
HPS-11.fl.-~ DIAGNCf~TICS SOFTWARE.,.

Multi Pictute Swste~/ ·Plcture Swstem 2
Di·aS,,~st.r~;,-: ~~-r~·wetre Ma~ua],, ;1;.

Evans fi,$utheriand ·1nt:e1"nal Document
P'.P..eP,1ired .:::bg Bi i 1· Roa~h · '

Ausu~t 15, 1980

, This ~'?·~9&,P:.t.:i·.~:ilt·'··fnten.r.S~.~··. a~. ~' lil•Jide •. for EtiS emP ~owees ·or
,;¢wstomers irr 'th9' ·e.avelo~•enif' 'nia1rrt•nance,;. or· conv.ers i or1 of MPS
~·41~_d, .PS2. ~ her.~}Jf~y;~~·· 7~1~~eeti~elw :.e'ir~r .. ed :>.i*~· as P i:.ct1jre sw·s'tem >
'..Q,,1uru:t:s\1c::~•,,.;.,,. ft8'111~l1et.;r"1~t~ with ~ictµrf.l_ s~st'elll hardw,arer as
doc.u111errtea~;~n t'h-e.:.ltF:SiPS2 Hardware Reference Mamual i and with
a~seilbJw fansuase' ·sof'twar~, develoi=r111er1t.r·. Preterab:L\:I u.nder RSX-lli11
a re ·p;'risu.P.Po~ed... , .. , ·· · ~-

. '··...:.~.,.·~

MPS/PS2 DIAGNOSTICS SOFTWARE
CONTENTS

TABLE OF CONTENTS

1. Introduction and User's Information

1.1. Desisn PhilosoPh~
1.2. Supported Qperatins S~stems
1.3. 0Peration of Standard Diasnostics
1.4. Introduction to QSDDT

2. Diasnostics Software Development

2.1. MIXIT Prosrammins Lansuase
2.2. Diasnostic Utilit~ Subroutines
2.3. Prosrammins Guidelines
2.4. Procedure for Co&Pilins and Linkins

2.4.1. PreProcessins
2.4.2. MIXIT Co•Pilation
2.4.J. MACRO Assembl~
2.4.4. Linkins

2.5. Diasnostic Debussins Technioues

3. Diasnostics Software Maintenance

3.1. Introduction
3.2. Diasnostic Revisions
3.3.· Diasnostic Release Proced•Jre

MPS/PS2 DIAGNOSTICS SOFTWARE
APPENDICES

APPENDICES

A. MIXIT Lansuase DescriPtion

B. Machine Dependent Subroutines

c. Diasnostic 0Peratins Swstems Table

D. MIXIT Utilit~ Subroutines

E. Diasnostics Generation Flowchart

F. LINK.DOC

G. SamPle MIXIT Prosram, GSD002

INTRODUCTION
DESIGN PHILOSOPHY

1. INTRODUCTION AND USER'S INFORMATION

1.1. DESIGN PHILOSOPHY

a. Machine Independence

b. Standard Operator Interface

c. Specified b~ Desisn Ensineer

d. Assume Minimal Hardware Confisuration

e. SimPle Standard 0Peration Combined
With Flexible Non-Standard Qperation

References MPS/PS2 Dias Manual, Sept. 'SO, Ch 1
or Nov. '78, Ch 5

1.2. SUPPORTED OPERATING SYSTEMS

a. RT-11 Sinsle-Usert fait; convenient batch mode;
can use 11/04 and floPP~ diskette.

b. MaPPed RSX-11MI Swstem used bw most customers;
multi-user oPeration, but na DMA, interrupts, or
batch mode+

c. UnmaPPed RSX-11M: For MastaPe distribution to
RSX eusta•ersl suPParts DHA and interruPts.

d. VAX/VHS: batch modev DHA, and interruPts. Communicate
with PS thrau•h HPS Driver Dia•nostic QIO's. In some
cases much slower than RSX-11H~ Th••• will work on
PS2, thau•h EtS does not Provide GraPhics Software
for PS2 on the VAX.

e. Interdata 8/32: E&S developed the utilitw subroutines
and converted the diasnostics, but no lenser has an
Interdata s~stem in-house. In this and the two followins
cases, Assembler so~rce files for the desired s~stem
ma~ be senerated under RSX or VMS.

f. NORD-10, Melcom-70t Utilitw subroutines developed by
OEM's in Norwaw and Japan resPectivelw.

Referencel HPS/PS2 Dias Manual, SePt. •eo, Ch 5 ff

1.3. OPERATION OF STANDARD DIAGNOSTICS

H - HelP
M - Modifw
D - Do Phases
P - Pass Count

INTRODUCTION
STANDARD OPERATION

x - Execute
s - StoP on Error
L - Loop on Error
c - LOOP or1 Error,

1.4. INTRODUCTION TO QSDDT

PAGE 2

and Continue

General PUrPose tool' useful in hardware troubleshootins and
diasnostic debussins. See Dias Manual Nov '78, Ch 6, or SePt '80
Ch 4. Commands not documented as of Nov '78!

Y - Sense Interrupts
- Search OF:e rato r C P.100 = Se,a !'fh ;Mask)

V-?J? :.t ,-, ;,

SOFTWARE DEVELOPMENT
UTILITY SUBROUTINES

2. DIAGNOSTICS SOFTWARE DEVELOPMENT

2.1. KIXIT PROGRAMMING LANGUAGE

See APPendix A

2.2. DIAGNOSTIC UTILITY SUBROUTINES

2.2.1. MACHINE DEPENDENT SUBROUTINES

Contained in files PSIO.HAC, IOSUBS.MAC, QSDDT1.MAC,
and RTI.HAC or their counterparts. See APPendix B
for descriptions of constituent subroutines' and
APPen~ix C for table of corresPondin~ files.

2.2.2. MACHINE INDEPENDENT SUBROUTINES

PAGE 3

Written in MIXIT; files commonlv used bv several diasnostics.
See APPendix D for sPecifications.

ARFS.MIXrARF2+MIX - Subrs RTWT,ARFS; ARF2 used for
double-buffer in~.

RNDM.MIX - Subr RNDM; Random Number Generator

CODE.MIX,NCODE.MIX - Subr CODE is MNEMONIC Interpreter.
NCODE.MIX respects PSTB; CODE.MIX does not.

2+3+ PROGRAMMING GUIDELINES

a. Use INIT and DPCH for standard oPerator interface

c. Use <76rPSTB> thru <101,PSTB> for non-default Parameters.

d. Use ARFS for auto-referesh.

e. Minimize number of RDPS and WRPS calls to imProve
Perfor~ance. Better one block transfer than man~.
sinsle-word transfers. Avoid DHA callsr to run ~nder
MaPPed RSX. To imProve Performance, DMA ma~ be an option
controlled bv e.s. <100rPSTB>. Default should be DMA
disabled.

f. Use tables and indexins Profuselv. Use indexed dispatch
rather than chained branches. Better a 16-word table
and indexed reference than four instructions.

s. Do not race with the hardware. Alwa~s assume the
hardware will win' and if necessar~r ensure this bv a
call to WAIT. If waitins 1(8 second or more does not
make the Prosram intolerabl~ slowr alwa~s call WAIT

SOFTWARE DEVELOPMENT
PROGRAMMING GUIDELINES

PAGE 4

rather than write a timeout loop. In a Multi-user
swstem1 this will relinouish the c?u. Callins UAIT suar­
antees AT LEAST the specified delaw. Whether WAIT
is called or not, in a Multi-user swstem the diasnostic
misht be suspended at anw time for an~ lensth of time.

h. Start refresh buffers on an even address, and ensure that
all data sesments have an even word count.

i. ltever •Jse DATA to define two character codes in one word.
Use CDATA or BDATA.

J. Do not use interruPts CCINT, SINT, and DINT> except in
interrupt diasnostics. At Present, onlw QSD100, QSD1171
and QSDDT do.

k. Access the interface resisters via READ and WRITE. DHA
transfers maw onl~ be initiated bw the DMA subroutine,
and will cause the task to abort under MaPPed RSX.

1. No recursive routines.

m. Place constants and variables in one area of the Prosram1
in an easilw searched fashion. Constants should have
identifwin~ names such as X10 for octal 10, K16 for 16K,
etc.

n. All SCB addresses are obtained from PSTB after INIT has
been called+

L1: CALL SUB1•·GX1vTAB1> ;PROCESS NEXT ENTRY IN TABLE
·ADD X4dX1 ;BUMP POINTER

CMPA 1x1,r1sz ;coHPARE WITH TABLE SIZE
ERN Ll ;STILL NEG, LOOP
+

SUBR SUB1,1

Here .1 = col. 1, Present table. entrw
<1,.1> =col. 2, et~.

2.4. PROCEDURE FOR COMPILING AND LINKING

2.4.1. PREPROCESSING

>RUN $F'REPR
+ • + • • • • • • • • • • • • • •

• t + t • • • • • • • • • • • + •

FILE.HIX
FILE.PRE

or, for Pre?rocessin~ with indirect file1

1

SOFTWARE DEVELOPMENT
COMPILING AND LINKING

>RUN $PREPRI
•••• ••• •••••••• : FILE.PRC

where FILE+PRC contains (b =blank>:

FILE1.MIXb
FILE1.PREb
FILE2 .?i!Xb
FILE2+PREb
etc.

2.4.2. MIXIT COMPILATION

P~eferred method, even tor sinsle file:

>RUN $MIX11 C~~ MIX8J2, etc.>
•
*iFILE .t1XC

Where file FILE.MXC contains&

FILE1+MAC,Tit/L!OFF=FlLE1.PRE
•
iEOFt

Or a method which has bu~s:

)RUN $MIX11

*FILE1.MAC=FILE1+PRE
CCR>

2.4.3. MACRO ASSEMBLY

PAGE S

It ·is Possiblef but nat recommended, ta use re•ister names
as labels' e.s.:

SP: DATA 0 ;A MEMORY LDC NAMED •sp•, NOT RECOMMENDED

To assemble such a file under RSX, use the /DStREG switch.

The MIXIT •srop• instruction senerates, for PDP's:

.MCALL .EXIT
+EXIT

To accomodate this in RSX, create file EXIT.MAC, containin~:

.MACRO .EXIT

.MCALL EXIT$S
EXIT$S

.. ~Ji'.}Ltl.tL ... A E x.t.:i:

SOFTWARE DEVELOPMENT
COMPILING AND LINKING

PAGE 6

And assemble ~n~ file which uses •srop• <usuallw Just the
main file)1 as follows.

>MAC FILE=EXIT,FILE

NOTE! This will NOT work in conJunction with /DS:REG

The MAC file ~enerated bw MIX1i is voluminous, and it is
usuallw a waste of time and PaPer to obtain a listins. A
swmbol-table onlw listins, however' can be useful for
debus~ins, and is obtained as follows:

>MAC FILE,FILE/NL:=FILE

or another case:

>MAC ,FILE/NL:=EXIT,FILE

Be sure1 of course, that the LST file corresPonds to the
OBJ file beins debus~ed.

2.4.4 .. LINKING

File LIN"K.DOC contains linkins:i instr1Jctions for all
distributed diasnostics. To convert it to an executable
RT-11 batch file:

.R TECO
*ERRTLINK.TEC$YHXXHKERLINK.DOC$EWLINK.BAT$
YMX$$

To convert it to a TKB CMD file far UnmaPPed RSX (options
are ASG=TI!1 and PAR=PAR14K:40000l70000)!

>RUN STEC/INC=B192.
*ERUNMAPD.TEClYHXXHKERLINK+DOCSY
EWUNMAPD.LNK$MX$$

Thereafter, to ~enerate a TKB CMD file for MaP?ed RS~
(options are ASG=TI!1 and COMMON=PSDEVOtRW>t

>RUN $TEC/INC=8192.
*ERMAPD.TECSYHXXHKERUNMAPD.LNKSY
EWMAPD.LNK$MX$$

Options for VMS are ASG=Til1 and ASG=MPA0!4

2.5. DIAGNOSTIC DEBUGGING TECHNIQUES

~Url~A~~ LJ~Y~LU~n~~I

DEBUGGING TECHNIQUES

2.s.1. DEBUGGING WITH GSDDT

PAGE 7

Examine the hardware after runnins the diasnostic. Is the state
as expected? Examine and search memorv buffers. Hodif~ refresh
buffers; reset <R>; sPecifv FOtF1; start autorefresh CG>. If
sarbase aPPears on the screen• K1 chanse F11 G to do binar~
search and locate the sarbase.

2.s.2. DEBUGGING WITH SIMPIO

Link with SIMPIO <simulated PSIO> instead cf PSIO. All PSIO
calls and arsuments are reported at the terminal. For read
OPerations' the Prosrammer ma'=' sPecif'=' the received data. This
is useful for verification of diasnostic error messases. Is the
seauence of writes and reads as expected?

2.5.3. DEBUGGING WITH ODT

Link with ODT CRSX /DA switch>. Obtain link maP for slobal
addresses and relocation bias for each module• and assembl'='
si:imbol table listinss for local addresses as needed. Load
relocation resisters CR>. Set breakpoints . Examine
variables. Abort after a breakPoint and run QSDDT to examine the
Picture Swstem.

2.S.4. TRACING CHANGES IN SOURCE FILES WITH CMP

Be slow to Purse .MIX files (and auick to Purse ever~thins else
and delete .PRE's>. Use RSX CMP, VMS DIFF, or RT-11 SRCCOH to
track the chanses made.

SOFTWARE MAINTENANCE
DIAGNOSTIC REVISIONS

3. DIAGNOSTICS SOFTWARE MAINTENANCE

3.1. INTRODUCTION

PAGE 8

This chaPter deals with Procedures for revisins distributable
diasnostic~' incorPoratins new diasno~tics into-the distributable
sroup, and PreParins a new diasnostics release for distribution
to CE's, customers, the EIS Test Department, and other users.

3.2. DIAGNOSTIC REVISIONS

a. Verif~ the revisions; see APPendix G.

b. Place the new .HIX files on the DGDEVP CDiasnostic
· DeveloPment> RL01 in area CZ20•10J. Edit LINK.DOC.

The version number Ce.s. S02> must be bumPed in the
.HIX file header' in the messase output b~ the
diasnostic, in LINK.DOC, and in the writeup in
the Diasnostics Manual. Also, review the writeup.

c. Record the revision for inclusion in the release memo.

3.3. DIAGNOSTIC RELEASE PROCEDURE

a. PrePar& the Release Memo, summarizins all revisions and
new diasnosti6s incorporated into the release.

b. Transfer all .MIX filesr LINK.DOCr and aPPlicable .MAC
files from the DGDEVP disk to MT: to VAX CVAXMPS.DIAG+MIXJ

c+ Edit LINK.DOC to Produce Batch file<s> to PreProcess
and MIXIT comPile the +MIX files into .MAC files.
Delete .PRE files when done.

d. Use Batch files to assemble, link, and run all dia~nostics
under CVAXMPS+DIAG.NEWEXEJ. Verif~ the oPeration of all
diasnostics' Particularlw those which have been revised.

e. If an~ .MIX files have been revised as a result of the
foresoins ste~s, update them on DGDEVP. Put all .
~enerated .MAC files on MTt/DO. Put them from there onto
DGMAC RL02.

f. Assemble• Linkt and Verif~ for MaPPed RSX-11M+ Put result­
ant tasks on ne~ DLRSX RL01 C220,14J with PSDEVO,
ESDIAG.CHD1 etc.

~. Assemble, Link, and Verif~ for Unmapped RSX-11M. Put on
DLRSX c220,1sJ.

h+ Cop~ via FLX the DGMAC files to DL:/RT+ Assemble' link'
and verif~ under RT-11, usins RT-11 Dias DevP RL01+

SOFTWARE MAINTENANCE
DIAGNOSTIC RELEASE

PAGE 9

i. PrePa~e the followins Master Copies of distributable
diasnostics: RSX MT, RK05, and RL01 <make RL02 from RL01);
VMS MT and Put new .EXE files into CVAXMPS.DIAGJr
deletins old; RT-11 RK05 <make RL01 and RL02 coPies from
RK05)r RXQ2, RX01t and TU58.

J. Send Release Memo to all CE's, and besin shiPPins media to
CE's and customers as needed.

k. On VAX• use Batch• HIX832t and Interdata MastaPe Prosram
to Put .CAL files on specially formatted tape, alons with
.CSS files, QSIOOO.CALr QSI001.CAL• QSI100.CAL, old QSD117t
PSIO.CAL1 IOSUBS.CAL, QSDDT1.CAL1 and copies of PSIO+MAC1
IOS·UBS+HAC, RTI.MAC, QSDDT1.J1AC. !NIT.CAL and QSDDT+CAL
reauire Interdata-specific edits. BackuP ~n MT:/DO a
COPY of ever~thins distributed to 'the Interdata customers.

June t. ::> , .L ':J 1 o

APPENDIX A

MIXIT -- A Machine-Independent Assembly Language

MIXIT is a machine~independent assembly language which can be
processed on the PDP-11 to produce an ASCII assembly language
file for a target machine. The assumptions built into MIXIT
about the target machine are:

1. 16-bit word machine
2. 2's complement
3. Word addressable only 1

4. No stack operations 1

S. No re-entrant or recursive routines 1

Instructions for MIXIT are of the form:

LABL: . INS argl, argZ, ... ;com

where:

LABL is an optional 4~character label
.INS is the MIXIT instruction (the preceding period

2 argl,
is optional)

arg2, ... are the arguments required (if any) for the
instruction specified (.INS). Arguments are of
the form:

a or <X,a> where X is a value to be used
as an index such that c(X)+a =
the effective address of the
the argument. a is the argument.

:Refer to ·the language; the target-machine may have different
specifications,, but these will- be invisible to the programmer.

2 For a more complete descriptic:m, see the section on arguments.

A. MIXIT LANGUAGE

General Instructions

.MOV

.ADD

.ADDZ

.. SUB

.SUBZ

.INC

.DEC

.CLR

.COM

• A.T<.lD

.OR

.SLS

• SRS

.SLD

.SRD

a,b

a,b

a,b

a,b

a,b

a

a

a

a

a,b

a,b

a

a

a

a

;b+a

;b+a+b

;<b,b+l>+<a,a+l>+<b,b+l>

; b+b-a

;<b,b+l>+<b,b+l>-<a,a+l>

;a+a+l

;a+a-1

;a+O

;a+-a

;b+a "b

;b+avb

;a+a*Z

;a+a/2, a<lS> undisturbed

;<a,a+l>•<a,a+l>*2

;<a,a+l>+<a,a+l>/2, a<lS>undisturbed

A-2

Test and Branch Instructions

.CMPL

• w\fi>A

.TST

.JMP

.BRZ

.BNZ

.BRN

.BRP

a,b

a

a

a

a

a

;logically compare a to b

;arithmatic compare a to b

;condition + -,O,+,r

;note condition is not set by tbe

; . general instructions

;unconditional branch to "a"

;branch to "a" if condition 0

;branch to "a" if condition not 0

;branch to "a11 if condition negative

;branch to "a" if condition not negative

* Following a CMPL or CMPA instruction, condition code represents
(a-b) unsigned for CMPL or two's complement for CMPA. Only
CMPL, CMPA and TST set condition.

A. MIXIT LANGUAGE A-3

Data Storage Instructions

.BLOCK

.DATA

.CDATA

.DIFF

.BDATA

n
'<a,b,c, ... >

<string>

a,b

<a,b,c,d, ... >

;reserve n words of storage
;define data words a,b,c, .•. (a,b,c, .••
;may be .names or numbers)
;define character ~tring, using
;characters in the 64 ASCII set
;which generate octal values 40-137
;define a word of data +b-a (offset
; in words, a and b mus.t ·be names)
;define numeric byte
;data a,b,c,d •..
;this instruction packs each pair of

. ;bytes into a data word according
;to the machine-specific byte sequence.
;an even number of unsigned
;octal arguments is required.

Subrountine Instructions

.CALL1

.SUBR

.RTRN

.HERE

.THERE

a OT a-,<b,c,.!- •. > ;call subroutine "an with optional
;arguments b,c .•.

a,.n ;define subroutine entry point a
;with n arguments (both subroutine
;name and argument count are optional).
;return to calling routine·

<a,b, ••• > ;define global entry points
<a,b, .•. > ;defines external globals

Miscellaneous Instructions

.LABEL

.STOP

.HALT

. FIN ~~"

.REM

a

<-------->

;defines label "a"
;terminates execution of program
;and return to monitor
;stops CPU execution
;end of Program Segment (Finish)
;Remarks--all subsequent characters
;on the line are comments (this
;instruction is not really necessary,
;since each instruction may contain
;its own comment

1subroutines in-MIXIT are not reentrant.

A. MIXIT LANGUAGE A-4

. HEAD· <--------> ;generates a page eject directive
_;.and supplies heading infor.mation to
/;the assembler of the target machine.
;optional title, must be the first
;statement in the program if present

.NAME

Program Test Word

When a .CMPA, .CMPL or .TST instruction is specified, the

resulting zero/nonzero, positive/negative value is placed in the ~r~~

Test Word, defined at the beginning of each program segment as:

.HEAD

.REM

.LABEL

.DATA

<: MIX IT ASSEMBL 't: >

< ; PROGRAM TEST WORD >

TTTT 1

0

When a .BRP, .BRN, .. BRZ or .BNZ inst-ruction is given, the

associated transfer of command is conditional on the contents

of the Program Test Word (the PTW).

There is a unique PTW defined at the beginning of each program

s-egment. Therefore, if a subroutine is called which is defined

in a separately assembled program segment, the PTW remains un­

disturbed upon return to the current program segment. Note also

that the current PTW is not reflected in the PTW of the external

segment.

1Undefined results will occur if TTTT is used as an
argument to .CMPA, .C:MPL or .TST inst-ructions.

A. MIXIT LANGUAGE A .. s ·

Arguments

Except for the specific exceptions discuss~d in previous
sections, arguments to MIXIT instructions are of five gene·ral
types. Each is discussed in detail below.

1. Names -- all MIXIT names represent actual memory addresses,
and may be assigned ei th·er as statement labels, or as
externally-defined locations via the THERE directive. All
names must be four characters o.r_ le!§_ in leng'tl!_, must
~2:r!~ain ·only alphabetic or m.~mE!.!.t£ ... ch~~~.a.:~~.!..S.a and must
. -···"·-----·~·-·-···-· . . --··-- ... -••·•·· . t: .. • ' .

begin with a .letter · 6£ the alphabet. '11!"' 1': ·· ·'"'" · -~'__:_.. __ .~ ,
' ~ -~ "'"-·•--·~~u .. •• •• ~.-~""""""'··•· •-.~·-..,....,,,_,-•.• .·•-·,p-.._.,.;..1

z. Numbers -- these may be in either decimal (denoted by the
presence of an eight, a nine, and/or a trailing decimal
point) or octal radix. They may be ~ither positive or
negative (as signified by a leading minus sign). Numbers,
however, may be used only as index values (see Para. 4 below)
or as constants in a DATA statement.

3. Subroutine arguments -- these are used within the bounds of
a subroutine (i.e. anywhere after .a SUBR directive). Such
an argument consists of a period followed by a pure number,
which will be interpreted in decimal radix (e.g. ".13")
and which represents the ith (e.g. 13th) parameter in the-<~

·parameter list of the associated CALL statement. This construct
may appear wherever·a-na:rile may appear.(within a subroutine),
except as labels, or in name- or da ta-d.efining contexts such
as arguments to HERE, THERE, DIFF or DATA statements. These
arguments may, of course, be used as parameters to subroutine
calls to achieve further nesting of subroutine ievels.

4. Indexed arguments -- when it is desired to specify an offset,
in words, from a defined ·location or subroutine argument (for
example, in the case of arrays) this construct is used. In
the place of a name or subroutine argument, one writes
"<arg,arg>" where the first argument may be any of the above
types (name, number or subroutine argument), and signifies
the offset in words; and the second argument may be either

A. MIXIT LANGUAGE

a name or subroutine argument, and signifies the base
address (i.e. the name of the array). Note that to
determine the number of words in an array, the DIFF
directive should be employed, rather than an execution­
time subtraction of two addresses, in order to avoid

address complications arising from running MIXIT on
byte machines.

5. Indirect addressing since indirect addressing is
simply a special form of indexing in which the base
address is zero, the format for this construct is
simply "<arg,>" where the second argument is omitted.
Because absolute addresses are prohibited in MIXIT,
numbers may not be used as the argument here, and

although a location may contain any value, care
should be taken to indirectly reference only those
locations which were assigned as named locations via
a DATA statement.

An example of the use of both indexing and indirect

addressing appears below. This is a dispatch table and
the dispatch code associated with it.

MOV <DEX,TABL>,TEMP
JMP <TEMP,>

TABL£ DATA <RTNA,R_TNB,RTNC, •.• >

TEMP: BLOCK 1

A-6

B. Machine Dependent Subroutines

APPENDIX B
MACHINE DEPENDENT SUBROUTINES

B.1. Introduction
The followins Machine DePendent Subroutines are
described in this aPPendix. Each must be rewritten
for a specific CPU and OPeratinS s~stem.

PSIO.MAC PICTURE SYSTEM I/O <Sec B.2.>

RSPS RESET PS2
RSIO RESET DIO
RSDM RESET DMA
WRIT PS2 INTERFACE WRITE
READ PS2 INTERFACE READ
DHA INITIATE DMA DATA TRANSFER
TOUT DMA OR DIO TIMEOUT DETECTION
RDPS READ VIA DIO
WRPS WRITE VIA DIO
GPSA GET DIOPSA
LPSA LOAD DIOPSA
CINT CONNECT INTERRUPT
DINT DISCONNECT INTERRUPT
SINT SENSE INTERRUPTS

IOSUBS.MAC TERMINAL I/O <Sec. B.3.>
I ' ~ ,,~' r .I' I'< r; , .. , ... ,: '

SOCT
SHES
GETS
GETN
WAIT

SEND OCTAL NUMBER Vvv1.7 ~ ,~ ,. ; ..

SEND MESSAGE OR STRING
GET STRING
GET OCTAL NUMBER
DELAY N/8 SECONDS

•~ '

QSDDT1.MAC STRING PARSING AND BYTE PACKING ROUTINES
<Sec. B.4.>

GETC GET NUMBER AND DELIMITER FROM STRING
BYWD PACK TWO BYTES INTO A CG WORD

RTI.MAC REMOTE TERMINAL INTERFACE I/O <Sec. B.S.>

ROT READ OTHER TERMINAL
WOT WRITE OTHER TERMINAL
ROTC CLEAR OTHER TERMINAL READ BUFFER

B. Machine De~endent Subroutines
B.2. PSIO.MAC

B.2. PSIO.MACr Picture S~stem I/0
;
; THESE SUBROUTINES PROVIDE THE STANDARD I/O INTERFACE FOR ALL
; PICTURE SYSTEM DIAGNOSTICS TO AND FROM THE PICTURE SYSTEM.
; .
' ; SUBROUTINE RSPS: . ,

PAGE B-2

; THIS SUBROUTINE <RESET PS> IS CALLED TO INITIALIZE ALL PS REGISTERS
; AND I/O INTERFACE CONTROL ELEMENTS TO THEIR NORMAL POWER-UP STATE.

; MIXIT CALLING SEQUENCE: . , . , .CALL RSPS . ,
; SUBROUTINE RSIO!
;
; THIS SUBROUTINE RESETS THE DIRECT I/O PORTION OF THE INTERFACE
,; ,
; MIXIT CALLING SEQUENCE: . ,
; +CALL RSIO . ,
; SUBROUTINE RSDM: . ,
; THIS SUBROUTINE RESETS THE DMA PORTION OF THE INTERFACE.
" '· ; MIXIT CALLING SEQUENCE:
•
' ; .CALL RSDM
" , . ,
; SUBROUTINE WRIT: . ,
; THIS SUBROUTINE IS CALLED TO LOAD A CPU REGISTER.
;
; MIXIT CALLING SEQUENCE: . ,
; . ,
; WHEREt
;
; . , . , . , . ,
; . ,
; . , . ,

.CALL

VALU

LOC

WRIT,<VALU,LOC>

SPECIFIES THE VALUE TO BE WRITTEN.

SPECIFIES WHICH CPU REGISTER TO WRITE.
LOC=O FOR PSDATA
LOC=1 FOR DIOP.SA
LOC=2 FOR DMAWC
LOC=3 FOR DMABA
LOC=4 FOR IOST

; SUBROUTINE READ:

B. Machine Dependent Subroytines
B.2. PSIO.MAC

.
' ; THIS SUBROUTINE IS CALLED TO READ A CPU REGISTER • .
' ; MIXIT CALLING SEQUENCE:
;
; .CALL READ•<LOCrVALU> . ,
;. WHERE:
; . , . ,
; . , . ,
; . ,
;
;
;

LOC

VALU

; SUBROUTINE DHA
;

SPECIFIES WHICH CPU REGISTER TO READ.
LOC=O FOR PSDATA
LOC=l FOR DIOPSA
LOC=2 FOR DMAWC
LOC=3 FOR DMABA
LOC=4 FOR IOST

SPECIFIES WHERE TO STORE THE VALUE READ.

; THIS SUBROUTINE IS CALLED TO TRANSFER A WORD COR
; BLOCK OF WORDS> TO OR FROM THE PICTURE SYSTEM
; VIA THE PDP-11 DMA INTERFACE. ,

,• I »~·1 ~ ~~(\' / {;• 1, . . ,
; MIXIT CALLING.SEQUENCE!
; . , . ,
; WHERE:
;
; . . , . ,
; . , .
' .. , . ,
;
;

..
' .. ,
;

.CALL

PSA

N

PDPA

XADR

DMA,<PSAtN.PDPA.x~bRrMODE•WAIT>

SPECIFIES THE PICTURE SYSTEM ADDRESS
WHERE THE FIRST WORD TO BE TRANSFERED
FROM THE PICTURE SYSTEM TO THE PDP-11
RESIDES OR WHERE THE FIRST WORD TRANSFERED
FROM THE PDP-11 TO THE PICTURE SYSTEM
SHOULn BE STORED •
SPECIFIES THE NUMBER OF SEQUENTIAL WORDS
TO BE TRANSFERED •
SPECIFIES THE PDP-11 ADDRESS WHERE THE
FIRST WORD TO BE TRANSFERED FROM THE
PDP-11 TO THE PICTURE SYSTEM RESIDES OR
WHERE THE FIRST WORD TRANSFERED FROM THE
PICTURE SYSTEM TO THE PDP-11 SHOULD BE
STORED.
SPECIFIES THE TWO EXTENDED ADDRESS BITS
OF PDPA.

PAGE B-3

;
; MODE SPECIFIES WHETHER THE DMA WILL DO ACTIVE \ .. , . ,
; . ,
;

~-

OUTPUT, ACTIVE INPUT OR PASSIVE INPUT
TRANSFERS •
IF MODE=O THEN THE DMA WILL DO ACTIVE OUTPUT
AND N SEQUENTIAL WORDS WILL BE TRANSFERED
FROM PDP-11 MEMORY BEGINNING AT THE ADDRESS

,
~ ~16 ••• ,f~.·..; t lf' ::·'

B. Machine DePendent Subroutines
B.2. PSIO.MAC

;
... ,
;
; .. , ..
' ;
; .
' . ,

SPECIFIED BY PDPA TO THE PICTURE SYSTEM.
IF MODE=l THEN THE DMA WILL DO ACTIVE INPUT
AND N WORDS WILL BE TRANSFERED FROM THE
PICTURE SYSTEM TO PDP-11 MEMORY AND WILL
BE STORED IN SEQUENTIAL LOCATIONS BEGINNING
AT THE ADDRESS SPECIFIED BY PDPA.
IF MODE=2 THEN THE DMA WILL DO PASSIVE INPUT
AND N WORDS WILL BE ACCEPTED FROM THE PICTURE
SYSTEM AND WILL BE STORED IN SEQUENTIAL PDP-11
MEMORY LOCATIONS BEGINNING AT THE ADDRESS
SPECIFIED BY PDPA.

PAGE B-4

;
;

WAIT SPECIFIES WHETHER OR NOT TO WAIT FOR DMAREADY TO
BE SET BEFORE RETURNING TO CALLER.

;
;

;

;

IF WAIT=O THEN DMAREADY BIT WILL NOT BE CHECKED
BEFORE RETURN TO CALLER.
IF WAIT=1 THEN DMAREADY BIT WILL BE CHECKED AND
MUST BE SET BEFORE RETURN TO CALLER.

SUBROUTINE TOUT:

; THIS SUBROUTINE <TIMEOUT> IS CALLED TO TIMEOUTr TEST THE DIO
; DMA READY BITS AND SET RESPECTIVE FLAGS IF THEY ARE SET • . ,.
; MIXIT CALLING SEQUENCE:

.CALL

; WHERE:

IRDY

I1RDY

TOUT,<IRDY,DRDY>

IS A VARIABLE WHICH IS SET IF DIOREADY IS SET
AFTER THE TIMEOUT, CLEARED OTHERWISEo
rs A VARIABLE WHICH IS SET IF DMAREADY IS SET
AFTER THE TIMEOUT, CLEARED OTHERWISE.

; SUBROUTINE RDPSt

THIS SUBROUTINE <READ PS> IS CALLED TO TRANSFER A WORD <OR
A BLOCK. OF WORDS> FROM THE PICTURE SYSTEM BACK INTO THE

; PDP-11.

MIXIT

; . WHERE: ,
;

CALLING

.CALL

PSA

N

F'DF'A

--

SPECIFIES THE PICTURE SYSTEM MEMORY ADDRESS THAT
THE FIRST WORD IS TO BE READ FROM+
SPECIFIES THE NUMBER OF WORDS THAT ARE TO BE READ
FROM THE PICTURE SYSTEM+
SPECIFIES THE F'DP-11 ADDRESS WHERE THE FIRST WORD

B. Machine DePendent Subroutines
B.2. PSIO.MAC

PAGE B-5

; . ,
;

; . ,
;

. , . ,
;
;

HOLD

READ FROM THE PICTURE SYSTEM IS TO BE WRITTEN.
FOR BLOCK TRANSFERS, N.CONSECUTIVE WORDS WILL BE
WRITTEN INTO PDP-11 MEMORY BEGINING AT THIS ADDRESS •
SPECIFIES WHETHER THE PICTURE SYSTEM ADDRESS REG­
ISTER CDIOPSA> SHOULD BE INCREMENTED AFTER EACH READ
OPERATION.
IF HOLD=O THEN N SEQUENTIAL WORDS WILL BE READ BE­
GINNING AT THE PICTURE SYSTEM MEMORY LOCATION SPEC­
IFIED BY PSA.
IF HOLD NOT=O THEN THE CONTENTS OF PICTURE SYSTEM
MEMORY LOCATION SPECIFIED BY PSA WILL BE READ AND
TRANSFERED TO THE PDP-11 N TIMES.

; SUBROUTINE WRPS:

; THIS SUBROUTINE <WRITE PS> IS CALLED TO TRANSFER A WORD COR
; A BLOCK OF WORDS) FROM THE PDP-11 TO THE PICTURE SYSTEM.

MIXIT CALLING SEQUENCES

SPECIFIES THE PICTURE SYSTEM MEMORY ADDRESS THAT
THE FIRST WORD IS TO BE WRITTEN INTO.
SPECIFIES THE NUMBER OF WORDS THAT ARE TO BE TRANS­
FERED TO THE PICTURE SYSTEM.
SPECIFIES THE PDP-11 ADDRESS WHERE THE FIRST WORD
TO BE TRANSFERED TO THE PICTURE SYSTEM RESIDES.
FOR BLOCK

CONSECUTIVE WORDS WILL BE
TRANSFERED FROM PDP-11 MEMORY BEGINING AT THIS
ADDRESS.

; HOLD SPECIFIES WHETHER THE PICTURE SYSTEM ADDRESS REG­
ISTER CDIOPSA> SHOULD BE INCREMENTED AFTER EACH

; WRITE OPERATION.
IF HOLD=O THEN N SEQUENTIAL WORDS WILL BE WRITTEN
BEGINNING AT THE PICTURE SYSTEM MEMORY LOCATJON
SPECIFIED BY PSA.
IF HOLD NOT=O THEN THE PICTURE SYSTEM MEMORY

; LOCATION SPECIFIED BY PSA WILL BE WRITTEN N TIMES.

;
SUBROUTINE GPSA:

THIS SUBROUTINE <GET PICTURE SYSTEM ADDRESS> IS CALLED TO GET THE
LOCATION IN PICTURE SYSTEM MEMORY THAT IS CURRENTLY BEING ADDRESSED
BY THE PICTURE SYSEM DIRECT I/O INTERFACE CDIOPSA>.

MIXIT CALLING SEQUENCE:

.CALL

B. Machine DePendent Subroutines
B.2. PSIO.MAC

• ,
; WHERE: . ,

PAGE B-6

PSA
;

IS A VARIABLE IN WHICH THE CURRENT CONTENTS OF THE
DIOPSA REGISTER IS RETURNED.

; SUBROUTINE LPSA: . ,
; THIS SUBROUTINE CLOAD PICTURE SYSTEM ADDRESS> IS CALLED TO LOAD THE
; PICTURE SYSTEM ADDRESS POINTER WITHOUT DOING ANY I/O
;

MIXIT CALLING SEGUENCEt

; .. ,
; WHERE: . ,
.. ,

.CALL

PSA

LPSA,<PSA>

IS A VARIABLE WHICH WILL BE LOADED INTO THE DIOPSA
REGISTER.

; SUBROUTINE CINT: .
' ; THIS SUBROUTINE IS CALLED TO CONNECT TO A PICTURE SYSTEM
; INTERUPT PROCESS.

; MIXIT CALLING SEQUENCE:

; WHERE!

;
;

.CALL

N

CINT~<N>

SPECIFIES THE INTERRUPT PROCESS TO CONNECT TO.
N=1 FOR RTC INTERRUPT
N=2 FDR SYSTEM INTERRUPT
N=3 FOR DEVICE INTERRUPT
N=4 FOR DMA INTERRUPT

SUBROUTINE DINT: . ,
; THIS SUBROUTINE IS CALLED TO DISCONNECT FROM A PREVIOUSLY CON­
; NECTED INTERRUPT PROCESS • . ,

MIXIT CALLING SEQUENCE:

; IJHEREt

;

.CALL DINT,<N>

N SPECIFIES THE INTERRUPT PROCESS THAT IS TO BE DIS­
CONNECTED FROM.

N=l FOR RTC INTERRUPT

B. Machine Dependent Subroutines
B.2. PSIO.MAC

; . ,
6 ,
4

' ; . ,
; SUBROUTINE SINT: .
'

N=2 FOR SYSTEM INTERRUPT
N=3 FOR DEVICE INTERRUPT
N=4 FOR DMA INTERRUPT

PAGE B-7

; THIS SUBROUTINE IS CALLED TO SENSE INTERRUPTS. A MASK IS RETURNED
; TO INDICATE WHICH TYPE OF INTERRUPT OCCURED.

; MIXIT CALLING SEGUENCEt
;
; .CALL SINT,<MASK> .
' ; WHERE:
; . ,
;
" ,
;
;
;

MASK SPECIFIES THE RETURN MASK.
BIT 0=1 RTC INTERRUPT
BIT 1=1 SYSTEM INTERRUPT
BIT 2=1 DEVICE INTERRUPT
BIT 3=1 DMA INTERRUPT

B. Machine DePendent Subroutines
B.3. IOSUBS.MAC

PAGE B-8

B.3. IOSUBS.MAC Terminal I/O

;
; THESE SUBROUTINES PROVIDE THE STANDARD I/O INTERFACE FOR
; ALL PICTURE SYSTEM DIAGNOSTICS TO ANC FROM THE TERMINAL DEVICE •
•
' ;
; SUBROUTINE SOCT:
;
; THIS ROUTINE IS CALLED TO OUTPUT AN OCTAL NUMBER TO THE TERMINAL
; BUFFER AND THEN TO OUTPUT THE BUFFER TO THE TERMINAL IF SPECIFIED.
; IF THE TERMINAL BUFFER IS OUTPUT, A CR AND LF ARE APPENDED TO THE
; END OF THE BUFFER • .
' ; MIXIT CALLING SEQUENCE:
• , .
' A ,
; WHERE!
; . ,
;
;
;
4 ,

.CALL

FLAG

NUM

SPECIFIES WHETHER THE TERMINAL BUFFER IS TO BE
OUTPUT TO THE TERMINAL.
FLAG<O: DO NOT OUTPUT TERMINAL BUFFER.
FLAG= OR >: OUTPUT TERMINAL BUFFER.
IS THE BINARY NUMBER WHICH WILL BE OUTPUT AS AN
OCTAL NUMBER. LEADING ZEROS WILL NOT BE OUTPUT.

SUBROUTINE SHES!
; THIS ROUTINE IS CALLED
; TO THE TERMINAL BUFFER
; TERMINAL IF SPECIFIED.
; AND LF ARE APPENDED TO

TO OUTPUT AN ASCII STRING OF CHARACTERS
AND THEN TO OUTPUT THE BUFFER TO THE

IF THE TERMINAL BUFFER IS~OUTPUT, A CR
THE END OF THE BUFFER.

; MIXIT CALLING SEQUENCE:

.
' A ,
; WHERE: .
' . ,
; .
' ;

.
' . ,
;
;

.CALL

N

CHRS

SPECIFIES THE NUMBER OF CHARACTER TO OUTPUT. IF N
IS NEGATIVE, THE ABSOLUTE VALUE OF N SPECIFIES THE
NUMBER OF CHARACTERS. N ALSO SPECIFIES WHETHER THE
TERMINAL BUFFER IS TO BE OUTPUT TO THE TERMINAL •
N<O: DO NOT OUTPUT TERMINAL BUFFER.
N= OR >: OUTPUT TERMINAL BUFFER •

IS THE ADDRESS OF THE FIRST CHARACTER OF THE CHAR­
ACTER STRING TO OUTPUT •

SUBROUTINE GETSt
; THIS ROUTINE IS CALLED TO INPUT A STRING OF CHARACTERS FROM THE

B. Machine De~endent Subroutines
B.3. IOSUBS.MAC

PAGE B-9

; CONSOLE TERMINAL. THE STRING INPUT BY THE OPERATOR IN THE ARRAY
; SPECIFIED • . ,
; HIXIT CALLING SEQUENCE: . ,
;

. WHERE: , .
' ;
6 ,
;
; . ,
• ,
6 ,
6 ,
6 ,
6

' 4 ,
6 ,

.CALL GETS,<NrBUFF>

N SPECIFIES THE NUMBER OF CHARACTERS TO BE INPUT CIF
N IS NEGATIVE, NO NEW LINE IS READ IN, BUT INSTEAD
THE REMAINING CHARACTERS IN THE OLD LINE ARE USED>.
IF FEWER CHARACTERS THAN THE ABSOLUTE VALUE OF N ARE
INPUT CUP TO THE CARRIAGE RETURNr BUT NOT INCLUDING>
THEN THE BUFFER IS FILLED TO THE END <END=ABS<N>> WITH
NULLS CO>.

BUFF SPECIFIES THE ADDRESS OF THE BUFFER THAT THE STRING
IS TO BE RETURNED IN. NOTE THAT THE STRING WILL
HAVE NO RUBOUTS, CR OR LF.

; SUBROUTINE GETN:
; THIS ROUTINE IS CALLED TO INPUT ASTRING OF CHARACTERS FROM THE
; CONSOLE TERMINAL AND TO CONVERT THE CHARACTERS TO A BINARY NUMBER
• WHICH IS RETURNED TO THE CALLING ROUTINE. A MAXIMUM VALUE IS SPEC-
; IFIED WHICH IS USED TO CHECK THE NUMBER INPUT. IF THE ABSOLUTE VALUE
; OF THE NUMBER INPUT IS GREATER THAN THE MAXIMUM SPECIFIED, THEN THE
; NUMBER IS REQUESTED TO BE RE-INPUT BY THE OPERATOR~

; MIXIT CALLING SEQUENCE:
6

' 4 ,
; WHEREt .
' .
' 4

' ;
6 , .
' 6 ,
; .
' . ,
6 , .
' ; .
'

.CALL

NHAX

N

GETNr<NMAX,N>

SPECIFIES THE MAXIMUM THAT THE NUMBER INPUT CAN BE.
IF NMAX<O OR NHAX=O, NO VALUE CHECKING OCCURS •. ALSO~
IF NHAX<Or THE REMAINING CONTENTS OF THE PREVIOUS
LINE ARE USED, WHEREAS FOR NMAX=O OR GREATER~ A NEW
L~NE IS INPUT. NOTE THAT FOR NMAX>Or ONLY A
SINGLE NUMBER, WITH NO DELIMITERS, IS ALLOWED ON THE
LINE.

IS THE VARIABLE IN WHICH THE NUMBER INPUT IS RE-
. TURNED. IT SHOULD BE NOTED THAT ONCE GETN IS CALLED

WHERE NMAX>O, THE ROUTINE IS NOT RETURNED FROM UNTIL
A VALID NUMBER HAS BEEN INPUT •

B. Machine De?endent Subroutines
B.4. QSDDT1.MAC

B.4. QSDDT1.MAC; STRING PARSING AND BYTE PACKING

;

; GETC SCANS AN INPUT STRING TO THE FIRST CHARACTER

. ,
4 , . ,
4 , .
'

OTHER THAN THE FIRST THROUGH SIXTH DIGITS AND RETURNS THE
FOLLOWING:

NDIG:
NUMBt
DLIMl

NEGATIVE NUMBER OF DIGITS IN N
N IF NON-NULL, OTHERWISE O
DELIMITER OR 7TH CHAR

; GETC IS CALLED IN MIXIT AS FOLLOWS:

A , CALL
;

PAGE B-10

. , . ,
;

STRN IS A PTR TO THE STRING TO BE PARSED,
AND WILL BE MODIFIED BY GETC TO POINT JUST
PAST THE DELIMITER. .

' ;

;
; . ,

RADX = RADIX 8. OR 10 •

INPUT VALUES MAY BE NEGATIVE, BEGINNING WITH -,
OR SET-BIT EXTENDED, BEGINNING WITH •
E.G. -1 = 177777, AND '53=177753

GETC FACILITATES PARSING OF AN INPUT COMMAND STRING BY
; RETURNING THE NEXT OCTAL OR DECIMAL VALUEr IF ANYr AND
; THE DELIMITER FOLLOWING. THE STRING TO BE PARSED WOULD
; NORMALLY BE OBTAINED BV A PRIOR CALL TO SUBROUTINE 1 GETS 9

; IN IOSUBS .
'
; SUBROUTINE BYWD COMBINES TWO 8-BIT VALUES (9 BYTES 0)

INTO A 16-BIT VALUE ACCORDING TO THE PDP-11 BYTE SEQUENCE.
; HIXIT CALLING SEQUENCES
• ,

;
;
;

; .

;

WRD1 AND WRD2 ARE THE
1ST AND 2ND 8-BIT VALUES
CIN THE SEQUENCE THEY ARE TO BE
TRANSMITTED TO THE CG>
WRD3 IS THE 16-BIT TARGET VALUE

~. nacn1ne DePendent Subroutines
B.5. RTI+MAC

B+S+ RTI+MAC; REMOTE TERMINAL INTERFACE I/O

; SUBROUTINE ROT:
;
" '

PAGE 11

;THIS SUBROUTINE TAKES LENGTH CHARACTERS FROM THE HOST'S SECONDARY
SERIAL

;INTERFACE AND PUTS THEM IN THE CHARACTER ARRAY STRING
;
• ,
; MIXIT CALLING SEQUENCE: . ,
;
;

.CALL

; .WHERE:

ROTr<STRING,LENGTH>

;
; STRING = ADDR OF STRING INPUT BUFFER .
' .
' LENGTH = STRING LENGTH . ,
;SUBROUTINE ROTC:
6 ,
;THIS SUBROUTINE CLEARS THE HOST'S SECONDARY SERIAL INTERFACE OF ANY
;CHARACTERS THAT MAY ALREADY BE PRESENT
;
; MIXIT CALLING SEQUENCE: .. ,
;
;

.CALL

;SUBROUTINE WOT:
;

ROTC

;THIS SUBROUTINE TAKES LENGTH CHARACTERS FROM CHARACTER ARRAY STRING
SAND SENDS THEM TO THE HOST'S SECONDARY SERIAL INTERFACE
;
; MIXIT CALLING SEQUENCE:
;
; .CALL WQT,<STRING,LENGTH> . , . WHERE: ?' . ,
; STRING = OUTPUT STRING BUFFER
;
; LENGTH = STRING LENGTH

~. DiaSnostic OPeratinS S~stems Table

PAGE C-1
APPENDIX C

The followins table contains miscellaneous information about
OPeratinS s~stems which SUPPOrt Picture S~stem DiaSnostics

OPERATING
SYSTEM.5
AND CPU

RT-11
PDP-11

IAPPED RSX- UM
PDP-11 with

MEf-ORY
MANAGilMENT

MAPPED RSX-llM
PDP-11

VMS

VAX-11/780

OS32
INTERDATA 8-32

SINTRAN
NORD-1~

MELCOM-7)1

MACHINE
DEPENDENT
FILES

PS IO.MAC
IOSUBS.MAC
QSDDTl.MAC
RTI.MAC

PSI02.MAC
IOSUBZ.MAC
QSDDTl.MAC
RTIQIO.MAC

PSIO';MAC
IOSUBZ.MAC
QSDDTl.MAC
RTI .MAC

PSIOV.MAC
IOSUBZ.MAC
QSDDTl.MAC
RTIQIO.MAC

PSIO.CAL
IOSUBS.CAL
QSDDTl.CAL

OEM-C. I. I. R.
OSLO

OEM-RIKEI
JAPAN

PICI'URE SYSTEM DIAGNOSTIC OPERATING SYSTEMS

MIXIT COMPLIER
& TARGET FILES

MIXll
.MAC

MIXll
.MAC

MIXll
.MAC

MIXll
.MAC

MIX832
.CAL

QSI000,001,
100.MIX

QSDll 701. MIX

MIXNOR
.NOR

QSDl.1701.MIX

MI:XMEL.
,MEL

NEWMEL.
.MER

QSD11701.MIX

LINKER
OPTIONS

ASG=TI:l
CQM\UN=
PSDEVflJ:RW

ASG=TI:l
PAR=PAA14K:
40000:70000

BATOI
CAPABILITY

RT-11 BATUI
.BAT

IOSUB3
.CMD (limited"
ZAP
.om (limited'

NO

~'
) co;vf K' ;' j ·.~ ;

"TC~. l f
. ,,,

~ p
! ~

ASG=T 1 .. / .COM
ASG=i s:)

\
'"

1J I Ii.: '; ,.-,
'

;

see .CSS ,,) u.-ess? ,; (FILES

QSDll~ 1st
IMPLEMENTATION BYTE

RTI.MAC
modify H3-HS R

RTIQIO.MAC
>ASN TI'n:=RT: R

same as R RT-11

same as R MAPPED RSX

NONE L

NONE L

L

NONE R

15-Aug. -80

C<»MENTS
RESTRICTIONS

Single-user
Fast
Floppy Diskette
Test Station-
Batch
No DMA or interrupts
>SET /MAIN=PSDEV~:

7676:2:DEV
>INS PSDEV~
>ALL MP:

Can be on same disk
with Mapped RSX.
Allows DMA and interrupt!
single user

MPDRV must be loaded
$ ASSIGN MPB0: MPAj!l
Multi-user protection
cannot set 14 bit ~

Edit QSDDT for byte
sequence and disable "y"
cmd .. Special Mf:format

Edit QSDDT FLX Mf :/00
Hard copy Mf :Directory
Supply EMBL

Edit QSDDT
FLX Mf:/00

n
I

N

D. MIXIT DIAGNOSTIC UTILITIES

APPENDIX D
MIXIT <MACHINE INDEPENDENT> UTILITY SUBROUTINES

D.1. INTRODUCTION

The Followins Subroutines are Described in this APPendix:

INIT+MIX <Sec. D.2>

INIT STANDARD COMMAND INTERPRETER
DPCH PHASE DISPATCHER CONTROLLED BY INIT
£RRL ERROR LOOPING CONTROL

ARF2.MIX OR ARFS+MIX AUTOREFRESH CONTROL,
SINGLE- OR MULTI-USER RFC <USE ARF2 FOR DOUBLE BUFFERING>
<Sec. D.3>

RTWT REAL TIME WAIT
ARFS AUTOREFRESH CONTROL

RNDM.HIX CSec. D.4.>

RNDM RANDOM NUMBER GENERATOR

D. MIXIT DIAGNOSTIC UTILITIES
!NIT.MIX

D.2. !NIT.MIX, Standard Qperator Interface

;
; SUBROUTINE !NIT:
;
; THIS SUBROUTINE INTERPRETS THE STANDARD OPERATING COMMANDS
; DESCRIBED IN THE PS2 DIAGNOSTICS MANUAL: .
' .
' .. , . ,
;
;
;
;
; .. ,

H HELP
P NUMBER OF PASSES
D PHASE SELECTION c•no•>
L LOOP ON ERROR
C LOOP ON ERROR AND CONTINUE
11 MODIFY TABLES
X EXECUTE <EXIT INIT>
S STOP ON ERROR

; MIXIT CALLING SEQUENCE:
; .. ,
; .. ,
;
.. ,
.. , .
' A

' . ,
6 ,
; .. ,

HOV
HOV
CALL

<number of Phases>rDOPH
Cmax error identification>rPHAZ
INITr<MSGS>
where MSGS is a
MSGS: DATA

DATA
•
DATA
DATA
•

table as follows:
<nu~ber of salutation messases)
<<mss Ptr 1)r(char cnt 1>>

Cnumber of help •essases>
<<ass Ptr n+1),(char cnt n+1>>

; SUBROUTINE DPCH: ..
'

PAGE D-2

; THIS SUBROUTINE CALLS PHASES OF A DIAGNOSTIC IN ACCORDANCE WITH
; D AND ~ COMMANDS PREVIOUSLY INTERPRETED BY INIT .. ,
; MIXIT CALLING SEQUENCE: . ,

CALL ..
' .. ,
; .. ,
..
' ; ..
' .
' .. ,

DPCHr<PTBL>
where PTBL is a table of Pointers to
Phases of a diasnostic as follows:
PTBL: DATA <OrPHlrPH2, •••• >

•
and each Phase is a subroutine declared
as follows:
SUBR PH1r1 ;.1=PHASE NUMBER

D. MIXIT DIAGNOSTIC UTILITIES
!NIT.MIX

; SUBROUTINE ERRL: . ,
; THIS SUBROUTINE CONTROLS ERROR LOOPING IN ACCORDANCE WITH
; L• c, AND S COMMANDS PREVIOUSLY INTERPRETED BY INIT
;
; HIXIT CALLING SEQUENCE: . ,
a , CALL
; . , . ,
a ,
;
• , .
' .
' ;
• ,
; . , . ,

ERRLr<ERRNrERSB>
where ERRN is the error identification number
and ERSB is an error subroutine as follows:

SUBR ERSBrl ;.1=RETURN ERROR STATUS
•
<rePeat test which has Previouslw failed•
but do not outPut an errer messase)
•
CHPL
HOV
RTRN

<expected value>rCreceived value>
TTTTr.1 ;RETURN TEST RESULT

PAGE D-3

D. MIXIT DIAGNOSTIC UTILITIES
ARF2.MIX

D.3. ARFS.MIX,ARF2.MIX, Autorefresh Control

. ,
; GLOBAL ROUTINES RTWT <REAL TIME WAIT>
; AND ARFS <AUTOREFRESH> CAN ACCOMODATE
; TWO VERSIONS OF REFRESH CONTROLLERr
; SINGLE USER <TYPE 1), OR MULT-USER <TYPE 2>
; LOCAL ROUTINE RFIN IS CALLED BY BOTH ARFS AND RTWT
; TO DETERMINE THE TYPE OF REFRESH CONTROLLER
; AVAILABLE• AND TO INITIALIZE IT • .. , .
' ;
; SUBROUTINE RTWT, WAIT FOR REAL TIME CLOCK REQUEST
; CALLING SEQUENCE:
;
;
; .. ,

CALL RTWT

; SUBROUTINE ARFS CONTROLS AUTOREFRESH
; CALLING SEQUENCE: .
' CALL ARFS•<MINArMAXAtRATE,FUNC> . ,
; WHERE:
;
; .1 <MINA> = START ADDRESS OF REF BUF
; .2 <HAXA> = REFRESH LIMIT
; .3 CRATE> = NUMBER OF 120./SEC PER CLK REQ

PAGE D-4

; TWO'S COMP 1-17 <IF o, NO CHANGE>
; .4 CFUNC> = 1 TO STOP A.R., 2 TO START A.R., 0 TO
; LOAD CLK RATE ONLY, 4 TO RE-INIT
; <4 IS VALID ONLY AFTER PSRESET>
;
; NOTE; RSPS MUST BE CALLED PRIOR TO THE FIRST CALL TO ARFS .
' ;

37600

p:r: f/.,,, .• I ' <
(.; , .• ,, /

D. MIXIT DIAGNOSTIC UTILITIES
D.4 RNDM.MIX

D.4. RNDM~MIX• Random Number Generator

; SUBROUTINE RNDM: RANDOM NUMBER GENERATOR . ,
; MIXIT CALLING SEQUENCE: .. ,
.. , .CALL RNDM,<NUK,KEY>

; WHERE:

; NUM = RANDOM VALUE RETURNED
;
; . , KEY = RANDOM NUMBER KEY

PAGE D-5

E. Diasnostics Generation Flowchart

PAGE E-1
APPENDlX E

The followins flowchart represents reouired files and Procedures
for seneration of the Tree-Meta ComPiler TRMETAr various HIXIT
comPilersr Diasnostic Source Filesr and loadable RT-11 .SAU files
and RSX-11M .TSK files.

r-~ TRMETA. TSX; i ~I
I
I
I
I .__

r-
1

TMTTY. TRE :lt'
TRMETA. TRE ~

-----~

7RMEr4. MAC
TML/B. MAC * TMIO. MAC ~

RSX
14-- MAC

Tl<B

TRME.TA. TS}(;_ h

PREPR. !="TAJ *-

RSK
FOR !-• -
TkB

PREPR.TSK

· MACl-1/NE
' INDEPE.NDEArr

DIAGAJOSTIC

SOUR Cc
FILES

.. MIX

1_ ___________ _.,

MACHINE ·*
DE.PEJJDEAIT
DIAGltJOSTI C

SOURCe FILES
PSIO. MAC

IOSUBS.MAC(RT-11)
.zosua2.MAf!(RSX)

QSDDT/. MAC

r----=:t
I .NOR (MIXNOR) * ! . MEL (M IXMEL)
f .CAL {MIX8~2)

I ETC
TARGET

[.PRE RTI. MAC

J
r-----·
I -,-M_A_C_

! r ..- - - - -+ l....___ __ +-------i
~ 1 .

1 I RSX {

LINK. DOC*
LINK

DoCUM£1JT

r-

TECO
UNMAPD.TEC

@--- , CMD
@)+-....., UNMA PD. LN K

TECO
MAPD. TEC

@-- MAPD. LAJI<

I
I
I
L-

TMTTYZ. TRe '* MIX f'i'f .• TRE *
: ASSEMBLY
I LAAJGUAGE

f MAC' RSX

' : I IDS~REG -OBJ
RT-//
.OBJ ____,

. . ~

111/X rlr ~ MAC
TML/82. MAC · * (TMIOl *
----~

~

MIX?!?. TSK I-

I Fl~ES.

I
t
I
I
I

.J

I ~---@@}-...-
1 ' .. . '

I ~-~..:-.-~
I ~ ;
I
I

RSX :f'
MAPPED

RSX :f:

MIX 11 . TSI< I-
______; __ J .TSk

UAIMAPP£D ·
.7SK

*.A/ON-RE.GE.NE.RATABLE. INPLIT * ourPUT POR DISTRIBUT!OAJ

.. -p52 DIAGNOSTICS GENERATl(JN
2 ·OCT /.978 l\ 1--i(i

) tJEA: 0f rl

f-9---@'

jRT-11
r--- I L!Al_K_

RT- I I :f:
.SAV
ESD.
.5¢N

F. LINK.DOC

APPENDIX F

LINK.DOC contains linkins instructions in RT-11 format for all
distributable diasnostics. It ii used as the master reference
for all oPeratinS svstems.

;FILE LINK.DOC REVISED 26-HAY-80
;ps2 DIAGNOSTICS VERSION 0313

*GSDOOO.SOl=INITrQSDOOOrPSIOrIOSUBSrRNDM

*GSD001.S01=INITrQSD001rPSIO,IOSUBS,RNDM

*QSD002.S02=INIT,QSD002rPSIOrIOSUBS,RNDHrFTIME

*GSD003.SOl=INITrQSD003rPSIOrIOSUBSrCODErRNDM

*QSD004.S01=INIT,QSD0041PSIQ,IOSUBSrCODErRNDM/C
*CROM1

*GSD004.S02=INIT1QSD004rPSIOr!OSUBSrCODErRNDM/C
iCROM2

*GSDOOS.SOl=INITrQSDOOS~PSIOrIOSUBSrCODErRNDM

*GSD006.S01=INIT1QSD006rPSIO.IOSUBS,cODE.RNDM

*GSD007.S01=INIT1QSD0071PSI01IOSUBSrCODE1RNDH

*GSD008.SOl=INIT1QSDOOS,PSIO,IOSUBS,CODErRNDM

*GSD~09.S01=INITrQSD009rPSIOrIOSUBSrCODE,RNDM

*GSD011+S01=INIT,QSD011rPSIOrIOSUBSrCODErRNDM

*GSD012.S01=INIT,QSD012rPSIOrIOSUBSrCODErRNDM

*GSD013.SOl=INIT1QSD013rPSIOrIOSUBSrCODE1RNDM

*GSD014.S01=INITrQSD014rPSIOrIOSUBSrCODE,RNDM/C
*RROM

*GSD015.S01=INITrQSD015rPSIOrIOSUBSrCODE,RNDM/C
*MLSM

*GSD016.S01=INIT,QSD016rPSIOrIOSUBSrCODErRNDM

*GSD017.S02=INITrQSD0171IOSUBSrPSIOrRNDM

F. LINK.DOC

*OSD018+S04=INIT~QSD018,PSIO,IOSUBS,RNDH/C
*ARFS,INCM,NNEW

*GSD020.S06=INIT,QSD020rDAT020rIOSUBS,PSIO/C
*ARFS

*OSD021.S01=INITrQSD021rIOSUBS,PSIO,ARFS
I

*QSD026+S04=INIT,QSD026rPSIO,IOSUBS,ARFS/C
*INCM•NNEW

*GSD027.S04=INIT,QSD027rDAT027rPSIO,IOSUBS,ARFS/C
*INCthNNEW

*GSD028.SOS=INITrGSD028,Q02801•DD28•CHRAM/C
*B200,INCM,LOBFrARFS/C
*PSIQ,IOSUBS

*GSD031.S01=INIT,QSDOJ1,PSIO,IOSUBS,NCODE,RNDH

*GSD033+S02=INIT,QSD033,PSIO,IOSUBS

*GSD034.S01=INITtGSD034•PSIOrIOSUBS

*QSD03S.S01=INIT,QSD035rPSIO,IOSUBS

*OSD036.S01=INIT,QSD036rDD0361PSIOrIOSUBS

*QSD037.S01=INITrGSD0371DD037rPSIO,IOSUBS

*QSD040.S01=INIT,QSD040,DD40•PSIO,IOSUBS/C
' *ARFS, LOBF

*GSD100.S02=INIT,QSD100,PSIO,IOSUBS,RNDM

*GSD102.S02=INIT,QSD102,PSIO,IOSUBS

*GSD103.S01=INIT,QSD10J,PSIO•IOSUBS,RNDH

*GSD104.S02=INIT,QSD104,PSIOrIOSUBS,QSDDT1

*DSD10S.S01=INIT,QSD1051QSE10S,IOSUBS1PSIO

*GSD107.S01=INIT,QSD107,IOSUBS,PSIO/C
*TANSUB,TANLIB,RNDM

*OSD108.S07=INIT,QSD1081IOSUBS,PSIO,TANSUB/C
*TANLIB,RNDH,ARF2

*DSD109.S01=INIT,QSD109,QSE109,CROH3/C
*PSI01IOSUBS

PAGE F-2

F. LINK.DOC

*GSD110.S04=INIT,QSD110•IOSUBS•PSIO,TANSUB/C
*TANLIBrRNDH,RTI

*GSD111.S02=INITrGSD111•IOSUBSrPSIO/C
*RNDH

*GSD112.S02=INIT,QSD112rlOSUBS,PSIOrTANSUB/C
*TANLIB,RNDH,RFLIB,RFCODE

*GSD113.S03=INITrGSD113rIOSUBSrPSIO/C
*RNDH,TANSUBrTANLIB,RFLIB

*GSD114.S01=INITrGSD114,IOSUBS,PSIO/C
*RNDHrTANLIBrTANSUB,RFLIB

*GSD115.SOl=INIT,QSD115rIOSUBS•PSIO/C
*RNDMrTANSUBrTANLIBrRFLIB

*OSD116.S02=INITrGSD116,IOSUBSrPSIO/C
*TANSUB,TANLIBrRFLIB1RNDH

*GSD117.S02=INIT1QSD117rIOSUBSrPSIQ,RFLIB

*GSD130.S01=INIT,QSD1JO,QS£109rCROM6,PSIQ,IOSUBS

*GSD131.S01=INIT,QSD1JO,QSE109,CROM7,PSI01IOSUBS

*GSD13~.S01=INITrGSD1361PSIOrIOSUBSrCODErRNDM

*RSDOOO.SOJ=INIT,RSDOOO,DDOO,ROOO/C
*INCMrLOBF,ARFS/C
*PSIQ,IOSUBS

*RSD001.S02=INIT•RSD001rR00101rDD01,INCH/C
*B360rLOBF1ARFS,PSIO/C
*IOSUBS

*RSD002.SOJ=INIT,RSD002,R002/C
*INCHrLOBF1ARFS,PSIO•lOSUBS

*RSD003.S02=INIT,RSD003rR00301,R003021ROOJ03/C
*DDOJ,B200,DOBF,WTSG/C
*INCH•LOBFrRTWTrPSIO,IOSUBS

*RSD004.S02=INIT,RSD004,R00401,R00402,DD04/C
*DOBFrINCM,9360,LOBF,ARFS/C
*DHR2,PSIO,IOSUBS

PAGE F-3

F. LINK.DOC

*RSD005.S03=INIT,RSDOOS,R00501•DD05,INCM/C
*B200,LOBF,ARFS,PSIO/C
*IOSUBS

*RSD006.S04=INITrRSD006rR00602,DD06,DOBF/C
*INCH•B360,LOBF,ARFS/C
*PSIQ,IOSUBS

*RSD007.S04=INIT,RSD007•R00701•DD07,B440/C
*INCH,LOBF,ARFSrPSIO/C
*IOSUBS

*RSD008.S04=1NITrRSDOOS,R00701rDD08,B200/C
*INCM•LOBF,ARFS/C
*PSIQ,IOSUBS

*RSD009.S05=INIT,RSD009,R00901•DD09,B200/C
*CHROMrINCM1LOBF1ARFS/C
*DOBFrPSIOrIOSUBS

*RSD010.S01=1NIT•RSD010•R10Sl•INCM,ARF2/C
*PSIO,IOSUBS

*RSD011.S01=INITrRSD011•R11Sl,INCMrARF2/C
*PSIOrlOSUBS .

*RSD012.S01=INIT,RSD012rR12S1rARFS/C
*PSIQ,IOSUBS

*RSD013.S02=IN!TrRSD013rDD13rARFSrLOBF,RNDM/C
*PSIOrIOSUBS

*RSD014.S02=INITrRSD014rDD14rARFSrLOBF/C
*PSIOrIOSUBS

*GSDDT.S05=INIT,QSDDT,QSDDT2,QSDDT1,ARFS/C
*INCMrPSIOrIOSUBS

SEOJ

PAGE F-4

G. SamPle Prosram QSD002

APPENDIX G
SAMPLE MIXIT PROGRAM - QSD002.MIX

JHP STRT ;FOR MANUAL STARTUPS .
' . ,
; PROGRAM: QSD002.MIX
•
' ; AUTHOR: STEPHEN N. MCALLISTER .. ,
; DATE WRITTEN: 5/14/76 .
' ~ VER S02 TIMEOUT AND MESSAGE CHANGES 24-NOV-79
a

' ; DESCRIPTIONI THIS PROGRAM PROVIDES THE PICTURE SYSTEM MEMORY
; . ,
..
'
HSGSI

MSG1t
MSG2:
MS10:
MS11l
MS12:
MS13:
MS14:
MS15t
HS16:
MS17:
MS18:
MS19t
MS20:
MS21:
MSGA:

TESTS. THERE ARE SEVEN TESTS, INCLUDING DATA PATHr ADDRESS/
DATA, AND MEMORY CONTENT CHECKS •

HEAD
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
CDATA
CDATA
CD A TA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CD A TA
CD A TA
CDATA
DATA
CDATA

<MESSAGE SECTION>
2
<MSG1,10.>
<MSG.2, 33. >
12.
<MS1<b44 .. >
<HS11,34.>
<MS12r26.>
<MS13,29~>

<MS14128 .. >
<MS151129+>
<MS1iH 12 o >
<MS17,17.>
<MS181111e.>
<MS19,20~>
<MS20,22.>
<MS21r52.>
<QSD002.S02>
<PICTURE SYSTEM MEMORY DIAGNOSTICS>
<THIS DIAGNOSTIC TESTS PICTURE SYSTEM MEMORY.>
<THERE ARE SEVEN TESTS, AS FOLLOWS:>
<1. MEMORY DATA PATH CHECK>
<2. MEMORY ADDRESS/DATA CHECK>
<3-7. MEMORY CONTENTS CHECKS>
<THE FIVE CONTENTS CHECKS ARE:>
<3. ZERO/ONE>
<4. RANDOM NUMBER>
<5. REFRESH>
<6. BIT DISTURB ONES>
<7. BIT DISTURB ZEROES>
<P100 = REFRES~ TEST DELAY, DEFLT 740 FOR 60 SEC.>
-22.
<11 DATA PATH ERR;PORT=>

G. Sam~le Prosram QSD002
Messases

PAGE G-2

MSGBt

MSGC:

MSGD!

HSGE!

MSGF!

MSGG!

MSGH!

MSGJt

MSGM!

MSGU!

MSGR!

CTLG!

MS99!

XO!
x1:
x2:
X3:
X4t
xs:
X6:
X7:
RFDL1
x100:
X200!
X400!
X410
X1210
X16l0
XHI!
COMP:
CDIF!
MSK1!
MSK2!
MSl\3!
t.U
I!
I2t
M!
M2l

DATA
CD A TA
DATA
CDATA
DATA
CDATA
DATA
CDATA
DATA
CD AT A
DATA
CD A TA
DATA
CDATA
DATA
CDATA
DATA
CDATA
DATA
CDATA
DATA
CDATA
DATA
BDATA
DATA
CDATA
HEAD
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
BLOCK
DIFF
DATA
DATA
DATA
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK

-6.
< ADDR=>
-11+
< DATA SENT=>
-11.
< DATA RECD=>
-20.
<21 ADDRESS ERR;PORT=>
-16.
<3: ZERO/ONE ERR;>
-18.
<! RANDOM DATA ERR;>
-18+
<l BIT DISTURB ERR;>
39.
<GROUND 195141-100 PIN 62 -- CARR. RTRN.>
46.
<ENTER MEMORY SIZE (1=16Kt 2=321\, 3=4SK, 4=64K>>
28.
<REMOVE JUMPER -- CARR. RTRN.>
7
<RUNNING>
-1
<710>
21.
<MEMORY TESTS COMPLETE>
<CONSTANTS ANn TEMPORARY STORAGE>
0
1
2
3
4
5
6
7
480.
100

;WAIT PARAM = 60 SEC. <OCTAL 740>

200
400
10000
30000
40000'
177377
202+
COHP,CDIF
77
7700
170000
1
1
1
1
1

;HIGHEST POSSIBLE MEMORY LOCATION

G. Sample Prosram GSD002
Constants and Temporary Storase

PAGE G-3

PRTB:
TEMP:
TMP2:
ADDRt
MSIZ!
JTBL:
DATA:

STRT:

ST2:

BLOCK
BLOCK
BLOCK
BLOCK
DATA
DATA
DATA
HEAD
THERE
THERE
MOV
MOV
CALL
TST
BNZ
CALL
CALL
BRZ
BRN
CLR
DEC
ADD
DEC
BNZ
CMPL
BRN
MOV
TST
BRZ
MOV
CALL
CALL
STOP
HEAD
SUBR

.CALL
CALL
CALL
CALL
CALL
CALL
CALL
RTRN
HEAD
SUBR
CALL
CALL
CMPL
MOV
RTRN
HEAD
SUBR
CLR

1
1
1
1
0
<O,PH1rPH2rPH3,PH4,PH4,PH6,PH6>
(0r177777r125252r52525•123456>
<DISPATCHER> ·.
<INITrSMES,SOCTrGETS,GETN,WRPS,RDPS,WAIT,RNDM>
<DPCHrERRL,PHAZ,DOPH1PSTB>
X7,PHAZ--
X7 ,.DOF'H
INIT,<HSGS> ;INITIALIZE
MSIZ ;GET ~EMORY SIZE?
ST3 ;ALREADY GOT
SMES,<HSGM,<lrMSGM>> ;GET MEMORY SIZE
GETN,<X4,TTTT>
STl ;MAKE SURE IT'S LEGAL
ST1
HSIZ
MSIZ
X16K,MSIZ
TTTT
ST2
MSIZ1XHI ;roo HIGHT
ST3 ; NO
XHirMSIZ ~YES, FIX IT UP
<100,PSTB> ~USER SPECIFIED REFR DELAY?
sr4 nm
<100,PSTB>~RFDL ;YES9 GET IT
DPCH,(JTBL> ;CALL THE DISPATCHER
SHES,<HS99,(11HB99>> ;SAY DONE

HWIT+••
<ERROR P~OCEDURE PROCESSOR>
ERDDF1 ;ENTRY POINT
SMES,<MSGB,(1,HSGB>> ;FINISH THE HSG~

socr,<MSGB.ADDR>
SMES,<MSGC,<1,MSGC>>
SOCT,<MSGC,TMP2>
SMES,<MSGD,(1,MSGD>>
socr,.<x1,rEMP>
ERRL,(.1,ERPT> ;CALL ERROR LOOP PROCESSOR

;RETURN TO ERROR PLACE
<ERPT -- RECREATE ERRORS>
ERPT,1
WRPS,<ADDRrX1,TMP2,X1> ;REPEAT THE TEST
RDPS,<ADDR,X1rTEMP,X1>
TEMPrTMP2 ;MAKE COMPARISON
TTTJ,.1 ;RETURN WITH RESULT

<PHASE 1
PH1,1
PRTB

MEMORY DATA PATH CHECK>
;ENTRY POINT
;INITIALIZE

G. Sample Pro~ram QSD002
Phase 1

P1A:
P1B:
P1C:

PlD:

P1E:

Plf't

Pl Lt

PltU

P1Nt

P2A:

P2Bt
P2C:

P2D:

CLR
CLR
CLR
HOV
ADD
CALL
CALL
CMPL
BNZ
CHPA
BRZ
INC
JHP
ADD
TST
BRZ
CLR

. CMPL
BRP
TST
BNZ
CALL
CALL
CALL
CLR
INC
JMP
CALL
CALL
RTRN
CMPL
BRP
ADD
JMP
CALL
CALL
HOV
CALL
JMP
HEAD
SUBR
CLR
CLR
CALL
CMPL.
BRP
INC
JMP
CLR
CALL
CHPL
BNZ
C.MPL

N
I
H
H,ADDR
N,ADDR

;VALUE TEST
f 4K MEMORY BOUNDARY

;ADDRESS = 11 + N

WRPSr<ADDR,Xlr<IrDA~A>,Xi> ;WRITE
RDPS,<ADDR1X1,TEMP,X1> ;READ
TEHP,(lrDATA> fERROR?
P1M ; YES
1,x4 ;No, I = 41
P1E ; YES
I fNO, I = I + 1
PlB ;LOOP ON M
X16KrN f N = N + 16K
N ;WRAP-AROUND?
P1F f YES
H ;No, H = 0
HSIZ·N ;xs THERE N MEMORY?
P1A ; YES
PRTB ;PRTB SET YET?
PlL ; YES
SHES•<CTLG,(1,CTLG>>
SMESr<HSGJ,(1;HSGJ>>
GETS•<X1rTEMP> ;WAIT
N ;N = 0
PRTB ;SET PRTB
P1A
SHESr<MSGU,(1,HSGU>>
GETS,<Xl,TEMP>

;Nor RING BELL AND
;ASK FOR JUMPER
FOR DONE

f REHOVE JUMPER

thX12K iM .GE. 121<?
P1N ;YES
X4K•M ;Nor M = M + 4K
P1C
SHES,<HSGA,<l•MSGA>>
SOCTr<MSGA,PRTB>
<I,DATA>•TMP2

;ouTPUT ERROR MSG.

ERDO,Xl
P1D
<PHASE 2
PH2r1
PRTB
ADDR

;GO DO ERROR TEST

MEMORY ADDRESS/DATA CHECK>·
iENTRY POINT
;INITIALIZE

WRPS•<ADDRrX1,ADDR,X1> ;WRITE ONE OUT
ADDR,HSIZ ;LAST ADDRESS?
P2B
ADDR
P2A iBUMP N AND LOOP
ADDR iPREPARE TO READ BACK
RDPSr<ADDR,X1,TEMP,X1> ;READ BACK
ADDR1TEHP ;RESULTS AGREE?
P2M ;NO
ADDR,MSIZ ;YES, LAST ADDRESS?

PAGE G-4

G. SamPle Prosram QSD002
Phase 2

P2E:

P2L:

P2M:

;
• ,

BRP
I.NC
JHP
TST
BNZ
CALL
CALL
CALL
CALL
C{..R
INC
JMP
CALL
CALL
CALL
RTRN
CALL
CALL
KOV
CALL
JMP
HEAD
SUBR
CLR
COM
CALL
CALL
CLR
CALL
CALL
CALL
CALL
CLR ,
COM
CALL
CALL
RTRN

P2E
ADDR fNOr BUMP N
P2C ;AND LOOP
PRTB f PRTB SET YETT
P2L ;YES
SHES,<CTLGr<1rCTLG>>
SHES•<HSGJ~<lrHSGJ>>
GETS•<XlrTEMP> ;WAIT
SH£S,<HSGRr<1,HSGR>>
ADDR ;CLEAR N
PRTB f SET PRTB
P2A
SHESr<CTLGr<lrCTLG>>
SMESr<HSGUr<l•HSGU>>
GETSr<XlrTEMP>

;RETURN
SHES•<HSGEr<lrMSGE>>
SOCTr<MSGErPRTB>
ADDRrTMP2

;Nor RING BELL AND
;ASK FOR JUMPER
FOR ANSWER
;SAY •RUNNING•

JRING BELL
;REMOVE JUMPER

;OUTPUT ERROR MSG.

ERDQ,X2 ;Go DO ERR TEST
P2D
<PHASE 3
PH3r1

ALTERNATING ZERO/ONE TEST>
;ENTRY POINT

TMP2 ;INITIALIZE
THP2
P3Ar<xo,xo,xo>
P3Ar<xo,x1,xo>
THP2
PJA,<X21XOrXO>
PJA,<xo,x1,x1>
PJA,<x1,xo,xo>
P3Ar<XOrX11XO>
THP2
THP2

;LOAD WITH ONES
;CHECK IT

;coMPLIHENT EVEN LOCS+
;CHECK FOR OrlrOr ETC.
;COMPLIMENT ODD LOCS.
;CHECK FOR ZEROES

P3A·r<x2,xo.xo> ;COMPLIMENT EVEN LOCS.
P3Ar<xo,x1.x1> ;CHECK FOR 1,0,1, ETC.

;RETURN

; EXECUTIVE SUBROUTINE
; .. , .1: 0 = ALL LOCATIONS .. , 1 = ODD •
; 2 = EVEN • .. ,
; .2: 0 = WRITE C<THP2> .. , 1 = READ & COMPARE WITH C<TMP2) .. ,
• '· .3: 0 = DO NOT MODIFY C<THP2> .. , 1 = COMPLIMENT C<THP2> AFTER ACCESS .. , . ,

SUBR P3Ar3 ;SUBROUTINE TO DO IT

PAGE G-5

G. SamPle Pro~ram QSD002
Phase 3

P3B:

PJC:

PJD:

PJE:

P3G:

P3X:

PJZ:

P4A:

P4B:

P4C:

P4D:

P4E:

P4Ft

CLR
HOV
BRZ
ADD
AND
BNZ
TST
BNZ
CALL
JMP
CALL
CHPL
BRZ
CALL
CALL
TST
BRZ
COH

·CMPL
BRP
INC
JMP
RTRN
HE.AD
SUBR
CLR
HOV
CALL
CALL
CMPL
BRP
INC
JMP
CMPL
BRN
CALL
CLR
MOV
CALL
CALL
CHPL
BRZ
CALL
CALL
CALL
CMPL
BRZ
INC
JMP
HOV
CALL
RTRN
HEAD .

ADDR
.lrTTTT
P3C
ADDR,TTTT

·x1rTTTT

;START AT THE START
iALL LOCS?

iYES
;No, MASK ALL BUT UNITS BIT

;1s IT US?
P3X ;No
.2 ;YESr WRITE?
P3E ;NO
WRPS,<ADDR.x1.TMP2,x1> ;WRITE
P3G
RDPS•<ADDR,X1rTEMP,X1> ;READ
TEMP,TMP2 ;ERROR?
P3G iNO
SHES•<MSGF•<l•MSGF>> iYES, SAY SO
ERDO.X3 ;no ERROR STUFF
.3 ;coHPLIMENT TEST VALUE?
PJX ;NO
THP2 ;YESr DO IT
ADDRrMSIZ ;noNE?
PJZ iYES
ADDR ;No, BUMP ADDRESS
P3B ;AND LOOP

iRETURN
<PHASES 4 & 5 -- RANDOM DATA>
PH4r1 iENTRY POINT
ADDR ;INITIALIZE ADDRESS
12rl ;INITIALIZE RANDOM KEY
RNDMr<TMP2rI> iGET A NUMBER
WRPSr<ADDR,X1rTMP2,X1> ;WRITE IT
ADDR,HSIZ iLAST ONE?
P4B iYES
ADDR ;N01 BUMP ADDRESS
P4A
.1.xs
P4C
WAIT.rRFDL
ADDR
I2rI

;TIME-DELAY?

;GIVE REFRESH TIME TO FAIL
;INIT

RNDM,<TMP2•I> iGET A NUMBER
RDPS.<ADDR.xt.TEMPrX1> ;READ
TEMP,TMP2 ;SAME?
P4E ; YES
SOCT,<MSGAt.1> ;No, WRITE PHASE NUMBER
SMES,<HSGG,(1,MSGG>> ;WRITE ERROR MSG.
ERD0,.1
ADDRrMSIZ ;LAST ONE?
P4F ;YES
ADDR ;No, BUMP ADDRESS
P4D iLOOP
I,I2 ;BUILD NEW KEY
RNDMr<TMP2,I2>

iRETURN
<PHASES 6 & 7 -- BIT DISTURB l'S & O'S>

PAGE G-6

G. SamPle Prosram QSD002
Phases 6 and 7

PAGE G-7

P6A:

P6B:

P6Ct

P6D:
P6Et

P6G:

SUBR
MOV
CLR
CLR
COH
DEC
MOV
DEC
HOV
BNZ
MOV
DEC
CHPL
BRZ
CLR
CALL
CLR
TST
BRZ
CALL
JMP
CALL
MOV
HOV
ADD
ADD
AND
AND
HOV
MOV
SUB
ADD
AND
CMPL
BRZ
MOV
SUB
INC
AND
CMPL
BRZ
AND
OR
OR
CMPL
BRZ
CMPL
BRN
CALL
CMF'L
BRZ
CALL
CALL

PH6r1
CDIF,TTTT
TEMP
TMP2
TMP2
TTTT

;ENTRY POINT

TMP2r<TTTT•COMP>
TTTT
TEMP,<TTTT,COMP>
P6A
CDIF,N iGET ACTUAL USABLE SIZE
N
.1,xo iTHIS TEST BIT DISTURB 1'S1
P6B
TMP2 ;(DISTURB O'S, CLEAR TEST WD>
PJA,<xo,xo,xo> ;FILL WITH 1'S <OR O'S)
ADDR ;FOR EACH MEMORY LOCATION, no:
THP2 iDISTURB 1'S?
P6D
WRPSr<ADDR,N,COHP,X1> ;YES, WRITE COMPL TBL
P6E
WRPS,<ADDRrNr<1,COMP>,X1> ;(NQ, • >
ADDR,I ;SET UP FOR
ADDR,I2 ;HOUSE-TO-HOUSE SEARCH
x2,1
X200,I2
HSK1rI
HSK2 s<I2
ADDR,PRTB
12,112
X400,M2
XlOO d12
MSK2,M2
M2,I2
P6H
IPM
X4,M
M
MSK1,M
Mr I
P6F
MSKJ,ADDR

"M2,ADDR
MrADDR

;SAVE ADDRESS
;GET INITIAL COLUMN

iBUMP COLUMN
;MASK OFF EXCESS

;DONE?

fNQ, GET INITIAL ROW

;BUMP ROW
;MASK OFF EXCESS

;DONE7

;No, MASK ROWS & COLUMNS
;RE-CONSTRUCT ADDRESS

ADDR,PRTB ;THIS THE TEST LOC?
P6G ;YES1 SKIP IT
MSIZ,ADDR ;No, WITHIN RANGE7
P6G ;No, SKIP IT
RDPS,<ADDRrX1PTEMP,X1> ;No, SEE IF 1 <OR 0)
TEMP,TMP2
P6G ;YES
SOCT,<MSGA,.1> ;NQ, WRITE PHASE NUMBER
SMES,<MSGH,(1,MSGH>> ;WRITE ERROR MSG.

G. SamPle Prosram QSD002
Phases 6 and 7

ERDOr+l ;no ERROR PROCESSING

PAGE G-:.B.

CALL
CALL
JMP
HOV
CALL
CMPL
BRZ
INC
JMP
RTRN
FIN

WRPSr<ADDRrX1,TMP2,X1> ;RESTORE BAD LOCATION

P6Hl

P6X:

P6G ;NEXT NEIGHBOR
PRTBrADDR ;DONEr RESTORE TEST LOC.
WRPSr<ADDRrX1,TMP2rX1>
ADDRrMSIZ ;LAST LOC. IN MEMORY?
P6X ;YES
ADDR ;Nor ADDR = ADDR + 1
P6C ;no NEXT LOC.

;DONE
STRT

