REAL TIME CLOCK/ INTERRUPT CONTROLLER

REFERENCE MANUAL

Copyright 1979 by General Computer Technology, Inc.

[^0]CHAPTER 1 INTRODUCTION 3
1.1 FEATURES 3
1.2 SPECIFICATIONS 4
CHAPTER 2 CIRCUIT DESCRIPTION 5
2.1 REAL TIME CLOCK 5
2.2 INTERVAL TIMER/FREQUENCY COUNTER 5
2.3 INTERRUPT CONTROLLER 6
2.4 UTILITY FUNCTIONS 6
CHAPTER 3 ASSEMBLY 7
3.1 BOARD CONSTRUCTION (UNASSEMBLED VERSION) 7
3.2 SELECTING OPTIONS 10
3.2.1 ADDRESSING JUMPERS 10
3.2.2 FREQUENCY JUMPERS 11
3.2.3 INTERRUPT TRIGGER JUMPERS 12
3.2.4 INTERRUPT MODE SOCKET 13
3.2.5 OUTPUT PULLUPS 17
3.2.6 TIME-SET SWITCH 18
3.2.7 EXTERNAL BATTERY OR CHARGER 18
3.2.8 EXTERNAL TIME BASE 18
3.2.9 FREQUENCY PRESCALER 18
3.3 CABLE INSTALLATION 19
CHAPTER 4 DIAGNOSTICS 21
4.1 TEST PROCEDURES 21
4.2 INITIAL TESTING 22
4.3 COUNT CHAINS 23
4.4 ADDRESSING AND I/O OPERATIONS 24
4.5 INTERRUPTS 24
4.6 SELECTORS AND DECODERS 25
4.7 CALIBRATION 27
CHAPTER 5 SOFTWARE INTERFACE 28
5.1 REAL TIME CLOCK 28
5.2 INTERVAL TINER 29
5.3 SIGNAL ROUTING FOR THE INTERVAL TIMER 31
5.4 INTERRUPT CONTROLLER 34
CHAPTER 6 PROGRAMMING 36
6.1 SETTING THE CLOCK 36
6.2 READING THE CLOCK 37
6.3 PERPETUAL TIMING 37
6.4 MEASURING INTERVALS 38
6.5 CREATING TIME DELAYS 38
6.6 FREQUENCY COUNTER 39
6.7 PLAYING MUSIC 39
6.8 INTERRUPT PROGRAMMING 41

REAL TIME CLOCK/INTERFUPT CONTROLLER

APPENDIX CONTENTS

A. PROGRAMMER GUIDE
B. 8253 DATA SHEETS
C. SET CLOCK TIME (ASSM)
D. READ CLOCK TIME (BASIC)
E. MEASURE INTERVALS (BASIC)
F. FREQUENCY COUNTER (BASIC)
G. MUSIC ROUTINES (ASSM)
H. SAMPLE INTERRUPT HANDLER
I. DIAGNOSTICS
J. CONNECTOR PINOUT
K. PARTS LIST
L. PARTS PLACEMENT DIAGRAM
M. SCHEMATIC

LIST OF FIGURES

3.1 .1	TRIMMING CRYSTAL SOCKET
3.1 .2	BATTERY HOLDER WIRING
3.2 .1	ADDRESSING JUMPERS
3.2.2	FREQUENCY JUMPERS
3.2 .3	INTERRUPT TRIGGER JUMPERS
3.2.4.1	Z-80 MODE 2
3.2.4.2	EXAMPLE OF Z-80 MODE 2 INTERRUPT
3.2.4.3	MOVING Z-80 MODE 2 VECTOR ADDRESS
3.2.4.4	CUTTING TRACES
3.2.4.5	Z-80 MODE 0 JUMPER
3.2.4.6	RESTORING CUT TRACES FOR Z-80 MODES 1 AND 2
3.2 .9	FREQUENCY COUNTEF INPUT STAGE
3.3	ROUTING OF THE INTERRUPT CABLE
4.1	BUS TERMINATOR SCHEMATIC
5.1.1	BITS OF CALENDAR CLOCK
5.1 .2	TIME SETTING FUNCTIONS
5.1 .3	TIME ENABLED BIT
5.2.1	CLOCK, GATE AND OUTPUT PER COUNTER
5.2 .2	CONTROL WORD FORMAT
5.2 .3	SELECT COUNTER FORMAT
5.2.4	READ/LOAD BITS
5.2 .5	BCD BIT
5.2.6	MODE FORMAT
5.3 .1	GATE AND CLOCK ROUTING
5.3.2	GATE/CLOCK SELECTS
5.3.3	EXTERNAL CONNECTIONS
5.3.4	PRESCALER FUNCTION
5.3.5	PROGRAMMABLE GATES
5.3 .6	FREQ1 ROUTING
5.3 .7	FREQ1 SELECTS
5.3.8	STATUS BYTE SIGNALS
5.4.1	INTERRUPT LEVEL
5.4 .2	INTERRUPT MASK
5.4 .3	INTERRUPT INITIALIZATION
6.7 .1	INTERFACE CIRCUIT TO PLAY MUSIC
6.7 .2	COMMAND FORMAT FOR MUSIC

CHAPTER 1

INTRODUCTION

PLEASE READ THIS					
CONSTRUCTION	DOCUMENTATION	COMPLETELY AT	LEAST ONCE	BEFORE	BEGINNING
OR			ASSEMBLY!		

The Interrupt Controller/feal Time Clock Board is a multi-function board designed to interface the CPU to time-dependent events. It provides a battery-operated calendar-type clock, an eight level fully maskable priority interrupt entroller, and an interval timer/counter/generator facility for timing events, measuring frequency and generating time delays.

1.1 FEATURES

Interface: Uses 16 contiguous output and input ports; full address decoding on board. All address and data lines present 1 TTL Load. Uses 16 wire ribbon cable to CPU interrupt socket.

Clock: 1 MHz crystal timebase, stable to plus or minus . 002% from -30 degrees centigrade to +70 degrees centigrade. Calibration tolerance of plus or minus $.002 \%$ at 25 degrees centigrade. Settable to plus or minus $.0001 \%$ of nominal frequency. Rechargeable nickel-cadmium batteries with built in charger provide over 14 days operation per charge.

Decade frequencies available from 1 MHz to 1 second. Counter holds $2^{\wedge} 24$ seconds, readable through four input ports, six bits per port. A switch to allow setting the clock may be added.

Interrupt Controller: 8214-based 8 prioritized levels. Supports all 3 Z- 80 modes and 8080 interrupt mode. Each level selectable for rising edge, falling edge, active high, or active low signals. Schmidt-triggered inputs. Each level individually maskable under software control.

Interval Timer: 8253-based timer supporting programmable one-shot rate generator, triggered strobe and counter modes. Three independent $16-\mathrm{bit}$ counters (binary or BCD) with six programmable counter modes and fully software selectable inputs from eight sources for all timer clocks and gates. Two decade prescaler with $50 \mathrm{M} / \mathrm{Hz}$ input for frequency counter applications.

1.2 SPECIFICATIONS

Uses one $I / 0$ slot. Interfaces to Digital Group Z-80 or 8080 CPU boards.
Timebase: $\quad 1.000000 \mathrm{MHz}$ crystal oscillator.
Timebase Stability: (long term) 30 seconds per year at 25 degrees centigrade.

Timebase Stability: (short term) + or -. 002% from -30 degrees centigrade to +70 degrees centigrade.

Interrupt Inputs:
Frequency Counter Input:
External Counter and Gate Inputs:
Power Requirements:
TTL compatible, 1 load.
1 TTL load, 50 MHz maximun frequency.
TTL, 2 MHz maximum.
+5 volts at 1.2 amps. +12 volts at 40 milliamps.

Optional Power Requirements:

```
+4.8 volts at 0.7 to 1.3
milliamps (Ni-Cad supply included).
+9 to +12 volts at 40 milliamps.
(for external charger)
+6.3 to +14 volts at }1.5\mathrm{ milliamps.
(for alternate battery supply)
```


CHAPTER 2

CIFCUIT DESCRIPTION

The Interrupt Controller/Real Time Clock board can be broken down into three major functions. The functions are the real time clock, the interval timer with frequency counter, and the interrupt controller. The board also contains address decoders and an internal data bus to provide the system interface.

2.1 REAL TIME CLOCK

The real time clock is basically a countdown chain which divides the 1 Megahertz crystal controlled oscillator to provide timing signals down to 1 second and also a counter with capacity to store over a half year's worth of seconds. All the circuitry in this section is CMOS to allow battery operation when the computer is off or a power outage occurs.

The oscillator is of the parallel resonant type and its frequency may be pulled about + or -30 Hz . The crystal is calibrated to within 20 Hz and has an extremely low frequency shift for temperature fluctuations about room temperature.

The oscillator output is buffered and fed through three dual-decade counters (IC's 30, 31, and 35) which provide all the decade outputs down to 1 second. Each decade output is buffered by a 4009 to reduce loading and to isolate the CIOS supply voltage from the systen supply. The decade outputs are available through jumpers and a data selector (IC 15) to provide periodic interrupts or timing signals for use in other sections of the board.

The one-second signal goes to two 12-bit binary counters (IC's 9 and 32). These counters can be read by putting their output on the read bus through one of the four hex tri-state buffers (IC's 17 through 20). The counters are set by clocking each counter at a high rate (as selected by the decode selector, IC 15). A quad bi-lateral gate (IC 33) feeds the slow or fast clocking signal as controlled by the software.

Individual reset signals are also availale to help set the counter. All of these signals pass through IC 8 and thus can be inhibited by a CMOS latch (IC 7). Once the latch is in the inhibit position, it can only be activated by the time-settng switch, thus preventing the time-keeping functions from being affected by power transients, run-away software, or programming errors.

2.2 INTERVAL TIMER/FREQUENCY COUNTER

A programmable interval timer chip (8253, IC 54) forms the heart of the board's timing, counting and frequency generation applications. The chip is organized as three totally independent 16 bit counters. Each counter may work in one of six possible modes of operation. Each counter may be written or read to the internal data bus, which interfaces to the I/O bus of the computer.

The counters each have a clock input, a gate input and an output. The input and gate signals are selected by the six selectors (IC 37 through 42), which
can select one of eight possible signals. One of the eight signals is fed from off the board so that each counter is accessable by external hardware. Some of the other signals are decade-divided signals from the real time clock, programmable signals and output signals from other timers. The latter feature allows timers to be cascaded, or allows one timer to trigger another.

One of the counters also has a prescaler (IC's 51 and 25) for use as a frequency counter. A selector (IC 49) controls the amount of prescaling necessary and the prescaling dividers are automatically gated and reset between signal samples.

2.3 INTERRUPT CONTROLLER

The interrupt controller is based on the 8214 (IC 5) priority interrupt controller chip. Whenever the chip detects an interrupt on a level higher than the internally stored level, it causes an interrupt. To allow flexibility, each level is maskable and edge or level triggerable due to the input flip flops. Also, the interrupt inputs can be inverted and slow wave forms are de-glitched by the schmidt triggers.

When an interrupt occurs, the 8214 generates an interrupt signal for one clock pulse. This signal is latched up by IC 24 , which sends the interrupt to the CPU and activates the tri-state interrupt-level outputs so that they may be sent to the CPU. The CPU acknowledges the interrupt, but is not finished with the interrupt-level data until the acknowledge signal is removed. This removal resets the interrupt request. A separate software-controlled line can also be used to reset a pending interrupt that may occur during system power-on.

The interrupt level socket transfers the level to the CPU in the proper format by proper jumpering. Since the 8080 CPU board has eight interrupt inputs, a 7442 may be inserted in this socket to decode the interrupting level into the proper interrupt line.

2.4 UTILITY FUNCTIONS

The board performs its own port decoding for a block of 16 ports. Read and write strobes are generated by IC's 47 and 14, respectively. Data to the board is buffered by IC 46 which drives all of the internal configuration latches. This data must also be buffered by IC 45 , since the timer chip's data lines are bi-directional and cannot drive the load on the previously described data lines. The low drive CMOS counter lines also appear on this bus. These outputs are buffered and sent to the CPU through IC 44.

CHAPTER 3

ASSEMBLY

3.1 BOARD CONSTRUCTION (UNASSEMBLED VERSION)

Estimated Construction Time: 3-8 hours
To build the Interrupt/Real Time Clock Board, you will need the following tools and equipment:

Fine tipped low wattage soldering iron (approximately 15 watts)
Solder - 60/40 resin wire solder, 24 gauge (approximately)
DO NOT USE ACID CORE SOLDER!
Diagonal cutters - small micro shear type preferred
Long-nosed pliers
Flux renover or alcohol
Small brush
Volt-ohm meter

Pefer to the parts placement diagram (Appendix L) during construction.

Before beginning to mount and solder components, inspect the board. The side from which the components are mounted has the manufacturer's label along the left edge of the board. Compare the areas where IC sockets will be inserted with the layout to see that there are no shorts occurring between either the traces leaving the IC or the IC pads or holes in which the IC's are mounted. While plating errors like this are a rare ccurrence, once the IC sockets are inserted it is very difficult to find such a problem.

The sockets should be mounted as close to the board as possible. Do not bend the leads of the IC sockets excessively before soldering, as they may break off at the base of the socket.

1. Make sure you have all of the components shown on the parts list.
2. Insert and solder the two 24-pin IC sockets for IC5 and IC54, making sure the notched end of the socket is near the top of the board, away from the edge connector.
3. Insert and solder the four 20-pin IC sockets. CAUTION: THE SOCKET TRACES ARE VERY CLOSE AND A CAREFUL JOB MAY SAVE YOU HOURS OF TROUBLESHOOTING TIME!
4. Insert and solder the thirty-three 16-pin IC sockets.
5. Insert and solder the twenty-nine 14 -pin IC sockets.
6. Insert and solder the 22 K 8-pin resistor pack (Z3). Note the dot near pin 1 on one end. This end must be oriented toward the top of the board.
7. Insert and solder the ten .01 mfd disc bypass capacitors as indicated on the RTC/IC
parts placement diagram (C1 through C6 and C10 through C13). Clip and save the excess leads.
8. Insert and solder the two 1 mfd tantalum capacitors (C7 and C14). Note that the + end must be inserted nearest the + mark on the board. The + end may be identified as the longer lead, the lead nearest a paint mark on the capacitor body, or the lead nearest a + mark on the capacitor body. Clip the excess leads.
9. Insert and solder the 220 pf mica capacitor (C9).
10. Insert and solder the $180 \mathrm{ohm}, 1 / 2$ watt resistor (R12). Mount the body of the resistor $1 / 4$ inch above the surface of the board to allow efficient heat dissapation.
11. Insert and solder the 10 megohm resistor (R7).
12. Insert and solder the 100K resistor (R5).
13. Insert and solder the 22 K resistor (R13).
14. Insert and solder the two 1.2 K resistors (R 1 and R6).
15. Insert and solder the four 2.2K resistors (R 2 through R4 and R6). Clip and save the excess leads.
16. Insert and solder the IN5231 5.1 volt zener(CR3). Orient the cathode (the end marked with a black band) to the left.
17. Insert and solder seven IN4148 diodes (CR1, CR2, CR4, CR6 through CR8 and CR10). Orient the cathodes to the left. Be careful not to short the leads to the traces on the boards.
18. Insert and solder the IN4148 diode (CR9) with the cathode oriented toward the bottom of the board.
19. Carefully inspect the $5-30 \mathrm{pf}$ trimmer capacitor (C8). The lead which connects to the bottom of the capacitor is oriented to the right (to ground). The round body is slightly flat at one side and is oriented to the top of the board. Insert and solder the trimmer, being careful not to allow excess solder to flow underneath it.
20. (If you do not have a crystal socket skip this section.) Trim the crystal socket's pins as shown in figure 3.1 .1 to fit into the crystal holes.

PIN VIEW:

FIGURE 3.1.1

RESULT:

TRIMMING CRYSTAL SOCKET

Press the rear tab into the board hole provided for it. Solder the pins and the rear tab.
21. At this point, measure the resistance between pin 1 ($+5 \mathrm{~V} D C$) and pin 2 (ground) on the 22-pin edge connector with an ohmmeter. If there is a low resistance, this indicates a bad capacitor or a solder bridge somewhere on the board.
22. Insert the board into the system at an unused I/O socket and turn the computer on. The presence of the board should not affect the operation of the system. If any difference is detected, it is probably due to a short somewhere in the I / O traces. Measure the voltage at the left lead of CR3. It should be approximately 5 volts.
23. Slide the 1 megahertz crystal into its socket or insert and solder the crystal into the board.
24. Insert all of the IC's into the proper sockets except IC21 shown on the parts placement diagram. Be sure to orient the notch on pin 1 away from the edge connectors. Again measure the resistance between connector pins 1 and 2. Reverse the meter leads and compare readings with the previous measurement. The resistance should be somewhat lower in one direction than the other, but not zero ohms. The same resistance in each direction indicates a reversed IC.

At this point, the following parts have not been installed: the 7442 decoder (IC 21), a IN4148 diode (CR5), four 2.2K resistors (R8 through R11), the IC socket headers, the ribbon cable assembly and the ni-cad batteries with associated hardware. IC21 is used with 8080-based systems and its use is explained later under Selecting Options. CR5 is omitted at this point to run the CMOS oscillator at a lower voltage, thus conserving battery life. It should be installed (cathode or band to left) if a higher degree of accuracy is needed for the clock function, since there is a slight shift in frequency without the diode (about 0.5 Hz) when operating under the computer power vs. battery.
25. Insert and solder the IN4148 diode (CR5) if it is to be used as described in the discussion above. (This step may be omitted until later).
26. A battery holder for the four AA ni-cad cells has been provided. The solder tabs at the end of each battery position should be wired as in figure 3.1.2. The molex connector should be wired in to the two end tabs. Install the batteries as shown. The molex connector will later be plugged into the wire wrap connector for the 36 pin socket at pins 29 and 30. It is important that the polarity is correct with the positive (+) side of the battery going to pin 29. Do not connect the battery now. The batteries are supplied in an uncharged state and will be totally discharged if used without charging. When the system has been debugged and is operating, the batteries may be connected and charged. The system should be powered up for about 20 hours to fully charge the batteries.

FIGURE 3.1.2 WIRING BATTERY HOLDER
27. Adjust the trimmer capacitor (C8) with a small screwdriver so that the slot is vertical and the soldered half of the capacitor is on the left and the insulator material is on the right. Turn the slot counter-clockwise approximately $1 / 16$ of a turn.

This completes the board construction. Before plugging the board into the system, the address jumpers MUST be set up correctly. This is covered in the next section.

3.2 SELECTING OPTIONS

The Interrupt/Real Time Clock board has a number of options which may be set up according to the intended applications. This section describes each of those options. The initial setup to run the diagnostics program is also described under each option.

Since the board was designed to meet the needs of the average user, some features or options may not be available. The board is highly flexible, and can usually be modified by jumpers and cut traces to fit an individual's applications.

3.2.1 ADDRESSING JUMPERS

The board uses a contiguous 16 -port block of addresses. The high four bits of the address must be set up by the address jumpers. (The lower four bits are decoded by the board logic). Select a block of addresses that are not used by any other system. The software supplied with the board uses the "E" block. In other words, it uses ports EO through EF, as noted in hex, or 11100000 through 11101 111, as noted in binary. The most significant bit (known as MSB, the leftmost bit) is shown in the diagram as A7. The other bits, A6, A5, and A4, are the following bits to the right. Each bit (A7 through A4) must be connected to one of its two associated levels (a high level or a low level). When the bit is it should be jumpered to its high level (connecting a7 to 7H, A6 to 6 H , etc.). Referrring to figure 3.2.1, set up the board address to the desired block. Use either component leads inserted directly into the socket or wire a header.

FIGURE 3.2.1 ADDRESSING JUMPERS

3.2.2 FREQUENCY JUMPERS

Two jumpers are used to select timing rates. The jumper called FINT brings the selected frequency to pin 11 on the 36 pin edge connector. The jumper called FREQ2 puts the selected signal names frequency on the internal bus so that it can be routed to the various inputs to the interval timer.

The FINT jumper is normally used to select a regular interrupt rate for timing, monitoring and other applications requiring a periodic interrupt. The name FINT stands for Frequency of INTerrupt, although this signal does not necessarily have to be used by an interrupt level.

When used to interrupt, the signal (at pin 11) should be wired to one of the interrupt inputs (pins 1 through 8) depending on the desired priority of interrupt. The signal output is an open collector TTL type.

FINT should be jumpered to one of the five frequencies located above as shown in figure 3.2.2. The two faster rates (10 micro seconds and 1 micro second) are normally too fast to allow the software overhead for interrupt processing. However, if one of these frequencies is needed off the board for other purposes, the jumper may be connected to one of them.

The second jumper, FREQ2 stands for FREQency 2. It selects a commonly-used frequency to be used by one of the on-board timers. (FREQency 1 also exists, but is software selectable).

FREQ2 should be jumpered to one of the seven frequencies located along the right side of the socket as in figure 3.2.2.

FIGURE 3.2.2 FREQUENCY JUMPERS

3.2.3 INTERRUPT TRIGGER JUMPERS

The level circuit on each of the eight interrupt levels may be set up to interrupt or trigger, on four types of conditions on its interrupt input line. The user may wish to interrupt when the line is low, high, moving from low to high, or moving from high to low.

When the interrupt level is set up to interrupt on a low or high line (static interrupt), the interrupt will be present as long as the interrupt line remains at that signal. This condition is useful when used with a device that will not toggle the interrupt line for each acknowledgement. If the device pulls the line to interrupt for a piece of information and then holds the line pulled for a second piece of information, the static interrupt will cause the controller to interrupt again to handle the second piece.

When the interrupt level is set up to interrupt on a rising or falling line (edge interrupt), the interrupt will only occur at the line transition and will be reset until the next similar transition. This condition is useful when there is no "hand-shaking" or computer reset of the interrupting signal. A slow square wave used for a time interrupt is a good example. The interrupt occurs for the high-to-low transition. If a static interrupt was used with this type of signal, the CPU would be "stuck" on the interrupt level for half the time!

Figure 3.2 .3 shows an input line and the four interrupt conditions. The six pins should be connected to choose the desired condition. The lower half of the figure shows how each interrupt trigger socket allows two levels to be jumpered, using the top six pins or the bottom six pins. The two middle pins are unused. Level 0 is the highest priority level.

FIGURE 3.2.3 INTERRUPT TRIGGER JUMPERS

3.2.4 INTERRUPT MODE SOCKET

The Interrupt/Real Time Clock board can support all three interrupt modes of the $\mathrm{Z}-80 \mathrm{CPU}$ as well as the 8080 interrupt structure.

Mode 0 allows the user to insert a restart instruction onto the data bus and allows the CPU to execute it. This mode is equivalent to the 8080 interrupt. Mode 1 causes a restart to location 0038 (hex). Mode 2 allows an indirect call to any location in memory. The address of the interrupt program is stored in a

RTC/IC
table somewhere in memory. The high byte of the table address is stored in register I (a $Z-80$ internal register) and the low byte is supplied by the controller.

The interrupt controller is set up for Mode 2. The low byte of the table is set up to $1111 x$ xx0. The $x x x$ represents the interrupting level in binary. Thus, the table can exist in the last 16 bytes of any 256 -byte section of memory. The format of the table is shown in Figure 3.2.4.1.

REGISTER I
IS THE UPPER BYTE OF THIS ADDRESS.

THE INTERRUPT BOARD SPECIFIES THE LOWER ADDRESS BYTE.

FIGURE 3.2.4.1 Z-80 MODE 2
For example, suppose the table is to be located in page 6. Furthermore, assume the interrupt routine begins at loction OB 75 (013 165) for interrupts on level 2. Before enabling interrupts, register I should be initialized to 06 (006), using the "LD I,A" instruction. The table uses addresses 06 FO (006 360) to 06 FF (006 377). Level 2 is the third interrupt (beginning with 0), so the address is three times two bytes into the table or address 06 F6 (006 366). At this address the low byte to address the interrupt routine is placed and at the next consecutive address the high byte is placed. Figure 3.2.4.2 shows the configuration.

FIGURE 3.2.4.2 EXAMPLE OF Z-80 MODE 2 INTERRUPT
When an interrupt on level 2 occurs, Register I and the interrupt controller form the address 06 F 6 and the address stored there becomes the address of the called routine. Execution of the interrupt routine then begins.

INTERRUPT SOCKET

FIGURE 3.2.4.3 MOVING Z-80 MODE 2 VECTOR ADDRESS

Connections may be made to move the 16 -byte table to other 16-byte areas in the same 256-byte page. To select the upper 4 bits in the lower byte of the table address, connect any bit which should be a zero to the common point as shown in Figure 3.2.4.3. This selects the 16 -byte section where the interrupt vector addresses are stored.

NOTE: To select 8080 mode $Z-80$ Mode 0 , the following traces must be cut:
Turn the board over to the solder side and locate the four jumpers under the interrupt socket. Cut the traces as shown below, but DO NOT CUT the traces for the diagnostics, which will use Mode 2.

8080 Mode
Cut the four traces. Insert the 7442 (IC 21) into the interrupt socket.

CUT FOR $8 \emptyset 8 \emptyset$ OR Z8 \emptyset MODE $\emptyset ~ O P E R A T I O N$

FIGURE 3.2.4.4 CUTTING TRACES

FIGURE 3.2.4.5 Z-80 MODE 0 JUMPER

Z-80 Mode 0

Cut the four traces. Wire pin 10 of the board's dual 36 pin connector to pin AU (opposite pin 39) on the CPU card. This connects INT to the IRQ input on the CPU card. Wire a header as shown in Figure 3.2.4.5 and insert it into the interrupt socket.

Z-80 Mode 1

DO NOT CUT the traces. If the traces have been cut, install a header to re-connect them as described for Mode 2.

Z-80 Modes 1 and 2 with cut traces

If Mode 1 or Mode 2 operation is desired after the traces have been cut, a header may be inserted to restore the cut traces as shown in Figure 3.2.4.6. Different addressing may also be added to this header (refer to the section on moving the $\mathrm{Z}-80$ Mode 2 vector address).

FIGURE 3.2.4.6 RESTORING CUT TRACES FOR Z-80 MODES 1 AND 2
3.2.5 OUTPUT PULLUPS

The timer outputs (TOUTO, TOUT1, and TOUT2) are of an open collector configuration. Pullup resistors may be installed if needed.

To pull up TOUT0, insert and solder R10 (2.2k).
To pull up TOUT1, insert and solder R9 (2.2k).
To pull up TOUT2, insert and solder R8 (2.2k).
A one second timer gate (on one second, off one second) is also available (called 1SG) and is also open collector.

To pull up 1SG, insert and solder R11 (2.2k).
RTC/IC

3.2.6 TIME-SET SWITCH

To set the time, a momentary switch (not supplied) must be pressed in order to allow processor control of the real time clock. This is done so that powering up and down will not normally affect the clock unless this switch has been pressed.

The switch should be mounted in an out of the way location within the cpu cabinet. It will rarely be used, and may be omied entirely if a temporary jumper wire to ground is acceptable.

Run a wire from SETIME (pin 33 of the 36 pin edge connector) to one side of a momentary normally open switch. Wire the other side of the switch (or the common terminal) to ground.

3.2.7 EXTERNAL BATTERY OR CHARGER

The ni-cad batteries supplied will normally run the clock for more than two weeks on a full charge. If a battery with more capacity is needed, it may replace the supplied batteries at the 4.8 Volt battery input (BATTERY) if it is also rechargeable and about 4.8 Volts, or it may be connected to the external battery input (BAT2) if it is between 6.3 V and 14 V .

If the external battery is not intended to also charge the ni-cad batteries, an external power supply may be connected to BAT2 in order to charge the ni-cads without having to run the entire system. This would be necessary if the system was turned on less than an average of ten hours per week. This power supply should supply 9 to 12 volts and provide at least 40 milliamps of current. Several commercial "battery eliminator" modules will satisfy these requirements. Connect the negative lead of the power supply to ground. Connect the positive lead to BAT2 (pin 26 on the 36 pin edge connector).

3.2.8 EXTERNAL TIME BASE

In order to achieve an extremely accurate clock through crystal ovens, the TV network rubidium clock signals, the National Bureau of Standards time satellite, or other means, an external signal at 1 MHz may be used instead of the built-in crystal oscillator.

The signal should be TTL-compatible and brought in at FSTAN (pin 35). The board should be modified to accept this signal as follows:

Remove the 1 MHz crystal. Locate the two slightly larger feed through holes between IC 14 and IC 15. Note that the traces come to each hole but do not go elsewhere. Insert and solder a 10 K resistor (not supplied) between these holes, mounting the resistor upright.

To protect the CMOS, install a IN5231, 5.1 volt zener diode (not supplied) between the top lead of R7 and the right lead of CR3. The cathode or band should be nearest R7.

3.2.9 FREQUENCY PRESCALER

RTC/IC

The maximum usable range of the frequency counter is limited by the maximum speed of the input counter (74196, IC 51) which is about 50 MHz . The signal required on pin 19 must be TTL compatable, which is a further limitation.

A frequency prescaler may be used to extend the maximum frequency and improve the sensitivity of the computer. 500 MHz prescalers which divide by 10 to 50 MHz can be found or built to provide a versatile frequency-counting system.

The following circuit may be used to increase the sensitivity at low frequencies:

FIGURE 3.2.9 FREQUENCY COUNTER INPUT STAGE

3.3 CABLE INSTALLATION

The interrupt cable supplied connects the interrupt controller to the interrupt socket on the CPU card. It may be routed in two ways, depending on the card-supporting hardware in the system. The interrupt cable socket is located at the extreme top right of the board. The cable leaving the DIP socket at both the controller card and the CPU card should leave in the same direction, either both to the left, or both to the right.

Connect the cable in one of the two ways shown below:

FIGURE 3.3 ROUTING OF THE INTERRUPT CABLE

CHAPTER 4

DIAGNOSTICS

The Interrupt/Real Time Clock board is basically a simple board to debug or check out, but a total check-out is a somewhat laborious process. This is due to the many options avaailable for configuring the board. A small solder short between two normally unused lines may not show up until the board has been in use for some time and a new application is implemented. In certain cases, the short may never show up at all. Thus, the amount of checkout needed depends on the projected uses of the board. If its total use cannot be defined, then a total checkout is recommended.

4.1 TEST PROCEDURES

The diagnostic routines are supplied in the first program of the cassette. The routines tie in very closely with the written descriptions of each test.

To run the test follow the written description for the preliminary measurements, if any, and then select the proper option. Most routines simply set up registers and decoders since no feedback is available from the board to automate the test. Thus, although several tests may be run, the signals on the board must actually be measured in order to achieve the true results.

In general, the tests are broken into various phases, and the space bar should be pressed to go from one phase to the next phase. If an error is found by the routine, it will loop on the error until the problem is cured (or RESET is pressed). Some routines will end through the space bar and others require the RESET switch.

A high impedence volt meter may be used to measure many of the levels. An oscilloscope is ideal since some of the reading requires either a frequency measurement or the observation of strobe phases. The second best instrument for these types of readings is an event counter (or a frequency counter that doesn't need a symmetrical waveform). A logic probe can also be used to detect whether pulses are present as well as levels, although it must have a high impedence input to work on any of the CMOS integrated circuits.

The test descriptions are written to point out correct levels and waveforms. If a problem is detected, the problem should be fixed before proceeding. Although some comments are usually made to help isolate the problem, a general knowledge of digital circuitry would be helpful. Measurements are usually made at the final destination of a signal and often the signal can be traced back to its source to find the IC or board trace that is causing the problem.

These routines will not find all of the problems on the board. The other programs on the tape and the BASIC listings will help test more of the function and should be used to test the board.

Since the interval timer chips can be set up to read or write two values in sequence, any glitches on the bus may cause false reads or writes. The glitches will get the internal logic of the timer chip out of sequence. A bus
terminator may be needed to suppress any excess ringing on the $I / 0$ strobes and address lines. The circuit in Figure 4.1 may be used at the ends of the I/O and memory buses.

FIGURE 4.1 BUS TERMINATOR SCHEMATIC

4.2 INITIAL TESTING

If power has never been applied to the board, the procedures described here may be used to bring the board up and to isolate any problems. Insert the board into an unused I / O slot. Do not connect either end of the interrupt cable. All jumpers on the board should be set up as described in the options section under set-up.

Power up the computer. If anything unusual happens so that the computer does not power up, and the supply voltages are within minimum limits, then remove IC's 44, 46, 48, 56. and 59. If the problem persists, it is probably in the races between the 22 pin connector and the sockets of the IC's just removed. If the problem goes away, refer to Section 4.4 on Addressing and I/0 Operations.

Measure the signal at pin 11 of IC 7 . Its frequency should be approximately 1 MHz . If no signal is present, turn the trimmer (C8) until oscillation starts. If no signal appears, check that all components are installed properly in this area, check the power supply and check that there are no shorts or opens in the traces. If no success, remove the crystal and IC 7 and verify that the capacitors are not shorted and the resistors are not open. Try replacing IC 7 or the crystal.

Momentarily short pin 5 of IC 7 to ground. Verify that the signal on pin 1 of IC 55 alternately is on for 1 second and off for 1 second. If not, refer to section 4.3 on the Count Chain.

Load the Diagnostic Routines from cassette into the memory. Select option 3 for initial testing to read the low byte of the time. If the test fails, refer to section 4.4 on Addressing and I/O Operations. Press the space bar on the keyboard for the next test. Check the following levels: High at pin 13 of IC 1 , pin 1 of IC 2, pin 1 of IC 22, and pin 13 of IC 23 . Press the space bar of the keyboard and check for a low at pin 1 of IC 1 , pin 13 of IC 22, pin 13 of IC 23. If only one of the levels is wrong, check for shorts and opens (and possibly a bad IC). If more are wrong, refer to section 4.4 on Addressing and I/O Operations. Again, press the space bar on the keyboard. Verify that pins 13, 14, and 15 at the interrupt mode socket (IC 21) are low. If the signals are not all correct and the interrupt jumpers are set up as in Figure 3.2.3, then refer to section 4.5 on Interrupts.

This completes the initial testing. Press the space bar to return to the menu. If all the tests in this section worked, the board is basically working. At this point the routines described under Programming, in this chapter should eventually be used to complete check-out.

4.3 COUNT CHAINS

The count chain consists of the decade dividers and the seconds counter (calendar) as well as the time setting and disable circuitry.

To begin testing, momentarily ground pin 5 of IC 7 to allow the clock to count. Make sure pin 10 of IC 7 is low. Pins 3, 4, 10 and 11 of IC 8 should also be low. Check that all the proper frequencies are present at the frequency jumper socket. Pin 8 should be a 1 microsecond signal and the periods should lengthen by a factor of 10 on each pin to pin 14 , which has a period of 1 second. Check for the selected signal for periodic interrupts (FINT) at pin 11 of the 36 pin edge connector. Also check that pin 22 of that connector is alternately on and off for 1 second each.

Run option 4 of the diagnostics. Momentarily ground pin 33 of the 36 pin edge connector (SETIME) to allow testing of the time-set function. Press space. If the message "STATUS AND RESET FUNCTIONS OK" appears, procede with the next paragraph. If a status failure occurs, and if either IC 16 pin 10 is low or IC 7 pin 5 is low, then refer to Addressing and I/O Operations, Section 4.4. Otherwise, make sure pin 8 of IC 7 goes low when grounding SETIME and that pin 10 of IC 7 goes high.

Once again test the frequencies at the frequency jumper socket. All should now be a high level except for the 1 microsecond signal.

If a reset failure occurred, make sure the data inputs (pins 1, 3, 6, 10, 13 and 15) of IC's 17 through 20 are all low. Make sure pins 11 of IC 9 and IC 32 are high. If no problem is found, refer to Addressing and I/O Operations, section 4.4.

Press space again. If a SETIME failure occurs, make sure that pins 9, 10, and 11 of IC 15 are high, low, and low levels respectively. Check that pin 5 of IC 15 is a 1 millisecond signal and that this signal is also on pins 10 of IC 9 and IC 32. Also check that at IC 33, pins 5, 6, 12 and 13 are all high. Pins

RTC/IC

11 of IC 9 and IC 32 should be low and the two IC's should each be counting up in binary as checked at the data inputs of IC's 17 through 20. Press space bar to end the test.

4.4 ADDRESSING AND I/O OPERATIONS

The Interrupt Controller/Real Time Clock board has many latches and uses many I/O addresses. It is important that the addressing is unique and that all of the internal bus structure is functioning correctly.

The test program begins with inputs and outputs to all devices whose lowest 4 bits are "six". Thus it will output to ports $06,16,26$, etc. (It will skip E6). If any devices at these addresses would be damaged due to the inputs and outputs, then skip this test and proceed to the next paragraph. If they won't be damaged or can be removed, run options 5 of the diagnostics. Check that there are no pulses on pins 4 through 7 and 10 through 12 of IC's 14 and 47. They should all be high levels. Press reset to end the test.

The second test checks that all inputs and outputs are decoding properly. Run option 6 of the diagnostics. This puts 1 strobe pulse on each latch or tri-state gate about once every millisecond. These strobe pulses should be observed at the following locations:

IC 17, pin 4	IC 4, pins 4 and 13
IC 18, pin 4	IC 6, pins 4 and 13
IC 19, pin	IC 12, pins 4 and 13
IC 20, pin 4	IC 13, pins 4 and 13
IC 26, pin 9	IC 43, pins 1 and 19
IC 27, pin 9	IC 5, pin 23
IC 28, pin 9	
IC 29, pin 9	

This test also writes low level to the latches. Measure voltages at the following locations to insure that all levels are as specified (low can be as high as about 1 volt on CMOS):

IC's	PIN(S)	LEVEL
49	10,11	low
$1,2,22,23$	1,13	high
8	$1,5,9,12$	low
7	5	high
$15,37-42$	$9,10,11$	low
$37,39,41$	3	low
55	5	low

Press the space bar and check that all of the above locations are now the opposite level from the level specified. Press space bar to exit from the test.
4.5 INTERRUPTS

RTC/IC

The interrupt tests are run with the interrupt cable disconnected at the CPU card. This isolates problems to the Interrupt/Real Time Clock board. The interrupt trigger sockets should be set up as described in the set-up section.

Run option 1 of the diagnostics. Momentarily ground pins 1 through 8 of the 36 pin edge connector (IRQ). Then check that pins 15 through 22 on IC 5 are all at a low level. Press space and re-check those pins. All should be at a high level. Make sure pin 9 on the 36 pin edge connector (INT) is a high level. Press space again and now make sure that INT (pin 9) is a low level.

Press space. Make sure INT (pin 9) remains low. If a priority failure occurs, check the lines going into pins 1 through 4 of IC 5 as well as the strobe on pin 23 and the proper masking of interrupts on pins 20 through 23 of IC 5 .

Press space. INT (pin 9) should go high, and should be reset by grounding one of pins 9 through 16 of the interrupt socket where the cable is attached. Pressing space will repeat this test in order to test all pins. To exit the test press RESET.

4.6 SELECTORS AND DECODERS

Many different signals are selectively routed from point to point on the Interrupt/Real Time Clock board. This test will check the signal lines for shorts or opens, the correct decode operation and also the dual decade prescaler.

Connect pin 12 of the frequency jumper socket to pin 19 of the 36 pin edge connector. Run option 8 of the diagnostics. Follow the test procedures for each test number.

TEST\#	IC	PIN	SIGNAL OR LEVE
1	54	9	--
			-
1	54	11	-
1	54	15	-
1	54	14	-
1	54	18	-
1	54	16	
1	15	5	
			0
			0
2	54	9	1 microsecond
2	54	11	0
2	54	15	1 microsecond
2	54	14	0
2	54	18	1 microsecond
2	54	16	0

RTC/IC

9	15	5	1 microsecond	
10	54	18	10 milliseconds	Signal present every other
				second
11	54	18	100 milliseconds	"
12	54	18	1 second	"

4.7 CALIBRATION

To achieve an accuracy of about 30 seconds per year, the crystal oscillator must be set to within 1 cycle. Without any adjustment whatsoever, the accuracy will be about 1 minute per month worst case.

Measure the frequency at IC 56 , pin 12 to reduce loading effects. Since the oscillator frequency is slightly higher when operating from the 12 volt supply than on battery, the frequency may be set to compensate for the anticipated usage of the computer. Since the components will also age and thus change frequency slightly, these effects can also be compensated.

If an extremely accurate frequency counter is available, it may be used to set the frequency. Many computers, however, do not have sufficient accuracy to allow this method to be useful for a highly accurate setting.

A simple, but lengthy process to calibrate the oscillator is to let the clock run and make slight adjustments after a period of several days. One second per two weeks would be a realistic goal. A BASIC program to read the clock is listed in APPENDIX D. A probe on the 1 second signal could be used to better show a slight drift over a shorter period of time.

A third method uses a WWV receiver with a BFO. WWV broadcasts time signals at 5 , 10 and 15 MHz from the National Bureau of Standards, and the oscillator produces harmonics at these frequencies.

Tune in WWV at 10 MHz and set the carrier beat note at a comfortable frequency. (Be careful not to confuse the tone frequency with the carrier frequency: the tone will go away during the vocal time identification). Now mix the signal from the oscillator so that both can be heard. Adjust the trimmer to "beat" the notes against each other. If the two tones are 1 Hertz apart, the "quality" of the tones will appear to cycle once per second. This will set the oscillator frequency to within a tenth of a Hertz, or about 3 seconds per year. Component aging, temperature, and varying supply voltages will cause further error.

When using this method, it is often easier to stop the CPU or turn off the computer altogether, since the number of various harmonics generated by the computer may make finding the right frequency difficult. Also, the components should be run for a time at their normal operating temperature and voltage before setting the oscillator frequency.

CHAPTER 5

SOFTWARE INTERFACE

This section describes the readable and writeable latches on the board, as well as their applicability. A more concise representation of this information may be found in the Programmers Guide, Appendix A.

5.1 REAL TIME CLOCK

The calendar clock may be read by inputting $x 0$ (hex) through $x 3$ (hex). (NOTE: the x represents the upper 4 bits of the user-defined address). Also, all values will be given in hex. Input $x 0$ is the lowest byte of the counter, while input $x 3$ is the highest byte. Only the low six bits are valid in each byte. The counter can only count in binary.

		$\begin{gathered} \text { BII } \\ 7 \end{gathered}$	5	4	3	2	1	0
INPUT:	x0		5	4	3	2	1	0
	x 1		11	10	9	8	7	6
	x 2		17	16	15	14	13	12
	x3		23	22	21	20	19	18

FIGURE 5.1.1 BITS OF CALENDAR CLOCK

A utility output byte is used to set the calendar clock. Bits 3 through 7 of output x6 facilitate setting the time. Bits 3 through 5 reset the decade countdown chain, the first 12 bit counter, and the second 12 bit counter, respectively. Bit 6 controls the clocking (or set) speed and bit 7 disables bits 3 through 6 until the time set switch is manually pressed.

BIT POSITION:

The time may be set or represented in several ways. The simplest is storing to the exact second the time and date the counter is set on disk or tape. The counter can then start at zero and the stored value plus the elapsed seconds is the current date and time.

A second method is a little more involved, but sets up the counters to a preset value normally representing the time from a fixed reference point as the first day of the first or seventh month of the year. The fast clock is used to set the counters to the proper values. When the fast clock bit is a 1, both 12 bit counters in the calendar section are set to count simultaneously by the fast
clock. (The fast clock is FREQ1 and so its actual clocking speed can be selected as described in a later section).

In the sequence of events, one of the 12 bit counters is held reset while the other is clocked to its intended value minus the intended value of the other 12 bit counter. Then both counters are clocked simultaneously until the count in both counters become the intended value. The countdown chain is then reset to inhibit counting, the fast clock turned off, and the computer waits for a command to disable the time set mode, thus de-activating bits 3 through 6 and proceding with its timekeeping.

It should be noted that the disable time set signal may be a 0 and the time-setting bits will NOT be re-enabled.

In fact, when the computer is powered up, those bits may be initially disabled and the set time switch must be pressed to enable them. Also, once the disable set time bit is turned on it is remembered as long as the CMOS has battery power (unless reset by the switch).

To determine whether bits 3 through 6 are active the time enabled status, bit 6 of input x 4 , can be read. If the bit is a 1 , the clock can be set. If the bit is a 0 , the set time button must be pressed to set the time.

STATUS BYTE
 FIGURE 5.1.3 TIME ENABLED BIT

Note that if reset microseconds is on (when active), the decade frequency divider is reset and FREQ1 is stopped.

5.2 INTERVAL TIMER

The 8253 interval timer has several functional modes, the particulars of which are best seen in the manufacturer's data sheets. A general description will be given here which will be sufficient to begin using the device in most applications.

The timer has three 16 -bit counters and thus three control words to configure each counter. The information in the control word selects the operational mode, the selection of Binary or BCD counting, and the loading sequence of the count.

Each counter is a presettable down counter, and has an input, gate and output which are configured by the selected mode.

FIGURE 5.2.1 CLOCK, GATE AND OUTPUT PER COUNTER
The counters may also be read and a special command allows the logic to "capture" the count so that the counters may be read while in operation.

The internal timer must be programmed by the systems software to set it up for proper operation. Each of the counters must first be set up with a control word before data is entered. The control word is given by outputting to port $x 0$ or $x C$. (Both are equivalent, due to the board's mapping of the timer's I/O addresses).

OUTPUT:

FIGURE 5.2.2 CONTROL WORD FORMAT
SC1 and SCO select the counter for which the rest of the control word applies.

RL1 and RLO control the reading and loading sequence for the counter data. They can set up sequence dependent operations and also latch the count for reading "on the fly".

RL1 RL0

0	0	Counter latching operation
1	0	Read/Load most significant byte only Read/Load least significant byte only
1	1	Read/Load least significant byte, most significant byte.

FIGURE 5.2.4 READ/LOAD BITS
BCD controls the type of counting.
BCD

0	Binary Counter (16 bits)
1	BCD Counter (4 Decades)

M2, M1, and M0 select the mode of the counter. The Programmer Guide in Appendix A describes the configuration of the CLOCK, GATE, and OUTPUT signals for the various modes.

M2	M1	M0	0
0	0	0	Interrupt on terminal count Programmable One-Shot (retriggerable)
0	0	1	0
0	1	1	Rate Generator (pulse output) 1
0	0	Software triggered strobe (pulse output)	
1	0	1	Hardware triggered strobe (pulse output)

FIGURE 5.2.6 MODE FORMAT
The data read or load sequence is selected by RL1 and RLO. When RL1=RLO=1, the sequenced operation MUST be performed before the control word is again written for that counter. Half of the operation is not allowed.

The data or count for counter 0 is input/output to port $x B$ or $x F$. Counter 1 is input/output to port $x A$ or $x E$, and counter 2 is input/output to port $x 9$ or $x D$. NOTE: WHEN DATA IS INPUT FROM THOSE COUNTERS, THE BITS WILL, BE INVERTED.

5.3 SIGNAL ROUTING FOR THE INTERVAL TIMER

Each of the three 16 bit counters has a clock input, a gate input and an output. Each input can have any of several signals routed to it. The outputs to select the appropriate signals are shown in Figure 5.3.1.

```
RTC/IC


The decode of each three bit value to the selected signal is shown in Figure 5.3.2.
\begin{tabular}{|c|c|c|c|c|}
\hline C & B & A & & \\
\hline 0 & 0 & 0 & See EXTERNAL Table & \\
\hline 0 & 0 & 1 & Programmable value for gate; clock & 1 MHz for \\
\hline 0 & 1 & 0 & 1 Second & \\
\hline 0 & 1 & 1 & FREQ1 (see selection chart) & \\
\hline 1 & 0 & 0 & FREQ2 (jumper selected) & \\
\hline 1 & 0 & 1 & Output of counter 0 & \\
\hline 1 & 1 & 0 & Output of counter 1 & \\
\hline 1 & 1 & 1 & Output of counter 2 & \\
\hline
\end{tabular}

FIGURE 5.3.2 GATE/CLOCK SELECTS
When \(C B A=000\) external signals are selected from a pin on the 36 pin edge connector. The table in Figure 5.3.3 associates the counters to the external pins.
\begin{tabular}{ll} 
Gate 0 & Pin 14 \\
Clock 0 & Pin 13 \\
Gate 1 & Pin 17 \\
Clock 1 & Pin 16 \\
Gate 2 & Pin 20 \\
Clock 2 & Prescaler
\end{tabular}

FIGURE 5.3.3 EXTERNAL CONNECTIONS

The prescaler is one of four signals and is selected through the utility byte.
BIT POSTION:

where:
\begin{tabular}{lll} 
FS1 & FS0 & \\
\hdashline 0 & 0 & External input, pin 12 \\
0 & 1 & Gated/1 from pin 19 \\
1 & 0 & Gated \(/ 10\) from pin 19 \\
1 & 1 & Gated/100 from pin 19 \\
& FIGURE 5.3.4 & PRESCALER FUNCTION
\end{tabular}

When CBA of the GATE/CLOCK selects \(=001\), the gate value may be directly output through output port \(x 5\).


FIGURE 5.3.5 PROGRAMMABLE GATES
P2, P1 and P0 go to gate 2, gate 1 and gate 0, respectively. Thus, each gate can be turned on or off by software control.

This same byte selects FREQ1.


FIGURE 5.3.6 FREQ1 ROUTING
FREQ1 selects one of the internal frequencies as given by the table in Figure 5.3.7.
\begin{tabular}{llll} 
FC & FB & FA & \\
0 & 0 & 0 & External frequency, pin 36 \\
0 & 0 & 1 & 1 second \\
0 & 1 & 0 & 100 Milleseconds \\
0 & 1 & 1 & 10 Milleseconds \\
1 & 0 & 0 & 1 Millesecond \\
1 & 0 & 1 & 100 Microseconds \\
1 & 1 & 0 & 10 Microseconds \\
1 & 1 & 1 & 1 Microsecond
\end{tabular}

FIGURE 5.3.7 FREQ1 SELECTS

Some of the signals may be monitored from status byte.


FIGURE 5.3.8 STATUS BYTE SIGNALS

OUTO, OUT1, and OUT2 are the outputs of the counters, BUT INVERTED! (If the actual output is a 1, the bit would be a 0). FREQ1 is the FREQ1 signal inverted and 1SEC is the 1 second gate signal, also inverted.

The one second gate signal is on for one second and off for 1 second. It gates the prescaler to allow a 1 second burst of counts. When the status bit is a 0 , the prescaler is counting and when the bit (1SEC) is a 1 , the frequency may be read. Note that only counter 2 is used with the prescaler.

\subsection*{5.4 INTERRUPT CONTROLLER}

The interrupt controller is based on the 8214 chip. It is necessary to write the current interrupt level to the chip so that it can determine if the incoming interrupt signal is of higher or lower priority.

BIT POSITION:


FIGURE 5.4.1 INTERRUPT LEVEL
L2 through \(L 0\) is the current level of interrupt on which the programming is executing. Level 0 is the highest level; level 7 is the lowest. LEN is the level-enable bit and should be 0 to enable L2 through LO. If no interrupt is active, LEN should be a 1.

The interrupt mask byte is accessed by an output to port x 1 .


When MSK0 is a 1, level 0 is masked and any interrupt which occurs on that level will be ignored. Likewise for each of the other masks.

To process interrupts, the interrupt controller must be initialized. When the system is powered up, an interrupt may be pending. To reset that interrupt without going through the actual interrupt routine, bit 2 of the utility byte must be written to a 1 , and then reset back to a 0 .

BIT POSITION:
\(\begin{array}{llllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}\)
OUTPUT: x6 Reset
Int
UTILITY BYTE

\section*{FIGURE 5.4.3 INTERRUPT INITIALIZATION}

Also, the current level must be initialized and all pending interrupts must be reset. To reset pending interrupts, the mask byte is written with all 1's so that all levels are masked. Then the reset interrupt bit may be momentarily set to 1 and the level byte may be written with 08 (base level). Finally, the active interrupt levels are unmasked.

Appendix \(H\) shows a sample interrupt program. Two bytes from main memory are used to save the current level and the current mask. When the interrupt occurs, the program saves the accumulator, puts the interrupted level into the stack, and stores the new level into the controller's level byte as well as into the main storage byte (called CURLEV).

When returning from the interrupt, the interrupt request is reset (by turning the mask bit for that level on and off) and the previous level is fetched from the stack and output to both the controller and the CURLEV byte in main memory. The accumulator is then restored and the interrupt routine returns.

\section*{CHAPTER 6}

\section*{PROGRAMMING}

The software for the Interrupt/Real Time Clock board can be simple or complex, depending on the application involved. But even the most complex applications can be broken down into smaller and smaller pieces, each of which provides a simpler function to be integrated into the whole. This section illustrates sample programs which use the board's facilities, illustrating some of the programming steps used to accomplish the functions.

The assembly level programs can be found on the tape supplied with the board. The BASIC programs are not on the tapes, since many different versions of BASIC and BASIC files exist. The user should enter the programs from the listing, tailored to the particular version of BASIC. The listings themselves were taken and run on The Digitl Group's MAXI BASIC, although almost any BASIC will work as long as it can be made to do INPUTs and OUTPUTs to the comptuer's I/O ports.

\subsection*{6.1 SETTING THE CLOCK}

There are several ways to set the calendar clock up for day and date timekeeping. Some of the methods were outlined in the Software Interface Section. One of the methods consisted of resetting the counter to all zeros. In this method, the starting day and time is recorded on a non-volatile media, such as cassette tape or diskette. The counter then becomes the number of seconds after that recorded time.

The second method uses a commonly known starting point, such as the first day of the half-year, so that a day and time might be calculated without resorting to automatic storage on a file medium.

As described in the Software Interface, the method holds one half of the counter reset while toggling the other half, and then counts simultaneously to the desired count. More care is needed, however, to prevent false clocking of the calendars.

This false clocking occurs when switching between a fast and normal clock, or changing clock speeds. Unless enough care is used to prevent unwanted signal transitions, extra counts can be created.

The program example of setting the clock, Appendix \(C\), allows for these transitions by comparing for a value less than the matching value and then slowly controlling the clock until the desired value is reached. Also, if a counter value is read during the time the counter is incrementing, a false value may be read in. Therefore, at key points note that the counters are read twice to assure the correct value.

To use the program load the second cassette program on the demonstration tape. Using some sort of memory editor load the locations TIME 1 through TIME 7 (O7DD to 07E3) to the time desired. TIME 1 holds a binary value for unit seconds; TIME 2 = 10 seconds; TIME 3 = unit minutes; TIME 4 = ten minutes; TIME 5 = unit

RTC/IC
hours; TIME \(6=\) ten hours (note that hours is in 24 hour time) and TIME \(7=\) the day of the half year in binary. The eleventh day ( \(O B\) ) would be January 11 or July 11 (assuming the second half year begins July 1).

Thus, the time 2:49:05 P.M., August 2, would appear as the sequence \(05,00,09,04,04,01,21\), in hex, or \(005,000,011,004,004,001,041\), in octal. These values may also be located by program control.

Select the menu number (7) and the little program CALL will invoke the SETIME subroutine to set up the correct time. If the program returns immediately, then it is possible that the time setting function is disabled. SETIME returns with a 1 in the accumulator if this error condition occurs. To enable the timesetting functions, momentarily press the time-enable switch or momentarily ground pin 33 on the connector. Then run the program again.

The short calling program may be replaced by a user-provided program as long as the seven time bytes are set up beforehand. A return accummulator of 0 indicates successful completion. SETIME does not disable the time setting function so a new time may still be set.

\subsection*{6.2 READING THE CLOCK}

To determine if the clock setting is correct, the counters may be read by a sequence of input commands. A BASIC program (Appendix D) may be typed in from this listing to read the clock and display the day and time in a readable format.

When the four counter bytes are read, they should be read starting from the lowest, least significant byte to the most significant byte. Then the least significant byte is read again to make sure it hasn't changed. This method obtains a stable count by determining that no clock pulses had occurred between or during the reading of values.

Once the clock is read, arithmetic operations are performed to extract the day and time. If the time is correct, the clock can be started by typing CONT to continue the program and disable the time setting function. This should be done at the moment the entered time and the current time are the same. The clock is now running and can be read again by re-running the program.

\subsection*{6.3 PERPETUAL TIMING}

Perpetual timing is merely a scheme to keep track of the correct time, date, year, etc. As was mentioned earlier, this technique consists of keeping a reference date and counting the seconds since that reference. Thus some form of non-volatile storage is needed.

Since the counters will overflow after about half a year, a method is needed to count the overflows and store them in the same permanent storage. This update process should be done on the average of once every three months.

Since is it likely that the computer may not be turned on at the moment the counters overflow, some flag must be set in order to determine that an overflow
did occur. If this flag is to be turned on and stored when the high bit of the counter is a "one", then there is a period of three months during which the computer can "notice" the condition and set the flag. Then, after the counters have overflowed, the computer has three months to recognize that although the high bit is a "zero", the flag is turned on and therefore an overflow occurred. It then increments the overflow counter and resets the flag so that the overflow counter won't be incremented again (until the next overflow).

To keep the scheme from vulnerability to power blackouts two sets of flags, dates and overflows should be kept so that when the permanent storage is beng updated, a power failure at that critical time can be recoverable by using the alternate set of values.

Over such a long time span, the clock will gain or lose time. Since the calendar is not settable without pushing a button to enable the set electronics and since this also produces a vulnerability to power outages, it is best to let the counter keep counting. To make the adjustment, the base date and time which was originally stored is altered by the appropriate amount and restored.

\subsection*{6.4 MEASURING INTERVALS}

Appendix E shows a BASIC program which measures intervals. The three 16 bit counters are cascaded to count up to 48 bits of the 1 MHz clock. Accuracy is to 1 microsecond, although the BASIC input shown in this example cannot demonstrate the accuracy.

To run the program, type a value (any value) after starting the program: this starts the timer. Type another value at the end of the interval and the timer is stopped and the value is read out.

Note that when the counters are loaded with the maximum count, the clock inputs at that time are all 1 MHz for each counter. The reason is that the data loaded into a counter does not become active until that counter receives a clock pulse on its clock input.

Also for simplicity of programming, the counters are counting at 1 less that the maximum count of each counter. Since the data read from the counters is inverted, a maximum count of all ones will read as zero and as the counters count down, the data will appear to count up.

\subsection*{6.5 CREATING TIME DELAYS}

Several of the modes can be used to create a time delay. If the intent of the delay is to create an interrupt, modes 4 and 5 will generate a one-clock-width pulse. Mode 0 and 1 will change output states permanently when the time delay is complete.

Modes 0 and 4 do not depend on the gate input to initiate counting, although the gate input should be high to enable counting. Mode 1 and 5 begin counting with the rising gate transition.

One counter may be loaded during one count to change the period of the counter
on the next count. However, if the time of the count is too short to allow the software to load the new values, a second counter may be prestored with the required value. Thus, tying a pair of counters together to gate each other is one way to produce delays when one of the delays is too short for software interaction.

\subsection*{6.6 FREQUENCY COUNTER}

Counter number 2 has a two decade prescaler to facilitate frequency measurements. Appendix \(F\) contains a BASIC program to make measurements.

The counter is set up for mode 0 in order to count the number of clocks per second. The clock input is automatically gated on for exactly 1 second. This allows the counter to be read directly in Hz . However, various stages of the prescaler may be used to allow higher frequencies.

The frequency counter shown here has an upper limit of about 6.5 MHz , since a larger count would overflow the counter. The use of a second counter configured in a similar manner to the example of an interval measurement counter would extend the maximum frequency limit.

Overflow is determined by monitoring the output signal from counter 2. If this signal is ever low, then overflow is detected.

The counter also autoranges. This is done by selecting the appropriate output from the prescaler. If the frequency count is low, less stages of the prescaler are used to increase the count and accuracy. If the count gets too high or overflows, then more stages are used to divide the count down to a more manageable number.

\subsection*{6.7 PLAYING MUSIC}

The final program in assembly language in Appendix G, is a routine that plays music. This routine demonstrates the square wave generator counter mode plus interrupt programming.

The circuit of figure 6.7 .1 should be built to interface the computer to an audio amplifier. Each counter will be used to play a note or frequency and these notes are added together and fed to the amplifier.


\section*{FIGURE 6.7.1 INTERFACE CIRCUIT TO PLAY MUSIC}

The interrupt rate of 1 millisecond should be selected and levels 2 and 4 should be set up for high-to-low transition and high level inerrupts, respectively.

The program executes from a command table. The Table is set up to specify the length of each note or rest, the counter which will play it and the coded frequency of the note.

In a command byte of this list, the low two bits select the counter, the next three select the duration of the note, and bit 6 selects between a rest or a playing note. The data byte, which is only used with a playing note, selects the frequency by means of a table lookup. The lower four bits select the notes on the scale and the next three bits select the octave. The data byte immediately follows the playing note byte.
\begin{tabular}{lll} 
& \multicolumn{1}{c}{ LENGTH } & POSITION \\
\hdashline \(0=\) rest & 000 & \(=\) stop \\
\(1=\) note & \(001=64\) th note & \(01=\) counter 2 \\
& \(010=32\) nd note & \(11=\) counter 1 \\
& \(011=16\) th note & \\
& 100 & \(=8\) th note \\
& \(101=\) quarter note \\
& \(110=\) half note & \\
& \(111=\) whole note &
\end{tabular}

FIGURE 6.7.2 COMMAND FORMAT FOR MUSIC
The program starts at INIT and shows some of the counter and interrupt initialization steps. Each note value for the counter and length is set up on the base or non-interrupt level. This information is passed to the level 4 interrupt routine, which transfers the information to the counters at the appropriate time. This time is determined by the level 2 routine, which counts milliseconds and timing beats and knows when the next note is due. The level 2 routine causes a level 4 interrupt when level 4 has something to do.

Load the last program from the cassette and choose option 3. After a few moments, the music will begin.

\subsection*{6.8 INTERRUPT PROGRAMMING}

The music routine and the sample interrupt-handling excerpts in Appendix \(H\) illustrate interrupt controller programming. Basically, the interrupt level must be given to the controller to determine priority of interrupts. The previous interrupt level must be saved in order to restore the previous priority. Before returning, the interrupt request latch must be reset (through the mask byte) to keep from re-interrupting. This must be done before the old interrupt level is output or else a second interrupt will be remembered for the current level.

Since the interrupts can occur anywhere, any common bytes used both by the base and interrupt levels or between interrupt levels should be carefully analyzed for possible timing problems. For example, the base level may wish to add a value to a register and the interrupt level may wish to reset the register. Between the time the value is read, added and stored again, the interrupt may occur, causing the register to be reset. Then the base routine regains control and stores back the added value. Thus the interrupt routine's reset of the register is lost.

These problems are commonly solved by the use of the DI and EI instructions on the lower level. They keep the interrupt from occuring during critical processing times. Another method is a set of flags which indicate the routine that has control of the register in question. Still another method gives each routine read-only registers and exclusive-write registers. Thus, only the base level can write a particular register. Interrupt problems usually stem from such conflicts and careful timing analysis of the program can usually resolve such problems.

\section*{APPENDIX CONTENTS}
A. PROGRAMMER GUIDE
B. 8253 DATA SHEETS
C. SET CLOCK TIME (ASSM)
D. READ CLOCK TIME (BASIC)
E. MEASURE INTERVALS (BASIC)
F. FREQUENCY COUNTER (BASIC)
G. MUSIC ROUTINES (ASSM)
H. SAMPLE INTERRUPT HANDLER
I. DIAGNOSTICS
J. CONNECTOR PINOUT
K. PARTS LIST
L. PARTS PLACEMENT DIAGRAM
M. SCHEMATIC


A3 \(=1\), A2 \(=\) Don't Care
DATA BYTES \((A 1, A \varnothing): 11=\) Counter \(\varnothing \quad 1 \varnothing=\) Counter \(1 \quad \emptyset 1=\) Counter 2
NOTE: Timer date inverted when read
Complete entire read or write operation before doing other (with respect to each Counter)

\begin{tabular}{|c|c|c|c|}
\hline GC & GB & GA & \\
\hline \(\varnothing\) & \(\emptyset\) & \(\emptyset\) & XGAn, where \(n=\varnothing, 1\), or 2 \\
\hline \(\emptyset\) & \(\emptyset\) & 1 & Pn , where \(\mathrm{n}=\varnothing\), 1 , or 2 \\
\hline \(\varnothing\) & 1 & \(\varnothing\) & 1 SEC \\
\hline \(\varnothing\) & 1 & 1 & FREQ 1 \\
\hline 1 & \(\emptyset\) & \(\varnothing\) & FREQ 2 (JUMPER SELECTIED) \\
\hline 1 & \(\emptyset\) & 1 & OUTØ \\
\hline 1 & 1 & \(\emptyset\) & OUT1 \\
\hline 1 & 1 & 1 & OUT2 \\
\hline
\end{tabular}

\section*{CLOCK SELECT}

\section*{\(\mathrm{CC} \quad \mathrm{CB} \quad \mathrm{CA}\)}
\begin{tabular}{llll}
\(\varnothing\) & \(\emptyset\) & \(\varnothing\) & XCLn where \(n=\varnothing, 1\), or 2 (see frequency counter select XCL2) \\
\(\varnothing\) & \(\emptyset\) & 1 & 1 MHz \\
\(\varnothing\) & 1 & \(\emptyset\) & 1 SEC \\
\(\emptyset\) & 1 & 1 & FREQ 1 \\
1 & \(\emptyset\) & \(\emptyset\) & FREQ 2 \\
1 & \(\emptyset\) & 1 & OUT \(\varnothing\) \\
1 & 1 & \(\emptyset\) & OUT1 \\
1 & 1 & 1 & OUT2
\end{tabular}

FREQ 1 SELECT
FC FB FA
\begin{tabular}{llll}
\(\varnothing\) & \(\varnothing\) & \(\varnothing\) & XF1 (EXT. CLK FREQ.) \\
\(\varnothing\) & \(\emptyset\) & 1 & 1 SEC CLK \\
\(\varnothing\) & 1 & \(\emptyset\) & 100 MSEC \\
\(\varnothing\) & 1 & 1 & 10 MSEC \\
1 & \(\emptyset\) & \(\emptyset\) & 1 MSEC \\
1 & \(\emptyset\) & 1 & 100 USEC \\
1 & 1 & \(\emptyset\) & 10 USEC \\
1 & 1 & 1 & 1 USEC
\end{tabular}

FREQUENCY COUNTER SELECT
FSI FSD
\begin{tabular}{lll}
\(\emptyset\) & \(\varnothing\) & FXCL2 FAST CLOCK \\
\(\emptyset\) & 1 & EXCL2 \(\div 1\), GATED \\
1 & \(\varnothing\) & EXCL2 \(\div 10\), GATED \\
1 & 1 & EXCL2 \(\div 100\), GATED
\end{tabular}

\section*{8253/8253-5 PROGRAMMABLE INTERVAL TIMER}

\author{
- MCS—85 \({ }^{\text {TM }}\) Compatible 8253-5 \\ - 3 Independent 16-Bit Counters \\ - DC to \(2 \mathbf{M H z}\) \\ - Programmable Counter Modes \\ - Count Binary or BCD \\ - Single + 5V Supply \\ - 24-Pin Dual In-Line Package
}

The Intel \({ }^{*} 8253\) is a programmable counter/timer chip designed for use as anlntel microcomputer peripheral. It uses nMOS technology with a single +5 V supply and is packaged in a 24 -pin plastic DIP

It is organized as 3 independent 16 -bit counters, each with a count rate of up to 2 MHz . All modes of operation are software programmable.

\section*{PIN CONFIGURATION}


PIN NAMES
\begin{tabular}{|c|c|}
\hline D, \(\mathrm{D}_{0}\) & Data bus (8 Bit \\
\hline CLKN & COUNTER CLOCK INPUTS \\
\hline GATE N & COUNTER GATE INPUTS \\
\hline OUTN & COUNTER OUTPUTS \\
\hline RO & READ COUNTER \\
\hline wi & WRITE COMMAND OR DATA \\
\hline cs & CHIP SELECT \\
\hline \(\mathrm{A}_{0} \mathrm{~A}_{1}\) & COUNTER SELECT \\
\hline \(\mathrm{V}_{c<}\) & + 5 VOLTS \\
\hline GNO & GROUND \\
\hline
\end{tabular}

\section*{FUNCTIONAL DESCRIPTION}

\section*{General}

The 8253 is a programmable interval timer/counter specifically designed for use with the Intel \({ }^{\text {™ }}\) Microcomputer systems. Its function is that of a general purpose, multi-timing element that can be treated as an array of I/O ports in the system software.
The 8253 solves one of the most common problems in any microcomputer system, the generation of accurate time delays under software control. Instead of setting up timing loops in systems software, the programmer configures the 8253 to match his requirements, initializes one of the counters of the 8253 with the desired quantity, then upon command the 8253 will count out the delay and interrupt the CPU when it has completed its tasks. It is easy to see that the software overhead is minimal and that multiple delays can easily be maintained by assignment of priority levels.

Other counter/timer functions that are non-delay in nature but also common to most microcomputers can be implemented with the 8253
- Programmable Rate Generator
- Event Counter
- Binary Rate Multiplier
- Real Time Clock
- Digital One-Shot
- Complex Motor Controller

\section*{Data Bus Buffer}

This 3-state, bi-directional, 8-bit buffer is used to interface the 8253 to the system data bus. Data is transmitted or received by the buffer upon execution of INput or OUTput CPU instructions. The Data Bus Buffer has three basic functions.
1. Programming the MODES of the 8253
2. Loading the count registers.
3. Reading the count values.

\section*{Read/Write Logic}

The Read/Write Logic accepts inputs from the system bus and in turn generates control signals for overall device operation. It is enabled or disabled by CS so that no operation can occur to change the function unless the device has been selected by the system logic

\section*{\(\overline{\mathrm{RD}}\) (Read)}

A "low" on this input informs the 8253 that the CPU is inputting data in the form of a counters value

\section*{\(\overline{W R}\) (Write)}

A "low" on this input informs the 8253 that the CPU is outputting data in the form of mode information or loading counters.

These inputs are normally connected to the address bus. Their function is to select one of the three counters to be operated on and to address the control word register for mode selection.

\section*{\(\overline{\mathbf{C S}}\) (Chip Select)}

A "low" on this input enables the 8253. No reading or writing will occur unless the device is selected. The \(\overline{\mathrm{CS}}\) input has no effect upon the actual operation of the counters.


Figure 1. Block Diagram Showing Data Bus Buffer and Read/Write Logic Functions
\begin{tabular}{|l|c|c|c|c|l|}
\hline\(\overline{\mathbf{C S}}\) & \(\overline{\mathbf{R D}}\) & \(\overline{\mathrm{WR}}\) & \(\mathbf{A}_{\mathbf{1}}\) & \(\mathbf{A}_{\mathbf{0}}\) & \\
\hline 0 & 1 & 0 & 0 & 0 & Load Counter No. 0 \\
\hline 0 & 1 & 0 & 0 & 1 & Load Counter No. 1 \\
\hline 0 & 1 & 0 & 1 & 0 & Load Counter No. 2 \\
\hline 0 & 1 & 0 & 1 & 1 & Write Mode Word \\
\hline 0 & 0 & 1 & 0 & 0 & Read Counter No. 0 \\
\hline 0 & 0 & 1 & 0 & 1 & Read Counter No. 1 \\
\hline 0 & 0 & 1 & 1 & 0 & Read Counter No. 2 \\
\hline 0 & 0 & 1 & 1 & 1 & No-Operation 3-State \\
\hline 1 & X & X & X & X & Disable 3-State \\
\hline 0 & 1 & 1 & X & X & No-Operation 3-State \\
\hline
\end{tabular}

\section*{Control Word Register}

The Control Word Register is selected when A0, A1 are 11. It then accepts information from the data bus buffer and stores it in a register. The information stored in this register controls the operational MODE of each counter, selection of binary or BCD counting and the loading of each count register
The Control Word Register can only be written into; no read operation of its contents is available.

\section*{Counter \#0, Counter \#1, Counter \#2}

These three functional blocks are identical in operation so only a single Counter will be described. Each Counter consists of a single, 16-bit, pre-settable, DOWN counter. The counter can operate in either binary or BCD and its input, gate and output are configured by the selection of MODES stored in the Control Word Register.
The counters are fully independent and each can have separate Mode configuration and counting operation, binary or BCD. Also, there are special features in the control word that handle the loading of the count value so hat software overhead can be minimized for these functions.
The reading of the contents of each counter is available to the programmer with simple READ operations for event counting applications and special commands and logic are included in the 8253 so that the contents of each counter can be read "on the fly" without having to inhibit the clock input.

\section*{8253 SYSTEM INTERFACE}

The 8253 is a component of the intel \({ }^{\text {rw }}\) Microcomputer Systems and interfaces in the same manner as all other peripherals of the family. It is treated by the systems software as an array of peripheral I/O ports; three are counters and the fourth is a control register for MODE programming.
Basically, the select inputs A0, A1 connect to the AO, A1 address bus signals of the CPU. The \(\overline{C S}\) can be derived directly from the address bus using a linear select method Or it can be connected to the output of a decoder, such as an Intel@ 8205 for larger systems.


Figure 2. Block Diagram Showing Control Word Register and Counter Functions


Figure 3. 8253 System Interface

M - MODE:

\section*{OPERATIONAL DESCRIPTION}

\section*{General}

The complete functional definition of the 8253 is programmed by the systems software. A set of control words must be sent out by the CPU to initialize each counter of the 8253 with the desired MODE and quantity information. These control words program the MODE, Loading sequence and selection of binary or \(B C D\) counting.
Once programmed, the 8253 is ready to perform whatever timing tasks it is assigned to accomplish.
The actual counting operation of each counter is completely independent and additional logic is provided on-chip so that the usual problems associated with efficient monitoring and management of external, asynchronous events or rates to the microcomputer system have been eliminated

\section*{Programming the 8253}

All of the MODES for each counter are programmed by the systems software by simple I/O operations
Each counter of the 8253 is individually programmed by writing a control word into the Control Word Register. ( \(\mathrm{A} 0, \mathrm{~A} 1=11\) )

\section*{Control Word Format}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\(\mathrm{D}_{7}\) & \(\mathrm{D}_{\mathbf{6}}\) & \(\mathrm{D}_{\mathbf{5}}\) & \(\mathrm{D}_{\mathbf{4}}\) & \(\mathrm{D}_{\mathbf{3}}\) & \(\mathrm{D}_{\mathbf{2}}\) & \(\mathrm{D}_{\mathbf{1}}\) & \(\mathrm{D}_{\mathbf{0}}\) \\
\hline SC 1 & SCO & RL 1 & RLO & M 2 & M 1 & M 0 & BCD \\
\hline
\end{tabular}

\section*{Definition of Control}

\section*{SC - Select Counter}
\begin{tabular}{|c|c|l|}
\multicolumn{4}{|c|}{ SC1 } \\
\hline 0 & 0 & Select Counter 0 \\
\hline 0 & 1 & Select Counter 1 \\
\hline 1 & 0 & Select Counter 2 \\
\hline 1 & 1 & Illegal \\
\hline
\end{tabular}

\section*{RL - Read/Load:}
\begin{tabular}{l} 
RL1 \\
\multicolumn{1}{l}{ RL0 } \\
\begin{tabular}{|c|c|l|}
\hline 0 & 0 & \begin{tabular}{l} 
Counter Latching operation (see \\
READ/WRITE Procedure Section)
\end{tabular} \\
\hline 1 & 0 & Read/Load most significant byte only. \\
\hline 0 & 1 & Read/Load least significant byte only. \\
\hline 1 & 1 & \begin{tabular}{l} 
Read/Load least significant byte first, \\
then most significant byte.
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 0 & 0 & 0 & Mode 0 \\
\hline 0 & 0 & 1 & Mode 1 \\
\hline\(X\) & 1 & 0 & Mode 2 \\
\hline\(X\) & 1 & 1 & Mode 3 \\
\hline 1 & 0 & 0 & Mode 4 \\
\hline 1 & 0 & 1 & Mode 5 \\
\hline
\end{tabular}

BCD:
\begin{tabular}{|c|l|}
\hline 0 & Binary Counter 16-bits \\
\hline 1 & \begin{tabular}{l} 
Binary Coded Decimal (BCD) Counter \\
(4 Decades)
\end{tabular} \\
\hline
\end{tabular}

\section*{Counter Loading}

The count register is not loaded until the count value is written (one or two bytes, depending on the mode selected by the RL bits), followed by a rising edge and a falling edge of the clock. Any read of the counter prior to that falling clock edge may yield invalid data

\section*{MODE Definition}

MODE 0: Interrupt on Terminal Count. The output will be initially low after the mode set operation. After the count is loaded into the selected count register, the output will remain low and the counter wilt count. When ter minal count is reached the output will go high and re main high until the selected count register is reloaded with the mode or a new count is loaded. The counter continues to decrement after terminal count has been reached.
Rewriting a counter register during counting results in the following:
(1) Write 1st byte stops the current counting.
(2) Write 2nd byte starts the new count.

MODE 1: Programmable One-Shot. The output will go low on the count following the rising edge of the gate input.

The output will go high on the terminal count. If a new count value is loaded while the output is low it will not affect the duration of the one-shot pulse until the suc ceeding trigger. The current count can be read at any time without affecting the one-shot puise.

The one-shot is retriggerable, hence the output will remain low for the full count after any rising edge of the gate input.

MODE 2: Rate Generator. Divide by \(N\) counter. The out put will be low for one period of the input clock. The period from one output pulse to the next equals the number of input counts in the count register. If the count register is reloaded between output pulses the present period will not be affected, but the subsequent period will reflect the new value.

The gate input, when low, will force the output high. When the gate input goes high, the counter will start from the initial count. Thus, the gate input can be used to synchronize the counter.
When this mode is set, the output will remain high until after the count register is loaded. The output then can also be synchronized by software.

MODE 3: Square Wave Rate Generator.Similar to MODE 2 except that the output will remain high until one half the count has been completed (for even numbers) and go low for the other half of the count. This is accomplished by decrementing the counter by two on the fall. ing edge of each clock pulse. When the counter reaches terminal count, the state of the output is changed and the counter is reloaded with the full count and the whole process is repeated.
If the count is odd and the output is high, the first clock pulse (after the count is loaded) decrements the count by 1 . Subsequent clock pulses decrement the clock by 2. After timeout, the output goes low and the full count is reloaded. The first clock pulse (following the reload) decrements the counter by 3 . Subsequent clock pulses decrement the count by 2 until timeout. Then the whole process is repeated. In this way, if the count is odd, the output will be high for \((N+1) / 2\) counts and low for ( \(\mathrm{N}-1\) )/2 counts.

MODE 4: Software Triggered Strobe. After the mode is set, the output will be high. When the count is loaded, the counter will begin counting. On terminal count, the output will go low for one input clock period, then will go high again.

MODE 0: Interrupt on Terminal Count


MODE 1: Programmable One-Shot


\section*{MODE 2: Rate Generator}


\section*{MODE 3: Square Wave Generator}


MODE 4: Software Triggered Strobe


MODE 5: Hardware Triggered Strobe


If the count register is reloaded between output pulses the present period will not be affected, but the subsequent period will reflect the new value. The count will be inhibited while the gate input is low. Reloading the counter register will restart counting beginning with the new number.

MODE 5: Hardware Triggered Strobe. The counter will start counting after the rising edge of the trigger input and will go low for one clock period when the terminal count is reached. The counter is retriggerable. The output will not go low until the full count after the rising edge of any trigger.
\begin{tabular}{|c|c|c|c|}
\hline Modes & \[
\begin{aligned}
& \text { Low } \\
& \text { Or Going } \\
& \text { Low }
\end{aligned}
\] & Rising & High \\
\hline 0 & Disables counting & -- & Enables counting \\
\hline 1 & -- & \begin{tabular}{l}
1) Initiates counting \\
2) Resets output after next clock
\end{tabular} & - \\
\hline 2 & \begin{tabular}{l}
1) Disables counting \\
2) Sets output immediately high
\end{tabular} & Initiates counting & Enables counting \\
\hline 3 & \begin{tabular}{l}
1) Disables counting \\
2) Sets output immedıately high
\end{tabular} & initiates counting & Enables counting \\
\hline 4 & Disables counting & - & Enables counting \\
\hline 5 & -- & Initiates counting & -- \\
\hline
\end{tabular}

Figure 4. Gate Pin Operations Summary

\section*{8253 READ/WRITE PROCEDURE}

\section*{Write Operations}

The systems software must program each counter of the 8253 with the mode and quantity desired. The programmer must write out to the 8253 a MODE control word and the programmed number of count register bytes (1 or 2) prior to actually using the selected counter.

The actual order of the programming is quite flexible. Writing out of the MODE control word can be in any sequence of counter selection, e.g., counter \#0 does not have to be first or counter \#2 last. Each counter's MODE control word register has a separate address so that its loading is completely sequence independent. (SC0, SC1) The loading of the Count Register with the actual count value, however, must be done in exactly the sequence programmed in the MODE control word (RLO, RL1). This loading of the counter's count register is still sequence independent like the MODE control word loading, but when a selected count register is to be loaded it must be loaded with the number of bytes programmed in the MODE control word (RLO, RL1). The one or two bytes to be loaded in the count register do not have to follow the associated MODE control word. They can be programmed at any time following the MODE control word loading as long as the correct number of bytes is loaded in order.
All counters are down counters. Thus, the value loaded into the count register will actually be decremented. Loading all zeroes into a count register will result in the maximum count ( \(2^{16}\) for Binary or \(10^{4}\) for BCD ). In MODE 0 the new count will not restart until the load has been completed. It will accept one of two bytes depending on how the MODE control words (RLO, RL1) are programmed. Then proceed with the restart operation.
\begin{tabular}{|cc|}
\hline & \begin{tabular}{c} 
MODE Control Word \\
Counter \(n\)
\end{tabular} \\
\hline LSB & \begin{tabular}{c} 
Count Register byte \\
Counter \(n\)
\end{tabular} \\
\hline MSB & \begin{tabular}{c} 
Count Register byte \\
Counter \(n\)
\end{tabular} \\
\hline
\end{tabular}

Note: Format shown is a simple example of loading the 8253 and does not imply that it is the only format that can be used.

Figure 6. Programming Format
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No. 1} & & & A1 & A0 \\
\hline & \multicolumn{2}{|r|}{MODE Control Word Counter 0} & 1 & 1 \\
\hline No. 2 & \multicolumn{2}{|r|}{MODE Control Word Counter 1} & 1 & 1 \\
\hline No. 3 & \multicolumn{2}{|r|}{MODE Control Word Counter 2} & 1 & 1 \\
\hline No. 4 & LSB & Count Register Byte Counter 1 & 0 & 1 \\
\hline No. 5 & MSB & Count Register Byte Counter 1 & 0 & 1 \\
\hline No. 6 & L.SB & Count Register Byte Counter 2 & 1 & 0 \\
\hline No. 7 & MSB & Count Register Byte Counter 2 & 1 & 0 \\
\hline No. 8 & LSB & Count Register Byte Counter 0 & 0 & 0 \\
\hline No. 9 & MSB & Count Register Byte Counter 0 & 0 & 0 \\
\hline
\end{tabular}

Note: The exclusive addresses of each counter's count register make the task of programming the 8253 a very simple matter, and maximum effective use of the device will result if this feature is fully utilized.

\section*{Figure 7. Alternate Programming Formats}

\section*{Read Operations}

In most counter applications it becomes necessary to read the value of the count in progress and make a computational decision based on this quantity. Event counters are probably the most common application that uses this function. The 8253 contains logic that will allow the programmer to easily read the contents of any of the three counters without disturbing the actual count in progress.
There are two methods that the programmer can use to read the value of the counters. The first method involves the use of simple \(1 / O\) read operations of the selected counter. By controlling the AO, A1 inputs to the 8253 the programmer can select the counter to be read (remember that no read operation of the mode register is allowed A0. A1-11). The only requirement with this method is that in order to assure a stable count reading the actual operation of the selected counter must be inhibited either by controlling the Gate input or by external logic that inhibits
the clock input The contents of the counter selected will be available as follows.
first I/O Read contains the least significant byte (LSB) second I/O Read contains the most significant byte (MSB).
Due to the internal logic of the 8253 it is absolutely necessary to complete the entire reading procedure. If two bytes are programmed to be read then two bytes must be read before any loading WR command can be sent to the same counter.

\section*{Read Operation Chart}
\begin{tabular}{|c|c|c|l|}
\hline A1 & A0 & RD & \\
\hline 0 & 0 & 0 & Read Counter No. 0 \\
\hline 0 & 1 & 0 & Read Counter No. 1 \\
\hline 1 & 0 & 0 & Read Counter No. 2 \\
\hline 1 & 1 & 0 & Illegal \\
\hline
\end{tabular}

\section*{Reading While Counting}

In order for the programmer to read the contents of any counter without effecting or disturbing the counting operation the 8253 has special internal logic that can be accessed using simple WR commands to the MODE register. Basically, when the programmer wishes to read the contents of a selected counter "on the fly" he loads the MODE register with a special code which latches the present count value into a storage register so that its contents contain an accurate, stable quantity The programmer then issues a normal read command to the selected counter and the contents of the latched register is available

\section*{MODE Register for Latching Count}
\(A 0, A 1=11\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline SC1 & SC0 & 0 & 0 & X & X & X & X \\
\hline
\end{tabular}

SC1.SC0 - specify counter to be latched
D5.D4 - 00 designates counter latching operation
\(X \quad\) - don't care
The same limitation applies to this mode of reading the counter as the previous method. That is, it is mandatory to complete the entire read operation as programmed. This command has no effect on the counter's mode.

\section*{ABSOLUTE MAXIMUM RATINGS*}

Ambient Temperature Under Bias
Storage Temperature
Voltage On Any Pin
With Respect to Ground
Power Dissipation \(\qquad\)
*COMMENT• Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operatıonal sections of this specifi cation is not implied. Exposure to absolute maximum rating conditions for extended perrods may affect device reliability.
D.C. CHARACTERISTICS \(\left(T_{A}=0^{\circ} \mathrm{C}\right.\) to \(\left.70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%\right)\)
\begin{tabular}{l|l|c|c|c|c}
\hline SYMBOL & PARAMETER & MIN. & MAX. & UNITS & TEST CONDITIONS \\
\hline\(V_{I L}\) & Input Low Voltage & -0.5 & 0.8 & V & \\
\hline \(\mathrm{~V}_{\mathrm{IH}}\) & Input High Voltage & 2.2 & \(\mathrm{~V}_{\mathrm{CC}}+.5 \mathrm{~V}\) & V & \\
\hline \(\mathrm{~V}_{\mathrm{OL}}\) & Output Low Voltage & & 0.45 & V & Note 1 \\
\hline \(\mathrm{~V}_{\mathrm{OH}}\) & Output High Voltage & 2.4 & & V & Note 2 \\
\hline \(\mathrm{I}_{\mathrm{IL}}\) & Input Load Current & & \(\pm 10\) & \(\mu \mathrm{~A}\) & \(V_{\text {IN }}=V_{\mathrm{CC}}\) to 0 V \\
\hline \(\mathrm{I}_{\mathrm{OFL}}\) & Output Float Leakage & & \(\pm 10\) & \(\mu \mathrm{~A}\) & \(\mathrm{~V}_{\text {OUT }}=V_{\mathrm{CC}}\) to 0 V \\
\hline \(\mathrm{I}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) Supply Current & & 140 & mA & \\
\hline
\end{tabular}

Note 1: \(8253, \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} ; 8253-5, \mathrm{I}_{\mathrm{OL}}=2.2 \mathrm{~mA}\).
Note 2: \(8253, \mathrm{I}_{\mathrm{OH}}=-150 \mu \mathrm{~A} ; 8253-5, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}\).

CAPACITANCE \(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}\)
\begin{tabular}{l|l|c|c|c|c|l}
\hline Symbol & Parameter & Min. & Typ. & Max. & Unit & Test Conditions \\
\hline\(C_{I N}\) & Input Capacitance & & & 10 & pF & \(\mathrm{fc}=1 \mathrm{MHz}\) \\
\hline\(C_{1 / O}\) & I/O Capacitance & & & 20 & pF & Unmeasured pins returned to V VS \\
\hline
\end{tabular}

-If an 8085 clock output is to drive an \(\mathbf{8 2 5 3 . 5}\) clock input, it must be reduced to \(\mathbf{2} \mathbf{~ M H z}\) or less.

Figure 8. MCS-85 \({ }^{\text {TM }}\) Clock Interface *

\section*{A.C. CHARACTERISTICS \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%\); GND \(=0 \mathrm{~V}\)}

\section*{Bus Parameters (Note 1)}

\section*{Read Cycle:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{2}{|c|}{8253} & \multicolumn{2}{|c|}{8253-5} & \multirow[b]{2}{*}{UNIT} \\
\hline & & MIN. & MAX. & MIN. & MAX. & \\
\hline \({ }^{\text {t }}{ }_{\text {AR }}\) & Address Stable Before \(\overline{\text { READ }}\) & 50 & & 30 & & ns \\
\hline \(t_{\text {RA }}\) & Address Hold Time for \(\overline{\text { READ }}\) & 5 & & 5 & & ns \\
\hline \(t_{\text {RR }}\) & \(\overline{\text { READ Pulse Width }}\) & 400 & & 300 & & ns \\
\hline \(\mathrm{t}_{\mathrm{RD}}\) & Data Delay From \(\overline{\text { READ }}{ }^{[2]}\) & & 300 & & 200 & ns \\
\hline \(t_{\text {dF }}\) & \(\overline{\text { EEAD }}\) to Data Floating & 25 & 125 & 25 & 100 & ns \\
\hline \(\mathrm{t}_{\mathrm{RV}}\) & Recovery Time Between READ and Any Other Control Signal & 1 & & 1 & & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

Write Cycle:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{2}{|c|}{8253} & \multicolumn{2}{|c|}{8253-5} & \multirow[b]{2}{*}{UNIT} \\
\hline & & MIN. & MAX. & MIN. & MAX. & \\
\hline \({ }^{\text {taw }}\) & Address Stable Before WRITE & 50 & & 30 & & ns \\
\hline twa & Address Hold Time for WRITE & 30 & & 30 & & ns \\
\hline \({ }_{\text {tww }}\) & WRITE Pulse Width & 400 & & 300 & & ns \\
\hline \(t_{\text {bw }}\) & Data Set Up Time for \(\overline{\text { WRITE }}\) & 300 & & 250 & & ns \\
\hline two & Data Hold Time for \(\overline{\text { WRITE }}\) & 40 & & 30 & & ns \\
\hline \(t_{\text {R } V}\) & Recovery Time Between WRITE and Any Other Control Signal & 1 & & 1 & & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

Notes: 1. \(A C\) timings measured at \(\mathrm{VOH}_{\mathrm{O}}=2.2, \mathrm{~V}_{\mathrm{OL}}=0.8\)
2. Test Conditions: 8253, \(C_{L}=100 \mathrm{pF} ; 8253-5: C_{L}=150 \mathrm{pF}\).

\section*{Write Timing:}


\section*{Read Timing}


Input Waveforms for A.C. Tests:


Clock and Gate Timing:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{2}{|c|}{8253} & \multicolumn{2}{|c|}{8253-5} & \multirow[b]{2}{*}{UNIT} \\
\hline & & MIN. & MAX. & MIN. & MAX. & \\
\hline \({ }^{\text {t cLk }}\) & Clock Period & 380 & dc & 380 & dc & ns \\
\hline tpwh & High Puise Width & 230 & & 230 & & ns \\
\hline \(\mathrm{t}_{\text {PWL }}\) & Low Pulse Width & 150 & & 150 & & ns \\
\hline \({ }_{\text {t }}^{\text {G }}\) W & Gate Width High & 150 & & 150 & & ns \\
\hline \(\mathrm{t}_{\mathrm{GL}}\) & Gate Width Low & 100 & & 100 & & ns \\
\hline tGs & Gate Set Up Time to CLK \(\uparrow\) & 100 & & 100 & & ns \\
\hline \(\mathrm{t}_{\mathrm{GH}}\) & Gate Hold Time After CLK \(\uparrow\) & 50 & & 50 & & ns \\
\hline tod & Output Delay From CLK \(\downarrow^{[1]}\) & & 400 & & 400 & ns \\
\hline todg & Output Delay From Gate \({ }^{\text {[1] }}\) & & 300 & & 300 & ns \\
\hline
\end{tabular}

Note 1: Test Conditions: 8253: \(C_{L}=100 \mathrm{pF}\); 8253-5: \(C_{L}=150 \mathrm{pF}\).



0.77

0677
06.77
\(1310 * A=E E T I N G\) OF OLOEX MISAFIED
\(1320 * *\)

1340 本
0677
0677
0677
067721 EE O7
\(067 A\) CD FE OS
067 D 21 ES 07
\(06 B O\) CD FG OS
\(06 E 3\) 21 E4 O7
\(06 S 6\) CD FE OS
\(068 \%\)
\(06 \mathrm{O} \quad 3 \mathrm{~A}\) ES 07
068177
0681
065 E 0618
O6EF
OGBF EL 18 O6
0692
0692 EA EZ 07
0695 21．EE O7
069877
0699
\(0699060 A\)
06 E
0698 ■ロ 1806
OGSE
OGOE 11 EE：O7
OGA1 SA E1 O7
\(06 A 4\) EE
\(06 A 577\)
\(0 G A 6 E E\)
\(06 A 7\)

\(06 A A\)
\(0 G A A E B\)
OGAB こ1 E4 O7
OGAE Cロ OS OG
OGE1
\(0681 \quad 0606\)
OGEB
OGES ED 1G OG
\(06 E 6\)
06 B 6 EB
OGE7 CD FE OS
\(06 \mathrm{EA} \Xi \mathrm{A} E O 07\)
O6E［I 77
OGEE
OGEE EB
OGBF ED OS 06
0612
06 O O6 OA
0604
06 EL 巨L 1806
0607
\(06 E 7 \mathrm{~EB}\)
OGCS TL FE OS
\(0 E E \mathrm{E}\) 3A DF 07
OGCE 77
OGOF
OGEF EE

15SO * NOTE LONVEFT TIME TO EINARY
\(1560 *\) ZERI T1, T2. AND TS
1370 SETIME LI HL,TB
390 LI HLT.
EALL ZERO4
HL, TI
ERO14
(TJMET)
\(1460 *\) EET MULLT TG 24
1470 LII B,24D
\(1480 *\) cALL MLTADI FGR T
1500 * SET TZ TO TEN HF
1.10 LLD A, (TIMEG)
\(1500 \quad \operatorname{Ln} \quad(H L), A\)
1550 LП E, 10 חI
\(1560 *\) CALL MLTADD FOF T2
1570 EALI MLITALI
1560 * SET TG TO HF
\(1500 \quad\) LD \(\quad A,(T I M E S)\)
1610 EX DE,HL
LII (HL.), A
ALI (TB TO T2)
CALL AnII
                                EX IUE,HL
                                LD HL,TI
                                GALL ADD
                                LI E, \(6 H\)
                                    CALL MLTADI
                                    EX DE,HL
                                    CALL ZEFO4
                                LI A, (TIME4)
                                ADII (T2 TO T1)
                                EX DE,HL
                                    ADL
                                    LI B,10L
                                    CALL MLTADI
                                    EX DE,HL
                                    CALL ZEFIOI
                                    LI (HL),A
                                    EX [E,HL



\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0755 & & & 3470 & * . 5 & Stop TI & IME & \\
\hline 0705 & SE & & 3480 & & LII & A, OBH & \\
\hline 07 D 7 & [S & & 3490 & & OUT & EEH, A & \\
\hline 0709 & & & 3500 & * . R & RETURN & WITH NO & ERROR \\
\hline 07n9 & 3 E & 00 & 3510 & & LI & A, OOH & \\
\hline 07DB & 19 & & 3520 & & RET & & \\
\hline 070.: & & & 3530 & * ENLI & If & & \\
\hline 0700 & & & 3540 & TIMEO & O LIC & 0 & \\
\hline O7n0 & & & 3550 & TIME1 & 1 DC & 0 & \\
\hline 00 & & & & & & & \\
\hline OTIE & & & 3560 & TIMEZ & 2 DC: & 0 & \\
\hline 00 & & & & & & & \\
\hline O7DF & & & 3570 & TIMES & 3 Lic & 0 & \\
\hline 00 & & & & & & & \\
\hline OTEO & & & 3580 & TIME4 & 4 LC: & 0 & \\
\hline 00 & & & & & & & \\
\hline O7E1 & & & 3590 & TIMES & 5 DC & 0 & \\
\hline 00 & & & & & & & \\
\hline OTE2 & & & 3600 & timeg & 6 DC & 0 & \\
\hline 00 & & & & & & & \\
\hline O7ES & & & 3610 & TIME7 & 7 [0. & 0 & \\
\hline 00 & & & & & & & \\
\hline 0764 & & & 3620 & T1 & Ds & 4 & \\
\hline OTES & & & 3630 & T2 & LS & 4 & \\
\hline O7EC & & & 3640 & T3 & DS & 4 & \\
\hline 07FO & & & 3650 & ESH & EQU & OEOH & \\
\hline 07FO & & & 3660 & E9H & EQU & OEIH & \\
\hline O7FO & & & 3670 & EAH & EQu & OE2H & \\
\hline 07FO & & & 3680 & EBH & EQU & OESH & \\
\hline 07FO & & & 3690 & ECH & EQU & OE4H & \\
\hline O7FO & & & 3700 & EDH & EQU & OESH & \\
\hline 07Fo & & & 3710 & EEH & EQU & OEGH & \\
\hline O7FO & 3 E & 04 & 3722 & CALL & LD & \(\mathrm{A}, \mathrm{O} 4 \mathrm{H}\) & \\
\hline 07F2 & [3 & EG & 3724 & & OUT & EEH, A & \\
\hline 07F4 & CL 7 & 77 06 & 3790 & & CALL & SETIME & \\
\hline 07F7 & FE & 00 & 3740 & & CF & 0 & \\
\hline 07F9 & C2 & FL 07 & 3750 & & , P & NZ, ER & \\
\hline O7FC & E7 & & 3760 & & RST & 0 & \\
\hline O7FD & c.7 & & 3770 & ER & RET & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
READY \\
LTABL
\end{tabular} & & & & & & & \\
\hline ADC & 0605 & AIDA & O60A & Andin & 0607 & CALL & 07FO \\
\hline ESH & OOEO & E9H & OOE1 & EAH & OOE2 & EBH & OOES \\
\hline ECH & OOE4 & EDH & OOES & EEH & OOES & ER & O7FD \\
\hline FL & 07E1 & HF & 0766 & His & 0743 & H02 & 9745 \\
\hline HG3 & 075B & LF & O7AD & LG & O7EA & L02 & 0794 \\
\hline L03 & 07A2 & Mltada & 0624 & MLTADI & 0613 & ill & 661A \\
\hline MOVE4 & 0637 & movea & 0638 & MOVEN & 0639 & SETIME & 0677 \\
\hline SETN & OSFC & SHFT 1 & 064 C & SHFTR & 0643 & SHFTRE & 0655 \\
\hline SHFTFiN & 064A & SUE & 0664 & SUBA & 0669 & SURN & 0666 \\
\hline T1 & 07E4 & T2 & O7ES & T3 & OTEC & TEMP & 062 F \\
\hline TIMEO & O7DC: & TIMEI & 070n & TIME2 & O7LE & TIMES & 07nF \\
\hline TIME4 & O7EO & TIMES & OTE1 & TIMEG & OTE2 & TIME 7 & 97E3 \\
\hline ZERO4 & OSFS & ZEROA & OSFD & ZERON & OSFA & & \\
\hline FILE & 3000 & 4DつF & & & & & \\
\hline
\end{tabular}
```

10 A=14*16
20 IO=INF(A)
30 I1=INF(A+1)
I2=INF(A+2)
IS=INF(A+S)
60 I9=INF (A)
70 IF IO=IG THEN EO ELSE 20
B0 TO=((64*3)*I3)+((64*2)*I2)+(64*I1)+I0
90 T1=INT(TO/(3600*24))
100 T9=T0-(T1*3600*24)
110 T2=INT (T9/3600)
120 TB=T9-(T2*3600)
130 T3=INT (TE/60)
140 T4=TS-(T3*60)
15O PRINT "DAY OF YEAR IS ";%3I;T1
160 \# "HOUR IE ";%2I;T2
170 \# "MINUTE IS ";%2I;TS
180 \# "SECOND IS ";%2I;T4
1%0 5TOF
200 DIIT A+G,12E
210 END

```

100 REM INITIALIZE THE COUNTER CONFIGURATION
\(110 \mathrm{~A}=14 * 16\)
120 FEM INFUT OF CTFS \(=1 \mathrm{MHZ}\)
130 REM GATE OF CTRE=PROG
140 OUT \(A+4,(1 * B)+1\)
150 OUT \(A+3,(1 * 8)+1\)
160 OUT \(A+2,(1 * 8)+1\)
170 REM TURN GATES DFF
180 OUT \(A+5,0\)
190 REM SET CTRS \(0-2\) TO MODE 2
200 OUT \(A+B+0,(0 * 64)+(3 * 16)+(2 * 2)+0\)
210 OUT A \(A+8+0,(1 * 64)+(3 * 16)+(2 * 2)+0\)
220 DUT A \(+8+0,(2 * 64)+(3 * 16)+(2 * 2)+0\)
230 REM LGAD CTRS WITH IATA
\(240 \mathrm{D}=255\)
250 OUT \(A+B+3, n\)
260 OUIT \(A+B+3, D\)
270 OUT \(A+B+2,11\)
280 OUT \(A+S+2, D\)
290 OUT \(A+B+1, D\)
300 DUT A+E+1,D
310 REM INFUT OF CTR 2=LTR 1
320 DUT A \(4,(1 * 8)+6\)
330 REM INFUT OF CTR \(1=\) CTR O
340 OUT A +3 , (1*B) +5
350 REM WAIT FOR INFUT TO START COUNTING
360 INPIJT I
370 REM START COUNTERS
380 OLIT A+5,7
39O REM WAIT FOR INPUT TO STOP COUNTING
400 INPIIT I
410 REM STOP COUNTERE
420 OUT A+5,0
430 REM REAL COUNTERS
\(440 \mathrm{LO}=\mathrm{INF}(\mathrm{A}+\mathrm{B}+3)\)
\(450 \mathrm{HO}=\mathrm{INF}(A+E+3)\)
\(460 \mathrm{~L} 1=\mathrm{INF}(\mathrm{A}+\mathrm{B}+2)\)
\(470 \mathrm{H} 1=1 \mathrm{NF}(A+B+2)\)
\(480 \mathrm{~L} 2=\operatorname{INP}(A+B+1)\)
\(490 \mathrm{H} 2=1 \mathrm{NP}(\mathrm{A}+\mathrm{E}+1)\)
500 REM DISPLAY TIME
\(510 \mathrm{~T} 2=\mathrm{L} 2+\left(256 * \mathrm{H}_{2}\right)\)
\(520 \mathrm{~T} 1=\mathrm{L} 1+(256 * \mathrm{H} 1)\)
\(530 \mathrm{TO}=\mathrm{LO}+(256 * \mathrm{HO})\)
\(540 \mathrm{~T}=\mathrm{TO}+(((256-2)-1) * T 1)+((((256 \cdots 2)-1) \cdots 2) * T 2)\)
550 PRINT T/1000000,"SECONDS"
560 END
```

1.0 A=14*16
20 DIIT A+4,E
30 DUIT A+E, 4
40 DUIT A+6,128+3
50 IO=INF(A+4)
60 GINELIE 1000
70 IF IO=1 THEN SO
B0 IO=INP(A+4)
SO GOSUE 1000
100 IF IO=0 THEN BO
105 ULIT A+B,12B+4S
110 M=2
115 I|IT A+5,0
120 [11T A+B+1,255
122 GIIT A+S+1,255
126 IF M=0 THEN 136
12S IIIT A+G,1
130 B|IT A+5,4
1:2 OUTT A+5,0
134 IIIT A+G,M+1
155 GOTG 145
136 DIIT A+G,2
136 OUT A+5,4
140 OUIT A+5,O
142 OLIT A+G,1
145 OUIT (A+5),4
150 0=0
155 6051,B 1200
160 IO=INF (A+4)
1.70 GOSUE 1000
180 IF IO=1 THEN 160
190 IO=INP(A+4)
200 GOSLIB 1000
210 IF IO=0 THEN 190
220 IF G=0 THEN 250
230 FRINT "DVERFLOW"
2G5 GIIT A+6,3
240 M=2
242 F=0
244 BOTO 115
250 II=INF(A+E+1)
260 I 2=INP (A+B+1)
270 IF II=0 THEN 2GO ELSE 400
200 IF I2=0 THEN 200 ELSE 400
290 IF M=0 THEN M=3
300 M=M-1
310 OUTT (A+G),M+1
320 F=0
330 GOTO 115
400 [0=I1+(25G*I2)
410 F=[0*(10%M)
420 IF I2512 THEN 44%
4%0 IF M=0 THEN 445
440 M=M-1
441 GOTO 445
442 IF I2<50 THEN 445
4 4 3 ~ I F ~ M = 2 ~ T H E N ~ 4 4 5 ,
444 M=M+1
445 GIIT A+5,O
446 DUIT A+6,M+1.
447 GIUT A+5,4

```

450 GOTO 115
1000 FGF \(N=7\) TG 5 STEF - 1
1010 IF \((2 \cdots N)<(I O+1)\) THEN \(I 0=I 0-(2 \times N)\)
1020 NEXT N
1030 I9=10
1040 IF IOC1E THEN IO=O ELSE IO=1
1050 FOR \(N=4\) TG 3 STEF -1
1060 IF \((2 \times N)<(I 9+1)\) THEN \(I 9=I \%-(2 \times N)\)
1070 NEXT N
1080 IF 154 THEN \(\mathrm{O}=1\)
1090 RETIJFN
1200 IF \(F=1000000\) THEN 1300
1210 IF \(F=1000\) THEN 1280
1220 FRINT \%BI,F, "HZ"
1230 RETURN
\(12 B 0\) FFINT \%EF4,F/1000, "KHZ"
1290 GOTO 1230
1300 FRINT \%BF4,F/1000000, "MHZ"
1310 GOTO 1230
3000 OUT 2,24
3010 OUT \(1,128+31\)
3020 OUT \(1,255-32\)
\(30: 30\) STOF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 5547 & & & & & 0100 & れれか I & I／RTE：MLI & USIC RGIITINES VEREION 1．0 \\
\hline 5900 & & & & & 0110 & & DRIS & 5900 H \\
\hline 0900 & & & & & 0115 & & ET & 90 OH \\
\hline 0900 & 31 & EF & OF & & 0120 & INIT & LID & EF，STACK \\
\hline 0903 & \(3 E\) & FF & & & 0130 & & LD & A，OFFH MASK INTERRUFTS \\
\hline 0905 & 11：3 & \(E 1\) & & & 0140 & & DUT & OEIH，A \\
\hline 0907 & \(3 E\) & 84 & & & 0150 & & LII & \(A, 84 H\) FESET INT ACKNOWLEDGE \\
\hline 0909 & ［3 & \(E 6\) & & & 0160 & & OUIT & OE． \(6 H, A\) \\
\hline O908 & BE & 00 & & & 0170 & & LD & \(A, O\) \\
\hline 0900 & 1.3 & EG & & & 0180 & & DLIT & OEGH，A \\
\hline 090F & 3 E & 08 & & & 0190 & & LD & \(A, O B H\) SET INT TO BASE LEVEL \\
\hline 0911 & as & EO & & & 0200 & & OUT & OEOH，A \\
\hline 0913 & \(3 E\) & IF & & & 0210 & & LII & A OHFH SET MASK TO ALLOW LEVEL 2 \\
\hline 0915 & 32 & 2A & OD & & 0215 & & LII & （ELRMSK），A \\
\hline \(0 \% 18\) & LS & E1 & & & 0220 & & OLIT & OE：1H，A \\
\hline 091 A & BE & OF & & & 0230 & & LII & A，OFH HIIH BYTE DF INTERRUPT ADDRESS \\
\hline 091 L & EII & 47 & & & 0240 & & LD & I，A SET INT MIIE 2 \\
\hline O91E & EI & \(5 E\) & & & 0250 & & IM & 2 \\
\hline 0920 & 5 & 23 & 09 & & 0260 & & IF & EASEC：INTEFIRIPTS NOW INITIALIZED \\
\hline 0923 & & & & & 0270 & STALK & \(\times\) EQU & OFEFH \\
\hline 0923 & \(3 E\) & \(F \mathrm{E}\) & & & 0280 & BASEL： & －LII & A，OFEH INITIALIZE PROGRAMMAELE GATES OFF \\
\hline 0925 & 32 & 15： & OL & & 0290 & & LII & （PIATES），A \\
\hline 0928 & IS & E5 & & & 0300 & & GUT & OESH，A \\
\hline 092A & BE & 09 & & & 0310 & & LII & A，OFH INIT ELDIEK AND DATE SOUREES \\
\hline 092С & пS & E2 & & & 0320 & & OUT & OEZH，A \\
\hline 092 E & ［13 & \(E 3\) & & & 0330 & & QuIT & OESH，A \\
\hline 0930 & 13 & E4 & & & 0340 & & GUIT & OE4H，A \\
\hline 0932 & \(3 E\) & 36 & & & 0350 & & LIL & A， \(36 H\) INIT COUNTERE \\
\hline 0934 & 13 & ES & & & 0360 & & QUIT & OEEH，A \\
\hline 0936 & 3E & 76 & & & 0370 & & LII & A， 76 H \\
\hline 0938 & ［13 & EE & & & 0380 & & OLIT & OESH，A \\
\hline 093A & \(3 E\) & \(E 6\) & & & 0390 & & LII & A，OB6H \\
\hline 096 & IS & E8 & & & 0400 & & GUT & OEBH，A \\
\hline 093E & Dn & 21 & 00 & OD & 0410 & & LII & IX，BASE SET LIP INDEX TO ALL BYTES \\
\hline 0942 & 2 A & 215 & OLI & & 0420 & & LII & HL，（PIECE）INIT LOCATION OF MLSIC COMMANDS \\
\hline 0945 & EII & 4B & 27 & On & 04：0 & & LII & EC，（FLAGS）INIT FLAGS \\
\hline 0949 & 11 & 00 & OE & & 0440 & & L．I & LE，FFEQLU INIT NOTE－TQ－COUNT XLATE TAELE PTI \\
\hline 0941 & FB & & & & 0450 & & EI & \\
\hline 094 L & ILI & ［22 & OE & & 0460 & LOIOF & CALL & INKEL LOOK FOFE STOP（SPACE EAR） \\
\hline 0950 & FE & AO & & & 0470 & & CF & OAOH \\
\hline 0952 & CA & E2 & 09 & & 0480 & & JF & Z，STOF \\
\hline 0955 & 7E & & & & 0490 & & LIL & A，（HL）DET EOMMAND \\
\hline 0956 & \(E 6\) & 03 & & & 0500 & & AND & OSH \\
\hline 0\％58 & DL & 21 & FF & 0 O & 0510 & & LII & IX，EASE－1 \\
\hline 0950 & Un & 23 & & & 0520 & LFI & INC： & IX SET INDEX TO CMD＊S TIMER BITS \\
\hline \(0 \%\) EE & 3 I & & & & 0530 & & DEE & A \\
\hline 0\％GF & C2 & 515 & 09 & & 0540 & & UF＇ & NZ，L．P1 \\
\hline 0962 & 口1］ & CB & Oп & 46 & 0550 & & BIT & O，（IX＋RDYO－BASE）WAIT TILL PREV．NOTE PASSE \\
\hline 0966 & 12 & 4D & 09 & & 0560 & & IF & \(N Z . L D O P\) \\
\hline 0969 & 7E & & & & 0570 & & LII & \(A\) ，（HL）RDY FOR THIS NEW EMD \\
\hline O96A & CE & 77 & & & 0580 & & EIT & \(6 . A\) SET UP GATE（NOTE OR REST） \\
\hline 0960 & \(\underline{\square}\) & 76 & 09 & & 0590 & & ，IF & NZ，B1 \\
\hline 096F & nL & EE & 04 & EE & 0600 & & FEE & 1，（IX＋MNXTO－EASE） \\
\hline 0973 & 13 & 7A & 09 & & 0610 & & ．IF & B2 \\
\hline 0976 & In & CB & 04 & CE & 0620 & E1 & SET & 1：（IX＋MNXTO－BASE） \\
\hline \(097 A\) & C： B & 6 6 & & & 06.30 & B2 & BIT & \(5, A\) \\
\hline 0976 & C2 & 86 & 09 & & 0640 & & UF＇ & NZ，ES \\
\hline 097F & ［1］ & EE & 04 & 86 & 0650 & & RES & O，（IX＋MNXTO－BASE） \\
\hline 0983 & C： & BA & 07 & & 0660 & & ．IF & E4 \\
\hline 0986 & ［1］ &  & 04 & 16 & 0670 & B3 & SET &  \\
\hline O9EA & CE & OF & & & 0680 & B4 & FREC． & A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0986 & & OF & & 0690 & & RFE: & A get lengit or time of note (rest) \\
\hline Osse & EG & 07 & & 0700 & & ANL & O7H \\
\hline 0990 & FE & 00 & & 0710 & & CF & O IF LENGTH \(=0\), DIONE \\
\hline 0952 & CA & E2 & 09 & 0720 & & .IF & Z, STOF \\
\hline 0995 & 47 & & & 0730 & & LD & B, A \\
\hline 0996 & 3E & 80 & & 0740 & & LD & \(\mathrm{A}, \mathrm{BOH}\) \\
\hline 0998 & CB & 07 & & 0750 & LF2 & RLC & A convert lengit code to a real valiue \\
\hline 0\%\%A & 05 & & & 0760 & & IEC & B \\
\hline 099B & C2 & 98 & 09 & 0770 & & UP & NZ, LFZ \\
\hline 09\%E & Da & 77 & 01 & 0780 & & LD & ( IX+BTLENO-BASE), A \\
\hline 09A1 & DL & CE & 04 4E & 0790 & & BIT & 1, (IX+MNXTO-BASE) \\
\hline 09A5 & CA & B6 & 09 & 0800 & & .IP & Z , BS IF NOT A REST, THEN: \\
\hline 09AS & 23 & & & 0810 & & INC & HL \\
\hline 09A9 & 7E & & & 0820 & & LD & A, (HL) GET NOTE NUMBER \\
\hline 09AA & CB & 07 & & 0830 & & RLC & A \\
\hline OFAC & 5 F & & & 0840 & & LD & e, a translate to counter values \\
\hline 09AD & 1 A & & & 0850 & & LD & A, (DE) AND GET READY \\
\hline OFAE & DI & 77 & 13 & 0860 & & LD & (IX F FNXTHO-BASE), A \\
\hline 0981 & 13 & & & 0870 & & INC & DE \\
\hline 0982 & 1 A & & & 0880 & & LD & A, (DE) \\
\hline 0983 & DO & 77 & 10 & 0990 & & LD & ( IX+FNXTLO-BASE), A \\
\hline 0986 & 23 & & & 0900 & ES & INC & HL \\
\hline 0087 & Da & CB & 04 EG & 0910 & & SET & 4, (IX +NNXTO-BASE) FLAG NEW NOTE \\
\hline 098B & DII & CB & on ct & 0920 & & SET & O, (IX+RDYO-BASE) SET READY \\
\hline 02BF & c3 & 4 D & 09 & 0930 & & UP & LOOF \\
\hline 0902 & c7 & & & 0940 & STOP & RST & \(\bigcirc\) \\
\hline 0903 & & & & 0945 & **** & ***** & *************************** \\
\hline 0903 & F5 & & & 0950 & INT2 & Fush & AF TIMER INTERRUPT ROUTINE (1 MILLISECOND) \\
\hline 0904 & 3A & 29 & OL & 0960 & & LII & A, (CURLEV) SAVE INTERRUPTED LEVEL \\
\hline 0907 & FS & & & 0970 & & FUSH & AF \\
\hline 0908 & \(3 E\) & 02 & & 0975 & & LD & A,O2H TELL CONTROLLER THIS LEVEL \\
\hline 090. & [3 & EO & & 0980 & & OUT & OEOH, A \\
\hline 000 c & 32 & 29 & OD & 0990 & & LD & (CURLEV), A \\
\hline 090F & FB & & & 1000 & & EI & \\
\hline 09DO & 3 A & 23 & OL & 1010 & & LD & A, (MSCNT) INCREMENT MILLISECONL COUNTER \\
\hline 09 n & 3 C & & & 1020 & & INC: & \\
\hline 0914 & 32 & 23 & OL & 1030 & & LD & (MSCNT), A \\
\hline 0917 & c5 & & & 1040 & & Push & BC: \\
\hline ogne & 47 & & & 1050 & & LII & B, A \\
\hline 0909 & 3A & 1F & OL & 1060 & & LD & \(A, ~(B K C N T)\) \\
\hline osnc: & ES & & & 1070 & & CP & B \\
\hline 09011 & C2 & Fo & 07 & 1080 & & . IP & NZ, I2A \\
\hline O\%EO & SA & 20 & on & 1090 & & LII & A. (IFLAG) \\
\hline 09 E 3 & E 6 & Os & & 1100 & & AND & BKACTN \\
\hline O9E5 & CA & FO & 09 & 1110 & & .JF' & \(\mathrm{Z}, 12 \mathrm{~A}\) \\
\hline O9ES & 3 A & 20 & OD & 1120 & & LD & A, (IFLAG) \\
\hline OSEE & F6 & 04 & & 1130 & & Of & BREAKI \\
\hline OFED & 32 & 20 & OD & 1140 & & LD & ( IFLAG), A \\
\hline OFFO & 3 A & 10 & On & 1150 & 12A & LI & A, (BTTIME) DECREMENT COUNTER OF MSEC/BEAT \\
\hline 09F3 & 3 I & & & 1160 & & DEC & A \\
\hline 09F4 & 32 & 1 L & on & 1170 & & LD & (ETTIME), A \\
\hline 09F7 & C2 & 1F & OA & 1180 & & .IP & NZ, I2B IF ONE BEAT ' \(¢\) TIME ( \(1 / 64 \mathrm{TH}\) NOTE) \\
\hline OFFA & 3A & 24 & OL & 1190 & & LII & A. (EEAT) \\
\hline OFFI & 32 & 11 & OLI & 1200 & & LI & (BTTIME), A \\
\hline 0 OAOO & 3 A & 22 & On & 1210 & & LII & \(A\), (BTCNT) THEN INCREMENT REAT COUNTER \\
\hline OA03 & 3C. & & & 1220 & & INC: & A \\
\hline \(0 \mathrm{OO4}\) & 32 & 22 & On & 1230 & & LD & (BTCNT), A \\
\hline 0407 & 47 & & & 1240 & & LII & \(B, A\) \\
\hline 0 AOS & 3 A & 21 & OLI & 1250 & & LIL & A, (INTCNT) INTCNT=BEAT COUNT OF NEXT NOTE \\
\hline OAOB & Es & & & 1260 & & CP & B \\
\hline OAOC & C2 & 1 F & OA & 1270 & & .IP & \(\mathrm{NZ}, \mathrm{I} 2 \mathrm{~B}\) \\
\hline OAOF & 3 A & 20 & OD & 1280 & & LD & A. (IFLAB) \\
\hline OA12 & E6 & 10 & & 1290 & & ANDI & INTACN \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline OAA2 & 02 & 76 & 0 A & & 1640 & & ． 1 F & \(N Z, E F E O\) & \\
\hline OAAS & ［11 & E1 & & & 1850 & & POF & IX & \\
\hline OAA7 & EB & 4 A & & & 1860 & I 4 A & EIT & 1，［1 & \\
\hline OAA & EA & 40 & OE & & 1870 & & ．1F & Z，IAE & \\
\hline OAAC： & nri & E & & & 1890 & BEET & FUEH & IX & \\
\hline OAAE & DIL & 21 & 00 & 0 O & 1890 & & 1．［1］ & IX，BASE SET UF INDEXTINT & \\
\hline OAB2 & 1E & 05 & & & 1900 & & LII & E， 3 & \\
\hline OAE4 & III & 7E & OA & & 1910 & EEATO & LEI & A）（IX＋ETCNTO－EASE） & \\
\hline OAB7 & E＇ & & & & 1920 & & EF & I：EEAT FEALIY FGFi CUFFENT GOUNTER？ & \\
\hline OAES & E2 & 45 & OB & & 1930 & & ．IF & NZ，EEAT 1 & \\
\hline OABE & DL & EE & 07 & 4E & 1940 & & EIT & 1．（ \((1 X+M O D E O-B A E E)\) & \\
\hline OABF & EA & \(E 2\) & OA & & 1950 & & UF＇ & Z，BEATS & \\
\hline \(0 \mathrm{AC2}\) & Dr． & EE & 07 & 46 & 1960 & & EIT & O，（ \(I X+\) MODEO－EASE） & \\
\hline OAL： 6 & E2 & E2 & OA & & 1970 & & If & NZ，BEATE & \\
\hline OAC： & 7E & & & & 1980 & & LII & \(A, B\) & \\
\hline OACA & \(\underline{6}\) & 10 & & & 1970 & & ADID & 20 & \\
\hline OAEC & LIM & 77 & \(1 . F\) & & 2000 & & L．D & （IX＋BKCNT－BASE），A & \\
\hline OACF & DII & EB & 07 & ［16 & 2010 & & EET & 2 ，（IX＋MOLEO－BASE） & \\
\hline OAns & IIL & LE & 07 & 9 E & 2020 & & FES & 3 （（IX＋MODEO－BASE） & \\
\hline OAD7 & 三A & 20 & OLI & & 2022 & & LII & \(A,(\) IFLALI） & \\
\hline OADA & EE & IF & & & 2024 & & SET & \(\because, A\) & \\
\hline OALIL： & 32 & 20 & 0 O & & 2026 & & LD & （IFLAL），\(A\) & \\
\hline OADF & E & 45 & OB & & 2080 & & IF & BEATI & \\
\hline OAE2 & \(\square 1\). & E：E & OL & 46 & 2040 & BEAT 3 & EIT & O，（IX＋RDYO－EASE）YEE．NDTE SET UF\％ & \\
\hline OAE6 & CA & SD & OB & & 2050 & & ．IF & \(Z, B E A T 2\) & \\
\hline OAE 9 & no & CE & OLI & 86 & 2060 & & REE & O，（IX＋RDYO－BASE）YES TAKE NOTE & \\
\hline OAED & DIL & 7E & 10 & & 2070 & & LEI & A，（IX F FNXTLO－EASE） & \\
\hline OAFO & 0 O & 77 & 16 & & 2080 & & LII & （IX＋FREDLO－BAEE），A & \\
\hline OAFS & LIL & \(7 E\) & 13 & & 2090 & & LII & \(A\) ，（IX＋FNXTHO－EASE） & \\
\hline OAF6 & ［III & 77 & 19 & & 2100 & & LTI & （ I＋FFEQHO BASE），A & \\
\hline OAF＇ & num & 7E & 04 & & 2110 & & L．II & \(A\) A \(\leq X+M N X T O-B A S E)\) & \\
\hline OAFE & DII & 77 & 07 & & 2120 & & LII & （ I \((+\mathrm{MOLE}\) O－BASE），A & \\
\hline OAFF & LIM & 7E & 01 & & 2130 & & LII & A，IX＋ETLENO－EASE） & \\
\hline OFO2 & E1 & & & & 2140 & & ALIE & \(\because\) GALEILATE EDUNT WHEN NGTE EHIMII EE & LIINE \\
\hline OROS & DIL & 77 & OA & & 2150 & & LD & （ I Y＋ETCNTO－EASE），A & \\
\hline 0806 & ［III & E：B & 07 & LIE & 2160 & & SET & \(3,(I X+M D D E O-B A S E)\) & \\
\hline OBOA & DIL & CE & 07 & 4E & 2170 & & EIT & 1．（IX＋MOLEO－BASE） & \\
\hline OBOE & CA & EA & OB & & 2180 & & IF & \(Z\) ，BEAT 4 & \\
\hline OE11． & DLI & EE & 07 & 46 & 2190 & & EIT & \(O_{2}\)（ \(T X+\) MOLIEO－BASE） & \\
\hline OE15 & Ez & 三A & OE & & 2200 & & ，IF & NZ，BEAT4 & \\
\hline OR1E & ［IL & 7E & OA & & 2210 & & LD & \(A_{2}(I X+\) BTCNTO－EASE） & \\
\hline OE1E & ［16 & 01 & & & 2220 & & SU13 & 1 & \\
\hline OE10 & III & 77 & OA & & 2225 & & LIL & （ IX B ETCNTO－EASE），A & \\
\hline OE2O & E 9 & & & & 2200 & & EF & C & \\
\hline OB21 & 12 & 3 A & OE & & 2240 & & ．IF & NZ，BEAT4 & \\
\hline OE24 & 78 & & & & 2250 & & LII & \(A, E\) & \\
\hline OB2S & ct & 10 & & & 2260 & & ADD & 20 & \\
\hline OB27 & 22 & 1 F & 00 & & 2270 & & LII & （EkCNT），A & \\
\hline OB2A & nor & CE & 07 & 9 F & 2280 & & FES & 3 （ \(\mathrm{I} X+\) MOLEO－EASE） & \\
\hline OE2E & UII & EE & 07 & 16 & 2200 & & SET & 2，（IX＋riODEO－EASE） & \\
\hline OES2 & SA & 20 & OD & & \(22 \% 2\) & & LII & \(A, ~(J F L A S i) ~\) & \\
\hline 6835 & EB & LIF & & & 2294 & & SET & B，A & \\
\hline OES7 & 22 & 20 & OL & & 2296 & & LII & （IFLAM），A & \\
\hline OBEA & \(\underline{6}\) & 45 & OB & & 2800 & BEAT4 & ．IF & BEAT 1. & \\
\hline OESO & ［1L & 7E & 07 & & 2310 & BEAT2 & LII & A（ （ \(X+\) MOLEO－BASE） & \\
\hline OE49 & E6 & F5 & & & 2320 & & AND & OFSH NOTE NOT FEADY．TUFN DFF & \\
\hline OE422 & III & 77 & 07 & & 2830 & & L．M & （IX M M OEO－EASE），A & \\
\hline OE45 & 以LI & 2 z & & & 2340 & BEAT 1 & INC： & IX REFEAT UNTIL．ALL EOUNTERS SERVISEI & \\
\hline 0 E 47 & 1 L & & & & 2350 & & LEE： & \(E\) & \\
\hline OB4E & 12 & B4 & OA & & 2360 & & ．IF & NZ，EEATO & \\
\hline OE4E & ［1］ & E． 1 & & & 2370 & & FOF & IX & \\
\hline OB47 & ［1］ & \(E 5\) & & & 2380 & I 4B & PUSH & IX & \\
\hline OE4F & LIL & 21 & 00 & On & 2990 & & L． D & IX，EASE & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OELI7 & EI & 78 & & 2980 & INK゙1 & IN & \(A,(\mathrm{OOH})\) & & & & \\
\hline OBCO & FE & 00 & & 3000 & & CF & 0 & & & & \\
\hline OBTIE & FA & 57 & OB & 3010 & & ．IF & M，JNK 1 & & & & \\
\hline OBLIE & F6 & 80 & & 8020 & & OR & EOH & & & & \\
\hline OBEO & 09 & & & 3090 & & FET & & & & & \\
\hline SEOO & & & & 3031 & & ORT： & SEOOH UHPIP & HERE & TO TIIRN & INTEFFUIPT & QFF \\
\hline OEOO & & & & 3032 & & ET & OEOOH & & & & \\
\hline OEOO & \(\mathrm{F}=\) & & & 3035 & & 01 & & & & & \\
\hline OEO1 & C7 & & & 3034 & & RET & 0 & & & & \\
\hline 5000 & & & & 3055 & & OFG & 5 EDOOH & & & & \\
\hline OLOO & & & & 3036 & & ST & OLOOH & & & & \\
\hline 0 DOO & & & & 3040 & BASE & пS & 1 & & & & \\
\hline 0 OLO & & & & 3050 & BTLENO & L！ & 3 & & & & \\
\hline 0 mO 4 & & & & 3060 & MNXTO & IB & \(0,0,0\) & & & & \\
\hline 00 & & 00 & 00 & & & & & & & & \\
\hline \(0 \mathrm{mo7}\) & & & & 3070 & MODEO & LIE & \(0,0,0\) & & & & \\
\hline 00 & & 00 & 00 & & & & & & & & \\
\hline ODOA & & & & 3080 & BTENTO & LIE & \(0,0,0\) & & & & \\
\hline 00 & & 00 & 00 & & & & & & & & \\
\hline OLIOM & & & & 3090 & FITYO & LIE & \(0,0,0\) & & & & \\
\hline 00 & & 00 & 00 & & & & & & & & \\
\hline Ondo & & & & 3100 & FNXTLO & LIE & \(0,0,0\) & & & & \\
\hline 00 & & 00 & 00 & & & & & & & & \\
\hline OLIE & & & & 3110 & FNXTHO & DE & \(0,0,0\) & & & & \\
\hline 00 & & 00 & 00 & & & & & & & & \\
\hline OD16 & & & & 3120 & FFEOLO & IE & \(0,0,0\) & & & & \\
\hline 00 & & 00 & 00 & & & & & & & & \\
\hline \(0 \times 19\) & & & & 3180 & FFEQHO & LE & \(0,0,0\) & ． & & & \\
\hline 00 & & 00 & 00 & & & & & & & & \\
\hline Om15： & & & & 3140 & FGATES & LIE & OFEH & & & & \\
\hline FE & & & & & & & & & & & \\
\hline Onin & & & & 3150 & ETTJME & IIB & 2 OH & & & & \\
\hline 20 & & & & & & & & & & & \\
\hline OTIE & & & & 3160 & ETNXT & DE & 15H & & & & \\
\hline 16 & & & & & & & & & & & \\
\hline OmiF & & & & 3170 & EFONT & IEE & 1．8H & & & & \\
\hline 19 & & & & & & & & & & & \\
\hline 0 m 20 & & & & 3180 & IFLAG & LE & 1 OH & & & & \\
\hline 10 & & & & & & & & & & & \\
\hline OL21 & & & & 3190 & INTENT & DE & 0 & & & & \\
\hline 00 & & & & & & & & & & & \\
\hline \(0 \square 22\) & & & & 2200 & ETENT & LS & 1 & & & & \\
\hline OL23 & & & & 3210 & MELCNT & LE & 0 & & & & \\
\hline 00 & & & & & & & & & & & \\
\hline \(0 \square 24\) & & & & 3220 & BEAT & LIE & 2 OH & & & & \\
\hline 20 & & & & & & & & & & & \\
\hline \％m2s & & & & 3230 & FIECE & LIW & 1000 H & & & & \\
\hline 00 & 10 & & & & & & & & & & \\
\hline Oп\％ & & & & 2240 & FLATS & DW & OOOOH & & & & \\
\hline 00 & 00 & & & & & & & & & & \\
\hline OL2\％ & & & & 2250 & FFEOLU & EOU & OEOOH & & & & \\
\hline Oп2\％ & & & & 3260 & OUFLEV & DE & OSH & & & & \\
\hline OE & & & & & & & & & & & \\
\hline Omiza & & & & 3265 & CURTEK & LIE & OFFH & & & & \\
\hline FF & & & & & & & & & & & \\
\hline O以二 & & & & 3270 & EKACTN & EOU & OSH & & & & \\
\hline 0 O 2 B & & & & 2280 & BREAKI & E0II & O4H & & & & \\
\hline Oח\％ & & & & 3250 & BNB & EQLI & O6H & & & & \\
\hline OL2E & & & & 3300 & EFK゙IN & EDII & 94H & & & & \\
\hline OLIEE & & & & 3310 & BEAT I & EQul & O1H & & & & \\
\hline Oח2B & & & & 3320 & INTADN & EDLI & 10 H & & & & \\
\hline 0 OL E & & & & 3580 & OBEATI & E011 & O2H & & & & \\
\hline OL2B & & & & 3340 & BNEN & EDU & OFOH & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 5800 & & & 3950 & ORG & 580 OH \\
\hline 0600 & & & 3355 & ET & BOOH \\
\hline 0800 & & & 3 60 & DE & 77H, \(72 \mathrm{H}, 70 \mathrm{H}, \mathrm{OREH}, 6 \mathrm{AH}, 6 \mathrm{AH}, 64 \mathrm{H}, 71 \mathrm{H}\) \\
\hline 77 & 72 & 70 & BE 6 A & & \\
\hline 6 A & 64 & 71 & & & \\
\hline oede & & & 3370 & THE & \(5 \mathrm{EH}, \mathrm{OEEH}, 5 \mathrm{SH}, 7 \mathrm{CH}, 54 \mathrm{H}, 76 \mathrm{H}, 4 \mathrm{FH}, \mathrm{OEEH}\) \\
\hline \(5 E\) & CE & 59 & 70.54 & & \\
\hline 76 & 4F & Es & & & \\
\hline 0810 & & & 8860 & LIE & \(4 \mathrm{EH}, 3 \mathrm{FH}, 47 \mathrm{H}, 06 \mathrm{H}, 4 \mathrm{SH}, 09 \mathrm{H}, 3 \mathrm{FH}, 46 \mathrm{H}\) \\
\hline 4 B & 3 F & 47 & 0643 & & \\
\hline 09 & SF & 46 & & & \\
\hline 0818 & & & 3390 & DE & \(0,0,0,0,0,0,0,0\) \\
\hline 00 & 00 & 00 & 0000 & & \\
\hline 00 & 00 & 00 & & & \\
\hline 0820 & & & 3400 & T18 & \(3 \mathrm{BH}, \mathrm{OE} 9 \mathrm{H}, 3 \mathrm{BH}, 5 \mathrm{FH}, 3 \mathrm{SH}, 35 \mathrm{H}, 3 \mathrm{ZH}, 3 \mathrm{SH}\) \\
\hline 3 B & E9 & 35 & \(5 F 35\) & & \\
\hline 35 & 32 & 35 & & & \\
\hline 0828 & & & 3410 & ne & \(2 \mathrm{FH}, 67 \mathrm{H}, 2 \mathrm{CH}, \mathrm{OBEH}, 2 \mathrm{AH}, 3 \mathrm{BH}, 27 \mathrm{H}, \mathrm{OLICH}\) \\
\hline 2 F & 67 & 2 c & BE 2 A & & \\
\hline 3 B & 27 & Dic: & & & \\
\hline 0850 & & & 3420 & LIE & \(25 \mathrm{H}, 9 \mathrm{FH}, 2 \mathrm{SH}, 8 \mathrm{SH}, 21 \mathrm{H}, \mathrm{SEH}, 1 \mathrm{FH}, 0 \mathrm{OBH}\) \\
\hline 25 & \(9 F\) & 23 & \(83 \quad 21\) & & \\
\hline 85 & 1F & A3 & & & \\
\hline 0888 & & & 3430 & [18 & \(0,0,0,0,0,0,0,0\) \\
\hline 00 & 00 & 00 & 0000 & & \\
\hline 00 & 00 & 00 & & & \\
\hline 0840 & & & 3440 & DE & \(1 \mathrm{DH}, 0 \mathrm{DHH}, 1 \mathrm{CH}, 2 \mathrm{FH}, 1 \mathrm{AH}, 9 \mathrm{AH}, 1 \mathrm{SH}, 1 \mathrm{CH}\) \\
\hline 1 I & LIT & 10 & \(2 \mathrm{~F} \quad 1 \mathrm{~A}\) & & \\
\hline 5 A & 19 & 10 & & & \\
\hline Os48 & & & 3450 & Le & \(17 \mathrm{H}, \mathrm{OESH}, 1 \mathrm{LH}, 5 \mathrm{FH}, 15 \mathrm{H}, 1 \mathrm{DH}, 1 \mathrm{SH}, \mathrm{OEEH}\) \\
\hline 17 & Es & 16 & EF 15 & & \\
\hline 1 I & 13 & EE & & & \\
\hline 0850 & & & 3460 & DE & \(12 \mathrm{H}, \mathrm{ODOH}, 11 \mathrm{H}, \mathrm{OCJH}, 10 \mathrm{H}, \mathrm{OC} 2 \mathrm{H}, \mathrm{OFH}, \mathrm{OL2} \mathrm{H}\) \\
\hline 12 & [0 & 11. & E1 10 & & \\
\hline 12 & OF & [2 & & & \\
\hline 0858 & & & 3470 & DB & \(0,0,0,0,0,0,0,0\) \\
\hline 00 & 00 & 00 & 0000 & & \\
\hline 00 & 00 & 00 & & & \\
\hline 0860 & & & 3480 & Le & OEH, OEEH, OEH, \(1 \mathrm{BH}, \mathrm{ODH}, 4 \mathrm{DH}, \mathrm{OCH}, 8 \mathrm{EH}\) \\
\hline OE & EE & OE & 13 On & & \\
\hline 45 & OC & SE & & & \\
\hline 0868 & & & 3490 & DB & OEH, OLAH, OBH, \(2 \mathrm{FH}, \mathrm{OAH}, \mathrm{BFH}, 09 \mathrm{H}, \mathrm{OF} 7 \mathrm{H}\) \\
\hline OB & \(\square \mathrm{A}\) & OB & 2F OA & & \\
\hline EF & \(0 \%\) & F7 & & & \\
\hline \(0 ¢ 70\) & & & 3500 & ne & OFH, \(6 \mathrm{SH}, 0 \mathrm{SH}, 0 \mathrm{E} 1 \mathrm{H}, 0 \mathrm{EH}, 61 \mathrm{H}, 07 \mathrm{H}, 0 \mathrm{EFH}\) \\
\hline 09 & 68 & 08 & E1 0s & & \\
\hline 61 & 07 & E9 & & & \\
\hline 0878 & & & 3510 & DB & \(0,0,0,0,0,0,0,0\) \\
\hline 00 & 00 & 00 & 0000 & & \\
\hline 00 & 00 & 00 & & & \\
\hline 0880 & & & 3520 & LIB & \(07 \mathrm{H}, 77 \mathrm{H}, 07 \mathrm{H}, 0 \mathrm{CH}, 06 \mathrm{H}, 0 \mathrm{~A} \mathrm{H}, 06 \mathrm{H}, 47 \mathrm{H}\) \\
\hline 07 & 77 & 07 & O\% 06 & & \\
\hline A7 & 06 & 47 & & & \\
\hline 0868 & & & 3530 & IIB & \(05 H, 0 E D H, O 5 H, 9 E H, 05 H, 47 H, 04 H, 0 F C H\) \\
\hline 05 & E.L & 05 & 9805 & & \\
\hline 47 & 0.4 & FL: & & & \\
\hline 0890 & & & 3540 & LB & \(04 \mathrm{H}, 0 \mathrm{~B} 4 \mathrm{H}, 04 \mathrm{H}, 70 \mathrm{H}, 04 \mathrm{H}, 31 \mathrm{H}, 03 \mathrm{H}, 0 \mathrm{~F} 4 \mathrm{H}\) \\
\hline 04 & B4 & 04 & \(70 \quad 04\) & & \\
\hline 31 & 05 & F4 & & & \\
\hline 0996 & & & 3550 & DE & \(0,0,0,0,0,0,0,0\) \\
\hline 00 & 00 & 00 & 0000 & & \\
\hline 00 & 00 & 00 & & & \\
\hline OSAO & & & 3560 & DE & OSH, ORCH, OSH, \(66 H, 0 \mathrm{HH}, 53 \mathrm{H}, 03 \mathrm{H}, 24 \mathrm{H}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 03 & Er: & 03 & 8603 & & \\
\hline 53 & 03 & 24 & & & \\
\hline OEAS & & & 2570 & DB & O2H, OFGH, O2H, OCLH, OLH, OAAH, O2H, 7 EH \\
\hline 02 & Ft & O2 & 60 02 & & \\
\hline A4 & 02 & 7E & & & \\
\hline OEBO & & & 3580 & DE & \(02 \mathrm{H}, 5 \mathrm{AH}, 02 \mathrm{H}, 3 \mathrm{SH}, 02 \mathrm{H}, 18 \mathrm{H}, \mathrm{O} \mathrm{H}, \mathrm{OFAH}\) \\
\hline 02 & 5 A & 02 & \(36 \quad 02\) & & \\
\hline \(1 \varepsilon\) & 01. & FA & & & \\
\hline 088S & & & 559 & DB & \(0,0,0,0,0,0,0,0\) \\
\hline 00 & 00 & 00 & \(00 \quad 00\) & & \\
\hline 00 & 00 & 00 & & & \\
\hline 0800 & & & 8600 & DE & O1H,ODEH, O1H, OL \(3 \mathrm{H}, 01 \mathrm{H}, \mathrm{OAAH}, 01 \mathrm{H}, 52 \mathrm{H}\) \\
\hline 01 & DE & 01 & 1301 & & \\
\hline AA & 0.1 & 92 & & & \\
\hline oscs & & & 3610 & DB & \(01 \mathrm{H}, 7 \mathrm{BH}, 01 \mathrm{H}, 6 \mathrm{CH}, 01 \mathrm{H}, 52 \mathrm{H}, 01 \mathrm{H}, 5 \mathrm{FH}\) \\
\hline 01 & 7 B & 01 & 6601 & & \\
\hline 52 & 01. & SF & & & \\
\hline 0850 & & & 3620 & LIB & \(01 \mathrm{H}, 2 \mathrm{LH}, 01 \mathrm{H}, 1 \mathrm{CH}, 01 \mathrm{H}, \mathrm{OCH}, 00 \mathrm{H}, \mathrm{OFDH}\) \\
\hline 01 & 20 & 01 & 10.01 & & \\
\hline 0 c & 00 & FD & & & \\
\hline \(08 \square 8\) & & & 3630 & DE & \(0,0,0,0,0,0,0,0\) \\
\hline 00 & 00 & 00 & 0000 & & \\
\hline 00 & 00 & 00 & & & \\
\hline OSEO & & & 3640 & DE & \(\mathrm{OOH}, \mathrm{OEFH}, \mathrm{OOH}, \mathrm{OE} 1 \mathrm{H}, \mathrm{OOH}, \mathrm{ODSH}, \mathrm{OOH}, \mathrm{OOSH}\) \\
\hline 00 & EF & 00 & E1 00 & & \\
\hline [5 & 00 & 69 & & & \\
\hline OSES & & & 3650 & DE & \(\bigcirc \mathrm{OOH}, \mathrm{OBEH}, \mathrm{OOH}, \mathrm{OBSH}, \mathrm{OOH}, \mathrm{OAPH}, \mathrm{OOH}, \mathrm{OFH}\) \\
\hline 00 & EE & 00 & B3 00 & & \\
\hline A\% & 00 & \% & & & \\
\hline O8FO & & & 3660 & DE & \(00 \mathrm{H}, \mathrm{8GH}, 0 \mathrm{OH}, \mathrm{BEH}, \mathrm{OOH}, \mathrm{BLH}, 0 \mathrm{OH}, 7 \mathrm{FH}\) \\
\hline 00 & 96 & 00 & BE OO & & \\
\hline 86 & 00 & 7F & & & \\
\hline OSFE & & & 3665 & Des & \(0 \mathrm{OH}, 77 \mathrm{H}\) \\
\hline 00 & 77 & & & & \\
\hline SFFO & & & 8670 & ORG & SFFOH INTERFUPT ERANCH TABLE \\
\hline OFFO & & & 3675 & ET & OFFOH \\
\hline OFFO & & & 3680 & DW & OOOOH \\
\hline 00 & 00 & & & & \\
\hline OFF2 & & & 3690 & DW & 0 OOOH \\
\hline 00 & 00 & & & & \\
\hline OFF4 & & & 3700 & DW & INT2 \\
\hline Le & 09 & & & & \\
\hline OFFG & & & 3710 & nW & OOOOH \\
\hline 00 & 00 & & & & \\
\hline OFFS & & & 3720 & [iW & INT4 \\
\hline 44 & OA & & & & \\
\hline OFFA & & & 3730 & DW & OOOOH \\
\hline 00 & 00 & & & & \\
\hline OFFC & & & 3740 & DW & OOOOH \\
\hline 00 & 00 & & & & \\
\hline OFFE & & & 3750 & LW & OOOOH \\
\hline & & & & & \\
\hline
\end{tabular}

LTABL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline E. & 0976 & B2 & 0\%7A & B ¢ & 0986 & B4 & 0984 \\
\hline ES & 0056 & BASE & 0 NOO & BASEC & 0923 & EEAT & 0024 \\
\hline BEATO & OAE4 & BEATJ. & \(0 \mathrm{B45}\) & BEAT2 & OBSD & BEATS & OAE2 \\
\hline BEATA & OBSA & BEATI & 0001 & EEEET & OAAC: & BKACTM & 0008 \\
\hline EkTNT & OndF & ENE & 0006 & ENEN & OOF9 & BFEAK & 0874 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EREAKI & 0004 & ERKO & OATC & EFKK 1 & OA\%F & BRKIN & 0004 \\
\hline ETCNT & 0nce & ETIUNTO & OLDA & ETLENO & 0 OOI & ETNXT & OniE \\
\hline ETTIME & 0010 & Curlev & Onc\% & CURMEK & omea & FLAIS & On27 \\
\hline FNXTHO & ons 3 & FNXTLO & \(0 \square 10\) & FFEEHO & O0.15 & FREQLO & OL16 \\
\hline FREELU & 0800 & 12A & 0\%FO & I2E & QAIF & 120: & OA2E \\
\hline J. 4 A & OAA 7 & 14B & 0845 & I 40 & OBPF & I 45 & OBED \\
\hline I 4 E & OBA7 & IFLAİ & 0020 & INIT & 0900 & INK1 & ORLI7 \\
\hline INTEBE & OED2 & INTE & 090 & INT4. & 0 O44 & INTACN & 0010 \\
\hline INTCNT & 0 0 21 & LOOP & 0945 & LF1 & 0955 & LF2 & 0996 \\
\hline MNXTO & \(0 \square 04\) & MODEO & 0 007 & MECNT & 0023 & OBEATI & 0002 \\
\hline OFTO & 0857 & OPT1 & OE6C: & OFT2 & 0 BE 2 & OPT3 & OBE4 \\
\hline OFT4 & OR70 & OPTS & OBES & PGATES & 0 OLC & PIECE & OD2 \\
\hline Finyo & OnOD & STACK & OFEF & ETOF & 0002 & & \\
\hline
\end{tabular}

```

0700 LII A,(EUURLEV)
O710 GIIT OEOH,A TELL GONTFOLLEFF FFEUTOLG LEVEL
O7%O FOF AF FESTDFE ACOUMLILATGR AND FLALE
0730
0740
EI
FET
75O GUFLLEV ME OEH
276O EUIFMEK [IB OOH
0770 END
O7EO * FXAMFLE GF "N" ANII "MILVL" FOR LEVEL 4:
0790 N EWUI 4[I
OEOO MLUL EQU EL
FILE 3000 3023
FEALIY

```

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline O6ES & EII & 0s & 06 & 0720 & & EALL & MES & & \\
\hline OGEE & C3 & 1.7 & 06 & 0730 & & IP & ENTOH1 & & \\
\hline OLEE & 06 & 04 & & 0740 & ENTCH2 & LD & E， 4 & & \\
\hline OGFO & OE & EO & & 0750 & & LD & C．，Ifite & & \\
\hline O6F2 & E．I & 75 & & 0760 & CNTCHS & IN & A，（C） & & \\
\hline O6F4 & E & SF & & 0770 & & AND & 3 FH & & \\
\hline OGFS & FE & 00 & & 0780 & & CF & 0 & & \\
\hline OGFS & C2 & \(0 \%\) & 07 & 0790 & & UP & NZ，CNTCH4 & & \\
\hline OGFE & OL & & & 0800 & & INC & E & & \\
\hline OEFF： & 05 & & & 0810 & & LEC： & B & & \\
\hline O6FD & \(\underline{L}\) & F 2 & 06 & 0820 & & ．IF & NZ，©NTCHE & & \\
\hline 0700 & 21 & 3 B & OB & 0830 & & LD & HL，LSTG S & STATUS ANL RESET O & OK \\
\hline 0703 & EI & 08 & 06 & 0840 & & CALL & MES & & \\
\hline 0706 & C3 & 12 & 07 & 0850 & & ．IF & ENTCHS & & \\
\hline 0709 & 21 & 5 A & OB & 0860 & ENTCH4 & LD & HL，LST10 & RESET FAILIURE & \\
\hline 0700 & CD & 0s & 06 & 0870 & & CALL & MSS & & \\
\hline 070F & ES & 17 & 06 & 0e80 & & ．JF & CNTCH． & & \\
\hline 0712 & ELI & 24 & 06 & 0890 & CNTCHS & CALL & KBD & & \\
\hline 0715 & EE & 20 & & 0900 & & LII & A， 40 & & \\
\hline 0717 & ［13 & Es & & 0910 & & OU． 1 & IRTC＋5 & & \\
\hline 0719 & SE & 40 & & 0920 & & LII & A，40H & & \\
\hline O71E & ［13 & E6 & & 0950 & & OUT & IFTC＋6 & & \\
\hline 071.5 & OE & 48 & & 0940 & & LII & C，48H & & \\
\hline 071 F & LB & EO & & 0850 & CNTCHG & IN & IFTC & & \\
\hline 0721 & FE & 01 & & 0960 & & CP & 1 & & \\
\hline 0723 & CA & 32 & 07 & 0970 & & ． F & Z，ONTCHE & & \\
\hline 0726 & OL & & & 0980 & & LEC & E & & \\
\hline 0727 & C2 & 1 F & 07 & 0990 & & ，IF & NZ，CNTEHE & & \\
\hline 072 A & 21 & 69 & OB & 1000 & CNTCH7 & LD & HL，LST11 & TIME SET FAIllure & \\
\hline 0720 & CL & 08 & 06 & 1010 & & CALL & MES & & \\
\hline 0730 & Le & 57 & 07 & 1020 & & ．IF & ENTCHE & & \\
\hline 0733 & DE & E2 & & 1030 & CNTCHE & IN & IRTC＋2 & & \\
\hline 0735 & FE & 01 & & 1040 & & CP & 1 & & \\
\hline 0737 & C2 & 2 A & 07 & 1.050 & & JF＇ & NZ，ENTCH7 & & \\
\hline 073A & OE & \(4 E\) & & 1060 & & LD & C，48H & & \\
\hline 0785 & DE & EO & & 1.070 & CNTCHS & IN & IRTC： & & \\
\hline 078 E & FE & 02 & & 1080 & & \(\mathrm{CF}^{\mathrm{F}}\) & 2 & & \\
\hline 0740 & CA & 4 A & 07 & 1090 & & ．IF & Z，CNTCHA & & \\
\hline 0743 & OL & & & 1100 & & DEC & C & & \\
\hline 0744 & Cz & 5 C & 07 & 1101 & & JF & NZ，CNTCHS & & \\
\hline 0747 & Es & 2 A & 07 & 1.103 & & JP & ENTEH7 & & \\
\hline 074 A & DE & E2 & & 1105 & ENTCHA & IN & IRTC＋2 & & \\
\hline 0746 & FE & O2 & & 1107 & & CF & 2 & & \\
\hline O74E & C2 & 2 A & 07 & 1.110 & & JF & NZ，CNTCH7 & & \\
\hline 0751 & 21 & 7B & OB & 1120 & & L．D & HL，LST12 & TIME SET OK & \\
\hline 0754 & OL & Os & 06 & 1130 & & CALL & MSG & & \\
\hline 0757 & ED & 24 & 06 & 1140 & ENTCHE & CALL & KED & & \\
\hline 075A & C7 & & & 1150 & & RST & 0 & & \\
\hline 0756 & & & & 1160 & ＊\(れ\)＊＊＊＊ &  & ＊＊＊＊＊＊＊＊＊＊＊ & ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ & ＊＊＊＊＊＊＊ \\
\hline 075E & 21 & 86 & OB & 1170 & ADIas & LD & HL，LSTIS & ADDR＋I／O TEST 1. & \\
\hline O75E & CL & 35 & 06 & 1180 & & CALL & CLR & & \\
\hline 0761 & OE & F6 & & 1.190 & & LD & C，OFGH & & \\
\hline 0763 & 79 & & & 1200 & ALIOIA & LD & A， C & & \\
\hline 0764 & C & 10 & & 1210 & & ADI & 1 OH & & \\
\hline 0766 & 4F & & & 1220 & & LD & C，A & & \\
\hline 0767 & FE & E 6 & & 1230 & & CF & OEGH & & \\
\hline 0769 & CA & 63 & 07 & 1240 & & ．JP & Z，ADIOIA & & \\
\hline 0760 & ELI & 79 & & 1250 & & OUT & （E），A & & \\
\hline 076E & EII & 7 C & & 1260 & & IN & A，（C） & & \\
\hline 0770 & L3 & 63 & 07 & 1270 & & UF & ADIO1A & & \\
\hline 0773 & & & & 1280 & ＊＊＊＊＊＊＊ & いれ＊＊ & ＊＊＊＊＊＊＊＊＊＊＊ & ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ & ＊＊＊＊＊＊＊＊ \\
\hline 0773 & 16 & 00 & & 1290 & Antaz & LD & \(\mathrm{n}, \mathrm{O}\) & & \\
\hline 0775 & 21 & 02 & OA & 1291 & & LIL & HL，CLEAR & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0778 & ci 0 & 0804 & 1292 & & CALL & MSG & \\
\hline 0776 & 21 A & AO OB & 1293 & & Lr & HL，LST14 & ADDR \(1 / 0\) CHK LO LEVELS \\
\hline O77E & CO & 06 06 & 1294 & & CALL & MSG & \\
\hline 0781 & 060 & 08 & 1300 & ADID2A & LI & \(\mathrm{B}, \mathrm{EL}\) & \\
\hline 0763 & SE & DF & 1310 & ALIORB & LD & A，IFTC－1 & \\
\hline 0765 & 80 & & 1320 & & And & E & \\
\hline 0786 & 4F & & 1330 & & LD & C，A & \\
\hline 0787 & 7A & & 1340 & & 1 D & A， D & \\
\hline 0788 & ED 7 & 79 & 1350 & & OUT & （C），A & \\
\hline 078 A & E［ 7 & 78 & 1355 & & IN & A，（C） & \\
\hline O786： & ［17 0 & 00 & 1360 & & IN & \(k \mathrm{~B}\) & \\
\hline 078E & 17 & & 1370 & & RLA & & \\
\hline 078F & DA 9 & \％F 07 & 1380 & & ．JF & C．AnIO20 & \\
\hline 0792 & 05 & & 1390 & & DEC： & E & \\
\hline 0793 & C2 & 8307 & 1400 & & ． F & NZ，ALIO2E & \\
\hline 0796 & OE 4 & 40 & 14.0 & & LD & \(\mathrm{C}, 4 \mathrm{OH}\) & \\
\hline 0798 & OD & & 1420 & ADIO20 & DEC： & c & \\
\hline 0799 & \(12 \%\) & \(98 \quad 07\) & 1430 & & ．JP & NZ，ADIOEC & \\
\hline 0796 & \(\mathrm{c}=\) & \(\begin{array}{ll}81 & 07\end{array}\) & 1440 & & ，IF & adioza & \\
\hline O79F & CO 2 & 2406 & 1450 & Alloza & CALL & KBD & \\
\hline O7A2 & 7A & & 1460 & & LD & A， 1 & \\
\hline 07A3 & FE O & 00 & 1470 & & CF & \(\bigcirc\) & \\
\hline 0745 & C2 & B3 07 & 1480 & & ．IF & NZ，ADIOZE & \\
\hline O7AE & 216 & CF OB & 1.490 & & Li & HL，LST15 & CHECK FOR HIGH LEVELS \\
\hline O7AB & CD & 0806 & 1500 & & CALL & MSci & \\
\hline 97AE & 16 F & FF & 1510 & & LII & ［1，OFFH & \\
\hline O7EO & CS & E1 07 & 1520 & & ．IF & ADIOLA & \\
\hline 97B3 & C7 & & 1530 & ALIOLE & ReT & 0 & \\
\hline 0784 & & & 1540 & ＊＊＊＊＊＊ & ＊＊＊＊＊ & ＊＊＊＊＊＊＊＊＊ &  \\
\hline 5800 & & & 8000 & & ORG & 130000 & \\
\hline 0600 & & & E005 & & ST & 6000 & \\
\hline 0600 & SE & AO & 8010 & TVSFE & LII & A，SPC & \\
\hline 0602 & as 0 & 00 & 8020 & TVOUS & OUT & TV & \\
\hline 0604 & 77 & & 8030 & & SUB & A & \\
\hline 0605 & ［3 0 & 00 & 8040 & & DiIT & TV & \\
\hline 0607 & 59 & & 8050 & & RET & & \\
\hline 0608 & & & 8060 & & & & \\
\hline 0608 & & & 8070 & ＊＊＊＊＊＊ & ＊＊＊れ & ＊＊＊＊＊＊＊＊＊＊ & ＊＊＊＊＊＊＊れ＊＊＊ \\
\hline 0608 & 7 E & & 8080 & MSG & LD & \(A,(H L)\) & \\
\hline \(060 \%\) & FE & 00 & 8090 & & CF & 0 & \\
\hline 0608 & CS & & 8100 & & RET & z & \\
\hline O600： & 17 & & 8110 & & RLA & & \\
\hline 0600 & da 1 & 1506 & 8120 & & ．IP & c，MSt2 & \\
\hline 0610 & \(1 F\) & & 8130 & & FFA & & \\
\hline 0611 & 47 & & 8140 & & LII & \(B, A\) & \\
\hline 0612 & c口o & 0064 & 8150 & MEGI & CALL & TVSFC & \\
\hline 0615 & 05 & & 8160 & & DEC & E & \\
\hline 0616 & Q2 & 1206 & 8170 & & ．IF & NZ，MES1 & \\
\hline 0619 & C3 & 2006 & 8180 & & ．JF & Msos & \\
\hline 0615 & 1 F & & 8190 & MEG2 & FFA & & \\
\hline 0610 & Cno & 02 06 & E200 & & call & tvout & \\
\hline 0620 & 23 & & 8210 & MSGS & INE： & HL & \\
\hline 0621 & C3 & os 06 & 8240 & & JP & MES & \\
\hline 0624 & & & e250 & ＊＊＊＊＊＊ & ＊＊＊＊＊ & ＊＊＊＊＊＊＊＊＊＊ &  \\
\hline 0624 & LB O & 00 & 8260 & KED & IN & KB & \\
\hline 0626 & 17 & & E270 & & RLA & & \\
\hline 0627 & ［2 2 & 2406 & E280 & & ．IF & \(\mathrm{NC}, \mathrm{KEC}\) & \\
\hline 062 A & 47 & & 8500 & KBDI & LD & B，A & \\
\hline 0628 & LE 0 & 00 & 6310 & & IN & ， B & \\
\hline 0620 & 17 & & 6320 & & FLIA & & \\
\hline O62E & DA 2 & 2 A 06 & 8330 & & ．JP & C，KEDI & \\
\hline 0631 & 7 E & & 8340 & & LD & \(A, B\) & \\
\hline 0632 & 1F & & 8350 & & RRA & & \\
\hline
\end{tabular}

063509
0634
0634 D3 E2
0636 13 ES
0638 D3 E4
063A LS ES
063 C 69
063 D
063 n EB
\(063 E 21\) OZ OA
0641 Cn os o6
0644 EB
0645 ED OS O6
0645 E 9
0649
6800
0 AOO
0 AOO
0 AOO
OAO2
FF
OAOS 7F
0 AO 4 7F
OAOS 7F
0 AOG 7F
0 OO7 7F
0AOS 7F
OAO9 7F
OAOA 7F
OAOB 08
OAO: 00
OAOL \([14\) I5 05
CE C7 AO
El de AO
CD OS AO
CF ES CB
CF DS CE
OADC 20
OAZE
00
OARF 144
C6 C4
OASA 35
OABE
OASC
[14
67

C5 13

8360
FET

ES90 OUIT IRTC +3

8400 OUIT IRTC+4
OUT IRTE +5
FET

8440 CLF EX TIE,HL
E450 LI HL,DLEAR
8460 CALL MEG
E470 EX DE,HL.
8480 GALL MEG
8490 FET

8980 ORT 150000

8990 \(\quad \mathrm{T} \quad 12000\)
9000 SFL EQU OFOH
9010 TVLSTF DS 2
9012 LLEAR DB 2550
\(9013 \quad\) DB 1270
9014 [B 1270
9015 [E 1270
\(9016 \quad\) DB 1271
9017 LE 127D
9018 [18 \(127 \square\)
\(9019 \quad\) DB 1271
9020 LE 1270
\(9021 \quad \mathrm{DB} \quad 80\)
9022 UB 0
FO2S LST1 DC TESTING REAL TIME CLOCK COUNTING"
1409
\(02 \quad \mathrm{c}\)
\(114 \quad 6\)
© c
AO EO
1140
9025
9030
9040 LSTZ DE: "TEST FAILED"
\(\mathrm{O} \quad \mathrm{E}=14 \mathrm{AO}\)
E1 C\% एC C5
9050
9060
9070 LSTS InC: "TEST FASSED"
\([14\) AO

118 530
DR 0
IB 320
IIB 0


OACB
OACE 5
AT: AO OADC 3
OALA
09
\(A C\) AO OAEE 34 OAE7 00 OAES

9270
DB 520
IIC \(\operatorname{IC} 22\), FIN \(13^{\circ}\)

DB 51 I
[IG IG 23, FIN 1 .

DE 52n
DE O
[IL CHECK THAT FINS 13,14, ANI 15 OF IC 21.

DC: ARE LOW.

IIB 15 II
DE 0
DC: "COUNT CHAIN TEST"

DE \(4 E D\)
[E 0
[II: "ETATUS FAILURE"

LIE 50 D
DR 0
IU STATLE AND RESET FUNGTIONS OK
\begin{tabular}{|c|c|c|c|c|c|}
\hline D4 & Cl & [4 & 15 & \multirow[t]{2}{*}{訨} & - \\
\hline A0 & 61 & CE & 64 & & \\
\hline [2] & 05 & DS & 05 & & \\
\hline AO & C6 & 05 & CE & & \\
\hline 14 & 69 & CF & CE & & \\
\hline \multirow[t]{3}{*}{AO} & CF & \multicolumn{2}{|l|}{CE} & & \\
\hline & & \multicolumn{2}{|l|}{9540} & LiF & 350 \\
\hline & & \multicolumn{2}{|l|}{9550} & DE & 0 \\
\hline & & 9560 & LET1O & Dic: & *EESET FAILURE* \\
\hline 55 & [3 & \(\Sigma 5\) & 114 & & \\
\hline \(\underline{0}\) & C1 & 0 & CL & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AO & 69 & CE & 04 & cs & & \\
\hline [12 & L 2 & D5 & no & 114 & & \\
\hline AO & [2 & 05 & 01 & 15 & & \\
\hline 55 & 13 & [14 & \(\square 3\) & AO & & \\
\hline L0 & CF & D7 & & & & \\
\hline 0006 & & & \multicolumn{2}{|l|}{9770} & LE & 36.11 \\
\hline 24 & & & & & & \\
\hline 0007 & & & \multicolumn{2}{|l|}{9780} & DE & 0 \\
\hline 00 & & & & & & \\
\hline 0 ocs & & & \multicolumn{2}{|l|}{9790 LST17} & LIC: & \multirow[t]{7}{*}{CHECK INTERRUPT FEQUESTS HIGH"} \\
\hline C3 & Cs & 05 & 63 & CB & & \\
\hline AO & 09 & CE & 114 & C5 & & \\
\hline D2 & [2 & 05 & DO & 114 & & \\
\hline AO & 12 & 05 & 01 & D5 & & \\
\hline 05 & D3 & 14 & 03 & AO & & \\
\hline CS & 69 & c.7 & \multicolumn{2}{|l|}{CE} & & \\
\hline 0 O 25 & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{9800}} & DB & 350 \\
\hline 23 & & & & & & \\
\hline 0026 & & & \multicolumn{2}{|l|}{9810} & LB & 0 \\
\hline \multicolumn{7}{|l|}{00} \\
\hline 0627 & & & \multicolumn{2}{|l|}{9820 LST18} & nc: & 'CHECK "INT" LOW \\
\hline 6 & Cs & 15 & \multicolumn{2}{|l|}{C3 CB} & & \\
\hline AO & A2 & 69 & CE & 104 & & \\
\hline \(A 2\) & AO & CL & EF & L7 & & \\
\hline 0036 & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{9830}} & LIE & 450 \\
\hline 31 & & & & & & \\
\hline 0 O 57 & & & \multicolumn{2}{|l|}{9840} & [1] & 0 \\
\hline 00 & & & & & & \\
\hline 0036 & & & \multicolumn{2}{|l|}{9850 LST19} & LTC: & \multirow[t]{5}{*}{'FRIORITY FAILURE*} \\
\hline \(\underline{0}\) & 02 & 09 & CF & D2 & & \\
\hline 09 & 14 & 09 & AO & 66 & & \\
\hline C1 & 69 & 0 C & [5 & D2 & & \\
\hline 55 & & & & & & \\
\hline 0 C 48 & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{9860}} & DE & 48 D \\
\hline 30 & & & & & & \\
\hline \(0 \mathrm{C4} \mathrm{\%}\) & & & \multicolumn{2}{|l|}{5870} & LE & 0 \\
\hline 00 & & & & & & \\
\hline OC.4A & & & \multicolumn{2}{|l|}{9880 Lst20} & nc: & \multirow[t]{4}{*}{'PRIORITY OK'} \\
\hline 10 & 02 & 59 & EF & n2 & & \\
\hline 09 & 1.4 & D9 & AO & cF & & \\
\hline CB & & & & & & \\
\hline 0055 & & & \multicolumn{2}{|l|}{9890} & LE & 530 \\
\hline 35 & & & & & & \\
\hline 0056 & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{9900}} & LE & 0 \\
\hline 00 & & & & & & \\
\hline 0 OE & & & \multicolumn{2}{|l|}{9910 LsT21} & LIT: & \multirow[t]{7}{*}{"INTERRUFT ACKNOWLEDGE TEST"} \\
\hline 69 & CE & 114 & & \(\square 2\) & & \\
\hline \(\underline{12}\) & 05 & no & 114 & AO & & \\
\hline C1 & 03 & CE & CE & CF & & \\
\hline 17 & 00 & C5 & C. 4 & 6.7 & & \\
\hline 65 & AO & 114 & \multirow[t]{2}{*}{05} & \multirow[t]{2}{*}{13} & & \\
\hline 04 & & & & & & \\
\hline \(0<71\) & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{9920}} & DE & 360 \\
\hline 26 & & & & & & \\
\hline 0072 & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{9930}} & LE & 0 \\
\hline 00 & & & & & & \\
\hline 0 C 73 & & & \multicolumn{2}{|l|}{9940 LST22} & no: & \(\cdots\) SELECTORS AND DECODERS TEST \#* \\
\hline 13 & 05 & Cc & C5 & ce & & \\
\hline 114 & CF & 02 & D3 & AO & & \\
\hline c1 & CE & \(\underline{C 4}\) & AO & \(\underline{4}\) & & \\
\hline 55 & C3 & CF & c.4 & 05 & & \\
\hline [2 & 03 & AO & 04 & CS & & \\
\hline
\end{tabular}


LTAEL
ADIO1 O7SB ALIOIA 0763 ALIOL 0773 ALIOLA 07E1
ALIIO2B 0783 ADIO2C 0798 ADIOLD 079F ALIOLE 07B3
CLEAR OAO2
CLR 063 L
CNTCHS OGFZ
CNTCH 7 072A
CNTCHE 0757
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LilAO1E & 0658 & DIAGIC & 0688 & DIAGID & 0691 & LIAG2 & OCA2 \\
\hline Litage & 06 BE & DIAGE & 0660 & IRTC & OOEO & KB & 0000 \\
\hline KED & 0624 & KEDI & \(062 A\) & LST1 & OAOD & LST10 & OBSA \\
\hline LET11 & OB69 & LST12 & OB7E & LST13 & OBSE & LST14 & OBAO \\
\hline LST1E & OBCF & LETIE & OEEA & LST17 & 0 COS & LET1E & 0 O 27 \\
\hline LST19 & 0032 & LSTz & OAZF & LST20 & OC.44 & LST21 & 0051 \\
\hline LST22 & 0 COL & LSTES & OCBE & LST24 & 0 OS 1 & LST25 & 00\%4 \\
\hline LST26 & 0097 & LST27 & OCOA & LST2S & 0090 & LST29 & OCAO \\
\hline LST3 & OASC & LST30 & OCAS & LST31 & OLAG & LSTS2 & OCAA \\
\hline LST3S & OCAE & LST4 & 0 A 49 & LST5 & OA99 & LSTG & OAEE \\
\hline LST7 & OB15 & LSTE & OB2B & LST9 & OBSE & MSG & 0608 \\
\hline MSS 1 & 0612 & 1962 & 0615 & 14853 & 0620 & DUTP & 0634 \\
\hline SFL & 0040 & TV & 0000 & TVLSTF & OAOO & tVout & 04.02 \\
\hline TVEPE & 0600 & & & & & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0605 & I3 & 00 & & 8040 & & OUIT & TV \\
\hline 0607 & 6 & & & 8050 & & RET & \\
\hline 0608 & & & & 8060 & & & \\
\hline 0608 & & & & 8070 &  & れそれれ &  \\
\hline O608 & 7E & & & 8080 & METi & LII & \(A\)（ \(H L\) ） \\
\hline 0609 & FE & 00 & & 8090 & & CF & 0 \\
\hline 060B & CS & & & 8100 & & RET & Z \\
\hline 0600 & 17 & & & 8110 & & FLA & \\
\hline 060 H & LIA & 1 C & 06 & 8120 & & ．IF & C，MSL2 \\
\hline 0610 & \(1 F\) & & & 8180 & & FiRA & \\
\hline 0611 & 47 & & & 8140 & & L．II & \(B, A\) \\
\hline 0612 & ELI & 00 & 06 & 8150 & MEG1 & CALL & TVSPC： \\
\hline 0615 & 05 & & & 8160 & & DEE & E \\
\hline 0616 & L2 & 12 & 06 & 8170 & & ，IF & NZ，MEG1． \\
\hline 0619 & 13 & 20 & 06 & 8180 & & ．IF & MELS \\
\hline 0615 & 1F & & & 8190 & MSG2 & FiFA & \\
\hline 06111 & CLI & 02 & 06 & 8200 & & EALI & TVOuIt \\
\hline 0620 & 23 & & & 8210 & MEI3 & INC： & HL \\
\hline 0621 & 13 & OE & 06 & E240 & & IP & MSTi \\
\hline 0624 & & & & 8250 & ＊＊＊＊＊＊ & ＊＊长米 &  \\
\hline 0624 & LB & 00 & & 8260 & KBCI & IN & kB \\
\hline 0626 & 17 & & & 8270 & & FLA & \\
\hline 0627 & 12 & 24 & 06 & 8280 & & ．IP & \(\mathrm{NL}, \mathrm{KBCI}\) \\
\hline 062 A & 47 & & & 8300 & F゙EIJ． & LII & \(B, A\) \\
\hline 062 B & DB & 00 & & 8810 & & IN & \(k \mathrm{~B}\) \\
\hline 062 D & 17 & & & 8820 & & RLA & \\
\hline 062E & 11A & 2 A & 06 & 8330 & & ．．IF & C，KBLI． \\
\hline 0631 & 78 & & & 8840 & & LIL & A．E \\
\hline 0632 & 1 F & & & 8350 & & RFA & \\
\hline 0639 & 6 & & & 8360 & & RET & \\
\hline 0634 & & & & 8370 &  &  &  \\
\hline 0634 & 13 & E2 & & 8380 & DUITF & GuIT & IFTC＋2 \\
\hline 0636 & 113 & ES & & 8300 & & DUIT & IFTE +3 \\
\hline 06.36 & 15 & E4 & & 8400 & & OUT & IFTC＋4 \\
\hline 068 A & DI & \(E 5\) & & 8410 & & DuIT & IRTE +5 \\
\hline 0635 & 6 & & & 8420 & & FET & \\
\hline 063n & & & & 8430 &  &  &  \\
\hline 063 D & EE & & & 8440 & CLF & EX & LE，HL \\
\hline 063E & 21 & 02 & OA & 8450 & & LII & HL，CLEAR \\
\hline 0641 & ED & 08 & 06 & 8460 & & EALL & MES \\
\hline 0644 & EB & & & 6470 & & EX & DE，HL \\
\hline 0645 & CLI & OE & 06 & 8480 & & EALL & MES \\
\hline 0648 & \(\square\) & & & 8490 & & RET & \\
\hline \(064 \%\) & & & & 8500 &  & がれれが &  \\
\hline 6800 & & & & 8980 & & GRG & 150000 \\
\hline 0 AOO & & & & 8970 & & ET & 12000 \\
\hline OAOO & & & & 9000 & SFE： & EQU & OAOH \\
\hline OAOO & & & & 5010 & TVLSTP & LS & 2 \\
\hline \[
0 \mathrm{AO} 2
\] & & & & 9012 & ElEAR & LIE & 2554 \\
\hline \begin{tabular}{l}
0403 \\
7F
\end{tabular} & & & & 9013 & & LIB & 1270 \\
\hline \[
\begin{array}{r}
0 A 04 \\
7 F
\end{array}
\] & & & & 9014 & & LIE & 1270 \\
\hline \[
\begin{array}{r}
0 A O S \\
7 F
\end{array}
\] & & & & 9015 & & LE & 1275 \\
\hline \[
\begin{array}{r}
9 A O 6 \\
7 F
\end{array}
\] & & & & 9016 & & DE & 1270 \\
\hline \[
\begin{array}{r}
0 A 07 \\
7 F
\end{array}
\] & & & & 9017 & & LIE & 1270 \\
\hline OAOE & & & & 9018 & & DE & 127 D \\
\hline 7F & & & & 9019 & & LIB & 127 I \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{00} \\
\hline OLAO & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{AO}} & 5962 & \multirow[t]{2}{*}{LST27} & \multirow[t]{2}{*}{Lic:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\because\)}} \\
\hline B6 & & & & & & & \\
\hline OCAZ & & & 9964 & & DE & 0 & \\
\hline \multicolumn{8}{|l|}{00} \\
\hline OCAS & & & 9966 & \multirow[t]{2}{*}{LST2S} & \multirow[t]{2}{*}{[ic:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\checkmark 7\)}} \\
\hline E7 & \multicolumn{2}{|l|}{AO} & & & & & \\
\hline OCAS & & & \multicolumn{2}{|l|}{9968} & \multirow[t]{2}{*}{Le} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0}} \\
\hline 00 & & & & & & & \\
\hline OCAC & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{AO}} & 9970 & \multirow[t]{2}{*}{LST29} & \multirow[t]{2}{*}{[ic:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{8}} \\
\hline Es & & & & & & & \\
\hline OCAE & & & 9972 & & DB & 0 & \\
\hline 00 & & & & & & & \\
\hline OCAS & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{AO}} & 9974 & \multirow[t]{2}{*}{LST30} & \multirow[t]{2}{*}{DC:} & \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{,} \\
\hline E9 & & & & & & & \\
\hline OCAB & & & 9576 & & DB & 0 & \\
\hline 00 & & & & & & & \\
\hline OCAC & \multirow{4}{*}{EO} & \multirow{4}{*}{AO} & 9978 & \multirow[t]{2}{*}{LSTS1} & \multirow[t]{2}{*}{DC:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{10}} \\
\hline E1 & & & & & & & \\
\hline OCAF & & & 9980 & & DE & 0 & \\
\hline 00 & & & & & & & \\
\hline OCEO & & & 9982 & \multirow[t]{2}{*}{LSTE2} & \multirow[t]{2}{*}{[ic:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\bigcirc 11\)}} \\
\hline E1 & \multirow[t]{3}{*}{B.} & \multirow[t]{3}{*}{AO} & & & & & \\
\hline OCES & & & 9984 & & DE & 0 & \\
\hline 00 & & & & & & & \\
\hline OCE4 & \multirow{4}{*}{E2} & \multirow{4}{*}{AO} & 9986 & L.ETS3 & ILC & 12 & \\
\hline B1 & & & & & & & \\
\hline OCE7 & & & 9988 & & DE & 0 & \\
\hline 00 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LTABL & & & & & & & \\
\hline ELEAR & 0 OL & CLR & 0630 & INTET & 0800 & INTETO & 0837 \\
\hline INTET1 & 0856 & INTET2 & 0859 & INTETS & 085c: & IRTC. & OOEO \\
\hline kE & 0000 & KED & 0624 & KEDI & 062A & LST1 & OAOL \\
\hline LST16 & OBEA & LST17 & ocos & LSTIS & 0 O 27 & LST19 & 0 OSE \\
\hline LST2 & OAEF & LST20 & 0C4A & LST21 & 0057 & LST22 & 0073 \\
\hline LST23 & 0094 & LST24 & 00.97 & LST2S & 009A & LST26 & 0000 \\
\hline LST27 & OLAO & LETES & OCAS & LST29 & OCAL & LSTS & OABC \\
\hline LSTSO & OCAF & LSTS1 & OLAC: & LSTS2 & OCBO & LST:3 & OCB4 \\
\hline MES & 0608 & MSG1 & 0612 & MSG2 & 0610 & MEGS & 0620 \\
\hline OUTF & 0634 & seld & 0874 & EFC & OOAO & TV & 0000 \\
\hline TVLSTP & 0 AOO & tVOuIt & 0602 & TVSPC & 0600 & & \\
\hline FILE & 3000 & \(40 \square 7\) & & & & & \\
\hline FEALIY & & & & & & & \\
\hline
\end{tabular}

\section*{APPENDIX J}

CONNECTOR PINOUT

DUAL 36 PIN CONNECTOR:
\begin{tabular}{|c|c|c|}
\hline 1 IRQO & 19 & EXCL2 \\
\hline 2 IRQ1 & 20 & XGA2 \\
\hline 3 IRQ2 & 21 & TOUT2 \\
\hline 4 IRQ3 & 22 & 1SG \\
\hline 5 IRQ4 & 23 & \\
\hline 6 IRQ5 & 24 & GND \\
\hline 7 IRQ6 & 25 & \\
\hline 8 IRQ7 & 26 & BAT2 \\
\hline 9 INT & 27 & \\
\hline 10 INT & 28 & \\
\hline 11 FINT & 29 & BATTERY \\
\hline 12 FXCL2 & 30 & GND \\
\hline 13 XCLO & 31 & \\
\hline 14 XGAO & 32 & \\
\hline 15 TOUTO & 33 & SETIME \\
\hline 16 XCL1 & 34 & \\
\hline 17 XGA1 & 35 & FSTAN \\
\hline 18 TOUT1 & 36 & XFI \\
\hline
\end{tabular}

DUAL 22 PIN CONNECTOR:
\begin{tabular}{|c|c|c|c|c|}
\hline 1. & +5V & A. & \(+5 \mathrm{~V}\) & \\
\hline 2. & GROUND & B. & & \\
\hline 3. & MSB & C. & MSB & \\
\hline 4. & MSB-1 & D. & MSB-1 & \\
\hline 5. & MSB-2 DATA TO & E. & MSB-2 & DATA FROM \\
\hline 6. & MSB-3 CPU & F. & MSB-3 & CPU \\
\hline 7. & LSB+3 & H. & LSB+3 & \\
\hline 8. & LSB+2 & J. & LSB+2 & \\
\hline 9. & LSB+1 & K. & LSB+1 & \\
\hline 10. & LSB & L. & LSB & \\
\hline 11. & INPUT STROBE & M. & & \\
\hline 12. & & N. & LSB & \\
\hline 13. & & P. & LSB+1 & \\
\hline 14. & & R. & LSB+2 & PORT \\
\hline 15. & & S. & LSB+3 & ADDRESS \\
\hline 16. & & T. & LSB+4 & LINES \\
\hline 17. & & U. & LSB+5 & \\
\hline 18. & & V. & LSB+6 & \\
\hline 19. & & W. & LSB+7 & \\
\hline 20. & & X. & OUTPUT & STROBE \\
\hline 21. & & Y. & & \\
\hline 22. & +12V & Z. & & \\
\hline
\end{tabular}

RTC/IC

AFFENIIX
FARTS LIST
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{LEEERIFTION QUANTITY} & GIRCuIt referinde \\
\hline 7400 & 1 & ICSO \\
\hline 7402 & 1 & 105 \\
\hline 7404 & 5 & \(103,46,53,56,59\) \\
\hline 7406 & 1 & ICS2 \\
\hline 7410 & 1 & ICS7 \\
\hline 7414 & 2 & 1611,36 \\
\hline 7420 & 1 & IGES \\
\hline 7430 & 1 & 1610 \\
\hline 7442 & 1 & IL21 \\
\hline 7474 & 5 & 161,2,22,23,24 \\
\hline 7475 & 4 & IL. \(4,6,12,13\) \\
\hline 74151 & 8 & IT15, \(57,36,39,40,41,42,49\) \\
\hline 74155 & 2 & IT14,47 \\
\hline 74174 & 4 & \(1626,27,26,29\) \\
\hline 74.196 & 2 & 1025,51 \\
\hline 4009A & 2 & 1616,34 \\
\hline 4011A & , & IL7 \\
\hline 4040 A & 2 & 109,32 \\
\hline 4081 A & 1. & ICS \\
\hline 4416 A & 1 & 1036 \\
\hline 4502A & 4 & IC17, 16, 19,20 \\
\hline 4518A & 3 & 1630,31,35 \\
\hline E1LS97 & 4 & IC43,45,46,44 \\
\hline 8214 & 1 & 105 \\
\hline 6253 & 1 & 1054 \\
\hline 1N414E & 8 & CF \(1,2,4,5,6,7,6,8,10\) \\
\hline 1 NF 231 & 1 & CRS \\
\hline E.6 K F-FAK (E pirisip) & 1 & 23 \\
\hline 2. 2k R-FAK (16 piridip) & 2 & Z1,2 \\
\hline 180 brim \(1 / 2 \mathrm{~W}\) & 1 & F12 \\
\hline 1.2k Dhm 1/4 W 5\% & 1 & R1. \\
\hline 2. 2 K Ohm 1/4 W 5\% & e & \(\mathrm{F} 2,3,4,6,8,9,10,11\) \\
\hline 5.6 K Ohm \(1.14 \mathrm{~W} \mathrm{5} \mathrm{\%}\) & 1 & R13 \\
\hline 1006 Otm 1/4 W 5\% & 1 & FS \\
\hline E. 2 MEG Ohm 1/4 W 5\% & 1 & F7 \\
\hline \(5-37\) FF TRIMMER CAFACITOR & 1 & Cs \\
\hline 220 fF AG MIGA EAFAGItGR & 1 & 59 \\
\hline O. O1 MFI CAFACITOF & 10 & 61, 2, 3, 4, 5, 6, 10, 11, 12, 13 \\
\hline 1.0 MFD TANTULUM & 2 & 67,14 \\
\hline CFYSTAL SOCKET & 1 & (MAY EE OFTIONAL.) \\
\hline 1.00000 MHz ERYETAL & 1 & Y 1 \\
\hline 24 PIN DIF GOCKET & 2 & \\
\hline 20 FIN LIF EOCKET & 4 & \\
\hline 16 FIN IIF SOCKET & 33 & \\
\hline 14 FIN IIF SOCKET & 29 & \\
\hline 14 FIN HEAMEFS & 6 & \\
\hline 16 FIN HEADERE & 1 & \\
\hline 16 FIN IIF TO 16 FIN DIF & 1 & \\
\hline Fibeion cable assembly & & \\
\hline
\end{tabular}









```


[^0]: The information contained herein is believed to be accurate and reliable. However, General Computer Technology, Inc. does not assume any responsibility for any injury or damages incurred in the use of this product.

 All rights reserved. This manual or any part thereof may not be reproduced in any form without the written permission of General Computer Technology, Inc.

