STPOEA

STPLE — Lk loader
MAP — Mewmry Wap
c&e;&w&* @UGND (00O g — b ¥

 SWILD
Ceownh = LOW “(6—\'\
EVANS & SUTHERLAND COMPUTER CORP.
LINE DRAWING SYSTEM MODEL 2

SYSTEM REFERENCE MANUAL
JIMRICED Ly? SR fIALF ToVE SV S

il
It

——
——
—

Evans § Sutherland Computer Corporation
Three Research Road
Salt Lake City, Utah 84112

August 1, 1971
901002-100

COoPY

Prepared by: Russell Athay

()

Copyright 1971

Evans § Sutherland Computer Corporation

TABLE OF CONTENTS

SYSTEM OVERVIEW

e
. e .
LN -

1.4

System Configuration
General Purpose Processing
Graphic Processing

1.3.1 Drawing Instructlons

1.3.2 Data Forms

1.3.3 Dimension Modes and Coordinate Data
Storage

1.3.4 The Display Processing Pipeline Units

Programming

THE CHANNEL CONTROL

2.1
2.2

2.3

2.4

2'5

Function
Structure

2.2.1 Registers of the Channel Control
2.2 Memory Addressing

General Computing Facilities

1 General Purpose Instructions
.2 The Stack

Graphic Facilities of the Channel Control

1 Display Instructions

2 The X, Y, Z, and W Registers

3 Data Fetching for Display Instructions
.4 Repeat Instructions

5 The Data Sink

6 Returning Output to Memory

The I/0 Structure

2.5.1 Status Registers

2.5.2 Interrupts

2.5.3 Real Time Clocks

2.5.4 Memory Protection and Relocation
2.5.5 Special I/0 Functions

2.5.6 The Interface from the SEL-840 Side

2-14

THE MATRIX MULTIPLIER

1 Function

2 Three-dimensional Matrix Transformations
.3 Two-dimensional Matrix Transformations

4 Composite Transformations

(R RV R
* - .

3.4.1 Nested Transformations
3.4.2 Row-to-Row Moves
3.4.3 Matrix Normalization

3.5 Two-dimensional Curves

3.6 Three-dimensional Curves

3.7 Surface Patches

3.8 Arithmetic Conventions

3.9 Mode Control

THE CLIPPING DIVIDER

4.1 Function

4.2 The Current Point

4.3 Relative Data

4.4 Two-dimensional Clipping and Division
4,5 Three-dimensional Clipping and Division
4.6 Boxing

4.7 HIT and COUNT Functions

4.8 Scope Control

4.9 The NAME Register
4,10 Graph Mode
4,11 Mode Control

THE LINE GENERATOR AND DISPLAY SCOPE
5.1 Function

5.2 Control

5.2.1 Intensity
5.2.2 Scope Selection

THE LDS-2 ASSEMBLER

6.1 General Characteristics
6.2 Syntax
6.2.1 Symbols
6.2.2 Numbers
6.2.3 Current Location Pointer
6.2.4 Expressions
6.2.5 Text Strings
6.2.6 Literals
6.2.7 Subfields
6.2.8 Fields
6.2.9 Statements

ii

"
w D
1
b (¢}

NN
] 1 1
FN QPRI

NN W
t

w
-~ RN W
i =
o [l = A{eNeo ¥e,) AN B

V RERRARARAREAEEN
'

S

1

[l o |

N NW W JUT N b e e

93]
i
b

L R%
H
i i

v
1
R

(o)}
'
[

1 H 1 1
I

[}
VT U B B A b

oo oo
1

6.3 Assembler Directives

6.3.1 Assembly-Control Directives
6.3.2 Object-Control Directives
6.3.3 Listing-Control Directives
6.3.4 Storage-Allocation Directives

7 LDS-2 INSTRUCTION SET

Accessing Data for the Instructions
Notation

Loading and Storing the Channel Control Registers
Program Control

Stack Control

Arithmetic and Logical Operations
Compare Instructions

Unary Instructions

Shifting Instructions

Masking Instructions

Bit Manipulation

7.12 The IOT Instruction

7.13 Load/Unload Pipeline Registers

7.14 Drawing Instructions

NN NN NN NN
HFOWoLO~NNOUTAS N

8 FORTRAN SUPPORT ROUTINES

1 Function

2 Data Formats

.3 Preparation Calls
4 Definition and Manipulation Calls
5 Drawing Calls

9 SOFTWARE INTERFACE
General

9.1
9.2 The Schedulers
9.3 Interrupt Handlers

APPENDIX I LDS-2 Mnemonic Construction
APPENDIX II OPDEF's and EQU's
APPENDIX III A Note on Homogeneous Coordinates

iii

AI-1
AIT-1

AITI-1

SYSTEM OVERVIEW

1.1 System Configuration

The LDS-2 is a general purpose computer with specialized
facilities for graphic processing. In the shared memory con-
figuration the LDS-2 operates as a second processor which shares
memory with a host computer. In this configuration the LDS-2
is an independent processor in that it accesses and executes
its own programs, but the LDS-2 is dependent upon the host
computer for such functions as I/Q and the regulation of its
operation (i.e., starting and stopping the LDS-2, schedulin
¥5£1§,'etc.). Figure 1.1 shows the configuration of the ID%-Z

he following units make up the LDS-2:

The Channel Control. The Channel Control accesses
memory to provide the instructions and data needed
by the LDS-2. The Channel Control executes all of
the general purpose processing instructions and
interprets display instructions and provides commands
and data to the display processing pipeline devices.

The Matrix Multiplier. The Matrix Multiplier can
rotate, translate and scale the drawing to be dis-
played. The Matrix Multiplier also can iterate sets
of difference equations to draw curves and families of
curves.

The Clipping Divider. The Clipping Divider allows the
user to specify the portion of the drawing he wishes

to view. The Clipping Divider will automatically
eliminate all portions of the drawing which lie out-
side the viewing area, and then scale and position the
picture on the Display Scope. The Clipping Divider also
performs three-dimensional perspective division.

The Line Generator and Display Scopes. The Line
Generator converts the digital specification of end-
points into analog sweep voltages which are used to
drive the deflection systems of the Display Scopes.

1.2 General Purpose Processing

The LDS-2 has a large and versatile instructions set, its
own internal high-speed register memory, and facilities for
interpreting complex data structures. Instructions are provided
to perform the following tasks:

Arithmetic and logical operations

Shifting, masking, and bit manipulation
Comparisons and conditional skips

Program flow control and stack manipulation

1-1

‘emory

-1

LDS-2

Channel

Control

LDS-2 DISPLAY SYSTEM CONFIGURATION

Clipping

Divider

DATA
COMMANDS

DATA DATA
; Matrix Fo
COMMANDS COMMAND
Multiplier ———————ééh
3 DATA i
DATA
<73 -

Figure 1.1

Line

Generator

/

Display
Scopes

The LDS-2 Channel Control has a high-speed register memory
which is composed of sixteen registers. While all but four of
these registers are used for special functions, all registers
may be manipulated with equal ease, and when the special function
to which a register is dedicated is not being used, that register
may be used as a general purpose accumulator.

The LDS-2 provides facilities for direct, indirect, and
indexed addressing, but it is also a stack machine with very
powerful and versatile stack manipulation facilities. Special
stacks are operated to hold return locations and parameter infor-
mation from the display processing pipeline. The user may also
set up and operate additional general purpose stacks.

1.3 Graphic Processing

In addition to its general computing capabilities, the LDS-2
can interpret drawing definitions, perform graphic transforma-
tions on the drawing and display a picture on the Display Scope.
For the purposes of this manual, the following words will take
on special meanings to avoid confusion.

Drawing. The drawing is the definition stored in memory
which consists of two- or three-dimensional coordinate
data and display instructions which determine how these
coordinate values should be interpreted and how the
points should be connected. The drawing is in '"page
coordinates."

Picture. The lines and dots which finally appear on the
Display Scope are referred to as the picture. The pic-
ture is in "'scope coordinates."

P N"‘iu +2"'1‘

Page Coordinates. The page is a virtual drawing space
which stretches from ;235 to +321}in each coordinate
axis. The LDS-2 performs all arithmetic and graphic
processing using two's complement arithmetic, so one

may think of the page as a fixed point, two's complement
drawing space. Since the page is extremely large, no
checking is done to detect overflow of the page bounda-

ries. -Q“n +a"

Scope Coordinates. Scope _coordinates are centered about
zero and stretch from - to +24% in X and Y. Before

the drawing is displayed, it is mapped into scope coordin-
ates and becomes the picture.

1.3.1 Drawing Instructions

The drawing instructions generally result in some movement
of the beam on the scope. The upper half of Figure 1.2

1-3

DRAWING OPERATIONS

Basic Drawing Operations

1 is current point

"Set point" to 2 (2 becomes
point)

"Draw to" 3 (3 becomes

~ point)

"Draw from" 4 (3 remains
point)

"Dot" 5 (5 becomes
point)

Complex Drawing Operations

"Polygon" = Set point, draw
to, draw to...

"Star" = Set point, draw
draw from...
"Lines" = Set point, draw
RN AR point, draw to,
P e .
: point...
"Dots" = dot, dot, dot.
@ ”’ ﬁgf
Figure 1. 2

1-4

current
current
current

current

to, draw

from,

to, set
set

illustrates the basic drawing operations that are available.
These operations are done in relation to the "SAVE point"
which indicates the current position of the beam on the scope.
It is also possible to initiate a repeating series of the
basic drawing operations with a single instruction, as shown
on the lower half of Figure 1.2.

1.3.2 Data Forms

The coordinate data may be interpreted either as an absolute
specification of the endpoint location, or as one of two forms
of displacement specifications. The display instructions specify
how the data are to be interpreted. Figure 1.3 illustrates
the three manners of interpreting the coordinate data. '"Abso-
lute' data simply specify the position of the endpoint.
"Relative'" data are taken as an offset from the '"current point."
And "variable origin" <causes the data to be taken as an offset
from a user-specified "origin'" which is held in the registers
of the Channel Control.

1.3.3 Dimension Modes and Coordinate Data Storage

The LDS-2 is always in one of four dimension modes, and
these modes affect how many words of data are fetched for dis-
play instructions (both drawing instructions and pipeline register
load/unload instructions). The two-dimensional mode causes the
LDS-2 to pick up two contiguous words of data which are inter-
preted as the X coordinate and the Y coordinate. In '"homogeneous"
mode (sometimes referred to as 4D) the LDS-2 picks up four words
of data which are interpreted as X Y Z and W. This data format
is known as homogeneous coordinates, where W is the homogeneous
element and is used as a scale factor. Data fed through the
Matrix Multiplier should be in homogeneous coordinates. (See
Appendix III for a description of homogeneous coordinates and their
usage.) If the Matrix Multiplier is turned off, the four words
of data fetched by the LDS-2 will be interpreted as X Y Zx and
Zy, where Zx and Zy are generally the same. This is the form in
which the Clipping Divider expects data.

Two special three-dimension modes are provided to allow
more compact storage of data. These modes apply only to drawing
instructions (i.e., pipeline load/unload instructions still pick
up four words). 'Matrix Multiplier three-dimensions' (MM3D)
causes the LDS-2 to pick up three words which are interpreted
as XY and Z. The LDS-2 then supplies the fourth word, which is
the fractional approximation for "1" (223-1) to serve for the
"W'" element. Since W is often '"'1", when using homogeneous
coordinates, MM3D may often be used to save storage. MM3D should
only be used, however, if the Matrix Multiplier is active.

If the Matrix Multiplier is not active and data are being
fed directly to the Clipping Divider, "Clipping Divider

1-5

DATA FORMS

//////f/’/;’xz’Yz’zz

/////// 100k

ABSOLUTE

— Y Z.)+AZ
‘‘‘‘‘ - (XO+AX1)+AX2,(YO+AY1)+A 2’(ZO+A 1) A

7
X0+AX1,Y0+AY1,Z +AZ

2

0 1

0°°0’70

RELATIVE

A

// XO"'AXZ,Y0+AY2,ZO+AZZ

P

e
e Xo*+AX Y +AY 2 +AZ

////// 0" 1040785

¢
Xp2Ygs2Zy

VARIABLE ORIGIN

Figure 1.3
1-6

three dimensions" (CD3D) may be used. This mode also causes the
LDS-2 to pick up three words of data, but in this case the fourth
word provided by the LDS-2 is a copy of the third word to give
XY Z Z, which is the form that the Clipping Divider expects.

1.3.4 The Display Processing Pipeline Units

The display processing pipeline units perform graphic trans-
formations on the coordinate data as they pass down the pipeline.
The Matrix Multiplier and Clipping Divider contain their own
internal storage registers to hold the parameters that are used
in the graphic transformations. For instance, the Matrix Multi-
plier holds four 4 x 4 matrices. When the Matrix Multiplier is
active, the coordinate data are multiplied by the values in the
first matrix as they pass down the pipeline. These matrix
multiplications may be used to rotate, translate, and scale the
drawing. Similarly, registers in the Clipping Divider hold the
"window" and "viewport'" values which are used to map the coordin-
ate data from page coordinates into scope coordinates. Details
of the operation of the pipeline devices are given in Chapters
3, 4 and 5. Figure 1.4 gives a pictorial representation for
the graphic processing performed by the LDS-2.

Because the parameters for the graphic processing are held
internally by the devices which perform this processing, the
data base can remain '"pure;'" that is, motion and other trans-
formations can be implemented by changing the parameters in the
pipeline registers rather than changing the coordinate data as
it is stored in memory. The registers of the pipeline devices
may be loaded or unloaded with these parameters by LDS-2 instructions.

1.4 Programming

The LDS-2 assembles its own programs and has its own assembly
language (see Chapters 6 and 7 of this manual). Fortran callable
support routines which generate code for the LDS-2 are also pro-
vided as an option. These routines allow the Fortran user to
make use of the graphic capabilities of the LDS-2 through Fortran
calls. The Fortran support routines are discussed in Chapter 8.

Lds- 3 GEAYRIC

PROCESSING

e ™
_] . £
l / =~ w
w
1
Frr - =
/-b- —I E <! *
| | < B
g / [= w
) L — 14
window ELMWOOD AVE.
]
&1
I)
_ _J
The drawing 1s defined in the 2. All parts cf the drawing outside | 3. The clipped drawing is mapped
iser-chosen draving srace and a the "window" are eliminated by onto the "viewport' on the
"window' 1s speciried. the Clinning Divider. Display Scope.

Two-dimensional windowing

.The drawing is defined
in a three-dimensional
drawing space.

2. The Matrix Multiplier
rotates, translates, §
scales the drawing.

Pyramid
of vision

Part outside
clipped

3. The drawing is compared
to a pyramid of vision
by the Clipping Divide

N p,

The drawing is clips
ped, and put in per-
spective, th4n mapped
onto the viewport of- -

Three-dimensional processing

the Bisplay Scope.

Tigure 1.4

1-8

CHAPTER 2
THE CHANNEL CONTROL

2.1 Function

The Channel Control functions as a general nurpose processor
and as the control unit for the LDS-2. The Channel Control
has general computing capabilities which allow it to assemble
its own programs and process both graphic and non-graphic data.
But in addition to these general facilities, the Channel Control
has special graphic capabilities which allow it to interpret
disnlay programs and to control the display processing pipeline
units of the LDS-2.

2.2 Structure

A block diagram of the Channel Control is shown in Figure
2.1, The Channel Control operates out of the memory of the
host computer by providing memorv~addresses and then either
accepting or transmitting data or instructions. The Arithmetic
and Logical Unit (ALU) provides the Channel Control with the
ability to do general nurpose data processing, The Channel
Control has its own high-speed I/0 buss which facilitates the
communication between the Channel Control and several registers
which function as I/0 units to the Channel Control. These
registers are described in Section 2.5.

2.2.1 PRegisters of the Channel Control

The Channel Control is organized around sixteen registers
which form a high-speed register memory. Four of these registers
serve as general purpose accumulators while the other twelve
are dedicated to special functions. However, all registers
may be manipulated with equal ease and all registers may be
used with most instructions. It is thus possible to use the
dedicated registers as general purpose accumulators if the
function to which they are dedicated is not being used. For
instance, if the system is not returning processed data from
the pipeline back into memorv, the WP and WC registers can
safely be used as general purpose accumulators., Table 2,2 lists
the registers of the Channel Control and briefly describes their
functions. The use of these registers is more fully described
in the course of this chapter,

2,2.2 Memory Addressing

The LDS-2 divides memory into pages of fixed length and
fixed location. A page is 2(®™-8) words long where n is the
number of bits per memorv word in the system. For a 24-bit
LDS-2 the page is 64K words long so paging considerations
generally disappear. The address specified in addressing

2,1

STRUCTURE OF THE CHANNEL CONTROL

C ,
4
MEMORY DATA
BUSS jL
ADDRESS
' 2mm T . N v
MB MA
)
1 PC
DIR
ARITHMETIC AND LOGIC
RSR UNIT
ICR (ALU)
IMR
10D
SYNC X -
PROTECT 0 A0
5 1 ACT
BAR
S 2 AC?
_ 3 AC3
I/0 REGISTERS
4 Tos
S 5 sp
6 DSP
7 IR

>~

o=
N =<

b e e |
W
=

RP
RC
16 WP
WC

S I
T2 E=S

R

—
~1

Z I T z

LOUT ROUT LIN RIN

TO PIPELINE FROM PIPELINE

Figure 2.1
2-2

CHANNEL CONTROL REGISTER MEMORY

Register Mnemonic Dedicated Use Functional Characteristics

0 ACO undedicated general purpose accumulator
1 AC1 undedicated general purpose accumulator
2 AC2 undedicated general purpose accumulator
3 AC3 undedicated general purpose accumulator
4 TOS Top Of Stack top element of SP stack
5 SP Stack Pointer decrements beforefwriting in
the old PC for a pushjump
6 DSP Data Sink increments before writing in
Pointer data from a sink operation
7 IR Index index register
10 X X current - updated automatically by
point drawing instructions
11 Y Y current updated automatically by
point drawing instructions
12 Z Z current updated automatically by
' point drawing instructions
13 w W current updated automatically by
point drawing instructions
14 RP Read Pointer points to the location of

coordinate data tables

15 RC Read Counter increments once per coordinate
point read through the RP

16 WP Write Pointer increments after writing data
from pipe. :

17 -~ WC Write Counter 1increments once per word
written through WP

Table 2.2
2-3

instructions is taken as an address within the page and is added
to the 8-high order bits of the Program Counter (PC) to obtain
the effective address., Direct addresses may not cross page
boundaries (i.e., they must be within the current page).

Indirect addressing mayv be specified with all addressing
instructions. When the indirect bit of the instruction word
is set, the effective address is the contents of the location
directly addressed. The directly addressed location must be
within the current page, but the indirect address may be anywhere
within the total addressing space. Only one level of indirection
is available.

Some addressing instructions may also be indexed. Indexing
causes the contents of the Index Register (IR) to be added to
the address specified in the instruction in order to calculate
the effective address., Since the IR is a full word length
register, the effective address may lie anywhere within the
total addressing space. If both indirection and indexing are
specified, the indirection is performed before the indexing.
Fxamples of the addressing scheme of the LDS-2 are given in
Section 7,4,

2.3 General Computing Facilities

The LDS-2 has a large and versatile instruction renertoire
which makes it convenient for a large variety of general purpose
processing tasks. The availability of the sixteen registers
in register memory and the stack mechanism add to the processing
power of the LDS-2.

2.3.1 General Purpose Instructions

The general purpose instructions of the LPS-2 provide the
following functions:

Load and store the Channel Control
registers from memory or other registers

Program control (jumn, pushjump, and
execute)

Arithmetic and logical operations

Increment and decrement registers and
skin on condition

Compare two registers and skip on
condition

Arithmetic, logical and circular shifts

Masking

2-4

Stack control (push and pop with
increment or decrement)

The individual instructions are explained in detail in Chapter
7, but it is useful to keep these general functions in mind
while attempting to understand the LDS-2.

2.3.2 The Stack

The LDS-2 operates two special purnose stacks and allows
the user to operate additional general purpose stacks, One
of the special purpose stacks is known as the "data sink" and
is used to store parameters from the pipeline registers. The
data sink is described in Section 2.4.5. The other special
purnose stack is used for storing return locations (i.e., old
PC values). This stack operates in a special way because the
top element of the stack is held in the Channel Control's TOP
OF STACK (TOS) register rather than in memory. Thus, the STACK
POINTER (SP) points not to the top of the stack, but rather
to the last element stored in the memory portion of the stack,
which is effectively the second element in the stack. Since
the top element in the stack is in the TOS register it is
immediately available to the user. When pushing the old PC
onto this stack, the following process occurs:

SP-1~>SP decrement the stack pointer;
TOS —=(C (SP) push the TOS;
PC —=TOS save the PC,

When the stack is ponped to return the old PC the reverse path
is followed:

TOS —=PC(C return old PC;
C(SP)—=T0S pop into the TO0S;
SP+1—,SP increment the stack pointer,

This whole process is invisible to the user so that he may
simply consider the TOS as the top element in the stack.

In addition to these two special purpose stacks, the LDS-
2 provides the user with convenient facilities for implimenting
other stacks which may be used and manipulated under program
control. Any of the Channel Control's registers may be used
as a stack pointer with which to push the value held in another
register onto the stack, or to pop an element off of a stack
back into a register. This "stack pointer'" mav be incremented
or decremented either hefore or after the register is pushed
or popped, so that the user has the full range of possibilities
for stack control. Because the LDS-2 has such convenient stack-
control facilities, it is often best to treat the LDS-2 as a
stack machine.

2-5

2.4 Graphic Facilities of the Channel Control

In addition to its general purpose computing capabilities,
the LDS-2 Channel Control has special facilities for interpreting
display-oriented instructions and controlling the LDS-2 display
processing pipeline, ‘

2,4.1 Display Instructions

The display instructions of the Channel Control fall into
two groups:

Drawing Instructions. The drawing instructions
result 1n the transmission of the coordinate data

to the processing pipeline., The drawing instructions
define the topology of the drawing.

Pipeline Load/Unload Instructions. The display
processing pipeline units contaln parameter regis-
ters. The values in these registers are used to
process the coordinate data and thus affect the
picture that is displayed., The Channel Control loads
and unloads these registers either singly or in
groups,

All of the display instructions require the Channel Control

to generate a command for the pipeline and provide the necessary
data. The Channel Control can fetch this data from memory or
from its own internal registers.

2.,4.2 The X, Y, Z, and W Registers

The X, Y, Z, and W registers of the Channel Control maintain
the coordinates of the current point which is used as the base
for relative and variable origin drawing instructions. A
relative drawing instruction causes the incoming data to be
added to the values in these registers before it is sent down
the pipeline and the contents of the registers to be updated
to the computed value of the new point, Variable origin
instructions also cause the additions to be performed, but the
contents of the registers are not updated, so that the next
point will also be relative to the "variable origin.,"

The point held in the X, Y, Z, and W registers of the
Channel Control usually corresponds to the "current point" held
in the SAVE registers of the Clipping Divider., When processing
a "variable origin" instruction, however, the X, Y, Z, and W
registers are not updated in order to make all data relative
to the 'variable origin." The SAVE registers of the Clipping
Divider are updated, however, thus at the end of a variable origin
sequence the two sets of registers will contain different values.
Because of this, it is a good idea to follow all variable origin

2-6

instructions with either a '"setpoint," a drawing operation
in absolute mode, or another variable origin operation.

Note, that the relative pipeline load instructions do not
use the X, Y, Z, and W registers as a base. For these
instructions, data are sent to the pipeline in relative form
and converted by the pipeline units themselves,

2,4.3 Data Fetching for Display Instructions

Addresses for the coordinate data for drawing instructions
may come from one of two sources. The single point drawing
instructions (see Section 7,14) specify an address as part of
the instruction word. This address may be either direct or
indirect and may be indexed (remember that indexing is performed
after indirection). The table draw instructions (see Section
7.14) rely on the contents of the READ POINTER (RP) for the
address. The contents of the RP may be used either as the
direct address or as an indirect address which contains the
effective address. If indirection is specified, indexing is
also available, but if indirection is not specified (i.e., the
contents of the RP are taken as the direct address), then
indexing may not be specified. When indirection and indexing
are specified, the contents of the INDEX REGISTER (IR) are added
to the contents of the word addressed by the RP, and the result
is used as the effective address. The pipeline load/unload
instructions (see Section 7.13) rely on the RP just as the table
draw instructions, but only direct addressing is available.

The RP is incremented after each use so that it can step
through a contiguous table of data. The RP may be initialized
to the beginning of a new table by loading it with the appro-
priate address.

The number of words of data fetched by the display
instructions depends on the dimension mode of the Channel Con-
trol. The Channel Control has four modes:

Two Dimensions. In 2D two contiguous words of data are
fetched which represent X and Y if the data are inter-
preted as coordinate data.

Three Dimensions for the Clipping Divider, This mode is
abbreviated as CD3D. Three words are fetched for each
point which represent X, Y, and Z. A fourth word is
supplied to the pipeline by copying the last word which
gives X, Y, Z, Z, This is the form that the Clipping
Divider expects. Pipeline load/unload instructions behave
as if the LDS-2 were in homogeneous mode.

Three Dimensions for the Matrix Multiplier., This second
special three-dimensional mode (abbreviated MM3D) also
fetches three words of data per coordinate point. In MM3D,

2-7

however, the fourth word is supplied as the fractional
representation of "1" (37777777) to give X, Y, Z, "1" which
corresponds to the homogeneous representation with the
homogeneous element equal to '"1", Pipeline load/unload
ingtructions behave as if the LDS-2 were in homogeneous
mode.

Homogeneous Mode. In homogeneous mode four words of data
are fetched tor each element., If the data are interpreted
as coordinate data, these four words represent X, Y, Z,
and W, where W is the homogeneous element,

It is very important to remember that the dimension mode of
the LDS-2 affects all display instructions. Special care must
be taken when using pipeline load/unload instructions or
incorrect data will be loaded into the pipeline registers.

The pertinent considerations are outlined in detail in Section
7.13 dealing with these instructions.,

2.4.4 Repeat Instructions

The Channel Contrc¢l can generate a repeated series of
simple drawing instructions in order to draw more complex figures
with g _single instruction. When a '"repeat' drawing instruction
is re ed which indicates a "draw to," "draw from," "polygon,"
"star," "lines," or '"dots" operation, the Channel Control
automatically generates the appropriate series of basic drawin
instructions. Finite-state machines within the Channel Contro
update the command, so that a single repeat instruction causes
a series of drawing instructions to be sent down the
pipeline, The drawing sequences and absolute/relative/variable
origin combinations that are available with these instructions
are discussed in Section 7.14, Pipeline load/unload instructions
are inherently repeat., The address of the register loaded or
unloaded is incremented after each iteration, so that a series
of registers may be loaded or unloaded with a single instruction,

The iterations of the repeat instructions are counted by
the READ COUNTER (RC). The RC is initialized with the negative
(two's complement) of the number of elements (e.g., the number
of coordinate points or the number of registers) and is incre-
mented once after each data element has been fetched and passed
to the pipelin€? ™WHEN™the®count reaches zero, the process is
stopped and another instruction is fetched. If the count is
initially zero, only one iteration will be performed., The count
will never increment past zero and, thus, should never contain
a positive number unless it was loaded with a positive number

initially.

When the RC is not being used for repeat mode instructions,
or when no other registers are available, it is convenient to
use the RC as a counter for other purposes. The programmer
can increment (or decrement) the counter under program control

2-8

and test its results for zero. It is, of course, also possible
to do this with any other of the Channel Control's internal
registers.,

2.4.5 The Data Sink

A special stack mechanism called the "data sink" is used
to store information from the registers of the pipeline units.
The DATA SINK POINTER (DSP) maintains the address of the last
element written into the data sink. When pipeline registers
are "sinked," the new information is written into memory and
then the DSP is incremented. This information may then be
"retrieved," in which case the DSP is decremented and then the
register is reloaded. For retrieval operations the register
addresses sent down the pipeline are decremented rather than
incremented for repeat instructions, so that data are returned
in the proper order.

2.4,.6 Returning Output to Memory

The processed output of the arithmetic devices may be
returned to memory for use in further processing or for output
to remote terminals. When one of the pipeline units has data
ready -to return to memory, it signals the Channel Control which
stops its normal operation and records the data. The WRITE
POINTER (WP) of the Channel Control is used to provide the
memory address for recording the processed output. Since the
WP is incremented after each use, the data are recorded in a
contiguous table. The length of this table may be limited by
loading the WRITE COUNT (WC) with the negative (two's complement)
of the desired length of the table. When the WC reaches :zcro,
the LDS-2 will be interrupted if the appropriate interrupt bit
is enabled (see Section 2.5).

2-9

2.5 The I/0 Structure

The Channel Control contains eight registers which are treated
as I/0 devices and manipulated with "input/output transfer" (I0T)
instructions. IOT instructions are also used for special functions,
A1l of the TIOT instructions, excent those indicated, are lecgal only
when the LDS-2 is in executive mode.

The Channel Control is either in executive mode or user mode.
In executive mode, all the imnlemented IOT instructions are legal,
and the "permit'" bits for scope selection (see Section 4.8) mav be
changed. Whenever an interrupt is received from either the LDS-2
itself or the host computer, the Channel Contreol goes to executive
mode. The Interrunt Service Routine resets user mode before
transferring control back to the user.

2.5.1 Status Registers

The DIRECTIVE register and REPEAT STATUS register hold
information which controls the oneration mode of the LDS-2 and the
functioning of the pineline devices. These are the only two registers
available to the user. The DIRECTIVE register holds the dimension
mode for the 1LDS-2, controls whether the pipeline devices are active,
and contains status flags which are set by the pineline.

_ , NEw BI7S
DIRECTIVE § ShtTnES Wt (nenp oriy) o
. . Lioky THTTLED (AR DRV OV

Bits Function 2 vioky T4 ¢

————— /0} SonEACr ﬁ/?’)’o o > Mo SUNFACK
0-1 Unused /7 O] > SUNFACE
2 Matrix Multinlier Active | 1 > smosrno, rurrAcE
3 Clivning Divider Active
4 No Overlan (i.e., each line is comnletely

nrocessed by all the pipeline devices before
the next line is bepun)

5-6 Dimension modes

00 2D
01 Hopmopeneous mode (4D) ‘
10 M3D (X Y Z with an assumed "1'")
11 CN3C (X Y Z with a copy of the Z)
7 Interrunt on HIT
N-3 HIT (from the Clipping Divider)
N1 Area In Common (from the Clinping Divider)
N-| Settled (i.e., all of the pnireline units have

finished processing,,nending data, and are
waitine for innut)

The REPEAT STATUS RFGISTER (RSP) holds the pineline load/unload
and drawing commands that are sent down the nipnecline, and is un-
dated bv the normal operation of the Channel Control. The RSP makes

©~

-10

it possible to interrupt a repeat drawing or load/unload sequence.
If during the time intcrrupt is being serviced other drawing

instructions will be executed,
reloaded to restore the user.
to a new user, the repeat bit of the RSR must be cleared;

the RSR should be saved and then
If the interrupt results in going

otherwise,

the first load/unload or drawing instruction executed by the. new uger
will use the old RSR rather than the information in the 1nstrucfﬁon¢
The appropriate actions are taken by the LDS-2 Interrupt Handler, ,,
so that the user does not have to worry about the RSR, - oy

REPEAT STATUS RECISTER

A

=

Bits Function for Load/Unload Function for Drawing
0-1 Unused Unuscd
2-4 Instruction Type (011 = Instruction Type (100 =
load/unload) drawing) {J,«ﬁ
5-6 Load/Retrieve/Store/Sink --- e
5-7 .- Present state of dr%y:qp
: operation finite- qtqﬁe
machine (FS&M1) o
7, 16-18 Device and Manner ---)
16-18 --- Present state of data.ﬁorm

NS T Nt 10-22

Address of Pineline

finitc-state- mach:ne (TQNZ)

Register
N~ 2% Repeat Repeat
2.5.2 Interrupts

The LDS-2 has a two-level interrupt system.

High-level inter-

runts come onlv from the host computer and cause-the execution of

ah

-~wire

1ress.,

Low-level interrunts may be caused by a variety
of internal con itions which the LDS-2 has detected.

These inter-

runts also cause the execution of a hard-wired address which contains
a "pushjump" to the Interrunt Handler.
the interrupt will have set a bit in the -INTERRUPT CONDITIONS REG-

ISTER (ICR).

the INTEPRUPT MASK PEGISTER (IMR),
the mask bit is set,

The condition which caused

The bits in the ICR are masked against the bits in

If the interrunt bit is set
the LDS-2 will be interrunted.

and
The Interrunt

Handler 1nterrogatcs the ICR to determine the cause of the interrunt,

so it can take appronriate action.
control to the user,

it is

Jf the TInterrunt llandler returns
first necessary for it to decrement the

TOS in order to return the instruction which was interrunted rather

than the next instruction,

2-11

INTERRUPT CONDITIONS REGISTER

Bits Meaning
6 Scope Protection Violation (TUT TUT FORBID)--Note

that there is no mask for this bit.
Memorv Protection Violation

7
Nedy 13- Unimnlemented Instruction (no mask)
N-G 18 Nonexistent Memory
N= Nonexistent I/0 Device
Ny o Real Time Clock
N-73 ,ka, Positive Write-Count Register (tablec overflow)
NV T2 Overflow (caused by an arithmetic instruction)
vl 5 Parity Error

INTERRUPT MASK REGISTEPR

Bits Meaning
7 Memory Protection Violation
N-@ & High-level Tnterrupt Mask
N O Low-level Tnterrunt Mask
N=b g Nonexistent Memory
Ny =19 Noncxistent T/0 Device
Nel w287 Real Time Clock
N3 21 Positive Write-Count Register
N- 97 Overflow
N=1 225 Parity ST -

When the LDS-2 is in user mode, most of the I/0 devices are
not accessible and are treated as 'mon-existent." The lower 8 bits
of the device code of an illegal IOT are saved in the I/0 DEVICE
CODE ERROR REGISTER., If the interrunt mask is set, an interrupt
will then be initiated. When the Interrunt Handler has determined
that a nonexistent T/0 device caused the interrunt, it checks the
1/0 DEVICE CODE ERROR REGISTFER, The Interrupt Handler can then
decide what to do on the basis of the information in this register.
This mechanism provides a convenient communication between the user
and the Interrunt Handler. Tor example, when the user's program
needs input/output from the host computer, it can make the request
by executing a specified "illegal" TOT (see Section 7.12).

2.5.3 Real Time Clocks

Four real time clock sources are available on the LNS-2. - The
LDS-2 itself has both a 60-cvcle/second clock and a clock controlled
by a variable potentiometer on the control panel which can be sect
between 10 and 100 cycles/second. TIn addition to these, the clock
from the host computer is available and a clock from an external
synchronization source. The sclection of these clocks is made by
setting the SYNC MASK REGTSTFER. This can only he done in executive

mode.

2-12

SYNC MASK REGISTER

Bits Function
N-§ a9 External Sync
N-% 29 Real Time Clock from Host Computer
N-3 21 60 Hz Real Time Clock
N-2 22 Adjustable Clock
2.5.4 Memory Protection and Relocation
boeT cm(vwz:

For an LDS-2 which is interfaced to aw SE DA
can be protected. Fach user is assigned an upper and lower bounds.
The upper 8 bits of the bounds are loaded into the nrotection
register.

PPOTECTION REGTISTER

Bits Function

Lower Bounds
Upper Bou

In order t the nassing of addresses between the LDS-

2 and the , the LDS-2 has been equinped with a BANK ADDRESS
REGISTFR (BAR)EEE&iEi;: g%l aded at initialization with the same con-
tents as the # S (excent for the first two auarters which
are reserved on the SIL-840 It is thus nossible to pass addresses
from software on the SR to software on the LDS-2 without having
to worry about BAR relocation. The BAR on the LDS-2 is active only
when the LDS-2 is in user mode. In executive mode, addresses are
interpreted as absolute.

Py

BANK ADDPESS REGISTER

W T Tk aég
- SR

Bits Functioh ol
"‘255 00 Relocation
8-11 01 Relocation

14-17 ? 10 Relocation e St

(N9 G-hrprs 11 Relocation .

2.5.5 Special I/0 Functions

In addition to loading and unloading registers, IOT instructions
are used for several smecial functions as listed below. Note: that
only the '"skin-on-secttled" functiqn is available to the user.

Fnable Interrunts. When a low-level interrunt is being serviced,
other low-level 1nterrupts are automatically locked out. At

the end of the interrunt routine, it is necessary to enable

these interrupts again. Similarly, when a high-level interrunt
is serviced, other high-level interrupts are locked out, so v

2-13

that an "enable interrupt" IOT must be performed at the end
of this routine also. The '"enable interrupt" does not take
effect until after the first "jump" instruction after the ICT.

Set User Mode. When an interrupt occurs, the LDS-2 goes into.
Texecutive"” mode., In this mode, all of the defined IOT's are
legal, and the scope selection registers can be set. User mode
must be restored at the end of an interrupt service routine,
or after the system has been initialized. User mode is not

- actually set until after the first "jump" instruction.

Sleep. Sleen is an idle state in which the LDS-2 does nothing
but accept high-level interrunts.

Attention., When the LDS-2 needs to communicate with the host
computer, the attention bit is raised. This TOT will cause
an interrunt to the host computer.

Skip-on-Attention Clear., When tle host compnuter has acknow-
Jedged the 1interrupt, it clears the attention bit. Before the
LDS-2 issues another interrupt, it may want to check to see
that the previous attention has been cleared, This is done

by the "skip-on-attention clear" I0T. : ‘o

Clear Protection Violation., When a nrotection violation occurs,
a flip-flop 1s sct which issues an interrupt. . This flin-flon
must be cleared by this IOT before going on to a=new user.

Skip-On-Settled. This is the only snecial function 10T that

is available to the user. Skin on settled causes the IDS-2

to skip the next instruction, if the pipeline is settled, This
INT is used when testing pipeline conditions (such as Area In
Common) to insure that the pipeline is clear and the correct

value for the condition cap, be regad. o——
Mot Erepud (He)
Side

2.5.6 The Interface from the

G’Wg@:EP koT_O#wﬂhdz
The %‘O eceives and issues interrunts through the G-B-IL'&‘!!'U"

T/0 REGISTER of the LDS-2, which is an I/0 device for the Shi=847"
sT »Péha et
SELef#0" 1/0 REGISTER ek

Bits Function

NeS 27 ‘20 Attention, When the LDS-2 issucs an attention,
~ This Dit is set. It may also be loaded or
unloaded from thc,SRE‘side of the interface.

=

N-¥ 207 ‘pp Attention Interrunt Mask. If this bit is set,

the Attention bit will cause an SE inter-
runt,

N- F Stop State. When the LDS-2 is in the "sleen"

2-14

N-2o 227

N-l 25

state, this bit is set, It can be read, but not

set, by the SE&;%?U.

Stop-State.Interrupt Mask. If this bit is set,

the Ston-State bit will cause an

SEdemfittr
interrunt. HC

I.DS-2 Interrupt.ysBy setting the LDS-2 Interrunt
bit, the S&%ﬁ%ﬂﬂvgbsues an interrupt to the LDS-2.
This bit is cleared automatically, when the inter-
rupt is serviced by the LDS-2.,

~

-15

CHAPTER 3
THE MATRIX MULTIPLIER

3.1 Function

The Matrix Multiplier is the first arithmetic device in
the LDS-2 display processing pipeline. The Matrix Multiplier
performs rotations, translations, and scalings of the drawing
by multiplying the coordinate data by an internally stored
transformation matrix. The Matrix Multiplier can also compute
the product of two such transformation matrices to give a com-
posite transformation for substructures within the drawing
definition. The third function of the Matrix Multiplier
involves iterating a set of difference equations for drawing
two- or three-dimensional curves which are drawn as a series
of short line segments. Families of such curves can also be
generated to draw a cross-hatched surface patch.

The basic configuration of the Matrix Multiplier and the
addresses of the registers used for storing matrix elements
are shown in Figure 3.1. Four matrices A, B, C, and D, each
of dimension 4 x 4, are stored internally in a 4 x 4 x 4 matrix
array of storage registers. The values in these registers may
be manipulated by the 'load,'" '"store,'" "sink,'" and '"retrieve"
instructions. See Chapter 7. The matrix multiplications are
performed by a high-speed array multiplier. Input data for the
Matrix Multiplier are passed from the Channel Control, and the
output is sent to the Clipping Divider, back to the memory of
the host computer via the Channel Control, or both.

3.2 Three-dimensional Matrix Transformations

The Matrix Multiplier works on '"homogeneous coordinates"
(see Appendix III.) In homogeneous coordinates, three-dimensional
coordinate data are represented by the four-component vector (X
Y Z W), where X, Y, and Z are the normal orthogonal distances
from the origin, and W is used as a scale factor. The transfor-
mation matrix is the 4 x 4 matrix in Position A. When the Matrix
Multiplier is in three-dimensional operation and '"active,'" all
coordinate data values are multiplied by the matrix stored in
Position A (see Figure 3.1). Note that this does not include
parameter data for pipeline load/unload instructions. The form
of the transformation and the equations which define this trans-
formation are given in Figure 3.2. In 3D, entire rows of the
matrices are affected by a '"load,'" '"store," '"sink," or '"retrieve"
instruction (i.e., four components are loaded at a time).

It should be noted that, while the Matrix Multiplier expects
input of the form (X Y Z W), the Clipping Divider expects (X Y
Zx 2y). The transform matrix can easily be structured so that it
will’make this change.

MATRIX MULTIPLIER REGISTERS

14 D
doo | doy do, i dos
15 — C
10
le
Coo }Co1 | Co2 | Cos
16 :
f111
d2 0 4
c
10
17 - boo |bo1 |bo2 |boa
a 12 S
30 5
] €20 0
bio
13 890 | 01 Q02 ao3s
6
20 810} a11| a12] ais
7
2
b
30 dz20| A21 | a22] a213
3
dgzo| a31| asz2| as3s
Matrix data format:

3D 0 23
Two con- €0
tiguous
words e
x1
©x2
x=
exS
2D 0 23
exO
exl Note
€x3
Figure 3.1

3-2

is stored in memory in the

number of row as

indicated above

: In 2D ex2 and
are inaccessible

THREE-DIMENSIONAL MATRIX TRANSFORMATIONS

(XY Z W] Too To1 Toz Pos
Tio Tz Tiz Pis
= [X' Y' 7° wv]
Too Tp1 Taz Bas
tzgp tzp tzy Nz
Where
X' = rgX + TygY *rypl + tgoW
Y' o= r X ot T Y T2+t W
L' = 1o X + 1Y + 1)L+ T W
W' = hygX + hygY + hygZ + hy W
r = rotation terms
t = translation terms
h = homogenous terms

Figure 3.2
3-3

3.3 Two-dimensional Matrix Transformations

Two-dimensional coordinate data can also be transformed by
the Matrix Multiplier. The '"boxing" operation of the Clipping
Divider (see Section 4.5) is, however, a more efficient way to
effect two-dimensional transformations which do not involve
rotations. For two-dimensional operation, the input is made
up simply of the X and Y coordinate values. These values are
augmented (by the Matrix Multiplier) to take the form:

[X Y 1]

Figure 3.3 shows the structure of the two-dimensional transfor-
mation matrix, the equation for the transformations performed,
and the Trigonometric values for the elements.

In 2D, only the first two elements of each column in
matrix A are loaded from a single word in memory. (See Figure
3.1.) The zeros and ones shown in the third column of the
transformation matrix in Figure 3.3 are not actually present
but shown only for expository purposes.

3.4 Composite Transformations

When an object within the drawing is to be transformed
with respect to the drawing and the drawing itself is also to
be transformed, a composite transformation of the form

[XY Z W] [T1] [Tol =[X' Y' Z' W']

is required. Instead of generating the intermediate result,
[XY Z W] [T1], and then multiplying it by [Tp], the Matrix
Multiplier can form the composite transformation [T3] [To].
This is done by executing a ''load product" instruction (see
Chapter 7). The load product instruction takes the matrix

[T1] which is stored in memory, and multiplies it by [To],
which can be specified as either matrix B, C, or D (but not A).
The resulting matrix is left in matrix A.

3.4,1 Nested Transformations

This method of forming composite transformations generalizes
to any level. The '"data sink,'" operated by the Channel Control
(see Section 2.4.5), serves as a pushdown stack for storing -
matrices in order to implement nested transformations. The
sink and retrieve instructions for the Matrix Multiplier con-
tain a '"'slide" option, which allows matrix A and some other
matrix (usually B) to be operated as the first two matrices in
a pushdown stack. The slide option copies matrix A into an-
other matrix (e.g., B) as that matrix is '"sinked" into the data
sink. Then, when matrix B is retrieved from the data sink, the
matrix in Position B is copied back into A. The slide versions
of the "sink'" and '"'retrieve'" instructions, together with the ''pro-
duct load" facilitate a recursive subroutine call with only a
few instructions.

3-4

TWO-DIMENSIONAL MATRIX TRANSFORMATIONS

[X Y (W)] rgo Top .0
T1o T11:0 = [X'Y' (W]
| t20 21 -1
Where
X' = rOOX + rlOY + tZO(W)
Y' = r01X + r11Y + t21(W)

W' is not computed

r = rotation terms

translation terms

(]
]

w = is not provided by input, but rather augmented
by the Matrix Multiplier

w = 1 for absolute

w = 0 for relative

Form of 2D Transformation Matrix

B ——— ————

CcoSs ¢ Sine 0

-sine Coset 0

Fy F.. 1
Figure 3.3

3-5

2.4.2 Row-to-Row Moves

Rows of matrix A may be copied into another matrix by the
"push Matrix Multiplier" instruction, and, similarly, rows of
one of the other matrices can be copied back into matrix A by
the "pop Matrix Multiplier" instruction, thus allowing matrices
B, C, and D to be used as pushdown storage. This feature can
be used in special cases, where subroutine depth is limited.

The additional speed obtained in this manner by avoiding memory
references is paid for by a loss of generality in the subroutine
calls.

3.4.3 Matrix Normalization

Since the Clipping Divider performs perspective division
yielding X/Zx and Y/Zy, homogeneous transformation matrices
may be scaled without effecting the transformation performed.
It is customary to normalize the matrices used, so that at
least one element is between one-half and one in magnitude
(taking matrix elements as signed fractions; see Section 3.8).
The multiplication of two such matrices may result in a matrix
which is no longer normalized. Renormalization of this matrix,
before it is used in some subsequent concatenation, will assure
that maximum precision is maintained in the new transformation
matrix. The '"normalize'" instruction (see Section 7.3) is used
to shift the elements of matrix A left until any element is
greater than one-half in magnitude or until the 'count' given
in the normalize instruction runs out. The normalize instruc-
tion is disregarded in 2D.

3.5 Two-dimensional Curves

A two-dimensional curve is defined by the elements held in
the first two columns of matrix A (see Figure 3.4a). When a Matrix
Multiplier drawing instruction (other than '"box") 1s received, a
coordinate value is calculated by an iteration of the matrix
according to the equations shown in Figure 3.4a, and the output
is sent to the Clipping Divider (or memory, or both). Usually,
a complete curve is drawn with a '"polygon'" instruction with the
Channel Control in repeat mode. In this case the RC of the
Channel Control should be loaded with the two's complement of
the number of line segments that are to be in the curve (+1 for
the initial setpoint). The class of curves that can be drawn
includes all of the conic sections and a few other special
curves, such as circular and elliptical spirals.

3.6 Three-dimensional Curves

Three-dimensional curves are defined using all of
matrix A, as shown in Figure 3.4b. The coordinate values
for the current location are held on the top row of matrix A.
Dataless drawing instructions (other than "box') cause
an iteration of the matrix to compute a new coordinate
value and send it to the Clipping Divider. Following

3-6

2D CURVES

A= Too Y10
10 T11
tx ty

X y

Basic Representation

[x, y] + [tx, ty]—>Clipping Divider

Set Curve Operation

[x, y] [R] + [tx, ty] —> Clipping Divider

[x, ¥] [R] — [x, Y]

Other Drawing Instructions

Figure 3.4a
3-7

3D CURVES

A= 30 201 202 203 top row specifies
current absolute
330 211 %12 %13 B
coordinate
20 %21 222 223
330 231 %37 233

Basic Representation

[200 201 202 203] * Qlagg 297 215 3151 —>[ayg 2y 2y,

+

[a1p 217 217 2331 * Qlayy 257 a5, a531—2[2) 2,7 2, a;4]

(250 821 822 2231 * Qlagg a3y 335 3531255 35) 25, 2,5]

+

0 - —lagy azy az; azsz]

/

[asg 231 232 233)
[aOO 301 3-02 303] —_ Clipping Divider
Iteration

Note: Q is taken from the right half of the MDIR

Figure 3.4b
3-8

the perspective division performed by the Clipping Divider
(see section 4.5), these cubic difference equations generate
a very general class of curves called rational parametric
cubics.

3.7 Surface Patches

Families of the curves generated in three-dimensional
curve mode can be used to draw cross-hatched surface patches.
The definition of the surface patch is stored in the matrix
array as shown in figure 3.5. The ''new curve'" operation
is used to generate each new curve of the surface patch.

3.8 Arithmetic Conventions

The word length of the Matrix Multiplier is 24 bits.
The elements of input vectors and output vectors written into
memory are all of this basic word length.

All arithmetic operations are performed treating elements
as 2's complement signed (fixed point) fractions. Since the
word length is 24 bits, the_algebraically Ilargest number that
can be represented is 1-2 "4, and the algebraically smallest
number that can be represented is -1. In binary notation
(with the binary point separating the sign bit from the
fraction):

0.111111... is the algebraically largest number
0.000000... is the unique representation for zero
1.000000... is the algebraically smallest number (-10.

The reader should note that the closest approximation to
+1 is the fraction 0.111111..., which is close enough to +1
for practical cases.

Two's complement binary multiplication always invokes
some questions. The Matrix Multiplier performs fractional
multiplication, in which the 17 low-order bits of the product

3-9

SURFACE PATCH ITERATION

\

AN

A+ QB— A

B + QC—> B
For all 16 elements of each matrix

QD — C

@]
+

Note: Q is taken from the MDIR

Figure 3.5
3-10

are lost. These bits are used, however, for rounding.
Multiplication of -1 by -1 (1.000000...x1.000000...)
yields a product of -1 (1.000000...). It is usually best
to avoid -1 altogether.

The practical consequence of using fractional arithmetic
is that at least one of the two numbers involved in a multi-
plication must be a fraction, and the other number may be
thought of as having the binary point located at the user's
discretion. Figure 3.6 shows a good way to think of the
structure of the input vector and the transformation matrix.
The advantage of this structure is that both multiplication
of the input vector by the transformation matrix and multi-
plication of one transformation matrix by another results in
an integer times a fraction or a fraction times a fraction.
In addition, multiplication of one matrix by another gives
a matrix of the same form.

3.9 Mode Control

The mode of operation of the Matrix Multiplier is con-
trolled both by the Channel Control Directive register (DIR),
and by a directive register internal to the Matrix Multiplier
(MDIR). In general, the DIR specifies global operating modes,
which may apply to several of the operating units in the dis-
play system, while the MDIR specifies those modes which apply
only to the Matrix Multiplier.

The following bits in the Channel Control DIR have a
direct effect on the operations of the Matrix Multiplier:

MMA (Matrix Multiplier Active) -- When this bit
is 0, the Matrix Multiplier is '"transparent'" --
that is, it simply passes its input data on to
the Clipping Divider, and provides a level of
data buffering in the computational pipeline.
Matrix Multiplier load and store operations
occur whether or not the MMA bit is set.

2D, 3D (LDS-2 Dimension Modes) -- These bits deter-
mine whether the Channel Control supplies the
Matrix Multiplier with a two-component or
four-component input. 2D indicates a two-
component (i.e., two-word) input, while all
of the three-dimensional modes (including
""homogeneous mode'") indicate a four-component
input. These rules apply for both drawing
and register load/unload operations.

3-11

L

FRACTIONAL MULTIPLICATION

[X, Y, 2, W} = [I, I, I, F]
—— v T B —
rOO rOl r02 0 = F F F O
9 T171 712 0 F F F O
r20 r21 Toy 0 F F F 0
tx ty tz s I I I F
Where F = Fractions
I = Integers

The coordinates (X, Y, Z) are usually best regarded
as integers, while the homogenous term W is usually
considered to be a fraction.

The elements of the 3 x 3 submatrix (R), the rotation
matrix, are products of sines and cosines and are thus
appropriately considered fractions. The translational
elements (t) may be thought of as integers since W is a

fraction. The "s'" term is used to scale the matrix and

is a fraction.

Figure 3.6
3-12

The directive information stored internally in the
Matrix Multiplier MDIR register is the following:

MOC (Matrix Output to Clipper) -- causes the Matrix
Multiplier to send its computational results to
the Clipping Divider. This bit is ignored if
MMA=0, in which case the Matrix Multiplier is
"transparent'" and always sends data to the Clip-
ping Divider.

MOM (Matrix Output to Memory) -- causes the Matrix
Multiplier to send its computational results to
memory. This bit is ignored if MMA=0. The MOC
and MOM bits are mutually independent, so it is
possible to route the matrix output to the Clip-
ping Divider, to memory, to both, or to neither.

Matrix Multiplier output to memory takes the following
format:

X'
3D |y 20 | . x
,,,,, 2 R | , Y!
A

CURVE (Curve Mode) -- causes the Matrix Multiplier to
interpret drawing instructions as commands to
iterate difference equations.

TR1, TRO (Transpose Map) -- are interpreted as a 2-bit
number which controls the addressing into the matrix
scratchpad memory. They may be thought of as causing
the array to be transposed about any one of its three
dlagonals. The matrix elements agy, b1y, Cazz, and da; °
remain in the same place, for any transposition, but
the other elements are reflected in the f0110w1ng way:

TR1 TRO
0 0 -- no transposition
0 1 -- rows and columns are exchanged (i.e.
matrices A, B, C, and D are each transposed).
1 0 -- columns and rods are exchanged.
1 1 -- rods and rows are exchanged.

The planes about which the elements are reflected are
shown in Figure 3.7.

3-13

10

Rods

N

I

¢—> Rows

Columns

TRANSPOSITION PLANES

b hasen Pt un e o e

o P e

R L.

~

o
< A A

>

”~

Figure 3.7
3-14

— 01

The MOC, MOM and CURVE bits and the transpose map are
coded into the MDIR word in a special way, which permits the
programmer to change one of them without knowing the values
of the others. The right half of the MDIR is a numerical
quantity, called Q, which is used in the 3D curve drawing
operation. The left half of the MDIR register contains the
actual directive coding, in the form shown in figure 3.8.
Please note that if the MDIR register is stored (or sinked),
and later is loaded (or retrieved) from data written, it will
be restored to its original contents.

3-15

LOAD JTM(1)
RETRIEVE

STORE

SINK

<

THE MDIR REGISTER

(©)
Take Q

K MCURVE

J MCURVE

TM(0) -

Take TM

K MOM
J MOM

K MOC

J MOC

\.

sy N7 N/ N

~ N
1314151617181

N

92

y W VWV

0212223 0

23

MOC=1

MOC=0

MOM=1

AN AN AN

MOM=0
Always one

™(1) ¢«
™(0)

MCURVE=1

MCURVE=0

AN A

Always one

(Q)
C

Note:

oo |G

Next

no change
0

1
complement

Figure 3.8

3-16

CHAPTER 4
THE CLIPPING DIVIDER

4.1 Function

The Clipping Divider eliminates those portions of the drawing
which lie outside the field of view, and maps the remaining portion
of the drawing into scope coordinates. Input data come from the
Matrix Multiplier* (or the Channel Control if the Matrix Multiplier
is not included in the system), and output goes to the Line Genera-
tor, back to memory via the Channel Control, or both.

4,2 The Current Point

The coordinates of the SAVE point which are retained by the
LDS-2 are stored in the SAVE register of the Clipping Divider.
The Clipping Divider processes lines (dots being treated as lines
of zero length). 1In most cases, the SAVE point serves as one end
of the line and the new point, defined by the incoming data,
serves as the other end of the line. The SAVE register is auto-
matically updated by drawing instructions as explained in Chapter
7. The address and structure of the SAVE register are shown in
Figure 4.1.

4.3 Relative Data

The SAVE point also serves as a reference point for relative
loads. For relative parameter data (e.g., the window), data are
first added to the contents of the SAVE register and the result
is used to load the parameter register.

4.4 Two-dimensional Clipping and Division

In two-dimensional operation, the Clipping Divider automati-
cally eliminates portions of the drawing which lie outside a
rectangular area of the drawing space or ''page." This area on
the drawing space is known as the WINDOW. The user is able to
specify what part of the drawing space he wishes to view by
specifying a window in page coordinates which covers that area.
The window is specified by giving the page coordinates for its
left, bottom corner and its right, top corner. These values are
loaded into the WINDOW register of the Clipping Divider.

* Note: ’The Clipping Divider accepts only 23-bits of data from
the Matrix Multiplier. The high-order bit is a sign-extension.
This is done to prevent overflow within the Clipping Divider.

TEe page for the LDS-2 is thus effectively 23 bits rather than
24.

CLIPPING DIVIDER REGISTER CONFIGURATION

2-component

4-component addresses
addresses
0 SAVELB
N LEFT N BOTTOM
14 SAVE N (X) ; (Y)
2 VIEWLB
15 VIEW N LEFT N BOTTOM
(VIEWPORT) \ (X) N ()
\
-4 WINDLB
16 WIND N LEFT N BOTTOM
(WINDOW) N (X) N (Y)
6 INSTLB
17 INST Ny LEFT 5 BOTTOM
(INSTANCE) ; (X) N)
10 NAME
NAME NAME
12% HITANG
HIT, CORNER, ANGLE
EDGE COUNTS COUNTS
DATA FORMATS
0 23
2D NLEFT or RIGHT (X)
Q 3D
NBOTTOM or TOP (Y)
Note: Bit 0 is a sign extention,
Note:

Figure 4.1
4-2

WONI IS OIS

1 SAVERT
N RIGHT TOP
N (X or Zy) [§(Y or Z,)
3 VIEWRT
N RIGHT N ToP
N (X) N D
5 WINDRT
N RIGHT N TOP
N N M
7 INSTRT
N RIGHT N TOP
N ™ N (1)
11 CDIR
N\ —
N CDIR —
N —
13* SELINT
SEL- 1 PER
ECT + MIT| | INTENSTITY
|

* All bits not used,
see figure 4.5 for
~exact formats.

23

LEFT (X)

BOTTOM (Y)

RIGHT (Zx)

TOP' (Zy)

The names associated with the registers are LDS-2
mnemonics which have been defined in the LDS-2
Assembly language.

The user may specify the rectangular portion of the scope on
which he wishes the picture to appear. This area on the scope

is known as the viewport. The viewport is specified by loading
the VIEWPORT register with the scope coordinates of its left,
bottom corner and right, top corners. The scope coordinate
system is centered about zero and stretches from -77777 to +77777
(i.e., 16 bits), but because the VIEWPORT register is a full
24-bit register and because only the 16 least significant bits
are used to drive the scope, each boundary of the viewport

should be specified to be between -77777 and +77777. Specifying a
larger viewport results in wraparound, and specifying a smaller
viewport results in the picture being drawn on less than the

full viewing area on the scope.

The relation between the sizes of the window and viewport
determines the scale of the drawing. A window specification of
-17777777, +17777777 (in each axis) and a viewport specification
of -77777, +77777 (each axis) will map the entire page onto the
entire viewing area of the scope. If the window is only half as
large (in each axis) and the viewport is the same size, only 1/4
of the drawing appears, and the scale is twice as large.

The window and viewport need not be the same 'shape.'" When
they are different, the scale will be different in X and Y (to
"stretch'" the picture in one direction). Furthermore, it is
possible to create mirror images by specifying a "backward'" view-
port (i.e., where the value for the left edge is greater than
the value for the right edge, or the value for the bottom edge
is greater than the value for the top edge). Specifying a
backward window, however, results in none of the drawing being
displayed.

4.5 Three-dimensional Clipping and Division

In three-dimensional operation the drawing is compared to
a pyramid of vision rather than to the window. The pyramid of
vision is defined for positive Z values by the planes X = +Z,
X=-Z,Y=+Z, and Y = -Z, thus forming a right angle pyramid
with its apex at an observation point about 5" from the face of
the screen. Any portion of the drawing outside this pyramid of
vision is eliminated. Thus, only those lines or portions of
lines where |X|sZyx and |Y|<Zy are displayed, as shown in Figure
4.3, If Z is negative, the ¥ine is clipped. Since Bit 0 of the
Clipping Divider is a sign extension, Z values should not be
larger than 17777777, or the line will be clipped. '

In three-dimensions, perspective division becomes part of
the process of mapping the coordinate data into scope coordin-
ates. This perspective division yields X/Zx and Y/Z,,. The
viewport operates just as in two-dimensions, control¥ing the
portion of the viewing area of the Display Scope onto which
the picture is mapped.

TWO-DIMENSIONAL CLIPPING AND DIVISION

Y;\fINDOW VIEWPORT

N
R

b

/ol d

v-v

~d STREET

31

PAGE SCOPE

Figure 4.2

It should be noted that because the pyramid of vision
is right-angled, the perspective looks strange unless viewed
from very close to the scope face (about 5'). Other viewing
angles can be implemented by using the transformation

Z = 2 tan(«/2)

where « is the desired viewing angle.

4.6 Boxing

The boxing process is a special feature of the
Clipping Divider which allows two-dimensional subpictures to
be defined only once but appear in several different sizes and
locations. 1In order to understand boxing it is useful to
think of it conceptually as the concatenation of two mappings.
The first mapping is from the subroutine definition space, a
space similar to the page, onto the page. The second mapping
is then the normal page to scope (window to viewport) mapping
performed by the Clipping Divider. See Figure 4.4.

The area on this subroutine definition space which is
to be the domain in the first mapping is deliniated by the
MASTER. The master specifies the rectangular portion of the
subroutine definition space which is to be mapped onto the
page. The area on the page onto which the MASTER is mapped
is known as the INSTANCE. Once the subroutine has been
mapped onto the page, the normal window-to-viewport mapping
will eliminate any portion of the subroutine which lies out-
side the window and map the result onto the viewport, thus
displaying the subroutine at the proper position and size.

The "box'" operation of the LDS-2 automatically sets
up the window and viewport to perform a composite mapping.
The subroutine is thus mapped directly from the subroutine
definition space onto the scope. In order to compute these
new parameters, the Clipping Divider must be provided with
a master and an instance just as if two successive mappings
were to he performed.

e The Master. The master is specified as a direct
parameter of the box instruction (i.e. the data
addressed by the box instruction is the master).
The master should be specified by giving the left,
bottom and right, top corners in the coordinate
system of the subpicture to be drawn.

e The Instance. The instance should be loaded into
the INSTANCE register of the Clipping Divider prior
to executing the box instruction. The instance is
specified by giving the page coordinates of its
left, bottom and right, top corners.

The box operation results in defining a new window on
the subroutine definition space and a new viewport on the
scope. After the box instruction has been executed, the pro-
gram can jump to the subroutine and draw the subpicture just as
if it were executing a part of the main drawing routine. The

4-5

THREE-DIMENSIONAL CLIPPING AND DIVISION

9-v

/
) P

Ve
Vc

s
/ -
-‘E;yramid of Vision

Page

Figure 4.3

Note perspective division.

K

AN

~

Viewport

Scope

subpicture need not be in relative format. The relative size
of the subpicture on the main drawing is determined by the
ratio of the master to the instance, and, thus, the subpicture
can appear in any size. Finally, any part of the subpicture.
which lies outside the current window is clipped.

When the instance is loaded prior to boxing, the Clipping
Divider will check to see if there is any area in common
between the current window and the instance. If not, there is
no need to draw the subpicture, and it can be skipped entirely.
An "area-in-common" bit (AIC) is sent to the DIRECTIVE register
of the Channel Control, where it can be tested prior to boxing.
Please not that for the AIC bit to operate properly, the
INSTANCE register must be the last register loaded with a 2D four-
component load prior to the box instruction (i.e., no other
register should be loaded between the loading of the INSTANCE
and testing AIC), and the INSTANCE must be loaded with a 2D
four-component load. See Section 7.14. The AIC bit is cleared
by a new 2D four-component load.

4.7 HIT and COUNT Functions

The HIT bit is generated by the Clipping Divider, when
some portion of the line being generated intersects the
current window. This bit is sent to the DIRECTIVE register of
the Channel Control where it can be tested. The HIT bit can
also be enabled to interrupt the LDS-2. Once the HIT bit is
set, it remains on until cleared by an IOT instruction. The
HIT bit, thus, gives the Clipping Divider the features of an
automatic comparator which are very useful for 'pointing"
functions such as are associated with a tablet.

Several different counts that may be useful in examining
the geometry of a drawing are maintained in the HITANG register.
These counts are primarily wuseful for determining the rela-
tionship between polygons and the current window and, thus,
will be explained assuming that a polygon is being drawn.

EDGE COUNT. The EDGE COUNT is incremented, when-
ever both ends of the line are outside the window
and the line passes through the window.

CORNER COUNT. The CORNER COUNT is incremented for
each corner (i.e., endpoint connecting two lines)
within the window.

HIT COUNT. The HIT COUNT 1is incremented for each
dot within the window or each line which inter-
sects the window,

4-7

8-v

BOXING

The Two (Conceptual) Mappings

Y<\T\A_ASTER <;iijANCE XiOLD WINDOW

KiifD VIEWPORT

N\

P T

DEFINITION PAGE

The Composite Mapping Set Up By Boxing

SCOPE

ALY

\\—-NEW WINDOW

Figure 4.4

\NEW VIEWPORT

ANGLE COUNTS (Q1-Q4). The four angle count registers
may be used in conjunction with the other counts to
determine how the polygon intersects the window. To
understand the angle detection logic, it is best to
think of radials eminating from the corners of the
window, as shown in Figure 4.5 (Note: that the
radials do not include the edges of the window). Each
time a polygon edge crosses the radial in a counter-
clockwise direction, the count in incremented, and
each time it crosses in a clockwise direction, the
count is decremented. The four angle counters are used
to hold the accumulated counts for each quadrant
(radial). Examples of the use of these registers are
shown in Figure 4.5

It should also be noted that in order to make intelligent use of
these registers, they must be zeroed before the polygon is pro-
cessed. The HITANG register can be loaded, stored, sinked, and
retrieved.

(Note: These features are provided on a '"best effort'" basis, and
their proper functioning is not considered part of the acceptance
criteria for the system.)

4.8 Scope Control

The SELINT register of the Clipping Divider contains scope
selection and intensity information. Bits 2-9 are used for scope
selection. The next bit is used as a '"'take'" bit for the select
bits. If this bit is 0, the select bits are not loaded. It is
thus possible to load the intensity bits without loading the
select bits. The next 8 bits are used for the scope permit bits.
These bits form a mask against which the scope selection bits are
tested. If a violation occurs, a scope selection violation signal
is generated, which can be enabled to cause interrupt of the
LDS-2 (see Section 2.5). The permit bits can only be loaded when
the LDS-2 is in executive mode.

The last 24 bits of the SELINT register are used to specify
the intensity. However, only bits 1 through 13 are
actually used (see Section 5.2.1). Zero specifies greatest

intensity, 37770000 specifies least intensities. The format for the
SELINT register is shown in Figure 4.5.

4.9 The NAME Register

The NAME register of the Clipping Divider is an unassigned
register, which can be used by the programmer as a storage
register. The NAME register can be loaded, stored, sinked, or
retrieved.

4-9

HITANG and SELINT REGISTERS

HITANG REGISTER

034, 78 1112 19.
EDGE ICORNER HIT
COUNTFOUNT COUNT

.78 1112 1516 19 23
Ql | Q2 | Q3| Q4 =1

Examples of HITANG register usage.

pmoTTTTTTET ' . [t 4 1»

4

"CORNER COUNT = 1

= 2
v ¥
ANGLE COUNTS (ASSUMING COUNTER- 1 2 3 4 up DOWN
CLOCKWISE TRACE) Ql_Qz Q3 Q
1 Intersects the window 1. 0 0 1 0
2 Entirely within the window 2. 0 0 0 0
3. Entirely surrounds the window 3. 1 1 1 1
4, Outside the window 4, 0 0 0 0
SELINT REGISTER
2 91011 18 23 0 1 131

L

ig SELECT PERMIT E%g INTENSITY gééééggé%i;;s

T rAKE SELECT

Figure 4.5
4-10

FORMAT FOR CLIPPING DIVIDER OUTPUT TO MEMORY

PTOM (Clipped page
coordinates)

NTOM (Name Register)

STOM (Scaled scope
coordinates)

Previous Point

New Point

Previous Point

New Point

Note: Bit 0 is a sign extension.

23

TT 2T

[aN]

<] <

NAME

NAME

<k <1 =

If all three are set, data are deposited on the order shown.

* Omitted if 2D set.

Figure 4.6
4-11

4.10 Graph Mode

The Clipping Divider can be put into '"graph mode'" by
specifying "self X" or "self Y" in the Clipping Divider
directive register (see next section). In this mode, either
the X or the Y values in the SAVE register (or both) are
incremented by the corresponding X or Y value in the INSTANCE
register to form the new point, and the X or Y part of the
incoming data is ignored. 1In all self modes, all drawing
instructions should be relative. Also, both the X components
and both the Y components of the INSTANCE registers should be
loaded with AX or AY.

For more efficient storage of the coordinate data, the
"register draw' instructions should be used with SELFX or
SELFY. If coordinate data are accessed from memory for the
drawing instructions, the data will be interpreted as shown
below:

SELFY SELFX
f
X1 -
- Y].
X2 --
-- Y,

4,11 Mode Control

The dimension mode bits of the Channel Control DIRECTIVE
(DIR) register determine whether the Clipping Divider is in 2D
or one of the 3D modes. The rest of the mode control information
is stored in the Clipping Divider directive register (CDIR).

4-12

The bits of this register are as follows:

0-3
4

10

11

12

13
14

Unused
STOS
STOM

ZTOS

PTOM

NTOM

Take bits 2-6

J (Set) CURVE

K (Clear) CURVE
J (Set) MEF

K (Clear) MEF

J (Set) Dashed
Line

Scaled output to scope.

Scaled output to memory (see
figure 4.6 for format).

Z sent to scope to control
intensity. (Otherwise the
intensity bits of the SELINT
register control intensity).

Clipped page coordinates (be-
fore division) to memory (see
figure 4.6 for format).

NAME register contents to
memory (see figure 4.6 for
format).

If not set bits 2-6 are not
loaded.

If CURVE mode is set in 3D, the
Clipping Divider calculates the
part of the drawing within the
negative Z pyramid as well as
the positive Z pyramid. The re-
sult is that the drawing behind
the observer is also projected
onto the scope. This feature is
useful in displaying certain
types of curves. CURVE for the
Clipping Divider should not be
confused with MCURVE for the
Matrix Multiplier.

Minimum Effort Mode is a special
mode where the Clipping Divider
merely computes the X, Y and Z
coordinates for some point which
is visible on the specified line.
(PTOM should be set to get these
values into memory).

Causes the line drawn on the
scope to be dashed rather than
solid.

4-13

15

16
17

18

19

K (Clear) Dashed
Line

Unused

SELF X

SELF Y

Take SELF

4-14

Use INSTANCE register for AX
displacement.

Use INSTANCE register for AY

displacement.

If not set SELF bits are not
loaded.

CHAPTER 5
THE LINE GENERATOR AND DISPLAY SCOPE

5.1 Function

The last units in the LDS-2 processing pipeline are the
Line Generator and Display Scope. The Line Generator accepts
digital input from the Clipping Divider, converts these to
analog signals and generates the sweep voltages required to
drive the deflection system of the Display Scope. Input
includes 12 bits of X, 12 bits of Y, and 8-bits of Z inten-
sity, as well as scope selection data, MOVE/DRAW commands,
and the DASHED LINE command.

5.2 Control

The programmable control for the Line Generator and
Display Scope is contained in the Clipping Divider.

5.2.1 Intensity

The intensity modulation of the line drawn on the Display
Scope is under program control in one of two ways. First,
if the ZTOS (Z to scope) bit of the Clipping Divider directive
register (CDIR) is set, the Z value of the line is used to
modulate intensity. This "depth cueing' makes the intensity
of any point on the line a function of the Z coordinate
of that point. Thus lines that extend very far from the
observation point will grow dim at the far end.

If ZTOS is not set, the bits 1 through 13 of

the value stored in the INTENSITY register of the Clipping
Divider are used to determine intensity. '

§.2.2 Scope Selection

The Line Generator can drive up to four scopes. The
selection for these scopes is determined by the Select
register (bits 2-9 of SELINT) of the Clipping Divider.

These bits are masked against the bits in the Permit register
(bits 11-17 of SELINT) and in the case of violation, a scope
select violation bit is sent to the Channel Control. This

bit can be enabled so that it will cause an interrupt (see
Section 6.2). The permit bits can be set only in

éxecutive mode and are thus protected. For the format of the
SELINT register see Figure 4.5. A line can be displayed on
any combination of the available display scopes.

5-1

5.2.3 Beam Control

The Clipping Divider controls the movement of the beam
on the Display Scope. The '"set point" and drawing instruc-
tions received by the Clipping Divider are used to control
the MOVE/DRAW function of the Line Generator. The clipping
process insures that the Line Generator will not be fed
values which are off the edge of the viewing area of the
Display Scope.

The Display Scope can be made to draw a dashed line

(instead of a solid one) by setting the DASHED LINE bit of
the Clipping Divider directive register.

5-2

THE LDS=-2 ASSEMBLER

6.1 General Characteristics

The LDS-2 Assembler takes source code written in LDS-2
Assembly Language and assembles it into object code which can
be executed by the hardware of the LDS-2. The LDS-2 Assembly
Language features symbolic representations for addresses and
arguments, literals, automatic definition for symbols, and
facilities for defining new mnemonics. The LDS-2 Assembler
runs on the LDS-2, but the input is provided by the host
computer. The details of the software interface bhetween the
ILDS-2 and the host computer and instructions for calling the
assembler are given in Chapter 9. Fxamples of LDS-2 Assembly
Language usage and descriptions of the instructions are given
in Chapter 7.

6.2.1 Symbols

A symbol is composed of from one to six alphabetic, numeric
and non-reserved special characters (see Figure 6.1). Only
those special characters which are not specifically designated
for other purposes may be used in a symbol. A symbol may
represent a statement label, an external name, or an equiva-
lence relationship, such as a register name. When a symbol
is defined within the program, it is flagged as either absolute
or relocatable, If the assembly is in absolute mode, all symbols
are absolute. Otherwise, any symbol which is a statement label
(LAB) or derived from a statement label is relocatable. A
symbol encountered in an expression may be automatically defined
and assigned a location by placing a pound sign (#) immediately
following it.

6.2.2 Numbers

A number consists of one or more of the digits 0-9. Num-
bers may be of any length; however, if the number is larger
than the field into which it is to be placed, its excess high-
order (left-hand) bits are discarded in order to make it fit.
Numbers which begin with a preceding zero are interpreted as
octal, while all other numbers are interpreted according to
the prevailing radix, which is initially base ten. All numbers
are considered to be positive integers.

6.2.3 Current Location Pointer

When the period (.) is encountered in a statement subfield,
it is assumed to represent the current value of the location
counter.

LDS-2 ASSEMBLER CHARACTER SET

ALPHABETIC CHARACTERS
A -1

NUMERIC CHARACTERS
0 -9

SPECIAL CHARACTERS

All other special ASCII characters, except as listed below,
may be used in symbol formation.

SPECIAL CHARACTERS RESERVED FOR ASSEMBLER USE
Current location pointer .
' Subfield separator
! Text string delimiter
Alternate statement terminator

e Indirect address flag

o

Indexing flag
$ Statement continuation symbol

Literal delimiter

1

+ Addition operator

- Subtraction operator

® Multiplication operator; comment line indicator
/ Division operator

§ Priority indication (used in expressions)

Auto-definition flag

Used in OPDEF

[Y—

: Reserved for future use
Space Field separator
Carriage Return Statement terminator

Figure 6.1
6-2

6.2.4 Expressions

An expression consists of one or more symbols, numbers
and/or current location pointers, separated by combinations
of the arithmetic operators "+'", "-" nkn_ oy "/ The last
item in an expression must not be an operator. The expression
is evaluated according to Fortran heirarchy - that is, "*" and
"/" are evaluated first, then '"+" and "-", except where
overridden by the use of parentheses. If the expression contains
a division by zero, the original dividend replaces the quotient.
When successive operators of equal heirarchy are encountered,
they are evaluated from left to right. All arithmetic is in
fullword two's complement integer, so that fractional portions
of quotients are discarded. Parentheses are permitted in an
expression. As the expression is evaluated, its terms are
checked for relocation compatibility, and the final evaluated
expression must be either purely relocatable or purely absolute.
Thus, assuming that "A" is an absolute symbol, "R" is a
relocatable symbol, and "X" is any symbol, the following are
illegal expressions:

R+R (R+R-R is legal)

A-R (A-R+R is 1legal)

X*R (R*1, 1*R, 0*R, and R*0 are legal

X/R

R/X (R/1 is legal)

If the expression begins with an operator, the assembler
assumes an item preceding it, which has a value of zero and
is in absolute mode. Tt is in this manner that negative numbers
are handled., Once an expression has been evaluated, it is
trimmed to fit the field into which it is to be placed in
accordance with the same rules of modulus as for numbers (see
Section 6.2.2).

6.2.5 Text Strings

A string of characters enclosed in single quotes (apostro-
phies) is called a text string., Such a string is interpreted
by the assembler as a packed series of truncated ASCIT charac-
ters, and is packed accordingly into successive comnuter words,
six bit hyte format, four characters per word, left justified.
Any character may appear in the text string. A single quote,
however, is represented by inserting two adjacent single quotes
into the string, Unused portions of words containing text
strings are blank-filled,

6-3

6.2.6 Literals

A literal may be used to replace the address in an operand
field. When the literal is assembled, it is replaced by the
address of the one-word memory location which contains the
literal value. Thus, literals are automatically defined by
using them. A literal must be preceded by an eoual sign (=).
The following types of literals are allowed.

Expressions

When an expression is used in a literal,
it must be preceded by an equal sign, Should the expression
contain a ".", however, the "." will be evaluated as the
value of the location counter at the current statement;
hence, precisely the same literal appearing in the next
statement will be evaluated differently, and will be
assigned a different memory location. If a literal
expression contains a forward reference to a symbol, a
new literal word will be reserved, even though the same
expression may have occurred previously,

Text Strings

When a text string is used in a literal,
the string, including the single quotes surrounding it,
is preceded by an equal sign, If the string is greater
than four characters in length, only the first four
characters are accepted; the rest of the string is ignored.

6.2.7 Subfields

A subfield consists of either an expression, a text string,
or a literal. The operand field of a statement is often composed
of several subfields, each of which is terminated with a comma,
or in the case of the last subfield, with a space or carriage
return (or a semicolon, should another statement follow on the
same line). All subfields other than the first must be preceded
immediately by a comma. Two adjacent commas indicate a null
subfield. A null subfield is assumed to be absolute, and to
have a value of zero. If a subfield is the only one in the
operand field, it may not be null, although it may contain zero.
Should a dollar sign (%) immediately follow a subfield, the
line will be assumed exhausted, the rest of the line will be
ignored, and scanning for the next subfield will begin with
the first non-blank character on the next line, The address
subfield may contain either an expression or a literal, and
is preceded optionally by the indirect-address flag (@) and/or
the indexing flag (%) where permissible and applicable. These
flags must precede other data in the subfield, but may occur
in either order. If a subfield of an instruction which requires
a relocatable expression is left null, an error is indicated
by the assembler. The subfields of the EXTERN and ENTRY

6-4

directives must be symbols, and the subfields of the DATA
directive may contain expressions or text strings; all other
subfields, except address subfields, are limited to expressions,
Expression arithmetic involving external symbols is prohibited.

6.2.8 Fields

A field is a portion of a statement separated from other
portions by one or more blank characters. It consists of one
or more subfields,

6.2.9 Statements

The statement is the basic entity of the assembly language
for the LDS-2., A statement consists of up to four fields
separated from each other by one or more spaces.

The first or label field is optional, except in EQU or
OPDEF directives, and with the exception of these two directives,
is used to identify the memory location into which the current
instruction or data word is to be inserted. The label must
always be a symbol, and, with the exception of the EOU and OPDFF
directives, its inclusion in the statement automatically causes
it to be defined and given the value of the current location
counter., If this field is omitted, at least one space must
be inserted at the beginning of the statement. The first field
in EQU and OPDEF directives is not interpreted as a label, but
rather as a symbol or mnemonic which is to be set equal to some
value.

The second field is always mandatory, and contains the
instruction or directive mnemonic, which is a name following
the format of a symbol, but in no way associated with labels;
in fact, labels may be spelled exactly the same as instructions
with no possibility of confusion, This field must be followed
by at least one space, unless it has no operand and another
statement follows on the same line, in which case it must be
followed immediately by a semicolon.

The presence of the third or operand field depends entirely
on the particular instruction or directive. This field is the
only one which may contain subfields, and is used to specify
the arguments of the instruction or directive. Should a symbol
occur in this field, it is considered a reference to, rather
than a definition of, a label. This field may also be followed
immediately by a semicolon to indicate that another statement
follows on the same line, or by a space or carriage return.

The fourth or comments field, which is always optional,
except with the END statement which may not have a comment,
ignored; and, therefore, any character may be included in the
comment field, including the semicolon. If a comment exists
(i.e., a semicolon or carriage return does not immediately

6-5

follow the last mandatory field), only the carriage return or
end of line may terminate the statement.

If a line begins with an asterisk (*), the entire line

is treated as a comment and is not processed, but is listed
in the assembly listing.

6-6

6.3 Assembler Directives

Directive statements are offered to allow the user to pro-
vide information to the assembler for the purpose of controlling
the assembly of actual codes. Note: The label field of any
of the directives listed below is optional, except for EQU and
OPDEF directives.

6.3.1
Format:

Where:

Format:

Where:

Format:

Where:

Assembly-Control Directives

LAB RADIX N

N is a decimal number from 2 to 10, indicating the
base of the number system used in evaluating the
numbers used in subsequent statements.

This directive causes the prevailing radix for
number interpretation to be modified. If this
directive is not used, the radix will be assumed
to be 10 (decimal). However, use of a leading zero
will always cause the number to be interpreted as
octal (Radix = 8).

LAB DUP M,N
M and N are expressions,

DUP causes the group of M instructions and
directives following the DUP directive to be
replicated N number of times. M must be greater
than zero; N may be zero or greater. The default
condition for M is one. Any directive, except FEND,
may be included in the range of a given DUP, DUP's
may be nested up to five levels deep; however, the
boundaries of a given DUP range must completely
enclose the boundaries of all DUP's occurring within
that range. The number of statements in the range
of the primary DUP is determined strictly by the
space available in the symbol table.

NAME EOU N
NAME is a symbol; N is an expression,

This directive sets NAME equal to the value
of N. If any sumbols appear in N, their values must
have been previdusly defined. If N is a relocatable
expression, NAME will be flagged as relocatable;
otherwise, it will be flagged as absolute. N may
not contain an external symbol or an instruction
or directive mnemonic.

6-7

Format:

Where:

Format:

Where:

Format:

(1) NAME1 OPDEF NAME2

(2) NAME1 OPDEF NAME2 OPDFLD , FIELD1,
FIELDZ g o e

(3) NAME1 OPDFF (Expression),FIELD1,FIELD2,,...

NAME1l is the name of the mnemonic which is being
defined, NAMEZ is the name of a previously defined
mnemonic, OPFLDS is the appropriate operand field,
and FIELD1,FIELD2, etc., have either of the following
forms:

(1) (length of field, location of lowest-order
bit,N)

(2) (length of field, location of lowest-order
bit,AG%)

Form (a) is used for non-address fields, while Form
(b) is used for address fields.

This directive is used to define new mnemonics
for LDS-2 instructions. The names of mnemonics which
are initially defined for the assembler may not be
used for new definitions. Several of the instruction
groups have various possibilities, not only for the
names of mnemonics, but also for the way in which
the operand fields are defined. Through the use
of the OPDEF directive, the user has the option of
defining alternate forms for LDS-2 instructions.
(Note: See Appendix II for the OPDEF's which have
been initially defined for the assembler.)

LAB ORG N
N is an expression,

This directive sets the location counter to
the value of the expression. The value of the
expression is required to be relocatable. If a label
is associated with this directive, it assumes the
0ld value of the location counter. The assembler
initially assumes an ORG, where N points to the
beginning of the first page, until it encounters
another OR(, ’

LAB LITORG

This directive causes all literals so far defined
to be inserted into the program beginning at the
current value of the location counter, and the literal
table cleared. If the directive is labelled, the

6-8

label will be assigned the address of the first
literal. An automatic LITORG is generated upon
encountering an END or PAGE directive (see below).
Note: Once the literal table has been cleared by

a LITORG, all references to previous literals are
lost. Hence, the user must exercise caution in
modifying the contents of a literal during execution
of his program to provide a temporary storage area.

Format: LAB IND N
Where: N is an expression.

This directive must be the last statement in
the program, and signifies to the assembler that
the input is complete., The expression N is optional,
and if present, indicates the address at which
execution is to begin. For relocatahle assemblies,
N is required to be relocatable. If the statement
contains a label, the label will be assigned the
address of the first literal at the end of the
program, should one exist, and provided that the
user has not used the auto-definition feature.
Because the operand is optional, the END statement
may not contain a comment field, unless the operand
field is explicitly supplied. Otherwise, the
Assembler will mistakenly treat the comment as an
operand.

6.3.2 Object-Control Directives

Format: LAB EXTERN N,N,N,...
Where: The N are symbols.

This directive causes the symbols N,N,... to
be interpreted to the loader as being defined in
an external program, and instructs the loader to
insert the proper linkage, If the symbol is also
defined in the current program, a multiple-definition
error will result.

Format: LAB ENTRY N,N,N,...
Where: The N are symbols,

This directive causes the symbols N,N,... to
be made available to the loader for the purpose of
defining symbols specified in other programs in
EXTERN statements. A label used with this directive
will be assigned the current value of the location
counter and has no relation to the values of the
operands of the ENTRY directive. If the symbols

6-9

are not defined elsewhere in the program, an error
will result. '

6.3.3 Listing-Control Directives

Format: LAB LIST N
Where: N is an expression.

If N has a value of zero, all subsequent lines,
until the next LIST directive, will not appear in
the assembly-listing, If N is non-zero, the current
line and all subsequent lines to the next LIST will
be listed as follows: If N equal 2, the listing
will be double-snaced; otherwise, it will be single-
spaced.

Format: LAB SKIP N LAB SKIP N, 'text string'
Where: N is an expression.

This directive causes N blank lines to be
inserted in the assembly-listing. If the number
of lines to be inserted takes the listing past Line
56 of the current page, the listing will begin on
the top line of the page following. N must be greater
than zero. If the subfield is followed by another
containing a text string, that string will appear
on the heading line of all subsequent pages, until
a similar SKIP directive is encountered. The line
containing the SKIP directive is not listed, unless
it has been labelled.

6.3.4 Storage-Allocation Directives

Format: LAB DATA N2,N3,...,NM

This directive causes M words to be reserved
in memory, beginning at the address specified
currently by the location counter. Into each word
is placed the value of the corresponding subfield.
The subfields may contain either expressions or text
strings; if text, a sufficient number of words is
reserved to accommodate the string. If the directive
is labelled, the label is assigned the value of the
location counter prior to incrementation; that is,
the address of the first word generated by the DATA
directive. Note: The "DATA" mnemonic may be omitted
if the first operand subfield does not begin with
a name,

Format: LAB BLOCK N

6-10

Format:

Where:

LAB BLOCK N
N is an absolute expression.

A block of N consecutive memory locations is
reserved in the program, beginning at the address
currently specified by the location counter. The
counter is incremented by N, If the directive is
labelled, the label is assigned the value of the
location counter before incrementation.

6-11

6.4 Error and Warning Messages

If errors or possible errors are encountered during the
assembly, error and warning messages will be printed in the
listing. Some errors will cause termination of the assembly,
while others are non-fatal, There are four levels of error
messages:

1. Warning. The user is simply warned of a possible
problem.

2. Error. An object module will be produced, but it will
contain errors.

3. Fatal Error. The object module is discontinued, but
the assembly and listing will continue,

4, Catastrophe., Assembly is immediately discontinued,
probably due to an assembler error,

The following error messages are provided by the assembler:

TYPE LEVEL MEANING

Name too long; last part ignored
Number expressed in wrong radix
Symbol table overflow

Undefined symbol

Improperly nested parentheses
Misplaced arithmetic operator
Illegal placement of text string
Illegal use of external name
Multiply-defined symbol

Illegal use of relocatable name
Assembler error; get dump and call system man
Unresolved literal reference
Illegal DUP range

Undefined Mnemonic

Missing or garbled operand field
Literal Out of Address Field
Flag illegal in this field

Too few subfields; remainder assumed null
Too many subfields

Duplicate flags

Field must be relocatable
Reference across page boundary
Displacement exceeds one page
Input data out of order

Label missing or incorrect
Illegal expression

Missing END statement

SN MYE<CHNIOVOZIrRU~IATMMUOW >
NONENNNNNEHNDNNNNNGWRNENNNNDN NN GN -

6-12

LDS-2 INSTRUCTION SET

7.1 Accessing Data for the Instructions

The necessary data for LDS-2 instructions may be accessed in
one of three ways:

The address may be specified as part of the instruction
word. This address may be a direct address or an indirect
address. With most addressing instructions, indexing is also
available. If both indirection and indexing are specified,
the indirection is performed before indexing.

The address of the data may be contained in one of the
Channel Control registers. For instance, in most drawing

instructions the address is contained in the READ POINTER (RP).

In the case of the drawing instructions, the address in the

RP may be taken as an indirect address or an indirect and indexed

address.

The data for the instruction may be contained in the
Channel Control registers so that no memory reference is made
at all.

7.2 Notation

For the descriptions of the instructions, the following special

symbols are used:

R,R1,R2 These symbols are used to specify Channel Control
register addresses. R1 =»R2 means that the contents of R1
are loaded into Register R2.

N The symbol "N" specifies immediate data. Immediate data
are taken as an unsigned (positive) integer. For a 24-bit
system N may range from 0 to 7777 (octal).

b The symbol "b" is used to specify either the bit position

or the number of bits to be shifted. Bits are numbered beginning

with Bit 0 on the high-order (left end) of the word.

ADDR The address part of the instruction word is called ADDR.

This is the address within the current page.

e The "@" symbol is used to specify indirection., If this

symbol precedes the ADDR portion of the instruction, ADDR will

be taken as an indirect address.

% The "%" symbol specifies indexing., Although indirection
may be specified whenever there is an ADDR field, indexing is
only legal for some addressing instructions as specified in
the detailed descriptions of the individual instructions.

e The symbol "e'" is used to represent the effective address.
The effective address is the final memory address obtained after
paging, indirection, and indexing have been performed.

C(e) The contents of the memory location specified by the
effective address are represented by C(e).

C(R) The contents of the memory location referenced by the
address contained in Register R are specified by C(R). Note,
that in this case, it is assumed that R contains a memory
address. R1-»C(R2) means that the contents of Register Rl are

deposited into the memory location specified by the contents
of Register R2Z,

7.3 Loading and Storing the Channel Control Registers

The load and store instructions for the Channel Control regis-
ters allow'data to be transferred between memory and a Channel Control
register, between one register and another, and from the immediate
data f1e1d of an instruction word into a register.

Mnemonic: LO w ce.wmb LOad

Structure:

| B
01 34 7 8 A5~ 210-u0 b

000 R ADDR

Format: LO R, @ADDR

Function: Load the contents of the effective address into register
R. The previous contents of R are lost.

- C(e)— R

Mnemonic: ST ’Pagz:. STore
Structure:
N=|
01 34 7 8 AT T 20~ X

001 R ADDR

Format: ST R, @ADDR

Function: Store the contents of Channel Control Register R into
the memory location specified by the effective address.

_R "'> C(e)

Mnemonic: RLO Register LOad
P‘M% e~ . NF

Structure: N
WY Nl
01 34 S5 er 2%
b 110 R1§ . R2 0010

Format: RLO R1,R2

Function: Load Register Rl with the contents of Register R2. The
previous contents of R1 are lost.

R2=> R1

Mnemonic: RLOZ Register LOad and skip to Zero

Structure: N-§ M“f N~
01 34 738 ® i W 25

1110 R1 - . R2 0010

o h RREE

Format: RLOZ R1,R2 /

Funbtign: “Load Register R1 with the contents of Register R2 and
“ " skip the next instruction if R1 contains zero (after
having been loaded from R2). The previous contents of
R1 are lost.

R2 -5 R1

Mnemonic: ILO Immediate LOad

Structure: qu Nl
01 34 7 8 dﬁﬁ&&lh"fléﬁr -3
0110 R 'ﬁ | 101 d

Format: ILO - R,N

o

Function: Load Channel Control Register R with the immediate value
N. The previous contents of R are lost.

N - R
Mnemonic: ILOM Immediate LOad Minus
Structure: g’

01 34 7.8 . aﬁagur» .ae'v'q' ;;7,

o 10l R f et oW 1010
Format: ILOM R,N-° R

Function: Load Channel Control Register R with minus (two's
complement) value N. The previous contents of R are lost.

-N =R

7-4

7.4 Program Control

The normal sequent1a1 flow of the program may be changed by
the following instructions. The '"pushjump" and "popjmp" instruc-
tions use the PC-stack mechanism of the Channel Control. Remember
that the top element in this stack is the TOS register, and that
the STACK POINTER (SP) points to the second element in the stack.
In the descriptions of the program control instructions, the following
phrases take special meanings.

Push the PC The SP is decremented and the contents of the
TOS register are copied into the memory location referenced
by the new address in the SP. The contents of the PC (which
contains LOC+1, where LOC is the address of the '"push"
instruction) are then copied into the TOS register.

Pop the PC The contents of the TOS register are loaded into
the PC The contents of the memory location referenced by the
SP are then loaded into the TOS register, and the SP is

incremented.
Mnemonic: J Jump
Structuré:
01 34 7 8 - e 4 < v A | B el
klo 11%4/0 0 1 1 ADDR

Format: J @%ADDR

Function: Load the program counter (PC) with the effective address.

$dTm € — Pc

Mnemonic: PUSHJ PUSH Jump

Structure:
N/
01 3 4 7 8 8T V- N T X+ L xe)

e{o 1 %!0 111 ADDR

F t: PUSHJ @%ADDR wy
orma R
Function: Push the old PC onto the stack and load the PC with the
effective address.

SP-1~>SP

TOS — C(SP)
(Loc-n D=PC — TOS

e —»PC

Mnemonic: REGJ REGister Jump
veS
Structure: (—
N'y Nr/
01 34 7 8 Lo=6" 35 20
0111, R N 1100
Format: REGJ R,N
Function: If an immediate value (N) is specified, it is added to
the contents of Register R, and the results are loaded
into the PC. Note: The immediate value N is an optional
subfield and need not be specified if no offset is
required. The comma, however, is required in any case.
N+R)-» PC
Mnemonic: REGPJ REGister PushJump
N=
Structure: 3 v
N~ Nl
01 34 78 P10 a8 20 A%
0]1 1 1§ R N 1101
Format: REGPJ R,N .
Function: Push the PC. If an immediate value N is specified, it

is added to the contents of R, and the results are loaded
into the PC. Note: The immediate value N is an optional
subfield and need not be specified if no offset is
required. The comma, however, is required in any case.

Sp-1+-» SP
TOS — C(SP)
PC — TOS
N+R — PC

7-6

Mnemonic:

REGister Jump and pop the Stack

Struct -
ructure: ”,(,/ -
- 01 3 4 7 8 10 2T 207 23
0111 R - N 1110
Format: REJS R,N
Function: If an immediate value (N) is specified, it is added to
the contents of R, and the result is placed in the PC,.
The stack is then popped, which destroys the top element
in the stack (i.e., the old contents of the TOS). This
instruction may be thought of as a "grandfather return."
Note: The N subfield is optional, however, the comma
must still be present,
N+R - PC ,
C(SP)— TOS ; <P-1—¢<P
Mnemonic: POPJ : POPJump
-5
Structure:
~0"¢ N.-'
01 3 4 7 8 b rt™ sl a3
. 0 1110100 0 1110
Format: POPJ
Function: Pop the PC. This instruction serves as the standard

subroutine return,

TOS —» PC
C(SP)—» TOS
SP$1—>SP

Mnemonic:"‘ﬁéPJOF POPJump with OFset

by 4 N'r
Structure: o
| | N=Y Ned
01 34 7 8 Wo—t0" Y 20 253
01110100 N 1110
Format: POPJOF N

Function: Add the immediate value N to the contents of the TOS and
pop the PC. Note: Since N is the only argument in the
field, it must be present even though it may be zero.

N+TOS = PC
C(SP) — TOS
SP-1—>SP

Mnemonic: XEQ eXEcute a memory location as an insti

Structure:
: Nt

L3
.01 34 7.8 Lt——I03%6 25

elo 1{3(1 011 ADDR

Format: XEQ @%ADDR

Function: Execute the contents of the memory location specified
by the effective address as an instruction,

Mnemonic: REX Register EXecute
Structure: N'(
| ¥ e
01 34 78 2510 A% W FB
1 101 R 000j0 111
Format: REX R

Function: Execute the contents of Register R as an instruction.

7-8

EXAMPLE 1:

If one

then

LDS-2 Addressing for a 24-bit system
assumes that

ADDR = 1056
C(ADDR) = 2736
C(2736) = 27
IR = 1

ADDR sets the PC to 1056 v
@ADDR sets the PC to 2736 v”
$ADDR sets the PC to 1057 ~
@%ADDR sets the PC to 2737 v

(ST

7-9

7.§é_§tackaontrol

In addition to the stack on which return locations from the
program counter are saved, general-purpose stacks can be implemented
easily with LDS-2 instructions. Any of the Channel Control registers
may be used as a "stack pointer,'" and the mode of operation of the
stack is under program control. The following instructions are used
to implement general-purpose stacks.

Mnemonic: PUSH PUSH a register into memory
Structure: N-¥ -5
N Nl
01 3 4 7 8 5 & wiO) 25
01 11| R1 . R2 10 0XO
- : o X=0o0r1
Format: PUSH R1,R2

Function: Push the contents of Register Rl into the memory loca-
tion specified by the address contained in Register R2.

R1 - C(R2)
Mnemonic: IPUSH Increment and PUSH
Structure: p-C

v-8 | w-¥ Nl

01 34 7 8 b o2 - 25

D 111} R1 R2 01 Oﬁa
Format: - IPUSH R1,R2 |
Function: | Incremeht the contents of R2 by one, and push the contents

of R1 into the memory location specified by the new address
contained in R2,

R2+1 — R2
R1 — C(R2)

Mnemonic:

Structure:

Format:

Function:

PUSHI PUSH and Increment
N’J Nrr
{ N-Y N |
01 3 4 7 8 a8 ¥ 28 ™
0111 R1 R2 0110
PUSHI R1,R2

Push the contents of Register R1 into the memory location
specified by the address contained in R2 and then increment
the contents of R2,

R1—>C(R2)
. R2H - R2
Mnemonic: DPUSH Decrement and PUSH
Structure: v-s
N B
01 34 7 8 A5 W ¥ 2£y
111 R1 R2 1000
Format: DPUSH R1,R2
Function: Decrement the contents of R2 and then push the contents

of R1 into the memory location specified by the new address

contained in R2.

R2-1+% R2

R1—> C(R2)
Mnemonic: PUSHD PUSH and Decrement
Structure: VY

N" N"/ Ne|

01 34 7 8 AB VW 18| & 23

D 111 R1 : R2 101 d
Format: PUSHD R1,R2
Function: Push the contents of Rl1 into the memory location specified

by the address contained in R2 and decrement the contents
of R2Z,

R1 —»C(R2)
R2-1=—*R2

7-11

Mnemonic: POP POP a memory locati§2 into a register
Structure: ,J-(r'

! f - pe

.01 34 7 8 il Lo 3

0 111 R1 R2 0001
Format: POP R1,R2
Function: Pop the contents of the memory location specified by the

address contained in R2 into Register R1,

C(R2)~— R1
Mnemonic: IPOP Increment and POP

-y
Structure:
(VI 4 N-(? N-I
01 34 7 8 a3 T ¥ 20 <3
b111] r R2 0101

Format: IPOP R1,R2
Function: Increment the contents of Register R2 and pop the contents

of the memory location specified by the new address in

R2 into Register R1,

R2+1—> R2

C(R2) — R1
Mnemonic: POPI POP and Increment
Structure: N- N-§

\ Mool N

01 34 78 &S o 20 25

0 111| Rr1 R2 0111
Format: POPI R1,R2

Pop the contents of the memory location specified by the
address contained in R2 into register R1 and increment
the contents of R2.

C(R2) — R1
R2+1 — R2

7-12

1

Mnemonic: 'DPOP- . Decrement and POP

‘Structure: ¢ NS
N-C | Wy ey
01 34 7 8 AT I8 -
0 1 1 1| R1 R2 1001

Format: DPOP R1,R2

Function: Decrement the contents of R2, and then pop the contents
of the memory location specified by the new contents of
R2 into Register R1l.

R2-1—~— R2

C(R2) — R1
Mnemonic: PbPD ”32% POP and Decrement

—
Structure: %)
N-8 N.Y (S|

01 34 7 8 AT A0 1820 T

0 1 11] R1 R2 1011
Format: POPD R1,R2

Function: Pop the contents of the memory location specified by the
address contained in R2 into Register R1 and then decrement
the contents of R2.

C(R2) = R1
 R2-1— R2

-‘2

EXAMPLE 2: Subroutine Calling Sequence

The push and pop instructions of the LDS-2 are very power-
ful for list processing. They also provide a nice facility for a
subroutine calling sequence.

Calling Program

PUSHJ SUBR
parameter 1
parameter 2

parameter n
next instruction

i
Q. @22

SUBR POPI ACO, TOS
POPI AC1,TOS

POPT AC3,TOS

L]
.

.

POPJ

o | Egﬁ-———arZ(Aco
A

put parameter 1 in ACO
put parameter 2 in AC1

put parameter n in AC3

return to ''mext instruction"

Here we have used the TOS as a stack pointer to the parameter
list and can pop the parameters from the calling program, as

they are needed.

7-14

7.6 Arithmetic and Logical Operations

The arithmetic and logical operations are performed using the
contents of two Channel Control registers or the contents of one
register and an immediate value as arguments., Since these instruc-
tions do not have to reference memory, they are very fast. The
arithmetic operations are performed using full-word, fixed-point,
two's complement arithmetic. Logical operations are performed bit
by bit according to the following truth tables.

OR XOR AND
01 i0 1 01
0|0 1 0|0 1 0{0 0
111 1 111 0 110 1
Mnemonic: AﬁD ADD two registers o
Alwf'
Structure: {
N-§ Nef N
01 34 78 15 6 &% 20 >
0110 R1 R2 0000
Format: ADD R1,R2
Function: Add the contents of Rl and R2 and leave the results in
R1.
R1+R2 — R1
Mnemonic: ADDNC ADD two registers and skip on
No Carrvort <
Structure: Ne
F N"'" ‘ “oy N "l
01 34 78 A8 W ¥ 2%
1110} R1 R2 0000
Format: ADDNC R1,R2

Function: Add the contents of R1 and R2 and leave the result in
R1, Skip the next instruction, if the additions do not
result in a carryout. This instruction is useful for
double-precision arithmetic.

R1+R2 —R1
If no carryout, PC+1 = PC

7-15

Mnemonic: ADDI ADD an Immediate value to a register
Structure: -5
N=Y Nt
01 3 4 7 8 Sl M et 2
0110 R N 1000
Format: ADDI R,N
Function: Add the immediate value N to the contents of Channel
Control Register R and leave the results in R,
N+R = R
Mnemonic: ADDINC ADD Immediate and skip on No Carryout
Structure: N-§
.1!9 -y !
Q1 34 7 8 S e 20 aal-
111 D[R l ' N 1000
Format: ADDINC R,N |
Function: Add the immediate value N to the contents of Channel
Control Register R and leave the results in R, Skip the
next instruction, if the addition does not result in
carryout,
N+R— R
If no carryout, PC+1—> PC
Mnemonic: SUB SUBtract
(N\
Structure: N1 s
i - N. ¢ N8
01 34 78 By ar | sl
0110 R1 R2 0001
Format: SUB R1,R2
Function: Subtract the contents of Register R2 from the contents

of Register R1 and leave the results in R1,

R1-R2 — R1

Mnemonic: SUBNB SUBtract and skip on No Borrow
Structure: -~
V-8 N-H N
01 34 7 8 20 e
1 110 R1 ' R2 0001
Format: SUBNB R1,R2
Function: Subtract the contents of R2 from the contents of Rl and
leave the result in R1l, Skip the next instruction, if
the subtraction does not result in a borrow. SIUBNB is
useful for double-pre€ision subtractions,
R1-R2— R1
If no borrow, PC+1— PC (skip)
Mnemonic: SUBI SUBtract Immediate
Structure: N"f
l Nel N
01 34 7 8 H5 A AP 20 >
D 110 R N 1001
Format: SUBI R,N
Function: Subtract the immediate value N from the contents of
Register R and leave the results in Register R.
R-N—R
Mnemonic: SUBINB SUBtract Immediate and skip on
No Borrow NA
Structure: (» ‘{
- -l
01 34 78 AT xT o
1 110 R N 1001
Format: SUBINB R,N
Function: Subtract the immediate value N from the contents of

Begister_R anq deposit the results in R. Skip the next
instruction, if the subtraction does not result in a
borrow,.

R-N —> R
If carryou C+1—> PC (skip)

I
=

7-17

Mnemonic: OR \ 63}&&9 OR
Structure: , T'q N-$
. ., N-8) N-¥ N
' 01 3 4 7 8 PP K. 23
0 110 R1 ‘ ‘ R2 0101
Format: OR R1,R2
Function: Take the logical OR of the contents of Rl and R2 and
deposit the results in R1,
R1 OR R2 — R1
Mnemonic: ORZ (M@,(}(AO OR and skip on Zero
Structure 7'1~ ¢ T"
- N -l
01 3 4 7 8 5 6 A9 20)‘ ‘}SN
1 110f R1 o R2 0101
Format: ORZ R1,R2
Function: Take the logical OR of the contents of Registers R1 and
R2 and deposit the results in R1l, Skip the next
instruction, if the result is equal to zero.
R1 OR R2 — R1
If R1 = 0 PC+1—>PC (skip)
Mnemonic: XOR eXclusive OR
Structure: N-9 N-¢
| vt [-y e
01 3 4 7 8 ¥ 16 19 20 ot
D0 110 R1 R2 0011
Format: XOR R1,R2
Function: Take the exclusive OR of the contents of Registers R1

and RZ2 and deposit the results in Register R1,

R1 XOR RZ —+ R1

7-18

Mnemonic: XORZ eXclusive OR and skip on Zero
Structure: N'q NS
01 34 7 8 ¥l 1 M
1 1 10| R1 R2 0011
Format: XORZ R1,R2
Function: Take the exclusive OR of the contents of Registers Rl
and R2 and deposit the results in R1l, Skip the next
instruction, if the results are equal to zero.
R1 XOR RZ—» R1
If R1 = 0, PC+1— PC (skip)
Mnemonic: XORNZ ' XOR, do Not deposit results,
B & : sklp on Zero
Structure: - N Af
V-8 N N~
01 34 78 J8.16 9 0 5
"p110] R1 - | R2 0110
Format: XORNZ R1,R2
Function: Take the exclusive OR of the contents of Registers R1
and R2, but do not deposit the results. Skip the next
instruction, if the results are equal to zero.
If R1 XOR R2 = 0, PC+1-> PC (skip)
Mnemonic: . AND AND
Structure: -~ . 7 w-4 N-S
o vt Uned e
01 34 7 8 A3 16 "9 20 P o
D 110 R1 ‘ R2Z 10100
Format: AND R1,R2
Function: Take the logical AND of Registers Rl and RZ and depos1t

the results in Register R1.,

R1 AND R2 —R1

7-19

_ Mnemonic: D AND //
Structure -4 -1
01 34 7B 16 201
qa11 0\ 1 /ﬁi RZ/' o1 00

D R1,R2

Tqke the/logical |AND ¢f Registefs RL and R2 fand deposjjt
t resufits in Register R1.

R1\AND R2 —R1

Mnemonic: ANﬁk\J/V AND and skip on Zero
Structure: N-4 Ny
NoR)LN—V Nl
01 34 7.8 - ol 20 F ot
110} R1 R2 {0100
Format: ANDZ R1,R2

Function: Take the logical AND of the contents of Registers R1 and
R2 and deposit the results in Rl. Skip the next
instruction, if the results are equal to zero.

R1 AND R2 —R1
If R1 = 0, PC+1— PC (skip)

Mnemonic: ANDNZ AND, do Not deposit results,
skip on Zero
Structure: w-4 NS
L N .
01 34 7 8 ~ ¥ W 20 T
1 110f{ R1I R2 0111
Format: ANDNZ R1,R2

Function: Take the logical AND of the contents of Registers Rl and
R2 but do not deposit the results. Skip the next
instruction, if the results are equal to zero.

If R1 AND R2 = 0, PC+1 —RC (skip)

F

MUA Vo o Mnins.
EXAMPLE 3: Adding twe Soldmhrs—wf NGmbers

Since the arithmetic and logical equations do not reference
memory, it is best to use the stack mechanisms to do series of
arithmetic operations.

Assume

B: 4
17
3
27

Lt N ¥ WA

1

and that the WP the WC, and the IR registers are not being used.
Then

1LO IR, 4 4 into count e
LO WP,=A load WP with address of A
LO WC,=B load WC with address of B
LO RP,=C load RP with address of C
POPI ACO,WP A(n) = ACO, - (w1 =>wP
POPI ACI,WC B(n) — ACl (we)+r~>wCE
ADD ACO,AC1 ACO+AC1 —» ACO

Pt PUSHI ACO,RP ACO =>C(n), (RP+1) —>RP

c DECE IR decrement count and stop, if

/(L‘) equal T 2240

. S\ : J .=5 soN\z&ra (see Section 7,8)
W »/—‘\
w e ‘Iw?”aitoc+ﬂ)-§’: loe+Y

A
will put
C: 9—-———-'-‘6 wadle: 3
20Tl
7 -)
38 -0

7-21

o a

Lt o o
ES A I A

7.7 Compare Instructions

The compare instructions allow the user to compare the
contents of twg registers or the contents of a register and
an immediate value. Therc are conditional skip instructions,
so that the‘'mext instruction will be skipped, if the condition
specified (either equal -or not equal) is satisfied.

Mnemonic: CE Compare two registers and skip if Equal
Structufé? qu fo'
“ N* (N=Y Net
01 34 7 8 X el K
1101 R1 R2 1010
L./V""‘
Format: CE R1,R2 1%

Function: Compare the contents of Channel Control Registers
Rl and R2 and skip the next instruction, if their
contents are cqual,

If R1 = R2, PC+1— PC (skip)

Mnemonic: CNE Compare two registers and skip if Not Equal
Structure: A NS
My | Ny
01 34 7 8 ¥ e 2 20 -3
i)
1 101! RI | 2 101 1
Format: CNE R1,R2 ">

Function: Compare the contents of Channel Control Registers
R1 and R2 and skip the next instruction, if their
contents are not equal.

If R1 = R2, PC+1 — PC (skip)

Mnemonic:

Structure

Format:

Function:

.o

CEMI Compare and

value
Ry
’N"f -l
01 34 78 e 9 e N
1101] R N 1110
CEMI' R,N o

Compare the contents of Channel Control Register
R with minus (two's complement) the value of the
immediate N, and skip if they are equal.

If R = -N, PC+1=-» PC (skip)
Mnemonic: CNEMI Compare and skip if Not Fqual to Minus
Immediate
Structure:
N'r N,q - |
01 3 4 7 8 P K .155
1 1 0 1 R N 1111
) , 17
Format: - CNEMI R,N
Function: Compare the contents of Channel Control Register
R with minus (two's complement) the immediate value
N and skip the next instruction, if they are not
equal.
If R = -N, PC+1—>PC (skip)
Mnemonic: CEI Compare a register and skip if it eauals
the Immediate value '
Structure:
NJ N-‘(N"’
01 3 4 7 8 i . 23"
1 101 R N 1100
Format: CET R,N ’&
Function: Comparec the contents of Register R with the immed-

iate value N and skip the next instruction, if they
are equal,

If R = N, PC+1 —PC (skip)

~3
1

23

skip if Fqual to Minus Immediate

Mnemonic:

Structure:

Format:

Function:

CNEI Compare and skip if Not Equal the Immediate
value
NS
”'t{ -l
01 34 7 8 BT 20 7L
1 101} R N 1101
CNEI R,N '

Compare the contents of Channel Control Register
R with the immediate value N and skip the next
instruction, if they are not equal.

If R = N, PC+1— PC (skip)

7-24

7.8 Unary Instructions

This class of instructions is referred to as the unary class,
since the operations performed affect the contents of a single Channel
Control register. These are also conditional skip instructions,
so that if the condition specified in the mnemonic is satisfied,
the next instruction is skipped. Conditions are specified by
appending the following suffixes on the basic mnemonics:

E equal

L less than

LE less than or equal

G greater than

GE greater than or equal
NE not equal

A always

In each case, comparison is made with an implied zero.

Mnemonic: DEC DECrement a Channel Control
register)
Structure: (N- _1 r.u—S'
N- N -

01 34 78 (3331,& ol sV

1101 R | 0j<> =000 0
Format: DEC R DECG R

DECE R DECGE R

DECL R DECNE R

DECLE R DECA R

Function: Decrement the contents of Channel Control Register R.
Skip, if a condition is specified and satisfied.

R-1~->=R
If condition is true, PC+1— PC (skip)

7-25

Mnemonic: INC INCrement a Channel Control
register
Structure:
01 34 7 8 15 16 19 20 23
1101 R Oj<> =1000 1
Format: INC R INCG R
INCE R INCGE R
INCL R INCNE R
INCLE R INCA R
Function: Increment the contents of Channel Control Register R.
Skip, if a condition is specified and satisfied.
R+1—R
If condition is true, PC+1—>PC (skip)
Mnemonic: COM COMplement a Channel Control
register
Structure: -
01 34 7 8 15 16 19 20 23
1 101 R 0k> =]0010
Format: COM R COMG R
COME R COMGE R
COML R COMNE R
COMLE R COMA R
Function: Complement the contents of Channel Control Register R

(one's complement)., Skip, if a condition is specified
and satisfied.

Mnemonic:

Structure:

Format:

~R-—->R

If condition is true, PC+1—> PC (skip)

NEG NEGate a Channel Control register
01 3 4 7 8 15 16 19 20 23
L1031l r o f>=]0011

NEG R NEGG R

NEGE R NEGGE R

NEGL R NEGNE R

NEGLE R NECA R

Function:

Negate the contents of Channel Control Register R (two's
complement). Skip, if a condition is specified and
satisfied.

-R—R
If condition is true, PC+1—>» PC (skip)

Mnemonic:

Structure:

Format:

Function:

TST TeST a Channel Control register
(NOP No OPeration)

01 34 7 8 15 16 | 19 20| 23
1101] R 0 <> = ogl 00
TST R TSTG R |

TSTE R TSTGE R

TSTL R TSTNE R

TSTLE R TSTA R

Test the contents of Register R (leaves R unchanged).
Skip, if a condition is specified and satisfied. Note
that TST without a condition appended is the NOP,

If condition is true, PC+1—PC (skip)

Mnemonic:

Structure:

Format:

Function:

ZR ZeRo a Channel Control register
01 34 7 8 15 16 19 20 23

1 10 1| R 0/<> = 10101

ZR R

ZIRE R

Zero the contents of Register R. Skip, if the "A" is
appended to the mnemonic.

0—>R
If ZRE, PC+1— PC (skip)

7-27

Mnemonic:

Structure:

Format:

Function:

“ ABV ABsolute Value of a Channel

Control register
01 34 7 8 15 16 19 20 23
]

1 101 R 0i<>=|0110

ABV R

ABVE R

ABVG R

ABVGE R

Take the absolute value of the contents of Channel Con-

trol Register R and skip, if a condition is specified
and satisfied. Note that all conditions envolving '"less
than zero" are meaningless, since the test is made after
the absolute value is taken. Similarly, ABVGE is
equivalent to ABVA and replaces ABVA,

Mnemonic:

Structure:

Format:

Function:

'R' —» R

If condition is true, PC+1— PC (skip)

SLO Switches LOad

01 3 4 7 8 15 16 19 20 23
1 101 R 11<> = 10110
SLO R SLOG R

SLOE R SLOGE R

SLOL R SLONE R

SLOLE R SLOA R

Load Register R from the data switches on the control
panel, and skip the next instruction if a condition is
specified and satisfied.

Switches—> R
If condition is true PC+1—>¥C

7.9 Shifting Instructions

These instructions shift the contents of the specified
register either left or right the specified number of bits.
Three types of shifting are available: arithmetic, logical,
and circular. Arithmetic shifting right extends the sign bit
on the left end of the word and shifts bits out the right end.
Logical shifting right shifts zeros into the left end of the
word and shifts bits out the right end. Logical shifting left
shifts zeros into the right end of the word and bits out the
left. Arithmetic shifting left has the same function and is
the same instruction; however, two mnemonics are provided.

In the above cases, all bits shifted out are lost. Circular
shifting, on the other hand, cycles the bits out one end and
back in the other so that no information is lost.

The logical and arithmetic shifts are also available for
double registers, so that the two registers can be shifted as
if they were a single register. However, the maximum number
of places that can be shifted is still 23. (, ",

if
£

Mnemonic: ASIHR Arithmetic SHift Right
Structure: r"'()
. (N-D Ne Nl
01 34 7 8 s D 20 ¥
0 101 R b 0100
. YN
Format: ASHR R,b ‘Qx lr»

Function: Shift the bits in Register R right b positions.
Bits shifted out the right end of the word are lost.
The sign bit (0) is extended to replace the bits
shifted out of the left end of the word.

Mnemonic: LSHR Logical SHift Right

Structure: % / WA
01 34 7 8 f’s’% L o \‘ai-a-\
D0 101 R ! b 0010

Format: LSHR R,b

Function: Shift the bits in Register R right b positions.
All bits are shifted. Bits shifted out the right
end are lost, and zeros are shifted into the left
end of the word.

Mnemonic: LSHL Logical SHift Left (may also be called
ASHL)
Structure:
01 34 7 8 15 16 19 20 23
0 1 0 1} R b 0011
Format: LSHL R,b
Function: Shift the bits of Register R left b bit positions,
Bits shifted out the left end of the word are lost,
and zeros are shifted into the right end of the word.
Mnemonic: CSHR Circular SHift Right
Structure:
01 3 4 7 8 15 16 19 20 23
D 10 1] R b 0000
Format: ﬁSIiR R,b %iﬁf
Function: Shift the bits of Regisher R right b bit positions.
Bits shifted out the end of the word are shifted
back into the end of the word so that no bits
are lost.
Mnemonic: CSHL Circular SHift Left
Structure:
01 3 4 7 8 15 16 19 20 23
D 10 1| R b 10001
Format: CSHL R,b ,
Function: Shift the bits of Register R _h.jt positions to the

left. Bits shifted out thef
are shifted back into the‘gi;v
that no bits are lost.

end of the word

end gg the word so

Mnemonic:

Structure:

Format:

Function:

-t

ASHRD Arithmetic SHift Right Double register

01 34 7 8 15 16 19 20 23

p101]| R b 0101

ASHRD R,b

Shift the bits of Registers R and R+1 to the right

as though they werec a single register. Bits shifted

out the right of Register R are shifted into the

left end of Register R+1, and bits shifted out the

right end of Register R+l are lost. The sign bit

of Reglqter R is extended to replace the bits shifted

the left end of the word. The maximum shift

"is 23 bit positions.

Mnemonic:

Structure:

Format:

Function:

LSHRD Logical SHift Pight Double register

01 34 7 8 15 16 19 20 23

D 10 1 R b 0110
LSHRD R,b

Shift the bits of Registers R and R+1 to the right
as thou hey were a single register. DBits shifted
S th of Register R are shifted into the left

end of eglster R+1, Bits shifted out the right

end of Register R+1 are lost. Zeros are shifted

in the left end of Register R to replace bits shifted
out, The maximum shift is 23 bit positions.

Mnemonic:

Structure:

Format:

Function:

LSHLD Logical SHift Left Double register (may
also be called (ASHLD)

01 3 4 7 8 15 16 19 20 23

0101 R b 0111
LSHLD R,b

Shift the bits of Registers R and R+1 to the left
as though they were a single register. Bits shifted
out the left end of Register R+1 are shifted into
the right end of Register R, Bits shifted out the
left end of Register R are lost. Zeros are shifted
in the right end of Register R+1 to replace the bits
shifted out. The maximum shift is 23 bit positions.

7-32

7.10 Masking Instructions

These two instructions mask out part of the contents of
the specified register with zeros.

Mnemonic: MR Mask Right

Structure:
01 3 4 7 8 15 16 19 20 23
1101] R b 100 J

Format: MR R,b

Function: Mask out all the bits to the right of,band including,
bit b with zeros.

Mnemonic: ML Mask Left
Structure:

01 34 7 8 15 16 19 20 23

1101]| R b 1001

Format: ML R,b

Function: Mask out all of the bits to the left of, and
including, bit b with zeros.

EXAMPLE 4: Shifting and Masking

Assume AC2 contains 0 and ACl1l contains 77777777 and that
the following sequence of instructions is performed.

ASHR AC1,3 AC1=77777777

LSHR AC1,3 AC1=07777777

LSHL AC1,4 AC1=77777760

CSHR AC1,1 AC1=37777770 CERREE T

CSHL AC1,2 AC1=7777774F NMIT174

ASHRD AC1,3 AC1=77777774
AC2=5000000

LSHRD AC1,3 AC1=0777777
AC2=7500000 ,

LSHLD AC1,6 AC1=7777775 o
AC2=0000000

MR AC1,6 AC1=7700000

ML AC1,2 AC1=0700000

7.11 Bit Manipulation

The instructions of this class allow the user to
independently test and manipulate individual bits within a
register, Bits may be set or cleared, and the next instruction
may be skipped if the specified bit is either one or zero.

In the cases where both the testing and the setting and clearing
are performed, the testing is performed first.

Mnemonic: SOB Skip on One Bit
Structure:
01 34 7 8 15 16 19 20 23
0101 R b 1000

Format: SOB R,b

Function: If bit b is equal to "1", then skip the next

instruction.
Mnemonic: SZB Skip on Zero Bit
Structure:
01 34 7 8 15 16 19 20 23
D 10 1] R b 1001

Format: SZB R,b

Function: If bit b is equal to '"0", then skip the next

instruction,
Mnemonic: CLB CLear Bit
Structure:
01 34 7 8 15 16 19 20 23
0 101 R b 1010
Format: CLB R,b

Function: Clear bit b of the register specified.

7-34

Mnemonic:

Structure:

Format:

Function:

SETB SET Bit
01 34 7 8 15 16 19 20 23
0 101 R b 1011
SETB R,b

Set bit b of the register specified.

Mnemonic:

Structure

Format:

Function:

SOBCL Skip on One Bit and Clear
01 34 7 8 15 16 19 20 23

101} R b 1100
SOBCL R,b

Test bit b of Register R.

if it equals '"1" and clear bit b.

Skip the next instruction,

Mnemonic:

Structure

Format:

Function:

SZBCL Skip on Zero Bit and Clear
01 34 7 8 15 16 19 20 23
0 10 1] R b 1101
SZBCL R,b

Test bit b of Register R,

if it equals '"0" and clear bit b,

Skip the next instruction,

Mnemonic:

Structure:

- Format:

Function:

SOBSET Skip on One Bit and SET bit
01 34 7 8 15 16 19 20 23

0 1 0 1 R b 1110
SOBSET R,b

Test bit b or Register R,
if bit b is equal to "1'" and set bit b.

Skip the next instruction,

Mnemonic: SZBSET Skip on Zero Bit and SET bit

Structure:
01 34 7 8 15 16 19 20 23
101 R b 1111
Format: SZBSET R,b

Function: Test bit b of Register r. Skip the next instruction,

if bit b is equal to "0" and set bit b,

EXAMPLE 5: List Processing Loop

The following loop allows multilevel indirection for list

processing, If we assume that pointer words are marked with

ali

will
then
word
can b

BEGIN

In th

n bit 0 and value words have a 0 in bit 0, then
POP ACO,ACO Y RCO) L = Aco

SOB ACO,0 ’

J .2

follow the pointer words down to the value word which is
left in ACO. For processing list structures where a value
is associated with each pointer word the following code

e used.
POPI AC1,ACO pointer to AC1
POP AC2Z,ACO value to AC2
POPI ACO0,AC1 pointer to ACO
POP AC2,AC1 value to AC2
J BEGIN

is case ACO0 and ACl1 alternate as pointers so that the old

pointer can be use to pick up the value word.

7.12 The IOT Instruction

As explained in Section 2.5, the LDS-2 has a series of
registers which are treated as I/0 devices. These registers
may be loaded or unloaded via the IOT instruction., In addition
to loading and unloading registers, the IOT instruction is used
for special functions such as setting user mode, putting the
LDS-2 to '"sleep,'" or skipping on '"settled" (see Section 2,5).
Most of the IOT instructions are illegal,-if the LDS-2 is in
"user mode," so that if the user attempts to use them, the LDS-
2 will be interrupted (if the mask is set). The device code
bits of the illegal IOT instruction are saved in a register,
so that the interrupt service routine can examine these bits
and determine what to do. If the interrupt routine does not
allow the device code, an interrupt will be sent to the host
computer, and the job will be terminated. But if the interrupt
routine knows how to service that device code, it can take
appropriate action and then return control to the user's program.
It is thus possible to use dummy device codes for communication
between the user's program and the monitor of the LDS-2,

Mnemonic: IOT 0&ﬁ7k°L'SZ Input Output Transfer
Structure: Lf - 04 ‘ \z
! S N
748 A TR0 2%
| bprv’ \
-+

Function: Transfer information between Channel Control Register
R and the I/0 device specified by the DIV code.
The DEV code also specifies the direction of the
transfer, The DEV codes and the action taken are
listed below. _

" DEV
Nctal Code Function

)~

oo Unused

Read Interrupt Conditions Register

Load Interrupt Conditions Register

Read Interrupt Mask Register

L.oad Interrunpt Mask Register

Read I/0 Device Code Error Register

Load I/0 Device Code Error Register o
, Enable Interrupts (ION)

10 Set Sleep

11 Set User Mode

N T BN O

20 Read Switches
21 Load Lights
26 Load Sync Mask Register

7-37

27 Read Sync Mask Register
30%nA Load Repeat Status Register (RSR)
J1R%N Read RSR

J2%%x% Load Directive Register

J3RAR Read Directive Register

36%*x Skip on Settled

40 Set the Attention Bit

41 Skip on Attention and Clear the Attention Bit
42 Load the Protection Register

43 Read the Protection Register

44 Clear Protection Violation

45 Read the BAR

46 Load the BAR

The following dummy codes are allowed by the interrupt handler:

370*%*%* End of Execution String I0T s+ 370 = RSTART

371*** Terminate Job Normally 10T ,371 = STOP
372*%** Tnput/Output Request to

the Host Computer I0T »372 = IOR
‘373%%% Call Software Character

Generator 10T »373 = CHAR

374%%%* Disable Real-time Clock IOT ,374 = CLKSTP
375*%*** Restore Clock to 30 Cycles IOT , 374 = CLKSRT

% Indicates that this code may be used by the user. All
other codes are valid only in executive mode.

kA%% Available only to the highest priority user.

EXAMPLE 6: Changing the mode of the LDS-2

The following sequence of code can be used to change the mode
of the LDS-2 to 2D:

10T ACO, 33 load ACO with DIRECTIVE
CLB ACO, 5 set bit 5 to 0

CLB ACO, 6 set bit 6 to 0

10T ACO, 32 reload the DIRECTIVE

7-38

EXAMPLE 7:

Multiply Routine

This routine multiplies two single word unsigned numbers
in ACO0 and AC1 and produces a single word product in ACO.

RLO
1LO
LSHL
SZB
ADD
LSHL
DECE L
J
POPJ

" EXAMPLE 8:

AC3,ACO
AC2, & IS 1.

ACO,1
AC1,0
ACO ,AC3
AC1,1
AC2

.- 5

Divide Routine

load multiplicand into AC3

load counter to 24 bits

shift multiplicand left

skip, if most significant bit is 0
accumulate product

shift multiplier

decrement count

do again

return

This routine divides the signed one-word dividend in ACO
by the signed divisor in ACl to produce a signed quotient in

ACO,

RLO
RLO
ZR
RLO
XOR
ABV
IABV
ILO
LSHLD
SUB
TSTL
J
ADD
SETB
DECL
J
COM
RLO
SZB
NEG
POPJ

AC3,AC1
AC1,ACO
ACO
1R,AC3
1R,AC1
AC1

AC3
AC2,23
ACO, 1
ACO ,AC3
ACO

.43

ACO ,AC3
AC1,23
AC2

-7

AC1
ACO,AC1
1R, 0
ACO

ACO

AC |

return

7-39

7.13 Load/Uﬁload Pipeline Registers

The pipeline processing units of the LDS-2 contain parameter
and directive registers which control the processing performed
by these units. The Channel Control sends the load/unload
instruction down the pipeline and controls the transfer of data
to or from the pipeline registers. Since the data in the
pipeline registers affect the processing that is performed,
the pipeline is allowed to settle so that all pending data will
be processed before these instructions are executed. There
are two general groups of these instructions: those which
transfer data between the pipeline registers and memory, and
those which transfer data between the pipeline registers and
the Channel Control registers.

The memory load/unload instructions are inherently dynamic
"repeat'" instructions. It is useful to think of these instruc-
tions as transferring groups of registers, where the group may
only include a single register. There are four types of register
transfers: 1load, store, sink, and retrieve. For all these
instructions the count of the number of registers to be trans-
ferred is specified by the contents of the READ COUNT (RC).

If the RC contains a non-negative value, only one register will
be transferred, and the RC is not incremented. If the count

is negative, it is taken as the two's complement of the number
of registers to be transferred and incremented after each
register has been transferred. After these instructions are
finished, the count will be zero (unless a positive number was
initially loaded into the RC). For load and store instructions
the contents of the READ POINTER [RPJ are taken as the memory
address into which or from which data are transferred. The

RP is incremented as shown In the load/store algorithm of Figure
7.1, For sink and retrieve instructions the memory address

is taken from the DATA SINK POINTER (see Section 2,4,5). The
sink and retrieve algorithms are shown in Figure 7.2,

The register load/unload instructions (i.e., those which
transfer data between Channel Control registers and the pipeline
registers) transfer either one or two pipeline registers.
Whether one or two registers are to be transferred, and which
Channel Control registers will be used in the transfer, are
specified in the "X" field of the register load/unload
instructions. This "X" field may take on the following values:

SACO 0 Single register beginning with ACO
SAC2 2 Single register beginning with AC2
SX 1 ' Single register beginning with X
sX 3 Single register beginning with Z
DACO 4 Double register beginning with ACO

7-40

LOAD/STORE ALGORITHMS

Transfer k , ' Copy —
DA(1) and $AVELB(1)
increment into DA(1)
RP
y
1Transfer Copy
DA(2) and $AVELB(2)
increment into DA(2)
RP
&
Transfer -
es DA(3) and
increment
RP
no
Transfer Transfer
DA(4) and
QA(B) and . increment
increment RP
RP
Il »
Transfer
] DA(4) and _yes
! increment B
RP
D RO
% Increment
yes RC and
increment
DA
no
Increment
RC and no
increment
DA
A Yes

2D four-component

*RC=0 at this point only if no
count was loaded :

Normal 2D
an

Figure 7.1
7-41

SINK/RETRIEVE ALGORITHMS

K— . “__-—-—- 1
Increment gﬁ?iﬁegﬁd
DSP and decrement
sink DA(1) | Dsp
Increment Retrieve
SP and DA(2) and
ink DA(2) decrement
SPp

Increment gzggiezzd
DSP and decrement
sink DA(3) es
Increment %§%£§ezid
D$P and, decrement
sink DA(4) Des

no
Increment Increment
RC and o red
increment 3 an .
DA ecremen

Sink

Retrieve

*RC=0 at this point only if no count was loaded.

Figure 7.2
7-42

DX 5

)

‘Double register beginning with X

_ For double register transfers, two consecutive pipeline registers

are transferred.

Register transfer instructions must be either

load or store (i.e., there are no such things as register sink
and retrieve instructions).

Bits 4-7 of the instruction word for all load/unload
pipeline instructions constitute a '"device and manner'" code,
The following device and manner codes are legal for the LDS-

2:
CLA 0
CLR 1
CLSA 2
CLSR 3
MM 4
MMR 5

Clipping Divider Absolute. The data are
copied into or from the registers of the
Clipping Divider.

Clipping Divider Relative (only valid for
load- and retrieve-type instructions).
The data are added to the Clipping Divider

"SAVE register, and the result is used to

load the register.

Clipping Divider Size Absolute. This manner
is only legal for load and retrieve instruc-
tions and is only meaningful for loading

‘four-word (four-componernt) C11pp1ng Divider

registers (i.e., Registers 14-17) in 2D.
The incoming data are taken as a negative -
and positive displacement from the origin.
That is, the negative of the data are
loaded into the first two components, and
the data are then loaded into the. 1ast two
components,

Clipping Divider Size Relative. The size

relative manner is similar to the size
absolute and has the same restrictions.

The only difference is that with the size
relative the data are taken as negative

and positive displacements from the value

in the SAVE register of the Clipping Divider.

Matrix Multiplier Absolute. Data are
simply copied into or from Matrix Multi-
plier registers.

Matrix Multiplier Relative. This manner
is only legal for the load instructions.
The data are first added to the old con-
tents of the register to be loaded, and
the result is then used to load the
register.

7-43

MMP 6 Matrix Multiplier Product. This manner
is also only legal for the load instruc-
tions. The incoming data are first
multiplied by the matrix specified in the
DA field (see following description), and
the result is loaded into matrix A,
beginning with row 0.

MDR 7 Matrix Multiplier Directive Register. The
Matrix Multiplier Directive register is a
two-word register which is treated as if it
were a separate pipeline device. Data are
transferred in absolute form,

Certain "illegal" combinations of instructions and device
and manner codes are used for special operations of the Matrix
Multiplier. A store instruction with a device and manner code
of 5 is used for the "normalize" instruction, and with a device
and manner code of 6 is used for a "push Matrix Multiplier"
instruction. A sink instruction with a device and manner code
of 5 is a "sink and slide" instruction. A retrieve instruction
with a device code of 5 mecans "retrieve and slide," and with
a device code of 6 means '"pop Matrix Multiplier.'" Special
mnemonics have been defined for all of these instructions.

The device address field (DA) of the load/unload
instructions specifies the register within the device with which
the transfer will begin. The register addresses for the Matrix
" Multiplier are simply the row numbers of the matrices. These
registers are two words long, if the LDS-2 is in 2D; otherwise,
they are four words long. Most of the register of the Clipping
Divider can be addresses by two different addresses. Register
0-13g are two-word registers (see Figure 4.1), and registers
14-17g are four-word register addresses for Registers 0-7,
Normally, two-word register addresses are used, when the LDS-

2 is in 2D mode, and four-word addresses are used in the 3D
modes. The major exception to this is when size absolute or
size realtive loads are performed and when 2D four-component
loads are performed (usually in preparation to boxing
instructions; see the 2D four component load algorithm and
Example 11).

The dimension mode of the LDS-2 determines how many words
of data are sent down the pipeline for each register transferred.
If the LDS-2 is in 2D mode, two words are transfered; otherwise,
four words of data are sent down the pipeline. The programmer
must, therefore, be careful to match his load/unload instruction
addresses to the current mode of the LDS-2. 1If, for example,
the LDS-2 is in one of the 3D modes and the user attempts to
load one of the two component registers of the Clipping Divider,
four words of data will get loaded into the two-word register,
which will result in the last two words being written over the
top of the first two.

7-44

Mnemonic: LOCLA LOad CLipping divider Absolute -
N~
Structure: NeY
N~ r N—'
01 34 7 8 AF W ¥ 26
1000000 DA 0110
Format: LOCLA DA
Function: Load Clipping Divider register(s) with absolute data,
starting with Register DA and continuing according
to the load algorithm (see Figure 7.1).
Mnemonic: LOCLR LOad CLipping Divider Relative
Structure:
7
01 34 ‘78 15 16 19 20 23
~
0100100(10, DA 0110
Format: LOCLR DA
Function: Load Clipping Divider Register(s) with relative data,
starting with Register DA and continuing according
to the "load" algorithm (see Figure 7.1). Relative
data are added to the contents of the Clipping Divider
SAVE registers to form the sum which is actually
loaded into the register.
Mnemonic: LOCLSA LOad CLipping divider Size Absolute
Structure:
01 34 7 8 15 16 19 20 23
1000010 DA 0110
Format: LOCLSA DA
Function: Load Clipping Divider registers with size absolute .

data (see Figure 7.1).

7-45

Mnemonic:

Structure:

Format:

Function:

LOCLSR LOad CLipping divider Size Relative

C 1 3 4 7 8 15 16 19 20 23
0 1000 011 DA 10110
LOCLSR DA

Load Clipping Divider registers with size relative
data (see Figure 7.1).

Mnemonic:

Structure:

Format:

Function:

LOMMA LOad Matrix Multiplier Absolute

01 34 7 8 15 16 19 20 23
D 10010100 _| DA 0110
LOMMA DA

Load Matrix Multiplier register(s) with absolute
data from memory, beginning with Matrix Multiplier
Register DA and continuing according to the load
algorithm (see Figure 7.1). '

Mnemonic:

Structure:

Format:

Function:

LOMMR LOad Matrix Multiplier Relative

01 34 7 8 15 16 19 20 23
p 10010101 | DA 0110
LOMMR DA

Load Matrix Multiplier register(s) with relative
data from memory, beginning with Matrix Multiplier
Register DA and continuing according to the load
algorithm (see Figure 7.1). Relative data for the
Matrix Multiplier registers are added to the old

- data contained in the respective registers to

calculate the sum that is actually loaded into the
registers.

7-46

Mnemonic: LOMMP LOad Matrix Multiplier Product
Structure:
01 34 7 8 15 16 19 20 23
0 1000110 DA 011 J
Format: LOMMP DA
Function: Load Matrix Multiplier registers with the matrix
product of the matrix which begins with Register
DA and the data from memory, and store the resulting
product in matrix A, beginning with Register 0.
Note: 1In most cases, DA should be either 4, 10,
or 14 (octal), and the count in the RC should be -4, This
causes a complete matrix to be multiplied by the
incoming matrix to give a matrix product. This is
true both in 2- and 3-dimensional modes. Since the
product is stored in matrix A, a DA of 0 should not
..... be specified with a LOMMP, A
Mnemonic: LOMDR LOad Matrix multiplier DiRective register
Structure:
01 34 78 15 16 19 20 23
0 1000111 0 0110
Format: LOMDR
Function: Load the directive register of the Matrix Multiplier
according to the load algorithm (see Figure 7.1).
Mnemonic: STCL STore CLipping divider
Structure:
01 3 4 7 8 15 16 19 20 23
1100/0000 DA 0110
Format: STCL DA
Function: Store the contents of registers in the Clipping

Divider, beginning with Register DA and continuing
according to the store algorithm (see Figure 7.1).

7-47

Mnemonic: STMM STore Matrix Multiplier
Structure:
01 34 7 8 15 16 19 20 23
1 100{0100 DA 0110
Format: STMM DA
Function: Store the contents of Matrix Multiplier registers
into memory, beginning with Register DA and continuing
according to the store algorithm (see Figure 7.1).
Mnemonic: STMDR STore Matrix multiplier Directive Register
Structure: |
01 3 4 7 8 15 16 19 20 23
11000111 0 0110
Format: STMDR
Function: Store the first half of the Matrix Multiplier
Directive register into the memory location addressed
by the contents of the RP. The RP is then incremented
automatically, and the second half of the Directive .
register is stored into the memory location addressed
by the new contents of the RP, Note: The RC should
contain a count of zero or -1 before this instruction
is executed, or the contents of the Matrix Multiplier
Directive register will be recorded more than once.
Mnemonic: RLOCLA Register LOad CLipping Divider Absolute
Structure:
01 34 7 8 15 16 19 20 23
01000000 DA 0] X
Format: RLOCLA DA, X
Function: Load the Clipping Divider Register DA with data from

the Channel Control registers specified by X. In -
2D, two registers are transferred per coordinate
point, and in the 3D modes four registers are trans-
ferred per coordinate point,

7-48

Mnemonic: RLOCLR Register LOad Clipping Divider Relativej“"
Structure:

01 3 4 7 8 15 16 19 20 23

fo100l0001 ' DA ol x

Format: RLOCLR DA,X

Function: Load the Clipping Divider Register DA with data from

‘ the Channel Control register specified by X. Since
the load is relative, the data are first added to
the contents of the Ciipping Divider SAVE registers,
o and the sum is loaded into the Register DA.

vigv e

Py P, SR Y
pa g

Mnemonié: RLOMMA Register LOad Matrix Multiplier Absoluqu

Structure: 1 : 4 :
ikm 01 34 78 1516 19 20 23
" bioo100| B pA . lo| x
Format: | RLOMMA DA X : e .

Funétién: Load either oné or twd Matrix Mu1t1p11er reglsters,
boomean o starting with DA, with absolute data from Channel
AR Gontrol registérs specified 'by X .

7-49

Mnemonic:

Structure:

Format:

Function:

RLOMMR Register LOad Matrix
Multiplier Relative

01 34 7 8 15 16 19 20 23

0 100{0 101 DA 0] X

RLOMMR DA,X

Load either one or two registers of the Matrix
Multiplier with relative data from the Channel Control
registers specified by X, The data are first added

to the old data in the corresponding Matrix Multiplier
registers, and the sum is used to load the registers,

Mnemonic: RLOMMP Register LOad Matrix
Multiplier Product
Structure:
01 34 7 8 15 16 19 20 23
0 1000110 DA 0f X
Format: RLOMMP DA,X
Function: Load either one or two Matrix Multiplier registers
(depending on X), beginning with Register 0, with
the product of the contents of the Channel Control
rcgisters specificd by X and the matrix which begins
with DA,
Mnemonic: RLOMDR Register Load Matrix
multiplier Directive Register
Structure:
01 34 7 8 15 16 19 20 23
0 10 0}0 11 1‘ DA 0] X
Format: RLOMDR X
Function: Load the directive register of the Matrix Multiplie;

with the contents of the registers specified by X.

If the mode of the LDS-2 or the value in the X field
cause more than two registers to be transferred,

the Matrix Multiplier Directive register will contain
the last data loaded into it.

Mnemonic: RSTCL Register STore CLipping
divider
Structure:
P 1 3 4 7 8 15 16 19 20 23
h100[0000 DA o] x
Format: RSTCL DA, X
Function: Store Clipping Divider register(s), beginning with
g?,xfnto the Channel Control registers specified
Mnemonic: RSTMM Register STore Matrix
Multiplier
Structure:
01 34 7 8 15 16 19 20 23
1 1000100 DA 0] X
Format: RSTMM DA,X
Function: Store either one or two registers, beginning with

DA, from the Matrix Multiplier into Channel Control
registers specified by X.

Mnemonic:

Structure:

Format:

Function:

RSTMDR Register STore Matrix
multiplier Directive Register
0 1 3 4 7 8 15 16 19 20 23
1000111 DA 0f X
RSTMDR X

Store the Matrix Multiplier Directive register into
the Channel Control registers specified by X, If

the combination of the mode of the LDS-2 and the
value in the X field cause more than two registers

of the Channel Control to receive data from the
Matrix Multiplier Directive registers, several copies
of the directive will be saved.

Mnemonic:

Structure:

Format:

Function:

RTCLA ReTrieve CLipping divider
Absolute

01 34 7 8 15 16 19 20 23

0 1000 000 DA 0111

RTCLA DA

Retrieve information from the data sink according

to the retrieve algorithm into Clipping Divider
registers (see Figure 6.2), beginning with DA.

Mnemonic: RTCLR ReTrieve CLipping divider
Relative

Structure:
01 34 7 8 15 16 19 20 23
01000001 DA 0111

Format: RTCLR DA

Function: Retrieve relative data from the data sink according
to the retrieve algorithm into Clipping Divider
registers, beginning with DA, The relative data
are added to the contents of the Clipping Divider
SAVE registers, and the sum is loaded in the
registers. Note: Since data were sinked into the
data sink in absolute format, one should not expect
to get the same data back when using a relative
retrieve.

Mnemonic: RTCLSA ReTrieve CLipping divider

Size Absolute

Structure:
01 34 78 15 16 19 20 23
101003)010 DA 0111

Format: RTCLSA DA

Function: Retrieve Clipping Divider registers interpreting

the data as size absolute (see Figure 7.2).

7-52

Mnemonic: RTCLSR ReTrieve CLipping divider
Size Relative
Structure:
01 34 7 8 15 16 19 20 23
0 10 0{0011 DA 0111
Format: RTCLSR DA
Function: Retrieve Clipping Divider registers interpreting
the data as size-relative. (See Figure 7.2).
Mnemonic: RTMDR ReTrieve Matrix multiplier
Directive Register
Structure: |
01 34 7 8 15 16 19 20 23
0 10 0{0111 DA 0111
Format: RTMDR
Function: Retrieve information ffom the data sink into the
Matrix Multiplier Directive register.
Mnemonic: SKCL SinK CLipping divider
Structure:
01 34 7 8 15 16 19 20 23
11000000 DA 0111
Format: SKCL DA
Function: Sink the contents of Clipping Divider registers,

beginning with DA, into the data sink. (See Figure

7.2.)

7-53

Mnemonic: RTMM ReTrieve Matrix Multiplier
Structure:
01 34 7 8 15 16 19 20 23
0100{0100 DA 0111
Format: RTMM DA
Function: Retrieve absolute data from the data sink. (See
Figure 7.2.)
Mnemonic: RTMMS ReTrieve Matrix Multiplier
and Slide
Structure:
01 34 7 8 15 16 19 20 23
0100|0101 DA 0111
Format: RTMMS DA
Function: Retrieve absolute data from the data sink into Matrix
Multiplier registers, beginning with DA, but before
each load copy the old data into the corresponding
row of matrix A,
Mnemonic: SKMM SinK Matrix Multiplier
Structure:
01 34 7 8 15 16 19 20 23
11000100 DA 0111
Format: SKMM DA
Function: . Sink the contents of Matrix Multiplier registers,

beginning with DA, into the data sink,

Mnemonic:

Structure:

Format:

Function:

SKMMS SinK Matrix Multiplier and
Slide
01 34 -7 8 15 16 19 20 23
i
11000101 DA 0111
SKMMS DA

Sink the contents of Matrix Multiplier registers,
beginning with DA, into the data sink. After each
register has been sinked, its contents are replaced
with the contents of the corresponding row of matrix

A. The contents of matrix A remain unchanged.
Mnemonic: SKMDR SinK Matrix multiplier
Directive Register
Structﬁre:
' 01 34 7 8 15 16 19 20 23
11000111 DA 0111
Format: SKMDR
Function: Sink the contents of the Matrix Multiplier Directive
register into the data sink.
Mnemonic: NOMM NOrmalize the Matrix Multi-
plier
Structure:
01 34 78 15 16 19 20 23
1 1000101 DA 0110
Format: NOMM
Function: Normalize the Matrix Multiplier by shifting the data

in its registers left the maximum number of positions
or until some data word takes on a value between
one half and one (i.e., the most significant bit

is a 1). The maximum number of positions the words
should be shifted is specified by the contents of
the RC. If this count is zero, the words will only
be shifted one place. The count in the RC will
always be zero after the normalize instruction has
been executed.

7-55

Mnemonic: PUSHMM PUSH Matrix Multiplier

Structure:

01 3 4 7 8 15 16 19 20 23

11000110 DA 0111

Format: PUSHMM DA

Function: Copy the contents of Matrix Multiplier registers,
beginning with Register 0, into Matrix Multiplier
registers, beginning with DA,

Mnemonic: POPMM POP Matrix Multiplier
Structure:
01 3 4 7 8 15 16 19 20 23
h 1000110 DA 0110

Format: POPMM DA

Function: Copy the contents of Matrix Multiplier registers,
beginning with DA, into Matrix Multiplier registers,
beginning with Register 0,

EXAMPLE 9: Manipulating the Pipeline Registers

Assume that ARRAY1 and ARRAYZ contain 16 words, and that
ARRAY3 contains 8 words, then in 3D:

LO RP,=ARRAY1

ILOM RC,4
LOMMA 0

ILOM RC,4
PUSHMM 4

LO RP,=ARRAY2
ILOM RC,4
LOMMP 4

LO RP,=ARRAY3
ILOM RC,2
LOCLA VIEW

loads the four rows of Matrix A (begin-
ning with Row 0) with ARRAY1.

copies Matrix A into Matrix B (begin-
ning with Row 4).

multiplies [ARRAY2] [ARRAY1l] and leaves
the product in Matrix A. ARRAY1 is still
in Matrix B.

loads the VIEWPORT and WINDOW registers
with data from ARRAY3.

If the LDS-2 is in 2D:

LO RP,=ARRAY3
ILOM RC,4
LOCLA VIEWLB

LO RP,=ARRAY3
LOCLA VIEWLB

LO DSP,=SAVE
ILOM RC,4
SKCL VIEWLB

ILOM RC,4
RTCLA WINDRT

loads the VIEWPORT and WINDOW registers
with data from ARRAY3. (Note, that in
2D there are four registers.)

loads the first half of the VIEWPORT
with the first two words of ARRAY3.

(Since no count was specified, only

one register was transferred.)

sinks the VIEWPORT and WINDOW registers
into memory at SAVE.

retrieves the VIEWPORT and WINDOW regis-
ters. (Note, that the registers are

retrieved 'backwards," so that the last
register sinked is the first retrieved.)

7.14 Drawing Instructions

The drawing instructions of
variety of ways to address data,
the beam. The six basic drawing
different manners. The arguments
specify the movement of the beam
absolut/relative/variable origin
coordinate data,

the LDS-2 provide a great

to interpret data, and to move
instructions access data in

of these instructions generally
and the

modes of interpreting the

There are three sets of these arguments.

The "single draw" instructions take a '"manner" argument (MAN)

which is interpreted as shown in

Figure 7.3,

The '"'table draw" instructions rely on two sets of "finite-

state machines."
by each instruction,

A series of drawing operations are performed
Each time a drawing operation has been

performed, both FSM1 and FSM2 are updated, as shown in Figures

7.4 and 7.5.

To interpret the state graphs in these figures,

it is useful to think of a marker that is placed on the state
addressed by the FSM argument and then moved after each iteration

following the arrows.

For example, if FSM1 is POLY, then the

finite-state machine will start in State 3 and issue a "setpoint"

command to the pipeline,
then go to the next state, which

to" command will be issued to the pipeline,.

Then the finite state machine will

in this case is 2, and a "draw
Since State 2 goes

to itself, the finite state machine will stay in that state

and continue issuing "draw to commands" to the pipeline.

The

absolute/relative/variable origin finite-state machine works

in exactly the same way.

The number of iterations performed by the re‘?eat drawing
instructions is determined by the count contained in the READ

COUNTER (RC).

The RC should contain the two's complement of
the number of operations to be performed.

If the count is zero

(or positive), only one iteration will be performed, and the

count will not be incremented.

The "Matrix Multiplier draws" are used to draw curves and

surface patches with the Matrix Multiplier.

FSM1 operates in

the same manner as in the table draw case, but for these
instructions FSM2 is defined to be AA (2), so that the coordinate

data are interpreted as absolute.

It should be realized that

the coordinate data for these drawing operations do not come
from memory, but rather are provided by iterations of the Matrix

Multiplier.

For these instructions the Matrix Multiplier must

be put in curve mode by loading the MDR.

The '"register draw'" instructions fetch data from the
internal registers of the Channel Control rather than from

memory.

Both of the finite-state machines are used, but there
can be only one or two iterations performed.

The "X'" argument

of these instructions specifies whether it is a single point
draw (i.e., one iteration) or a double point draw (i.e., two

7-58

MANNER CODES

SETA = 0

SETR = 1

SETV = 2

TOA = 4
P X1,Y7,(21) ,p XO+AX1, Yo+AYq, £ XorAX1, Yo+AYD, X1, Y1, (27)
-7 L2 (Zo* A I1) o (Zo*0Z7)
Pd V4 ’I
ol :',(’ L‘ Q’
XO’ YO’ .(ZO) XO’ YO’ (Zo) Xo, Yos (Zo) Xo: Yo, (Zo)
SAVE: Xjp, Y1, (Z7) SAVE: Xg+AX7, YodYl, (Zo | SAVE: X, Yo, (Zg, Zo) SAVE: Xj, Y1, (Z1,7Z9)
+AZq, ZO
TOR = 5 TOV = 6 FRMA = 16 FRMR = 17
Xo+AXy, YO
- Xo+AX X1, Y (Z1) Xo+8X1, Yo+
+AY Z 1» 1> 1 ’
Azl%, (Zo+ AYl’ %z +821) AY1, (Zo+821)
XO’ YO’ (ZO) Xo: Yo’ (Zo) X09 Yos (ZO) -Xo, YO’ (Zo)
SAVE: X, +AX1, Yo+AYq, SAVE: Xg, Yo, (Zo, Zo) SAVE: Xo, Yo, (Zo, Zp) SAVE: Xo, Yo, (Zg,
(Zo+ Z1) ‘ Zo)
DOTA = 10 DOTR = 11 DOTV = 12 © = Position of beam
The arrows are for ex-
o T t
/’. X1, Y1, (Z1) LA Ko*hXyp, Yo A Xg+dXy, Yo gg(siizg?e’ ggepgiieczlon
.~ il M1, (Zo*hZ1) i AYl’ Z +Azl) of beam motion and do
’ 4' not actually appear on
d o - the scope
X Yo, (Zg) X Y (Z,) X Y (z.) :
°’ ’ °r o’ ° °r "o ° The Z coordinate ap-
SAVE: Xj, Yy, (21, Z;) SAVE: Xg+AX31, Yo+AY1, (Zo| SAVE: Xo, Yo, (Zg, Zo) plies, if in one of
+AZl, Zo*+AZ7) the 3D modes.
BOXA =14
BOXR=15

Figure 7.3

THE "WHAT-TOQ-DO' CODES

ﬁ"f pext FSM1
6 ponl 7 pomb
draw LINE
to

LINE | NLINE NLINE

fad7syﬂhﬁf’ ﬁfx7€ﬁ7;n;*’
’ 2

> POLY

POLY TO TO

(SET)
'ﬁ%/:&wno New Frame

4 STAR

— %
STAR FROM FROM

4§%ﬂ4¢”w/JZC, iggn{

: DOT ' *

BOX
(NEWCRV)

DOT

BOX

AN

r/,/*

N D_x

setpoint, draw to,

setpoint, draw to...

draw to, setpoint,

draw to, setpoint,..

setpoint, draw to,
draw to...

draw to, draw to,

draw to...

setpoint, draw from,
draw from...

draw from, draw

from, draw from...

dot, dot, dot..,.

box, box, box...

* Box does not move the beam, but rather sets up the parameters for

subpictures (see Section 4.6)

Figur
7 -

e 7.4
60

SURBHCE MPCpES A INIC

THE DATA FORM CODES
FSM2

vEAT 6 Swonm

RX relative, absolute,
relative...

AX - absolute, relative,
absolute...

3 . 2
., RA . relative, absolute,
Rela- Abso- absolute...
tive \<ﬁiii//
/ AA absolute, absolute,

RA AA absolute...
vEr SHhonm
5 4
\\\ v RR relative, relative,
Rela- % Abso- relative..,
tive lute
- AR absolute, relative,
RR AR relative...
0 1 ’
’“\\\ AV absolute, variable
Abso- >/(/ari—\ origin, variable origin...
lute L.
\Qflfiﬁf o Vv variable origin, variable
o origin, variable origin...
AV : TV
» X2, Y2, Z2 (Xo+AXy)+AXo, (Yo+AY) +AY,, ,Xo+AX2, Yo+AY,
(Zo+AZy)+AZ, Zo+AZ,
X1, Ya, 7, (Xo+AX1)Yqo+AY,, (Xo+AX1, Yo+ AY,,
(Zo"'AZ],) Zo+AZ1)
0, Yo, Zo Xo, Yo, Zo Xo, Yo, Zo
ABSOLUTE RELATIVE VARIABLE ORIGIN

Figure 7.5
7-61

iterations) and the address of the first Channel Control register
from which data are to be taken.,

In all cases except the "Matrix Multiplier draws," the
number of words of data that are fetched per coordinate point
is determined by the dimension mode of the LDS-2, For register
draws, two registers are transferred in 2D, and four registers
are transferred in all the 3D modes. For the single draw and table
draw classes, there are two words fetched in 2D, three words
fetched in the CD3D and MM3D modes, and four words fetched in
the HOMOG mode. See Figure 7,6,

Mnemonic: SD Single Draw
Structure: \

v
01 34 7 8 AL AR A
0 0 10] MAN ADDR

Format: SD MAN,@%ADDR

Function: Execute a single draw instruction fetching the data
from the memory location referenced by the effective
address. The MAN argument specifies the manner of
the drawing instruction.

Mnemonic: TDR Table Draw Repeat
Structure: ~.<—
[4
N Ny N
01 3 4 7 8 S I 9| 20 23"
D 10 0'0 FSM1 ~J1f{rsm2|{ 1110

Format: TDR FSM1,FSM2

Function: Execute a repeated series of drawing instructions
fetching data from the memory locations addressed
by the RP. The count in the RC specifies the number
of operations to be performed, and the arguments
FSM1 and FSM2 specify the type of operations to be
performed.

7-62

DATA FORMATS FOR DRAWING INSTRUCTIONS

2D

CD3D

4

The fourth word needed by the pipeline is a copy of Z
to give X, Y, Z, Z, which is the format the Clipping
Divider expects.

MM3D

Y

Z

The fourth word needed by the pipeline is_a fraction
approximation of 1 (i.e., all one's or 225-1), which
provides a homogeneous component of '"1" for the Matrix
Multiplier,

HOMOG

Y W is the homogeneous
element (see Appen-
7 dix 2).

W

Figure 7.6

7-A%T

Mnemonic: TDIR Table Draw Indirect Repeat

Structure:
01 34 7 8 15 16 19 20 23
110 0{0jFSM1 X{FSM2 {1110

Format: TDIR FSM1,FSM2

Function: Execute a repeated series of drawing operations
fetching data from the memory locations obtained
by taking the contents of the memory locations
addressed by the RP as addresses.

Mnemonic: TDIXR Table Draw Indirect and

indeXed Repeat

Structure:
01 3 4 7 8 15 16 19 20 23
1 10 0J1|FSM1 | B X{FSM2 {1110

Format: TDIXR FSM1,FSM2

Function: Execute a repeated series of drawing operations as
specified by arguments FSM1,FSM2, The effective
address for the coordinate data is determined by
taking the contents of the memory location addressed
by the RP and adding the contents of the index
register (IR),

Mnemonic: RD Register Draw

Structure:
01 34 7 8 15 16 19 20 23

1 0 0}0|FsSM1 0|FSM2 |1} X
Format: RD FSM1,FSM2,X
Function: Execute either one or two drawing operations (depend-

ent on the value of X) according to the arguments
FSM1,FSM2. Data for these operations are fetched

from the registers of the Channel Control as specified
by the X field.

7-64

Mnemonic:

Structure:

Format:

Function:

MMDR Matrix Multiplier Draw Repeat
01 34 7 8 ' 15 16 19 20 23

0 1 0 0|0|FSM2 110 1 01111
MMDR FSM1

Execute a repeated series of drawing operations as
indicated by FSM1 using data obtained by iteration
of the Matrix Multiplier. FSM2 is defined to be
equal to AA (2). The count for these instructions
is held in the RC and incremented each iteration

of the Matrix Multiplier (which corresponds to each
individual drawing operation).

7-65

EXAMPLE 10: House Plan

The following routine will draw the outline of a simple 2D
House Plan (see Figure 8.3):

LO SP,=SAVE
I0T ACO,33

CLB ACO0,2

IOT AC0,32 turn off Matrix Multiplier

LO RP,=CLIP1 CLIP1 contains VIEWPORT and WINDOW data
ILOM RC,4

LOCLA VIEWLB set VIEWPORT and WINDOW

LO RP,=PLAN PLAN contains the drawing coordinates
ILOM RC,13

TDR POLY,AV draw house plan

EXAMPLE 11: Boxing

Boxing may be used to draw subpictures at different locations
on the picture. This routine draws symbols for a window in the
house plan (see Figure 8.3). Il contains the X and Y coordinates
of the position of the window to be drawn:

LO RP,=1I1
LOCLA SAVELB left bottom corner of instance
LOCLA INST set up instance
I0T ,42 skip until settled
J .=1
10T AC0,33 read directive
SZB AC0,22 check area in common
PUSHJ WINDOW jump to WINDOW routine
POPJ return
WINDOW LO DSP,=SINK
ILOM RC,4
SKCL VIEWLB save old WINDOW and VIEWPORT

SD SETA, MASTER
SD BOXA ,MASTER+2 box to set up new parameters

LO RP,=W1

ILOM RC,5

TDR POLY,AA draw frame

ILOM RC,4

TDR LINE,AA " draw cross piece

RTCL WINDRT restore old WINDOW and VIEWPORT
POPJ return

Note, that the instance is loaded with a 2D four-component load
by first setting SAVELB with a LOCLA SAVELB and then loading INST
with the right and top components. The master must also be set
up in this manner, that is, the left and bottom components are
set via a setpoint, and the right and top components with the box
instruction.

7-66

EXAMPLE 12: 3D House

This example draws the frame of a house. The coordinate data
for the example are given implicitly in Figure 8.3, Note how
matrix transfer motions are concatenated.

LO SP,=SAVE2
I0T ACO,33

SETB ACO,5
SETB ACO,6
SET ACO,

I0T ACO0,32
LO RP,=ARRAY1

ILOM RC,4
LOMMA 0

LO RP,=HOUSED
ILOM RC,5
TDR POLY,AV
ILOM RC,S
TDR POLY VV
ILOM RC,6
TDR POL,VV
ILOM RC,6
TDR POL,VV
ILOM RC,2

TDR LINE,VV
SD SETV,WIN1
PUSHJ WINDOW
SD SET,WIN2
PUSHJ WINDOW
PUSHMM 4

LO RP,=DOORMT
ILOM RC,4
LOMMP 4

LO RP,=DOOR
ILOM RC,5
TDR POLY,AA
ILOM RC,4

POPMM 4
LO RP,=DOORF
ILOM RC,4

SD SETA,HOUSED
TDR POLY,VV

set MM3D
turn on Matrix Multiplier

load transformation matrix
set RP to table of house data

draw floor

draw ceiling

draw end wall

draw end wall

draw roof

set for window 1

jump to WINDOW subroutine (not included)
set for window 2

jump to WINDOW subroutine (not included)
push transformation matrix to B

multiply transformation matrices
set RP to door data
draw door

pop original transformation matrix
set RP to door frame data

set point to corner of house
draw door frame

7-67

FORTRAN SUPPORT ROUTINES

8.1 Function

The FORTRAN support routines provide the FORTRAN user the
ability to define, manipulate, and display pictures with the

LDS-2,

The support routines are called by the FORTRAN program

and prepare LDS-2 object code. Most of the calls do not place
the code which has been generated directly into execution, but
rather store the code in a user buffer. The generated routines
can then be put into the LDS-2's execution string by DRAW calls,
It is thus possible to execute the LDS-2 code in a user-specified
order which may be different from the order in which the code

was generated.

Most of the calls have the general form:

where:

CALL SUB (NAME, LOC)

SUB is the name of the particular support
routine,

NAME is the identifier which will be asso-

ciated with the code generated and should

be either an integer or Holerith (up to four
characters) value, and unique within the program.

coy s both control information which is used
to peherate the code and the data which will
be referenced by the LDS-2 code.

LOthe location of an array which usually

The information in the array referenced by LOC should be pre-
pared by the FORTRAN program previous to the call. The data in
these arrays are referenced directly by the LDS-2 code and may be

changed

dynamically, that is, they may be changed after the call

has been made, or even while the code is in execution, but changing
the control information will not change the code that has been
generated, once the call has been made.

7.2 Data Formats

The arrays provided the support routines should contain

integer

and the

and the
integer
integer
left of

values or names. This applies to both the control words
data. The homogeneous element in three-dimensional data
rotation elements for the Matrix Multiplier should be
representations of fractions. That is, they should be
values where the decimal point is assumed to be to the
the word.

8-1

8.3 Preparation Calls

When the FORTRAN user is initiated on the LDS-2, default
conditions for the state of the display system are set by the
initializing routine. These conditions affect the modes of the
LDS-2 pipeline devices, the dimension mode of the LDS-2, scope
selection, and intensity control. The system is initiated with
the LDS-2 in two-dimensional mode, the scope indicated on the job
request record is selected, and maximum intensity is set. Default
conditions for the parameter registers of the Clipping Divider
are also provided as described in the calls which relate to these
devices (see Section 8.4). All of the preparation calls generate
code which goes directly into the user's execution string, unless
the call is included within the scope of a GATH call (see Section
8.4).

Deleting the code generated by the preparation call via a
KILL call, or turning this code off via an OFF call, does not
restore any previous mode and, in fact, does not change any modes
at all. Since the preparation calls set a state in the LDS-2,
this state will remain until it is changed by another preparation
call, or until another user is initiated. It is also important
to realize that the dimension modes of the system affect the num-
ber of words of data which are processed per coordinate point and,
thus, the data organization. A great deal of care must, therefore,
be taken to insure that the prevailing mode corresponds to the
data organization format of the data which are being processed.

CALL TwWOD

TWOD sets the LDS-2 to two-dimensional operation. In 2D
the LDS-2 picks up two words of data per coordinate point which
are interpreted as X and Y. The LDS-2 is initially set to 2D, but
if the mode has been changed by some other call, it is necessary
to call TWOD in order to reset the mode to 2D,

CALL MM3D

MM3D sets the LDS-2 to a special three-dimensional mode.
Three data words are required which specify the X, Y and Z coor-
dinates of a point. The LDS-2 then supplies a '"1" to give the
fourth component expected by the Matrix Multiplier. The use of
this mode allows the user to save storage and elminates the need
to specify the fourth component of the homogeneous coordinates
as long as that fourth component is a "1", which is often the

case.

MM3D also turns the Matrix Multiplier on. The Matrix Multi-
plier is turned off at initialization, so MM3D must be called to
turn it on. If one wishes to turn the Matrix Multiplier on,
but does not wish to be in MM3D mode, it is simply necessary

8-2

to call MM3D and then call either TWOD or HOMOG which changes
the dimension mode of the LDS-2 but leaves the state of the
Matrix Multiplier unchanged., MM3D also sets 'depth cueing"
(see INTSTY).

CALL CD3D

A second special three-dimension mode is called by CD3D,
This mode is designed for data which are to be fed directly
to the Clipping Divider. Again, three words are fetched per
coordinate point, but in this case the fourth word supplied
by the LDS-2 is a copy of the third word, thus giving X, Y,
Z, Z, which is what the Clipping Divider expects. Since this
mode is primarily of use when data are fed directly to the
Clipping Divider, CD3D also turns the Matrix Multiplier off.
When the user wants to turn the Matrix Multiplier off, but does
not wish to be in CD3D mode, he can simply follow the CD3D call
with a call to TWOD or HOMOG. CD3D also sets 'depth cueing"
(see INTSTY).

CALL HOMOG

HOMOG sets the LDS-2 to homogeneous coordinate mode where
four words of data are expected for each point. Homogeneous
coordinates are discussed in detail in Appendix III of the LDS-
2 System Reference Manual, The four words of data are
interpreted as X, Y, Z, and W, where W represents a fractional
scale factor and is often "1"., In working with homogeneous
coordinates, it is important to realize that X, Y, and Z are
interpreted as integer values, while W is interpreted as a fixed
point fraction. Thus, the approximation for '"1" which should
be used in 37777777 (octal). HOMOG also sets "depth cueing"
(see INTSTY).

CALL SELECT (Number of scopes, scope numbers)

SELECT allows the user to specify the scope(s) on which
his picture is presented. The scope specified on the user job
request record is initially selected so that it is only if the
user wishes to change the scope(s) on which the picture is being
presented that he must use the SELECT call. The scopes are
numbered from 1 to n, where "n" is the number of available
scopes.

CALL INTSTY (Intensity number)

This call allows the user to specify the intensity of the
picture that is being drawn on the scope. An initial intensity
value is set up for the user, but this value may be changed
with the INTSTY call. Intensity values range from 0 (brightest)
to 4096 (dimest). The intensity call also clears "depth
cueing,'" which means that the intensity value rather than the
Z coordinate of the point is used to control the intensity of

8-3

the 1line. Depth cueing is restored by MM3D, CD3D, and HOMOG. It
is thus possible to turn depth cueing on and off by careful
ordering of the INTSTY and dimension calls.

CALL RFRATE (Cycles/second)

The highest priority user is allowed to specify the refresh
rate through the use of this call., A default value of 30 cycles
(1/30th of a second) is supplied, when the system is turned
on so that RFRATE need be called only if some other refresh
rate is desired. A RFRATE call by other than the highest
priority user is ignored.

8-4

8.4 Definition and Manipulation Calls

The definition and manipulation calls are used to define
pictures and to control the pipeline processing performed on
these pictures. These calls generate code for the LDS-2, but
do not put this code into the execution string of the user.
The " code is saved in the user's buffer until it is called by
a DRAW call, which puts the code into execution. The order
in which the code is executed is usually critical, but the order
in which the code is generated by the calls is unimportant.

It is thus possible to make the calls in any order that is
convenient and then carefully control the execution of the code
by using the appropriate DRAW calls.

Several calls can be grouped together as a single routine
by the GATH call. GATH calls may be nested to allow the user
to create tree-like structures of pictures and subpictures.
Because the definition and manipulation calls do not go into
immediate execution, and because all calls can be grouped into
single routines which can be nested, the FORTRAN support routines
provide the user great flexibility not only in defining and
manipulating pictures, but also in structuring the display
program generated by the support routines.

CALL DEF (NAME, LOC)

The DEF call is used to define drawings. The array refer-
enced by LOC contains the coordinate data for the endpoints
of the figure to be drawn and control information which
determines how these points are to be connected. This array
takes the following format:

fWords/Point No. of Sequences
Sequence Mode
Sequence Legnth--No. of Points
X
Y
X or Y

X,Y,Z) or W

.

Sequence iMode

Sequence Legnth--No. of Points
X
Y

T

There may be either two, three, or four words per coordinate
point depending upon the mode that the LDS-2 will be in when
the code is put into execution., Since the different modes fetch
different amounts of data per coordinate point, it is extremely
important that the number of words per coordinate point corres-
ponds to the mode that the LDS-2 is in at the time of execution.
In constructing the first word of the array the number of
sequences should be added to the code for the number of words
per coordinate, This code is obtained by either of the following
processes:

N=words per coordinate (2, 3, or 4)
NCODE=N%*2%%12
M=number of sequences

MWORD=NCODE+M

The decimal results of NCODE will be either 8192 (2 per
coordinate) 12288 (3 per coordinate), or 16380 (4 per
coordinate), and these numbers can be added directly to the
number of sequences to build the word,

A "sequence'" is one of the drawing sequences implemented
by the LDS-2 (see Section 7.14 of the LDS-2 System Reference
Manual). It should be noted that these sequence generally turn
out to be different than their mnemonics imply if the count
is only 1 or 2, For instance, a POLYGON sequence with a count
of one is simply a setpoint, and with a count of 2 is simply

8-6

Drawing Sequences

6 24576 7 28672 - setpoint, draw to,

setpoint, draw to...

draw to, setpoint,

NLINE NNLINE ANLINE —eme g
/////> draw to, setpoint,..
7

8 2 --8192 B
3 1228 < 829 NPOLY .~ I setpoint, draw to,
draw 1 / draw to...
to
—
NPOLY NTO NTO /7 draw to, draw to,
(NSET) draw to...
4

draw from...

NSTAR \\\l<: setpoint, draw from,
/

NSTAR NEROM NFROM Lﬁi draw from, draw
A— from, draw from...
~

~
1 4096 NDOT c o, dot, dot, dot...
NDOT

Figure 8.1
8-7

NRX

NRA

NRR

NAV
XZ) YZ’
Xl’ Yl’ Zl
0 YO, ZO
ABSOLUTE

Data Modes

NRX relative, absolute,
relative...
NAX absolute, relative,
NAX absolute...
NRA relative, absolute,
absolute...
NAA absolute, absolute,
absolute...
NAA
4
NRR relative, relative,
Abso- relative..,
lute
NAR absolute, relative,
relative...
NAR
NAV absolute, variable
origin, variable origin...
NVV variable origin, variable

origin, variable origin...

NVV
Z2 o (Xo+AX1)+AX2, (Yo+AY) +AY,, ,Xo+AXz, Yo+AY,,
(Zo+AZy)+AZ, Zot+tAZ,

(Xo+8X1)Yo+AY, (Xo+AX1, Yo+ AY,,
(Zo+AZy) Zo+AZy)

Xo, Yo, Zo Xo, Yo, Zo

RELATIVE VARIABLE ORIGIN

Figure 8.2

8-8

a line, Figure 8.1 shows the sequences that are allowed, their
octal code, and the decimal equivalents after shifting the codes
to the left half of the word.

The allowable modes are also those which are implemented
on the LDS-2, Figure 8.2 lists these modes, their octal codes
and the decimal equivalents, In constructing the sequence/mode
control word it is simply necessary to add the two decimal
equivalents for the appropriate codes and store the result in
the proper word of the array.

The third word in the array and the word after each
sequence/mode word contains the number of coordinate points
and not the number of data words in the sequence., The data
words should contain integer values, as should all of the other
words of the array.

‘The following two examples show the contents of the DEF
arrays for the floor plan of a simple house and a three-
dimensional drawing of the same house. The numbers shown in

the array are decimal.

FORTRAN EXAMPLE 1: Two-dimensional House Plan

NPLAN(1) = 2%2%%12+1 2 words per point, 1 sequence

NPLAN(2) = NPOLY+NAV . Polygon sequence, first point
absolute, the rest are variable
origin

NPLAN(3) = 13
DATA See Figure 8.3

CALL DEF (4HPLAN,NPLAN)
FORTRAN EXAMPLE 2: Three-dimensional House and Door Frame

NHOUSE (1) = 3*2%*1246 2 Words per point, 6 sequences
NHOUSE(2) = NPOLY+NAV Floor

NHOUSE(3) = S

DATA See Figure 8.4

NHOUSE (19) = NPOLY+NVV Ceiling

NHOUSE(20) = 5

DATA

NHOUSE(36) = NPOLY+NVV . End wall

NHOUSE(37) = 6

DATA

8-9

NHOUSE(56) = NPOLY+NVV End wall
NHOUSE (57) 6

DATA

NHOUSE(76) = NLINE+NVV Roof
NHOUSE (77) = 2

DATA

NHOUSE (96) = NPOLY+NVV Door frame

NHOUSE(97) = 14
CALL DEF (4HHOUS, NHOUSE)

DATA
NDOOR(1) = 3*2##12+1
NDOOR(2) = NPOLY+NVV
NDOOR(3) = §

DATA

L

CALL DEF (4HDOOR,NDOOR)

8-10

1000

600

400

350
300

2D HOUSE PLAN

[}
)

s

\1 NSTANCE 2

K/,/INSTANCE 1

b

I

WINDOW SUBROUTINE

zfaMASTER

i
1400

Figure 8.3
8-11

NPLAN
0 0
0 400
100 400
100 100
1300 100
1300 900
100 900
100 600
0 600
0 1000
1400 1000
0 0
NWIN (WINDOW)
0 0
2000 1000

INSTANCE 1
500 0
900 100

INSTANCE 2
500 9GO0
900 1000

MASTER

0 50
800 350

(absolute setpoint)

800 -

600
400

200 -

500 -

350 -

3D HOUSE

80

0 -

1400

350-

Figure 8.4
8-12

1400
1400

1400
1400
1400
1400
1400
1400

1400

o O o O

o O O o O

NHOUSE

0
1000
1000

0

0

0
1000
1000

500
1000
1000

0
0
0

500
1000
1000

0

500

500

NDOORF

400
400
600
600
NDOOR
0
-200
-200
0
0

o O o O

500
500
500
500
500

500
800
500

500
800
500

800
800

350
350

350
350
0

floor

ceiling

end 1

end 2

roof

CALL WIND (NAME, LOC)

The WIND call generates the necessary code to change the
WINDOW registers of the Clipping Divider., The four elements
in the array are used to define the new window.

Left
Bottom
Right

Top

The coordinates define the left bottom and right top corners
of the window rectangle and should be given in the same
coordinate system as the drawing (i.e., the same coordinate
system as is used for the DEF's that are processed while the
window is in effect). The code generated will load the values
in the arrays into the WINDOW registers when the code goes into
execution, Those values will stay in the WINDOW registers,
until either the mode is changed from 2D or another WIND call
is executed. Thus, deleting the code which set the window via
a KILL call does not change the window. When the LDS-2 is in
2D, each picture element is compared with the window, and only
those portions of the picture which lie within the window are
displayed.

A window is defined as the system is initialized; this
window stretches from -32757 to +32767 in both the X and the
Y directions. Unless another window is defined, this window
is in effect.

The following example sets up a window around the floor
plan described in the description of the DEF call. Section
4.4 of the LDS-2 System Reference Manual should be consulted
for further information on the use of the window,

FORTRAN EXAMPLE 3: Window

NWIN(1) = 0
NWIN(2) = 0
NWIN(3) = 2000
NWIN(4) = 1000

CALL WIND (3HIWIN,NWIN)

8-13

CALL VIEW (NAME, LOC)

The VIEW call is used to set the VIEWPORT registers of
the Clipping Divider which define the portion of the scope face
onto which the picture is to be mapped. The viewport is defined
in the same manner as the window, that is, by giving its left
bottom and right top corners in an array.

Lett
Bottom
Right

Top

In contrast to the WINDOW coordinates, however, the viewport
coordinates are specified in the coordinate syster of the scope.
Thus, the values used should range between -32767 and +32767,

A viewport is necessary regardless of the mode of the LDS-2,
Anything which lies within the field of vision (which is a
pyramid of vision defined by the planes x=+Z and Y=+Z in the
threedimensional modes and the window in two dimensions) is
mapped onto the viewport. If the viewport is not the same shape
as the field of view (i.e., not square in 3D or not the same
shape as the window in 2D), the picture will be stretched in
either the X or Y direction. The viewport can cover the whole
scope face or any rectangular portion of the scope face. A
viewport is defined as the system is initialized for each user
to cover the whole scope (i.e., -32767, -32767, +32767, +32767),

FORTRAN EXAMPLE 4: Viewport

The following viewport covers the upper half of the screen:

NVIEW(1) = -32767
NVIEW(2) = 0

NVIEW(3) = 32767
NVIEW(4) = 32767

CALL VIEW (4HVIEW,/NVIEW)

CALL BOX (NAME, LOC), CALL COPY (NAME, LOC)

The BOX and the COPY routines are used to draw repeated
copies of two-dimensional subpictures. These routines allow
the user to define a subpicture which can then be placed at
several positions on the main picture and even appear in
different sizes. The BOX call is used to set up the basic
subpicture parameters and should be called by a COPY call each
time the subpicture is to appear., The BOX call takes the
following format:

‘Name

Left
Bottom
Right

Top

The first element in the array is the name of the picture
elements that are to appear in the subroutine. This should
either be the name of a DEF call or the name of a GATH call
which contains the definition of the subpicture. The four data
words define the left bottom and right top corners of a "master"
rectangle. This master rectangle serves the same function for
the subpicture that the window does for the main drawing. Any
part of the subpicture which is outside the master is not
included in the copies of the subpicture, and the size of the
master affects the size of the subpicture.

The COPY call generates the code to place a copy of the

subpicture onto the main drawing. The array referenced by LOC
takes the following form:

Name
- Left
Bottom
Right

Top

The first word of the array should contain the name of
the BOX call which was used to define the subpicture. The data
words define the left bottom and right top corners of the

"instance" rectangle., Everything that is within the master
rectangle defined in the BOX call is mapped onto the instance
rectangle. If the instance rectangle lies partially outside

the current window, only those portions of the subpicture which
lie within the portion of the instance that is within the window
will be displayed, If the instance lies wholly outside the
current window, the code which defines the subpicture is not
processed at all, since nothing would appear on the scope anyway.
This fact can be used to define very large data bases, where
only a small portion is ever displayed at one time, By defining
each portion of the drawing with a BOX call and drawing that
code with COPY calls, large sections of code and data which

lie entirely outside the window can be skipped entirely, thus
improving the performance of the system.

Since the boxing process calculates new window and viewport
values, the old values in the WINDOW and VIEWPORT registers
are saved when the COPY call is executed (by a DRAW call) and
then restored. The code to save and restore these registers
is actually generated by the BOX call, but since the BOX call
cannot be put into execution except through a COPY call to the
BOX, it is convenient to think of this as happening when the
COPY call is executed.

It is important that a BOX call be called only by COPY
calls (and not by DRAW calls), and that the name in the COPY
call array be the name of a BOX call, It is also important
that these calls are executed with the LDS-2 in 2D mode.

FORTRAN EXAMPLE 5: BOX and COPY

The following calls can be used to place symbols for two
windows on the floor plan of Example 1 (see Figure 8.3).

NW(1) = 2%2%%12+2 Definition of window
NW(2) = NPOLY+NAA Symbol

NW(3) = 5

DATA

.

.

NW(14) = NLINE+NAA
NW(3) = 4
DATA

CALL DEF (1HW,NW)

NBX(1) = W

NBX(2) = 0 Left of Master
NBX(3) = 50 Bottom of master
NBX(4) = 800 Right of master
NBX(5) = 250 Top of master

8-16

CALL BOX (2HBX,NBX)

NCPY1(1) = BX
NCPY1(2) = 500
NCPY1(3) = 0
NCPY1(4) = 900
NCPY1(5) = 100
CALL COPY (4HCPY1,NCPY1)
NCPY2(1) = BX
NCPY2(2) = 500
NCPY2(3) = 900
NCPY3(4) = 900
NCPY2(5) = 1000

'CALL COPY (4HICPY2,NCPY1)

1

17

Left of instance 1
Bottom of instance 1
Right of instance 1
Top of instance 1

Left of instance 2
Bottom of instance 2
Right of instance 2
Top of instance 2

CALL MM (NAME, LOC)

The MM call is used to manipulate the values in the
registers of the Matrix Multiplier. When the Matrix Multiplier
is on, data that are sent down the pipeline are multiplied by
the first of the four matrices which can be stored in the Matrix
Multiplier. The MM call allows the user to set these matrices
to the appropriate values. The array referenced by the LOC-
should take the following form:

atrix {Action
Element 1
Element 2
Element 3

Elément 16

The legal values for '"Matrix'" are 1, 2, 3, and 4 for the four
matrices. The following actions may be indicated in the '"Action"
field of the control word.

1. Load the Matrix Multiplier matrix specified in the array
with the data in the array. This data should contain the
elements of the 4 X 4 matrix desired. Figure 3,2 shows how
these words are stored into the matrix and which of the data
elements should be considered as integers and which as fractions,

2. Store the values in the matrix specified into the array.

3. Multiply the matrix specified in the array by the data

in the array and leave the result in Matrix 1. Since Matrix

1 is used to contain the result, it cannot be specified as the
multiplicand.

4, Push the data in Matrix 1 into the matrix specified in
the array. This destroys the old value of this matrix.

5. Pop the value from the specified matrix back into Matrix
1.

Since the '"push'" and "pop" actions do not require data, the
16 array words for the elements of the matrix are ignored and
do not need to be provided. Since these instructions require

no memory references when they execute, the code generated is much
faster than the code generated by the '"load" and '"store" actions.
If only a limited amount of temporary matrix storage is required,
it is best to use matrices 2, 3, and 4 for storage and use the
push and pop actions to store into and retrieve from temporary
storage.

It is also possible to use the Matrix Multiplier in 2D
operation., In this case only the first two elements of each
row are used in the matrix transformation., Thus, the data in
elements 3 and 4, 6 and 7, and 10 and 11 are not used and should
be set to 0., The last four elements 13-16 are also unused in
2D operations,

The following examples show how matrix transformations
can be used to show the desired view of the house defined in
the DEF example, and how matrix transformations can be con-
catenated to show a door which opens and closes in the proper
position,

FORTRAN EXAMPLE 6: Using the Matrix Multiplier

These calls load the Matrix Multiplier with a rotation
and translation matrix for the house; multiply that matrix
by another to calculate the transformation matrix for the door
of the house, and then return the first matrix.

NROTMT (1) = 1%2*%*12+1
DATA FOR NROTMT

CAiL MM (4HROMT , NROMT) Rotation and translation matrix
for house

NPSH = 2%2%%]12+4 Push Matrix 1 into Matrix 2
to SAVE

CALL MM(3HPSH,NPSH)
NDOORM(1) = 2%1%%124+3
DATA FOR NDOORM

CAiL MM (3HDRM,NDOORM) Calculate new matrix for
door

L4
L]

8-19

NPOP(1) = 2%2%%1245 Restore originalyrotation
and translation matrix
CALL MM@BHPOP,NPOP)

CALL TEXT (NAME, LOC)

The TEXT routine is used to display characters on the
screen. Previous to this call, the beam should be set to the
position of the first character. The TEXT array should have
the following format:

e Size
No. of Words

"Size" specifies the size of the characters in page co-
ordinates, that is, the size of the characters in relation to
the rest of the drawing. The window to viewport mapping then
determines the size of the characters on the screen, Thus, if
the window is defined as -1000 to +1000, and the user wants 50
characters per line (i.e., across the whole face of the scope),

then the size should be 2000/50 = 40,

The TEXT routine calls the software character generator,
wvhen it is put into execution by a DRAW call.

8-21

CALL GATH (NAME), CALL NOG (NAME)

The GATH routine is used to gather all the code generated
by all calls which occur between the GATH and its corresponding
NOG into a single routine. Thus, when the GATH call is put into
execution (by a DRAW call which references it), all the code that
has been generated by calls within the scope of the GATH will also
be put into execution. Because GATH puts all the code within its
range into execution, BOX calls and the DEF calls they reference
should not be included within the range of a GATH, or they will
be executed directly rather than through the COPY call., If,
however, the calls within the GATH have name parameters, they may
still be referenced individually. Calls which normally generate
code that goes directly into execution (i,e., the drawing and
preparation calls) may also be executed directly, but stored in
the user's buffer until the GATH routine is executed, or until
they themselves are referenced by another DRAW call. GATH calls
may be nested to 20 levels. It is possible to nest GATH calls in
two ways. They can be nested from the top by including a GATH
call within the scope of another GATH call, or they may be nested
from the bottom by first defining the lowest level GATH call and
then referencing that call by a DRAW which is included in a
higher level GATH.

NOG closes the GATH routine. If the name on NOG is the name
of a higher level GATH call, then all the GATH calls nested below
that level, as well as the GATH named, will be closed.

FORTRAN EXAMPLE 7: Using the GATH Call

The DEF and MM calls for the 30 house can easily be included
in a GATH call, so that the whole sequence of code can be refer-
enced by referencing the GATH call.

CALL GATH (1H)

CALL DEF (4HHOUS,NHOUSE)
CALL MM (3HPSH,NPSH)
CALL MM (3HDRM,NDOORM)
CALL DEF (4HDOOR, NDOOR)
CALL MM (3HPOP,NPOP)
CALL NOG (1HH)

8-22

CALL REPEAT (NAME, LOC)

This call generates an LDS-2 subroutine which, when refer-
enced by a DRAW call, will execute each of the named subroutines
in the array the designated number of times. The named sub-
routines are linked one after the other, until all subroutines
have been placed in the chain. The chain of calls to named sub-
routines will then be executed the designated number of times,
when referenced by a DRAW call, Each name in the array must be
that of a previously generated LNDS-2 subroutine. BOX calls and
the DEF's they reference should not be included in the Repeat
Table., COPY calls may, however, be included.

Repeat Count | No, of Names
Name 1
Name 2
Name 5

b 13

L d

e s e

8-23

CALL LDS (NAME, LOC)

The LDS call allows the FORTRAN user to escape into machine
language in order to perform functions that are not provided by
other FORTRAN calls. LOC points to an array which should contain
valid LDS-2 instructions which have already been assembled. The
last instruction must be a POPJ to return back to the FORTRAN
program. No checking is done to see that the code in the array
is legal, so this is a '"use at your own risk" call,

8-24

- 8.5 The Drawing Calls

The drawing calls allow the user to control the execution
of the code generated by the definition and manipulation calls,
These calls cause the code generated by other calls to be added
to the execution string of the user, deleted from the execution
string, or destroyed entirely.

CALL DRAW (NAME, LOC)

The DRAW call is used to put code generated by the
definition and manipulation calls or within a GATH call into
execution, If the DRAW call is itself within a GATH, the code
does not go into execution until the GATH is referenced by
another DRAW call, or until the DRAW call itself is referenced
by another DRAW call. The array for the DRAW call should include
the names of the routines to be executed in the order in which
the user wishes them to be executed.

umber of Names
Name
Narnie
Name

N BN =]

The names in the array should be names assigned to calls which
have previously been made by the user's program.

8-25

CALL OFF (LOC), CALL ON (LOC)

The OFF call is used to remove code generated by the sup-
port routines from the execution string. The array referenced
by LOC contains the names of the routines deleted.

Number of Names

Nawe 1
N%%% 2
Name 3

It is assumed that the routines named in the array are currently
in the execution string., If they are not, there is no need

to reference them in the array and an error message will be
given. Even though the code is removed from the execution
string, its place in the execution string is maintained, so

that by using an ON call the code will be returned to its
original place in the execution string., The ON call array lists
the names of the routines to be turned back on.

Number of Names

Name 1
Name 2
Name 3

~

The names in the array need not be in the same order as they
were in the OFF array, but it is not legal to include any names
in this array which were not included in a previously executed
OFF array. An error message will be given, if this is done.

By strategic use of OFF and ON calls, it is possible to '"blink"
all or parts of the picture.

8-26

CALL KILL (LOC)

The KILL call is used to destroy the routines that were
generated by the calls named in the array.

umber of Names
Name 1
Name 2
Name 3

|

H
{
{

i

If the named code is in execution, it will be removed from the
execution string and destroyed. If it is not in execution,

it will simply be destroyed. In either case, no further
references may be made to the code. If a DRAW call is named

in the array, the DRAW routine will be destroyed and the routines
referenced by the DRAW will be removed from the execution string.
However, the routines referenced by the DRAW call are not
destroyed and may be referenced by later calls, If the LOC
parameter contains an "0," all of the user's code will be removed
from execution, but may be referenced later. All of the user's
code is destroyed automatically at the termination of his FORTRAN

program,

8-27

SOFTWARE INTERFACE

9.1 General

The software interface provided for the LDS-2 and the SEL-
840 schedules users on the system and handles the interrupts
that occur. Within the framework of the Interrupt Handlers,
such services as setting the real time clock, handling I/O
service requests, and interpreting and displaying characters
are performed. Figure 9.1 shows the basic structure of the
software interface. :

9,2 The Schedulers

When the user enters a job, the SEL-840 Scheduler builds an
entry in the Schedule Table and checks to see if the LDS-2 is in
stop state (sleep). If the LDS-2 is stopped, the SEL-840
Scheduler issues an interrupt to the LDS-2, which initiates the
LDS-2 Scheduler. The LDS-2 Scheduler then interrogates the
Schedule Table and starts up the user's program. If the LDS-2
is already running, the SEL-840 Scheduler simply adds the user
to the Schedule Table. After each user has finished, the LDS-2
traps to the LDS-2 Scheduler, which removes the finished user
and checks the Schedule Table to find the next user.

9.3 Interrupt Handlers

When the LDS-2 is interrupted, it traps to the LDS-2 Inter-
rupt Handler, which determines the cause of the interrupt and
takes the appropriate action. If the cause is an error condition,
the LDS-2 Interrupt Handler sets a status word and interrupts
the SEL-840. The SEL-840 Interrupt Handler then interrogates
this status word and takes the appropriate action; which, in
this case, is to terminate the job, print an error message, and
the value of the LDS-2 PROGRAM COUNTER (PC) at the time the
interrupt was caused. The following error conditions will cause
job termination:

Non-existent Instruction

Non-existent I/0 Device (i.e., illegal IOT)
Parity Error

Scope Selection Villation

Memory Protection Violation

Non-existent Memory

The LDS-2 Interrupt Handler also handles interrupts from the
real time clocks and calls the LDS-2 Scheduler to restart the
first user when the end of a refresh cycle comes. The LDS-2
always refreshes at a constant rate. when under executive control.
If all the users are done, the LDS-2 goes into a waiting loop
until the clock interrupt terminating that refresh cycle comes.

9-1

SOFTWARE INTERFACE

Shared Memory

Status and

Schedule Control
Table Words

/ (PTG)
A

LDS-2 Inter eg

LDS-2
Scheduler Scheduler-
Monitor

Interrupt |_LDS-2 InterruvtLDS lntery
Handler | Hrupt
andler
I1/0 Ser, Real- Software
vice Time Charactg
Request Clock Gener-
Handler Handler ator

LDS-2 Software

SEL 840 Software

Figure 9.1
9-2

As explained in Sections 2.5 and 7.12, certain "illegal"
IOT instructions are used for communicating special requests to
the LDS-2 executive routines. These instructions cause an inter-
rupt which is interpreted by the LDS-2 Interrupt Handler.

IOR. The IOR mnemonic is an IOT ,»372, which is interpreted
as a request for input-output service. The Interrupt Handler
takes the contents of ACO as the address of a user-prepared
I/0 packet, which should have been prepared according to
SEL-840 I/0 packet specifications. The Interrupt Handler
will interrupt the SEL-840 to perform the requested I/0 and
then return to one of three locations.

CALL+1 if there is an error in the packet
CALL+2 if the user requested completion status
CALL+3 for normal completion (does not mean

that the I/0 itself has been completed)

CHAR. The CHAR mnemonic is an IOT ,373, which is
interpreted as a call to the software character generator.
The Interrupt Handler expects ACO to contain the address
of the first word of the text array. The text array
should be formatted as shown in Section 8.7.

RSTART. RSTART (IOT ,370) should be the next to the

last statement in an Assembly Language program, if it is
not to be repeatedly executed (e.g., to refresh a picture).
This IOT is interpreted by the Interrupt Handler as
indicating the end of the user's execution string. The
user's program is restarted at the beginning, when his

turn comes up again.

STOP. STOP is an IOT ,371 and is taken as an indication
that the user's program is done and causes it to be term-
inated.

CLKSTP. Real-time clock interrupts may be stopped with an
IOT ,374 or CLKSTP. This instruction is ignored, unless the
user has highest priority. Once CLKSTP has been issued,

the executive is circumvented until some other interrupt
comes, so the user must jump to the beginning of his dis-
play program to refresh the picture. All other users will

be locked out when the highest priority user turns off the
clock.

CLKSRT. An IOT ,375 is used to restart the clock. Agéin,
only the highest priority user may use this instruction.

APPENDIX I
LDS-2 Mnemonic Construction

The figures on the following pages show how LDS-2 Assembly
Language mnemonics are constructed. Mnemonics are built by
following a path from left to right and concatenating the
underlined (and capitalized) parts of the words encountered.
For example, under Stack Control the first set of mnemonics
expands to PUSH, POP, IPUSH, IPOP, DPUSH, and DPOP. The argu-
ments for each set of instructions are given after the parallel

vertical lines at the end of the string.

AI-1

LDS-2 MNEMONIC CONSTRUCTION

Load and Store Channel Control Registers

LOad —| @ADDR

| Rr1,R2

Register LOad |

L skip if _Z_ero-—I

Immediate LOad q R,N
= = i
L Minus J ’

STore —|| eADDR

Program Control

Jum @%A
w_J Jump —|

POP Jump T with OFset —]| N

]

REGister — Jump
k: Push —J '—~+| R,N

Jump and pop the Stack

XEQ (execute) ——————~1% @%ADDR
Register EXecute ————4i R

Stack Control

PUsH —+——]| R1,R2

lpcrement —
Qecrement POP ——
PUSH Increment
—_SE R1,R2
POP — Decrement

AI-2

Arithmetic Operations

ADD))
Immediate —L skip on Overflow ————4I g}’ﬁz’ if Immediate
b
SUB
R] HI rir2
skip on Zero
XOR
~ do Not depsit —] —-4! R1,R2
AND skip on Zero -
Compare
Compare —]: skip if Equal A—H R1,R2
skip if Not Equal ——— Minus Immediate
I——H R,N
—— Immediate
Unary
DECrement
INcrement — skip if Equal zero
COMplement — skip if Not Equal zero
NEGate skip if Less than zero l
——4 R
TeST skip if Greater than zero
ZeRo skip if Less than or Equal zero
Switches LOad -+ skip if Greater than or Equal zero -

ABsolute Value—— skip Always

AI-3

Shift Instructions

Arithmetic

. . Right
s o Hj o
| Left Double

Circular SHift Right —
_.[Left _—__“ R,b

Logical

Masking Instructions
Mask Right —
T T e
Left —

Bit Manipulation

Skip on-T: One :r Bit —t— CLear —
Zero L SET --———” R,b

CLear ——— Bit
RS
SET ——

Input/Output Transfers

Input Qutput Transfers -——'l R,DEV

SLEEP

Pipeline Load/Unload Instructions

LOad —— CLipping divider —— Size Absolute -
Register —J — Size Relative — DA
— Absolute ——————4—4] E%’X
— Relative -——— Registe

| Matrix Multiplier

- gelative

— Product

— Matrix multiplier Directive Register—

AI-4

_l STore —— CLipping divider

geglster Matrix'Mpltiplier % Bﬁ,x
Matrix multiplier Directive Register— ﬁgg_
ister
ReTrieve — CLipping divider — Absolute
i~ Relative
DA

— Size ébsolute

— Size Relative

- Matrix Multiplier

- Matrix multiplier Directive Register —

SinK —y CLipping divider

— Matrix Multiplier

[Slide —” DA

— Matrix multiplier Directive Register .

NOrmalize —— Matrix Multiplier ——4]

PUSH
Matrix Multiplier —~—H DA

POP

Drawingrlnstructions

Single Draw || MAN,ADDR

Table Draw

L_I_ndirect 4 indeXed —L- Repeat _—-“ FSM1,FSM2

Register Draw ——4] FSM1,FSM2,X

L -—4' FSM1
Repeat —

Matrix Multiplier Draw

AI-5

APPENDIX II
OPDEF's and EQU's

The following list gives the permanently defined OPDEF's
and EQU's for the LDS-2 Assembler. These OPDEF's and EQU's are
reserved mnemonics, which may not be used for other purposes.
An attempt to use one of the permanently defined mnemonics will
result in an error message from the Assembler. Chapter 6 of this
manual explains the format and meaning of both the OPDEF and the

EQU directives.

AII-1

EQY 24 . (THIS MUST BE SET TO THE WORD SIZE)

i B

e CEQY T T 8 T T T T UTTT(SET THIS To NUMBER QF BITS/TEXT CHAR,
L EQu 256 (SET THIS SO THAT t=(2##(e«r16)))
! FQu +»16384/5 MULTIPLIER FOR 1ST DIGIT OF DEC, FRACT,
! Fau /19 " 2ND "
vy CEQu 11/ ’ o IR0 "
ISRE] Foit IRV Y " 4TH "
SRRE Fai IRRRYENY " 5TH L
st Fa LR A N " ATH " "
AC? Eogt! g

AC1 Fay 1

AC? Fat ?

AC3 Fopi R

TOS Fou 4

SP Fag! 5

DSP Foan &

1R Figtl 7

X Futt 219

Y: FQn 711

Z Fai 212

W o 713

RP Fott 714

RC Fin ALs

WP £ n16

WC gt %17

LD OpngF (B)2(4,7 ,N)y(e=8,6~1,AR)

ST NpNEF (D108 +), (4,7)N)) (e=B,e=1,A0)

RLO APnNEF (D6QCRR2+2),(4,7,N),(4,«=5,N)

RLN% NHNEF (2167200 322+42),(4,7,)N),(4,6=5,N)

1LO AP EF (R8002Due+P12),(4)7 M), (e=12,+~5,N)

ILO% APNEF (£1620008t+012),(4,7,N),(e=12,«-5,N)

1L0M NENEF (D8PAYAB++B13) (4,7 ,N),(e=d2,¢~5,N)

ILOMZ CPOEF (D16 0APut+P13) (4,7 ,N),(e=12,¢=5,N)

J ORMEF (2214¢0u42)) (e=8,e=1,40Y%)

PUSH.! QRNEF (P2340044)) («=8,0=1,A0%)

XEQ ARNEF (025400u¢) ,(e=8,e=1,A8%)

SOR OPnEF (25000%%2+8319),(4,7,M),(4+«/17,¢=5,N)

SZR OFmEF (05000052 +011),(4,7 M), (4+¢/171¢=5,N)

CLB NPNEF (5270w +012)) (49»79)N)»(4++/1716=5,N)

SETR GPNEF (B500D0%++B13), (4,7 ,N) s (4%0/17,¢=5,N)

SOBCL NPoEF (D5020000+014),(4,7,8),(4%¢/17:¢=5,N)

S2R01L nprer (5030006 ++0115) 3 (4,7 ,N) s (4+e/17)¢=5,N)

SORSET COpneR (0527024 ++016),(4,7,N),(4+«/17,«=5,N)

SERSFT APNEF (RBABAB++B17) (4,7 ,N),{4%e/17,+«=5,N)

ASHR ARNLEF (0500004 +@4), (4,7)N),(4+e/17,¢=5,N)

LSHR NRNER (2527024 ++72), (4,7)N), (4+e/17,¢=5,N)

LSHL OpPREF (RBQADAB4++03),(4,7)N),{(4+e/17,¢=5,N)

ASHL NRNEF LSHL .

CSHK NPnEF (@5070351),(4,7,N)y(446/17,6=5,N)

CSHL NPNEF (BSOOBOse+0L) , (4,7,N),(d+e/17,¢=5,N)

ASHHKN NRREF (D500 us+@5),(4,7sN)y(4+0/17,¢~5,N)

LSHRP NPREF (Q5070R»++06),(4,7)N),(4+4¢/17,«=5,N)

LSHLY NRNEF (B5CPPR#+4+07Y,(4,7,N),(4+6/17,+=5,N)

ASHLD NPNEF LSHLD

MR NPNEF (015707081 +210),04,7,N), (4+¢/17,+=5,N)

ML OpPPEF (Q150002nt+011),(4,7,N), (4+e/17,¢=5,N)
| AII-2

DEC

DECE

- DECL
DECLFE
DECG
DECGF
DECNE

~ DEfA

INE
INCE
INCL
INCLF
INCG
INCGE
INCNE
INCA
cOoM
COME
COML
COMLF
COMG
COMSYT
COMME
COMA
NEG
NEGE
NEGL
NEGLY
NEGG
NEGGF
NEGNF
NEG A
TST
NOP
TSTL
TSTL
TSTLF
TSTG
TSTGF
TSTHE
TSTh
ZR
ZRFE
ZRL
ZRLE
2RG
ZRGE
ZRNE
ZRA
ABV
ABVE
ABVL,
ABVL. ¥
ABVG
ABVGE
ABVRF
ABVA

NPNEF
NPNEF
OpNEFR
ORNEF
ORNEF

npnEF

NPREFT

COFNEF

OROEF
NprEFR
NpnEr
OENEF
OFNEF
AprEF

BOELYES

OFNEF
OPREF
NPNEF
NENEF
NPPEF
OPREF
QPNEF
ARNEF
NPNEF
NPNEF
OPREF
NpPNEr
OPNEF
NPrer
NPREF
0pPnEF
OFNEF
aAPNELF
ApPNEF
NPNEF
NpREr
NPNET
JPNEF
OpnEF
NPNES
npPree
NRMEF
WPIEF
npnEr
CROEF
OPNEF
NERET
OPNEF
NROEF
WPLEF
NpNEF
NPNEF
AprEr
NPNEF
npNEF
npngr
OPNEF

(L1500 uut), (4,7, N)
(RL570AD et +4203),(4,7,N)
(215003 #++9180) ,(4,7,N)
(P1570AZar+2120),(4,7,N)
(B152Q003%++043),(4,7,N)
(L5200 3w+ +263), (4,7 N)
(1500004 ++D147),(4,7,N)
(V15703 Fue+3160),(4,7,N)
(G100 D2+), (4,7 ,N)
(RISADAGH++321),(4,7,N)
(15000 e ++0131), (4,7, M)
(G1520P00++2121),(4,7,N)
(01500208 ++041),(4,7,N)
(B15P000%t+4H61),(4,7,N)
(1500t +0141),(4,7,N)
(D152pBder+p161),(4,7,N)
(D150 nr+32) 4 (4,7, M)
(BI5A00282+22) ,(4,7,N)
(DLOABAN4++P102),(4,7,N)
(01570004 ++3122),(4,7,N)
(P150007w2+042),(4,7,N)
(21520C0u*+082),(4,7,N)
(157020« ++3142),(4,7,N)
(21570020 +3162),(4,7,N)
(PISOOBEHt+03) 9 (4,7 ,N)
(150000 u++323),(4,7,N)
(R1S520AGur+3183),(4,7,N)
(BL57002%++2123),(4,7,N)
(Q15000ue+P43),(4,7,N)
(R150000we+063),(4,7,N)
(R1500786++0143),(4,7,N)
(2152000« *+3163),(4,7,N)
(BL5AGADw*+34), (4,7 ,N)
CTST 23]

(1570004 ++224),(4,7,N)
(PLS52PADwr+@104),(4,7,N)
(G15307A3#e+0124),(4,7,N)
(P157200wr+344),(4,7,N)
(B15000p0r+064),(4,7,N)
(P15000Rst+144),(4,7,N)
(1500wt +1164),(4,7,N)
(G1500APur+35) 2 (4,7 ,M)
(Z1L57QARQwt+3725) ,(4,7,N)
(P150003wr+g105),(4,7,N)
(215200042 +2125),(4,7,N)
(P15ACAZur+p45),(4,7,N)
(D15700042+0A5) , (4,7 ,N)
(G15002008++2145),(4,7,N)
(G15M23Par+0165),(4,7,N)
(15700t +06) 4, (4,7 ,M)
(B150000n++026),(4,7:N)
(0153000 u*+3106),(4,7,N)
(A1502A0n++03126),(4,7,N)
(G150 2ut+046),(4,7,N)
(R153PAPYst+PK6)Y,(4,7,N)
(P152000nt+(5146),(4,7,N)
(215007042 +2166),(4,7,N)

ATT-X

SLO

SLOE

SLOL

sLoLE

-SLOG
SLOGF
SLONF
“SLOA
REX
CE
CNE
CE!
CNFE 1
CEMI
CNEM?T
ADD
ADDNT
ADD]
ADDING
SUR
SURNR
SURI
SURINB
OR
ORZ
X0R
XO0R{
XORN#
AND
ANNZ
ANDRZ
PUSH
TPUSH
PUSH]
DPIISH
PUSHN
PQOP
IPOP
POP1
DPOP
POPD
REGUY
REGP
REGJS
PORY

POPUOF

107
SLFEE®R
SETA
SETR
SETV
T0A
TOR
TOV
DOTA
DOTR
NOTyV

_OPDEF

OPNEF
NPrEF

S onpngr

NPREF
QpNEF
NPREF
DENEF
NpNEF
AOPNEF
OPPEF
npNEF
OPTEF
NPNEF
OpMEF
npnrgr
OPNER
ApmErD
NENEF
CPPEF
ApPnEFR
r”.':"\E.'."
NPNEF
NEAEF
OFNETR
P aEFR
NPhEF
OpREF
npNpFE
OPNEF
('!FJ.”}E:L"
OPNEF
nprer
OFNEF
NENET
NPNEF
NpPrEFr
CNPNEF
CPNEF
ARNEF
ApPNEF
NENET
npnNEr
OP”&F
npnEre
NPAER
PROEF

CAPNEFR

Fa
Tl
VQH
e
FQu
G
gau
F!
EQn

(01570000 *+3234),(4,7,N)

(01500006 t+0224),(4,7,N)

(1500000 ++0304),(4,7,N)
(B15000281+0324),(4,7,N)
(0150000n++2944),(4,7,N)
(GL50030n++0264) ,(4,7,N)
(P15070008++3344),(4,7,N)

(1500032 4++3364),(4,7,N)
(B150008wr+37),(4,7,N)
(G15CAC2u++P12) 4 (45,7,N)»(4,¢-5,N)
(015000042 +313),84,7,N),(4,¢=5,N)
(G150 82+014) ,(4,7:,N),(e=12,+=5,N)
(U157020n*+015),(4,7,N),(«=12,¢~-5,N)
(1500030 ¢+316),(4,7,N),(em=12,¢~5,N)
(61570028 *+317),(4,7,N), (#=12,¢=5,N)
(DA0P0Gwt)) (4,7,N)s(4,#=5,N)
(216MDAa1), (417 4N, (4, 0=5,N)
(ﬂéﬂﬁ@@“?*ﬂl@),(4,7,N),(hn12,ﬁ~5,N)
(B1LE60AAur+3108) (497 sN) s (w«=12,¢=5,N)
(D6QAZD#*++01) ,(4,7,N),(4,6=5,N)
(0167000t +01) (4,7 ,M),(4,e=5,N)
(PEQB2DDue+D11) 2 (4,7, N)y(wm12,¢=5,N)
(216000062 +311),(4,7,N),(e=12,¢=5,N)
(ﬂéﬂﬁﬂﬂ*$+@5),(4,7.N),(4.0-5,N)
(0167000 ar+Q5) (4,7 ,N)y(4,e=5,N)
(QABC0Aw+73) (4,7)N),(4,«=5,N)
(PLEADAG»++A3) (4,7 ,N) s (4,e~5,N)
(G160 t+06)2(4:,7,M)s(4,¢~5,N)
(L6PRADARr+(4) 4 (4,7,N)) (4,0=5,N)
(B1.672200t+Q4),(4,7,N),(4,¢=5,N)
(16700002 +37),(4,7,N),(4,¢=5,N)
(@7@ﬂ@ﬂ##),(4,7,N),(4,@~5,N)
(D7R00B%++24),(4,74N),(4,%=5,N)
(B70020u+4+06),(4,7,)N),(4,e=5,N)
(B7000Bu++210) 3 (4,7,N),(4,¢=5,N)
(B7AFBAwe+D12),(4,7,N),(4,e=5,N)
(070080 we+B1),(4,7,N),(4,¢=5,N)
(2700200 2+25), (4,7)N)Y,(4,«=5,N)
(@7@@89#1+@7’:‘4;7:N).(4.*&5,N)
(700834 ++A11) 0 (427 ,M)s(4,¢=5,N)
(O7070%#++B13) s (4,7,N), (4, 0=5,N)
(C7000B5++014)9(4,7,N),(e=12,e~5,N)
(0707088 ++B15), (4,7 ,N)) (e=12,¢=5,N)
(700052 +716)2(48,7,N) s (em=12,¢~5,N)
(7200002 +314A)

CPOPJ),)(«m12,«~5,N)
(P1770%881) ,(4,74,N) s (e=8,em1,N)

CInT 24137

0’,‘

i N

n

i B
”11
12
AIT-4

BOXA
ROXR
FRMA
FRMR
BOX
NEWCRV
DoT
FROM
STAK
TO
POLY
SET
NLINF
LINE
RX

AX

RA

AA

AR

RR

A"

AV
SACY
SAC?
SX

SZ
DACY
DX
SAVELSB
SAVERT
VIEwW| 2
VIFwWRT
WINDL
WINGRT
INSTLD
INSTRT
NAME
COIR
HITAMNG
SELIMT
SAVE
VIE“
WIND
INST
LOCLA
LOCILR
LOCLSA
LOCL SR
LOMMA
LOMME
LOMMFE
LoMpR
STTL
STMM
STMOF
RLOCL.A
RLOACLR

FoH
Fatl
EQH
Fr
Falt
F it
gt
i
Faibi
F i
T
gt
£
Futl
Ao
N O
F&H
AN
et
Eict!
Fatl
Ft!
Fa
FQit
Falt
Fatt
P!
Fgt
Fat!
Foil
Foan
PO

Fay

PG

F
Fait
£6
F§aud
Fa'l
FeH
Fogti
Fu'l
Ewl)
Figtl
APNEF
OFMEF
OPNEF
Q ;4 f“yE [
OpnEF
pPnEE
OPTEF
NEAEF
NpreEr
OGPREF
OpnNEF
OPAEF
aPNEr

714
15
n16
g7

3 B
o
b

IR ION B LN}

C
Fan
<

M ADNG NI

RS IR B A N R TR0 B I S

a19

A1l

212

ﬂlz

714

715

L6

A17

(4000 Au++06),(4,#=5,N)
(040402 r+05),(4,¢=5,N)
(L4178 0ue+16),(4,¢~5,N)
(24140002 +76),(4,0~5,iv)
(242200 #++76) , (4,¢=5,N)
(64240742 +05), (4,¢~5,N)
(DAICGAue+(15),(4,¢=5,N)
(04340 Dkt +0h)
(Q140070%2+(6),(4,e=5,N)
(B147020%r+46) s (4se-5,N)
(31434006 +05)

(040000 e) 4 (4,0=5,N), (3,¢=~1,N)
(ﬂ4ﬁ4@@*f).(4,*-5:N7,(3)*-1:N)

ATI-5

R

RLOMMA

RLOMMR

RLOMMP
RLOMDR
RSTCL
RSTMM
RSTHDR
RTCL A
RTCLR
RTCLSA
RTAGLSR
RTMDR
SKCL,
RTMH
RTMMS
SKMM
SKMMS
SKMDP
NOMM
POPMM
PUSHMM
SD

D

TOR
TD1
TDIR
TD1X
TDUXR
RD

MMD
MMDR

NPNEF

‘Apnps

NPNEF

NPNEF

NPAEF
NPEF
aOpnEF

CORPNEF

OPNEF
apnEFr
CFNEF
NRAEF
npree
NRAEF
ApPNEF
OPNEF
NPNEF
ORNEF
CPREF
NpNEF
NDPNEF
IPDEF
NFNEF
OPNEFR
NPNEF
fpPMERS
NEIEF
NonEr
AFPEF
NpOEF
CPNEF

D

(Q42ﬂﬂﬂ“?)'(4o“f50N)v‘39ff1bN)A;
(P42400%+),(4,6mB,N),(3,e~1,N)
(GA3A0Bue),(4,en5, N):(3p*"1 N)
(B43400a+),(3,e=1,N)

(014700342),(4,«=5,N),(3,e~1, N)
(01420088 2), (4,0=5,N), (3,e=1,N)
(014347280 2),(3,0=1,N)
(PAD0ARas+07),(4,+=5,N)
(040400 %++27) ,(4,¢=5,N)
(@419@ﬂ“1+ﬂ7)p(4.*~5.N)
(D41400An++07),(4,+=5,N)

(43400 w++07)
(21400Riut+07),(4,+=-5,N)
(GA42000%++07),(4,¢=5,N)

(42420« ++07),(4,¢=5,N)
(B1420000++07),(4,¢=5,N)
(214240t +07),(4,+«~5,N)
(D14R4AEnr+17)

(61424005 1+26) |
(D1L4200002+06),(4,«=5,N)
(143000t +07) ,(4,e=5,M)
(P2000B%+) (4,7 ,N) s (e=B,e=1,AR%)
(2437042 +P168), (I, 7,N) s (3,¢=5,N)
(2A02AR#2+0216),(3+7,N)»(3,¢=5,N)
(8142072802 +316) (327 ,N) s (3re=5N)
(01400024 ++3216),(3,7,N),(3,¢=5,N)
(614400202 +J16),(397,N)» (3,¢=5,N)
(014400 0u++3216),(3,7,N),(3,e=5,N)
(40D +P10) 4 (357,M)s(3,€=B5,N), (3,e=1,N)
(LARDPBRwr+057)4 (4)7,N)
(0400074 ++d257),(4,7,N)

AII-6

APPENDIX III
A NOTE ON HOMOGENEOUS COORDINATES AND THE LDS-2

ITI.1 Introduction

This note is designed as an operational, as opposed to
a theoretical, note on homogeneous coordinates and the Evans §
Sutherland Line Drawing System Model 2. The use of homogeneous’
coordinates operationally and conceptually simplifies many of
the problems in presenting and manipulating three-dimensional
objects with a computer graphic system. The degree of simpli-
fication gained is apparent in the airport examples discussed
at the end of this Appendix. These examples are significant
because they are indicative of the general class of problems
which involve multiple moving bodies in three-space.

For a full LDS-Z system, the basic three-dimensional
coordinates describing objects is stored in main memory in
four consecutive words. These four words represent
the "homogeneous' three-space coordinate vector [X, Y, Z, W].
The first three components X, Y, Z are the normal orthoginal
three-space distances from the origin of coordinates of the
particular object. The fourth component, W, is a scale factor
for the first three components.

The X, Y and Z components are binary 2's complement numbers
arrayed about Zero=00...00,. The binary point, analogous to
the decimal point, can be thought to be located at the user's
discretion. Thus in one representation of the whole three-
space, the user might be thinking of a 'cube'" of space '"centered"
at Zero and running to approximately * Unity in each direction;
if so, the user would be thinking of the binary point being
located one binary place to the right of the left end of the
half-word. Another natural representation with a 24-bit LDS-2
system might be a cube of space centered at Zero and running
from -223 = 10...0, to 223-1 = 01...1,; in this case, the binary
point would be located at the right end of the half-word.
Regardless of the assumed binary point, the X, Y, and Z values
can still represent any scale for the object or space in question.
The location assumed for the binary point is independent of this
choice of scale for the object.

The W component is often stored as unity to represent a
unity scale for the homogeneous coordinate. If W were half of
unity, the coordinate would represent a point (or distance)
twice as far from the origin. If W were Zero, the coordinate
would represent a relative value. Since a relative coordinate
is the difference between two absolute coordinates, this can
easily be shown for coordinates with equal W's:

[X"Y’ z’ 1] - [X'9 Y" Z'a 1] = [AX’ AY, Az, 0]

AIII-1

The set of four-element homogeneous coordinate vectors
that describe an object can be transformed by the LDS-1 Matrix
Multiplier. There are 16 elements in this matrix and, contrary
to coordinate data, they are considered to have a fixed binary
point. The elements are signed fractions in 2's complement
representation. Thus, the binary point is assumed to be
located to the right of the left end of the half-word. Unity =
01...15, is .the largest positive fraction that can be represented
as a matrix element. For convenience in the example matrices
that follow, this is written "1."

I11.2 Conventions for the Homogeneous Coordinates

Some of the literature about homogeneous coordinates con-
siders Z as the distance from the projection plane to the object,
and W as the distance from the observer's '"eye point'" to the
object. However, in many applications, it is inconvenient or
impossible to calculate the location of the projection plane.

An example is the projection screen for a pilot in an aircraft
simulator; this application may need a virtual screen at
infinity. 1In contrast to this potential problem of the location
of the projection plane, the location of the eye point is known
in almost all applications. The Evans § Sutherland Clipping
Divider considers the Z information presented to it as the
distance from the eye point to the object.

Before proceeding, a comment about orthographic projection
is in order. In the "Z from the projection plane'" coordinate
system, the perspective presentation seen on the projection
plane approaches an orthographic projection as the eye position
is moved farther and farther from the plane, i. e. as W » =,

In the "Z from the eye point" system, which is used exclusively
in what follows, orthographic projections are made by using a
transformation matrix which makes the resulting scope coordinates
depend upon W (the homogeneous coordinate scale factor), but

not on Z (the distance from the viewpoint). As an interesting
example, consider a star in the sky which is located infinitely
far from the viewer. Since the star is infinitely far away,

it has a coordinate of [X, Y, Z, 0]. If this point were ortho-
graphically projected onto a screen, it is almost certain to

be projected to a point on the screen that is very far from the
area of the screen that represents the viewport. In effect,

the orthographic projection of the star by the Clipping Divider
would entail dividing by 0. This would make the scope coordinates

XS and YS extremely large, (i. e. off the scope).

II1.3 Conventions of the Clipping Divider

In addition to the "Z from the eye point'" coordinate
system, three other conventions used by the Clipping Divider
must also be understood. The first convention is that the
Clipping Divider treats its four component vector input as if
it were [X, Y, Z_, Z_] rather than [X, Y, Z, W]. That is, Zx
is assumed to be the’Z distance for X and the Z_ the Z distance

for Y. Since [X, Y, Zx’ Zy] describes a single’/point, normally

AIII-2

Z=1I, =1 for information presented to the Clipping Divider.

The transformation from [X, Y, Z, W] data stored in memory to
the [X, Y, ZX, Z_] data presented to the Clipping Divider can

be handled by the Matrix Multiplier. Examples are given at
the end of this Appendix. The Clipping Divider algorithm then
processes this input information to get an intermediate result
[x', vy', Zi, Z!]. Following this, the algorithm divides X' by
Zi and Y' by Z' to get the final X and Y scope coordinates to
be passed to tﬁe display.

The second convention is that the Clipping Divider hard-
ware operates as if the field of view were 90° in both X and
Y. Consequently, the ZX and Z_ presented as input should have

been scaled to provide the desired field of view. Again, this
transformation can be handled by the Matrix Multiplier as shown
in the examples at the end of this Appendix. The normal pro-
cedure is to scale ZX and Z_ to values that equal X and Y at

the edge of the desired fiegd of view. For fields of view less
than 909, this scaling reduces Z, and can be represented as an
appropriate fractional number in the Matrix Multiplier.

The third convention is that the Clipping Divider always
treats its input information in a left-hand coordinate system.
Thus, positive X increases to the right and positive Y increases
upward, while positive Z increases away from the eye point per-
pendicular to the center of the screen.

These conventions used by the Clipping Divider need cause
no trouble; they can be handled by appropriate transformations
made by the Matrix Multiplier. In fact, the natural way to
handle all transformation information is to combine them into
a single 4 x 4 transformation matrix. A matrix for the first
transformation, the Clipping Divider Switching Transformation
[CDST], can be written as in the top of figure AIII.2 when
z = Z, = Z,-. The matrix for the second Field of View Trans-

formation [FVT] is shown in the bottom row of figure AIII.I1.
The desired field of view is defined by o° and B°. This trans-
formation [FVT] can then be combined with [CDST] to get the
final Switching and View transformation [SV].

Since the Matrix Multiplier can multiply matrices, [SV]
can be combined with any other transformation by the Matrix
Multiplier. One method is to load [SV] into the Matrix .
Multiplier (and probably the Data SINK for later use) as the
LDS-1 starts. It can, thereafter, be combined automatically
with each individual transformation which has been stored
with individual picture elements. An alternate method is to
use software to combine the [SV] transformation with each
individual picture element's transformation before beginning
the display. The first method makes the data base more ''pure"
and requires less software, while the second allows the LDS-1
to operate faster when displaying the picture.

AITII-3

I1I1.4 Position - Viewpoint Matrices

An Object's Position matrix (denoted [OP]) is the 4 x 4
homogeneous coordinate matrix that specifies an object's
location and orientation with respect to the origin of three-
space coordinates. It is derived from concatenating the
information describing the object's rotation, scaling and
translation, as shown in figure AIII.2. The concatenation of
a [0, 0, 0, 1] column makes the matrix square.

This resulting square [OP] matrix always has an inverse.
Moreover, since the [OP] describes the obJect position from
the origin of three-space, the inverse [OP]-', describes the
three-space position from the origin of the object! Thus,
the [OP] can be thought of as describing the "view of," and
the [OP]"* can be thought of as describing the '"view from "
the object in question. Use will be made of this relationship
below.

ITI.S The Airport Problem

The picture in figure AIII.3 allows several operational
relationships to be written down just as the LDS-1 system will
execute them. We will assume for the sake of simplicity that
all viewers have the same field of view (i. e. o° and B°) so
that there is only one [FVT], and thus only one [SV]. Other
position matrices are defined as noted in Table 3.

First, what does one see from the base of the control
tower (the origin of three-space coordinates) looking straight
up? One sees the space, the Trans-World plane in its correct
position, and the United Airlines plane in its correct position,
(assuming the field of view is large enough). Thus, to start
a picture, the display program could:

1) 1load [SV] into the DATA SINK (for later use)
and the Matrix Multiplier

2) draw the objects fixed in three-space

3) multiply the [SV] matrix in the Matrix Multiplier
by [UAP]

4) draw the United Airline plane
5) 1load the Matrix Multiplier with [SV] from SINK
6) multiply by [TWP], and draw the Trans-World plane

What does the control tower operator see? He sees the
three-space and the objects just as before, except from his
translated position up the Z axis and looking along a direction
Totated from the three-space Z axis. This transformation is

defined in figure AIII.3 as [CTP]. The program would:

AIII-4

1) 1load [SV] into the DATA SINK and Matrix
Multiplier

2) multiply [CTP]™!
3) draw the objects fixed in three-space
4) continue as in previous example
Note that there may be no reason to draw the control
tower itself (which is assumed to be part of the three-space).
This is especially true if none of the control tower appears
to the control tower operator. Omitting the tower may save

program execution time at the cost of a little more care in
initially organizing the data.

What does the United Airlines pilot see? He sees the
space, and TWA at the TWA location. Consequently, a program
might:

1) 1load [SV] into SINK and Matrix Multiplier
2) multiply [UAP] !

3) draw the three-dimensional space

4) multiply [TWP]

5) draw the Trans-World plane

Again, this assumes that none of the United plane is visible
to the United pilot.

AIII-S

TRANSFORM MATRICES

[CDST]
Clipping Divider
Homogeneous Switching
Coordinates Transformation Clipper Input
- =
[X, Y, Z, W] 1 0 0 0 = [X, Y, Z_, Z.]
X"y
0 1 0 0
0 0 1 1
0 0 0 0
[EVT] [SV]
Field of View Final Switching and
[CDST] Transformation View Transformation
1 0 o o]]1 o o o =1 o o 0
1 0 0 0 1 0 0 0 1 0 0
o 0 1 1 0 0 tan a/2 0 0 0 tan a/2 tan B/2
0 0 0 t 2 0 0
o 0o o0 o}] an B/ A 8 0 0

Where the chosen angles of view represent a viewport described by:

BO

Y
t‘* X a®

a, B <90°

Figure AIII.1

HomMOGENEOUS COORDINATES

COORDINATES X TRANSFORMATION = NEW COORDINATES

3X3 TRANSFORMATION | X, ¥ Z | @b v 7]
! | | |

(ROTATION AND SCALING) I | X d e f = | i
! I | I

g h i

3X4 TRANSFORMATION | X+ ¥ 2. 1] \\ X z—!

(ROTATION, SCALING AND : . 3x3 - .
] |

TRANSLATION)

J
4X4 HOMOGENEOUS [vz 1] ° [x v 2 ’_]l
TRANSFORMATION X 3x3 (o] = | ,
(ROTATION,SCALING 1 | o " |
AND TRANSLATION)
‘ 3X1 1
L _—

Figure AIII.2

THE ATRPORT PROBLEM

Origin of the three-space at base of control tower.

Origin of each plane assumed to be at pilot's eye point.

Associated Matricies

[UAP] = United Airlines Position. Matrix giving the
position and orientation in three-space
of the United Airlines plane from the
origin of three-space coordinates.

[TWP] = Trans World Airlines Position. Matrix as above.

[CTP] = Control Tower observer's Position. Matrix as

above.

Figure AIII.3

102638132

	0001
	0002
	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	5-01
	5-02
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	7-67
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	9-01
	9-02
	9-03
	A-01_1
	A-01_2
	A-01_3
	A-01_4
	A-01_5
	A-02_1
	A-02_2
	A-02_3
	A-02_4
	A-02_5
	A-02_6
	A-03_1
	A-03_2
	A-03_3
	A-03_4
	A-03_5
	A-03_6
	A-03_7
	A-03_8

