Alfaskop System 4%

Operating System Reference Manual

_g%

Ericsson Information Systems AB
Data Terminals
S$-175 86 Jarfilla, Sweden

ERICSSON

DU
S
T 4]

@?%&%@%@Qﬁ i

i‘ﬁﬁﬂ%‘z&?%%%‘@ st

e st vy e pie S o saceats

Lo et

st wiv s s i R

i«

Emﬁsaégg;s x;.m@rm ggg{gn ‘

et
N b ‘.f;."f‘“a«@%uns mmﬁf%
;, ,_..‘._w. e on
: l?i’ 15@%&;&@’"\%&@%&%@

ﬁg@“% gﬂ@%ﬁam

g- b pees N . A T b

Display Unu@%ﬁm@m =

11?%34.‘ ;ﬁ@
R f n“‘“:r':\. [
s N‘: T
A P é‘) - Y0 Fuactions
13 e e
' Timgsj:_fiﬁm‘gﬁsns
| 14‘ ‘; . .“';:; :.“' ey i B e ok
O BosyBaeing
Sermsmsemmm— s :‘: y.. .'.:.:.
< .
Appendices
16 e
Index
17
18
ES0003145E e

1984-05-04 (
Subject to aiteration
without prior notice

19

(26

ERICSSON 2

© Ericsson information Systems AB 1984

R

e T R woreag

1
i

s

SN

Preface

This manual describes the operating system of Alfaskop System 41,
Version 3.5.

The manual comprises a general description of the objectives and the
function of the operating system, and information about how to use
the operating system to develop system software.

Before studying this manual, a general familiarity with the SPL
programming language should be acquired.

Alfaskop System 41 is based on the microprocessor Motorola 6800. A

general comprehension of the function of this processor is most
valuable for the understanding -of the operating system.

0223¢

o

’ 0S. REFERENCE. MANUAL
ERICSSON Z . E90003145E

¢

1983-12-12 A

CONTENTS

1. INTRODUCTION TO 0S WITH TASK HANDLING
2. 0S HARDWARE ENVIRONMENT

3. 0S SOFTWARE COMPONENTS

4, DISKETTE FORMAT

5. INITIALIZATION AND LOGON

6. MULTITASKING AND INTERRUPTS

7. iNTERNAL COMMUNICATION PROTOCOL

8. USER INTERFACE FUNCTIONS

9. DISPLAY UNIT FUNCTIONS

10. KEYBOARD FUNCTIONS

1. FD UNIT FUNCTIONS AND FILE HAMNDLING
12. PRINTER UNIT FUNCTIONS

13. TIMER FUNCTIONS
14. ERROR HANDLING

APPENDICES

1. Character Generators

2 List of 0S Externals

INDEX

0249c¢

1 INTRODUCTION TO 0S WITH TASK HANDLING

ERICSSON ? 0S REFERENCE MANUAL
‘ , EQO003145E
1983-11-14 A 1
Contents

1.1 GENERAL 3
1.2 REFERENCE MANUAL OVERVIEW 4
1.3 OBJECTIVES OF THE OPERATING SYSTEM 6
1.4 PARALLELL PROCESSING CONMNCEPT 7
1.4.1 Tasks 7
1.4.2 Task Communication 8
1.4.3 Task States 10
xﬁ‘ 1.b.4 Interrupts and Priorities ’ 12
' 1.4.5 Mutual Exclusion 12
1.5 EFFICIENCY CONSIDERATIONS 13
1.5.1 Task Structures 13
1.5.2 Parameter Passing 15
1.5.3 Overlay Technique 15-16

0223c¢

ERICSSON Z

7 INTRODUCTION TO O0S WITH TASK HANDLING
0S REFERENCE MANUAL

E90003145€E

1983-11-14 A ‘ 2

0223¢

’ k 1 INTRODUCTION TO 0S WITH TASK HANDLING

ERICSSON Z ‘ o 0S REFERENCE MANUAL
z E90003145E! ;
E 1983-11-14 A : 3
1.1 GENERAL

This manual is primarily intended for system and application
programmers.

References are from this manual made to the following documents:

SPL Reference Manual
Alfaskop System 41 Technical Description

The following documents may also be of assistance:

Alfaskop System 41 Introduction
ﬂ* : " Terminal Console Functions
and Customizing Instructions
" Reference Manual IBM Emulation
" Uniscope/UTS Emulation
" Installation and Maintenance Manual

0223¢

1 INTRODUCTION TO 0S WITH TASK HANDLIMG

ERICSSON 2 0S REFERENCE MANUAL
E90003145E o
1983-11-14 A 1 4
1.2 REFEREMCE MAMUAL OVERVIEW
1. Introduction

This section contains a general discussion on the objectives of
the operating system and the parallel processing concepts.

0S Hardware Environment

This section contains a brief description of the hardware
components in an Alfaskop System 41 cluster.

0S Software QOverview

This section contains a brief description of the various 0S
software components, their interconnections and their interface
to the user.

Diskette Software Format

This section contains a description of the storage format on
Alfaskop diskettes. Various volume types and data set types are
discussed. ’

“

Initfaltization and Logon

This section contains a description of the logon and program
load procedures. Associated system data sets are briefly
presented.

Multitasking Functions and Interrupts

This section contains a description of how the multitasking
concept can be implemented in system software. It also contains
a presentation of the interrupt structure of Alfaskop System 41,

Internal Communication Protocol

This section contains a description of the two-wire protocol

used internally within the cluster. The internal communication
is carried out by the Communication Handler which does not have

any interface directly to the user.

0223c

1 INTRODUCTION TO 0S WITH TASK HANDLING

ERICSSON Z 0S REFERENCE MANUAL
oo | | E90003145E ST
: 1983-11-14 | A 15

8. User Interface Functions

This section contains a description of the User Interface
Module which serves as an interface between the user and the
Communication Handler.

9. Display Unit Functions

This section contains a description of the display area, the
cursor handling and the message line. Some hardware dependent
functions are also discussed.

10. Keyboard Functions

This section contains a description of all input functions,
B - j.e. keyboard functions, MID functions and selector pen
{“ functions. The data structures of the keyboard tables are also
described.

11. FD Unit Functions and File Handling

This section contains a discussion on the FD configurations and
the diskette I/0 functions. ALL file handling commands are

described with several examples.
LY ~

12. Printer Functions

This section contains a description of the 0S module PRIOS,

which is the interface between the user and the printer unit
hardware. Print function requests and print editing are

(‘ discussed.

13. Timer Functions

This section contains a description of how real time
measurements can be included in a system or application module.

14, Error Handling

This section contains general description on the error
handling concepts of the operating system. The error messages
from 0S are listed and explained.

0223¢

S

1 INTRODUCTION TO 0S WITH TASK HANDLING

ERICSSON Z 0S REFERENCE MANUAL
' ES0003145E
' 1983-11-14 A 6
1.3 OBJECTIVES OF THE OPERATING SYSTEM

The main objective of the operating system is to provide for
efficient use of the resources of the terminal system.

The system resources are hardware resources such as CPU's, main

storage, peripheral drivers etc, as well as software resources such
as programs, procedures and data.

The resources are utilized by processes. The processes are in the
Alfaskop terminology denoted tasks.

The following functions are performed by the operating system:

internal communication
start/restart handling
time supervision

task supervision
input/output supervision
interrupt control

basic error control

OO0 OO0 OO0 O

These operating system concepts are further discussed below.

Another objective of the operating system is to provide an interface
between the hardware configuration and the system programmer.

The operating system presents a virtual machine to the programmer.
This virtual machine has the same capabilities as the underlaying

hardware, but it does not require the detailed understanding of the
hardware's complexity.

For example, the I/0 (input/output) capabilities of the hardware may

require very sophisticated assembly programming. The operating system
relieves the programmer of this complexity, and presents a set of
input/output procedures that can be invoked by means of procedure /;
calls with appropriate parameters. .

0223c¢

s

1 INTRODUCTION TO 0S WITH TASK HANDLING

ERICSSON Z ‘ ‘ 0S REFERENCE MANUAL
' ES0003145E
1983-11-14 A 7
1.4 PARALLELL PROCESSING CONCEPT

1.4.1

Many different activities are carried out in a terminal system:
Operator interaction via the keyboard, data transmission between
system units, output on peripheral units etc.

Many of these activities are performed asynchronously, i.e. the
sequence is not predefined.

At a given time several activities can be initiated and not
completed. This is the meaning of the parallel processing concept,
although not all of the activities actually are processing
concurrently. Some of them might be waiting for other activities to
be completed. This is the case when, for example, one process must
wait for a result computed by another process.

Each activity utilizes one or several system resources. However, most
of the resourses such as CPU time, main storage cells and peripheral
device drivers can only be used by one activity at a time. The
asynchronous activities must be synchronized when they attempt to use
the same system resource.

Obviously parallell processing requires both synchronization of
asynchronous processes and inter-process communication. In Alfaskop
System 41 this is achieved by introducing the "task'" and the "event".

Tasks

The task is the logical concept of a process or an activity. A task
is an entirely abstract entity, which is attached and detached
dynamically.

A task can be regarded as a sequence of actions, performed by
executing a sequence of instructions. The instructions are defined in
program procedures. Several tasks can have their activities defined
by the same procedure. A task is often implemented as an infinite
Lloop. When a specified event occurs, the task is executed in one
loop, thereafter its execution is suspended until a similar event
occurs again.

A task is always associated with a superior entity, which attached
the task and thereby initiated the execution of a certain procedure.

The distinction between a set of instructions (the procedure) and its
execution (the task) is essential to the understanding of the
operating system functions.

In Alfaskop System 41, a supervisor task is automatically initiated
when power is turned on to the system. This task thereafter attaches
the appropriate subtasks. The supervisor task is not terminated until
power is turned off.

0223c¢

1 INTRODUCTION TO 0S WITH TASK HANDLING

ERICSSON Z 0S REFERENCE MANUAL
PR E90003145E.

1983-11-14 A S 8
1.4.2 Task Communication

The "event" is the main SPL concept for communication between tasks.

The termination of a task is an implicity declared event. ALl other
events must be declared as SPL variables of the EVENT type.

The EVENT variable can be regarded as a flag which can have either of
two Logical values: set and unset.

The flag is set by the statement POST name_of_event.

The flag is unset by the statement ASSIGN name_of_ event.

L

Wwhen one task is depending on a result obtained by another task, the
depending task must comprise a WAILT name_of event or a WAIT
name_of task statement.

I1f data is to be interchanged between tasks, they must use a common
data area, which can be accessed by both tasks.

St

0223c¢

1 INTRODUCTIOM TO 0S WITH TASK HANDLING

ERICSSON 2 0S REFERENCE MANUAL
; : ;o z N E90003145E
j Py | i 1983-11-14 = . A| : L9

Mr Wilson's newspaper
An example of synchronization of asynchronous processes.

Assume two asynchronous processes (tasks):

The first task is the mailman's delivery of newspapers in the
morning. The other task is the fetching of Mr Wilsons newspaper
from the mailbox.

To synchronize the two tasks, we use the event "Wilsons_news-
paper_arrived".

The deLiVery task was attached (started) before 5 o’clock in
the morning.

N Mr Wilson's task is attached as soon as his alarmclock sounds.
{g After that the following statements are executed in the task:
"Walk up to the kitchen window";
"Look at the mailbox'";
WAIT Wilson's newspaper_arrived;
The last statement causes this task to be suspended if the
event has not already occured.

When the mailman delivers Mr Wilson's newspaper, the delivery
task executes the following statement:

POST Wilson's_newspaper_arrived;

This statement causes the event flag to be raised at the mail-
box. .

The posting of the event causes Mr Wilson's task to enter the
active state again. He fetches his newspaper, and probably also
executes the following statement:

(ASSIGN Wilson's_newspaper_arrived;

: This implies that the flag is reset again.
If he doesn't assign the event, he will not be able to know
whén the newspaper arrives the morning after.

ey

N Mr Wilson's mailbox with event flag.

POST ‘
ASSIGN DU

Note: The POST statement does not affect a posted event. Analogously,
the ASSIGN statement does not affect an event which has not been
posted. The EVENT is similar, but not equivalent, to the "semaphor"
introduced by Dijkstra.

0223c¢

1 INTRODUCTION TO 0S WITH TASK HANDLING

ERICSSON 2 0S REFERENCE MANUAL
' E90003145E ,
1983-11-14 A 10
1.4.3 Task States

Each task in the system is in one of the following four states.

e Active state
The task is in control of a processor unit and is thus currently

being executed.

e Ready state
The task is ready to enter the active state, but since it has a
Lower priority than the active task, the active task must first be
terminated or suspended. (Priorities are discussed below.)

e Wait state
The task’ is waiting for a specified event to occur, which will
cause the task to enter the ready state (or, if it has the highest
priority, the active state).

e Inactive state |
The task is terminated or not yet attached, but can enter the j}
ready state (or the active state) by being attached by another
task.

If only one processor is available, only one task at a time can be in
the active state.

The tasks in the ready state can be regarded as forming a queue, in
which the task with the lowest priority is last in gueue. .

Tasks in the wait state are not gueued.

An illustration of the task state is found on next page.

0223¢

1 INTRODUCTION TO 0S WITH TASK HANDLING

ERICSSON Z | 0S REFERENCE MANUAL
: E90003145E P
1983-11-14 A ﬁ 11

Inactive State

CALL with TASK/PRIO option

Y

Ready State
Queue on pricrity basis

Interrupted Highest
priority

Active State

lL WAIT

Wait State event
occurred

Task terminated by
RETURN or EXIT

Figure 1.1 Task States

Note: A subtask can be cancelled by the attaching task. When a task
is cancelled, it is immediately turned into the inactive state from
the ready state or from the waiting state.

0223¢

1 INTRODUCTION TO 0S WITH TASK HANDLING

ERICSSON Z | 0S REFERENCE MAMUAL
; \ i E90003145E
1983-11-14 A 12
Tbob Interrupts and Priorities

In order to utilize the system resources efficiently, each task is
assigned a priority.

Each time an event occurs, the processing task is temporarily
interrupted. The interrupt can be initiated from different sources,
e.g. program statements, peripheral circuits or the Reset pushbotton.

If any task was waiting for the occurred event, there are now at
Lleast two tasks ready to be executed. The task with the highest
priority will enter the active state, while the other task enters the
Ready state queue.

1.4.5 Mutual Exclusion

In certain cases, two asynchronous tasks cannot be permitted to

interrupt each other. This is the case if the tasks use the same .
memory area and an interrupt would affect the calculation for both N}
procedures.

The problem of mutual exclusion can be solved in two ways:
o An event can be used to synchronize the tasks.
o The tasks can be assigned the same priority. As a task only can be

interrupted by a task having higher priority, they will not
interrupt each other.

0223c¢

1 INTRODUCTION TO OS WITH TASK HANDLING

ERICSSON Z 0S REFERENCE MANUAL
: a | E90003145E |
l 1983-11-14. A 13

1.5 EFFICIENCY CONSIDERATIONS

The multitasking feature is normally used for system programming, but
may as well be used for advanced application programming.

The task concept is very useful to implement parallel processing and
pseudo parallel processing. However, there are also some
disadvantages, due to the required system overhead.

e A 64-byte task control block is required for each attached task.

® A gueue is maintained for all tasks in the Ready state. If many
tasks are attached, the queue handling requirements will increase.

e Parameter passing between tasks increases execution time.

1.5.1 Task Structures

The same function can be implemented in several ways, with or without
tasks.

If tasks are to be used, the following questions must be considered:

e Will the advantages gained by parallel processing justify the
created system overhead?

® Could the number of tasks be reduced?

e Could the efficiency be increased by changing the task priorities?
The time required to enter a task into the Ready-queue is
proportional to the number of tasks with higher priority in the
queue. This implies that tasks which are expected to enter the Ready
state frequently should be assigned a high priority.

The following two figures show how the same execution can be

performed in two structures. The main task is assumed to have higher
priority than the subtasks.

0223¢

1 INTRODUCTION TO OS WITH TASK HANDLING

ERICSSON Z 0S REFERENCE MANUAL
ES0003145E o
1983-11-14 A o 14 ,
Main task Sub tasks

TASK_1

Attach TASK_1 ;

WAIT TASK 1; RETURN;
TASK_2

Attach TASK_;

WAIT TASK 2; RETURN; ;

!

TASK-3

Attach TASK 3
WAIT TASK 3;

RETURN; | J
RETURN; g

Figure 1.2 Task structure with three subtasks

The subtasks execute one procedure each, and the procedure execution
is indicated by the subtask termination.

Main task- Sub task
TASK_1

Attach TASK 1 .
| WAIT EVENT_1; ‘ POST (EVENT_1):
! ASSIGN EVENT 1; : C)
A -
| WAIT EVENT_1; :
| ASSIGN EVENT_1; POST EVENT_1;

WAIT EVENT 2; POST EVENT 2; .

ASSIGN EVENT 2;

RETURN; RETURN;

Figure 1.3 Task structure with only one subtask

The subtask may execute several procedures and post several events.
Two different events are used in this case to indicate completion of
the procedure executions. The subtask has been assigned a lower

priority than the main task.

0223¢

ERICSSON

_ 1 INTRODUCTION TO 0S WITH TASK HANDLING
Z 0S REFERENCE MANUAL

| E90003145E ' ‘ .

! 1983-11-14 ' A L1150

1.5.2

1.5.3

Parameter Passing

The procedure parameters in SPL are based variables, The processing
of based variables increases time and program size.

The processing of SPL parameters entails overhead in both the calling

procedure (where arguments are gathered into a package) and in the
called procedure (where parameters occur as based variables).

In situations where parameters serve as input data to a called
procedure and are not to be changed by the procedure, the overhead
can be partially reduced by using arguments having the VALUE
attribute (see also SPL Reference Manual).

However, the most efficient method of passing parameters is to use
common variables (PUBLIC/GLOBAL, EXTERNAL) whenever possible.

Moreover, this method is the only possible way of passing parameters
between two tasks as well as between interrupt procedures and tasks.

Overlay Technique

The size of main storage is limited, and there are many program
modules required to carry out a work session in a terminal system.

However, not all of the programs are used concurrently. Thus, when
one program module is no longer needed, another module can be Loaded
into the same main storage area, thereby overlaying the part that is

not needed.

The overlay technique is used by the operating system itself, and it
can also be used by system and application modules. The programmer
has to define the Linking structure and control the loading of
_modules.

Overlays can be used on various levels. Similar levels are linked to
the same root module as illustrated below.

Main link A I Root
8 c D LEVEL 1
AV
E F G H I J LEVEL 2

Etc.

Figure 1.4 Example of overlay structure

0223¢

ERICSSON Z

1 INTRODUCTION TO OS WITH TASK HANDLING

0S REFERENCE MANUAL
E90003145E
1983-11-14 A

16

Main storage

phase 1 phase 2 phase 3

Area
used
for A A A
over—
Lay

B B D

F J

E
Figure 1.5 Main storage utilization in different phases of execution

- 0223¢

2 OPERATING SYSTEM HARDWARE ENVIRONMENT

ERICSSON Z 0S REFERENCE MANUAL

E90003145E

1983-11-14 A 1

Contents

2.1 GENERAL 3
2.7.1 Minimum configuration 3
2.1.2 Display Unit 5
2.1.3 Communication Processor 6
2.1.4 Flexible Disk Unit 8
2.2 MEMORY OPTIONS 8
2.2.1 MRW Option 8
2.2.2 MRO Option 9
2.3 KEYBOARD OPTIONS 9
2.3.1 MID Option 9
2.3.2 Selector Pen Option 9
2.4 PRINTER OPTION 10
2.5 PCU OPTION 10
2.6 SCC OPTION 10
2.7 DPU OPTION 11-11

0016¢

ERICSS0ON

=
=

¢ UFEKATLING DTJ1EM HARKUWARE ENVIRKUNMENI
0S REFERENCE MANUAL

E90003145E

1983-11-14 A 2

001é6¢

2 OPERATING SYSTEM HARDWARE ENVIRONMENT

ERICSSON 2 0S REFERENCE MANUAL

E90003145E :

,1983-11-14 A, 3
2.1 GENERAL

This section contains a general description of the Alfaskop
System 41 hardware, presented on the block diagram Llevel. For
information about how the hardware units function internally, see
the Technical Description. The required software components for
the different configurations are presented in section on 0S
Software Components.

Multi host configurations are not treated in this manual.

2.1.1 Minimum configuration

The minimum cluster configuration consists of one Communication
Processor (CP), one Flexible Disk unit (FD) and one Display Unit
(by) .

The minimum configuration of the single display unit version of

System 41 consists of a display unit to which an FD is connected
for program Loading. The single display unit operating system is
not treated in this manual.

Each CP, FD and DU contains a microprocessor and a memory. When

power to the units is turned on, the operating system is loaded

into each unit from the system diskette. The system diskette may
also contain emulation software and some of the terminal console
functions.

Communication

Processor
two-wire ‘ two-wire
Flexible
Disk
Unit (optional)
Display V.24/28 Printer
Unit Unit
Fig. 2.1. Minimum cluster configuration.

0016¢

2 OPERATING SYSTEM HARDWARE ENVIRONMENT
0S REFERENCE MANUAL
E90003145E

ERICSSON Z
| 1983-11=14 A R

A number of options can be selected to supplement the minimum
configuration. The cluster can be expanded to contain several
display units with keyboards, several printer units, FD units
etc. Some of the options require the connection of adaptation
boards and, in certain cases, the addition of optional program
modules in the operating system.

Host

Communication

Processor 4101 .
g /‘*ﬁ
Flexible Disk Unit -
Up to 32 2-wire or coaxial
connections available.

AN

Max 3
peripherais
— ON same

’ 2-wire connec-

tign

Printer Unit

| Printer Unit

R
ey N

‘ e S
N |
| @ -
m N {V-24/28)
Display Unit Flexibla Disk Unit !

ith Keyboard
wit 4 Oisplay Unit
with Keyboard

‘ . ' . Work station N __l ,
[i
Fig. 2.2 Example of cluster configuration ‘

(J

0016c

2 OPERATING SYSTEM HARDQARE ENVIRONMENT

s s s o,
Z 1983-11=14 A ' 5

2.1.2 Display Unit

Several different display units can be included in an Alfaskop
System 41 cluster:

DU 4110-XXX

DU 4111

DU 4112 (4 colour)
DU 4113 (7 colour)
DU 3111

The following presentation is not specific to any particular DU
model. The model characteristics are presented in section on
Display Unit Functions.

The main purposes of the display units are:

Tﬁ) o0 Presentation of visual information on the Cathod Ray tube Unit
’ (CRU .,

o Communication with other system units as communication
processors, flexible disk units, printers, keyboards etc.

o Editing and processing of data.
The main components of the display unit are:
o Cathod Ray tube Unit (CRU).

o Basic circuit board (DTC) containing the microprocessor, the
basic memories and the basic communication interfaces.

o Basic mechanics
) o Power supply ‘
{ o Optional circuit boards

The notation and capacity of the hardware components depends on
the selected DU model.

(" t Functionally, the DTC board can be divided into the following
parts:

o MPU - Microprocessor Unit containing the microprocessor with
associated electronics for handling the bus system, interrupt
system, timing etc.

0 RWM - Read Write Memory.

The capacity of the basic RWM provided in the display unit
depends on the selected DU model.

0016c¢

2 OPERATING SYSTEM HARDWARE ENVIRONMENT
0S REFERENCE MANUAL

E90003145E

1983-11-14 A 6

ERICSSON 2

Display Unit Basic RWM
DU 4110 32 kbyte
DU 4111 64 kbyte
DU 4112 64 kbyte
Dy 4113 64 kbyte
by 3111 64 kbyte

See also section on Memory Maps.

o ROM - Read~Only Memory. The ROM contains an IPL (Initial
Program Loader) program which permits the DU operating system
to be immediately loaded from flexible disk when power is
turned on.

¢ Keyboard interface (adapter) for serial communication with a
keyboard unit.

o DIA - Display Adapter for presentation on the screen of data M}
obtained from the display memory. N

2.1.3 Communication Processor

Three different communication processors can be used in an S$&41
cluster:

o CPR 4101 for remote clusters with up to 32 terminals
o CPR 4103 for remote clusters with up to 16 terminals (CP 4103
includes a flexible disk drive)
o CPL 4102 for Local high speed channel connection to host
computer
The main purpose of the communication processor js to:
o Control internal communication in the cluster)

o Carry out communication between the cluster and the host
computer

o Poll the terminals for status and transmission requests { j
o Keep track of connected units, inserted volumes etc.
The main components of a communication processor are:

o Communication Processor Board (CPB), containing the basic
microprocessor, the memories and the Llink controller.

o0 Terminal Unit Adapters (TUA), basic and optional

o Communication adapters for modem connection

0016c

2 OPERATING SYSTEM HARDWARE ENVIRONMENT

ERICSSON Z gngS§$ZEECE MANUAL
1983-11-14 A 7

0 Basic mechanics
0 Power supply
o Optional circuit boards

Functionally, the communication processor board can be divided
into the following parts:

o MPU - Microprocessor unit with interrupt control logic, timing
logic, address decoding logic, memory access multiplexing
(including direct memory access logic), selection logic and
two-wire data Llink controllers.

0 RWM - Read/Write Memory

o ROM - Read=Only Memory

For further details, refer to the Technical Description.

cp DU
TAB TUA TIA
[‘ [
cPB v , DTCA
MPU MPU DIA
RWM rRom | | . AWM ROM KBA

Fig. 2.3 DU = CP interconnection

0016¢

* 2 OPERATING SYSTEM HARDWARE ENVIRONMENT

= 0S REFERENCE MANUAL
ERICSSON = E90003145E ,
1983-11-14 A 8

2.1.4 Flexible Disk Unit

Two different flexible disk units can be used in the S41 cluster:
FD 4120 for 8" diskettes
FD 4122 for 5"1/4 diskettes

Furthermore, the Communication Processor CPR 4103 contains one
flexible disk drive for 8" diskettes.

The main purpose of the flexible disk unit is to:
o Provide program loading from flexible diskettes
o Provide secondary data and program storage

The main parts of the flexible disk unit are: ;

[

o Flexible Disk Processor (FDP) containing the microprocessor
and the memories

o Flexible Disk Adapter (FDA))
o Flexible disk drive

o Power Supply

The flexible disk processor containss:

0 MPU - Microprocessor Unit with interrupt logic

0 RWM - Read Write Memory

o ROM - Read Only Memory with IPL program

Several FD units can be incorporated in the cluster, although

only one can be the system—FD, i.e. contain the system diskette.

If supplementary FD units are included in the cluster, they are

used as data—FD units. They provide loading and storage of

application programs and data. Mﬁ
The hardware of a system=FD is identical to the hardware of a

data=FD. The FD unit which contains the system diskette when

power is turned on becomes the system~FD of the cluster.

Note that FD 4122 cannot be used as system—FD.
2.2 MEMORY OPTIONS

2.2.1 MRW Option

1f the read-write memory on the basic circuit board does not
suffice, an additional capacity can be obtained by equipping the
unit with an MRW board. (See also Section on Memory Maps). This
option is used for DU 4110 and CP and can be equipped/strapped
for 16, 20, 24 or 28 K byte read/write memory.

0016¢

ERICSSON 2

* 2 OPERATING SYSTEM HARDWARE ENVIRONMENT
0S REFERENCE MANUAL
E90003145E
1983-11-14 A ; 9

2.2.2

2.3

2.3.1

2.3.2

MRO Option

For systems without an FD, software may be stored in PROMS on the
MRO board. This option contains a maximum of 24 K bytes read only
memory and 256 bytes of battery backup RWM. This option is used
for DU single and CP and is not supported by the operating
system. (See also section on Memory Maps).

KEYBOARD OPTIONS

Keyboard units are connected to the display units to provide for

operator entry and terminal interaction. The adaptation unit for
keyboard communication is included in the basic configuration of

the DU.

Alfaskop System 41 comprises the following keyboard units:
Keyboard Unit 4140 with

Keyboard Expansion Unit 4141 (optional)

Keyboard Unit 4143 with

Keyboard Expansion Unit 4146 (optional)

The keyboard unit contains a key matrix, a microprocessor and
communication interfaces for connection to the display unit and
to the optional Magnetic Identificatijon Device (MID).

The purpose of the keyboard logic is to:

0 Scan the key matrix and to store the key numbers of the
depressed keys in a keyboard buffer

o Maintain communication with the display terminal controller in
the DU.

&

o Read ID-data if a MID is connected and an ID-card is inserted.

MID Option

A magnetic identification device can be connected to the
keyboard. The MID is used to check the authorization of personnel
using the system. The authorization check is normally performed
in the host computer, but it can also be implemented in Alfaskop
system software.

Selector Pen Option

The Selector Pen Device 4130 can be connected only to Display
Unit 4110-003. The selector pen is used to select predefined
fields on the screen, thus providing simple input to the display
unit without using a keyboard.

0016c

ERICSSON

=
=

2 OPERATING SYSTEM HARDWARE ENVIRONMENT
0S REFERENCE MANUAL

E90003145E

1983-11-14 A 10

2.4

2.5

2.6

To support the selector pen, the display unit must be equipped
with a Selector Pen Adapter (SPA).

PRINTER OPTION

One Printer Unit (PU) can be connected to each display unit
(except DU 4113) in the cluster via a V24/28 interface. The
display unit must be equipped with an Asynchronous Communication
Adapter (ACA).

Alternatively, the printer unit can be connected to the
communication processor via a Peripheral Control Unit (PCU),
equipped with an asynchronous communication adapter.

One DU with a PU connected, one FD and one PCU with a p}inter can
be connected to the-same port on the communication processor. All
PUs and PCUs must have different logical addresses.

PCU OPTION

Peripheral Control Unit (PCU) is used to connect a peripheral
device, like a printer or a modem, to the cluster. The PCU is
connected to the communication processor via a two-wire cable.

L) ~
Functionally, the PCU can be divided into two main parts:

o GPB - General Processor Board

o ACA/SCA - Asynchronous Communication
Adapter for printer connection, or
Synchronous Communication Adapter for modem connection.

Several emulations and program products require a PCU.

SCC OPTION

The Synchronous Communication Controller is used to control
serial synchronous data communication. The main microprocessor is
thus relieved of message formatting. SCC is intended for SNA/SDLC
and other advanced protocols.

SCC communicates on the Line via a V24/28 or X21/24/27 interface.
A communication processor can incorporate one or two SCC units.
SCC can also be included in a display unit operating in a single

display unit configuration.

SCC is arranged on two circuit boards designated SCC-1 and SCC-2.

0016¢

* 2 OPERATING SYSTEM HARDWARE ENVIRONMENT

ERICSSON 2 ggoggg$zggCE MANUAL
1983-11-14 A N

The SCC-1 board contains a microprocessor, an IPL-PROM and
communication control circuits. The SCC=-2 board contains a memory
area, partly shared by the main proc¢essor in the CP or the DU.

2.7 DPU OPTION

Display Processor Unit 4173 is used only in emulations of
IBM 3178. The configuration is called WS 3111 and consists of a
monitor, a DPU 4173 and a keyboard.

001é6c

W/

3 0S SOFTWARE OVERVIEW

ERICSSON 2 0S REFERENCE MANUAL

E90003145E ¢ ;
1983-11=14 A : 1
Contents

3.1 GENERAL 3

3.141 System Overview 3

3.2 BASIC 0S MODULES 5

3.2.1 0S Request Handler 5

3.2.2 0S Interrupt Handler 5

3.2.3 Task Manager 5

324 Timer Handler 5

3.2.5 SPL Support 5

3.3 {.OAD MODULES 6

3.3.1 IPL : 6

3.3.2 NIP 6

3.3.3 Map Loader . 6

?W% 3.4 LLOGON MODULES 6
3441 Logon Handler 6

3.4.2 Logon Supervisor 6

3.5 INTERNAL COMMUNICATION MODULES 7

3.5.1 Communication Handler S 7

3.5.2 User Interface Module 7

3.6 DISPLAY FUNCTION MODULES N 7

3.6.1 Display Handler : 7

3.6.2 Message Line Handler 8

3.7 INPUT FUNCTION MODULES 8

3.7.1 KB/MID/SP Handler 8

3.8 FD FUNCTION MODULES 8

(3.8.1 FDIOS 8
3.9 PRINTER FUNCTION MODULES 9

3.9.1 Printer Handler 9

. 3.9.2 PRIOS 9
(3.9.3 Print Editor 9
3.10 UTILITY SUPERVISOR 9

3.1 TERMINAL CONSOLE FUNCTIONS 10

3.12 MEMORY REQUIREMENTS 10
3.12.1 Page Area 10

3.13 MEMORY MAPS 11=-12

0019c¢

3 0S SOFTWARE OVERVIEW
0S REFERENCE MANUAL
ERICSSON Z E90003145E
; 1983-11-14 A 2

0019¢

ERICSSON 2

3 0S SOFTWARE OVERVIEW

0S REFERENCE MANUAL

E90003145E

1983-11-14 A ; 3

3.

3.1.1

GENERAL

This chapter presents the software components of the operating
system in Alfaskop System 41. The general function of each
component is briefly described.

How to use the operating system components is further discussed
in the following chapters.

System Overview

The simplified figure below shows the operating system modules in
a cluster configuration.

Some of the 0S modules are optional and can be omitted to reduce
0S memory requirements.

The main part of the operating system is lLoaded into the hardware
devices from the system diskette when power is turned on to the
unit in question. Some 0S components are permanently stored in
ROMs.

System Modules
and Application Modules

User
Display Interface
Handler Module (UIM)

Basic OS

Hardware

KB/SP/MID
Handler

Message
Line
Handler

Figure 3.1 System overview in DU

0019¢

A

3 0S SOFTWARE OVERVIEW
0S REFERENCE MANUAL

E90003145€
1983-11-14

o>
ERICSSON 2

0019¢

TIW INOILIO
r-——-=--" 1
! aw i
] i _
. e

| FEEE |
1 1 _

93 :NOILIO — B _ HIIGNYH .
_lll —— — - das/arsa _
1 nds ||* vdS | _
|] ann

JOVSSIW

NOILN3I1X3
HOSIAYIINS
ALITELA CNOLLEO

“ll.ln.IJ

NoIN3Ix3 | 0

Lt |
LHD vig —

HITANYH
AvdSIa

HOSIAYIINS
ALRLn,

] |vosiauzans: |y
arian [

| ——

HITONVH

ud i
— . ——d - — N H
— M e e e e] e — — — I
v3s |aful uzronwn 1 #30v01 né NOlLdO
I vos | g avn [aavauain
L.) | y3sn
FInGoW
NOILYOI1ddY
4
FInaow
WILSAS
WRLSAS L ¥3sn WWOO WWOO

LSON NOT0] _ —
0 isva) y3avo YI1aNYH
3INgoN S0l a3 dYW NOSUT
NOTLYI) 14d¥ ‘|— —
-+ * “
Fnaow FOVAYILNI Y31aNYH + vl l it “ HITONVH

S0104 714 INOILIO

$SIINAOW SO-dD FHYMOUVYH $3IMNTOW SO-Na

Figure 3.2 A diskette contains a number of data sets

s

ERICSSON Z

3 0S SOFTWARE OVERVIEW
0S REFERENCE MANUAL
| o E90003145E
, o - 1983-11-14! A

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

BASIC 0S MODULES

The following modules are not associated with any particular unit
or function, but are essential parts of the operating system.

0S Request Handler

This module comprises an interrupt procedure for software
interrupts (SWI). The 0S Request Handler issues calls to
procedures in Task Manager and FDIOS as per the parameters in the
0S Reguest call.

The SPL statements CALL, WAIT, POST etc. are translated by the
compiler to an 0S request with suitable parameters. The
appropriate procedure in Task Manager 1is invoked by the 0S
Request Handler to execute the function.

0S Interrupt Handler

This module handles the queues for processing at the lowest IRQ
interrupt level, INTERRUPT.

Task Manager

Task Manager procedures'carry out two main functions: They handle
the SPL statements for multitasking, and they maintain the task

queues.
Task Manager maintains queues of tasks in the ready state and

allocates processor time to the task with the highest priority on
the next interrupt.

Timer Handler

The Timer Handler module is a group of procedures carrying out
software timing in the system. The user can also request time
counters and have an event variable set when the specified amount
of time has expired. :

SPL -Support

The SPL Support modules contain general procedures which are used

to implement a number of SPL (System Programming Language)

functions which comprise:

- Operations on character strings and arrays.

- Multiplication and division.

- Translation of unit names to unit numbers for internal
presentation.

- Locking and unlocking of interrupts.

0019¢

ERICSSON Z

3 0S SOFTWARE OVERVIEW
0S REFERENCE MANUAL
ES0003145E

1983-11-14 A

3.3

3.3.1

3.3.2

3.3.3

3.4

3.4

3.4.2

LOAD MODULES

IPL

The Initial Program Load module is stored in PROM. IPL handles
the loading of the operating system after power is turned on o
after the RESET pushbotton has been depressed.

NIP

The Nucleus Initialization Procedure starts up the operating
system after IPL is completed. NIP consists. of a resident part
and an overlay part.

Map Loader

The Map Loader is used for automatic program loading, e.g.
loading of a predefined set of emulation parameters for the DU

emulation. Map loading is performed from flexible disk accordi
to specifications in a list called Load Map.

LOGON MODULES

Logon Handler

When power is turned on and the operating system is loaded 1int
the display unit, the Logon Handler awaits further commands,
either from the operator or from:an autologon definition.

The Llogon name is passed to the Logon Handler to define which
emulation or application is desired for program Lload.

Logon Supervisor

The logon procedure is supervised and controlled by an operati
system module called Logon Supervisor.

For more detailed information about the logon and program load
procedures, refer to section on Initialization and Logon.

r

ng

0

ng

0019¢

3 0S SOFTWARE OVERVIEW

e 8 - 2 s
(. 1983-11~14 A 7

3.5 INTERNAL COMMUNICATION MODULES

3.5.1 Communication Handler

Internal communication via the two—wire connection between the

different system units (CP, DU, FD, PCU) is performed by the

Communication Handler module.

The following main functions are carried out:

~ Polling from CP to the other units connected to the two-wire
circuit in order to ascertain their current status and whether
or not they need data transmission.

- Sending and receiving of messages

- Administration of traffic on the two=wire circuit.

The Communication Handler has no direct interfaces with the

system modules. The interface is constituted by the User
Interface Module.

3.5.2 User Interface Module

The User Interface Module provides the connection between the
system module and the Communication Handler.

The User Interface has two main purposes:
- To handle the internal communication protocol.

- To provide an interface to the system and application moduLes.f

3.6 DISPLAY FUNCTION MODULES

3.6.1 Display Handler

The Display Handler contains procedures which can be called by
the system modules for manipulating the hardware in DIA (display
interface adapter). The Display Handler functions comprise cursor
positioning and (re)definition of the display configuration
(number of Llines, Line lengths etc.).

Presentation on the screen is handled by the hardware in DIA.
Reading and updating of the screen content are carried out by a
conventional memory reference procedure. The Display Handler
supplies global variables which define the current screen Layout.

0019c¢

3 0S SOFTWARE OVERVIEW

ERICSSON Z ggogggszgg CE MANUAL
1983-11-14 A | 8

3.6.2 Message Line Handler

The Message Line Handler:

- Administers presentation of messages from the system modules
on the message Lline.

- Handles, via the KB/ID/SP Handler, input from KB to the
message line.

- Carries out certain Limited editing of data entered into the
message Line.

3.7 INPUT FUNCTION MODULES

3.7.1 KB/MID/SP Handler)

The KB/MID/SP Handler takes care of operator input functions to
the screen. It consists of three main parts:

- Procedures used for communication with KBU for entering key
data and MID data as well as controlling the indicators on the
keyboard. ‘

- Procedures for buffering the input data.

- Procedures which can be called by the user to control input
and indicators.

3.8 FD FUNCTION MODULES ﬁj

3.8.1 FDIOS

The FDINS module in DU contains one part of the logic used by the &w}
file handling system in System 41. However, most of this logic is)
in the FD software system.

FDIOS consists of two main parts:

- Routines that handle communication (via the Communication
Handler) with FD via a two-wire connection.

- Routines that execute the SPL statements for file handling.
The compiler translates a file handling statement into an 0S
Request with suitable parameters. A procedure in FDIOS which
initiates execution of the desired function is invoked by the
0S Request Handler.

0019¢

3 0S SOFTWARE OVERVIEW
0S REFERENCE MANUAL
E90003145€

ERICSSON z
‘ 1983-11-14 A 9

The basic version of "FDIOS contains the communication parts and
software support for certain file handling statements, namely
ASSIGN, OPEN, CLOSE, READ, and REWRITE for unbuffered 1/0.

By adding the FDIOS Extension module, complete file handling is
obtained.

3.9 PRINTER FUNCTION MODULES

3.9.1 Printer Handler

The Printer Handler in DU -carries out the hardware dependent
printer functions. Communication between DU (PCU) and the printer -
via the V24 interface is controlled by the Printer Handler,

The Printer Handler receives fully edited data from PRIOS and the
system modules.

3.9.2 PRIOS
PRIOS provides the interface between the system module and the

Printer Handler. PRIOS is a task in DU which can be attached by

the system modules to perform different printer output functions.
The desired function is specified in a common parameter Llist.

3.9.3 Print Editor

) The Print Editors are not part of the operating system, but must
(be linked with system modules which are intended to use PRIOS.

3.10 UTILITY SUPERVISOR

The Utility Supervisor contains routines to dump and update the
memory of the unit, in which the supervisor is located. Requests
to perform these operations are issued from supervisors in other
units, where the requesting supervisor s part of the system
module.

The Utility Supervisor is used by the Console Mode software, when
customizing and maintaining the terminal system,

The Utility Supervisor in CP maintains the List of mounted
diskettes in the cluster.

0019¢

ERICSSON Z

3 0S SOFTWARE OVERVIEW

0S REFERENCE MANUAL

E90003145E

1983-11-14 A 10

3.1

3.12

3.12.1

TERMINAL CONSOLE FUNCTIONS

The Terminal Console Functions are used to define the system
configuration and to carry out diskette handling, fault tracing
etc.

Terminal Console Functions are not part of the operating system.
The Customizing procedure and the Terminal Console Functions are
described in separate documents.

MEMORY REQUIREMENTS

The amount of RWM used by the operating system varies somewhat,
depending upon the system configuration and selected options.

The ROM contains the permanent Initial Program Load (IPL) module,
which causes the program loading from the system diskette to be
immediately started when power to the units is turned on, or when
a reset button is pressed.

Some of the RWM areas into which the operating system is loaded
are used for overlays. This implies that appropriate modules of
the system software, or the applicatijon software, is loaded into
the RWM when being requested. When an overlay module is loaded,
the previous content of the affected memory section is destroyed,
and the content must be reloaded if needed again.

If a printer is to be connected to a DU 4110, a MRW memory
extension board of at least 16 kbyte is required.

Overlay technique is used for initial program loading of the NIP
module and ‘the Logon Handler. This workspace of 8.4 K bytes is
overlayed by the reminder of 0S. An overlay procedure is also
used by FDIOS.

Page Area

The page area is the first 256 bytes in main storage. Addresses
to the page area are specified by one byte only. This feature of
the page area is used to reduce program code and CPU time.

The greater part of the page area in a DU is permanently occupied
by the operating system. The remainder can be used by the
emulation or application modules. Refer to the SPL Reference
Manual.

0019c¢

)

ERICSSON 2

H

3 0S SOFTWARE OVERVIEW

0S REFERENCE MANUAL

E90003145E

1983-11-14 A | 11

'

3.13

MEMORY MAPS

The following figures presents the usage of the 64 K byte memory
space in the system units.

Note that the selected options affect the memory requirements.
Adressing ranges:

MRW MRO MFX DTC-A
T T

0000 (PAGED DATA
0100 PROM DATA
018D
0BEA 0S DATA
0S PROGRAM
3825 T T
0s | ExT.
iNIT | FD-108 USER
‘ PROGRAM
4500 USER
PROGRAM
7830 1
, » DISPLAY AREA
~ -+ 4 1 8000 (DEFAULT)
PRIOS
9A00
PRIOS OPTION
- 9Cc80 T
) .
N USER

PROGRAM

i " EQ00
FO0O L
F700 .
1/0 ADDRESSES
F800
IPL PROM
FFFF

Figure 3.3 Memory map of DU 4110/4111/4112

0019¢

3 0S SOFTWARE OVERVIEW

ERICSSON Z 0S REFERENCE MANUAL
i E90003145E ‘ v
1983=11~14 A 12

Adressing ranges:

MRW MRO MFX CPB
T 7 0000

PAGED DATA
0100
PROM DATA
0188
QS DATA
086A
0S PROGRAM
4000 osT T
INIT
5000
USER)
PROGRAM
{without MRW)
.!.. T L 1 8000 1
USER PROGRAM
{with MRW)
cooo p e
1 E000
| v
- F0Q0
F700
/O ADDRESSES
F800
IPL PROM
FFEF

Figure 3.4 Memory map of CPR 4101/4103

. 0019¢

4 DISKETTE SOFTWARE FORMAT

ERICSSON 2 0S REFERENCE MANUAL

: ; E90003145E
o : 1983-11-15 A o
Contents

4.1 GENERAL 3
4,2 PHYSICAL CAPACITY 3
£,2.1 8" Diskettes 3
4.2.2 5'"1/4 Diskettes 4
4.3 DATA ORGANISATION 5
£.3.1 Organisation Overview 5
4.3.2 Library Organisation 6
4.4 VOLUME TYPES 8
4,4,1 Empty Diskette : 8
4,42 Data Diskette 10
4£.4.3 System Diskette 11
bbb PC Diskettes 12
4,5 VOLUME LABEL (VOLLAB) 13
4.6 VOLUME TABLE OF CONTENTS (VTOC) 15
.61 General FDE Format 16
4.6,2 Special FDE Format 17
4,6.3 SYSFDE Types 19
4,7 LIBRARY TABLE OF CONTENTS (LTOC) 20
4.8 DATA SETS TYPES 21-21

0018¢

4 DISKETTE SOFTWARE FORMAT

ERICSSON Z 0S REFERENCE MANUAL
: ~ E90003145E |
' L 19832-11-15 | A ' L2

0018¢

ERICSSON 2

4 DISKETTE SOFTWARE FORMAT
0S REFERENCE MANUAL
‘ (E90003145E ;
x R 1983-11-15 ; A P 3

4.1

4.2

4.2.1

GENERAL

This chapter describes the storage format used for diskettes in
Alfaskop System 41.

This chapter also presents the tables and labels of the volume
which are normally used only by the operating system. Since
System 41 enables the user to read and write these items from the
system modules, they are presented in detail. However, system
information in labels and tables must be handled with care.

File handling is presented in section on FD Functions and File
Handling.

PHYSICAL CAPACITY

Two types of flexible disks can be used in Alfaskop System 41 -

the single sided 8" diskette complying with IBM 3740 standard
format, and the double sided 5"1/4 diskette used in FD 4122.

8" Diskettes

Tracks The diskette is divided into 77 concentric tracks
numbered from 0 to 76. Track 0 is at the outer edge
of the diskette.

Sectors A track is divided into 26 sectors containing 128
bytes each. .

Capacity An 8" diskette can thus store 256 256 bytes
(77 x 26 x 128 = 256 256 bytes).

The physical storage format complies with the IBM
standard (compatible with IBM 3740).

Track 76

S
>

Track 0

Figure 4.1 Tracks and sectors on the 8" diskette.

0018¢

Z

4 DISKETTE SOFTWARE FORMAT
0S REFERENCE MANUAL

ERICSSON 2
o E90003145E
- 1983-11-15 A ‘ 4
4.2.2 5™ /4 Diskettes
Tracks The diskette is on each side divided into 80

concentric tracks numbered from 0 to 79. Track O is
at the outer edge of the diskette.

Sectors A track is divided into 9 sectors containing 512
bytes each.

" 1/4 diskette can thus store 2 x 80 x 9 x 512 =

Capacity AS
= 720 kbytes.

The storage format complies with the IBM PC standard.

0018c¢c

4 DISKETTE SOFTWARE FORMAT
ERICSSON Z (ggoggggzggﬁ MANUAL
‘ f 1983-11-15 A | 5

4.3 DATA ORGANISATION
A collection of external data items is called a data set.

Data in a peripheral storage module (e.g. a diskette) is called a
volume. A volume can contain one or more data sets.

The items within a data set are normally arranged in distinct
physical groupings called blocks. A block is the smallest entity
which can be brought into main storage during an input operation
or transferred from main storage during an output operation.

The record is the smallest logical entity which can be referred
to by a procedure making input/output requests. A block can
comprise one or more complete records; only fixed-length records
are supported by the operating system.

To allow a module to deal primarily with the lLogical aspects of
data rather than with its physical organization a Logical entity
called a file is used. A file consists of one single data set.
The programmer may regard a file as a contiguous area containing
records. File handling is further discussed in section on FD
Functions and File Handling.

4£.,3.1 Organisation Overview

Data stored on the diskette is arranged in a number of data sets.
The data sets are described by control information in labels and
tables on the diskette.

Track 0 Track 76

Data Data Data Data Data Data
osett | set2 . ..setd3 o }......set4) setS ff. setn V.

Figure 4.2 A diskette contains a number of data sets

Each diskette contains a volume Label (VOLLAB), which presents
information about the diskette, its identification, version
number etc.

Each diskette also contains a volume table of contents (VTOC).
The VTOC consists of a number of entries designated File
Directory Entries (FDEs). Each FDE contains information about one
data set on the diskette.

Several data sets can be collected in a library. Data sets
collected in a library are called members.

0018¢

4 DISKETTE SOFTWARE FORMAT

il B s
1983-11-15 A 6
Track O yoLLas vTOC }57
Sector 0 1 2 mgx. 25

Figure 4.3 Track O contains VOLLAB and VTOC

4.3.2 Library Organization

The library concept supports data sets arranged in a 2-level
hierarchy. This makes it possible to handle a number of data sets
as one unit.

A Library consists of a number of data sets immediately preceded
by a directory. The directory is called Library Table of Contents
(LTOC) and is built up analogously to the VTOC.

The members are described by elements called Member Director
Entries (MDE). These are built up in the same way as the FDEs.
Certain user-specified information can be stored in and retrieved
from an MDE. This information is not processed by the I/0 system.

A library member is a data set which differs from ordinary user
data sets in that its directory is kept in an LTOC instead of a
VTOC. A Library cannot be a member in another Llibrary.

Modules such as source code modules, object code modules and load
modules are mostly stored in libraries.

The VOLLAB, VTOC, FDE, LTOC and MDE are all described in greater)
detail in the following sections.

0018¢

4 DISKETTE SOFTWARE FORMAT

2 E E AL
ERICSSON 2 , gggggngggc MANU
D | 1983-11-15 A 7
VOLLAB Track @ sector0
[fo
FOE Track 0 sector2
FDE
FDE
FDE Track 0 sector 3
FDE
FOE
VTOC < TEE
FDE
FDE Track 0 sectorn
FDE n = max$
FDE

User Data Set

User Library

User Data Set

Unoccupied
Area

Figure 4.4 Diskette volume organization

0018c¢

4 DISKETTE SOFTWARE FORMAT

ERICSSON Z 0S REFERENCE MANUAL
\ ‘ . E90003145E
1983-11-15 A
bob VOLUME TYPES

bobd

System 41 recognizes four main types of diskettes: system

diskettes, data diskettes, personal computer diskettes and empty
diskettes.

Empty Diskette

5'"1/4 diskettes are unformatted when delivered. 8" diskettes that
are to be used in System 41 are formatted and initialized prior
to delijvery from EIS.

The diskette is provided with a volume label (VOLLAB) and a
mini=VTOC. By using the Allocate Volume function in Console Mode,
the user can create a diskette according to his requirements.

VOLLAB
sector O
SYSFDE.1 ! track 0
Mini-VTOC 2
sector 3 . trackO
Unoccupied -
Area

Figure 4.5 Initialized empty diskette

An empty 8" diskette as delivered from Ericsson is initialized as
follows:

o The volume label (VOLLAB) contains a pointer to a mini-VTOC
(Volume Table of Contents).

o The mini-VTOC contains only one data set directory entry
(FDE), namely SYSFDE, which is a pointer to the unoccupied
area at the end of the volume.

A system/data diskette can be converted to an empty diskette

using the delete function in Console Mode. The diskette type is
then marked empty, but VOLLAB and VTOC remain.

0018¢

?”;:»‘ gl

ERICSSON

-
=

4 DISKETTE SOFTWARE FORMAT
0S REFERENCE MANUAL
E90003145E

1983-11-15. A

Diskette delivery

O

Empty Diskette

Allocate Volume
{Console Mode)’

Delete Volume
{Console Mode)

O

Data or System
Diskette

Figure 4.6 Allocating and Deleting diskettes

0018¢

ERICSSON 2

4 DISKETTE SOFTWARE FORMAT

0S REFERENCE MANUAL

E90003145E ,

1983-11-15 A 10

b£.4.2

Data Diskette

A data diskette is created from an empty diskette by using the
Allocate function in Console Mode. A data diskette contains
Alfaskop program products or user defined data.

Before any data sets have been created, the diskette is marked as
empty. The diskette VTOC contains a pointer to the unoccupied
area at the end of the volume, and a number of unused data set
directory entries. Successively, as data sets and libraries are
created on the diskette, the unused FDEs are replaced by FDEs
pointing to the created data sets.

The figure below shows how a data diskette can be arranged when a
number of different data sets have been defined.

o VOLLAB contains a pointer to VTOC.

o VTOC contains data set directory entries (FDEs) for the user
data sets and the user Llibraries on the diskette. VTOC also

contains a pointer to the unoccupied area at the end of the
volume.

o LTOC contains member directory entries (MDEs) for data sets
included in the user Library in question.

voLLas VTOC

FDE
FDE

vTOC

User Oata Set

User Qata Set
LTOC

MDE
MDE
User Data Set .

LTOC

Library Member

User Library
Library Member

2}
i

Unoccupied Area

Figure 4.7 Example of a data diskette organization

0018¢

&

ERICSSON Z

4 DISKETTE SOFTWARE FORMAT
0S REFERENCE MANUAL

 E90003145E | |
1983-11-15 A | 11

4,463

System Diskette

A system diskette is created by using the Allocate function in
Console Mode.

The system diskette contains the operating system and usually an
IBM or UNIVAC emulation. Other system programs can also be stored
on the system diskette.

Before any data sets have been created, the diskette is marked as
empty. The diskette VTOC contains a pointer to the unoccupied
area at the end of the volume, and a number of unused data set
directory entries (FDEs) . Successively, as the diskette is
provided with system data sets, user data sets and user
libraries, the VTOC is updated.

VOLLAB SYSFDE. 1

(IPL BOOTSTRAP FD)
{os FD)

SYSBOT. F

SYSIPL, F

SYSLIB. D

FDE

FDE

vTOC

{IPL BOOTSTRAP FD)

(Os FD)
SYSBOT. F
SYSIPL. F
sysLig. D
LTOC
User Data Set MDE
MDE
e

LTOC

User Library
Library Member -

Unoccupied Area

Figure 4.8 Example of System diskette organization

0018¢

ERICSSON 2

4 DISKETTE SOFTWARE FORMAT

0S REFERENCE MANUAL

E90003145€

1983-11-15 A 12

A

PC Diskettes

The PC diskettes contain bootstrap data for the personal computer
system.

There are two types of PC diskettes. They are denoted type A and
type P.

A PC diskette of type A is loaded into the FD at reset or power
on. A PC diskette of type P is loaded only on request from the
display unit on the V.24 connection.

The S41 operating system cannot handle other information on the
PC diskette than the volume label (VOLLAB). No VTOC is provided
on a PC diskette. }

The volume label of a PC diskette is extended by information to
the PC loader, which is part of the S41 operating system. See
section on Volume Label below.

0018c¢

4 DISKETTE SOFTWARE FORMAT

ERICSSON Z 0S REFERENCE MANUAL
: ES0003145E ;
1983-11-15 A 13

4.5 VOLUME LABEL (VOLLAB)

ALL diskettes in System 41 contain a volume Llabel (VOLLAB).

VOLLAB is stored in track 0, sector 0, and contains the following
information concerning the entire diskette volume.

Byte Length Name Comments
(dec) (bytes)

0 1 DTYPE Diskette type:

D Data diskette
E Empty diskette

S System diskette
A Personal Computer diskette type A
P Personal Computer diskette type P

1 8 DVOLNR The volume number is a unique number
within a system, i.e. this number must
only be used for one diskette.

e 9 41 DUINFO User information, specified below
~ 9 8 DNAME Volume name
17 2 DVERS Volume version
19 10 DREVDT Revision date
29 20 DUSER User name
49 1 DFLAG = 0 (0000 000
50 2 DSTAT Volume/system status
51 LLSSSSSS, Bits 7-6 (LL) specify sector

Length expressed as a number of bytes.

Bits 5-0 (SSSSSS) specify the number (n)
of sectors per track.

LL = 00 128, n =26 (8" standard)
LL = 01 256, n =15
LL =10 512, n= 8
LL =M 1024, n = 4

Standard value of DSTAT is 1A (hex) for
8" diskettes, and 89 (hex) for 5"1/4

(diskettes.
Bl 2 . DNPTR.. _Address.of NTOC .

52 Track address of VTOC

53 Sector address of VTOC
) 54 2 DVSIZE Size of VTOC expressed in number of file
() directory entries (FDEs)

56 8 DFDBOT FD bootstrap file name

64 24 DNAT National version

88 10 DRPQ RPQ made at a Ericsson subsidiary

The following information is provided only on PC diskettes

98 1 DHEAD Side address of PC bootstrap

99 1 DCYL Cylinder (track) address of PC bootstrap
100 1 DSECT Sector address of PC bootstrap

101 2 DNUMB Number of sectors used for PC bootstrap
103 2 DLSEGM Segment address of load point

105 2 DLOFFS Offset for load point

107 2 DJSEGM Segment address of PC-boot program start
109 2 DJOFFS Offset for program start

0018c

4 DISKETTE SOFTWARE FORMAT

ERICSSON 2 0S REFERENCE MANUAL
| ; E90003145E
| - 1983-11-15 A

14

#xx¥xE*¥%%* C O NS O L E MO DE HHERRE AR HE
DISPLAY / CHANGE vV OLUME L ABEL
GENERAL VOLUME INFORMATION)
TYPE)) NUMBER 016101>00<
VERSION 00 NAME *SYSTMAEDL
DATE 831007 NATION »BE/FI <
USER M305-00 RP® ? L= <
SECTORESLZE 128
VTOCSIZE a3z
SYSTEM VOLUME INFORMATION
PRODNAME ALFASKOP S41 IRBM3:74/78B8C:CLUSTER
- OSVERSION - 05 M305-01: CP M305-01 DU M305-01 PU —-—————=

FD M305-01 SLC =——===r

EXECUTE UNDO RETURN
ENTER PF1 PF12

Figure 4.9 The terminal console function Display/Change
Volume Label applied to a system diskette.

0018¢

/:&\

ERICSSON 2

'

4 DISKETTE SOFTWARE FORMAT
0S REFERENCE MANUAL
Z E90003145€ . | -
| ; ? ©11983-11-15 A . 150

4.6

VOLUME TABLE OF CONTENTS (VTOC)

Each data set on a diskette is described in a data set directory
entry (FDE). The FDEs, taken together, constitute another data
set called VTOC (Volume Table of Contents).

Each FDE contains information about:

Data set type, DSTYPE

Data set name, DSNAME

Access authorization level

Physical start address of data set

Data set length

Block and record sizes

Last block physical address, degree of utilization
Internal information

OO0 0 000 o0oO0

A VTOC containing a maximum of 32 FDEs can be stored in primary
storage, thus providing fast diskette access. One of the FDEs is

always used to point to the unoccupied area on the diskette.
There are two types of FDEs in VTOC:
o General FDE, pointing to user data sets

o Special FDE, pointing to user Llibraries and to the unoccupied
area at the end of the volume

VOLLAB

VTOC

Special FDEs General FDEs i

Data Set

Library

1
\
3

Unoccupied Area

Figure 4,10 Data set directory entried (FDEs) in VTOC

0018c¢

4 DISKETTE SOFTWARE FORMAT

ERICSSON Z ggogggﬁzggw MANUAL
1983-11-15 A 16

L. 6.1 General FDE Format

General FDEs are used in VTOC to point to user data sets, and in
LTOC to point to member data sets. The following information is
found in the general FDEs:

Byte Length Name Comments
(dec) (bytes)

0 1 DSTYPE Data set type
Absolute code (unpacked data)

=
i

F Fixed-length record data (unpacked
datal
R = Relocatable file
T = Table data set (packed data)
V = Variable-length record data set
(packed data)
0 = Undefined data set
7 = Released data set
1 8 DSNAME Data set name
9 2 DSSTAT Status
9 DSAUTH Access authorization Level
10 DSPROT Protection code (to be defined)
1 1 DSFBSZ Block size, expressed as an integral
number of sectors.
12 2 DS1STA Data set size, expressed in sectors
First allocation value
14 1 DSDOVH pDevice overhead (bits 7-0, LLSSSSSS).
Bits 7-6 (LL) specify sector length in
bytes. Bits 5-0 (SSSSSS) specify number
(n) of sectors per track.
LL = 00 128, n = 26 (8'standard)
tL = M 256, n=15
LL = 10 512, n= 8
L = N 1024, n= 4
Standard value of DSDOVH is 1A (hex) for
8" diskettes, and 89 (hex) for 5"1/4
diskettes.
15 1 DSFUUS Not assigned
16 DSPADR Address of first sector in the data set
16 DSPCYL Track number
17 1 DSPREC Head (side) and record (sector) number
HRRRRRRR. Bit 7 (H) head. Bits 6-0
(RRRRRRR) record number.
18 2 DSSIZE Data set size in blocks (either DSFBSZ
or DSBSIZ).
20 2 DSBSIZ Block size in bytes (logical blocks).
22 2 DSRSIZ Record size in bytes (logical records).
24 2 DSFNUB Number of blocks used. (This is the
"Logical end of file™)
26 2 DSLUSE Number of bytes used in last block
28 2 DSENPT User-defined (for SYSBOT.A, this is a
pointer to an entry point in a loaded
program) .
30 2 DSLDPT User-defined. Used by system for

LOAD/IPL command execution (for
SYSBOT.A, this is a pointer to the start
address used for loading)

0018¢

4 DISKETTE SOFTWARE FORMAT
0S REFERENCE MANUAL
E90003145E

11983-11-15 A | 17

ERICSSON 2

4.6.2 Special FDE Format

Special data set directory entries are used in VTOC to point to
the unoccupied area at the end of the volume, and to user
Libraries. The following information is found in the special FDEs.

Byte Length Name Comments
(dec) (bytes)
0 1 MSTYPE Data set type
D = Directory
1 = Unoccupied area (FDE contains
volume information)
1 8 MSNAME Data set name
9 2 MSSTAT Status
9 MSAUTH Access authorizational Llevel
10 MSPROT Protection code (to be defined)
11 1 MSFBSZ SNNNNNNN (bits 7-0). If bit 7 (S) is 1,

it indicates that this is a split track
directory. Bits 6-0 (NNNNNNN) specify
the number of data set directory entries
per sector.

12 2 MS1STA Data set size in sectors. First
allocation value.
14 1 MSDOVH Device overhead (bits 7-0), LLSSSSSS.

Bits 7-6 (LL) specify sector Llength in
bytes. Bits 5=0 (SSSSSS) specify number

{n) of sectors per track.

LL = 00 128, n = 26 (8" standard)
LL = 01 256, n =15
LL = 10 512, n= 8
L = 1 1024, n = 4

Standard value of MSDOVH is 1A (hex) for
8" diskettes, and 89 (hex) for 5"1/4

diskettes.

15 1 MSFUUS Number of sectors in VTOC/LTOC
16 2 MSPADR Address of first sector in the data set ... ===

16 1 MSPCYL Track number

17 1 MSPREC Head (side) and record (sector) number
HRRRRRRR. Bit 7 (H) head. Bits 6-0
(RRRRRRR) record number.

18 2 MSSIZE Number of unoccupied sectors

20 2 MsSBS1z (Default) block size

22 - 2 - MSRSIZ VTOC/LTGC size (in number of FDEsS/MDEs)

22 MSACT Number of active FDEs/MDEs

23 MSORG Total number of FDEs/MDEs

24 2 MSFNUB

24 MSTPO Number of type 0 (unused) FDEs/MDEs

25 MSTPT Number of type 7 (released) FDEs/MDEs

26 2 MSLUSE CHR-address of first unoccupied sector

28 2 MSENPT

28 MSDIRB Number of directory blocks

29 MSASEC Number of sectors in last directory block

30 2 MSLDPT CHR—address of last sector in this extent

0018¢

ERICSSON 2

4 DISKETTE SOFTWARE FORMAT

0S REFERENCE MANUAL

E90003145E
, , 1983-11-15 A 18
FH*HXX¥X¥®* C O N S O L E Mo DE F XA ERRR
DISPLAY v T0C

UNUSED AREA 0049 SECTORS STARTS AT €YL 4Aa SECTOR 05 UMUSED FDE OC
TYPE NAME AUTH FBSZ 45TA CYL SEC SIZIF &SIZE RSIZE FNUB LUSE ENPT LDPT

F PRODNAME 0O4 ©O1 0QQ0O01 00 0A 0G01 0030 0080 0001 0080 1ACE 17F9

A FDEOOT 05 01 QO03 00 OB 0003 Q080 0080 0003 O0QOSE &A04 6A04

F 8YSBOT 05 (01 00t0 00 O0E 0610 0080 0081 0010 0080 8745 4300

F LOGON 04 Q7 0007 0t 04 0001 03380 0380 000t 0380 0000 0000

F SYSIPL g5 01 ©00%2 01 0B 0022 0080 0080 0022 0080 0000 0GO0O0

F LPLBUMP 03 0& 0038 02 13 0007 0400 0400 0007 0400 0000 0000

D APLLIB (a]s] o0iz 04 17

D CHLIB 03 00&1 03 OF

b DCLIBE (a]e] 0op7 09 08

D KBLIB (alu] 0016 09 OF &

D RKBLIBA go 0014 0A OB

D LILIE 0o 0011 0B 07

D MLLIB 00 0c11 0B 18

D PRLIE Qo gooc 0ocC OF L
T D EMLIB1 00 ogrFg ob 01 -}
NEXT PAGE PREV PAGE RETURN

PF1 PF2 PF1Z PAGE 1

Figure 4.11

The terminal console function Display VTOC
applied to a system volume.

0018¢c

¢

y

§

ERICSSON Z

i

* 4 DISKETTE SOFTWARE FORMAT
0S REFERENCE MANUAL
E90003145E
1983-11-15 A 19

4.6.3

SYSFDE Types

SYSFDE.O

System data set directory entry of type 0 points to an unused
data set in the volume.

SYSFDE.1
System data set directory entry of type 1 points to the

unoccupied space at the end of the volume, and contains
information on the entire volume.

SYSFDE.7

System data set directory entry of type 7 points to a released
data set in the volume.

Compare with DSTYPE byte in general FDE and MSTYPE in special
FDE, as described above.

0018¢

4 DISKETTE SOFTWARE FORMAT

ERICSSON Z 0S REFERENCE MANUAL
, : - E90003145E .
1983-11=15 A 20
4.7 LIBRARY TABLE OF CONTENTS (LTOC)

The members of a library are described by descriptive elements
called Member Directory Entries (MDE). A collection of MDEs is
called an LTOC (Library Table Of Contents).

Each MDE contains the same type of information as an FDE, namely:

Member type, MSTYPE

Member name, MSNAME

Access authorization level

Physical address

Member length

Block and record sizes)

Last block physical address, degree of utilization ;g
Certain other internal I/0 system information h

000000 0o

The table elements in LTOC resemble the table elements in VTOC.

*ex¥EX**¥¥¥ C ON S O L E Mo DE s
DI g PLAY LT ocC LIBRARY NAME>SYSLIBE <

UNUSED AREA 0000 SECTORS STARTS AT CYL 2D SECTOR_OA UNUSEDR MDE 00

TYPE NAME AUTH FBSZ 18TA CYL SEC SIZE ©SIZE RSIZE FNUB LUSE ENPT LDPT
A BIGEOOZO0 0s 02 006C 16 12 0Q0&4 0100 0100 0004 OOE3 3508 3508
A BCCSO?00 03 02 0002 17 04 0001 Q400 0100 0001 00Bg 4e3Q QB30
A BCC50300 I @z 0002 17 0& Q001 Q100 0400 Q001 OQFQ 0co0 Qcad
F. QBVERS 03 02 0002 17 ©a& Q001 0100 0048 0001 0043 0000 0000
& BXFAO31 00 0OF 00AC 17 0A 00564 0100 0100 0056 0QA1 3SE77 13B3
A& BXCAQ31 05 0F 0076 4E OO 0038 04100 0400 0038 00p? O0BOOD OBOO
4 LOGONPRG 05 02 004C 2Z O0OE 0024 0100 0100 0026 0036 4760 4766
A BXDAOJ: 0% 0OF 0084 23 OC 0042 0100 04100 0042 0100 0600 0&00
A PRGPTION O35 01 060 2A O0E 0005 0030 0080 Q005 Q072 FAQE 9AQ0E
A PRDEF - 03 0 000c =2A 13 0004 Q100 0100 000& QDBO7 2407 2407
& PUPROGRM 0S 02 O002E 2B 05 0D17 0100 0100 0017 00F% 830E 830E
4 PRSTRAPS 05 01 O0O00B 32C 19 000p 0080 0080 O000B 00OSF 9FOE FFOE

END OF LTOC

EXECUTE NEXT PAGE PREV PAGE RETURN

ENTER PF1 PFZ PF1iZ PAGE 1

Figure 4.12 The terminal console function Display LTOC used
on the library SYSLIB on a system diskette.

0018¢c

* 4 DISKETTE SOFTWARE FORMAT

ERICSSON 2 0S REFERENCE MANUAL
‘ , : E90003145E
1983-11-15 A 21
4.8 DATA SET TYPES

The following types of data sets are defined in Alfaskop System
41:

D Library file (D stands for directory).
Specifies a library in the VTOC entry. File type D must not be
used in an LTOC element. If the volume is accessed as file
type D, VTOC will be accessed as a sequential file.

F Fixed-length record file (contains unpacked data).

A Absolute file (unpacked form) generated by the linkage editor
when Llinking object modules from files 'of type R. Files of
type A require four bytes of user information in the vTOC
entry to store the entry point and load point addresses.
Absolute files are in absolute code.

- V Variable~length record file containing packed data, j.e.

(series of identical characters are replaced by two bytes.
First byte specifies the number of characters in the series.
Second byte specifies the character that constitutes the
series. Source code is kept in this type of file.

R Relocatable file (contains relocatable packed data and is used
by the SPL compiler). This type of file is in object code.

T Table file (packed form) generated by the Linkage editor to
provide relocation information.

0 Unused data set
1 Unoccupied area
7 Released data set

i : A short notation is often used in this manual to indicate the
(data set type. For example, SYSLIB.D indicates that the data set

named SYSLIB is of type D, i.e. SYSLIB is a library.

, Note that the file handling system of Alfaskop System 41 only

(supports handling of files of types D, F, A and V. A logical file
can be associated with a simple data set, a library or an entire
volume. See section on FD Unit Functions and File Handling.

0018¢

5 INITIALIZATION AND LOGON

ERICSSON Z 0S REFERENCE MANUAL

. E90003145E : ,
1983-11-14 A o1
Contents
5.1 INITIALIZATION 3
5.1.1 IPL (Initial Program Loading) 3
5.1.1 NIP (Nucleus Initialization Procedure) 7
5.2 LOGON 9
5.2.1 Manual Logon 10
5.2.2 LOGON File : 12
5.2.3 MENUFILE.F 13
5.2.4 Menu Logon 13
5.2.5 Message Line Logon 13
5.2.6 Autologon 13
5.3 PROGRAM LOAD 15
5.3.1 Single Module Load - 15
5.3.2 Load Map Load 15
Sele LOGOFF 16
5.5 SYSTEM DATA SETS 17
5.5.1 FD Load Modules 17
5.5.2 SYSBOT.F . 17
5.5.3 SYSIPL.F 18
5.5.4 SYSLIB.D . 18
L] ~
5.6 AUTHORIZATION LEVELS : 19-19

0287¢

ERICSSON

=
=

5 INITIALIZATION AND LOGON
0S REFERENCE MANUAL
ES0003145E

1983-11-14 A

0287¢

ERICSSON 2
|

5 INITIALIZATION AND LOGON

08 REFERENCE MANUAL

E90003145E

1983-11-14 A f 3

5.1

5.2

INITIALIZATION

When power is turned on to a system unit the system software must be
loaded from the system diskette.

The initialization procedure can be divided into three phases:

o IPL (Initial Program Load) which is used to load the operating
system from the system diskette.

o NIP (Nucleus Initialization Procedure) which initializes the
operating system.

o Loading of the system modules and application modules. This is
performed in association with the logon procedure.

The three phases are all described in the following.

IPL (Initial Program Loading)

An IPL modules is stored in non-volatile memory (a 2 K byte PROM) so
that program loading can be carried out after a power failure in a
System 41 unit.

The IPL procedure is performed when power is turned on or when the
RESET pushbutton is depressed. The two events initiate slightly
differing IPL procedures,

When power is turned on, a test procedure is executed prior to
program loading. This test procedure carriers out the following:

0 RWM test conducted by writing and reding the first 32 k RWM cells,

o PROM test conducted by carrying out a CRC-16 (Cyclic Redundancy

Check) calculation of the PROM content and comparing the result

with a sum stored in the PROM.

When the RESET pushbutton is depressed, no test procedures are
carried out. Instead, a dump function is performed.

In addition to the test and dump procedures, the IPL PROM contains:
o A routine used for initializing the peripheral circuits

o A limited Communication Handler sufficient to handle initial
two~wire communication

o A simple Timer Handler that provides time supervision of the
initial communication

o SPL subroutines

0287¢

ERICSSON 2

5 INITIALIZATION AND LOGON
0S REFERENCE MANUAL
, E90003145E |
g . 1983-11-14 A o 4

The IPL procedure is explained by means of flowcharts showing the
most important steps (See figures below). During the loading
procedure of a DU unit, messages are presented on the bottom Line of
the screen. These messages also appear in the flowchart.

The IPL command isued to FD contains, as a parameter, the physical
unit number. The unit number is used as an index to the sequential
SYSBOT.F file. The index identifies the absolute module that is to be
Loaded from the Llibrary SYSLIB.

Information is also obtained from SYSLIB about the load point (the
address at which the module is to be stored) and the entry point (the
address at which the execution of the module is to start after
loading) .

Note. In display units which load the character generator from
diskette, the various IPL phases are indicated by filled rectangles
on the message line. See document on Maintenance.

0287¢

5 INITIALIZATION AND LOGON
ERICSSON Z ggogggszggc&: MANUAL
, ‘ S 0 1983-11-14 | A ;

@ Power on or Reset

Resetting the peripheral circuits

Power on?

Execute test routine

,(Dump data areas that are of interest.
) ’ Execute PROM test.

Initialize hardware for loading

LOAD appears on screen

POLL from CP?

LOAD P appears on screen
Send POLL response with
IPL request to CP

IPL request approved?

LLOAD. | appears on screen

The nucieus is ioaded into the flexible disk unit as per‘the IPL table in the SYSBOT.F
data set. NUCNAME k is MEMBER NAME k in SYSLIB, Record No. k {RK] is
transmitted to the display unit for subsequent use by NIP,

UR no SYSBOT.F {IPL tabie)
00 NUCNAMEQ o
(' Receive a block rec
S o1 NUCNAME 1 no

Block OK?
K NUCNAMEK |
. n NUCNAMEn | fe
Last biock?
Start NIP

Figs. 5.1 1IPL flowchart for DU

0287¢

s

ERICSSON Z

l

5 INITIALIZATION AND LOGON
- 0S REFERENCE MANUAL
E90003145E
1 1983-11-14 A 6

Power on or Reset

i

Resetting the peripheral circuits
Turn off READY lamp on CP

N Power on?

Execute test routine

Dump data areas that are of interest.
Execute PROM test.

i

Initialize hardware for loading
Flash READY lamp with 1 Hz

POLL FD }

N
FD OK?
Y

Send |IPL request to FD

N tPL request approved?
Y

Flash READY lamp with 4 Hz

The nucleus is loaded into the flexible disk unit as per
the IPL table in the SYSBOT.F data set.

NUCNAME k is MEMBER NAME k in SYSLIB-
Record No. k (Rk) is transmitted to the display

unit for subsequent usg by NIP.

Receive a biock

Block OK?

L ast block?

Steady light on READY lamp
Start NIP.

Fig. 5.2 1IPL flowchart for CP

0287¢

5 INITIALIZATION AND LOGON

ERICSSON Z , 0S REFERENCE MANUAL
§ : ; \ E90003145€ , :
. B 1983-11-14 A) 7
5.1.2 NIP Nucleus Initialization Procedure

To start up the operating system after initial program loading (IPL),
there is a procedure called NIP which initializes and activates the
different parts of the operating system.

NIP is divided into two parts, one of which is resident and one of
which is an overlay segment. The overlay segment contains modules
which initialize the remainder of 0S and write (on flexible disk) the
dumps saved in connection with RESET.

The NIP procedure is presented by the simplified flowcharts below:

NipP Started by !PL
Load map file
- (SYSIPL.F)
Load map 1
Initialize Task Management
. . Load map 2
Initialize: Time Handler
Communication Handler .
{ Load map n }
Activate OS task:
KB Handler
Message. {ine Handler
No of modules
Unit equipped with No of char. in info
N * MRW board?
Load Libary name
Indicate that unit not module 1
Y equipped with MRW board Member name
Execute RAM test on MRW Load Libary name
module 2 Member name
N Any dump to be written? Load Libary name
module n
Member name
Y
°
. o tafo
(Write dump in $IPLDUMP.F {max. 72 char.)
Record number = 0?
{fetch from SYSBOT.F)
N
(y Load record from foad map file (SYSIPL.F),
' Load modules d@s per Icad map and save information
for LOGON Handler.

|

Active OS task:
Supervisor select

Call LOGON SUPERVISOR

Fig. 5.3 NIP flowchart for DU

0287¢

ERICSSON

=
=

5 INITIALIZATION AND LOGON
0S REFERENCE MANUAL

E90003145E
1983-11-14

Unit equipped with MRW board?

Indicate that unit not equipped with MRW board

Execute RAM test on MRW board

" Initialize Task Management

Initialize; Supervisor select
Timar Handler
Communication Handler

Any dump to be written?

Write dump in § IPLDUMP.F

Record nrumber = O?
(fetch from SYSBOT.F}

N [

Load record from Load map
file (SYSIPL.F). Load modules as
per load map

Load C P emulation {

Activate EM task:
CP emulation

{Wait for RESET event)

Fig. 5.4 NIP flowchart for CP

SYSIPL.F

Load map 1

Load map 2

Load map n

No of modules

No. of char. in info

Libary name

Membername

Libary name

Member name

Libary name

Member name

info
{max. 72 char.)

Load
module 1

)

Load
module n

0287c¢

ERICSSON 2

5 INITIALIZATION AND LOGON
0S REFERENCE MANUAL
. E90003145E |
: ‘ 1983-11-14 A, 9

5.2

{ AUTOLOGON
Y Is information available? (Obtained from NIP).
MANUAL N
LOGON
Await Logon command from operator.
>_ Is Logon command an approved command?
Y
Write error message to operator.

LOGON

Logon is the procedure in which the desired emulation and/or
application program is lLoaded from diskette and started up.

Logon is carried out by the Logon Supervisor and the Logon Handler,
The Llogon procedure can be performed in various ways:

o Manually by the operator using the manual logon form.

o By the operator selecting the desired lLogon item from a lLogon menu.

o By the operator entering the desired module code on message Lline
when an emulation is loaded.

o Automatically by means of Autologon.

LOGON

Execute Logon as per Logon command.

Fige 5.5 Simplified fLowcHart for Logon

0287¢

ERICSSON 2

5 INITIALIZATION AND LOGON

0S REFERENCE MANUAL

E90003145E

1983-11-14 A ‘ 10

5.2.1

Manual Logon

The following parameters appear on the manual logon form:

VOLUME NAME
LOGON/FILE NAME
LOAD MAP NO
PASSWORD 1
PASSWORD 2
CONTROL INFO

VOLUME NAME is the name of diskette on which the desired lLogon item
(data set) is stored.

LOGON/FILE NAME is associated with the name of the desired data set
via the LOGON file. Several logon/file names can be associated with
the same data set. For example, a data set can be identified by its
own name in upper and lower case letters, and by one abbreviation.

LOAD MAP NO is the number of the record in which the load map is
Located. If no load map is specified, the unit will be loaded with a

default load map from the LOGON file. See section on Program Load
below.

PASSWORDS defines authorization. System 41 provides'six different
authorization classes denoted 0-5. See section on Authorization below.

CONTROL INFO is information that is turned over to the system module
after LOGON. Information entered into this field is available to the
application in a globally declared area called BUFFEREM. This area
can be declared by the user as follows:

DECLARE 1 BUFFEREM EXTERNAL,
2'* CHAR(6),
2 MESSEM CHAR(7S);

Control information can also be found in the load map. If such is the
case, information in the Lload map is overridden by the control
information entered by the operator.

Figure 5.6 presents a simplified flowchart showing how manual Llogon
is carried out.

When the LOGON/FILE NAME identifier has been translated to the system
module name, the system module is loaded into DU. In the simplified
flowchart, this module is named SYSMODK. If a load map load is to be
carried out, there will be a fixed-length record file having the same
name as the system module but with .F appended. In the flowchart, it
is thus designated SYSMODK.F.

The load map format is the same as shown in figures for IPL above.

0287c

5 INITIALIZATION AND LOGON
ERICSSON Z . ggogggzggw MANUAL

1.

1983-11-14 A
LOGON

@ Logon supsrvisor reads in Logon Mandler
@ Logon Handler reads in Logon file and keyboard table
@ Qperator enters L.egon Command
Error message appesars on screen SYSUB. D
LTOC
@ Correct Daswc(ds; :
Legal load map na
Legal logon name? SYSMOD 1
Y SYSMOD 2
. Logon identifier translated to system module
. name via the LOGON: file /{ SYSMOD x
¥ System moduie {SYSMODK) loaded from
SYsLIB SYSMOQOD n
Rec, Na. SYSMODK. F
MAP
M LOAD ! Load man
Load mag no in Logon command?
2 Load map
N Carry out mao load via systam
. file called SYSMODK, F
SINGLE
MODULE
LOAD
N Contral infarmation in Logon
command
n Load map
¥ Conwrai infarmation in lcad mao?

N

Hand aver control information to system module

B @ T . Start SYSMODK

Fig. 5.5 Manual Logon and program lLoad

Manual Logon, functional steps:

Logon Supérvisor loads Logon Héndler
Logon Handler reads in LOGON file and Keyboard Table

Operator fills in the manual lLogon form and depresses ENTER
Logon Handler approves Logon command

. Logon Supervisor loads the selected module (overlay of Logon
Handler sometimes occurs)

Loaded module is executed.

N HWN
a

o
e

0287¢

ERICSSON 2

5 INITIALIZATION AND LOGON
0S REFERENCE MANUAL
E9000314SE

1983-11-14 A’

12

5.2.2

LOGON File

A LOGON file of type F is provided on the system diskette (and also
on some data diskettes containing programs). The following
information is stored in the LOGON file:

o]

A table for conversion from the LOGON/FILE NAME entry to th
appropriate data set. If the entered logon identification i
name of a data set, no conversion is performed. This is als
case if a member name is entered, and the name of the libra
the same as the name of the member.

A table for association of LOGON/FILE NAME to communication
processor., (Used only in Dual Host configurations.)

The default keyboard table for all DUs.

The default Load map number for all DUs in the cluster. Thi
map is used if no load map number is used at logon.

e

s 3

o the

ry is

s lLoad -

0287¢

ERICSSON 2

5 INITIALIZATION AND LOGON

0S REFERENCE MANUA

E90003145E | | o
1983-11-14 ' A 13

5.2.3 MENUFILE.F
To obtain a simplified logon procedure, a MENUFILE is provided on all
system diskettes of version 3.5 and lLater.
MENUFILE.F can be defined as desired by the user. The file contains
18 records, containing 54 bytes each. The first record contains the
menu header and the input prompter. The remaining records are to be
defined by the user. (This 1is performed in Console Mode).
Each record specifies one selectable Logon item. Only modules that
don't required any password can be specified on the menu.
Each module on the menu is associated with a code consisting of up to
three characters. The identificaton code specifies the following
items for the module:
VOLUME NAME
LOGON/FILE NAME
LOAD MAP NO
One of the specified codes must refer to the manual logon form,
thereby making it possible to load modules which require password
authorization. :

5.2.4 Menu Logon
When MENUFILE.F is provided, the menu is presented instead of the
manual logon form when power is turned on to the DU.
Each selectable logon jtem is associated with a identification code.
The desired code is entered in the input field of the menu, and the
predefined combination of Logon parameters are handed over to the
Logon Handler.

5.2.5 Message Line Logon

When MENUFILE.F is provided, the desired code can also be entered
directly on the *0S* message Line when an emulation is loaded.

0287c

ERICSSON Z

5 INITIALIZATION AND LOGON

0S REFERENCE MANUAL

E90003145E

1983-11-14 - A 14

5.2.6

Autologon

Autologon is specified during customizing of the system. The logon
name and the load map No. are entered in the autologon form in
Console Mode.

The load map contains the name of the absolute module that is to be
Loaded when power is turned on or the unit is reset. The load map
also contains control information analogous to the CONTROL INFO
entered by the operator during manual logon. The control information
field contains 58 bytes.

The Logon Handler evaluates the control information handed over by

NIP in the same way as if a logon command had been received in i}
connection with manual logon. The procedure is then the same as

carried out for manual logon. See section 5.2.1.

Autologon, functional steps:

1. Logon supervisor loads Logon Handler and Extende FDIOS
2. Logon Handler reads in LOGON file and Keyboard Table

3. Logon Handler evaluates information obtained from Load map
received by NIP

4, Logon Handler approves Logon command

5. Logon Supervisor loads specified module (overlay of Logon Handler
sometimes occurs)

6. Module that was loaded is executed.

0287¢

(.,

ERICSSON Z

5 INITIALIZATION AND LOGON
0S REFERENCE MANUAL

E90003145E o
1983-11-14 A .15

5.3

5.3.1

5.3.2

PROGRAM LOAD
As mentioned in secion on Logon, program loading can be carried out

in two ways: as a single module load or as a load map load. The Lload
map Load is used only by NIP and during lLogon.

Single Module Load

The single module load can be carried out from a data set or from a
member of a Library. Only absolute modules can be loaded from other
files. Program lLoading can comprise one or more blocks.

The entry point and the load point are stored in the data set
description element (FDE) on flexible disk, and they are transmitted
together with each block (lLoad points are incremented).

The entry point and the Load point are defined in connection with the

creation of the module, but can also be modified via a change command
set to FD.

L.oad Map Load

The Load map provides loading of a predetermined combination of
modules into the display unit and/or the PCU. First, a basic module
is loaded by means of a single module load. Then additional modules,
specified in the load map, are loaded.

The load map function is activated by means of an index which points
to a record in the fixed-length record file that contains the load
map. This index is obtained from the SYSBOT.F file during IPL. The
record number is then handed over to NIP so that a load map load can
be carried out.

No Lload map load is carried out if the record number is Q.

For Logon, the record number is obtained from the LOAD MAP NO.
parameter in the Logon command. The basic module is obtained by
translating the LOGON/FILE NAME in the command to a system module
name via the LOGON file.

The fixed-length record file has the same name as the basic module
member, althought .F has been appended. If the record numnber is Q, a

default record number, defined at system generation time, is used.
See sectionon Logon.

The IPL figures present the load map format.

0287¢

5 INITIALIZATION AND LOGON

= 0S REFEREMCE MANUAL
ERICSSON = o E90003145E |
o C 1983-11-14 A 16
5.4 LOGOFF

To some extent, Logoff is handled by the system module which was
attached as a task by the Logon Supervisor at Logon time. When this
task is terminated, logoff occurs.

1f a program product is to be logged off, the operator follows the
instructions given in the program. .

1¥ an emulation is to be logged off, the operator only has to enter
LOGOFF on the *0S* message lLine. (In fact any code that does not
correspond to a logon item can be entered in order to logoff the
emulation if a menu file is provided.)

The. Logoff command causes the logoff event to be posted, indicating
to the system module that a logoff command has been executed. The
module must then immediately conclude its work and pass control back
to the Logon Supervisor.

It is the responsibility of the 0S user to see that the system module
subtasks are terminated properly and that they do not wait for any
events. The global byte BID_$0245 indicates whether the printer
editor is processing. See section 12.9.4.

Wwhen Llogoff has been carried out, the Logon Supervisor Loads the

Logon Handler into DU. The Logon Handler then presents the logon menu
and waits for an operator entry.

0287¢

ERICSSON 2

5 INITIALIZATION AND LOGON
0S REFERENCE MANUAL
E90003145E

1983-11-14 A o1

5.5

5.5.1

5.5.2

SYSTEM DATA SETS

FD Load Modules

The FD load modules are loaded when initial program Loading takes
place for the FDP unit. At IPL time the IPL Bootstrap FD module is
loaded by the IPL PROM. Its file name is defined in the DFDBOT entry
in VOLLAB. Thereafter the IPL Bootstrap FD module loads the FD
operating system. Its file name is defined in the software of the IPL
Bootstrap FD module. In FD 4122, the FD operat1ng system is
immediately loaded.

The system diskette contains a number of system data sets. The data
sets presented below are essential to the loading and initializing of

the operating system.

SYSBOT.F

SYSBOT.F is a table used to translate physical unit addresses to data
set names. The desired data set s loaded into the unit during the
initial program load phase (IPL).

The table compriseé a list of absolute member names arranged in
physical address sequence., The absolute members are collected in the
Library SYSLIB.

A record number is stored together with each member's name in the
SYSBOT file. The record number indicates in which record of the
SYSIPL file supplementary information can be found. L

-
MEMBER R CHAR (7) + Byte
NAME 0 0
MEMBER .
NAME 1 A | o e
MEMBER
NAME 2 R2
> 208 x 8 = 1,6 Kbytes
MEMBER]
NAME n n
e

Figure 5.7 SYSBOT table with member names and record numbers.

0287¢

ERICSSON 2

5 INITIALIZATION AND LOGON

0S REFERENCE MANUAL

E90003145E

1983-11-14 A 18

5.5.3

5.5.4

SYSIPL.F

SYSIPL is a data set which contains supplementary information used
for initial program loading of the system units.

SYSLIB.D

SYSLIB is a Llibrary which contains, among other things, all absolute
members that are used for initial program loading (IPL) of the system
units.

0287c¢

Seuger

5 INITIALIZATION AND LOGON

ERICSSON Z 0S REFERENCE MANUAL
~ E90003145E .
1 1 1983-11-14 - ' A 19
5.6 AUTHORIZATION LEVELS

Alfaskop System 41 provides for six different authorization classes,
denoted 0-5. The authorization classes are introduced to prevent
unauthorized changing or deleting of program modules.

Each system module is assigned one of the six authorization classes.

Two passwords are associated with the authorization classes. The
passwords are to be entered by the operator on the manual Llogon form.

Modules with authorization 0 do not require any password.
Modules with authorization 1-3 require at least password No 1.

Modules with authorization 4-5 require both password No 1 and
password No Z.

0287¢

6 MULTITASKING AND INTERRUPTS

ERICSSON 2 0S REFERENCE MANUAL
. E90003145E . ; i
1983-11-14 = A 1
Contents
6.1 GENERAL 3
6.2 EVENT CONTROL 3
6.2.1 Event Declaration 3
6.2.2 Event Control Block 4
6.3 MULTITASKING FUNCTIONS 5
6.3.1 Task Declaration 5
6.3.2 Task Control Block (TCB) 5
6.3.3 Attach Task 8
6.3.4 WAIT Event 9
6.3.5 POST Event 9
6.3.6 ASSIGN Event 9
6.3.7 WAIT Task 10
6.3.8 Task Termination 10
6.3.9 CANCEL Event 10
6.3.10 CANCEL Task 10
6.3.11 EXIT 11
6.4 INTERRUPT HANDLING 11
6.4.1 Reset Interrupts 12
6.4.2 Software Interrupts 12
6.4.3 Interrupts from Peripheral Circuits 12
6.4 4 Interrupt Levels 13
6.4.5 Interrupt Procedures 13
6.4.6 Interrupt Vectors - 15
6.4.7 Examples of Interrupt Handling 17-21

0226c

ERICSSON Z

6 MULTITASKING AND IMNTERRUPTS

0S REFEREMCE MANUAL

ES0003145E

1983-11-14 A o 2

0226¢

6 MULTITASKING AND INTERRUPTS

ERICSSON Z 0S REFERENCE MANUAL
S ‘ E90003145E
1983-11-14- A . 3
6.1 GENERAL

6.2

This section is a functional description of the 0S module Task
Manager. The Task Manager processes the muiltitasking statements in
an SPL program.

A general desc¢ription of the multitasking concept is presented in
Section 1.

The SPL commands are described in detail in the SPL Reference Manual.

The hardware circuits used for Interrupt handling are described in
the Technical Description.

EVENT CONTROL

The "event" is the SPL concept for temporary synchronization of
asynchronous processes.

The event can be regarded as a global flag, whose current status can
be checked by any task in the system.

The event status is contained in a control block in main storage. The
following control blocks can be used for events:

o Task Control Block (TCB) .
An event occurs when the task terminates or is terminated by a

superior task. The task control block is presented in detail in
section on Multitasking Functions below.

o Volume Control Block (VCB)
An event occurs when a volume command is executed by FDIOS. See
section on FD Functions.

o File Control Block (FCB)
An event occurs when a file command is executed by FDIOS. See

6.2.1

section on FD Functions.

o Event Control Block (ECB)
The event control block is used for events which are explicitly
declared as SPL variables of type EVENT. An event occurs when the
event is posted. The event control block is further discussed
below. '

Event Declaration

The event variable must be explicitly declared in the SPL code.

Example
DECLARE CODE_IN EVENT; /* event */
DECLARE BGD_§OOZD EVENT EXTERNAL;) /* global event */

0226c¢

6 MULTITASKING AND INTERRUPTS

ERICSSON 2 0S REFERENCE MANUAL
, , : . E90003145E
1983=11-14 A } 4
Each declaration of a new event variable causes allocation of a new
event control block.
6.2.2 Event Control Block

An event control block of 5 bytes is associated with each event in
the system.

From this control block, Task Manager can ascertain:

- whether or not the event has occurred
- whether any task is awaiting this event

- whether anything abnormal has happened (exception)

STATUS ERROR WAITING TCB CONTROL
a TYPE POINTER . BLOCK
’ : STATUS

Fig. 6.1 Event Control Block (ECB) Llayout

The data fields in the‘event control block have the following meaning:

STATUS - This field contains a status byte, which

can be read by the user via the built=in
function STATUS (event) (see the SPL
manual) .

ERROR TYPE - This field can also be read by the user
via built=in function ERRORTYPE (event).

WAITING TCB POINTER - The address of a waiting TCB.

CONTROL BLOCK STATUS
Bit 76543210
X Post
X Task waiting
X Exception
XX XXX Not used

PRIOS uses the STATUS and ERROR TYPE fields in a special way.
See section on Printer Functions.

0226c

6 MULTITASKING AND INTERRUPTS

ERICSSON 2 0S REFERENCE MANUAL
T o (E90003145E | 5
Cod | 1983-11-14 = A . 5
6.3 MULTITASKING FUNCTIONS

The task is the SPL implementation of a logical process.
Processing is defined by means of SPL statements for multitasking
functions. The general concepts of multitasking are discussed in
Section 1.

6.3.1 Task declaration
Each procedure that is intended to be executed as a task must
have the TASK option in its declaration.
Example:
MY_PROC:
PROCEDURE OPTIONS (TASK);
END MY_PROC;
This procedure can be attached as a subtask to the attaching
procedure. (The attaching procedure js often declared as a task
itself.)
Example:
MAIN_PROC:
PROCEDURE;
DECLARE TP TASK; - /* declare reference to the task */
CALL MY_PROC TASK(TP) PRIORITY(-1); /* attach task TP */
WAIT TP; /*wait for termination of task TP */
END MAIN PROC;
The attach and wait functions are further discussed below.
6.3.2 Task Control Block (TCB)

The activation of a declared task causes allocation of a task
control block of 64 bytes in main storage.

The four first bytes in the task control block can be regarded as
an event control block (ECB).

0226c¢

6 MULTITASKING AND INTERRUPTS
ERICSSON 2 0S REFERENCE MANUAL
: E90003145E

1983-11-14 A

The task control block is used by the Task Manager to store and
change information about

- the task state (active, ready, waiting or inactive)

- the absolute task priority

- whiﬁh other task (if any) is awaiting the termination of this
tas

The task control block also contains an internal stack to store

information needed to permit continued processing after an
interrupt or a jump to a subroutine.

i 2 4 5 8
° ERROR . CONTROL | ABSOLUTE STACK
STATUS | TYPE WAITING TCB BLOCK PRICRITY POINTER
POINTER STATUS
NEXT READY TCB STACK b
POINTER
b

AN AN AN

2%
G

'—\\\7

Fig. 6.2 Task Control Block (TCB) layout

0226c¢

ERICSSON Z

6 MULTITASKING AND INTERRUPTS
0S REFERENCE MANUAL
E90003145E

1983-11-14 A

The different fields in the

meaning:

STATUS

ERROR TYPE

WAITING TCB POINTER
CONTROL BLOCK STATUS

Bit 76543210

ABSOLUTE PRIORITY
STACK POINTER
NEXT READY TCB

POINTER

STACK

task control block have the following

This field contains a status byte,
which can be read by the user via the
built-in function STATUS (task) (see
the SPL manual).

This field can also be read by the
user via built-in function ERRORTYPE
(task).

The address of a waiting TCB.

A byte with the following meaning
when bits set:

Post (Task return termination)
Task waiting

Exception (Task exit termination)
Not used

Suspended

Not used

Waiting

Ready

The absolute task priority, a number
between 0 and 255.

Address pointer to the internal stack
in the TCB.

Address pointer to the next ready
TCB.

A 54 byte field used as internal
stack for the task.

0226¢

6 MULTITASKING AND INTERRUPTS

ERICSSON Z 0S REFERENCE MANUAL
; ' , EQQ003145E
1983-11-14 A 8
Inactive State
| CALL with TASK/PRIO option
|
3 |
v
Ready State i
Queue on priority basis ;
Interrupted Highest
priority w}
Active State .
Task terminated by 4)
RETURN or EXIT
WALT
Wait State . event
occurred
Fig. 6.3 Task States
6.3.3 Attach Task

When a task is declared, it enters the inactive state.

A task is activated (attached) by another procedure issuing a CALL

with the TASK and PRIORITY options.
Example:

CALL MY_PROC TASK (TP) PRIORITY (-1);

The procedure MY_PROC is executed as a task. The task is identified
by the task variable TP. The priority of the task is in this case

lower than the attaching task's priority.

0226¢

6 MULTITASKING AND INTERRUPTS

ERICSSON Z 0S REFERENCE MANUAL
; ; : E90003145E ~ ;
1983-11-14 A 9

6.3.4 WAIT Event

A task can be forced to await a certain event in the system. The
scope of the event declaration must comprise the procedure in
guestion.

Example:
WAIT CODE_IN;

CODE_IN must be declared as en event variable. When the wait
statement is executed, the event status is checked. If the event has
occurred, the execution is immediately continued. If the event has
not yet occurred, the executing task enters the waiting state until
the event is posted.

Execution of the WAIT statement does not affect the status of the
event variable.

¢
6.3.5 POST Event
The POST statement is used to indicate the occurrence of a declared
event.
Example:
POST CODE_IN;
CODE_IN must be a declared event variable. The execution of the POST
statement causes an 0S request interrupt. If any task was awaiting
this event, this task is entered jnto the ready state.
The task in the Ready state gueue having the highest priority
continues execution after the interrupt. ;
(
6.3.6 ASSIGN Event
) The ASSIGN statement is used to reset an event variable to indicate
(that the event has not occurred.

The ASSIGN statement is often used immediately before or after a WAIT

statement, to prevent a looping task from reexecuting on the same
event several times.

Examples

ASSIGN CODE_IN;

WAIT CODE-IN;

"EXECUTE_CODE"

"LOOP AND WAIT FOR A NEW CODE"

CODE_IN must be declared as an event variable.

0226c

6 MULTITASKING AND INTERRUPTS

ERICSSON 2 0S REFERENCE MANUAL
x E90003145E ;
1983-11-14 A 1 10

6.3.7 WAIT Task

The WAIT (task) statement is used when one task is dependent on the
completion of another task's execution.

Example:

DECLARE TP TASK;

CALL MY_PROC TASK (TP) priority -1;

WAIT TP;

In the example above, the execution of task TP is not started until

the WAIT statement is executed, since the task TP has a lower

relative priority than the attaching task (provided that there is not

more than one processor available). ij

6.3.8 Task Termination

When a task executes the RETURN statement, the task terminates.

The task termination causes the implicitly declared termination event
to be posted in the task control block. The posting of this event
causes an 0S request interrupt. If any task was awaiting the
termination, the task is entered into the ready state.

The task in the ready state queue having the highest priority
continues execution after the interrupt.

6.3.9 CANCEL Event

Execution of the CANCEL (event) statement causes an abnormal event
posting.

An EXCEPTION is marked in the event control block, and an 0S request

interrupt is obtained. xuﬁ

6.3.10 CANCEL Task

By means of the CANCEL (task) statement, a superior task can force a
subtask to terminate abnormally.

An EXCEPTION is marked in the task control block of the terminated
task, and the task termination event is posted.

0226¢

6 MULTITASKING AND INTERRUPTS

ERICSSON Z o ggoggg$zggce MANUAL |
3 T 1983-11-14 A , o
Example:

6.3.11

6.4

DECLARE TP TASK;

IF "something wrong
THEN
CANCEL TP;

1

EXIT

A task can terminate jtself abnormally by executing the EXIT
statement.

An EXCEPTION is marked in the task control block, and the task
termination event is posted.

-

For a detajled description of the SPL statements, refer to the SPL
Reference Manual.

INTERRUPT HANDLING
The concept of asynchronous processing is based on interrupt handling.

The interrupt handling is basically performed in six steps:

= The MPUs receives an interrupt signal

- The current main program statement is excecuted

- The register contents of the MPU and the program counter are saved
on a stack

= The address of the appropriate interrupt routine is loaded into
the program counter from an interrupt vector (see below)

~ The interrupt routine is executed (the execution can comprise
attaching of subtasks)

- The main program is continued

The details of the interrupt handling are hardware dependent. See the
Technical Description.

The general concepts are presented below.

The microprocessor reacts to four different interrupts:-

- Reset Interrupt
Power is turned on or the Reset button is pushed

- Non Maskable Interrupt (NMI)
A non maskable interrupt must always be accepted by the processor.
Used differently in different units. See the Technical Description.

0226¢

ERICSSON

6 MULTITASKING AND INTERRUPTS
z 0S REFERENCE MANUAL
E90003145E
‘ 1983-11-14 A » 12

6.4.1

6.4.2

6.4.3

- Software Interrupt (SWI)

This interrupt is generated by program statements such as POST,
CALL and RETURN via the 0S Request Handler.

- Interrupt Request (IRQ)
This interrupt type is used for interrupts from peripheral
circuits.

The different interrupt types are further discussed below.

Reset Interrupts

The POWER ON interrupt is used to initiate program loading and
initialization of the system units. A POWER ON interrupt is initiated
by the hardware when power is turned on.

Wwhen the external RESET pushbutton is depressed, a bit is set in the
hardware in a MIC register to indicate RESET condition and then the
POWER ON interrupt is initiated.

“The start/restart interrupt handling routines are stored in PROM. A

description of these functions is presented in section on
Initialization and Logon.

Software Interrupts

Software interrupts are generated in order to access the 0S Request
Handler.

The 0S Request Handler is invoked when SPL statements such as POST,
RETURN or CALL are executed.

The 0S Request Handler does not perform any processing itself. The
processing is carried out in Task Manager and FDIOS, and depends on
the parameters issued in the call. The 0S Request Handler serves as a

"orocedure switch" which calls procedures to carry out the desired
functions.

Interrupts from Peripheral Circuits

When an interrupt request (IRQ) is obtained from a peripheral circuit
(e.g. a keyboard), a certain interrupt procedure is immediately
invoked.

The interrupt procedures have a higher absolute priority than all
ordinary tasks in the system.

Each type of peripheral interrupt is assigned its own interrupt

procedure. The addresses of the interrupt procedures are stored in
tables called interrupt vectors.

0226¢

£

6 MULTITASKING AND INTERRUPTS

ERICSSON Z 0S REFERENCE MANUAL
E90003145E
1983-11-14 A 13

Interrupts from different peripheral circuits can be assigned various
relative priorities., These priorities are called IRQ levels.

IRQ levels, interrupt procedures and interrupt vectors are further
discussed below.

bbb Interrupt Levels

Reset, NMI and SWI are non maskable interrupts, i.e. interrupts on
these levels cannot be inhibited.

The interrupt type IRQ is divided into eight priority levels, denoted
7-0 where 7 has the highest priority.

The IRQ Levels 7-1 are denoted KERNEL, and the lowest level (IRQ
LEVEL 0) is denoted INTERRUPT.

A The IRQ interrupts are maskable, j.e. interrupts on these levels can

‘ be inhibited by means of instructions to the processor. Interrupts

can be inhibited in two ways:

- ALl maskable interrupts inhibited. This is implemented by the SPL
statement LOCK(KERNEL). (Machine code SEI for Mé6800.)

- Only the lowest priority level inhibited. This is implemented by
the SPL statement LOCK(INTERRUPT).

The KERNEL Llevels (7-1) are relative priorities assigned to the

different hardware devices. If several IRQ interrupts are waiting
simultaneously, they are handled on a priority basis.

6.4.5 Interrupt Procedures

When an interrupt request (IRQ) is obtained from a peripheral
circuit, an interrupt procedure is immediately invoked. The
interrupt procedures have higher absolute priority than all

—ordinary.-tasks.

The interrupt procedures in the operating system are declared
with the KERMEL or INTERRUPT options.

Example:

KERNPROC :
PROCEDURE OPTIONS (KERNEL);

END KERNPROC;

0226¢

ERICSSON

6 MULTITASKING AND INTERRUPTS

Z 0S REFERENCE MANUAL
E90003145E
. 1983-11-14 A

14

INTPROC:
PROCEDURE OPTIONS (INTERRUPT);

END INTPROC;

The KERNEL procedures are automatically invoked via the interrupt

vector. INTERRUPT procedures are invoked by calls issued from the
KERNEL procedures.

While interrupt procedures on levels KERNEL 7-1 are being carried
out, additional KERNEL interrupts are inhibited (LOCK (KERNEL)) .
This inhibition is carried out automatically by the processor.
Interrupt handling on level KERNEL must thus be kept short

(<200 micro seconds). In situations where longer processing is
needed, it must be carried out on the INTERRUPT Llevel. See the
example below.

The execution of interrupt procedures on the INTERRUPT level are
carried out while additional interrupts on the KERMEL 7-1 levels
are permitted, but while additional interrupts on the INTERRUPT

Level are inhibited (LOCK(INTERRUPT) and UNLOCK(KERNEL)).

There are a number of restrictions imposed on the KERNEL and
INTERRUPT procedures.

A KERNEL procedure must. not:
o Carry out UNLOCK(KERNEL) or LOCK/UNLOCK(;NTERRUPT)
(LOCK(KERNEL) has no meaning, see above).

o Require too much time (>200 micro seconds). If a need for an
0S Request arises, an INTERRUPT procedure must be initiated
which can execute the 0S Request.

An INTERRUPT procedure must not:
o Carry out UNLOCK(INTERRUPT).
0 Require so much time that the queue for processing on the

INTERRUPT level becomes full (several tens of milli seconds in
exceptional cases).

The operating system contains two procedures which administer all
processing on the INTERRUPT Llevel:

o BLG_00200 which maintains the queue of procedures on the
INTERRUPT level and generates IR@s on level O.

o BLG 00010 which calls the INTERRUPT procedures in the seguence

in which they are queued by BLG_00200. When the queue is
empty, the IRQ on level 0 is removed.

See the example at the end of this section.

0226¢

ERICSSON

6 MULTITASKING AND INTERRUPTS

Z 0S REFERENCE MANUAL

; - E90003145E o |
| | . 1983=11-14. .| A 15

IRQ
(Hardware interrupt)

interrupt vector

A4

KERNEL procedure invoked

CALL

v

INTERRUPT procedure invoked

POST

v

appropriate task activated

Fig.

6.4.6

6.4 Example of IRQ Interrupt sequence in Alfaskop System 41

Interrupt Vectors

Interrupt vectors are used to enable the processor to start the
appropriate interrupt routine when an interrupt occurs.

Each interrupt vector points to a table containing one address

for each interrupt type and level. When an interrupt occurs, the
processor preserves the current processor status in a stack. This

0226¢

ERICSSON

6 MULTITASKING AND INTERRUPTS
Z , 0S REFERENCE MANUAL
| ES0003145E
; | 1983-11-14 A

status consists of the contents of the accumulators, the index
register, the status register (condition code register) and the
program counter. After that, the interrupt vector for the correct
interrupt level is entered into the program counter, i.e. a jump
to the interrupt routine is generated.

The interrupt vectors are stored in PROM, and since an interrupt
routine must be able to lie anywhere in storage, a 2-stage jump
arrangement is used. See Fig. 6.5. The PROM vectors for POWER ON
and RESET can point directly to the appropriate interrupt routine
since it is also stored in PROM. The vectors for the other
interrupt levels refer to fixed addresses in RWM where the jump
instructions are stored.

After program loading, the addresses in the jump instructions
point to a dummy procedure in PROM. Before an interrupt on a
given Level can be permitted, the address part of the jump
instruction must thus be initialized with the start address for
the interrupt procedure in question. The method of storing
interrupt addresses in RWM permits a number of interrupt routines
(based on previous events) to be used on each interrupt level.

Interrupt vectors Jump instructions Interrupt procedures
in PROM in RWM in RWM
—
KERNEL-
procedure
. ' . KERNEL - J
. . procedure

Interrupt procedures
in PROM

Fig. 6.5 Interrupt vector organization in DU 4110

0226¢

o

6 MULTITASKING AND INTERRUPTS

ERICSSON Z : . ggogggzggw MANUAL
a : « 1983-11-14 A 17

6.4.7 Examples of Interrupt Handling

Example 1.

This example describes the handling of two different interrupt
requests (IRQ). The first peripheral circuit is a timer, the

second is an ADLC circuit (Advanced Data Link Controller). An
jdle loop is executed when no interrupt is present.

Peripheral circuits IRQ (HW interrupts)

ADLC

Timer

real time

Procedures executing

KERNEL Level:

ADLC proc tz

Timer proc ___ t1

INTERRUPT level:

ts
ADLC proc

Timer proc ___ | [

TASK level: ' 1 -

ADLC task

t6

Timer task

t7

Idle Lloop
tg

Fig. 6.6 Example of IRQ handling

See the notes on next page

0226¢

ERICSSON 2

6 MULTITASKING AND INTERRUPTS

0S REFERENCE MANUAL

E90003145E

1983-11-14 A 18

Real time

T

ty

t3

ts

t6

Notes to example 1

A timer IRQ occurs. Via an interrupt vector, a KERNEL
procedure is invoked. A KERNEL procedure cannot be interrupted
by another IRQ.

When the execution of the KERNEL procedure is completed, an
INTERRUPT procedure is called.

During the execution of the timer's INTERRUPT procedure, an
ADLC IRQ occurs. The ADLC KERNEL procedure is immediately

invoked.

When the execution of the ADLC KERNEL procedure is completed, .
its INTERRUPT procedure is called. However, the queue of ‘ J
waiting INTERRUPT procedures is not empty. The timer's

suspended INTERRUPT procedure must be executed first.

when the timer's INTERRUPT procedure is executed, an event is
posted to the timer's task. After that, the ADLC INTERRUPT
procedure is executed. When this procedure is completed,
another event is posted to the ADLC task.

Two tasks are now ready to be executed. In this case the ADLC
has been assigned a higher priority, and is thus activated
first.

The timer*s task is activated as soon as the ADLC task is
completed.

Both IRQs are handled, and the idle loop is executed again.

0226c

6 MULTITASKING AND INTERéUPTS

ERICSSON Z (ggogggggw MANUAL
1983-11-14 A 19
Example 2

This example shows how a communication procedure can be
implemented.

See also notes on the last page of this section.

: KERNPROC: PROC OPTIONS (KERNEL}:
@ DCL INTPROC ENTRY OPTIONS (INTERRUPT):
|

i
!

IF READY THEN CALL INTPROC: LDX INTPROC
I JSR BLG—00200
&

"RETURN: ‘ ' B -

4 SYNCHRONOUS CALL

@ BLG—00200 PROC; QUEUE OF
INTERRUPT PROCEDURES

QENTRY = ADDR (INTPROC);
SET INTERRUPT: . (ADOR (INTPROC)
RETURN;
/I RTS
// L
/]
)
4 -
’// Z~ STARTED AS SOON AS NO
< > KERNEL INTERRUPT IS PRESENT
BLG000T0: PROC OPTIONS (KERNEL);
QUEUE OF
INTERRUPT PROCEDURES
+ LDX TOPENTRY ADDR (INTPROC)
+ JSR 0.X

iF QUEUE = EMPTY THEN
RESET INTERRUPT:

RETURN; RTI

Fig. 6.7 Example of interrupt handling (continued on next page)

0226c

ERICSSON Z

'

é MULTITASKING AND INTERRUPTS
0S REFERENCE MANUAL
E90003145E

\ < 1983-11=14 A

20

BLG00010: PROC OPTIONS (KERNELY:

SYNCHRONOQUS CALL

INTPROC: PROC OPTIONS (INTERRUPT):
DCL MSGIN EVENT EXT:
|
|
|

POST MSGIN:
!

RETURN; (RTS)

\

TASKPROC: PROC OPTIONS (TASK}:

DCL MSGIN EVENT PUBLIC:
]

SYNCHRONOUS CALL VIA
0S REQUEST INTERRUPT
(swi)

TASK
MANAGE-
MENT

<
7
TASK-INITIATION o
| //
¥
. A
MSGWAIT: "] STARTED ASYNCHRONOUSLY
WAIT MSGIN: " ON PRIORITY BASIS
ASSIGN MSGIN; \\ &

| ~

' PROCESS MESSAGE

GOTO MSGWAIT:

Fig. 6.8 Example of

interrupt handling (continued)

0226c

ERICSSON 2

6 MULTITASKING AND INTERRUPTS
0S REFERENCE MANUAL
E90003145E

1983-11-14 A

21

Notes (Example of interrupt handling)

1

KERNPROC 1is assumed to be an interrupt routine on the
KERNEL level. This procedure receives a message character
by character. When the entire message has arrived, further
analysis is to be performed by the procedure INTPROC on
level INTERRUPT.

The call for the procedure INTPROC causes an implicit call
for the 0S procedure BLG_00200 which queues the call for
INTPROC, and initiates an IRQ interrupt on the INTERRUPT
level. ‘

When no inrerrupt on higher priority levels are present,
the 0S procedure BLG_00010 is called. BLG_00010 initiates
the first procedure in the INTERRUPT procedure queue. If
the queue is empty, the IRQ interrupt on the INTERRUPT
Llevel is removed.

If INTPROC is the first in queue, it is now executed. When
the received message is analysed and checked, the event
MSGIN is posted. The posting of the event causes an 0S
request interrupt (SWI).

The 0S request interrupt is handeled by the Task Manager as
described in section on Multitasking Functions.

If any task was waiting for the event MSGIN to be posted,
the task is now entered into the Ready state queue.

0226c

7 INTERNAL COMMUNICATION PROTOCOL

ERICSSON 2 0S REFERENCE MANUAL

E90003145E
1983-11-14 A o
Contents

7.1 COMMUNICATION CONCEPTS 3
7.1.1 Communication Software 3
7.1.2 Communication Channels 5
7.1.3 Sessions 5
7.1.4 . Session Control Block 6
7.1.5 . Status Lists 6
7.2 SYSTEM ADDRESSES 7
7.2.1 Physical Addresses 7
7.2.2 Logical Addresses 7
{ 7.3 GENERAL MESSAGE FORMAT 8
7.3.1 LEADING FLAG byte 8
T.3.2 TODEV Byte 8
7.3.3 FRDEV Byte 9
7.3.4 DSA Byte 9
7.3.5 MSGTYP/STATUS Byte 10
7.3.6 MESSAGE CONTENT Field 10
7.3.7 CRCC Byte 10
7.3.8 TRAILING FLAG Byte . 10
Teb MESSAGES 11
7.4.1 Poll Messages ' 11
Tabo2 Answer to Poll Messages : 13
Toh3 Communication Control Messages 16
Tolsals Data messages 19
7.5 COMMUNICATION EXAMPLES) 21
7.5.1 General Communication Example 21
7.5.2 . Poll and Answer to Poll 25
7.5.3 CP IPL Session 27
7.5.4 DU IPL Session ‘ . ' 28
(7.5.5 File Update Session 30
7.5.6 User Interface Sequence 34
7.5.7 Printer Communication Sequence 37-38

0229¢

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL
E90003145E

1983-11-14 A 2

-2
ERICSSON 2

0229¢

ERICSSON Z

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL
E9000314SE N |
1983-11=14 AL 3

7.1

7.1.1

COMMUNICATION CONCEPT

Communication between the different terminal units (CP, DU, FD, PCU)
of Alfaskop System 41 is carried out via $S3 bus, j.e. either shilded
twisted pairs or coaxial cable. Transmission is balanced. Data is

transmitted serially in an HDLC frame format.

There are four main types of messages used in Alfaskop System 41
Internal communication.
o Poll

o Answer to poll
o Communication control messages (session control)
o}

Data messages.

Communication Software

The software handling the internal communication consists of the
following main modules:

Used 1in:

o Communication Handler CP DU FD
o User Interface Module (UIM) CP DU
o Supervisors e.g.

-~ Input/output Manager (IOM) FD

- FD I/0 Supervisor CP DU

- Printer I/0 Supervisor DU

- IPL Supervisor . cP

- Console Mode Supervisor Dy

- Utjlity Supervisor. CP DU FD

The modules used in PCU are the same as used in DU.

The Communication Handler handles the channel hardware, connects
terminal units. to the channels and handles poll sequences. It also
handles the transmission and reception of messages.

UIM provides the interface between the system modules and the

Communication-Handleri—See—thenext-main—sections:

For details of the hardware and physical message format see Technical
Description. See also Fig. 7.1

0229¢

7 INTERNAL COMMUNICATION PROTOCOL

ERICSSON Z | ggogggzggcs MANUAL
1983=-11=14 A .

e e w s e em G S o Gmmecs | SmeN Cmmme o | e e __‘
Comm. Supervisor g%
Handler Selector
Utility I
Supervisor
0OS Request Handler
Task Management
1 FD
User
Interface l
$S3-bus gg:\ndrlrlér FD 1/0 SV F B System l
connection Module
Supervisor IPL SV P ’ l
Selector
Utility SV
0S Request Handler
Task Management
I CP
J—
User {
Interface }
FD 1/0 SV AJ*——#
c System
omm.
Module
Handler
¢ Supervisor PU /O SV H
Seiector j}
CM SV
Utility SV
0OS Request Handler
Task Management
DU
s TSI

Fig. 7.1 Internal Communication Software

0229¢

ERICSSON 2

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

ES0003145E

1983-11-14 A. 5

7.1.2

7.1.3

Communication Channels

Four communication channels are available in a cluster configuration.
The transmission rate is 300 kbps for each channel. The four channels
are numbered 0-3 and are assigned the following communication
functions:

Channel 0O Reserved for internal poll sequences

1 Communication between the CP Supervisor and a
Supervisor in another terminal unit. If not used for
this type of communication, it is a spare for TP-TP
communication.
User interface (first emulation).
User interface (second emulation). If no second
emulation exists, it is a spare for TP-TP
communication.

W N

For each channel there are two 64 bytes memory buffers, one for the
last message received and one for the next message to be transmitted.
Users of the internal communication may also define their own data
areas for reception and transmission of data.

Sessions

In every terminal configuration, one terminal unit controls the
physical communication. This unit is called configuration master. In
a cluster configuration the CP is always configuration master (system
master).

The physical communication within the cluster is implemented as a
poll/connect system. The CP polls. the devices for output messages.
When a polled device issues a negative response, i.e. has got nothing
to transmit, the next device in the poll Llist is polled.

Besides the physical communication, there is a logical concept of
communication. The logical concept of an internal communication is

called a session. When a unit has given a positive answer to a poll,
a session is opened and is then regarded as going on until it is
concluded by a special command. A session may consist of one or
several sequences of physical communication. The channel is
disconnected after each sequence of physical communication and may
thus be used by other units, while processing is done by the first
units.

The device which called for the opening of a session is session
master. The other unit is session slave. Any unit in a terminal
configuration may be session master. The session mastership may be
changed several times during a session. Note that the configuration
master is not always session master.

0229¢

ERICSSON 2

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

ES0003145E | |
1983-11-14 A 6

7.1.4

7.1.5

Session Control Block

A session is identified by a Session Control Block (SCB) in each of
the communicating units, including the configuration master. The SCB
is registered until the session is closed or aborted. The SCB is
jdentified by a session number and sometimes a supervisor number.
This identification is contained in the DSA byte of each internal
message. See section 7.3.4.

One SCB is always reserved for the User Interface Module.

Status Lists

The operating system module in the CP maintains a list of all
connected units, indicating their current status. The status is
updated after each poll response.

The list contains four bytes for each port, i.e. one byte for each
DU, PU, FD and PCU on the port.’

The start address of the list in the CP is 0400 hexadecimal.
Each status byte in the status list is interpreted as follows:
Bit 76543210 Meaning

1 Device not connected on two-wire

1 ' Device down

1 IPL request

1 Host reservation
1 Session table full (Max 64)
1 Master Llock
1 Secondary host in dual host config.
1 Primary host

Note. If bit No. 6 is set for a device in the poll Llist, CP issues
stow polls to this device.

The TP=-status Llist in 0S5 is not identical to the emulation status
table maintained by the system module in the CP. See section 8.9.

In each DU, 0S maintains a status area indicating the current status

of the DU/PU and the status byte in the last poll from CP. This area
js called BCG_70113. See also section 8.11.

0229¢

7 INTERNAL COMMUNICATION PROTOCOL

S REFERENCE MANUAL
ERICSSON Z | g9o§o§1§ss

. S T 1983-11-14 A~ = 7

7.2 SYSTEM ADDRESSES

7.2.1 Physical Addresses

The communication processor provides for up to 32 ports for internal
cluster communication. To each port can be connected a chain of up to
four devices all of which must be of different types.

Device type

Display Unit

Printer Unit connected to the DU

Flexible Disk unit

Peripheral Control Unit (with printer connected).

WN-a2O

The physical address is constituted by the port No. (0-31) and the
device type.

The format of the physical address byte is as follows:

Bit 76543210 ,
1717111101 System FD (FD hexadecimal)
171111110 cP (FE)
XX XXXX00 DU
XX XXX X01 PU, PCU with printer connected
XXXXXX10 FD .
XX XXX X111 pcuU

where XXXXXX denotes the port number.

The physical address is used in the TODEV and FRDEV address bytes in
the internal communication protocol. See section 7.3.2.

7.2.2 Logical Addresses

Alfaskop System 41 provides for up to 32 logical addresses to be used

internally. The logical—addresses are assignedtothe systemunits
during customizing.

The logical addresses are constituted analogously to the physical
addresses, but the port number is replaced by a number assigned by
the user.

In this manual, the logical addresses are symbolically denoted DUO1,
PUOS etc.

See also the document on Terminal Console Functions.

0229c¢

ERICSSON Z

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

ES0003145E

1983-11-14 A 8

7.3

7.3.1

7.3.2

GENERAL MESSAGE FORMAT

The message format used in communication between Alfaskop System 41

terminal units is as follows:
o Word tength 8 bits

0 Message length 4-4096 bytes, depending on type of message,
FLAGs and CRCC excluded.

The general message format is shown in the figure below.

HEADER
A
LEADING [_ . ‘ MESSAGE CONTENT ' '
FLAG TODEV DSA FRDEV gﬁg{ﬁf/ (Length and meaning CRcc | TRAILING
depending on message type) FLAG
Fig. 7.2 General Message Format
Except in the flag character, which contains six consecutive ones, J

more than five consecutive ones are not sent in a frame (between
flags). This is prevented as the transmitter logic inserts a zero
after five ones and the receiver logic always strips a zero following
five received ones. If 0111111042 anyhow is recejved that is
interpreted as a flag.

If seven or more consecutive ones are received, inside a message,
that is interpreted as an abort indication telling the receiver logic
that the frame is valid.

LEADING FLAG byte

The LEADING FLAG byte is a control byte used for indicating start of

message and for byte synchronization. The flag is added and stripped
by hardware Logic.

TODEV Byte
The TODEV byte contains the physical address of the unit to which the }
message is sent. See figure below. w
Bit 7 6 5 4 3 2 1 0
1 T T 1 1
PORT NUMBER TERMINAL
TYPE

Fig. 7.3 TODEV and FRDEV Llayout

0229c

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

=5
ERICSSON = E90003145E

1983-11-14 A , 9

7.3.3

7.3.4

The fields in TODEV have the following meaning:

o PORT NUMBER Number of two-wire connection on the TUA boards
of CP (0-31).
o TERMINAL TYPE 00 = pU
(hex) 01 = PU
10 = FD
11 = PCU

Furthermore FEqg is reserved as CP address and
TODEV FD4¢ as a System FD address.

FRDEV Byte

The FRDEV byte contains the physical address of the unit from which
the message is sent. The layout of the byte is the same as for the
TODEV byte. See above.

DSA Byte

A session is a logical connection bhetween two devices. The two
devices are jdentified by the destination address (TODEV) and the
source address (FRDEV).

A session generally consists of several communication sequences, i.e.
the physical connection is broken and may be used by other sessions
during the time it takes for the device in the first session to
prepare its answer. However, the session control block (SCB) remains.

The desired session in the receiving unit is identified by a
destination session address, DSA, in each transmitted message.

The DSA layout is shown below.

Bits 7 6 5 4 38 2 | g
T ! ! ' SUPERVISOR
ISOR
SESSION NUMBER ' NUMBER

Fig. 7.4 DSA byte layout

The fields in the DSA byte have the following meaning:

0 SESSION NUMBER Number of the registered session (< F). A DU
may register up to 15 session including the
attached PU. An FD registers up to 15 sessions.
If SESSION NUMBER = Fq4, SESSION NUMBER is
asked for (undefined).

0229c¢

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL
ERICSSON Z E90003145E
~ & . 1983-11-14 A 10

o SUPERVISOR

NUMBER Used in:
0 Input/Output Manager (IOM) FD
1 Utility Supervisor DU CP FD
2 FD I/0 Supervisor DU CP
3 Printer 1/0 Supervisor DU
4 Console Mode Supervisor Dy
5 IPL Supervisor cP
E Host 1 Supervisor (User Interface) DU CP
(F Host 2 Supervisor (User Interface) DU CP) not

used yet

In a poll message, DSA can be used to define a drop address on a
SS3-bus.

In message types where DSA is not used, the DSA byte has the value
FF14-

7.3.5 MSGTYP/STATUS Byte

This byte defines the status of the master in a poll message, and

defines the status of the polled device in an answer to a poll. In
all other messages the byte defines the message type e.g.

acknowledgement, data, abort, connect request, etc.

The MSGTYPE/STATUS byte is further discussed in connection with the
various messages below.

7.3.6 MESSAGE CONTENT field

This field normally contains 0-4092 bytes, depending on the message
type. It may even contain more than 4092 bytes, but this is not
recommended. The messages are described in Section 7.4 below.

7.3.7 CRCC Byte

The CRCC byte contains a Cyclic Redundancy Check Character, used to
check that transmission was correctly performed. The CRCC 1is
calculated and added by the hardware of the sending unit. The same
calculation is performed on the message by the hardware of the
receiving unit. If the result of this calculation corresponds to the
received CRCC, the CRCC is stripped (by hardware togic) and the
message is accepted.

7.3.8 TRAILING FLAG Byte

The TRAILING FLAG byte defines the end of the message. The flag is
added and strapped by hardware logic.

0229c

}
i
>

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL '

ERICSSON é‘ | E90003145E

1983-11-14 A ‘ 11

Tl

7.4.1

MESSAGES

As mentioned above, there are four main types of internal messages in
Alfaskop System 41

o Poll message

o Answer to poll

o Communication control message

0o Data message.

They are all transmitted in accordance with the general message
format as described in the preceding section.

The differences between the various messages appear in the
MSGTYP/STATUS byte and, of course, in the MESSAGE CONTENT field.

Poll Messages

- A'poll message consists of four bytes. There is no information in the

MESSAGE CONTENT field. The DSA field has always the content FF since
no session control block is used. The FRDEV byte has always the
content FE, since the configuration master always performs the poll.

ALl connected units are polled by the configuration master using a
certain frequency. When a unit gives a negative answer, the next unit
is polled, and so on until all units in the cluster are polled. If a
unit gives a positive answer, the unit is addressed agsin until it
gives a negative answer, then the next unit is polled.

In a poll message, the MSGTYP/STATUS byte of the message header is
interpreted as STATUS. '

TODEV # DSA FRDEV STATUS

FF FE

Fig. 7.5 Poll message layout

0229c¢

ERICSSON

=
=

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

ES0003145E

1983-11-14 . A ? L 12

|

In a poll message, the various bits in the STATUS byte have the
following meaning (if set):

Bit 7 8 5 4 3 2 1 0
ABORT
LEADING RESERVED)] SYSTEM
1 RETR. ODD | PENDING cP
POLL sEssions [FOR EM. READY
Fig 7.6 STATUS byte in a poll message
Bit 7 Always 1.
RETR. Poll retransmission. A poll retransmission is

LEADING POLL

0bD

ABORT PENDING
SESSIONS

Bit 2 '

cP

SYSTEM READY

performed when the configuration master has not
got an answer on the previous poll before a
timeout. If no answer is obtained to the poll
retransmission, the polled unit is regarded as
"down" and polled more seldom (slow poll).

The first poll in a series of polls to a terminal
unit. A unit is polled as long as it has got
something to transmit. When it has got nothing to
transmit it sends a negative poll answer and the
next pQLL to the unit will then be a leading poll.

0dd poll. The first and then every second poll to
a unit in a sequence of polls.
Delete all session control blocks.

Reserved for emulation (System Reset in IBM Local
emulation).

When bit set secondary CP is in control, when
reset primary CP is in control.

Host communication possible on modem Line No. 1.
(System ready set).

0229¢c

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

.o E90003145E i

- 1983-11-14 A o3

ERICSSON 2

7.4.2 Answer to Poll Messages

The figure below shows the various answers to poll messages.

MESSAGE HEADER MESSAGE CONTENT
ANSVER
. TODEV DSA FRDEV ~ STATUS , TYPE
Negative T
answer to poil L FE [il [[f FF J
ANSWER :
Answer to poll TODEV DSA FRDEV ~ STATUS |TYPE EMSTATL EMULATION STATUS
with emulation -
request FE l FF I I ED l l — e — —
. ANSWER SLAVE
Aqﬂumﬁopoﬂ TODEV DSA FRDEV STATUS |TYPE ADDRESS PRIO MSA SSA
with open
session request FE l FF l l l 1 1 []
ANSWER
Answer to poll TODEV DSA FRDEV ~ STATUS lTYPE SMSA PRIO
with continue LI
‘session request FE l FF [o [L co l [:]

!

Fig. 7.7 Answer to poll messages

In all answers to poll messages, TODEV = FE, since the answer is sent
to configuration master, and DSA = FF since session number is still
undefined. .

& -
In an answer to a poll message, the MSGTYP/STATUS bvte is interpreted

as STATUS.
Bits 7 6 5 S 3 2 1 0
: IPL SESSION
. 1 SYSFD | meq 00D | TaBLE |SESSIONY cp LINE 1
i« FULL | LOCK

Qv p e, 3 .4 . |-}
oDy Tte TN answer - To potTl,

In an answer to a poll, the various bits in the STATUS byte have the
following meaning:

Bit 7 ' Always 1.
SYSFD Polled unit carries the system diskette.
IPL REQ Request for initial program loading.

0229¢

ERICSSON 2

1

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

E90003145E

1983-11-14 A 14

0bd

SESSION TABLE
FULL

SESSION LOCK

cP

LIME 1

0dd poll reponse in a serie of polls to the same unit.

The polled unit cannot open any more sessions.

Slave connection of unit not accepted.

When bit set secondary CP is in control. When reset
primary CP in control.

Unit is able to communicate with host.

The bytes in the MESSAGE CONTENT field in an answer to poll message
have the following meaning:

ANSWER TYPE

EMSTATL

EMULATION
STATUS

MSA

SSA

SLAVE ADDRESS

The type of answer to the poll.

o In a "negative answer to poll" the ANSWER TYPE has
the value FF and is the only byte in the MESSAGE
CONTENT field.

o In an "answer to poll with emulation request" it
also indicates the host system number.

o In an "answer to poll with open session request”
the ANSWER TYPE value may be 0 or 80, thereby
marking the address type of the following SLAVE
ADDRESS byte. 0 means physical device address (see
Section 7.2.1), 80 means logical device address,
(see Section 7.2.2).

o In an "answer to poll with continue session
request" the ANSWER TYPE has always the value 'C0O'.

The number of bytes in the following EMULATION STATUS
field. Max 58 bytes.

A field used for fast transmission of emulation
defined status to CP, e.g. "ENTER key pressed”. See
Section 8.9.

Master session address, gives the session
identification of the transmitting device, i.e. the
master in the session that is to be established.

Slave session address (> F0), gives the supervisor
identification of the slave in the session that is to
be established. If the session number is not yet
defined, this byte contains OF.

The address of the session slave. The preceeding byte
indicates if the address is physical or logical.

0229¢

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

ERICSSON 2 ES0003145E
1983-11-14 A ; 15

PRIO A session is always assigned a certain priority. The
PRIO byte in an answer to poll message with open or
continue session request contains this priority. It
decides in which queue in the configuration master
the request will be entered.
The PRIO byte can contain the values 00 - 0QE, where
OE means highest priority.

SMSA System Master Session Address in the configuration

master. The system master session address contains
information on each opened session. SMSA is a number
between 00 and FF. This number is transmitted from
the configuration master when the session is opened.
When a sessijon master wishes to continue a session,
the poll response must contain this number.

022%¢

ERICSSON Z

7 INTERNAL COMMUNICATION PROTOCOL

0S REFERENCE MANUAL
E90003145E
1983-11-14 A"

16

7.4.3 Communication Control Messages

Communication control consists of functions for opening and ending of
sessions, and functions for connection and disconnection within an
open session.

A session is opened when the system master sends a connection message
to the session slave (SCONN) and a connection message to session
master (MCONN). After the transmission is completed, a disconnection

is made (EOT or BREAK) but the session still persists. A new

connection within the session is made after a continue session
request from the current session master of the session.

The session is ended (EOS) when no more transfer between the session
master and the session slave is needed.

The device that has called for a session is appointed session master.
The session master ends the session with an EOS message.

The figure below shows the various communication control messages. §

MESSAGE HEADER ' MESSAGE CONTENT
TODEV DSA FRDEV ~ MSGTYP, SMSA MSA

co
sonnr\ér:t slave I: I l co L - X8 I I]
sconn I smsa wsa
responce S0 1 FF] L xs 1 | |
VIVVICONN' T I svsa wsa
- connect master. fe.. I Il)' I XC i [(]
4
e, [T T T
mossage | [T Tx=
,an(s)a-srsagew [I I I XE %
- |
message L l 1] x %
Fig 7.9 Communication control messages
Note 1) This byte defines the address of the session slave.

022%¢

7 INTERNAL COMMUNICATIOM PROTOCOL

0S REFERENCE MANUAL
ERICSSON Z E90003145E

1983~11-14 . A ' LT

E- N .]

In all communication control messages, the MSGTYP/STATUS byte is
interpreted as MSGTYP. The MSGTYP byte is explained below

Bits 7 6 5 4 3 2 1 0
H i R
0 RETR §LEADING] opp MESSAGE TYPE
FRAME

Fig. 7.10 MSGTYP byte layout

‘Bits 74 in the MSGTYP byte in a communication control message have
the following meaning:

Bit 7 Always 0.

RETR Retransmission, used by session or configuration
master only, when it has not got an answer to a
message before a timeout.

LEADING FRAME Used by configuration master only in first frame of a
communication sequence.

Whb) 0dd message, used by slave when recejved together
with RETR, to check whether it has already received
the message or not.

Bits 3-0 in MSGTYPE byte can have the following meanings in a
communication control message:
MESSAGE TYPE Mnemonic Meaning

8 (hex) SCONN Connection message to a session slave
from configuration master, or connection

acknowtedgement—from-session—sltave-to
configuration master.

A ABORT Abort message, containing information on
which session to abort. The message is
sent from configuration master to sessicn
slave. It can also be sent from session
master to configuration master in
response to a MCONN message.

B BREAK Change of session mastership. Sent from
session slave to session master. Also
sent from session master to configuration
master which results in a disconnection.

0229¢c

ERICSSON Z

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

E90003145E J
1983-11-14 A 18

MESSAGE TYPE Mnemonic

C MCONN
E EOT
F EOS

Meaning

Connection message from configuration
master to session master.

End of transmission. Sent by session
master to system master to order
disconnection without mastership change
but not ending of session.

End of session. Sent by session slave to
session master and from session master to
configuration master to order
disconnection and ending of session.

The MESSAGE CONTENT field is explained in section on Answer to poll

above,

0229%9¢

s

ERICSSON

7 INTERNAL COMMUNICATION PROTOCOL
= 0S REFERENCE MANUAL
= | | ~ E90003145E | |
= - 1983-11-14 A 19

T bob

Data messages

Data transfer between devices in the system can take place when a
master is connected to a slave within a session.

Messages too long for the received buffer must be preceded by a data
header, DH, or a information data header, INFO DH, message. In DH and
INFO DH messages, the length of the data message is specified.

Apart from the normal four byte header, both the DH and INFO DH
frames contain

o The first four bytes of the data to be transferred
These are sent separately, in order to save memory area. At next
DMA-transfer an entire frame (including header) is written into
the RWM. The header is after a complete transfer replaced in the
RWM by the first four data bytes of the preceding frame.

o Two bytes defining the length of the data message

When the DH message is acknowledged by the receiving unit with a
RTRD-message the data message is transferred to the non-standard
buffer in the receiving device. The DATA and INFO messages contain

o The normal four byte header
o Byte 5 and following of the data to be transferred.

L 3 ~
A maximum. of 60 information bytes can be transmitted in an INFO
message. Up to 4 kbytes can be transmitted in a DATA message.

The figure below shows the various data messages.

STANDARD BUFFER 64 bytes
/N

o / ; : N
(‘ MESSAGE | MESSAGE
\ HEADER
Ack ! | [%0}
RTRD [T Tx1
(,; DENQ [[IECE
: REJECT [1 Txo]
— _ _NFO({max60) __
INFO_ I N S C]
, DATA { 14) DATA LENGTH
DH [T Ixa] 1 l
INFO (max 54) DATA [1—4) DATAJLENGTH
iNFO p—r——————— — I
oH [[Ixs] T _ _ _— _ __— I N A N N
— DATA (5 and follwingmax 4k)__ __ _ _ _ __ 1 _ __
DATA | I I _ - __ __ _ . _ — "I "“""T™T™

r1g r.71 Data messages

0229¢

ERICSSON Z

S

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

E?0003145E

1983-11-14 A ‘ 20

In a data message the MSGTYP/STATUS byte is interpreted as MSGTYP.
Bits No. 7-4 in the MSGTYP byte have the same meaning as described in

Section 7.4.3 above.

Bits 7 6 5 4 3 2 1 0
i 1 |
LEADING
0 RETR FRAME QDD MESSAGE TYPE

Fig. 7.12 MSGTYP byte Layout

Bits 3-0 in the MSGTYPE byte can have the following meanings in a

data message:

MESSAGE TYPE Mnemonic

0 (hex) ACK

1 ’ INFO

2 DATA

& DH

5 INFO DH
7 RTRD

9 DENQ

D REJECT

Meaning

Acknowledge to INFO, INFO DH, DATA. Other
messages may also work as acknowledge,
e.g. BREAK or EOS.

Information frame, max 60 bytes of
information.

A long data message. This message must be
preceded by a DH message, and is always
sent after reception of an RTRD message.

Data header, first 4 bytes data bytes are
coming in this frame. The rest of the
data in next frame (DATA).

Information and first & data bytes in
this frame. The rest of the data in next
frame (DATA).

Acknowledge and ready to receive data.
Used as acknowledgement to DH and INFO DH
messages.

pata enquiry. Sent by session master when
no answer obtained within a certain time
to a DATA message.

Sent from a unit which is not presently

pelong able to handle a request. Session
master gueues up a new request.

0229¢

7 INTERNAL COMMUNICATION PROTOCOL

- 0S REFERENCE MANUAL
ERICSSON = E90003145E
‘ | 1983-11-14 . A 20

In a data message the MSGTYP/STATUS byte is interpreted as MSGTYP.
Bits No. 7-4 in the MSGTYP byte have the same meaning as described in
Section 7.4.3 above.

Bits 7 6 5 4 3 2 1 0
I ! {
LEADING
0 RETR FRAME oDD MESSAGE TYPE

Fig. 7.12 MSGTYP byte layout

Bits 3-0 in the MSGTYPE byte can have the following meanings in a
data message:

MESSAGE TYPE Mnemonic Meaning

0 (hex) ACK Acknowledge to INFO, INFO DH, DATA. Other
messages may also work as acknowledge,
€.g. BREAK or EOS.

1 INFO Information frame, max 60 bytes of
information.

2 DATA A long data message. This message must be
preceded by a DH message, and is always
sent after reception of an RTRD message.

4 DH Data header, first 4 bytes data bytes are
coming in this frame. The rest of the
data in next frame (DATA).

5 INFO DH Information and first 4 data bytes in
this frame. The rest of the data in next
frame (DATA).

7 RTRD Acknowledge and ready to receive data.
Used as acknowledgement to DH and INFO DH
messages.

9 DENQ Data enguiry. Sent by session master when

no answer obtained within a certain time
to a DATA message.

D REJECT Sent from a unit which is not presently

belong able to handle a request. Session
master queues up a new request.

0229c¢

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

-3

ERICSSON =2 E90003145E
C 1983%11-14 A 21
The MESSAGE CONTENT field of a data message can have the following
meaning:
INFO For an INFO message this is a 60 byte field (max)
containing user defined information. For an INFO DH
message the field contains 54 bytes (max). This can
also be regarded as a short data message.
DATA Data is transmitted in two messages. The first four
bytes are transmitted in DH or INFO DH message and
the rest of the data in a data message.
DATA LENGTH A two byte field containing the length of the data
sent in the folltowing DATA message.
7.5 COMMUNICATION EXAMPLES
The following examples show a number of typical internal cluster ;
communication seguences. +
7.5.1 General Communication Example

The following example shows a typical transmission sequence between
device 2 and device 3.

The sequence is déscribed in detail below the figures.

0229¢

7 INTERMAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

ERICSSON Z
T : E90003145E } ‘
‘ \ i ; j ;1983—11-14 A ; 22
System Device Device Device
master No. 1 No. 2 No. 3
Poll
!
Negative
answer
A
B
Poll
!
|
Open Polling
session
request
i
|
Poll
|
L.
Negative
answer
l
1
Connect

slave, SCONN

Opening
1 of
session
Positive
response
(" to SCONN
) |
!
I N
Connect Session opened
) master, MCONN
(I
{
INFO 2)
message
Break 37
message
|
(Cont.?>

0229¢c

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

ERICSSON 2 E90003145E
1983-11-14 A 23
System Device Device Device
master No. 1 No. 2 No. 3
1
I
Break
message
|
(" Disconnection
Poll
: |
Continue
session
request
!
I
Poll Session
1 i
Negative
answer
]
r
Connect
sltave, SCONN
{ §
’ T]
Positive
response
to SCONN
|
—
Connect Connection

master, MCONN

i

DH message

_J i
RTRD %)
message
DATA
message
Session

EQOS message

L——”__"'""T

EOQS message 5)

End of session

0229¢

3

ERICSSON

7 INTERNAL COMMUNICATION PROTOCOL

= 0S REFERENCE MANUAL
= .. E90003145E |
| : 1983-11-14 A | 24

1) If the device cannot handle the request immediately,
information about that is included in the status byte.

2) Other messages that can be sent to the slave in this
situation are:

0 DH message
o INFO DH message and to the system master
o Abort message

3) The DH message can be sent directly from slave to session

master instead of the sequence started with the BREAK
message. It depends on the slave status.

4) ALl other answers than RTRD mean negative acknowledgement.

5) If a data message is not acknowledged the session master
sends DENQ message to the slave.

The system master polls first device 1. Device 1 has nothing to
send so a negative answer is sent to the system master.

The system master continues with a poll message to device 2.

Device 2 wants data from device 3. Therefore device 2 sends the

Open session request answer to system master. The answer includes
the address of device 3 (slave address). The system master polls
device 2 until the device 2 answer is negative. N

The system master has now to establish a session with the two

- devices 2 and 3 involved. Device 2 is session master. The device

that has made the session request is always given the role of
session master.

The system master sends the SCONN message to device 3. Device 3
. » . 4 «

sends a positive response to SCONN, which means that device 3

takes the role of slave within the session. The system master

sends the MCONN méssage to device 2. Device 2 takes the session
master role. Now the session is opened.

Device 2, the session master, sends a short data message to
device 3. In this example the message includes information on
which data device 3 should send to device 2. If data not is
immediately available device 3 sends a BREAK for disconnection.

After that device 3 has prepared its data message to device 2,
device 3 answers with a continue session request when it is
polled.

The system master then connects device 2, session slave, to
device 3, session master. If the data message is a long data
message, which means that the receiver buffer is too small, a
data header, DH, message must precede the data message in order
to let the session slave define the receiver buffer to be used.

0229c

ERICSSON Z

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

E90003145E

1983-11-14 A 25

7.5.2

Poll and Answer to Poll

In the example below, 4 display units in a cluster configuration are
polled. The following assumptions are made:

CP:
DU1:

puZ:
pU3:

DU&4:

Host communication possible on host Lline 1.

has got nothing to transmit and gives a negativ potl answer.
The emulation is Logged on.

wants to communicate with the host on host line 1.

wants to communicate with the system FD and therefore initiates
an open session request. The master session address is

assumed = 1.

wants to continue a print sessjon. SMSA is assumed = 1.

St

g

022%9c

7 INTERNAL COMMUNICATION PROTOCOL
- 0S REFERENCE MANUAL
ERICSSON =2 | - E90003145E
" ' > - 1983-11-14 A 26

Configuration -~ DU DuU2 DU3 DuU4
Master (CP)
POLL

| oarrreas

Negative
POLL Response

FEFF0481FF |

POLL
| 08FFFEA1

POLL Response
with emulation
request

{em. status)

FEFF0881EDXXXXX]

| osFrrE9

I

Negative
POLL Response

FEFF0891FF |

POLL
1 OCFFFEAT

POLL Response
with open
session request

FEFFOG8180020601FD |

POLL

l OCFFFEQ1

1

) Negative
(‘ POLL Response

FEFFOCO1FF |

POLL
| 1orFrEAT

|

POLL Response
with continue
session request

FEFF1081C00104 |

POLL
| 10FFFEQ1

l

Negative
POLL Response

FEFF1091FF |

ERICSSON Z

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

E90003145E

1983-11-14 A 27

7.5.3 CP IPL Session

The following example shows how CP requests IPL and gets 0S loaded
from the system FD. At CP IPL, CP and FD have the initial addresses

FE and FD.

CP IPL
cP

POLL
| rorrreEs

FD

l

max 60 bytes Info DH(CP IPL response)

ot e,
FEFSFDOSXX - XX J

(Confirmation, r
ready to RATRD

receive data) l FDFFFEO7

3,25kbytes Data (first 3,25k of CP OS})
P e
FEFSFD12XXXX XXX J }

r

(Confirmation) ACK
| - ForFFETO

l

max 60 bytes Info DH (DH for next 3,25k of CP OS)

FEF5FD0O5Xx% XX J
RTRD
| rorFre07
3,25k Data {Next 3,25k of CP OS)
/-—/\’\
FEFSFD12%xxxX J
§ ACK
I (A number of 3,25k biocks : { }

of CP OS are transmitted)

|)

max 60 bytes Info DH
FEFS5FDO5 XX XX J

RTRD
| rorrrear

3,25k Data {last part of CP OS)
et N
FEF5FDO5Xx- XX |

| rorrrE1

EOS (Master session close CP OS loaded)
FEF5FDOF]

0229¢

ERICSSON 2

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

ES0003145E
‘ 1983-11-14 A ‘ {1 28
To5.4 DU IPL Session
DU IPL
Poll of DU
cP ‘DU
POLL
| 1o00Fee9

Poll response with IPL request
FEFF10AOFF l

1

DU IPL session initiation

cp

Slave Connect
| - Forore2s0ors

FD

Slave Connect Response
FEF5F DO800ODOCO l

INFO

max 64 bytes
—— i,
FDDOFEQTxxXX

BREAK (Mastership change)
FEF5FDOB J

1 ~

DU IPL session continue request

POLL
l FDO2FEA1

Poll response with continue session request

FEFFFDC4C00000 J

POLL
| FoFFreES

Negative Poll response

FEFFFDCAFF J

-

0229¢c

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

-
=
ERICSSON =2 E90003145E
1983~11-14 29
i
CP DU FD
Master Connection
| rFoootoacoirs
60 bytes Info DH (DU IPL response)
10F5F DOS XX+ XX J
(Confirmation, ready !
to receive data) RTRD
‘ | Foootoor
3,25k Data (first 3,25k of DU 0S)

(Confirmation)

(Slave session close)

P S
10F5FD12XX XX

|

| eooororo

. Info DH
. (A number of 3,25k blocks :
! of DU OS are transmitted) .
60 bytes Info DH
10F5F DO5X XXX J
RTRD
l FDOO1007
3,25k Data (Last part of DU OS)
10F5F D12% X~ XX I
EOS
l FDOO100F

FEFFFDOF

I

EOS (Master session close)

|

0229c

7 INTERNAL COMMUNICATION PROTOCOL
- 0S REFERENCE MANUAL
ERICSSON = ; E90003145E .
* o : C1983-11-14 A 30

<

7.5.5 File Update Session

This example shows how DU No. O reads a block from a data~FD and then
writes it back. ALl poll sequences are not shown in this example.

cP]l FD

POLL
l 0000FEAT

]

POLL response with open session request

FEFFO08000C008E2F |
POLL
[g 0000FESH
(Neg. POLL response
FEFFO090FF |
POLL
[ﬁ 0202FE AT

l

Neg. POLL response
FEFFO2COFF J

|

MCONN
| ooE2re2co1BY

| INFO
FEB10001xx+xx J

- |

INFO

L 00E2FEQ1xx-xX

(EOS
FEFFOOOF |
I
POLL
| oooorea

1

POLL response with open session request
FEFF008000020602F0 |

[

POLL
l O000FES1

]

Neg. POLL response
FEFFO090FF]

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

-3
ERICSSON Z E90003145E
\ 1983-11-14 A 31
CP DU FD
POLL
[0202FEA1

|

Negative POLL response
FEFFO2COFF J

r

SCONN
) l 02FOFE2801D2

SCONN response

FEFF020801E0CO | J
4 I
MCONN MCONN
ST 00D2022C01E0 AAJ

INFO (Open File Request)
L 02E00001 xx+XX

]
BREAK
(Mastership change, FD-is
master in the next session part)
00020208 |

BREAK (Disconnection and inform
CP of mastership change)
FEFFO008 |

POLL
| o2o2rear

I

POLL response with continue session request

FEFF02C0C0010C J | }

POLL
| oo02reon

Neg. POLL response
FEFFO2D0FF |

-

SCONN
| oop2rezsoieo

l

SCONN response
FEFF0008010280 |
MCONN . MCONN
: | 02000260102

I

INFO (Open File Response)
00D20201 xx:xX l

|

BREAK (Mastership change, DU master
l in the next session part)

7 INTERNAL COMMUNICATION PROTOCOL
- 0S REFERENCE MANUAL
ERICSSON = ES0003145E
1983-11-14 A : 32

ce DU FD

I -

BREAK (Disconnection and
J |nform CP of mastership
change)

l

POLL
| oooorea

POLL response with continue session request
FEFF0080C00106 |

|

POLL
| ooooreor

l

Neg. POLL response
(W ' FEFFO090FF |
POLL

l 0202FEA1

l

Neg. POLL response
FEFFO200FF |

|

SCONN
| o2eoFe2801D2

l

SCONN response
FEFF020801E0C0 |

=

- .
.

.

(% MCONN ' MCONN

00D2022C01ED]

e e v @ e . e e 4 8 e s e e
. - LR [

INFO (Read File Request)
l 02E00001 xx-~xx

BREAK (Mastership change,
FD master in the

00020208 J next session part)

l

BREAK (Disconnection and inform
CP of mastership change)
FEFFOQOB J)

|

POLL
| oocorEA

|

Neg. POLL response
FEFFO080FF |

A

ERICSSON 2

y

i

v

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

E90003145E

1983-11-14 A : 33

cP DU

0202FEA1

FD

1

POLL response with continue
. session request
FEFFO2COCOO1OCJ :

| o202rE9t

Neg. POLL response
FEFF02DOFF J

~

SCONN
| oop2re2soico

l

SCONN response

FEFF000801D280 |

'

MCONN : MCONN
: | oz2e0002c01D2

l

Info DH (Read File Response)
00D20205xx:-xX J

|

RTRD (Confirmation, ready to receive data)

| o2e00007

|

Data (Input block)
¢
00D20212XxX XX J "

BREAK (Mastership change, DU master

in the next session part)

| o2e00018

l

BREAK (Disconnection
and inform CP of
FEFFQ20B mastership change)

=

POLL
| oooorear

POLL response with continue session request

FEFF0080C00106 J

=

POLL
| oooorest

|

Neg. POLL response

FEFFO090FF |

»

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

ERICSSON Z
o = o E90003145E |
o | B o 1983-11-14 A | 34
cp DU FD
POLL
[0202FEA1
Neg. POLL response
FEFF02COFF J

]

SCONN
| o2e0re2s0102

l

SCONN response
FEFF020801E0CO j
0

MC

« MCONN NN
: ’ 00D2022C01EQ - j

.
.‘.....-..-..........f

INFO (Write File Request)
| 02E00001x0xx

l

ACK (Confirmation)

00020200 |

|

DH
l 02E00014xx--xX

RTRD
oooz207 |

(3 [

Data (Quiput Block)

[02E00012xxX

(' BREAK (mastership
change, FD master in

00D2020B the next session part)

BREAK ' (Disconnection and inform
I CP of mastership change)

FEFFQO0B

r

POLL.
| o202rea
i

POLL response with continue
session request
FEFF02C0C0010C J

0229¢

=2
ERICSSON =

7 INTERNAL COMMUNICATION PROTOCOL
0S REFERENCE MANUAL

E90003145E
1983-11-14 A 35
cP DU FD
POLL
| o0z02Fesi

|

Neg. POLL response
FEFF02DOFF J

|

SCONN
| oop2rezsoteo

l

SCONN response
FE FF000801D280 J

MCONN

b e @ » =

MCONN
| o2e0002c0102

Info (Write File Response)
00020201xx-xx |

|

EOS (Stave Session Close)
| o2e0000F

EOS (Master session
close, session closed)
FEFFO20F |

0229¢

7 INTERNAL COMMUNICATION PROTOCOL

- 0S REFERENCE MANUAL
ERICSSON = ES0003145E
| ! 1983-11-14 A 36
7.5.6 User Interface Sequence

This example shows how a Read DU command in the User Interface is
implemented in the two-wire protocol. The CP reads the characters 1,
2, 3, 4 and 5 from DU. After the READ DU sequence, an exchange of
System Module Command areas is performed. The User Interface is
further described in section 8.

Note that the connect/disconnect procedure is reduced in a User
Interface sequence.

User Interface Command cP DU User Interface Command
POILL
;) [0400FEA1
¢]
) Neg. POLL response
FEFF0481FF I

E‘Z:L [5 bytes

Receive data iINFO UM Com\g‘f”d _CCEMCMND content

.
- (o]

command l 04DEFEQ102yy--yyxx-xx

5 bytes Send data
DCEMCMND INFO DH : command
UIM command con}am an

e,
FEFEQ40501yy-yyxx-xx

|

RTRD
l 04DEFE17
(R
Data
FEFEO412F1F2F3F4F503]
(‘ ~ POLL
l 0400FEA1
Neg. POLL response
FEFF0481FF |
I 00 } . g l
UiM 5 Bytes CCEMCMND
Send Command INFO command Egn’tent
without data =
04DEFEQ100yy-yyxx XX
D — { o0
5 Bytes
UimM DCEMCMND INEO Send command
command content without data

e,
FEFE040100yy-yyxx:xx

|

0229¢

- 7 INTERNAL COMMUNICATION PROTOCOL
- 0S REFERENCE MANUAL
(ERICSSON 2 ., E90003145E
' 1983-11-14 A 37

7.5.7 Printer Communication Seguence

The following example shows the communication between a DU without a
printer and a DU with printer.

Printer handling is further described in section on Printer Unit
Functions.

cP DU PU

POLL
l 1000FEAQ

!

POLL response with open session request

FEFF1080800D04E3F3 |

|

POLL
| 1000FE90

I

Neg. POLL response
FEFF1090FF |

r

SCONN
| opFare2soiEs

SCONN response

FEFFOD0801E380 J

MCONN ’; MCONN

10E30D2C0O1E3 J

‘-L. e e e e e e e e {

INFO (Print Queue Request)
l ODE31001xx--xX

l

INFO (Print Queue
Response; first
l in Queue)

[

INFO DH (Printout Request)
l ODE31015xx: XX

|

RTRD (Ready to receive
print data)
10E30D17 I

0229c

7 INTERNAL COMMUNICATION PROTOCOL

= 0S REFERENCE MANUAL
ERICSSON 2 E90003145E | -
‘ 1983-11-14 A $38

CP DU PU

Data (Print Data)
LODES1002xx‘~xx

|

INFO (Printing started)

T0E30DO0TXx+XX l

BREAK
FEFF100B |

|

POLL
| opotreao
POLL response with continue
session request
(, FEFFOD80C0010C l
POLL"
l 0DO1FES80

|

Neg. POLL response
FEFFOD90FF J

|

SCONN
l 10E3FE2801E3

SCONN response
FEFF101801E380 |

(3 MCONN MCONN
:] [ODE3102C01E3

T T T T T S S S . .]

INFO (Printing completed)
10E30D01xx-xx |

|
_EOS
I 0DE3100F

FEFFODOF |

0229c

‘)

ot

00 00 00 00
o

8 USER INTERFACE FUNCTIONS
- 0S REFERENCE MANUAL
ERICSSON Z | E90003145E
: | ©1983-11-14 A

8 USER INTERFACE FUNCTIONS

List of Contents

8.1 GENERAL 3
8.2 USER INTERFACE MODULE 5
8.3 USER INTERFACE CONTROL BLOCK é
8.4 INITIALIZATION OF UIM 8
8.4.1 Functional Description 8
8.4.2 Interface in DU 8
8.5 CONNECT/DISCONNECT 9
8.5.1 Functional Description 9
8.5.2 ' Connect Interface in CP 9
8.5.3 Disconnect Interface in CP 10
8.6 SEND COMMAND WITHOUT DATA i
8.6.1 Functional Description 11
8.6.2 Interface in CP 1
8.6.3 Interface in DU 11
8.7 WRITE DU 12
8.7.1 - Functional Description 12
8§.7.2 Interface in CP 13
8.7.3 Interface in DU 13
8.7.4 WRITE DU with Emulation Control 14
8.8 READ DU 15
8.8.1 Functional Description 15
8.8.2 Interface in CP . 16
8.8.3 Interface in DU ¢ 16

P EMULATION-STATUS URDATING 17

9.1 Functional Description 17

9.2 Interface in CP 17

.9.3 Interface in DU/PU 18
8.10 EMULATION ABORT 20
8.10.1 Functional Description 20
8.10.2 Interface in CP 20
8.11 HOST SYSTEM STATUS 21
8.11.1 Functional Description 21
8.11.2 Interface in CP 21
8.11.3 Interface-in DU/PU 22

0011¢

8 USER INTERFACE FUNCTIONS
0S REFERENCE MANUAL

o5
ERICSSON 2 E90003145E
| ‘ 1983-11-14 A ‘ 2

8.12 APPLICATION EXAMPLES 23
8.12.1 Initialization 23
8.12.2 Send Request from DU 23
8.12.3 Poll from Host Computer 24
8.12.4 Ack from Host Computer - 25
8.12.5 Text from Host Computer 26
8.12.6 Session Concluded by Host Computer 26—27

()

0011¢

8 USER INTERFACE FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
‘ ; E90003145E , ,
| 11983-11-14 A , 3
8.1 GENERAL

In a cluster conffguration system, the system modules must be
able to communicate with each other via the two-wire connection.

In order to relieve the system modules from the necessity of
handling intercommunication line procedures, a User Interface
module (UIM) is provided in CP and in DU/PU. The User Interface
module utilizes the Communication Handler,

The User Interface module provides the possibility of
transmitting data and commands within the cluster without having
to care about the details of the internal communication protocol.
Communication can thus be performed by means of the UIM and a
protocol defined by the emulation.

(" PJConnet:ﬁon with host computer h
System module CP
]
=
.
£ = £ E
1= §]
=3 e e
o S - ac
- = 5 T2
A ° 35 v g |CP
< o} g 23
c = 5
S " °] [S E
[S] a o o W
uics
User interface Utility
“moduie supervisor
i Communication Handler
- 5 . -
(H : Physical two—wire connection
Commupication.. Handler.
User interface Utility
moduie supervisor
(; uics
3
£ o £ | DU/PU
2 . =
E o =2
E - T °
8 2 - 2=
2 S 32
- = 5] =
g e - g2
S o 2 2 E
o. a [® u
System moduie DU/PU

Fig. 8.1 User Interface modules in cluster configuration

0011¢

8 USER INTERFACE FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
E90003145E
1983-11-14 A A

The system modules in CP can also acquire fast updating of the
status of the other terminal units directly via the Communication
Handler. Information about aborted units is received directly via
the Communication Handler,

J

0011¢

»

8 USER INTERFACE FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
E90003145E
1983-11-14 A 5
8.2 USER INTERFACE MODULE

The User Interface Module is a procedure which carries out the
requested communication sequences within the cluster.

A communication session is always initiated by CP, which connects
other system units. The other units (DU/PU) cannot initiate any
transmission. They can only raise a connection request indication
in the poll response.

The User Interface Module in one unit communicates, via the
Communication Handler, with the corresponding User Interface
Module in another unit.

UIM in CP is called BCC_08000 and
UIM in DU and PCU is called BCG_08000.

The UIM carries out various communication functions. The desired
& function is specified in the User Interface Control Block (UICB).

(
UIM communication is carried out on a special communication
channel. See section 7.1.2.
After a call to UIM, the calling unit's UIM is in waiting mode
until a response is received.
ALL UIM execution is carried out under LOCK(INTERRUPT).

(

C

0011¢

ERICSSON

=
=

8 USER INTERFACE FUNCTIONS

0S REFERENCE MANUAL

E90003145E N
1983-11-14 . A | o 6

8.3

USER INTERFACE CONTROL BLOCK

Communication between the system module and the User Interface

Module is controlled by a control block, UICB. In this control

block, the system module specifies the function which is to be

executed. After the execution, the results of the operation can
be obtained from the same control block.

UICB congists of a structure named BCC_7D107 in CP and BCG_70107
in DU. The structure is available both before and after a call to
the User Interface module.

peclaration of the User Interface Control Block:

bcL 1 BCx_70107 EXTERNAL, /* x = C in CP and x = G in DU */
5 yCUICMND BYTE, /*y =€ in CP and y = D in DU */
5 yCEMCMND CHAR(5)
5 yCSDSTRT POINTER,
5 yCSDLEN BINARY(15))
5 yCRDSTRT POINTER,
5 yCRDLEN BINARY (15},
5 yCDEVNR1 BYTE,
5 yCDEVNR2 BYTE,
5 yCDSTAT BYTE,
5 yCUIMSTAT BYTE,
S yCBUFSTAT BYTE,
5 yCTIMEFAC BYTE, .
5 CCCONNECT BYTE, /* In CP only */
5 CSTAUPPR POINTER, /* In CP only */
5 CRECLEN BIN; /* In CP only*/
Parameter Meaning (all codes are hexadecimal)
yCUICMND Type of command to UIM }
$(20): Initialize User Interface module (only DU). -
UIM is initialized and put in wait mode.
$¢10): Wait (only DU). UIM sets yCUIMND=10 when a
command has been executed or when a
transmission error occurs. In case of
transmission error the system module may call
UIM in order to recover.
$(81): Connect one DU to CP.
$(Cc0): Disconnect.
$(00): Send command without data. The command is
transmitted in the YCEMCMND area., See below.
$¢01): Send data.
$(02): Receive data.
$(06): Check source (only from CP). Always automatic

connect/disconnect.

0011c

8 USER INTERFACE FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
’ E9Q003145E I 7
! i 1983~11-14 A 7

Parameter Meaning (all codes are hexadecimal)

y CEMCMND Emulation command area, used by the emulation
modules. This command area contains the emulation
dependent codes for polls, answer to polls,
acknowledgements etc. (Refer to the appropriate
emulation reference manual.) The emulation command
area is transmitted between the communicating units
at each call to UIM.

yCSDSTRT Start address of send-buffer area in sending unit.

yCSDLEN Length of send-buffer area in sending unit.

yCRDSTRT Start -address of receive-buffer area in receiving
unit.

yCRDLEN Length of receive-buffer area in receiving unit.

yCDEVNR1 Logical address of the unit to which the command is
issued. See section 7.2.1.

yCDEVNR?Z Not used.

yCDSTAT Error status for UICB.
$(00): No error.
$(80): Transmission error.
$(FF): Connection error.

yCUIMSTAT CP: Not used.

DU: $(00Y: UIM in waiting mode
$(FF): UIM busy.

yCBUFSTAT Used only in DU. See section 8.7.4.

yCTIMEFAC Timeout for internal communication. Always set by UIM
to $(FF), 5 sec.

CCCONNECT Automatic connect/disconnect

{only CP) $(00): No connect/disconnect
$(01): Automatic connect before command.
$(02): Automatic disconnect after command.
$(03): Combination of $(01) and $(02).

CSTAUPPR Pointer to emulation status updating routine. Set

(only CP) by emulation initialization routine. If no status
updating routine exists CSTAUPPR=0.

CRECLEN Received data length. After a Read DU command, the

(only CP) length of the received data is stored in this

parameter, :

0011c¢

8 USER INTERFACE FUNCTIONS

ERICSSON 2 ‘ 0S REFERENCE MANUAL
! E90003145E
1983-11-14 A 8
8.4 INITIALIZATION OF UIM
8.4.1 Functional Description

For CP there is no initialization to be done by the calling
program.

For DU, the initialization command $(20) must be sent. Before the
call to UIM, address and length of the receive buffer must also
be set in UICB. After the call, UIM will be in waiting mode.

At transmission and connect errors, UIM can be reset to the

waiting mode by means of command $(10). In some cases also the
receive buffer parameters must be reset.

Note that when a command has been executed, UIM always sets the

command entry in UICB to $(10). This command is only valid in DU.

If the error occurred in CP, a disconnect will be automatically

performed. §

8.4.2 Interface in DU

Declarations:

DECLARE 1 BCG_70107 EXTERNAL, /% UICB IN DU */
o As set forth in
. Section 8.3
DECLARE BCG_QSDDD ENTRY; \ ‘ /* UIM PROC IN DU */ -
x)) B
Call format: : :Wj
DCUICMND = 3(20); /* INITIALIZE UIM */
DCRDSTR "receive—buffer start address';

DCRDLEN = "receive~buffer length";

DUWAIT:

CALL BCG 08000; /% EXECUTE */

IF DCDSTAT 1 =0 /* ERROR STATUS OF UICB */
THEN DO;

/*HANDLE COMMUNICATION ERROR*/

DCUICMND = $(10); /* RECOVER ERROR */
GOTO DUWAIT;
END;

0011c

8 USER INTERFACE FUNCTIONS

ERICSSON 2 . 0S REFERENCE MANUAL
: EQC003145E |
1 o 1983-11-14 A 9
8.5 CONNECT/DISCONNECT
8.5.1 Functicnal Description

Connection/Disconnection can be performed either by using the
command byte in UICB or automatically by using the CCCONNECT byte
in UICB.

ALl connection/disconnection is performed in CP.

After disconnection, control is left back to the calling program.
Note that disconnection should not be ordered if a communication

error occurred.

{_
8.5.2 Connect Interface in CP
Declarations:
(DECLARE 1 BCC__?O107 EXTERNAL, /* UICB IN CP * /
. As set forth in
. Section 8.3
DECLARE BCC_08000 ENTRY; . /* UIM PROCEDURE */
Call format; connection via connect command:
CCUICMND = $(81); /* CONNECT ONE DU TO CP =*/
CCDEVNRT = "DU to be connected";
CALL BCC_OSODO; /* EXECUTE */
. Call format; automatic connection via CCCONNECT byte: f
() CCUICMND = "suitable command"';
CCDEVNR1 = "DU to be connected”;
CCCONNECT = 3(01) (or $(03)); /% AUTOMATIC CONNECTION */
CALL BCC_08000;
(If CCDSTAT in UICB contains $(00), the operation was successful.

0011¢c

8 USER INTERFACE FUNCTIONS

ERICSSON Z ‘ 0S REFERENCE MANUAL
; ‘ ES0003145E
1983=11-14 A 10
8.5.3 Disconnect Interface in CP

Declarations:
DECLARE 1 BCC_70107 EXTERNAL, /* UICB IN CP */

. As set forth in
. Section 8.3

DECLARE BCC_08000 ENTRY; /* UICM PROCEDURE */

call format; disconnection via disconnection command

CCUICMND $(CO;
CCDEVNR1 = "DU to be disconnected";
CALL BCC_pSOOO; /* EXECUTE */

call format; automatic disconnection: Wﬁ

CCUICMND = "suitable command";

CCDEVNR1 "DU to be disconnected";

CCCONNECT = $(02) (or $(03));

CALL BCC_DSODD; /% EXECUTE */

0011c

(,,

3

ERICSSON Z

8 USER INTERFACE FUNCTIONS
0S REFERENCE MANUAL
E90003145E

1983-11-14 A 11
8.6 SEND COMMAND WITHOUT DATA
8.6.1 Functional Deséription
When no data (text) is included in the internal message to be
transmitted, only the emulation command area (yCEMCMND) has to be
transferred. This is accomplished by setting the command byte in
UICB to $(0D).
The send command without data is used for acknowledgement from a
unit which has received data, but has no data to transmit in
response to the receiption.
8.6.2 Interface in CP
Declarations:
DECLARE 1 BCC_7D107 EXTERNAL, /* UICB IN CP */
. As set forth in
. Section 8.3
DECLARE BCC_QSOOD ENTRY; /% UIM PROCEDURE */
Call format:
CCUICMND = $(00>; /% SEND COMMAND WITHOUT DATA */
CCEMCMND = '"suitable command"; /% COMMAND TO BE SENT */
CCDEVNRT = "logical device number"; /* DESTINATION */
CALL BCC_DSOOO; /% EXECUTE */
8.6.3 Interface in DU
Declarations:
DECLARE 1 BCG_70107 EXTERNAL, /% UICB IN DU */
. As set forth 1in
. Section 8.3
DECLARE BCG_08000 ENTRY; /* UIM PROCEDURE */
Catl format:
DCUICMND = $(00); /% SEND COMMAND WITHOUT DATA */
DCEMCMND = '"'suitable command; /* COMMAND TO BE SENT &/
/* EXECUTE */

CALL BCG_08000;

0011c¢

8 USER INTERFACE FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL
: P ES0003145E
1983-11-14 = A 12
8.7 WRITE DU
8.7.1 Functional Description

when data is to be sent to DU, CP issues a send data command.

Before the call to UIM, address and Length of the send buffer, as

well as command area and physical unit number must be set in
UIcB.

UIM in DU must be in wait mode to receive the send data command.
UICB must contain the address and length of the receive buffer.

Note that UIM does not check if the send buffer is greater than

the receive buffer length. If the receive buffer is to small,
program code may be overwritten.

when the data has been received, control is left with the system
module. Data transmitted is then available in the receive buffer.
The system module then sets the send command without data in UICB
and calls UIM to acknowledge the receiption. See Fig. 8.2.

Note that the emulation command area is also transferred in a
data transmission.

CcP) ou
System System
rmodule module
@ UIM call » _DPata_transmission __ _ UIM return
! 00
—Return <ommand transmission_ <UIM call

Fig. 8.2. Write DU sequence

0011¢

8 USER INTERFACE FUNCTIONS

‘ ERICSSON 2 0S REFERENCE MANUAL
: T E90003145E «
: ' 1983-11-14 A ‘ 13

8.7.2 Interface in CP

Declarations:
DECLARE 1 BCC_70107 EXTERNAL, /* UICB IN CP */

. As set forth in

. Section 8.3

DECLARE BCC_QSODO ENTRY; /% UIM PROCEDURE IN CP %/

Call format: ‘

CCUICMND = $(01); /* SEND DATA */

CCSDSTRT = "send buffer address'; /* DATA TO BE SENT */

CCSDLEN = "send buffer length";

CCEMCMND = "suitable command'; /* COMMAND TO BE SENT %/

CCDEVNRT = "logical device number'; /* DESTINATION */
f* CALL BCC_QSDOD. /% EXECUTE */

8.7.3 Interface in DU

Declarations:
DECLARE 1 BCG_701D7 EXTERNAL,. /% UICB IN DU */

. As set forth in
. Section 8.3

DECLARE BCG_08000 ENTRY; /* UIM PROCEDURE IN DU */

Call format:
. ", /*PREVIOUS UIM CALL%/
(CALL BCG_08000;
/*RETURN FROM UIM AFTER DATA HAS BEEN RECEIVED*/

/*PROCESS RECEIVED DATA%*/

. DCUICMND = $(00); /* SEND COMMAND WITHOUT DATA */
(DCEMCMND = "suitable command"; /% ACKNOWLEDGEMENT FROM DU */
CALL BCG_DBOOO; /* EXECUTE */

0011¢

QO UDLCK LINICRTFALD TWiYu L LwivY

| ERICSSON Z 0S REFERENCE MANUAL

ES0003145E

14

8.7.4

1983-11-14 A

WRITE DU with Emulation Control

In the UICB in DU, the variable DBUFSTAT contains the status of
the DU buffer. If bit 7 is set in this byte, the emulation will
be invoked each time CP issues the send data command (01). At
this moment, UICB is updated, and can thus be used by the
emulation.

The emulation should respond by a receive data command (02) when
the DU buffer is ready to receive the text.

The purpose of this procedure (short write) is to make it

possible for CP to send a Write command to DU, wihtout having to
check if the DU buffer is ready to receive the text.

The emulation in DU can delay the data transmission. The maximum
delay time is depending on the variable CTIMEFAC, the command
transmission time and the time required in DU to respond to the
command. CTIMEFAC is by 0S set to $(FF), which corresponds to 5
seconds.

The variable DBUFSTAT should be handeled with care. It is
advisable to manipulate the byte only when the session is
established and control is handed over from UIM to the emulation.

CcP DU
system UiM UM emulgtion
moduie module
o1 UMcall _ _ command _ __ UM refurn
| 02
~ command UM call
l_ — e e = — = — e
I
|
l
L e _data _ _ _ _ - UIM return
00
- UM return _command UM cdll

Fig. 8.3 Write DU with emulation control

0011¢

0S REFERENCE MANUAL
E90003145E
1983-11-14 A 15

ERICSSON 2

8.8 READ DU

8.8.1 Functional Description

When data is to be sent from DU, the CP system module sets

receive buffer address and length, physical device number,
command area and CCUICMND = receive data, before UIM is called.

If DU has data to transmit, send buffer address and length has to
be set before UIM is called with the send data command set. If DU
has no data to transmit, it responds with send command without
data.

Note that UIM does not check if the send buffer length is greater
than the receive buffer length. If receive buffer is to small,

e program code may be overwritten. See Fig. 8.4.

) : CP ‘ bu
(System System
module module

UIM call
IQEI ca AQMMANG_ransmission
l01l

et g Dafa fransmission g UIM call

Fig. 8.4. Read DU sequence

0011c

ERICSSON

=
-

O UDERK LINICKTALE TUNLILVIIO
0S REFERENCE MANUAL
E900037145E

1983-~11~

14 A

16

8.8.2

8.8.3

Interface in CP

-Declarations:

DECLARE 1 BCC_70107 EXTERNAL,

. As set forth in
. section 8.3

DECLARE BCC_08000 ENTRY;

Call format:

CCUICMND $(02);
CCEMCMND = "suitable command";
CCRDSTRT =

CCRDLEN = "receive buffer length";
CCDEVNR1 = "logical device number";
CALL BCC_08000;

Interface in DU

Declarations:

DECLARE 1 BCG_70107 EXTERNAL,

. As set forth in
R Section 8.3

DECLARE BCG_QSDOD ENTRY;
catl format:

/*PREVIOUS UIM CALL~*/
CALL BCG_08000;
/*RETURN FROM UIM*/

DCUICMND
DCEMCMND "syitable command";
DCSDSTRT = "send buffer address";
DCSDLEN = "send buffer Llength";
CALL BCG_08000;

$(01);

i unu

"receive buffer address"

[*

/%

/*

.
4

/*
/*

/*

] *

/*

/*

UICB IN CP

UIM PROCEDURE in CP

RECEIVE DATA

DESTINATION
EXECUTE

uIce IN DU

UIM PROCEDURE IN DU

SEND DATA

EXECUTE

*/

*/

*/

*/
*/

*/

*/

*/

*/

0011¢

8 USER INTERFACE FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL *
E90003145E

1983-11-14 A , 17

8.9

8.9.1

i RN ' i I
: ! AP ‘

EMULATION STATUS UPDATING

0S maintains a status List in CP for all physical addresses. This
status list is updated in each poll response from the units.

The emulation can also define its own status list in CP, where

the status of the devices is defined according to some suitable
principle.

The emulation status can comprise states Llike "ENTER key pressed"
etc.

The following describes how this emulation-defined status list
can be continually updated.

Functional Description

When the status of any system unit is changed, the new status is
saved in a status area in the unit. The external pointer in
BCG_70104 is set to refer to this status area in DU/PU.

In the next internal poll response, a flag is set to indicate
that the emulation status list is to be updated. The content of
the event status area is transferred to a corresponding device
status area in CP in connection with the poll. The external
pointer BCC_70105 is set to refer to this device status area in
CP.

The external event BCD_]O112 indicates to QU that CP has received
the new status.

When the new status has been transferred to the status area in

CP, a user—written routine is invoked. The reference to this
procedure is stored in the pointer CSTAUPPR in UICB. If no status

updating routine is provided, CSTAUPPR = O.

8.9.2

The user-written routine is executed on interrupt level.

Interface in CP

Declarations:

DECLARE CSTAUPPR PTR EXTERNAL; /% POINTER TO USER WRITTEN PROC */

DECLARE BCC 70105 PTR EXTERNAL; /* POINTER TO DEVICE AREA */
DECLARE 1 DEVAREA BASED BCC_70105,
5 DEVNR BYTE, /* PHYSICAL DEVICE NUMBER */
5 DEVLEN BYTE, /* LENGTH OF DEVSTAT */
5 DEVSTAT(n) BYTE, /* RECEIVED DEVICE STATUS */
DECLARE STATUS(x) CHAR(n); /* EMULATION STATUS TABLE */

x = number of units in the configuration.

0011¢

[R S e AL T AN A L T

ERICSSON Z 0S REFERENCE MANUAL

E90003145E

1983-11-14 A 18

8.9.3

The number of bytes (n) in the status table depends on the
application in guestion. STATUS must be assigned initial values
by the user.

User written routine in CP system module:
STATUPD: PROCEDURE;

LOCK (INTERRUPT);
STATUS(DEVNR)= DEVSTAT;
UNLOCK (INTERRUPT);

END STATUPD;
Call format, initialization:
CSTAUPPR = ADDR(STATUPD);

The Communication Handler will now see to it that the emulation
STATUS table is kept continuously updated.

Interface in DU/PU

Declarations:

DECLARE 1 BCG_70104 EXTERNAL, (BCP-70104 for PU)

5 CONREQ BYTE, /% FLAG */

5 STATPTR POINTER; /* POINTER TO STATAREA */
DECLARE 1 STATAREA,

5 STATCNT BYTE, /* SIZE OF EMSTAT (BYTES) */

5 EMSTAT(n) CHAR; /* EMULATION STATUS */

DECLARE BCD_70112 EVENT EXTERNAL; (BCP_70112 for PTR) /* STATUS
] RECEIVED BY CP */
N
CONREQ is a byte with the following meaning:
Bit 7 = 1 Status transmission request
Bit 6 = 1 Status transmission to CP initiated.

EMSTAT contains the status code which is transmitted to CP. n is
the number of characters in the status code {maximum 21).

Call format, initialization:
STATPTR ADDR(STATAREA) ;

STATCNT = "n';

The system module requests status to be sent to CP by setting bit
7 in CONREQ. When status transmission has been initiated, 0S sets
bit 6 in CONREQ. When CP has acknowledged the reception of the
status, 0S posts the event BCD 70112 and clears bits 6 and 7 in
CONREQ.

0011¢

-

8 USER INTERFACE FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
E90003145E
1983-11-14 . A 19
Since the status area is also used by the poll answer routine,
the status updating routine is executed under LOCK (INTERRUPT).
Call format, send new status:
/* LOOP START */
LOCK (INTERRUPT);
IF CONREQ = 0 /* NO REQUEST */
THEN
GOTO PROCEED; ‘
IF CONREQ = $(80) /% STATUS TRANSMISSION REQUEST */
THEN /* WAS ALREADY INITIATED */
IF "skip old status"
/*0LD STATUS WILL BE OVERWRITTEN=*/
THEN
o DO;
(CONREQ = 0;
GOTO PROCEED;
END;
/* IF CONREQ = $(80) OR $(40) */ .
- ASSIGN BCD_70112; For Printer: ASSIGN BCP 70112;
‘ WAIT BCD_70112; WAIT BCP_70112;
PROCEED:
UNLOCK (INTERRUPT);
CONREQ = $(80) /* TRANSMISSION REQUEST */
Transmission of the new status will be performed in connection
with the next poll from CP. .
(!
(

0011c

.0 WOLRR LINILDNI MLl 1 WiTv i &wisw

ERICSSON Z 0S REFERENCE MANUAL

E90003145E

1983-11-14 A 20
8.10 EMULATION ABORT

§.10.1 Functional Description

System modules in CP may reguire information about whether a unit
is

- logged on to the emulation

- logged off or down

Information about changes concerning these states can be handed
to a user-written abort procedure in CP. The original information
about the changes in device status is obtained from the TP-status
list in CP OS.

The external pointer BCC_70109 is set to refer to the abort
procedure. If no abort procedure is provided, BCC_70109 = O. NQ

The status byte BCC_70110 is interpreted by the abort procedure
as follows:

Bit 76543210 Meaning)
1 Unit down or logged off
0 Unit logged on and not down
XX XXX XX Logical device address

8.10.2 Interface in CP

Declarations:

DECLARE "abort proc' ENTRY;

DECLARE BCC_70109 PTR EXTERNAL; /* PTR TO ABORT PROC */
DECLARE BCC_70110 BYTE EXTERNAL; /* STATUS BYTE */
Call format, initialization: ")

BCC_70109 = ADDR("abort proc'™;

The abort proc will now be invoked each time bit No. 7 in BCC v
70110 is changed. 5}

Note that the polling of the cluster units is not started until
the pointer BCC_70109 is injtialized.

0011¢

8 USER INTERFACE FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL

E90003145E
| 1983-11-14 A 21

8.11
8.11.1

8.11.2

HOST SYSTEM STATUS

Functional Description

As mentioned in section 7.15, 0S maintains a status area in each
DU/PU. This status area contains the current status of the DU/PU
and the status of the CP, which is updated in each received poll.

The system module can be provided with a user-written routine
which will be automatically invoked each time any of bits 0-3 in
the poll status byte is changed.

This means that the system module can receive and properly handle
a simple ON/OFF message included in the poll.

Bits 3-0 in the status byte of the poll are interpreted as
follows (see also section 7.4.1):

Bit 3210

1 The device has been in slow poll Llist
X This bit can be used by the emulation.
(System Reset in IBM Local emulation)
1 CP2 in dual host configuration
1 System ready set.

Interface in CP

Declarations:
DECLARE BCC_$0910 BYTE EXTERNAL;

Call format, host system status ON:

LOCK(KERNEL) ;
BCC $0910 = BCC 30910 $(04);

UNLOCK (KERNEL) ;

Call format, host system OFF:

LOCK (KERNEL) ;
BCC_$0910 = BCC_$0910 & $(FB);
UNLOCK (KERNEL) ;

0011¢c

8 USER LINITERFAULE FUNUILUND

ERICSSON 2 0S REFERENCE MANUAL
E90003145E

1983-11-14 A 22

8.11.3 Interface in DU/PU

Declarations:

DECLARE 1 BCG_70113 EXTERNAL, /% UNIT STATUS AREA */
2 CPSTAT BYTE, /* CP STATUS IN LATEST POLL */
2 DUSTAT BYTE, /%* DU STATUS */
2 PUSTAT BYTE; /% PU STATUS */
DECLARE OSPNTD PTR EXTERNAL; /* POINTER 7O DU - PROC */
DECLARE OSPNTP PTR EXTERNAL; /% POINTER TO PU - PROC x/

DUSTAT is transmitted from the device in each poll response.
Thereby the device status list in CP is continually updated (see
section 7.1.5). If the display unit has a PU connected, the
PUSTAT byte is included in the poll response.

caltl format, initialization:

OSPNTD
OSPNTP

ADDR (DU - procedure');
ADDR("PU - procedure');

The procedures specified in the initialization will be invoked
each time any of bits 0-3 in poll status byte is changed.

0011c¢

O USEK LNIERFALE FUNULILUND

ERICSSON Z 0S REFERENCE MANUAL

EQ0003145E
: ,1983—11—14 A ‘ 23
! ' C i | X
8.12 APPLICATION EXAMPLES
8.12.1 Initialization
CP: .CSTAUPR = ADDR(STATUPD); /* SET POINTER TO EMULATION */
/* STATUS UPDATE PROCEDURE */
DU: STATPTR = ADDR(STATAREA); /% SET ADDRESS OF STATUS AREA */
STATCNT = N; /* STATUS LENGTH */
EMSTAT = INITSTAT; /* AND INITIALIZE STATUS */
DCUICMND = $(20); /* INITIALIZE USER INTERFACE */
DCRDSTRT = ADDR (RECBUF); /* RECEIVE BUFFER ADDRESS */
DCRDLEN = BUFLEN; ‘ /* RECEIVE BUFFER LENGTH */
DUWAIT:
CALL BCQ_OBDOO; /* EXECUTE INITIALIZATION */
IF DCDSTAT 1 =0 /% ERROR STATUS OF UICB IN DU */
- THEN
() GOTO ERROR; /* HANDLE ERROR */
/*WAIT FOR COMMAND FROM CPx/
ERROR:
/* HANDLE COMMUNICATION ERROR */
DCUICMND = $(1Q); /% RECOVER ERROR */
GOTO DUWAIT;
8.12.2 Send Request from DU
DU: /*STORE NEW STATUS*/
o ’ EMSTAT = "send request"
. /*REQUEST STATUS TRANSMISSION*/
LOCK (INTERRUPT);
IF CONREQ = O
) THEN
(GOTO PROCEED;
IF CONREQ = $(80) /* TRANSMISSION REQUEST */
/% WAS INITIATED */
THEN
IF <skip old status>
THEN
DO;
CONREQ = 0;
GOTO PROCEED;
END;

0011c

ERICSSON

Z

O UOLN INIEN AV 1 WiITw | &wvivw

0S REFERENCE MANUAL

CP:

8.12.3

CP:

DU:

- E90003145E

| 1983-11-14 A 24
ASSIGN BCD_70112;
WAIT BCD_70112; /* WAIT FOR ACK FROM CP 0S */
PROCEED;
UNLOCK (INTERRUPT);
CONREQ = $(80); /* TRANSMISSION REQUEST */

(Transmission to CP is carried out
internal poll.)

in response to the next

The status routine is called by the poll routine in CP:

STATUS (DEVNR) = DEVSTAT;
/*PROCESS STATUS*/

The next poll from CP acknowledges
message.

Poll from Host Computer

by

(CP decides to fetch data from DU)
CCEMCMND = "poll" /%
CCDEVNR1 = "DU nr''; /*
CCRDSTRT = ADDR(CREADBUF); /*
CCRDLEN = RDBUFLEN; /*
CCCONNECT = $(03); /*
CCUICMND = $(02); /*
CALL BCC_08000; /*

(Command js transmitted to DU)
(Return from UIM)

IF DCDSTAT 1 =10 [*

THEN
GOTO ERROR;

SELECT (DCEMCMND) ;

WHEN "poll'" DO;
/*HANDLE POLL*/

the reception of the status

INTERNAL COMMAND TO DU */
DEVICE ADDRESS */
BUFFER ADDRESS */
AND LENGTH */
AUTOMATIC CONNECT/DISCOMNECT */
RECEIVE DATA COMMAND */
EXECUTE */

ERROR STATUS OF*UICB */

0011¢c

8 USER INTERFACE FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL
E90003145E
1983-11-14 A 25\
| !
DCUICMND = $(01); /*SEND DATA TO CP */
DCSDSTRT = ADDR (SENDBUF); /*DEFINE SEND BUFFER */
DCSDLEN = MSGLEN;
DCEMCMND = '"answer to poll'; /*COMMAND TO BE SENT */
CALL BCG_DSOOO; /*EXECUTE */
(Command and data is transmitted to CP.)
(Return from UIM)
CP: IF CCDSTAT] =20 /*ERROR STATUS OF UICB IN CP */
THEN
GOTO ERROR;
/*DATA FROM DU IS CONTAINED IN CREADBUF*/
/*CP TRANSMITS DATA TO HOST COMPUTER%*/
8.12.4 Ack from Host Computer
CP: /*SEND ACK TO DU WITH SEND COMMAND WITHOUT DATA*/
/*DEVICE NR IS ALREADY DEFINED%/
CCEMCMND = "ack"; /% COMMAND TO BE SENT */
CCUICMND = 3(00); /% SEND COMMAND WITHOUT DATA “ */
CCCONNECT = 3(03); /* AUTOMATIC CONNECT/DISCONNECT */
CALL BCC_QSODD; /* EXECUTE ‘ */
(Transmission to DU)
pU: (Return from UIM)
IF DCDSTAT 1 =20 /* ERROR STATUS OF UICB */
THEN
GOTO ERROR;
SELECT (DCEMCMND) ; !
WHEN "ack" DO; ,
DCEMCMND = '"ack"; /* ACK OF ACKNOWLEDGEMENT * /
DCUIMCND = $(00); ‘ /* SEND COMMAND WITHOUT DATA */
Call BCG_08000;
(Transmission to CP)
(Return from UIM)
CP: IF CCDSTAT 1 =20 /% ERROR STATUS OF UICB
THEN

GOTO ERRCR;
/*WAIT FOR NEXT MESSAGE FROM HOST COMPUTER*/

0011¢

ERICSSON

=
=

Q UDER LILNICRTFALL UL Lvivw
0S REFERENCE MANUAL
E90003145E

1983-11-14 A

26

8.12.5

CP:

DU

CP:

8.12.6

CP:

DU:

Text from Host Computer

CCUIMCMND = $(01);
CCEMCMND = "text';
CCDEVNRT = "DU nr'';
CCSDSTRT =

CCSDLEN = BUFLEN;
CCCONNECT = $(03);

CALL BCC_08000;

(Data transmitted to DU)

(Return from UIM)
IF DCDSTAT 1 =0
THEN
GOTO ERROR;
SELECT (DCEMCMND) ;

WHEN “"text" DO:

J*EDIT TEXT*/

DCUICMND $¢00);
DCEMCMND = "ack'';
DCRDSTRT = ADDR(RECBUF);
DCRDLEN = BUFLEN;

call BCG_QSDOD;

(Command transmission to CP)

(Return from UIM)
IF CCDSTAT 1 =0
THEN
GOTO ERROR;

/*SEND ACK TO HOST COMPUTER*/

ADDR (SENDBUF) ;

/*SEND TEXT TO DU

/*DEFINE BUFFER

/*AUTOMATIC CONNECT/DISCONNECT
/*EXECUTE

/*ERROR STATUS

/*SEND ACK TO CP

/*EXECUTE

/*ERROR STATUS

Session Concluded by Host Computer

/*EOT RECEIVED FROM HOST COMPUTER=*/

/% SEND ON TO DUx/
CCUICMND = $(00);
CCEMCMND = EOT;
CCCONNECT = $(03);
CALL BCC 08000;
(Send command to DU)

(Return from UIM)
IF DCDSTAT 1 =0
THEN
GOTO ERROR;
SELECT (DCEMCMND) ;

WHEN (EQT) DO;
/*PROCESS EOT*/

/*SEND COMMAND WITHOUT DATA
/*END OF TRANSMISSION
/*AUTOMATIC CONNECT DISCONNECT
/*EXECUTE

/*ERROR STATUS

*/

*/

*/
*/

*/

*/

*/

*/

*/
*/
*/
*/

*/

0011¢

ERICSSON Z

8 USER INTERFACE FUNCTIONS
0S REFERENCE MANUAL

E90003145E

1983-11-14 A .27
DCUICMND = $(00); /*SEND COMMAND WITHOUT DATA */
DCEMCMND = "ack";
CALL BCG_OSOUO; /*EXECUTE */
(Command transmitted to CP)

CP: (Return from UIM)

IF STATUS 1 =0 /*ERROR STATUS */

THEN
GOTO ERROR;
/*ELSE SESSION CONCLUDED*/

0011¢

9 DISPLAY UNIT FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
; ES0003145E «
1983-12-12 A 1

9 DISPLAY UNIT FUMCTIONS

List of Contents

9.1 GENERAL DU DESCRIPTION 3
9.2 DISPLAY AREA b
9.2.1 Functional Description 4
9.2.2 Interface for Default Display Area 4
9.2.3 Character Generation Codes 4
9.2.4 Field Attribute Characters 5
9.3 IMITIALIZING THE ADAPTATION CIRCUITRY 6
9.3.1 Functional Description 6
9.3.2 Interface 6
- 9.3.3 IPL Initialization 10
9.4 CURSOR HANDLING 11
9.4.1 Functional Description 11
9.4.2 Interface (N
9.5 MESSAGE LIME 12
9.5.1 Functional Description 12
9.5.2 Message Line Control Block 12
¢.5.3 Interface to Message Line ° 14
9.6 HARDWARE DEPENDEMT FUNCTIONS 15
9.6.1 Hardware Identification 15
9.6.2 Maxram 16
9.6.3 DU 4111 Characteristics ‘ 16
9.6.4 DU 4112 Characteristics 16
9.6.5 E241 17
() 9.6.6 DU 4113 Characteristics 17
9.6.7 DPU 4173 Characteristics (WS 3111) 17
8.7 APPLICATION EXAMPLES 18
9.7.1 Initialization and Cursor Handling 18
(9.7.2 Example of Message Line Handling 20-20

0231¢

ERICSSON Z

9 DISPLAY UNIT FUNCTIONS

0S REFERENCE MANUAL

E90003145E \

1983-12-12 A 2

0231c¢

~

9 DISPLAY UNIT FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL

Lo : : o . E90003145E" , :

L ! T ' 1983-12~-12 ‘A | 3
9.1 GENERAL DU DESCRIPTION

The following description of the display unit functions is based on
DU 4110. However, the main part of the described functions applies to
all bU models. The functions that are dependent on a special hardware

configuration are presented in the end of this section.

The DU contains a certain memory area, which is called the display
area. Each cell in the display area corresponds to a particular
character position on the screen. The memory cells contain the code
for the character currently being displayed on the screen. A special
adaptation circuitry (DIA) continously interprets the content of the
display area, and transfers the characters to the screen.

A number of system parameters are used to define the DU functions.
These parameters are listed and explained in section on Customizing
Data in document on Maintenance.

0231¢

9 DISPLAY UNIT FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL
E90003145E
1983-12-12 A 4
9.2 DISPLAY AREA
9.2.1 Fuhctional Description
The size of the required display area depends on desired emulation
and screen format. The display area may be located anywhere between
the addresses 6000 and 7FFF hexadecimal (E002 and F4AZ2 in DU 4113).
The operating system provides a default display area containing 1920
bytes (3840 in DU 4113). This area can be used for IBM type
presentation in a screen format of 25 x 80 including message line.
For other presentation types or other screen formats, the display
area must be specified and declared in the system module.
9.2.2 Interface for Default Display Area
The default display area is declared in the structure BED_07200. The
following declarations are included in the system module if the
default display area is to be used.
DU 4110, 4111 and 4112:
DECLARE BED_$7200 CHAR(1919) EXT; /* DISPLAY AREA */
DELCARE BED_$?21D CHAR EXT; /% LAST CHARACTER */
/* POSITION ON THE */
/% SCREEN */
DU 4113:
DECLARE BED_$7200 CHAR(4000) EXT;
DELCARE BED_$?21O CHAR EXT;
The default display area starts at address 7830 (E502 in DU 4113) and
ends at address 7FAF (F400). The address of BED_$7210 is thus TFAF
(F401) .
9.2.3 Character Generation Codes

Each supported character in the display unit has its own unique
character generation code, describing its layout in the cell on the
screen.

The translation from the character code (e.g. ASCII) to the character
generation code is performed via a character generation table. This
table contains each supported character code and its corresponding
generation code.

0231c

9 DISPLAY UMIT FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
: l E90003145E :
1983-12-12 A 5

9.2.4

In DU 4110 the character generation table is stored in PROM. In later
DU models, the table is loaded from diskette and stored in the RWM.

The character generation tables are listed in Appendix.

See also section on Keyboard Input below.

Field Attribute Characters

Field attribute characters (FAC) are used to define the attributes of
a display field. A field can be protected from input, displayed with
higher intensity etc. Each FAC can apply either to the end of the
Line or to the next FAC on the screen.

The interpretation of the FAC codes depend on desired emulation,
system parameters and hardware. See the technical description and the
reference manuals for the IBM and Univac emulations.

Extended attributes are used in DU 4113 to provide colour and graphic
characters. When extended attributes are used every position on the
display corresponds to two buffer positions = one for the extended
attribute and one for the character to be displayed.

0231¢

9 DISPLAY UNIT FUNCTIONS

o

ERICSSON = 0S REFERENCE MANUAL
f 'E90003145E
1983~-12-12 A 6
.3 INITIALIZING THE ADAPTATION CIRCUITRY
9.3.1 Functional Description
To initialize the adaptation circuitry for display purposes, a table
of initialization parameters must be defined by the user. The
parameters are stored in a variable containing 20 bytes. The address
of this variable is handed over to the operating system via the
external pointer BED_ $7400.
The global procedure BED_07100 carries out the initialization. When
this procedure is calted, the adaptation circuitry is initialized and
the parameter values are then available in BED_07100. }
9.3.2 Interface
Declarations: }b
DECLARE INITAB CHAR(Z(O); /* USER DEFIMED VARIABLE */
DECLARE 1 BED_$71OO EXTERNAL,
5 DIARSTRT PTR, /% START QF DISPLAY AREA %* /
5 DIAREND PTR, /* END OF DISPLAY AREA */
5 DIARLLEN BYTE, /* LINELENGTH (CH/L) */
5 DIARLNR BYTE, /* NUMBER OF LINES EXCL ML =/
5 DIAPRES1 BYTE; /* SEE BYTE 19 */
5 DIAPRESZ BYTE; /* SEE BYTE 20 */
- DECLARE BED_$?4OO PTR EXTERNAL; /* PTR TO INITAB */
DECLARE BED_O71OO ENTRY (PTR VALUE); /* INITIALIZATIOMN PROC */
Before the call to the initializing procedure, INITAB is initialized
as follows. .

0231c

ERICSSON 2

9 DISPLAY UNIT FUNCTIONS

0S REFERENCE MANUAL

- E90003145E :

1983-12-12 A 7

INITAB parameters:

Code (hex) for screen formats including message line:

Horizontal total
Horizontal displayed
(number of characters/line)
Horizontal sync position
Horizontal sync width
Vertical total

Vertical total adjust
Vertical displayed (number
of lines including message

Vertical sync position
Interlace mode

Number of sweeps per
displayed line minus one

Byte 13x40 13x80 17x80 25x80 33x80 44x80 Meaning
1 63 63 63 63 63 63

2 28 50 50 50 50 50

3 A 58 58 58% 58% 58

4 06 06 06 06 06 06

5 12 12 12 19 21 2C

6 08 08 08 0A 12 15

7 0p 3])] 11 19 21 2C

Line)

8 oF oF 12 19 21 2C

9 00 00 00 00 00 00

10 15 15 15 OF 0B 08
*) 56 in DU 4113 (only format 28 x 35 and 33 x 80 in this unit).

Bit
76543210
Byte 11 11 Flashing cursor, 1.5 Hz
10 Flashing cursor, 3 Hz
01 No cursor
00 Steadily glowing cursor
XX X XX Sweep No. within Line for top edge of
cursor
Byte 12 XXX XX Sweep No. within Line for bottom edge
of cursor
Bytes 13-14 Absolute start address of display area
Bytes 15-16 Cursor address after initialization
Bytes 17-18 End address of display area, excl.

message line <7FFF (hex)

Continued on next page.

0231¢

$ DISPLAY UMIT FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
» : E9O003145E | ‘
1983-12-12 A ; 8

Byte 19 - DIA PIA control byte A.

DU 4110, 4111 and 4112:

Bit
76543210
1 Enable FAC interpretation.
0 Disable FAC interpretation. Does not

affect interpretation of 5F 00, 20 or
MLFAC in DU 4111. See the technical
description.
1 Reset CRTC/Disable presentation.
0 Enable presentation.
X Field underlining codes. See the
technical description.
1 Characters visible through cursor.
0 Characters covered by cursor.
X XX FAC control bits. See the technical
description.
Inverse video.
Normal video.

) ~>

DU 4113:

. Bit ~
| 76543210

1 Enable FAC interpretation.
Disable FAC interpretation. Does not
affect interpretation of 5F 00, 20 or
MLFAC in DU 4111. See the technical
description.

1 Reset CRTC/Disable presentation.
0 Enable presentation.
X Mot used.

Characters visible through cursor.

Characters covered by cursoer.
X X X X Mot used.

o —

Continued on next page.

0231¢

9 DISPLAY UNIT FUNCTIONS

ERICSSON Z | 0S REFERENCE MANUAL
| » ' ES0003145E | ;
| . 1983-12-12_ A | 9

Byte 20 - DIA PIA control byte B

DU 4110, 4111 and 4112:

Bit

76543210

1 Disable wraparound of FACs
0 Enable wraparound of FACs

Number of sweeps in character cell:

16 sweeps/cell (25 Llines)

12 sweeps/cell (33 Llines)

9 sweeps/cell (44 Llines)

22 sweeps/cell (< 25 Llines)

Note. If.01 or 10, no space underlining

—_ 200 X
RN oo PR o .04

provided.
) 1 Video enabled.
0 Video disabled.
1 IBM type interpretation of FACs.
0 UTS type interpretation of FACs.

Presentation mode 3,
Presentation mode 2.
Presentation mode 1.
Presentation mode 0.
See the technical description

X Scope of FACs. See the technical
description.

00
PN o RN o

DU 4113:
Bit
76543210

Disable wraparound of FACs
Enable wraparound of FACs

[Q. N

X X Number of sweeps in character cell:
0 12 sweeps/cell
1 16 sweeps/cell
X Not used
Note. If 01 or 10, no space underlining
provided.
1 Video enabled.
0 Video disabled.
X Not used
0 Non Base Colour mode
1 BNase Colour flag effective
X Not used
X Scope of F

WwWVWG U

description.

ACs. See
n

0231c

ERICSSON 2

»

9 DISPLAY UNIT FUNCTIONS

0S REFERENCE MAMUAL

E90003145E
1983-12-12

10

9.3.3

The control registers of the Display Adaptation Peripheral Interface

Adapter (DIA
description.

Call format;

Initialization of adaptation circuitry:

BED_$7400 = ADDR(INITAB);
CALL BED_07100(BED_$7400);

PIA) are described in detail in the technical

After the call, the structure BED_$7100 contains the parameters

defined in INITAB.

IPL Initialization

At IPL time, a default initialization table designated BED-$7300 is

used. After IPL initialization, BED-$7100 contains the

Identifier

DIARSTRT
DIAREND
DIARLLEN
DIARLNR
DIAPRES
DIAPRES?Z

Contents (hex)

Start address of display area
End address of display area
50

18

00

11 (10 in DU 4113)

following:

0231¢

9 DISPLAY UNIT FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
: ' E9Q003145E
1983~-12-12 A 1M
9.4 CURSOR HANDLING
9.4.1 Functional Description
Cursor handling is controlled by means of calls to the procedure
BED_07000.
The execution of the procedure is performed in accordance with the
parameters initialized in the structure BED_$7002. Initialization
must be carried out before each procedure catl.
9.4.2 Interface

Declarations:

DECLARE 1 BED-$7002 EXTERNAL,
5 CURADD PTR,
5 CURSTR BYTE,
5 CUREND BYTE;
DECLARE BED-07000 ENTRY(BYTE VALUE);

Before the procedure call, the structure BED_$7002 is initialized as
follows:

Identifier Bit Meaning
76543210

- CURADD Absolute memory address of cursor

(in display area)

CURSTR 11 Flashing cursor, 1.5 Hz
10 Flashing cursor, 3.0 Hz
01 No cursor
00 Steadily glowing cursor
XXX XX Sweep Mo. for top edge of cursor
CUREND XX XXX Sweep No. for bottom edge of cursor

(.21, 15, 11 or 8 depending on
display format)

Call format, cursor handling:

CALL BED-07000($(02));
Note that the parameter must always be $(02) when the cursor is used

on the ordinary display screen. Other values are used by the Message
Line Handler.

0231¢

ERICSSON

[

9 DISPLAY UNIT FUNCTIONS

A

= 0S REFERENCE MANUAL
B ~ E90003145E .
! . 1983-12-12' A ' 12

9.5

9.5.1

9.5.2

MESSAGE LINE

Functional Description

The bottom line on the screen is a system Line which is used for
messages to the operator from 0S and from the emutation. The message
Line can also be used for simple input from the operator.

The message line is implemented as two message buffers, one for 03
and the other for the emulation module. The first five positions of
each buffer are always occupied by the buffer indicators *0S* and
EM .

Two keyboard keys are used only in connection with the message line:

ROLL ML key - to scroll between the two buffers
CU TO ML key - to move the cursor to and from the message Line.

The message line can be utilized by the system module by means of
calls to the Message Line Handler (MLH). Its functon is specified in
the Message Line Control Block (MLCB). An externally declared event
variable is used to indicate completed operator input.

The Message Line Handler contains the following main parts:

e A procedure which is called to request input/output on ML.

e A task which handles communication with the Display Area Handler
and the Keyboard Handler.

Two field attribute characters (FAC) can be used on the message line:
A0, which indicates protected field, and &0, which indicates
unprotected field.

The message line is further discussed in the reference manual for the

emulation in question.

Message Line Control Block

The Message Line Control Block (MLCB) is a structure which the user

declares and utilizes in order to control communication with the
message Line handler.

The message line control block has the following structure.

DECLARE 1 MLDATA, /% ML COMTROL BLOCK */
5 ID CHAR(2),
5 MSGPOINT,

10 FROMADDR POINTER,

10 TOADDR POINTER,

CURPOS BYTE,

CONTROL BYTE,

MLSTATUS BYTE,

SENDKEYS (4) BYTE;

w1 wv vl

0231¢

3
ERICSSON =

9 DISPLAY UNIT FUMCTIONS

0S REFERENCE MANUAL

E90003145E !
1983-12-12 :+ A : i 5 13

The identifiers in Message Line Control Block have the following

meanings:
Identifier

ID

FROMADDR

TOADDR

CURPOS

CONTROL

Bit 765 43210

1
0
X X
1
0

1

Meaning

Specifies the calling module.
0S: Operating system
EM: System module

Start address for message from
system module to ML.

Start address for reply message
to system module from ML. The
entire ML is transferred. TOADDR
is specified only if input on ML
is requested.

Not used.

Control byte, interpreted as
follows:

Qutput and input on ML.

Qutput only.

Not used.

Cursor moved to ML.

Cursor not affected.

Erase ML. If this bit is set, the
previous message is replaced by
spaces.

Jail cursor. The cursor cannot be
moved from ML until input is
completed. (CU TO ML is
deactivated).

ENTER key concludes input.

MLSTATUS

SENDKEYS (4)

Byte 1
Byte 2
Byte 3
Byte 4

Other key concludes input. See
SENDKEYS below.

deate ML. Last written message
is rewritten.

Always $(FF)

Desired input termination key.
See bit 1 above.

First byte in keyboard table.

Second byte in keyboard table.
Not used.

Not used.

The keyboard table is described
in section on Keyboard Functions.

0231¢

ERICSSON Z

9 DISPLAY UNIT FUNCTIONS
0S REFERENCE MANUAL
E90003145E .

1983-12-12 A

14

9.5.3

_Interface to Message Line

Declarationss

DCL 1 MLDATA,

5 ID CHAR(2),

5 MSGPOINT,
10 FROMADDR PTR,
10 TOADDR PTR,
CURPOS BYTE,
CONTROL BYTE,
MLSTATUS BYTE,
SENDKEYS (4) BYTE;
DCL MLDPTR PTR;
DCL OUTMSG CHAR(75);
DCL INMSG CHAR(7S);

wmon i

DCL BGD-3$0020 EVENT EXTERNAL;
DCL BGD-00110 ENTRY (PTR VALUE);

Input and output buffers must always be declared as 75-character
buffers. The message Line has 80 positions, but 5 positions are

/* MLCB, SEE ABOVE

/

*

POINTER 7O MLCB

/* INDICATES COMPLETED INPUT

/* MESSAGE LINE HANDLER

occupied by the indicators *EM* or *QS*.

The event variable BGD $0020 is used for system modules. For

*/

*/

*/
*/

application modules, the variable BGD_$0030 must be used. The events
are posted when the specified input termination key is depressed.

Call format:

Ip = 'EM';

FROMADDR = ADDR(OUTMSG);
TOADDR = ADDR(INMSG);
CONTROL = 'suitable code';

SENDKEYS(1) = 'suitable function code i*’ input <is required';
SENDKEYS(2) = 'suitable function

MLDPTR = ADDR(MLDATA);
CALL BGD_00110(MLDPTR) ;

If input is to take place:

ASSIGN BGD_$0020;
WAIT BGD_$0020;

]

If input is to take place

i

code if input is required?;

0231¢

9 DISPLAY UNIT FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
o ‘ | E90003145E S »
1983-12-12 A 15

9.6

9.6.1

HARDWARE DEPENDENT FUNCTIONS

The functions described above apply to display units in general.
However, the following hardware characteristics should be considered.
The operating system contains internal tests which inquire the
current hardware configuration, and adapt its functions accordingly.
Please refer to the Technical Description for further details.

Hardware Identification

To make it possible for the system modules to ingquire about the
hardware configuration, each PROM is assigned a unique identification
code.

The jdentification codes must be declared by the user:

DECLARE 1 PROMFUNC EXTERNAL,
2 FUNC CHAR(4), /% FUNCTION BIT MASK */
2 PROMID BYTE; /#* UNIT TYPE IDENTIFIER */

The PROMID byte is interpreted as follows (hexadecimal):

PROMID: FF = Single DTC + DTC=A, FD 4120 and older FD units
. 01 = Cluster DTC + DTC-A
02 = pU 4111
03 = DU 4112
04 = WS 641 *
05 = DU 4113
06 = FD 4122
07 = PCU 4171 (Printer PCW)
08 = DPU 4173

The FUNC character is interpreted as follows:

A .

Bit 76543210

0 Internal _logic of type DU 4111

0 4 colours available
0 7 colours avaijlable

Note that bit set indicates inactive function. Bits 5, 3, 2, 1, 0 are
not used.

The following addresses are used for the identifiers:

PROMID: FFE7
FUNC: FFE3
OSFUNC: 02E8 (in 0S version 3 only)

The structure OSFUNC describes among other things the keyboard
functions. See section on Keyboard Input.

0231c

9 DISPLAY UNIT FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL
‘ ﬁ E90003145E
1983-12-12 A 16

3.6.2 Maxram

The size of the RWM area in DU is stored in the globally declared
variable MAXRAM.

MAXRAM can contain one of the following values:

Totally in unit:

MAXRAM = 7FFC No MRW 32 K

MAXRAM = BFFC 16 K MRW 32 K+ 16K
MAXRAM = CFFC 20 K MRW 32 K+ 20K
MAXRAM = DFFC 24 K MRW 32 K+ 246K
MAXRAM = EFFC 28 K MRW 32 K+ 28 K
MAXRAM = F67C 30 K MRW 32 K + 30K

The address of MAXRAM is 02C7 hexadecimal in 0S version 3.

9.6.3 DU 4111 Characteristics

Display Unit 4111 can be regarded as a cost reduced version of DU
4110. The main characteristics of DU 4111 are listed below. For a
detailed description of the hardware, please refer to the Technical
pPescription.

DU 4111 loads the character generation table from diskette
The interrupt handling of DU 4111 is implemented in software
DU 4111 provides no Program Counter error handling

DU 4111 supports address switching on two-wire dropline (not
presently used)

DU 4111 contains 64 kbyte RWM as a standard feature

pU 4111 cannot handle Llight pen

g.6.4 DU 4112 Characteristics

Display Unit 4112 is a 4-colour display unit in which the colour
selection is controlled by means of field attribute characters. Apart
from the colour features, DU 4112 is similar to DU 4111.

The colour representation is based on the colours green, red, blue
and white. In two-colour mode, green and white are used. Changing of
the colour representation can be carried out by calling the 0S
procedure BED_07700 with a2 byte parameter.

Changing of colour representation from the keyboard requires a
keyboard table with appropriate adaptations.

The byte parameter in a call to BED_07700 can have the following
values:

0231c

9 DISPLAY UNIT FUNCTIONS

+ ERICSSON 2 i 0S REFERENCE MANUAL
: , ' E90003145E '
1983-12-12 A 17

0 Set two-colour mode
1 Set four=colour mode
2 Change colour mode

The external byte BED 37701 indicates the present mode.

If bit No. 3 0: two colour mode
If bit No. 3 1: four-colour mode

The logon handler initiates DU 4112 to four-colour mode during logon.

9.6.5 E241
E241 s an emulation which is loaded into any Alfaskop display unit.
It is intended for communication with a series 2000 minicomputer, via
a certain supervisor (své).
The XC interface is connected to a series 2000 minicomputer in one
end and in the other to a CP. SC is the software in XC that handles
two~wire communication. (FD logical address is used.)

9.6.6 DU 4113 Characteristics
Display unit 4113 is a 7-colour display unit that is primarily
intended for IBM-emulations.
A printer can not be connected to DU 4113. Nor can this display unit
communicate with Keyboard 4140.
DU 4113 supports the IBM Extended Data Stream. Because of this
facility two bytes per screen position must be stored in the display
memory (see 9.2.4).
Also the character generator handling differs somewhat from that of
the other display units in S41.
In other respects DU 4113 is similar to DU 4112,

9.6.7 DPU 4173 Characteristics (WS 3111)

Workstation 3111 is intended for emulation of IBM 3178 only.

WS 3111 is constituted of three units: a 12" display monitor, a
display unit processor (DPU 4173) and a keyhoard.

A selector pen can not be connected to the WS 3111.

0231c

9 DISPLAY UNIT FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL

E90003145E o

1983-12-12 A 18
9.7 APPLICATION EXAMPLES

?.7.1

Initialization and Cursor Handling

Note that the table BED_$1000 is a global variable from which the
system module can fetch characters that have been entered from the
keyboard. The fourth byte contains the converted key code. See also
section on Keyboard Input. :

DECLARE BED-$1000 CHAR(5) EXTERNAL; /* ENTERED CHARACTERS */
DECLARE 1 BED-$7100 EXTERNAL, /* DIA INITIALIZATION PARAMETERS*/
5 DIARSTRT POINTER,
5 DIAREND POINTER,
5 DIARLLEN BYTE,
5 DIARLNR BYTE,
5 DIAPRES1 BYTE,
5 DIAPRESZ2 BYTE;
DECLARE 1 BED-$7002 EXTERNAL, /* CURSOR INITIALIZATION PARAMETERS */
5 CURADD POINTER,
5 CURSTR BYTE,
5 CUREND BYTE;

DECLARE DISPLAY CHAR BASED(CURADD);

DECLARE GENCODE CHAR DEFINE BED_1000 POS(4); /* COMVERTED KEY CODE */
DECLARE WORKPTR POIMTER;

DECLARE ERASE CHAR BASED (WORKPTR);

DECLARE BED-07000 ENTRY(BYTE VALUE); /* CURSOR HANDLING PROCEDURE */

/% INITIALIZE CURSOR 70O FIRST POSITION IN SECOND LIME: */

CURSTR = $(42);
CUREND = $(0A);
CURADD = DIARSTRT + DIARLLEN;

CALL BED-07000(3(02));

/* DISPLAY THE NEXT CHARACTER ENTERED FROM THE KEYBOARD */
DISPLAY = CHARCODE;
CURADD = CURADD + 1;

/% CHECK THAT CURADD DOES NOT POINT BEYOND THE */
/* DISPLAY AREA */

CALL BED-Q7000($(02));

0231¢

9 DISPLAY UNIT FUNCTIONS

-3

ERICSSON = ‘ 0S REFERENCE MANUAL
, EQO003145E

1983-12-12 A 19
/* MOVE CURSOR TO FIRST POSITION IN NEXT LINE: */
WORKPTR = DIARSTRT;
DO WHILE (WORKPTR < CURADD);
WORKPTR = WORKPTR + DIARLLEN;
/% CHECK THAT WORKPTR DOES NOT POINT BEYOND THE */
/% DISPLAY AREA */
END;
CURADD = WORKPTR;
CALL BED-07000($(02)) ;
/% ERASE ALL CHARACTERS STARTING AT THE CURSOR POSITION */
/%* UP TO AND INCLUDING THE POSITION IMMEDIATELY BEFORE THE */
/% NEXT FIELD ATTRIBUTE CHARACTER */
/* FIELD ATTRIBUTE CHARACTER IS ASSUMED TO HAVE BIT NO. 7 SET */
WORKPTR = CURADD;
DO WHILE(ERASE < $(80));
ERASE = $(20);
WORKPTR = WORKPTR + 1;
/* CHECK THAT WORKPTR DOES NOT POINT BEYOND */
/* THE DISPLAY AREA */

END;

0231c¢

ERICSSON Z

9 DISPLAY UNIT FUNCTIONS
0S REFERENCE MANUAL
E90003145E

1983-12-12 ' A

20

9.7.2

Example of Message Line Handling

The following example shows how a message can be entered onto ML and

how input from ML can be handled.

DECLARE 1 MLDATA,
5 ID CHARACTER(2),
5 MSGPOINT,
10 FROMADDR POINTER,

10 TOADDR POINTER,

5 CURPOS BYTE,

5 SENDKEYS(4) BYTE;
DECLARE MLDPTR POIMTER;
DECLARE QUTMSG CHARACTER(75);
DECLARE INMSG CHARACTER(75);
DECLARE BGD $0020 EVENT EXTERNAL;

/% ML CONTROL BLOCK

/* CALL IDENTIFIER 0S OR EM
/% BUFFER POINTERS

/#* ADDRESS OF

/* OUTPUT MESSAGE BUFFER
/+ ADDRESS OF INPUT

/* MESSAGE BUFFER

/* NOT USED

/* INPUT TERMINATION KEY
/* POINTER TO MLCB

/* OUTPUT BUFFER

/* INPUT BUFFER

/+% FOR SYSTEM MODULE

DECLARE BGD:DO11D ENTRY (POINTER VALUE) /* MESSAGE LINE HANDLER

FROMADDR = ADDR(OUTMSG) ;

OUTMSG = 'ERROR MESSAGE';
ID = 'EM’;
FROMADDR = ADDR(OUTMSG) ;

CONTROL = $(0Q);
MLDPTR = ADDR(MLDATA);

CALL BGD-00110(MLDPTR);

OUTMSG
TOADDR = ADDR(INMSG);
CONTROL = $(90);

MLDPTR = ADDR (MLDATA);
CALL BGD-00100(MLDPTR) ;
ASSIGN BGD-3$0020;

WAIT BGD-$0020;

/*QUTPUT ONLY

nn

m
prd
_{
m
vl
=
=
=
m
o
ket
<
m
wy
—
el
m
<
=
o
<
-
~
m
e
a

[

.

e

a
-

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

/*INPUT, CURSOR TO MESSAGE LINEx/

SENDKEYS(1) = 'function code for PF1 first byte';
SENDKEYS(2) = 'function code for PF1 second byte';

/* LINE WILL BE PRESENTED

/% WAIT FOR INPUT COMPLETION

*/

*/

0231c

N

[N

10 KEYBOARD FUNCTIONS

ERICSSON Z ' 0S REFERENCE MANUAL
ES0003145E f
. 1983=12-12 A 1

10 KEYBOARD FUNCTIONS

List of Contents

10.1 GENERAL KEYBOARD DESCRIPTION 3
10.1.1 Keyboard Input Synchronization z
10.1.2 Keyboard Type Indication 5
10.2 KEYBOARD DATA STRUCTURES 6
10.2.1 Keyboard Table 6
10.2.2 Keyboard Table Header 8
10.2.3 Strap Data for KBU 4140-XXX : 10
(10.2.4 Normal Strap Data for KBU 4143 11
10.2.5 Extended Strap Data for KBU 4143 12
OPENING AND CLOSING FOR INPUT ' 13

Functional Description) 13

Interface 13

KEYBOARD INPUT 14

Functional Description 14

Interface 15

KEYBOARD REPETITION FREQUENCY 16

Functional Description 16

Interface 16
CLICK SOUND ACKNOWLEDGEMENT 16

Functional Description 16

Interface 16

ALARM 17

Functional Description 17

Interface 17

0.8 T KEYBOARD LAMPS 18
10.8.1 Functional Description 18
10.8.2 Interface 18

€ J

" 10.9 MAGNETIC ID INPUT 19
10.9.1 Functional Description 19
10.9.2 Interface 20
10.10 SELECTOR PEN INPUT (DU 4110 only) 21
10.10.1 Functional Description 21
10.10.2 Interface 21
10.11 APPIL TCATION EXAMPLE 22-22

- o] n AT

0232c

10 KEYBOARD FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
L (EQO003145E
. 1983-12-12 A o 2

‘)

0232¢

R

10 KEYBOARD FUNCTIONS

ERICSSON Z . 0S REFERENCE MAMUAL
o . E90003145E
| Lo { 1983-12-12 = A | 3
10.1 GENERAL KEYBOARD DESCRIPTION
This section describes the keyboard data structure and the keyboard
functions. The MID and selector pen functions are alsoc described here.
Two main types of keyboard units are available in Alfaskop System:
KBU 4140-XXX and KBU 4143. The following descriptions apply to both
keyboard types, if nothing else is stated.
Communication between the DU and the keyboard, which contains its own
microprocessor, is carried out asynchronously in serial form.
The 0S procedures which handle operator input are gathered in the
program module Keyboard Handler.
ALl input is transferred by the Keyboard Handler to the global area
BED_$1000, where it becomes accessible to the user. This area can
contain only one character at a time. Synchronization of input and
processing must thus be performed.
10.1.1 Keyboard Input Synchronization

The synchronization of input and processing is accomplished by means
of an input buffer and two event variables.

The event BED_$1900 is posted by the system module when it is ready
to receive a new character. The event BED_$1910 is posted by the
Keyboard Handler when the new character is transferred to the area
BED_$1000.

When a keyboard key is pressed, a status byte and a data byte is sent
from the keyboard in response to the order (poll) byte from the
display unit. An IRQ interrupt is obtained for every byte sent to or
from the display unit. This interrupt initiates a chain of activities
as described in Fig. 10.1 below.

0232¢

ERICSSON 2

10 KEYBOARD FUNCTIONS
0S REFERENCE MANUAL
E90003145E |
1983-12-12 A

A keyboard key is pressed.

During the next KB scanning cycle,
the physical key number is sent to
the keyboard buffer. The buffer is a
FIFO queue, which can contain up to
16 characters.

If the event BED_$1900 has been
posted by the emulation, the first
character in the buffer is
transferred to the BED_$1000 area.
When this transfer is completed, the
event BED_$1910 is posted by the
Keyboard Handler.

The character in BED_1000 is read
and processed by the system module.
When the module is ready to receive

a new character, the event BED_1900
is posted.

Key
OPERATOR

key number 0s
and
¥ shift status

Keyboard
r = buffer

WAIT BED_$1900

ASSIGN BED_$1900
POST BED_$1910
|

KBTABLEX

0sS

| t

BED-$1000 EMULATION

« | WAIT BED_$1910

|

process
latest
input

ASSIGN BED_$1910
POST BED_$1900

S |

Fig 10.1 Keyboard Input synchronization

0232¢

10 KEYBOARD FUNCTIONS

0S REFERENCE MAMUAL

ES0003145E i
1983-12-12 = A i 5

ERICSSON Z

10.1.2 Keyboard Type Indication

During initial program loading, the Keyboard Handler inquires what
keyboard type is currently being connected to the DU.

In 0S version 3 the keyboard type indicator must be declared by the
user on address 02E8 hexadecimal.

DECLARE 1 OSFUNC EXTERNAL,
2 OSFUNCT BYTE,
2 OSFUNC2 BYTE;

OSFUNC1 contains the following information:

Bit 7 6543210

1 Character generator in software
0 Character generator in PROM
1 Keyboard Unit 4143
?% 0 Keyboard Unit 4140-XXX
) XXX XXX Not used

0232c¢

10 KEYBOARD FUNCTIONS

10.2.1

ERICSSON Z ‘ 0S REFERENCE MANUAL
: 1 E90003145E
1983-12-12 A ‘ 6
10.2 KEYBOARD DATA STRUCTURES

when a keyboard key is pressed, information is transferred through
several data structures:

o To the keyboard buffer

o To the keyboard table, where the physical key number is translated
to an appropriate character or function code

o To the character generator table, in which this code is translated
to a display code, as described in section on DU functions

o To the globally declared area BED_$1000, where the code becomes
avajlable to the user

The keyboard buffer and the common area BED_$1000 are always provided
by the operating system.

The character generator table can either be stored permanently in
PROM (DU 4110) or be loaded from the system diskette into RWM.

The keyboard tables are further discussed below.

Keyboard Table

The keyboard table provides the translation from the physical key
number (and shift state) to the appropriate character or function
code.

Up to 5 keyboard tables can be defined in a cluster. ALl defined
tables are stored in Library KBLIB or KBLIBA on the system diskette.
The keyboard tables are named KBTABLEQ, KBTABLE1 ... KBTABLES.

A maximum of 128 physical keys can be defined in a keyboard table.

However, up to 16 different shift states can also be specified. This

implies that each physical key can be associated with up to 16 ‘
different Llogical keys. {kj

Each lLogical key in the keyboard table is defined to be of a certain

key type: alphanumeric key, function key, short message key or system

key. Thus, two bytes are required to describe each logical key in the

table. The first byte defines the key type and the second byte imﬁ
defines the character code.

A keyboard table thus contains 128 x 2 x N bytes, where N is the
number of supported shift states. See the figure below.

0232¢c

-5
ERICSSON Z

10 KEYBOARD FUNCTIONS
0S REFEREMCE MANUAL
ES0003145E

1983-12-12 A

byte 1
key type

physical keys

byte 2

character code

logical keys

key 1 key 1 |
key 2 key 2
Shift state 1
key 128 key 128 |
key 1 key 129
key 2 key 130
Shift state 2
key 128 | | key 256
; | Y,
key 1 key 1921
key 2 key 1922
Shift state 16
key 128 key 2048 Jj

Fig 10.2 Keyboard table structure

0232c

10 KEYBOARD FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL
E90003145E o
1983-12~12 A T 8

Each pair of bytes in the keyboard table has the following meaning.

Byte 1 Key type
Bit 76543210
1 System key. Internal use only.
1 Repetition ignored
X XXX Emulation dependent codes
XX XXX 1T XX APL-key in DU 4113
00 Alphanumeric key
01 Short-message key, PA functions
10 Function key
11 Short-message key, PF functions
Byte 2 Key code, representation depending on key .
Bit 7 65 4321 type: J
XX XXX XXX o Character code if alphanumeric key
o Function code if function key
o Short-message code if short-message key
(PA or PF) }
10.2.2 Keyboard Table Header
A keyboard table header must be provided by the user. The keyboard
table header contains keyboard strap data and 16 pointers to the
keyboard subtables.
The buffer in DU for the current keyboard table and its header can be
declared as follows.
DECLARE 1 KBTABBUF,
5 KBSTRAP CHAR(13), /* STRAP DATA */
5 KBTABPTR(16) POINTER, /% POINTERS */
5 KBTAB(Nx128) CHAR(2); /* KB TABLE */
The structure of the buffer is presented in the figure below. fﬂﬁ

0232¢

10 KEYBOARD FUNCTIONS

ERICSSON Z 0S REFERENCE MAMUAL
E90003145E Ch
’ r 1983-12-12 A 9
strap data 13 bytes Strap data
N
pointer to subtable No. 1 2 bytes
pointer to subtable Mo. 2 2 bytes
. . ‘ ;Keyboard Table Header
%w. . . (always 16 pointers)
pointer to subtable No. 16 2 bytes
<
subtable No. 1 256 bytes
(shift state 1)
subtable No. 2 256 bytes Keyboard Table
(shift state 20 with up to 16 subtables
as described above
subtable No. 16 256 bytes
(shift state 16)
() g
Fig 10.3 Keyboard table with header
€)

The Keyboard Handler maintains a pointer (BED $1100) to the keyboard
table header,

The name of the assigned keyboard table is contained in BAD_70301.

The keyboard étrap data are normally initialized (sent to the
keyboard microprocessor) during the IPL procedure. Strap data are
further described below.

The emulation module can order an exchange of the loaded keyboard
table, and initiate the loading of a new table. This is further
discussed in section on FD Functions and File Handling.

0232c¢

ERICSSON 2

10 KEYBOARD FUNCTIONS
0S REFEREMCE MAMUAL
E90003145E

1983-12-12 A 10

10.2.3

Strap Data for KBU 4140-XXX

The 13 first bytes of the keyboard table header contains strap data.

In KBU 4140,

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte
Byte

Byte

Bit

1

10
1
12
13

76543210

IO e Y e R

>x O
>x O

o o (o]
> O >xX O

x O
>x O

[om B o N am I

-~ 00 -
oDoo —

-—

o

—_—

QO

> O

L OO =
OO0 >

—

X O

(@]

X

[
>x O

> O
>x O

P N on I
OO Q -

1

>x O xX O

o

o

these bytes are interpreted as follows:

Meaning

Click not generated by keyboard

Not used

Left shift restores shift lock

Left and right shifts restore shift lLock
Right shift has separate status bit

Left and right shifts share a common status b1t
Shift lamp indicates shift lock
Shift Lamp indicates upper case
Key Llock used

MID used

Not used

Lamp 8 is shift Llamp

Lamp 1 is shift lamp

Mo shift lock key provided
Key number of shift lock key

No left shift key (shift 1)
Key number of left shift key

No right shift key (shift 2)
Key number of right shift key

No shift 3 key)
Key number of shift 3 key 4

No shift 4 key

Key number of shift & key ,
No special repeat key,

all keys are repeating

Key number of repeat key,

other keys not repeating

Not used

End of strap data
Next poll to KB
Next poll to KB
End of string

Altways same bit
configuration

0232¢

10 KEYBOARD FUNCTIONS

ERICSSON Z 0S REFERENCE MAMNUAL
! AT ‘ * * E90003145E (
1983-12-12 A 11

10.2.4 Normal Strap Data for KBU 4143

In KBU 4143, the first 13 bytes of the keyboard table header are
interpreted as follows:

Bit 76543210 Meaning

Byte 1 1 DU alone handles click sound
0 KB handles click sound
1 MSR track 3 selected
0 MSR track 2 selected
X X Not used
1 Shift lamp indicates shift lock
0 Shift lamp indicates upper case
1 Key lock used
0 MSR used
1 Extended strap data (see next section)
0 Normal strap data
X Not used
Byte 2 Shift Lamp No. As for KBU 4140
Byte 3 SHIFT LOCK 1 Key number assigned by KBU
Byte 4 SHIFT 1a Key number assigned by KBU
Byte 5 aSHIFT 2 Key number assigned by KBU
Byte 6 SHIFT 3 As for KBU 4140
Byte 7 SHIFT & As for KBU 4140
Byte 8 REPEAT KEY As for KBU 4140 ,
Byte 9 170000000 No programmable PF keys
O XX XXX XX Key number of SEMAC key, normally 6é
(hexadecimal)
Byte 10-13 As for KBU 4140
Notes.
MSR - Magnetic Strip Reader {(built=-in).
SEMAC = Select Macro. Key for defining and selecting a sequence of
key entries by means of programmable PF-keys.

. 0232¢

10 KEYBOARD FUMCTIONS

ERICSSON 2 0S REFEREMCE MANUAL
E90003145E 1
1983-12~12 A 12
10.2.5 Extended Strap Data for KBU 4143

If bit No. 6 in the first strap data byte is set, extended strap data
are used. This implies that all of the 13 first bytes, and 4
additional bytes are defined by the emulation

This implies that if extended strap data are to be used, the buffer
for the keyboard table header must be extended so as to contain 17
bytes of strap data.

Bytes 1-2 are interpreted as for normal strap data above

Bytes 3-17 contain the key numbers for the following functions (all
key numbers are defined by the emulation):

Strap-byte: Key number for function: /}
Byte 3 SHIFT LOCK 1
Byte 4 SHIFT 1a
Byte S SHIFT 2 3
Byte 6 SHIFT 3 S
Byte 7 SHIFT 4
Byte 8 REPEAT KEY
Byte 9 SEMAC
Byte 10 SHIFT 1b
Byte 11 SHIFT 1c¢
Byte 12 SHIFT LOCK 2
Byte 13 ‘ SHIFT LOCK 3
Byte 14 SHIFT LOCK 4
Byte 15 ALARM VOLUME
Byte 16 ALLARM TONE:
Byte 17 CLICK VOLUME
Byte 18 $(FF) END OF STRAP DATA
Byte 19-22 As byte 10-13 in strap data for KB 4140
)
Notes: M
1. SHIFT LOCK 1 is reset by SHIFT 1a-1d
2. SHIFT LOCK 2-4 are reset by SHIFT 2-4
3. Byte value $(80) means "Not used".
L. A string of strap bytes should be ended with $(FF) ‘¢§

0232¢

10 KEYBOARD FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL

; E90003145E :

o 1983-12-12 A 13
10.3 OPENING AND CLOSING FOR INPUT

10.3.1 Functional Description

Before any input is accepted, the DU must be opened for input.
Opening is performed by the 0S procedure BED_02000. One parameter is
required to specify the type of input accepted.

When all input is performed, the DU can be closed for all input by
means of a call to the 0S procedure BED_02100.

10.3.2 Interface
Declarations: ‘ .

DECLARE BED_(02000 ENTRY (BYTE VALUE);
DECLARE BED_ 02100 ENTRY (BYTE VALUE);
DECLARE INTYPES BYTE;

The byte INTYPES have the following meaning:
Bit 76543210 Meaning

1 Keyboard key input
1 . Selector pen input
1 Magnetic ID input
X XXX Not used
1 Always 1 in a call from a system module

Call formats:

‘ CALL BED_02000(INTYPES); /* FOR OPENING */
(Y CALL BED_02100¢$¢01)); /* FOR CLOSING */

Note that the parameter of the closing procedure must always be $(01).

0232¢

-5
ERICSSON 2

10 KEYBOARD FUNCTIONS

0S REFERENCE MANMUAL

ES0003145E

1983-12-12 A ! 14

10.4

10.41

KEYBOARD INPUT

Functional Description

wWhen opening for keyboard input has been performed, input character

codes can be read from the area BED_$1000. This area contains one
character at a time. Keyboard input synchronization is described

above.

The area BED_$1000 consists of five bytes having the following
meaning for keyboard input:

Byte 1
Bit 765432140
1700
1
1
1
1
Byte 2
Bit 76543210
1
1
1
X
000
00O
001
Byte 3 :
Bit 765432140
1
1
X XX X
00
01
10
11
Byte &
Byte 5

Shift status (16 combinations)

Always

KXU 4146 indication (in KB 4143 only)

Shift key & pressed

Shift key 3 pressed St
Shift key 2 pressed ,)
Shift key 1 pressed

Input type/Repetition status

Keyboard information follows

MID information follows

Selector pen information follows
Not used

Normal, individual character
Repetition of previous character
End of repetition

Key type (from KBTABLE)

System key. IntérnaL use only .
Repetition ignored *fﬁﬁ
Emulation dependent codes

Alphanumeric key
Short-message key, PA-functions

Function key
Short-message key, PF functions ?Wﬁ

Key code (depending on key type):

o Character code if alphanumeric key

o Function code if function key

0 Short message code if short-message
key (PA or PF)

Physical key No.
(Position code)

0232¢

10 KEYBOARD FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
» oo j v E90003145E
¥ 1983-12-12 . A 15

The following function keys always have the same position code:

Key Code Key Code
Cursor left 01 Lursor home Dé
Cursor right 02 Back tab 07
Cursor up 03 Tab 08
Cursor down- 04 E£nter 1F
New Line 05

10.4.2 Interface

Declarations:
DECLARE BED_§1000 CHAR(5) EXTERNAL; /% INPUT AREA */
DECLARE BED_§19OO EVENT EXTERNAL; /* READY TO RECEIVE */
DECLARE BED_j91O EVENT EXTERNAL; /* NEW INPUT DELIVERED */
Call format:
ASSIGN BED $1910;
WAIT BED_§1910; /*WAIT FOR INPUT */
/*PROCESS LATEST INPUT IN BED_§1ODO AREA */
POST BED_§1900; /* READY TO RECEIVE NEW INPUT */

0232¢

10 KEYBOARD FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
E90003145E |
1983-12-12 A 16
10.5 KEYBOARD REPETITION FREQUENCY
10.5.1 Functional Description
The key repetition freguency is either 12.5 Hz or 25 Hz. The
appropriate frequency is normally selected during customizing.
However, the frequency can also be defined by means of the externally
declared variable BED_$1015.
10.5.2 Interface
Declaration:
DECLARE BED_$1D15 BYTE EXTERNAL;
BED_§1015 = 0; /* SET FREQUENCY 25 Hz */
BED_§1015 =1; /* SET FREQUENCY 12,5 Hz */
10.6 CLICK SOUND ACKNOWLEDGEMENT
10.6.1 Functional Description
The click sound acknowledgement of keyboard entries is normally
selected during customizing and handled by the keyboard. However, it
can also be enabled by means of a call to the 0S procedure BED_02400.
The procedure must be called once for each desired acknowledgement.
10.6.2 Interface
Declaration:

DECLARE BED_02400 ENTRY;

CALL format:

CALL BED_2400;

0232¢

10 KEYBOARD FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL :
? E90003145E :
1983-12-12 A 17 .
10.7 ALARM
10.7.1 Functional Description
The alarm in the keyboard unit can be activated by means of a
procedure call. The duration of the signal is defined by the
procedure parameter.
10.7.2 Interface
Declarations:
¢ DECLARE BED 02600 ENTRY (BYTE VALUE);
DECLARE AL_DUR BYTE; /* ALARAM DURATION EXPRESSED IN * /
/* UNITS OF 20 MS */
f& Call format:
AL DUR = 5; /% ALARM DURATION 0.1 SEC */
CALL BED_02600(AL_DUR) ;
(0
()

0232¢

10 KEYBOARD FUNCTIOMS

ERICSSON 2 0S REFERENCE MANUAL
‘ ' : © E90003145E
1983-12-12 A . 18
10.8 KEYBOARD LAMPS
10.8.1 Functional Description
The eight lLamps on the keyboard can be Llit up or extinguished by
means of a call to the procedure BED_0230C. The procedure parameter
LAMP_NO is used to define the number of the desired lamp.
10.8.2 Interface

Declarations:

DECLARE BED_02300 ENTRY (BYTE VALUE);
DECLARE LAMP_NO BYTE;

The parameter LAMP_NO is initialized as follows
Bit 76543210 Meaning

1 Light lamp No. 8
Extinguish ltamp No. 8

1 Light lamp No. 1
0 Extinguish lamp No. 1
Call format:

LAMP_NO = "suitable value";
CALL BED_QZSDD(LAMPJNO);

i

0232¢

-

10 KEYBOARD FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL
f : ; 'E90003145E
1983-12-12 A 19 .
10.9 MAGNETIC ID INPUT

10.9.1

Functional Description

Input from the magnetic identification device (MID) is handled
analogously to keyboard input.

The same memory area (BED_3$1000) is used by the system module to
receive input. The same event variable (BED_$1910) is used by the
Keyboard Handler to indicate that input is transferred to BED_$1000.
The event is posted when an ID- card is inserted or removed from the
MID.

The information in the area BED $1000 is interpreted for MID input as
follows:

Bit 7 65 43210 Meaning

Byte 1 - Not used
Byte 2 01000000 MID information follows
Byte 3 Not used
Byte 4 1 ID-card reading successful
1 " Parity error in ID-card reading
1 ID-card removed
1 ID=-card inserted
X X Mot used
1 Faulty ID-card
X Not used
Byte 5 Not used

When the event BED_ 1910 7s posted, and byte 2 in BED=31000 indicates
MID information, ID-card reading can be initiated by means of a call
to the procedure BED_02500. After reading from the card has been
performed, ID data is stored in the BED $1010 area. The number of
characters read into this area is stored in BED_$1012.

If an ID card is inserted into the MID while no input opening has
been performed for MID, the alarm is sounded.

If the procedure BED_02500 is invoked with no ID-card inserted into
the MID, the "ID-card removed" indication is raised in BED_$1000.

0232¢

ERICSSON Z

10 KEYBOARD FUNCTIONS

0S REFEREMCE MANUAL

E90003145E
1983-12-12 A 20
10.9.2 Interface
Declarations:
DECLARE BED_$1000 CHAR(S5) EXTERNAL; /* INPUT AREA */
DECLARE BED_$101D CHAR(40) EXTERNAL; /* ID DATA AREA */
DECLARE BED_$1D12 BYTE EXTERNAL; /* NUMBER OF ID DATA */
/* CHARACTERS */
DECLARE BED $1910 EVENT EXTERNAL; /% NEW INPUT ARRIVED */

DECLARE BED 02500 ENTRY;

Call format:

ASSIGN BED_$1910
WAIT BED_$1910 :
/*CHECK INPUT TYPE IN BED_$1000%/

CALL BED_02500
/*PROCESS ID-DATA in BED_$1010*/

/*PROC FOR ID-DATA READING*/

/* WAIT FOR NEW INPUT

*/

/* READ ID-DATA FROM CARD */

0232¢

S

10 KEYBOARD FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL
e ‘ : ; 'E90003145E ; .
! 11983=12-12 A 21

10.10 SELECTOR PEN INPUT (DU 4110 only)

10.10.1 Functional Description

Input from the selector pen is treated analogously to keyboard input.

The same memory area (BED_$1000) is used by the system module to
receive input. The same event variable (BED_$1910) is used by the
keyboard Handler to indicate that input is transferred to BED_$1000.
The event is posted when the selector pen hits the display screen.

The information in the BED_$1000 area is interpreted for selector pen
input as follows:

Bit 7 6543210 Meaning

Byte 1 Not used

Byte 2 00100000 ’ Selector pen information follows
Byte 3 X X X XXX Hit address, most significant part
Byte 4 X XX XXX Hit address, least signifiéant part

Byte 5 Not used

If a selector pen hit occurs while no input opening has been carried
out for selector pen, the alarm is sounded.

10.10.2 Interface

Declarations:

DECLARE BED $1000 /* INPUT AREA */

DECLARE BED_§191O /% NEW INPUT ARRIVED %*/
Calt format:

ASSIGN BED_1910
WAIT BED_1910 /* WAIT FOR NEW INPUT */
/* PROCESS INFO IN BED_$1000%/

0232c

10 KEYBOARD FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
: ' ES0003145E
1983-12-12 A 22
10.11 APPLICATION EXAMPLE

The following example illustrates how a keyboard entry editing

session can be started and stopped by inserting and removing an
ID-card.

DECLARE BED_$1000 CHAR(5) EXTERNAL; /+* INPUT AREA */
DECLARE BED_$1010 CHAR(40) EXTERNAL; /* 1D DATA AREA */
DECLARE BED _$1012 BYTE EXTERNAL; /* NO. OF ID CHARACTERS */
DECLARE BED $1900 EVENT EXTERNAL; /* READY TO RECEIVE INPUT */
DECLARE BED:§191O EVENT EXTERNAL; /* NEW INPUT DELIVERED */
DECLARE BED 02000 ENTRY(BYTE VALUE); /* OPENING FOR INPUT */
DECLARE BED_02100 ENTRY(BYTE VALUE); /% CLOSING FOR INPUT */
DECLARE BED_02500 ENTRY;) /* READ ID-CARD DATA */

/* LOAD KEYBOARD TABLE INTO MEMORY */
/* AND INITIALIZE KBTAB */
/* SEE SECTION ON FILE HANDLING */

CALL BED_02000(3(21)); /* OPEN FOR MID INPUT ONLY */
START:
ASSIGN BED_$1910; /* READY FOR NEW INPUT */

POST BED_$7900;

WAIT BED_$1910;

/% CHECK BED_$1000 */
IF "MID input OK"

THEN
CALL BED 02500; /* READ ID-CARD DATA */
/% CHECK ID-CARD DATA IN BED $1010 */
ELSE -

/* HANDLE MID INPUT ERROR */
GOTO START;

/* MID INPUT AND ID-CARD DATA OK =*/

CALL BED_02100($(01)); /* CLOSE FOR INPUT */
CALL BED_02000($(A1)); /% OPEN FOR KB AND MID INPUT */
EDIT:

ASSIGN BED $1910; /* READY FOR NEW INPUT */
POST BED_$7900;

WALT BED_$1910; /+*WAIT FOR NEW INPUT */

/* PROCESS LATEST INPUT */

GOTO EDIT;

0232¢

_ 11 FD UNIT FUNCTIONS AND FILE HANDLING
ERICSSON Z 0S REFERENCE MANUAL
| E90003145E ;\
G . 1983-12-12 A 1

11 FD UNIT FUNCTIONS AND FILE HANDLING

List of Contents

(63

11.1 GEMERAL .cvevoceascnsscncsnans wiecemcassesessssssasazsmeaseennnne

11.2 FD CONFIGURATIONS ..ccauasnnasaansansnse emsecnas cacessasneasncas .

11.2.1 SysStem FD .scucscaccsansanesasenncasssanaaenannnaanassanasse cecaaa
11.2.2 Data FD weecveoscsasnasaa wevacsesus wesemusennsuae

11.2.3 Personal Computer ..ccsscsesss ceowan eecasauecamcesamsnssseacosnaan

1)
[]
[
[]
L}
3
]
s
[]
[
L]
a
]
[
[
L]
[
Eo N VAR

FILE HANDLING CONCEPTS cvaccanecs eosessssccscusseansnesuadsannne

o1 Physical File Handling .ecaeeusecuacuenconccuasncccnccnsaccanaes
.2 Logical File Handling .uceeeccecevsasncscasccaasannsscascanansaanas
3 File Handling Software .c.ccweeaa teceuvssesemsemeucuscissasmvsanse

il i

3
3
3
3
b DATA STRUCTURES .ccevocnes wecocosecnamuusssmmevewsnangne enessascsae
A
4
4

11 4
1.4.1 Data $€tS ceeveessvccenwscomacanns ceeasavescamnessscsusassaszoas 6
11.4.2 File TYPES cuascesca cssansscades cssncawsssemaances wessccmsssassses 7
11.4.3 Authority LevelsS ..cvecuecssesesscscesansssacacenasssasanacsonnos 7

11.5 FILE HANDLING CONTROL .ccacnasasencascascae wsesmsavasacsssannvanen 8
11.5.1 Volume Control Block .eeeecucaccacesns emcemcssdeccsnsesmssassmeaus 8
11.5.2 File Control Block .cacsascevas cecesessamsaasas eomansecwcoaananns. 9
11.5.3 Volume Table ccavdancancns cascmemanens Hewacassmaesccecssasnsasaaas 10

11.6 VOLUME ORIENTED COMMANDS ...ccescvossccaccccuaesnnsnuancsaonnas - 11
11.6.1 Declare Volume ..caevscsrasannaas wamessasaassssune csasenncen coeaan 11
11.6.2 CREATE Volume .cuecacasasa emusamdsccsaesaennusssansn scoscssiasss 11

11.6.3 CHANGE Volume ..cccccascccassssncsnannssanana eeascunn sacssassacs 12
11.6.4 DELETE Volume .cececanscs eesscsenssassssasesnsuasunmscns coaeuas 12
11.6.5 Built=in FUNCLIONS seasecsccassansacanancnacsseanncaannuosnccannsa 13

1.7 FILE ORIENTED COMMANDS .iaecccnuacssncssansscnass weesaessscocasnsane 14
11.7.1—_Buffer Requirementsccsscesnesscsssess eveemsesssasasscnansss 14

11.7.2 DECLARE File .ciaaccancsacssasecans crenmneuses cmmenass eeseaees aasa 15
3 CREATE File .occuscnsasnncscacnasa wesmeswscsmasnsenassseessanans 17
4 OPEN/CLOSE File ceiecenes cecceuwmcvassasmmecosusssesessnassssannn 18
5 READ RECOINd ..ceovasevcuscaoanacansnnsscncoscnsanans wemdaasuna cee 19
6 WRITE/REWRITE ReCOrd .ceesceccsannccsossasssssanacnuannsancssscaansn 20
7
8
9

DELETE Fil-e o o an oW e oD IIIIIIIII--.‘IIIIIIll..-.l'l'.lll'..--l. 21
LOAD File wucceccancoanansnsas wscasacacesccnasnuns cesescsaansenan 21

BUilt=9n FUNCEIONS ecewvccseccncccssssnennacanvocacsanssnansnossaanns 22

11.7
1.7
1.7
1.7
1.7
1.7
11.7.

.8 SYNCHRONIZATION ..cceucccaass ssssses cacnnsassnsnons csnccnas caaca 23

.9 OVERLAY LOADER PROCEDURE cescaceaas 24
9.1 Functional Description seesass ceasesssessasouaa Wesusasasiesscena 24
9.2 INterface ..ecoeeescccasscecuccusasasasacsuaoscasnansancannaanassasn

0233¢c

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON 2 0S REFERENCE MANUAL

! | o - E90003145E ‘

' ‘ ; 1983-12-12 A : 2
11.10 LOADING OF CHARACTER GENERATOR ..uccceveaceaecacuasccsossonnsuncaces 25
11.10.1 Functional Description ceecsseacanscssacasanascnana enesaescasnase 25
11.11 EXCHANGEING OF KEYBOARD TABLE ..cccecacsaccasancanacnsnnassanns coca 26
11.11.1 Functional Description ..cccecaccssscaananssanasas cassascsssssea 26
11.11.2 INterface .ceeceececccaescesensasacacnacnisassasanssnaaasoasasana 26-26

¥

0233¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON 2 0S REFERENCE MANUAL

: . S 3 . E90003145E .

; S : © 1983=-12-12 A 3
11.1 GENERAL

As described in the section on Hardware Environment, different system
units can be used for FD Input/Output.

FD 4120 is used for 8" diskettes.

CP 4103 contains one FD drive of the same type as in FD 4120

FD 4122 is used for 5"1/4 diskettes.

CP 4104 contains two FD drives of the same type as in FD 4122 (CPR)
CP 4105 contains two FD drives of the same type as in FD 4122 (CPL)

o0 OO O

The diskette software format is presented in Section 4.

ALL SPL statements concerning file handling are presented in detail
in the SPL Reference Manual.

11.2 FD CONFIGURATIONS

At Least one FD unit must be included in a cluster. I1f several FD
units are used, one of them is defined to be system—FD and the rest
to be data-FDs. FD 4122 may not be used as system FD. FD 4120
consists of the same hardware and is loaded with the same 0S whether
it is data or system FD. The FD type is not defined until the
beginning of the initial program load (IPL) phase.

The same FD 0S is loaded into all FD units.

11.2.1 System FD

A system—FD and a data=FD are identical before program loading is

performed. Two conditions must be fulfilled to have an FD unit loaded
as a system—FD.

(B

o A system diskette must be inserted in the unit.

0-—The ED_unit must receive a system poll from CP.

These conditions must not be fulfilled for more than one FD unit
during CP-IPL.

11.2.2 Data FD

The data=FD is used to load and store data and program products,
which can be used by all work stations in the cluster.

A 4120 data FD is always loaded via SS3-bus from the system FD. A
4122 data FD is loaded from a special 0S-diskette in the data FD
itself.

If a reset is performed on the data-FD after 0S is loaded, an
automatic dump will be carried out on the system volume in the
system—=FD.

0233¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON 2 0S REFERENCE MANUAL
E90003145E
1983-12-12 A 4
11.2.3 Personal Computer

FD Unit 4122 can be used together with a DU as a stand-alone personal
computer workstation. If a PC system volume is loaded into the FD, it
is no longer accessible from other DUs than the DU directly connected
to this FD via a V.24 interface.

The PC system is not part of Alfaskop System 41 operating system.

The PC system diskettes are briefly presented in section on Diskette
Format.

i
1 3

0233c¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON 2 0S REFERENCE MANUAL
. E90003145E g
- 1983-12-12 A o 5

1.3

11.3.1

11.3.2

11.3.3

FILE HANDLING CONCEPTS

Files can be regarded as logical collections of data as well as

physical entities on a diskette. Thus, file handling can be divided
into logical file handling and physical file handling.

Physical File Handling

ALL physical file handling is carried out by 0S modules in the FD
unit. Physical file handling comprises input and output handling of
volumes, libraries and simple data sets.

The smallest unit that can be handled by the physical file handling
system is a block. A block contains one or more logical records.

Logical File Handling

The logical file handling is performed by software modules in DU and
CP.

Logical file handling comprises the handling of volumes, Llibraries

and ordinary files. AlLL record handling is performed by logical file
handling modules.

File Handling Software

Physical file handling is performed by the Drive Handler module in
FD. The File Manager is also part of the FD 0S.

Logical File Handling is performed by the 0S module FDIOS (Flexible
Disk Input/Output Supervisor) which is loaded into DU and CP. FDIOS
serve as an interface between the system modules and the physical

(file handling system.
FDIOS can be divided into two parts: Basic FDIOS and Extended FDIOS.
The extension can be excluded during system generation. ALL functions
(" presented in this section are part of FDIOS.

The file handling modules all utilize the Communication Handler which
is described in section on Internal Communication.

0233c¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON 2 0S REFERENCE MANUAL
t ‘ ‘ ES0003145E
1983=-12-12 A 6
11.4 DATA STRUCTURES

As described in the section on Diskette Format, the information on
one diskette is called a volume.

A volume containss:

o A volume label (VOLLAB) containing the volume identification and
information about the physical organization of the diskette.

o A volume table of contents (VTOC) containing information on the
data sets stored on the diskette

0 A number of data sets

11.4.1 Data Sets
There are two classes of data sets stored on a diskette.
o Simple data sets

o Libraries, containing a library table of contents (LTOC) and a
collection of Library members.

Members are regarded as simple data sets.

A simple data set consists of a number of blocks. The block is the
smallest unity which can be handled by the diskette 1/0 handler in FD.

A block is always of fixed length, and it can contain one or more
records.

When a block contains more than one logical record, the data set is
said to be blocked, otherwise unblocked.

Records may be stored in packed form (i.e. sequences of identical

characters are compressed). A data set containing such records is
said to be packed. A packed data set is always blocked.

The data set must be declared as a file in order to be controlled by
an SPL-program.

0233¢

-

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON Z 0S REFERENCE MANUAL
’ : o : E90003145E
1983-12-12 A ; 7
11.4.2 File Types
The file handling systems of Alfaskop System 41 supports the
following types of files.
o Library, type D (j.e. directory).
o Fixed length record file, type F.
Contains unpacked data in a number of records.
o Variable length record file, type V.
Contains packed data.
¢ o Absolute file, type A.
: Contains unpacked absolute data (program code).
Generated by linkage editor.
%w 11.4.3 Authority Levels
When a file is created, it is assigned one of five security levels.
The security levels are provided in order to protect the data from
unauthorized changing or deleting.
From the operators point of view, the security Levels 1~3 are
associated with password No. 1, and authority levels 4=5 with
password No. 2. ‘
Security level 0 does not require any password authorization.
Members of a Llibrary can be assigned higher as well as lower
authority than the library itself.
See also the section on Logon and Initialization.
¢
(

0233¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON Z 0S REFERENCE MANUAL
| ‘ E90003145E | o
: < 1983-12-12 A .8
11.5 FILE HANDLING CONTROL

11.5.1

File handling is defined by the user by means of SPL statements and
built=in functions operating on files and volumes.

Before any file handling can be performed, the volumes and files must
be declared and created. See below.

Volume Control Block

The declaration of a volume results in allocation of a Volume Control
Block (VCB) in DU, The VCB is used by the file handling modules of
0S, and part of the VCB information can also be obtained by the
system modules, by means of built-in functions.

The STATUS byte in VCB has the following meaning:

Bit 7 6543210 . ‘
1 Error occured. Error type stated in the ERRORTYPE
‘ byte
1 End of file reached.
X XXX Not used
1 Volume is write-protected
1 Recoverable error occurred

The file control block (FCB) contains an identical STATUS byte. See
below. .

Analogously to the Task Control Block, the VCB can be regarded as
comprising an event control block. The VCB event is posted each time
a volume oriented command is executed. The VCB in DU corresponds to a
Unit Control Block (UCB)Y in FD.

starus | 7207 | DO TER T {800 eommane] ST WEG
,ESEI?TEIII?FO DRIVE TYPE | NUMBER T
L NAME o

!! l l l 00100 l CONTROL 8LOCK STATUS

bt 1 EXCEPTION {I/O ERROR]
< 11 TASK WAITING
17 POST (O COMPLETED)

Figure 11.1 Volume Control Block

0233¢

-

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON 2 0S REFERENCE MANUAL
: ' o L ES0003145E ,
i | S 1983-12-12 | A | 9
11.5.2 File Control Block

The declaration of a file results in allocation of a File Control
Block (FCB) in DU and FD.

The FCB is used by the file handling modules of 0S, and part of the

FCB information can also be obtained by the system modules, by means
of built=-in functions.

The STATUS byte of FCB is the same as in VCB. (See above).

The FCB can be regarded as comprising an event control block. The FCB
event is posted each time a file oriented command is executed.

ERROR WAITING TCB |[CONTROL PRIMARY | cONTROL

- STATUS SLOCK |COMMANDICONTROL
TYPE POINTER STATUS NDEX | US
SECONDARY tesT .
(E?AN{?SO - BLoé:A?oasss TYPE . FILE NAME A
LIBRARY NAME L
,fT/
L l
AUTHORITYPSOTECTION FILE SIZE
BLOCK SIZE RECORD SIZE USED SIZE LENGTH LAST BLOCK
N : CURRENT
ENTRY POINT LOAD POINT BLOCK FAGTOR RECORD
POINTER
CURRENT PRIMARY SECONDARY
CURRENT BLOCK NO.| gecopp no. BLOCK BUFFER | BLOCK BUFFER
POINTER POINTER
: . USER RECORD .
USER SET VCB \
POINTER BUETER, FO IDENTIFICATION POINTER
Gyl ooooo] CONTROL BLOCK STATUS
b+ 1 EXCEPTION (/O ERROR}
ey 1: TASK WAITING
(1 1: POST (1/0 COMPLETED)

{‘] [[1 l j CONTROL STATUS

‘s 1: CURRENT BLOCK MODIFIED
b——— 1: NEXT BLOCK READ

b 1; VARYING LENGTH RECORD BUFFER
e & 01. QUTPUT:10: INPUT/11: UPDATE
o oo o o 1: PACKED FILE

1: RANDOM /O

. 1 PENDING I/Q

Figure 11.2 File Control Block

0233¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON 2 0S REFEREMCE MANUAL

ES0003145E

1983-12-12 A 10
11.5.3 Volume Table

The communication processor maintains a table of all mounted volumes
in the cluster. A maximum of 64 volumes can be contained in the
table. If more than 20 volumes are to be accessed, the CP must be
provided with the MRW option.

The entire volume table require about for up to 64 volumes 1 kbyte of
main storage. It contains drive numbers and information from the
Volume Label of the inserted volumes.

A volume is identified either by its number or by name and version.

cP DU FD "~ Diskette
VOLLAB
VOLUME LIST VE8 ucs
: BB Sy DATA SETS ﬁﬁ
‘\\\ VTOC
FCB \\\\\ FCB //////’”" L
MEMBERS “
— LTOC
_]
\‘w

Figure 11.3 Control blocks

0233¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON Z 0S REFERENCE MANUAL
? ' : E90003145E

1983-12-12 A 11
11.6 VOLUME ORIENTED COMMAMNDS

11.6.1 Peclare Volume

Before a physical volume (diskette) can be accessed from an SPL
program, the volume must be logically defined by allocating and
initializing a Volume Control Block (VCB).

Assignment of data to the VCB can be carried out either in the
declaration or by a separate ASSIGN statement.

The following parameters can be used in the declaration of a volume:
(ﬁ DEVICE, DRIVE, NUMBER, NAME and VERSION.

At Least one of the following combinations must be specified:
1) DEVICE and DRIVE

2) NUMBER
3) NAME and VERSION

The following declarations are assumed in the examples below:
DECLARE DE CHAR(4); /* LOGICAL ADDRESS OF THE FD UNIT */

DECLARE DR BYTE; /* DRIVE NO. 1 OR 2 */
DECLARE NU CHAR(8); /* VOLUME NUMBER */
DECLARE NA CHAR(8); /* VOLUME NAME */
DECLARE VE CHAR(2); /% VOLUME VERSION %/
Example 1:

DECLARE VID VOLUME STATIC ENVIRONMENT (DEVICE(DE) DRIVE(DR)
NUMBER (NU) NAME(NA) VERSIOM(VE));

Example 2:
DECLARE VID VOLUME;
ASSIGN VID NAME(NA) DEVICE(DE) DRIVE(DR);

(3 In example 2 the declaration only allocates space for the VCB, while
the ASSIGN statement causes the VCB to be initialized.

(11.6.2 CREATE Volume

An empty volume must be created to initialize VOLLAB and VTOC. This
is done either in console mode or by using the CREATE statement as
follous:

Example:
CREATE VID FILES(FI) TYPE(TY) STAMP(ST) COMMENTS(CO)
BUFFER(BU) ;

Where

FILES defines the maximum C(up to 31) number of data sets to be
allocated on the volume. This indicates the size of VTOC.
FILES must be specified.

0233¢

ERICSSON 2

11 FD UNIT FUNCTIONS AND FILE HANDLING
0S REFERENCE MAMNUAL

E90003145E

1983-12-12 A ' ‘ 12

11.6.3

11.6.4

TYPE

STAMP

COMMENTS

BUFFER

The argume

is the volume type. 'S' for system disk or *D' for data
disk.

specifies a revision date.

is an optional descriptive field containing up to 20
characters.

is a user defined area utilized by the Operating System
during execution of the CREATE command.

nts must have been declared as follows:

DECLARE FI FIXED BIN(15);

DECLARE TY CHAR(1);

DECLARE ST CHARC1O) ;

DECLARE CO CHAR(ZOD) ;

DECLARE BU CHAR(128) ;

CHANGE Volume

The CHANGE statement can be used to modify the following volume I/0
options:

NAME

VERSION

STAMP

COMMENTS

Exampté:

CHANGE VID NAME CVOL_A)

Note that volume NUMBER cannot be changed by the CHANGE command.
DELETE Volume

The statement DELETE VID marks the volume as empty and sets the TYPE
byte in the VCB to 'E'.

0233¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON 2 0S REFERENCE MANUAL
! ; - ; , ' E90003145E ;
‘ | L ‘ : ©1983-12-12 P 13

11.6.5 Bujlt-in Functions

VCB information can be obtained by using the following built=in
functions:

DEVICE(VID)
DRIVE(VID)
NUMBER(VID)
NAME(VID)
VERSION(VID)

Example:
DNR = DRIVE(VID)
After performing a volume oriented command, the status of the volume

control block can be investigated by means of the build=in functions
STATUS(VID) and ERRORTYPE(VID).

0233c¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON 2 0S REFERENCE MANUAL
: ! E90003145E
1983-12-12 A 14
M.7 FILE ORIENTED COMMANDS
11.7.1 Buffer Requirements

The file I/0 commands READ/WRITE/REWRITE is normally performed via a
block buffer, since the block is the smallest unit which can be
treated by the physical I/0 handling procedures.

The block buffer is provided by the user in the file declaration. A
pointer intoc the block buffer is also provided. The buffer pointer is
manipulated by means of read and write commands.

If the data set is packed, a block buffer is not sufficient for
reading and writing. A record area must also be declared by the user. @}
The record area contains only one record.

If the data set is neither blocked nor packed, and a record area is
declared, the block buffer can be omitted. The pointer then refers 3
directly to blocks on the diskette. ¥

Diskette

Volume

\\\\ Physical read operation (at least one block)
\\\
)
v
A . Block buffer in DU, ;
——— N-1 N N+1 | —— specified in file)
i declaration.
B

! Record pointer into
i block buffer, indicating .J
next record to be read.

Record area for

unpacking of data from
block buffer.

. Figure 11.4 Block buffer and record area

0233c¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON Z 0S REFERENCE MANUAL
o | ; E90003145E , |
1983-12-12 A 15
11.7.2 DECLARE File

The File Control Block (FCB) is allocated analogously to the VCB. The
declaration and initialization of the FCB can be carried out in one
single statement where the ENVIRONMENT options depend on the type of
data set declared.

The following parameters can be used in the file declarations:
VOLUME, BUFFER, SET, LIBRARY, NAME and TYPE.

The following declarations are assumed in the examples below:

DECLARE VID VOLUME; /* VOLUME ON WHICH THE FILE IS STORED */
DECLARE BU CHARACTER(n); /* BLOCK BUFFER FOR INPUT/OUTPUT */
DECLARE RP POINTER; /* RECORD POINTER IN THE BLOCK BUFFER */
DECLARE LI CHAR(S8); /* NAME OF LIBRARY * /
DECLARE NA CHAR(8); /* NAME OF MEMBER OR FILE */
DECLARE TY CHAR(1); /* TYPE OF DATA SET ; * /
Example 1: A volume declared as a single file.

DECLARE FID FILE STATIC
ENVIRONMENT (VOLUME (VID) BUFFER (BU) SET (RP));

VOLUME Required. Specifies a VCB.

BUFFER Optional. Specifies the block buffer area. (See section
on Buffer Reguirements above).)
For sequential access tffe length of the buffer area,
(*n') must be at least twice the blocksize. For random
access 'n!' must eqgual the block size.

SET Optional. Specifies a record pointer, which points to
the current record in the block buffer. The pointer must
be explicity declared if no record area is provided.

Example 2: VTOC declaration (blocked records)

-

e QTAT
Ll lTTITTAT

TYPE ('D

-

)

VOLUME (VID) BUFFER (BU) SET (RP));

m o
= m
< oD
=
e I -
[aw B v]
=
=
m
Z
—
~ TN

TYPEC'D®) Required. Specifies the data set type to be a directory
(VT0C) .

VOLUME, BUFFER and SET as in example 1. BUFFER, however, is required
in this case.

Example 3: LTOC declaration (blocked records)

DECLARE FID FILE STATIC
ENVIRONMENT (TYPE ('D') VOLUME (VID) LIBRARY (LI
BUFFER (BU) SET (RP));

LIBRARY(LI) Required. Defines the name of the Llibrary.

TYPE, VOLUME, BUFFER and SET as in above examples.

0233¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON Z 0S REFERENCE MANUAL
o ! E9Q003145E
1983-12-12 A 16
Example 4: Member declaration

DECLARE FID FILE STATIC
ENVIRONMENT (NAME (NA) TYPE (TY) VOLUME (VID)
LIBRARY (LI) BUFFER (BU) SET (RP));

NAME Required. Defines the member name
TYPE Required. One of the following data set types:
F Fixed Length records file.
V Variable Length records file. The data set will be in
packed format, i.e. any string of identical
characters will be replaced by a counter and the
actual character when stored on disk. When reading or
writing, a record area has to be used. Files of type
R or V are recognized and treated as files of type V. M}
A Absolute file. Used for load modules.

VOLUME, LIBRARY, BUFFER and SET as in example 2. BUFFER, however, is
optional in this case. }

Example 5: Declaration of other sequential data sets

DECLARE FID FILE STATIC
ENVIRONMENT (NAME(NA) TYPE(TY) VOLUMECVID)
BUFFER(BU) SET(RP));

NAME Required. Specifies a unique data set name other than a
library.

TYPE, VOLUME, BUFFER and SET as in example 4.

Instead of giving the I/0 options in the EMVIRONMENT attribute, they
can be specified in a separate ASSIGN statement.

Example:
ASSIGN FID NAME(NA) TYPE(TY) VOLUME(VID) BUFFER(BU) SET(RP); W}

0233¢c

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON Z 0S REFERENCE MANUAL
s E90003145E :
1983-12-12 A 17 .
11.7.3 CREATE File

A declared data set must be created before it can be used.

In the following examples the parameters are declared as follows:

DECLARE FI BIN;
DECLARE BS BIN;
DECLARE RS BIN;
DECLARE FS BIN;
DECLARE SE BYTE;
DECLARE LP BIN;
(ﬁ Example 1: Create a simple data set
CREATE FID BLOCKSIZE(BS) RECORDSIZE(RS)
FILESIZE(FS) SECURITY(SE) LOADPOINT(LP)
r BLOCKSIZE Required. Specifies the blocksize in number of bytes.
RECORDSIZE Required. Specifies the logical record length in number
of bytes. For fixed length records, the blocksize should
be a multiple of the record size. For variable records
the maximum record length is specified.
FILESIZE Required. Specifies the number of blocks the data set is
to contain.
SECURITY Optional. Specifies the level of security. See section
on Authority Levels above.
LOADPOINT Optional. Specifies the memory address into which an
absolute file is to be loaded.
Example 2: Create a library
CREATE FID BLOCKSIZE(BS) FILESIZE(FS)
SECURITY(SE) FILES (FI);
(Same as in example 1 except for:
FILES Required. Specifies the maximum number of members (up to
104) to be registered in the Library.
(

0233¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON Z 0S REFERENCE MANUAL
E90003145E
: 1683=12-12 A i 18

11.7.4 OPEN/CLOSE File

Before any input or output can be performed on a file, it must be
opened. This is done as follows:

Example:

OPEN FID INPUT;
QUTPUT;
UPDATE;

INPUT allows for read operations only

QUTPUT allows for write operations only
UPDATE only allows changes of existing records

After an OPEN statement is executed, the record pointer points to the
first record in the data set.

When a file is opened for output or update, it is in exclusive use,
j.e. it can not be accessed by another user until it is closed.

An open file on a volume will cause locking of the FD drive in which
the diskette is inserted.

After file input or output is completed, the file must be closed.

‘Example:
CLOSE FID;

0233¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON 2 0S REFERENCE MANUAL
~ - E90003145E ;
: ~ . 1983-12-12 A o 19

11.7.5

READ Record

The READ command is a logical command which is associated with a
specified record in an open file.

In the declaration of a file, a block buffer is normally defined. A
record pointer is associated with the block buffer. (See section on
Buffer Requirements above.)

After a READ command is executed, the pointer is updated to refer to
the next record in the buffer. If the next record is not present in
the buffer, a new block is physically copied into the buffer from the

diskette (unless the end of the file is reached).

The READ command can be issued with or without a key, indicating the
relative record No. Record No. 1 is the first record of the file.

If the READ command is issued with an INTO (record area) option, the

record referred to by the pointer is moved to the specified record
area.

Example 1: Read next record

READ FID;

The record pointer is updated to point to the next record in the
buffer. If the pointer was already pointing to the last record in the
buffer, a new block is read into the buffer, and the pointer is set
to indicate the first record in the new block.

Example 2: Read specified record

READ FID KEY(KE);

The record pointer will point to the relative record number 'KE' in
the file, where number 1 specifies the first record in the file. If

the requested record is not available in the buffer area, a new block
is fetched from the diskette. .

The READ command does not cause a record to be read if used before a
block buffer has been defined. It affects KEY, however, and may be
used to set the pointer before a WRITE or REWRITE command.

Note. The statement

READ FID KEY(O);
can be used to set the pointer to the end of the file.

0233c

ERICS50N

11 FD UNIT FUNCTIONS AND FILE HANDLING

Z | 0S REFERENCE MANUAL
i | ’ ‘ E90003145E
1983-12-12 . A 20

11.7.6

Example 3: Read next record into the record area
READ FID INTO(RA);

Next record will be read into the record area 'RA' from the block
buffer or directly from the device.

The record area must be previously declared:
DECLARE RA CHAR(MAX_RL);

or

DECLARE RA CHAR(MAX_RL) VARYING;

where MAX RL is the maximum record length.

A record area must be used when reading records which are stored in
packed format. As soon as the buffer is emptied by continual ' READ
operations, a new block will automatically be read into the buffer.

Example &: READ specified record into the record area
READ FID KEY(KE) INTO(RA);

This is a combination of examples 2 and 3. Note that packed files
(type V) cannot be read with a key.

WRITE/REWRITE Record

Output of records to the diskette can be performed by either the
WRITE or the REWRITE command. Both commands can be used on files
which are opened for OUTPUT or UPDATE.

Output to diskette is performed via the same buffer as used for the
READ operations (see section on Buffer Requirements above).

Note that keys cannot be used for output operations.
Example 1: Write next record
WRITE FID;

The record pointer will be updated to point to the next available
record area in the current block buffer.

Example 2: Write next record from the record area

WRITE FID FROM(RA);

The current record in the record area 'RA' will be moved to the next
available space in the output buffer or directly to the device. The

record pointer is updated to point to the next record in the block
buffer.

0233c

11 FD UNIT FUNCTIONS AND FILE HANDLING

| ERICSSON Z ‘ .0S REFERENCE MANUAL
! % ‘ ' f E90003145E i
' ‘ 1983~-12-12 A 21

Example 3: Rewrite last read record
REWRITE FID;

This can be used for a file opened for UPDATE. The record to be

written must first have been read into main storage with a READ
statement. The corresponding record in the block buffer is marked as
changed. The buffer will be rewritten to the file when another block
is to be read into the buffer.

Example 4: Rewrite from the record area
REWRITE FID FROM(RA):;

The current content in the record area is moved to the block buffer,
if there is any. Otherwise a direct rewrite takes place.

Note: If the preceding READ with KEY was performed with neither a

block buffer nor an INTO option, this REWRITE statement will cause
new data to be written to the relative record position referred to by

the current record pointer.
11.7.7 DELETE File
The DELETE statement can be used to delete a file.

Example: DELETE FID;

The file 'FID' will be deleted and the corresponding space on the
diskette will be released.

The DELETE command can be performed on closed files as well as on
open files.

11.7.8 LOAD File

The LOAD statement loads programs and program segments.

Example: LOAD FID;

The file 'FID' will be lLoaded into main storage. FID must be declared
as an absolute file, type 'A'.

. 0233¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON Z 0S REFERENCE MANUAL
; ES0003145E ‘
1983-12-12 A 22
11.7.9 Bujlt=In Functions

The built-in functions STATUS and ERRORTYPE are used to obtain
information from the file control block after performing a file
oriented command.

STATUS returns the value of the STATUS byte and ERRORTYPE returns the
value of the ERROR TYPE byte in FCB. The FCB is presented in section
11.5.2 above.

Example:

IF STATUS(FID) = $¢4) /* END OF FILE */
THEN cea

IF STATUSC(FID) >= $(80) /* ERROR */
THEN

/* CHECK ERRORTYPE */

The built=in function COMPLETION can be used to test if a previously
initiated I/0 operation has been completed.

When a file is opened, information about its attributes can be
obtained by means of special built-in functions.

Examples:

BS = BLOCKSIZE(FID);
RS = RECORDSIZE(FID);
FS = FILESIZE(FID);
SE = SECURITY(FID);
LP = LOADPOINT(FID);
SI = SIZE(FID);

Refer to the SPL Reference Manual for further details.

0233¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON Z 0S REFERENCE MANUAL
: E90003145E . ;
Lo 1983-12-12 A 23
11.8 SYNCHRONIZATION

1/0 processing is performed by 0S tasks parallel to system module
execution. Only one I/0 operation at a time can be applied to an FCB
or a VCB. Thus synchronization of 1/0 operations is required.

Synchronization is obtained by implicit posting of FCBs and VCBs and
by using the WAIT (File) or WAIT (Volume) statements.

Example 1: Wait for event in Volume Control Block
WAIT VID EXCEPTION(EX);

The calling program is waiting for the OPEN, CLOSE or CREATE
operation on the volume operation 'VID' to be finished.

If the operation was successful, the statement following the WAIT
statement will be executed, otherwise the statements after the Label
'EX' is executed.

The keywords ALL or ANY can be used to wait for all or any of the
defined events or tasks to be completed. Refer to the SPL manual.

Example 2: Wait for event in File Control Block
WAIT FID EXCEPTIONCEXD;
Analogously to the previous example but for an FCB. Also the

operations READ, WRITE, REWRITE, LOAD, CHANGE, CREATE and DELETE
results in a posting of the FCB.

0233¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

ERICSSON 2 0S REFERENCE MANUAL
- ‘ : ‘ : ES0003145E
1983-12-12 A 24
11.9 OVERLAY LOADER PROCEDURE

11.9.1 Functional Description

The operating system contains a globally declared procedure
(BAD_00220) for loading of overlay segments from the system diskette.

The desired segment is defined in a table which is declared by the
user.

The overlay procedure loads the desired segment into the publicly
declared file BAD_$0040.

The execution of the loaded segment can be initiated by all call to
this file. In the example below, the execution is performed in a task.

11.9.2 Interface

Declarations:

DECLARE BAD_00220 ENTRY (PTR VALUE); /* OVERLAY LOADER */
DECLARE BAD $0040 FILE EXT; /* PUBLIC FCB */
DECLARE 1 FILEDEF, /* FILE DEFINITION TABLE */
2 LIB CHAR(8), /* LIBRARY */
2 NAME CHAR(8), /* MEMBER/FILE NAME */
2 MAP BYTE, /* LOAD MAP NO. */
2 LSTAT BYTE, /* LOAD STATUS */
2 LERRT BYTE; /* LOAD ERROR TYPE . */

DECLARE DEFPTR POINTER STATIC INIT CADDR(FILEDEF));
DECLARE NEWPROC TASK;

Call format, overlay:

LIB = " ibrary name";
NAME = "file/member name'; .
MAP = "load map No.'; /* =0 IF LOAD MAP NOT USED */
CALL BAD 00220(DEFPTR); /% PERFORM OVERLAY */
IF LSTATI= 0

THEN

/% DO ERROR PROCESSING */
Call format, execution:

CALL BAD_30040 TASK(NEWPROC) PRIOCD); /% EXECUTE NEW PROC */

ld
r

7
WAIT NEWPROC; /% WAIT FOR TERMINATION OF NEWPROC */

Note. If the MAP byte is set to $(81), the file is regarded as a
character generation table. See below.

0233¢

11 FD UNIT FUNCTIONS AND FILE HANDLING

~ ERICSSON Z ; L 0S REFERENCE MANUAL
¥ | ; Lo E90003145E
' 1983-12-12 A L 25

11.10 LOADING OF CHARACTER GENERATOR

In DU 4110, the character generator is resident in PROM. In later DU
models this table must be loaded from the system diskette.

11.10.1 Functional Description

buring IPL of 0S in DU, a default character generator is Loaded. The
default character generator is IBM 24 lines, group A.

The Loading of the desired character generator is performed by means
of overlay loader BAD 00220, as described above.

If the MAP byte in the file definition table is set to $(81), the
specified file is loaded as a character generator.

See section 10.9 above.

0233c¢

11 FD UNIT FUNCTIONS AND FILE HAMDLING

ERICSSON Z 0S REFERENCE MANUAL
~ E90003145E | ~ 1
1983-12-12 A : 26

1.1 EXCHANGING OF KEYBOARD TABLE

11.11.1 Functional Description

Up to 5 keyboard tables can be defined in a cluster. Each DU is
assigned a default keyboard table during customizing. The default
keyboard table is loaded by the Logon Handler.

The name of the assigned keyboard table is stored in the globally
declared character string BAD_70301.

ALl keyboard tables are stored in the library KBLIB (or KBLIBA for
KBU 4143) on the system diskette. They are named KBTABLED to KBTABLE4.

11.11.2 Interface
Declarations:

DECLARE KBTABIN FILE

ENVIRONMENT (NAME ('KBTABLEx") /* DESIRED KBTAB */
TYPE ('A")
LIBRARY ('KBLIB)
VOLUME ("system volume'));

DECLARE 1 KBTABBUF, /* KBTABLE WITH HEADER */
5 KBSTRAP CHAR{13), /* KB STRAP DATA */

5 KBTABPTR(16) POINTER, /* TO SUBTABLES */

5 KBTAB(n=128) CHAR(2); /* n = NUMBER OF */

/* SUBTABLES */

DECLARE BED_$1100 POINTER EXT; /* POINTER TO KB STRAP */
/* DATA */

DECLARE BED_02200 ENTRY; /% INIT PROC FOR KB */
/* STRAP DATA */

Call format:

CREATE KBTABIN ...; /* SEE SECTION ON CREATE */
OPEN KBTABIN INPUT; /* OPEN FOR READING */
WAIT KBTABIN EXCEPTION (OPEN FAIL);

READ KBTABIN KEY(1) INTO KBTAB; /* RECORD SIZE = KBTAB SIZE */

WAIT KBTABIN EXCEPTION (READ FAIL);
CLOSE KBTABIN EXCEPTION (CLOS_FAIL);

BED_$1100 = ADDR(KBSTRAP);
CALL BED_02200; /* INITIALIZE STRAP DATA */

0233¢

12 PRINTER FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
X ! E90003145E
1983-12-12 A 1

12 PRINTER FUNCTIONS

List of Contents

12.1 GENERAL DESCRIPTION 3
12.2 PRIOS 4
12.2.1 PRIOS Functional Description 4
12.2.2 PRIOS Parameter List 5
12.2.3 PRIOS Event 8
12.2.4 PRIOS TCB 9
12.3 PRINTER STATUS INQUIRY 10
12.3.1 Functional description : 10
12.3.2 Interface : 10
T 12.4 PRINT QUEUE REQUEST 12
12.4.1 Functional Description 12
12.4.2 Interface 12
12.5 CANCELLATION OF PRINT QUEUE REQUEST 15
12.5.1 Functional Description 15
12.5.2 Interface 15
12.6 PRINTOUT REQUEST AND RETRY OF PRINTOUT REQUEST 17
12.6.1 Functional Description 17
12.6.2 Interface 18
12.6.3 Hold Printout 20
12.7 PRIOS OPTIONAL FUNCTIONS 21
12.7.1 Functional Description 21
12.7.2 Interface 21
12.8 LOCAL PRINTER STATUS CONTROL 22
12.8.1 Functional Description 2z
12.8.2 Interfaces 22
12.9 PRINTER EDITING 23
12.9.1 Functional Description 23
12.9.2 Printer Edit Parameter List 25
12.9.3 Interface 27
12.9.4 Logoff Byte 28
12.10 PRINTER HARDWARE 29
12.10.1 Printer Definition File 29
12.11 APPLICATION EXAMPLES 30
12.11.1 Declarations 30
12.11.2 Ipitialization at Logon 32
12.11.3 PRIOS Requests 22
12.11.4 Printer Editing Loop 35-35

0234¢

12 PRINTER FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
E90003145E
1983-12-12 = ‘A 2

o

0234¢

12 PRINTER FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
: E90003145E, |
! 1983-12-12 A .3
12.1 GENERAL DESCRIPTION

Output to printer units is handled by two modules in the operating

system: the Printer Handler which carries out physical printer
handling, and PRIOS which serves as the interface to the system and
application modules.

Four main types of commands can be issued to PRIOS:
o Printer status inquiry

o Print queue request

o Cancellation of print queue request

o Printout request and retry of printout request

The various calls to PRIOS are defined by means of the PRIOS
Parameter List, which is initialized by the user.

Synchronization of printer operation is performed by means of a PRIOS
Event. The event is always posted by PRIOS to indicate that a
requested operation has been completed.

Printer editing is performed by means of an editor which must be

Linked with the system module. Text to be printed is transferred by
PRIOS from the user buffer to a print buffer which is also declared

in DU by the user.

From the print buffer, the editor fetches the text character by
character, inserts control characters and moves the text continually
to the editor buffer. The editor buffer is provided by 0S.

From the editor buffer, the Printer Handler transmits the text to the
printer unit. See also Fig. 12.2 in section 12.9.

0234c¢

ERICSSON Z

12 PRINTER FUNCTIONS

0S REFERENCE MANUAL

E90003145E ,

1983-12=12 A 4

12.2

12.2.1

PRIOS

PRIOS Functional Description

PRIOS itself is declared as the external procedure BID 00100. A call
to PRIOS comprise one parameter. The parameter is a pointer to PRIOS
Parameter List, which is further described below. PRIOS Parameter

List must be properly initialized by the user before any call to
PRIOS is issued.

At least one printer editor must be linked with the system module.

The present editors are marked in two global variables. The selected
editor is specified in PRIOS Parameter List. The function of the
editor is controlled by means of a Print Edit Parameter List, which

is also initialized by the user. See section on Printer Editing below.

Synchronization of print operatjons is performed via the PIROS event,
declared by the user. This event is posted by PRIOS each time a
requested operation (or part of operation) is performed. Thus, the
PRIOS event must be assigned by the user before each new call to
PRIOS. PRIOS Parameter List contains the pointer to the PRIOS event.

The two parameter lists must not be changed during PRIOS or editor
processing.

The figure below jllustrates a normal command sequence issued to
PRIOS.

System Module PRIOS

(Initializing performed)

ASSIGN PRIOSEV;
Printer Status Inquiry
POST PRIOSEV;
Printer OK
ASSIGN PRIOSEV;

Print Queue Request
POST PRIOSEV;

Print queue position indicated
ASSIGN PRIOSEV;
(Wait until first in queue)
POST PRIOSEV;
First in print queue
ASSIGN PRIQSEV;
Printout Request
POST PRIOSEVY;
Printout completed

Fig 12.1 Normal sequence in printout operation

0234¢

12 PRINTER FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
S | ! E90003145E : |
o . 1983-12-12 A 5

12.2.2 PRIOS Parameter List

The PRIOS Parameter List (PRIOSPL) is used to control communication
between the system module and PRIOS. Several PRIOS calls may be
performed simultaneously by defining one parameter list for each call.

The calls to PRIOS are issued with a pointer to the parameter Llist as
an argument. Note that the content of the parameter list must not be
changed before the operation has been performed. Each PRIOS operation
is terminated by the posting of a user defined PRIOS event, which
contains status and error indications.

PRIOS Parameter List declaration:

DECLARE 1 PRIOSPL, /* PRIOS PARAMETER LIST */
2% CHAR(2) PTR, /% INITIATED AS *$(FFFF) OR $(0000) =/
2 CALLPARM, PTR, /* CALL PARAMETERS */

3 PRIOSEVP PTR, /* PRIOS EVENT POINTER */
3 PRIOSOP BYTE, /* REQUESTED PRIOS OPERATION */
3 TOIDTYPE BYTE, /* DESTINATION ID TYPE */
3 TOID BYTE, /% DESTINATION ID */
3 ORDER BYTE, /* OPERATION INSTRUCTIONS */
3 EDITORID BYTE, /* REQUESTED EDITOR */
2 MISCPARM, /* RETURN PARAMETERS OR */
3% CHAR(1O); /* PRINTER PARAMETERS */

DECLARE PRIOSPLP PTR STATIC INIT(ADDR(PRIOSPL)); /*POINTER TO PROSPL*/

The various identifiers are described below.
Data description for PRIOS Parameter List:

CALLPARM The call parameters must always be specified by the user.
They are never changed by PRIOS. '

PRIOSEVP Is.a-pointer to the PRIOS event which is posted one or

several times during the PRIOS operation.

PRIOSOP Defines the requested PRIOS operation.

PRIOSOP Meaning

$C01) Status inquiry to printer

$(02) ‘Print queue request

$(03) Cancellation of print queue request
$(04) Printout request

$(05) Retry of printout request

See also section on Hold Printout below.

0234c

ERICSSON

=
=

12 PRINTER FUNCTIONS
0S REFERENCE MANUAL
E90003145E
: 1983-12-12 A 6

TOIDTYPE Defines TOID as being a physical or a logical address

TOIDTYPE

$(00
$ 80

-

Meaning
TOID contains physical unit address
TOID contains logical unit address

TOID Defines a physical or logical address of the printer to be
used. For layout see section on Logical Addresses in Chapter 7.

ORDER Contains supplementary information to PRIOS. Interpreted as

follows:
Bit 76543210

X X

X X X

Reservation State

00

01

10

11

Meaning

Reservation state. See below.

Conditional print queue request. See below.
ETB sequence sent to printer after last
character. Printing is marked as completed
when the last character has been printed.
No ETB sequence sent to printer. Printing
is marked as completed when the last
character has been sent to the printer.
Host print. See below.

Job number. See below.

Meaning

Printer is not reserved. The queue element
is automatically removed from the print
queue when printing is terminated.

Queue element is appended on gqueue. When it
has reached the first queue position it can
be kept there as long as the user wishes.
Queue position is obtained ahead of all
gqueue elements with reservation states 00
or 01, but after the first queue element if
the queue is not empty.

Absolute reservation. Queue position is
obtained ahead of all queue elements except
the first one, regardless of reservation
state. ALL queue elements behind are
removed. When the queue element has reached
the first gueue position it is kept there
as long as the user wishes.

0234¢

ERICSSON

=
=

12 PRINTER FUNCTIONS
0S REFERENCE MANUAL

E90003145E | -~
1983-12-12 A | 7

Conditional Print
Queue Request

Host print

Job number

EDITORID

$(80)
$ 40

$(20)
s$C10

$(08)
$(04)

MISCPARM

If the requested printer is not immediately
accessible, the request is inhibited. The
PRIOS event is posted with STATUS = error,
ERRORTYPE = $(0A).

Defines that the PRIOS request is coming
from the host computer. It must have the
same value for all PRIOS operations
concerning the same printing. Indicates
that the user buffer is also print buffer.

Is a three bit number used to distinguish
various PRIOS calls from the same user. It
must have the same value for all PRIOS
operations concerning the same printing.

Indicates which editor(s) is to be used.
Bit mask combinations are possible.

Standard editor

Editor for Console Mode
Editor for IBM emulation
Editor for UNIVAC emulation

This field is used in various ways,
depending on the desired PRIOS operation.
In status inquiries and print queue
requests, it contains return parameters
from PRIOS. In printout requests, it
contains printer parameters to PRIOS.

0234¢c

1

12 PRINTER FUNCTIONS

ERICSSON = 0S REFERENCE MANUAL
L ' E90003145E
1983-12-12 A 8
12.2.3 PRIOS Event

The PRIOS Event is declared by the user. The PRIOS Parameter List
contains a pointer to the event.

The PRIOS Event is posted one or several times during the execution
of a PRIOS operation. The reason for the latest posting is indicated
in the STATUS and ERRORTYPE fields of the event controt block (ECB).

The STATUS byte is interpreted as follows:

Bit 76543210

Printer inoperable

Printer inoperable
warning

Pririter recovered

Error

Warning

Queue number

Queue ready

Printer inoperable

Printer inoperable warning

Printer recovered %}
Error

Warning

Queue number (printout request queued)

Queue ready 5
Data fetched }

Indicates that a hardware printer error
occurred. The printing has been interrupted.

Indicates that a less serious hardware
printer error occurred. However, the last
printing was successful if not the Error
bit (see below) indicates another error.

Indicates that the printer is ready to.
operate again.

Indicates that a system error occurred,

which ig specified in ERRORTYPE. Note that

the error indication is independent of the
printer inoperable indication. J}

Indicates a system warning, which is

specified in ERRORTYPE. The warning may be
jgnored by the user. Note that the warning
indication is independent of the printer A}
jnoperable indication or the printer

inoperable warning indication.

Indicates that a queue reqguest was
successfully queued, and the gueue position
number entered into the parameter Llist.

Indicates that the queue element is first
in queue.

0234¢

- 12 PRINTER FUNCTIONS
ERICSSON = 0S REFERENCE MANUAL
Lo | o E90003145E
1983-12-12 A 9

Data fetched : Indicates that the user text buffer has
been emptied by PRIOS and is available to
the user. However, the PRIOS operation is
not yet terminated. Not used in host print,
since print data is already in print buffer.

The ERRORTYPE field of the ECB specifies the occurred error type.

Bit 76543210 Meaning
XX XX Not used
X X XX Error type number. See below.

Error type number Meaning

$ (00 -

$(01) Frequent parity error

$(02) Communication error

$€03) Communication connect error

$(04) Print queue full

$(05) Print request cancelled

$(06) Requested editor not available

$C07) Error in PRIOS call

$(08) Print queue reserved

$(09) Print buffer overflow

$(0A) - .

$(0B> -

$(0CH Already in print queue

$(0DD Reserved print ahead

$(0E) Reserved print put ahead

$(0F) -

[

12.2.4 PRIOS TCB .

PRIOS is a task which is defined in the task control block BAD $0250.

This TCB is declared globally in 0S, but it is not accessible as a
normal external entity from the system modules. However, the address
of the TCB is fixed to $(8046).

0234¢c

12 PRINTER FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL
i ES0003145E ‘ L
1983-12-12 A 10
12.3 PRINTER STATUS INQUIRY

12.3.1 Functional description

The current status of any printer in the cluster can be obtained by
means of a call to PRIOS.

PRIOS is called with the operation code for status inquiry set in the
parameter list. When the operation is completed, the PRIOS event is

posted by PRIOS.

After the posting of the event, printer status information is

available in the return parameters in PRIOS Parameter List.)

12.3.2 Interface

Declarationss: . 3

DECLARE 1 PRIOSPL, /* PRIOS PARAMETER LIST */
2% CHAR(2),
3 PRIOSEVP PTR,
3 PRIOSOP BYTE,

3 TOIDTYPE BYTE,
3 TOID BYTE,
3 ORDER BYTE,
3 EDITORID BYTE,
2 RETPARM, /% RETURN PARAMETERS */
3 QNO BYTE, /* QUEUE POS NO. */
3% CHAR(2),
3 PRBUFLEN BIN, /* LENGTH OF PRINT BUFFER */
3 CURREDIT BYTE, /* EDITOR USED */
3 PRINTDEF,
4 LINELEN BYTE, /% LINE LENGTH */
4 PROPT BYTE, /% PRINTER OPTIONS %/)
4 PRTYPE BYTE, /% PRINTER TYPE */
4 PRTABNO CHAR, /% PRINTER TABLE */
DECLARE PRIOSPLP PTR STATIC INIT(ADDR(PRIOSPL));
DECLARE PRIOSEV EVENT; J
DECLARE BID 00100 ENTRY (PTR VALUE) /* PRIOS */

OPTIONS ((LOCKCINTERRUPT));

PRIOSPLP is the pointer to the parameteryList.

0234c

12 PRINTER FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
: E90003145E CL ‘
1983-12-12 A M

Call format:

PRIOSEVP = ADDR(PRIOSEV);
PRIOSOP = $(01); . /% STATUS INQUIRY */

TOIDTYPE = <unit number type>;
TOID = <unit number>;
ORDER = <only host print bit is relevant>;

ASSIGN PRIOSEV;
CALL BID_QO1DD(PRIOSPLP);

WAIT PRIOSEV;

Return parameters:

After PRIOSEV has been posted, the following information is available
in the parameter List:’

PRBUFLEN Contains the Length of the print buffer.
CURREDIT Contains the editor(s) currently used.
Combinations are possible.
$(80) Standard editor
$ (40D -
$C20) Editor for Console Mode
$C10) Editor for IBM emulation
$(08 Editor for UNIVAC emulation
$(04) -
LINELEN Contains the maximum Lline Lenght for the printer. This
value is not checked by PRIOS.
PROPT Specifies options for the connected printer i.e. sheet
feeder.
PRTYPE Specifies the connected printer type. See section on

Printer Hardware below.

PRTABNO Specifies the current printer table in the DU which has

the PU connected. See section on Keyboard Functions.

The user can also obtain information about the operating status of
the printer by analyzing the STATUS entry of the PRIOS event.

0234¢

B

ERICSSON Z

12 PRINTER FUNCTIONS

0S REFERENCE MANUAL

E90003145E

1983-12-12 A 12

12.4

12.4.1

12.4.2

PRINT QUEUE REQUEST

Functional Description

Before a request for printout can be issued, a print queue request
must be issued and response received.

PRIOS is called with the operation code for print queue request set
in the parameter list. PRIOS responds by posting the PRIOS event.

If the STATUS of the PRIOS event is $(04) after a print queue
request, the print job is queued properly and the return parameters
are available in the parameter Llist.

After that, the PRIOS event has to be assigned again by the user.
When the event is posted a second time, the print job has reached the
top of the queue. The STATUS of the PRIOS event is now $(02) if no
errors have occurred.

A printout request can then be issued.

If the event posted in response to the print queue request contains
STATUS = $(02), the queue request reached the first gueue position at
once and a printout request can be issued immediately.

If the event status is neither $(04) nor $(02) the operation was not
successful. Error type is indicated in the ERRORTYPE byte of the
PRIOS Event.

The print queue request can also be issued as a conditional request.

this implies that the user wishes to enter the print queue only if it
is empty. See section on PRIQOS Parameter List above.

»
4

Interface

Declarations:

DECLARE 1 PRIOSPL, /* PRIOS PARAMETER LIST */
2% CHAR(2),
2 CALLPARM, /* CALL PARAMETERS */

3 PRICSEVP PTR,

3 PRIOSOP BYTE,
3 TOIDTYPE BYTE,
3 TOID BYTE,
3 ORDER BYTE,
3 EDITORID BYTE;

0234¢

12 PRINTER FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL
‘ ; E90003145E =
1983-12-12 A 113
2 RETPARM, /* RETURN PARAMETERS */
3 QNO BYTE, /* QUEUE POS NO. */
3% CHAR(2),
3 PRBUFLEN BIN, /% LENGTH OF BUFFER */
3 CURREDIT BYTE, /* EDITOR USED */
3 PRINTDEF,
4 LINELEN BYTE, /% LINE LENGTH */
4 PROPT BYTE, /* PRINTER OPTIONS */
4 PRTYPE BYTE, /% PRINTER TYPE */
4 PRTABNO CHAR, /* PRINTER TABLE */
DECLARE PRIOSPLP PTR STATIC INIT(ADDR(PRIOSPL));
DECLARE PRIOSEV EVENT;
DECLARE BID 00100 ENTRY(PTR VALUE) /* PRIOS */

OPTIONS (LOCK (INTERRUPT)) ;

Call format:

PRIOSEVP = ADDR(PRIOQOSEV);

PRIOSOP = $(02) /#* PRINT QUEUE REQUEST */
TOIDTYPE = <unit number type>;

TOID = <unit number>;

ORDER = <suitable order>;

ASSIGN PRIOSEV;

CALL BID_QO1OD(PRIOSPLP);

WAITQUE:
WAIT PRIOSEV; '
IF ((STATUSC(PRIOSEV) & $(80)) 1= /* PRINTER INOPERABLE */
THEN DOQ;
/* DO ERROR PROCESSING */
/* WAIT FOR PRINTER TO RECOVER * /
ASSIGN PRIOSEV;
GOTO WAITQUE;
END;
1F _((STATUS(PRIOSEV) & $C10)) 1=0)

THEN DO;
/*COMMUNICATION OR PRINT QUEUE ERROR*/
IF (ERRORTYPE(PRIOSEV) = $(04))
THEN /% PRINT QUEUE FULL =*/
ELSE
IF (ERRORTYPE(PRIOSEV) = $(05))
THEN /+* PRINT REQUEST CANCELLED */
ELSE /* INT. COMMUNICATION ERROR */
/* TRY OTHER PRINTER */
END;

0234¢

ERICSSON Z

1L T IDNLEIETD LN 1 WITW kv b

0S REFERENCE MANUAL

E90003145E
1983-12-12 A : 14i
IF ((STATUS(PRIOSEV) & $(04)]=0) /% PRINT REQUEST QUEUED */

THEN DO;
/* PROCESS PARAMETERS IN PARAMETER LIST */
ASSIGN PRIOSEV;
GOTO WAITQUE;
END;
IF ((STATUS(PRIOSEV) & $(02) 1=0 /* FIRST IN QUEUE * /

THEN DO;
/* PRINTOUT REQUEST CAN NOW BE ISSUED */

Return parameters:

After the PRIOS event has been posted the following parameters are
available in the parameter List:

anNo Contains the position number in the print queue, if the

queue was full, the value is $(FF). If the queue request
was rejected for some other reason it contains the
value 0.

PRBUFLEN Contains the length of the print buffer. This value must
not be exceeded.

CURREDIT Contains which editor(s) may be used. Combinations are
possible. The same bit disposition as in Section 12.4.2.

LINELEN Contains the maximum line tenght for the printer. This
value is not checked by PRIOS.

PRTYPE Specifies the connected printer type. See section on
Printer Hardware below.

PRTABNO Specifies the current printer table in the DU or PCU
which has the PU connected.

PROPT Specifies options for the connected printer.

0234c

ERICSSON 2

12 PRINTER FUNCTIONS
- 0S REFERENCE MANUAL
| E90003145E.
1983-12-12 = A - 15

12.5

12.5.1

12.5.2

CANCELLATION OF PRINT QUEUE REQUEST

Functional Description

Any element in the print queue can be removed by means cf a command
to PRIOS.

PRIOS is called with the operation code for cancellation of print
gqueue request set in the parameter list. PRIOS responds by posting

the PRIOS event.

If the STATUS of the PRIOS event is 0, the operation was successful
and the queue element was removed or not found. There is no other
indication to show if a queue element was not found. If the event

status is not O the operation might have gone wrong.

A queue element is removed from the queue regardless of its queue
position or reservation class. If the gqueue element was first in
queue and printing was going on, the printing is aborted.

Interface

Declarations:

DECLARE 1 PRIOSPL, k " /% PRIOS PARAMETER LIST */
2% CHAR(2),
2 CALLPARM, /* CALL PARAMETERS */

3 PRIOSEVP PTR,
3 PRIOSOP BYTE,
3 TOIDTYPE BYTE,
3 TOID BYTE,

3 ORDER BYTE;

Il

DECLARE PRIOSPLP PTR STATIC INITCADDR(PRIOSPL));
DECLARE PIROSEV _FVENT:
DECLARE BID 00100 ENTRY (PTR VALUE) /% PRIOS */

OPTIONS (LOCK (INTERRUPT)) ;

0234¢

- 12 PRINTER FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL
\ ~ ’ ? E9O003145E
1983-12-12 A \ 1%

Call format:

PRIQSEVP = ADDR(PRIOSEW));
PRIOSOP = $(03); /% CANCELLATION OF PQ REQUEST =%/
TOIDTYPE = <unit number type>;
TOID = <unit number >;
ORDER = <suitable order>;
ASSIGN PRIOSEV;
CALL BID 00100(CPRIOSPLP);
WAIT PRIOSEV;
IF ((STATUS(PRIOSEV) & $(10) 1 =20 /* COMMUNICATION ERROR */
THEN DO;
/* DECIDE IF TO DO A%/
/* RETRY OR ISSUE AN %/
/* QPERATOR MESSAGE */
ELSE
/* QUEUE REQUEST CANCELLED =/ /* AS DESIRED */
END;

0234¢

ERICSSON Z

12 PRINTER FUNCTIONS

0S REFERENCE MANUAL
‘ - . E0003143E C : ,
: : . 1983-12-12 A | 17

12.6

12.6.1

PRINTOUT REQUEST AND RETRY OF PRINTOUT REQUEST

Functional Description

When the print queue request has reached the top of the print queue,
a printout request can be issued.

PRIOS is called with the operation code for printout request or retry
of printout request set in the parameter list. PRIOS responds by
posting the PRIOS event.

If the PRIOS event STATUS = $(01), the content of the user buffer is

transferred to the pr1nt buffer, but printing is not yet completed.
The user must then assign the PRIOS event again and wait for a new

posting of the event.

When host print is perfdrmed, the posted event normally has the
STATUS O since the user buffer is also used as print buffer, 'and thus
no transfer takes place.

After the PRIOS event has been posted a second time, the event STATUS
is 0 if printing has been completed without errors. The queue element
is removed from the print queue if the element had reservation

class 0.

If the event status is neither $(01) nor $(00), the operation might
have been unsuccessful.

In the case of a retry of printout request, the print buffer already
contains the desired text since it was transferred from the user
buffer at the previous request. Consequently the event STATUS is O if
the operation was successful.

0234c

ERICSSON Z

12 PRINTER FUNCTIONS
0S REFERENCE MANUAL

EQ0003145E ‘
1983-12-12 A 18
12.6.2 Interface
Declarations:
DECLARE 1 PRIOSPL, /* PRIOS PARAMETER LIST */
2% CHAR(2),
2 CALLPARM, /* CALL PARAMETERS */
3 PRIOSEVP PTR,
3 PRIOSOP BYTE,
3 TOIDTYPE BYTE,
3 T0ID BYTE,
3 ORDER BYTE,
3 EDITORID BYTE,
2% CHAR,
2 PRPARM, /* PRINTER PARAMETERS */
3 UBUFSTRT PTR, /* POINTER TO USER BUFFER */
3 UTEXTLEN BIN, /* LENGTH OF TEXT TO BE */
/* PRINTED %* /
3 EDITPARM, /* EDITOR PARAMETERS */
4L EDPARM CHAR(5)
DECLARE PRIOSPLP PTR STATIC INITCADDRCPRIQOSPEL));
DECLARE PRIOSEV EVENT;
DECLARE BID_QO1DD ENTRY(PTR VALUE) /% PRIOS */
OPTIONS (LOCK (INTERRUPT)) ;
Call format:
PRIOSEVP = ADDR(PRIOSEV);
/* PRINTOUT REQUEST */

PRIOSOP =

$(04) ;

TOIDTYPE = <unit number type>;
TOID = <unit number>;
ORDER = <suitable order>;

EDITORID
UBUFSTRT
UTEXTLEN
EDITPARM

<suyitable editor>;

<user buffer start address>;
<text length>;

<user defined parameters>;

ASSIGN PRIOSEV;

0234¢

ERICSSON

=
=

12 PRINTER FUNCTIONS
0S REFERENCE MANUAL
ES0003145E
1983-12-12 A

19

PRIOCALL:
CALL BID_DD1OD(PRIOSPLP);
WAITBUFF:
WAIT PRIOSEV;
IF ((STATUS(PRIOSEV) & $(80) J= O /* PRINTER INOPERABLE
THEN DO;
/*D0 ERROR PROCESSING, FOR EXAMPLE=*/
/*ISSUE MESSAGE ON MESSAGE LINE AND*/
/*LIGHT 1/0 ERROR LAMP*/
/*WAIT FOR PRINTER TO RECOVER*/
ASSIGN PRIOSEV;
GOTO WAITBUFF;
END;
IF ((STATUS(PRIOSEV & $(20)) 1= O /* PRINTER RECOVERED
THEN DO;
/*D0 RECOVERY PROCESSING,*/
/*ERASE TEXT ON MESSAGE LINE AND*/
/*TURN OFF I/0 ERROR LAMP*/
ASSIGN PRIOSEV; "
GOTO PRIOCALL;
END;
IF ((STATUS(PRIOSEV) & $(10)) 1= OO /* PRINTER ERROR
THEN DO;
/*DO ERROR PROCESSING, FOR EXAMPLEx/
/*TRY OTHER PRINTER*/
END;
/*BUFFER MOVED (BIT O IN STATUS(PRIOSEV) SET)*/
/*START PRINTOUT=*/
ASSIGN PRIOSEV;
WAITPRNT:
WAIT PRIOSEV;
IF ((STATUS(PRIOSEV) & 3$(80) 1= O) /* PRINTER INOPERABLE
THEN DO;
/*WAIT FOR PRINTER TO RECOVER*/
ASSIGN PRIOSEV;
GOTO WAITPRNT;
END

*x/

*/

*/

*/

IF ((STATUS(PRIOSEV & 3(20)) 1= O /* PRINTER RECOVERED
THEN DO;
/*D0 RECOVERY PROCESSING*/
/%D0O A RETRY OF PRINTOUT REQUEST*/

*/

PRIOSOP = $(05); /*RETRY OF PRINTOUT REQUEST*/

ASSIGN PRIOSEV;
CALL BID_0O0100(PRIOSPLP);
GOTO WAITPRNT;
END;
IF ((STATUS(PRIOSEV) & $(10))]= O /* PRINTER ERROR
THEN DO;
/*D0 ERROR PROCESSING*/
/*TRY OTHER PRINTER*/
END;
/*PRINTING COMPLETED*/

*/

0234c

12 PRINTER FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL
E90003145E
1983-12-12 A 20

12.6.3 Hold Printout

The hold printout function defines the actions to be carried out if a
printer becomes inoperable.

The actions are specified in the PRIOSOP byte in PRIOS Parameter List
for a printout request. (Note that only bits 3-0 are used to define
the desired operation type).

PRIQOSOP

PRIOS operation request. See section 12.2.2.
1 If the printer becomes inoperable, no New :
Line or Form Feed is added Jﬁ

1 Hold function enabled. If the printer
becomes inoperable, the printout is not

aborted. Instead PRIOS waits until the

printer is operable again, and the printout 5

is then continued. v}
X X Not used.

If the hold function is invoked, PRIOS event is posted with STATUS =
"srinter inoperable" at the interrupt and with STATUS = “printer
recovered" when the printer is operable again.

The hold function can be used to temporarily suspend a progressing
printout by setting the printer unit off Line. When the printer is
set on line again, the printout is continued as if it had never been
interrupted.

0f course this is not possible if the printer unit erases its own
buffer when it is set off line.

0234¢

ERICSSON Z

12 PRINTER FUNCTIONS
0S REFERENCE MANUAL

E90003145E |
1983-12-12 A 21

12.7

12.7.1

12.7.2

PRIOS OPTIONAL FUNCTIONS

Functional Description

A number of special functions in PRIOS have been gathered into an
optional PRIOS module. This module must be Linked to the system if
any of those functions are required.

The presence of the optional module must be indicated in the globally
declared variable BID_$0310 and the entry point for the module must
be stated in the gLobaLLy declared variable BID_$0320. When the
optional module is no longer used, for example at Logoff, BID_$0310
must be set to zero.

The optional module contains the following functions:

o Absolute reservation of printer (reservation state 3). See the
Section on PRIOS parameter Llist.

o Removal of all other queue elements when an element with
reservation state 3 is put into the print queue.

0 Message to all users of removed queue elements that the element
has been removed.

0 Message to all users of queue elements which have been bypassed by
a queue element with reservation state 2.

o Message to all print queue users that the printer is inoperable.

o Message to all print queue users that the printer is ready to
operate again after it has been inoperable.

Interface

Declarations:

DECLARE BID_3$0310 BYTE EXT; /* PRESENCE OF PRIOS OPTIONAL MObULE tx/
DECLARE BID_$0320 PTR EXT; /% ENTRY POINT OF THE MODULE */

BID_ 30370 can have the Tollowing contents:

$ (00 PRIOS optional module not present
$(80) PRIOS optional module present

Initialization:

1]

BID $0310
BID $0320

$(80); ;
<PRIOS optional module entry point>;

- 0234¢

ERICSSON 2

12 PRINTER FUNCTIONS

0S REFERENCE MANUAL

E90003145E ‘

1983-12-12 A » 22

12.8

12.8.1

12.8.2

LOCAL PRINTER STATUS CONTROL

Functional Description

The user can obtain local printer status information via a call from

PRIOS to & user written routine. This function can only be used
within the DU which has the V24-printer connected.

PRIOS issues a call to the special user written routine each time the
printer status is changed. The entry point of the user routine is
stored in the globally declared variable BID_$0270.

If this facility is to be used, the entry point must be set at
initialization time. If it is not used, the variable must be set to
zero.

The current status of the connected printer unit is indicated in the
globally declared variable BID_$0280.

Interface

Declarations:

DECLARE BID_$0270 PTR EXT; /* USER ROUTINE ENTRY POINT */
DECLARE BID_3$0280 BYTE EXT; /* CURRENT PRINTER STATUS */

BID_$0280 can have the following contents:
$(80) Printer inoperable

34 Printer inoperable warning
$(00) Printer operahle

Call format initjalization:

BID_3$0270 = <entry point of user status routine>;

R 0234¢

ERICSSON Z

12 PRINTER FUNCTIONS

0S REFERENCE MANUAL

EQ0003145E , é
1983-12-12 A 23

12.9

12.9.1

PRINTER EDITING

Functional Description

Data to be printed is edited by a system module, the editor, which is
executed as a task. The editor adds printer control characters to the
text before it is transmitted to the printer unit by the Printer
Handler.

An internal buffer, the print buffer, must be declared by the user in
DU. The start address and length of this buffer must be entered into
the global variables BID_$0250 and BID_$0260.

PRIOS moves the print data from the user buffer to the print buffer
before editing commences.

The purpose of the print editor is

o To read out the print buffer content, character by character

o To intersperse the appropriate printer control characters

o To transfer the edited text to the editor buffer, which is a small

memory area provided by the operating system.

User's text buffer user-declared in DU
(PRIOS)
‘ v
|
{ Printer buffer user—declared in DU
|
L 3 printer editor editor selected by user

control characters
interpersed by editor

editor buffer

. characters transmitted
' by Printer Handler

Printer

Fig 12.2 Data transmission in printout operations

0234c¢

ERICSSON 2

12 PRINTER FUNCTIONS
0S REFERENCE MAMUAL
E90003145E

1983-12-12 A 24

The system permits several editors, but only one at a time. The
different editors have an identical interface to PRIOS except for the
contents of the EDITPARAM entry of the Print Edit Parameter List,
which are transparent to PRIOS. The Print Edit Parameter List is
described below.

When a system module containing a printer editor is loaded, the
presence of the editor must be specified in a certain globally
declared byte. BID_$0240 is used for the emulation editors and BID
$0241 for the standard editor. When the editor no longer is used, the
byte must be set to zero.

When there is text in the print buffer, PRIOS posts an event
variable, BID 30220, to activate the editor. The editor fills the
editor buffer cyclically, and investigates after each character
whether the editor buffer is full. In such case, the event variable
BID $0230 is posted and the editor waits for a new activation signal
from PRIOS.

The Printer Handler continually fetches characters from the editor

buffer. If the editor has filled the buffer and entered the wait
state, PRIOS activates the editor again when half the buffer is

released.

Each time the editor is activated, PRIOS provides information in the

EDITSTAT entry in the Print Edit Parameter List on whether editing is
to start or continue. The editor uses the same entry to inform PRIOS

on whether editing shall continue or is terminated.

Some simple editing is performed by PRIOS when transferring text from
the user text buffer to the print buffer:

The character New Line, $(15), is always converted to Carriage Return
plus Line Feed (CR LF).

The codes $(C0) - $(DF) are converted to $(00) - $(1F) respectively
(i.e. $(CO) to $(DOY, $(C1) to $(01) etc).

0234c¢

12 PRINTER FUNCTIONS

 ERICSSON Z 0S REFERENCE MANUAL
: : S : E90003145E
1983-12-12 = A : 25

12.9.2 Printer Edit Parameter List

The printer Edit Parameter List is declared in the global structure
BID $0210. It is used to control communication between the editor
module and PRIOS.

Declarations:

DECLARE 1 BID_$0210 EXT,

2 PRPARM, /* PRINTER AND EDITOR PARAMETER */
3 PRBUSTRT PTR,
3 TEXTLEN BIN,
3 EDITPARM(5) BYTE,
2 EBUFPARM, /* EDITOR BUFFER PARAMETERS */
3 EBUFFSTRT PTR,
3 EBUFEND PTR,
3 EBUFLEN BYTE,
3 EBUFINP PTR,

- 3 + CHAR (2),
3 EBUFBCNT BYTE,

2 PREDITOR, /% EDITOR PARAMETERS */
3 EDISTAT BYTE,
3% PTR,
3% ’ BYTE,

2 PRPHYS, /* PRINTER UNIT PARAMETERS */
3 PRTYPE BYTE,
3% : BYTE,
3 LINELEN BYTE,

3 PAGESIZE BYTE,

The following parameters are set by PRIOS:

PRBUSTRT A pointer containing the first addre§s of the print buffer,
as declared by the user. g

TEXTLEN. Length of text to be edited in the print buffer.
EDITPARM Parameters to the editor, which have been transferred

unchanged from the user PRIOS call. The meaning of the
parameters depends on the editor used. :

0234¢

ERICSSON Z

12 PRINTER FUNCTIONS

0S REFERENCE MANUAL

EF0003145E

1983-12-12 - A 26

EBUFSTRT

EBUFEND

EBUFLEN

EBUFCNT

EDITSTAT

A pointer containing the start address of the editor buffer.

A pointer containing the end address of the editor buffer.
This pointer must be used to indicate when the input pointer
should be set to EBUFSTRT.

Maximum number of characters in the editor buffer.

A byte counter indicating the number of characters left in
the editor buffer. After each character is entered into the
buffer the editor must increment the counter. PRIOS
decrements the counter for each character it gets from the
buffer. Note that in some cases this counter can exceed
EBUFLEN.

This byte is set by PRIOS at each editor call and indicates
the editing phase to the editor:

EDITSTAT Meaning
$(FF) . Beginning of the editing job
$(00) Continuation of the same editing job

The following parameters are set by the editor:

EBUFINP

EDITSTAT

A pointer in the editor buffer to the next character to be
edited. Cyclic updating must be performed by the editor
after each character entered. The pointer is initialized by
PRIOS.

This byte is set by the editor after each editing phase and
indicates to PRIOS when all text in the print buffer has
been edited.

EDITSTAT Meaning ,
$(00) Continue editing
$(FF) Editing terminated

0234¢

e

12 PRINTER FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
' ES0003145E i
1983-12-12 A 27
12.9.3 Interface
Declarations for editing:
DECLARE BID_50210 EXT; /* PRINT EDIT PARAMETER LIST */
(As set forth above)
DECLARE BID_$DZSD PTR EXT; /* ADDRESS OF PRINT BUFFER */
DECLARE BID_§OZéD BIN EXT; /* LENGTH OF PRINT BUFFER */
DECLARE PRBUFPTR; /* POINTER IN PRINT BUFFER */
DECLARE BID_§0220 EVENT EXT; /* ACTIVATE EDITOR */
('} DECLARE BID_§023D EVENT EXT; /* EDITOR BUFFER FULL */
- DECLARE BID_§024D BYTE EXT; /* EDITOR IDENTITY */
call format for editing:
f : /*INITIALIZATION*/
BID_$0240 = <suitable emulation editor>;
BID_$0250 = ADDR(PRBUFF);
BID_$0260 = <length of print buffer>;
EDIT:
ASSIGN BID_ﬁOZZO; /* MAJOR LOOP START */
WAIT BIT_§0220; /* WAIT FOR PRIOS TO ACTIVATE EDITOR */
IF EDITSTAT = $(FF) /* EDITING JOB START */
THEN
PRBUFPTR = PRBUSTRT;
PROCEED: /* MINOR LOOP START */
EDCHAR = PRBUFPTR =+ PRCHAR; /*GET CHARACTER FROM PRINT BUFFER */
PRBUFPTR = PRBUFPT + 1;
IF PRBUFPTR - PRBUSTRT + 1 > TEXTLEN /* ENTIRE PR BUF EDITED */
. THEN ‘
(GOTO READY;
/* PUT NEW CHARACTER IN EDITOR BUFFER*/
EBUFINP = EBUFIMNP + 1;
IF EBUFINP > EBUFEND /* END OF EDITOR BUFFER */
(~ THEN
EBUFINP = EBUFSTRT;
EBUFCNT = EBUFCNT + 1; /* UNDER LOCK(KERNEL) */
IF EBUFCNT = EBUFLEN /* EDITOR BUFFER FULL */
‘THEN
GOTO BUFFULL;
GOTO PROCEED; /% MINOR LOOP END */

0234¢

ERICSSON Z

12 PRINTER FUNCTIONS
0S REFERENCE MANUAL

12.9.4

E90003145E o ‘
1983-12=12 A | 28
BUFFULL: /* EDITOR BUFFER FULL */
POST BID $0230;
GOTO EDIT;
READY:
/*EDITING COMPLETED*/
EDITSTAT = $(FF);
POST BID $0230;
GOTO EDIT; /* MAJOR LOOP END */

Logoff Byte

The system module must not be logged off when the printer editor is
processing. The globally declared byte BID_$0245 indicates whether
Logoff is allowed or not.

BID_ 0245 content.

Bit 76543210 Meaning
1 One or more print jobs in print gueue.
1 Printing in progress. Logoff not allowed.
X X X XXX Not used.
Declaration:

DECLARE BID $0245 BYTE EXTERNAL;

0234c

i 12 PRINTER FUNCTIONS

A

ERICSSON = 0S REFERENCE MANUAL
| ») . E90003145E
1983-12-12 . A 29

12.10 PRINTER HARDWARE

One printer unit can be connected to each DU or PCU in the cluster.
The connection is established via a V.24 interface. The entire
cluster configuration definition, including printer configuration is
carried out during system customizing.

12.10.1 Printer Definition File

The printer definition file (PRDEF) is.a file in library SYSLIB on
the system diskette. In PRDEF the printer parameters for each printer
in the cluster are defined.

The byte PRTYPE in PRDEF defines the printer type, i.e. the printer
hardware.

The PRTYPE byte value is interpreted as follows:

PRTYPE PROD .NR PRINTER COMMENT
01 C(hex) 4154 0KI DP100
(4153 Facit 4540) Normally PRTYPE 07
03 4155 OKI DP 125
04 4152 OKI ML82A
(4151 OKI ML83A) Normally PRTYPE 05
0s 4151 0KI ML83A -
06 4156 Facit 4565 Standard; traktor-feed
07 4153 Facit 4540
08 4156 Facit 4565 BDT sheet feeder, 1 mag.
0A 4157 Facit 4544 4-colours
0B 4160 Facit 4570 Standard
oD 3576 GE 340
0] 4160 Facit 4570 Standard; sheet feeder, 2 mag.

0234c¢

-

ERICSSON 2

12 PRINTER FUNCTIONS
0S REFERENCE MANUAL

E9CQ03145E
1983-12-12 A 30
12.11 APPLICATION EXAMPLES
12.11.1 Declarations
The following is an example of how the PRIOS and print editor
parameters can be declared in a system module. Note the DEFINE
declaration of RETPARM.
/% DECLARATIONS*/
DECLARE 1 PRIOSPL, /+* PRIOS PARAMETER LIST */
2% CHAR(2),
3 PRIOSEVP PTR,
3 PRIOSOP BYTE,
3 TOIDTYPE BYTE,
3 TOID BYTE,
3 ORDER BYTE,
3 EDITORID BYTE,
2 RETPARM, /* RETURN PARAMETERS */
3 QNO BYTE, /* QUEUE POS NO. */
3% CHAR(2),
3 PRBUFLEN BIN, /% LENGTH OF PRINTBUFFER */
3 CURREDIT BYTE, /% EDITOR USED */
3 PRINTDEF,
4 LINELEN BYTE, /* LINE LENGTH */
bk BYTE,
4 PRTYPE BYTE, /* PRINTER TYPE */
4 PRTABNO CHAR, /* PRINTER TABLE */
DECLARE 1 PRPARM DEF RETPARM, /* FOR PRINTOUT REQUEST */
2% CHAR,
2 UBUFSTRT PTR,
2 UTEXTLEN BIN,
2 EDITPARM,
’ 3 EDPARM CHAR(5);
DECLARE PRIOSPLP PTR STATIC INIT(ADDR(PRIQOSPL));
DECLARE PRIOSEV EVENT;
DECLARE BID 0100 ENTRY (PTR VALUE) /*PRIOS */

OPTIONS ((LOCK(INTERRUPT));

0234¢

12 PRINTER FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
, f A . E90003145E i | :
‘ k © o 1983-12-12 | A : 31
DECLARE 1 BID $0210 EXTERNAL, /% PRINT EDIT PARAM LIST */
2 PRPARM, /* PRINTER AND EDITOR PARAMETERS =*/
3 PRBUSTRT PTR,
3 TEXTLEN BIN,
3 EDITPARM(5) BYTE,
2 EBUFPARM, /* EDITOR BUFFER PARAMETERS */
3 EBUFSTRT PTR,
3 EBUFEND PTR,
3 EBUFLEN BYTE,
3 EBUFINP PTR,
3 % CHAR (2),
3 EBUFBCNT BYTE,
2 PREDITOR, /* EDITOR PARAMETERS */
3 EDISTAT BYTE,
3% PTR,
3% BYTE, -
2 PRPHYS, /* PRINTER UNIT PARAMETERS */
i 3 PRTYPE BYTE,
Tk BYTE,
3 LINELEN BYTE,
3 PAGESIZE BYTE,
DECLARE BID_ﬁDZZO EVENT EXTERNAL; /* ACTIVATE EDITOR Cx/
_DECLARE BID_30230 EVENT EXTERNAL; /* ED BUFFER FULL */
DECLARE BID_$0240 BYTE EXTERNAL; /* EDITOR IDENTIFICATION */
DECLARE BID_§0250 POINTER EXTERNAL; /* POINTER TO PRBUFFER */
DECLARE BID_$0260 BIN EXTERNAL; /*-LENGTH OF PRBUFFER */
DECLARE PRBUFFER CHAR(2000); /* PR BUFFER */
DECLARE BID_§0245 BYTE EXTERNAL; /* LOGOFF BYTE */
DECLARE PRBUFPTR POINTER; /% POINTER IN PRBUFFER */
DECLARE PRCHAR CHAR BASE(PRBUFPTR); /* TO TAKE CHARACTER OUT =*/
DECLARE EDCHAR BYTE; /* TO PUT CHARACTER IN */

0234¢

12 PRINTER FUNCTIONS

ERICSS0ON % 0S REFERENCE MANUAL
E90CD3145E
11983-12-12 A 32
12.11.2 Initialization at Logon

12.11.3

/*INITIALIZATION TO BE DONE AT LOGON TIME=x/

BID $0240 = $(10); /* IBM EDITOR PRESENT */
BID_$0250 = ADDR(PRBUFFER);
BID_$0260 = 2000;

PRIOS Requests

/*OPERATOR DEPRESSES PRINT KEY*/

/*KEYBOARD IS LOCKED*/
/*PROCEDURE START*/
/*QUEUE REQUEST FOR PRINTER PRO1*/

PRIOSEVP = ADDR (PRIGSEV);

PRIOSOP = $(02); /% PRINT QUEUE REQUEST */

TOIDTYPE = $(80);) /* LOGICAL ’ */

TOID = PROT; /* PRINTER UNIT NO */

ORDER = 0; /*RESERVATION STATE 0, JOB NO 0 */

EDITORID = $(10); /* SELECT IBM EDITOR */

ASSIGN PRIOSEV;

CALL BID_ 00100 (PRIOSPLP); /% CALL PRIOS */

QUEUWAIT:

WAIT PRIOSEV;

IF ((STATUS(PRIOSEV) & $(80)) 1= O /* PRINTER INOPERABLE */
THEN DO:

/#*PUT "PRINTER INOPERABLE" ON MESSAGE LINE*/
/*LIGHT I/0 ERROR LAMP*/
/*WAIT FOR PRINTER TO RECOVER*/
ASSIGN PRIOSEV;
GOTO QUEUWAIT;
END;
IF ((STATUSCPRIOSEV) & $(10)) 1= O /* PRINTER ERROR */
THEN DOQ;
/*PUT "PRINTER ERROR" ON MESSAGE LINE*/
/*LIGHT 1/0 ERROR LAMPx/
/*TRY OTHER PRINTER*/
GOTO SECPRINT;
END;
IF ((STATUS(PRIOSEV) & $(04))] =0 /* PRINT REQUEST QUEUED */
THEN DO:
/*EVALUATE QUEUE POSITION=*/
IF QNO > 3
THEN
/*QUEUE TO LOMG TRY OTHER PRINTER*/
GOTO SECPRINT;
ASSIGN PRIOSEV;
GOTO QUEUEWAIT; /*WAIT FOR QUEUE ENTRY REACH FIRST POSITION =*/
END;

0234¢

12 PRINTER FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
: E90003145E ‘
1983-12-12 A - 33

/*FIRST IN QUEUE(EVENT STATUS = $(01))*/

PRIOSOP = $(04); /* PRINTOUT REQUEST */
UBUFSTRT = <user buffer start address>;
UTEXTLEN = 1920;

EDPARM =<command string for IBM editor>;
ASSIGN PRIOSEV;

PRIOCALL:
CALL BID_pO100(PRIOSPLP);
WAITBUFF:
WAIT PRIOSEV;
IF ((STATUS(PRIOSEV) & $(80))] =0 /* PRINTER IMOPERABLE %/
THEN DO: ’
/*ISSUE "PRINTER INOPERABLE" ON MESSAGE LINE*/
/*LIGHT I/0 ERROR LAMP*/
/*WAIT FOR PRINTER TO RECOVER*/
ASSIGN PRIOSEV;
GOTO WAITBUFF;
END;
IF ((STATUS(PRTIOSEV) & $(20)) 1 =20 /* PRINTER RECOVERED */
THEN DO;
/*ERASE TEXT ON MESSAGE LINE*/
/*TURN OFF I/0 ERROR LAMP*/
/*CALL PRIOS AGAIN=*/
ASSIGN PRIOSEV;
GOTO PRIOCALL;
END;
IF ((STATUS(PRIOSEV) & $¢(10))] = /* PRINTER ERROR */
THEN DO;
/*PUT "PRINTER ERROR" ON MESSAGE LINE*/
/*LIGHT I/0 ERROR LAMP*/
/*TRY OTHER PRINTER*/
GOTO SECPRINT;
END;

/*BUFFER MOVED*/

/*START PRINTOUT*/
ASSIGN PRIOSEV;
WAITPRNT:

WAIT PRIOSEV;

IF((STATUS(PRIOSEV) & $(80)) 1= 0) /* PRINTER INOPERABLE */
THEN DO;
/*PUT "PRINTER INOPERABLE'" ON MESSAGE LINE*/
/*LIGHT I/0 ERROR LAMP*/
/*WALIT FOR PRINTER TO RECOVER*/
ASSIGN PRIOSEV;
GOTO WAITPRNT;

END;

0234c

12 PRINTER FUNCTIONS

ERICSSON 2 0S REFERENCE MANUAL
ES0003145E
1983-12-12 A 34
IF C((STATUS(PRIOSEV) & $(200) 1 =0 /* PRINTER RECOVERED */
THEN DO;
/*ERASE TEXT ON MESSAGE LINE*/
/*TURN OFF I1/0 ERROR LAMP*/
/*D0 A RETRY OF PRINTOUT REQUEST*/
PRIOSOP = $(05); /* RETRY OF PR OUT REQUEST */
ASSIGN PRIOSEV;
CALL BID 00100(PRIOSPLP);
GOTO WAITPRNT;
END;
IF ((STATUS(PRIOSEV) & $(10)) 1 = /* PRINTER ERROR */
THEN DO;
/*PUT "PRINTER ERROR" ON MESSAGE LINE*/
/*.IGHT I/0 ERROR LAMP*/
/*TRY OTHER PRINTER%*/
GOTO SECPRINT;
END;
/*PRINTING COMPLETED WITHOUT ERRORS*/
/% TRY OTHER PRINTER */
SECPRINT:
PRIOSOP = $(03); /* CANCEL QUEUE REQUEST ON PRO1 */
ASSIGN PRIOSEV;
CALL BID_0O0100(PRIOSPLP);
WAIT PRIOSEV; /* WAIT FOR COMPLETED CANCELLING */
/*FILL IN PARAMETER LIST FOR PRINTER PROZ2%*/
PRIOSOP = $(02); /* PRINT QUEUE REQUEST */
TOID = PROZ; /% STILL LOGICAL */

/*CONTINUES AS FOR PRINTER PRO1*/

/% BUFFER MOVED x/
/% START PRINTOUT =*/
ASSIGN PRIOSEV;

WAITPRINT:
WAIT PRIOSEV;

0234c¢

ERICSSON 2

12 PRINTER FUNCTIONS
0S REFERENCE MANUAL
, E90003145E
. 1983-12-12 P A

¢35

12.11.4

Printer Editing Loop

EDIT:
ASSIGN BID_?OZZO;

WAIT BID $0220;

IF EDITSTRT = $(FF)
THEN
PRBUFPTR = PRBUSTRT;

PROCEED:

EDCHAR = PRBUFPTR = PRCHAR;

PRBUFPTR = PRBUFPTR + 1;

IF PRBUFPTR = PRBUSTRT + 1 > TEXTLEN

THEN
GOTO READY;

EBUFINP » PRCHAR = EDCHAR;

EBUFINP = EBUFINP + 1;
IF EBUFINP > EBUFEND
THEN
EBUFINP = EBUFSTRT;

/* MAJOR LOOP START

/* EDITING JOB START

/* MINOR LOOP START

/%* GET CHARACTER FROM PRINT BUFFER

/* PUT CHARACTER IN EDITOR BUFFER

/% LAST EDITOR BUFFER POSITION

/*LOCK KERNEL TO PREVENT BUFFER COUNTER*/
/*T0 RUN OUT OF SYNCHRONIZATION*/

LOCK (KERNEL);
EBUFBCNT = EBUFBCNT + 1;
UNLOCK (KERNEL);

IF EBUFBCNT = EBUFLEN

THEN
GOTO EBUFFULL;

/*GET NEXT CHARACTER*/
GOTO PROCEED;

EBUFFULL:
/*EDITOR BUFFER FULL*/
POST BID_$0230;

GOTO EDIT;

/* EDITOR -BUFFER FULL

/* MINOR LOOP END

*/

/* WAIT FOR PRIOS TO ACTIVATE EDITOR */

*/

*/
*/

/* ALL CHARACTERS EDITED? */

*/
*/

*/

*/

READY:

/*MARK EDITING COMPLETED*/

EDITSTRT = $(FF);
POST BID $0230;

GOTO EDIT;

/* MAJOR LOOP END

*/

0234c

13 TIMER FUNCTIONS
ERICSSON Z | 0S REFERENCE MANUAL
: S E90003145E
1983-12-12 A

13 TIMER FUNCTIONS
List of Contents

13.1 GENERAL TIMER DESCRIPTION ...cecsecsucaconeccancns ssesansensnuas

GET TIMER .ececcccnsacnnssses wevesecesvsenemsccaesssenccavuas asss
1 Functional Description ..cecececsasascsas casmcaasn csaccessnssonnan
.2 INterface ..ececeaccosccsenssnscuscscacnsnsannaansnncasasnnassnanss

3.2

3.2

3.2

3.3 RELEASE TIMER ..cowwccascascssuscossesscanesnnaacsscnesnasanannaa

3.3.1 Functional Description cceascscemaaasasscesaanasssasanannacsascs

3.3.2 INterface .ueeeeececcsnnucaascssasassanasnascasonnananunonnasns ene
APPLICATION EXAMPLE ---I.ll.-i.GIIGHGIOEISI.E==IIBIG.III-..I--IJ

1 Error Handling ce.cccsassssccscscascseauscsnoscanaccasnnnnnananane

.2 Application Example .ccccecccenccacsanans weaesssasanccsnanasonua 7-

0235¢

N N N oY

ut

~N~ o

13 TIMER FUNCTIONS

ERICSSON Z 0S REFERENMCE MANUAL
o ’ EQ0003145E ‘
1983-12-12 . .. A 2

0235¢

ERICSSON 2

i

13 TIMER FUNCTIONS
0S REFERENCE MANUAL
; o E90003145E Lo g
| R 1983-12-12 A .3

13.1

GENERAL TIMER DESCRIPTION

Timing in software execution is carried out by procedures in the
Timer Handler.

The Timer Handler comprise real time clocks which can be utilized as
time-out counters. The user reserves a time counter by invoking a
global function. The counting is started by assigning the counter a
time interval. When the time has expired, an event is posted by the
Timer Handler.

An activated counter can be reset by assigning it the value 0. The
resetting causes no event to be posted.

During counting, the amount of time left can be read from a specified
memory cell. The address of this cell is returned by the timer
reservation function.

There are two types of timer counters. One is used for time intervals
specified in seconds. The other is for shorter intervals specified in
units of 20 milliseconds. For both types, the maximum number of time
units is 255.

The following counters are available to the user:

In CP:
6 counters using time units of 20 ms
2 counters using time units of 1 s

In DU:
4 counters using time units of 20 ms
2 counters using time units of 1 s

Reserved counters can be released by the user.

0235¢

13 TIMER FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL

‘ \ ; : ‘ E90003145E i :
l ‘ 1983=-12-12" A 4

13.2 GET TIMER

13.2.1 Functional Description

13.2.2

A time counter is reserved by a call to the function BFG 01500. Two
parameters are passed with the call. The first parameter specifies
the desired time unit, the other parameter specifies the address of
the time-out event.

If the address of the time-out event is 0, no event will be posted,
but the counter can still be used for time measurements.

The function returns a pointer to the cell from which the remaining
time interval can be read. The initial value is 0. The counter is

~activated by assigning this cell the desired time interval.

If all available time counters of the desired type was already
reserved, the function returns the address FFFA hexadecimal, and the
time-out event is cancelled.

Note that the parameters in the function call are not checked by the
operating system.

Interface
Declarations:

DECLARE BFG_01500 ENTRY (BYTE VALUE, PTR VALUE)

RETURNS (POINTER);

DECLARE TIMEV EVENT; /* TIME-OUT EVENT

DECLARE TIMEVP POINTER VALUE STATIC INIT (ADDR(TIMEV));

DECLARE TIMCNTP POINTER; /* POINTER TO COUNTER CELL
DECLARE TIMCNT BYTE BASED TIMCNTP /+* TIME COUNTER

Call format:

TIMCNTP = BFG_01500 (<constant>, TIMEVP); /* RESERVE TIMER
TIMCNT = <number of time units>; /* ACTIVATE TIMER
<constant> specifies the the desired time unit

$01) ¢ time unit 20 milliseconds

$(02): time unit 1 second

0235

*/

*/
*/

*/
*/

c

-,

13 TIMER FUNCTIONS

ERICSSON Z 0S REFERENCE MANUAL
: : "~ E90003145E ;
! 1983-12-12 A 5

13.3

13.3.1

13.3.2

RELEASE TIMER

Functional Description

The number of time counters is limited, but a reserved timer can be
released after being used. (ALl timers must be released before the
Llogoff event is posted. This releasing is performed by the operating
system).

A timer is released by a call to the procedure BFG_01600. Two
parameters are passed with the call. The pointers are the same as
used in the reservation of the time counter.

The reteése procedure is optional and must be Linked with the system
module if desired.

Interface

Declarations:

DECLARE BFG_01600 ENTRY (BYTE VALUE, PTR VALUE);

DECILARE TIMEV EVENT; /% TIME-OUT EVENT */
DECLARE TIMEVP POINTER VALUE STATIC INIT (ADDR(TIMEV));

TIMEV and TIMEVP are declared in connection with the reservation of
the timer. See above.

Call format:

CALL BFG_01600 (<constant>, TIMEVP);

0235¢

ERICSSON Z

13 TIMER FUNCTIONS

0S REFERENCE MANUAL

E90003145E

1983-12-12 A 6

13.4

APPLICATION EXAMPLE

DECLARE MSGIN EVENT;
DELCARE TIMEOUT EVENT;

DECLARE TIMEVP POINTER STATIC INITCADDR)TIMEOUT));

DECLARE TIMCNTP POINTER;
DECLARE TIMCNT BYTE BASED TIMCNTP;
DECLARE EVENTNR BYTE;

DECLARE BFG 01500 ENTRY(BYTE VALUE,

DECLARE BFG:D1600 ENTRY BYTE VALUE,

TIMCNTP

1

BFG_01500($(02), TIMEVP);

TIMCNT = 3;
WAIT MSGIN, TIMEOUT ANY(EVENTNR);

IF EVENTNR =0
THEN DO;

END;
ELSE
DO;
ASSIGN TIMEOUT;

END;

PTR VALUE) RETURNS(POINTER);
PTR VALUE);

/* RECERVE TIMER TIME UNIT */
/% 1 SEC */
/* COUNT 3 SEC */
/* WAIT FOR MSGIN BUT NOT */
/* MORE THAN 3 SEC */
/* MSGIN POSTED */

If the event pointer = 0, it means that no event variable will be

posted for a time-out.

Example:

DECLARE TIMEOUT EVENT;

DECLARE EVPTR PTR STATIC INITCADDR(TIMEOUT));

DECLARE TOPTR PTR;
DECLARE TIMER BYTE BASED TOPTR;
DECLARE BFD_01500 ENTRY(BYTE VALUE,

TOPTR = BFD_01500($(02), EVPTR);

PTR VALUE) RETURNS(PTR);

/* GET 1-SEC TIMER */

0235¢

I
H

'
v

13 TIMER FUNCTIONS

ERICSSON Z . | 0S REFERENCE MANUAL
{ : ‘ R " E90003145E
‘ 1083-12-12 A 7
13.4.1 Error Handling
If there is no unoccupied time counter cell, the pointer that points
to time counter cell becomes FFFA and the event variable is cancelled
if POST has been requested.
The call parameters do not undergo reasonableness checks.
13.4.2 Application Example

DECLARE MSGIN EVENT;

DECLARE TIMEOUT EVENT;

DECLARE EVPTR PTR STATIC INIT(ADDR)TIMEOUT));
DECLARE CNTPTR PTR;

DECLARE TIMER BYTE BASED TOPTR;

DECLARE I BYTE;

DECLARE BFD_01500 ENTRY(BYTE VALUE, POINTER VALUE);
RETURNS (POINTER);

TOPTR = BFD_01500($(02), EVPTR);

TIMER

=3; /* SET TIMER = 3 SEC */
. WAIT MSGIN, TIMEOUT ANY (1) ; /* BUT NOT MORE THAN 3 SEC */
IF1 =20 /* MESSAGE GOT */
THEN : ‘
DO; ,
ASSIGN TIMEOUT; g
END;
ELSE /% TIMEQUT */
DO; ~

0235c

14 ERROR HANDLING
ERICSSON Z 0S REFERENCE MANUAL
E90003145E
. 1983-12-12 A 1

14 ERROR HANDLING

List of Contents

14.1 GENERAL CONCEPTS .ucuea cessancsasnsas sanececenssasassauvens acasea 3

1A.2 STATUS ‘.I-llll---.ll-.I.III".I..I'.I'....II..‘I.- IIIIII nan oo 3

14.3 EXCEPTION vccecccs cacmssdascceceasasesouecsssaassARasaceoacasnuan 4

un

14-4 ERRORTYPE IlIl-.l-l-lII-I.-.I--IIIIIl.I-I.I.II.IIII.I.IIII..I‘I

14.5 ERRORTYPE INDICATIONS FROM OS .scivcececcscecisunasnsassaacnccusa

1 Error Numbers from CP ..ccoceassisacsasccancsssasasanaasansanss
14.5.2 Error Numbers from Drive Handlers .caucoesscecosscaasscascennae
14.5.3 Error Numbers from Input/Output Modules ...seaceccccccccaacaans
14.5.4 Error Numbers from File Managercecesscsesscsusassesncsscancs 7=

O NN OO

0240¢

- 14 ERROR HANDLING
ERICSSON = 0S REFERENCE MANUAL
E90003145E
A 2

1983-12-12

0240¢

14 ERROR HANDLING

ERICSSON 2 0S REFERENCE MANUAL
; ; 5 ‘ N E90003145E : oo
! t 1983-12-12 A L 3

14 ERROR HANDLING

14.1 GENERAL CONCEPTS
Error and status control is generally achieved by using the built=in
functions STATUS, EXCEPTION and ERRORTYPE after each executed
operation (or set of operations).
The built-in function must always be declared by the user. These
declarations are however omitted in the program examples in this
manual.
ALL control blocks (ECB, TCB, VCB, FCB) contain a STATUS byte and an
ERRORTYPE byte. These bytes are changed when operations, such as POST
(event) or CLOSE (file), are performed on the control blocks.
The content of these fields can be checked by using the built=in
functions STATUS and ERRORTYPE.
Refer to the SPL Reference Manual for detaiLed‘description of the
functions.
See also sections on Event Control Block, Task Control Block, Volume
Control Block and File Control Block.

14,2 STATUS

The built-in function STATUS returns the value of the STATUS byte in
the control block specified in the parameter. The parameter must be
of type Event, Task, Volume or File.

1f STATUS is used whithout an argument, it is regarded as a psedo
variable. The pseudovariable assigns a bit string to the exetuting
task control block.

Example 1:

DECLARE STATUS BUILTIN;
DECLARE FILE1 FILE;
DECLARE EVENT?1 EVENT;

IF STATUS(FILE1) = '01010000'B

THEN
STATUS(EV1) = $(0C); /* TO ECB */
ELSE STATUS = $(08); /* TO TCB */

0240c

14 ERROR HANDLING

ERICSSON 2 0S REFERENCE MANUAL

; E90003145E ,

; 1983-12-12 A : A
14.3 EXCEPTION

The built=in function EXCEPTION can be used either in IF = statements
or in Volume/Fite handling statement.

The function returns a value > 0 if an operation on a task, event,
volume or file was terminated abnormally.

When used in IF - statements, the control block must be specified
(ECB, TCB, FCB or FCB). When used in Volume/File commands, the
control block is specified in the statement and the argument of
EXCEPTION indicates a label from which execution is conturned of
EXCEPTION occurred.

Example 2:

DECLARE EXCEPTION BUILTIN;
DECLARE FILEZ FILE;

OPEN FILEZ INPUT; ,
IF EXCEPTION (FILEZ) > O /* ALT 1 */

THEN
CALL ERROPEN;

CLOSE FILE2 EXCEPTION (ERRCLOSE); /% ALT 2 */

ERRCLOSE: /* LABEL */

0240¢

14 ERROR HANDLING

ERICSSON 2 0S REFERENCE MANUAL
‘ o E90003145E
1983-12-12 A 5
14 .4 ERRORTYPE

The built-in function ERRORTYPE returns the value of the ERROTYPE
byte in the specified control block (ECB, TCB, V(B or FCB). This
value is > 0 if the specified control block has an error indicated
in its STATUS byte.

If used without a parameter, ERRORTYPE is regarded as a
pseudo-variable. The pseudo-variable assigns a bit string to the
executing task control block.

Example 3:

DECLARE ERRORTYPE BUILTIN;
DECLARE VOL1 VOLUME;

IF ERRORTYPE(VOL1) = $(04&)
THEN
ERRORTYPE = $(0F) /* TQ TCB */
CALL ERRPROC,:

0240c

14 ERROR HANDLING

ERICSSON Z 0S REFERENCE MANUAL
E90003145E
1983~12-12 A
14.5 ERRORTYPE INDICATIONS FROM OS
14.5.1 Error Numbers from CP
Error
number Error type Cause of error/recommended action
78 Connectijon error The requested unit is not
connected. Check the two-wire
connection.
7C Transmission error Bad two-wire communication. Check
the two-wire connection.
7D Volume not inserted Check volume number
7E No S41 Volume Initiate the volume
7F Unformatted volume Format and initiate the volume
If an error occurs, the file is closed.
14.5.2 Error Numbers from Drive Handlers

The following error numbers are available from the FD unit. These
error numbers are always sent to the accessing unit together with
a status byte with a value >=$(80).

Error
number

01

a2

03

04

05

06

07

Error type

Seek error

CRC error

ID/Record not
found

Lost data
Write fault

Write protected
disk at write

Seek error during
restore

Cause of error/recommended action

The track has been destroyed. The
diskette has to be reformatted and
copied again.

The data on this sector(s) are not
valid. Rewrite the information.

The track has been destroyed. The
diskette has to be reformatted and
copied again.

Hardware error or program failure.

Hardware error or program failure.

Program failure.

Hardware error.

0240c¢

’ 14 ERROR HANDLING

ERICSSON Z 0S REFERENCE MANUAL
* E90003145€E
1983-12-12 A 7

Error
number Error type Cause of error/recommended action
08 Drive not ready Hardware error or program failure.
09 Time out Hardware error or program failure.
20 Too high track

number Program failure.
31 Buffer not

available FD temporary overloaded. Try again.

14.5.3 Error Numbers from Input/Output Module

Error
number Error type Cause of error/recommended action
43 Volume not
mounted Check the volume number.
b4 IPL-volume not The mounted system diskette is not
mounted the same as when the FD was loaded.

14.5.4 Error Numbers from File Manager

Error
number Error type Cause of error/recommended action
AQ Duplicate name and A file/member with the same name and
type at change or type already exists. Choose another
create name.
A1 Wrong specifica- Check number of files, file size
tion of volume or etc.
{ibrary at create
A2 The VTOC/LTOC There is no unused or released file
is full descriptor element left. If
possible delete a file member big
enough for the new one. In other
cases create the file on another
diskette.
A3 Error in For example; the information in the
VTOC/LTOC Free Space Element is not correct.

May be caused by program failure.
Create a new diskette and try to do
a logical copy of every
file/library.

0240¢

ERICSSON

P
=

14 ERROR HANDLING
0S REFERENCE MANUAL
E$0003145E
1983-12-12 A

Error
number

AL

A5

A6

co

c1

ce

c3

Ch

€5

cé

c7

c8

€9

Error type

Unsufficient free
space on the
diskette

Wrong type of
file

No free Space
Element in VTOC

No file control
block available

Volume access
conflict

Write protected
volume

Open type
conflict

R
i

Unallowable com~
mands for a 'not
empty diskette"

Library access
conflict

Unallowable com—
mands for an
"empty diskette"
Library not found

Wrong command

Wrong command

Cause of error/recommended action

I1f possible delete a file member big
enough for the new one. In other
cases create the file on a new
diskette.

The file type is not an alphabetical
one or it is a type D for a member,

May be caused by program failure.
Create a new diskette and try to do
a logical copy of every
file/library.

Temporary overload. Try again.

The volume is already accessed by
another user. The different types
of accesses are in conflict with
each other.

If the diskette is write protected
the commands, open, update, delete,
change and create are not allowed.

The volume/file/member is already
opéned by another user. The
different open types are in
conflict with each other. For
example open input and update at
the same time.

For example; create volume for an
already created volume.

The library is already accessed by
another user. The different types
of accesses are in conflict with
each other.

For example create file before the
volume 1is created.

Check the library name.
Program failure.

Program failure.

0240c¢

ERICSSON Z

14 ERROR HANDLING
0S REFERENCE MANUAL
E90003145E !
1983-12-12 « A

Error
number Error type Cause of error/recommended action
CB Error at F.SYSBOT For example:
read (IPL) a) No buffer is available for
reading. Try again.

b) The track or a sector has been
destroyed. Rewrite the destroyed
data. In worst case the diskette
has to be reformatted before re-
write.

cC Internal error Program failure.

CE Error at LTOC read See error number CB.

CF Member not found Check number type and name.

DO Wrong command for Check data set type and command.
a data set of
type D

D1 Unsufficient The authority is not high enough
authority for executing this command.

D2 Illegal command For example: a write command for
with respect to a file that is opened just for
open type input.

D3 Illegal command Close the volume before executing
for a VTOC/Volume the command.
after it has been
opened for input
or update

D& Bounding error Read or write outside the allocated

area.

Dé File type error The file type for a load or IPL
at load and IPL command must be A.

DC Block size error The unit which wants to write data
at write on the diskette does not use the

same blocksize as in the file de-
scriptor element.

DD No memory avail- Temporary overload. Try again.
able at load/IPL

DE F.SYSBOT 1is busy Temporary overload. Try again.

DF File not found Check file name and type.

0240c

ERICSSON 2

APPENDIX 2. LIST OF 0S EXTERNALS

0S REFERENCE MANUAL
E90003145E |

1983-12-19 A, :

A2 EXTERNAL ENTITIES IN DU

Identifier Section Description

BAD_00220 1.9 PROCEDURE for overlay segment loading

BAD_70301 10.2.2 Buffer containing name of the assigned
keyboard table

BAD_$0040 11.9 FCB used by BAD_00220 for overlay
segment loading

BAD_$0250 12.2.4 PRIOS TCB

BCD_70112 8.9.4 EVENT indicating changed DU status

BCG_08000 8.2 User Interface Module (UIM) in DU

BCG 70104 8.9.4 Structure containing pointer to device
status area

BCG_70107 8.3 User Interface Control Block (UICB) in DU

BCG_70113 8.11.3 Buffer for CP/DU/PU status

éCP_70112 8.9.4 EVENT indicating changed PU status

BED_02000 10.3.1 PROCEDURE for opening for DU input

BED_02100 10.3.1 PROCEDURE for closing for DU input

BED_02300 10.8 PROCEDURE for handling lamps on keyboard

BED_02400 10.6 PROCEDURE which enables keyboard clock

’ sound acknowledgement !

BED_02500 10.9.1 PROCEDURE for ID data reading

BED_02600 10.7 PROCEDURE which enables keyboard alarm

BED_07000 9.4 PROCEDURE for cursor handling

BED_07700 9.6.4 PROCEDURE for base colour switching in
DU 4112

BED_$1000 10.1 Buffer for KB/MID/SP input to the system
module. (See also 10.4.1 for KB, 10.9.1
for MID, 10.10.1 for SP.)

BED 31010 10.9.1 Buffer for ID data input

BED $1012 10.9.1 BYTE indicating number of characters
available in BED_$1010

BED_3$1100 10.2.2 POINTER to the keyboard table header

0236c

APPENDIX 2. LIST OF 0S EXTERNALS

ERICSSON Z 0S REFERENCE MANUAL
E90003145E
1983-12-19 A | 2

Identifier Section Description

BED_$1015 10.5 BYTE indicating KB repetition freguency

BED_$1900 10.1.1 EVENT indicating that the system module
is ready to recejve a new input
character in BED_$1000

BED_$1910 10.1.1 EVENT indicating that a new input
character has been transmitted to
BED_3$1000

BED_3$7002 9.4 Buffer for cursor handling parameters

BED_37100 9.3 Buffer containing initialization
parameters to display area adaptation
circuitry

- BED_$7200 9.2.2 Default display area. Start address 7830

BED_$7210 9.2.2 Last character in default display area.
Address 7FAF

BED_$7400 9.3 POINTER to the buffer BED_7100

BED_$7701 9.6.4 BYTE indicating present colour mode in
DU 4112 ‘

BFG_01500 13.2 PROCEDURE which reserves a timer

BFG_01600 13.2 PROCEDURE which releases a reserved timer

BGD_00110 9.5.3 PROCEDURE for message lLine handling

BGD_$0020 9.5.3 EVENT indicating completed input on
message Lline

BID_00100 12 PROCEDURE for printer handling (PRIOS)

BID_3$0210 12.9 Buffer for printer edit parameter List

BID_$0220 12.9 EVENT indicating that there is text in
the print buffer waiting for the print
editor (activate editor)

BID_30230 12.9 EVENT indicating that the editor buffer
is full

BID_$0240 12.9 BYTE indicating printer editor identity

BID_$0245 12.9.4 BYTE indicating whether or not logoff is

permitted

0236¢

ERICSSON Z

APPENDIX 2. LIST OF 0S EXTERNALS

0S REFERENCE MANUAL
E90003145E
1983-12-19 A

POINTER containing address to print

BINARY indicating length of print buffer

POINTER to user—written procedure for
local printer status control

BYTE indicating printer status

BYTE indicating presence of PRIOS
POINTER to the entry point of PRIOS

Buffer for messages (See also 9.5)

Variable indicating size of RWM in DU

POINTER to user-written DU procedure
which will be invoked each time host
system status changes

POINTER to user-written PU procedure
which will be invoked each time host
system status changes :

Identifier Section Description
BID_$0250 12.9

buffer
BID_$0260 12.9
BID_3$0270 12.8
BID_$0280 12.8
BID_$0310 12.7

optional module
BID_$0320 12.7

optional module
BUFFEREM 5.2.1
MAXRAM 9.6.2
OSPNTD 8.11.3
OSPNTP 8.11.3
PROMFUNC 9.6.1

Buffer containing DU type identifier

0236¢

ERICSSON Z

APPENDIX 2. LIST OF OS EXTERNALS

0S REFERENCE MANUAL
ES0003145E

1983-12-19 A

A 2.2

EXTERNAL ENTITIES IN CP

Identifier

BCC_08000
BCC_70105
BCC_70107
BCC_70109
BCC_70110

BCC_$0910

Section

Description

8.2
8.9.3
8.3
8.10.2
8.10.2

8.11.2

User Interface Module in CP

POINTER to device status area in CP
User Interface Control Block in CP
POINTER to user—written abort procedure
BYTE indicating simple device status

BYTE indicating host system status

0236¢

INDEX - REF. TO SECTION NUMBERS

ERICSSON Z E90003145E

S 1983-12-12

INDEX

A

acknowledgement 8.6
active state 1.4.3
adaptation circuitry 9.3

answer to poll 7.4.2
ASSIGN event 1.4.2, 6.3.6

attach task 1.4.1, 6.3.3
authorization levels 5.6, 11.4.3
autologon 5.2.6

automatic connect/disconnect 8.3, 8.5

basic 0S modules 3.2

CANCEL event 6.3.9

CANCEL task 6.3.10

character generation codes 9.2.3, Appendix ,
click sound acknowledgement 10.6

¢luster configurations 2.1.1

common variables 1.5.2

communication channels 7.1.2

communication concept 7.7

communication control messages 7.4.3
communication handler 3.5.1

communication processor 22123
communication software 7.1.1
conditional print gqueue request 12.4

¢

¢ B
c

-

c

connect/disconnect 8.5

control blocks 6.2

control info 5.2.1

console mode 3.11

CP, communication processor 2.1.3
CRCC 7.3.7

CRU, cathode ray tube unit 2.1.2
cursor handling 9.4

0250¢

INDEX = REF. TO SECTION NUMBERS
ERICSSON 2 E90003145E

o o T 1983-12-12 A 2

D

data diskette 4.4.2

data=-FD 11.2.2

data message 7.4.4

data organisation &.3

data set 4.3

data set types 4.8

DELETE file 11.7.7

DIA, display interface adapter 9.3
diskette capacities 4.2

diskette format 4

display area 9.2

display handler 3.6.1 Wﬁ
display unit 2.1.2, 9.1

display unit functions 9

DPU, display processor unit 2.7, 9,6,5
DSA, destination session address 7.3.4

E

ECB, event control block 6.2.2

efficiency considerations 1.5

empty diskette &4.4.1

emulation abort 8.10

emulation status 8.9

emulation status updating 8.9.2

error handling 14

error numbers 14.5

ERRORTYPE 14.4, 14.5

event 1.4.2

event control 6.2

event declaration 6.2.2 ‘
exchange of character generation table 11.10 'wé
exchange of keyboard table 11.11

EXIT 6.3.11

F)

FAC, field attribute characters 9.2.4
FCB, file control block 11.5.2

FD configurations 11.2

FD functions 11

FDE, data set directory entry 4.6
FDIOS 3.8.1, 11.3.3

field attribute characters 9.2.4
file control block 11.5.2

file handling 11.3, 11.5

fite oriented commands 11.7

file types 11.4.2

FRDEV 7.3.3

0250c

INDEX = REF. TO SECTION NUMBERS
ERICSSON z ES0003145E
1983=12+12 A 3
G

general message format
get timer 13.2

H

hardware dependent functions 9.6
hardware environment 2

hold printout 12.6.3

host system statys 8.11

I

1/0 synchronization 11.8

inactive state 1.4.3

initialization 5.1

input function modules 3.7

input functions 10

internal communication protocol 7
interrupts and priorities 1.4.4
interrupt handling 6.4

interrupt levels 6.4.4 .
interrupt procedures 6.4.5

interrupt types 6.4

interrupt vectors 6.4.6

IPL, initial program load 3.3.1, 5.1.1
IRQ, interrupt request 6.4.3

i

A

0250c

ERICSSON Z

INDEX - REF.
E90003145E

 1983-12-12

TO SECTION NUMBERS

K

keyboard

keybocard
keyboard

keyboard
keyboard

keyboard
keyboard

keyboard
keyboard

keyboard
keyboard
keyboard

2.3, 10.1

click sound 10.6

data structures 10.2
functions 10

input 10.4

input synchronization 10.1.2
Lamps 10.8

repetition frequency 10.5
strap data 10.2.3 - 10.2.5
table 10.2.1

table header 10.2.2

type indicator 10.1.2

L

Leading flag 7.3.1

Library organisation 4.3.2

LOAD file 11.7.8

Load map 5.2.1, 5.3.2

Load modules 3.3

Load character generation table 11.10
load overlay segment 11.9

LOCK 6.4.5 "
Logical address 7.2.2

logoff 5.4

Logoff byte 12.9.4

Logon 5.2

Logon file 5.2.2

Llogon modules 3.4

LTOC, libfary table of contents &

0250¢

INDEX = REF. TO SECTION NUMBERS
ERICSSON 2 E90003145E

1983-12-12 A ‘ 5

M

manual logon 5.2.1

map loader 3.3.3

maskable interrupts 6.4.4

maxram 9.6.2

MDE, member directory entry 4.3.2
member 4.3.2

memory maps 3.13

memory options 2.2

memory requirements 3.12

menufile 5.2.3

message content 7.3.6

message format 7.3

message Line 9.5

message line control block 9.5.2
message Lline handler 3.6.2
message line Llogon 5.2.5

messages 7.4

MID, magnetic jdentification device 2.3.1, 10.9
MID input 10.9

MSA 7.4.2

MSGTYP 7.3.5, 7.4.3, 7.4.4

MRW, read/write memory, 2.1.2, 2.2.1, 9.6.2
multitasking functions 6.3

mutual exclusion 1.4.5

N

NIP, nucleus initialization procedure 3.3.2, 5.1.2

0

OPEN/CLOSE file 11.7.4
open/close for input to DU 10.3
0S interrupt handler 3.2.2

0S request handler 3.2.1

0S reguest interrupt 6.4.2
overlay 1.5.3

overlay loader procedure 11.9

0250¢

INDEX — REF. TO SECTION NUMBERS
ERICSSON Z E90003145E

1983-12-12 A 6

P

page area 3.12.1

password 5.2.1

parallell processing 1.4

parameter passing 1.5.2

PCU, peripheral control unit 2.5

personal computer 11.2.3

physical address 7.2.1

poll message 7.4.1

poll responses 7.4.2

print edit parameter list 12.9.2

print queue request 12.4

printer editing 12.9 ‘<}
printer handler 3.9.1, 12.1

printer status inquiry 12.3, 12.8

printer hardware 12.10

printer types 12.10 i
printout request 12.6 ,E
priority (task) 1.4.4, 6.3.1

priority (message) 7.4.2

PRIOS 3.9.2, 12.2

PRIOS event 12.2.3

PRIOS optional functions 12.7

PRIOS parameter Llist 12.2.2

PRIOS TCB 12.2.4

process 1.4

program load 5.3, 11.7.8

PROM identification 9.6.1

Q

R

read DU 8.8

READ record 11.7.5)

ready state 1.4.3
references 1.1
release timer 13.3
reset 5.1.1

reset interrupt 6.4.1

0250¢

INDEX - REF. TO SECTION NUMBERS
ERICSSON Z E90003145E

, C1983-12-12 A, 7

S

SCB, session control block 7.1.4

SCC, synchronous communication controller 2.6
selector pen 2.3.2

selector pen input 10.10

send command without data 8.6

session 7.1.3

session control block 7.1.4

short write 8.7.4

SMSA 7.4.2

software interrupt 6.4.2

SSA 7.4.2
STATUS built=in function 14.2

STATUS byte in message 7.3.5, 7.4.1, 7.4.2
status byte in control block, see ECB, TCB, VCB, F(B
status list in 0S 7.1.5

strap data 10.2.3 - 10.2.5

SWI, software interrupt 6.4.2

SYSBOT 5.1.1, 5.5.1

SYSIPL 5.5.3

SYSLIB 5.5.4

system data sets 5.5

system diskette 4.4.3

system—FD 11.2.1

T

task 1.4.1, 6.3
task communication 1
task control block 6.
task declaration 6.3.
task manager 3.2.3, 6.1
task states 1.4.3

42
.2
1

task structures 1,571

task termination 6.3.8, 6.3.10, 6.3.11
terminal console functions 3.11

timer functions 13

timer handler 3.2.4

TODEV 7.3.2

TP-status list 7.3.8

trailing flag 7.3.8

transmission commands 8.6, 8.7, 8.8

0250¢

INDEX - REF. TO SECTION NUMBERS

ERICSSON Z E90003145E

1983-12-12

U

user interface 8

user interface control block (UICB) 8.3
user interface module (UIM) 3.5.2, 8.2

utility supervisor 3.10

v

VCB, volume control block 11.5.1
VOLLAB, volume label 4.5

volume oriented commands 11.6
volume table 11.5.3

volume types 4.4

VTOC, volume table of contents 4.6

W

WAIT event 1.4.2, 6.3.4

WAIT task 1.4.2, 6.3.7

wait state 1.4.3

write DU 8.7

write DU with emulation control 8.7.4
WRITE/REWRITE record

0250c¢

