

Copyright@ 1992, Display Industry Association

\9' A WCloseWindowO

AW_Status AWCloseWindow(W_Handle window)

Description: Closes the given window. The window handle becomes invalid.

Returns:

Errors:

AW _OK if the window was successfully closed, or AW _ERROR if there
was a problem.

A W BAD WINDOW - -

14

Copyright © 1992, Display Industry Association

Window Size. Position. Stacking and Update

A WContigureWindowO

AW status AWConfigureWindow(W_Handle
W_state
position
position
Dimension
Dimension
position
position

window,
wstate,
x,
y,
width,
height,
virt_x,
virt....Y)

Description: The given window is configured as specified by the other parameters.

Returns:

Errors:

Wstate may be WS_NORM to place the window in the normal, visible state
or WS _MIN to minimize the window and replace it with an icon. X and y
specify the position of the window on the terminal screen, width and height
are the new size of the window, and virt-.x and virty specify the origin of
the window within the associated VT. Any of these parameters may be left
unchanged by passing the value o.

Note that any of these parameters other than virt _x and virt y may be
overridden by the window manager. In virtually all cases applications will
not care about the actual x and y position of the window. If the actual
dimensions are importantthen the application should call
A WGetWindowConfO following this function.

AW _OK if the window was successfully configured, or AW _ERROR if
there was a problem.

AW BAD WINDOW - -
Commands: AW_SGEOM

t A WResize WindowO

AW_Status AWResizeWindow(W_Handle
Dimension
Dimension

window,
width,
height)

Description: The given window is resized as specified by width and height. This is a
convenience function for use when only the size of a window is to be
changed. Note that a window manager is permitted to override the width
and height given in this call.

15

Copyright @ 1992, Display Industry Association

Returns: A W _OK if the window was successfully resized, or A W _ERROR if there
was a problem.

Errors:

Commands: A W SGEOM

t A WMoveWindowO

AW status AWMoveWindow(W Handle
- position

window,
x,

position y)

Description: The given window is moved as specified by x and y. This is a convenience
function for use when only the position of a window is to be changed.
Note that a window manager is permitted to override the coordinates given
in this call.

Returns: A W _OK if the window was successfully moved, or A W _ERROR if there
was a problem.

Errors: AW BAD WINDOW - -

Commands: AW SGEOM

A WSetWindowOriginO

AW_Status AWSetWindoWOriqin(W_Handle
Position
position

window,
virt_x,
virtJ)

Description: The virtual position of the given window within it's VT is changed as
specified by virt_x and virty. This is a convenience function for use when
only the virtual position of a window within the virtual terminal is to be
changed.

Returns:

Errors:

AW _OK if the window was successfully repositioned, or AW _ERROR if
there was a problem.

A W BAD WINDOW - -

Commands: A W SGEOM

16

Copyright © 1992, Display Industry Association

A WSetWindowStateO

AW status AWSetwindowstate(W_Handle
window_state

window,
state}

Description: The state of the window is changed as specified by state. This is a
convenience function for use when only the state of the window is to be
changed.

Returns: A W _ OK if the window state was successfully changed, or A W _ERROR if
there was a problem.

Errors: AW BAD WINDOW - -

Commands: A W SGEOM

/' A WGetWindowConfO

/* All coordinates in this structure are measured in characters */

typedef struct {
Window_State
position
position
Dimension
Dimension
position
position
Dimension
Dimension
Dimension
Dimension
Dimension

} AwwindoWConf;

state; /* Normal or minimized */
X; /* X position on screen */
y; /* Y position on screen */
width; /* width of window */
height; /* Height of window */
virt_x; /* X origin of window in VT */
virt-y; /* Y origin of window in VT */
virt screen width; /* VT width */
virt=screen=height; /* VT height */
disp_width; /* Current display width */
disp_height;/* Current display height */
caption_width; /* Max title bar text size */

AW status AWGetWindoWConf(AWWindoWConf *confp}

Description: Returns the current configuration of the given window by filling in the
structure pointed to by confp. The meanings of the structure members are
explained above.

Returns:

Errors:

A W _ OK if the configuration was retrieved successfully, or A W _ERROR if
there was a problem.

A W BAD WINDOW - -

17

Copyright C> 1992, Display Industry Association

Commands: AW_GGEOM,AW_RGEOM

v> <A WStackWindowO

AW_Status AWStackWindow(W_Handle win,
Stack_Type stack)

Description: Brings the given window to the front or back of the window stack. Stack
may take the value SR_PROMOTE to bring the window to the front, or
SR DEMOTE to send it to the back.

Returns: A W _OK if the command was successful, or A W _ERROR if there was a
problem.

Errors: AW BAD WINDOW - -

Commands: AW STACK

A WSetWindowTrackingO

AW_Status AWSetWindowTracking(W_Handle
int

win,
track)

Description: Sets the cursor tracking status of the given window. When cursor tracking
is enabled, the terminal will ensure that the current cursor position is visible
by changing the origin of the window within it's virtual terminal.
Horizontal and vertical tracking may be set independently of each other.
Track is the bitwise or of any of the following flag bits:

F1a2 Meanin2
CS NONE No tracking
CS HTRACK Horizontal tracking on
CS VTRACK Vertical tracking on

Returns: AW_OKifthe tracking was set successfully, or AW_ERROR if there was a
problem.

Commands: AW_TRACK

18

./ t A WFreezeDisplayO
,/ t A WTbawDisplayO

Aw_Status AWFreezeDisplay(void)

AW_Status AWThawDisplay(void)

Copyright © 1992, Display Industry Association

Description: A WFreezeDisplayO causes the refreshing of the terminal screen to be
paused and A WfhawDisplayO continues refresh and causes any pending
display changes to be made. This would typically be used to prevent the
display of incomplete results when a number of window management
operations are performed in succession.

Returns: AW _OK if the operation was successful, or AW _ERROR if there was a
problem.

Errors:

19

Copyright C 1992, Display Industry Association

Other Window Attributes

t A WSetWindowBorderO

AW_Status AwsetWindowBorder(W_Handle window,
Border_style border)

Description: The given window is changed to have the border style specified in border.
The styles available are BS_THICKNORMAL, BS_THIN, BS_NONE,
BS_THICKBOLD and BS_GHOSTOUTLINE. This function only gives a
hint to the window manager, which may override the border setting. The
next function, A WSetWindowDecorationO interacts with this function
since window decorations and border settings interact within the terminal.

Returns: AW _OK if the window was successfully rebordered, or AW _ERROR if
there was a problem.

Errors: AW_BAD_WINDOW
AW BAD BORDER - -

Commands: A W SBORDER

/A WGetWindowBorderO

/* All dimensions in this structure are measured in characters */

typedef struct {
Dimension
Dimension
Dimension
Dimension

} WindOW_Border;

top;
right;
bottom;
left;

/* Thickness of top border */
/* of right border */
/* of bottom border */
/* ••• of left border */

AW_Status AWGetWindowBorder(W_Handle
Window_Border

window,
*borderp)

Description: This function retrieves the border sizes for the given window. The size
information is placed in the Window_Border structure pointed to by
borderp.

Returns:

Errors:

A W _OK if the information was successfully retrieved, or A W _ERROR if
there was a problem.

Commands: AW_GBORDER,AW_RBORDER

20

Copyright © 1992, Display Industry Association

/t A WSetWindowDecorationO

AW_Status AWSetWindowDecoration(W_Handle window,
int flag)

Description: This function is called to change the decoration style of a window. Flag is
either zero to indicate no decoration, or the bitwise or of any of the
following flag bits:

Returns:

Errors:

Fla2 hit Meanin2
BD MAX Include maximise button
BD MIN Include minimise button
BD SIZE NORM Include normal weight resize handles
BD SIZE BOLD Include bold weight resize handles
BD RESTORE Include restore button
BD MENU Include the system menu button
BD VSCROLL Include a vertical scroll bar
BD HSCROLL Include a horizontal scroll bar
BD CAPTION Include a caption bar

This call only gives hints to the window manager, which is free to ignore or
override any of these flags. The flags themselves are defined in <awlib.h>.

Note that this function will override any conflicting window border which
has been set using A WSetWindowBorderO.

AW _OK if the decoration was successfully set, or AW _ERROR if there
was a problem.

AW_NO_DECORATION
AW _BAD _WINDOW

Commands: A W _SDECORATION

21

v,A WSetWindowTitleO

AW_Status AwsetwindowTi tle (W_Handle
VT Handle
position
position
Dimension

Copyright ~ 1992, Display Industry Association

window,
vt,
x,
y,
length)

Description: The title of the given window is changed to the length characters situated
at position (x, y) in the virtual terminal vt. The application draws the title
into a VT and then transfers it to the title bar of a window using this
function. This approach allows the use of visual attributes and alternate
character sets in the title. The title bar must first have been enabled using
A WSetWindowDecorationO.

Returns:

Errors:

A length of zero will result in no title being displayed.

AW_OK if the call succeeded, or AW_ERROR if there was a problem.

A W _BAD _WINDOW
AW_BAD_LENGTH

Commands: AW_TITLE

/' t A WHighUghtTitleO
",it A WUnhighUghtTitleO

AW_Status AWHighlightTitle(W_Handle win)

AW_Status AWUnhighlightTitle(W_Handle win)

Description: Sets the highlight state of the given window's title.

Returns:

Errors:

A W _OK if the highlight was set successfully, or A W _ERROR if there was
a problem.

A W BAD WINDOW - -

22

A WRevealWindowO
A WHideWindowO

AW_Status AWRevealWindow(W_Handle window)
AW_Status AWHideWindow(W_Handle window)

Copyright@ 1992, Display Industry Association

Description: A WRevealWindowO makes the given window visible on the display.
A WHide Window() removes the window from the display.

Returns: AW_OKifthe call succeeded, or AW_ERROR if there was a problem.

Errors: AW BAD WINDOW - -
Commands: A W VISIBILITY

23

Copyright ~ 1992, Display Industry Association

The Mouse

A WGetMouseConflgO

AW_Status AWGetMouseConfig(int *buttons_return)

Description: This function is called to get the number of mouse buttons. The variable
pointed to by buttons _return will be set to the number of buttons. This
may be zero if the terminal does not have a mouse attached.

Returns:

Errors:

AW_OKifthe function succeeded, or AW_ERROR if there was a
problem.

AW NO MOUSE

Commands: MS_GCONFIG, MS_RCONFIG

A WSetMouseModeO

AW_Status AWSetMouseMode(int flag)

Description: This function is called to configure what ev~nts will be generated about
mouse usage. Flag is either MS_DISABLEito disable mouse reporting
entirely, or the bitwise or of any of the following flag bits:

!

!

Returns:

Errors:

Fla2 bit Meaning
MS CLICKS Send mouse clicks
MS MOTION Send mouse motion
MS WIDGET Send clicks on window decorations
MS CLIENT ENTERLEA VE Send enterlleave window events

It is recommended that MS_MOTION is only turned on when required
during a user interaction. Setting the MS _ WIDGET flag will have no
effect if a window manager is running since the window manager will
consume those events for its own use.

AW _OK if the mouse was successfully enabled, or AW _ERROR if there
was a problem.

AW NO MOUSE

Commands: MS MODE

24

Copyright © 1992, Display Industry Association

J t A WSetMouseCursorO

AW_Status AWSetMouseMode(int style)

Description: This function is called to set the mouse cursor picture. Style is one of the
following:

Returns:

Errors:

Style Meanin2
MS ARROW Default arrow pointer
MS INVISIBLE No cursor
MS IBEAM 'I' shaped cursor for text entry
MS WAIT Hourglass
MS CROSS Cross shape used for move

operations
MS UPARROW Uparrow
MS SIZE Small box on comer of larger box
MS SIZENWSE Diagonal resize (south to east)
MS SIZENESW Diagonal resize (south to west)
MS SIZEWE Resize (left to right)
MS SIZENS Resize (up to down)

Note that the window manager is free to override this function.

AW _OK if the picture was successfully changed, or AW _ERROR if there
was a problem.

AW NO MOUSE

Commands: MS STYLE

vA WMouseEnqO

AW_Status AWMouseEnq(void)

Description: This function is called to request an update on the current state of the
mouse. After this function is called, a mouse event with the event_type
member set to MS _STATUS will be returned by a future call to
A WNextEventO. Note that it will not necessarily be the next event
returned - there may be several other intervening events.

25

Copyright @ 1992, Display Industry Association

Returns: AW _OK if the request was successfully sent, or AW _ERROR if there was
a problem.

Errors:

Commands: MS_ENQ, MS_EVENT

t A WSetMouseBoundsO

/AW_Status AWSetMouseBounds(Bound_Type
position
position
Dimension
Dimension

/AW_Status AWRemoveMouseBounds(Bound_Type

bound_type,
x,
y,
width,
height)

Description: An Alpha Window terminal which supports a mouse can maintain (on a
terminal wide basis only) two rectangular mouse boundaries. The soft
boundary indicates a boundary which triggers a mouse event when crossed
in any direction. The hard boundary defines a region which may only be
entered by the mouse. Once inside, the mouse pointer may not be moved
out again. No mouse event is generated by a hard boundary. Bound_type
may be either MS_BSOFf or MS_BHARD. For AWSetMouseBoundsO
the boundary rectangle is defined by x, y, width and height. To leave any
of these unchanged, pass 0 as the parameter value.

Returns:

Errors:

A WRemoveMouseBounds() removes the current boundary definition of
the given type.

Note that subsequent boundary settings replace current ones of the same
type. In addition, a window manager is permitted to override boundary
settings.

A W _OK if the boundary was successfully set, or A W _ERROR if there was
a problem.

AW NO MOUSE

Commands: MS BOUND

26

Copyright @ 1992, Display Industry Association

/t A W AttachMouseO
./ t A WDetachMouseO

AW_Status AWAttachMouse{W_Handle
position
position
Attach_Type

win,
x,
y,
attach)

AW_Status AWDetachMouse{void)

Description: A W AttachMouseO attaches the given window to the mouse with anchor
point (x, y). Attach controls the type of attachment and hence the precise
effect of this function. The attachment may cause the resizing or
movement of the window or movement of either of the scrollbars which
can decorate a window. If the mouse position is different from the anchor
point when the terminal receives this command then the difference is used
to adjust the geometry or position of the window or scrollbar. As the
mouse is moved by the user the appropriate geometry or position is
continuously updated by the terminal. Only one mouse attachment is
allowed at anyone time over the whole terminal. A WDetachMouseO ends
the attachment.

Returns:

Errors:

An example of the use of this function would be in a turnkey application
which wanted to perform window management. When a mouse button
press in the title area of a window was detected (via an event) the
application could use A W AttachMouseO to allow the user to move the
window. The anchor point would normally be the mouse position given in
the mouse event. When the button is released, the mouse would be
detached by calling A WDetachMouseO.

A W _OK if the attachment was successful, or A W _ERROR if there was a
problem.

AW BAD WINDOW - -

Commands: MS ATTACH

27

Copyright @ 1992, Display Industry Association

Event Handling

Input (both from the keyboard and other sources) is provided to the application in the
form of events. An event is data generated asynchronously by the AlphaWindow terminal
or Window Manager normally as a result of user activity such as typing or moving the
mouse. There are ten types of event defined, some of which have a variety of sub-types.

Event Structure
Each type of event has an individual structure defined to specify the parameters of the
event. In addition the A WEvent structure is defined as a union of all of these individual
structures.

typedef union {
int
AWKeyboardEvent
AWMouseEvent
AWGeometryEvent
AWRoutingEvent
AWExtensionEvent
AWAttentionEvent
AWSelectedDataEvent
AWSpecialCharEvent
AWAddCreditEvent
AWRestoreEvent
AWExitEvent

} AWEvent;

type;
keyboard;
mouse;
geometry;
routing;
extension;
attention;
selecteddata;
specialchar;
addcredit;
restore;
exit;

An event structure's first member is always the type. This means that the type can always
be accessed as shown below:

AWEvent event;
AWStatus status;

status = AWNextEvent(&event);

switch (event. type) {
case GeometryEvent:

new_x = event.geometry.x;

}

28

Copyright © 1992, Display Industry Association

Keyboard Input Event
This event is generated when keyboard input or other emulation data is received from the
terminal. The type of this event is KeyboardEvent.

typedef struct {
int
int
char

} AWKeyboardEvent;

Mouse Event

64

type;
length;
string[AW_MAX_STRING];

This event is generated when mouse input is received from the terminal. The type of this
event is MouseEvent.

typedef struct {
int
int
position
position
int
W Handle
Widget_Type
int
int

} AWMouseEvent;

Geometry Event

type;
event_type;
X;
y;
time;
window;
widget;
buttons;
modifiers;

When a window is moved, resized, or changes state a geometry event is generated. The
event type is GeometryEvent.

typedef struct {
int
W Handle
wIndow state
position
position
Dimension
Dimension
position
position
Dimension
Dimension
Dimension
Dimension
Dimension

} AWGeometryEvent;

type;
window;
state;
X;
y;
width;
height;
virt_x;
virtJ;
virt_width;
virt_height;
p_width;
p_height;
caption_width;

29

Copyright @ 1992, Display Industry Association

Routing Event
A routing event is generated when a notification is received from the terminal that input is
now being sent from a different VT. The event type is RoutingEvent.

typedef struct {
int
VT_Handle

} AWRoutingEvent;

Extension Event

type;
vt;

An extension event is reported when an extension command is received by the library.
The event type is ExtensionEvent.

typedef struct {
int
int
int
int
int

} AWExtensionEvent;

type;
code;
tag;
int_count;
char_count;

The extension command will have zero or more numeric parameters and a string
parameter associated with it. To retrieve these, use the function AWGetExtensionParmsO
described in the section on extensions below.

Attention Event
An attention event is reported when a set of keys which have been registered by an
application along with an attention identifier are pressed at the same time. The event type
is AttentionEvent.

typedef struct {
int
int

} AWAttentionEvent;

Selected Data Event

type;
id;

A selected data event is reported at some time after a call to A WGetSelectionO. The
event structure contains a pointer to a buffer containing the selected data and a count of
the bytes in the buffer. The buffer is owned by the library, and the pointer is only valid
until the next call to AWGetSelectionO. If an application wishes to preserve the data it
should copy it into a buffer of its own. The event type is SelectedDataEvent.

30

typedef struct {
int
int
char

} AWAttentionEvent;

Special Character Event

type;
count;
*data;

Copyright@ 1992, Display Industry Association

This event is generated when one of the three special characters A W _BREAK, A W _XON
and A W _XOFF is received by the library. The event type is SpecialCharEvent.

typedef struct {
int
VT_Handle
char

} AWSpecialCharEvent;

tAdd Credit Event

type;
vt;
special;

When an A W _ADDCREDIT command is received, the library will report an event of type
AddCreditEvent.

typedef struct {
int
VT_Handle
int

} AWAddCreditEvent;

Restore Event

type;
vt;
credits;

When the library receives an A W _RESTORE command (indicating that the terminal's
environment has been corrupted by, for example, a power failure) an event of type
RestoreEvent is reported. When the event is received, the application should consider all
existing window and vr handles invalid.

typedef struct {
int

} AWRestoreEvent;

Exit Event

type;

When the library receives an A W _EXIT command (indicating that the terminal's exit key
or key chord has been pressed) an event of type ExitEvent is reported. When the event is
received, the application should close down in as orderly a way as possible ..

31

typedef struct {
int

} AWExitEvent;

A WNextEventO

type;

AW_Status AWNextEvent(AWEvent
AW_Boolean
AW_Boolean

*eventp,
block,
peek)

Copyright @ 1992, Display IndusUy Association

Description: This function attempts to read the next event. The type and parameters of
the event will be copied into the event structure pointed to by eventp. This
structure must have been previously allocated by the application (either
statically as a variable or dynamically) before A WNextEventO is called. If
block is true and there are no events on the library's internal event queue
then the function will block until the next event is read otherwise the
routine will return without reading an event. If peek is true then any event
read will not be removed from the internal event queue and will be
returned again by the next call to A WNextEventO.

Returns:

Errors:

A W _OK if an event was read, or A W _ERROR if there was no event to
read or a problem was detected. If an error occurred then aw _errno will
be set to a value other than AWN 0 ERROR.

A W COMMS ERROR - -

32

Copyright © 1992, Display Industry Association

Keyboard Control

The application may request that the pressing of certain key combinations ("chords") be
reported as a special attention event rather than as keyboard characters.

/'A WSetAttentionO

AW_Status AWSetAttention{ int
int
int

attn_id,
key_count,
*key_list)

Description: This function sets an attention. Attn id is an identifier for the attention
which will be included in any attention events generated by the user.
Key _count is the number of elements in key _list, which is a list of the key
numbers which, when pressed at the same time, will generate the attention.
If key _count is zero, the attention whose identifier is given will be cleared
and the pointer key _list will not be dereferenced. Several standard
keyboards with key numbers are illustrated in the Alpha Window Terminal
Specification. Other key number information will be published by
individual vendors.

Returns: A W _OK if the window was successfully resized, or A W _ERROR if there
was a problem.

Errors:

33

Copyright @ 1992, Display Industry Association

Application Input and Output

A Wlib sends Alpha Window commands to the standard output device and reads events
from the standard input device. Applications which make their own use of these devices
must co-operate with the library to avoid data loss or mis-ordering of output. An
application may not read directly from the standard input device - all input must be
obtained via A WNextEvent(). When A WInit() is called, the library will change the device
settings of standard input and output. It is the application's responsibility to ensure that
these same device settings are in force before making any other calls to A Wlib functions.

It is recommended that the A WOutput() routine described below is used to send
application output to the terminal. An application is, however, permitted to write directly
to standard output provided that all pending output is flushed prior to calling an A Wlib
function. Such an application will need to call A WRoute() to direct output to the
appropriate VT. Note that the library will always flush its own output prior to returning.

/AwOutputO

AW_Status Awoutput(VT_Handle vt,
char
int

*buf,
buflen)

Description: This function sends application output to the given virtual terminal. Bufis
a pointer to the start of a buffer containing the characters to output and
buflen is the number of bytes which have been placed in the buffer.

Returns:

Errors:

AW _OK if the output was successfully sent, or AW _ERROR if there was a
problem.

Commands: None

34

Copyright © 1992, Display Industry Association

AWRouteO

AW_Status AWRoute(VT_Handle vt)

Description: This function is for use by applications which write directly to standard
output. All subsequent output data will be directed to the VT specified
here.

Returns:

Errors:

A W _OK if the output VT was successfully switched, or A W _ERROR if
there was a problem.

Commands: A W MPI

35

Copyright ~ 1992, Display Industry Association

tFlow Control

Most applications will not need to concern themselves with flow control since data
transfer between host and terminal will be coordinated for them by the window manager.
Note that in any case, an application should not attempt to use the credit function
described here without first determining that group 4 of the Alpha Window protocol is
supported by the terminal via the A WIsCreditsSupportedO function. Most window
managers will not advertise themselves as supporting group 4.

The flow control system implemented by Group 4 is based on credits. Posession of a
credit for a virtual terminal gives permission to transmit up to 32 bytes of application data
for that virtual terminal. The credit system is bidirectional, so that the application must
grant credits to the terminal to allow keyboard input to be received. The transmission of
Alpha Window commands is not governed by credits.

An event of type AddCreditEvent will be reported as described above when an
A W _ADD CREDIT command is received from the terminal. This event may be taken as a
signal that the terminal is ready to receive the indicated number of characters on the given
VT.

v/tAWIsCreditsSupportedO

AW_Boolean AWIsCreditsSupported()

Description: This function queries the terminal to find out whether it supports the use of
credits for flow control. This will be true if the terminal supports group 4
of the Alpha Window Protocol.

Returns:

Errors:

AW_OKifthe terminal supports credits or AW_ERROR if there is no
credit support or a problem was detected. If a problem was detected then
aw _ermo will be set to an appropriate value other than AW _NO_ERROR.

AW NO MEMORY

Commands: A W DA

36

tAW AddCreditsO

AW_Status AWAddCredits(VT_Handle
int

vt,
credits)

Copyright ~ 1992, Display Industry Association

Description: This function is called to allow the terminal to send keyboard characters on
the given virtual terminal. Credits is measured in 32 byte blocks.

Returns: A W _ OK if the credits were added, or A W _ERROR if there was a problem.

Errors: A W COMMS ERROR - -
Commands: A W ADD CREDIT

37

Copyright C 1992, Display Industry Association

Selection Handling·

An Alpha Window terminal supports a single selection. A particular region of a virtual
terminal may be notified to the terminal and the characters within that area then become
the current selection value and are highlighted in some way by the terminal. An
application can request the current selection value and unhighlight it by deselecting the
data.

/t A WSelectO
/t A WDeselectO

AW_Status AWSelect(VT_Handle
position
position
position
position
Select Mode

AW_Status AWDeselect(void)

vt,
start_row,
start_col,
end_row,
end_col,
mode)

Description: A WSelectO is called to select the area of the given vr between (start_col,
startJow) and (end_col, endJow). The shape of the area selected will be
a rectangle if mode is HS_RECT or contiguous lines if mode is HS_ WRAP.
The selected area will be highlighted by the terminal, perhaps using reverse
video. Any previous selection is automatically cancelled by this command.
Once data has been selected, it can scroll or move according to application
output and the highlight moves with it. This means that selected data
which is scrolled out of the vr is lost.

A WDeselectO cancels the current selection.

Returns: AW _OK if the selection was set, or AW _ERROR if there was a problem.

Errors:

Commands: A W _SELECT, A W _DESELECT

38

Copyright © 1992, Display Industry Association

AAWGetSelectlonO

Aw_status AWDeselect(void)

Description: This function is called to request the characters currently highlighted as the
selection. After this function is called, an event of type SelectedDataEvent
containing the selected characters will be returned by a future call to
AWNextEventO. Note that it will not necessarily be the next event
returned - there may be several other intervening events.

Returns: A W _OK if the command was successful, or A W _ERROR if there was a
problem.

Errors:

39

Copyright C 1992, Display Industry Association

Extensions

A mechanism is defined in the Alpha Window Application Protocol to allow protocol
extensions to be defined. Each extension consists of one or more commands with well
known command codes. Each command takes zero or more integer parameters and a
single string parameter. The meaning of these parameters is defined by the individual
extension. Some commands will be defined to have a response. The reponse is simply
another extension command with its own defined command code.

The extension mechanism is bidirectional- extensions may asynchronously send
commands to the application. These commands will be received as extension events as
described in the section on events.

A WCallExtensionO

AW_Status AWCallExtension(int
int
int
int
char

code,
tag,
int_count,
*intparms,
*strparm)

Description: This function is called to issue an extension command. Code is the
command code for the extension and tag is the tag number which will be
placed in any reply to this command. Replies may be dealt with
synchronously be calling A WWaitExtensionO with the same tag value, or
asynchronously by waiting for an extension event with the appropriate tag.
[nt_count is the number of integer parameters for the command, which
must be stored in an array pointed to by intparms. The string parameter is
passed as strparm. If a command does not require a string parameter, a
null pointer should be passed.

Returns: A W _OK if the call was successful, or A W _ERROR if there was a problem.

Errors: A W NO EXTENSION

Commands: AW _EXTENSION, A W _SHORT_EXTENSION

40

A WWaitExtensionO

AW_Status AWWaitExtension(int
int
int
int

command,
tag,
*int_count,
*str_count)

Copyright © 1992, Display Industry Association

Description: To wait for a reply to an extension command, call this function. Command
is the command code for the desired reply and tag is the tag value passed in
the original command. The integer whose address is given by int_count
will be set to the number of integer parameters included with the reply.
Similarly, * str _count will be set to the length of the string parameter.
A WGetExtensionParmsO may then be called to retrieve the actual
parameter val ues.

Returns: AW _OK if the call was successful, or AW _ERROR if there was a problem.

Errors: AW_TIMED_OUT

Commands: A W _EXTENSION, A W _SHORT_EXTENSION

A WGetExtensionParmsO

AW_Status AWGetExtensionParms(int
char

*intparms
*strparm)

Description: This function is called after an event of type ExtensionEvent has been
reported or after a call to A WWaitExtensionO, to retrieve the parameters
of the extension command. The integer parameters are placed into the area
of memory pointed to by intparms. This area must be at least large enough
to hold the number of integers specified by the int_count member of the
extension event structure. Similarly, the string parameter is copied to
* strparm, which must be a memory block large enough to hold str _count
characters plus one character as a null terminator.

Returns: A W _ OK if the call was successful, or A W _ERROR if there was a problem.

Errors:

Commands: None

41

Copyright e 1992, Display Industry Association.

Appendix A - Type Definitions

A number of new types are defined in the header file <awlih.h>. Note that types
associated with events are defined in the section on event handling. A few other structure
types are defined with the functions which use them.

typedef short AW_Status;

#define AW_OK «AW_Status) 0)
#define AW_ERROR «AW_status) -1)

typedef short VT_Handle;

#define NULL_VT_HANDLE «VT_Handle) 0)

typedef short W_Handle;

typedef short Position;

typedef short Dimension;

typedef short AW_Boolean;

typedef enum {
WT_MAIN = 1,
WT_TRANSPARENT = 2

} Window_Type;

typedef enum {
WS_NORMAL = 1,
WS_MINIMISED = 2

} Window_State;

typedef enum {
TF_NORMAL = 1,
TF_TRANSIENT = 2

} Transient_Type;

typedef enum {
BS_THICKNORMAL = 1,
BS_THIN = 2,
BS_NONE = 3,
BS_THICKBOLD = 4,
BS_GHOSTOUTLINE = 5

} Border_Style;

typedef enum {
PH_NORMAL = 1,
PH_PRIVATE = 2

} Private_Hint;

A-1

typedef enum {
MS_BSOFT = 1,
MS_BHARD = 2

} Bound_Type;

typedef enum {
CT _TERMINAL = 1,
CT_WMGR = 2

} Terminal_Type;

typedef enum {
BD_DETACH = 1,
BD_STRETCH_N = 2,
BD_STRETCH_E = 3,
BD_STRETCH_S = 4,
BD_STRETCH~W = 5,
BD_STRETCH_NE = 6,
BD_STRETCH_SE = 7,
BD_STRETCH_NW = 8,
BD_STRETCH_SW = 9,
BD_MOVE_ALL = 10,
BD_SLIDE_H = 11,
BD_SLIDE_V = 12

} Attach_Type;

typedef enum {
SR _PROMOTE = 1,
SR_DEMOTE = 2

} stack_Type;

typedef enum {
HS_RECT = 1,
HS_WRAP = 2

} Select_Mode;

Copyright © 1992, Display Industry Association.

A-2

Copyright © 1992, Display Industry Association.

Appendix B - Error Types

The following error types are defined in the header file <awlib.h>:

AW_NO_ERROR
No error has been detected.

AW NOT AW TERMINAL - - -
The terminal does not appear to support the Alpha Window protocol.

AW BAD VT - -
The VT handle supplied does not refer to a VT created by this client.

AW BAD WINDOW - -
The window handle supplied does not refer to a window opened by this
client.

AW_BAD_TYPE
The window type supplied was invalid.

A W BAD TRANSIENT - -
The transient hint value supplied was invalid.

AW NO MEMORY
The function was unable to allocate memory.

AW TIMED OUT - -
A reply from the terminal was not received during the timeout period.

AW COMMS ERROR - -
An error occured in reading from or writing to the window manager or
terminal.

A W BAD BORDER - -
The border style supplied was invalid.

AW BAD LENGTH - -
The length parameter supplied was invalid.

AW NO MOUSE
The terminal does not support a mouse.

AW NO DECORATIONS
The terminal does not support window decorations.

A W NO EXTENSION
The terminal does not support the extension command group.

B-1

Copyright © 1992, Display Industry Association.

A W _BAD:-EMULATION
The emulation requested is flqt§UPPOrted by the terminal.

A \V _ UNDEFINEP~ERROR
... .c\p .. er,ror not cove.red by tnei,~boved?ssificaHons occured. It is acceptable
forthis error type to be, generated by anyfunctioo,

