. Access to their data is not made by
normal file access mechanisms. Tne File Manager
searches and updates these files using internal
routines not available to other tasks~ The MFO, the UFO
fer the distinguished user, and ether 'files are built
by Disk Build during disk initialization.

1.2.1.3 Bitmap and Reserved Sector Format

Wnen additional sectors are required for a file on
the disk, an unused secter is allocated using the disk
bitmap. The bitmap is a file consisting of one record
on each disk cylinder. Bits in the data portion of the
record correspond to sectors on tne cylinder. Since
there are 32 sectors on a track. and 19 tracks per
cylinder, 19 two-word pairs are used to repregent the
cylinder. Bits correspondiing to allocated sectors are
zero. while unallocated sectors have l's in their bit
pOSition. The bitmap record i8 cn a fixed track and
sector on all cylinders. Its location is determined by
Disk Build. For convenience, a standard file header is
built for the bitmap. under the distinguished user TO
'000000000000'. The name of the file is BITMAP.

The File Manager maintains the bitmap record for
cne cylinder in core at all times. All requests for
records are allocated from this cylinder until it is
full. At this point, the File Manager moves to the next
highest cylinder (modulo the mnximum valid cylinder)
until available sectors are found. Thus bitmap IIO is
minimized, and all files being extended at the same
time will go on the same cylinder if po~sib'le. This
reduces di~k latency and improves performance.

Cylinder 0, track 0, sectors 0 and 1 are unique in
that tney are marked allocated in the bitm3p, but are
net part of any file. Sector 0 i~ the hardware
bootstrap, and ~s described in conjunction with toe
Di~k Builder. Sector 1 is the File Manager and IPL
p()inter ~ector.

The THIS field of ~ectcr 1 point~ to the first
data record of the MFD. Toe LAST fip.ld of sector 1
p\)iny'~ to tne bitm;lp. Toe data portion of sector 1
cantain~ pOinters to IPL files and i, described with
Di'3k Build.

18

HE? OPERATING SYSTEM

1.2.2 Basic File Management Routines

1.2.2.1 OBTAIN

OBTAIN is used to get an unallocated sector in
which to write data. The sector is marked allocated by
OBTAIN.

1.2.2.2 LOOKUP

LOOKUP is used to search a user file directory for
a specified file. If the lookup is successful, the file
neader of the file is made available to the caller.

1.2.2.3 LOGON

LOGON is used to locate a specific user file
directory. If the logon is successful, the diskaddress
of the UFO is made available to the caller.

1.2.2.4 ENTER

ENTER is used to add a file header to a specified
user file directory. An initial data record is
allocated and initial values in the file header are
supplied. No duplicate file checking is performed.

1.2.2.5 AODUFD

ADDUFD is used to create a UFD and enter it into
the MFD. It is only activated under operator command.
No duplicate UFO checking is performed.

1.2.2.6 RELEASE

RELEASEi8 the opposite of OBTAIN, and is used to
free sectors in the bitmap wnen files are deleted.

1.2.2.7 DELETEFILE

DELETEFILE is used to remove a file header from a
UFD, delete the file header record, and queue the file
data records for rieletion. Since tois prcces~ may be
lengthy, it is handled as a 'demon' du~ing otherw1~e

idle File Manager time.

10
\

HEP OPERATING SYSTEM

1.2.2.8 RENAMEFILE

RENAMEFILE updates a UFD and file header to
contain a new name. Note th~t only the name of a file
can be cnanged, not its owning UFO.

1.2.3 Executive Interface

Executive tasks communicate with the File Manager using
the standard system message mechanism. Several message types
are p!""ocessed:

A common
and write.

16 Bit
\'10 rd

TYPE MEANING

6 File Open

7 File Close

8 Record Read

9 Record Write

10 Obtain a Sec tor

1 1 Ll')gon

message format is used fer open, close,
Tnis format is shown in Figure E.

0 UIO
1

2 RQ TYPE

3 BUFAD

4 BASE

5 OPLEN

6 S TA TUS

7 ACCESS

8 OPTION

23 CHARACTERS

Figure E - OPEN/CLOSE MESSAGE FORMAT

HEP OPERATING SYSTEI1

Tn~3e fields are used as follows:

UID

RQ TYPE

BUF AD

BASE

OPT LE N

STATUS

ACCESS

- Diskaddress of user's UFD (open,
close) •
Supplied by caller.

- If 0, open for output.
If 'nonzero, open for input (open,
close).
Supplied by caller.

Address in caller's space of disk
record (open, close, read, write).
Supplied by caller.

- Base of· user stack div 64, (open,
close, read, write).
Supplied by caller.

- Length of option cnaractArs (open).
Supplied by caller.

- Result of operation (open, close,
read, write).
Set by File MRnager.

- Requested access cedes
(open, close)
for tnls open - s~t

M8nnger. Based on option
o p(~ n •

by File
string on

Supplied by caller on close.

OPTION CHARACTERS - ASCII characters specifying
(open, close).
Open or close options
Valid options are:

IH :: Hrite Access
IR :: Read Ac c e s s
IA :- Append Acces!'3

positicjn tc~ end
IT :: Tempcriiry File

(extend
of file)

IN ¥ Ne \-1 File (delet.(~ old
prese~t)

2 1

plus

if

HEP OPERATING SYSTEM

Option precessing is provided as a service to.
Executive Tasks. Not all option bits are used by the
File Manager. P~sitioning to end of file (/A) and file
del~tion en close (IT) are the responsibility of the
caller. Bits are set in ACCESS to indicate these
options were specified, but action in" these options
must be taken by the caller. The low byte of ACCESS has
the format described fer ACPRIV in the file header. The
high byte is as follows:

• •••••• 1 Temporary (IT)

• ••••• 1 • Append (/A)

• •••• 1 •• New (IN)

All message communication with the File Manager
uses the Root reply mechanism, and the File Manager
responds to Executive requests via Trap 10 (Reply)~

1.2.3.1 Executive Open

An Executive task opens a file by issuing
message 6. The BUFAO field of the message pOints to a
disk record. In this record, the FILENAME, LEN, and
RECSIZE fields are supplied by the user (RECSTZE is
only used if tne file is to be created). The FILENAME
may contain a user TO in square brackets at the start,
Rnd may contain access options in par~nthesis at the
end. Access options are only u,ed if the file is to be
created. The open routine USEROPEN strips the u,er TO
and options. If the user TO was prescnt, tne File
f1anager uses LOGON to locate the UFD, otherwise the UFO
diskaddress in the open message is used. The access
options are processed into tne ACPRIV field of the user
is file header, and LOOKUP and ENTER are used to locate
and/or create toe file. Access privileges resulting
from the processing of the mes~age option string are
stored in the me~Bage ACCESS field and coecked against
ACPRIV in toe fil~ he~der. If valid privileges are
requested tne actual disk file nender Is wr~tten to the
callers disk record, and tne me8~age status is s~t to
o. If not, the message status is non-zero and the file
header is not supplied.

Tne format of tne acce~s ccd~ strin~ following tn~

file name is; (PRWEXD, URWEXD) where the string
beginning with 'PI d~nctes public access privileges and
tne strin~ be~inning witn 'U t oenctes user access

HEP OPERATING SYSTEM

privileges.
suppl ied :

Any or all of the access characters may be

R - Read Access

H Hrite Access

E - Extend

x - Exclusive

D - Delete/Rename

Tnese characters determine the permanent access
attributes of the file if it is created by open.

Error returns from open are given in Table F.

STA TUS ERROR

-64

-65

-66

-69

-70

-71

-68

Nonexistent User ID

Bad Message Options

File Existence Conflict
(duplicate file or nonexistent file)

Requested Access Denied

Exclusive Acces~ File Already in Use

Disk I/O Error

Attempt to Create File in Another UFD or
ether Enter Failure.

Tnble F - OPEN ERROR CODES

1.2.3.2 Executive Close

An Executive task closAs a file by issuing
message 7. Tne format of tne message is as indicnted
previously. The file neader painted to by BUFAD must
contain t~e diskaddr~s~ of the file ne~der to be closed
in tne 'THIS' field. If toe first character of the
option field
deleted •. If

in tne message is '0' the file will be
the first character is 'R'. tn~ file will

.,.,

HEP OPERATING SYSTEM

be renamed and the LEN and FILENAME portions of the
file header mU8t contain the new name and its length.

Error codes from CLOSE are given in Table G.

STATUS

-18

-19

-11

ERROR

Delete or Ren~me Not Done -
Access Violation or File Open by Other Users
(delete only) by Other Users (delete only).

New Name is Duplicate (rename only).

I/O Error

Table G - CLOSE ERROR CODES

1.20'3.3 Executive Read/Write

Executive task8 read and write records via
mes8age 8 (read) and mes~age 9 (write). Only the BUFAD
and BASE fields are u8ed in these messages. Data is
read frcm or written to the diskaddress specified by
the 'THIS' field of the record pointed to by BUFAD. No
checking is done on the validity of the address or
anything e18e. This is the responsibility of the
calling task.

1.2.3.4

If,
requires
'10. Tn e

Executive Obta'in

while extending a fil~, an Executive task
an additional disk record, it issues message
File Manager uses the OBT~IN routine to

allocate a sector, and the diskaddress of the sector is
returned to the call~r in the first 32 bit~ of the d~ta
portion of tn~ message.

1.2.3.5 Executive Logon

Several File M~nager calls requirR the caller to
specify the diskaddre8s of a UFO. Inis address is
obtained via message 11. A calling tnsk places th~
twelve character user ID of a user in th~ first twelv~
byt~.9 of tne dat~ portion of th~ m~s.9~Be. The File
M8nager u'es tne LOGON routine to reac~ the MFD for tne
UFD addres,. If ~ucces9ful, the diskaddress of the UFD
is returned in the first 32 bits of the messaga,

"'''

HEP OPERATING SYSTEM

replacing the first 4 ch8racters of the user 10. Logon
error codes are:

STATUS MEANING

-19 No Such User 10

1.2.4 Resident Supervisor Interface

The File Manager provides I/O services to HE? processes
in much the. same way as it does for Executive Tasks. For
Executive tasks, IIO is performed directly into toe caller's
buffer. Since HEP data memory is not part of the Executive
computer's address space, HEP 1/0 is handled differently.

HEP requests arrive via the Unibus-to-Switcn Interface
and the File Manager's helper task RF. The message received
by the File Manager is a switch message (messag~ 12) and
contains one HEP word of data. The high 16 bits of the data
word are a request code type with the following values:

0 - Logon

- Open

2 - Close

3 - Read Record

4 - Write Record

5 - Obtain Record

Toe low 32 bits of the word point to a 66 word I/O
block. Tne last 64 words of this block are a disk record in
toe format previously di~cu3ged. Toe first two words contain
IIO p3:Rmeters and options. Tnese words are dp.scribed below.

CODE STAT uro

, E 0 , I I A

64 WORD DISK RE80RO

Figure H - HEP liD REQUEST FORMAT

25

HEP OPERATING SYSTEM

CODE - Request code, as enumerated above

STAT - Result status supplied by File Manager. Values as
indicated for Executive Requests.

UID - Diskaddress of user file directory (open, close).

A Requested access privileges, format as shown in
Table C (open, close).

D - File. history (open,close). Possible values are:

o - Use Old File if Present,
Else Create New File

1 - Delete Old File if Present,
Create New File

2 - Use Old File

3 - Create New File
Fail if Old File is Present

E - File Disposition (close). Possible values are:

- Delete File

2 - Keep File

5 - Rename File

The File Manager reads toe I/O block into a loc~l buffer
using toe low speed bus (LSB) Interface to HEP data memory. The
amount of data read depends on the request code in tne switch
message. After performing the request, all or part of the I/O
block is written back to datn memory with the L~B. Since the
LSa is shared with other Executive tasks, the File Manager
becomes uninterruptable during this transfer.

26

HEP OPERATING SYSTEM

1.2.4.1 The Resident OPEN

A HEP supervisor opening a file does so by building
a dummy file header in the I/O block. For old files, the
file name and name length are required. The file name
must be stored in byte swapped fermat as previously
described. For newly created files, the RECSIZE and
ACPRIV fields must be supplied. Unlike Executive opens,
no option processing is provided. The only optional
function is the provision of a user ID in square brackets
at the start of of the File name.

If the open is successful, the File Manager copies
the file header into the I/O block.

1.2.4.2 Resident CLOSE

Resident CLOSE is the same as Executive CLOSE except
that the file disposition field is used to determine
close action.

1.2.4.3 Resident READ/WRITE

Resident I/O is the same as Executive I/O. The
'THIS' field of the disk record in the 1/0 block is used
to determine the diskaddress.

1.2.4.4 Resident OBTAIN

Resident OBTAIN uses the standard OBTAIN routine to
allecate a disk record. The address of the record is
returned in the 'NEXT' field of the disk record in the
I/O block.

1.2.4.5 Resident LOGON

Resident LOGON obt~ins tne 12 character user ID from
the fir' s t 1 2 b Y t e 9 0 f t h 0. d i. s k r e c () r din t n e I 10 h 1 0 c k
(word 2 and the hig~ half of word 3). The user ID must be
byte swapped. The diskaddress of the UFO is returned in
tne UrD field of the I/O bleck (second half of word 0).

1.2.5 Operator Interface

Tne operator may s~nd mess~ges to the File ManaRer from
tne con~ole terminal. The ~upported m~8~age~ begin witn a
single character, as sriown on tne next page:

27

HEP OPERATING SYSTEM

D - Toggle the debug switch. Wnen debug is on, all received
messages are listed on the console in octal.

Z - Snut down. Tne bitmap is written to di8~ and the File
Manager executes a halt. No files are closed, and the
File Manager may be restarted with the Executive
Debugger (XD). If a file is being deleted when Z is
entered, the message 'BUSY' will result and the File
Manager will not shut down.

28

HEP OPERATING SYSTEM

1.3 PASCAL Runtime Library

Tne PASCAL Runtime Library provides the interface between
PASCAL READ, WRITE and associated IIO statements and the file
manager. Components of the PASCAL runtime are linked into all
Executive tasks. In addition to IIO, the PASCAL runtime provides
the basic runtime environment and service subroutines for PASCAL
tasks.

1.3.1 PASCAL Interface

The PASCAL runtime 8upports a set of IIO cal18 similar
to that provided by standard PASCAL. Certain unneeded
capabilities are not suppcrted, and several extensions have
been made.

Supported text output procedures are:

WRITE(CHAR:N) Write the character CHAR to the file F or to
WRITE(F,CHAR:N) OUTPUT, followed by N-1 blanks.

WRITE(I:N)
\0/ R I T E (F , I : N)

WRITE(S:N)
WRITE(F,S:N)

HRITELN
HRITELN(F)

BREAK(F)

Hrite
file F
to tal
a s an

integer I as a decimal string tc the
or to OUTPUT, followed by blanks to a

width of N. If N is negative, write I
octal string.

Write the character string S to F or to
OUTPUT' followed by blank8 to a width of N
characters. If N is less than the length of
S, S is truncated. S may be a literal string.

Terminate a line.

Terminates a line but does not advance
carriage to a new line.

Multiple 1/0 items may be combined in a WRITE request.
If WRITELN is used with output arguments, the line is
terminated after the last item.

Real 3nd boolean output 3re not supported.

29

HEP OPERATING SYSTEM

Supported text input procedures and functions are:

READ(CHAR)
READ(F,CHAR)

READ(S)
READ(F,S)

EOLN(F)

EOF(F)

READLN
READLN(F)

Read one input cnaracter into CHAR from F or
input.

Read a string of input characters into S from
F or INPUT. If the current line is exhausted
before filling Sf pad with blanks.

A boolean function whicn is true if the next
character to be read 1s the end-of-line
character.

A boolean which is true when there are no
more characters to be read.

Discard remaining characters in the current
line (if any) and pOint to first character of
next line.

Multiple 1/0 items may be combined in a READ request. If
READLN is used with input arguments, the rest of the line is
discarded after the items are filled.

Integer, real and boolean input are not supported.

The standard procedures GET and PUT may be used with text
and non-text files. When used with a file connected to a
cor-sole. GET exhibits non-standard behavior. Tne PASCAL
~tandard requires that the first cnaracter of input be present
i m me d i ij t c 1. y aft era REA D LN. In to i s imp 1 em e n tat i (,) n, the fir s t
cnarncter 1s not present until a GET or READ operation is
performed. Toc first GET consumes a dummyblnnk character. This
cnaracter is not provided by READ; character strings consumed
by READ contain only actual input text.

Wnen used with non-text files, the record definitions
acceptnble to GET Rnd PUT are rAstrictcd. Tne followinR record
s i z f'! ~ 8 Y' e ace e pte d :

(::136 Byte3
248 Bytes
496 Bytes

30

HEP OPERATING SYSTEM

Other sizes would require data blccking facilities not
present in toe runtime routines.

The standard procedures RESET and REWRITE have been
extended to allow opening specific disk files by name. The
syntax of these prccedure3 is as follows:

RESET is
REWRITE causes

F

RESET(F,NAME,OPTIONS,V)
REWRITE(F,NAME,OPTIONS,V)

used to refer to a pre-existing file, while
toe creation of a new file. The parameters are:

Name of the PASCAL file variable controlling this
file.

NAME A character arr~y or literal string containing
the file name. If omitted on a RESET, the file
presently open is rewound. If name is a character
array, the file" name must be non-blank and padded
to the right with blanks.

OPTIONS A character array or literal string containing
option characters. Each option is a slash
followed by a single character. Availnble options
are:

v

R Read Access
W - Write Access
A - Append Access
T - Temporary File
N - Force New File

If OPTIONS
supplied. For
REWRITE, IW
defaults.

is omitted,
RESET, IR

and extend

default options are
is the default. For
permissions are the

Integer variable. On entry, contains tne record
length to be associated with the file if the file
is created. Inis may differ from the record size
of toe file variable. Tne file is processed based
on the file variable if non-text, but the line
length is is taken from V if the file is text. V
is in HE? words (multiples of 8 bytes). On return
frem RESET/REWRI1E, V cont~ins open stntus. If
V<O, tne ope~ f3iled and tne v~lu~ is toe errcr
code. If V>~Ot ~t i3 the record eize of tne file,
in HE? words.

3 1

HEP OPERATING SYSTEM

Files may be closed, renamed or deleted by calls to the
PASCAL procedures.

CLOSE(F)
RENAME(F,NAME,LEN)
DELETE(F)

CLOSE(F) is a standard procedure and may be used to close
any file. RENAME and DELETE are nonstandard external procedures
and mu~t be declared with external declarations of the form:

PROCEDURE RE~AME(VAR F:TEXT;VAR NAME:<CHARACTER ARRAY TYPE>;
LEN; INTEGER).

EXTERNAL;

PROCEDURE DELETE(VAR F:TEXT);
EXTERNAL

F may
declaration
deleted.

be declared to be another type than TEXT, but the
must agree with the file type to be renamed or

Files will also be closed if a RESET or RE\IRITE is issued
for tneir file variable specifying a new file name.

1.3.2 PASCAL Runtime Environment

A PASCAL Exeoutive Task is loaded by the ROOT in a
standard fasnion. Of the 8 memory pages, the first four are
reserved for oode. Page 7 is mapped to IIO space. All PASCAL
v~rinble3 and working sp~ce is located in pa~e 4. The first
locnt!cns in this page, ~tartinR with location 100000 (octal)
are u~ed fer control information. This information is shown in
Figure 1.3.1.

32

~1NEHONIC

LOCATION

$KORE:l00000

$FREE=100002

$RESR5xl00004

$RESR6,.100006

$NEHLN:l00010

$FILBF=100012

$FILTB=100014

$LOGCYxl00016

$LOGDA::100020

$FILE=100022

$SPAGE::: 10002 l,

$ F t-1 T S K :::: 1 0 0 0 2 6

$r1LEN::l00030

$SINP=100032

$SOUTP=100034

$HEAP:::I00036

HEP OPERATING SYSTEM

MEANING

Top of Heap Space, Base cf Stack Space

Start of Linked List of Free Blocks of Length
$ N E\J1.. N .

INITIAL R5, SAVED BY MAIN

INITIAL R6

Length of Storage Manipulated by New and
Dispose

Start of Linked List of Free File Buffers

Start of Linked List of Free File Variables

Users UFD Location (CYL)

U3ers UFD Location (Track, Sector)

File Variable Ad d re s s Address

Dummy Blanks for Get Processing

Task ID of File Manager

Length of Last Queue Message

Standard Input File Variable Addre~s

Standard Output File Variable Address

Start of Heap Space

Fig u r e 1. 3. 1 - PAS CAL tv 0 R K ARE A BAS E

In a running PASCAL task, the register SP points to local
variables. and register R5 pOints to the globAl variables.
During initialization, file variables are allocated in the'
locations following $HEAP. The number of file v~riables is a
compile-time parameter. normally 6. $KORE is set to point
immedlnt01y after toe file vAriables, And SP is set to point to
location 120000, the tap of page 4. Tne file variable8 for

33

HEP OPERATING SYSTEM

INPUT and OUTPUT are initialized, and the main program i~

started. Tne main program immediately calls the NEW procedure
to get space for global variables. This causes R5 to be set to
tne value of $KORE, and $KORE is incremented by tne size of the
globals. Immediately after this call, a task which uses disk
files or the NEW/DISPOSE mechanism must call the FINIT
procedure. This procedure allocates space for the requested
~umber of file description blccks immediately above the global
variables. Since FDB are more than 600 bytes long, only the
number absolutely required should be requested. Tne other
effect of FINIT is to define the block size used by
NEW/DISPOSE. Thi3 size overrides the size specified in the
NEW/DISPOSE calf to prevent storage fragmentaton.

In operation, local variables of procedures use the stack,
wnich grows dcwnward from location 120000. Calls to NEW use the
Heap, wnich grows upwards from the top of the FOBs. If these
two areas collide, unpredictable runtime errors will occur, and
the program must be recoded to use less storage.

1.3.3 Files and File Variables

Several types of files
runtime. Tnese are dividerl into

1.3.3.1 Non-Text Files

are supported by the
text and non-text files.

PASCAL

Non-text files are accessed via GET and PUT, and must
reside en disk. Tnese files may be word 0: record files, as
de~cribed below. For these files, the amount of rlata
transferred by a GET or PUT is strictly d~termined by the
file variable record size. The ru~time is only capable of
hRndling spanned records if tn~ record size is less than
17 HEP \%rds, · .. .(oien i3 why the record sizes are restricted.

Record files consist of a sequence of fixed l"ength
!~ e C I) r d s , e a c han i n t e g r a 1 n u m b e r 0 f HE P \-10 r ci s Ion g. . h' 0 r d
files nave no external record structure and are normally
prace3sed a word nt a time. Tne PASCAL Runtime ignores word
Gr recorrl structure for non-text files, treating them as
record files with the r~cord length determined by the file
variable. A permanent record length may be specified by
REWRITE wnich need net agree witn tne flle variable size.

34

HEP OPERATING SYSTEM

1.3.3.2 Text Files

Text files are of three types: console or queue files,
word files on disk and record files on disk.

Con~ole files interact with the system queue mechanism
and are used to pass data between tasks or to and from
terminals. An input line in the queu~ can contain a maximum
cf 118 characters of input. On output, data is broken into
~ultiple messages if the data content exceeds 118
characters. The files INPUT and OUTPUT are console files by
default. Other files may be declared as console files by
using the distinguished file name 'TI:'. Since there is
only one input queue and one output queue, having multiple
files as console files yields unu~ual results. Output
characters will be merged on a character by character
basis, while, input will appear at whichever file variable
was most recently accessed.

Word text files contain variable length ASCII text
lines. All lines contain a multiple of 8 characters, and
are padded with blanks if'necessary to become a multiple of
8. Since ASCII characters contain only 7 bits ot data, the
sign bit of the first character of a line is used to
delimit lines. Lines span physical record boundaries.
Manipulation of the sign bit is an automatic function of
toe runtime library, and data visible to tne using program
never contains a set gign bit. Since the Executive computer
p3ck~ bytes right to left, while tne HE? packs left to
rignt, the runtime librRry performs a byte swapping
operation on every physical record of word text f~le8. Tnis
is done on both input and output 50 that disk data is
always in HE? (left-tc-ri~ht) order. The runtime pads lines
witn trailing blanks on read string operations, but does
not strip trailing blanks on write string operations. There
is no restriction on line lengths in word text files.

Record tp.xt files ccntnin fixed lengtn ASr;rr text
lin~8. All lines contain th~ same number of characters t

wn!ch must be a multiple of 8. Lines may sp3n physical
record boundaries. All 2~6 possible charact~re may ~ccur in
a record text file. R~cord lenBths may net exceed
488 bytes. Output to a record t~xt file will be truncated
cr padded witn blanks as required to fit the r~cord size.
Input will be padded with blRnks as truncHted en read
,f) t r i r: g ,) per ::J til') n 3 • n y t ~ 5 \-1 3 P pin g () n i n put 11 n rl ,) U t put. i s
per f c to me d t (I for C P. d i ~ k 11 1 t () t () b ~ in H F. P f c rm ;:) t •

35

BIT
NAHE

S. EOF

S.EOLN

S.LAST

S.TXT

S.ERR

S.HAlT

S.END

HE? OPERATING SYSTEM

VALUE
_i.9 CTAL) .

100000

40000

20000

10000

4060

2000

1000

t-1 E A N IN G

File has reached EOF.

Text file is at EOLN on input.

Disk file is in the last physical
record.

File is a text file.

Error
fi Ie.

encountered while precessing

Queu~ or console file requires a
physical read before supplying data.

Output disk file has terminated a line,
but not started a new line.

Table 1.3.3 - FILE VARIABLE STATUS BITS

Tne saved pointer field (V.SVP) is u~ed if V.?TR is
pointing to a space at end of line in order to locate the
next actual datn character.

V.BUF points to the start of the current logical
record for a non-text file, or to the stRrt of the buffer
for a text file. If a logical record i~ spanned, V.AUF
point~ to tne psueda-st3rt of the IORicnl recorrt preceding
th8 rlctuAI I/O buffer. V. aUF is advanced by each PUT or GET
operation. For console files, V.AUF points to the first
cn~racter of data.

V.LEN contnins the record length to be used for this
OPEN of tne file. For text files, this number is -1. V·.LEN
is rlet~rmined by tne size of tne record dAclared in tn~

u~erts PASCAL program.

V.FDB points to tne file descriptor block for tnis
file. For a console file, V.FDB is O. Tne I/O control block
is de~cribAd in trie next gection.

V.Eon points to tn~ end of valid dRta in t~e I/O
control block. Normally, tnis is tne end of tne pnysicRl
rAe I) r:-j, but I~ n t (} ~ 1 a ~ t !' e \; (j r ri 0 f t n e f lIe tV. E 0 B poi n t s t 0
tn~ end of tne data. For console file~t V.EOB points to trie
end of toe message.

31

HEP OPERATING SYSTEM

1.3.3.3 File Variables

A file variable occupies 7 16 bit words in the
Executive Computer. File variables are compiled into the
runtime library. The number of file variables which may be
simultaneously active is a compile time parameter in the
runtime. An Executive task may have many files declared,
but only a limited number of these may be simultaneously
~pen. The RESET/REWRITE procedure establishes a pOinter in
the user's variables tn the actual file variable. The
format of the file variable is shown in Figure 1.3.2.

ADDRESS

o

2

4

6

1 0

1 2

1 4

V.PTR

V.STAT

V.SVP

IV":"BUF
l----l
I V. LE N
-_ ... -.... -

V.FDB

V. EOB

Pointer to Current Character or Record

Statu~ Bits

Saved Pointer

Start of I/O Record

Record Length (-1 if Text File)

Pointer to File Description
(0 for Con$ole File)

Pointer to End of Fi~e I/O Buffer

FIRurA 1.3.2 FILE VARIABLE

V.PTR always points to the current charRct~r in a text
fIle, or to a reserved location containing a blank, if the
text file is at EOLN. For non-text files V.PTR points to
tne start cf the record, either in the current I/O block,
or to a work area used te collect spanned records.

Tne lew byte of V.STAT contains the destination task
number if the file is a queue or console fil~, and is
unus~d otnerwise. Th~ hiBO bytp of V.STAT ccntRins statu,
blts, defined in Tnble 1.3.3.

36

HEP OPERATING SYSTEH

1.3.3.4 File Descriptor Bleck

All disk files require a file descriptor block. A
fixed pocl o(FOBs is created during PASCAL initialization,
and disk file OPEN's in exces~ of the pool size cannot be
accommodated. Tne format of an FOB is shown in Figure 1.4.

WORD

o PHYSICAL

512.

5 1 6.

518.

520.-
655.

RECORD BUFFER

DISKADDRESS OF
FILE HEADER

ACCESS
PRIV

EOF WORD IN
LAST RECORD

SPANNED RECORD
HORK AREA

Figure 1.3.4 - FILE DESCRIPTOR BLOCK

1.3.4 Mi~cellaneou~ Runtime Support Routines

Several utility routines are included in the runtime
p3ck~ge. These are described below.

1.3.4.1 FINIT

Declar~tion:

PROCEDURE FINIT(NFDB,NEWSrZE:INTEGER)

FINIT is called once by every main program
to define the number of FDB~ and the 3ize ~f the
area returned by NEW.

38

HEP OPERATING SYSTEM

1.3.4.2 LOGON

Declaration:
FUNCTION LOGON(VAR UID:ARRAY[O •• 11]

OF CHAR)

LOGON invokes the file manager to logon as
the user UID. If successful, the locations USERDA
and USERCY in the runtime base are set up to
point to the UFO. If logon is successful, LOGON
returns TRUE. else FALSE.

1.'3.4.3 LINLEN

Declnraticn:
FUNCTION LINLEN:INTEGER

LIN1.EN returns the length of the last
console input line.

1 • 3 • II • 4 SET I D

Declaration:
PROCEDURE SETID(F:TEXT;TSK:INTEGER)

SErIO sets the destination of the con~ole
file F to TSK.

1 • 3 • 1l. 5 G Err S K

Declaration:
PROCEDURE GETTSK(VAR N:INTEGER);

GETTSK obtains the t~~k number of the task
whose two-character ID is placed in N. Tne value
is returned in N as two bytes. The low byte of N
is the task number of the requestp.d tc-Jsk.' The
nlgn byte is the ta~k number of the task c~lling
GETTSK.

1.3.4.6 ERR

D(~ c 1 a r:3 tic n :
FUNCTION ERR(F:FILE OF •••):BOOLEAN

ERR te~t~ the S.ERR bit in V.STAT of tne
f i 1 e Cl n d ret u r~ n s T R I J Elf II n e r~ r ern a soc \; u red ,
ctne!'"wi~e FALSE.

39

)

HEP OPERATING SYSTEM

1.3.4.7 GETLOC

Declaration:
PROCEDURE GETLOC(VAR F:TEXT;VAR L:

ARRAY[O •• 4]OF INTEGER);

GETLOC returns the p~esent file position in
the file F. This information may be used in a
subsequent call t~ SETLOC.

1.3.4.8 SETLOC

Declaration:
PROCEDURE SETLOC(VAR F:TEXT;VAR L:

ARRAY[O •• 4]OF INTEGER);

SETLOC sets the file position of F to the
information contained in L. SETLOC may only be
used fer word files with read access only. The
information in L must correspond to the file
presently open as F. Alteration of the·
information in L between the call to GETLOC and
the call to SETLOC will probably result in system
failure.

40

HEP OPERATING SYSTEM

1.4 Tape Manager

1.4.1 Overview

The Tape Manager runs as a task under the Executive and
performs all tape handling funotions. The, task may be
accessed only from the operator's oonsole. Commands to
rewind, spaoe over files, and position to end of volume (end
of the last file) are supported. Individual files may be
cop!ed to or from tape, and entire UFOs may be dumped to or
restored from tape. The Tape Manager reads and writes the
tape unit directly by manipulating the appropriate IIO
locations in th~ PDP-11 memory_

1.4.2 Tape Format

Two format modes are supported for data on tape: record
mode and dump mode.

1.4.2.1 Record Hode

In record mode each physioal tape record contains
one logical record as defined when the disk file was
created. The file is terminated on tape by a file mark.
Record mode format is created only when an explicit file
name Is specified tn be copied and the file is defined to
be of record type. Record mode fermat may be read only by
explicitly specifying a file name, and results in the
creation of a record type disk file whose logical reoord.
size is defined to be the length of the tape record read.
Therefor~ it is not necessary (or possible) to supply a
record size in the command to the Tape Manager.

1.4.2.2 Dump Mode

Dump mode format is used for copying word type files
and fer. dumping and r'estoring UFOs. In dump mode 'each
phy~ical tape record is 514 bytes long, except for the
last record in a file, which is a short record. Dump mode
fermat is created either by explicitly specifying a file
wnich was created as a word file (logical record
length ~ 0) or by requesting a UFD dump (dump all files
~n the specified User File Directory).

4 1

HEP OPERATING SYSTEM

1.4.2.2.1 Hord Files

In the C8se of copying a specific word
file, each 514-byte tape record contains a
physical disk record, including the 16-byte
block header and followed by 2 bytes whose
content is undefined. The la8~, short record
contains the last physical disk record
including header, truncated to 2 bytes past the
end of the actual file data. Therefore the
length of the short record is always 2 bytes
more than a multiple of HEP words. In the case
where the actual file data exactly fills a
physical disk record, the short tape record
following the last block will be 18 bytes long
(16-byte header plus 2 trailing bytes). The
file is terminated on tape by a file mark.

1.4.2.2.2 UFO Dumps

The first record of a UFO dump is an
identifying record containing the ASCII
UIO (User Identification) in the first 12
bytes. The high byte of the UID has its sign
bit set to mark this file as a UFO dump. The
remainder of the record is undefined. Following
the UFO identifying record arc all the header
records (from file HEADER for this UID) except
the header record fer file HEADER. Tnese
record~ are u~sd to identify tne files
contained in the dump. Each header record i~ a
pnysical disk record, including the 16-byte
block header. followed by 2 undefined bytes.
Following ~he last header record i~a short
record, 18 bytes long, which indicates the end
of hender records. The content of each file in
the UFO follows, in the same order as the
header records. Regardless of defined lc~ical

record length, each file in the dump has the
same format on tape as a word file. E~oh tape
record cQntains a phYSical disk record,
includinB the 16-byte bleck neader and followed
by 2 bytes wnich in tnis C8,e contain the
defined logical record length. Th~ last record
in eRch file is a short record, indicating the
end of the file. Tn~ last file in the dump is
follcw~d by a file mark which indicates th~ en1
eft h ,= d \.l rn p f () !" t fl ~ S U F D • I f m u 1 tip 1 e U F D ' 8

42

HEP OPERATING SYSTEM

were specified,
mark.

the next UID follows the file

1.4.2.2.3 End of Volume

Following the last file on a tape (either
single file or UFD dump) is an additional file
mark, resulting in two consecutive file marks.
This indicates the end of data on the tape. The
Tape Manager will not allow reading or
positionihg past the double file marks. More
files may be written to tape, resulting in
.writing over the second file mark. The new last
file is then terminated by two consecutive file
marks.

1.4.3 Commands

Tne Tape Manager is accessible only from the operator's
console, directed by commands in the form of messages
pref8ced by 'MT:' (the task IO for the Tape Man::lger). A
command may specify tape positioning only, may direct that
the tape be either read or written with a string of one or
more file names or UIOs, or may direct the Tape Manager to
read commands from a file.

1.4.3.1 Tape Positioning

Each tape ·positioning command is pref~ced by a
slagn ('I') to distinguisn it from a file name. The
command mnemonics and corresponding operation~ supported
are as follows:

'/RH'

, I A P'

- Rewind; pOSitions tne tape at load point~

- Append; positions the tape at the second of the
two consecutive file marks which indicate end
of volume; at this point, more files may be
written to the tape, overwriting the second
file mark and resulting in rt new end of volume.

'IFFn' - Forward file; positions tne tape immediately
past the nth file mark forward from the tope's
current position; if !I is not specified, 1 is
assumed; if end of volume 1s encountered, the
ccmmand ie termin~ted leaving the tape
po 8 i t i (.) n P. d t n e s !1 m e f1 ~ f 0 r~ 'I A pl.

43

HEP OPERATING SYSTEM

Multiple tape ·positioning directives may appear in a
single command line; each leading slasn serves as a
delimiter. Each directive is performed in order, left to
right.

Examples:

'MT:/AP' - Positions tne tape at end of volume.

'MT:/RW/FF2' - Positions the tape at the start of the
third file or dump on the tape.

1.4.3.2 ~riting a Tape

Writing to tape is indicated in a command line by an
equal sign (:) preceding the list of files or UIOs to be
copied to tape. Tape positioning commands may precede the
equal sign; tnese will be performed before writing the
tape. A uro specification must be enclosed in square
brackets ('[]'). A file specification may include its uro
(in square brackets), otherwise the last uro appearing in
a file specification (in the same or a previous command
line) is assumed. Multiple file or UrD specifications in
a command line mu~t be separated by commas.

Tape positioning commands may be interspersed in t~e

list of file or UrD sp~cifications and will be performed
in the order encountered. When a tape positioning
directive follows a file or uro specification. the slash
may serve as the delimiter, so that the comma following
tne file or uro specification may be omitted.

Examples:

'MT:/AP=[300302]' -

Writes the UFD dump for 300302 at the
end of existing data on the tape.

'MT:=[001001]HEPOS,CONTROL/RW' -

Copies tne tw~ named files from urn
001001 to tape, tnen rp.winds tn~ tape.

44

HE? OPERATING SYSTEM

1.4.3.3 Reading a Tape

Reading frem tape is indicated by an equal
sign ('x') as the last character in the command line.
Preceding the equal ~ign is a list of one or mere file or
UrD ~pecifications, separated by ,commas. A UIO
specification must be enclosed in square brackets ('[]').
A file specification may include its uro (in square
brackets), otherwise the last UrD appearing in a file
specification (in the same or previous command line) is
assumed.

Tape positioning commands may be interspersed in a
list of file specifications and are performed in the
order specified. In the case of restoring UFD dUmps, the
specified UIOs are restored in the order in which they
occur en the tape regardless of their order in the
command line; therefore tape pOSitioning directives are
not useful except at the end of the urn list. When a tape
positioning directive follows a file or uro
specification, the slash may serve as the delimitp.r, so
tnat tne comma following the file or uro specification
may be omitted.

Examples:

'MT:/FF,[300302]ABC/FF2,XYZ:' -

Copies the second and fifth files from
tape into urD 300302.

'MT:[001001],[300300J,[300302]/RW~' -

Restores the
300300, and
tape.

45

files
300302,

far urn, 001001,
then rewinds the

HEP OPERATING SYSTEM

1.4.3.4 Indirect Command File

An indirect command file is a text file, each line
(logical record) of wnich is a command line as described
in the preceding sections on reading, writing, and
positioning tape,s. The leading 'MT:' found irl console
commands is ommitted from commands in an indirect command
file. Tne Tape Manager is directed to process the
commands in a command file by a message from the
operator's console of the form:

'MT:@[UID]file name'.

The'Tape Manager then opens the specified file and
read3 and performs each command until end of file is
reached. A command file may contain any legal Tape
Manager command except '@ •.. '; that is, indirect command
files may not be nested.

1.4.3.5 Terminating Command Processing

Wnen the' Tape Hanager is finished processing a
command line or an indirect command file, the message
'MT:' is displayed on the operator's console. If the Tape
fir) :1 age r encounter s an error w h i 1 e pro c e 8 sin g a command,
an error message is displayed cn tne operator's console
and proc~ssing of tne command line or indirect command
file i3 terminated.

If it i8 desirable to prematurely terminate the
processing of a command line or indirect command file,
tnis may be accomplished by sending any message to the
Tape Manager. Processing of the current command or file
of commands will halt and the new message will be
precessed as a command.

1.4.4 Functional Description

In record mode, disk file, arA read or written with
3tnndard calls to tne runtime I/O routines. In dump mode,
nowever, since tape records are equivalent to physical disk
records, tne overheRd of unblocking, rp.blocking, and moving
datD is avoided by trRn~mitting eacn record between the I/O
buffer and tne t~pe directly. This i~ accomplish~d by
~nanipulating the disk file variable (in a3s~mblY lRnguage) to
point to tne end of th~ bleck ~fter cRch tape transfer,
f 0 ~. c i n r~ t h n. n ext cal 1 t I) t n e a p p r r; p r i ;'1 t e T / a r () uti net 0 d (') a
pny~ical r~ad or write of the ~i3k f~le.

46

HE? OPERATING SYSTEM

1.4.5 Error Messages

MESSAGE MEANING

Un k n ;? w n A c c 0 U:1 t - U I D - Tn e U I Din a com man d, i s n Q t k n c wn to
the system.

Command Error Command not recognized.

? ;:) ram e t erE}' r 0 r Invalid parameter in command.

Illegal Functio~

Bad Tape Format Tne tape format does not match tne
command being processed.

End of Volume on Tape - Premature end of volume reached while
processing a command.

Tape I/O Error:nnnnnn - Bad status after a tape operation;
nnnn is the status.

Tape on Write Lock

urD Table Overflow

Bad Directory

Command J\borted

Tap0 Unit Not Ready

Attempt to write on a tape which has
no write ring in.

Tne list of UI03 to be dumped or
restored i~ longer than the p;ogram
can accomcdate; remaining UIOs will
not be processed.

An error was encountered in
processing a file header.

Tne current command line or indirect
command file nas been prematurely
termin~ted due to error or operator
intervention.

Tape unit i~ off-line.

47

HE? OPERATING SYSTEM

For < R , C , ? ri n d D 1" e que ~ t S t if:: < val u e > i 8 8 pee i fie d ,
trie contents of the location specified by (Starting Address>
are replaced by <Value>.

For all requests, trie processor
specified by toe processor parameter.
emitted, p~ocesscr 0 i8 assumed.

tc be acceseed is
If this parameter is

In the event that the <Filename> parameter is prcvided,
tne HE? Debugger will send the input message back to the
originating task when the operation is complete. This allows
the Daten Monitor to determine when a dump is complete and
the HE? resourpes may be freed.

HEP OPERATING SYSTEM

1.5 HEP Debugger

is used to examine and modify HEP memory
queue. It is normally used by the Batch

user dumps, but can also be used from the

Tne HEP Debugger
a~d exa~ine the PSW
Monitor fer taking
operator's console.

All HEP Debugger functions use the KI task and cede in the
HEP Kernel to obtain HE? related information. Thus the HEP
Debugger cannot be used if the Kernel or the UNIBUS to switch
interface is not working. In these cases, program and data memory
may be examined u~ing the IML maintenance task (MP).

1 .5.1 Command Format

The HEP Debugger responds to single line text commands
with toe following syntax:

[<Request Type>J<Starting Address>[,Ending Address)[.P<Processor>J

. :"[I.e: F i 1 en am e >]~)
" r (Bracl<ets derlote optional parameters)

[:<value] \
\-

Valid request types are a single alpha digit drawn from:

R - Register Memory
C - Constant Memory
P - Program Memcry
D - Data f1omory
S - Program Status Words

If <Request Type> is omitted, and the leading ch~rRcter
of tne starting address is numeric, datA memory is assumed.
If <Ending Address> is omitted, it defaults to
<Starting Address>. If the I<Filename>' qualifier and the
:: < val u e > qua 1 i fie r are ~ b sen t , for R, C , P, and D r e qu e ~ t
types, all memory locations between <Startin~ Address> and
<Enrling Address> are displayed. For S requ~st types.
<Startin~ Address> is taken a8 ~ task number, and all PSW's
witn tnat task number are displayed.

If
'vlritten
requests

I<Filename> is specified, the
in binary format to trie file
to a file, all ?SW's~are dumped.

48

requested
specifip.c1.

data is
Fer S

HEP OPERATING SYSTEM

1.7 Editor"

1.7.1 Overview

The HEP System Editor is a line-Qriented text editor
whicn operates on sequence numbered word type or cn sequenced
or non-sequenced record type files of text. The Editor also
performs file utility functions such as listing, copying,
renaming, or deleting files, listing tne user's directory.
a~d submitting a file as a job.

Options for terminating an edit session include
canceling the edit (preserving the original file), saving the
updated file under a new name (preserving the original file),
and replacing the original file with the updated file. In the
18tter two cases, the updated file may be saved as a reccrd
file, with or without sequence numbers, or as a sequence
numbered word file. The Editor supports the inclusion of
lines of text from an auxilliary input file, which may be the
file being editted~

A separate Editor task" services each terminal or port in
tne HEP system; all the Editor task~ share the same program
code but each has its cwn data space.

1.7.2 Commands

Tne Editor is the only task which communicates with
terminals other thnn the operator console, therefore messages
(ccmmnn~s) to a terminal Editor are not prefaced by any task
identifier. However, the operator ccnsole is also serviced by
an Editor task, and its identifier 'ED:' must preface Editor
r:1 e e ~ ~I g e ~ . C C In man d s t c) t neE d l. tor f::\ 1 1 i n tot n r e e cat e g c r i e ~ :
leg onleff commands, file utility commands, and edit
commands. Any command which results in substantial output to
the terminal may be prematurely terminat~d by typing a
carriage r~turn.

In tn~ following command descriptions the syntRx of each
command is given. Capital letters in comm~nd mnemonics
represent the minimum portion of the word to be supplied for
command recogniticn.

50

HEP OPERATING SYSTEM

1.7.2.1 Log On/Off Commands

Whp.n no user is logged en to an Editor task, that
task monitors any signal on the line looking fer a
carriage return at various line speeds to determine the
speed at whicn tne terminal is operating. Therefore
before legging en, it is necessary to type carriage
return until the system responds with a greeting.

1 • 7 • 2. 1 • 1 La g On

HellQ [uid]

Tne user wnose identification number appears in
the backets is logged onto the system. The Editor
responds by displaying a greeting with the current
date and time.

1 • 7 • 2. 1 • 2 Lo g Of f

Bye

The user is'legged eff the system. If an edit
was in progress, it is aborted. The Editor responds
by displaying the date and time.

1.7.2.1.3 Assistance

A user who is logged on may obtain a display of
all the Editor commands and syntax by typing '?'

1.7.2.2 File Utility Ccmmanris

1.7.2.2.1 List Directory

LD

The name of each file in the legged-en u&er's
fIle directory is displayed, including the logical
record length. the file size in blocks, and the
creation, last modification', and last access dates.

51

HEP OPERATING SYSTEM

1.7.2.2.2 Copy a File

CF file specification, file name

A file. named by the second parameter, is
allocated in the u~er'8 UFD and the contents of the
file represented by the first parameter (which may
include a UID) are copied into it. The output file
must not already exist.

1.7.2.2.3 Delete a File

DF file name

The named file is deleted frem the user's UFO
and the space allocated to the file is freed.

1.7.2.2.4 List a File

LF file specification

Tne contents cf the file (which may be in
another UFO) are listed en the terminal.

1.7.2.2.5 Rename a file

RF file name, file name

The file in the user's UFO named by the first
parRmeter is renamed to the second parameter. The
second file name must not already exist.

1.7.2.2.6 Submit a Job

SUbmit file specification

The EditQr builds and sends to the Reader task
a message containing the UID and file ·name
specified, to be submitted as a job stream. If the
file specification does not contain a UID, the
lo~ged on u3er's UrD is used. If the parameter is
not prcvided, the updated version of the file being
editted is submitted.

52

HE? OPERATING SYSTEM

1.7.2.3 Edit Commands

In the following syntax descriptions, parameters
appearing in square brackets are optional. The letters N,
M, L, and I represent numbers.

1.7.2.3.1 Edit a File

Edit file name

The Editor initiates an edit session for the
specified file. This includes copying the file to a
word file if it is a record file and assigning
sequence numbers if it is not sequenced.

1.7.2.3.2 C~py Lines

Copy N[-M)[/file specification),L[,I]

The Editor copies line numbers N through M from
the specified file, inserting them in the file being
editted, starting at line number L and incrementing
by I. If M is omitted, only line N is copied from
toe file. If toe file specification is omitted, the
lines are copied (replicated) from the file being
editted. If I is omitted, the last increment
specified in any command is u,ed.

1.7.2.3.3 Move Lines

He v e N [-H] , L [, I]

Lines N through M are inserted starting with
line number L, incrementing by I, and the lines are
deleted from their former position. If M is omitted,
only line N is moved. If I is omitted, the last
increment specified in a command is used.

1.7.2.3.4 Insert a Sequence of Lines

Sequence L[,I]

Sequence insert mcde is est~blished, starting
w!tn line number L ~nd incrementing by I. The user
is prompted for eacn line of text by a display of
toe next li~~ numb~r in sequence. The p;ccess is
terminated by typing a cRrriage r0turn as toe only
c n a r ;') c t e !' c n () 1":' n e, 0 r bye v e r 1 CI P pin g a n ex:!. ,'3 t .i fl ;S
line number in tn~ f!le.

53

HEP OPERATING SYSTEM

1.7.2.3.5 Replace a Text String

Replace /string l/string 2/(N[-M]]

The first occurence of string 1 is replaced
with string 2 in every line in the range. If M is
omitted, the range is the entire file. The slash
delimiter may be any char~cter.

1.7.2.3.6 Delete Lines

pe 1 e te N (-M]

Tne specified line or r~nge of lines is deleted.

1.7.2.3.7 Direct Insert

N text

Line N is placed in the file, containing the
text following the line number N. If line N already
e xis t s, i t:3 con ten t s are rep lac e d b Y the new ·t ext, •

1.7.2.3.8 Direct Delete

N

1..i ne nu~nber N i 1'3 del eted from the fi I P..

1.7.2.3.9 Find a Text String

Find /l'3tring/[N[-M]]

The Editor searcnsl'3 the specified r~nge of
lines for occurences of the string and displayl'3 on
the terminal all lines containing the I'3tring. The
sl;')sn delimiter may be any character. If '11 i8
c;mitt~d. only line N in ~e;Jrched; if N is al~1)

omitted, the entire file is senrcned.

54

HEP OPERATING SYSTEM

1.7.2.3.10 List Lines

List [N[-H]]

All lines in the file in the specified range
are displayed on the terminal. If M is omitted, ~nly
line N is displayed; if N is also emitted, the
entire file is displayed.

1.7.2.3.11 Renumber the File

Number N[-M],L[,I.]

~he Editor renumbers the specified range of
lines, assigning new sequence numbers etarting with
L and incrementing by I. If M is omitted, only line
number N is renumbered. If I is omitted, the last
increment specified in a command is used. If the
renumbering of the range would cause the file to be
out of sequence (i.e. lines following the range have
lower numbers, or lines preceding the range have
higher numbers), then no renumbering is done.

1.7.2.3.12 Save the Changed File

SAve [file name][,Rn][/S]
or

SAve [file name][,W]

The updated version of the file bein~ editted
is saved. If file name is specified, tne file is
saved under that nnme, ann the original file is
retained, otnerwise the updated file replaces the
original file. If Rn is specified, the flIp is saved
as a record file with a logical record length of n/8
HEP words; if IW is specified, the file is saved as
a word file; oth~rwise the file is saved as the same
file type as the originnl file. If IS is speci·fied
<) n are COt' d f i Ie, t h 0 .CJ (! que n c e n Ll m b (~ r s are s ::t v e d a ~
p~rt of tne file and tne logicnl record length mu~t
allow fer the 1-HEP-word sequence number per record.
If IS is n~t specified, toen the sequencA numbers
are saved o~ly if the crieinal filp was sequ~nced.

The save command does not tak~ the user out of edit
mode; updating may cor.tinue frem toe point of snving
tne intermediRte file.

55

HEP OPERATING SYSTEM

1.7.2.3.13 End the Edit Session

Off

The Editor terminates an edit and closes all
f i I e s • I f the e d i t f i 1 e h a 8 bee n .m 0 d i fie d, a 8 a v e
command must be performed before the eff command is
accepted.

1.7.2.3.14 Cancel the Edit

ABort

The current edit is terminated and the updated
file is deleted. The original file is retained.

1.7.3 Functional Description

The Editor applies updates .to a temporary copy of the
file; the actual file is not affected until the user issues
tne save command. It is always possible to cancel an edit
session, leaving the file as it was before the edit started.

During editting, an input and an output file are open.
Tne input file is initinlly the original file unless the
original file is a record file; the output file is a
temporary file. None of the file being editted is kept in
memory; the first time the input file is r~adt a table of
disk addresses is built, evenly distributed over tne file.
Tnen fer each command, the disk addrees from the table whose
3~quence number is nearest to but less than the line number
referenced i~ u3ed to position the file. From that point the
file is read sequentially to process the command. Updated
line~ ~re kept in a table in memory and override the
corr0~poncting lines in the file. Inserted lines are also kept
in the table. When the table becomes full, a portion of the
input file is written to the output file, incorporating the
c h () rq:~ e:'3 in t h ~ tab Ie, un til the c h i3 n get a b 1 e i 8 par t 1"a 11 y
empty. From this point on, the output file is also accessed
for input, nnd the corresponding portion of the input file is
ignored. Tne renumber command, however, results in the entire
updated file being written to output with the new ~equence
number~. Anytime the la3t of the updated file is written
0ut. tn2 old input file is closed, th~ output fil~ becomes
input, Dnd a new output file is allocated. All flIes
allGcated by the Editor are allcc~ted as temporary files so
tnat tn0y are deleted wnen clos~d.

56

HEP OPERATING SYSTEM

Wnen tne user saves an edit, the original file is
deleted if necessary and the final output file is renamed to
the desired name, making it a permanent rather than a
tempcrary file.

When a reccrd file is editted, it is initially copied to
a temporary word file. Line numbers are assign~d unless the
record file contains embedded sequence numbers at the end of
each logical record. Embedded sequence numbers are identified
by the high-order bit being on in th~ first byte of the
8-byte number. If present, the embedded sequence numbers are
extrctcted and used as the line numbers as the file is copied
to a ward file. The sequence numbers in the text are replaced
by blanks in toe word file.

1.7.4 Ru~ning a Job From the Editor.

Wnen the submit command is used to cause a file which is
a jcb stream to· be submitted as a job, the Editor builds and
sends a command to the Reader task. The Editor uses the
message buffer for terminal output and builds all fi~lds of
the me3sage directly. Tne message text consists of a uro
(either sup~lied in the ·submit command or taken from the
user's log-en) and a file name. Ihe Editor does the trap to
send tne message, then does a trap to obtain a new message
buffer. This new message buffer becomes the terminal output
buffer.

Wnen a jcb submitted by an Editor h8s completed
execution, a completion message is received by th~ same
Erlitor from the Batch Monitor task. Informative m~ssRRes of
tni3 ~O!·t are distinguished frem user commnnds by the
presence of ~ backslasn (line cancel character) as the first
cn~racter of the message. Tnese messages are simply di~played
en tne terminal.

57

HEP OPERATING SYSTEM

1.8 Batch Monitor

1.8.1 Overview

The Batch Monitor runs as a task under the Executive. It
is responsible for job scheduling, resource management, and
precessing status changes for jobs in execution. The Batch
Monitor receives job descriptor messages from the Reader task
and maintains a queu~ of jobs to be run. As resources are
available, the Batch Monitor removes jobs from the queue and
initiates execution; a queue of jobs in execution is also
maintained. At job step termin8tion, the Batch Monitor
initiates the dump function if requested. The Batch Monitor
sen~s cc~pleted jobs to the Writer task for printing.
Operator commands are available to examine the queues,
r0.-order the' job queue, suspend or cancel jobs, and change
HEP partition sizes. The operator can also instruct the Batch
~onitor to quiesce the system by shutting down the Reader
task and not starting any new jobs.

1.~.2 Commands

The Batch Monitor is accessible only from the operator's
console, directed by commands in the form of mes~ages

pre f n c e d b Y t [3 ivJ :' (t h eta skI D for the Bat c h M 0 nit 0 r). Th ere
are two categories of commands: job-related and
system-related.

In the following command descriptions the syntax of each
comman~ i~ given. Capital letters in commnnd mnemonics
represent the minimum portion of the word to be supplied for
command recognition.

1.R.2.1 Job-RelatAd Commands

In the following syntax descriptions 'nnnn'
represents a four-digit system-assigned job number which
uniqu~l.y identifies the jeb.

1.8.2.1.1 Move Job to Top of Queue

Next nonn

Job number nnnn is movc~ to the top of the
job qu~ue so that it will be th~ next job
started.

HEP OPERATING SYSTEM

1.8.2.1.2 Suspend Job Execution

SUspend nnnn

If job number nnnn is in execution, the
Batch Monitor sends a suspend message to each
task in the job Which is currently active.

1.8.2.1.3 Resume Job Execution

Resume nnnn

If job number nnnn is in execution, the
Batch Monitor sends a resume messag~ to each
task which is currently paused.

1 • 8 • 2 • 1 • II Can c e 1 a Job

CAncel nnnn

If job nnnn is in execution, the Batch
Monitor s~nds a cancel message to each task in
the job. If job nnnn is in the job queue, it is
removed so that it will not be executed.

1.8.2.2 System-Related Commands

1.g.2.2.1 Set HEP Partition Sizes

Partition p,m,s1,s2,s3 ...

The Batch Monitor sends a message to the
Kernel in PEM number p requesting that memory
type m be partitioned Rccording to the sizes
s1, 52, etc. The number of sizes specified must
be less than or equal to the maximum number of
partitions allowed in the memory type. The sum
of all the sizes ~ust be less than or equnl to
th~ physical nmcunt of th~ specificrl memory on
the specified PE~. Partitions may be
reconfigured while jobs are runninB as long ns
the boundnric5 of the 8ctive partitions are not
c.lff(~cterl. T.f th~ rcqucst~d p:1rtitionin~ cClnnct
be performed b~cause of viclntion of nny of tha
abov~ criteria, the partitions meS5~~e is
mcrlificd to reflect the actuql current
p8rtition sizes. In ~ny c~se, the meSSH~n is
r':turnerj to t~(') B.1tch M',jn iter and is then
displayed i~ tabular format.

59

HEP OPERATING SYSTEM

If the operator simply wants to know what
the current partition sizes are, an easy method
is to type a set partitions command with a
single size field which is larger than the
total amount of memory of that type.

1.8.2.2.2 Set Control Card Proce'ssor

CC [uid]file name

The Control Card Processor is always
loaded from a file. If the user wish~s to
specify some file other than the system default
(i.e. to tryout a new Control Card Processor
program), this command must be used to direct
the Batch Monitor to use the desired file for
loading th~ Control Card Proc~ssor task. The
named file remains the Control Card Processor
file until the Batch Monitor receives another
CC command.

1.8.2.2.3 Display the Job Queue

Display Queue

The Batch Monitor lists on the operator's
console all jobs waiting to be run, showing the
job number, name, memory requirements, and
process count requirements.

1.~.2.2.4 Displny the Jobs in Execution

Display I\ctiv(}

The Batch ~onitor lists on the operator's
console all jobs in execution, sho~ing the job
number, name, data m'2ffiory partition number,. and
the PEM numb~r, tnsk number, pnrtition numbers,
process count, and task status for each task in
the job. Tnsk status can be 'L' for loading,
'1\' for active (running), 'P' for paused, or
'0' for dormant (no code in this task).

60

HEP OPERATING SYSTE~

1.8.2.2.5 Quiesce the System

STOp

The Batch Monitor does not start any more
jobs from the job queue, and sends a ~essage to
the Reader to stop reading job streams. Other
Batch Monitor activities proceed normally.

1.8.2.2.6 Resume Normal System Operation

STArt

This command is the reverse of STOP; the
Batch Monitor sends a message to th~ Reader to
continue reading jobs, and the Batch Monitor
resumes initiation of jobs from the job queue ...

1.8.3 Inter-task Messages

In addition to commands from the operator's console, the
8atch Monitor receives (and sends) other types of messages.
These messages support three basic Batch Monitor activities:
sending and receiving HEP messages, sending and receiving
jobs, und t~king dumps of jobs.

1.3.3.1 HE? Messages

When the HEP sends a status change message on behalf
of some job, the Batch Honitor receives a "switch
mess;)ge" from the interface task. A switch message
con;, 1 ~.) t ~j 0 ron (~ II E P ~v 0 r rl 0 r d a t a, f 0 1 1 0 vi (~ d b y 3 2 bit S 0 f
control information. In this case, the HEP word contRins
the d;)tn memory arldrcss of the HE? message h~;:}dcr. The
83tch ~onitor then rearis the HE? message hen~er via the
low speed bus, sets good status in the header, and writes
the header back to data memory via the low speed bus. The
second word of the HE? message header contains the length
Clnd stnrt address of the m0ssage dflta, if nny. If ther~
is d~ta, the Batch Monitor rearls it via th~ low speed
bus, then releases the original switch message by sending
it b~ck to th~ interface tnsk 8S a reply.

The Batch Monitor then processes th~ HEP message
acccrdin~ to its type. The types of mt~ss:tgns that mi.ght
be r~ceived frem the HE? are pause, normal terrnin.:ltion,
~bncrmal t0rminntion, ~nd system crrcr. The mcss(l~e
h e (l d :: r c c n t :) ins , i n ,J rj d i tic 11 t (; m ~ s S ·1 P.; e t y p ~, t h·? P E '4

61

HEP OPERATING SYSTEM

number and task number· from which it came. Except in the
case of a system error message, the PEM and task number
are used to identify the job associated with the message,
by searching the execution queue. Since HEP mess~ges come
frc~ the supervisor task, 8 is subtracted from the header
task number to get the corresponding user task number. If
there is any ~essage data it is displayed on the op~rator
console and written to the job's log. file. If the message
was a normal or abnormal termination, the Batch Monitor
sends a canc~l to any other tasks in the job to force
them to terminate.

In the case
~onitor dlsplays
console and halts.

of
the

a system error message, the Batch
message data on the operator's

When the B~tch ~onitor wants to send a message to
the HEP, it must first seize control of the interface.
This is done by sending a a switch message to the
appropriate interface task (KI) with the target PEM
number in the first 16 bits of the data word. The
int~rface task replies with the data memory address of
the interface area in·the switch message data word. The
third and fourth words of the interface area are where
HEP~bound message henders are written. The Batch Monitor
writes its message header into this area Rnd sends an
~ctivate type switch message.

62

HEP OPERATING SYSTEM

SU~MARY OF BATCH MONITOR CONSOLE CO~MANDS

Jcb Related Commands

Next nnnn

SUspend nnnn

REsume nnnn

CAncel nn~~

- Move job number nnnn to top of job queu~.

If nnnn is in execution, suspe~d all tasks in
the job.

If nnnn is suspended, resume execution of its
tasks.

IF nnnn is in execution, cancel all of its
tasks.

System R'~ loted Command s

Partition p,m,S1,S2,S3 ••. S7 -

Set partitions in processor p, memory type m
to the value$ in 31 ••• S7.

CC[uid]Filena~e - Set the name of the CONTROL CARD PROCESSOR
load module equal to [uid] filename.

Display QU';U0

Display Active

STOp

STArt

- Display the contents of the Job Queue (jobs
waiting to be run).

- Display the status of all active jobs.

- Do net process any more new jobs.

- Reverse of STOP, allow Batch Monitor and
Reader to continue processing new jobs.

Oth~r Console Commands

RD:[uid1FilenQme - Read the jobfile specified and sub~it it for
execution.

PR:[ui~l]Filename - Enter the file specifip.d in the print queue.

PR:CI\nccl nnnn - Remove job nnnn from the print queue.

P B : C f\ n (~ r~ 1 - Step printin~ only 0f f1 l(~ currs-ntly b0.ing
printed.

PR:COntiY"JU0 R0sum~ printing (aft~r print~r h~s gene
0ff-line for some r~t1~0n).

63

HEP OPERATING SYSTEM

HE? DEBUGGER - HD:

Examine/Modify Memory -

[<Memtype>J<Start Addr.>[,Endaddr.][,Pn] [/<Filename>]
[::Valuc]

~1emtype = R, C, P, D or S Default:: D

Pn :: Processor Number Default:: PO

I<Filename> :: Optional Output to <Filename>

':: Value' :: Modify Word to Value Specified

TAPE MANAGER - ~T:

I H''''; - Rewind tape.

lAP - Append.

IFFn - Forward fil~, n file marks. 'n' default:: 1.

:: <[uid]Filename> - Write <[uid]Filcname) to tape.

<[uid]Filename>::

= [uid]

[uid] =

Default [uid] :: lC1st [uid] encountered or
[001001] •

Copy <[uid]Filename> from tape.
Default [uid]:: last [uid] encountered or
[001001J.

- Write UFD dump fer [uid] to tape.

- Copy UFD dump fre:n tape to [uid].

Tape M3na~er directives may appear in any order in a command
line, except that only one '::' m~y appenr. This must be either at
th~ frent of the ccmmand line (for writing to a tape) or at the
end of the command lin~ (fer reading from a tapq).

64

HEP OPERATING SYSTE~

EDITOR - ED:

Editor commands related to file manipulation and batch
processing of jobs. Operator must be logged on to the Editor.

BYE

CF F 1 ,F2

OF Fl ,<F2, ... Fn>

BEL N 1

LD

LF F1

RF F 1 ,F2

~ trom it F1

?

- Log off the Editor.

- Copy file Fl to file F2.

- Delete files specified. More than one file
may be named en a command line.

- Log on the Editor with userccde Nl.

- List file directory 'for your usercode.

- List the contents of File Fl.

- Change the name of File Fl to F2.

- Submit the (Control Card) File Fl as a job.

- Print complete summary of Editor commands.

65 .

HEP OPERATING SY3TE~

NOTE: Cut out this '15' and tape it as a subscript on page 2
under HEP DE8UGGSR section, the line "f: Value' : Modify word
t (, val u e x x s p e c i fie d rr \-111 ere the x x 's 3 r e .

ALSO, drnw 3 bracket on the left hand side between ,Pn] and
[/<filename>] in the third line ul1der HE? DEBUGGER and on the
right hand side after [/<Filena~e>J.

HEP OPERATING SYSTEM

1.11 DisK Builder

The Disk Bui11p.r is a utility task used to initialize and
reconfigure the disk file system. It is not normally part of an
operational system system, but is always part·of the bootable
system on 8 distributio~ tape. The Disk Builder is unique in that
it accesses the disk directly, rather than through th~ File
Manager. The Disk Builder contains no co~mand error checking of
any description, and errors or misuse of its commands may destroy
the file system. The File Man~ger in a system must be shut down
while the Disk Builder is used. Disk Builder commands are
described betcw. ~ll commands are single letters.

1.11.1 Format Disk

The F command causes the disk to be formatted and
verified. Sectors with read errors are flagged.

1.11.2 Initialize Disk

The I command causes the disk allocation bitmap, the
master file directory and the user file directory for user
000 000 000 000 to be built. This re~dies the disk for use by
th0 Pi Ie ~'1:)nagcr

1.11.3 Crp.ate User File Directory

The U command prompts for n user ID, and cr~ates a UFD
fer this user. No check is made for duplicate UFD's.

1 • 1 1 • Lt Log 0 n

Th~ L comm~nd prompts for R user ID, nnd us~s that 1D
for 811 subsequent file references.

1.11.5 8uild Bootstrap Sectors

Th0 8 ccm~nnd builrts the bootstrnp sectors (cylinrler 0,
track 0, sectors 0 and 1). S~ctor 0 contains a hardware
beotstr~p for t~2 ROOT, while sector 1 contains pointers to
the MFD, th~ bitmap ~nd the disk ad1ress~s and boot
p~r8~etcrs fer the scparatp.ly ccmpilerl Executivp. tasks.
S0~tcr 1 is u3cd by Root initinliznticn to loarl th0 Executive
tasks. Th ~ f3 (!ornrnnn~i cbtains the S·~ctor f) bcctstr()p frem the
file "H',.JBO')T.TSK" in the curr~nt U$~r to. Th~ comrn:1nd prcmpts
fer a s i~ r i I'} S 0 f t:) skI D's ;-) n d boo t p ·1 ram ~ t p r s. For e (J c h t n s '< ,
t :1': f clio win ~ b (; (; t P 3 r 8 met e r S m ~ s t b .; SUP? 1 i ~~ d :

66

Filename

HEP OPERATING SYSTEM

- Th~ na~e of an existing file in the current
UFD or A taskid, where taskid is a previously
defined task. If A taskid is entered, the
bootstrap entry is flagged so th~t the code
for taskid will be shared with this task and
not loaded again. .

Debug Mode - If debug mode is Y, the initial flags of the
'task will offset so that the task will not
automatically start when the system is
boated.

If the· bootstrap sector already contains boot
information, the user is prompted for each ~xisting entry to
determine wh~ther to change that entry. After all existing
entries are processed, new entries may be added. Note that
since the boat sectors contain absolute disk addresses rather
than file names, it is necessary to rebuild the boot sectors
whenever an Executive task or the Root is changed.

1.11.6 Set Date

The D command prints the current date (M~/DD/YY) fro~
the calend3r cleck and accA.pts a new date. Typing nn invalid
rlnte will hang the task and require a reload.

1.11.7 Set Time

Th~ T command displays the current time from the
c~lend~r clack (HHMM:SS) and accepts n new time (HYMM). If an
invalid time is is entered, th':? tClS\< wi 11 hang nnri thf! syst~m
must be reloaded.

1.11.3 M~~c Distribution Tnpe

The M command will write a magnetic tape consisting of
the tape bootstrap contained in the file "MTBOOT.T3K",
followed by a cere image of the curr~nt incore syste~. this
t3p~ mClY be hardvJarp, booted. For th~ tnpe to be useful, the
syst'=ln must be inactive vJhile the t3pe is being made, and the
File M~nager must be shut dawn.

1.11.9 R~ad Absolute Sector

T!1 e R c c : n ~n n n d 0 1 1. 0 'vi S t !1 ~ c per:) tor tor 0 a 1 dis 1< s ~ c t c r s •
Thp cc:nm<1nd prompts for the cyl inder h0;)d, and secter to b~
r c: :j ~j • !\ f t e r t h ... ~ s ~ c tor is r.; r"j d, t h ~ com en () n rj prc:n p t s fer n n
cu~put mcdc, starting d~t~ word and word count tc print.

67

HEP OPERATING SYSTE~

Legal mcdes are A (ASCII), D (DBcimal), H (Hexadecimal) and
o (Octal).

1.11.10 Set Indirect File

The G command prompts for a file name and obtains
subsequent commands from that file until E()F or'error.

1.11.11 Shut Down

The Z command writes out the current bitmap in
prep~r8tion for activation of the File Manager.

1.11.12 Disk Build Procedure

This section describes the sequence of operations required to
build a disk from the distribution tape.

a) Boot the distribution system from tape;

b) Set the date and time;

c) Format th~ disk (if'required);

d) Initialize the disk;

e) Define required UFD's, including 0010n1;

f) Using the Executive Debugger, set the flags of the
task FM and MT to zero, allowing them to run;

g) Using the Tape Mannger, copy the contents of UFD
001001 from th~ distribution tnpe;

h) Shut down the File Manager;

i\ Logon as 001 001;

j) Use the Boct command to initinlize th~ bootstrap
sectors;

k) Shut down thG Disk Builder;

1) Halt and reboot the system frcmdisk.

HEP OPERATING SYSTEM

1.11 Di 3k Builder

Tne DisK BuilJer is a utility task used to initialize and
reconfigure the disk file syst~m. It is net normally part of an
operational system system, but is always part' of the boctable
sy~tem en a distribution tape. The Disk Builder is unique in that
it accesses the disk directly, rather than through the File
M~nager. The Disk Builder contains no command error checking of
any description, and erro~s or misuse of its commands may destroy
the file system. The File Manager in a system must be shut dcwn
while tne Disk Builder is used. Disk Builder commands are
described below. All commands are single letters.

1.11. t Format Disk

Tn e
verified.

F command causes the disk
Sectors with read errers ~re

1.11.2 I:1itialize Disk

to be
f1 ag ged •

formatted and

Tne I command causes, the disk allocation bitmap, the
master file directory and the user file directory fer user
000 000 000 000 to be built. Tnis readies the disk for use by
tne File Manager'

1.11. 3 Gre~te User Fi Ie Direotory

Tn~ U commc.lnd prompts for ;;:j user ID. r:lnd crei1te~ r.l UFD
for tnis user. No cncck is made for riuplicF!te UFO's.

1.11.4 Logon

Tne L command prompts for a user lD, and uses th9t 10
for all subsequent file referenoes.

1.11.5 Build Bootstrap Sectors

Tne A command builds tne bootstrap sectors (cylinder 0,
track 0, sectors 0 and 1). Sector 0 oontains a hardwara
bootstrap for th~ ROOT, while sector 1 contains pointers to
tne MFD t the bitmap and the disk addresses And boot
parameters for the separately ~ompiled Executive ta~ks.

Sector 1 is used by Root initialization to load the Executive
ta,ks. Tne R command obt~ins the Sector 0 bGct,tr~p from the
f~le "ln/BOOT. TSK" in t,ne current u~er 10. Tne C'cmmnnri prompts
far n ~~ries of task IDt~ ~nd beot par~meter~. FQr A~cn task,
tnn fallowing boot parameters must be supplied:

58

Filename

HEP OPERATING SYSTEM

- The name of an existing file in the current
UFD or A ta~kid, where taskid is a previously
defined task. If A taskid is entered, the
bootstrap entry is flagged so that the code
for taskid will be shared with this task and
not leaded again.

Debug Mode - If debug mode is Y, the initial flags·of the
task will offset so that the task will not
automatically start- when the system is
booted.

If the· bootstrap sector already contains beat
information, the user is prompted fer each existing entry to
determine wnether to change that entry. After all existing
entries are processed,new entries may be added. Note that
since the boot ~ectors contain absolute disk addresses rather
tha~ file names, it is necessary to rebuild the beot sectors
whenever an Executive task or the Root is changed.

1.11.6 Set Date

Toe D command prints the current date (MM/OD/YY) from
the calend~r clock and accepts a new date. Typing an invalid
dnte will hang the task and require R reloRd.

1.11.7 Set, Time

Toe T command displays the current time from the
calendar clock (HHMM:SS) and accepts a new time (HHMM). If an
invnlirl time is is entered, tne t~sk will hanR and toe system
must be relo~ded.

1.11.8 M(-)ke Oi strlbution T<.lpe

Toe M command will write a magnetic tape consisting of
toe tape bootstrap contained in the file "MTBOOT.TSK",
follow~d by a core imag~ cf the current incore system. ·This
t~p~ may be hardware b00tcd. For the tape to be useful, the
system must be innctive wolle the tape is being made, and the
File Manager mu~t be sout down.

1 . 1 1 . 9 Rea d l\ b 3.-; I ute Sec tor

Tne R command allow, th~ ope~ntor to rend disk sectors.
Tne command prompts for the cylinder head, nnd sector to be
r e (J d • Aft p. !~ t n ~ ,'3 e c t c. r i 3 !' ~ ::l d, toe C f) m mAn ct p r () m p t 43 for n n
GU~put mode, 3tart!n~ d,t3 word and word count tc print.

59

HEP OPERATING SYSTEM

Legal modes are A (ASCII), 0 (Decimal), H (Hexadecimal) and
o (Octal).

1.11.10 Set Indirect File

Tne @ command
subsequent commands

I • 1 1 • 1 1 S nut Dc wn

prompts for a file name and obtains
from that file until EOF or error.

The Z command writes out the current bitmap in
preparation for activaticn of the File Manager.

1.11.12 Di sk Build Procedu~e

Tnis section describes the sequence of operations required to
build a disk from tne distribution tape.

a) Beot tne distribution system from tape;

b) Set the date and time;

c) Format the disk (if required);

d) Initialize the disk;

c) Define required UFO's, including 001001;

f) Using the Executive Debugger, set the flags of the
task FM and MI to zero, allowing tnem to run;

g) Using
001001

the Tape Manager, copy the contents of UFO
from the distribution tape;

n) Shut down tne File Manager;

i) Logon as 001 001;

j) U.'3e the Beet command to initialize tne bootst.rap
sectors;

k) Snut down tne Disk Builder;

1) I-! 3 1 t ;'1 !1 d reb c. (j t. t n e 8 y is t emf t" f) m dis k •

60

HEP OPERATING SYSTEM

2. RESIDENT OPERATING SYSTEM

Tne !IEP (;crnputer contains four different types of memcry:
prcgram, register, constant, and data. Programs executing on the
mac n i n ear e all 0 cat e d a "t ask" i n w n i c n tor un. E a c.h "t ask d e fin e s a
contiguous region of eacn type of memory. The nardware ·restricts each
user to his own region of memory, and restricts the type of access he
m8Y make to eacn memory type. Program memory is execute-only;
constant memory is read-only; and register and data memory are
read/write.

A task may contain one or several processes. which are
executable code sequences. Several processes may be simultaneously
executing in tne HEP, unlike conventional computers. Processes are
implemented by a set of hardware registers, of which there is a fixed
number; thus an error condition (create fault) exists when too many
processes
pr' cc e sse s
allocated
ma!"laged.

come
can
to

into existence in tne processor. Since existing
create new processes at will. processes must be

tasks and managed just as memory must be allocated and

All of tne sixteen hardware implemented tasks in tne HEP are not
equivalent. Tasks 0-7 are user tasks. In these tasks. privileged
!nstructions are forbidden. In tasks 8-15, privileged instructions
Fl rea I 1 0 \01 e d . Tn e set a s 1< s , calle d " sup e r vis.., r s" , per fer m s y s t em
~ervice3 for tne user tasks. User tasks request these services with
"3uperv:!.sor call" (SVC) inetructions. These instructions generate a
" t rap" , c !' eat i n gap r c c e s sin a sup e r v :;. so r t ~ s k and sus pen din g
execution of tne user. The hardware forces user trRps to a p~rticular
~upervisf)r tusk, for example, task 2 traps to ta,'3k 10. In generrtl,
t~~k k(k<8) tr~p~ to task k+8.

~up~rvlsQrs may also generate trnp,. All traps from a sup~rvisor

create a precess in task 8. A supervisor trap suspends the supervisor
in tne same way a u~er trRp suspends the user. Note that a trap
suspends ALL processes in a task, net just the process cau~ing the
trap.

Tn~ HEP computer is interfaced to I/O devices and the user via
th~ Executive computer. In hardware, the Executive can read and write
HEP prcgra~ and data memory and certain centrol registers via a low
3peed (actually quite nign speed) bus (LSn) :;'nterface. Pr:!.vI1eged
iD~truct~Gns on tn~ HEP can also manipulate certain of th~se

regi~ter3. In addition, the Executive and the Re~ident OperatIng
Sy~tem are interfaced vin tne passive InterfRce, wnich allow~

~ u P (.: r 'I i ~ 0 !~ Y pre c ~ S 3 e 3 t f) i n t e r' ;) c t wit n t n ~ E x e cut i v e. 0 n ~ 0 f t n ~ rn a 1 n
~ ~ per v i ~ () r~ y f u !'"j C til) !'"j S G f the H E P 0 /~: i s t I) C () n t r f~ 1 t n e flo \01 0 f rl <l t a
t n !~ 0 U g n t n ~ s e i n t e r f a c. e s •

.. '

HEP OPERATING SygTEM

Tne~ R~sident Oper~ting System is organized into two main
components: the Kernel and the Supervisors. Tne users (in tasks 1-7)
make service requests (via SVC) of their corresponding Supervisors.
In tne event of user errors, the Supe~visor8 contain error handling
l~ cut i n e s • Tn e Sup e r v i B 0 1'" S run i n t ask s 9 - 1 5, and e. x e cut e p r i viI e g e d
instructions to carry out user requests. Wnen a user request requires
I/O with trie Executive computer, the Supervisors communicate with the
Executive File Manager via the passive interface. The Kernel handles
errcr conditions arising in the Supervisor code, and handles the
majority of operator interface functions. In addition, since the
hardware traps all create fault conditions to task 8, the Kernel
nandles these also. Note that since the task using the last process
(and getting create' fault) mRY not be the one using too many, the
K~rnel must find the offender with software and take appropriate
action. This is the reason that create faults come to the Kernel
rath~r trian the Supervisors. Supervisors have control ONLY over their
associated U3er. All supervisor code is rentrant, so that only one
ccpy is present in each PEM.

2.1 Kernel

Tne Kernel of the resident operating system occupies task 8
in every PEM. The base and limit registers of the Kernel are set
to allow it to address all of memcry. The Kernel is logically
divided into three parts - the Inbound Kernel. wriich responds to
direct~ves from the Executive; the Outbound Kernel, which
responde to traps from Supervisors; and the Greate Fault Handler,
wn~cn ~esponds to create f~ult trap~. Eaen of these Kernel
3ectiaDS is described below. Data ~tructures used by the Kernel
() r ~ des c rib ·2 d 1 n Sec t i () n 2.'1. 1, ale n R wit h K ern eli nit i n 1 1. z n t ion •

2. 1 • Kernel Data Structures and Initialization

Eacn Kernel accesses two types of data structures:
p:lvate data structure unique to each PEM, and shared data
structure accessed by all PEM's in a system. The shared data
~ t rue t u res are 10 cat e d at the bas e 0 fda tam em 0 r y, and r e·l n t e
to tne control and status of d~ta memory. Tne private datn
structures fellow the shared dat~ structure. During
initialization, each Kernel uses the RGLK instruction to
obtnin its own unique processor number. Tnis number is u~ed
to ~ffset it3 private data structure area into a unique
:egicn cf data memory. In addition, each p~ocessor examin~5
a~d updates a snared cell defining tne base ef u~er data
memory. Eacn Kernel sets this cell to tne end of its own
priv~t8 ~rea, if tne previous content of the cpll is net
nlr0~~y niGner tnan tn~t. Iou!. nfter all proces~crs are

2

HE? OPERATING SYSTEM

initialized the cell contains the correct base of user data
memory. regardless of the order in whioh the processors were
initialized.

2.1.1.1 Memory Management Data Structures

Memory 1s managed using a partition table for each
memcry type. The length of eacn table i5 an assembly time
parameter of the Kernel. The partition table fer data
memory is in the shared area, while the tables for
register. constant and program memory are in the private
area.

A partition table consists of a number of partition
descriptors, followed by a terminator w~rd. The format of
tne tabI'e is shown in Figure 2.1.

PARTITION

DE~GRIPTORS

T E R t1 I NAT 0 R
\-lORD

8

USE

COUNT

-1

28 28

LENGTH BASE
ADDRESS

OvOR OS) (WORDS)

TOTAL BASE
OF

LENGTH U!'-JUSED

(Preceding wl.)rd must
be negative)

Figure 2.1 - PARTITION TABLE FORMAT

The base address or lenRth of a partition descriptor
may only be cnanged wn~n it' u,e count is zero.

3

HEP OPERATING SYSTEM

2.1.1.2 Task Management Data Structures

Task~ are managed with a task table, process table
and task statu~ wo~ds. Since tasks are loc~l to PEMs,
th~se structures reside in private areas or in Kernel
registers.

The task table i8 an array of seven task
descriptors, each correspo~ding to a user/supervisor task
pair. The format of a task descriptor is given in
Figure 2.2.

WORD

POINTER TO PROGRAM MEMORY
o PARTITION DESCRIPTOR OR 0

POINTER TO REGISTER MEMORY
PARTITION DESCRIPTOR OR 0

POINTER TO CONSTANT MEMORY
2 PARTITION DESCRIPTOR OR 0

POINTER TO DATA MEMORY
3 PARTITION DESCRIPTOR OR 0

Figure 2.2 - TASK DESCRIPTOR

Each element of the task descriptor contains the
by tea d d res S I) f the par tit ion de 8 c rip t l) r f I) r t h,~ m em 0 r y
u3ed by tne ta~k. The USA count in the partition
description is the number of task descriptors, ~ystem
wide, wnich refer to the pRrtition. For all but d~ta
memcry I toe use count cCinnot exceed 1.

Tne process table is ~n array of seven elements
followed by a termination word. Each element contains the
number of processes allccated by softw~re to the
corresponding task. The termination word contains the
maximum total number cf precesses allowed by software.

Task status is cont~ined in severnl re~isters. Each
rAgister uses one bit per task to recorrl status. Tne
tnree task states are VALID, ACTIVE ann LOADED. A ta,k
beccmes VALID when A program loadin~ i5 begun in toe
t Zl s k t ::1 n d b ~ c () m p. .~ !'"l/) t V A LID 'N hen t h ~ pro ~ r ;) :Tl t (!) ~ min ate f3

normally or abnc~m~lly. A task becnmes ACTIVE wnen it is

4

8

HE? OPERATING SYSTEM

started (after loading) or resumed (after a pause). The
task is net ACTIVE during program loading and after a
pause. A task becomes LOADED upon completion of program
lead, and becomes not LOADED upon normal or abnormal
termination. These states affect the type of directive
whicn the Kernel will accept for tasks.

2.1.1.3 Communications Data Structure

Communications between tne Executive and the Kernel
is accomplished using a pair of message headers located
in the Kernel private data structures. One message header
is used. exclusively by the Inbound Kernel for
communication with the Executive tAsk KI. Tne ether is
u,ed exclusively by the Outbound Kernel for communication
witn the Executive task KO. A message header is a
t 'vi 0 - w () r d b 1 () c kwh () 8 e for mat i s g i v e n i n Fig u r e 3. 3 •

8 8 8 8 8 8 8 WORD

PHOG. SOUR GEl MESSAGE HESSAGE
DE 5T . - - - STATUS DATA

N Ut1 BE R TASK ~XT TYPF.
MESSAGE LENGTH MESSAGE ADDRESS

(Hords) (Byte Ad d re s s in 2
HE? D(=tta M~mo"'v)

Figure 3.3 - MESSAGE HEADER FORMAT

For the Inbound Kernel, message leneth and all the
fields in word 0 are supplied by KI, after which the
K0rnel fills tne address halfword with th~ address of the
Kernel data buffer, located in the pivate data area. If
the message is invalid, the status field is set t~ a
:1 G n - z ere v CI 1 u e and the b u f fer add r e 8 8 i 8 not sup p 1 i P. d·. It
is tnen tne responsibility of the Executive to not
transmit any data. The destination of all outbound
messages is the Kernel (t~sk 8).

For the Outbound Kernel, all fields are supplied by
the Kernel. The data lengtn and message address are
obtained from the supervisor wnich trapped to request toe
messa~e be sent. The m~ssage address is relocated by toe
Kernel to an ~bs01ute dat~ memory ad~ress. Since no
r~ccvcry Is pOSSible, tn~ status fipld !e net cn~ckerl by

/'

5

HEP OPERATING SYSTEM

tn0 OUTBOUND Kernel. The ~ource task field is the task
number cf the user task (1-7) whose supervisor trapped.

2.1.1.1$ Initia'lization

Wnen the Resident Operating System,is first loaded,
the Executive causes an IPL trap whicn begins execution
of the Kernel initialization code. This cede identifies
tne prccessor number and sets up the private data
structures. Partition, task and precess tables are
initialized to the inactive and unassigned states. All
ta~ks are marked not VALID, net ACTIVE and not LOADED.

Initialization communicates with the Executive py
sending the base address of the private data area, WOlcn
is also the Executive communications area, to the first
Unibus-tn-Switch Interface location with a STO
instruction. This address is received by the Executive KI
task and is maintained by that task fer the duration of
system operation. After the Executive handshake,· the
initialization ·code branches to the directive reception
cede of the inbound Kernel.

2.1.2 Inbound Ker!1el

Ine Inbound Kernel proceeses directives received from
tne Executive KI task. These directives originate with either
the Executive Batch Monitor or the HEP Debugger. The Inbound
Kernel !s a single process in task 8 which normally waits in
the Unibus-to-Switch interface for the result of a memory
1" e a din .'3 t r u c t ion • H h -= n a d ire c. t i v e i 3 to b e p 1" Q C ~ ~ sed, the
EXf~cut.i.ve KI tCJsi< provides either a "0" or (1 fl·}" as the
result of the read. This relinks the Inbound Kernel in the
PEM process queue and execution begins (resumes).

Ine message type in the inbound message header is
cnecked fer reasonability and the destination ta,k is checked
to ver:;.fy th3t it is task 8. If these conditions are met .. the
dnta vulu~ returned by toe Executive is used to enter phase 1
Gr pnase 2 directive processing.

If tne dat8 value w~s 0, ph1se processing is entered.
During pnnse 1, tne specific message code is validity
cnecked, the message lenRth is ch~cked and message specific
cneckinR is performed on the ncadpr. If pnase 1 ts succe"ful
tne mess~gp statu~ is zArced. tnA Kernel buffer addrp~s is
73 u P pi.':" 0 d ; j n d t n e l' f? ;J d t c t n ~ Un l b u .~ - t () - ~ 'vI .i. ten ~ n t, 0 r f ~l C f~ 1 ~

6

HEP OPERATING SYSTEM

When the read is again satisfied. the data value is
again checked. If toe value is not zero. phase 2 processing
is entered. Poase 2 processing reoheok~ th~ message type and
status. If satisfaotory. the contents of the Kernel buffer
are used for message speoific processing, and may be altered
to d:splay results. After Phase 2 processing is oomplete. the
read against the Unibus-to-Switch interface is reissued to
await a new directive.

A total of 13 direotives. some with varients. are
aooepted. Tnese are briefly described below.

2.1.2.1 Examine Direotive - Type 21 (16)

The Examine Direotive oauses the Kernel to read the
oontents of a single word of memory and place its value
in toe Kernel buffer. The message data extension in the
header specifies the memory type. as shown in Table 2.~

VALUE

o
1
2
3

MEHORY TYPE

PROGRAM
REGISTER
CONSTANT
DATA

Table 2.4 - MEMORY TYPE CODES IN DIRECTIVES

Toe first word of the Kernel buffer contains the
address to be examined. Upon completion. the next word
will contain tne register oescriptor or 0. and the
following word will contain the VAlue.

2 .1 • 2 • 2 t1 () d i f Y Directive - Type 1 (1 6)

Toe Modify Directive causes the Kern~l to replace
the contents of a single word of memory with a new value.
Toe format of toe directive is the same as toe examine
directive, except that Hll fields are suppli~d by the
Executive.

2. 1 • 2. 3 I~ a nee I D ire c t i v e - T y p (! 2 (1 ())

Toe Cancel Dire~tive epecifies auger tnsk number
(1-1) in toe me38~Re iatn ~xt~n~lon. Toi~ t~~k mu~t h~

VALID. Tne mes,age cau~es tn~ K~rn~l to crpate a procpss

7

HEP OPERATING SYSTEM

in tne task with an all-ones PC and UTM. When the task
next becomes active, the p~ocess will trap to its
supervisor, woich will recognize the unusual PSW and
terminate the task.

2.1.2.4 Suspend Directive - Type 3 (16)

Tne Suspend Directive specifies a user ta~k number
in the message data extension. Toe task must be VALID and
ACTIVE. The message causes the K~rnel to create a process
in tne task with a PC of 0 and an all-ones UTf1. tioen this
process traps to its supervisor, the supervisor will
leave toe' task dormant and send a PAUSE message through
the Kern~l. This will mark the task not ACTIVE.

2.1.2.5 Resume Directive - Type 4 (16)

The Resume Directive specifies a user task number in
the message data extension. If the data length of the
message is non-zero, the message data is placed in the
data memory of the task starting at user location O. The
task is then activated. Resume requires that th~ task be
VALID and not ACTIVE. Trie task is set ACTIVE by Resume.

2.1.2.6 Load Directive - Type 5 (16) and Type 7 (16)

Tne Load Directive specifies a user task number in
the message data extension. Th~ task must be not VALID.
Tne task oescriptor for tne task is ohecked to ensure
tnat memory of all types is assigned. If these conditions
are met, the TSW registers for toe task ar~ initialized
using the partition descriptors. If the Load Directive 1s
typ~ 7 (system load), the task memory is cleared and
in:ti811zed, and the contents of the lo~d datn buffer are
copied into low task data memory. Tn18 data normally
contains the file name of the sy~tem control card
processor used to set up files for the user task.

For all load dirpctives, runtime con~tnnts ~rp
initi~lized in the Bupervi~~r spnce of th~ u~er task, tne
task is marked VALID and not ACTIVE, PSW's having the
tasks' taBk number nre erased from the hardware P3W
l1ueu(!, and tne lCClder process is cre~ted in tOne
appropriate supervisor.

8

HEP OPER~TING SYSTEM

2.1.2.7 Misoellaneous Examine Direotive - Type 22 (16)

The miscellaneous examine directive copies various
information into the Kernel data buffer. The message data
extension 8pecifies what data to copy; as shown on the
next page.

i1 DE
VALUE

o

2

3

4

ACTION

Read PSW queue into buffer.

Read all TSW's into buffer.

Read CFU control into buffer.

Read ECC register and clock into buffer.

Read partition
for all tasks
and memory type,

descriptors and process count
into buffer, in order by task,
5 words per ta~k.

2.1.2.8 Set Partitions'Directive - Type 23 (16)

The Set Partitions Direotive rAsets the p~rtition
descriptors In a partition table to reflect new pRrtition
size!. The message data extension field oontains the
memory type of the table to be modified, a~ desoribed in
T8b18 2.4. The K~rnel buffer is set by the Executive to
contnin an image of the partition table, in wnicn only
tne length fields of tne partition descriptors is
significant. Tne dlre~tive builds an updated table in the
Kernel buffer, fillin~ in the correct bas~ addresses and
us~ cnunts. Tn~ updated tnhle is then oompared to the
prevlQu3 table to make sure that total m~mory is not
exce8ded, and that no de~criptor with a non-zerB use
ccunt has been ohanged. If these conditions are met, the
updated tRble replaces the previous table.

At the cQnclu~ion of tne ~ir~ctive, the thqn current
p8rtition table (previous or update~) is oopied to the
K0rnel buffer for possible eX3minRtion by the Executive.

9

HEP OPERATING SYSTEM

2. t • 2 • 9 Set T a s 1< D.i r e c t .i v e - T y P ~ 2 I~ (1 6)

Tne Set Ta~k Directive selects partitions
descript0rs frem each memory type and places pointers to
them in the task descriptor for the user task whose
number is In the messAge data extension. The task must be
not VALID. The first four words in'the Kernel buffer
specify the partition descriptor index (1 relative) in
progra~, register, constant and data memory partition
tables, respectively. If an index is zero, no memory is
assigned of the corresponding type. If a task descriptor
pointer was previously non-zero, the use count of the
referenced partition descriptor is decremented before th~
poi n t e r . ism 0 v e d • \-/ n e nth ~ poi n t e r i 8 set to a new
partition descriptor, the descriptor's use count is
incremented.

If tne reassignment was successful, the first word
of the Kernel buffer is set to zero, otnerwise it is set
to - I.

2.1.2.10 Create Process Directive - Type 6 (16)

The Create Proces~ Directive unconditionally creRtes
tne process whose PSW is in the first word of the Kernel
buffer.

2.1.2.11 Dump Directive - Type 25 (16)

Tne Dump Directive 1s identical to the Examine
Directive, except tnat tn~ Kcrn~l buffer is filled with
63 regi~ter descriptor/value pair~ starting at the
adrlress contained in the first word of the Kernel buffer.
Tn~ data b~~ins at tho second word of tne buffert,and the
last word of t~e buffer is not used.

2.1.2.12 Set Proc:p.3S Directive - Type 26 (16)

T n 0 :; ,,") t, P r i) 0. f.- ."3 S D 1 : ~ c t .!. v e s p e c. i fie s t, hen e W c, Q n t (~ n t s
·;f tn2 p:()C'e3~ table. Tne new pr()Ce8~ count~ are summed,
n~d if the sum does not exceed the software process count
limit, tne proces~ t~ble is ccpied from the Kernel
buffer. If tne limit !, exceed~d, the fir,t word of the
Kernel buffer is set to -1 and the precess table is not
c n;~ n g ed •

1 0

HEP OPERATING SYSTEM

2.1.3 Outbound Kernel

Outbcund Kernel processes are produced by error and SVC
traps from supervisors. While multiple outbound proc~sses may
exist gimultaneously only one 8uch process per PEM make~
pre g res sat a g i v en tim e, sin c e all Ou t b a un d .K ern e 1 pro c e s g e s
interlock on a single Kernel register.This requirement is
imposed because Outbound Kernel code is not re-entrant.

2.1.3.1 SVi; Processing

Normal entries into the Outbound Kernel are produced
by SVC calls from supervisors. Fou~ such SVC'g are
recognized' a,'3 snown in Table 2.5.

MESSAGE
SVG NAME CODE-HEX ACTION

0 STOP C2 Task set not VALID, net
LOADED, not ACTIVE

PAUSE C6 Task set not ACTIVE

2 CROAK C3 Task set not VALID, not
LOADED, not ACTIVE

3 LOAD COMPLETE C2 Task set LOADED, not
ACTIVE

Table 2.5 - Kernel SVC Codc~

For all SVC entries, the data parameter desoriptor;
contained in the register 0 is relocated to an absolute
memory address and is placed in the seoond word of the
cutbound message header. Tne first word of the outbound
11 e s S :~ g e he a d e r iss e t t () the m e s sag e t y p e i n d i cat e·d i n
T~ble 2.5, and the source task is set to thp. U8er t~sk

number of tn~ reque.stine tr.lsk. The prcc.essor number is
placed in the processor field.

Tnc Executive l~ notified by ,toring tne addres, of
the Kernel private data 8tructures into th~ 8~cond
U rl i b U 3 - t c) - S wit c n 1 n t c t· f nee 1 0 C () t i () n • Tn 1 s p r () ri u c e ~ a n
1 n t e }' r u p t n ~ n d .l ~ d b y t neE x e cut i v f' K () t a ~ k ;) n d r ~ s u 1 t gin
tne Bnten Monit0r ~eading tne meSS~R0 h0nder Rnd dnta.
After tne Exec.utive n:1~ re(lri tne dAt::J, tni~ ~torp. is

1 1

HEP OPERATING SYSTEM

re~ponded to, and tne Outbound Kernel resumes execution,
unlocks the synchronization register and qUits.

As part of all SV~ pr~amble processing, the trapping
process is vectored to a quit instruction and the task is
reactivated. Thus tne supervisor. issuing the SVC
continues with other processing in p~ogre99, but the
precess issuing SVC does not continue after the SVC.

2.1.3.2 Error Processing

Normal system operation does net generate error
traps from tne supervisors. If any occur, or if an
illegal SVC is issued by a supervisor, it is a fatal
system error. The trapping PSW, the Kernel PSW of the
trap handling process, and the instruction causing the
trap are captured and stored in a fixed 3-word buffer in
the Kernel. A type C7 message is generated by the Kernel.
pointing to the 3 word buffer. The trapping supervisor is
left dormant. Occurence of this error will probably
rAsult in corruption of open disk files and shQuld be
followed by an immediate system shutdown and reload.

2.1.4 Create Fault Handler

If the total number of processes in all supervisor or
all user tasks exceeds a hardware limit, a crente fault trap
vccur~. All us~r or supervisor proces~es are placed in a
quaSi-dormant state. The create fault process determines if
the fault was a supervisor or user cverflow. If the fault was
a ~upervi,or overflow, the create fault condition is re~et
nnd operation continues. Tnis should not occur, and is a
pot~ntially fatnl system error. HQwever, since supervisor
processes cannot be abnormally terminated without· causing
3y~tem damage, tnere is no corrective action possible.

If the fault was a user overflew, the create fault
handler examines the PSW queue tc count the number of
processes used by each user task. This count is comp3red to
tne l~mit specif!ed in the precess table. For all tasks whose
Actual prGcess cou~t exceeds the limit, all such prccp.sses
are vectored to n quit. Aft~r these precesses terminate. ~

precess witn.8 cancel PSW 13 created in tne offending t~sk~.
Tne create fault condition is cleared and norm~l processing
resumes.

12

HEP OPERATING SYSTEM

2.2 Loader

Tne program loader's function is to read a disk file
containing the load module for an executable program and place
the ccntents of the load module into program, register, ccn~tant
and data memory. The loader runs as a supervisor iask (9-15). As
w:tn all supervisor code, tne leader's constant and prcgram base
are 0, allowin~ code a~d constants to be shared by all
supervisors. Register and data base and limit restrict the loader
t c t n e m em c r'''y a 11 0 cat e d for the t ask to bel 0 ad e d. The fir s t
10 registers and 64 data memory words are reserved for the loader
nnd IIO supervisor, as is the memcry left above a loaded progrAm.
D u !~ i n g K ern eli nit i ali z a t ion for a loa d, c e r t a i n 1 cad err e g i s t e r s
are loaded with contrel values for the lead. In addition, certain
low data memory locations within the supervisor task space are
preinitiAlized.

2. 2. 1 Initialization

Up.?:-, startup, the leader determines if this is a "system
lead" or a "user load". For.a system load, the loader takes a
filename passed in the base of its d~ta memory as the name of
the f:le to load. It issues a~ open request to the Executive
File Mnnager using the third Unibus-to-Switch location. This
file is opened as logical unit 0, using st~ndard IIO
supervisor protocol. If the' lead is (l "user load" logical
unit 0 is presumed already open.

Witn logical unit 0 open, the loader begins to process
lca~ module records. Tnis precess continues until the end of
fIle, the end of module record ie enc~untered, or the
rel~tlve tnsk number field in tne load module record
descriptor changes. Wnile prccesgin~ lORd module records,
8 ,~ " (I r ;) 1 !~ e c c r d t Y pes may bee nco u n t ere d. Pro c e s sin g 0 f e a c h
type is described below.

2.2.2 H~ader and Checksum Records

H~ader records and checksum records are iRnored.

2.2.3 T3S~ R~ccrd

Tne task record contains the program size in program,
register, constant and d~ta m~~cry. Only the register
reqUirement field i~ used. Tnis field, togetner with tne
pre (; e :'3 S (; C U n t f () r· t h f'! t;"} '3 k sup p 1 i t~ ti b y t" ~ K ern e], rl ~ t t:':! r min e
tne number of u~~r r~8i'ter~ :Aquired. Tne fix0d re~ist~r

1 3

HEP OPERATING SYSTEM

requirement in the task record determines the base of the
register environment pool. This pocl is set up du~ing task
record processing and is intended to allow 40 registers per
precess. Tne top of the environment pool becomes tne user
regi~ter limit, and the TSW is updated to reflect th~t fact.
Remaining registers are formed into a pool of 4 re~ister
block~ for use in concurrent I/O processing. These rpgister
environments are also set up by t~sk processing. The task
record must precede the start record.

2.2.4 Start Record

Tne start record contains a PC value at wnlcn to begin
execution. Start record processing combines this PC into a
PSW with the register index of the first register
envirvnment. The resultant PSW is created, however since the
user tBsk is dormant, execution does not start until the
K~rnel subsequently activates the task.

2.2.5 D8ta Record

D a t ;3 r e cor d s con sis t. I) f a m em I) r y t y p e, \-/0 r d c 0 un t ,
memory address and a block of data words to be loaded. All
words in a bleck go into the same memory. The memory address
in tne datn recor~ is a user relative addres~, and must be
relocated before loading. For program memory and constant
memcry, the leader base is zero, so the total offset of the
ba~e of tne'ta,k must be added to the address. For register
Dnd data memory, the loader ba~e is the b0ttom of the
p ~ Y' tIt 1 0 n , ~ 0 l) n 1 y t n e 1 eng t h () f 't h e ~ u per vis 0 r res e r v e d
3nctio~ 8t the pnrtition bn~e mu~t bA adrled. In nll cn~es,
the 3ddre~s to be loaded is checked against the limit for
tnnt memory. If the limit is excee~cd the loader enters error
tcrminntion prcces,ing.

2.2.6 ~oader Termination

The leader terminates upon
~ncauntering n cnRn~e of task or end
rAa.:;nlne EOF.

encountering an error,
of modul~ record or upon

If toe lander encount0r~ a cnanRc of task, tne load file
is left open nnd positioned to th~ first record of th~ new
tusk. Tne leRder terminates with a return code of 0 in the
d~t3 blcck pa~s~d to tne Kernel via SVC3. Key ~upervisor

l 0 C k "3 :=1 r ere get t () 8 lIe 1,1 n t) r mal 0 p ~ r :l t i () n .. ~ r t 11 ~ r / 0
.<~UpqT'V 1. ~C)r.

14

HEP OPERATING SYSTEH

In all other cases, the file i~ closed, and a non-zero
~eturn cede is supplied. Table 2.6 describes these cedes.

CODE MEANING

X' 10' I/O error, reading past EOF or file not found.

X'20' Unrecognized record type.

X' 30 f End of module record reached.

X'40' ~rogram memory overflow.

x ' 4 1 ' Register memory overflow.

X' 42' Constant memory overflow.

X'43' Data memory overf~ow.

Table 2.6 - LOADER ER~OR CODES

15

HEP OPERATING SYSTEM

2.3 I/O Services

User I/O requests are handled by the corresponding
supervisor process via SVC calls. When a user process executes an
SVC instruction the task is made dormant, and a supervisor
process is 3ctivated. In general, the supervisor will reactivate
the user immediately after validating and cop~ing the user's
p3rn~eter block. This allows all of the processes in that task to
proceed except for the process which actually issued the SVC
instruction. When the supervisor has finished processing the SVC
it will re-create the user process at the instruction location
following the SVC, and it will proceed from that point. The
exceptions to this are SVC 7 (Stop SVC) and g (Pause SVC), which
are not reactivated. In the case of Stop the task will not be
activated until after a KILL instruction has been issued by the
Supervisor, and in the case of Pause, the activate will be issued
by the Kernel when, and if the operator sends a Resume message
from thG system console.

2.3.1 SVC's

The services which the 1/0 Supervisor can perform for
the user are the following:

SVC 0 - OPENLU - Allocate and open a disk file nt a
specified logic81 unit.

SVC 1 - CLOSELU - Close, rename or delete a disk file on
a sp?cified logic~l unit.

SVC 2 - BUFFERIN - Rearl a recor~.

SVC 3 - BUFFEROUT - Write a record.

SVC 4 - BACKSPACE - Backspace one record.

SVC 5 - REWIND - Reposition a disk file to the first
record.

SVC 6 - ENDFILE - Write END OF FILE, close a file.

SVC 7 - STOP - C8ncel the user task ~nd print a message
on th~ system console.

SVC 8 - P"U3E - Suspend the user t3sk, nnd print a
mp.s~()gc on th~ system console.

16

•

HEP OPERATING SYSTE~

SVC 9 - INQUIRE - Inquire regarding the OPEN/CLOSE status
of an LU. If open, return the record length and
options "lord.

*SVC 10 - GETENV - Acquire a supervisor LU buffer. *May be
executed by CONTROL CARD PROCESSOR only.

SVC 11 - LOGON - Logon to FILE MANAGER using the user ID
supplied.

SVC 12 - GETCORE - Returns the address of the first word
above the user's Data Memory.

Refer to Figure A (next page) for Parameter Block
Formats.

17

Ii E POP E R ,'\ T T N G S Y S T E ~~

A - Requested Access Privil~ge
8 - Public Access Privilege
C - Owners Access Privilege
D - History
E - Disposition
F - 1/0 Direction
G - Suffers

OPE~LU SVC O/CLOSELU SVC 1 b:i\fDS L LUNa r-RECCTI.r-~l,vOR-D-3-"')-"""
~ VOLUM~ 1D t FTL~~A~S

~GIF' E DeB

BUFFERTN SVC ?/3U~FERf)IJT SVC 'i
~~~~.- . 

ST~TUS LUND 0 
LENGTH (~.40RD~) 1/\ BUF'F~R ST!\RT 

o 

~ A C K SPA C E S veIl / R S ~v I ~I 0 S v C 5/ E t\J 1) F I L E ~ V c 6 
r-ST!\TUS I ~uNol a 

() 

__ ------ ST~P ~vc /P~JS~~~~'w/C~8~ ______ ~ L- <).T.,\TUS o __ .~ __ 
t=~X T _~: n G T ~ ___ (_~V_O_R_D_S_) _____ 1'_T_F:_~~T====o=== 

o 



H E POP ERA TIN G S Y S T E ~~ 

In the C8se of all SVC's , the user's indexed register 
number one (Rl:I) is assumed to be a pointer to the parameter 
b 1 0 c 1< • I f R 1 doe s not poi n t to a val i d use r D a taM e m 0 r y , 
address the result will be an abnormal termination (ABTERM) 
(see Section 2.4 - ERROR HANDLER for a description of 
ABTER~). Other errors associated with SVC's which will result 
in Abnormal Termination are issuing an illegal SVC number, 
3nd invalid text pointer in a STOP SVC. All other errors will 
be reflected in the status field of the SVC parameter block. 
Normal return status is zero, anything else indicates some 
abnormal condition. 

Traps which result in the creation of a Supervisor 
process can be caused by a user process issuing a supervisor 
call (SVC) or by the detection of an error condition. These 
traps arc received by the Kernel, which examines the PSW to 
determine which type of trap it is. It then creates a process 
in the appropriate supervisor task to process the trap. Error 
tr8ps nre processed by the User Error Handler, and SVC traps 
are proc~ssed by the I/O Supervisor. 

When a supervisor process is created it will have 
control of a set of ten glQbal registers which are shared by 
the Kernel and all sUPervisors in that task. In order to 
avoid conflicts only one supervisor at a time is allowed 
ncccss to these registers. No other supervisor processes will 
be cre8ted until these registers have been released, and once 
they have been released a supervisor may not attempt to seize 
t.hem again. 

There also exists a similar job-wide set of common Data 
~emory which is similarly seized and freed by the supervisors 
in each task. 

When the 1/0 supervisor is awak~ne~ it will already have 
control of the global registers. Its first act is to seize 
th~ global Data Memory for that job. It will not proceed 
until it has SU9C~ssfully acquired this Data ~emory. Having 
acquired an opArating environment it will th·en copy the' SVC 
P,J r;1:TJ 0 t 0 r b 10 c k fr 0"0 use r s p.~ C 0 n n rj ex wn in e it. 1\ f t P. r 
v0rifyi~g that the user has issued a vnlid SVC and the 
p;)r3:net0.r block which is pointed to by th2 us~r's indexed 
r ~ ~ i s t e ron 0 (R 'I : I ) i SCI) r r c c t , the I lOs u per vis 0 r \'/ i 11 
re-nctiv8te the user task, for nll but STOP ~nd PAUSE SVC's. 
Th i S <Jllo\rls the us~r t3~k to procG~d Hi th as s\1()rt an 
interruption as possiblA. For those SVC's which requira I/0 
Buffers the supervisor will th~n acquire one, nnd then will 
:lcquire ;1 set of tn.rnpor.1ry loc;.)l r~i1istp.rs. H:1vin~ acquir~~d a 

19 



HEP OPER~TING SYSTEM 

working environment where necessary the supervisor can now 
release the locks on the global Data M~mory an~ registers and 
proceed with the processing of the SVC. From this point on 
the supervisor is completely re-cntrant and, with the 
exception of multiple concurrent 1/0 to the S8me logical 
unit, can operate completely in parallel with any number of 
I/O supervisor processes, in any number of tasks. The local 
register environment consists of a set of four 0egisters 
obtained from a pool. The Data Memory environment (LU 
environ~ent) is 96 words in length. Figure S" is a diagram of 
an LU environment. 

OPENLU - svc a 

OPEN SVC acquires an LU environment. If no buffer is 
available it will return an error status to the user. An 
LU environment is made available by the issuing of a 
GETENV SVC (SVC 10) by the Control Card Processor. Once 
an LU environment is seized its location is recorded in 
the LUTABLE, a job-wide table of open LUts. Entries in 
this table indicate that the LU in question is either 
1) not open, 2) in use, or 3) available for use. The 
LUTABLE entry is marked in use. OPEN LU builds an open 
message from the information in the SVC parameter block, 
which it sends to thA file m8nager. If the open is 
unsu~cessflJl th~ LU ~nviron~ent is returned, the LUTABLE 
entry marked not open, and an error status is returned to 
th~ user. If the open succeeds, OPENLU will check the I/O 
direction field of the options word. If the direction 
specified is forward, the first record of th~ file will 
be read. If append is specified the last record will be 
re8~ from the file and the position pointer set to the 
end of the last logical record. Even if R file is empty 
(i.~. contains no records as yet) th~r~ will nlw~ys be 
0n~ physical record in it, and the end of file p~inter 
will point to the beginning of that record. 

The contents of the options word will be saved in 
the LU environment to be referred to by successivi 1/0 
requests. The LUTABLE entry will be marked avnilable, and 
the user process will be created at one pnst the PC of 
th8 SVC instruction. If at ~ny time during the processing 
of this SVC an error condition is ~etQctcd, t~e LU 
environment will be returned, th~ LUT~BLE rnark~d 
tlnopcned, ~nd an error status return0d to the user. 
Figure C shows the format of the open message to the file 
mana~er. 

20 



ltlord Q 
1 
2 
3 
4 

. 
Word 6!~ 

f)5 
66 
67 
68 
69 

'tlord 95 

HEP OPERATI~G SYSTE~ 

o 
FILE SYSTEH 

M ESS.I\Gt=' Hr.' A DEB 
RECORD 
HFADER 

DATA. BUFFER 

v----
~ 

62 ':IORDS IN LENGTH 

COpy OF 
SVC PARAMETER BLOCK 

.... TO P l\ R Ct '4 E T E R BLOCK IN USER DATA 'v1E~10RY 

USER Ps'.v 

1/0 SUPERVISOR 

TEMPORARY STORAGE 

~ 
~ 

27 WORDS IN LENGTH 

figure B - HEP 1/0 SUPERVISOR LU ENVIRONMENT 

FILE MANAGER ~SGCODS ; n - LOGON 
1 - OPEN 
2 - CLOSE 
3 - READ 
4 - t,J R IrE 
5 - OBTAIN 

21 



'~ord J 
1 
2 
3 
4 
5 
6 
7 
8 
9 

:-1SG 
CODE STI\TUS 
~ G 

THIS 
~EXT 

LEN • F I L E \J A M E 

~ECSIZE 

HE? OPERATING SYSTEM 

C>< { UID 
F I E D I c I B I A 

I\DR PRFV f\DR 
l\OR UF01 I UF02 , 

} 

( 

l\CPRIV EOF WORD IFIlE lENGT~ I 
1 ') ·F ILEN AME (BYTE SWA.PPED) 

~I) 
Figure C - OPEN/CLOSE FILE SYSTEM MESSAGE BLOCK 

o 

~ord 0 STATUS 1 ~~~~~G~~~~F--~~~~~D~~~--~~--~~~ 

2 ~ _______ '~rf~·IT.~.S~A~D~R~ ____ ~~ ____ ~~~~~~~~~ 
j ~ _______ ~~'lE~:X~T~~~D~R~ ____ ~ ____ ~~ __ ~ ____ ~~~-v 
J.l 

S DATI\ 

M ESS ~'\GE 
HEAD~R 
RECORD 
HEADER 

D.I\ T 1\ 
BUFFER 

MESS(\GE 
HEf\DER 
R~CORO 
HEADER 

DI\TI\ 
nUFFER 

Figure 0 - READ/WRITE/OBTAIN FILE SYSTE~ MESSAGE BLOCK 

n 

~ord 0l~~~~~~~~~~~~~~§U~IgD~(~R~E~T~U~R~N~E:D:)~~~. MESSAGE J- Ht::ADER 
2 __________ USE!L-Ill 1? RYTES RECORD 
3 HEADER 
4 

F i ~ u r:~ F. - LOG 0 H F I L E S Y S T ~ '·1 !·1 c: S S r\ G E 

22 



HEP OPER~TING SYSTE~ 

CLOSELU - SVC 1 

CLOSE SVC acquires an LU environment from the' 
LUTABLE. If the entry in the LUTABLE indicates that the 
file is not open error status will be returned to the 
user. ~fter it determines that the LU is open, CLOSE SVC 
will compare the options word which has been saved from 
the open with the options word sent in'the CLOSE SVC 
parameter block. Changes indicated will be copied into 
the close message. If the file has been opened with write 
access the current record will be written and the EOF 
pointer will be updated. If the rename bit in the ACCPRIV 
field is on, and a file name is provided, this name will 
be copied- (byte swapped for the PDP-11) into the message 
block. Finally a CLOSE message will be sent to the file 
manager .. The LU environment is then returned and the 
LUTABLE entry marked not open. Status returned by the 
file system is returned in the SVC parameter block. The 
user process is re-created and the local registers are 
returned by the supervisor. Figure C shows the format of 
the close message to the file manager. 

BUFFERIN - SVC 2/BUFFERQUT - SVC 3 

BUFFERIN and BUFFEROUT perform the read and write 
operations respectively to disk files. Except for the 
direction of the 1/0 they are essentially identical. 
BUFFERIN/OUT ~cquires an LU environ~ent from the LUTABLE. 
If the LUTABLE indicates the LU is not open an error 
status is returned to the user. EOF condition is chp.cked 
for both operations, and if tru8, EOF st~tus is r~turncd, 
0xcCpt where extend and write ncccss hns be~n gr~nted on 
the open of th~ file. Dato is copied to/from the LU 
Buff~r and user Dnta Memory, one worrl nt a time until the 
logical record length specifi~d has been consumed. When a 
10gic81 record crosses the boundary of a physical record 
a physical 1/0 is performed. In the case of BUFFERIN this 
is just a read. In the case of BUFFEROUT, if the cur~ent 
physical record is not the last r~cord of the file the 
current record is written and the next record read into 
the buffer. If the current record is the last record in 
the file an OBT~IN ~essa~e is sent to the file system 
processor to acquir~ the address of the next record, and 
have it assigned to this file. This arldrQs~ is copied 
into th~ next address fielrl of the current rp.cord header, 
and the record is written. 

23 



HE? O?ER~TING SYSTE~ 

Upon completion of the 1/0 the LUTABLE entry is 
marked available, status is placed in the parameter 
block, the user process is recreated, and the superviso~ 
returns the local registers. Figure D shows the format of 
the Read, Write and Obtain messages to the file manager. 

BACKSP~CE - SVC 4/REWIND - SVC 5 

BACKSPACE and REWIND each acquire an LU Buffer. As 
with BUFFERIN and BUFFEROUT, if the LUTABLE indicates the 
LU is not open error status is returned. 

BACKSPACE/REWIND must check the current access 
privileges. If write access is included,- the current 
record must be written, in case it has been modified. For 
BACKSPACE the current position pointer is decremented by 
the logical record length. If it is decremented beyond 
the beginning of the current logicRl record, as many 
reads in reverse direction as necessary are performed 
un~il the position pointer is in the current buffer. 

For REWIND the operation consists of simply reading 
the first record of .the file and setting the position 
pointer at the beginning. 

Error status could be returned if an 1/0 error were 
to occur of if an attempt is made to BACKSPACE beyond the 
beginning of the file. 

Status is returned in the SVC oarameter block. The 
LU Buffer is returned, the LU~A8LE entry marked 
available, the user process recre~ted nnd the supervisor 
local registers returned. 

ENDFILE - SVC 6 

ENDFILE, in this implementation, has the effect of a 
call to CLOSELU with the default options specifi~d. 

STOP - SVC 7 

STOP does not acquire an LU Buffer, it do~s not 
obtain a local regist~r environ~cnt and the user is not 
i~medi8t~ly r~-nctivatcd. When the 1/0 s1tpervisor i~ 
enterAd for a STOP SVC the user h~~ already b~en 
d0-activate~ as a result of issuing the SVC. The 
supervisor verifi~~ the address of the ~essage text in 
the parameter block. It iSSU3S n KILL follow~d by an 

24 



HEP OPERATING SYSTEM 

ACTivate instruction against the user task to ~ake 
certain that the user task has no outstanding SFU 
requests. It then issues a call to CLOSEALL, which closes 
all open LU's. Finally, the supervisor issues a STOP SVC 
to the Kernel with a pointer to th~ message passed by the 
User. The STOP SVC to the Kernel is not the same as a 
user STOP SVC, a supervisor STOP request is SVC O. 

PJ\USE - SVC 8 

As with STOP, PAUSE does not acquire an LU Buffer, 
nor a local register environment, and the user is not 
re-activated. The user is already dormant, therefore 
PAUSE simply verifies the address of the text passed by 
the user in the para~eter block, and issues a PAUSE SVC 
to the Kernel with a pointer to the same text string. A 
supervisor PAUSE request is SVC 1. 

INQUIRE - SVC 9 

INQUIRE acquires an LU Buffer. If it is found to be 
a new buffer, i.e. the LU in question is not open, the 
supervisor returns a .non-zero status. If the buffer is 
~ot a new buffer then the LU has already been opened, and 
the supervisor returns zero status, and the record length 
and options word in the pnr~meter block. The purpose of 
INQUIRE is to allow a user to ask the supervisor if an LU 
is open before attempting to do 110, open or close it. 
The LU ~ould have been opened by the Control Card 
Processor, or by C3nother tas\< \..rithin it!=; own job (in a 
multi-PE~ environment). 

GSTENV - SVC 10 

A GETENVIRONMENT call is executable only by the 
Control Cnrd Processor. For any other user an illegal SVC 
ABTERM will res~lt. GET ENV does not require a local 
register environment, and does not obtain an LU Buffer. 
The supervisor Simply decrements the user's D~ta Me~ory 
limit by the length of nn LU environment and rewrites its 
TS't! . 

LOGON - SVC 11 

LOGOH acquirp.s an LUBUFFER nnd a sn.t of loc~l 
registers. Even though it is not n~soci3ted with an LU, 
LOG () N r e qui r ~ s 3 0 :] t ;) r·1 e m 0 r y ''''/ 0 r k a r P.:'. T nor rl e r to 
rn a in t ~J i nth 0 r p. - en t ron t n;:) t u r C 0 f t h ~ I//) s u p\~ r v i so r i t 

25 



HEP OPERATING SYSTEM 

must acquire this environment for the LUTABLE. For this 
reason there must be at least one LU environment 
available at the time a LOGON SVC is issued. The Control 
Cnrd Processor issuei a GETENV SVC (SVC 10) before it 
issues a LOGON. If a user finds it necessary to LOGON 
using a user ID other than the one us~d to open the 
jobfile, he must ensure that a buffer is available. 

LOGON copies the twelve character user ID specified 
in the SVC parameter block, and issues a LOGON message to 
the file manager. If the file manager accepts this ID it 
will return the UIC code. This code will be used for all 
successive opens from this task until a new user ID is 
supplied.- Files already opened under another UIC will 
remain under that urc. If the LOGON is rejActed by th~ 
file manager the error status will be copied into the SVC 
parameter block. The LU Buffer and local register 
environ~ent are returned, and the user re-created. 
Figure E shows the format for a LOGON message to the file 
manager. 

GETCORE - SVC 12 

GETCORE does not require a local register 
environment or LU Buffer. It does not return status. If 
the pointer to the SVC parameter block contained in the 
user's indexed register one (R1:I) is not a valid address 
the supervisor will issue ·an ABTERM. Otherwise, the 
nddress of one greater than the last word of user Data 
~~mory will be returned in the SVC parameter block. 

26 



HEP OPERATI~G SY~TEM 

2.4 Error H~~dler 

Hardware-d~tected error conditions result in traps to a 
set of low-core addresses. All such errors in user tasks are 
processed by the User Error Handler, which is n Supervisor 
process running in the corresponding task (User Task Number 
+8). When the hardware detects an error condition the task is 
made dorllant. The first act of the supervisor is to issue a 
KILL instruction followed by an ACTivate on the user task. 
This will insure that all processes in the tas~ are 
t~rminated. Then the supervisor will call an 1/0 Supervisor 
CLOSEALL to insure tha~ all opened files are closed. The 
Supervisor then builds an abnormal termination (ABTER~) 
message which consists of three words containing: 

a) Trap PSW; 

b) User PSW at time of error; 

c) Instruction generating the trap. 

This message is sent to tbe Kernel, ann is normally printed 
on th~ System Console by the Batch Monitor. 

When a Cancel Task message is sent from the Host, the 
Ker~el creates a process in th~ user task with all bits on 
except t~~ PS field. It is th~n treated as any other ABTER~. 

When the Kernel r~ceives a Suspend Task messag0 from the 
Host, it cr~~tcs a process in the user tnsk at loc3tion zero, 
with all UTM bits on. This is a specinl case in which the 
Supervisor simply vectors the PSW which trapped to the quit 
3t instruction zero, and issues a Pause request m~ssnge with 
no text to the Kernel. 

The 
regi'5ters 
th~refore 
rr:s()ur'ces 

User Error Handler shares the global supp.rvisor 
and data memory with the I/O Supervisor. It ~ust 
observe th~ sam~ s8maphori~g conventions on those 

in order to avoid conflicts. 

27 



HEP OP~R~TTNG SYST~~ 

3. SYSTE~ SOFTWARE 

3.1 Control Card Processor Overview 

HEP Control Card Processor eCC?) is a system program which 
processes certain records in the user job file. CCP is 
responsible for allocating and opening all disk files for the 
user Partition as a result of submitting a job. After processing 
the r e cor d sin . the Job F i 1 e, C CPt e rm ina t e s, lea vi n gall f i 1 e s 
open, with th~ user load file assigned to LU zero. 

If CCP encounters an error in the Job File, such as an 
illegal com~and or not being able to open a file with the 
r~quested privileges, all open files will be closed, and the Job 
will be terminated. 

All CCP commands must begin 
oth~rwise stated, must be followed 
Commands recognized by CCP are:' 

in column one 
by at least 

and unless 
one blank. 

JOB - Job Specification R~cord 

ASN - File Allocation and Assignment Record 

D~P - Conditional Dump Record 

R 'J II - Run R e ~ 0 r d - S p e c i fie s L 0 .1 d F i 1 e :) n d Fl n dEn rl 0 f ,J 0 b 
Step 

II - End of Job Record - Termin~tes All Job Steps· 

t * t COlOm.~nt - Any Record Beginning With an 
Treated as a Comment 

1 

, * , is 



HEP OPERATING SYSTEM 

3.1.1 Control Card Processor Command Syntax 

The following commands are accepted by CCP. Even though 
oth~r com~ands may b~ recognized by the READER, by the time 
CCP receives access to the Job File they should be commented 
out. 

3.1.1." Job Record Syntax 

JOB<Jobname Followed by Job Environment Requirements> 

This record is copied into Logfile with no further 
processing required by CCP. The first record in a Jobfile 
must be a Job Record. 

3.1.1.2 Assign Command Syntax 

ASN LU,FILENAME[,Logical Reclen, Accpriv, Owners Accpriv, 
Public Accpriv, 1/0 Direction, File 
History, File Disposition, Buffer Count] 

[1 - Indicates optional parameters, not 
order dependent. 

Example: 4SN 5,CARDFILE,REC:80,ER,F,OLD, 
KEEP:DgLETE 

Accpriv - A single letter for each access privilege, may 
be specified in any order. 

Pr8fix 0 - Indicates Owners PrivileBes 

Prefix P - Indicates Public Privilgcs 

No Prefix - Privileges For This Open 

R - Read Acc~ss 

W - 'tlr i te Access 

x - Extend Access 

E - Exclusive Access 

s - S~mnphorQ~ Access -
(I'llpl0.mcntcd in H3FS 0:11y) 

D - Delet~/R~name Access 

2 



HEP OPERATING SYSTE~ 

If file is being newly created, 0 and P Accprivs become 
the permanent attributes of the file. 

If file alre~dy exists, 0 and P Accprivs are ignored. 

DEFAULT - (No Accpriv Specified) 
For this open - R - read access 
For owner if creating file - WXED 

Write, Extend, Exclusive, Delete/Rename 
For public if creating file - No privileges 

liD Directlon - A Single Letter 

F - Forward - Open at beginning of file, do I/O in 
forw~rd direction 

8 - Backward - Open at end of file, do I/O in forward 
direction (implemented in HSFS only). 

A - ~ppend - Open at end of file, do I/O in forward 
direction (X - Extend Access must be 
allowed for appending). 

DEFAULT is F Forw~rrl I/O. 

File History -

IJ3E - Usc old file if pr~3~nt, cl~e ~r~8te n0W 
file. 

~EW - Create new fil~, delete olrl file if 
present. 

OLD - Use old file, fail if not present. 

CRS~TE - Create n0W file, fail if old file prescnt. 

DEFAULT - (No history specified Rt all) is USE. 

3 



HEP OPERATING SYSTE~ 

File Disposition -

DELETE ~ Delete on any close. 

KEEP - ~eep on any close. 

DELETE:KEEP - Delete on norm~l (user) close -
Retain on abnormal (system) clos~. 

KEEP:DELETE - Keep on normal (user) close -
Delete on abnormal (system) close 

DEFAULT 

Logical R~clen -

REC:n or n 

- (No 0isposition specified) is: 
If old file used, KEEP on any close -
If newly created file, DELETE on any 
close. 

Where n = Desired logical record lenqth in HEP 
words. 

If fil~ is being created, n becomes the default 
RECLEN for the file and if n = 0, or is not 
specified, a word file is assumert. 

If file already exists -
If n = 0 it is treated a~ 8 word file for this open. 
If n is not specified the default RECLEN for the 
file is used. 

4 



HE? OPERATING SYSTE~ 

Buffer Count -

Nu~ber of buffers allocated in HEP Data Memory for 
this open of this file (implemented in HSFS only). 

BUF:m 

Where m - Number of Buffers Desired. 

DEFAULT is 2 Buffers. 

(NOTE: In standard filp. system impl~mentations 
Bufe'er Count defnul ts to one, even if BUF is 
specified in a Control Card.) 

3.1.1.3 Conditional Dump Command Syntax 

D! 1 P [ A L HAY S ] [ U'1 E r-1 0 R Y T Y P :: S ) ] 

- Specifies dump after any termination. 
Default is dump after abnormal 
termination. 

(ME~ORY TYPES) - P - Program 
R - R~gister 
C - Constant 
D - Oat::} 

ExamplG: 

M~~ory types to be dumped, enclosed in 
parenthesis. 
D~fault is (RO) Register and Dnta 
Memory dump. 
Memory type ch8ract~rs m8Y be in any 
or~er, and should not be separated by 
any other characters. 

th) D14P Recorrl - No dump Hi 11 be taken. 

[) t·1 P !\ L ~rJ '\ Y S (P) - 1\ ftc rAn y t ~ r TTl i t1 rt t ion J Pro ~ r n rn 
~1emor y is dum perl . 

Ot1 P (C RD) 

D'1P 

- After abterm, Constant, Regist~r 
and Data ~~mory are dumpad. 

- Aft~r ~btGrm, R~~ist~r Rnrl Datn 
~1 t: Tn 0 r y 3 r .? d IJ 11 P ~ ct • 

5 



H£P OPERATING SYSTEM 

3.1.1.4 Run Command Syntax 

RUH<LOAD FILENtH1E>[OPTIONAL RUN PARAMETERS] 

<LOAD FILENAME> - Name of user task to be run. 

[OPTIONAL RUN PARAMETERS1 - Copied as ASCII text, left 
justified into user Data 
Memory, beginning at word Q 
relative to user Data Memory 
base. 

SX8:nple: 

RU:I t·1YF ILE. TSK 

If optional run parameters are 
included, the first ten words 
of user Data Memory will be 
initi~lized to zero. Then the 
text string will be copied, 
be~inning at byt~ 0, and 
running to the end of the 
input line. 

- Load and run ~Y~~LE.TSK, no 
run parameters. 

RUiJ HEPT!\SK ABC D E F - Copy the string 'A ReD E r' 
into user Data ~cmory 
beRinning nt wor1 zero ~nd 
blank filled to the th~ end of 
the input lin-e. LOC1d Clnd run 
HEPTJ\SK. 

3.1 . 1 .5 End. of Job Record Syntax 

II -or- En~ of File on Jobfil~. 

Caus~s termination of 8 HEP job. Any open files are 
clos~~rl. 

3.1.1.6 Comment Recor~ 

Any 'string bc~innin~ with an ~stcrisk ('*') in colu~n . 

6 



HEP OPERATING SYSTEM 

Tne HEP Centrel Card Processor 
as tv make it very easy fer a 
de,lred. wri~e a new one. Tne 

eCC?) is implemented in such a way 
user to add features to it, or if 

following describes the Runtime 
t. n vi!' I') n men t e x pee ted b y t n e C C P • 

3. 1.2 Ru~time Environment 

CCP runs in tne User Partition just prior to the execution 
of a User Task. In the case cf a multi-task job, CCP is loaded 
in toe first partition large enough to hold it. 

CCP Ru~ Parameters 

In User Data Memory beginning with word 0 is the 
following information: 

User ID Code - 12 Bytes, ASCII 

Job Number - 2 Bytes, Binary 

Jobfile Record Number - 2 Bytes, Binary 

o 

REC #(0 indicates a dump has been taken. 

The following filenamin~ conventicns apply tl) CCP: 

Jnnnn.HEP : Jobfile Name 

Lnnnn.HEP : Logfile Name 

Dnnnn.HEP x Dumpfile Name 

Pnnnn.HE? : Dump Formatter Print Filename 

\/ n ere 'n n n:1' : Job N u m b e r' 

All cf 
fnhricCited using 
run p:.ir::lml=t(~r. 

toe abcve 
tne J()b Num~t:r 

7 

f:!.ler.nrnes 
p::l~'3ed to 

can be 
~CP 0 ~ n 



HE? OPERATING SYSTEM 

Jobfile Rec.crd Number (word 1, 4th quarter). 
is the number of tne last record of the Jobfile 
read by CCP fer the current job. 

IF REC #=0 tnen this is the first step of 
this job. Begin p~ocessing from 
the first record of Jobfile. 

IF REC #)0 then this is not the first step of 
this job. Begin precessing from 
REC # + 1 of Jobfile. 

IF REC #(0 i.e. the high bit of this field is 
set, tnen this is not the first 
step of this job, and furthermere, 
a dump nas been taken of the HEP 
memQry_ 
CCP must Open the Dumpfile at LU1, 
Open the Dump print file at LU2, 
and Open the Dump Formatter Lead 
l~ 0 d u I e (D ~~ F ~1 T • H L L) a t L U 0 • 

Wnen CCP terminates 
binary stop c~de via SVC 
of the form; 

normally, it passed a 
7 to th~ Batch Monitor, 

0r-____ ~7~8_' ____________ ~63 
I Dr, I RF.:r, II I 

~~HERE DC = Dump Cede - Applies only to this Job Step. 

Dump Cede Conditions - Bits, 2, 3 

No Dump 0 0 0 
1 6 

Dump C) r. l\bterm 0 
16 

Dump on Ne rm a 1 Term 0 2 
1 (-

Dump J\l\-J~y~ ") 
.> 

1 () 

8 



HEP OPER~TtNG SYSTE~ 

~emory Type to be Dumped - Bits 4,5,6,7 

Program Memory 1 0 0 0 3 
16 

Register r~~mory 0 1 0 0 4 
16 

Constant M~mory 0 0 1 0 2 
16 

Data Memory 0 0 0 1 1 
16 

Memory Dumped will· be the inclusive Or of these 
bits, e.g.: 

X'1F' - Dump all me~ory on abterm. 

X'35' - Dump Register and Data Memory on 
any termination. 

X' 00' - No dump. 

REC # = Number of jobfile record last proc~ssed. 
If en1 of file on the jobfile has b~en 
encountered the numb~r returned is a zero. 

9 



HEP OPERATING SYSTEM 

In processing LU assignment records the ecp must perform the 
following sequence of Supervisor Calls: 

1) LOGON sve 11 - Log on using the user ID in Data Memory bytes 0 -
11. 

2) 

This must be done once at th~ .b~ginning of 
execution, before any files, including the Jobfile 
are opened. 

INQUIRS sve 9 - Inquire regarding the status of an LU. 
already opened, SVC 9 will return its 
default record length, and options. If 
open an attempt to open it again, whether 
same file or not, will result in an error. 

If LU i.s 
current 

t=ln LIJ is 
for the 

3) SETENV SVC 10 - Get an LU buffer environment. This must be done 
prior to opening a file. SVC 10 is allowed only to 
cePe Once gotten, an LIJ buffer will not be 
returned. If files are opened, and subsequently 
closed before another is opened, an extra SVC 10 is 
not required. The number of SVC 10's issued must be 
greater than or equal to the number of LU's opan at 
any time. SVC 10 will not return a status, if it 
fails, the next open will be unsuccessful. 

4) 8PENLU SVC a - Open a file at the specified logical unit. 

If th~ program to b~ run is a FORTR4N program, or an Assembly 
Lq~guage program which uses the FORTRAN 1/0 Formatter, it is necessary 
th~t the OPEN nnd any Input or Output be don~ via calls to the T/0 
:-or:n~ltter, :1S it m8int8ins internal buff0rs for the opened Logical 
Units. R~fer to HEPFf1T documentation for a complet~ description of lID 
~0rmntter routines. 

10 



HEP OPERATING SYSTE~ 

3.2 H~P Dump Formatter 

T~e HEP Dump Formatter is a system program which runs in a 
user partition immediately following the execution of a job for 
w~ich a memory dump is taken. The purpose of the Dump Formatter 
is to translate the binary dump file into a printable and more 
legible format. The Dump Formatter is loaded by the Control Card 
Processor at the instruction of the Batch Monitor, immediately 
after th~ dump is taken. In the case of a multi-step job, if a 
dump is taken it will be formatted before the next step in the 
job is executed. 

A typical dump will contain the UIC (User ID Code), job 
number, jobfi le record number, job na!Tle, processor and task 
numbers for each task in the user job, user and supervisor TSW's 
fer each task, system table entries, user and supervisor PSW's 
and the contents of the entire partition for each memory type 
specified. 

A us~r mAY request thnt a dump b~ taken ~ither after an 
Abnormal Ter!Tlin1tion (A9TER~)" or aftp.r any termination of his 
jeb. He may also specify which memory types arA to be dumped. 
This is accomplished by the DM? command in the jobfile. Depending 
on the information in the D~? command, the Batch Monitor 
initiates a dump upon receiving a jeb complet~ message from 'the 
K~rnel. This binary dump will be output to a newly created file 
with a n~m~ of 'Dnnnn.HEP', wh~re 'nnnn' is the job number. This 
is a r~cord file with a 10Bical record l~n~th of 120 words. It 
will ccnt~in one header record follow~d by one t~s~ record anrl 
one PSW record fer each task. Then will CO!Tle th~ memory dump 
records for the memory types specified, in the following order: 
Dnt~ MAmcry, then Register Memory, Constant Memory and Program 
Memory for the first task, followAd by the Register, Constant and 
Prograrn ~~emcry for the second tas!<, and so on. Figure A contains 
a dingram of the dump file record formats. 

1 1 



t..ford 

tAo rd 

',1crd 

o 
1 
2 
3 

0 
1 
2 
3 
l~ 

5 
6 
1 
8 
9 

10 
1 1 

a 
1 

. 
() II 

65 

. 
1~3 

J 
1 
2 

127 
128 

HEP OPERATING SYSTE~ 

___ -YIC 

~--------------__ ~~~~~ __________________ ~ HEADER 

P 

USER TS'N 

SUPERVISOR TSW 

TASK'S SYSTEM 
TABLE ENTRIES 

UNUSED 

USER 

PSW'S 

ALL SUPERVISOR 

PS''']'S 

R 

FAIRS 

IJ l'IlJ~) F. D 

Figur0 A - DU~PFILE RECORD FOR~AT~ 
Lcgical R~ccrd Length = 129 Words 

12 

RECORD 

TASK 
RECORD 
( 1 PER 
TASK) 

3lt 10 

PSW 
RECORD 
( 1 PER 
TASK) 

37 
10 

D!\TA 
RF:CORDS 



HEP OPERATING SYSTEM 

Figure A - DUMPFlLE RECORD FORMATS 
Logical R~cord Length = 129 Words 

Th~ follcwing describes the processing necessary for e~ch record 
type. 

Header Record - Contains UlC, job number, job'. file record 
number and job name. 

Task Records - (1 per task) - Contain processor number, task 
number, user TSW, supervisor TSW and system 
table entries. The system table entries give 
the starting address and length of the Data, 
Register, Constant and Program Memory 
partitions, and the maximum number of precesses 
allowed for the task. The user TSW contains the 
base and limit addresses for the user's memory 
p8rtitions. Using this information a table of 
supervisor base, user base, user limit and 
supervisor limit is set up for each memory 
type. This table will be referred to in 
processing th~ Data Records. 

P3W Records - (1 per tas~) - Contain all of the PSW's in the 
PEr~ at th·~ time of the riump. Th,~ first 64 are 
user PSW's; the last 64 are sup~rvisors. The 
Dump ,Formatter sc~ns through this record 
comparing the PT field with the PT specified in 
the Task Record. Those PSW's which belong to 
the task in question are output to the 
printfile. 

D8ta R0ccrds - Using the information in the first two words, 
the absolute address of er.lch word in the record 
is cnlculateo. This address is compared with 
th~ base and limit Table entries for the 
appropriate memory type to determine whether it 
is a sup'?rvisor or user, and wi t~in . the 
p:1rtition. If th'~ end of th~ memory p3rtition 
falls within a record buffer, the buffer is 
fill~d with JS m~ny worrls as nec~ssary beyonrt 
the end of th~ partition. 

In a D~ta R0cord the word immedi~tely 
proceedin~ n mcmcry is its re~ister descriptor. 
The following prcces~ing i~ ncc~ssnry for each 
memory typ~: (~ce Fi~ure B) 

1'3 



HEP OPERATING SYSTEM 

Register 

Dnta 

Constant 

Program 

• 

Empty/full bit and reserved bits are 
checker.i, and tE'/'F' and 'R' are 
printed,. The number representing dnta 
quality is printed, and parity is 
calculated. If the parity bit in the DQ 
is not correct an '*' is printed. 

Empty/full bit is checke1, and 'E'/'F' 
is prin~cd. The data quality number is 
printed and parity is checked. If parity 
is incorrect an ,*, is printed. 

Parity 'is calculated. If the parity bit 
is incorrect an ,*, is printed. 

The Register Descriptor field is ignored 
for Progra~ Memory . 

Finally, the address, memory type, supervisor/user's status, 
register descriptor field and memory contents are printed, four 
words to a line. If the supervisor/us~r's status or memory type 
is different from the previyus word, the current line is 
terminated, and several lines skipped to dilineate the change. If 
mere th~n two lines in a row would be identical except for the 
address, the message ,**** THROUGH ****' is printed, ~nd all but 
thA first and last lines are left unprinted. 

) I PiE I R I , 
L-.--y-:-

lJQ 

P = P:lrity Bit 

E = Empty Bit = 1 - Empty, = 0 - Full 

R = Reserved Bit = 1 - Rcserveo 

DQ = Bits 61=63 Represent D8ta Quality 

Register Descriptor Word Forrnnt 
Figure B 

1 4 



HEP OPERATING SYSTE~ 

3.4.2 HEP 1/0 Formatter 

The HEP 1/0 Formatter is a set of system subroutines 
which is included in the user Load ~odule. It provides an 
interfaoe between the FORTRAN program and the 1/0 Supervisor. 
The lID Formatter is responsible for perfor~ing formatted and ( . 
unformatted I/O, opening and closing logical units, 
backsp3ce, rewind and endfile, and issuing STOP and P~USE 
requests. It is primarily record and logical unit oriented. 
If 3 user wishes to write an Assembly Language program which 
utilizes the 1/0 Formatter, it must be done in the same 
man~er as a FORTRAN program. The following describes the 
interface between the user program (FORTRAN or Assembler) and 
the 1/0 Formatter. 

OPEN and CLOSE are called using the standard HEP FORTRAN 
calling sequence, with para~eters as follows: 

CALL OPEN (LU #, Filena~e, Logical Record Length, 
Options Word) 

CALL CLOSE (LU N, filen3me, Logical Record Length, 
Options Word) 

Parameter blocks for all oth~r 1/0 Formatter routines 
have sp~cial formats (See Figure B). In all cases, as with 
any FORTRAN subroutine, indexed register zero (Rn:T) contains 
a point~r to the user's D~ta Memory Onse, injexed regi~ter 
one (R1:I), a pointer to the parameter block, and th~ low 32 
bits of indBxed register two (R2:I) contain the rAt urn PC. 
The word immediately follo\tJing the parameter block must 
contain 3 -1. This is beeause OPEN and CLOSE ~ay be called 
with a variable number of parameters, and the end of a 
parameter block is designated by a -1. 



HEP OPERATING SYSTEM 

. " . .. 
'i' FOR\1/\T I I U N U;·1B~R 

END=RETUR~I PC I ERR=R~TURN pr; 
n 

F~TOLST 
0 I LU NI.Pv1BFR 

LENGTH -1 (ARRA.Y ELE~~ENTS )1 l' T 10 TTEl'v1 
0 

I "'%STOPI o LIJ NUMBER 
o 
o 

F%8SP~C/F%RWTND/F%WEn~ 
o L U NUr..1RF.:R 

o 
o 

I TE:<T LENGTH (HEP l,.JORDS)I .-:-:-______ ~a ___ _i 

TEXT 

F ~ 8 lJ F T ~I I F 0/, 8 U ~ 0 U . . 

0 T U N 1J~1 R F. R 
E:~.JD=RETURN PC F.RR=RETURn PC 

l' !\RRJ\Y LENGTH (II ~ P "JORD~ ) 

Upon C!\LL 

R1 = l' ?::lrameter Block 

R2 = R~turn PSW 

FiF;ur<: f3 
liE? FnRTR!\tr - tli') Formatter I'1t,erfac~ 

Pnr~m~ter Rlack Formats 
Revision 3/30/>il t I." 

2 



HEP OPERATI~G ~YSTEM 

I/O Formatter Entry Points 
(R~fer to Figure B for parameter block formats.) 

OPEN/CLOSE 

OPEN acquires an LU Buffer, 'and i~sues an 
SVC 0, to open the file specified, at the LU 
specified. If a record length is not specified (i.e. 
the third parameter negative) th~ default record 
length for the file is used. If record length is 
zero the file is treated as a word file. Any other 
reco~d length supplied is considered the record 
length for this open. W~RNING: Attempts at formatted 
I/O on a word file may have unpredictable side 
effects. The I/O Formatter is record oriented. 

CLOSE frees the LU Buffer, and issues an SVC 1 
to close the file specified. If a filename parameter 
is specified it will attempt to rename the file, and 
if record length or options word parameters are 
included, these will also b~ copied into th~ SVC 
parameter block. Ciose may be called with only an LU 
~umber parameter if desired. . 

A user may open and/or allocat~ a file by na~e, 
and close or delete or ren~me A file using th~ OPEN 
and CLOSE subroutines in the I/O Formatter. These 
~ctivities ar~ accomplished by means of the Options 
Word par~~eter. This word is copied directly into 
th~ SVC parameter block by the subroutin~. It is 
divided into sevcr81 one byte fields which have the 
following meanings: 

A - R~quested Access Privilegp.s For This Open 

B - Public Access Privileges 

C - Owners Access Privileges 

D - History 

E - Disposition 

F - IIO Direction 

G - Buffer Count 

3 



HE? OPERATING SYSTE~ 

Access Privileges - Fields A, B, and C 

If the file is being created (op~n) the 
privileges requested in these fields become part of 
the permanent attributes of the file. On a close, if 
the high bit of each field is set,'th~se become the 
n~w attributes of the file. 

* 

Bit Definitions 

••••••• 1 Read Access . 

•••••• 1. Write Access - Update Records . 

••••• 1 •• Extend Access - Add Records . 

•••• 1 ••• Exclusive Access - No Other Concurrent 
Opens 'Allowed. 

* ... 1 •••• Semaphored Access - May Consume and 
Fill Records . 

. • 1. • • . • Rename/Delete I\CCp.ss • 

• 1 •••••• Undefined. 

1 ••••••• Change Privileges. 

Semaphored access is unimplement~d 
standard file syste~. 

in 

For field A, current access privil~ges, the 
def~ult privile~c is r~~~ access only. 

ror fi~lci 13, public aCCI~SS, the defnult is 
~o public 3ccess. 

For field C, ow~er'5 3CC~SS, the rlcfnult is 
r0nd, write, ~xt~nd, nxclusiv" ~nd renn~e 
(00101111 ) ~cccss. 

4 



HEP OPERATING SYSTE~ 

File History - Field D 

Determine whether to use an old file or cre~te 
a new file. 

Values: 

O-Use old file if present, else create new 
file - this is the default. 

1-Create new file, delete old file if present. 

2-Use old file, fail if not present. 

3-Cr~ate new file, fail if old file is present. 

File Disposition - Field E 

Specifies the disposition of the file upon 
close. Entries in"this field on open are kept until 
the close. If no entries are specifi~d on close 
those specified with the open will be usedo 

O-Keep old file, delete new file - default. 

1-Delete file on closA. 

2-R~tnin file on close. 

*3-Ret3in file on system close (i.e. ABTERM), 
delete on us~r closp. (normal termination). 

*4-Retain on user close, delete on system close. 

**~-R~tnin and ren8~e file. 

* 
** 

These h~ve meaning only on open. 
V~lid for close only. 

In t~e ~nse of a file open~d s~veral ti~es th~ 
18st disposition spccifi~d (open or clos~) in 
chrcno10~i~nl orier rl~termines th~ file ciisposition 
which will be us~1. 

5 



"HEP OPERATING SYSTE~ 

IIO Direction - Field F 

Controls th~ initial positioning of the file, 
anrt the direction for sequential acc~ss. This field 
is ignored by close. 

O-Forward - Op~n file positioned at the 
beginning of the first record, do 1/0 in 
forward direction - default. 

1-Backward - Open file positioned at the 
beginning of the last logical record, do 1/0 
in reverse direction - this is unimplemented 
in the standard file system. 

2-~ppend - Open file positionert at the en1 of 
the last logical record, do IIO in forward 
direction - (appending to a" file requires 
extend privilege). 

Buffer Count - Field G 

Number of physical records to be held in 1/0 
Cache at any time. this feature is unimplemented in 
the standard file system. All entries in this field 
will be ignored by the I/O supervisor. 

R~READ/F%WRTTE 

READ and WRITE seize the LU Buffer for the LU 
specified, and prepare it for 110, marking it busy, 
and setting up the ERR= and END= return address~s, 
and the format painter, if they arc specified. " 

F%10LST 

IOLISTITE~ perfor~s whntever proces~i~g is 
necessary for thA IIO Item (~c~lar or Arrny) 
spe~ificd. Wh0n t~~ buffer is full (in the case of 
WRITE) or empty (in th~ cnsa of RE~D) it issues the 
appropriat0 SVC. 

5 



HEP OPERATING ~YSTE~ 

F%ST0PI 

STOPIO finishes processin~ of the format 
statement if necessary, ~nd marks the LU Buffer 
available for another I/O. 

F%8U~IN/F%BUFOU 

BUFFER IN and BUFFEROUT combine the actions of 
READ/WRITE, IOLIST and STOPIO for unformatted lID to 
(from) a single IO item (Scalar or Array). They 
acquire an LU Buffer, marking it busy, issue the 
SVC's required for the IIO requested, and upon 
completion return the LU 3uffer and mark it 
available. 

Fl)STOP IF%PAUSE 

STOP and PAUSE issue the appropriate SVC (7 for 
Stop, 8 for Pause) with a po~~ter to the text 
supplied in the parameter block. 

F%BSPAC/F%RWIND/F%WEOF 

BACKSPACE, REWIND ~nd ENDFILE eRch acquire the 
LU 9uffer specified, and i5su~ the appropriate SVC 
(4, 5, or 5 respectively). 

A t y pic ell cal I seq II c n 0 s for c1 for m 8 t ted R ~ (1 d 0 r \01 r i t e 
would consist of 1) a enil to F%READ (/F%WRITE), followed by 
2) one or more c8115 to F%IOLST, one call for a~ch T/O list 
it~~'n, ;]nrj tcrrninut0d with 3) a call to F1,~TOPI (sc·~ 
E x (3 m pIG 1). A. nun for m .:l t ted I lOop e r d t ion co u 1 d be 
accomplished in the same manner, omitting the format pointer 
in the para~eter block for the F%READ/F%WRITE call. A more 
efficient method however is to issue a single call to F~B~FIN 
or F%~UFnu (se~ Example 2). Th~se result in a single 
C~ll/R~turn sequence, instead of a ~inimum of three which 
would be r~quired if 1/0 is done as with for~atted I/O. 

7 



H~P OPERATI~G SYSTEM 

Exnmpl~ 1: The FORTRAN Stntements 

DIHENSION A(2), B( 10) 

READ (6, 1000, END=2000, ERR=3(00) A,8,C 

woulrl generate the followin~ s~ries of subrou~ine cRlls: 

1) A call to F%READ with a parameter block of 

t Ll\8EL 1000 
l' L.l\8EL 2000 l' LA9SL 30()r) 

o o 

2) A call to F%IOLST for the Array A. 

tl\ 
o o 

A sAcond call to F%IOLST for the Array B. 

0 

I 
6 

:2 ~R 
0 0 

!\ final call to F%IOLST for th~ Sc~lar C • 

o 
o 'f\C 
o 

3) A c~ll to F%STOPI to finish the READ and mark the LU 
;l v ;) i 1 () b 1 e • 

o 
o o 

() 

;:xnrnplc?: Th~ F'lRTRI\N St()t~ments 

D I '·1 E iJ S ION A ( ~ ) 

f3UFPEHIN (I), Ei-lD=2()()'), ERR='3()().l) 1\ 

'.oJ i) U 1. d g e n 8 r ;) ten <:) lJ b r ,) uti nee :111 1>.) F 1, 8 U F' T 'I wit '1 ~ 
f):1 : : 1 !Tl :"'! t 0 r b 1 0 c l< ,) f : 

('\ 

I 
I" 
.) 

L i\ qt.:L 2()() 'J Ll\f1f.:t ?I)')') 

!\ t; 


