
(

(

.(

COFF Programming Utilities Guide

for FLEXOS TM 386

Beta Edition: June 1987

Software Version: FlexOS 386 1.0

nnnn-nnnn-001

COPYRIGHT

Copyright 1987 Digital Research. All rights reserved. No part of this publication may be.
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or '··
computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical,
manual, or otherwise, without the prior written permission of Digital Research, 60 Garden Court, Post
Office Box ORI, Monterey, California, 93942.

DISCLAIMER

DIGITAL RESEARCH MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Digital Research Inc. reserves the right to
revise this publication and to make changes from time to time in the content hereof without obligation
of Digital Research Inc. to notify any person of such revision or changes.

NOTICE TO USER

From time to time changes are made in the filenames and in the files actually included on the
distribution disk. This manual should not be construed as a representation or warranty that such files
or materials and facilities exist on the distribution disk or as part of the materials and programs
distributed. Most distribution disks include a "README.DOC" file. This file explains variations from the
manual which do constitute modification of the manual and the items included therewith. Be sure to
read this file before using the software.

TRADEMARKS

Digital Research and its logo are registered trademarks of Digital Research Inc. FlexOS is a trademark
of Digital Research Inc. We Make Computers Work is a service mark of Digital Research Inc. CASM,
CLINK, CLIB, and CSID are trademarks of Digital Research. Intel is a registered trademark of Intel
Corporation.

iii Beta Draft

(Foreword

The COFF Programming Utilities Guide for the FlexoslTMl 386 (hereinafter cited as
the COFF Utilities Guide) assumes that you are familiar with the FlexOS operating
system environment. It also assumes that you are familiar with lntelR 80386
processor architecture and assembly language programming as described in the
Intel 80386 Programmer's Reference Manual, (Order Number 230985-001).

The COFF Utilities Guide describes several programs that aid programmers and
system designers in developing software.

Chapter 1 describes CASM™, an assembler that translates 80386 assembly
language statements into a relocatable object file. Chapter 2 describes the
essential elements of CASM asse.mbly language. Chapter 3 describes CASM
directives that control code generation, linkage, conditional assembly, etc.

Chapter 4 describes CLINK™, a linkage editor that combines object modules into
an executable file that can be loaded by FlexOS.

Chapter 5 describes CUB™, a librarian that can create and manage libraries of
program modules.

Chapter 6 describes CSID ™, a symbolic debugger that can load and execute
programs, display memory, set breakpoints, etc. Chapter 7 describes how CSID
handles expressions. Chapters 8 and 9 describe the various CSID commands used
to debug code.

Appendix A describes COFF, the Common Object File Format. Appendix B contains
a listing of a sample CASM program.

v Beta Draft

•ntents.

I CASM - COFF ASSEMBLER

1.1 CASM COMMAND LINE.................................... 1-1
1.2 COMMAND-LINE OPTIONS.. 1-1

1.2.1 B Parameter . 1-2
1.2.2 C Parameter . 1-2
1.2.3 Dsymbolname Parameter. 1-2
1.2.4 lpath\filename Parameter. 1-2
1.2.5 J Parameter . 1-3
1.2.6 L Parameter . 1-3
1.2.7 N[n] Parameter . 1-3
1.2.8 Opath\filename Parameter. 1-3
1.2.9 P[path\filename] Parameter . 1-3
1.2.10 V Parameter . 1-3

1.3 EXAMPLE COMMANDS . 1-3
1.4 CASM ERROR MESSAGES . 1-4

I. ELEMENTS OF CASM ASSEMBLY LANGUAGE

2.1 CHARACTER SET. 2-1
2.2 TOKENS AND SEPARATORS. · 2-1
2.3 DELIMITERS. 2-2
2.4 DATA. 2-3
2.5 CONSTANTS.. 2-4

2.5. 1 Numeric Constants . 2-4
2.5.2 Decimal Real. 2-4
2.5.3 Character String Constants . 2-5

2.6 SEGMENTED ADDRESS CONSTANTS.......................... 2-5
2.7 IDENTIFIERS . 2-6

2.7.1 Keyword Identifiers. 2-6
2.7.2 Symbol Identifiers. 2-8
2.7.3 Example Identifiers . 2-9

2.8 OPERATORS . 2-9
2.8.1 Arithmetic Operators. 2-10
2.8.2 Shift Operators , 2-11
2.8.3 Unary Operators . 2-11
2.8.4 Logical Operators . 2-11
2.8.5 Relational Operators . 2-12
2.8.6 Segment Override Operator. 2-12
2.8.7 Variable Manipulation Operators . 2-13
2.8.8 Variable Creation Operators. 2-13
2.8.9 Isolation Operators . 2-14
2.8. 10 Operator Precedence. 2-15

(

(

Contents

2.9 EXPRESSIONS. 2-16
2.10 STATEMENTS . 2-17
2.11 INSTRUCTION SET SUMMARY. 2-18
2.12 FLAGS.. 2-25
2.13 16/32 BIT OPERANDS AND ADDRESSES...... 2-27
2.14 PREFIXES AND OVERRIDES . 2-27
2.15 JUMP OPTIMIZATION..................................... 2-28
2.16 INTER-SEGMENT CONTROL TRANSFERS . 2-28
2.17 AMBIGUOUS INSTRUCTIONS . 2-29

3 CASM DIRECTIVES

3.1 DIRECTIVE SYNTAX
3.2 CODE GENERATION DIRECTIVES

3.2.1 USE 16/32 Directive
3.2.2 ALIGN Directive

3.3 SECTION CONTROL DIRECTIVES
3.3.1 CODE
3.3.2 DATA
3.3.3 BSS
3.3.4 SECTION

3.4 LINKAGE CONTROL DIRECTIVES
3.4.1 PUBLIC .. .
3.4.2 EXTRN
3.4.3 END .. .

3.5 CONDITIONAL ASSEMBLY DIRECTIVES

3-1
3-1
3-2
3-2
3-3
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3-5
3-5

3.5.1 IF, ELSE, and ENDIF Directives. 3-5
3.5.2 C Language Conditional Compilation Directives. 3-6

3.6 SYMBOL DEFINITION DIRECTIVES. 3-6
3.6.1 EQU Directive . 3-6
3.6.2 SET Directive . 3-7

3.7 DATA AND MEMORY DIRECTIVES . 3-7
3.7.1 DB Directive . 3-7
3.7.2 OW Directive. 3-8
3.7.3 OL Directive . 3-8
3.7.4 DD Directive . 3-8
3.7.5 DP Directive . 3-9
3.7.6 DQ Directive . 3-9
3.7.7 DT Directive . 3-9
3.7.8 RB Directive . 3-9
3.7.9 RW Directive. 3-9
3.7.10 RL Directive. 3-9
3.7.11 RD Directive . 3-10
3.7.12 RPDirective 3-10
3.7.13 RQ Directive...................................... 3-10
3.7.14 RT Directive . 3-10

ii

Contents

3.8 LISTING CONTROL DIRECTIVES
3.8.1 EJECT Directive
3.8.2 NOIFLIST/IFLIST Directives
3.8.3 NOLISnLIST Directives
3.8.4 PAGESIZE Directive
3.8.5 PAGEWIDTH Directive
3.8.6 SIMFORM Directive
3.8.7 TITLE Directive :

3.9 MISCELLANEOUS DIRECTIVES
3.9. 1 INCLUDE Directive
3.9.2 ORG Directive

4 CLINK - LINKAGE EDITOR

3-10 \., __
3-10
3-10
3-11
3-11
3-11
3-11
3-11
3-11
3-12
3-12

4.1 CREATING THE .386 FILE . 4-1
4.1.1 Pass 1. 4-1
4.1.2 Address Allocation
4.1.3 Pass 2

4.2 PROGRAM LOAD MODEL
4.3 USING CLINK

4.3.1 The cnum option
4.3.2 The Dname option
4.3.3 The ename option
4.3.4 The name option
4.3.5 The Ldirectory option
4.3.6 The m option
4.3.7 The name option
4.3.8 The r option
4.3.9 The s option
4.3.10 The Snum option
4.3.11 The T option
4.3.12 The name option
4.3.13 The v option
4.3. 14 The V option
4.3. 15 The VSnum option

4.4 CLINK ERROR MESSAGES

5: CLIB - COFF LIBRARIAN

5.1 INTRODUCTION
5.2 COMMAND LINE .. .

5.2. 1 The -a option
5.2.2 The -c option
5.2.3 The -d option
5.2.4 The -g option
5.2.5 The -h option

iii

4-1
4-2
4-2
4-4
4-5
4-5
4-5
4-6

,- '

\
4-6 -
4-6
4-6
4-6
4-6
4-7
4-7
4-7
4-7
4-7
4-7
4-7

5-i
5-1
5-2
5-3
5-3
5-3
5-3

(''
\,___/

(/

(

(

Contents

5.2.6 The_ -Hnum option
5.2.7 The -m option
5.2.8 The -p option
5.2.9 The -q option
5.2. 10 The -r option
5.2.11 The -R option
5.2. 12 The -ssymbol option
5.2.13 The -t option
5.2. 14 The -v option
5.2. 15 The -x option
5.2.16 The -? option

5.3 CUB ERROR AND WARNING MESSAGES

6 CSID - SYMBOLIC DEBUGGER

6.1 INTRODUCTION
6.2 TYPOGRAPHICAL CONVENTIONS
6.3 STARTING CSID .. .
6.4 CSID COMMAND-LINE OPTIONS

6.4.1 Process Control Options
6.4.2 Windowing Options

6.5 CSID COMMAND CONVENTIONS
6.6 LINE EDITING KEYS
6.7 CSID COMMAND SUMMARY

7 CSID Expressions

5-3
5-3
5-3
5-4
5-4
5-4
5-4
5-4
5-4
5-5
5-5
5-5

6-1
6-1
6-1
6-2
6-2
6-2
6-4
6-4
6-5

7.1 Introduction . 7-1
7.2 Literal Hexadecimal Numbers . 7-1
7.3 Literal Decimal Numbers. 7-1
7.4 Literal Character Values . 7-2
7.5 Register Values. 7-2
7.6 Stack References . 7-2
7.7 Symbolic References . 7-3
7.8 Qualified Symbols. 7-4
7.9 Expression Operators . 7-4
7.10 Sample Symbolic Expressions. 7-5

8 BASIC CSID COMMANDS
4

8.1 LOAD COMMAND
8.2 READ COMMAND
8.3 EXIT/ABORT COMMANDS
8.4 DISPLAY MEMORY COMMAND
8.5 LIST COMMAND .. .
8.6 GO COMMAND
8.7 TRACE COMMAND

iv

8-1
8-1
8-2
8-2
8-3
8-5
8-6

Contents

8.8 BREAKPOINT COMMANDS 8-7 __j

9 ADDITIONAL CSID COMMANDS

9.1 DISPLAYING OTHER INFORMATION . 9-1
9.2 SET COMMAND.. 9-4
9.3 COMPARE COMMAND . 9-6
9.4 SEARCH COMMAND 9-7
9.5 MOVE COMMAND . 9-7
9.6 FILL COMMAND. 9-8
9.7 ASSIGN COMMAND....................................... 9-8
9.8 CALCULATE COMMAND.................................... 9-8
9.9 CLOSE COMMAND. 9-9
9.10 WRITE COMMAND. 9-9
9.11 ASSEMBLE COMMAND · . 9-10
9.12 MACROS.. 9-11

A COMMON OBJECT FILE (COFF) FORMAT......................... A-1

A.1. FILE HEADER A-2
A.2. FLEXOS HEADER A-3
A.3. SECTION HEADER A-4
A.4. RELOCATION ENTRY A-5

B SAMPLE CASM SOURCE FILE•.........

Tables

1-1 CASM Command-line Options
1-2 CASM Error Messages
2-1 CASM Character Set
2-2 Separators and Delimiters
2-3 CASM Data Types
2-4 Radix Indicators
2-5 String Constant Examples
2-6 Reserved Words.
2-7 Precedence of Operators.
2-8 CASM Operator Summary
2-9 CASM Instruction Summary
2-10 Flag Register Symbols . .
2-11 Arithmetic Instruction Effects .
4-1 CLINK Options
4-2 CLINK Error Messages
5-1 CLIB Command Line Options .
5-2 CLIB Warning Messages .
5-3 CLIB Error Messages. · .

v

B-1 . /

1-2
1-4
2-1
2-2
2-3
2-4
2-5
2-7

2-15
2-16
2-19
2-26
2-26
4-5
4-8
5-2
5-5
5-6 ~-·

Contents

(6-1 CSID Pro~ess Control Options 6-2
6-2 CSID Windowing Options 6-3
6-3 CSID Command Summary 6-6
9-1 Flag Name Abbreviations. 9-2

Figures

4-1 Load-time Memory Map . 4-3
A-1 Common Object File Format . A-1
A-2 COFF File Header . A-2
A-3 FlexOS 386 File Header A-3
A-4 Section Header Format A-4
A-5 Relocation Entry Format . A-6

(

c
vi

CHAPTER 1

CASM - COFF ASSEMBLER

CASM™ converts a source file containing 80386 assembly language instructions
into a machine language object file in COFF1 format. In addition to the object file,
CASM can produce a list file containing the assembly language listing with any
error messages. . ..
CASM produces the output files using the same filename as the source file. For
example, if the name of the source file is DRIVER.A, CASM produces the files
DRIVER.O, and DRIVER.LST.

1.1 CASM COMMAND LINE

Invoke CASM with the following command form:

CASM filespec [-Ostring] [-Ostring] ...

where filespec is the name of the source file to be compiled, which can include an
optional path specification denoting the file's location. A path specification is not
needed if the source is in the current directory. If you do not specify a filetype,
CASM assumes filetype .A. -Ostring is an option string that controls CASM
operation as described below.

1.2 COMMAND-LINE OPTIONS

Table 1-1 contains a summary of the CASM command-line options, described in
detail in the following subsections. Options can be entered in any order. Options
that do not require a parameter may be grouped following a single hyphen with no
space between letters. Options that require a parameter must be entered
separately with no space between the option letter and its parameter.

If you specify an invalid option in the command line, CASM displays:

Invalid command line option

Table 1-2 lists the error messages output by CASM.

1 COFF is an acronym for Common Object File Format; see Appendix A for a detailed explanation of
COFF.

Beta Draft 1-1

, .

1.2 COMMAND-LINE OPTIONS COFF Utilities Guide

Parameter

B

c
Dsymbolname

lpath\filename

J

L

N[n]

Opath\filename

P[path\filename]

v

1.2.1 B Parameter

Table 1-1. CASM Command-line Options

Explanation

Output absolute binary data (no COFF)

Convert symbols to uppercase

Define symbol in command line

Include file specified by pathname into assembly at
beginning of module

Suppress JMP optimization

Output local symbols

Include line numbers on every nth line number starting
with the first line in the object file

Set path\filename for object (.0) file

Set path\filename for list (.LST) file

Display assembler banner and version

The B parameter directs CASM to output only binary machine code without any
COFF information. If the source code does not reference any external labels or
variables and needs no relocation, the object code output by CASM should. be
executable, although not directly loadable by the FlexOS 386 program loader.

1.2.2 C Parameter

The C parameter directs CASM to convert all symbols to uppercase.

1.2.3 Dsymbolname Parameter

The D parameter directs CASM to use the symbol defined by symbolname in the
command line as if it had been defined EXTRN in the source code .

. .
1.2.4 lpath\filename Parameter

The I parameter directs CASM to include the contents of a specified file at the
beginning of the module being assembled. The file must be identifed by a valid
filename preceded by an I (upper case i). If no filename extension is specified,
CASM assumes an extension of .A.

If you do not specify a path, CASM searches for the file in the current directory; if
unsuccessful, it searches the directory containing the source file.

1-2 Beta Draft

(

COFF Utilities Guide 1.2 COMMAND-LINE OPTIONS

1.2.5 J Parameter

The J parameter directs CASM to not perform any code optimization for JMP
instructions.

1.2.6 L Parameter

The L parameter directs CASM to include local symbols in the object file.

1.2.7 N[n] Parameter

The N[n] parameter directs CASM to include line number debugging symbols in the
object file on every nth line beginning with line one. The default is n = 5.

1.2.8 Opath\filename Parameter

The 0 parameter directs CASM to output the object file to the specified
path\filename.

1.2.9 P[path\filename] Parameter

The P parameter directs CASM to output a list file. If you do not specify
path\filename, the -P option outputs the list file using source's path\filename with
filetype LST.

1.2.10 V Parameter

The V parameter directs CASM to display the logon banner with version number.

1.3 EXAMPLE COMMANDS

The following are example CASM command lines:

A>casm test.a -jb
Assemble the source file "test.a", suppress JUMP optimization
and output only binary code to the object file.

A>casm test -n -pb:\caslist
Assemble the source file "test.a", and send the listing file
"test.1st" containing line numbers every fifth line to the directory
"caslist" on drive B.

A>casm test -!defines
Assemble the source file "test.a", and include the file "defines.a".

A>casm test -cl Assemble the source file "test.a", convert all the symbols to
uppercase, and include local symbols in the object file.

Beta Draft 1-3

1.4 CASM ERROR MESSAGES COFF Utilities Guide

A>casm test -dmy_varlable
Assemble the source file
"my_ variable" as EXTRN.
statement

"test.a", and define the symbol
This is equivalent to using the

extrn my_variable

in the source code.

1.4 CASM ERROR MESSAGES

Table 1-2. CASM Error Messages

Error Message Cause

Syntax error

General purpose error message issued whenever CASM cannot
properely parse an instruction or mnemonic. Check the syntax.

Ambiguous operand

The size of an instruction is not specified (BYTE, WORD, or
LONG). Use the "type" operator.

Missing closing quote around string

There is no closing delimiter around a string. Supply the
delimiter.

Symbol doubly defined

All variables and labels must have unique names. Use another
name.

Initial value out of range

A value supplied with a DB, OW, or Dl directive is out of the
range of values the variable can contain. Change the value or
use different directive.

Invalid expression

CASM detected an error when parsing the expression. Check
the syntax.

Invalid directive: ORG

1-4

CASM detected an error when parsing the argument to an ORG
directive. Check the syntax.

Beta Draft

(

COFF Utilities Guide 1.4 CASM ERROR MESSAGES

Table 1-2. (Continued)

Error Message Cause

Invalid directive: EQU

Bad type

CASM detected an error when parsing the argument to an EQU
directive. Check the syntax.

An invalid type was supplied to an EXTRN directive. Check the
type.

ELSE directive with no corresponding IF

Self explanatory. Supply the missing IF clause.

ENDIF directive with no corresponding IF

Self explanatory. Supply the missing IF clause.

Invalid directive: TITLE

CASM detected an error when parsing the argument to a TITLE
directive. Check the syntax.

Invalid directive: ALIGN

CASM detected an error when parsing the argument to an ALIGN
directive. Check the syntax.

Invalid directive: LINE

CASM detected an error when parsing the argument to a LINE
directive. Check the syntax.

Invalid directive: SECTION

CASM detected an error when parsing the argument to a
SECTION directive. Check the syntax.

More than the maximum number of sections declared in this file

CASM supports a maximum of 9 sections.

Symbol defined by the EQU directive used before its declaration

Self explanatory. Change source text.

Symbol missing from expression

A symbol name is missing from a directive whose argument
requires such a name. Supply the missing symbol name.

Beta Draft 1-5

1.4 CASM ERROR MESSAGES COFF Utilities Guide

Table 1-2. (Continued)

Error Message Cause

Illegal operand in expression

The argument to an isolation operator is not the correct size.
Check the argument.

Missing operand in expression

An expression or directive does not contain a necessary
argument. Supply the argument.

Register used illegally in expression

The name of a CPU register was used in an expression. Check
the syntax.

Closing parenthesis missing from expression

Self explanatory. Supply the missing delimiter.

Types are mis-matched in instruction

This error can occur in several contexts. For example, the
contents of a WORD register were stored in a BYTE variable.
Check the instruction.

No instruction on line

Bad DD directive

Bad DP directive

1-6

CASM did not detect an instruction mnemonic, directive, or
comment on the line being processed. Check the source text.

The argument to the directive is not in the form:
constant:constant. Check the sytax.

The argument to the directive is not in the form:
constant:constant. Check the sytax.

End of Section 1

Beta Draft

"' - /

(

(

(/

CHAPTER 2

ELEMENTS OF CASM ASSEMBLY LANGUAGE

This section describes the following elements of CASM assembly language:

• character set
• tokens and separators
• delimiters
• constants
• identifiers
• operators
• expressions
• statements

Also included is a discussion of memory addressing modes, instruction prefixes,
and jump instruction optimizations.

2.1 CHARACTER SET

Table 2-1 lists the CASM character set.

Table 2-1. CASM Character Set

Alphanumeric Characters

uppercase A - Z
lowercase a - z
numerals 0123456789

Nonprinting Characters

space, tab, carriage return, and line-feed

Special Characters

+-*/=(}[];'.!,_: $?

Only alphanumerics, special characters, and spaces can appear in a string.

Note: CASM treats lowercase letters as uppercase, except within strings and
symbols. You can use the -C option to convert symbols to uppercase.

2.2 TOKENS AND SEPARATORS

A token is the smallest meaningful unit of a source program. Examples of tokens
are instruction mnemonics, operators, symbol and register names. Adjacent tokens
within the source are commonly separated by a blank character or space. Any
sequence of spaces can appear wherever a single space is allowed.

Beta Draft 2-1

2.3 DELIMITERS COFF Utilities Guide

~·\

CASM recognizes horizontal tabs as separators and interprets them as spaces. l_j
CASM expands tabs to eight spaces in the listing file.

2.3 DELIMITERS

Delimiters mark the end of a token and add special meaning to the instruction;
separators merely mark the end _ of a token. When a delimiter is present,
separators need not be used. However, using separators after delimiters can make
source code easier to read.

Table 2-2 describes CASM separators and delimiters. Some delimiters are also
operators. Operators are described in Section 2.8.

Character

$

+

*

I

@

2-2

Table 2-2. Separators and Delimiters

Name

semicolon

colon

period

dollar sign

plus

minus

asterisk

slash

at

underscore

exclamation
point

apostrophe

Use

starts comment field

identifies a label; used in segmented address
constant specification

forms variables from numbers

notation for present value of location counter;
legal, but ignored in identifiers or numbers

arithmetic operator for addition

arithmetic operator for subtraction

arithmetic operator for multiplication

arithmetic operator for division

legal in identifiers

legal in identifiers

logically terminates a statement, allowing
multiple statements on a single source line

delimits string constants

Beta Draft

(

COFF Utilities Guide 2.4 DATA

Character

20H

09H

CR

LF

2.4 DATA

Table 2-2. (continued}

Name

space

tab

carriage return

line-feed

Use

separator

l~gal in source files, expanded in list files

terminates source lines

legal after CR; if in source lines,
it is interpreted as a space

Data can be either constants or variables and can be expressed in a variety of
storage formats. The storage format determines how the data is internally
represented and used by the processor. CASM performs type-checking to insure
instructions match declared operand types. You can override type-checking by
using the "type" operator (see Section 2.8.8}.

Table 2-3 describes the data types supported by CASM.

Table 2-3. CASM Data Types

Type Storage Size (bytes} Range

BYTE 8 -128 to 127

WORD 16 -32768 to 32767

LONG 32 -231 to 231_1

DWORD 32 O to 216-1 : O to 216-1
16-bit segment : 16-bit offset

PW ORD 48 0 to 216-1 : Oto 232-1
16-bit segment : 32-bit offset

QWORD 64 Numeric Data Processor (NOP) long real

TWO RD 80 Numeric Data Processor (NOP) temporary real

Beta Draft 2-3

2.5 CONSTANTS COFF Utilities Guide

2.5 CONSTANTS

A constant is a value known at assembly time that does not change when the
program runs. A constant can be either a numeric value or a character string.

2.5.1 Numeric Constants

A numeric constant is a 32-bit integer value expressed in one of several bases.
The base, called the radix of the constant, is denoted by a trailing radix indicator.
Radix indicators can be uppercase or lowercase. CASM assumes that any numeric
constant not terminating with a radix indicator is a decimal constant. Table 2-4
shows the radix indicators.

Table 2-4. Radix Indicators for Constants

Indicator Constant Type Base

B binary 2
0 octal 8
Q octal 8
D decimal 10
H hexadecimal 16

Binary constants must be composed of zeros and ones. Octal digits range from O
to 7; decimal digits range from O to 9. Hexadecimal constants contain decimal
digits and the hexadecimal digits A {10 0), B (11 0), C (120), D (130), E (140), and F
(150). The leading character of a hexadecimal constant must be a decimal digit so
CASM doesn't confuse a hex constant with an identifier. The following are valid
numeric constants:

1234
1234H
33770

1234D
OFFEH
OFE3H

2.5.2 Decimal Real

llOOB
33770
1234d

1111000011110000B
13772Q
Off ffh

A decimal real constant is a fraction, which may be followed by an exponent. If no
exponent is supplied, a decimal point is required. The exponent starts with E. The
following are examples of valid decimal real constants:

2-4

1.4414
.001
l.OE23
9.
2E-3

Beta Draft

(

c

COFF Utilities Guide 2.5 CONSTANTS

2.5.3 Character String Constants

A character string constant is a string of ASCII characters delimited by
apostrophes. All CASM instructions allowing numeric constants as arguments
accept only one-, two-, or four-character constants as valid arguments. All
instructions treat a one-character string as an 8-bit number, ·a two-character
string as a 16-bit number, and a four-character string as a 32-bit number. In
multi-byte strings, the value of the first character is in the high-order byte, and
the value of the last character is in the low-order byte.

The numeric value of a character is its ASCII code. CASM does not translate case
in character strings, so you can use both uppercase and lowercase letters. Note
that CASM allows only alphanumerics, special characters, and spaces in character
strings.

A DB directive is the only CASM statement that can contain strings longer than
four characters (see Section 3.7.1). · The string cannot exceed 255 bytes. If you
want to include an apostrophe in the string, you must enter it twice. CASM
interprets two apostrophes together as a single apostrophe. Table 2-3 shows
valid character strings and how they appear after processing.

Table 2-5. String Constant Examples

String in source text

'a'
'Ab"Cd'

'ONLY UPPER CASE'
'only lower case'

As processed by CASM

a
Ab'Cd

ONLY UPPER CASE
only lower case

2.6 SEGMENTED ADDRESS CONSTANTS

CASM supports segmented address constants of the form:

numeric constant : numeric constant

The colon signifies a segmented constant. For example, given the definition:

CALL GATE equ 0067:1234BAC0h

the number can be stored only in a data type of PWORD (16:32).

target dp CALL GATE

Such a constant can also be used in immediate control transfers. For example,

callf CALL GATE

Beta Draft 2-5

2.7 IDENTIFIERS COFF Utilities Guide

likewise, a constant such as:

ADD! equ 1000:55AAh

can be stored in a DWORD {16:16) or PWORD (16:32) as follows:

info! dd ADD!
info2 dp ADD!

2.7 IDENTIFIERS

The following rules apply to all identifiers:

• Identifiers can be up to 80 characters long.

• The first character must be alphabetic or one of these special characters: ?,
@,or

• Any subsequent characters can be either alphabetic, numeric, or one of these
special characters: ?, @, _, or $. CASM ignores the special character $ in
identifiers, so that you can use it to improve readability in long identifiers.
For example, CASM treats the identifier interrupt$ flag as
interruptf lag.

There are two types of identifiers:

• Keywords
•Symbols

Keywords have predefined meanings to CASM. Symbols are identifiers you define
yourself.

2.7.1 Keyword Identifiers

Keywords are reserved for use by CASM; you cannot define an identifier identical
to a keyword. CASM recognizes five types of keywords:

• instructions
• directives
• operators
• registers
• predefined numbers .

Table 2-6 lists the CASM reserved words.

2-6 Beta Draft

COFF Utilities Guide 2.7 IDENTIFIERS

(
Table 2-6. Reserved Words

Predefined Numbers

BYTE WORD LONG OWORD PW ORD
QWORO TWO RD

Operators

AND EQ GE GT HIGH
HIGHW LAST LE LENGTH LOW
LOWW LT MOD NE NOT
OFFSET OR SHL SHR TYPE
XOR

Assembler Directives

ALIGN BSS CODE DATA DB
ow DL DD DP OQ
OT #DEFINE EJECT ELSE #ELSE
END ENDIF #ENDIF EQU EXT RN
IF #IF #IFDEF IFLIST INCLUDE

{ LIST NOIFLIST NOLIST ORG PAGE SIZE
PAGEWIDTH PUBLIC RB RD RL
RP RQ RT RW SECTION
SET SIM FORM TITLE USE16 USE32

Register Keywords

EAX EBX ECX EDX EBP ESP ESI EDI
AX BX ex DX BP SP SI DI
AH AL BH BL CH CL DH DL
OS SS ES FS GS EFLAGS EIP

Numeric Data Processor Registers

ST STO ST1 ST2 ST3
ST4 ST5 ST6 ST7

Default Section Names

CODE DATA BSS

Section 2.11 lists the 80386 instruction mnemonic keywords and the actions they

c/ initiate; Section 3 discusses CASM directives, and Section 2.8 defines operators.

Beta Draft 2-7

-
2.7 IDENTIFIERS COFF Utilities Guide

2.7.2 Symbol Identifiers

A symbol is a user-defined identifier with attributes specifying the kind of
information the symbol represents. Symbols fall into three categories:

• variables
• labels
• numbers

Variables

Variables identify data stored at a particular location in memory. All variables have
two attributes:

Offset determines the number of bytes between the beginning of the
section and the location of the variable. The offset of a
variable is the address of the variable relative to the starting
address of the section. The offset is subject to relocation at
link time. (See Appendix A).

Type determines the number of bytes of data manipulated when the
variable is referenced. A variable has one of the following
type attributes:

BYTE
PWORD

WORD
QWORD

LONG
TWO RD

DWORD

The data definition directives define a variable as one of these types (see Section
3). For example, the variable, ·my_ variable, is defined when it appears as the
name for a data definition directive:

my_variable db O

You can also define a variable as the name for an EOU directive referencing
another variable, as shown in the following example:

another variable equ my_variable

Labels

Labels identify locations in memory containing instruction statements. They are
referenced with jumps or calls. All labels have two attributes: segment and offset.
Label segment and offset attributes are essentially the same as variable segment
and offset attributes. A label is defined when it precedes an instruction. A colon
separates the label from instruction. For example,

my_label: add ax,bx

A label can also appear as the name for an EOU directive referencing another
label. For example,

another label equ my_label

Labels can also appear on lines without instruction mnemonics.

2-8 Beta Draft

COFF Utilities Guide 2.7 IDENTIFIERS

Numbers

You can also define numbers as symbols. CASM treats a number symbol as
though you have explicitly coded the number it represents. For example,

number five equ 5
mov al,number_five

is equivalent to the following:

mov al,5

Section 2.8 describes operators and their effects on numbers and number symbols.

2.7.3 Example Identifiers

The following are valid identifiers:

NOLI ST
WORD
AH
Mean streets
crashed
variable number 1234567890

2.8 OPERATORS

CASM operators define the operations forming the values used in
assembly instruction.

CASM operators fall into the following categories:

• arithmetic
• logical
• relational
• segment override
• variable manipulation
• variable creation

the final

The following subsections define the operators in detail. Where the syntax of the
operator is illustrated, a and b represent two elements of the expression. Unless
otherwise specified, a and b represent absolute numbers, such as numeric
constants, whose value is known at assembly-time. A relocatable number, on the
other hand, is a number whose value is unknown at assembly-time, because it can
change during the linking process. For example, the offset of a variable located in
a segment that will be combined with some other segments at link-time is a
relocatable number.

Table 2-8 on page 2-16 summarizes the CASM operators.

Beta Draft 2-9

)

)

2.8 OPERATORS COFF Utilities Guide

2.8.1 Arithmetic Operators

Addition and Subtraction

Addition and subtraction operators compute the arithmetic sum and difference of
two operands. The first operand (a) can be a variable, label, an absolute number,
or a relocatable number. For addition, the second operand (b) must be a number.
For subtraction, the second operand can be a number, or it can be a variable or
label in the same segment as the first operand.

When a number is added to a variable or label, the result is a variable or label with
an offset whose numeric value is the second operand plus the offset of the first
operand. Subtraction from a variable or label returns a variable or label whose
offset is the first operand's offset, decremented by the number specified in the
second operand.

Syntax:

a + b

a - b

Example:

count
displ
flag

returns the sum of a and b. Where a is a variable, label,
absolute number, or relocatable number.

returns the difference of a and b. Where a and b are variables,
labels, absolute numbers, or relocatable numbers in the same
segment.

equ
equ
db

2
5
of fh

mov al,flag+l
mov cl,flag+displ
mov bl,displ-count

Multiplication and Division

The multiplication and division operators *, /, and MOD accept only numbers as
operands. * and I treat all operators as unsigned numbers.

Syntax:

a * b

a I b

a MOD b

2-10

unsigned multiplication of a and b

unsigned division of a and b

return remainder of a I b

Beta Draft

-:-,.-------

(

(

c

2.8 OPERATORS

Example:

mask equ Of ch
signbit equ 80h
mov cl,mask and signbit
mov al,not mask

2.8.5 Relational Operators

COFF Utilities Guide

Relational operators treat all operands as unsigned numbers. The relational
operators are EQ (equal), LT (less than), LE {less than or equal), GT (greater than),
GE (greater than or equal), and NE (not equal). Each operator compares two
operands and returns all ones (OFFFFH) if the specified relation is true, and all
zeros if it is not.

Syntax:

In all of the operators below, a and b are unsigned numbers; or they are labels,
variables, or relocatable numbers defined in the same segment.

a EQ b

a LT b

a LE b

a GT b

a GE b

a NE b

Example:

limi tl
limi t2
mov
mov

returns OFFFFH if a = b otherwise 0

returns OFFFFH if a < b, otherwise 0

returns OFFFFH if a <= b, otherwise 0

returns OFFFFH if a > b, otherwise O

returns OFFFFH if a >= b, otherwise 0

returns OFFFFH if a<> b, otherwise O

equ 10
equ 25

ax,limitl lt limit2
ax,limitl gt limit2

2.8.6 Segment Override Operator

When manipulating variables, CASM decides which segment register to use. You
can override this choice by specifying a different register with the segment
override operator.

Note: The programming model supported by FlexOS (and COFF) is non-
segmented, so use of the segment override should be unnecessary.

Syntax:

seg: overrides segment register selected by assembler. seg can be:
CS, OS, ES, FS, GS, or SS.

2-12 Beta Draft

COFF Utilities Guide

2.8.2 Shift Operators

The shift operators perform a bit-wise shift of the operand.

Syntax:

2.8 OPERA TORS

a SHL b returns the value resulting from shifting a to left by the amount
specified by b

a SHR b returns the value· resulting from shifting a to the right by an the
amount specified by b

Example:

shl ax,l
shl eax,17

2.8.3 Unary Operators

Unary operators specify a number as either positive or negative. CASM unary
operators accept both signed and unsigned numbers.

Syntax:

+a

- a

Example:

gives a

gives 0 - a

rnov cl,+35
rnov al,2--5
rnov dl,-12

2.8.4 Logical Operators

Logical operators accept only numbers as operands. They perform the Boolean
logic operations AND, OR, XOR, and NOT.

Syntax:

a XOR b

a OR b

a AND b

NOT a

bit-by-bit logical EXCLUSIVE OR of a and b

bit-by-bit logical OR of a and b

bit-by-bit logical AND of a and b

logical inverse of a: all Os become 1 s, 1 s become Os. (a is a
16-bit number.)

Beta Draft 2-11

(~

(

(

COFF Utilities Guide

Example:

mov ax,ss:wordbuffer[bx]
mov ex, es: array
cs:movsb

2.8.7 Variable Manipulation Operators

2.8 OPERATORS

A variable manipulator creates a number equal to one attribute of its variable
operand. OFFSET extracts the variable's offset value; TYPE, its type value (1, 2, or
4), and LENGTH, the number of bytes associated with the variable. LAST compares
the variable's LENGTH with zero. If LENGTH is greater than zero, LAST decrements
LENGTH by one. If LENGTH equals zero, LAST leaves it unchanged. Variable
manipulators accept only variables as operators.

Syntax:

OFFSET a

TYPE a

LENGTH a

LAST a

Example:

wordbuf fer
buffer

creates a number whose value is the offset value of the variable
or label a.

creates a number. If the variable a is of type BYTE, WORD or
LONG, the value of the number created is 1, 2, or 4, respectively.

creates a number whose value is the length attribute of the
variable a. The length attribute is the number of bytes
associated with the variable.

if LENGTH a > 0, then LAST a = LENGTH a - 1; if LENGTH a = 0,
then LAST a = 0.

dw
db

0,0,0
1,2,3,4,5

mov ax, length buffer
mov ax,last buffer
mov ax,type buffer
mov ax,type wordbuffer

2.8.8 Variable Creation Operators

Three CASM operators are used to create variables. These are the period, dollar
sign, and "type" operators described below.

The period operator (.) creates a variable from a number.

The dollar sign operator ($) creates a label with an offset attribute equal to the
current value of the location counter. This operator takes no operand.

Beta Draft 2-13

2.8 OPERATORS COFF Utilities Guide

The "type" operator creates a virtual variable or label valid only during the
execution of the instruction. The temporary symbol has the same Type attribute
as the "type" operator, and all other attributes of the operand.

Syntax:

.a

$

"type" a

Examples:

mov
mov
inc

mov
mov

jmp
jrnps
jrnp

creates variable with an offset attribute of a. Segment attribute
is current data segment.

creates label with offset equal to current value of location
counter; segment attribute is current segment.

creates virtual variable or label with "type" and attributes of a.
Htype" can be a BYTE, WORD, DWORD, QWORD, PWORD, or
TWORD; a is the address of the expression.

byte [bx], 5
al,byte [bx]
word [si]

ax, • 0
bx , es : . 4 0 0 0 h

$
$
$+3000h

2.8.9 Isolation Operators

The isolation operators return either the high or low portion of the operand.

Syntax:

HIGH a returns the high-order byte of a, which can be a 16-bit
greater) sized operand

LOW a returns the low-order byte of a, which can be a 16-bit
greater) sized operand

HIGHW a returns the high-order word of a, which can be a 32-bit
greater) sized operand

LOWW a returns the low-order word of a, which can be a 32-bit
greater) sized operand

2-14 Beta Draft

(or

(or

(or

(or

(

('

c

2.9 EXPRESSIONS COFF Utilities Guide

Operator

+

*
I
MOD
AND
NOT
OR
XOR
SHR
SHL
EQ
GE
GT
LE
LT
NE

$
LAST
LENGTH
OFFSET
seg:addr
TYPE
"type"
LOW
LOWW
HIGH
HIGHW

Table 2-8. CASM Operator Summary

Description

addition or unary positive
subtraction or unary negative
multiplication
unsigned division
return remainder of division
logical AND
logical NOT
logical OR
logical exclusive OR
shift right
shift left
Equal to
Greater than or equal to
Greater than
Less than or equal to
Less than
Not Equal to
create variable. assign offset
create label. offset = location counter
compare LENGTH of variable to 0
create number from variable length
create number from variable offset
override segment register
create number from variable type
form a variable of type "type", (BYTE, WORD, etc)
return low-order byte of 16-bit or greater sized operand
return low-order half-word of 32-bit or greater sized operand
return high-order byte of 16-bit or greater sized operand
return high-order half-word of 32-bit or greater sized operand

2.9 EXPRESSIONS

CASM allows address, numeric, and bracketed expressions. An address expression
evaluates to a memory address and has two components:

• offset value
•type

Both variables and labels are address expressions. An address expression is not a
number, but its components are numbers. You can combine numbers with
operators to make an address expression.

2-16 Beta Draft

COFF Utilities Guide

Examples:

Given the definition

f oobar equ 012345678h

the following instructions are equivalent:

rnov dx, highw(foobar)
rnov ex, highw(foobar)

2.8.10 Operator Precedence

rnov dx,1234h
rnov cx,5678h

2.8 OPERATORS

Expressions combine variables, labels, or numbers with operators. CASM allows
several kinds of expressions (see Section 2.9). This section defines the order that
CASM performs operations if more than one operator appear in an expression.

CASM evaluates expressions from left to right, but evaluates operators with higher
precedence before operators with lower precedence. When two operators have
equal precedence, CASM evaluates the leftmost operator first. Table 2-7 shows
CASM operators in order of increasing precedence.

You can use parentheses to override the precedence rules. CASM first evaluates
the part of an expression enclosed in parentheses. If you nest parentheses, CASM
evaluates the innermost expressions first. For example,

15/3 + 18/9 = 5 + 2 = 7
15/(3 + 18/9) = 15/(3 + 2) = 15/5 = 3

Note that CASM allows five levels of nested parentheses.

Table 2-7. Precedence of Operators

Order (1 = highest) Operator

1 XOR, OR
2 AND
3 NOT
4 EQ, LT, LE, GT, GE, NE
5 +, -

6 *, /, MOO, SHL, SHR
7 HIGH, HIGHW, LOW, LOWW
8 +, -

9 segment_ override:
10 SEG, OFFSET, TYPE, LENGTH, LAST
11 (), [1
12 ., $

Beta Draft 2-15

(

COFF Utilities Guide 2.9 EXPRESSIONS

A numeric expression evaluates to a number. It contains no variables or labels,
only numbers and operands.

Bracketed expressions specify base- and index-addressing modes. For example,

Mode Example

Direct rnov EAX,word_var

Register Indirect rnov SI, [EBX]
Based or Indexed rnov 4 [ECX] ,EAX
Based-Indexed rnov AL,lO[BX+DX]

Scaled rnov SI , [EBX * 4] or
rnov 4[ECX*2],EAX

Memory addressing syntax such as the following is not permitted:

rnov AL,10 + [BX] + 8 * [DX]

although under other assemblers, it may have signified the same mode as

rnov AL,10[BX+DX*8]

For a complete explanation of memory addressing modes, see the Intel 80386
Programmer's Reference Manual.

2.10 STATEMENTS

Statements can be instructions or directives. CASM translates instructions into
80386 machine language instructions. CASM does not translate directives into
machine code. Directives tell CASM to perform certain functions.

You must terminate each assembly language statement with a carriage return (CR)
and line-feed (LF), or exclamation point. CASM treats these as an end-of-line.
You can write multiple assembly language statements without comments on the
same physical line and separate them with exclamation points. Only the last
statement on a line can have a comment because the comment field extends to
the physical end of the line.

Instruction statements have the following syntax:

[label:] [pre 11 [pre2] [pre3] [pre4] mnemonic [operand(s)] [;comment]

The fields are defined as follows:

label

prel, etc.

A symbol followed by a colon defines a label at the current
value of the location counter in the current segment. This field
is optional.

A prefix such as ASP, OSP, REP, CS:, or LOCK. This field is
optional.

Beta Draft 2-17

(

2.10 STATEMENTS

mnemonic

operand(s)

comment

COFF Utilities Guide

A symbol defined as a machine instruction, either by CASM or
by an EOU directive. This field is optional unless preceded by a
prefix instruction. If you omit this field, no operands can be
present, although the other fields can appear. Section 2. 11 lists
the CASM mnemonics.

An instruction mnemonic can require other symbols to represent
operands to the instruction. Instructions can have zero, one, or
two operands. ·

Any semicolon appearing outside a character string begins a
comment. A comment ends with a carriage return. This field is
optional, but you should use comments to facilitate program
maintenance and debugging.

Note: Labels and comments are allowed to exist on a line without the presence of
a mnemonic.

Section 3 describes the CASM directives.

2.11 INSTRUCTION SET SUMMARY

Table 2-9 summarizes the complete CASM instruction set in alphabetical order.
For a more detailed description of each instruction, including bit patterns, see the
Intel 80386 Programmer's Reference Manual.

2-18

Table 2-9. CASM Instruction Summary

Mnemonic Description

AAA
AAD
AAM
AAS
ADC
ADD
AND
ARPL
ASP
BOUND
BSF
BSR
BT
BTC
BTR
BTS

ASCII adjust after addition
ASCII adjust AX before division
ASCII adjust AX after multiplication
ASCII adjust AL after subtraction
Add with carry
Add
Logical And
Adjust priviledge level
Address size prefix
Check array index against bounds
Bit scan forward
Bit scan reverse
Bit test
Bit test and complement
Bit test and reset
Bit test and set

Beta Draft

2.11 INSTRUCTION SET SUMMARY COFF Utilities Guide

(:
Table 2-9. (Continued)

Mnemonic Description

FFREE Free register
FIADD Integer add
FICOM Integer comr:_>are
FICOMP Integer compare and pop
FIDIV Integer divide
FIOIVR Integer divide reversed
FILO Integer load
FIMUL Integer multiply
FINCSTP Increment stack pointer
FINIT /FNINIT Initialize processor
FIST Integer store
FISTP lnterger store and pop
FISUB Integer subtract
FISUBR Integer subtract reversed
FLO Load Real
FLO CW Load control word
FLOE NV Load environment
FLDPI Load 80-bit value for pi.

(FLDL2T Load log210
FLDL2E Load log2e
FLDLG2 Load log102
FLDLN2 Load log8 2
FLDZ Load+ 0.0
FLD1 Load + 1.0
FMUL Multiply real
FMULP Multiply real and pop
FNOP No operation
FPATAN Partial arctangent
FPREM Partial remainder
FPREM1 Partial remainder {IEEE)
FPTAN Partial tangent
FRNDINT Round to integer
FRSTOR Restore state
FSAVE/FNSAVE Save state
FSCALE Scale
FSIN Sine of ST{O)
FSINCOS Sine and Cosine of ST(O)
FST Store Real
FSTP Store Real and pop
FSTENV /FNSTENV Store environment
FSTCW/FNSTCW Store control word c FSTSW/FNSTSW Store status word

2-20 Beta Draft

COFF Utilities Guide

Mnemonic

CALL
CALLF
CBW
coo
CLC
CLO
cu
CLTS
CMC
CMP
CMPSB
CMPSD
CMPSL
CMPSW
CWD
CWDE
DAA
DAS
DEC
DIV
ENTER
ESC
F2XM1
FABS
FADD
FAD DP
FBLD
FBSTP
FCHS
FCLEX/FNCLEX
FCOM
FCOMP
FCOMPP
FCOS
FDECSTP
FDISl/FNDISI
FDIV
FDIVP
FOIVR
FD IV RP
FENl/FNENI

2.11 INSTRUCTION SET SUMMARY

Table 2-9. (Continued)

Description

Call (intra segment)
Call (inter segment)
Convert byte to word
Convert dword to qword
Clear carry flag
Clear direction flag
Clear interrupt flag
Clear TS flag
Complement carry flag
Compare
Compare byte (of string)
Compare dword (of string)
Compare long (of string)
Compare word (of string)
Convert word to dword
Convert word to dword extended
Decimal adjust AL after addition
Decimal adjust AL after subtraction
Decrement by 1
Divide (unsigned)
Procedure entry
Escape
2x-1
Absolute value
Add Real
Add Real and pop
Packed Decimal load
Packed Decimal store and pop
Change sign
Clear exceptions
Compare Real
Compare Real and pop
Compare Real and pop twice
Cosine of ST(O)
Decrement stack pointer
Disable interrupts
Divide Real
Divide Real and pop
Divide Real reversed
Divide Real reversed and pop
Enable interrupts

Beta Draft 2-19

2.11 INSTRUCTION SET SUMMARY COFF Utilities Guide

(
Table 2-9. (Continued)

Mnemonic Description

JMPS Jump (8 bit displacement)
JNA Jump on not above
JNAE Jump on not above or equal
JNB Jump on not below
JNBE Jump on not below or equal
JNC Jump on not carry
JNE Jump on not equal
JNG Jump on not greater
JNGE Jump on not greater or equal
JNL Jump on not less
JNLE Jump on not less or equal
JNO Jump on not overflow
JNP Jump on not parity
JNS Jump on not sign
JNZ Jump on not zero
JO Jump on overflow
JP Jump on parity
JPE Jump on parity even

(JPO Jump on parity odd
JS Jump on sign
JZ Jump on zero
LAHF Load AH with flags
LAR Load Access rights
LOS Load Pointer into OS
LEA Load effective address
LEAVE High level procedure exit
LES Load pointer into ES
LFS Load pointer into FS
LGDT Load Global Descriptor Table register
LGS Load pointer into GS
LIDT Load Interrupt Descriptor Table register
LLDT Load Local Descriptor Table register
LMSW Load machine status word
LOCK Lock bus
LODSB Load byte (of string)
LODSD Load dword (of string)
LODSL Load long (of string)
LOO SW Load word (of string)
LOOP Loop
LOO PE Loop while equal
LOOPNE Loop while not equal

(LOOP NZ Loop while not zero

2-22 Beta Draft

COFF Utilities Guide 2.11 INSTRUCTION SET SUMMARY

("

Table 2-9. {Continued) v

Mnemonic Description

FSQRT Square root
FSUB Subtract Real
FSUBP Subtract Real and pop
FSUBR Subtract Real reversed
FSUBRP Subtract Real reversed and pop
FTST Test
FUCOM Unordered compare
FUCOMP Unordered compare and pop
FUCOMPP Unordered compare and pop
FWAIT CPU wait
FXAM Examine
FXCH Exchange registers
FXTRACT Extract exponent and significand
FYL2X Y * log2X
FYL2XP1 Y * log2{X + 1)
HLT Halt
IBTS Insert bit string
IDIV Integer divide (signed)
IMUL Integer multiply (signed}

/ ,,

IN Input byte or word from port ~

INC Increment by 1
INSB Input byte from port to string
INSD Input dword from port to string
INSL Input long from port to string
INSW Input word from port to string
INT Interrupt
INTO Interrupt on overflow
IREnlRETD Interrupt return
JA Jump on above
JAE Jump on above or equal
JB Jump on below
JBE Jump on below or equal
JC Jump on carry
JCXZ Jump on ex zero
JE Jump on equal
JECXZ Jump on ECX zero
JG Jump on greater
JGE Jump on greater or equal
JL Jump on less
JLE Jump on less or equal
JMP Jump (intra segment)
JMPF Jump (inter segment) ~~-"

I

"'~--

Beta Draft 2-21

G::>FF Utilities Guide 2.11 INSTRUCTION SET SUMMARY

(Table 2-9. (Continued)

Mnemonic Description

LOOPZ Loop while zero
LSL Load segment limit
LSS Load pointer into SS
LTR Load task register
MOV Move
MOVSB Move byte (of string)
MOVSD Move dword (of string)
MOVSL Move long (of string)
MOVSW Move word (of string)
MOVSX Move with sign-extend
MOVZX Move with zero-extend
MUL Multiply
NEG Two's complement negate
NOP No Operation
NOT One's complement negate
OR Logical inclusive OR
OSP Operand size prefix
OUT Output byte or word pointer [si] to DX

(OUTSB Output byte pointer [si] to DX
OUTSD Output dword pointer [si] to DX
OUTSL Output long pointer [si] to DX
OUT SW Output word pointer [si] to DX
POP Pop a word from stack
POPA\POPAD Pop all general registers
POPF\POPFD Pop stack into FLAGS or EFLAGS register
PUSH Push operand on stack
PUSHA\PUSHAD Push all general registers
PUSHF\PUSHFD Push FLAGS register onto stack
RCL Rotate through carry left
RCR Rotate through carry right
REP Repeat
REPE Repeat while equal
REPNE Repeat while not equal
REPNZ Repeat while not zero
REPZ Repeat while zero
RET Return {intra segment)
RETF Return (inter segment)
ROL Rotate left
ROR Rotate right
SAHF Store AH into FLAGS
SAL Shift arithmetic left

(SAR Shift arithmetic right

Beta Draft 2-23

2.11 INSTRUCTION SET SUMMARY COFF Utilities Guide

Mnemonic

SBB
SCASB
SCASD
SCA SL
SCASW
SETA
SETAE
SETB
SET BE
SETC
SETE
SETG
SETGE
SETL
SETLE
SET NA
SETNAE
SETNB
SETNBE
SETNC
SETNE
SETNG
SETNGE

2-24

SET NL
SETNLE
SETNO
SET NP
SET NS
SETNZ
SETO
SETP
SETPE
SET PO
SETS
SETZ
SGDT\SGDTE
SHL
SHR
SHLD
SHRD
SIDT
SLOT

Table 2-9. (Continued)

Description

Integer subtract with borrow
Scan byte (of string)
Scan dword (of string)
Scan long (of string)
Scan word (of string)
Set byte if above
Set byte if above or equal
Set byte if below
Set byte if below or equal
Set byte if carry
Set byte if equal
Set byte if greater than
Set byte if greater than or equal
Set byte if less than
Set byte if less than or equal
Set byte if not above
Set byte if not above or equal
Set byte if not below
Set byte if not below or equal
Set byte if not carry
Set byte if not equal
Set byte if not greater
Set byte if not greater than or equal
Set byte if not less than
Set byte if not less than or equal
Set byte if not overflow
Set byte if not parity
Set byte if not sign
Set byte if not zero
Set byte if overflow
Set byte if parity
Set byte if parity even
Set byte if parity odd
Set byte if sign
Set byte if zero

··store Global Descriptor Table register ??
Shift left
Shift right
Double precision shift left
Double precision shift rrght
Store Interrupt Descriptor Table register
Store Local Descriptor Table register

Beta Draft

(

(

COFF Utilities Guide

Mnemonic

SMSW
STC
STD
STI
STOSB
STOSD
STOSL
STOSW
STR
SUB
TEST
VERR
VERW
WAIT
XCHG
XBTS
XLAT\XLATB
XOR

2.12 FLAGS

2.11 INSTRUCTION SET SUMMARY

Table 2-9. (Continued)

Description

Store machine Status word
Set carry flag
Set di.rection flag
Set interrupt flag
Store byte {of string)
Store dword {of string)
Store long {of string)
Store word {of string)
Store Task register
lntege~ subtract
Test {logical compare)
Verify read access
Verify write access
Wait until BUSY# pin is inactive
Exchange register/memory with register
Extract bit string
Translate
Exclusive OR

The 80386 EFLAGS register contains a set of flags that reflect the state of the
processor. Table 2-10 lists the flags you can test to determine the effects of an
executed instruction upon an operand or register.

Beta Draft 2-25

(_

(

2.12 FLAGS COFF Utilities Guide

Table 2-10. Flag Register Symbols

Symbol Meaning

AF Auxiliary Carry Flag
CF Carry Flag
OF Direction Flag
IF Interrupt Enable Flag

IOPL 110 Priveledge Level Field
NF Nested Flag
OF Overflow Flag
PF Parity Flag
RF Resume Flag
SF Sign Flag
TF Trap Flag
VM Virtual Mode Flag
ZF Zero Flag

Table 2-11 summarizes the effects of arithmetic instructions on flag bits.

2-26

Table 2-11. Effects of Arithmetic Instructions on Status Flags

Flag Bit

CF

AF

ZF

SF

PF

OF

Result

is set if the operation results in a carry out of (from addition) or
a borrow into (from subtraction) the high-order bit of the result;
otherwise CF is cleared.

is set if the operation results in a carry out of (from addition) or
a borrow into (from subtraction) the low-order four bits of the
result; otherwise AF is cleared.

is set if the result of the operation is zero; otherwise ZF is
cleared.

is set if the result is negative.

is set if the modulo 2 sum of the low-order eight bits of the
result of the operation is 0 (even parity); otherwise PF is cleared
(odd parity).

is set if the operation results in an overflow; the size of the
result exceeds the capacity of its destination.

Beta Draft

COFF Utilities Guide 2.13 16/32 BIT OPERANDS AND ADDRESSES

2.13 16/32 BIT OPERANDS AND ADDRESSES

When the 80386 runs in protected mode, a bit in the code segment descriptor (O­
bit) determines how the CPU decodes instructions. The same opcode and
addressing mode byte can specify an entirely different operation depending on the
state of this bit. Generally, if the bit is set a 32-bit operation is performed, else a
16-bit operation. A 32-bit operation implies 32-bit data manipulation and 32-bit
address formation. The following example illustrates this concept:

39h 07h = CMP [BX],AX if in 16-bit mode, or
CMP [EDI],EAX if in 32-bit mode.

CASM provides two instruction prefixes to override the default operation size
specified by the D-bit. If the D-bit is set, the presence of an Operand Size Prefix
(OSP) allows movement or manipulation of 16-bit registers and data. If the 0-bit
is reset, an OSP indicates 32-bit data.

An Address Size Prefix (ASP) reverses the default address-formation mode. If the
D-bit is set, the presence of an ASP indicates 16-bit addressing. If it is reset, 32-
bit.

CASM assembles instructions using 16 and/or 32 bit operands and addressing by
inserting the appropriate Size Prefixes if required, using the type and sizes of the
instruction operands to determine the need for the prefixes.

CASM also provides two directives (pseudo-ops) to specify which default operation
is intended to be in effect when the assembled code is executed.

The USE32 directive instructs CASM to insert one or both size prefixes before the
assembled instruction when a 16-bit operation is encountered. No prefixes are
required for 32-bit instructions. The USE16 directive works in the opposite way.
Prefixes are inserted if 32-bit instructions are encountered.

Normally, only one USE directive is used at the start of a single module.

2.14 PREFIXES AND OVERRIDES

Depending on the assembly size in effect (determined by the USE16/USE32
directives) when processing any given instruction, CASM may insert an Operand
Size Prefix (OSP) and/or an Address Size Prefix (ASP) before the primary opcode.
By default, the assembly mode is USE32, which corresponds to the default setting
of the "Operation Size" bit in a .386 program's code segment descriptor. CASM
also allows all prefixes, including those above, to be explicitly specified in the
source file.

A maximum of 4 prefixes may precede the instruction. They may be entered in
any order, but CASM uses the following order when building the instruction:

Beta Draft 2-27

(

(

2.14 PREFIXES AND OVERRIDES

1st 2nd

LOCK (FOh) ASP (67h)
REP (F3h)
REPE/REPZ (F3h)
REPNE/REPNZ (F2h)

3rd

OSP (66h)

. -

COFF Utilities Guide

4th

CS: (2Eh)
OS: (3Eh)
ES: (26h)
SS: (36h)
FS: (64h)
GS: (65h)

No more than one from each of the four groups is permitted for a single
instruction.

2.15 JUMP OPTIMIZATION

A short jump (+- 128 bytes) may be explicitly coded by using the JMPS mnemonic.
However, by default CASM converts a JMP instruction to a short jump assuming
the target is not external, is close enough, and the command-line specification, -J,
has not been entered. You can also use the JMPF mnemonic, but is not required
because CASM can determine the type of jump by the operand and the 16/32
assembly mode. Therefore, you normally need to supply only one form of the
jump instruction, JMP.

You can save one byte in an immediate near jump by specifying only a 16-bit
displacement. Assuming a USE32 code section and a 16-bit displacement, CASM
would insert an ASP prefix, then supply a 16-bit displacement instead of 32-bits.

2.16 INTER-SEGMENT CONTROL TRANSFERS

CASM (and the COFF format) supports the "flat", or unsegmented memory
addressing scheme of the 80386 microprocessor running in protected mode. This
has important implications for use of the inter-segment control transfer
instructions, JMPF and CALLF.

FlexOS's memory management scheme assumes that a 386 application does not
alter its segment registers. An SVC call is performed by an INT instruction, which
means that calls and/or jumps to fixed logical addresses are not required. A 386
application under FLEXOS need never perform such transfers.

Other protected operating environments may use fixed segmented addresses,
supported by the 80386 in the form of "call gates", to allow interprogram transfers.
CASM supports both forms of intersegment transfers, immediate and indirect, when
assembling CALLF and JUMPF instructions.

An immediate transfer is coded as follows:

MONITOR ENTRY equ 1067:00001024h
callf MONITOR ENTRY

2-28 Beta Draft

c

COFF Utilities Guide 2.17 AMBIGUOUS INSTRUCTIONS

An indirect transfer is coded as follows:

SV_CALL equ Of7:00039ab0h
code
callf vector

data
vector dp MONITOR_ENTRY

Note: CLINK cannot resolve immediate intersegment transfers to symbols external
to the source module.

2.17 AMBIGUOUS INSTRUCTIONS

On the Intel 386 processor, using 8088, 8086, and 80286 mnemonics can in some
cases lead to potential operand/address size ambiguities. For example, on the
8088/8086/80286 processors, the opcode A7h is the CMPSW instruction. It is a
fixed-operand instruction, i.e., the word pointed to by ES:DI is always compared to
the word pointed to by DS:SI. {A segment override is allowed.) The instruction
performs identically when executing in a 16-bit segment on the 386. However, in
a 32-bit segment the 32-bit registers, EDI and ESI are used as pointers and 32-bit
data, longs are being operated on.

Using standard Intel mnemonics, CMPSW and CMPSD map to the same opcode.
The question then becomes how to compare 16-bit data when in a 32-bit segment
and vice-versa, and how to similarly use 16-bit addressing? CASM supports two
means for resolving the ambiguity.

The first is to manually code an ASP and/or an OSP before the CMPSW/D
instruction. The second requires the presence of 1 or 2 operands to tell CASM
which prefixes to insert.

For example, the following are legal uses of the CMPSW/D instruction:

;Code: Meaning: "compare ... "
USE16
cmpsw ;A7 the words at ES: [DI] and OS: [SI]
asp cmpsw ;67 A7 the words at ES: [EDI] and OS:[ESI]
asp cmpsd ;67 66 A7 the longs at ES:[EDI] and OS:[ESI]
cmpsd ;66 A7 the longs at ES: [DI] and OS: [SI]

cmpsw [DI], [SI] ;A7 the words at ES: [DI) and OS: [SI]
cmpsw [EDI).[ESI) ;67 A7 the words at ES:[EDI] and OS: [ESI]
cmpsd [EDI).[ESI] ;67 66 A7 the longs at ES:[EDI) and DS:[EDI]
cmpsd [DI I , [SI) ;66 A7 the longs at ES: [DI] and OS: [DI]

Beta Draft 2-29

2.17 AMBIGUOUS INSTRUCTIONS COFF Utilities Guide

(The following are examples of other similar instructions:

LODSB LODSB [SI) STOSS STOSS [DI]
ASP LODSB LODSB [ESI] ASP STOSS STOSS [EDI)
LODSW LODSW [SI) STOSW STOSW (DI I
ASP LODSW LODSW (ESI) ASP STOSW STOSW [EDI)
LODSD LODSD (SI) STOSD STOSD (DI I
ASP LODSD LODSD [ESI) ASP STOSS STOSD (EDI)

Similarly for:

MOVSW , MOVSW [DI].[SI) . ASP MOVSW , MOVSW (EDl),[ESI]
eMPSW , eMPSW [DI).[SI] . ASP eMPSW , eMPSW [EDI),[ESI]
SeASW , Se A SW [DI] ASP SeASW , Se A SW [EDI]

OUTSW , OUT SW [SI] ASP OUTSW , OUT SW [ESI]
INSW INSW [SI] ASP INSW INSW [ESI]

LOOP lab . ASP LOOP lab, LOOP ex. lab • L.,OOP EeX, lab

XLAT ASP XLAT , XLAT BX, XLAT EBX

REP (the addressing mode in the instruction being repeated
determines whether ex or EeX is used ... e.g.'
REP MOVSW [EDI],(ESI])

(_ End of Section 2

c

2-30 Beta Draft

(

CHAPTER 3

CASM DIRECTIVES

CASM directives control various aspects of the assembly process. Directives are
grouped into the following categories:

• code generation
• section control

~·

• linkage control
• conditional assembly
• symbol definition
• data definition and memory allocation
• output listing control
• miscellaneous

3.1 DIRECTIVE SYNTAX

Directives have the following general syntax:

[narne] directive operand(s) [;comment]

The fields are defined as follows:

name Is a symbol that retains the value assigned by the directive. A
name is required for the EQU directive, but it is optional for the
other directives. Unlike the label field of an instruction, the
name field of a directive is never terminated with a colon.

directive

operand(s)

comment

One of the directive keywords defined in this section.

Analogous to the operands for instruction mnemonics. Some
directives, such as DB and DW allow any operand; others have
special requirements.

Exactly as defined for instruction statements in Section 2.10.

The following sections describe each CASM directive. The syntax for each
directive follows each section heading.

3.2 CODE GENERATION DIRECTIVES

Code generation directives control the type of code output by CASM. The code
generation directives are:

• USE16/32
•ALIGN

Beta Draft 3-1

(

(

3.2 CODE GENERATION DIRECTIVES COFF Utilities Guide

3.2.1 USE16/32 Directive

Syntax: USE 16
USE32

The USE16/32 directive establishes the default operand-size and addressing-size
for subsequent instructions.

CASM inserts 16-32 bit mode-switching. prefixes (ASPs and/or OSPs) preceding
subsequent instructions that would otherwise conflict with the default mode.

Examples:

USE16
mov EAX.4

mov AX,4

An OSP will be inserted before this
instruction ...
but not this one.

The 1st 3 bytes of the last two instructions are identical.
The length of the last instruction is 3 bytes, the 1st is 5 bytes (w/out
prefix).

USE16
mov [EBX] ,AX

USE32
mov al ,4
mov AX,4

mov EAX,4

3.2.2 ALIGN Directive

An ASP will be inserted before this instruction
because the addressing size is 32-bits, which
conflicts with the default. No OSP will
be inserted because the operand size in the
instruction matches the default operand size
indicated by the USE16 directive.

An OSP will be inserted before this
instruction ...
but not this one.

Syntax: ALIGN expression

The ALIGN directive tells CASM to adjust the program counter to an address which
is the next multiple of expression. It is most often used as ALIGN WORD or
ALIGN LONG.

3-2 Beta Draft

(

(

COFF Utilities Guide 3.3 SECTION CONTROL DIRECTIVES

3.3 SECTION CONTROL DIRECTIVES

Section control directives affect the placement of sections in the output file. The
section control directives are:

•CODE
•DATA
• BSS
e SECTION

3.3.1 CODE

Syntax: CODE

The CODE directive tells CASM to place all subsequent output into the ".text"
section of the output file. When CASM encounters this directive, it is functionally
equivalent to SECTION ' • text'. ·

The CODE directive remains in effect until a different section control directive is
encountered, or if there is no other section control directive in the source stream.

3.3.2 DATA

Syntax: DA TA

The DATA directive tells CASM to place all subsequent output into the ".data"
section of the output file. When CASM encounters this directive, it is functionally
equivalent to SECTION '.data'.

The DATA directive remains in effect until a different section control directive is
encountered, or if there is no other section control directive in the source stream.

3.3.3 BSS

Syntax: BSS

The BSS directive specifies that all subsequent symbols and symbol types are
identified as existing in the uninitialized "bss" section of the object file. The BSS
directive remains in effect until another section control directive is encountered.

Note: CASM does not place the actual initialized data into the BSS section of the
object file.

3.3.4 SECTION

Syntax: SECTION 'name' [numeric_ expression]

The SECTION directive specifies all subsequent output goes to the object file
section given by name, which is an ASCII string no longer than eight characters.
CASM places the optional numeric expression into the s flags field of the section
header in the COFF file. The SECTION directive remain-s in effect until another
section control directive is encountered.

Beta Draft 3-3

(

(

3.4 LINKAGE CONTROL DIRECTIVES

Normal values for numeric_expression are:

20H = STYP_TEXT {executable code)
40H = STYP_DATA (initialized data)
80H = STYP _ BSS (uninitialized data)

COFF Utilities Guide

CLINK uses the section name and the s _flags field to properly locate sections at
link time.

Note: CASM allows a maximum of 9 named sections other than CODE, DATA, and
BSS in a single module.

3.4 LINKAGE CONTROL DIRECTIVES

Linkage control directives modify the link process. The linkage control directives
are:

• PUBLIC
• EXTRN
•END

3.4.1 PUBLIC

Syntax: PUBLIC namel[, name2, ...]

The PUBLIC directive is used to specify that the entry points and data enumerated
are to be marked as global in the object file. This allows other linked modules to
access these procedures or variables.

3.4.2 EXTRN

Syntax: EXTRN name1:type,name2:type, ...

The EXTRN directive tells CASM that the listed symbols are defined in other
modules and are not defined in the module being assembled. For data variables, a
type may be entered if CASM is to perform type-checking. If no type is present,
no type checking is performed. External constants must be specified by an ABS
type.

Allowable data types are:

• BYTE(8), WORD(16), LONG(32)
• DWORD(16:16), PWORD(16:32)
• OWORD(NDP real 64-bit), TWORD(NDP real 80-bit)

Allowable constant types are: ABS, ABS8, ABS 16, ABS32.

3-4 Beta Draft

(

COFF Utilities Guide 3.5 CONDITIONAL ASS EMBLY DIRECTIVES

3.4.3 END

Syntax: END [name)

The END directive informs CASM that no further processing is to be done in the
current source file. If the "name" field is present. CASM marks the location
specified by name (typically name is a label) as the entry point to this module. If
LK386 attempts to link modules together to form an executable image and
encounters entry points specified in 2 or more modules, it treats the condition as
a non-recoverable error.

3.5 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives are used to set up conditions controlling the
instruction sequence. The conditional assembly directives are:

e IF
• ELSE
• ENDIF

3.5.1 IF, ELSE, and ENDIF Directives

Syntax: IF numeric_ expression
source line 1
source line 2

source line n

ELSE
alternate source line 1 - -
alternate source line 2 - -

alternate source line n

ENDIF

The IF and ENDIF directives allow you to conditionally include or exclude a group
of source lines from the assembly. The optional ELSE directive allows you to
specify an alternative set of source lines. You can use these conditional directives
to assemble several different versions of a single source program. You can nest IF
directives to five levels.

When CASM encounters an IF directive, it evaluates the numeric_ expression
following the IF keyword. You must define all elements in the numeric_ expression
before you use them in the IF directive. If the value of the expression is nonzero,
then CASM assembles source _line 1 through source _line n.

Beta Draft 3-5

(

(

3.5 CONDITIONAL ASSEMBLY DIRECTIVES COFF Utilities Guide

If the value of the expression is zero, then CASM lists all the lines, but does not
assemble them. If the value of the expression is zero, and you specify an ELSE
directive, then CASM assembles alternative_ source _line 1 through
alternative source line n. - -
3.5.2 C Language Conditional Compilation Directives

CASM also supports the following C language conditional compilation directives:

•#DEFINE
• #ELSE
• #ENDIF
•#IF
• #IFDEF

CASM supports these directives for compatibility with C language definition
modules. See the Metaware ™ High C documentation for details about these
directives.

3.6 SYMBOL DEFINITION DIRECTIVES

There are two symbol definition directives:

• EQU
• SET

3.6.1 EOU Directive

Syntax: symbol_ name EQU numeric_ expression
symbol_ name EQU address_ expression
symbol_name EQU register
symbol_ name EQU instruction_ mnemonic

The EQU (equate) directive assigns values and attributes to user-defined symbols.
Do not put a colon after the symbol_name. Once you define a symbol, you cannot
redefine the symbol with a subsequent EQU or another directive. You must also
define any elements used in a numeric_ expression or an address expression
before using the EQU directive.

The first form of the EQU directive assigns a numeric value to the symbol. The
setond form assigns a memory address. The third form assigns a new name to a
register. The fourth form defines a new instruction (sub)set. The following
examples illustrate these four EOU forms.

3-6

FIVE EQU
NEXT EQU
COUNTER EQU
MOVVV EQU
MOVVV AX,BX

2*2+1
BUFFER
ex
MOV

Beta Draft

(

('

c

COFF Utilities Guide 3.6 SYMBOL DEFINITION DIRECTIVES

Note: CASM implements the EQU directive as a string replacement function (like
the C language #define statement). This means that a value must be defined
before being used. It also means some constructs may work unexpectedly. For
example, the following code:

varl equ 6
var2 equ 2 + 3
mov ex, varl-var2

moves into CX the value 7 (6 - 2 + 3) not 1 (6 - (2+3)).

3.6.2 SET Directive

Syntax: symbol_name SET numeric_expression
symbol_ name SET address_ expression
symbol_name SET register
symbol_name SET instruction_ mnemonic

The SET directive is identical to the EOU directive except the symbol it defines
may be redefined in the same source file using a subsequent SET directive.

3.7 DATA AND MEMORY DIRECTIVES

Data definition and memory allocation directives define the storage format used for
a specified expression or constant. The available data definition and memory
allocation directives are:

DB OW DD DL DP DO OT
RB RW RD Rl RP RO RT

3.7.1 DB Directive

Syntax: [symbol] DB numeric expression [,numeric expression ...]
[symbol] DB string_co~stant [,string_constant...l

The DB directive defines initialized storage areas in byte format. CASM evaluates
numeric expressions to 8-bit values and sequentially places them in the object
file. CASM places string constants in the object file according to the rules
defined in Section 2.5.3. Note that CASM does not perform translation from lower­
to uppercase within strings.

The DB directive is the only CASM statement that accepts a string constant longer
than four bytes. You can add multiple expressions or constants, separated bV
commas, to the definition if it does not exceed the physical line length.

Use an optional symbol to reference the defined data area throughout the
program. The symbol has three attributes:

Beta Draft 3-7

(

c

3.7 DATA AND MEMORY DIRECTIVES

• offset
•type
• length

COFF Utilities Guide

The offset attribute determines the symbol's memory reference; the type attribute
specifies single bytes, and the length attribute tells the number of bytes reserved.

The following listing shows examples of DB directives and the resulting
hexadecimal values:

TEXT
AA
x

DB
DB
DB

•

'FlexOS system' ,0
'a' + 80H
1,2,3,4,5

MOV CX,LENGTH TEXT

3.7.2 OW Directive

Syntax: [symbol] OW numeric expression [,numeric expression ...]
[symbol] ow string_ constant [,string_ constant ...]

The OW directive initializes two-byte words of storage. The OW directive
initializes storage the same way as the DB directive, except that each
numeric_ expression, or string_ constant initializes two bytes of memory with the
low-order byte stored first. The OW directive does not accept string constants
longer than two characters.

The following are examples of DW directives:

CNTR
JMPTAB
DW

DW 0
DW SUBR1,SUBR2,SUBR3
1,2,3,4,5,6

3.7 .3 DL Directive

Syntax: [symbol] DL address_ expression [,address_ expression ...)

The DL directive initializes four bytes of storage. The DL directive does not accept
string constants longer than 4 characters.

3.k4 DD Directive

Syntax: [symbol] DD address_ expression [,address_ expression ...)

The DD directive initializes four bytes of storage. DD follows the same procedure
as OB, except that the offset attribute of the address expression is stored in the
two lower bytes and the segment attribute is stored in the two upper bytes. For
example,

3-8 Beta Draft

(

COFF Utilities Guide 3.7 DATA AND MEMORY DIRECTIVES

CSEG

LONG JMPTAB

3.7.5 DP Directive

DD
DD

ROUT1,ROUT2
ROUT3,ROUT4

Syntax: [symbol] DP address_ expression [,address_ expression ...]

The DP directive initializes six bytes of storage.

3.7.6 DO Directive

Syntax: [symbol] DO address_ expression [,address_ expression ...]

The DO directive initializes eight bytes of storage.

3.7.7 DT Directive

Syntax: [symbol] OT address_ expression [,address_ expression ...]

The OT directive initializes ten bytes of storage.

3.7.8 RB Directive

Syntax: [symbol] RB numeric_ expression

The RB directive allocates byte storage in memory without any initialization. The
RB directive is identical to the RS directive except that it gives the byte attribute.
For example,

BUF
RB
RB

RB
4000H
1

3.7.9 RW Directive

48

Syntax: [symbol] RW numeric_ expression

The RW directive allocates two-byte word storage in memory but does not
initialize it. The numeric_ expression gives the number of words to be reserved.
For example,

BUFF
RW
RW

RW
4000H
1

3.7.10 RL Directive

128

Syntax: [symbol] RL numeric_expression

The RL directive allocates four bytes of storage.

Beta Draft 3-9

(

(

3.8 LISTING CONTROL DIRECTIVES

3.7.11 RD Directive

Syntax: [symbol] RD numeric_ expression

The RD directive allocates four bytes of storage.

3.7.12 RP Directive

Syntax: [symbol] RP numeric_ expression

The RP directive allocates six bytes of storage.

3.7.13 RQ Directive

Syntax: [symbol] RQ numeric_ expression

The RQ directive allocates eight bytes of storage.

3.7.14 RT Directive

Syntax: [symbol] RT numeric_ expression

The RT directive allocates ten bytes of storage.

3.8 LISTING CONTROL DIRECTIVES

GOFF Utilities Guide

Listing control directives modify the list file format. The listing control directives
are:

EJECT
IFLIST\NOIFLIST
LIST\NOLIST
PAGE SIZE

PAGEWIDTH
SIMFORM
TITLE

3.8.1 EJECT Directive

Syntax: EJECT

The EJECT directive performs a page eject during printout. The EJECT directive is
printed on the first line of the next page.

3.8.2 NOIFLIST /IFLIST Directives

• Syntax: NOIFLIST
IFLIST

The NOIFLIST directive suppresses the printout of the contents of conditional
assembly blocks that are not assembled. The IFLIST directive resumes printout of
these blocks.

3-10 Beta Draft

(

(

(

COFF Utilities Guide

3.8.3 NOLISnLIST Directives

Syntax: NOLIST
LIST

3.8 LISTING CONTROL DIRECTIVES

The NOLIST directive suppresses the printout of lines following the directive. The
LIST directive restarts the listing.

3.8.4 PAGESIZE Directive .--

Syntax: PAGESIZE numeric_expression

The PAGESIZE directive defines the number of lines on each page. The default
page size is 66 lines.

3.8.5 PAGEWIDTH Directive

Syntax: PAGEWIDTH numeric_ expression

The PAGEWIDTH directive defines the number of columns printed across the page
of the listing file. The default page width is 120 unless the listing is routed
directly to the console; then the default page width is 79.

3.8.6 SIMFORM Directive

Syntax: SIMFORM

The SIMFORM directive replaces a form-feed (FF) character in the list file with the
correct number of line-feeds (LF). Use this directive when directing a list file to a
printer unable to interpret the form-feed character.

3.8.7 TITLE Directive

Syntax: TITLE string_ constant

CASM prints the string constant defined by a TITLE directive statement at the top
of each printout page in the listing file. The title character string can be up to 30
characters in length. For example,

TITLE 'Serial driver'

3.9 MISCELLANEOUS DIRECTIVES

Additional CASM directives are:

•INCLUDE
• ORG

Beta Draft 3-11

(

3.9 MISCELLANEOUS DIRECTIVES

3.9.1 INCLUDE Directive

Syntax: INCLUDE filename

COFF Utilities Guide

The INCLUDE directive includes another CASM source file in the source text. For
example, to include the file EQUALS in your text, you would enter:

INCLUDE EQUALS.A86

CASM first tries to open the file in the current directory. If CASM does not find
the file in the current directory, it searches the directory containing the source file.

Note: You cannot nest INCLUDE directives; a source file called by an INCLUDE
directive cannot contain another INCLUDE directive.

3.9.2 ORG Directive

Syntax: ORG numeric_ expression

The ORG directive sets the offset of the location counter in the current section to
a value specified by the numeric_ expression. You must define all elements of the
expression before using the ORG directive, and the expression must evaluate to an
absolute number.

If you use an ORG statement in a section that CLINK does not combine with other
sections at link-time, then the numeric_expression indicates the actual offset
within the section.

(If the section is combined with others at link-time, then numeric_ expression is not
an absolute offset. It is relative to the beginning address of the final section.

End of Section 3

c
3-12 Beta Draft

(~

(·.
/

CHAPTER 4

CLINK - LINKAGE EDITOR

CLINK™ is the linkage editor that processes Common Object File Format {COFF)
object files to produce executable files (filetype .386). There are three types of
COFF object files:

.. ·
• object files (filetype .0) from the CASM assembler or Metaware TM High C

compiler

• library files (filetype .LIB) from CUB

• shared run-time library files (type .LIB) created by CLINK.

4.1 CREATING THE .386 FILE

CLINK produces an executable (.386) file by making two passes through the input
object file(s).

4.1.1 Pass 1

During pass 1, CLINK reads the program arguments, input files {see Section 4.3),
object files and libraries. COFF section headers {see Appendix A) and global
symbol information are taken from the object files and libraries. CLINK reads the
section headers so that at the end of Pass 1, it knows what sections to place in
the output file. CLINK reads the symbol information in order to search libraries for
symbols that resolve undefined external references.

CLINK builds an internal section structure for any section that must be included in
the output file and links it to the end of the list of input sections. There may be
many section structures in the list which have the same name, since section
structures from each file are independent from those for sections with the same
from other files.

4.1.2 Address Allocation

Between Pass 1 and Pass 2, CLINK determines the in-memory address of each
component of the output file. All sections are allocated in the order they are
encountered. This order corresponds to the order of the section input list
constructed during Pass 1.

Typically, each output section consists of a number of input sections. After
allocation, the base and length of an output section represents the virtual address
of the base of the entire section, and the length of the entire output section. The
base and length of the input section describe just that portion of the output
section comprised by that particular input section.

Beta Draft 4-1

{

c:

4.2 PROGRAM LOAD MODEL COFF Utilities Guide

4.1.3 Pass 2

During Pass 2, CLINK creates the output file(s) by building the appropriate headers
and copying parts of the input files to the output file{s) by traversing the input
section list in the order constructed by Pass 1.

4.2 PROGRAM LOAD MODEL

FlexOS 386 supports a program load model called Nfast load", which contains only
CODE, DATA, and BSS sections. FlexOS 386 does not perform any relocation at
load time so the .386 file must be statically located using specific rules. Figure
4-1 shows the address space of a .386 program at load time.

The fast-load algorithm used by the FlexOS 386 program loader consists of the
following steps:

1. Read COFF file header; check that:

a. Magic number is 5140

b. (Flags &= (F _EXEC & F _1386)) = {F _EXEC & F _1386).

2. Read FlexOS header; check that:

a. Magic number 7000

b. Text_start = Ox1000 (4kb)

c. Entry >= text_start

d. Data_ start = text_ start + (tsize + Ox3ff)/Ox 1000 + max(Ox 1000, (stksize +
Ox3ff)/Ox 1000). (The data must begin on the 1st 4Kb boundary after the
end of the code and stack areas are each rounded up to 4Kb boundaries.

3. Allocate (tsize + Ox3ff)/Ox1000 for code

4. Read CODE

5. Allocate max(Ox 1000, (stksize + Ox3ff)/Ox 1000) for stack

6. Allocate dsize + bsize for data and bss

7. Read DATA

8. Zero-fill BSS section

9. Begin program at Nentry"

4-2 Beta Draft

(

(

COFF Utilities Guide 4.2 PROGRAM LOAD MODEL

3 Gb +-----------------------+

TE + + ----- (4Kb-aligned)

HE +-----------------------+ --+

(expands upward A)

HEAP +----dynamically created during
execution by malloc SVC

BE +-----------------------+ --+

Uninitialized DATA
("BSS"') +---- "'bsize" in FlexOS header

+•..•....•...... + --+--

Loaded DATA +---- "dsize" in FlexOS header

SE +-----------------------+ --+ (4Kb-al igned)

STACK +---- "stksize" in FlexOS header

CE +-----------------------+ --+ (4Kb-al igned)
I Cpad) I

ICE I •.•..•...•.•..•••.•..•. 1 --+--
1 I
I I
I CODE I +---- "tsize" in FlexOS header

I I
I I

Ox1000 +-----------------------+ --+--

Non-existent

0 + + --+--

Figure 4-1. LOAD-TIME MEMORY MAP

Beta Draft 4-3

c:

4.3 USING CLINK COFF Utilities Guide

The address symbols in the Figure 4-1 have the following definitions:

ICE (Initialized Code End)

CE (Code End)

SE (Stack End)

BE (BSS End)

HE (Heap End)

TE (Trap End)

the address of the first byte after the loaded ff.text"
section of the .386 file.

the address of the first byte after rounding the size of
initialized code up to a 4Kb boundary. (CE = Ox2000
for applications with less than 4Kb of code in the
".text" section)

the address of the first byte after the required stack
size specified in the optional header of the .386 file.
(ESP is initialized to SE on 386 program load.)

the address of the first byte after the ".data'" and ".bssn
sections have been loaded from the .386 file. (Until
allocation calls are made by the application, attempts
to access this address or above generate an exception,
and FlexOS 386 terminates the program.)

the address of the first byte after any dynamically
allocated memory received from allocation SVCs.

(HE+OxFFF)/OxlOOO, which is the address of HE rounded
up to 4Kb alignment. Attempting to access this
address (or above) causes a trap to the OS.

-
Note: The following relation holds for .386 programs under FlexOS 386:

Ox1000 < ICE <= CE < SE <= BE <= HE

4.3 USING CLINK

CLINK is invoked with a command of the form:

CLINK [filename][-option][filename] ...

where filename is either an object file or an input file.

Object files are either .0 files from the assembler or compiler, or .LIB files from
the librarian. If you enter a filename without a filetype or a period delimiter, CLINK
first attempts to open the file using the name as entered. If the open fails, CLINK
appends a .o to the name and attempts another open. If this open fails, CLINK
displays a "file not found" message and terminates.

Input files contain CLINK command lines. That is, they are handled just as the
command line itself, and may contain file names (which may be other input files)
and linker options.

Linker options, are signified with a hyphen in the command line. Table 4-1 lists
the command-line options.

4-4 Beta Draft

(

(

COFF Utilities Guide 4.3 USING CLINK

Table 4-1. CLINK Options

Option Purpose

cnum Specify origin of .text section.

dnum Specify origin of .data section.

en a me Mark "name" as the program entry point.

I name Search for the library, LIBname.A in /lib, then /usr/lib.

Lpath Specify a search path for libraries.

m Produce a linkage map file.

oname Specify output file name.

r Retain relocation information in output file.

s Strip symbols and line number data from output file.

Sn um Specify stack size.

T Display execution times.

uname Mark "name" as a undefined symbol.

v Use Verbose mode.

v Display linker version.

VSnum Enter version number into FlexOS 386 header.

4.3.1 The cnum option

This option overrides the default relocated address of the .text section. The
default address is 1 OOOH; the FlexOS program loader expects this address. num
must be a hexadecimal number.

4.3.2 The Dname option

This option overrides the default relocated addess of the .data section. The default
is the next page-aligned address above the code and stack.

4.3.3 The ename option

This option causes CLINK to mark the address represented by the symbol name as
the entry point of the program. FlexOS 386 begins execution at this point.

Beta Draft 4-5

4.3 USING CLINK COFF Utilities Guide

(4.3.4 The lname option

(

This option causes CLINK to search a library named libname.a, where name can be
a string of up to 5 characters in length. A library is searched when its name is
encountered, so the placement of a -I in the command tine is significant. By
default, libraries are assumed to be located in /lib and /usr/lib.

4.3.5 The ldirectory option

This option inserts the specified directory in the chain of directories to be
searched for libraries before /lib and /usr/lib. You must specify the -L option
before the -I option if you want CLINK to search for the specified library in the
alternate directory.

4.3.6 The m option

This option causes CLINK to produce a linkage map consisting of two parts:

• A section table, which displays input and output sections by name plus base
addresses and lengths.

• A symbol table, which shows symbols and addresses corresponding to those
symbols.

The map file name is the output file name with a file type of .MAP.

4.3.7 The oname option

This option causes CLINK to specify name as the name of the output file. By
default, the output file name consists of the first filename encountered in the
command line, concatenated with the filetype .386. If you do not specify an object
file but simply link libraries, the output file name is the name of the first library
encountered, with a filetype of .386.

4.3.8 The r option

This option causes CLINK to retain relocation information in the output file.
Normally, the COFF object files produced by assemblers and compilers contain
relocation entries which allow the modules to be combined with others and
relocated by a linkage editor. FtexOS 386 does no relocation when loading
application programs, so by default CLINK does not retain relocation information in
the output file. To subsequently link the output file with others, this relocation
information should be retained by using this option. Also, FlexOS 386 native-mode
drivers must contain relocation information, requiring use of this option.

4.3.9 The s option

This option causes CLINK to remove symbols and line number entries from the
retained and/or inserted into the output file and are useful for debugging.

4-6 Beta Draft

(

(

COFF Utilities Guide 4.3 USING CLINK

4.3.10 The Snum option

This option changes the default stack size which CLINK inserts between .text and
.data sections in the output file. The default stack size is 4 Kb. Although CLINK
accepts any number entered using this option, FlexOS 386 rounds all stack sizes to
the next higher multiple of 4Kb, and the default model loader expects to see the
statically located .data section addressed at the top of that stack. For this reason,
stack sizes which are multiples of 4Kb are normally used with this option . .. -

4.3.11 The T option

This option causes CLINK tp display execution times.

4.3.12 The uname option

This option causes name to be entered as an undefined symbol in CLINK's symbol
table. This is (perhaps) useful for loading entirely from a library, since initially the
symbol table is empty and an unresolved reference is needed to force the loading
of the first routine.

4.3.13 The v option

This option causes CLINK to run in "verbose" mode, printing each module name.

4.3.14 The V option

This option causes CLINK to display its version number before processing the input
files.

4.3.15 The (VSnum) option

This option instructs CLINK to insert num into the version field of the FlexOS 386
header in the output file. num must be a hexadecimal number.

4.4 CLINK ERROR MESSAGES

Table 4-2 lists the error messages that CLINK can display during processing.

Beta Draft 4-7

(

4.4 CLINK ERROR MESSAGES COFF Utilities Guide

Error Message

file not found

file not closeable

Table 4-2. CLINK Error Messages

Cause

CLINK could not locate an object file entered on the command
line or within an input file.

FlexOS 386 returned an error when CLINK tried to close an
object. input or output file.

file filename must be .o, .a or input file

CLINK could not identify filename as an object file, library file, or
input file.

premature end of data in module mod-name, section sec-name

The object or library file is built incorrectly and could not be
read by CLINK.

duplicate index-number in module mod-name, section sec-name

The object or library file is built incorrectly and could not be
read by CLINK.

duplicate indices for symbol sym-name in module mod-name

The object or library file is built incorrectly and could not be
read by CLINK.

types do not match for symbol sym-name in module mod-name

CLINK detected conflicting types for a symbol referenced in two
or more modules.

auxents do not match for symbol sym-name in module mod-name

CLINK detected conflicting auxiliary entries for symbols
referenced in two or more modules.

symbol sym-name undefined, first referenced in module mod-name

A symbol has been externally declared in one or more modules,
but not defined in any module.

absolute symbol sym-mame assigned different value in module mod-name

4-8

An absolutely defined symbol cannot be re-defined or given
different attributes.

Beta Draft

(

COFF Utilities Guide 4.4 CLINK ERROR MESSAGES

Table 4-2. (Continued)

Error Message Cause

absolute symbol sym-name defined as normal symbol in module mod-name

An absolutely defined symbol cannot be re-defined or given
different attributes.

symbol sym-name redefined as absolute in module mod-name

An absolutely defined symbol cannot be re-defined or given
different attributes.

duplicate definition of symbol sym-name in module mod-name

All symbol names must be unique.

unsupported storage class for symbol sym-name in module mod-name

The object or library file is built incorrectly and could not be
read by CLINK.

symbol number sym-num not in index in module mod-name, section sec-name

The object or library file is built incorrectly and could not be
read by CLINK.

special symbol sym-name cannot be defined in module mod-name

CLINK places certain special symbols in the output file. If the
symbol name has been previously defined in your source code,
CLINK outputs this error. Check the source code and re-define
the symbol.

unordered reloc address addr in module mod-name, section sec-name

To improve performance, CLINK requires relocation entries in its
object and library files exist in order of increasing virtual
addresses. CASM and the Metaware High C compiler produce
relocation data in this manner.

byte reloc for addr addr out of range in module mod-name, section sec-name

A relocatable byte reference to a symbol has resolved to a
number which cannot be stored in one byte. Changing the link
order may cause CLINK to position the target symbol closer to
the reference.

word reloc for addr addr out of range in module mod-name, section sec-name

A relocatable word reference to a symbol has resolved to a
number which cannot be stored in one word. Changing the link
order may cause CLINK to position the target symbol closer to
the reference.

Beta Draft 4-9

(

(

(

4.4 CLINK ERROR MESSAGES COFF Utilities Guide

Table 4-2. (Continued)

Error Message Cause

unsupported reloc type for addr addr in module mod-name, section sec-name

CLINK supports the relocation types listed above in Section A.4.
Relocation types used on other machines are not supported.

ifile filename nested too deeply at level number

CLINK does not allow input files to be nested more than 10
levels deep.

ifile filename contains nongraphic char, rest of file ignored

CLINK has encountered a. non-printable character in an input file.

option optletter requires a name

Some command-line options require a parameter following the
hyphen and option letter(s).

options r and s are incompatible

Relocation information requires the presence of symbol
information. Retaining relocation entries with -r and stripping
symbols with -s are incompatible operations.

unsupported option xxx ignored

The option letters displayed are not supported or recognized by
CLINK.

decimal version number specified incorrectly

The version number supplied with the -VS option was entered
incorrectly.

invalid library name

The library name supplied with the -L option was entered
incorrectly.

invalid library directory name

4-10

The library directory name supplied with the -L option was
entered incorrectly.

Beta Draft

(

(~

COFF Utilities Guide 4.4 CLINK ERROR MESSAGES

Table 4-2. (Continued)

Error Message Cause

library name lib-name longer than 5 chars

The library file sub-name entered with the -I option may be a
maximum of five characters, to fit within the library filename,
LI Bxxxxx.A.

library lib-name cannot be found

CLINK could not locate a library file entered on the command
line or within an input file.

End of Section 4

Beta Draft 4-11

(

(

(

CHAPTER 5

CLIB - COFF LIBRARIAN

5.1 Introduction

CUB TM is a utility program that combines multiple COFF format object files into an
indexed library file. Such a library file can be processed by the linkage editor,
CLINK to select those specific modules required to resolve external symbols of the
program being linked.

A library file (filetype .LIB) includes complete copies of the object files, and extra
data structures which CLINK uses to locate the modules containing the symbols for
which it is searching. Each library contains a symbol hash table, which stores
codes for all public symbols of the library modules. When searching the library to
resolve an undefined symbol, CLINK performs the following actions:

1. Generate a hash code for the symbol.

2. Retrieve a pointer in the symbol hash table at the entry corresponding to that
code.

3. Examine the information at that pointer to determine if the symbol is present
in the library, and, if so, in which module of the library the symbol is defined.

4. Extract that module.

5.2 Command Line

CUB is invoked by using a command line of the form:

CUB libfilename [-option] [objfilename] ...

libfilename is the name of the library file you want to create or access. It can be
any valid filename of 1 to 8 characters. -option is an option that controls CUB
operation as described below. objfilename is the name of a COFF object file
(filetype .0). You can specify multiple object files with most options. Both the
library and object files can have a path specification.

Table 5-0 lists the CUB options, which follow a hyphen in the command line.

Beta Draft 5-1

(

(-

(

5.2 Command Line COFF Utilities Guide

Table 5-1. CLIB Command Line Options

Option Description

a Add a module to a library

c Print symbols by columns

d Delete a module from a library

g Print the Symbol table contents

h Initiate the Help facility

Hnum Use num for Hash Table size

m Print the list of modules· in a library

p Print the list of modules by position

q Quiet Mode

R Build modules referenced list

r Replace module in a library

ssymbol Add/Delete a symbol from the symbol table

t Print both the symbol table and list of modules

v Verbose Mode

x Extract a module from a module

? Initiate the Help facility

5.2.1 The -a option

The -a option adds a module or modules to the specified library, creating the
library if it does not exist. It is also used to associate a symbol or symbols with a
module in an existing library.

Examples:

A> clib -a library.lib module.o

A>clib -a library.lib module1.o module2.o module3.o

A>clib -a library.lib -sSVMBOL1 -sSVMBOL2 modulex.o

5-2 Beta Draft

(

(··~
..

COFF Utilities Guide 5.2 Command Line

5.2.2 The- -c option

The -c option, when used with the -g option (print global symbols), displays the
public symbols in the library in column format.

Example:

A>clib -gc library.lib

5.2.3 The -d option

The -d option deletes the specified module or modules from the library.

Example:

A>clib -d library.lib modulex.o moduley.o modulez.o

5.2.4 The -g option

The -g option prints all the public (global) symbols in all the modules of the
specified library.

5.2.5 The -h option

The -h option displays all CUB options with a short descriptive phrase.

5.2.6 The -Hnum option

The -H option specifies (in decimal bytes) the size of the symbol Hash Table which
is built into a new library. The Hash Table size controls the maximum number of
modules/symbols which can exist in the library. The default is 521 bytes.

Example:

A>clib -a -H1000 newlib.lib firstmod.o

5.2.7 The -m option

The -m option prints an alphabetized list of all modules in the specified library.

Example:

A>clib -m library.lib

5.2.8 The -p option

The -p option, when used with the -m option (print module names), displays the
library modules in the order in which they exist in the library.

Beta Draft 5-3

('

5.2 Command Line COFF Utilities Guide

Example:

A>clib -mp library.lib

5.2.9 The -q option

The -q option puts CUB in quiet mode so that it does not output any informative
messages. .~-·

5.2.10 The -r option

The -r option replaces a module in the library with a file of an identical name on
disk.

Example:

A>clib -r library.lib module.o

5.2.11 The -R option

The -R option builds an internal modules-referenced list which improves CLINK
performance at the expense of increasing library size.

5.2.12 The -ssymbol option

The -s option, when used with the -a option adds a symbol ta the library and
associates it with the module whose name follows .

. Example:

A>clib -a library.lib -sSYMBOLNAME module.a

5.2.13 The -t option

The -t option prints all the public (global) symbols and all the modules in the
specified library.

Example:

A>clib -t library.lib

5.2.14 The -v option

The -v option puts CUB in verbose mode so that when used with other options,
CUB displays informative messages.

Example:

A>clib -tv library.lib

5-4 Beta Draft

(

(

COFF Utilities Guide 5.3 CLIB Error and Warning Messages

5.2.15 The -x option

The -x option extracts a module from the specified library, creating a file with the
same name as the module name, but leaving the library unchanged.

Example:

A>clib -x library.lib mod1.o ..
5.2.16 The-? option

The -? option performs the same function as the -h option.

5.3 CLIB Error and Warning Messages

Table 5-2 lists the warning messsages CUB can emit when processing files.

Table 5-2. CLIB Warning Messages

Message Description

Too many arguments - ignored
The command line contained extra arguments which CLIB does
not understand. The extra arguments have been ignored.

Cannot open module file - ignored
One module (file) in a list of modules could not be opened by
CLIB. If the other modules in the list can be opened, they are
processed by CLIB.

A Module By This Name Already in Library - ignored
When attempting to add a module to an existing library, CUB
detected the presence of a previous module of the same name.
The command for the redundant operation has been ignored.

Module Not In The Library
CUB could not find the specified module in the library.

A Symbol By This Name Already in Library - ignored
When a module is added which contains an external (public.)
symbol whose name duplicates a symbol already present in the
library, CLIB issues this message and the reference to the new
symbol is not entered into the library symbol table.

Beta Draft 5-5

5.3 CUB Error and Warning Messages COFF Utilities Guide

Table 5-3 lists the error messages that cause immediate termination of CUB.

Message

Internal Error

Table 5-3. CLIB Error Messages

Description

CUB issues this message when it detects the library or a
module being processed is incorrectly built. Check the
operation of the assembler or compiler which produced the
module.

Cannot Open Library File
CUB cannot open the library file specified in the command line.

Cannot Create Library File
When attempting to create a library file for the first time. CUB
received an error message from FlexOS. The reason may be
one of several: media full. media write-protected, media
directory full, etc.

Not a Library File The library file specified on the command line was not
recognized by CUB as being in ORI library format.

Cannot Open Library File For Updating
The library file specified on the command line could not be
opened for updating. This is normally the result of the file
being opened exclusively by another user.

Library Built with Incompatible Version of CLIB
The library file specified on the command line was created by
an earlier, incompatible version of CUB.

No Module(s) to Work On

5-6

A library file and options were specified on the command line
which require the specification of a module or modules.

End of Section 5

Beta Draft

CHAPTER 6

CSID - SYMBOLIC DEBUGGER

6.1 INTRODUCTION

CSID TM is a symbolic debugger designed to use with the FlexOS 386 operating
system and the lntelR 80386 proces.sor. CSID features:

• Symbolic assembly and disassembly

• Expressions involving hexadecimal, decimal, octal, binary, ASCII, and symbolic
values

• Execution breakpoints with pass counts

• Data breakpoints

• Macro definitions for complex commands

6.2 TYPOGRAPHICAL CONVENTIONS

The following typographical conventions are employed to illustrate CSID's
command and output structures:

• Commands appear in UPPERCASE characters and their arguments appear in
lower case characters. This convention is used only to distinguish· the
command from its arguments. Typically, you enter all CSID command
characters in lower case.

• In CSID command examples, user input is displayed in bold print.

• Some examples of CSID output use horizontal and/or vertical ellipses (.....) to
illustrate the continuation of an output pattern.

• Ctrl indicates the CONTROL key on the keyboard.

• Curly braces {} are used to signify an optional parameter.

• A vertical bar I indicates a choice between the items it separates.

6.3 STARTING CSID

You start CSID by entering a command in the form:

CSID {filespec} {-options}

filespec is the name of the file to be debugged, including an optional pathname. If
you do not specify a pathname, CSID uses the pathname currently specified in the
pathname table. If you do not enter a filetype, CSID assumes a .386 filetype.
Options is one or more of the options described below.

Beta Draft 6-1

c

6.4 CSID COMMAND-LINE OPTIONS COFF Utilities Guide

If you do not specify a filespec, CSID simply displays its sign-on banner and
prompt character (#), and awaits commands.

CSID does not allow multiple executable files to be loaded and debugged
simultaneously. When a program file is loaded for execution, it overwrites the
previously loaded file.

6.4 CSID COMMAND-LINE OPTIONS

CSID command-line options are divided into two categories: process control
options and windowing options. All options must be located at the end of the
command line, with multiple options separated by white space (tabs or blank
space).

6.4.1 Process Control Options

Table 6-1 lists the process control options.

Option

T args

M value

F filespec

Table 6-1. CSID Process Control Options

Purpose

T is followed by the arguments for the program being
debugged. Use T with non-interactive programs where one
or more arguments are required for the debugged program.
If used, T must be the last option in the command line.

M is followed by a hexadecimal value specifying the
maximum memory size (in kilobytes) for the debug process.
A large maximum memory size is recommended. The
default is 6000H.

F is followed by the name of a CSID command file to be
read. A command file is a file containing a list of CSID
commands, including macros.

6.4.2 Windowing Options .
When using CSID to debug a program, the process executing the code under
control of CSID is referred to as the debug process. CSID allows you to dedicate
a section of your screen to the debug process. This section of the screen is
referred to as the debug process window.

The windowing options determine the size of the debug process window when the
debug process has control, as well as the size of the window when the debug
process is complete and control returns to CSID. All of the window sizes are
entered as hexadecimal values.

6-2 Beta Draft

(

(

COFF Utilities Guide 6.4 CSID COMMAND-LINE OPTIONS

Table 6-2 lists the windowing options.

Option

R value

C value

W value

Table 6-2. CSID Windowing Options

Purpose

R is followed by the hexadecimal value specifying the
maximum horizontal (row) size of the debug process
window. The range is typically 0 - 19H, but the maximum
size can vary between systems. The default value is the
same size as CSID's original window size.

C is followed by the hexadecimal value specifying the
maximum vertical (column) size of the debug process
window. The range is typically 0 - SOH, but the maximum
size can vary between systems. The default value is the
same size as CSID's original window size.

W is followed by the hexadecimal value specifying the
continuous vertical size of the debug process window.
When you establish the window size using the R and C
options, you can use W to specify how much of the window
will remain showing at all times. You can change this
value from the CSID command line with the SET command
(see Section 9.2).

The following are example CSID command lines:

A>csid hello.386
Start CSID and load the command file "hello.386" as the
debug process.

A>csid -fmacfile
Start CSID, and read the macros from the file, "macfile".

A>csid fgrep -m 80 -t "trail" *.a *.lib
Start CSID and load the command file "fgrep.386". Specify
the maximum memory size for fgrep as 128 Kbytes. The
command tail "trail" *.a *.lib are the arguments for fgrep,
which specify fgrep to search for the string "trail" in the
files *.a and *.lib.

Beta Draft "· 6-3

(_

('

6.6 LINE EDITING KEYS COFF Utilities Guide

A>csid fgrep -t "farewell" *.c
Start CSID and load the command file "fgrep.386". The
command tail "farewell" *.c are given as the arguments.

A>csid -w 10 -r Of -c 32
Start CSID, and set the debug process window size to 15
rows by 50 columns. The W option specifies that 16 rows
of the debug process are displayed when CSID is invoked

6.5 CSID COMMAND CONVENTIONS

The CSID command prompt is a pound sign, #. A valid CSID command can have
up to 256 characters and must be terminated with a carriage return.

A CSID command can be followed by one or more arguments. The arguments can
be symbolic expressions, filenames, or other information, depending on the
command. Arguments are separated from each other by commas or spaces.

Most CSID commands require one or more addresses as operands. Enter an
address as follows:

nnnnnnnn

where nnnnnnnn represents a 32-bit address.

CSID does not allow you to randomly access any area in memory. Access is
limited to areas read into CSID using the READ command and areas of a debugged
process read into CSID using the LOAD command, or by means of the invocation
line. It is not possible to simultaneously have a debugged process (read in by the
LOAD command or command line) and a file (read in by the READ command)
resident in CSID.

6.6 LINE EDITING KEYS

CSID does not process the command line until you enter a carriage return. You
can edit the command line using the line-editing keys:

6-4

Ctrl-A

Ctrl-D

Ctrl-E

Ctrl-F

Ctrl-G

Ctrl-H

Move backward to beginning of previous word.

Move forward one character.

Recall the previous line from the history buffer, moving
upward in buffer from newest to oldest. The end of the
buffer is an empty line.

Move forward to the beginning of the next word.

Delete the character under the cursor.

Delete the previous character (same as backspace).

Beta Draft

(

(-

(

COFF Utilities Guide 6.6 LINE EDITING KEYS

Ctrl-J

Ctrl-K

Ctrl-M

Ctrl-Q

Ctrl-R

Ctrl-S

Ctrl-T

Ctrl-U

Ctrl-V

Ctrl-W

Ctrl-X

Ctrl-Y

Ctrl-\

Ctrl-

Same as Ctrl-M, except the line is not saved.

Delete from the current cursor position forward to the end
of the line.

End the current line and save the line in the history buffer
if necessary. Can be used at any position on the line {same
as enter.)

Move to beginning of line.

Turn Search Mode ON/OFF for the current line. The Search
Mode finds only those lines that match the character{s) to
the left of the cursor. Use Ctrl-E/Ctrl-X to move through
matching entries. or type more characters to match. After
entering the line, the Search Mode reverts to the default set
by Ctrl-_.

Move backward one character.

Delete forward to the beginning of the next word.

Delete backward to the beginning of the line.

Toggles between INSERT and OVERSTRIKE mode. The
current mode is saved for future line editing {the default is
initially INSERT).

Move to the end of the line.

Recall the next line from the history buffer, moving
downward in the buffer from oldest to newest.

Delete the entire line and save it if it is new (or edited).

Enter the next character without special interpretation {i.e.
to enter a Ctrl-G, type Ctrl-\Ctrl-G.

Toggle the default Search Mode ON/OFF. Normally, the
Search Mode is OFF for each new entry. Ctrl- sets the
default mode to ON and also sets the current Search Mode
to ON. At the start of the next line, the Search Mode is
enabled unless turned off temporarily with Ctrl-R, or the
default is set to OFF with another Ctrl- .

6.7 CSID COMMAND SUMMARY

Table 6-3 summarizes the CSID commands.
individually in Chapters 8 and 9.

CSID commands are defined

Beta Draft 6-5

(

(

6.7 CSID COMMAND SUMMARY COFF Utilities Guide

Command

ABORT
ASSEMBLE
ASSIGN
BREAK IF
CALCULATE
CLOSE
COMPARE
DEFINE
DISABLE
DISPLAY
ELSE
ENABLE
ENDIF
EXIT
FILL
GO
IF
LIST
LOAD
MOVE
READ
REMOVE
SEARCH
SET
TRACE
WRITE
?
HELP

6-6

Table 6-3. CSID Command Summary

Action

Abort the debug process
Enter assembly language statements
Assign function return ~alue to a symbol
Enable conditional breakpoint
Calculate the value of an expression
Close output redirection or user-input command file
Compare memory
Define a macro/symbol
Disable breakpoints
Display memory, breakpoints, or options
Specify ELSE command conditional clause
Enable breakpoints
Specify end of ENDIF conditional statement
Exit CSID
Fill memory block with a constant value
Begin execution of debug process
Enable conditional execution of commands
List assembly code
Load 386 program for debugging
Move memory contents from one location to another
Read macros. symbols, or data file
Remove breakpoints
Search for a value in memory
Set memory, breakpoints, or options
Trace through an instruction
Write memory or macros to specified file
List CSID commands
List CSID commands with options

End of Section 6

Beta Draft

(

CHAPTER 7

CSID Expressions

7.1 Introduction

CSID expressions can use symbol names from the COFF command file, as well as
literal values in binary, octal, hexadecimal, decimal, or ASCII character string form.
You can combine these literal valu.es with arithmetic operators to provide access
to subscripted and indirectly-addressed data or program areas.

7.2 Literal Hexadecimal Numbers

CSID normally accepts and displays values in hexadecimal. A literal hexadecimal
number in CSID consists of one or more contiguous hexadecimal digits. If the
beginning digit is alphanumeric, it must be preceded with a zero. If you type eight
digits, the leftmost digit is most significant and the rightmost digit is least
significant. If the number contains more than eight digits, the rightmost eight are
recognized as significant, and the remaining leftmost digits are discarded.

The following examples show the hexadecimal input value and the corresponding
value stored by CSID.

Input Value

1
100
Offfe
10000
10000000
100000000
38001
380010000

Hexadecimal

0001
0100
Ff FE
10000
10000000
00000000
38001
80001000

7.3 Literal Decimal Numbers

Enter decimal numbers with a trailing decimal point. The number must consist of
one or more decimal digits (0 through 9), with the most significant digit on the left
and the least significant digit on the right. Decimal values are padded or truncated
according to the rules of hexadecimal numbers when converted to the equivalent
hexadecimal value.

The following examples show the hexadecimal values produced by the input
values.

Beta Draft 7-1

(

('

j

('

7.4 Literal Character Values

Input Value

9.
10.
256.
65535.
65545.

Hexadecimal Value

0009
OOOA
0100
FFFF
10009

7.4 Literal Character Values

COFF Utilities Guide

~---

CSID accepts one to four ASCII characters enclosed in apostrophes (single quote
marks) as literal values in expressions. The leftmost character is the most
significant, and the rightmost character is the least significant. Strings having
more than four characters are not allowed in expressions, except in the SEARCH
command, as described in Section 9.4.

Note that the enclosing apostrophes are not included in the character string, nor
are they included in the character count. The only exception is when a pair of
contiguous apostrophes is reduced to a single apostrophe and included in the
string as a normal graphic character (see examples below).

The following examples, show the hexadecimal values produced by the input
strings. Note that uppercase ASCII alphabetics begin at the encoded hexadecimal
value 41; lowercase alphabetics begin at 61; a space is hexadecimal 20 and an
apostrophe is hexadecimal 27.

Input String Hexadecimal Value

'A'
'AB'
'aA'

, A'

'A•

7.5 Register Values

41
4142
6141
0027
2727
2041
4120

Yo.u can use the contents of a register by specifying the register name wherever a
number is valid. Table 9-2 lists the 80386 register names.

7 .6 Symbol References

There are two basic ways to reference values associated with symbols:

s
[s]

7-2 Beta Draft

COFF Utilities Guide 7.7 Qualified Symbols

The form s gives the 32-bit value associated with the symbol s in the COFF
symbol table. The form [s] gives the 32-bit value pointed to by s.

The following example
symbols defined below:

Memory COFF
location symbol

illustrates these forms.

Memory
value

00000100 Gamma 02
00000101 3E
00000102 Delta 40
00000103 22

Given the memory values and

then the symbol references shown below on the left gives the hexadecimal values
shown on the right. Recall that multi-byte memory values are stored with the
least significant byte first. Therefore, the word values at 0100 and 0102 are 3E02
and 2240, respectively.

Gamma
delta
word[gamma]
word[delta]
byte[gamma]
byte[delta]
[gamma]

00000100
00000102
3E02
2240
02
40
3E02

7.7 Qualified Symbols

Duplicate symbols can occur in the symbol table due to separately assembled or
compiled modules that independently use the same name for different subroutines
or data areas. Block structured languages allow nested name definitions that are
identical, but nonconflicting. Thus, CSID allows reference to "qualified symbols"
that take the form

S 1\S2\ ... \Sn

where 51 through Sn represent symbols present in the table during a particular
session.

CSID always searches the Symbol table from the first to last symbol in the order
the symbols appear. For a qualified symbol, CSID begins by matching the first S1
symbol, then searches for a match with symbol S2, continuing until symbol Sn is
matched. If this search and match procedure is not successful, CSID prints an
error message. Suppose that part of the Symbol table appears as follows:

00000100 A 00000300 B 00000200 A 00003EOO C 000020FO A 00000102 A

Then the unqualified and qualified symbol references shown below on the left
produce the hexadecimal values shown on the right.

Beta Draft 7-3

(

c~·

7.8 Expression Operators

Symbol Reference Hexadecimal Value

A
WORD[A]
A/A
C/A/A
BYTE[C/A/A]
B/A/A

00000100
2D04
00000200
0000:0102
5E
000020FO

7.8 Expression Operators

COFF Utilities Guide

Literal numbers, strings, and symbol references can be combined into symbolic
expressions using any of the following operators:

Operator

+

*
I
MOD
AND
NOT
OR
XOR
SHR
SHL
EQ
GE
GT
LE
LT
NE
LOW
t.OWW
HIGH
HIGHW

Table 7-1. CSID Expression Operators

Description

addition or unary positive
subtraction or unary negative
multiplication
unsigned division
return remainder of division
logical AND
logical NOT
logical OR
logical eXclusive OR
shift right
shift left
Equal to
Greater than or equal to
Greater than
Less than or equal to
Less than
Not Equal to
return low-order byte of 16-bit or greater sized operand
return low-order half-word of 32-bit or greater sized operand
return high-order byte of 16-bit or greater sized operand
return high-order half-word of 32-bit or greater sized operand

CSID evaluates the expression from left to right, producing a 32-bit address at
each step. Overflow and underflow are ignored as the evaluation proceeds. The
final value becomes the command parameter, whose interpretation depends upon

~, the particular command preceding it.

7-4 Beta Draft

(

COFF Utilities Guide 7.9 Sample Symbolic Expressions

In commands that specify a range of addresses, the ending address can be
indicated as an count from the starting address by preceding the desired count
with a plus sign. For example, the command

dm Ofd0,+512

displays the memory from offset address FDOO to FFOO. CSID does not allow use
of the unary plus operator at other times .

. .
7.9 Sample Symbolic Expressions

To be supplied

End of Section 7

Beta Draft 7-5

(

(

CHAPTER 8

BASIC CSID COMMANDS

This chapter describes the CSID commands that you use most often to debug
programs. Additional commands, including those that use CSID's more advanced
features are described in Chapter 9.

8.1 LOAD COMMAND

The LOAD command loads a .386 file into memory for subsequent execution. The
form is:

LOAD {filespec} {-options}

where filespec is the name of the .386 executable file to load. If you do not
specify a filetype, CSID assumes a .386 filetype. CSID loads any symbols from the
COFF file into its own memory. CSID issues an error messsage if a file does not
exist or cannot be successfully loaded in the available memory space. options are
the same options described in Section 6.4.

When the file is loaded, CSID displays the start and end addresses of the CODE
and DATA sections2• After you execute the program, you can redisplay this
information using DISPLAY LOAD_INFO (see Section 9.1), and if the program has
created a heap, CSID displays the start and end addresses of the HEAP section.
The LOAD command releases memory allocated by any previously loaded
programs. Therefore, only one file at a time can be loaded for execution.

Example:

#load test Load file TEST.386 from default directory

8.2 READ COMMAND

The READ command has three forms:

(1) READ FILE filespec
(2) READ COMMANDS filespec
(3) READ SYMBOLS filespec

With all three forms, filespec is the name of the file you want to read. CSID
issues an error message if the file does not exist or there is not enough memory
to load the file.

Form 1 reads a file into memory, computes, allocates, and displays the starting and
ending addresses of the memory block occupied by the file.

2DATA contains both the COFF .data and .bss sections

Beta Draft 8-1

(

(

8.2 READ COMMAND COFF Utilities Guide

You can redisplay this information later with the DISPLAY LOAD INFO command.
Form 1 allows you to display, modify, and then write out the file that is read in.

Note: Form 1 does not free any memory allocated by a previous READ. Therefore,
you can read a number of files into memory and concatenate them together in the
order in which they are read in.

With Form 1, filespec can be any file. If you use READ FILE after a process is
already loaded with LOAD {or from the command line), CSID stops the debug
process.

Form 2 reads in and executes previously defined CSID commands. filespec must
be an ASCII file containing CSID commands. Form 2 is generally used to read
predefined macros, macros saved with the WRITE MACROS command, or
commands written with the WRITE SESSION command {see Section 9.10).

Form 3 reads in symbols from any file. filespec should be a COFF file (either .386
or .0).

Examples:

#read tile banne~386
Read file BANNER.386 into memory.

#read symbols test
Read symbols from executable file TEST into memory.

8.3 EXIT/ABORT COMMANDS

The EXIT command terminates CSID if no process is being debugged. If a debug
process is running, use ABORT to stop the process.

The forms are:

EXIT

ABORT

Note: CSID does not automatically save files. If you modify a file and wish to save
it, you must write the modified file to disk using the WRITE command described in
Section 9.10 before exiting CSID.

8.4 DISPLAY MEMORY COMMAND

The DISPLAY MEMORY command displays the contents of memory as either 8-bit,
16-bit, or 32-bit hexadecimal values and corresponding printable ASCII characters.
The form is:

DISPLAY MEMORY {s,e}

s is the starting address, and e is the ending address. If you do not specify a
starting address, the default is the end of the last display.

8-2 Beta Draft

(

(·-,

/

COFF Utilities Guide 8.4 DISPLAY MEMORY COMMAND

After a LOAD command, the default is the first byte of the DATA section. After a
READ FILE command, the default is the first byte of the file read in. The last
address displayed becomes the default starting address for the next display. The
display stops at the end of memory, regardless of the ending address specified.

Memory is displayed on one or more lines, with each line showing values of up to
16 memory locations in the form:

00000000 bb bb ... bb a ... a . -

00000000 wwww wwww ... wwww a ... a

00000000 11111111 11111111 ••• 11111111 a ... a

where 00000000 is address, bb's represent the 8-bit contents of the memory
location, the wwww's 16-bit contents, and the llllllll's 32-bit bit contents in
hexadecimal. The a's represent the contents of memory in ASCII. A period
represents any nongraphic ASCII character.

During a long display, you can control scrolling with Ctrl-S/Ctrl-0, or stop the
display by typing any character at the console.

Examples:

#db Of00,0f23 Display memory bytes from offset FOOH through F23H.

#db array+=i,+1 O Display 1 a bytes starting at location ARRAY (i).

#dw esp

#dm esp

#dw 80,0ff

Display the value at the top of stack in word format.

Display the value at the top of stack in byte format.

Display memory words from offset 80H through FFH.

8.5 LIST COMMAND

The LIST command lists the contents of memory in disassembled CASM
statements. The form is:

LIST {s,e}

where s is the starting address, and e is the ending address. If e is a count, then
it specifies the number of lines to disassemble. If you do not specify a starting
address, the default is the end of the last list. After a LOAD command, the default
address is the EIP. After a READ FILE command, the default address is the first
byte of the file read in. The last address displayed becomes the default starting
address for the next list unless another starting address is specified (see SET
LIST_ START in Section 9.2). The list stops at the end of memory, regardless of the
ending address specified.

Beta Draft 8-3

(

8.5 LIST COMMAND

Each disassembled instruction takes the form:

label:
00000000 prefixes opcode operands memory value

COFF Utilities Guide

where label is the symbol whose value is equal to the address 00000000, if such a
symbol exists; prefixes are LOCK, REPEAT, ASP, and OSP prefixes; opcode is the
386 mnemonic for the instruction. operands is a field containing 0, 1, or 2
operands, as required by the instruction .. If the instruction references a memory
location, the LIST command displays the contents of the location in the memory
value field as a BYTE, WORD, or LONG as indicated by the instruction.

If the memory location being disassembled is not a valid 80386 instruction, CSID
displays

??= nn

where nn is the hexadecimal value of the contents of the memory location.

By default, the LIST command lists 12 disassembled instructions from the current
list address. You can change the number of lines listed with the SET LIST _LENGTH
command (see Section 9.2). During a long list, you can control scrolling with Ctrl­
S/Ctrl-0, or stop the display by typing any character at the console.

Examples:

#list Disassemble 12 instructions from the current default list
address.

#list 243c,244e Disassemble instructions from 243CH through 244EH.

#list find,+20 Disassemble 20H lines from the label FIND.

#list err+3 Disassemble 12 lines of code from the label ERR plus 3.

#list err,err1 Disassemble from label err to label errl.

8.6 GO COMMAND

The GO command transfers control to the debug process and optionally sets one
or two temporary breakpoints. A temporary breakpoint is a breakpoint that causes
execution to stop immediately preceding an instruction, but is removed after it has
been encountered, or a new temporary breakpoint is entered.

The form is:

GO {s,b1,b2}

where s is the address where program execution is to start, and b1 and b2 are
addresses of breakpoints. If you do not specify a starting address, the default is
the current value of the EIP.

8-4 Beta Draft

(~

c

COFF Utilities Guide 8.6 GO COMMAND

When the debug process receives control, it executes in real time until a
breakpoint is encountered. CSID then regains control, displays the current CPU
state and the next instruction to execute.

Examples:

#go Begin program execution at address given by the EIP register
with no temporary breakpoints set . . .

#go start.error Begin program execution at label START, setting a temporary
breakpoint at label ERROR.

#go error,[esp] Continue program execution at address given by the EIP
register, with temporary breakpoints at label ERROR and at the
address at the top of the stack.

8.7 TRACE COMMAND

The TRACE command traces program execution. The forms are:

(1) TRACE SINGLE {count,m1,m2}
(2) TRACE WHOLE {count,m1,m2}

The count is a number ranging ranging from 1 to OFFFFFFFH indicating how many
instructions you want to execute. Each time an instruction executes, the count
decrements by 1. If you do not specify a count, the default is 1.

m1 is the name of a macro you want to run at every trace. m2 the name of a
macro you want to run when the count reaches zero. See Section 9.12 for a
complete discussion of macros.

Form 1 traces a single instruction, with the following exceptions:

• When tracing an SVC call, the entire call is treated as one program step and
executed in real time.

• When tracing a MOV or POP whose destination is a segment register, the CPU
executes the next instruction immediately.

Form 2 traces execution without breaking for calls to subroutines. If the traced
instruction is a CALL or similar instruction3 CSID sets a temporary TRACE WHOLE
breakpoint immediately following the instruction. The program then executes in
real time until the breakpoint is encountered. This allows tracing at a high level of
the program, ignoring subroutines already debugged.

3CALLF,CMPSx,LOOSx, MOVSx,SCASx,STOSx,OUTSx,or INSx. x is either B, W, or L.

Beta Draft 8-5

(/

8.7 TRACE COMMAND COFF Utilities Guide

After each program step is executed, CSID displays the current CPU state, the next
instruction to be executed, the symbolic name of the instruction operand (if any),
and the contents of the memory location(s) referenced by the instruction (if
appropriate).

If a symbol has a value equal to the instruction pointer (EIP), the symbol name
followed by a colon is displayed on the line preceding the CPU state display.

With both forms, control transfers to the program under test at the address
indicated by the EIP register. If you do not specify the number of program steps,
TRACE executes one program step. Otherwise, CSID executes the number of
program steps specified by count and displays the CPU state before each step.
You can stop a long trace by typing any character at the console.

Examples:

#t

#t Offff

Trace one program step.

Trace OFFFFH (65535) steps.

8.8 BREAKPOINT COMMANDS

CSID allows you to set, display, enable, disable, and remove permanent
breakpoints. A permanent breakpoint is a breakpoint that causes execution to
stop immediately preceding an instruction, and remains in effect until you explicitly
remove or disable it. CSID can set up to 13 permanent breakpoints at a time.
CSID also supports temporary breakpoints to be set with the GO command (see
Section 8.6).

CSID also supports two types of data breakpoints. An ACCESS data breakpoint
causes execution to stop immediately after data has been accessed (Read or
Write). A MODIFY data breakpoint causes execution to stop immediately after data
has been modified (Write).

The CSID commands to manipulate breakpoints are:

(1) SET EXECUTE BP address {count,m1,m2}
(2) SET ACCESS_BPIMODIFY_BP length address {count,m1,m2}
(3) DISPLAY bptype {address}
(4) DISABLE bptype {address}
(5) ENABLE bptype {address}

• (6) REMOVE bptype {address}

Form 1 sets (creates and enables) a breakpoint at the specified address. The
count is a number ranging ranging from 1 to OFFFFFFFH indicating how many
times you want the instruction at the breakpoint to execute. Each time the
breakpoint is encountered, the count decrements by 1. If you do not specify a
count, the default is 1. If a breakpoint is already active at the given address, the
count is changed to count. c m1 is the name of a macro you want to run at every occurance of the breakpoint.

8-6 Beta Draft

c

c

COFF Utilities Guide 8.8 BREAKPOINT COMMANDS

m2 the name of a macro you want to run when the count reaches zero. (See
Section 9.12 for a complete discussion of macros.)

Form 2 sets data breakpoints (either ACCESS or MODIFY), and is similar to form 1.
The address should be aligned to the specified length, whether BYTE, WORD, or
LONG.

Note: The 80386 processor has four hardware breakpoint registers that CSID uses
for breakpoint support. If the address is not aligned, CSID automatically sets
multiple breakpoints to simulate the proper alignment, thereby making fewer
available to be set by the user. For example, if a WORD length breakpoint is set
on a BYTE boundary, CSID sets two BYTE-length breakpoints to simulate the single
WORD-length breakpoint.

Form 3 displays an active breakpoint at the specified address. The bptype is one
of the following:

ACCESS BP
MODIFY BP
EXECUTE BP

If you specify a type but no address, CSID displays all the breakpoints with the
given type. If you specify BREAKPOINTS, CSID displays all breakpoints of all types.
The display has the form:

type 00000000 n m 1 m2 disabled/enabled *temporary/*trace whole

where type is one of the following:

ACCESS length
MODIFY length
EXECUTION OF

00000000 is the address, n is the count, m1 m2 are macros. The display also
indicates whether the breakpoint is disabled or enabled, and if the breakpoint is
only temporary (see the GO command), or it is internally enabled by the TRACE
WHOLE command.

Form 4 disables but do not remove the breakpoint at the specified address. If you
specify a type but no address, CSID displays all the breakpoints with the given
type. If you specify BREAKPOINTS, CSID displays all breakpoints of all types.

Form 5 re-enables a breakpoint at the specified address that was previously
disabled by the DISABLE command. If you specify a type but no address, CSID
displays all the breakpoints with the given type. If you specify BREAKPOINTS, CSID
displays all breakpoints of all types.

Form 6 removes the breakpoint at the specified address. If you specify a type but
no address, CSID displays all the breakpoints with the given type. If you specify
BREAKPOINTS, CSID displays all breakpoints of all types.

Beta Draft 8-7

8.8 BREAKPOINT COMMANDS COFF Utilities Guide

Examples:

#display breakpoints
Display active permanent breakpoints.

#set execution error
Set permanent breakpoint at label ERROR.

#set execution print,17 ~"

Set permanent breakpoint at label PRINT with count of 17H.

#remove breakpoints
Clear all permanent breakpoints.

#remove breakpoints error
Clear permanent breakpoint at label ERROR.

End of Section 8

c
8-8 Beta Draft

(,

c

c

CHAPTER 9

ADDITIONAL CSID COMMANDS

This section describes additional CSID commands that can be useful when
debugging programs.

9.1 DISPLAYING OTHER INFORMATiON

In addition to displaying memory, the DISPLAY command has other forms that can
display various types of information. The forms are:

(1) DISPLAY BASE
(2) DISPLAY MEMORY LENGTH
(3) DISPLAY MEMORY START ·
(4) DISPLAY ECHO
(5) DISPLAY FLAGS flag_list
(6) DISPLAY LIST_LENGTH
(7) DISPLAY LIST START
(8) DISPLAY LOAD INFO
(9) DISPLAY REGISTERS register_list
(10) DISPLAY SYMBOL symbol_name
(11) DISPLAY USE MODE
(12) DISPLAY WINDOW LOCATION
(13) DISPLAY WINDOW SIZE

Form 1 displays the default base (radix) of CSID. The display has the form:

Current base is b

where b is one of the following:

• 2 - base 2 (binary)
• 8 - base 8 (octal)
• 10 - base 10 (decimal)
• 16 - base 16 (hexadecimal)

Form 2 displays the currently defined length (number of bytes) for the DISPLAY
MEMORY command. The display has the form:

Current length is n

Form 3 displays the currently defined default starting address for the DISPLAY
MEMORY command. The display has the form:

DISPLAY starting address is 00000000

where 00000000 is the 32-bit address.

Form 4 displays the currently defined default setting for echoing CSID output,
whether ON or OFF.

Beta Draft 9-1

(

9.1 DISPLAYING OTHER INFORMATION COFF Utilities Guide

Form 5 displays the current state of the CPU flags. The display has the form:

xxxxxxxxx

where x represents either a hyphen, indicating the corresponding flag is not set
(0), or a single-character abbreviation of the flag name, indicating the flag is set
(1). Table 9-1 lists the abbreviations of the flag names.

Table 9-1. Flag Name Abbreviations

Character Name

0 Overflow
D Direction

Interrupt Enable
T Trap
s Sign
z Zero
A Auxiliary Carry
p Parity
c Carry

Form 6 displays the currently defined length (number of lines) for the LIST
command. The display has the form:

Current length is n

Form 7 displays the currently defined starting address for the LIST command. The
display has the form:

LIST starting address is 00000000

where 00000000 is the 32-bit address.

Form 8 displays information about the file loaded with the LOAD or READ
commands. If you load the file with READ, form 8 displays the starting and ending
addresses of the memory block where the file is loaded. If you load the file with
LOAD, form 8 displays the starting address and length in bytes for the CODE,
DATA, and HEAP sections of the COFF file. The display has the form:

code
data
heap

address
00000000
00000000
00000000

length
00000000
00000000
00000000

where 00000000 is the 32-bit address.

Form 9 displays the contents of the specified register _list, which contains the
names of 80386 CPU registers (see Table 9-2). If you do not specify which C registers, the default is the macro 'allregs' (see Section 9.12).

9-2 Beta Draft

(

COFF Utilities Guide 9.1 DISPLAYING OTHER INFORMATION

The display has the form:

EAX EBX ECX SS ES IP
xxxx xxxx xxxx xxxx xxxx xxxx

Form 10 displays the address of the specified symbol_name. FlexOS wildcards are
allowed for the symbol name. The display has the form:

00000000 symbolname

where 00000000 is the 32-bit address.

Form 11 displays the current USE mode of CASM (see Section 3.2.1, either 16-bit
or 32-bit. The display has the form:

Current Use Mode is U

where U is 16 or 32.

Form 12 displays the current location (row and column) of the debug process's
window. The display has the form:

Current window size is r,c

where r is the row value and c is the column value.

Form 13 displays the current size (number of rows) of the debug process's
window. The display has the form:

Current window location is r,c

where r is the row value and c is the column value.

Examples:

TBS

9.2 SET COMMAND

The SET command changes the contents of memory and sets other values. The
forms are:

(1) SET BASE base
(2) SET MEMORY_ LENGTH length
(3) SET MEMORY START address
(4) SET FLAGS flag_list
(5) SET LIST _LENGTH length
(6) SET LIST START address
(7) SET MEMORY address {,value}
{8) SET ECHO
(9) SET REGISTERS register _list
(10) SET USE MODE mode
(11) SET WINDOW LOCATION row.column
(12) SET WINDOW SIZE row

Beta Draft 9-3

(

9.2 SET COMMAND COFF Utilities Guide

Form 1 sets the default base (radix) for CSID. The base is one of the following:

• 2 - base 2 (binary)
• 8 - base 8 (octal)
• 10 - base 10 (decimal)
• 16 - base 16 (hexadecimal)

Form 2 sets the default length (number of bytes) for the DISPLAY MEMORY
command.

Form 3 sets the default starting address of the DISPLAY MEMORY command.

Form 4 sets the CPU flags specified in flag_list as follows:

'fl f2 f3 ... f9'

where f1 f2 ... are the single letter abreviations of CPU flags listed in Table 9-1.
CSID responds by displaying the name of the flag followed by its current state. If
you enter a carriage return, the flag's state does not change. If you enter a valid
value (either 0 or 1), the flag's state changes to that value.

Form 5 sets the default length (number of lines) for the LIST command.

Form 6 sets the default starting address for the LIST command.

Form 7 sets memory at the specified address, with an optional value. If you do
not specify a value, CSID prompts for a value. CSID displays the memory address
and its current contents on the following line. The display has one of the forms:

00000000 bb
00000000 wwww
00000000 11111111

where 00000000 is the address and bb is the contents of memory in BYTE format,
wwww in WORD format, and 11111111 in LONG format, depending on which form of
the command you use.

You can choose to alter the memory location or to leave it unchanged. If you
enter a valid expression, CSID replaces the contents of memory with the value of
the expression. If you do not enter a value, CSID does not replace the contents of
memory but displays the next address. In either case, CSID continues to display
successive memory addresses and values until you enter a period on a line by
itself, or until CSID detects an invalid expression.

You can enter a string of ASCII characters, delimited with apostrophes (single
qubtation marks). The characters between the quotation marks are placed in
memory starting at the address displayed. The next address displayed is the
address following the character string.

Form 8 sets CSID's output mode either ON or OFF.

Form 9 sets the registers specified in the register _list as follows:

'rl r2 ... rn'

(' where r1 r2 ... designate the 80386 CPU registers as shown in Table 9-2.

9-4 Beta Draft

(

c.

COFF Utilities Guide 9.2 SET COMMAND

Table 9-2. 80386 Register Names

EAX EBX ECX EDX EBP ESP ESI EDI

AX BX ex DX BP SP SI DI

AH BH CH DH ---·

AL BL CL DL

cs OS ES FS GS SS

EIP EFLAGS

CSID responds by displaying the name of the register followed by its current value.
If you enter a carriage return, the register value does not change. If you enter a
valid expression, CSID changes the register contents to the value of the
expression. In either case, the next register is then displayed. This process
continues until you enter a period or an invalid expression, or the last register is
displayed.

Form 10 sets the Use Mode (see Section 3.2.1 for the assembler. The valid values
are 10H {16-bit mode) and 20H (32-bit mode).

Form 11 sets the location of the debug process window's upper left corner to the
coordinants specified by row and column. The row value determines the vertical
location of the window; increasing the value moves the window further down on
your screen. The column value determines the horizontal location of the window;
increasing the value moves the window further to the right on your screen.
Normally, the row value is 0 - 19H and the column value is 0 - SOH, but the
maximum size for both can vary between systems.

Note: When you load a debug process via the command line {or LOAD command)
with the W option, CSID creates a new virtual console (including a screen) for the
debug process. It is this (the debug process's) virtual console/screen that is
alterable by the SET WINDOW LOCATION command.

Form 12 sets the vertical size of the debug process window when the debug
process is finished to a size specified by row. This resets the value specified by
the CSID command-line option W.

Examples:

TBS

Beta Draft 9-5

(

(

9.3 COMPARE COMMAND COFF Utilities Guide

9.3 COMPARE COMMAND

The COMPARE command compares and displays the difference between two blocks
of memory. The form is:

COMPARE s1,e1,s2

where s1 is the starting address of the first block; e1 is the ending address (last
byte) of the first block, and s2 is the start!ng address of the second block.

CSID displays any differences in the two blocks in the form:

a1 b1 a2 b2

where the a1 and the a2 are the addresses in the blocks; b1 and b2 are the values
at the indicated addresses. If no differences are displayed, the blocks are identical.

Examples:

#compare 10000, 101 ff,40000
Compare 512 (200H) bytes of memory starting at 10000 and
ending at 101 FF with the block of memory starting at 40000.

#compare array1 ,Off,array2
Compare a 255-byte array starting at address ARRAY1 with
ARRAY2.

9.4 SEARCH COMMAND

The SEARCH command searches for a string of characters of values within
memory. The form is:

SEARCH s,e,value

where s is the starting address to search and e is the ending address to search.
value is an expression as defined in Section 7, including a string of 1 to 128
printable ASCII characters.

Examples:

#search 3006,31ff,Od0ah
search memory starting at 3006 and ending at 31 FF for a two­
byte value consisting of ODh (Carriage Return) and OAh (line
feed).

#search 31ff,Od0ff,'ABCD'
search memory starting at 31 FF and ending at OdOff for the
character string: ABCD.

#search 31ff,Od0ff,41424344

9-6

search memory starting at 31 FF and ending at OdOff for a four­
byte value consisting of 41 (A), 42 (8), 43 (C), and 44 (D).

Beta Draft

(

COFF Utilities Guide 9.5 MOVE COMMAND

9.5 MOVE COMMAND

The MOVE command copies a block of values from one area of memory to
another. The form is:

MOVE s,e,d

where s is the starting address of the block to move, e is the ending address of
the block, and d is the address of t~e first byte of the area to receive the data.

Examples:

#move 3400,+9,4000
Move 9 bytes from 2400 to 4000.

#move array,+64,array2
Move 64H (100) bytes from ARRAY to ARRAY2.

9.6 FILL COMMAND

The FILL command fills an area of memory with a specified value. The form is:

FILL s,e,value

where s is the starting address of the block, e is the ending address, and value is
an expression as described in Section 7.

Examples:

#fill 4100,413f,0 Fill memory at the current default display address fro·m address
4100H through 413FH with the value 0.

#fill array,+Off,Off Fill the 255-byte block starting at ARRAY with the constant
OFFH.

#fill 3122,+ 100,'fillup'
Fill the block starting at address 3122H to address 3222H with
the string constant 'fillup'.

9.7 ASSIGN COMMAND

The ASSIGN command assigns a command return value to a symbol name. The
form is:

ASSIGN symbol_ name command_ name

where symbol_ name is the name of a symbol, and command_ name is the name of
a CSID command.

Beta Draft 9-7

(

c

9.7 ASSIGN COMMAND COFF Utilities Guide

Example:

#assign foo calculate 1000
Assign the value 1000 to the symbol named 'foo'.

#assign boo calculate foo+85
Assign the value 1085 to the symbol 'boo' .

. -
9.8 CALCULATE COMMAND

The CALCULATE command performs basic arithmetic, logical, and relational
calculations as described in Section 2.8.

The form is:

CALCULATE expression

where expression is an expression as defined in Section 7.

9.9 CLOSE COMMAND

The CLOSE command has two forms:

(1) CLOSE OUTPUT
(2) CLOSE SESSION

The CLOSE OUTPUT command closes the output redirection file set with the WRITE
OUTPUT command (see Section 9. 10).

The CLOSE SESSION command closes the user input session file (see Section 9.10).

Note: CSID automatically closes redirection and session files when you use the
EXIT command.

9.10 WRITE COMMAND

The WRITE command writes the contents of a contiguous block of memory to disk.
It also write macro files, user session files, and CSID output to disk.

The forms are:

-(1) WRITE MACROS DELETEIAPPEND,filespec,macro name
(2) WRITE MEMORY DELETEIAPPEND,filespec,s,e -
(3) WRITE OUTPUT DELETEIAPPEND,filespec
(4) WRITE SESSION DELETEIAPPEND,filespec

where filespec is the name of the file you want to write to. If you specify DELETE,
CSID deletes any existing file of the same name. If you specify APPEND, CSID
appends the file to the existing file of the same name.

Form 1 writes the current definition of macro name in command form to the
specified file. FlexOS wildcards are allowed.

9-8 Beta Draft

(/

COFF Utilities Guide 9.10 WRITE COMMAND

Form 2 writes the contents of a specific memory block. s is the starting address
and e is the ending address of the block. If you do not specify the addresses,
CSID assumes the first and last addresses from the files loaded with a READ
command, causing all of the files loaded with READ to be written. If no file has
been loaded with READ, CSID responds with an error message.

Use WRITE MEMORY for writing out files after patching code, assuming the overall
length of the file is unchanged.

Form 3 allows you to direct your debugging session output to a printer or a disk
file, in addition to the screen. filespec is the filename you want the output
directed to, which can include physical devices. If filespec specifies a disk file, by
default, CSID creates the output file under the current default directory.

Form 4 writes user commands input during a CSID session to the specified file. A
session file can be read with READ COMMANDS for use in subsequent debugging
sessions.

Examples:

#write memory test.386
Write to the file TEST.386 the contents of all previous READ FILE
commands.

#write memory b:test.386, 1000,3fff
Write the contents of the memory block lOOOH through 3FFF to
the file TEST.386 on drive B.

9.11 ASSEMBLE COMMAND

The ASSEMBLE command assembles 80386 mnemonics directly into memory. The
form is:

ASSEMBLE {s}

where s is the address where assembly begins (the default is the current EIP).
CSID displays the address, at which point, you can enter CASM assembly language
statements.

When you enter a statement, CSID assembles it, places it in memory, and displays
the address of the next available memory location. This process continues until
you press the Carriage Return without entering any statement or after entering
only a period.

CSID responds to invalid statements by displaying an error message and
redisplaying the current address.

Wherever a numeric value is valid in an assembly language statement, you can
also enter an expression. However, there is one important difference: while using
the ASSEMBLE command, references to registers refer to register names, while
elsewhere in CSID they refer to register contents. When using the ASSEMBLE
command, you cannot reference the contents of a register in an expression.

Beta Draft 9-9

9.11 ASSEMBLE COMMAND COFF Utilities Guide

Examples:

#a 1213 Assemble at address 1213.

00001213 mov eax,128.
Set EAX register to decimal 128.

00001216 push eax
Push EAX register on stack.

00001217 call proc1
Call procedure whose address is the value of the symbol PROCl.

0000121A test byte [i\i], 80
Test the most significant bit of the byte whose address is the
value of the second occurrence of the symbol I.

0000121 E jz done Jump if zero flag set to the location whose address is the value
of the symbol DONE.

00001220 . stop assemble process.

9.12 MACROS

CSID supports a number of commands that allow you to define and use macros, c which are single instructions that replace multiple instrutions.

c

By default, CSID uses a number of macros that are predefined in the file
CSIDINIT.MAC, which is read whenever you invoke CSID. You can edit this
definition file is desired, but you should keep it in the same directory with CSID,
because CSID first searches for it in the current directory. If not found, CSID
searches in the Home: directory, and if not found there, it searches in the System:
directory.

These commands are:

(1} DEFINE macro name
(2} DISPLAY MACROS {macro name}
(3} ECHO ONIOFF -
(4} IF command
(5} ELSE

• (6} ENDIF
(7) BREAK IF command

Form 1 defines a macro. The form is:

TBS

Form 2 displays the definition of the specified macro_ name.

Form 3 toggles the display of macro information on and off.

Form 4 provides for conditional execution of CSID commands.

9-10 Beta Draft

COFF Utilities Guide 9.12 MACROS

TBS

Form 5 specifies the start of an ELSE clause in a conditional statement.

TBS

Form 6 specifies the end of an IF clause in a conditional statement.

TBS

Form 7

TBS

End of Section 9

Beta Draft 9-11

Appendix A

COMMON OBJECT FILE (COFF) FORMAT

FlexOS 386 executable files (filetype .386), object files output by the assembler or
compiler (filetype .0), and library files (filetype .LIB) are all built according to the
rules of UNIX™ System V COFF.

Figure A-1 illustrates the COFF format.

0 +================================+
File Header

+================================+
FlexOS Header <-- contains FlexOS 386 unique info.

+================================+
I Section (1 ton) Header Table
+================================+
I Section 1 (.text) Raw data
+--------------------------------+
I Section 2 (.data) Raw data
+--------------------------------+
I Section 3 (.bss) raw data <-- ignored if present
+--------------------------------+

+--------------------------------+
I Section n Raw data
+================================+ <-+
I Section 1 (.text) Reloc. Info
+--------------------------------+
I Section 2 (.data) Reloc. Info
+--------------------------------+

+--------------------------------+
I Section n Reloc. info
+================================+
I Section 1 (.text) Line numbers I
+--------------------------------+
I Section 2 (.data) Line numbers I
+--------------------------------+ + --- Optional

+--------------------------------+
I Section n Line numbers
+================================+
I Symbol Table
+================================+
I String Table (if required)

EOF +================================+ <-+

Figure A-1. Common Object File Format (COFF)

Beta Draft A-1

c

A.1 FILE HEADER COFF Utilities Guide

A.1. FILE HEADER

A 20-byte file header resides at the beginning of executables and object files.
Figure A-2 illustrates the COFF file header.

<-- 32-bits -->

+--+
0 File (CPU) Magic Number Number of Section Headers

+--+
4 Time and Oate Stamp

+--+
8 Symbol Table File Pointer

+--+
c Number of Symbols

+--+
10 FlexOS Header Size Flags

+--+

Figure A-2. COFF File Header

The following C code defines the file header:

struct filehdr

1•

{

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short
) ;

Bits for f_flags:

f_magic: 1•
f nscns; ,.
-

f - timdat; 1•
f _symptr; 1•
f _nsyms; 1•
f _opthdr; 1•
f_flags; I*

magic number
number of sections
time & date stamp
file pointer to symtab
number of symtab entries
sizeof(optional hdr)
flags

relocation info stripped from file

•/
*I
*I
*I
•/
*I
•1

.•
*
*
*
•

F RELFL
F_EXEC
F_LNNO
F_LSVMS
F AR32WR

file is executable (i.e. no unresolved external references)
line numbers stripped from file

•
•
•/

#define
#define
#define
#define
#define
#define
#define
#define
#define

local symbols stripped from file
file has the byte ordering of an AR32WR machine (e.g. vax or 1386)

F_RELFLG 0000001
F EXEC 0000002 -
F_LNNO 0000004
F_LSVMS 0000010
F_AR32WR 0000400
F 1386 F_AR32WR -I386MAGIC 0514 1• Intel 80386 •/

FILHDR struct filehdr
FILHSZ sizeof(FILHDR)

The FlexOS 386 program loader requires the following bits to be set in the flags
field of a .386 file:

A-2 Beta Draft

(

C'

COFF Utilities Guide A.2 FLEXOS HEADER

• F _EXEC (the file contains no unresolved externals)
• F _1386 (the code consists of Intel 80386 instructions)

All other bits in the file header flags word are ignored.

A.2. FLEXOS HEADER

The optional FlexOS header immedtately follows the COFF file header and contains
information used by the FlexOS 386 program loader. The FlexOS header is ignored
in CLINK input files, but CLINK initializes and inserts one into the output file.

Figure A-3 illustrates the FlexOS header.

+--+
0 FlexOS Header Magic Number· FlexOS Header Version Stamp

+--+
4 Size of ".text" section (code)

+--+
8 Size of ".data" section (initialized data)

+--+
c Size of ".bss" section (uninitialized data)

+--+
10 Entry point (in code section)

+--+
14 Base address of code section

+--+
18 Base address of data section

+--+
lC --Reserved--

+--+
20 Requested stack size

+--+

Figure A-3. FlexOS 386 File Header

The following C code defines the FlexOS file header:

typedef struct aouthdr {
short magic; I* see magic.h *I
short vs tamp; I* version stamp *I
long tsize: I* text size in bytes, padded to ful 1

word boundary •1
long dsize; I* in it i a 1 i zed data " *I
long bsize; I* uninitialized data . *I
long entry; I* entry point in .text section •/
long text - start: I* base address of text •/
long data _start; I* base address of data *I

I* The following are FlexOS 386 specific: */
long res; /* reserved */
long stk_size; I* requested stack size in bytes*/

EXTHOR;

Beta Draft A-3

(

c

c~

A.2 FLEXOS HEADER COFF Utilities Guide

The fields in the FlexOS header are defined as follows:

Magic number

Version Stamp

Stack Size

7000 (Fast program load) The CODE and DATA sections
are the only sections loaded. Space for the BSS
section is allocated.

This field normally identifies this load image as running
under FlexOS 386. By default, CLINK inserts the FlexOS
386 signature:

37030 or 1987 0 or 7C3H

You can override the default with the CLINK -VS
option.

CLINK pads this field to a 4Kb boundary. Note: The
padded code section size plus the padded stack size
must equal the data section base address for the Fast
Load model.

A.3. SECTION HEADER

The f nscns field in the GOFF file header specifies the number of section headers
that immediately follow the FlexOS 386 Header in the .386 file. Figure A-4
illustrates the section header.

<-- 32-bits -->

+--+
o I Section name

+--+
4 I Section name (cont.)

+--+
a I Physical Address

+--+
c I Virtual Address

+--+
10 Section Size

+--+
14 Raw Data File Pointer

+--+
18 Relocation Info. File Pointer

+--+
1C Line Number Info. File Pointer

+--+
20' I Number of Relocation Entries Number of Line Number Entries

• +--+
24 Section Flags

+--+

Figure A-4. Section Header Format

A-4 Beta Draft

(

COFF Utilities Guide A.4 RELOCATION ENTRY

The following C code defines the COFF file section header:

/************ COFF file section header structure••••••••••••••••••••••••/
struct scnhdr

char s name[8]; I* section name *I -
long s_paddr; I* physical address *I
long s vaddr; - I* virtual address *I
long s_size; I* section size *I
long s_scnptr; I* f i 1 e ptr to raw data for section *I .
long s_relptr; I* f i 1 e ptr to relocation •/
long s_lnnoptr; I* f i 1 e ptr to 1 ine numbers *I
unsigned short s_nreloc; I* number of relocation entries *I
unsigned short s nlnno; I* - number of 1 i ne number entries .,
long s_flags; I* flags *I
} ;

, .. ,
#define SCNHDR
#define SCNHSZ

struct scnhdr
sizeof (SCNHDR}

I*
* s_flags is used as a section "type"
*I

#define STYP TEXT
#define STYP DATA
#define STYP_BSS

Ox20
Ox40
Ox BO

I* section contains text only */
I* section contains data only */
I* section contains bss only */

The section physical address field is ignored under FlexOS 386.

A.4. RE LOCATION ENTRY

Each section header includes two fields which refer to optional relocation
information which may be present in the COFF file. s _nlnno provides the number
of relocation items in the section. s lnnoptr is a file pointer to the relocation
entries. A COFF relocation entry points to a byte, word or long in the section's
raw data, gives a symbol to which this data item is to refer, and specifies the type
of reference.

Figure A-5 illustrates the format of a relocation entry.

<-- 32-bits -->

+--+
r_vaddr ==virtual address of reference

+--+
r_symndx == index into symbol table of target symbol

+--+
r_type == relocation type

+-----------------------------------+

Figure A-5. Relocation Entry Format

Beta Draft A-5

(

(~

A.4 RELOCATION ENTRY COFF Utilities Guide

The following C code defines the relocation entry:

struct reloc
long r_vaddr; I* (virtual) address of reference *I

I* index into symbol table */ long r_symndx;
unsigned short r_type;
) ;

I* relocation type */

I* relocation types for DEC Processors VAX 11/780 and VAX 11/750
* and Intel 80386
*I

#define R DIR16 001 -#define R DIR32 006 -
#define R RELWORD 020 -
#define R RELLONG 021 -
#define R PCRBVTE 022 -
#define R PCRWORD 023 -
#define R PCRLONG 024 -
#define RELOC struct reloc
#define RELSZ 10 I* sizeof (RELOC) *I

The 80386 instruction set and CLINK support 5 relocation types:

R_DIR16 (Ox0001)

The word at the reference address is to contain the direct 16-bit
address of the symbol. If the relocated address of the symbol
is greater than OxOOOOFFFF, CLINK emits an error message.
(Relocation types of R _ RELWORD (OxOO 10) are also supported
and handled in this way.)

R_DIR32 (Ox0006)

The long at the reference address is to contain the direct 32-bit
address of the symbol. (Relocation types of R _ RELLONG
(OxOO 11) are also supported and handled in this way.)

R _PCRBYTE (OxOO 12)

A-6

The byte at the reference address is to contain a signed
distance from the reference to the symbol. If the relocated
address of the symbol is out of range (+-128), CLINK emits an
error message.

Beta Draft

(

(

COFF Utilities Guide A.4 RELOCATION ENTRY

R_PCRWORD (Ox0013)

The word at the reference address is to contain a signed
distance from the reference to the symbol. If the relocated
address of the symbol is out of range (+-32768), CLINK emits an
error message.

R _PCRLONG (OxOO 14)

The word at the reference address is to contain a signed
distance from the reference to the symbol. If the relocated
address of the symbol is out of range (+-2147483648), CLINK
emits an error message.

End of Appendix A

Beta Draft A-7

(

c ,

Appendix B

SAMPLE CASM SOURCE FILE

The following CASM source file demonstrates how to create a .386 file using
CASM and CLINK.

; HELLO.A
title 'Sample .386 Program.• ,.-:

This program uses SVC's as follows:

1. F_WRITE to stdout of "Hello world.".
2. F_GET of process table.
3. F_WRITE to stdout of process table.
4. F _EXIT.

To generate this program, use the commands:

casm hello
cl ink hello -s

F _WRITE equ B
F_GET equ 0
F _EXIT equ 25

PROCESS_TABLE equ 0
PROCESS TABLE_SIZE equ 60

table number
table size

code specify .text section

Program entry point:
He 1 1 0. WO r Id.

mov
mov
int

eax,offset parm_blk
ecx,F_WRITE

already setup for this call

221

Get process table.
mov
mov
mov
mov
mov
mov
int

eax,offset parm_blk
long [eax],PROCESS_TABLE shl 8
long B[eax],O
long 12[eax],offset table_buff
long 16[eax],PROCESS_TABLE_SIZE
ecx,F_GET
221

Display the process table.
mov ecx,PROCESS_TABLE_SIZE/4
mov

proc_loop:
push
mov

pr_lp:
push
mov
push
cal I
pop
inc

ebx,offset table_buff

ecx
ecx,4

ecx
al,[ebx)
ebx
display_hexbyte
ebx
ebx

put into "table" position
id= calling process
where to put it

SVC number

4 bytes per line

B-1

(

c

('

eject

pop
loop

push
cal 1
pop
pop
loop

; Exit to OS.
xor
mov
int

Subroutines:

display_hexbyte:
push
shr
mov
xlat
push
cal 1
pop
pop
and
xlat
cal 1
mov
cal 1
jmp

char_out:
mov
mov
mov
int
ret

print_crlf:
mov
cal 1
mov
cal 1
jmp

eject

ecx
pr _Ip

ebx
print_crlf
ebx
ecx
proc_I oop

eax,eax
ecx,F_EXIT
221

eax
al ,4
ebx,offset

ebx
char out -
ebx
eax
al ,Ofh

char out -
al,· .
char out -
char out -

char.al
ecx,F WRITE
eax,offset
221

al ,Odh
char_out
al,Oah
char_out
char_out

Programmer's Utilities Guide

save byte ptr

lineptr

return code = 0

Entry: al = binary byte

hex table -

Entry: al=ascii char

write _buff

HELLO data section:

data

parm_blk
p_ 0
p_ 1

p_ 2
p_ 3
p_4
p_S

B-2

rl
dl
di
di
dl
di
dl

0
0
0

offset string
length string
0

specify .data section

sync, options=O, flags = 0
no swi
stdout (already opened)
what I'm writing
how much I'm writing
offset into "file"

Beta Draft

Programmer's Utilities Guide

(string db 'Hello world.',Odh,Oah

table_buff rb PROCESS_TABLE_SIZE Where OS puts table

write_buff di 0,0 single character F_WRITE
di parameter block
di offset char
di 1
di 0

char rb .. :
hex_table db '0123456789ABCDEF'

end

End of HELLO.A

End of Appendix B

Beta Draft B-3

(Index

$ operator, 2-14, 2-15 Base-addressing modes, 2-17
Binary constants, 2-4

* operator, 2-10, 2-15 Binary delimiters, 7-4
Block structured languages, 7-4

+ operator, 2-10, 2-11, 2-15 Bracketed expression, 2-17
+ sign, 7-4 Breakpoint Command (CSID),

8-7
- operator, 2-10, 2-11, 2-15 Breakpoints, 8-5, 8-7
- sign, 7-5 BSS directive, 3-3

BYTE attribute, 2-8
. operator, 2-14, 2-15

I operator, 2-10, 2-15 c

80386 instruction mnemonic, C option (CASM), 1-2
2-7 Calculate Command (CSID), 9-8

Caret symbol, 7-2
CASM character set, 2-1

A CASM command examples, 1-3
CASM command syntax, 1-1

c~
Abort Command (CSID), 8-2 CASM command-line options,
Absolute number, 2-9 1-1
Addition and subtraction CASM directives, 2-7, 3-1

operators, 2-10 CASM file, B-1
Address expression, 2-16 CASM identifiers, 2-6
Auxiliary Carry Flag. 2-26 CASM operators, 2-9
ALIGN directive, 3-2 Carry Flag, 2-26
Allocate storage, 3-9 Changing memory, 9-4
Alphanumeric characters, 2-1 Character string, 2-5
AND operator, 2-11, 2-15 Character string constant, 2-5
Arithmetic operators, 2-9, 2-10 Character strings, 7-2
ASCII character set, 2-1 Clearing breakpoints, 8-7
Assemble Command (CSID), CLINK error messages, 4-7

9-10 Close Output Command (CSID),
Assembler Directives, 2-7 9-9
Assembling 80386 mnemonics, Close Session Command (CSID),

9-10 9-9
Assembly language files, 1-1 CODE directive, 3-3
Assign Command (CSID), 9-8 Code generation directives, 3-1
Attributes of labels, 2-8 COFF, 1-2
Attributes of variables, 2-8 COFF format, A-1

Command-line options (CSID),
6-2

B Command-line options for
CASM, 1-1

(
B option (CASM), 1-2 Comment field, 2-2, 2-17
Base, or radix of a constant, 2-4 Comments, 2-17

lndex-1

{
Compare Command {CSID), 9-6 Else Command {CSID), 9-11
Comparing memory blocks, 9-6 ELSE directive, 3-5
Conditional assembly directives, END directive, 3-5

3-5 End-of-line, 2-17
Constants, 2-4 Endif Command {CSID), 9-11
Copying data, 9-7 ENDIF directive, 3-5
CPU flags, 9-3 EQ operator, 2-12, 2-15
CPU state, 9-3 EOU directive, 3-6
CSID command files, 6-2

a·:
Error messages, 9-8

CSID Commands, 6-5 Examining CPU state, 9-3
Exit Command {CSID), 8-2
Exiting CSID, 8-2

0 Expression Operators, 7-4
Expressions, 2-15, 2-16, 7-1

D option {CASM), 1-2 EXTRN directive, 1-2, 3-4
Data definition directives, 3-7
DATA directive, 3-3
DB directive, 2-5, 2-8, 3-7 F
DD directive, 2-8, 3-8
Debug process, 6-2 Filetypes
Debug process window, 6-2, A, CASM input file, 1-1

9-5 LST, CASM listing file, 1-1
Decimal constant, 2-4 0, CASM output file, 1-1
Default Section Names, 2-7 Fill Command {CSID), 9-8

(', Define Command {CSID), 9-11 Filling memory blocks, 9-8
/ Define data area, 3-8 Flag bits, 2-25

Delimiters, 2-2 Flag registers, 2-25
Directive statement, 3-1
Directive statement syntax, 3-1
Disassembled instruction, 8-5 G
Display Memory Command

{CSID), 8-2 GE operator, 2-12, 2-15
Displaying breakpoints, 8-7 GO Command (CSID), 8-5
Division operators, 2-10 GT operator, 2-12, 2-15
DL directive, 2-8, 3-8
Dollar-sign operator, 2-14

H DP directive, 2-8, 3-9
DQ directive, 2-8, 3-9
OT directive, 2-8, 3-9 Hexadecimal constants, 2-4
Dumping 80287 /80387 registers, HIGH operator, 2-15

9-2 HIGHH operator, 2-15

Du'plicate symbols, 7-4
OW directive, 2-8, 3-8
DWORD attribute, 2-8

Identifiers, 2-2
E If Command {CSID), 9-11

IF directive, 3-5

Effects of Instructions on Flags, IFLIST directive, 3-10

c- 2-26 INCLUDE directive, 3-12

EJECT directive, 3-10 Index registers, 2-17

lndex-2

{ Index-addressing modes, 2-17 3-12
Initialized storage, 3-7 Location pointer, 2-2
Instruction statement syntax, Logical operators. 2-9, 2-11

2-17 LOW operator, 2-15
Invalid statements, 9-10 LOWH operator, 2-15
Invoking CASM, 1-1 LT operator, 2-12, 2-15
Invoking CUB, 5-1
Invoking CLINK, 4-4
Invoking CSID, 6-1 M
lpath\filename option (CASM),

1-2 Maximum length of a character
string, 2-5

Memory allocation directives,
J 3-7

Memory value, 8-5
J option (CASM), 1-2 Minus sign, 7-5
Jump optimization, 1-2 Miscellaneous directives. 3-11

Mnemonic keywords, 2-7
MOD operator, 2-10, 2-15

K Move Command (CSID), 9-7
Moving data, 9-7

Keyword identifiers, 2-9 Multiplication operators, 2-10
Keywords, 2-6

(~
N

L
N option (CASM), 1-3

L option {CASM), 1-3 Name field, 3-1
Label, 2-8, 8-5 NE operator, 2-12, 2-15
Label offset attributes, 2-8 Nesting IF directives, 3-5
Label segment attributes, 2-8 Nesting parentheses in
LAST operator. 2-13, 2-15 expressions, 2-15
LE operator, 2-12, 2-15 NOIFLIST directive, 3-10
LENGTH operator, 2-13, 2-15 NOLIST directive. 3-11
Line numbers, 1-3 Nonprinting characters, 2-1
Line-editing keys, 6-4 NOT operator, 2-11, 2-15
Linkage control directives, 3-4 Number symbols, 2-9
List address, 8-5 Numeric constants, 2-4
List Command {CSID), 8-3 Numeric Data Processor {NOP)
LIST directive. 3-11 Registers, 2-7
Listing control directives, 3-1 O Numeric expression, 2-17
Listing file, 1-1
Listing memory contents, 8-3
Literal character values, 7-2 0
Literal decimal numbers. 7-1
Literal hexadecimal numbers , 0 option {CASM), 1-3

7-1 Object file, 1-1
Load Command {CSID), 8-1, 9-2 Octal constant, 2-4
Loading program file, 8-1 Overflow Flag, 2-26
Local symbols, 1-3 Offset attribute, 2-8 c Location counter, 2-14, 2-17, Offset of a variable, 2-8

lndex-3

(~ OFFSET operator, 2-13, 2-15 Relocatable number, 2-9
Opcode, 8-5 RL directive, 3-9
Operator precedence, 2-15 RP directive, 3-10
Operators, 2-2, 2-7, 2-9 RQ directive, 3-10
Operators in expressions, 7-4 RT directive, 3-10
OR operator, 2-11, 2-15 RW directive, 3-9
Order of operations, 2-15
ORG directive, 3-12
Output to file, 9-9 s
Output to printer, 9-9
Overflow, 7-4 Search and match procedure,
Overriding operator precedence, 7-4

2-15 Search Command (CSID), 9-7
Searching memory, 9-7
Section control directives, 3-3

p SECTION directive, 3-3
Segment override, 2-2

P option (CASM), 1-3 Segment override operator,
PAGESIZE directive, 3-11 2-12, 2-15
PAGEWIOTH directive, 3-11 Segment override operators,
Period operator, 2-14, 2-15 2-9
Parity Flag, 2-26 Separators, 2-1, 2-2
Plus sign, 7-4 Set Command (CSID), 9-4
Pound sign, 6-4 SET directive, 3-7

C' Predefined numbers, 2-6, 2-7 Setting breakpoints, 7-3, 8-7
Prefixes, 8-5 Sign Flag, 2-26
Process control options, 6-2 SHL operator, 2-11, 2-15
PUBLIC directive, 3-4 SHR operator, 2-11, 2-15
PWORD attribute, 2-8 SIMFORM directive, 3-11

Source file, 1-1
Special characters, 2-1

Q Statements, 2-17
String constant, 2-5

Qualified symbols, 7-4 String length, 7-2
Quitting debug process, 8-2 Symbol, 3-6
QWORD attribute, 2-8 Symbol attributes, 2-8

Symbol definition directives, 3-6

R
Symbol table, 7-3
Symbolic expressions, 7-4
Symbolic references, 7-3

Radix indicators, 2-4
RB directive, 3-9
RD directive, 3-10 T
Read Command (CSIO), 8-1, 9-2
Reading files into memory, 8-1 Terminating CSID, 8-2
Redefining keys, 9-5 TITLE directive, 3-11
Redirecting output, 9-9 Tokens, 2-1
Register keywords, 2-7 Trace Command (CSID), 8-6
Register name, 7-2 Tracing program execution, 8-6

(
Registers, 2-6, 9-3 Transferring program control,
Relational operators, 2-9, 2-12 8-5

lndex-4

(

(

TWORD attribute, 2-8
Type attribute, 2-7, 2-8
Type of a variable, 2-8
TYPE operator, 2-13, 2-14, 2-15

u

Unary delimiters, 7-4
Unary operators, 2-11
Underflow, 7-4
Unsigned numbers, 2-12
USE16/32 directive, 3-2
User-defined symbols , 2-9, 3-6

v

V option (CASM), 1-3
Variable creation operators, 2-9
Variable manipulation operators,

2-13
Variable offset attributes, 2-8
Variable segment attributes, 2-8

w

Windowing options, 6-2
WORD attribute, 2-8
Write Command (CSID), 9-9
Writing memory to disk, 9-9

x

XOR operator, 2-11, 2-15

y

z

Zero Flag, 2-26

lndex-5

