PICTURE SYSTEM 2
Maintenance Manual

Volume 1

COPYRIGHT EVANS & SUTHERLAND COMPUTER CORPORATION
1977

Customer Engineering Dept.
Evans § Sutherland Computer Corporation
580 Arapeen Drive
Salt Lake City, Utah 84108

First Edition July 1977

"All information contained herein together with-

all drawings, diagrams and specifications herein -
or attendant hereto are, and remain, the property

of Evans & Sutherland Computer Corporation. Many

of the intellectual and technical concepts described
herein are proprietary to Evans § Sutherland and

may be covered by U.S. and Foreign Patents or Patents
Pending or are protected as trade secrets. Any dis-
semination of this information or reproduction of
this material for commercial or other purposes other
than the express purpose for which it has been made
available are strictly forbidden unless prior written
permission is obtained from Evans § Sutherland
Computer Corporation'.

Evans § Sutherland Computer Corporation assumes no responsibility
for any errors that may appear in this manual. The information in
this document is subject to change without notice.

TABLE OF CONTENTS

1.0 IntrodUCtiom. . i it inn ettt ettt enoeeeneeeneeseneeeneeansas 1-1
2.0 Scope of the Manual... ...t iiiiiininineneneeneeneenseennnenn 2.1
3.0 INStallatiome e e e tineeeeeeeeeeeeeeeeanseeeeenennonsennnnnnns 3.1
3.1 Picture Controller Interface Installation.............. 3-1
3.2 Picture Display Installation........eeeieeeeeneennnnnns 3-1
3.3 Power CONNECTIiONS . ittt ittt ineeteeeeeneneeeeeennnnnees 3-2
3.4 Verifications of Proper Operation.......cvuiveveuiennnns 3-2
4.0 General Theory of Operation.....couiiie ittt eineinnenenennnnns 4-1
4.1 Picture Controller Interface.......... T S 4-1
4.1.1 Direct IO Path.............v... e e e . 4-2
4.1.2 Direct Memory Access Path.......................4-2
4.2 PSBUS ArTbhiter .. eiiiiiiieeeieetieeeeneeeeeeeeananneenannas 4-3
4.3 PicCcture ProOCESSOT . ittt it ieeeeeeeeenenneatsennnnns e d4-4
4.4 DPICTURE SYSTEM MeMOTY . ¢ttt vt i teneteeeocanonsnesoassens 4-6
4.5 Real Time CloCK. . i it ieir et ieieeeeeennnneennennes wee..4-6
4.6 Refresh Contrceller..ttt cennannnennnns e 4-7
5.0 Detailed Theory O0f Operation. .. .vveiteeeneeneteeonenennnnsss 5-1
5.1 Picture Controller Interface......uuiiiiiiiinnnnennenn 5-1
5.1.1 PDP-11 Interface...cuuieiiiieteinennnneeeennnns 5-3
5.1.1.1 Address Select & Control......v.ovv..... 5-4
5.1.1.2 DMA Address Register (DMABA)........... 5-5
5.1.1.3 DMA Wored Count Register (DMAWC) 5-5
5.1.1.4 DMA Command Register..........oeeuwuu. w..5-5
5.1.1.5 DMA Data In Register.......... e e 5-7
5.1.1.6 1I/0 Status Register (IOST)............. 5-8
5.1.1.7 Direct IO Command Register............. 5-8
5.1.1.8 CPU Data Out RegisteT.......ccuuveunnn. 5-9
5.1.1.9 Direct IO Data In Register............. 5-9
5.1.2 Direct I/0 Path...iie ittt ineiinieenannnnns 5-11
5.1.2.1 Direct I0 Read.....ii it eennnn 5-13
5.1.2.2 Direct I0 Write.ou.eiiiiieieeieneneenenn 5-17
5.1.2.3 Reading the DIOPSA........., 5-19
5.1.3 Direct Memory Access Path (DMA)................. 5-20
5.1.3.1 DMA Block Transfer Initialization...... 5-20
5.1.3.2 DMAIN Transfer......uuiieiiinnenennnn. 5-21
5.1.3.3 DMAOUT Transfer.....uueeeeeteeeneneeeenn 5-25

5.

5.

2

3

.4

5.1.4 Interrupt Sense and Control.....civiieiirnnnnnn. 5-27

5.1.4.1 System InterrTuptS...ceeeiriincnrenosnnes 5-29
PICTURE SYSTEM BUS - PSBUS. ..ttt nennocnnacnennss 5-31
5.2.1 PSBUS StruCtuUTe....ivitiriieirnereneenconennnnnns 5-31
5.2.2 Active/Passive DeViCeS..uviieeeoereeeoeceenananas 5-32
5.2.3 PSBUS TimINng..eeiie i tenienereeseecenscnsncnonss 5-33
5.2.4 PSBUS Arbitration....iieerierieneecennnnnceooness 5-34
Picture ProCeSSOT .ttt ittt it neenreenseceansosoceos 5-39
5.3.1 MAP Input Controller - ACtive......ceieeinuennns 5-41

5.3.1.1 MAP Input FIFO... it iieiiennennnnns wv.5-42

5.3.1.2 MAP Input SeqUenCeT......uvcimeenennnnns 5-42
5.3.2 MAP Input Controller - Passive.....vevieevenenn.. 5-48
5.3.3 RSR Register and Update PROM........ . v, 5-50

5.3.3.1 GET RSR State.....iieieeenecococsnnnsas 5-50

5.3.3.2 Control and DRAW Commands........oooun. 5-51

5.3.3.3 Drawing Sequences and Data.......coc0.. 5-52

Interpretation

5.3.3.4 Drawing Sequence Example............... 5-53

5.3.3.5 RSR/Update PROM Hardware Description...5-55

5.3.3.6 Reading the RSR......iiiiiiiieinnneann 5-56

5.3.3.7 Writing the RSR..... it 5-56
5.3.4 Extend Register.....iiiieiniinninninnennnennnes 5-57
5.3.5 Matrix Arithmetic Processor (MAP).......iiiuun.. 5-59

5.3.5.1 MAP Data Store and ALU Unit............ 5-66

5.3.5.2 MAP Address COUNtETS. v uetverrencnnnansas 5-70

5.3.5.3 Normalize Sense.......eeiveinrennnncnns 5-72

5.3.5.4 Normalizer.....o.iiiiiniiineernnnennanes 5-74

5.3.5.5 Array Multiplier......ieeiiiirinnennaenn 5-75

5.3.5.6 Reciprocation....iciuieieieriieieninennnnnn 5-76

5.3.5.7 MAP Control Store.....viiieeriannacanees 5-80

5.3.5.8 MAP System Clock....eeviiiiiinnninnnnens 5-82

5.3.5.9 MAP Maintenance StrucCtUre.............. 5-84
5.3.6 MAP Output Formatter.... vttt inniieirnereansans 5-89

5.3.6.1 Output Control Sequencer......ceeeeuee. 5-90
PICTURE SYSTEM Memory (PS MEMORY)itiiiiinnenennnn 5-92
5.4.1 FIFO and Port Latch... .ttt innnnnanens 5-94
5.4.2 Port Arbitration and Port Controllers........... 5-95
5.4.3 Sequence Controller..i.iveitiiiiiiniieneenannennns 5-96
Real Time CloCK. . iu it ittt iiiinstnnrennsenennnnnns 5-99
Refresh Controller. .. ittt iiitiiiiitieieeanonennsanas 5-101
5.6.1 Refresh Control Command Words.......civiveernnn. 5-102
5.6.2 Frame Synchronization....ieeeeenerinneeenenanans 5-102

5.6.2.1 Arbitration of Refresh Devices......... 5-103

5.6.2.2 Frame Sync State Machine............... 5-103
5.6.3 Refresh SequencCer.ottt inneneenns 5-105

ii

Appendix A

Appendix B

Appendix C

APPENDIX

MAP Algorith State Diagram

MAP State/Name Cross-Reference Table..........c....

MAP Output Sequencer State

Diagram......cceeeeenanns

RefreshSequencer State Diagram........ceeeeeuueennn

1.

Introduction

This Maintenance Manual was created as a support item for

both E§S Customer Engineers and on site maintenance person-

nel who have maintenance responsibility for the E§S PICTURE

SYSTEM 2. To perform maintenance at the component level, a
broad understanding of the operation and theory of the
machine is a necessity. The PS2 diagnostics were designed
to isolate hard failures to a functional unit within the
system. To quickly isolate the problem to the component,
the troubleshooter must understand the proper operation of
the malfunctioning unit and the associated unit in which
it is in communication with. The intent of the manual 1is
to serve as both a theory of operation text and a hardware
reference text for each functional unit in the standard
PICTURE SYSTEM 2. It is assumed that the reader has a
maintenance background and experience with troubleshooting

TTL circuits.

The Picture Controller computer for PICTURE SYSTEM 2 may be
one of many types; however, this manual assumes a Digital
Equipment Corporation PDP-11 computer as the Picture Con-

troller.

1-1

2.

0

Scope of the Manual

Section 3 of the manual deals with installation of the

©

PICTURE SYSTEM 2.

Section 4 outlines the general theory of operation of the

standard PICTURE SYSTEM 2.

Section 5 details the theory of operation on a functional
unit level and comprises the major portion of the manual.
Exact Bit definitions for status and control registers as
well as other register definitions are excluded; therefore,
many references are made to the Picture System 2 Reference
Manual where these definitions exist. When describing the
detailed operation of specific circuits, references are
made to the logic drawings contained in the PICTURE SYSTEM

2 Drawing Set.

Appendix A and B contain the MAP and Refresh Controller

algorithms.

3.

0

.1

Installation

Installation of the PICTURE SYSTEM 2 involves the installment
of a DEC PDP-11 computer by DEC personnel and the installment
of the E§S equipment by an E§S Customer Engineer. The EG&S
equipment should be unpacked, set in place, and visually in-

spected for shipping damages.

Picture Controller Interface Installation

The Picture Controller Interface consists of three cards:

195131-100
195106-100
195105-100

The 195131-100 is built on a DEC hex module and plugs into a
peripheral slot in the DEC equipment. Thisvslot should be
wired for NPR operation. The 195105 and 195106 cards plug
into the PICTURE SYSTEM backpanel as indicated by the stuff-

ing chart, 195101-900 (see the drawing set).

Picture Display Installation

The Picture Display connects to the scope driver card, 195211-

100, by a coax cable set.

3-1

3.3 Power Connections

The power connection to the PS power controller should meet

the following specifications:

Primary Power 115 volts, 60 Hz
- 30 Amp
- Single Phase

- Two wire + ground common to
Picture Controller ground

- Hubbel 2610 or equivalent

The Picture Display Power card is plugged into the power
control panel. Drawing 195100-100 illustrates the primary
power connection to the power control panel and the power

distribution to power supplies, clock assembly, etc.

Before applying power to the Picture System, check for shorts
between all DC sources and ground. After power is applied,
adjust all DC power sources to the correct level at the back-

panel.

3.4 Verification of Proper Operation

To verify proper operation of the PICTURE SYSTEM, run the
standard PS2 Acceptance Tests. This procedure is outlined

in the PS2 Acceptance Tests document.

4.0 General Theory of Operation

The standard PICTURE SYSTEM 2 contains the following

functional units:

Picture Controller Interface
PICTURE SYSTEM Bus, PSBUS
PSBUS Arbiter

Picture Processor

PICTURE SYSTEM Memory, PSMEM
Real Time Clock, RTC

Refresh Controller

(o e Y % I S

Picture Generator
This manual (volume 1) deals with all of the above functional
units with the exception of the Picture Generator. Volume 2

deals with the Picture Generator.

4.1 Picture Controller Interface

The Picture Controller Interface provides two data paths
between the Picture Controller computer and the PSBUS. The
interface also provides an interrupt link between the PICTURE

SYSTEM and the Picture Controller. The two data paths are:

1. Direct I0 Path (DIO)

2. Direct Memory Access Path (DMA)

1.

1.

2

Direct IO Path

The DIO consists of a direct interface between the PDP-11
UNIBUS and the PSBUS. It is used for direct (processor con-
trolled) transfers between UNIBUS address space and PICTURE

SYSTEM address space. The interface consists of a Direct IO

'PICTURE SYSTEM Address register (DIOPSA) and a Direct IO

PICTURE SYSTEM Data register, (PSDATA), both of which are
UNIBUS addressable. Prior to the transfer of data between

a UNIBUS address and a PSBUS address, the DIOPSA must be set
up to point at a desired PSBUS address. The actual transfer
is initiated by reading or writing the PSDATA register. The
PSDATA register serves as a buffer to hold the data being
either sent to the DIOPSA destination or retreived from the
DIOPSA source. The DIO is considered an active device, that
is, no other PICTURE SYSTEM device can command it. The DIO,
after commanded by the Picture Controller, always initiates
either a read or write to a PICTURE SYSTEM passive device.
The DIO initiétes the transfer by requesting the PSBUS and
when granted gates the DIOPSA (address) to the PSBUS, then
either gates data to the bus or receives data from the bus

depending on the nature of the transfer.

Direct Memory Access Path

The DMA path also consists of an interface between the

4.2

UNIBUS and the PSBUS; however, it is used for data block (non
processor controlled) transfers between UNIBUS address space
and PICTURE SYSTEM address space. The DMA path may be pro-
grammed to be either an active or passive device; therefore,
it can actively fetch data from UNIBUS address space and re-
lay it to PS address space or it can passively wait for data
from a PS device, then relay it to UNIBUS address space. In
either mode of operation, it must be previously set up by

the Picture Controller for a block transfer, then commanded
to "GO". For each word transfer, the UNIBUS must be requested
and granted; also, for word transfers to PS address destina-
tion, the PSBUS must be requested and granted. The PICTURE
SYSTEM DMA Device contains a DMA PICTURE SYSTEM Address reg-
ister (DMAPSA) which tracks the inter-block PS address. The
UNIBUS DMA Device contains a UNIBUS Address register (DMABA)
which tracks the inter-block UNIBUS address and a DMA Word
Count register (DMAWC) which counts the number of words to
be transferred. When the last word of the block has been
transferred, the DMAWC register acclaims the DMA path to be

READY for another block transfer.

PSBUS Arbiter

The PSBUS Arbiter controls the use of the PSBUS. More than
one PS device may need use of the bus at a given time; there-
fore, a round robin priority scheme is implemented to grant

requesting devices. Eight active requests lines input to the

.3

arbiter. A request linevis hardwired to an active device

and when the bus is needed, and active device inserts a
request line to the arbiter. The eight requests are assigned
a priority level and if granted, that request is rotafed to
the lowest priority level; therefore, all active devices, in

general, have equal opportunity for the PSBUS.

Picture Processor

The Picture Processor is a special purpose vector processor
which receives commands and data from a PICTURE SYSTEM device
and outputs processed commands and data to another device.
Usually output data is directed to the Picture Generator for
display; however, output may be directed to PS Memory or to
the DMA as data to be stored in UNIBUS address space. Input
to the Picture Processor may be sourced by either the Direct
I0, DMA, or PS Memory. The Picture Processor input device
may be either active or passive, that is, it may_actively
fetch input data or passively wait for data directed to it.
The Picture Processor output may also be either active or
passive. Also, iﬁput and output may be either 16 or 24 bit
precision. These variables are programmably set up by writ-

ing a status word in the Picture Processor.

The Picture Processor operates on an instruction set. After
inputting a command, appropriate action is performed on either

incoming data or internal data. The instruction set is de-

4-4

tailed in the PS2 Reference Manual, pp 2-36 through 2-54.

In general the Picture Processor receives commands and
point vector data in the Data Space Coordinate system and
transforms the point vector data into the Screen Coordinate
system for subsequent display by the Picture Generator.

Functions performed on the input data include:

1. translation
rotation

[AS]

clipping

perspective

view port mapping
zooming

matrix concatenation
pass data unformated

O 0w 3 O 1 &~ W

pass data formated

These functions are performed by receiving a command, and
traversing states of the MAP algorithm which operates on
the data appropriately. The three main units of the Picture

Processor are:

1. MAP Input Controller
2. MAP (Matrix Arithmetic Processor)
3. MAP Output Formatter

These units are described in detail in section 5, the de-

tailed theory section of this manual.

.5

PICTURE SYSTEM Memory

The PICTURE SYSTEM Memory is a dual-port MOS memory (distinct
from the Picture Controller's) organized as addressable 16-
bit words. This memory is available in increments of 16K
words, expandable to 64K words of memory, dependent upon user

requirements.

PICTURE SYSTEM Memory may be used in a variety of ways to
satisfy the user's application. Typically, a portion of the
PICTURE SYSTEM Memory serves as a refresh buffer into which
data, still in digital form, is deposited. This data repre-
sents information to be shown on the Picture Display. For
each frame displayed, the Refresh Controller reads the data
from the PICTURE SYSTEM Memory and channels this data to the
Line Generator where the data are then converted to analog

signals to drive the Picture Display.

Real Time Clock

The Real Time Clock coordinates the picture update process
with the picture refresh process by implementing a program-
mable interval at which a clock interrupt occurs. This in-
terrﬁpt causes the Picture Controller program to check the
condition of the update and refresh process to determine
if a new frame may be initiated. The basic timing of the

clock is derived from two 60 Hz inputs to produce a 120 Hz

.6

clocking signal which counts two counters. The two counters
procide a interrupt interval and a refresh sync interval.

At the interrupt interval, a request for interrupt is gen-
erated. At the sync interval, a sync pulse is generated for
the refresh controller. This pulse is used by the refresh

controller during automatic refresh mode.

Refresh Controller

The Refresh Controller is the unit of the Picture Generator
that controls the refreshing of images on the Picture Dis-
play. The Refresh Controller reads data from the PICTURE
SYSTEM Memory, a refresh buffer, and channels this data to
the Line Generator for display. Under program supervision,
the Refresh Controller is used to manage the organization of
the PICTURE SYSTEM Memory. It also contains special-purpose

hardware to facilitate memory segmentation and management.

In single-buffer mode, the entire refresh buffer is used to
store a single display frame. In this mode, refresh may be
initiated from a partially-updated display frame consisting
of some lines from the new frame and some lines from the

previous frame.

In double-buffer mode, one-half of the refresh buffer is de-
signated as an old frame and one-half a new frame. Refresh

is then initiated from the old frame while the new frame is

being constructed. When construction of the new frame is
completed, the frame buffers are swapped and the
newly-constructed frame is displayed. The space occupied

by the old frame becomes available for new frame construction.

The segmented-buffer mode provides the most general use of
the refresh buffer for the display and updating of data.
Typically, a frame consists of portions which need not be
updated as frequently as others. Ideally, these portions
should be updated as sepafate parts, or segments, of the
frame. The Refresh Controller‘facilitates the use of the
refresh buffer in this mode by allowing each of the separate
portions of the refresh buffer to be given a name by which

the segment may be replaced, appended to, deleted, etc.

The Refresh Controller also improves the utilization of the
refresh buffer by providing, in segmented-buffer mode, for
the reclamation of unused portions of the refresh buffer
that have been left by deleted segments. This prevents
fragmentation of the refresh buffer into small, unuseable

areas.

5.

0

Detailed Theory of Operations

5.1 Picture Controller Interface

The Picture Controller Interface is the communication
link between the host computer and the PICTURE SYSTEM.
All command and data transfers between the two machines
take place through this interface. The interface con-

sists of three devices:

1. Direct I/0 Path (DIO)
2. Direct Memory Access Path (DMA)

3. Interrupt Control

A DIO transfer is initiated by host computer control.
Also, a DMA block transfer is set up and initiated

by host control; however, individuél“word transfers
within the block are initiated by the DMA control
logic. This provides .2 mechanism by which the host
computer may set up a block transfer, then execute
other tasks while the DMA Controller manages the

word transfers of the block. The DMA Controller gains
access of the host transfer lines (data bus) for

each word transfer, then releases control after each

transfer.

The Interrupt Control monitors the DMA Interrupt Request
and three interrupt request lines from the PICTURE

SYSTEM.

(93]
1
—

1. Real Time Clock Interrupt
2. Device Interrupt

3. System Interrupt

The DMA Interrupt request, if enabled, requests an
interrupt to be serviced when the DMA is ready or
when a non-existant memory (NEXMEM) location was

referenced by the DMA.

The Real Time Clock Interrupt request, if enabled,
requests an interrupt at pre-defined programmable
intervals. This program interrupt initiates a status
check of the refresh process and update process by

the program.

The Device Interrupt request occurs when a PICTURE SYSTEM
Device needs servicing. Typical devices include:

Function Switches, Keyboard, Tablet, etc.

The System Interrupt request occurs from designated
PICTURE SYSTEM control functions such as: '"Refresh

Stopped'", '"MAP Stopped'", "HIT Request'", etc.

A detailed description of the interrupt requesting

system exists in the PICTURE SYSTEM Reference Manual,

pp. 2-130 thru 2-139.

The Interrupt Control, which monitors the four interrupt

5.

1.

requests, gains control of the host computer data bus,
passes the interrupt vector for the honored request to

the host computer data bus, and asserts the interrupt line
to the host computer thus causing the host to execute

the appropriate service routine.

A block diagram of the Picture Controller Interface is
illustrated in Figure 5.1-1. The interface is implemented

on three cards.

1. 195131 PDP-11/PS Interface
2. 195105 Direct IO/Data In

3. 195106 DMA/Data Out

The 195131 card is located in the host computer and the
195105 and 195106 are located in the PICTURE SYSTEM

Backpanel.

A cable connects the 195105 and 195106 in the PICTURE
SYSTEM to the PDP-11 Interface card in the host computer

with 46 differential pairs of control and data lines.

PDP-11 Interface

The 195131 PDP-11 Interface communicates with the
PDP-11 UNIBUS with 57 lines. Communication with the

UNIBUS is asynchronous, therefore; no synchronous clock

U B Vs

AODCESS SELECT Dro
COMN AN O
* e 7-o9) ConTEOL
< (/D
*® EBC (/D) 57
¥ SEBMSYNA LNAD A SrATYS.
* SBSS YA REG-
¥ CBNTT o0
% LBBUSY DOMAWE ™ DATA c&/7
: REG
* AP
AP G TN LL0
DLA74 TAL
A PGLL T
* B2 (7-4)
LOAIA
BGIN(7A) . DA7A. TAS
BG o7 7-A)
* S8 54 C A DA A
* UETASTL COAMAZAN LD
* JSBD(I5-C0).
IDE/3/

RO~ S S TERLFACE

SRS TERL I
SEANSE

XK Ps .eEQSE)

* PS54 D
% P5AL0O : 7
*LODTRD DIBEC T [270 ~54) X 2SGAITB)
*T0DOLD ro -
/"7 O/ TEOL - R5 Qoo 15-0)
XP54 KOLO < 75
i/ : o PN
* 70 BsY ’ o pddeid et <
vl | R
- . i »
klataidal (/'5'9,')1 oirg ews || * asccn “
% - 7
1
X >
> R N R
4] §]) ‘l‘\)
S R N NI
"’\\) s) X
5 > p
0 9l s
1Y 0 ol W
y | 9
> N _ | 9
1
* 25 D7 IAIE-Q) S os REQ(A) %
o 7
ZZ |2 PSA. v Y
¥ onrg susy I | FsG ATl | &
7 »
: ’
* D747 ;»;_5.5/1/5 5 D
: ji;j oreso Siteryivig » e
g PS5 7DD 750,
X DAraDOLD DOMAS G749 287 - <) R
7 : /6
7 <
* oEyL T osecan Pswer
* SYSIAST :
* CLATAIT
7 PS5 DA 7x5-2),
piRECTS #~
DOAr4 it 2
corrrRoL g ra * OScLA

BLOCA VA GEANT

7/

fGe Difmt CICTURE CONTROLLER) PS5 BUS /ANITERFACE

Vv

5.1.1.1

signal exists on the 195131. Likewise communications
between the 195131 and the PICTURE SYSTEM cards (195105-
195106) is asynchronous; however, all communication
between the 195105-195106 cards and the PICTURE SYSTEM
Bus (PSBUS) is synchronous. The PSBUS contains a
synchronous clock line which is input to both the

195105 and 195106 cards.

The PDP-11 Interface card consists of the following:
1. Address Select § Control
2. DMA Bus Address Register (DMABA)
3. DMA Word Count Register (DMAWC)
4. DMA Data In Register

5. DMA Command Register

6. Direct I/0 Command Register
7. I/0 Status Register

8. CPU Data Out Register

9. Direct I/0 Data In Register
10. Interrupt Sense and Control

Address Select & Control

The Address Select & Control monitors the UNIBUS address
lines. 1If one of the five PDP-11 Interface register
addresses exist on the UNIBUS the address select decodes
which register the address is for and then waits for the
UNIBUS MSYN signal which strobes the UNIBUS data in the
selected register; else, enables the data out (to the

UNIBUS) from the selected register. Whether the UNIBUS

5-4

REAL RSOITA
L RESFISTER -

FETEH ANEXT
PS5 LOSHATLIOAS
ANL Lod O <
TAITE ASOP773
RECTS TEL.

r ¥ N TBLS FLOLLLESS

¥
>
¥ TOLITILL
...... \'h
¥ O LEJDY o y
% CLETOE oA |
% TOSF/E08L ' \\:‘”’”5

¥ JNITBLUS D274 LEGEND

___/490,@555 :
O L7 VALTD

[/ —_ £ {
e

* LBAIS YAS

¥ B55¥AS

¥ GAATEZTODATT . -

TOLATA 70 8BS,

C.—J\
=

* PSS CL A .
| | | VA /|

% IO Basy
x B85 CePiB) -
* PS5 GATLE)

~
-

f-
i o S,

— e e T

* PS5 LT

D i e S TS S

Y

x A7 @)

N

— e —— — —— — ——— — q——

* EANDITOLCEAD

\d

K fFOKELTTZ

y

(

AT LAY, G900
Vi 71 T T T A T

* é"ds LLEp

-

-

* LS B/syY

——

¥ ZOHFST T

»

% swprodrPOFrE

fIGEE 5 /-2 DIRECT IO READ THiNG Or/AGRAA

b e —

. . \ . . .
S U U SRR
- i e f

5.1.1.2

5.1.1.3

5.1.1.4

wants to write or read is decoded from the *Cl line of the
UNIBUS. This logic exists on sheet 3 of the 195131-600

drawings.

DMA Bus Address Register (DMABA)

The DMABA register is used to address the UNIBUS during
a DMA word transfer. This register is normally loaded
with the beginning address of a data block and

then incremented by one upon each word transfer. The
DMABA register is only 15 bits and does not drive the
LSB of the UNIBUS: therefore, incrementation by one
effectively increments the UNIBUS address by two.

Only word (not byte) addressing on the UNIBUS takes
place during DMA transfers. The DMABA register 1is

implemented on sheet 15 of the logic drawings.

DMA Word Count Register (DMAWC)

The DMAWC register keeps track of the word count during
a block transfer. It is initially loaded with a negative
two's complement number of the words to be transferred.
Upon each word transfer it is incremented by one. When
the register overflows the last word has been transferred.

The DMAWC is implemented on sheet 15 of the logic drawings.

DMA Command Register

The DMA Command Register issues a DMA read or DMA write

command to the PICTURE SYSTEM DMA Controller. On the

cable between the PDP-11 interface and the PICTURE

SYSTEM, these commands are named:

1.
2.

DMADIRD - DMA Data Input Read
DMADOLD - DMA Data Out Load

During a DMA write transfer from the UNIBUS to the PICTURE

SYSTEM, the PDP-11 Interface performs the following steps:

Gains control of the UNIBUS.

Receives the UNIBUS data into the CPUDATA
OUT register.

Releases control of the UNIBUS.
Issues a DMADOLD command to the PICTURE SYSTEM.

Waits for the PICTURE SYSTEM DMA Controller
to go non-busy.

When the non-busy is received, goes to step 1
if the block transfer is not complete else
goes to step 7.

Sets the DMA READY bit in the IOST register
indicating the DMA is ready for program initiation
of another block transfer.

During a DMA read transfer from the PICTURE SYSTEM to

the UNIBUS, the PDP-11 Interface performs the following

steps:

1.
2.

Issues a DMADIRD command to the PICTURE SYSTEM.

Waits for the PICTURE SYSTEM DMA Controller

5-6

5.1.1.5

to fetch the word. (waits for DMA BUSY TO
go low).

3. Strobes the data from PSDATAIN (15-0) into
the DMA DATA IN register.

4, Gains control of the UNIBUS.

5. Gates the DMA Data In register onto the UNIBUS
and releases control of the UNIBUS when the

destination device takes the data.

6. Goes to step 1 if the block transfer is not
done; else goes to step 7.

7. Sets DMA READY in the IOST register, indicating
ready for program initiation of another block
transfer.

DMA Data In Register

The DMA Data In Register; in the PDP-11 Interface,

buffers data received from the PICTURE SYSTEM. During

a DMA IN word transfer, the DMA Controller issues a
DMADIRD command to the PICTURE SYSTEM's DMA Controller,
which gains control of the PS BUS and fetches the data
word pointed to by the DMAPSA register. The data is put
on the PSDATA (15-0) lines to the PDP-11 Interface. The
PICTURE SYSTEM clears DMA BUSY which strobes the data into
the DMA Data In Register. The PDP-11 Interface issues

a request for the UNIBUS and eventually, when the request

is granted, gates the DMA Data In Register onto the UNIBUS.

The DMA Data In Register is on sheet 14 of the logic

drawings.

5.1.1.6

5.1.1.7

I1/0 Status Register (IOST)

The I/0 Status Register implements status indicators
of the DIO and DMA operations. It also contains a
reset bit to initialize the DIO and DMA logic to their
initial states and a GO bit to transfer control of

a DMA block transfer to the DMA Controller after a
block transfer has been set up under program control.

A detailed description of the IO status bits exists

in the PS2 Reference Manual, pp. 2-12 through 2-15.

DIO status bits are implemented on sheet 4 and DMA

status bits on sheet 5 of the logic drawings.

Direct IO Command Register

The Direct IO Command Register is updated when a new
command from the UNIBUS is sensed by the Address Select

& Control logic. Four Direct IO commands are possible:

IOPSARD - Read the Direct IO PICTURE SYSTEM
Address Register (DIOPSA)

IOPSALD - Load the DIOPSA

IODATIRD - Read the Direct IO Data Input
Register

IODATOLD - Load the CPU DATA OUT Register
via the Direct I0.

5.1.1.8

5.1.1.9

The Direct IO Command Register is implemented by
four F/F's on sheet 4 of the logic drawings. The
four commands F/F's drive four differential command
line pairs on the cable to the Direct IO/Data In
Card, 195105. These drivers are on sheet 10 of the

logic (195131-600).

CPU Data Out Registers

The CPU Data Out Register buffers either DIO data or
DMA data being sent to the PICTURE SYSTEM. This
buffering enables the appropriate controller to store
the data gathered from the UNIBUS and release control
of the UNIBUS while waiting for the PICTURE SYSTEM to
take the data. If the input data were not buffered,
the UNIBUS would be tied up until the appropriate DIO
or DMA logic interfaced to the PS BUS could take the
data. The PICTURE SYSTEM Reference Manual refers to
this register as the PSDATA Register when describing

Direct IO write to the PICTURE SYSTEM.

The CPU DATA OUT Register is implemented on sheet 8

of the logic drawings.

Direct IO Data In Register

The DIO Data In Register buffers data from the PICTURE
SYSTEM to the UNIBUS upon completion of a IODATIRD

command. The register is referred to in the PICTURE

5-9

SYSTEM Reference Manual as the PSDATA register. If
a user wants to read a PS Memory location, he must

first point the DIOPSA to the PS Memory location desired.
MOV #MEMLOC, DIOPSA

Execution of the PDP-11 instruction sets up the DIOPSA
and initiates a read of the PS Memory location specified
by DIOPSA. The contents of the specified memory location
are fetched and stored in the DIO Data In (PSDATA) Reg-
ister. To actually retrieve the desired data the user

must read the PSDATA register.
MOV PSDATA, SAVE

This PDP-11 instruction moves the contents of the PSDATA
register to the specified UNIBUS address (SAVE) and
initiates a IODATIRD command to the PICTURE SYSTEM DIO
Interface which increments the DIOPSA (unless inhibited)
and fetches data from the next PS Memory location pointed

to by thé DIOPSA.

Successive PS Memory locations may be retrieved by successive

reads of the PSDATA register.

While the DIO path is busy, another PSDATA read cannot
be initiated; therefroe, the user must test the IO READY

bit in the IOST Register before initiating a read.

1.

The DIO DATA IN Register is on sheet 14 of the 195131-600

logic drawings. The DIOPSA Register is on sheet 6 of the
195105-600 drawings.

Direct IO Path

The Direct IO path interfaces the UNIBUS to the PICTURE
SYSTEM to enable programmable Direct IO transfers
between UNIBUS address space and PICTURE SYSTEM address
space. The actual hardware for the Direct IO path

consists of:

1. Direct IO control and buffering on the
PDP-11 Interface Card (195131-100).

2. Direct IO control and '"Data In" buffering
on the 195105-100 card in the PS backpanel.

3. "Data Out'' buffering on the 195106-100
card in the PS backpanel.

4. Cable driver and receiver lines between
the PDP-11 Interface and the 195105-
195106 cards.

5. Control lines on the PS backpanel between
the 195105 and 195106 cards.

A Direct IO transfer can take place during a DMA
block tranéfer. If the DMA is writing and the DIO
is reading, or visa versa, there is no conflict of
data line usage between the PDP-11 Interface and the

PICTURE SYSTEM; because, there are two separate

5-11

groups of data lines. (See Fig. 5.1-1)

1. CPUDATA (15-0) - Data from UNIBUS to
PICTURE SYSTEM.

2. PSDATAIN (15-0)- Data from PICTURE SYSTEM
to UNIBUS.

Also, if both DMA and DIO are writing, there is no
conflict in usage of the CPUDATA (15-0) lines because
UNIBUS mastership arbitration insures only one user

of the lines at one time.

For example, if the DMA controller is bus master
and the program encounters a direct IO write
instruction to the PICTURE SYSTEM, the requesting
UNIBUS device must wait for the current DMA word
transfer to complete before it becomes bus master.
While it is master, the DMA process is held up and
the CPUDATA (15-0) lines are solely dedicated to

the UNIBUS master device using the Direct IO path.

However, if both the DMA and DIO are reading, the
PSDATAIN (15-0) lines must be arbitrated between

two devices.

For example, a DMA may be performing a block of
read transfers and a UNIBUS device may desire to
read the PSDATA register in the Direct IO path.

The UNIBUS device again will not be granted bus

5-12

5.1.2.1

mastership until the current DMA word transfer is
complete. Once bus master the UNIBUS device relays
the read command to the PDP-11 Interface's Direct
I0 Controller. The controller responds by enabling
the PSDATA register onto the UNIBUS, issues a read
command to the PICTURE SYSTEM, and acknowledges the
UNIBUS master. The master releases control of the
UNIBUS and the DMA controller regains bus master-
ship; however, the read command to the PICTURE
SYSTEM causes its Direct IO controller to increment

the DIOPSA, (if not inhibited), and retrieve the

data in PS address location pointed to by the DIOPSA.

After fetching the desired data off the PSBUS, the
controller must transfer it across the PSDATA (15-0)
lines to the PSDATA register. Remember the DMA may
still be performing read transfers on these lines;

therefore, an arbiter in the PICTURE SYSTEM's Direct
I0 controller must arbitrate these lines between the
DMA and DIO as necessary. This arbiter exists on

the 195105-600, sheet 4.

Direct IO Read

To read a PS address location(s) the user points

the DIOPSA to the desired location:

MOV PSADD, DIOPSA

Loading the DIOPSA causes the PICTURE SYSTEM's
Direct IO controller to retrieve the PS address
data pointed to by the new DIOPSA contents and
buffer it in the PDP-11 Interface PSDATA register.
When the DIO becomes ready then the user may

examine the PSDATA register:
MOV PSDATA, SAVE

Each read of the PSDATA register increments the
DIOPSA by one (unless inhibited) and causes the
Direct IO controller to retrieve the next sequential
PS address contents and buffer the data in PSDATA.

This enables the user to examine successive PS address

locations by issuing successive PSDATA read commands.

Execution of the above instruction causes the following
sequence of events to occur. The sequence is illustrated

in Direct IO Read Timing Diagram of Figure 5.1-2.

1. The UNIBUS master device asserts the address
on PSDATA and sets up control lines CO and Cl
for a full word read onto the UNIBUS.

2. The UNIBUS master device asserts *UBMSYN
requesting the addressed device to respond.

3. The PDP-11 Interface's Direct I0 control
decodes the UNIBUS address and control lines

and receives the master's request, *UBMSYN,
(195131-600 sheet 3).

5-14

10.

11.

The Direct IO control enables the DIO PS DATAIN
register (PSDATA) through the mux on sheet 16

and *IODATATOBUS asserts the data onto the UNIBUS.

*UBSSYN acknowledges the UNIBUS master and
*GATEIODATI gets ready to issue a read command
to the PICTURE SYSTEM. (sheet 4)

The trailing edge of *GATEIODATI sets IODATIRD
which clears IOREADY F/F indicating to the
program that the DIO path is busy. IODATIRD
drives a cable line to the PICTURE SYSTEM's
Direct IO control on the 195105 card.

The Direct IO control in the PICTURE SYSTEM
receives IODATIRD and generates *IOSTROBE
pulse of 100ns. (sheet 3 of 195105-600).

The trailing edge of *IOSTROBE asserts

the *I0BUSY F/F which indicates to the PDP-11
Interface that the Direct IO is accessing

a PS location for the PS DATA register. The
trailing edge of *IOSTROBE pulse also increments
the contents of DIOPSA by one (if not inhibited).

IOBUSY sets the *PSREQ(B) F/F in sync with the
next *PSCLK pulse which issues a request for
the PSBUS.

The PS arbiter eventually responds (in sync with

*PSCLK) with *PSGNT which gives the PSBUS to
the Direct I0 controller.

*PSGNT will gate the contents of DIOPSA (PS
address) and *PSREAD to the PS BUS (sheet 6).

5-15

12.

13.

14.

15.

16.

17.

18.

The next clock buffers *PSGNT by setting *GNT(B)
F/F. (During the clock period with *GNT(B) is
set, the data from the destination location
location is on the PS data lines of the PS BUS).

*GNT(B) asserts *ENDIOREAD which issues a request,

BUSREQ, for the PSDATAIN (15-0) lines and the
next clock pulse generates the *POKEDATI pulse
which strobes the data from the PSBUS into the
DIO/DMA Data In register file on sheet 6 of the
195106 card which drives the PSDATAIN (15-0)
lines.

When the PSDATAIN (15-0) lines are not busy
(may be in use by the DMA) the IOHASIT F/F
(sheet 4 of 195105-600) is set indicating
that the lines now belong to the DIO.

IOHASIT enables the DIO word in the DIO/DMA
Data In register file out to the PSDATAIN (15-0)
lines to the PDP-11 Interface.

The next clock asserts *ENDIOUPDATE which clears
#*I0BUSY on the next clock.

The PDP-11 Interface's Direct IO control, which
has been waiting for the trailing edge of
*TOBUSY, sets *CLRIOCOM and the data on PSDATAIN
(15-0) is strobed into the PSDATA register.
(195131-600, sheet 14) '

*CLRIOCOM sets IOREADY, clears the read command

F/F, IODATIRD (sheet 4), and the Direct IO path
is ready for another transfer.

5-16

X UNIBUS ALORESS/IT 23,

¥ UBSS YA

L S *

*

LEGENO

UNITBUS DATA/5-22)

CEAMSY N

MEYASTRB

_m — ROOEELESS O

LR74F VFLTD

T~ — EZTHER A/GH

oL Lo

POLELODATO

POKELOCOAM

CcLRIOoCOoASL

LOREADY
— /
TODATOL D {

TOSTROBE) Soo LS

PSCLA

T 7 T e R

* TOBLSY | | | !

|
DESY. T
: = T I T T T T T] o
N IR IIe) A Y AR S J/
{{ !

AS2EQ(E)

REGATLE) !

GRT(E) - % ?‘s

ERDTORRTT ' /&'

GATETODLATO (

FlGURE So/=3 DIRECT TO WRIT7TE T/IAATAIG DIAGRAM

5.1.2.2

Direct IO Write

To write a PS address pointed to by DIOPSA, the user
simply writes into the PSDATA register; therefore, .

data is moved to the PSDATA register.
MOV DATA, PSDATA

Execution of the above instruction causes the following
sequence of events to occur. This sequence is illustrated

in the Direct IO Write Timing Diagram of Figure 5.1-3.

1. The contents of location DATA are fetched
and put on the UNIBUS data lines.

2. The address of PSDATA is asserted on the
UNIBUS address lines.

3. UNIBUS control lines Cl and CO are set up
for a full word write.

4. After the data, address, and control lines
of the UNIBUS have settled, the UNIBUS master
asserts *UBMSYN requesting the slave to respond.

5. The Address Select § Control logic on the
PDP-11 Interface, 195131-600 sheet 3-4,
received *UBMSYN which generates *MSYNSTRB
pulse of 100ns duration.

6. *MSYNSTRB enables the address decode's output
*POKEIODATO.

7. The trailing edge of *MSYNSTRB terminates

*POKEIODATO which strobes the UNIBUS data
into the CPU DATA OUT register on sheet 8

5-17

10.

11.

12.

13.

14.

15.

and generates *POKEIOCOM pulse of 100ns.

The trailing edge of *POKEIOCOM asserts
*UBSSYN, which acknowledges the UNIBUS
Master, and sets the IODATOLD (IO DATA OUT
LOAD) command F/F on sheet 4.

IODATOLD clears the IOREADY F/F which
indicates to the program that the Direct IO
path is busy.

IODATOLD and the data in the CPU DATA OUT
register drive the cable drivers (on sheet 10)
to the PICTURE SYSTEM Direct IO card.

The PICTURE SYSTEM DIO controller receives
the command and data lines on the 195105
card, sheet 1 and 2.

#*TODATOLD generates the IOSTROBE pulse on
sheet 3 which sets the IOBUSY F/F and
strobes the incoming data into the DIO/DMA
Data Out register, sheet 5.

I0OBUSY sets the *PSREQ(B) to the PSBUS if
the destination device (location) pointed
to by the DIOPSA is not busy. (This device
busy monitor is on sheet 7 of the drawings).

The PSBUS Arbiter acknowledges the bus request
with PSGNT(B) when the DIO controller can
have the bus.

The PSGNT(B) gates the DIOPSA (destination
address) onto the PSBUS address lines (sheet 6)

and the next clock buffers the PSGNT(B) by
setting the GNT(B) F/F (sheet 4) and also sets
the *GATEIODATO F/F.

16. *GATEIODATO gates the DIO/DMA DATA OUT
register (destination data) onto the PSBUS
and GNT(B) asserts *ENDIOWRITE.

17. On the next clock, *ENDIOWRITE clears *IOBUSY
indicating that the destination device has
received the data.

18. *TOBUSY is monitored back on the PDP-11
Interface (195131) and sets the *CLRIOCOM
F/F (sheet 4) which sets IOREADY and clears
the command, IODATOLD F/F.

19. The Direct IO path is now ready for another
DIO transfer.

5.1.2.3 Reading the DIOPSA

The DIOPSA is a write only register and cannot be read
directly. Any attempt by the user to read the DIOPSA
causes the contents of DIOPSA to be transferred to

PSDATA register which is directly readable. The following

code may be used to read the DIOPSA.

MOV DIOPSA, SAVE ; Try to read the DIOPSA

TST IOST ; Test the DIOREADY bit
in IOST

BPL .-4 ; If not ready test again

MOV PSDATA, SAVE ; Read contents of PSDATA

into UNIBUS address SAVE.

5-19

5.

.1.

1.

3.

1

Direct Memory Access PATH (DMA)

The Direct Memory Access Path Interfaces the UNIBUS

to the PICTURE SYSTEM to enable programmable DMA

block transfers between UNIBUS address space and PICTURE
SYSTEM address space. The actual hardware for the

DMA path consists of:

1. DMA control and buffering on the PDP-11
Interface card (195131-100).

2. DMA control and '"Data Out" buffering on
the 195106-100 card in the PS backpanel.

3. "Data In' buffering on the 195105-100 card
in the PS backpanel.

4, Cable driver and receiver lines between the
PDP-11 Interface and the 195105-195106 cards.

5. Control lines on the PS backpanel between the
195105 and 195106 cards.

A DMA block transfer between UNIBUS address space and
PS address space is set up and initiated under program
control. The transfer may be programmed to take place
in either direction by setting or clearing the DMAIN

bit of the IO status register (IOST).

DMA Block Transfer Initialization

The program must interagate bit 7 of the IOST register

5.1.3.2

to see if the DMA is ready (see page 2-13 of PICTURE
SYSTEM Reference Manual) before manipulating any of the
DMA registers. Upon finding the DMAREADY, (195131-600,
sheet 5) the program may set up a data block transfer
between UNIBUS address space and PS address space. A
negative two's complement number of words in the block
to be transferred is written into the word count register,
DMAWC (sheet 15). The starting UNIBUS address of the
block to be sent (or where the block is to be received)
is written into the bus address register, DMABA (sheet
15). The direction of the block transfer is set up by

writing a 1 or a §# in the DMAIN bit of the IOST

(sheet 5). The block transfer is started by setting

bit @ of the IOST (GO bit, sheet 5).

DMAIN Transfer

A DMAIN block transfer reads a block of data (one word
at a time) from PS address space and stores it in
UNIBUS address space. Assuming the block transfer has
been set up according to section 5.1.3.1, the block
transfer is executed as a series of word transfers.

The timing sequence of a DMAIN word transfer is
illustrated in Figure 5.1-4. The sequence 1s described

as follows:

1. The *GO pulse, generated by the program setting
the GO bit in the IOST, clears *DMADONE which

5-21

BLOCL
7L SFEL
PP TSP 7SO

LD EON TR L
BECOAFIIN G
NI STEL

TLGNS FELMNEG
OCR7 7o
SCAVEEVI/CE

COMNIGAD 7O
rIE S)YS

PIE SYS DANIR
conyeos
FLETEH NG
& wopep

~

(¥ wenroFLw
A LDADG LA/
A DAY EEIDY

777
////s

<

(S
¥ Go %
::: i/wj ii:vs 2
NI B REQ

A DAL SACH // //]/9“_d
N KOG EGIN D~

KON P STEL [/ j_fb

XELUSY dl — —
L -

- LI/17T777 77777 7T 7T T T T T 7 7 T 77 777 77 7 07 777

*ROL 7O Evs ; 3 B 44

XKLL MIGSTEL
AADLL N WHIT

=T

HEATS YA
HES YN
HDOAZPDR 77 70 Es

\

KEAND CYCLE \

{%OM/K’ PS LEAL ___%l
N

k—’
DN G BLsy iﬁw
LAPG NOT DON &
K DAPD STLOEE {- WW%/) }
LS CLL T{w —
KOS LERLT) N
5

AUy Besy

I
UL,

K PLCSGNT) : ! ADPEN B,
AGNTE) {5 , ,%l !
HEND DALY LEILD 1—1‘ \

M NE DAZG P55

AP LPJE DAy

LS LER

A Es sy
A LAV A APS Ir

AEND DG P DI E

L K PoXEDITS

D NPZPN TSAP /N G DT AP SLAND

TG RE S /-E

clears *DMAREADY indicating the DMA path is
busy (195131-600, sheet 5). *GO also sets

the *DMAPSREAD command F/F which drives the
*DMADIRD (sheet 10) line to the PICTURE SYSTEM.

The PICTURE SYSTEM's DMA control receives
*DMADIRD (195106-600, sheet 2) and generates
*DMASTROBE pulse which sets the *DMABUSY F/F
(sheet 3). *DMABUSY is monitored back on the
PDP-11 Interface card.

*DMABUSY generates a request for the PSBUS,
*PSREQ(A), in sync with the *PSCLK when the
source device is not busy, indicated by
*DEVBUSY (sheet 3).

The PS Arbiter eventually grants the request
with *PSGNT(A) which gates the DMAPSA register
(source address) and PSREAD signal onto the
PSBUS (sheet 5).

On the next clock, *PSGNT is buffered by
setting *GNT(A) F/F, which is set for one

clock period and enables *ENDMAREAD. During
the clock period when *GNT(A) is set, the
source device enables the data onto the PSBUS
data lines, and *ENDMAREAD enables *UPDATEDMA
which generates a *BUSREQ (195105-600, sheet
4), requesting use of the PSDATAIN (15-0) lines
to the PDP-11 Interface (see block diagram
Figure 5.1-A).

The next clock pulse generates *INCDMAPSA,
which bumps the DMAPSA register by one (if
not inhibited), and generates *POKEDATI pulse
which strobes the data off the PSBUS into

5-22

10.

11.

the Direct IO/DMA Data In register file
(195106-600, sheet 6).

When *BUSBUSY (195105-600, sheet 4), indicates
the data lines between the PICTURE SYSTEM and
the PDP-11 Interface are not in use, *DMAHASIT
is set in sync with the clock. #*BUSBUSY is
asserted indicating the data lines are now in
use by the DMA.

*DMAHASIT stays asserted for two clock periods
and gates the DMA source data from the input
register file onto the data lines to the PDP-11
Interface. After the first clock period,
*ENDMAUPDATE is asserted and the next clock
pulse clears the *DMABUSY F/F (195106-600,
sheet 3).

The PDP-11 Interface has been monitoring the
*DMABUSY F/F in the PICTURE SYSTEM. The
trailing edge of *DMABUSY clears the read
command F/F, *DMAPSREAD (195131-600, sheet

5) and the data from the PICTURE SYSTEM is
strobed into the DMA DATA IN register (sheet
14). The DMA control generates a request for
the UNIBUS, *DMAUREQ (sheet 6).

The UNIBUS eventually responds with a grant,
*DMABGIN, which generates *DMASACK acknowledging
the grant and clearing the request.

The cleared request causes the UNIBUS to clear

the grant which sets the *DMAMASTER F/F when
the UNIBUS becomes ''mot busy'".

5-23

12.

13.

14.

15.

16.

*DMAMASTER clears *DMASACK and asserts #*UBBUSY
indicating the DMA is master of the UNIBUS.
*DMAMASTER gates the contents of the DMABA
(destination address) onto the UNIBUS by
asserting *ADRTOBUS (sheet 13).

*ADRTOBUS asserts *DMADATATO BUS, which gates
the data in the DMA DATA IN register onto the
UNIBUS, and generates *ADDRONWAIT pulse (sheet
7). The trailing edge of this pulse sets the

MSYNOUT F/F which asserts #*UBMSYN to the UNIBUS.

The destination device on the UNIBUS eventually
responds with *UBSSYN, indicating it has taken

the data. #*UBSSYN clears #*UBMSYN which generates

*ENDCYCLE pulse indicating the completion of a
UNIBUS cycle.

The trailing edge of *ENDCYCLE sets the
*CLRDMAMASTER F/F (sheet 7) which clears the
*DMAMASTER F/F and unasserts *ADRTOBUS and
*DMADATAOBUS.

The rising edge of *ADRTOBUS increments the

DMAWC (word count register, sheet 15). If the
word count overflows (*WCNTOFLW), the #*DMADONE
F/F is set which asserts *DMAREADY, indicating

the DMA path is ready for another block transfer.

The rising edge of #*DMADATATOBUS issues another
command to the PICTURE SYSTEM (*DMAPSREAD) if
the block transfer is not complete, which
commands another word to be fetched from the
PICTURE SYSTEM.

5.1.3.3

DMAOUT Transfer

A DMAOUT transfer reads a block of data (one word at a
time) from UNIBUS address space and stores it in PS
address space. Assuming the block transfer has been
set up according to section 5.1.3.1, the block transfer
is executed as a series of word transfers. The timing
sequence of a DMAOUT word transfer is illustrated in

Figure 5.1-5. The sequence is described as follows:

1. The *GO pulse clears *DMADONE which clears
*DMAREADY, indicating to the program that
the DMA path is busy. #GO also sets the
*DMAUBREQ F/F (195131-600, sheet 6).

2. *DMAUBREQ requests mastership of the UNIBUS
and is eventually granted with *DMABGIN
which sets *DMASACK acknowledging the grant.

3. *DMASACK clears the request and eventually
the UNIBUS grant is cleared which sets the
*DMAMASTER F/F when UNIBUS mastership is

released by the current master.

4. *DMAMASTER asserts *ADRONBUS which gates the
DMABA (source address) onto the UNIBUS and
generates *ADDRONWAIT pulse (sheet 7).

5. The trailing edge of *ADDRONWAIT sets MSYNOUT
F/F which asserts *UBMSYN to the UNIBUS.

6. The slave device (usually memory) eventually
responds with data on the UNIBUS by asserting
*UBSSYN which generates *POKEDMADATA pulse
and clears *UBMSYN.

5-25

BYS7TEFA LATA

(KLEns TOF LI T 7 T
.. ¥omaouwr N
_A8lock -
TRAMSFER Q¥ GO
TIITTALIZATLOA
: ¥orrAoon/E : o
(K oA19L£490y \ ad '““‘/7
=)= MKOMAUBREG. 7
TUTERFACE ¥ DMABGIA - }/‘
BECOMING .
TWNIBYUSS %.OMASAHCK e —
MASTER AMD |y prramAasree S /K OMA ConES
SFETCHING /\ﬁh [&—
THE WORDO | ymBUsy Z 5’ / \\
FRoM % aor7pays TEELpzd e N
ZANZLELUS 1 w AT
ADORESS |% CLROMAMASTER \ P [
SRACE ——— 7 oors 7
\¥% ADLRONUWAT T Mﬂ \
UNTEUS J’iﬁ UEAISYA
TRAMNS FER Cs 3 ;
EsrGiacs | g usssyiis f—
BULEERIAIG {* DORTA - SETTLE: /O0MS
THE=DATA | POKEDMALATA } \
TR THE i da :
=Y, V- KEAND CYCLE /’405’/"75/
TUTERFACE CA——~—
* DMALSHRITE - A —
. ==\
RASCLK m Ly — = —_ —_—
O o (N AT
X DMA BUSY Lo
SE/ETues T\ KOMASTROBE — (ﬁ%ﬁ%g !

* PseREQ()

CZotTeol _
- Yo ¥-1 y |
ALESS/ILGT 4 X DEYBUSY: 7 7 e e L, f—/‘)_ss l ‘
PS5 BUS Z i R

AAID WRITING.

THE WORL

% PSGANT(A)

K OMAFPSATOL IS

K G AITA

R-GATEDMADATO.”

L;{ ENOOAMAWRITE.

T G URLE S /-5 DMAOUT TIMING DIAGRAAM

10.

11.

12.

13.

The trailing edge of *POKEDMADATA strobes -the
data off the UNIBUS into the CPUDATAOUT register
(sheet 8) and the trailing edge of *UBMSYN
generates *ENDCYCLE pulse indicating the
completion of a UNIBUS cycle.

The trailing edge of *ENDCYCLE sets *CLRDMAMASTER
which clears *ADRTOBUS and *DMAMASTER.

The trailing edge of *ADRTOBUS increments the
DMAWC (word count) and DMABA (source address)

and sets *DMAPSWRITE (sheet 5) which is the

write command to the PICTURE SYSTEM. *DMAPSWRITE
drives the DMADOLD line and CPUDATAOUT drives

the data lines to the PICTURE SYSTEM.

*DMAPSWRITE and the data is received (sheet 1
and 2, 195106-600) and generates *DMASTROBE
pulse which sets #*DMABUSY and strobes the data
into the Direct IO/DMA data out register file
(195105-600, sheet 5).

When the destination device is not busy (*DEVBUSY),

a request for the PSBUS is generated in sync with
*PSCLK.

The request is eventually granted with *PSGNT(A)
which gates the DMAPSA (destination address,
195106-100, sheet 5) onto the PSBUS.

The next clock buffers the grant by setting
*GNTA which gates the data from the DIO/DMA
register file to the PSBUS and asserts
*ENDDMAWRITE.

5.

1.

4

14. The next clock clears *DMABUSY which is the
signal the PDP-11 Interface is monitoring.

15. The rising edge of *DMABUSY clears the write
command (*DMAPSWRITE) and sets *DMAUBREQ to
request another UNBIUS cycle if the block
transfer is not done. If *WCNTOFLOW (word
count overflow) is asserted, then *DMADONE is
set which asserts *DMAREADY indicating the
DMA path is ready for another block transfer
(195131-600, sheet 4).

Interrupt Sense and Control

The PICTURE SYSTEM is equipped with an intrerupt
facility to enable program intervention by a requesting
device. The possibility of more than one request for
service at one time requires an arbitrator to decide
which device is serviced first. A requesting device
issues an interrupt request to the Interrupt Sense

and Control which causes the following sequence of

events:

1. The sense logic (195131-600, sheet 11)
examines all interrupt request lines.

2. When one or more interrupt request are
present, the Interrupt Control requests
use of the UNIBUS (sheet 12).

3. Eventually, the UNIBUS is given to the

Interrupt Control and it becomes bus

master.

5-27

The Interrupt Control recognizes the
interrupt request with the highest priority
(sheet 11, bug 92), passes the appropriate
interrupt vector address to the UNIBUS, and
asserts the interrupt line, *UBINTR, on the
UNIBUS (sheet 12).

The PDP-11 Processor pushes the contents of
the Processor Status Word and Program Counter
(PSW,PC) onto the program stack and loads into
the PC and PSW the first two consecutive words
(interrupt vector) from memory pointed to by
the interrupt vector address.

The Processor does a jump to the location in
the PC and begins executing the interrupt
service routine.

The last instruction of the routine is a
RTI, return from interrupt, instruction.
When executed, the RTI causes the Processor
to pop two words from the program stack into
the PC and PSW registers.

The Processor jumps to the new PC location

and resumes execution of the interrupted task.

5.1.4.1 System Interrupts

Any one of the following seven conditions will generate a
system interrupt if the corresponding interrupt enable F/F

is set.

1. MATCH REQ
2. WBSTOP REQ
3. RFSTOP REQ
4. MOSTOP REQ
5. JUMP REQ
6. HIT REQ

7. HALT REQ

These seven conditions are defined in the PS2 Reference
Manual, pages 2-134 through 2-136. A circuit similar to

the one surrounded by dashed lines in figure 5.1-6 exists
for each system interrupt condition. *éSSYSINT is the system
interrupt line of the PSBUS driven by each system interrupt
circuit. This line is relayed to the Interrupt Controller on
the 195131 card by a differential driver on the 195106 card.
A high to low transistion of this line initiates action by
the Interrupt Controller which will gain access of the UNIBUS
and interrupt the Picture Controller (provided the PSIE bit
of the IOST register is set). In order for a system interrupt

circuit to assert *¥PSSYSINT, both the interrupt enable F/F

7 aser R-:QMEST’ '
I (INTERUPT CoON DtrioN)l
|
(
{

REQ

|
— Q
% L l
|
|
[

KINHIBLT

D=

|
|
Pl
e S ‘
<]‘ s 5 | ENADLE |
)9513) 195106 | |
CARD CARD - T

SYSTEM JTANTERUPT SCHEME FIGURE 5:1-6

and the interrupt request F/F must be set. *INHIBIT is a
common line to all system interrupt circuits which inhibits
any pending interrupt requests from asserting *PSSYSINT

while the program is clearing the particular request bit
which generated the last interrupt. After the request bit

is cleared, any other system interrupt request hit still

set will generate another high to low transition of *PSSYSINT;

therefore, generating another system interrupt.

The interrupt circuits are found on the 195121-100 and 195151-

100 cards.

5.

5.

2.

2

1

PICTURE SYSTEM BUS - PSBUS

All PICTURE SYSTEM 2 devices connect and interact with each
other on a single, high-speed, synchronous data bus. Memory,
device registers, control and status registers all exist

and are addressable memory locations on the PSBUS. By means
of this PSBUS, coordinate data may be transferred from the
Picture Controller host computer to the Picture Processor
while data may concurrently be transferred to PS Memory.
During the process, data may also be transferred from PS
Memory to the Picture Generator for display. In addition,
data may be entered from the data tablet, alphanumeric
keyboard, function switches, etc., and read by the control
program of the host computer. Data flow is supervised by

a bus arbitration system which is an integral part of the

PSBUS.

PSBUS Structure

The PSBUS consists of the following lines:

1. *#PSDAT (15-0) - 16 data lines

2. PSADD (15-0) - 16 address lines

3. *PSREQ (7-0) - 8 request lines

4. *PSGNT (7-0) - 8 grant lines

5. *PSCLK (5-1) - 5 clock lines

6. *PSDEF - 1 memory defer line

7. *PSMEM - 1 memory busy line (FIFO Line)

5.

2.

2

8. *PSRST - 1 reset line

9. *PSREAD/PSWRT - 2 memory command lines
10. *PSDEVINT/*PSSYSINT/

*PSCLKINT - 3 interrupt lines
11. #PSBSY (7-0) - 8 device busy lines
12. *PSSYNC - 1 sync line

TOTLA 70 lines

The five clock lines are all in sync and were implemented
for driving capability. The *PSSYNC line is used to
arbitrate use of the Refresh Memory by the Refresh Con-

toller and possible future console keyboard devices.

Active/Passive Devices

Data transfers from device to device in the PICTURE
SYSTEM are performed by an active device transferring
data to or from a passive device via the PSBUS. The
active device initiates and controls the transfer, and

the passive device accepts or provides the data as commanded.

All devices are either active or passive; however, some
devices may be programmed to be either active or passive
at a given time. No device can be active and passive

simultaneously.

A typical data transfer between active and passive devices

involves the following sequence of events if the passive

5-32

5.

2.

device is not PS Memory:

1. The active device requests and is eventually
granted use of the PSBUS. '

2. When granted, the active device gates the
address of the passive device and a read/
write command onto the PSBUS.

3. The passive device is given one bus clock
period (150 ns) to decode the address and
command.

4. If the transfer is a write (active to passive),
the active device gates data to the PSBUS. If
the transfer is a read, the passive device
gates data to the PSBUS. This data is held
for one clock period.

5. The data on the PSBUS is taken by either the

active or passive device depending on the

direction of the transfer.

PSBUS Timing

A timing diagram of typical non memory data transfers
between active and passive devices as described in
section 5.2.2 is illustrated in Figure 5.2-1. A special
case exists when the passive device is the PICTURE SYSTEM

Memory.

Any data transfer to or from PICTURE SYSTEM Memory requires

. ASLAT

serg—__ [] ;'
DG T ‘/5’?;;

ASEEAD

il

RLEAD TRANSFER (ACTIVE +—— L4 S5IVE)

pscre 1 I_7 ﬂ"ﬂ:‘ I
o ——

2505

1

AV o
N

RS/ T

PSURT. (\“
&

PSADL

ASDAT7T _

WRITE TRANSFER (ACT/IVE —» PASSIVE)

LG, 5.2-1 TIAWNG DO/AGRAA] FOR 7Y LICAL . .
L ACTTVE /34:5‘.5{1/5 DATA TRANSFEL

5.

2.

an active device initiating the transfer to or from the
passive memory. More than one active devices may re-
quest concurrent use of the memory. The PSBUS Arbiter
arbitrates use of the PSBUS, however, a memory read
cycle is 450 ns and a read-write cycle is 750 ns; there-
fore, data from memory cannot be gated to the PSBUS
during the clock after the memory receives the address.
Also, the memory may be busy when addressed by an active

device.

The Bus Arbiter always responds with a grant to a re-
questing (active) device when the PSBUS is not busy;
however; if the memory access is a read, the memory
controller simultaneously responds to the active device
with a deferred signal (*PSDEF). The deferred signal
instructs the active device to wait till later for the
data. If the memory is busy, it asserts the busy line
(*PSMEM) the same time it defers the active device.

The device then waits for a second grant to give the
memory the address, is again deferred and waits for a
third grant which signifies data is valid on the next
bus cycle. Typical data transfers between an active
device and PICTURE SYSTEM Memory are illustrated by the

timing diagrams in Figure 5.2-2.

PSBUS Arbitration

An Arbitration system for the PSBUS manages data

[l e N I

pscerec L1 f T A e B

P il L 1

“
Py

¢
7

RN S FE——

P
a
@
5

FjGA/r; gs.r—l

ASEERAD.

ENET S“J I

|
|
L
L6 : ‘3'—" l £
P I 2 ar
: 5
! s—r—]——ss—j l 55 Ww%

SO0 .__.gg_..‘ L____T_..sg.__{——-l $$
£¢ W £C WEZ e J l

ASOAT —_— m 5 W—-ﬁ I : [

< ' L—ss————r-—l-—-s;
£¢ l I 55 <Y
X4 7 R4

L.

DSp&e Wasy e cI Ek

NS
-~

<
$5 [L 55

4G £¢
55 A5

PSMEM. N b g

ATEMORY LEAL
(HIcrtoey B8L5Y)

AIEAIOECY WL TE
(oY Selsy)

ATEANIOL Y BEAL

ATERIEE Y RET 7
Ccgpney ver Sasy)

(P T B25Y)

e T SUGUNIS SRV IR S E S

!
I
I
]
!
~ Ei’ué" !
I
|
|

LEGCEAD

MoT vALID

i P ' e . .
FIGURE 5.22 MNIEMORY OATH T7TRAMSFER TIMING OIAGRAAA

transfers between devices in such a way as to
utilize the full bandwidth of the bus. Since the
PSBUS is synchronous, a data transfer may take
place every clock period if active devices are
constantly requesting use of the bus; therefore,
the bus can transfer 6.6 meg-a-words per second.
The PS memory operates at a slower rate of 2.5
meg-a-words per second; therefore, a device
accessing memory must wait for data; however,

the device releases control of the bus to other
devices while waiting. The arbitration system
must recognize when memory is ready to output
data, then give memory highest priority for use
of the bus. This implies that memory has higher
priority than the eight active request priority
levels, *PSREQ(7-0). Memory is always granted
use of the bus the next bus cycle after requesting

the bus.

The arbiter actually rotates priority of the eight
active request levels. When one request is granted,
that request level is changed to lowest priority,
and the other seven levels are rotated appropriately
for the next grant cycle; however, remember memory
can override the highest requesting priority level

if memory is in a data output state.

The PSBUS arbitration system receives eight active

requests from PICTURE SYSTEM devices. These
requests are input into a priority rotater as
illustrated in Figure 5.2-3. The rotator examines
WHO, the last request level who was granted, and
rotates the eight requests input to the priority
encoder. The request corresponding to WHO is
input to the encoder at the lowest priority level.
The encoder outputs a 3 bit code corresponding to
the highest level request on its inputs to the
NEWWHO adder. The adder sums the result of the
priority encoder with the number of places the
encoder inputs are rotated to determine which
Active Request is to be honored. This honored
request, NEWWHO, waits for one of two events to
occur before being saved in the WHO latch. The

two events are:

1. A valid WHO does not exist in the WHO
latch; therefore clock the latch until
a valid NEWWHO is saved.

2. A valid WHO exists in the latch, a
memory port does not need the PSBUS
(not in data output state), and a free
memory port does not need the FIFO.

Either event gates the decoded WHO out to the PSBUS
as a grant, and on the next clock latches NEWWHO into

the WHO latch which determines the rotation for the

729.9‘5@54?

¥ A505 7~ O

OTATOR |~ | FANCOLER e ALOER | (NEW WD) LATEH A
z-25500 |0 | Faras | 5P reszes| Z , 3 |\ sas5s74 | l 5
+) _/ =z (WD)
I SO A SR
| [—-7 | | EeenE) | Jearn s
i | |oscovs| ., = | |38 76T\ 7050 72|
| o o | (% F//'d)/) |
: TIL S5T0 B \s5/38 s | 8
| I
: bg ~—1—/§ A=Y
L | > | 5%//7':/9/55>—7<Z——»
; V2T
| | : L7 A :
a | 1 FKZ cLock|TFs—Q* A5l
I | . Foi570 ||
i o<} ‘.‘(ak M,@ﬁf){ | 50 xases7
| l
L

O — —— ——— c— —— —— —— — S—— awa——r? Couows commmmnor eme s o oetn,

IR T OF AVEATOL Y CON 7T /L20L

Ao eE S P-F _
PEEBLE FELETTELLATION SYSTEAM BLIOCK DO7,9GA24944

lante’

(—QMEnreL T

next clock.

Further examination of event 2 leads to a clearer
understanding of the request/grant timing on the
PSBUS. Suppose that a valid WHO exists in the

WHO latch, the memory FIFO contains a pending

grant, and both memory port controllers are busy;
however, neither port controller is in a data

output state. This means event 2 is true and the
PSBUS is free for a grant cycle. The decoded WHO
which corresponds to the original active request

that generated WHO, is gated out to the PSBUS as

a grant. This grant is received by the active

device which in turns gates the address and a read

or write command to the passive device as depicted

in the timing diagrams of Figure 5.2-2. The WHO
latch is updated on the next clock, and if the
address on the bus was for memory and the access

is a read, the PS Memory Control asserts the deferred
line which tells the active device that data will not
be valid during this clock period. (If passive device
is not memory data will be valid). Also, if the
memory is busy, the PS Memory Control asserts *PSMEM
which tells the active device that the address was
not accepted by the memory and will be asked for at

a later time. If the active device is writing to

memory, the device asserts data to the PSBUS during

i =) L S S 557?5?4—“—:‘:
§5130-10 ~ & PSADD ADDRESS DECOCE FLAGS S2¥MCUV
2 % ({85120-100 , :IIJ?E gﬁ e \6 KOBOAT u:, B REGISTER |25 l (Oref LaTCU € B24MCCLRY
l?.__o/ Al N = =t FEEEES > @ e LOAD/ENAZLE GATE/ ' FLAG |EioliiR)
P ~ = coMdtrOuL LoAD ICouTRLS F o r
W CoTRXS| . e

I! (g N 'Q; y {1

|
|
|
| % }
pRUENEEE B SN] pazewo] [wamo | [ETFO
EXTEND = i l 16 1'e l
CCGISTER | e 16
. 16
|

JrECUEST
FLID FLOP

49,2395

T »
—
glmj<|x

. !
el 6 18 2 [compaze]—p— 1" . ‘
N (5 b f_ 1o 555
ol 4 BERE - uir S o Ll I e
F3 T 4 e
. | e | s o "Srarus]
g & I e | g ppus REGISTER Y
?Dg é = 8 44 *P2DAT
& @S5n7-100
5782ﬁ—__) e Y- 37 -1 S —
= 56
I e O oy P pe=e) o
Aoopees COUTROL CONTROLS ; 1 62 3 t 73 '24 ’
DATA MEMORY
_%::D-. ADCRESS | 2— " e SNy ' Yrae] | Pcal us - J
i B e T = e
O ©® 3 - I _____(o)_l_ __QA_,.‘.A.A_PB__ 24 {24 24 I .
9O,
<3 TO P"s{ (. £ | | = ceus |7y l
24 [
Iumiff‘i@:‘d:_ S 4 {1 _Jl N | - § £ 28,20,40 |
Mo20 | @ i1 Pt 6 BIEIND g r—-'—“—i 24 | | eeus z4 |
MVENMCRY 7 7 -
l e 13 ~ / I ' . I 5ot '
SN S— 2 R
| (578 oogony ' T lDI%DATCH ! | N R MS 2 CARDS |
| \MC2CARS Y R MODIFICATION gagngnea | [el a) |
[C729 ¢ coAE S | CE S 1 I o 29 o—-©
camalg 1 |EEHIERL o r BeLS waz| [voa | M2 |
Ces (50 1) | Exz2) | |etn)] lein —0-1-& : asbe | |
———— S0 1 > ' — e | (21
Y| r Mz= Munau[.zl o _m___________“_J B
go;ggg;l O i) e = | 4 MhD = 195113-100 L)
STGLNS it ! T S | MN | CAR i 8o |
9-16 ! 1 : comp l ICOMPARATO‘RI | |95|||~|00,1%54’|827ﬁ30>| “ O I
l [ec2] [ecz2] [2er] [aco] ______}5 l ©-|-© l
I 24,25 [22,7.3 20,21 l 8,19 L
I a a8 a yz= e il | |
8 ! a8 17 < I
‘ e }J 1 3,24 - \ wﬁMAu‘?@s’) Ci'UGE ©9.7¢ | T :
2. “E TEMND ’
| 4, 8 TRNEPOE es CEVSE] RECISTER | |
| " S iw ale 616;{(;%1)3 - l MASHFC |
] 44 = 7 | |
r N\ /=— 35—\ /5088 15 —Q0"2" | S ? 1
l TE5T14 100 13 eo” ‘
| GRS 1o ' RaMADR 8 e ° J I

FIGURE S.3-2 P82 MAP BLOCK DIAGRAM ELir e 2107

the clock period after memory latches the address.

If an active device receives the memory busy signal
the device will receive a second grant at a later
time from the memory. This implies that the memory
must save the first grant. It does so in the

memory FIFO, and if the FIFO is not empty when a
memory port controller becomes idle, the FIFO is
output to the grant lines as the second grant to a
waiting active device. This second grant signals the
device to repeat the address to the bus sense a

free port controller can now begin access of the
address. The PS Memory Control is also equipped

with a port latch. This latch saves the particular
grant that signals a device of the beginning of a
read access by a port controller. When the port
controller has data from memory (in data output state)
it repeats the grant from the port latch which signals
the device that data will be on the PSBUS during next

clock cycle.

5.

Picture Processor

The Picture Processor receives commands and data from
the PSBUS, decodes the commands, operates on the data,
and outputs data in a specified format to the PSBUS.
Output from the Picture Processor may be directed to
PS Memory, the Picture Generator, or the Picture Con-
troller. The source of Picture Processor input and
destinations of Picture Processor output is program
controlled.

The Picture Processor consists of three units:

1. MAP Input Controller
Matrix Arithmetic Processor (MAP)
3. MAP Output Formatter

The three units interface to an internal bus, the BBUS.
Data transfers between the three units occur on this
bus; however, input and output occur on the PSBUS.
Figure 5.3-1 illustrates a simplified block diagram of
the Picture Processor interfaced to the PSBUS. A de-
tailed block diagram is illustrated in Figure 5.3-2.

< ' PGUS » >

MAP 88y, MA P
INPUT ‘ ouTRPUT
CONTROL év} CONTROL

MAP

Figure 5.3-1

Simplified Block Diagram of Picture Processor

RESET

(oo | 7oLE)

/‘—\‘ KFFLULLSACTIVE>(#¥ MCLDMRI + % LDMRI)

P55 BUS

PSREQ(A)= (UPON EXIT) (=

PSREQ (A) <—|
INCREMENT OR ARI

IF GOING TO STATE /1)

. / .
\ J *FFULL‘A CTI‘/E .
¥ LOMR|» XMCLDIERI KFFLULL® ACTIVEL.
¥ LDOMRI #¥MCLDMRTI
-
\
¥ TRANSDATA »
TRANSDATA ¥ MCLDMRL# #LDMRI
Y Y
(o1) (11 h

cLear ps SUs e XTRANSDATA

(MCLDMRL +LDMRI)»

(No LOAD F1Fo)

_ TPANS DATA

(7F GoiNG TO STATE /5)

WAIT FOR DATA
FIFO-—-DATA

_ (MCLDMRI + LOMRI)TRANS DATA

FIGURE 4.3-3

L

(10 | rsQuesT)

)

)

TRANS DATA» ¥ MCLDMRI

¥ LDMRL

MAP INPUT STATE DIAGRAM

The Picture Processor contains eight, PSBUS, addressable,
control registers which control status, input, and output.

These eight registers are:

=
gl

MAOL Active Output Limit

MAOA Active Output Address

MAIA - MAP Active Input Address

MSR - MAP Status Register

MMSR - MAP Maintenance Status Register

MMRSR- MAP Maintenance Repeat Status Register
MMPAR- MAP Maintenance Prom Address Register
MMBUS- MAP Maintenance BBUS

z

0 N v BN
P

The eight control registers are defined in Section 2.3 of

the PS2 Reference Manual.

In addition to the eight control registers, the Picture
Processor contains two additional PSBUS-addressable port
registers. These registers act as input and output ports
when input or output is functioning as a passive PSBUS

device. The two passive port registers are:

1. MPIP - MAP Passive Input Port
2. MPOP - MAP Passive Output Port

The MPIP and MPOP are described in the PS2 Reference

Manual on pages 2-28, 2-55 and 2-56.

The Picture Processor also includes 256, non-PSBUS-

addressable, internal registers. These registers are

5-40

5.

3.

implémented as RAM Memory. They are used as parameters
and working registers by the MAP during point vector
transformation functions. They may be loaded from the
PSBUS during MAP execution of LOAD, or LOAD STACK
commands and may be output to the PSBUS.during MAP ex-
ecution of STORE or STORE STACK commands. These internal
registers are described in the PS2 Reference Manual on

pages 2-30 through 2-35.

The heart of the Picture Processor is the Matrix Arithmetic
Processor (MAP). This processor is used to perform point-
vector transformations, matrix concatenations, clipping,
viewpoint mapping, perspective calculations, hit testing,
etc. The MAP receives commands from the MAP Input Con-
troller, operates on data as specified by the command, and

outputs data to the MAP Output Formatter.

The MAP Output Formatter receives data from the MAP and
formats it as specified by MSR bits 9 and 8 (See PS2
Reference Manual, page 22) in preperation for output to a
PSBUS device.

MAP Input Controller - Active

The MAP Input Controller is the device by which the
Picture Processor inputs data from the PSBUS. It can be
programmed to be either an active device or a passive

device by modifications of bit 4 of the MSR. When operating

5.3.1.1

5.3.1.2

as an active device, the controller inputs data from

the PS address specified by the MAIA register. The MAIA
is incremented upon each PS address access; therefore,
commands and data from a PSBUS-addressable file will

stream into the MAP Input FIFO.

MAP Input FIFO

The MAP Input FIFO consists of a four word register file
which is simultaneously writeable and readable. The
FIFO is monitored for full or empty status by the MSR;
therefore, the program may sense the conditions of FIFO
by testing bits 14 and 13 of the MSR. When the Input
FIFO is full, further access to PS address locations by
the Input Controller is inhibited. When the FIFO is

empty further access to the FIFO by the MAP is inhibited.
The FIFO is implemented on sheet 2 of the 195119-600
drawings of the MAP BUFFER Card. Note the separate read

and write address inputs.

MAP Input Sequencer

When operating as an active device, the MAP input is
controlled by the MAP Input Sequencer. The sequencer
is a four state machine which implements the following

five tasks:

5-42

1. requests use of the PSBUS
passes the address specified by the MAIA
to the PSBUS

3. loads data from the PSBUS into the MAP
Input FIFO

4, controls automatic incrementation of the
MAIA register

5. allows a current PSBUS cycle to clear if
the program or the MAP changes the con-
tents of the MAIA '

The state diagram for the sequencer is illustrated in

Figure 5.3-3. The four states are:

State 00 - IDLE

State 01 - PSBUS Clear
State 10 - Request PSBUS
State 11 - Wait for Data

State 00 is the initial state of the sequencer. When the
MAP Input Controller is passive, this state is maintained;
however, when functioning as an active device, exit from

the "IDLE'" state sets a request for the PSBUS. The dispatch
from the "IDLE" state to the "Wait for Data' state occurs

if the FIFO is not full, assuming the MAIA is not to be
loaded. The MAIA may be loaded with a new address by

command from the MAP or by command from the user program.

The "Wait for Data'" state is maintained until the passive

PSCLK

FIFOFULL mlﬂ;

®PSREQ
KPSENT
PSADD

¥ PSWRT

PSDATA

KLOFIFO

Ly

L

24

L.

FROM

ACTIVE
DEVICE

—
——— =3

77

— e fe -

N

D
7
|

\MPIP
¥DDRESS

P
b Y

UGN DRIDURPU SUSEGIIORUpI SRNNpIIPIN S SN —

Y
~

£e

1 24

|
|
|

\ FIFO LOADED HERE

FIGURE &6-3-6

ACTIVE DEVICE WRITE 7O MAP PASSIVE INPUT PORT

device has data for the active Input Controller, unless
the MAIA is to be loaded. During the time the sequencer
remains in the "Wait for Data'" state, a PSBUS cycle is in
progress. The Input Controller gates the MAIA to the
address lines of the PSBUS upon receiving a grant from

the Bus Arbiter; the passive device gates the data onto
the PSBUS; and, the data is strobed into the FIFO upon
exit to the '"Request PSBUS" state. If a command to change
the MAIA content occurs when the passive device has data
on the BUS, the data is not loaded into the FIFO and the
"IDLE" state is entered. If the command to change the
MAIA occurs while in the '"Wait for Data' state and the
passive device does not have data on the PSBUS, the ''Clear
PSBUS" state is entered. The ''Clear PSBUS'" state is main-
tained until the current PSBUS cycle is complete. Upon
completion of the bus cycle the "IDLE'" state is entered
and the data from the bus cycle is not strobed into the

FIFO.

The "Request PSBUS'" state is maintained for only clock
period and, upon exit, sets another request for the PSBUS
only if going to the "Wait for Data: state. The '"Wait
for Data" state is entered only if the FIFO is not full
and the MAIA is not to be loaded; else, the "IDLE" state

is entered.

An example of the MAP Input Controller functioning as an

5-44

Parti
A

Parti
B

active device and fetching commands and data from a PS

Memory file is described in the next few paragraphs.

Suppose the data file as depicted in Figure 5.3-4 exists

in PS Memory.

1000
1001
1002
1003
1004
1005
tion 1006
1007
1010
1011
1012
1013
1014

4000
4001
4002
tion 4003
4004
4005
4006
4007

MOV

Ax
Ay
Bx

E

By

Cx

Cy

Dx

Ax
Ay

JUMP

400

0

E

MOV

Ex

Ey

Fx

Gx
Gy

HALT

Figure 5.3-4

RSR instruction with
a count field of 12
and a draw sequence
of M,D,D,D,D (061764)

8

RSR Jump command (002000)

RSR instruction with
a count field of 6

and a draw sequence
of M,D,D,D (061772)

RSR Halt command (000000)

PS Memory Data File

(92}

-45

Assume the data words Ax..... Gy define the points of a

square and a triangle as depicted in Figure 5.3-5.

7 Figure 5.3-5
Displayed Result of Data File

Notice that the file consists of two partitions. Partition
A from locations 1000 to 1014 contains an RSR, 2-dimensional
draw, sequence command of Move, Draw, Draw, Draw,... and a
count of 128. This partition also contains a JUMP command
to the MAP. When executed it will cause the MAP Input
Controller to fetch data starting at location 4000. Parti-
tion B contains the same RSR, 2-dimensional draw sequence
command but with a count of only 6. The 128 data words of

partition A define the points of the square and the 6 data

words of partition B define the points of the triangle.

The prcgram initiatized the MAIA to point at PS Memory
location 1000. At the beginning of a frame update, the
MAP Input Controller fetches the PS Memory location
pointed to by the MAIA and puts the contents in the MAP
Input FIFO. To do this the input sequencer requests the
PSBUS upon exit of state 00 to state 11. In state 11

the sequencer waits for the word from PSMEM location 1000
to settle on the data lines of the PSBUS. Upon exit from
state 11 to state 10 the word is strobed from the PSBUS
into the FIFO. The MAP itself waits in the Load RSR State
(see Appeﬁdix A, MAP Alogrithm) until the FIFO is not empty.
Since a word is in the FIFO, the MAP loads this word into
its Repeat Status Register (RSR). The Input Sequencer
tries to keep the FIFO full by accessing PS Memory locations
and loading the data into the FIFO. This is accomplished
by the input sequencer executing the loop consisting of
state 10 and state 11. The MAP tries to empty the FIFO

by unloading the FIFO contents and operating on the data.
There will be a time when the MAP fetches the JUMP command
from the FIFO. This JUMP command will be loaded from the
FIFO into the RSR thus causing the MAP to execute the JUMP
states of its algorithm. The JUMP command causes the MAP
to fetch the next word from the FIFO and load it into the
MAIA register; therefore, 4000 is fetched from the FIFO

and loaded into the MAIA. The input will be in either state

5-47

10 or state 11 when the MAP issues the MAIA load signalj;
thus, dispatching the input sequencer to either state 00
or state 01 depending on whether the PSBUS is clear or
not. The load signal, *MCLDMRI, also clears the FIFO,
therefore the input sequencer has an empty FIFO for the
next command fetched from the PS Memory location 4000.
At this point the MAP has received the data for the
square and is waiting for the RSR Move command and data
for the triangle. The Input Sequencer fetches the RSR
Move command, data, and the Halt command, and the MAP
unloads the commands and data from the FIFO. Upon ex-
ecution of the Halt command, the MAP waits for the pro-

gram to initiate the next frame update process.

The implementation of the MAP Input Sequencer is shown

on the MAP I/0 Sequencer drawing, 195118-600, sheet 3.

The four states are derived from two bits of the register
in location 41. ISTATEA is the LSB and ISTATEB is the MSBQ

(Refer to Figure 5.3-3, MAP Input Sequencer Diagram).

MAP Input Controller - Passive

When operating as a passive device, the MAP Input Sequencer
is always "IDLE": Data transfers to the MAP Input Controller
occur by an active device writing data to the MAP Passive
Input Port (MPIP=177777). The MAP Input Controller passively

waits for data directed to the MPIP and synchronously loads

5-48

the FIFO during the data cycle of the PSBUS. The timing
diagram of Figure 5.3-6 illustrates an active device writing

data to the MPIP.

The PSWRT line from the PSBUS is input on sheet 1 of the
195121-600 drawing. The MPIP address is decoded by bug

15 on sheet 2 and the PASIN bit of bug 26 is set at the
beginning of the PSDATA period of the data transfer cycle.
PASIN is input to the MAP I/0 Sequencer Card, 195118-600,
sheet 3, and generates LDFIFO. LDFIFO is input to the

MAP Buffer Card, 195119-600, which contains the FIFO.

; r@é‘Sf?‘

NEXT & ET 5L
VEST oL STA T
ST 7E
(P LA TE
Lse) — l
DIELD T
COLN T/ on 252
Y, STH7E l
Z.b :
GESOL LT DE T E
NP T NPT
ST TS LT TES
Yy v % %
Ve o2
ATy THLY
STOTES
PIDES DY [T =
ST TES
NN DO
STHTES

&

PELSPE T/ /=
T TES

Yl
=

LT T R
oL LT ,'-:75:// e,

1.7

o — -
e
s

Sl

SHGPLIFIED PELTIZLE N4 STE7E D/ 58400

= 2=

5.3.3

5.3.3.1

RSR Register and Update PROM

The Repeat Status Register (RSR) is the command register
to the MAP. The register contains three fields as described
on page 2-36 and 2-50 of the PS2 Reference Manual. The

three fields are:

1. COM-------------~ Command field (bits 15,14)
2. FUNCTION/-------- Function field for '"Control"
FSM1-FSM2

commands, or Finite State
Machine fields for "DRAW"
commands (bits 13-8)

3. OPERAND/COUNT----Operand field for some
"Control" commands, or Co-
ordinate Count field for
"DRAW" commands (bits 7-0)

The Update PROM sequences the Finite State Machine fields
through patterns defined by the contents of the RSR at the

beginning of a new DRAW command to the MAP.

GET RSR State

In the MAP algorithm exists a state which enables the FIFO
to the BBUS and loads the RSR with BBUS data. This state

is called the '"Get RSR" state (See Appendix A, MAP Algorithm).
Upon '"getting'" an RSR, the MAP algorithm decodes the COM and

FUNCTION/FSM fields, then branches appropriately.

5

50

5.3.3.2

Control and DRAW Commands

There are two basic types of RSR Commands:

1. RSR "Control" Command

2. RSR "DRAW" Command

The COM field of the RSR word determines the command type.
If COM = @, the command is '"Control'. If COM # 0, the

command is a "'DRAW'".

Thirteen "Control' commands are defined by the FUNCTION
field of the RSR word. These Control commands are described
in detail on pages 2-37 through 2-48 of the PS2 Reference

Manual.

The three "DRAW'" commands are:

1. 2DDRAW - Two dimensional draw command
3DDRAW - Three dimensional draw command
4ADDRAW - Four dimensional draw command

The "DRAW" commands are defined in detail on page 2-51 of

the PS2 Reference Manual.

The 2DDRAW command operates on data defining vector points
in an X,Y plane. The 3DDRAW operates on data points in

X,Y,Z space; as also, does the 4DDRAW; however, 4DDRAW

5.3.3.3

vector points are defined by elements X,Y,Z and W. The
W element of each point is a scaler for that point. When
the MAP processes 4DDRAW data, it eventually devides the

X,Y and Z elements by the scaler, W.

Drawing Seguences and Data Interpretation

A1l RSR "DRAW'" commands have an associated drawing sequence
and coordinate count as defined by the FSM and COUNT fields.
Each time the '""DRAW' command is performed on a point vector,
the FSM1 and FSM2 fields are updated while the COUNT field
is incremented. This provides the capability of performing
pattern sequences of Moves and Draws (M,D,D,D, ... or M,D,M,
D ..., etc.) as well as interpret data as Absolute or Rel-
ative points on a given number of vectors defined by the
COUNT field. An original RSR "DRAW'" received from the FIFO
by the MAP contains a negative number (in Two's Complement
form) residing in the COUNT field. The FSM2Z field contains
a number defining the sequence pattern in which the MAP

will interpret incoming vector points (either as Absolute

or Relative data points). Example: A,R,A,R... A,R,R,R...
R,R,R,R, etc. The FSM1 field contains a number defining the
sequenée pattern of Move or Draw commands and the MAP will
operate on point vectors accordingly; thus outputting data
to the Picture Generator in a sequence defined by the Move-

Draw pattern.

5.3.3.4 Drawing Sequence Example

Consider the square of Figure 5.3-7 with sides 20 units

each and the lower left vertice offset from screen center

by 50 units.
_————— - <
20 A /N
-L — N
A | ’
| |
i i
50 :‘_20 It

0,0
ORIGIN

Square Offset From Screen Center

Figure 5.3-7

The RSR command and associated data file input to the MAP

may be defined as illustrated in Figure 5.3-8.

-53

(¥a]

051773 2DDRAW (A,R,R,R... M,D,D,D...COUNT = - 5)

50 Ax (Absolute)
50 Ay (Absolute)
20 Bx (Relative)
0 By (Relative)
0 Cx (Relative)
20 Cy«(Relative)

-20 Dx (Relative)
0 Dy (Relative)
0 Ax (Relative)

-20 A¥ (Relative)
0 Halt

Figure 5.3-8
RSR Command and Associated Data File for a Square

A simplified diagram of the MAP states executed is illus-
trated in Figure 5.3-9.

Execution of the RSR command and input of data by the MAP
is described in the following sequence of events.

1. The MAP inputs the RSR, decodes the COM and FSM
fields, and executes the '"Absolute Input States"
where Ax and Ay are input as absolute data de-
fining point A.

5.3.3.5

2. Point A is transformed in the "Vector Multiply
States'" checked against a defined window, put
in perspective, and output. Point A is output
with a Move command to the Picture Generator.

3. The FSM and COUNT fields of the RSR are updated
in the "Next Vector State', the updated RSR is
decoded and the '""Relative Input States' are ex-
ecuted to input data for point B.

4. The MAP loops through the "Relative Input, Vector
Multiply, Perspective, and Next Vector' states
until Draw commands with points B,C,D, and A
are output to the Picture Generator.

5. After the Draw from D to A which closes the square,
the MAP is in the '"Next Vector State' with a COUNT
= - 1; therefore, the command has been executed
the specified number of times. The MAP enters the
'""Get RSR State'" to input the next RSR command from
the FIFO.

RSR/Update PROM Hardware Description

The COM field and FUNCTION/FSM field of the RSR (bits 15-8)

are implemented by the dual input registers in bug locations
24 and 33 on the 195120-600, sheet 4 drawings. The Update

PROM is in location 23. The FSM1 and FSM2 fields out of the
register address the Update PROM. The Update PROM outputs a
modified LSB for each of the FSM fields. The Operand/COUNT
field (bits 7-0) of an RSR word input to the MAP are loaded

into a counter (AC3) during execution of the ''Get RSR" state

5-55

5.3.3.6

5.3.3.7

of the MAP algorithm. This counter exists on the 195114-600

drawing, sheet 3, implemented in locations 52 and 47.

Reading the RSR

For a user to read the RSR, the MAP must be in either the
""Get RSR" or '"Next Vector'" state. While in either of these
two states, the counter, AC3, is gated to the MAP RAMADR
lines (MAP internal storage address). During the read cycle
the RSR address from the PSBUS is decoded on the MAP Address
Card, 195121-600 sheet 2. The decoded RSR address (177755)
generates *GATRSR if the read line of the PSBUS is inserted.
*GATRSR enables RAMADR to the lower *PSDATA lines (see sheet
5 of 195131-600). Also, the COM and FUNCTION/FSM fields of
the RSR register are enabled to the upper address lines (see
sheet 6 of 195120-600). An example of reading the RSR via
the Direct I/0 is illustrated by the flow chart of Figure

5.3-10.

Writing the RSR

When writing the RSR via an active device such as the Direct
I/0, the MAP Input Controller must be passively waiting for
data in the '"Get RSR" state. The data is directed to the
MPIP; therefore the first word to the MPIP is loaded into
the RSR. The actual signal (*MCRSRLOAD) which loads the RSR
is generated by the MAP algorithm controller during the "Get

RSR'" state. If the RSR is loaded with a '"Control' command,

CE/{//"'Z'/Q)

¥

SE T ESL2 /‘/‘0447*
S ET VECTORL LOLD

s SET LIS T
42 /I
7S <=

s TESTLIST
IS NTEL

L EFTL2
£S5 2

(/e,f rae@

AIEUEE 5, F-/0 LEFLO LSL FLOW £/ SL4/07

3.

the algorithm will return to the "Get RSR'" state; however,
if loaded with a "DRAW" command, the MAP will wait in
certain states for drawing data. An example of writing
the RSR via the Direct I/0 is illustrated by the flow

chart of Figure 5.3-11.

Extend Register

The MAP is a 24 bit machine which operates on point vectors.
The elements (X,Y,Z,W) of the point vectors are defined each
by a 16 bit word. During arithmetic operations, 16 bit
precession will not insure picture quality; therefore, the
MAP maintains 24 bit precession throughout all calculations,
and all MAP parameters, working register, etc...are 24 bit
registers. The user has the option of loading MAP parameters
in either 16 or 24 bit precession. Since the PSBUS and MAP
Input FIFO accommodate only 16 bit words, %he Extend Register
is used to format data from two, 16 bit, input words into a
24 bit word for loading MAP parameters. Also, the user has
the options to store MAP parameters in 16 or 24 bit preces-
sion. In the 24 bit case, the Extend Register is used to
format data from a 24 bit MAP word into two, 16 bit words

for output to the PSBUS. Figure 5.3-12 illustrates formatt-

ing for a 24 bit load and 24 bit store.

To load a MAP parameter in 24 bit precession, the MAP inputs

word 1 from the FIFO and loads bits 15-10 and bits 1-0 into

(evree)

LESE T
AreroeE
SYsS7TE M

L NALLE
T E
NS 2

LS TE
Y, AV =

C@f;afe/@

5L T B/7 /3
N TOST
CEE /S 7EL

JCLEALAR B/ s
L2 OF AIM5E

TG EE L F-) AL/ TE LSL FLOW O/AGSEA]

S e .

INPUT WORD

4

INPUT WORD -

MAP WORD

.24 BIT MAP LOAD 'FORMAT

23 22 2]¢

bé

MAP WORD

54——>¢ |

s e ——— e—— -

OUTPUT WORD 2

|5 s lcb

////

OUTPUT WOR D l

24 BIT MAP STORE FORMAT

-

—p—

9

INPUT

7 WORD

Y

~Sa,

A

/

A

N\ N

2] =2

= O

5 aw §| MAP WORD

16" BIT MAP LOAD FORMAT R

'MAP WORD

OUTPUT WORD

23| 22|zl G 5
i d — | ’
: p \
6 o
16 BIT MAP STORE FORM/-}T

'FIGURE’ 5.3-12

—— ees we e - b

~MARP

LOHD/STORE WaRD FORMAT |

the Extend Register; therefore the Extend Register contains
the upper two and lower 6 bits for the 24 bit MAP word. Next,
the MAP inputs word 2 from the FIFO, gates the Extend Register
and word 2 onto the BBUS, and strobes the 24 bits into the
specified MAP parameter. The MAP performs a similar process
when outputting a 24 bit word to be stored in two 16 bit
words. Data flow for a 24 or 16 bit I/O is illustrated in

Figure 5.3-13.

If a 16 bit precession load is executed, the data word from
the FIFO is gated to BBUS bits 21-6, bit 21 is smeared into
bits 23 and 22, and the Extend Register output is disabled
to #. The result is a 16 bit sign extended word with trail-
ing zeros on the BBUS. The Extend Register circuitry 1is

implemented on the 195120 card, (See sheet 6 of the drawing).

- %PSDATA(I15-0)
O /8 é

EXTEND

Y -
| N

OMHM |j=3

o 8

~.

BBUS (23-¢)

- .

A SN

FIGURE 5.3-13 DATA FLOW BLOCK DIAGRAM
OF EXTEND CIRCUIT

Matrix Arithmetic Processor (MAP)

The MAP is a semi-specialized arithmetic processor unit
capable of receiving data in 16 bit words, packing data

into 24 bit words, and performing the following arithmetic

functions:
1. addition
2. subtraction
3. multiplication
4. reciprocation
5. normalization

These arithmetic functions are used to implement the necessary
equations which transform defined point vectors from the Data
Space Coordinate system to the Screen Coordinate system for

output to the Picture Generator.

The MAP is classified as semi-specialized since it contains
the necessary bus structure along with the necessary data
storage area, counter, comparators, registers, multiplexers,
programmable control, etc... to be micro programmed for

implementation of a specialized algorithm.

Typically the MAP is loaded with an initial transformation
matrix. This initial matrix is usually the Idenity Matrix;
therefore, if used to transform a point, the transformed

point is identical to original point.

[P:!.[I]=£P'] and P=P'

5-59

The user may restrict display of the visual results to a
defined area on the CRT by setting up a viewport in Screen
Coordinates. The viewport is defined by loading six par-

ameters in the MAP. These six parameters are:

Viewport x 1/2 size
Viewport x center
Viewport y 1/2 size
Viewport y center
Viewport z size
Viewport z front

The six parameters define a rectangle as well as a beam
intensity range in the z axis (see Figure 5.3-14).

!

» - S -
Xg = ey s e T
")f’;y/ € - ‘ P - ~
Tppe " ,’*"7:1;1.‘:'\)"7—“ AR
o VIEWPORT
T Roa s Lot PuAs !
1
Chech oF {m PERESR SRRV G
| gy seaE _¥ SCREEN
e or CRT

“1-F <

KRN RAN

-ZLX512£ / , \
‘ |
|

CENTER Y CENTER \

Figure 5.3-14
Viewport Example

5-60

When the MAP is pre-loaded with an Idenity Matrix and a
defined viewport, all transformed data is perspectively
mapped into the defined viewport; and, since the viewer's
eyepoint default to minus infinity, the MAP output to the
Picture Generator consists of an orthographic view of the

complete set of vector points defined by the input data.

The user may not want to visualize the entire set of

point vectors defined in the data space but only those
within a defined area. 1In this case, the MAP transformation
matrix is concatenated with a WINDOW matrix which defines

a truncated pyramid known as the Frustrum of Vision or
“window. All vectors falling in the window are to be vis-
able and all vectors falling outside the window are to be
non-visable. This enables the user to translate objects or
zoom the eyepoint and visualize only data seen through the
window. Figure 5.3-15 illustrates a Frustrum of Vision

defined by six window parameters.

Transformation of a point vector by a WINDOW matrix scales
the point such that the x,y, and z element of the point can
be checked against the element w to determine if the point

is in or out of the Frustrum of Vision. Figure 5.3-16 illus-
trates transformation of a point P and the six window checks

performed on the transformed point P.

The checks are performed simultaneously on both the previous

point and the new point; therefore, for each check the MAP

5-61

WE=ELYE FPos/7704/

AT =NILDL 7O~

HB =L/ Doy 07700
L=/ OOUN LE~T
W =WINDOA R2IGHT
WH= WIS LI A THERL
U Y = N OO YOA]

UGl LE S5 5-/5

v

ARUSTREUAT OF V/S/ O S/HHIKING THE EYE
LOS) TV/ON IS CELATION 70 AN ALBITRALZY

COOLIO/I/ATE AXIS

determines whether the line between the two points needs

clipping.
(3|~ |- (7]

P =x,y,z,w

P' = X',y',Z',W'
1. x' - w'<g in side of Right plane
2. x'" + w'>f in side of Left plane
3. y - w'>{¢ in side of Top plane
4. y' + w'>§ in side of Bottom plane
5. z' - w'<§ in side of Yon plane
6. z'>@ in side of Hither plane

Figure 5.3-16
WINDOWING a Point, P

Figure 5.3-17 illustrates a line between two points, Previous
and New, with a defined window. Four cases are illustrated.
For each of the six equality checks, the MAP observes the

following rules.

1. If the x,y, or z element of both points is outside
the window plane, then both points are outside the

Frustrum of Vision. Input the next point.

2. If the checked x,y, or z element of both points
is inside the window plane, then check the next

element.

3. If the checked x,y, or z element of one point is
inside and the element of the other point is out-
side, the line intersects with the window; there-
fore clip the line against the appropriate window

plane, then check the next element.

- Y /ﬁ‘v
P__ﬂ N P
N
P F/

Figure 5.3-17
Lines between Previous Point and New Point with a Defined Window

Upon finding a line segment within the window, the MAP saves

the New Point, perspectively maps the previous point into

the viewport, maps the New point into the viewport, assigns
the saved New point to Previous point, and inputs the next

point vector.

The MAP receives commands and data from the MAP Input
Controller. An input command received in the RSR register
is decoded and appropriate action taken by the MAP which
sequences through states as defined in the MAP algorithm
(see Appendix A). Execution of command specific and data
specific states is determined bf the COM and FUNCTION/FSM
fields of the RSR.

"Control'" commands direct the MAP as follows:

1. Load or store MAP parameters.

2. Initiate jumps or subroutine jumps within
a MAP input file.

3. Relocate data within MAP internal storage.
4, Save or recall MAP transformation matricies.
5. Concatenate the MAP's transformation matrix

with input matricies.

"DRAW" commands direct transformation of input point vectors

by initiating the following MAP functions and transformation:

1. Windowing
2. Clipping
3. Rolation

4. Translation

5. Scaling

6. Viewport Mapping

Data associated with a DRAW command is input to the MAP in
2,3, or 4 dimensional space. The FSM2 field of a DRAW
command directs MAP interpretation of input data with respect

to the data space origin.

The FSM1 field directs MAP interpretation of point vectors

as to being either ''set point" or lines.

The MAP outputs data as screen coordinates to the MAP Output
Formatter. There is a special mode of operation, where

some MAP functions are ignored and input is simply passed

to the formatter. This mode if operation is used to pass

character data and Line Generator status through the MAP.

5-65

5.3.5.1 MAP Data Store and ALU Unit

The MAP Data Store and ALU consist of the following:

1. 256 x 24 bit RAM Memory Data Store

2. Three MAP Support Registers

MAP Buffer (MB)

Multiplicand Register (MDA)
Accumulator (RA)

3. Arithmetic Logic Unit (ALU)

The Data Store and ALU Unit is implemented on two 195116
cards each comprising a 12 bit slice of the unit. Figure
5.3-18 illustrates a block diagram of the Data Store and

ALU.

The 256 x 24 bit RAM Memory is addressable only by MAP
control; therefore, to write or read the memory, the user
must issue LOAD or STORE commands to the MAP. The memory
is used by the MAP as a parameter and register file for

MAP calculations. These parameters and registers are:

Input Registers (X,y,z,w)
Base Registers (X,¥Y,z,wW)
Output Registers (x,y,z,w)
Save Register (x,¥y,2,w)
Viewport Parameter

(@)W 2 B S A S

Working Register

5-66

24, A BUS I
§ '

4 Py Y <— REGISTERS WITH
8 MB MDA A INTERNAL 2-) SELECTOR
RAMADR @._7£_..256 woro

X

2y 5T A24 l

MEMORY | st a0 ; 2% -© MSMDA

24 | |
!
88U O ® 2‘? T A2¢+
AP O 2 ’r';/

GBUS 24 /
(ALL)

C BUS

FIGURE 53 -/8

DATA STORE AND ALL BLOCK DIAGRAM

7. Transformation Matrix Address Register
8. New Clip Register (x,y,z,w)
9. Clip Save Register (x,y,z,w)

10. Transformation Matrix Registers

11. Matrix Stack Register

These parameters and registers are defined in detail in the
PS2 Reference Manual, pages 2-32 through 2-35. The three

MAP support registers are used to buffer operands intb the
ALU. The MDA register also buffers the multiplicand operand
to the MAP's multiplier. The other operand is buffered else-
where. During MAP operation, parameters and data are output
from the RAM Memory to the ABUS. Note that the ABUS drives
the input to the MB, MDA, RA, and also may be gated to the
BBUS. The ALU receives one operand from the GBUS: the
mﬁltiplier's output (MMP), the RAM Memory, the (MB), or

the MDA. The other operand to the ALU is input from the RA.
This structure provides a versatile mechanism which is used
to process MAP arithmetic functions. For example to trans-
form a point P, with elements x,y,z, and w, the MAP multi-
plier outputs 16 products on the MMP lines. The 16 products
are summed in groups of 4 to calculate the transformed point

x',vy',z', and w'.

Too To1 Toz Tosz
T. T.. T.. T
(x ¥ 2 W) 10 111 1z sy
To0 To1 To2 T3
T30 T31 T3z T3
. o

5-67

20 30

01 21 31

02 23 32

23 33

The first product from the Multiplier is passed through the
ALU and stored in the accumulator, RA. The second and third
products are summed with the RA then restored back in the RA.
The fourth product is summed with the RA then the total sum
of four products stored in RAM Memory as x'. The remaining

elements (y',z', and w') are calculated and stored similarly.

Another example of the flexability of the Data Store/ALU
unit is the perspective calculation performed by the MAP.
To put the x' element of a transformed point into viewport

perspective, the following equation is implemented.

Xl
X = =, VSX + VCX
s w
where: X, = X in screen coordinates
VSX = Viewport size in X
2
VCX = Viewport center in Xx

In actural implementation, the MAP fetches x' from RAM
Memory, stores it in MRA, reciprocates w, and stores it in MDA.

MRA and MDA are inputs to the Multiplier. The Multiplier re-

5-68

turns %: which is gated to the GBUS, passed through the ALU
to the CBUS, and loaded in MDA. The Viewport parameter VSX
is fetched from RAM Memory and loaded into MRA. The Multi-
plier turns the produci,<§i .VSX) which is gated to the GBUS
as one input to the ALU. Simultaneously, the MAP fetches
the Viewport parameter, VCX, from RAM Memory and loads it
into the RA as the other operand to the ALU. The ALU re-

turns the sum

%:. VSX + VCX

on the CBUS which 1s loaded into MDA. MDA now contains X

which is a viewport mapped element in the Screen Coordinate
system. All register loading, data multiplexing, RAM Memory
addressing, etc... is controlled by the MAP algorithm im-

plemented as Micro code in the MAP Control Store.

5-69

5.%3.5.2 MAP Address Counters

Four MAP address counters (AC§ - AC3) implement the following

functions:
1. control loops in the MAP algorithm
2. track the current coordinate count for a
given RSR command
3. control addressing of the MAP's internal

RAM Memory

The address counters and associated data paths are illus-

trated in the block diagram of Figure 5.3-19.

Use of an address counter to control a loop in the MAP al-
gorithm is accomplished by loading the counter with a
negative number from the MAP Control's DOIT Register upon
entrance into a loop, incrementing the counter within the
loop, and checking the counter for -1 as a dispatch con-
dition out of the loop. Note on the block diagram, MCREG
is eight bits from the DOIT register. The counters are
implemented with 93S16 chips which have a look ahead carry
output; therefore, examinations of the carry output deter-
mines if the count is equal to a -1. For an example of
an address counter (AC2) used as a loop controller, see
the '""Output New Vector'" routine in the MAP Algorithm

(Appendix A).

MCREG B BUS

©

8 A 24

COUNTERS AC3 ACR AC) Acd
Y8 A8 A8 A8
L)
A8 /
MCREG ADR

J{a l

L
TRANSPOSE 4
LoG/e Y8

[

i;a

RAMADR

ADDRESS COUNTERS AND ASSOIATED LDATA FATH BLOCK DIAGRAM
FIGURE 5-3-/9

Also, in the MAP Algorithm, AC3 is used to track the current
coordinate count of an RSR command. During the "Get RSR"
state, AC3 is loaded via the BBUS with the Count field of

an incoming RSR command. AC3 contents are incremented and
checked against a -1 upon exit from the '"Next Vector'" state.
If the coordinate count has run out (AC3 = -1) the '"Get

RSR" state is entered to input a new command. If more co-
ordinates remain to be processed (AC3 #-1) the '"Dispatch"
state is entered to reiterate executions of the command for

another set of coordinate data.

Use of an address counter to sequence addressing in the

MAP's internal RAM Memory consist of loading a counter

with a beginning address via the MAP Control's DOIT register,
gating the counter to the RAM address lines (RAMADR), and
incrementing the counter to the next address. For an example,
see the "Absolute Input" routine in the MAP Algorithm. Note
that in state 2 of the routine, a § from the DOIT register

is not only gated as input to AC@, but also gated to the RAM
address lines. This enables simultaneous addressing of the
RAM and initialization of the address counter. The counter
is incremented in state 3 and gated to the RAM address lines
again in state 4. In this example, AC2Z is also used as a
loop counter since it was initially loaded during the ''Dis-
patch" state with the number of words to be input for an in-

coming vector.

The counters and their associated data path are implemented

on the 195114 card.

5.3.5.3

Normalize Sense

MAP arithmetic operations treat all numbers as two's complement,

signed (fixed point) fractions. The 24 bit MAP word is an ex-

tention of a two's complement fraction. Figure 5.3-20 illus-
trates the 24 bit MAP word extended from a basic, 16 bit,
PICTURE SYSTEM word. Three sign bits are maintained in the
MAP word to preserve sign during MAP transformation operations
which sum four products from the array multiplier. In the
process of summing four binary numbers, overflow of two bits
may occur. Consider the transformation of the point P by
the matrix T resulting in the transformed point P'.

[PJ T = {P]

where: P = x,y,z,w
and P'" = x',y',z",w’
The transformed elements of P' are defined as:

x' =x'T + y°T + 2z'T + w'T

00 10 20 30
y'o= xTTyp 2y Ty 27Ty v wiTyy
2" = x" Ty + ¥y Ty + 27Ty, + wiTsg,

w' = x'TO3 + y'Tl3 + z'T23 + w’T33

x',y',z', and w' may result in very small positive or negative

fractions such as the two following examples:

5-72

EXTENDED
FRACTIONAL

FRACTIONAL BITS BITS
A N
- ’ 4 N
22/22/21| 20 = = 5|5 w—s O

BINARY POINT

SIaN BIT -

EXTENDED
SIGN BITS

F:IG:LJQE 5.2 - 20
SIGN EXTENDED 24 RIT MAP WORD

000.000000000000000100101
111.1111111111111111011001

Unless normalized, accuracy will be lost during later view-
port and perspective calculations. The perspective equation
divides x',y', and z' by w'; therefore, x',y',z', and w' may
be left shifted all the same amount without effecting the
perspective results; however, more accuracy will be main-

tained.

Upon summing four products of the transformed element x',
the Normalize Sense logic determines the left shifts re-
quired to properly normalize x'. This shift code is saved
and compared with the shift code to normalize y'. ‘The
min%mum of the two is saved and compared with the code for
z' and so on.... Upon completing the transformation of
the point, the Sense register contains the minimum shift
code of the four elements. All four elements will be
normalized by the MAP normalizer according to the minimum

shift code in the Sense register.

Figure 5.3-21 is a block diagram illustrating the Normali:ze
Sense logic. The 1's complementor examines the upper sign
bit (bit 23) and complements bits 22-0 if the number is
positive; therefore, both positive and negative numbers are
treated the same by the sense logic. The sense logic cal-

culates the left shift code required to properly normalize

‘\\ L4
, i 25

l's
COMPLEMENTOR

22

NORMALIZE
SENSE

5 | SENSE | £o
\ | REGISTER

\ " 5
| N 2 + \\5

FIGURE 5.2 -2 MASH FC
NORMALIZE SENSE BLOCK DIAGRAM

5.3.5.4

the number. Notice the comparator and Sense register
mentioned in the preceeding paragraph. The Normalize
Sense logic is implemented on the 195114-100 card (see

sheets 1,2,4, and 5 of the logic drawings).

Normalizer

The MAP's normalizer receives a 5 bit shift code and a
24 bit number to be normalized. The shift code is de-
coded, and the input number from the MRA register is
shifted left accordingly. Therefore, a shift code of 5
will left shift a 24 bit number 5 places and bits 4-0
of the result (NMR) will contain zeros. The normalizer
is implemented on the 195113-100 card (see sheets 1-5

of the logic drawings).

5.3.5.5

Array Multiplier

The Array Multiplier achieves high-speed multiplications by
using purely combinational logic. This circuitry consists
of an array of multiplier and adder chips. When presented
a multiplicand and a multiplier, the circuitry produces a
product without use of any additional control signals. The
multiplier chips (AM25S05) implements Booth's Algorithm

which is discussed thoroughly in the Schottky and Low-Power

Schottky Bipolar Memory, Logic and Interface Manual pub-

lished by Advanced Micro Devices, Inc. For an in depth
understanding of binary multiplication read pages 5-54

through 5-63 of the above mentioned manual.

The Array Multiplier receives a 16 bit multiplier (NMR)
and a 20 bit multiplicand (MDA). The product is truncated
to 24 bit. This 24 bit product includes 3 sign bits (bits

23-21).

The multiplier is input to the y(15-0) lines of the 195111-
100 and 195112-100 cards. The multiplicand is input to the
X(19-0) lines. The Array Multiplier block diagram (195111-
900) illustrates the MSB and LSB sections of the array. Al-
so note the partial product adders illustrated in the block

diagram.

5.3.5.6

Reciprocation

The Matrix Arithmetic Processor (MAP) must be capable of
performing division. Consider the perspective equation:
x' Vr-V1 Vr+Vl

Xs T w7 " Tz Y T2

n

where: X

S element of the transformed point

(x', y', z', w') put into perspective screen

coordinates.

Vr, V1 = right and left viewport boundaries in

screen coordinates.

The division required to calculate Vr-V1 and Vr+Vl1
2 2

can be accomplished simply by performing a right shift of
one bit on the quantities Vr-V1 and Vr+V1. However, x' and
w' are not whole numbers; therefore, the arithmetic division

function must be employed to calculate X

The equation can be rewritten as follows:

_x'-w' , (V1-Vr) + Vr
X, = =757
S -2W

In general,; to implement the divison of %, the MAP takes the

reciprocal of b and multiplies it by a:

Therefore, to solve the perspective equation, the MAP finds

the reciprocal of -2w and multiplies it by (x'-w').

Newton's Method of Reciprocation is used by the MAP to find

the reciprocal (R) of the number (D). The equation is:

R2 = 2R1 - R1%.D

Where R1

a first guess for the reciprocal R.

R2 the calculated, more accurate, second

approximation of R.
In order to ensure convergence, D must be normalized:
.5¢ D <1 or -.5>-D> -1

The numerator must be normalized the same amount as D to
ensure the proper answer. That is, if D is shifted N bits
in normalization, the numerator A must also be shifted N

bits since:

A.ZN (normalization is equivalent to
N multiplication by a power of 2)

Now the equation used in Newton's Method can be derived

as follows:

therefore:
T -D=0

and we can write:

f(R) =

Now using Taylor' method of expanding polynomials:

F(x) = f(a) + fi%a) . (x-a) + f'Z’I(a) Lo(x-a)iaa.. ..

L0 DG ke), x-a)?
(n-1)! n!

and disregarding all terms higher than the first order and

also equating a=R1 (first guess), we can write f(R) as:

f(R) = £(RL)+£'(R1)*(R-R1)=0

Now the derivative of f(R1) is f'(R1l).

f'(R1) = £

and if we equate R=R, (Rp= second approximation), then we

can write:

£(Ro)= == -D + I - (Rp-Ry)=0
R, 12
-1 _ 5. R 1
PRI ES
=2 _pn . R _
=Rr, D g2 0

=2R; - R, - R12:D=0
and solving for R, we have:

Ry = 2R; - R1?+D
which is Newton's equation.

The hardware uses two ROMs, the R; ROM and the R;? ROM. Each
ROM is 256 words. Both ROMs are addressed by D;.therefore,
to find the reciprocal (R) of the number D, the hardware
simply has to address the ROMs by D, form two terms 2R; and
-DR;?, and sum these terms. The ROMs are located on the

195113-100 card (see sheet 6 of the logic drawing).

5.3.5.7

MAP Control Store

The MAP Control Store consists of a ROM (RAM optional)
controller which implements the MAP Algorithm. Figure
5.3-22 is a block diagram illustrating the MAP Control
Store. The 256 word x 96 bit ROM output is buffered in
the DOIT register which drives the control lines in the
MAP. Sixteen bit sections of the DOIT register may be
gated to the BBUS to enable reading the contents of the
DOIT. 1In the case of the optional RAM controller, the
Control Store may be loaded during maintenance mode by
loading the DOIT and writing the DOIT contents into the

RAM.

The next state of the ROM algorithm is determined in

one of six ways:

1. If going to the next vector state, 377 gated
to Control Store address.

2. If in subroutine return state, subroutine
address gated to Control Store address.

3. If in main Dispatch state, Dispatch ROM
gated to Control Store address.

4. If in a non-dispatch state, Next Buffered
Address field of the DOIT gated to the

Control Store address.

5. If in a normal dispatch state, dispatch

—u— FOR OPTIONAL

(/Rom aDDRESSFROM \ Y. RAM CONTROL
| | ADDRESS £ DISPATCH ;% | STORE.
| LOGIC =~ |)
y B, |CONTROL STORE .
4 agMDA@) - ROM / RAM 48

196 |

I DOIT
A
4 7 \ D
; fie Y16 Yie Yie Y6
(I ITr I TIrT)y
L \ L)
RE |) |
BN Y16 6 Y16 il@ ‘i Y6 ! ||
MAP - || ¥) ' ' | & MA P ,
CONTROL™ . " > (CONTROL
LINES ™ ¢ * =] LINES
(48) (48)
[O5 115 - (PO/IO1 CARDS
B L
TO BBUS -

FIGURE D.5-22 CONTROL STORE BLOCK DIAGRAM

condition (one bit) exclusive ored with LSB
of DOIT's (NBADR) and results gated to Control
Store address.

6. If in maintenance mode, MAP Maintenance PROM
address register gated to Control Store address.

The next state determination scheme is illustrated by the
Control Store address and Dispatch Block Diagram of Figure

5.3-23.

If the MAP is in a non dispatch state, the next state base
address (NBADR) from the DOIT is selected to address the
Control Store's next state. If the MAP is in a dispatch
state, the LSB of NBADR is exclusive ored with a selected
dispatch condition, then the result plus the other seven
bits of NBADR are selected to be the next state. The dis-
patch condition is selectéd by four DOIT bits determined
by the present state. The MAP algorithm calls subroutines
by dispatching to the subroutine and saving the NBADR in
the Subroutine Return Address register. To return from
the subroutine, the saved NBADR from the return register
is selected to be the next state address into the Control
Store. State 377, the Next Vector state, is hard wired
into the 4 to 1 selector. To enter the Next Vector state,
377 is selected to address the Control Store. A main dis-
patch ROM is selected when dispatching from the main dispatch

state where the current RSR command is decoded. During the

8

N2LDR(1-8) S i FROM DATA LINES
IEY — -
(NEXT BASE ADDRESS FROM DAIT) 8 OF PSBUS
MAP DISPATCH | SUBROUTINE
CONDITIONS /7 RETURN
e ADDRESS REG.
4 ¥ =
MC(A-D)>—= |8 lg
- CONTROL
DISPATCH SELEC'r). ROM ADDRESS
FROM DOOIT L REAISTER
N S
\ 7 ADDRESS OF)
NEXT VECTOR STATE,
' "277
a MAIN
ROSR (@-7) >+ DIE‘:QPACA‘ CH ! I
O y
ADDRESSED BY = = TO
REE COMMAND | CONIEOL
FIGURE 5.3- 25 8 - & ADORESS
CONTROL STORE ADDRESS = MDA (®-7)

& DISPATCH BLOCK DIAGRAM

5.3.5.8

main dispatch state, the output of the 4 to 1 selector is
disabled while the dispatch ROM drives the address to the
Control Store. During maintenance mode, the next state is
determined by selection of the Control ROM Address register

which is loadable from the PSBUS.

The logic which implements the dispatch scheme except for
the dispatch selector is illustrated on the 195118-600
drawing, sheets 4 and 5. The 16 to 1 dispatch selector

is located on 195117-600, sheet 3.

MAP System Clock

The MAP System Clock runs in sync with the Picture System's
clock; however, unlike the Picture System's Clock, the MAP
clock can be stopped by a hold condition. There are seven

hold conditions which will halt the MAP clock. They are:

1. MAP Input FIFO is empty and the MAP is in a read
FIFO state.

2. JUMP command executed while the MAP is in Passive
input mode.

3. Upon a HIT Request while the HIT HOLD bit of
the MSR 1is set.

4. The MAP in the "Get RSR'" state and the RSR HOLD
bit in the MSR 1is set.

5-82

5. Upon MAP execution of a RSR HALT command.

6. The MAP in the '"Next Vector' state and the
VEC HOLD bit of the MSR is set.

7. The MAPHIT bit of the MMSR is set.

Conditions 2,4, and 5 halt the MAP clock in the ''Get RSR"
state. Conditions 3 halts the clock in either the '"Next

Vector" or "Get RSR'" state.

These programmable halt conditions enable the troubleshooter
to check and examine the MAP at key points in the MAP algo-

rithm.

For example, condition 1 may be used to examine the input
FIFO's output to the BBUS. Condition 2 is an error condition,
since the MAP should not be programmed to execute JUMP com- '
mands unless the MAP Input controller is active. Condition

3 may be set up to check which data caused a HIT, where in

the input file the hit occurred, etc... Conditions 4 and 6
may be used to examine the current RSR command. Condition

7 may be used to single step the MAP as detailed in section

5.3.5.9.

The logic, which implements the MAP clock and hold conditions,
is located on the 195117-100 and 195121-100 cards. The
PICTURE SYSTEM clock is input on sheet 4 of the 195117-600

drawing (ARBAPSCLK connector 72j. The PICTURE SYSTEM clock

5-83

5.3.5.9

is gated with *HOLD from the 195121-600, sheet 5, to generate
*MAPCLK. *HOLD is the OR function of the 7 hold conditions

which are implemented on sheets 4 and 5.

MAP Maintenance Structure

The MAP is equipped with a maintenance structure to enable

the troubleshooter to do the following:

access the Control Store address
access the Control Store DOIT register

3. read the main communication bus of the MAP,
the BBUS

Four PSBUS addressable registers are implemented in the
maintenance structure. These registers are detailed in
the PS2 Reference Manual (pp 2-65 through 2-70). They

are:

MAP Maintenance Status Register (MMSR)

MAP Maintenance Repeat Status Register (MMRSR)
MAP Maintenance PROM Address Register (MMPAR)
MAP Maintenance B-BUS Register (MMBUS)

S NN
e

The MAPMNT bit in the MMSR is set to put the MAP in main-
tenance mode. During maintenance mode, the troubleshooter
has access of the Control Store address. Also, in mainte-

nance mode the contents of the DOIT register may be examined

5-84

or modified. This feature enables the troubleshooter with

direct access to control signals within the MAP.

The MAPHLT bit is set to stop the MAP clock, therefore
leaving the MAP in a halted condition. With the MAPHLT

bit set and the MAPMNT bit clear, the BBUS of the MAP may

be examined by reading the MMBUS register. This feature
enables the troubleshooter to examine registers, counters,
other MAP busses, etc...which are gated to the BBUS during
states of the MAP algorithm. Also, with the MAPHLT bit

set and the MAPMNT bit clear, the troubleshooter may ad-
vance state in the MAP by setting the MAP SSTEP (single step)
bit of the MMSR. With this feature, the entire MAP algo-
rithm can be configured in a single step fashion. To
sequence states in the MAP algorithm in single step

mode, the MAP Input Controller should be programmed to
actively fetch data from a PS Memory file and load the input
FIFO. This data file in PS Memory must be comprised of RSR
commands and associated data to steer the MAP through desired
functions of the algorithm. Actually, three methods of con-

trolling the MAP are optional to a troubleshooter. They are:

1. Load the MAP input FIFO RSR commands and associated
data, then single step the MAP through functions
in the MAP algorithm.

2. Program the Control Store DOIT register while in
maintenance mode, then clear maintenance mode and

issue a clock pulse to the MAP.

3. Write the Control Store while in maintenance mode
with a specific test algorithm, then clear main-
tenance mode and exercise specific MAP functions
at full speed.

Method 1 of the above is suggested unless the troubleshooter
has an indepth understanding of the MAP hardware. Following

is an example of using method 1 to troubleshoot a MAP failure.

Suppose the MAP diagnostic, QSD017, detects an error and

prints out the following error message.

1: ADDRESS EXPECT RECEIVE
0 144001 144001
67521 27521

As indicated by the test description found in the PS2 Hard-

ware Diagnostic Manual, the second word (bit 15) is in error.

The troubleshooter can isolate the faulty component by setting
the MAP to maintenance mode, writing a LOAD/STORE sequence with
the appropriate data into the MAP input FIFO, clearing main-
tenance mode, then single step the MAP while probing the ap-

plicable data lines.

A LOAD/STORE and data sequence need be set up in PS Memory.
If properly initialized, the MAP Input Controller will actively

fetch the commands and data from PS Memory. The command and

data sequence loaded into PS Memory for this example problems

would be as follows:

LOAD (extended RSR LOAD command)

ADDRESS (address in MAP where to load data)
DATAWORD1

DATAWORD?2

STORE (extended RSR STORE command)
ADDRESS (address in MAP where to get data)
HALT (RSR MAP HALT command)

ADDRESS is §# in this case, and the DATAWORD's are 14400i and
67521! After loading PS Memory, the MAP Input Controller
should be programmed to actively fetch data from the PS Memory
location pointed to by the MAIA, MAP Active Input Address
register. The MAPHLT bit should be set and the MAPMNT bit
cleared (both previously set by PS Reset). The trouble-
shooter may issue single clock pulses by setting the MAP SSTEP
bit in the MMSR; therefore, the MAP will advance state in the
algorithm. After 4 clocks, the MAP will be in state 307 (see
MAP algorithm) with the MAP's data memory address set up and
DATAWORDZ on the memory inputs. At this time, the memory
inputs should be checked (by probing) for good data. If good,
the logic up to the memory input must be functioning properly
and may be ruled out as a possible problem. Another clock
pulse will write the memory and put the MAP into the ''Get RSR"

state (state §).

5-87

To check the hardware from the memory back to the PSBUS,

six more clock pulses should be issued; therefore, the MAP
will be in state 314 of the STORE routine with DATAWORD2
output from the data memory. At this time, the data lines
from memory to the BBUS and from the BBUS to the output
register should be checked. If these data paths are good,
another clock will strobe the data into the output register
and data lines to the PSBUS should be checked for failure.
If everything checks out, the problem must be dynamic rather
than static; therefore, the troubleshooter should set up a
dynamic test loop and chase the problem with an oscilloscope

(loop on error in the diagnostic program).

The command and data file input to PS Memory may be set up
with the PICTURE SYSTEM Diagnostic Debugging Technique
(QSDDT) program. This program also provides the trouble-
shooter with access to all PSBUS addressable register;
therefore, from the console terminal, the MAP may be ini-

tialized and single stepped.

The troubleshooter may generate his own program to load PS
Memory, initialize the MAP, and issue clock pulses. The

program may be generated from the flow chart of Figure 5.3-24.

(START)

RESET PICTURE
SYSTEM (GE7S
MAPHLT AND
MAPMNT B/735)

#

CREATE RSR
COMMAND AMD
ASSOIATED DATA
FILE IN UNIBUS
ADDRESS SPACE

SET UP DMA
7O TRAMNS FER FILE
70 RS MEMORY

. START DMA
BLOCK TRANSFER
GET co 8/T)

SET UR DIRECT IO
70 COMMLUNICATE WITH

MMSR
(DIOPSA~—IT7754)

HALT
COMPUTER

DO You
WANT TO >
CLK THE MARA

YES

CLEAR MAP MNT
BIT IN THE MMSR

ISSUE CLOCK
PULSE TO MARP FBY
DOING THE FOLLOWING
AT THE SWITCH REGISTER
OR CONSOLE!
LOAD ADDRESS 767660
DLEPOSITE)

FIGURE b-3-24

CF/N/SHED)

SINGLE STER, MARP FLOW CHART

5.

3.

6

MAP Output Formatter

The MAP Output Formatter functions as either an active or
passive device depending upon the state of the MAO bit in

the MSR register. When functioning as an active device the
Formatter gains control of the PSBUS and initiates output of
data to the passive device addressed by the MAP Active Out-
put Address register (MAOA). When functioning as a passive
device the Formatter passively waits to be addressed by an
active device, then transfers output data to the PSBUS.

In either mode the Formatter's Output Sequencer waits in

Idle state until the MAP has output data ready. The MAP

then commands the Formatter to output. The Output Controller
examines the state of the MODE bits in the MSR along with the
current status of the RSR register to determine the mode of

output to be performed. The following output modes are

possible.

2D UNFORMATTED " - 16 bit X word and 16 bit
Y word output.

3D FORMATTED - 2-16 bit words output with
format compatible for Line
Generator input.

4D UNFORMATTED - 16 bit X, 16 bit Y, 16 bit
Z, and 16 bit W output.

4D HIGH PRECISION - 16 bit RSR, 16 bit X, 16

bit Y, and 16 bit Z output.

5-89

Upon determination of one of the 4 output modes, the Output
Controller dispatches to the appropriate section of the out-
put algorithm. If active, the Formatter gains control of the
PSBUS output data to the PSBUS, and the sequencer returns

to the Idle state for another command from the MAP. If the
Formatter is passive, an active device can not address it
until it has received a output command from the MAP and the

sequencer 1is in an output state.

5.3.6.1 Output Control Sequencer

The Output Control Sequencer is implemented as a ROM state
sequencer on the 195118-600 card (see sheet 2 of the logic
drawings). The sequencer transverses the state diagram de-
picted in Appendix B of this manual. State 01 is the main
dispatch state with four possible branches. All other dis-
patch states have only two branches. Two dispatch code bits
from the current state DOIT register select the appropriate
dispatch controls input to IC location 30 (see 195118-600,
sheet 2) which passes the selected dispatch control to the

two LSB's of the next state address of the ROM.

Initially, a reset clears the DOIT register which generates
a next state address of @#. When the reset signal is cleared
the next clock pulse generates *CLKDOIT pulse which puts the

sequencer in state f, the IDLE state. The IDLE is maintained

5-90

until the MAP signals '"'data ready fof output" by asserting
#*MOUTPUTSET which latches the current RSR status (see IC
location 25 on sheet 5) and the sequencer enters the main
DISPATCH state. In the DISPATCH state, DISPA and DISPB

are gated to the two LSB's of the next state address of the
ROM. On the next clock, the sequencer dispatches to one of
the four butput mode sections of the state diagram. If
active, the PSBUS is requested and data output according

to the output mode. Upon output completion, the sequencer
returns to the IDLE state. If passive the sequencer waits
in an output state until addressed by an active device,
then passes output data to the PSBUS. Whether active or
passive, the sequencer tranerses the same states in the
algorithm; however, if passive it never requests the PSBUS.
It merely waits in the Request states until it is addressed,

then gates output to the PSBUS.

5

91

wl

PICTURE SYSTEM Memory (PS MEMORY)

The potential address space in the PICTURE SYSTEM ranges

from § to 64K. Of this address space 256 words are reserved
as the System Control Block (SCB). This block addresses
control registers, status registers, input ports, etc...which
in general control the system. This SCB is located in address
177400 through 177777 of PS address space. The remaining
addresses, (0-177377) are available for PS Memory. PS Memory

is expandable in blocks of 16K words, 16 bits per word.

PS Memory may be used by the user in a number of ways. for
instance, a section of the memory may be used to buffer an
RSR command and data file as input to the MAP. Another
section of PS Memory may be used to buffer output from the
MAP. This buffer may also serves as a refresh buffer being
input to the Pictutre Generator. Another application may not
require the MAP; therefore, data from the Picture Controller
may be buffered in PS Memory while the Picture Generator
actively accesses the memory. In both of the above examples,
a device called the Refresh Controller coordinates the memory
update process with the Picture Generator's refresh process.
Section 5.5 of this manual details the operation of the Re-

fresh Controller.

PS Memory is a passive device interfaced to the PSBUS. Only

active devices can communicate with the memory. The memory

is implemented with 4K MOS Memory chips; therefore, access

5-92

requires sequencing 6 bit row and column addresses with
appropriate write or read signals to the Memory chips. The
memory system has two ports which enables overlap of memory
accesses. This overlap results in a minimum access time of
450 ns. When requested by an active device to perform a
read access, the memory always responds (if not busy) with

a grant to free the PSBUS and a simultaneous deferred signal
which alerts the active device to wait while the memory port
controller accesses the desired locations. Upon completion
of the access, the memory issues a second grant to the wait-
ing device. This second grant acknowledges completion of
the read access and the active device can now take valid

data from the PSBUS.

The memory may be busy when requested by an active device.

In this case, the memory saves the request in a FIFO, acknow-
legdes the active device with a grant to free the PSBUS, and
simultaneously signals the device with a memory busy signal.
This alerts the device to wait for another grant (generated
from the saved request in the FIFO) before passing the address
(and data if doing a write) to the memory. If the access 1is

a read, the memory responds with the deferred signal simul-
taneous with this second grant. The device waits for a third

grant signifying completion of the memory cycle.

The PS Memory System block diagram (195140-900) illustrates

four parts of the memory system.

5-93

5.

4.

1

FIFO and Port Latch
Port Arbitration and Port Controllers

Memory Timing and Sequence Controllers

O S

Memory

FIFO and Port Latch

The PS Memory's FIFO and Port Latch are used }o buffer re-
quests from an active device. The FIFO is used to que up
requests from active devices desiring access of the PS Memory.
A Request from an active device is saved in the FIFO if one

of the two following conditions exist.

1. The FIFO is not empty. In this case, the request
. must be qued since other request in the FIFO need
service first.

2. If both port controllers are currently busy. In
this case the request must be qued until an idle
port control can service 1it.

When a port controller begins servicing a read request, the
request (whether from the FIFO or from the PSBUS) is latched
in the Port Latch. Upon completion of the read, the saved
request in the Port Latch is output as a grant to the active

device signifying valid data is on the PSBUS.

Figure 5.2-2 in the PSBUS section of this manual illustrates

the request/grant timing relationships for various types
of memory accesses. The FIFO and Port Latch implementation

is illustrated on sheets 4 and 5 of the 195107-600 logic

5-94

5.

4.

2

drawing.

Port Arbitration and Port Controllers

The dual port structure of the memory system requires an
arbitration structure to pass a request from active devices
to an available Port Controller. The port controllers
manage the loading of data in and out of a memory port. The
following rules are applied by the arbitration scheme to
determine which of the two port controllers manage a current

memory request.

1. If both port controlers are idle, controller A

gets the current request.

2. If one controller is idle and the other one
busy, the idle controller takes the request.

3. If both controllers are busy upon a request,
the request is saved in the FIFO and the next
idle port controller takes the qued request
from the FIFO.

Both port controllers sequence through the state diagram
illustrated in Figure 5.4-1. The idle state previously
mentioned is state @. States 3 and 2 are executed to
perform a read operation, and states 4 and 1 are executed
to perform a write operation. To perform a read - modify -

write operation, states 7,6,4, and 1 are executed. States

5-95

1

P

17
RES T

REQHWRTXRD

REQ- RD- ¥ REQ-RD-#WR!
A Dry&g-.wnlp_ EQI *R

0

[

REQUEST MimORY
READ

K ACK

g
GRANT PORT
DATA OUT OM NEXT
CYCLE

41 19

STROBE DATA
INTO MEMORY PORT

e

1] &1

REQUEST MEMORY
WRITE

"

REQUEST MEMORY
READ

RACK K

233

GRANT PORT
DATA OUT ON NEXT
CYCLE

Figure 5.4-1

Port Controller State Diagram

RE® - REQUEST FOR
MEMORY CYCLE

RD - READ

WRT-WRITE

ACK - ACKNOWLEDGE
FROM MEMORY

4.

7 and 3 request a memory read cycle and wait for the memory
sequencer to acknowledge. Similarly, state 1 requests a

memory write cycle and waits to be acknowledged.

Each port controllers has a unique address latch. The appro-
priate latch is loaded upon a port controller's exit from the
idle state. Likewise, each controller has an input and out-
put data latch. The appropriate input data latch is loaded
upon exit from state 4, and the appropriate output data latch
is loaded upon exit from states 2 or 6. The address latches
are located on sheet 3 of the 195141-600 drawing. The data
latches are located on the memory card (see 195143-600 draw-
ing). Actually, the memory card implements three ports of

which only two are used in the PICTURE SYSTEM 2.

Sequence Controller

The Sequence Controller provides the necessary timing to
initiate and execute memory cycles. The principle tasks

of the sequencer are:

1. Sense memory cycle requests from the port
controllers and initiate a memory cycle.

2. Acknowledge the appropriate port controller
upon completion of a memory cycle.

3. Sequence the Row and Column address and appropriate

command signals to the memory during a memory
cycle.

4. At necessary time intervals, refresh section
of the dynamic MOS memory.

The Sequence Controller is implemented on the 195142-101
card. Sheet 2 of the logic drawing illustrates the im-
plementation of task 1. The Schmitt Trigger, latch, and

RC network combinations sense the memory cycle request from
port controllers A and B. SAMPLE clock runs at 20MHz (50 ns
square wave). T20 clock is 20 ns out of phase with SAMPLE.
The sense latches sense for 20 ns. On T20 clock, their
results are loaded into the register in bug location 64. If
a sensed request is loaded into the register, the output of
bug 54 (*BEGIN CYCLE) disables the clock to the register
until the completion of the cycle (END CYCLE). The 74S00,
74510, and 74S20 in locations 53,73, and 44 implement a
priority scheme in case more than one sensed request is
loaded into the register. Refresh has highest priority,
then A, B, and C, respectively. Note in this system C is
not used. Upon a request loaded into the register, *BEGIN
CYCLE starts the sequencer on sheet 3. BEGIN CYCLE is
shifted through the shift register in locations 43, 42, and
32 which generates the ROW Address Select (RAS), Column
Address Select (CAS), etc...timing signals to the memory.

At the time of CAS, the appropriate F/F on sheet 2 is set
which acknowledges the cycle request from the appropriate port

controller. The port controller clears its request which

clears the acknowledge F/F and the sense latch is enabled to
sense the next request. The dynamic memory refresh sense
latch is on sheet 4. The one shot in location 61 determines
the refresh interval. The counter in locations 70 and 71
determines which section of memory is refreshed during a

particular refresh interval.

5-98

Real Time Clock

The Real Time Clock coordinates the update and refresh
processes in the Picture System. The two processes are

coordinated by the generation of the following two Control

signals:
1. Clock Interrupt to the Picture Controller
2. Sync pulse to the refresh devices

The clock interrupt signal enables the Picture Controller
program to periodically check the status of the MAP and
Refresh Controller to determine if the update process may

be initiated. Upon receiving a clock interrupt, the Picture
Controller executes a clock service routine which checks the

following three conditions:

1. is the DMA Controller Idle
2. is the Picture Processor Idle

3. is the Refresh Controller Idle

If all three conditions are true, the Picture Controller may
begin a new frame update process and a new frame refresh
process. If only condition 3 is true, the P.C. may only
start the refresh process. The Real Time Clock implements
the clock interrupt and sync pulse by counting down two

counters. The two counters (Count 1 and Count 2) are loaded

5-99

with the contents of two PSBUS writable registers (see
drawing 195161-600, sheet 2). The clock signal to the
counters is generated by ORing two 60 Hz, input signals
which are out of phase by 180°. Therefore, the counters
are clocked with a 120 Hz, signal. Upon overflow, the
counters are reloaded. The overflow outputs are CARRY1
and CARRY2. If the SYNC bit of the status register RTCSR
is clear, CARRY2 generates PSSYNC pulse to the refresh
devices. CARRY1l generates an interrupt REQUEST (sheet 5).
If the SYNC bit is set, the PSSYNC pulse and interrupt
REQUEST occur coincident. This is very useful when co-
ordinating the update and refresh processes while operat-

ing the Refresh Controller in automatic refresh mode.

5-100

5.

Refresh Controller

The Refresh Control;er is an active device which controls
flow of data from PS Memory to the Line Generator Input FIFO.
Figure 5.6-1 is a block diagram of the Refresh Controller/

PS MEM/and Line Generator interface. The Refresh Controller
contains a start and a limit register. These two registers
define a block of PS Memory to be dedicated as refresh buffer.
Upon command the controller begins initiating read requests
to PS Memory. When data is valid on the PSBUS, the Refresh
Controller commands the Line Generator Input FIFO to take
the data. When the Refresh Controller has completed the
refresh process a stopped bit is set which is monitored by

the program.

The Refresh Controller is equipped with eight, PSBUS address-
able, control registers which implement refresh buffer seg-
mentation, automatic refresh, write back to memory, and soft-
ware control. The following eight registers are defined in

detail in the PSZ Reference Manual, pp 2-75 through 2-82.

1. RFCSN - Refresh Current Segment Name
2. RFSN - Refresh Segment Name

3. RFAWA - Refresh Active Write Address
4. RFAWL - Refresh Active Write Limit
5. RFAIA - Refresh Active Input Address
6. RFAIL - Refresh Active Input Limit
7. RFASA - Refresh Active Start Address
8. RFSR - Refresh Status Register

5-101

PSS A&7

LS BUesS
LELL S A LN &
CONJT.L20LLEL € /3 GENEL P TOL
NLCT FT FO

CONTEOL L/NES

LEFLBESY CONTLOLLEL)PSAEAIOLY)
LINE GENECITOLE INTELFIEE
EL O PpPrPEELFA]

FrElLE 5.6 - 1

5.

5.

6.

6.

1

2

Refresh Control Command Words

At appropriate locations in the refresh buffer the user
inserts Refresh Control commands to initiate action by the

Refresh Controller. The Refresh Control commands are:

1. HALT
2. SEGMENT
3. LIGHT PEN

When executed, the HALT command stops the refresh process

and sets the RFSTOPPED bit in the RFSR. The SEGMENT command
specifies a segment name and directs how the Refresh Controller
is to treat the segment. The LIGHT PEN command is used to
direct the LIGHT PEN Controller in the LIGHT PEN Interface.
These R.F. Control commands are detailed in the PS2 Reference

Manual, pp 2-91 through 2-93.

Frame Synchronization

The Refresh Controller is synchronized to begin accessing the
refresh buffer at the beginning of a frame period. When in
automatic refresh mode, the controller looks for a pulse on
the PSSYNC line. The pulse is generated at the beginning of
a frame period determined by the frame time counter of the
Real Time Clock card. If in program control mode, the con-

troller waits for a start command from the program. To be

5-102

5.6.2.1

5.6.2.2

more precise, the Real Time Clock generates an interrupt

for service at programmable frame time periods. This
interrupt causes the program to check the conditioﬁ of the
Refresh Controller. If the controller is stopped (RFSTOPPED
bit of RFSR set) and the Picture Processor has completed up-
dating the refresh buffer, the program starts a new frame

refresh (sets the RFSTART bit in the RFSR).

Arbitration of Refresh Devices

Some system configurations may include more than one Refresh
Controller or other refresh devices. As an example, a system
may configure a Refresh Controller and two Remote Terminal
Interfaces. In this case a hardwired priority scheme gives
the Refresh Controller highest priority. At the beginning

of a frame refresh period, the Refresh Controller accesses
the refresh buffer. When the Refresh Controller'finishes,
one of the Remote Terminal Interfaces begins refreshing and
when finished the other begins. A new frame refresh will

not be initiated until all refresh devices are finished re-

freshing the current frame.

Frame Sync State Machine

Refresh Control Frame synchronization is implemented with a
four state machine. Each refresh device configured in the

system contains this state machine. Figure 5.6-2 illustrates

5-103

-
—_—
[

RE

(n

ALL REERESH COMPLETE

P
:’”’fﬁﬁé’f "J‘,ﬁ “h
e i ’ ; pws FRa s
D ! E Erpr 171" N -
£ e 51/&/({ D LLA
'y ,:'_Qp '/"

:?0»;}‘)5“ #

t o

1O WAIT EOR 0!
= . A Ty —v-'v !
’\-F rp Q___'— - H l:.\“(t.. H </~— i 4 [\
DEN pruace 0 sde
OEVILES e, e 8T FPrTokTd v
DT d eIy e
‘:;iﬁ)(w Mf”i&(("‘ /’fjp@b//f‘!
S e—

T
TaX T TFY { CPRtvesTY
4

i

CLYSET

—

1 *3: |

|

] |

‘ REFREZ= 4 |

the state diagram of this machine.

All refresh devices (Refresh Controllers and Remote Terminal
Interfaces) wait in the IDLE state until a "start new frame"
command is sensed. Upon receipt of the command all refresh
devices enter the ARBITRATION state. Arbitration takes place
and the device set up with the highest priority enters the
REFRESH state and begins refreshing the appropriate (if more
than one) Picture Generator. _The device enters the WAIT FOR
OTHER REFRESH DEVICES state when it is finished. The device
with the next highest priority then enters the REFRESH state.
When all devices are finished, they enter the IDLE state and

wait for the next '"'start new frame' command.

The four state machine for the refresh controller is im-
plemented on the 195151 card (sheet 4 of the logic drawing).
The two F/F's called STA and STB determine the state, If

in Auto Refresh mode, PSSYNC from the Real Time Clock gen-
erates a new frame pulse. The pulse inputs a @ into the
shift register. When the @ is clocked to the QC output, SET
is inserted, and the next clock sets STA and saves SET in

the DLYSET F/F on sheet 1. If not in Auto Refresh mode, STA
is set by the program. The machine is now in the ARBITRATION
state. DLYSET inputs @ into the shift register (bug 31) and
DLYSET is cleared. On the next clock, unless another refresh
device has higher priority, STB is set. Now the machine is

~in the REFRESH state which inserts *SEGBSY to the Refresh

5-104

5.

6.

3

Sequencer. *SEGBSY is equivalent to *GO in the Refresh
Control algorithm (See Appendix C). During the Refresh
state, f#'s are being shifted through the shift register.
The Refresh Sequencer is busy accessing PS Memory and
directing the data to the Picture Generator. Upon comple-
tion (running into the RFAIL register or executing a HALT
command), the Refresh Sequencer asserts RELPORT (Release
L.G. Port) which clears the STA F/F and puts the machine
into the WAIT FOR OTHER REFRESH DEVICES state. Other
devices now have a chance to refresh. If no other devices
exist or when all other devices are finished the shift
register fills up with 1's which clears the STB F/F and

puts the machine back in IDLE.

Refresh Sequencer

The Refresh Sequencer performs the following tasks:

1. Waits for a GO command from the Frame Sync

state machine.
2. Initiates PS Memory accesses.

3. Monitors the PSBUS for Refresh Control
commands from the Refresh Buffer.

4. Executes Refresh Control commands. (Search

for Segment Name, Skip Segments, HALT, ect.)

5. Commands the Line Generator Input FIFO to
take data from the PSBUS.

The sequencer is implemented on the 195152 card as a ROM

5-105

state machine with 26 states (See Appendix B). The ROM is
on sheet 2 of the logic drawing. Output from the ROM is
buffered in a command register. The next state is deter-
mined by four next state bits in the command register and
a dispatch code. The dispatch code selects one of eight
conditions input to the 8 to 1 selector in location 51.
The selected dispatch condition becomes the LSB of the

next state address to the ROM.

5-106

APPENDIX A

MAP ALGORITHM STATE DIAGRAM

~—-This State Number

—IXxx | ¥

Dxx

!Dispatch Code

Next State Base Address

Next State « (Next State Base Address) ¥ Dispatch ({low bit)

Example:
DISPATCH CODE = 14 DISPATCH CODES
NEXT BASE = 66 ' .
MDA<0 =1 (XOR) (INPUT WAIT)
NEXT STATE = 67 0 = ZERO
1 = ONE
#INPUT WAIT DISPATCH 2k
Example: 4 = OUTPUT BUSY
Go to Input Wait if 5 = MRA<O - .
Dispatch c¢ondition 6 = OUT MULT
is true. 7 = 0OUT NORM MULT
10 = ZERO : *MDA<O -
11 = (MDA<0)ACHKNC *fMDA<O)ACHKVC
12 = RSR(0)
13 = DIVIDE ERROR
14 = MDA<O
15 = SV
16 = NC
17 = FIFO FULL

ALL NUMBERS ARE OCTAL.

[CHKNC] FLAGS (3) <« CBUS(23)

[NC] FLAGS (2) <« FLAGS (3)

[NORMLT] FLAGS (1) <« BBUSS (NORM) < SENSE REGISTER

NV « NC (new point is clipped)

SV « NC (old point is clipped)

DIVIDE ERROR <« NORMLT V (AC2=-1 A MDA < 0) V (MDA(ZS) ¥ MDA (21))

State and Dispatch Conventions
A-1

RESET

LOAD RSR
AC3,B « COUNT
RAMADR < AC3

CONDITIONAL RSR HOLD
CLEAR EXTEND

to "DISPATCH"

Get RSR

A-2

¢-v
HOLVdSId

to
to
to
to

to

FS=FSM2

SC=Sub-op-code
" (op-code=1,2,3) (op-code=0)
""Set Input Baseg—(22) FS=0 to '"No-Op & Terminate'e—(354)—] SC=0
"Origin Offset'%——»(15)—]FS=1 to "Jump'é&— (345) SC=1
"Absolute Inputi—i(2) FS=2,4 to YPush Jump'e—(336)—oouoo__ | SC=2
"Relative Input'ée—(6) FS=3 to "Pop Jump¢—I(332)— | SC=3
"Pass'e—(243) FS=5,6,7 to "Load"e—(300) SC=4
to "Store'e—y{301) SC=5 go
to "Load Stack'e— (320) SC=6
to "Store Stack't—(325) SC=7 -
>
o 0O
L B S]
N -
D
-3 4
2o
K S
zZ W
o
5
to '""Move/Swapd—(265) SC=10 = O
to "Push&——(255) SC=11
to "Popg&——(250) SC=12
to "Matrix Push § Drawé—(220)-{ SC=13
Not used SC=14
Not used SC=15
Not used SC=16
Not used SC=17

L

1 377 UPDATE RSR
D3 RAMADR <« AC3
CONDITIONAL VECTOR HOLD
INC AC3
AC3#-1 I AC3=-1
to "DISPATCH" to "Get RSR"

Next Vector

A-4

10
DO

From "Dispatch"

}

RA <« MEM(g)

KIB,JIB

MRA,B « INPUT .
~ACO + 0
ACl « 0
ADD V TB

/
G,B <« MRA

MB,C <« G+RA
INC ACo
INC ACZ

12
DO

10
D2

ACZ#-l—;EFJ

L

RA « MEM(ACO)

MRA,B <« INPUT
ADD V IB

12 |

G,B < MRA
MB,C <« G+RA
MEM(ACL) < MB
INC ACO
INC ACI
INC AC2 .
APD V T

13
DO

14
DO

26
D1

?AC2=-1

11

MEM(ACL) « MB

B,C+ 0 ALU
LOAD SENSE REGISTER
AC1 < 10

ADD V 1B

)

13

RA « MEM(27)

L

14

G,B <« 17[RAMADR]

MDA,C « GARA
PUSH STATE

to "Vector Multiply"

Relative Input

Get Base x.
Get Input x.
ACQ is input address.
ACl is output address.

Add Base + Input.

Get next Base (y,z,w).
Get next Input (y,z,w,

Add Base + Input.
Write Absolute data

(x,y,2).

Write Absolute data (y,
Set Normalize Sense to
maximum shift.

Get address of matrix

Mask off low 4 bits.
Save state #26.

‘From ""Dispatch"

Get absolute X.

Get address of matrix.
Set Normalize Sense
to maximum shift.

%E AC2=-1

3 2 _IMEM(0), B « INPUT
Do- o ACO « 0
INC AC2
KIB,JIB ADD V IB
v
4 3 RA = MEM(27)
D2 B,C « 0 ALU
LOAD SENSE REGISTER
INC ACO
INC AC2
7 AC2# 1‘3::;7
4 4 MEM(ACO), B < INPUT
D2 ' INC ACO
INC AC2 L
ADD V TB
AC2#-1 ;'39‘AC2='1
A
14 | 5IMEM(ACO), B <« INPUT
Do AC1 < 10
ADD V TB

Get absolute w.

to state 14 of "Relative Input'

Absolute Input

16
DO

20

From '"Dispatch"

15 MB,RA <« MEM(0)

‘ ACO < 0
MRA,B <« INPUT
JIB,XIB ADD V IB

|

16 G,B « MRA

MB,C <« G+RA
MEM(ACO) < MB
INC AC2
ADD V IB

AC2=-1 :%j&

:%EAC2#~1

17 20 MEM(ACO) + MB

Do INC ACO
ADD V TB

16 17 MB,RA + MEM(ACO)

DO MRA,B < INPUT
ADD V IB

13 21 MEM(ACO)* MB

DO ADD V TB

B,C <« 0 ALU
LOAD SENSE REGISTER
ACl < 10

!

to state 13 of "Relative Input"

Origin Offset
A-7

Get origin Xx.

Get input Xx.

Add input to origin.~-

Save origin.

Write x,y,z data
to memory.

Get origin vy,z,w.
Get input y,z,w.

Write w data to
memory.

Set normalize sense
to maximum shift.

From "Dispatch"

24 22 MB,C,G,B <« INPUT
Do MEM(03 B « INPUT
ACO « 0
INC AC2
ADD V IB
23 20
DO MEM(AC0) <« MB
INC ACO
ADD V IB
24 23 M INPUT
D2 ME MEAcd) B < INDUT
INC AC2
ADD V IB

AC2#- 1131 155; AC2=-1

377
Do

'MEM(ACD) * MB
ADD V TB

to "Next Vector

Get x input.

Get x,y,z input.

Get y,z,w input.

Get w input.

(Writes input data to both halves of INPUT/BASE)

Set Input Base

From "Relative Input", "Absolute Input'", or "Origin Offset"

M=MULTIPLY
N=NORMALIZE

32
DO

27 MB <« MEM(0)

ACO0,B « MDA

ADD V IB

to "Vector Multiply Subroutine'

from "Vector Multiply Subroutine"

O0UT MUFT:E !'

Get x data.
Set matrix address.

Sum multiply result.
Get x multiplied data.

Set loop counter.

‘ G+« P
30 | 26
D6 MDA,C « G+RA
MRA,B « MEM(10)
ACO « 10
ADD V TB M
OUT MULT
21 MEM (AC1), B < MDA
Sﬁ l“'—JSENSE MINIMUM NORMAL
: ADD V 1B
OUTPUT
BUSY OUTPUT BUSY
(53) (52)
.to "Output New Vector
-+, |
45 130 MEM(AC1),B < MDA
Do SENSE MINTMUM NORMAL
ADD V IB
AC2 « -3
CLRV
KHIT N

to "Vector Normalize"

Vector Multiply

| -muLTIPLY
=TRANSPOSE
"=CHECK TRANSPOSE

From "Vector Multiply'" or '"Matrix Continue"

33
DO

34
DO

35

DO -

36
DO

37
DO

40
DO

|

32

MDA < MEM(ACO)

- INC ACO

MRA,B <+ MB
AC2 « -4

/ %

33

MB <« MEM(1)
- ADD V_TB

M

{34

&
G=<«P

RA,C « G
MDA < MEM(ACO)
‘INC ACO

MRA,B <« MB

CMT

v

35

MB « MEM(2)
ADD V IB

36

G « P
RA,C + G+RA
MDA « MEM (ACO)
INC ACO

MRA,B « MB

CMT

/

37

MB <« MEM(3)
ADD V IB

L
&)

Vector Multiply Subroutine

A-10

Matrix constant to
be multiplied by x
data.

Loop count.

Get y data.

Get multiply result.

Next matrix constant t

be multipled by
y data.

Get z data.

Sum multiply result.

Next matrix constant t

be multiplied by
z data.

Get w data.

N
42 40 G« P
M=MULTIPLY D2 RA,C +« G+RA Sum multiply result.
T=TRANSPOSE MDA <« MEM(ACO) Next matrix constant t¢
_ . INC ACO ‘ be multiplied by
€C=CHECK TRANSPOSE MRA,B +« MB w data.
INC AC2 CMT
AC2=-1“§&i, AC2#-1
| — _%’:7
— s -
41 42 MB <+ MEM(0) Get x data.
DO ADD V_TB M
SO IS G+« P
DO MB,C < G+RA Sum multiply result.
MDA ~ MEM(ACO0) Next matrix constant.
INC ACO to be multiplied by
MRA,B <« MB CMT x data.
N/ .
33 44 MEM(AC1), B + MB Write result to
DO INC AC1 memory.
SENSE MINIMUM NORMAL
ADD V IB C
Il
%
43
0 SUBROUTINE RETURN-
DO MB « MEM(13) Get w old (for use
ADD V IB M only in "Drawto
Check'").
eturn

Vector Multiply Subroutine Continued

A-11

From "Vectﬁr Multiply"

R
: gg 4> B « NMR Normalize x,y,z.
N=NORMALIZE ~ MEM(ACO) « B Store in memory, MDA,
RA,MDA,C,G « B and RA.
INC ACO MDA and RA will have
INC AC2 z new when complete.
ADD V IB N~
AC2=-1 .Lf;‘ AC2#-1
45 | 46 MRA,B + MEM(ACO) Get y,z multiplied
DO ADD V IB N data.
l
i
50 | 47 MRA,B « MEM(ACO) Get w multiplied data.
D7 ADD v IB
N@iMMUiTtE ‘ | = OUT NORMMULT
52 § 51 B « NMR Normalize w.
D4 MEM(AC0) « B Store in memory.
1 ACO « 10 Set output address.
‘ ADD V 1B N
OUTPUT |
BUSY & L. OUTPUT BUSY
v, 053 (52)
to "Output New Vector"
U .
56 150 B « NMR Normalize w.
D12 MEM(ACO) « B Store in memory and
MRA « B in MRA.
ADD V IB N

RSR(0) DRAWTO

to ""Setpt Check"

DRAWTO RSR(0)

to "Drawto Check (z)"

Vector Normalize '

A-12

From "Vector Multiply'", "Vector Normalize"

52 |53
D4
Output)
N </
N 152 | AC2 « -2
INC ACO
OUTPUT, B <« MEM(ACO)
ADD V TB
1)
54 [54]
D2 OUTPUT, B « MEM(ACO)
INC ACO
INC AC2
ADD V TB
AC2#-1 —-&J t:%i57—' AC2=-1
377[55] n
DO

OUTPUT, B + MEM(ACO)
ADD V IB

SET OUTPUT FLAG

to "Next Vector"

Output New Vector

A-13

Wait for output ready.

Set loop count.
Output x data.

Qutput y,z, data.

Output w data.
Set output flag.

From "Vector Normalize"

N=NORMALIZE . §'+ e
320 26 MDA,C <C-RA w-z.
RA « MEM(11) Get y new.
ADD V IB
: i
MDA<0 ‘ : MDA0
Check z.
61 __QQ_J G,B < MRA w+ y.
to "Next Vector'" D10} MDA,C + G+RA
MDA<0) L MDA >0
Q—I*ry Y? Check w-z.
61 G,B « MRA
to ""Next Vector'” D10 MDA,C « G-RA w-y.
° RA < MEM(10) Get x new.
ADD V IB
T
MDA.<0 %\ ?L MDA20 Check w+y
62 | G,B + MRA -‘
DlO MDA,C <« G+RA wW+X.
to "Next Vector! LOAD SENSE REGISTER Sense w for perspective
MDA<O f % MDA>0 Check w-y.
63 G,B < MRA ex
to '"Next Vector'"D10 MDA, C ~ G-RA |
MDA<O MDA>0
Check w+x
160| 64 MDA,C,G,B <« R2ROM Get -1/w? new.
D10 ACl « 10 Set address of x.

to "Next Vectotr"

- MDAxO) MDA>0
: A i!;; Check w-x.
% to "Next Vector" ‘

to "Perspective New"

Setpt Check
A-14

65

INT=MDA ¥ CHKNC D0

OFF=MDA ACHKNC
ON =MDA ACHKNC
F=LOAD FLAGS

66

D11

»

From "VectillNormalize"

57 C+ RA (ALD)
MDA + MEM(12)
ADD V IB

65 G B. « MRA

C « G-RA
RA <« MEM(12)
ADD V IB
LOAD SENSE REGISTER

F

d

OFF

D1

to "Hext Vector"

130
DO

72
DO

67
DO

' INT
ON K_‘j '

66 RA « MEM(12)
ADD V TB
PUSH STATE
71

to "Intersect Subroutine'

from "Intersect Subroutine"

70]

RA <« MEM(12)
ADD V ITB V NV

NOTE:

Vv

to "Drawto Check (w-z)"
MRA has been initialized with w new in '"Vector Normalize'.

Z New.
Get z old.

(w-z) new.

Get z old.
Initialize sense
register for
perspective.

Get z new.

Save state #70.

Get z new.

(w-2z) new.
Get z old.

MB has been initialized with w old in "Vector Multiply Sub-
routine.".

Drawto Check (z)

A-15

From "Drawtj,Check (z)"

73 67
DO G,B « MB (w-z) old.
MDA,C « G-RA Get y new.
RA * MEM(11)
ADD V IB V NV
INT=MDA ¥CHKNC \L
OFF=MDA A CHKNC 174 73 G,B « MRA ,
ON =MDA A CHKNC p11 C <« 6+RA (w+y) new.
F=LOAD FLAGS RA « MEM(11) Get y old.
- ADD V IB V SV F
,— INT
L, L
76 74 RA « MEM(12) Get z new.
D1 ‘ ADD V IB V NV
v PUSH STATE Save state #76,.
to ""Next Vector"
130 | 77 G,B « MRA
DO RA,C « G-RA (w-z) new.

\ .
to "Intersect Subroutine'
from "Intersect Subroutine"

100 7 RA « MEM(11) Get y new.
Do - ADD V IB V NV
. G,B « MRA
58 100 C <« G+RA '
: RA « MEM(11) (w+y) new.
ADD V IB V SV F Get y old.

\/
to "Drawto Check (w+y)"

Drawto Check (w-2z)
A-16

From "Drawtj/Check (w-2)

101 | 75 G,B « MB
DO MDA,C <« G+RA
RA + MEM(11)
ADD V TB V NV
INT=MDA ¥ CHKNC
OFF=MDA A CHKNC 102 {101 G,B <« MRA
ON =MDA A CHKNC D11 C « G-RA
F=LOAD FLAGS RA +« MEM(11)
ADD V IB V SV F
INT
Y/
OFF , . ON
%:7 C§ Cb
v 324 102, RA <« MEM(11)
. " ADD V TB V NV
to '"Next Vector PUSH STATE
130 {105 G,B + MRA
Do RA,C +« G+RA
to "Intersect Subroutine'
from "Intersect Subroutine"
106 [104 RA. + MEM(11)
Do ADD V IB V NV
103 |106 G,B « MRA
DO C « G-RA

ADD V IB V SV F

RA < MEM(11)

N
to "Drawto Check (w-y)

Drawto Check (w+y)
A-17

(w+y) old.
Get y new.

(w-y) new.
Get y old.

Get y new.

Save state #104.

(w+y) new

Get y new.

(w-y) new.
Get y old.

From "Drawﬁ[Check (wty)

107 [103 G,B * MB (w-y) old.
’ DO MDA,C * G-RA Get x new.
INT=MDA ¥ CHKNC RA ¥ MEM(10)
OFF=MDA A CHKNC ADD V. TB V NV
ON =MDA A CHKNC
F=LOAD FLAGS
110 | 107 G,B « MRA
D11 C <« G+RA ;
N RA * MEM(10) (w+x) new.
ADD V IB V SV 13 Get x old.
OFF% L& oN INT
7/
112] 110 RA <« MEM(11) Get y new.
Dl ADD V TB V NV
J PUSH STATE Save State #112.
o '""Next Vector"
i
130{.113 - G,B < MRA o
DO RA,C < G-RA (w-y) new

to ""Intersect Subroutine"
from "InterseIf Subroutine'

1141112 RA < MEM(10) Get x new.
DO ADD V IB V NV -
v
1111114 G,B « MRA
DO C « G+RA
RA <« MEM(10) E (w+x) new.
ADD V IB V SV Get x old.

To "Drawto Check (w+x)"

Drawto Check (w-y)
A-18

From "Drath Check (w-y)
B
-
M

115 | 111 G,B « MB
INT=MDA ¥ CHKNCDO MDA,C « G+RA (w+x) old.
OFF=MDA A CHKNC RA « MEM(10) Get X new.
ON =MDA A CHKNC ADD V IB V NV
F=LOAD FLAGS L
116 | 115 .8 < MR&
D11 C'+ G-RA _
? - RA « MEM(10) (w-x) new.
ADD V IB V SV F Get x old.
T

OFF ‘“}Ei, t:%g;‘ ON INT
E77

120 | 116 RA « MEM(10) Get x new.
D1 ADD V IB V NV
' PUSH STATE Save State#120.
V.
to ""Next Vector" 130 121 G, <~ MRA
DO RA,C G+RA (w+x) new,.

<t =

to "Intersect Subroutine”
from "Intersect Subroutine"

122 | 120 RA « MEM(10) Get x new.
DO ADD V. IB V NV
117 | 122 G,B « MRA
DO C « G-RA ‘
RA<« MEM(10) (w-x) new.
ADD V IB V SV F Get x old.

v
To "Drawto Check (w-x)"

Drawto Check (w+x)
A-19

From "Drawto Check (w+x)

NT=MDA ¥ CHKNC 123 | 117 G.B « MB
OFF=MDA A CHKNC 6 MDA'C < G-RA (w-x) old
#N =MDA A CHKNC >)
J=NORMALIZE '
F=LOAD FLAGS '
124 {123
D11
F,N
| L[INT
? Q Cg ON CE
¢
126 | 124 RA « MEM(10) Get X new.
D1 ADD V IB V NV
~ . PUSH STATE Save state #126.
to
‘Next Vector"
G,B « MRA
130 127 RA,C « G-RA (w-x) new.
DO]
to "Intersect Subroutine"
from "Intersect Subroutine"
125 | 126
DO
: 7 N
160 | 125 | MDA,C,G,B « R2ROM Get -1/w? new.
D15 AC1 « 10 N Set address of x.
SV , SV
1 ,
7 to "Perspective 01d" to '""Perspective New"

\ Drawto Check (w-x)
O A-20

From "Drawto Check (w+a)"

| 131|130 G, B« MDA
N=NORMALIZE Do * MB,C < G-RA
M=MULTIPLY ‘
4
132 | 131 MRA,B « MB
Do LOAD SENSE REGISTER
N
133 | 132 | MB,C,G,B « MDA
DO ‘ N
134 | 133 IMDA,C,G,B « R2ROM
bpo —— N
136 | 134 | RA,C,G,B_« RIROM
| e Cogel < X N M
MRA(OE , MRA30
—
135 | 136 G*< P
DO MDA,C-+ G+RA
MRA,B « MB N,M
N
135 | 137 G* P
D0 MDA,C <« G-RA
MRA,B « MB N M
140 | 135 MB <« MEM(10)
DO ACO < 10
ADD V IB V NV N,M

Intersect Subroutine
A-21

MDA has (w+a) old.
RA has (w+a) new.

Get (wta)old -(wta)na

Wait for ROM to settiaw

Check sign of
reciprocal.

1/[(w+a)old-(w+a)newu

1/[(w+a)old-(w+a)new

Get x new.

142 | 140

D16

RA < MEM(ACO)
G «P

MRA,B,C « G
INC ACO
ACL <« 30

ADD V IB V SV

N,M

@

Get x old.
«=(w+a)old/[(w+a)old -
(w+a)new]

Set output address.

Check to see if new
or old point is clippe

NC=new.

NC NC=old.

Intersect Subroutine Continued

A-22

M=MULTIPLY

AC2=-1 E?E

141 143 G,B « MB
DO MDA,C <« G-RA
LI
144 141 INC ACZ M
D2 ,
(;§f; AC2#-1
146 | 144 G+« P
DO MB,C <« G+RA
RA <« MEM(ACO)
ADD V IB V SV M
147 146 MDA <« MEM(ACO)
DO INC_ACO
ADD V IB V NV
141 147 MEM(AC1) <« MB
DO INC AC1
G,B « MDA
MDA,C « G-RA
ADD V TB
[y %
150 145 G« P
DO MRA,B,C « G+RA
MB <« MEM(13)
ADD V IB V SV M
(V4
0 150 | MEM(AC1),B « MRA
DO LOAD SENSE REGISTER

Jv _
ADD V TB
SUBROUTINE RETURN

Intersect Subroutine Continued

" return

A-23

X new - x old.

I=(In-Io) + Io
where I=x,y,z.
Get y,z,w old.

Get y,z,w new.

Write x,y,z intersect
(new).
(In-Io) where I=y,z,

I=« (In-Io)+Io
where I=w.
Get w old.

Write w intersect.
Sense w for perspec-
tive.

Set clip flag.

M=MULTIPLY

AC2=-1 ;aff

G,B « MB
151 [142 ,
50 MDA,C <« G-RA
L«
154 151 INC AC2Z M
22 ;;E; AC2#-1
152 | 154 G« P
DO MB,C « G+RA
RA <« MEM(ACO) y
ADD V IB V SV
155 [152| MDA < MEM(ACO)
DO INC_ACO
ADD V TB V NV
151 | 153 MEM(AC1) « MB
DO INC AC1
© G,B <« MDA
MDA,C « G-RA
ADD V IB
|
1
156 | 155 | G« P
DO MB,C « G+RA
MRA,B < MEM(13) u
ADD V IB V NV :
0 156 MEM(AC1) <« MB
DO JV
ADD V IB
SUBROUTINE RETURN
B « MRA

LOAD SENSE REGISTER

!

return

Intersect Subroutine Continued

A-24

X new - x old.

I=%(In-Io)*Io
where I=x,y,z.
Get y,z,w old.

Get y,z,w new.

Write x,y,z intersect
(old).
(In-Io) where I=y,z,w

I=«(In-Io)+Io "’
where I=w.
Get W new.

Write w intersect.
Set clip flag.

Sense w for perspec-
tive.

From "Setpt'", "Drawto Check (w-x)'" or "Perspective 01d"

162 1160
D5

N=NORMALIZE
M=MULTIPLY

F=LOAD FLAGS

RA,

C,G,B « RLROM

MB « MEM(ACL)
INC ACI
ACO <« 20

ADD V ITB V NV N,M

MRA<O !1

?E MRA>0

165 { 162 G.< P
DO MDA,C « G+RA
MRA,B « MB
MB « MEM(ACO)
INC ACO
AC2 «-3 F,N,M
L
N
G« P
%85 163 MDA,C « G-RA
MRA,B « MB
MB < MEM(ACO)
INC ACO
AC2 « -3 F,N,M
Al N \L
: MEM(26), B <« MDA
Al — JHIT N, M
OUTPUT BUSY — [OUTPUT BUSY
_J
v

Perspective New
A-25

Get X new.

Set Viewport address

Check sign of
reciprocal.

l/w new.
Get VSX.

Set loop count.
Check normalize over-
flow.

1/w new.

Get VSX.

Set loop count.

Check normalize overw

flow.
Save 1/w new.

:

166 | 164 G «P
M=MULTIPLY DO MDA,C <« G
N=NORMALIZE MRA,B « MB
F=LOAD FLAGS RA < MEM(ACO)
' ' N.M
170 | 166 MB <« MEM(AC1)
D13 INC _AC1
ADD V 1B V NV
DIVIDE . M
ERROR j?gf'DIVIDE ERROR
172 | 170 G «P .
D2 RA,C <« G+RA+CARRYIN
MDA <« MEM(26) |
MRA,B +« MB |
INC _ACO INC ACZ M,F g
AC2=-17) T CAC2#-1 ‘
\—st
NII =)
164 | 172 OUTPUT ,B,C< RA
DO LOAD OUTPUT
MB <« MEM(ACO)
INC ACO N, M
PNIV 1)
377 | 173 OUTPUT ,B,C+ RA
DO LOAD OUTPUT
LOAD STATUS & SET FLAG

L

to "Next Vector"

Perspective New Continued
A-7A

(x,y,z)/w new.

Get VCX, VCY, VCZ.

Get y,z new.

Get 1/w new.

Check normalize over-
flow.

Output x,y.
Get VSY, VSZ.

Output z.

174 171 MDA < MEM(ACO0)
D14 RA,C,G,B < MRA
MDA<O- 3 MDA 0
- (overflow)
(Underflow
176 174 G,B « MDA
DO RA,C « G+RA
|
J
176 175 G,B + MDA
D2 RA,C *+ G-RA
AC2=-1 %:’ §L5 AC2#-1
D2 MRA,B <« MB
INC AC2
INC ACO F
AC2=-1

173
Do

J

177

RA,C,G,B < MDA

INC ACO
INC ACZ

!

Perspective New Continued

A-27

VCX, VCY, VCZ.
VSsX, VSY, VSZ.

VC + VS

vC - VS

Get 1/w new.
Check normalize over=
flow.

AC2#-1

z underflow (negativeé

N=NORMALIZE

157

167,
DO

200

From '"Drawto Check (w-x)"

L

161 MRA,B « MB
LOAD SENSE REGISTER
ACl <« 30
157
| N
Vi
167 JHIT
MDA,C,G,B + RZROM .

I

Perspective 01d
A-28

Get w old.

Address of clipped
data.

Wait for ROM.

' 202 | 200| RA,C,G,B <« RIROM
N=NORMALIZE DS MB <« MEM(AC1)
M=MULTIPLY - INC ACL
F=LOAD FLAGS ACO < 20

: ADD V IB N, M
MRA<0 J | MRA0

205 202 G «P
DO MDA,C + G+RA
MRA,B < MB
MB <« MEM(ACO)
INC ACO
AC2 <« -3 F,N,M
., I
G <P
205 12050 wpa,c < G-mA
MRA,B <« MB
MB « MEM(ACO)
INC ACO
AC2 <« -3 F.N,M
L f
204 | 205 | MEM(26),B <« MDA
D4 N,M
OUTPUT BUSY

fOUTPUT BUSY 4y

Get x old.

Set Viewport address.

Check sign of

‘reciprocal.

1/w old.
Get VSX.

Set loop count.

Check normalize over-
flow.

1/w old.
Get VSX.

Set loop count.

Check normalize over-
flow.

Save 1/w old.

Perspe%;ive 01d Continued

N=NORMALIZE - ¢}
M=MULTIPLY 206 | 204 «
F=LOAD FLAGS DO MDA,C « G
MRA,B « MB
RA <« MEM(ACO)
M
L.
210 | 206 MB <« MEM(ACI1)
D13 INC AC1
ADD V IB M
—
DIVIDE ERROR
DIVIDE DIVIDE ERROR
ERROR
: 212 | 210 G« P
D2 RA,C < G+RA+CARRYIN
MDA < MEM(26)
MRA,B <« MB ,
INC ACO INC AC2 F,M
AC2=-1 i, ACZ#‘l
POIV = z
<:::> 204 | 212 OUTPUT ,B,C< RA
DO LOAD QUTPUT
MB. « MEM(ACO)
INC ACO N,M
{
POV L
201 213 MRA,B « MEM(13)
DO LOAD SENSE REGISTE
ADD V IB V NV

POVI

(x,y,z)/w old.

Get VCX, VCY, VCZ.

Get y,z old.

Get 1/w old.

Check normalize over-
flow.

Output Xx,y.

Get VSY, VSX.

Get w new.

Perspective 0ld Continued

A-2N

S

A\ yd

214 1 211 MDA <« MEM(ACO)
D14 RA,C,G,B <« MRA VCX, VCY, VCZ.
‘ . VSX, VSY, VSZ.
MDA<0 { MDA20 (overflow)
(underflow) (ﬁ%§;—
216 | 214 G,B < MDA
DO RA,C « G+RA VC + VS
l
- F=LOAD FLAGS 216 | 215 4' G,B < MDA
’ M
D2 RA,C < G-RA VC - VS
AC2=-1 — £ AC2#-1
Té&f:? ::;f; AP
MDA <« MEM(26
212 216 MRA. B +-§B) Get 1/w old. |
D2 ING AC2 Check normalize over-
INC ACO flow.
AC2=-1 , AC2#-1
___“/
=z
2134 217 RA,C,G,B « MDA
DO INC ACO
INC AC2

Y

Perspective 0ld Continued

A -3

N=NORMALIZE

207
DO

160
Do

20

OUTPUT ,B,C « RA

LOAD OUTPUT
LOAD STATUS & SET FLAG

FORCE SETPUT MODE N
N/
207 | MDA,C,G,B <« R2ROM
| ACl + 10 N
\ 4

to "Perspective New"

Output z.

Perspective 01ld Continued

RSR(0)

Matrix Draw

=

From "Dispatch"

\

221 | 220 RA <« MEM(27)
DO AC1,B <« MEM(27)
INC AC1
ggz 221 G,B + 17 [RAMADR]
MDA,C <« GARA
223 | 222} RA,MB,C,G,B < ACI
DO AC3 +« -4
1)
224 223 MEM(31)+« MB
DO B,C « 0 ALU
LOAD SENSE REGISTER
226 | 224 MEM(30),B <« MDA
D12 ACO,B « MDA
RSR(0)
Matrix Push
225 | 227 G,B <« 17 [RAMADR]
DO MB,C <+ G+RA
226 225 MEM(27) <« MB
DO

Matrix Push § Matrix Draw

v
to Matrix Continue

A-33

Get draw matrix
pointer.

Increment pointer to
start of temp matrix,
Mask low four bits.

Move temporary addrer
to MB and RA. @
Set loop count to -4.

Store temporary matr
address.

Set Normalize Sense
to maximum shift.

Store Draw Matrix
Address.

Add 17 to output
address

Update Draw Address
pointer.

From "Matrix Push, and Matrix Draw''

230
M=MULTIPLY DO

C=CHECK TRANSPOSE

231
DO

232
D1

32
DO

| &

226

MEM(0),B « INPUT

MB,C,G,B « INPUT

1}

230

MEM(1),B <« INPUT

L

231

MEM(2),B « INPUT
PUSH STATE

L

233

MEM(3),B « INPUT
JIB

14

to "Subroutine Vector Multiply"
from "Subroutine Vector Multiply"

234 | 232 G+« P
D3 MB,C « G+RA
ACO,B « MEM(30)
INC AC3 M
AC3=-1 ?E E AC3#-1
226 | 234 MEM(AC1),B « MB
DO SENSE MINIMUM NORMAL
INC AC1 C
o
242 | 235 MEM(AC1),B « MB
DO SENSE MINIMUM NORMAL

AC2 « -20
INC AC1 C

j

to state 242

Matrix Continue
A-34

Get data.

Get data.

Get data.

Save State #232.

Get data.

IB must = 1.

Set ACO0 to draw
matrix address.

Set loop count.

RSR(0)
Matrix Draw

from state 235

l

-

237 242
D12 AC1,B « MEM(31)
RSR(0)
Matrix Push
237 236
DO ACO0,B « MEM(31)

to

y

"Matrix Normalize'f

Matrix Continue

A-35

Get TEMP Matrix
Address

Reset output address
to TEMP Matrix.

From '""Matrix Continue"

N=NORMALIZE _ I
240 | 237 MRA,B <« MEM(ACI)
D2 INC AC1
INC AC2 N
AC2=-1 'Eijt:J (::ff;Acz#-1
N
237 | 240 | MEM(ACO},B < NMR
DO INC ACO N
]
0 241 | MEM(ACO),B < NMR N
DO

to '"Get RSR"

Matrix Normalize
A-36

Get data

Write normalized
data to memory.

- From "Dispatch'

244 243
D4
/ A
244 [245
D4
OUTPUT :
BUSY '% r—~ OUTPUT BUSY
246 1244 .
DO ‘OUTPUT ,B <« INPUT
INC AC2
4 /
246 l?46
D2 OUTPUT ,B <« INPUT

ACZ#—I%;?

INC AC2

377
DO

247

EE;AC2=-1

SET OUTPUT FLAG

to "Next Vector"

Pass

Wait for output
ready.

Pass x.

Pass y,z ,w.

Set flag.

RSR(0)
Pop
(Matrix
Stack)

From '""Dispatch"

&

Get matrix stack
pointer.

(General Stack)

252 | 250 ACO « 27
D12 RA <« MEM(27)
RSR(0) Pop
DO
DO d/
254 |252 G,B « AC3
DO MB,C « G+RA
DO

l

to "Get RSR"

Pop
A-38

Get stack address.

Get contents of
pointer.

Decrement stack
pointer.
(AC3 is negative)

Update pointer.

RSR(0)
Push
Matrix Stack)

to state 270 of Move Data .

From "Dispatch"

Get matrix stack
pointer.

Push (General Stack)

256 | 255 | RA,C,G,B « AC3
D12 ACZ < 27
|
RSR(0)
256 |257 AC2,B « INPUT
DO
N
ME <~ MENM(ACZ)
260 | 256 | AC1,B « MEM(AC2)
DO I
261 | 260 INC ACI
DO G,B « MB
MDA,C < G+RA
262 | 261 G,B « MB
DO MB,C < G-RA
N
263 [262 ACO0,B <« MDA
DO MEM(AC2) + MB
264 | 263 INC ACO
DO
y
270 [264 MB < MEM(ACO)
D3 INC ACO
INC AC3
AC3#-1

Push
A-39

Get stack pointer
address.

Get contents of
pointer.

Set up '""to'" address.
Set MDA to "from"
address.

(RA is negative)

Get value to update
pointer with (RA
is negative).

Set ACO to (from-1)
address.
Update stack pointera.

Increment from addrei
Read data from "from

address.

AC3=-1

to state 271 of Move Data

C=CHECK TRANSPOSE

from "Dispatch"

RSR(0)
(Swap Data)

to ""Swap Data"

AC3=-1 —ef

Move Data

A-40

266
D12 | 265 AC0,B * INPUT Get "from'" address.
(j%f; RSR(0) (Move Data)
N
270 | 266 AC1,B « INPUT Read '"'to' address.
D3 MB « MEM(ACO) Read data.
INC ACO
INC AC3 C
AC3#-1
| Y
272 | 270 MEM(AC1) <« MB Write data.
DO ' INC AC1
S
2701 272 MB « MEM(ACO0) Read data.
D3 INC ACO c
INC AC3
L
0 271 MEM(ACL1)< MB Write data.
Do INC AC1
to "Get RSR"

C=CHECK TRANSPOSE

from "Move Data"

AC3=-1

<o

273 267 AC1,B « INPUT
DO MB < MEM(ACO)
274 1273, MDA <+ MEM(AC1)
DO
276 1274 MEM(ACO0),B * MDA
D3 INC ACO
‘ INC AC3
]
q::f;: AC3#-1
275 276 MEM(AC1) *+ MB
DO INC AC1
273 |275- MB + MEM(ACO)
DO
Al
0 277 MEM(AC1) < MB
DO INC AC1
to '"Get RSR"
Swap Data

A-41

Get '"'to' address.
Read '""to'" data.

Read "from" data

Write "to'' data.

Write "from'" data.

Read "'to'" data

Write "from'" data

C=CHECK TRANSPOSE

from "Dispatch"

302 1300 ACD,B * INPUT Get address
D12
~ RSR(0) <: RSR(0) (normal load)
=24 bit
extended
load sy
304 302
D3 INC AC3

AC3=-I~?§;ﬁ

t:%f& AC3#-1

304|304 | MEM(ACO),B « INPUT
D3 INC ACO
INC AC3 C
I N
0 305 | MEM(ACO0),B « INPUT
DO INC ACO
C
to "Get RSRY
N 4
306303 EXTEND,B < INPUT
D3 INC AC3
: AC3=-1-:§ — — AC3#-1
3031306 | MEM(ACO),B * INPUT
DO INC ACO
SELECT SIGN c
o lz07 | MEM(ACO),B * INPUT
Do INC ACO
SELECT SIGN C

J

to "Get RSR"

Load
A-42

Load data.

Load last data.

C=CHECK TRANSPOSE

312

From “Dﬁspatch"

g

Get address.

Wait for output not
busy.

Store extend bits.

Wait for output not
busy.

Store

515 1301 ACO,B « INPUT
(normal store) (24 b1§t8¥g?nded
310 {313
SETSaE D4 2
u u ,
—_EBusy ej @Output Busy
310
o4 |31t
i
R¥
géz 310 SELECT SIGN
OUTPUT,B « MEM(ACO)
SET OUTPUT FLAG C
< v
314 {312
D4 =
Output Busy }%ftj (i;f;Output Busy
314 | 315
D4 l
Js
316 | 314 | QUTPUT,B « MEM(ACO)
D3 SET OUTPUT FLAG
INC ACO
INC AC3 C
AC3=—17%? (:;55 AC3#-1
312 | 316
D12 '
)
0 317
DO
to "Get RSR"

321
DO

322

323
Do

324
DO

302
D12

RSR(0)
24 bit extended
load

to state 303 of

From '""Dispatch"

£

Get address of

320 AC1,B « INPUT
: . pointer.
i
321 RA <« MEM(AC1) Get contents of
l pointer.
322 G,B « AC3 Subtract # words to
MB,C « G+RA be loaded. (AC3 is
negative).
323 AC0,B « MB Set counter to
(first -1) address.
324 INC ACO Increment counter to
first address.
RSR(0)
Normal Load
Load to state 302 of Load
Load Stack

A-44

326
DO

327
DO

330
DO

331
DO

312
D12

RSR(0)
- 24 bit extended
store

to state 313 of Store

From '"Dispatch'

325 AC1,B « INPUT
226 RA * MEM(AC1)
| 227 G,B « AC3
MB,C « G+RA
330 AC0,B < MB
N
21 INC ACO

Store Stack

A-45

Get address of
pointer.

Get contents of
pointer.

Subtract # words to
be stored. (AC3 1is
negative).

Counter to (first -1@L
address.

Increment counter to
first address.

RSR(0)

Normal Store

to state 312 of Store

333
DO

334
DO

335
DO

from "Dispatch"

532 RA < MEM(AC3)
ACO0,B + MEM(AC3)
333 { G,B « -1[RAMADR]
MB,C + G+RA
334 | MARI,B *+ MEM(ACO)
335 MEM(AC3)* MB

to '"Get RSRY

Pop-Jump (return)
A-46

Get stack pointer.

Decrement stack

pointer.

Jump (set memory
address).

Save decremented
stack pointer.

RSR(0)
(Jump Relative

from '"Dispatch"

337 336 RA + MEM(AC3) Get stack pointer.
DO ACO,B « MEM(AC3)
340 337 G,B * 1[RAMADR] Increment stack
DO MB,C * G+RA pointer.
: INC ACO
e
340 340 MEM(AC3) * MB Save incremented
D17 RA,C,G,B « MARI stack pointer.
FITO FIFO FULL Get memory address.
FULL“% $
342 [341] G,B < -3[RAMADR] ' Compute old push jum
D12 RA,MB,C « G+RA address.
— (address -3)
R(0) (Jump
) Absolute)
350 - | 34 MEM(AC(Q) « MB Save old address on
DO ___ZJ MB,C,G,B « INPUT stack.
Jump (set memory
address).
to state 350 of "Jump"

350 343 MEM(ACO) « MB Save old address on
DO G,B « INPUT stack.

MB,C « G+RA Compute new address

to state 350 of "Jump"

Push Jump
A-47

(relative).
(address -3) +
offset.

from "Dispatch"

L

347 245 RA,C « 0 " Zero RA in case jump
D12 | is absolute.

ef@ - 1 L~ RSR(0)

.mp Jump Relative

.bsolute
346 !346 RA,C,G,B « MARI Get MARI for a relative
D17 ‘ ’ jump. '

FIFO FULL% c;.g—’FIFO FULL
3
350 | 347 - G,B « INPUT Get next address.
D12 MB,RA,C « G+RA
RSR (0 ‘ RSR(0)
Jump ::Ef; Jump Relative
Absolute
350 351 G,B « -3[RAMADR] Add FIFO offset
DO MB,C < G+RA
4 v
344 350 MARI,B « MB Update address
DO
Do 344 Allow MARI register
delay before getting
RSR input.

to '""Get RSR"

Jump
A-48

from "Dispatch"

(No-0p)

353 354

D12
RSR(0) RSR(0)

(Terminate)
0 352
DO
to ""Get RSRY
S
go 353KET "STOP ON RSR HOLD"

l

to ""Get RSR"

No-op and Terminate
A-49

N oy AN O

B I - ¥ T O T N T O L N B N O & T N B N S T N T S T T S == T = N St Sy S Gy U S UV
N H O NN A NN HE O N AN HE O N AN Eo

MAP STATE/NAME CROSS-REFERENCE TABLE

Get RSR
Dispatch
Absolute Input

Origin Offset

7" it
T 1A
AA 19

A 1

Set Input Base

Vector Multiply

1 "

1" 1"

" 11

Vector Multiply Subroutine
1" 12 "

1 1t 1"

1. 1" "

1" 1" 1

1" " "

Vector Multiply Subroutine Continued

1" " 1" 1A

" 1" 1 1A

A-50

43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66.
67
70
71
72
73

74

75

76

77

100
101
102
103
104
105
106
107
110

Vector

1"

Vector

1Al

Multiply Subroutine Continued

" 11 1"
Normalize

" ’

i

"

"

Output New Vector

" 1 .oon
1" 1" 1"t

" 1A "

Setpt Check
Drawto Check
Setpt Check

1" "

T "

” 1A

(z)

Drawto
1"

Drawto
Drawto

1"t
1"
Drawto
"
Drawto
Drawto

"

1"

Drawto

1"

Drawto
Drawto

Check
Check
Check

Check

Check
Check

t 1"

" "

Check

1" "

A-51

111 Drawto Check (w+x)
112 Drawto Check (w-y)

113 1" te 1"
114 13} 1" 1"
115 Drawto Check (w+x)
116 12 12} 7"

117 Drawto Check (w-x)
120 Drawto Check (w+x)

121 " "o "
122 " " "
123 Drawto Check (w-x)
124 " " "
125 " " "
126 " " "
127 " " "
130 Intersect Subroutine
131 " "

132 " 1

133 " "

134 " "

135 " "

136 " "

137 "o "

140 Intersect Subroutine Continued
141 13} 121 1A}

142 " " "
143 " " "
144 " " "
145 " " "
146 " " "
147 " "
150 " " "
151 " "
152 " " "
153 " " "
154 " "
155 " " "
156 " " "

157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177
200
201
202
203
204
205
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224

Perspective
Perspective
Perspective
Perspective
"

Perspective
Perspective
Perspective
Perspectivé
Perspective

"
e
"
1t
1"
"
1"
Perspective
1"
1

"

01ld
New
01ld
New

New
New
New
01d
New

Continued

Continued

Continued

1"

§ Matrix Draw

"

"

7"

1"

A-53

225
226

227
230
231
232
233
234
235
236
237
240
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264
265
266
267
270
271
272
273

Matrix
Matrix

Matrix
Matrix

"
1A
1"
\A
1"

"

Matrix

Push & Matrix Draw
Continue

Push & Matrix Draw
Continue

1"

"

Normalize

A

Continue

A-54

274 Swap Data
275 " "

276 " "

277 " "

300 Load

301 Store

302 Load

303 "

304 "

305 "

306 "

307 "

310 Store

311 "

312 "

313 "

314 "

315 "

316 "

317 "

320 Load Stack
321 " "

322 " "

323 " "

324 " "

325 Store Stack
326 " "

327 " "

330 " "

331 " "

332 Pop-Jump (return)
333 " " "
334 " " "
335 " " "
336 Push Jump
337 " "

340 " "

341 " "

A-55

342
343
344
345
346
347
350
351
352
353
354
355
356
357
360
361
362
363
364
365
366
367
370
371
372
373
374
375
376
377

Push Jump

" 1Al

Jump

"

1"

1A

"

" .

No-op & Terminate
1" "

" "

Next Vector

APPENDIX B

MAP OUTPUT SEQUENCER STATE DIAGRAM

"Output Next"
RESET
JL_JI ~P

00 00 IDLE

D1 OUTPUT FLAG

MAP #DONE-%? ﬁlg' MAP=DONE
04 01

D3 DISPATCH

2D ‘gASS | 3D KAt

(10) (00)
N 4 v
4 D HIGH 4D PASS
(01) (11)

DO NEXT ADDRESS

D1 LSB = MAPDONE
D2 LSB = SKIP
D3 Al,A0 = DISPATCH CODE

Output Sequencer Dispatch

10
D2

SKIP

from "Dispatch"

00

DO

1z

DO

13
DO

14
DO

6
NOTHING
*SKIP
11 NOTHING
to "Output Next'" of "Dispatch”
W
: W
10 REQ BIS WRITE
\
12 X_> DAT
INC_MARO _HOLD
13 REQ BUS WRITE
HOLD
N
Y-DAT
14 INC MARO HOLD

to '"Output Neng of ”Dispétch”

2 D Pass

15
DO

16
DO

17
DO

from "Dispatch"

i

4 REQ BUS WRITE
HOLD
Y
15 ST,ZH,X - DAT
| HOLD INC. MARO
16 REQ BUS WRITE
HOLD
17 z§9r+1mm
HOLD INC MARO

v

to ”Outpﬁt Next of Dispatch"

3D Format

from "Dispatch"

30 ;
DO REQ BUS WRITE HOLD
52 T30 X + DAT
D2 INC MARO HOLD
*SKIP if:&:; q:ii? SKIP

31 |32 REQ BUS WRITE
DO HOLD

\

Y > DAT

34 131 INC MARO HQLD
DO

\.
35 34 REQ BUS WRITE
DO HOLD
36 |35 15 \ARG HOLD
DO

hY
37 | 36 REQ BUS WRITE
DO HOLD

W \VfAT

0 37 INC MARO HOLD
DO
0 33 NOTHING
DO

)

4
to "Output Next' of '"Dispatch"
P P

4D Pass

20
DO

21
DO

22
DO

23
DO

24
DO

25
DO

26
Do

from "Dispatch"

5
REQ %BiDWRITE
RSR -+ DAT
20 INC MARO HOLD
21 REQ BUS WRITE
HOLD
N/
22 + DAT
HOLD INC MARO
23 REQ BUS WRITE

HOLD

\

X

-

' AT
INC MARO HOLD

25 REQ BUS WRITE
HOLD
v/
26 7 * DAT

HOLD INC MARO

to "Output Next of Dispatch'"

4D High

B-5

APPENDIX C

REFRESH SEQUENCER STATE DIAGRAM

THIS STATE NUMBER

—> XY
DXX

DISPATCH CODE

NEXT STATE BASE ADDRESS

NEXT STATE <« (NEXT STATE BASE) + DISPATCH

DISPATCH CODES

DO = ZERO

D1 = ONE

D2 = GO

D3 = NAME

D4 = FINISH
D5 = FIFO BUSY
D6 = HLTREQ

D7 = WRT BACK

REFRESH CONTROLLER STATE MACHINE

Begin

|

15

NOTHING
CLR STATUS FLAGS

24
DO

24
D1

00 | 00
D2 NOTHING
%GO
4
—
oL PSA < RS
RP < RS
CLR STATUS FLAG
= RESTART
A\
4| SBUS * RE

IF (RP=RE) SET JHLT

\ 4
TO INIT

BEGIN

INIT

!

gg 25 | $BUS <« RE-1
IF (RP=RE-1) SET JULT
WBM £WBM
26 | 21
a0 PSA « WP
‘éf 26 SBUS« WE
IF (WP=WE) SET JWRP
20 |27 SBUS « WE-1
DO IF (WP=WE-1) SET JWRP
22 120 NOTHING
D4
*FIN FIN
TO RUN T FINISH A
INITIALIZATION

RUN

02 {22

D1 CLR STATUS FLAGS
NOTHING

REQUEST 5~

Y

gg 03 IREQUEST READ/WRT
. HOLD REQ
NEXT o3y
,
B

Y

04 |06 SBUS « PE-2Z
D7 F (RP=RE-2) SET JHLT

WBM L\ “RWRM

TO WRITE RACK TO NORMAL

REQUEST CYCLE

WRITE BACK

06 [05 PSA < WP
D1 WP « WP+1
HOLD PASS

!

10 | 07 SRUS « WE-2
D3 IF(WP-WE-2 SET WRP

*NAME 4 j—NAME
NOfEAL

TO TESTNAME

10 104 NOTHING
D3 HOLD PASS
*NAME-—E:;ﬂ | NAME
2 [:;ji;, TO TESTNAME
12 |10
D4 CLR STATUS FLAG

*FIN [. Ei;zIFIN
TN FINTSH B

A

02 | 12{REQUEST READ/WRT
D5 ON GRT
HOLD GRT
*BUSY BUSY
TO NEXT TN REQUEST

COMPLETE CYCLE

C-5

TEST NAME

16 {11 PSA + SNR
DO
HOLD GRT
y
16 [16 «
D1 NOTHING
y
30 |17 SBUS <« CNR
D1 TF (SNR=CNR) SET JMAT
A
22 (31
L NOTHING
FIN
TO FINISH A TO RUN

TEST NAMF

*FIN

FINISH A

l

12 [23
D1 NOTHING
FINISH B
31 |13 IF [(MATREQADEC)V REJMP]A §
D1 WRTBACK
WP<WP -2 ‘
RELEASE LG PORT
k4
a
%g 351 IF MATREQADEC THEN ?
RP« RP-2 |
*HLTREQ HLTREQ
; F
to BEGIN
7
32 14
b INT HOLD |
24 | 32
DO PSA < RP

CLR STATUS FLAG

|

RO RESTART

FINISH

C-7

	0001
	0002
	001
	002
	003
	1-01
	2-01
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-001
	5-002
	5-003
	5-003a
	5-004
	5-004a
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-016a
	5-017
	5-018
	5-019
	5-020
	5-021
	5-021a
	5-022
	5-023
	5-024
	5-025
	5-025a
	5-026
	5-027
	5-028
	5-029
	5-029a
	5-030
	5-031
	5-032
	5-033
	5-033a
	5-034
	5-034a
	5-035
	5-036
	5-036a
	5-037
	5-037a
	5-038
	5-039
	5-039a
	5-040
	5-041
	5-042
	5-043
	5-043a
	5-044
	5-045
	5-046
	5-047
	5-048
	5-049
	5-049a
	5-050
	5-051
	5-052
	5-053
	5-054
	5-055
	5-056
	5-056a
	5-057
	5-057a
	5-057b
	5-058
	5-058a
	5-059
	5-060
	5-061
	5-061a
	5-062
	5-063
	5-064
	5-065
	5-066
	5-066a
	5-067
	5-068
	5-069
	5-070
	5-070a
	5-071
	5-072
	5-072a
	5-073
	5-073a
	5-074
	5-075
	5-076
	5-077
	5-078
	5-079
	5-080
	5-080a
	5-081
	5-081a
	5-082
	5-083
	5-084
	5-085
	5-086
	5-087
	5-088
	5-088a
	5-089
	5-090
	5-091
	5-092
	5-093
	5-094
	5-095
	5-095a
	5-096
	5-097
	5-098
	5-099
	5-100
	5-101
	5-101a
	5-102
	5-103
	5-103a
	5-104
	5-105
	5-106
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07

