
EVANS & SUTHERLAND COMPUTER CORP.

LINE DRAWING SYSTEM MODEL 2

SYSTEM REFERENCE MANUAL

jH,M//.£,P ti? hrl ,#,.AU:77/VL' .ry..r.

Evans & Sutherland Computer Corporation
Three Research Road

Salt Lake City, Utah 84112

August 1, 1971

901002-100

COPY

Prepared by: Russell Athay

Copyright 1971

Evans & Sutherland Computer Corporation

1

2

TABLE OF CONTENTS

SYSTEM OVERVIEW

1.1 System Configuration
1.2 General Purpose Processing
1.3 Graphic Processing

1. 3 .1
1. 3. 2
1. 3. 3

1. 3. 4

Drawing Instructions
Data Forms
Dimension Modes and Coordinate Data
Storage
The Display Processing Pipeline Units

1.4 Programming

THE CHANNEL CONTROL

2.1 Function
2.2 Structure

2. 2. 1
2. 2. 2

Registers of the Channel Control
Memory Addressing

2.3 General Computing Facilities

2.3.1
2.3.2

General Purpose Instructions
The Stack

2.4 Graphic Facilities of the Channel Control

2.4.1
2.4.2
2.4.3
2.4.4
2.4.S
2.4.6

Display Instructions
The X, Y, Z, and W Registers
Data Fetching for Display Instructions
Repeat Instructions
The Data Sink
Returning Output to Memory

2.5 The I/O Structure

2.5.1
2.5.2
2.5.3
2.5.4
2. 5. 5
2.5.6

Status Registers
Interrupts
Real Time Clocks
Memory Protection and Relocation
Special I/O Functions
The Interface from the SEL-840 Side

i

· ·pa·ge

1-1

1-1
1-3
1-3

1-3
1-5
1-5

1-7

1-7

2-1

2-1
2-1

2-1
2-1

2-4

2-4
2-5

2-6

2-6
2-6
2-7
2-8
2-9

2-10

2-10

2-10
2-11
2-12
2-13
2-13
2-14

3

4

5

6

THE MATRIX MULTIPLIER

3.1 Function
3.2 Three-dimensional Matrix Transformations
3.3 Two-dimensional Matrix Transformations
3.4 Composite Transformations

3.4.1
3.4.2
3.4.3

Nested Transformations
Row-to-Row Moves
Matrix Normalization

3.5 Two-dimensional Curves
3.6 Three-dimensional Curves
3.7 Surface Patches
3.8 Arithmetic Conventions
3.9 Mode Control

THE CLIPPING DIVIDER

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11

Function
The Current Point
Relative Data
Two-dimensional Clipping and Division
Three-dimensional Clipping and Division
Boxing
HIT and COUNT Functions
Scope Control
The NAME Register
Graph Mode
Mode Control

THE LINE GENERATOR AND DISPLAY SCOPE

5.1 Function
5.2 Control

5. 2. 1
5. 2. 2

Intensity
Scope Selection

THE LDS-2 ASSEMBLER

6.1 General Characteristics
6.2 Syntax

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6. 2. 7
6.2.8
6.2.9

Symbols
Numbers
Current Location Pointer
Expressions
Text Strings
Literals
Subfields
Fields
Statements

ii

Page

3-1

3-1
3-1
3-4
3-4

3-4
3-6
3-6

3-6
3-6
3-9
3-9

3-11

4-1

4-1
4-1
4-1
4-1
4-3
4-5
4-7
4-9
4-9

4-12
4-12

5-1

5-1
5-1

5-1
5-1

6-1

6-1
6-1

6-1
6-1
6-1
6-3
6"- 3
6-4
6-4
6-5
6-5

7

8

9

6.3 Assembler Directives

6.3.1
6. 3. 2
6.3.3
6.3.4

Assembly-Control Directives
Object-Control Directives
Listing-Control Directives
Storage-Allocation Directives

LDS-2 INSTRUCTION SET

7.1
7. 2
7.3
7.4
7. 5
7.6
7 • 7
7.8
7.9

7.10
7.11
7.12
7.13
7.14

Accessing Data for the Instructions
Notation
Loading and Storing the Channel Control Registers
Program Control
Stack Control
Arithmetic and Logical Operations
Compare Instructions
Unary Instructions
Shifting Instructions
Masking Instructions
Bit Manipulation
The IOT Instruction
Load/Unload Pipeline Registers
Drawing Instructions

FORTRAN SUPPORT ROUTINES

8.1 runction
8.2 Data Formats
8.3 Preparation Calls
8.4 Definition and Manipulation Calls
8.5 Drawing Calls

SOFTWARE INTERFACE

9.1 General
9.2 The Schedulers
9.3 Interrupt Handlers

APPENDIX I LDS-2 Mnemonic Construction

APPENDIX II OPDEF's and EQU's

APPENDIX III A Note on Homogeneous Coordinates

iii

Page

6-7

6-7
6-9

6-10
6-10

7-1

7-1
7-1
7-3
7-5

7-10
7-15
7-22
7-25
7-29
7-33
7-34
7-37
7-40
7-58

8-1

8-1
8-1
8-2
8-5

8-25

9-1

9-1
9-1
9-1

AI-1

AII-1

AIII-1

SYSTEM OVERVIEW

1.1 System Configuration

The LDS-2 is a general purpose computer with specialized
facilities for graphic processing. In the shared memory con­
figuration the LDS-2 operates as a second processor which shares
memory with a host computer. In this configuration the LDS-2
is an independent processor in that it_ accesses and executes
its own programs, but the LDS-2 is dependent upon the host
computer for such functions as ILO and the regulation of its
o eration (i.e., start in and to in t D - schedulin~
~,. etc. . 1gure 1.1 shows the configuration of the LD -2.
The following units make up the LDS-2:

The Channel Control. The Channel Control accesses
memory to provide the instructions and data needed
by the LDS-2. The Channel Control executes ~11 of
the general purpose processing instructions and
interprets display instructions and provides commands
and data to the display processing pipeline devices.

The Matrix Multiplier. The· Matrix Multiplier can
rotate, translate and scale the drawing to be dis­
played. The Matrix Multiplier also can iterate sets
of difference equations to draw -curves and families of
curves.

The Clipping Divider. The Clipping Divider allows the
user to specify the portion of the drawing he wishes
to view. The Clipping Divider will automatically
eliminate all portions of the drawing which lie out­
side the viewing area, and then scale and position the
picture on the Display Scope. The Clipping Divider also­
performs three-dimensional perspective division.

The Line Generator and Diselat Scopes. The Line .
Generator converts the dig1ta specification of end­
points into analog sweep voltages which are used to
drive the deflection systems of the Display Scopes.

1.2 General Purpose Processing

The LDS-2 has a large and versatile instructions set, fts
own internal high-speed register memory, and facilities for
interpreting complex data structures. Instructions are provided
to perform the following tasks:

Arithmetic and logical operations
Shifting, masking, and bit manipulation
Comparisons and conditional skips
Program flow control and stack manipulation

1-1

LDS-2 DISPLAY SYSTEM CONFIGURATION

'emory
!DATA
I Matrix
!COMMANDS
: ~ Multiplier

DATA
Clipping

Divider

LDS-2

Channel DATA I
~n----mn::=-=-~:::-_ij

Control DATA

Figure 1.1

DATA
Line

Generator
i..----.. ---· -...··----

Display
Scopes

The LDS-2 Channel Control has a high-speed register memory
which is composed of sixteen registers. While all but four of
these registers are used for special functions, all registers
may be manipulated with equal ease, and when the special function
to which a register is dedicated is not being used, that register
may be used as a general purpose accumulator.

The LDS-2 provides facilities for direct, indirect, and
indexed addressing, but it is also a stack machine with very
powerful and versatile stack manipulation facilities. Special
stacks are operated to hold return locations and parameter infor­
mation from the display processing pipeline. The user may also
set up and operate additional general purpose stacks.

1.3 Graphic Processing

In addition to its general computing capabilities, the LDS-2
can interpret drawing definitions, perform graphic transforma­
tions on the drawing and display a picture on the Display Scope.
For the purposes of this manual, the following words will take
on special meanings to avoid confusion.

Drawing. The drawing is the definition stored in memory
which consists of two- or three-dimensional coordinate
data and display instructions which determine how these
coordinate values should be interpreted and how the
points should be connected. The drawing is in "page
coordinates."

Picture. The lines and dots which finally appear on the
Display Scope are referred to as the picture. The pic­
ture is in "scope coordinat~s." ., .. -z.

-~t'·MI f6 t 1
Pa~e Coordinates. The ~~e is a~yj.rtual drawing space
which stretches from ~~ to +~ in each coordinate
axis. The LDS-2 performs all arithmetic and graphic
processing using two's complement arithmetic, so one
may think of the page as a fixed point, two's complement
drawing space. Since the page is extremely large, no
checking is done to detect overflow of the page bounda-
ries . 11 .+-: fl\ 11

-~ l6 +"
Scope Coordinates. Sco~~coordinates are centered about
zero and stretch from ..,ri-J to ~in X and Y. Before
the drawing is displayed, it is mapped into scope coordin­
ates and becomes the picture.

1.3.1 Drawing Instructions

The drawing instructions generally result in some movement
of the beam on the scope. The upper half of Figure 1.2

1-3

DRAWING OPERATIONS

2 3

1 ; ~ ; , "'!1···
/

I

I 14

'W
5

;v-"/-l

V--
1

•
•

• • 0

Basic Drawing Operations

1 is current point
"Set point" to 2 (2 becomes current

point)
''Draw to" 3 (3 becomes current

point)
"Draw from" 4 (3 remains current

point)
"Dot" 5 (S becomes current

point)

Complex Drawing Operations

"Polygon" = Set point, draw to, draw
to, draw to ...

"Star"

"Lines"
·~ . .,<i'-·

.,,, .•''"

"Dots"

Figure 1. 2
1-4

= Set point, draw from,
draw from ...

= Set point, draw to, set
point, draw to, set
point ...

= dot, dot, dot.

illustrates the basic drawing operations that are available.
These operations are done in relation to the "SAVE point"
which indicates the current position of the beam on the scope.
It is also possible to initiate a repeating series of the
basic drawing operations with a single instruction, as shown
on the lower half of Figure 1.2.

1.3.2 Data Forms

The coordinate data may be interpreted either as an absolute
specification of the endpoint location, or as one of two forms
of displacement specifications. The display instructions specify
how the data are to be interpreted. Figure 1.3 illustrates
the three manners of interpreting the coordinate data. "Abso­
lute" data simply specify the position of the endpoint.
"Relative" data are taken as an offset from the "current point."
And "variable origin" causes the data to be taken as an offset
from a user-specified "origin" which is held in the registers
of the Channel Control.

1.3.3 Dimension Modes and Coordinate Data Storage

The LDS-2 is always in one of four dimension modes, and
these modes affect how many words of data are fetched for dis­
play instructions (both drawing instructions and pipeline register
load/unload instructions). The two-dimensional mode causes the
LDS-2 to pick up two contiguous words of data which are inter­
preted as the X coordinate and the Y coordinate. In "homogeneous"
mode (sometimes referred to as 4D) the LDS-2 picks up four words
of data which are interpreted as X Y Z and W. This data format
is known as homogeneous coordinates, where W is the homogeneous
element and is used as a scale factor. Data fed through the
Matrix Multiplier should be in homogeneous coordinates. (See
Appendix III for a description of homogeneous coordinates and their
usage.) If the Matrix Multiplier is turned off, the four words
of data fetched by the LDS-2 will be interpreted as X Y Zx and
Zy, where Zx and Zy are generally the same. This is the form in
which the Clipping Divider expects data.

Two special three-dimension modes are provided to allow
more compact storage of data. These modes apply only to drawing
instructions (i.e., pipeline load/unload instructions still pick
up four words). "Matrix Multiplier three-dimensions" (MM3D)
causes the LDS-2 to pick up three words which are interpreted
as X Y and Z. The LDS-2 then supplies the fourth word, which is
the fractional approximation for "l" (223-1) to serve for the
"W" element. Since W is often "l", when using homogeneous
coordinates, MM3D may often be used to save storage. MM3D should
only be used, however, if the Matrix Multiplier is active.

If the Matrix Multiplier is not active and data are being
fed directly to the Clipping Diviaer, "Clipping Divider

1-5

DATA FORMS

ABSOLUTE

RELATIVE

VARIABLE ORIGIN

Figure 1.3
1-6

three dimensions'' (CD3D) may be used. This mode also causes the
LDS-2 to pick up three words of data, but in this case the fourth
word provided by the LDS-2 is a copy of the third word xo give
X Y Z Z, which is the form that the Clipping Divider expects.

1.3.4 The Display Processing Pipeline Units

The display processing pipeline units perform graphic trans­
formations on the coordinate data as they pass down the pipeline.
The Matrix Multiplier and Clipping Divider contain their own
internal storage registers to hold the parameters that are used
in the graphic transformations. For instance, the Matrix Multi­
plier holds four 4 x 4 matrices. When the Matrix Multiplier is
active, the coordinate data are multiplied by the values in the
first matrix as they pass down the pipeline. These matrix
multiplications may be used to rotate, translate, and scale the
drawing. Similarly, registers in the Clipping Divider hold the
"window" and "viewport" values which are used to map the coordin­
ate data from page coordinates into scope coordinates. Details
of the operation of the pipeline devices are given in Chapters
3, 4 and 5. Figure 1.4 gives a pictorial representation for
the graphic processing performed by the LDS-2.

Because the parameters for the graphic processing are held
internally by the devices which perform this processing, the
data base can remain "pure;" that is, motion and other trans­
formations can be implemented by changing the parameters in the
pipeline registers rather than changing the coordinate data as
it is stored in memory. The registers of the pipeline devices
may be loaded or unloaded with these parameters by LDS-2 instructions.

1.4 Programming

The LDS-2 assembles its own programs and has its own assembly
language (see Chapters 6 and 7 of this manual). Fortran callable
support routines which generate code for the LDS-2 are also pro­
vided as an option. These routines allow the Fortran user to
make use of the graphic capabilities of the LDS-2 through Fortran
calls. The Fortran support routines are discussed in Chapter 8.

1-7

L.d~ - id t:if'.JL·'H1C PROCESSING
·---------.----·---·-------------

r

L .J
window ELMWOOD AVE.

u

fhe drawing is de~ined in the
.iser-chosen dra···1ing ~-race and a
~~·Tindo~.:IT is speci±ied.

2. All parts of the drawing outside
the n,.,. indow" a. re e 1 ir-1 ina t ed 1Jv
the Clinnin~ Divider. ·

3. The clinned <lrawing is Dapped
onto the-"viewport" on the
Display Scope.

.The drawing is defined
in a three~dimensional
drawing space.

Two-dinensional windowing

2. The r"1atrix ~.1ul tiolier
rotates, translates, &
scales the drawing.

I /
/

-1
A-#a-----. / 1

I /
- +-/

,· / / 1 r ti~/~ .
D f. . ,l Pyramid
~a~t outs1Je of vision
clipped

3. The drawing is compare
to a pyramid of vision
by the Clipping Divide

--------------- ·-----~---·-··· .. -··--·-· ·-···---·--·--·~---···

Three-di~ension~l processing

4. The drawing is clip~
ped, and put in per­
spective, th~n mapped
onto the ViPWUOTt of~.

__ _t.b_e__ DJ2!Ll ay Scope·.

·--~~ ~~~- -~------------~-------~~~~~

~-=- i. g u r e 1 , 4

1-8

CHAPTEP. 2

THE CHANNBJ, CONTROi,

2.1 Function

The Channel Control functions as a general nurpose processor
and as the control unit for the LDS-2. The Channel Control
has general computing capabilities which allow it to assemble
its own programs and process both graphic and non-~raphic data.
But in addition to these general facilities, the Channel Control
has special graphic ca~ahilities which allow it to interpret
disnlay programs and to control the display processinr pipeline
units of the LDS-2.

2.2 Structure

A block diagram of the Channel Control is shown in Figure
2.1. The Channel Control operates out of the memory of the
host coMputer by providing mertory R.ddresses and then either
accepting or transmittin~ data or instructions. The Arithmetic
and Lop,ical Unit (ALU) provides the C:hannel Control with the
ability to do general purpose data processing. The Channel
Control has its own high-speed I/O buss which facilitates the
communication between the Channel Control and several registers
which function as I/O units to the Channel Control. These
registers are described in Section 2.5.

2.2.1 Rep,isters of the Channel Control

The Channel Control is organized around sixteen re~isters
which form a high-speed register memory. Four of these registers
serve as general purpose accumulators whi_le the other twelve
arc dedicated to special functions. However, all registers
may be manipulated with equal ease and all registers may he
used with most instructions. It is thus possible to use the
dedicated registers as general purpose accumulators if the
function to which they arc dedicated is not hein~ used. For
instance, if the system is not returning processed data from
the pipeline hack into memory, the WP and WC: rep:isters can
safely be used as p.;eneral rmrrose accumulators. Table 2. 2 lists
the registers of the Channel Control and briefly descrihes their
functions. The use of these rep,i.sters is more fully described·
in the course of this chapter.

2.2.2 Memory Addressing

The LDS-2 divides memorr, into pages of fixed lenr.th and
fixed location. /\. page is 2 (n- 8) · w·ords lonf.! where n ig the
number of bits per memory word in the system. For a 24-bit
LDS-2 the page is 64K words long so paging .considerations
generally disappear. The address specified in addressing

2.1

MEMORY
BUSS

DIR

RSR

ICR

IMR
IOD

SY~JC

PROTIJCT

BAR

I/O REGISTERS

STRUCTURE OF

I

THE CHANNEL CONTROL

DATA

ADDRESS
~f

MB MA

ARITHMETIC AND LOGIC
UNIT
(ALU)

0 ACO
1 ACl

2 AC2

3 AC3

4 TOS

SP

12 z
13 w
14 RP

15 RC

16 WP

17 WC

LOUT ROUT LIN

PC

HIN

TO PIPELINE fROM PIPELINE

I~igure 2 .1

2-2

Register

0

1

2

3

4

5

6

7

] 0

11

12

13

14

15

16

17

CHANNEL CONTROL REGISTER MEMORY

Mnemonic

ACO

ACl

AC2

AC3

TOS

SP

DSP

IR

x

y

z

w

RP

RC

WP

WC

Dedicated Use

undedicated

undedicated

undedicated

undedicated

Top Of Stack

Stack Pointer

Data Sink
Pointer

Index

X current
point

Y current
point

Z current
point

W current
point

Read Pointer

Read .Counter

Write Pointer

Write Counter

Tabl.e 2. 2
2-3

Functional Characteristics

general purpose accumulator

general purpose accumulator

general purpose accumulator

general purpose accumulator

top element of SP stack

decrements before .writing in
the old PC for a pushjump

increments before writing in
data from a sink operation

index register

updated automatically by
drawing instructions

updated automatically by
drawing instructions

updated automatically by
drawing instructions

updated automatically by
drawing instructions

points to the location of
coordinate data tables

increments once per coordinate
point read through the RP

increments after writing data
from pipe.

increments once per word
written through WP

instructions is taken as an address within the page and is added
to the 8-high order hits of the Program Counter (PC) to obtain
the effective address. Direct addresses may not cross page
boundaries (i.e., they must he within the current page).

Indirect addressinR may he specified with all addressing
instructions. When the indirect hit of the instruction word
is set, the effective address is the contents of the location
directly addressed. The directly addressed location Mttst be
within the current page, hut the indirect address may he anywhere
within the total addressing snace. Onlv one level of indirection
is available. · ' ·

Some addressing instructions may also he indexed. Indexing
causes the contents of the Index Register (IR) to be ad<led to
the address specified in the instruction in order to calculate
the effective· address. Since the IR is a full word length
register, the effective address may lie anywhere within the
total addressinp, space. If hoth indirection and indexing are
specified, the indirection is performed hefore the indexing.
:Examples of the addressing scheMe of the tns-2 are gjven in
Section 7.4.

2.3 (;eneral Computin~ Facilities

The LDS-2 has a larp,e and versatile instruction renertoire
which makes it convenient for a large variety of general purpose
processing tasks. The availability of the sixteen regjsters
in reRister memory and the stack mechanism add to the processinp
power of the LDS-2.

2.3.1 (';eneral Purpose Instructions

The general purpose instructions of the LP~-2 provi~e the
following functions:

Load and store the Channel Control
registers from memory or other registers

Program control (jumn, pushjurnp, and
execute)

Arithmetic and lop,ical operations

Increment and decrement registers nn<l
skin on condition

ro~nare two regi~ters and skip on
condition

Arithmetic, logical and circular shifts

Masking

2-4

Stack control (push and pop with
increment or decrement)

The individual instructions are explained in detail in Chapter
7, but it is useful to keep these general functions in mind
while attempting to understand the LDS-2.

2.3.2 The Stack

The LDS-2 operates two special purpose stacks and allows
the user to operate additional general purpose stacks. One
of the special purpose stacks is known as the "data sink" and
is used to store parameters from the pipeline registers. The
data sink is described in Section 2.4.S. The other special
purpose stack is used for storing return locations (i.e., old
PC values). This stack operates in a special way because the
ton element of the stack is held in the Channel Control's TOP
OF. STACK (TOS) register rather than in memory. Thus, the STACK
POINTER (SP) points not to the top of the stack, but rather
to the last element stored in the memory portion of the stack,
which is effectively the second element in the stack. Since
the top element in the stack is in the TOS register it is
immediately available to the user. When pushinp.: the old pr,
onto this stack, the following process occurs:

SP-14SP
TOS ----?>C (SP)
PC --:;>TOS

decrement the stack pointer;
push the TOS;
save the PC.

1\~en the stack is ponped to return the old PC the reverse path
is fol lowed:

TO S -=;>PC
C(SP)~TOS
SP+l~SP

return old PC;
pop into the TOS;
increment the stack pointer.

This whole process is invisible to the user so that he may
simply consider the TOS as the top element in the stack.

In addition to these two special purpose stacks, the LDS-
2 provides the user with convenient facilities for implirnenting
other stacks which may he used and manipulated under program
control. Any of the Channel Control's registers may he used
as a stack pointer with which to push the value held in another
register onto the stack, or to pop an element off of a stack
back into a register. This "stack pointer" may he incremented
or decremented either hefore or after the register is pushed
or popped, so that the user has the full ranr,e of possibilities
for stack control. Because the LDS-2 has such convenient stack­
control facilities, it is often best to treat the LDS-2 as a
stack machine.

2-5

2.4 Graphic Facilities of the Channel Control

In addition to its general purpose computing capabilities,
the LDS-2 Channel Control has special facilities for interpreting
display-oriented instructions and controlling the LDS-2 display
processing pipeline. ,

2.4.1 Display Instructions

The display instructions of the Channel Control fall into
two groups:

Drawing Instructions. The drawing instructions
result 1n the transmission of the coordinate data
to the processing pipeline. The drawing instructions
define the topology of the drawing.

Pipeline Load/Unload Instructions. The display
processing p1pel1ne units contain parameter regis­
ters. The values in these registers are used to
process the coordinate data and thus affect the
picture that is displayed. The Channel Control loads
and unloads these registers either singly or in
groups.

All of the display instructions require the Channel Cantrol
to generate a command for the pipeline and provide the necessary
data. The Channel Control can fetch this data from mernorv or
from its own internal registers. ,

2.4.2 The X, Y, Z, and W Registe·rs

The X, Y, Z, and W registers of the Channel Control maintain
the coordinates of the current point which is used as the base
for relative and variable origin drawing instructions. A
relative drawing instruction causes the incoming data to he
added to the values in these registers before it is sent down
the pipeline and the contents of the registers to be updated
to the computed value of the new point. Variable origin
instructions also cause the additions to be performed, but the
contents of the registers are not updated, so that the next
point will also be relative to the "variable origin."

The point held in the X, Y, Z, and W registers of the
Channel Control usually corresponds to the "current point" held
in the SAVE registers of the Clipping Divider. When processing
a "variable origin" instruction, however, the X, Y, Z, and W
registers are not updated in order to make all data relative
to the "variable origin." The SAVE registers of the Clipping
Divider are updated, however, thus at the end of a variable origin
sequence the two sets of registers will contain different values.
Because of this, it is a good idea to follow all variable origin

2-6

instructions with either a "setpoint," a drawing operation
in absolute mode, or another variable origin operation.

Note, that the relative pipeline load instructions do not
use the X, Y, Z, and W registers as a base. For these
instructions, data are sent to the pipeline in relative form
and converted by the pipeline units themselves.

2.4.3 Data Fetching for Display Instructions

Addresses for the coordinate data for drawing instructions
may come from one of two sources. The single point drawing
instructions (see Section 7.14) specify an address as part of
the instruction word. This address may be either direct or
indirect and may he indexed (remember that indexing is performed
after indirection). The table draw instructions (see Section
7.14) rely on the contents of the READ POINTER (RP) for the
address. The contents of the RP may be used either as the
direct address or as an indirect address which contains the
effective address. If indirection is specified, indexing is
also available, but if in<lirection is not specified (i.e., the
contents of the RP are taken as the direct address), then
indexing may not be specified. When indirection and indexing
are specifiecr;--the contents of the INDEX REGISTER (IR) are added
to the contents of the word addressed by the RP, and the ~esult
is used as the effective address. The pipeline load/unload­
instructions (see Section 7.13) rely on the RP just as the table
draw instructions, but only direct addressing is available.

The RP is incremented after each use so that it can step
through a contiguous table of data. The RP may be initialized
to the beginning of a new table by loading it with the appro­
priate address.

The number of words of data fetched by the display
instructions depends on the dimension mode of the Channel Con­
trol. The Channel Control has four modes:

Two Dimensions. In 2D two contiguous words of data are
fetched which represent X and Y if the data are inter­
preted as coordinate data.

Three Dimensions for the Clipping Divider. This mode is
abbreviated as CD3D. Three words are fetched for each
point which represent X, Y, and z. A fourth word is
supplied to the pipeline by copying the last word which
gives X, Y, Z, z. This is the form that the Clipping
Divider expects. Pipeline load/unload instructions behave
as if the LDS-2 were in homogeneous mode.

Three Dimensions for the Matrix This second
also

In MM3D,

2-7

however, the fourth word is supplied as the fractional
representation of "1" (37777777) to give X, Y, Z, "1" which
corresponds to the homogeneous representation with the
homogeneous element equal to "1". Pipeline load/unload
instructions behave as if the LDS-2 were in homogeneous
mode.

Homofeneous Mode. In homogeneous mode four words of data
are etched for each element. If the data are interpreted
as coordinate data, these four words represent X, Y, Z,
and W, where l\T is the homogeneous element.

It is very important to remember that the dimension mode of
the LDS-2 affects all display instructions. Special cnre must
be taken when using pipeline load/unload instructions or
incorrect data will be loaded into the pipeline registers.
The pertinent considerations are outlined in detail in Section
7.13 dealing with these instructions.

2.4.4 Repeat Instructions

The Channel Contrcl can generate a repeated series of
simple drawing instructions in order to draw more complex figures
with ~ s~ngle instruction. When a "repeat" drawing inst. ruction

....,._,.,,,,. is rec~ed which indicates a "draw to," "draw from," "polygon,"
"star," "lines," or "dots" operation, the Channel Control
automatically generates the appropriate series of basic drawing
instructions. Finite-state machines within the Channel Control
update the command, so that a single repeat instruction causes
a series of drawing instructions to be sent down the
pipeline. The drawing sequences and absolute/relative/variable
origin combinations that are available with these instructions
are discussed in Section 7.14. Pipeline load/unload instructions
are inherently repeat. The address of the register loaded or
unloaded is incremented after each iteration, so that a series
of registers may be loaded or unloaded with a sjnp.le instruction.

The iterations of the repeat instructions are counted by
the RDAD COUNTER (RC). The RC is initialized with the negativ~
(two's complement) of the number of elements (e.g., the number
of coordinate points or the number of registers) and is lncTe•
mented once after each data element has been fetched and passed
to the pitfe1'in~e~ •w-tte·fi""th'e-.:··C'Ount reaches zero, the process is
stopped and another instruction is fetched. If the count is
initially zero, only one iteration will be performed. The count
will never increment past zero and, thus, should never contain
a positive number unless it was loaded with a positive number
initially.

When the RC is not being used for repeat mode instructions,
or when no other registers are available, it is convenient to
use the RC as a counter for other purposes. The programmer
can increment (or decrement) the counter under program control

2-8

and test its results for zero. It is, of course, also possible
to do this with any other of the Channel Control's internal
registers.

2.4.S The Data Sink

A special stack mechanism called the "data sink" is used
to store information from the registers of the pipeline units.
The DATA SINK POINTf:R (DSP) maintains the address of the last
element written into the data sink. When pipeline registers
are "sinked," the new information is written into memory and
then the DSP is incremented. This information may then be
"retrieved," in which case the DSP is decremented and then the
register is reloaded. For retrieval operations the register
addresses sent down the pipeline are decremented rather than
incremented for repeat instructions, so that data are returned
in the proper order.

2.4.6 Returnin~ Output to Memory

The processed output of the arithmetic devices may be
returned to memory for use in further processing or for output
to remote terminals. When one of the pipeline units has data
ready·to return to memory, it signals the Channel Control which
stops its normal operation and records the data. The WRITE
POINTER (WP) of the Channel Control is used to provide the
memory address for recording the processed output. Since the
WP is incremented after each use, the data are recorded in a
contiguous table. The length of this table may he limited by
loading the WRITE COUNT (WC) with the negative (two's complement)
of the desired length of the table. Wl1cn the WC reaches zero,
the I.DS-2 will be interrupted if the appropriate interrupt bit
is enabled (sec Section 2.5).

2-9

2.5 The I/O Structure

The Channel Control contains eight register~ which are treated
as I/O devices and maninulated with "input/outnut transfer" (JnT)
instructions. IOT instructions are nlso used for snecial functions.
All of the TOT instructions, excent those inclicatecl, are lop.al only
when the LDS-2 is in executive mode.

The C1rnnnel Control js either in executive mode or user mode.
Tn executive mode, all the imnle~ented IOT in~tructions are· legal,
and the "permit" hit~ for scope selection (see Section 4.8) mav be
changed. Whenever an interrupt is receivcrl from either the LDS-2
itself or the host co111p11tcr, the Channel Contr"l goes to executive
mode. The Interrunt Service Routine resets user mode before
transferring control back to the user.

2.S.1 Status Repisters

The DIRECTIVE rep:ister and REPEAT STATUS rerister hold
information which controls the operation mode of the LD~-2 ancl the
functioning of the rineline devices. These are the only two registers
available to the user. The DIRPCTIVn register holds the dimension
mode for the J,US-2, controls whether the pipeline devices nrc active,
and contains status flags which are set hy the pipeline.

DI Hf:CTIVI~

Bits

0-1
2
3
4

5-6

jl/~w /J/T.f
v f/NtTt#~'f _v~y,"'-- (n_,i~ U/VL Y)
0 c ~ ~ OM'-W
' v1!/.Ep f',,,£77Z.£.0 /l/i Function /fl} /w~.+cA 171 rf -' ,r/,lll'l1t:*Ctt

0 0 ~ NIJ
Unus cd It o 1 ~ rt1A.FlfCE

r.fatrix Mul tinlier Active / / ~ f'/llfl177flii'tr1t~"*-'c
Clipnin~ Div~der Active
Nn nvcrlnn (i.e., each line i~ comnletely
processed by all the pipeline devices before
the next line is hepun)

Dimension J'lod~s

00
01
10
11

2D
Hnr.io .. gene om; mode (4 D)
r'f\f3J) ex y z with an assumed "l")
CD3C (X Y Z with a copy of the Z)

Interrunt on HTT
IIIT (from the Clipping Jljvider)
A re a I-n CoPlrnon (from the C 1 inrd n r Jl i vi der)
Settled (i.e., all of the pineline units h~ve
finished proce~sin~, nendinr data, and are
waitinP for innut) . .

Tl1e HEPEAT STJ\TlJS IffriI~TEH (PSP) hnlds the ri!'el:ine load/unlond
::tnd drnwing commands that are sent down the nipcline, and is un­
dated by the normr-11 onerntinn of the Channc] Control. The nsr mnkes

2-10

it possible to interrupt a repeat drawing or load/unload sequence.
If during the time interrupt is being serviced other drawing
instructions will be executed, the RSR should he saved and then
reloaded to restore the user. If the interrupt results in going
to a new user, the repeat bit of the RSR ~ust he cleared; other~i~~'
the first load/unload or drawing inst:uction :xec~ted hy. the neW,,;.~~~cr
will use the old RSR rather than the information 1n the 1nst:ruct").OJ\.
The appropriate actions are taken by the LDS-2 Interrupt Handle~;. ,~
so that the user does not have to worry ahout the RSR. ·, • ~

nnPnAT STATUS nEGISTER

Bits

0-1
2-4

5-6
5-7

7, 16-18
16-18

r-'J.tS ~ .,., 19 - 2 2

tJ .. , ,:;:-'5

Function for Load/Unload

Unused
Instruction Type (011 =
load/unload)
Load/Retrieve/Store/Sink

Device and Manner

Address of Pineline
Register
Rene at

2.5.2 Interrupts

·.~

Function for Drawing

Unused
Instruction Type (100 =
drawing)

" '~:' ' fi 1
~·t; i, , ..

Pres en~ sta ~e. of .dr.~w.f~qp
opera tl.on f1n1 te-·s t{\t~\-:~
machine (F~~,fl) · '" · ..
- - - . J.'. . ·,t

Present state of da t".a.<(orm
fini tc- st ate-machine" (F~~ 1 2)
--- . ; i .

Henent

The LDS-2 has a two-level interrupt systeM. High-level inter­
runts come only ~rom~!J:!~_J_~cg~_:t _ _crunn.u.t.e~--alld.-G-a-Us.a. .. -t.li-~--~utio_n_ of
i]ilird-wired ad~!ess. Low-level interrunts may he caused by a variety
of internal con itions which the LDS-2 has detected. These inter­
runts also cause the execution of a hard-wired address which contains
a ''nushjump" to the Interrunt Handler. The condition which caused
the interrupt will have set a bit in the ~INTERRUPT CONDITIONS REG­
ISTER (ICR). The bits in the ICR are masked against the bits in
the INTF.PRUPT MASK PEf,JSTER (I~m). If the intcrrunt bit is set an<l
the mask bit is set, the LD~-2 will he interrunted. The Interrunt
Handler interrogates the ICR to determine the cause of the interrtt!'t,
so it can take appronriatc action. If the Intcrrunt Handler returns
control to the user, it is first necessary for it to decrement the
TOS in order to return the instruction which was interruntcd rather
than the next .instruction.

2-11

,., .. ~
N. t. ,.., .. r ..,,
N-')
~ .. \..
tJ...-1

INTERRUPT CONDITI0NS REfiISTER

Bits

6

7
J:T
~
~
~

~·
~

Meaninp

Scone Protection Violation (TUT TUT FORBID)--Note
that there is no mask for this hit.
Hemorv Protection Violation
Unimniemented Instruction (no Mask)
Nonexistent ~1emory
Nonexistent I/O Device
Real Time Clock
Positive Write-Count Register (tahlc overflow)
Overflow (caused by an arithmetic instruction)
Parity Frror

INTERRUPT MASK RE<asnm

Bits Meaning

Mernorv Protection Violation
IIi.gh-ieve 1 Interrupt Mask
Low-level Tnterrunt Mask
Nonexistent Hemorv
Nonexistent I/O D~vice
Real Tir.ie Clock
Positive Nrite-Count Register
Overflow
Parity

When the LDS-2 is in user mode, most of the I/n devices are
not accessible and are treated as "non-existent." The lower 8 hits
of the device code of an illc~al JOT are s~vc<l in the I/O DEVTCE
CODf: ERROR HEGISTF.R. If the interrunt mask is set, an interrupt
will then be initiated. When the Intcrrunt Ilnndler has detcrmine<l
that a nonexistent J/n device caused the i.ntcrrnnt, it checks the
I/O l>EVICE CODE ERROR RF.r,ISTFR. The Interrupt Han<ller can then
decide what to do on the has:i.s of the information in this rer:istcr.
This mechanism provides a convenient communication between the user
and·the Interrunt Handler. Jior examnle, when the user's nro~ram
needs input/outnut from the host computer, it can maJ:e the re('fucst
hy executinr: a specifie<l "illegal" TOT (see ~ection 7.12).

2.5.3 Real Time Clocks

Four real time clock sources arc availahle on the Lns-2. · The
LDS-2 itself has both a 60-cvclc/second clod~ and a clod: controlled
hv a variable notentiometcr on the control nanel whi c}1 can be set
h~tween 10 and 100 cycles/second. In addition to these, th~ clock
from the host comrrnter is avCJilahlc and a clock from an cxt~rncil
svnchronization source. The selection of these clocks is inadc hv
setting the SYNC i'!.i-'\SK RECTSTJ:n. This cnn onl.v l1c done in executive
Tllode.

2-12

SYNC MASK REGISTER

Bits Function

External Svnc N-S- ~
N-"f .la
tJ ~ '\ -2-1""

Real Time ~lock from Host Computer
60 Hz Real Time Clock

~--i.. p A<ljustahle Clock

2.5.4 Hernory Protection and Relocation
lD~V-C!r"~~

For an LDS-2 which is interfaced to aa- ~I ~4'Q, '12 ltetcl 'PH\~E!l!'i
can be nrotected. E~cl1 user is assigned an upper and lower bounds.
The upper 8 bits of the hounds are load.eel into the nrotectinn
register.

PPOTECTION REGISTER

Bits Function

Tn the nassinP.: of addresses between the LDS-
2 and the , the LDS-2 has been cquinped with a BANK ADDPF:SS
REC,ISTFR (BAR)~~~~uJi.t.t..\faded at initializa~ion with the same c?n­
tents as the ..m 8~1Bl\n (except for the first two ouartcrs which
are reserved on the SEl: 84_0.l.... It is thus nos sihle to pass addresses
from software on the Sno-~-to software on the LDS-2 without having
to worry about B/\R relocation. The BAR on the LDS-2 is active only
when the LDS-2 is in user mode. In executive mode, addresses are
interpreted as absolute.

BANK ADDRESS RFGISTER

Bits --
• J
2: 5
8-11

C 14-t.17 !
tJ ,.,, 4'-P~

Function

00 Relocation
01 Relocation
10 Relocatjon
11 Relocation

2.5.S Special I/O Functions

In addition to loading and unloading registers, JOT instructidns
are used for several snecial functions as listed below. Note: that
only the "skin-on-settled" function is available to the user.

Enable Interrunts. When a low-level interrunt is being serviced,
other low-leverlnterrupts are automatically locl~ecl out. J\t
the end of the interrunt routine, it is necessary to enable
these interrupts ar;ain. Similarly, when a hir.h-leve1 interrunt
is serviced, other high-level interrupts arc locked out, so · ;'

2-13

that an "enable interrupt" JOT must be performed at the end
of this routine also. The "enable interrupt'' does not take
effect until after the first "jump" instruction after the IOT.

Set User Mode. l'!hen an interrupt occurs, the LDS-2 goes into.,
"executive" node. In this mode, all of the defined I0T' s are
legal, and the scone selection registers can he set. User mode
must be restored at the end of an interrupt service routine,
or after the system has been initialized. User mode is not
actually set until after the first "jumn" instruction.

Sleen. Sleen is a1• idle state in which the Ln~-2 docs nothing
but accent high-level interrunts.

Attention. When the LDS-2 needs to comrmnicate wj th the host
coMputer, the attention bit is raised. This JOT will cause
an interrupt to the host coMnuter.

f;kin-on-Attention Clear. When tl1 c host cor.muter has acknow ..
!edged the interrupt, it clears the attention bit. Before the
LDS-2 issues another interrupt, it may want to check to see
that the previous attention 11as been. cleared. This is done
by the "skin-on-attention clear" TOT. ·

Clear Protection Violation. When n nrotection viol~tion occurs,
a fli.p-flo11 is set wlnch issues a,n in~~rrut¥t~ ~.This flin-flo-p
mm~ t be cleared hv this TOT he fore going on to a·""new user.

~kin-On-Settled. This is the only S:!"e"cial function TOT that
1s available to the usnr. Skin on settled causes the Ln~-2
to skip the next instruction, if the pi.ncU ne is settled. Thi~
JOT is used when testinr.: pipeline conditions (such as Area rn
Common) to insure that the pipeline is clear and the correct
value for the .con<lition ca~f"r<'~ (HC)

2. 5. 6 The Interface from the £Fis ezro Side

1A:Ad" ~~· ~,,-~ The ~~. · ceivcs and issues interrunts throuph the ~J\11 8¢0- ··,---....
J/O ~;p~~~ LDS-2, which is an 1/0 devke for the. ~'t:f~

~ Otttr I~O REC;JSTER · . ··~' -,.r- ... ~r ,_---,'
Bits Function

Attention. Wl1en the I.n~-2 issues nn attention;
tins Int is set. It mav also be loaded or
unloaded from the~ side of the interface.

Attention Interrupt Mask. If this hit :is set,
t11e. Attention hit will cause an ~inter-
rupt. --~

Ston State. When the LDS-2 :is :in tl1e "sleen"

2-14

It can be read, but not

set,

LDS- 2 Interrupt ;'TBy settin~ the LDS-2 Interrupt
lnt, the $1Ul G4 ssues an 1nterru11t to the LDS-2.
This bit is cleared automatically, when the inter­
runt is serviced hy the LDS-2.

2-15

CHAPTER 3

THE MATRIX MULTIPLIER

3.1 Function

The Matrix Multiplier is the first arithmetic device in
the LDS-2 display processing pipeline. The Matrix Multiplier
performs rotations, translations, and scalings of the drawing
by multiplying the coordinate data by an internally stored
transformation matrix. The Matrix Multiplier can also compute
the product of two such transformation matrices to give a com­
posite transformation for substructures within the drawing
definition. The third function of the Matrix Multiplier
involves iterating a set of difference equations for drawing
two- or three-dimensional curves which are drawn as a series
of short line segments. Families of such curves can also be
generated to draw a cross-hatched surface patch.

The basic configuration of the Matrix Multiplier and the
addresses of the registers used for storing matrix elements
are shown in Figure 3.1. Four matrices A, B, C, and D, each
of dimension 4 x 4, are stored internally in a 4 x 4 x 4 matrix
array of storage registers. The values in these registers may
be manipulated by the "load," "store," "sink," and "retrieve"
instructions. See Chapter 7. The matrix multiplications are
performed by a high-speed array multiplier. Input data for the
Matrix Multiplier are passed from the Channel Control, and the
output is sent to the Clipping Divider, back to the memory of
the host computer via the Channel Control, or both.

3.2 Three-dimensional Matrix Transformations

The Matrix Multiplier works on "homogeneous coordinates"
(see Appendix III.) In homogeneous coordinates, three-dimensional
coordinate data are represented by the four-component vector (X
Y Z W), where X, Y, and Z are the normal orthogonal distances
from the origin, and W is used as a scale factor. The transfor­
mation matrix is the 4 x 4 matrix in Position A. When the Matrix
Multiplier is in three-dimensional operation and "active," all
coordinate data values are multiplied by the matrix stored in
Position A (see Figure 3.1). Note that this does not include
parameter data for pipeline load/unload instructions. The form
of the transformation and the equations which define this trans­
formation are given in Figure 3.2. In 3D, entire rows of the
matrices are affected by a "load," "store," "sink," or "retrieve"
instruction (i.e., four components are loaded at a time).

It should be noted that, while the Matrix Multiplier expects
input of the form ex Y Z W) , the Clipping Divider expects ex Y
Zx Zy). The transform matrix can easily be structured so that it
will make this change.

3-1

MATRIX MULTIPLIER REGISTERS

D ~l 1 !
I ' l

<loo j do1 I do2 l dog

1 5 ~1 --- ___ _l _____ J
d I 1 0

l 0 I
___ I Coo Co1 Co2 Cog

1 6 ; --· ~-· ·-- ------+-----t---t

d 2 0 l j l 11.-4--.L..-------...._---
1 7 ! t . -~ l _Q._ - l-·1 b 0 0 b 0 1
d l I i 2 -----~ ·-

.._ _ _:~ __ .. 1 _.J c 2 o 5 _o_"'--r _ _......_,_ _ _.._ ___ --.

~-·---f-·1 b 1 0 I 13 ~·~.-. -+~-a~o_o-+-~~4--~-+~~~
1C30 i. 1
----- ~20

-·--+-I a1 o

c

B

bo 2 bog
···-·--··

T
A

ao 1 I ao2 aos

a11 a 1 2 ais

I' 2

'1 b3 0 , ___ ___.__, a 2 o a21 a22 a2g

Matrix data is stored in memory in the format:

3D 0

Two con- exO
tiguous
words exl

e x2

ex3

ZD 0

I exO

exl

23

x = number of row as
indicated above

23

Note: In 2D exz and I ex3 are inaccessible

Figure 3.1
3-2

THREE-DIMENSIONAL MATRIX TRANSFORMATIONS

[X Y Z W] roo rel r02 h03

Where

rlO rll r12 h13

rzo r21 r22 h23

t30 t31 t32 h33

X' = rOOX + rlOY + rzoz + t3ow

Y' = rolx + rlly + r21 Z + t31w

Z' = rozX + rl2y + r22z + t3zw

W' = ho3x + h13Y + h23z + h33w

r = rotation terms

t = translation terms

h = homogenous terms

Figure 3.2
3-3

= [X' Y' Z' W']

3.3 Two-dimensional Matrix Transformations

Two-dimensional coordinate data can also be transformed by
the Matrix Multiplier. The "boxing" operation of the Clipping
Divider (see Section 4.5) is, however, a more efficient way to
effect two-dimensional transformations which do not involve
rotations. For two-dimensional operation, the input is made
up simply of the X and Y coordinate values. These values are
augmented (by the Matrix Multiplier) to take the form:

[X Y l]

Figure 3.3 shows the structure of the two-dimensional transfor­
mation matrix, the equation for the transformations performed,
and the Trigonometric values for the elements.

In ZD, only the first two elements of each column in
matrix A are loaded from a single word in memory. (See Figure
3.1.) The zeros and ones shown in the third column of the
transformation matrix in Figure 3.3 are not actually present
but shown only for expository purposes.

3.4 Composite Transformations

When an object within the drawing is to be transformed
with respect to the drawing and the drawing itself is also to
be transformed, a composite transformation of the form

[X Y Z W] [T1] [To] --1111-[X' Y' Z' W']

is required. Instead of generating the intermediate result,
[X Y Z W] [Tl], and then multiplying it by [To], the Matrix
Multiplier can form the composite transformation [T1] [To].
This is done by executing a "load product" instruction (see
Chapter 7). The load product instruction takes the matrix
[T1] which is stored in memory, and multiplies it by [To],
which can be specified as either matrix B, C, or D (but not A).
The resulting matrix is left in matrix A.

3.4.1 Nested Transformations

This method of forming composite transformations generalizes
to any level. The "data sink," operated by the Channel Control
(see Section 2.4.5), serves as a pushdown stack for storing ·
matrices in order to implement nested transformations. The
sink and retrieve instructions for the Matrix Multiplier con­
tain a "slide" option, which allows matrix A and some other
matrix (usually B) to be operated as the first two matrices in
a pushdown stack. The slide option copies matrix A into an­
other matrix (e.g., B) as that matrix is "sinked" into the data
sink. Then, when matrix B is retrieved from the data sink, the
matrix in Position B is copied back into A. The slide versions
of the "sink" and "retrieve" instructions, together with the "pro­
duct load" facilitate a recursive subroutine call with only a
few instructions.

3-4

TWO-DIMENSIONAL MATRIX TRANSFORMATIONS

[X Y (W)]
.

rlO rll : O = [X ' Y ' (W ')]

tzo tz1 :i

Where

W' is not computed

r = rotation terms

t = translation terms

w = is not provided by input, but rather augmented
by the Matrix Multiplier

w = 1 for absolute

w = 0 for relative

Form of 2D Transformation Matrix

cos cl

-sin~

F x

sine!(.

COS°"-

Figure 3.3
3-5

0

0

1

3.4.2 Row-to-Row Moves

Rows of matrix A may be copied into another matrix by the
"push Matrix Multiplier" instruction, and, similarly, rows of
one of the other matrices can be copied back into matrix A by
the "pop Matrix Multiplier" instruction, thus allowing matrices
B, C, and D to be used as pushdown storage. This feature can
be used in special cases, where subroutine depth is limited.
The additional speed obtained in this manner by avoiding memory
references is paid for by a loss of generality in the subroutine
calls.

3.4.3 Matrix Normalization

Since the Clipping Divider performs perspective division
yielding X/Zx and Y/Zy, homogeneous transformation matrices
may be scaled without effecting the transformation performed.
It is customary to normalize the matrices used, so that at
least one element is between one-half and one in magnitude
(taking matrix elements as signed fractions; see Section 3.8).
The multiplication of two such matrices may result in a matrix
which is no longer normalized. Renormalization of this matrix,
before it is used in some subsequent concatenation, will assure
that maximum precision is maintained in the new transformation
matrix. The "normalize" instruction (see Section 7.3) is used
to shift the elements of matrix A left until any element is
greater than one-half in magnitude or until the "count" given
in the normalize instruction runs out. The normalize instruc­
tion is disregarded in 2D.

3.5 Two-dimensional Curves

A two-dimensional curve is defined by the elements held in
the first two columns of matrix A (see Figure 3.4a). When a Matrix
Multiplier drawing instruction (other than "box") is received, a
coordinate value is calculated by an iteration of the matrix
according to the equations shown in Figure 3.4a, and the output
is sent to the Clipping Divider (or memory, or both). Usually,
a complete curve is drawn with a "polygon" instruction with the
Channel Control in repeat mode. In this case the RC of the
Channel Control should be loaded with the two's complement of
the number of line segments that are to be in the curve (+1 for
the initial setpoint). The class of curves that can be drawn
includes all of the conic sections and a few other special
curves, such as circular and elliptical spirals.

3.6 Three-dimensional Curves

Three-dimensional curves are defined using all of
matrix A, as shown in Figure 3.4b. The coordinate values
for the current location are held on the top row of matrix A.
Dataless drawing instructions (other than "box") cause
an iteration of the matrix to compute a new coordinate
value and send it to the Clipping Divider. Following

3-6

2D CURVES

A = roo rlO

rlO rll

tx ty

x y

Basic Representation

[x, y] + [tx, ty]--+Clipping Divider

Set Curve Operation

[x, y] (R] + [tx, ty]-+ Clipping Divider

[x, y] [R]----+ [x, y]

Other Drawing Instructions

Figure 3.4a
3-7

[aoo

[alO

[azo

[a30

Note:

3D CURVES

A = aoo aOl ·aoz· a03 top row specifies

alO all a12 al3
current absolute

coordinate

azo a21 a22 a23

a30 a31 a
32 a33

Basic Representation

aOl aoz ao3l + Q[alO all al2 a131 _,. [aoo aOl

all al2 a13] + Q[azo a21 a22 az3l __,. [alO all

a21 a22 az3l + Q[a30 a31 a32 a33J~[azo a21

a31 a32 a33] + 0 -~[a30 a31

[aoo aOl aoz ao3l ---:) Clipping Divider

Iteration

Q is taken from the right half of the MDIR

Figure 3.4b
3-8

aoz ao3l

al2 a13]

a22 az3l

a32 a33]

the perspective division performed by the Clipping Divider
(see section 4.5), these cubic difference equations generate
a very general class of curves called rational parametric
cubics.

3.7 Surface Patches

Families of the curves generated in three-dimensional
curve mode can be used to draw cross-hatched surface patches.
The definition of the surface patch is stored in the matrix
array as shown in figure 3.5. The "new curve" operation
is used to generate each new curve of the surface patch.

3.8 Arithmetic Conventions

The word length of the Matrix Multiplier is 24 bits.
The elements of input vectors and output vectors written into
memory are all of this basic word length.

All arithmetic operations are performed treating elements
as 2's complement signed (fixed point) fractions. SinC,e the
word length is 24 bits, the algebraically largest number that
can be represented is 1-2 -23, and the algebraically smallest
number that can be represented is -1. In binary notation
(with the binary point separating the sign bit from the
fraction):

0 .111111. .. ·is the algebraically largest number

0.000000 .. . is the unique representation for zero

1. 000000 .. . is the algebraically smallest number (-10.

The reader should note that the closest approximation to
+l is the fraction 0.111111 ... , which is close enough to +l
for practical cases.

Two's complement binary multiplication always invokes
some questions. The Matrix Multiplier performs fractional
multiplication, in which the 17 low-order bits of the product

3-9

A

SURFACE PATCH ITERATION

D

A + QB-----> A

B + QC~ B

For all 16 elements of each matrix
C + QD~ C

D + 0 ~ D

Note: Q is taken from the MDIR

Figure 3.5
3-10

are lost. These bits are used, however, for rounding.
Multiplication of -1 by -1 (l.OOOOOO ... xl.000000 ...)
yields a product of -1 (1.000000 ...). It is usually best
to avoid -1 altogether.

The practical consequence of using fractional arithmetic
is that at least one of the two numbers involved in a multi­
plication must be a fraction, and the other number may be
thought of as having the binary point located at the user's
discretion. Figure 3.6 shows a good way to think of the
structure of the input vector and the transformation matrix.
The advantage of this structure is that both multiplication
of the input vector by the transformation matrix and multi­
plication of one transformation matrix by another results in
an integer times a fraction or a fraction times a fraction.
In addition, multiplication of one matrix by another gives
a matrix of the same form.

3.9 Mode Control

The mode of operation of the Matrix Multiplier is con­
trolled both by the Channel Control Directive register (DIR),
and by a directive register internal to the Matrix Multiplier
(MDIR). In general, the DIR specifies global operating modes,
which may apply to several of the operating units in the dis­
play system, while the MDIR specifies those modes which apply
only to the Matrix Multiplier.

The following bits in the Channel Control DIR have a
direct effect on the operations of the Matrix Multiplier:

MMA

2D,3D

(Matrix Multiplier Active) -- When this bit
is O, the Matrix Multiplier is "transparent"
that is, it simply passes its input data on to
the Clipping Divider, and provides a level of
data buffering in the computational pipeline.
Matrix Multiplier load and store operations
occur whether or not the MMA bit is set.

(LDS-2 Dimension Modes) -- These bits deter­
mine whether the Channel Control supplies the
Matrix Multiplier with a two-component or
four-component input. 2D indicates a two­
component (i.e., two-word) input, while all
of the three-dimensional modes (including--­
"homogeneous mode") indicate a four-component
input. These rules apply for both drawing
and register load/unload operations.

3-11

.. ,{

FRACTIONAL MULTIPLICATION

[X, Y, Z, W] = [I, I, I, F]

roo rOl r02 0 = F F F 0

rlO rll rl2 0 F F F 0

r20 r21 r22 0 F F F 0

tx ty tz s I I I F

Where F = Fractions

I = Integers

The coordinates (X, Y, Z) are usually best regarded

as integers, while the homogenous term W is usually

considered to be a fraction.

The elements of the 3 x 3 submatrix (R), the rotation

matrix, are products of sines and cosines and are thus

appropriately considered fractions. The translational

elements (t) may be thought of as integers since W is a

fraction. The "s" term is used to scale the matrix and

is a fraction.

Figure 3.6
3-12

The directive information stored internally in the
Matrix Multiplier MDIR register is the following:

MOC (Matrix Output to Clipper) -- causes the Matrix
Multiplier to send its computational results to
the Clipping Divider. This bit is ignored if
MMA=O, in which case the Matrix Multiplier is
"transparent" and always sends data to the Clip ..
ping Divider.

MOM (Matrix Output to Memory) -- causes the Matrix
Multiplier to send its computational results to
memory. This bit is ignored if MMA=O. The MOC
and MOM bits are mutually independent, so it is
possible to route the matrix output to the Clip­
ping Divider, to memory, to both, or to neither.

Matrix Multiplier output to memory takes the following
format:

3D

X'

Y' 2D X'

... z '· Y'

W'

CURVE (Curve Mode) -- causes the Matrix Multiplier to
interpret drawing instructions as commands to
iterate difference equations.

TRl, TRO (Transpose Map) -- are interpreted as a 2-bit
number which controls the addressing into the matrix
scratchpad memory. They may be thought of as causing
the array to be transposed about any one of its three
diagonals. The matrix elements aoo, bu, c 22 , and d 33 -

remain in the same place, for any t'ransposition, but
the other elements are reflected in the following way:

The

TRI TRO

0

0

1

1

planes

0

1

0

1

about

no transposition

rows and columns are exchanged (i.e.
matrices A, B, C, and Dare each transposed)~

columns. and rods are exchanged.

rods and rows are exchanged.

which the elements are reflected are
shown in Figure 3. 7.

3-13

TRANSPOSITION PLANES

Rods

' ~Rows

1
Columns

"'..... ,-11 ' '. :,
,. ->:. ~ --------'---Jo-----' .:-,. -~:,. -

'\; .. :··~~·· ..• :<,!\.
,>.:,,-. ,.

"'·
D .. "'~.

10 - "
....... ____

c

B

\

- - - - - 01

----- 11

- - - - - - - 10

' ------------- - 01

Figure 3.7
3-14

The MOC, MOM and CURVE bits and the transpose map are
coded into the MDIR word in a special way; which permits the
progranuner to change one of them without knowing the values
of the others. The right half of the MDIR is a numerical
quantity, called Q, which is used in the 3D curve drawing
operation. The left half of the MDIR register contains the
actual directive coding, in the form shown in figure 3.8.
Please note that if the MDIR register is stored (or sinked),
and later is loaded (or retrieved) from data written, it will
be restored to its original contents.

3-15

THE MDIR REGISTER

~Q)~~~--~~~~----~~~~------

Take Q -------------­
K MCURVE -------------.

J MCURVE ----------

TM(0)

LOAD TM (1) ----------.

RETRIEVE Take TM

STORE

SINK

K MOM--------

J MOM-------

K MOC ------1
J MOC 1 l

'¥' "ii'

0 1314151617181920212223 0

r
jMOC=l
t

IMOC=O

IMOM=l

MOM=O

Always one <
TM(l) ~

TM(O)

MCURVE=l <
MCURVE=O

~
Always one 1

' (Q)

Note: J K Next ----
0 0
0 l
1 0
1 1

no
0

change

1
complement

Figure 3.8
3-16

23

CHAPTER 4

THE CLIPPING DIVIDER

4.1 Function

The Clipping Divider eliminates those portions of the drawing
which lie outside the field of view, and maps the remaining portion
of the drawing into scope coordinates. Input data come from the
Matrix Multiplier* (or the Channel Control if the Matrix Multiplier
is not included in the system) , and output goes to the Line Genera­
tor, back to memory via the Channel Control, or both.

4.2 The Current Point

The coordinates of the SAVE point which are retained by the
LDS-2 are stored in the SAVE register of the Clipping Divider.
The Clipping Divider processes lines (dots being treated as lines
of zero length). In most cases, the SAVE point serves as one end
of the line and the new point, defined by the incoming data,
serves as the other end of the line. The SAVE register is auto­
matically updated by drawing instructions as explained in Chapter
7. The address and structure of the SAVE register are shown in
Figure 4 .1.

4.3 Relative Data

The SAVE point also serves as a reference point for relative
loads. For relative parameter data (e.g., the window), data are
first added to the contents of the SAVE register and the result
is used to load the parameter register.

4.4 Two-dimensional Clipping and Division

In two-dimensional operation, the Clipping Divider automati­
cally eliminates portions of the drawing which lie outside a
rectangular area of the drawing space or "page." This area on
the drawing space is known as the WINDOW. The user is able to
specify what part of the drawing space he wishes to view by
specifying a window in page coordinates which covers that area.
The window is specified by giving the page coordinates for its
left, bottom corner and its right, top corner. These values are
loaded into the WINDOW register of the Clipping Divider.

* Note: The Clipping Divider accepts only 23-bits of data from
th~ M~trix Multiplier. The high-order bit is a sign-extension.
This is done to prevent overflow within the Clipping Divider.
The page for the LDS-2 is thus effectively 23 bits rather than
24.

4-1

4-component
addresses

14 SAVE

15 VIEW
(VIEWPORT)

16 WIND
(WINDOW)

CLIPPING DIVIDER REGISTER CONFIGURATION

0

2·-component
addresses

SAVELB

~~--1c-~-~-T _ _.I ~ BmoM
2 VIEWLB

~---1c-~ ~-T-- ~-B-~~_r_o_M---1'
4 WINDLB

~---1c-~~-T-- .,._B_~~_r_o_M~
6 INSTLB

1 SAVERT
" ~ RIGHT
I\
~ (X or Zx)

3 VIEWRT

-~ -fil~~R-~-~H-)T~~I ~ I$r
5 WINDRT

~---R-~-~H-)T~-1 ~ 1$~

7 INSTRT

)

17 INST
(INSTANCE) ~;

--LE-·F-T--. ~ BOTTOM

(X) ~ (Y)_ _____ , ~f', ____ -.J

-~-R-~~-~-T-rn ;~~ I
10 NAME

r--N-A~-1E-. --·

12* HITANG

IT .,.CORNER>
EDGE COUNT

DATA FORMATS

0 23
I'

2D ~LEFT or RIGHT (X)
r"

" ·~BOTTOM ·or TOP (Y)l

ANGLE
COUNTS

3D

Note: Bit 0 is a sign extention,

11 CDIR

~ CDIR I~
13* SELINT

T

SEL- r PER
ECT MIT INTENSITY

* All bits not used,
see figure 4.5 for
exact formats.

0 23

~ .L.EFT (.X.)
~
" ~ BOTTOM (Y)

~
~

RI.GH.T (Z.x)

~
h

To.p· (.Z.y)

Note: The names associated with the registers are LDS~2
mnemonics which have been defined in the LDS-2
Assembly language.

Figure 4.1
4-2

The user may specify the rectangular portion of the scope on
which he wishes the picture to appear. This area on the scope
is known as the viewport. The viewport is specified by loading
the VIEWPORT register with the ~~ope coordinates of its left,
bottom corner and right, top corners. The scope coordinate
system is centered about zero and stretches from -77777 to +77777
(i.e., 16 bits), but because the VIEWPORT register is a full
24-bit register and because only the 16 least significant bits
are used to drive the scope, each boundary of the viewport
should be specified to be between -77777 and +77777. Specifying a
larger viewport results in wraparound, and specifying a smaller
viewport results in the picture being drawn on less than the
full viewing area on the scope.

The relation between the sizes of the window and viewport
determines the scale of the drawing. A window specification of
-17777777, +17777777 (in each axis) and a viewport specification
of -77777, +77777 (each axis) will map the entire page onto the
entire viewing area of the scope. If the window is only half as
large (in each axis) and the viewport is the same size, only 1/4
of the drawing appears, and the scale is twice as large.

The window and viewport need not be the same "shape." When
they are different, the scale will be different in X and Y (to
"stretch" the picture in one direction). Furthermore, it is
possible to create mirror images by specifying a "backward" view­
port (i.e., where the value for the left edge is greater than
the value for the right edge, or the value for the bottom edge
is greater than the value for the top edge). Specifying a
backward window, however, results in none of the drawing being
displayed.

4.5 Three-dimensional Clipping and Division

In three-dimensional operation the drawing is compared to
a pyramid oi vision rather than to the window. The pyramid of
vision is defined for positive Z values by the planes X = +Z,
X = -Z, Y = +Z, and Y = -z, thus forming a right angle pyramid
with its apex at an observation point about 5" from the face of
the screen. Any portion of the drawing outside this pyramid of
vision is eliminated. Thus, only those lines or portions of
lines where lxlsZx and IYlsZy are displayed, as shown in Figure
4.3. If Z is negative, the line is clipped. Since Bit 0 of the
Clipping Divider is a sign extension, Z values should not be
larger than 17777777, or the line will be clipped.

In three-dimensions, perspective division becomes part of
the process of mapping the coordinate data into scope coordin­
ates. This perspective division yields X/Zx and Y/Z . The
viewport operates just as in two-dimensions, controliing the
portion of the viewing area of the Display Scope onto which
the picture is mapped.

4-3

TWO-DIMENSIONAL CLIPPING AND DIVISION

WINDOW VIEWPORT

------ - -,
I

00 ~ 0 I I I

D I
I CJ I
~l..J

I r-
~ I
........

I I ~ IVE>iUE ~
I U)

D ""'=' l
~ I tr:i

I
I

J I __ L
I
I ..;::.

- _ _J I
..;::.

PAGE SCOPE

Figure 4.2

It should be noted that because the pyramid of vision
is right-angled, the perspective looks strange unless viewed
from very close to the scope fa~e (about S") . Oth~r viewing
angles can be implemented by using the transformation

Z = Z tan (o: I 2)

where a is the desired viewing angle.

4.6 Boxing

The boxing process is a special feature of the
Clipping Divider which allows two-dimensional subpictures to
be defined only once but appear in sev~ral.di~ferent sizes and
locations. In order to understand boxing 1t 1s useful to
think of it conceptually as the conca~enatio~ ~£.two mappings.
The first mapping is from the subroutine def1n1t1on space,.a
-space similar to the page, onto the page. Th~ second mapp~ng
is then the normal page to scope (window ~o v1ewport) mapping
performed by the Clipping Divider. See Figure 4.4.

The area on this subroutine definition space which is
to be the domain in the first mapping is deliniated by the
MASTER. The master specifies the rectangular portion of the
subroutine definition space which is to he mapped onto the
page. The area on the page onto which the MASTER is mapped
is known as the INSTANCE. Once the subroutine has been
mapped onto the page, the normal window-to-viewport mapping
will eliminate any portion of the subroutine which lies out­
side the window and map the result onto the viewport, thus
displaying the subroutine at the proper position and size.

The "box" operation of the LDS-2 automatically sets
up the window and viewport to perform a composite mapping.
The subroutine is thus mapped directly from the subroutine
definition space onto the scope. In order to compute these
new parameters, the Clipping Divider must be provided with
a master and an instance just as if two successive mappings
were to be performed.

• The Master. The master is specified as a direct
parameter of the box instruction (i.e. the data
addressed by the box instruction is the master).
The master should be specified by giving the left,
bottom and right, top corners in the coordinate
system of the subpicture to be drawn.

• The Instance. The instance should be loaded into
the INSTANCE register of the Clipping Divider prior
to executing the box instruction. The instance is
specified by giving the ~ coordinates of its
left, bottom and right, top corners.

The box operation results in defining a new window on
the subroutine definition space and a new viewport on the
scope. After the box instruction has been executed, the pro­
gram can jump to the subroutine and draw the·subpicture just as
if it were executing a part of the main drawing routine. The

4-5

Page

THREE-DIMENSIONAL CLIPPING AND DIVISION

I I
I I

----,'----···--·- --·---1/
I I I
I I .

I I i I
I
I
I

I I · 1·

I /.

I
I

I
I

I

I
I

/

I /
I /

f 1 I /
/

II I /
I /

I/ I /~. -

I t

" ~ / '-l>yramid of Vision
II

/
/

/
/

Figure 4.3

perspective division.

Scope

subpicture need not be in relative format. The relative size
of the subpicture on the main drawing is determined by the
ratio of the master to the instance, and, thus, the subpicture
can appear in any size. Finally, any part of the subpicture.
which lies outside the current window is clipped.

When the instance is loaded prior to boxing, the Clipping
Divider will check to see if there is any area in common
between the current window and the instance. If not, there is
no need to draw the subpicture, and it can be skipped entirely.
An "area-in-common" bit (AIC) is sent to the DIRECTIVE register
of the Channel Control, where it can be tested prior to boxing.
Please not that for the AIC bit to operate properly, the
INSTANCE register must be the last register loaded with a 2D four­
component load prior to the box instruction (i.e., no other
re ister should be loaded between the loadin of the INSTANCE
an testing AIC , an the I ST NCE must e loa e wit a
four-component load. See Section 7.14. The AIC bit is cleared
by a new 2D four-component load.

4.7 HIT and COUNT Functions

The HIT bit is generated by the Clipping Divider, when
some portion of the line being generated intersects the
current window. This bit is sent to the DIRECTIVE register of
the Channel Control where it can be tested. The HIT bit can
also be enabled to interrupt the LDS-2. Once the HIT bit is
set, it remains on until cleared by an IOT instruction. The
HIT bit, thus, gives the Clipping Divider the features of an
automatic comparator which are very useful for "pointing"
functions such as are associated with a tablet.

Several different counts that may be useful in examining
the geometry of a drawing are maintained in the HITANG register.
These counts are primarily useful for determining the rela­
tionship between polygons and the current window and, thus,
will be explained assuming that a polygon is being drawn.

EDGE COUNT. The EDGE COUNT is incremented, when­
ever both ends of the line are outside the window
and the line passes through the window.

CORNER COUNT. The CORNER COUNT is incremented for
each corner (i.e., endpoint connecting two lines)
within the window.

HIT COUNT. The HIT COUNT is incremented for each
dot within the window or each line which inter­
sects the window.

4-7

+ii­
i

00

BOXING

The Two (Gottceptual) Mappings

MASTER

I ,_

DEFINITION

INSTANCE

PAGE

The Composite Mapping Set Up By Boxing

NEW WINDOW

Figure 4.4

OLD WINDOW OLD VIEWPORT

SCOPE

NEW VIEWPORT

ANGLE COUNTS (Ql-94). The four angle count registers
may be used in conjunction with the other counts to
determine how the polygon intersects the window. To
understand the angle detection logic, it is best to
think of radials eminating from the corners of the
window, as shown in Figure 4.5 (Note: that the
radials do not include the edges of the window) . Each
time a polygon edge crosses the radial in a counter­
clockwise direction, the count in incremented, and
each time it crosses in a clockwise direction, the
count is decremented. The four angle counters are used
to hold the accumulated counts for each quadrant
(radial). Examples of the use of these registers are
shown in Figure 4.5

It should also be noted that in order to make intelligent use of
these registers, they must be zeroed before the polygon is pro­
cessed. The HITANG register can be loaded, stored, sinked, and
retrieved.

(Note: These features are provided on a "best effort" basis, and
their proper functioning is not considered part of the acceptance
criteria for the system.)

4.8 Scope Control

The SELINT register of the Clipping Divider contains scope
selection and intensity information. Bits 2-9 are used for scope
selection. The next bit is used as a "take" bit for the select
bits. If this bit is 0, the select bits are not loaded. It is
thus possible to load the intensity bits without loading the
select bits. The next 8 bits are used for the scope permit bits.
These bits form a mask against which the scope selection bits are
tested. If a violation occurs, a scope selection violation signal
is generated, which can be enabled to cause interrupt of the
LDS-2 (see Section 2.5). The permit bits can only be loaded when
the LDS-2 is in executive mode.

The last 24 bits of the SELINT register are used to specify
the intensity. However, only bits 1 through 13 are
actually used (see Section 5.2.1). Zero specifies greatest
intensity, 37770000 specifies least intensities. The format for the
SELINT register is shown in Figure 4.5.

4.9 The NAME Register

The NAME register of the Clipping Divider is an unassigned
register, which can be used by the programmer as a storage
register. The NAME register can be loaded, stored, sinked, or
retrieved.

4-9

HITANG and SELINT REGISTERS

HITANG REGISTER

Examples of HITANG register usage.

Ql

,----------, Q2
I I
I

I

I

I I ?r ____ :
CORNER COUNT = 1

= 2

ry ~
ANGLE COUNTS (ASSUMING COUNTER-

UP DOWN

CLOCKWISE TRACE) Ql QZ Q3 Q4

1. Intersects the window 1. 0 0 1 0

2. Entirely within the window 2 . 0 0 0 0

3. Entirely surrounds the window 3. 1 1 1 1

4. Outside the window 4. 0 0 0 0

-----------------------------------.-----

SELINT REGISTER

Figure 4.5
d - 1 ()

FORMAT FOR CLIPPING DIVIDER OUTPUT TO MEMORY

PTOM (Clipped page
coordinates)

NTOM (Name Register)

STOM (Scaled scope
coordinates)

Previous Point

New Point

Previous Point

New Point

Note: Bit 0 is a sign extension.

0

~
I\
t\
I\
t-,

I\
I\
r..;

" '~
f\
N
N
t~

bl

' I~
h
l'-J

N
l"'I r;
['.:,

~
N
N
f'.1
N
N

~~

~~
H
N

x
y

z

z

x
y

z

z

NAME L

NAME R

x
y

x
y

23

If all three are set, data are deposited on the order shown.

* Omitted if 2D set.

Figure 4.6
4-11

*
*

*

*

i

4.10 Graph Mode

The Clipping Divider can be put into "graph mode" by
specifying "self X" or "self Y" in the Clipping Divider
directive register (see next section). In this mode, either
the X or the Y values in the SAVE register (or both) are
incremented by the corresponding X or Y value in the INSTANCE
register to form the new point, and the X or Y part of the
incoming data is ignored. In all self modes, all drawing
instructions should be relative. Also, both the X components
and both the Y components of the INSTANCE registers should be
loaded with ~X or ~Y.

For more efficient storage of the coordinate data, the
"register draw" instructions should be used with SELFX or
SELFY. If coordinate data are accessed from memory for the
drawing instructions, the data will be interpreted as shown
below:

SELFY SELFX

X1 --
- - Y1

Xz - -

- - Yz

4.11 Mode Control

The dimension mode bits of the Channel Control DIRECTIVE
(DIR) register determine whether the Clipping Divider is in 2D
or one of the 3D modes. The rest of the mode control information
is stored in the Clipping Divider directive register (CDIR).

4-12

The bits of this register are as follows:

0-3 Unused

4

5

6

7

8

9

10

STOS

STOM

ZTOS

PTOM

NTOM

Take bits 2-6

J (Set) CURVE

11 K (Clear) CURVE

12 J (Set) MEF

13 K (Clear) MEF

14 J (Set) Dashed
Line

Scaled output to scope.

Scaled output to memory (see
figure 4.6 for format).

Z sent to scope to control
intensity. (Otherwise the
intensity bits of the SELINT
register control intensity).

Clipped page coordinates (be­
fore division) to memory (see
figure 4.6 for format).

NAME register contents to
memory (see figure 4.6 for
format).

If not set bits 2-6 are not
loaded.

If CURVE mode is set in 3D, the
Clipping Divider calculates the
part of the drawing within the
negative Z pyramid as well as
the positive Z pyramid. The rep
sult is that the drawing behind
the observer is also projected
onto the scope. This feature is
useful in displaying certain
types of curves. CURVE for the
Clipping Divider should not be
confused with MCURVE for the
Matrix Multiplier.

Minimum Effort Mode is a special
mode where the Clipping Divider
merely computes the X, Y and z.
coordinates for some point which
is visible on the specified line.
(PTOM should be set to get these
values into memory).

Causes the line drawn on the
scope to be dashed rather than
sol id.

4-13

15 K (Clear) Dashed
Line

16 Unused

17 SELF x Use INSTANCE register for 6X
displacement.

18 SELF y Use INSTANCE register for flY
displacement.

19 Take SELF If not set SELF bits are not
loaded.

4-14

CHAPTER 5

THE LINE GENERATOR AND DISPLAY SCOPE

5.1 Function

The last units in the LDS-2 processing pipeline are the
Line Generator and Display Scope. The Line Generator accepts
digital input from the Clipping Divider, converts these to
analog signals and generates the sweep voltages required to
drive the deflection system of the Display Scope. Input
includes 12 bits of X, 12 bits of Y, and 8-bits of Z inten­
sity, as well as scope selection data, MOVE/DRAW commands,
and the DASHED LINE command.

5.2 Control

The programmable control for the Line Generator and
Display Scope is contained in the Clipping Divider.

5.2.1 Intensity

The intensity modulation of the line drawn on the Display
Scope is under program control in one of two ways. First,
if the ZTOS (Z to scope) bit of the Clipping Divider directive
register (CDIR) is set, the Z value of the line is used to
modulate intensity. This "depth cueing" makes the intensity
of any point on the line a function of the Z coordinate
of that point. Thus lines that extend very far from the
observation point will grow dim at the far end.

If ZTOS is not set, the bits 1 through 13 of
the value stored in the INTENSITY register of the Clipping
Divider are used to determine intensity.

5.2.2 Scope Selection

The Line Generator can drive up to four scopes. The
selection for these scopes is determined by the Select
register (bits 2-9 of SELINT) of the Clipping Divider.
These bits are masked against the bits in the Permit reg~ster
(bits 11-17 of SELINT) and in the case of violation, a scope
select violation bit is sent to the Channel Control. This
bit can be enabled so that it will cause an interrupt (see
Section 6.2). The permit bits can be set only in
executive mode and are thus protected. For the format of the
SELINT register see Figure 4.5. A line can be displayed on
any combination of the available display scopes.

5-1

5.2.3 Beam Control

The Clipping Divider controls the movement of the beam
on the Display Scope. The "set point" and drawing instruc­
tions received by the Clipping Divider are used to control
the MOVE/DRAW function of the Line Generator. The clipping
process insures that the Line Generator will not be fed
values which are off the· edge of the viewing area of the
Dis play Scope.

The Display Scope can be made to draw a dashed line
(instead of a solid one) by setting the DASHED LINE bit of
the Clipping Divider directive register.

5-2

TIITI LDS- 2 ASSEMBLER

6.1 General Characteristics

The LDS-2 Assembler takes source code written in LDS-2
Assemhly Language and assembles it into object code which can
be executed by the hardware of the LDS-2. The LDS-2 Assembly
Language features symbolic representations for addresses and
arguments, literals, automatic definition for symbols, and
facilities for defining new mnemonics. The LDS-2 Assembler
runs on the LDS-2, but the input is provided by the host
coMputer. The details of the software interface between the
LDS-2 and the host computer and instructions for calling the
assembler are given in Chapter 9. Examples of LDS-2 Assembly
Language usage and descriptions of the instructions are given
in Chapter 7.

6.2.1 Symbols

A symbol is composed of from one to six alphabetic, numeric
and non-reserved special characters (see Figure 6.1). Only
those special characters which are not specifically designated
for other purposes may be used in a symbol. A symbol may
represent a statement label, an external name, or an equiva­
lence relationship, such as a register name. When a symbol
is defined within the program, it is flagged as either absolute
or relocatable. If the assembly is in absolute mode, all symbols
are absolute. Otherwise, any symbol which is a statement label
(LAB) or derived from a statement label is relocatable. A
symbol encountered in an expression may he automatically define<l
and assigned a location by placing a pound sign (#) immediately
following it.

6.2.2 Numbers

A number consists of one or more of the digits 0-9. Num­
bers may be of any lenp,th; however, if the number is lar~er
than the field into which it is to be placed, its excess high­
order (left-hand) bits are discarded in order to make it fit.
Numbers which begin with a preceding zero are interpreted as
octal, while all other numbers are interpreted according to
the prevailing radix, which is initially base ten. All numbers
are considered to he positive integers.

6.2.3 Current Location Pointer

When the period (.) is encountered in a statement subfield,
it is assumed to represent the current value of the location
counter.

6-1

LDS-2 ASSEMBLER CHARACTER SET

ALPHABETIC CHARACTERS

A - Z

NUMERIC CHARACTERS

0 - 9

SPECIAL CHARACTERS

All other special ASCII characters, except as listed below,
may be used in symbol formation.

SPECIAL CHARACTERS RESERVED FOR ASSEMBLER USE

Current location pointer

Subfield separator

Text string delimiter

Alternate statement terminator

@ Indirect address flag

% Indexing flag

$ Statement continuation symbol

= Literal delimiter

+ Addition operator

*
I

(
)

[
]

<
>

Space

Subtraction operator

Multiplication operator; comment line indicator

Division operator

Priority indication (used in expressions)

Auto-definition flag

Used in OPDEF

Reserved for future use

Field separator

Carriage Return Statement terminator

Figure 6.1
6-2

6.2.4 Expressions

An expression consists of one or more symbols, numhers
and/or current location pointers, separated by combinations
of the arithmetic operators "+", "-", "*", or "/". The last
item in an expression must not be an operator. The expression
is evaluated according to Fortran heirarchy - that is, "*" and
"/" are evaluated first, then "+" and "-", except where
overridden by the use of parentheses. If the expression contains
a division by zero, the original dividend replaces the quotient.
When successive operators of equal heirarchy are encountered,
they are evaluated from left to right. All arithmetic is in
fullword two's complement integer, so that fractional portions
of quotients are discarded. Parentheses are permitted in an
expression. As the_ expression is evaluated, its terms are
checked for relocation compatibility, and the final evaluated
expression must he either purely relocatable or purely absolute.
Thus, assuming that "A" is an absolute symbol, "TP' is a
relocatable symbol, and "X" is any symbol, the following are
illegal expressions:

R+R (R+R-R is legal)

A-R (A-R+R is legal)

X*R (R*l, l*R, O*R, and R*O are legal

X/R

R/X (R/1 is legal)

If the expression begins with an operator, the assembler
assumes an item preceding it, which has a value of zero and
is in absolute mode. It is in this manner that negative numbers
are handled. Once an expression has been evaluated, it is
trimmed to fit the field into which it is to be placed in
accordance with the same rules of modulus as for numbers (sec
Section 6.2.2).

6.2.S Text Strings

A string of characters enclosed in single quotes (apostro­
phies) is called a text string. Such a strin~ is interpreted
by the assembler as a packed series of truncated ASCII charac­
ters, and is packed accordingly into successive computer words~
six bit hyte format, four characters per word, left justified.
Any character may appear in the text string. A single quote,
however, is represented by inserting two adjacent single quotes
into the string. Unused portions of words containing text
strings are blank-filled.

6-3

6.2.6 Literals

A literal may be used to replace the address in an operand
field. When the literal is assembled, it is replaced by the
address of the one-word memory location which contains the
literal value. Thus, literals are automatically defined by
using them. A literal must be preceded by an eoual sign (=).
The following types of literals are allowed.

Expressions

When an expression is used in a literal,
it must be preceded by an equal sign. Should the expression
contain a ".", however, the "·" will be evaluated as the
value of the location counter at the current statement;
hence, precisely the same literal appearing in the next
statement will be evaluated differently, and will be
assigned a different memory location. If a literal
expression contains a forward reference to a symbol, a
new literal word will be reserved, even though the same
expression may have occurred previously.

Text Strings

When a text string is used in a literal,
the string, including the single quotes surrounding it,
is preceded by an equal sign. If the string is greater
than four characters in length, only the first four
characters are accepted; the rest of the string is ignored.

6.2.7 Subfields

A subfield consists of either an expression, a text string,
or a literal. The operand field of a statement is often composed
of several subfields, each of which is terminated with a comma,
or in the case of the last subfield, with a space or carriage
return (or a semicolon, should another statement follow on the
same line). All subfields other than the first must be preceded
immediately by a comma. Two adjacent commas indicate a null
subfield. A null subfield is assumed to be absolute, and to
have a value of zero. If a subfield is the only one in the
operand field, it may not he null, although it may contain zero.
Should a dollar sign (~immediately follow a subfield, the
line will be assumed exhausted, the rest of the line will be
ignored, and scanning for the next subfield will begin with
the first non-blank character on the next line. The address
subfield may contain either an expression or a literal, and
is preceded optionally by the indirect-address fla~ (@) and/or
the indexing flag (%) where permissible and applicahlc. These
flags must precede other data in the subfield, but may occur
in either order. If a subfield of an instruction which requires
a relocatable expression is left null, an error is indicated
by the assembler. The subfields of the EXTERN and ENTRY

6-4

directives must be symbols, and the subfields of the DATA
directive may contain expressions or text strings; all other
subfields, except address subfields, are limited to expressions.
Expression arithmetic involving external symbols is prohibited.

6.2.8 Fields

A field is a portion of a statement separated from other
portions by one or more blank characters. It consists of one
or more subfields.

6.2.9 StateMents

The statement is the basic entity of the assembly language
for the LDS-2. A statement consists of up to four fields
separated from each other by one or more spaces.

The first or label field is optional, except in EQU or
nPDEF directives, and with the exception of these two directives,
is used to identify the memory location into which the current
instruction or data word is to be inserted. The label must
always be a symbol, and, with the exception of the EOU and OPDPF
directives, its inclusion in the statement automatically causes
it to be defined and given the value of the current location
counter. If this field is omitted, at least one snace must
be inserted at the beginning of the statement. The first field
in EQU and OPDEF directives is not interpreted as a label, but
rather as a symbol or mnemonic which is to be set equal to some
value.

The second field is always mandatory, and contains the
instruction or directive mnemonic, which is a naMe following
the format of a symbol, hut in no way associated with labels;
in fact, labels may be spelled exactly the same as instructions
with no possibility of confusion. This field must be followed
by at least one space, unless it has no operand and another
statement follows on the same line, in which case it must be
followed ifflmediately by a semicolon.

The presence of the third or operand field depends entirely
on the particular instruction or directive. This field is the
only one which may contain subfields, and is used to specify
the arguments of the instruction or directive. Should a symbol
occur in this field, it is considered a reference to, rather
than a definition of, a label. This field may also be followed
immediately by a semicolon to indicate that another statement
follows on the same line, or hy a space or carriage return.

The fourth or comments field, which is always optional,
except with the END stateMent which may not have a comment,
iRnored; and, therefore, any character may be included in the
comment field, including the semicolon. If a comment exists
(i.e., a semicolon or carriage return docs not immediately

6-5

follow the last mandatory field), only the carriage return or
end of line may terminate the statement.

If a line begins with an asterisk (*),the entire line
is treated as a comment and is not processed, but is listed
in the assenbly listing.

6-6

6.3 Assembler Directives

Directive statements are offered to allow the user to pro­
vide information to the assembler for the purpose of controlling
the assembly of actual codes. Note: The label field of any
of the directives listed helow is optional, except for EQU and
OPDEF directives.

6.3.l Assembly~Control Directives

Format:

Wher•e:

Format:

Where:

Format:

Where:

LAB RADIX N

N is a decimal number from 2 to 10, indicating the
base of the number system used in evaluating the
numbers used in subsequent statements.

This directive causes the prevailing radix for
number interpretation to be modified. If this
directive is not used, the radix will be assumed
to be 10 (decimal). However, use of a leading zero
will always cause the number to be interpreted as
octal (Radix= 8).

LAB DUP M,N

M and N are expressions.

DUP causes the group of M instructions and
directives following the DUP directive to be
replicated N number of times. M must be greater
than zero; N may be zero or greater. The default
condition for M is one. Any directive, except END,
may be included in the range of a given DUP. DUP's
may be nested up to five levels deep; however, the
boundaries of a given DUP range must completely
enclose the boundaries of all DUP's occurring within
that range·. The number of statements in the· range
of the primary DUP is determined strictly by the
space available in the symbol table.

NAME EQU N

NAME is a symbol; N is an expression.

This directive sets NAME equal to the value
of N. If any s~rnbols appear in N, their values must
have been previ~usly defined. If N is a relocatable
expression, NAME will be flagged as relocatable;
otherwise, it will be flagged as absolute. N may
not contain an external symbol or an instruction
or directive mnemonic.

6-7

Format:

Where:

Format:

Where:

Format:

(1) NAM-E-1 OPDEF NAME2

(2) NAMEl OP DEF NAME2 OPDFLD
'

FIF.LDl,
FIELD2, •••

(3) NAMEl OPDEF (Expression),FIELD1,FIELD2, •••

NAMEl is the name of the mnemonic which is being
defined, NMfE2 is the name of a previously defined
mnemonic, OPPLDS is the appropriate operand field,
and FIELD1,FIELD2, etc., have either of the following
forms:

(1)

(2)

(length of field, location of lowest-order
bit, N)

(length of field, location of lowest-order
bit,A@%)

Form (a) is used for non-address fields, while Form
(b) is used for address fields.

This directive is used to define new mnemonics
for LDS-2 instructions. The names of mnemonics which
are initially defined for the assembler may not be
used for new definitions. Several of the instruction
groups have various possibilities, not only for the
names of mnemonics, but also for the way in which
the operand fields are defined. Through the use
of the OPDEF directive, the user has the option of
defining alternate forms for LDS-2 instructions.
(Note: See Appendix II for the OPDEF's which have
been initially defined for the assembler.)

LAB ORG N

N is an expression.

This directive sets the location counter to
the value of the expression. The value of the
expression is required to be relocatable. If a label
is associated with this directive, it assumes the
old value of the location counter. The assembler
initially assumes an ORG, where N points to the
beginning of the first page, until it encounters
another ORr:.

LAB LITORG

This directive causes all literals so far defined
to be inserted into the program beginning at the
current value of the location counter, and the literal
table cleared. If the directive is labelled, the

6-8

Format:

Where:

label will be assigned the addres:s of the first
literal. An automatic LITORG is generated upon
encountering an END or PAGE directive (see below).
Note: Once the literal table has been cleared by
a LITORG, all references to previous literals are
lost. Hence, the user must exercise caution in
modifying the contents of a literal during execution
of his program to provide a temporary storage area.

LAB END N

N is an expression.

This directive must be the last statement in
the program, and signifies to the assembler that
the input is complete. The expression N is optional,
and if nresent, indicates the address at which
execution is to begin. For relocatable assemblies,
N is required to be relocatable. If the statement
contains a label, the label will he assigned the
address of the first literal at the end of the
program, should one exist, and provided that the
user has not used the auto-definition feature.
Because the operand is optional, the END stateMent
may not contain a comment field, unless the operand
field is explicitly supplied. Otherwise, the
Assembler will mistakenly treat the comment as an
operand.

6.3.2 Object-Control Directives

Format:

Where:

Format:

Where:

LAB EXTFRN N,N,N, •••

The N are symbols.

This directive causes the symbols N,N, ••• to
be interpreted to the loader as being defined in
an external program, and instructs the loader to
insert the proper linkage. If the symbol is also
defined in the current program, a multiple-definition
error will result.

LAB ENTRY N,N,N, •••

The N are symbols.

This directive causes the symbols N,N, ••• to
be made availahle to the loader for the purpose of
defining symbols specified in other programs in
EXTERN statements. A label used with this directive
will be assigned the current value of the location
counter and has no relation to the values of the
operands of the ENTRY directive. If the symhols

6-9

are not defined elsewhere in the program, an error
will result.

6.3.3 Listing-Control Directives

Format:

Where:

Format:

Where:

LAB LIST N

N is an expression.

If N has a value of zero, all subsequent lines,
until the next LIST directive, will not appear in
the assembly-listing. If N is non-zero, the current
line and all subsequent lines to the next LIST will
he listed as follows: If N equal 2, the listing
will be double-spaced; otherwise, it will he single­
spaced.

LAB SKIP N LAB SKIP N, 'text string'

N is an expression.

This directive causes N blank lines to he
inserted in the assembly-listing. If the number
of lines to be inserted takes the listing past Line
56 of the current page, the listing will hep.in on
the top line of the page following. N must be greater
than zero. If the subfield is followed by another
containing a text string, that string will appear
on the heading line of all subsequent pages, until
a similar SKIP directive is encountered. The line
containing the SKIP directive is not listed, unless
it has been labelled.

6.3.4 Storage-Allocation Directives

Format:

Format:

LAB DATA N2,N3, ••• ,NM

This directive causes M words to be reserved
in memory, beginning at the address specified
currently by the location counter. Into each word
is placed the value of the corresponding subfield.
The subfields may contain either expressions or text
strings; if text, a sufficient number of words is
reserved to accommodate the string. If the directive
is labelled, the label is assigned the value of the·
location counter prior to incrementation; that is,
the address of the first word generated by the DATA
directive. Note: The "DATA" mnemonic may be omitted
if the first operand subfield does not begin with
a name.

LAB BLOCK N

6 .. 10

Format:

Where:

l,AB BLOCK N

N is an absolute expression.

A block of N consecutive memory locations is
reserved in the program, beginning at the address
currently specified hy the location counter. The
counter is incremented by N. If the directive is
labelled, the label is assigned the value of the
location counter before incrementation.

6-11

6. 4 Error and Warning Mes·sages

If errors or possible errors are encountered during the
assem9l-y:, error and warning messages will be printed in the
listing. Some errors will cause termination of the assembly,
while others are non-fatal. There are four levels of error
messages:

1. Warning. The user is simply warned of a possible
problem.

2. Error. An object module will be produced, but it will
contain errors.

3. Fatal Error. The object module is discontinued, but
the assembly and listing will continue.

4. Catastrophe. Assembly is immediately discontinued,
probably due to an assembler error.

The following error messages are provided by the assembler:

TYPE LEVEL

A
B
c
D
E
F
G
H
I
J
K
L
M
N
0
p
Q
R
s
T
u
v
w
x
y
z
]

1
2
3
2
2
2
2
2
2
2
4
2
3
2
2
2
2
1
2
2
2
2
2
4
2
2
2

MEANING

Name too long; last part ignored
Number expressed in wrong radix
Symbol table overflow
Undefined symbol
Improperly nested parentheses
Misplaced arithmetic operator
Illegal placement of text string
Illegal use of external name
Multiply-defined symbol
Illegal use of relocatable name
Assembler error; get dump and call system man
Unresolved literal reference
Illegal DUP range
Undefined Mnemonic
Missing or garbled operand field
Literal Out of Address Field
Flag illegal in this field
Too few subfields; remainder assumed null
Too many subfields
Duplicate flags
Field must be relocatable
Reference across page boundary
Displacement exceeds one page
Input data out of order
Label missing or incorrect
Illegal expression
Missing END statement

6-12

LDS-2 INSTRUCTION SET

7.1 Accessing Data for the Instructions

The necessary data for LDS-2 instructions may be accessed in
one of three ways:

The address may be specified as part of the instruction
word. This address may be a direct address or an indirect
address. With most addressing instructions, indexing is also
available. If both indirection and indexing are specified,
the indirection is performed before indexing.

The address of the data may be contained in one of the
Channel Control registers. For instance, in most drawing
instructions the address is contained in the READ POINTER (RP).
In the case of the drawing instructions, the address in the
RP may be taken as an indirect address or an indirect and indexed
address.

The data for the instruction may be contained in the
Channel Control registers so that no memory reference is made
at all.

7.2 Notation

For the descriptions of the instructions, the following special
symbols are used:

R,R1 2R2 These symbols are used to specify Channel Control
register addresses. Rl ~R2 means that the contents of Rl
are loaded into Register R2.

N The symbol "N" specifies immediate data. Immediate data
are taken as an unsigned (positive) integer. For a 24-bit
system N may range from 0 to 7777 (octal).

b The symbol "b" is used to specify either the bit position
or the number of bits to be shifted. Bits are numbered beginning
with Bit O on the high-order (left end) of the word.

ADDR The address part of the instruction word is called ADDR.
This is the address within the current page.

@ The "@" symbol is used to specify indirection. If this
symbol precedes the ADDR portion of the instruction, ADDR will
be taken as an indirect address.

% The "%" symbol specifies indexing. Although indirection
may be specified whenever there is an ADDR field, indexing is
only legal for some addressing instructions as specified in
the detailed descriptions of the individual instructions.

7-1

e The symbol "e" is used to represent the effective address.
The effective address is the final memory address obtained after
paging, indirection, and indexing have been performed.

C(e) The contents of the memory location specified by the
CTr'ective address are represented by C(e).

C(R) The contents of the memory location referenced by the
acr<Iress contained in Register Rare specified by C(R). Note,
that in this case, it is assumed that R contains a memory
address. Rl-+C(R2) means that the contents of Register Rl are
deposited into the memory location specified by the contents
of Register R2.

7-2

7.3 Loading and Storing the Channel Control Registers

The load and store instructions for the Channel Control regis­
ters ~llow~:.d;ita to be transferred between memory and a Channel Control
register, between one register and another, and from the immediate
data field of an instruction word into a register.

Mnemonic: LO

Structure:

0 1 3 4 7 8

R ADDR

Format: LO R,@ADDR

Function: Load the contents of the effective address into register
R. The previous contents of R are lost.

C(e)-... R

Mnemonic: ST STore

Structure:

0 1 3 4 7 8

R ADDR

Format: ST R,@ADDR

Function: Store the contents of Channel Control Register R into
the memory location specified by the effective address.

-~ _,..£(e)
-...--------------------------------------.. ···--·------·-·-------,.--...

Structure:

Register LOad ,,,,,.

~.tl---'-' N~S

11-'t I t'J,,I{ N-1 .. ~ g~ ~
I " R2 I o o 1 ol

Mnemonic: RLO

Format: RLO Rl,R2

Function: Load Register Rl with the contents of Register R2. The
previous contents of Rl are lost.

R2-+ Rl
----------------··--·------------

7-3

Mnemoni-c: RLOZ Register LOad and skip to Zero

0 1 3 4 7 8

r~r
N~f t'fi, ~ .. ,

-Iii ~ ti> a.fr ~

Structure:

~·. L Jl2 I 0 0 1 ol . ~ _.
r •_, .t. .. J.,,;:.J'

Rl

Format: RLOZ Rl, R2 I
. . \

Fun'ction: Load Register Rl with the contents of Register R2 and
0 skip the next instruction if Rl contains zero (after

having been loaded from R2). The previous contents of
Rl are lost.

R2 ~ Rl

Mnemonic: ILO Immediate LOad

Structure:

0 1 3 4 7 8

R

Format: ILO R,N.
,- ' ... ~ ~--

'\<'>

Function: Load Channel Control Register R with the immediate value
N. The previous contents of R are lost.

N ~R
--------------···-······---·····---·---.. -=~-.• -·· --~--~· -~-------------·--

Mnemonic: ILOM Immediate LOad Minus

0 1 3 4 7 8

,,.
w,1 N,,.tf N•I
~ ~ ;,iJ-

Structure:

lo t\ 1 0 I R I ~· : t(~ ~~ , N I 1 o 1 oJ
,/,~--~

"

ILOM

Function: Load Channel Control Register R with minus (two's
complement) value N. The previous contents of R are lost.

-N-+ R

7-4

7.4 Program Control

The. normal sequential flow of the program may be changed by
the following instructions. The "pushjump" and "popjmp" instruc­
tions use the PC-stack mechanism of the Channel Control. Remember
that_the top element in this stack is the TOS register, and that
the STACK POINTER (SP) points to the second element in the stack.
In the descriptions of the program control instructions, the following
phrases take special meanings.

Push the PC The SP is decremented and the contents of the
TOS register are copied into the memory location referenced
by the new address in the SP. The contents of the PC (which
contains LOC+l, where LOC is the address of the "push"
instruction) are then copied into the TOS register.

Pop the PC The contents of the TOS register are loaded into
the PC. The contents of the memory location referenced by the
SP are then loaded into the TOS register, and the SP is
incremented.

Mnemonic: J . :
'

Jump

Structure:

0 1 3 4 7 8 l*!:S te

I@ Io 1l%i 0 0 1 11 ADDR

Format: J @%ADDR

Function: Load the program counter (PC) with the effective address.

«.+-?- e _., Pc
Mnemonic: PUSHJ PUSH Jump

Structure:

0 1 3 4 7 8 1g 2Q.

ADDR

Format: PUSHJ @ %ADDR . .1r. • ~~~ ~.i\. ~v.~l-lr)
(ye J~\f\-1-~ \)./'I J--

Function: Push the old PC onto the stack and load the PC with the
effective address.

SP·l ~SP
(, TOS-+ C (SP)
\Loc.+D'=-PC ~ TOS

e --+PC

7-5

Mnemonic:

Structure:

Format:

Function:

Mnemonic:

Structure:

Format:

Function:

REGJ REGister Jump

0 1 3 4 7 8

R N I 1 1 o ol
REGJ R,N

If an immediate value (N) is specified, it is added to
the contents of Register R, and the results are loaded
into the PC. Note: The immediate value N is an optional
subfield and need not be specified if no offset is
required. The comma, however, is required in any case.

N+(R).-. PC

REGPJ REGister PushJump
w-C-

.Jtit"f ~
1 N-tf N--1
~~ ~

I 11 N 1 1 0

0 1 3 4 7 8

R

REGPJ R,N •
Push the PC. If an immediate value N is specified, it
is added to the contents of R, and the results are loaded
into the PC. Note: The immediate value N is an optional
subfield and need not be specified if no offset is
required. The comma, however, is required in any case.

SP-1 ~SP
TOS ___,. C (SP)
PC-~ TOS
N+R--+- PC

7-6

Mnemonic:

Structure:

Format:

Function:

Mnemonic:

Structure:

Format:

Function:

REGister Jump and p~ the Stack

r~ ... c/ IJ~
0 1 3 4 7 8 ~~ ~

R N I 1 1 1 ol
REJS R,N

If an immediate value (N) is specified, it is added to
the contents of R, and the result is placed in the PC.
The stack is then popped, which destroys the top element
in the stack (i.e., the old contents of the TOS). This
instruction may be thought of as a "grandfather return."
Note: The N subfield is optional, however, the comma
must still be present.

N+R _,.PC j
C(SP)~ TOS ':;~-I--;;$ p

POPJ POP Jump

j~r-
~If ~ .. ,

0 1 3 4 7 8 ~

~ 1 1 ilo 1 0 ol 0 I 1 1 1 ol
POPJ

Pop the PC. This instruction serves as the standard
subroutine return.

TOS -t PC
C(SP)._.. TOS
SP+l-+SP

7-7

Mnemonic:
~

Struc~ure:

Format:

Function:

Mnemonic:

Structure.:

Format:

Function:

"·

i"

POPJOF POPJump with OF set
N•J
I N-V N-1

0 1 3 4 7 8 ~ .efr' ii!'"'

lo 1 1 1 ~ 1 0 a I N I 1 1 1 al
POPJOF N

Add the immediate value N to the contents of the TOS and
pop the PC. Note: Since N is the only argument in the
field, it must be present even though it may be zero.

N+TOS . ._...PC
C (SP) ___,. TOS
SP-1-+SP

XEQ eXEcute a memory location as an

) ;.
N-1 ..

0 1 3 4 7 8 ~

~'lo 1'l % l1 0 1 1 I ADDR I
XEQ @%ADDR

Execute the contents of the memory location specified
by the effective address as an instruction.

inst1

Mnemonic: REX Register EXecute

0 1 3 4 7 8

ltJ,,. r-
1 N,, ti W-J

~ ~ .a.8-' ~

Structure:

~iod R I o o olo 1 1 ~
Format: REX R

Function: Execute the contents of Register R as an instruction.

7-8

EXAMPLE 1: LDS-2 Addressing for a 24-bit system

If one assumes that

then

ADDR = 1056
C(ADDR) = 2736
C(2736) = 27
IR = 1

J ADDR sets the PC to 1056 ~
J @ADDR sets the PC to 2736 wr
J %ADDR sets the PC to 1057 ~
J @%ADDR sets the PC to 2737 .,;"

7-9

7.5 .Stack Control

In addition to the stack on which return locations from the
program counter are saved, general-purpose stacks can be implemented
easily with LDS-2 instructions. Any of the Channel Control registers
may be used as a "stack pointer," and the mode of operation of the
stack is under program control. The following instructions are used
to implement general-purpose stacks.

Mnemonic: PUSH PUSH a register into memory

Structure:

Format:

Function:

Mnemonic:

Structure:

Format:

Function:

0 1 3 4 7 8

N.,,r J,,,..r
I fl.,tf . ~-I

g)ttf' .a.a ~

~' 1 1 11 Rl I I RZ · I o o x ol
X = 0 or 1

PUSH Rl,R2

Push the contents of Register Rl into the memory loca­
tion specified by the address contained in Register R2.

Rl-+ C (R2)

!PUSH Increment and PUSH
IJ-r ,,_, l IJ,,,. 'I ~-J

0 1 3 4 7 8 .II!~ w ..a6" . ~

~ 1 1 1 I Rl I I R2 I 0 1 0 ol
I PUSH Rl,R2

Increment the contents of R2 by one, and push the contents
of Rl into the memory location specified by the new address
contained in R2.

R2+1-+ R2
Rl-+ C(R2)

7-10

Mnemonic:

Structure:

Format:

Function:

. \
Mnemonic:

Structure:

Format:

Function:

Mnemonic:

Structure:

Format:

Function:

PUSH I PUSH and Increment

N,J f\J'~
I \ w-¥ N-1

0 1 3 4 7 8 • i'\1" -M- .J.9 ~

~ 1 1 11 Rl I I RZ I 0 1 1 ol
PUSH I Rl,RZ

Push the contents of Register Rl into the memory location
specified by the address contained in RZ and then increment
the contents of RZ.

·Rl __,,. C (R2)
R'2-H-+ &2

DPUSH

0 1 3 4 7 8

b 1 1 1 I Rl I
DPUSH Rl,RZ

Decrement and

~ .. c
~~

I R2

PUSH

w-C
t w .. t./ ~-I ~ ~

I 1 0 o ol

Decrement the contents of R2 and then push the contents
of Rl into the memory location specified by the new address
·contained in R2.

RZ-1 ~'RZ
Rl--;> C(R2)

PUSHD

0 1 3 4 7 8

Rl I
PUSHD Rl,R2

PUSH and Decrement

"'"'(

I IV~., "''' J.9 ~ ~

I 1 o 1 ol

Push the contents of Rl into the memory location specified
by the address contained in R2 and decrement the contents
of R2.

Rl _,.C (R2)
R2-1-+ R2

7-11

Mnemonic:

Structure:

Format:

Function:

Mnemonic:

Structure:

Format:

Function:

Mnemonic:

Structure:

Format:

POP POP a memory location into a register
~-t ,., ... s--
f { ,_,,,.; N-1

7 8 * U' .Ml' ift" e---
k 1 1 ii Rl I R2 I 0 0 oil
POP Rl,R2

Pop the contents of the memory location specified by the
address contained in R2 into Register Rl.

C(R2) ~ Rl

IPOP Increment and POP

t" ,.,,,., w-< AJ,,. /
0 1 3 4 7 8 ~~ ~-a&- ~

~ 1 1 ll Rl I I R2 I o 1 0 11
IPOP Rl,R2

Increment the contents of Register R2 and pop the contents
of the memory location specified by the new address in
R2 into Register Rl.

R2+1·~ R2
C (R2) ____,. Rl

POPI POP and Increment

0 1 3 4 7 8

b 1 1 i I Rl I I RZ I o 1 1 11

POPI Rl,R2

Pop the contents of the memory location specified by the
address contained in R2 into register Rl and increment
the contents of R2.

C(R2) -.. Rl
R2+1 ~ R2

Mnemonic:
'ii<

st'ructure:

Format:

Function:

Mnemonic:

Structure:

Format:

Function:

. {>POP,

0 1 3 4

k 1 1 1l Rl

DPOP Rl,R2

7 8

Decrement and POP
ft-1,,r

N-t I tJ-fl N-1
~~~~ ~ 

IR2 l1ooil 

Decrement the contents of R2, and then pop the contents 
of the memory location specified by the new contents of 
R2 into Register Rl. 

R2-1 ~ R2 
C(R2)~ Rl 

POPD 
I <f 

POP and Decrement 

~ 
r~.'( tJ-8 JJ __ , 

0 1 3 4 7 8 ~~ ~~ ~ 

~ 1 1 1 I Rl I I R2 I 1 0 1 11 
POPD Rl,R2 

Pop the contents of the memory location specified by the 
address contained in R2 into R~gister Rl and then decrement 
the contents of R2. 

C(R2) ~ Rl 
, R~-1--.;. ~ 

EXAMPLE 2: Subroutine Calling Sequence 

The push and pop instructions of the LDS-2 are very power­
ful for list processing. They also provide a nice facility for a 
subroutine calling sequence. 

Calling Program 

PUSHJ SUBR 
parameter 1 
parameter 2 

• 

• 

parameter n 
next instruction 

7-13 



f:Oo ~ 
'-------~ (tl \Z1-

SUBR POPI ACO,TOS 
POPI ACl,TOS 

• 

• 
POPI AC3, TOS 

• 
• . 

POPJ 

put parameter 1 in ACO 
put parameter 2 in ACl 

put parameter n in AC3 

return to "next instruction" 

Here we have used the TOS as a stack pointer to the parameter 
list and can pop the parameters from the calling program, as 
they are needed. 

7-14 



7.6 Arithmetic and Logical Operations 

The arithmetic and logical operations are performed using the 
contents of two Channel Control registers or the contents of one 
register and an immediate value as arguments. Since these instruc­
tions do not have to reference memory, they are very fast. The 
arithmetic operations are performed using full-word, fixed-point, 
two's complement arithmetic. Logical operations are performed bit 
by bit according to the following truth tables. 

OR XOR AND 

f: 0 

1 f:
l 

0 

1 0 1 

Mnemonic: 

Structure: 

Format: 

Function: 

---·--------------
Al>D ADD two registers 

'11--1 
ltJ-t ( W-'/ ~ ... , 

0 1 3 4 7 8 15 1-e"' if#] ,1/t} ~ 

b 1 1 o I Rl I R2 I 0 0 0 oJ 

ADD Rl,R2 

Add the contents of Rl and R2 and leave the results in 
Rl. 

Rl+R2 ~ Rl 

Mnemonic: ADDNC ADD two regist~rs and skip on 

Structure: 

Format: 

Function: 

No Carr"'ottt N•) 

l ,,,_'I tJ _, 
0 1 3 4 1 8 }-!I a.tr' '1'S 

11 1 1 0 I Rl I R2 I o o o ol 
ADD NC Rl,R2 

Add the contents of Rl and R2 and leave the result in 
Rl. Skip the next instruction, if the additions do not 
result in a carryout. This instruction is useful for 
double-precision arithmetic. 

Rl+R2 __,Rl 
If no carryout, PC+l ->PC 

7-15 



Mnemonic: 

Structure: 

Format: 

Function: 

ADDI ADD an Immediate value to a register 

0 1 3 4 7 8 

~ 1 1 ol R N I 1 o o oJ 
ADDI R,N 

Add the immediate value N to the contents of Channel 
Control Register R and leave the results in R. 

N+R __,. R 

Mnemonic: ADDINC ADD Immediate and skip on No Carryout 

Structure: 

Format: 

Function: 

Mnemonic: 

Structure: 

Format: 

Function: 

.a 1 3 4 

'' ~ 1 '! nl 
ADDI NC 

7 8 

R I 
R,N 

~..MY· 

N 

ft!/' r 
l J; .. 'f ~-· 

I 1 o o ol 

Add the immediate value N to the contents of Channel 
Control Register R and leave the results in R. Skip the 
next instruction, if the addition does not result in 
carryout. 

N+R-? R 
If no carryout, PC+l..-.. PC 

SUB 

0 1 3 4 

~ 1 1 0 I RI 

SUB Rl,R2 

7 8 

I 

SUBtract ,_,,, 
J. .,_' 
~~ 

I R2 

N-r-
l ;-• ~-· 

I o o a 11 

Subtract the contents of Register R2 from the contents 
of Register Rl and leave the results in Rl. 

Rl-R2 ~ Rl 

7-16 



Mnemonic: 

Structure: 

Format: 

Function: 

Mnemonic: 

Structure: 

Format: 

Function: 

Mnemonic: 

Structure: 

Format: 

Function: 

SUBNB SUBtract and skip on No Borrow 

t-J.,,,. r-
t>-B ( ~--.., ~ .... I 

0 1 3 4 7 8 ~~ ~~ la"' 

~ 1 1 ol Rl I I R2 I 0 0 0 1! 

SUBNB Rl,R2 

Subtract the contents of R2 from the contents of Rl and 
leave the result in Rl. Skip the next instruction, if 
the subtraction does not result in a borrow. ~TJBNB is 
useful for double-precision subtractions. 
Rl-R2~ Rl 
If no borrow, PC+l~ PC (skip) 

SUBI SUBtract Immediate 
N•l 

0 1 3 4 7 8 I w-"' "'~ ~~ ~~ ~ 

~ 1 1 o I R N 

SUBI R,N 

Subtract the immediate value N from the contents of 
Register R and leave the results in Register R. 

R-N-4R 

SUBINB SUBtract Immediate and skip on 
No Borrow N;I\ 

( ..,_'1 ~--' 
0 1 3 4 7 8 ~~ ~~ 

~ 1 1 o I R I N I 1 0 0 11 
SUBINB R,N 

Subtract the immediate value N from the contents of 
Register R and deposit the results in R. Skip th~ next 
instruction, if the subtraction does not result in a 
borrow. 

R-N~ If~C+l-PC (skip) 

7-17 



Mnemonic: OR 

Structure:. N,(' 
} N,,.V N-1 
~w ~ 

. i 
i 0 1 3 4 7 8 

Format: 

Function: 

Mnemonic: 

Structure: 

Format: 

Function: 

~ 1 1 o I Rl I I o 1 o 11 
OR Rl,R2 

Take the logical OR of the contents of Rl and R2 and 
deposit the results in Rl. 

Rl OR R2 -jl; Rl 

ORZ L@) "tcJ OR and skip on Zero 

N--'t N-(' 

J N .-.t } r-J-~ _ .. N-1 
l-5"' l-6" ~ ~ ~ 0 1 3 4 7 8 

~ 1 1 o I Rl I I R2 I 0 1 0 11 
ORZ Rl,R2 

Take the logical OR of the contents of Registers Rl and 
R2 and deposit the results in Rl. Skip the next 
instruction, if the result is equal to zero. 

Rl OR R2 -)J> Rl 
If Rl = 0 PC+l-+ PC (skip) 

Mnemonic: XOR exclusive OR 

Structure: 

Format: 

Function: 

0 1 3 4 7 8 

._, .... °' N.-s' 
1 N-1 { N-~ N-1 

g .J.6 ~26 ~ 

b 1 1 o I Rl I R2 I 0 0 1 11 
XOR Rl,R2 

Take the exclusive OR of the contents of Registers Rl 
and R2 and deposit the results in Register Rl. 

Rl XOR R2 ~ Rl 

7-18 



Mnemonic: 

Structure: 

Format: 

Function: 

Mnemonic: 
-i,-... 

Structure·: 

Format: 

Function: 

XORZ eXclusive OR and skip on Zero 
t-:1A N ,s;-
f tJ.-1 J tJ .,t.f N-1 

o· 1 3 4· 7 8 ~lit ~if! ~ 

~ 1 1 o I Rl I R2 I 0 0 1 11 
XORZ Rl,R2 

Take the exclusive OR of the contents of Registers Rl 
and R2 and deposit the results in Rl. Skip the next 
instruction, if the results are equal to zero. 

Rl XOR R2 ~ Rl 
If Rl = O, PC+l~ PC {skip) 

XORNZ 

0 1 3 ·4 

k 1 1 0 I Rl 

XORNZ Rl,R2 

7 8 

I 

XOR, 
skip 

do Not deposit results, 
on Zero 

N_.q l ,.,_.., 
;,.8' Jt6 

I R2 ·I o 1 1 ol 

Take the exclusive OR of the contents of Registers Rl 
and R2, but do not deposit the results. Skip the next 
instruction, if the results are equal to zero. 

If Rl XOR R2 = O, PC+l _. PC (skip) 

Mnemonic: . AND AND 

Structure:·· 

Format: 

Function: 

~ 

0 ·1 3 4 7 8 

H•c; ..,,(' 
l W•I ( N•t./ tJ-• 

;,;! J.h '" ~ .Je ~ 

k 1 1 0 I Rl I I RZ I o 1 o ol 
AND Rl,R2 

Take the logical AND of Registers Rl and R2 and deposit 
the results in Register Rl. 

Rl AND R2 -. Rl --+-------------------------------..... -~~~ ... II'=·~ .... ~ ......... 

7-19 



Mnemonic: 

Structure 

Mnemonic: 

Structure: 

Format: 

Function: 

Mnemonic: 

Structure: 

Format: 

Function: 

1 3 4 

AND and skip on Zero 

N-Ci N--~ 

J ~t _J.:;v AJ-1 
0 1 3 4 7 8 ~ 

~ 1 1 ol Rl I I R2 I 0 1 0 ol 
ANDZ Rl,R2 

Take the logical AND of the contents of Registers Rl and 
R2 and deposit the results in Rl. Skip the next 
instruction, if the results are equal to zero. 

Rl AND RZ ~ Rl 
If Rl = O, PC+l~ PC (skip) 

ANDNZ 

o· 1 3 4 

~ 1 1 o I Rl 

AND NZ Rl,R2 

7 8 

AND, 
skip 

do Not deposit results, 
on Zero ,.. ,.,,...q N-, 

I ..,_, l "-*' , N ... I 
~ ~ ~-2'6 ~ 

I RZ I 0 1 1 11 

Take the logical AND of the contents of Registers Rl and 
R2 but do not deposit the results. Skip the next 
instruction, if the results are equal to zero. 

If Rl AND R2 = O, PC+l -+RC (skip) 

7-20 



EXAMPLE 3: Adding 

Since the arithmetic and logical equations do not reference 
memory, it is best to use the stack mechanisms to do series of 
arithmetic operations. 

Assume 

A: 5 
3 
4 

11 

B: 4 
17 

3 
27 

and that the WP, the WC, and the IR registers are not being used. 
Then 

will put 

IR,4 
WP,=A 
WC,=B 
RP =C 

' ACO,WP 
ACI, WC 
ACO,ACl 
ACO,RP 
IR 

4 into count 
load WP with address of A 
load WC with address of B 
load RP with address of C 
A(n) -+ ACO l . {lti0+· I -> w? 
B(n) -7 ACl (w~)+ 1·-'> vvl 
ACO+ACl -> ACO 
ACO -;>C (n) > (RP+ I) -::>RP 
decrement count and stop, if 
equal ~ ~e.-vo 

.-s ~ ~ (see Section 7.8) 

C: g· 
20. 

7. 
38 

"--1~~1:(, Lot.+lll)-("°-:: toe+~ 

· e ~ L.1,~.,:t-:: 1 
(.... 

7-21 

,. r r 

.l \{ 

l ('. 

._~ 
..l. ...., 

J. i 



7.7 Compare Instructions 

The compare instructions allow the user to compare the 
contents of twq registers or the contents of a register and 
an immediate v~lue. There are conditional skip instructions, 
so t~at the~ftext instruction will be skipped, if the condition 
specified ( e i. the r e qua 1 ·or not eq u a 1 ) is sat i s fie d • 

Mnemonic: CE 
. i 

St ructur'~;: 

0 1 

l1 1 0 

Format: CE 

C:omparc two 

3 4 7 8 

Rl 

Rl,R2 

registers and skip if Equal 

I R2 

fJ's 
( N• "/ 

.1-'!J ~ 

Function: Compare the contents of Channel Control Registers 
Rl and R2 and skip the next instruction, if their 
contents are equal. 

Mnemonic: 

Structure: 

Format: 

Function: 

If Rl = R2, PC+l-+ PC (skip) 

CNE Compare two registers 

0 1 3 4 7 8 

Rl 

CNE Rl,R2 

and skip if Not Equal 

I R2 

tJ .. ~ 
l AJ,,_'( 

.J..9 ~ 
tJ-1 

~· 

I 1 0 1 1! 

Compare the contents of Channel Control Registers 
Rl and R2 and skip the next instruction, if their 
contents are not equal. 

If Rl = R2, PC+l -+PC (skip) 
< • 

7-22 



Mnemonic: CEMI Compare and skip if ~qu~l to Minus Immediate 
value 

0 1 3 4 7 8 

l1 1 0 11 R I N 

--tJ;S 

KK" j ~tf ~-I 
I 1 1 1 al 

Structure: 

Format: CEMie R,N . . ,, 
Function: Compare the contents of Channel Control Register 

R with minus (two's colllplernent) the value of the 
immediate N, and skip if they are equal. 

If R = -N, PC+l _..PC (skip) 

Mnemonic: CNEMI Compare and skip if Not fqual to Minus 
Immediate 

Structure: 

0 1 3 4 7 8 

~ 1 0 11 R I N I 1 1 1 11 
Format: ~ c~mtI R,,N 

ri 
Function: Compare the contents of Channel Control Register 

R with minus (two's complement) the immediate value 
N and skip the next instruction, if they are not 
equal. 

If R = -N, PC+l·-+PC (skip) 

Mnemonic: CEI Compare a register and skip if it equals 
the Immediate value 

Structure: 

0 1 3 4 7 8 

& 1 0 N 1 o ol 
Format: CEI R,N 

Function: Compare the contents of Register R with the immed­
iate value N and skip the next instruction, if they 
are equal. 

If R = N, PC+l -,..pc (skip) 

7-23 



Mnemonic: CNEI Compare and skip if Not Equal the Immediate 
value 

Structure: 
w .... r- JJ.,-'{ -~ _, 

0 1 3 4 7 8 ~~ J!!r' ~ ~ 
~--1-0_1_\_R--~1------N----~--~l-1_1_0~11 

IS 
Format: CNEI R,N 

Function: Compare the contents of Channel Control Register 
R with the immediate value N and skip the next 
instruction, if they are not equal. 

If R = N, PC+l ~PC (skip) 

7-24 



7.8 Unary Instructions 

This class of instructions is referred to as the unary class, 
since the operations performed affect the contents of a sinRle Channel 
Control register. These are also conditional skip instructions, 
so that if the condition specified in the mnemonic is satisfied, 
the next instruction is skipped. Conditions are specified by 
appending the following suffixes on the basic mnemonics: 

E equal 
L less than 
LE less than or equal 
G greater than 
GE greater than or equal 
NE not equal 
A always 

In each case, comparison is made with an implied zero. 

Mnemonic: DEC DECrement a Channel Control 
register .... .,) 

Structure: (N-t)~ t:N-r" 
0 1 3 4 7 8 (~-~,~ H•'-/ N--1 

g~ ~ 

1 0 1 R = 0 0 0 0 

Format: DEC R DECG R 
DECE R DECGE R 
DECL R DEC NE R 
DEC LE R DECA R 

Function: Decrement the contents of Channel Control Register R. 
Skip, if a condition is specified and satisfied. 

R-1-. R 
If condition is true, PC+l-+ PC (skip) 

7-25 



Mnemonic: INC 

Structure: 

0 1 3 4 

l1 1 0 11 R 

Format: INC R 
INCE R 
INCL R 
INCLE R 

7 8 

I 

INCrement a Channel Control 
register 

15 16 19 20 23 

lol 0 =Io 0 0 J 
INCG R 
INC GE R 
INCNE R 
INCA R 

Function: Increment the contents of Channel Control Register R. 

Mnemonic: 

Structure: 

Format: 

Skip, if a condition is specified and satisfied. 

R+l~ R 
If condition is true, PC+l ~PC (skip) 

COM 

0 1 3 4 7 8 

~ 
I 

1 0 11 R 

COM R 
COME R 
COML R 
COMLE R 

COMplement a Channel Control 
register 

15 16 19 20 23 

lo 1° = I o 0 1 ol 
COMG R 
COMGE R 
COMNF. R 
COMA R 

Function: Complement the contents of Channel Control Register R 
(one's complement). Skip, if a condition is specified 
and satisfied. 

R~R 
If condition is true, PC+l_.,.PC (skip) 

Mnemonic: NEG NEGate a Channel Control register 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 
1 

11 ~ 1 0 R 0 b> = I o 0 1 11 
Format: NEG R NEGG R 

NEGE R NEfiGE R 
NEGL R NECiNE R 
NEG LE R NECA R 

7-26 



Function: Negate the contents of Channel Control Register R (two's 
complement). Skip, if a condition is specified and 
satisfied. 

-R-. R 
If condition is true, PC+l_.,.PC (skip) 

Mnemonic: TST TeST a Channel Control register 
(NOP No OPeration) 

Structure: 
1 

0 1 3 4 7 8 15 16 l 19 201 23 

l1 1 I I lol <~ ol 1 0 R = I o: 1 0 
I 

Format: TST R TSTG R 
TSTE R TSTGE R 
TSTL R TSTNE R 
TSTLE R TSTA R 

Function: Test the contents of Register R (leaves R unchanged). 

Mnemonic: 

Structure: 

Format: 

Skip, if a condition is specified and satisfied. Note 
that TST without a condition appended is the NOP. 

If condition is true, PC+l-+PC (skip) 

ZR ZeRo a Channel Control register 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 0 11 R l 
ZR R 
ZRE n. 

Function: Zero the contents of Reflister R. Skip, if the "A" is 
appended to the mnemonic. 

0 _.R 
I f Z RE , PC+ 1--+ PC ( skip) 

----------------·-·-----

7-27 



Mnemonic: ABV 

Structure: 

0 1 

k 1 0 

Format: ABV 
ABVE 
ABVG 
ABVGE 

3 4 

11 R 

R 
R 
R 
R 

7 8 

I 

ABsolute Value of a Channel 
Control register 

15 16 19 20 23 

I o! 0 ..1 o 1 1 ol 

Function: Take the absolute value of the contents of Channel Con­
trol Register R and skip, if a condition is specified 
and satisfied. Note that all conditions envolving "less 
than zero" are meaningless, since the test is made after 
the absolute value is taken. Similarly, ABVGE is 
equivalent to ABVA and replaces ABVA. 

l.Rt .. ~R 
If condition is true, PC+l~ PC (skip) 

Mnemonic: SLO Switches LOad 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 0 1 l R I l1l 0 ~lo 1 1 ~ 
Format: SLO R SLOG R 

SLOE R SL OGE R 
SLOL R SLONE R 
SL OLE R SLOA R 

Function: Load Register R from the data switches on the control 
panel, and skip the next instruction if a condition is 
specified and satisfied. 

Switches .--:, R 
If condition is true PC+l~ 

7-28 



7.9 Shifting Instructions 

These instructions shift the contents of the specified 
register either left or right the specified numher of bits. 
Three types of shifting are available: arithmetic, logical, 
and circular. Arithmetic shifting right extends the sign bit 
on the left end of the word and shifts bits out the ri~ht end. 
Logical shifting right shifts zeros into the left end of the 
word and shifts bits out the right end. Logical shifting left 
shifts zeros into the right end of the word and bits out the 
left. Arithmetic shifting left has the same function and is 
the same instruction; however, two mnemonics are provided. 
In the above cases, all bits shifted out are lost. Circular 
shifting, on the other hand, cycles the bits out one end and 
back in the other so that no information is lost. 

The logical and arithmetic shifts are also available for 
double reRisters, so that the two registers can be shifted as 
if they were a single register. However, the maximum number 
of places that can be shifted is still 23. H~\ 0 
Mnemonic: ASHR Arithmetic SHift Right 

Structure: 

Format: 

Function: 

Mnemonic: 

Structure: 

Format: 

0 1 3 4 7 8 

b 1 0 R I b 

ASIIR R,b 
l(J· J/ } .. 

r7 -z\ ~,' 

Shift the bits in Register R right h positions. 
Bits shifted out the right end of the word are lost. 
The sign bit (0) is extended to replace the bits 
shifted out of the left end of the word. 

LSI-m Logical SHift Right 

/. 
II 1ff1" 'tr 
~~ ~ 

I o o 1 ol . 

0 1 3 4 

b 1 0 1 I 

# 
7 8 :s >II 

R I b 

l.SHR R,h 

Function: Shift the bits in Register R right b positions. 
All bits are shifted. Rits shifted out the riRht 
end are lost, and zeros are shifted into the left 
end of the word. 

7-29 



Mnemonic: LSHL Logical SHift Left (may also be called 
ASHL) 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

k 1 0 ii R I b 

Format: LSHL R,b 

Function: Shift the bits of Register R left b bit positions. 
Bits shifted out the left end of the word are lost, 
and zeros are shifted into the right end of the word. 

Mnemonic: CSHR Circular SHift Right 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 0 11 R I I b I o o o ol 
Format: 

Function: 

~SHR R,b ~fl 
Shift the bits of n~· R right h bit positions. 
Bits shifted out th left end of the word are shifted 
back into the , en of the word so that no bi ts 
are lost. 

Mnemonic: CSHL Circular SHift Left 

Structure: 

0 1 3 4 7 8 

1 0 1 R 

Format: CSHL R,b 

Function: Shift the bits of Register 
left. Bits shifted out th 

15 16 

are shifted back into the .1(111111111111...._~ 
that no bits are lost. 

7-30 

19 20 23 

0 0 0 1 



Mnemonic: ASHRD Arithmetic SHift Right Double register 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

k 1 0 

Format: ASIIRD R,b 

Function: Shift the bits of Registers R and R+l to the riRht 
as though they were a single register. Bits shifted 
out the right of Register R are shifted into the 
left end of Register R+l, and hits shif"ted out the 
right end of Register R+l are lost. The sign bit 

r ./I.. o_f Re_g_istcr R is extended to repla.ce the bi ts shifted 
.~ the left end of the word. The maximum shift 

"is 23 bit nositions. 

Mnemonic: LSHPD Logical SHift Right Double register 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

b 1 0 R I b I o 1 1 ol 
Format: LSllRD R,h 

Function: Shift the bits of Registers R and R+l to the ripht 
as thou&9A;hey were a single register. Bits shifted 

.L.~Alffltt. the'[ln'd of Register R are shifted into the left 
v~- - end of Tiegister R+l. Bits shifted out the right 

end of Register R+l are lost. Zeros are shifted 
in the left end of Register R to replace bits shifted 
out. The maximum shift is 23 bit positions. 

7-31 



Mnemonic: LSHLD Logical SHift Left Double register (may 
also be called (ASHLD) 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

b 1 0 R I b 

Format: LSHLD R,b 

Function: Shift the bits of Registers R and R+l to the left 
as though they were a single register. Bits shifted 
out the left end of Register R+l are shifted into 
the right end of Register R. Bits shifted out the 
left end of Register R are lost. Zeros are shifted 
in the right end of Register R+l to replace. ~he bits 
shifted out. The rnaxi~um shift is 23 bit positions. 

7-32 



7.10 Masking Instructions 

These two instructions mask out part of the contents of 
the specified register with zeros. 

Mnemonic: MR Mask Right 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

11 1 0 11 R I I b I 1 0 0 ol 
Format: MR R,b 

Function: Mask out all the bits to the right of, and i.ncluding, 
bit b with zeros. 

Mnemonic: ML Mask Left 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

I b I 1 0 0 11 
Format: ML R,b 

Function: Mask out all of the bits to the left of, and 
including, bit b with zeros. 

EXAMPLE 4: Shifting and Maskin~ 

Assume AC2 contains 0 and ACl contains 77777777 and that 
the following sequence of instructions is performed. 

ASHR ACl,3 
LSHR ACl,3 
LSHL ACl,4 
CSHR ACl,1 
CSHL ACl,2 
ASH RD ACl,3 

LSHRD ACl,3 

LSHLD ACl,6 

MR ACl,6 
ML ACl,2 

AC1=77777777 
AC1=07777777 
AC1=7777776'Q 
AC1=37777770 
AC1=7777774 t• 
AC1=77777774 
AC2=5000000 
AC1=0777777 
AC2=7500000 
AC1=777777-S-
AC2=0000000 
AC1=7700000 
AC1=0700000 

7-33 

, , fJ ., \-, .< , 1 a o 
'77 7'1774' 



------

7.11 Bit Manipulation 

The instructions of this class allow the user to 
independently test and manipulate individual bits within a 
register. Bits may be set or cleared, and the next instruction 
may be skipped if the specified bit is either one or zero. 
In the cases where both the testing and the setting and clearing 
are performed, the testing is performed first. 

Mnemonic: SOB Skip on One Bit 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 
l 

11 I I I o ol lo 1 0 R b 1 0 

Format: SOB R,b 

Function: If bit h is equal to "1 ,, , then skip the next 
instruction. 

Mnemonic: SZB Skip on Zero Bit 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 0 11 R I I b I 1 0 0 11 
Format: SZB R,b 

Function: If bit b is equal to "O", then skip the next 
instruction. 

Mnemonic: CLB CLcar Bit 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 0 11 R I I b l 1 0 1 ol 
Format: CLB R,b 

Function: Clear hit b of the register specified. 

7-34 



Mnemonic: SETB SET Bit 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 0 1 I R I I b I 1 0 1 11 
Format: SETB R,b 

Function: Set bit b of the register specified. 

Mnemonic: SOBCL Skip on One Bit and Clear 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 0 

Format: SOBCL R,b 

Function: Test bit b of Register R. Skip the next instruction, 
if it equals "1" and clear bit b. 

Mnemonic: SZBCL Skip on Zero Bit and Clear 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 0 1 I R I I b I 1 1 0 11 
Format: SZBCL R,b 

Function: Test bit b of Register R. Skip the next instruction, 
if it equals "0" and clear bit b. 

Mnemonic: SOBSET Skip on One Bit and SET bit 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 0 1 I R I I b I 1 1 1 ol 
. Format: SOBS ET R,b 

Function: Test bit b or Register R. Skip the next instruction, 
if bit b is equal to "1" and set bit b. 

7-35 



---

Mnemonic: SZBSET Skip on Zero Bit and SET bit 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 0 11 R l I b I 1 1 1 11 
Format: SZBSET R,b 

Function: Test hit b of Register r. Skip the next instruction, 
if bit b is equal to "0" and set hit b. 

EXAMPLE S: List Processing Loop 

The following loop allows multilevel indirection for list 
processing. If we assume that pointer words are marked with 
a 1 in bit 0 and value words have a 0 in bit O, then 

POP ACO,ACO 
SOB ACO,O 
J • -2 

will follow the pointer words down to the value word which is 
then left in ACO. For processing list structures where a value 
word is associated with each pointer word the following code 
can be used. 

BEfiIN POPI 
POP 

• 
POPI 
POP 

• 

J 

AC1,ACO 
AC2 ,ACO 

ACO,ACl 
AC2,AC1 

BEf;IN 

pointer to ACl 
value to AC2 

pointer to ACO 
value to AC2 

In this case ACO and ACl alternate as pointers so that the old 
pointer can be use to pick up the value word. 

7-36 



-·---
7.12 The IOT Instruction 

As explained in Section 2.5, the LDS-2 has a series of 
registers which are treated as I/O devices. These registers 
may be loaded or unloaded via the IOT instruction. In addition 
to loading and unloading registers, the IOT instruction is used 
for special functions such as setting user mode, putting the 
LDS-2 to "sleep," or skipping on "settled" (see Section 2.5). 
Most of the IOT instructions are illegal,-if the LDS-2 is in 
"user mode," so that if the user attempts to use them, the LDS-
2 will be interrupted (if the mask is set). The device code 
bits of the illegal IOT instruction are saved in a register, 
so that the interrupt service routine can examine these bits 
and determine what to do. If the interrupt routine does not 
allow the device code, an interrqpt will be sent to the host 
computer, and the job will be terminated. But if the interrupt 
routine knows how to service that device code, it can take 
appropriate action and then return control to the user's program. 
It is thus possible to use dummy device codes for communication 
between the user's program and the monitor of the LDS-2. 

Mnemonic: IOT Input Output Transfer 

' 
DEV 

Function: Transfer information between Channel Control Register 
_Rand the I/O device snecified bv the nrv code. 

DEV 

The DEV code also spec~fies the ~irection of the 
transfer. The DEV codes and the action taken are 
listed below. 

Octal Code Function 

UC 0. 

' 2 
3 
4 
s 
6 
7 
10 
11 
20 
21 
26 

Unused 
Read Interrupt Conditions Register 
Load Interrupt Conditions Register 
Read Interrupt Mask Register 
Load Interrupt Mask Register 
Read I/O Device Code Error Register 
I.oad I/O Device Code Error Register 
Enable Interrupts (ION) 
Set Sleep 
Set User Mode 
Read Switches 
Load Lights 
Load Sync Mask Register 

7-37 



The 

27 Read Sync Mask Register 
30**" Load Repeat Status Register (RSR) 
31*** Read RSR 
32*** Load Directive Register 
33*** Read Directive Register 
36*** Skip on Settled 
40 Set the Attention Bit 
41 Skip on Attention and Clear the Attention Bit 
42 Load the Protection Register 
43 Read the Protection Register 
44 Clear Protection Violation 
45 Read the BAR 
46 Load the BAR 

following dummy codes are allowed by the interrupt handler: 

370*** End of Execution String IOT ,370 = RSTART 
371*** Terminate Job Normally IOT ,371 = S'FOP 
372*"* Input/Output Request to 

the Host Computer IOT ,372 111 IOR 
373**" Call Software Character 

Generator IOT ,373 - CHAR 
374**** Disable Real-time Clock IOT ,374 = CLKSTP 
375**""' Restore Clock to 30 Cycles IOT ,374 = CLKSR:r 

*"", Indicates that this code may be used by the user. All 
other codes are valid only in executive mode. 

"""" Available only to the highest priority user. 

EXAMPLE 6: Changing the mode of the LDS-2 

The following sequence of code can be used to change the mode 
of the LDS-2 to 2D: 

IOT 
CLB 
CLB 
IOT 

AC0,33 
ACO,S 
AC0,6 
AC0,32 

7-38 

load ACO with DIRECTIVE 
set bit 5 to O 
set bit 6 to 0 
reload the DIRECTIVE 



EXAMPLE 7: Multiply Routine 

This routine multiplies two single word unsigned numbers 
in ACO and AC1 and produces a sinRle word product in ACO. 

RLO 
!LO 
LSHL 
SZB 
ADD 
LSHL 
DF:CI L 
J 
POPJ 

AC3,ACO 
f\.C 2, ~ JS!. 
AC0,1 
/\.Cl,O 
ACO,AC3 
ACl,1 
AC2 
.-s 

EXAMPLE 8: Divide Routine 

load multiplicand into AC3 
load counter to 24 bits 
shift multiplicand left 
skip, if most significant bit is 0 
accumulate product 
shift rnultinlier 
decrement count 
do again 
return 

This routine divides the signed one-word dividend in ACO 
by the signed divisor in ACl to produce a signed quotient in 
ACO. 

RLO 
RLO 

~
~Ea 
XOR 
ABV 
J\BV 
ILO 
LSHLD 
SUB 
TSTL 
J 
ADD 
SETR 
DECL 
J 
COM 
RLO 
SZB 
NEG 
POPJ 

AC3,AC1 
ACl,ACO 
/\CO 
1R,AC3 
lR,ACl 
ACl 
AC3 
AC2,23 
ACO·, 1 
ACO,AC3 
J\CO 
.+3 
ACO,AC3 
ACl,23 
AC2 
.-7 
ACl 
ACO,ACl 
lR,O 
ACO 

return 

7-39 



7.13 Load/~nload Pipeline Registers 

The pipeline processing units of the LDS-2 contain parameter 
and directive registers which control the processing performed 
by these units. The Channel Control sends the load/unload 
instruction down the pipeline and controls the transfer of data 
to or from the pipeline registers. Since the data in the 
pipeline registers affect the processing that is performed, 
the pipeline is allowed to settle so that all pending data will 
be processed before these instructions are executed. There 
are two general groups of these instructions: those which 
transfer data between the pipeline registers and memory, and 
those which transfer data between the pipeline registers and 
the Channel Control registers. 

The memory load/unload instructions are inherently dynamic 
"repeat" instructions. It is useful to think of these instruc­
tions as transferring groups of registers, where the group may 
only include a single register. There are four types of register 
transfers: load, store, sink, and retrieve. For all these 
instructions the count of the number of registers to be trans­
ferred is specified by the contents of the READ COUNT (RC). 
If the RC contains a non-negative value, only one register will 
be transferred, and the RC is not incremented. If the count 
is negative, it is taken as the two's complement of the number 
of registers to be transferred and incremented after each 
register has been transferred. After these instructions are 
finished, the count will be zero (unless a positive number was 
initially loaded into the RC). For load and store instru s 
the content he READ POINTER are ta he memor 
a ress into which or rom w 1c ata are transferred. The 
RP 1s incre~ented as shown in the load/store algorithm of Figure 
7.1. Por sink and retrieve instructions the memory address 
is taken from the DATA SINK POINTER (see Section 2.4.S). The 
sink and retrieve algorithms are shown in Figure 7.2. 

The register load/unload instructions (i.e., those which 
transfer data between Channel Control registers and the pipeline 
registers) trans.fer either one or two pipeline registers. 
Whether one or two registers are to be trans,ferred,. and which 
Channel Control registers will be used in the transfer, arc 
specified in the "X" field of the register load/unload 
instructions. This "X" field may take on the following values: 

SACO 0 Single register beginning with 

SAC2 2 Single register beginning ·with 

sx 1 Single register bep:inning with 

SX 3 Single register beginning with 

DACO 4 Double register beginning with 

7-40 

ACO 

AC2 

x 

z 
ACO 



Transfer 
DA(l) and 
increment 
RP 

··Transfer 
DA(2) and 
increment 
RP 

Transfer 
DA(3) and 
increment 
RP 

Transfer 
DA(4) and 
increment 
RP 

Increment 
RC and 
increment 
DA 

Normal 2D 
and JD 

es 

yes 

LOAD/STORE ALGORITHMS 

Figure 7.1 
7-41 

Copy 
SAVELB(l) 
into DA(l) 

Copy 
SAVELB(2) 
into DA(2) 

Transfer: 
DA(3) and 
increment 
RP 

Transfer 
DA(4) and 
increment 
RP 

Increment 
RC and 
increment 
DA 

no 

2D four-component 

~RC=O at this point only if no 
count was loaded 



Increment 
DSP and 
sink DA(l) 

Increment 
SP and 
ink DA(Z) 

Increment 
DSP and 
sink DA(3) 

Increment 
DSP and 
sink DA1( 4) 

Increment 
RC and 
increment 
DA 

Sink 

es 

no 

SINK/RETRIEVE ALGORITHMS 

Retrieve 
DA{l) and 
decrement 
DSP 

Retrieve 
DA(Z) and 
decrement 

Retrieve 
DA(3) and 
decrement 
DSP 

Retrieve 
DA(4) and 
decrement 
·nsP 

Increment 
RC and 
decrement 1 

Retrieve 

es 

no 

*RC=O at this point only if no count was loaded. 

Figure 7.2 
7-42 



DX 5 Double -register beginning with X 

For double register transfers, two consecutive pipeline registers 
are transferr~d. Register transfer instructions must be either 
load or store (i.e., there are no such things as register sink 
and retrieve instructions). 

Bits 4-7 of the instruction word for all load/unload 
pipeline instructions constitute a "device and manner" code. 
The following device and manner codes are legal for the LDS-
2: 

CLA 0 

CLR 1 

CLSA 2 

CLSR 3 

MM 4 

MMR 5 

Clipping Divider Absolute. The data are 
copied into or from the registers of the 
Clipping Divider. 

Clipping Divider Relative (only valid for 
load- and retrieve-type instructions). 
The data are added to the Clipping Divider 
SAVE register, and the result is used to 
load the register. 

Clipping Divider Size Absolute. This manner 
is ·only legal for load and retrieve ins truc­
tions and is only meaningful for loading 

·four-word (four-component) Clipping Divider 
registers (i.e., Registers 14-17) in 2D. 
The incoming data are taken as a negative -
and positive displacement from the origin. 
That is, the negative of the data are 
loaded into the first two components, arid 
the data are then loaded into the. last two 
components. 

Clipping Divider Size Relative. The size 
relative manner is similar to the· size 
absolute and has the same restrictions. 
The only difference is that with the size 
relative the data are taken as negative 
and positive displacements from the value 
in the SAVE register of the Clipping Divider. 

Matrix Multiplier Absolute. Data are 
simply copied into or from Matrix Multi­
plier registers. 

Matrix Multiplier Relative. This manner 
is only legal for the load instructions. 
The data are first added to the old con­
tents of the register to be loaded, and 
the result is then used to load the 
register. 

7-43 

----



MMP 6 

MDR 7 

Matrix Multiplier Product. This manner 
is also only legal for the load instruc­
tions. The incoming data are first 
multiplied by the matrix specified in the 
DA field (see following description), and 
the result is loaded into matrix A, 
beginning with row O. 

Matrix Multiplier Directive Regis.ter. The 
Matrix Multiplier Directive register is a 
two-word register which is treated as if it 
were a separate pipeline device. Data are 
transferred in absolute form. 

Certain "illegal" combinations of instructions and device 
and manner codes are used for special operations of the Matrix 
Multiplier. A store instruction ·with a device and manner code 
of 5 is used for the "normalize" instruction, and with a device 
and manner code of 6 is used for a "push Ma tr ix Multiplier'' 
instruction. A sink instruction with a device and manner code 
of 5 is a ·"sink and slide" instruction. A retrieve instruction 
with a device code of S means "retrieve and slide," and with 
a device code of 6 means "pop Matrix Multiplier." Special 
mnemonics have been defined for all of these instructions. 

The device address field (DA) of the load/unload 
instructions specifies the register withirt the device with which 
the transfer will begin. The register addresses for the Matrix 
Multiplier are simply the row numbers of the matrices. These 
registers are two words long, if the LDS-2 is in 2D; otherwise, 
they are fotir words long. Most of the register of the Clipping 
Divider can be addresses by two different addresses. Register 
0-13g are two-word registers (see Figure 4.1), and registers 
14-17g are four-word register addresses for Registers 0-7. 
Normally, two-word register addresses are used, when the LDS-
2 is in zn mode, and four-word addresses are used in the 3D 
modes. The major exception to this is when size absolute or 
size real tive loads are perforrn.ed and when 2D four-component 
loads are performed (usually in preparation to boxing 
instructions; see the 2D four component load algorithm and 
Example 11). 

The dimension mode of the LDS-2 determines how many words 
of data are sent down the pipelirte for each register transferred. 
If the LDS-2 is in ZD mode, two words are transfered; otherwise, 
four words of data are sent down the pipeline. The programmer 
must, therefore, be careful to match his load/unload instruction 
addresses to the current mode of the LDS-2. If, for example, 
the LDS-2 is in one of the 3D modes and the user attempts to 
load one of the two component registers of the Clirring Divider, 
four words of data will get loaded into the two-word register, 
which will result in the last two words being written over the 
top of the first two_ 

7-44 



Mnemonic: LOCLA LOad CLipping divider 

0 1 3 4 7 8 

Absolute 
~ .. ~-r rN .. t.( ...,_, 

W' if!"' ~ 

Structure: 

h 1 o o lo o o o I I DA 

Format: LOCLA DA 

Function: Load Clipping Divider register(s) with absolute data, 
starting with Register DA and continuing according 
to the load algorithm (see Figure 7.1). 

Mnemonic: LOCLR LOad CLipping Divider Relative 

Structure: (J 
01 34 I. 78 15 16 19 20 23 

I o 1 1 ol 
Format: LOCLR DA 

Function: Load Clipping Divider Register(s) with relative data, 
starting with Register DA and continuing according 
to the "load" algorithm (see Figure 7.1). Relative 
data are added to the contents of the Clipping Divider 
SAVE re~isters to form the sum which is actually 
loaded into the register. 

Mnemonic: LOCLSA LOad CLipping divider Size Absolute 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

b 1 o o lo o 1 o I I o 1 1 ol 
Format: LOCLSA DA 

Function: Load Clipping Divider registers with size absolute. 
data (see Figure 7.1). 

7-45 



Mnemonic: LOCLSR LOad CLipping divider Size Relative 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

I DA 

Format: LOCLSR DA 

Function: Load Clipping Divider registers with size relative 
data (see Figure 7.1). 

Mnemonic: LOMMA LOad Matrix Multiplier Absolute 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 o o lo 1 o o I I DA I o 1 1 ol 
Format: LOMMA DA 

Function: Load Matrix Multiplier register(s) with absolute 
data from memory, beginning with Matrix Multiplier 
Register DA and continuing according to the load 
algorithm (see Figure 7.1). 

Mnemonic: LOMMR LOad Hatrix Multiplier Relative 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 o o lo 1 o 1 I I o 1 1 ol 
Format: LOMMR DA 

Function: Load Matrix Multiplier register(s) with relative 
data from memory, beginning with Matrix Multiplier 
Register DA and continuing according to the load 
algorithm (see Figure 7.1)~ Relative data for the 
Matrix Multi plier registers are added t_o the old 
data contained in the respective registers to 
calculate the sum that is actually loaded into the 
registers. 

7-46 



Mnemonic: LOMMP LOad Matrix Multiplier Product 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 o o lo 1 1 o I 
Format: LOMMP DA 

Function: Load Matrix Multiplier registers with the matrix 
product of the matrix which begins with Register 
DA and the data from memory, and store the resulting 
product in matrix A, beginning with Register O. 
Note: In most cases, DA should be either 4, 10. 
or 14 (octal), and tne count in the RC should be -4. This 
causes a complete matrix to be multiplied by the 
incoming matrix to give a matrix product. This is 
true both in 2- and 3-dimensional modes. Since the 
product is stored in matrix A, a DA of O should not 
be specified with a LOMMP. 

Mnemonic: LOMDR toad Matrix multiplier DiRective register 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

b 1 o o lo 1 1 1 I I o I o 1 1 ol 
Format: LOMDR 

Function: Load the directive register of the Matrix Multiplier 
according to the load algorithm (see Figure 7.1). 

Mnemonic: STCL STore CLipping divider 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

l1 1 o o lo o o o I I o · 1 1 ol 
Format: STCL DA 

Function: Store the contents of registers in the Clipping 
Divider, beginning with Register DA and continuing 
according to the store algorithm (see Figure 7.1). 

7-47 



Mnemonic: STMM STore Matrix Multiplier 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

I DA I o 1 1 ol 
Format: STMM DA 

Function: Store the contents of Matrix Multiplier registers 
into memory, beginning with Register DA and continuing 
according to the store algorithm (see Figure 7.1). 

Mnemonic: STI.fDR STore Matri~ multiplier Directive Register 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

h 1 o o lo 1 1 1 I 0 

Format: STMDR 

Function: Store the first half of the Matrix Multiplier 
Directive register into the memory location addressed 
by the contents of the RP. The RP. is then incremented 
automatically, and the second half of the Directive _ 
register is stored into the memory location addressed 
by the new contents of the RP. Note: The RC should 
contain a count of zero or -1 before this instruction 
is executed, or the contents of the Matrix Multiplier 
Directive register will be recorded more than once. 

Mnemonic: RLOCLA Register LOad CLipping Divider Absolute 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

Io I x I 
Format: RLOCLA DA,X 

Function: Load the Clipping Divider Register DA with data from 
the Channel Control registers specified by X. In · 
2D, two registers are transferred per coordinate 
point, and in the 3D modes four registers are trans­
ferred per coordinate point. 

7-48 



. Mnemonic--·: RLOCLR Regi!;~~rJ.O~t,l~ Clipping. Divider Relative · · 

Structure: 

Format: 

Function: 

'. ; .:- ;;, j ~ i < ~. ~ • 

0 1 3 4 7 8 15 16 19 20 23 

I DA I ol x I 
RLOCLR DA,X 

Load the Clipping Divider Register DA with data from 
the Channel Contrq1 register. specified by X. Sirice 
the load is ~elative,~the data are first added to 
the· contents of the Clipping Divider SAVE registers, 
and~~ the sum is loaded.,. into the Register DA. 

Mnemonic: RLOMMA Register LOad Matrix Multiplier Ab~olu}qr. 

Struc~~re: 
{, 

Format: 

0 1 3 4 7 8 

~ 1 o o ~ 1 o ol 
RLOMMA DA,X 

15 16 1.9 20 23 

7-49 



Mnemonic: RLOMMR Register LOad Matrix 
Multiplier Relative 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 o o lo i o 1 J I ol x I 
Format: RLOMMR DA,X 

Function: Load either one or two registers of the Matrix 
Multiplier with relative data from the Channel Control 
registers specified by X. The data are first added 
to the old data in the corresponding Matrix Multiplier 
registers, and the sum is used to load the registers. 

Mnemonic: RLOMMP Register LOad Matrix 
Multiplier Product 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

b 1 o o lo 1 1 o I I DA I ol x I 
Format: RLOMMP DA,X 

Function: Load either one or two Matrix Multiplier registers 
(depending on X), beginning with Register O, with 
the product of the contents of the Channel Control 
registers specified by X and the matrix which begins 
with DA. 

Mnemonic: RLOMDR Register Load Matrix 
multiplier Directive Register 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 
1 I -1-----, --lo_l _x -, 
10 1 o on 1 1 t DA . . . 

Format: RLOMDR x 
Function: Load the directive register of the Matrix Multiplier 

with the contents of the registers specified by X. 
If the mode of the LDS-2 or the value in the X field 
cause more than two registers to be transferred, 
the Matrix Multiplier Directive register will contain 
the last data loaded into it. 

7-50 



Mnemonic: RSTCL Register STore CLipping 
divider 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 o olo o o ol I al x I 
Format: RSTCL DA,X 

Function: Store Clipping Divider register(s), beginning with 
DA, into the Channel Control registers specified 
by x. 

Mnemonic: RSTMM Register STore Matrix 
Multiplier 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 o o io 1 o o I I al x I 
Format: RSTMM DA,X 

Function: Store either one or two registers, beginning with 
DA, from the Matrix Multiplier into Channel Control 
registers specified by X. 

Mnemonic: RSTMDR Register STore Matrix 
multiplier Directive Register 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 0 I al x I 
Format: RSTMDR x 
Function: Store the Matrix Multiplier Directive register into 

the Channel Control registers specified by X. If 
the combination of the mode of the LDS-2 and the 
value in the X field cause more than two registers 
of the Channel Control to receive data from the 
Matrix Multiplier Directive registers, several copies 
of the directive will be saved. 

7-51 



:Mnemonic: RTCLA 

Structure: 

0 1 3 4 7 8 

~ioojooool 
Format: RTCLA DA 

ReTrieve Clipping divider 
Absolute 

15 16 19 20 23 

I DA I o 1 1 11 

Function: Retrieve information from the data sink according 
to the retrieve algorithm into Clipping Divider 
registers (see Figure 6.2), beginning with DA. 

Mnemonic: RTCLR 

Structure: 

0 1 3 4 7 8 

Format: RTCLR DA 

-------------------·. 
ReTrieve CLipping divider 
Relative 

15 16 19 20 2 3 

I DA 

Function: Retrieve relative data from the data sink according 
to the retrieve algorithm into Clipping Divider 
registers, beginning with DA. The relative data 
are added to the contents of the Clipping Divider 
SAVE registers, and the sum is loaded in the 
registers. Note: Since data were sinked into the 
data sink in absolute format, one should not expect 
to get the same data hack when using a relative 
retrieve. 

Mnemonic: RTCLSA 

Structure: 

ReTrieve CLipping divi<ler 
Size Absolute 

0 1 3 4 7 8 15 16 19 20 23 

I DA 

Format: RTCLSA DA 

Function: Retrieve Clipping Divider registers interpreting 
the data as size absolute (see Figure 7.2). 

·--------···--------- .. ·--··--·-·- .... 

7-52 



Mnemonic: RTCLSR 

Structure: 

0 1 3 4 7 8 

~ 1 o olo o 1 11 

Format: RTCLSR DA 

ReTrieve CLipping divider 
Size Relative 

15 16 19 20 23 

I DA 

Function: Retrieve Clipping Divider registers interpreting 
the data as size-relative. (See Figure 7.2). 

Mnemonic: RTMDR 

Structure: 

0 1 3 4 7 8 

Format: RTMDR 

ReTrieve Matrix multiplier 
Directive Register 

15 16 19 20 23 

I o 1 1 11 

Function: Retrieve information from the data sink into the 
Matrix Multiplier Directive register. 

Mnemonic: SKCL SinK CLipping divider 

Structure: 

0 1 ·3 4 7 8 15 16 19 20 23 

~ 1 o o lo o o o I I DA I o 1 1 11 

Format: SKCL DA 

Function: Sink the contents of Clipping Divider registers, 
beginning with DA, into the data sink. (See Figure 
7.2.) 

7-53 



Mnemonic: RTMM 

Structure: 

0 1 3 4 7 8 
j 

olo ol lo 1 0 1 0 

Format: RTMl\1 DA 

Function: Retrieve absolute 
Figure 7.2.) 

Mnemonic: RTMMS 

Structure: 

a 1 3 4 1 s 

Format: RTMMS DA 

data 

ReTrieve Matrix Multiplier 

15 16 19 20 23 

i DA I 0 1 1 11 

from the data sink. (See 

ReTrieve Matrix Multiplier 
and Slide 

15 16 19 20 23 

I DA I o 1 1 11 

Function: Retrieve absolute data from the data sink into Matrix 
Multiplier registers, beginning with DA, but before 
each load copy the old data into the corresponding 
row of matrix A. 

Mnemonic: SKMM SinK Matrix Multiplier 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

l1 1 0 ojo 1 0 ol 1 1 J 
Format: SKMM DA 

Function: ·Sink the contents of Matrix Multinlier registers, 
beginning with DA, into the data sink. 

7-54 



Mnemonic : SK~fMS SinK Matrix Multiplier and 
Slide 

Structure: 

0 ·1 3 4 7 8 15 16 19 20 23 

I o 1 1 11 

Format: SKMMS DA 

Function: Sink the contents of Matrix Multiplier registers, 
beginning with DA, into the data sink. After each 
register has been sinked, its contents are replaced 
with the contents of the corresponding row of matrix 
A. The contents of matrix A remain unchanged. 

Mnemonic: SKMDR SinK Matrix multiplier 
Directive Register 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

~ 1 0 olo 1 1 11 I DA I 0 1 1 11 
Format: SKMDR 

Function: Sink the contents of the Matrix Multiplier Directive 
register into the data sink. 

Mnemonic: NOMM Normalize the Matrix Multi­
plier 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

Format: NOMM 

Function: Normalize the Matrix Multiplier by shifting the data 
in its registers left the maximum number of positions 
or until some data word takes on a value between 
one half and one (i.e., the most significant bit 
is a 1). The maximum number of positions the words 
should be shifted is specified by the contents of 
the RC. If this count is zero, the words will only 
be shifted one place. The count in the RC will 
always be zero after the normalize instruction has 
been executed. 

7-55 



Mnemonic: PUSHMM PUSH Matrix Multiplier 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

I DA I o 1 1 11 

Format: PUSHMM DA 

Function: Copy the contents of Matrix Multiplier registers, 
beginning with Register o, into Matrix Multiplier 
registers, beginning with DA. 

Mnemonic: POPMM POP Matrix Multiplier 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

' DA 
I o 1 1 ol 

Format: POPMM DA 

Function: Copy the contents of Matrix Multiplier registers, 
beginning with DA, into Matrix Multiplier registers, 
beginning with Register o. 

7-56 



EXAMPLE 9: Manipulating the Pipeline Registers 

Assume that ARRAYl and ARRAY2 contain 16 words, and that 
ARRAY3 contains 8 words, then in 3D: 

LO 
ILOM 
LOMMA 

RP,=ARRAYl 
RC,4 

0 

ILOM RC,4 
PUSHMM 4 

LO 
ILOM 
LOMMP 

LO 
ILOM 
LOCLA 

RP,=ARRAY2 
RC,4 
4 

RP,=ARRAY3 
RC,2 

VIEW 

loads the four rows of Matrix A (begin­
ning with Row O) with ARRAYl. 

copies Matrix A into Matrix B (begin­
ning with Row 4). 

multiplies [ARRAY2] [ARRAYl] and leaves 
the product in Matrix A. ARRAYl is still 
in Matrix B. 

loads the VIEWPORT and WINDOW registers 
with data from ARRAY3. 

If the LDS-2 is in 2D: 

LO 
ILOM 
LOCLA 

RP,=ARRAY3 
RC,4 

VIEWLB 

LO RP,=ARRAY3 
LOCLA VIEWLB 

LO 
ILOM 
SKCL 

ILOM 
RTCLA 

DSP,=SAVE 
RC,4 
VIEWLB 

RC,4 
WIND RT 

loads the VIEWPORT and WINDOW registers 
with data from ARRAY3. (Note, that in 
2D there are four registers.) 

loads the first half of the VIEWPORT 
with the first two words of ARRAY3. 
(Since no count was specified, only 
one register was transferred.) 

sinks the VIEWPORT and WINDOW registers 
into memory at SAVE. 

retrieves the VIEWPORT and WINDOW regis­
ters. (Note, that the registers are 
retrieved "backwards," so that the last 
register sinked is the first retrieved.) 

7-57 



7 .14 ·nrawing Instructions 

The drawing instructions of the LDS-2 provide a great 
variety of ways to address data, to interpret data, and to move 
the beam. The six basic drawing instructions access data in 
different manners. The arguments of these instructions generally 
specify the movement of the beam and the 
absolut/relative/variable origin modes of interpreting the 
coordinate data. There are three sets of these arguments. 
The "single draw" instructions take a "manner" argument (MAN) 
which is interpreted as shown in Figure 7.3. 

The "table draw" instructions rely on two sets of "finite­
state machines." A series of drawing operations are performed 
by each instruction. Each time a drawing operation has been 
performed, both FSMl and FSM2 are updated, as shown in Figures 
7.4 and 7.5. To interpret the state graphs in these figures, 
it is useful to think of a marker that is placed on the state 
addressed by the FSM argument and then moved after each iteration 
following the arrows. For example, if FSMl is POLY, then the 
finite-state machine will start in State 3 and issue a "setpoint" 
command to the pipeline. Then the finite state machine will 
then go to the next state, which in this case is 2, and a "draw 
to" command will be issued to the pipeline. Since State 2 goes 
to itself, the finite state machine will stay in that state 
and continue issuing "draw to commands" to the pipeline. The 
absolute/relative/variable origin finite-state machine works 
in exactly the same way. 

The number of iterations performed by the re~eat drawing 
instructions is determined by the count contained in the READ 
COUNTER (RC). The RC should contain the two's complement of 
the number of operations to be performed. If the count is zero 
(or positive), only one iteration will be performed, and the 
count will not be incremented. 

The "Matrix Multiplier draws" are used to draw curves and 
surface patches with the Matrix Multiplier. FSMl operates in 
the same manner as in the table draw case, but for ihese 
instructions FSM2 is defined to be AA (2), so that the coordinate 
data are interpreted as absolute. It should be realized that 
the coordinate data for these drawing operations do not come 
from memory, but rather are provided by iterations of the Matrix 
Multiplier. For these instructions the Matrix Multiplier must 
be put in curve mode by loading the MDR. 

The "register draw" instructions fetch data from the 
internal registers of the Channel Control rather than from 
memory. Both of the finite-state machines are used, but there 
can be only one or two iterations performed. The "X" argument 
of these instructions specifies whether it is a single point 
draw (i.e., one iteration) or a double point draw (i.e., two 

7-58 



I 

I 

SAVE: 

Xo, 

SAVE: 

" q 

SETA = 0 

TOR = 5 

• Xo+~Xl' Yo 
+~Yl' (Zo+ 
~Z1) 

Yo, (Zo) 

I' 

Xo+~X1, Yo+~Y1, 
(Zo+ Z1) 

, , 

DOTA = 10 

~·• X1, Y1, (Z1) 

Xo, Yo, (Zo) 

SA VE : X 1 , Y 1 , ( Z 1 , Z 1 ) 

a' 

, , 

MANNER CODES 

SETR = 1 

Xo, Yo, (Zo) 

SAVE: 

TOV = 6 

~Yl, Zo+ Z1) / X0 +LIX1, Yf 

Xo, Yo' (Zo) 

SAVE: Xo, Yo, (Zo, Zo) 

DOTR = 11 

~ 

.:" 
Xo' Yo' CZo) 

SAVE: X0+~X1, Yo+~Y1, (Z 0 
+~Zl' Zo+~Z1) 

Figure 7.3 

SETV· = 2 

,./' X0 +liX1, Y0 +liY1, 
,' (Zo+~Z1) . , 

" :;.t 

Xo, Yo, (Zo) 

SAVE: 

FRMA = 16 

/X1, Y1, (Z1) 

Xo, Yo, (Zo) 

SAVE: Xo, Yo, (Zo' Zo) 

D01V = 12 

~ X0 +liXl, Y0 + 
~ ~yl' lZo+~Z1) 

I' 

d' 
Xo' Yo' (Zo) 

SA VE : X0 , Y 0 , ( Z 0 , Z 0 ) 

TOA = 4 

SAVE: x1 , Y1 , CZi, -·zl) 

FRMR = 17 

~ X0 +LIX1, Yg+ 
• LIY1, (Zo+ Z1) 

Xo, Yo, (Zo) 

SAVE: Xo, Yo, (Zo' 
Zo) 

o = Position of beam 

The arrows are for ex­
pository purpose to 
indicate the direction 
of beam motion and do 
not actually appear on 
the scope. 
The Z coordinate ap­
plies, if in one of 
the 3D modes. 
BOXA :;:14 
BOXR=lS 



fnf 
6 ,.,.,.t 

LINE 

FlYd ~IJ,.#V-t-

@ t 

POLY 
(SET) 

o I ti Jril"' (,, 

@ > t 

STAR 

-Rhf4 µ/ .fJ,c, 

1 

DOT 

THE "WHAT-TO-DO" CODES 
,..c: 
~ 7 

,,,. 

NLINE 

/f txl ~n'~/ 

TO 

Al~h~me. 

FROM 

gti_. 
0 

BOX 
(NEWCRV) 

FSMl 

LINE -

NL I NE 

~ 
POLY ~ 

TO /'/ 

STAR ')< 
FROM 

~-

DOT 

*BOX 

setpoint, draw to, 

setpoint, draw to ... 

draw to, setpoint, 

draw to, setpoint, •. 

setpoint, draw to, 

draw to ..• 

draw to, draw to, 
draw to ... 

setpoint, draw from, 

draw from ... 

draw from, draw 
from, draw from ..• 

dot, dot,· dot ..• 

box, box, box ... 

* Box does not move the beam, but rather sets up the parameters for 
subpictures (see Section 4.6) 

Figure 7.4 
7-60 



7 
V~/1-.,--

RX 

RA 

Vlil'-r' 

RR 

y 0, z 0 

ABSOLUTE 

THE DATA FORM 
FSM2 

5 kl/llf1 
6 

AX 

~@) lute 

AA 

)frl/t/11 

4 

@ te 
...._ __ 

AR 

CODES 

RX 

AX 

RA 

AA 

RR 

AR 

AV 

vv 

relative, absolute, 
relative ... 

absolute, relative, 
absolute ... 

relative, absolute, 
absolute ... 

absolute, absolute, 
absolute ... 

relative, relative, 
relative ... 

absolute, relative, 
relative ... 

absolute, variable 
origin, variable origin ... 

variable origin, variabl~ 
origin, variable origin ... 

A
' (Xo+AX1)+6X2,(Yo+AY1A+AY2, Xo+6X2, Yo+6Y2, 

(Zo+AZ1)+6Z2 Zo+6Z2 

Z1 +6X1)Yo+AY1, (Xo+AX1, Yo+ ~Y1, 
+6Z1) Zo+AZ1) 

Xo, Yo, Zo Xo, Yo, Zo 

RELATIVE 

Figure 7.5 
7-61 

VARIABLE ORIGIN 



iterations) and the address of the first Channel Control register 
from which data are to be taken. 

In all cases except the "Matrix Multiplier draws," the 
number of words of data that are fetched per coordinate point 
is determined by the dimension mode of the LDS-2. For register 
draws, two register~ are transferred in 2D, and four registers 
are transferred in all the 3D modes. For the single draw and table 
draw classes, there-are two words fetched in ZD, three words 
fetched in the CD3D and ~™3D modes, and four words fetched in 
the HOMOG mode. See Figure 7.6. 

Mnemonic: SD Single Draw 

Structure: 

0 1 3 4 7 8 

po1o!MAN I ADDR 

Format: SD MAN,@%ADDR 

Function: Execute a single draw instruction fetching the data 
from the memory location referenced by the effective 
address. The ~~N argument specifies the manner of 
the drawing instruction. 

Mnemonic: TDR Table Draw Repeat 

0 1 3 4 7 8 

N•\ 
>J,.f ftJ.- '( fJ-1 

.,M~ ~ i'6" ~ 

Structure: 

I ' , 

b 1 0 o 1o iFSHl 1 FSM2 1 1 1 0 

Format: TDR FSM1,FSM2 

Function: Execute a repeated series of drawing instructions 
fetching data from the memory locations addressed _ 
by the RP. The count in the RC specifies the number 
of operations to be performed, and the arguments 
FSMl and FSMZ specify the type of operations to be 
performed. 

7-62 



2D 

CD3D 

MM3D 

HOMOG 

DATA FORMATS FOR DRAWING INSTRUCTIONS 

x 

y 

z 

The fou.rth word.' n~-eded by the pipeline is a copy of Z 
to give X, Y, Z, Z, which is the format the Clipping 
Divider expects. 

x 
y 

z 

The fourth word needed by the pipeline is a fraction 
approximation of 1 (i.e., all one's or 22 3 -1), which 
provides a homogeneous component of "l" for the Matrix 
Multiplier. 

x 
y 

z 

w 

Figure 7.6 
7 _ {:.. "{ 

W is the homogeneous 
element (see Appen­
dix 2). 



Mnemonic: TDIR Table Draw Indirect Repeat 

Structure: 

0 1 3 4 7 g 15 16 19 20 23 

Format: TDIR FSMl 'Fsr,12 

Function: Execute a repeated series of drawing operations 
fetching data from the memory locations obtained 
by taking the contents of the memory locations 
addressed by the RP as addresses. 

Mnemonic: TDIXR 

Structure: 

0 1 3 4 7 8 

Format: TDIXR FSMl, FSM2 

Table Draw Indirect and 
indeXed Repeat 

15 16 19 20 23 

I x I f SM2 I 1 l i ol 

Function: Execute a repeated series of drawing operations as 
specified by arguments FSM1,FSM2. The effective 
address for the coordinate data is determined by 
taking the contents of the memory location addressed 
by the RP and adding the contents of the index 
register (IR). 

Mnemonic: RD Register Draw 

Structure: 

0 1 3 4 7 8 15 16 19 20 23 

Format: RD FSM1,FSM2,X 

Function: Execute either one or two drawing operations (depend­
ent on the value of X) according to the arguments 
FSM1,FSM2. Data for these operations are fetched 
from the registers of the Channel Control as specified 
by the X field. 

7-64 



Mnemonic: MMDR Matrix Multiplier Draw Repeat 

Structure: 

0 ·1 3 4 7 8 15 16 19 20 23 

I 1 lo 1 ol 1 1 1 1l 

Format: MMDR FSMl 

Function: Execute a repeated series of drawing operations as 
indicated by FSMl using data obtained by iteration 
of the Matrix Multiplier. FSM2 is defined to be 
equal to AA (2). The count for these instructions 
is held in the RC and incremented each iteration 
of the Matrix Multiplier (which corresponds to each 
individual drawing operation). 

7-65 



EXAMPLE 10: House Plan 

The following routine will draw the outline of a simple 2D 
House Plan (see Figure 8.3): 

LO SP,=SAVE 
IOT AC0,33 
CLB AC0,2 
IOT AC0,32 
LO RP,=CLIPl 
ILOM RC,4 
LOCLA VIEWLB 
LO RP,=PLAN 
ILOM RC,13 
TDR POLY,AV 

EXAMPLE 11: Boxing 

turn off Matrix Multiplier 
CLIPl contains VIEWPORT and WINDOW data 

set VIEWPORT and WINDOW 
PLAN contains the drawing coordinates 

draw house plan 

Boxing may be used to draw subpictures at different locations 
on the picture. This routine draws symbols for a window in the 
house plan (see Figure 8.3). Il contains the X and Y coordinates 
of the position of the window to be drawn: 

LO RP,=Il 
LOCLA SAVELB 
LOCLA INST 
IOT ,42 
J . =l 
IOT AC0,33 
SZB AC0,22 
PUSHJ WINDOW 
POPJ 

DSP,=SINK 
RC,4 

WINDOW LO 
ILOM 
SKCL 
SD 

VIEWLB 
SETA, MASTER 
BOXA,MASTER+2 
RP,=Wl 

SD 
LO 
ILOM 
TDR 
ILOM 
TDR 
RTCL 
POPJ 

RC,5 
POLY,AA 

RC,4 
LINE,AA 

WIND RT 

left bottom corner of instance 
set up instance 
skip until settled 

read directive 
check area in common 
jump to WINDOW routine 
return 

save old WINDOW and VIEWPORT 

box to set up new parameters 

draw frame 

draw cross piece 
restore old WINDOW and VIEWPORT 
return 

Note, that the instance is loaded with a 2D four-component load 
by first setting SAVELB with a LOCLA SAVELB and then loading INST 
with the right and top components. The master must also be set 
up in this manner, that is, the left and bottom components are 
set via a setpoint, and the right and top components with the box 
instruction. 

7-66 



EXAMPLE 12: 3D House 

This example draws the frame of a house. The coordinate data 
for the example are given implicitly in Figure 8.3. Note how 
matrix transfer motions are concatenated. 

LO SP,=SAVE2 
IOT AC0,33 
SETB ACO,S 
SETB AC0,6 
SET ACO, 
IOT AC0,32 
LO RP,=ARRAYl 
ILOM RC,4 
LOMMA 0 
LO RP,==HOUSED 
ILOM RC,5 
TDR POLY,AV 
ILOM RC,S 
TDR POLY VV 
ILOM RC,6 
TDR POL,VV 
ILOM RC,6 
TDR POL,VV 
ILOM RC,2 
TDR LINE,VV 
SD SETV,WINl 
PUSHJ WINDOW 
SD SET,WIN2 
PUSHJ WINDOW 
PUSHMM 4 
LO RP,=DOORMT 
ILOM RC,4 
LOMMP 4 
LO RP,=DOOR 
ILOM RC,5 
TDR POLY,AA 
ILOM RC,4 
POPMM 4 
LO RP,=DOORF 
ILOM RC,4 
SD SETA,HOUSED 
TDR POLY,VV 

set MM3D 
turn on Matrix Multiplier 

load transformation matrix 
set RP to table of house data 

draw floor 

draw ceiling 

draw end wall 

draw end wall 

draw roof 
set for window 1 
jump to WINDOW subroutine (not included) 
set for window 2 
jump to WINDOW subroutine (not included) 
push transformation matrix to B 

multiply transformation matrices 
set RP to door data 

draw door 

pop original transformation matrix 
set RP to door frame data 

set point to corner of house 
draw door frame 

7-67 



FORTRAN SUPPORT ROUTINES 

8.1 Function 

The FORTRAN support routines provide the FORTRAN user the 
ability to define, manipulate, and display pictures with the 
LDS-2. The support routines are called by the FORTRAN program 
and prepare LDS-2 object code. Host of the calls do not place 
the code which has been generated directly into execution, but 
rather store the code in a user buffer. The generated routines 
can then be put into the LDS-2's execution string by DRAW calls. 
It is thus possible to execute the LDS-2 code in a user-specified 
order which may be different from the order in which the code 
was generated. 

Most of the calls have the general form: 

where: 

CALL SUB (NAME, LOC) 

SUB is the name of the particular support 
routine. 

NAME is the identifier which will be asso­
ciated with the code generated and should 
be either an integer or Holerith (up to four 
characters) value, and unique within the program. 

Lo~· the location of an array which usually 
co al s both control information which is used 
to erate the code and the data which will 
be referenced by the LDS-2 code. 

The information in the array referenced by LOC should be pre­
pared by the FORTRAN program previous to the call. The data in 
these arrays are referenced directly by the LDS-2 code and may be 
changed dynamically, that is, they may be changed after the call 
has been made, or even while the code is in execution, but changing 
the control information will not change the code that has been 
generated, once the call has been ~ade. 

7.2 Data Formats 

The arrays provided the support routines should contain 
integer values or names. This applies to both the control words 
and the data. The homogeneous element in three-dimensional data 
and the rotation elements for the Matrix Multiplier should he 
integer representations of fractions. That is, they should he 
integer values where the decimal point is assumed to be to the 
left of the word. 

8-1 



8.3 Preparation Calls 

When the FORTRAN user is initiated on the LDS-2, default 
conditions for the state of the display system are set by the 
initializing routine. These conditions affect the modes of the 
LDS-2 pipeline devices, the dimension mode of the LDS-2, scope 
selection, and intensity control. The system is initiated with 
the LDS-2 in two-dimensional mode, the scope indicated on the job 
request record is selected, and maximum intensity is set. Default 
conditions for the parameter registers of the Clipping Divider 
are also provided as described in the calls which relate to these 
devices (see Section 8.4). All of the preparation calls generate 
code which goes directly into the user's execution string, unless 
the call is included within the scope of a GATH call (see Section 
8. 4). 

Deleting the code generated by the preparation call via a 
KILL call, or turning this code off via an OFF call, does not 
restore any previous mode and, in fact, does not change any modes 
at all. Since the preparation calls set a state in the LDS-2, 
this state will remain until it is changed by another preparation 
call, or until another user is initiated. It is also important 
to realize that the dimension modes of the system affect the num­
ber of words of data which are processed per coordinate point and, 
thus, the data organization. A great deal of care must, therefore, 
be taken to insure that the prevailing mode corresponds to the 
data organization format of the data which are being processed. 

CALL TWOD 

TWOD sets the LDS-2 to two-dinensional operation. In 2D 
the LDS-2 picks up two words of data per coordinate point which 
are interpreted as X and Y. The LDS-2 is initially set to 2D, but 
if the mode has been changed by some other call, it is necessary 
to call TWOD in order to reset the mode to 2D. 

CALL MM3D 

~~f3D sets the LDS-2 to a special three-dimensional mode. 
Three data words are required which specify the X, Y and Z coor­
dinates of a point. The LDS-2 then supplies a "1" to give the 
fourth component expected by the Matrix Multiplier. The use of 
this mode allows the user to save storage and elminates the need 
to specify the fourth component of the homogeneous coordinates 
as long as that fourth component is a "l", which is often the 
case. 

MM3D also turns the Matrix Multiplier on. The Matrix Multi­
plier is turned off at initialization, so ~n13D must be called to 
turn it on. If one wishes to turn the Matrix Multiplier on, 
but does not wish to be in ~~13D mode, it is simply necessary 

8-2 



to call ~~13D and then call either TWOD or HOMOG which changes 
the dimension mode of the LDS-2 but leaves the state of the 
Matrix Multiplier unchanged. MM3D also sets "depth cueing" 
(see INTSTY). 

CALL CD3D 

A second special three-dimension mode is called by CD3D. 
This mode is designed for data which are to be fed directly 
to the Clipping Divider. Again, three words are fetched per 
coordinate point, but in this case the fourth word supplied 
by the LDS-2 is a copy of the third word, thus giving X, Y, 
Z, Z, which is what the Clipping Divider expects. Since this 
mode is primarily of use when data are fed directly to the 
Clipping Divider, CD3D also turns the Matrix Multiplier off. 
When the user wants to turn the Matrix Multiplier off, but does 
not wish to be in CD3D mode, he can simply follow the CD3D call 
with a call to TWOD or HOMOG. CD3D also sets "depth cueing" 
(see INTSTY). 

CALL HOMOG 

HOMOG sets the LDS-2 to homogeneous coordinate mode where 
four words of data are expected for each point. Homogeneous 
coordinates are discussed in detail in Appendix III of the LDS-
2 System Reference Manual. The four words of data are 
interpreted as X, Y, z, and W, where W represents a fractional 
scale factor and is often "1". In working with homogeneous 
coordinates, it is important to realize that X, Y, and Z are 
interpreted as integer values, while W is interpreted as a fixed 
point fraction. Thus, the approximation for "1" which should 
be used in 37777777 (octal). HOMOG also sets "depth cueing" 
(see INTSTY). 

CALL SELECT (Number of scopes, scope numbers) 

SELECT allows the user to specify the scope(s) on which 
his picture is presented. The scope specified on the user job 
request record is initially selected so that it is only if the 
user wishes to change the scope(s) on which the picture is being 
presented that he must use the SELECT call. The scopes are 
numbered from 1 to n, where "n" is the number of available 
scopes. 

CALL INTSTY (Intensity number) 

This call allows the user to specify the intensity of the 
picture that is being drawn on the scope. An initial intensity 
value is set up for the user, but this value may be changed 
with the INTSTY call. Intensity values range from 0 (brightest) 
to 4096 (dirnest). The intensity call also clears "depth 
cueing," which means that the intensity value rather than the 
Z coordinate of the point is used to control the intensity of 

8-3 



the line. Depth cueing is restored by MM3D, CD3D, and HOMOG. It 
is thus possible to turn depth cueing on and off by careful 
ordering of the INTSTY and dimension calls. 

CALL RFRATE (Cycles/second) 

The highest priority user is allowed to specify the refresh 
rate through the use of this call. A default value of 30 cycles 
Cl/30th of a second) is supplied, when the system is turned 
on so that RFRATE need he called only if some other refresh 
rate is desired. A RFRATE call by other than the highest 
priority user is ignored. 

8-4 



8.4 Definition and Manipulation Calls 

The definition and manipulation calls are used to define 
pictures and to control the pipeline processing performed on 
these pictures. These calls generate code for the LDS-2, but 
do not put this code into the execution string of the user. 
Thecode is saved in the user's buffer until it is called by 
a DRAW call, which puts the code into execution. The order 
in which the code is executed is usually critical, but the order 
in which the code is generated by the calls is unimportant. 
It is thus possible to make the calls in any order that is 
convenient and then carefully control the execution of the code 
by using the appropriate DRAW calls. 

Several calls can he grouped together as a single routine 
by the GATH cal 1. GATH cal ls may be nested to al low the user 
to create tree-like structures of pictures and subpictures. 
Because the definition and manipulation calls do not go into 
immediate exec11tion, and because all calls can be grouped into 
single routines which can he nested, the FORTRAN support routines 
provide the user great flexibility not only in defining and 
manipulating pictures, but also in structuring the display 
program generated by the support routines. 

8-5 



CALL DEF (NAME, LOC) 

The DEF call is used to define drawings. The array refer­
enced by LOC contains the coordinate data for the endpoints 
of the figure to be drawn and control information which 
determines how these points are to be connected. This array 
takes the following format: 

WorasZP01nt No. or Sequences 
Sequence Mooe 
Sequence Le_g_nth--No. or Vo1nts 

x 
y 

Jr or y 
X,Y,Z, or w 

.. . , 
• 

Sequence Mooe 
Sequence Legntn--No. or Points 

x 
y . 

There may be either two, three, or four words per coordinate 
point depending upon the mode that the LDS-2 will be in when 
the code is put into execution. Since the different modes fetch 
different amounts of data per coordinate point, it is extremely 
important that the number of words per coordinate point corres­
ponds to the mode that the LDS-2 is in at the time of execution. 
In constructing the first word of the array the number of 
sequences should be added to the code for the number of words 
per coordinate. This code is obtained hy either of the following 
processes: 

N=words per coordinate (Z, 3, or 4) 

NCODE=N*2**1Z 

M=nurnber of sequences 

MWORD=NCODE+~l 

The decimal results of NCODE will be either 8192 (2 per 
coordinate) 12288 (3 per coordinate), or 16380 (4 per 
coordinate), and these numbers can be added directly to the 
number of sequences to build the word. 

A "sequence" is one of the drawing sequences implemented 
by the LDS-2 (see Section 7.14 of the LDS-2 System Reference 
Manual). It should be noted that these sequence generally turn 
out to be different than their mnemonics imply if the count 
is only 1 or 2. For instance, a POLYGON sequence with a count 
of one is simply a setpoint, and with a count of 2 is simply 

8-6 



Drawing Sequences 

6 24576 7 28672 

NL I NE NNLINE 

--1 d~aw ,_; @
3 12 2 88 23f),,....---8 ... ~ 9 2 

~o 

NPOLY NTO 
(NSET) 

NLINE 

NNLINE 

NPOLY 

G3384 ®0480 NSTAR 
; 

) i 

t -

NSTAR 

1 4096 

NDOT 

NF ROM NF ROM 

NDOT 

Figure 8 .1 
8-7 

l . 

"'1< I 

~--
'~ 

""' 

setpoint, draw to, 

setpoint, draw to ... 

draw to, setpoint, 

draw to, setpoint, •• 

setpoint, draw to, 

draw to ... 

draw to, draw to, 
draw to ... 

setpoint, draw from, 

draw from ... 

draw from, draw 

from, draw from ... 

dot, dot,. dot ... 



7 

NRX 

NRA 

NRR 

0 

NAV 

y 0 ' z 0 

ABSOLUTE 

Data Modes 

6 

NAX 

NAA 

4 

r JRX re 1 at iv e , abs o 1 u t e , 
relative ... 

NAX absolute, relative, 
absolute ... 

NRA relative, absolute, 
absolute ... 

NAA absolute, absolute, 
absolute ... 

a 
\:::Y 

NRR 

NAR 

relative, relative, 
relative ... 

absolute, relative, 
relative ... 

NAR 

1 

NVV 

NAV absolute, variable 

NVV 

origin, variable origin ... 

variable.or1g1n, variable 
origin, variable origin ... 

Z2 ~cxu+6X1)+6X2,(Yo+6Y1~+6Y2, Xo+6X2, Yo+6Y2, 
(Zo+6Z1)+6Z2 Zo+6Z2 

Z 1 u + 6X 1) Yo+ /J. Y 1 , (X o + 6X 1 , Yo+ 6 Yi , 
0+6Z1) Zo+6Z1) 

Xo, Yo, Zo Xo, Yo, Zo 

RELATIVE 

Figure 8.2 
8-8 

VARIABLE ORIGIN 



a line. Figure 8.1 shows the sequences that are allowed, their 
octal code, and the decimal equivalents after shifting the codes 
to the left half of the word. 

The allowable modes are also those which are implemented 
on the LDS-2. Figure 8.2 lists these modes, their octal codes 
and the decimal equivalents. In constructing the sequence/mode 
control word it is simply necessary to add the two decimal 
equivalents for the appropriate codes and store the result in 
the proper word of the array. 

The third word in the array and the word after each 
sequence/mode word contains the number of coordinate points 
and not the number of data words in the sequence. The data 
words-should contain integer values, as should all of the other 
words of the array. 

·The following two examples show the contents of the DEF 
arrays for the floor plan of a simple house and a three­
dimens ional drawing of the same house. The numbers shown in 
the array are decimal. 

FORTRAN EXAMPLE 1: Two-dimensional House Plan 

NPLAN(l) = 2*2**12+1 
NPLAN(2) = NPOLY+NAV 

NPLAN(3) • 13 
DATA 

• 
• 

CALL DEF (4HPLAN,NPLAN) 

2 words per point, 1 sequence 
Polygon sequence, first point 
absolute, the rest are variable 
origin 

See Figure 8.3 

FORTRAN EXAMPLE 2: Three-dimensional House and Door Frame 

NHOUSE(l) = 3*2**12+6 
NHOUSE(2) = NPOLY+NAV 
NHOUSE(3) = 5 
DATA 

• 

• 
NHOUSE(19) = NPOLY+NVV 
NHOUSE(20) = 5 
DATA 

• 
• 
• 

NHOUSE(36) = NPOLY+NVV 
NHOUSE(37) = 6 
DATA 

• 
• 
• 

8-9 

2 Words per point, 6 sequences 
Floor 

See Figure 8.4 

Ceiling 

End wall 



NHOUSE(56) = NPOLY+NVV 
NHOUSE(S7) 6 
DATA 

• 

• 
NHOUSE(76) = NLINE+NVV 
NHOUSE(77) = 2 
DATA 

• 
NHOUSE(96) = NPOLY+NVV 
NHOUSE(97) = 14 
CALL DEF (4HHOUS, NHOUSE) 
DATA 

• . 
NDOOR(l) = 3*2**12+1 
NDOOR(2) = NPOLY+NVV 
NDOOR(3) = 5 
DATA 

• 
• 

CALL DEF (41IDOOR,NDOOR) 

End wall 

Roof 

Door frame 

8-10 



ZD HOUSE PLAN 

1000 - I ,. 
I : t 

"-INSTANCE 

600 -

400 -

..__ 

G .--

/INSTANCE 

1 
0 - f 

0 

I 

350 
300 

100 
50 

Q 

WINDOW SUBROUTINE 
,.,....-MASTER - ._. _______ .....__~ ____ ... 

~ I I - ,_ -.-- ... .__ _ ..... - - - - - - - - -, 
- I I 

I 
I 

0 
I 

800 

1 

: 

2 

1 

' 1400 

NP LAN 
0 0 

0 400 

100 400 

100 100 

1300 100 

1300 900 

100 900 

100 600 

0 600 

0 1000 

1400 1000 

0 0 

NWlN (WINDOW) 
0 0 

2000 1000 

INSTANCE 1 
500 0 

900 100 

INSTANCE 2 
500 900 

900 1000 

MASTER 
0 50 

800 350 

Figure 8.3 

8-11 

(abso:lute setpoint) 



3D HOUSE 

NHOUSE 

0 0 0 floor 

0 1000 0 

1400 1000 0 

1400 0 0 

0 0 0 

800 - -- 0 0 500 ceiling 

0 1000 500 

1400 1000 500 

600 - 1400 0 500 
400 -

I I 
0 0 500 

t:x 0 0 0 end 1 

200 - 0 0 500 

0 500 800 

f ' 
0 1000 500 

0 1400 0 1000 0 

0 0 0 

1400 0 0 end 2 

1400 0 500 

1400 500 800 

1400 1000 500 

1400 1000 0 

1400 0 0 

500 -
0 500 800 roof 

1400 500 800 

350 - t> 350- NDOORF 

0 400 0 

0 400 350 

0-
0 600 350 

I , I I I • I 
0 4001 600 100 I I 0 600 0 

500 -200 0 NDOOR 

0 0 0 

0 -200 0 

0 -200 350 

0 0 350 

0 0 0 

Figure 8.4 

8-12 



CALL WIND (NAME, LOC) 

The WIND call generates the necessary code to change the 
WINDOW registers of the Clipping Divider. The four elements 
in the array are used to define the new window. 

The coordinates define the left bottom and right top corners 
of the window rectangle and should be given in the same 
coordinate system as the drawing (i.e., the same coordinate 
system as is used for the DEF's that are processed while the 
window is in effect). The code generated will load the Yalues 
in the arrays into the WINDOW registers when the code goes into 
execution. Those values will stay in the WINDOW registers, 
until either the mode is changed from 2D or another WIND call 
is executed. Thus, deleting the code which set the window via 
a KILL call does not change the window. When the LDS-2 is in 
2D, each picture element is compared with the window, and only 
those portions of the picture which lie within the window are 
displayed. 

A window is defined as the system is initialized; this 
window stretches from -32757 to +32767 in both the X and the 
Y directions. Unless another window is defined, this window 
is in effect. 

The following example sets up a window around the floor 
plan described in the description of the DEF call. Section 
4.4 of the LDS-2 System Reference Manual should be consulted 
for further information on the use of the window. 

FORTRAN EXAMPLE 3: Window 

NWIN(l) = 0 
NWIN(2) = 0 
NWIN(3) = 2000 
NWIN(4) = 1000 

CALL WIND (3HWIN,NWIN) 

8-13 



CALL VIEW (NAME, LOC) 

The VIEW call is used to set the VIEWPORT registers of 
the Clipping Divider which define the portion of the scope face 
onto which the picture is to be mapped. The viewport is defined 
in the same manner as the window, that is, by giving its left 
bottom and right top corners in an array. 

In contrast to the WINDOW coordinates, however, the viewport 
coordinates are specified in the coordinate systew of the scope. 
Thus, the values used should range between -32767 and +32767. 
A viewport is necessary regardless of the mode of the LDS-2. 
Anything which lies within the field of vision (which is a 
pyramid of vision defined by the planes x=+Z and Y=+Z in the 
threedimensional modes and the window in two dimensions) is 
mapped onto the viewport. If the viewport is not the same shape 
as the field of view (i.e., not square in 3D or not the same 
shape as the window in 2D), the picture will be stretched in 
either the X or Y direction. The viewport can cover the whole 
scope face or any rectangular portion of the scope face. A 
viewport is defined as the system is initialized for each user 
to cover the whole scope (i.e., -32767, -32767, +32767, +32767). 

FORTRAN EXAMPLE 4: Viewport 

The following viewport covers the upper half of the screen: 

NVIEW(l) = -32767 
NVIEW(2) = 0 
NVIEW(3) = 32767 
NVIEW(4) = 32767 

CALL VIEW (4HVIEW,NVIEW) 

8-14 



CALL BOX (NAME, LOC), CALL COPY (NAME, LOC) 

The BOX and the COPY routines are used to draw repeated 
copies of two-dimensional subpictures. These routines allow 
the user to define a subpicture which can then be placed at 
several positions on the main picture and even appear in 
different sizes. The BOX call is used to set up the basic 
subpicture parameters and should be called by a COPY call each 
time the subpicture is to appear. The BOX call takes the 
following format: 

Name 
Tert 

Bottom 
Ri_g_Jit 

Top 

The first element in the array is the name of the picture 
elements that are to appear in the subroutine. This should 
either be the name of a DEF call or the name of a GATH call 
which contains the definition of the subpicture. The four data 
words define the left bottom and right top corners of a "master" 
rectangle. This master rectangle serves the same function for 
the subpicture that the window does for the main drawing. Any 
part of the subpicture which is outside the master is not 
included in the copies of the subpicture, and the size of the 
master affects the size of the subpicture. 

The COPY call generates the code to place a copy of the 
subpicture onto the main drawing. The array referenced by LOC 
takes the following form: 

Name 
Left 

Bottom 
Riglit 

Top 

The first word of the array should contain the name of 
the BOX call which was used to define the subpicture. The data 
words define the left bottom and right top corners of the 

8-15 



"instance" rectangle. Everything that is within the master 
rectangle defined in the BOX call is mapped onto the instance 
rectangle. If the instance rectangle lies partially outside 
the current window, only those portions of the subpicture which 
lie within the portion of the instance that is within the window 
will be displayed. If the instance lies wholly outside the 
current window, the code which defines the subpicture is not 
processed at all, since nothing would appear on the scope anyway. 
This fact can be used to define very large data bases, where 
only a small portion is ever displayed at one time. By defining 
each portion of the drawing with a BOX call and drawing that 
code with COPY calls, large sections of code and data which 
lie entirely outside the window can be skipped entirely, thus 
improving the performance of the system. 

Since the boxing process calculates new window and viewport 
values, the old values in the WINDOW and VIEWPORT registers 
are saved when the COPY call is executed (by a DRAW call) and 
then restored. The code to save and restore these registers 
is actually generated by the BOX call, but since the BOX call 
cannot be put into execution except througl1 a COPY call to the 
BOX, it is convenient to think of this as happening when the 
COPY call is executed. 

It is important that a BOX call be called only by COPY 
calls (and not by DRAW calls), and that the name in the COPY 
call array ~the name of a BOX call. It is also important 
that these calls are executed with the LDS-2 in 2D mode. 

FORTRAN EXAMPLE 5: BOX and COPY 

The following calls can be used to place symbols for two 
windows on the floor plan of Example 1 (see Figure 8.3). 

NW(l) = 2*2**12+2 
NW(2) = NPOLY+NAA 
NW( 3) = 5 
DATA 

• 
• 
• 

NW(14) = NLINE+NAA 
NW(3) = 4 
DATA 

• 
CALL DEF (lHW, NW) 
NBX( 1) = w 
NBX( 2) = 0 
NBX(3) = 50 
NBX(4) = 800 
NBX(S) = 250 

8-16 

Definition of window 
Symbol 

Left of Master 
Bottom of master 
Right of master 
Top of master 



CALL BOX(2HBX,NBX) 
NCPYl(l) = BX 
NCPY1(2) = 500 
NCPY1(3) = 0 
NCPY1(4) = 900 
NCPYl(S) = 100 
CALL COPY(4HCPY1,NCPY1) 
NCPY2(1) = BX 
NCPY2(2) = 500 
NCPY2(3) = 900 
NCPY3(4) = 900 
NCPY2(5) = 1000 
CALL COPY (4HCPY2, NCPYl) 

8-17 

Left of instance 1 
Bottom of instance 1 
Right of instance 1 
Top of instance 1 

Left of instance 2 
Bottom of instance 2 
Right of instance 2 
Top of instance 2 



CALL MM (NAME, LOC) 

The ~~1 call is used to manipulate the values in the 
registers of the Matrix Multiplier. When the Matrix Multiplier 
is on, data that are sent down the pipeline are multiplied by 
the first of the four matrices which can be stored in the Matrix 
Multi plier. The :MM call allows the user to set these matrices 
to the appropriate values. The array referenced by the LOC­
should take the following form: 

f4atrix lAction 
Element 1 
Element 2 
Element 3 . . . . 
-Element 10 

The legal values for "Matrix" are 1, 2, 3, and 4 for the four 
matrices. The following actions may be indicated in the "Action" 
field of the control word. 

1. Load the Matrix Multiplier matrix specified in the array 
with the data in the array. This data should contain the 
elements of the 4 X 4 matrix desired. Figure 3.2 shows how 
these words are stored into the matrix and which of the data 
elements should be considered as integers and which as fractions. 

2. Store the values in the matrix specified into the array. 

3. Multiply the matrix specified in the array by the data 
in the array and leave the result in Matrix 1. Since Matrix 
1 is used to contain the result, it cannot be specified as the 
multiplicand. 

4. Push the data in Matrix 1 into the matrix specified in 
the array. This destroys the old value of this matrix. 

S. Pop the value from the specified matrix back into Matrix 
1. 

Since the "push" and "pop" actions do not require data, the 
16 array words for the elements of the matrix are ignored and 
do not need to be provided. Since these instructions require 

8-18 



no memory references when they execute, the code generated is much 
faster than the code generated by the "load" and "store" actions. 
If only a limited amount of temporary matrix storage is required, 
it is best to use matrices 2, 3, and 4 for storage and use the 
push and pop actions to store into and retrieve from temporary 
storage. 

It is also possible to use the Matrix Multiplier in 2D 
operation. In this case only the first two elements of each 
row are used in the matrix transformation. Thus, the data in 
elements 3 and 4, 6 and 7, and 10 and 11 are not used and should 
be set to O. The last four elements 13-16 are also unused in 
2D operations. 

The following examples show how matrix transformations 
can be used to show the desired view of the house defined in 
the DEF example, and how matrix transformations can be con­
catenated to show a door which opens and closes in the proper 
position. 

FORTRAN EXAMPLE 6: Using the Matrix Multiplier 

These calls load the Matrix Multiplier with a rotation 
and translation matrix for the house; multiply that matrix 
by another to calculate the transformation matrix for the door 
of the house, and then return the first matrix. 

NROTMT(l) = 1*2**12+1 
DATA FOR NROTMT 

• 
• 

CALL MM(4HROMT,NROMT) 

• 
• 

NPSH = 2*2**12+4 

CALL MM(3HPSH,NPSH) 
NDOORM(l) = 2*1**12+3 
DATA FOR NDOORM 

• 
• 

CALL MM(3HDRM,NDOORM) 

• 
• 

8-19 

Rotation and translation matrix 
for house 

Push Matrix 1 into Matrix Z 
to SAVE 

Calculate new matrix for 
door 



NPOP(l) ~ 2*2**12+5 

CALL MM(3HPOP ,NPOP) 

8-20 

Restore original rotation 
and translation matrix 



CALL TEXT (NAME, LOC) 

The TEXT routine is used to display characters on the 
screen. Previous to this call, the beam should be set to the 
position of the first character. The TEXT array should have 
the following format: 

Size 
No. o-:f Words . . 

"Size" specifies the size of the characters in tafe co­
ordinates, that is, the size of the characters in re a ion to 
the rest of the drawing. The window to viewport mapping then 
determines the size of the characters on the screen. Thus, if 
the window is defined as -1000 to +1000, and the user wants 50 
characters per line (i.e., across the whole face of the scope), 
then the size should be 2000/50 = 40. 

The TEXT routine calls the software character generator, 
when it is put into execution by a DRAW call. 

8-21 



CALL GATH (NAME), CALL NOG (NAME) 

The GATH routine is used to gather all the code generated 
by all calls which occur between the GATH and its corresponding 
NOG into a single routine. Thus, when the GATH call is put into 
execution (by a DRAW call which references it), all the code that 
has been generated by calls within the scope of the GATH will also 
be put into execution. Because GATH puts all the code within its 
range into execution, BOX calls and the DEF calls they reference 
should not be included within the range of a GATH, or they will 
be executed directly rather than through the COPY call. If, 
however, the calls within the GATH have name parameters, they may 
still be referenced individually. Calls which normally generate 
code that goes directly into execution (i~e., the drawing and 
preparation calls) may also be executed directly, but stored in 
the user's buffer until the GATH routine is executed, or until 
they themselves are referenced by another DRAW call. GATH calls 
may be nested to 20 levels. It is possible to nest GATH calls in 
two ways. They can be nested from the top by including a GATH 
call within the scope of another GATH call, or they may he nested 
from the bottom by first defining the lowest level GATH call and 
then referencing that call by a DRAW which is included in a 
higher level GATH. 

NOG closes the GATH routine. If the name on NOG is the name 
of a higher level GATH call, then all the GATH calls nested below 
that level, as well as the GATH named, will be closed. 

FORTRAN EXAMPLE 7: Using the GATH Call 

The DEF and MM calls for the 30 house can easily be included 
in a GATH call, so that the whole sequence of code can be refer­
enced by referencing the GATH call. 

CALL GATH (lH) 
CALL DEF f4HHOU~,NHOUSE) 
CALL MM (3HP~H,NPSH) 
CALL MM (3HDRM,NDOORM) 
CALL DEF (4HDOOR,NDOOR) 
CALL MH ( 3HPOP, NPO P) 
CALL NOG (HUI) 

8-22 



CALL REPEAT (NAME, LOC) 

This call generates an LDS-2 subroutine which, when refer­
enced by a DRAW call, will execute each of the named subroutines 
in the array the designated number of times. The named sub­
routines are linked one after the other, until all subroutines 
have been placed in the chain. The chain of calls to named sub­
routines will then be executed the designated number of times, 
when referenced by a DRAW call. Each name in the array must be 
that of a previously generated LnS-2 subroutine. BOX calls and 
the DEF's they reference should not be included in the Repeat 
Table. COPY calls may, however, be included. 

ames 

8-23 



CALL LDS (NAME, LOC) 

The LDS call allows the FORTRAN user to escape into machine 
language in order to perform functions that are not provided by 
other FORTRAN calls. LOC points to an array which should contain 
valid LDS-2 instructions which have already been assembled. The 
last instruction must be a POPJ to return back to the FORTRAN 
program. No checking is done to see that the code in the array 
is legal, so this is a "use at your own risk" call. 

8-24 



8.5 The Drawing Calls 

The drawing calls allow the user to control the execution 
of the code generated by the definition and manipulation calls. 
These calls cause the code generated by other calls to be added 
to the execution string of the user, deleted from the execution 
string, or destroyed entirely. 

CALL DRAW (NAME, LOC) 

The DRAW call is used to put code generated by the 
definition and manipulation calls or within a GATH call into 
execution. If the DRAW call is itself within a GATH, the code 
does not go into execution until the GATH is referenced by 
another DRAW call, or until the DRAW call itself is referenced 
by another DRAW call. The .array for the DRAW call should include 
the names of the routines to be executed in the order in which 
the user wishes them to be executed. 

NumDer ot Names 
Name· 1 
~ame 7 
Name 3 . . 

. 

The names in the array should be names assigned to calls which 
have previously been made by the user's program. 

8-25 



CALL OFF (LOC), CALL ON (LOC) 

The OFF call is used to remove code generated by the sup­
port routines from the execution string. The array referenced 
by LOC contains the names of the routines deleted. 

N'umher of Names 
N~e 1 
Name 2 
Name 3 

. 

. 

. 

It is assumed that the routines named in the array are currently 
in the execution string. If they are not, there is no need 
to reference them in the array and an error message will be 
given. Even though the code is removed from the execution 
string, its place in the execution string is maintained, so 
that by using an ON call the code will be returned to its 
original place in the execution string. The ON call array lists 
the names of the routines to be turned back on. 

fNumber of Names 
Name 1 
Name 2 
Name 3 

The names in the array need not be in the same order as they 
were in the OFF array, but it is not legal to include any names 
in this array which were not included in a previously executed 
OFF array. An error message will be given, if this is done. 
By strategic use of OFF and ON calls, it is possible to "blink" 
all or parts of the picture. 

8-26 



CALL KILL (LOC) 

The KILL call is used to destroy the routines that were 
generated by the calls named in the array. 

If the named code is in execution, it will be removed from the 
execution string and destroyed. If it is not in execution, 
it will simply be destroyed.. In either case, no further 
references may be made to the code. If a DRAW call is named 
in the array, the DRAW routine will be destroyed and the routines 
referenced by the DRAW will be removed from the execution string. 
However, the routines referenced by the DRAW call are not 
destroyed and may be referenced by later calls. If the LOC 
parameter contains an "0," all of the user's code will be removed 
from execution, but may be referenced later. All of the user's 
code is destroyed automatically at the termination of his FORTRAN 
program. 

8-27 



~~~~ 
SOFTWARE INTERFACE ~

9.1 General

The software interface provided for the LDS-2 and the SEL-
840 schedules users on the system and handles the interrupts
that occur. Within the framework of the Interrupt Handlers,
such services as setting the real time clock, handling I/O
service requests, and interpreting and displaying characters
are performed. Figure 9.1 shows the basic structure of the
software interface.

9.2 The Schedulers

When the user enters a job, the SEL-840 Scheduler builds an
entry in the Schedule Table and checks to see if the LDS-2 is in
stop state (sleep). If the LDS-2 is stopped, the SEL-840
Scheduler issues an interrupt to the LDS-2, which initiates the
LDS-2 Scheduler. The LDS-2 Scheduler then interrogates the
Schedule Table and starts up the user's program. If the LDS-2
is already running, the SEL-840 Scheduler simply adds the user
to the Schedule Table. After each user has finished, the LDS-2
traps to the LDS-2 Scheduler, which removes the finished user
and checks the Schedule Table to find the next user.

9.3 Interrupt Handlers

When the LDS-2 is interrupted, it traps to the LDS-2 Inter­
rupt Handler, which determines the cause of the interrupt and
takes the appropriate action. If the cause is an error condition,
the LDS-2 Interrupt Handler sets a status word and interrupts
the SEL-840. The SEL-840 Interrupt Handler then interrogates
this status word and takes the appropriate action; which, in
this case, is to terminate the job, print an error message, and
the value of the LDS-2 PROGRAM COUNTER (PC) at the time the
interrupt was caused. The following error conditions will cause
job termination:

Non-existent Instruction
Non-existent I/O Device (i.e., illegal IOT)
Parity Error
Scope Selection Villation
Memory Protection Violation
Non-existent Memory

The LDS-2 Interrupt Handler also handles interrupts from the
real time clocks and calls the LDS-2 Scheduler to restart the
first user when the end of a refresh cycle comes. The LDS-2
always refreshes at a constant rate. when under executive control.
If all the users are done, the LDS-2 goes into a waiting loop
until the clock interrupt terminating that refresh cycle comes.

9-1

Shared Memory

Scheduler

Interrupt
Handler

SEL 840 Software

SOFTWARE INTERFACE

Schedule
Table
(PTG)

LDS-2

DS-2 Interru

I/O Ser
vice
Request
Handler

Figure 9.1
9-2

Status and
Control

Words

LDS-2
Scheduler­

Moni tor

LDS- 2 Inter
rupt

Handler

Real­
Time
Clock
Handler

Sof twar
Charact r
Gener­
ator

LDS-2 Software

As explained in Sections 2.5 and 7.12, certain "illegal"
IOT instructions are used for communicating special requests to
the LDS-2 executive routines. These instructions cause an inter­
rupt which is interpreted by the LDS-2 Interrupt Handler.

IOR. The IOR mnemonic is an IOT ,372, which is interpreted
as-a request for input-output service. The Interrupt Handler
takes the contents of ACO as the address of a user-prepared
I/O packet, which should have been prepared according to
SEL-840 I/O packet specifications. The Interrupt Handler
will interrupt the SEL-840 to perform the requested I/O and
then return to one of three locations.

CALL+l
CALL+Z
CALL+3

if there is an error in the packet
if the user requested completion status
for normal completion (does not mean
that the I/O itself has been completed)

CHAR. The CHAR mnemonic is an IOT ,373, which is
interpreted as a call to the software character generator.
The Interrupt Handler expects ACO to contain the address
of the first word of the text array. The text array
should be formatted as shown in Section 8.7.

RSTART. RSTART (IOT ,370) should be the next to the
last statement in an Assembly Language program, if it is
not to be repeatedly executed (e.g., to refresh a picture).
This IOT is interpreted by the Interrupt Handler as
indicating the end of the user's execution string. The
user's program is restarted at the beginning, when his
turn comes up again.

STOP. STOP is an IOT ,371 and is taken as an indication
that the user's program is done and causes it to be term­
inated.

CLKSTP. Real-time clock interrupts may be stopped with an
IOT ,374 or CLKSTP. This instruction is ignored, unless the
user has highest priority. Once CLKSTP has been issued,
the executive is circumvented until some other interrupt
comes, so the user must jump to the beginning of his dis­
play program to refresh the picture. All other users will
be locked out when the highest priority user turns off the
clock.

CLKSRT. An IOT ,375 is used to restart the clock. Again,
only the highest priority user may use this instruction.

9-3

APPENDIX I

LDS-2 Mnemonic Construction

The figures on the following pages show how LDS-2 Assembly
Language mnemonics are constructed. Mnemonics are built by
following a path from left to right and concatenating the
underlined (and capitalized) parts of the words encountered.
For example, under Stack Control the first set of mnemonics
expands to PUSH, POP, IPUSH, IPOP, DPUSH, and DPOP. The argu­
ments for each set of instructions are given after the parallel
vertical lines at the end of the string.

AI-1

LDS-2 MNEMONIC CONSTRUCTION

Load and Store Channel Control Registers

LOad --if @ADDR

Register LOad

Immediate LOad

[skip if ~ero J II

-L--J---11 R ,N
Minus

STore ---11 @ADDR

ProBram Control

--------- Jump --if @%A
PUSH _j

POP ~ump T with Q!'._set 111'

J ~ump

Push

N

REGister t
~ump and pop the Stack

XEQ (execute) n @%ADDR

E_egister Execute -11 R

Stack Control

Rl,R2

~I R,N

J PUSH. -i-11 Rl,R2

Increment

-~~~~~~~-- POP ___J Decrement

PUSH Increment
Rl,R2

POP ~~--~- Decrement

AI-2

Arithmetic Operations

ADD

SUB J-
fmmediate :1 skip on Overflow ==:J-il Rl,RZ, if Immediate

Rl,N

OR
J skip on Zero }-ti Rl,R2

XOR t do Not depsit -; 1 'I Rl ,R2
~--~~~~~~~~-- skip on Zero _f--i AND

Compare

£_ompare skip if ~qual Rl,R2

1 skip if Not £qual --11--- Minus Immediate

-~' Immediate

Unary

DECrement

INcrement skip if £qual zero

COMplement skip if ·!iot £qual zero

NEGate skip if Less than zero

Te ST skip if Greater than zero

ZeRo skip if Less than or £qual zero

1 Switches LO ad skip if Greater than or g_qual zero

ABsolute Value skip ~lways

Al-3

R,N

R

Shift Instr·uctions

Arithmetic --i
r

!:_ogical
-[

~ight
SHif t

Left~~- Double

~ircular SHift ~ ~ight --i__JJ R,b
L Left _JI

Masking Instructions

Mask I g_ight -UJ
L Left __ J --1

Bit Manipulation

R,b

§.kip on
1 One J Bit ~ CLear ~

Zero [SET J II

Input/Output Transfers

.!.nput Q_utput !_ransfers ----j J R,DEV

SLEEP

Pipeline Load/Unload Instructions

R,b

J-il R,b

B_egister J
LO ad CLipping divider Size Absolute

Size Relative

Absolute

- Relative
Matrix ~ultiplier

Relative

Product

~atrix multiplier Directive ~egister

AI-4

DA
DA,X
if
~egiste

~~--~--- STore

~egisterJ
~- CLipping divider

L Matrix Multiplier

L Matrix multiplier Directive

ReTrieve ~ CLipping divider Absolute

- Relative

Size Absolute

Size Relative

Matrix ~ultiplier

Matrix multiplier Directive ~egister

SinK

1
CLipping divider

Matrix Multiplier
Slide

l Matrix multiplier Directive ~egister

NOrmalize ~- ~atrix Multiplier --ii
PUSH--==t-~~ Matrix Multiplier ---i\
POP

Drawing Instructions

~ingle ~raw --11 MAN ,ADDR

DA

~egisteJ II

DA

I DA

Table Draw

[Indirect ~ indeXed :=I ~epeat ~I FSM1,FSM2

~egister Q_raw ---11 FSM1,FSM2,X

Matrix ~ultiplier ~raw

[~epeat ~I FSMl

AI-5

DA
DA,X
if
.Reg­
ister

APPENDIX II

OPDEF's and EQU's

The following list gives the permanently defined OPDEF's
and EQU's for the LDS-2 Assembler. These OPDEF's and EQU's are
reserved mnemonics, which may not be used for other purposes.
An attempt to use one of the permanently defined mnemonics will
result in an error message from the Assembler. Chapter 6 of this
manual explains the format and meaning of both the OPDEF and the
EQU directives.

AII-1

..

. ' ..
' . ' ·- ..
• ' t ' ·- . . .
' ' ' f ' t • • . ' ' ' ' ' ·-. . . .
AC~

AC1
AC?
AC3
T05
S:P
OSP
IR
x
y
i!
w
RP
RC
WP
we
LO
ST
Rl.O
RLnr.
IL D
ILOt
IL. 01·1
1(,01~~

J
PUS rl.J
XECJ
SOR
SIB
Cli.,8
SETB
SORt;L
S2MCL
S"BSET
Si9Sl'.""T
ASHr~
LSf..ir-1
LSHL
ASHL
cs~~<
CSHI..
ASHt-<!J
LSHrtf°''
LS~L 1)
ASHl_il
MR
Ml.:

EO''
E: Ii!(
~QI.I

F."QI.!
t'GU
EQU
~Q(!

rQ;1

FQ'l
E 1,J ~I

E"Q'.l
r 1.J' I
F':) ! i

Fi_l!'

F1J: I
FY l
!="t.,J\I

tJ'J
FQ'I
F' lJ ! I

r: (ll ·'
i:- (~ ! '
~(~~I

!='.Q!.I
r ,_;i ! I

r:p:i[i:­
opnu:·
t:P~EF'
O~"iEF"'

rt~""'EF
!')p'l[F"

0Pl"'lE~

oe~E..r
OP,..·E'­
npnEr­
~p~)Er

!'pr;(~

OP'"'IEF"
0P'."'1Er.
OPfJE~
oe~;E!="

('1?"'£r
(1 pf) ti:
r'lP'.iEF
!iP!;E~

f'\P~Ei::-

GP"t:r
l"lpij£1:'

flP"' Er:'"
0P""fJ
f".'P~U·

npr.[c-
r,p"iEF
OP'iE~

tir'nt:r
opr·Er

24 CTMIS MUST BE SET TO THE WORD Sir.E)
6 - ··-·<SET THIS TO NUM8E:R- of'· BlTS/TEXT CHAR,
~56
"'*16384/5
!/10

<SET THIS SQ THAT ':(2**<~~16)) >
MULTIPLI£R FOR.1ST DIGIT or 'DEC~ 'F'RACT,

'' 2 ND ''
! : 11"' " :;Ro "
! ! ! /10
!?!?/HI
!!!?!/1.0
1

" 4TH "
" 5 TH " ,,

1.
?
~

4

5
6
7
tJ!10
?111
r?l12
7113
014
~15
fA,16
r/117
C0),C4,7,N>,t~-a,~-1,A~)

C0t0~00ot),(4,7,N),(~-a,~-1,A@)

C060000*t+2),(4,7,N),(4,~·5,N)

!0160000~••2),(4,7,N>,(4,~-5,N)
C0600~0~t•012)1(4,7,~),(.. •121~"51N)
C0160000*t+012>,C4,7,N),(~-12,~-5,N)
C060000ot+013),(4,7,N),(~-12,~-5,N)

C0160000*t+0t3l,(4,7,N>,C•-12,~-5,N)
f0?.1400ot)1(~·81••1,A@%)
C023400•t) 1 (... A, .. •1,~@%)
C0~5400o,),c~-8,~·1,A@%)

c l2l 5 0 vi 0171 o ' + 01 0 > , c 4 , 7 , ~.' > , c 4 + .. / 1 7 , .. - 5 , N >
C050~00*••011),(4,7,~),(4+~/17• ... 5,N)
(0~0000ot+~12),(4,7,N)1(4+ .. /171 .. •51N)
C050000*t+013),(4,7,N),(4+ .. /171 .. •51N)
(050~00Dt+014),(4,7,~),(4+•/171~-5,N)

t05000~*t+~15)1(4,7,~),(4+ .. /171 .. -5,N>
C050~00ot+016),(4,7,N),(4•~117,~-s,N>
c~;0~00*t+017),(4,7,N),(4+ .. /17, ... -5,N>
C050000*'+04>1C4,71N) 1 (4+~/17, ... -5,N>
C050~00*t+02>,C4,71N),(4+..,/17, .. -c;,N)
(050000*•+03>,C4,7 1 N>,C4+ .. /17, 5,N)
LSHL .
C050000ot),(4,7,N),(4+~/17, .. ~5,N'
C0~000~*t+~1>,C4,7,N>,(4+..,/17, ... -5,N)
(0'5091!00ot+05>1 C4,71N), (4+-./17, s:;,N)
C050~0~*t+06),C4,7,N),(4+~/17, .. -~,N)
C050000ot+A7>,C4,71N>,C4+~/17,~-5,N)

LSHLr'.1
C015~000ot+010),C4,7,N),(4+~/17, ... "5,N)
f015~000*t+011>,C4,7,N,,C4• .. /17, .. -5,N)

AII ... 2

" "

DEC nr)rEi:- c01s0000~,,,c4,7,N>

DECE npr1EF' (015?000~t+020),(4,7,N)

OEC'.L opnE;:" C015~000*t+0t00) 1 (4,7,N)
DE Cl.~ 0r':'E!=" C0150000ot+0120),(4,7,~)

DErG n~::Er C0150000*t+040),(4,7,N>
DECGF opnEr C0150000*t+060),(4,7,N>
DEC NE np·~Er C0150000~t+0140),(4,7,N)

OEr:A r')priEr. C0150000ot+0160),(4,7,N)
t Nt; ()F>ri[r c 0 1 5 ,.,, 12H'l 0 * t ... 01) , (4 , 7 , f\~)

INCE OP 1 ~: Er C015~000~t+0?1),(4,7,N>

I Nr. L If P , .. 1 EC"" (0 1. ~ 0 0 ('! 0 ~ ' ... 01. 01) , (4 , 7 , ~·')
INCLr:' (')PIEF r0150k"'i00~••0t2t), (4,7,N)
INCG OFnEr:- C015r000ot•041>,C4,7,N>
INrGF. opr--u· C0150000~t+061l,(4,7,N>

t NC ~\IF' :J?i'E.i- (~150000ot+0141),(4,7,N>

I NC I\ CP~EF C0150000*t+0161),(4,7,N)
COM npru· <0150000~t+02),(4,7,N)

COME r)p I"') u:· C015~000•••0?2),(4,7,N>

COML opr-iEi::· <01~0000~'+0102),(4,7,N)

COML.r: GP r., E;. C0150000~t•0122),(4,7,N)

COMG OP rn::. F t0150000~t+042),C4,7.N>

COMi.;F· OP!"l[f:" C0150000~t+062),C4,7,N>

COMi,JE :"!Pr"!EF' t015~000*t+0142),(4,7,N)

co~.\ ("IP'!EF' <015~000~•+0162),(4,7,N)

NEG 0 ,.:rn E F' (015~000ttT+03)1(4171N)

NE(;[OPfiEF C0150000*t+0~3>,c4,7,N)

NEGL npf"'Er C015~000ut+0t03),(4,7,N)

NEGL~ 0pnE.r- C0150000*t+0123),(4,7,N)
NEr,G ripr[!=" <015~00.0~t+043),(4,7,N>

NEGGF !')P'iEf C015~000ut+063),C4,7,N>

NEG i~ F. np:-,Er- C0150000ot+0143),(4,7,N)
NEG.:~ o,~l"\t:r.· C015~000~t+0163),(4,7,N)

TST fiPnEF C0150000~t+04),(4,7,N)

NOP i)pr1Er r T<; T 0J
TSTt: n;J~Er. <015~000~t+0?4),(4,7,N>

TSTL rlpr.Er C015~000*t+0104),(4,7,N)

TSTLi:" np1r.r r0150000*t+0124),(4,7,N)
TSTG 'JP1E.F C015~000~t+044),(4,7,N)

TSTG~ opr1[r C0150000~t+064),(4,7,N>

TSTfvC"' npriE~ C0150000~t+0j44)iC4,7,N)

TST~ npr,u· (0 t 5 CH~l Ql 0 ~ t + 0 t 6 4) , C 4 , 7 , f\I)

~R ,., Pr~, t: F" (0 t. 517' j(J 0 0 ~· 1' + 0 5) , (4 , 7 , ~!)

~RE 1P:IE.F C01500~0*T+0?5),C4,7,N)

~RL 0pn[r C015~000*t+0105),(4,7,N)

rRl~ E CP!t.F C015v000*t+0125),(4,7,N)
7!RG o P ~ u· C 0 j, 5 0 0 0 0 * t + 0 4 5) , C 4 , 7 , N >

~RGF. npnE: C0150000~t+065>,C4,7,N)

~Rr--!£" ('lpr.Er C01~0000#t+0145),(4,7,N)

~RA npr~EF- t015~0rn0~'+0165),(4,7,N)

ASV 1 pri E. F C01~0000~t+06),(4,7,N)

ABVE !JP'ifT C0150000*t+0~6),(4,7,N>

ABVL f"JP'iEI=" C015~0~0~t+0106),C4,7,N)

ABVLS npr··u- C0150000ut+0126),(4,7,N)
A8V(~ npni::r C0150000*t+046),C4,7,N)
ABvcr._ rpnn- C~150000#t+066>,(4,7,N>

ASVN~· npnEF C0153000*t+014~),(4,7,N)

ABVA opnu;· C0150000~t+0166),C4,7,N)

t\TT-~

SL.O
SLOE
St.CL
SLOU'.'
SLOG
SLOGt
SLON~

SLOA
REX
CE
CNE
CEI
CNF:I
CEMI
CNEMT
ADD
ADONr::
AD~I
A On I \!C
SUR
SURi\JP.
SURI
SUR Pi B
OR
ORr
XOR
XORi
XOf'?N?i.
ANO
ANnt.
ANON?
PUSH
I PUSH
PUSH!
DP I.I Shi
PUSW1
POP
IP0P
POPt
OPOP
POPD
REGJ
REGPJ
REt";JS
POPJ
POPJrJF"
tOT
SLEE'='
SETA
SETR
SETV
TOI\
TOR
TOV
OOTA
OOTR
OOTV

OPnEF"
----"r., PDE r:

opr·EF'
n?rU'"
rprEi:-
OP!"'IE!="
r!P~E!="

IJPnEF'"
r".lP""Er.
OPnEr
OPrEr
r".lPriE r-
Qprj(~

flP~Er:-

r!p"'l[F"

OPrEF
op;-iEi:-
rip~EC"

npr"Er:"
f!Pi"\(r
~pri(r."

tjp'l(r."

OPnEF
n p :')Er-
f"FnEr
')p;iE~

f'P0Et:"'
(lpr'I Er:."'
~pr"l(r="

opn(r:""

npnEI':'
C'PilU"'
oP~Ec-

n~~EF

rprii:: r.
n?r.u=·"
f)pr.[~

npn[F

CP'"'Er::'
np1[r
"lpnE~

npnE['.9
np·~Ec-

f"IP'."tF
np~p-

f\P~Ec-

r'IP!"'EF
C'\pnr:=r.
E Q'J
r 1_J I;

i:-rr 1

F" •J: !

F"WI
F°' l~ I!
E (~!I
rCJ:i
Eot:

!015~000*••0204),(4,7,N)
(01500012HH+0224) ~f4, 7 ,·N)
C015~000•t•0~04),(4,7,N)
<0150000of+0324),t4,7,N)
C fO t 5 V10 r;J 0 .. ' + 02..4 4) , (4, 7, N)
<0150000~•+0264),(4,7,N)
t0150000•t•0344),(4,7,N)
(01500~0~••0364),(4,7,N)
C015~000*t+07),(4,7,N)

C015~000~t+012),(4,7,N),(4,~-5,N>

C015~000~t•013>,C4,7,N>,C4,~-5,N>
C015~000~t+014),C4,7,N>,C~"12,~-5,N)
C015~000*••015),(4,7,N>,c~~12,~-5,N)
C01500~0~t•016),C4171N>,(~-12,~-5,N)
C0150000*'+017),(4,7,N>,c~-12,~-5,N)
(060~00~t),(4,7,N),(4,--5,N)
(016~0~0*t),(4,7,N),(4,~~5,N)

C060~00*t+~10),(4,7,N);c~-12,~-s,N>
C01600~0~t+010),(4,7,N>,c~-12,~-5,N)

C060~00*'+01) 1 (4,71N),(4,~"51N>
C0160000*t+01),(4,7,~),(4,~-5,N)
C060000~t+011)1C4,7,N),c~~12,~~5,N)
(016~000~••011),(4,7,N),(~-12,~-5,N)
(060000*•+05> 1 <4,7,N>,C4,~~5,N)
(016~000~t+05),(4,7,N),(4,~~5,N)

C0A000~*t+0J),C4,71N),(4,~.5,N>
C0160000~t+0~),(4,7,N),(4,~"5,N)

C0160000*t+06)1(4,7,N),(4,~~5,N)

C06000~*t+04),C4,7,N),(4, .. ~5,N)
C016~0~0*t•04),(4,7,N),(4,~-5,N)
C016~000~t+07),(4,7,N),(4,~"5,N>

C070000*t) 1 (4,7 1 N),(4, ... 5,N)
C0700.00*t+04),(4,7,N>,C4, .. ~5,N>
!070000*t+06),(4,7,N>,(4, .. -5,N>
C070~00*t+010),(4,7,~)t(4,~·5,N)
C070000*t+01?),(4,7,N),(4,~~5,N)
(070000o•+01),(4,7,Nl,C4,~-5,N>
(070000-1>,+05> I (4,71N), (4, .. -5.N>
C070000~t+07),C4,7,N),(4, ... 5,N>
Cl2J7fM'J00ot+VlU.), (4,7,M), (4,..;.5,N)
C070000*t+~13),(4,7,~),(4,~~5,N)

C070000*t+014),(4,7,N),(~·i2,~~5,N)
C070000~•+015),(4,7,N>,(~-12,~~5,N)
C070000*t+~16),(4,7,N),(~-12,~-s,N>
(072C'l00.~H +01A)
rPOPJJ,(•-.12, .. -5,N)
C017~0~0~t),(4,7,N),C .. •8, .. ~1,N>
CIOT 1'110)
f",1
V.

1.
?

0H~

~11
~H2

AII-4

BOXA
ROXR
F'RMA
F"RMR
BOX
Nn1cr.iv
DOT
F"RnM
STAR
TO
POL't'
SET
NLPI)~

LINE
RX
AX
RA
AA
AR
RR
vv
AV
SAC~)

s A!'~ 2
sx
St
DAC': t;;
DX
SAVEt.B
SA'JERT
VIEwLB
VIt.~-~r~r
W l f\! D 1_ 1:3

WI WJP T
IN5TL8
INSTPT
NAME.
CO!~
HIT Af'.!G
SEL I ~,T
SAV[
VIE~-,

WIN[;
INST
LOCL/I
L 0 r; I.~
LOCl.SA
LOCt. ~~ R
L Qt--frt A.

L01"1MP
LOMV!r
LOMOq
STCL
STMM
STMDr
RL.OCl,.A
RLnc1..R

EQ!I
EQIJ
e" Qll
r::1·)1 l

!='G:!
r l:. ! I

F.°l~ ! I

~l}';

FfJI:
~(..Jll

!:' (~ i J
!'..4 ~, i I
I. l'I

E rJ: !
t I.vi I
F: Q: !

!=" ~~: l
!=" ;\ 11

I.\'

t:'.U'I
!='° l·.JI I

El: i J
F" . : I

.\..,/'

El~"
~ ,, l !
. l..>I •

F. CJ i I

~ (J; !

F' r··' I ,.,,.i

i:."'•··' • lv. .

F' •"' II t..V' 1

r."(.;\'
F" G i I
F'~~!~

r QI I

F:(J '.I

f.".(;,1 I

~VI
Fr'. i I l11 .

E' (;;; J
r: \.~ . .J
!'."'' ·'t '··· ~"
tOil
F"~'i
Eu' I
t (~ ! J

E" iJ '. !
r'!P 1)EF
llF'·U·
!Jp·•Er
D ;::n-i Er-
OPf"IEr
r'l.H'• E r:-
C·F':[r-·
•JP·HJ
0Pr:•U'"
cpr•EF
n ~- r~ E !="

(H.1 '~ [F
!'i?~F.r

014
015
016
n11
0
110X
1.

4
?
3
POL .. Y
7

6
7
(-,

3

4

1

:?! ,,

1.
I?

:~

4

5
6
7
Vl10
~7111.

l?l2
~-"13

014
015
·~16

~~ 17
C040000~t+06),(4,~-5,N)
(040400*t+06),C4,~-5,Nl

<041000*f+06),(4,~-5,N>

(041400*t+m6>,C4,~-5,~)
C042000.*f+06>,C4,~-5.N>
(042400*t+06),(4,~-5,~)

t043000*•+06),(4,~-5,N>

(0 4 3 4 0 0 * ' + "~ 6)
C0t400V'l0*'ri+06), (4, 5,N)
f014?000*t+06),(4,~-5,~)

(01.43400•"1' +06)
C040000*'),{4,~-5,N),(3,~-1,N>
C040400*t),(4,~-5,N),(~~~-1,N)

AII-5

Rl.OMMA
RL.0Mt-4R
RLOMflAP
RLOMnR
RSTC' ...
RSH1f'-4

RSTMDR
RTCLA.
RTCLM
RTCLSA
RTCLc:;R
RTMOP
SKCL.
RTM1"1
RTMMS
SKMM
SKMMC::
SKMor
NOMM
POPMt,1
PUSHMM
SD
TD
TOR
TOI
TDIR
TOTX
TOTXR
RD
MMQ
MMDR

r.PnEF"
opnE::-
npnE~

0PilEF'
npiiEF
r'JP~n·

()PriEr:-
llPfJE.r
!iPrE~
1")pll[~

C"F'l'"\(J:"

np '"'E !="
oprEt"
np1EF'
i'lPnEI="
0Pr'IEF
f!pn[i:-
Qpriu·
Ot-?OEI="
opn(~

1jpnEF'
1P1EF"
OF!!EF-"
OP .. ,Er.-
fiP'l(~

C'lP r, E i:-
np:tEF
0pr;Er
()p~u-

0P'"'[r
o P '! u·
~ l'J I"\

t042P'00..-•), (4, 5,N), (3, .. ""1,N>
C0 4 2 4 0 0 tH•) , (4, e. ~5 ;-N) , (3, ., ""'1, N)
C~J43000o•), (4, 5,N), (3,i1 1 N)
C04340~o,),(3,~-f,N)
(0140000«>t),c4, ... 5,N>,<3,•~1,N>
C0142000~t),c4,.,.5,N),(3, .. ~1,N>
C014~400ot),(3, .. •11N>
C~40000*•+07),(4,~-5,N)
C040400*t+07>,(4,~·5,N)
(041000*t+07),C4,~~5,N>

C041400*'+07>,(4,~·5,N)
(043400*t+C"7)
C0140000*t•07),(4, .. -~,N)
<04200~*t+07),(4, .. -5,N)
C042400~•+07),C4, .. •5,N)
f014?000~t+07),(4, ~,N)
f0142400ut+07),(4,~-~,N)

(014~40~;.n. t +07)
c 014?.41210~ t +06)
C01430~0~t•06),(4,~-~,N)
C014~000ot•07) 1 (4, .. -5,N)
C020~00*t),(4,7,N),(~-s, ... -1,A@%)
C040~00*t+~16),(3,7,N),(3,~-5,N)

C040000•t+0216),(3,7,N),(3 1 •-51N)
C014~000~t+0t6),C3171N>,C3,~-5.N)
(0140000* t +0?16), (3. 7, f\J) I (3, .,_5, N)
(01440~0*t+016),(3,7,N>,C3,~-5,N>

C0144000·ll·t ... 0'?16) I (3,7,N)' (3, ... -5,N)
(0 4 0 C'! '10 *' + 010) ' (3, 7, tJ) ' (3, .. ""5, N) , (3 I .. -1 I N)
1 040000ot+057),(4 1 7,~)
(04000~*t+0257)1(4171N>

AII .. 6

APPENDIX III

A NOTE ON HOMOGENEOUS COORDINATES AND THE LDS-2

I I I. l Introduction

This note is designed as an operational, as opposed to
a theoretical, note on homogeneous coordinates and the Evans &
Sutherland Line Drawing System Model 2. The use of homogeneous­
coordinates operationally and conceptually simplifies many of
the problems in presenting and manipulating three-dimensional
objects with a computer graphic system. The degree of simpli­
fication gained is apparent in the airport examples discussed
at the end of this Appendix. These examples are significant
because they are indicative of the general class of problems
which involve multiple moving bodies in three-space.

For a full LDS-2 system, the basic three-dimensional
coordinates describing objects is stored in main memory in
four consecutive words. These four words represent
the "homogeneous" three-space coordinate vector [X, Y, Z, W].
The first three components X, Y, Z are the normal orthoginal
three-space distances from the origin of coordinates of the
particular object. The fourth component, W, is a scale factor
for the first three components.

The X, Y and Z components are binary 2's complement numbers·
arrayed about Zero=OO ... Ofr 2 • The binary point, analogous to
the decimal point, can be thought to be located at the user's
discretion. Thus in one representation of the whole three­
space, the user might be thinking of a "cube" of space "centered"
at Zero and running to approximately ± Unity in each direction;
if so, the user would be thinking of the binary point being
located one binary place to the right of the left end of the
half-word. Another natural representation with a 24-bit LDS-2
system might be a cube of space centered at Zero and running
from -z23 = 10 ... 0 2 to 223-1 = 01 ... 1 2 ; in this case, the binary
point would be located at the right end of the half-word.
Regardless of the assumed binary point, the X, Y, and Z values
can still represent any scale for the object or space in question.
The location assumed for the binary point is independent of this
choice of scale for the object.

The W component is often stored as unity to represent a
unity scale for the homogeneous coordinate. If W were half of
unity, the coordinate would represent a point (or distance)
twice as far from the origin. If W were Zero, the coordinate
would represent a relative value. Since a relative coordinate
is the difference between two absolute coordinates, this can
easily be shown for coordinates with equal W's:

[X, Y, Z, l] - [X', Y', Z', 1] = [~X, ~Y, ~Z, OJ

AIII-1

The set of four-element homogeneous coordinate vectors
that describe an object can be transformed by the LDS-1 Matrix
Multiplier. There are 16 elements in this matrix and, contrary
to coordinate data, they are considered to have a fixed binary
point. The elements are signed fractions in 2's complement
representation. Thus, the binary point is assumed to be
located to the right of the left end of the half-word. Unity =
01 ... 12, is the largest positive fraction that can be represented
as a matrix element. For convenience in the example matrices
that follow, this is written "l."

I I I. 2 Conventions for the Homogeneous Coordinates

Some of the literature about homogeneous coordinates con­
siders Z as the distance from the projection plane to the object,
and Was the distance from the observer's "eye point" to the
object. However, in many applications, it is inconvenient or
impossible to calculate the location of the projection plane.
An example is the projection screen for a pilot in an aircraft
simulator; this application may need a virtual screen at
infinity. In contrast to this potential problem of the location
of the projection plane, the location of the eye point is known
in almost all applications. The Evans & Sutherland Clipping
Divider considers the Z information presented to it as the
distance from the eye point to the object.

Before proceeding, a comment about orthographic projection
is in order. In the "Z from the projection plane" coordinate
system, the perspective presentation seen on the projection
plane approaches an orthographic projection as the eye position
is moved farther and farther from the plane, i. e. as W ~ oo.

In the "Z from the eye point" system, which is used exclusively
in what follows, orthographic projections are made by using a
transformation matrix which makes the resulting scope coordinates
depend upon W (the homogeneous coordinate scale factor) , but
not on Z (the distance from the viewpoint). As an interesting
example, consider a star in the sky which is located infinitely
far from the viewer. Since the star is infinitely far away,
it has a coordinate of [X, Y, Z, O]. If this point were ortho­
graphically projected onto a screen, it is almost certain to
be projected to a point on the screen that is very far from the
area of the screen that represents the viewport. In effect,
the orthographic projection of the star by the Clipping Divider
would entail dividing by 0. This would make the scope coordinates
X and Y extremely large, (i. e. off the scope). s s

III.3 Conventions of the Clipping Divider

In addition to the "Z from the eye point" coordinate
system, three other conventions used by the Clipping Divider
must also be understood. The first convention is that the
Clipping Divider treats its four component vector input as if
it were [X, Y, Z, Z] rather than [X, Y, Z, W]. That is, Z
is assumed to bextheYz distance for X and the Z the Z dista~ce
for Y. Since [X, Y, Z , Z] describes a singleypoint, normally x y

AIII-2

Z = Z = Z for information presented to the Clipping Divider.
The t~ansfbrmation from [X, Y, Z, W] data stored in memory to
the [X, Y, Z , Z] data presented to the Clipping Divider can
be handled b~ th~ Matrix Multiplier. Examples are given at
the end of this Appendix. The Clipping Divider algorithm then
processes this input information to get an intermediate result
[X', Y', Z', Z']. Following this, the algorithm divides X' by ' x y
Z' and Y' by Z' to get the final X and Y scope coordinates to
b~ passed to the display.

The second convention is that the Clipping Divider hard­
ware operates as if the field of view were goo in both X and
Y. Consequently, the Z and Z presented as input should have
been scaled to provide ~he deslred field of view. Again, this
transformation can be handled by the Matrix Multiplier as shown
in the examples at the end of this Appendix. The normal pro­
cedure is to scale Z and Z to values that equal X and Y at
the edge of the desi~ed fietd of view. For fields of view less
than goo, this scaling reduces Z, and can be represented as an
appropriate fractional number in the Matrix Multiplier.

The third convention is that the Clipping Divider always
treats its input information in a left-hand coordinate system.
Thus, positive X increases to the right and positive Y increases
upward, while positive Z increases away from the eye point per­
pendicular to the center of the screen.

These conventions used by the Clipping Divider need cause
no trouble; they can be handled by appropriate transformations

made by the Matrix Multiplier. In fact, the natural way to
handle all transformation information is to combine them into
a single 4 x 4 transformation matrix. A matrix for the first
transformation, the Clipping Divider Switching Transformation
[CDST], can be written as in the top of figure AIII.2 when
Z = Z = Z .. The matrix for the second Field of View Trans-
forma~ion lFVT] is shown in the bottom row of figure AIII.l.
The desired field of view is defined by a 0 and 8°. This trans­
formation [FVT] can then be combined with [CDST] to get the
final Switching and View transformation [SV].

Since the Matrix Multiplier can multiply matrices, (SV]
can be combined with any other transformation by the Matrix
Multiplier. One method is to load [SV] into the Matrix .
Multiplier (and probably the Data SINK for later use) as the
LDS-1 starts. It can, thereafter, be combined automatically
with each individual transformation which has been stored
with individual picture elements. An alternate method is to
use software to combine the (SV] transformation with each
individual picture element's transformation before beginning
the display. The first method makes the data base more "pure"
and requires less software, while the second allows the LDS-1
to operate faster when displaying the picture.

AIII-3

III.4 Position - Viewpoint Matrices

An Object's Position matrix (denoted [OP]) is the 4 x 4
homogeneous coordinate matrix that specifies an object's
location and orientation with respect to the origin of three­
space coordinates. It is derived from concatenating the
information describing the object's rotation, scaling and
translation, as shown in figure AIII.2. The concatenation of
a [O, 0, 0, l] column makes the matrix square.

This resulting square [OP] matrix always has an inverse.
Moreover, since the [OP] describes the object position from
the origin of three-space, the inverse [OP]- 1 , describes the
three-space position from the origin of the object!_ Thus,
the [OP] can be thought of as describing the "view of," and
the [OP]- 1 can be thought of as describing the "view from,"
the object in question. Use will be made of this relationship
below.

I I I. 5 The Airport Problem

The picture in figure AIII.3 allows several operational
relationships to be written down just as the LDS-1 system will
execute them. We will assume for the sake of simplicity that
all viewers have the same field of view (i. e. a 0 and 6°) so
that there is only one [FVT], and thus only one [SV]. Other
position matrices are defined as noted in Table 3.

First, what does one see from the base of the control
tower (the origin of three-space coordinates) looking straight
!!£.? One sees the space, the Trans-World plane in its correct
position, and the United Airlines plane in its correct position,
(assuming the field of view is large enough). Thus, to start
a picture, the display program could:

1) load [SV] into the DATA SINK (for later use)
and the Matrix Multiplier

2) draw the objects fixed in three-space

3) multiply the [SV] matrix in the Matrix Multiplier
by [UAP]

4) draw the United Airline plane

S) load the Matrix Multiplier with [SV] from SINK

6) multiply by [TWP], and draw the Trans-World plane

What does the control tower operator see? He sees the
three-space and the objects just as before, except from his
translated position up the Z axis and looking along a direction
rotated from the three-space ~axis. This transformation is

defined in figure AIII.3 as [CTP]. The program would:

AIII-4

1) load (SV] into the DATA SINK and Matrix
Multiplier

2) multiply [CTP]- 1

3) draw the objects fixed in three-space
4) continue as in previous example

Note that there may be no reason to draw the control
tower itself (which is assumed to be part of the three-space).
This -is especially true if none of the control tower appears
to the control tower operator. Omitting the tower may save
program execution time at the cost of a little more care in
initially organizing the data.

What does the United Airlines pilot see? He sees the
space, and TWA at the TWA location. Consequently, a program
might:

1) load [SV] into SINK and Matrix Multiplier
2) multiply [UAP]- 1

3) draw the three-dimensional space

4) multiply [TWP)
5) draw the Trans-World plane

Again, this assumes that none of the United plane is visible
to the United pilot.

AIII-5

TRANSFORM MATRICES

[CDST]
Clipping Divider

Homogeneous Switching
Coordinates Transformation Clipper Input

[X' y' Z, W] 1 0 0 0 = [X, Y, z Zy] x'
0 1 0 0

0 0 1 1

0 0 0 0

[FVT] [SV)
Field of View Final Switching and

[CDST] Transformation View Transformation

1 0 0 0 1 0 0 0 = 1 0 0 0 1
0 1 0 0 0 1 0 0 0 1 .o 0

0 0 1 1 0 0 tan a/2 0 0 0 tan a/2 tan B/2

0 0 0 0 0 0 0 tan S/2 0 0 0 0

Where the chosen angles of view represent a viewport described by:

y

~ X a.o

a., e < 90°

Figure AIII.1

3X3 TRANSFORMATION
(ROTATION ANO SCALING)

3X4 TRANSFORMATION
(ROTATION, SCALING AND

TRANSLATION)

4X4 HOMOGENEO.US
TRANSFORMATION

(ROTATION, SCALING
AND TRANSLATION)

HOMOGENEOUS COORDINATES

COORDINATES X TRANSFORMATION = NEW COORDINATES

Ix. v, zl a b c

x d e f

g h

Ix. Y, z, il Ix: v: z;i
1 x 3X3 -
I

j k

Ix. Y, z, 1l 0 Ix~ v;• z•: 1l
I

1 x 3X3 0 -
I

0

3x1 1

Figure AIII.2

THE AIRPORT PROBLEM

Origin of the three-space at base of control tower.

Origin of each plane assumed to be at pilot's eye point.

z
A
! y
t <J

_L -·t!; -;/ ___ ___
I /
I

IL_ .. ·- - -· l> x

Associated Matricies

[UAP] = United Airlines Position. Matrix giving the
position and orientation in three-space
of the United Airlines plane from the
origin of three-space coordinates.

[TWP] = Trans World Airlines Position. Matrix as above.

[CTP] = Control Tower observer's Position. Matrix as
above.

Figure AIII.3

I 02h 3JJ32

	0001
	0002
	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	5-01
	5-02
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	7-67
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	9-01
	9-02
	9-03
	A-01_1
	A-01_2
	A-01_3
	A-01_4
	A-01_5
	A-02_1
	A-02_2
	A-02_3
	A-02_4
	A-02_5
	A-02_6
	A-03_1
	A-03_2
	A-03_3
	A-03_4
	A-03_5
	A-03_6
	A-03_7
	A-03_8

