MPS/$S2 DIAGNOSTICS SOFTWARE.

Multi Picture Sustem/ Picture Sustem 2
: Dxaanpst1és Softuware Manual .
Evans &: Sutherland Internal Document
Prepared by Bill Roach

August 15, 1980

Thls documﬁptlls intended as 8 duide for E&S emplouees or
‘¢ustomers in the develoementy’ Wainténancey ar conversion of MPS
‘and PS2 . (her fter collectively: reférved‘%o as Picture Sustem)
.dlasnostxcsV f&&m;lzarxts with chturg Suystem hardwares as

3 n the ﬁPS/PSQ Hardware Reference Manualy and with

assembls languase softuare developmentv Preferabls under RSX ~11M,
‘are Presupposed.

MPS/PS2Z DIAGNOSTICS SOFTWARE

CONTENTS

1.

TABLE OF CONTENTS
Introduction and User’s Information

1.1, Desidgn Philosorhy

1.2, Surprorted Orerating Sustems

1.3, Orerzstion of Standasrd Diagnostics
1.4, Introduction to QSDDT

Dizgnostics Software Develorment

2.1, MIXIT Programming Landuadge
2,2, Disgnostic Utilite Subroutires
2.3, Prodramming Guidelines
2:4., Procedure for Comriling and Linking
2+:4.1, Presrocessing
2:4.2, MIXIT Comerilation
2.4.3. MACRO Assembly
2:.4:.4, Linking
2:9, Diagnostic Debugding Techniaues

lliagnostics Softuare Maintenance
3+1s Introduction

3.2, Diagrnostic Revisions

3:3¢ Dizzgrnostic Relezse FProcedure

MPS/FS2 DIAGNOSTICS SOFTWARE
APPENDICES

APPENDICES
MIXIT Lansuase Descristion
Machine Derendent Subroutines
Diagnostic Oreratind Sustems Table
MIXIT Utility Subroutines
Diagnostics Generation Flogcﬁart
LINK.DOC

Samrle MIXIT Prodrams QSDOO2

INTRODUCTION

DESIGN PHI

1.1,
3.
b.
Ce
d.

(=X}

LOSOPHY

1., INTRODUCTION AND USER’S INFORMATION
DESIGN PHILOSOFPHY
Machine Inderendence
Standard Orerator Interface
Srecified by Design Endineer
Assume Minimal Hardware Confiduration

Simerle Standard Oreration Combined
With Flexible Non-Standard Oreration

Reference! MPS/PS2 Disd Manuals Sert. ‘80y Ch 1
or Nov. 78y Ch S

1.2.

-1

b.

e.

.

SUPPORTED OPERATING SYSTEMS

RT-11 Sinsle-User!: fast’ convenient batch mode’
can use 11/04 and flosrpy diskette.

Marred RSX-11iM:! Sustem used by most customerss
mslti-user orerationy but no DMAs interrurtsy or
batch mode.

Unmasrped RSX-11iM! For Madgtasre distribution to
R8X customers: suseparts DMA asnd interrusis,

VAX/VUMS:! batch modes DMAy 3nd interrurts. Communicate
with PS throusgh MFS Driver Dizgnostic QIC‘’s. Inm some
cases much slower than RSX-11iM. These will work on
PS2y though EES does mot sprovide Grarhics Softuware

for PS2 on the VAX.

Interdata 8/32: E&S develored the utilits subroutines

and converted the disdnosticss but no londer has an
Interdats suystem in-house. In this and the two following
casesr Assembler source files for the desired sgstem

maw be denerated under RSX or VMS.

NORD-10s Melcom-70! Utility subroutines develored by
OEM‘’s in Norwaw and Jaran resrpectivelu.

Reference! MPS/FS2Z Diasg Manusls, Sert., ‘80 Ch 3 ff

1.3,

OPERATION OF STANDARD DIAGNOSTICS

- Hels
Modifyw

Do Phases
Fass Count

)

T X I

INTRODUCTION ‘ PAGE 2
STANDARD OPERATION

- Execute

- Stor on Error

- Loorp on Error

- Loo® on Errore and Continue

Oormx

1.4, INTRODUCTION TO QSDDT

General rurrose tools useful in hardware troubleshooting and
diagnostic debudding. See Disg Manusl Nov '78s Ch 6» or Sert ‘80
Ch 4, Commands not documented 3s of Nov ‘78!

Y - Sense Interrusrts

P - ggarch Orerator (P100 = Search Mask)
|2 T P R G e

SOFTWARE DEVELOPMENT FAGE
UTILITY SUBROUTINES

2. DIAGNOSTICS SO?TUARE DEVELOPMENT
2.1, MIXIT PROGRAMMING LANGUAGE

See Arrendix A

2.2, DIAGNOSTIC UTILITY SUBROUTINES
2.2.1, MACHINE DEPENDENT SUBROUTINES

Contsined in files PSI0O.MACs, I0SUBS.MACs QSDDT1.MAC
and RTI.MAC or their counterrarts. See Arrendix R
for descrirtions of constituent subroutiness and
arrendix C for table of corresronding files.

2:.2.2, MACHINE INDEPENDENT SUBROUTINES

Written in MIXITS files commonly used bw several dizgnostics.
See Appendix D Por srecifications.

ARFS . MIXsARF2.MIX - Subrs RTWTsARFS? ARF2 used for
double-~-bufferindg.,

RNDM,MIX - Subr RNDM#? Random Number Generator

CODE.MIXsNCODE.MIX - Subr CODE is MNEMONIC Interspreter.
NCODEHIX resrects PSTBs CODE.MIX does not.

2.3, PROGRAMMING GUIDELINES
a. Use INIT and DPCH for standard orerator interface
b. Assume minimal hardware confiduration.
c. Use <765PETB> thru <101,PSTE> for non-default rarameters.
d. Use ARFS for suto-referesh.

e. Minimize number of RDPS a2nd WRPS calls to imrrove
rerformance. Better one block transfer than manus
sindle-word transfers. Avoid DMA c3llss to run wunder
Marred RSX. To improve rerformancesr DMA mag be an orition
controlled bw e.g. <100,PSTR>. [Default should be DMA
disabled.

f+ Use tsbles and indexing srofusels. Use indexed dissatch
rather than chainmed branches. Better a3 1é6-word table
and indexed reference than four instructions.

g, Do not race with the harduare. Alwazs assume the

~ herdware will winy and if necessarys ensure this by 3
call to WAIT. If wsiting 1/8 second or more does not
make the rrodram intolerabls slowr 3luwass c3ll WAIT

SOFTWARE DEVELOFMENT FAGE
PROGRAMMING GUIDELIMNES

Ne

Je

1

Fie

[» %

2.4,

rather than write 3 timeout loor, In 3 Multi-user
systemr this will relinauish the crpru., C3lling WAIT duar-
antees AT LEAST the srecified delauw. Whether WAIT

is called or notsy in 3 Multi-user system the disdgnostic
might be susrended a3t ang time for any lendgth of time.

Start refresh buffers on an even addressy and ensure that
8ll data sesments have an even word count.

Never use DATA to defire two charascter codes in one word.,
Use CDATA or BDATA.

o not use interrurts (CINTy SINTs and DINT) excert in
interrurt diagnostics. At sresents onls QSD100, QSD1L7:»
and QSDOT do.

Access the interface redgisters via READ and WRITE. DHA
transfers may onls be initiated by the DMA subroutines
and will casuse the task to sbort under Marred RSX.

Ho recursive routines.

‘Place constants and variables in orne area of the rrosgsrams

in an easily searched fashion. Constants should have
identifwing mames such as X10 for octal 10y Ki1é for 146K»

etc.

All SCE zddresses zre optsined from PSTE asfter INIT hsas
been called.

A table-rrocessing techniguer assuming 8 4 by nn table?

Lis CaLL SUBL,<{IX1,TABL1> $PROCESS NEXT ENTRY IN TABLE

" ADD X4,1IX1 BUMP POINTER
CHMPA IX1sT182Z s COMPARE WITH TABLE SIZE
ERHN L1 §STILL NEG, LOOP

®

SUBR SUE1.1
col, 1y rresent table. entry
col. 2y etc.

Here 1
“1s.1>

FROCEDURE FOR COMPILING AND LINKING

2,4,1, FREFROCESSING

»RUN $FREFR
.""..’.'.""’: FILEQ”IX
000000000000000: FILEOF‘RE

ory for Prerrocessing with indirect files

SOFTWARE DEVELOPMENT PAGE S
COMPILING AND LINKING ‘

>RUN $PREPRI
QOOOOO’OOOOQOOO: FILEOPRC
where FILE.FPRC contains (b = blank)!
. FILE1.MIXb
-FILE1.PRED
FILE2.MIXb
FILE2.PRED
etc.
2:.4,2, MIXIT COMPILATION
Preferred methods even for sinsle file!
>RUN $MIX11i (or MIXB832y etc.)
X@FILE.MXC
Where file FILE.MXC contains
FILE1.MAC»TI!/L{OFF=FILE1.PRE
£EQOF $
Or 2 method which has buds?
SRUN $MIX1i
XFILEL .MAC=FILE1 .FRE
(CR)
2.4.3. MACRO ASSEMBLY

It ‘is possiblery but not recommendeds to use register names
as labelsy e.d.}

SP: DATA O A MEMORY LOC NAMED °®*SP°®, NOT RECOMMENLED
To assemble such 3 file under RSX» use the /DSIREG switch.
The MIXIT °*STOP®" instruction generatess for PIP‘’s!

+MCALL .EXIT
+EXIT

To accomodate this in RSXy create file EXIT.HMALC: conmtaininsg:
JMACRO LEXIT

+MCALL EXIT$S
EXIT#S -

ittt e e

T s

W ENIM e EXIT e S

SOFTWARE DEVELOFPMENT FAGE
COMPILING AND LINKING

And assemble éng file which uses °*STOP®* (ususlly Just the
main filel)s as follows.

>MAC FILE=EXITsFILE
NOTE:! This will NOT work in condunctionm with /DSIREG
The MAC file zZenerated by MIX11 is voluminoussy and it is
usually 2 waste of time and epa3per to obtain a3 listing. A
symtbol-table only listings howevers can be useful for
debudgdinds and is obtained as follouws!?

“MAC FILE,FILE/NL:=FILE
or snother case!

+»MAC SFILE/NLS=EXITsFILE

Be sures of courses that the LST file corresronds to the
OBRJ file being debusdged.

2.4.4, LINKING

File LINK.DOC contsins linking instructions for all
distributed dizdnaostics. To convert it to an executsble
RT-11 batch file! .

+R TECO
KERRTLINK,. TECS$YHXXHKERLINK.DOCSEWLINK.BATS
YHX$eS

To convert it to 8 TKB CHD file for Unmmasered RSX (ortions
are ASG=TI!1 and PAR=PAR14K:140000:700060)2

»RUN $TEC/INC=8192.
XERUNMAPD . TEC3YHXXHKERLINK.DOCSY
EWUNMAPD . LNK$MX$$

Thereafter: to denerate 3 TKE CHMD file for Marred RSX
(ortions are ASG=TI!1 and COMMON=FSDEVO:IRMW)!

>RUN $TEC/INC=8192.
XERMAFD.TECSYHXXHKERUNMAFD,LNKSY
EWMAFD . LNK$MX$$

Ortions for VUMS are ASG=TI!1 and ASG=MFAO:4

2,3, DIAGNOSTIC DEBUGGING TECHNIQUES

DUPF LWARE UEVELUFAENI PAGE 7
DEBUGGING TECHHIQUES

2.5.1. DEBUGGING WITH GSDDT

Examine the hardware after running the diagnostic. Is the state
35 exrected? Exsmine and search memorw buffers. HMHodify refresh
buffers: reset (R)3} srecify FOsF1$ start sutorefresh (G). If
garbadge asprears on the screens Ky change Fly G to do binarg
search and locate the garbasge. '

2,5.2., DEBUGGING WITH SIMPIO

Link with SIMPIO (simulsted FSI0) imstead of PSIO. All PSIO
calls and arduments are rerorted a3t the terminal. For read
orerationss the Prodrammer mas srecify the received data. This
is useful for verification of disdgnostic error messadges, Is the
seaquenrnce of writes and resds zs expected?

2.5.3. DEBUGGING WITH ODT

Limk with ODT (RSX /DA switech). Obtasin link ma® for slobzal
addresses and relocation biass for each modules and assembls
sumbol table listinss for local sddresses as needed. Load
relocation redisters (R)., Set breakroints (B), Examine
variables. Abort after 3 breakroint and run QSDDT to examine the
Picture Sustem. '

2.5.4., TRACING CHANGES IN SOURCE FILES WITH CHP

Be slow to s2urdge .MIX files (2nd uick to rurde evergthing else
and delete .PRE‘s), Use RSX CHPs UMS DIFF» or RT-11 SRCCOH to
track the chandges made.)

SCFTWARE MAINTEMANCE PAGE 8
DIAGNOSTIC REVISIONS

3. DIAGNOSTICS SOFTWARE MAINTENANCE
3+.1. INTRODUCTION

This charter desls with procedures for revising distributable
disgnosticss incorerorasting new diagnostics into the distributable
drours and preraring 3 new dizgnostics relesse for distribution
to CE’sy customerss the E&S Test Derartments and other users.

3.2+, DIAGNOSTIC REVISIONS
a8 Verify the revisions’y see Arrendiu G.

b. Place the new MIX files on the DGDEVFP (Disdnostic
- Develorment) RLOL1 in area [220510]1. Edit LINK.DOC.
The version number (e.g. S502) must be bumeped in the
+MIX file headers in the messade outeut by the
dizgnosticy in LINK.DOCs and in the writeur in
the Disdriostics Masnusl. Alsor review the writeur.

c. Record the revision for inclusion in the relesse memo.
3.3, DIAGNOSTIC RELEASE PROCEDURE

2. Prerare the Relesse Memor summarizing 23ll revisions and
new disgnostics incorrorsted into the relesse.

o, Transfer 311 MIX filess LINK.DOCy amd serlicable .MAC
- Piles from the DGHEVP disk to MT! to VAX L[VAXMPS.DIAG.MIX]

c. Edit LINK.DOC to sroduce Batch file(s) to Prerrocess
and MIXIT comeile the MIX files into .MAC files.
Delete .FPRE files when done.

d. Use Batch files to sssembles limks snd rum 3ll disdnostics
under [VAXMPS.DIAG.NEWEXE]., Verify the oseration of sl1l
diagnosticss sarticularly those which have been revised.

e. If any ,MIX Piles have been revised zs 3 result of the
foredoing sterpss urdate them on DGDEVF., Put 2ll
generated .MAC files on MT{/D0. Put them from there onto
DGMAC RLOZ.

f. éssembles Link, and Verifw for Marred RSX-1iM. Fut result-
sant tasks on mew DLRSX RLO1 [220-,14] with FSDEVO,
ESDIAG.CMDs etc.

4, Assembles Links and Verify for Unmarred RSX-11M. Fut on
DLRSX [220,153.

he Corue via FLX the DGMAC files to DLI/RT. Assembles link:
and verifys under RT-11, using RT-11 Diad Devs RLO1.

SOFTWARE MAINTENANCE PAGE 9
DIAGNOSTIC RELEASE :

i.

e

ko

Prerare the following Master Cories of distributable
diadnosticst! RSX MTs» RKOSs and RLO1 (make RLO2 from RLO1)35
UMS MT and mut new .EXE files into CVAXMFS.DIAGI,

deleting old’ RT-11 RKOS (make RLO1l and RLO2 cories from
RKO0S)y RX02: RXO1ls and TUSS,

Sernd Release Memo to all CE’s»y 3nd bedin shiﬁpins media to
CE’s and customers 3s needed.

On VAXs use Batchy MIXB832 and Interdatas Magtare Prodram

to put +CAL files on srecislly formatted tarer 3long with
+£88 files» QSI000.CALs QSI001.CALs QSI100.CALs old QSD117»
PSI0.CAL», IOSUBS.CAL» QSDDT1.CALs 2nd cories of FSIO.MAC,
I0OSUBS.MAC» RTI.MAC, QSDDOTL.MAC. INIT.CAL and QSDDT.CAL
require Interdats-srpecific edits. Backus on MTI/D0 2

copy of evergthing distributed to the Interdata customers.

June &>, L1L9Y/0

APPENDIX A

MIXIT -- A Machine-Independent Assembly Language

MIXIT is a machine-independent assembly language which can be
processed on the PDP-11 to produce an ASCII assembly language
file for a target machine. The assumptions built into MIXIT
about the target machine are: '

. 16-bit word machine

2's complement

Word addressable only'
No stack operations®

[T VR SIS
e & e o

No re-entrant or recursive routines!?

Instructions for MIXIT are of the form:

LABL: . INS argl, arg2,... ;com
where:

LABL is an optional 4-character label

. INS is the MIXIT instruction (the preceding period

is optional)
2
argl,
arg2,...are the arguments required (if any) for the
instruction specified (.INS). Arguments are of
the form: '

a or <X,a> where X is a value to be used
as an index such that c(X)+a =
the effective address of the
the argument. a 1is the afgument.

iRefe? ?o'tbe language; the target -machine may have different
2spec1f1catlons,“but these will be invisible to the programmer.
“For a more complete description, see the section on arguments.

A. MIXIT LANGUAGE A-2

General Instructions

MOV a,b ;b*a

JADD - a,b ;b«a+b

LADD2" a,b ;<b,b+1l>«<a,a+l>+<b,b+1>
.SUB a,b ;beb-2a

.SUB2 a,b ;<b,b+1>«<b,b+1l>-<a,a+l>
. INC a ;a+a+l

.DEC a ya+a-1

.CLR a ;ya<«0

.COM a jae~a

JAND a,b ;b+a’b

.OR a,b ;b+avb

.SLS a ;a+a*2

. SRS a ;a+a/2, a<l5> undisturbed
.SLD a ;<a,atl>+<a,a+l>®2

.SRD a ;<a,atl>+<a;a+l>/2, a<lS5>undisturbed

Test and Branch Instructions

. CMPL a,b ;logically compare a to b
. CMPA a,b ;arithmatic compare a to b
.TST a ;condition « -,0,+,7#

;note condition is not set by the

; general instructions

.JMP a ;unconditional branch to 'a"

. BRZ a ;branch to "a' if condition 0

.BNZ’ a ;branch to "a'" if condition not 0

. BRN a ;branch to "a'" if condition negative

. BRP a ;branch to "a" if condition not negative

* Following a CMPL or CMPA instruction, condition code represents
(a-b) unsigned for CMPL or two's complement for CMPA. Only
CMPL, CMPA and TST set condition.

A. MIXIT LANGUAGE A-3

Data Storage Instructions

.BLOCK n , ;reserve n words of storage

.DATA <a,b,c,...> ;define data words a,b,c,...(a,b,c,...
ymay be names or numbers)

.CDATA <string> ;define character string, using
;characters in the 64 ASCII set
;which generate octal values 40-137

.DIFF a,b ;define a word of data +«b-a (offset
iin words, a and b must-be names)
.BDATA © <a,b,c,d,...> ;define numeric byte

;ydata a,b,c,d...

;this instruction packs each pair of
;bytes into a data word according

;to the machine-specific byte sequence.
;an even number of unsigned

% ;octal arguments is required.
XK N I P Tarr e S
Subrountine Instructions K pudlicca fel SRS s 0 v
,CALLl a or a,<b,c,...> j;call subroutine "a" with optional
' sarguments b,c...

.SUBR a,n ;define subroutine entry point a

;with n arguments (both subroutine

:name and argument count are optional).
.RTRN j;return to calling routine
.HERE <a,b,...> ;define global entry points
. THERE <a,b,...> ;defines external globals

Miscellaneous Instructions

.LABEL a ;defines label 'a"

.STOP , + s;terminates execution of program
;and return to monitor

-HALT) - ;stops CPU execution

FIN =.. ench S A X ;end of Program Segment (Finish)

.REM Cmommemm- > ;Remarks--all subsequent characters

;on the line are comments (this
;instruction is not really necessary,
;since each instruction may contain
;its own comment

1Subroutines in" MIXIT are not reentrant.

A. MIXIT LANGUAGE A-4

.HEAD - SRR > ;generates a page eject directive
.iand supplies heading information to
;the assembler of the target machine.

.NAME ——-- ;optional title, must be the first
;statement in the program if present

Program Test Word

When a .CMPA, .CMPL or .TST instruction is specified, the
resulting zero/nonzero, positive/negative value is placed in the Preg

Test Word, defined at the beginning of each program segment as:

.HEAD <MIXIT ASSEMBLYX >
.REM < :PROGRAM TEST WORD >
.LABEL TTTT

.DATA 0

When a .BRP, .BRN,..BRZ or .BNZ instruction is given, the
associated transfer of command is conditional on the contents
of the Program Test Word (the PTW).

There is a unique PTW defined at the beginning of each program
segment. Therefore, if a subroutine is called which is defined
iﬁ a separately assembled program segment, the PTW remains un-
disturbed upon return to the current program segment. Note also
that the current PTW is not reflected in the PTW of:the external

segment.

'Undefined results will occur if TTTT is used as an
‘argument to .CMPA, .CMPL or .TST instructions.

A. MIXIT LANGUAGE A-5

Arguments

Except for the specific exceptions discussed in previous

sections, arguments to MIXIT instructions are of five general

types. Each is discussed in detail below.

1.

Names -- all MIXIT names represent actual memory addresses,
and may be assigned either as statement labels, or as
externally-defined locations via the THERE directive. All
names must be four characters o§“£g§§wighlmﬁgjh must

contain only alphabetlc or numeric characters, and must

DT

begin w1th a letter of the alphabet. ;@Jﬁfdf ‘o

- Numbers -- these'may be in either decimal (denoted by the

presence of an eight, a nine, and/or a trailing decimal
point) or octal radix. They may be éither positive or
negative (as signified by a leading minus sign). Numbers,
however, may be used only as index values (see Para. 4 below)
or as constants in a DATA statement. |

Subroutine arguments -- these are used within the bounds of
a subroutine (i.é. anywhere after a SUBR directive). Such
an argument consists of a period followed by a pure number,
which will be interpreted in decimal radix (e.g. ".13%)

and which represents the ith (e.g. 13th) parameter in the =

-parameter list of the associated CALL statement. This construct

may appear wherever a name may appear.(within a subroutine),

éxcept as labels, or in name- or data-defining contexts such

as arguments to HERE, THERE, DIFF or DATA statements. These

arguments may, of course, be used as parameters to subroutine
calls to achieve further nesting of subroutine levels.

Indexed arguments -- when it is desired to specify an offset,
in words, from a defined location or subroutine argument (for
example, in the case of arrays) this construct is used. 1In
the place of a name or subroutine argument, one writes »
"<arg,arg>" where the first argument may be any of the above
types (name, number or subroutine argument), and signifies
the offset in words; and the second argument may be either

A. MIXIT LANGUAGE | | A-6

a name or subroutine argument, and signifies the base
address (i.e. the name of the array). Note that to
determine the number of words in an array, the DIFF
directive should be employed, rather than an execution-
time subtraction of two addresses, in order to avoid
address complications arising from running MIXIT on
byte machines.

Indirect addressing -- since indirect addressing is
simply a special form of indeiing in which the base
address is zero, the format for this construct is
simply ''<arg,>'" where the second argument is omitted.
Because absolute addresses are prohibited in MIXIT, i
numbers may not be used as the argument here, and
although a location may contain any value, care

should be taken to indirectly reference only those
locations which were assigned as named locations via

a DATA statement. |

An example of the use of both indexing and indirect
addressing appears below. This is a dispatch table and
the dispatch code associated with it.

MOV <DEX,TABL>,TEMP

JMP <TEMP,>
TABL: DATA <RTNA,RTNB,RTNC,...>
TEMP: BLOCK 1

B.

Machirne lierendent Subroutines

APFENDIX B
MACHINE DEFENDENT SUBROUTINES

B:ele Introduction

The following Machine Derendent Subroutines are
described in this serrendix. Each must be rewritten
for 3 specific CPU and Orerating Sustem.

PSIO.MAC PICTURE SYSTEM I/0 (Sec B.2.)

RSFPS RESET PFS2

RSIO RESET DIO

RSIM RESET DHMA

WRIT FS2 INTERFACE WRITE

READ FPS2 INTERFACE READ

DMA INITIATE DMA DATA TRANSFER
TOUT IIMA OR DIO TIMEOUT DETECTION
RDFS READ VIA DIO

WRFS WRITE VIa DIO

GPSA GET DIOPSA *

LPSA LOAD DIOPSA

CINT ‘CONMNECT INTERRUPT

DINT DISCONNECT INTERRUPT

SINT SENSE INTERRUFTS

I0SUBS,MAC TERMINAL I/0 (Sec. B.3.)

RN 9
S0CT SEND OCTAL NUMBER Wwvzist
SMES SEHDII MESSAGE OR STRING
GETS GET STRING

GETH GET OCTAL NUMBER

WAIT DELAY N/8 SECONDS

ASONT1.MAC STRING FARSING AND BYTE PACKING ROUTINES
{Sec. Bsds) -

GETC GET NUMBER AMND DELIMITER FROM STRING
BYWD PACK TWO BYTES INTO A CG WORD

RTI.MAC REMOTE TERMINAL INTERFACE I/0 (Sec. B.35.)
ROT READ OTHER TERMINAL

WoT WRITE OTHER TERMINAL
ROTC CLEAR OTHER TERMINAL READ BUFFER

B. Machine Derendent Subroutines PAGE EB-2
B.2., PSIO.MAC
Be2. FSIO.MACy Ficture Sustem I/0
THESE SURROUTINES FROVIDE THE STANDARD I/0 INTERFACE FOR ALL
PICTURE SYSTEM DIAGNOSTICS TO AND FROM THE PICTURE SYSTEM.
SUBROUTINE RSPS?

THIS SUBROUTINE (RESET PS) IS CALLED TO INITIALIZE ALL PS REGISTERS
AND I/0 INTERFACE CONTROL ELEMENTS TO THEIR NORMAL POWER-UP STATE.

MIXIT CALLING SEQUENCE:!
~ ,CALL RSPS
SUEROUTINE RSIO!
. THIS SUBROUTINE RESETS THE DIRECT I/0 PORTION OF THE INTERFACE
MIXIT CALLING SEQUENCE:!
.CALL RSID
SUBROUTINE RSDN:

THIS SUBROUTINE RESETS THE DMA FORTION OF THE INTERFACE.

+CALL RSDM

SUBROUTINE WRIT:
THIS SUBROUTINE IS CALLED TO LOAD A CPU REGISTER.
MIXIT CALLING SEQUENCE:
+.CALL WRIT,<VALUsLOC>
WHERE !
VALU SPECIFIES THE VALUE TO BE WRITTEN.
LacC SPECIFIES WHICH CPU REGISTER TO WRITE.
LOC=0 FOR PSDATA
LOC=1 FOR DIOPSA
LOC=2 FOR DMAUWC

LOC=3 FOR DMABA
LOC=4 FOR I0ST

»
’
-
’
&
i
;
»
y
.
H
8
H
o
'
3
’
-~
i
§
?
s
H
-~
#
3
’
o
H
&
y
&
#
-~
#
3
;
N
H
o
H
A
3
@®
¥
3
i
7 MIXIT CALLING SEQUENCE?
§
o
7
a
5
o
#
.
7
.
§
o
$
3
$
o~
7
-
$
L3
}
3
H
-
’
a
i
»
7
>
§
’
s
H
»
H
H
&
;
-
3
-
’
>
i
3
’

SUBROUTINE READ:?

B. Machine Derendent Subroutines ' PAGE B-3
B.2., PSIO.MAC

Wr WP e WP WO WP AP WO SE) P ar S WP EP Gd e P

@ar we WE CaF WP i AP WP WP wr We Wb

P Wr WP AP WP P AP P WP AP NP R SP NP WP EF WP EP Wh WP EP CP eh

THIS SUBROUTINE IS CALLED TO READ A CPU REGISTER.
MIXIT CALLING SERUENCE:

+CALL READy<LOC,VALU>
. WHERE? |

Lac SPECIFIES WHICH CPU REGISTER TO READ.
LOC=0 FOR FSDATA
LOC=1 FOR DIOFPSA
LOC=2 FOR DMAWC
LOC=3 FOR DMABA
LOC=4 FOR IO0ST

-~ VaLu SPECIFIES WHERE TO STORE THE VALUE READ.

SUBROUTINE DMA

THIS SUBROUTINE IS CALLED TO TRANSFER A WORD (OR
BLOCK OF WORDS) TO OR FROM THE PICTURE SYSTEM
Via THE PDP-11 DMA INTERFACE.

MIXIT CALLING SEQUENCE:
«CaLL DMAs<PSAsNsFDFAsXADR s MODE s WAIT>
WHERE

FSa SPECIFIES THE PICTURE SYSTEM ADDRESS
WHERE THE FIRST WORD TO BE TRANSFERED
FROM THE PICTURE SYSTEM TO THE PDP-11
RESIDES OR WHERE THE FIRST WORD TRANSFERED
FROM THE FDF-11 7O THE PICTURE SYSTEM
SHOULD BE STORED.

N SPECIFIES THE NUMBER OF SEQUENTIAL WORDS

~ TO BE TRANSFERED.

PDPA SPECIFIES THE FDP-11 ADDRESS WHERE THE
FIRST WORD TO BE TRANSFERED FROM THE
POF-11 TO THE PICTURE SYSTEM RESIDES OR
WHERE THE FIRST WORD TRANSFERED FROM THE
PICTURE SYSTEM TO THE PDP-11 SHOULD BE
STORED.

XADR SFECIFIES THE TWO EXTENDED ADDRESS RITS
OF FDFA.

MODE SPECIFIES WHETHER THE DMA WILL DO ACTIVE
OQUTFUT, ACTIVE INPUT OR FASSIVE INPUT
TRANSFERS.

IF MODE=0 THEN THE DMA WILL DO ACTIVE OQUTFUT
AND N SEQUENTIAL WORDS WILL BE TRANSFERED
FROM FDF-11 MEMORY BEGINNING AT THE ADDRESS

wazr T w2 T S Ry o o

SN

S n oy e Loy 5 & et
[T — s . PR
RIS R o) ¢ f(,j[. . ’ ' '

55 o
@
P’

BE. Machine llerendent Subroutines - FAGE B-4
B.2. FPSIO.HAC

SPECIFIED BY PDPA TO THE PICTURE SYSTEM.
IF MODE=1 THEN THE DMA WILL DO ACTIVE INPUT
AND N WORDS WILL BE TRANSFERED' FROM THE
PICTURE SYSTEM TO PDP-11 MEMORY AND WILL
BE STORED IN SEQUENTIAL LOCATIONS BEGINNING
AT THE ADDRESS SPECIFIED BY PDFPA,
IF MODE=2 THEN THE DMA WILL DO PASSIVE INPUT
AND N WORDS WILL BE ACCEPTED FROM THE PICTURE
SYSTEM AND WILL BE STORED IN SEQUENTIAL PDP-11
MEMORY LOCATIONMNS BEGINNING AT THE ADDRESS
SPECIFIED BY PDPA.

WAIT SPECIFIES WHETHER OR NOT TO WAIT FOR DMAREADY TO
BE SET BEFORE RETURNING TO CALLER.
IF WAIT=0 THEN DMAREADY BIT WILL NOT BE CHECKED
BEFORE RETURN TO CALLER.
IF WAIT=1 THEN DMAREADY BIT WILL BE CHECKED AND
MUST BE SET BEFORE RETURN TO CALLER.

SUBROUTINE TOUT?

THIS SUEBROUTINE (TIMEOUT) IS CALLED TO TIMEOUT., TEST THE DIO
DMA READY BITS AND SET RESPECTIVE FLAGS IF THEY ARE SET.

MIXIT CALLING SEQUENCE?
+CALL TOUT s <IRDYsDRDYZ
WHERE S

IRDY IS A VARIABLE WHICH IS SET IF DIOREADY IS SET
AFTER THE TIMEOUTs CLEARED OTHERWISE.

DRDY I8 A VARIABLE WHICH IS SET IF DHAREADY IS SET
AFTER THE TIMEOUTs, CLEARED OTHERWISE.

SUBROUTINE RDPS?

THIS SUBROUTINE (READ PS) IS CALLED TO TRANSFER A WORD (OR
A BLOCK OF WORDS) FROM THE PICTURE SYSTEM BACK INTO THE
FOP-11.

v e]
LN -t

MIXIT CALLING SEQUENCE: *' . 5 -

/

: ¢
+CALL RDPSs<FSAsNsPOFAHOLD>

NH ERE : | ADTR ('(; : J[L a:”f .
FSA SPECIFIES THE PICTURE SYSTEM MEMORY ADDRESS THAT
THE FIRST WORD IS TO BE READ FROM.
N SFPECIFIES THE NUMBER OF WORDS THAT ARE TO BE READ

FROM THE PICTURE SYSTEMNM.
FOFA SFECIFIES THE FDP-11 ADDRESS WHERE THE FIRST WORD

NE NP NP W WP M WP P WP P P S S NP EF WP WS NSp Wb @b TF R EF 'GP B0 WP WPE Gd Eh NP Wb WD NEr S WO WS SF e Ab \EP WGP G0 P W WP W WP wr EP we wr eP up

B.
B.

Wr WP NP NP SE WP NP EP WP SR SR WF NP MR R SR WD AP ED NP 9D w=d WGP WE WP WS WP WE O AR AP WP WP ir SP NP We EP b SP W P P P WGP WP WP WE WP 6P WP WP W e

Machine Derendent Subroutines : FAGE B-S
2. PSID.MAC

READ FROM THE PICTURE SYSTEM IS TO BE WRITTEN.,

FOR BLOCK TRANSFERSs N.CONSECUTIVE WORDS WILL BE

WRITTEN INTO PDP-11 MEMORY BEGINING AT THIS ADDRESS.
HOLD SPECIFIES WHETHER THE FICTURE SYSTEM ADDRESS REG-

ISTER (DIOFPSA) SHOULD BE INCREMENTED AFTER EACH READ

OFERATION.,

IF HOLD=0 THEN N SEQUENTIAL WORDS WILL BE READ BE-

GINNING AT THE FICTURE SYSTEM MEMORY LOCATION SPEC-

IFIED BY PSA.

IF HOLD NOT=0 THEN THE CONTENTS OF FPICTURE SYSTEM

MEMORY LOCATION SPECIFIED BY PSA WILL BE READ AND

TRANSFERED TO THE PDP-11 N TIMES.

SUBROUTINE WRPS?

THIS SUBROUTINE (WRITE FPS) IS CALLED TO TRANSFER A WORD (OR
A BLOCK OF WORDS) FROM THE PDP-11 TO THE PICTURE SYSTEM.

MIXIT CALLING SEQUENCE:?

+CALL WRPSy<PSAsN»PDFAsSHOLD>

WHERE$
FSA SPECIFIES THE PICTURE SYSTEM MEMORY ADDRESS THAT
THE FIRST WORD IS TO BE WRITTEN INTO.
N SPECIFIES THE NUMBER OF WORDS THAT ARE TO BE TRANS-

FERED TO THE PICTURE SYSTEM.

FDPA SFECIFIES THE PDP-11 ADDRESS WHERE THE FIRST WORD
TO BE TRANSFERED TO THE PICTURE SYSTEM RESIDES.
FOR BLOCK

RANSFERSs N CONSECUTIVE WORDS WILL BE

TRANSFERED FROM PDP-11 MEMORY BEGINING AT THIS
ADDRESS.

HOLD SPECIFIES WHETHER THE PICTURE SYSTEM ADDRESS REG-
ISTER (DIOPSA) SHOULD BE INCREMENTED AFTER EACH
WRITE OFPERATION. _
IF HOLD=0 THEN N SEQUENTIAL WORDS WILL BE WRITTEN
BEGINNING AT THE PICTURE SYSTEM MEMORY LOCATION
SPECIFIED BY FPSA. :
IF HOLD NOT=0 THEN THE PICTURE SYSTEM MEMORY
LOCATION SPECIFIED BY PSA WILL BE WRITTEN N TIMES.

SUBROUTINE GFSAS

THIS SUBROUTINE (GET PICTURE SYSTEM ADDRESS) IS CALLED TO GET THE
LOCATION IN FICTURE SYSTEM MEMORY THAT IS CURRENTLY BEING ADDRESSED
EY THE PICTURE SYSEM DIRECT I/0 INTERFACE (DIOFSA).

MIXIT CALLING SEQUENCE:

+CALL GFSAs<PSAZ

B. Machine lerendent Subroutines PAGE B-6
B.2. PSIO.MAC

WHERE$

PSa IS A VARIABLE IN WHICH THE CURRENT CONTENTS OF THE
DIOPSA REGISTER IS RETURNED.

SUBRDUTINE LPSA!‘Y

THIS SUBROUTINE (LOAD PICTURE SYSTEM ADDRESS) IS CALLED TO LOAD THE
FICTURE SYSTEM ADDRESS FOINTER WITHOUT DOING ANY I/0

MIXIT CALLING SEQUENCE:!
+CALL LPSAs<PSA>
WHERE

PSA IS A VARIABLE WHICH WILL BE LOADED INTO THE DIOPSA
REGISTER. ’

SUBROUTINE CINT:

THIS SUBROUTINE IS CALLED TO CONNECT 7O A PICTURE SYSTEM
INTERUFPT FROCESS.

MIXIT CALLING SEQUENCE:S
LCALL CINTs<N»
WHERE $
N SPECIFIES THE INTERRUPT PROCESS TO CONNECT TO.
N=1 FOR RTC INTERRUPT
N=2 FOR SYSTEM INTERRUPT

N=3 FOR DEVICE INTERRUFT
N=4 FOR DMA INTERRUPT

SUBROUTINE DINT?

THIS SUBROUTINE IS CALLED TO DISCONNECT FROM A PREVIOUSLY CON-
NECTED INTERRUFT FROCESS.

MIXIT CALLING SEQUENCE:?
+CALL DINTs <N
WHERE ¢
N SPECIFIES THE INTERRUPT PROCESS THAT IS TO BE DIS-

CONNECTED FROM.
N=1 FOR RTC INTERRUPT

WP e P WP TP WP P NI EP WP P P P WP D WP YEP ED WD P @D Wb WP MEP EP WE P WP @b 82 ‘8P Wb WP AP M WP WP SR WGP EH e NP P BP ES P NP N wh WP WP P >

B.
B.

NEP \EP MIP BF Y WP BF W P WGP WP aP W @r MP WP E) WS We WP Wb 6P Wb

Machine Derendent Subroutines FAGE ER-7

2. PSID.NMAC

ZZZ
W un
NS]

SUBROUTINE SINT:

THIS SUBROUTINE IS CALLED
TO INDICATE WHICH TYPE OF

MIXIT CALLING SEQUENCE?
+CALL SINT,<MASK>

WHERE?

FOR SYSTEM INTERRUPT
FOR DEVICE INTERRUPT
FOR DMA INTERRUPT

TO SENSE INTERRUPTS. A MASK IS RETURNED
INTERRUPT OCCURED.

MASK SPECIFIES THE RETURN MASK.

BIT 0=1 RTC

INTERRUPT

BIT 1=1 SYSTEM INTERRUPT
BIT 2=1 DEVICE INTERRUPT

BIT 3=1 DMA

INTERRUFT

B.

B.

P P Wr WS EO ED P W AT P S as P P WP WP WD @b @0 @R W GD BP WP WE WP e W WP WP WP P WP Wy WP e WP Wp EF WGP WP WP WP WP wp Wh WP W WP U W

Machine Derendent Subroutines ' PAGE B-8
3. IOSUEBS.MAC

B.3. IOSUBS.MAC Terminal I1/0

THESE SUBROUTINES PROVIDE THE STANDARD I/0 INTERFACE FOR
ALL PICTURE SYSTEM DIAGNOSTICS TO ANC FROM THE TERMINAL DEVICE.

SUBROUTINE SOCT:

THIS ROUTINE IS CALLED TO OUTPUT AN OCTAL NUMBER TO THE TERMINAL
BUFFER AND THEN TO OUTPUT THE BUFFER TO THE TERMINAL IF SPECIFIED.
IF THE TERMINAL BUFFER IS OUTPUTs A CR AND LF ARE APPENDED TO THE
END OF THE BUFFER.

MIXIT CALLING SEQUENCE:
+CALL SOCT»<FLAG»NUM>
WHERE?

FLAG SPECIFIES WHETHER THE TERMINAL BUFFER IS TO BE
QUTPUT TO THE TERMINAL.
FLAG<O: DO NOT OUTPUT TERMINAL BUFFER.
FLAG= OR >t OUTPUT TERMINAL BUFFER.

NUM IS THE BINARY NUMBER WHICH WILL BE OUTFPUT AS AN
O0CTAL NUMBER. LEADING ZEROS WILL NOT BE OUTFUT.

SUBROUTINE SMES?

THIS ROUTINE IS CALLED TO OUTPUT AN ASCII STRING OF CHARACTERS
TO THE TERMINAL BUFFER AND THEN TO OUTPUT THE BUFFER TO THE
TERMINAL IF SPECIFIED. IF THE TERMINAL BUFFER IS -OUTPUT» A CR
AND LF ARE APPENDED TO THE END OF THE BUFFER.

MIXIT CALLING SERUENCE?
+CALL SMES s<N»sCHRS>
WHERE?

N SPECIFIES THE NUMBER OF CHARACTER TO OUTPUT. IF N
IS NEGATIVEs, THE ABSOLUTE VALUE OF N SPECIFIES THE
NUMBER OF CHARACTERS. N ALSO SPECIFIES WHETHER THE
TERMINAL BUFFER IS TO BE OUTPUT TO THE TERMINAL.
N<O? DO NOT OUTPUT TERMINAL BUFFER.
N= OR >»! OUTPUT TERMINAL BUFFER.

CHRS IS THE ADDRESS OF THE FIRST CHARACTER OF THE CHAR-
ACTER STRING TO OUTFUT.

SUBROUTINE GETS!?
THIS ROUTINE IS CALLED TO INPUT A STRING OF CHARACTERS FROM THE

B, Machine llerendent Subroutines PAGE B-9

B.

@ WP WP MEP WEH WP We WO WP WE WP MM Wb e WP P WF SP WP P Br A WP WP N WP WP 'SP WP E? g $b ed

e P Er ek NP ab er ad P e 8 @b er er WP

3. I0OSUERS.MAC

CONSOLE TERMINAL. THE STRING INPUT BY THE OPERATOR IN THE ARRAY
SFECIFIED. "

MIXIT CALLING SEQUENCE:
+CALL GETS+<NsBUFF>
WHERE?

N SPECIFIES THE NUMBER OF CHARACTERS TO BE INPUT (IF
: N IS NEGATIVEs NO NEW LINE IS READ IN, BUT INSTEAD
THE REMAINING CHARACTERS IN THE OLD LINE ARE USED).
IF FEWER CHARACTERS THAN THE ABSOLUTE VALUE OF N ARE
INPUT (UP TO THE CARRIAGE RETURNs BUT NOT INCLUDING)
THEN THE BUFFER IS FILLED TO THE END (END=ABS(N))> WITH
NULLS (0).

BUFF SPECIFIES THE ADDRESS OF THE BUFFER THAT THE STRING
IS TO BE RETURNED IN. NOTE THAT THE STRING WILL
HAVE NO RUBOUTS» CR OR LF.,

SUBROUTINE GETN?

THIS ROUTINE IS CALLED TO INPUT ASTRING OF CHARACTERS FROM THE
CONSOLE TERMINAL AND TO CONVERT THE CHARACTERS TO A BINARY NUMBER
WHICH IS RETURNED TO THE CALLING ROUTINE. A& MAXIMUM VALUE IS SPEC-
IFIED WHICH IS USED TO CHECK THE NUMBER INPUT. IF THE ABSOLUTE VALUE
OF THE NUMBER INPUT IS GREATER THAN THE MAXIMUM SPECIFIED, THEN THE
NUMBER IS REQUESTED TO BE RE-INPUT BY THE OPERATOR.

MIXIT CALLING SEQUENCE:

+CALL GETNs <NMaXs N>
WHERE$

NMAX SPECIFIES THE MAXIMUM THAT THE NUMBER INPUT CAN BE.
IF NMAX<0 OR NMAX=0, NO VALUE CHECKING OCCURS. ALSO%
IF NMAX<0» THE REMAINING CONTENTS OF THE PREVIOUS
LINE ARE USED, WHEREAS FOR NMAX=0 OR GREATER:> A NEW
LINE IS INPUT. NOTE THAT FOR NMAXX>0» ONLY A
SINGLE NUMBER, WITH NO DELIMITERS, IS ALLOWED ON THE
LINE. .

N IS THE VARIABLE IN WHICH THE NUMBER INPUT IS RE-
- TURNED. IT SHOULD BE NOTED THAT ONCE GETN IS CALLED
WHERE NMAX>0s, THE ROUTINE IS NOT RETURNED FROM UNTIL
A VALID NUMBER HAS BEEN INPUT.

B. ﬁéchine llerendent Subroutines _ PAGE B-10
BE.4., QSDDT1.HAC

B.4. QSDDT1.MAC? STRIHNG PARSING AND BYTE PACKING

GETC SCANS AN INPUT STRING TO THE FIRST CHARACTER
OTHER THAN THE FIRST THROUGH SIXTH DIGITS AND RETURNS THE
FOLLOWING:

NDIG: NEGATIVE NUMBER OF DIGITS IN N
NUMB? M IF NON-NULL, OTHERWISE O
DLINM: DELIMITER OR 7TH CHAR

GETC IS CALLED IN MIXIT AS FOLLOUWS:
CaLL GETC»<STRNsNDIG»NUMB»DLIMs»RADX>

STRN IS A PTR TO THE STRING TO BE PARSED»
AND WILL BE MODIFIED BY GETC TO FOINT JUST
PAST THE DELIMITER.

RADX = RADIX 8. OR 10.

INPUT VALUES MAY BE NEGATIVE, BEGINNING WITH -»
OR SET-BIT EXTENDED, BEGINNING WITH °*
E.B: =1 = 177777 AND °S53=1777353

GETC FACILITATES FARSING OF AN INPUT COMMAND STRING BY
RETURNING THE NEXT OCTAL OR DECIMAL VALUE. IF ANYs AND
THE DELIMITER FOLLOWING., THE STRING TO BE PARSED WOULLD
MORMALLY BE OBTAINED BY A& PRIOR CALL TO SUBROUTINE °GETS®
IN IOSUES

SUBROUTINE BYWD COMBINES TWO 8-BIT VALUES (°BYTES®)
INTO A& 16-BIT VALUE ACCORDING TO THE PDP-11 BYTE SEQUENCE.
MIXIT CALLING SEQUENCE:S

CaLL BYWD s <URD1,WRD2,WRD3>

WRD1 AND WRD2 ARE THE

1ST AND 2ND 8-BIT VALUES

(IN THE SEQUENCE THEY ARE TO BE
TRANSMITTED TO THE CG)

WRD3 IS THE 16-BIT TARGET VALUE

WP eP Br WP WP WP NP P War BP W O WWE Wb e WD WP WP WP Wh @b WH WP WP WEd WP WP WS WP 'GP Nr W AP GP Wb WP Er P WE eP AP b

B. Machine Derendent Subroutines PAGE 11
B.S5, RTI.HMAC

B+.S5, RTI.HMAC? REMOTE TERMINAL INTERFACE I/0

SUBROUTINE ROT?

-y W e

$THIS SUBROUTINE TAKES LENGTH CHARACTERS FROM THE HOST’S SECONDARY
SERIAL

INTERFACE AND FPUTS THEM IN THE CHARACTER ARRAY STRING

MIXIT CALLING SEQUENCE?

+CALL ROT»<STRINGsLENGTH

- WHERE

STRING

ADDR OF STRING INPUT BUFFER

LENGTH STRING LENGTH
SUBROUTINE ROTC:

THIS SUBROUTINE CLEARS THE HOST‘S SECONDARY SERIAL INTERFACE OF ANY
CHARACTERS THAT MAY ALREADY BE PRESENT

MIXIT CALLING SEQUENCE:
LCALL ROTC

SUBROUTINE WOT?

e @B WE AP BP WP WP P VP NP WE WP Nr We WP Wr WP WP WP 9 W %P W

$THIS SUBROUTINE TAKES LENGTH CHARACTERS FROM CHARACTER ARRAY STRING
sAND SENDS THEM TO THE HOST’S SECONDARY SERIAL INTERFACE

MIXIT CALLING SEQUENCES
+CALL WOTs<STRINGsLENGTHZX

WHERE

STRING OUTPUT STRING BUFFER

WP WP WP WP WP WP WP Wr WP g

LENGTH STRING LENGTH

L. Diagnostic Orerating Sustems Table

FPAGE C-1
APPENDIX C

The following table contains miscellameous informatiorn about
orerating sustems which surrort Picture Sustem Diagnostics

PICTURE SYSTEM DIAGNOSTIC OPERATING SYSTEMS

15-Aug.-80

OPERATING MACHINE
SYSTEMS DEPENDENT MIXIT COMPLIER LINKER BATCH QsD11g 1st COMMENTS
AND CPU FILES § TARGET FILES OPTIONS CAPABILITY IMPLEMENTATION BYTE RESTRICTIONS
: Single-user
RT-11 oS MIXLL RT-11 BATGH | RTI.MAC | Fast
PDP-11 QSDDT1 . MAC - MAC .BAT modify H3-H5 R Floppy D1§kette
RTL.MAC Test Station-
: ‘ Batch
: ' No DMA or interrupts
WPPED RsX-11M | PSI02.MAC | MIxi1 ASG=TI: 1 TosuBs A T >SET /MAIN=PSDEVY:
N . I0SUB2.MAC o .CMD (limited)} >ASN TTn:=RT: .
PDP-11 with QSDDT1 . MAC MAC COMMON= 7AP 7676:2:DEV
MEMORY RTTQIO. MAC PSDEV : RW OD (Limited) >INS PSDEV(
MANAGEMENT ' - : >ALL MP:
PSIO.MAC T Can be on same disk
MAPPED RSX-11M | I0SUBZ.MAC v P NO same as with Mapped RSX.
PDP-11 QSDDT1.MAC ’ 40000,70006 RT-11 Allows DMA and interrupt:
RTI.MAC e L“;‘“ 2 cop e ' single user
WS PSIOV.MAC phoresb 7 MPDRV must be loaded
IOSUB2.MAC MIX11 ASG=TI}1 .~ - .CoM same as $ ASSIGN MPBf: MPAﬂ
VAX-11/780 QSDDT1.MAC .MAC ASG=MP. 47 MAPPED RSX Multi-user protection
RTIQIO.MAC \ cannot set I4 bit
MIX832 R
0832 Tospe e .CAL see .CS§ V| NONE Edit QSDDT for byte
') : QS1000,001 FILES oopp -7, C8S? sequence and disable '"y"
INTERDATA 8-32} QSDDT1.CAL 100.1141)(? omd. Special MI':format
QSD11701.MIX
Edit QSDDT FLX MI:/DO
SINTRAN OBEM-C.I.I.R. M}:%gOR NONE Hard copy MT:Directory
NORD-1¢ OSLO QSD;l7ﬂ1.MIX Supply EMBL
. MIXMEL.
MELCOM- 7§ OEM-RIKEI +MEL Edit QSDDT
JAPAN NEWMEL., NONE FLX MT:/DO
.MER
QSD117¢1 .MIX
('.‘)
[38]

D. MIXIT DIAGNOSTIC UTILITIES

APPENDIX D
MIXIT (MACHINE INDEPENDENT) UTILITY SUBROUTINES

D.1. INTRODUCTION
The Followindg Subroutines are Described in this Arrendi!
INIT.MIX (Sec. D.2)
INIT STANDARD COMMAND INTERPRETER
DPCH PHASE DISPATCHER CONTROLLED BY INIT
ERRL = ERROR LOOPING CONTROL
ARF2.MIX OR ARFS.MIX AUTOREFRESH CONTROL>
SINGLE- OR MULTI-USER RFC (USE ARF2 FOR DOURLE EBUFFERING)
(Sec. D.3)

RTWT REAL TIME WAIT
ARFS AUTOREFRESH CONTROL

RNIM.MIX (Sec. D.4:)
| RNDM RANDOM NUMBER GENERATOR

D, MIXIT DIAGNOSTIC UTILITIES ' PAGE D-2
INIT.MIX

Ds2. INIT.MIXs Standard Orerator Interface

SUBROUTINE INITS

THIS SUBROUTINE INTERPRETS THE STANDARD OPERATING COMMANDS
DESCRIBED IN THE PS2 DIAGNOSTICS MANUAL?

HELP

NUMBER OF PASSES

FHASE SELECTION (°DO*)
LOOF ON ERROR

LOOP ON ERROR AND CONTINUE
MODIFY TABLES

EXECUTE (EXIT INIT)

STOP ON ERROR

mxzOOrowowxT

MIXIT CALLING SEQUENCE:?

MoV {number of rhases)»DOPH
MOV (max error identification)sPHAZ
CALL INIT»<HMSGS>
where MSGS is 3 table a3s follows?
MSGS: DaTA {number of salutation messadges)
DATA {{msg ptr 1)s{char cnt 1)>

P A P GF EP GP P WP S P WP WE WD WGP EP s W WP Wr WP P

D&aTA (number of help messades)
DaTa <{msg ptr n+tids{char cnt n+tid>

®

@e WP Wy We We GP

TR

SUBROUTINE DPCH?

THIS SUBROUTINE CALLS PHASES OF A DIAGNOSTIC IN ACCORDANCE WITH
D AND P COMMANDS PREVIOUSLY INTERPRETED BY INIT

MIXIT CALLING SEQUENCE:?

CaLl DPCHs<PTBL>
‘ where PTBL is a3 table of rointers to
phases of 3 disgnostic a3s follows!
FTBL? DATA {OsPHLsPH25 404 o>
and each rhase is a3 subroutine declared
as follows?$
SUBR PHis1 $+ 1=PHASE NUMEBER

WP NP WP WP P WP WP OP P P N P WP WGP WP gb Ee

D+ MIXIT DIAGNOSTIC UTILITIES PAGE D-3
INIT.MIX

SUBROUTINE ERRL?

THIS SUBROUTINE CONTROLS ERROR LOOPING IN ACCORDANCE WITH
L» C» AND S COMMANDS PREVIOUSLY INTERPRETED BY INIT

MIXIT CALLING SEQUENCE:?

CALL ERRL » <ERRN+ERSB>

where ERRN is the error ideniification number
and ERSB is an error subroutine as follows!?

SUBR ERSBr1 §.+.1=RETURN ERROR‘STATUS
(rerpeat test which has sreviousls faileds
but do not outeut a3n error messade)

CMPL ({exrected value)r{received value)
MOy TTTTse ! sRETURN TEST RESULT
RTRN

WP WP WP WP B WP W WP B S WP WP P O WP W EP W> b

-y W

D. MIXIT DIAGNOSTIC UTILITIES . ' PAGE D-4
ARF2.MIX :

D.3. ARFS.MIXsARF2.MIXs Autorefresh Control

GLOBAL ROUTINES RTWT (REAL TIME WAIT)

AND ARFS (AUTOREFRESH) CAN ACCOMODATE

TWO VERSIONS OF REFRESH CONTROLLER:

SINGLE USER (TYPE 1), OR MULT-USER (TYPE 2)

LOCAL ROUTINE RFIN IS CALLED BY BOTH ARFS AND RTUT
TO DETERMINE THE TYPE OF REFRESH CONTROLLER
AVAILABLE, AND TO INITIALIZE IT.

B @r WP WP WP A>

SUBROUTINE RTWTs WAIT FOR REAL TIME CLOCK REQUEST
CALLING SEQUENCE?

CaLL RTWT
SUBROUTINE ARFS CONTROLS AUTOREFRESH
CALLING SEQUENCE:?

CALL ARFS»<MINAsMAXAsRATEsFUNC>
WHERE ¢

«1 (MINA) = START ADDRESS OF REF BUF

+2 (MAXA) = REFRESH LIMIT
«3 (RATE) = NUMBER OF 120./8SEC PER CLK REQ

TWO’S COMP 1-17 (IF 0, NO CHANGE)
4 (FUNE) = 1 TO STOP A.R.y 2 TO START A.R.y 0 TO

LOAD CLK RATE ONLYs 4 TO RE-INIT
(4 IS VALID ONLY AFTER PSRESET)

NOTE: RSPS MUST BE CALLED PRIOR TO THE FIRST CALL TO ARFS

WE WP WD g B> WP D We EE MO WE Wk WE WP WP WP wgp WP WO Wp WP We We G0 Hr Wr wp W Ay

. - -
feEvecd ol fe twar7 S P 2VE 0D : :
. ; 8 &) b
y -~ } o ¥ o
o e / W T NOme S
e T £ Ay 4, SN A ol
A npetS > €, 375’@*‘%’} hf * &0

Jiat 4 s o/ Lot € S GT o 0D

D. MIXIT DIAGNOSTIC UTILITIES
D.4 RNDM.MIX
D.4, RNDM.MIXs Random Number Generator
SUBROUTINE RNDM: RANDOM NUMBER GENERATOR
MIXIT CALLING SEQUENCE:
+CALL RNDM s <NUMsKEY>
WHERE?$

NUM RANDOM VALUE RETURNED

KEY

RANDOM NUMBER KEY Qecﬂj For hurmbe

WP P WP P WP P @ WP WP WS wp WP

‘A;)_[S 2

F Y VA

PAGE

1

E. Diagnostics Generation Flowchart

PAGE E-1
APPENDIX E

The followindg flowchart rerresents required files and srocedures
for deneration of the Tree-Metz Comepiler TRMETA:, various MIXIT
compilersy Diadnostic Source Filesy and loadable RT-11 .SAV files
and RSX-11M .TSK files.

'SX]|
ac

TRMETA.TSKs | *

PREPR. FTN ¥

TMTTY. TRE ¥
TRMETA. TRE %

RSK
FOR

TKB

y
[PREPR.TSK

e e i ooy e o s o > s e

TRMETA. MAC |
TMLIB. MAC
TMIO. MAC *
RsX| — —__
- mac| 1 NO -;A-?/XNOR #
THE -NOR)

- 7rRMETA. TSK; h]

TMTTY2.7TRE K
MIX PPP .. TRE %

R

-

MIXPP7 . MAC

TMLIB2. MAC - ¥
(7miz0) ¥

MIX??2P . TSK

|
|
l
l
l
|
l
|
|
|
l
|
:
|
4

k8|

MIXI11 . 7SK

. MEL (MIXMEL)
.CAL (MIx832)
- ETC
TARGET
ASSEMBLY
LANGUAGE

FILES -

¥ MON-REGENERATABLE INPUT
+ OUTPUT FOR DISTRIBUT/ION

fo e e e o —D —— o e e

© MACHINE ¥ MACHINE LINK. DOC %
- INDEPENDENT DEPENDENT LINK
DIAGNOST/IC DIAGNOSTIC DOCUMENT
SOURCE SOURCE FILES .
FILES PSIO. MAC 1
e MiIX I0SYBS.MAC(RT-11) T£CO
Z0sUB2.MAC(RSX) LUMNMAPD.TEC
QSDDT 1. MAC B ,
RTI. MAC (A= —| ., oMD
By« —{UNMAPD, LNK
————— TECO |
MAPD. TEC
r—= = | ©=~{ MAPD. LK |
RSX ¥ l v e
MAC" RSX RT-11
/D8:REG -OBJ .08J
| ---© ®-~ -~——@
- fksg e L _[RTTI
! LINK
RSX # , rPSX #
MAPPED N UNMAPPED RT=1] #
JTSK ' ISK .SAV
ESD.
.SPN

P52 DIAGNOSTICS GENERATION

2 OCT 13978

>0

S AL

EA

gt

M/Wf

Fe

LINK.DOC

APFENDIX F

LINK.DOC contains linking instructions in RT-11 format for 3ll
distributable diasdnostics., It is used a3s the master reference
for 311 orerating sustems.

sFILE LINK.DQOC REUiSED 26-HAY-80
+PS2 DIAGNOSTICS VERSION 0313

*¥QSD000.S01=INIT»QSDO0OFSIO,» IOSUBS»RNDM
XQSD001.501=INIT+QSDO0O1,PSIO»IOSUBSsRNDM
¥QSD002.802=INIT,QSDO02sPSIO» IOSUBS,RNDM,»FTIME
XQSD003.S01=INIT»RSDO03,FSIO,IOSUBS,CODE»RNDH

XG8D004.S01=INIT»QSD004,PSI0-I0SUBS,CODESRNDM/C
XCROM1

XQSD004,502=INITsQSN004,FSI0s IOSUBS, CODE, RNDM/C
*CROM2

¥QSD005.801=INIT»QSTI00S5sPSI0s IOSURS»CODE»RNDN
XQSDOOé‘801=IﬂIT9G83006yP3109IOSUBS»CODE;RNBM
*¥QSD007.801i=INIT-QSD007sPSI0N»I0SUBS,CODEsRNDM
3Q80008¢501=IN175QSDOOB?PSZQ;IOSUBS»CUBE;RNDﬁ
*QSI009.S01=INIT»QSD009sPSI0sI0SUBSCODE » RNIIM
XQSD010.S01=INIT.»QSDO10sPSIO, IOSUBRS»CODEYRNDM

¥QSN011.,801=INIT»QRSD011,PSI0,I0OSUBS,CODEs RNDN

»*GSDOIQ.801=IHIT10800129PSIO’IOSUBS:CODE!RNDM

XQSN013.501=INIT»QSD013,PSI0»IOSUBS,CODERNDM

¥Q5D0014.S01=INIT,QSD014,PSIO,IOSUBSCORE»RNDM/C
XRROM

*XQSD015.801=INIT,»Q501015+PSI0, IOSUES»CODEsRNDH/C
*MLEM ’

XQSN016.501=INIT»Q50016sFSI0yIOSURBSyCODE RNDM

XQED017.802=INIT,Q8S0017,I0SUBS»FPSIOyRNDM

F. LINK.DOC FPAGE F-2

¥QSD018.504=INIT,Q@5D018,PSI0,»I0OSUBS,RNDM/C
XARFSy INCM»NNEW

¥QSD020.506=INIT»G5SD020sDAT020,I0SUBS,PSIO/C
XARFS)

XQSD021,501=INIT,QRSD021, I0SUBS,PSI0sARFS

%0SD026.504=INIT,QSD026,PSI0s IOSUBS,ARFS/C
XINCM s NNEW

XQSD027,504=INIT,QSD027,DAT027,PSI0sI0SUBSsARFS/C
*¥INCM s NNEW

XQSD028,.805=INIT»Q80028,Q02801,DD28sCHRAM/C
XB200 s INCM»LOBFsARFS/C

XPSI0sIOSUBS
¥QSD031.501=INIT»RSDO31,FPSI0,»I0OSUBSsNCODE »RNDH
¥QSD033.502=INIT,QRSD033,PSI0,»I0SUBS
X¥QSD034,.501=INIT,QSD034,FSI0,I0OSUBS
¥Q8D035.801=INIT,QSDO35,FSI0,I0SURS
¥0S[036.501=INIT,QSD03465DD0346sPSI0s I0SUBS
*Q5D037.801=INIT,Q8D037s0D037+FSI0> I0SUES

¥QSD040.501=INITsQ5D040,DD40-PSI0,I0SURS/C
" XARFS»LOBF

*GSDiOO0802=INTTsGSD1009PSI@9iﬁSUBS}RNHM
¥Q8D102,.502=INIT»QSD102,PSI0sI0OSURS
XQSD103.5S01=INIT»RSD103,FSI0» IOSURSRNDM
*¥3SD104.S02=INIT»,QSD104,PSI0,I0OSUBS,QRSDDT1
 ¥QSD105.S01=INIT,QRSD105,QSE105, IOSURSsPSIO

*¥QSD107.801=INIT,Q8D107,I0SUBRSYPSIO/C
XTANSUB» TANLIEsRNDHM

*¥QSD108.507=INIT+QSD108,I0SUBS,PSIOs TANSUR/C
XKTANLIBsRNDMsARF2

*QSDIO?.801=INIT»QSD109;QSE10970R0H3/C
¥PSIO,IOSURS

Fe

LINK.DOC

¥QSD110.,504=INIT,QSD110,I0SUBSsPSI0»TANSUE/C
XTANLIB»RNDMsRTI

XQSD111.502=INIT»QSD111,I0SUBS,FSIO/C
XRNDM :

XQSD112.502=INIT»QSD112,I0SUBS»PSIO» TANSUB/C
XTANLIB,RNDM»RFLIB,RFCODE

XQSD113.503=INIT»QSD113,I0SUBS,FSIO/C
¥RNDMs» TANSUB, TANLIBSRFLIR

¥Q8D114,801=INIT,QSD1145,I0SUBS+PSIO/C
XRNDM» TANLIB» TANSUBSRFLIE

XQED115,801=INIT»QSD115,I0SUBRSYFPSIO/C
XRNDM» TANSUE» TANLIBsRFLIE

¥QSD116.S02=INIT»QSD116+,I0SURS,FSIO/C
XTANSUB,» TANLIBsRFLIBsRNIM

*¥QSD117.802=INIT,»QSD117,I0SUBSPSIO>RFLIB
¥08D120.S03=INIT,Q8D120,PSI0,»I0QSUBSyRNDM
*GSB130980131NIT9QSDISO»QSEiO?:CR0H69PSIOrIDSUBS
¥@SD131,.501=INIT,Q5D130,08E109sCROM7sPSI0s I0OSURS
XOSD136.501=INIT»GSD136,PSI0-,I0SURS» CODEsRNDH
%#RSDO00,S03=INIT»RED0C0O0O>DDOOsRO00/C
XINCMsLOBF»ARFS/C

¥PSI0O»I0SURS
¥RSDO001.502=INITsRSDOO1sRO0101,>D1D01sINCM/C
%¥B3460,L0OBFsARFS,PSIQ/C

XIOSUBS

XRSD002.503=INITsRSO002sR002/C
XINCMsLOBFrARFS,PSI0» I0SUBS

¥RSD0O03.S02=INITsRSDO03sRO003015R00302,R00303/C
¥DDO3,B200»DORBF,UWTSG/C
XINCMsLOBFsRTWTFSIOsI0SUBS

*XRSD004,8502=INIT,RSD0O04,R00401,R00402,00104/C
XDOBF» INCM+sB360,LOBFsARFS/C
*DMR2,FPSI0, IOSUBS

PAGE F-3

Fe

LINK.DOC

*¥RSD0O0S.S03=INIT>» RSDOOJ!ROOSOI!DDOJ’INCM/C
¥B200yLOBF»ARFS,»PSIO/C
xI0SUBS

* ¥RSD006.S04=INIT»RSD006sR00602,DD06>D0BF/C

XINCHMsB360,LOBFsARFS/C
XPSIO»IOSUBS

XRSD007.504=INIT»RSDO0O7yR00701,DD07,R440/C
XINCMsLOBFsARFS+PSIO/C
XI0SUBS

*¥RSD008.S04=INIT,RSD0O0B-,R00701,DD08,B200/C
¥INCMsLOBF»ARFS/C
XPSIO0sIOSUBS

*RSD009.505=INIT,RSDO09sR00901,DD09,B200/C
%¥CHROM» INCMsLOBF»ARFS/C
XDOBFsPSI0,I0OSUBS

XRSD010.,8S01=INITyRSDO10s,R1051,» INCM,ARF2/C
¥PSI0»IOSUBS

XRSDO11.501=INIT,RSDO11,R1151,INCMsARF2/C
¥PSIO,I0SUERS '

XRSD012.501=INIT-RSDO12,R1281+ARFS/C
¥PSI0sI0OSUBS

XRSDO13.502=INITsRSDO13sDD135ARFSsLOERF s RNDM/C
¥PSI0-I0SUBS

#RSD014.802=INIT,RSD0O14,DD145sARFSsLOBF/C
kPSIO,IOSUBS

¥QSDDT.505=INIT»QSDDT,QSDDT2,QSDDT1»ARFS/C
XINCM,PSIO»IOSUES

$EOQJ

PAGE F-4

G.

Samele Prodram QSDOO2

aE O e WP We WE W WP Wh b

MSG1:
MSG2¢
MS102
MS11:¢
MS12:3
MS13¢
MS14:
MS15¢
MS16:
MS17:
MS818:
MS19:
MS820¢
M82113
MSGA?

DATE WRITTENS

APPENDIX G
SAMFLE MIXIT PROGRAM - GSDO02.MIX

JMP STRT #FOR MANUAL STARTUPS
PROGRAM: QSDO02.MIX
AUTHOR: STEPHEN N. MCALLISTER

9/14/76

VER S02 TIMEOUT AND MESSAGE CHANGES 24-NOV-79

DESCRIPTION?

TESTS.

THIS PROGRAM FROVIDES THE PICTURE SYSTEM MEMORY

THERE ARE SEVEN TESTS» INCLUDING DATA

DATAs AND MEMORY CONTENT CHECKS.

HEAD
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
DATA
CDATA

<MESSAGE SECTION>
2

<MSB1510.>
<MSG2s33.>

12,

<MS10544.,>
<MS11+34,5

- <M812,26. >

<M813+,29.>

<MS814:28.>

<MS15-,29.>

<M816512.>

<M817:17.>

<MS818s11.>

<MS19:20.>

<M820-,22.>

<MS821,32.>

<@8D002.502>

<PICTURE SYSTEM MEMORY DIAGNOSTICS>
<THIS DIAGNOSTIC TESTS FICTURE SYSTEM
<THERE ARE SEVEN TESTSs AS FOLLOWS:I:
<i. MEMORY DATA PATH CHECK:

<2. MEMORY ADDRESS/DATA CHECK:
<3-7. MEMORY CONTENTS CHECKS>

<THE FIVE CONTENTS CHECKS ARE?!:

<3. ZERO/ONE>

<4. RANDOM NUMBER::

<5. REFRESH>

<6, BIT DISTURE ONES>

£7. BIT DISTURB ZEROES>

<P100 = REFRESH TEST DELAYs DEFLT 740
"22 *

<1%{ DATA PATH ERR3FFORT=>

PATHs ADDRESS/

 MEMORY .2

FOR 60 SEC.:

G. Samrle Prodgram QSDO02 ‘ PAGE G-2
Messadges

MSGB? DATA X
CDATA < ADDR=>
MSGC: DATA -11. _
CDATA < DATA SENT=>
MSGD? DATA -11.
CDATA < DATA RECD=>
MSGE: DATA =20,
CDATA <2! ADDRESS ERR#PORT=>
MSGF ¢ DATA -16.
CDATA <3! ZERO/ONE ERR}>
MSGG ¢ DATA -18. ’
CDATA <+ RANDOM DATA ERR3>
MSGH: DATA -18.,

CDATA <! BIT DISTUREB ERR}>
MSGJ2 DATA 39. :

CDATA <GROUND 195141-100 PIN 42 ~- CARR. RTRN.:
MSGM: DATA 46,

CDATA <ENTER MEMORY SIZE (1=16Ks 2=32K, 3=48K, 4=464K)>
MSGU: DATA 28,

CDATA ZREMOVE JUMPER -- CARR. RTRN.>
MSGR: DATA 7

CDATA <RUNNING>
CTLG: DATA -1

BDATA <7s0>
M599¢ DATA 21,

CDATA <MEMORY TESTS COMPLETE>

HEAD <CONSTANTS AND TEMPORARY STORAGE>

X0¢ DATA 0
Xis DATA 1
X2 DATA 2
X33 DATA 3
X43 DATA 4
X33 DATA]
X632 BATA é
X7 DATA 7

RFDLS DATA 480. JWAIT PARAM = 60 SEC. (OCTAL 740)
X1002 DATA 100 g

X200 DATA 200

X400¢ DATA 400

X4K ¢ DATA 10000

X12K3 DATA 30000

X16K? DATA 40000

XHIZ DATA 177377 #HIGHEST POSSIBLE MEMORY LOCATION
COMP ¢ BLOCK 202.

CDIF: DIFF COMP,CDIF

MSK1: DATA 77

MSK2: DATA 7700

MSK3: DATA =~ 170000

NS¢ BLOCK 1
I BLOCK 1
123 BLOCK 1
M: BLOCK 1
M2 BLOCK 1

6. Samele Prosgram QSDOO2 o PAGE
Constants and Temrorary Storade

PRTB?: BLOCK
TEMP? BLOCK
TMP2? BLOCK
ADDR ¢ BLOCK
MSIZ: DATA
JTBL: DATA <0sPH1yFH2»FH3sPHA»PH4yPHS6PHS
DATA: DATA <09177777+125252,52525,123456»
HEAD <DISPATCHER?> .
THERE <INITsSMESsSOCTsGETS»GETNsWRPSyRDPSsWAIT s RNDNM>
THERE <DPCHsERRLsPHAZDOPH,PSTE>

O e e s s

STRT: MOV X7 s PHAZ—

MOV X7 »DOFH '
' CALL INIT,<MSGS> FINITIALIZE

ST1: TST MSIZ $GET MEMORY SIZE®?
BNZ 8T3 sALREADY GOT
CaLL SMES» <MSGM» <1, MSGM>> sGET MEMORY SIZE
CALL GETN»<X4,TTTT>
BRZ ST1 sMAKE SURE IT’S LEGAL
BRN ST1
CLR MSIZ

: DEC MSIZ

sT2:¢ ADD X16KsyMSIZ
DEC TTTT
BNZ 8T2
CHPL MSIZsXHI $TO0 HIGH?

\ BRN 8T3 #NO
MOV XHI»MSIZ sYESy FIX IT UP

8T3: TST <100,PSTB> HUSER SPECIFIED REFR DELAY?
BRZ ST4 FNO
MOV <100sPSTB>sRFDL $YESy GET IT

ST4:¢ CALL DPCHs<JTBL> $CALL THE DISFATCHER
CaLL SHESs<ME8PF s <1, ME99>> SAY DONE
sTOP FAUIT o0 o
HEAD <ERROR PROCEDURE FROCESSORX
SUBR ERDOs1 FENTRY POINT
.CALL SMES s {MSGB,<1,MSGB>> sFINISH THE MKSG.

CALL SO0CT»<MSGBsADDR>

CALL SMES » <{MSGC»<{1sMSGC>>

CALL SOCT<MSGC,»THP2>

cAaLL SMES» <MSGD»<1sMSGD>

CALL SOCT»<X1,TEMP>

CALL =~ ERRLs<.1,ERPT> +CALL ERROR LOOP FROCESSOR
RTRN #RETURN TO ERROR PLACE

HEAD <ERPT -- RECREATE ERRORS:

SUER ERPT»1

CALL WRPS»<ADDRsX1,TMP2sX1> FREPEAT THE TEST
CAaLL ROPS»{ADDR»X1,TEMPs X1>

CMPL TEMP» THP2 s MAKE COMFARISON

MOV TTTTs.1 FRETURN WITH RESULT
RTRN

HEAD <PHASE 1 -- MEMORY DATA FATH CHECK:
SUER PH1,1 ° SENTRY POINT

CLR FRTE FINITIALIZE

G. Samele Prodram QRSDOQO2

Phase 1

PiAS
P1B?¢
P1C?

P1D¢

P1E:

PiF3

PiL?

PiMe

P1NS

CLR
CLR
CLR
MOV
ADD
caLL
CALL
CMPL
BNZ
CMPA
BRZ
INC
JMP
ADD
T8T
BRZ
CLR

. CMPL

BRP
18T
BNZ

CALL

CAaLL
CAaLL
CLR
INC
JHP
CaLL
caLL
RTRN
CHMPL
BRP
ADD
JHP
CaLL
CatLlb
MOV
CALL
JHP
HEAD
SUBR
CLR
CLR
caLL

CMPL

BRP
INC
JMF
CLR
caLL
CMPL
BNZ
CHMFL

N

I +VALUE TEST

M i4K MEMORY BOUNDARY
MsADDR JADDRESS = M + N
NsADDR)

WRPS»<ADDR»X1,<I,DATA>sXI> FWRITE
RDPS»<ADDR,X1,TEMPsX1> JREAD

TEMFP»<I.DATA> $ERROR?

P1M $YES

I:X4 iNO» I = 47

P1E FYES

I iNOy I =1 + 1

P1B sLOOP ON M

X16K»N PN = N + 16K

N FWRAP-AROUND?

PiF iYES

M iNO» M = 0

MSIZsN $IS THERE N MEMORY?

PiA $YES

PRTB $PRTB SET YET?

PiL FYES

SHMES»<CTLGs<1sCTLG>> iNO» RING BELL AND

SMES »<MSGJ»<1sMSGJI>> FASK FOR JUMPER
- GETS»<X1TEMP> $WAIT FOR DONE

N PN = 0 '

PRTE $SET PRTE

Pia

SHES »<MSGUs <1, MSGU>> sREMOVE JUMPER

GETSs<X1,TEMP:

HeX12K iM «GE. 12K?

P1iN $YES

K4Ko M iNOs M = H 4 4K

F1C :

SHES s <MSGA»<1,MSGA>> $OUTFUT ERROR MSG.

SOCTs<MSGASPRTB>

<IsDATA>»THP2

ERDOs X1 GO DO ERROR TEST

P1D

<PHASE 2 -- MEMORY ADDRESS/DATA CHECK>-

PH2»1 $ENTRY POINT '

PRTB FINITIALIZE

ADDR

WRPSy»<ADDR,X1,ADDRyX1> SFWRITE ONE OUT
ADDR,MSIZ #LAST ADDRESS?T

P2B

ADDR

P2A iBUMP N AND LOOP

ADDR $PREPARE TO READ BACK

RDPS» <ADDR» X1 TEMP,X1> FREADI BACK
ADDR» TEMP FRESULTS AGREE?

P24 #NO

ADDR,MSIZ sYESs LAST ADDRESST

FAGE G-4

G. Samrle Prodgram QSDO0O2

Phase 2

P2E?

P2L¢

P2M¢

W NS @ Wb WP W Bd M Wk Wwr P Wb we

-y b

BRP
INC
JHP
TST
BNZ
CALL
CALL
CALL
CALL
CLR
INC
JHP
CALL
CALL
CaLL
RTRN
CALL
CALL
MOV
CALL
JMP
HEAD
SUBR
CLR
COM
CALL
CALL
CLR
CALL
CaLL
CALL

CALL

CLR
cCOoM
CaLL
CaLL
RTRN

P2E

ADDR #NO» BUMP N
P2C sAND LOOP

PRTB sPRTRB SET YET?
P2L FYES

SMES»<{CTLGs<1LsCTLG>> iNOs RING BELL AND
SMES»<MSGJ»<1sMSGJI>> iASK FOR JUMFER

GETSs<X1s TEMP> $WAIT FOR ANSWER
SMES s <MSGR s <1y MSGR> > $SAY "RUNNING®
ADDR $CLEAR N
PRTE $SET PRTH
P2A ,
SMES»<CTLGs<1sCTLG>> $RING BELL
SMESs<MSGUs<1sMSGU>> $REMOVE JUMPER
GETS»<X1sTEMP>
$RETURN
SMES s <MSGEs<1sMSGE>> $}OUTPUT ERROR MSG.
SOCT s <MSGEsPRTE>
ADDR» TMP2
ERDO»X2 $G0 DO ERR TEST
P2D :
<PHASE 2 -- ALTERNATING ZERO/ONE TEST>
PH3s1 $ENTRY POINT
TMP2 $INITIALIZE '
TMP2 .
P3As<X0sX0sXO> $LOAD WITH ONES
P3As<X0sX1sX0> $CHECK IT
TMP2
P3As<X2sX0sX0> $COMPLIMENT EVEN LOCS.
P3As<X0sX1sX1> $CHECK FOR 0s150y ETC.
P3As<X1sX0sXO> $COMPLIMENT ODD LOCS.
P3Ars<X0 X1 X0 $CHECK FOR ZEROES
THP2
THP2 v
P3As<X2: X0 XO> $ COMPLIMENT EVEN LOCS.
P3As<{X0sXioX1> sCHECK FOR 150515 ETC,
$RETURN

EXECUTIVE SUBROUTINE

o1

+ 3¢

SUEBR

0 = ALL LOCATIONS
1 = QDD .

2 = EVEN °*

0 = WRITE C(TMF2)

1 = READ & COMPARE WITH C(TMP2)

0 = DO NOT MODIFY C(THP2)

1 = COMPLIMENT C(THP2) AFTER ACCESS

P3Aay3 $SUBROUTINE TO DO IT

PAGE G-

S

Gs. Samele Prodgram QSDOO2

Phase 3

P3B:

P3C:
P3D:
P3E:?

P3G?

P3X3

P3Z:

Faat

P4B?¢

PACS

PAD:

P4E?

FAF?

CLR
MoV
BRZ
ADD
AND
18T
BNZ

CALL
JMP

CALL

CMPL
BRZ
CaLL

CALL

TST
BRZ

. COM
-CHMPL

BRP
INC
JHP
RTRN
HEAD

. SUBR

CLR
MOV
caLL
CaLL
CMPL
BRP
INC
JupP
CMPL
BRN
CALL
CLR
MOV
CALL
caLL
CMPL
BRZ
CALL
CALL
CALL
CMPL
BRZ
INC
JMP
MOV
CALL
RTRN

HEAD

ADDR #iSTART AT THE START

1 TTTT sALL LOCS?

P3C $YES

ADDR»TTTT #NOs MASK ALL BUT UNITS BIT
X1sTTTT +IS IT US?T

P3X #NO

2 $YESs WRITE?

P3E #NO

WRPS»<ADDR»X1,TMP2,X1> SFWRITE

P3G

RDPSs<ADDRsX1,TEMPsX1> $READ
TEMP» THP2 # ERRORT

P3G #NO :

SMES » {MSGF » <1 s MSGF>> FYESs SAY SO
ERDO»X3 #D0 ERROR STUFF
o3 sCOMPLIMENT TEST VALUE?
P3X #NO

TMP2 . §YESs DO IT
"ADDRYMSIZ # DONET

P3Z $YES

ADDR ~ #NO» BUMP ALDRESS

F3B $AND LOOP

s RETURN

<PHASES 4 & S -- RANDOM DATAZ

PH45 1 FENTRY POINT

ADDR $INITIALIZE ADDRESS
I2,1 $INITIALIZE RANDOM KEY
RNDHs<TMP25 1> sGET A NUMBER

WRPS»<ADDR» X1 THMP2sX1> SWRITE IT
ADDRsMSIZ $LAST ONET

P4B §YES

ADDR #NO» BUMP ADDRESS
P4a

« 19 XS STIME-DELAY?

FP4C

WAITsRFDL $BGIVE REFRESH TIME TO FalIL
ADDR §INIT

I2,1 ‘

RNIMs <TMP2,1> $GET A NUMBER
RDPS»<ADDRsX1sTEMP»X1> 3$READ

TEMP» TMP2 FSAMET

P4E .$YES
SOCTs»<MSGAs». 1> iNO» WRITE PHASE NUMERER
SMES »<MSGG»<1sMSGG>> JWRITE ERROR MSG.
ERDO’ 1 v
ADDRsMSIZ sLAST ONE?
PAF $YES
ADDR $NO» BUMP ADDRESS
P4D iLOOP
I,I2 s BUILD NEW KEY
RNDMs <TMP2,1I25>
sRETURN

<PHASES 6 & 7 -- BIT DISTURB 178 & 0’S>

PAGE G-4

G. Sameple Program QSDOO2
Phases &6 and 7

PAGE G-7

SUBR PHé»1 FENTRY POINT
MOV CDIF,TTTT
CLR TENMP
CLR ™™™P2
- COM THP2
P&6AS DEC TTTT
MOV THP2<TTTT,»COMP>
DEC TTTT
MOV TEMPs{TTTT»CONMP>
BNZ PéA ' :
MOV CDIFsN sGET ACTUAL USABLE SIZE
DEC N
CMPL +1:X6 #THIS TEST BIT DISTURB 1’87
BRZ P6B
CLR TMP2 # (DISTURB 0’'Ss CLEAR TEST WD)
P&B: CaLL P3As<X0»X0»X0> sFILL WITH 1S (OR 0'S)
CLR ADDR #FOR EACH MEMORY LOCATION, DOZ
P&C: TST TMP2 $DISTURB 1’87
’ BRZ P&D
CALL WRPS»<ADDR»N+,COMP»X1> $YES» WRITE COMPL TBL
JHP P&E
P&6D¢ caLL WRPSs<ADDRsN»<1sCOMP>sX1> #(NOsy * }
P&E: MoV ADDR»I $SET UP FOR
MoV ADDRsI2 +HOUSE-TO-HOUSE SEARCH
ADD X251
ADD X2005,12
AND MSKisI
AND HSK2:I2
MOV ADDRsPRTB # SAVE ADDRESS
MOV I12yM2 JGET INITIAL COLUMN
, SUB X400,M2
F&6F 3 ADD X100s-M2 s BUMF COLUNMN
AND HEK2sM2 iMASK OFF EXCESS
CHPL M2512 s DONE®?
BRZ P&H
MoV . IsH $NOs, GET INITIAL ROW
SUB X4 M
P&G? INC M $ BUMP ROW
AND MSK1sM iMASK OFF EXCESS
CMPL MsI sDONE?
BRZ P6F
AND MSK3»ADDR #NO» MASK ROWS & COLUMNS
OR "M2sADDR sRE-CONSTRUCT ADDRESS
OR Ms»ADDR
CMPL ADDRsFRTE #THIS THE TEST LOC?
BRZ P66 +YES, SKIF IT
CHMPL MSIZ,ADDR iNOy WITHIN RANGE?
BRN -1¢ #NO» SKIP IT
CALL RDPS»<ADDRsX1,TEMP»X1> §#NOs SEE IF 1 (OR 0)
CHMPL TEMP> TMFP2
BRZ F&6G sYES
caLL SOCT,»<{MSGAs. . 1> iNOy WRITE PHASE NUMBER

CALL

SMES s <MSGH» <1y MSGH>>

+WRITE ERROR MSG.

6. Sample Prosgram QSDO0O2 PAGE G-8

Phases 6 and 7

‘CALL

P&H?

CaLL
JMP
MOV
CALL
CMPL
BRZ

"INC

P&X:

JMP
RTRN
FIN

ERDO».1 $D0 ERROR PROCESSING :
WRPSy<ADDR,X1,TMP2,X1> JIRESTORE BAD LOCATION
P&G #NEXT NEIGHEBOR

PRTB»ADDR +DONEs RESTORE TEST LOC.
WRPS» <ADDR»X1»TMP2:X1>
ADDR,MSIZ sLAST LOC. IN MEMORY?

Pé6X iYES .
ADDR #NO» ADDR = ADDR + 1
P&C D0 NEXT LOC.

DONE
STRT

