INSTRUGTION MANUAL

Installation and Operation

MT-82 Tape Reader MTS-82 Tape Reader/Spooler

SUPPLEMENT

Please make the following changes where indicated:

1. Page 1-3, Table 1-2.
a. Line input voltage specification should read:

Line Input Voltage	$\text { po } \frac{\text { Card }}{\text { sition }}$	$@ 4 \frac{\text { Range }}{7-63} \mathrm{HZ}$
	100	95-115
	120	105-130
	220	190-230
	240	210-260

b. Add the following Parameter and Specification:

Line Input Frequency	$47-63$ Hertz

2. Page 1-4, Table 1-2

Add the following Parameter and Specification:

Isolation Chassis to Signal Ground	$\leq 0.1 \Omega$ with shorting screw installed. $100-500 \Omega$ nominal without shorting
screw installed. This low resistance is due to the read head switch ins- talled on a conductive read head.	

3. Page 3-1, Paragraph 3-2.

Add reference, (See table l-2), at end of note.
4. Page 4-1, Paragraph 4-2.

Add reference, (See table l-2), at end of note.
5. Page 5-2.

Add reference, (See table 1-2), at end of note.
6. Page 5-17, figure 5-11.

Change tape data pin callout from 2 to 3 in factory preset position. Should read:

Preset \longrightarrow TAPE DATA PIN 3/Reader Command PIN 2
7. Page 8-4, Paragraph 8-4A.

Add to list of required equipment:
3. One 7.5 inch reel full of mylar tape.
8. Page 8-4, Paragraph 8-4B.

Add the following steps and amendments to the SERVO PCB adjustment. RE-NUMBER STEPS as indicated (changes are underlined):

To adjust the servo motor pots on the servo PCB:

1. Place switch $S 1$ (2) in the " 0 " position (See figure 3-3).
2. Clean and close the read head. (See paragraph 8-2A0.
3. Calibrate the reader (See Paragraph 8-2D).
4. Turn power off.
5. Place full reel of mylar tape on right hub.
6. Connect a voltmeter positive lead to test point (+MRT) at center of Servo PCB. Connect the negative lead to test point (-MRT). (See figure 8-1.)
7. Turn power on.
8. Press LOAD SPOOL switch.
9. While right motor is turning, adjust R31 (right hand pot) for 4.2 ± 0.2 volts. Repeat steps 8 and 9 as necessary.
10. Turn off power.
11. Place full reel of mylar tape on left hub (was on right hub.
12. Place switch $\operatorname{Sl}(2)$ in the "1" position (See figure 3-3).
13. Connect a voltmeter positive lead to test point (+MLF) at center of servo PCB. Connect the negative lead to (-MLF). (See figure 8-1.)
14. Turn on power.
15. Press LOAD SPOOL switch.
16. While left motor is turning, adjust R30 (left hand pot) for 4.2 ± 0.2 volts. Repeat steps 15 and 16 as necessary.
17. Turn off power and reset switches to appropriate settings. (See figure 3-3, 4-3, or 5-3).

INSTRUCTION MANUAL

MT-82 TAPE READER
MTS-82 TAPE READER / SPOOLER

For customer service contact...

Abstract

WARRANTY Seller warrants that all goods furnished hereunder will at the time of shipment be free from defects in material and workmanship and will conform to Seller's applicable specifications or, if appropriate to specifications accepted by Seller therefor. Seller's obligation hereunder shall be limited to, at Seller's option, either refunding the purchase price of, repairing or replacing, any products for which written notice of nonconformance hereunder is received by Seller within the Sellers Standard Warranty period for the specific product; provided such nonconforming products are with Seller's prior authorization, returned F.O.B. Seller's plant at Buyer's expense. This warranty shall not apply to any products in other than their original condition, or to any products which Seller determines have, by Buyer or otherwise, been subjected to operating and/or environmental conditions in excess of the maximum values therefor in the applicable specifications or otherwise have been the subject of misuse, neglect, improper installation, repair, alteration or damage. The foregoing warranties shall extend to Buyer, its successors, assigns, customers and ultimate users of his products. THESE WARRANTIES ARE EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES WHETHER EX. PRESSED, IMPLIED OR STATUTORY, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS. IN NO EVENT WILL SELLER BE LIABLE FOR ANY SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES.

NOTE: Warranty periods for specific products are as follows: | PRODUCT | LENGTH OF WARRANTY PERIOD |
| :--- | :--- |
| - Tape Readers | One (1) Year |
| - Punches | One (1) Year |
| - Punch Mechanism | Ninety (90) Days |
| Switches | |
| - Standard Switches One (1) Year
 - 8000 Series Ninety (90) Days
 Electronic Packaging Products
 - EECO 2D One (1) Year
 - EECO 3D One (1) Year
 Broadcast
 - Video/Audio Tape Editing One (1) Year
 Computer Terminals
 -D300/D400 VDU One (1) Year
 Any item not listed is not warranted by EECO. . | |

WARNING

This equipment generates and uses radio frequency energy and if not installed and used properly, i. e., in strict accordance with the instruction manual, may cause harmful interference to radio communications. It is designed to comply with the limits for a Class A computing device pursuant to sub-part J of part 15 of FCC rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment.

March 1982
(230990)

TABLE OF CONTENTS

Paragraph Page	
	Section I - General Description
$\begin{aligned} & 1-1 \\ & 1-2 \end{aligned}$	Scope. $1-1$
	Equipment Description. 1-1
	Section II - Installation
2-1	Unpacking. 2-1
2-2	Inspection 2-1
2-3	Equipment Mounting 2-1
2-4	Power. 2-1
2-5	Internal Controls. 2-4
	Section III - Interface - EECO Parallel I/O
3-1	Description. 3-1
3-2	Interface Cable. 3-1
3-3	Logic Levels 3-3
3-4	Signal Timing. 3-9
Section IV - Interface - Remex Compatible Parallel I/O	
4-1	Description. 4-1
$4-3$	Interface. 4-1
	Signal Timing. 4-6
	Section V - Interface - Serial I/O
5-1	Description. 5-1
5-2	Interface Cable. 5-1
5-3	Electrical Characteristics 5-3
5-4	Serial Word Format 5-5
5-5	Signal Definitions 5-6
5-6	Current Loop 5-7
5-7	Protocol 5-9
	Section VI - Operation
6-1	Front Panel Switches 6-1
6-2	Front Panel Indicators 6-2
6-3	Operator Functions 6-2
6-4	Internal Switch Settings 6-6

Section VII - Theory of Operation

7-1	General. 7-1
7-2	Functional Description 7-1
	Section VIII - Maintenance
8-1	General. 8-1
8-2	Preventive Maintenance 8-1
8-3	Diagnostics. 8-3
8-4	Adjustments. 8-4
	Section IX - Replacement Parts
9-1	Factory Repair Information 9-1

LIST OF ILLUSTRATIONS

LIST OF ILLUSTRATIONS (continued)

4-9	Rewind (Manual).	4-11
5-1	25-Pin Connector	5-1
5-2	Ground Shorting Screw.	5-2
5-3	Equivalent Circuit	5-3
5-4	Circuit Voltage Levels	5-4
5-5	Current Loop Interconnector Diagram.	5-8
5-6	Level I Protocol	5-9
5-7	Level II Control Protocol.	5-12
5-8	CPU Switch Settings. . -	5-13
5-9	Baud Rate Switch Setting - Sl.	5-14
5-10	Data Configuration Switch Settings - S2	5-15
5-11	I/O Switch Settings - S3. . . .	5-17
6-1	Front Panel Controls and Indicators.	6-1
6-2	Rewind Function.	6-3
7-1	Tape Reader Block Diagram.	7-3
7-2	Tape Reader Block Diagram (Remex Parallel I/O)	7-5
7-3	Tape Reader Block Diagram (Serial I/O)	7-7
8-1	Servo PCB Text Points. .	8-5
8-2	Reader Assemblies.	8-6

LIST OF TABLES

Al258

Figure 1-1.
MTS-82 Tape Reader/Spooler

GENERAL DESCRIPTION

1-1. SCOPE
This manual contains operation and maintenance information for all versions of the MT-82 Microprocessor Based Punched Tape Reader (reader) and the MTS-82 Microprocessor Based Punched Tape Reader/Spooler (reader/spooler).

1-2. EQUIPMENT DESCRIPTION
The Microprocessor Based Punched Tape Reader (figure l-l) converts information from hole patterns in either spooled or strip (loose) punched tape to electrical signals. These signals are stored in a buffer memory under microprocessor control until needed for control of user equipment. Data is requested and transmitted from memory via an INPUT/OUTPUT interface to the requesting equipment. When the active buffer is depleted, tape is advanced to replenish the memory and the cycle is repeated.

Front Panel controls consist of LOAD, REWIND, and POWER switches. The read head contains a low-current, visible LED light source, phototransistor sensing elements, a stepper motor, and drive sprocket. In the reader/spooler version, tape spools are driven by direct current spooler motors mounted on the front panel. Only one motor (stepper or spooler) is operational during any given operation. This feature results in low power consumption.

Data conversion control, and power logic circuits are contained on three modular printed circuit boards:
(1) A CPU board contains power supply, stepper motor drive, microprocessor, and memory circuits.
(2) An INPUT/OUTPUT board provides an interface between the CPU board and user equipment. It also contains switches for setting logic levels.
(3) A SERVO board controls the spool mode drive motors. Two potentiometers adjust motor speed.

The reader may be configured in one of several versions. The rear chassis nameplate identifies the reader version when factory shipped.

Table 1-1. Equipment Part Number

P / N	MODE	I/O TYPE
230990-10	Reader Only	EECO Parallel
230990-15	Reader/Spooler	EECO Parallel
230990-20	Reader Only	Remex Parallel
230990-25	Reader/Spooler	Remex Parallel
230990-30	Reader Only	Serial
230990-35	Reader/Spooler	Serial

Table 1-2. Specifications

PARAMETER	SPECIFICATION
Read Speed (Switch Selectable)	201 characters per second maximum or 402 characters per second maximum
Rewind Speed I/O	402 characters per second maximum
Front Panel	1øøø characters per second typical (varies with amount of tape on reel)
Dimensions	
Front Panel Width	$19.0 \emptyset$ inches (48.26 centimeters maximum)
Front Panel Height Depth (front to rear panel)	```5.25 inches (13.34 centimeters maximum) 7.10 inches (18.03 centimeters maximum)```
Read Head Protrusion Hub Protrusion Weight	2.15 inches (5.46 centimeters maximum) 2.275 inches (5.78 centimeters maximum) 17 pounds (7.71 kilograms)
Finish	
Front Panel	Lexan overlay on aluminum base

Table l-2. Specifications (continued)

PARAMETER	SPECIFICATION
Chassis	Clear chemical film on aluminum
Tape	
Material	```Paper, aluminum-Mylar, paper-Mylar, or Mylar-aluminum```
Thickness	Up to $\varnothing .0045$ inches (0.1143 millimeters)
Tolerance	Tape punched per EIA Standard RS-227-A, ECMA, ANSI, or ISO
Width/Levels	$1.00 \varnothing+\emptyset .003$ inches $(25.40 \varnothing \pm$ $\emptyset . \bar{\varnothing} 76$ millimeters) standard 8 track plus sprocket
Line Input Voltage	$1 \varnothing \varnothing / 12 \emptyset / 22 \emptyset / 24 \emptyset$ volts A.C. (Selectable) +/- 10\%, 50/6ø Hertz +/3\%
Power Consumption:	$8 \emptyset$ watts maximum. ($5 \emptyset$ watts typical)
Peak Inrush Current:	9 amperes at 115 Vac.
Fusing	a. 1.5 ampere fuse, slo-blo at 115 Vac. b. 0.75 ampere fuse, slo-blo at 230 Vac.
Power Cord	3 conductor detachable cord, Switchcraft P/N P-3292 (EECO P/N 346323-ø1)
Input/Output Connector	See paragraph 3-1, 4-1, or 5-2.
Temperature	
Operating	\emptyset to +60 degrees centigrade
Non-Operating	$-2 \emptyset$ to $+1 \emptyset \emptyset$ degrees centigrade
Humidity	```to 95% Relative humidity, non-condensing```

Table l-2. Specifications (continued)

PARAMETER	SPECIFICATION
Altitude	
Operating:	0 to 10,000 feet (0 to 3048 meters)
Non-operating:	\emptyset to 15, øøø feet (0 to 4572 meters)
Vibration	Mil STD 810C, Category G Procedure X
Shock	Mil STD 202 Method 213 Condition K 11 milliseconds, $1 / 2$ sine

2-1. UNPACKING
Remove reader from shipping container. Remove packaging material from reader. Check to see that no parts are left in container.

2-2. INSPECTION
After unpacking, carefully inspect the reader for any loose or missing hardware. Check for foreign material in the chassis or read head. Inspect for shipping damage. Clear away any foreign material and repair or replace any defective hardware or electrical components before attempting to operate the reader.

2-3. EQUIPMENT MOUNTING
The reader is provided with mounting holes for installation in a standard l9-inch RETMA equipment rack. Refer to figure 2-1 for reader outline dimensions and space requirements.

2-4. POWER (See table l-l and figure 2-2)
WARNING

To insure safe and proper grounding of the reader, make sure the power line has a third-wire ground.

Before applying power to the unit, make certain that the power connector PC CARD is set up for the correct voltage (see figure 2-2). To remove PC card from equipment, insert a pointed instrument into hole in card and pry out. Do not use pliers as this may damage the card. Also, verify that the correct fuse is installed.

NOTES: UNLESS OTHERWISE SPECIFIED
[1. DIMENSION IS WITHOUT TOP COVER ODTION. WHICH WILL EXTEND . 062 (1.57) PLUS SEREN HEADS
(2) PANEL. DIONS $x \times x$ INCHES $(x x x)$ MM

134627A
Figure 2-1. Outline and Dimensions
(Reader/Spooler Shown)

A. COVER CLOSED

C. FUSE REMOVAL

USE IF LINE VOLTAGE
IS 95 TO 115 VOLTS

USE IF LINE VOLTAGE IS
IS 190 TO 230 VOLTS

USE IF LINE VOLTAGE IS
105 TO 130 VOLTS

USE IF LINE VOLTAGE IS
IS 210 TO 260 VOLTS

PC CARD POSITIONS. TOP VIEWS.
(ARROWS POINT TOWARD DIRECTION OF INSERTION INTO CONNECTOR ASSEMBLY).
B1044
Figure 2-2. Power Connector Assembly

Electrical power for the reader is selected from four line input potentials: løø, $12 \emptyset, 22 \emptyset, 24 \emptyset$ Vac. Choose the fuse value according to the input voltage used:

løØ to $12 \emptyset$ Vac use 1.5 Amp slo-blo fuse.
$22 \emptyset$ to $24 \emptyset$ Vac use $\emptyset .75$ Amp slo-blo fuse.

2-5. INTERNAL CONTROLS

Prior to placing the reader into operation, the internal search/wind and logic level switches must be set to provide the desired signals and results. Figure $2-3$ shows the locations of all the important internal controls and assemblies. See Sections III, IV, or V for switch setting information.

Figure 2-3. Internal Controls and Assemblies.

```
INTERFACE - EECO PARALLEL I/O
```

3-1. DESCRIPTION
The EECO parallel I/O is a TTL compatible interface which outputs punched tape data on eight lines. Reader status and handshaking are provided on another four output lines. Reader control is obtained with four input signals which are noise filtered and conditioned. Switches provide selection of logic levels for all signals. Customer connection is through a DB25S connector located at the rear of the reader.

3-2. INTERFACE CABLE
To interface with other equipment, provide an appropriate cable using size 22 AWG wire of necessary length not to exceed 10 feet. For noise immunity, use twisted pair and terminate both ends of the cable to the ground points. For maximum noise immunity and minimum high frequency radiation, the cable should have an overall shield grounded to I/O connector pin 21.

NOTE
Signal ground and chassis ground are internally connected for maximum reader immunity to power line transient voltages. Users wishing to employ single-point grounding in their system can disconnect signal ground from chassis ground by removing the shorting screw (figure 3-1). With the internal ground connection removed, it is especially important that chassis ground and system ground be externally connected by a low impedance at high frequencies; otherwise power line transients may develop chassis voltage disturbances sufficient to cause system malfunction.

Figure 3-1. Ground Shorting Screw

Al255

Figure 3-2. Recommended Interface Circuits.

Table 3-1. Connector Pin List

PIN	SIGNAL	SIGNAL FUNCTION
1	(SPARE)	(SPARE)
2	REMOTE REWIND RIGHT (RRR)	INPUT, SELECTABLE LEVEL
3	REMOTE REWIND LEFT (RRL)	INPUT, SELECTABLE LEVEL
4	DRIVE RIGHT (DR)	INPUT, SELECTABLE LEVEL
5	DRIVE LEFT (DL)	INPUT, SELECTABLE LEVEL
6	READER READY (RR)	OUTPUT, SELECTABLE LEVEL
7	RUN STATUS (RS)	OUTPUT, SELECTABLE LEVEL
8	(SPARE)	(SPARE)
9	DATA CLOCK (DC)	OUTPUT, SELECTABLE LEVEL
10	DRIVE ACKNOWLEDGE (DA)	OUTPUT, SELECTABLE LEVEL
11	DATA CHANNEL (DI)	OUTPUT, SELECTABLE LEVEL
12	DATA CHANNEL (D2)	OUTPUT, SELECTABLE LEVEL
13	DATA CHANNEL (D3)	OUTPUT, SELECTABLE LEVEL
14	DATA CHANNEL (D4)	OUTPUT, SELECTABLE LEVEL
15	DATA CHANNEL (D5)	OUTPUT, SELECTABLE LEVEL
16	DATA CHANNEL (D6)	OUTPUT, SELECTABLE LEVEL
17	DATA CHANNEL (D7)	OUTPUT, SELECTABLE LEVEL
18	DATA CHANNEL (D8)	OUTPUT, SELECTABLE LEVEL
19	(SPARE)	(SPARE)
$2 \emptyset$	BROKEN TAPE (BT)	OUTPUT, SELECTABLE LEVEL
21	CHASSIS GROUND	TIED TO POWER LINE (EARTH GROUND)
22	GROUND	SIGNAL GROUND, RETURN
23	GROUND	SIGNAL GROUND, RETURN
24	GROUND	SIGNAL GROUND, RETURN
25	GROUND	SIGNAL GROUND, RETURN

3-3. LOGIC LEVELS
I/O levels are switch-selectable depending on user equipment requirements.

Table 3-2. Logic Levels

INPUT/			MAX. OUTPUT
LEVEL	VOLTAGE RANGE	CURRENT	
Input	+5 V	$+2 . \emptyset$ to +5.2 Vdc	$4 \emptyset \mathrm{uA}$
Input	$\emptyset \mathrm{V}$	$\emptyset . \emptyset$ to $+\emptyset .8 \mathrm{Vdc}$	$-\emptyset .7 \mathrm{~mA}$
Output	+5 V	+2.4 to +5.2 Vdc	-2.6 mA
Output	$\emptyset \mathrm{V}$	$\emptyset . \emptyset$ to $+\emptyset .4 \mathrm{Vdc}$	12 mA

Table 3-3. Input/Output Signals
(Defined for switches in factory preset positions)

SIGNAL	LEVEL	DEFINITION
$\begin{aligned} & \text { DATA } \\ & \text { (Dl-D8) } \end{aligned}$	$\emptyset \mathrm{V}$	Hole condition in punched tape. All data channels (D1-D8)
	$+5 \mathrm{~V}$	No-hole condition in punched tape.
Reader Ready (RR)	$\emptyset \mathrm{V}$	Reader is operational and ready to accept a command.
	$+5 \mathrm{~V}$	Reader is not ready to accept a command or a fault has occurred.
$\begin{aligned} & \text { Data Clock } \\ & \text { (DC) } \\ & \text { (See note 1) } \end{aligned}$	$\emptyset \mathrm{V}$	Data on the data lines is available and valid.
	+5V	Data on the data lines is not available or is invalid.
Broken Tape (BT)	$\emptyset \mathrm{V}$	Tape did not transport correctly through the read head mechanism.
	+5V	Tape is transporting correctly.
Drive Acknowledge (DA)	$\emptyset \mathrm{V}$	A 218 microsecond pulse responses to a drive or rewind command. This pulse is generated at the beginning of each frame to signify receipt of a drive or rewind command.
		During slew operation, DA is generated once per output frame.
	$+5 \mathrm{~V}$	No drive or rewind commands have been received.
Remote Rewind Right (RRR) or Remote Rewind Left (RRL)	$\emptyset \mathrm{V}$	Causes reader to output data at $40 \emptyset$ characters per second in spool mode or approximately 250 characters per second in loop mode.
	+5V	Disables the rewind mode.

Table 3-3. Input/Output Signals (Defined for switches in factory preset positions) (continued)

SIGNAL	LEVEL	DEFINITION
Drive Right (DR) or Drive Left (DL) Run Status (RS)	ØV $+5 \mathrm{~V}$ ØV $+5 \mathrm{~V}$	Pulse or level commands reader to output data from the reader memory. Commands the reader to stop outputting data. Level informs user that read head cover is closed, tape is loaded, and reader is ready to accept an input command. Level informs user that read head cover is open and that the reader is not ready to receive commands.

NOTE 1: The Data Clock (DC) signal serves the same function as the SPROCKET signal of conventional readers. In the microprocessor controlled reader, it is a "synthesized" sprocket signal.

Figure 3-3. CPU Switch Settings.

Al265

Figure 3-4. I/O Switch Settings - Sl.

Al266
Figure 3-5. I/O Switch Settings - S2.

3-4. SIGNAL TIMING
(All timing diagrams shown with switches in factory preset positions.)
A. Step Timing.

A single DR or DL pulse causes the reader to output one character. Figure 3-6 shows the timing relationships between the control signals involved.

Al252
Figure 3-6. Step Timing.
B. Slew Timing.

A DR or DL signal causes the reader to output data from memory or to load the memory with data from the tape. Figure $3-7$ shows the timing relationships between the control signals involved.

Figure 3-7. Slew Timing.
C. Turn Around Time (Step or Slew).

On a turn around, one character is output in the reverse direction with the normal timing for step or slew. Additional characters are output as soon as the tape reader can reposition the tape. The time to reposition (t) is 2 seconds (maximum) for reel mode and $2 \emptyset \emptyset$ milliseconds (maximum) for loop mode. (See figure 3-8.)

DRIVE RIGHT (DR)

Figure 3-8. Turn Around Time.
D. Rewind External.

Data is output at a rate of $4 \emptyset \emptyset$ characters per second in response to a rewind command.

Figure 3-9. Search Timing.
E. Rewind (Front Panel).

Momentary (less than 50 milliseconds) actuation of the front panel rewind switch causes the tape reader to enter the high speed wind mode. Actuation of the switch in the direction toward the load point causes the reader to wind until the load point is approached. The reader slows down and then stops when the load point is reached. The READER READY signal is used to indicate that the reader is busy during rewind and will not accept an external command.

1. Front Panel Rewind (Autostop). Momentary actuation of the front panel rewind switch toward the load point causes the reader to rewind and stop automatically at the load point.

Al272

Figure 3-lø. Rewind (Autostop).
2. Front Panel Rewind (Manual). Actuation of the front panel switch in either direction causes the reader to wind as long as the switch is held. Momentary operation of the switch also causes the reader to rewind. A second momentary operation of the switch stops the reader motion. If the load point is encountered during momentary operation the reader will stop. To resume winding, actuate the switch again.

[^0]Figure 3-1l. Rewind (Manual).

INTERFACE - REMEX COMPATIBLE PARALLEL I/O

4-1. DESCRIPTION
The Remex parallel I / O is designed to simulate the interface of the following Remex models:

RRD7300BEX/660/DRB
RR7155BAl/660/D-A
RRS 7155BAl/660/G-A
Interface is provided through the DB25P connector on the rear of the reader.

4-2. INTERFACE CABLE
To interface with other equipment, provide an appropriate cable using size 22 AWG wire of necessary length not to exceed lø feet. For noise immunity, use twisted pair and terminate both ends of the cable to the ground points. For maximum noise immunity and minimum high frequency radiation, the cable should have an overall shield grounded to I / O connector pin 25.

NOTE
Signal ground and chassis ground are internally connected for maximum reader immunity to power line transient voltages. Users wishing to employ single-point grounding in their system can disconnect signal ground from chassis ground by removing the shorting screw (figure 4-1). With the internal ground connection removed, it is especially important that chassis ground and system ground be externally connected by a low impedance at high frequencies; otherwise power line transients may develop chassis voltage disturbances sufficient to cause system malfunction.

Figure 4-1. Ground Shorting Screw.

Figure 4-2. Recommended Interface Circuits.

Table 4-1. Connector Pin List.

PIN\#	SIGNAL NAME	SIGNAL FUNCTION
1	Data Track l	Output
2	Data Track 2	Output
3	Data Track 3	Output Levels
4	Data Track 4	Output Determined
5	Data Track 5	Output by Mode Select
6	Data Track 6	Output Inputs
7	Data Track 7	Output
8	Data Track 8	Output
9	Data Ready (DR)	Output
10	Data Mode Select	Input
11	Signal Ground	Signal Ground
12	Signal Ground	Signal Ground
13	Signal Ground	Signal Ground
14	System Ready (-SYSRDY)	Output
15	External Inhibit (-XINH)	Input (Not Implemented)
16	Drive Right (-DR)	Input
17	Drive Left (-DL)	Input
18	High Speed Enable (-HISPD)	Input (Not Required)
19	Spare*	Spare
20	Rewind Right External (-WR)	Input
21	Rewind Left External (-WL)	Input
22	Winding (-WDG)**	Output (Not Implemented)
23	+5 VDC at $20 \emptyset$ miliamps	Power (Not Implemented)
24	Signal Ground	Signal Ground
25	Chassis Ground	Chassis Ground

Table 4-2. Logic Levels.

INPUT/ OUTPUT	LEVEL	VOLTAGE RANGE	MAX. CURRENT
Input	+5 V	$+2 . \emptyset$ to +5.2 Vdc	$4 \emptyset \mathrm{uA}$
Input	$\emptyset \mathrm{V}$	$\emptyset . \emptyset$ to $+\emptyset .8 \mathrm{Vdc}$	$-\emptyset .7 \mathrm{~mA}$
Output	+5 V	+2.4 to +5.2 Vdc	-2.6 mA
Output	$\emptyset \mathrm{V}$	$\emptyset . \emptyset$ to $+\emptyset .4 \mathrm{Vdc}$	12 mA

Table 4-3. Input/Output Signals.

SIGNAL	LEVEL		DEFINITION
Data Track$(1-8)$	Mode 5	$\begin{gathered} \text { Mode } \\ 6 \end{gathered}$	Hole condition.
	+5V	$\emptyset \mathrm{V}$	
	$\emptyset \mathrm{V}$	$+5 \mathrm{~V}$	No-hole condition.
Data Ready	$+5 \mathrm{~V}$	曰V	Data is available and valid.
	$\emptyset \mathrm{V}$	+5V	Data is not available.
	Either mode		
$\overline{\text { System ready }}$	øV		Reader is ready to receive commands.
	$+5 \mathrm{~V}$		Reader will not accept input command.
Drive Right (-DR) or	曰V		Pulse or level commands reader to output data.
Drive Left (-DL)	$+5 \mathrm{~V}$		Stops the output of data in the read mode.
$\begin{aligned} & \text { Rewind Right (-WR) } \\ & \text { or } \\ & \text { Rewind Left } \\ & \text { (-WL) } \end{aligned}$	ØV		Command to output data at $4 \emptyset \emptyset \mathrm{cps}(\approx 2 \emptyset \emptyset \mathrm{cps} \mathrm{in}$ loop mode).
Data Mode Select	$+5 \mathrm{~V}$		Stops the output of data in the rewind mode.
	øV		Specifies mode 5 output levels for DATA and DATA READY.
	+5V		Specifies mode 6 output levels for DATA and DATA READY.

Figure 4-3. CPU Switch Settings.

4-3. SIGNAL TIMING
A. Step Timing.

A single DR or DL pulse causes the reader to output one character frame. Figure 4-4 shows the timing relationships between the control signals involved.

DRIVE RIGHT OR DRIVE LEFT
(-DR OR -DL)

DATA READY
(DR)

ATA

NOTE: 1. TIMING IS FOR 400 CPS. TIMING IN [BRACKETS] IS FOR 200 CPS. 2. MODE 5 SHOWN.
3. VALUES TYPICAL EXCEPT WHERE NOTED.

* 4. DATA READY MUST BE ACTIVE BEFORE READER WILL ACCEPT NEXT INPUT COMMAND.

A1271
Figure 4-4. Step Timing.
B. Slew Timing.

A DR or DL signal causes the reader to output data continuously. Figure 4-5 shows the timing relationships between the control signals involved.

Figure 4-5. Slew Timing.
C. Turn Around Time (Step or Slew).

On a turn around, one character is output in the reverse direction with the normal timing for step or slew. Additional characters are output as soon as the tape reader can reposition the tape. The time to reposition (t) is 2 seconds (maximum) for reel mode and 200 milliseconds (maximum) for loop mode.

Figure 4-6. Turn Around Time.
D. Rewind (External).

Data is output at a maximum rate of 400 characters per second in response to a rewind command.
-WR OR -WL
(DR)

DATA

NOTE: MODE 5 SHOWN

* PERIODS OF TIME MAY EXIST WHERE CHARACTERS ARE NOT AVAILABLE IN THE INTERNAL BUFFER. IN THIS CASE THE TIME BETWEEN CHARACTERS WILL DEPEND UPON THE SPEED OF THE REELS.
A1267
Figure 4-7. Rewind (External).
E. Rewind (Front Panel).

Momentary (less than 50 milliseconds) actuation of the front panel rewind switch causes the tape reader to enter the high speed wind mode. Actuation of the switch in the direction toward the load point causes the reader to wind until the load point is approached. The reader slows down and then stops when the load point is reached. The READER READY signal is used to indicate that the reader is busy during rewind and will not accept an external command.

1. Front Panel Rewind (Autostop). Momentary actuation of the front panel rewind switch toward the load point causes the reader to rewind and stop automatically at the load point.

SWITCH POSITION

Figure 4-8. Rewind (Autostop).
2. Front Panel Rewind (Manual). Actuation of the front panel switch in either direction causes the reader to wind as long as the switch is held. Momentary operation of the switch also causes the reader to rewind. A second momentary operation of the switch stops the reader motion. If the load point is encountered during momentary operation the reader will stop. To resume winding, actuate the switch again.

Al269

Figure 4-9. Rewind (Manual).

5-1. DESCRIPTION

The serial interface provides full duplex RS-232C serial I/O in the reader. Interface connection to user equipment is provided through the $25-\mathrm{pin}$ I/O connector on the rear of the reader.

5-2. INTERFACE CABLE
To interface with other equipment, provide an appropriate cable using size 22 AWG wire of necessary length not to exceed 50 feet. Longer cables may be used, especially in point-to-point configurations, when the user knows that the total load capacitance will not exceed $2,50 \emptyset \mathrm{pF}$. For noise immunity, use twisted pair and terminate both ends of the cable to the ground points. For maximum noise immunity and minimum high frequency radiation, the cable should have an overall shield grounded to I/O connector pin 1. Mating connector is Cannon P / N DB25P.

DTE (NUMERICAL CONTROL)
(DB25P)

DCE (EECO READER) (DB25S)

Figure 5-1. 25-Pin Connector.

NOTE

Signal ground and chassis ground are internally connected for maximum reader immunity to power line transient voltages. Users wishing to employ single-point grounding in their system can disconnect signal ground from chassis ground by removing the shorting screw (figure 5-2). With the internal ground connection removed, it is especially important that chassis ground and system ground be externally connected by a low impedance at high frequencies; otherwise power line transients may develop chassis voltage disturbances sufficient to cause system malfunction.

Figure 5-2. Ground Shorting Screw.

Table 5-1. Connector Pin List

PIN	RS232C	RS232C DESCRIPTION	COMMENT
1	AA	Protective GND (PG)	Chassis GND in RDR
$* 2$	BA	Transmitted Data (TD)	Reader Receive Line
$* 3$	BB	Received Data (RD)	Reader Transmit Line
4	CA	Request To Send (RTS)	Reader Input
5	CB	Clear To Send (CTS)	Reader Output
6	CC	DataSet Ready (DSR)	Reader Output
7	AB	Signal Ground (SG)	Logic Ground
12	SCF	Secondary Received Line	Current loop send A
13	SCB	Signal Detector	Secondary Clear to Send
$2 \emptyset$	CD	Data Terminal Ready (DTR)	Reader Input receive A
24	DA	Transmit Signal	Current loop send B
25		Element Timing	

*Pins 2 and 3 may have transmitted data and received data interchanged by setting switch 53 in the appropriate position. The assignments shown are with S 3 set in the " 3 " position.

5-3. ELECTRICAL CHARACTERISTICS
A number of electrical parameters and limitations are defined by RS-232C for each interchange circuit. 'They refer to the equivalent interchange circuit shown in figure 5-3. All voltage measurements are made at the interface point and with reference to signal ground. Circuit voltage levels are shown in figure 5-4.

Figure 5-3. Equivalent Circuit.

Al303
Figure 5-4. Circuit Voltage Levels.
A. Parameters

1. Open circuit voltage from the driver shall not be greater than ± 25 volts.
2. The open circuit voltage of the terminator shall not exceed ± 2 volts.
3. The total capacitance of the terminator shall not exceed 2,500 picofarads.
4. The driver output voltage must be between 5 and 15 volts when the total terminator input resistance is between 3 Kohms and 7 Kohms.
5. The output impedance of the driver circuit, when the driver power is off, shall not exceed $3 \emptyset \emptyset$ ohms.
6. The rate of change of the driver output voltage (slew rate) shall not exceed $3 \emptyset$ volts per microsecond.
B. Logic State Definition
7. A logical "l" (MARK) is indicated when the voltage at the interface point is more negative than -3 volts.
8. A logical "Ø" (SPACE) is indicated when the voltage at the interface point is more positive than +3 volts.
9. To indicate a "l" signal condition (MARK), the driver shall assert a voltage between -5 volts and - 15 volts.
10. To indicate a "ø" signal condition (SPACE), the driver shall assert a voltage between +5 volts and +15 volts.

NOTE

These standards allow for a 2-volt noise margin between the minimum driver voltage of 5 volts and the maximum undefined voltage of 3 volts.
C. Transition Region

1. All interchange signals entering the transition region proceed to the opposite valid signal state and do not re-enter the transition region until the next significant change in signal state.
2. While in the transition region, the direction of the voltage change must not reverse.
3. The time required for a control signal to cross the transition region must not exceed one millisecond.
4. The time required for a data or timing signal to cross the transition region must not exceed one millisecond or four percent of the nominal signal period, whichever is the shorter.

5-4. SERIAL WORD FCRMAT

SERIAL WORD FORMAT

A1307
The serial bit stream shown above is that which would be viewed on pin 3 of the serial I/O connector when transmitting 8 data bits, parity, and two stop bits. A data
channel "on hole" is represented as a MARK in the appropriate bit position.

The output serial word is configured as follows:

1. Selectable word length 5, 6, 7, or 8 bits per character. Word lengths of 8 bits must be used for Level II protocol.
2. Selectable.stop bits 1 or 2 .
3. Parity enable/disable.
4. Parity select odd/even.

5-5. SIGNAL DEFINITIONS
A. Signal Ground - SG

This conductor connects the numerical control circuit ground directly to the reader circuit ground.
B. Request to Send - RTS (Level I protocol only)

This output signal from the numerical control, when in an "ON" condition, indicates that the numerical control is ready to accept data. The signal may be changed to an "OFF" condition to temporarily suspend the transfer. The transfer resumes when the signal is changed back to the "ON" condition.

To allow for delays in the system, the numerical control must provide buffering for a minimum of five characters after changing "RTS" to "OFF". Any character transmission in progress when "RTS" goes to the "OFF" condition will be completed, but the next character will not be transmitted.
C. Data Terminal Ready

Reader input - not used.
D. Data Set Ready - DSR

This circuit is supplied by the reader. The "ON" condition indicates that power is supplied to the reader. All other circuits supplied by the reader are not considered valid unless DSR in "ON."
E. Receive Data - RD

This circuit is supplied by the reader. It is the actual data being read from the tape. Data is sent using asynchronous, 8-bit, character-oriented transmission.
F. Transmit Data - TD (Level II Protocol On1y)

This circuit is supplied by the numerical control. It is the control signal path to the reader. Data is sent using asynchronous, 8-bit, character-oriented transmission.

G. Protective Ground

This is the chassis ground which is tied to earth ground through the AC connector.

5-6. CURRENT LOOP
A passive $2 \emptyset \mathrm{~mA}$ current loop transmitter and receiver are provided. Both transmitter and receiver have full-wave rectified inputs, thus positive and negative current flow is properly connected to the reader circuit.
A. Electrical Requirements

The numerical controller must supply two current sources of 18 to 25 mA each.

1. Voltage Requirements. Each current source must supply a minimum head voltage to the reader of 8 volts.
2. Signal Definition. The flow of current designates a MARK. The absence of current designates a SPACE.
a. MARK. Current flow designates a MARK. In RS-232 definitions, this is an "OFF" condition. The reader's receiver must be supplied a minimum of 18 mA to recognize a MARK.
b. Space. No current flow designates a SPACE. In RS-232 definitions, this is an "ON" condition. The reader transmitter has a minimum impedance of $1 \emptyset$ Kohms in the SPACE condition. The receiver recognizes any current flow less than 1 mA as a SPACE.
B. Signal Definitions

A pair of terminals are provided for both transmit and receive.

1. Transmit. The transmit lines are:

Current loop send data A, and Current loop send data B.
2. Receive. The receive lines are:

Current loop receive data A, and Current loop receive data B.

A typical connection for full duplex operation requires the Data Terminal Equipment to provide the current source for both sending and receiving as shown in Figure 5-5.

Al305
Figure 5-5. Current Loop Interconnector Diagram.

Two protocols are recognized by the reader. The protocols are called Level I and Level II.
A. Level I Protocol

This protocol is intended to be used with simple peripheral devices in a hardware environment. It is based on the use of the control signal RTS to start and stop data transmission. Tape moves in the direction selected by Load Direction switch Sl(2): left if the switch is set to LDL, right if the switch is set to LDR.

1. Communication Control

a. RTS. This output signal from the numerical control, when in an "ON" condition, indicates that the numerical control is ready to accept data. The signal may be changed to an "OFF" condition to temporarily suspend the transfer. The transfer resumes when the signal is changed back to the "ON" condition.

To allow for delays in the system, the numerical control provides buffering for a minimum of five characters after changing RTS to "OFF." Any character transmission in progress when RTS goes to the "OFF" condition is completed, but the next character is not transmitted.
b. End Condition. There is no automatic transfer complete indication. As this protocol is intended for simple hardwired use, either end of the communications link may cause transmission termination.
c. Leader/Trailer. Blank tape (null characters) may be transmitted immediately before and immediately after the part program data.

Figure 5-6. Level I Protocol.
B. Level II Protocol (See Figure 5-7)

This protocol provides a basic communications capability between a numerical control and the reader. It enables either to temporarily suspend transmission from the other due to buffering constraints or a higher priority task, such as a complex machining cycle. It does not incorporate any form of error detection other than transmission parity. Characters received by the reader that have a transmission parity error are ignored.

1. Communication Control Characters.
a. DCl. This character functions as "reader start." It indicates that data should be sent. This character must be transmitted to start a transfer.
b. DC3. This character functions as "reader stop." It indicates that data being sent should be stopped.

Upon receipt of a DC3 the reader immediately stops sending characters. To allow for delays in the system, however, the receiving end provides buffering for a minimum of five characters after transmitting a DC3.
c. BS. This character functions as "backspace." It is functionally equivalent to DCl , except that it indicates the data stream is reversed. This provides a mechanism to "read" the reader data in reverse.
d. CAN. This character puts the reader in high speed wind right. No data is output. Winding stops upon the receipt of a DC3. A two-second delay must be provided after a stop from a high speed wind before sending the reader a new command.
e. ETB. This character puts the reader in high speed wind left. No data is output. A twosecond delay must be provided after a stop from a high speed wind before sending the reader a new command.

2. Data Protocol

a. To Receive Data (Numerical Control)

The numerical control initiates communication. To accomplish this, the numerical control transmits a DCl and becomes the receiving end. It is recommended that it continue to transmit a DCl every 3 seconds until it begins to receive data.

The tape reader recognizes the DCl as an indication that data may be sent and becomes the sending end as well as the responding end.

The use of the 3 -second time is optional. It is recommended that a means of overriding it be provided if it is implemented (such as a command from a keyboard).
b. Data Transmission
(1) Sending End (Reader)

Following a DCl input, the reader begins and continues to read and serially transmit tape data at the maximum character rate allowed by the baud rate and character length settings or $4 \emptyset \emptyset$ cps, whichever is lower. The reader continues to send data until a DC3 is received to terminate transmission.

Blank tape characters are transmitted when encountered.

If the reader should run out of tape or encounter a broken tape condition, transmission is suspended.
(2)

Receiving End (Numerical Control)
The receiving end may transmit a DC3 at any time during a transfer. This indicates that the receiving end needs to temporarily suspend the transfer. The reader immediately stops transmitting upon receipt of the DC3. To allow for system and network delays, the receiving end allows for a minimum of five characters of additional buffering after transmitting the DC3. When the receiving
end is again able to receive data, it transmits a DCl. The reader recognizes this and resumes the transfer exactly where it had been suspended. This mechanism allows the receiving end to suspend the transfer if it has run out of available buffering, cannot keep up with the baud rate being used, or has a higher priority task to perform.

Figure 5-7. Level II Control Protocol.

| PRESET \rightarrow RIGHT | \rightarrow |
| :--- | :--- | :--- |

Al264

51 as of $12-1-87 \mathrm{MD}$
Figure 5-8. CPU Switch Settings.

Figure 5-9. Baud Rate Switch Settings - Sl.

Figure 5-1ø. Data Configuration Switch Settings - S2.

$$
5-15 / 5-16
$$

Al299

Figure 5-11. I/O Switch Settings - S3.

Table 5-2. RS-232C Functions and Reader Applications

$\begin{gathered} \text { CONNECTOR } \\ \text { PIN \# } \end{gathered}$	RS-232	EECO READER
1	Protective Ground. Electrical equipment frame and ac power ground.	Reader chassis ground.
2	Transmitted Data. Data originated by the terminal to be transmitted via the sending modem.	*Reader command input. Level II protocol.
3	Received Data. Data from the receiving modem in response to analog signals transmitted from the sending modem.	*Reader data output.
4	Request to Send. Indicates to the sending modem that the terminal is ready to transmit data.	Reader Drive command Level I protocol.
5	Clear to Send. Indicates to the terminal that its modem is ready to transmit data.	"ON" when reader is powered up.
6	Data Set Ready. Indicates to the terminal that its modem is not in a test mode and that modem power is ON.	"ON" when reader is powered up.
7	Signal Ground. Establishes common reference between the modem and the terminal.	Reader signal ground.
8	Received Line Signal Detector. Indicates to the terminal that its modem is receiving carrier signals from the sending modem.	
9	Reserved for test.	
10	Reserved for test.	
11	Unassigned.	

*These two assignments may be interchanged by setting switch 3.

Table 5-2. RS-232C Functions and Reader Applications (continued)

$\begin{gathered} \text { CONNECTOR } \\ \text { PIN } \# \end{gathered}$	RS-232	EECO READER
12	Secondary Received Line Signal Detector. Indicates to the terminal that its modem is receiving secondary carrier signals from the sending modem.	Current Loop send A.
13	Secondary Clear to Send. Indicates to the terminal that its modem is ready to transmit signals via the secondary channel.	Current Loop receive A.
14	Secondary Transmitted Data. Data from the terminal to be transmitted by the sending modem's channel.	
15	Transmitter Signal Element Timing. Signal from the modem to the transmitting terminal to provide signal element timing information.	
16	Secondary Received Data. Data from the modem's secondary channel in response to analog signals transmitted from the sending modem.	
17	Receiver Signal Element Timing. Signal to the receiving terminal to provide signal element timing information.	
18	Unassigned.	
19	Secondary Request to Send. Indicates to the modem that the sending terminal is ready to transmit data via the secondary channel.	
20	Data Terminal Ready. Indicates to the modem that the associated terminal is ready to receive and transmit data.	

Table 5-2. RS-232C Functions and Reader Applications (continued)

CONNECTOR PIN \#	RS-232	EECO READER
21	Signal Quality Detector. Signal from the modem telling whether a defined error rate in the received data has been exceeded. Ring Indicator. Signal from the modem indicating that a ringing signal is being received over the line. 22 Data Signal Rate Selector. Selects one of two signaling rates in modems having two rates. Transmit Signal Element Timing. Transmit clock provided by the terminal. Unassigned.	Current Loop Send B.
25	Current Loop Receive B.	

Table 5-3. ASCII Character Set

$\begin{aligned} & \text { ASCII } \\ & \text { CHAR. } \end{aligned}$	EQUIVALENT FORMS			
	BINARY	OCT	HEX	DEC
NULL	00000000	000	00	0
SOH	00000001	001	01	1
STX	00000010	002	02	2
ETX	00000011	003	03	3
EOT	00000100	004	04	4
ENQ	00000101	005	05	5
ACK	00000110	006	06	6
BELL	00000111	007	07	7
35	00001000	010	08	8
HT	00001001	011	09	9
LF	00001010	012	OA	10
VT	00001011	013	OB	11
FF	00001100	014	0 C	12
CR	00001101	015	OD	13
So	00001110	016	OE	14
SI	00001111	017	OF	15
DLE	00010000	020	10	16
DC1	00010001	021	11	17
DC2	00010010	022	12	18
DC3	00010011	023	13	19
DC4	00010100	024	14	20
NAK	00010101	025	15	21
SYNC	00010110	026	16	22
ET3	00010111	027	17	23
CAN	00011000	030	18	24
EM	00011001	031	19	25
SC3	00011010	032	1 A	26
ESC	00011011	033	1 B	27
FS	00011100	034	1 C	28
GS	00011101	035	1D	29
PS	00011110	036	1 E	30
CS	00011111	037	1 F	31
SPACE	00100000	040	20	32
:	00100001	041	21	33
"	00100010	042	22	34
\#	00100011	043	23	35
\$	00100100	044	24	36
$\%$	00100101	045	25	37
\&	00100110	046	26	38
,	00100111	047	27	39
$($	00101000	050	28	40
)	00101001	051	29	41
=	00101010	052	2A	42

ASCII CHAR.	EQUIVALENT FORMS			
	BINARY	OCT	HEX	DEC
V	01010110	126	56	86
W	01010111	127	57	87
x	01011000	130	58	88
Y	01011001	131	59	89
z	01011010	132	5 A	90
[01011011	133	5 B	91
1	01011100	134	5 C	92
]	01011101	135	5D	93
,	01011110	136	5 E	94
-	01011111	137	5 F	95
0	01100000	140	60	96
a	01100001	141	61	97
b	01100010	142	62	98
c	01100011	143	63	99
d	01100100	144	64	100
e	01100101	145	65	101
f	01100110	146	66	102
g	01100111	147	67	103
h	01101000	150	68	104
i	01101001	151	69	105
j	01001010	152	6A	106
k	01101011	153	6 B	107
1	01101100	154	6 C	108
m	01101101	155	6 D	109
n	01101110	156	6 E	110
0	01101111	157	6 F	111
p	01110000	160	70	112
q	01110001	161	71	113
r	01110010	162	72	114
5	01110011	163	73	115
t	01110100	164	74	116
u	01110101	165	75	117
v	01110110	166	76	118
w	01110111	167	77	119
	01111000	170	78	120
\checkmark	01111001	171	79	121
z	01111010	172	7 A	122
;	01111011	173	7 B	123
1	01111100	174	7 C	124
\}	01111101	175	70	125
\sim	01111110	176	7 E	126
DEL	01111111	177	7 F	127

SECTION VI

OPERATION

6-1. FRONT PANEL SWITCHES (figure 6-1)

A1257
Figure 6-1. Front Panel Controls and Indicators.
A. PWR.

The PWR switch is a two-position toggle switch used to power the reader on and off.
B. LOAD.

The LOAD switch is a two-position momentary toggle switch, which, when actuated in the loop direction, causes the reader to enter the loop mode of operation.

Actuation in the spool direction causes the reader to enter the spool mode of operation.
C. REWIND

The REWIND switch is a two-position momentary toggle switch, which, when actuated to the right (), causes the reader to move tape in the right direction. Actuating the switch to the left () causes the reader to move tape in the left direction. See figure 6-2.

6-2. FRONT PANEL INDICATORS
A. ON

A yellow LED which illuminates when power is switched on by the PWR switch.
B. CHK

A red LED which illuminates when power is first switched on and remains on or blinking if the reader fails its self-diagnostic checks.

6-3. OPERATOR FUNCTIONS
The front panel switches are used to initialize the reader after the tape has been loaded and to establish a reference point ("load point") on the tape. When the reader is operated from the front panel switches, data I/O operation stops and the reader outputs a reader not-ready signal.
A. To Load the Reader (Spool.s).

1. Install the tape spools onto the two tape spindles.
2. Open the read head, and thread the tape over the read sensors and under the tape guide rollers as shown on the front panel diagram.
3. Be sure the sprocket holes align with the sprocket teeth in the read head.
4. Close the read head.
5. Momentarily push the LOAD switch to the SPOOL position. The reader will run in the direction selected by switch Sl(2), (See Figure 3) ignoring the leader and stopping at a point approximately 16 inches beyond the first encountered data character.

Figure 6-2. Rewind Function.

This operation loads characters of data into the buffer memory. It also establishes the first data character as the "load point." The "load point" is a reference stopping point on the tape for subsequent rewind operations.

The reader is now ready to supply data to the user equipment upon command from the $1 / 0$. The spooler motors advance tape automatically to load additional datia characters into the memory as data is shifted out.

Operation of the reader from the I / O is inhibited during the load operation. Each time the LOAD switch is activated, a new "load point" is established and the previous one is erased.
B. To Load the Reader (Strip or Loop).

1. Open the read head and thread the tape over the read sensors. Be sure the sprocket holes align with the sprocket teeth in the read head.
2. Close the read head.
3. Momentarily push the LOAD switch to the LOOP position. The stepper motor moves the tape in the forward direction and stops at approximately 1.3 inches past the first encountered data character. Just as in the SPOOL operation, data is loaded into the buffer memory. A new load point is established each time the LOAD switch is activated.
C. To Change Modes (Loop to Spool) or (Spool to Loop)

During normal operation if it is desired to change from loop to spool or vice versa, stop the reader motion, and initiate a load operation in the new mode.
D. To Rewind Tape Right or Left.

1. After the tape has been satisfactorily loaded, tape may be wound to right or left by pressing the REWIND switch momentarily to right or left. If the tape is wound toward the load point, it will slew to right or left at high speed until the "load point" is approached. At this time the tape will slow down and stop approximately at the "load point." If the tape is wound away from the "load point," it will continue at normal rewind speed to
the end of the tape. To stop the tape, momentarily press the REWIND switch in either direction.

No data is read into the memory during the rewind operation. Also, the reader signals to the user I/O that the reader is "not ready" during the rewind operation.

If the REWIND switch is activated and held, the tape will be moved at high speed the the end of the tape (or until the switch is released) and will ignore the "load point." In the loop mode, the reader pauses momentarily at the load point then resumes winding. Data is not output during winding.
E. To Correct Broken Tape Condition

If the tape should break or the end of the tape is reached, the reader will stop. To resume operation:

1. Splice tape if necessary. (See Section VIII.)
2. Reload tape into read head.
3. Press load spool or load loop as applicable.
4. Resume the desired operation.
F. Tape Not Present.

Anytime tape is not present in the read head, neither the tape loading nor rewind operation can occur.
G. Reader Only Operation.

If the reader does not have the reel-to-reel servo system installed (reader only), all Spool mode operations are bypassed and the stepper motor is selected to transport tape.

6-4. INTERNAL SWITCH SETTINGS.
Before putting the reader into operation with user equipment, three internal switches must be set.
A. Switch Sl (CPU PCB).

1. Set $\mathrm{Sl}(\mathrm{l})$ to desired speed (20ø cps or $4 \emptyset 0 \mathrm{cps})$. (See Figure 3-3.)

2. Set $S l(2)$ to the desired direction for load tape movément. (See Figure 3-3.)

B. I/O Switches.

See Sections III or V.

SECTION VII

THEORY OF OPERATION

7-1. GENERAL

The microprocessor controlled tape reader consists of six basic subassemblies:

1. Chassis - contains a transformer and an input power connector.
2. Front Panel - two versions.
a. Reader/spooler - two spooler motors plus power and control switches and indicators.
b. Reader only - power and control switches and indicators only, no spooler motors.
3. Read Head - includes phototransistor/LED array, step per motor, and tape sprocket.
4. CPU Circuit Board - includes power supply, microprocessor, support electronics, analog-todigital converter, and non-volatile memory.
5. Servo Circuit Board - contains all the drive and control electronics for both servo motors.
6. I/O Circuit Board - three versions are available:
a. EECO Parallel - emulates EECO $930 \emptyset$ and 9200 series readers.
b. REMEX Parallel - emulates Remex 7300 and 7155 series readers.
c. RS 232 Serial - provides RS 232 and current loop serial communications.

7-2. FUNCTIONAL DESCRIPTION
Operation of the reader centers around the CPU with all other assemblies interconnected to it. Figure 7-1 is the block diagram which shows this relationship.
A. CPU Board.

The CPU is an 8-bit microprocessor. The operating firmware is located in an external EPROM.

1. Program Memory. The operating firmware is located in EPROM (U6). A checksum digit is stored on each page. The checksum is recalculated during powerup diagnostics and compared to the stored digit on all pages of memory. This verifies program integrity.
2. Address Latch. The data bus from the CPU is time multiplexed with both address and data information. The address information is demultiplexed by the address latch (U2).
3. Decoder. The CPU controls read and write functions with status bits on Port 2 (P20, P21, P22, P23). These bits are decoded and are combined with the read and write signals to provide the read and write control for the system.
B. I/O Board.

The CPU board communicates to the external world via the I/O board. Signals are sent to and received from the I/O board through the data bus via connector J5.

Three types of I / O boards may be connected to the CPU: EECO parallel, REMEX parallel, or RS 232 serial.

1. EECO Parallel. The EECO parallel interface is designed to emulate EECO Model $92 \emptyset \emptyset$ and $93 \emptyset \emptyset$ series tape readers. The interface consists of two 8-bit output latches, one 8-bit input latch, and logic for signal inversion. Two flip-flops store the leading edge transition of the DRIVE RIGHT and DRIVE LEFT signals. Because the processor cannot respond to signals of short duration, step pulses are saved by the flip-flops for later use by the processor.
2. REMEX Parallel. The REMEX I/O emulates the REMEX $730 \varnothing$ and 7155 series readers. The circuit board is similar to the EECO I/O board. The output connector is a DB25P series. No logic selection switches are used. Instead, the I/O board interprets the Remex mode line to provide mode 5 and mode 6 operation.

Figure 7-1. Tape Reader
Block Diagram (EECO Parallel I/O)

Figure 7-3. Tape Reader Block Diagram (Serial I/O).
3. Serial I/O. The serial I/O provides full modem and current loop capability, and full duplex communications.
C. Stepper Motor.

The stepper motor is used exclusively for loop or strip tape operation. It is selected for use by actuating the front panel LOAD switch to the LOOP position.

The stepper motor is driven either in blocks or continuously. This eliminates the need for complex stepper motor damping hardware.
D. Servo (Reel).

The second method of tape movement is via the reels. The reels are driven by two servo motors. Each motor is controlled by a closed loop velocity servo. The reel velocity is determined by the processor and commanded to the servo board via the DATA BUS. The circuit maintains the set speed regardless of reel load.

Actual tape speed through the read head is calculated by the processor. This information is used to determine the speed command sent to the servo. When the tape speed reaches the desired speed the processor adjusts the speed command to the servo.
E. Read Head.

The Read Head monitors the tape and develops analog signals which represent holes in the tape. These signals are generated by beaming visible red light onto the tape and sensing the light which passes through the tape holes with phototransistors. A head-open switch is integrated into the head structure. The signal generated by this switch interrupts the processor. Tape motion is stopped and the reader assumes a not-ready status while the head is open.

The phototransistors are arranged in two rows. The first row has nine phototransistors, eight of which sense data holes. The ninth phototransistor senses the sprocket hole. Row two contains only a single sprocket sense phototransistor. This row is positioned 0.123 inches to the left of the first row. At this position, the phototransistors generate a sprocket waveform that is shifted $9 \emptyset$ degrees in phase from the waveform generated by the sprocket phototransistor in row one. The two signals are used to
determine the processor to read the data and to calculate the tape speed.
F. Analogue To Digital Converter (ADC).

One of the significant features of the reader is the use of one input amplifier to sense all the data and sprocket holes. This eliminates the need for individually adjusted amplifier circuits for each input channel.

All data and sprocket signals are multiplexed into one amplifier (Ulø). The output of the amplifier is digitized by a high speed analogue-to-digital converter (U9). The converter is controlled by the processor.
G. Minus Five Volt Regulator.

The A-to-D converter requires a negative reference voltage. This voltage is provided by a monolithic voltage inverter (Ul5) which generates -5 volts from the +5 volt supply.
H. Front Pane1.

The front panel contains a set of three switches and two LED displays.

1. POWER. This switch controls the ac power.
2. REWIND. This switch controls the rewind function of the reader. It can be actuated in either right or left direction and initiates a rewind right ($>$) or a rewind left (
3. LOAD. This switch controls the load function. Pushing the switch up initiates a load reel function. All subsequent tape movement is made with the servo motors. Pushing the switch down initiates load loop function. All subsequent tape movement is made with the stepper motor.
4. POWER "LED". This indicator, when on, indicates power has been turned on to the unit and the +5 volt regulator is operating.
5. CHK "LED". Comes on and stays on or blinks whenever a fault condition is sensed (see "Diagnostics," paragraph 8-3). This light momentarily lights during power up.

All switches except the power switch are connected via a flexible cable to the CPU board where they are connected to a buffer (Ul2). The processor monitors the switch status by periodically reading the output of the buffer.
I. Non-Volatile Memory.

The total elimination of adjustments in the read head electronics is due to the use of a non-volatile memory. Data representing the electronic trip point between a hole and no-hole condition is stored in this memory.

Before the reader is operational it must be calibrated. This operation automatically adjusts the reader to accommodate for the differences between the phototransistor outputs. During calibration, the LED's are turned off, then each phototransistor output is digitized and saved. The LED's are then turned on and the output of the phototransistors digitized. An optimum level is calculated for each channel that distinguishes a hole from a no-hole. This value is saved in the non-volatile memory. Cycling the power switch causes the program to recall the values.

Data can be written into the non-volatile memory a limited number of times. To insure data integrity of the non-volatile memory, a checksum digit is saved in the last location. This digit is recomputed each time the memory contents are read and is compared to the actual value stored. Any loss of memory capability is detected. Incorrect data is not accepted. Loss of memory is detected by the self-contained diagnostic program and is indicated by blinking the check (CHK) LED.

J. Power Supply.

Power is provided by a linear regulated supply. Input voltage is selectable by installing the selection card in an appropriate manner. (See figure 2-2.) Two of the transformer secondaries are connected to the CPU board where they are rectified and regulated. Regulated output voltages are connected to the remainder of the circuitry via two removable jumper plugs. This provides easy isolation of the power supply from the remainder of the circuit.

A third secondary winding is connected to the I/O board through connector J5. The output of this wind-
ing is rectified on the I / O board to provide the drive voltages when an RS-232 interface is specified.

8-1. GENERAL
This section contains information for maintaining the Microprocessor Based Punched Tape Reader. The instructions include preventive maintenance, diagnostic tests, troubleshooting, repairs, and tape splicing.

8-2. PREVENTIVE MAINTENANCE
Preventive maintenance consists of cleaning, periodic inspection, and calibration performed at regular intervals.

A. Cleaning.

The glass surfaces of the read head must be cleaned to prevent an excessive accumulation of dirt from causing misreading of tape. To clean the read head:

CAUTION $\}$

Do not use sharp tools or volatile solvents. Avoid excessive pressure on glass. Failure to comply may result in damage to equipment.

1. Open head by carefully lifting up top cover.
2. With a dry cotton swab, wipe the two glass surfaces and surrounding area of head. If glass
cannot be cleaned thoroughly with a dry cotton swab, proceed with the following steps:
3. Prepare a cleaning solution of water and mild liquid detergent.
4. Wipe glass surfaces with clean cotton swab moistened with cleaning solution. Use solution sparingly and do not saturate area.
5. Rinse area with clean cotton swab moistened with clean water.
6. Wipe dry with soft clean cloth or dry cotton swab.
7. Inspect glass surfaces for cleanliness making certain that no residue is present. If required, repeat steps 3 through 7 until glass is thoroughly clean.
8. Close read head top section.
B. Lubrication.

No lubrication required.
C. Periodic Inspection.

Regularly examine the reader for any signs of mechanical or electrical malfunction. Check to see the read head cover moves up and down freely. Make sure connections are made securely and that wiring, cables; and components do not show unusual signs of wear or overheating.
D. Calibration.

The selection of LED's and phototransistors provides significant performance improvement reliability in transparent tape reading ability while using only lø ma drive currents to the LED's. This level of drive current reduces the aging effect of the LED's, thus, calibration need not be performed except during periodic maintenance. Calibration once per year should be adequate.

Calibration is performed using the front panel controls. Turn the power off. While holding the load switch in the loop position and the rewind switch in the right () position, turn the power switch back
on. The check (CHK) LED goes on during the calibration cycle and goes out at the successful completion of the cycle.

Note

Tape must NOT be in the head during calibration.

8-3. DIAGNOSTICS

The reader contains a firmware diagnostic routine that checks the reader hardware for proper function. The diagnostic routine is invoked during each power up. The check (CHK) LED light is turned on at the start of the diagnostic test. The light is turned off at the successful completion of the test. Failure of any test causes the (CHK) light to blink or stay continuously on. The number of blinks signifies which major test has failed. An optional two-digit diagnostic display module may be used to display the failed test number in HEX format. The test program loops on a failure thus enabling a test technician to quickly locate the problem. See table 8-1.

Table 8-1. Diagnostic Indications.

"CHK" LED INDICATION	FAILURE	PROBABLE LOCATION
Light is on	EPROM checksum test	CPU PCB
1 Blink	Calibration	CPU PCB
	Phototransistor leakage exceeds maximum value	Read Head Assembly
	Non-volatile memory checksum test	CPU PCB
2 Blinks	A to D converter or -5 volt reference voltage	CPU PCB
3 Blinks	+5 volt or +24 volt	CPU PCB
4 Blinks	Servo	Servo PCB
5 Blinks	I/O	I/O PCB

8-4. ADJUSTMENTS
A. Equipment Required

1. Mechanical movement voltmeter (Simpson 260 or equivalent).
2. Small screwdriver.
B. Servo PCB Ad.justment

To adjust the servo motor pots on the servo PCB:

1. Place switch Sl(2) in the " \varnothing " position.
2. Clean and close the read head. (See paragraph 8-2A).
3. Calibrate the reader (see paragraph 8-2D).
4. Turn power off.
5. Connect a voltmeter positive lead to test point (MRT) at center of Servo PCB. Connect the negative lead to test point (-MRT). (See figure 8-1.)
6. Turn power on.
7. While right motor is turning, adjust R3l (right hand pot) for $4.2 \pm \emptyset .2$ volts.
8. Turn off power.
9. Place the LOAD DIRECTION switch (switch Sl(2) figure 3-3) in the load left (LDR) position.
10. Connect a voltmeter positive lead to test point (MLF) at center of servo PCB. Connect the negative lead to (-MLF). (See figure 8-1.)
11. Turn on power.
12. While left motor is turning, adjust R3ø (left hand pot) for 4.2 ± 0.2 volts.
13. Turn off power and reset switches to appropriate settings. (See figure 3-3, 4-3, or 5-3.)

A1296
Figure 8-1. Servo PCB Test Points.

Al308
Figure 8-2. Reader Assemblies.

SECTION IX
 REPLACEMENT PARTS

Table 9-1. Replacement Parts.

DESCRIPTION	READER OR READER/SPOOLER *P/N 230990-XX	PART NUMBER
CPU Printed Circuit Board Assembly	A11	134538-01
Servo Printed Circuit Board Assembly	Al1	134543-ø1
I/O Printed Circuit Board Assembly	$x \mathrm{X}=-15$	134548-01
	$\mathrm{xX}=-25$	134648-ø1
	$\mathrm{XX}=-35$	135653-01
Spooler Motor Assembly	A11	135782-01
Read Head Assembly	A11	134556-01
CPU-to-I/O Board Interconnecting Cable	A11	135682-01
Front Panel to CPU Interconnecting Cable (Flex Circuit Assembly)	A11	135783-01
LOAD Switch, Sl	A11	339210-04
REWIND Switch, 52	Al1	339210-04
POWER Switch, S3	All	339210-01
CHK LED Indicator, Red DSl	All	338112-23
PWR LED Indicator, Yellow DS2	All	338112-22
Power Connector	All	311714-01
1.5 Amp Slo-Blo Fuse	All	339051-93
0.75 Amp Slo-Blo Fuse	A11	339051-36
Power Cord	A11	346323-01

*See Table l-1 for part number descriptions.
9-1. FACTORY REPAIR INFORMATION
The reader may be returned to the factory for repairs. To return either warranty or out-of-warranty readers or components, prior authorization and a purchase order is required.

Please call our Customer Service - Peripheral Repair Department (714-835-60øø) for authorization and return instructions.

Address returned units to:
EECO Inc.
Customer Service - Peripheral Repair Department 1601 E. Chestnut Street
Santa Ana, CA 927ø2-0659

[^0]: NOTE: IF THE TAPE RUNS OFF THE END OF THE REEL A BROKEN TAPE SIGNAL WILL BE ISSUED, READER READY WILL STAY FALSE.
 *CAN VARY DUE TO REEL SIZE
 AND TAPE LOADING.

