
PICTURE SYSTEM 2
Maintenance Manual

Volume 1

COPYRIGHT EVANS & SUTHERLAND COMPUTER CORPORATION
1977

Customer Engineering Dept.

Evans & Sutherland Computer Corporation

580 Arapeen Drive

Salt Lake City, Utah 84108

First Edition July 1977

"All information contained herein together with·
all drawings, diagrams and specifications herein
or attendant hereto are, and remain, the property
of Evans & Sutherland Computer Corporation. Many
of the intellectual and technical concepts described
herein are proprietary to Evans & Suth.er1and and
may be covered by U.S. and Foreign Patents or Patents
Pending or are protected as trade secrets. Any dis­
semination of this information or reproduction of
this material for commercial or other purposes other
than the express purpose for which it-has been made
available are strictly forbidden unless prior written
permission is obtained from Evans & Sutherland
Computer Corporation".

Evans & Sutherland Computer Corporation assumes no responsibility
for any errors that may appear in this manual. The information in
this document is subject to change without notice.

TABLE OF CONTENTS

1.0 Introduction .. 1-1

2. 0 Scope of the Manual . .. 2. 1

3.0 Installation ... 3.1

3.1 Picture Controller Interface Installation 3-1
3.2 Picture Display Installation 3-1
3.3 Power Connections 3-2
3.4 Verifications of Proper Operation 3~2

4.0 General Theory of Operation•.. 4~1

4.1 Picture Controller Interface 4~1

4.1.1 Direct IO Path -.............. -.4-2
4.1.2 Direct Memory Access Path 4-2

4.2 PSBUS Arbiter .. 4-3
4.3 Picture Processor .. 4-4
4.4 PICTURE SYSTEM Memory 4-6
4.5 Real Time Clock •..................................... -.- .. 4-6
4. 6 Refresh Controller · 4.., 7

5.0 Detailed Theory of Operation 5~1

5.1 Picture Controller Interface•.... 5-1

5.1.1 PDP-11 Interface 5~3

5 .1.1.1 Address Select & Control. 5-A
5.1.1.2 DMA Address Register (DMABA), 5-5
5 .1.1. 3 DMA Wared Count Register CDMAWC) 5-_5
5. 1. 1. 4 DMA Command Register 5- 5
5 .1.1. 5 DMA Data In Register•.............. 5-7
5. 1. 1. 6 I /0 Status Register (IOST) 5- 8
5.1.1.7 Direct IO Command Register 5-8
5.1.1.8 CPU Data Out Register 5-9
5.1.1.9 Direct IO Data In Register 5-9

5.1.2 Direct I/O Path 5-.11

5.1.2.1 Direct IO Read 5-13
5.1.2.2 Direct IO Write•.............. 5-17
5.1.2.3 Reading the DIOPSA 5-,19

5.1.3 Direct Memory Access Path (DMA) 5-20

5.1.3.1 DMA Block Transfer Initialization 5-20
5.1.3.2 DMAIN Transfer 5-21
5.1.3.3 DMAOUT Transfer 5-25

i

5.1.4 Interrupt Sense and Control•.. 5-27

5.1.4.1 System Interrupts•................. 5-29
5.2 PICTURE SYSTEM BUS - PSBUS 5-31

5.2.1 PSBUS Structure 5-31
5.2.2 Active/Passive Devices 5-32
5. 2. 3 PSBUS Timing 5-33
5.2.4 PSBUS Arbitration 5-34

5.3 Picture Processor 5-39

5.3.1 MAP Input Controller - Active 5-41

5 . 3 . 1 . 1 MAP Input FI F 0 . · . . . 5 - 4 2
5.3.1.2 MAP Input Sequencer 5-42

5.3.2 MAP Input Controller - Passive 5-48
5.3.3 RSR Register and Update PROM ••••••.•.•...•.••..• 5=50

5.3.3.1
5.3.3.2
5.3.3.3

5.3.3.4
5.3.3.5
5.3.3.6
5.3.3.7

GET RS R St ate 5 - 5 0
Control and DRAW Commands 5-51
Drawing Sequences and Data 5-52
Interpretation
Drawing Sequence Example 5-53
RSR/Update PROM Hardware Description ... 5-55
Reading the RSR 5-56
Writing the RSR ...•.................... 5-56

5.3.4 Extend Register•............... ·.5-57
5.3.5 Matrix Arithmetic Processor (MAP) 5-59

5.3.5.1
5.3.5.2
5.3.5.3
5.3.5.4
5.3.5.5
5.3.5.6
5.3.5.7
5.3.5.8
5.3.5.9

MAP Data Store and ALU Unit 5-66
MAP Address Counters 5-70
Normalize Sense 5-72
Norma 1 i z er 5 - 7 4
Array Multiplier•................ 5-75
Reciprocation 5-76
MAP Control Store 5-80
MAP System Clock 5-82
MAP Maintenance Structure 5-84

5.3.6 MAP Output Formatter 5-89

5.3.6.1 Output Control Sequencer 5-90

5.4 PICTURE SYSTEM Memory (PS MEMORY) 5-92

5.4.1 FIFO and Port Latch 5-94
5.4.2 Port Arbitration and Port Controllers 5-95
5.4.3 Sequence Controller 5-96

5.5 Real Time Clock .. 5-99

5.6 Refresh Controller 5-101

5.6.1 Refresh Control Command Words 5-102
5.6.2 Frame Synchronization 5-102

5.6.2.1 Arbitration of Refresh Devices•. 5-103
5.6.2.2 Frame Sync State Machine 5-103

5.6.3 Refresh Sequencer 5-105

ii

APPENDIX

Appendix A MAP Algorith State Diagram A-1

MAP State/Name Cross-Reference Table A-50

Appendix B MAP Output Sequencer State Diagram: B-1

Appendix C RefreshSequencer State Diagram•.. C-1

i

1.0 Introduction

This Maintenance Manual was created as a support item for

both E&S Customer Engineers and on site maintenance person-

.nel who have maintenance responsibility for the E&S PICTURE

SYSTEM 2. To perform maintenance at the component level, a

broad understanding of the operation and theory of the

machine is a necessity. The PS2 diagnostics were designed

to isolate hard failures to a functional unit within the

system: To quickly isolate the problem to the component,

the troubleshooter must understand the proper operation of

the malfunctioning unit and the associated unit in which

it is in communication with. The intent of the manual is

to serve as both a theory of operation text and a hardware

reference text for each functional unit in the standard

PICTURE SYSTEM 2. It is assumed that the reader has a

maintenance background and experience with troubleshooting

TTL circuits.

The Picture Controller computer for PICTURE SYSTEM 2 may be

one of many types; however, this manual assumes a Digital

Equipment Corporation PDP-11 computer as the Picture Con­

troller.

1-1

2.0 Scope of the Manual

Section 3 of the manual deals with installation of the

PICTURE SYSTEM 2.

Section 4 outlines the general theory of operation of the

standard PICTURE SYSTEM 2.

Section 5 details the theory of operation on a functional

unit level and comprises the major portion of the manual.

Exact Bit definitions for status and control registers as

well as other register definitions are excluded; therefore,

many references are made to the Picture System 2 Reference

Manual where these definitions exist. When describing the

detailed operation of specific circuits, references are

made to the logic drawings contained in the PICTURE SYSTEM

2 Drawing Set.

Appendix A and B contain the MAP and Refresh Controller

algorithms.

3.0 Installation

Installation of the PICTURE SYSTEM 2 involves the installment

of a DEC PDP-11 computer by DEC personnel and the installment

of the E&S equipment by an E&S Customer Engineer. The E&S

equipment should be unpacked, set in place, and visually in­

spected for shipping damages.

3.1 Picture Controller Interface Installation

The Picture Controller Interface consists of three cards:

195131-100

195106-100

195105-100

The 195131-lOD is built on a DEC hex module and plugs into a

peripheral slot in the DEC equipment. This slot should be

wired for NPR operation. The 195105 and 195106 cards plug

into the PICTURE SYSTEM backpanel as indicated by the stuff­

ing chart, 195101-900 (see the drawing set).

3.2 Picture Display Installation

The Picture Display connects to the scope driver card, 195211-

100, by a coax cable set.

3-1

3.3 Power Connections

The power connection to the PS power controller should meet

the following specifications:

Primary Power 115 volts, 60 Hz

30 Amp

Single Phase

Two wire + ground common to
Picture Controller ground

Hubbel 2610 or equivalent

The Picture Display Power card is plugged into the power

control panel. Drawing 195100-100 illustrates the primary

power connection to the power control panel and the power

distribution to power supplies, clock assembly, etc.

Before applying power to the Picture System, check for shorts

between all DC sources and ground. After power is applied,

adjust all DC power sources to the correct level at the back-

panel.

3.4 Verification of Proper Operation

To verify proper operation of the PICTURE SYSTEM, run the

standard PSZ Acceptance Tests. This procedure is outlined

in the PS2 Acceptance Tests document.

3-2

4.0 General Theory of Operation

The standard PICTURE SYSTEM 2 contains the following

functional units:

1. Picture Controller Interface

2. PICTURE SYSTEM Bus, PSBUS

3. PSBUS Arbiter

4. Picture Processor

5. PICTURE SYSTEM Memory, PSMEM

6. Real Time Clock, RTC

7. Refresh Controller

8. Picture Generator

This manual (volume 1) deals with all of the above functional

units with the exception of the Picture Generator. Volume 2

deals with the Picture Generator.

4.1 Picture Controller Interface

The Picture Controller Interface provides two data paths

between the Picture Controller computer and the PSBUS. The

interface also provides an interrupt link between the PICTURE

SYSTEM and the Picture Controller. The two data paths are:

1. Direct IO Path (DIO)

2. Direct Memory Access Path (DMA)

4-1

4.1.1 Direct IO Path

The DIO consists of a direct interface between the PDP-11

UNIBUS and the PSBUS. It is used for direct (processor con­

trolled) transfers between UNIBUS address space and PICTURE

SYSTEM address space. The interface consists of a Direct IO

PICTURE SYSTEM Address register (DIOPSA) and a Direct IO

PICTURE SYSTEM Data register, (PSDATA), both of which are

UNIBUS addressable. Prior to the transfer of data between

a UNIBUS address and a PSBUS address, the DIOPSA must be set

up to point at a desired PSBUS address. The actual transfer

is initiated by reading or writing the PSDATA register. The

PSDATA register serves as a buffer to hold the data being

either sent to the DIOPSA destination or retreived from the

DIOPSA source. The DIO is considered an active device, that

is, no other PICTURE SYSTEM device can command it. The DIO,

after commanded by the Picture Controller, always initiates

either a read or write to a PICTURE SYSTEM passive device.

The DIO initiates the transfer by requesting the PSBUS and

when granted gates the DIOPSA (address) to the PSBUS, then

either gates data to the bus or receives data from the bus

depending on the nature of the transfer.

4.1.2 Direct Memory Access Path

The DMA path also consists of an interface between the

4-2

UNIBUS and the PSBUS; however, it is used for data block (non

processor controlled) transfers between UNIBUS address space

and PICTURE SYSTEM address space. The DMA path may be pro­

grammed to be either an active or passive device; therefore,

it can actively fetch data from UNIBUS address space and re­

lay it to PS address space or it can passively wait for data

from a PS device, then relay it to UNIBUS address space. In

either mode of operation, it must be previously set up by

the Picture Controller for a block transfer, then commanded

to "GO". For each word transfer, the UNIBUS must be requested

and granted; also, for word transfers to PS address destina­

tion, the PSBUS must be requested and granted. The PICTURE

SYSTEM DMA Device contains a DMA PICTURE SYSTEM Address reg~

ister (DMAPSA) which tracks the inter-block PS address. The

UNIBUS DMA Device contains a UNIBUS Address register (DMABA)

which tracks the inter-block UNIBUS address and a DMA Word

Count register (DMAWC) which counts the number of words to

be transferred. When the last word of the block has been

transferred, the DMAWC register acclaims the DMA path to be

READY for another block transfer.

4.2 PSBUS Arbiter

The PSBUS Arbiter controls the use of the PSBUS. More than

one PS device may need use of the bus at a given time; there­

fore, a round robin priority scheme is implemented to grant

requesting devices. Eight active requests lines input to the

4-3

arbiter. A request line is hardwired to an active device

and when the bus is needed, and active device inserts a

request line to the arbiter. The eight requests are assigned

a priority level and if granted, that request is rotated to

the lowest priority level; therefore, all active devices, in

general, have equal opportunity for the PSBUS.

4.3 Picture Processor

The Picture Processor is a special purpose vector processor

which receives commands and data from a PICTURE SYSTEM device

and outputs processed commands and data to another device.

Usually output data is directed to the Picture Generator for

display; however, output may be directed to PS Memory or to

the DMA as data to be stored in UNIBUS address space. Input

to the Picture Processor may be sourced by either the Direct

IO, DMA, or PS Memory. The Picture Processor input device

may be either active or passive, that is, it may actively

fetch input data or passively wait for data directed to it.

The Picture Processor output may also be, either active or

passive. Also, input and output may be either 16 or 24 bit

precision. These variables are programmably set up by writ­

ing a status word in the Picture Processor.

The Picture Processor operates on an instruction set. After

inputting a command, appropriate action is performed on either

incoming data or internal data. The instruction set is de~

4-4

tailed in the PS2 Reference Manual, pp 2-36 through 2-54.

In general the Picture Processor receives commands and

point vector data in the Data Space Coordinate system and

transforms the point vector data into the Screen Coordinate

system for subsequent display by the Picture Generator.

Functions performed on the input data include:

1. translation
.., rotation ""'.
3. clipping

4. perspective

5. view port mapping

6. zooming

7. matrix concatenation

8. pass data unformated

9. pass data formated

These functions are performed by receiving a command, and

traversing states of the MAP algorithm which operates on

the data appropriately. The three main units of the Picture

Processor are:

1. MAP Input Controller

2. MAP (Matrix Arithmetic Processor)

3. MAP Output Formatter

These units are described in detail in section 5, the de-

tailed theory section of this manual.

4-5

4.4 PICTURE SYSTEM Memory

The PICTURE SYSTEM Memory is a dual-port MOS memory (distinct

from the Picture Controller's) organized as addressable 16-

bit words. This memory is available in increments of 16K

words, expandable to 64K words of memory, dependent upon user

requirements.

PICTURE SYSTEM Memory may be used in a variety of ways to

satisfy the user's application. Typically, a portion of the

PICTURE SYSTEM Memory serves as a refresh buffer into which

data, still in digital form, is deposited. This data repre­

sents information to be shown on the Picture Display. For

each frame displayed, the Refresh Controller reads the data

from the PICTURE SYSTEM Memory and channels this data to the

Line Generator where the data are then converted to analog

signals to drive the Picture Display.

4.5 Real Time Clock

The Real Time Clock coordinates the picture update process

with the picture refresh process by implementing a program­

mable interval at which a clock interrupt occurs. This in­

terrupt causes the Picture Controller program to check the

condition of the update and refresh process to determine

if a new frame may be initiated. The basic timing of the

clock is derived from two 60 Hz inputs to produce a 120 Hz

4-6

clocking signal which counts two counters. The two counters

procide a interrupt interval and a refresh sync interval.

At the interrupt interval, a request for interrupt is gen­

erated. At the sync interval, a sync pulse is generated for

the refresh controller. This pulse is used by the refresh

controller during automatic refresh mode.

4.6 Refresh Controller

The Refresh Controller is the unit of the Picture Generator

that controls the refreshing of images on the Picture Dis­

play. The Refresh Controller reads data from the PICTURE

SYSTEM Memory, a refresh buffer, and channels this data to

the Line Generator for display. Under program supervision,

the Refresh Controller is used to manage the organization of

the PICTURE SYSTEM Memory. It also contains special-purpose

hardware to facilitate memory segmentation and management.

In single-buffer mode, the entire refresh buffer is used to

store a single display frame. In this mode, refresh may be

initiated from a partially-updated display frame consisting

of some lines from the new frame and some lines from the

previous frame.

In double-buffer mode, one-half of the refresh buffer is de­

signated as an old frame and one-half a new frame. Refresh

is then initiated from the old frame while the new frame is

4-7

being constructed. When construction of the new frame is

completed, the frame buffers are swapped and the

newly-constructed frame is displayed. The space occupied

by the old frame becomes available for new frame construction.

The segmented-buffer mode provides the most general use of

the refresh buffer for the display and updating of data.

Typically, a frame consists of portions which need not be

updated as frequently as others. Ideally, these portions

should be updated as separate parts, or segments, of the

frame. The Refresh Controller facilitates the use of the

refresh buffer in this mode by allowing each of the separate

portions of the refresh buffer to be given a name by which

the segment may be replaced, appended to, deleted, etc.

The Refresh Controller also improves the utilization of the

refresh buffer by providing, in segmented-buffer mode, for

the reclamation of unused portions of the refresh buffer

that have been left by deleted s·egments. This prevents

fragmentation of the refresh buffer into small, unuseable

areas.

4-8

5.0 Detailed Theory of Operations

5.1 Picture Controller Interface

The Picture Controller Interface is the communication

link between the host computer and the PICTURE SYSTEM.

All command and data transfers between the two machines

take place through this interface. The interface con­

sists of three devices:

1. Direct I/O Path (DIO)

2. Direct Memory Access Path (DMA)

3. Interrupt Control

A DIO transfer is initiated by host computer control.

Also, a DMA block transfer is set up and initiated

by host control; however, individual word transfers

within the block are initiated by the DMA control

logic. This provides .a mechanism by which the host

computer may set up a block transfer, then execute

other tasks while the DMA Controller manages the

word transfers of the block. The DMA Controller gains

access of the host transfer lines (data bus) for

each word transfer, then releases control after each

transfer.

The Interrupt Control monitors the DMA Interrupt Request

and three interrupt request lines from the PICTURE

SYSTEM.

5-1

1. Real Time Clock Interrupt

2. Device Interrupt

3. System Interrupt

The DMA Interrupt request, if enabled, requests an

interrupt to be serviced when the DMA is ready or

when a non-existant memory (NEXMEM) location was

referenced by the DMA.

The Real Time Clock Interrupt request, if enabled,

requests an interrupt at pre-defined programmable

intervals. This program interrupt initiates a status

check of the refresh process and update process by

the program.

The Device Interrupt request occurs when a PICTURE SYSTEM

Device needs servicing. Typical devices include:

Function Switches, Keyboard, Tablet, etc.

The System Interrupt request occurs from designated

PICTURE SYSTEM control functions such as: "Refresh

Stopped", "MAP Stopped", "HIT Request", etc.

A detailed description of the interrupt requesting

system exists in the PICTURE SYSTEM Reference Manual,

pp. 2-130 thru 2-139.

The Interrupt Control, which monitors the four interrupt

5-2

requests, gains control of the host computer data bus,

passes the interrupt vector for the honored request to

the host co~puter data bus, and asserts the interrupt line

to the host computer thus causing the host to execute

the appropriate service routine.

A block diagram of the Picture Controller Interface is

illustrated in Figure 5.1-1. The interface is implemented

on three cards.

1. 195131 PDP-11/PS Interface
'

2. 195105 Direct IO/Data In

3. 195106 DMA/Data Out

The 195131 card is located in the host computer and the

195105 and 195106 are located in the PICTURE SYSTEM

Backpanel.

A cable connects the 195105 and 195106 in the PICTURE

SYSTEM to the PDP-11 Interface card in the host computer

with 46 differential pairs of control and data lines.

5.1.1 PDP-11 Interface

The 195131 PDP-11 Interface communicates with the

PDP-11 UNIBUS with 57 lines. Communication with the

UNIBUS is asynchronous, therefore; no synchronous clock

5-3

~ ~

* .P..5A.R. .0 '_-lit' .PS ,e,;:Q (.&) .L

JI; PSAL .0 ,/~

~¥5ELFcr [.0£0]
* .ro.o..r .R.£> ,0/,-{?ECT · [..o.ro P..SA I * .P.:5<$,(,//(6.)
*IOL:>OL.0 ro .L...

* v'RA(/7-ClCJ}
c .0,1'1 A4 ,c;,u £> __

/

~>A/T,e'Ok. _ 4
co,ur,eaL . />.5 AL?0(/.5-CJ.)

1-"' .v.oc .('/-0.) 'l(<P.SA //OLO j_/l Ni I

I I/O l '-1 * d8 M.SY,</ - I P/144 8 h' I ..5T/ITV..S.
l'--.r P...5.eEA..q P5.«/£r_,,_

I"" *..10.8USY
/9.5/t::J.5

lit L/LJSSY,{/
/<Eej-_ - .0/,£/;C T J'.0/

-,;;
/ _£?AT"'1 .TA./_ .J!?/A?Ec.r/ PS £>AT (/5·0} L.

*VB/NIT I CPd~ I I
*C.Pt/£J4TA (/~-~ .OMA /"1

o+! u88L/..5V £lM,.<fWC." -/t6 .P/I T "9 .Z: ,{/ * P.SC.L.K '.L..

A'fi"Cj
.c>A.TAv~,__ /

* ,,UP A": ~ A/?Ci//(/ I £)f'O

f
-~ ~ ~!:

'
* ;OAT,;/ ./,<,/ ~ ~ A/,L'cf COT ~ ~-

'

* L3R(7-4) ~
~ ;:t ~ ... I £JMA I ~ ~ ~ ~' '

~L7/,.V(_7-4) ' L/AT/J.I,</ ~ ; ~
I.::

~ ~ ~ I ~
Li~ ~VTc7-4)- ~

~

~
)> 'l)

~ C/ ,CJ .5d c .A:: lcai~~A/ol ~ 'I ~ ~).,

~ :t . ~
* C/ ,.e .r ,.<./ r ,,e. ti ~- \) lt

\

,.. f\i
!(\

* G/ .0.0(/S-C-O) ~.S: DAT,.t} IA/(/S-a}
l<S I

P.S .Rfi'Q (A) .L.. ~
- - . /35/.3/ @uA.PSA.1 ""'T/

* LJMA .BLJ'S .V
/.&> ~ P.CJ,P-// /A/TE£rAC.O:

~ /
P.SejA/T(A) .L.. <\:

/ * .0"4.4 .P-4.S.S/VC:-

* .Af?E..5ET
!lliP.S.OEP

/

I /A/T.£'£VPT I '-* ON?/f.O..I,€,D
'/..95/?'~ .r /

~
..s CJ"",,(/.:$§" * .OMA£JOL.0

L/A44,/0ATA ~UT _ P.SAOD(?.5-'?l

L

~

,,,,, v-i. /6

~ * .0£' //.TA./ T ~P.5REA0, P.s;vc_r * .5Y..:SJA/T

~ * CL .k:.rA/ T ~
+ . P.S DA T(/.S-q
$

OM-4
,0//f?£CT/

/
CCJA/TK:OL

.OM.-9 * P.SCL~
LR!Td IA/ +

/

7 r/q . .ff./-/ ,P/CTV££' c~::J/./TR0£.'-6'.e/ P.S .BC/.S /,,('/T,S:,.C,,&,"JC5 'i '7
d.COCA:: .0./ACj.;€',,<jA.4

signal exists on the 195131. Likewise communications

between the 195131 and the PICTURE SYSTEM cards (195105-

195106) is asynchronous; however, all communication

between the 195105-195106 cards and the PICTURE SYSTEM

Bus (PSBUS) is synchronous. The PSBUS contains a

synchronous clock line which is input to both the

195105 and 195106 cards.

The PDP-11 Interface card consists of the following:

1. Address Select & Control

2. DMA Bus Address Register (DMABA)

3. DMA Word Count Register (DMAWC)

4. DMA Data In Register

5. DMA Command Register

6. Direct I/O Command Register

7. I/O Status Register

8. CPU Data Out Register

9. Direct I/O Data In Register

10. Interrupt Sense and Control

5.1.1.1 Address Select & Control

The Address Select & Control monitors the UNIBUS address

lines. If one of the five PDP-11 Interface register

addresses exist on the UNIBUS the address select decodes

which register the address is for and then waits for the

UNIBUS MSYN signal which strobes the UNIBUS data in the

selected register; else, enables the data out (to the

UNIBUS) from the selected register. Whether the UNIBUS

5-4

.€.CAO P.SLH'/TA.

. £.G"&L".:STE/Z ·

r-c-rcH ..ve:xr
P.S L.OC"9TJO/./
AN.O L. o,..:J .0
r IV rtJ ;D.S LJFJ r A
,.f? .tF6/S 7'" £" £'_

* t/A/J8t/.S 19,,t;.o,e&:.!S6 _,f: __ ~. :...-·:~-:;:-;·-~·.-···-.. -.1--
* V/Vf&JP.S .0"4T/1 b~::~-=r

* 4v9Tfi"..TOLJA/J ··­

* IO.OATA /LJ BV.5.

* JO.P/lr.r,e.o -

* ro ,ea-4py

* c~,e.roCtJM
* ..ros r,,,eoBE

* _,P .6 c L. A::;

* It:J .8V.SY'

c:::J- -- AOP£6".:SS. '
(7~ .O;?Tf"Y Vl"lt.I.0

W!l1- -·RfTHe-,e Hl6H
OR L.OW .

* ,e..s .BG"~C.6V
'* ,P.5 ef..UTc.8_).

______________ __,. I I . I

C~ : I

------~

. !":

...
, I

I

' j * ei"#LJ..TO..€'.FA0 ________________ --1~ .. ·---. .,. ... ·-- ·-----r:-

* 8?/.S .25-9

* #vs 8v.sy

ill: .Z'Oh"_.f'.S..f T

I
£-u.:L.L«.L.:.L.L...<-L.L..L.£...~£..£J.'..-'.£..L..uc.L-L.LL.J.~LLLl.~LL.l.'.LL<U2:.L_1ss~'--...:-t--\-''--"'!L.t...L....l.""-.£.U.

I

w,•:··%0'i;W$k?:i%ir&zr{ZiM;zm..:wmi

* "5'-'/.0IOVPL/'9TE ----------------------J

1.
. !

I
i -.• -·-···· .. j·· - ...

i
j
'

. '· ! .
- . -·-- --- - . ! -

I
...• ,,;,-t-.;.._, ---·-

'.

!
. '
I .. ·--- ----- .. !-- - ..• ---

i .•

! .

1
I

i
L.
i.

I

wants to write or read is decoded from the *Cl line of the

UNIBUS. This logic exists on sheet 3 of the 195131-600

drawings.

5.1.1.2 DMA Bus Address Register (DMABA)

The DMABA register is used to address the UNIBUS during

a DMA word transfer. This register is normally loaded

with the beginning address of a data block and

then incremented by one upon each word transfer. The

DMABA register is only 15 bits and does not drive the

LSB of the UNIBUS: therefore, incrementation by one

effectively increments the UNIBUS address by two.

Only word (not byte) addressing on the UNIBUS takes

place during DMA transfers. The DMABA register is

implemented on sheet 15 of the logic drawings.

5.1.1.3 DMA Word Count Register (DMAWC)

The DMAWC register keeps track of the word count during

a block transfer. It is initially loaded with a negative

two's complement number of the words to be transferred.

Upon each word transfer it is incremented by one. When

the register overflows the last word has been transferred.

The DMAWC is implemented on sheet 15 of the logic drawings.

5.1.1.4 DMA Command Register

The DMA Command Register issues a DMA read or DMA write

5-5

command to the PICTURE SYSTEM DMA Controller. On the

cable between the PDP-11 Interface and the PICTURE

SYSTEM, these commands are named:

1. DMADIRD - DMA Data Input Read

2. DMADOLD - DMA Data Out Load

During a DMA write transfer from the UNIBUS to the PICTURE

SYSTEM, the PDP-11 Interface performs the following steps:

1. Gains control of the UNIBUS.

2. Receives the UNIBUS data into the CPUDATA
OUT register.

3. Releases control of the UNIBUS.

4. Issues a DMADOLD command to the PICTURE SYSTEM.

5. Waits for the PICTURE SYSTEM DMA Controller
to go non-busy.

6. When the non-busy is received, goes to step 1
if the block transfer is not complete else
goes to step 7.

7. Sets the DMA READY bit in the IOST register
indicating the DMA is ready for program initiation
of another block transfer.

During a DMA read transfer from the PICTURE SYSTEM to

the UNIBUS, the PDP-11 Interface performs the following

steps:

1. Issues a DMADIRD command to the PICTURE SYSTEM.

2. Waits for the PICTURE SYSTEM DMA Controller

5-6

to fetch the word. (waits for DMA ·BUSY TO

go low).

3. Strobes the data from PSDATAIN (15-0) into
the DMA DATA IN register.

4. Gains control of the UNIBUS.

5. Gates the DMA Data In register onto the UNIBUS
and releases control of the UNIBUS when the
destination device takes the data.

6. Goes to step 1 if the block transfer is not
done; else goes to step 7.

7. Sets DMA READY in the IOST register, indicating
ready for program initiation of another block
transfer.

5.1.1.5 DMA Data In Register

The DMA Data In Register, in the PDP-11 Interface,

buffers data received from the PICTURE SYSTEM. During

a DMA IN word transfer, the DMA Controller issues a

DMADIRD command to the PICTURE SYSTEM's DMA Controller,

which gains control of the PS BUS and fetches the data

word pointed to by the DMAPSA register. The data is put

on the PSDATA (15-0) lines to the PDP-11 Interface. The

PICTURE SYSTEM clears DMA BUSY which strobes the data into

the DMA Data In Register. The PDP-11 Interface issues

a request for the UNIBUS and eventually, when the request

is granted, gates the DMA Data In Register onto the UNIBUS.

The DMA Data In Register is on sheet 14 of the logic

drawings.

5-7

5.1.1.6 I/O Status Register (lOST)

The I/0 Status Register implements status indicators

of the DIO and DMA operations. It also contains a

reset bit to initialize the DIO and DMA logic to their

initial states and a GO bit to transfer control of

a DMA block transfer to the DMA Controller after a

block transfer has been set up under program control.

A detailed description of the IO status bits exists

in the PS2 Reference Manual, pp. 2-12 through 2-15.

DIO status bits are implemented on sheet 4 and DMA

status bits on sheet 5 of the logic drawings.

5 .1.1. 7 Direct IO Command Register

The Direct IO Command ~egister is updated when a new

command from the UNIBUS is sensed by the Address Select

& Control logic. Four Direct IO commands are possible:

IOPSARD - Read the Direct IO PICTURE SYSTEM
Address Register (DIOPSA)

IOPSALD - Load the DIOPSA

IODATIRD - Read the Direct IO Data Input
Register

IODATOLD - Load the CPU DATA OUT Register
via the Direct IO.

5-8

The Direct IO Command Register is implemented by

four F/F's on sheet 4 of the logic drawings. The

four commands F/F's drive four differential command

line pairs on the cable to the Direct IO/Data In

Card, 195105. These drivers are on sheet 10 of the

logic (195131-600).

5.1.1.8 CPU Data Out Registers

The CPU Data Out Register buffers either DIO data or

DMA data being sent to the PICTURE SYSTEM. This

buffering enables the appropriate controller to store

the data gathered from the UNIBUS and release control

of the UNIBUS while waiting for the PICTURE SYSTEM to

take the data. If the input data were not buffered,

the UNIBUS would be tied up until the appropriate DIO

or DMA logic interfaced to the PS BUS could take the

data. The PICTURE SYSTEM Reference Manual refers to

this register as the PSDATA Register when describing

Direct IO write to the PICTURE SYSTEM.

The CPU DATA OUT Register is implemented on sheet 8

of the logic drawings.

5.1.1.9 Direct IO Data In Register

The DIO Data In Register buffers data from the PICTURE

SYSTEM to the UNIBUS upon completion of a IODATIRD

command. The register is referred to in the PICTURE

5-9

SYSTEM Reference Manual as the PSDATA register. If

a user wants to read a PS Memory location, he must

first point the DIOPSA to the PS Memory location desired.

MOV #MEMLOC, DIOPSA

Execution of the PDP-11 instruction sets up the DIOPSA

and initiates a read of the PS Memory location specified

by DIOPSA. The contents of the specified memory location

are fetched and stored in the DIO Data In (PSDATA) Reg­

ister. To actually retrieve the desired data the user

must read the PSDATA register.

MOV PSDATA, SAVE

This PDP-11 instruction moves the contents of the PSDATA

register to the specified UNIBUS address (SAVE) and

initiates a IODATIRD command to the PICTURE SYSTEM DIO

Interface which increments the DIOPSA (unless inhibited)

and fetches data from the next PS Memory location pointed

to by the DIOPSA.

Successive PS Memory locations may be retrieved by successive

reads of the PSDATA register.

While the DIO path is busy, another PSDATA read cannot

be initiated; therefroe, the user must test the IO READY

bit in the IOST Register before initiating a read.

5-10

The DIO DATA IN Register is on sheet 14 of the 195131-600

logic drawings. The DIOPSA Register is on sheet 6 of the

195105-600 drawings.

5.1.2 Direct IO Path

The Direct IO path interfaces the UNIBUS to the PICTURE

SYSTEM to enable programmable Direct IO transfers

between UNIBUS address space and PICTURE SYSTEM address

space. The actual hardware for the Direct IO path

consists of:

1. Direct IO control and buffering on the
PDP-11 Interface Card (195131-100).·

2. Direct IO control and "Data In" buffering
on the 195105-100 card in the PS backpanel.

3. "Data Out" buffering on the 195106-100
card in the PS backpanel.

4. Cable driver and receiver lines between
the PDP-11 Interface and the 195105-
195106 cards.

5. Control lines on the PS backpanel between
the 195105 and 195106 cards.

A Direct IO transfer can take place during a DMA

block transfer. If the DMA is writing and the DIO

is reading, or visa versa, there is no conflict of

data line usage between the PDP-11 Interface and the

PICTURE SYSTEM; because, there are two separate

5-11

groups of data lines. (See Fig. 5.1-1)

1. CPUDATA (15-0) - Data from UNIBUS to
PICTURE SYSTEM.

2. PSDATAIN (15-0)- Data from PICTURE SYSTEM
to UNIBUS.

Also, if both DMA and DIO are writing, there is no

conflict in usage of the CPUDATA (15-0) lines because

UNIBUS mastership arbitration insures only one user

of the lines at one time.

For example, if the DMA controller is bus master

and the program encounters a direct IO write

instruction to the PICTURE SYSTEM, the requesting

UNIBUS device must wait for the current DMA word

transfer to complete before it becomes bus master.

While it is master, the DMA process is held up and

the CPUDATA (15-0) lines are solely dedicated to

the UNIBUS master device using the Direct IO path.

However, if both the DMA and DIO are reading, the

PSDATAIN (15-0) lines must be arbitrated between

two devices.

For example, a DMA may be performing a block of

read transfers and a UNIBUS device may desire to

read the PSDATA register in the Direct IO path.

The UNIBUS device again will not be granted bus

5-12

mastership until the current DMA word transfer is

complete. Once bus master the UNIBUS device relays

the read command to the PDP-11 Interface's Direct

IO Controller. The controller responds by enabling

the PSDATA register onto the UNIBUS, issues a read

command to the PICTURE SYSTEM, and acknowledges the

UNIBUS master. The master releases control of the

UNIBUS and the DMA controller regains bus master­

ship; however, the read command to the PICTURE

SYSTEM causes its Direct IO controller to increment

the DIOPSA, (if not inhibited), and retrieve the

data in PS address location pointed to by the DIOPSA.

After fetching the desired data off the PSBUS, the

controller must transfer it across the PSDATA (15-0)

lines to the PSDATA register. Remember the DMA may

still be performing read transfers on these lines;

therefore, an arbiter in the PICTURE SYSTEM's Direct

IO controller must arbitrate these lines between the

DMA and DIO as necessary. This arbiter exists on

the 195105-600, sheet 4.

5.1.2.1 Direct IO Read

To read a PS address location(s) the user points

the DIOPSA to the desired location:

MOV PSADD, DIOPSA

5-13

Loading the DIOPSA causes the PICTURE SYSTEM's

Direct IO controller to retrieve the PS address

data pointed to by the new DIOPSA contents and

buffer it in the PDP-11 Interface PSDATA register.

When the DIO becomes ready then the user may

examine the PSDATA register:

MOV PSDATA, SAVE

Each read of the PSDATA register increments the

DIOPSA by one (unless inhibited) and causes the

Direct IO controller to retrieve the next sequential

PS address contents and buffer the data in PSDATA.

This enables the user to examine successive PS address

locations by issuing successive PSDATA read commands.

Execution of the above instruction causes the following

sequence of events to occur. The sequence is illustrated

in Direct IO Read Timing Diagram of Figure 5.1-2.

1. The UNIBUS master device asserts the address
on PSDATA and sets up control lines CO and Cl
for a full word read onto the UNIBUS.

2. The UNIBUS master device asserts *UBMSYN
requesting the addressed device to respond.

3. The PDP-11 Interface's Direct IO control

decodes the UNIBUS address and control lines

and receives the master's request, *UBMSYN,
(195131-600 sheet 3).

5-14

4. The Direct IO control enables the DIO PS DATAIN
register (PSDATA) through the mux on sheet 16
and *IODATATOBUS asserts the data onto the UNIBUS.

5. *UBSSYN acknowledges the UNIBUS master and
*GATEIODATI gets ready to issue a read command
to the PICTURE SYSTEM. (sheet 4)

6. The trailing edge of *GATEIODATI sets IODATIRD
which clears IOREADY F/F indicating to the
program that the DIO path is busy. IODATIRD
drives a cable line to the PICTURE SYSTEM's
Direct IO control on the 195105 card.

7. The Direct IO control in the PICTURE SYSTEM
receives IODATIRD and generates *IOSTROBE
pulse of lOOns. (sheet 3 of 195105-600).

8. The trailing edge of *IOSTROBE asserts
the *IOBUSY F/F which indicates to the PDP-11
Interface that the Direct IO is accessing
a PS location for the PS DATA register. The
trailing edge of *IOSTROBE pulse also increments
the contents of DIOPSA by one (if not inhibited).

9. IOBUSY sets the *PSREQ(B) F/F in sync with the
next *PSCLK pulse which issues a request for

the PSBUS.

10. The PS arbiter eventually responds (in sync with
*PSCLK) with *PSGNT which gives the PSBUS to
the Direct IO controller.

11. *PSGNT will gate the contents of DIOPSA (PS
address) and *PSREAD to the PS BUS (sheet 6).

5-15

12. The next clock buffers *PSGNT by setting *GNT(B)
F/F. (During the clock period with *GNT(B) is
set, the data from the destination location
location is on the PS data lines of the PS BUS).

13. *GNT(B) asserts *ENDIOREAD which issues a request,

BUSREQ, for the PSDATAIN (15-0) lines and the
next.clock pulse generates the *POKEDATI pulse
which strobes the data from the PSBUS into the
DIO/DMA Data In register file on sheet 6 of the
195106 card which drives the PSDATAIN (15-0)
lines.

14. When the PSDATAIN (15-0) lines are not busy
(may be in use by the DMA) the IOHASIT F/F
(sheet 4 of 195105-600) is set indicating
that the lines now belong to the DIO.

15. IOHASIT enables the DIO word in the DIO/DMA
Data In register file out to the PSDATAIN (15-0)
lines to the PDP-11 Interface.

16. The next clock asserts *ENDIOUPDATE which clears
*IOBUSY on the next clock.

17. The PDP-11 Interface's Direct IO control, which
has been waiting for the trailing edge of
*IOBUSY, sets *CLRIOCOM and the data on PSDATAIN
(15-0) is strobed into the PSDATA register.
(195131-600, sheet 14)

18. *CLRIOCOM sets IOREADY, clears the read command
F/F, IODATIRD (sheet 4), and the Direct IO path
is ready for another transfer.

5-16

§¥ .[~?-~-~$ii
llE VBM6YN--------.

* M~YA.l.STR ,,8 ------../.:......

* P~,,ee~("BJ~~~~~~~~~~~~~~
* P..St::iA/T(-B)

* <!7.,Vr(",a)-~~~~~~~~~~~~~~~~-1--t

* t$ATe.ro.oATO

s:::J-- .400/2"..!i:SS 0.€
L)-"'7T"'1 V;"/L.I.0

@~f(;;j- - E .Z T#cR. /7/tSH
c,e ~OJ-V

5.1.2.2 Direct IO Write

To write a PS address pointed to by DIOPSA, the user

simply writes into the PSDATA register; therefore,

data is moved to the PSDATA register.

MOV DATA, PSDATA

Execution of the above instruction causes the following

sequence of events to occur. This sequence is illustrated

in the Direct IO Write Timing Diagram of Figure S.1-3.

1. The contents of location DATA are fetched
and put on the UNIBUS data lines.

2. The address of PSDATA is asserted on the

UNIBUS address lines.

3. UNIBUS control lines Cl and CO are set up

for a full word write.

4. After the data, address, and control lines
of the UNIBUS have settled, the UNIBUS master
asserts *UBMSYN requesting the slave to respond.

5. The Address Select & Control logic on the
PDP-11 Interface, 195131-600 sheet 3-4,
received *UBMSYN which generates *MSYNSTRB

pulse of lOOns duration.

6. *MSYNSTRB enables the address decade's output
*POKEIODATO.

7. The trailing edge of *MSYNSTRB terminates

*POKEIODATO which strobes the UNIBUS data

into the CPU DATA OUT register on sheet 8

5-17

and generates *POKEIOCOM pulse of lOOns.

8. The trailing edge of *POKEIOCOM asserts

*UBSSYN, which acknowledges the UNIBUS

Master, and sets the IODATOLD (IO DATA OUT

LOAD) command F/F on sheet 4.

9. IODATOLD clears the IOREADY F/F which

indicates to the program that the Direct IO

path is busy.

10. IODATOLD and the data in the CPU DATA OUT

register drive the cable drivers (on sheet 10)

to the PICTURE SYSTEM Direct IO card.

11. The PICTURE SYSTEM DIO controller receives

the command and data lines on the 195105

card, sheet 1 and 2.

12. *IODATOLD generates the IOSTROBE pulse on

sheet 3 which sets the IOBUSY F/F and

strobes the incoming data into the DIO/DMA

Data Out register, sheet 5.

13. IOBUSY sets the *PSREQ(B) to the PSBUS if
the destination device (location) pointed

to by the DIOP SA is not busy. (This device

busy monitor is on sheet 7 of the drawings).

14. The PSBUS Arbiter acknowledges the bus request

with PSGNT(B) when the DIO controller can

have the bus.

15. The PSGNT(B) gates the DIOPSA (destination

address) onto the PSBUS address lines (sheet 6)

5-18

and the next clock buffers the PSGNT(B) by
setting the GNT(B) F/F (sheet 4) and also sets
the *GATEIODATO F/F.

16. *GATEIODATO gates the DIO/DMA DATA OUT
register (destination data) onto the PSBUS
and GNT(B) asserts *ENDIOWRITE.

17. On the next clock, *ENDIOWRITE clears *IOBUSY
indicating that the destination device has
received the data.

18. *IOBUSY is monitored back on the PDP-11
Interface (195131) and sets the *CLRIOCOM
F/F (sheet 4) which sets IOREADY and clears
the command, IODATOLD F/F.

19. The Direct IO path is now ready for another
DIO transfer.

5.1.2.3 Reading the DIOPSA

The DIOPSA is a write only register and cannot be read

directly. Any attempt by the user to read the DIOPSA

causes the contents of DIOPSA to be transferred to

PSDATA register which is directly readabie. The following

code may be used to read the DIOPSA.

MOV DIOPSA, SAVE

TST IOST

BPL .-4

MOV PSDATA, SAVE

5-19

Try to read the DIOPSA

Test the DIOREADY bit
in IOST

If not ready test again

Read contents of PSDATA
into UNIBUS address SAVE.

5 .1. 3 Direct Memory Access PATH (DMA)

The Direct Memory Access Path Interfaces the UNIBUS

to the PICTURE SYSTEM to enable programmable DMA

block transfers between UNIBUS address space and PICTURE

SYSTEM address space. The actual hardware for the

DMA path consists of:

1. DMA control and buffering on the PDP-11

Interface card (195131-100).

2. DMA control and "Data Out" buffering on

the 195106-100 card in the PS backpanel.

3. "Data In' buffering on the 195105-100 card
in the PS backpanel.

4. Cable driver and receiver lines between the

PDP-11 Interface and the 195105-195106 cards.

5. Control lines on the PS backpanel between the

195105 and 195106 cards.

A DMA block transfer between UNIBUS address space and

PS address space is set up and initiated under program

control. The transfer may be programmed to take place

in either direction by setting or clearing the DMAIN

bit of the IO status register (IOST).

5.1.3.1 DMA Block Transfer Initialization

The program must interagate bit 7 of the IOST register

5-20

to see if the DMA is ready (see page 2-13 of PICTURE

SYSTEM Reference Manual) before manipulating aµy of the

DMA registers. Upon finding the DMAREADY, (195131-600,

sheet 5) the program may set up a data block transfer

between UNIBUS address space and PS address space. A

negative two's complement number of words in the block

to be transferred is written into the word count register,

DMAWC (sheet 15). The starting UNIBUS address of the

block to be sent (or where the block is to be received)

is written into the bus address register, DMABA (sheet

15). The direction of the block transfer is set up by

writing a 1 or a ~ in the DMAIN bit of the !OST

(sheet S). The block transfer is started by setting

bit 0 of the IOST (GO bit, sheet 5).

5.1.3.2 DMAIN Transfer

A DMAIN block transfer reads a block of data (one word

at a time) from PS address space and stores it in

UNIBUS address space. Assuming the block transfer has

been set up according to section 5.1.3.1, the block

transfer is executed as a series of word transfers.

The timing sequence of a DMAIN word transfer is

illustrated in Figure 5.1-4. The sequence is described

as follows:

1. The *GO pulse, generated by the program setting

the GO bit in the IOST, clears *DMADONE which

5-21

:i.:/~;;,_ER [:~::::::y 77lTJA
/N/T/'9T/?'/V .¥ c;o

>/' DNl/l .00/Ve

,CM/la?NTRt?t!.[: ::;;;;: -===:-::t=~-----------
8cCC//V7/A/<$ A<-D/l/7,L/8<$//1/
/44STc,R

,KON.l/l/4,-?ST-£.€

JfVBBVSY

~h'D£ TO BV.5

,>f.C.C.k? //J/?S"TG'R

TR.4N.s"FcR/N4
D-'?T/i' TO

S.C.4VEL:<:V/CC"

P/C S'YS .0""1/9 Ct:'NTRC>t!.
rcTCH//V6
,.<? VVC',l?D

,f/?DDRON W;?/T ==+===============:±===~----rC
,KV8/V/5Y-V'

X'VBssVN

A'DN/#047/7 roevs __ --'r-----------------+.--------~~~
A'END CYCLE

r.OA-9/l PS REh"P

-.!'-D,.v,14 8 .VSY

,Y £)/1.'l',..;1 STEOB<!:

'1'P.SCL.K

A"PSRE0(/7)

>l'DEV8VSY

>l" P5G'/VT(-9)

A'4/\/Tc4)

;f"//VC DA/.?.?' PS-9

A' ?'",P L>-9 Tc D/.//,i?

~.BC/S RC'"'a

'1'8V.S BC/SY

A'P-V/-4' #/?s- ./T

A'EA/OOA~/l.VP.D/l/c ___________ -1,__-,!.. _ _,,,::__~

;< PvA::E.D.-9T/

clears *DMAREADY indicating the DMA path is
busy (195131-600, sheet 5). *GO also sets
the *DMAPSREAD command F/F which drives the
*DMADIRD (sheet 10) line to the PICTURE SYSTEM.

2. The PICTURE SYSTEM's DMA control receives
*DMADIRD (195106-600, sheet 2) and generates
*DMASTROBE pulse which sets the *DMABUSY F/F
(sheet 3). *DMABUSY is monitored back on the
PDP-11 Interface card.

3. *DMABUSY generates a request for the PSBUS,
*PSREQ(A), in sync with the *PSCLK when the
source device is not busy, indicated by
*DEVBUSY (sheet 3).

4. The PS Arbiter eventu&lly grants the request
with *PSGNT(A) which gates the DMAPSA register
(source address) and PSREAD signal onto the
PSBUS (sheet 5).

5. On the next clock, *PSGNT is buffered by
setting *GNT(A) F/F, which is set for one
clock period and enables *ENDMAREAD. During
the clock period when *GNT(A) is set, the
source device enables the data onto the PSBUS
data lines, and *ENDMAREAD enables *UPDATEDMA
which generates a *BUSREQ (195105-600, sheet
4), requesting use of the PSDATAIN (15-0) lines
to the PDP-11 Interface (see block diagram
Figure 5.1-A).

6. The next clock pulse generates *INCDMAPSA,
which bumps the DMAPSA register by one (if
not inhibited), and generates *POKEDATI pulse
which strobes the data off the PSBUS into

5-22

the Direct IO/DMA Data In register file

(195106-600, sheet 6).

7. When *BUSBUSY (195105-600, sheet 4), indicates

the data lines between the PICTURE SYSTEM and

the PDP-11 Interface are not in use, *DMAHASIT

is set in sync with the clock. *BUSBUSY is

asserted indicating the data lines are now in

use by the DMA.

8. *DMAHASIT stays asserted for two clock periods

and gates the DMA source data from the input

register file onto the data lines to the PDP-11

Interface. After the first clock period,

*ENDMAUPDATE is asserted and the next clock

pulse clears the *DMABUSY F/F (195106-600,

sheet 3).

9. The PDP-11 Interface has been monitoring the

*DMABUSY F/F in the PICTURE SYSTEM. The

trailing edge of *DMABUSY clears the read

command F/F, *DMAPSREAD (195131-600, sheet

5) and the data from the PICTURE SYSTEM is

strobed into the DMA DATA IN register (sheet

14). The DMA control generates a request for

the UNIBUS, *DMAUREQ (sheet 6).

10. The UNIBUS eventually responds with a grant,

*DMABGIN, which generates *DMASACK acknowledging

the grant and clearing the request.

11. The cleared request causes the UNIBUS to clear

the grant which sets the *DMAMASTER F/F when

the UNIBUS becomes "not busy".

5-23

12. *DMAMASTER clears *DMASACK and asserts *UBBUSY

indicating the DMA is master of the UNIBUS.
*DMAMASTER gates the contents of the DMABA

(destination address) onto the UNIBUS by

asserting *ADRTOBUS (sheet 13).

13. *ADRTOBUS asserts *DMADATATO BUS, which gates
the data in the DMA DATA IN register onto the
UNIBUS, and generates *ADDRONWAIT pulse (sheet

7) . The trailing edge of this pulse sets the
MSYNOUT F/F which asserts *UBMSYN to the UNIBUS.

14. The destination device on the UNIBUS eventually

responds with *UBSSYN, indicating it has taken
the data. *UBSSYN clears *UBMSYN which generates

*ENDCYCLE pulse indicating the completion of a
UNIBUS cycle.

15. The trailing edge of *ENDCYCLE sets the

*CLRDMAMASTER F/F (sheet 7) which clears the

*DMAMASTER F/F and unasserts *ADRTOBUS and
*DMADATAOBUS.

16. The rising edge of *ADRTOBUS increments the
DMAWC (word count register, sheet 15). If the
word count overflows (*WCNTOFLW), the *DMADONE

F/F is set which asserts *DMAREADY, indicating
the DMA path is ready for another block transfer.

The rising edge of *DMADATATOBUS issues another
command to the PICTURE SYSTEM (*DMAPSREAD) if

the block transfer is not complete, which
commands another word to be fetched from the

PICTURE SYSTEM.

5-24

5.1.3.3 DMAOUT Transfer

A DMAOUT transfer reads a block of data (one word at a

time) from UNIBUS address space and stores it in PS

address space. Assuming the block transfer has been

set up according to section 5.1.3.1, the block transfer

is executed as a series of word transfers. The timing

sequence of a DMAOUT word transfer is illustrated in

Figure 5.1-S. The sequence is described as follows:

1. The *GO pulse clears *DMADONE which clears

*DMAREADY, indicating to the program that
the DMA path is busy. *GO also sets the

*DMAUBREQ F/F (195131-600, sheet 6).

2. *DMAUBREQ requests mastership of the UNIBUS

and is eventually granted with *DMABGIN
which sets *DMASACK acknowledging the grant.

3. *DMASACK clears the request and eventually

the UNIBUS grant is cleared which sets the

*DMAMASTER F/F when UNIBUS mastership is
released by the current master.

4. *DMAMASTER asserts *ADRONBUS which gates the
DMABA (source address) onto the UNIBUS and
generates *ADDRONWAIT pulse (sheet 7).

5. The trailing edge of *ADDRONWAIT sets MSYNOUT

F/F which asserts *UBMSYN to the UNIBUS.

6. The slave device (usually memory) eventually
responds with data on the UNIBUS by asserting

*UBSSYN which generates *POKEDMADATA pulse
and clears *UBMSYN.

5-25

:_,;g LtJ c I<
.=TRA-A/.5,CEZ..

t.J.JIT..TAUZAT./01./

::.p/crv,e:
.5Y.5T£M i:>ATA
· £0/Jr,eot.
=:JF.CeSGllJ~­
-:_p_.s BUS
;.4 ;/../ £) N R / T/ f./c;i

:IHE'..M/01?£)

*.t-<1El./TOrLU17""---------~----::4~~~/@Z~~~~2Z~

*.OMA CJ (.IT -~~---­
:U 60 .· -

*OA/?A.CCJA/G

*LJMA£EAL/Y _..,. _ __,

I. :f.<OMAP5ATOBt/S

!¥:..-G ,UTA--· --------------------r----,

t!'li-GATEDMAOATO·­

:K EN'£JOM AW RI T £.·-----------------+-+-----! ..,......_-<-J

-, -- ·-·· ·------- ··----·-----·
' ~· '

7. The trailing edge of *POKEDMADATA strobes ·the

data off the UNIBUS into the CPUDATAOUT register

(sheet 8) and the trailing edge of *UBMSYN

generates *ENDCYCLE pulse indicating the

completion of a UNIBUS cycle.

8. The trailing edge of *ENDCYCLE sets *CLRDMAMASTER

which clears *ADRTOBUS and *DMAMASTER.

9. The trailing edge of *ADRTOBUS increments the

DMAWC (word count) and DMABA (source address)

and sets *DMAPSWRITE (sheet 5) which is the

write command to the PICTURE SYSTEM. *DMAPSWRITE

drives the DMADOLD line and CPUDATAOUT drives

the data lines to the PICTURE SYSTEM.

10. *DMAPSWRITE and the data is received (sheet 1

and 2, 195106-600) and generates *DMASTROBE

pulse which sets *DMABUSY and strobes the data

into the Direct IO/DMA data out register file

(195105-600, sheet 5).

11. When the destination device is not busy (*DEVBUSY),

a request for the PSBUS is generated in sync with

*PSCLK.

12. The request is eventually granted with *PSGNT(A)

which gates the DMAPSA (destination address,

195106-100, sheet 5) onto the PSBUS.

13. The next clock buffers the grant by setting

*GNTA which gates the data from the DIO/DMA

register file to the PSBUS and asserts

*ENDDMAWRITE.

5-26

14. The next clock clears *DMABUSY which is the

signal the PDP-11 Interface is monitoring.

15. The rising edge of *DMABUSY clears the write

command (*DMAPSWRITE) and sets *DMAUBREQ to
request another UNBIUS cycle if the block

transfer is not done. If *WCNTOFLOW (word
count overflow) is asserted, then *DMADONE is
set which asserts *DMAREADY indicating the
DMA path is ready for another block transfer

(195131-600, sheet 4).

5.1.4 Interrupt Sense and Control

The PICTURE SYSTEM is equipped with an intrerupt

facility to enable program intervention by a requesting

device. The possibility of more than one request for

service at one time requires an arbitrator to decide

which device is serviced first. A requesting device

issues an interrupt request to the Interrupt Sense

and Control which causes the following sequence of

events:

1. The sense logic (195131-600, sheet 11)
examines all interrupt request lines.

2. When one or more interrupt request are

present, the Interrupt Control requests
use of the UNIBUS (sheet 12).

3. Eventually, the UNIBUS is given to the

Interrupt Control and it becomes bus
master.

5-27

4. The Interrupt Control recognizes the

interrupt request with the highest priority

(sheet 11, bug 92), passes the appropriate

interrupt vector address to the UNIBUS, and

asserts the interrupt line, *UBINTR, on the

UNIBUS (sheet 12).

5. The PDP-11 Processor pushes the contents of

the Processor Status Word and Program Counter

(PSW,PC) onto the program stack and loads into

the PC and PSW the first two consecutive words

(interrupt vector) from memory pointed to by

the interrupt vector address.

6. The Processor does a jump to the location in

the PC and begins executing the interrupt

service routine.

7. The last instruction of the routine is a

RTI, return from interrupt, instruction.

When executed, the RTI causes the Processor

to pop two words from the program stack into

the PC and PSW registers.

8. The Processor jumps to the new PC location

and resumes execution of the interrupted task.

5-28

5.1.4.1 System Interrupts

Any one of the following seven conditions will generate a

system interrupt if the corresponding interrupt enable F/F

is set.

1. MATCH REQ

2. WBSTOP REQ

3. RF STOP REQ

4. MOS TOP REQ

5. JUMP REQ

6. HIT REQ

7. HALT REQ

These seven conditions are defined in the PS2 Reference

Manual, pages 2-134 through 2-136. A circuit similar to

the one surrounded by dashed lines in figure 5.1-6 exists

for each system interrupt condition. *PSSYSINT is the system

interrupt line of the PSBUS driven by each system interrupt

circuit. This line is reliyed to the Interrupt Controller on

the 195131 card by a differential driver on the 195106 card.

A high to low transistion of this line initiates action by

the Interrupt Controller which will gain access of the UNIBUS

and interrupt the Picture Controller (provided the PSIE bit

of the IOST register is set). In order for a system interrupt

circuit to assert *PSSYSINT, both the interrupt enable F/F

5-29

}1Sl31

CARD

p

r - -"';;TR-;Q.t.ff51- -,

{INTE~vtfT CONOlrJON)'

s i
1---~l.....!.->!::~.wLC:.JLL~ e I -- Q

s I 7f
ENAOL .. E

'-------------'

[

5ysrcM TAlTcRI../ Pr SCHEME FIG ul(E S.J - '

and the interrupt request F/F must be set. *INHIBIT is a

common line to all system interrupt circuits which inhibits

any pending interrupt requests from asserting *PSSYSINT

while the program is clearing the particular request bit

which generated the last interrupt. After the request bit

is cleared, any other system interrupt request bit still

set will generate another high to low transition of *PSSYSINT;

therefore, generating another system interrupt.

The interrupt circuits are found on the 195121-100 and 195151-

100 cards.

5-30

5.2 PICTURE SYSTEM BUS - PSBUS

All PICTURE SYSTEM 2 devices connect and interact with each

other on a single, high-speed, synchronous data bus. Memory,

device registers, control and status registers all exist

and are addressable memory locations on the PSBUS. By means

of this PSBUS, coordinate data may be transferred from the

Picture Controller host computer to the Picture Processor

while data may concurrently be transferred to PS Memory.

During the process, data may also be transferred from PS

Memory to the Picture Generator for display. In addition,

data may be entered from the data tablet, alphanumeric

keyboard, function switches, etc., and read by the control

program of the host computer. Data flow is supervised by

a bus arbitration system which is an integral part of the

PSBUS.

5.2.1 PSBUS Structure

The PSBUS consists of the following lines:

1. *PSDAT (15-0) - 16 data lines

2. PSADD (15-0) - 16 address lines

3. *PSREQ (7-0) - 8 request lines

4. *PSGNT (7-0) - 8 grant lines

5. *PSCLK (5-1) - 5 clock lines

6. *PSDEF - 1 memory def er line

7. *PSMEM - 1 memory busy line (FIFO

5-31

Line)

8. *PSRST - 1 reset line

9. *PSREAD/PSWRT - 2 memory command lines

10. *PSDEVINT/*PSSYSINT/

*PSCLKINT - 3 interrupt lines

11. *PSBSY (7-0) - 8 device busy lines

12. *PS SYNC - 1 sync line

TOTLA 70 lines

The five clock lines are all in sync and were implemented

for driving capability. The *PSSYNC line is used to

arbitrate use of the Refresh Memory by the Refresh Con­

toller and possible future console keyboard devices.

5.2.2 Active/Passive Devices

Data transfers from device to device in the PICTURE

SYSTEM are performed by an active device transferring

data to or from a passive device via the PSBUS. The

active device initiates and controls the transfer, and

the passive device accepts or provides the data as commanded.

All devices are either active or passive; however, some

devices may be programmed to be either active or passive

at a given time. No device can be active and passive

simultaneously.

A typical data transfer between active and passive devices

involves the following sequence of events if the passive

5-32

device is not PS Memory:

1. The active device requests and is eventually

granted use of the PSBUS.

2. When granted, the active device gates the

address of the passive device and a read/
write command onto the PSBUS.

3. The passive device is given one bus clock
period (150 ns) to decode the address and

command.

4. If the transfer is a write (active to passive),
the active device gates data to the PSBUS. If
the transfer is a read, the passive device

gates data to the PSBUS. This data is held
for one clock period.

5. The data on the PSBUS is taken by either the

active or passive device depending on the
direction of the transfer.

5.2.3 PSBUS Timing

A timing diagram of typical non memory data transfers

between active and passive devices as described in

section 5.2.2 is illustrated in Figure 5.2-1. A special

case exists when the passive device is the PICTURE SYSTEM

Memory.

Any data transfer to or from PICTURE SYSTEM Memory requires

5-33

-P.5CL..-e_·--·--n~~ - ·n-· · -n n - L- · --·.-· :_

PS-JZE~~~._· __

"1?55.tf!T_ __ _

-.:P....SA£?D ----·

P.SCLK __________ n --n - n -n - n__n ·n -- L

p5,.es-q __ rs--i....__ ___ _
7?..sGN T.---4'.

,,q_soA r _-· _____

r/Ci. s. ·2-1 T.EM//VG D/AG,RAM rOR TYPICAL -- ·-·---­
-__ ACT/YE ~A.SS.if/£ L>ATA TRAIJSrE,€ ··

an active device initiating the transfer to or from the

passive memory. More than one active devices may re­

quest concurrent use of the memory. The PSBUS Arbiter

arbitrates use of the PSBUS, however, a memory read

cycle is 450 ns and a read-write cycle is 750 ns; there-

fore, data from memory cannot be gated to the PS BUS

during the clock after the memory receives the address.

Also, the memory may be busy when addressed by an active

device.

The Bus Arbiter always responds with a grant to a re­

questing (active) device when the PSBUS is not busy;

however; if the memory access is a read, the memory

controller simultaneously responds to the active device

with a deferred signal (*PSDEF). The deferred signal

instructs the active device to wait till later for the

data. If the memory is busy, it asserts the busy line

(*PSMEM) the same time it defers the active device.

The device then waits for a second grant to give the

memory the address, is again deferred and waits for a

third grant which signifies data is valid on the next

bus cycle. Typical data transfers between an active

device and PICTURE SYSTEM Memory are illustrated by the

timing diagrams in Figure 5.2-2.

5.2.4 PSBUS Arbitration

An Arbitration system for the PSBUS manages data

5-34

I I l
P..5CL.K.JC-- --- -I --- __ ,, .. , --- ---- .,.~l[_JL___fl_ll__JLJ_JL_JL_JL .. .JL

! r)h rH-, rlS-, l,I rh s -
p_s,e;-q '......J I I I I s.s I I L s -Jr----·r ! -

P5GNT-srSL-L~~J~~ 1~~
,P5REAo-.r, I ~~ -5

1~~~s ~'-
I I I

.£!:;-.W£T---ss~ ~5 I ~~s ~'>------
?.5AOL7-<s-Jl 1 s~l..___ss ~&&ZiZI, ,,, , l H-_r~~ 1---s~Jl___,-~ .u..wz...,,..;:.~.u....---

P.5fJA7 -s ~ -~n

,,t-/ E/dC.i?Y ~££TE

(}f.£k:'C-<Y ,,vb r .8v:s>j

I
I
I
I
I

5<; - ~~s-it-~~)~ I) ID SS WJ&j ~~
.11~1 1 s---_fl-ss --4 IL1~-S}------

I 5 ~~-+--~r-~)--~--">r-~--'l~~\--~--';y~~~
I
I
I

M£Mt7.eY ££",f£1
W£#.;?,+?Y,1(/c;r .5ds>j

I

MEMC'£>' /,(/,R,rT,£

(M EA-tc:>A?Y ,Bd.SY)
M£'MtJ-'?Y R£ALJ

(MEM.::J,i?Y .8U:SY)

~ !JOT VAt:..ro

r/Gt/;ICt: s.2-z MEMORY OAr-1 TR.AA/SF.CR. //'MING Of A GRAAA

..

transfers between devices in such a way as to

utilize the full bandwidth of the bus. Since the

PSBUS is synchronous, a data transfer may take

place every clock period if active devices are

constantly requesting use of the bus; therefore,

the bus can transfer 6.6 meg-a-words per second.

The PS memory operates at a slower rate of 2.5

meg-a-words per second; therefore, a device

accessing memory must wait for data; however,

the device releases control of the bus to other

devices while waiting. The arbitration system

must recognize when memory is ready to output

data, then give memory highest priority for use

of the bus. This implies that memory has higher

priority than the eight active request priority

levels, *PSREQ(7-0). Memory is always granted

use of the bus the next bus cycle after requesting

the bus.

The arbiter actually rotates priority of the eight

active request levels. When one request is granted,

that request level is changed to lowest priority,

and the other seven levels are rotated appropriately

for the next grant cycle; however, remember memory

can override the highest requesting priority level

if memory is in a data output state.

The PSBUS arbitration system receives eight active

5-35

requests from PICTURE SYSTEM devices. These

requests are input into a priority rotater as

illustrated in Figure 5.2-3. The rotator examines

WHO, the last request level who was granted, and

rotates the eight requests input to the priority

encoder. The request corresponding to WHO is

input to the encoder at the lowest priority level.

The encoder outputs a 3 bit code corresponding to

the highest level request on its inputs to the

NEWWHO adder. The adder sums the result of the

priority encoder with the number of places the

encoder inputs are rotated to determine which

Active Request is to be honored. This honored

request, NEWWHO, waits for one of two events to

occur before being saved in the WHO latch. The

two events are:

1. A valid WHO does not exist in the WHO

latch; therefore clock the latch until
a valid NEWWHO is saved.

2. A valid WHO exists in the latch, a

memory port does not need the PSBUS
(not in data output state), and a free

memory port does not need the FIFO.

Either event gates the decoded WHO out to the PSBUS

as a grant, and on the next clock latches NEWWHO into

the WHO latch which determines the rotation for the

5-36

(A/EWWHt!J) _
L L

73 3

PEqV.RE ..5:. .:?- :3

)" .3'
745174

(tu/-7¢)

OEC~LJE _L --"" LA'rc# 8(_

74$/38 7 8° Ns'/741
6

'$--@ PSc;,,er

.SN/TCh"'ES>- -4

cLoc,,e-rs-@*P..:5CLk

.__ __ __.+z-0 *P.s',RST

) 0 @.MEM~t/T

PS.BYS AR8..TT~A7T..TO..U SYSTEM 8LCJCK- OfA6~"'1M

next clock.

Further examination of event ·z leads to a clearer

understanding of the request/grant timing on the

PSBUS. Suppose that a valid WHO exists in the

WHO latch, the memory FIFO contains a pending

grant, and both memory port controllers are busy;

however, neither port controller is in a data

output state. This means event 2 is true and the

PSBUS is free for a grant cycle. The decoded WHO

which corresponds to the original active request

that generated WHO, is gated out to the PSBUS as

a grant. This grant is received by the active

device which in turns gates the address and a read

or write command to the passive device as depicted

in the timing diagrams of Figure 5.2-2. The WHO

latch is updated on the next clock, and if the

address on the bus was for memory and the access

is a read, the PS Memory Control asserts the deferred

line which tells the active device that data will not

be valid during this clock period. (If passive device

is not memory data will be valid). Also, if the

memory is busy, the PS Memory Control asserts *PSMEM

which tells the active device that the address was

not accepted by the memory and will be asked for at

a later time. If the active device is writing to

memory, the device asserts data to the PSBUS during

5-37

FIGURE 5."5-2.

the clock period after memory latches the address.

If an active device receives the memory busy signal

the device will receive a second grant at a later

time from the memory. This implies that the memory

must save the first grant. It does so in the

memory FIFO, and if the FIFO is not empty when a

memory port controller becomes idle, the FIFO is

output to the grant lines as the second grant to a

waiting active device. This second grant signals the

device to repeat the address to the bus sense a

free port controller can now begin access of the

address. The PS Memory Control is also equipped

with a port latch. This latch saves the particular

grant that signals a device of the beginning of a

read access by a port controller. When the port

controller has data from memory (in data output state)

it repeats the grant from the port latch which signals

the device that data will be on the PSBUS during next

clock cycle.

5-38

5.3 Picture Processor

The Picture Processor receives commands and data from

the PSBUS, decodes the commands, operates on the data,

and outputs data in a specified format to the PSBUS.

Output from the Picture Processor may be directed to

PS Memory, the Picture Generator, or the Picture Con­

troller. The source of Picture Processor input and

destinations of Picture Processor output is program

controlled.

The Picture Processor consists of three units:

1. MAP Input Controller

2. Matrix Arithmetic Processor (MAP)

3. MAP Output Formatter

The three units interface to an internal bus, the BBUS.

Data transfers between the three units occur on this

bus; however, input and output occur on the PSBUS.

Figure 5.3-1 illustrates a simplified block diagram of

the Picture Processor interfaced to the PSBUS. A de­
tailed block diagram is illustrated in Figure 5.3-2.

MAP
XNPUr
CDNrROL

f'SBl.J 5

MAP

Figure 5.3-1

MAP
ourpvr
CONTROL

Simplified Block Diagram of Picture Processor

5-39

R£SE.T

FFl./LL4 ACTIVE.•f'1fMCLDMRI + LDMRI)

J"DI...£ JO ReQUc.ST
PSB(JS

;; ·\ dPSRE<;>(A)--4-/ PSREQ(A).+/ 1,.'ilPON EXIT; i-.1------------1 /)JCR£MENT OR ARI

IF GOING TO STATE 11)

*F>-::-1-'L o ACl/\/£1 •
* LDMRI• itMCLO/r1RZ

~TRANSDATA

01

:/fFFLILL.• ACTIVE/.
JlfLDMRI '**MCL..OMRI

CLcAR PS Bt.IS

(NO L.OAO FJFO)

(MCLDMRI .,_ l.OMRI)•

*TRANSDATA

TRANS DATA

(MCLDMRI r lDMRl)tiTRANS OATA

FIGURE 5. 3 - 3

*FFLJLL~ACTJVE •
*LDMRI** MCLOMRI

*°TRANS DATA •
*MCLOMRL• *LDMRI

· WAIT FOR DATA
FI F0-4-DATA

{IF GOING TO STATc lq}

TRAIJS DATA•~ MCLDMRI •
:WLD/'t?RI

MAP INPUT STATE DIAGRAM

The Picture Processor contains eight, PSBUS, addressable,

control registers which control status, input, and output.

These eight registers are:

1. MAOL - MAP Active Output Limit

2 . MAOA - MAP Active Output Address

3. MAIA - MAP Active Input Address

4. MSR - MAP Status Register

5. MMSR - MAP Maintenance Status Register

6. MMRSR- MAP Maintenance Repeat Status Register

7. MMPAR- MAP Maintenance Prom Address Register

8. MMBUS- MAP Maintenance BBUS

The eight control registers are defined in Section 2.3 of

the PSZ Reference Manual.

In addition to the eight control registers, the Picture

Processor contains two additional PSBUS-addressable port

registers. These registers act as input and output ports

when input or output is functioning as a passive PSBUS

device. The two passive port registers are:

1. MPIP - M.AP Passive Input Port

2. MPOP - MAP Passive Output Port

The MPIP and MPOP are described in the PSZ Reference

Manual on pages 2-28, 2-55 and 2-56.

The Picture Processor also includes 256, non-PSBUS-

addressable, internal registers. These registers are

5-40

implemented as RAM Memory. They are used as parameters

and working registers by the MAP during point vector

transformation functions. They may be loaded from the

PSBUS during MAP execution of LOAD, or LOAD STACK

commands and may be output to the PSBUS during MAP ex­

ecution of STORE or STORE STACK commands. These internal

registers are described in the PS2 Reference Manual on

pages 2-30 through 2-35.

The heart of the Picture Processor is the Matrix Arithmetic

Processor (MAP). This processor is used to perform point­

vector transformations, matrix concatenations, clipping,

viewpoint mapping, perspective calculations, hit testing,

etc. The MAP receives commands from the MAP Input Con­

troller, operates on data as specified by the command, and

outputs data to the MAP Output Formatter.

The MAP Output Formatter receives data from the MAP and

formats it as specified by MSR bits 9 and 8 (See PS2

Reference Manual, page 22) in preperation for output to a

PSBUS device.

5.3.l MAP Input Controller - Active

The MAP Input Controller is the device by which the

Picture Processor inputs data from the PSBUS. It can be

programmed to be either an active device or a passive

device by modifications of bit 4 of the MSR. When operating

5-41

as an active device, the controller inputs data from

the PS address specified by the MAIA register. The MAIA

is incremented upon each PS address access; therefore,

commands and data from a PSBUS-addressable file will

stream into the MAP Input FIFO.

5.3.1.1 MAP Input FIFO

The MAP Input FIFO consists of a four word register file

which is simultaneously writeable and readable. The

FIFO is monitored for full or empty status by the MSR;

therefore, the program may sense the conditions of FIFO

by testing bits 14 and 13 of the MSR. When the Input

FIFO is full, further access to PS address locations by

the Input Controller is inhibited. When the FIFO is

empty further access to the FIFO by the MAP is inhibited.

The FIFO is implemented on sheet 2 of the 195119-600

drawings of the MAP BUFFER Card. Note the separate read

and write address inputs.

5.3.1.2 MAP Input Sequencer

When operating as an active device, the MAP input is

controlled by the MAP Input Sequencer. The sequencer

is a four state machine which implements the following

five tasks:

5-42

1. requests use of the PSBUS
2. passes the address specified by the MAIA

to the PSBUS

3. loads data from the PSBUS into the MAP
Input FIFO

4. controls automatic incrementation of the

MAIA register

S. allows a current PSBUS cycle to clear if
the program or the MAP changes the con­
tents of the MAIA

The state diagram for the sequencer is illustrated in

Figure S.3-3. The four states are:

State 00 - IDLE

State 01 - PS BUS Clear

State 10 - Request PSBUS

State 11 - Wait for Data

State 00 is the initial state of the sequencer. When the

MAP Input Controller is passive, this state is maintained;

however, when functioning as an active device, exit from

the "IDLE" state sets a request for the PSBUS. The dispatch

from the "IDLE" state to the "Wait for Data" state occurs

if the FIFO is not full, assuming the MAIA is not to be

loaded. The MAIA may be loaded with a new address by

command from the MAP or by command from the user program.

The "Wait for Data" state is maintained until the passive

5-43

PSCLK fGJl n n n n n n n_
I I

I I

rnJ l I

FIFO FULL I I
I

I I I
IFROM 1 I

~PSREQ r--iAc77ve I I
DE.VICE I

I I

~PSGIVT

PSAOD

:it'·PSWRT

PSIJ.ATA ---~, ,.,... ___ .,.__ _ _.
I
I

*i~FIFO ~-----01------...____. -' -----------------

---~ F.!FO LOADED HERE

ACTIVE DEVICE WRITE TO MAP PASSIVE INPUT PORT

device has data for the active Input Controller, unless

the MAIA is to be loaded. During the time the sequencer

remains in the "Wait for Data" state, a PSBUS cycle is in

progress. The Input Controller gates the MAIA to the

address lines of the PSBUS upon receiving a grant from

the Bus Arbiter; the passive device gates the data onto

the PSBUS; and, the data is strobed into the FIFO upon

exit to the "Request PSBUS" state. If a command to change

the MAIA content occurs when the passive device has data

on the BUS, the data is not loaded into the FIFO and the

"IDLE" state is entered. If the command to change the

MAIA occurs while in the "Wait for Data" state and the

passive device does not have data on the PSBUS, the "Clear

PSBUS" state is entered. The "Clear PSBUS" state is main­

tained until the current PSBUS cycle is complete. Upon

completion of the bus cycle the "IDLE" state is entered

and the data from the bus cycle is not strobed into the

FIFO.

The "Request PSBUS" state is maintained for only clock

period and, upon exit, sets another request for the PSBUS

only if going to the "Wait for Data: state. The "Wait

for Data" state is entered only if the FIFO is not full

and the MAIA is not to be loaded; else, the "IDLE" state

is entered.

An example of the MAP Input Controller functioning as an

5-44

active device and fetching commands and data from a PS

Memory file is described in the next few paragraphs.

Suppose the data file as depicted in Figure 5.3-4 exists

in PS Memory.

1000 MOVE RSR instruction with

1001 Ax a count field of 12 8
1002 Ay and a draw sequence

1003 Bx of M,D,D,D,D (061764)

1004 By

1005 Cx

Partition 1006 Cy
A 1007 Dx

1010 Dy

1011 Ax

1012 Ay

1013 JUMP RSR Jump command (002000)

1014 4000

4000 MOVE RSR instruction with

4001 Ex a count field of 6

4002 Ey and a draw sequence

Partition 4003 Fx of M,D,D,D (061772)
B 4004 Fz

4005 Gx

4006 Gy

4007 HALT RSR Halt command (000000)

Figure 5.3-4

PS Memory Data File

5-45

Assume the data words Ax Gy define the points of a

square and a triangle as depicted in Figure 5.3-5 .

A

B

..,.. _____ ..,.[)

c

Figure5.3.,..s

Displayed Result of Data File

E.

Notice that the file consists of two partitions. Partition

A from locations 1000 to 1014 contains an RSR, 2-dimensional

draw, sequence command of Move, Draw, Draw, Draw, ... and a

count of 12 8 . This partition also contains a JUMP command

to the MAP. When executed it will cause the MAP Input

Controller to fetch data starting at location 4000. Parti­

tion B contains the same RSR, 2-dimensional draw sequence

command but with a count of only 6. The 12 8 data words of

partition A define the points of the square and the 6 data

5-46

words of partition B define the points of the triangle.

The program initiatized the MAIA to point at PS Memory

location 1000. At the beginning of a frame update, the

MAP Input Controller fetches the PS Memory location

pointed to by the MAIA and puts the contents in the MAP

Input FIFO. To do this the input sequencer requests the

PSBUS upon exit of state 00 to state 11. In state 11

the sequencer waits for the word from PSMEM location 1000

to settle on the data lines of the PSBUS. Upon exit from

state 11 to state 10 the word is strobed from the PSBUS

into the FIFO. The MAP itself waits in the Load RSR State

(see Appendix A, MAP Alogrithm) until the FIFO is not empty.

Since a word is in the FIFO, the MAP loads this word into

its Repeat Status Register (RSR). The Input Sequencer

tries to keep the FIFO full by accessing PS Memory locations

and loading the data into the FIFO. This is accomplished

by the input sequencer executing the loop consisting of

state 10 and state 11. The MAP tries to empty the FIFO

by unloading the FIFO contents and operating on the data.

There will be a time when the MAP fetches the JUMP command

from the FIFO. This JUMP command will be loaded from the

FIFO into the RSR thus causing the MAP to execute the JUMP

states of its algorithm. The JUMP command causes the MAP

to fetch the next word from the FIFO and load it into the

MAIA register; therefore, 4000 is fetched from the FIFO

and loaded into the MAIA. The input will be in either state

5 - 4·7

10 or state 11 when the MAP issues the MAIA load signal;

thus, dispatching the input sequencer to either state 00

or state 01 depending on whether the PSBUS is clear or

not. The load signal, *MCLDMRI, also clears the FIFO,

therefore the input sequencer has an empty FIFO for the

next command fetched from the PS Memory location 4000.

At this point the MAP has received the data for the

square and is waiting for the RSR Move command and data

for the triangle. The Input Sequencer fetches the RSR

Move command, data, and the Halt command, and the MAP

unloads the commands and data from the FIFO. Upon ex­

ecution of the Halt command, the MAP waits for the pro­

gram to initiate the next frame update process.

The implementation of the MAP Input Sequencer is shown

on the MAP I/O Sequencer drawing, 195118-600, sheet 3.

The four states are derived from two bits of the register

in location 41. ISTATEA is the LSB and ISTATEB is the MSB

(Refer to Figure 5.3-3, MAP Input Sequencer Diagram).

5.3.2 MAP Input Controller - Passive

When operating as a passive device, the MAP Input Sequencer

is always "IDLE": Data transfers to the MAP Input Controller

occur by an active device writing data to the MAP Passive

Input Port (MPIP=l77777). The MAP Input Controller passively

waits for data directed to the MPIP and synchronously loads

5-48

the FIFO during the data cycle of the PSBUS. The timing

diagram of Figure 5.3-6 illustrates an active device writing

data to the MPIP.

The PSWRT line from the PSBUS is input on sheet 1 of the

195121-600 drawing. The MPIP address is decoded by bug

15 on sheet 2 and the PASIN bit of bug 26 is set at the

beginning of the PSDATA period of the data transfer cycle.

PASIN is input to the MAP I/O Sequencer Card, 195118-600,

sheet 3, and generates LDFIFO. LDFIFO is input to the

MAP Buffer Card, 195119-600, which contains the FIFO.

5-49

I
i

L

1
NG'.XT

VC:CTOE
ST.4TC:
('VPO/i/T~

E5£.)

1

1 _e_RcSET

6ETR5.R
5TfiTc

1 .
D/5P.,,cl7~-~

O.IV ,esR
.S-T ""9 Tc l l.____ __ ___,

,, ~I

-46'.50LY7"c

/A/Pt/T

.2 c 2 ,.::; 7-/ l/.:3'"

//\/,.Ot/' T

ST "'9 T 6"" 5

l.....___,l 1
VEC7'"CJ,2

N?VLTIPLY
ST.47~5

/t/CJ,,P//l,cl,;! /2 =
sT47:-$

,,
VVINDOW I

5 T,,t;? TS-5 I

PEZ5PC:-Tl'/E

::;-T -47 /'"C='"S

I

··/v. -:-c/ ·r ;J/;/. , ,...,,
"/:..,..' /' .. !,/',, ,· _,..,~/- /,/

5.3.3 RSR Register and Update PROM

The Repeat Status Register (RSR) is the command register

to the MAP. The register contains three fields as described

on page 2-36 and 2-50 of the PS2 Reference Manual. The

three fields are:

1.

2.

COM--------------Command field (bits 15,14)

FUNCTION/--------Function field for "Control"
FSM1-FSM2 commands, or Finite State

Machine fields for "DRAW"

commands (bits 13-8)

3. OPERAND/COUNT----Operand field for some

"Control" commands, or Co­

ordinate Count field for

"DRAW" commands (bi ts 7- 0)

The Update PROM sequences the Finite State Machine fields

through patterns defined by the contents of the RSR at the

beginning of a new DRAW command to the MAP.

5.3.3.1 GET RSR State

In the MAP algorithm exists a state which enables the FIFO

to the BEUS and loads the RSR with BEUS data. This state

is called the "Get RSR" state (See Appendix A, MAP Algorithm).

Upon "getting" an RSR, the MAP algorithm decodes the COM and

FUNCTION/FSM fields, then branches appropriately.

5-50

5.3.3.2 Control and DRAW Commands

There are two basic types of RSR Commands:

1. RSR "Control" Command

2. RSR "DRAW" Command

The COM field of the RSR word determines the command type.

If COM= 0, the command is "Control". If COM t 0, the

command is a "DRAW".

Thirteen "Control" commands are defined by the FUNCTION

field of the RSR word. These Control commands are described

in detail on pages 2-37 through 2-48 of the PS2 Reference

Manual.

The three "DRAW" commands are:

1. 2DDRAW - Two dimensional draw command

2. 3DDRAW - Three dimensional draw command

3. 4DDRAW - Four dimensional draw command

The nDRAW" commands are defined in detail on page 2-51 of

the PS2 Reference Manual.

The 2DDRAW command operates on data defining vector points

in an X,Y plane. The 3DDRAW operates on data points in

X,Y,Z space; as also, does the 4DDRAW; however, 4DDRAW

5-51

vector points are defined by elements X,Y,Z and W. The

W element of each point is a scaler for that point. W~en

the MAP processes 4DDRAW data, it eventually devides the

X,Y and Z elements by the scaler, W.

5.3.3.3 Drawing Se4uences and Data Interpretation

All RSR "DRAW" commands have an associated drawing sequence

and coordinate count as defined by the FSM and COUNT fields.

Each time the "DRAW" command is performed on a point vector,

the FSMl and FSM2 fields are updated while the COUNT field

is incremented. This provides the capability of performing

pattern sequences of Moves and Draws (M,D,D,D, ... or M,D,M,

D ... , etc.) as well as interpret data as Absolute or Rel­

ative points on a given number of vectors defined by the

COUNT field. An original RSR "DRAW" received from the FIFO

by the MAP contains a negative number (in Two's Complement

form) residing in the COUNT field. The FSM2 field contains

a number defining the sequence pattern in which the MAP

will interpret incoming vector points (either as Absolute

or Relative data points). Example: A,R,A,R ... A,R,R,R ...

R,R,R,R, etc. The FSMl field contains a number defining the

sequence pattern of Move or Draw commands and the MAP will

operate on point vectors accordingly; thus outputting data

to the Picture Generator in a sequence defined by the Move­

Draw pattern.

5-52

5.3.3.4 Drawing Sequence Example

Consider the square of Figure 5.3-7 with sides 20 units

each and the lower left vertice off set from screen center

by 50 units.

--- - - -
i

to .l

_l) --
i I

(""-20
__..

50 I

L 50 J
1 o,o

0(1.If?IN

Square Off set From Screen Center

Figure 5.3-7

The RSR command and associated data file input to the MAP

may be defined as illustrated in Figure 5.3-8.

5-53

051773 2DDRAW (A, R, R, R ... M,D,D,D ... COUNT = -
so Ax (Absolute)

so Ay (Absolute)

20 Bx (Relative)

0 By (Relative)

0 ex (Relative)

20 Cy-1 (Relative)

-20 Dx '..{Relative)

0 Dy (Relative)

0 Ax (Relative)

-20 Ay (Relative)

0 Halt

Figure 5.3-8

RSR Command and Associated Data File for a Square

A simplified diagram of the MAP states executed is illus­

trated in Figure 5.3-9.

Execution of the RSR command and input of data by the MAP

is described in the following sequence of events.

S)

1. The MAP inputs the RSR, decodes the COM and FSM

fields, and executes the "Absolute Input States"

where Ax and Ay are input as absolute data de­

fining point A.

5-54

2. Point A is transformed in the "Vector Multiply
States" checked against a defined window, put
in perspective, and output. Point A is output
with a Move command to the Picture Generator.

3. The FSM and COUNT fields of the RSR are updated

in the "Next Vector State", the updated RSR is
decoded and the "Relative Input States" are ex-

ecuted to input data for point B.

4. The MAP loops through the "Relative Input, Vector
Multiply, Perspective, and Next Vector" states
until Draw commands with points B,C,D, and A
are output to the Picture Generator.

5. After the Draw from D to A which closes the square,
the MAP is in the "Next Vector State" with a COUNT
= - l; therefore, the command has been executed
the specified number of times. The MAP enters the
"Get RSR State" to input the next RSR command from

the FIFO.

5.3.3.5 RSR/Update PROM Hardware Description

The COM field and FUNCTION/FSM field of the RSR (bits 15-8)

are implemented by the dual input registers in bug locations

24 and 33 on the 195120-600, sheet 4 drawings. The Update

PROM is in location 23. The FSMl and FSMZ fields out of the

register address the Update PROM. The Update PROM outputs a

modified LSB for each of the FSM fields. The Operand/COUNT

field (bits 7-0) of an RSR word input to the MAP are loaded

into a counter (AC3) during execution of the "Get RSR" state

5-55

of the MAP algorithm. This counter exists on the 195114-600

drawing, sheet 3, implemented in locations 52 and 47.

5.3.3.6 Reading the RSR

For a user to read the RSR, the MAP must be in either the

"Get RSR" or "Next Vector" state. While in either of these

two states, the counter, AC3, is gated to the MAP RAMADR

lines (MAP internal storage address). During the read cycle

the RSR address from the PSBUS is decoded on the MAP Address

Card, 195121-600 sheet 2. The decoded RSR address (177755)

generates *GATRSR if the read line of the PSBUS is inserted.

*GATRSR enables RAMADR to the lower *PSDATA lines (see sheet

5 of 195131-600). Also, the COM and FUNCTION/FSM fields of

the RSR register are enabled to the upper address lines (see

sheet 6 of 195120-600). An example of reading the RSR via

the Direct I/O is illustrated by the flow chart of Figure

5.3-10.

5.3.3.7 Writing the RSR

When writing the RSR via an active device such as the Direct

I/O, the MAP Input Controller must be passively waiting for

data in the "Get RSR" state. The data is directed to the

MPIP; therefore the first word to the MPIP is loaded into

the RSR. The actual signal (*MCRSRLOAD) which loads the RSR

is generated by the MAP algorithm controller during the "Get

RSR" state. If the RSR is loaded with a "Control" command,

5-56

- ; SE"'?- L.1.S /
/; 2 /A/
/14..S.l"e

.5£T ~S£ HOLO
.SET //.G"CTCJ£ #CJLO

; T£'5TL../S/

./5 IA.I MS;€

the algorithm will return to the "Get RSR" state; however,

if loaded with a "DRAW" command, the MAP will wait in

certain states for drawing data. An example of writing

the RSR via the Direct I/O is illustrated by the flow

chart of Figure 5.3-11.

5.3.4 Extend Register

The MAP is a 24 bit machine which operates on point vectors.

The elements (X,Y,Z,W) of the point vectors are defined each

by a 16 bit word. During arithmetic operations, 16 bit

precession will not insure picture quality; therefore, the

MAP maintains 24 bit precession throughout all calculations,

and all MAP parameters, working register, etc ... are 24 bit

registers. The user has the option of loading MAP parameters

in either 16 or 24 bit precession. Since the PSBUS and MAP

Input FIFO accommodate only 16 bit words, the Extend Register

is used to format data from two, 16 bit, input words into a

24 bit word for loading MAP parameters. Also, the user has

the options to store MAP parameters in 16 or 24 bit preces­

sion. In the 24 bit case, the Extend Register is used to

format data from a 24 bit MAP word into two, 16 bit words

for output to the PSBUS. Figure 5.3-12 illustrates formatt­

ing for a 24 bit load and 24 bit store.

To load a MAP parameter in 24 bit precession, the MAP inputs

word 1 from the FIFO and loads bits 15-10 and bits 1-0 into

5-57

,,€GSE/
P/CTU£&

5Y.:S/cM

:ser E/T/B
/;(} .ros r
£EcE/.:S Te',€

JCLEAR. BITS

f;I? Or Ad/4.£5.e

' .
·• - ·-t-• ,.. _ ·-·· .. - ... ·-···--·-~··· --~-..... ··--·-.. --.... -·- .. ··• -·

-t·'" .. . - .•.. ~- .. ···-·-.... -; - . ·--~--.....---- .. ------
.

~ : . ' '
. i ' .•

f_-.1<o _ '--------- ¢ I I>-JPUT WORD

~ L .. ' ' 15 ~ 1$:INPUT WORD ·
. -·-·... .. _____ __

y

... 24 BIT MR P LORD . F"ORMAT

l 1 to .-. -----e.s;.. ai I OUTPUT WORD· 2

. -·--.- --· -·- .. I 1 ~

fls-...... 10 VZZl/f-1 I </; I OUTPUT . WORD I

24 B:Z:T MRP STORE FORMR7
--q;--

~--;_<~~>"4' s _____ , ____ ·_-f/;__, ~:; 7 ...
..

..:-t- ·--·--· ···-···· ---------
., -·. -
. ___ ..;,. .. ,. _____ ····'. .

. .. . _, .. :---·-· ... ·- ·-- ..

21-1------.....;s-- .. &, ~ 4il--fllllo ¢. MAP WO RD

_(2_3,_22 !_21_· -----· ._ .• _·,.._fs-_· _ ___.¢j ·MAP WORD
• I • _ _,;. .;. -

_f leo _______ ¢__.j OUTPUT WORD
~- ! - . --·.. .. -· -··· - -·- .

~ ;.
I

~;. ·::: :·-- .. : . - : . JG>:. BIT MAP STORE FOR MJ.tT
L l ... : . . : • i , :
: !· ~.: :. '··- ~FI.GU Re:- S". '3-\2. :.: MRP LORD I STORE: WORD FOR MAT

t . • . • ' - . -r---~ _ .. ______ --·--·--··· ·-. .. ·-· - --·~-- ·- -----...... ~ - ... - --·--··· -· - ... - ... - '. : -. : ·; ·: ~ . : ·: : : ~ . ' ·~t : ' : : . :. ; . : . : ·, ! I.·:·! '. .. '. . , .. 1' . -I ' ' . . • !
: : : ' •• ·t t .. , . . . '. ., ...

• 1 •

'. '

' .

the Extend Register; therefore the Extend Register contains

the upper two and lower 6 bits for the 24 bit MAP word. Next,

the MAP inputs word 2 from the FIFO, gates the Extend Register

and word 2 onto the BBUS, and strobes the 24 bits into the

specified MAP parameter. The MAP performs a similar process

when outputting a 24 bit word to be stored in two 16 bit

words. Data flow for a 24 or 16 bit I/O is illustrated in

Figure 5.3-13.

If a 16 bit precession load is executed, the data word from

the FIFO is gated to BBUS bits 21-6, bit 21 is smeared into

bits 23 and 22, and the Extend Register output is disabled

to 0. The result is a 16 bit sign extended word with trail­

ing zeros on the BBUS. The Extend Register circuitry is

implemented on the 195120 card, (See sheet 6 of the drawing).

5-58

. *PS DAT A (15 - ctJ)

F'
l:
F
0

16'

BBUS (23-¢)

8

EXTEN·D

2
BBU5(2.t)

2.

FIGURE' S. 3-13 DRTR FLOW BLOCK DIAGRAM
OF EXTEND CIRCUIT

5.3.5 Matrix Arithmetic Processor (MAP)

The MAP is a semi-specialized arithmetic processor unit

capable of receiving data in 16 bit words, packing data

into 24 bit words, and performing the following arithmetic

functions:

1. addition
2. subtraction
3. multiplication
4. reciprocation
5. normalization

These arithmetic functions are used to implement the necessary

equations which transform defined point vectors from the Data

Space Coordinate system to the Screen Coordinate system for

output to the Picture Generator.

The MAP is classified as semi-specialized since it contains

the necessary bus structure along with the necessary data

storage area, counter, comparators, registers, multiplexers,

programmable control, etc ... to be micro programmed for

implementation of a specialized algorithm.

Typically the MAP is loaded with an initial transformation

matrix. This initial matrix is usually the Idenity Matrix;

therefore, if used to transform a point, the transformed

point is identical to original point.

(P] • [I] • [P ~ and P=P'

5-59

The user may restrict display of the visual results to a

defined area on the CRT by setting up a viewport in Screen

Coordinates. The viewport is defined by loading six par-

ameters in the MAP. These six parameters are:

Viewport x 1/2 size
Viewport x center
Viewport y 1/2 size
Viewport y center
Viewport z size
Viewport z front

The six parameters define a rectangle as well as a beam
intensity range in t]:ie z axis (see Figure 5.3-14).

tx $z2c

Y~ENTCll.. \

--------~,--· ··~

Figure 5.3-14

Viewport Example

5-60

V1£WPOR./

SCK£FN
oF c~r

2SIZ£

When the MAP is pre-loaded with an Idenity Matrix and a

defined viewport, all transformed data is perspectively

mapped into the defined viewport; and, since the viewer's

eyepoint default to minus infinity, the MAP output to the

Picture Generator consists of an orthographic view of the

complete set of vector points defined by the input data.

The user may not want to visualize the entire set of

point vectors defined in the data space but only those

within a defined area. In this case, the MAP transformation

matrix is concatenated with a WINDOW matrix which defines

a truncated pyramid known as the Frustrum of Vision or

window. All vectors falling in the window are to be vis­

able and all vectors falling outside the window are to be

non-visable. This enables the user to translate objects or

zoom the eyepoint and visualize only data seen through the

window. Figure 5.3-15 illustrates a Frustrum of Vision

defined by six window parameters.

Transformation of a point vector by a WINDOW matrix scales

the point such that the x,y, and z element of the point can

be checked against the element w to determine if the point

is in or out of the Frustrum of Vision. Figure 5.3-16 illus­

trates transformation of a point P and the six window checks

performed on the transformed point P.

The checks are performed simultaneously on both the previous

point and the new point; therefore, for each check the MAP

5-61

I
I

I·

y

F/t::;V£E 5. .3-/S

WE= EYE PCJ.S/T/cJAJ
_NT== VVllJl.?C>W TCP

J1/L3 =U//NL7tJJ1/ 81JT/ZJlvJ
.u/L=@//VOt:JW LE,C:/

NR==-WINOtJw Rl6H7

WH=W!llJOdW J(!Th'ER

U..J Y = /A.II N iJ CJ W Y tJ /J

z

F£U.ST~VA4 OF V/.:5/0AJ S/-l?JWIA..16 TH£ ey.€
PCJS/T/c:J;<.///../ ££Lr//ICJIJ /0 r'JN A£Bll1217R..'Y

_ coo,eLJ1;(J,qT£ rfX/S

determines whether the line between the two points needs

clipping.

1. x'

2. x' +

3. y -

4. y' +

5. z'

6. z'>0

P = x,y,z,w

P' = x' ,y' ,z' ,w'

w'<0 in side of Right plane

w'~0 in side of Left plane

w' >0 in side of Top plane

w'~0 in side of Bottom plane

w' <0 in side of Yon plane

in side of Hither plane

Figure 5.3-16
WINDOWING a Point, P

Figure 5.3-17 illustrates a line between two points, Previous

and New, with a defined window. Four cases are illustrated.

For each of the six equality checks, the MAP observes the

following rules.

1. If the x,y, or z element of both points is outside

the window plane, then both points are outside the

Frustrum of Vision. Input the next point.

2. If the checked x,y, or z element of both points
is inside the window plane, then check the next

element.

5-62

3. If the checked x,y, or z element of one point is

inside and the element of the other point is out-

side, the line intersects with the window; there-

fore clip the line against the appropriate window

plane, then check the next element.

p

f'~_"' -
N

Figure 5.3-17
Lines between Previous Point and New Point with a Defined Window

Upon finding a line segment within the window, the MAP saves

the New Point, perspectively maps the previous point into

5-63

the viewport, maps the New point into the viewport, assigns

the saved New point to Previous point, and inputs the next

point vector.

The MAP receives commands and data from the MAP Input

Controller. An input command received in the RSR register

is decoded and appropriate action taken by the MAP which

sequences through states as defined in the MAP algorithm

(see Appendix A). Execution of command specific and data

specific states is determined by the COM and FUNCTION/FSM

fields of the RSR.

"Control" commands direct the MAP as follows:

1. Load or store MAP parameters.

2. Initiate jumps or subroutine jumps within
a MAP input file.

3. Relocate data within MAP internal storage.

4. Save or recall MAP transformation matricies.

5. Concatenate the MAP's transformation matrix
with input matricies.

"DRAW" commands direct transformation of input point vectors

by initiating the following MAP functions and transformation:

1. Windowing

2. Clipping

3. Rolation

4. Translation

5-64

5. Scaling

6. Viewport Mapping

Data associated with a DRAW command is input to the MAP in

2,3, or 4 dimensional space. The FSM2 field of a DRAW

command directs MAP interpretation of input data with respect

to the data space origin.

The FSMl field directs MAP interpretation of point vectors

as to being either "set point" or lines.

The MAP outputs data as screen coordinates to the MAP Output

Formatter. There is a special mode of operation, where

some MAP functions are ignored and input is simply passed

to the formatter. This mode if operation is used to pass

character data and Line Generator status through the MAP.

5-65

5.3.5.1 MAP Data Store and ALU Unit

The MAP Data Store and ALU consist of the following:

1. 256 x 24 bit RAM Memory Data Store

2. Three MAP Support Registers

MAP Buffer (MB)

Multiplicand Register (MDA)
Accumulator (RA)

3. Arithmetic Logic Unit (ALU)

The Data Store and ALU Unit is implemented on two 195116

cards each comprising a 12 bit slice of the unit. Figure

5.3-18 illustrates a block diagram of the Data Store and

ALU.

The 256 x 24 bit RAM Memory is addressable only by MAP

control; therefore, to write or read the memory, the user

must issue LOAD or STORE commands to the MAP. The memory

is used by the MAP as a parameter and register file for

MAP calculations. These parameters and registers are:

1. Input Registers (x, y, z, w)
2. Base Registers (x,y,z,w)
3. Output Registers (x,y,z,w)
4. Save Register (x,y,z,w)
5. Viewport Parameter
6. Working Register

5-66

RAMADR 0 8 25(; WOt?O

x
21/BIT

MEMORY

2~ A BUS

MB

24
*AOMB____._ ___

24

GBUS

MOA .RA

24

ALU

CBUS

. DATA STtJRE. AAJD ALU BLOCK DIAGRAM

.__ REGISTERS WITH
· INTeRNAL R-1 S:L.Et:'TOR.

7. Transformation Matrix Address Register
8. New Clip Register (x,y,z,w)
9. Clip Save Register (x,y,z,w)

10. Transformation Matrix Registers
11. Matrix Stack Register

These parameters and registers are defined in detail in the

PS2 Reference Manual, pages 2-32 thro~gh 2-35. The three

MAP support registers are used to buffer operands into the

ALU. The MDA register also buffers the multiplicand operand

to the MAP's multiplier. The other operand is buffered else-

where. During MAP operation, parameters and data are output

from the RAM Memory to the ABUS. Note that the ABUS drives

the input to the MB, MDA, RA, and also may be gated to the

BBUS. The ALU receives one operand from the GBUS: the

multiplier's output (MMP), the RAM Memory, the (MB), or

the MDA. The other operand to the ALU is input from the RA.

This structure provides a versatile mechanism which is used

to process MAP arithmetic functions. For example to trans-

form a point P, with elements x,y,z, and w, the MAP multi-

plier outputs 16 products on the MMP lines. The 16 products

are summed in groups of 4 to calculate the transformed point

x ' , y ' , z ' , and w' .

Too TOl To2 T03

(x y z w)
TlO Tll Tl2 Tl3

=(x'x'z'w~
T20 T21 T22 T23

T30 T31 T32 T33

5-67

x' = x"Too + y"TlO + z"Tzo + w"T30

y' = x"Tol + y"Tll + z"Tzl + w"T31

Z I = x"Toz + y"Tl2 + z"Tz3 + w"T32

w' = x"To3 + y"T13 + z"Tz3 + w"T33

The first product from the Multiplier is passed through the

ALU and stored in the accumulator, RA. The second and third

products are summed with the RA then restored back in the RA.

The fourth product is summed with the RA then the total sum

of four products stored in RAM Memory as x'. The remaining

elements (y' ,z', and w') are calculated and stored similarly.

Another example of the flexability of the Data Store/ALU

unit is the perspective calculation performed by the MAP.

To put the x' element of a transformed point into viewport

perspective, the following equation is implemented.

x' xs = w' . vsx + vex

where: XS = x in screen coordinates

vsx = Viewport size in x
2

vex = Viewport center in x

In actural implementation, the MAP fetches x' from RAM

Memory, stores it in MRA, reciprocates w, and stores it in MDA.

MRA and MDA are inputs to the Multiplier. The Multiplier re-

5-68

turns ~; which is gated to the GBUS, passed through the ALU

to the CBUS, and loaded in MDA. The Viewport parameter VSX

is fetched from RAM Memory and loaded into MRA. The Multi­

plier turns the product(~: . vsx) which is gated to the GBUS

as one input to the ALU. Simultaneously, the MAP fetches

the Viewport parameter, VCX, from RAM Memory and loads it

into the RA as the other operand to the ALU. The ALU re-

turns the sum

x'
w'. vsx + vex

on the CBUS which is loaded into MDA. MDA now contains xs

which is a viewport mapped element in the Screen Coordinate

system. All register loading, data multiplexing, RAM Memory

addressing, etc ... is controlled by the MAP algorithm im­

plemented as Micro code in the MAP Control Store.

5-69

5.3.5.2 MAP Address Counters

Four MAP address counters (AC0 - AC3) implement the following

functions:

1. control loops in the MAP algorithm

2. track the current coordinate count for a
given RSR command

3. control addressing of the MAP's internal

RAM Memory

The address counters and associated data paths are illus­

trated in the block diagram of Figure 5.3-19.

Use of an address counter to control a loop in the MAP al­

gorithm is accomplished by loading the counter with a

negative number from the MAP Control's DOIT Register upon

entrance into a loop, incrementing the counter within the

loop, and checking the counter for -1 as a dispatch con­

dition out of the loop. Note on the block diagram, MCREG

is eight bits from the DOIT register. The counters are

implemented with 93516 chips which have a look ahead carry

output; therefore, examinations of the carry output deter­

mines if the count is equal to a -1. For an example of

an address counter (AC2) used as a loop controller, see

the "Output New Vector" routine in the MAP Algorithm

(Appendix A).

5-70

NCREG
0

8

COUNTERS

8

AC3

8

B

8

AC2

MCREG ADR .._ ______ _
8

TRANSPOSE

LOGIC

8

0

RAMA DR

8

8

AC/

8

8

8

8

AC¢

8

8

BBUS
0

24

ADDRESS COUAl7ERS ANO ASSOIATED DATA PATH BLOCK JJ/A6RAM

Fl6URE 5·3-19

Also, in the MAP Algorithm, AC3 is used to track the current

coordinate count of an RSR command. During the "Get RSR"

state, AC3 is loaded via the BEUS with the Count field of

an incoming RSR command. AC3 contents are incremented and

checked against a -1 upon exit from the "Next Vector" state.

If the coordinate count has run out (AC3 = -1) the "Get

RSR" state is entered to input a new command. If more co­

ordinates remain to be processed (AC3 ~ -1) the "Dispatch"

state is entered to reiterate executions of the command for

another set of coordinate data.

Use of an address counter to sequence addressing in the

MAP's internal RAM Memory consist of loading a counter

with a beginning address via the MAP Control's DOIT register,

gating the counter to the RAM address lines (RAMADR), and

incrementing the counter to the next address. For an example,

see the "Absolute Input" routine in the MAP Algorithm. Note

that in state 2 of the routine, a 0 from the DOIT register

is not only gated as input to AC0, but also gated to the RAM

address lines. This enables simultaneous addressing of the

RAM and initialization of the address counter. The counter

is incremented in state 3 and gated to the RAM address lines

again in state 4. In this example, AC2 is also used as a

loop counter since it was initially loaded during the "Dis­

patch" state with the number of words to be input for an in­

coming vector.

The counters and their associated data path are implemented

on the 195114 card.

5-71

5.3.5.3 Normalize Sense

MAP arithmetic operations treat all numbers as two's complement,

signed (fixed point) fractions. The 24 bit MAP word is an ex­

tention of a two's complement fraction. Figure 5.3-20 illus­

trates the 24 bit MAP word extended from a basic, 16 bit,

PICTURE SYSTEM word. Three sign bits are maintained in the

MAP word to preserve sign during MAP transformation operations

which sum four products from the array multiplier. In the

process of summing four binary numbers, overflow of two bits

may occur. Consider the transformation of the point P by

the matrix T resulting in the transformed point P'.

where: P = x,y,z,w

and P' = x' ,y' ,z' ,w'

The transformed elements of P' are defined as:

x' = x"TOO + y"TlO + z"T20 + w"T30

y' = x"Tol + y"Tll + z"T21 + w"T31

Z I = x"To2 + y"T12 + z"T22 + w"T32

w' = x"T03 + y"T13 + z"T23 + w"T33

x' ,y' ,z', and w' may result in very small positive or negative

fractions such as the two following examples:

5-72

FRAC.TIONAL BITS

EXTENDED
J=RACT!ONAL

BITS

...s----------l'i>G"";s... 6 5 ~ ... C)

BJ~IARY POINT

5JG.K.\ BLT -

EXTENDED
$JGN BITS

FIGURE '::i.3 - 20
SI Gr-J E'XTE.t-JDED 24 BIT MAP WORD

000.000000000000000100101

111.1111111111111111011001

Unless normalized, accuracy will be lost during later view­

port and perspective calculations. The perspective equation

divides x' ,y', and z' by w'; therefore, x' ,y' ,z', and w' may

be left shifted all the same amount without effecting the

perspective results; however, more accuracy will be main­

tained.

Upon summing four products of the transformed element x',

the Normalize Sense logic determines the left shifts re­

quired to properly normalize x'. This shift code is saved

and compared with the shift code to normalize y'. The

minimum of the two is saved and compared with the code for

z' and so on Upon completing the transformation of

the point, the Sense register contains the minimum shift

code of the four elements. All four elements will be

normalized by the MAP normalizer according to the minimum

shift code in the Sense register.

Figure 5.3-21 is a block diagram illustrating the Normalize

Sense logic. The l's complementor examines the upper sign

bit (bit 23) and complements bits 22-0 if the number is

positive; therefore, both positive and negative numbers are

treated the same by the sense logic. The sense logic cal­

culates the left shift code required to properly normalize

5-73

eeus

. 24
'

'
c..
l

l--5

I 16
~ COMPLEME.NTOR

NORMALIZE
oE.NSE..

- ~ '

" SENSE
REGISTER

\\ 2 II _ ___....:-,,.,..-5---.

,,

t=lGURE. o-3-2/
MASH FC

NORMALIZE. SEN5E BLOC..K. DIAGRAM

"'
s

the number. Notice the comparator and Sense register

mentioned in the preceeding paragraph. The Normalize

Sense logic is implemented on the 195114-100 card (see

sheets 1,2,4, and 5 of the logic drawings).

5.3.5.4 Normalizer

The MAP's normalizer receives a 5 bit shift code and a

24 bit number to be normalized. The shift code is de­

coded, and the input number from the MRA register is

shifted left accordingly. Therefore, a shift code of 5

will left shift a 24 bit number 5 places and bits 4-0

of the result (NMR) will contairi zeros. The normalizer

is implemented on the 195113-100 card (see sheets 1-5

of the logic drawings).

5-74

5.3.5.5 Array Multiplier

The Array Multiplier achieves high-speed multiplications by

using purely combinational logic. This circuitry consists

of an array of multiplier and adder chips. When presented

a multiplicand and a multiplier, the circuitry produces a

product without use of any additional control signals. The

multiplier chips (AM25S05) implements Booth's Algorithm

which is discussed thoroughly in the Schottky and Low-Power

Schottky Bipolar Memory, Logic and Interface Manual pub­

lished by Advanced Micro Devices, Inc. For an in depth

understanding of binary multiplication read pages 5-54

through 5-63 of the above mentioned manual.

The Array Multiplier receives a 16 bit multiplier (NMR)

and a 20 bit multiplicand (MDA). The product is truncated

to 24 bit. This 24 bit product includes 3 sign bits (bits

23-21).

The multiplier is input to the y(l5-0) lines of the 195111-

100 and 195112-100 cards. The multiplicand is input to the

X(l9-0) lines. The Array Multiplier block diagram (195111-

900) illustrates the MSB and LSB sections of the array. Al­

so note the partial product adders illustrated in the block

diagram.

5-75

5.3.5.6 Reciprocation

The Matrix Arithmetic Processor (MAP) must be capable of

performing division. Consider the perspective equation:

where:

Vr-Vl +
2

Vr+Vl
2

xs = element of the transformed point

(x', y', z', w') put into perspective screen

coordinates.

Vr, Vl = right and left viewport boundaries in

screen coordinates.

The division required to calculate Vr-Vl and Vr+Vl
2 2

can be accomplished simply by performing a right shift of

one bit on the quantities Vr-Vl and Vr+Vl. However, x' and

w' are not whole numbers; therefore, the arithmetic division

function must be employed to calculate xs.

The equation can be rewritten as follows:

x' -w' . (Vl-Vr) + Vr
XS = -2w'

In general, to implement the divison of S' the MAP takes the

reciprocal of b and multiplies it by a:

5-76

1 a . a =
b b

Therefore, to solve the perspective equation, the MAP finds

the reciprocal of -2w and multiplies it by (x'-w').

Newton's Method of Reciprocation is used by the MAP to find

the reciprocal (R) of the number (D). The equation is:

R2 = 2Rl - Rl 2 .D

Where Rl = a first guess for the reciprocal R.

R2 = the calculated, more accurate, second

approximation of R.

In order to ensure convergence, D must be normalized:

.5< D < 1 or -.5> - D > -1

The numerator must be normalized the same amount as D to

ensure the proper answer. That is, if D is shifted N bits

in normalization, the numerator A must also be shifted N

bits since:

A
IT

(normalization is equivalent to
multiplication by a power of 2)

Now the equation used in Newton's Method can be derived

as follows:

5-77

therefore:

1 R = IT

1 D = R

and we can write:

f (R)

Now using Taylor' method of expanding polynomials:

F(x) = f(a) + f~ta) . (x-a) + f~fa) . (x-a)2+·

f(n-l)(a) . (x-a)n-l + fn (a) . (x-a)n
+ (n-1) ! n!

and disregarding all terms higher than the first order and

also equating a=Rl (first guess), we can write f(R) as:

f(R) = f(Rl)+f'(Rl)•(R-Rl)=O

Now the derivative of f (Rl) is f' (RI).

f I (Rl) = f' 1 -D R1 =

5-78

and if we equate R=R2 (R2= second approximation), then we

can write:

f(Rd= l -D +
R1

= 1 _ D _ R2 + 1
R7 Rl Rl

and solving for R2 we have:

which is Newton's equation.

The hardware uses two ROMs, the R1 ROM and the R1 2 ROM. Each

ROM is 256 words. Both ROMs are addressed by D; therefore,

to find the reciprocal (R) of the number D, the hardware

simply has to address the ROMs by D, form two terms 2R 1 and

-DR1 2 , and sum these terms. The ROMs are located on the

195113-100 card (see sheet 6 of the logic drawing).

5-79

5.3.5.7 MAP Control Store

The MAP Control Store consists of a ROM (RAM optional)

controller which implements the MAP Algorithm. Figure

5.3-22 is a block diagram illustrating the MAP Control

Store. The 256 word x 96 bit ROM output is buffered in

the DOIT register which drives the control lines in the

MAP. Sixteen bit sections of the DOIT register may be

gated to the BBUS to enable reading the contents of the

DOIT. In the case of the optional RAM controller, the

Control Store may be loaded during maintenance mode by

loading the DOIT and writing the DOIT contents into the

RAM.

The next state of the ROM algorithm is determined in

one of six ways:

1. If going to the next vector state, 377 gated

to Control Store address.

2. If in subroutine return state, subroutine

address gated to Control Store address.

3. If in main Dispatch state, Dispatch ROM

gated to Control Store address.

4. If in a non-dispatch state, Next Buffered

Address field of the DOIT gated to the

Control Store address.

5. If in a normal dispatch state, dispatch

5-80

((Ror7tADDRE5S ~ROM_)_y t 96 - - - - - - ~I ~~ ~~~~t
I ADDRE.5S~Dl5PATGH ;,TORE.

I LOGIC...7 I
r.) 8 C.Ot--JTl<.OL oTORE

t 48MDA,0-1 / ~ :-.. ROM / RAM

t DOlT 1' 96

I r-.. ""' '
1' 16 i- 16 -.J 16)- 16 't- 16).16

~
~\ l
I I I

... l I I

(

~ 16 i- 16
MAP - L 1

CONTROL~·:--_._-1 ~---i1-----G-~
Llt-.JE.S
(48)

19SHS-100/i01 C.A.RDS . \
).16

i- 16
'

16

TO BBUS ·

'td6

~l6

{48

I
I

l
L 1
I I I
I I I
l --

l I -

I = -

FlGURE ::,.5- 2.Z CONTROL STORE. BLOC..K DlA~RAM

MAP
COtJTROL
Ll~E.S
(48)

condition (one bit) exclusive ored with LSB

of DOIT's (NBADR) and results gated to Control

Store address.

6. If in maintenance mode, MAP Maintenance PROM

address register gated to Control Store address.

The next state determination scheme is illustrated by the

Control Store address and Dispatch Block Diagram of Figure

5.3-23.

If the MAP is in a~ dispatch state, the next state base

address (NBADR) from the DOIT is selected to address the

Control Store's next state. If the MAP is in a dispatch

state, the LSB of NBADR is exclusive ored with a selected

dispatch condition, then the result plus the other seven

bits of NBADR are selected to be the next state. The dis-

patch condition is selected by four DOIT bits determined

by the present state. The MAP algorithm calls subroutines

by dispatching to the subroutine and saving the NBADR in

the Subroutine Return Address register. To return from

the subroutine, the saved NBADR from the return register

is selected to be the next state address into the Control

Store. State 377, the Next Vector state, is hard wired

into the 4 to 1 selector. To enter the Next Vector state,

377 is selected to address the Control Store. A main dis-

patch ROM is selected when dispatching from the main dispatch

state where the current RSR command is decoded. During the

5-81

8
~~ ~;ADR(!- 8)

(t-JSXT 56-SE.. ..6-DDRE.5S +:ROM DOLT)

(MAP OlSPATCJ~) >-----,

C..ONDlTJONS
16

4
MC (A -D) >---'~..._-.---

(Dl SPA TC.I~ SELECT).
r:ROM DOIT

8 rvlb.JN
R'3R(0-7)>- ", b?" DISPATCH

8

8

8

SU6ROLrr11\J E
RETURN

ADDRE55 RE6..

8

!='ROM DATA LINES
OF PSBUS

8

CONTROL
ROM ADORE-SS

REblSTE..R

(ADDRESS or=)
\ t-JEXT VECTOR ~TAT~,

?:::> 77

B

8

(ADDRESSED BY) T co~¥RoL
RSR COMMAND S TORJ:

ROM

8 8 ADDRESS f=IGURE o. 3- 22::>)
CONTROL~READDRESS ~~~~~~~~~~~~~~~~~~~MDA~~

4 OIS-PATCJi BU:X:..k:: DIAGJ<.AM

main dispatch state, the output of the 4 to 1 selector is

disabled while the dispatch ROM drives the address to the

Control Store. During maintenance mode, the next state is

determined by selection of the Control ROM Address register

which is loadable from the PSBUS.

The logic which implements the dispatch scheme except for

the dispatch selector is illustrated on the 195118-600

drawing, sheets 4 and 5. The 16 to 1 dispatch selector

is located on 195117-600, sheet 3.

5.3.5.8 MAP System Clock

The MAP System ~lock runs in sync with the Picture System's

clock; however, unlike the Picture System's Clock, the MAP

clock can be stopped by a hold condition. There are seven

hold conditions which will halt the MAP clock. They are:

1. MAP Input FIFO is empty and the MAP is in a read

FIFO state.

2. JUMP command executed while the MAP is in Passive

input mode.

3. Upon a HIT Request while the HIT HOLD bit of
the MSR is set.

4. The MAP in the "Get RSR" state and the RSR HOLD

bit in the MSR is set.

5-82

S. Upon MAP execution of a RSR HALT command.

6. The MAP in the "Next Vector" state and the

VEC HOLD bit of the MSR is set.

7. The MAPHIT bit of the MMSR is set.

Conditions 2,4, and 5 halt the MAP clock in the "Get RSR"

state. Conditions 3 halts the clock in either the "Next

Vector" or "Get RSR" state.

These programmable halt conditions enable the troubleshooter

to check and examine the MAP at key points in the MAP algo­

rithm.

For example, condition 1 may be used to examine the input

FIFO's output to the BBUS. Condition 2 is an error condition,

since the MAP should not be programmed to execute JUMP com­

mands unless the MAP Input controller is active. Condition

3 may be set up to check which data caused a HIT, where in

the input file the hit occurred, etc ... Conditions 4 and 6

may be used to examine the current RSR command. Condition

7 may be used to single step the MAP as detailed in section

5.3.5.9.

The logic, which implements the MAP clock and hold conditions,

is located on the 195117-100 and 195121-100 cards; The

PICTURE SYSTEM clock is input on sheet 4 of the 195117-600

drawing (ARBAPSCLK connector 72J . The PICTURE SYSTEM clock

5-83

is gated with *HOLD from the 195121-600, sheet 5, to generate

*MAPCLK. *HOLD is the OR function of the 7 hold conditions

which are implemented on sheets 4 and 5.

5.3.5.9 MAP Maintenance Structure

The MAP is equipped with a maintenance structure to enable

the troubleshooter to do the following:

1. access the Control Store address
2. access the Control Store DOIT register
3. read the main communication bus of the MAP,

the BBUS

Four PSBUS addressable registers are implemented in the

maintenance structure. These registers are detailed in

the PS2 Reference Manual (pp 2-65 through 2-70). They

are:

1. MAP Maintenance Status Register (MMSR)
2 . MAP Maintenance Repeat Status Register (MMRSR)
3. MAP Maintenance PROM Address Register (MMPAR)
4. MAP Maintenance B-BUS Register (MMBUS)

The MAPMNT bit in the MMSR is set to put the MAP in main-

tenance mode. During maintenance mode, the troubleshooter

has access of the Control Store address. Also, in mainte-

nance mode the contents of the DOIT register may be examined

5-84

or modified. This feature enables the troubleshooter with

direct access to control signals within the MAP.

The MAPHLT bit is set to stop the MAP clock, therefore

leaving the MAP in a halted condition. With the MAPHLT

bit set and the MAPMNT bit clear, the BBUS of the MAP may

be examined by reading the MMBUS register. This feature

enables the troubleshooter to examine registers, counters,

other MAP busses, etc ... which are gated to the BBUS during

states of the MAP algorithm. Also, with the MAPHLT bit

set and the MAPMNT bit clear, the troubleshooter may ad­

vance state in the MAP by setting the MAP SSTEP (single step)

bit of the MMSR. With this feature, the entire MAP algo­

rithm can be configured in a single step fashion. To

sequence states in the MAP algorithm in single step

mode, the MAP Input Controller should be programmed to

actively fetch data from a PS Memory file and load the input

FIFO. This data file in PS Memory must be comprised of RSR

commands and associated data to steer the MAP through desired

functions of the algorithm. Actually, three methods of con­

trolling the MAP are optional to a troubleshooter. They are:

1. Load the MAP input FIFO RSR commands and associated

data, then single step the MAP through functions

in the MAP algorithm.

2. Program the Control Store DOIT register while in

maintenance mode, then clear maintenance mode and

issue a clock pulse to the MAP.

5-85

3. Write the Control Store while in maintenance mode

with a specific test algorithm, then clear main­

tenance mode and exercise specific MAP functions

at full speed.

Method 1 of the above is suggested unless the troubleshooter

has an indepth understanding of the MAP hardware. Following

is an example of using method 1 to troubleshoot a MAP failure.

Suppose the MAP diagnostic, QSD017, detects an error and

prints out the following error message.

1 : ADDRESS EXPECT

0 144001

67521

RECEIVE

144001

27521

As indicated by the test description found in the PS2 Hard-

ware Diagnostic Manual, the second word (bit 15) is in error.

The troubleshooter can isolate the faulty component by setting

the MAP to maintenance mode, writing a LOAD/STORE sequence with

the appropriate data into the MAP input FIFO, clearing main­

tenance mode, then single step the MAP while probing the ap-

plicable data lines.

A LOAD/STORE and data sequence need be set up in PS Memory.

If properly initialized, the MAP Input Controller will actively

fetch the commands and data from PS Memory. The command and

5-86

data sequence loaded into PS Memory for this example problems

would be as follows:

LOAD (extended RSR LOAD command)

ADDRESS (address in MAP where to load data)

DATAWORDl

DATAWORDZ

STORE (extended RSR STORE command)

ADDRESS (address in MAP where to get data)

HALT (RSR MAP HALT command)

ADDRESS is 0 in this case, and the DATAWORD's are 144001 and

67521. After loading PS Memory, the MAP Input Controller

should be programmed to actively fetch data from the PS Memory

location pointed to by the MAIA, MAP Active Input Address

register. The MAPHLT bit should be set and the MAPMNT bit

cleared (both prevjously set by PS Reset). The trouble­

shooter may issue single clock pulses by setting the MAP SSTEP

bit in the MMSR; therefore, the MAP will advance state in the

algorithm. After 4 clocks, the MAP will be in state 307 (see

MAP algorithm) with the MAP's data memory address set up and

DATAWORD2 on the memory inputs. At this time, the memory

inputs should be checked (by probing) for good data. If good,

the logic up to the memory input must be functioning properly

and may be ruled out as a possible problem. Another clock

pulse will write the memory and put the MAP into the "Get RSR"

state (state 0).

5-87

To check the hardware from the memory back to the PSBUS,

six more clock pulses should be issued; therefore, the MAP

will be in state 314 of the STORE routine with DATAWORD2

output from the data memory. At this time, the data lines

from memory to the BBUS and from the BBUS to the output

register should be checked. If these data paths are good,

another clock will strobe the data into the output register

and data lines to the PSBUS should be checked for failure.

If everything checks out, the problem must be dynamic rather

than static; therefore, the troubleshooter should set up a

dynamic test loop and chase the problem with an oscilloscope

(loop on error in the diagnostic program).

The command and data file input to PS Memory may be set up

with the PICTURE SYSTEM Diagnostic Debugging Technique

(QSDDT) program. This program also provides the trouble­

shooter with access to all PSBUS addressable register;

therefore, from the console terminal, the MAP may be ini­

tialized and single stepped.

The troubleshooter may generate his own program to load PS

Memory, initialize the MAP, and issue clock pulses. The

program may be generated from the flow chart of Figure 5.3-24.

5-88

START

RE.SET PICTURE

SYSTEM (SETS
MAPHLT AND
MAPMJ..IT BIT.S)

CREATE RSR
COMMAND AAJD

ASSOIATED DATA
FILE IA.I LIN/BUS
ADDl?ESS SPAC€

SET UP DMA
TO TRANS FER FILE
ro PS MEMORY

START DMA

BLOCK TRAAJSFER
(sET GO BIT)

NO

YES

CLEAR MAP MAJT

BIT IN TH£ MMSR

SET UP DIREC'T IO
70 COMMLJNIC'ATE WITH
MMSR
(DIOPSA ...,._ 177754-)

HALT
COMP/./ TEI?

YC.S

ISSUE CLOCK
Pt/I.SE TO MAP BY

DOINtE THE F'OLLOWING

AT THE SWITCH REG/Si£R

OR CONSOLE.'

LOAO ADDRESS 7G76&0
.0€POS/Tc J

FIGURE S·.3-.2+
F/N/Sl-lcD

NO

SIAJGLE STEP MAP FLOW CHART

5.3.6 MAP Output Formatter

The MAP Output Formatter fnnctions as either an active or

passive device depending upon the state of the MAO bit in

the MSR register. When functioning as an active device the

Formatter gains control of the PSBUS and initiates output of

data to the passive device addressed by the MAP Active Out­

put Address register (MAOA). When functioning as a passive

device the Formatter passively waits to be addressed by an

active device, then transfers output data to the PSBUS.

In either mode the Formatter's Output Sequencer waits in

Idle state until the MAP has output data ready. The MAP

then commands the Formatter to output. The Output Controller

examines the state of the MODE bits in the MSR along with the

current status of the RSR register to determine the mode of

output to be performed. The following output modes are

possible.

2D UNFORMATTED

3D FORMATTED

4D UNFORMATTED

4D HIGH PRECISION

5-89

- 16 bit X word and 16 bit

Y word output.

- 2-16 bit words output with

format compatible for Line
Generator input.

- 16 bit X, 16 bit Y, 16 bit

Z, and 16 bit W output.

- 16 bit RSR, 16 bit X, 16

bit Y, and 16 bit Z output.

Upon determination of one of the 4 output modes, the Output

Controller dispatches to the appropriate section of the out­

put algorithm. If active, the Formatter gains control of the

PSBUS output data to the PSBUS, and the sequencer returns

to the Idle state for another command from the MAP. If the

Formatter is passive, an active device can not address it

until it has received a output command from the MAP and the

sequencer is in an output state.

5.3.6.1 Output Control Sequencer

The Output Control Sequencer is implemented as a ROM state

sequencer on the 195118-600 card (see sheet 2 of the logic

drawings). The sequencer transverses the state diagram de­

picted in Appendix B of this manual. State 01 is the main

dispatch state with four possible branches. All other dis­

patch states have only two branches. Two dispatch code bits

from the current state DOIT register select the appropriate

dispatch controls input to IC location 30 (see 195118-600,

sheet 2) which passes the selected dispatch control to the

two LSB's of the next state address of the ROM.

Initially, a reset clears the DOIT register which generates

a next state address of 0. When the reset signal is cleared

the next clock pulse generates *CLKDOIT pulse which puts the

sequencer in state 0, the IDLE state. The IDLE is maintained

5-90

until the MAP signals "data ready for output" by asserting

*MOUTPUTSET which latches the current RSR status (see IC

location 25 on sheet 5) and the sequencer enters the main

DISPATCH state. In the DISPATCH state, DISPA and DISPB

are gated to the two LSB's of the next state address of the

ROM. On the next clock, the sequencer dispatches to one of

the four output mode sections of the state diagram. If

active, the PSBUS is requested and data output according

to the output mode. Upon output completion, the sequencer

returns to the IDLE state. If passive the sequencer waits

in an output state until addressed by an active device,

then passes output data to the PSBUS. Whether active or

passive, the sequencer tranerses the same states in the

algorithm; however, if passive it never requests the PSBUS.

It merely waits in the Request states until it is addressed,

then gates output to the PSBUS.

5-91

5.4 PICTURE SYSTEM Memory (PS MEMORY)

The potential address space in the PICTURE SYSTEM ranges

from 0 to 64K. Of this address space 256 words are reserved

as the System Control Block (SCB). This block addresses

control registers, status registers, input ports, etc ... which

in general control the system. This SCB is located in address

177400 through 177777 of PS address space. The remaining

addresses, (0-177377) are available for PS Memory. PS Memory

is expandable in blocks of 16K words, 16 bits per word.

PS Memory may be used by the user in a number of ways. for

instance, a section of the memory may be used to buffer an

RSR command and data file as input to the MAP. Another

section of PS Memory may be used to buffer output from the

MAP. This buffer may also serves as a refresh buffer being

input to the Picture Generator. Another application may not

require the MAP; therefore, data from the Picture Controller

may be buffered in PS Memory while the Picture Generator

actively accesses the memory. In both of the above examples,

a device called the Refresh Controller coordinates the memory

update process with the Picture Generator's refresh process.

Section 5.5 of this manual details the operation of the Re­

fresh Controller.

PS Memory is a passive device interfaced to the PSBUS. Only

active devices can communicate with the memory. The memory

is implemented with 4K MOS Memory chips; therefore, access

5-92

requires sequencing 6 bit row and column addresses with

appropriate write or read signals to the Memory chips. The

memory system has two ports which enables overlap of memory

accesses. This overlap results in a minimum access time of

450 ns. When requested by an active device to perform a

read access, the memory always responds (if not busy) with

a grant to free the PSBUS and a simultaneous deferred signal

which alerts the active device to wait while the memory port

controller accesses the desired locations. Upon completion

of the access, the memory issues a second grant to the wait­

ing device. This second grant acknowledges completion of

the read access and the active device can now take valid

data from the PSBUS.

The memory may be busy when requested by an active device.

In this case, the memory saves the request in a FIFO, acknow­

legdes the active device with a grant to free the PSBUS, and

simultaneously signals the device with a memory busy signal.

This alerts the device to wait for another grant (generated

from the saved request in the FIFO) before passing the address

(and data if doing a write) to the memory. If the access is

a read, the memory responds with the deferred signal simul­

taneous with this second grant. The device waits for a third

grant signifying completion of the memory cycle.

The PS Memory System block diagram (195140-900) illustrates

four parts of the memory system.

5-93

1. FIFO and Port Latch

2. Port Arbitration and Port Controllers
3. Memory Timing and Sequence Controllers

4. Memory

5.4.1 FIFO and Port Latch

The PS Memory's FIFO and Port Latch are used to buffer re­

quests from an active device. The FIFO is used to que up

requests from active devices desiring access of the PS Memory.

A Request from an active device is saved in the FIFO if one

of the two following conditions exist.

1. The FIFO is not empty. In this case, the request

must be qued since other request in the FIFO need
service first.

2. If both port controllers are currently busy. In
this case the request must be qued until an idle
port control can service it.

When a port controller begins servicing a read request, the

request (whether from the FIFO or from the PSBUS) is latched

in the Port Latch. Upon completion of the read, the saved

request in the Port Latch is output as a grant to the active

device signifying valid data is on the PSBUS.

Figure 5.2-2 in the PSBUS section of this manual illustrates

the request/grant timing relationships for various types

of memory accesses. The FIFO and Port Latch implementation

is illustrated on sheets 4 and 5 of the 195107-600 logic

5-94

drawing.

5.4.2 Port Arbitration and Port Controllers

The dual port structure of the memory system requires an

arbitration structure to pass a request from active devices

to an available Port Controller. The port controllers

manage the loading of data in and out of a memory port. The

following rules are applied by the arbitration scheme to

determine which of the two port controllers manage a current

memory request.

1. If both port controlers are idle, controller A

gets the current request.

2. If one controller is idle and the other one

busy, the idle controller takes the request.

3. If both controllers are busy upon a request,

the request is saved in the FIFO and the next
idle port controller takes the qued request
from the FIFO.

Both port controllers sequence through the state diagram

illustrated in Figure 5.4-1. The idle state previously

mentioned is state 0. States 3 and 2 are executed to

perform a read operation, and states 4 and 1 are executed

to perform a write operation. To perform a read - modify -

write operation, states 7,6,4, and 1 are executed. States

5-95

7 111

R'E.QUEST M!I- ORY
READ

GRANT PORT
DATA OUT 01-1 NEXT

CY

RE.:ST

'I I <;t>

I

STROBE DATA
I:NTO MEMORY PORT

~EQUE.S.T MEM:::-1
WRl.TE. ~

Figure 5.4-1

3 9111

z

REQUEST MEMORY
READ

GRANT PORT
DATA OUT OtJ Nt:.\CT

c I!

Port Controller State Diagram

R1;;:~-REQUEST FOR
ME;MORY CYCLf;

RD - RE;AO
WRT-WRlTE
ACK-ACKNO\l\/Li;;:"O<&E.

FROM t<IJ;;;.MORY

7 and 3 request a memory read cycle and wait for the memory

sequencer to acknowledge. Similarly, state 1 requests a

memory write cycle and waits to be acknowledged.

Each port controllers has a unique address latch. The appro­

priate latch is loaded upon a port controller's exit from the

idle state. Likewise, each controller has an input and out­

put data latch. The appropriate input data latch is loaded

upon exit from state 4, and the appropriate output data latch

is loaded upon exit from states 2 or 6. The address latches

are located on sheet 3 of the 195141-600 drawing. The data

latches are located on the memory card (see 195143-600 draw­

ing). Actually, the memory card implements three ports of

which only two are used in the PICTURE SYSTEM 2.

5.4.3 Sequence Controller

The Sequence Controller provides the necessary timing to

initiate and execute memory cycles. The principle tasks

of the sequencer are:

1. Sense memory cycle requests from the port

controllers and initiate a memory cycle.

2. Acknowledge the appropriate port controller

upon completion of a memory cycle.

3. Sequence the Row and Column address and appropriate

5-96

command signals to the memory during a memory

cycle.

4. At necessary time intervals, refresh section

of the dynamic MOS memory.

The Sequence Controller is implemented on the 195142-101

card. Sheet 2 of the logic drawing illustrates the im-

plementation of task 1. The Schmitt Trigger, latch, and

RC network combinations sense the memory cycle request from

port controllers A and B. SAMPLE clock runs at 20MHz (SO ns

square wave). T20 clock is 20 ns out of phase with SAMPLE.

The sense latches sense for 20 ns. On T20 clock, their

results are loaded into the register in bug location 64. If

a sensed request is loaded into the register, the output of

bug 54 (*BEGIN CYCLE) disables the clock to the register

until the completion of the cycle (END CYCLE). The 74SOO,

74Sl0, and 74S20 in locations 53,73, and 44 implement a

priority scheme in case more than one sensed request is

loaded into the register. Refresh has highest priority,

then A, B, and C, respectively. Note in this system C is

not used. Upon a request loaded into the register, *BEGIN

CYCLE starts the sequencer on sheet 3. BEGIN CYCLE is

shifted through the shift register in locations 43, 42, and

32 which generates the ROW Address Select (RAS), Column

Address Select (CAS), etc ... timing signals to the memory.

At the time of CAS, the appropriate F/F on sheet 2 is set

which acknowledges the cycle request from the appropriate port

controller. The port controller clears its request which

5-97

clears the acknowledge F/F and the sense latch is enabled to

sense the next request. The dynamic memory refresh sense

latch is on sheet 4. The one shot in location 61 determines

the refresh interval. The counter in locations 70 and 71

determines which section of memory is refreshed during a

particular refresh interval.

5-98

5.5 Real Time Clock

The Real Time Clock coordinates the update and refresh

processes in the Picture System. The two processes are

coordinated by the generation of the following two Control

signals:

1. Clock Interrupt to the Picture Controller

2. Sync pulse to the refresh devices

The clock interrupt signal enables the Picture Controller

program to periodically check the status of the MAP and

Refresh Controller to determine if the update process may

be initiated. Upon receiving a clock interrupt, the Picture

Controller executes a clock service routine which checks the

following three conditions:

1. is the DMA Controller Idle

2. is the Picture Processor Idle

3. is the Refresh Controller Idle

If all three conditions are true, the Picture Controller may

begin a new frame update process and a new frame refresh

process. If only condition 3 is true, the P.C. may only

start the refresh process. The Real Time Clock implements

the clock interrupt and sync pulse by counting down two

counters. The two counters (Count 1 and Count 2) are loaded

5-99

with the contents of two PSBUS writable registers (see

drawing 195161-600, sheet 2). The clock signal to the

counters is generated by ORing two 60 Hz, input signals

which are out of phase by 180°. Therefore, the counters

are clocked with a 120 Hz, signal. Upon overflow, the

counters are reloaded. The overflow outputs are CARRY!

and CARRY2. If the SYNC bit of the status register RTCSR

is clear, CARRY2 generates PSSYNC pulse to the refresh

devices. CARRYl generates an interrupt REQUEST (sheet 5).

If the SYNC bit is set, the PSSYNC pulse and interrupt

REQUEST occur coincident. This is very useful when co­

ordinating the update and refresh processes while operat­

ing the Refresh Controller in automatic refresh mode.

5-100

5.6 Refresh Controller

The Refresh Controller is an active device which controls

flow of data from PS Memory to the Line Generator Input FIFO.

Figure 5.6-1 is a block diagram of the Refresh Controller/

PS MEM/and Line Generator interface. The Refresh Controller

contains a start and a limit register. These two registers

define a block of PS Memory to be dedicated as refresh buffer.

Upon command the controller begins initiating read requests

to PS Memory. When data is valid on the PSBUS, the Refresh

Controller commands the Line Generator Input FIFO to take

the data. When the Refresh Controller has completed the

refresh process a stopped bit is set which is monitored by

the program.

The Refresh Controller is equipped with eight, PSBUS address-

able, control registers which implement refresh buffer seg-

mentation, automatic refresh, write back to memory, and soft-

ware control. The following eight registers are defined in

detail in the PS2 Reference Manual, pp 2-75 through 2-82.

1. RFC SN - Refresh Current Segment Name
2. RFSN - Ref re sh Segment Name
3. RF AWA - Refresh Active Write Address
4. RF AWL - Refresh Active Write Limit
5. RF AI A - Refresh Active Input Address
6. RF AIL - Refresh Active Input Limit
7 RF ASA - Refresh Active Start Address } .
8. RFSR - Refresh Status Register

5-101

PS evs

RErk:?ESr/

CONT .R OL .C. ER l"lr------r----_..,

CONTROL L/..Vc5

L/NG'"

6ENER ,,.q ro,,e

/NPVT F.IPO

RcrRC-51-/ CO/\/ TROLL.ER/ PS/VJE/VJcJRY/
L//l/E'" 6ENER./'./TOR. /NTE£F,,'9C.C:

BLOC~ D//-?cf7£?;L?/l/J

r/ 9Vl?5 S. 6 - 1.

5.6.l Refresh Control Command Words

At appropriate locations in the refresh buffer the user

inserts Refresh Control commands to initiate action by the

Refresh Controller. The Refresh Control commands are:

1. HALT

2. SEGMENT

3. LIGHT PEN

When executed, the HALT command stops the refresh process

and sets the RFSTOPPED bit in the RFSR. The SEGMENT command

specifies a segment name and directs how the Refresh Controller

is to treat the segment. The LIGHT PEN command is used to

direct the LIGHT PEN Controller in the LIGHT PEN Interface.

These R.F. Control commands are detailed in the PS2 Reference

Manual, pp 2-91 through 2-93.

5.6.2 Frame Synchronization

The Refresh Controller is synchronized to begin accessing the

refresh buffer at the beginning of a frame period. When in

automatic refresh mode, the controller looks for a pulse on

the PSSYNC line. The pulse is generated at the beginning of

a frame period determined by the frame time counter of the

Real Time Clock card. If in program control mode, the con­

troller waits for a start command from the program. To be

5-102

more precise, the Real Time Clock generates an interrupt

for service at programmable frame time periods. This

interrupt causes the program to check the condition of the

Refresh Controller. If the controller is stopped (RFSTOPPED

bit of RFSR set) and the Picture Processor has completed up­

dating the refresh buffer, the program starts a new frame

refresh (sets the RFSTART bit in the RFSR).

5.6.2.l Arbitration of Refresh Devices

Some system configurations may include more than one Refresh

Controller or other refresh devices. As an example, a system

may configure a Refresh Controller and two Remote Terminal

Interfaces. In this case a hardwired priority scheme gives

the Refresh Controller highest priority. At the beginning

of a frame refresh period, the Refresh Controller accesses

the refresh buffer. When the Refresh Controller finishes,

one of the Remote Terminal Interfaces begins refreshing and

when finished the other begins. A new frame refresh will

not be initiated until all refresh devices are finished re­

freshing the current frame.

5.6.2.2 Frame Sync State Machine

Refresh Control Frame synchronization is implemented with a

four state machine. Each refresh device configured in the

system contains this state machine. Figure 5.6-2 illustrates

5-103

ALL REt=RE.51-1 C.01VlPLE.TE.

.Ail fNFht!>l..

'fJOl.JE,

!?111.Tt ~ ,...... ~
N!Y'T !./.7"'!i, t , .,..

'------..J f1 I" ": .::;;;: :r; y ..__ __ ___,

:=.6-2

RE.5E.T

P55YNC · ~UTO R r:
+ R~START

DI y·- -~
·t_.~t_.(J

,___ _____ i

r .-.., ~ I -r ;-'I,-,, r I ::: Q r c i\ ' /' =-
.._ ..._,, 1 "-J 1 r-<.u __ ~'., ~.· f-.,,,,\~

SYNC

the state diagram of this machine.

All refresh devices (Refresh Controllers and Remote Terminal

Interfaces) wait in the IDLE state until a "start new frame"

command is sensed. Upon receipt of the command all refresh

devices enter the ARBITRATION state. Arbitration takes place

and the device set up with the highest priority enters the

REFRESH state and begins refreshing the appropriate (if more

than one) Picture Generator. The device enters the WAIT FOR

OTHER REFRESH DEVICES state when it is finished. The device

with the next highest priority then enters the REFRESH state.

When all devices are finished, they enter the IDLE state and

wait for the next 11 start new frame" command.

The four state machine for the refresh controller is im-

plemented on the 195151 card (sheet 4 of the logic drawing).

The two F/F's called STA and STB determine the state, If

in Auto Refresh mode, PSSYNC from the Real Time Clock gen-

erates a new frame pulse. The pulse inputs a 0 into the

shift register. When the 0 is clocked to the Q output, SET c

is inserted, and the next clock sets STA and saves SET in

the DLYSET F/F on sheet 1. If not in Auto Refresh mode, STA

is set by the program. The machine is now in the ARBITRATION

state. DLYSET inputs 0 into the shift register (bug 31) and

DLYSET is cleared. On the next clock, unless another refresh

device has higher priority, STB is set. Now the machine is

in the REFRESH state which inserts *SEGBSY to the Refresh

5-104

Sequencer. *SEGBSY is equivalent to *GO in the Refresh

Control algorithm (See Appendix C). During the Refresh

state, ~'s are being shifted through the shift register.

The Refresh Sequencer is busy accessing PS Memory and

directing the data to the Picture Generator. Upon comple­

tion (running into the RFAIL register or executing a HALT

command) , the Refresh Sequencer asserts RELPORT (Release

L.G. Port) which clears the STA F/F and puts the machine

into the WAIT FOR OTHER REFRESH DEVICES state. Other

devices now have a chance to refresh. If no other devices

exist or when all other devices are finished the shift

register fills up with l's which clears the STB F/F and

puts the machine back in IDLE.

5.6.3 Refresh Sequencer

The Refresh Sequencer performs the following tasks:

1. Waits for a GO command from the Frame Sync
state machine.

2. Initiates PS Memory accesses.

3. Monitors the PSBUS for Refresh Control
commands from the Refresh Buffer.

4. Executes Refresh Control commands. (Search

for Segment Name, Skip Segments, HALT, ect.)

5. Commands the Line Generator Input FIFO to
take data from the PSBUS.

The sequencer is implemented on the 195152 card as a ROM

5-105

state machine with 26 states (See Appendix B). The ROM is

on sheet 2 of the logic drawing. Output from the ROM is

buffered in a command register. The next state is deter­

mined by four next state bits in the command register and

a dispatch code. The dispatch code selects one of eight

conditions input to the 8 to 1 selector in location 51.

The selected dispatch condition becomes the LSB of the

next state address to the ROM.

5-106

APPENDIX A

MAP ALGORITHM STATE DIAGRAM

This State Number

-----tXXX
--'"'Dxx --

· Dispatch Code

Next State Base Address

Next State + (Next State Base Address) ¥- Dispatch {low bit)
Example:
DISPATCH CODE = 14 DISPATCH CODES
NEXT BASE = 66 (XOR) (INPUT WAIT) MDA<O = 1
NEXT STATE ... 67 0 = ZERO

l = ONE
*INPUT WAIT DISPATCH 2 = .AC2=-:

3 = AC3=-l
Example: 4 = OUTPUT BUSY
Go to Input Wait if s = MRA<O '
Dispatch dondition 6 = OUT MUL.T
is true. 7 = OUT NORM MULT

10 =: Z'ERO *MDA<O
11 = (MDA<O)ACHKNC * (MDA < 0)ACHKNC
12 RSR(O)

ALL NUMBERS ARE OCTAL.

[CHKNC] FLAGS (3) + CBUS (23)
[NC] FLAGS (2) + FLAGS .(3)

=
13 =
14 =
l!ii =
16 =
17' =

DIVIDE ERROR
MDA<O
sv
NC
FIFO FULL

(NORMLT] FLAGS (1) + BBUSS (NORM) < SENSE REGISTER
NV + NC (new point is clipped)
SV + NC (old point is clipped)

.. .''I·

DIVIDE ERROR + NORMLT V (ACZ=-1 A MDA < 0) V (MDA(23) ¥ MDA (21))

State and Dispatch Conventions
A-1

1
DO

0

RESET

LOAD RSR
AC3,B + COUNT
RAMADR + AC3

CONDITIONAL RSR HOLD
CLEAR EXTEND

to "DISPATCH"

Get RSR

A-2

to "Set Input Ba

to "Origin Offse
to "Absolute Inp

to "Relative Inp

to "Pass'~(243)

se~(22)

t'~(lS)

uti---(2)
ut'~(6)

.

FS FSM2
(op-code=l,2,3)

j
FS=O

FS=l

FS=2,4
FS=3

FS=S,6,7

,_

'

to

to
to

to

to

to

to

to

to

to

to

to

sc=sub-op-code
-(op-code=O)

I
"No-Op & Terminate'~(354)- SC=O
"Jump'~ (345) SC=l
'!Push Jump"~(336) SC=2
"Pop Jump~ (332) SC=3
11 Load"~(300) SC=4
11 Store'l (301) SC=S
"Load Stack'~ (320) SC=6
i'Store Stack'J:-(32 5) SC=7

"Move/Swap~(265) SC=lO
"Push'((255) SC=ll
"Pop4k--(2 50) SC=12
"Matrix Push & Draw~(220)-i SC=13

Not used SC=14
Not used SC=15
Not used SC=l6
Not used SC=17

t:;o
0

.....

a..-..i

;i;>
t:::I n
H N
(fl ..

'"d to
;i;>
i-3 t
n
::r: N

t::;I
0 ..
z lN

d
:;;; ..
en _,,..
;;o t::;I

AC3r-1

1 377 UPDATE RSR
D3 RAMADR + AC3

CONDITIONAL VECTOR HOLD
INC AC3

AC3=-l

to "DISPATCH" to "Get RSR"

Next Vector

A-4

7
DO

10
DO

12
DO

10
D2

From "Dispatch"

6 RA + MEM(O)
1----'MRJ\,B + INPUT

ACO + 0
ACl + 0

KIB,JIB ADD V TB'

7

10

12

G ,B + MRA
MB,C + G+RA

INC ACo
INC AC2

RA+ MEM (AC O)
MRA, B + INPUT

ADD V IB

G ,B + MRA
MB,C + G+RA

MEM(ACl) + MB
INC ACO
INC AC1
INC AC2

ADD
AC2r-1

13
DO

14
DO

26
Dl

11

13

MEM(ACl) + MB
B,C+ 0 ALU

LOAD SENSE REGISTER
ACl + 10

ADD V TB

RA +. MEM(27)

14 G, B + 1 7 [RAMADR]
.,._ _ _. MDA,C + GARA

PUSH STATE

to "Vector Multiply 11

Relative Input

A-5

Get Base x.
Get Input x.
ACo is input address.
ACl is output address.

Add Base + Input.

Get next Base (y,z,w).
Get next Input (y,z,w:

Add Base + Input.
Write Absolute data
(x,y,z).

Write Absolute data (1:~
Set Normalize Sense to
maximum shift.

Get address of matrix

Mask off low 4 bits.
Save state #26.

3
DO'

4
D2

.From 11 Dispatch11

...__z__._. .• EM (0) , B + INPUT
ACO + 0
INC AC2

KIB JIB ADD V IB

3 RA+
B, C + 0 ALU

LOAD SENSE REGISTER
INC ACO
INC AC2

__________ :_-:_--~A~c~z7~-~1;-=:;r;;:g:============i-~

4 EM(ACO)~ I + INPUT
DZ INC ACO

INC AC2

ACZ;'-1

14
DO

ADD V TB

5 MEM (ACO) ,. B + INPUT
ACl + 10

ADD V IB

to state 14 of 11 Relative Input"

Absolute Input

A-6

Get absolute x.

Get address of matrix.
Set N©rmalize Sense
to maximum shift.

ACZ=-1

Get absolute w.

16
DO

20
D2

17
DO

16
DO

13
DO

From "Dispatch"
-~[

15 J MB,RA + MEM(O)
ACO + 0

MRA,B + INPUT
JIB,KIB ADD V IB

-i .JL
16 j G,B + MRA

MB,C + G+RA
MEM(ACO) + MB

INC ACZ
ADD V IB

ACZ=-1-,_T !JFAC2f-l

9 ~ 7 -.....

I,,

20 J MEM(ACO) + MB
INC ACO

ADD V TB

~

17 J MB,RA + MEM(ACO)
MRA,B + INPUT

ADD V IB

T
..L_

21 J MEM(ACO):_MB
ADD V IB

B,C + 0 ALU
LOAD SENSE REGISTER

ACl + 10

'"" to state 13 of "Relative Input"

Origin Offset

A-7

Get origin x.

Get input x.

Add input to· origin.-~

Save origin.

Write x,y,z data
to memory.

Get origin y,z,w.
Get input y,z,w.

Write w data to
memory.

Set normalize sense
to maximum shift.

24 22
DO

23 24
DO

24 23
D2

AGZr-1

377
no·

25

From "Dispatch"

MB,C)G,B + INPUT
MEM (0 , B + INPUT

ACO + 0
INC AC2

ADD V IB

MEM(ACO) + MB
INC ACO

ADD V Il

I
MB f. G B + INPUT
MEr-i ACd), B + INPUT

INC ACZ
ADD V IB

. MEM(ACO) + MB
ADD V TB

AC2=-l

to "Next Vector

Get x input.

Getx,y,z input.

Get y , z , w input.

Get w input.

(Writes input data to both halves of INPUT/BASE)

Set Input Base

A-8

From "Relative Input", "Absolute Input", or "Origin Offset"

M=MULTIPLY
N=NORMALIZE

OUT MULT

32
DO

27 MB + MEM(O)
ACO ,B + MDA

ADD V TB

Get x data.
Set matrix address.

to "Vector Multiply Subroutine't
from "Vector Multiply Subroutine"

30
D6

52
D4

OUTPUT
BUSY

45
DO

26 G + p
MDA,C + G+RA

MRA , B + MEM (10)
ACO + 10
ADD V YB

OUT MULT

31 MEM(ACl),B+ ~IDA·
SENSE MINIMUM NORMAL

ADD V IB

(53)

~to "Output New Vector

30 HEM(ACl) ,B + MDA
SENSE MINIMUM NORMAL

ADD V TB
AC2 + -3

CLRV
KHIT

to '"'Vee tor Normalize"

M

Sum multiply result.
Get x multiplied dat~.

OUTPUT BUSY

(52)

Set loop counter.

Vector Multiply

A-9

l ~MULTIPLY
l'"=TRANSPOSE
~=CHECK TRANSPOSE

.From "Vector Mul tiply 11 or "Ma tr ix Continue"

33
DO

34
DO

3.S
DO·

36
DO

37
DO

40
DO

..: LI

32 J MDA + MEM(ACO)
INC ACO

MRA,B + MB
CT AC2 + -4

J, .~
33 I MB + MEfill)

M · ADD V IB

J_
. 34 T G + p

RA,C + G
MDA + MEM(ACO)

"INC ACO
MRA..z.B + MB CMT

/

I 3s J MB + MEM..(2)
M I ADD V IB

v
36 J G + p

RA,C + G+RA
MDA + MEM(ACO)

INC ACO
CMT MRA...t..B + MB

~1

37 1 MB + MEM(3)
ADD V IB M

L
8

Vector Multiply Subroutine

A-10

~ f"-

Matrix constant to
be multiplied by x
data.
Loop count.

Get y data.

Get multiply result.
Next matrix constant t
be multipled by
y data.

Get z data.

Sum multiply result.
Next matrix constant t
be multiplied by
z data.

Get w data.

M=MULTIPLY
T=TRANSPOSE
C=CHECK TRANSPOSE

AC2=-l

42
D2

41
DO

44
DO

33
DO

0
DO

40

I 42

41

44

43

G + p
RA,C + G+RA

MDA + MEM(ACO)
INC ACO

MRA,B + MB
INC AC2

G + p
MB,C -c- G+RA

MDA + MEM(ACO)
INC ACO

MRA,B + MB

MEM (AC 1) , B + MB
INC ACl

SENSE MINIMUM NORMAL
ADD V TB

SUBROUTINE RETURN·
MB + MEM(l3)

ADD V IB

CMT

M

CMT

c

M

Sum ~ultiply result.
Next matrix constant
be multiplied by
w data.

Get x data.

Sum multiply result.
Next matrix constant,
to be multiplied by
x data.

Write result to
memory.

Get w old (for use
only in "Drawt9
Check").

Vector Multiply Subroutine Continued

A-11

t<

N=NORMALIZE

AC2=-l

NORMMULT

46 45
D2

45 46
DO

52 51
D4

From

B + NMR
MEM (ACO) -<- B

RA,MDA,C,G + B
INC ACO
INC AC2

ADD V IB

AC2~-l

MRA,B + MEM(ACO)
ADD V IB

MRA,B + MEM...(ACO)
ADD V IB

N·

N l

N

OUT NORMMULT

B + NMR
MEM(ACO) + B

ACO + 10
ADD V TB N

Normalize x,y,z.
Store in memory, MDA,
and RA.
MDA and RA will have
z new when complete.

Get y,z multiplied
data.

Get w multiplied data.

Normalize w.
Store in memory.
Set output address.

OUTPUT
BUSY ~ ¥. OUTPUT BUSY

J, (53) (52)
to "Output New Vector"

56 50
Dl2

B + NMR
MEM(ACO) + B

MRA + B
ADD V IB N

Normalize w.
Store in memory and
in MRA.

RSR(O) DRAWTO DRAWTO RSR(O)

to "Setpt Check" to "D:rawto Check (z)"

Vector Normalize

A-12

From "Vector Multiply", "Vector Normalize"

52
D4

Output ---.
Busy

54 52 .
DO

54
DZ

ACZ;i!-1

377 55
DO

Wait for output ready.

Output Busy

AC2 + -2
INC ACO Set loop count.

OUTPUT, B + MEM(ACO) Output x data.
ADD v 1B

OUTPUT, B + MEM(ACO)
INC ACO Output y,z, data.
INC AC2

ADD V 1B
ACZ=-1

OUTPUT, B +. MEM(ACO) Output w data.
ADD V IB Set output flag.

SET OUTPUT FLAG

to "Next Vector"

Output New Vector

A-13

N=NORMALIZE
60 56
DlO

MDA<9~

61 60
to "Next Vector'' DlOI

MDA<O

62 61
to "Next Vector" DlO

MDA<O

. 63 62
DlO

to "Next Vector"

MDA<O 7
64 63

to "Next VectoruDlO
MDA<O

160 64
DlO

to 11Next Vector"

MDA<O

to "Next Vector"

From "Vector

I
Normalize"

G ,B + MR.A
MDA,C +C-RA

RA + MEM(ll)
ADD V IB

MDA>,.O

G,B + MRA
MDA,C + G+RA

-MDA>,.O

G,B + MRA
MDA;C + G-RA

RA + MEM(lO)
ADD V IB

DA~O

G,B + MRA
MDA,C + G+RA

LOAD SENSE REGISTER

MDA~O

G,B + I'vIRA
MDA,C + G-RA N

1 DA~O

MDA,C,(:i,B + R2ROM
ACl + 10

N

to "Perspective New"

Setpt Check
A-14

w- z.
Get y new.

Check z.

w+ y.

Check w- z.

w-y.
Get x new.

Check w+y

w+x.
Sense w for perspectivE

Check w-y.

w-x.

Check w+x

Get -l/w 2 new.
Set address of x.

Check w-x.

65
INT=MDA ¥- CHKNC DO
OFF=MDA ACHKNC
ON ==MDA ACHKNC
F=LOAD FLAGS

OFE

66
Dll

65

ON

From "Vecto Normalize"

C + RA (ALU)
MDA +- ME~-1 (1 2)

ADD V IB

G E. + MRA
C + G-RA

RA + .MEM (1 2)
ADD V IB

LOAD SENSE REGISTER

INT

to "Drawto Check (w-z)"

F

F

·Z new.
Get z old.

(w-z) new.
Get z old.
Initialize sense
register for
perspective.

NOTE: MRA has been initialized with w new in 11Vector Normalize".
MB has been initialized with w old in "Vector Multiply Sub­
routine.".

Draw to Check (z)

A-15

INT=MDA ¥-CHKNC
OFF=MDA A CHKNC
ON =MDA A CHKNC
F=LOAD FLAGS

to '.'Next Vector"

73
DO .

74
Dll

76
Dl

ON

130
DO

100
DO

From

67

73

74

"Drawt Check

G,B + MB
MDA,C + G-RA

RA+ MEM(ll)
ADD V IB V NV

G,B + MRA
C + G+RA

RA+ MEM(ll)
ADD V IB V SV

RA + MEM(l2)
ADD V TB V NV

PUSH STATE

l
G ,B + MRA

RA,C + G-RA

(z)"

to "Intersej Subroutine"
from "Interser subroutine"

RA + MEM(ll)
ADD V IB V NV

F

75 ' 100
DO

G,B + MRA
C + G+RA

RA + MEM(ll)
ADD V IB V SV

F

to "Drawto Check (w+y)"

Drawto Check (w-z)
A-16

(w- z) old.
Get y new.

(w+y) new.
Get y old.

Get z new.

Save state #76.

(w- z) new.

Get y new.

(w+y) new.
Get y old.

From "Drawt Check (w- z)

101 75 G,B + MB
DO MDA,C + G+RA

RA + MEM(ll)
ADD V IB V NV

INT=MDA V- CHKNC
OFF=MDA A CHKNC 102 101 G,B + MRA
ON =MDA A CHKNC D 11 C + G-RA
F=LOAD FLAGS

OFF

to '.'Next Vee tor"

ON

104 102
Dl

130 105
DO

RA + MEM(ll)
ADD V IB V SV

INT

RA + MEM(ll)
ADD V ITV NV

PUSH STATE

G,B + MRA
RA,C + G+RA

1
to "Intersect Subroutine"

from 11 Intersect Subroutine"

106 104
DO

103 106
DO

RA + MEM(ll)
ADD V 113 V NV

G,B + MRA
C + G-RA

RA + MEM(ll)
ADD V IB V SV

to "Drawto Check (w-y)

F

F

Drawto Check (w+y)

A-17

(w+y) old.
Get y new.

(w-y) new.
Get y old.

Get y new.

Save state #104.

(w+y) new

Get y new.

(w-y) new.
Get y old.

INT=MDA ¥- CHKNC
OFF=MDA A CHKNC
ON =MDA A CHKNC
F=LOAD FLAGS

OFF

to ·"Next Vector"

From "Drawt Check (w+y)

107 . 103
DO

110 107
Dll

ON

112 110
Dl

130 . 13
DO

G,B +MB
MDA,C + G-RA

RA + MEM(lO)
Aim V TB V NV

G,B + MRA
C + G+RA

RA + MEM(lO)
ADD V IB V SV

INT

RA + MEM(ll)
ADD V IB V NV

PUSH STATE

G,B + MRA
RA,C + G-RA

to "Intersect Subroutine"
from "Interselt Subroutine"

114 112
DO

111. 114
DO

RA + MEM(lO)
ADD V IB V NV

G,B + MRA
·c + G+RA

RA + MEM(lO)
ADD V IB V SV

To "Drawto Check (w+x)"

F

Drawto Check (w-y)
A-18

(w-y) old.
Get x new.

(w+x) new.
Get x old.

Get y new.

Save State #112.

(w-y) new

Get x new.

(w+x) new.
Get x old.

From "Drawt Check (w-y)

115 111 G,B + MB

INT=MDA V- CHKNC D 0 MDA,C + G+RA
.RA + MEM(lO) OFF=MDA A CHKNC

ON =MDA A CHKNC
F=LOAD FLAGS

OFF

to 11Next Vector"

116 115
Dll

ON

116

ADD V TB V NV

INT

RA + MEM(lO)
ADD V IB V NV

PUSH STATE

G,B + MRA
RA,C + G+RA

F

to "Intersect Subroutine"
from "Intersect Subroutine"

122 120
0

122

RA + MEM(lO)
ADD V TB V NV

G,B + MRA
C + G-RA

RA+ MEM(lO)
ADD V IB V SV

To "Drawto Check (w-x)"

F

Drawto Check (w+x)
A-19

(w+x) old.
Get x new.

(w-x) new.
Get x old.

Get x new.

Save State#l20.

(w+x) new.

Get x new.

(w-x) new.
Get x old.

INT=MDA ¥- CHKNC
OFF=MDA A CHKNC
jN =MDA A CHKNC
~=NORMALIZE
. =LOAD FLAGS

to
1Next Vee tor"

ON

From "Drawto Check (w+x)

123 117
DO

124
Dll

126 124
Dl

130 127
DO

to
from

125 126
DO

160 125
DlS

sv

G,B + MB
MDA,C + G-RA

F,N

INT

RA + MEM(lO)
ADD V IB V NV

PU H TE

+ MRA
G-RA

"Intersect Subroutine"
"Intersect Subroutine"

MDA,C,G,B + R2ROM
ACl + 10

N

N

(w-x) old.

Get x new.

Save state #126.

(w-x) new.

Get -l/w 2 new.
Set address of x.

to "Perspective Old" to ."Perspective New"

Drawto Check (w-x)
A-20

N=NORMALIZE
M=MULTIPLY

MRA<O

From "Drawto Check Cw:a)"

131 130 G, B + MDA
DO MB,C + G-RA

132 131 .MRA,B + MB

DO LOAD SENSE REGISTER

133 132 MB,C,G,B + MDA
DO N

~

134 ~MDA C GB.+ RZROM
DO ' ' ' N

136 134 . RA , c 'KC'f + + _Ri ROM
DS

135 136
DO

135 137
DO

140 ~
DO

MRA~O

G+ p
.MDA,C .+ G+RA

MRA,B + MB

G + p
MDA,C + G-RA

MRA,B + MB

Ml) + MEM (10)
ACO + 10

ADD V TB V NV

N,M

NM

NM

Intersect Subroutine
A-21

MDA has (w+a) old.
RA has Cw:a) new.

Get Cw: a) old - (w!a) na

Wait for ROM to sett'.it.;.;

Check sign of
reciprocal.

1/ [Cw:: a) old- Cw: a) newj1L,

l/[Cw:a)old-Cw:a)new

Get x new.

142 140
D16

RA + MEM(ACO)
G + p

MRA,B,C + G
INC ACO

ACl + 30
ADD V IB V SV N,M

Get x old.
~=(w+a)old/[(w+a)old -
Cw: a) newJ . -

Set output address.

Check to see if new
or old point is clippe

NC=new.
NC NC=old.

Intersect Subroutine Continued
A-22

M=MULTIPLY

AC2=-l

141
DO

144
D2

146
DO

147
DO

141
DO

150
DO

0
DO

143

141

144

146

147

145

G,B + MB
MDA,C + G-RA

INC AC2

AC2f-l

G + p
MB,C + G+RA

RA + MEM (ACO)
ADD V IB V SV

MDA + MEM(ACO)
INC ACO

ADD V TB V NV

MEM(ACl) + MB
INC ACl

G,B + MDA
MDA,C + G-RA

ADD V TB

G + p
MRA,B,C + G+RA

MB + MEM(l3)
ADD V IB V SV

1 SO MEM (AC 1) , B + MRA
LOAD SENSE REGISTER

JV
ADD V TB

SUBROUTINE RETURN

return

M

M

M

Intersect Subroutine Continued
A-23

x new - x old.

I=oC(In-Io) + Io
where I=x,y,z.
Get y,z,w old.

Get y,z,w new.

Write x,y,z intersect
(new).
(In-Io) where I=y,z~

I=o((In-Io)+Io
where I=w.
Get w old.

Write w inte~sect.
Sense w for perspec­
tive.
Set clip flag.

M=MULTIPLY

151
DO

154

AC2=-l
D2

152
DO

153
DO

151
DO

156
DO

0
DO

142 G,B + MB
MDA,C + G-RA

151 INC AC2
M

AC2f-l

154 G + P
MB,C + G+RA

RA + MEM(ACO) M ADD V IB V SV

'
152 MDA + MEM(ACO)

INC ACO
ADD V TB V NV

153 MEM(ACl) + MB
INC ACl

G,B + MDA
MDA,C + G-RA

ADD V IB

155 G + p
MB,C + G+RA

MRA,B + MEM(l3) M ADD V IB V NV

156 MEM(ACl) + MB
JV

ADD V IB
SUBROUTINE RETURN

B + MRA
LOAD SENSE REGISTER

return

Intersect Subroutine Continued
A-24

x new - x old.

I=ot(In-Io)+Io
where I=x,y,z.
Get y,z,w old.

Get y,z,w new.

Write x,y,z intersect
(old).
(In-Io) where I=y,z,w

I=c((In-Io)+Io.
where I=w.
Get w new.

Write w intersect.

Set clip flag.

Sense w for perspec-
tive.

From "Setpt", "Drawto Check (w-x)" or "Perspective Old"

N=NORMALIZE
M=MULTIPLY
F=LOAD FLAGS

MRA<O

162
DS

160

165 162
DO

165 163
DO

164 165
D4.

RA, C, G , B + RlROM
. MB + MEM(ACl)

INC ACl
ACO + 20

ADD V IB V NV
MRA~O

G.+ p
MDA,C + G+RA

MRA,B + MB
MB. + MEM (ACO)

INC ACO

N,M

AC2 +-3 F N M

G + P
MDA,C + G-RA

MRA,B + MB
MB + MEM(ACO)

INC ACO
AC 2 + - 3 F , N, M

MEM (2 6) , B + MDA
JHIT N ,M

OUTPUT BUSY OUTPUT BUSY

Perspective New
A-25

Get x new.

Set Viewport address

Check sign of
reciprocal.

l/w new.

Get VSX.

Set loop count.
Check normalize over­
flow.

l/w new.

Get VSX.

Set loop count.
Check normalize overv
flow.
Save l/w new.

DIVIDE
ERROR

8

166 164
M=MULTIPLY DO
N=NORMALIZE
F=LOAD FLAGS

170 166
Dl3

G <f'." p
MDA,C + G

MRA,B + MB
RA + MEM(ACO) . . .

MB + MEM(ACl)
INC ACl

ADD V IB V NV

NM

M

DIVIDE ERROR

172 170 G + P
D2 RA,C + G+RA+CARRYIN

164
DO

377
DO

MDA + MEM(26)
MRA,B + MB

INC AC2 M,F

172 OUTPUT ,B ,C+ RA
LOAD OUTPUT
~fB + MEM (ACO)

INC ACO NM

173 OUTPU'I'. ,B,C+ RA
LOAD OUTPUT

LOAD STATUS & SET FLAG

to "Next Vector"

Perspective New Continued
A-7n

(x , y , z) I w new .

Get vex, VCY, vcz.

Get y, z new.

Get l/w new.

Gheck normalize over­
flow.

Output x,y.

Get VSY, VSZ.

Output z.

AC2=-l

176
D2.

172
D2

AC2=-l

75

176

173 177
DO

G, B + MDA
RA,C +- G-RA

MDA + MEM(26)
MRA,B + MB

INC AC2
INC ACO

RA , C , G , B + MDA
INC ACO
INC AC2

VI

8

F

Perspective New Continued

A-27

vc - vs

Get l/w new.
Check normalize over·
flow.

AC2~-l

z underflow (negative

N_,NORMALIZE
157
DO

167
DO

200
DO

I

r

From "Drawto Check (w-x)"

'iL_

l 61 j MR.A , B + MB
LOAD SENSE REGISTER

ACl + 30

--J.l.

157 J
N

J/
167] JHIT

MDA, C, G, B + RZROM
Ji

.i

Perspective Old
A-28

Get w old.

Address of clipped
data.

Wait for ROM.

N=NORMALIZE
M=MULTIPLY
F=LOAD FLAGS

MRA<O

202 200 RA,C,G,B + RlROM
D5 MB .. + MEM(ACl)

205. 202
DO

INC ACl
ACO + 20
ADD V IB

G + p
MDA,C + G+RA

MRA,B +MB
MB + MEM(ACO)

INC ACO

NM

AC2 + -3 F N M

205 203
DO

G + p
MDA,C + G-RA

MRA,B +MB
MB + MEM(ACO)

INC ACO
AC2 + -3 F N M

2 0 4 2 0 5 I MEM (2 6) , B + MDA
D4 -=.:..:..J NM

OUTPUT BUSY

Get x old.

Set Viewport address~

Check sign of
.reciprocal.

l/w old.

Get VSX.

Set loop count.
Check normalize over·
flow.

l/w old.

Get VSX.

Set loop count.
Check normalize over­
flow.
Save l/w old.

Perspective Old Continued
A-29

N=NORMALIZE
M=MULTIPLY
F=LOAD FLAGS

DIVIDE
ERROR

206 204
DO

210 206
Dl3

212
DZ

G + p
MDA,C + G

MRA,B + MB
RA + MEM(ACO)

MB + MEM (ACl)
INC ACl

ADD V IB M

DIVIDE ERROR

G + p
RA,C + G+RA+CARRYIN

MDA + MEM(26)
MRA,B + MB

INC ACO INC AC2 F M

204 212
DO i--._·

OUTPUT ,B.,.C+ RA
LOAD OUTPUT
MB. + MEM(ACO)

INC ACO N M

2 01 · 213 MRA , B + MEM (13)
DO. LOAD SENSB REGISTER

ADD .V IB V NV

(x,y,z)/w old.

Get vex, vcY, vcz.

Get y,z old.

Get l/w old.
Check normalize over­
flow.

Output x,y.

Get VSY, VSX.

Get w new.

Perspective Old Continued
fi_7;()

MDA<O
(underflow)

F=LOAD FLAGS

AC2=-1

214 211
D14

216 214
DO

216 215
D2

212 216
DZ

AC2=-l

213 217
DO

MDA + MEM(ACO)
RA C G B +·MRA

. ' ' '

MDA>,.0

G,B +

RA,C +- G+RA

G,B +

RA,C + G-RA

AC2f-1

MDA +- MEM (26)
MRA, B +- MB

INC AC2
INC ACO

RA , C , G , B + MDA
INC ACO
INC AC2

MDA

MDA

vex, VCY, vcz.
vsx, VSY, vsz.

(overflow)

F

vc + vs

vc - vs

Get l/w old.
Check normalize over­
flow.

AC2~-1

Perspective Old Continued
11 - 7; 1

N=NORMALIZE

207
DO

OUTPUT. ,B,C + RA
LOAD OUTPUT

LOAD STATUS & SET FLAG
FORCE SETPUT MODE N

160 207 MDA,C,G,B + R2ROM
DO ACl + 10 N

to "Perspective New"

Output z.

Perspective Old Continued

A-32

RSR(O)
Matrix Draw

~ J;"

'-...-1

221
DO

222
DO

223
DO

224
DO

226
Dl2

225
DO

226
DO

From "Dispatch"

I
220J RA + MEM (27)

ACl,B + MEM(27)

1"
221 J INC ACl

G,B + 17[RAMADR]
MDA, C + -~J\RA

I
222 J .

RA, MB , C , G , B + A Cl
AC3 + -4

• !

223 J MEM(31)+ MB
B,C + 0 ALU

LOAD SENSE REGISTER

1

224] MEM(30),B + MDA
ACO,B + MDA

=r
J,,&- RSR(O) ? Matrix Push

227j G, B + 17 [RAMADR]
MB,C + G+RA

,,,
22s] MEM(27) +MB

~~

to Matrix Continue

Matrix Push & Matrix Draw

A-33

Get draw matrix
pointer.

Increment pointer to
start of temp matrix~
Mask low four bits.

Move temporary addrej!
to MB and RA. ~
Set loop count to -4 .

Store temporary mat~
address.
Set Normalize Sense
to maximum shift.

Store Draw Matrix
Address.

Add 17 to output
address

Update Draw Address
pointer.

M=MULTIPLY
C=CHECK TRANSP

AC3=-l

From "Matrix Push and Matrix Draw" ·1
230

OSE DO

231
DO

232
Dl

32
DO

234
D3

-:J, .L.

~~

226
DO

242
DO

J;

226 MEM(O),B + INPUT
MB,C,G,B + INPUT

I
230 MEM(l),B + INPUT

"' 231 MEM(2),B +INPUT
PUSH STATE

~[
233 MEM(3),B + INPUT

JIB

I
to "Subroutine Vector Multiply11

from "Subroutine Vector Multiply"

232

234

235

'"' G + p
MB,C + G+RA

AC 0 , B + MEM (3 0)
INC AC3

T
~C- AC3r-l
c~~

IL
MEM(ACl),B +MB

SENSE MINIMUM NORMAL
INC ACl

J,

MEM(ACl),B +MB
SENSE MINIMUM NORMAL

AC2 + -20
INC ACl

l
to state 242

Matrix Continue
A-34

M

c

c

Get data.

Get data.

Get data.
Save State #232.

Get data.

IB must = 1.

Set ACO to draw
matrix address.

Set loop count.

RSR(O)
Matrix Draw

237
D12

237
DO

242

236

from state 235

AC 1 , B + MEM (31)

RSR (0)
Matrix Push

AC 0 , B + MEM (31)

to "Matrix Normalize"

Matrix Continue

A-35

Get TEMP Matrix
Address

Reset output address
to TEMP Matrix.

N=NORMALIZE
240
D2

237
DO

0
DO

.From "Matri

237 MRA,B + MEM(ACI)
INC AC 1
INC AC2

240 · MEM (ACO), B + NMR
INC ACO

241 MEM(ACO),B + NMR

to "Get RSR"

Matrix Normalize

A-36

N

N

N

Get data

Write normalized
data to memory.

244 243
D4

244 245
D4

OUTPUT
BUSY

246 244

· From "Dispatch"

DO OUTPUT ~B + INPUT

246
D2

377
DO

INC AC2

OUTPUT ,B + INPUT

SET OUTPUT FLAG

to "Next Vector"

P~ss

A-37

BUSY

W2lit for nutput
ready.

P~ss x.

Pass y,z ,w.

Set flag.

RSR(O)
Pop

(Matrix
Stack)

252 250
Dl2

From "Dispatch"

ACO + 27
RA + MEM 27

Get matrix stack
pointer.

RSR(O) Pop
(General Stack)

251 253
DO

252 251

ACO,B + INPUT

RA + MEM(ACO)
DO -..~ ~~~~--~---~~~~~-

254 252
DO

0 254

G,B + AC3
MB,C + G+RA

MEM(ACO) + MB
DO '-"--.....i..--............. ..-_... _,, ____ __.

to 11 Get RSR"

Pop

A-38

Get stack address.

Get contents of
pointer.

Decrement stack
pointer.
(AC3 is negative)

Update pointer.

RSR(O)
Push

Matrix Stack)

256
D12

256
DO

260
DO

261
DO

262
DO

263
DO

264
DO

270
D3

AC3f-1

255

257

256

260

261

262

263

264

From "Dispatch"

RA,C,G,B +- AC3
ACZ +- 27

RSR(O)

Get matrix stack
pointer.

Push (General Stack)

AC2,B +- INPUT

MB+- MEM AC2)
ACl,B +- MEM(AC2)

INC ACl
G, B +- MB

MDA, C +- G+ RA

G, B +- MB
MB, C +- G-RA

ACO,B +- MDA
MEM(AC2) +- MB

INC ACO

MB +- MEM(ACO)
INC ACO
INC AC3

Get stack pointer
address.

Get contents of
pointer.

Set up "to" address.
Set MDA to !!from"
address.
(RA is negative)

Get value to update
pointer with (RA
is negative).

Set ACO to (from-1)
address.
Update stack pointeil:>ll.~

Increment from addr~

Read data from "from':Y
address.

AC3=-1

to state 270 of Move Data to state 271 of Move Data

Push

A-39

C4CHECK TRANSPOSE

RSR(O)
(Swap Data)

to "Swap Data"

AC3=-1

266
D12

270
D3

272
DO

270
D3

0
DO

265

266

270

272

271

from "Dispatch"

ACO,B + INPUT

RSR(O)

ACl,B + INPUT
MB + MEM(ACO)

INC ACO
INC AC3

AC3r-1

MEM(ACl) + MB
INC ACl

' MB + MEM(ACO)
INC ACO
INC AC3

MEM(AC1)+ MB
INC ACl

to "Get RSR"

Move Data

A-40

Get "from" address.

(Move Data)

Read "to" address.
Read data.

c

Write data.

Read data.

c

Write data.

C=CHECK TRANSPOSE

AC3=-1

273 267
DO

274 273-
DO

276 274
D:?

275 276
DO

273 1215 .
DO

0 277
DO

from "Move Data"

ACl,B +- INPUT
MB + MEM(ACO)

MDA +- MEM(ACl)

AC3r-1

MEM(ACl) +- MB
INC ACl

MB +- MEM(ACO)

MEM(ACl) + MB

to

INC ACl

11 Get RSR"

Swap Data

A-41

c

c

Get "to" address.
Read "to" data.

Read "from11 data

Write "to" data.

Write "from" data.

Read "to" data

Write "from" data

C=CHECK TRANSPOSE

. RSR (0)
~24 bit
extended
load

AC3=-l

302 300
Dl2

304 302
D3

304 304
D3

0 305
.DO

306 303
D3

303 306
DO

0 307
DO

from "Dispatch"

ACO, B + INPUT Get address

RSR(O) (normal load)

INC AC3

AC3~-l

MEM(ACO),B +INPUT
INC ACO
INC AC3

MEM(ACO),B +INPUT
INC ACO

to "Get RSR"

EXTEND,B + INPUT
INC AC3

r- AC3~-l

MEM(ACO) ,B + INPUT
INC ACO

SEEECT SIGN

MEM(ACO),B + INPUT
INC ACO

SELECT SIGN

to "Get RSR"

Load
A-42

Load data.

c

Load last data.

c

c

c

C=CHECK TRANSPOSE

RSR 0

(normal store)

Output Busy

AC3=-l

312 1301
Dl2 .

M'-1""-

313

311

312 310
DO

314 312

314 315
D4

316 314
D3

312 316
Dl2

0 317
DO

From "Dispatch"
.J,

ACO ,B + INPUT

RSR(O)
(24 bit ext~nded

storeJ

Output Busy

SELECT SIGN
OUTPUT , B + MEM (AC 0)

SET OUTPUT FLAG c

Output Busy

OUTPUT,B + MEM(ACO)
SET OUTPUT FLAG

INC ACO
INC AC3

AC37'-1

to "Get RSR"

Store
A-43

c

Get address.

Wait for output not,
busy.

Store extend bits.

Wait for output not
busy.

Store

From "Dispatch"

321 320 ACl,B + INPUT

DO

322 321 RA + MEM(ACl)

DO

323 322 G,B + AC3

DO MB,C + G+RA

324 323 ACO,B + MB
DO

302 324 INC ACO
D12

RSR(O)
24 bit extended ~iiiimm~

load

Get address of
pointer.

Get contents of
pointer.

Subtract # words to
be loaded. (AC3 is
negative).

Set counter to
(first -1) address.

Increment counter
first address.

RSR(O)
Normal Load

to

to state 303 of Load to state 302 of Load

Load Stack

A-44

326
DO

327
DO

330
DO

331
DO

312
Dl2

RSR(O)
24 bit extended

store

From "Dispatch"·

325 ACl,B + INPUT

326 RA + MEM(ACl)

327 G,B + AC3
MB,C + G+RA

330 ACO,B + MB

331

Get address of.
pointer.

Get contents of
pointer.

Subtract # words
be stored. (AC3
negative).

Counter to (first
address.

Increment counter
.first address.

to state 313 of Store to state 312 of Store

Store Stack

A-45

to
is

-1~ ...

to

333
DO

334
DO

335
DO

0
DO

332

333

334

from "Dispatch"

RA + MEM (AC3)
ACO,B + MEM(AC3)

G, B + -1 [RAJ\1ADR]
MB ,C + G+RA

J\1ARI,B + MEM(ACO)

MEM(AC3)+ MB

to "Get RSR"

Pop-Jump (return)

A-46

Get stack pointer.

Decrement stack
pointer.

Jump (set memory
address).

Save decremented
stack pointer.

RSR(O)
(Jump Re 1 at iv e)

337
DO

340
DO

340
Dl7
FIFO
FULL

342
Dl2

350
DO

350
DO

336

337

340

341

34

from 11Dispatch11

RA+ MEM (AC 3)
ACO, B + MEM(AC3)

' G ,B + l[RAMADR]
MB,C + G+RA

'

MEM(AC3) + MB
RA,C,G,B + MARI

FIFO

G,B + -3 [RA~1ADR]
RA, MB, C + G+ RA

FULL

Get stack pointer.

Increment stack
pointer.

Save incremented
stack pointer.
Get memory address.

Compute old push jum
address.
(address -3)

RSR (0) (Jump
Absolute)

MEH (AC 0) + MB
MB,C,G,B + INPUT

Save old address on
stack·
Jump (set memory
address).

to state 350 of "Jump"

343 MEM(ACO) + MB
G, B + INPUT
MB ,C + G+RA

to state 350 of "Jump"

Push Jump
A-47

Save old address on
stack.
Compute new address
(relative).
(address -3) +
offset.

~CO)
tllnp ~----

,bsolute

RSR(O
Jump

Absolute

34 7
Dl2

346
D17

FIFO FULL

/

350
Dl2

350
DO

344
DO

0
DO

345

347

351

350

from "Dispatch"

RA,C + 0

RSR(0)
Jump Relative

RA,C,G,B +MARI

FULL

G,B + INPUT
MB,RA,C + G+RA

RSR(O)
Jump Relative

G,B + -3[RAMADR]
MB,C + G+RA

MARI ,B + MB

to "Get RSR"

Jump

A-48

Zero RA in case jump
is absolute.

Get MARI for a relative
jump.

Get next address.

Add FIFO offset

Update address

Allow MARI register
delay before getting
RSR input.

RSR(0)
(Terminate}

353 354
Dl2

0 352
DO

o.
DO

35

from " ispatch"

RSR(O)

to "Get RSR"

"STOP ON RSR HOLD"

to "Get RSR"

No-op and Terminate
A-49

(No-Op)

MAP STATE/NAME CROSS-REFERENCE TABLE

0 Get RSR

1 Dispatch
2 Absolute Input
3

4

s
6

7

10

11

12
13

14
15

16
17

20

21
22
23

24

25
26

27
30

31

II II

II "
II

Relative Input
II "
" II

" II

" "
" II

" II

Origin Offset
II "
ti "
II II

II II

Set Input Base

" " "
" " II

II II II

Vector Multiply

" "
II II

II "
32 Vector Multiply Subroutine
33

34

35

36
37

40

41
42

II

"
II.

II

II

Vector
II

II

II

"
II

"
"
Multiply
II

"

II

"
II

"
II

Subroutine Continued
II "
" "

A-50

43 Vector Multiply Subroutine Continued
44 " " II II

45 Vector Normalize
46 " "
47 " "
50 " "
51 II II

52 Output New Vector
53 II II "
54 II II "
55 " II "
56 Setpt Check
57 Drawto Check (z)
60 Setpt Check
61 " It

62 " "
63 " "
64 " "
65 Drawto Check (z)
66. " " fl

67 Drawto Check (w- z)
70 Drawto Check (z)
71 " " "
72 " " "
73 Drawto Check (w-z)
74 fl " "
75 Drawto Check (w+y)
76 Drawto Check (w- z)
77 " " "
100 " " "
101 Drawto Check (w+y)
102 " " "
103 Drawto Check (w-y)
104 Drawto Check (w+y)
105 " It "
106 " " "
107 Drawto Check (w-y)
110 " " "

A-51

111 Drawto Check (w+x)
112 Drawto Check (w-y)
113 II " II

114 II II II

115 Drawto Check (w+x)
116 II II II

117 Drawto Check (w-x)
120 Drawto Check (w+x)
121 II " "
122 II II "
123 Drawto Check (w-x)
124 II " "
125 " II "
126 II " II

127 " " II

130 Intersect Subroutine
131 II II

132 II "
133 " II

134 II II

135 II "
136 " II

137 " II

140 Intersect Subroutine Continued
141 " II II

142 II II II

143 " II II

144 II II II

145 II II "
146 II II II

147 " " "
150 II II II

151 II II II

152 " II II

153 II II "
154 " " "
155 " " "
156 " " "

A-5 2

157 Perspective Old
160 Perspective New
161 Perspective Old
162 Perspective New
163 " "
164 Perspective New Continued
165 Perspective New
166 Perspective New Continued
167 Perspective Old
170 Perspective New Continued
171 " II "
172 " " II

173 II " "
174 II " II

175 " " "
176 " " "
177 " " II

200 Perspective Old Continued
201 ti ti II

202 II II II

203 II " "
204 " II II

205 " " "
206 II II "
207 " tt II

210 " II II

211 " " "
212 " " "
213 " " "
214 II II "
215 II " "
216 " " II

217 " II "
220 Matrix Push & Matrix Draw
221 II " II "
222 II " II II

223 " " II "
224 " " " "

A- 53

225 Matrix Push & Matrix Draw

226 Matrix Continue

227 Matrix Push & Matrix Draw
230 Matrix Continue

231 " "
232 II "
233 " "
234 " II

235 fl "
236 " "
237 Matrix Normalize

240 " II

241 " !I

242 Matrix Continue

243 Pass
244 fl

245 f I

246 II

247 II

250 Pop

251 !t

252 II

253 Ii

254 II

255 Push
256 "
257 II

260 "
261 "
262 "
263 II

264 II

265 Move Data

266 "
267 Swap Data

270 Move Data

271 " "
272 If "
273 Swap Data

A- 54

274 Swap Data
275 II "
276 " "
277 II "
300 Load
301 Store
302 Load
303 "
304 II

305 "
306 II

307 "
310 Store
311 II

312 II

313 II

314 II

'315 II

316 II

317 "
320 Load Stack
321 " "
322 " II

323 " "
324 " II

325 Store Stack
326 II "
327 " II

330 " "
331 II II

332 Pop-Jump (return)
333 " " II

334 II " II

335 " " "
336 Push Jump
337 " "
340 " "
341 II II

A-SS

342 Push Jump

343 II "
344 Jump

34 5 "
346 II

347 II

350 "
351 "
352 No-op & Terminate

353 " "
354 " "
355

356
357

360

361

362

363

364

365

366
367

370

371

372

373

374

375
376

377 Next Vector

A- 56

APPENDIX B

MAP OUTPUT SEQUENCER STATE DIAGRAM

"Output Next"

0 ()
Dl

04
D3

00

2D l\SS

(10)

DO NEXT ADDRESS
Dl LSB = MAPD0NE
D2 LSB = SKIP
D3 Al ,AO = DISPATCH

RESET

IDLE
Olff PlIT FIAG

MAP=OONE

DISPATOI

4 D HIGH

(01)

CODE

4D PASS

(11)

3D RMAT

(OO)

Output Sequencer Dispatch

B-1

10
D2

SKIP

00
DO

12
DO

13
DO

14
DO

0
DO

from."Dispatch"

6
NOTHING

*SKIP

NOTHING

to "Output Next" o~ "Dispatch"

10 REQ rJ&1tD WRITE

12 X + DAT
INC MARO HOLD

13 REQ' BUS WRITE
HOLD

14 INC MARO HOLD

to "Output Next' of "Dispatch"

2 D Pass

B-2

15
DO

16
DO

17
DO

0
DO

from "Dispatch"

_"IV.

4 J REQ BUS WRITE
HOLD

~II

15 J ST ,Zff ,X -+ DAT
HOLD INC. MARG

l
16 J REQ BUS WRITE

HOLD

1
17 J zfL_.y -+ DAT

HOL:tJ INC MARO

~
to "Output Next of Dispatch"

3D Format

B-3

30 7 DO

32 30
D2

*SKIP

31
DO

34
DO

35
DO

36
DO

37
DO

0
DO

0
DO

32

34

35

36

37

33

from "Dispatch"

REQ BUS WRITE HOLD

X + DAT
INC MARO HOLD

REQ BUS WRITE
HOLD

REQ BUS \I/RITE
HOLD

Z + DAT
INC MARO HOLD

REQ BUS WRITE
HOLD

NOTHING

SKIP

to "Output Next" of "Dispatch"

4D Pass

B-4

20
DO

21
DO

22
DO

23
DO

24
DO

25
DO

[

[

5 J

20 J

21 l

22 l

23 I

24 J

from "Dispatch"

... 1

REQ \¥W.DWRITE

I .
RSR + DAT

HOLD INC MARO

REQ BUS WRITE
HOLD

IL
x """ DAT

HOLD INC MARO

I
REQ BUS WRITE

HOLD

~I
Y ~DAT

INC MARO HOLD

2 6 2 5 REQ BUS WRITE.
DO HOLD

0 26 I Z """ DAT
DO ...:.:.___i HOLD INC Jl'iARO

to "Output Next of Dispatch"

4D High

B-5

I

APPENDIX C

REFRESH SEQUENCER STATE DIAGRAM

THIS STATE NUMBER

DISPATCH CODE

NEXT STATE BASE ADDRESS

NEXT STATE + (NEXT STATE BASE) + DISPATCH

DISPATCH CODES

DO = ZERO
Dl =- ONE
D2 = GO
D3 = NAME
D4 = FINISH
DS.'= FIFO BUSY
D6 = HLTREQ
D7 = WRT BACK

REFRESH CONTROLLER STATE MACHINE

C-1

00
DO

24
DO

24
Dl

Begin

NOTHING
CLR STATUS FLAGS

NOTHING

PSA +- RS
RP +- RS

CLR STATUS FLAG

G0

.,.... _____ RESTAPT

SBUS +- RE
(RP=RF) SET JHLT

TO !NIT

BEGIN

C-2

20
D7

26
DO

26
'Dl

20
DO

!NIT

25 SBUS + RE-1
IF (R..P-=RE -1) SET .JHT... T

*WBM

21 PSA + WP

26 SBUS+ TAJ'E

IF (WP=WE) SET .JWBP

27 SBUS + WE-1
IF (WP-=WF-1) SET .P'JRP

TO RUN TO FINISH A

INITIALIZATION

C-3

RUN

02
Dl CLR STATUS FLAGS

NOTHING

REQUEST ---:>t

02
DO

REQUEST READ/WRT

HOLD REQ

NEXT----~

04
DO

PSA +- RP
RP +- RP+l

04 06 SBUS +- PE-2
D7 F (RP=RF-2) SFT JHLT

WBM

TO WRITE BA.CK Tfl NORMAL

REQUEST CYCLE

C-4

06 OS
Dl

WRITEi BACK

PSA + WP
l1fp + WP+l

HOLD PASS

10 07 SBUS + WE-2
D3 IF(WP-lATE-2 SET WBP

NORMAL
TO

10 NOTHING
D3 HOLD PASS

TES TN AME

*NAME t[MIE
'TO TESTNAME

12
D4 FLAG

Tn FTNJSI-l' R

02 REQUEST READ/WRT
DS ON GRT

HOLD GRT

*BUSY BUSY

TO NEXT

COMPLETE CYCLE

C-5

16
DO

16
Dl

TEST NAME

PSA + SNR

HOLD GRT

NOTHING

30 17 SBUS + CNR
Dl F (SI'-1P.=CNR) SF.T JMAT

22
D4

FIN

TO FINISH A

NOTHING

T0 PUN

TEST N.A.MF

C-6

*FIN

*HLTREQ

12
Dl

31
DI

32
DO

24
DO

23

13 IF

14
I
I
I

32

FINISH A

l
NOTHING

.L
FINISH B

r--

"' [(MATREQADEC) V RFJMP]A l WRTBACK
WP+-WP-2

RELEASE LG PORT !
!

>V

.----- HLTREQ

T
to BEGIN

INT HOLD

I
PSA +- RP

CLR STATUS FLAG

RO RESTART

FINISH

C-7

	0001
	0002
	001
	002
	003
	1-01
	2-01
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-001
	5-002
	5-003
	5-003a
	5-004
	5-004a
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-016a
	5-017
	5-018
	5-019
	5-020
	5-021
	5-021a
	5-022
	5-023
	5-024
	5-025
	5-025a
	5-026
	5-027
	5-028
	5-029
	5-029a
	5-030
	5-031
	5-032
	5-033
	5-033a
	5-034
	5-034a
	5-035
	5-036
	5-036a
	5-037
	5-037a
	5-038
	5-039
	5-039a
	5-040
	5-041
	5-042
	5-043
	5-043a
	5-044
	5-045
	5-046
	5-047
	5-048
	5-049
	5-049a
	5-050
	5-051
	5-052
	5-053
	5-054
	5-055
	5-056
	5-056a
	5-057
	5-057a
	5-057b
	5-058
	5-058a
	5-059
	5-060
	5-061
	5-061a
	5-062
	5-063
	5-064
	5-065
	5-066
	5-066a
	5-067
	5-068
	5-069
	5-070
	5-070a
	5-071
	5-072
	5-072a
	5-073
	5-073a
	5-074
	5-075
	5-076
	5-077
	5-078
	5-079
	5-080
	5-080a
	5-081
	5-081a
	5-082
	5-083
	5-084
	5-085
	5-086
	5-087
	5-088
	5-088a
	5-089
	5-090
	5-091
	5-092
	5-093
	5-094
	5-095
	5-095a
	5-096
	5-097
	5-098
	5-099
	5-100
	5-101
	5-101a
	5-102
	5-103
	5-103a
	5-104
	5-105
	5-106
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07

